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ABSTRACI" 

In patients suxviving a myocardial infarction O, the heart undergoes a remodeiing 

process characterized by hypertrophy which can also lead to h a r t  failure. Although 

hypertrophy is an eady response that may temporady preserve eardiac fünction, numerous 

studies have suggested that this long term process of remodeling is also associated with an 

increase in oxidative stress and cardiac decompensation- Although increased oxidative stress 

has been suggested to be involved, the precise mechanism/s underlying changes in the 

oxidative stress leadiig to the transition ofthe compensatory hypertrophy phase to the failure 

stage are poorly understood. Activation of the renin-angiotensin system (RAS) is another 

compensatory mechanism to sustain heart fùnction in MI patients. However, prolonged 

activation of the RAS is also deletenous for sustained cardiac fimction- A sclective and 

complete blockade of the RAS at the angiotensin II type 1 receptor (AT,) site has been 

reported to improve cardiac function and survival in patients. However myocardial 

antioxidants and oxidative stress changes during the modulation of remodeling of the heart 

by blockade of the AT, receptors have not been examined. 

The objectives of the present research on rat hearts subsequent to MI therefore, were 

to: i) characterize changes in the oxidative stress and enzymatic antioxidants, (superoxide 

dismutase (SOD), glutathione peroxidase (GSHPx) and catalase) in relation to their mRNA 

abundance and protein content; ii) study changes in nonenzymatic antioxidants at different 

stages of heart failure in relation to cardiac function in order to have a more comprehensive 

information about the antioxidant reserve, and üi) Study the effects of RAS inhibition at the 

AT, receptor site by losartan on the myocardial enzymatic and non-enzymatic antioxidants 



(SOD, GSHPx, catalase, vitamins A and E) and oxidative stress (Lipid hydroperoxides, 

reduced and oxidized glutathione and the redox ratio) in relation to the changes in 

hemodynamic fùnction during the sequelae of congestive heart failure. 

MI in rats was produced by ligation of the left coronary artery and ail the animds were 

hemodynamicdiy assessed at diffierent post-myocardial infarction (PMI) durations. 

Antioxidant enzyme activities as well as mRNA abundance were anaiyzed in controls and 

in the 1 -week PMI; 4-week PMï and 16-week PMI hearts, In the 4-week PMI group, 

LVEDP was elevated and LVPSP was depressed with no signs of congestions- ADP and 

ASP in the 4-week sham control and PMI group were not diïerent fiom each other. 

However, a significant decline in ASP accompanied by the greatest elevation in LVEDP and 

depression in LVPSP was seen in the 16-week PMI group. Pulrnonary edema and liver 

congestion was noted in the 16-week PMI group and these animais also displayed overt 

clinical signs of har t  fdure consisting of dyspnea and lethargic behavior. Losart an treatment 

(2 m g h l  in drinking water, daily) was started at 4 weeks and continued for 12 weeks. 

Losartan treatment modulated the increase in LVEDP and normalized LVPSP in the 16-week 

PMI group. Furthemore, there was no Iung and liver congestion in the losartan treated MI 

grOur'- 

The SOD enzyme activity remained unchanged at 1-week PMI, but was decreased 

by about 35% at 4 weeks and about 42% at 16 weeks. The mRNA levels for superoxide 

dismutase showed a biphasic response, where it was reduced by about 40% at 1 -week PMI- 

At 4 weeks P M ,  the Ievels returned back to the control level. At 16 weeks PMI, the levels 

in the PMI group were reduced by about 73% of the control value. The GSHPx enzyme 



activity was slightly increased at 1 wed< PhAl, but was reduced by about 26% and 38% at 

4 and 16 weeks PMI duration, respectively. GSHPx mRNA levels remained unchanged at 

ail time points. Catalase enzyme activity at 1 week was not changed, however, at 4 and 16 

weeks PMI the activity was decreased by about 24% and 25% respectively. The mRNA levels 

for catalase remained unchanged at 1 and 4 weeks PMI and was signincantly reduced by 

about 44% at 16 weeks PMI as compared to the controls. 

SOD activity, which was decreased in the 16-week untreated PMI group, losartan 

treatment had no beneficiai effect on this activity. GSHPx activity which was depressed in the 

untreated PMI group showed signiticant improvement in the PMI group treated with losartan 

such that the values at 16 weeks were no longer daerent than the control group. Catdase 

activity was significantly decreased in the 16-week untreated PMI group. Kt showed some 

improvernent with losartan treatment but the increase was not signiticant. Interestingly, 

losartan treatment in the 16-week controi animals resulted in a significant increase in the 

catalase activity. The protein levels for MnSOD, CuZnSOD, GSHPx and catalase at 1 and 

16 weeks were also examined. The protein level for ali these enzymes remained unchanged 

in the 1- and 16-week PMI groups compared to their respective controls. However, the 

protein levels for catalase was signincantly ïncreased in the control and PMI groups treated 

with losartan- 

Myocardial vitamin A (retinol) and E (tocopherol) content were also analyzed at 4 and 

16 weeks PMI duration. Vitamin A and E levels remained unchanged in the 4-week PMI 

group, but were significantly decreased in the 16-week PMI group. Treatment with losartan 

resulted in a significant increase in retinol levels in the 16-week treated PMI group. Losartan 



treatment did not have any influence on tocopherol concentration in either of the groups. 

Collectively, data on the eruymatic and non-enzymatic antioxidants suggested a significant 

improvement in the myocardiai antioxidant reserve of the MI animals treated with losartan. 

Myocardial GSH and GSSG content in the 4-week untreated PMI group were no 

different as compared to the respective control. At 16 weeks PMI duration, the GSH content 

was decreased by about 40% and GSSG was increased by about 114% as compared to its 

respective sham control group. The GSH content in the losartan-treated control as well as 

PMI groups was signiscantly improved. GSSG content in the losartan-treated PMI group 

was decreased and the values no longer were dïerent fiom its respective sham control group. 

Redox ratio was also assessed in the 4- and 16-week sham control and PMI group with and 

without losartan treatment. The redox ratio remained unchanged in the 4-week PMI group 

compared to its control but it was significantly depressed in the 16-week PMI group 

compared to its sham control group. This ratio was significantly improved in both the control 

and PMI groups treated with losartan. Lipid hydroperoxide content was significantly higher 

in the 4- and 16-week PMI group compared to its sham control group. This increase in the 

li pid hydro peroxide content was signincantly attenuated in the 1 6-week PMI group treated 

with losartan. These data suggested a significant decrease in the oxidative stress due to 

losartan treatment of the MI animals. 

It is concluded that inhibition of the RAS at the AT , receptor site with losartan, in 

addition to reducing cardiac remodeling and improving hemodynamic function, reduces 

oxidative stress and improves myocardial endogenous antioxidants subsequent to myocardial 

infarction. The study suggests a newer role for losartan in the treatment of heart failure. 



Although changes in the SOD and catalase activities during heart f ~ l u r e  correlateci with 

changes in mRNA for these enzymes, the precise mechanisds for decrease in oxidative stress 

and improvement in antioxïdant reserve after losartan treatment idare unclear at this tirne- 



I. INTRODUCTION 

Heart failure is a pathophysiologic state in which the failing heart is unable to deliver 

adequate amount of blood to the metabolizing tissues. Despite the advances made in the 

therapeutic strategies for heart failure, it still remains the number one cause of death. Some 

of the rnost cornmon causes of heart failure include ischemic heart disease, valvular heart 

disease, hypertension, aicohol cardiomyopathy, myocarditis and drug-induced 

cardiomyopathy- When the heart fails, a complex sequence of compensatory mechanisms 

come into play to maintain the cardiac output- 

Following a sudden occlusion of the coronary artery, the heart undergoes a 

remodeling process which is characterized by hypertrophy and heart faiiure- Aithough, 

hypertrophy is considered as an early response to preserve cardiac flnction, it is known that 

the long terrn process of remodeling has a deleterious eEect. A number of responses are 

associated with the failing of the heart. Initially these changes are important for maintaining 

cardiac output however, over a period of t h e ,  it becomes maladaptive and contributes to  the 

progression of heart failure. Although the mechanisms involved in the transition of the 

compensatory phase to the failure stage are poorly understood, chronic activation of the 

sympathetic and the renin-angiotensin systems (RAS), appears to play a role. Without the 

therapeutic intervention, sorne of these compensatory mechanisms continue to be activated, 

ultimately leading to heart failure, 

Recent data fiom both animal and patient studies have provided strong evidence for 

the role of increased oxidative stress in the development of heart failure. Both a deficit in the 

antioxidant reserve and an increase in fiee radical mediated injury have been reported in 



various pathophysiologicai conditions such as ischernia-reperfusion and adnsmycin and 

diabetic cardiomyopathies. A strong correlation behueen vitamin intake and reduced risk of 

coronary artery disease have also been provided. Using the rat coronary artery Ligation 

model, our laboratory has reported a deficit in the myocardial endogenous antioxidant reserve 

and an increase in oxidative stress which are associated with a poor cardiac fùnction. 

However, there have been no snidies examiamiring the changes in antioxidant enzymes at the 

mRNA and protein level at different stages of post-myocardial infarction (PMI) duration. 

Therefore, we undertook this study, to characterke changes in the antioxidant enzymes 

(MnSOD, CuZnSOD, GSHPx and catalase at the mRNA and protein level at different PMI 

durations, 

It is also known that non-enzymatic antioxidants are also an important component of 

the antioxidant reserve. However, nothing is known with respect to changes in the vitamins 

A and E in the heart at dflerent PMI durations. Thus, in any study of antioxidants, analysis 

of non-enzymatic antioxidants is important to obtain a more comprehensive information. A 

direct analysis of oxidative stress changes is also required to compliment the information 

obtained fiom the study of myocardial antioxidants. 

In the face of decreased cardiac output, activation of the RAS results in a series of 

enzymatic reaction that converts angiotensin 1 to angiotensin II via the angiotensin converting 

enzyme (ACE). Angiotensin II causes vasoconstriction as well as leads to the release of 

aldosterone resulting in increased preload and aflerload. ACE-inhibitors have proven to be 

an effective treatment for heart failure both in animai and patient studies. This class of drugs 

have been show to prevent cardiac remodeling and to prolong survival in both MI patients 



and MI animals. We also recently reported that inhibition of the RAS by inhibiting ACE with 

captopril in MI rats not only resulted in improved hemodynamic finction but afso rnaintained 

the antioxidant reserve and decreased oxidative stress. Since captopnl also possesses some 

fiee radical scavenging property and since inhibition of ACE is also known to increase 

bradykinin the exact property of captopril offering protection is not clear. In addition to 

inhibiting the production of angiotensin I& ACE-inhibitors dso  cause activation of 

prostaglandin synthesis and a u e n c e  bradykinin metabolism. Therefore, angiotensin I I  

receptor blockers such as losartan have been preferred in the management of  heart failure. 

Losartan is a nrst of the new class of angiotensin II antagonist which seledvely and 

completely blocks angiotensin II type 1 (AT,) receptors. Losartan has been reported to 

reduce afterload, improve cardiac fùnction and improve survival without altenng the humoral 

factors such as bradykinq vasopressin and prostaglandin. Recently there have aiso been 

evidence supporting the concept of angiotensin Ii as a source of fkee radicals. In various in 

vitro studies, production of superoxide anion by angiotensin II has been found to be ùihibited 

by losartan- However, there have been no studies to date on the effects of losartan on 

myocardial endogenous enzymatic and non-enzymatic antioxidants and oxidative stress at 

different post-MI durations in rats. Thus, one of the objective of this research was also to 

study the effects of a specific angiotensin II blocker, losartan on antioxidants and oxidative 

stress in congestive heart failure in rats following MI. 

We used a rat MI mode1 of coronary artery ligation to explore the effects of RAS 

inhibition at the AT, receptor site by losartan on myocardial antioxidants and oxidative stress 

changes in congestive heart failure in relation to the hemodynarnic function. Myocardial 



antioxidant enzymes (superoxide dismutase, glutathione peroxidase and catalase) activities 

and non-enzymatic antioxidants (vitarnins A and E) and changes in oxidative stress (lipid 

hydroperoxide contents, reduced and oxidized glutathione and their ratio) were recorded at 

different post-surgical durations. Using the northem and western blot technique, mRNA 

abundance and protein content for these enzymes were also detennined. Effects of losartan 

on ail the above mentioned parameters were also studied in relation to cardiac fiinction. The 

treatment was started at 4-week PMI and continued for 12 weeks. 

The findings fiom this study advance our knowledge of the role of oxidative stress in 

the pathogenesis of hart failure. The modulation of antioxidant changes as weii as oxidative 

stress by a selective blocker of angiotensin II coupled with the improvement of the 

hemodynamic fiinction suggest a newer roie for losartan in the treatment of heart failure. 



II. LITERATURE REVIEW 

1. Backround 

Heart failure is a clinical condition whereby the heart is unable to pump blood 

adequately to tissues and organs throughout the body- It is currently the most fiequent 

diagnosis for admissions in hospitals and is a major health problem- Congestive h a r t  failure 

refers to the buildup of fluid in the dependent tissues- In spite of the remarkable gains made 

in the patient care and management, the incidence of hart failure remains high- Because of 

the ageing population and an improvement in surgical and medical treatments, the number of 

patients living with the condition o f  heart failure is on the rise (SuIlivan, 1994). The most 

common symptoms of heart failure inciude fatigue, shortness of breath, chest pain, weakness 

and swelling of the legs (Cohn, 1997; Wfiams, 1990). Coronary artery disease, 

cardiomyopathy, congenital h a r t  disease, hypertension, myocarditis, heart valve defects and 

drug abuse are al1 known to contribute to the incidence of heart failure. Thus, we do need 

to  develop a better and thorough understandimg of the pathogenesis of heart failure, ifwe are 

to  reduce the cost of this disease to our health care system as well as the quality of Me- 

Extensive research in the field ofheart failure has provided insight into the cellular and 

rnolecular bases of h a r t  failure. As the pump finction of the heart is compromised due to 

a variety of  reasons cited above, compensatory mechanisms that are activated to maintain 

cardiac output and enhance contractile fùnction of the heart come into play. Some of  these 

mechanisms include activation of the sympathetic and the renin-angiotensin systems (RAS). 

Activation of the sympathetic system maintains blood pressure through activation of  the 

adrenergic receptors (Lechat, 1998). This results in increased contractility leading to an 



increase in cardiac output. The stimulation of the RAS in combination with the sympathetic 

system leads to vasoconstriction and enhances salt and waterretention (McAlpine and Cobbe, 

1988; Lechat, 1998). However, prolonged activation of these systems has been known to 

cause cardiac dysfûnction and failure (Francis et a', 1984; Packer, 1992). 

In heart failure, defects in receptors and diierent pumps and proteins responsible for 

calcium movement have been reported, which may result in ionic hbalance and calcium 

overload. Sarcolemmal sodium calcium exchanger, Na' K+ ATPase activity and calcium 

pumps have been shown to be depressed during heart faiiure foliowing myocardiai infaction 

(Dhalla et a[., 1991; Dixon et aL, 1990; Makino et al., 1988; Dixon et al., 1992a; Dixon et 

aL, 1992b). Decrease in expression of sarcoplasmic reticulum Ca "ATPase, and calcium 

release channel and phospholamban has also been reported (Arai et. al 1993; Brillantes et al,, 

1992; Mercadier et aL, 1990). Coiiectively, these findings suggest that there are changes in 

the sarcoplasmic reticulum fbnction which results in a disturbance in calcium homeostasis. 

Numerous studies have reported altered protein and gene expression of some of the 

contractile proteins such as the myosin heavy chah isoforms (Nakao et al, 1997). 

Reactivation of fetai genes such as P-myosin heavy chah @EIC) and a-skeletal actin in 

adults also takes place (Schwartz et al., 1993; Boheler et al., 199 1).  Increased expression of 

p MHC is associated with the lower myosin ATPase activity and slower shortening velocity 

(Schwartz et al., 1993). High energy phosphate stores are also reduced in heart failure 

conditions (Ingwall, 1993). Furthermore, reduction in creatine kinase activity have atso been 

reported in many forms of heart failure (Braunwald and Bristow, 2000; Ye et al., 2001). 



Thus a variety of subcellular mechanisms have been documented to be defective in heart 

Mure, but the cause and e&t relationship is largely unknown. 

1.1 Remodeling 

Remodeling refers to changes in the ventricular chamber subsequent to changes at the 

ceiiular and molecular levels. In response to an increased workload, the heart undergoes 

hypertrophy, which is characterized by changes in ventricular chamber size and geometry 

(Grossman and Lorell, 1993; Cohn, 1997; Anversa et al., 1993; Pfeffer et al., 199 1; Pfeffer 

et al ., 1993)- Factors iduencing such rernodeiing include the sympathetic and RAS systems, 

cytokines and oxidative stress. Increased sympathetic activation although at first may be 

beneficial, over a period of time may lead to myocardial cell loss and fibrosis (Anversa et al.. 

1992; Olivetti et al., 1997). Increased catecholamine ievels also cause downregulation of P 

adrenergic receptors resulting in impaired cardiac fùnction. In this regard, downregulation 

of p, receptors with either no change or downregulation of P, receptors have been reported 

(Bristow et aL, 1986; Bristow, 1993). The local RAS also interacts with the sympathetic 

system resulting in increased catecholarnine release, which further leads to cardiac 

dysfùnction. 

Following myocardial infarction (MI), the viable myocardium is replaced with 

connective tissue and "infbrct expansion" occurs which îùrther results in cardiac remodehg 

(Pfeffer et al., 1991; Hutchins and Bulkley, 1978). Furthemore, myocyte ce11 lengthening 

leads to myocyte slippage, which results in the thinning of the ventricular wall (Olivetti et al., 

1990; Weisman et al., 1988; Pfeffer et al., 1991). This derangement of myocytes lead to 

ventricular dilatation and cardiac dysfiinction (McKay et ai., 1986; Anversa et al., 1993; 



Pfeffer et al., 1991). Rearrangement of the myocytes resulting fiom side to side slippage has 

also been suggested to account for the occurrence of cell death (Anversa et al.. 1992)An 

increased expression of a number of extraceiiular matrk (ECM) proteins, including coUagen 

has been described in the failing heart leading to increased fibrosis and stiffening of the 

ventricle (Pelouch et al., 1 993; Dixon et al-, 1996). In a recent study it has been suggested 

that cardiac fibrosis could be due eitherto an increased collagen synthesis or reduced coiiagen 

degradation (Bishop et aL, 1994; Ju et al., 1997)- Cardiac fibrosis in the failing hearts have 

been shown to be reduced by an inhibition of the RAS using losartan (Smits et al., 1992; Ju 

ef al., 1997; Dixon et al., 2000; Schieffer et al., 1994). 

Increasïng evidence fiom both animal (Bozkurt et al., 1998) and human studies 

(Levine et al., 1990) have reported elevated levels of cytokines such as tumor necrosis factor 

a (TNF-a), ïnterleukin-la (IL-la) and atrial naturietic factor in MI and failure conditions. 

Increased concentrations of these cytokines were shown to have a direct correlation with the 

severity of failure (Fernari et al., 1998; Levine et al., 1990; Givertz and Colucci, 1998). 

Receot studies have highlighted the involvement of cytokines such as TNF-a, IL-1 P and IL-6 

during the remodeling process (Ono et al., 1998). The deleterious effect of TNF-a is 

receptor-mediated and also directly activates nitric oxide, which is cytotoxic to myocardial 

cells by virtue of its ability to produce fiee radicals and cause apoptosis (F3lum and Miller, 

1998). The pathological potential of TNF-a is demonstrated in a study where overexpression 

of TNF-a in the transgenic mice developed cardiomyopathy associated with apoptosis 

(Bryant et al., 1998). In a recent study, Nakamura and coileagues (1998) demonstrated that 

TNF-a and Ang II induce hypertrophy in cultured neonatal cardiac myocytes through their 



free radical producing ability, and administration of antioxidants such as B H q  vitamin E and 

catalase inhibited this effect of TNF-a and Ang II by scavenging the radicals. In addition to 

producing free radicals, it is also suggested that TNF-a is also activated by hydrogen 

peroxide (Meldrum et al,, 1998)- 

Autooxidation ofcatecholamines has aiso been suggested to cause cardiac dystùnction 

by virtue of producing tiee radicals (Singal et a[., 1982; Singai et a[., 1983)- Thus, arnong 

difEerent mechanisms, an increase in oxidative stress and a decrease inthe antioxidant reserve 

has also been suggested to play a role in the pathogenesis of heart failure (Singal and 

Kirshenbaum, 1990; Kaul et al., 1993). 

2, Free Radicals, Antioxidants and Oxidative Stress 

2.1 Generat 

The story of fiee radicals started more than two centuries ago. It was Lavoisier, in 

1785, who made the first observation that oxygen has two main effects, i.e- it supports We 

but it also has toxic side effects (Lavoisier et al., 1785). It was aiso demonstrated that 

increased oxygen tension results in lung congestion in mice, rats and pigs (Smith, 1899). 

Subsequent to that, Gomberg demonstrated the presence of triphenylmethyl molecule as a 

radicai species in organic chernistry (Gomberg, 1900). In 1954, Gerschman and colieagues 

(1954) proposed that the damaging effécts of oxygen were due to the formation of radical 

species (Gerschman et al., 1954). 

The discovery of su peroxide dismutase by McCord and Fridovich, (1 969), inspued 

biologists and clinicians around the world to study the role of free radicals in biology and 

medicine. Since then, a large body of evidence has acuimulated showing that biologicai 



systems are capable of producing a variety of reactive oxygen species which play an imponant 

role in various pathological conditions (Halliweii, 1987; Weiss, 1986). Our own laboratory 

has now provided evidence for the role of fiee radicals in the pathogenesis of  cardiac 

dysfunaion in a variety of conditions (Singal et al., 1998; Singal et ai., 1996; Singal and 

Kirshenbaum, 1990; Kaul et al., 1993) such as in catecholamine-induced (Singal et al., 1982), 

adriamyein-induced (Singal et al., 1987) and diabetic cardiomyopathy (Kaul et al., 1995), 

pressure overload induced hypertrophy and hart  failure phalla and Singal, 1994). In vitro 

studies of the free radical effects of sarcoplasmic reticular function (Hess et al., 1983) and 

stress-induced increase in lipid peroxidation (Meerson et af-, 1982) also provided more 

idormation on the role of oxygen radicals in myocardial dysfunction. The list of diseases and 

pathophysiological logical conditions where fiee radicals are involved continues to grow 

rapidly and has been the subject of several reviews (Kaul et al., 1993; Singal et al, 1998; Bail 

and Sole, 1998; Halliwelil, 1987; Halliwell and Gutteridge, 1984; Muskowitz and Kukh, 

1999). 

2.2 Ownen free radicals 

Free radicais are highly reactive atoms o r  molecules with an unpaired electron in their 

outermost orbits. The production of fiee radicals occurs either by the addition or by the 

removal of an electron in a reductiodoxidation reaction. Since oxygen has two electrons with 

a parallel spin in its outermost sheU and is a diradical, it requires four electrons to be 

completely reduced to water (Kaul et al.. 1993; Singal et al., 1988; Singh et al.. 1995). 

Oxygen is also the terminal acceptor of electrons for oxidative phosphorylation, and thus the 

simultaneous addition of four electrons is associated with the production of high energy 



phosphates. However an addition ofone electron at a tirne results in the formation ofreactive 

oxygen species (Halliwell 1987; Weiss, 1986; Kaul et aL, 1993; Singal et aL. 1988; Singh et 

al., 1995). In the univalent reduction pathway, the addition of one electron to molecular 

oxygen results in the production of superoxide anion radical ( O;-). Mitochondria is the 

major source of O;'. Activated neutrophils, and cyto plasmic enzymes such as xanthine 

oxidase, NADPH oxidase are also the sources of 0;-(Muskowitz and Kukin, 1999). The 

addition of an electron to the 0 2  -- results in the formation of hydrogen perox.de (H,03. 

The H202 is not a radical by itself; but it is capable of causing cell damage by interacting with 

transition metals such as ion. A single electron reduction ofH202 results in the formation 

of the hydroxyl radical (OH-). The OH' is a highly reactive moleaile with an extremely short 

haif-Me, and therefore has a very Limiteci diffusion capacity (Kaul et ai-, 1993; Singai et al., 

1988; Singh et aL, 1995 ). Fially, the addition of a fourth electron results in the formation 

of water. The first excited state of oxygen i.e a singlet oxygen ('03, can also initiate oxygen 

radical chah reactions (Singal et al., 1988; Singh et aL, 1995; Kaul et al., 1993). 

These reactive oxygen intemediates such as 02.; H,O, OH- and 'O2 are called 

activated oxygen species and are coliectively known as partiaiiy reduced forms of oxygen 

(PRFO) (Saran et al., 1989; Kaul et al., 1993). Peroxynitrite, which is formed by the 

interaction of O,-- with nitric oxide (NO), is also hanntùl (Saran et al ., 1989; Yasmin et al., 

1994; Singal et al, 1998). Al1 these reactive species have the potential to interact with lipid 

and protein molecules and initiate fiee radical chah reactions resulting in cardiomyocyte 

damage (Freeman and Crapo, 1982; Singal et ai., 1988; Kaul et al., 1993; Shgal and 

Kirshenbaum 1990; Singal et a/., 1998; Moskowitz and Kukin, 1999). 



2.3 Sources of free radicals 

Although the precise mechanism for the production of fiee radicals is not known, 

studies suggest the invotvement of increased prostaglandin biosynthesis (Dzau et al., l984), 

increased angiotensin I I  levels (Bech Laursen et al., 1997) catecholamine autooxidation 

(Singai et al., 1982; Singal et al., 1983), neutrophilic NADPH oxidase and xanthine oxidase 

(McCord, 1988; Werns and Lucchesi, 1989) and cytokines (Ferrari et al-, 1998; Givertz and 

Colucci, 1998). Angiotensin 11 and catecholamines are elevated in congestive heart failure 

(Watkins et al., 1976; Francis et al., 1982). Angiotensin II sthuIates the synthesis and release 

of prostaglandins during which fiee radicais are forrned (Bech Laursen et al,, 1997; 

Oskarsson and Heistad, 1997). Autooxidation of catecholamines results in fiee radical 

production and cardiomyopathic changes (Singal et al., 1982; Singal et al-, 1983). Increased 

levels of cytokines in heart failure conditions has been reported both in animal studies 

(Bozkurt et al., 1998) as weU as patient data (Levine et al., 1990; Torre-Amione et aï., 

1996). The deleterious effects of cytokines are shown to be mediated by fiee radicals (Blum 

and Miller, 1998). In a recent study by Nakamura and colleagues, it was reported that TNF-a 

and Ang II induced hypertrophy in cultured neonatal cardiomyocytes by virtue of producing 

free radicals. Antioxidants such as B m  vitamin E and catalase inhibited this effect of Ang 

II and TNF-a (Nakamura et al., 1998). 

2.4 Free radical-mediateâ ce11 iniurv 

DEerent pathophysiological conditions are known to influence the production of fiee 

radicals. Free radical-induced lipid peroxidation has been suggested to alter membrane 

structure and function (Kaul et al., 1993; Singd et aï., 1998; Meerson et al.. 1982). The lipid 



peroxidation process is initiated by the removal of a hydrogen atom fiom the unsaturated site 

in a fatty acid resulting in the production of a lipid radical. These radicals perpetuate a chain 

reaction leading to the formation of lipid peroxides (Kaul et al., 1993; Singai et al., 1988; 

Halliwell, 1987). The peroxidation of lipids is known to cause alterations in membrane 

fluidity (Eze et aL, 1992; Ceconi et aL, 1988). There is also evidence suggesting that free 

radicals can rnodie the protein structure and fiinetion (McCord, 1988). In this regard, 

proteins rich in sulphydryl groups are found to be more susceptible to fiee radical mediated 

attack (Singai et al., 1988; Kaul et al-, 1993). Oxidation of the sulfhydryl groups in proteins 

results in the formation of toxic thiol cornpounds (Muskowitz and Kukin, 1999). Therefore, 

quantitation of glutathione, a sulphydryl compound, has been used to characterize radical- 

induced damage. In the myocardiurn, oxygen radicals have been shown to effect ~ a + / C a ~ +  

exchanger, Na+-K+ ATPase and Ca2+ ATPase activities (Kaneko et al., 1990; Reeves et al., 

1986; Kramer et al., 1984; Dixon et ai-, 1990). These activities are known to change during 

heart failure. Free radicals can also damage the DNA and chromosomes (Ozawa , 1995). 

Mitochondrial DNA is more susceptible than the nuclear DNA to £tee radical-induced 

darnage (Bal1 and Sole, 1998). Such modifications have been shown to cause cellular 

abnormalities such as mutations and ce11 death (Halliwell, 1987; Singal et al., 1988; Singal et 

al., 1996; Kaul et al., 1993). Thus the evidence that PRFO can cause subçellular 

abnorrnalities is overwhelming (Morris and Sulakhe, 1997; Kaul et al., 1993; Bail and Sole, 

1998; Singh et al., 1995; Muskowitz and Kukin, 1999)- 



Free radical-mediated darnage includes oxidative modification of  cellular proteins, 

lipids and nucleic acids. Lipid peroxidation is a fiee radical-mediated process, in which lipid 

peroxides are formed within ceIl membranes and organelles (Kaul et al., 1993 ; Halliwell and 

Guttendge, 1984; Kappus, 1985). Lipid peroxidation is measured by a vanety of methods 

which include the estimation of malondialdehyde (MDA) either by ultraviolet light, HPLC 

or the thiobarbituric acid reactive substances (TBARS) method (Kaul et al., 1993; Kappus, 

1985; Ceconi et al., 1991). The TBARS assay has been found to lack specificity and 

overestimates the MDA level by more than 10 fold, possibly due to the interaction with other 

aidehydes (Yeo et al., 1994). Since the MDAassay has been shown to lack specificity, a new 

assay for detecting the dinitrophenyihydralazine derivative of MDA has recently been 

developed which is found to be more accurate than the TBARS assay (Cordis et al., 1995). 

The direct detection of fiee radicals is done by electron spin resonance spectroscopy (Garfick 

et d, 1987). Other methods ofassessing fiee radical-mediated darnage include determination 

of diene conjugates, lipid hydroperoxides, measurement of gases such as ethane, pentane and 

isoprotanes in exhaled air, measuring the reduced (GSH) and oxidized (GSSG) gtutathione 

and the redox ratio and also measuring the activity of endogenous antioxidants. More 

recently, measurement of 8-iso-prostaglandin F,, as a specific marker of oxidative stress has 

also k e n  used using an enzyme immunoassay (Reilly et al., 1997; Mallat et al., 1998; 

Mankad et al., 1998). 



3. The Antioxidant Defense Svstem 

3.1 Enzymatic antioridants 

3.1.1 Superoride dismutase (SOD). This enzyme is the first line o f  defense against 

fiee radical-induced damage. SOD is involved in the dismutation of superoxide radical where 

it specificaily and efficiently catalyzes the conversion of O*' to hydrogen peroxide. There are 

different types of SOD that difEer based on the structure and localization- The CuZnSOD 

(molecular weight - 32,000) is present in the cytoplasm and MnSOD ( molecular weight - 

80,000) is found in the rnitochondria, Hurt et ai., (1992) have reported that there are at least 

five transcripts for MnSOD. Superoxide dismutase activity has been reported to be 

significantly less in the heart as compared to the liver (Ferrari etaL, 1985; Ferrari et al., 1998; 

Fndovich, 1978). It was the discovery of SOD whkh led to the reaiization that superoxide 

anion is formed in vivo in M g  organisms (McCord and Fridovich, 1969; Kaul et ai-, 1993; 

Ferrari et ai., 1985; Ferrari et al., 1998; Fridovich, 1978)- 

3.1.2 Ghtathione peroxidase (GSHPx). This selenium-dependent enzyme 

(molecuIar weight -84,000), is present both in thecytoplasm and mitochondria. It is involved 

in the detoxification of lipid hydroperoxides as well as cataiyzes the reduction of hydrogen 

peroxides using glutathione (GSH) as a substrate- This enzyme is present in relatively hi& 

concentrations in the human h a r t  (Kaul et al., 1993; Ferrari et al., 1985; Ferrari et al., 1998; 

Fridovich, 1978; Kukreja et al., 1997) and is therefore considered an important antioxidant 

enzyme in the heart. A selenium independent form of GSHPx, which dismutates organic 

peroxides is also present (Lawrence and Burk, 1978). 



3.1.3 Catalase. This enzyme (molecular weight -240,000) is also involved in the 

detoxification of hydrogen peroxide produced by superoxide dismutase. Present at relatively 

low concentrations in the heart, it converts H,O, to water and oxygen. However, the 

difference between catalase and glutathione peroxidase is that GSHPx is more effective at low 

concentrations of H,O, Le. in pM range, whereas catalase is more effective at the mM 

concentrations of &O, (Kaul et al., 1993; Singh et al., 1995; Freernan and Crapo, 1982). 

3.2 Non-enzymatic antioxidants 

Non-enzymatic antioxidants include vitamins such as tocopherols, ascorbate and 

carotenes as well as other biological molecules including glutathione, uric acid and metd 

binding proteins. 

3.2.1 Vitamin E. Tocopherol (vitamin E) is a group of eight structurally related 

compounds. These are fùrther sub-divided into two groups: tocopherols and trienols. Of 

these, d-a-tocopherol is the most comrnon type of vitamin E absorbed from the human diet 

(Packer, 1994; Packer, 1991; Burton and Traber 1990). It is a strong biological antioxidant. 

Because of its lipophiiiic nature, vitamin E offers maximum protection in cellular and 

subccllular membranes against free radical-mediated damage. It reacts with fiee radicals, 

yielding lipid hydroperoxides which can be removed by the GSHPx enzyme system- Vitamin 

E, thus, effectively tenninates the lipid peroxide-mediated chain reaction and is therefore 

called a "chain breaking antioxidant" (Singal et al., 1998; Packer , 199 1; Packer et al., 1979; 

Packer, 1994; SÏngal et aL, 1997a; Palace et al., 1999a). Vitamin E also fùnctions 

synergistically with ascorbic acid to teminate fiee radical chab reactions (Palace et al., 

1999a). 



Increased vitamin E intake has been correlated with a reduced incidence of 

cardiovascular disease (losonczy et al,. 1996; Kushi et al., 1996; Gey et al., 1993). Depleted 

concentrations of vitamin E have been found in the plasma as well as within the myocardium 

(Scragg et ai., 1989; Hill and Singal, 1997; Barsacchi et al., 1992; Vaage et al, 1997), in 

various cardiovascular diseases- Animals maintained on a vitamin E deficient diet were found 

to be more prone to catecholarnine-induced (Singal et ai-. 1983) and adnamycin-induced 

(Singal and Tong, 1988) cardiomyopathy. In a pressure overload model in guinea pigs, 

vitamin E therapy modulated the pathogenesis of hart  failure uicluding ultrastructural 

abnormalities (Dhalla et al, 1996). Furthemore, vitamin E e ~ c h e d  membrane fiom rat 

hearts were found to be resistant to peroxidation (Janero and Burghart, 1989) suggesting that 

membrane a-tocopherol is important in the protection of myocardial phospholipids against 

oxidative darnage. Vitamin E enrichment also reduced ischemia-reperfùsion injury and 

improved contractile function of rat hearts (Massey and Burton, 1989; Ferrari et al.. 1989). 

Furthemore, vitamin E also maintained the redox ratio and antioxidant capacity and increased 

resistance to lipid peroxidation in guinea pigs (Rojas et ai-. 1996). Vitamin E has also been 

reported to reduce infarct size in pigs and rabbits with MI (Klein et ai., 1989; Mord-Gatley 

and Wilson, 199 1). Trolox, a water soluble analogue of a tocopherol, and ascorbic acid were 

also found to be effective in reducing myocardiai necrosis after ischemia ùi a canine model 

Wckie et uL, 1989). 

However, some studies have reported no beneficial effects of tocopherol. Elevated 

myocardiai tocopherol concentrations failed to reduce infarct size  or improve contractile 

recovety after ischemic reperhision in a pig model (Klein et ai.. 1993). In fact, one study 



even reported larger uifarct sizes in vitamin E treated dogs subjected to coronary artery 

ligations, compared to controls (Sebbag et al., 1994). 

Recently, it has been discovered that vitamin E also possesses some other properties. 

Tocopherol reduces proliferation of smooth muscle cetls, an important factor in atherogenesis, 

by activating TGF-P, a smooth muscle ceU growth inhibitor (Ozer et ai., 1995; Chatelain et 

al,, 1993). 

3.2.2 Vitamin C. Vitamin C is a water-soluble molecule. A direct correlation 

between the high intake of ascorbic acid and a lower incidence of cardiovascular mortahy 

and risk of coron- artery disease (Enstrom et ai-, 1992; Gey et al., 1993b) has been 

established. Furthermore, lower dietary intake was associated with an increased risk of 

angina pectoris (Riemersma et al., 1991) In rat hearts subjected to oxidative stress, 

treatment with vitarnin C prevented myocardiai damage (Bastounis et al., 1994). %tamin 

C also fùnctions in synergism with vitamin E to promote regeneration of vitamin E (Frei et 

al., 1990; Packer et al., 1979)- In addition to the antioxidant effect, vitamin C is also 

reported to increase nitric oxide generation (Heller el ai., 1999). 

3.2.3 Carotene. Carotene, a precursor of vitarnin A, is also known to quench fiee 

radizals. These reactions with carotene to operate maximaily at low-oxygen tension as 

compared to vitarnin E (Foote and Demy, 1968). Epidemiological studies have shown that 

increased levels of carotene and other carotenoids are associated with a decreased risk of 

cardiovascular diseases (Riemersma, 1994; Palace et al., 1999b). 

3.3 Gtutathione 



Glutathione is a tripeptide which protects cells against peroxides generated dunng 

aerobic metabolism. It undergoes redox cycling between the reduced (GSH) and oxidized 

(GSSG) forms (Kaul et al., 1993; Clark et aL. 1990; Reed , 1990). In the heart, glutathione 

is predorninantly in the GSH fonn- Glutathione also acts zs a cosubstrate for GSHPx and 

plays an important role against fiee radical-mediated darnage which results in the increased 

formation of GS SG. Depletion ofglutathione by using L-buthionine-S, R-suEoximine (BSO) 

renders the cell susceptible to tiee radical attack (Reed, 1984; Verma et al., 1997)- The 

redox ratio, which is the ratio of reduced to oxidized glutathione (GSWGSSG) is used as a 

sensitive index of oxidative stress- An increase in the redox ratio indicates decreased 

oxidative stress and a decrease in the ratio means increased oxidative stress (Singal et ai-, 

1998; Kaul et al., 1993; Verma et al., 1997; Halliwell, 1995). 

3.4 Other bioloeical molecules 

Various biological moIecules such as uric acid and ubiquinone have been reported to 

possess antioxidant properties- Uric acid, has been shown to directly interact with OH' and 

prevent oxidation (Arnes et ai.. 1981), suggesting that this molecule may possess an 

antioxidant property (Kaul et aL, 1993). Iron chelators, such as desfemoxarninel, inhibit 

lipid peroxidation and reduces the injury associated with ischemia-reperfüsion (Bernier et al., 

1986; Chopra et al.. 1992). Ubiquinone, or coenzyme Q,, also acts as a potent inhibitor of 

lipid peroxidation by directly quenching fiee radicals (Forsmark et al.. 199 1). Coenzyme Q ,  

treatment has been found beneficial in patients undergoing coronary artery bypass graft 

surgery (Chello et al.. 1994). Various metal binding proteins, including femtin, transfemn, 



metallothioneins and cemloplasmin, have been reported to inhibit lipid peroxidation (Halliwefi 

and Gutteridge, 1984). 

3.5 Drues as antioxidants 

3.5.1 Angiotensin converting enzyme (Am) inhibitors. Captopnl due to the 

presence of a sulthydqd group has been shown to scavenge superonde anions and protect the 

heart against oxidative stress-induced damage (Westlin and Mullane, 1988; Bartosz et al, 

1998; Chopra et d, 1992). A protective effect of captopril against ischemia-repefision 

injury was shown. Both captopril and zofenoprilat exhibited dose-dependent inhibition of 

lipid peroxidation and prevented loss of ceU viability (Weglicki et al., 1990; Weglicki et al.. 

1992; Mak et al., 1990). In a recent study, we documented that treatment of MI rats with 

captopril resufted in an improvement of the myocardial endogenous antioxidants and a 

decrease in Lipid peroxidation (Khaper and Singal, 1997a). In addition, captopnl treatment 

resulted in an increase in redox state, indicating reduced oxidative stress (Khaper et al., 

1998). In patients with coronary artery disease, captopril, has been reported to decrease 

breath pentane levels (Sobotka et al., 1993). 

3.5.2 Beta (P jbtocken. P-blockers such as propranolol and carvedilol have been 

reported to offer protection against fiee radical-induced injury. Propranolol has been shown 

to inhibit membrane lipid peroxidation in a concentration dependent manner in a tiee radical 

generating system (Mak and Weglicki, 1988; Mak et al., 1989a; Weglicki et al., 1990). In 

rat hearts subjected to ischemia-reperfùsion, we reported that pretreatment of rats with 

propranolol offered significant wdioprotection against I/R injury. Propranolol treatment not 

only decreased lipid peroxidation in the hearts, but also prornoted endogenous antioxidants 



such as catalase and glutathione peroxidase (Khaper et ai-, 1997b). Carvedilol has also been 

shown to possess antioxidant properties primarily due to the presence ofa  carbazole moiety 

(Feuerstein and Ruffolo, 1996). Spin-trapping studies have demonstrated that carvedilol 

scavenges superoxide and hydroxyl radical (Yue et al.. 1995) and inhibits lipid peroxidation 

in swine ventricular membranes (Yue et al.. 1992). A decrease in iipid peroxidation in hearts 

ofmice treated with carvedilol fùrther confkmed the antioxidant property of carvedilol in vivo 

(Yue et aL. 1995). In patients with h a r t  failure, carvedilol not only improved the fùnction, 

but also modulated the antioxidants (Ammanayagam et al., 2001). 

3.5.3 Probucol. Probucol is also reported to possess strong antioxidant properties 

due to its unique chernical structure. In fact the antiperoxidative property of probucol was 

found to be comparable to that of a-tocopherol in inhibithg iipid peroxidation (Mak et al., 

1989). In adriarnycin-induced congestive heart failure in rats, known to be mediated by 

oxidative stress, a decrease in antioxidant reserve and increase in oxidative stress has been 

reported to correlate with poor cardiac fùnction (Siveski-Iliskovic et al., 1994). Pretreatment 

of these rats with probucol provided complete protection against adriarnycin-induced 

cardiomyopathy accompanied by a signiticant increase in myocardid GSHPx and SOD 

activities (Siveski- niskovic et al., 1994; Singal et al,, 1998; Singal et al., 199%). 

4. Oxidative Stress and Antioxidants in Heart Failure 

The oxidative stress condition is defined as "a disturbance in the prooxidant and 

antioxidant balance, in favour of the former" (Sies, 199 1). Atherosclerosis, diabetes, cancer, 

arrhythmia, rheumatoid arthntis, and neurodegenerative diseases are some ofthe pathological 

conditions where fiee radicals are known to  play an important role. In fact, this list of 



pathological conditions where oxidative stress is involved continues to grow rapidly. In 

recent years, substantial evidence has accumulated fiom acute and chronic studies to suggest 

the role of antioxidants and oxidative stress in the pathogenesis of heart dysfùnction and 

failure both in animal studies and from clinical trials (Singal et al., 1996; Kaul et al.. 1993; 

Ferrari et al., 1998; Singal et a., 1998; Belch et aL, 1991). 

4.1 Free radicals in acute conditions 

Free radicals have been shown to exert a direct inhibitory effect on myocardial 

dysfùnction in in vivo and in vitro settings 

4.1.1 I n  vitro studies. Mitochondria, sarcoplasmic reticulum and sarcolemma are 

the major targets of fiee radical-induced damage. Free radicals are known to affect the 

activity of Na +-K + ATPase, the Na+-Ca2+ exchanger (Krarner et al., 1984; Reeves et ai-, 

1986; Kaneko et al,, 1990; Dixon et al., 1990), which ultimately alter calcium homeostasis 

and thus cause contractile abnormalities. Free radicals have been shown to depress 

mitochondrial respiration, cytochrome oxidase and glucose-6-phosphatase, and increase 

malondiaidehyde levels (Flamigni et al., 1982; Kako, 1987; Paradies et al., 1999). Free 

radicals have also been shown to reduce the ability of mitochondria to  synthesize ATP while 

SOD and catalase have been reported to improve the ATP production (Ceconi et aL, 1988; 

Nohl and Hegner, 1978). 

4.1.2 EX vivo studies. Depressed contractile fùnction, impairment in energy 

production, a rise in resting tension and an increase in Lipid peroxidation by fiee radicais have 

been reported in various ex vivo preparations (Kaul et al., 1993; Gupta and Singal, 1989; 

Kirshenbaum et ai-, 1992; Kirshenbaum et al., 1995). In intact cardiac myocytes fiom faiiiig 



heart, the hydroxyl r a d i d  has been reported to cause hypercontracture of the myocytes 

(Tsutsui et al., 200 1). Free radical-induced reduction of contractile function correlated with 

a decline in myocardial SOD, glutathione and a-tocopherol content, as well as with an 

increase in hydrogen peroxide content and lipid peroxidation (Gupta and Singal, 1989; Vaage 

et al., 1997)- 

4.1.3 I n  vivo studies. Increased fiee radical production and a decrease in the 

antioxidant reserve has been reported to have senous finctional consequences after ischemia- 

reperfùsion. Many studies have reported the production of fiee radicals in repelfused hearts 

in animals (Zweier et al., 1989; Ferrari et al., 1998; Arroyo et al., 1987; Przyklenk and 

Kloner, 1986; Garlick et al., 1987; BoUi et al., 1988) and humans (Curreiio et al., 1995; Levy 

et al., 1998; Ferrari et al., 1990). Zweier and colleagues (1989) were arnong the first to 

directly measure free radical production in isolated perfused rabbit hearts subjected to 

ischemia-reperfùsion. Studies on isolated perfused rat hearts showed increased production 

of H20, during ischemia as weU as early reperfùsion (Jeroudi et al-, 1994). In isolated 

perfùsed rabbit hearts, a decline in developed force dunng ischemia was accompanied by a 

progressive decline in tissue glutathione content and in the redox ratio indicating increased 

oxidative stress (Ferrari et al., 1985). A decrease in towpherol, retinol and ascorbic acid and 

redox ratio and an increase in lipid hydroperoxides has also recently been reported in rat 

hearts subjected to ischemia-reperfùsion (Palace et al., 1999~). Jolly and colieagues (1 984) 

were the first to study the effects of antioxidant therapy in ischemia-repefision settings. In 

this study, a reduction in infarct size by combined administration of SOD and cataiase was 

reported in dogs that underwent 90 min of ischemia and 24 hrs of repefision (Jolly et al.. 



1984). Since then, a large number of studies have demonstrated the beneficial effkcts of 

antioxidants in ischmidreperfiision injury (Ambrosio et al.. 1986; Wems et al ., 1998; Mehta 

et aL, 1989; Naslund et al., 1986). In a transgenic mice model, which overexpressed 

MnSOD, it was demonstrated that MnSOD improved cardiac Nnction and decreased release 

of lactate dehydrogenase in mice hearts subjected to ischemia-reperfûsion (Chen et al.. 1998). 

Transgenic mice overexpressing GSHPx were found to be more resistant to ischemia- 

reperfusion injury (Yoshida et al, 1996) whereas GSHPx knockout rnice were more 

susceptible to ischemia-reperhsion induced damage (Yoshida et al., 1997). Some studies 

have reported no protection with antioxidants. In patients undergohg thrombolytic therapy, 

administration of recombinant human SOD failed to provide any signifiant hprovement of 

the ventricuiar fùnction (Murohara et al,. 199 1). 

It has been demonstrated that oxidative stress also plays a major role in myocardial 

stunning Polli, 1988; Bolli, 1998; Hess and Kukreja, 1995). Antioxidant therapy suppressed 

the production of free radicals and attenuated myocardial stuMu?g, suggesting a cause and 

effect relationship (Bolli, 1988; Bolli, 1998). An elegant study by Li and colleagues using 

adenoWus- mediated gene transfer technique to introduce SOD in the rabbits, demonstrated 

protection against myocardial stunning (Li et al,, 1998). 

5. Animal models of  h a r t  failure 

In the recent years, a number of animai models of hart failure have been developed 

that closety mirnics the hart  failure condition in the clinical settings. One such model is the 

coronaiy arteiy ligation model of MI was initiaily produced in the dog with not much success 

due to the presence of collateral vessels. Following that chronic MI was produced in rats 



which resembled the condition observed in humans (Selye et a[.. 1960; Johns and Olson, 

1954). The rat MI model has been shown to  result in lefi ventricular remodelin& progressive 

ventricular dilatation and eventual failure with clinical signs of heart failure including dyspnea 

and pulmonary edema. Thus the rat MI model is highly reproducible, retatively less expensive 

and resembles closely to the clinical condition of heart failure. This model however has some 

limitations such as it is more invasive and there is a large variation in the infarct size (Dixon 

et al., 1990; Hill and Singal, 1996; Fishbein et aL, 1978). 

Other commonly used rnodel o f  heart failure include the low cardiac output model by 

ventricular pacing. This model is characterized by bi-ventricular dilatation and impairment 

of Ieft ventricular myocardial contractility- This model is considered to  be valuable to study 

neurohumoral and peripheral circulatory changes in h a r t  failure (Zile et al., 1995). The 

pressure overload model produced by ascending aorta constnction is a good model to  snidy 

the transition tiom hypertrophy t o  heart failure (Feldman et al., 1993; Dhalta and Singal, 

1994). Volume overload produced by either arteriovenous shunt o r  mitral regurgitation has 

been shown to result in progressive left ventricular dysfùnction and heart failure (Liu et al., 

199 1). 

6. Oxidative Stress in Chronic Heart Failure 

There are many clinical and basic studies where production o f  fiee radicals and 

increased oxidative stress has been documented. 

Increased plasma levels o f  catecholamines have been reported in acute MI and heart 

failure conditions (Francis et al., 1982). Excess catecholarnines have been shown to cause 



arrhythmias as weU as cardiomyopathy (Singal et al.. 1982; Singal et al., 1985). Production 

of free radicals upon autooxidation of catecholamines play a critical role in cardiomyopathy 

(Singal el al., 1982; Singal eraL, 1983). A recent study reported increased lipid peroxidation 

in isoproterenol administered rat hearts (Rathore et al., 1998). Pretreatment o f  rats with 

vitamin E reduced catecholarnine-induced arrhythmia and other tùnctional changes 

(Kirshenbaum et al., 1990). In another recent study, it was reported that catecholamine- 

induced heart dysfùnction was associated with calcium overload, increased malondialdehyde 

content, increased conjugated dienes and lower redox ratio (Tappia et al. 2001). 

Pretreatment of these animals with vitamin E rnodulated al1 these changes (Tappia et al-, 

200 1 ) .  

6.2 Adriamvcin cardiomvo~athv 

Adriamycin cardiomyopathy is associated with increased free radicals and decreased 

antioxidant status in the heart (Doroshow, 1983; Singal et al., 199%; Singal and Iliskovic, 

1998; Li and Singal, 2000). Direct evidence for fiee radical involvement was provided by 

studies which showed that vitamin E-treated mice were more resistant to adriamycin 

cardiotoxicity (Myers et al., 1977). Moreover, rats maintained on a vitamin E deficient diet 

were more susceptible to adriamycin cardiotoxicity (Singal et ai-, 1987; Singal and Tong, 

1988)- Treatment with probucol, an antioxidant as well as a lipid-lowering dmg, modulated 

the pathogenesis of heart failure due to adriamycin (Siveski-Iliskovic et al.. 1994; Siveski- 

Iliskovic et ai., 1995; Singal et al., 199%; Li and Singal, 2000). 

6.3 Diabetic cardiomvoaath~ 



Evidence is available to suggest the role of increased oxidative stress and depressed 

antioxidant enzyme activities in the pathogenesis ofdiabetic cardiomyopathy (Guigliano et 

aL, 1995). A decrease in myocardial SOD and catalase activity and an increase in oxidative 

stress has been demonstrated in streptozotocin-induced diabetic rats (Kaul et al.. 1995). 

Furthemore, treatment with probucol in these rats resulted in improved cardiac fùnction 

(Kaul et al., 1995). Supplementation with vitamin E reduced oxïdative stress in animals and 

patients with diabetes (Paolisso et al., 1993; Wohaieb et al-* 1987). 

6.4 Hvnertroohv and heart failure 

An increase in endogenous antioxidant enzyme activities and a decrease in lipid 

peroxidation have been reported in the hypertrophy stage induced by chronic pressure 

overload in rats (Gupta and Singal, 1989; Kirshenbaum and Singal, 1993) and guinea pigs 

(Dhalla and Singal, 1994; Dhalla et ai., 1996). Myocytes isolated fiom hypertrophied rat 

hearts also showed increased antioxidants and reduced lipid peroxidation (Kirshenbaum et aL, 

1995). Antioxidant treatment of the guinea pigs with vitamin E decreased oxidative stress 

and delayed the occurrence of heart failure (Dhalla et aL. 1996). 

A decrease in the activity of SOD, catalase and GSHPx of both the right and lefi 

ventricles and also an increase in the levels of lipid peroxidation has been reported in volume 

overload-induced heart failure in dogs (Prasad et al., 1996). Treatment of these animals with 

vitamin E was effective in increasing the GSHPx activity, improving cardiac contractility and 

reducing lipid-peroxidation (Prasad et al., 1996). 

6.5 Myocardial infarction and connestive hart  failure 



Changes in myocardial antioxidants as well as oxidative stress have been described in 

the surviving myocardium of rats subjected to MX (Hill and Singal, 1996). In this study, 

maintenance of hernodynamic fùnction in early stages (non-failure stage) was accompanied 

by a significant decrease in oxidative stress and lipid peroxidation while the antioxidant 

reserve was maintained. In late stages, where hemodynamic function was depressed, the 

rnyocardial antioxidants GSHPx, catalase, SOD and vitamin E were also significantly 

decreased while oxidative stress was increased (Hill and Singal, 1996)- In addition to the 

rnyocardium, the levels of vitamin E and A were also depleted in the storage organs liver and 

kidney in rats with severe heart failure (Palace et al., 1999a). Pretreatment of these rats with 

vitamin E before subjecting them to coronary artery ligation surgery modulated these changes 

(Palace et al., 1999a)- 

In another study of regional changes in the two ventncles during the development of 

kart failure, the antioxidant deficit and an increase in oxidative stress was found to occur first 

in the lefi ventricle (Hill and Singal, 1997). In moderate to severe h a r t  failure stages, these 

changes also occurred in the right ventricle (Hill and Singal, 1997). In another study, using 

the same animal model, we reported that improved cardiac fùnction after treatment with the 

afterload reducing drugs captopril or prazosin was accompanied by the maintenance of 

rnyocardial endogenous antioxidant status and decrease in oxidative stress (Khaper and Singal, 

1997; Khaper et al., 1998). In a recent study, gene therapy with extracel1uIar fonn of SOD 

was shown to protect rabbits against MI (Li et al., 2001). Evidence of an increased oxidative 

stress in heart failure was also provided by another study in MI rats. In this study, increased 

xanthine oxidoreductase (a free radical generating system) activity was reported and the 



enzyme was found to be localized in the infiammatory cells (delong et al., 2000). Antioxidant 

vitamins such as vitamin C, carotenoids and vitamin E have been shown to decrease lipid 

peroxidation and reduce atherogenesis and the risk ofcoronary heart disease. Pretreatment 

with vitamin E and C limited myocardial necrosis (Mord-Gatley and Wilson, 199 1; Mickle 

et al., 1989; Massey et a[., 2989). 

6.6 m h t  heart failure 

Myocardial oxidative stress changes du ring compensated rig ht heart fiiilure in rats have 

also been studied in Our labotatory (Pichardo et al.. 1999). In this study, nght hart  failure 

was induced by the administration of monocrotdine to rats. There was no difference in 

myocardial SOD, GSHPx and catalase activity in the hypertrophieci hearts as compared to 

control hearts. Although the antioxidant enzyme levels did not change, there was a significant 

increase in lipid hydroperoxide content, suggesting that the anirnals were in a compensated 

heart failure stage - a step before the development of overt hart  failure (Pichardo et al., 

1999). Free radical generating systern, xanthine oxidoreductase was also reported to be 

significantly increased in monocrotaline-induced nght heart failure (de Jong et ai., 200 1). 

6.7 Ventricular nacing 

A direct evidence for the production of ftee radicals has aiso been provided in a dog 

mode1 of heart failure-induced by ventricular pacing. Using ESR techniques, it was 

demonstrated that OH- originated fiom Of via H20 ,. Further, it was also demonstrated 

that oxidative stress was associated with a parallel decrease in left ventricular tùnction (Ide 

et aL, 200 1)- 

7. Clinical Studies 



Changes in antioxidants and oxidative stress has also recently also been documented 

in heart failure patients (Belch et al., 199 1; McMurray et ai-, 1990; Diaz-Velez et al., 1996)- 

Breath pentane (a byproduct of lipid peroxidation) levels was reported to be elevated in 

exhaled air of CHF patients and treatment with captopril attenuated this rise and improved 

the patient's clinical condition (Sobotka et al., 1993; Weitz et al-, 199 1). Furthemore, it has 

also been demonstrated that the increase in lipid peroxidation correlates with the severity of 

heart failure (Diaz-Velez et al., 1996; Chamey et aL, 1997; Keith et al., 1998). Using, a 

more specific marker of oxidative stress, one study reported a strong correlation between 

pericardial Buid levels of 8-iso-prostaglandin F, and the severity of heart failure in patients 

with ischemic and valvular heart disease(Mailat et al., 1998). In addition to an increase in 

fiee radical activity, a decrease in enzymatic and non-enzymatic antioxidants has also been 

reported in patients with congestive heart failure (Belch et al., 1991; McMurray et aL, 1990; 

Diaz-Velez et al, 1996) and this increase in oxidative stress has been suggested to be related 

to exercise intoterance in patients with hart failure (Nishiyarna et al., 1998). A correlation 

between plasma lipid peroxide and malondialdehyde levels and the clinical class of heart 

failure has also been established (Keith et ai., 19%). A decrease in catalase enzyme activity 

has also been reported in h a r t  failure patients due to idiopathic dilated cardiomyopathy 

paumer et al-, 2000). In another recent study, Yucel and colieagues reported a sigmficant 

decrease in blood glutathione and erythrocyte SOD activity and an increase in lipid 

peroxidation in patients with dilated cardiomyopathy (Yucel et al., 1998). In contrast in 

another recent study on patients with end stage heart failure, an upregulation of catalase 

enzyme activity was associateci with an increase in the mRNA abundance and protein contents 



for these enzyme (Dieterich et al., 2000). Al1 of these clinical studies provide strong support 

for the involvement of oxidative stress in the progression of heart failure. 

Various clinical trials have examined the beneficial effects of  antioxidant vitamins in 

Mt and heart failure conditions. The Health Professionai Follow-up Study (Rimm et ai-, 

1993) and the Nurses Health Study (Stampfer et al., 1993) found a decrease in the incidence 

of coronary artery disease in men and women who were taking vitamin E. In another study, 

a cocktail contauiing antioxidant vitamins A, C, E and p-carotene resulted in a decrease in 

oxidative stress as weU as the inf'arct size in MI patients (Singh et ai-, 1996). The Cambridge 

Heart Antioxidant Study (CHAOS) reported a substantial decrease in the incidence of MI in 

patients receiving vitamin E (S tephens et al., 1996). Vitamin E also preserves the activity of 

enzymatic antioxidants, reducing Iipid peroxidation in serum (Chen et al., 1997). Two recent 

studies (Yusuf et al., 200; Keith et al., 2001) failed to show a ccjrrelation between vitamin 

E intake and its effect on cardiovascular events. On the other hand, some studies found no 

correlation between alpha-tocopherol and improvement in functional aspect or quality of life 

of patients (Kok et ai-, 1987; Hense et al,, 1993; Keith et al,, 2001). In another study, in 

patients with CHF, the increase in fiee radicals and TBARS was significantly reduced by 

vitamin C therapy which was suggested to be due to reduced neutrophil mediated superoxide 

anion generating capacity(E1lis et al., 2000). 

Collectively, these studies suggest that increased fiee radicals and decreased 

antioxidants are involved in hart fdure. 

8. Oxidative Stress. Ano~tosis and Heart Failure 



More recently, apoptosis or prograrnmed cell death, has been reported in the infârct 

regions of rnyocardium fiom MI patients (Sarasate et aL, 1997) as well as patients with end 

stage heart failure (Nanila et al., 1996; Olivetti et aL, 2997). Findings fiom several in vitro 

studies and animal models also suggest that apoptosis occurs in response to 

ischernia-repertùsion, myocardial infarction, and chronic pressure overload (Gottleib ef al., 

1994; Kajstura ef a/,, 1996; Teiger et al,, 1996), ail of which are conditions known to 

generate oxidative stress (Kaul et al.. 1993; Singai et al., 2000). Recent studies have also 

docurnented the role of cytokines (Krown et al., 1996) and angiotensin II in triggering 

apoptosis which is mediated by oxidative stress. Although the role of oxidative stress in 

apoptosis has been documented, the exact contribution of apoptosis in the development of 

hart failure has yet to be established. Direct involvement of oxidative stress in apoptosis has 

been demonstrated in a variety of cell types (Hockenberry et al., 1993). Adriamycin, UV 

radiation and TNF-a have al1 been reported to produce fiee radicals and to cause apoptosis 

(Butke and Sandstorm, 1994; Kumar et al., 1999)- Furthermore, apoptosis is inhibited by 

antioxidant s such as catalase, SOD, vitamin E and trolox (But ke and Sandstorm et ai-, 1994; 

Kumar et al., 1999; Forrest et al,, 1994 Haendeler et al., 1996). In a swine mode1 of 

ischemia-reperfusion, it was demonstrated that cardiomyocyte undergo apoptosis during 

reperfiision. The study also suggested that oxidative stress may be one of the causative 

factors for the development of apoptosis. Furthemore, addition of ebselen, a synthetic mimic 

of GSKPx reduced apoptosis (Maulik and Yoshida, 2000). 

It has been documented that the tumor suppression protein p53 triggers and Bc12 

inhibits the apoptosis process in cardiomyocytes (Kirshenbaum and de Mossaic, 1997; Olivetti 



et al., 1997). The mechanism of action of Bc12 for the prevention of apoptosis has also been 

suggested to be mediated by an antioxidant pathway (Hockenberry et al., 1993). 

Overexpression of Bcl2 in neural cells inhibits apoptosis mediated by reactive oxygen species 

(Kane et ai., 1993). Bcl2 also blocks apoptosis-induced by a-irradiation which produces 

hydroxyl radicals, causing oxidative darnage to proteins and DNA (Sentman et ai., 1991). 

The importance of oxidative stress in apoptosis is also confirmed by the observation 

that knock-out mice lacking MnSOD die early due to cardiomyopathy as compared to normal 

mice Webovitz et al., 1996). The underlying molecular mechanisms that regulate this 

remodelling event are still not fùUy understood. 

9. Renin Anniottnsin Svstem 

The diEerent components of the RAS include angiotensinogen, renin, angiotensin 1 

and angiotensin II. Angiotensin II formation is initiated by renin, a proteolytic enyme that 

is stored and secreted by the juxtaglomerular apparatus in the kidney. Upon secretion, renin 

acts on angiotensirigen to form the decapeptide Angiotensin 1. Angiotensin 1 is cleaved by 

the action of angiotensin converting enzyme (ACE) which leads to the generation of the 

eEector peptide Angiotensin II (Ang 11) postal  and Baker, 1995; Dzau, 1989; Dzau, 1988). 

Although the circulatory RAS has been discovered for a long time, the presence of cardiac 

RAS has only become recently evident. Various biochemicd and molecular studies have 

provided evidence for the presence of renin, angiotensinogen and ACE genes and angiotensin 

receptors in cardiac tissues (Danser, 1996; Campbell, 1987; Baker et al., 1984). The 

pathogenic role of RAS is linked to the biological effects of h g  II, which includes 

vasoconstriction, sodium and water retention, aldosterone secretion, growth and proliferation 



@mu, 1995; Brunner La  Rocca et al., 1999; Ju et al., 1997). Ang II is a very potent 

vasopressor which exerts a direct effect on smooth muscle cells and may induce positive 

inotropism and chronotropism in the heart (Goodfnend et al., 1996). Ang II also increases 

the preload and the afterload on the hart via enhanced sympathetic drive and by stimulating 

aldosterone synthesis (Goodfnend et al., 1996). Furthemore, Ang II has been shown to act 

as a growth factor involved in a signaling cascade leading to ventricular hypertrophy 

(Sadoshima et al., 1995)- 

More recently, the role of angiotensin II in producing fiee radicals have also been 

documented. Bech Laursen and colleagues (1997) have reported that angiotensin II induced 

hypertension in rats is associated with a large increase in vascular production of superoxide 

radicat, which is accompanied by NO dependent vasodilation (Bech Laursen et al., 1997). 

The authors also observed that chronic iniùsion of SOD, resulted in the normalization of 

superoxide release in the rat aorta accompanied by a reduction in mean arterial pressure. This 

mechanism could also contribute to the pathogenesis of heart failure, where RAS is known 

to be activated (Fig 1). 

9.1 Angiotensin con vert in^ enzyme inhibitois 

The ACE-inhibitors have been reported to reduce mortality and morbidity and 

significantly reduce the incidence of recurrent MI (Yusuf et al., 1992; Pfefer et al., 1992). 

The CONSENSUS (Cooperative North Scandinavian Enalapril Survival Study) trial 

(Swedberg et al., 1999) demonstrated a significant reduction in one year mortality with 

enalapril in class IV heart failure patients. The influence of captopril in MI patients showed 



a 17% reduction in mortality in the SAVE (SuMval and Ventricular Enlargement) trial 

(PfefFer et al., 1992). 

9.2 Anniotensin LI receptors 

Numerous studies on binding have demonstrated cardiac Ang II binding sites in 

sarcolernmal vesicles fiom rat, rabbit, guinea pigs and human myocardium. The biologic 

effects of Ang II are mediated by two types of specifc receptors, i.e AT, and AT, (Dzau, 

1995; Timmermans et al-, 1992; Timmermans and Smith, 1994). Other angiotensin receptors 

such as AT, and AT, have also been proposed in other tissues (Brunner La Rocca, et al.. 

1999). Recent studies have reported the presence of AT, and AT, receptors subtypes in 

rabbit and rat ventricular myocardium (Dostal and Baker, 1995). Almost all the known 

actions of angiotensin II in adult tissues are known to be mediated by the AT, receptor 

(Moser, 1997; Dostal and Baker, 1995). The AT, receptor is a member of the seven 

transmembrane, G protein-coupled receptor supe r fdy  (Chiu et al.. 1989; Dzau, 1995). 

Pharmacological and ligand binding studies have indicated that there are sub-types of AT,, 

and AT,, in some species (Chiu et al.. 1989; Dzau, 1995; Timmermans et ai-, 1992; 

Timmermans et al., 1993). Studies have reported no difference in the Ligand binding 

characteristics and signal transduction mechanism between AT,, and ATlB. The ATlA 

receptor is localized mainiy in the vascular smoot h muscle cells, lung, kidney, brain and liver 

(Timmermans et al., 1992). The AT,, is localized in the adrenal medulla, utenne, pituitary 

and rend tissues (Timmermans et al,, 1992; Dzau, 1995; Dostal and Baker, 1995). The AT, 



Fig. 1: Role of RAS and oxidative stress in heart failure. 

receptor is also a seven-transmembrane domain receptor protein (Inagami, 1995). The AT, 

receptor is hardly expressed in most adult tissue. Its expression is controlled based on the 

stage of developrnent ofthe tissue. It has been shown that, the AT, receptor is present in high 

concentration in the fetus, but very low concentration in adult. The AT, receptors have aiso 



been fkther divided into AT, and AT, (Timmermans et al,, 1992). The AT, receptors are 

found mainly in the brain whereas the AT, recepton are found mainly in the adrenal medulla 

and uterine @nu, 1995). The AT, receptor has an anti-growth effect The AT, and AT, 

receptors have recently been shown to be distnbuted differently in the normal and fading 

human hearts (Wharton et., al 1998). In this regard, AT, receptors were found to be localized 

in the area of fibroblast and collagen deposition suggesting RAS to be involved in cardiac 

remodeling (Brumer La Rocca, 1999)- 

9.3 Sienal transduction 

Angiotensin II mediated activation of the AT, receptors is G protein coupled. 

Experhental studies have reporîed that activation of the receptor leads to the stimulation of 

Gqa which in turn stimulates phospholipase C. Activation of phospholipase C facilitates the 

breakdown of phosphoionositol4,5 biphosphate (PlPa to inositol1,4,5 triphosphate OP,) and 

1,2 diacylglycerol ('AG). If?, in tum leads to an increase in intracellular calcium, which 

exerts a positive inotropic effect on the heart (Baker et ai-, 1989; Sadoshima et al., 1993). 

DAG fûrther activates protein kinase C which has a downstream effect on both Na H and Na 

Ca exchanger leading to the contraction of smooth muscle. However, in the Iiver, activation 

of t he AT, receptors leads to the activation of Gi which in turn inhibits adenylate cyclase and 

subsequent reduction ofcAMP @au, 1995). Although the signal transduction pathway of 

AT, has not studied in details. Studies report that activation of AT, receptor activates MAP 

kinase phosphatase (Hayashida et al., 1996). 

9.4 Clinical televancc of the RAS 



The existence of RAS has been confirmed in both the circulatory system and at the 

tissue level (Danser, 1996; Dzau, 1988; Campbell and Habener, 1986). The 

pathophysiologicd role of RAS has been extensively studied in congestive heart failure and 

myocardiai ischemia. Elevated plasma levels of renin and Ang II were observed in patients 

with acute MI (Michorowski and Ceremuzynski, 1983). Enhanced activity of RAS has also 

been observed in animal models of har t  failure (Baker et aL, 1990). Angiotensin converting 

enzyme inhibitors have proven to be very effective in improving the cardiac fùnction and 

symptoms of C H .  (Dzau et al., 1980; Pfeffer et al., 1992). 

10. Losartan 

Losartan is a new class of Ang II receptor type 1 antagonists, which is now clinically 

used for the treatment of hypertension (Johnston, 1995). It was first introduced in Canada 

in October 1995, for the management of hypertension. AT, antagonists such as losartan 

setectively and completely block the effects of Ang II regardless ofthe pathway by which Ang 

II is formed (Timmermans and Smith, 1994)- Unlike ACE-inhibitors, which has an effect on 

angiotensin 1 and bradykinin and causes cough (Skidgel et al.. 1987). it does not cause cough 

or hypotension. 

10.1 Structure and ~harmacokinetics 

Losartan is a phenyl tetrazole substituted irnidazole. It is a low molecular weight 

(MW 461), orally active agent which does not accumulate in plasma (Timmermans, 1999; 

Timmermans et aL. 1993; Lacourciere, 1995). The oral availability of losartan is about 33% 

and about 14% of losartan is converted to an active metabolite (E-3 174), which is a more 

potent inhibitor of AT, receptor than losartan.. Mean peak concentrations for losartan are 



reached at 1 hour following oral administration. The elimination half life for losartan is 1.5-2 

lus. It is elirninated by both uMary and biliary excretion (Johnston, 1995)- 

10.2 Losartan in bv~ertension 

Losartan is a vasodilator and reduces both afkerload and preload (Rush and Rajfer, 

1993). There have been a number of studies reporting the beneficial effects of  losartan in 

patients (Oparil et al., 200 1;  Hedner et al., 1999) and animals (Kahonen et al.. 1999; Varo 

et al., 1999; Varo et a'. 2000) with hypertension. In patients with mild to moderate 

hypertension, losartan was reported to have a long acting hypotensive effect with a 

hypouricernic action (Tsunoda et al., 1993). 

10.3 Losartan in hcart falure 

Due to its selectivity and specscity AII  receptor antagonists such as losartan has 

advantage over ACE inhibitors in congestive heart failure. The ELITE (Evaluation of 

losartan in the Elderly) trial, marks the first major cluùcal study of losartan. This trial was a 

prospective, randomized, double blind trial which compared the effects of captopril to that 

of losartan (Pitt et a/., 1997). The results from this trial suggested that losartan was better 

tolerated than captopril, with fewer adverse effects (Pitt et al,, 1997). Furthemore, patients 

taking losartan had no cough as compared to the captopril group and there was a decrease 

in overd mortality in the losartan group. In other studies, losartan has been reported to have 

beneficial effects on hemodynarnics in patient studies and animal studies with heart failure, 

in terms of reducing systernic vascular resistance, and raising the cardiac index and had no 

severe adverse affect (Gottlieb et al., 1993; Crozier et al., 1995; Lang et al., 2997; Dickstein 

et al., 1995; Mankad et al., 200 1 ) .  



10.4 Other anpiottnsin II type 1 rece~tor rntagonists 

There have been only a few studies on the effects of other An type 1 receptor 

antagonists in heart failure. In RESOLVD (Design of the Randomized Evaluation of 

Strategies for Lefi Ventricular Dysfunction), trial in patients with mild heart failure, individual 

and combined effects of enalapril and candesartan were studied on ventricular remodehg and 

exercise capacity. It was found that the combination therapy had more favourable effect on 

ventricular remodeling alt hough a trend towards increase in mortality was seen with 

candesartan treatment (Tsuyuki et al., 1997)- More recently, one study looked at the 

individual and combined effects of endothelin 1 receptor antagonist bosentan and AII type 1 

antagonist valsartan on cardiac remodeling in post MI rats (Tzanidis et al., 2001). The study 

reported that combined treatment had beneficial effects on myocardial fibrinogenesis over 

individual treatment (Tzanidis et al., 200 1). Inhibition of apoptosis by irbesartan has also 

been reported in rats with CHF (Dalla Libera et al., 2001). 

10.5 Effects of losartan on oxidative stress 

Although the role of angiotensin II in producing free radicals has been established 

(Bech Laursen et al., 1997; Rajagopalan et al. 1996; Kitamoto et al., 2000), there have been 

no studies to date reporting the effects of losartan on oxidative stress in h a r t  failure 

condition. A recent study fiom atherosclerosis apo-E deficient mice documented that 

treatment with losartan reduced LDL peroxidation in the atherosclerosis lesion area (JCeidar, 

1998). Ln another study perfonned on rabbits, losartan treatment was associated with 

normalized vascular 02 production in a dose dependent manner and prevented tolerance to 

nitroglycenne (Kun et al., 1999). A similar study showed that exogenous ùifùsion with Ang 



II in hypertensive rats was associated with increased vascular smooth muscle ceil 02; 

production via NADHMADPH oxidase activation. Losartan treatment to these rats 

normalized 02' production (Rajagopalan et ai., 1996). Peroxynitrite, a potent oxidant was 

decreased by losartan in cultured rat aortic endothelial cells (Pueyo et aL, 1998). In this 

study, the endothelial cells were exposed to angiotensin 4 which is known to  elicit the 

production of nitnc oxide. Nitric onde  has been shown to  interact with superoxide anion to  

form peroxynitrite (Yasmin et al., 1997). In a human study on vascular endothelial cells, the 

production of superoxide anion by angiotensin II was significantly decreased by losartan 

(Zhang et al., 1999). Inhibition of  apoptosis by losanan in a rat mode1 of ischemia 

reperfision suggests another indirect mechanism by which losartan may modulate oxidative 

stress changes (Moudgil et al., 200L), since apoptosis is known to involve oxidative stress 

(Hockenberry et al., 1993). AI1 these studies suggests the involvement of angiotensin II in 

producing free radicals and by analogy losartan modulates the free radical mediated damage. 

In the present study, we have observed that treatment of MI animals with losartan results in 

improved cardiac fùnction and modulates oxidative stress. 



III, MATERIALS AND METHODS 

1. Animal Mode1 

Male Sprague-Dawley rats weighing 150 * 10 g were maintained on standard rat 

chow and water ad libitum unless othenirise mentioned. Myocardiai infiction (MI) was 

produced by occlusion of the lefi antenor descendhg coronary artery according to an 

estabiished procedure first descnied by Johns and Olson (1954) and iater modified by 

different investigators (Selye, 1960; Dixon et al.. 1990; Hill and Singal, 1997). The animais 

were anesthetized with 2% isofîurane and the skin was then incised dong the lefi stemal 

border. The third and fourth ribs were cut above the sternum with the subsequent insertion 

of retractors. The pericardiai sac was perforated and the heart was exterïorized through the 

intercostal space. The lefi coronary artery was ligated with a 6-0 silk thread. M e r  the 

ligation, the heart was gently placed back in the chest- Excess air was drawn using a syringe 

after which the chest was closed with a purse string suture. The rats were maintained on a 

positive pressure ventilation, delivering 2% isofiirane. The entire surgical procedure was 

carried out in sterile conditions. Sham control anirnals were sïmilarly handled, except that the 

suture around the coronary artery was not tied, and the silk thread was passed only through 

the muscle as descnbed before (Khaper and Singal, 1997). Following the surgery the animais 

were dowed to recover on the table- The animals were monitored on a regular basis for their 

food and water intake, body weight, general behavior, mortality etc. 



2- Studv Grouos 

Sham and Post-MI @%II) anhals were divided into eight groups as follows: 1-week 

sham control without coronary ligation and without drug), 1-week PMI (with coronary 

ligation but no drug treatrnent), 4-week sham control (without coronary ligation and without 

dmg; Cweek PMI ( with coronary tigation but no dnig treatment); 16-week sham control 

(without coronary ligation and without dnig); 16-week PMI (with coronary ligation but no 

dnig treatment); 16-week sham + losartan (no coronary Iigation, and the drug was given; and 

16-week PMI + losartan (coronary-ligated group with the drug treatment)- The treatment 

with losartan (2 mghi, in drinking water, daily) was started at 4 weeks f i e r  the surgery and 

was continued for 12 weeks. Similar dosage for losartan has been used in other studies 

(Mïlavetz et a'. 1996). Daily average water consumption in drug treated control and 

experimental animals was about 30 ml- 

3. Hemodvnamic Measurements 

Rats were anesthetized with an injection (i. p) of ketamine (60 mgkg) and xylazine 

(1 0 mgkg). A miniature pressure transducer catheter (MilIar Micro-Tip, mode1 PR 249) was 

inserted into the right carotid artery and then advanced into the left ventricle. The catheter 

was secured with a silk Ligature around the artery (Khaper and Singal, 1997). Left ventricular 

end-diastolic (LVEDP), left ventncular peak systoiic (LVPSP), aortic diastotic (ADP) and 

aortic systolic (ASP) pressures were recorded for an on-line analysis. After these assessrnents, 

the rats were killed, and the heart and other organs were removed for fûrther studies. 



4. Tissue Weieht Determinition 

For ventncular weight in sham control group, both right and lefi ventricles were 

included as described before (Hiil and Singal, 1996). In the PMI group, nght and viable lefi 

ventticle were used without the infarcted tissue. In order to obtain the wet/dry weight ratio 

of the lungs and liver, these organs were removed and freed from adhering tissue. In each 

case, the sample tissue was weighed, chopped into smaller pieces, and placed in the oven (65" 

C) until a constant weight was obtained, which was usually afler 24 h. 

5. Biochemical Assavs for Antioxidants 

For al1 biochemical assessments, atna, scar and the adhering tissue fiom the har t  were 

removed and oniy the viable ventricular tissue was used. 

A: Enzymatic 

5.1 Glutathione peroxidase (GSHPx) assav 

GSHPx activity was expressed as nanomoles of reduced nicotinamide adenine 

dinucleotide phosphate (NADPH) oxidized to nicotinamide adenine dinucleotide phosphate 

(NADH) per minute per miIligram protein, with a molar extinction coefficient for NADPH 

of 6-22 x 106 (Paglia and Valentine, 1967). Cytosolic GSHPx was assayed in a 3 ml cuvette 

containing 2.4 ml of 75 m .  phosphate buffer (pH 7.0). The following solutions were then 

added: 50 FI of 60 mM reduced glutathione, 100 pl glutathione reductase (30 U/rnl), 50 pl  

of 120 mMNaN,, 100 pl of 15 mM N%EDTA, 100 pl of 3.0 mM NADPH, and 100 pl of 

cytosolic fraction obtained after centrifùgation of the hart homogenate at 20,000 x g for 25 

min. The reaction was initiated by the addition of 100 pl of 7.5 rnM H,O, and the conversion 



of NADPH to NADP was assayed by measurïng the absorbance at 340 nrn at 1 min intervals 

for 5 min. 

5.2 Su~eroxide dismutase assav 

Supematant dismutase was assayed for SOD activity by foUowing the inhibition of 

pyrogallol autooxidation (Marklund, 1985). The ventricles were homogenized (1: 10) in 50 

mrnoVlitre Tris-HCL, pH 8.20, containing lmmoVlitre diethyltriamine pentaacetic acid. The 

homogenate was centrifùged at 20,000 g for 20 minutes. The supernatant was aspirated and 

assayed for total SODactivity- Pyrogallol (24 m molllitre) was prepared in 10 m moülitre HCl 

and stored at 4°C before use. Cataiase 30 pmoVLitre stock solution was made in an alkaline 

buffer @H 9.0). ALiquots of supernatant (150 pg protein) were added to Tris-HC1 buffer 

containing 25 pl pyrogailol and 10 pl cataiase stock solutions. Using the sarne Tris-HCI 

buffer the total reaction mixture was made to 3 ml. Auto-oxidation of pyrogailol was 

monitored by measuring absorbance at 420 nm at 1 min intervals for 5 min. SOD activity was 

expressed as units per miIligram protein determined fiom a standard curve of percentage 

inhibition of pyrogallol autooxidation with a known SOD activity. 

5.3 Catalase assav 

The ventricles were homogenized in 50 mM potassium phosphate buffer (pH 7.4) 

using a weight to volume ratio of 1: 10. The homogenate was centrifûged at 40,000 x g for 

30 min. Supematant of 50 p l  was added to a cuvette containing 2.95 ml of 19 mM H,O, 

solution prepared in potassium phosphate buffer (Clairborne, 1985). H202 was monitored at 

240 nm wave length at 1 min intervals for 5 min. Catalase was expressed as micromoles of 

H202 consumed per minute per milligram protein. 



B. Non-enzvmatic (Toco~hcrol and Retinol: 

Both tocopherol and retinol were measured using a modification of the extraction 

procedures and reverse phase HPLC detection method described by Palace and Brown, 

(1 994). Briefly, a known amount of the ventncular tissue was homogenized in 20 volumes 

of ice-cold double distilled water. Proteins in the homogenate were then precipitated by 

adding an equai volume of ice-cold methanol containing 60 pg/ml tocopherol acetate. 

Tocopherol acetate is a synthetic fonn oftocopherol that was used as an internal standard to 

correct for extraction efficiency in each sample. Tocopherol, retinol and the tocopherol 

acetate internal standard were then extracted fiom the homogenate by mWng with 2 ml of 

ice-cold ethyl acetate:hexane (3 :2; v:v). Mer kept on the ice for 15 min, capped and shielded 

Eom the light, the two phases were separated by centrificgation at 3000 g for 5 min and a 1 

ml aliquot of the top ethyl acetate~hexane layer was recovered. The aliquot was dried under 

vacuum in a rotaqr evaporator and the remaining oily residue was reconstituted in 60pl of 

HPLC mobile phase before injecting directly ïnto the HPLC system. Recovery of al1 samples 

ranged between 79 and 93 % based on the interna1 standard and regular spikes of the authentic 

compounds (Palace et., al 1999a). 

T h e  H P L C  m o b i l e  p h a s e  c o n t a i n e d  7 0 : 2 0 : 1 0  

(v:v:v)acetonitril e:dichloromeihane:methano and was delivered at 1 d m i n  through an 

Adsorbosphere HS Cl8 column (250~4.6 mm, 5 pm pore size) preceded by a 5 mm guard 

colurnn with the sarne packing materiai. W detection of peaks was accomplished by 

monitoring at 325 nrn until 7 min for retinol and then switching to 292 nm for detection of 



tocopherol. Total run time was 30 min, with typical retention times for retinol and tocopherol 

(interna1 standard) of 4.5, 10.7 and 12.5 min- respectively(Palace et a', 1999a). 

6, Biochemicaf assavs Cor oxidative Stress 

In a rigorous approach, oxidative stress was assessed by measuring myocardial 

reduced (GSH), oxidied (GSSG) glutathione and the ratio (GSWGSSG) as well as by 

quantitating lipid hydroperoxides- 

6.1 Glutathione and redox ratio 

Concentration of total glutathione (GSSG + GSH) was measured in the myocardium 

by the glutathione reductasd 5,s' dithobis-(2-nitrobenzoic acid) @TNB) recychg assay 

described earlier (Anderson, 1985). The rate of DTNB formation was foliowed at 412 nm 

and is proportional to the sum of GSH and GSSG present. Myocardial tissue was 

homogenized in 5% sulfosalicylic acid- The tissue homogenate was centfiged for 10 min 

at 10,000 g. Supernatant was stored in the fiidge until assayed- GSSG aione was measured 

by treating the sulfosalicylic acid supernatant with 2-vinylpyridine and triethanolamine. The 

solution was vigorously mixed and final pH of the solution was checked to be between 6 and 

7. M e r  60 min, the denvatized sarnple were assayed as described above in the DTNB-GSSG 

reductase recycling assay. GSH values were calcuiated as the difference between total 

(GS SG + GSH) and GSSG concentrations. 

6.2 L i ~ i d  hvdroperoxides 

This assay was done with a commercial kit &PO-CC assay, Kamiya Biomed Co., 

Seattle, W 4  USA) that specifically detects lipid hydroperoxides as described earlier (Palace 

et., al 1999~). This procedure uses a derivative of methylene blue (10-N-methylcarbonyl-3,7- 



dimethylamino-10 H phenothiazine) which is specincally cleaved by lipid hydroperoxides to 

yield methylene blue dye, that cm be quantifieci spectrophotometrïcally at 675 mi and 

compared to standard curve based on the sarne reaction with cumene hydroperoxide (Ohishi 

et al., 1985; Palace et al., 1999~). For this assay, 300 mg of myocardial tissue were 

homogenized in 2 ml of double distilled water and 2 ml of the homogenate was suspended in 

3 ml of 2:l (v:v) chloroform: ethanol which was then clarified with 0.6 ml of 0.9% saline. 

After centrifùgation, at 30,000 g for 5 minutes, 1 ml of the bottom chloroform layer was 

completely dned under vacuum in a rotary evaporator and reconstituted in 100pl of 

isopropanol. A 45 pl aliquot ofthis solution was used in this assay. This is compared to a 

standard cuwe based on the same reaction with cumene hydroperoxide (50-12.5 nrnoV1itre) 

(Palace et., al 1999c; Pichardo et al., 1999). 

7. Northern Blot Analvsis 

Total RNA fkom the 1-, 4- and 16-week sham control and MI rats was isolated by 

using the acid guanidium isothiocyanate-cesium-chloride extraction method (Chirgwin et al, 

1979). The OD of the RNA was assessed spectrophotometricaliy at a wavelength of 260 nm. 

50 pg of the RNA was separated electrophoretically on 1% agarose gel, 2.2 M formaldehyde 

gels and transferred to a nitrocellulose filter by capillary blot. The membranes were baked 

at 80°C for 2 hours and prehybridized at 42°C for 2-4 h in a solution containing 50% 

deionized formamide, 20 m moVlitre NaH, PO4 (pH 7.0), 4x SSC, 2 m moV litre EDTA, 5x 

Denhardts solution ( l x  = 0.02 % BSA ficol and polyvinylpyrrolidane), 0.01% sodium 

dodecyl sulfate (SDS) and 100 pg/ pl sonicated salmon sperm DNA . Hybridization was 

carried out in the same solution at 42OC for 16-18 hour under the standard conditions with 



"P-labelled cDNA probes (specific activity > IO9 cpm/ g DNA). Gel punfied cDNA insens 

of human GSHPx (Cowan et al., 1992), MnSOD Wang et al., 1987) and Catalase (Quan 

et al., 1986) were purchased fiom the ATCC (Bethesda, MD, USA). These cDNA inserts 

were nick translated to a specific activity of 10' d/ min./pg DNA and used as probes. 28s 

ribosornal RNA was used to confirm equal loading (Tiemeier et al., 1977). The membranes 

were washed for 15 niin at room temperature with a solution of 2x SSC/O.l% SDS, and 

followed by a wash at 42°C in O. lx SSC/O. 1% SDS. The autoradiograph was estabiished by 

exposing the filter for 24-48 h to X-ray film (X-OMAT~) at -80°C with intensifjing screens 

(Khaper et ai., 1997). The bands were quantitatively evaluated by densitornetric analysis 

(Bio-Rad imaging densitometer GS 670). The mRNA message was presented as the ratio of 

expression of enzyme vs. 28s rRNA. The MnSOD scanning values represented the total 

densities of 3 -8, 2.7, 2.2, 1.3, 1.1 kb corresponding to polyadenylated isoforms (Hurt et al., 

1992). AU the quantitative data were presented as percentage of values in control group. 

8. Western Blot Analvsis 

For protein isolation, the tissue samples were thawed in ice-cold Tris/EDTA buffer 

(100 mM Tris-HCl, 5 mM EDTA, pH 7-4) and homogenized with a Polytron homogenizer. 

Aprotinin (IO pghl), Leupepsin (10 &ni), Pepstinin A (10 pg/ml), and 

phenylmethysulfonyl fluoride (20 CLM) were added to the homogenizing buffer to avoid 

protein degradation. Protein concentrations were determined according to the procedure 

described by Lowry and Colleagues (195 1) and used to normalize the protein loading. 20pg 

of protein were subjected to one-dimensional sodium dodecyl sulphate-polyacrylarnide gel 

electrophoresis (SDS-PAGE) by using 15% separating gel and 5% stacking gel (Laemrnli, 



1970). The separated proteins were electrophoretically transferred to nitrocellulose 

membranes using a modified Towbin buffer (20 rnM Tris, 1 50 rnM glycine, 20% methanol, 

0.02% SDS (pH8.3). M e r  tat the nonspecific protein-binding sites were blocked with 5% 

nonfat milk in Tris-buffered salindo. 1% Tween-20 for about an hour and then the 

membranes were processed by using rabbit anti-human GSHPx antibody (kindly provided by 

Dr. 1- Singh, Charleston, SC), rabbit anti-MnSOD and CuZnSOD antibodies (kindly provided 

by Dr. L. W. Oberley, Iowa City, IA) and sheep anti-CAT polyclonal antibody (The Binding 

Site, Birmingham, UK) as primary antibody- The bound pnmary antibodies were detected 

using anti-rabbitkheep horse-radish peroxidase-conjugated secondary antibody and using an 

ECL Western blotting detection system (Amersham Inc. Arlington Height, IL)- The molecular 

weights ofthe protein bands were determined by comparing to the standard molecular weight 

rnarkers obtained fkom Bio-Rad, CA, USA The analysis for the GSHPx, MnSOD, CuZnSOD 

and CAT protein levels were done with a Bio-Rad GS-670 image densitometer. 

9. Protein Determination and Statistical Analvsis 

Proteins were determined by the methods of Lowry and associates (Lowry et al,, 

195 1). Data were expressed as the means SEM. For a statistical analysis of the data, group 

means were compared by one-way analysis of variance (ANOVA) and Bonferroni' s test was 

used to identiQ differences between groups. Statistical significance was acceptable to a level 

of P<0.05. 



W. RESULTS 

1. 1 

Sham control and post-myocardial infarction (PMI) rats fiom the untreated and 

losartan-treated groups were monitored periodically for their general behavior and food and 

water intake throughout the study for a 16-week period. in terms of general appearance and 

behavior, nothing unusual was noted in any of the animals in the sham control group. 

However, the rats in the untreated, 16-week coronary-iigated (PMI) group appeared 

lethargic, with clear signs of heart failure indicated by dyspnea and cyanosis of the penpheral 

extrernities. In contrast, coronary ligated animais treated with losartan did not display any of 

the clinical signs of heart failure which were so apparent in the 16-week untreated PMI group. 

1 

Mortality in the co ronq  artery-iigated animals during or imrnediately after the surgeiy was 

about 20%. Another -15% of the animals died within 24 hrs following the surgery. 

Losartan treatment of the sham controls also did not have any apparent effect on the general 

behavior and food and water intake. 

2. Bodv And Tissue Weinhts 

The body weight gain in both the losartan-treated and untreated PMI groups was 

slightly lower than their respective control groups, but the differences were not significant 

@>0.05) (Fig 2). The lefi ventricular weight remained unchanged in the 4-week PMI group 

compared with its respective control. In the 16-week untreated PMI group the Ieft 

ventricular weight was slightly increased compared with its respective control (Table 1) 

although the increase was not statisticaily significant. Although the left ventricular weight in 

the losartan-treated PMI group remained unchanged as compared to the control group, it was 
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Fig 2: Effect of losartan on body weight gain 
subsequent to myocardial infarction (MI). Values 
are mean + SEM of 7-9 animals C) Sham control; 
PMI) lnfarcted group. Arrow indicates the time 
at which the drug treatment was started. 





significantly lcss as conipared to the respective untreated group (Table I ). The veiitricular to 

body wei~tit ratio reniaincd uncliariged in  the untreated and Iosartan-treated PML group as 

compared to their respective control. 

At the time of sacrifice, wet/dt)l weight ratio for the Iurlgs and Iiver was deterniined. 

At 4 weeks PMI, the lunç and liver wet/dry weight ratios of infarcted animais were no 

different from their respective controls ( Fig 3A and 3B). This ratio for both lungs and liver 

was significantly tiigher in the 16-week untreated PMI group (Fiç 3A and 3B)- Treatnient 

with losartan prevented the increase in these ratios such that these values were not statisticall y 

different from their respective controls (Fig 3A and 38) .  

3. Hemodvnamics 

Cardiac hnction as well as bIood pressure readings were taken by inserting a catheter 

with a micro-tip pressure transducer throuçh the nght carotid artery, in the aorta and then 

into the lefi ventricle. The data on aortic systolic (ASP), aortic diastolic (ADP), lefi 

ventricular peak systolic (LVPSP) and lefi ventricuIar end diastolic (LVEDP), pressures are 

given in Tables 2 and 3 .  ASP and ADP in the 4-week sham control and PMI çroup were not 

different from each other. However a significant decline in ASP was noted in the 16-week 

untreated PMI group compared with its respective sham control group (Table 2). ASP and 

ADP in the PMI group treated with losartan was not different €rom the losartan treated 

control (Table 2). 

A significant increase in the LVEDP as well as a significant decline in the LVPS P was 

noted in the PMI rats compared to their controls at 4 weeks P M I  duration. These changes 

were more pronounced and progressive at 16 weeks PMI (Table 3).  Losartan 
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Fig 3 (A and 6): Lung and Liver wetldry weight ratios 
in the sham control (C) and post-rnyocardial infarction 
(PMI) rats at 4 and 16 weeks PMI duration without losartan 
and at 16 weeks with losartan. Data are mean + SEM from 
8-10 animals. *) Significantly different ( ~ ~ 0 . 0 5 )  from the 
respective control grou p. 



Table 2: Aortic systolic and diastolic pressures in sham control 
(C) and post-Myocardial infarction (PMI) rats at 4 and 16 weeks 
post-surgery duration without losartan and at 16 weeks with 
losartan treatment. 

Pest-MI ASP ADP 
Duration 

J 

C PMI 1 C PMI 

4 wks 92.14 * 4.5 97.17 * 4.2 

16wks+ 86-49 3.7 9 1 ,5*6 -3 63.54 * 4.2 73.16 * 6.1 
Losartan 

Values are mean SEM of 4-6 animals. ADP) Aortic diastoiic pressure, 
ASP) aortic systoüc pressure. t) Significantly differeat from the respective 
sham control by using ANOVA. 



Table 3: Left Ventricular peak systolic and end diastolic pressures in sham control 
and post-myocardial infarction rats at 4 and 16 weeks PMI duration without losnrtsn 
and at 16 weeks with losartan treatment. 

LVPSP LVEDP 

PMI 
Dura tion 

4 weeks 

16 weeks 

Values are menn * SE of  6-8 animals. LVEDP) left ventricular end diastolic and LVPSP) 
left ventricular penk systolic pressures, t) Significantly different (p < 0.05) 
from the respective sham control group by using ANOVA and *) ANOVA frollowed 
by Bonferroni test. @) Significantly different from the respective untreated P M I  groiip. 
C) Shain cont rol; PMI) Post-Myocardial infarction. 

C 

16weekst 
losartan 

121.6 f 7.4 

124.3 f 1.9 

PMI 

1 17 f 12.66 

102.9 f 2.4* 

89.58 f 2.9 * 

C 

95.27 * 3.9 

PMI 

2.46 * 0.8 

3.38 A 0.4 

r 

6.8 * 0.7t 

26.1 1 k 1.5* 

2.83 * 0.4 8.62 * 1*@ 



treatment arteriuated the rise in LVEDP (Table 3) LVPSP in the Iosartan treatcd group was 

not signit?carit[y di&rent €rom the stiam control (Table 3 ) .  

4. iVlvoc;irdi:il Etido~eiious Antioxid;rri ts 

In order to establîsh baseline differences in the myocardial enzyme activities, mRNA 

abundance and proteins content for different antiosidant enzymes were examined at different 

PMI durations. Non-enzymatic antioxidants such as  tocopherol and retinol were atso 

examined at different PMI durations. 

4.1 Antioxidant enzvme activities 

Myocardial superoxide dismutase (SOD), glutathione peroxidase (GSHPx) and 

catalase activities were examined in the viable myocardium at 1,4 and t 6 weeks PMI duration 

without any treatment and these data are shown in Table 4. The SOD e n q m e  activity 

remained unchanged at  I week PMI as compared to its respective control. However, it was 

significantly decreased at 4 and 16 weeks by 35% and 42% respectively (Table 4). 

GIutathione peroxidase was slightly increased at 1 week PMI duration, but the increase was 

not significant. At 4 and 16 weeks PMI, the activity was depressed by about 26% and 38% 

respectively (Table 4). The catalase enzyme activity remained unchanged at 1 week, but was 

siçnificantty depressed by about 24% and 25% respectively (Table 4). 

4.2 rnRhrA abundance 

In order to examine the rnolecular changes underlying the differences seen in the 

enzyme activities of  SOD, GSHPx and catalase, the mRNA abundance ofthese enzymes were 

examined at 1.4 and 16 weeks in the sham control and PMI çroup and the data are presented 

in Figs 4, 5 and 6, respectively. The mRNA levels for SOD showed a biphasic 



Table 4: Antioxidant enzyme activities a t  1,4 and 16 weeks post 
surgery duration in control and PMI rats. 

PMI 
Duration 

1 weeks t- 
4 weeks t-- 

Superoxide 

(Wrng protein) 

Glutathione 
Peroxidase 

(nmoVmg protein) 

Catalase 
(pmole of 

H,O,/min/mg protein) 

Sham PMI Sham PMI 

78.4 * 1.4 86.4 *4.1 24.ik2.7 23.4S.8 

86.4 * 1.6 63.3*1.9* 31.a.12 2411.7t 

Values are mean * S.E. of 4-6 animals. t) Significantly ( ~ 4 . 0 5 )  
different from the respective sham control group by Anova and *) 
Anova followed by Bonferroni test. 



SOD 
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A 

Fig 4: A) mRNA abundance for superoxide 
dismutase at 1,4 and 16 weeks post-myocardial 
infarction (PMI) duration in the control (C) and 
P M I  rats. B) Data expressed as % of control. 
Data are mean * SEM from 3 animals 
*) significantly different (p4.05) as compared to 
the control group. 



0 CONTROL P M I  

Fig 5: A) mRNA abundance for glutathione 
peroxidase at  1 , 4  and 16 weeks p s t -  
myocardial infarction (PMI) duration in the 
control (C) and PMI rats. B) Data expressed 
as % of control. Data are mean I S E M  from 3 
animals 



Catalase 

Fig 6: A) mRNA abundance for catalase at 1 , 4  and 
16 weeks post-m yocardial infarction (PMI) du ration 
in the control (C) and PMI rats. B) Data expressed 
as O/o of control. Data are mean I SEM from 3 animals 
*) significantly differen t (pe0.05) as corn pared to 
the control group. 



responsc, where it was reduced b?; about 40% at 1 week Ph4 l and al 1 weeks PMI. the levrls 

retrrrned back to the control level and at 16 weeks Ph.11, the levels in the Ph11 group wcre 

-70,' redciced by about 1 3  ,O of the coiitrol (Fig 4). GSHPs niRNA IeveIs remained unchanged at 

al! time points (Fis 5). The mRNA levels for catalase reniained unchanged at I and 4 weeks 

PMI and was significantly reduced by about 44% at 16 weeks PMI as cornpared to the 

control group (Fis 6). 

4.3 Proteins 

The protein levels for MnSOD, CuZnSOD, GSHPx and catalase at 1 and 16 weeks 

PMI duration were also examined and the results are presented in Fig 7, 8, 9 and 10 

respectively. The protein Ievels for MnSOD, CuZnSOD, GSHPx and catalase remained 

unchanged in the 1- and 1G-week PMI group at al1 time points compared to their respective 

sharn controls. 

4.4 Non-enzvmatic antioxidants 

Myocardial vitamin A (retinol) and E (a-tocopherol) content were analyzed by 

quantitating retinol and a-tocopherol by the HPLC method and these data are shown in Table 

5. Vitamin A levels remained unchanged in the 4-week PMI group, however, it was 

significantly decreased in the 16-week PMI group as compared to its respective control 

(Table 5) .  Vitamin E content in the 4-week PMI group reniained unchanged as compared 

to the respective sham control. In  the 16-week untreated PMI çroup, the concentration of 

vitamin E was significantly decreased as compared to its respective sham control (Table 5 ) -  



Fig. 7: A) Western blot for MnSOD in the sham control (C) 
and infarcted (PMI) rats at 1 (1W) and 16 ( 1 0  weeks 
PMI duration. B) Protein loadiag control by Ponceau 
staining. C) Quantifid data of MiiSOD protein 
concentration in C and PMI animals. Data are e x p d  as 
mean I SEM of 3 animals. 



1 W  C 16W C 
LW P M I  16W P M  1 

Fig 8: A) Western blot for CuZnSOD in the sham control 
(C) and infarcted (PMI) rats at 1 (1W) and 16 (16W) 
weeks PMI duration. B) Protein loading control by 
Ponceau staining. C) Quantified data of CuZaSOD 
protein concentration in C and PMI animals. Data are 
expressed as mean SEM of 3 animals 



Fig 9: A) Western blot for GSHPx in the sham control (C) 
and infarcted (PMI) rats at 1 (1W) and 16 (MW) weeks PMI 
duration. B) Protein loading control by Ponceau staining. 
C) Quantifid data of GSHPx protein concentration in C and 
MI animals. Data are expressed as mean *SEM of 3 animals. 



1 W  C I W  P M I  t 6 W  C 1 6 W  P M I  

Fig 10: A) Western blot for catalase in the sham control 
(C) and infarcted (PMI) rats at l(1W) and 16 weeks (16W) 
PMI duration. B) Protein loading control by Ponceau staining. 
C) Quantified data of catalase protein concentration. 
Data are expressed as mean * SEM of 3 animals. 
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Tablc 5: Myocardial retinol and tocopherol levels in sham 
control and PMI rats at 4 and 16 weeks post surgery 
duration 

Pos t- 
surgery 

Duration 

Data expressed as mean * S.E. of 3-5 animals. *) Significantly 
(p<0.05) different from the respective sham control group. C) sham 
control; PMI) post-myocardial infarction. 

4 weeks 

16 weeks 

C 

1.54 S . 3  

1.39 H . 2  

C 

47.01*3.8 

70 *15.3 

PiMI 

1.59 * 0.41 

0.94 *0.3* 

PMI 

52.56*6.2 - 

48.76*7.5* 



5, Eîfects o f  Losartaii on Enzviiiatic a i id  Noiieiizvniatic Antioxidaiits a l id  Proteiii 
Lcvel 

5.1 At1 tiosidatit enzvnies aiid proteiii  

Myocardial SOD, GSHPs and catalase activities were examitied in the viabie 

rnyocardiurn at 4 and 16 weeks PMI duration wittiout losartan treatment and at 16 weeks 

with losartan treatment (Figs. 1 1, 12 and 13)- SOD activity was decreased by about 3 5% 

in the 3 weeks and about 42% in the 16-week untreated PMI group compared with its 

respective sham control (Fig. 1 1). En the 16-week PMI group treated with losartan, SOD 

activity remained unchanged compared with the 16-week PMi untreated group (Fig 11). 

GSHPx activity was depressed by about 26% in the 4-week PMI group compared with its 

respective sham control and was decreased by about 38% in the 16-week untreated PMI 

group relative to sham control values (Fig 12). Losartan treatment resulted in significant 

improvernent in the GSHPx activity in the PMI group as compared to the 16-week untreated 

PMI group and the values were no more different amonç these çroups (Fig 13). Catalase 

activity was significantly decreased at 4 by about 24% and by about 25% at 16-week 

untreated PMI group compared with its respective sham control group (Fig 13). The catalase 

activity in the 16-week PMI group treated with losartan showed sorne improvement, 

however, this change was not statistically significant. Losartan treatment in the 16-week 

control animals resulted in a signiticant increase in the catalase activity (Fig. 1 3 ) .  The protein 

Ievels for catalase were significantly increased in the losartan-treated control and MI groups 

(Fig 14). 



C PMI C PMI C PMI 
Losartan 

4 Weeks 16 Weeks 

Fig 1l:Myocardial superoxide dismutase activity 
in the 4 and 16 weeks shamcontrol (C) and post- 
Myocardial infarction (PMI) rats without losartan 
and at 16 weeks with losartan. Data are presented 
as mean +SEM from 4-6 anirnals. *)Significantly 
different (p4.05)  €rom the respective control grou p. 



C PMI c PMI c PMI 
Losartan 

4 Wee ks 16 Weeks 

Fig. 12: Myocardial glutathione peroxidase activity in 
the 4 and 16 weeks sham control (C) and post-Myocardial 
infarction (PMI) rats without losartan and at 16 weeks 
with losartan treatment. Data are presented as mean + 
S E M  from 5-7 animals. Significantly different (p<0.05) 
from the respective control group;@) significantly different 
( ~ ~ 0 . 0 5 )  frorn the respective untreated PMI group. 



C PMI 

4 Weeks 16 Weeks 

Fig 13: Myocardial CAT activity in the 4 and 16 weeks 
control (C) and post-Myocardial infarction (PMI) rats 
without losartan and a t  16 weeks with losartan treatment. 
Data are presented as mean SEM from 5-7 animals. *) 
Significantly different ( ~ ~ 0 . 0 5 )  from the respective 
control group;@) significantly different (p<0.05) from 
the respective untreated 16 weeks control and PMI group. 



1 -  Losartan 4-1 

L o s a r t a n  

Fig 14: A) Western blot for catalase in the sham 
control (C) and infarcted (PMI) rats at 16 weeks (16 W)PMI 
du ration with and without losartan treatment. Representative 
blot showing specific blot for catalase B)Protein control loading by 
Ponceau staining. C) Quantif~ed data of catalase protein concentration. 
Data are expressed as mean &SEM of 3 animals. @) Significantly 
different from the untreated C and PMI group. 



5.2 Vitamins A and E 

In the 16-week PMI group, retinol levels were significantly below (p<O.OS) the 

control fevel. Treatment with losartan resulted in a significant increase in retinol levels in the 

16-week treated PMI group (Fig 15)- Vitamin E levels in the untreated PMI animals were 

significantly (pC0.05) less than the sham control. Losartan treatment did not have any 

influence on vitamin E concentration in either of the groups (Fig 16). 

6. Oxidative Stress 

6-1 Glutathione (reduced and oxidized) 

Myocardial oxidative stress changes due to coronary ligation and their moduiation by 

Iosartan were examined using several approaches including GSH levels, redox ratio and lipid 

peroxidation. Myocardial reduced (GSH) and oxidized (GSSG) glutathione contents were 

examined in the 4- and 16-week sham and PMI groups without any treatment and in the 16- 

week sham and Mi group with losartan treatment and these data are presented in Table 6- 

There was a slight but insignificant decrease in the myocardial GSH content in the 4-week 

untreated PMI group as compared to the respective sham control group. In the 16- week 

P M I  group the GSH content was decreased by about 40% compared to its respective sham 

control group. GSSG content remained unchanged in the 4-week PMI group as compared 

to its respective control. At 16 weeks PMI duration, the GSSG content was increased by 

about 1 14% (Table 6)-  The GSH content in the losartan-treated control as well as MT groups 

was significantly irnproved. GSSG content in the losartan-treated PMI group was decreased 

and the values no longer were different from its respective sham control group (Table 6). 



Losartan 

16 Weeks 

Fig 15: Myocardial retinol content in the 16 weeks sham 
control (C) and post-myocardial infarction (PMI) rats with 
and without losartan. Data are expressed as mean " SEM 
from 3-5 rats. *) Significantly different (p<O.OS) from 
the respective control group. @) significantly different 
(p4.05) from the respective untreated grou p. 



C PMI C PMI 
1,- 

16 Weeks 

Fig 16: Myocardial tocopherol content in  the 16 weeks 
sham control (C) and post Myocardial infarction (PMI) 
rats with and without losartan. Data are expressed 
as mean +SEM from 3-5 rats.*)Significantly different 
(p<0.05) from the respective con trol grou p. 



Table 6: Myocardirl reduced and oxidized glutathione levels at 4 and 16 
weeks in sham control and PMI rats without losartan and at 16 weeks PMI 
with losartan treatment. 

1 Post-MI 1 GSH 1 GSSG 1 
Du ration 

Values are mean * SEM of 5-7 hearts. *) Significantly different (p<0.05) from 
respective sham controls. @) Significantly different from the 4 week and 16 
week untreated group. t )  Significantly different from the 16 week untreated 
group. C) control; PMI) post-myocardial infarction. 

@mol Ig tissue wt) 1 (pmol Ig tissue wt) 
I 

1 
I 

16 wùs 

16wùst 
Losartan 

71.53f 1.32 

88.66 * 4.1@ 

42.68*1.3* 

77.73 *7.1@ 

8.63f0.51 

7.25 * 0.4 

18.51 *1.2* 

8.12 1.32t 



6.2 Redox ratio 

Redox ratio was also assessed in the 4- and 16-week sham control and MI group 

without losartan treatment and at 16 weeks PMI duration with losartan treatment and the 

resuits are presented in Fig 17- The redox ratio remained unchanged in the 4-week PMI 

group cornpared to its respective sham control group, however, it was significantly depressed 

in the 16-week PMI group compared to its respective sharn control group (Fig 17). This ratio 

was significantly improved in both the control and MI groups treated with losartan (Fig 17). 

6.3 Liaid hvdro~eroxides 

In order to assess the degree of lipid peroxidation during heart failure, lipid 

hydroperoxide formation was determined (Fig 18). Lipid hydroperoxide content was 

significantly higher (p < 0.05) in the 4- and 16-week MI group compared to its respective 

sham control group- This increase in the lipid hydroperoxide content was significantly 

attenuated by iosartan (Fig 18)- 



C PMI C PMI C PMI 
Losartan - -  - -  

4 Weeks 16 Weeks 

Fig 17: Redox (GSH/GSSG) ratio in the 4 and 
16 weeks control (C) and post-Myocardial infarction 
(PMI) rats without losartan and at 16 weeks with 
losartan. Data are presented as mean I SEM from 8-10 
anirnals. *)Significantly different (p<0.05) 
from the respective control group. @) Significantly 
different ( ~ ~ 0 . 0 5 )  from the respective untreated 
control and PMI groups. 



C PMI 

4 Weeks 

C PMI 
Losartan 

16 Weeks 

Fig 18: Myocardial lipid hydroperoxide content in the 4 
and16 weeks control (C) and post Myocardial infarction 
(PMI) rats without losartan and a t  16 weeks with losartan 
treatment. Data are presented as mean + S E M  from 4-6 rats. 
*) Significantly different @<O.OS) from the respective 
control group. @) Significantly different from the 
respective un treated group. 



V, DISCUSSION 

In the present study, we have codirmed that heart failure following myocardial 

infarction (MI) is associated with depressed hemodynamïc b c t i o n  which correlated with a 

decrease in the antioxidants (enzymatic and non-enzymatic) and an hcrease in oxidative 

stress. The study shows for the first time a correlation between the decrease in the mRNA 

abundance for the antioxidant enzymes superoxide dismutase (SOD) and catalase, and their 

activities. Glutathone peroxidase (GSHPx) activity was also depressed in the myocardial 

infaction group, however, the rnRNA abundance for this enzyme was not changed. Both 

vitarnins A and E were also decreased in the myocardial infarction group. Losartan treatment 

not only improved the cardiac function, but also rnaintained the glutathione peroxidase 

activity and improved vitamin A levels. Oxidative stress parameters were sigdicantly 

decreased in the MI group treated with losartan. The study documents for the first time that 

the beneficial effects of inhibition of angiotensin II type 1 receptors are associated with an 

improvement in myocardial antioxidants and decreased oxidative stress. 

1. Heart Failure and Renin-Aneiottsin Svstem 

Heart failure is a major cause of mortality and morbidity in the industrialized nations. 

Research in the field of heart failure has shown that the transition fiom the compensatory 

stage to the decompensated or failing, stage include abnomalities in the energy metabolism 

(Lindenrnayer et ai-, 1 WO), defects in intracellular calcium handling (M and Dhalla, 1992; 

Dixon et al., 1992a) alterations in the contractile protein and gene expression (Schwartz et 

al., 1993; Boheler et al., 199 l), activation of the sympathetic system (Francis et al., l984), 

abnormal collagen deposition and altered extracellular matrix structure (Dixon et al., 1996), 



and excessive activation of the renin-angiotensin system (RAS) (Baker et al-, 1990). Despite 

significant advances, both the mortality and morbidity still remain high in heart failure 

patients. Clearly, the precise mechanism involved in the pathogenesis of heart failure remains 

undeterrnined. During the past decade, various experimcntal and clinical research efforts have 

resulted in the development of diierent therapeutic strategies for the management of heart 

failure- 

Although, activation of the RAS is a compensatory response, over a penod of time 

this compensation becomes detrimental to  heart fûnction. This is the reason that angiotensin 

converting enzyme (ACE)-inhibitors have been successfùtly used in the management of heart 

failure patients. Numerous studies have documented the beneficial effects of ACE-inhibitors 

in reducing mortality (Pfeffer et aL, 1992; Dzau et al., 1980; Levine et al., 1980). However, 

due to the lirnited efficacy of ACE-inhibitors in blocking the RAS as well as their effects on 

the bradykinin and prostaglandin metabolism (Gohlke et ai., 1994; Martorana et al., 1991; 

Linz and Scholkens, 1992; Schror 1992), angiotensin II (NI)-receptor blockers are 

considered as an attractive alternative to ACE-inhibitors. Losartan is an orally active, non- 

peptide angiotensin receptor blocker that has beneficial effects sirnilar to  ACE-inhibitors 

without the side effect of cough, Other advantages of losartan over other ACE-inhibitors 

include its long duration of action and better oral absorption. Losartan selectively and 

specifically inhibits al1 the angiotensin II type 1 (AT,)-mediated actions of AI1 irrespective of 

the pathway by which the AH is fonned (Wong et al., 1990). It is considered to be about 

30,000 times more selective for AT, (Chiu et al., 1990; Chiu et al., 1989). Furthermore, 

losartan is known to have no inhibitory effects on vasopressin, bradykinin or prostaglandin 



rnetabolism (Eberhardt et aL, 1993). Numerous studies have demonstrated reversal of lefi 

ventricular hypertrophy, fibrosis, irnprovement in coronary flow and cardiac function 

following losartan treatment (Sladek et aL, 1996; Milavetz et ai-, 1996; Frimm et ai-, 1997; 

Thai et al., 1999; Dixon et ai., 1996; Awan and Mason et al., 1996). The Evaluation of 

Losartan In The Elderly (ELITE) study indicated that losartan had a better overali tolerability 

than captopri1 in elderly patients with New York Heart Association classes II to N failure 

(Pitt et al., 1997). An improvement in s u ~ v a l  and clinical outcornes with losartan was also 

noted (Pitt et al., 1997; Rump, 1998). 

2. Heart Failure Mode1 and Hemodvnamics 

We chose the coronary artery ligation model in rats based on the fact that this procedure 

produces more consistent infarction as compared to the dog model (Fishbein et al., 1978). 

In this model, the clinical signs of heart failure such as dyspnea, lethargic behavior, and 

congestion of the lungs and liver were clearly evident. The heart failure is reproducible, and 

thus the animal mode1 is reliable and this model has been extensively used in experhental 

studies (Dixon et al., 1992a; Hi11 and Singal, 1996; Hill and Singal, 1997; Khaper and Singal, 

1997; Khaper and Singal, 2001). 

In the present study, the LVEDP, LVPSP, ASP and ADP were maintained at 1 week 

MI duration with no signs of congestive heart failure. Furthemore, there was no increase 

in the lung and liver wet/dry weight ratio. At 4 weeks PMI duration, an increase in LVEDP 

and a decrease in LVPSP was accompanied by an increase in lung and liver wet/dry weight 

ratio. Animals in the 16-week PMI group exhibited clear signs of congestive har t  fadure as 

indicated by labored breathing, lethargic behavior, a fùrther increase in LVEDP, decrease in 



LVPSP and presence of the lung and the liver congestion. Heart failure subsequent to 

myocardial infarction has been reported to be associated with depressed hernodynamic 

function both in the lefi and right side ofthe heart and during the progression of heart failure 

changes in the right ventricle follow changes seen in the left ventncle (Hill and Singal, 1997). 

The dmg treatment was started at 4 weeks post surgery duration based on the fact 

that the early signs of heart failure were evident at 4 weeks following the surgery. The 

dosage of losartan (2 mg/ml) used by us in this study has also been used by other investigators 

(Milavetz et al,, 1996). Losartan treatment normalized the increase in LVEDP and improved 

LVPSP. There was also no lung and liver congestion in the losartan group. Other studies 

have also reported a decrease in LVEDP and improvement in survival in MI rats treated with 

losartan (Milavetz et al., 1996; Richer et ai., 1999). Both eady and late treatment with 

losartan following MI has been reported to be beneficial in m o d w g  the changes in the 

central venous pressure as well as in inhibithg the collagen deposition and regression of 

cardiac hypertrophy (Smits et al., 1992). Losartan has been reported to improve 

hemodynamics and induce coronary angiogenesis in MI rats (Sladek et al-, 1996; Schieffer 

et al, 1994). In addition to being beneficial in heart failure foliowing MI, losartan has also 

been shown to exert beneficial effects in volume-overload induced (Ruzicka et ai., 1993) and 

pressure- overload induced heart failure (Crozier et al., 1995). Our data, in this study, shows 

that the beneficial effects of AT, receptor blockade in addition to hemodynarnic 

improvements may also involve an improvement in the myocardial antioxidant reserve. 

3. Oxidative Stress and Heart Failure 



There is significant data fkom patients, as well as animal experiments, supporting the 

argument that increased oxidative stress may be involved in the pathogenesis of heart failure 

(McMurray et a[, 1990; Sobotka et al., 1993 ; Palace et al-, 1999a; Dhda and Singai, 1994; 

Hill and Singal, 1997). Furthemore, there is also a strong evidence that activation of RAS 

and AT, receptors results in an increase in oxidative stress (Pueyo et al.. 1998; Rajagopalan 

et al., 1996; Zhang ef al., 1999). In the present study, we observed an increase in oxidative 

stress as well as its modulation by the AT, receptor blockadeby losartan- 

3.1 Clinical studies 

Markers of oxidative stress such as malondialdehyde, breath pentane and Lipid 

peroxidation have been reported to be significantly higher in har t  fdure patients (McMurray 

et al, 1990; Weitz et al.. 199 1; Sobotka et al., 1993; Belch et al., 199 1; Diaz-Velez et al., 

1996). A significant increase in free radicals and decrease in vitamin E leveis have aiso been 

demonstrated in patients undergoing coronary artery bypass gr& surgery (Scragg et al., 

1989). A decrease in plasma antioxidant enzyme activities and an increase in the markers of 

oxidative stress have also been reported (Ghatak et al., 1996; Chandra et al., 1994; Keith et 

al., 2001). Treatment with vitamin E in these patients norrnaliied the indices of oxidative 

stress (Ghatak et al-, 1996). Beneficial effects of antioxidant vitamins in various 

cardiovascular diseases has lent tùrther support to this concept.. The Health Professional 

Follow-up study (Rimm et al., 1993) and the Nurses Health Study (Starnpfer et al., 1993) 

found a direct correlation between vitamin E intake and reduced risk of coronary artery 

disease. The Cambridge Heart Antioxidant Study (CHAOS) reported a significant decrease 

in the incidence of non-fatal MI in patients receiving vitamin E. Conversely, data not 



supporting the role of vitamin E in h a r t  disease has also been reported (Yusufer al-, 2000; 

Keith et al., 2001)- Thus, fùrther studies are required to settle these controversies- 

3.2 Animal studies 

Many studies have reported the production of fiee radicals in isolated ischemic- 

reperfùsed hearts (Jeroudi et al., 1994; Palace et al., 1999~). A reduction in infarct size by 

SOD and catalase was obsewed in dogs that underwent ischemia foiîowed by reperfùsion 

(Jolly er al., 1984). Increased oxidative stress has also been documented in catecholarnine- 

induced (Singai et al., 1983) and adnamycin-induced (Singal and Iliskovic, 1998; Li and 

Singal, 2000) cardiomyopathies. Depressed antioxidants and increased oxidative stress has 

also been observed in rats with heart failure subsequent to  MI rats (Hïli and Singal, 1997; 

Khaper and Singal, 2000). Direct evidence for an increased production of hydroxyl radical 

originating fkom superoxide anion and hydrogen peroxide in the failing myocardium has also 

been provided using the ESR technique (Ide et al., 2000). In a recent study, in the rabbit 

coronary artery ligation model of heart failure, it was demonstrated that gene therapy using 

extracellular SOD offered cardioprotection by reducing infarct size (Li et al., 2001). 

The present study also demonstrates for the first time that, in addition to reducing 

cardiac remodeling and improvhg survival as has been reported by other investigators (Raya 

et al., 1992; Sun and Weber, 1996), losartan also reduces oxidative stress and maintains 

myocardial endogenous antioxidants in the MI model of heart failure. In the present study, 

SOD, catalase and GSHPx activities were maintained at 1 week PMI duration but were 

significantly decreased at 4 and 16 weeks PMI duration. Our laboratory has previously 

reported that heart failure subsequent to MI in rats correlateci with depressed antioxidant 



reserve and increased oxidative stress (Hill and Singal, 1997). Diet, supplemented with 

vitamin E, improved endogenous levels of vitamin E and improved cardiac function 

establishing a close link between antioxidant deficit and cardiac dysfunction (Palace el ai-, 

1999a). Myocardial antioxidants have been reported to change in various other physiological 

and pathological conditions including hypertrophy (Gupta and Singal, 1989; Ki-rshenbaum and 

Singal, 1992) exercise (Kanter et al., 1985) and adriamycin-induced cardiomyopathy (Singal 

and Iiiskovic-, 1998; Li and Singal, 2000). A decrease in catalase and SOD activity at 16 

weeks PMI duration correlateci with a decrease in mRNA abundance for these two enzymes- 

The protein content for MnSOD, CuZnSOD, GSHPx and catalase enzymes rernained 

unchanged. 

Treatment with losartan nomalized the decrease seen in GSHPx activity. There was 

a slight but insignificant increase in the catalase and SOD activities following losartan 

treatment- Losartan treatment also resulted in an increase in the catalase activity in the 

control group. The upregulation of MnSOD mRNA at 4 weeks may be an adaptive response 

to an increase in oxidative stress. There have been very few studies to date studying the 

changes in antioxidant enzyme activity, mRNA abundance and protein content in heart failure. 

A recent study by Dieterich and coiieagues, reported that in patients with end stage heart 

failure, the enzyme activity, mRNA and protein content for catalase was upregulated 

(Dieterich et al., 2000). In another study, it was found that a significant decrease in catalase 

enzyme activity was associated with no change in mRNA and protein levels (Baumer el al., 

2000). It is possible that changes in antioxidants rnay be unique not only to the disease 

condition but also to the stage of myocardial dysfinction. 



In the present study, vitamin A and E levels were found to be significantly decreased 

in the severe failure stage. Treatment with losartan resulted in a significant increase in the 

myocardial retinol content in the 16-week PMI group although it had no effect on the 

tocopherol level. In the past, it has been demonstrated that depressed cardiac function in the 

MI rats was associated with a decrease in vitarnin E content (Hill and Singal, 1997; Palace 

et ai-, 1999a)h this study it was also documented that by supplementing the diet with 

vitamin E, myocardial and liver concentration of vitamin E were elevated in the MI animais 

(Palace et al,, 1999a). Several epidemiological studies have reported an inverse correlation 

between vitarnin A and E intake and the risk of cardiovascular diseases (Kushi et al., 1996)- 

In this study, severe heart failure stage was accompanied by reduced levels of reduced 

glutathione (GSH) and increased levels of oxidized glutathione (GSSG). The redox ratio 

(GSWGSSG) was also significady decreased in the viable myocardium of the MI rats as 

compared to the control. In addition to the redox ratio, the lipid hydroperoxide content was 

also significantly higher in the MI rats. In a previous study we used thiobarbitunc acid 

reactive substances (TBARS) assay to measure fiee radical mediated lipid peroxidation (HiII 

and Singal, 1996; Khaper and Singal, 1997). Kowever, due to Iimited specificity with this 

assay we chose to use a more sensitive method for determining lipid peroxidation by 

q u a n t m g  lipid hydroperoxïdes. The increased concentration of lipid hydroperoxide in 

cellular membranes are indicative of actual damage mediated by oxygen radicals (Ohishi et 

al., 1985). In this study, the significantly higher concentration of lipid hydroperoxide 

concentration correlated with a drop in the redox ratio. An increase in lipid hydroperoxide 

content has also been reported by us in right heart failure subsequent to pulmonary 



hypertension (Pichardo et al., 1999) and in isolated hearts subjected to global ischemia- 

repemision (Palace et al., 1999~). Redox ratio is inversely related to oxidative stress and is 

in fact considered as a sensitive indicator of oxidative stress (Ferrari et a[., 1985). Increased 

oxidative stress has also been reported in patients with heart failure (Weitz et ai-, 1991; 

Roberts et aL, 1990; Sobotka et al,, 1993; McMurray et al., 1990). This increase has also 

been found to correlate directly with the severity of heart failure (Sobotka et al., 1993; Diaz- 

Velez et al,, 1996)- 

Treatment with losartan increased the redox ratio by significantly improving the GSH 

content and decreasing the GSSG content as well as decreased lipid hydroperoràde content- 

Losartan has also been reported to reduce lipid peroxidation in hypertensive patients (Keidar, 

1998) and prevented the formation of superoxide anion in a guinea pig model of heart 

hypertrophy (Lang et al., 2000). These observations support the hypothesis that an increase 

in oxidative stress may in fact be a cause of h a r t  failure and its modulation, as seen in 

losartan-treated MI animals, results in improved cardiac firnction and survival. 

There have been no studies to date reporting the effects of losartan on oxidative stress 

in hart  failure condition. However, a recent study fiom atherosclerosis apo-E deficient mice 

documented that treatment with losartan reduced LDL peroxidation in the atherosclerosis 

lesion area (Keidar, 1998). An increase in Ang II in hypertensive rats was associated with 

increased vascular smooth muscle cell02-- production viaNADWNADP Hoxidase activation 

and iosartan treatment to these rats normalized 02-- production (Rajagopalan et al., 1996). 

In another study performed on rabbits, losartan treatment normalized vascular 02-' 

production in a dose-dependent manner and prevented tolerance to nitroglycerine (Kun et 



al.. 1999). Thus a number of studies have documented a role for angiotensin II in the 

production of fkee radicds. In particular, angiotensin II has been report4 to stimulate the 

production of superoxide anion (Griendling et al.. 1994). Perox-nitrite, another potent 

oxidant, was also decreased by losarian in cultured rat aortic endothelid cells (Pueyo et al., 

1 998). In this study, the endothelial cens were exposed to angiotensin II, which is known to 

elicit the production of nitric oxïde (NO). NO has been shown to interact with superoxide 

anion to form peroqmitrite (Yasmin et al., 1997). In a human study on vascular endothelial 

cells, it was reported that angiotensin II-induced the production of superoxide anion via 

activation of membrane bound NADHNADPH oxidase. Losartan treatment inhibited the 

production 02-- and also reduced the activity of NADmADPH (Zhang et al., 1999). Thus, 

the idea that losartan may block the reported increase in fiee radical stress due to angiotensin 

II is supported by many studies. 

In Our previous study we demonstrated that MI rats treated with captopril not only 

exhibited improved hemodynamic fiinction but also alleviate the signs and symptoms of 

congestive heart failure (Khaper and Singal, 1997). Captopril treatment also resulted in 

maintenance of endogenous antioxidant reserve and decreased oxidative stress (Khaper and 

Singal, 1997; Khaper et al.. 1998). Comparhg the results of the losartan study with the 

previously published captopril study, it is apparent that captopril and losartan have similar 

beneficial effects on the hemodynamic parameters and alleviate the signs of congestive heart 

failure- However, there are some differences in the antioxidant enzyme activities and 

oxidative stress parameters. Captopril resulted in the maintenance of al1 the three antioxidant 

enzymes, however, with losartan only GSHhr was improved. Although a clear mechanism 



of captopril protection is not established, it is speculated that the additionai beneficial effects 

of captopril on the myocardial antioxidants couid be attributed to the intrinsic antioxidant 

property of this dmg (Chopra et ai., 1992)- Although there have been no studies to date on 

the role of losartan as an antioxidant, it couid be possible that losartan may have sorne indirect 

antioxidant eEect. In this regard, losartan treatment has been reported to excrete uric acid 

in patients with hypertension (Puig et uL, 1999)- Furthemore, in diabetic cardiomyopathy 

in rats, increased MDA content and depressed SOD, catalase and GSHPX activities were 

prevented by Iosartan (Kedziora-Komatowska, 1999)- In patients with coronary artery 

disease, losart an treatment improved endothelia1 fùnction by increasing the bioavailability of 

nitric oxide (Hornig et al., 2001). 

4. Conclusions 

In conclusion, the present study shows that as heart failure progresses, the depressed 

cardiac fùnction is associated with a decrease in enzyrnatic and non-enzymatic antioxidants 

and an increase in oxidative stress. The decrease in catdase and superoxide dismutase activity 

correlated with a decrease in the mRNA abundance of these two enzymes. This study also 

documents for the first time that inhibition of the AT, receptors with losartan not only 

improved cardiac function, but also caused an improvement in the myocardial antioxidant 

reserve and decreased oxidative stress in MI rats suggesting a newer role for losartan in the 

treatment of heart failure. The precise mechanism(s) for the decrease in oxidative stress and 

improvement in antioxidant reserve after losartan treatment idare unclear at this tirne. 
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