
DpsrcN AND EvaluaTroN op RBQuEST DrsrRreurroN
Scupn¿ps FoR Wpg-SERVER Clusrpns

by

A dissertation submitted in partial satisfaction of the
requirements for the degree of

Master of Science

Ramandeep Bhinder

Department of Electrical and Computer Engineering

Faculty of Graduate Studies
University of Manitoba

Copyright @ 2002 by Ramandeep Bhinder

l*l w¡jonatt-iurav

Acquisitions and
Bibliographic Services

395 Wellingiton Street
Ottawa ON K1A 0N4
Canada

Bibliothèque nationale
du Canada

Acquisitions et
services bibliographiques

395, rue Wellington
OttawaON KlA0N4
Ganada

The author has granted a non-
exclusive licence allowing the
National Library of Canada to
reproduce, loan, distribute or sell
copies of this thesis in microform,
paper or electronic formats.

The author retains ownership of the
copynght in this thesis. Neither the
thesis nor substantial extracts from it
may be printed or otherwise
reproduced without the author's
permission.

Yout ñts Volro réléMce

Out ñl€ Nolra rálárffi

L'auteur a accordé une licence non
exclusive permettant à la
Bibliothèque nationale du Canada de
reproduire, prêter, distribuer ou
vendre des copies de cette thèse sous
la forme de microfiche/fiIm" de
reproduction surpapier ou sur format
électronique.

L'auteur conserve la propriété du
droit d'autern qui protège cette thèse.
Ni la thèse ni des extraits substantíels
de celle-ci ne doivent êne imprimés
ou autrement reproduits sâns son
autorisation.

Canad'ä

0-612-79930-1

THE UNIVERSITY OF MANITOBA

FACULTY OF GRÄDUATE STUDIES
****8

COPYRIGHT PERMISSION PAGE

DESIGN AND EVALUATION OF REQUEST DISTRIBUTION
SCHEMES FOR WEB.SERVER CLUSTERS

BY

A Thesis/Practicum submitted to the Faculty of Graduate Studies of The University

of Manitoba in partial fulfillment of the requirements of the degree

of

RAMANDEEP BHINDER

Permission has been granted to the Library of The University of Manitoba to lend or sell copies of this
thesis/practicum, to the National Library of Canada to microfilm this thesis and to lend or sell copies
of the film, and to University Microfilm Inc. to publish an abstract of this thesis/practicum.

The author reserves other publication rights, and neither this thesis/practicum nor extensive extracts
from it may be printed or otherwise reproduced without the author's written permission.

RAMANDEEP BHINDER O 2OO2

Master of Science

As the World Wide Web experiences increasing use, server systems are being loaded

immensely. In response to the increasing load on the servers, several measures have been

taken to improve the performance of Web servers. A cost-efi'ective and scalable solution

is to use a distributed system consisting of multiple machines acting as back-end nodes

for the server. This approach is both cheaper and more fault tolerant than a single large

server.

With the growth of the user community on the Internet, Web servers a¡e also expected

to manage their resources so as to provide differentiated and predictable euatity of Service

to their clients. Most of the work done on server clusters have focused on partitioning,

replicating and aggregating the service components of a cluster so as to provide highly

scalable, available and easy-to-manage services.

In addition to providing QoS based service diffe¡entiation on clusters, it is also re-

quired that the cluster resource (memory, bandwidth, CPU) utilization be maximized.

In this thesis, I investigate the problem of providing predictable as well as difl'erenti-

ated QoS in cluster systems, while at the same time trying to maximi ze lhe resource

utilization of the cluster while meeting service level agreements. In order to determine

the major factors which effect the performance of a cluster system, I first compare some

of the major request distribution algorithms in terms of achieved throughput, hit ratio,

and load balancing. I then use the results obtained to design a QoS aware request dis-

tribution algorithm which tries to maximize the overall cluster resource utilization r,vhile

providing differentiated QoS to different classes of clients. Simulations lvere carried out

to compare the major request distribution algorithms and for the developed eoS arvare

request distribution algorithm.

ii

Abstract

Dedication

To my daughter Riya

ut

I rvould like to express my gratitude to alì those who gave me the opportunity to complete

this thesis. First I would like to thank my supervisor Dr. Muthucumaru Maheswaran

whose help, stimulating suggestions, and encouragement helped me all the way through

my research. I thinl< he is an ideal supervisor anyone could ever rvish for. I would also

like to thank Dr- Jeff Diamond of TRLabs for ideas and suggestions throughout the

research period without which this thesis would not have seen light of day.

I would like to thanlç TRLabs for supporting and funding my research. TRtrøös pro-

vides a wonderful research environment and state-of-the art equipment for doing research.

I would like to thank Dr. Jose Rueda of TRLabs for providing moral and technical sup-

port. I would also like to thank all the other members of TRLabs for their help and

support in my research as well as in a number of other matters.

I would also lil<e to appreciate the help of my colleagues, especially Vasee for his

motivating ideas and helping me at various points in my thesis. I would also lil<e to thanlc

Arindam for reading parts of my thesis and providing me with his valuable comments.

Finally, a special thanks to my elder brother for supporting me morally and financially

throughout my studies. Without his support I wouldn't be what I am today. I also thank

my wife Anita for her constant support and perseverance. Lastly, but not the least I would

like to thanlç my mother.

Acknowledgements

TV

Contents

1 Introduction

1.1 Why QoS in Cluster systems ?

I.2 Thesis Statement and Contributions

1.3 Dissertation overview

2 Literature Review

2.7 BES Based Server Cluster Models

2.7.1 Centralized Dispatcher Systems

2.7.2 Distributed Dispatcher Systems

2.7.3 Commercial Products

2.2 QoS Based Server Cluster Models

2.3 Miscellaneous

3 Cluster Models

3.1 Request Distribution Mechanisms

3.1.1 Layer- Switches

3.1.2 Layer-7 Switches

3.2 Load-Distribution Algorithms

3.2.7 Load Sharing and Load Balancing

v

7

7

8

10

15

18

19

22

23

24

29

32

33

3.2.2 PolicyComponents

3.2.4 Content-blind Algorithms

3.2.5 Content-aware Aìgorithms

4 Request Distribution Algorithms

3.2.3 Dynamic, Static, and Adaptive Algorithms

4.7 Round-RobinAlgorithm

4.2 Greedy Algorithm

4.3 Locality Aware Request Distribution

4.4 The Document Placement Model

4.5 Quality of Service Aware Model

4.5.7 QARD-LA

4.5.2 QARD-LB

4.6 Predicting the Request Arrival

5 Simulations

5.1 Simulation Setup

5.1.1 The Front-end node

34

36

tÈ7ù¡

43

5.2 Results and Discussion

5.7.2 The Server Entity

5.2.7 The BES Aìgorithms

5.2.2 The QARD Algorithms.

Conclusions

6.1 comparison with Existing Qos schemes for server crusters

47

47

48

49

51

52

55

5B

5B

62

62

63

64

66

66

72

6.2 Future Research Directions

VI

80

82

83

List of Tables

5.1 Workload-1 Statistics

5.2 Workload-2 Statistics

5.3 Bandrvidths and threshold values for the QoS classes and the BES class

5-4 Actual and Predicted number of requests for different classes

bb

72

J,f

ryt,J

vll

List of Figures

3.1

3.2

,1 .,-t

Cluster Based Server Architecture

Layer-4 bidirectional architecture

Layer-4 unidirectional architecture

Layer-7 bidirectional architecture

Layer-7 unidirectional architecture

3.4

.1.5

3.6 Distribution algorithms

3.7 Content-blind distribution algorithms

3.8 Content-aware distribution algorithms

4.1 LARD server selection algorithm

4.2 The Document Placement Model

4.3

4.4

QARD-LA

QARD-LB

5.1 Throughput (bytes/sec)

5.2 Hit ratio

5.3 Average load imbalance.

5.4 Total load imbalance

5.5 Throughput (bytes/sec)

23

25

26

30

31

38

39

44

5.6 Hit ratio

50

52

56

59

68

69

70

71.

74

75

vtlr

5.7 Average load imbalance.

5.8 Total Revenue Generated

5.9 Total Discontent

76

77

78

IX

Chapter 1

Introduction

The Internet is in a mode of continuous change. It has experienced an explosive growth

in the last few years in the number of users and in the number of web-services running

on it. The information available on the World Wide Web is also experiencing a massive

change, with text-only information sources being augmented with video, voice and very

large still images. Also, with the last mile problem being solved with the introduction of

high bandwidth connections such as cable modems and DSL, the load on the web servers

is increasing day by day, making them more stressed than ever. This causes a number

of performance problems iilçe network congestion, slow response time and even denial of

service.

A number of approaches have been developed to address these problems. Web

browsers have addressed this problem by adding client caches. Caching and replication

of content is another approach, whereby the web objects are replicated and cached closer

to the requesting clients. This approach can be implemented in two ways: (1) servers

push the popular web content out to other replicas or caches, and (2) cìient requests are

cached while passing through client or proxy caches. However, the second approach has a

very limited impact [BeA97] as it focuses exclusively on caching at a particular client or

1

Cuaprpn 1. IxrRooucuoN

set of clients. A client cache does not reduce traffic to a neighboring client, and similarly

a proxy cache does not reduce traffic to a neighboring proxy. The server based push ap-

proach is better as it allows the clients to share cache space cooperatively, and, since the

servers have a better understanding of the data-access patterns, they can take advantage

of the network topology and the file's access history to maximize bandwidth savings and

reduce load. But servers must also consider issues like the extent of replication of each

file which generally is proportional to that file's popularity, and where each file should

be replicated so that clients can reach them efficiently.

Another approach is to make the web servers more porverful. This can be done by

upgrading a web server to a faster and larger machine in terms of CPU speed, memory,

disk size, and network interfaces. This approach can relieve the server from pressure

fbr a short time, but viewing the current web trafic trend, this does not seem to be a

cost-effective or a long-term solution. Also, this approach of improving the performance

of a single server is not scalable and has a single point of failure. It will cause interruption

in service while the server is upgraded. A solution is required which can keep up with

the ever increasing request load on the server, provide scalable services and be a cost-

effective solution. One such approach is the use of a distributed system consisting of

multiple machines acting as nodes for the server. This approach of providing distributed

processing power is both cheaper than a single large server of equivalent processing power,

and more fault tolerant. In this system, even if a node or two crashes, the service is

not interrupted, as only a small percentage of the serving capacity is lost. But, this

approach needs a mechanism to handle the request distribution to the difi'erent nodes

in the server so as to balance the load among the nodes, as well as to provide a si,ngle

system i,mage (SSI) to the clients i.e., it should appear as a single host to the outside

world, so that users can interact with the distributed server as if they were interacting

lvith a high performance server without being concerned about the names or locations of

CuaproR 1. INrRooucrro¡¡

the individual server nodes.

In order to best utilize the resources of the cluster and to achieve a short response

time, good load balancing is necessary in the cluster. Several techniques have been

employed to distribute the requests to the back end nodes in the server cluster so as

to achieve good load balance. One such approach is to use the Domain Name System

(DNS) to support the concept of clusters [BrT95]. In this approach, the DNS server

is used to resolve a single host name into multiple IP addresses. The DNS server can

either return IP addresses for the host name in a round-robin fashion or can select an IP

address randomly from among the set of IP addresses. In this way, successive requests

are sent to dift'erent nodes in the cluster. Another method uses the Network Address

Translation (NAT) standard [EgF9a], in which a single IP address spoofs for multiple

addresses. Although simple, these approaches have several drawbacks. First, caching of

IP addresses in the client browsers and in the secondary DNS servers will result in an

unbalanced loading of the nodes in the cluster. Second, if a server node crashes, the

DNS server or the NAT wiìl still be translating the address for that node, as there is no

automatic way for them to recognize the fäilure and to stop serving the IP address for

that node. These mechanisms thus cause uneven machine utilization in the server cluster.

Another way is to use a specialized machine acting as a front end to the server cluster.

This front end acts as a single point of contact for the clients, hiding the distributed

nature of the server, thus forming a single system image for the server. The front end

may employ different policies to distribute the requests to the back end nodes. Some of

the existing policies are (1) Round Robin distribution, which distributes the requests to

the next back end node in its list in a round robin fashion. (2) Weighted Round Robin

distribution, rvhich is the most commonly used technique, and is a pure load balancing

technique, where the requests are distributed to the back end nodes in a round robin

fashion weighted by some measure of load on different back end nodes. For example, the

Cr-t¡.prpn 1. INrRooucrroN

CPU and the disk utilization, or the number of active connections in each back end may

be used as an estimate of the load.

Request distribution techniques based on URLs are also becoming popular, known

as "Content Based Request Distribution techniques". In these techniques, the front

end takes into account the service/content requested to make the forwarding decision.

These techniques show increased cache hit rates [PaA98] in the back-end's main memory

caches, increased secondary storage scalability due to the ability to partition the server's

database over difl'erent back-end nodes and also allow the ability to employ back-end

nodes specialized for certain type of requests (e.g. audio and video).

With the growing size of the user community in the Internet, Web-servers are expected

to manage their resources to provide diff'erentiated and predictable Qualitv of Service

(QoS) to their clients. The operating system deployed in servers is inadequate to provide

QoS to clients. Also, the clusters don't have the provision to provide dift'erentiated QoS,

based on the client community.

In this thesis, I compare some of the major request distribution algorithms, in order

to examine the factors which effect the performance of a web cluster system. These

performance metrics are the throughput (bytes transferred per second between the cluster

and the client), the hit ratio (shorvs how efficiently the memory cache is being utilized)

and the ìoad imbalance (shows how well the load is balanced between the nodes in the

cluster) Then, I look into providing both predictable as well as differentiated QoS in

cluster systems.

1.1 Why QoS in Cluster systems ?

The current systems running on web servers try to maximize the utilization of the re-

sources in the system while simultaneously providing some fairness between the con-

Cnaprpn 1. INrRooucrrou

tending processes. Such systems ensure the fair distribution of CPU resources between

the processes. With the increase in the usage of high bandwidth connections like cable

modems and DSL, it is often desired to differentiate bet'rveen clients rvith respect to the

resources allocated within a web cluster to them. This may also be required in the case

when organizations rvish to provide dift'erentiated and higher guarantees to clients who

are paying more as opposed to clients who browse for free. In such situations, it is desir-

able that a given proportion of server resources be reserved for a class of cìients, such that

it is guaranteed a minimal level of performance that remains unaffected by the behavior

of other classes. Further, in order to maximize the profits or the generated revenue, it

is desirable to maximize the utilization of the cluster resources while meeting the service

level agreements. Hence, it is also required that in cases where the guaranteed share is

not being used by a certain class, it should be free to be used bv the other classes.

L.2 Thesis Statement and Contributions

The hypothesis of this dissertation is that current cluster based server systems lack

eft'ective facilities for providing QoS to their clients based on their desired bandwidth

requirements. The cluster systems should also be able to provide service isolation between

the different QoS classes. The goal of this dissertation is to develop a request distribution

algorithm to provide both predictable and differentiated QoS to clients. At the same time,

it should be able to maximize the utilization of cluster resources including the main

memory cache, the throughput (bytes transferred per second) and the total generated

revenue.

CueprpR 1. I¡¡rRonucrrol¡

1.3 Dissertation overview

The rest of the thesis is organized as follows: Chapter 2 presents related work. It dis-

cusses several techniques used in web-server clusters for distribution of requests to the

back-end nodes. Chapter 3 describes different models and mechanisms currently being

used in cluster systems. Chapter 4 describes the request distribution algorithms devel-

oped in this dissertation. Chapter 5 describes the simulation setup used to emulate the

different request distribution algorithms as well as the proposed quality of service aware

request distribution algorithm. Further, it provides the results obtained based on a trace

worlcload. Finally, Chapter 6 summarizes the main results and identifies future directions

of research.

Chapter 2

Literature Review

Networks of servers based on clusters of worlçstations are widely used [FoG97] for various

applications such as web-hosting, video on demand services, and storing medical images.

These server clusters can be organized in different ways. One popular way of organizing

them is to use a specialized node as a front-end to the server cluster. The front-end

node is responsible for receiving all the client requests and making decisions about which

back-end node should service the request. The back-end nodes are responsible for serving

the client requests. Another way of organizing server clusters does not use a dedicated

front-end node for distributing the requests to the back-end nodes. In this chapter, I look

into some of the related work from academia and industry on server clusters. This study

can be categorized into two parts. The first describes best effort seruice based (BES)

server cluster systems and the second describes quali,ty of serui,ce (QoS) based systems.

2.L BES Based Server Cluster Models

These server cluster models do not aim at providing any QoS to the clients. The main

aim in these models is to effectively distribute the requests to the back-end nodes. Some

7

Csapr¡R 2. Lrrpn¿ruRn Ravrpw

schemes aim to distribute requests such that the overall performance of the server is

improved. The BES cluster systems can be further classified into three types. (1) server

cluster systems which use a centralized dispatcher to distribute the requests to the back

end nodes, (2) server cluster systems which do not make use of a centralized dispatcher

for distributing the requests, or not implement the complete request distributing func-

tionality at the front-end node, and (3) commercially used products.

2.L.L Centralized Dispatcher Systems

This section examines work which uses a specialized centralized dispatcher generally

called a front-end node or a web-switch to steer client requests to the bacl< end nodes

in the web-server cluster. The cluster hides its distributed nature by providing a single

virtual IP address that corresponds to the address of the front-end node. When a client

browser tries to resolve the address for such a site, the Domain Name Server for the web

site translates the site address into the IP address of the front-end node. In this way, the

front-end node acts as a centralized global scheduler that receives all requests and routes

them among the servers of the cluster.

A scheduling policy called cl'i,ent-aware poli,cy (CAP) u/as proposed in [CaC01] for

clusters providing multiple services such as static, dynamic and secure information. This

approach is different than most other content aware approaches in that it is not limited to

sites hosting static content. This approach also does not require any modification to the

servers' as dynamic decisions are made at the front-end, by considering only the client

request and ignoring the server states. The scheme works by distinguishing the client

requests based on their impact on the Web server resources (CPU, disk and network) and

assigning each request to a load class. It then assigns the multiple load classes among all

the servers so that no single component of a server is overloaded.

CuaprpR 2. LrrpRaruRp Rpvrow

A simple content aware request distribution policy kno'wn as locølity-au)are request

di,stri,bution (LARD) is discussed in [PaA98]. In this the front end makes routing decisions

based not only on the load on the back-end servers but also depending on the content

requested, thus achieving high cache hit rates at the bacl<-end nodes. This approach works

by dynamically partitioning the working set of documents over the back-end nodes. When

a document is first requested, it is assigned a back-end node by choosing a tightly loaded

back-end node. Subsequent requests for that document are assigned the same back-end

node unless it is overloaded. In case of overload, a new back-end node is chosen from the

current set of lightly noded nodes and the target is assigned to it, thus increasing the

number of servers caching that document. The servers caching the same document are

called the "server set" for that document. If the same document is requested again, it is

assigned to the least loaded node from the server set for that document, unless all the

nodes in the server set are overloaded, in which case the server set is further increased

as described earlier.

An approach similar to LARD known as the Haruard Array of Clustered, Computers

(HACC) is proposed in [ZhB99]. It is a content-aware technique, rvhich tries to improve

performance by making use of locality information and load information at the back-

end nodes rvhen making forwarding decisions at the front-end. Their rvork is different

than LARD, in that they focus on static as well as dynamic files. Through prototype

implementation they show that their approach has substantial performance enhancement

over conventionaì cluster approaches which do not take into account the content requested

while making forwarding decisions.

CHaprnR 2. LrroReruRp Revrnw

2.L.2 Distributed Dispatcher Systems

For a cluster based rveb server, it is desired that the cluster provide a single-system image,

so that the distributed nature of the cluster is transparent to the clients. When using a

dedicated front-end node, this is accomplished by publishing the IP address of the front-

end node rvhich receives all the client requests. When a dedicated dispatcher is not used,

or rvhen a distributed dispatcher is used, the issue of how to form a single system-image

for the cluster arises. A simple solution as suggested in [BrT95] is to use the Doma,in

Narne Seruer (DNS) for the site. When the DNS server receives a translation request,

it selects ihe IP address of one of the back-end nodes in the cluster in a round-robin

fashion.

But several problems arise with this method. First, the name-to-IP address mapping

may be cached in some intermediate DNS server as there may be several name servers

between the client and the DNS server for the site. This caching would result in the

sending of bursts of requests from new clients to the same back-end node in the cluster,

leading to significant load imbalance. The DNS server can force a mapping to a different

server IP every time a request for name resolution for the address comes by specifying a

low time-to-live (TTL) value for a resolved name. But, this would result in an increase

in traffic on the network for name resolution. Another problem is due to the caching

of the resolved mapping at the client, again resulting in load imbalance at the server

cluster. Also, in the event of the failure of a back-end node, the DNS server may continue

translating the address for that node. A good comparison between the RR-DNS approach

and the front-end based approach can be found in [DaKg6].

Another technique called ONE-IP was proposed in [DaC97] to publicize a single server

name for the entire cluster. In this, f,he ifconfig ali,as oplion available on most UNIX

platforms was used to provide a common secondary IP address to all machines in the

10

Csaprpn 2. LrreRaruRp Rpvrsw

cluster. All the machines in the cluster have different MAC addresses and dift'erent

primary IP addresses. When a packet from a client arrives for the assigned secondary

IP address, it is broadcasted on the server network as an Ethernet broadcast packet.

Filtering is used on each back-end nodes, so that each pachet is processed by only one

back-end node. The back-end nodes use the secondary IP address to respond directlv to

the clients.

The ONE-IP technique requires that the router changes the MAC address of all

incoming packets to a broadcast address, and also requires a permanent ARP entry at the

router, to associate the secondary IP address of the cluster with the Ethernet broadcast

address. [VaCO1] propose a method called l,he Clone Cluster Method, to overcome the

need for router configuration in ONE-IP. Unlike the ONE-IP technique, the clone cluster

method requires all the back-end nodes to have the same iP and MAC address. All the

machines in the cluster are connected to a shared-medium Ethernet LAN, so that all the

packets are seen by all the machines. Each machine is given a unique id, which is used

by a filter mechanism to accept packets destined for that machine.

An important issue with using a single centralized front-end node to the cluster is

limited scalability [DaK96], and single point of failure. The performance of the rveb

cluster cluster should increase with the increase in the size of the web cluster. With a

centraìized dispatcher, the cluster cannot be scaled beyond the point where the front

end node reaches its maximum capacity and becomes a bottleneck. Also, the failure of

the front-end could result in non-availability of the cluster service. [BeCgB] propose a

scalable and fault-tolerant approach called Di,stri,buterJ Paclcet Rewriti,ng, where the task

of distributing the client requests is performed by all the nodes in the cluster. The client

requests are sent to individual nodes in the cluster, which then forward the request to the

appropriate node rvhich rvould be serving the request. The requests can be sent to the

individual nodes in the cluster using some simple approach such as round-robin DNS. To

11

CHaprpn 2. LrrnRRruRn Rnvlew

balance the load on the cluster, routing of requests by the nodes in the cluster could be

done in a stateless manner or on per-connection state basis. The routing in the stateless

manner uses some type of hashing function to forward the requests to the appropriate

node. For per-connection state routing, all the nodes keep track of the connections on

the other nodes, and using the state information forward to request to the appropriate

node. However, the study does not show any implementation or simulation results for

the scalability achieved by the given approach.

[AvB99] uses the approach suggested in [BeC98] to load balance a cluster of web-

servers' Through prototype implementation, they show that the per-connection state

approach of Distributed Packet Rewriting will achieve better throughput and mean re-

sponse time than the stateless approach. The requests are distributed to all the nodes

in the cluster using Round-Robin DNS. Each machine in the cluster keeps track of the

IP addresses and the current load information on all the other machines in the cluster.

The load information is broadcast by each machine to the other machines in the cluster

at regular intervals of time. When a nevr request arrives from a client, the nodes use this

load information to decide whether the request should to be routed to another node or

whether it should be served locally. The nodes use a certain threshold value of load to

decide whether to serve the request locally or whether to forward it.

With content-aware request distribution, the problem of the front-end becoming a

bottleneck is more severe, as the front-end node must carry out complex forwarding

decisions as well as implement either a form of TCP handoff or TCP splicing mechanism.

This is because in content-aware request distribution the front-end has to mal<e a TCp

connection with the client prior to assigning the request to a back-end node. The front-

end becoming a bottlenecl< could limit the performance improvement and the scalability

achieved by the server cluster. [ArS00] present a scalable architecture for Web server

clusters implementing content-aware request distribution. They show that conventional

72

CHRpTBR 2. LnpRRruRB Rpvrpw

PC/Workstation based front-ends can only be scaled to a relatively small number of

server nodes rvhen using content-aware request distribution.

To shorv the scalability obtained by the nerv architecture, they separated the front-end

into trvo units. The first unit, called the dispatcher, implements the request distribution

strategy, and decides lvhich baclç-end node should handle a given request. The second

unit called the distributor, interfaces with the client and implements the mechanism

that distributes the client requests to the back-end nodes. This second unit implements

either a TCP handoff or TCP splicing mechanism, and hence is responsible for the bulk

of overhead occurring at the front-end. In the proposed architecture the distributor

component is separated from the front-end and is implemented in each back-end node,

as the tasks performed by the distributor component are completely independent. The

front-end still implements the dispatcher component, as the dispatcher typically requires

centralized control. The dispatcher component can be implemented as a simple layer-

switch, and use simple strategies like DNS round-robin to distribute the requests to the

distributor components residing in the back-end nodes. The distributor in the baclç-end

nodes may forward the incoming requests to another back-end based on the requested

content.

IChK01] propose a new strategy called Workload,-Aware Request Di,stri.buúzon (WARD).

In this, they have used the cluster architecture as proposed in [ArS00], whereby the front-

end just makes forwarding decisions and the TCP handoff operation is carried out by

the back-end nodes. Since TCP handoff is an expensive operation, they have tried to

minimize the forwarding overhead occurring from TCP handoff by identifying a small

set of most frequent files, called core. The files forming the core can then be processed

by any server in the cluster, while the rest of the files are partitioned to be served by

difi'erent cluster nodes. For identifying the optimal size of the core, they have designed

an algorithm called ward-analys¿s. The ward-analysis algorithm uses the rvorkload char-

13

CHaprBR 2. LrrpRaruRn Rpvrpw

acteristics such as the frequency of access of files and the sizes of individual files, and

system parameters such as number of nodes in a cluster, forwarding overhead, and disk

access times, to generate the optimal core. In addition to using the architecture proposed

in [ArS00], they have also used a modified architecture, rvhereby the forwarding decisions

and the TCP handoff operations are carried out by the back-end nodes. This was done

to reduce the overhead and deìay occurring due to querying of the front-end to mal<e the

routing decisions. The routing decisions at the bacl<-end nodes are made on the basis of

previous days access patterns.

With content-aware distribution, the major cause of overhead is the setting up of

a TCP connection with the front-end, which can thus easily become a bottleneck. To

avoid the overhead due to the TCP connection at the front-end, while still using content-

aware distribution, a ne\ry policy was proposed in [ChD01] and [ChL00] called FLEX.

This approach was suggested for servers which are used to host multiple web sites as a

set of virtual servers.

FLEX works by partitioning the web sites into a number of groups depending on their

memory and load requirements and then assigning each group to a node in the cluster.

It uses the worhing set sizes and access rates of different sites from the web site logs to

get a measure of the memory and load requirements. It then uses the DNS server for

that site to do the routing to the nodes in the cluster. After partitioning the web sites on

different nodes, the DNS server is set up with the corresponding information by mapping

all the sites on a particular node to the IP address of that node. Sites which cannot fit

on a single node are replicated onto more than one node and Round-Robin DNS is used

to route requests for that site to the nodes hosting that site. To adapt to changes in

traffic patterns for different sites over time, the request access patterns are monitored and

changes are applied to the groupings on a regular basis. This solution is very simple, as

it does not require installation of additional hardware, and is also scaiable as it does not

74

CHaprsn 2. Lrr¡Rar:uRp Rnvrpw

use a centralized front-end node. Through simulation it was sho'wn that it could achieve

a performance improvement of about I70% Io 250% in server throughput as compared

to the conventional Round-Robin scheme. Horvever, the scheme was not compared to

other content-aware schemes like LARD. Also, like most other content-aware schemes it
can only work with sites hosting static content.

2.1.3 Commercial Products

There has been a lot of research on cluster servers, and many of those ideas have been

developed and implemented as commercial products to be used with cluster based servers.

[HuG97] describes a product developed by IBM called Networlc Dispatcher. The Network

Dispatcher is a TCP connection router which could be used as a front-end node to

a server cluster to achieve load sharing across the nodes in the cluster. The back-end

nodes form a virtual server by providing services on a single lP of the Network Dispatcher.

Packets are forwarded to the back-end nodes using the Weighted Round Robin connection

allocation algorithm, whereby the baclç-end nodes are assigned some weight depending

on the load on them. Paclçets are then forwarded to the back-end nodes depending on

their assigned weights. When forwarding the client packets to the back-end nodes, the

Network Dispatcher modifies the packets by replacing the IP address of the virtual server

with the IP address of the chosen back-end node. When sending the response back to

the client, the baclc-end nodes provide the IP address of the virtual server. Hence, the

response packets can be sent directly to the client, bypassing the Network Dispatcher.

Since the response packets from the server are generally larger than the packets from the

client, the Network Dispatcher provides some performance improvement over methods

where the two way traffic flows through the front-end.

Another product developed at Berkeley caìled The Magi,crouter [AnPg6], uses a

15

CHeprBR 2. LrrnReruRp Rpvlnw

packet-filter based approach. This approach emphasizes on reducing the packet process-

ing time at the front-end node by using an approach called "Fast Packet Interposing".

This approach allows a user level process to run nearly as fast as rvhen implemented at

the kernel level. The Fast packet interposing approach shares memory between the user

space and the ke¡nel space, thus eliminating copying between the kernel and user space.

The Nlagicrouter rvorks as a front-end for a web server cluster. When a pachet arrives

from the client, the Magicrouter translates the netrvork address depending on the chosen

back-end node. Similarly, the address translation is done for the response packet, as it
flows through the Magicrouter, unlike the Network Dispatcher.

An architecture similar to the Network Dispatcher, also developed at IBIVI, is called

TCP Router [DaK96]. The TCP Router is also used as a front end node to forward

requests to the individual back-end nodes in the cluster. The TCP Router is different

from Magicrouter in that it forwards the response packets directly to the clients, thus

eliminating the need for rewriting response packets at the TCP Router. Unlike the Magi-

crouter, the TCP Router looks into the issue of load balancing the back-end nodes in the

cluster. For load balancing, the TCP Router keeps track of the connection assignments

and assigns connections to the baclç-end nodes depending on their cur¡ent state.

To allow for response packets to be sent directly to the clients, the Network Dis-

patcher and the TCP Router require modification in the back-end server kernels, rvhich

is not needed with the Magicrouter approach. Another product is the [LoCg6] Cisco

LocalDi'rector, which also rewrites the TCP/IP headers at the front-end of all packets

florving between clients and servers in both directions. The LocalDirector oft'ers various

dispatching policies such as the fastest response algorithm that dispatches the request

to the server that was fastest in responding to the previous connection requests, and the

least connections algorithm, that forwards the incoming requests to the server with the

least number of active connections. This product is also able to support some stateful

16

Cuaprpn 2. LrrBRaruRp Rpvrnw

services, such as SSL through the use of a sticky flag. This is done by forwarding multiple

requests from the same client to the same server within a period of time.

A content-aware product developed at Nortel Networks is called as the WebOS SLB,

and is based on a TCP splicing approach. This product establishes a TCP connection

with the client and the target server, and then splices the connection between them. To

do so, it modifies the TCP header of every packet that travels between the client and

the server and recalculates the TCP/P header checksums. To prevent the front-end

node from becoming a bottleneck, this product relies on a dedicated network processor

integrated with an operating system. The WebOS SLB partitions the working set over

the baclç-end nodes such that each server stores specific documents. When a specific

document is requested, the front-end node assigns the request to the target back-end

node.

Another content-aware product called the scalaseruer was developed at the Rice Uni-

versity. This product is based on TCP handoff and allows the response packets to be sent

directly to the clients. The front-end node distributes incoming requests according to

the LARD policy described earlier [PaA9B]. After the connection is handed over to the

selected baclç-end node, the node then communicates directly with the client. Incoming

traffic on an already established connection is forwarded to the target back-end node

through an efficient forwarding module layered at the bottom of the front-end node's

protocol stack. This product requires that the server operating system be modified in

order to support the TCP handoff protocol. This product also supports HTTP/1.1

persistent connections and is able to assign requests in the same connection to different

back-end nodes rvith the use of a back-end forwarding mechanism [ArDgg]. Other similar

products are the ACUdi,rector, developed by Alteon Websystems [AlT02], the Seruerlron

[FoU02] developed by Foundry Networks, and the [ReS96] Resonate Di,spatch, which are

all capable of content-aware switching where the URL is examined before transferring

77

CueprBR 2. LrrpRerunp RBvrpw

the connection to the back-end node that can serve the request.

2.2 QoS Based Server Cluster Models

Recent studies on providins Qos support [[JoL95], [paB98], [BrB99], [BiG98], [BaD99]]

have mostly focused on single node web servers. As described in the last section, most of

the work on cluster servers have focussed on partioning, replicating and aggregating the

service components of the cluster so as to provide highly scalable, available and easy-to-

manage services. Limited studies have been conducted on providing service differentiation

for cluster-based servers. There is also a lack of comprehensive QoS support for these

Cluster-based servers.

[ArD00] introduce a facility called Cluster Reserues for ensuring performance isolation

between different service classes hosted on the cluster while enabling high utilization

of the cluster resources. Cluster reserves builds upon the worlç of reslurce conta,iners

[BaD99] used for performance isolation in a single node web server to achieve cluster-rvide

performance isolation. It uses a cluster resource manager for partitioning the resources

allocated to a cluster reserve to individual nodes in the cluster. To compute the partition,

the cluster resource manager collects resource usage statistics from the cluster nodes and

maps the allocation problem to an equivalent constrained optimization problem. The

method used for performance isolation is independent of the request distribution strategy

deployed in the cluster. This approach requires significant changes to the operating

system kernel at the front-end and at the back-end nodes.

[ZhT01] propose a flexible mechanism called DemanrJ,-Dri,aen Serui,ce Di,fferentitation

for specifying service quality classes and a scheduling algorithm that dynamically adjusts

server partitions based on request resource demands. They present a scheduling algorithm

which decides for each period, horv many servers should be assigned to a request class

18

CHapreR 2. LlrpnlruRp Rpvrew

and what percentage of requests should be dropped from the class in order to provide

service differentiation and performance guarantees. The aìgorithm tries to provide better

services to higher priority classes, especially when the system is overloaded. At the same

time care is taken so that requests from the lower priority classes are not oversacrificed

for requests from higher priority classes. The limitation with this scheme is that it
partitions all replica's for each service into several groups and each group is assigned to

handle requests from one service class. Thus, it may not respond promptly to changing

demand, as the partitioning cannot be done very frequently.

A framework is proposed in [ShT02] for providing class-based service dift'erentiation

in terms of resource allocation and admission control. They introduce a cìass-aware load

balancing scheme called class LB to ensure a balanced distribution of service requests

to a set of replicated service nodes, and a multi-queue scheduling scheme for producing

high QoS yield (economical benefit) at each service node. The goal of the scheduling

algorithm is to provide guaranteed system resources for all service classes and schedule

the remaining resources to achieve high aggregate QoS yield.

2.3 Miscellaneous

19

URL-aware distribution requires the migration or redirection of TCP connections from

the front-end node to the baclç-end node which would be serving the client request. One

approach for redirection is to use the front-end as a TCP gateway. In this approach

the front-end node makes two TCP connections: one rvith the client and one rvith the

back-end node. The front-end then passes the client requests to the back-end node on the

TCP connection with the back-end node. The response received from the back-end node

is transferred to the client using the TCP connection with the client. For the connection

transferring between the trvo TCP connections an application layer process is used, which

CsapreR 2. LrrpRaruRp Rpvrpw

produces a lot of overhead at the front-end.

To improve the performance of the front-end based srvitches acting as TCP gatervays,

TCP spli'cirzg [N4aB98] was proposed. This approach uses a Kernel level process for

the data forwarding operations betrveen the two TCP connections, thus reducing the

overhead caused due to packets traversing up the protocol stack to the application layer

and then down again. This approach works by doing the appropriate address translation

and sequence number modification on the packets. The pachets arriving from the clients

are modified so that the addresses and sequence numbers on these packets match the

ones that would be found on the corresponding packets if the front-end node received

the packets and put them back on the TCP connection from the front-end node to the

back-end node. Similarìy, the address and sequence number modification is done on the

packets received from the baclc-end nodes. [CoR99] use the TCP splicing approach to

design and implement a layer-7 switch that supports URl-aware redirection of HTTP

traffic.

The TCP splicing approach performs better than the TCP gateway approach but still

incurs high overhead because all the response packets from the server must be forwarded

via the front-end node. A method called connect'ion hand-off is discussed in [HuNgZ]

for migrating the TCP connection from the front-end to a bacl<-end node in the cluster.

This method enables the forwarding of the server response directly to the client without

passing through the front-end node. This is done by handing off the TCP connection

established with the client at the front-end to the back-end node rvhich would be serving

the given client request. It enables a connection hand-off by adding an option to the TCp

protocol specification. When a client request first arrives, the front-end makes a TCP

connection with the client through the three-way TCP handshake. After the handshake,

the front-end node sends a SYN packet to the back-end node. The SYN packet contains

the front-end node's address as the source IP address and an option with the IP address

20

CHaprpR 2. LrrpRaruRr Rpvrpw

of the client and the initial sequence number selected by the f¡ont-end. The back-end

node then goes through a three-rvay handshake with the front-end node using the passed

sequence number. Then the back-end node responds directly to the client using the

passed client's IP address. A similar approach is proposed in [paAg8].

Another important issue with cluster based servers employing content-aware request

distribution is the support of HTTP/1.1 persistent connections. With HTTP/1.1, multi-

ple requests may arrive on a single HTTP connection. Hence, content-arvare distribution

which distributes the requests at the granularity of TCP connections may fo¡ward all the

requests arriving on that persistent connection to a single bacl<-end node. This may lead

to the overloading of some of the back-end nodes.

[ArD99] describes two mechanisms to achieve efficient content-aware request distribu-

tion in the presence of HTTP/1.1 persistent connections. The TCP handoff techniques

described above can support HTTP/1.1 connections, but all requests must be served by

the back-end node to which the connection was handed off originally. The first mecha-

nism called multiple hando.ff is an extension of the previously described HTTP handoff

mechanisms. In this method, the front-end node is modified to support HTTP/1.1 con-

nections by allowing it to migrate connections between the back-end nodes. The second

mechanism described is called back-end request forwarrling. In this approach, the front-

end hands off the request to the appropriate back-end node using the handoff mechanisms

described above. When the back-end node receives a request rvhich cannot be served by

it, the node requests the service from another appropriate back-end node and forwards

the response directly to the client. Through prototype implementation it was shown that

with the back-end forrvarding mechanism, the content aware distribution policy achieves

up to 26% better performance with persistent connections than without the mechanism.

27

Chapter 3

Cluster Models

A server cluster or web cluster refers to a web site that uses a set of server nodes housed

together at a single location to serve client requests. Usually the web cluster uses a

single hostname to provide a single system image and a single interface to the users. The

server cluster uses a specialized front-end node to provide a single virtual IP address

and to distribute client requests to the back-end nodes. This front-end node hides the

distributed nature of the server from the clients and may be used to employ difi'erent

request distribution algorithms. A simple implementation of a server cluster is shown in

Figure 3.1.

As explained in Chapter 2, the front-end node could be centralized or may be dis-

tributed, depending on the policy used for request distribution. In this chapter I will focus

generally on the front-end's request distribution mechanism, without worrying about it
being centralized or distributed. We will call the front-end node a front-end s.witch in gen-

eral from here on. This front-end switch could be implemented on some special purpose

hardware or could be software running on some operating system.

22

Cnaprpn 3. ClusrBR Mo¡pLs

È .,1| ,l-'-
11- l

Client i

l

| .t
Ii ..tt:l ÌLir¡J

t: ?t
IClient
i

lr=î¡ :t 't t

lrLll
r 1r'i1:11¡

t:t:+lt-
Client

i

ñiÈ'ilit it I

t:.tîl
Client

lnternet

23

3.1 Request Distribution Mechanisms

To uniquely identify the back-end nodes in the server cluster, the front-end switch could

either use the IP address or MAC addresses of the back-end nod.es, depending on the

policy used. Hence, depending on whether the front-end switch uses IP address or MAC

address of the back-end nodes to steer client requests to the target node, the front-end

node can be classified as a layer-l or layer-7 switch. This classification is made according

to the osI protocol stack layer at rvhich the front-end srvitch works.

Figure 3.1: Cluster Based Server Architecture

Cluster Based
Server

CHaprpR 3. Ci,usrpR MoooLs

3.1.1 Layev{ Switches

At layer-4 of the OSI protocol stack (TCP/IP level), I do not have access to the con-

tent requested in the packet. So the dispatching policies using layer-4 switches perform

content-blind routing. Since layer-4 srvitches rvork at the TCP/IP level, they seìect the

target server for a ciient request upon the arrival of the first TCP SYN packet from the

client. These switches uses a binding table to manage the TCP connection assignments

for the client requests. The binding table could contain the information available at the

TCP/IP level i.e., the IP source address, the source port, the IP destination address,

the destination port, and some other relevant information to be used by the dispatching

algorithm.

When the front-end switch receives a packet from the client, it examines the bits in

the flag field of the header to determine whether the packet is for a new connection,

an already established connection, or none of them. If an incoming packet is for a new

connection, i.e. has the SYN flag bit set, the front-end switch selects a target baclç-end

node using the dispatching policy being used. It also inserts a record of the connection-

to-back-end node mapping in the binding table and routes the packet to the selected

back-end node. If the incoming packet does not have its SYN flag bit set, i.e., is not for

a nerv connection, the front-end switch looks up the binding table to check whether the

packet belongs to an existing connection or not. If it belongs to an existing connection,

the front-end switch routes the packet to the back-end node handling that connection.

Otherwise, the front-end srvitch just drops the packet.

The layer-4 front-end srvitches can further be classified depending on the mechanism

used to route packets coming from the clients (incoming packets) for the back-end nodes

and packets coming from the back-end nodes (outgoing packets) for the clients. Mainly

the classification is done on the basis of the outgoing packets, i.e. the server to client

24

Cuaprpn 3. ClusrpR Moooi,s 25

packets. if the incoming and outgoing packets pass through the front-end srvitch, I

call the architecture a bidi,rectional/two-way architecture. And, if only the incoming

packets pass through the front-end srvitch, I call the architecture a unidi,recti,onal/one-

way archilecture.

In bi'directi'onal/two-way architectures both the incoming and outgoing packets are

rewritten by the front-end switch as they pass through the switch as shown in Figure 3.2.

In the two-way architecture each baclc-end node in the cluster is assigned a unique private

IP address. The front-end node is assigned a virtual-IP address, which is publicized to the

Figure 3.2: Layer-4 bidirectional architecture

Cluster Based
Server

Cuaprpn 3. ClusrrR Monpls

i

I

Y

[,,1
F . ,l
+ l

llï¡=l I

Client
Ì

1l'*"*t I

F .rl[........:l-t:#
t1:: a::+lt] la

I

Client
i

I

f:rllÈ rl I

ru
Client

26

clients. When the front-end receives a request from the client, it uses Network Address

Tlanslation (NAT) [EgF9] to change the virtual-IP address to the private IP address

of the selected back-end node in the destination address field of the packet header. It

also recalculates the TCP and IP header checl<sums in the packets. The response packets

from the back-end nodes contain the IP address of the node serving the client request.

Hence, the front-end switch needs to change the IP address of the bacl<-end node with

its virtual-IP address, and also recalculate the TCP and IP header checksums.

In the uni,di'recti,onal/one-way architecture, only the incoming packets pass through

Figure 3.3: Layer-4 unidirectional architecture

Cluster Based
Server

CHaprBn 3. ClusroR Mooels

the front-end switch. The outgoing packets are sent directly to the client by the back-end

node serving the request. An example of an unidirectional/one-\Ã/ay architecture is shown

in Figure 3.3. When the front-end switch receives a packet from the client, it could use

several mechanisms to forward the client requests to the back-end nodes in the cluster. It
could use address translation (NAT) called packet rewriting to modify the IP destination

in the packet and recalculate the TCP/P checksums of the incoming packets. It could

use IP tunneling [SiM95] to encapsulate each packet within another packet, or it could

also forward packet at the MAC level. This is known as packet forwarding.

To route packets using packet rewriting, the front-end switch rewrites the destination

IP address of each incoming packet. For this, each back-end node is assigned a private

IP address and the front-end switch is assigned a virtual-IP address which is publicized

to the world. When the front-end switch receives a packet from a client, it replaces the

virtual-IP address in the incoming packet with the IP address of the selected back-end

node in the cluster. it then recalculates the iP and TCP header checksum for the packet.

To send the response directly to the client, the back-end node replaces its IP address

with the virtual-IP address assigned to the front-end switch, and recalculates the IP and

TCP and IP header checl<sums.

lP tunneling is a technique which encapsulates the original IP datagram with its

header retained as it is, in another IP datagram by adding an outer IP header before the

original IP header. The source and destination address in the outer IP header identify

the endpoints of the tunnel, and the source and destination address in the inner IP

header identify the original sender and recipient of the datagram. To use IP tunneling

for routing, the front-end is assigned a virtual IP address. The user requests the services

provided by the server cluster using the virtual IP address. When a user request arrives

at the front-end switch, the switch selects a back-end node for servicing the request

according to the connection scheduling policy being used. It then adds the entry into

27

Cslprpn 3. ClusrpR Moopl,s

the hash table rvhich records the connection assignments. The front-end switch then

encapsulates the packet within an IP datagram and forwards the request to the chosen

back-end node. When the front-end switch receives a packet which belongs to an already

assigned connection, it checks the hash table for the back-end node serving the request,

encapsulates the packet and forwards it to the corresponding back-end node. When the

back-end node receives the encapsulated packet, it decapsulates the packet and processes

the request. It then returns the response directly to the client according to its own

routing table. After the connection terminates or timeouts, the connection record rvill

be removed from the front-end switch's hash table.

The packet forwarding approach assumes that the front-end switch and the back-end

nodes in the cluster are on the same local area network. For this approach also, the

fiont-end switch is assigned a virtual IP address, which is used by the clients to access

the services provided by the server cluster. The back-end nodes are assigned two IP

addresses. A common secondary IP address which is the same as the virtual IP address

of the front-end srvitch is assigned to all the machines in the cluster using the ifconfi,g alias

option available on most UNIX platforms. All the machines are also assigned different

MAC addresses and different primary IP addresses. When a client request arrives, it

is received by the front-end switch as the back-end nodes have disabled the Address

Resolution Protocol (ARP) mechanism to prevent collision. The front-end switch then

forwards the request to the chosen back-end node using the MAC address of the back-

end node. It rewrites the physical address in the packet with the MAC address of the

chosen back-end node and retransmits the frame on the network. The front-end srvitch

does not modify the TCP/IP header in the packet. When the back-end node receives

the forwarded request, it processes it as it shares the virtual IP address, and returns the

response directly to the client.

2B

CsaprpR 3. ClusrnR MoopLs

3.I.2 Layer-7 Switches

Layer-7 switches are more complex and intelligent then the layer-4 switches because they

have to inspect the requested content in the HTTP request packet before making any

forrvarding decisions. Layer- switches can select the target back-end node as soon as they

receive the initial TCP SYN packet, but rvith layer-7 srvitches, the front-end switch must

first establish a TCP connection with the client before it can receive the HTTP request

from the client. Similar to the layer-4 switches, the layer-7 switches can be classified

on the basis of the mechanism to send the packets to the back-end nodes and from the

back-end nodes to the clients. If the incoming and outgoing packets pass through the

front-end switch, I call the architecture a bi,di,recti,onal/two-way architecture. And, if
only the incoming packets pass through the front-end switch, I call the architecture a

uni,di,recti, on al/ o ne- w ay architecture.

In a bidirectional/two-way architecture, the request packets from the clients and the

response packets from the back-end nodes pass through the front-end switch as shown in

Figure 3.4. To route the client requests to the back-end nodes in the cluster, the front-end

switch could use the TCP gateway approach or the TCP splicing [MaBg8] approach.

In the TCP gateway approach, the front-end switch maintains TCP persistent con-

nections with all the baclc-end nodes in the server cluster. The front-end switch uses an

application level proxy to forward the client requests to the back-end nodes and to send

the response back from the back-end nodes to the clients. When the front-end switch

receives a client request, the application level proxy running on it forwards the client re-

quest to the target back-end node through the corresponding TCP persistent connection.

When the response arrives from the back-end node, the front-end slvitch forrvards it to
the client through the other connection with the client.

However, the TCP gatervay approach causes a lot of overhead., because of the packets

29

Cu,qprpn 3. ClusrpR Moosls 30

traversing up the protocol staclc to the application layer and then back again. The TCP

splicing approach aims at improving the performance of the TCP gateway approach

by using a Kernel level process for data forwarding operations between the trvo TCP

connections. \Mhen the front-end switch receives a client request, it completes the TCP

connection with the client and chooses the target back-end node and the persistent TCP

connection with the back-end node. The front-end switch then splices the two connections

using the kernel level process. It does this by modifying the address and sequence numbers

in the packets, such that the packets are recognizedby the back-end node and the client

Figure 3.4: Layer-7 bidirectional architecture

Cluster Based
Server

Cuapr¡e 3. ClusrpR Moopl,s

ñÈtl: I

+ i

Client
I
I

IN ,ìt[:11

È. .. ,:l

Client

Back:.end:nqdé
: ìrl:.:.

.-
- > l:i-*NìI ,,\\lìl].*y
'Bàck ènd node'. :

,,..:iì:ñlIrINt
->

l.: . ..NI

i:::::ri¿:Sl

Back-.end ¡ode
.::

l. r rr:rN\l

-> I illlii1Nl
llll:! IHlji: *Y

pack:end d-
'

¡':
: ,1 I

.1i:.IìÑì

-> ll":: i'Nl

r lrq
Bàck:ànd,node,

31

.Lalier-'7, bâsed
Frónt-end'node

as been destined for them. Thus, TCP splicing forwards the packets from the client to

the baclc-end nodes and from the back-end nodes baclc to the client without having to

cross the TCP layer up to the application layer on the front-end switch, thus improving

performance.

In the uni'di,recti'onal/one-way architecture the response packets from the back-end

nodes are sent directly to the clients, bypassing the front-end switch as shown in Figure

3.5' This relieves the front-end node from the burden of processing the response packets

from the back-end nodes. Trvo approaches can be used by the front-end switch using this

Figure 3.5: Layer-7 unidirectional architecture

Cluster Based
Server

CHaprpn 3. ClusrpR Mooels

architecture to forward the client requests to the back-end nodes in the cluster.

The first approach is called TCP connecti,on hop and rvas developed by Resonate

[ReS01]. In this scheme, the TCP connection is hopped from the front-end switch to the

selected back-end node in the cluster. The TCP connection hop is implemented through

a software component called Resonate Exchange Protocol (RXP). The RXP is installed

on every machine in the cluster. When the front-end switch receives a client request, the

RXP encapsulates the entire IP packet as it was sent from the client, in an RXP packet,

and sends it to the selected back-end node. When the back-end node receives this packet,

the RXP running on it sees that it is an RXP packet and strips off the RXP header. It

then sends the original IP packet to the server running on the bacÌ<-end node. The web

server can then send its reply directly to the client, without having to pass through the

front-end switch.

The second approach is called the TCP handofr approach [PaA98], where the front-

end srvitch hands off the established connection with the client to the target back-end

node in the cluster. The handoff protocoì runs on the front-end switch as well as the

bacl<-end node on top of TCP. It thus requires the modification to the operating system

of the front-end switch as well as the baclç-end nodes.

3.2 Load-Distribution Algorithms

Load-distribution algorithms are used by cluster-based system to distribute the load

amongst the server nodes in a cluster. The system should decide the best node to execute

any job regardless of where ihe job originated. It may also decide to transparently migrate

some jobs during their execution. These algorithms allow the user to access any resource

in the cluster-based server system without worrying about its physical location. The goal

is to create the illusion in the minds of the users of a single powerful timesharing system,

CuaprpR 3. ClusrpR Moopi,s

rather than a collection of independent but connected machines.

3.2.L Load Sharing and Load Balancing

The main aim of these algorithms is that the machines in the cluster should share the

total processing load requirement of all the users so that the load distribution is more

uniform among the machines in the cluster. This results in an improvement in the system

performance as seen by the users. These algorithms could either :use load sharing or load,

balancing schemes for load distribution in the cluster [ShK92]. Load sharing requires

the system to select the best machine for executing a newly arrived client request and

transparently transfer the job to the selected machine. Load balancing is a strict form of

Ioad sharing wherein the system tries to balance the load on all machines by migrating

jobs between machines, possibly during the job execution.

The load balancing scheme is more complex than the load sharing scheme, as the

former requires the system to check the state of a process already in execution and then

transfer this state to the target machine. A load balancing policy tries to ensure that

every machine in the cluster does the same amount of worh at any point of time. Algo-

rithms for load balancing rely heavily on the assumption that the information available

at each back-end node is accurate, in order to prevent jobs being endlessly circulated

about the system rvithout making any progress. These schemes are mostly suitable in

homogeneous systems as it will be much easier to transfer the state information in such

systems. The load sharing scheme tries to send ner,v requests to lightly ioaded back-end

nodes, and hence distribute the overall load of the system by submitting requests to

nodes on the cluster rvhen they are initially requested. The load sharing scheme can be

easily used for heterogeneous systems as it does not require communication of any state

information between nodes. Thus, the overhead incurred in load balancing algorithms

.).)

CuaprBR 3. Clusrpn Moonls

due to the expensive state transfer may trade off any performance improvement gained

by the scheme.

3.2.2 Policy Components

The load sharing scheme can be separated into four components depending on the func-

tionality of the policy, namely: the transfer policy, the seìection polic¡ the location

policy and the information policy [ShK92]. The transfer policy decides whether a node

is suitable to participate in request transfer, either as a sender or as a receiver. Most of

the load sharing schemes use a threshold based policy to decide whether to transfer a

request to another node or not. In the threshokJ based, poli,cy, a node is designated as a

sender if its load exceeds a certain threshold value fi, or as a receiver if the load on the

node falìs below some threshold value T2 where Tz 1 Tt. Another transfer policy used

is called lhe relatiue transfer poli,cy. In this policy the load of the node is considered in

relation to the loads on the other nodes of the cluster. For example, this policy could

consider a node to be a suitable receiver if its load is lorver than some other node in the

cluster by at least some fixed value ð, or even if its load is the lowest among all the nodes

in the cluster.

Once the transfer policy decides that a node is a sender, lhe selecti,on policy selects a

request for transfer. If the selection poìicy fails to find a suitable process, it is no longer

considered as a sender. One simple policy used by the selection policy is to select one

of the newly initiated requests as the one to be transferred. For request migration, the

selection policy should select a request which is small so that it incurs minimal overhead,

long lived so that it compensates for the overhead incurred in transferring, and likely to

mal<e minimal number of location-dependent system calls.

The locati,on policy finds a suitable partner (sender or receiver) for a node, which

Cuaprpn 3. ClusrpR MooCILs

has been declared as a sender or receiver by the transfer policy. One commonly used

decentralized poli'cy to find a suitable node is called polti,ng. In polling, a node polls

another node to determine if it is suitabìe for load sharing. Polling could be done serialìy

or in parallel. Polling in parallel is done by using multi-cast or broadcast message passing.

Polling could also be done randomly, on the basis of information collected during previous

polls, or on a nearest neighbor basis. Another option is to broadcast queries, so that a

node broadcasts a message and the nodes availabte for load sharing reply back, from

which one is selected. A centrali,zed policy can also be used, where a node contacts a

specified node called a coordinator. The coordinator then selects a peer for the requesting

node and informs both the nodes.

The i,nformati'on poli,cy gathers information about the state of the system to be used

by the distribution policy. This policy has to decide what state information about the

other nodes in the system has to be collected, where the information has to be collected,

and when to collect the information. The information policy can be further classified

into three types: demand-driven policy, periodic policy, and state-change-driven policy.

In the demand-dri,uen policies, a node gathers information about other nodes in the

cluster only rvhen needed, for example when it becomes a sender or a receiver. Demand-

driven policies can be initiated by the sender (sender-initiated policy), where the sender

looks for a suitable receiver to transfer its load to. It could be initiated by the receiver

(receiver-initiated policy), where the receiver looks for loads from senders. It could also

be initiated by both the sender and the receiver (symmetrically-initiated policy). In the

periodic poli,cy a node collects information about the state of the other nodes in the

cluster periodically. This policy does not adapt their information gathering rate to the

system state. In the state-change-driuen policy, the nodes disseminate information about

their states whenever their state changes by a certain degree. The state-change-driven

policies could either send the state information to a dedicated centralized point, or they

Cnaprpn 3. ClusrpR Moous

could send state information to each other.

3.2.3 Dynamic, Static, and Adaptive Algorithms

The load-distribution algorithms can also be classified as dynamic, static and adaptive

algorithms IGuB99]. Dynami,c Ioad-distributing algorithms use system-state information

such as load at the back-end nodes to make distribution decisions, while static algorithms

mal<e no use of such information. Decisions are hardwired in static load-distribution al-

gorithms using some priori knowledge about the system. The ad,apti,ue load-distributing

algorithms are a special case of dynamic algorithms. The adaptive algorithms can dy-

namically change their load sharing policy as well as their policy parameters on the basis

of the changing system state or worl<load conditions. A simple example of an adaptive

algorithm is where I have a distribution policy which performs better than others under

certain conditions, while another policy performs better under other conditions. A adap-

tive algorithm could choose between the two policies based on observation of the current

system state. Due to the complexity of the adaptive algorithms they are not widely used.

Therefore, the real alternative is among the static and the dynamic algorithms.

Content-blind and Content-aware Algorithms

36

Since the static distribution algorithms do not consider any state information while malc-

ing forwarding decisions. The front-end switches that use static distribution algorithms

mostly work at the TCP/IP level, as they have enough information at that layer for

making forwarding decisions. Hence, the static distribution algorithms can also be called

content-bli,nd static algorithms, as they do not consider the content requested to malce

forrvarding decisions . On the other hand, the dynamic distribution algorithms, being

more complex, can use the system state information to outperform the static distribut-

CHaprpn 3. Clusrpn MoopLs

ing algorithms. The dynamic distribution algorithms could use load information from

the back-end nodes to make forrvarding decisions. Load information at the back-end

nodes could be measured by various metrics such as the processor queue length, the av-

erage processor queue ìength over some period of time, the amount of memory available,

the system call rate, the CPU utilization, etc. Since the front-end switch has to make

hundreds or thousands of forwarding decisions per second, it should be noted that the

metrics used by the dynamic distribution algorithm should be simple and easy to com-

pute [GuB99]. The front-end switch cannot use highly sophisticated algorithms because

it could cause the front-end node to become a bottle-neck for the cluster system and

perform even worse than some simple static distribution algorithms.

The information used by the dynamic algorithms to make forwarding decisions also

depends on the OSI protocol stack layer at which the front-end switch using the algorithm

works. If the front-end switch using the algorithm worlçs at the TCP/IP layer, I call it a

content-bli,nd, dynarnic algorithm, and if the switch works at the application layer I call

the algorithm a content-aware algorithm, since it has access to the requested content.

From here on I will classify the distribution algorithms as content-blind and content-

aware algorithms. In summary, content-blind algorithms can be classified into static and

dynamic algorithms, and content-aware algorithms as dynamic algorithms. Figure 3.6

shows the taxonomy for the distribution algorithms.

,JI

3.2.4 Content-blind Algorithms

This section describes the main content-blind static and the content-blind dynamic dis-

tribution algorithms as shown in Figure 3.7.

Csaprpn 3. ClusrpR Mooels

Request
Distribution
Algorithms

Content-blind Static Algorithms

As discussed above, static algorithms do not take into consideration any system state

information or knowledge of the requested content rvhile making fowarding decisions. The

static distribution algorithms generally use priori system information to make decisions.

The major types of static distribution algorithms are the Round-Roben algorithm, the

Random algorithm and a modification of the Round-Robin algorithm called the static

Wei,ghted, Round,- Robzn, algorithm.

The Round-Robin algorithm, also called cycli,c spli,tti,ng algorithm uses a circular list

to make distribution decisions. In the Round-Robin algorithm the zth request is assigned

to the (i' mod l/)úå back-end node, where N is the number of back-end nodes in the

cluster system. Thus, the Round-Robin algorithm just needs to keep a pointer to the

Iast selected server to make distribution decisions. The Random algorithm, also called

the probabi,listi'c algorithm distributes the incoming request to a back-end node z with

Figure 3.6: Distribution algorithms

38

Content-aware
Algorithms

Dynamic
Algorithms

CHaprpR 3. Clusrpn Mooels

probabilityp¿, where the probability p¿ is selected such that the requests are distributed

uniformly through the back-end nodes in the cluster.

In the case where the back-end nodes in the server cluster system have heterogeneous

capacities, the assignment policies for the Round-Robin algorithm and the Random al-

gorithm can be slightly modified to take into account the diff'erent processing capacities

of the back-end nodes. Depending on the processing capacity, each back-end node can

be assigned a load factor. The load factor can be assigned depending on the relative

bacl<-end node capacity, for example, if -f¿ is the capacity of the zth baclç-end node, the

relative capacity qi(O < n¿ I 7) is defined as rl¿ - J¿lmar(J), where mar(J) is the

maximum back-end node capacity among all the bacl<-end nodes in the cluster. Now, the

Round-Robin policy can use the ¡elative capacity for distribution in the following way.

A random number ø(0 < o < 7) is generated, and compared with the relative capac-

ity of the back-end node in the cluster system to send the request to. If the generated

random number is less than the relative capacity for that node, we send the request to

that node, otherwise rve repeat the process for the next back-end node in the circular

list. For example, suppose ,9¿ is the next back-end node in the circular list to send the

Figure 3.7: Content-blind distribution algorithms

39

CHaprnn 3. Clusr:pR Mooels

request to, and 2 is its relative capacity. We send the request to it only íf o 1?i, \Mhere

o is the generated random number. If not, we move on to the next back-end node in

the circular list i.e. fi-.1 and generate another random number and compare rvith the

relative capacity of ,9¿+t. For the Random polic¡ the request assignment can be done

in the following way. Each back-end node is assigned a different probability depending

on its relative capacity, and then the basic Random algorithm is used to distribute the

incoming requests.

The static Weighted Round-Robzn algorithm is a modification of the basic Round-

Robin algorithm, and is mainly used to take into consideration the different processing

capacities of the back-end nodes in the cluster system. For this, each bacl<-end node in

the server cluster is assigned an integer rveight ø¿, which is generally calculated âs crJ¿ :
J¿lmin(J), where.Ç is the capacity of the zth back-end node,and min(J) is the minimum

capacity among all the back-end nodes in the cluster. The distribution algorithm can

then be set up to distribute the incoming request according to the back-end node weights.

The problem with the static distribution algorithms is that, there are a lot of chances

that these algorithms could potentially make poor assignment decisions. Since they

distribute the incoming requests according to some hardwired policy, not considering

any state information, they can forward requests to back-end nodes which have a serious

backlog of requests, whiìe there are back-end nodes which are idle and are thus more

suitable candidates for request assignment.

Content-blind Dynamic Algorithms

As discussed above, the dynamic algorithms use some form of system state information

to make more intelligent distribution decisions. The content-blind dynamic distribution

algorithms mostly work at the TCP/IP layer and hence, do not take into consideration

any information about the requested content. Depending on the level of the system

40

Csaprpn 3. ClusrpR Mooels

state information used by the content-blind dynamic algorithms, they can be further

classified as Seruer-aware algorithms, Cli,ent-aware algorithms and Cli,ent anrl Seruer-

aware algorithms.

The Seruer-aluare algorithms distributes requests to the back-end nodes on the basis

of some server state information such as load conditions at the back-end nod.es, latency

in serving the requests, netrvork utilization or availability of the back-end nodes. A

key issue in designing Server-aware distribution algorithms is identifying a suitable loød

inder. The selected load index should be able to predict the performance of an incoming

request if it is to be served by some particular back-end node. The load indexes that

have been used include the length of the CPU queue, the average CPU queue length over

some period of time, the amount of memory available, the disk or I/O storage utilization,

the instantaneous number of active connections, the number of active processes, and the

CPU utilization. Depending on the way the load indices are evaluated, they can be

classifi ed as input'ind'i ce s, s eru eri,nd,i ces, and f orw ard indi, ces.

The input indices are generaìly computed at the front-end switch without any co-

operation of the back-end nodes. The input indices information is very limited, and

uses the number of active connections at the bacl<-end nodes. On the other hand, the

server indices are calculated at each server and then transmitted to the front-end node.

The server indices can thus provide detailed information about the state of the back-

end nodes, such as CPU and disk utilization, number of active connections, and the

number of processed packets. Both the input indices and the server indices can be

used in unidirectional/one-way architectures and bidirectional/two-way architectures. In

unidirectional/one-way cluster architectures, the server indexes are computed by a pro-

cess monitor running on each of the bacl<-end nodes and periodically transmitted to the

front-end switch. In bidirectional/trvo-way architectures the same procedure can be used

or a diff'erent procedure can be used where part of the server indices such as the number

47

Cueprnn 3. ClusrpR MoopLs

of active connections, and the latency time can be calculated at the front-end node and

other server indices, such as CPU and disk utilization can be transmitted to the front-end

node by the process monitors running at the back-end nodes. The forward indices use

information obtained directly by the front-end switch that emulates HTTP requests to

the cluster server. The forward indexes are mainly used in unidirectional/one-rvay cluster

architectures only.

Another issue with the server-aware distribution algorithms concers, how and lvhen

to compute the load information and how frequently to transmit the information to the

front-end switch running the distribution algorithm. The intervals between updates of

the load indices need to be evaluated carefully to make sure that the system remains

stable. If the load information is transmitted very frequently, it may lead to additional

traffic in the server cluster system, and if the load information is transmitted infrequently,

the information could become staìe depending on the frequency of the updates [MiMg7],

[Da\t100]. In both the cases, this will result in performance degradation even rvith the

use of complex dynamic algorithms.

After selecting the appropriate load index, the front-end switch can use the load index

in dift'erent distribution aìgorithms. One simple policy called the least load,erl policy

assigns newly arrived requests to the back-end nodes with the lowest load index. In the

least connection policy, the front-end node assigns incoming requests to the back-end node

rvith the lowest number of active connections. Similarly, in the fastest response policy, the

front-end switch assigns incoming requests to the back-end node with the fastest response

time i.e., the node which responds fastest to the assigned requests. In another policy, a

modification of the static weighted round-robin policy called the Wei,ghted Rouncl-Robi,n

policy, each back-end node is assigned a weight that is proportional to its load. This

rveight is dynamically calculated by the front-end node by gathering load information

from the back-end nodes at a regular intervals. The front-end node then uses the assigned

42

Cunprpn 3. ClusrpR Moopl,s

weights to fbrward incoming requests to the back-end nodes in the cluster.

The Cli,ent-0,ware algorithms distribute incoming requests depending on some basic

client network information available at the TCP/P level of the OSI protocol stack. This

information could be the the source IP address and the TCP port numbers available in

the incoming TCP/IP packets. A simple client-aware policy would be to partition the

back-end nodes to run difi'erent applications and assign the incoming requests to them

depending on the port numbers in the TCP/IP packets or to partition the back-end nodes

such that a group of clients could be assigned to them according to their IP addresses.

The Client and Seruer-aware algorithms forward requests based on the client as weil

as the server state information. These policies combine the client information such as

the source IP address and the service port number with some information about the

server load. These policies can benefit from client information by assigning consecutive

connection requests from the same client to the same back-end node in cases where the

initial connection setup process is computationally expensive, for example, as in the case

of SSL connections.

3.2.5 Content-a\ ¡are Algorithms

A front-end node using content-øwøre algorithms works at the application laver (Layer-7

of the OSI protocol stack), and thus has the abiliiy to examine the content requested

in the HTTP packets before making any forwarding decisions. lt is also able to use

additional information regarding the HTTP request, such as cookies. There can be

many advantages to using content-arvare request distribution algorithms, such as

o increased performance due to improved hit rates in the back-end's main memory

caches, thus reducing latency caused in disk accesses.

o increased secondary storage scalability due to the ability to partition the server's

43

Cuaprnn 3. Clusron Moopl,s

fCintent---l| "*ur" I

I ntsoritnms
I

database over the different baclç-end nodes.

Figure 3.8: Content-aware distribution algorithms

o ability to employ back-end nodes specialized for certain type of requests for e.g.,

audio, video, and medical images.

The content-aware algorithms can be classified as Cli,ent-aware algorithms and Client

anrl, seraer-aware algorithms as shown in Figure 3.8, which shows the taxonomy of the

content-aware distribution algorithms.

Client-aware Algorithms

Client and
Server aware

44

The Client-au)are request distribution algorithms can be further classified as shorvn in

Figure 3.8. In the cli'ent-affini,ty policy, the front-end node uses client session identifiers

such as cookies and SSL identifiers to select a target baclç-end node. The session infor-

mation is useful in cases where all the requests from the same client are to be assigned

to the same back-end node. Por example, in the cases of SSL connections, the initial

handshake procedure is a computationally expensive process, as it requires certificate ex-

changes, encryption and compression negotiation and session id setup. Using the session

CHaprpn 3. Clusr¡R Moopr,s

identifiers, subsequent SSL sessions can skip the handshake by using the same session ID

for some period of time.

The cache-ffini'ty policies achieve the highest cache hit rates by statically portioning

the rvorking set among the back-end nodes. These policies use a hash function to map the

files in the working set to a specific bacl<-end node. The distribution algorithm running

on the front-end node uses the same hashing function in selecting a target back-end

node for an incoming request. This approach is able to achieve the maximum locality

of reference, but still it has several drawbacks. It can only be used for sites providing

static content only. It is difficult to balance the load between the bacl<-end nodes, as it
is very difficult to partition the working set in such a way that the request distribution

is balanced among all the baclç-end nodes in the cluster.

In the seru'ice parti,tioni,ng policy, the bacìç-end nodes are partitioned according to

the service type they handle. So, each back-end node can be set up to handle certain

type of client requests, such as static content, dynamic content, streaming media files,

multimedia files etc. The front-end node is then statically configured to fbrward the

incoming client requests to the respective server handling the content. This approach

has the same limitations as the cache-affinity policy as it could lead to some of the servers

being overloaded while others are idle if a certain type of content is requested more than

the others.

The last policy in the client-aware category is called lhe load, shari,ng policy. The

main goal of this policy is to balance the load among all the back-end nodes in the

cluster. In one of the load sharing policies used mainly for static content, the front-end

node dynamically partitions the working set among all the back-end nodes according to

the size distribution. This policy defines a size range associated with each server in such

a way that the total load directed to each server is the same [Bacgg]. The front-end

node selects the target bacl<-end node for serving the request depending on the size of

45

Cnaprpn 3. ClusrnR MoopLs

the requested file.

Client and Server Aware Algorithms

The client alvare policies can be easily integrated with some server state information to

form client and server aware policies. These policies depend on client information for

cache affinity purposes and server state information for load sharing purposes, as shown

in Figure 3.8. In one of the policies already discussed in chapter 2 calìed as Locality-

Aware Request Distribution (LARD)[PaA98], the front-end node assigns the incoming

requests to the back-end node already caching the document, as long as its load is below

some threshold. In the case of overload the request is assigned to the least loaded back-

end node. This policy improves load sharing by avoiding overloading at the back-end

nodes and improves cache affinity by trying to assign the request to the node already

caching the requested object.

46

Chapter 4

Request Distribution Algorithms

This chapter describes in detail some of the algorithms examined in this study for re-

quest distribution in a cluster based server system. The main objective in any request

distribution algorithm is to achieve good load balancing at the back-end nodes in the

cluster so that none of the nodes are idle while othe¡s are overloaded. With the content

al'vare distribution, the aim is to achieve high cache hits in the main memory cache of the

baclç-end nodes in addition to balancing the load. In this study I compare some of the

major request distribution algorithms which have been proposed to achieve the above

objectives. I compare those algorithms in terms of the throughput achieved (number of

bytes served per second between the server and the client), the number of cache hits and

misses at the back-end nodes, and how well the load is balanced at the back-end nodes.

4.t Round-Robin Algorithm

The first is a content-blind algorithm called Round,-Rob,in request d,i,stri,buti,on algori,thm.

The round-robin algorithm, also called the cycli,c spti,tti,ng algorithm has already been

explained in chapter 3. This algorithm is very simple in the sense that it does not make

47

Cuaprpn 4. Requosr DrsrRreurrox Ai,coRrrHMS

use of any state (client or server) information in making forwarding decisions.

4.2 Greedy Algorithm

The next algorithm considered is called the Greedy algori,thm. When a connection request

arrives at the front-end node, the Greedy algorithm tries to estimate the service time for

the request on each of the back-end nodes. For this, the front-end node keeps update

information about the total number of requests pending to be served on each of the

back-end node's queue, the total size of requests pending to be read from the disk, and

the content of the cache memory on each of the back-end nodes. If Greedy finds that the

requested document is cached in a particular back-end node, the algorithm estimates the

service time on that node by considering the number of requests pending in the back-end

node's queue as shown below

and if the requested document is not cached on a bacl<-end node i.e., has to be read from

the disk, the service time on that node is calculated as follows:

48

Where, s is the size of the requested document, nr is the number of requests in the

back-end node's queue, sbtu is the back-end node's bandwidth, úö is the total size of

the requests pending to be read from the disk, dölu is the dislc bandwidth, and ú is the

estimated service time. After estimating the service time for the requested document on

each of the back-end nodes Greedy sends the request to the back-end node rvith the least

service time.

. s(nr -17\

sbtn

. tb*s s(nr*1)
dbw sbta

(4 i)

(4.2)

CHaprsR 4. RBeunsr DrsrRreurrox AlcoRtrHMS

4.3 Locality Aware Request Distribution

The next algorithm I consider is called thelocøli,ty-Aware Request Di,stri,buti,on (LARD)

[PaA9B]. This algorithm is a content-aware algorithm, rvhere the fiont-end switch uses

the content requested, in addition to information about the load on the bach-end nodes,

to choose a target back-end node. This algorithm focuses on achieving both the above

said objectives viz. load balancing and high cache hit rates at the back-end nodes. In

this, the front-end also limits the number of outstanding requests at the back-end nodes.

This allows the f¡ont-end to respond to changing load on the back-ends, since waiting

requests can be directed to baclç-ends as capacity becomes available. Figure 4.l describes

the LARD server selection algorithm.

When a request flrst arrives for a given document, it is assigned a back-end node

by choosing a lightly loaded back-end node. Subsequent requests for that document are

directed to the assigned back-end node, unless that node is overloaded, in which case,

the document is assigned to a new back-end node from the current set of lightly loaded

nodes. In LARD, a node's load is measured as the number of active connections on each

back-end node.

LARD uses two threshold values for the number of connections on each bacl<-end

node. The first is called the lower threshold valte (T¿o-) and the second is called the

higher threshold value (T¡¿n¡). Tt"- is defined as the load below which a back-end is likely

to have idle resources and T¡¿o¡ is defined as the load above which a node is likely to cause

substantial delay in serving requests. While making a back-end node selection decision

for a particular document, if the front-end sees that the load on the node caching the

document is greater thanT¡¿n¡ while another node has a load less than T¿o-. itselects the

latter node as the target for the document. Also once a node reaches a load of 2T¡¿o¡, the

request is not sent to it, even if no node has a load less thanT¿o,u. LARD also limits the

49

CuapreR 4. Rpeupsr DrsrRreurrox AlcoRrrHMS

Take a client
request out from

the queue

ls the requested documenl
cached ?

F¡nd out how many
back-end nodes

cach¡ng the
document (called
as lhe server set)

.-1_
Find the minimum
loaded back-end

node as the target
from lhe seruer set

ls the load on the min¡mum
back-end node greater lhan the

50

the load on the min¡mum
Þack-end node greater than the

ls load on any back-end node less
than lower threshold ?

Select a m¡n¡mum
loaded back-end

node as the targel

Figure 4.1: LARD server selection algorithm

set caching the
document

it lo the server

> to the target backi '- " -'- Y-'-
end node

CHeprpR 4. Rrqunsr DrsrRrsurroN AlcoRrrHMS

total number of connections admitted into the cluster to a vaìue of (n-I)*T¡,¿n¡*T¿o--1,

where n is the numbe¡ of nodes in the cluster. This is done so that the load on all nodes

does not rise to a value of 2T¡¿n¡.

4.4 The Document Placement Model

The last algorithm considered is called the docurnent placement mod,el [DiM01]. The

problem here is to determine which back-end node in the cluster system should cache

which document, and what percentage of incoming requests for documents should be

assigned to which back-end node. The aim here is to represent the problem as a per-

formance optimization problem from the perspective of the clients. To represent the

problem, DPM outlines a simple queui,ng model, introduces some approximations, an¿

specifies a nonlinear programming problem with some integer variables. The model used

here considers a best effort serui,ce model.

The document placement model is used to place the documents on the back-end nodes

and the front-end node is set up to steer the requests to the back-end nodes in the cluster.

The front-end s'ivitch is assumed to be able to perform content-aware switching, whereby

it lool<s into the content requested before forwarding the request to the target back-end

node. The document placement model uses an off-line pïocess as shown in Figure 4.2.

As shown in Figure 4.2 the ofi'-line component of the process uses long-term access

statistics to infer some measure of the popularity of the documents being requested.

The optimization model is given the measured popularity measurements, the network

topology, and the capacities of each of the back-end nodes as input. For the given input

parameters, the optimization model is solved to obtain (a) the locations and number of

replicas for each document, and (b) the fraction of the demand that is to be satisfied by

each replica. After obtaining the solution, the replicas of the documents are placed on

51

Cuapr¡n 4. Rreunsr DlsrRreurrom AlcoRrrHMS

Analyze long-term
access statistics

Solve optimization models tocompute
(a) loactions of replicas of data

objects
(b)average access fractions for

different replicas

Place replicas of data objects

Load average access fractions
on the content routers

the appropriate back-end nodes and the content-aware front-end switche is set up with

the fractions of the requests that should be routed to each replica. The content-aware

switche will be using some run-time heuristics with the average fraction of requests to

decide horv the incoming requests should be routed.

52

Figure 4.2: The Document Placement Model

4.5 Quality of Service Aware Model

All the algorithms considered so far are based on the Best elfort seru,i,ce (BES) model,

r'vhere aìl the requests are treated equally by the back-end nodes. In this study, I propose

CHepreR 4. Raeursr DrsrRlsurlox AlcoRrrHMS

a nelv Quality of Service (QoS) aware request distribution algorithm. The motivation

for this comes from the fact that different clients use dift'erent bandrvidths to connect to

the Internet. The usage of high bandwidth connections like Cable modems and DSL is

increasing daily. There is also an increase in the usage of wireless devices like cell phones

and PDAs to connect to the Internet. Considering all the clients equally and giving them

the same proportion of the server resources leads to a waste of server resources, as the

resource demand of a client using a 56K modem and a client using a ?1 line is very

dift'erent.

In response to this, I have modeled the scheduling algorithm in our server as a round-

robin scheduler, which assigns a different proportion of resources to different bandwidth

clients. The server is assumed to be providing two classes of service: (a) Quality of

Service (QoS) and (b) Best effort service (BES). In my model the clients are divided into

difi'erent QoS classes depending on their connection bandwidths and some of the cìients

(usually with the least connection bandwidth) are BES clients. The server resources are

shared by the QoS clients with decreasing fraction of resources allocated to clients from

highest to the lowest QoS class , and the BES clients are given whatever resources are

left over.

To provide differentitated service to different classes, the back-end nodes provide a

difi'erent fraction of service time to each client request depending upon the class it belongs

to. To understand this, Iet ö¡ (bytes/sec) be the bandwidth of a client belonging to eoS

class z. The request distribution algorithm running at the front-end assigns the request

to back-end node Æ. At the time of assignment there are already some requests pending

to be served on that baclç-end node. Let, O (bytes) be the total outstanding data to be

served on that back-end node ft, and B¡ (Bytes/sec) be the bandrvidth of the back-end

node fr, so the total time 7 (sec) the node will take to se¡ve the total outstanding data

53

Cuaprpn 4. Rnqunsr DrsrRrnurlox AlcoRrrHMS

is given as,

Since the scheduler running on the back-end nodes is a round-robin scheduler, it rvill

assign a fraction Aú (sec) of time ? to each request in a round-robin fashion until the

request is served. For a QoS request the fraction of time aú is allocated as,

where, p is some fraction approximately equal to I0-2 to 10-8.

Equation 4.4 shows that clients lvith higher bandwidth connections will be given

higher service time than the clients with lower connection bandwidths.

For a BES request the fraction of time Aú is allocated as.

o
B¡

nr-(,-Ð¡ö'\a¿-\r-
Br)

where, ly' are the total number of BES requests on

fraction equal to 10-2 to 10-3.

tt: lnrDk

54

Equation 4-5 shows that, the BES clients are ofi'ered service time which is not being

used by ihe QoS clients. It also puts a restriction on the total number of eoS clients

that are in the system at any moment, in that the total bandrvidth requirement of the

QoS clients (Ð, Ut1 at any moment cannot exceed the bandwidth of the back-end node.

This ensures that the QoS clients are always provided the desrired demand. In the case

of overload the system converts the incoming QoS requests into BES requests to provide

the guaranteed share of resources to the already admitted QoS clients. This is done by

ihe front-end node as explained in the next section.

(4 3)

pT
N

(4 4)

the back-end node k and p is some

(4 5)

Cuapren 4. Rrqursr DrstRreurroiv Ai_coRrrHMS

4.5J QARD-rA

The designed request distribution algorithm is a content-based eoS algorithm called

Quality of Service aware' locality aware request distribution algorithm (eARD-LA) as

shown in Figure 4.8.

In our Qos model I consider that there is a service level agreement for each eoS class.
At anv moment of time the cluster system can guarantee Qos service to a limited number
of clients belonging to the same class. This is called as the connection threshold for that
class' If the number of clients for a class exceeds its connection threshold, they may or
may not be provided Qos service depending upon the expected arrivals of the other eoS
classes' This is done to provide a guaranteed share of resources to each eos class in case

a burst of requests belonging to a single Qos class arrives into the cluster system.

The front-end node maintains a table of connections for each back-end node and
updates it whenever a new request is assigned to a baclc-end node or a request is completed
at a bacl<-end node' For this, it does not need to explicitly communicate with the back-
end nodes' as all the requests pass through the front-end node and hence it can update
the connection table when it assigns a request to a back-end node. when a eos request
comes in, the algorithms checks to see if it can be accommodated into the cluster. This
is done by checking the bandwidth already being used by eos clients on each baclç-end
node' if there is not enough bandwidth on any bacl<-end node to accommodate the eos
request, it is converted to a BES request and sent to the least loaded node in terms of
the number of connection on it.

If the request can be accommodated into the cluster system as a eos request, we need
to make sure that the number of connections for that particular class does not exceed
the assigned threshold so that the other Qos classes are not deprived of their guaranteed
share of resources' But we also need to make sure that the cluster resources are fully

55

Cuaprpn 4. Requesr Drsrersutrrox Ar,coRrrHMS

ls QoS or BES
request ?

accomodated in the system
Can the request be

as a QoS request ?

ls the system load for class i

greater than the assigned

ls the requested
document cached ?

Find the server set
caching the requested

documenl

56

ls the current OoS load + the

Yes

load + class ¡ load > total

-as a QoS request in any node

From the server set choose
the node as target wh¡ch has

the minimum capac¡ty left
after accomodating the new

request

Yes

Select a node with lhe
minimum QoS load as
the target and add it to

the server set

Send the request
to the target node

Select a node w¡th the
minimum number of
connections as the

target and add it to the
serveÍ set

ls the requested
document cached ?

From the server set
choose the node as
target which has the
minimum number of

connect¡ons

Yes

Figure 4.3: QARD-LA

CunprpR 4. Roquesr DrsrRrsurrox AlcoRrrHMS

utilized. That is, in case the assigned share is not being used by particular class, it should

be free to be used by other classes. We do not want to convert a QoS request into a BES

request if some other QoS classes are not fully utilizing their assigned share of resources.

In such a case, some requests may be admitted as QoS requests even if the particular class

has reached its assigned threshold value. So, in the case a class reaches it's threshold, the

front-end node predicts the future load due to all the other QoS classes for the service

time of the request (the prediction algorithm is explained later in this chapter). It then

calculates the sum of the current system load due to the QoS clients, the predicted load,

and the load due to the new QoS request. lf the sum exceeds the total capacity of the

cluster system (calculated as the sum of the capacities of the individual back-end nodes),

the front-end converts the request into a BES request.

Now, the front-end is left with the decision of selecting the most appropriate back-end

node for the request (BES or QoS). If the document is being requested the first time, or

it is not cached in any node, it is assigned to a back-end node rvith the least number of

connections in the case it is a BES request, or to the back-end node with the minimum

QoS client load (the least bandwidth used) in case it a QoS request. The front-end

then keeps traclç of the back-end nodes caching the documents. A set of back-end nodes

caching the same document are called as the seraer set f.or that document.

If the document is cached on the server cluster system, the front-end node treats the

QoS request and the BES request differently. If it is a QoS request, the front-end checks

to see if there is capacity in the server set f'or that document to satisfy the required

bandwidth demand. If there is, it sends the request to the node which has the minimum

bandwidth capacity left after accommodating the request. This is done so that there

is enough bandwidth capacity left on the back-end nodes in case a QoS request with

higher bandwidth demand comes in. But if the front-end finds that the request cannot

be accommodated in any node in the server set for that document, it sends it to a back-

57

CueprpR 4. RBeunsr DrsrRreurroN AlcoRrrHMS

end node lvith the minimum QoS client load (i.e., the node on rvhich the QoS clients

are using the minimum server bandrvidth) and adds the back-end node to the server set

for that document. In case the request is a BES request, the front-end node sends the

request to the back-end node with the minimum number of connections from the server

set for that document.

4.5.2 QARD-LB

In order to make sure that the designed request distribution was efficient, I modified

QARD-LA to make a content-btind QoS aware algorithmi, which much like the greedy

algorithm sends the request to the least loaded back-end node. I call this algorithm as

load balancing, quality of service aware request distribution algorithm (QARD-LB) as

shown in Figure 4.4. The initial part of the algorithm where the decision is made to send

a client request as a QoS request or to convert it into a BES request depending upon the

current load and the number of connections fo¡ that QoS is same as in QARD-LA. The

back-end node selection mechanism is difi'erent for both. In QARD-LB, the front-end

node sends a QoS request to the bacl<-end node with the least QoS client load (i.e. the

node on which the QoS clients are using the minimum server bandwidth), and the BES

request to the node with the minimum number of client connections.

4.6 Predicting the Request Arrival

As explained earlier, the QARD-LA and QARD-LB require prediction of request arrivals

for each class in order to decide whether to provide QoS to a request from a class which

is aìready using alì of it's assigned resource share. To predict the request arrivals for

each class, I model the process as an AR(1) process [ChG02] (autoregressive of order 1).

This is a simple linear regression model in which a sample value is predicted based on

CHaprsn 4. RpeuBsr DrsrRreurrox AlcoRrrHMS

accomodated ¡n the system
Can the request be

as a QoS request ?

lhe system load for class ¡

greater than lhe assigned

59

Select a node wilh the
minimum QoS load as

the target

ls the curent QoS load + the

Send the request
to the target node

load + class i load >

Figure 4.4: QARD-LB

Select a node w¡th the
minimum number of
connections as the

target

CHapr:eR 4. Rpeuesr DrsrRreurrox AlcoRrrHMS

the previous sample values. To do this, the monitoring module measures the number

of request arrivals a¿ for each class in each measurement interval of duration 1. The

prediction algorithm then tries to predict the number of arrivals n¿ for the next interval.

In this case the interval is assumed to be the mean service time for a request. I divide the

measurement interval for each class into N smaller intervals called windows (Wi, j : t
io N). So the number of requests in each window (o1,...,afl) added together give the

total number of requests in the measurement interval I (Ai : Ði:r"Ð The monitoring

module keeps a history -Il of the number of requests from each class by updating the

numbers in the windows. The prediction module then uses the history Ë1 to predict the

number of requests for each class according to

rvhere, R¿ and a¿ are the autocorrelation and the mean of the values from the history

for each class respectively, and, elo is a white noise component. I assume elo tobe 0, and

alo tobe estimated values ã!, for i < N * 1. The autocorrelation Ë¿(l) is defined as,

60

ãint : a¿ + R¿(7).(a!, - a¿) + e!r,

where, øoo is the standard deviation of the values from history for each class and I is

the lag between sample values for which the autocorrelation is computed. Thus, using

AR(1) model I compute ã,y*',...,ãf**, where âf denotes the estimated value of a¿ for

lhe j¿¡ window in the interval of length f . Here I assume that the measurement interval

and the prediction interval are the same and also that the history ll is equal to the

measurement interval 1. Then the estimated number of arrivals ñ¿ for the prediction

interval is given by

n¿(I) : ø[(o!n - an) . (o!o*' - a¿)]

o:. ,0<¿(N-1,

(4.6)

(4 7)

CseprpR 4. Rpeuesr DrsrRrsurroN AlcoRrrHMS

¡¿+N

ñ¿: I al. (4.s)
j:N+1

61

Chapter 5

Simulations

5.1 Simulation Setup

This chapter describes the design of the simulator and discusses the results obtained using

it. The simulator modeìs a server architecture which contains more than one node for

serving the client requests, called a Cluster based server architecture. My simulator can

be divided into two units. The first unit simulates a front-end for the cluster architecture

rvhich is responsible for receiving all the client requests and making decisions as to which

node rvill be serving the given request. It is in the first unit where the difi'erent request

distribution algorithms will run. The second unit models a typical round-robin processor

sharing server) which receives the requests assigned to it by the front end and serves the

request. The second unit is more or less the same for all the techniques I am looking into

rvith the exception of the greedy method which requires some modification to the second

unit(server) as well. From here on I will call the first unit the front-end and the second

unit the server.

62

Cnaprpn 5. Sruur,Rrrous

5.1.1 The Fbont-end node

The front-end is set up to model different request distribution algorithms. The details

for each are described in the following sections:

Round Robin

For the Round Robin request distribution algorithm the front-end simulator models a

simple cycle splitting algorithm, where it forward the zth request to the i,mod,N back-end

node, where N is the number of back-end nodes in the cluster server. This is the simplest

algorithm as it a content-blind algorithm and also does not have to keep track of any

server state information whatsoever.

LARD

The LARD algorithm is a content-aware algorithm, and needs the information about

the load on the back-end nodes as well as the cache memory information fbr each of the

back-end nodes. The simulator is set up as shown in Figure (4.1).

Greedy

63

As the name suggests, the Greedy algorithm tries to select that back-end node as the

target which will provide the least service time for the client request, or in other rvords

it selects the least loaded back-end node in terms of the actual size of requests pending

on the back-end node. Greedy has been explained in chapter 3. For the simulation,

the front-end node keeps track of the actual size of requests pending on each back-end

node as well as the content of the cache memory. This load information is updated

continuously by the back-end nodes by informing the front-end if there is any change in

the load on them. This happens in the following cases: when a requested document has

CHeprBn 5. Srnlulartoivs

to be read from the disk, when the disk finishes writing the requested document into the

memory, and when the back-end node completes serving a client request. Another case

rvhere the load on the back-end node changes is when a request arrives at the baclc-end

node. But the back-ends do not need to inform the front-end node about it, as it is the

front-end which forwards the requests to the back-end nodes and hence can update the

load information for the target back-end node when it sends the client request to it.

The Document Placement Model

The simulator for the Document Placement Model uses the optimization model as ex-

plained in Chapter 4 to solve for the locations and number of replicas for each document

and the fraction of the demand that is to be satisfied by each replica. The optimization

model also generates information about which document would be cached on which node.

The front-end node is then set up with this information. Whenever a client request comes

in, the front-end first checks to see which replica would be serving that request, and then

it checks to see if that replica is allowed to cache that document or not. If that replica is

not allowed to cache the particular document, it reads that document from the disk and

serves it without putting it into the memory cache.

5.I.2 The Server Entity

The server entity receives the requests forwarded to it by the front-end and enqueues them

in a queue. The server uses a scheduling algorithm, which determines which request is

to be processed next. For my case the scheduling algorithm works in a Round Robin

fashion. When a given request is pulled out from the queue, the server checks to see if
the request is already in its memory cache or not. If the requested document is not found

in the memory cache, the server starts reading the data from the disk. In my simulation

CHaprBR 5. Srn¡ularloNs

the disk entity also works in a round-robin fashion. When a document is to be read from

the disk, it is enqueued in the dish queue. The disk then pulls each request out of the

queue and serves it for sometime and then returns it to the queue. But, if the request

has already been read from the disk or is found in the memory cache, the server entity

starts processing the request by assigning it some processing time. The interval of time

during which a request is permitted to remain in service is based upon the Best efibrt

service model. During the assigned processing time the server writes data into a rvindow.

The windo\M can be conside¡ed as a buffer into which the server is writing the data and

from which the client is reading the requested data. After writing into the window the

servel checks to see if it has completed the request during the assigned time, and if not,

the request is inserted back into the server queue until the scheduling algorithm takes it
out of the queue to be processed again. The scheduling algorithm then goes to process

the next request in the queue. The simulation also takes care not to send requests for

the same document from some other client to the dislç while it being read from the disk.

If the server does not talce care of it, then the disl< wastes time writing the same data

twice into the memory.

In my simulation, I have modeled the server to take care of the very slow clients

which are reading data from the window at a very slow rate. If the server processes a

request from the slow client and sees that it has filled up the window up to its maximum

capacity, it will just ignore that request until the client has read about half the windorv

data. After that the server will start processing the request in the usual way. If this is not

implemented then the server will keep on processing the request from the slow client again

and again writing small chunhs of data into the window thus delaying the processing of

requests from potential clients who are able to read data at a much higher rate. The

cache replacement policy I used for all the simulations is the Least-Recently Used (LRU)

policy. In the LRU policy, the least recently used element is evicted from the cache to

CsaprpR 5. Sruui,arroxs

Number of requests

500,000

make room for more frequently accessed documents. The server entity is common for all

the distribution algorithms except for the greedy rvhere it has to continuously inform the

front end about its updated load information.

For QARD-LA and QARD-LB the server entity is almost same as explained above

with the only difference that the scheduling algorithm dift'erentiates between the diff'erent

classes of QoS requests and the BES request by assigning them different share of the

processing time as explained in Chapter 4.

Total bytes requested

2065058075

Table 5.1: Workload-l Statistics

Working set size

43950206

5.2 Results and Discussion

This section describes the results for comparison of the different BES request distribution

algorithms, and the designed QoS aware request distribution algorithms.

5.2.I The BES Algorithms

To compare the diff'erent request distribution algorithms I used access logs fiom requests

made to the 1998 World Cup Web site. The tracefile I have used consists of b00,000

requests. Table 5.1 gives the total bytes requested and the total working set size of the

tracefile. For the simulation, I used the first 50,000 requests for warmup, and then start

collecting the results.

I have used the following metrics to compare the difi'erent request distribution algo-

rithms:

average file size (bytes)

66

4130

CHaprBn 5. Srn¿ulauoivs

o Throughput - This is given as the number of bytes transfered per second betr,veen

the back-end nodes and the clients. It is calculated as the total bytes transfered

divided by the sum of latencies for all requests.

o Cache hit ratio - This is the number of requests that are served from a back-end's

main memory cache divided by the number of requests in the tracefile.

o Average load imbalance - This is the average of the difference between the load

on the maximum loaded and the minimum loaded back-end node at any instant of

time.

o Total load imbalance - This is the difference of the number of requests served

between the bacl<-end nodes which served the maximum number of requests and

the least number of requests.

Figure (5.1), (5.2), (5.3), and (b.4) show the plot of throughput, cache hit ratio,

average load imbalance, and the total load imbalance respectively as a function of different

sizes of the main memory cache on each back-end node for each of the request distribution

schemes.

As can be seen from Figure (5.1), the Greedy request distribution scheme has the

highest throughput for all values of the main memory cache size. This can be attributed to

the upto date and accurate information about the actual loads (in terms of the actual size

of pending requests) on each of the back-end nodes that greedy uses to make forwarding

decisions. The throughput achieved by LARD is also equal to that of Greedy where the

total main memory cache size of the cluster is less than 0.5% of the total rvorking set.

LARD uses the number of connections as the measurement for load, which is not a very

eft'ective measure of load, but still achieves throughput close to Greedy. This is because

it uses the memory efficiently by achieving a much higher cache hit ratio as shown in

Cuapren 5. Sruur,erroNs

--t- greedy
-O- lard
ê dpm

'-:lc. roundrobin

()
0)
ID

!)
c.)

-o

f
o_
-co)
=
-cF

Figure 5.1: Throughput (bytes/sec)

Figure (5.2), thus reducing the overhead caused in the disk access.

68

Both the Document Placement Model (DPM) and the Round-Robin schemes achieve

a very low throughput for all values of memory sizes as compared to LARD and Greedy.

Round-Robin achieves the lowest hit ratio resulting in frequent disl< accesses. It also

has the highest average load imbalance resulting in some of the nodes being overloaded

rvhile others being idle. However, the total load imbalance is ìorvest for the Round-Robin

scheme as it sends an equal number of connections to all the back-end nodes. The DpM

uses the locality information about the requested documents but still achieves a very

Memory size (bytes)

CHaprnn 5. Stnlularrols

1.1

0.9

0.7

.9
P 0.6
.=
I

(\- z

ø

øøød¿P
-

Ø

graaeçÔce.l*-/

0.5

0.4

-e.-o-e

0.3

t\

0.1

104

69

Iow throughput. Due to the locality information used, DPM achieves a hit ratio almost

equal to or slightly lower than LARD for all values of memory cache size, but the average

Ioad imbalance achieved by DPM is rvorse than Round-Robin. The total load imbaiance

for DPM is also worse than all the other schemes. This shows that the DPM reduces

the disk overhead by using the locality information, but at the same time, it results

in forwarding most of the requests to overloaded nodes resulting in greater latency in

serving the requests.

The hit rate plot shows that the content-aware algorithms LARD and DPM achieve

10" 10"
Memory size (bytes)

Figure 5.2: Hit ratio

--+- greedy
-O- lard
ê dpm

. +F- roundrobin

107 10"

CueprnR 5. Srvur.arroxs

25

x.
or * * ,ovQ'- s. ,ÀoÆ* ò-

q)
oc
(ú
(õ

_o

.E
Þ ¿-(d lc

õ
o)
CÚ

c)

10

'ø

a

li(

ãr.

-d

tê

90*^ i
VVI

q
(Y'

a x xxxÇ.

0
1 o4

æ--O-
"Êooeæ- - e -o-eooo@_ _ _o_ o o eGc<re

^?@\^
^ / \O IortbJ

VV

* ö d(lê àe**Xteþ,totêþK

70

higher hit ratio than the content-blind algorithms for lower values of the memory size.

But as the memory size is increased, all the algorithms achieve almost the same hit ratio.

This happens when the memory on each of the back-end nodes is equal to about 0.2% of

the total rvorking set. This suggests that to achieve a high cache hit ratio, the memory

size on each of the bacl<-end nodes need not be equal to the total working set. This can

be achieved at a much lower memory size even if a content-blind request distribution

algorithm is used. This also shows that most of the requests are for a small fÏaction of

objects from the working set thus resuìting in a very high hit rate even when the memory

10"

-r- greedy
-O- lard
ê dpm
+F.roundrobin

't0"

Memory size (bytes)

Figure 5.3: Average load imbalance

107 10"

Cuapr¡n 5. Sruularrorus

4
x 10

-O- lard
--+- greedy
ê dpm

'-¡r. roundrobin

0)

8sõ
(ú

_o
E
ãq
(ú
o
(õ

,o3

o
/\. Ô
r \ lt
. ^ /b,' "\l þ-..t

óÒo-

ô
ñ

ii

'ìI l/.¿\
\¿l
/r

.\ It'ô
-ô- ^ø od"9

10

øl
I

p
/l

Figure 5.4: Total load imbalance

size is equal to a small fraction of the total working set.

77

The plot of the average load imbalance and the total load imbalance suggest that

having the upto date and accurate information about the actual size of requests pending

on each of the back-end nodes as used by Greedy results in better load balancing than

using the number of connections on the back-end nodes as the load measure as used by

LARD. But the difference between the two load measures is not very significant. But

having the most current and up to date information about the actual size of the requests

pending on the back-end nodes is not practical and will result in a lot of overhead

to"

AQ
Jì /i'. t l.\itp*

òs

106
Memory size (bytes)

107 10"

CsaprpR 5. Srruur.arroNs

Number of requests

100,000

and traffic between the bacl<-end nodes and the front-end node. Using the number of

connection as the load measure does not lead to any overhead or traffic since, the front-

end can update the information while making server selection decisions, thus making it
a more practical and effective measure.

Total bytes requested

423888926

Table 5.2: Workload-2 Statistics

5.2.2 The QARD Algorithms

Working set size

For this case I used a similar trace file, with the access logs from the requests made to

the 1998 World Cup used for comparing all the BES algorithms. The tracefile consisted

of 100,000 requests. Table 5.2 gives the important statistics for the tracfile. For this

simulation, the first 20,000 requests are used form warmup, and then the simulation

begins gathering the statistics.

The simulation uses g classes of QoS clients with different bandlvidth requirements

and a BES class. The connection threshold for each QoS class is set to 10. I also assume

that there is some revenue generated by serving each class. The revenue is based upon

the bandwidth requirement of a QoS class i.e., the higher the bandwidth requirement

the higher the revenue. Table 5.3 shows the bandwidth requirements and the connection

threshold values for each class. The total cluster server bandwidth is set such that it,s

bandwidth is fully utilized when there are 10 connection requests for each of the eoS

classes. Using the values shown in Table 5.3, the server bandwidth is set to a value of

912500K Bytesf sec.

QARD-LA and QARD-LB use a prediction module as explained in Chapter 4. The

24074897

average file size (bytes)

72

4238

CHaprpn 5. Srl¿ularroivs

Bandwidths (Kbits/sec)

class

Table 5.3: Bandwidths and threshold values for the QoS classes and the BES class

threshold

class

1

2000

Actual numbers

1

2

10

1 000

J

Same % requests

tJ

6

10

900

623

4

B

636

10

800

Predicted numbers

5

682

10

700

6

843

prediction module needs to know the service time f'or each request in order to make

decisions- But the prediction module may not have prior knowledge of the service time

for each individual service access. I assume that the prediction module has knowledge

of the service time of the average file sized request. This can easily be achieved through

monitoring the access patterns, or through service provider's specifications. In order to

verify the prediction module, I tried to predict the number of requests for each class

using some tracefiles. The first tracefile used had the same percentage of requests for

each class. I also ran the prediction module on a tracefile with a diff'erent percentage

of requests for each class. Table 5.4 shows the actual and the predicted values for some

of the classes with a 5 second interval for both cases. It can be seen that the values

produced by the prediction module are a good estimate of the actual numbers.

I compare QARD-LA and QARD-LB using the metrics explained in the last section.

Table 5.4: Actual and Predicted number of requests for difi'erent classes

10

600

7

590

10

500

707

I

Actual numbers

10

400

722

IJ

9

Different % requests

747

10

300

BES

2183

10

100

314

Predicted numbers

292

958

2747

247

257

922

Csaprpn 5. Sruur,auoivs

x 10

(J
o
Ø
Ø
c)

_o

53
o_
-c
f

c
F

0
1 U

- x.....x . N.x.x.xNxÐoo<

Figure 5.5: Throughput (bytes/sec)

also use two nerv metrics as explained below:

I4

10"

o Revenue Generated - This is the total revenue generated in serving a QoS request

according to the required demand.

o Discontent Generated - This gives the total number of QoS requests that could not

be provided with the desired demand i.e. were served as BES requests.

Figure 5.5, 5.6, and 5.7 show the achieved throughput (bytes/sec), the hit ratio, and

the total load imbalance, respectively for QARD-LA and QARD-LB as a function of

106
Memory size (bytes)

107 10"

Csaprpn 5. Sruularrous

0.9

+ QARD-LA
-€- QARD-LB

0.7

0.6

'ã
s o.s
.=
:tr

0.4

0.3

0.2

0.1

0
1 0

75

the size of the main memory cache on each of the back-end nodes. The diff'erence in

performance of QARD-LA and QARD-LB for the achieved throughput, hit ratio and

average load imbalance is due to the same reasons as explained in the last section. As

can be seen from the plot of throughput, QARD-LA achieves a higher throughput than

QARD-LB for smaller values of the memory sizes (less than 0.2% of the total working set

size). QARD-LA uses locality information in addition to the load information to make

forrvarding decisions, but QARD-LB only uses the load information. Thus, eARD-LA is

able to reduce the overhead caused in the disk access at very low values of the memory

10" A
10-

Memory size (bytes)

Figure 5.6: Hit ratio

107 10"

Cuapron 5. Sln¿ularroNs

600

c)

3 4oo
(ú
(ú
-o
E

E 3oo

õ
o)
(ú

c)> 200

100

-1 00
Á

10

+ QARD_LA
-€- QARD-LB

76

sizes which is not possible with QARD-LB. From the plot of average load imbalance we

note that, for memory sizes less than 0.02% of the working set on each of the back_end

nodes the load imbalance achieved by QARD-LB is much better than that achieved by

QARD-LA, but still it is not able to achieve the same throughput. Thus, it can be said

that at very low values of memory size the locality information, with a little knowledge

about the load, can give a much better performance than that achieved by just load

balancing alone.

For a QoS aware request distribution algorithm the aim is to increase the generated

10"

Figure 5.7: Average load imbalance

106
Memory size (bytes)

107 10"

CuaprpR 5. Slnlur-errols

x 106

+ QARD_LA
-€- QARD-LB

3.5

Ð^c)¿
(ú

c)c
c)
(5
c)
:Jc
0)

c)Í
1

0.5

.

+

i

0
'l

U

77

revenue and decrease the discontent by serving requests at their desired demands. Fig-

ure 5'8 and 5.9 shorv the total revenue generated and the total discontent generated

respectively for QARD-LA and QARD-LB as a function of varying main memory sizes.

QARD-LA is able to generate a higher revenue than QARD-LB. This is because using

the load information and locality information QARD-LA is able to accommodate the

QoS requests more efficiently than QARD-LB on the cluster QARD-LA is able to serve

requests at a higher rate than QARD-LB for smaller values of memory thus making room

for other requests and resulting in an increase in the revenue generated.

10"

Figure 5.8: Total Revenue Generated

106
Memory size (bytes)

107 10"

CHapr¡n 5. Srrr¿ur,arloNs

6000

Cg

þ +ooo
.U)o

Class - 1

0
'l A

0

6000

c
c.)

cg 4000
.u)o

Â
10-

Memory size (bytes)

6000

C
I

þ +ooo
.Øo

Class - 7

0
1

10"

o4

-€- QARD-LB.+ QARD-LA

78

0
'l

106
Memory size (bytes)

The plot of discontent shows the discontent generated for some of the eoS classes.

It can be seen that for memory size less than 0.02% of the total working set on each

cluster, QARD-LA is able to serve more requests with their desired demand than eARD-
LB. Hence, it is able to reduce the generated discontent and increase the total revenue

generated.

For memory sizes greater than 0.02% of the total working set on each of the back-end

nodes, both QARD-LA and QARD-LB a¡e able to achieve similar performance. This

suggests that for larger values of memory size only a simple load balancing strategy can

o4

Class - 4

6000

c
c)
cg 4000

.u)o

106

Memory size (bytes)

10"

Figure 5.9: Total Discontent

Class - 9

10"

0
1 0 106

Memory size (bytes)
10"

Cuaprpn 5. Sruur-arroms

be sufficient to achieve best results. But in reality, it is impossible or not very cost

effective to have memory sizes closer to the size of the working set.

Chapter 6

Conclusions

In this thesis I present a QoS aware request distribution scheme for Web server clusters.

In addition to providing differentiated support to diff'erent classes of clients, this scheme

tries to maximize the achieved throughput by efficiently using the cluster's main memory

cache and by trying to achieve good load balancing between the nodes. The main reason

for developing a ne'w request distribution technique is that current web server clusters

lach support for providing QoS to their clients. Most of the work on clusters f'ocus on

how to maximize the utilization of resources of the cluster. Some of the worh done on

QoS support for web server clusters tries to allocate the resources on the cluster between

difi'erent classes depending upon the request arrival rates for that class, but none of the

worh tries to combine the request distribution with the resource allocation. The reason

for doing this was to guarantee the allocation of resource share for each class of clients.

At the same time, the scheme will try to efficiently use the main memory cache and

balance the load between the nodes.

In order to find out which factors eff'ect the performance (memory usage, load balanc-

ing, throughput) in a cluste¡ design, I compared some of the major request distribution

algorithms currently being used. These included content-blind as rvell as content-aware

80

CHaprpn 6. Cowcl,usrows

request distribution algorithms. I found that a simple load balancing scheme can achieve

throughput equal to a content-arvare request distribution scheme even at small memory

vaìues if it has accurate and up-to-date information about the total size of the requests

pending on each back-end node in the cluster. However, this approach does not seem to

be practical since having up-to-date load information requires the back-end nodes to send

load information continuosly to the front-end node. This would result in increased traffic

on the cluster netwo¡k and the front-end node may become a bottleneck. Anothe¡ solu-

tion would be to send load information periodically, but again, that may not be useful as

it is not very accurate when a burst of requests arrive at the cìuster system. In a practical

solution, the front-end uses some information, which it can update without depending

on the back-end nodes. This could be the number of connections on the back-end nodes,

which can be updated when a front-end selects a target back-end node for a request.

I also discovered that using a little load information in addition to the locality infor-

mation can result in a huge perfbrmance improvement. When comparing the hit ratio's

for each of the request distribution scheme, it was found out that for memory sizes greater

t'han 0-2Vo of the total worl<ing set, even the content-blind algorithms were able to achieve

hit ratios greater than 0.8. But in reality, the memory, being very expensive is only a

small fraction of the total working set being hosted on a Web server. For such Web

servers it is important to use memory efficiently.

Using the results obtained in comparing the request distribution algorithms, I de-

signed a request distribution algorithm called locality aware - quality of service a\Mare

request distribution algorithm (QARD-LA), which provides differentiated QoS to clients

while, at the same time, focusing on the performance improvement factors explained

above' In the design, the back-end nodes are capable of providing differentiated eoS

services to different classes of clients. The front-end node makes decisions about rvhich

back-end node can provide the resources requested by the client, while at the same time,

B1

CHapreR 6. Co¡icl,usroxs

considering for locality and load balancing. The design also takes care to allocate the

resources not being used by a client class to other classes. In case of overload, all the eoS

requests cannot be provided with the desired demand. Those requests are then provided

best eftbrt service. I compared the designed scheme with a similar QoS scheme called load

balancing - quality of service aware request distribution algorithm (QARD-LB), which

provides difi'erentiated QoS to different classes while, at the same time, trying to balance

the load between the nodes in the cluster. Through simulation it rvas shown that, the

QARD-LA was able to achieve higher throughput, better hit ratio than eARD-LB at

very small values of memory sizes even if it could not balance the load as eft'ectively as

QARD-LB' I have also shown thai QARD-LA was able to achieve higher revenue (or

income) as compared to QARD-LB as it was able to provide more requests with the

desired resource demand.

6.1 Comparison with Existins eoS Schemes for Server

Clusters

Similar to Demand-driven Service Differentiation (DDSD) [ZhT01], I try to provide class

based service diff'erentiation to different classes of clients. DDSD uses a dynamic sched-

uler to predict the future resource demand for each class and mal<e dift'erent partitioning

decisions during system over-load and underload situations. Unlike my approach, rvhere

each node in the cluster can process requests from all existing service classes, they par-

tition the nodes such that each partition is allowed to handle requests from one service

class' This approach is very inefficient as cluster wide partitioning and repartitioning

cannot be done very frequently, which makes it difficult to respond promptly to changing

resource demand. In my approach the resource allocation is done at the time of selecting

82

Cnnprpn 6. Co¡¡cl-usrolvs

a back-end node for each request. This approach can take prompt actions in case of

overload or request burstiness.

Cluster reserves as proposed in [ArD00] also consider the problem of ensuring that a

minimal fraction of resources be available to serve requests from a certain client commu-

nity, independent of load generated by other clients. Unlike my approach, this approach

does not consider back-end node selection. It is only concerned with the dynamic alloca-

tion of resources on each back-end node based on prevailing load conditions independent

of the request distribution stategy employed in the cluster. This approach has a drarv-

back similar to one of DDSD, because the resource manager responsible for allocating

and deallocating resources is run periodically.

[ShT02] also consider the problem of providing service differentiation to dift'erent

classes of clients. They provide a framework for class-based service differentiation in

terms of resource allocation and admission control known as Class trB. This approach is

dift'erent from mine in that they ensure a balanced distribution of requests from each class

to each bach-end node. At each back-end node they use a multiqueue scheduling scheme

for producing high QoS yield (economical benefit). In my approach, I take document

locality into consideration in addition to load information. In case of overload, this

approach drops requests which will produce zero yield whereas I try to provide service

to such clients based on a BES model.

83

6.2 Future Research Directions

Through simulation, I have demonstrated that our proposed approach can perform better

than similar approaches considering only the load factor. However, several issues need to

be addressed before this approach can be deployed. The first issue is related to scalabilty

of the approach. Currently I do not consider that there is any overhead incurred in

CHaprpR 6. CoNcr,usloivs

making selection and prediction decisions at the front-encl node. I need to make sure

that the front-end does not become a bottleneck for the cluster. I also do not consider

support for HTTP/1.1 persistent connections where all requests should be served by the

baclç-end node to rvhich the connection was handed off initially. In my simulations I
set the threshold values for each class statically, but I need to use some optimization

techniques to set the threshold values for each class so as to maximize the generated

revenue. Furthe¡more, I need to see how sensitive the designed algorithm is to the CpU

and disk speeds, because, being a content-aware algorithm, it should show a dramatic

increase in the performance with an increase in disk speeds as compared to the load

balancing algorithm which is disk bound.

Bibtiography

[AlT02] Nortel Networks, "Alteon ACEdirect or," http://www.nortelnetworks.com/prod,ucts

/ 0 1 / alt eo n / a cedi.r / in d er. html, 2002.

[AnP96] E- Anderson, D. Patterson, and E. Brewer , "The Magicrouter, an Application

of Fast Packet Interposing," In Proceedi,ngs of the 2nd, Symposium on Operati,ng

Systems Desi,gn and Implementøt'ion, May 19g6.

[ArD00] M. Aron, P. Druschel, and W. Zwaenepoel, "Cluster reserves: A mechanism

for resource management in cluster-based network servers," In Proceed,i,ngs of

ACM Sigmetri,cs 2000, June 2000.

[ArD99] iVI. Aron, P. Druschel, and w. zwaenepoel, ,,Efficient support for p-HTTp

in Cluster-Based Web Servers," fn Proceed,i,ngs of the lggg Annuøt USENIX

Techni,cal Conference, Monterey, CA, JUNE 1ggg.

[ArS00] M. Aron, D. Sanders, P. Druschel and W. Zwaenepoel, "scalable Content-

aware Request Distribution in Cluster-based Network Servers," In Proceed,ings

of USENIX 2000 Annual Techni,co,l Conference, June 2000.

[AvB99] Luis Aversa and Azer Bestavros, "Load. Balancing a Cluster of Web Servers

using Distributed Packet Rewriting," Technical Report, Computer Science De-

partment, Boston Uni,uersi,ty, June 1ggg.

85

BreLrocRapHv

[BaD99] G. Banga, P. Druschel, and J. C. Mogul, "Resource Containers: A new facil-

ity for Resource Management in Server Systems," In Proceed,ings of the Srd,

USENIX syrnposi'um on Operati,ng Systems Desi,gn and, Implementation, Feb

1 999.

[Bac99] M. Harchol-Balter, M. E. Crovella, and C. D. N4urta, ,,on Choosing a Task

Assignment Policy for a Distributed Server System," In Proceed,i,ngs of IEEE

Journal of Parallel and Di.stri,buted Comput,ing,1gg9, pp. 204-22g.

[BeA97] A. Bestavros, "WWW Traffic Reduction and Load Balancing through Server-

Based caching," In Proceedings of IEEE concurrency, vol.5, No.1,pp.55-67,

J anuary- M arch 1 gg7, IggT.

[BeCe8] A. Bestavros, M. crovella and D. Martin , "Distributed packet Rewriting and

its Applications to Scalable Server Architectures," In proceed,i,ngs of the 6th

Internati'onal conference on Network Protocols, oct 1g9g, pp. 2g0-2g|.

J. Bruno, J. Brustoloni, E. Gabber, B. ozden, and A. silberschatz,

"Retrofitting Quality of service into a Time-sharing operating System,,' 1n

Proceedi,ngs of USENIX lggg Annual rechni,cal conference, Monterey, cA,

June 1999.

J. Bruno, E. Gabber, B. ozden, and A. silberschatz, "The Eclipse operating

System: Providing Quality of Service via Reservation Domains,,, In proceed,i,ngs

of USENIX 1998 Annual rechni,cal conference, Berkeley, cA, June 1ggg.

T' Brisco, "DNS support for Load Balancing," RFC 17g1, Aprrl 1ggb.

IBrBee]

86

[BrGe8]

IBrTe5]

BreLtocRapnv

[CaC01] Emiliano Casalicchio and Michele Colajanni, "A Client-Aware Dispatching Al-

gorithm for Web Clusters Providing Muttiple Services," WWW|0, Hong Kong,

May 2001.

lchD0ll L. cherkasova, M. Desouza, and s. Ponnekanti , "performance Analysis of

content-Aware Load Balancing strategy FLEX: Two case studies,,' In pro-

ceedi,ngs of the Thi,r-ty-Fourth Hawo,i,i, Internati,onal Conference on System Sci,-

ences (HICSS-7Q, Jan 2007.

A. chandra, w. Gong, and P. shenoy, "An online optimization-based rech-

nique For Dynamic Resource Allocation in GpS Servers,', Techni,cal Report

TR02-30, Department of Computer Sc'ience, Uni,uersi,ty of Massachusetts at

Arnh,erst,2002.

Ludmila Cherkasova and Magnus Karlsson, "scalable Web Server Cluster De-

sign with workload-Aware Request Distribution strategy wARD,,, Hewlett-

Pachard, Laboratori,es, 1501 Page Mi,tt Road, palo Alto, CA,200I.

L. Cherkosova , "FLEX: Load Balancing and Management Strategy for Scalable

web Hosting service," In Proceedi,ngs of the \th Internøti,onal symposi,um on

Computers and Commun'icat,ions, Anti,bes, France, July 2000.

A. cohen, s. Rangarajan, and H. slye, "on the performance of rcp splicing

for URL-Aware Redirection," In Proceedi,ngs of the 2nd, \SENIX Symposi,um

on Internet Technologi,es and Systems, Boulder, CO, OCT 1ggg.

O. P. Damani, P. E. Chung, Y. Huang, C. Kitala, and y. lVang, ,,ONE_Ip:

Techniques for Hosting a Service on a Cluster of Machines," In proceed,i,ngs of

the 6th International WWW Conference, Santa Clara, Cali,forni,a, Arp 1gg7.

IchGo2]

IchKo1]

IchLoo]

87

ICoRee]

IDaCe7]

Brel.rocReprry
BB

[DaK96] Daniel M. Dias, William Kish, Rajat Mukherjee, and Renu Tiwari , "A Scalable

and Highly Available Web Server," fn Proceedi.ngs of the llst IEEE Interna-

ti,onal Computer Conference, COM?COI{, Sep 1gg6.

[DaM00] M. Dahlin, "Interperting Stale Load Information," In Proceed,i,ngs of IEEE

Transact,ions on Parallel and, Di,stributed, Systems, 2000.

[DiM01] J- Diamond and M. Maheswaran, "Optimization Models for Document place-

ment and Load Balancing on Web Server Clusters," (Jnpubli,shed, Manuscri,pt,

2001.

[EgF9] K. Egevang and P. Francis, "The IP Netwo¡k Address Ttanslator," RFC 1651,

May 1994.

[FoG97] Armando Fox, Steven D. Gribble, Yatin Chawathe, Eric A. Brewer and paul

Gauthier, "Cluster-Based Scalable Network Services," In Proceed,i,ngs of Sym-

pos,ium on Operati,ng Systems princi,ples, Oct 1gg7, pp. Zg_g1.

[Fou02] Foundry Networks, "Foundry serve¡Iron switches,,,

http : / /www. f o un dryn et. com / pro d,ucts / w eb swi.t ch es / s eru eri,ro n/ i,n d,er. html,

2002.

[GuB99] Deepak Gupta and Pradip Bepari, "Load Sharing in Distribued. Systems,,, In

Proceedi,ngs of the Nati.onal Workshop on Di,stributed, Compuúzng, JAN 1ggg.

[HuG97] D. H. Hunt, G. s. Goldszmidt, R. p. King, and Rajat Mukherjee , ,,Network

Dispatcher: A Connection Router for Scalable Internet Services,,, IBM Re-

search Center. 1997.

BInlrocRepHv

[HuN97] G. Hunt, E. Nahum, and J.

bution for Scalable Services,"

Center, May 1997.

[JoL95] M. B. Jones, P. J. Leach, R. p. Draves, and J. S. Barrera, ,,Modular Real-Time

Resource Management in the Rialto operating system," In Proceed,i,ngs of the

Fi,fth Workshop on Hot Topi,cs i.n Operati,ng Systems, May 1ggb.

[LoC96] CISCO, "LocalDirector," http://www.c,isco.com, Igg6.

89

tacey, "Enabling Content-Based Load Distri-

Techical Report, IBM T. J. Watson Research

[MaB98] D. A. Maliz and P. Bhagwat, "TCP Splicing for Application Layer Proxy per-

formance," IBM Research Report, 1ggg.

[MiM97] M. Mitzenmacher, "How Useful Is OId Informatior^," In Proceed,ings of the 16th

Annual ACM symposi"urn on pri.nci,pres of Di,stributed, computi,ng, rgg7.

[PaA98] Vivek S. Pai, Mohit Aron, Gaurav Banga, Micheal Svendsen, Peter Druschel,

Willy Zwaenepoel, Erich Nahum, "Locality-Aware Request Distribution in

Cluster-based Network Servers ," In Proceed,i,ngs of the Ei.shth Internati,onal

Conference on Archi'tectural Supqtort for Programmi,ng Languages and, Operat-

i,ng Systems, San Jose, CA, Oct 19gg.

[PaB98] R. Pandey, J. F. Barnes, and R. olsson, ,,supporting
euality of service in

HTTP Servers," In Proceedi,ngs of the Seuenteenth Annuat SIGACT-SIGOZS

Symposi'um on Princi,ples of Distri,buted. Computi,ng, June 1g98, pp. 247_256.

[ReS01] Resonate, "TCP Connection

/ w p - cd -t cp _co nn ect _h o p . p hp,

[ReS96] Resonateinc , "Resonate, A Case for Intelligent Distributed Server Manage-

ment," http : / /www.resonateinc. corn) Dec 1g96.

Hop, " http : / / w w w. r e s o n at e. co m / s o luti o n s flit erature

Apr 2001.

BrsLroceapHy

[ShK92] Niranjan G. Shivartri, Phillip Krueger and Mukesh Singhal, "Load Distributing

for Locally Distributed Systems," IEEE computer, DEC 1gg2, pp. 33-44.

[ShT02] K. Shen, H. Tang, and T. Yang, "A Flexible QoS Frameworl< for Cluster-based

Network Services," Unpubli,shed Manuscri,pt, 2002.

lsivresl

[VaC01]

W. Simpson, "fP in IP T\rnneling," RFC 185fl OCT 1ggb.

S. Vaidya and K. J. Christensen, "A Single System Image Cluster using Du-

plicated MAC and IP Addresses," In Proceedi,ngs of the p6th IEEE Conference

on Local Computer Networks, Nov 2001, pp.206-214.

x. zhang, M. Barrientos, J. chen, and M. seltzer , "HACC: An Architecture

for Cluster-Based web Servers," In proceedi.nqs o.f the srd, usENIX wind,ows

NT Symposium, July 1999, pp. 155-164.

H. zht, H. Tang, and r. Yang, "Demand-driven service Differentiation in

Cluster-based Network Servers," In Proceedi,ngs of IEEE INF)C7M,p001, An-

chorage, ,4K, April 2001.

lzhBeel

Izhr01]

