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Abstract

The history of mirages and mirage simulation is reviewed. A mirage is a distorted view
of a distant object. Mirage simulation can be broken into two parts. The first part
is simulating the atmospheric effects on light ray paths and the second is simulating
human perception of the affected ray paths. An atmosphere model consisting of
confocal ellipses defined by temperature and height is described. A program which
implements ray tracing in the atmosphere is developed and verified. In the ray tracing

program a predictor-corrector method is applied to improve ray path accuracy.

Next a program is described which simulates the mirage view by using the ray
tracing results and a photo of the normal view. Several comparisons to previous
results are made to check the simulation process. Finally some new simulations are
presented which explore the impact of different model parameters on the resulting

mirage.
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Chapter 1

Introduction

1.1 Historical Background

Awareness of atmospheric phenomena dates back to antiquity. During the reign of
Alexander the Great (336-323 B.C.), an era of Greek enlightenment, the Alexandrians
in Fgypt made a pillar depicting a rising sun. The carving shows the upper rim colored

blue with a green band below it; this effect is now known as “the Green IFlash”. [31]

Later, Ptolemy of Alexandria, a 2nd century astronomer, studied refraction be-
tween air, glass, and water. This was an attempt to explain the illusion of a bent

stick protruding from a body of water. [39, p. 244]

The other major cultures of these times also had words for the idea of “a distorted
view of a distant object resulting from the passage of light through a nonuniform

medium” ', In our language the word which characterizes this concept is mirage.

The word mirage made its appearance in the English language in 1837. It comes

from the French word mirer which means to look at or to be reflected. Mirer has its

} Webster's Ninth New Collegiate Dictionary, Thomas Allan & Son Ltd, Markham, Ontario, 1983,
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roots i the Latin word mirare. People believed that the phenomena observed were

due to “mirror like” properties of the earth.

Modern scientists continue to study mirages. The “Novaya-Zemlya phenomenon”
was first noted in 1597 when Captain Willem Barents [4], while wintering in the high
artic, observed the sun appearing fourteen days before it was expected. Another type
of mirage, the Fata Morgana, was described by Father Angelucci in the seventeenth
century [7]. In this phenomenon the ground appears to rise up and form mountains
or other shapes on the horizon. It was also observed by Robert Peary in 1906 [7]
while traveling to the North Pole. Peary observed “snow-clad summits above the ice
horizon™. 1t was Donald B. MacMillan who discovered on his expedition that the
lands he saw, and which Peary had seen, were a mirage. He traveled toward the land

bhut never reached it.

Johannes Kepler was interested in the “Novaya-Zemlya” and suggested that this
phenomenon was the result of total reflection of the sun by an upper air layer [15].
Further observations made by Nansen in 1897 [30] and Shackleton on the 1914-1917

Antarctic Expedition {32] helped substantiate Kepler's hypothesis.

By experimenting with refraction Willebrord Snellius von Roijen (1591-1626) was
able to formulate the exact law of refraction. He observed that light bent after it
struck the surface of water. By comparing the deflected path to the undeflected path
he noticed a constant relationship. We can model this situation by drawing the ray
paths as in Figure 1.I. [39] In Figure 1.1 the lines BA and AF form the side of
a container holding water. Path ECB represents the path of a light ray when the

container is empty. If the container is filled with the appropriate amount of water
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Figure 1.1: The Angle of Refraction of Light
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then the light ray bends al €, the water surface, and hits the container side at point
AL Snell observed that for water the ratio of A over (B was constant.

CA
OB

= constant

By using modern trigonometry it is fairly simple to derive the law of refraction from
this relationship. Let us label /ECD as the incident Z¢ and ZACE as the refracted

LZr. In addition recognize LBCHE is the same as /1.

If we multiply Snell’s equation by —%:— =1 we get
AF CA Lant
k o— == CONS A
IF  op = constan
or

AF . CA ran
= constant

cB AR~

Notice that for Zr that CA is the hypotenus and AF is the length of the opposite

side. Thus é‘z = sinr and similarly % = sin. Subslituting into the above equation
. 1 sin ¢
SN % — = = constant
sinrt  sinr

Thus we have derived the law of refraction. Snell did not publish his result but showed

several people his manuseript,

Descartes attempted to prove the laws of reflection and refraction by mechanical
means. Using an analogue between light and a ball he could explain that velocity of
the ball parallel to the surface was unaffected by the reflection while the perpendicular
velocity was reversed. Similarly for refraction he theorized that the perpendicular
speed of the ball changed in different media. In order for his theory to work the

speed of the ball had to increase in denser media, something few people could accept.
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Fermat approached the problem from vet another angle by applying a method for
determining the maximum and minimum values of a variable quantity. By assuming

time traveled $o be minimum it was possible for Fermat to deduce Snell’s law.

Fermat’s Principle
The path taken by light in traveling from one point to another point
is such that the time of {ravel is a minimum when compared with nearby

paths. [36]

Other contributors to the expanding understanding of optics included Francesco
Maria Grimaldi (1618-1663), a Jesuit Professor of Mathematics, Robert Hooke, Ole
Rémer (1644-1710), Christian Huygens (1629-1695), and Isaac Newton (1642-1727).
Robert Hooke introduced the idea of layered atmosphere with slowly varying refrac-

tive indices for analyzing astronomical refraction.

1.2 Mirages

Mirages take many forms and shapes. The purpose of this section is to introduce and

briefly explain the mechanics of mirages.

Some mirages are hardly noticed; one of these is the watery appearance of highways
on hot summer days. This sight is seldom the cause of much interest. What is

happening here?

We see objects because light rays hit the object and are reflected away. Some of
these rays are reflected in the direction of an observer. These rays will enter the eye

and be focused on the retina. The image on the retina is transmitted to the brain
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for processing. 1t is during the transmission of the light rays from the object to the
observer that the ray paths are affected by the atmosphere. Light rays will travel in
straight Hnes through media with constant index of refraction. Index of refraction
is the ratio of the velocity of radiation in the first of two media to its velocity in
the second as it passes from one into the other. For light this ratic compares the
velocity of radiation in the media with respect to the velocity of light in a vacuum.
Thus constant index of refraction means that the velocity of light 1s constant in that

medium. The atmosphere does not possess this quality.

The atmosphere has varying temperature and pressure, two quantities which
strongly affect the index of refraction. Thus the atmosphere has a varying index
of refraction. This property will lead to light rays bending during passage through
the atmosphere. Under normal conditions the object being seen is usually low to the
ground where pressure and temperature are very nearly constant leaving the light
rays to travel in essentially straight lines. These rays do actually curve slightly down-
ward due to the natural temperature gradient of the atmosphere. This results in an
extension of our vision past the normal horizon. Most of the mirages we are interested
in have objects based on the surface of the earth. It is possible fo approximate that

the index of refraction is mainly dependent on temperature in these situations.

1t is intuitive that the stronger the change in index of refraction the more light
will bend. Similarly, since the index of refraction is dependent on temperature, the
stronger the change in temperature the sharper light will bend. Let’s consider temper-
ature variations in the atmosphere. As mentioned earlier the part of the atmosphere
we are interested in is close to the ground. Close to the surface it is possible to ap-

proximate pressure as constant since its variation will be relatively small compared
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Figure 1.2: Decreasing Temperature Profile

— Refracted Rays
-~ Straight Line Projected Rays

Observer x

Obiect

. Image

Figure 1.3: Inferior Mirage Light Refraction

to temperature variations. Temperature will definitely vary strongly with height and
may also vary in lateral extent. Because of the continuous nature of the atmosphere it
should be possible to connect points of the same temperature to form surfaces. These

surfaces should form distinct layers of air at approximately the same temperature.
The next step is to determine what affect an increasing or decreasing temperature
would have on a light ray path.

When temperature decreases with height as in Figure 1.2 then the index of re-

fraction will increase with height. According to Snell’s law when light travels into a



Figure 1.4: Inferior Image of Small Plane

medium with higher index of refraction the light bends towards the interface normal.
This means that the ray will curve into the higher index region. Such a ray would
curve upward in our atmosphere. This effect is demonstrated in Figure 1.3 where an

observer receives two upwardly curved rays that originated from the object.

The observer perceives that these rays originated as straight lines and projects
the ray paths back to see an inverted image below where the normal image is. This
type of mirage is called an inferior mirage because the image is below the object and
is associated with temperature decrease with respect to height. Figure 1.4%shows an

actual image taken in 1979 at approximately 1200 meters from the plane. Notice the

Photo 79-6-30
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Height

Temperature

Figure 1.5: Increasing Temperature Profile

thin inverted image of the plane below the actual plane.

In the next case, temperature increases with height as in Figure 1.5. In such an
atmosphere the index of refraction will decrease with height. When light travels into
a region of lower index of refraction it will bend away from the interface normal.
This means that in our atmosphere the ray will curve downward. The stronger the

temperature gradient the more pronounced will be the ray curvature.

An example of this is Figure 1.6 where the rays leaving the object curve down
to hit the observer’s eyes. Again the eye will assume that the rays are straight and
see an upright object which is much higher than the normal view gives. This {ype of
view with a raised upright images is called a superior mirage because the images is

above the object.

See Figure 1.7 * which is a photo of Whitefish, a hill at Tuktoyalktuk, NWT. This
is a classic example of a superior mirage. This actual mnirage is more complicated
than the simple model presented in Figure 1.6. The hanging images contains a small

upright image on top a larger inverted image. The inverted image is the result of

3Photo 79-4-20
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Figure 1.6: Superior Mirage Light Refraction

Figure 1.7: Superior Mirage of Whitefish
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downward curved ray paths with lessening radius.

These are simple cases and seldom is the temperature gradient linear over the en-
tire lower atmosphere. Using this basis we can go on and explain the three major types
of superior mirages. The first is called the hillingar effect which is assoclated with
mild temperature inversions, that is increasing temperature with increasing height.
1t features slightly downward bent ray paths. Figure 1.8 [22]? shows some typical ray
paths. An actual photo is shown in Figure 1.9°. Notice the trees on the far shore,
now compare this to the normal image in Figure 1.145%. The trees are are introduced
by downward bending rays which reached the far shore. These photos were taken at
Arnes on Lake Winnipeg. The observer is about 3 km from the point seen to the

right in the photo.

The hafgerdingar effect is associated with a strong, nonuniform temperature
inversion. This will cause different ray paths to have different radii of curvature.
Figure 1.10 [22]7 shows some typical ray paths and Figure 1.11 ® shows an actual
mirage of this type. Notice the vertical banding that suggests a discontinuity just

below the trees on the point, this is characteristic of hafgerdingar mirages.

The final type is the Novaya Zemlya effect. It is associated with uniform tem-
perature up to a certain height and then a strong inversion which sends the rays
back toward the earth where they are returned upward again. These rays can travel

hundreds of kilometers oscillating up and down before breaking free of this effect.

*see Figure 2 of [22]

*Photo 31-12

SPhoto southpt14 2 Sept 1978
“see Figure 3 of [22]

8Photo 45-22
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Figure 1.14:

Point on Lake Winnipeg as seen from Camp Arnes
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Figure 1.12[22])% shows a typical ray set for this phenomena. A small group of rays
will bounce back and forth between ground and the upper layer. Only a narrow band

of greatly distorted image is produced by this type of almosphere.

Examination of the photo in Figure 1.13'9 reveals a narrow band structure through
which the far shore is faintly visible. This photo is taken to the left of the point in
the previous photos on Lake Winnipeg. It was a warm spring day just before ice

breal-up.

1.3 Previous Work

Computation-based research began on the IFata Morgana type mirage in 1931, S.
Fujiwhara 9] and K. Hidaka [12] both published papers that year which described
the use of elliptical shells as a model for the atmosphere. These papers included a
few supporting calculations to demonstrate the plausibility of their models. Detailed

computation using this method was impossible at that time.

Only a few years Jater German Wolf-Egbert Schiele [34] wrote a paper on mirages.
His 1935 paper included a review of relevant papers in the field and referenced the two
Japanese papers mentioned above. He also was interested in modelling the atmosphere
as confocal ellipses. By viewing an ellipse as a power series expansion he proposed
that an ellipse could be modelled as a sphere plus a small perturbation. The paper
is mainly theoretical in nature and involves no calculations based on the proposed

model.

Isee Figure 4 of [22]
YPhoto 48-16
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Sidney Bertram published a paper in 1971 {1] which described his studies of lower
atmospheric refraction. He was trying to determine path errors of ray paths for cor-
rection work in areas like tracking radar, photogrammetric cameras, and laser range
finders. Studies into analytic solutions of ray paths is evident in the work of A. B.
Fraser. I'raser published a paper in 1877 [7] which described analytic solutions in a
horizontally or spherically stratified medium. With analytic solutions it is possible to
worl from mirage image and normal image and determine a corresponding tempera-
ture profile. A further paper in 1979 with W. H. Mach introduced a set of nonlinear
polynomial equations which give the temperature profile near the earth’s surface. He
compared the analysis results with field data collected at the mirage site.

Early work at the University of Manitoba began in 1973 under the guidance of
Professor W. Lehn. This work resulted in a joint paper between W, Lehn and H.
Sawatzky [18] in 1975. The paper discussed a procedure which was used to determine
ray paths for nearly horizontal rays in the lower atmosphere. The technique used
density profiles that were determined from temperature profiles for the lower atmo-
sphere. The next step was to add visual information about how the refracted rays
paths affected what was seen. A paper in 1978 with M. El-Arini [16] introduced a
program which accepted an outline of an object and mapped it into an image based

on the computed ray paths.

Arctic mirages were the focus of a paper written in 1979 by W. Lehn {22]. The
paper discusses typical ray paths for three familiar arctic mirages. The hillingar,
hajgerdingar, and Novaya Zemlya effect are discussed along witl atmospheric condi-
tions which give rise to the phenomena. After investigation of the Novaya Zemlva

effect a further paper on this phenomena was written in 1981 [17] with B. German.
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T'his paper described the atmospheric conditions and ray paths which produced the
Novaya Zemiya effect in computer simulations. This information is used fo refine our

understanding of the Novaya Zemlya.

In 1983 W. Lehn published a paper [21] discussing how to analyze photographic
data of mirages in order to postulate possible temperature profiles for the atmosphere
which caused the mirage based on a multi-layered spherical shell model of the atmo-
sphere. Also, in a 1985 paper W. Lehn described a simple model for atmospheric
ray tracing. His model was composed of a series of small concentric layers with the
surface of each layer being isothermal. With the additional simplification that the
temperalure varies linearly between the surfaces it was possible to implement ray
tracing on computer. John Bock in his B.Sc. thesis in 1984 [2] extended Hidaka’s
work by using a computer to do the mathematics involved. Bock approximated his
atmosphere as a series of confocal isothermal elliptical cylinders with constant in-
dex of refraction between shells. He used straight line projections of rays and made
the assumption that all vertical planes of interest would produce the same ray paths
which reduces the necessary calculations to one plane involving the observer. The
approximations that Hidaka used in his work were found to create a downward bias
on predicted ray paths. As a result Hidaka's approach was discarded on favour of

successive application of Snell’s law.

The next generation of the elliptical model involved adding a spherical earth sur-
face and linear refractive index variation between shells. This work was done by Lorne
Midford [26] in his B.Sc. thesis (1985). That same year John Morrish completed his
M.Se. work which dealt exclusively with inferior mirages. Using the spherical atmo-

sphere models developed by W. Lehn he wrote computer programs to do ray tracing
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for inferior mirages. Using these programs he analyzed data gathered at Tuktoyaktuk,
N.W.T. (1883). Further, he attacked the difficult problem of determining temperature

profiles given the normal image and mirage image.

It was P. Isaak who made the first study of a three dimensional atmosphere at
the University of Manitoba [13]. His model used a spherical earth with a series of
confocal ellipsoidal shells forming the atmosphere. Fach shell surface was isothermal.
The refractive index was assumed to vary linearly between atmospheric shells. His
B.Sc. thesis (1986} was developing a computer program to implement this model. My
own B.Sc. thesis {1988) work was implementing the recommendations of Isaak and
Midford, as well as continuing work started earlier with M. Ei-Arini. This involved
developing software which applied transfer characteristic information to a normal
image to produce a mirage image. A transfer characteristic is the mapping of distorted
ray path end point to observed ray path end point. The images used were actual site
photos digitized and stored in a 512 by 512 pixel format with the standard 256 grey

scale pixel levels.

1.4 Applications

Applications of ray tracing include expanding our understanding of lower atmospheric
light transmission. This knowledge can be applied to a variety of areas including

tracking radar, laser surveying, laser range finders, and surface signal transmission.

Novel applications include the study of graded index optic {ibers using ray tracing.
The Journal of Applied Optics over the last two decades has included many papers on

geometric optics ray tracing and on ray tracing in the study of graded index optics.
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1.5 Problem Description

I'intend to briefly describe the refinement process of previous work to the atmospheric

model and ray tracing technique.

The first atmospheric models were two dimensional and used spherical models for
the atmospheric layers. Then the atmosphere model was changed to elliptical shells,
still in two dimensions. Elliptical shells give more flexibility in modeling various situ-
ations and can be made to assume almost spherical shape. Next came the first three
dimensional atmospheric model with ellipsoidal shells. Each model included succes-
sive refinements in the earth’s surface and in shell temperature profiles. Iowever,
the ray paths in the latest model demonstrated a strong dependence on step size
during ray path tracing that indicates a need for further refinement in the ray tracing
process.

Simultaneously work on a program to apply the results of ray path tracing to
normal images was going on for two dimensional models, This project proved its
value in helping analyze the ray path data and by giving it a visual interpretation.
Even more so the expanded data from a three dimensional model requires the ability

to visually display the effect of the ray patl: deviations on the normal image.

Finally although some basic testing was done by Isaak on the three dimensional

model no attempt to systematically explore the impact of ellipsoidal shells was made.

1.6 Scope of Project

This research project seeks to cover the following areas:
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1.

Investigate and develop an understanding of ray tracing in a three dimen-

sional atmospheric model.

To improve the previous method of ray tracing through improving data
consistency against step size variations by introducing predictor - corrector

methods into ray path calculations.

Continue to make ray paths visually accessible by incorporating three

dimensional ray path plotiing.

‘To develop a method of applying ray path data to normal images in order

to produce a distorted image representing the atmospheric affects.

To utilize the ray tracing and image programs to analyze several typical

temperature, images, mirage data sets.

To explore the implications of the ellipsoidal atmosphere.



Chapter 2

Atmosphere

2.1 Geometric Optics

Geometric Optics ! it is one of the oldest models for light behaviour having its ori-
gins in classical Greece. Even as the modern view of light as waves became widely
understood the primitive model of Geometric Optics remained firmly entrenched as a
practical tool in the solution of optical problems. Geometric Optics has been applied
to problems in lasers, interference, diffraction, and waveguides. It is however most

widely applied in the field of optics design.

Geometric Optics is based on Fermat’s principle of minimal transit time. This
means that a given ray will travel the path between two points which takes the least
time. For homogeneous media this means ray paths will be straight lines. In stratified
homogeneous media light rays will bend at layer intersections according to Snell’s law.

Our concern is with light rays whose medium has a constantly varying media. We

1 MeGraw-Hill Encyclopedia of Science & Technology, 6th Ed., McGraw-Hill, New York, 1987
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begin with Maxwell’s Equations for waves and restrict our consideration to visihle

Light wavelengths.

Born (3] begins his consideration of Geometric Optics by describing it as cor-
responding to the limiting case of Ay — 0. This neglecting of wavelength leads to
interesting approximations to the laws of optics which allow the individual light paths

to be described simply.

By considering Maxwell’s equations as Ay — 0 the following relationship can be
derived:

(VL) =n% (2.1)

where = index of refraction = /i€ and L is the optical path and is a real scalar
function of position. It is possible to define a vector that is normal to the surface £ =
constani and normalized in length by recognizing that the gradient operation produces
a vector normal to the given function. The surface £ = constant is a geometrical wave

surface or wavefront. Thus s a unit normal vector can be defined as,

ve e

8 = ——

VL N (2:2)

If r(s) denotes the position vector of a point P on the optical path £ with respect to

the parametric value s which is length along the path then,

dr(s) :
R S 9
ds = (23)
Further then
{r(s VL Ir(s
dr(s) = or n“(‘;) =VL. (2.4)

ds n ds
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Next both sides of Equation 2.4 are again differentiated with respect to s, the arc

length, giving
d [ dr(s) d -
— {p— = —(V 2!
ds (f ds ) ds (VL) (2:5)
If we apply the chain rule to the right side of Equation 2.5 then we get
ONVLyde VL) dy  S(VL)dz (2.6)
de ds = Oy ds gz ds -
it 15 possible to separate this term into a dot product as {ollows:
de. dy. dz; AHVLY. VL)~  JNVL): ,
— — ._......k' . - - ,l‘: . 2.7
(d’sz + ds’ + ds ) ( dz * dy I+ Gz (2.7)

By recognizing that the second term is the gradient of the vector function VL it is

possible to write the equation as

_ dr(s} (VL)

ds

Next substituting from Fquation 2.4 into the first term gives

YE 9w (2.8)
n

= (ve v(ve)

1
1 HVLY. VL. HVL).
=-|VL- , ' k.
n [ l b o dy ¥ Oz
We can examine this further if we recognize that the partial and gradient operators

can be reversed without changing the results;

Yve ()i v (95) 50 v (%5) 4
n dax Dy Oz

1 [oc. oL, oL, ac\ oL\ - oL ;
S S Sk v [ e v [ 22 gl
e s s () (3)+v (54
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1ol ar oL ac aL oL
= - | — _ e \7 e = e . 2
L CE)EEE)ECE)) e
Let us break down the first term of Equation 2.9 to see if it can be simplified.
oLy (06\ 0L (0L, 9o, ooc,
dx g ) 9z \dz oz Oy gz’ T 9z 0z

oL oL oL oL L,
dx dz? Ox fh:ayj Oz Oxdz

0 (oL\'y 10 9L\, 19 for)%,
dx\dz) T 0oy \0z) T T 20z \0z/) "

o) o1

Next substitute this simplified term into Equation 2.9 along with similar substitutions

[N

for the other terms. This gives

o(%) v (%) o ()] -~

Due to the distributive nature of differentials this can be rewritten as

1

2

iv Qic_ ’ + .@é ; + a_ﬁ 2
2n dx dy Oz
1 2
=5 (VL) (2.12)
Thus Eguation 2.5 may be rewritten as
d { dr{s)y 1 2 ‘
5 (n - ) =5V (v, (2.13)

And by substitution of Equation 2.1 for (V£)* gives

d dr(s} ! 5
ds (?'? ds ) —%Vn
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o2 5.2
1 (Gn L d?]j-{-d?ifc)

T\ 0 T Ay’ T as
)]U (’n%iz - )U?J + ?”g,, i»)
- (gnﬂgﬂj giﬁ)
£ (452)-o

Born calls this the differential equation of the light ray. But this form of the
equation is not very useful to us. It is by considering the curvature vector of a ray
and its magnitude, which is the inverse of the radius of curvature, that a usable form

of the differential equation is found.

The curvature vector & is defined as,

d .
ws) = S = 2 =

ds ds p

where p is the radius of curvature and # is the unit principal normal. T is the unit

tangent vector to the curve s. I we substitute Equation 2.2 for s and expand the

ds_ 4 (VL
ds ds \ 1

apply the chain rule for differentiation

right side,

1d d {1
" nds (VL) + vgds ( )
from Equation 2.5 and Equation 2.14

V
VY ,{_ﬁidn
7 n?ds
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from Equation 2.2
Vi sdn
= — = ——
n 7 ds
multiply by n
dry
= Vn-—s— 2
e = Vi —s— (2.15)
use definition of &
d
Ty = Vi — s=1
P ds
add last term on right to both sides
d
Ty + s — Vi
p ds
from chain rule % =Vn- %
d
ds
by Equation 2.3
%y—l—s(Vn-s) = V1. (2.16)

This is the vector form of the differential equation of the light ray. This is the
equation that Isaak used in his algorithm. Midford used a slightly different form of
this equation. He was interested in the magnitude of &. If we go back to Equation
2.15 and dot both sides with n& then substitute the definition of & and simplify we
get,

1

K| =~ =v-V(lng).
P

This equation gives the value of the ray path radius in terms of the normal vector

and the gradient of the natural logarithm of the index of refraction.
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Having derived a useful form of the ray path equation we will leave the discussion
of its application until after the atmosphere medel has been described. However, first

we need to examine the index of refraction.

2.2 Index of Refraction

Earlier it was mentioned that the index of refraction in the atmosphere is dependent
on many variables. It is not necessary to be concerned with a complex equation for
this function since we are really only interested in the case for light rays. Others have
done the necessary studies which resulted in the discovery that for radic frequency

waves the following empirical relationship holds, [1]

78.6 % 1076 4810
= P 2
n=1+ 7 {(P+ 7 )

(2.17)
where P = barometric pressure, millibars; e = water vapour pressure, millibars; T
= temperature, Kelvin.

For light rays, the case in which we are interested, the water vapour pressure is

not a factor thus reducing the above equation to,

78.6 4 10°6
7 =1+——~%me. (2.18)

'This is the general equation for the index of refraction that will be used in this study.

2.3 Atmosphere Model

Barlier the idea of the elliptical model was introduced. This model uses a series of

confocal ellipses standing on the earth’s surface to represent a near earth refractive

2Bertram’s first equation is not consistant with his second. IHis first equation should read as
given here in order to produce the second equation which is a well known relationship.
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atmosphere. It was Hidaka who proposed that elliptical shapes could represent layers
of constant temperature over a lake. Lakes are natural places to find temperature
gradients since often the water is warmer or colder than the surrounding air. As the
land air moves over the lake surface it will cool/warm toward the lake temperature.
This air temperature will be nearest the lake temperature at the middle of the lake and
land temperature at the edge. Naturally the land surrounding the lake will be at the
same temperature. If you connect all the air points that have the same temperature
it would form a shallow concave earthward surface over the lake. Together the various
temperature shells would form a near earth refractive atmosphere. These shells can

be modeled by elliptical surfaces which have considerable versatility in shape and size.

50 far we have a series of individual shells standing on the earth’s surface. Each
shell must be individually sized. In order to simplify our elliptic model let’s choose
elliptic shells which are confocal. This means that the foci of all the ellipse are at the
same point. Then we only need to specify the size of the outer shell and the height of
any interior shell $o completely specify any interior shell. This considerably simplifies

the shell selection process.

It 1s natural to put the ellipses at the center of our model and its coordinate
system. The elliptic shells will be centered on the x and y axes. Similarly the base

of the ellipse will rest on the earth’s surface.

The cartesian coordinate system was chosen for its simplicity over elliptical coor-
dinates which have been suggested as a possibility.[12] There is one significant modi-
fication that needs to be mentioned. The elliptic shells are with respect to the earth’s

surface which is curved. Thus the shells will not be strictly elliptic with respect to
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Figure 2.1: Ellipsoidal Shells And Coordinate System

the cartesian coordinates. The coordinates system, ellipsoid shells and earth surface

are shown in Figure 2.1.

The variables a, b, and ¢ are shell parameters used in the elliptic equation. By
choice a is along the x direction, b along the v axis, and ¢ is from the earth’s surface
to the top the shell. This figure shows the elliptic shell touching the z=0 plane at «
along the x axis but not at b along the y axis. This is because a is the major axis.

This means that a is greater than 6. The major axis will always touch the earth on
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R

Figare 2.2: Earth’s Surface

the z=0 plane. The equation for an ellipse is,

$2 2 2
§+£+%EL (2.19)

This equation represents the ellipse with respect to the earth’s surface. For our
coordinate system we must modify the z term to include the height of the surface
of the earth at x,y. From Figure 2.2 the height of the earth is given by 2% + y2 +
(z —dop + Rg)? = R%. Here dg is the distance below the earth that the coordinate
axes must be in order for the base of the ellipses to be a zero height. We can define
dy as dog = erad * {1 — cos{-1-)). In this formula ¢, is the length of the arc along
the earth’s surface from the origin to the edge of the ellipse. The formula uses

simple trigonometry to determine do. If we solve for z and use Rr >> z,y then

z%4y”

2Rg

z 72 dy — . This happens to be a parabolic approximation to the earth’s surface.
At x=100 km the parabolic approximation will give a positive z error of 4.8 em when
compared to the true earth’s surface. This error can be ignored when compared to

the heights involved.

Now the elliptic equation can be rewritten with respect to the coordinate system
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as, ,
2 lj?' (:: — dy + %’sﬁ.)l
E E259 0] o &
S - =1, (2.20)

Typical outer shells will be up to twenty kilometers long, several kilometers wide

and less than one hundred meters high.

Ideally the observer and object would have complete freedom to be at any location
with respect to the origin. This freedom introduces many extra complications. Since
the basic model had not yet been fully implemented it was decided to limit the object
to be centered with respect to the x axis, located in a plane parallel to the ¥ axis and
perpendicular to the coordinate system (not the earth’s surface) . Further, while the
observer has freedom of location, on the positive x side, his vision reference is parallel
to the x axis. To see an object off to one side the view angles are adjusted to include

the desired object.

2.4 Temperature Profiles

Temperatures in the elliptical model will be given by a piecewise linear function.
Each corner on the piecewise function and the end points will correspond to a shell in
the elliptical model. Temperature ouiside the model is considered constant and will
give rise to a very large ray path radius. Large ray path radii result in straight lines.
Temperature in the inner shell will be assumed to vary as in the layer above the inner

region. Figure 2.3 shows an example of a piecewise linear temperature profile.

3Note, an object at a distance of 10 km from the origin would have an error of 5.4 are minutes with
respect to perpendicular to the earth’s surface. This is an insignificant confribution with respect to
the whole ray path and can be neglected.
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Figure 2.3: Temperature Prefile

n = index of refraction

p = radius of ray path
v = n = umt normal to light ray path
s =t = unif tangent to light ray path

Table 2.1: Variahle Definitions

2.5 The Ray Path Equation

Back in Section 1 we derived the vector differential equation of a light ray path.

gy+s(V7}-s)mV7}

33

(2.21)

In Table 2.1 the familiar symbols for the normal and tangent vectors are intro-

duced. These traditional symbols will be used henceforth when talking about the

tangent and normal vectors or Equation 2.21. This equation defines the gradient of

the refractive index as a linear combination of the tangent and normal vectors of the
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Figure 2.4: Transit Plane

ray path. This implies that V7 is in the same plane as n and ; this plane is called the
transit plane. By taking the cross product of t and n a new vector b is introduced.
b is the vector which represents the attitude numbers of the transit plane. The three
orthonormal vectors n, t, and b form a trihedron and can be viewed as a moving
coordinate system with origin on the ray path. Figure 2.4 shows the transit plane
and the relationship between the three vectors. The ray path follows a sphere-plane

infersection path.

How is the differential equation applied in step interative calculations in an algo-

rithm? The following discussion explores this question.

Examine the direction of Vn: recall that our elliptical shells are surfaces of con-
stant temperature. The index of refraction is defined in terms of temperature thus
the shells are also surfaces of constant n. Therefore V7 is going to be normal to the

ellipsoidal surface.

This ellipsoidal normal vector will be in the transit plane. This vector along with
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the ray path tangent, which is always known, can be used to determine the plane

attitude vector for the current transit plane. i.e,

txn.=hb (2.

I

AN

[N
e

n. - inward pointing ellipsoidic normal

The inward pointing normal rather than the outward pointing normal is used for

convenience,

The assertion that the ray path tangent is always known can be traced back to the
assumption that the temperature profile is at least a piecewise continuous function of
elevation. If the temperature profile is piecewise continuous then so must be the index
of refraction. It can be proved that if the index of refraction is continuous then the
slope of the ray path is also continuous. For a proof of the above assertions see John
Morrish’s thesis {29]. The result of this assertion is that between any two segments
of the ray path the tangent must he the same. When a new temperature shell is
penetrated we automatically know that the current tangent will be the tangent for

the new ray segment.

From t and b the normal to the ray path can be found from b x t = n. Thus we

know all the vector directious in the ray path equation. The magnitude equation is,
. 2
(E) + (V1) = [V’ (2.23)

We can substitute (V7 - t) = cos vy |Vnllt] = cosv [Vy| giving,

2

(g) +cos”y [Vil* = V[’ (2.

R
o
fice
—
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From the cosine law + is the angle between the gradient and tangent vectors.

Continuing to simplify,

V91 = [Vl cos?

T
i
e
(3]
I

= |V’ (1 — cos®v)

= |Vil?sin® . (2.25)
Thas

(%) = |Vn|sinvy
or

= sy

Next we need to consider an approximation to |Vp|.

Consider the following equation,

An = gf;lAfc - %Ay | ?—2Az.

This can be separated into a dot product of terms to give,
Anp=Vn-Ar
= [Vn||Ar|cos A.

However in our case since Vy is along r the angle A is zero.

From this iv_lrrl equals,

T |Ar|

Vol Ay’

Therefore our discrete approximation to p is,

n (distance)

A 2.
7 T —m)singy (220)
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This is as far as the ray path equation can be examined in an independent fashion.

The next step is to consider how it is applied in calculating ray paths.



lay Path Calculations

in the previous chapter the equation for the index of refraction and the differential
equation for a light ray path were introduced. These equations along with associated
equations from the atmosphere model provide the fundamental equations of ray path

calculations.

Ray path calculation 1s really the continual application of a step by step procedure

starting at the current ray path location and producing a new ray path location.

3.1 Ray Path from Observer to Outer Ellipse

The ray path starts at the observer location. This location reflects the eye level

position of the observer standing on the earth with respect to the coordinate system.

The observer may stand either outside or inside the elliptical shells. The starting
direction of the ray is given by a vertical and horizontal angle at the eye location. The

vertical angle is corrected to include the vertical angle introduced by the observer’s

38
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location on the earth’s surface. This correction is called the base angle.

distance of observer from origin

hase.angle =
& earth radius

This equation is just the definition of arc length along the circumference of a circle

with respect to the radius of the circle and the angle covered by the arc.

To test if the observer 1s inside the atmosphere consider the elliptic equation given
in Equation 2.20. If a point off the ellipse surface is used in this equation the left
and right sides won’t be equal. If that point is outside the ellipse the function wili
be greater than one and if the point is inside the ellipse the function will be less than

o1e.

A generic function ellip can be defined as,

z? 2 (z—dy+ SEE)?
el[ép(a,b,c,a;,yﬁz)z%_!_%’a_}_( ot iy )

When the values associated with the outer ellipse and the location of the observer
are substituted then the value of ellip will indicate if the observer is inside or outside
the ellipse. Since we are interested in testing for the outside condition we create a

tunction to test for this, i.e.

b? c?

L2 2 Z e d ._i_ .’132-{-’(}2 2
outside{a, b, c,z,y,z) = Boolean' {(i—) + + ( 07 2Ry ) > 1.0%.
PE)

For an outside observer we need to determine the intersection of the straight line
projection of the ray start direction and the outer ellipse. I this intersection does

not exist then it is necessary to find the intersection with the object plane. You wili

'Boolean is a binary function which will assign to the variable a true or false state based on the
given test function.
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recall {p. 32) that outside the atmosphere the temperature is constant which gives
rise to straight line ray paths.

The complicated rature of the ellip function makes it difficult to find an analytic
solution for the intersection of the ray path and outer ellipse. The alternative is
to iteratively find the intersection. In an iterative approach we can again use the
outside function. By successively stepping in the direction of the ellipses until a
point is found which is inside (not outside) the atmosphere it is possible %o locate
the region of intersection. If no point tests inside the atmosphere and the ray path
length is approaching the radius of the earth then it is time to set a flag indicating
that there is no intersection. The comparison of the ray length to the earth’s radius
ensures that the ray passes through the entire model before terminating the search.
Once the intersection is surrounded by two known points a bisector search can be

applied to quickly locate the intersection.

In the bisector search the step size is divided by two and the ray point is moved
back one step if the current point is inside the outer ellipse or forward one step if the
current point is outside the outer ellipse. Then the step size is reduced again and the
point is moved back if it’s inside and forward if it’s outside. This is repeated until
the ray path point is on the ellipse. Once the ray point is on the ellipse the search is

terminated.

In our case on means that the point is close enough to the ellipse that it exceeds
the general level of accuracy of the other functions in the computer program. On is

defined as,

22 2 2 d _{_avig-wg 2
on(a,b,¢,z,y,z) = Boolean KL L ( 0 2Rz ) — 1} <1.0e~5].

K ]
a2 b2 c?
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STEF | DESCRIPTION

Step 1. | Determine current ellipsoidal normal

Step 2. | Find ray tangent

Step 3. | Calculate new plane numbers

Step 4. | Find the angle gamma,

Step 5. | Find the inter ellipse distance along the ellipse normal
between current and next ellipses

Step 6. | Caleculate ray path radius using Equation 2.27

Step 7. | Using above find new ray path centre

Table 3.1: Steps of Sphere Procedure

Once the intersection point is found it is assigned as the current ray path point.

3.2 Projecting the Ray Path

The elliptical shells form a series of isothermal surfaces in space. When a ray path
enters the shells its intersection is found with the outer shell. This intersection loca-
tion becomes the current ray path point. Inside the surfaces straight line projection
is no longer valid. Inside, ray path projection using the full ray equation is necessary.
Similarly when a ray path originates from an observer inside the atmosphere the full

ray equation is necessary.

From the ray path equation discussion in Chapter 2 a procedure can be outlined

to determine the ray path radius. Table 3.1 lists the steps involved.

‘This procedure will be called Sphere. The first six steps determine the ray path
radius. The last step calculates the new centre for the ray path. The radius and

centre define a spherical surface along which the ray point will be moved.

Consideration of the transit plane, radius, and centre define a circle in space over

which the ray path will be projected. Starting at the current ray path point the ray
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path is projected along the circle in the direction of the object plane. Initially the
ray is projected some standard x distance toward the object plane. The x distance
value is called sterate. By varying this value it is possible to optimize the number
of calculations made along the ray path to give the degree of convergence desired for
the ray path. Testing of various iteration step sizes also helps to examine the effects

of step size on ray path solutions.
The function which does the actual ray path projection is called move.

The basic building blocks of all projections are the functions sphere and move.
This kind of approach is basically the Euler method of solution for differential equa-

ilons.

Sphere is designed to make as few calculations as possible. It makes use of values
that were usually calculated in the previous call to sphere. Because this approach
is used we must do several initial calculations once the ray path reaches the outer

elliptical surface to provide the information required by sphere.

To use sphere the following ray path information must be found; the current
transit plane numbers, the ray path centre, ray path location, current ellipse, next

ellipse, and ray path radius.

At the current ray path location we know the ray path tangent since this is just
the projection direction of the intersection vector or the starting ray direction at the

observer’s eye.

If the current ray path location is on the outer ellipse intersection then the ellipse
through the ray point is known. The temperature of this shell defines the index of

refraction at the current point according to Equation 2.18. This information can also
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be found within the elliptical shells. First find an ellipse that fits through the current
point. Next, linearly interpolate the temperature based on the shell height of the two
surrounding shells to determine the temperature associated with the fitted ellipse.

Then the index of refraction is found directly from this temperature.

To it an ellipse through the current point first find the surrounding ellipses by
starting with the outside ellipse and stepping inward until the point tests outside
the current ellipse. The previous ellipse and current ellipse will surround the current

point.

Set the new ellipse parameters to the current ellipse parameters. Let sheft equal

the difference in ¢ parameters between the surrounding ellipses.

Divide sheft by two. If the point is outside the new ellipse then add shef{ to the
new ellipse ¢ parameter, otherwise subtract it. Using the formula for the foci of the

2%, 1y = B —¢* and the values of £, t, from the outer ellipse determine

ellipsest = a
the values of b, ¢ for the ¢ value. Test if the point is on the new ellipse. If the test
fails then repeat the above steps. Finally, linearly interpolate the temperature of the

new ellipse.
The above procedure is called fit_ellipse.

Only the tangent vector is known in the transit plane so far. However, we can
find the ellipsoidal normal and use Equation 2.22 to determine b. The current ellipse

1s known because 1t was found in order to determine the current index of refraction,

The inward pointing ellipsoidal normal is the negative gradient of ellip and is,

ellipnorm(z,y,z) =
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o f. o 4y ; . i of. g 4 o4
20 2(-d+TE) 9y 2(e-dot )y 2(s-dot G
a* 2 Ry’ b2 c? Rg’ c? '

(3.1)

Substituting the current ray point will give ne. The function plane_of _sight finds
the cross product given by Kquation 2.22 and then substitutes the plane direction
numbers and the current point into the plane equation to determine the remaining
piane equation number. The plane equation is Ax+By+Cz+ D =0. Plane.of_sight

returns the plane numbers A, B, C, D.

The ray path radius associated with a straight line is 1.0 % 10'? meters. This

number will give a ray arc which approximates a straight line.

In order to find the ray path center we need the ray path normal. The ray path
normal is defined by b x t = n for an inward pointing normal. The ray path center
1s determined by multiplying the normal vector by the scalar radius and adding this
vector to the current location. The function sphere_centre performs these steps and

returns the ray path center location.

The final piece of information needed by sphere is data on the next ellipse the
ray path will hit. If the current point is from the outer ellipse intersection then the
next ellipse is the first interior shell. For a ray path originating within the ellipses
the process is slightly more complicated. How do we know which is the next ellipse?

It could be the ellipse below or above the current ellipse.

We can tell if we know if the ray path is heading upward or downward. In order
to keep track of which way the ray path is heading we will introduce a variable called
upward. This variable is a flag. If the ray is heading upward then upward is true

otherwise its value is false. For the outer ellipse intersection case upward would be
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set to {alse.

For an interior originating ray, in order to set the upward flag we need to determine
which way the ray path is heading. One way to do this is by projecting a fixed length
in the ray start direction from the originating point. If this new point tests outside
the current ellipse then the ray path is heading upward (upward=true) and the next
eliipse 1s the first shell larger than the current shell. If the new point is not outside
then the ray is heading downward (upward=false) and the next ellipse is the first

ellipse smaller than the current ellipse.

Ounce all the initial information is calculated or after the last projection is com-

pleted the sphere function is called.

As mentioned earlier the first step is to determine the current elliptical normal.

The function ellip-norm described earlier is used to determine this vector.

The second step is to determine the ray path tangent. This is done by a function
called tangent. Using the ray path centre and the current path location a vector
normal fo the ray path is formed and normalized by dividing each component by the

vectors magnitude. Forming the cross product b X n gives the tangent vector.

In step 3 the new transit plane or plane of sight are calculated. A function called
new_plane passes the tangent and inward normal vectors to plane.of .sight which then
forms the cross product £ x n. and substitutes the current path point to determine

the transit plane numbers,

Step 4 consists of determining the angle gamma between the elliptical norm and
tangent. The function angle does this by using the cosine law. Since both vectors

are unit normal the values of a and ¢ are equal to one. This leaves * = 2 ~ 2cos .
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Assume the two vectors originate from the same location; then b is the distance from
the tip of one vector to the tip of the other. Since the normal vector is the inward
pointing normal and gamma is the angle between the positive normal and tangent,

then 4% is the sum of the squares of the sum of the corresponding vector’s components.

2—5%

5~ Taking the arccos of this gives the required

From the cosine law cosy =

formula for gamma.

Next, in step 4, we determine the gradient distance between the current ellipse and
the next ellipse. The function line_ntercept is used to determine the intersection of a
line starting at the current ray location in the inward normal direction with the next
ellipse. Once the intercept is located it is then tested to determine if the new point
is below the surface of the earth. If the point is below the earth’s surface then a new
intercept with the earth’s surface needs to be found. The function sphere_intercept

performs this procedure. Sphere_intercept solves a line - sphere intercept equation.

Using the parametric form of a line,
r=ux) +ta,y =y +thz= 2+ tc

where 21,11, 71 is the current ray location and a, b, ¢ is the line direction vector.

And,
2Pyt 4 (2 —dy RpY = erad®

the equation for the earth’s surface.

Substituting the line equation into the spherical equation and separating gives a
quadratic equation in terms of the parameter ¢. Solving for ¢ and substituting into

the line equation yields the desired intercept location. Also, if the intercept is with
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the surface, the nex{ ellipse is temporarily set to the innermost ellipse so that the
radius calculation uses the index of refraction most closely associated with the earth’s

surface.

Once a valid intercept is found then the magnitude of the vector from the ray

path location to the intercept location is calculated and returned to sphere.

Step 6 uses the inter ellipse distance, index of vefraction of the current and inter-
cepted ellipse, and gamma to determine the radius based on Equation 2.27. The final
step determines the ray path centre by using the function sphere_centre mentioned

earlier.

Earlier, the function move was mentioned. [t does the actual projection along
the ray path arc. Move uses the ray path centre, transit plane, ray path radius, and
the current ray location with modified x location. The modified x was produced by
adding the iteration step to the old x location. This gives a simple way of moving

along the arc path.
We have two equations, the first is the plane equation,
Az +By+Cz+d=10
and the second is the ray path sphere equation,
(2 —20) + (v — v0)* + (2 — 20)* = radius’

These two equations allow us to eliminate one variable. If a third equation for the
next ellipse where added a complete system of equations would be formed. However,
so far an analytic solution for this set of equations has not been discovered. An

alternative to finding the intersection point with the next ellipse is use of an iteration
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step. By specifying one of the variables and eliminating another it hecomes possible
to determine a second variable. The eliminated variable is then determined from the

other two. This is the approached used for move.

The plane equation was solved in terms of y and substituted into the sphere
equation. The sphere equation then is solved as a quadratic in terms of z. The
appropriate z solution and 2 are substituted in to the plane equation to give y. This

gives the new ray path location along the ray path circle.

The basic ray path projection procedure involves updating the various ray param-
eters to reflect the ray path current location and then moving some distance along
the ray path circle to a new location. The next section will refine the basic procedure
and deseribe the various specific procedures required to take care of moving through

the different ellipses.

3.3 Projection Cases

The first version of the ray projection software used the Euler method described in
the previous section.

As various data sets where processed in order to check the correct functioning of
the algorithm a strong dependence on step length showed up in the ray path. Table
3.2 lists the termination height of the ray path at the object plane against the step
size used in the ray path projection.

In comparing the results of the various step sizes for the two listed versions of

Euler projection method, the solutions in both cases showed more deviation than was

considered acceptable. The older version of the Euler method had more errors in the
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Programs: { PC(July} | Euler(July) | PC{April) | Euler(April}
Step Size
3000m | 3.936890 | 4.216431 3.900269
1000m § 3.916870 | 4.185425 3.921875 4.552856
500m | 4.029053 | 4.613794 4.055664 | 3.535767
200m | 4.019287 | 4.015137 4.054443 3.999634
100m | 3.859375 | 3.9064%4 3.821655 3.972656
50m | 4.004150 | 3.974121 3.902954 3. 781128
Mean | 3.06094 | 4.05190 3.04281 | 3.96841
STD | 0.06745 (.12239 0.08350 0.37577

Table 3.2: Projection Method Comparisen

algorithm which certainly is a contributor to the higher deviation level. However, even
after further refinement the newer Euler algorithm still had high levels of deviation.
To improve the solution accuracy a more sophisticated method of numerically solving
differential equations was needed. The Predictor-Corrector{PC) method is another
simple method for solving differential equations. The PC approach builds on the
Euler method by using the initial projection {o generate information that indicates
the deviation in some known property between the locations. In a smooth function
for example the derivative would be a continuous function. This information about

the property 1s used to improve the mitial projection.

In our case the path parameters at the new location looking back toward the initial
location are calculated. Given a sufliciently small step we would expect a property like
the path radius to be essentially constant. By averaging the path properties from each
point looking toward the other point a better estimate of the overall path properties

should be obtained than only using the path properties of the initial location.

Compare the results of the PC method against the Buler method for the two par-
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Corrected Projection Path

~~~~ initial Projection Path

Figure 3.1: Case 1 Ray Penetration

allel versions of the program. In both cases the PC method gives improved stability
in solution over the Euler method. Typically the PC method will give the same accu-
racy as the Euler method while using less computer time allowing quicker processing

of the data.

The improved solution stability provided by the PC approach lead to its choice

as the projection method in the final versions of the projection algorithm.

The use of PC led to the need to test for various special problems in the projection
cases. These problems and the general procedure involved in the projection case will

be discussed in the following sections.

While projecting along the ray path it is necessary to check for various cases. In
each case some special actions are applied. This is necessary to accommodate travel
through the elliptical layers, exiting the atmosphere shells, and entering the inner

shell area.

3.3.1 Case 1: Penetrate Next Ellipse

When the ray path enters a new layer the current ellipse and next ellipse variables

must be updated. Either the ray has penetrated the next ellipse or repenectrated the
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current ellipse. There arve separate procedures for each of these situations.

This procedure deals with entering the next layer. Fach new layer means that the
index of refraction is varying in a new way. Because of this we will move the ray path
location to the point where it first intersects the new layer. In Figure 3.1 this is point

B. This helps maintain ray path accuracy through the various layers.

The function intercept performs a series of checks to see of the current ray path
arc intersects the given ellipse. If an intersection is found the function returns a true
state,

Intercept begins by testing the current location. The exor of not oulside and
upward will give a true results if the point is outside and traveling upward or if the
point is not outside and the direction is not upward. If the test is true intercept

refurns a true.

In the case of a false test the function does additional checking. This is to reduce
the number of intersections missed due to the ray point passing into and out of the
next layer in the same step. At most three additional exor tests will be made. The
points tested in order are -1— iteration back, % iteration back, and ;35 iteration back. If
at any of these locations the test is true the point location is updated to the current
test location and intercept returns a true value. If none of the additional points test

true then intercept returns false,

Once the intercept test determines that an intersection with the next ellipse exists

the next step is to locate it.

Locateasotherm is a function which uses a binary search to locate the isotherm

intercept. The search continues until on tests true for the current path location and
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the next ellipse. The search starts by dividing the current step size in half. If the
point is not outside the ellipse and moving upward the point is moved back by she fi.

Otherwise the point is moved forward by shift.

Once the isotherm is located the sphere procedure is applied at the new path
location and locking back toward the starting point. By averaging the new ray path
parameters with the previous path parameters a new set is created which better
reflects the path between the two points. This correction to the initial projection
parameters improves the ray path accuracy. From the start location the path is

reprojected.

One of two problems can arise at this point. The new path point may not intersect
with the next ellipse anymore or the path might hit the ground before finding the

ellipse. Both of these cases must be checked and dealt with separately.

The first step is to test for grounding. Any point below ground causes problems
when passed for use in the various functions as well as not being physical realizable.
A simple function grounded substitutes the current point into a test which checks the
left side of the earth surface equation against the earth’s radius. If the value fests

less than the earth’s radius a true value is returned.

For grounded points the correction is to find the ground intercept and then con-
tinue to the next check. Find_ground uses a binary search to move successively closer
to the ground location. Once the shift step size is less than 001 the search is ter-
minated. The point is moved forward or back by a decreasing shift step based on

whether it 1s above or below ground on successive tests.

The next step is to again test for an intercept. If the test fails only the corrector
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Figure 3.2: Case 2 Ray Repenetration

variables (path parameters) are updated to reflect the new path parameters. The
procedure drops out of the current case and continues testing with the next main

case test.

If entercept tests true then the new intersection is found using locatessotherm.
Figure 3.1 shows the new intersection location as point C. The current ellipse variahle
is updated to reflect the current shell location. Next an ellipse search is done to find
the next ellipse above the current ellipse if the ray direction is upward or the next
eilipse below if the direction is downward. The next ellipse variables are updated

with this ellipse’s data.

If the current ellipse is the innermost ellipse then the next ellipse is left the same
as the current ellipse. Similarly if the current ellipse is the outer ellipse and the ray
is heading upward then the next ellipse is left as the outer ellipse. Both of these

conditions are handled by special cases during the next iteration.

3.3.2 Case 2: Repenetrate Current Ellipse

The second case deals with ray path curves that instead of hitting the next ellipse

bend back to hit the current ellipse. Figure 3.2 shows an example repenetration
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procedure. For this case the test is the exor of outside and upward. The consequences
of missing an intersection in this case have less impact than for the previous case and

are neglected.

It a repenetration is detected then the direction flag is reversed to indicate that
the ray is now heading in the opposite direction through the layers. Next, the repen-
etration location, B, is found using locate_isotherm. The ray path parameters are
updated by calling sphere while looking toward the start location. Then a func-
tion called correction averages the new and old path variables. The path is then

reprojected.,

Again several problems can arise after reprojection. The new point must be tested
for grounding and moved to the surface if it is grounded. If the new path fails to
penetrate the current ellipse then as an alternative fit_ellip is called. This creates an
ellipse that 1s fitted through the current point. This new current ellipse along with

original upward state are passed on to the next projection iteration.

If the new path does still penetrate the current ellipse then the new intersection,
location, C, is located. Finally the current ellipse variable is updated and the next

ellipse data is determined as in the previous case.

3.3.3 Case 3: Ray Does Not Penetrate

Examine Figure 3.3 which shows a case in which the ray path does not penetrate any
known ellipse. If the current location, B, failed the last two tests then the location is
intermediate between the current ellipse and the next ellipse. In this case an ellipse

is fitted through B, the current location, using fif_ellip. Then the path parameters
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Figure 3.3: Case 3 Ray Path

looking back to the start location are found using sphere. Correction is applied to

produce the new path parameters and the point is reprojected ending at C.

As in the other cases the point is tested for grounding and moved to the surface

if necessary.

The special situations to check for include testing for penetration of the next
ellipse and ensuring that the point does not exit the atmosphere. In the normal case

a new ellipse is fitted through the current point.

For the penetration case the isotherm is located by locate_isotherm. The current

and next ellipse are updated similarly as discussed in case 1.

I the point fails the normal and penetration tests this means that the point is
outside the outer ellipse. In this case the intersection with the outer ellipse is located

and both the current and next ellipse are set to the outer ellipse.

3.3.4 Case 4: Outside Last Ellipse

The final two cases check the extremes of the atmosphere shells. This case tests for
the current ellipse equal to the outer ellipse and upward true. This means that the

ray has reached its exit point from the atmospheric shells.
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During the last call to sphere the path radius will have been set to the value for

a straight line reflecting the constant index of refraction in the outer atmosphere.

The ray point is repeatedly moved forward by iterate until the point either hits
ground or the object plane. This case stops after it detects one of these conditions

and lets the end point test finish the ray path.

The Hit_object.plane function simply tests if the x variable at the current loca-
tion is greater than the object plane location. The function refurns a true or false

indicating the state produced by the test.

3.3.5 Case 5: Inside All Ellipses

The 1nside case is indicated by the current ellipse being set to the innermost ellipse

and not upward.

Similarly to Case 3.3.4 the path location is moved forward using the previous path

radius and centre until one of three conditions tests true.

The simple conditions that are tested are for grounding and for hitting the object
plane. In this case it is also necessary to test if the point repenetrates the current
ellipse. To check for repenetration the outside function is checked for a true state
and the value of the path location is tested for a positive value. This test will only

be true for a ray path penetrating upward out of the inner ellipse.

In case of repenetration upward is set to true and the intersection with the inner

ellipse is located. Finally, next ellipse is set to the next higher ellipse.
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3.4 F¥Fnd Point Test

At the end of every projection cycle the resulting end location is tested for two

termination conditions.

The first termination condition is a test to check if the ray point has penetrated
past the object plane. The other termination test checks if the ray is at or below the

carth’s surface.

H a point makes it past both these {ests then the ray advance procedure is executed

in preparation for the projection cycle to repeat.

3.4.1 Object Plane Test

Once a point tests true in h#t_object_plane we know that the current ray path has
penetrated the object plane. The ray path has reached its final destination. To
terminate the projection cycle a status variable called finished is set to true. To
move the point fo its exact point in the object plane is quite simple. The x variable is
set to the value of the x parameter of the object plane. Then calling move will move

the ray path point to the desired position along the ray path at the object plane.

3.4.2 Grounded Test

Similar to the previous case after testing a grounded condition using grounded the
finished flag is set to true. Next the find_ground function is called to move the point

to the surface intersection.
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3.5 Ray Advance

In preparation for the next cycle of the projection process an initial projection must
be made. The sphere function updates the ray path parameters based on the current
end location. 'These parameters are stored for use in the correction procedure and
the predictor-corrector process. Next the point is projected by a call to move. The
new poiit is tested for violation of the grounding condition and moved to the surface
if 1t 1s violated.

The exception to this procedure is when the ray is inside the innermost shell. In
this case there is no next inner shell to update the ray path parameters with. The
mital project procedure is skipped and Case 5 takes over using the previous ray path

data as an approximation to the inner shell conditions.

At the end of this case the program flow returns to the projection case tests.



The language chosen to implement this thesis was C. C was selected for its simplicity
and versatility as a programming language. C’s other virtue is the ease with which it
can be ported to other platforms. As a result initial development was done using a
80286 Personal Computer and latter completed in parallel on the 80286 machine as

well as on a SUN workstation.

Although there are some architectural considerations in porting to the SUN system

the changes were fairly simple.

C code tends to be naturally readable. Most of the code contains extra comments
to clarify what the code does. As a result very little time will be spent explaining the
details of the algorithm. Instead Appendices A, B, and C include the source code of
the program as it is implemented under Microsoft Quick C Version 2.0 for an 80286

computer.
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Name Value | Description

erad 6.37efm | earth’s radius in meters

kelvin 273.15 | conversion factor from celsuis to kelvin

eyel 1.8m | assumed height of eyes of observer above ground level
minutes | 3437.7467... | pumber of minutes per radian

pi 3.1415... | value of constant pi

SIZE 60 | maximum number of elliptical shells allowed

TRUE 1 | define a boolean True

FALSE {} | defire a boolean False

LARGE 1.0el2m | radius to give a straight line

Table 4.1: Constants

4.1 Program Design

The program is divided into three sections according to function. The first section, in
Appendix A, contains all the mainline instructions. The second section, in Appendix
B, contains all the ray projection procedures called by the mainline program. The
final section, in Appendix C, contains procedures used in the Personal Computer
version to plot actual ray paths with the aid of Halo '88 graphics package by Media

Cybernetics.

4.1.1 Mainline

The components of the mainline file are definition of constants, definition of strue-

tures, definition of new types, function definitions, and main program.
'fable 4.1 is a list of the constants used in 3d_ray and what they represent.

in addition to the above constant variables three macro functions are defined
which implement widely used functions. The first is the index of refraction equation

with P=101.325 kPa or 1013.25 millibars. Substituting this value in the index of
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refraction equation in Chapter 2 gives the equation p{7T'} = 1 + .0799/7. The

second 1s a squaring function and the final function is a square root function.

There are three structures defined which are the basis for new variable types. The
first structure, vector, is a double precision triplet {z,y, 2} used to store cartesian
coordinate locations. The second structure, ellipsiodata, stores the double precision
triplet of the ellipsoid parameters and associated double precision shell temperature
value. The third structure, planenum, contains the double precision values of the

plane equation constants.

The following four new variable types were defined. The structure vector is de-
fined as type vec. The structure ellipsoidata is assigned to type elp. The structure
planenum is definred to be type plane. An additional type called bool is defined as a
subset of the integer type. Bool will only be used for variables with logic or boolean

values.

The function definition section prototypes the procedure type, name, and passed
variable types. These definitions help C to track if the right type variables are passed
to and returned from the given procedure during compilation. The actual functions

will be deseribed later on.
Table 4.2 lists the name, type, and purpose of all variables used in the mainline.

To facilitate program development and verification two special sets of processes
were included in the mainline. The first process kept track of each corrected projection
point. By displaying or printing this data it was possible to examine the ray paths
i detail. Another way of examining the ray paths is to display the rays in three

dimensional space. A special procedure was developed which projected vertical groups
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Name Type | Purpose

out FILE | Pointer to current output file

etlipl] elp Array of ellipsoid shell data and temperatures
nexelp elp Vector containing next shell expected along ray path
curelp elp Vector containing the current shell

interelp elp Vector for an intermediate fit ellipse

obs vec Observer location

map!| vec Actual and observer ray end locations

destn vec Point the eye believes it is seeing

point vec Current location on ray path

oldpt vec Storage of projection start point

line vec Direction numbers for ray path line

centre vec Centre of sphere on which ray travels

norm vec Normal direction numbers

tan vec Tangent to ellipse at point

oldtan vec Tangent to ellipse at oldpt

rays vec A far pointer to the array storing path points
sight/] double | Array storing the double precision sight angles
obj double | Object plane location on x axis

base_angle double | Sighting angle due to earth curvature

radius double | Radius of ray path arc

oldradius double | Radius associated with initial projection

shift double | Stepping variable for local intercepts

hor double | Horizontal angle loop variable

ver double | Vertical group loop variable

iterate double | lteration step size

origin_depth double | Distance to earth surface at origin

finished bool Ray path termination flag

upward bool Ray direction indication flag

ellipnum int Number of shells in atmosphere

c int Counter

index int Counter

lastindex int Count for last point of previous pair
NumberOfRay | int Ray path counter

NumPoint!] int Count of points in each ray

plotf int Flag to invoke 3d plotting call

print int Flag to invoke ray point printing

plofs plane | Plane of sight data

oldplos plane | Plane of sight data associated with initial projection
itlel] char Space to store title for 3d plots

Table 4.2: Variables
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of rays on to a two dimensional plot on the computer display. The display procedure

is discussed in detail in the 3d_plot section.

Because each point uses 24 bytes a maximum of about 3500 points can be stored
on the average computer. The combination of step size and number of rays per group
must be adjusted so that the total number of points is less than the maximum, There
is no formula to determine how many points a certain step size will generate so it is not
possible to check this condition. Extreme caution has to be exercised not to exceed
the memory capacity since unpredictable events will occur otherwise. Tracking ray
paths is valuable in the study of the atmospheric model but the memory limitation
1s a serious problem when considering the whole atmosphere at once. As a result the

program was modified to make the print and 3-D display optional.

There are four choices. They are print data, plot data, plot and print data, or do
neither. Only in the last case is the ray point array not defined so that it is possible to
evaluate as many ray paths as desired. No storage of any ray data occurs so there is
no limit to the number of ray path evaluations. The ray path start and end location
are printed to the standard output file to record the results. These options allow two

levels of study for the model.

There is a flow chart for the mainline in Figure 4.1. Examination of this fow
chart shows how the ray path projection procedure discussed in Chapter 3 is used

repeatedly for the various angles of interest.

After each ray projection is completed the original destination projection along
with the actual end point determined from the projection process is sent to an cutput

file. The output file also has a copy of the initialization data and optionally the
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ray path data. The output file is a record of the last 3d.ray run. The stored ray
path endpoint data is with respect to the earth’s surface. This means the point was

converted from the model coordinate system back to an earth surface location.

The data input procedure is outlined in Appendix D along with an example data
file. Once all the data is collected by inputdata it must be interpreted. The function
setupshells uses the height and temperature profile data and the exterior shell data
to set up the elliptical shelis in the ellip array. The procedure conv_coord is used to
convert the observer and object location on the surface of the earth to locations in
the model’s coordinate systern. It also converts the sighting angles from minutes to
radians. Further, the depth of the origin of the coordinate system below the earth at

the origin is calculated and the base angle of the ohservers position is determined.

At the beginning of each ray projection the procedure get_destn is called. get_destn
uses the starting direction of the ray path at the observer and finds the straight line
intercept with the object plane. If the ray path grounds during processing then the
destination is updated to a point which intersects with the x plane at the grounding

point.

The destination point represents where the eye sees the point at the end of the

projected ray path.

4.1.2 Subroutines

The 3d.subro.c file contains all mainline procedures except those related to the 3d

ray plotting program.

Appendix B contains a copy of the C file. The procedures are well documented and
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list input and output data. They should be self explanatory given the descriptions

made earlier.

4.2 3d Plotting

As mentioned previously the Halo ‘88 graphics library by Media Cybernetics was used
to display the ray path plots. Halo '88 is an implementation of the Graphic Kernel
System (GKS) standard. GKS is a system of communication between an application

program and graphics devices. This GKS is a purely 2-D system.

Halo '88 supports five types of devices: graphics devices, locators, printers, plot-
ters, and scanners. There are three coordinate systems available: device coordinate
system, world coordinate system, and normalized coordinate system. Over 190 differ-
ent functions are implemented which control everything from text size and orientation

to shape generation.

1t is the flexibility of this GKS which led to its acceptance for this project. The

other available 3-D software were stand alone programs with limited configurability.

The use of Halo ’88 gives rise to the need for a procedure to project the 3-I) data

on to a 2-D plane for device display.

To project 3-D data on to a 2-D plane 1s a two step process. The first step is to
transform standard (x,y,z} coordinates to eye coordinates. The second step involves

determining the screen coordinates from the eye coordinates.

The 2-D view is always dependent on the location of the observer. In our system

the eye location is defined by the spherical coordinates (p, ¢, ).
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Figure 4.3: New Coordinate System
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As Figure 4.2 shows the observer’s view point is at a distance p from the origin,
and at angle ¢ from the z axis and @ from the x axis. By adjusting these three

quantities the object can be seen from any side and at any distance.

Since the location of observer affects the view it makes sense to make this the
new center of the coordinate system. More importantly the use of P as the new
center of the coordinate system simplifies the procedure for determining the 2-D

plane coordinates.

The orientation of the new coordinate system is determined by the orientation of
the coordinates of the 2-1 view. In our case the x axis is to the left and the y axis
points upward. By choice the z axis for the observer points away from the observer
toward the old coordinate system. This selection leads to a right hand coordinate

system. Figure 4.3 shows the new coordinate system.

There are three steps involved in the transformation from object to eye coordi-

nates.

To move the origin to P, the eye’s location, the individual components of the vector
must be subtracted from the corresponding standard coordinates. This operation can

be obtained from the following transformation maftrix.

1 0 0 C

0 1 0 0

A= 0 0 1 0
—psingcosd —psingsingd —pcosg 1

(psin g cosf, psingsinf, pcos ¢) are the (x, vy, z) coordinates of P.

The next two steps accomplish the reorientation of the coordinate axis. The object

is to have the new 2’ axis intersect the old origin.
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The first transformation matrix,

sin?  cos@ 0 0

—cos@ sind 0 0

b= 0 0 10
0 0 01

will rotate clockwise about the z’” axis such that the negative y’ axis will intersect the

z axis. This angle is (90° — ).

The second matrix,

1 0 0 0

O = 0 —cos¢ —sing 0
T 10 sing —cos¢d O

0 0 0 1

will rotate about the x” axis in the counter clockwise direction by (180° — &). This

will align the 2’ axis so that it points to the original origin.

By multiplying ABC a composite matrix is created which performs the transfor-

mation in one step. T = ABC.

r=(a)(8)(C)
sin cos B 0 0
—cosfl  sind 0 0
T 0 0 1 0 (C)
0 —psing —pcosg 1
sinl —cosfcosgd —cosbfsing 0
T —cosf —sinflcos¢ —sinfsing 0
T 0 sin ¢ —cosg 0
0 0 7 1

Thus (Xe, Ye, Ze, 1) = (X, Y, Z)(T)

Now that the data arve transformed to eye coordinates they must be projected to

screen coordinates,
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Display Screen

Figure 4.4: Display Coordinates
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Figure 4.5: Similar Triangles
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In Figure 4.4 the screen is placed at a distance I from the origin. Point () has
coordinates (Xe, Ye, Ze). Similarly, where Q' would appear in screen coordinates is
Y Ye

given coordinates (5X, SY, D). By similar triangles 2% = Z£.

. — T Ye
or 8Y = D{3%)
Similarly % = % or SX = D(—%) Figure 4.5 shows the similar triangles for the

two planes of interest. For a more detailed description refer to Meyers.[25]

The combination of the eye coordinate transformation and screen coordinate pro-

jection complete the 3-I to 2-D projection necessary to prepare the data for display.

The overall procedure for implementing the 3D plot is contained in plot. The first
step is to convert the data to 2D data. This is accomplished by the Convert procedure
which implements the transformation described earlier. Once the data is transformed
we are ready to create the display view. The display view is started by writing the

title over the graph area.

Next, the positive extreme for the horizontal variable is found. Most of the atmo-
spheres which will be considered will be concerned with heights less than a hundred
meters versus atmosphere lengths of multiple kilometers. It is for this reason that
the vertical scale is calculated from the horizontal scale. This calculation takes into
account the aspect ratio of the display and the need to display the image in its real

proportions.

Once the vertical and horizontal ranges are known then the plot border and co-
ordinate axes are added to the display. Each axis is foreshortened according to the
viewing angle to give some size reference to the display. All the axes have the same

numerical length.
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Finally it is time to plot the curves that represent the plotted curves. Each ray
path is plotted individually. This is done using the Halo’ 88 function POLYCABS
which fits a smooth curve through the points of the ray path. With the addition of

the current view statistics and menu options the plot is complete.

Plot provides for the menu functions by testing for key strokes once the plot is
displayed. Based on the menu choices various plot parameters can be changed to alter
the view displayed. Each time a parameter is changed the display process restarts at

the beginning of the plot function.

The basic plot parameters that can be changed include: d, the distance to the
viewing plane; p, the distance to the original origin; ¢; #; x-axis limit; y-axis limit. By
changing either axis limit the aspect ratio is changed from the real ratio and details
hidden by long flat curves can be resolved. A function is included which rescales the

y axis so that the x and y axis again form the actual aspect ratio for the plot.

Also a function is included in the plot menu which prints a copy of the plot via

the printer support functions provided by Halo’ 88.
The menu choices are:

Q=QUIT P=PRN SCRN A=ASPECT SCALE R=ROTATE OBJT 5=SCALE
V=VIEW SIZE

e () will terminate the plot display and return control to the main program.
e [ provides for the plot to be printed.

e A will recalculate the y axis scale based on the current x axis scale to give the

true image shape.
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¢ R allows the two viewing angles ¢ and 9 to be changed.
¢ 3 allows the x and y axis scales to be set.

e V allows d and p to be changed.

Appendix C includes the source code for the plof procedure. For more information

on the Halo’ 88 functions see the Halo’ 88 manual.

4.3 Verifying the Software

In the two previous sections the main program and ray plotting programs were dis-
cussed. The functionality and validity of these programs was tested using several

methods. In total four tests where devised.

Of these the simplest test performs checks to see if a constant temperature profile
produces straight ray paths through the model. Another simple test uses the left &
right symmetry of the model when an observer stands on the x axis. For an observer

on the x axis the left and right ray path groups should be mirror images of each other.

A more sophisticated test can be devised to check certain ray paths. Imagine a ray
that starts and stops at equal distance and height from the center of the atmosphere
model. Hf its points are in the y=0 plane and opposite each other with respect to the
center of the model then the points of the path should be symmetric. Further, the
maximum of the path should occur over the model center. By assessing the deviation
in maximum and in symmetric points it is possible to draw conclusions about the

validity of the model.
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a=b0030m b=1000m
obs at {5000,0,1.8)m
chject at 2500m
Height Temp
30m 8.0 °C
22m 8.0 °C
21m 8.0 °C
20m 8.0°C
15m 8.0 °C
11m 8.6 °C
Om 8.0 °C

Table 4.3: Constant Temperature Profile

Other models which have been validated can also form a standard to which the
new model can be compared. By selecting a situation which can be emulated by both

models and comparing the simulation results it is possible to assess the new model.

Some of these tests will indirectly depend on factors which are not being tested.
In this case the objective is to perform the test in such away as to minimize these
factors or recognize that the results are valid within Hmiting factors. As with all
software it 1s impossible to check all possible situations. It is therefore important to
devise careful programs of study which use the model against itself and other sources

before placing faith in its results.

The first test was run using an atmosphere based on the data given in Table 4.3.
The a and b parameters are the major and minor axis lengths of the ellipsoid. The
observer stands at 5000 meters from the origin and the object plane is 2500 meters
on the other side of the origin. In total 7500 meters are between the ohserver and the

object plane.

The range of angles examined was -4 arc minutes to 40 arc minutes in 4 arc
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Step | 7 Dev mean Std
50 (.0039320 | 6.00269050¢
100 (1.0018503 | 0.001022750
500 0.0006480 | 0.000329806
1000 0.0005030 | 0.000434436

Table 4.4: Ray Path Deviation Results

minute increments in the vertical angle and at lateral angles 120 , 0, -120 arc minutes.

Iterations were run with step sizes 1000m, 500m, 100m, and 50m.

The results are shown in Table 4.4. The second column represents the average
difference between the z height of a straight line and the calculated height over all
the rays consider in each iteration. The third column represents the spread of the
deviations among the different ray paths in an iteration. From this table we can
tell that the program produced ray path endpoints accurate to two decimal points.
Similar analysis could be applied to each point generated in each ray path however

simple examination of these points showed that they formed a straight line.

For the constant temperature profile data set the left /right symmetry is dead on
to the six decimal points printed. Table 4.5 contains the output data for Data Set 2
which has a more complicated temperature profile. Data Set 2 is given in Appendix
D. The step size used was 100m and the output displays vertical angles from 0 are
minutes to 40 are minutes in 4 arc minute increments. Compare the path endpoints
(x,¥,2) of a ray in the positive angle group, 60 arc mins, with the mirror ray in the
negative angle group. The values are mirror images with respect to the x-z plane.

This point for point symmetry is matched along the ray path at each calculated point.

The symmetric ray test was done using Data Set 2 with the observer placed at

(5300,0,1.8)m and the object plane at -5300m. The ohjective was to find a horizontal
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Transfer Characteristic coordinates
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X Z lett | Zrnght | Z difference X Zleft | Z right | Z difference
5350 | 1.79999 | 1.80875 0.00876 |} 5350 | 1.79999 | 1.80363 0.00364
5000 | 2.00993 | 2.01763 0.00770 |} 5000 | 2.00932 | 2.01224 0.00292
4000 | 2.15752 | 2.15956 0.00204 || 4000 | 2.14930 | 2.14990 0.00060
3000 | 2.16823 | 2.17823 0.00081 |, 3000 | 2.16742 | 2.16718 0.00024
2000 | 2.16823 | 2.16833 0.00010 |{ 2000 | 2.15737 | 2.15678 4.00059
1000 | 2.15553 | 2.15537 0.00016 || 1000 | 2.14416 | 2.14367 0.00049

| Zmax is at 13.36m

Zmax is at -28.15m

|

Horizontal Angle=1.96 arc minutes
Step Size=500m

Horizontal Angle=1.96 arc minutes
Step Size=250

X Z left | Z right | Z difference X L left | 7 right | 7 difference
5350 | 1.79999 | 1.80375 0.00376 | 5350 | 1.79999 | 1.80009 0.00091
5000 | 2.00932 | 2.01221 0.00289 |; 5000 | 2.00932 | 2.00862 0.00071
4000 | 2.14706 | 2.14827 0.00121 || 4000 | 2.14672 | 2.14504 0(.00168
3000 | 2.16483 | 2.16505 0.00022 || 3000 | 2.16443 | 2.16246 0.00197
2000 | 2.15469 | 2.15440 (.00029 || 2000 | 2.15426 | 2.15250 0.00176
1000 | 2.14148 | 2.14113 0.00035 || 1000 | 2.14102 | 2.13993 0.00109

| Zmax is at -29.46m

7Zmax is at -832.64m

Horizontal Angle=1.96 arc minutes
Step Size=100m

Horizontal Angle=1.966 arc minutes

Step Size=50m

77

angle at which the ray path ended at (-5300,0,1.8)m. The test was run with 500m,

Table 4.6: Symmetry Test Results

250m, 100m, and 50m step sizes.

Examine the results of the symmetry test as given in Table 4.6. X measures the

distance from the origin. Z left is the Z height for positive X values and Z right is
the 7 height for negative X values. Over the 10,600 meters that the ray was tracked
the begin and end points are less than a centimeter different. Overall all the results
indicate an excellent degree of symametry. In addition the path peak (zmax) occurred
within one percent of the exact center of the path when compared to overall path

length.
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Figure 4.6 shows a comparison between the output of the 3d_ray tracing program
and current version of the ray program (2d). The data from the rey program was
adjusted to account for a difference in reference systems and to compensate for pres-
sure effects included in its algorithm. In ray all the Z object heights are with respect
to the observer’s location while in 3d_ray the heights are with respect to the object
plane location. This results in a difference in Z height equal to the difference between
the height of the earth at the origin and the height of the earth at the object plane.

The ray program also included pressure effects in its equations.

Pressure introduces additional curvature in the ray paths. In order to remove the
pressure effects from the ray results an additional data run was done with constant
temperature to determine the displacement introduced by pressure variations. From
the pressure data it was determined that at 20 km pressure variations introduced
an additional 6.77 meter upward shift in the Z object heights. Similarly at 21.5 km
pressure variations introduced an additional 7.83 meter upward shift in the Z object

height.

In both Figure 4.6 and I'igure 4.7 the Data Set used was SETJM3 which is included
in Appendix D. Using both Sd_ray and ray the data was run with the object plane
at 20 km and 21.5 km respectively. After compensating the ray data both data sets
were plotted. Plotting the Z apparent height (where the eye sees something) versus
the Z object height (what the eve sees) gave the transfer characteristic for each data
set. in both Figures it is easy to tell that the two curves are very similar and match
quite well. It 1s quite reasonable to suggest that the observable differences hetween

the curves are likely the results of difference in mechanics between the two programs.
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Overall the results of the four tests have proven the functionality of the programs

and validated the data produced by the program.

4.4 Using The Output

The output from 3d_ray includes the output record file, and hardcopies of the 3d
plots. The output record file contains the ray end point mapping hetween where the
ray path actual terminated, the object view, and the apparent end point seen by the

mind. The output file may also contain a ray path point record for each ray traced.

These outputs provide the basis for systematic study of the model on an individual

ray or ray bundle basis.

Our interest in this study is the ray bundle information. In the following chapters
this information on the mapping between the object view and the apparent view will
be applied to images of the object to produce a simulated image of the apparent
view. The end goal is to examine these apparent images to assess how the model has

affected (distorted) the view that the observer sees.



ulation

The previous two chapters discussed the ray tracing procedure and implemented the
process through computer simulation. The process traces light ray paths from their
eye entry location backwards to their origination point. By comparing this point with
the point perceived as the origin a relationship is developed between the apparent
object and actual object on a point to point basis. In this chapter the focus is
on utilizing this point to point relationship to construct a simulation of the apparent
view. Since the effect we are studying is visual in nature this allows direct comparison
with actual observations. When the atmosphere has been distorted by a temperature

gradient this simulation of the apparent view will be a mirage of the actual object.

5.1 Vision

An interesting question, that will hopefully clarify what we are trying to do, is, how
do we see things? In the atmospheric environment the major source of light is the
sun. Light rays originate from the sun and travel in all directions following basic

physical principles.

81
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Unlike the sun, most objects we see do not create their own light but instead
reflect and absorb portions of the light that hits them. It is the reflected portion

which contains the intensity and color information that is received by our eyes.

If a ray of light leaves the sun and fravels in a straight line to our eye, then we
see that speck at its true location. The individual photons of this ray travel to the
eye, enter through the lens and are detected by receptors on the retina. The affected
receptors on the retina record the color and intensity of the photons on a continuous
basis. The information from the entire retina is processed to give a coherent image of
the scene. When straight light rays enter the eye the relative spatial relationship of
the different rays is maintained. Thus the image on the retina has the object’s true

shape.

When the hight rays travel through a nonhomogeneous medium the ray path will
bend. Different ray paths will be bent differing amounts. The relative spatial relation-
ship will be distorted from its true shape. An image with the distorted relationship
will be detected and processed by the eye. However, when the image is processed,
the mind assumes that the spatial relationship represents the true shape since it has
no way of knowing that the ray paths were bent. By mimicking the vision process we

are able to synthesize the eye’s view.

Starting at the eye location a range of horizontal and vertical ray entry angles are
examined. For cach entry angle a straight line back projection to the object plane
i1s computed. The assumption is that the eye’s image will be its correct size at the
object plane. The end point of the straight line represents the eye’s perception of

that ray’s ovigin. Next, the ray is traced backwards over its real path to determine



CHAPTER 5. MIRAGE SIMULATION 83

its true origin.

This process produces the point to point relationship described earlier.

5.2 Mapping Concept

Consider the relationship between they ray path endpoints and the straight path
perceived end points. The resulting data set represents a mapping between two
image spaces. The data points determined from the traced rays are points on the real
or actual object. The data points of the perceived path are points on the apparent
object. Thus the data forms a mapping from the actual object space to the apparent

image space.

The complete data set is the medium of translation involved in this mapping. It
is for this reason that the data set will be referred to as the transfer characteristic.
Table 4.5 contains a typical transfer characteristic except that the 0 angle group was
removed. The three columns on the left are apparent point while the three columns
on the right specify actual points. The data in Table 4.5 is broken into groups. Fach
group represents a vertical slice of the mapping relationship. Together the slices
form the mapping space. Typically due to the relative invariance of the atmosphere
horizontally only a few slices are needed to adequately describe the changes. However,
in the vertical direction atmospheric changes are greater and therefore more vertical

data will be required in each slice.

While it is not possible to plot the entire transfer characteristic it is possible to
plot the object plane to object plane points in the transfer characteristic. Figure 5.1

contains a plot of the transfer characteristic for data set SET 2. Notice that there is
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very little vertical change in the transfer characteristic. In this transfer characteristic
there are two planes joined by a transition region. The larger {ront plane represents
a upright image scaled by (30-13)/(17-1) (the slope of the plane). The smaller back
plane produces an inverted image scaled by its slope. Thus the transfer characteristic
plot can be used to predict or verify the apparent image. For example consider a
spot on the object at ym = 50 and zm = 12. Project this spot perpendicular to
the zm object plane (back one}). This projection will intersect the surface twice. At
each intersection project a line perpendicular to the zm apparent plane downward.
The termination point of this line on the zm apparent plane is the mapped location
of the object spot. Our example spot will be mapped to (ym = 50,zm = 54) and
{ym = 50, zrn = 29).

In general the following term convention will be used henceforth. The term “point”
will refer to the actual (x,y,z) distances {in meters) in the real world while the term

“location” will refer to the location {in pixels) in the image of the real world.

To better understand what the mapping process involves let us discuss the image
space. The typical image space includes the surface of the earth between the observer
and the object, the actual object, and the background sky. Figure 5.2 shows an
observer looking at a house. The dashed lines represent the extent of his view. This

view seen from the observer’s perspective might look like Figure 5.3.

In our case the image space will be captured on film. The view through a camera
will have much narrower vertical and horizontal extent then with the naked eye. The
dashed lines in Figure 5.3 represent the view through a camera. This view is then

transferred to film which is a two dimensional medium. A film image of Figure 5.2
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Figure 5.2: Observer and Object

TeER Camera View

" :::A:.:.:.“.“.“.“.“.‘.!,\“..

Chserver
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Object

Figure 5.4: Film View

might look like Figure 5.4. Notice that the pie shaped section of foreground in Figure
5.3 ends up a rectangular section in Figure 5.4. If the object is beyond the horizon
then the lower part of the object will be cut off from the observer and camera views.
Without extensive information it would be difficult to determine the portion of object

cut off.

The next step is to relate the apparent and actual points to their respective image
spaces. In the ray tracing procedures we treated the object and background as a

single plane. This made the ray tracing process much simpler.

Since the depth of the object is much smaller then the length of the ray path, the
change in the ray path end point due to traveling to the actual depth of the object
1s negligible. We are not actually interested in what happens with the background.
But due to the complexity of differentiating object points from background points i
1s convenient to include the background in the mapping. The background does add
to the appearance of the image. This gives some justification for treating background

and object as a single plane. Since the object size and distances involved are known
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for the actual image it becomes quite easy to relate the actual end points to the object

and sky portion of the image.

The relationship is more complicated for the foreground portion. Basically the
way distance is translated in an image has to do with size. The same two objects
at different distances will appear at different sizes. That is, the closer image will
be larger. This principles applies to the rectangular foreground section of the image

space.

To accurately relate foreground points to foreground locations in the object image
is complicated. It requires knowledge of where the photographer stood and at what
height the image was taken to determine how much foreground is included in the

photo. Since the camera translates the spherical surface into a plane the equation

T = \/R? — (# + R)?, which relates x distance to horizontal height, must be used in
translating foreground points to foreground locations. Also required are assumptions
about the elevation variations of the foreground. Such a process would be very com-
plicated and still not provide a realistic model for the foreground. It is also useful to

remember that our chief area of interest is the object.

The following approximate model will be used in relating to the foreground. Our
first assumption is that the foreground region begins at the observer’s feet and extends
to the base of the object. This in conjunction with the assumption that horizontal
image distance translates linearly to distance along the foreground gives a simple way

of determining x locations in the image space.

Using the pie shaped approximation of the actual foreground and known x distance

it becomes possible to determine the y scale for that x distance. We will work out
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the actual equations later. Another assumption that needs to be mentioned is that

the image is centered with respect to the x axis.

Implicit in our assumption about the foreground being up to the base of the object
is that the image space contains the entire image and that the image is on the horizon.
This obviously will not be always true of the real images available for analysis. The
analysis can still be valid despite this as long as the image is reasonably close to our
assumptions. The phenomena we are interested in are mostly visual in nature and
the imprecision of our model will affect some detail but not the general shape and

trends of the apparent image.

5.3 Interpolation

As we have already described the transfer characteristic is a table of data. In order to
map a specific point we need to develop a method of data interpolation. Interpolation
will allow us to translate the relative position within the mapping of an apparent point

to an object point.

A given apparent location will be surrounded by four apparent points from the
transfer characteristic. Associated with these surrounding points will be four object
points. The four closest apparent points will best represent the mapping at the given

location.

The general idea is to find the relative position of the given location to the sur-
rounding apparent points. Once the relative information is applied to the surrounding

object points an object location corresponding to the given location will be found.

Each of these points will either be from the object plane or foreground region.
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Figure 5.5: Interpolation Cases

From this there are three possible combinations of points. The points could all be in
the object plane. The points could be all in the foreground. Or, they could be some

combination of both.

Between the corresponding apparent and actual points there are nine potential

interpolation cases. They are:

Case  Apparent Object
1 Object < Object
2 Object <  Foreground
3 Object « Mixture
4 Foreground <« Object
3  Foreground « Foreground
6 Foreground <« Mixture
T Mixture < Object
8 Mixture «+ Foreground
9 Mixture < Mixture

We can eliminate cases 2,3, and 8 because actual foreground points are always
mapped to apparent foreground points. Similarly object points are always mapped

to object points which eliminates cases 4.6, and 7. Figure 5.5 contains examples of
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the remaining three cases.

Cases | and 5 are the basic interpolation set. The other case is necessary if there
are horizontal transitions into a inferior projection, or foreground zone in the skyv.

Case 9 was not implemented. It is not needed for the data available for simulation.

53.1 Casel

In Case 1 we are concerned with determining the relative {z,y) position of the actual
point corresponding to a given apparent point. Consider the (z,y) position of the
apparent point as the intersection of the two perpendicular lines z=constant and
y==constant. In the z direction let e be the normalized distance of the z value between
ptl0 and pt20 with respect to pt20. Similarly, let f be the position between pt40)
and pt30. In the y direction let g be the normalized position of the y value between
pti0 and pt40 with respect to pt40 and & between pt20 and pt30. The four values

e, f, g, h represents the relative position of the apparent point.

Next use e to find a point between pt11 and pt21. Similarly f, ¢, & can used to find
three other points on the periphery of the four actual points. Join opposing points
into lines and determine the intersection of the two lines. This gives the desired
relative actual point.

Figure 5.6 shows the various points. The equations are:

e = (zm-pt20.z)/(pt10.2-pt20.2)
(zm-pt30.2)/(pt40.2-pt30.2)
g = {ym-pt40.y)/(pt10.y-ptd0.y)
h = (ym-pt30.y)/(pt20.y-pt30.y)
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Figure 5.6: Interpolation Points

g*ptl1l.y+(1-g)*ptdl.y
g ptll.z+{1-g)*ptdl.z
h*pt2ly+{L-h)*pt3l.y
h*pt21.z+4(1-h)*pt3l.z
e*ptlly+{l-e)*pt2l.y
e*ptll.z+(1-e)*pt2l.z
ptdl.y+(1-0)*pt3l.y

ptdl.z4(1-0)*pt3l.z

(zm3*(ymd-ym3)*(zm2-zml)-zm1*(ym2-ym1)*(zm4-zm3)
-(ym3-ym1)*(zmd-zm3)*(zm2-zm1})
/((ym4-ym3)*(zm2-zml)-(ym2-ym1)*{zm4-zm3))

yml4+(ym2-yml)*(*zob-zm1}/{zm2-zm1)

5.3.2 Case 5

92

In this case the position of the apparent point will be in the (x,y) plane. The same

process as in Case 1 can be used with the z values replaced by their respective x

values.
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5.4 Images

In order to use the mapping concept we need a method of storing images. The choice

of this method will be constrained by the equipment used to display the image.

A computer stored image is often called a digital image. Fssentially a digital
image 18 a two dimensional array of pixels. This array is arranged into rows and
columns. Fach row of pixels defines a horizontal slice of the image. Fach column of
the array is a vertical slice of the image. By using these two coordinates any pixel in
the array can be referenced. The value of the pixel represents the intensity of light
associated with that position. A pixel can be used to code color images by storing the
intensity of three primary reference colors associated with the pixel. The dimensions
of the array and the range of values for the pixels determines how close the digital
image approximates the actual image. The dimensions of the array are limited by the
method used to determine the digital image, and by the hardware used to display the
image. Purther, the hardware will specify the range of values to be assigned to each
pixel. For our system the image is limited to 512 rows by 512 columns, and to pixel
values between 0 and 255. The image is stored in file in byte form in a row by row

format.

The source images used were digitized from slides using a commercially available
image board and video camera. Most of the images were translated from 480 X 640

format to 512 X 512 format.

Images are sized in units of pixels. The actual scale of a pixel is dependent on
what the image contains. Poiats in the transfer characteristic are with respect to

the horizon and the coordinate system. This system must also be applied to images
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in order for us to find the pixel location associated with each point in the mapping

process.

5.5 Map Procedure

By building on the interpolation process a procedure for mapping an entire image
will be developed. Prior to the mapping procedure the actual image will be loaded,
the reference horizon determined, and the scale factor calculated. This together with
the assumption that the center of the image is the x=0 axis will allow us to find the

appropriate pixel for a given image location.

The mapping from object to apparent image is not one to one. An object point
may be mapped to multiple apparent locations. However, the reverse mapping, ap-
parent to object, is one to one. By reverse I mean that we will select an apparent
point and find its corresponding object point. This process is much simpler than
trying to find all the apparent points corresponding to a object point. One problem
is that the resulting image may not fit the image space defined by our file format. We
must either limit the range of the mapping process or pad the apparent image to fit

the file size.

Let’s define zmax as the highest height in the object plane covered by the mapping.
Then let zmin be the lowest height in the object plane. And zmax is the point closest
to the observer in the foreground region. These three parameters define the vertical
extent of the apparent image. The difference between zmaz and zmin is the extent
of the object plane and wmaz plus the distance to the object is the extent of the

foreground plane. From these parameters we can determine zmazd which is initially
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is zmax measured in pixels, zmaxi which is the negative length of the foreground in

pixels, and zmin: which is zmin in pixels.

The extent of the apparent image is zmaxt — zmini — zmaxi. If this number is
larger than the size of the image then xmazi is halved and zmazt is recalculated so
that the extent is exactly the image size. When the extent is less than the image size
then half the difference is placed as white space before (top of) the image and the

rest as white space after (below} the image.

The horizontal extent is automatically set to the width of the image size. By
using a generous range of horizontal angles in the ray tracing process there should be
no problems with the horizontal coverage of the mapping data. If the corresponding
actual point is beyond the actual image then a white pixel is stored in the apparent
image. Ymint and ymaxi are the left and right image limits. They both equal one

half the image width in pixels. Y'mini will be negative.

The apparent image is bounded by zmaai, zmini, xmazi, ymini, ymazi. The
mapping process will begin from zmaxs, ymint and proceed across to zmaxzi, ymazi.
Then the next row down will be processed left to right and so on until zmini is
reached. The process is then continued by beginning at the top of the foreground and

proceeding until zmaxt is reached.

There are three counters which track the apparent image location. They are
xzm,ym, and zm. Two other counters b, and a track the surrounding group in the
transfer characteristic. To initialize the mapping process we step down through the
horizontal region until we reach the region that contains the starting zm value., The &

counter is set to the current horizontal region. The b counter forms the outer do-while
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loop of Map_. Within this loop is another do-while loop which test for end of region
conditions. This loop keeps b the same until 2m or zm reach the end of the current
region. It also increments a row counter which forces the size of the image to equal
the file size. Both foreground in the sky and inferior type mirages tend to introduce
exira rows. Within this loop is the inner counter loop a. a starts as the last group
in the current region and is decremented until the first group. Each time the a loop
cycles zm and zm are incremented/decremented to the next row and the surrounding

do-while loop test for end of region.

Within the a loop is the case test switch. If the surrounding mapping points
defined by {a,b},{a—1,b},{a,b—1},{a —1,b— 1} are not in the object plane then
a foreground flag is set. Case I interpolation is chosen if the foreground flag is not

set otherwise Case 5 15 used.

Fach Case is contained in a while loop which increments the y counter across the
current group. As long as the ym value is less than one of the left surrounding points

or greater than one of the right points that point is considered in the current group.

The next step is to check if the current apparent location is below the lower border

of the current group. If it is then the group below is used for the interpolation process.

The appropriate surrounding points are passed to the interpolation routine along
with the current apparent point. The resulting object point is translated into a object
location using image scaling factors. The object location is used to transfer the object
pixel to the apparent image. If the object location is outside the object image then a

white pixel is transferred instead.

The end of region test contained in end_of.region starts by assuming that an end
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of region condition exists. If we are testing zm then it compares zm to all the lower
points in the current region. End_of _region becomes false if zm is higher than any
point. There are two conditions to check for in the am case. The first condition
ensures that zm is not less than any lower region point if the mapping is moving
down the foreground. The second condition checks that xm is not greater than any

lower region point if the mapping is moving up the foreground.

The main scale factor is determined by the procedure Getscale described latter.
scale = elev/{hor —refel). Elev is the height of the object, hor is the row number of
the horizon, and refel is the row of the top of the object. This scale factor is used to
translate (z,y} locations to (z,y) points and vice versa in the object and background

portion of the image.

For the foreground portion two different scale factors are used. They are zscale
and yscale. zscale = (obs— >z —obj)/(HOR — hor). zscale is equal to the distance
between the observer and ohject divided by the number of rows below the horizon.
This gives the average awscale over the entire foreground region. yscale is calculated
based on zm. yscale = (scale) * (obs— > z — xm)/(obs— > = — obj). yscale
equals scale at the object and zero at the observer and varies linearly with distance
in between. Since zm is incremented by zscale; yscale is indirectly dependent on

zscale.

If a foreground mapping occurs above zmini then a special zscale is used. For each
layer the two extreme foreground points are found along with the lowest object point.
Together with the current zm value these define an zscale which increments xm so

that at the lower edge of the layer it will equal the lowest foreground mapping peins.
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xscale = (high_x —low.z)/(zm — low_z) * (scale). If the surrounding points are all in
the object plane zscale equals zero and if these points are all in the foreground then
the regular equation is used. This zscale is used when part of the actual foreground

appears in apparent object plane.

‘able 5.1 hists all the variables used in Map_ and indicates their function. The

flowchart of the map procedure is given in Figure 5.7.

5.6 Mirage Simulation

The program which performs the mirage simulation is called mair.c. Mir.c incorpo-
rates procedures to load the actual image, transfer characteristic, apply the mapping

process, and save the apparent image. It is included as Appendix E.

Table 5.2 lists all the procedures in mir.c. The last five procedures are used by

Map. and described in the previous section.

Procedure Init_6845 sends the image board initialization commands. Write_port
is used to send these commands to a custom University of Manitoba image hoard.
The procedure Get_picture accepts the filename of the object picture and opens that
file. If it can’t find the file it will tell you and ask for a new file name. The file is

loaded in to a memory buffer.

The procedure DISPLAY is designed to display the memory buffer on either a
PC Vision image board or a custom University of Manitoba image board. The hoard

type is selected when the program is started.

Glettc loads a file produced by 3d_ray and extracts the transfer characteristic, the
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int

int

int

nt
long
bool

.
SUL

FILE

Horizon level in object image in pixels
Number of vertical groups in transfer characteristic
Number of horizontal regions in current group
Scale of actual image object plane in pixels
Location of observer

Distance {o object plane from origin
Highest z value in tc

Lowest z value on object plane in tc

X value closest to observer in {c

Current apparent y location in meters
Current apparent z location in meters
Current apparent x location in meters
Corresponding actual location to ym
Corresponding actual location to zm
Corresponding actual location to xm

X scale in foreground region

Y scale in foreground region

Lowest z in current region

Lowest x in current region

Highest z in current region

(VER+1)/2 pixels to right of center
-{VER+1)/2 pixels to left of center

Pixel height to start mapping

Pixel height to start foreground mapping
Pixel distance to stop foreground mapping
Current group in transfer characteristic
Current region in transfer characteristic
Difference between image size and mapping extent
Current z pixel

Current y pixel

=a

= a-1

=h

= b-1

Corresponding actual location to xm
Corresponding actual location to zm
Corresponding actual location to ym
Pointer to actual image pixel

Foreground ndicator

String to hold white pixel row

File pointer

Table 5.1: Map_ Variables
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Map Flow Chart
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Name Purpose

[nit 6845 Initialize Image Board

Write_port Write Pixel to Custom Board
Get_picture | Load Actual Image

DISPLAY Display Actual Image

Gette Load 'Transfer Characteristic
Getscale Determine Image Scale

Marker Add Maker to Image

unMarker remove Marker from Image

Map_ Mapping Procedure

interpolate interpolation cases

roundoff round an integer

end_of_region | test for end of region

belowz test 1f point is below current group
belowx test if point is below current group

Table 5.2: Mirage Procedures

object plane distance, and the observer location. It determines the number of regions

and groups in the transfer characteristic.

Gletscale allows the user to position a movable marker over two image reference
locations. First the marker is positioned over the point in the actual image for which
the elevation is known. Then the marker is positioned over the horizon. In each
case the marker is moved by entering row and column numbers for the pixel desired.
The marker is moved until the desired location is reached. The marker movemnent is
terminated by entering -1 -1 and the current marker position is stored. After selecting
botl: reference levels the program asks for the reference height. From this the object
plane scale, scale, is calculated. Getic uses Marker and unMarker in conjunction

with DISPLAY to accomplish the marker movements.

After the mapping process 1s complete the resulting image is loaded into memory
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Figure 5.8: Mir.c Flowchart

and displayed. Finally if the user chooses to process another transfer characteristic

the actual image is reloaded into memory.

The apparent image file will be stored under the transfer characteristic file name

plus the identifier “.pic”. Figure 5.8 contains the flowchart for mir.c.
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Comparisons to

In the previous chapters two software tools were developed. The first, 3d_ray, traces
light rays to deternune their perceived and actual origin points. These data are used
by the second program, mir, to simulate the apparent view seen by the eye from an
image of the actual scene. In this chapter we will be using these two tools to replicate

some actual mirage images and to compare with some earlier two dimensional work.

In each case a data set containing an atmospheric temperature profile, outer shell
limits, observer location, and object plane distance is available, From this data 3d_ray
will produce a transfer characteristic file with sufficient coverage to remap the actual
image of the object site. The transfer characteristic and actual image will he used
by mer to produce a simulation image of the apparent view. The main adjustable
parameter will be the shell size. A series of initial shell sizes will be processed to
determine the general shell size that will produce the desired mirage type. Then
additional shell sizes around the general shell shape will be processed to find the best

match to the aclual mirage image.

103
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Figure 6.2: Original Image 83-16-23
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Figure 6.3: Transfer Characteristic TB8-79-4

6.1 Whitefish TB8 data set

The first mirage we will simulate is photo 79-4-20, shown in Figure 6.5. This photo
18 one of many taken in May 1979 during an expedition to Tuktoyaktuk, Northwest
Territories, Canada. The photos taken during this expedition provide a collection of
normal and mirage scenes. In a similar expedition in May 1983, Professor W.H. Lehn
and graduate student John Morrish collected additional photos and measured some

assoclated temperature profiles.

This particular photo, 79-4-20, 1s of a hill called Whitefish Summit. The height of
the hill is 18.7m. The object image will be photo 79-7-12, Figure 6.1, which contains
the same hill undistorted. The observer is standing at 20.0km from the hill and eye
levelis 2.5m above ground. The temperature profile is contained in data set TB8-79-4.
This temperature profile was developed by inversion of the refraction data contained

in photo 79-4-20 using the technique described in [21].
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Figure 6.5

Whitefish Slide 79-4-20
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The atmosphere will be centered half way between the ohserver and the object
similar to earlier two dimensional work. The two remaining parameters are the length
and width of the cuter atmospheric shell. By adjusting these parameters different

atmosphere configurations will be created.

Fach atmosphere is processed by 3d_ray to generate a transfer characteristic. The
step size used is 100m. The elevation angles processed are -2 arcmin to 35 arcmin in

1 arcmin steps. The lateral angles processed are 60, 30 , 0, -30, -60 arcmin.

The transter characteristic is then applied to the object image. The reference pixel
level of the object is 350 and the horizon is 410, The object height is 18.7m. The

resulting image was compared to the actual mirage.

The first three images processed had atmospheric dimensions of {a=8000, b=3000),
(a=10000, b=3000), and (a=15000, b=3000). The last image was closest to the mi-
rage photo. These initial choices were based on examining an atmosphere smaller
than the separation between observer and object, an atmosphere the same as the

separation, and an atmosphere larger than the separation.

The atmospheric dimension a represents the x axis length of the atmosphere and
b represents the width. Additional experimenting with only the b parameter proved
that in this case the width could be any value between 100000m and 10060m with
out altering the resulting image. Small b values however did introduce additional

distortion that made the image less like the actual mirage.

Using a width of 3000m the simulation was fine tuned by a series of simulation runs
with a varying between 14000m and 30000m. The simulation which best matched

the original in overall shape was with a=17000m. Figure 6.3 contains the transfer
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Figure 6.6: Transfer Characteristic 79-4-27

characteristic plot of data set TB8-79-4, Figure 6.4 contains the simulation mirage,
and Figure 6.5 the real mirage.

The transfer characteristic plot indicates that there will be two upright segments
with nearly the same scale and an inverted segment with a slightly smaller scale.
Each of the segments will map from the same object area.

Both simulation and real mirages contain a white area to the left side of the
ficating object. The cigar like shape is similar and the proportions are a like. The
lower object however is different. The simulation object has more lateral extent than

the real image. Both images have a splotchy texture.

6.2 Whitefish 79-4-27 Data

The photo 79-4-27 is another of the photos taken in May 1979 at Tuktoyaktuk by

Professor W.H. Lehn. Again the mirage is of Whitefish Summit and the observer is
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Figure 6.8: Whitefish Slide 79-4-27
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at 20.0km.

The associated temperature profile was also developed by inverting refraction data.

The profile is contained in data set 79-4-27.

The atmosphere was centered between observer and object. The ohserver’s eye
level was 2.5m. The range of elevation angles was -2 aremin to 35 arcmin in 1 aremin
steps. The lateral angles were 60, 30, 0, -30, -60 arcmin. The object image wil} he
photo 83-16-23, Figure 6.2, which was taken in 1983. The reference row is 350 and the
horizon is 440 with a height of 18.7m. In this case the horizon row was moved down
into the foreground to compensate for part of the hill that is cutoff by the horizon.
This adjustment produced a better matching simulation than the real horizon level

of 410 did.

The initial three atmospheric parameter sets were (a=8000, b=3000), (a=10000,
b=3000), and {a=15000, b=3000). Again the last set produced the most similar
mirage and alfering the width had no effect expect at widths less than 1000m. Addi-

tional iterations with different a parameters yield a bhest match with a=17000m.

Figure 6.6 contains the transfer characteristic plot, Figure 6.7 contains the sim-
ulation mirage, and Figure 6.8 contains the real mirage. The transfer characteristic
plot shows that the lower segment will consist of a stretched upright into a stretched
inverted region. This will be topped by an upright image. The upright image will

have a large scale and be very small.

Both images show a stretched image of the hill at the horizon, a stretched inverted
image hanging above the horizon, and a squeezed upright image above the inverted

image. Both photos have a band of dark connecting upper and lower images (some-
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what hard to see). The overall shapes compare well. The differences in shape detail
can partially be attributed to differences between source image and the real shape of

the hill and different snow distribution over the hill.

6.3 Sailboat Mirage

In Morrish’s [29] work he suggests a temperature profile which might exist over a
warm lake on a cool summer day. He later processes a sailboat outline to see how it
was distorted. He used a two dimension ray tracing program. The same temperature
profile is given in data set Set6. The temperature profile equation is 7' = 2.0e* —
0.022430(°C'). The observer and object are 8km apart and the boat is 7m high. The

ohserver’s eve level is 4m.

For our simulation we used a picture of a sailboat as the actual image. The two
dimensional process had spherical shells with radius larger than the earth’s radius.
To match this process we will select (a=100km, b=100km). Also, the atmosphere

will be centered over the observer.

The step size will be 100m, the elevation range -15 arcmin o 40 arcmin in 2
acrmin steps. The lateral range is 60, 30, 0, -30, -60 arcmin. The resulting transfer
characteristic is shown in Figure 6.9, The reference row is 115 and the horizon row
is 511. The resulting simulation is shown in Figure 6.11. Morrish’s result is shown in

Figure 6.12. The source image of the sailboat is included as Figure 6.10 for reference.

The transfer characteristic plot shows a lower segment which will invert and com-
pact followed by a segment which is upright and stretched. The upper segment is

near normal scale and upright.
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Figure 6.9: Set6 Transfer Characteristic Plot

Figure 6.10: Sailboat Image
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Figure 6.13: Transfer Characteristic 21.5km

As expected the data set produced an inferior mirage of an object on the horizon.
Both images feature upright and inverted images. These images do not feature the
third segment seen in the transfer characteristic plot due to the large size of the source
image. The upright image is stretched very similiarly in both images. However, the
inverted image is not stretched as much in our simulation as in Morrish’s figure. The
smaller inverted image is typical of inferior mirages and is predicted by the transfer

characteristic plot.

6.4 SETIM3 Data

This data set was also used by Morrish and is included in Appendix D as data set
SETJM3. In his case the object was a semi circle with a height of 25m. The resulting

mirages are shown in Figure 6.15 and Figure 6.18. For the first mirage the observer-

object separation was 21.5km and for the second it was 21.5km.
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Figure 6.14: Setjm3 21.5 km
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Figure 6.15: Morrish’s 21.5km Mirage



CHAPTER 6. COMPARISONS TO KNOWN SITUATIONS 116

2 Obfoct meters)

Figure 6.16: Transfer Characteristic 20km

For our simulation we will use (a=100km, b==100km), observer eye level 4m, and
atmosphere centered over observer. The elevations used are -4 arcmin to 20 arcmin in

2 arcmin steps. The lateral angles are 60, 30, 0, -30, -60 arcmin. The step size is 200m.

The resulting transfer characteristic is shown in Figures 6.13 & 6.16 respectively.

The object image used was photo 83-16-23. It contains the Whitefish Summit
which is somewhat like a semi circle. The reference row is 350, the horizon row is
410, and the height is 25m. The resulting simulations are shown in Figures 6.14 &
6.17.

The transfer characteristic plots indicate two transition segments followed by a
compressed upright segment. The first transition segment is from a stretched upright
image into a stretched inverted image and the second zone is from the stretched

inverted image info a upright image.

The first simulation, Figure 6.14, starts with a short upright hill followed by a
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stretched transition zone and an inverted region. Another fransition zone and an
upright hill complete the image. Note in Figure 6.15 that the outline is two thirds
the width of the base of the semicircle at its narrowist. The simulation poses the
same relationship. Since the hill used in the simulation is flatter than a semicircle

the simulation outline does get narrower than the comparing outline.

As expected by examining Figure 6.18 the image in Figure 6.17 is smaller than

the first simulation. The same comments as above apply to these images.



The three dimensional nature of our model gives many opportunities to explore.

7.1 Narrow Atmosphere Experiments

As mentioned earlier the width of the atmosphere was not a significant contributing
factor to the mirage. Using the TB8-79-4 mirage the following series of images will
show the same mirage with different atmospheric widths. We will start with an

atmosphere with near earth radius size and step down rapidly.

Figure 7.1 contains the first four images. The width of the corresponding at-
mosphere is shown below each image. The first image has an atmosphere width of
6000km which approaches the earth’s radius of 6730km. Each following image has a

width an order of magnitude smaller. All four images are essentially identical.

The second Figure 7.2 contains six images. The 1000m image is the starting point
at which atmospheric width becomes a contributing factor. Each image shows the

effects of successively narrower atmospheres. The final image with width 125m was

119
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the narrowest atmosphere that 3d_ray could still trace. In all cases the atmosphere

length was 17000m. The elevation angles traced were -2 arcmin to 35 arcmin in 2

arcrin steps. Lateral angles were 60, 30, 0, -30, -60. The step size was 200m except

for the last three images which used 100m or less.

We can conclude that in this case the wide atmospheres provided essentially the

same conditions in the range of rays that were traced. Such large widths would create
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fairly similar shapes around the origin. Shells which would be fairly flat and uniformiy
spaced. Unce the width approached within an order of magnitude of the width of the
object the atmosphere width became a contributing factor. As the atmospheres got
narrower the point was reached when the spacing between layers changed near the area
of the object. And as the atmosphere continued to get narrower the layer spacing
narrowed as well. Due to the elliptical shape of the shells the sides would narrow
faster than the central portion. This narrowing is demonstrated by the narrowing
sky 1mage. Also notice that the ground hill image remains relatively unaffected in
all the images. The lower shells would be less affected by narrowing than the upper

shells,

While more analysis with other images and situations needs to done it is reasonable
to say that for a large selection of mirages the atmospheric width is not a critical factor
in forming the mirage. A wide range of conditions could produce essentially the same

mirage.

7.2 Observer Displaced to One Side

The ray tracing model was designed to allow the observer mobility within the model.
Until now however there has been no opportunity to utilize this feature. The main
reason was that earlier analysis was two dimensional and we where comparing our
results with the earlier results. Again using the TB8-79-4 mirage. The following
images will show the view of the observer if the observer where moved at a constant

distance from the object’s center at various angles to the x axis.

Figure 7.3 shows most ol the observer locations used, the ohject plane, and the
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outer ellipse of the atmosphere. The observer was approximately 10km form the
origin at each location. Figure 7.5 contains the first six observer locations and Figure
7.6 contains the other six. Under each picture is a letter and two numbers. The first
number is the x location and the second number is the y location. The letter refers
to an observer location in Figure 7.3 if present. At 200m the mirage is still essentiaily
the same. By 400m the shape has begun to shift. At 600m it no longer looks like the
original. In the 800m and 1km images a new mirage has emerged with a small upright
image over a larger inverted image. In each case the observer is approximately 10km
from the origin.

The series continues in Figure 7.6. The inverted image continues to grow in
the next three images. Then somewhere between 2250m and 2500m the mirage has
disappeared. From Figure 7.3 this appears to be at the edge of the atmosphere. At
3000m and 35000m more of the hill is exposed which leads to a normal appearing
image. All the images used a transfer characteristic with the same ray groups. In the

5000m image the hill 1s appearing lower than it did in the earlier pictures.

Also to verify that symmetry applied for the observer’s location an image was
processed for -2000m. This image is compared to the 2000m image in Figure 7.4. As

expected the images verify that symmetry exists.

Over a narrow range of a few hundred meters essentially the same mirage will be
seen. Over a larger range the image gradually altered shape until a point was reached

at which the sky image disappeared.
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7.3 Sunset Effects

This final experiment will try to replicate aspects of the Novaya Zemilya effect. The
Novaya Zemlya mirage exhibits a ducting window showing some object beyond the
horizon. The case we will experiment with is when the sun’s image is trapped in the
duct and transported from beyond the horizon to the observer’s view. This effect is
explored in Lehn’s paper “The Novaya Zemlya effect: analysis of an observation”.

(17}

The temperature profiles used in the original paper are given in Appendix D as
data set TUS.DAT and TG4.DAT. The only difference is the observer’s height which
was adjusted until transfer characteristics similar to the original was produced for
both Phase I & II profiles. In our case for Phase [ the observer height was 27.98m
and for Phase 11 it was 100.1m. The originals were 24.5m and 104.5m respectively.
The earlier atmosphere model included pressure variations in its ray path calculations

while our does not which could account for some of the difference in heights.

In Figures 7.7 & 7.11 the eye angle is the local uncorrected angle of the ray start
point. The exit angle 1s the angle of the ray as it reaches the object distance with
respect to the imposed rectangular coordinate system. Both of Lehn’s plots feature
corrected eye angles to include atmospheric tilt and atmosphere escape angles with
respect to the local observer position. To realign our transfer characteristics we need
to add 6 arcmin to both the observer and exit angles to account for atmospheric
tilt. Next to make the exit angle with respect to the observer location we need to
subtract the base angle of the observer. For the Phase 1 case the observer stands at

26400m which corresponds to a base angle of 14.2 arcmin and in the Phase 1I case
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iigure 7.10: Left side is the 1:4%am series. Right side is Phase 11 series at
2:06am.
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the observer stands at Om which corresponds to 0 arcmin. Finally the additional
atmospheric refraction required to exit the atmosphere is 33.5 arcmin for the Phase
I case and 39 arcmin for the Phase 11 case. In summary for the Phase I case add 6
arcmin to the eye angle and subtract 41.7 arcmin from the exit angle to give escape
angle. In summary for the Phase II case add 6 arcmin to the eye angle and subtract
33 arcmin from the exit angle to give escape angle. Both transfer characteristics are

close fo the earlier version once compared on the same reference system.

Figures 7.9 & 7.10 show four image sequences. The upper image is the current
simulation with the sun center at h aremin with respect to the horizon, the middle
image is the simulation from Lehn’s paper, and the lower image is a photo with the -
sun at h arcmin. The first sequence shows the sun at h=-35 arcmin and corresponds
to 1:34am. The second sequence shows the sun at h=-46.5 arcmin and corresponds
to I:4lam. The final Phase I sequence shows the sun at -57 arcmin and corresponds
to 1:49am. The Phase II sequence shows the sun at h=-75 arcmin and corresponds
to 2:06am. All the simulations correspond closely to the actual mirage and earlier

simulation.

It has proven possible to replicate the Novaya Zemlya effect with some minor

modifications to 3d_ray and mir to output angles instead of position.



Conclusions and
tecommendations

The preceding seven chapters have covered a lot of ground, from developing funda-

mentals to discuss specific details.

8.1 Conclusions

In chapter 1 six goals where outlined as the scope of this project. The first goal
involved developing an understanding of ray tracing in a three dimensional atmo-
sphere model. This was accomplished specifically by incorporating plotting routines
in 3d_ray and by observer movement studies in chapter 7. In a more general sense

both programs contributed to this better understanding.

Our second goal was to improve on previous work. This was accomplished through
the successful implementation of predictor corrector methods in the ray tracing pro-

gram. Improved accuracy was achieved.

The third goal was to have a three dimensional ray path plotter and was achieved

133



CHAPTER 8. CONCLUSIONS AND RECOMMENDATIONS 134

by the incorporation of Plot into 3d_ray.

Fourth, to develop a method of applying ray path data to normal images. This was
accomplished by implementing the mir program and validated by the comparisons in
chapter 6.

The fifth goal was to analysis several typical data sets and was accomplished by

the work discussed in chapter §.

Finally, goal six, which was to explore the implications of the ellipsoidal atmo-
sphere, was accomplished through the completion and verification of the main pro-

grams, and also through the experiments of chapter 7.

We can conclude that the major goals of this project were accomplished. The
two programs 3d_ray and mir have been verified as far as possible and have proved
reliable. Also, that many new and interesting possibilities for study exist as a result

of this work.

8.2 Recommendations

We have verified the two programs and done some basic exploration. Based on this

the following recommendations are proposed:

1. Further study of atmospheric shape and corresponding phenomena be

made.
2. Further study of observer location and corresponding phenomena be made.

3. Refine the mirage simulator in terms of foreground modeling and its in-

terpolation process.



CHAPTER 8. CONCLUSIONS AND RECOMMENDATIONS
4. Seek to use larger image files which will result in more detailed mirages.

5. Study the ray paths themselves to develop a better understanding of the

interaction of ray path and atmospheric shape.



l_ray.c

#include <stdio.h>
#include <stdlib.h>
#include <math.h>
#inciude <float.h>
#include <string.h>
#include <malloc.h>

/st sek s fesk ol ke s e fe s od o fl k feotfeke ha kel el ff k s ol ok R ok ok ok o sk ok sk ek ke e e/

/#*
Ve
IE:
VL
VL
VL
VLS
/*
Ve
/*
/%
/%
VE:
IE:
/%
VEs
/*®
I
/*
VL

RAY TRACING */
Working date: 0CT 11, 1890 */
Includes new ellipse model */

*/
This program traces the path light rays travel through the atmosphere. %/
The atmosphere is modelled as a series of confocal ellipsoids x/
vhich are concave toward the earth and represent isothermal layers of %/

air. A three dimensional cartesian coordinate system is imposed such =/
that x planes are parallel to the object plane, the z planes */
represent height, and the y planes are perpendicular to object plans. #*/
The center of the coordinate system is embedded below the surface of  */

the earth in such a way that where the major axis of the ellispoids */
touchs the earth is at zero height, and that the center is below the =/
highest point of the earths spherical surface. #/
The observor can be arbitrarily placed on the earth’s surface. The #/
ellipsoids are defined by specifing the size of the outer ellipsoid */
and using temperature profile data to determine the interior ellipsoids%/
*/

Written by Wesley J Friesen, University of Manitoba, Winnipeg */
*/

/*****#**#********************#****##*#**$************#$*$*¢***************/

/% Definition of Constants #/
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#define erad 6.37e6 /* earth radius %/

#define kelvin 273.15 /% add to celcuis to get kelvin #/
#define eyel 1.8 /% eoye level of observor */
#define minutes 3437.748770784938854435 /% minutes/rad =/
#define pi 3.14159265358979323848

#define SIZE 60 /% maximum number of ellipsoids #/
#define INDEX(value) {1+(0.0799/((value)+kelvin)))

#define SQR(value) ((value)#*(value))

#define SQRT(value) (pow{(value),0.5))

#define TRUE 1

#tdefine FALSE 0

#define LARGE 1.0el2 /* radius for a styraight line */

/% Definition of Structures +/

struct vector
{

double x;
double y;
double =z;

};

struct ellipscidata

{

double &;

double b;

double c;

double temp;

}; /% a,b,¢, eguation parameters %/

struct piansnum

{

doubls a;

double b;

double c;

double d;

¥ /% a,b,c binormal direction numbers of plane axtby+cz+d=0 */

/* Definition of New Types */
typedef struct vector vec;
typedef int bool;

typedef struct ellipscidata elp;

typedel struct planenum plane;

/% Function Definitions %/
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void inputdata(elp [1,vec #,double *,double [1,int #,FILE *);

/¥ read input dats ®/

void setupshells{elp [],int #,double *);

/% calculate a b ¢ for each ellipsoid %/

void conv_coord(vec *,double *,double [],double #,double *);

/% convert surface coords to cartesian %/

bool outside(elp #,vec #,double};

/% determine if point is outside given ellipscid %/

bool on{elp *,vec *,double);

/% determine if point is on a given ellipscid */

void get_destn(vec #,vec #,double *,double *,vec *,double *,double *):
/* where are we looking to */

bool line_intercept{elp *,vec *,vec *,vec %,double,double);

/% find intercept with outer ellips */

void dir_nums(vec #,vec %, vec %);

/#find direction nums of line ab */

void ellip norm{vec *,elp *,vec %,double);

/¥-norm direct of ellip at point #*/

void normalize(vec *):

/* normalize given vector */

void plane_of_sight{vec *,vec *,plane *,vec #%);

/% find plane of sight nums */

void sphere_centre(double *,plane #,vec *,vec #*,vec #*);

/% determine sphere center */

void fit_ellip(vec %,elp [],elp #*,int,double);

/% find ellipseid nums for ellipsoid through peint =/

veid sphere(plane #,vec *,vec %,elp ¥,elp #,elp [],double *,double *,int,
vec *,bool,double);

/% find new direction for ray path and radius #*/

void tangent{plane ¥,vec #,vec *,vec *);

/% find ray path tangent #*/

void new_plane(plane *,vec *,vec #,vec *);

/#* new plane of sight nums */

void angle(vec *,vec #*,double *);

/% find angle between ray path tangent and refraction gradiemt */
void inter_ellip dist{vec *,vec *,elp [],elp #,double #,double *,in%t,double);
/* distance from point to next ellipsoid along gradient #/

bool grounded(vec *,double #);

/% flag if point below ground level */

bool exor(bool,bool);

/% find excliusive or %/

boeol hit_object_plane(double *,vec *);

/# determine if we’re there %/

bool intercept{elp #,vec *,bool,double,plane *,double *,vec #*,double);
/% test for intercept with next ellipse */

void sphere_intercept{vec *,vec *,vec #,doubls *);
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/¥ grad line intercept with ground #/

void move(vec *,vec *,plane *,double %);

/% advance the ray along path %/

void locate_isotherm{elp *,vec #,bool,vec *,plane ¥,double *,double,double);
/% find intersection with given ellipse =/

void cerrection{double #,double,plane #,plane *,vec *);

/# average old value with new to provide corrected value */
void plet(char [1,vec far *,int *,int [1):

/% function to plot the ray paths #/

void Drawhxes(float,float,float,float,float,float,float,float);
/% draw the plot axes %/

void RayMenu(float,float,float,float,float,float);

/# display menu options for plot screen %/

float Round0ff(float);

/% round off function */

void Convert{vec far *,int,int [28],float,float,float,float):
/% convert 3d to 2d visual coordinates */

void Conv_to_earth{vec *,double)};

/% convert point coordinates to earth surface point %/

void find_ground(double,vec *,double *,vec *,plane *,double *);
/* ground find function %/

/¥ Mainline #/

main{)

{

/# Declare Variables #*/

FILE #out: /% file to store output */

elp ellip[SIZE]; /% ellipsoidic shell data */

elp nexelp,curelp; /+* vector containing next, current ellipsoid data %/
elp interelp; /% vector for an intermediate fit ellipss =/
vec obs; /* observor location */

vec mapl2]; /% actual loc and obs loc */

vec destn; /* point the eye belisves it is seeing %/
vec point,oldpt; /* current locatiom on ray path %/

vec line; /% direction numbers for ray path line */
vec centre; /¥ centre of sphere on which ray travels ®/
vec norm; /% norm direction nums */

vec tan,oldtan; /% tangent to ellipse at point #/

vec huge #rays; /¥ all points calc for current ray group*/
double sight[6]; /% sight angle ranges %/

double obj; /* object plane location %/

double base_angle; /#sighting angle due to sarth curvature %/
double radius,oldradius; /% radius of ray path axc %/
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double shift; /# stepping variable for locating intercepts */
double hor,ver; /% loop variables %/

double iterate; /% iteration step size */

double origin depth; /* distance to earth surface at origin */

beol finished; /#% current ray traced has been terminated flag */
bool upward; /* flag to indicate is rising through the shells =/
int ellipnum; /% number of shells in atmosphere */

int c,index; /% counters */

int lastindex; /* count for last point of previous ray path #/
int NumberOfRay; /% ray count =/

int NuwPoint[28]; /% count of points in each ray %/

int plotfl,print; /% flags to invoke these features %/

int output; /% flag to invoke storage of output %/

plane plofs,oldplos;/+ plane of sight data */

char title[B80]; /% title to place over ray plot %/

printf("Would you like to plot the ray paths? 0=N0\n");
scanf ("%d",&plotfl);

if (plot£l!=0)

{

/% give opportunity to exit a set mode %/

printf("RAY TRACING WITH HALG\n");

printf("HAS HERC GRAPHICS MODE BEEN SET 7 O=KG\n"};
scanf("%d",&c);

if(c == Q)

{

return{~1};
3}
¥

printf{“Would you like to see the ray points? 0=HND\n");

scanf ("%d", &print};

cut=NULL;
/* open storage file %/
out=fopen('3d_0OUT","w");

if (out==KULL)
{

output=0; /% file could not be opened %/

printf("The storage file could not be opened. No storage will occur.\n");

}

/% make sure memory is allocated %/
if ((printt=0)||(plotfii=0))
{
rays={vec huge *) halloc(3500L,24};
if (rays==NULL)
return(-1}; /% maxium # of ray points is 3500 */

¥

140




APPENDIX A, 3D_RAY.C 141

/* get the data and do setup work #/

printf(“Enter iteration step size(in m).\n"):

geant (“Y1L"  &kiterate); /¥ step size */

printf("step size=%f (m)\n",iterate};

fprintf (out,"step size=%f (m)\n",iterate);
strepy(title,"Ray Path Plot 3d“);
inputdata(ellip,&obs,&obj,sight,ellipnum,out);
setupshells(ellip,&ellipnum,&origin_depth);
conv_coord(&obs,&obj,sight,&originmdepth,&base_angle);

/% display working data */

printf("ellip: a b c tenp index\n");
fprintf(out,"ellip: a b c temp index\n'");
for (c=0;c<eilipnum;c++)

{

printf("%8.3f %8.3f %6.3f %8.5f %10.8f\n",elliplc].a,elliplcl.b,elliplec].c,
ellipfc].temp, INDEX(ellipic].temp));

fprintf(out,"%8.3f ¥%8.3f %6.3f %8.5f %10.8f\n",elliplc].a,elliplc].b,elliplc].c,
ellip[cl.temp,INDEX(ellip[cl. temp));

}

printf("Base Angle=}2.8f (rad) Origin Depth=%2.8f (m)\n", base_angle,
origin_depth);

printf ("Observer:¥%f %f %f (m)\n",ohs.x,obs.y,obs.z);
printf("Object Plane:%tf (m)\n'",obj};

printf{"Vertical Sight Angles: Start=}f Stop=%f Increment=%f {(rad)\n",
sight[0],sight[1],=ight[23);

printf("Horizontal Sight Angles: Start=}f Stop=Yf Increment=%f (rad)\n",sight[3],
sight[4},sight[5]};

printf(

"\nTransfer Charateristic coordinates with respect to sarth’s surface.\n");
printf("\n apparent versus actual location\n'');
printf(

FE i ¥ =z X y z\n”) ;

/* output to storage */
fprintf(out,"Base Angle=i2.8f (rad) Origin Depth=V/2.8f (m)\n",base_angle,
origin_depth);
fprinti{out,"Observer:%f %f %f (m)\n",obs.x,obs.y,obs.z);
fprintf(out,"Object Plane:¥f (m}\n",ebj);
Iprintf(out,"Vertical Sight Angles: Start=%f Stop=Y%f Increment=%f (rad)\n",
sight[0],sight[13,sighel2]);
fprintf(out,
“Horizontal Sight Angles: Start=if Stop=Yif Increment=Vf (rad)\n",sight[3],
sight{4l,sightIs]):
fprintf(out,
"\nTransfer Charateristic coordinates with respect e earth’s surface.\n");
fprintf{out,"\n apparent versus actual location\n"};



APPENDIX A, 3D_RAY.C 142

fprintf(out,
w x ¥ Z X ¥ z\n'');
radius=LARGE;

/* begin ray tracing/outer leop #/
for (hore=sight[3]; (hor<ssight[4]&&=ight[51>0.0) 1] (hor>=sight{4]&&sight[63<0.0);
hor+=sipght{5])

{

index=0; /% initialize various counters %/

lastindex=0;

NumberOfRay=0;

printf{"“Hor Sight Angle=%f (min)\n",horiminutes);

fprintf(out,"Hor Sight Angle=%f (min)\n",hor*minutes);

/% inner loop */
for (ver=sight[0];(ver<ssightifl&&sight[2]1>0.0)}|(ver>=zight{1]&&sight[2]<0.0);
ver+=gight[z])

{

upward=FALSE;

get_destn(&destn,&line,&hor,&ver,&obs,&obj,&base_angle);

if {grounded(&destn,Zorigin depth)) /* then find earth intercept %/

sphere_intercept(&line,&destn,&obs,&origin_depth);

map[0]=destn;

/% check if ray missed atmosphere */
if (outside(&ellipl0],&obs,origin_depth)ak
fline_intercept (kellipl0],&line,&point,&obs,origin_depth,iterate})
{
mapli]=destn;
printf("iE UE YENtYE %f YE\n",mapl0].x,mapl0].y,mapfol.z,
mapl1].%,mapii] .y, maplil.z);

¥
else /+* super big else statement */
{ /% ray does hit atmosphere */

if (outside(&ellip[0],&obs,origin_depth))
{ /* obs outside atmos %/
curelp=ellip[0];
nexelp=ellip[1];
if ((print'!'=0)|i(plotfli=0))
{
rays[index++]=obs;
rays[index++]=point;
}
¥
else
{ /% obs inside atmos */
point=obs;
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Tit _ellip(&point,ellip,&curelp,ellipnum,origin_depth);
point.x+=10%line.x; /% project along line */
point.y+=10*line.y;
point.z+={0%line.z;

if (outside(&curelp,&point,origin_depth))

{ /% initial angie is upward %/

c=ellipnum-1;

point=obs;

vhile{outside(&elliplc],&point, origin_depth))

¢y
nexelp=elliplcl;
upward=lupward,;

}

else

1 /% initial angle downward %/

c=0;

point=obs;
while{loutside(&ellip{c],&point,origin_depth))
ctt;

nexelp=elliplc];

¥

if ((print!=0)]|(piotfl!=0))
rays[index++J=point;
¥ /* end obs inside atmos */

/% compute initial ray information %/
ellip_norm(&point,&curelp,&norm,origin_depth); /* downward pointing norm */
plane_of_sight(&line,&norm,&plofs,&point); /# interchange line & norm
for upward peinting norm */
spher@,centre(&radius,&plofs,&line,&point,&centre);
sphere(&plofs, &centre,&point,kcurelp, &nexelp,ellip,dradius, dorigin_depth,
ellipnum, &oldtan,upward,iterate};

/% advance light ray location towards object plane #/
oldpt=point;

oldplos=plofs;

oldradius=radius;

point.x~=iterate;
move(&point,&centre,&plofs,&radius);

/% ray iteration loop %/
finished=FALSE;

while ('finished)

{ /% begin while loop */

/% check if ray is outside last isotherm, if so */
/# advance ray to the object plane #*/
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i? (curelp.c==sllip[e].céfupuward)

{ /# begin loop =/
while((thit_object_plane(&obj,&point) &&igrounded{&point,&origin_depth)))
{

if ((print!=0)]|(pletili=0))
raysiindex++l=point;
point.gx-=iterate;
move(&point,&centre,&plofs,&radius};
T
} /% end loop */
else

/* check if ray is inside all isotherms, if so advance till repenetration
or grourded or hit the object %/
if ((curelp.c==ellip[ellipnum-13.c)&&!upward)
{ /* begin loop */
while (!hit_object_plane(&obj,&point)&&!grounded(&point,&origin_depth))
{
if ((printf=0)]|{(plotfl!=0))
rays[index++]=point;
point.x-=iterate;
move (&point,&centre,&plofs, fradius);
if (outside(&elliplellipnum-1J,&point,origin_depth)}&&(point.z>0,0})
{
locatemisotherm(&curelp,&point,upward,&centre,&plofs,&radius,
{oldpt.x~point.x),origin_depth);
nexelp=elliplellipnum-2];
upward=TRUE;
break;
¥
}
} /% end loop %/
elie

/#* check if ray has penetrated the next eip */
if (intercept(&nexelp,&point,upward,iterate,&plofs,&radius,&centre,
origin_depth))
{ /# begin penetration */
locate_isotherm(&nexelp,&point,upward,&centre,&plofs,&radius,
(oldpt.x~point.x),origin_depth);
sphere(&plofs,&centre,&point,&nexelp,&curelp,ellip,&radius,&origin_depth,
ellipnum, &tan,upward, iterate);
correction(&radius,oldradius,&plofs,&oldplos,&oldpt);
/# curelp and nexelp are interchanged so that the correct values are fnd */
sphere_centre(&radius,&plofs,&oldtan,&oldpt,&centre);
point=oldpt;
point.x-=iterate;
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move{&point, &centre,&plofs,&radins);
if (grounded(&point,&origin_depth))
find_ground(iterate,fpoint,&origin_depth,fcentre,&plofs,&radius);

if (intercept(&nexelp,&point,upward,iterate,&plofs,&radius,&centre,
origin_depth))
{ /% corrected point still intercepts #/
locate_isotherm(&mexelp,&point,upward,centre,&plofs,&radins,
(0ldpt.x~-point.x),origin_depth);
curelp=nexelp;
c=0;
while(ellip[c].c>=curelp. ck&c<ellipnum)
ct+,
if (curelp.c!=elliplellipnum-1].c) /# inner shell =/
if (‘tupward)
if (curelp.cl=elliplcl.c)
nexelp=ellip[c];
else
nexelp=elliple+1];
else
if(curelp.cl=elliplc-i].c)
nexelp=ellip[ec-1];
elge
nexelp=ellipfic-21;
if (ecurelp.c==ellip[0].c&fupward) /+ outer shell #/
nexelp=ellip[o];
}
else /% cannot find intercept so drop through to repenetrate test #*/
{
oldradius=radius;
oldpleos=plofs;
goto rep;
T
} /% end penetration */
else

/% check if ray repenetrated the current isotherm %/
rep: if (exor(cutside{&curelp,&point,origin_depth),upward))
{ /#% begin repenetration */
upward=!upward; /* change direction flag =/
locate_isotherm(&curelp, &point,upward, &centre,&plofs,&radius,
{oldpt.x~point.x),origin_depth};
sphere(&plofs,&centre,kpoint,&curelp,&nexelp, ellip,&radins,&origin_depth,
ellipnunm,&tan,upward,iterate);
correction(&radius,oldradius,&plofs,&oldplos,&oldpt};
sphere_centre(&radius,&plofs,&oldtan,&oldpt,&centre);
point=oldpt;
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point.x—=iterate;

move{&point, &centre,fplofs, kradius);

if (grounded(&point,&origin_depth))
find,grouﬂd(iterate,&point,&origin_depth,&centre,&plofs,&radius);

if (exor(outside(&eurelp,&point,origin_depth), lupward))
{ /#* corrected ray still repenetrates %=/
locate_isotherm(&curelp,&point,upward,&centre,&plofs,&radius,
(oldpt.x~point.x),origin_depth);
¢=0;
while(foutside(&elliplc],&point,origin_depth))
cHd;
if (curelp.ct!=elliplellipnum~1l.c} /% inner shell %/
if (tupward)
if (cureip.cli=elliplcl.c)
nexelp=elliplecl;
else
nexelp=ellip[e+1];
else
if(curelp.ci=elliple~1].¢)
nexelp=ellipic-17;
else
nexelp=ellip[c-2];
if {curelp.c==ellip[0].c&&upward) /* outer shell %/
nexelp=ellip[0];
}
else /* ray does not repenstrate so fit ellipse instead */
{
fit_ellip(&point,ellip,&curelp,ellipnum,origin_depth);
upward=!upward;
¥
} /* end repenetrations %/
else

{ /* ray did not penetrate or repenetrate %/
/% begin fit */
fit_ellip(&point,ellip,&interelp,ellipnum,origin_depth);

/% interelp is first since point is through it and then curelp #/
sphere(&plofs,&centre,&point,&interelp,&curelp,ellip,&radius,&origin_depth,

ellipnum, &tan,upward, iterate);

correction(&radius,oldradius,&plofs,&oldplos,&oldpt);
sphere_centre(&radius,&plofs,&oldtan,&oldpt,&centre);

point=oldpt;

point.x-=iterate;

move{&point,&centre,&plofs,fradius);

if (grounded(&point,&origin_depth))
find_ground(iterate,&point,&origin_depth,&centre,&plofs,&radius);



APPENDIX A, 3D_RAY.C 14

if (exor(lcutside{&nexelp,kpoint,ovigin_depth),upward))
{ /% after correction the ray path did penetrate the nexelp */
locate_isotherm(&nexelp,&point,upward,&centys,&plofs,&radiusg,
{oldpt.x~point.x),origin_depth);
curelp=nexelp;
c=0;
while{elliplcl.c>=curelp.ci&c<elliprum)
ct++;
if (curelp.c!=elliplellipnum-1].¢c} /* inner shell #/
if (lupward)
if (curelp.ci=ellip[c].c)
nexelp=z=ellip(c];
else
nexelp=elliplc+1];
else
if(curelp.c!=elliplc-1].¢)
nexelp=elliplc-13;
else
nexelp=elliplc-2];
if (curelp.c==ellip[0].clk&upward) /% outer shell =*/
nexelp=ellip{0];
} /% end of penetration */

else if (loutside(&ellip[0],&point,origin depth)) /% normal condition */
fit_ellip(&point,ellip,&curelp,ellipnum,origin_depth);

else /* the new point is outside atmosphere */
{
upward=‘tfupward; /* treat like a repenetration */
locate isotherm(&ellipf0],&point,upward,kcentre,&plofs,&radius,
(oldpt.xz-point.x),origin_depth);
curelp=nexelp=ellip[0];
¥
T /% end fit %/

/* check if light ray kas hit object */
if (hit_object_plane(&obj,&point))
{ /% begin object */

finished=TRUE;

point.x=obj;

move{&point,&centre,&plofs,&radius);

if (grounded(&point,&origin_depth))

{ /* point at object plane was below ground %/
find_ground(iterate,&point,&origin_depth,&centre,&plofs,&radius);
get_destn(&destn,&line,&hor,&ver, obs,&point.x,4base_angle);
map{0]=destn;
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¥

if ({printi=0)||{pletfli=0))
rays{index++]=point;

} /% end object */

else

/% check if light ray has hit the ground #*/
if (grounded(&peoint,&origin_depth))
{ /# begin ground */

finished=TRUE;
find_ground(iterate,&point,&origin_depth,&centre,&plofs,&radius);
get_destn(&destn,&line,&hor,&ver,&obs,&point.x,&base_angle);
map[0]=destn;

it ((print!=0)||(plotfl!=0))

rays[index++}=point;
¥ /* end ground */
else

/¥ otherwise advance ray until at inner surfaces/

if (curelp.cl!=elliplellipnum—1].c)

{
sphere(&plofs,&centre,point,&curelp,&nexelp,ellip,&radius,&origin_depth,

ellipnum, &oldtan,upward,iterate);

if ((print!=0)|](plotii!=0))
rays[index++i=point;
oldpt=point; /# save current values for use in predictor #*/
oldplos=plofs; /* corrector corrections to ray projections */
oldradins=radius;
point.x~=iterate;
move(&point,kcentre,&plefs,krading);
if (grounded(Zpoint,&origin_depth))
find_ground(iterate,&point,&origin_depth,kcentre,&plofs,&radius);

¥

} /# end while loop #/

NumPoint [NumberOfRayl=oindex~lastindex;

Number0fRay++;

lastindex=index;

map[i]=point;

/% convert to earth surface coordinates %/

Conv_to_sarth(&map[0],origin_depth);

Conv_to_earth(&map{i],erigin_depth);

printf("¥%+11.5F ¥%+11.5F %+i1.8E\t%+11.5F Y+1i1.5F %tii.6f\n" ,mapl0ol . x,
map[0] .y, map[0] .z, mapl1d.x,maplil.y,map[1].2);

fprintf(out,"f+11.5f %+11.5% %+11.62\t¥%+11.5F %+11.5F %+11.6f\n",mapl0].x,
mapi0] .y, map[0].z,maplt] . .x,mapl1].v,mapfi}.2z);

} /% end of if else loop for inside atmosphere intercept %/
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} /% end of inner counter loop */

if ((print!=0)||{plotfli=C))
for(c=0;c<index;c++)
{
rays[cl.z+=erad~sqrt (SQR(erad)-SQR(rays[cl.x)~S5QR(rays[c] .y))-origin_depth;
if {printi!=0)
{
printf("%f 4T Wi\n",raysicl.x,rayslc]l.y,rayslc].z);
Tprinti{out, it %I %i\n",rayslcl.x,rayslcl.y,rayslcl.z);
1
}

if (plotfl!=0)
{
if (HumberOfRay <= 25}
{
plot(title,rays,&Number0fhay,NumPoint);
}
else
printf("Exrror: Too many Rays to plot\n');
¥
/% rem call plot */
} /* end of outer counter loop */

return(0); /# return good signal =/
} /* end of mainline program */




#include <stdio.h>
#ineclude <stdlib.h>
#include <math.h>

#include <float.h>
#include <string.h>
#include <malloc.h>

/et e et stk e e et s et sk ok el s et s ol ol sk AR el sk kot ok ok ok ok kR ek e e o/

/% RAY TRACING */
/* #/
/#* Written by Wesley J Friesen, University of Mamitoba, Winnipeg ®/

/% Working date October i1, 1991,
/% Oct 11, modified lateral range to start,stop,increment =/
F* w/

/R o ko s ook e ok e et ek Ao ol R el e ke ol ok e e ok e s e ke sk ol s e ke i/
/% Definition of Constants #/

#define erad 6.37e6 /% earth radius %/

#define kelvin 273.18 /% add to celeuis to get kelvin */
#define eyel 1.8 /* eye level of observor %/
#define minutes 3437.746770784938054435  /# minutes/rad =/
#define pi 3.14158265358979323846

#idefine SIZE &0 /% maximum number of ellipsoids */
#define INDEX(value) (1+(0.0799/({valiune)+tkelvin)})

#define SQR({value) ((value)=(value))

#define SQGRT(value) (pow{(value),0.5))

#idefine TRUE 1

#define FALSE O

#define LARGE 1.0el12 /¥ radius for a straight line #/

*/
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/% Definition of Structures =/

styuct vectHor
{

double x;
double y;
double z;

};

struct ellipsoidata

{

double a;

double b;

double c¢;

double temp;

}; /% a,b,c, equation parameters */

struct planenum

{

double a;

double b;

double c;

double d;

+; /% a,b,c binormal direction numbers of plane ax+by+cz+d=0 */

/* Definition of New Types #/

typedef struct vector vec;
typedef int bool;

typedef struct ellipsoidata elp;
typedef struct planenum plane;

/% Function Definitions #/

void inputdata(elp [],vec #,double #,double [J],int #%,FILE #);
/% read input data =/

void setupshells(elp [],int *,double #*);

/% calculate a b ¢ for each ellipscid #/

void conv_coord(vec %,double *,deouble [],double *,double #);
/% convert surface coords to cartesian #*/

bool cutside(elp *,vec *,double);

/% determine if point is outside given ellipsoid %/

bool on(elp *,vec *,dounble);

/% determine if point is on a given ellipscid */

void get_destn(vec *,vec *,double *,double *,vec *,double *,double *);
/* where are we looking to #/

151
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bool line_intercept{elp *,vec *,vec *,vec *,double,double);

/% find intercept with outer ellips */

void dir_nums{vec %,vec *, vec *);

/#find direction nums of line ab =/

void ellip_ norm{vec #,elp *,vec #%,double);

/#-norm direct of ellip at point %/

void normalize{vec *);

/% normalize given vector %/

void plane_of_sight(vec *,vec *,plane *,vec *);

/* find plane of sight nums */

void sphere_centre(double #,plane *,vec #,vec #,vec %),

/# determine sphere center ¥/

void fit_ellip(vec *,elp i1,elp *,int,double);

/% find ellipsoid nums for ellipsecid through point */

void sphere{plane *,vec #,vec #,elp #,elp %,elp [],double *,double *,int,
vec *,bool,doubls);

/# find new direction for ray path and radiuzs */

void tangent(plane *,vec ¥,vec *,vac %);

/% find ray path tangent */

void new_plane(plane *,vec #*,vec #*,vec *);

/* new plane of sight nums %/

void angle{vec *,vec *,double *);

/# find angle between ray path tangent and refraction gradient #/
void inter_ellip_dist{vec #¥,vec *,elp [1,elp *,double *,double #*,int,double);
/# distance from point to next ellipscid along gradient #*/

bool grounded(vec #,double #*};

/% flag if point below ground level #*/

bool exor(beol,bool);

/* find exclusive or %/

boel hit_object_plane(double *,vec #*);

/* determine if we’re there */

bool intercept(elp *,vec *,bool,double,plane *,double *,vec *,double);
/% test for intercept with next ellipse #/

veid sphere_intercept(vec #*,vec *,vec #*,double *);

/* grad iine intercept with ground */

void move(vec #,vec ¥,plane *,double #);

/% advance the ray along path */

void locate_isotherm(elp *,vec #*,bool,vec #,plane #,double *,double,double);
/% find intersection with given ellipse */

void correction(double *,double,plane *,plane #,vec #);

/* average old value with new to provide corrected value %/

void f£ind_ground{(double,vec %,double #,vec *,plane *,double *);
/# ground find Ffunction */

/***********$*#*={=**********&************#*********%:*:k*****:}:#*#*##**:}:********/

/% Read in program data
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inputs: none

outputs: @llip[] - contains height and temperature profile

obs - locations of cbserver wrt earth surface

obj - distance along earth surface to object plane

sight - limits of sighting angles in minutes

cnt - number of ellipscidic shells

%/

/ot st o e bk e e el s e sk ool ol ook ook ot el et st e o el ook of s ks ool /
void inputdata(elp ellip[SIZE],vec #obs,double %obj,double sighti6],int %cnt,

FILE #out)

{

char input[86];
int ¢

FILE #fp;

do

{

printf("Enter name of file containing temperature profile(include path)\n");
scanf ("Ys",input);
if ((fp=fopen{input,"r")) != NULL)
{
fgets(input,80,fp);
printf("¥s",input};
fprintf(out,"%=s", input);
fprintf(out,"Enter the a,b coordinates for the outer ellipsoid with a space");
fprinti(out,"” between each number\n');
Tecanf(fp,"%1f %1f",%ellip[0].a,&ellip[0].b);
fprintf(out,"ellip parameters a=4f b={f\n",ellipl0].a,ellip[0].b);
fprintf(out,"Enter the coordinates of the observor wrt temperature ");
fprintf(out, "measurement\nlocation(x y =) with space between numbers.\n");
Iscanf(fp,"%1f %1 ALlf",%obs->x,&obs->y,&obs->z);
fprintf{out,”obs: %f %f %f\n",obs->x,cbs->y,obs->z);
fprintf{out,”Enter distance to object plane from temp measurement Loc{+ve)\n");
fscanf (fp,"%lf",0bj);
fprinti(out,”obj: ¥f\n",*obj);
#obj=-*o0obj;
fscanf (fp,"%i",cnt);
if (*cnt>80)
{
printf{"Number of data points exceeds data limit of 60 pairs\a");
exit;
}
for (c=i;c <=%cnt; c++)
fscanf (fp,"%1lf %1f",&elliplxent-c].temp,ellipl*ent-cl.¢);
fclose(fp);
¥
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elise

printf("Error: Couldn’t retrieve file.\n");
} while ( fp == HULL);
printf(“Enter the elevation start, stop, and incremert angles{min):\n");
scanf ("41f %1f %1f",&sight[0],&sight[1],&sighel2]);
fprinti(out,"elev start:%f stop:if incr:%f\n",sight{0],sight[1],sight[2]);
printf("Enter the positive lateral start, stop and increment angles{min):\a");
scanf ("W1F %1f",&sight[3],&sight[4],&sight[5]);
fprintf{out,"lateral start:%f stop=iif incr:%f\n",sight[3],=ight[4],sight[5]);
¥

e s s s e et oo seakof e s ke e ok e el e R AR O R e R e ok Bk ok ke e/
/* Use data to determine shell parameters in cartesian system. Add a shell at
zero height if none exists.

inputs;: ellip[] - height and temp profile
cnt — number of shells

outputs: origin_depth ~ depth of origin beneath earth’s surface
ellip[] - ellipsoid parameters and associated
temperature

cnt - updated number of shelils
Modified July 27 to remove earth height from shell height
Hodified Nov 6, 1990 to correct conversion process ®/
ks e ek sk st o stttk s ok ok ek o ok ok R R AR AR SRRk s ko e sk ok ok ok sk ek o o ek e/
void setupshells(elp ellip[SIZE],int #cnt,double *crigin_depth)
{
double t,t1,t2;
int ¢;

/% add an ellip at height zero if none exists */

if (ellipl*cnt~i].c!=0,0)

{

ellip[*cntl.c=0.0;

ellipl*cnt].temp={ellip[#cnt] .c-ellip[*cnt-1].c)*(ellip[*cnt-27 . temp-
eliip[*cnt-1].temp)/(ellip[*cnt-2].c~ellipl*cnt-1].c)+
ellip[#cnt-1]. temp;

(*cnt ) ++;

¥

$=ellip{0].a; /% x distance */

t1=ellipl[0].b; /# y distance %/

if (1 > t)

{
*origin_depth= erad*(i-cos(tl/erad));
ellip[0] .b=erad*sin(ti/erad);
ellip[0].a=erad+sin(t/erad);




a4
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*

else

{

#origin_depth=erad®(i-cos{t/erad));
ellipl0] . a=erad*sin(t/erad);
e1lipf0] . bzeradssin(ti/erad};

¥

t=5QR{el1lip[0].a}-SQR(ellip[0].c); /# focal point length */

t1=8QR{ellipl0].b)-SQR(ellipl0l.c); /# focal point length */

Tor (c=1;c<*cnt;c++)

{
ellipfcl.=
alliplci.b

}

¥

SQRT((SQR{eliiplc].c)+t));
SQRT((sQR{elliplc].ci+tl));

£ At s e skok g R R oo o ook ok st ke ok bl e ook ok e ot e o o oot sk aleak ok sk et ok b e de e e R ok ok S ek ook o
/* Convert observer locaticn, and object location from earth surface
distances to cartersian locations. Convert sight angles te radians.

inputs: obs - observer loaction
obj - object location

sight - angles

origin_depth -

outputs: obs,obj,sight — modified data

base-angle - angle of sarth tangent at observer wri

to coordinate system

Modified Oct 10, 1991 to correct observer locatiom conversion.

*/
/3 e e ke e sl sk s ek o ok R o ko o el ol o o ko sk o e e o ok ok skttt e e et ke ok ot/
vold coav_coord(vec *obs,double *obj,double sight[6],double *origin_depth,
double #base_angle)
{

int ¢;

double temp,gamma;

*base_angle=obs->x/erad; /* calc base angie from arc length and radius */
gamma=obs~>y/erad;
temp=erad+obs—>z;

obs—>x=temp*sin(*base_angle);
obs—>y=temp*cos(*base _angle)*sin(gamma);

obs—>zstemp*cos(*base_angle)*cos{gamma)-erad+*origin_depth;

*obj=erad*sin(*obj/erad); /+# convert distance along earth’s curvature
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to straight line */

for {c=0;c<B;c++)
sightlci=sightlc]/minutes; /% convert minutes to radians #/

¥

SR sk sk Ak gk gk ok kol ks ol R ok sk sk R B R R R ek sl ek sl i ok e e/
/% Test if peint outside given ellipsoidic surface
Kodified July 19 to use new shell system w/
Aokl ek Akl sk ok el boiol b ok R Rk R R R R R o ok Rk ok ok ki
bool outside(elp *shell,vec *position,double origin_depth)
{
bool flag;
double zprime;
zprime=position->z-origin_depth+(SQR (position->x)+SQR(position—>y))/2.0/erad;
if (shelil->c==0)
flag=(fabs(position->x)>shell->a) || (fabs(position—>y)>skell->b) ||
(zprime>=0);
else if (zZprime>0.0)
flag = ({SQR(position->x/shell->a)+SQR(position->y/shell~>h)+
SQR(zprime/shell->c}) > 1.0) | (faba(position->x)>shell->a);
else
flag = (SOQR(position->x/shell->a)+SQR(position->y/shell->b) > 1.0);
return flag;

1

/E A g R Ak sk ek ek o ok ok sk ool sk ek ok st sk etk skl et ok o ok SR R ROR R Rk ok ok
/% Test if point within tolerance of ellipsoidic surface
Modified July 19 to use new shell system x/
[k ok ok ek deokohob ok ok sk et etk ok Rk ek ks kbt ok b kb ko Rk ok ek bk kb sk gk s ok /
bool on(elp *shell,vec #position,double origin_depth)
{
double test;
double zZprime;
bool flag;
zZprime=position->z-origin_depth+{SQR(position->x)+SOR(position—>¥})/2.0/erad;
if {shell->c==0)
flag=(fabs(position—>x)<she11—>a)&&(fabs(pesition—>y)<shell->b)&&
(fabs(zprime}<i.0a-5);
else
{
test = SQR((position~>x/shell->a))+SOR((position~>y/shell->b))+
SQR({zprime/shell->c))-1.0;
flag = (fabs(test) <i.0e-5);
T
flag = flagg&(zprime > 0.0); /% nust be on upper half of ellipss %/
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return flag;

¥

R s R ek sl e ek ek st ek ol Rk Sk SRk R o ko R o ek e e s e e e/
/% Find point that the eye thinks its seeing.

inputs: line - tangent vector at peint on ray path
hor - horizontal angle of view

ver - vertical angle of view

obs - observer location

obj - location of object plane

base_angle - view offset due to earth curvature

outputs: destn -~ location in object plane the eyes believes it

is seeing

*/

/s skt s ek ook sk ok ek s s ke e sk skeate e o ko ok ok ke ok ke kb otk Sk kbR ok kR R Rk kb R ok /
void get_destn(vec *destn,vec #line,double *hor,double *ver,vec *obs,double *obj,
double *base_angle)

{

destn->x=%o0bj;

destn->y=obs->y+tan (*hor) # (obs->x-*obj)/cos(*ver++base_angle);
destn->z=obs—>z+tan{*ver++base_angle)=(obs~>x~*obj)/cos(*hor};

dir_nums(obs,destn,line);

}

P e R L e T P PSR P N EEE S L P E R P
/% Find line intercept of line form observer alomg angles ver and hor in
direction line with outer ellip surface

inputs: ellip - given outer ellip
line - direction numbers

obs ~ start location of line
ocrigin_depth - earth surface

iterate ~ step size

outputs: peint — location of intercept
%/

J Ak kR ek AR R R Rk ok R ok ok ok et okok et ol el ook o sk ok sk ol ok sk oo R sk o o st/
bool line_intercept{elp #ellip,vec *line,vec *point,vec *obs,
doubls origin_depth,double iterate)

{

double t;

double shift;

bocl test;
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tegt=TRUE;
t=0.0;
shift=iterate;
*point=#*obs;

if (outside(ellip,point,origin_dspth))
while{outside(ellip,peint,origin_depth)&k(s<erad))
{
t+=ghifs;
peint->x=obs->x+t#line->x;
point->y=obs->y+t*line->y;
point->z=obs->z+t*line->z;
¥
else
{
shift=-iterate;
while{loutside(silip,point,origin_depth)&&(t>~erad))
{
t+=shift;
point->x=cbs->x+t*line—>x;
point->y=obs->y+t*line->y;
point—>z=obs~>z+t*line->z;
¥
by
shift=iterate;
if {Ffabs(:)<erad)
while(lon{ellip,point,origin_depth))
{
shift/=2.0;
if(ontside(ellip,point,origin_depth})
t+=shift;
else
t-=shiit;
point—>x=obs~>x+t*Iine->x;
point—->y=obs->y+t*line->y;
point->z=obs->z+t*line->z;
}
else
test=FALSE;

return test;

}

S ok oo s sk ok s etk ol b ek sk stk okl ok R R kb R e s s ek
/% Normzlized direction numbers fron a to b stored in dir */
SRR ek R R R ook ok sk ol stk o ok e o kol AR KRR sk sk ok sk ok ok ek etk

void dir_nums{vec *a,vec *b,vec *dir)

138
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{
dir=>x=b->x-a->%;
dir->y=b->y-a->y;
dir->g=h~>z-a->z;
normalize(dir);

¥

£ F ok R ek s s o o ok ok et s s ek ol kb s ottt s etk ek ok s R e o o/
/% Find magnitude of a and normalize its components %/
SREE T ok sk ok o e R R R R R R sl e ke ke e e e o ok /
vold normalize(vec =a)
{

double temp;

temp=SQRT(SOR (a->x)+SQR(a->y) +5QR (a->z2) ) ;

a->x/=temp;

a->y/=temp;

a->z/=temp;

¥

/e et s g sk ok ok s ofe ek e el bl sk s ofl b ks el e ke ekl okt ok ok e o ok ok ko o/
/% Hormal vector to ellip at point
Modified July 23 to use new shell system

inputs: pt - point
el - ellip parameters
origin_depth - earth’s surface

outputs: nm =~ normalized norm vector

*/

S e ek ot s s e e ok o s AR ko Ak R ok sk kb ok ek Rk ek Sk kb ok /
void elilip_norm(vec #pt,elp #el,vec #nm,double origin_depth)

{

vec temp;

double z_earth; /* distance from origin plane to earth surface at pt */
if {el->c==0.0)

{

nm->x=-2%pt->x;

nm->y=-2*pt->y;

nn~>z=-2%(pt->z-origin_depth+erad};

}

else

{

z_earthzorigin, depth—(SOR(pt->x)+SOQR{(pt->y) )} /2/erad;
am—>x=-2%pt->x/SOR{el->a)-2+# (pt->z-z_earth) /SQR(el->c)*pt->x/erad;
nn->y=-2%pt->y/SQR(el->b)-2% (pt->z-z_earth)/SGR{el->c)#pt->y/erad;
nm—>z=-2% (pt->z-z_earth) /SQR{el->c);

¥
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normalize(nm) ;

¥

e e s e e s s R Stk Al st ol el e o oo o ol sk ke o ok o ok ok R B bk R e kg
/* Plane of sight is determined by the binormal directions numbers 4,B,C and
D which is dependent on a point in the plane. Ax+By+Cz+D=0.

inputs: a - normal to ellip
b - tangent to ray path
pt - point in plans

outputs: plane - plane parameters 4,B,C,D
x/
/et ek s R R OB ok ket e ekl e oot e et ke o e ok Sl ol ool e e ok ok ke s ekt e e/
void plane_of_sight{vec *a,vec *b,plane *c,vec *pt)
{

vec temp;

/* normal#tangent=binormal =/
temp.x=a~>y¥b->z-a->zxb->y;

temp. y=a->z¥*b->x—a->xi¥b->z;

temp.z=a~>x¥b->y-a—->y*b->x;

normalize(&temp);

c->a=temp.x;

c=>b=temp.y;

c=>c=temp.z;

c->d=-{c->a) #pt->X—c—>bEpt->y=c->cipt—>a;

1

/et s sk ek ok o e A ok SR AR o b stk s ook e oo s s st ke ke o sk ke ok o ok e ok sk e ok o ok ek /

/*% The centre if found by determining a vector perpendicular to the ray path
in the negative direction. Moving from the point along this vector a total
of radius determines the centre point.

inputs: radiug - radius of ray path
Pl - current plane of sight

line - tangent vector to ray path

pt - leocation on ray path

outputs: ¢nt - centre for ray path

*/

JEEF AR Ak ok ok o ok o b kol s A ek e oo ok ek ek e s b s R O
void sphere_centre(double *radius,piane #*pl,vec *1line,vec *pt,vec *cnt)

{

vec ppd; /* perpendicular - lecal direction of -norm */

/#* evaluate binormal * tan = -norm cross product */
prpd.x=pl->b*line->z-line->y¥pl->c;
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ppd.y=pl~>c*line->x~line->z#pli->a;
ppd.z=pl->a*line->y-line->x¥pl->b;
normalize (&ppd);

cnt->x=pt->x+ppd.x* (¥radius);
cnt->y=pt~>y+ppd. y* (*radius};
cnt->z=pi->z+ppd.z*(*radius);

¥

SR sk sk ook ok dok ks sk gl fe ek g ook Rk R R Ak kR R bk kR Sk Rk A Rk ok
/* Given a point find the ellip parameters that Fit through this point and
interpolate temperature data to assign a temperature to this ellip.

inputs: pt ~ point
base_ellip - array of shells
ellipnum - number of ellipsoids
origin_depth - earth’s surface

outputs: newelp - new ellip data
*/
ek oo e ks e e e e el s et el o ekl e ek A s ol R R ol s e ok sl ek e s sk ok ok ek /
void fit_ellip(vec #pt,elp baseelp[SIZE],eip #newelp,int eilipnum,
double origin_depth)
{

double t,t1; /* use t,tl to store foci =/

double shift;

int c¢;

/¥ focii of ellipsoids */
t=3QR{baseelp[0] .a)-S0R(baseelpi0}.c);
t1=3QR(baseelp[0].b)~SQR(baseelp[0].c);

c=0;
/% find ellips surrounding point */
while({!outside(&baseelplcl,pt,origin_depth)&&(c<ellipnum)))
c++;
if (c==0)
et
else if (¢==ellipnum)
{
==
shift=bageelpl[c].c-baseelplc-1].c;
}
else
shift=baseelple~1].c~baseelplc].c;
newelp->azbaseelplc].a;
newelp-rb=baseelplc].b;
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newelp—>c=baseelplc].c;
newelp->temp=baseelp[c].temp;
/% move in parameters wntil pt is on ellip %/
do
{
shift/=2.0;
if {outside{newelp,pt,origin_depth))
newelip~>c+=ghift;
else
newslp->c—-=shift;
newelp->b=SQRT ((SGR(newelp->c)+t1));
newelp->a=SORT{ (SQR(newelp->cli+t)};
¥ while (ton{newelp,pt,origin_depth));

newelp->temp={newelp->c-baseelplcl.c)/(baseelpfc-1].c~baseelp[c].c)*

(baseelpic-1].temp-baseelplc] . temp)+baseelplc].temp;
¥

/*%**#****#************#******$***$*$*$***#**********$*******#****$$*$$*#$**/

/* Update variables to reflect new location given pt, curelp, nexelp

outputs: Updated plos(plane of sight), cnt(centre of ray path),

and radius(of ray path).
*/

/****************#*****************************************************#****/

void sphere(plane *plos,vec *cnt,vec *pt,elp *scurelp,elp *snexelp,
elp ellip[SIZE},double *radius,double *origin_depth,int ellipnum,
vec *oldtan,bool upward,double iterate)
{

vec grad; /* ellipsoid gradient direction nums (inward pointing) #*/
elp temp;

double gamma,distance;

ellip_norm(pt,scurelp,&grad,*origin_depth); /% ellip normal */
tangent(plos,pt,oldtan,cnt); /#% ray path tangent */
new_plane(plos,oldtan,&grad,pt); /* find plans numbers %/
angle(&grad,oldtan,&gamma); /* angle between normal and tangent %/
temp=+*snexelp;

16

inter_ellip dist(&grad,pt,ellip,&temp,&distance,origin_depth,ellipnum,iterates);

if (scurelp->temp == temp.temp)
{
if (scurelp->c <= temp.¢)
*radius=LARGE;
else
*radius=-LARGE;
T

alse
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*radins=distance*INDEY(scurelp->temp}/
(IHDEX (temp.temp)-IKDEX (scurelp->tenp))/sin(ganma) ;
if (upward)
sradivs=—*radius;
sphere_centre(radius,plios,oldtan,pt,cnt);

¥

Ak ek ek sk sk e ek ek otk ok ol sl otk bRk kR Rk R R R R R R RS
/# Find tangent to ray path at pt.

inputs: plos - plane of transit
pt — location on ray path
cnt - centre for ray path

cutputs: tan - tangent vector

*/

[k sk ek ok e ok ok ok e ik ek ek el el s el e e st skt o s o ke sk skl sk ok R o
void tangent(plane *plos,vec *pt,vec *tan,vec *cnt)

{

vec norm; /¥ sphere norm */

nOIm. x=3%pt->x-3*cnt->x; /% norm is a point arbitrarily extended */
norm.y=3*pt->y-3%cnt->y; /* from the centre through pt */
norm.z=3%pt—>z~3%cnt->z;

normalize(&norm); /* normalize norm %/

if {ent->z>pt->z)

{ /* this gives a negative norm which is corrected below */
noTrm. X=-Norm. X;

TOTM. y=-NOXMm.¥;

Norm.z=~NOTM.Z;

by

/% evaluate b#n=t cross product */
tan->x=plos->b*norm.z-norm, y*plos—>¢;
tan->y=plos—->c*norm.x-norm.z¥plos->a;
tan->z=plog->a*norm.y-norm,.x*plos—>b;
normalize(tan);

¥

Sk ok ok ke kol s ol ok Rk Aok ok ok ok R sk ek otk sk sk kol Bk R R R A R ok ok ek ok sk /
void new_plane(plane #plos,vec #tan,vec *grad,vec #pt)

{

/* tangent#-ellip.norm=binormal */

plane_of_sight(tan,grad,plos,pt);
}

ekttt s sk ok ok st s ol o A AR o ok ol sk sk e s ok s ok skt sl ol ok
/* Angle betwsen ellip gradient and ray path tangent
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inputs: grad - gradient vector
tab - tangent vectox

cutputs: gamma ~ angle in radians

*/
/et ok de btk e el o kol ks bR R dok R R R R R R Rk Ak R R o/
void angle(vec #grad,vec #tan,double *gamma)
{

/% remember grad is in negative dirsction %/

double sgrlength,w;

sqrlength=SQR((grad->x+tan->x) )+SQR{(grad—>y+tan->y) ) +3QR({grad->z+tan—->z) ) ;
w=(2~zqrlength)/2; /% apply cosine law with a=1,b=1,c=sqrlength */
*gamma=acos (W) ;

b

/et et o e s sl ke s Al R o s s ot ol e e s kel e s sk s e otk et e e sl ek et/
/* Distance between two ellip surfaces along normal vector.

inputs: grad -~ normal direction

pt - current location on path

ellip - array of ellip shells

nexelp — next ellip in direction of travel
origin_depth - earth’s surface

ellipnum - number of ellipsoids

iterate — step size

outputs: dist - distance
*/

/et sk ek okt e e sl s el e e e sl st sl ke el ot o ol ol ok ot e sk ok sk ke ke ok ek e/
void inter_ellip_dist(vec *grad,vec #pt,elp ¢llip[SIZE],elp #nexelp,

double *dist,double *origin_depth,int ellipnum,double iterate)

{

vec inter; /* intercept point */
line_intercept(nexelp,grad,&inter,pt,*origin_depth,iterase);

/% find intercept of gradient line

with next elp %/

if (grounded(&inter,origin_depih))

{

sphere_intercept{grad,&inter,pt,origin_depth);

#nexelp=elliplellipnum~1];

}

*dist=SQRT (SQR( (pt->x-inter.x))+SQR{(pt->y-inter.y))+SQR((pt->z-inter.z)));
¥

[ EE R ok sk e ok R ks AR Ak R Bl ROk s et ok ok
/% Test 1f point is below earth surface %/
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st e ekt stele ke e s R R R e o e el e o ool e sk sl e ok ok ok ok SRk ek R ek ok e ek
bool grounded{vec *pt,double *xorigin_depth)

{

bool flag;

fiag = ((SQR(pt—>x)+SQR(pt—>y)+SQR(ptm>z—*origin_depth+erad)) < {8QR(erad)));
return flag;

¥

s e sk S R SR B0 ook et ek ek sl R Rk s Aokl ol ok b oo ook e ke e sk b sk ok ok ok
/¥ Intercept bstween a line and a sphere. t is the parameter for the line.

inputs: grad - direction of line

pt - start of line

origin_depth ~ earth’s surface

outputs: inter - location of intercept
*/

AR e ok Sk sk ek skl e sk ek Rk ool sk ok R R ok e b sk sk ko /
void sphere_intercept(vec *grad,vec *inter,vec *pt,double *origin_depth)

{

doudble a,b,c,d,t;

d=*origin_depth-erad;

a=SQR{grad->x)+SQR(grad->y)+SQR(grad->z);
b=2#(grad->x*pt->x+grad->y*pt~>y+grad->z+pt->z-grad->z*d) ;

c=3QR(pt->x)+SQR(pt—>y)+SQR(pt->z) ~SQR(erad )} +3QR(d)-2#pt->z*d;

if (grad-»z >= 0.0 ) /% gradient pos x dir then t should be pos*/
t={-b+SQRT(SQR(b)~4*axc))/(2%a);
else

t=(~b-SORT(SQR(b)-4*a®c) ) /{2%a);

inter->x=pt->x+trgrad->x;
inter->y=pt->y+t¥grad—>y;
inter—>z=pt->z+tigrad->z;

}

/et ket ok ke o ok kel ok Ak e ok el sl e ok s ok ok o ek Rk o B e ko
bool exor{beol a,bocl b)

{

bool c;

c={a && 'v) |} (la &k b);

return c¢;

} /% exor a b %/

SR Rk o AR kR A ek ok ok otk sk gk ok ol ok o e ek s R R R R R AR/
/* Test if point past object plane */
J Rk R ks ook o Rk ok R e ok sk sk ok sk ko o/
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bool hit_object_plane(double #obj,vec *pt)
{
bool aj
if (pt-»x <= #obj)
a=TRUE;
else
a=FALSE;
return a;

b

[k ke ok ok R ok ok ek e ok R R R R R Sk Rk Rk R Rk R ek
/% Hove along ray path to new point determined from new x coordinate.

inputs: pt - current location
cnt - centre of ray path arc

plos - plane of travel of ray path
radius - ray path radius

cutputs: pt — new location
*/
/s Rk ok ok okt ek atoR sk R kR S R R R AR R R ok ek ek ek ko
void move(vec *pt,vec #cnt,plane *plos,double *radius)
{
double a,b,c;
a=1+SQR{plos->¢/plos—>b);
b=2#(plos->c*{plos->d+cnt~>y*plos—>biplos->a*pt->x)-SQR{plos->b)*ent->z)/
SQR(plos—>b);
C=SQR(pt~>x~cnt—>x)+SQR(plos—>d/Plos~>b+p105“>a*pt—>x/plos—>b+cnt—>y)—
SQR(*radius)+SGR(cnt—>z);
/* check if radius is positive, if so curvature is concave earthward */
/* otherwise it's convave skyward and z is the lesser value %/
it (*radius > 0.0)
pt->z2={(-b+SQRT{SGR(b)-4*axc)}/{2*a);
else
pt~>z=(~b-SQRT(SQR(b)-4*a*c))/(2%a);
pt—>y={-ples->d-plos—>aspt->x-plos—>c#pt~>z )/plos->b;

J Aotk ek R sk ek e ko S R S R R Rk R R ok ik ok ok ek o/
/% Locate the intersection of ray path and given ellipse

inputs: ellip - ellip to intersect with
point ~ current ray path location

upward - direction flag

center -~ ray path center

pleofs - plane of sight

radius - ray path radius

iterate - step size
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origin_depth - earth’s surface

outputs: point - located on ellipse
#/
JEd R R Rk g g R ek ok ok sk ok ok okdeok s ol o el kol o kol kol sk e ek s ekl o/
void locate_isotherm(elp %ellip,vec *point,bool upward,vec #center,
plane *plofs,double *radius,double iterate,double origin_depth)
{
double shift;
shift=iterate;
while{ton(ellip,point,origin_depth)}&&(shift>1.0e-7))
{
shift/=2.0;
if (exor{!cutside(ellip,point,origin_depth),upward))
point->x+=shift;
else
point->x-=shift;
move(point,center,plofs,radius);
+
¥

/e ek s ek e e ek sk ook e sk e et sl e o ol b ok abol s ek o sk sk ek sk R Aok R Rk R R R R R R Rk ok
/* correction of ray path using predictor/corrector philesophy

*/
/g R s ok R sk ek ksl ootk e ekl ook e ksl btk s skl sk e el el sk ok ookl s kb el ook ek sk
void correction{double #radius,double oldradius,plane #plos,plane *oldplos,
vec #®oldpt)
{

vec temp;

#radius=(cldradius—-*radius}/2.0;

temp.x=(plos—>atoldplos—>a}/2.0;

temp.y=(plos—>b+oldplos->b)/2.0;

temp.z=(plos->c+oldplos->c)/2.0;

normalize(&temp);

plog->a=temp.x;

plos—>b=temp.¥y;

plos—>c=tenp.z;
plos—>d=~(plos->a}*oldpt->x-plos->b*oldpt~>y-plos->c*oldpt~>z;
}

/R R ok R ok ek et el R sl ke ol o o S R s e R sk sk ok o
/* Test for an intercept with the next ellipse. Also try to reduce chance
of missing intercept by testing three successively closer points to the
starting point. If all fail then there wag no intercept otherwise daclare
intercept as soon as detected.

inputs: nexelp - next elp



APPENDIX B, 3D_.SUBRO.C

point - current test location
upward ~ direction flag
iterate — step length

centyre — path sphere centxe
radius - path sphere radius
plos - plane of ray tramsit
origin_depth earth’s surface

outputs: bool true or false

®/
JEF R TR R R AR AR ok stk b e e et s etk ek S ek ok ok skl ok ok R ek kR ok
bool intercept(elp #nexeip,vec *point,bool upward,double iterate,plane *plos,
double #radius,vec *centre,double origin_depth)
{

int cnt;

vec temp; /% test point #/

if (exor(loutside(nexelp,point,origin_depth),upward))
return TRUE;
temp=#point;
for (cnt=i;cnt<4;cnt++)
{
temp.xt+=iterate/4;
move(&temp, centre,plos,radius);
if (exor{!outside(nexelp,&temp,origin_depth),upward))
{
*point=temp;
return TRUE;
}
¥
return FALSE;
}

/=§==i<¥‘=*=§t=€=**********$$=§=*****#****#*****************#a"*$$=§<*$*$$**$****$**$$***$/
/% Comvert the coordinates of a point from cartesian system o a point
relative to the earth’s surface.

inputs: pt - point to be converted
origin_depth - locates sarth surface

outputs: pt — new coordinates

=/

A ek sk e s ek s el o Rk ke el sk st st s i et s e R s e ek Bk ek e sk ko
void Conv_teo_earth(vec #*pt,double origin_depth)

{

double temp;

/% determine height of point zbove earth’s surface %/
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temp=erad-sqri(SQR(srad}-SQR(pt->x)}-SOR{pt->y) )~origin_depth;
pt->z=pt->zttenp;

¥

/s s e s et ek e e o s ek Rt ot e e e s ek sl e e skt e sl ool s stk ok R sk o o o o sk ok e i kR ekok /
/% find_ground is a function which successively converges to ground #/
[k R Rk R ol ke s s ek i el o sk et g kokok R bk ok ke ok ke R Rk sk Ak ks

void find_ground(double iterate,vec *point,double *origin_depth,vec #centre,
plane #plofs,double *radius)

{

double shift;

shift=iterate;
do
{
if (grounded(point,origin_depth))
point->x+=shift;
else
point->x-=shift;
shift/=2;
rnove(point,centre,plofs,radius);
} while(shifs>.001);
¥



#include <stdioc.h>
#include <math.h>

#include <string.h>
#include <stdlib.h>
#include <float.h>
#include <conlio.h>

/o e sl ol o s ek o o o s ok ok o oo sl e il ek e ke kel e sk ok e stk o et o e sk sk ek et e o/

IE:
3d_PLOT.C working date AUG 17, 1990.

The following are routines that support Halo 88 graphic calls. These
routines will plot the ray paths in a given bundle of rays. The view is
a perspective view projected onto to a 2-d surface. The view can be
resolved and rotated to give a clear view of the rays.

x/

/**#****#**#***$*******$**#*****#********#****#*********#*****$****$*****$$*/

struct vector
{

double x;
double y;
double z;

¥;

typedef struct vector vec;
void plot(char [JI,vec far #,int *,int []);
void Drawaes(float,float,float,float,float,float,float,float);

void RayMenu{float,float,float,float,float,float);
float RoundQff(float);
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void Convert(vec faxr *,int #,int [25],fleat,float,float,float);
static float X_RayPlot[25][100],Z_RayPlot[25][1003;

static int pattr[]={-1,-1,0,0,1,1,0,0,-31,0,0,-1,0,-1,~1,~1,0};
/% for large plot use 960,576 in pattr[0], [i3 =/

#define convert 57.2957795%1 /% convert radians to degrees %/

/A e sk ke s s e s oo o ok o s o o ok sk o s sk sk e e s ke et e ke kot otk s sk sk ke ek koo s sk e skl et fek bk ol sk R ok sk ok ok

/% Write title to top of plot display #/
[t e e e ke ekt Sokok AR ok Rk Rk ok Sk ok kb Sk R kA kA bk R R Rk kA kR ko ok

void WriteTitle(char titiel[l)

{
int mode;
float x1, x2, yi, y2, %x, ty, height, width;
static char devicel]="HALOHERC.DEV";

SETDEV(device);
mode=0;
INITGRAPEICS (&mode) ;

x¥1=0.0; y1=0.0; x2=640.0; y2=200.0;
SETWORLD {&x1,&y1,&x2,8y2);

INQTSIZE(title,&height,&width);
tx={x2-width)/2.0;

ty=182.0;

MOVTCURABS (&tx,&ty);  /# center %/
BTEXT(title):

DELTCUR();

¥

J Rtk ok ok ok ekl sl ok ek el s ok e o ook e ek ik stk Rk e sk B R R R ok SRk Rk ok

/# Display outer box and coordinates axises */
A ke s e Al R R ok Rk R SR o kR bk Rk Rk Rk R A R R R R kR %

void DrawhAxes(float xorgin,float yorgin,float xmax,float ymax,
float phi,fioat theta,float d,float rho)
{

int i, border, black, index;

float xi, %2, v1, v2;

static char label[5}, uniti[I="(Xm)", wnit2{i="(m)";

1

b

1



[y
-1
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xi=0.05; yi=C.10; x2=0.85; y2=0.80; border=i; black=-1i;
SETVIEWPORT (&x1,&yi,&x2,8y2,2border, ¥hlack);

SETWORLD (&xoxrgin,&yorgin, &xmax, &ymax);

x1=C.0;

¥1=0.0;

MOVABS (&xi,&yi);

%1=0.90;

yi=dsymax/4*sin(phi)/(ymax/4*cos(phi)+rho);

LHREL (&x1,&yi}; /% ¥ axis %/

%1=0.0;

y1=0.0;

MOVABS(&x1,&y1);

index=3;

SETLNSTYLE(&Zindex);
xi=d*xorgin/4+sin(theta)/{~xorgin/4*sin(phi)*cos(theta)+rho);
yil=d¥—xorgin/4*cos(theta)*cos(phi)/(-xorgin/4*sin(phi)*=cos(theta)+rho);

LNREL (&x1,&y1); /% axis =/
x1=0.0;

y1=0.0;

MOVABS (&x1,&y1);

index=1;

SETLNSTYLE(&index)};

xl=d#-xorgin/4*cos(theta)/(-xorgin/4+sin(theta)*sin(phi)+rho};
yl=d#*-xorgin/4*sin(theta)*cos(phi)/{-xorgin/4*sin{theta)*sin{phi)+rho);
LFREL (&x1,&y1); /% z axis %/

}

/o d ok ek ek ek de e s R R R R R R ok e sk ok sk o etk ek ok ok o ke ok s ek ke ke

/% Display menu options and status informations */
/e ek e ek ke oo ok o ke o ek ook ok ol b ok s sk sk ke s ok R kA ook ok ek ek ok ok /

vold RayMenu(float rho,float d,float phi,float theta,float xscale,
float yscale)
{

int i, borxder, black;

float x1, x2, yi, ¥2, tx, ty;

static char listi[]=

"Q=QUIT P=PRE SCR¥ A=ASPECT SCALE R=ROTATE OBJT S=SCALE V=VIEW SIZE";
static char list2[]=

" Theta='"";

char label[5];

1ist2[TI=*\0"; /% construct status string */
gevt{({phi*convert),4,labsl);
strcat(1list2,label);
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strcat(1ist2," Phi='");
gevt{(theta*convert),4,label};
strecat(list?2,label);
strcat(list2," ¥scale=");
gevt(xscale,4,label);
strecat(list2,label);
streat(1list2,™ Yscale=");
gevi{yscalie,4,iabel);
strcat{list2,label);
streat{list2," Rho="};
gevt (rho,4,label) ;
strcat(list2,label);
strcat(list2," D=");
gevt(d,4,label);
streat(iist?,label);

x1=0.05; y1=0.82; x2=0.95; y2=0.95; border=1; black=-1;
SETVIEWPORT (&x1,&y1,4&x2,4y2,&border,&black);

x¥1=0.0; yi=0.0; x2=220; y2=40;
SETWORLD (&x1,&y1,&x2,&y2);

ty=22.0; tx=5.0;
MOVTCURABS (&tx,&ty) ;
BTEXT(list1);
ty=7.0;

MOVTCURABS (&tx,&ty);
BTEAT(1list2);

DELTCUR{);

x1=0.0; yi=0.0; x2=1.0; y2=1.0;
SETVIEWPORT (&x1,&y1,4&x2,&y2,&black,&black);

¥

void plet(char title[],vec far *rays,int *NumberOfRay,int NumPoint[])
{

int result, i, k, PlotPoints;

float RoundBff(),aspect;

char menu, filename[]="HALOEPSK.PRN";

float &,rho,phi,theta;

int border,black,x2,y2;

Tloat xorginRay,yorginRay,xmaxRay,ymaxRay;
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d=800C.0;
rho=8000,0;
phi=1.3;
theta=0.7;
xorginRay=0.0;

foxr(;;)

{

Cenvert{rays,Number0fRay, NumPoint,d,rho,theta,phi};
/* convert 3-d data to 2-d data %/

WriteTitle(title);

if(xorginRay==0.0)
{
for (k=0; k<*NumberOfRay;k++)
{
for (i=0;i<NumPoint [k];i++)
{
if{fabs(X_RayPlet[k][il) > xorginRay)
xorginRay=fabs(¥_RayPlot[k][i])};
¥
}
xorginRay=Round0ii(xorginRay);
xmaxRay=—-xorginRay;

IHNQASP (&aspect) ;

INGDRAKGE (Bx2,&y2) ;

yorginRay=—xorginRay/aspect#(y2+1)/(x2+1);

ymaxRay=-yorginRay; /+* aspect scale y axis to match x axis */

¥
DrawAxes(xorginRay,yorginRay,xmaxRay,ymaxRay,phi,theta,d,rho};

for (k=0 ;k<*NumberOfRay;k++)

{

MOVABS (&X_RayPlotik][0],&Z_RayPlot[kI[03);

PlotPoints=KumPoint [k] ;
POLYCABS(X_RayPlot[k],Z_RayPlet[k],&PlotPoints)}; /% plot k'th ray */
ks

RayMenu{rho,d,phi,theta,xorginkay,ymaxkay); /# update menu and status */
do
{

menu = getch();

switch (menu)
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{
case ’a’:

/% aspsct scale view */

CLOSEGRAPHICS();
yorginRay=—xorginRay/aspect*{y2+1)/(x2+1);
ymaxRay=-yorginRay;

break;

cage ‘s’

/* manual scaling of each axis */
CLOSEGRAPHICS();

printf("X:%5. 1£\nENTER NEW X~AXIS LIMIT (in m)\n",xorginRay};
scanf ("%f",kxorginBay);

printf("Y:%5. 1f\nENTER NEW Y-4XIS LIMIT (in m)\a",ymaxRay);
scanf {"%#f", &ymaxRay);

xmaxRay=—xorginRay;

yorginRay=-ymaxRay;

break;

case ’‘r’:

/¥ rotate viewing angles %/
CLOSEGRAPHICS();
printf(“Theta:%4.3f\nENTER NE¥W Theta (in degrees)\n", (phi*convert));
scanf ("%f",&phi);

phi=phi/convert;

printf("Phi:%4.3F\nENTER HEW Phi (in degrees)\n", (theta*convert));
scanf ("Y%f",&theta);

theta=theta/convert;

break;

case ’v’:

/% change viewing distances #/
CLOSEGRAPHICS();

printf("d:%5.0f\nENTER NEW d\n",d);

scanf (41", &d);

printf("'rho:¥%5.0f\nENTER NEW rho\n",rho);
scanf {"%f",&rho);

break;

case 'p’:

/* print plot =/

SETPRH(filename);

SETPATTR(pattr);

GPRINT{):

break;

case 'q’:

CLOSEGRAPHICS();

return;

break;

}

ingerr(&i,&k);

[
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if (ki=0)
{
CLOSEGRAPHICS();
printf{"func err=id,error =%d\n palisl={d",i,k,pattri6]);
¥
¥ while(menu==Ip*);
¥
}

/R e Rl el ek ok s ek o e e e e el d ko el ki ok ko kb Sk kR R Rk
/% Round off a fleating point number to an integer and reassign to floating

point number, */
J g gk ok ok ok ekt sk ok ok s ok sk kol oR ook R RK sk ok skl ke ook kb b sk ok ok Ak ko

float RoundOff(float InputNumber)
{
int integer;
fleat Outputiumber;
if (InputNumber > 0.0)
integer=InputNumber+0.5;
elss
integer=Input¥umber-0.5;
Outputlumber=integer;
return Outputlumber;

¥

/S ok sk e ook s ook ok ok ok o Al e ok ek etk sk e ks iR ook ok okl ok /
/* Convert ray points in 3-4 to data peints in 2~d

inputs: rays — ray data
NumberOfRay — ray count

NumPoints - anumber of points in each ray
d - viewing distance

rho - viewing distance

theta,phi - viewing angles

outputs: X_RayPlet - x axis data
Y_RayPlot — y axis data
*/

/************#*ﬂ‘****%t***:k****$******$**************##**%#ﬂ*:ﬁ#******#*#:k*##:k**/

void Convert{vec far#rays,int #NumberOfRay,int NumPoint[25],float d,
float rho,float theta,float phi)

{

int a,b,cnt;

double si,s2,ci,c2;

double xe,ye,ze;
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si=sin{theta);

ci=cos{theta);

s2=3in{phi);

c2=cos{phi);

for (a=0,cnt=0;a<+Number0fRay;a++)

for {b=0;b<NumPointfal;b++)

{
xe=rays[cnt] . x*si-raysfcnt] .y*ci;
ye=-rays[cnt] .x*cikc2-raysicnt].y*si*c2+rayslentl . 2*s52;
ze=-rays[cnt] . x*s2*ci-rays{cent] . y#sixs2-rays[ent++] . zxc2+rho;
X_RayPlot[al [bl=(float) (d)*xe/ze;
Z_RayPlot[al [bl=(float) (d)*ye/ze;

-1

-~



Comment line describing data set and relevant information
Outer Shell Size Length Outer Shell Size Width

Observor Location (X Y Z)

Object Plane Location (Y)

Number of Temperature Profile Points

Temperature Height (in increasing height order)

Table D.1: Data Set File Template

178



APPENDIX D. DATA SETS

setl.dat from Isaak

5000 1000

5C00 0 1.8
2500

2

0 0

6.0 30

Set #2 5000 1000 phi -2 24 2 theta 240 2 obs 5000 0 1.8 obj -2500

5000 1600
5000 0 1.8
2500

7

0.0 0.0
1.5 1%
2.5 15
7.0 20
12.0 21
13.0 22
15.0 30

TFable D.2: Data Set SET1

Table 3.3: Data Set SET2
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Set #3 5000 1000 phi -2 24 2 theta 240 2 obs 5000 0 1.8 obj -2500
5000 1G00

5000 0 1.8

2500

7

8.0 0.0
8.0 i1

8.0 15

8.0 20

8.0 21

8.0 22

8.0 30

Table IJ.4: Data Set SET3

Test Data Set #4 5000 1000 obs 5350 0 1.8 obj -5350

5000 1000
5350 0 1.8
5350

7

0.0 0.0
1.5 11
2.5 15
7.0 20
12.0 21
13.0 22
15.90 30

Table D.5: Data Set SET4
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set6.dat using function 2.0e-z~0.02z+30

10G000 100000

004
8000

i7
32

31.
31.
AT
31.
31,
31,
30.

31

30
30

33

08
98

.88
.80
30.

-‘\]

30.0

29.
29.
29.
29.
29.

[ Se I ) B o 4]

W, OO0 00O 0o oo

[1-S I N T P
[T e B - B )

W W ~N & ¢ W e -

Table D.6: Data Set SETS
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PROFILE JM3 (JMi WITH EXTRA POINTS, RE DT/DZ SENSITIVITY)
100000 100000

004

21500

18
0.00 0.0
0.30 5.0
0.75 10.0
0.88 11.0
1.08 12.0
1.26 13.0
1.50 14.0
2.40 17.0
3.8b 20.0
6,00 24.0
7.10 26.0
8.37 30.0
9.18 34.0
9.60 39.0
2.80 45.0
g.80 60.0
5.68 80.0
9.56 1060.0

Table D.7: Data Set SETIMS3
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Data Set for 79-4-27
17000 3000

10000 0 2.5

10000

22

-2.3% 0

~2.0 2.48

-1.43 10

-0.98 13.
B0 14,
.08 i7.
.3 18.
.4558 19.361

L1047  21.4687
.8589 23.4820
.6460 25.3026
.5198 27.0k75
.1135 28.0714
.T405 29.0408
.5020 30.1383
L4160 31.3440
L3870 32.4983
.8588 32.8980
L4560 33.9852
.6889 34,3885
L8712 35.0109
.3400 46.9000

'
[a]
~ o Wb

W o~~~ o h kWP Mo OO

Table 1.8: Data Set 78-4-27
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TB8: linear + parabolic temp profile to reconstruct slide 79-4-20:step ikm

17000 3000
10000 0 2.5
10000

46

-2.
-2,
-1,
44125
.06625
69125
.31625
.05875
.43375

el o R o L S S N W W R VPR S ) )
B b i R e R R e e GO0 000

QU OW~THON O WWRR O, P,PPRPRPROOOGO

30

81625

82000

. 84544
L93774
.08492

29096

.55588
.B7966
26232
.70384
.20424
L76350
.38164
.05865
75452
.bgo2Y
.44288
.35537
.32673
.986%
0374
.1845
.293
A4
Y
.745
.903
055
.203
.333
463
.57
.67
.75
.75
.68
.57
.45

15

45

45,
45,
46 .
46,
47,
49,
50.

60

.00
.498
.000
10.
000
20.
25.
30.
35.
40.
40,
40,
40.
41,
41.
41,
41,
42 .
42,
43 .
42,
43,
43.
43,
43,
44,
a4,
44.
44,
44 .
44,
44,
45,
45 .
45 .
.70

0G0

000
000
000
000
160
400
640
S00
150
400
650
200
150
400
650
900
150
400
650
900
150
400
56

55

70

80

a6

10

30

50

90
i0
40
50
50
[¢]¢]
GG

.00
80.
100,

00
00

Cable 11,.9: Data Set TB8-76-4
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tu8 Sun Hirage data set 1
S0C00C0 BOOOO0D

26400 0 27.98

28400
48

~-1.32
-1.32
~1.36
~1.39
~1.49
-1.87
~1.66
~1.75
-1.85
~1.95
~2.04
~2.08
-2.08
~2.08
-2.08
-2.03
-1.935

o000,k W W W R RN NN kD
- .
L)

[ S =
C MR REOO
I R T s R )
D0 W R

9.20
7.40

1z
16
20
22
24
26
28
30
32
34
35
36
36.
37.
37.
38
38.
38.
38.
39.
39.
40
40,
40.
41.
42
43
44
46
bC¢
54
50
64
T0
85
100
110
120
130
140
150
160
200
300
500
&00

[ 20« SR N [2]

L )

Table D.10: Data Set TUS§
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TG4 Sun Mirage data set 2
6000000 60000C0

0 0 100.1

54000

40
-1.20 0O
-1.33 i6
-i.44 32
-1.58 B2
-1.7% 68
-1.80 80
-1.86 88
-1.88 92
~1.82 98
~1.94 100
-1.¢4 102
-1.82 104
-1.88 106
-1.82 108
-1.6% 110
-1.32 112,
-0.93 114,
-0.37 116
C.55 117.
1.27 118.
1.65 118,
1.92 119.
2.33 120
2.6 i21.
2.88 123.
3.08 125.
3.28 128
3.49 132
3.67 1386
3.85 142
3.87 150
3.766 166
3.636 186
3.376 226
2.856 306
2.206 408
1.568 508
0.506 606
~0.304 808
~2.344 1108

B

B 00 i O

[Nl

Table D.11: Data Set TG4
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#include <stdio.h>

#include <conio.h>

#include <dos.h>

#include <mallioc.h>

#include <stdlib.h>

#include <string.h>

#include <ctype.h>

#include <math.h>

#include "ansi.h"

#include "itexpfg.h'

#include "stdtyp.h"

/% Working date Sept 18, 199i%/

/%

Mirage Image Simulation written by Wes J Friesn

This program was written in partial fulfiliment of the requirements
for the degres Master of Science in Electrical Engineering.
Done under the supervision of Professor W Lehn.

*/

/% definition section to declare constants #*/
#define HOR 511  /# image size horizontally 512 %/
#define VER 511 /% image size vertically 512 =/
#define SQR(value) pow((value),2.0)

#define TRUE -1

#define FALSE -1

/* declare variables %/

chay file_rame[35]; /% maximum filename with paths is 35 char %/

187
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struct vector
1

double x;
double v;
double z;

};

typedef struct vector vec;
typedef int bool;

unsigned char cross{10]; /% array to store data cursor over writes =/
unsigned char huge *pic; /* pointer to picture buffer */

unsigned char huge *p; /* pointers used for buffer access */

int mode; /* mode 0 is for Jack Sill’s Board mode 1 is for itex board #/
void DISPLAY2(unsigned char huge #); /# display on itex board #/

void DISPLAY1(unsigned char huge #); /* display on S$ill board #*/

void DISPLAY(int);

void Init_6845(void); /+* configure video board =/

void Write_port{unsigned int,unsigned int),Get_picture(void);
void Getscale(int #*,int *,float *);

void Marker{int,int);

void unMarker(int,int);

void Gette(dint [],int *,vec *,double #*,double *):

void Map_{int =,int *,int [],float *,vec #,double *);

void interpolate(double,donble,double,vec,ves,vec,vec,vec,
vac,vec,vec,double *,double *,double #*)};

bool end_of_region(double,double,int *,int,bool,double *,double);
bool belowz(vec,vec,dcuble,double);

kool belowx(vec,vec,double,double};

int reundoeff (float);

vec map[15][2]1[503; /% array of transfer characteristic */

nain()
{
int refel; /% reference elsvation */
int hor; /#* horizon #*/
int nor[20]; /* # of rays in transfer characteristic =/
int nog; /¥ # of groups in transfer map */
float scale; /* number of meters per line in image %/
double obj; /* object location */
vec obs; /#* observer lecation */
double orgn_dpth; /* depth of origin below earth’s surface */
int cntl;
FILE #fp; /% file pointer =/
char command;
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char cmdlinel[3E};

/% set up buffers =/
pic={unsigned char huge #)halloc{262144L,sizecf(char));
if (pic == KNULL)
{
printf(“Insutficient memory for buffer\n"};
Tor(;;); /* loop infinitely =/
¥
do /% set display mode */
{
printf("Select display mode <0> Ffor Sill’ board <1> for itex board\n");
scanf{("/4d", &mode) ;
} while {mode != 0 && mode != 1);
Init_6845(); /* initialize video stuff #*/
Get_picture(); /* load picture */
DISPLAY(mode); /% display on screen */
Getscale(&refel,&hor,&scale);
do /% Processing loop */
{
Gette{nor,&nog, &obs,&obj,&orgn_dpth);
Map_(&hor,&nog,nor,&scale,kobs,&obj); /* apply mapping */
CLR_SCRE;
printf("Loading image...\n"}; /* load resulting image */
fp=fopen(file_name,"rb");
p=pic;
for (entl1=0;cnti<8;cnti++)
{ /% loads in 32k sections */
fread{p,sizeof (char),32768,fp);
printf("Sec=¥d\n",cntl);
CUR_UF(1);
p={p+32768L);
¥
feloze(fp);
CLR_SCRN;
DISPLAY (mode);
printf("\nWould you like to process another transfer characteristic? <Y/N>");
do
command= (char) teolower (getchar());

while (commandi=’y’ && command != 'n’);

if {command == ‘'y?)

Get_picture(); /+* reload source Ffor next tc */
} while (command == ’y’);

hiree(pic};

return 0;
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void Init_8845()
{
char x;
if (mode == Q)
L
x =(chazr) inp(772);
Write_poxt(0,157); /% initialize the display board =/
Write_port(1,1i28); /*#port read write
Write_port(2,140); /#7688 reset addr cntrs crtc addr reg
Write_poxrt{3,102); /%789 n/a crbc data reg
Write_port(4,31); /#7700 read image latch write image latch
Write_port(5,5); /%772 "read" display md n/a
Write_port(6,29); /%774 "write" display md =n/a
Write_port(7,30);
Write_port(8,3);
Write_port(9,14):
Write_port{10,0);
Write_port(i1,0);
Write, port(12,0);
Write_port(13,0);
Write_port(i4,0);
Write_port(i5,0};
}
else
{
sethdw(0x300,0xDO00OL,SINGLE)Y; /* set address and mode */
setdim(1024,512,8); /% set dimensions %/
fgon();
initialize();
sclear{0); /% blank screen #*/
}
¥
void Write_port(a,b)
unsigned int a,b;
{
cutp{768,a); /* reset counters %/
outp(769,b); /% offset first count */
¥

void Map_(int *hor,int *nog,int nor[20],float *scale,vec #obs,double #0bj)

{

fioat zmax,zmin,xmax;
double ym,zm,xm;

double xob,yob,zob;

double xscale,yscale;
double low_z,low_x,high_x;

#/
*/
#/
x/
*/
%/
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int ymaxzi,ymini,zmaxi,zmini,zmaxi;
int z,b,d,diff,=,y;

int verti,vert2,horti,hort2;

int xltine,yline,zline:

int rows;

long i;

bool foreground;

char sty [HOR+1];

FILE #*fp;

memset{str,255,H0R+1); /% white line */
s¥max=(float) map[0][0][0].x;

zmax=zmin=(float) mapl0] [0] [norle]}].z;
#obj=(double) (roundeff(100000*(*obj))/100000.0):

for (a=0;a<=*nog;at+) /* determine region covered by apparent map %/
for (b=0;b<=ncr[a];b++)
{

if (zmax < mapl[al[0]1[bl.z) /* break z region into two areas #*/
zmax=(float) map[al [0][b].z;
/#* first area is normal object plane mapping */
if (zmin > maplal [01{b].=z&&(mapl[al [0] [b].x-*cbj)<1.0)
zmin=(float} maplal £0]{b].z;
if (xmax < maplal[0][bl.x) /# second area is foreground remapping */
xmax={(float) mapla][0][b].x;
>
ymini==(VER+1)/2; /% convert to screen coordinates %/
ymaxi={VER+1)/2;
zmaxi=(int) (zmax/(*scale)):
zmini=(int) {zmin/(*scale)};
Xax=xmax-*obj;
xmax=-xmax/ (obs~>x-*obj)* (HOR~*hor) ;
xmaxi=(int) xmax;
if ({zmaxi-zmini)>(HOR))
zmaxi=zmini+(HOR):
if ({zmaxi-xmaxi-zmini) > HOR) /* 1imit z extent to screen height */
{
xmaxi/=2;
zmaxi=HOR+xmaxi+zmini;
¥
printf ("zmini=%d zmaxi=Yd xmaxi=%d\n",zmini,zmaxi,xmaxi);
/# start the mapping prodedure #/
fp=fopen{file_name,"wb"); /* open result file %/
p=pic;
diff=B0R-zmaxi+xmaxitzmini;
priatf("diff=Yd\n",diff);
if (diff < HOR && diff > 0)
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for (z=0;z<diff/2;g++)
furite(str,1,EOR+1,fp); /+ fill above image #/
[ et ok ok ok sk s ok R ok
zm=zmaxix(*¥scale):
xm=*obj;
¥scale=1;
rows=diff;
foreground=FALSE;
for {b=nor[0];b>0:b—-) /% moved down regions to first region
in image Llimits %/
if {(lend_of_region(zm,xm,nog,b,foreground,obj,xscale))
break;
do
{
printf("layer change\n'");
low_z=zm;
Jow_x=%obj;
high_x=#0bj;
for {a=#nog;a>0;a--)
{
if (mapla][0J3[b-1].2 < low_z) /* find x and z extremes of region */
low_z=mapl[a] [0][b-1].z;
if {mapfal[0][b~1].x > high_x)
high_x=maplal [0] [b-1].x;
if (mapla]{0]Ep].x > low_x)
low_x=map[al [0][b].x;
}
xscale=(high_x-low_x)/(zm-low_z)*(*scale); /* foreground in sky scale®/
im=low_x;
do
{
y=ymini; /% start row %/
for (a=*nog;a>0;a--)
{
foreground=FALSE;
horti=b;
vertl=a;
hort2=bh-1;
vertl=a-1;
/% if any of surrounding points is not a object plane point then consider
the group to be foreground */
if ({maplvert1][0I[horti].x > #*o0bj) |
(map[vert1] [01 [hort2].x > *obj) ||
(map[vert2] [0] fhort2].x > *obji) ||
{map[vert2] [0] [hort1].x > *obj))
foreground=TRUE;
if (!foreground)
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{ /#% all points in object plane %/
ym=yi(*scale};
while ({mapivert2][0]lhort2].y >= ym || maplivert2][0I[horsil.y >= ym)&&
(maplvertil[0] [hortil.y <= ym || maplvert1](0][hort2].y <= ym)&&
y<ymaxzi)
{ /% use surrounding group */
if {!belowz(maplvert1][0] [hort2],mapivert2] [0] [hort2],ym,zm) | |
map [vert1][0] [hort2-1] . xt=*0bj| Imapvert2] [0] [hort2~1]1.x!=%0bj)
interpolate(0.0,ym,zm, mapiverti] [0] fhorti] ,map [vert1] {13 [horsil,
mapiverti] [0 [hort2] ,maplverti] 1] [hort2],
map{vert2] [0] [hort2] ,maplvert2] [1] [hort2],
mapivert2] [0] [horti] ,maplvexrt2] {1] [hort1],
&xob,&yob,&zob);
else /* use group below to do this point */
interpolate(0.0,ym,zm,map [vert1] [0] [hort2] ,maplverttl 1] [hort2],
map[vert1] [0] [hort2~1] ,maplvert1l [1] [hort2-11,
map [vert2 [01 [hoxt2-1T ,map[vert2] {11 [hort2-1],
map [vert2] [0] [hort2] ,maplvert2] [11 [hort2],
&xob,&yob,&zob);
yiline=roundoff ({yob/(*scale)))+({VER+1)/2); /# convert to pixelss/
zline=*hor-roundoff{(zob/(*scale)});
if ( yline <0 || yline > VER || zline <0 {| zline > HOR)
fputc(266,fp); /% point is outside known area */
else
{
i={long) =zline*(HOR+1);
i+=yline;
fputc(*(p+i),fp); /* output corresponding pixel to result file*/
} /% transfer pixel %/
y4k; /% increment columnw®/
ym=y*(*scale);
¥
} /% object plane #/
else
{ /* foreground case %/
/% given xm %/
if (zm < ((zmini+i1)*(*scale))) /% foreground scales#*/
xscale={obs->x~%obj)/(HOR-*hor};
yscale={*scale)* (obs~>x-xm)/ (obs->x-%obj);
ym=y*yscale;
while ({maplvert2]f0]fhort2].y >= ym {| maplvert2] [0][horti]l.y >= ym)&&
(mapfvert1] [0] [hort1}.y <= ym || map[verti][0][hort2].y <= ym)&&
y<ymaxi)
{ /% loop till out of this column group %/
if (Ibelowx(maplverti][0] [hort2],maplvert2] [0][hort2],ym,xm) | |horti<2)
interpolate(xm,ym,0.0,maplverti] [0] [hoxrtt] ,map[vertil[i] [hort1],
mapivert1] [0] [hort2] ,maplvert1][1] [hort2],
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wap {vert2] £0] [hort2] ,mapivert2] {1] [hort],
map [vert2] [0l fhorti] ,mapivert2] {1] [horti],
&xob,&yob,&zob);
else /% use group below %/
interpolate(xm,ym,0.0,map[vert1l [0] [hort2] ,map fverti] [1] [hort2],
maplverti] [0] [hort1-2],mapiverti] [1] [horsi-2],
map [vert2] [0] [hort2-13 ,map[vert2] {11 [hort2-1],
map[vert2] (0] [hort2] ,map [vexrt2] [1] [hort2],
&xob,&yob,&zoh);
ylineﬂroundoff((yob/({*scale}*(obs—>x—xob)/(obs—>x—*obj))))+((VER+1}/2);
xline=*¥hor+roundoff (({xob-+obj)/((obs—>x~*obj}/{HOB-%hor)))});
if ( yline <0 || yline > VER !| xline <C || xline > HGR )
fputc(255,fp); /% point is outside known area */
else
{
i=(long) xline*(HOR+1);
i+=yline;
fpute(*(p+i),fp); /* output pixel */
} /% transfer pixel %/
y#+; /* increment column */
ym=yscale*y;
}
} /% end of foreground case %/
} /% column counter lcop */
xm+=xacale; /¥ increment row */
zm-=%gcale;
rows+=i; /% row count */
¥ while('end_of_region(zm,xm,nog,b,foreground,obj,xscale) && (rows<=HOR));
/* while region loop */
printf ("rows=%d\n" ,rous);
b—=1;
} while(d» > 0 && {rows<=EGR)); /% row counter loop =/
/et e e ook sk o sk ekt el ok ek ok ok b ok ok R ok k kR R ekl /
if (diff < HOR && diff >0)
{
diff= roundoff(diff/2.0);
for (z=0;z<diff;z++)
furite(str,1, (HOR+1),fp); /* fill below image */
}
fclose{fp); /* all done %/
¥

bool end_of_region(zm,xm,nog,b,foreground,obj,xscale)
double zm;

double zm;

int *nog;

int b;
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bool forsground;
double *cbj;
double xscale;

{

int a;

bool flag;

flag=TRUE; /+ assume end of region %/
if {iforeground)
{
for {a=0;a <= *nog;a++)
if{zm >= maplal[0][b~1].2) /% 2zm above all lower region pts %/

flag=FALSE;
T
else
{

for (a=0;a <= #nog;at+) /% xm region cases */
if(({xm <= map[al[03[b-1].x)&&(xscale>0.0)) i}
(¥scale<0 . 0k&xn>=map [al [0] [b-1].x))
filag=FALSE;
}
return flag;

}

bool belowz(pti,pt2,ym,zm)
vec ptl;

vec pt2;

double ym,zm;

{

double v;

bool flag;

y={pt2.y-pti.y)/(pt2.2-pti.z)*(zm-ptl.z)+ptl.y;

if (pt2.z >pti.z)

flag=ym>y; /* current point above surrounding group boundry*/
else

flag=ym<y; /* below boundry */

return flag;

}

bool belowx(pti,pt2,ym,xm)
vec ptl,pt2;
double ym,xm;
{
double ¥;



APPENDIX E. MIR.C 196

bocl flag;

y=(pt2.y-pti.y)/(pt2.x-pti.x)%Cam-pti.x)+pti.y;

if (ptz.x >pti.x)

flag=yn>y; /# current point above surrounding group boundry*/
else

Tlag=ym<y; /* below boundry */

return flag;

¥

void interpolate(xm,ym,zm,ptio,ptii,pt20,pt21,pt30,pt31,pt%O,ptéi,xob,yob,zob)
double xm;
double ym;
double zm;
vec pti0,pt1l,pt20,pt21,pt30,pt31,pt40,pt4l;
double *xob;
double *yob;
double *zob;
{
double e,f,g,h;
double ymi,ynZ,ym3,ymd;
double zmi,zm2,zZm3,zm4;
double xml,xm2,xm3, xmd;

g={ym-pt40.y)/(pt10.y-pt40.y);
h={yn-pt30.y)/(pt20.y-pt30.y);
ymi=gxptil, y+(i-g)*ptdl.y;
ym2=h*pt21.y+(1-h)#pt3i.y;

if (xm==0.0)
{

e=(zm-pt20.2)/(pt10.2~pt20.2);
f={zm-pt30.2)/(pt40.2z-pt30.2);

ym3=e*ptli.y+{i-e}*pt21.y; /* actual perimeter points*/
ymd=f+ptdl.y+(1-£)*ps31l.y;

zmi=g¥ptil. z+(1-g)*ptél.z;

zm2=h*pt21. 2+ (1-h)*pt3l.z;

zm3=e*ptil.z+(1-e)*pt2l.z;

zmd=fxptdl, z+(1-f)*pt3l.z;

#zob= (zn3* (ynd-ym3) = (zm2-zmi) -zni* (yn2-ymi ) * (zmé-zm3) - {(ym3-ym1) * (zmd-zm3 ) =

(zm2-zmi})/((ymd-ym3)* (z2m2-zml) - (ym2-ymi) *{znd-2zn3) ) ;

#yob=ymi+{(ym2-yml}#* (*zob—zmi) / (zm2-zml) ;

#x0b=0.0;
¥

if (zm==0.0 &% !(xm==0.0))

{
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¥

v

{

e={xm-pt20.x)/{ptl0.x-pt20.x);

= (xm-pt30. %) /{pt40.x-pt30.x);

ym3=e#ptli.y+(1-e)#pt2i.y; /+ actual perimeter pointss/

ymd=f#pt4i.y+(1-fi*pt3i.y;

xmi=g#ptil . x+{1-gl*pt4l.x;

a2=h*pt21.x+{1-h)#pt31.x;

am3=e*ptil.x+(i-e)*ptli.x;

xmd=F¥pt4l. x+(1-£)5pt31.x;

#xob=(xm3* (ymd-ym3) * (xm2-xml ) ~xmi* (ym2-ymi ) (emd-xm3) - {ym3-ym1 ) * (xnd—-xm3) #
(xm2-xm1)) / ({ymd~ym3) » (xn2-xm1) - (ym2-ymi) % (xmd-xm3}) ;

xyob=ymi+ (ym2-ymi)* (*xob-xmi)/ (xm2-xmi);

*zob=0,0;

}

oid Gettc(int nor[20},int *nog,vec *obs,double ¥obj,double *orgn_dpth)

char chrstr[oc];
char c¢;
char #*str;
double temp=z;
int result;
int a,b;
FILE #*fp;
CLR_SCRN;
do
{
printf("Enter transfer characteristic file name.\n");
scant {("%s",file_name);
if ((fp=fopen(file_name,"r")) != NULL) /% check for exsistances/
{
do
1{
fgets(chrstr,90,3p);
} while (strstr(chrstr,"Depth") == HULL);
str=strrchr(chrstr,’=’);
gtr++;
#orgn_dpth=atof(str);
fscanf{fp,"Observer:%1f %1f %1f (m)\n",kobs—>x,&obs->y,kobs->z);
fscanf{fp,"Object Plane:%1if (m)\n",cbj);
do
{
if (fgets(chrstr,90,fp)== KULL) /* search for start of map data */
{
printf{"NULL");
a=ferror{fp);
a=feof(fp);
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F
} while (strstr{chrstr,”x") == NULL);
a=0;
do /* read groups %/
{
fgets(chrstr,90,%p);
b=0;
do /% read region %/
{
fscant (fp,"1f %1% YLf ULE %1 %1f",&maplal [0 [b].x,&maplal [0][b3.y,
¢map[a] [0][b] .z, &maplal [11 [b] .x,&map[al [1][bl .y, &map[al [1]1[b].2);
c={char) fgetc(fp);
if (¢ == "\n’)
c={char) fgetc{fp);
angetc{c,ip);
b++;
} while (¢ != "H’&&!feof(fp));
nor[al=b-1;
att;
c=(char) fgetc(fp};
if {¢ == \n’)
¢=(char) fgetc(fp);
it (!feof(fp))
ungetc{c,fp);
T while(!feof(fp)); /* until end of file #/
*nog=a-1;
fclose(fp);
For (b=0;b<35;b++)
if (file_name[bl==°.¢)
file_name[bl="\0";
strcat(file_name,".pic");
}
else
printf("Fils was not found.\n");
} while (fp==NULL);
for (a=0;a <= *nog;at+) /* show mapping data */
for (b=0;b <= norlal;b++)
printf (AL UE WENtUE % %f\n",maplal [0][b].x,maplal[0][b].y,
map [a] [0] [b] .z, maplal [1]1[v].x,mapfal [131[b].y,maplal [1][b].2);

printf("\nFile loaded.\n");
3

int roundeff(fleat number)
{

int integer;

if (number >(flocat) 0.0)
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integer=(int) (number+0.5);
else
integer={int) (aumber-0.5};
return integer;
¥
void Getscale(int #refel,int *hor,float #scale)
{
int x,v;
float elev;
char command;
CLR_SCRY;
printf("Hext you must select the reference elevation ")
printf("for this picture. To do this inputrow and column numbers");
printf(" with a space between in the region of the reference\nelevation.");
printf (" Then refine these numbers until you locate the desired point.");
printf("\nEnter <-1 -1> once you are dome.\n");
for(;;)
{ /* get reference level #/
CUR_MV(6,0)};
CLR_LINE;
scanf("¥d %d",&y,&x);
it (y==-1) /* Xeep cursor on image ¥/
break;
if (x < 0)
x=0;
if {x > VER)
x¥=511;
if (y <0)
y=0;
if (y>HOR)
y=511;
Marker(x,y); /* add cursocr to image #/
DISPLAY (mode);
unMarker(x,y)}; /% remove curscr and replace image covered */
¥refel=y;
} /% get horizen level #/
CUR_MV(6,0);
printf("Reference Elevation = %d\n",+refel);
printf{"\nNext find the Horizon Elevation using the same procedure.\n");
for {;;)
{
CUR_MV{9,0);
CLR_LINE;
scanf ("%4d %d",&y,&x);
if (y==-1)
break;
if (z<0)
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*=0;

if {x > VER)

x=511;

if (y <0)

y=0;

if (y>HOR)

y=511;

Marker(x,y);

DISPLAY (mode);

unMarker(x,y);

#hor=y;
he
printf{"\nHorizon = %d \n",*hor);
printf{"\nEnter the height of the reference elevation in metars > "):
scanf ("%E", &Lelev):
*scale~elev/(*¥hor—+refel);
printf("Scale is %f meters per line.\n",*scale);
printf{"Press <Enter> to continue....\n"):
command={char) getch();

}

void Marker(int x,int y)

{ /* gave image data and replace with bright pixels%/
int a,b:

long ¢;

c={long) (y);

p=pic;

pt=(B12+{c-2))+x;

for {(a=0;a<5;at+)

{
crosslal=+p; /* save image data %/
if (a 1=2)
*p=255; /% replace with cursor */
else
for (b=0;b<5;b++)
{
cross [b+5]=*(p+b-2); /* save image data %/
#(p+b-2)=255; /% replace with cursor %/
¥
p=p+5812;
}
¥
void unMarker(int x,int y)
{
int a,b;

long c;
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e=(long) (v);

P=pic;

/* reverse Marker process ¥/
pt=(512%(c-2) ) +x;

for (a=0;a<b;a++)

{
if (a 1=2)
s¥p=cross [al;
glse

for (b=0;b<5;b++)
#{p+h~2)=crossib+b];
p=p+512;
¥
¥

void Get_picturs()
{
FILE #=fp;
int cnti;
p=pic;
CLR_SCRE;
do
{
printf{"Enter the file name to be loaded...\n");
scanf("%s",file_name);
it ({fp=fopen{file_name,"xrb")) != NULL)
{
printf(“File opened\n");
for (cnti=0;cnti<8;cnti++)
1
iread(p,sizeof(char),32768,fp); /* read picture into buffer =/
printf("Sec=¥%d\n",cntl);
CUR_UP(1};
p=(p+32768L);
¥
fclose(fp);
DISPLAY (mode); /% call display routine */
¥
else
{
CLE_SCRN;
printf("Error: Couldn’t retrieve file.\n');
¥
} while (fp == WULL};
¥
/¥ itex board routine writes a row at a time %/
void DISPLAY{int mode)
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{
if (mode == §)
DISPLAY1(pic);
else
DISPLAY2(pic);
¥
/* assembly language display routine */
void DISPLAYZ2(unsigned char huge #pic)
{
int a,b;
p=pic;
sclear(0);
for (a=0;a<=VER;a++)
£
bwhline(64,a,512,p);
p+=512;
}
¥

void DISPLAY1{unsigned char huge *pic)
{

_asm \

{

; okay lets lecad the pointer
LES DI,pic
Mov DX, 768
IH AL,DX
MOV DX, 774
IN AL,DX
Mov CX,0000H
OV DX,770

;point to counter port
sTeset counter

;point to write mode port
;set to write

;initialize count

;point to data latch

;for large arrays BX always starts with O00CH

LP1i: MOV AL,ES: {DI] ;read array

ouT DX, AL ;send to port

¥GP ywalt
INC DT ;next location
JNZ LP1 ;loop up to FFFF
MOV AX,ES ;copy DS
ADD 4%, 10008 ;add increment
Mov ES,AX ;return DS
inc CcX ;increment outer loop
CHP CX,0004H ;check count
JL LP1 ;finished?
MOV DX,772 ;point to read mode port
IN ALL,DX ;set to display

NG

[
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F.1 3d_ray

3d_ray requires both commandline entries and a data file containing a temperature
profile. The data file format is outlined in Appendix D along with several examples

of such files. The following questions are asked:

Would you like to plot the ray paths? 0=NO

RAY TRACING WITH HALOD
HAS HERC GRAPHICS MODE BEEN SET 7 0=NO

Would you like to see the ray points? 0=NO

Enter iteration step size(in m).

Enter name of file containing temperature profile(include path)
Enter the elevation start, stop, and increment angles(min):

Enter the positive lateral start, stop and increment angles(min):

The first choice is whether to plot the ray paths. Entering 0 sets the plot flag to

false and any other number will set the flag to true. If plotting was selected the next

204
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prompt is a reminder to set the computer to a compatible graphics mode. Entering
0 here will terminate the program and allow the machine to be correctly configured.

Any other number will confinue the program.

‘The next question checks if ray points are to be listed. Selecting 0 sets this fag
to false. Any other entry sets the flag to true. If either the plotting flag or ray points

flag is true than a special array for containing this information is created.

The first setup question asks for the iteration step size. Any integer will be
accepted. Suggested step sizes are from 100m to several kilometers depending on the
distance to be covered and the desired degree on accuracy. In general smaller step
sizes give better results. Step sizes much below 100m may have trouble converging
on shell intersections and experience other processing limitations. After this the user
is prompted for the complete data file name and path. I the file is not found the user

will be reprompted until an acceptable file is found.

The next prompt asks for the elevation starting, stopping, and increment angles
in arcmin. For example -4 20 2 would trace the ray starting at -4 arcmin below
the observer’s eye level and step by 2 arcmin upwards until 20 aremin is reached or
exceeded. The final question asks for the lateral starting, stopping, and increment
angle in arcmin. An example of lateral angles might be 120 -120 -60 which would
start at 120 and decrement lateral angles by -60 until -120 is reached or exceeded.
The actual range of angles will depend on the distances involved. Only the file name
is checked, all other inputs accept the given entry. This can result in the program
terminating early or getting stuck in a loop if incorrect or contradictory data is

entered,
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Some of the output is echoed to the screen to indicate processing progress. All
the relevant output data is placed in the standard cutput file 3d_OUT. This file can

be renamed to save the contents for future use.

The combination of number of rays traced and number of points in each ray should
not exceed 3500 if either plotting or printing was selected. To estimate the number of
points divided the distance between observer and obiect plane by the iteration size and
multiply by the number of elevation angles you are processing. This approximation
does not include the additional points generated by intersections with the atmospheric

shell.

If you are using the ray plotting option see Chapter 4 for a discussion of the

commands.

¥F.2 mir

Input question sequence:

Select display mode <0> for Sill’ board <1> for itex board

Enter the file name to be loaded...

Next you must select the reference elevation for this picture. To do
this input row and column numbers with a space between in the region
of the reference elevation. Then refine these numbers until you
locate the desired point.

Enter <-%1 -1> once you are done.

Next find the Horizon Elevation using the same procedure.

Enter the height of the reference elevation in meters >

Press <Enter> to continue....

Enter transfer characteristic file name.

Would you like to process another transfer characteristic? <V/N>
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The first input selects the display procedure based on entered number. Next
enter the complefe file name of the source image. To select the reference elevation
position the cross near the desired position. For examples entering “256 256" will
pul the cursor in the center of the image. The first number is a row position and
the second a column position. The column number is not used by the program but
is provided to help accurately determine the correct row by allowing the cursor to
move to any position on the image. The select process is ended by entering “-1 -17.
The current row then becomes the reference elevation. A similar procedure is used to
select the horizon reference. To complete the data necessary to determine the source
image scale enter the height in meters {include decimals). The program will respond
by displaying the calculated scale. Finally enter the desired transfer characteristic
file name. The program will give feed back on progress by displaying the transfer
characteristic data and show row number at each layer transition. After the resulting
image is displayed you will be asked if you would like to process another transfer
characteristic. Answering yes will return you to the transfer characteristic file name

prompt.
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