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Abstract

MicroRNAs (miRNAs) play a vital role in regulating gene expression. Detecting

conserved and novel miRNAs in very large genomic datasets generated using next

generation sequencing platforms is a new research area in the field of gene regulation,

but finding useful miRNA information from a large wheat genome is a challenging re-

search project. We propose to design a toolchain that will identify conserved miRNAs

using various software tools such as Basic Local Alignment Search Tool (BLAST),

Bowtie 2, MAFFT and RNAfold. Our toolchain identified 36 wheat conserved miRNA

families that matched with 232 experimental sequences. Moreover, we found 87 plant

conserved miRNA families that matched between 613 experimental sequences and the

miRBase dataset. In addition, we observed significant differential expression for the

wheat exposed to the heat stress compared to those exposed to light and UV stresses

or no stress (control).
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Chapter 1

Introduction

Wheat plays an important role in the Canadian economy and is an 11 billion

dollar industry in Canada [NRCC, 2015]. Thus, research on wheat breeding has great

significance. To improve the breeding of wheat, researchers need to produce better

varieties that are resistant to stresses such as heat, excess light and excess ultraviolet

(UV) light. These stresses can be seen as the result of climate change.

To improve the breeding of wheat in response to climate change, we need to

research wheat genes, and microRNAs (miRNAs), which act as gene regulators. The

process of converting DNA to protein is known as gene expression and gene regulators

control the expression of other genes (the definition of genes is given in Section 2.1.1).

Moreover, we must explore what influence different miRNAs have on wheat during

stresses to improve wheat varieties’ ability to cope with climate change. In particular,

we can examine the relationship between miRNA expression and stress by selecting

varieties of wheat that can react to stress.

MiRNAs act as gene regulators by influencing which proteins are created. Proteins

1



2 Chapter 1: Introduction

form the fundamental molecules of all the machinery of a cell. The flow of informa-

tion from Deoxyribonucleic Acid (DNA) to messenger Ribonucleic Acid (mRNA)

(transcription) and mRNA to protein synthesis (translation) is known as the central

dogma of molecular biology [Crick, 1970]. The whole process is described in Section

2.1.2. During the transcription process, besides mRNA synthesis, portions of DNA

are also transcribed into non-coding RNA (ncRNA), which are not translated into

proteins. MiRNAs are one category of ncRNAs that act as post-transcriptional reg-

ulatory molecules by preventing protein creation. The detailed process is described

in Section 2.1.4. For example, wheat genes Ta.5303 and Ta.39646 are the predicted

targets of miRNA 504 and miRNA 519 [Yao et al., 2007]. When miRNA 504 is ex-

pressed, the gene Ta.5303 is predicted to be down regulated. Thus miRNAs act as

gene regulators controlling transcript accumulation [Chen and Rajewsky, 2007].

Genes can be differentially expressed in humans, animals or plants based on var-

ious internal cues as per the growth and developmental blueprint of the organism

and as per conditions such as biotic (fungi, bacteria, etc.) or abiotic (temperature,

light, ultraviolet ray, etc.) stresses or states. For example, genes may be differentially

expressed in plants exposed to heat stress or affected by diseases. As miRNA expres-

sion can be changed rapidly in response to stress, miRNAs act as gene regulators. In

particular, we can examine how miRNA expression can change in response to stress

by selecting varieties of wheat that can react to stress.

To improve the breeding of wheat in response to climate change, we need to

produce better varieties of wheat that are resistant to stresses. We obtained exper-

imental data for bread wheat (Triticum aestivum) exposed to three stresses and for
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plants grown under control condition to help determine which miRNAs are expressed

differently under different stresses due to climate change.

We used a wheat small RNA dataset of approximately 21GB, generated from leaf

samples collected from wheat plants subjected to: heat, light or UV stresses or no

stress (control). Ninety-six Triticum aestivum cv Glenlea plants were grown in a

growth cabinet (Conviron Technologies, Winnipeg, Canada) under long day condi-

tions (16 hours light at 18 ◦C and 8 hours darkness at 16 ◦C). Growth cabinets provide

a variety of temperatures and lighting patterns that are essential for plant growth re-

search. At advanced boot leaf stage, three batches of 24 plants each were exposed to

three different stresses under controlled growth conditions: continuous light for three

days; heat stress (at 37 ◦C for 72 hours) and UV stress (2 minutes of exposure to UV

light for 3 consecutive days). Twenty-four plants were grown as control. Leaf tissues

were collected at six time points after the end of the stress period: day 0, 1, 2, 3, 7

and 10.

With this data set, we identified conserved miRNAs to help determining which

miRNAs are expressed differently under different stresses. We used a toolchain includ-

ing various software such as Basic Local Alignment Search Tool (BLAST) [Altschul

et al., 1990], Bowtie 2 [Langmead and Salzberg, 2012], MAFFT [Katoh et al., 2002]

and RNAfold [Zuker and Stiegler, 1981]. The software are described in the Related

work section and details are described in the Solution methodology section.

We identified 36 wheat conserved miRNA families that matched 232 experimental

sequences and datasets from two recent papers by Mayer et al. [2014] and Sun et al.

[2014]. Moreover, we found 87 plant conserved miRNA families that matched 613



4 Chapter 1: Introduction

experimental sequences in the miRBase [Kozomara and Griffiths-Jones, 2014] dataset.

In addition, we observed significant differential expression for the wheat exposed to

heat stress compared to those exposed to light and UV stresses or no stress (control).

Thirty-four conserved miRNA families were differentially expressed for the heat stress

whereas only 8 conserved miRNA families were differentially expressed for light and

only 7 conserved miRNA families were differentially expressed for UV stress. We also

found that increasing number of days post treatment affect the number of conserved

miRNA families differentially expressed for control versus stresses. Again, different

conserved miRNA families expressed differently based upon stress or day. We found

that miRNA 395 and 398 were strongly suppressed whereas miRNA 5064, 5175, 2020,

and 1439 were expressed with heat stress at all post-stress time points. MiRNA 395

was suppressed in all stresses samples regardless of the stress or time point of the

stress.



Chapter 2

Background

To understand various terms and concepts of my thesis, we separate the back-

ground chapter in two different sections: biology and bioinformatics.

2.1 Biology

In this section, we describe basic concepts of biology: DNA, DNA to protein,

miRNA, and the process of prevents protein creation by decreasing transcription

process by miRNA.

2.1.1 DNA

All living organisms contain DNA as hereditary material. DNA is a linear molecule

consisting of a sequence of four nucleotides or bases: adenine (A), cytosine (C),

guanine (G) and thymine (T). In DNA, these nucleotides form base pairs (bp) by

making bonds with each other: A pairs with T and C pairs with G. DNA is double-

5



6 Chapter 2: Background

stranded and forms a helix structure. This structure of DNA was first described by

James Watson and Francis Crick [Watson and Crick, 1953]. Figure 2.1 shows a figure

representing the structure of a DNA helix.

Genes are the portions of DNA coding sequences that hold the physical and func-

tional unit of heredity [Pearson, 2006]. A gene codes for a polypeptide which is

described in the following Section. Genes can span a few hundred DNA bases to

more than 2 million bases [Medicine, 2015]. The complete set of an organism’s DNA

is called the genome. In general, genes occupy a very small portion of the genome.

For example, the human genome contains 30000 genes, which is only 1.5% of the

entire genome [Annenberg, 2015]. The rest of the genome consists of the repeated

sequences and DNA that regulates genes.

The wheat genome is ∼17000 million base pair (Mb) in size which is very large

compared to the genome size of the model plant species of Arabidopsis thaliana (∼130

Mb) and the human genome which is ∼2800 Mb in size.

2.1.2 Gene expression: DNA to protein

Gene expression is the process of converting DNA to RNA (using transcription

process), and then RNA to protein (using translation process). Protein is a com-

bination of 20 different amino acids that forms the fundamental molecules of the

machinery of a cell. At first, DNA is converted into mRNA, and this process is called

transcription. Besides mRNA synthesis, portions of DNA are also transcribed into

ncRNA such as miRNAs, transfer RNAs (tRNAs), and ribosomal RNAs (rRNAs),

which are not translated into proteins.
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Figure 2.1: DNA structure [Geographic, 2015].

A region of DNA that initiates transcription of a particular gene is known as a

promoter region. Promoter regions are recognized by transcription factor (TF). As

opposed to TF, repressors are DNA or RNA binding proteins that block transcription

or translation.

In the transcription process, double stranded DNA is copied into single stranded

mRNA where thymine (T) is replaced by uracil (U). Next, mRNA is translated into

polypeptide. A combination of three consecutive nucleotides is called a codon and

each codon in mRNA is translated into one amino acid. The process of converting

mRNA to protein is known as translation. Translation starts with an initiation codon

named start codon and ends with a terminator codon named stop codon.

Figure 2.2 shows how protein is created from DNA. At first, by the transcription

process, DNA is converted to mRNA and mRNA is converted to polypeptide by
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the translation process. As an example, in the Figure, at first DNA (ACCGTG...)

is converted to mRNA (ACCGUG...) and then the codon ACC is translated to the

amino acid Threonine (T), the codon GUG is translated to the amino acid Valine (V),

and the same process is applicable for the rest of the DNA sequence. The nucleotide

triplets of DNA and RNA molecules that correspond amino acids is known as the

genetic code.

Figure 2.2: From DNA to protein [Burdine and Sheldon, 2015].

2.1.3 MiRNA

In general, mature miRNAs are 17-24 nucleotide (nt) long single-stranded se-

quences resulting from longer (around 1000 nt) primary transcripts (pri-miRNAs)

[Kusenda et al., 2006], which are one category of ncRNAs generated from the tran-

scription process. After transcription, with the help of the enzyme Dicer in plant,

pri-miRNAs form approximately 70-600 nt precursor miRNAs (pre-miRNAs) which

are folded into hairpin-shaped structures [Kim, 2005]. Then the pre-miRNAs are

cleaved into two complementary stranded sequences of mature miRNAs (17-24 nt)
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Figure 2.3: From pri-mRNA to mature miRNA [Papagiannakopoulos and Kosik,
2008].

where one strand is the 3-prime mature miRNA and the other strand is the 5-prime

mature miRNA [Krol et al., 2004]. Figure 2.3 shows an illustration of the process.

The two strands of mature miRNA are the 3-prime mature miRNA and 5-prime

mature miRNA. Between the 3-prime mature miRNA and 5-prime mature miRNA,

one of them is called the mature or guided strand and the other is known as the

miRNA star strand. Generally, mature and star strands are complementary to each

other. However, mismatches may occur between the mature and star strand. More-

over, there is also a two base pair overhang between the mature and star strand. See

Figure 2.4 for more details.

In Figure 2.4, the whole sequence represents a partial structure of pre-miRNA

that contains the sequence of two complementary strands. The mature strand is

represented with the red colored sequence and the green colored sequence represents

the miRNA star strand. There are two-bp overhangs between the mature and star
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strand at both ends of the pre-miRNA. In this thesis, to predict the star strand,

we allowed up to 4 mismatches between the mature and star strand [Michael Axtell,

personal communication].

Figure 2.4: Structure of a pre-miRNA containing a mature miRNA sequence and a
miRNA star sequence. The green coloured sequence represents the mature miRNA
strand and the miRNA star strand is represented with the red coloured sequence.
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Figure 2.5: Impact of miRNA on protein creation [Papagiannakopoulos and Kosik,
2008].

2.1.4 MiRNA: blocking protein creation

As described in Chapter 1, in addition to mRNA, some ncRNAs such as miR-

NAs, tRNAs and rRNAs are also generated by the transcription process. These

ncRNAs are not translated into proteins. MiRNAs are one of the ncRNAs that act as

post-transcriptional regulatory molecules by cleaving and attaching to complemen-

tary regions of mRNAs. Similar to mRNA, miRNA is also a single stranded sequence.

As shown in Figure 2.5, miRNA searches for the complementary regions of mRNA

[Ruvkun, 2001] and binds to it. Thus it prevents protein creation.

2.1.5 Assembly, read and contig

A genome assembly is the genome sequence made after chromosomes have been

split [Ensembl, 2015]. Chromosomes are located inside the nucleus, mitochondria

or chloroplast of the cells and contain most of the DNA of a living organism. The
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chromosomes are split into smaller parts as we can only read short sequences. In my

thesis, we used a Low Copy-number Genome (LCG) assembly of wheat [Brenchley

et al., 2012]. In a genome assembly, the same sequences can be repeated several

times; the number of times the same sequence is repeated is called copy number. The

genome can be subdivided into 3 constituents : i) low copy regions, ii) moderately

repetitive regions, and iii) high copy regions (for example centromere, where a single

repeat will be present thousands of time). LCG assembly is made of low copy regions

like genes.

Sequence reads represents a series of nucleotides (A, T, C, G) obtained by a

sequencer. The length of a read can vary according to the technology used to derive

it. For example, Illumina short read are 50 bp to 250 bp while Pac-bio read can be

10Kb nowadays.

A sequence of DNA representing overlapping molecules is known as a contig [In-

formation, 2015]. In my thesis, we used a wheat genome sequence [Science, 2014]

provided by Mayer et al. [2014] where the genome sequences are represented as con-

tigs. Moreover, the contig sequences are categorized by chromosome arms. Each

chromosome has a binding point called the centromere, which divides the chromo-

some into two sections, or arms: the short arm (denoted by S) and the long arm

(denoted by L) [Medicine, 2014].

2.2 From biology to informatics

In this section, we will describe the important terms and concepts that are neces-

sary to understand the following chapters.
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2.2.1 Sequence alignment

Sequence alignment is the process of comparing two or more sequences (DNA,

RNA, or protein) based upon sequence similarity either locally or globally. The best

match (locally or globally) between two sequences is known as pairwise sequence

alignment where alignment of three or more sequences is known as multiple sequence

alignment (MSA). The goal of sequence alignment is to find the homologous re-

gions between the sequences by maximizing their similarity. Local alignments find

matches with sub-strings or portions whereas global alignment matches end to end

between two sequences. Figure 2.6 shows an example of global and local align-

ments. In the figure, the two sequences TCCCAGTTATGTCAGGGGACACGAG-

CATGCAGAGAC and AATTGCCGCCGTCGTTTTCAGCAGTTATGTCAGATC

are located over each other horizontally to align both locally and globally where the

vertical bars (|) between the sequences represent matches and the hyphens (-) repre-

sent gaps. In the global alignment the two sequences are matched end to end making

many gaps but the local alignment finds the sub string CAGTTATGTCAG, which is

the highest matching portions between the two sequences.

.

Figure 2.6: Local and global sequence alignment [Rosalind, 2015].

Between two sequences, there may be exact matches, some mismatches, or inser-

tions or deletions (indels). This is due to mutation caused by evolution. Comparing
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more than two sequences is known as multiple sequence alignment.

Sequence alignments provide a score that represents the similarity of the sequences

in the alignment based on the mismatches, insertions or deletions between two se-

quences. Figure 2.7 shows examples of sequence alignment with perfect matches,

mismatches and indels. For example, if match score is +2 and mismatch/indel penalty

-1, then the score of the left example of the Figure is: 8*2 = 16 as there are 8 matches

and the score of the right example of the Figure is: (5*2) + (3*-1) = 10-3 = 7 as

there are 5 matches, 1 mismatch and 2 indels.

.

Figure 2.7: Sequence alignment: perfect match (left), mismatch and indels (right)
[Stanford, 2015].

2.2.2 BLAST

BLAST [Altschul et al., 1990] is a software tool that allows a user to find similar

sub-sequences between a query and a subject sequence. The sequence that we want

to align is the query sequence and the sequence that the query is compared with is

the subject sequence. BLAST identifies subject sequences that match with one of the

query sequences up to a certain threshold or certain limit of similarity. The minimum

threshold is also called the expect (e) value. The default e value is 10, which means
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that 10 matches between the query and the subject sequences of the selected database

of similar quality are expected to be found randomly [NCBI, 2015] even without any

biological relatedness. Depending on the database size, e value cut off is determined.

Lower e values produce more stringent results.

BLAST uses a heuristic method to find similar sequences. To acquire a perfect

match between a query and a subject sequence, there is an option to configure match

and mismatch scores between query and subject sequences in BLAST.

BLAST creates a k-letter word list for query sequences that contains sub-strings

(words) of length k. In general, for protein query sequences, k is 3 and for DNA

query sequences k is 11. BLAST categorizes the high-scoring words into an efficient

search tree. These high-scoring words of the search tree are then scanned in the target

sequences of the designated or selected database. Then, BLAST extends the exact

matches to high-scoring segment pairs (HSP). The HSP contains the best matches

between the query and subject sequences and the BLAST output is the results of the

descending order of the HSPs. Figure 4.2 shows an example of how an HSP works.

As an example, in my thesis, we used nucleotide-nucleotide BLAST (blastn), where

both the query and the subject sequences are nucleotide sequences. Other versions of

BLAST are nucleotide-protein BLAST (blastx) and protein-protein BLAST (blastp).

We can not use pairwise sequence alignment for this purpose as pairwise sequence

alignment is too slow for processing the large volume of query (15158 species) and

subject sequences. We used an Rfam database as the subject sequences where all

miRNAs were removed from the Rfam-database [Burge et al., 2013]. Thus, the Rfam-

database contains all the ncRNA sequences except miRNAs. Detailed process of
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removing ncRNA sequences is described in Section 4.3. To identify the conserved

miRNAs, we also used the miRBase database, release 20 (June, 2013), which contains

the known conserved miRNAs of plants (see Section 2.2.3). A detailed description of

this process is described in the Section 4.5.

Figure 2.8: Sample partial BLAST output where the vertical lines between query and
subject sequences represent matches [BLAST, 2015].

Figure 2.8 shows a sample partial output of BLAST where ”|” between the two

sequences represents a match and space (“ ”) between the sequences represents a

mismatch between corresponding positions of the query and the target sequences.

2.2.3 MiRBase

MiRBase [Kozomara and Griffiths-Jones, 2014] is the biological database of all

known conserved miRNAs along with their precursors. The conserved miRNAs are

also known as conserved miRNA families. Mature miRNAs having significant similar-

ity to entries in miRBase are called conserved miRNAs and undiscovered miRNAs are

called novel miRNAs. The latest version of miRBase contains 30424 miRNAs from 206

species [Kozomara and Griffiths-Jones, 2014]. Figure 2.9 shows a sample miRBase

entry [Garcia, 2015], where the whole sequence represents a pre-miRNA (Pre-miR-

146b) that contains the sequence of two complementary strands. The upper arm

(5’ end) contains the 5-prime mature miRNA (miR-146b-5p), UGAGAACUGAAU-

UCCAUAGGCU and the lower arm (3’ end) contains the 3-prime mature miRNA
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(miR-146b-3p), UGCCCUGUGGACUCAGUUCUGG.

Figure 2.9: MiRNAs (hsa-miR-146b-3p and hsa-miR-146b-5p) and their precursor
[Garcia, 2015].

2.2.4 Bowtie 2

Bowtie 2 [Langmead and Salzberg, 2012] is a very fast and memory-efficient se-

quence alignment algorithm. It is normally used to align short sequences against

large reference genomes. It is used when a user has a set of query sequences and the

corresponding genome sequence, to position the query sequences onto the reference

genome sequence. Thus, Bowtie 2 takes a genome and a set of reads as input and

outputs a list of alignments. Figure 2.10 shows an example of how Bowtie 2 works.

Bowtie 2 can access multiple processors at a time to achieve faster alignment

speed [Langmead and Cole, 2015]. For example, it can align 35-base-pair reads to the

human genome at a rate of 25 million reads per hour [Langmead and Cole, 2015]. We

can not use BLAST for this purpose as our wheat genome sequence is very large in

size and query sequences are small (around 20-24 bp).
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Figure 2.10: Alignment of miRNA and genome sequence using Bowtie 2.

2.2.5 MAFFT

Katoh et al. [2002] developed MAFFT, a multiple sequence alignment program

using Fast Fourier Transformation (FFT). It works faster than other multiple sequence

alignment program such as CLUSTALW and T-COFFEE. The authors used two novel

techniques to make MAFFT extremely fast: FFT and a simplified scoring system

where they designed the scoring matrix and gap penalty efficiently. Figure 2.11

shows a sample output of MAFFT.

Figure 2.11: Multiple sequence alignment among query, conserved miRNA, genome
and precursor sequences using MAFFT. These miRNA1, miRNA2 and miRNA3 come
from the experimental dataset and the precursor and conserved miRNA comes from
miRBase.

2.2.6 RNAfold

Single-stranded RNA molecules can fold and form base pair matches with itself to

form secondary structure. The most common shape of secondary structure is either

helix or loop, and for RNA secondary structure, one of the shapes looks like a stem-
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loop shaped hairpin. For example, transfer RNA (tRNA) and precursors of miRNAs

can form stem-loop shaped hairpin structures. Figure 2.12 shows the structure of the

stem-loop. Figure 2.4 and 2.9 are also examples of miRNA precursor’s stem-loop

shaped hairpin structure.

Figure 2.12: Secondary structure: stem-loop [Cronodon, 2015].

RNAfold predicts secondary structure of RNA [Lorenz et al., 2011]. It uses the

Minimum Free Energy (MFE) method to predict secondary structure. Finding an

energetically stable structure of RNA using the sequence known as the MFE method

[Zuker, 1989]. RNAfold takes an RNA sequence as input and predicts a MFE structure

of RNA, similar to Figure 2.4, as output. We used RNAfold to predict RNA secondary

structure, specifically the stem-loop structure of conserved and novel miRNAs. The

structure is predicted with the help of a loop-based energy model and the dynamic

programming algorithm introduced by Zuker and Stiegler [1981].
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2.2.7 Dot-bracket notation

Besides the secondary structure, RNAfold also produces a dot-bracket notation.

The goal of the dot-bracket notation is to represent RNA secondary structure in a

convenient way. Dot-bracket notation consists of dots “.”, opening “(” and closing

“)” parentheses. Each character represents a base. A dot “.” represents an unpaired

base, whereas open parenthesis “(” represents a base that is paired (5’ end) to another

base ahead of it (3’ end) and closed parenthesis “)” represents a base that is paired

(3’ end) to another base behind it (5’ end). Figure 2.13 shows an example of how a

secondary structure can also be presented with dot-bracket notation.

.

Figure 2.13: Dot-bracket notation and secondary structure [Darty et al., 2009]. At
the 5’ end we have nucleotides “GUAC”, dot-bracket notation: “((((”, that matches
with “GUAC” at 3’ end, dot-bracket notation: “))))”, the rest of the nucleotides are
unpaired.
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Related Work

To date, there has not been much research to identify conserved and novel mi-

croRNAs in plants. Yao et al. [2007] constructed an RNA database to identify con-

served and novel miRNAs in wheat. At first they performed BLASTN with the Rfam

[Burge et al., 2013] database to remove other ncRNA sequences such as ribosomal

RNA (rRNA) and tRNA. This is similar to our technique in Section 4.3. Then, the

authors used BLASTN to query the wheat Expressed Sequence Tag (EST) database

from the National Center for Biotechnology Information (NCBI) to identify 58 miR-

NAs. This is not sufficient to predict miRNA as the miRNAs need precursor and star

miRNA support. An EST database is a collection of short single-read complementary

DNA (cDNA) that comes from the reverse transcription of mRNAs. Among the 58

miRNAs, 35 miRNAs were reported to be conserved and 23 were novel.

Yin and Shen [2010] studied 42 conserved miRNA families in plants. They also

used BLASTN with the miRBase database and found 34 conserved miRNAs in wheat.

Additionally, Kurtoglu et al. [2014] identified 52 conserved miRNAs and 7 novel

21
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miRNAs in wheat using the whole genome sequence. They performed BLAST with

miRBase to identify miRNAs by sequence similarity. This is similar to our technique

in Section 4.5. For miRNA prediction, the authors implemented a two step procedure:

homology search to known plant miRNAs and consistency of pre-miRNAs. They also

used LCG assembly of wheat.

Lei and Sun [2014] built miR-PREFeR, a plant miRNA prediction tool using small

RNA-seq data that uses RNAfold to predict miRNA correctly by examining stem-loop

structures.

For conserved miRNA identification, Mayer et al. [2014] analysed wheat contigs as

query using the BLASTN algorithm with all plants’ mature miRNA sequences from

the miRBase database (release 18, November 2011) as subject with the following

parameters: E-value 10, word size 7 and match reward 2. All hits were filtered using

threshold criteria of maximum 4 mismatches between contig and miRBase sequence.

In addition, matched sequences were analyzed for the intervening distance and two

hits falling within a distance between 3 nucleotides to 239 nucleotides were retained.

The two hits were a direct hit representing a potential mature miRNA and a reverse

complementary hit representing a star sequence and vice versa. The intervening

distance between this mature miRNA and its cognate star sequence could vary from

3 to 239 nucleotides in length according to Kadri et al. [2009]. Hence, the the loop

region separating the mature miRNA and its star sequence could be varying from 3 bp

to 239 bp to form an ideal secondary hairpin structure. From the retained sequences,

potential precursor sequences were extracted with flanking sequences by cutting at

positions which are 13 nucleotides upstream of the 5 hit and 13 nt downstream of the
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3 hit, respectively. These sequences were folded using software NOVOMIR [Teune

and Steger, 2010] for generating secondary hairpin structures with embedded mature

miRNAs and satisfying other requirements like Minimum free energy. This is similar

to our technique in Section 4.7.1. NOVOMIR uses RNAfold to predict the secondary

structure of genomic sequence [Teune and Steger, 2010].

Mayer et al. identified 98,068 putative miRNA precursor sequences encoding 270

different mature miRNAs indicating multiple putative precursors for some individual

mature microRNAs. Only 1,668 precursor sequences out of 98,068 (1.7%) aligned

with wheat expressed sequence tags (ESTs) and reads from all RNA molecules that

uses deep-sequencing technologies. Only 52 of the 270 mature miRNA sequences were

encoded by precursors originating from non-repeat regions.

Mayer et al. also identified the potential targets of the mature miRNAs using

PsRobot v1.2 [Wu et al., 2012] against a set of 133,090 ESTs. Out of 270 identified

mature miRNAs, at least one target was identified for 257 miRNAs. In total, 68,641

target protein coding genes were identified for all 270 mature miRNAs.

On the other hand, Sun et al. [2014] sequenced small RNAs from 11 tissues from

wheat namely: dry grain, embryo from germinating seed, shoot, seedling root, seedling

leaf, culm, 5-mm long inflorescence, 10 to 15 mm long spike, flag leaf, grain collected

8 days after pollination (DAP), and grains collected 15 DAP. They identified miRNAs

representing 276 families.

From 118,301,178 reads (18 to 30 nucleotides), Sun et al. obtained a total of

36,235,609 unique sequences for all 11 libraries. Using Bowtie, the unique sequences

were mapped against the Rfam database [Burge et al., 2013] and a plant repetitive
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sequence database [Ouyang and Buell, 2004] to filter rRNAs, tRNAs and repeats.

The tags were mapped to the following wheat reference genome and EST sequences:

(i) wheat genome [Brenchley et al., 2012], (ii) illumina sequences from individual

chromosome arms generated by International Wheat Genome Sequencing Consortium

which helps to identify the chromosomal location of miRNA precursors [Mayer et al.,

2014] and (iii) wheat ESTs from the database of genetic resources, from Japan and

NCBI. In our experiment, we also filtered ncRNA sequences (rRNAs, tRNAs, etc.)

in Section 4.3, performing a BLASTN search with the Rfam-database [Burge et al.,

2013], which contains all the ncRNA sequences except miRNAs.

Reads with zero mismatch against the contigs were taken up by Sun et al. for

miRNA identification using the miReap algorithm [miReap, 2015]. Using a thresh-

old of a minimum of 20 tags in one library, miRNAs, miRNA star sequences and

precursors were predicted using the following criteria. Firstly, the miRNA and its

star should be embedded in the opposite strand of the hairpin with two bp overhang.

Secondly, there should be only a maximum of four mismatches between the miRNA

and miRNA star sequence. Thirdly, the candidate miRNA tag must span at least

70% of all reads mapping to the precursor at miRNA start site with flanking regions

of 20 nucleotides on each side. If a set of unique reads mapping to a genomic region

has 70% identity, then the remaining 30% of the length of each of the read should

originate within 20bp, either upstream or downstream to the primary Dicer clipping

nucleotide site.

The predicted candidate miRNAs identified by Sun et al. were compared against

the known mature miRNAs in the plant miRNA database (PMRD) [Zhang et al.,
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2010], and conserved and novel miRNAs were identified. Using bowtie, all identified

mature miRNAs were also mapped against reference contigs from other species such

as Arabidopsis, rice, maize, Brachypodium, barley and sorghum for the presence of

their precursors, by extracting 200bp each of flanking regions from miRNA matching

site.

The presence of 366 perfectly matching known mature miRNAs belonging to 260

miRNA families was identified in all 11 libraries. Highly conserved miRNA families

among land plants, namely miR159, miR160, miR167, miR169, miR171, miR172,

miR393, miR396 and miR398, were also identified from the datasets.

The targets of miRNAs were identified from ESTs. A total of 524 targets for 124

miRNA families were identified. Compared to the wheat genome paper Mayer et al.

where co-ordinates of 98,068 precursors were reported for 270 miRNA families, Sun et

al. reported mature miRNA sequences and the corresponding star sequences, which

is a very useful resource for discovering genuine miRNAs in a new dataset.
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Solution Methodology

To identify conserved miRNAs from the wheat dataset, we developed a toolchain.

We used the python programming language in the Ubuntu Linux system to imple-

ment the toolchain. During the first step of the toolchain, we removed all non-

miRNAs from the experimental sequences (Section 4.3) using the Rfam database.

Next, all conserved miRNAs were detected by comparing the experimental sequences

to the miRBase database. The detailed process of identifying conserved miRNAs is

described in Section 4.5.

To identify conserved miRNAs, besides the miRBase database, we also used the

supplementary materials [Science, 2014] of Mayer et al. [2014], which contain the pre-

cursors from the wheat genome. We aligned them with our experimental samples and

only considered those sequences that have an exact match between the experimen-

tal samples and the precursors. The detailed process and rules to predict the most

suitable precursors and star sequences are described in Section 4.7.

We also matched our experimental sequences with the conserved miRNA and

26
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miRNA star sequences provided by the supplementary materials [BMC, 2014] of Sun

et al. [2014]. The supplementary materials also contain the wheat precursors along

with the dot-bracket notation of the precursors. The detailed process of matching our

experimental sequences with Sun et al.’s mature miRNA and miRNA star sequences

are described in Section 4.8.

Figure 4.1 shows a detailed overview of the methodology of my thesis. Each of

the steps of Figure 4.1 is described below.

Figure 4.1: Detailed flow chart of solution methodology.
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4.1 Input files: description and organization

We used a wheat (Triticum aestivum) small RNA dataset, consisting of sequences

generated from leaf samples collected from wheat plants subjected to heat, light or

UV stresses or no stress (control). Leaf tissues were collected at six time points after

the end of the constant stress period: day 0, 1, 2, 3, 7 and 10. Ninety-six Triticum

aestivum cv Glenlea plants were grown in a growth cabinet (Conviron Technologies,

Winnipeg, Canada) under long day conditions (16 hours light at 18 ◦C and 8 hours

darkness at 16 ◦C). Three batches of 24 plants each represents 3 replicates of eight

plants were exposed to three different stresses under controlled growth conditions:

continuous light for three days; heat stress (at 37 ◦C for 72 hours) and UV stress (2

minutes of exposure to UV light for 3 consecutive days). The final set of twenty-four

plants were grown as control conditions (16 hours light at 18 ◦C and 8 hours darkness

at 16 ◦C).

A total of 72 fasta files corresponding to the 72 small RNA libraries and containing

a total of ∼ 523 million reads constituted the input files. Fasta is a text-based

format for representing nucleotide sequences. The sequences in this format begins

with single-line description, followed by sequence data. The description or header

line starts with the “>” symbol to distinguish between the description line and the

sequence. Each fasta file was 250 to 450 MB in size. Input data was organized into

several stress conditions, replicates and sampling time points (T.P.) after stress. Each

T.P. contained 3 replicates and each replicate contained 4 fasta files (1 fasta file for

each conditions: control, heat, light and UV). Thus, 72 fasta files were organized into

6 T.P. * 3 replicates * 4 conditions.
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4.2 Unique sequence identification

Initially, the same sequence could be present several times in a sample file as the

same RNA can be expressed as several copies in the same replicate/condition/time

point. So, we first identified all unique sequences and their total number of occur-

rences in a particular sample file. Then we also generated a summary file which

contains the total number of reads for each unique sequence and the normalized read

counts or reads per million (RPM) using the formula: (1000000 * read count) / total

number of sequences. Next, we split each unique fasta file into 300 files (total 72*300

= 21600 files) because single fasta files were too large.

4.3 Removal of ncRNA sequences

After identifying the unique sequences and splitting the input files, our next goal

was to remove all contaminating ncRNA sequences from the input dataset other

than miRNAs, such as rRNA, tRNA, small nuclear RNA (snRNA), small nucleolar

RNA (snoRNA) and long non-coding RNA (lncRNA). We removed those ncRNA

sequences as our goal is to find miRNA sequences only. For this, at first we removed

all the miRNAs from the Rfam database by discarding those sequences that has

“MIR” in the header of the Rfam fasta file. Then, we performed a BLASTN search,

for each sequence in the 300 unique, split files, against the Rfam-database [Burge

et al., 2013], which contains all the ncRNA sequences except miRNAs. This step

is similar to Yao et al. [2007] and Sun et al. [2014], described in Chapter 3. After

removing all the contaminating ncRNA sequences, we then aggregated the updated
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300 unique split files that contain no contaminating ncRNA sequences. As we needed

to process all 72 input files, we used the grid-based infrastructure of Westgrid to

do the high performance computing. We used the Hermes server of Westgrid that

contains 2112 cores [Westgrid, 2015]. Using Hermes, we executed the entire process

as a series of programs in the Unix bash shell scripting language that allows execution

of commands.

4.4 Filtering the data

4.4.1 Consistent naming

The same sequence can be present in different different replicates, conditions or

time points because the same RNA can be expressed in all these samples. So, in next

step, we consistently named the sequences so that every experimental sequence has

the same identity across the whole experimental dataset. All sequences were named

with the format: species [no] sample [no] of72 [length]. For example, the very first

sequence was named as species1 sample1of72 21bp.

4.4.2 Consistent named sequences having 10 RPM in any

experimental sample

We considered only those sequences having at least ten RPM in any of the ex-

perimental samples [Montes et al., 2014] and these sequences were used as the input

sequence in Section 4.5 and Section 4.7. There were a total 15,158 sequences having

at least ten RPM in at least one of the experimental samples. Sequences having less
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than 10 RPM were used for predicting star sequences, which is described in Section

4.7.2.

4.5 Conserved miRNAs identification

After removing all other ncRNAs except miRNAs, we needed to identify and

characterize the known or conserved miRNAs from wheat or other plant species. As

miRBase contains all known conserved miRNAs, in this step we compared the filtered

data from Section 4.4.2 with the miRBase database to identify the known conserved

miRNAs and their precursors. At first, from the miRBase database, we discarded all

the miRNAs except those from plant species to create miRBase-Plant. Then, similar

to Yao et al. [2007], Yin and Shen [2010], and Mayer et al. [2014], described in Chap-

ter 3, we also performed a BLASTN search using the miRBase database, release 20

(June, 2013). We tuned the parameters and chose e-value 10, word size 11, match and

mismatch score 4 and -5 respectively to obtain the HSP with the best score between

experimental and miRBase sequence. For conserved miRNA identification, we consid-

ered only those matches where we found 0 to 4 mismatches between the experimental

sequence and a sequence from miRBase [Ragupathy, personal communication]. The

remaining sequences (with greater than 4 mismatches between the experimental and

the miRBase sequence) were considered as the input for the identification of novel

miRNAs in Section 4.6. Figure 4.2 shows acceptable alignments between experi-

mental and miRBase sequences as a partial output of BLAST, to identify known

conserved miRNAs.

Moreover, we grouped together the experimental sequences that matched the
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Figure 4.2: Known conserved miRNA identification, sample BLAST output using 0 to
4 mismatches between the miRBase and experimental sequence: a) exact match , b)
exact match where the miRBase sequence is longer than the experimental sequence, c)
1 mismatch where the experimental sequence is longer than the miRBase sequence, d)
2 mismatches where the miRBase sequence is longer than the experimental sequence
and e) 4 mismatches between the miRBase sequence and the experimental sequence
of the same length.

same miRNA from miRBase with 0 to 4 mismatches. Figure 4.3 shows how ex-

perimental sequences were grouped together that matched with the same miRNA

from miRBase. In the figure, for each row, the first column represents the miRNA
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from miRBase and the remaining columns represent the experimental sequences

that matched with that miRNA. For example, miRNA tae-miR1135 matched with

the experimental sequence species3971 sample68of72 21bp only whereas bdi-miR159-

3p miRNA matched with the experimental sequence: species21 sample68of72 21bp,

species34 sample68of72 20bp, species932 sample68of72 21bp, etc.

Figure 4.3: Experimental sequences matched with the miRBase conserved miRNAs.

We also produced a fasta file that contains all the miRNAs from miRBase and

the matched experimental sequences. In the fasta file, miRNA “tae-miR1135” begins

with the “>>” sign and the matched experimental sequences begin with the “>”

sign. Figure 4.4 shows an example of the fasta file.

Next, for each grouped experimental sequences (the experimental sequences that



34 Chapter 4: Solution Methodology

Figure 4.4: Fasta file of conserved miRNAs matched with experimental sequences.

matched with the same miRNA from miRBase), we used Bowtie 2 against LCG

assembly to identify putative regions of the wheat genome that matched with the

grouped experimental sequences. This helped us aligning multiple sequences in the

next step. Figure 2.10 shows a sample of this step.

We then extracted the precursors (pre-miRNAs) of the conserved miRNAs. For

this we used the fasta file hairpin.fa from miRBase website [miRBase, 2015], which

contains a list of all precursor sequences for miRBase sequences. We generated all

the precursor sequences of the conserved miRNAs with the help of the hairpin.fa

file. For example, if the conserved miRNA name in the miRBase miRNA database

is “tae-miR159b Triticum aestivum miR159b”, we also identified the particular pre-
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cursor from hairpin.fa file searching with same name such as “tae-MIR159b Triticum

aestivum miR159b stem-loop” and used that particular precursor sequence.

We now have the grouped experimental sequences that matched with conserved

miRNAs, along with conserved miRNA sequence from miRBase and related precur-

sors (from wheat or other plants) from miRBase, and the wheat genome regions

matching the grouped experimental sequences. We then performed an MSA using

the default MAFFT values, with the grouped experimental sequences, matched con-

served miRNA sequences from miRBase and related precursors from miRBase, and

the matched wheat genome regions from the wheat LCG assembly. We did not use

the wheat genome assembly by Mayer et al. as this experiment had been done before

Mayer et al.’s genome assembly was published.

With these MSAs, we were able to determine the sequence similarity between

them. Higher sequence similarity among the grouped experimental sequences, the

matched conserved miRNA, the related precursor and the genome sequence repre-

sents the identification of conserved miRNAs with high accuracy. Figure 2.11 shows

a sample output of this step. It shows the similarity among the grouped experi-

mental sequences (miRNA1, miRNA2, and miRNA3) from the experimental dataset,

conserved miRNA and precursor from miRBase and wheat genome.

4.6 Identification of novel miRNAs

Mature miRNAs having significant similarity to entries in miRBase are called

conserved miRNAs and undiscovered miRNAs are called novel miRNAs. For con-

served miRNA identification, we considered only those matches where we found 0
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to 4 mismatches between the experimental sequence and a sequence from miRBase.

The remaining sequences (with greater than 4 mismatches between the experimental

and the miRBase sequence) became the input for the identification of novel miRNAs.

The detailed process of identifying conserved miRNAs is discussed in Section 4.5.

For identifying the novel miRNAs, we first removed all sequences that matched

with conserved miRNAs from miRBase in Section 4.5 from the filtered experimental

sequences obtained from Section 4.4.2. So the resultant sequences contained more

than 4 mismatches between the input sequences and any sequence in the miRBase

database, and these resultant sequences were used as input sequences for novel iden-

tification in this step. To claim an input sequence as a novel miRNA, the sequence

must have a hairpin shaped precursor with <-0.2 Kilocalorie/mole/nt folding free

energy [Kozomara and Griffiths-Jones, 2014], and have a star sequence in the sam-

ple dataset. Free energy provides a measure of thermodynamic stability for possible

secondary structures that a molecule or molecules could form [Zuker et al., 1999].

As we did not finish the whole procedure of identification of novel miRNAs, the

rest of the tasks are described as a future work in Section 6.2.

4.7 Identification of conserved miRNAs using sup-

plementary materials of Mayer et al.

Mayer et al. identified 98,068 putative miRNA precursor sequences encoding 270

different mature miRNAs indicating multiple putative precursors for some individ-

ual mature microRNAs. We predicted putative miRNAs by matching these 98,068
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putative miRNA precursor sequences with our experimental sequences.

In our experiment, we used miRBase database that contains the known conserved

miRNAs and precursors of all plants including wheat. As we experimented with

wheat sequences, to identify the conserved miRNAs for our experimental samples,

besides miRBase, we also used the supplementary materials [Science, 2014] provided

by Mayer et al. [2014], which contains predicted precursor sequences only for wheat.

The procedure was divided into two steps: candidate precursor prediction and pre-

diction of star sequence.

4.7.1 Candidate precursor prediction

The supplementary materials [Science, 2014] provided by Mayer et al. [2014] con-

tained a list of predicted precursors’ ID of wheat, putative miRNAs, chromosome

arm, contig ID, start and end location of the precursors in the contigs. Mayer et al.

[2014] also provided all contig sequences representing each chromosome arm. In this

step, we used the 15,158 sequences (at least 10 RPM in at least one library, generated

in Section 4.4.2) as input. This contains sequences with at least 10 RPM in any

experimental sample. Figure 4.5 shows an example of the data file and the contig

sequences. The fourth column of the Figure 4.5.a contains the contig IDs and the

right side of the Figure contains the sequences of those contigs. The position of the

precursors in the contigs are also given by the start and end location (fifth and sixth

columns of the Figure).

We generated a fasta database of all precursors. As the files containing contig

sequences were named based on the chromosome arm, using the chromosome arm
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and contig ID, we obtained the particular contig sequence. Then, we extracted the

precursor sequence from the contig sequence using the start and end locations.

After that, we aligned the input sequences (15,158 sequences having at least 10

RPM in at least one library, generated in Section 4.4.2) with this precursor database

using Bowtie 2 and retained only the exact matches. We discarded the input sequences

that did not exactly match with the precursor database. Thus, we obtained the

experimental samples that exactly matched with the wheat precursors and putative

miRNAs (from the second column of Figure 4.5.a) provided by Mayer et al.

Kurtoglu et al. [2014] provided a list of 52 genuine microRNAs identified in wheat

with high quality confidence annotation of precursors. We compared our predicted

putative miRNAs with these 52 miRNAs and discarded any putative miRNA that

were not part of the 52 miRNAs identified in wheat.
.

Figure 4.5: Precursor database (c) creation using two supplementary files by Mayer
et al. [2014]: a) precursor table, b)contig sequences.

We thus generated the experimental samples, related precursors and putative miR-
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NAs. Next, we predicted the star sequence and hairpin shaped structure. For predict-

ing the star sequences, we required the dot-bracket notations of the precursors. We

predicted the dot-bracket notations of the precursor sequences using RNAfold [Lorenz

et al., 2011]. Besides the dot-bracket notations, RNAfold also provided the hairpin

shaped structures and minimum free energy. We considered only those sequences

which have <-0.2 Kilocalorie/mole/nt free energy.

Figure 2.4 shows an example of hairpin shaped structures and Figure 4.6 shows

one of the dot-bracket notation outputs produced by RNAfold that represents: precur-

sor sequence, MFE and dot-bracket notation. The process of star sequence prediction

using dot-bracket notation is described in the next section.
.

Figure 4.6: Example of dot-bracket notation of precursor sequence by RNAfold.

4.7.2 Prediction of star sequence

The two strands of mature miRNA are the 3-prime mature miRNA and 5-prime

mature miRNA. Between the 3-prime mature miRNA and 5-prime mature miRNA,

one of them is called the mature or guided strand and the other is known as the

miRNA star strand. For identifying a conserved or novel miRNA, an miRNA sequence

must have miRNA-star support, that is, a star sequence should be observed in the

experimental data. Predicting the miRNA star sequence is a challenging task as there

is no prior knowledge of the location of the star sequence. Moreover, there may be
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some length variability between miRNA and miRNA star sequences.

In this step, we also used the filtered data (with at least 10 RPM in any exper-

imental sample) generated in Section 4.4.2 as the input sequences. From Section

4.7.1, we obtained the related precursor sequence or contig sequences and dot-bracket

notation for the input sequences. We assumed the star sequence has the same length

as the sequence and that there is a two bp overhang [Kozomara and Griffiths-Jones,

2014] between the input and star sequences as described in Figure 2.4. The rules

of predicting star sequences is slightly different depending on whether the input se-

quence is matched with the precursor sequence either on 5’ or 3’ side. We describe

the two sets of rules in the following three subsections.

Star sequence prediction when input and precursor sequence matched on

5’ side

Figure 4.7 shows the process of predicting a star sequence at the 5’ end. First,

we aligned the experimental sequence with the contig sequence of precursor predicted

by Mayer et al.. The alignment is shown between positions X and Y in the Figure.

This alignment is guaranteed to have zero mismatches because all sequences with

mismatches were filtered in Section 4.7.1. Next, we found the matching brackets of X

and Y on the 3’ side: these are positions x and y. We shifted x and y by two positions

to the right. This addition is necessary to create the two bp overhang between the

input and star sequences. These shifted positions are w and z in the figure. The

region from w to z is the potential miRNA-star sequence we were looking for.
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Figure 4.7: MiRNA-star prediction: 5’ end.

Star sequence prediction when input and precursor sequence matched on

3’ side

Figure 4.8 shows the process of predicting a star sequence at the 3’ end. At first,

we aligned the species sequence with the contig sequence. The alignment is shown

between positions X and Y in the Figure. Next, we shifted X and Y by two positions

to the left for creating the two bp overhang between input and star sequence. These

shifted positions are x and y in the figure. We found the matching brackets of x and

y on the 5’ side. These positions are w and z in the figure. Thus, the region from w

to z is the potential miRNA-star sequence we were looking for.

Moreover, we also found some cases where the aligned dot-bracket notation started

and/or ended with a dot (.) while aligning input sequence either on 5’ side or 3’ side

(after shifting 2 positions right) with the contig sequence. For this, we traversed

right until we get a bracket notation: “(” on 5’ side or “)” on 3’ side. Similarly,

for predicting star sequence we traversed same distance in the same direction after

matching bracket “)” on 3’ side or “(” on 5’ side. Figure 4.9 shows an example of

predicting star sequence where input sequence aligned with the contig sequence on
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Figure 4.8: MiRNA-star prediction: 3’ end.

the 5’ side and dot-bracket notation started with a dot (.). The alignment is shown

between positions X and Y in the Figure where position X is a dot (.). So we traversed

right until we get a bracket notation: “(”, which is position X’. Next, we found the

matching brackets of X’ and Y on the 3’ side: these are positions x and y. Now, we

also needed to shift position x right by 1, which gives position x’. Then we shifted x’

and y by two positions to the right. This addition is necessary to create the two bp

overhang between the input and star sequences. These shifted positions are w and z

in the figure. The region from w to z is the potential miRNA-star sequence we were

looking for.

Exceptional cases

Besides the cases stated above, there are also some other cases where we discarded

the input and star sequences. We discarded any input or star sequence if there are at

least 4 unpaired base “.” in the sequence except in the 2 bp overhanging positions.

Again, to create the two bp overhang between input and star sequence, we shifted

the aligned 3’ star sequence by two positions to the right (Figure 4.7), but we could
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Figure 4.9: Sequence matched at the 5’ end with the contig sequence where dot-
bracket notation starts with a dot (.).

not shift right by two positions if there is no nucleotide remaining on the right side,

as in position z in the Figure 4.10.

Figure 4.10: Discarded input sequence where we could not create two bp overhang.

Also, we found the input and star sequences overlap for some cases but physically

its not possible to form an hairpin structure if the overlap occurs. So, we also dis-

carded those input and star sequences where there were overlaps between input and

star sequences or if the input or the star sequence were a part of the hairpin loop.

Figure 4.11 shows an example of these discarded cases where the input and star se-

quence overlapped, and also the input sequence is part of the hairpin loop. Note that

the middle unpaired region (between the last open parenthesis “(” and the first close

parenthesis “)”) of the dot-bracket notation represents the hairpin loop structure.
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Figure 4.11: Discarded input and star sequences where input and star sequences
overlapped (top) and where input sequence is a part of the hairpin loop (bottom).

4.8 Identification of conserved miRNAs using sup-

plementary materials of Sun et al.

We also used the supplementary materials [BMC, 2014] of Sun et al. [2014]. These

supplementary materials contains conserved miRNA, their star sequences, along with

wheat precursors and the dot-bracket notation of the precursors. As conserved miR-

NAs with star sequence, along with precursors and dot-bracket notation of the pre-

cursors are already given, we neither needed to predict the candidate precursor nor

the star sequence. Using sequence comparison, we exactly matched the conserved

miRNA sequences given by Sun et al. with our filtered data (with at least 10 RPM

in any experimental sample) generated in Section 4.4.2. To match the star miRNA

sequences given by Sun et al., we used our consistently named data generated in

Section 4.4.1, which is not restricted to at least 10 RPM in any experimental sample



Chapter 4: Solution Methodology 45

(see section 4.4.1 for details). We discarded those sequences having no match with

either the conserved or star miRNA sequences of our experimental sequences.

4.9 Differential gene expression analysis

Differential gene expression helps us determine what changes occur in the wheat

genome upon exposure to abiotic stresses. Abiotic stresses can cause miRNAs to be

up-regulated (increased in expression) or down-regulated (decreased in expression).

We analyzed differential gene expression for identifying conserved miRNAs ex-

pressed under different abiotic stresses. For this, we used edgeR [Robinson et al.,

2010], a bio-conductor package of R language with the count values calculated in

Section 4.2 and with the experimental sequences of Section 4.7 and 4.8 which we

identified as potential conserved miRNAs.

In total, we identified 232 experimental sequences matched with either Mayer et

al. or Sun et al. dataset. Among them, we found 205 and 12 experimental se-

quences, as an outcome of comparing our experimental sequences (filtered data with

at least 10 RPM in any experimental sample generated in Section 4.4.2), with Mayer

et al. dataset in Section 4.7 and with Sun et al. dataset in Section 4.8 respectively.

Fifteen experimental sequences were common in both the Mayer et al. and Sun et

al. analyses. In total, there were 325 experimental sequences as some experimental

sequences matched with multiple conserved miRNA families. For example, experi-

mental sequence species24 matched with both conserved miRNA family miR2020 and

miR5064.

Input files were divided into control versus 3 stresses: heat, light and UV. So for
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each T.P. there were 3 files: control versus (vs) heat, control vs light and control vs

UV. We had 6 T.P.: day 0, 1, 2, 3, 7 and 10. Thus we had total of 18 files as input to

edgeR (6 days * 3 control vs stress files). Each of these 18 files contained 6 columns

where the first 3 columns contained the count data of the 3 replicates of control and

other 3 columns contained the count data of the 3 replicates for stress (either heat,

light, or UV).

For each of the control vs stress file, we categorized 325 experimental sequences

into 36 unique conserved miRNA families by grouping experimental sequences that

matched with same conserved miRNA family and summing up the count data (Figure

4.12). Thus, each of the 18 input files contains 36 rows of conserved miRNA family

where each row contained count data of control and stress treatment. As each treat-

ment contained count data of 3 replicates, each row contained 6 columns of count

data that divided into 3 columns of count data for control and 3 columns of count

data for stress (either heat, light, or UV).

Figure 4.12 shows an example of day 0, control vs heat input file processing for

edgeR. Figure 4.12.a is an example where we had 325 rows where each row represented

unique experimental sequence that matched with a conserved miRNA family with

either Mayer et al. or Sun et al. Column B to G contained the count values calculated

in Section 4.2 where the first 3 columns and the last 3 columns contained the count

data for control and heat treatment respectively. Then, in the Figure 4.12.b, the

same conserved miRNA families were grouped together. For example, miR156(Sum 8)

(column A, row 21 in the Figure) shows that there were 8 experimental sequences

that matched with the conserved miRNA family 156 (species 32, 236, 345, 427, 428,
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1322, 3541, and 20602 from Figure 4.12.a). Also, the count values were summed

up. For example, 14666 (column B, row 21 in the Figure) is the summation of all

the count values of those 8 experimental sequences for day0, Replication 1, control

treatment (column B, rows 2 to 9). We used the grouped miRNA families file such as

4.12.b as input to edgeR. The detailed results of differential gene expression analysis

are discussed in Section 5.3.

Figure 4.12: Processing of input file for determining differential expression by edgeR.
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Results

In this chapter, we will describe the results and findings of my thesis. The sections

are divided into: i) results of conserved miRNA identification using the miRBase

database, ii) conserved miRNAs identification using the supplementary materials of

Mayer et al. and Sun et al., and iii) differential gene expression.

5.1 Conserved miRNA identification using miR-

Base database

From Section 4.1 to Section 4.3, we described how we identified unique sequences,

removed ncRNA sequences and filtered the data. Figure 5.1 shows the read counts

after unique sequence identification, removal of ncRNAs and consistent naming. In

the figure, we see that, the numbers are gradually decreasing in each step. After all

steps, there were a total 15,158 sequences having at least ten RPM in at least one of

the experimental samples.

48
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Figure 5.1: Processed reads and read counts after unique sequence identification,
removal of ncRNAs and consistent naming for different days post treatment (DPT).

For conserved miRNA identification, in total we found 87 conserved miRNA fam-

ilies from the miRBase database that matched with 613 sequences from experiment

(with at least 10 RPM in any experimental sample, see Section 4.4.2 for details on

experimental sequences) with 0 to 4 mismatches. Among the 87 conserved miRNA

families, many miRNA families matched multiple experimental sequences. For ex-

ample, conserved miRNA family tae-miR159b matched 150 experimental sequences,

which is the highest number of experimental sequences matched with a particular

conserved miRNA family.
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5.2 Conserved miRNAs identification using sup-

plementary materials of Mayer et al. and Sun

et al.

We identified a total of 232 experimental sequences as a result of comparing our

experimental sequences (filtered data with at least 10 RPM in any experimental

sample, generated in Section 4.4.2) with the Mayer et al. and Sun et al. datasets.

Among these 232 sequences, we found 205 sequences from the Mayer et al. dataset

and 12 sequences from the Sun et al. dataset. Fifteen experimental sequences were

common in both the Mayer et al. and Sun et al. analyses. For each of these matched

experimental sequences, we recorded the conserved miRNA family, the sequence and

the dot-bracket notation of the species, the total number of contigs matched with the

sequence, and precursor information (name, sequence and dot-bracket notation).

For example, we found that the conserved miRNA family miR398 expressed as

down-regulated for heat stress in all days (see Section 5.3 for more details on differen-

tial expression). Figure 5.2 shows the structure of the precursor of miR398, matched

experimental sequence (green) and predicted miRNA star sequence (red). See Section

4.7 for more details on precursor prediction.

If we compare our experiment with Mayer et al. [2014] experiment, in our experi-

ment 31,512 precursor sequences out of 98,068 (32.1%) aligned with the experimental

sequences (filtered data with at least 10 RPM in any experimental sample, generated

in Section 4.4.2), whereas 1,668 precursor sequences out of 98,068 (1.7%) aligned with

wheat expressed sequence tags (ESTs) and reads from RNA-seq studies in Mayer et
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Figure 5.2: Conserved miRNA family miR398: structure of the precursor, matched ex-
perimental sequence (species6 sample68of72 21bp, coloured as green), and predicted
miRNA star sequence (species134 sample68of72 21bp, coloured as red).

al. experiment.

We also grouped together the same conserved miRNA families that matched with

different experimental sequences. Figure 4.12 shows an example of this. In total we

identified 36 conserved miRNA families that matched with the Mayer et al. and Sun

et al. datasets.
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5.3 Differential gene expression

This is a preliminary analysis that did not take into consideration the library-

based and model-based normalizations required to fit the binomial distribution of

these data.

We observed that abiotic stresses (heat, light and UV) can cause different miRNA

families to be up-regulated (increased in expression) or down-regulated (decreased in

expression) between treatment and control groups. For this, we used edgeR [Robinson

et al., 2010], a bio-conductor package of R language with the count values calculated

in Section 4.2 and with the experimental sequences of Section 4.7 and 4.8 which we

identified as potential conserved miRNAs.

Our null hypothesis (H0) is that there is no difference between control and treat-

ments (heat, UV and continuous light) in the expression of miRNAs. Our alternative

hypothesis (H1) is that there is differential expression of miRNAs between control

and treatments.

P-value is a test statistic returned in null hypothesis statistical significance testing.

A P-value of 0.05 means that there is a 5% chance of observation of test statistic

value purely by chance, even without treatment effects. In simple words, there is a

probability for 5% false positives in our results. A P-value threshold of 0.05 is used

to reject the null hypothesis. On the other hand, false discovery rate (FDR) adjusted

P-value is used for multiple hypothesis testing like differential expression of many

miRNAs. For instance, if we measure differential expression of 2500 miRNA genes,

then a simple P value of 5% means 125 genes. Hence, FDR adjusted p-value of 0.05

mean 5% of the result (125 genes) will be false positives.
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We used <0.05 as the value of false discovery rate (FDR) to determine which

miRNA families were up-regulated or down-regulated. FDR is a statistical method

to correct multiple comparisons [Benjamini and Hochberg, 1995]. The Benjamini

Hochberg FDR reduces the FDR at P ¡ 0.05. Up-regulated and down-regulated

miRNA families were determined by positive log fold change and negative log fold

change respectively. Figure 5.3 shows the differential expression of each stress for

all 6 days. For example, on day 7 with the heat stress, among 36 conserved miRNA

families, 2 families were down-regulated, 25 families were up-regulated and 9 families

were not differentially expressed.

For our data, we observed more differential expression for the heat stress compared

to light and UV stresses. Thirty-four conserved miRNA families were differentially

expressed for the heat stress whereas only 8 conserved miRNA families were differ-

entially expressed for light and only 7 conserved miRNA families were differentially

expressed for UV stress. Figure 5.4 shows the number of conserved miRNA families

differentially expressed for control versus stresses for all days.

Figure 5.5 shows the number of conserved miRNA families differentially expressed

for control versus stresses on different days.

Again, different conserved miRNA families expressed differently based upon stress

or day. We found that miRNA 395 and 398 were strongly suppressed whereas miRNA

5064, 5175, 2020, and 1439 were expressed with heat stress for all days. Figure 5.6

shows an example of this using logarithm fold change (logFC) values that represents

the differential expression: zero represents no change, positive value represents up-

regulated and negative value represents down-regulated. Also, we found that miRNA
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Figure 5.3: Differential gene expression of 36 conserved miRNA families at 6 post-time
points with heat, light and UV stresses.



Chapter 5: Results 55

Figure 5.4: Total number of conserved miRNA families differentially expressed for
control versus heat, light and UV stresses.

Figure 5.5: Number of conserved miRNA families differentially expressed for control
versus heat, light and UV stresses in each day.

395 was suppressed with all stresses for all days.

Moreover, based on the differential expressions found each day, we generated two

Venn diagrams: Figure 5.7.a shows a Venn diagram with the total number of con-

served miRNA families differentially expressed for each stress of heat, light and UV,
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Figure 5.6: Differential expression for the conserved miRNA families 398, 398, 399,
528, 5064, 5175, 2020, and 1439, with heat stress in each day.

and Figure 5.7.b shows a Venn diagram with the name of the conserved miRNA

families differentially expressed for each stress of heat, light and UV. These figures

give the differentially expressed conserved miRNA families (both up-regulated and

down-regulated) for day 7 only. The Venn diagrams represent how many conserved

miRNAs were differentially expressed each day with different stresses and which con-

served miRNAs are commonly expressed among the stresses for each day . For ex-

ample, in the figure, for day 7, conserved miRNA family Tae-miR2020b and miR5064

are expressed in heat and light stress.

In addition, we also generated Venn diagrams for heat, light and UV stresses

for each day to observe how increasing number of days affected the expression of

conserved miRNA families with the stresses. Figure 5.8.a shows the differentially

expressed conserved miRNA families for heat stress in days 1, 2, 3, 7 and 10. Figure

5.8.b shows the differentially expressed conserved miRNA families for heat stress for

each day combining day 0 with Figure 5.8.a (due to the limitation of the tools for
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Figure 5.7: Venn diagrams of differentially expressed conserved miRNA families for
day 7 with heat, light and UV stresses: a) with count values and b) with elements.
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creating Venn diagram that does not support more than 5 sets). For example, in the

figure, 3 conserved miRNA families expressed in all days for the heat stress.

5.4 Comparison with Brassica rapa dataset

To evaluate the toolchain, we executed it using the dataset provided by Bilichak

et al. [2015]. Then we compared Bilichak et al. [2015]’s results and our results for

Triticum aestivum.

5.4.1 Comparison with miRBase database

The supplementary dataset of Bilichak et al. [2015] contains different tissues of

Brassica rapa such as leaf, pollen, embryo, endosperm and progeny. The experiment

was completed with control (no stress) and heat stress. As the experiment used the

wheat (Triticum aestivum) leaf tissue, we also applied Brassica rapa’s leaf tissue to

my toolchain. At first, we removed the adapter sequences, provided by the authors,

using “cutadapt” command [Martin, 2011]. Adapter sequences are short length of

known DNA sequence that were added at the ends of the cDNA sequences. Then, we

trimmed the sequences to 18 to 24 bp. We executed the same steps of Sections 4.2,

4.3, 4.4 and 4.5. In Section 4.4.2, we identified 15,158 sequences with the Triticum

aestivum dataset. On the other hand, we identified 7,065 sequences in the Brassica

rapa dataset.

For the Triticum aestivum dataset, in total we found 87 conserved miRNA families

from the miRBase database that matched with 613 sequences. On the other hand, for

the Brassica rapa dataset, we found 71 conserved miRNA families from the miRBase
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database that matched with 146 sequences.

We identified 613 sequences out of 15,158 Triticum aestivum sequences (4.04%)

whereas we identified 146 sequences out of 7,065 Brassica rapa sequences (2.07%), that

matched with the 87 and 71 conserved miRNA families from miRBase, respectively.

Figure 5.9 shows a comparison of this. One reason for obtaining a higher percentage

of matched sequences with miRBase for Triticum aestivum, may be that researchers

are doing more research concerning miRNAs in Triticum aestivum or species related

to it than Brassica rapa, which causes more entries in miRBase similar to the Triticum

aestivum miRNAs than the Brassica rapa miRNAs.

5.4.2 Comparison with differential expression

Bilichak et al. [2015] applied the DESeq bioconductor package and reported that

miRNA family 168 is differentially expressed in the endosperm tissue of heat-stressed

plants. To confirm the similar result with our toolchain, we applied edgeR biocon-

ductor package, similar to Section 4.9, with the sequences from the endosperm tissue

[Bilichak et al., 2015] that matched with the miRBase conserved miRNA families

database, processed in the same way as the data in Section 5.4.1. We also identified

miRNA family 168 as being differentially expressed in the endosperm tissue of heat-

stressed plants. Thus we identified the same differentially expressed miRNA family

168. Bilichak et al. [2015] identified miRNA bra-miR168 family with 6.48 log2 fold

change whereas we identified miRNA cca-miR168 family with 5.83 log2 fold change.

Our log fold change may be lower because we mapped the Brassica rapa dataset to

miRBase with 0 to 4 mismatches, which may possibly have excluded some Brassica
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rapa miRNAs.

We could not use the toolchain portions from Section 4.7 and 4.8 as Bilichak et al.

[2015] did not use any Triticum aestivum dataset or precursors.
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Figure 5.8: Venn diagram of differentially expressed conserved miRNA families for
heat stress for each day: a) day 1 to day 7, and b) intersection of the previous Venn
diagram and day 0.
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Figure 5.9: Comparison of total experimental sequences and matched miRBase se-
quences between Triticum aestivum (TAE) and Brassica rapa (BRA).
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Conclusion

To identify conserved miRNAs from the wheat dataset, we designed a toolchain.

We examined ∼ 523 million reads and filtered it down to 15,158 experimental se-

quences having at least ten RPM in any of the 72 experimental samples. Using the

toolchain, we identified 36 wheat conserved miRNA families that matched between

232 experimental sequences and datasets from two recent papers by the Mayer et al.

[2014] and Sun et al. [2014]. Moreover, we found 87 plant conserved miRNA families

that matched between 613 experimental sequences and the miRBase [Kozomara and

Griffiths-Jones, 2014] dataset.

In addition, we observed significant differential expression for the wheat exposed

to the heat stress compared to those exposed to light and UV stresses or no stress

(control). Thirty-four conserved miRNA families were differentially expressed for the

heat stress whereas only 8 conserved miRNA families were differentially expressed for

light and only 7 conserved miRNA families were differentially expressed for UV stress.

We also found that increasing number of days post treatment affected the number of

63
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conserved miRNA families differentially expressed for control versus stresses. Again,

different conserved miRNA families expressed differently based upon stress or day.

We found that miRNA 395 and 398 were strongly suppressed whereas miRNA 5064,

5175, 2020, and 1439 were expressed with heat stress at all post-stress time points.

MiRNA 395 was suppressed in all stresses samples regardless of the stress or time

point of the stress.

6.1 Importance of our thesis

Researchers can use the obtained conserved miRNAs and matched experimental

sequences for the heat, light and UV stresses and find out the target genes using

the Plant Small RNA Target Analysis Server (psRNATarget) [Dai and Zhao, 2011].

Then, the researchers can analyze how those target genes affect wheat phenotypes

under different environmental conditions.

Moreover, from our experiment, breeders may want to focus more on heat stress

than light or UV stress as we found significant differential expression for the wheat

exposed to the heat stress compared to those exposed to light and UV stresses.

6.2 Future work

In Section 4.6, we partially implemented novel miRNA identification. In par-

ticular, to detect novel miRNA, the unfinished tasks are future work due to time

restriction. A sequence alignment between the input sequence and the wheat genome

sequence can be performed using Bowtie 2. After finding the matched portion in
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genome sequence with the input sequence, the matched portion of sequence can be

extended on both left and right side. This sequence can be extracted to be tested as

a possible precursor.

Then, if this potential precursor produces a stem-loop structure having <-0.2

Kilocalorie/mole/nt folding free energy [Kozomara and Griffiths-Jones, 2014], only

then we can conclude that the input sequence is a novel miRNA. Thus, after precursor

identification the secondary structure of the putative precursors can be predicted

using RNAfold.

The extension length of the matched portion can be varied depending on the pu-

tative precursor. Besides the stem-loop structure of the putative precursor, RNAfold

also produces the dot-bracket notation of the putative precursor. We will only retain

those predicted hairpin structure having <-0.2 Kilocalorie/mole/nt folding free energy

[Kozomara and Griffiths-Jones, 2014] and the remaining precursor sequences can be

discarded. Then, the star sequences can be predicted for the putative novel miRNAs

by the process described in Section 4.7.2 using the predicted putative precursor and

dot-bracket notation.
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