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Abstract 

The thesis proposes a new procedure to describe bone anisotropy in the finite element 

model using computed tomography (CT) images. First, bone density was correlated to CT 

numbers using the empirical function established in previous studies; pointwise bone 

density gradient was then calculated from interpolation functions of bone densities. 

Second, principal anisotropic directions were defined using the bone density gradient. 

Third, the magnitude of bone density gradient was incorporated to an existing bone 

elasticity-density correlation established by experiments.  

 A method was also introduced to assign the anisotropic material properties to finite 

element models in Abaqus. The effect on the predicted von Misses stresses and principal 

strains in the bone by adopting the anisotropic or isotropic material model was 

investigated by finite element simulations using Abaqus. 
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Chapter 1 

Introduction 

Bone is a composite living material with complex anisotropic and heterogeneous micro-

structures and material properties. Anisotropic materials are stiffer when loaded along 

some directions than the others, and heterogeneous materials are not uniform in their 

material properties. The complex micro-structure of bone makes the determination of its 

material properties challenging. The determination of bone material properties is a 

prerequisite to assess bone fracture or to design implants and prostheses using numerical 

methods. Finite element analysis (FEA) has been widely used to computationally solve a 

wide range of biomedical problems such as designing artificial joints and assessing bone 

fracture [1-6]. The FEA is also a useful tool for the simulation of bone remodelling and 

healing processes [7-10]. However, the validity of FE analysis results is dependent on the 

accuracy of the material properties assigned to the FE models. Therefore, the definition 

of the precise material properties of bone is highly important for FE analyses [1, 11-20]. 

Consequently, development of an accurate method to describe anisotropic and 

heterogeneous material properties of bones has received considerable attention from 

researchers in the field of Biomedical and Biomechanical Engineering [21-30]. 
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 In general, most of the experimental methods such as tensile, compression, bending, 

torsional and indentation have been designed to characterize mechanical properties of 

industrial materials such as steels and composites. The aforementioned tests are also used 

to characterize the mechanical properties of biological materials such as wood, cartilage, 

bones and many others. These experimental methods are based on the fundamental 

principles of mechanics. Experimental studies have shown the dependence of the 

mechanical properties of bones on various factors, for example, species, age, sex, disease, 

and skeletal site [1, 26-28, 31-33]. In addition, bones have large variations in their shape 

and mechanical properties. Hence, bone mechanical properties change between different 

individuals and anatomical sites. Therefore, researches have been conducted to assess 

mechanical properties of in-vivo bones [21, 22, 27, 28]. In-vivo patient-specific FE 

analysis of bones has been also found a promising tool for fracture risk evaluation and 

surgery design [34-37].   

Computed Tomography (CT) images contain three-dimensional (3D) information on 

detailed topology of the heterogeneous micro-structures of in-vivo bone. CT images 

provide a specific value for each part of bone structure corresponding to a basic unit of 

the CT image. The basic unit is CT voxel; and the specific number is proportional to 

radiodensity of the corresponding part of bone structure. The radiodensity refers to the 

relative inability of X-rays to pass through a particular material. The values extracted 

from CT images are scaled to the Hounsfield Unit (HU) using the standard procedure [26, 

38-40]. The scaled value is known as the CT number. A combination of the experimental 

methods and statistical studies has been developed to determine the correlation between 

CT numbers and the heterogeneous mechanical properties of bones. For example, linear 

http://en.wikipedia.org/wiki/X-rays�
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correlations have been established between apparent bone density and CT numbers [27, 

41]. Exponential and linear relations between Young’s modulus and apparent bone 

density have been established. The defined mathematical correlations have been used to 

describe heterogeneous mechanical properties of in-vivo bones in subject-specific finite 

element (FE) models [26, 42, 43].  

The relationships substantially differ from one to another and the source of such 

differences in elasticity-density relationships is unclear [43]. In addition, most of them do 

not consider the anisotropic behaviour of bones. In a limited number of studies anisotropy 

has been considered; anatomical axes, i.e., the sagittal, coronal and axial axis, have been 

assumed as the principal anisotropic directions [24, 26, 27, 41, 44-46]; different 

correlations (exponential or linear) between elasticity moduli and bone apparent density 

have been adopted for different anatomical directions to consider bone anisotropic 

behaviour [26, 27]. However, the anatomical axes may considerably deviate from the 

actual principal material axes (principal anisotropic directions), which may be up to 40° 

and cause underestimation of the elastic constants by 30–40% [43, 47]. Previous studies 

have shown both of the principal anisotropic directions and the elastic constants in bones 

may change from point to point [16, 17, 19, 48-50]. Therefore, the lack of a 

comprehensive description of in-vivo bone anisotropy may be a source of the differences 

in the proposed elasticity-density relationships; and it could generate considerable errors 

in the predicted bone mechanical behaviour. In this study, we propose a procedure to 

describe the anisotropy and heterogeneity of in-vivo bones using CT images. 

The procedure consists of the following steps: (i) to define the principal anisotropic 

orientations; and (ii) to determine the elasticity constants along the orientations. In the 
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literature [1, 11, 12, 14-16], various CT based methods have been developed to find the 

orientations of the principal anisotropy axes. The Mean Interface Length (MIL), the Star 

Volume Density (SVD) and the Star Length Density (SLD) are the most frequently used 

methods to find the anisotropic directions of bone [1, 11-20, 41, 46, 49, 51]. These 

methods have mostly been used to find anisotropic directions of spongy bone because of 

their assumption on discontinuity of bone structure. Since these methods are very 

sensitive to the resolutions of the image, they are mostly applied to micro-CT images [43, 

52-54]; and require high computational costs to process the large volume of micro-CT 

image data [17, 18]. Moreover, variations of the anisotropic orientations have not been 

incorporated in the magnitudes of anisotropic elasticity constants. Schneider et al. [55] 

recently developed a method known as density-variation (DV) which can be applied to 

both spongy and continuous structures. It has been suggested that the principal 

anisotropic directions are parallel to the orientations of the maximum and the minimum 

variation of bone apparent density at a point. The basis of this idea came from star length 

or star volume distribution methods. In this study, DV method was extended by defining 

density gradient parameter from discrete data extracted from CT images using the finite 

difference method. Then, the corresponding heterogeneous Young’s moduli of bone in 

each principal anisotropic direction are modified from the existing empirical expressions. 

The Young’s moduli are obtained by incorporating the information of the density 

gradient to the existing empirical functions which correlate the bone elasticity moduli and 

bone density. As a result, the density gradient is defined to link the principal anisotropic 

directions and heterogeneous magnitudes of elastic constants in each local region of the 
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bone. Defining a procedure to assign this anisotropic material property to a finite element 

(FE) model is another objective of this research.  

1.1 Objective of the Reported Research 

The objectives of this dissertation are as follow:  

(i) To develop a new algorithm to describe pointwise anisotropy with CT scans. In the 

algorithm, we purpose to incorporate the effects of the pointwise anisotropy on the 

magnitudes of anisotropic elasticity constants. Gradient of bone density is introduced 

as an effective parameter to describe the pointwise anisotropic material properties of 

bone. For this purpose, existing empirical functions that correlate elasticity constants 

and bone density are improved by incorporating information of the bone density 

gradient. 

(ii) To introduce a procedure to assign the pointwise anisotropic material properties to a 

finite element model. 

(iii) To evaluate the effects of the anisotropy on the obtained results of bone FEAs. Fifty 

four finite element models are generated using both the proposed anisotropic and the 

conventional isotropic material models. The obtained stresses and strains distributions 

using both material models are then recorded and discussed. 

1.2  Outline of the Reported Research 

This thesis is organized as follows. In Chapter 2, first, theories of anisotropic material 

properties and computed tomography images are briefly explained. Second, anisotropic 
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behaviour of bones is reviewed. Third, conventional methods to determine principal 

anisotropic directions using CT images are briefly described. Fourth, possibility of 

extending existing density-elasticity correlations to describe bone anisotropic material 

properties is discussed.  

In the first part of Chapter 3, a procedure is introduced to determine principal 

anisotropic directions using density variation. As previous experiments have established 

that a linear correlation exists between CT number and bone density, the proposed 

method uses CT numbers in place of bone density. First, a continuous function (CT 

function) is constructed from the discrete CT numbers. With the function the density in 

each voxel of CT image is considered as a variable, not a constant anymore. Then, 

density gradients are calculated from the constructed function. As bone density gradient 

is parallel to the maximum bone density variation, it represents the principal anisotropic 

direction at the point. Because there is no density variation in the plane normal to bone 

density gradient, bone behaviour in the plane (plane of isotropy) is considered isotropic. 

Therefore, a transversely isotropic model of material is adopted for the femur bone. The 

second part of Chapter 3 describes how bone density gradient is incorporated into 

existing empirical functions that correlate bone elasticity modulus and bone density. The 

new equation is obtained by modifying the empirical function and considering effects of 

density gradient in each voxel of CT image.  

In Chapter 4, a procedure to perform FE analysis using the defined mechanical model 

is introduced. A measurement procedure is defined to evaluate the accuracy of the 

anisotropic model versus the conventional isotropic model using FE analysis.  
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In Chapters 5 and 6, the results of FE modeling are presented and discussed. The 

orientations of the isotropic plane in different sections of bone specimens are defined at 

the beginning of Chapter 5. The results of isotropic and anisotropic finite element 

simulations of virtual specimens (with the same sizes as the actual specimens used in 

compression tests) are also presented and discussed in this chapter.  

In Chapter 6, important outcomes and the limitations of the study are discussed. 

Recommendations for improving the mechanical model of bone by more numerical 

studies and performing statistically enough experiments are discussed at the end of 

Chapter 6.  
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Chapter 2 

 

Theory Review 

This chapter explains the general theories of anisotropic material properties and 

computed tomography images. Then, anisotropic behaviour of bone material is reviewed; 

and conventional methods to describe anisotropy in bones are discussed. 

2.1 Anisotropic Materials 

Anisotropic materials are stiffer when loaded along some directions than the others. As 

opposed to 

𝜎𝑖𝑗 = 𝐷𝑖𝑗𝑘𝑙𝜀𝑘𝑙 ,                                                        (2.1) 

isotropic materials which have identical properties in all directions, 

anisotropic material properties are directionally dependent [46]. The general equations 

for an anisotropic material are extended from the Hooke's Law. Generally, the linear 

elastic material behavior is defined based on the Hook’s Law given by [47], 
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where 𝜎𝑖𝑗 are the components of the total stress σ, εij are the components of the total 

strain ε; and D is the symmetric elastic tensor. The total stress and strain are usually 

written in vector form as [47] 

𝜎 =

⎣
⎢
⎢
⎢
⎢
⎡
𝜎11
𝜎22
𝜎33
𝜎12
𝜎13
𝜎23⎦

⎥
⎥
⎥
⎥
⎤

  and 𝜀 =

⎣
⎢
⎢
⎢
⎢
⎡
𝜀11
𝜀22
𝜀33
𝜀12
𝜀13
𝜀23⎦

⎥
⎥
⎥
⎥
⎤

.                                                                                               (2.2) 

 The number of independent elastic coefficients for a general anisotropic linearly 

elastic material is 21. The elasticity tensor, consisting of 21 independent constants, can be 

written in a matrix as [56]: 



























=

2323

13231313

122312131212

3323331333123333

22232213221222332222

112311131112113311221111

cAnisotropi

.
D
DDSym
DDD
DDDD
DDDDD
DDDDDD

D

.                                             (2.3)       

 

 If two orthogonal planes of symmetry exist in the material (Figure 2.1), the material is 

orthotropic. If the applied load is perpendicular to one of the planes, only normal strains 

occur in the load direction [55]. If the elasticity tensor is transformed into the directions 

perpendicular to the symmetry planes, the number of elasticity constants is reduced to 

nine [56]. The normal orientations to the orthogonal plane are principal anisotropic 

directions; and the elasticity matrix has the following form: 
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

























=

2323

1313

1212

33

2322

131211

cOrthotropi

0.
00
000
000
000

D
DSym

D
D
DD
DDD

D

,                                                   (2.4)

 

where Dik = Diikk .  

 
Figure 2.1: (a) Orthotropic, (b) transversely Isotropic material. 

 A transversely isotropic material is a special case of orthotropic materials which has a 

plane of isotropy. The transversely isotropic material possesses one axis of symmetry 

(normal to the plane of isotropy), the material properties are identical in all directions in a 

plane perpendicular to the axis. If a load is applied in the axis of symmetry, the material 

can be rotated about the axis without changing the material responses. The first principal 

anisotropic direction is parallel to the axis of symmetry, and the other two orthonormal 

anisotropic directions are arbitrary in the plane of isotropy. If the elasticity matrix is 

defined in the principal anisotropic directions, the number of independent coefficients 

decreases from nine to five for this type of material, i.e. [56], 

(a) (b) 
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

























−

=

)(
2
1

0.
00
000
000
000

2322

1212

1212

22

2322

121211

_

DD

DSym
D

D
DD
DDD

D IsotropicllyTransversa

.                         (2.5)

 

 An isotropic material possesses elastic properties which are independent of the 

orientation of the axes. Therefore, there are only two independent constants following the 

constitution matrix [56], 































−

−

−=

)(
2
1

0)(
2
1.

00)(
2
1

000
000
000

1211

1211

1211

11

1211

121211

DD

DDSym

DD

D
DD
DDD

DIsotropic

.                 (2.6)

 

 
 The two independent constants are the elasticity or Young’s modulus, E, and the 

Poisson's ratio, v. Under a uni-axial loading condition, Young’s modulus can be obtained 

by dividing the axial stress with the axial strain; and Poisson’s ratio is the negative ratio 

of transverse to axial strain [56], i.e., 

𝜎11 = 𝐸𝜀11 and  𝜈 = − 𝜀22
𝜀11

.                   (2.7) 

 The compliance tensor is the inverse of the elasticity tensor. The compliance tensor is 

mostly applied in engineering studies since the stress-strain relationships can be 

expressed in terms of Young’s modulus and Poisson’s ratio by using the compliance 

http://en.wikipedia.org/wiki/Strain_(materials_science)�
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tensor. In orthotropic and transversely isotropic material, the compliance matrixes are 

expressed by Young’s moduli, Poisson’s ratio and shear modulus in principal anisotropic 

directions as [56], 
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engineering constants in the principal anisotropic directions is the second step to define 

the elasticity or compliance matrix. 

2.2 Anisotropy in bones  

Bone is a living complex composite material with heterogeneous and anisotropic micro-

structure [1, 57, 58]. From a macro-structure point of view, bones are classified as 

cortical and trabecular bone. Cortical bone is compact and has larger load bearing 

capacity and impact resistance. Cortical bone acts as the primary load-bearing part in 

femurs and tibias [59]. On the other hand, trabecular (or cancellous, spongy) bone has 

higher porosity and exhibits lower strength than cortical bone. Trabecular bone mainly 

exists in the cuboidal bones and at the ends of long bones, at places such as the 

trochanteric region or the knee condyles in femur bones [1]. Trabecular bone provides 

damping to loads and acts as an energy-absorption structure [45]. Figure 2.2 shows the 

micro-structure of cortical bone and trabecular bone. 

 
Figure 2.2: Micro-structure of trabecular and cortical bone [60]. 
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 Extensive experimental studies have been conducted to determine bones mechanical 

properties [25-28]. Experimental results have shown that the mechanical properties of 

both cortical and cancellous bones are dependent on the loading directions in experiments 

[26, 34, 44, 45]. For instance, experimental studies have shown that the longitudinal or 

weight bearing direction of long bones has the highest yield stress and Young’s modulus 

and the radial direction has the lowest strength and elasticity modulus [23, 27, 28, 46, 61, 

62]. In the other studies, different strength and elastic modulus of bone have been 

measured in SI (superior-interior), AP (anterior-posterior), and ML (medial-lateral) 

directions [26, 27]. The results showed that the mean of Young’s modulus in the SI 

direction is about two and half times of the value in the AP direction at the mid-shaft of 

human femur [31]. 

 Bone anisotropy has been extensively studied [16, 49, 50, 63-65]. Researchers have 

investigated the relation between bone anisotropic mechanical properties and the axial 

distribution of bone minerals [63, 65]. Experiments have demonstrated that more than 

80% of the variance in bone mechanical behavior is related to its density variation and 

the anisotropy in its micro-architecture [66-68]. The effects of trabecular connectivity and 

morphology on the anisotropy of spongy bones have been reported in the literature [69-

71]. In addition, micro-scale studies have revealed that the orientation of mineral crystals 

and collagen fibrils in bones is responsible for the tissue directional variation in elastic 

properties or cause mechanical anisotropy [59].   
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2.3 Computed Tomography (CT) Image 

A set of CT scans of human body are a number of two-dimensional (2D) images; each 2D 

image represents a section of the body [1]. The movement of an X-Ray source in one 

direction and photographic film in opposite direction scans the image of the targeted 

cross-section.  

 Voxel is the basic unit in CT scans. The size of a voxel depends on the resolution of 

CT image. Data extracted from the CT images consist of a set of numbers representing 

the intensity of X-ray. The numbers are proportional to the X-ray absorption coefficient 

(radio density) [59]. Normally, the numbers are transformed linearly to a standard scale 

(Hounsfield Unit-HU), with the radiodensity of water at standard pressure and 

temperature defined as zero Hounsfield Units (HU), and the radiodensity of air at the 

same condition defined as -1000 HU [55]. 

 CT images contain information of heterogeneous structures in the bone. CT images 

have been used for examining bone structure, geometry, destruction and remodelling 

during fracture healing [1, 73]. CT images have been also used for evaluating the density 

and the mechanical properties of bone. In addition, the information extracted from the CT 

images (CT number) has been used to determine bone mechanical properties. Linear 

correlations have been established between bone apparent density and CT numbers [27, 

41]. Exponential and linear relations have been established between Young’s modulus 

and bone apparent density [21, 22, 26].  

 CT based methods have been also developed to find orientations of principal 

anisotropic directions [1, 11, 12, 14-16]. CT numbers have been processed using different 

http://en.wikipedia.org/wiki/Radiodensity�
http://en.wikipedia.org/wiki/Distilled_water�
http://en.wikipedia.org/wiki/Pressure�
http://en.wikipedia.org/wiki/Temperature�
http://en.wikipedia.org/wiki/Air�
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methodologies to find preferential alignment of bone structures. The preferential 

alignment of bone structures is utilized to find structural anisotropic directions. The 

structural anisotropic directions have been found closely parallel to principal mechanical 

anisotropic directions [12, 20, 50, 64, 74]. The next section explains different methods to 

process the CT image data to find the principal anisotropic directions. 

2.4 Principal Anisotropic Directions in Long 

Bones 

In the 19th century, Meyer and Wolf et al. observed the influence of  mechanics on bone 

architecture [65]. Bone structural anisotropy has been observed as the consequence of 

adaptive response to the applied load; and bone structure has shown preferential 

alignments parallel to the direction of the applied load. Based on the relation between 

mechanics and architecture of bone, different methods have been developed to define 

bone mechanical anisotropy using its structural anisotropy [12, 15, 16, 48, 49].  

 The link between the structural and the mechanical anisotropy of bone has been 

established by Cowin et al. [12]. The mechanical anisotropy refers to the variations of 

mechanical properties such as elasticity modulus or strength in different directions. The 

directions in the maximum and the minimum mechanical properties are taken as the 

principal mechanical anisotropic directions. The ratio of the maximum to the minimum 

elasticity modulus is called mechanical anisotropy ratio. The term of fabric tensor has 

been introduced to correlate structural and mechanical anisotropy. Cowin et al. defined 

fabric tensor as the inverse of the MIL (Mean Intercept Length) tensor. The degree of 
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anisotropy is obtained from the eigenvalues of the fabric tensor [12]. Other methods have 

been also developed to determine the mechanical anisotropic directions of bone by 

extracting information of anisotropic architecture from CT images [13, 16, 19, 20, 41, 46, 

49, 51]. The common CT based measurement methods, which are used to determine the 

anisotropic directions, are described later in this chapter. 

2.4.1 The Mean Intercept Length (MIL) Method 

The MIL method has been developed by Whitehouse et al. to quantify the structural 

anisotropy of cancellous bone using CT image data. The MIL method is used to find the 

preferential alignment of bone structure or structural anisotropic direction in bones. The 

MIL method was also applied by Harrigan and Mann et al. to 3D objects using CT 

images [48, 49, 51].   

 The MIL method is defined as the average distance between two bone/morrow 

interfaces [14, 51]. Segmentation of the interfaces between phases (bone/marrow or 

bone/surrounding soft tissue) and construction of binary data from CT images are two 

important steps in the MIL method [1, 75, 76].  

 In the MIL method, MIL components with respect to the direction of  𝑤��⃗  (𝑀𝐼𝐿(𝑤��⃗ )) 

must be measured, where 𝑤��⃗  is a unitary vector with an arbitrary orientation. First, a set of 

parallel line to the direction of 𝑤��⃗  is drawn in order to measure 𝑀𝐼𝐿(𝑤��⃗ ). The number of 

intersections between these lines and the bone/morrow interfaces, 𝐼(𝑤��⃗ ), is counted 

(Figure 2.3(a)). Finally, the MIL component with respect to 𝑤��⃗ , is calculated as: 

𝑀𝐼𝐿(𝑤��⃗ ) = 𝐿
𝐼(𝑤��⃗ )

  ,                                                                                                          (2.10)          
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where L is the total length of all drawn lines in the orientation of 𝑤��⃗ . It can be seen that 

the values of MIL components are inversely proportional to the number of intersections 

between a set of parallel lines and bone/morrow interfaces [1, 48, 49].  

  
Figure 2.3:(a) The intercepts between the set of parallel lines and the interface between 
phases (The gray and white areas represent bone and morrow, respectively). (b) The rose 
diagram of MIL components for any arbitrary directions. 

  
 To obtain principal anisotropic directions and ratio, a MIL tensor is computed from 

MIL components. In order to obtain the MIL tensor in a two-dimensional case, the MIL 

components for different directions (𝑤��⃗ ) are plotted in a rose diagram. Each MIL 

component is plotted as a radius from the origin at the angle of measurement (the angle of 

𝑤��⃗ ). Whitehouse et al. have found that 𝑀𝐼𝐿(𝑤��⃗ ) in the rose diagram can be approximately 

represented by an ellipse equation for trabecular bone [1, 48]. Harrigan and Mann et al. 

have extended this result in the three-dimensional space and they have found that MIL(w) 

in the rose diagram could have been estimated with an ellipsoid surface equation (Figure 

2.3(b)). The ellipse equation in 2D studies or the ellipsoid surface equation in 3D studies 

can be estimated with a small error by a fitting algorithm such as least-squares fitting [1].  

 The MIL tensor must be derived from the ellipse or ellipsoid equations to determine 

anisotropic directions and ratio in a region of interest. In 3D studies, the following 

(a) (b) 
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procedure has been utilized to derive the MIL tensor from the ellipsoid surface equation. 

The general formula of the surface of an ellipsoid is [51]:  

Ax12 + Bx22 + Cx32 + 2Dx1x2 + 2Ex1x3 + 2Fx2x3 = 1.                                              (2.11) 

Equation (2.11) can be represented in a matrix form. Each MIL components can be 

plotted as a radius with respect to Cartesian coordinates by [1, 51]: 

 𝑥1 = 𝑀𝐼𝐿(𝑤��⃗ ) × 𝑤1 , 𝑥2 = 𝑀𝐼𝐿(𝑤��⃗ ) × 𝑤2 and 𝑥3 = 𝑀𝐼𝐿(𝑤��⃗ ) × 𝑤3 ,      (2.12) 

where 𝑤1, 𝑤2 and 𝑤3 are the dimensions of the projections of the 𝑤��⃗ , in the directions of 

Cartesian coordinates axes. Using Equation (2.12), the Equation (2.11) is rewritten as:  

𝑀𝐼𝐿(𝑤��⃗ )2(Aw1
2 + Bw2

2 + Cw3
2 + 2Dw1w2 + 2Ew1w3 + 2Fw2w3) = 1.                  (2.13) 

Equation (2.13) in a matrix form is represented as:                                  

𝑤��⃗ .𝑀.𝑤��⃗ = 1
𝑀𝐼𝐿(𝑤��⃗ )2

 ,                                                                             (2.14) 

where M is the MIL tensor [1]; and the MIL tensor consists of the following coefficients: 

𝑀 = �
𝐴  𝐷  𝐸
𝐷  𝐵  𝐹
𝐸  𝐹  𝐶

�.                    (2.15) 

 The MIL tensor is used to obtain the fabric tensor, 𝐻 = 𝑀−1/2, introduced by Cowin 

[12]. The eigenvectors of the fabric tensor coincides with the anisotropic directions and 

its eigenvalues represent the anisotropy ratio in the structure of the materials [12, 13, 51].  

2.4.2 The Star Volume Distribution (SVD) and Star Length 

Distribution (SLD) Methods 

The concept of volume orientation has been developed by Odgaard [16]. The total 

volume of the material is divided to a number of local volumes; the orientation of the 
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longest arbitrary line which passes a local region of bone without intercepts is the local 

volume orientation [1, 15, 49]. The length of the longest lines without intercepts within 

each region is shown by L; and the local star volume is computed by: 

 𝑉𝑣� = 1
3
𝜋𝐿3.                      (2.16) 

 Star Volume Distribution (SVD) method has been defined using the concepts of the 

local volume orientation and the star volume [1, 11, 49]. If a set of parallel lines in a 

particular direction (𝑤��⃗ ) is traced to each local volume, the SVD component in the 

direction of 𝑤��⃗  can be expressed as follow: 

𝑆𝑉𝐷(𝑤��⃗ ) = 𝜋
3

 ∑ (𝐿𝑖(𝑤��⃗ ))4𝑛
𝑖=1
∑ 𝐿𝑖(𝑤��⃗ )𝑛
𝑖=1

  ,                                                                        (2.17) 

where n is the number of intersections between the lines and the interface between two 

phases at the direction of 𝑤��⃗  (as shown with crosses in Figure (2.4)) and Li is the length of 

the bone measured along a line parallel to the direction of 𝑤��⃗  for ith intersection (as shown 

with red line in Figure (2.4)) [49, 77, 78].  

 
Figure 2.4: The crosses represent the intercepts between a set of parallel lines and the 
interface between phases. Red lines show the length of the bone for each intersection. 
Gray and white colors represent bone and morrow, respectively 
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 The best fit ellipsoid to the SVD components is computed by calculation of the 

magnitudes of the SVD components in all directions. Then, the corresponding SVD 

tensor is obtained to determine principal anisotropic directions and ratios similarly to the 

MIL method.  

 The star length distribution (SLD) method has been introduced by Odgaard by 

making slight modification on the SVD method. The length is computed in the SLD 

method instead of the volume in the SVD method [1, 49]. With tracing a set of parallel 

lines to an arbitrary direction (𝑤��⃗ ), the SLD components can be expressed by: 

𝑆𝐿𝐷(𝑤��⃗ ) =  ∑ �𝐿𝑖(𝑤��⃗ )�2𝑛
𝑖=1
∑ 𝐿𝑖(𝑤��⃗ )𝑛
𝑖=1

  ,                                                                                              (2.18) 

where n is the number of intersections between the lines and the interface between two 

phases at the direction of 𝑤��⃗  (as shown with crosses in Figure (2.4)); Li is the length of the 

bone measured along a line parallel to the direction of 𝑤��⃗  for ith intersection (as shown 

with red line in Figure (2.4)). The best ellipsoid fit on the SLD components in all 

directions, is used to compute the SLD tensor; and the ratio and the directions of 

anisotropy within each local region of bones are obtained from SLD tensor similarly to 

the MIL and the SVD methods [49]. 

2.4.3 Remarks 

The binarization of the image data is a necessary and primary step in the described 

methods. The interfaces between phases (bone and surrounding soft tissue) must clearly 

be defined from CT images. Binary data must be constructed from CT images to employ 

the methods for the determination of the structural anisotropic orientations of bones. As 
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the segmentation and binarization of the images are sensitive to the resolution and noise 

of the image data, applications of the techniques on low-resolution clinical images cause 

significant errors [18]; and the application of the methods on the micro-CT (μCT) images 

of the object is preferred. However, it requires high computational operations and in 

some cases it is not possible in the clinical environments to apply the complex algorithm 

of the methods on huge amount of μCT data [14, 17]. In addition, it is not practical to use 

the methods in cortical bone since the cortical bone has approximately continuous micro-

structure.  

A new method to determine the anisotropic directions of bones is introduced in the 

next chapter (Chapter 3) to rectify the mentioned restrictions of the existing techniques. 

The technique is used to determine the principal anisotropic directions of both cortical 

and cancellous bones from clinical CT images. 

2.5 Bone Elasticity Constants 

In order to characterize mechanical properties of an anisotropic material, physical testing 

must be performed after identifying principal anisotropic directions. The physical testing 

of bone has been designed to determine the elasticity moduli of bone specimens under 

different loading conditions. In general, the most of the experiments are commonly 

designed based on standard procedures used to find the same parameters of industrial 

materials such as steels, woods and composites; these experimental methods are based on 

fundamental principles of mechanics. The mechanical tests such as tensile, compression, 

bending, torsional and indentation are common methods which have been used to obtain 
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Young’s modulus of bones. For instance, to determine the nine independent elastic 

coefficients of bones as an orthotropic material the following mechanical tests are 

required: (i) tensile or compressive tests in each of three mutually perpendicular material 

directions; (ii) three lateral deflection tests to obtain Poisson’s ratios; and (iii) three 

torsional tests to obtain shear moduli [1, 24, 79-83]. Figure 2.5 shows the compression 

test setup of a dumbbell shape specimen. 

 
Figure 2.5: Set up of compression test on a dumbbell shape specimen [84]. 

 Ultrasonic techniques are also used to determine bone elastic constants. Ultrasonic 

techniques have significant advantages over mechanical testing methods in the 

determination of the elastic properties of bone. The procedure of this method is relatively 

simple and allows using smaller and simple shape specimen [1]. Several mechanical 

properties can also be measured from a single specimen using this method. The method 

has advantages in handling in-homogeneity, anisotropy, and size limitations of bones [1, 
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23, 25, 30]. When density and principal anisotropic directions of a bone specimen are 

defined the elastic properties of the specimen can be determined from the velocity 

measurement of shear and longitudinal waves propagating in the concerned directions. 

The relations between the velocity and the elastic properties follow the theory of small-

amplitude elastic wave propagation in anisotropic solids [1]. Although bone material has 

shown different material properties under tensile and compression loads, this method is 

not able to differentiate their differences.  

 Results of the physical tests have shown that bones have large variations in their 

shape and material properties. Bone material properties are dependent on various 

parameters such as species, age, sex, disease, and skeletal site [1, 26-28]. Linear 

correlations between bone density and CT numbers have been established in the previous 

studies [2, 3]. These correlations motivate the following research to correlate the bone 

density to elastic constants to estimate local material properties of bones [43, 85].   

 Commonly, statistically significant numbers of bone specimens have been cut out 

from whole bones and they have been loaded in material testing machines to determine 

the elasticity–density relationships. The load–displacement curve has been recorded 

during the tests; and the stiffness constant has been then calculated from the curve. The 

original data consisting of calculated mean density of the specimens and the 

corresponding Young’s modulus have been collected and pooled from several mechanical 

tests. Then, statistical methods have been used to derive elasticity–density relationships 

for different specimens orientations and tensile/compressive conditions [43]. Based on 

the established linear correlation between CT numbers and bone density, the elasticity-

density functions correlate CT numbers and elasticity constants of bones. 



Theory Review  25 

 

 25 

 A number of mathematical relationships between measured density and mechanical 

properties have been proposed in the literature [21, 22, 26, 43]. Selection of the function 

that correlates bone density and Young’s moduli depends on the value of coefficient of 

determination (R2). Coefficient of determination indicates how well data points fit a 

proposed function; and it ranges from 0 to 1. When calculated coefficient of 

determination is close enough to 1, it means that the proposed elasticity-density 

relationship can be used to predict local elastic constants of bone from its density. 

Previous studies have shown that utilizing linear and exponential correlations yield the 

highest value of the coefficient of determination among the proposed functions [23-28, 

85].  

𝐸 = 𝛼𝜌𝛽 ,                                                                                                                     (2.19) 

𝐸 = Α𝜌 + Β .                                                                                                                (2.20)  

Different correlations with varied coefficients were derived in different studies. The 

relationships substantially differ from one to another and the source of such differences in 

elasticity-density relationships is unclear. Methodological discrepancy is presented as the 

major reasons of the differences in different studies. However, it is unclear whether such 

differences in elasticity–density relationships can be entirely explained in terms of 

methodological discrepancies[43][43][43][43][43][43][43]. Several methodological 

factors have been discussed as they may have influence on the experimental results 

obtained by mechanical testing [43]: 

1) Specimen preparation ( i.e., cutting and milling) 

2) Specimen aspect ratio 

3) Type of support during testing 
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4) Specimen geometry 

5) Anatomical sampling location  

 From another perspective, independent elasticity-density correlations for cortical and 

cancellous bone in different regions of bones can be considered [22, 26]. For instance, 

independent correlations have been proposed for different regions of skeleton such tibia, 

femur, humerus and mandible [26, 27]. It has been observed that density-elasticity 

correlations derived from cancellous bone specimens predicted very low elastic modulus 

when the correlations extrapolated to density ranges of cortical bone [43]. Therefore, two 

independent elasticity-density correlations for cancellous and cortical bone have 

generated more accurate elastic constants in comparison to a single elasticity-density 

correlation. 

 Independent correlations (exponential and linear) between Young’s modulus and 

bone apparent density have been also proposed for different anatomical directions to 

consider anisotropic behaviour of bone [26, 27]. For example, three independent 

correlations have been defined in anterior-posterior, medial-lateral and superior-inferior 

directions for cancellous specimens and radial, circumferential and longitudinal for 

cortical specimens. Mostly, poor correlations have been found between moduli in radial, 

circumferential and longitudinal directions for cortical bone [26]. The reason of the poor 

correlations might be the misalignment of the anatomical axes with the principal material 

axes that can be up to 40°. The misalignment causes underestimation in the order of 30–

40% in elasticity moduli [43, 47]. A misalignment of 10° produces an underestimation of 

10% in elastic modulus, and for a misalignment of 20° an underestimation in the order of 
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30–40% can be expected [43, 86]. As orientations of the principal anisotropic directions 

change in each local region of bone material, this variation should be considered in the 

definition of density-elasticity correlations. The ignorance of this variation might produce 

considerable errors in the prediction of elasticity constants [43]. 

Bone density has been known as the only independent parameter to determine the 

Young’s modulus of bone material in the conventional correlation functions. While the 

dependency of bone Young’s modulus to the direction of applied load or bone anisotropy 

has not been considered in the most of the existing correlation functions. In this study, 

density gradient as a new parameter is incorporated to existing elasticity-density 

correlations to link anisotropic orientations and magnitudes of elastic constants. The 

details of the procedure to derive new elasticity-density correlations are explained in 

Chapter 3. 
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Chapter 3 

 

Materials and Methods 

In this chapter a procedure is described to determine: (i) principal anisotropic directions 

using density gradient, and (ii) the magnitudes of elasticity tensor components along the 

directions of principal anisotropy based on the magnitude of bone density and its 

gradient. 

3.1 Principal Anisotropic Directions 

Schneider et al. has used density variation method [55] to find the principal anisotropic 

directions of both spongy and continuous micro-structures. The main idea is to define 

anisotropic directions based on the maximum and minimum variations of density in a 

region of bone tissue. The rationale originates from the star length distribution (SLD) or 

star volume distribution (SVD) methods. The authors have set a threshold value for 

density field variables surrounding each voxel in an image of a continuous structure; and 

the other voxels that exceed the threshold have not been considered. Exclusion of the 
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density magnitudes of the voxels from density field variables leads to constructing a 

binary field variable. An orientation, which can move furthest before hitting the 

constructed void area in the constructed binary field variable, is the direction of the 

smallest density variation. On the other hand, an orientation that has the shortest distance 

to the void area is the direction of the largest density variation. The direction of the 

smallest density variation coincides with one of the principal anisotropic directions, while 

using SLD and SVD methods, the direction of the largest density variation is also 

coincident with second principal anisotropic directions [55]. The third principal 

anisotropic direction is perpendicular to both the first and second principal anisotropic 

directions. In this work, a new approach will be introduced to determine the largest and 

the smallest density variation in each voxel of 3D CT images by constructing anisotropic 

voxels. To determine the principal anisotropic directions, this new approach comprehends 

the following tasks: 

(i) Defines bone density gradient by constructing anisotropic voxels,  

(ii) Establishes a relationship between the smallest or the largest variations of bone 

density and the bone density gradient.     

3.1.1 Construction of Anisotropic Voxels to Calculate Bone 

Density Gradient 

A voxel is the basic unit of CT images; and the corresponding segment of a bone 

specimen to the voxel is termed as a bone voxel. Each voxel has its voxel intensity. The 

voxel intensity is proportional to radio density of bone voxels and is scaled using a 
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standard procedure. The scaled numbers are known as CT numbers. There is a linear 

correlation between the CT number and bone apparent density in each voxel, 

𝜌 � 𝑔
𝑐𝑚3� = 𝑎 × 𝐶𝑇(𝐻𝑈) + 𝑏 .                                                                                        (3.1) 

In the conventional method, it is assumed that bone density is constant in a voxel, 

although there may be a variation, especially if the resolution is low and the voxel size is 

large. Young’s modulus is only defined as a function of bone apparent density in the 

existing mathematical correlations [26, 43], therefore, constant Young’s modulus is 

assigned to each bone voxel. The dependency of Young’s modulus on the orientation of 

the applied load (anisotropy) has not been considered. In this study, voxels with variable 

material properties (anisotropic behavior) are considered by modifying the existing 

elasticity-density empirical functions. 

 The results of image processing of bones have demonstrated that the pairs of bone 

voxels neighboring to each other are usually different in their CT numbers [55, 87]. 

Therefore, a gradual change in bone density from a voxel to its neighbours is a reasonable 

assumption to make. This assumption requires a variation in bone density of a bone 

voxel. In this study, we employ an interpolation technique to construct a linear density 

functions. Density variations are calculated based on the density of voxels, which 

surround the concerned voxel, using the finite difference method. Since the voxels with 

density variations exhibited anisotropic behavior, the voxels are termed as anisotropic 

voxels in this study. 
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Figure 3.1: (a) A part of a CT image in the global coordinate system (X,Y) (b) the 
isotropic pixel with constant density in the voxel coordinate system (x,y) and (c) the 
anisotropic pixel with the variable density in the voxel coordinate system (x,y). 

 A Cartesian coordinate system is used here to construct the anisotropic voxel, one 

global (X,Y,Z) and two different local coordinate systems are associated with each voxel. 

The local coordinate systems are the voxel coordinate system (x,y,z) and the material 

coordinate system (l,r,t). A plane view of the global coordinate system, the local 

coordinate systems (x,y),  the isotropic and anisotropic pixels are shown in Figure 3.1. 

The corresponding 3D view of the voxel coordinate system (x,y,z) and the material 

coordinate system (l,r,t) are shown in Figure 3.2. 

 

Figure 3.2: The voxel coordinate system (x,y,z), the material coordinate system (l,r,t) 
and the three principal anisotropic directions (e1,e2,e3). 
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 The origin and the axes of the global coordinate system coincide with the origin of 

the constructed 3D CT images and parallel to the edges of CT voxels, respectively. Due 

to the small size of the voxels, a linear correlation between bone density and coordinates 

of each node in an anisotropic voxel is proposed in Equation (3.2): 

𝜌(𝑋,𝑌,𝑍) = 𝜌𝑛 + 𝜌𝑛𝑋′ .∆𝑋 + 𝜌𝑛𝑌′ .∆𝑌 + 𝜌𝑛𝑍′ .∆𝑍 = 𝜌𝑛 + 𝜌𝑛𝑋′ . (𝑋 − 𝑋𝑛) +  𝜌𝑛𝑌′ . (𝑌 −

𝑌𝑛+𝜌𝑛𝑍′.𝑍−𝑍𝑛,                                                                                                      (3.2) 

where the subscript n is defined based on the location of the voxel in the global 

coordinate system. 𝑋𝑛, 𝑌𝑛 and 𝑍𝑛 are signed distances of the center of nth voxel to X, Y 

and Z axes; and X, Y and Z are signed distances of the evaluation point to the X, Y and Z 

axes. 𝜌𝑛𝑋′ , 𝜌𝑛𝑌′  and 𝜌𝑛𝑍′  are density derivatives of nth voxel with respect to x, y and z. 

In the voxel coordinate system: (i) the origin of the voxel coordinate system is located 

at the center of each voxel; and (ii) all axes are parallel to the voxel edges. If Equation 

(3.2) is rewritten with respect to the voxel coordinate system, it is transformed to 

Equation (3.3):  

𝜌(𝑥,𝑦, 𝑧) = 𝜌𝑛 + 𝜌𝑛𝑥′ . 𝑥 + 𝜌𝑛𝑦′ . 𝑦 + 𝜌𝑛𝑧′ . 𝑧 ,                                                                  (3.3) 

where x, y and z are signed distances of the evaluation points to x, y and z axes, 

respectively. x, y and z values vary based on the voxel dimensions (−𝑃𝑥
2
≤ 𝑥 ≤ 𝑃𝑥

2
 , −𝑃𝑦

2
≤

𝑦 ≤ 𝑃𝑦
2

, −𝑃𝑧
2
≤ 𝑧 ≤ 𝑃𝑧

2
), where 𝑃𝑥,𝑃𝑦 and 𝑃𝑧 are the voxel dimensions. 

 The linear correlation between CT numbers and bone density is used to calculate 

density derivatives with respect to x, y and z.  

𝜌𝑛𝑥′ = 𝑎𝐶𝑇𝑛𝑥′  ,                        (3.4.1) 

𝜌𝑛𝑦′ = 𝑎𝐶𝑇𝑛𝑦′  and                                                                                                        (3.4.2) 
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𝜌𝑛𝑧′ = 𝑎𝐶𝑇𝑛𝑧′  ,                    (3.4.3) 

where 𝐶𝑇𝑛𝑥′  , 𝐶𝑇𝑛𝑦′  and 𝐶𝑇𝑛𝑧′  are the directional derivatives of the CT function with 

respect to x, y and z. By substituting Equations (3.4.1), (3.4.2) and (3.4.3) in to Equation 

(3.3), Equation (3.5) is obtained to define the density in an anisotropic voxel using the CT 

numbers and their directional derivatives. 

𝜌(𝑥,𝑦, 𝑧) = 𝑎�𝐶𝑇𝑛 + 𝐶𝑇𝑛𝑥′ . 𝑥 + 𝐶𝑇𝑛𝑦′ . 𝑦 + 𝐶𝑇𝑛𝑧′ . 𝑧� + 𝑏,                                              (3.5) 
 
where 𝐶𝑇𝑛 + 𝐶𝑇𝑛𝑥′ . 𝑥 + 𝐶𝑇𝑛𝑦′ .𝑦 + 𝐶𝑇𝑛𝑧′ . 𝑧 is defined as the CT function, which gives the 

CT number in an anisotropic voxel with respect to the voxel coordinate system 

𝐶𝑇(𝑥, 𝑦, 𝑧) = 𝐶𝑇𝑛 + 𝐶𝑇𝑛𝑥′ . 𝑥 + 𝐶𝑇𝑛𝑦′ .𝑦 + 𝐶𝑇𝑛𝑧′ . 𝑧,                                                        (3.6) 
 

While each point with CT number below the lowest limit of CT number range, are treated 

as isotropic. In this study, the CT numbers of soft tissue are considered to be a constant 

with the value of the lowest limit [55]. In order to calculate the CT function derivatives: 

(i) CT numbers from CT images are assigned to the center of each voxel, (ii) second-

order finite difference (FD) method was employed using CT numbers of the neighbours 

of evaluation voxel.  

 Finite difference is a robust method, which is used to approximate differential 

operators. The finite difference recipes have been reported to approximate any order of 

derivatives and any order of accuracy on one-dimensional grid with arbitrary spacing in 

the literature [88]. Special cases such as centered and one-sided approximation 

commonly occur. Centered approximation occurs, when there is enough discrete data in 

both sides of an evaluation point; otherwise, one-sided approximation is applied to 

approximate the derivative. Equations (3.7.1) and (3.7.2) show the relation between CT 
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numbers and the derivatives of the CT numbers in the x direction of the anisotropic 

voxel. If a given voxel is located close to the edges of a bone sample, where adjacent 

voxels are not available to construct Equation (3.7.1), the one-sided approximation is 

employed (Equation (3.7.2)): 

𝐶𝑇𝑛𝑥′ = 𝐶𝑇(𝑛+1)𝑥−𝐶𝑇(𝑛−1)𝑥

2𝑃𝑥
 ,                                                                                            (3.7.1) 

𝐶𝑇𝑛𝑥′ = 𝐶𝑇(𝑛+1)𝑥−𝐶𝑇𝑛𝑥
𝑃𝑥

,                                                                                                   (3.7.2) 

The same procedure is applied to calculate CTny′  and CTnz′  in the anisotropic voxels: 

𝐶𝑇𝑛𝑦′ = 𝐶𝑇(𝑛+1)𝑦−𝐶𝑇(𝑛−1)𝑦

2𝑃𝑦
 ,                                                                                            (3.7.3) 

𝐶𝑇𝑛𝑦′ = 𝐶𝑇(𝑛+1)𝑦−𝐶𝑇𝑛𝑦
𝑃𝑦

 ,                                                                                                 (3.7.4) 

𝐶𝑇𝑛𝑧′ = 𝐶𝑇(𝑛+1)𝑧−𝐶𝑇(𝑛−1)𝑧

2𝑃𝑧
  and                                                                                       (3.7.5) 

𝐶𝑇𝑛𝑧′ = 𝐶𝑇(𝑛+1)𝑧−𝐶𝑇𝑛𝑧
𝑃𝑧

 ,                                                                                                  (3.7.6) 

where all the subscripts are defined based on the location of the voxel in the global 

coordinate system, as shown in Figure 3.3. 

 
Figure 3.3: Arrangement of three pixels, which are used to find a derivative of the 
centered pixel from Equation (3.7.1). 

3.1.2 Determination of Principal Anisotropic Directions  

In order to determine the principal anisotropic directions, the largest and the smallest 

variation of the density in the region of interest must be determined using the density 
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variation method [55]. In this study, the density variation is approximated with the 

interpolation function (Equation 3.3) in an anisotropic voxel. The maximum and the 

minimum directional derivatives of density in a voxel of CT images are then used to find 

the principal anisotropic directions.  

 The maximum directional derivative of the density, which is the first principal 

anisotropic direction, is obtained by calculating the gradient of the interpolation function 

(Equation 3.3), 

𝛻𝜌(𝑥, 𝑦, 𝑧) = 𝜌𝑥′ ı̂ + 𝜌𝑦′ ȷ̂ + 𝜌𝑧′k � ,                                                                                 (3.8) 

where 𝜌𝑥′  , 𝜌𝑦′  and 𝜌𝑧′  are derived from CT function definition using Equations (3.4.1), 

(3.4.2) and (3.4.3). 

  Based on the rule for scalar product of two vectors, the directional derivative is zero 

in the plane normal to the gradient vector. Therefore, the minimum directional derivative 

of the density in a voxel of CT images occurs in the plane normal to the density gradient 

vector. As no density variation exists in the plane normal to the density gradient vector in 

each voxel, the plane is assumed to be the plane of isotropy (Figure 3.4). It resembles that 

the material of each bone voxel possesses one axis of symmetry parallel to density 

gradient in the sense that all material properties at right angles to this axis are equivalent. 

The material can also be rotated with respect to the loading direction about the axis of 

symmetry without measurable effect on the material response (Figure 3.4) [55, 56]. 

Consequently, a transversely isotropic model of material behavior is assigned to each 

bone voxel. Transversely isotropic is a special case of an orthotropic material that the 

material contains a plane of isotropy and an axis of symmetry as shown in Figure 3.4.  
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Figure 3.4: Transversely isotropic material model. 

 In a transversely isotropic material, principal anisotropic directions are determined by 

finding the axis of symmetry (e1) (the bone density gradient). Since the plane 

perpendicular to the axis of symmetry is isotropic, the orientation of  the other two 

orthonormal anisotropic directions (e2 and e3) are arbitrary on the plane of isotropy [56]. 

Since each voxel has a plane of isotropy and an axis of symmetry with independent 

directions, pointwise transversely isotropic material model is defined for long bones.  

3.2 Anisotropic Elasticity or Compliance Matrix 

In this section, a method is introduced to determine the magnitude of elasticity tensor 

components in the principal anisotropic directions. The linear elastic material behavior 

for bones was defined as:  

𝜎 = 𝐷𝜀,                                                                                                                          (3.9)  

where σ is the total stress, D is elasticity matrix; and ε is the total strain. Bones are 

pointwise transversely isotropic. To express the elasticity or compliance matrix in terms 



Materials and Methods  37 

 

 37 

of engineering constants such as Poisson’s ratio (𝑣), Young’s moduli (𝐸) and shear 

moduli (𝐺), the matrix must be defined in directions of axis of symmetry and plane of 

isotropy. As each voxel is transversely isotropic, the following conditions are provided 

between the components of compliance matrix: 𝐸1 = 𝐸𝑎, 𝐸2 = 𝐸3 = 𝐸𝑝, 𝑣12 = 𝑣13 =

𝑣𝑎𝑝, 𝑣21 = 𝑣31 = 𝑣𝑝𝑎, 𝑣23 = 𝑣𝑝, 𝐺12 = 𝐺13 = 𝐺𝑎 and 𝐺23 =  𝐺𝑝, where 𝑎 and 𝑝 

respectively stand for the axis of symmetry direction and plane of isotropy. 𝑣𝑎𝑝 and 𝑣𝑝𝑎 

were not equal and they were related by: 

𝑣𝑎𝑝
𝐸𝑎

= 𝑣𝑝𝑎
𝐸𝑝

 .                                                                                                                     (3.10) 

 Hence, the compliance matrix for each transversely isotropic voxel of bone material 

reduced to: 

𝐷−1
123 = C123 =

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎡

1
𝐸a

−𝑣𝑎𝑝
𝐸a

−𝑣𝑎𝑝
𝐸a

−𝑣𝑎𝑝
𝐸a

1
𝐸p

−𝑣p
𝐸p

−𝑣𝑎𝑝
𝐸a

−𝑣p
𝐸p

1
𝐸p

0 0 0
0 0 0
0 0 0

0 0 0
0 0 0
0 0 0

1
Ga

0 0

0 1
Ga

0

0 0 1
Gp⎦
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎤

  ,                                               (3.11)               

where the Poisson’s ratio is considered as a density independent parameter [81, 87, 89]. 

Equation (3.12.1) is proposed to determine the shear moduli from the Young’s modulus 

and Poisson’s ratio,  

𝐺𝑖𝑠𝑜 = 𝐸𝑖𝑠𝑜
2(1+𝑣𝑖𝑠𝑜)

  ,                                                                                                       (3.12.1) 
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The equation is applied in the orientations of the plane of isotropy and the axis of 

symmetry. The following equations are adopted for the principal anisotropic directions as 

suggested by Schneider et al. [55]: 

𝐺𝑎 = 𝐸𝑎
2(1+𝑣𝑎𝑝)

  and                                                                                                                (3.12.2)     

𝐺𝑃 = 𝐸𝑃
2(1+𝑣𝑝)

  .                                                                                                                        (3.12.3) 

 Having known Poisson’s ratios and shear moduli, Young’s moduli in the principal 

anisotropic directions in each voxel are the other parameters required to determine 

compliance matrix components. To determine independent correlations between Young’s 

moduli and the bone density in the principal anisotropic directions, a specimen were cut 

from a voxel and virtual compression tests were performed (Figure 3.5).  

 

 
Figure 3.5: Anisotropic voxels and virtual tests. 

 In each loading direction, the structure of the specimen is approximated by a laminate 

that consists of a number of sheets. Each sheet is assumed to be homogeneous, and they 
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were only loaded in their plane during the virtual compression test. Therefore, the 

structure of the specimen is dependent on loading directions, which is explained as 

follows:  

 (i) Virtual Comp. Test No.1, load in the direction of density gradient or axis of 

symmetry (e1):  

The structure of the specimen is simulated in the way that the layers are only loaded in 

their plane. The sheets are extended in the direction normal to the applied load, and each 

sheet is made of an independent material with homogeneous structure as shown in Figure 

3.5. When the number of the sheets increased to infinity, the variation of bone density of 

the specimen is expressed by Equation (3.13) in the first principal anisotropic direction 

(e1), i.e., the direction of the density gradient (axis of symmetry): 

𝜌(𝑙) = 𝜌𝑛 + |𝛻𝜌𝑛|. 𝑙.                                                                                                    (3.13) 

(ii) Virtual Comp. Test No.2, load in the plane of isotropy (e2 and e3):  

The structure of the specimen is also simulated with a number of thin sheets in the way 

that the layers are only loaded in their plane. The mean density of each layer is assigned 

to the corresponding layer. Results of the calculations showed that the mean density of 

each layer is constant, and it remains constant in the directions of the plane of isotropy 

(e2 and e3). Hence, constant density is assigned to the simulated structure in the direction 

of the plane of isotropy (e2 and e3) as: 

𝜌(𝑡) = 𝜌(𝑟) = 𝜌𝑛  .                                                                                                     (3.14)  

 The exponential and linear correlations between Young’s modulus and bone apparent 

density are proposed with the highest determination of coefficient for cancellous and 

cortical bone in isotropic voxel in the literature [21, 22, 26]. The same correlation, which 
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has been used in an isotropic voxel, is used to determine the Young’s modulus in the 

plane of isotropy directions in this study since the density does not vary in the 

corresponding plane. 

𝐸𝑝−𝑐𝑎𝑛 = 𝛼𝜌𝑛𝛽   ,                      (3.15.1)  

𝐸𝑝−𝑐𝑜𝑟 =  𝐴𝜌𝑛 + 𝐵 ,                     (3.15.2) 

where can and cor represent cancellous and cortical bone, respectively. As the density 

variation occurred along the direction of the axis of symmetry, the variation of density 

(bone density gradient) is also incorporated in the Young’s modulus and bone density 

correlation function. The variation of the bone density is determined in the voxel 

coordinate system (Equation 3.16.1) and the material coordinate system (Equation 3.16.2) 

by:  

𝜌𝑛(𝑥, 𝑦, 𝑧) = 𝜌𝑛 + 𝜌𝑛𝑥′ . 𝑥 +  𝜌𝑛𝑦′ .𝑦 + 𝜌𝑛𝑧′ . 𝑧 and               (3.16.1) 

𝜌𝑛(𝑙, 𝑟, 𝑡) = 𝜌𝑛 + |𝛻𝜌𝑛(𝑥,𝑦, 𝑧)|. 𝑙 ,                                                                          (3.16.2) 

where l is a signed distance of the evaluation point from the l axis; and x,y and z are the 

signed distances of the evaluation point from the x, y and z axes (Figure 3.2). 

Substituting Equation (3.16.2) into Equations (3.15.1) and (3.15.2), the correlations 

(Equations (3.17.1) and (3.17.2)) between Young’s moduli, bone density and its gradient 

along the axis of symmetry of each anisotropic voxel are derived as, 

𝐸𝑎−𝑐𝑎𝑛 = 𝛼(𝜌𝑛 + |𝛻𝜌𝑛|. 𝑙)𝛽  and                  (3.17.1) 

𝐸𝑎−𝑐𝑜𝑟 = 𝐴(𝜌𝑛 + |𝛻𝜌𝑛|. 𝑙) + B .                                                                               (3.17.2) 

Hence, Young’s moduli in the three principal anisotropic directions are expressed by:    

E1−can = 𝐸𝑎−𝑐𝑎𝑛 ,                                                                           (3.18.1)        
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E2−can = E3−can = Ep−can  ,                                                                      (3.18.2) 

E1−cor = 𝐸𝑎−𝑐𝑜𝑟 and                                                             (3.18.3) 

E2−cor = E3−cor = Ep−cor .                                                                 (3.18.4) 

Having known Young’s moduli in principal anisotropic directions, the compliance matrix 

is constructed for each voxel from the CT image information. The inverse of the 

compliance matrix is the elasticity matrix, D, which gives the stresses produced by an 

elastic strain state. Transversely isotropic elasticity matrix of each voxel was obtained in 

the material coordinate system (l,r,t) as follows: 
















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

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K
pEa
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000
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000
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000)..()..()1(

2

22

2

123 ν

ννν

ννννννν

,  (3.19)
  

 

where 𝑘 = 1 − 2𝐸2
𝐸1
�𝑣𝑎𝑝2𝑣𝑝 − 𝑣𝑎𝑝2� − 𝑣𝑝2. The elasticity matrix is also symmetric and 

positive, yielding to the following restrictions: k >0 , 1 − 𝑣𝑝2 > 0 and 1 − 𝑣𝑎𝑝2
𝐸2
𝐸1

> 0. 

The elasticity matrix of bones is also pointwise transversely isotropic in the material 

coordinates systems with five independent constants.  

In order to calculate elasticity matrix in the global coordinate system, by using elasticity 

matrix in material coordinate system, the transformation matrix, G, can be formed as 

[56]: 
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

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,                              (3.20)

 

where (𝑙𝑥, 𝑙𝑦, 𝑙𝑧) is a unit vector in the l-direction (the first principal anisotropic direction 

or density gradient direction), described in the XYZ-coordinate system. (rx, ry, rz) is a 

unit vector in the r-direction (second principal anisotropic direction); and the (tx, ty, tz)  

is a unit vector in the t-direction (third principal anisotropic direction). As the first 

principal anisotropic direction is parallel to the voxel density gradient and two other 

principal anisotropic directions are arbitrary in the plane of isotropy, the following 

equations are proposed to correlate unit vectors in (l,r,t) axes with density gradient 

components: 

�𝑙𝑥, 𝑙𝑦, 𝑙𝑧� = 1
|𝛻𝜌|

�𝜌𝑥,𝜌𝑦, 𝜌𝑧�  ,                                                                                  (3.21.1) 

�𝑟𝑥, 𝑟𝑦, 𝑟𝑧� = 1
�𝜌𝑥2+𝜌𝑧2

(𝜌𝑧, 0,−𝜌𝑥)  and                                                                    (3.21.2)                                      

�𝑡𝑥, 𝑡𝑦, 𝑡𝑧� = �𝑙𝑥, 𝑙𝑦, 𝑙𝑧� × �𝑟𝑥, 𝑟𝑦, 𝑟𝑧� = 1
|𝛻𝜌|�𝜌𝑥2+𝜌𝑧2

�−𝜌𝑥𝜌𝑦, 𝜌𝑥2 + 𝜌𝑧2,−𝜌𝑧𝜌𝑦�. (3.21.3)  

The transformation of stiffness properties, from the material to the global coordinate 

system, is performed by a tensor-like transformation,  

𝐷𝑋𝑌𝑍 = 𝐺𝑇𝐷123𝐺    and                                                                                             (3.22.1) 

where the components of the matrix are functions of the following parameters, 

𝐷𝑖𝑗𝑘𝑙_𝑋𝑌𝑍 = 𝑓𝑛�𝜌, 𝜌𝑥,𝜌𝑦, 𝜌𝑧, 𝑥,𝑦, 𝑧, 𝑣𝑝, 𝑣𝑎𝑝�.                                                                (3.22) 
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The elasticity matrix of bones has twenty one constants in the global coordinate system, 

where each constant is a complex function of density, density gradients and Poisson’s 

ratios.  
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Chapter 4 

Numerical Investigations 

This chapter describes the following numerical procedures:  

 (i) To perform finite element (FE) analysis using the mechanical model defined in 

Chapter 3,  

(ii) To compare the conventional isotropic FE models versus the anisotropic FE models 

of large specimens (with the size of actual compression tests) under virtual compression 

loads, 

(iii) To evaluate the accuracy of the anisotropic model compared with the conventional 

isotropic model using FE analyses. 

4.1 Construction of the Finite Element Model 

The basic governing equations for an elastic problem consist of the following relations 

[90]:  

(i) Strain-displacement relations,  
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 𝜀𝑥 = 𝜕𝑢
𝜕𝑥

,                                                                                                                      (4.1.1)                   

 𝜀𝑦 = 𝜕𝑣
𝜕𝑦

,                                                                                                                      (4.1.2)                                                      

𝜀𝑧 = 𝜕𝑤
𝜕𝑧

,                                                                                                                       (4.1.3)                   

𝛾𝑥𝑦 = 𝜕𝑢
𝜕𝑦

+ 𝜕𝑣
𝜕𝑥

,                                                                                                             (4.1.4)                   

𝛾𝑥𝑧 = 𝜕𝑢
𝜕𝑧

+ 𝜕𝑤
𝜕𝑥

,                                                                                                           (4.1.5)                   

𝛾𝑦𝑧 = 𝜕𝑣
𝜕𝑧

+ 𝜕𝑤
𝜕𝑦

 ,                                                                                                           (4.1.6)                                                                                                                                                          

where u, v and w represent the deformations in x, y and z directions.  

(ii) Stress-strain relations, 

𝜎𝑖𝑗 = 𝐷𝑖𝑗𝑚𝑛𝜀𝑚𝑛,                      (4.2) 

where σ is the total stress, D is elasticity matrix; and ε is the total strain. 

(iii) Equilibrium equations,  

 𝜕𝜎𝑥
𝜕𝑥

+ 𝜕𝜏𝑥𝑦
𝜕𝑦

+ 𝜕𝜏𝑥𝑧
𝜕𝑧

+ 𝐵𝑥 = 0 ,                                                                                      (4.3.1) 

𝜕𝜏𝑥𝑦
𝜕𝑥

+ 𝜕𝜎𝑦
𝜕𝑦

+ 𝜕𝜏𝑦𝑧
𝜕𝑧

+ 𝐵𝑦 = 0 ,                                                                                       (4.3.2) 

𝜕𝜏𝑥𝑧
𝜕𝑥

+ 𝜕𝜏𝑦𝑧
𝜕𝑦

+ 𝜕𝜎𝑧
𝜕𝑧

+ 𝐵𝑧 = 0 ,                                     (4.3.3)   

where 𝐵𝑥 , 𝐵𝑦 and 𝐵𝑧 are body forces in x , y and z directions, respectively. 

(iv) Boundary conditions. 

Two types of boundary conditions are basically defined: (i) essential boundary conditions 

where displacements are known and (ii) secondary boundary conditions where forces are 

given [90].  
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 However, the exact solutions to the governing equations of bones problems are 

generally not available due to their complicated mechanical properties, geometry and 

boundary conditions. Hence, the finite element method is introduced as a valuable 

numerical approximation tool for the solution of the governing equations when the 

analytical solutions are difficult or impossible. 

 There are different types of commercial FE software used for FE modeling. In this 

work, Abaqus 6.11.1 has been used for the numerical investigation. An algorithm needs 

to be defined to implement the isotropic and pointwise transversely isotropic material 

model in Abaqus. This section explains a procedure to create both isotropic and pointwise 

transversely isotropic FE models in Abaqus 6.11.1 software using CT images.  

The construction of the FE models is divided into two main steps. First, an in-house 

MATLAB code was written to generate a data set, which includes material properties of 

the bone specimen. Then, the constructed data set are imported to the Abaqus software to 

generate the FE models. Each step includes several sub-steps and they are illustrated in 

following chart,  
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Figure 4.1: The overall procedure to construct FE models using a given CT data set for a 

bone specimen. 

4.1.1 MATLAB Codes   

The in-house MATLAB codes implement the following steps:  

1) The CT image data in DICOM format are imported as a matrix into MATLAB using 

the function named “dicomread”. Figure 4.2 schematically shows a part of a bone 

image consisting of 6×6 pixels and the corresponding matrix created in MATLAB 

software. 
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Figure 4.2: a) A part of a bone image consisting of 6×6 pixels, b) the matrix of  the CT 
numbers in MATLAB. 
 

2) The matrix data are converted to CT numbers in Hounsfield Units. The lowest limit 

of CT numbers for bone material is -115HU. The parts with CT numbers under and 

equal to -115HU are considered to be a constant value equals to -115HU (the lowest 

limit) [55]. 

3) The region of interest is selected in the image of the bone specimen; and the 

corresponding matrix associated with the region is extracted from the primary matrix.    

4) The global coordinate system is defined for the bone specimen with the axes parallel 

to the voxel edges, where the origin is located on one corner of the specimen as 

shown in Figure 4.3.    

5) The coordinates of the center of each voxel are calculated with respect to the global 

coordinate system and the corresponding CT numbers are assigned to the center of 

each voxel as shown in Figure 4.3. 
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Figure 4.3: CT numbers assign to the center of each pixel. 
 

6) The first-order derivatives of the CT numbers are calculated using the finite difference 

(FD) method.  

This part of the MATLAB codes was validated by applying the codes to the following 

3D analytical function.  

𝑓(𝑥, 𝑦, 𝑧) = sin (4�x2+y2+z2+4)
8�x2+y2+z2+8

 ,                                                                                 (4.4) 

The function has three variables, x ,y and z, defined over the domain {-3≤x≤3, 3≤y≤3, 

-3≤z≤3}. The directional derivatives of the function with respect to x,y and z are 

calculated analytically as follows: 

𝜕𝑓(𝑥,𝑦,𝑧)
𝜕𝑥

= 4x.cos (4�x2+y2+z2+4)
�(x2+y2+z2)(8�x2+y2+z2+8)

 ,                                                               (4.5) 

𝜕𝑓(𝑥,𝑦,𝑧)
𝜕𝑦

= 4y.cos (4�x2+y2+z2+4)
�(x2+y2+z2)(8�x2+y2+z2+8)

  ,                                                                     (4.6) 

𝜕𝑓(𝑥,𝑦,𝑧)
𝜕𝑧

= 4z.cos (4�x2+y2+z2+4)
�(x2+y2+z2)(8�x2+y2+z2+8)

  and                                                          (4.7) 

∇𝑓(𝑥, 𝑦, 𝑧) = �(𝜕𝑓(𝑥,𝑦,𝑧)
𝜕𝑥

)2 + (𝜕𝑓(𝑥,𝑦,𝑧)
𝜕𝑥

)2 + (𝜕𝑓(𝑥,𝑦,𝑧)
𝜕𝑦

)2 .                                         (4.8)  

The gradient obtained using Equation (4.8) is compared with the gradient calculated 

based on the FD method. The results and relevant errors obtained for the function are 

presented and discussed in Chapter 5. 

7) Eight-nodes brick element of the same size is used to construct the FE models in this 

study.  
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8) The coordinates of elements nodes with respect to the voxel coordinate system and 

material coordinate system are also calculated. 

9) The bone density and isotropic Young’s modulus are calculated for each FE element 

node in the following way.  

Isotropic Young’s modulus of cancellous (can) and cortical (cor) parts of the bone 

specimens are calculated using the well-established elasticity-density correlations 

reported by Lotz et al. [21, 22]. These correlations were obtained by compression and 

three-point-bending tests of human femur heads with a high coefficient of 

determination (R2=0.93).  

𝜌 < 1.04 � 𝑔
𝑐𝑚3�        𝐸𝑐𝑎𝑛.(𝑀𝑃𝑎) = 1310𝜌1.4  and                                              (4.9) 

𝜌 > 1.04 � 𝑔
𝑐𝑚3�        𝐸𝑐𝑜𝑟.(𝑀𝑃𝑎) = 14261𝜌 − 13430 .                                          (4.10) 

Bone apparent density (𝜌) was calculated from the CT numbers using Equation (4.11) 

[21, 22]: 

𝜌 � 𝑔
𝑐𝑚3� = 0.0012 × 𝐶𝑇(𝐻𝑈) + 0.17 .                                                                        (4.11) 

 
10) Principal anisotropic directions were calculated and assigned to each element as 

follows:  

The direction of density gradient must be calculated to determine the principal 

anisotropic directions in each element. As a constant density gradient is defined for 

each voxel, the same principal anisotropic directions are assigned to all elements 

located in the corresponding voxel. In order to assign the principal anisotropic 

directions to a set of elements located in nth voxel in Abaqus software, a material 

coordinate system (ln, rn, tn) with the axes parallel to the principal anisotropic 
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directions of nth voxel must be defined. Since bone specimens are usually made of 

thousands of the voxels, construction of an independent material coordinate system for 

each voxel is not practical using Abaqus. Hence, the following procedure is used to 

assign the pointwise anisotropy with limited sets of independent material coordinate 

system with a good approximation. 

a) Numbers of datum coordinate systems with constant interval angles in spherical 

coordinate system are constructed. The first axes of the datum coordinate systems 

are shown with two angles as follow: 

𝑓𝑖𝑟𝑠𝑡 𝑎𝑥𝑒𝑠 𝑜𝑓 𝑑𝑎𝑡𝑢𝑚 𝑐𝑜𝑜𝑟𝑑𝑖𝑛𝑎𝑡𝑒 𝑠𝑦𝑠𝑡𝑒𝑚𝑠 = {(1, θ1′,α1′), (1, θ2′,α2′), (1, θ3′,α3′), … , (1, θi′,αi′)} 

 where 𝜃𝑖′ range is 0 ≤  𝜃𝑖′ < 180 and 𝛼𝑖′ range is 0 ≤ 𝛼𝑖′ < 90.  

b) The first principal anisotropic direction is defined for each voxel using the density 

gradient vector. The unit vector in the first principal anisotropic direction, 𝑒𝑛1, is 

transformed to spherical coordinate system (r, θ,α) for each voxel by: 

𝑒𝑛1 = �𝜌𝑛𝑥′ i,𝜌𝑛𝑦′ j,𝜌𝑛𝑧′ k�

�𝜌𝑛𝑥′
2+𝜌𝑛𝑦′

2+𝜌𝑛𝑧′
2

= (rn, θn,αn) =

�1, Arctg � 𝜌𝑛𝑦
′

𝜌𝑛𝑥′
 � , Arctg� 𝜌𝑛𝑧′

�𝜌𝑛𝑥′
2+𝜌𝑛𝑦′

2
� � ,                                                            (4.12)      

where 𝜃𝑛 range is 0 ≤ 𝜃𝑛 < 180 and 𝛼𝑛 range is 0 ≤ 𝛼𝑛 < 90 for the given 

gradient vector as shown in Figure 4.4. 
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Figure 4.4: Spherical angles of the first principal anisotropic direction. 

c) The first principal anisotropic direction of nth voxel (1, θn,αn) is compared to the 

direction of first axes of datum coordinate systems (1, θi
′,αi′). The first axis of 

datum coordinate systems closest to the first principal anisotropic direction 

(density gradient vector) of the nth voxel is identified; and the corresponding 

datum coordinate system is assigned to the elements located in the nth voxel 

(1, θn
′,αn′). Hence, the orientation of the first axes of material coordinate system 

(1, θn
′,αn′) for each element is selected. All elements with parallel first axis of 

material coordinate system are collected in an element set. Adopting this 

procedure, the number of the independent material coordinate systems becomes 

independent of the number of a bone specimen voxels. 

d) In this study, according to the calculated θn and αn from Equation (4.12), the 

corresponding θn
′ and αn′ are obtained using Table 4.1.  
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Table 4.1: The selected (𝛉𝐧′, 𝛂𝐧′) for different (𝛉𝐧, 𝛂𝐧) in different regimes. The datum 
coordinate systems intervals are 15◦, 10◦ and 5◦ in regime#1, regime#2 and regime#3. 

Regime #1 𝑀𝑎𝑥 𝐷𝑖𝑓𝑓. ~7.5° Regime #2 𝑀𝑎𝑥 𝐷𝑖𝑓𝑓~5°) Regime #3 𝑀𝑎𝑥 𝐷𝑖𝑓𝑓~2.5° 
θn θn′ αn αn′ θn θn′ αn αn′ θn θn′ αn αn′ 

0°: 15° 7.5° 0°: 15° 7.5° 0°: 10° 5° 0°: 10° 5° 0°: 5° 2.5° 0°: 5° 2.5° 
15°: 30° 22.5° 15°: 30°] 22.5° 10°: 20° 15° 10°: 20° 15° 5°: 10° 7.5° 5°: 10° 7.5° 
 … … … … … … … … … … … … 
165°: 180°  172.5° 75°: 90° 82.5° 170°: 180°  175° 80°: 90°] 85° 175°: 180°  177.5° 85°: 90°] 87.5  

 

Table 4.1 includes (θn,αn) and (θn
′,αn′) for different selected interval angles 

between the first axis of datum coordinate system: (i) regime #1 with interval 

angle of 15°, (ii) regime #2 with interval angle of 10° and (iii) regime #3 with 

interval angle of 5°. In the first and second columns, the ranges of the obtained θn 

from Equation (4.12) and corresponding θn
′ are tabulated. In third and fourth 

columns, the ranges of obtained αn from Equation (4.12) and corresponding αn′ 

are also tabulated. The group of elements with the same θn
′ and αn′are collected 

in an elements set. A material coordinate system with the first axis parallel to the 

closest first axis of datum coordinate system (θn
′ and αn′) is assigned to each 

element set. A set of elements with the parallel material coordinate axes are 

highlighted with red color in a FE model as shown in Figure 4.5. The first, second 

and third axes are shown with blue, orange and yellow colors, respectively.  
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Figure 4.5: A set of FE elements with the same principal anisotropic directions are 
highlighted in the image. 

e) The sensitivity of the stresses or strains to the number of independent material 

coordinate systems has been investigated to select the number of independent 

material coordinate systems.  

11) Anisotropic Young’s moduli are calculated for each FE node based on the procedure 

introduced in Chapter 3. Anisotropic Young’s moduli of cancellous and cortical parts 

of the bone specimens are calculated in the principal anisotropic directions by:  

𝐸1−𝑐𝑎𝑛 = 𝐸𝑎_𝑐𝑎𝑛(𝑀𝑃𝑎) = 1310(𝜌𝑛 + |𝛻𝜌𝑛|. 𝑙)1.4  ,                                           (4.13.1) 

𝐸2−𝑐𝑎𝑛 = 𝐸3−𝑐𝑎𝑛 = 𝐸𝑝_𝑐𝑎𝑛(𝑀𝑃𝑎) = 1310𝜌𝑛1.4                                                 (4.13.2) 

if 𝜌 < 1.04 � 𝑔
𝑐𝑚3� ; and        

𝐸1−𝑐𝑜𝑟 = 𝐸𝑎_𝑐𝑜𝑟(𝑀𝑃𝑎) = 14261(𝜌𝑛 + |𝛻𝜌𝑛|. 𝑙) − 13430  ,                              (4.14.1) 
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𝐸2−𝑐𝑎𝑛 = 𝐸3−𝑐𝑎𝑛 = 𝐸𝑝_𝑐𝑜𝑟(𝑀𝑃𝑎) = 14261𝜌𝑛 − 13430  ,                                 (4.14.2) 

if ρ > 1.04 � g
cm3�. 

where 𝜌𝑛 + |𝛻𝜌𝑛|. 𝑙 can be re-expressed in the voxel coordinate system by:      

𝜌𝑛 + |𝛻𝜌|. 𝑙 = 𝜌𝑛 + 𝜌𝑛𝑥′ . 𝑥 +  𝜌𝑛𝑦′ .𝑦 + 𝜌𝑛𝑧′ . 𝑧.                                                        (4.15)  

 The aforementioned eleven steps are used to generate two main outputs. The first 

output of in-house MATLAB codes is a matrix (Node Matrix) that made of six columns 

and its row is equal to the numbers of FE nodes as shown: 

⎣
⎢
⎢
⎢
⎡
𝑁𝑜𝑑𝑒 𝑁𝑜.  , 𝑋 𝑐𝑜𝑜𝑟𝑑.  , 𝑌 𝐶𝑜𝑜𝑟𝑑.  , 𝑍 𝐶𝑜𝑜𝑟𝑑.  , 𝐸𝑝 , 𝐸𝑎

.

.

.

. ⎦
⎥
⎥
⎥
⎤
, 

where Node No. (node number), X Coord. (X coordinate of the node), Y Coord. (Y 

coordinate) and Z Coord. (Z coordinate) are determined in Step 7. Ep (Young’s modulus 

in the plane of isotropy) and Ea (Young’s modulus along the axis of symmetry) are 

calculated in Step 11. 

  The second main output of the in-house MATLAB codes is a matrix (Element 

Matrix) consisting of FE elements information including FE elements numbers, 

corresponding node numbers and material coordinate system numbers. 

⎣
⎢
⎢
⎢
⎡
𝐸𝑙𝑒𝑚𝑒𝑛𝑡 𝑁𝑜.  , 𝐹𝑖𝑟𝑠𝑡 𝑁𝑜𝑑𝑒 𝑁𝑜.  , …𝐸𝑖𝑔ℎ𝑡 𝑁𝑜𝑑𝑒 𝑁𝑜 , 𝑀𝑎𝑡.𝐶𝑜𝑜𝑟𝑑. 𝑆𝑦𝑠.𝑁𝑜.

.

.

.

. ⎦
⎥
⎥
⎥
⎤
, 
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where Element No. (Element number) and the corresponding node numbers were 

determined in Step 7; and 𝑀𝑎𝑡.𝐶𝑜𝑜𝑟𝑑. 𝑆𝑦𝑠.𝑁𝑜 (material coordinate system number) are 

determined in Step 10. 

4.1.2 Abaqus Input Files  

Abaqus input files are generated to construct both isotropic and anisotropic FE models 

from the MATLAB code outputs. To map the inhomogeneous bone mechanical 

properties onto the mesh in the Abaqus program, material properties are required to be 

field variable-dependent. Application of different temperatures (T) at the nodes of a 

structural element results in a variable material property distribution within the element 

of isotropic FE models in the Abaqus program. However, two field variables, FV1 and  

FV2, are used in the anisotropic model to map the anisotropic and inhomogeneous bone 

mechanical properties onto the FE meshed model. Hence, temperatures (T) in isotropic 

models are used as auxiliary variables to apply inhomogeneous isotropic Young’s 

modulus; and the field variables (FV1 and FV2) in the anisotropic models are used as 

auxiliary variables to apply inhomogeneous anisotropic Young’s moduli and shear 

moduli to FE models. The algorithm to create an input file for isotropic and anisotropic 

FE models is mostly the same. In this study, the steps required for generating isotropic 

and anisotropic FE models are indicated by Isotropic and Anisotropic, respectively. 

Assignment of inhomogeneous isotropic and anisotropic elasticity constants for a given 

FE mesh is divided into several sub-steps. 
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a) Isotropic: 

1) To read the nodal numbers and coordinates from the Node Matrix 

2) To read the FE elements numbers and their corresponding node numbers from the 

Element Matrix and assign 8-node Brick (C3D8) element type to all of them. 

3) To read isotropic Young’s modulus from the Node Matrix and apply it as 

temperature in the finite element model. Set the relationship between Young’s 

modulus and applied temperature in the form of E(T)=T in the finite element 

model. The isotropic Poisson’s ratio of 0.3 was assigned to FE elements [43, 55, 

85]. 

b) Anisotropic: 

1) To read the nodal numbers and coordinates from the Node Matrix 

2) To read the FE elements numbers and their corresponding node numbers from the 

Element Matrix and assign 8-node Brick (C3D8) element type to all of them. 

3) To define material coordinates axes (principal anisotropic directions) for each 

element by reading the Element Matrix. 

4) To read the anisotropic Young’s moduli from the Node Matrix and apply them as 

FV1 and FV2 in the FE model. Set the relationship between Young’s moduli and 

the applied field variables in the form of: 

• Ea(FV1,FV2)=E1(FV1,FV2)=FV1  

• Ep(FV1,FV2)=E2(FV1,FV2)=FV2   

• Ep=E3(FV1,FV2)=FV2. 
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5) To assign constant Poisson’s ratios to the anisotropic EF models ( υap = υ12 =

υ13 = 0.25 and υP = υ23 = 0.4) [81].  

6) To set the relationship between shear moduli and applied field variables using the 

set of Equations (3.12) in the form of: 

• Ga(FV1,Fv2)=G12(FV1,FV2)=FV1/(2(1+0.25)) 

• Ga(FV1,FV2)=G13(FV1,FV2)=FV1/(2(1+0.25))  

• Gp=G23(FV1,FV2)=FV2/(2(1+0.4)). 

 The above procedure employs the in-house Matlab codes and the Abaqus input file to 

construct both the isotropic and anisotropic FE models.  

4.2 Virtual Compression Tests  

Nine virtual specimens were extracted from CT image of human femur head of female 

adult. The images were taken on 11th of July 2013 with SIMENS S5VB40B CT scan 

machine by WINNIPEG PET/CT Center. Figure 4.6 shows the approximate locations of 

the specimens in longitudinal and transverse views. As hip fractures mostly occur at three 

different locations of the femur – the femoral neck, intertrochanteric and subtrochanteric 

regions, the specimens are cut from those three regions. The dimensions of cubic 

specimens have been reported to be between 4.5 mm and 10 mm in compression tests in 

the literature [22, 91-93]. The dimensions of cubic specimens were selected to be 5 mm 

in this study. 
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Figure 4.6: The locations of the specimens in longitudinal and transverse views. The 
virtual specimens were cut from neck, intertrochanteric and subtrochanteric parts of 
femur. 

 The isotropic and pointwise anisotropic material properties were assigned to the finite 

elements models. A displacement of 0.05mm in the compression direction was applied on 

three surfaces one by one. The nodes located in opposite surfaces were fixed in the 

direction of compression load as shown in Figure 4.7. The isotropic and pointwise 

anisotropic material properties were assigned to the finite elements models; the FE 

models were runned and the results were recoreded. In next chapter, the results are 

presented and discussed. To determine an adequate number of elements, a convergence 

study was also performed. In anisotropic FE models, sensitivity analysis was also 

performed to determine the number of material coordinate systems that represent 

pointwise transversely isotropic with a good approximation. 
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Figure 4.7: The node displacement (0.05 mm) is applied on the top surface of the 
specimen. For the nodes located on the bottom surface of the specimens, the degree of 
freedom in Y direction is fixed. 

4.3 Accuracy evaluation of anisotropic versus 

conventional isotropic model  

The material properties of a FE model constructed from high resolution of CT image is 

closer to real properties of bone in comparison with a FE model constructed from low 

resolution. Here, we construct the isotropic FE models of nine specimens from both a 

clinical CT image (high resolution) and a Coarse CT image (low resolution); and the 

results of FE analyses are recorded. The relative errors generated due to the low 

resolution of the Coarse CT image are calculated. Then, the anisotropic FE models of the 

same nine specimens are also constructed from the Coarse CT image. The results of the 



Numerical Investigations  61 

 

 61 

FE analyses are recorded and compared with the isotropic FE models of clinical CT 

image. Reducing the relative errors due to the low resolution of the Coarse CT image by 

considering the anisotropy could proof the higher accuracy of the anisotropic model in 

comparison with the isotropic model as schematically is shown in Figure 4.8. 

 
Figure 4.8: The predicated mechanical behaviour of bone specimens with respect to the 
resolution of CT images.  

 Here, a method is defined to create a coarse CT image from the clinical CT image, 

which was taken by WINNIPEG PET/CT Center as mentioned earlier. Each coarse voxel 

is constructed of eight voxels of the clinical CT image in the close proximity. The total 

masses of the combined clinical CT image voxels are assigned to the coarse voxel to 

conserve the total mass of the human femur head. As a linear correlation between a CT 

number and bone apparent density has been established, the following correlation is 
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derived to quantify the CT number of each coarse voxel as a function of the CT number 

of the clinical voxels: 

𝐶𝑇𝐶𝑜𝑎𝑟𝑠𝑒 𝑉𝑜𝑥𝑒𝑙(𝐻𝑈) = 𝐶𝑇1(𝐻𝑈)+𝐶𝑇2(𝐻𝑈)+⋯+𝐶𝑇8(𝐻𝑈)
8

 ,                                                     (4.16) 

where CT1(HU), CT2(HU), …CT8(HU) represent a set of clinical image voxels which are 

used to construct the coarse voxel. The coarse voxel consisting of eight clinical voxels is 

shown in Figure 4.9. The voxels of the coarse CT image are rectangular hexahedron in 

shape with 0.2048×0.2048×1.4 mm in length (with dimensions twice of the clinical CT 

image voxel). 

 

Figure 4.9: A small specimen constructed of a coarse voxel or eight clinical voxels 

  When the coarse CT image is constructed, the following procedure was developed to 

evaluate accuracy of the defined anisotropic model to predict mechanical behaviour of 

bone in comparison with the isotropic model: 

(1) Nine small virtual specimens are cut from the clinical CT image of neck, 

intertrochanteric and subtrochanteric regions of femur head. The corresponding 

virtual specimens are also cut from the coarse CT image. The small virtual specimens 

are cubic shaped with 1.3 mm dimensions and each one of them is made of one 

coarse CT voxel or eight clinical CT voxels (Figure 4.9).  

(2) Three types of finite element (FE) models are constructed for each small specimen. 

Isotropic and anisotropic types of FE models are generated from the virtual coarse CT 
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image (“Coarse-isotropic model” and “Coarse-anisotropic model”). The isotropic FE 

models of small specimens are constructed from the clinical CT image (“Clinical-

isotropic model”). 

(3) A displacement of 0.13 mm in the direction of compression is applied on a surface of 

each FE model of the specimens. The displacement is individually applied on all three 

main anatomical orientations. 

(4) The results of “Clinical-isotropic” FE models are the reference values (the most 

accurate results). The maximum von Mises stresses and absolute principal strains 

obtained from Coarse-isotropic and Coarse-anisotropic FE analyses are compared 

with corresponding Clinical-isotropic FE analyses. The results of the comparison are 

used to verify the higher accuracy of the anisotropic model versus conventional 

isotropic model. 
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Chapter 5 

Results and Discussion 

In this chapter the following results are presented: (i) the principal anisotropic directions 

in the frontal, sagittal and transverse planes of the virtual specimens, (ii) the verification 

tests of the isotropic and anisotropic FE analyses of the specimens and (iii) comparison of 

the maximum von Mises stresses and the absolute principal strains in two types of FE 

analyses.       

5.1 Anisotropy in Bone Specimens 

In order to determine the principal anisotropic directions, the density gradient must be 

determined at each point of the virtual specimens using MATLAB. To assess the 

accuracy of the MATLAB codes to determine the gradient, it was applied to a grid data 

generated from a 3D analytical function. The results and relevant errors are discussed in 

next section.  
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5.1.1 Validation of the MATLAB Code    

The gradient obtained using Equation (4.8) was compared with the gradient calculated 

based on the second-order finite difference method. A set of discrete grid data were 

garneted over the function domain (Equation (4.4)) with constant “0.1 unit” distance. 

Two hundred seventy evaluation points were selected among the generated discrete data; 

and both the analytical and the numerical gradients were calculated and compared. The 

root mean square error (RMSE) and the coefficient of variation of the RMSE 

(CV(RMSE)) are used to measure the relative errors of the numerical method with 

respect to the analytical method.  

𝑅𝑀𝑆𝐸(∇𝑓) = �∑ (∇𝑓𝑛𝑢𝑚𝑒𝑟𝑐𝑖𝑎𝑙−∇𝑓𝑎𝑛𝑎𝑙𝑦𝑡𝑖𝑐𝑎𝑙)2𝑛
1

𝑛
 and                                                            (5.1) 

𝐶𝑉(𝑅𝑀𝑆𝐸(∇𝑓)) = 𝑅𝑀𝑆𝐸(∇𝑓)
∇𝑓𝑎𝑛𝑎𝑙𝑦𝑡𝚤𝑐𝑎𝑙������������������ .                                                                                    (5.2) 

 Figure (5.1) illustrates the gradient vectors based on both the analytical and the finite 

difference method. The results of analytical calculation are consistent with the results of 

the finite difference solutions. The dimensions of the gradient vectors of the two methods 

were also compared. The calculated 𝐶𝑉(𝑅𝑀𝑆𝐸(∇𝑓)) was 0.108 (10.8%), which shows 

fairly acceptable performance of the finite difference method to predict the magnitude of 

the gradient.  
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Figure 5.1: The vectors are represented the function gradient. The gradients are 
calculated using (a) the numerical and (b) the analytical methods.    

(a) 

(b) 
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5.1.2 Results of Principal Anisotropic Directions   

The structural axis of symmetry and the orientation of the plane of isotropy (the principal 

anisotropic directions) are determined based on the calculation of density gradients in the 

midsections of specimens. The midsections of specimens are selected parallel to frontal, 

sagittal and transverse planes as shown in Figure 5.2.   

 
Figure 5.2: The midsections of bone specimens 

The length of vectors represents the density gradient, whereas the directions of the 

vectors represent the orientations of the planes of isotropy in Figures 5.3, 5.4 and 5.5. The 

orientations and the density gradient are highly variable in the femoral neck specimens 

(S1, S2 and S3). The density gradients are significant in the proximity of the bone surface 

of the specimens donated by S1 and S2. The planes of isotropy are also parallel to the 

bone surface near the bone surface for the specimens represented by S1 and S2. Most of 

the planes of isotropy are parallel to the femur shaft axis in the inferior side of the 

femoral neck (S3). However, the majority of planes of isotropy are parallel to the neck 

axis in the superior side the femoral neck (S1). 
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Figure 5.3: The plane of isotropy directions (the orientations of the blue vectors) and the 
density gradient dimension (the dimension of the blue vectors) are shown in three 
different sections of femoral neck specimens. F is Midsection of specimen parallel to 
frontal plane, S is Midsection of specimen parallel to sagittal plane and T is midsection of 
specimen parallel to transverse plane. Distance between every gridline was set to be 0.36 
of a unit of density gradient. 

Figure 5.4 illustrates the planes of isotropy directions and density gradient in 

intertrochanteric specimens. Similar to the neck specimens, the orientations of anisotropy 

are highly variable in the intertrochanteric specimens (S4, S5 and S6).  
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Figure 5.4: The plane of isotropy directions (the orientations of the blue vectors) and the 
density gradient dimension (the dimension of the blue vectors) are shown in three 
different sections of intertrochanteric specimens. F is Midsection of specimen parallel to 
frontal plane, S is Midsection of specimen parallel to sagittal plane and T is midsection of 
specimen parallel to transverse plane. Distance between every gridline was set to be 0.36 
of a unit of density gradient. 

In the superior part of intertrochanteric region of femur (S4), the planes of isotropy 

are pointed at the greater intertrochanteric axis in the longitudinal sections. However, the 

planes of isotropy are pointed at femur head in the center of intertrochanteric region (S5). 
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In the distal side of the region (S6), the planes of isotropy are parallel to the femur shaft 

in the longitudinal section, whereas the planes of isotropy are parallel to the bone surface 

in the transverse sections. 

Figure 5.5 illustrates the planes of isotropy directions and the bone density gradient in 

subtrochanteric region. The orientations of anisotropy are less diverse in the 

subtrochanteric specimens in comparison with the other regions. Most of the planes of 

isotropy are parallel to the femur shaft in subtrochanteric specimens, whereas they were 

parallel to the circumferential direction of femur shaft in the transverse sections. The 

bone density gradient is larger close to the bone surface. 
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Figure 5.5: The plane of isotropy directions (the orientation of the blue vectors) and the 
density gradient dimension (the dimension of the blue vectors) are shown in three 
different sections of subtrochanteric specimens. F is Midsection of specimen parallel to 
frontal plane, S is Midsection of specimen parallel to sagittal plane and T is midsection of 
specimen parallel to transverse plane. Distance between every gridline was set to be 0.36 
of a unit of density gradient. 

5.1.3 The Magnitude of Young’s Modulus in bone specimens 

In the anisotropic FE model, Young’s modulus in the direction of the plane of isotropy 

was calculated using the equation of isotropic Young’s modulus. Isotropic Young’s 
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modulus was calculated using Equations (4.13.2) and (4.14.2) as the function of bone 

density. In the anisotropic FE model, Young’s modulus in the direction of the axis of 

symmetry was calculated as the function of bone density and density gradient using 

Equations (4.13.1) and (4.14.1).       

 To discuss the variation of Young’s modulus, the variation of bone density was 

investigated in different regions in the first step. To quantify the variation of bone 

density, relative difference parameter was calculated for each specimen in Equation (5.3). 

The minimum, maximum and mean densities are required for each specimen to calculate 

the relative difference parameter. The results are recorded in Table 5.1.   

𝑅𝑒𝑙𝑎𝑡𝑖𝑣𝑒 𝐷𝑖𝑓𝑓𝑒𝑟𝑒𝑛𝑐𝑒 = �(𝑑𝑒𝑛𝑠𝑖𝑡𝑦𝑚𝑖𝑛−𝑑𝑒𝑛𝑠𝑖𝑡𝑦𝑚𝑒𝑎𝑛)
𝑑𝑒𝑛𝑠𝑖𝑡𝑦𝑚𝑒𝑎𝑛

× 100  𝑡𝑜  (𝑑𝑒𝑛𝑠𝑖𝑡𝑦𝑚𝑎𝑥−𝑑𝑒𝑛𝑠𝑖𝑡𝑦𝑚𝑒𝑎𝑛)
𝑑𝑒𝑛𝑠𝑖𝑡𝑦𝑚𝑒𝑎𝑛

×

100 ,                                                                                                                                                       (5.3) 

Table 5.1: The minimum, maximum and mean nodal density; and relative differences of 
density in the specimens. 

 Min. Density 
gr/cm3 

Max. Density 
gr/cm3 

Mean Density 
gr/cm3 

Relative differences 
(%) 

Neck 1 (S1) 0.032 1.532 0.5859 [-94.5 to 161.5] 
Neck 2 (S2) 0.032 0.7256 0.3356 [-90.5 to 116.2] 
Neck 3 (S3) 0.032 1.3568 0.5957 [-94.6 to 127.8] 
Int. 1 (S4) 0.032 2.1176 0.7896 [-95.9 to 168.2] 
Int. 2 (S5) 0.0896 1.8608 1.0825 [-91.7 to 71.9] 
Int. 3 (S6) 0.5 2.6516 1.5612 [-68 to 70] 
Sub. 1 (S7) 0.824 2.4044 1.7651 [-53.3 to 36.2] 
Sub. 2 (S8) 0.4736 2.0984 1.4396 [-67.1 to 45.8] 
Sub. 3 (S9) 1.1168 2.4428 1.9308 [-42.2 to 26.5] 

 
The highest mean density occurred in the subtrochanteric specimens (Table 5.1) and 

is in a good agreement with the values found in literature [26, 27]. The results also 

demonstrate that the maximum variation of bone density takes place in the femoral neck 

specimens. 
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The variation of bone density causes the variation of the nodal isotropic Young’s 

modulus in each bone specimen, since an exponential (for cancellous bone) or linear (for 

cortical bone) elasticity-density correlation has been utilized to calculate the modulus. 

The relative difference of Young‘s modulus with respect to its mean value was calculated 

in each specimen and the results are provided in Table 5.2. The highest Young’s modulus 

is in the subtrochanteric region and the lowest is in femoral neck regions.   

Table 5.2: The minimum, maximum and mean nodal isotropic Young’s modulus in the 
specimens   

 Min. E. 
Mpa 

Max. E. 
Mpa 

Mean E. 
Mpa 

Relative 
differences (%) 

Neck 1 (S1) 10 8418 620 -98% to 1258% 
Neck 2 (S2) 10 836 284 -96% to 194% 
Neck 3 (S3) 10 5919 634 -98% to 833% 
Int. 1 (S4) 10 16769 941 -99% to 1682% 
Int. 2 (S5) 45 13107 1464 -97% to 795% 
Int. 3 (S6) 496 24384 8834 -94% to 176% 
Sub. 1 (S7) 999 20859 11742 -91% to 78% 
Sub. 2 (S8) 460 16495 7100 -93% to 132% 
Sub. 3 (S9) 1529 21407 14105 -89% to 52% 

 
 The mechanical anisotropy ratio is the ratio of the maximum to the minimum 

Young’s modulus at a node. Table 5.3 lists the ranges of mechanical anisotropy ratios for 

all the specimens. Among all the specimens, the highest maximum anisotropy ratio (3.39) 

is in the femoral neck specimen (S3). 

Table 5.3: The minimum, maximum, mean values of the mechanical anisotropy ratios in 
the specimens.  

 Mean Mech. Aniso. Ratio Max Mech.Aniso. Ratio  
Neck 1 (S1) 1.3057 2.4567 
Neck 2 (S2) 1.2987 2.6777 
Neck 3 (S3) 1.2616 3.3936 
Int. 1 (S4) 1.4469 3.3324 
Int. 2 (S5) 1.3477 2.724 
Int. 3 (S6) 1.2564 1.842 
Sub. 1 (S7) 1.2109 1.824 
Sub. 2 (S8) 1.3536 2.184 
Sub. 3 (S9) 1.1541 1.915 
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5.2 Virtual Tests Using Finite Element Analysis 

The verification results of the isotropic and anisotropic FE analyses are presented in this 

sub-section. The results of the virtual compression tests on the specimens using both the 

isotropic and anisotropic FE models are also tabulated and discussed in the following 

sub-sections. In addition, the results of the accuracy evaluations associated with the 

anisotropic vs. isotropic FE models are presented.   

5.2.1 Verification of Isotropic Finite Element Analysis 

To verify the isotropic FE analyses the following steps were performed: (i) convergence 

test, (ii) checking the force equilibrium and (iii) checking the accuracy of boundary 

conditions.   

Convergence Test 

The convergence tests of the FE models were performed as a part of the verification. A 

suitable mesh size should be determined based on the results of convergence tests. The 

variation of the maximum von Mises stresses and the maximum absolute principal strains 

with respect to the numbers of nodes in the specimen (S3) are shown in Figure 5.6. The 

results show that 9261 FE nodes and 8000 FE elements are sufficient to obtain acceptable 

results by the isotropic models of FE analyses. 
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Figure 5.6: Results of the convergence test. Maximum von Mises stresses and absolute 
principal strains of the isotropic FE model of the specimen (S3) versus number of nodes. 

Checking the force equilibrium 

The force equilibrium must be satisfied. The reaction forces on the surfaces of the 

isotropic FE model of the specimen (S3) were calculated under the compression load in 

S-I direction (Z axis direction).  The distribution of the nodal reaction forces in the 

bottom and top surfaces of the specimen (Z direction) is shown in Figure 5.7.  
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Figure 5.7: The contours show reaction forces in (a) the bottom and (b) the top surfaces 
of the specimen (S3).  

The resultant reaction forces of the model in Z direction were equal to 163.581 N; and 

they were the same in the top and the bottom surfaces of the specimen. In addition, the 

resultant reaction forces on the top and the bottom surfaces were zero in X and Y 

directions. Therefore, the force equilibrium is satisfied in the FE model. The same 

procedure was also performed for all the specimens to check the force law of equilibrium.  

Checking of boundary conditions 

Figure 5.8 shows the nodal displacement of the specimen (S3) under virtual compression 

loading condition. The nodal displacement of the finite element model (Figure 5.8) 

verified that boundary conditions (Figure 4.7) were applied accurately. The 

displacements of the top and bottom surfaces were respectively -0.05mm and zero, which 

were consistent with the expectations.   



Results and Discussion  77 

 

 77 

 
Figure 5.8: Nodal displacement of the specimen (S3) under the virtual compression load. 
The displacements of the top and bottom surfaces are respectively -0.05mm and zero. 

5.2.2 Verification of the Anisotropic Finite Element Analysis  

To verify the anisotropic FE analyses following steps were performed: (i) sensitivity 

analysis to find adequate numbers of material coordinate systems, (ii) convergence test, 

(iii) checking the force equilibrium and (iv) checking the accuracy of boundary 

conditions. Since third and fourth steps of the verification are the same in both isotropic 

and anisotropic FE analyses, only the first and the second steps are described here.    

Sensitivity analysis to find adequate numbers of material coordinate systems 

As it is explained in Section 4.1.1, sensitivity analysis is performed to evaluate the effects 

of using regime #1, regime #2 or regime #3 on the predicted stresses or strains. The 

maximum difference between the exact principal anisotropic directions of the elements 

versus the material coordinate system assigned to them is 7.5°, 5° and 2.5° by using 

regime #1, regime #2 and regime #3, respectively. Employing regime #1, regime #2 and 

regime#3 coordinate systems result in the assignments of different numbers of 
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independent material coordinate systems to the specimens (S3, S6 and S8) FE elements 

as it is shown in Table 5.4. 

Table 5.4: The Number of element sets with independent material coordinates system. 
 Regime#1  

(Mat. Coor. Sys.) 
   Regime#2  

(Mat. Coor. Sys.) 
Regime#3  

(Mat. Coor. Sys.) 
S3 (Neck Spec.) 63 104 164 
S6 (Int. Spec.) 51 89 156 
S8 (Sub. Spec.) 42 69 129 

  

 Figures 5.9 and 5.10 show the predicted maximum von Mises stresses and the 

absolute principal strains obtained by employing the different regimes. The maximum 

difference between “regime#1 maximum principal strain” and “regime#2 maximum 

principal strain” is observed in the S6; and it is significant and equal to 45% (Figure 

5.10).  However, as it is shown in Figure 5.9 and 5.10, the “regime #2 maximum stress or 

strain” and the “regime #3 maximum stress or strain” is quite the same (The maximum 

difference is less than 6%). Therefore, regime#2 is a preferable choice for assignment of 

the pointwise anisotropy to optimize numerical calculations in this study.    
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Figure 5.9: The maximum von Mises stresses versus the number of material coordinate 
systems for regime#1, regime#2 and regime#3. 
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Figure 5.10: The maximum absolute principal strains versus the number of material 
coordinate systems for regim#1, regime#2 and regime#3. 
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Convergence Test  

Similar to the isotropic FE models in the previous section, the convergence test must be 

performed in anisotropic FE models to determine the adequate numbers of FE nodes and 

elements to obtain precise results. The results show that 9261 FE nodes and 8000 FE 

elements are sufficient to obtain an acceptable value for the maximum von Mises stresses 

and the absolute principal strains in the anisotropic models of FE analyses as shown in 

Figure 5.11. 
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Figure 5.11: The Maximum von Mises stresses and absolute principal strains of the 
anisotropic FE model of the S3 specimen versus number of nodes. 

5.2.3 The Maximum Absolute Principal Strains and von Mises 

Stresses of Virtual Specimens under Compression Load 

Fifty four virtual tests were performed and the maximum von Mises stresses and the 

absolute principal strains were calculated and recorded in table 5.5, Table 5.6 and Table 

5.7.  
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Table 5.5: The maximum von Mises stresses, maximum absolute principal strains and 
their relative difference in isotropic versus anisotropic FE analyses of femoral neck 
specimens.  

R
eg

. 

D
ir.

 

Sp
ec

. von Mises  
Stress [Mpa] M.P.Strain Percentage Diff. 

ISO ANISO ISO ANISO Stress 
(%) 

Strain 
 (%) 

N
ec

k 

A_P 
1 

76.3666 80.2826 0.0387 0.0323 5 -18 
M_L 92.2071 89.6229 0.0364 0.0343 -2.8 -6.1 
S_I 12.2775 13.5987 0.0447 0.0269 10.2 -49.7 
A_P 

2 
5.7674 7.1349 0.0327 0.0198 21.2 -49.1 

M_L 7.09981 7.4331 0.0315 0.0189 4.6 -50 
S_I 5.8532 6.83297 0.0385 0.0234 15.4 -48.7 
A_P 

3 
27.0876 31.4881 0.0290 0.0263 15 -9.7 

M_L 20.0141 22.3321 0.0427 0.0281 10.9 -41.2 
S_I 15.9622 21.6428 0.0380 0.0228 30.2 -50.1 

 
Table 5.6: The maximum von Mises stresses, maximum absolute principal strains and 
their relative difference in isotropic versus anisotropic FE analyses of intertrochanteric 
specimens. 

R
eg

. 

D
ir.

 

Sp
ec

. von Mises 
Stress[Mpa] M.P.Strain Percentage Diff. 

ISO ANISO ISO ANISO Stress 
(%) 

Strain 
(%) 

In
te

rtr
oc

ha
nt

er
 

A_P 
4 

91.5113 101.099 0.0342 0.0327 10 -4.4 
M_L 25.8897 27.5382 0.0519 0.0379 6.2 -31.2 
S_I 95.1287 107.566 0.0407 0.0378 12.3 -7.4 
A_P 

5 
36.2008 36.775 0.0426 0.0549 1.6 25.2 

M_L 109.769 119.873 0.0249 0.0233 8.8 -6.6 
S_I 124.802 131.536 0.0705 0.0424 5.2 -49.8 
A_P 

6 
172.957 187.221 0.0303 0.0451 7.9 39.2 

M_L 173.414 190.166 0.0442 0.0563 9.2 24.1 
S_I 217.041 232.152 0.0241 0.0308 6.7 24.4 
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Table 5.7: The maximum von Mises stresses, maximum absolute principal strains and 
their relative difference in isotropic versus anisotropic FE analyses of subtrochanteric 
specimens. 

R
eg

. 

D
ir.

 

Sp
ec

. von Mises 
Stress[Mpa] M.P.Strain Percentage Diff. 

ISO ANISO ISO ANISO Stress 
(%) 

Strain  
(%) 

Su
bt

ro
ch

an
te

r 

A_P 
7 

187.815 186.209 0.0393 0.0615 -0.9 44 
M_L 181.841 180.443 0.0204 0.0204 -0.8 -0.2 
S_I 179.54 179.78 0.0155 0.0160 0.1 3.2 
A_P 

8 
146.748 139.183 0.0544 0.0724 -5.3 28.4 

M_L 132.335 140.538 0.0262 0.0260 6 -0.8 
S_I 146.748 159.078 0.0267 0.0288 8.1 7.5 
A_P 

9 
191.676 205.766 0.0204 0.0331 7.1 47.5 

M_L 190.125 205.488 0.0260 0.0424 7.8 48 
S_I 191.613 196.709 0.0170 0.0170 2.6 0.1 

 
 In order to study the generated differences in stresses and strains by neglecting the 

anisotropy, relative difference measurement is used. The relative difference, 𝑑(%), is a 

parameter defined to compare two numerical quantities as follow: 

𝑅𝑒𝑙𝑎𝑣𝑡𝑖𝑣𝑒 𝐷𝑖𝑓𝑓𝑒𝑟𝑒𝑛𝑐𝑒 = 𝑑(%) = |𝑓𝑎𝑛𝑖𝑠𝑜|−|𝑓𝑖𝑠𝑜|

��
𝑓𝑎𝑛𝑖𝑠𝑜�+�𝑓𝑖𝑠𝑜�

2 �
× 100 ,                (5.4) 

where 𝑓𝑖𝑠𝑜 and 𝑓𝑎𝑛𝑖𝑠𝑜 are numerical quantities; and neither of 𝑓𝑖𝑠𝑜 and  𝑓𝑎𝑛𝑖𝑠𝑜 can be 

considered the correct value. The relative difference with respect to “the average of 

isotropic and anisotropic results” was calculated for each virtual test using Equation (5.4). 

The positive values of relative difference show that anisotropic stresses or strains are 

larger than isotropic stresses or strains, and vice versa. 

 The maximum von Mises stresses and the absolute principal strains may significantly 

change when anisotropy is considered in comparison with isotropic models. The 

anisotropic model mostly results in larger maximum von Mises stresses. By considering 
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anisotropy, the maximum von Mises stress is increased up to 30.2% (Table 5.5, Table 5.6 

and Table 5.7).     

 The maximum absolute principal strains vary from -50.1% to 48% in anisotropic 

model with respect to the isotropic model. In fifteen out of twenty seven virtual tests, a 

significant change in strains (more than 20% variation) takes place in the specimens by 

considering the anisotropy (Table 5.5, Table 5.6 and Table 5.7). 

 The largest difference between the anisotropic maximum von Mises stresses and the 

isotropic maximum von Mises stresses is in the femoral neck specimen (S3) and superior-

inferior loading direction (Table 5.5). Figure 5.12 shows nodal elasticity moduli of the 

neck specimen (S3) in the plane of isotropy (or isotropic Young’s modulus) and the axis 

of symmetry (density gradient) direction.  

 
Figure 5.12: Nodal Young’s modulus in the plane of isotropy (Isotropic) and the axis of 
symmetry (Anisotropic Model) directions in S3 specimen. 
 
 Nodal elasticity moduli in the plane of isotropy range from 10MPa to 5920MPa. They 

also range from 10MPa to 10288MPa in the direction of the axis of symmetry. The 
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difference between the isotropic and anisotropic von Mises stress is 5.7 MPa; and it is 

resulted in 30.2% difference as shown in Figure 5.13. 

 
Figure 5.13: The maximum von Mises stress of the isotropic and anisotropic FE model 
of S3 specimen  
  

 The largest relative difference between the maximum absolute principal strains 

obtained from the anisotropic models and isotropic model is also found in the specimen 

(S3) in superior-inferior loading direction (Table 5.5). However, the FE nodes with the 

maximum von Mises stresses are different from the FE nodes with the maximum absolute 

principal strains as shown in Figure 5.13 and 5.14. The difference in the maximum 

absolute principal strain is 0.015, yielding 50.1% relative difference in the maximum 

absolute principal strain.  
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Figure 5.14: The maximum absolute principal strain of the isotropic and anisotropic FE 
model of S3 specimen 
 

 The virtual tests are divided to three groups based on the location of the specimens: 

femoral neck, intertrochanteric and subtrochanteric regions. The maximum, minimum 

and average values of relative difference for stresses are presented for each region of 

interest in Table 5.8. The maximum, minimum and average values of relative difference 

for strains are also presented for each region of interest in Table 5.9. 

Table 5.8: Maximum , minimum and average relative difference of maximum von Mises 
stresses for different regions of interest. 

von Mises stress Region of Interest (d%) 
Overall Neck Int. Sub. 

Maximum. d(%) 30.2 30.2 12.3 8.1 
Minimum. d(%) -5.3 -2.8 1.6 -5.3 
Average d(%) 7.5 12.2 7.5 2.8 

Table 5.9: Maximum , minimum and average relative difference of maximum absolute 
principal strain for different regions of interest. 

Principal Strain Region of Interest (d%) 
Overall Neck Int. Sub. 

Maximum. d(%) 47.9 -6.1 39.2 47.95 
Minimum. d(%) -50.1 -50.1 -49.8 -0.8 
Average d(%) -4.9 -35.8 1.5 19.7 
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 The average of relative difference was calculated from Equation (5.5). This parameter 

is defined to quantify an increase or a decrease in magnitude of the stresses or strains in a 

group of tests.   

𝐴𝑣𝑒𝑟𝑎𝑔𝑒 𝑜𝑓 𝑅𝑒𝑙𝑎𝑡𝑖𝑣𝑒 𝐷𝑖𝑓𝑓𝑒𝑟𝑒𝑛𝑐𝑒 = 𝑑(%)������� = ∑ 𝑑(%)𝑛
1
𝑛

 ,                                         (5.5) 

 
where n is the number of specimens. The results (Table 5.8) show that the greatest overall 

increase in the maximum von Mises stresses is found in the femoral neck specimens.  

  The maximum absolute principal strain decreases in almost the half of the 

intertrochanteric virtual specimens using the anisotropic model in comparison with 

isotropic model (Table 5.5, Table 5.6 and Table 5.7). It contributes to a negligible value 

for the average of relative difference in the intertrochanteric specimens (Table 5.9). The 

maximum absolute principal strain increases up to 19.7% in the subtrochanteric 

specimens by considering the anisotropy. On the other hand, the maximum absolute 

principal strain is 35.8% lower in the neck specimens by considering the anisotropy 

(Table 5.9).  

 From another point of view, all the specimens are divided to two groups using their 

average density, cancellous and cortical bones (Table 5.10). The bone region with density 

less than 1.04 gcm-3 has been considered as cancellous bone [22, 26]. The region with 

density more than 1.04 gcm-3 has been considered as cortical bone [28]. 

Table 5.10: The specimens are categorized to cortical and cancellous bone based on the 
average bone density. 

Spec. Nos. S1 S2 S3 S4 S5 S6 S7 S8 S9 
Average density (g/cm3) 0.59 0.34 0.60 0.79 1.08 1.56 1.76 1.44 1.93 
Overall Bone Type Can. Can. Can. Can. Can/Cor. Cor. Cor. Cor. Cor. 
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 The relative difference was calculated for the virtual tests on cancellous and cortical 

samples as shown in Table 5.11. The results of the virtual tests show that both the 

maximum von Mises stress and the absolute principal strain increase in the cortical bone 

specimens using the anisotropic model compared with the isotropic model. However, in 

the cancellous bone specimens, the maximum von Mises stresses increase and the 

absolute principal strains decrease using the anisotropic model in comparison with the 

isotropic model. The results (Table 5.11) show that the changes in the mechanical 

behavior of cancellous and cortical bone by using the anisotropic FE models instead of 

the isotropic ones are not always the same [34-36].  

Table 5.11: Maximum, minimum and average relative difference of maximum von Mises 
stresses and absolute principal strains in two groups of bone types. 

 
Bone Type 

Cancellous Cortical 
von Mises Principal Strain von Mises Principal Strain 

Maximum. d(%) 30.2 -4.4 9.2 47.9 
Minimum. d(%) -2.8 -50.1 -5.3 -0.8 
Average d(%) 10.25 -26.5 4.1 22.1 

5.2.4 Accuracy Evaluation of the Anisotropic Versus the 

Isotropic FE models   

The virtual compression tests were performed on three different FE models, Clinical CT 

isotropic, Coarse isotropic and Coarse anisotropic models of the small specimens. The 

small specimens were cut from neck, introchanteric, and subtrochanteric regions of 

femoral head. The maximum von Mises stresses and absolute principal strains of each FE 

analysis are presented in Figure 5.15. 
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Figure 5.15: The maximum von Mises stress and absolute principal strain of nine FE 
analyses of three different small specimens. 

 The results of the analyses show that the differences between the results of Coarse FE 

models and Clinical CT FE models are reduced considering the anisotropic behavior. The 

maximum reduction of errors using the anisotropic model reaches to 27% in maximum 

von Mises stress and 36% in maximum absolute principal strain. The distribution of 

stresses or strains in the clinical isotropic models was also compared to coarse anisotropic 

models. The results show that the nodes with the largest stress or strain are in the same 

region for both the clinical isotropic and coarse anisotropic models. The obtained stresses 
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and strains distributions from both the clinical isotropic and coarse anisotropic FE 

analyses are also illustrated in Figure 5.16 and Figure 5.17, respectively. 

 
Figure 5.16: The maximum absolute principal strain distribution in the midsection of the 
small specimen cut from the femoral neck region.  

 
Figure 5.17: The maximum von Mises stress distribution in the midsection of the small 
specimen cut from the femoral neck region. 
  
 Therefore, the anisotropic FE model is more accurate to predict the magnitude and 

location of the maximum stresses and maximum absolute strains. It could be concluded 

that anisotropic FE models have more accuracy to predict the mechanical behavior of 

bone specimens in comparison with the conventional isotropic model.  
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5.3 Discussion 

 This section discusses the principal anisotropic directions and magnitudes in the bone 

specimens obtained from the density variation method. We have also compared the 

virtual tests results with the reported results in literature.   

5.3.1 Principal Anisotropic Directions   

Figure 5.3, 5.4 and 5.5 demonstrate that the most of the planes of isotropy were parallel 

to the bone surface in the proximity of bone surface in transverse section. It is evident 

from the aforementioned figures that the bone structures form rotated plywood [1] since 

the planes of isotropy could represent thin isotropic sheets of the plywood structure. In 

longitudinal sections, the planes of isotropy are mostly parallel to the femur neck axis in 

superior part of neck and it gradually deviates to bone shaft axis in inferior part of the 

neck (Figure 5.3). Similarly, majority of the planes of isotropy are parallel to the 

intertrochanteric line in the superior part of intertrochanteric region and it gradually 

orients to the axis of femur shaft in inferior part (Figure 5.4). In subtrochanteric region, 

the planes of isotropy are mostly aligned to the axis of femur shaft (Figure 5.5). 

Consequently, the results indicate that the principal anisotropic directions vary in 

different regions of femoral head. The results prove that considering the anisotropy axes 

parallel to the anatomical axes, i.e., the sagittal, coronal and axial axis, is oversimplified 

since the anatomical axes may considerably deviate from the actual principal anisotropic 

directions.  
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As the minimum density variation occurs in the orientations of trabecular structure, 

the orientations of the planes of isotropy (with minimum density variation) must follow 

the trabecular structure. According to wolff’s law, trabecular pattern coincides with the 

directions of principal stresses. The directions of the planes of isotropy must also be 

aligned to the orientation of the principal stresses produced under physiological loading 

condition. 

Figure 5.18(b) includes the radiographic scan of the proximal femur with highlighted 

trabecular groups, taken by San Antonie et al. [94]. The approximate locations of the 

specimens (red squares) and the directions of planes of isotropy (blue arrows) are 

depicted on Figures 5.18(a). The results show that the directions of planes of isotropy 

calculated from the density gradient approximately reproduce the trabecular structure. 

 
Figure 5.18: (a) Extension direction of planes of isotropy in frontal midsections of the 
bone specimens, which were produced using the density variation method. (b)The 
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radiographic scan of the proximal femur with highlighted trabecular groups taken by San 
Antonie et al.[94].  

 San Antonie et al. also used FE analysis to find the directions of the principal 

stresses produced by a physiological load scheme as shown in Figure 5.19(b) [94]. Figure 

5.19(a) shows that the planes of isotropy are mostly follow the pattern of principal stress 

in frontal section of the femoral head. 

 

 
Figure 5.19: (a) The isotropic plane in frontal midsections of the bone specimens, which 
were produced using introduced method in this study. (a) The main principal stresses 
directions in a slice of femur model obtained by San Antonie et al.[94].  

5.3.2 The Magnitudes of Young’s Modulus  

The results show that the nodal isotropic Young’s modulus is highly varied in different 

nodes of the specimens (Table 5.2). Therefore, assignment of average Young’s modulus 

to a specimen of bone could make significant errors in the FEA results. 
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 In literature, anisotropic Young’s moduli have been established as a function of bone 

density; and the variations of the anisotropic orientations have not been considered. 

However, the derived correlation in this study shows that the anisotropic Young’s moduli 

are dependent on the voxel size, bone density and bone density gradient. Adding bone 

density gradient as an independent variable helps to consider the variations of the 

anisotropic orientations in the anisotropic elasticity constants. 

5.3.3 The Virtual Compression Tests 

The difference between anisotropic Young’s moduli and isotropic Young’s modulus is a 

result of the density gradient and the size of voxels. Since the voxel size is constant in all 

virtual tests, the density gradient is the only effective parameter in this study. As the 

density gradients were larger in introchanteric and femoral neck regions compared with 

subtrochanteric specimens (Table 5.3), the differences between the results of the 

anisotropic and isotropic FE analyses are also larger in the neck and intertrochanteric 

specimens in comparison with subtrochanteric specimens (Table 5.8 and Table 5.9). The 

large differences between the results of the anisotropic and isotropic FE analyses on the 

specimen (S3) underline that the anisotropy could significantly have influenced on the 

results of stress and strain prediction.  

 Significant amount of error reduction by using “Coarse anisotropic model” instead of 

“Coarse isotropic model” justifies the performance improvement of the anisotropic FE 

model in comparison with the conventional isotropic model (Figure 5.15).   

 The results show that the differences between the anisotropic and isotropic stresses 

are lower than the differences between the anisotropic and isotropic maximum strains as 
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shown in Table 5.8 and 5.9. The observed differences between anisotropic and isotropic 

nodal strains are originated from the differences in the elastic constants when both the 

anisotropic and isotropic models undergo the same loading condition. The strains 

obtained by the anisotropic models are higher than the isotropic models if effective 

elastic constants of the anisotropic models are lower. Conversely, the strains obtained by 

the isotropic models are higher than the anisotropic models if the effective elastic 

constants of the isotropic models are lower. In brief, strain is lower for higher effective 

elastic constants and vice-versa. As stress values are resulted from the production of 

strain and Young’s modulus, the differences between the anisotropic and isotropic 

stresses are smaller compared to strains. 

The anisotropy increases maximum stresses and strains in the small specimens which 

are made of one voxel (Figure 5.15). The boundary conditions are the same in the both 

isotropic and anisotropic models. The results show that the anisotropic maximum stresses 

or strains are higher than the isotropic ones if the boundary conditions are the same in the 

both models. However, the effect of anisotropy on the both maximum stresses and strains 

are different in the specimens with the size of actual compression tests. As these 

specimens are made of two hundred voxels, the boundary conditions are not the same in 

the corresponding voxels in the both isotropic and anisotropic models. In the cortical 

bone specimens with the size of actual compression tests, both the maximum stress and 

the strain increase by using the anisotropic model in comparison with isotropic model. 

However, in the cancellous bone specimens, the maximum stress increases and the strain 

decreases by using the anisotropic model compared with the isotropic model (Table 

5.11). It may result in the higher effects of anisotropy in the boundary conditions of the 
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corresponding voxels in the both models in cancellous bone in comparison with the 

cortical bone due to the higher magnitude of the density gradient in cancellous bone. 

 Different studies have been conducted to compare the principal stresses and strains of 

the anisotropic model with the isotropic 3D FE models in different regions of body 

skeleton. Au AG et al. compared the anisotropic 3D FE models of an implanted tibial 

knee with physiologically representative loading conditions of the isotropic model [36]. 

They predicted higher cancellous bone stresses and lower cortical bone stresses for 

anisotropic bone models in comparison with isotropic bone models. Nevertheless, the 

results of 3D FE models of an implanted mandible with the isotropic bone predicted 

higher maximal stress and lower maximal strain values in both cortical and cancellous 

bones compared with the anisotropic models [35]. In another study, Mahony  et al. 

showed that transverse isotropic elasticity of implanted mandible bones increased the 

maximal principal stresses from 20% to 30% in the cortical crests [34]. Hence, the 

different changes in the mechanical behavior of cancellous and cortical bone using the 

anisotropic FE models in comparison with the isotropic FE models have been also 

reported in different literature. 

 Based on the convergence tests performed in this study, both the anisotropic and the 

isotropic FE models converged at 8000 FE elements. Therefore, the consideration of 

anisotropy could not significantly influence on the computational operation since the 

number of FE elements is the most effective parameters in the computational cost of FEA 

[37]. Consequently, the anisotropic FEA in comparison with the isotropic FEA could 

increase the accuracy of the results without considerable increase in the computational 

operations.  
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Chapter 6 

Conclusions and Future Work 

This research introduced a method for constructing anisotropic bone FE models from CT 

images. The principal anisotropic directions were determined; and the empirical 

correlation between bone density and elasticity modulus in principal anisotropic 

directions was modified by the incorporation of the density gradient. The combination of 

the techniques to find the principal anisotropic directions and the modified correlation has 

resulted in a new anisotropic model of bone material. Then, a method was introduced to 

assign the anisotropic material properties to finite element models in Abaqus. Finally, 

fifty four finite element models were generated from both the anisotropic and the 

conventional isotropic material models. The obtained stresses and strains distributions 

using both material models were then recorded and discussed. 

6.1 Contributions of the research 

The major contributions of the current study can be stated as follows: 
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• Gradient of bone density is introduced as an effective parameter to describe 

anisotropic material properties of bone. The bone density gradient has been used 

to determine the principal anisotropic directions of both cortical and cancellous 

bones.  

• Each point of bone possesses one axis of symmetry parallel to density gradient 

and a plane of isotropy at right angles to this axis. Since each point has 

independent bone density gradient, assignment of pointwise transversely isotropic 

type of anisotropy to bone material has been justified.  

• The study shows that the principal anisotropic directions are varied in different 

regions of femoral head. Therefore, considering anisotropic directions parallel to 

anatomical axes – sagittal, coronal and axial axis – is oversimplified.  

• Existing empirical functions that correlate bone isotropic Young’s modulus and 

bone density are improved by incorporating information of the bone density 

gradient. The improved correlation is applied to calculate Young’s moduli along 

the plane of isotropy and the axes of symmetry. 

• The voxel size and the density gradient are two independent parameters which 

differentiate the anisotropic and isotropic Young’s modulus of bone material. 

Therefore, the difference between the anisotropic and isotropic Young’s modulus 

increases in femoral neck and intertrochanteric regions, having large variation of 

bone density. The difference reduces in subtrochanteric region, a bone region with 

a low variation of bone density. The errors generated due to the neglecting of 
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anisotropy are also expected to be reduced by increasing the resolution of the CT 

images and vice versa.  

• Results of the virtual compression tests on the large specimens (with the size of 

actual compression tests) show that pointwise anisotropy could significantly 

change the maximum predicted stresses and strains. The maximum von Mises 

stresses obtained from finite element analysis are mostly larger in the anisotropic 

model than the isotropic model. Hence, it is more conservative and reasonable to 

consider anisotropy in order to predict femur fracture.  

• The results of the virtual compression tests on the small specimens constructed 

from the coarse CT image show that the anisotropic model improves the accuracy 

of the results of finite element analysis.  

• Based on the convergence tests performed in this study, the consideration of 

anisotropy could not significantly influence on the computational operation since 

the number of FE elements is the most effective parameters in the computational 

cost of the FEA.  

• Based on wolff’s law, the rate of bone remodeling and adaptation depend on the 

magnitude of applied stresses or strains. Therefore, relative errors between the 

anisotropic and the isotropic stresses or strains decrease the validity of bone 

remodeling prediction. Hence, bone anisotropy should be considered in finite 

element model of bones to achieve precise description of the bone mechanical 

behavior. 
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 In conclusion, this study focuses on determination of bone material properties and 

construction of the bone anisotropic finite element model from Computed Tomography 

(CT) scans. The results of this research show that neglecting the anisotropic property of 

bone could underestimate fracture risk and decrease the validity of bone remodelling 

process under physiological loading condition.  

6.2 Future Work 

The precise definition of bone material properties is a prerequisite to predict the bone 

remodeling and fragility. Hence, the need to improve techniques to describe in-vivo bone 

anisotropic and heterogeneous material properties has received a significant attention. 

Although there is a good agreement between the results of this study and the findings of 

previous researches, there are several pathways as potential future works to improve 

current mechanical model of bones. In the following paragraphs, the suggested future 

works are discussed. 

• To achieve more comprehensive results, 3D finite element model of in-vivo 

femoral head will be generated from CT image of in-vivo bone. Then, pointwise 

anisotropic material properties will be assigned to femoral head. Results of the 

finite element analysis will be compared with results of isotropic model of 

femoral head under physiological loading condition.  

• The design of a process to automatically separate femoral head from pelvis and 

surrounded soft tissue is a prerequisite for creating the finite element model of 
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femoral head.  Therefore, a precise method is required to be developed to isolate 

femoral head CT data from other parts. 

• In this study, the anisotropic elasticity matrix has been defined in the local 

material coordinate system due to the restriction of Abaqus software. However, 

the definition of elasticity matrix with twenty one independent field variables 

would be an alternative way to assign pointwise anisotropic material properties to 

the finite element model. Therefore, a possible method to assign the elasticity 

matrix with twenty one independent field variables can be developed in future.  

• In this study, the empirical correlation between bone elasticity modulus and bone 

density has been revised and the dimension of bone density gradient is also 

incorporated as an independent variable. Effects of the density gradient on the 

existing elasticity–density correlation would be validated by performing 

statistically significant numbers of standard mechanical tests on actual bone 

specimens. 
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