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Abstract
The objective of this thesis is to establish predictive models for forage yield (pro-

ductivity, tons per acre) using most relevant weather variables, such as precipita-

tion and temperature from April to June. The outcome of this study is expected to

be utilized to design indices and/or to set triggers for CAT bonds on forage crops

in Ontario for the Government of Canada as it is exposed to tremendous agricul-

ture risk exposures. We use forage crops data in Ontario, Canada, as an example.

We propose to apply a single predictive model on a whole region, which is a vast

area consisting of eight to ten counties which have a similar geographical envi-

ronment. Seven models are tested for five regions with variables such as monthly

rainfall, three months cumulative rainfall, average temperature, CDD (cooling de-

gree days), etc. A new approach called weighted average temperature adjustment

(WATA) is employed to deal with temperature data.

The results demonstrate that the selected predictive model(s) consistently and

considerably better explain the relationship between forage yield and weather

variables for regions.
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Chapter 1

Introduction

Agriculture is major of social and economic significance (Porth and Tan, 2015).

According to a report from Food and Agricultural Organization (FAO) of the United

Nations in 2009, global food production needs to increase 70% by 2050 in order to

feed continuing growing population. Therefore, promoting agricultural produc-

tion is important and essential. However, agricultural risk exposure is tremen-

dous. In particular, weather risk is dominant for the agriculture industry. Weather

risk can be interpreted as agricultural loss due to adverse weather conditions, for

example, drought, flood, hail, earthquake, hurricane, etc. As the previous litera-

ture and research point out (Zhu et al., 2015; USDA, 2014) adverse weather may

contribute at least 70% of agricultural loss. So hedging adverse weather is the key

procedure for agricultural producers to stabilize their income and willingness to

continue being engaged in agriculture reproduction. However, hedging weather

risk is challenging because weather risk is systematic and un-diversifiable, which

means it can not be reduced or avoided by human management. Additionally,
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2 Chapter 1: Introduction

weather risk can be widespread and spatially correlated, which can have an effect

on many farms for a given region (Porth et al., 2014).

1.1 Agricultural insurance in Canada

Agriculture insurance is a transferring risks technique, and it helps producers

transfer risks to insurance companies. Barret et al. (2007) and Wang (2015) state

that when farmers are faced with risks without adequate external risk protection

or transferring mechanism, they may use fewer inputs, including fertilizer, water,

etc., resulting in lower production in the end. Nowadays, agricultural insurance

plays an important role in the agriculture sector. For instance, 90 % of the annual

crop are insured in Ontario (Porth and Tan, 2015).

There are two major prevailing types insurance that is traditional indemnity-

based insurance and index-based insurance.

Traditional indemnity-based insurance has three drawbacks, including moral

hazard, adverse selection, and high administration cost. Moral hazard means

farmers, as insured, may artificially or intentionally create damage on their crops

resulting in reducing production in order to receive indemnities from insurance

companies. For instance, they may carelessly regulate their land or irrigate land

not on time and regularly. Adverse selection appears because policyholders are a

group with the different level of risks, but insurance companies, as insurers, do not

have the ability to distinguish these different risk levels so that insurer only could

offer contracts to policyholders based on average risk level. Thus, premiums paid

by farmers who are facing small risks may be subsidized to farmers who are ex-
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posed to high risks, but the premium paid is same for both sides. It may result in

policyholders in low risks surrender from contracts. Under traditional insurance

contract, on-field inspection is required, so the administration cost is high.

Index-based insurance as an alternative option can overcome above three dis-

advantages. Because whether indemnity being paid is solely depending on the

generated value from underlying index so that this mechanism could ensure the

index (such as precipitation, temperature, sunshine, area yield, satellite, etc.) is

totally independent of policyholders’ performance and meanwhile, insured diffi-

cultly manipulate the index to achieve more benefits. Obviously, on-filed inspec-

tion is no longer needed, which can reduce almost surely all administration cost,

since actual losses on land do not affect indemnity. However, index-based insur-

ance still has a shortcoming, which is basis risk. Designing the index and setting

triggers of the insurance is also important.

1.1.1 Forage and forage insurance

In Canada, forage is planted 44% of the farming land as the second largest

crop and specificity, the area of the plantation of forage is about 1,999,000 acres in

the province of Ontario only (Wang, 2015). 80% of cows for beef production and

60% of dairy cows are fed forage (Porth and Tan, 2015). Thus, forage products are

important for Canadian agriculture. Usually, forage harvest is from June to August

with three cuts per year. As Simpson (2016) illustrates that there is a multi peril

crop insurance program called as AgriInsurance in Canada, operated by each of

ten provincial government crop insurance organizations and cooperated with the
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federal government as well. Farmers only need to pay 40% of the total premium

and rest 60% is subsidized by the provincial and federal government.

1.1.2 Two examples of Ontario

In Ontario, there was a forage insurance named as simulated forage yield (SIM-

FOY) implemented in 1981, but it was terminated in 2004 (Wang, 2015). Since this

insurance modelled forage yield with a complex combination of variables, such

as rainfall, temperature, soil type, etc., farmers found that the structure of trading

contract was too complicated to understand, especially for indemnities calculation

process. In the end, it was abolished. Oppositely, there is a trading weather index

insurance in Ontario called as Ontario forage rainfall plan (OFRP). Indemnities

under OFRP only rely on cumulative precipitation, one variable. However, tem-

perature and sunshine may also have a significant impact on forage yield. OFRP

may not derive a high correlation between yield and rainfall.

1.2 Catastrophic risk management

In Canada, catastrophic risks faced by agricultural insurers are hedged by rein-

surance. Nowadays, each province independently operates its crop insurance pro-

gram, and the federal government offers a reinsurance program for provinces; see,

for example, Ye et al. (2013). To date, five provinces, Alberta, Saskatchewan, Mani-

toba, Nova Scotia and New Brunswick, have joined into this reinsurance program.

Some other provinces, including British Columbia, Ontario and Prince Edward Is-
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land, purchase reinsurance from private companies.

From the perspective of federal government, managing agricultural reinsur-

ance is difficult and sometimes is very costly due to unpredictable extreme losses

caused by catastrophic events, such as drought, flood, hail, earthquake, hurricane,

etc. For instance, during the fiscal year 2002–2003, massive appropriations were al-

located out to Alberta and Saskatchewan from the Federal Reinsurance Fund due

to severe droughts (Ye et al., 2013). Additionally, as a report by the federal gov-

ernment demonstrated in 2011, there was a deficit in the balance of the Federal

Reinsurance Fund. Thus it required the Minister of Finance to advance $497.5 mil-

lion into the fund for each Reinsurance Fund agreement (Government of Canada,

2011; Ye et al., 2013). Thus, the federal government needs more techniques to man-

age agricultural risk exposures. Otherwise, it may experience substantial fiscal

expenditures when severe catastrophes happen.

Catastrophe bond (CAT bond) may be a good alternative choice. CAT bond

is a kind of event-linked bond with payoff depending on the occurrence of a spe-

cific event, such as earthquakes, drought, floods and hurricanes (Sun et al., 2015).

Under a CAT bond contract, the interest or the principal of the bond may be termi-

nated or delayed to issue to its investors if the CAT bond is triggered. For insurance

companies or governments, CAT bond can help them transfer tremendous catas-

trophic risks to investors in the financial market. Therefore, if the federal govern-

ment issues CAT bonds, it can use capitals from the financial market to cover po-

tential extreme losses rather than increasing the budget of the Reinsurance Fund.

The reduction of expenditures by issuing CAT bonds could provide the federal
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government opportunities to concentrate on improving its current agricultural risk

management programs and to allocate spending on innovation and product devel-

opment in relevant fields (Ye et al., 2013). So CAT bond may be a vital complement

to the federal government’s tool kit for catastrophic risk management.

1.3 Research objective

The objective of this thesis is to investigate the relationship between forage

crops yield and weather variables (in this thesis, variables are precipitation and

temperature). We search and select the best predictive model(s) of forage crops

yield using weather variables for the province of Ontario. The outcome of this

study is expected to be utilized to design indices and to set triggers for CAT bonds

on forage crops in Ontario.



Chapter 2

Data

This chapter illustrates information about the data used in the analysis. The

content of data consists of some basic weather information in county level, pro-

duction of forage crops in farm level, areas of farming land, weather station loca-

tions, etc., in the province of Ontario, Canada. In addition, all data adopted in this

thesis is provided by Agricorp, a provincial government crop insurance company

in Ontario.

2.1 Data description

There are four datasets used in our analysis named Dataset 1, 2, 3 and 4. Dataset

1 mainly contains several types of weather information, such as precipitation in

millimetre, maximum and minimum temperature of a day in degrees Fahrenheit,

etc. The following list provides details for all fields in Dataset 1.

1. id: a unique seven-digit id number for each weather station.

7
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2. station name: weather station’s name that is based on the location of the sta-

tion.

3. county num: means county number and same relation as between id and sta-

tion name, each county has a specific number to be represented.

4. county name: county name can provide where this information is collected.

In the other hand, it can show where these weather stations are placed.

5. year: the year, some weather data are reported.

6. month: the month, some weather information is recorded.

7. day: the day, some weather data are collected.

8. rainfall: it provides rainfall for a specific day measured in millimetres.

9. sunshine: it means average hours of sunshine received per day.

10. maxtemp: it shows the maximum temperature during the day measured in

degrees Fahrenheit.

11. mintemp: same logic as Maxtemp, it means minimum temperature during the

day measured in degrees Fahrenheit.

12. three UTM labels: UTM is short for Universal Transverse Mercator coordinate

system, and it can provide locations on the surface of the earth.

13. dist: this label is abbreviated to distance, and it is expressed in kilometres and

gives the shortest distance form the weather station to the closet Great Lake.



Chapter 2: Data 9

A sample of Dataset 1 is given in Table 2.1. Provided by weather stations from all

counties of whole Ontario, these data are sorted by day, month and year. Months

are from April to October and years included from 1967–2004. Although Dataset

1 contains weather information in the long period 1967–2004, the information is

not statistical complete yet. For instance, there are some missing observations for

rainfall and temperature. Particularly, missing observations for rainfall are signifi-

cantly more than temperatures.
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Table 2.1: Example of Dataset 1
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Dataset 2 contains forage production information at farm level from the year

1981–2004. The following list provides details for all fields in Dataset 2.

1. id: id number for each farm consists of eight or nine numbers and each every

farm has its id, which is to say, an id and a farm are one by one matched.

2. county name: same expression as mentioned in Dataset 1.

3. township name: it provides township names of farms locating.

4. county num: same expression as mentioned in Dataset 1 as well.

5. yield: it records forage crops production measured in tonnes per acre.

6. acres: it means total plantation areas of a farm expressed in acres.

A sample of Dataset 2 is given in Table 2.2. We want to point out that, majority

data are ended by the year 2003, and there are many missing observations in three

UTM categories data. Dataset 2 also includes species of forage crops that are alfalfa

and timothy. Because of the severity of lacking information in Dataset 2, this part

is not shown in Table 2.2.
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Table 2.2: Example of Dataset 2
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Since Datasets 3 and 4 are similar, we discuss and interpret them together.

Datasets 3 and 4 provide location information of weather stations and farms re-

spectively, via latitude, longitude and elevation coordinates as shown in Table 2.3.
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The following list provides details for all fields in Datasets 3 and 4. We note that

not all farms’ locations are demonstrated in the Dataset 3, while there are only a

few farms’ locations are inclusive.

1. id: it has the same meaning in Dataset 1 for weather stations or farms.

2. north east and zone: these three labels are UTM coordinates.

3. long and lat: they are longitude and latitude coordinates. By using these co-

ordinates, distances between weather stations and farms can be calculated.

4. elevation: it describes elevation of the weather station or the farm.

5. fist year of data: it expresses the first year that the weather station or the farm

started to collect and report data.

6. last year of data: it means the last year that the weather station or the farm

collected and reported data.

7. ag div: it shows which region the weather station belongs to.
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Table 2.3: Example of Datasets 3 and 4 combined
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2.2 Preparation

We perform the following preliminary operations on these datasets to facilitate

our future analysis.

1. As mentioned in Chapter 1, forage crops often be harvest starting from June

to August. Therefore, April, May and June’s three months rainfall data are

mainly considered in this analysis as the most contribution for forage grow-

ing. In other words, this season (i.e.,.second season, from April to June)can

be called forage growing season.

2. We notice that in Dataset 2 forage production information is available only

from County 9. Therefore Counties, 1 to 8, are excluded in this analysis.

3. Data without county information or weather station ID information are ex-

clusive either.

4. There is an assumption that all missing observations in rainfall are treated as

zeros precipitation in millimetre.

5. There are twenty–five weather stations that contain observations from 1967

to 2003, named as long term weather stations, and remaining three hundred

and twelve weather stations collect short period observations from 1997 to

2003, called as short term weather stations.

6. The province is divided into five regions as following: Eastern, Western,

Southern, Northern, and Central Regions shown in Figure 3.2. Each region is
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consisting of seven to ten counties and the approach employed, uses OMAFRA

(2017) for reference.

7. calculating distances from each farm, which has longitude and latitude, to

its nearest long term weather station. The reason for this step is necessary

and crucial, because weather data provided by long term weather stations

may be represented for those counties that do not collect weather data from

the year 1981 to 1996, which means some counties only contains short term

weather stations.

8. Monthly rainfall, monthly temperature and CDD (cooling degree days, in

this analysis, 50◦F is adopted as threshold) for April, May and June are cal-

culated out. Meanwhile, cumulative precipitation is obtained as well.

2.3 Regions, stations and farms

2.3.1 Regions

We follow the way of Ontario Ministry of Agriculture, Food and Rural Affairs

(OMAFRA, 2017) to divide the whole province of Ontario into five regions. There

is a vital reason to do the partition. Since with the aim to achieve the objective

of this thesis, a macro studying perspective is decent and using region level as

analysis unit can provide such a macro perspective.

Figure 2.1 shows a map of UTM zones of Canada, and it is clearly demon-

strating that province of Ontario locates in the middle-east of Canada and crosses
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through zone 15 to zone 18.

Figure 2.1: UTM
Note. Figure 2.1 UTM, retrieved June 28, 2017, from :http://www.cccmaps.com/gps.html. Copy-
right by Canadian Cartographics Corporation.

Figure 2.2 describes elevation conditions of the whole province of Ontario and

are measured in meters. There is a legend consisted of several levels of colours,

attached on the map and when the colour of a place on the map is closer to dark

green, the lower elevation it has, vice versa.

Figure 2.3 shows the analysis units, five regions, in five different colours based

on data provided by OMAFRA (2017). Blue is eastern region and yellow means

central region. Red and light green are western and southern region respectively.

The resting place is big green northern region. Based on Figures 2.2 and 2.3, we

have the reason to believe that the method of dividing regions depends on ele-

vation environment. From observation in Figures 2.2 and 2.3, we find that eleva-

tions within each region are similar. For instance, in the eastern region, elevation

numbers are comparatively low, but in the central region, elevation numbers are

significantly higher.
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Figure 2.2: Elevation of Ontario
Note. Figure 2.2 Elevation of Ontario, retrieved June 28, 2017, from
:https://oneclass.com/note/1513054-geography-2011ab-lecture-1. Copyright by Oneclass

2.3.2 Weather stations and farms

In order to clearly elucidate the information about weather stations and farms,

a few figures are showing as following.

Figure 2.4 shows the map of locations of all farms, which have coordinates in

terrain. It is quickly found that farms are mainly located in southern, western,
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Figure 2.3: Five regions
Note. Figure 2.3 is generated by Photoshop

eastern and partly central regions. Coincidently, the majority of these farms are

also locating in low elevation places, compared farms’ locations and Figure 2.2.

Also, Figure 2.5 shows all locations of weather stations, and then these stations

split into two sections: long term and short term. Figure 2.6 is the map of long

term weather stations, and as mentioned before, long term weather stations are

very few compared with a total number of stations. Figure 2.7 is the map for short

ones. As shown in this figure, short term weather stations are comparatively much

more than long term ones.
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Figure 2.4: Farm locations

Figure 2.5: All weather stations
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Figure 2.6: Long term weather stations

Figure 2.7: Short term weather stations
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Analysis

As Vedenov and Barnett (2004) address that temperature and precipitation are

possibly contributing most to yield variability among all important factors. There-

fore, in order to quantitatively analyse the potential relation between forage crops

yield and climate variables, seven models are established and validated. In fact,

the potential relation is not apparent and not effortlessly to derive. Each model is

applied to be analysed from April 1st to June 30th in the years 1981 to 2003 and also

in three levels of study unit: counties in Ontario, regions in Ontario and the whole

province of Ontario. Besides, a new dealing temperature data approach called as

weighted average temperature adjustment is introduced into this analysis (details

are discussed in Chapter 4). Remarkably, this analysis shows insight that forage

productivity is significantly impacted by weather variable as expected.

This chapter is constituted of four sections. Section 3.1 shows all seven models

and corresponding explanation. Section 3.2 mainly discusses estimation of missing

temperature observations from some counties without weather stations that collect

22
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weather data from the year 1981 to 1996. In Section 3.3 we demonstrate detail steps

for dealing with levels of county, region, and province, respectively. Section 3.4

introduces weighted average temperature.

3.1 Predictive models

In Table 3.1, all seven models are revealed in order from Model 1 to Model

7. Among these models, Models 1, 2, 4, 5, 7 are used in previous literature (e.g.,

Teigen and Thomas, 1995; Turvey, 2001; Vedenov and Barnett, 2004) and the rest

two, Models 3 and 6, are modified from Models 4 and 5 respectively. In particular,

in Model 3 three months cumulative rainfall comes into use rather than monthly

precipitation as in Model 4. Similarly, in Model 5, the variable of the number of cu-

mulative cooling degree (CDD) days is employed to replace the number of cumula-

tive cooling degrees above such predefined temperature threshold. The goodness

of fit of these seven models is presented in Chapter 4 via R2 and adjusted R2.
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Table 3.1: Model families
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Notations used in above models are defined as follows:

1. Yt is forage yield (production, tons per acre).

2. αn is a parameter vector.

3. Rcum is cumulative rainfall between April 1st and June 30th.

4. Rt=(RApril,t, RMay,t, RJune,t), they are monthly rainfall for relatively months

from April to June in the year t.

5. Tt=(TApril,t, TMay,t, TJune,t), similarity, they are average monthly temperature

for April, May, and June in the year t.

6. CDD65/50/days is the number of cumulative cooling degree days above either

65 or 50 degrees in Fahrenheit from April 1st to June 30th.

7. CDD65/50 is the number of cumulative cooling degrees above either 65 or 50

degrees in F from April 1st to June 30th.

8. ∆ means deviations from corresponding average values.

9. ε is a normally distributed error with mean 0 and variance σ2.

3.2 Missing data and trending issue

As illustrated in Chapter 2, the number of long term weather stations is con-

siderably rare, and it causes a series problem that some counties are not provided

available data during the year 1981 to 1996. For solving this perplexity, the most
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straightforward method is removing these missing data or we can follow these

steps to work out this drawback. First of all, find out how many farms in the

county which do not collect any data before 1997 and then verify the closet long

term weather stations for each of these farms. If the outcome of closet long term

weather station is a unique one, the unique weather station will represent the

whole county climate data for its missing years. Furthermore, if there more than

one results derived, the size of these farms will be compared with and then the

closet long term weather station for the largest farm will be adopted to represent

the county. Under the second procedure, temperature data has been stationary and

consistent, which is important for analysis, and facilitates us to educe a reliable re-

sult in the end.

For forage yield trending issue, some previous literature (e.g., Vedenov and

Barnett, 2004; Turvey, 2001; Wang, 2015) detrended their yield data before employ-

ing into their models. Because the capacity of each acre for forage may have raised

as agriculture technology innovated in the last three decades without the impact

of weather. Therefore, yield data may not be directly utilized that is a reasonable

assumption. There are various techniques can be used to detrend yield data, but

usually, a linear trend equation is prevailing adopted to detrend yield data. For ex-

ample, Vedenov and Barnett (2004) implemented a simple detrending procedure

by fitting a log-linear model. In their model, a logarithmic trended yield is derived

by:

log(Ytr
t ) = α0 + α1(t − 1971),

where 1971 is the beginning year of yield data and t means every year between
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1971 and 2001. Then, detrended yield can be calculated out followed by:

Ydet
t = Yt

Ytr
t

Ytr
2001

,

where 2001 is the ending year of yield data and Yt is original yield data at year

t. Alternatively, Wang (2015) discussed piecewise spline regression, and ARIMA

approaches are also potential options for detrending.

Above presentation is discussed about trending issue in yield data and detrend-

ing methods for general studying purpose. However, whether detrending in this

study, should depend on nature of our data. In order to identify this problem, an-

nually average forage yield per acre for five regions and province are calculated.

Figure 3.1 presents the annual average yield per acre in units of tonnes per acre

from the year 1981 to 2003 for five regions.
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Figure 3.1: Average yield per acre from 1981 to 2003 for five regions

There is a legend on the down left corner of the figure and E means eastern

region and so forth for rest letters. The interesting find from this figure is that

there is no significant trend for every region during the period analysed.

Figure 3.2 also shows the annual average yield per acre in units of tonnes per

acre from the year 1981 to 2003 but for the whole province of Ontario. Similarly,

the outcomes fluctuate around 1.9 tonnes per acre dramatically, and it implies that

there is no apparent trend for the province either.
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Figure 3.2: Average yield per acre from 1981 to 2003 for Province of Ontario

Consequently, detrending is needless in this study supported by sufficient ev-

idence. Moreover, Ottman et al. (2013) also address that the trend of Alfalfa has

not distinctly changed since 1980’s in the western eleven states in the US. Coinci-

dently, their research finding is same as the conclusion drawn in this analysis based

on Ontario data. Therefore, the conclusion is reliable and analysis could proceed

relying on this point.
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3.3 Three levels of analysis unit

There are forty–seven counties, five regions and a province of data, which is to

say, three levels of units can be analysed in this study. By applying the different

level of analysis unit, different models are derived and then by comparing with

these models, the best goodness fit one can be selected out. Later, results will

show region level of analysis unit is the most appropriate level in this study.

3.3.1 County

If each individual county is chosen as the analysis unit, many R2s and Adjusted R2s

will be achieved and more than that, calculating process is straightforward and

simple. However, as discussed in previous chapter and sections, climate data for

county level are not complete and consistent because of lacking sufficient long

term weather stations. Thus, either only some counties with long term weather

stations are utilized to analyse or data could be processed by the two approaches

as presented in Section3.2 before introducing them into models.

The Adjusted R2s’ ranges of for the former method from 0% to 59.3349% which

are extremely not stationary (numerical details is presented in Chapter4). It im-

plies that choosing county level as analysis unit seems not to be decent. For later

manner to process data, it is not suggested to be used because if those missing

data of a given county replaced by data collected from its closet long term weather

station(s)in another county and then these two counties will be homogeneous. Fur-

thermore, the homogeneity may weaken accuracy of the goodness of models fit.
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3.3.2 Five regions

We follow OMAFRA (2017) to divide the province of Ontario into five regions

which are eastern, central, southern, western and northern region and detail in-

formation is in Table3.2. In the analysis unit of regions, all counties climate data

within a region aggregate together, so that facilitates region level weather data

to be complete and consistent. Region level data can be processed for models

requirement. For instance, the eastern region contains eight single counties and

temperature data are aggregated firstly and then for each day during April to June

from 1981 to 2003, taking the average of all available eight counties’ temperature

as the temperature of eastern region for a given day. Monthly temperature can

be obtained by summarizing these regions daily temperature from corresponding

days and same logic for calculating cumulative temperature and even for regions

precipitation.

Furthermore, quality data may output a better goodness fitting as expected.

Subsequently, numerical results agree with this expectation. The ranges of Adjusted

R2s before and after Akaike information criterion (AIC; Akaike, 1973) are narrow

and some values are significantly high. It strongly implies region level of study

unit is an appropriate selection. Moreover, Vedenov and Barnett (2004) also illus-

trate that a weather derivative contract should be applicable for a large geographic

area. The two disadvantages of designed a contract at county level are available of

climate data and a limited market for the contract. Hence, their research suggests

a primary analysis unit is a level above a single county. Referring to this paper, the

primary unit is region.
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Table 3.2: Counties in five regions
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3.3.3 Province

Province level is not a suitable analysis unit as well because the whole province

of Ontario is too large as a unit and it could not preferably represent and describe

circumstance for counties level. Experience of a particular county may not be

linked to the experience of a province.

3.4 Weighted average temperature adjustment

Weighted average temperature adjustment (WATA) is originality in this study

and it means that another way to process temperature data in the case of region

analysis unit. Not like computing arithmetic mean of a region inside counties as

the region’s corresponding temperature, WATA is defined by the following equa-

tion:

Ti =
n

∑
j=1

cji

Ci
tji (3.1)

Variables are:

1. Ti: temperature of a region at time i.

2. tji: temperature of county j at time i.

3. cji: the number of acres of county j at time i.

4. Ci: the number of total acres of a region at time i.

5. n: is the total number of counties at time i.
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The reason why we are introducing WATA into this paper is that when the forage

yield (productivity) is calculated for a county or a region, it is a weighted average

yield of all farms in fact, which is to say, large size farms have more impact on av-

erage yield than small size farms. Therefore, the more weights the farm assigned,

the more impact it has in a model. Consequently, weather variables of large size

farms may also have a considerable effect on models as well. The way of how to

present the significant influence is assigning heavy weights on those counties that

have larger forage plantation areas while calculating temperature. This is the basic

idea why WATA is applied. Results from Chapter4 present when WATA is applied,

for some models both R2 and Adjusted R2 values before and after AIC increase and

meanwhile, give insight into the effectiveness of the new method WATA.
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Results

In this Chapter, the effectiveness of the weighted average temperature adjust-

ment (WATA) is compared to the effectiveness of a straightforward approach. Mean-

while, the effectiveness of three analysis units is testified as well. Clearly, a higher

number of R2 or adjusted R2, the more accurate description between forage yield

and weather variables of a model has. Because R2 is known as the coefficient of

determination and it can be interpreted that how many percentages of response

variables (i.e. forage yield in this thesis) can be explained by the model and pa-

rameters of variables are estimated by least squares method. However, R2 has its

drawbacks. For example, the more predictors added into the model, the higher

R2 value is obtained. Consequently, a model with more terms almost surely may

achieve a better result, so that lessen the credibility of models forecasting. For this

reason, R2 is not the only measurement in our analysis and adjusted R2 is em-

ployed as another useful statistical instrument. Adjusted R2 only increase when

a term indeed improves the model more than it would be expected which means

35
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adjusted R2 penalises ineffective terms in the model.

Therefore, R2 can be used to test whether an approach is effectual within dif-

ferent methods, and adjusted R2 can be utilized to help us to analyse which model

is optimized among all seven ones. The reason is that, when we compare two dif-

ferent two approaches to testify the better one, for example, straightforward way

and WATA method, we need compare same models in same regions and R2 value

is such a statistical measurement satisfied this requirement. But when adjust R2

values are computed, the underlying models are some variables truncated, which

means we may achieve totally distinct models for same regions. There is no sense

to compare different models employed different methods. As above discussed, we

measure the model effectiveness by studying its R2 and adjusted R2 values. In ad-

dition, AIC has the same function as adjust R2 and therefore, AIC is also used in

this chapter to exam if these two ways provide same results in models selection.

Also, the way of processing missing temperature data discussed in Chapter 3

is solely used in WATA method, and for other approaches, those missing observa-

tions are excluded.

It is expected that region will be the best study unit among three units and

WATA will substantially improve the effectiveness of all seven models forecast-

ing and therefore obtain one or some new technique(s) to articulately reveal some

details of the potential relation between forage productivity and climate factors.
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4.1 Results of three analysis units

Table 4.1 demonstrates some adjusted R2 results calculated from selected out

counties which have long term weather data based on Models 1 to 7. For sim-

plicity, only four counties are selected out and adjusted R2 presenting as a sample

here. Intuitively, the ranges of all seven models’ results are apparent wide and

significant not convergent. Majority values are low, including many zeros, except

R2 values of Models 3 and 4. In other words, Models 1 to 7 could not provide rea-

sonable and convincing interpretation about forage yield and weather variables if

county unit is adopted. However, from Table 4.1, a conclusion also can be drawn

that Models 3 and 4 both have comparatively higher results than other models.

In Table 4.2, adjusted R2 and R2 values for five regions and province are pre-

senting, and we can find in Table 4.2, adjusted R2 values from Model 3 are more

acceptable than results showing in Table 4.1, although improvement by applying

region unit for Models 1 and 2 are insignificant. However, for some particular re-

gions and other models, the improvement is sufficiently significant. For instance,

referring to the central region in Model 3, the adjust R2 is 0.5361 and moreover, its

R2 value is as high as 0.7680 which is rarely obtained from previous research in

the literature. Same high results are also achieved by Model 4, and they are 0.4962

and 0.7252 respectively. Nevertheless, some insignificant results are also derived

as displaying. For example, Models 3 and 4 in the northern region, Models 5 and

6 in the southern region are cases. Hence, for each region, a more accurate model

can be selected out by comparing both values of adj R2 and R2 and therefore, the

model can supply a more articulate relation to a larger area of land than county
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Table 4.1: Results for counties
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Table 4.2: Results of five regions and province
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Table 4.3: The optimal model for each region and province

Region Model adj R2 R2

Western M5 0.3524 0.4996

Eastern M4 0.4111 0.6788

Central M3 0.5361 0.7680

Northern M7 0.2431 0.3152

Southern M3 0.1177 0.5588

Whole Province M4 0.3346 0.6515

unit.

Besides, one interesting finding is that results derived by the province analysis

unit are always not the highest ones, which can support our argument in Chapter

3 that province is not an appropriate studying unit. Since province level could

not provide a better interpretation of the relation between forage productivity and

relative impact factors than treating the region as a research unit. For example,

Model 5 in the northern region, both adjusted R2 and R2 of northern region are

higher than values of the province.
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The Table 4.3 shows the optimal model for each region and province based its

adj R2 value. Models 1 and 2 with insignificant values are not mainly studying

subjects and therefore, we focus on analysing Models 3 to 7.

4.2 AIC selection

Table 4.4: AIC results of five regions and province

M1 M2 M3 M4 M5 M6 M7

Region R2 R2 R2 R2 R2 R2 R2

Western 0.4099 0.1438 0.5420 0.4266 0.4819 0.4816 0.1438

Eastern 0.3563 0.3084 0.6786 0.6786 0.3824 0.4911 0.1942

Central 0.1947 0.1853 0.7477 0.6829 0.3508 0.3508 0.1853

Northern 0.0000 0.2753 0.4939 0.5463 0.3428 0.3492 0.2753

Southern 0.1594 0.1241 0.4672 0.4532 0.2219 0.2599 0.1241

Whole Province 0.3195 0.1552 0.6347 0.6234 0.2317 0.2423 0.1552

AIC selection can assist us to remove trivial factors in a model via assigning a

penalty to extra parameters which should not be included into the model, so that

meliorate forecasting credibility of the model. Usually, a model after AIC selection
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will achieve an AIC value and the smaller the AIC value is, the better goodness fit

of the model has. However, in this thesis, an another way to interpret these AIC

values is adopted. We again calculate R2 values of each post-AIC model for each

region as well. Because post-AIC models have already been removed insignifi-

cant variables and therefore, R2 values of post-AIC models have same meaning

as adjusted R2 values, which is to say, the optimal model for each region can be

obtained by comparing R2 values. All R2 values are presenting in Table 4.4. The

optimal model for each region and province are selected out based on Table 4.4

showing and results are displaying in Table 4.5.

In Table 4.5, these optimal models are mainly concentrating on Models 3 and 4.

However, in Table 4.3, the same conclusion could not be found.
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Table 4.5: The optimal model for each region and province after AIC

Region Model R2

Western M3 0.5420

Eastern M3& M4 0.6786

Central M3 0.7477

Northern M4 0.5463

Southern M3 0.4672

Whole Province M3 0.6347

4.3 Results of WATA

In order to exam whether WATA method can improve models forecasting cred-

ibility and effectiveness, results of WATA method will be compared to results of

straightforward approach. However, there are two ways of selecting optimal mod-

els, which are depending on adjusted R2 values and AIC, and therefore, they will

be separately tested.
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Firstly, optimal models of applying WATA and without WATA are presented in

Table 4.6 by considering adjusted R2 values. From this table, region of east, center

and south have same optimal models and meanwhile, they have both higher adj R2

and R2 numbers. Referring to the western region, optimal model is same, Model 5,

and results are exactly same as well. For region of north and whole province level,

their optimal models altered but after applying WATA method, M6 and M3 can

provide more accurate and credibility explanation between forage yield and cli-

mate variables for region of north and whole province respectively. Consequently,

a conclusion can be drawn that adopting WATA method improves models predic-

tive effectiveness.
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Table 4.6: The results comparison without AIC

With WATA Model adj R2 R2 Without WATA Model adj R2 R2

Western M5 0.3524 0.4996 M5 0.3524 0.4996

Eastern M4 0.4599 0.7054 M4 0.4111 0.6788

Central M3 0.5524 0.7762 M3 0.5361 0.7680

Northern M6 0.3191 0.4893 M7 0.2431 0.3152

Southern M3 0.3146 0.6573 M3 0.1177 0.5588

Whole Province M3 0.3922 0.7106 M4 0.3346 0.6515

Similarly, second step is to compare optimal models of employing WATA and

without WATA method. However, optimal models in this step are chosen accord-

ing to each corresponding maximum R2 value of every post-AIC model for each

region. From Table 4.7, we can see that they have same selections of optimal mod-

els and also, eastern, southern and whole province results of using WATA all have

significant higher R2 values than results without adopting WATA. But the region

of west, north and center, their R2 values of WATA are slight lower than R2 val-
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ues without WATA. However, deviations of these R2 values are insignificant and

negligible. For detail results of adopting WATA method, they are showing in Table

4.8.

Table 4.7: The results comparison with AIC

With WATA Model R2 Without WATA Model R2

Western M3 0.5342 M3 0.5420

Eastern M3 0.7224 M3& M4 0.6786

Central M3 0.7471 M3 0.7477

Northern M4 0.5341 M4 0.5463

Southern M3 0.6160 M3 0.4672

Whole Province M3 0.7097 M3 0.6347

Notably, Model 3 in the southern region, its post-AIC R2 values from 0.4672

tremendously raises to 0.6160 which increased 32%. But for other models and

regions, this phenomenon does not appear. In order to interpret this, we propose

an explanation.

Deviation in Table4.9 means the difference between the largest weight of a
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county and smallest weight of a county for a given year. Therefore, we find that the

deviations of southern region are obliviously big than other regions and it may be

the reason for the dramatical change in the southern region. It implies that WATA

method might be extremely effective for places that have an unequal distribution

of plantation land areas. However, the northern region also shows large deviation

numbers from the year 1998 to 2003, and increments of R2 values of major four

models after applying WATA method are insignificant.
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Table 4.8: Results of WATA
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Table 4.9: Deviations of regions
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Chapter 5

Summary and Future Research

5.1 Thesis summary

In this thesis, we investigate best predictive models explaining the relation-

ship between forage crops yield and weather variables in the province of Ontario,

Canada. Here, climate variables are for each month from April to June, including

cumulative rainfall, monthly temperature in degrees, and monthly days with tem-

perature in a particular range. The outcome of this study is expected to be utilized

to design indices and to set triggers for CAT bonds on forage crops in Ontario.

Our main contributions are summarized as follows:

(i) We deal with missing weather observations. For example, lots of temperature

observations are missing in the original datasets. We assume that for each

county its temperature is as recorded by the closest weather station. Thus we

are able to use the forage crop yield information from all counties fully.

(ii) We propose to search best predictive models based on five geographical re-

50
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gions. This is different from most research in the literature, in which predic-

tive models are applied on one single farm or county.

(iii) We propose a new concept: weighted average temperature adjustment (WATA).

The motivation is very straightforward. Actually, in each region, the cul-

tivated area of forage crops varies a lot among counties every year. Thus

the weighted average temperature with cultivated area being weight makes

more sense in predicting forage crop yield than the arithmetic mean temper-

ature does.

5.2 Future research

We would use the research output from this thesis in designing an appropriate

CAT bond for agricultural insurance business in Ontario. There are several ways to

design a CAT bond. For example, some CAT bonds use aggregate Loss Cost Ratio

(LCR) as a trigger (Ye et al., 2013) and others use weather indices (Sun et al., 2015).

We are interested in the index approach. In the following, we summarize the next

steps and challenges that need to overcome to design a CAT bond eventually.

1. Predicting precipitation and temperature:

(a) Based on historical weather data, we need to estimate the frequency and

severity for extreme weather conditions. This involves using statistical

models to estimate the occurrence of extreme weather conditions.

(b) The weather variables in the five geographical regions of Ontario are

likely to be correlated with each other. So we should investigate the
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possibility that same severe weather condition may occur in more than

one region in a single year.

2. Setting bond trigger:

(a) The bond triggers may be set based on precipitation, temperature or

both. Here we again need to take into account the spatial correlation

between the five regions since the triggers represent the levels of catas-

trophic risk in Ontario as a whole.

3. Pricing the CAT bond:

(a) Since CAT bonds linked to agriculture has not been issued yet, the mar-

ket for CAT bonds is incomplete. So the pricing is a complicated and

difficult work, and the martingale approach does not provide a unique

price.

(b) Jarrow (2010) proposed a closed for CAT bond pricing model, which

may help us complete the pricing step.

(c) Setting the return rate is also an important step. In order to attract in-

vestors to purchase and trade CAT bonds, CAT bonds have to provide

a higher return rate than the risk-free rate. Usually, the recovery rate is

assumed as LIBOR rate plus a fixed spread as shown in Sun et al. (2015).

4. Plausibility checking:

(a) This step uses Monte Carlo simulation for precipitation and tempera-

ture. They, in turn, are used as inputs in our predictive models. The
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technique of importance sampling may help improve the accuracy and

efficiency of the simulation.

(b) The plausibility of the CAT bond relies on if both stakeholders, the fed-

eral government, and the investors, are satisfied with the probability of

default, hedging effectiveness, profitability, etc.
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