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Abstract 

Given parameters n ,  k, p, t ,  an (n, k, p, t) Lotto design is a collection of k-sets such 

that any arbitrary pse t ,  which are chosen fiom an n-set, intersects at Ieast one k-set 

in the collection in a t  Ieast t elements. The number L(n, k, p, t)  is size of the minima1 

(n, k, p, t )  Lotto design. We provide constructions and techniques for determining 

upper and lower bounds for L(n, k , p ,  t). We also provide cornputer prograrns that 

generate upper bounds for L(n, k, p, t) . 
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Chapter 1 

Introduction 

The study of Lotto designs is relativeiy new in combinatorics. The first major study 

of Lotto designs was performed by Bate [Il. Lotto designs are directly related to 

lottery wheels such as the Canadian Lotto 6/49. In general, this is how lotteries 

work : 

A buyer buys tickets and each ticket has k distinct numbers on it chosen by 

the buyer. The numbers are between 1 and n. 

0 The government closes the buying and then picks p of the n nurnbers, randomly. 

0 If one of the buyer's tickets and the government's pick intersects in t numbers 

or more, he/she wins a prize. 

The bigger the value of t, the greater the prize. For small t ,  there is usually no 

prize. 

For Lotto 6/49, n = 49, k = 6, p = 6 and your ticket has to intersect the government's 

pick in at  least t = 3 numbers in order to win a prize. In Lotto 6/49, it is clear that 

you need to buy al1 C(49,6) = 13983816 tickets in order to be guaranteed a win of 
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the big jackpot where one of your tickets is exactly the same as the government's 

pick. 

A Lotto design with parameters n, k, p, and t can be informally thought of as a 

collection of tickets, each with k numbers from 1 to n such that any p numbers 

chosen from 1 to n will intersect one of the tickets in at least t numbers. Consider 

the following question about Lotto 6/49: What is the minimum number of tickets one 

needs to buy to be guasanteed matching a t  Ieast three numbers of the government's 

pick? This question can be restated as : What is the smallest number of tickets in 

a Lotto design where n = 49, k = 6 ,  p = 6, and t = 3 ? The answer for has not be 

determined by it is known to be between 87 and 169. For t = 2, the answer is 19. 

The fundamental question in studying Lotto designs is : Given n, k, p, t, what is the 

smallest number of tickets in a Lotto design satis&ing the given parameters? The 

goal of this thesis is to try to answer this question. In some special cases, such as 

when p = t and k = t the answer is known. However, not much is known about 

Lotto designs in general. 

1.1 Definitions 

In this section: we shall define the terms that will be used throughout this thesis. 

The goai of this section is to make this thesis as self-contained as possible. We begin 

by defining a Lotto design. 

Definition 1.1.1 : I f s  is a n  integer, then B is a n  z-set if B is a set containing x 

elements. 

Definition 1.1.2 : If n is a n  integer, let X ( n )  be the set of zntegers from 1 t o  n. 



Definition 1.1.3 : If X is a set, and y is an integer where y 5 1 X 1, then Y is a 

y-subset of X if Y is a y-set svch that Y C X. 

We now formally defined a Lotto design. 

Definition 1.1.4 : Suppose n, k , p  and t are integers and D is a collection of k- 

subsets of a set X of n elernents (usually X is X ( n ) ) .  We say B & an (n; k , p ,  t) 

Lo t to  design if an arbitrary p-subset of X ( n )  intersects some k-set of B in at least 

t elements. The k-sets in B are k n o m  as the blocks of the Lotto design B. The 

elernents of X are k n o m  as the varieties of the design. 

An (n, k , p ,  t) Lotto design is usually denoted as 8 where B are the blocks of the 

design. It is assumed that the elements of the blocks are chosen from X(n) .  Lotto 

designs can also be denoted by (X, B) where B denotes the blocks of the design and 

X denotes the set from which the elements of the blocks of B are chosen. Rom here 

on we assume that the elements of the design are from X ( n )  unies  explicitly stated 

otherwise. We will also assume that k n , p  5 n , t  5 m i n { k , p ) .  These assumptions 

will guarantee that the parameters are not ambiguous. The following is an example 

of an (7 ,5 ,4 ,3)  Lotto design with 3 blocks. 

Example 1.1.1 The following three blocks f o m  a (7,5,4,3) Lotto design. 

Suppose that i3 is a collection of k-sets and P is an arbitrary pset .  If P intersects 

some block in B in t elements, we Say that P is "t-represented" by a block from B. 

We now formally define t his term. 



CHA PTER 1. 1NTRODUCTIO.N 4 

Definition 1.1.5 : Suppose t3 is a (n, k, p, t )  Lotto design. If P i s  p-set that inter- 

sects some block of B in t or more elements, then P is said to be t- represented 

(or simply represented) by a block of B or represented by B. 

Clearly, B is an (n, k , p ,  t )  Lotto design if and only if every pset is represented by B. 

It should be clear that if B is an (n, k, p, t) Lotto design with b blocks, then adding 

additional k-subsets of X(n) to  B will generate other (n, k, p, t) Lotto designs. Hence 

Lotto designs in general are not unique. However, for fixed n, k, p and t ,  there will 

exist an integer b > O such that no (n, k , p ,  t )  Lotto design will have fewer than b 

blocks. This leads to the following definition. 

Definition 1.1.6 : Let L(n, k, p, t )  denote the minimum number of bloclcs of any 

(n: k, p, t )  Lotto design. A n  (n, k ,  p, t )  Lotto design with L ( n ,  k ,  p, t )  blocks is cailed 

an optimal or minimal (n, k ,  p, t )  Lotto design. W e  abo define LD*(n, k ,  p, t ;  b)  

to denote an optimal (n, k ,  p, t )  Lotto design with b blocks. 

The main goal of the thesis is to  determine the value of L(n ,  k , p ,  t ) .  For srnall values 

of n, k, p and t , t his task is often easy. In general, the determination of L(n, k, p, t) 

is very difficult. 

Given an (n, k, p, t )  Lotto design, each element from X ( n )  appears in the design n i th  

a certain frequency. If i 2 O, let fi denote the number of eiements that appear i 

times in the design. Let /if denote the number of elements of frequency at l e s t  2 .  

During the construction of Lotto designs, collections of k-sets will be formed which 

may or may not be Lotto designs. In this case we cal1 them "Potential Lotto designs" 
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or simply "Potential desiam". This term d l  be useful in distinguishing between an 

actual (n, k, p, t) Lotto design or simply a collection of k-sets that rnay or may not 

be a (n, k ,  p, t )  Lotto design. 

Another useful concept is the complement of a Lotto design. Suppose B is an 

(n ,  k, p, t) Lotto design. The complement of O is the collection of (n - k)-subsets of 

X ( n )  { X ( n )  \ B : B E B). Bate [1] showed that the complement of an (n, k, p, tf 

Lotto design is an (n, n - k, n - p, n - k - p + t )  Lotto design. We now formally 

define the complement of a Lotto design. 

Definition 1.1.7 : Suppose i3 is a (n, k, p, t )  Lotto deszgn. The complement of B 

is the collection o f n  - k-subsets of X ( n ) ,  ( X ( n )  \ B : B E B}. 

In a Lotto design, there may be elements that do not appear together in any of the 

blocks. In chapter 5, we will be using this concept often. 

Definition 1.1.8 : Let i be an  integer such that i < n. Consider {aj  : j = 1 to i) 

where each aj is an element of an (n, k ,  p, t )  Lotto design B. These elements are 

disjoint (in the design) if jA n BI 5 1 for all B E B. 

Lotto designs are relatively new in the field of combinatorics. They are a generaliza- 

tion of other types of designs. We now discuss several of these designs. 

One special class of Lotto designs is Cuvering desigm. Covering designs are Lotto 

designs where p = t. Extensive research has gone into Covering designs and much is 

knom.  We now give a formal definition of Covering designs. 



Definition 1.1.9 : Let n 2 k 2 t be three integers. An (n, k ,  t )  Covering design 

is a pair ( X ,  B) where X is an n-set of elernents (points) and B ïs a collection of k- 

subseb (blocks) of X: such that every t-subset of X is represented by B. The covering 

number C(n, k, t )  is used to denote the minimum number of blocks in any (n, k , t )  

Covering . deszgn. 

Combining definitions 1.1.4 and 1.1.9, we see that L(n, k ,  t ,  t )  = C(n, k ,  t ) .  

One of the most famous results on Covering designs is the Schoheim bound [20] which 

states : 

The recursive form of this bound is: 

Other designs that are related to both Lotto designs and Covering designs are Turh 

designs. 

De finit ion 1.1.10 : Let n 2 p >_ t be three integers. A n  (n, p, t )  Turh design 

is a pair ( X ,  B )  where X is a n-set of elements (points) and B is a collection of 

t-subsets (blocksj of X ,  such that every p-subset of X contains a block of B. The 

Turiin number T(n, pl t )  is used to denote the minimum number of blocks in any 

(n, p, t  ) Turcin design. 
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Combining definitions 1.1.4 and 1.1.10, we see that L(n, t , p ,  t )  = T(n,  p. t ) .  Also, it 

is easy to show that the complement of a Covering design is a Turan design and vice 

versa. 

1.2 Organization of the Thesis 

The main goal of this thesis is to develop methods for computing the lower and 

upper bounds for L ( n ,  k ,  p, t ) .  Upper bounds are usually obtained by construction 

techniques while lower bounds often have to be obtained analytically. Another goal 

of this thesis is to construct tables that contain a wide range of values for L(n, k, p, t )  

where 5 5 n 5 20, 2 5 k , p  5 n and 2 5 t 5 rnin(k,p).  

Chapter 2 gives a brief history of the work that has been done relating to Lotto 

designs. The results from Bate's thesis [l] and from Bate and van Rees [2] relating 

to Lotto designs with t = 2 are discussed. A lower bound formula for L(n,  k , p ,  2 )  

appearing in [Il] is stated and proved. Also, the computational approach of con- 

structing Lotto designs by Simulated Annealing [19] is also discussed. 

Constructions are one of the most cornmon techniques for obtaining upper bounds 

on Lotto designs. Chapter 3 begins with a discussion of BIBDs and the construction 

of Lotto designs from BIBDs. Special classes of BIBDs such as symmetric BIBDs 

and resolvable BIBDs may aiso be used to construct Lotto designs. We then state 

the rnonotonicity theorems that are quite useful for improving our tables. These 

monotonicity results may be appiied to the tables as soon as there is a change in 

the tables. Our next result is a construction which we term "Semi-direct product". 

This construction takes several designs and puts them together to form a larger 

design. The designs constructed using this technique are sometimes quite good. The 

last major result in this chapter is a theorem on m-ing a design. This theorem 
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give sufficient conditions for L(m-n. n k ,  p, t )  5 L(n, k ,  p, t )  to  hold. A few other 

constructions are also stated which have been generalized from results on Covering 

designs. 

Lower bounds for Lotto designs are hard to compute. The approach of constructing 

a design cannot help cornpute Iower bounds. Instead lower bounds are usually given 

as formulas derived analytically. Chapter 4 Iists the lower bound formulas that we 

have developed. The first formula is a generalization of Sch6heimYs lower bound 

formula for Covering designs. The rest of the formulas apply to specific groups of 

Lotto designs that are determined by their parameters. 

In Chapter 5, we compute the values of L(n, k, p, t )  for certain values of n, k,  p and t 

on an individuaï basis. One of the main goals of this chapter is to update the tables 

from Bate's thesis [II. 

Chapter 6 describes the computer prograrns that have been developed to compute 

upper bounds for L(n, k, p, t ) .  One of our new algorithms is based on an exhaustive 

search taking into account average frequencies of elements in the design. Other 

algorithms we discuss are greedy algorithms and random algorithms. Results from 

sirnulated annealing are aiso discussed. The search for L(n, k ,  pl t )  can also be done 

using integer programming. \Ve used the CPLEX program to compute values of 

L(n,  k, p, t). We also discuss how to improve the performance of Our programs in 

general. Finally, we discuss the organization of the tables used to hold the upper 

and lower bounds of L(n, k, p, t ) .  

Chapter 7 lists the lower and upper bounds for L(n, k, p, t )  that  we have collected. 

Chapter 8 gives concluding cornrnents for this thesis. We also d i s c w  possible further 

work that may be done on Lotto designs. 
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1.3 Frequently Used Notation 

Some of the symbols used frequently throughout this thesis are defined as follows : 

O C(n? T )  - n! / ( (n  - r ) ! ~ ! )  

O fi - The number of elements of frequency i 

O fz - The number of elements of frequency i or more 

0 X ( n )  - The set {1,2,3, ..., n) 

rxl - The ceiling of z 

O LxJ - The floor of x 



Chapter 2 

History 

2.1 Introduction 

Lotto designs are a generalization of Covering designs. The m o u n t  of research that 

has been done in Lotto designs is l e s  than the amount done in other designs such 

as Covering designs, BIBDS, t-designs and so forth. In this chapter, we will discuss 

the major contributions to the study of Lotto designs. We begin by stating the main 

results from Bate's doctoral thesis which dealt mostly with the study of L(n, k, p, 2). 

We then discuss a lower bound formula for L(n, k, p, 2) by Füredi, Székely and Zubor. 

The results of Bate and van Rees are then mentioned where they computed the value 

of L(n, 6,6 ,2)  for n 5 54. Finally we mention the other contributions which did not 

fit in with the previous three results. 

2.2 Bate's Thesis 

One of the earliest mathematical studies on Lotto designs was performed by Bate in 

his Doctoral thesis [Il. Hoivever, Bate did not use the term Lotto designs. Instead, 



he called them "generalized (T, K. L, V) designs" . I n  his work, the emphasis was in 

dealing with designs where the value of t was 2. By generalizing a result on covering 

designs, Bate was able to  show the following result which states that the complement 

of a Lotto design is a Lotto design. 

Theorem 2.2.1 : The complement of an (n, k, pl t )  Lotto deszgn .is an (n, n - k, n - 
p , n - k - p + t )  Lotto design und hence L(n,k ,p , t )  = L(n ,n -k ,n -p in -k -p+t ) .  

By employing a graph theoretical approach, Bate showed the following: 

Theorem 2.2.2 : 

This particular result was first proved by Turàn [22] in 1941 and since then, addi- 

tional proofs have appeared. 

A formula for L(n, 3,3,2) was also given in Bate's thesis. This result was indepen- 

dently derived by Brouwer [6] using Covering designs and stated in terms of Covering 

nurnbers. However, we will state Bate's version. 

Theorem 2.2.3 : 

if n = 2,4,6 (mod 12)) 
+ 1 if n = 0,8,10 (mod 12)) 

zf n G 1,3 ,5 ,7  (mod 12)) 
i f n ~ 9 , l l  (mod 12)) 

For Turàn designs, Bate stated the following old result of Turàn. 

Theorem 2.2.4 : L(3n, 3,4,3) 5 3C(n, 3) + 3nC(n, 2). 



Proof : Partition the 3n elements into three sets AI B and C evenly Consider 

possible bsets of the forms { X I ?  ~ 2 1  x3}, { Y I ?  321 y 3 ) ~  ( ~ 1 1  z2i ~ 3 ) ~  { X I ,  x 2 , ~ 1 }  9 

{ Y I . M . Z I }  and {z1, ~ 2 ~ 2 1 )  ~ h e r e  ~ 1 ~ ~ 2 . ~ 3  E A, Y L ~ M , Y ~  E B and ~ 1 . ~ 2 ~ ~ 3  E C .  

There are 3 C ( n ,  3 )  + 3nC(n, 2 )  such Ssets. I t  is easy to show that these Ssets form 

an (3n, 3 , 4 , 3 )  Lotto design. 

The following two results are similar to the result stated above in Theorem 2.2.4 and 

hence are stated without proofs- 

Theorem 2.2.5 : L(3n + 1 , 3 , 4 , 3 )  5 2C(n,  3 )  + C(n + 1,3) + (2n + 1)C(n ,  2)  + 
nC(n, 2). 

Theorem 2.2.6 : L(3n + 2 , 3 , 4 , 3 )  5 C ( n ,  3 )  + 2C(n + 1,3) + (2n + 1)C(n + 1,2) + 
( n  + l)C(n, 2). 

Another important result frorn Bate's thesis is a theorem that allows us to consider 

only minimal designs which have no elements of frequency zero, without loss of 

generality. 

Theorem 2.2.7 : If L(n,  k , p ,  t )  3 % then there erists a minimal design which con- 

tains every element. 

Theorem 2.2.8 : If L(n,  k , p ,  t )  < then there exists a minimal design in which 

blocks are painuise disjoint. 

Theorems 2.2.7 and 2.2.8 generalize to the following two results, respectively. The 

proofs for the generalizations are nearly identical to those given by Bate. 



Theorem 2.2 .9  : If there exists an  LD(n, k, p, t ;  b) Lotto design where b 2 then 

there ex-ist an LD(n, k, p. t ;  b) Lotto design which contains every element. 

Theorem 2.2.10 : V there ezists an LD(n, k ,  p, t ;  b) Lotto design w h e ~ e  b < f then 

there &t an LD(n, k, p. t ;  b) Lotto design which comists of distinct elements. 

A cornputer program included in Bate's thesis described how one can construct, for 

small parameters, a minimal (n ,  k, p, t )  lottery design. The basic principle of this 

cornputer program was to find a minimal (n, k, p, t )  lottery design by considering al1 

possible potential designs. The basis of this search program is given by the following 

algorithm. 

Algorithm 2.2.1 : 

/* returns true if design found*/ 

Bool GenerateDesign() 

{ 
Find first p-set not covered 

If all are represented then 

R e t u n  t m e  meanzng a design hm been found. 

Else 

{ 
If design contains maximum number of blocks allowed then 

Return false to mean no design found 

Else 

{ 
For each k-set representing the p-set do 
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{ 
Add the k-set to the design. 

Flag every p-set represented by t h 6  k-set- 

Cal1 CenerateDesign and store its return value in 

variable named found. 

If found is true then 

Return t m e  to mean a design has been found. 

U n . a g  the p-sets. 

Remoue k-set from design. 

} 

} 
Return false meaning not found. 

With the exception of small values of n, these searches are not feasible because of 

exponential growth. Therefore, techniques to reduce the size of the search tree were 

employed. One of these techniques was based on the concept of preclusion. The idea 

behind preclusion is to  determine how many psets  can be covered by a k-set. If at 

any point in the search, the number of k-sets remaining to be selected for a design 

cannot cover the remaining uncovered psets, the search returns to the previous level. 

This simple technique often provided a drarnatic improvement in the reduction of the 

size of the search tree. T h e  other technique that was implemented involved the idea 

of isomorphism rejection. Bate defined the terms t iv ia l ly  isomorphic and trivially 

equivalent as follows : 

Definition 2.2.1 : T w o  element. are triuially isomorphic if every block in a par- 



tially constructed deszgn contains either both of them or neither of them. Two ' -sets 

are trivially equivalent if one of them can be transfonned into the other by replacing 

elernents un'th trttrtvially isornorphic elernents. 

Bate's algorithm kept a table of the trivially isomorphic elements in the Lotto design 

constructed by the program. When a new k-set B is added to  the design, this table 

is first updated, followed by an attempt to  complete the design. The table is then 

restored to its former status when the attempt is complete. Following this, the k-set 

B and any k-sets which are trivially isomorphic to  B are marked and rejected at  this 

level and any lower levels. Once every possible k-set has been attempted, al1 of the 

k-sets are unmarked before the program returns to the previous Ievel. According to 

Bate, this form of isomorphism testing resulted in a dramatic decrease in the size 

of the search tree with only a moderate increase in overhead. Table 2.1 from [l] 

illustrates the size of the search tree for several designs. 

n k l t  Basic Algorithm 
Nodes searched 

16,663,323 
5,126,742 

324,467 
432,061 
958,842 
283,972 
859,644 
747,682 

With Preclusion 
Nodes searched 

21 1,205 
2,567,524 

80,234 
38,920 

130,275 
88,183 

845,825 
145,192 

With Isomorphism Rejection 
Nodes searched 

Table 2.1: Cornparison of Sizes of Search Trees in Exhaustive Search 

Even with these techniques, the cornputer program could handle only small param- 

eters. 

Bate also included a collection of tables containing the the lower and upper bound 

for L(v,  k, p, 2) where v 5 16 and k , p  < v .  
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2.3 Result of Füredi, Székely and Zubor 

Lower bounds are very difficult to compute for Lotto designs. The special case for 

t = 2 was analyzed by Füredi, Székely and Zubor [Il] in 1996. Their approach 

was take a multi-graph representing an (n, k, p, 2) Lotto design, transform it into 

anot her multi-graph with the same degree sequence as the original multi-graph which 

contains p - 1 disjoint subgraphs and analyze this new graph to obtain a lower bound 

for L(n, k , p , 2 ) .  Using this approach, Furedi, Székely and Zubor determined the 

following lower bound for L(n, k, p, 2) : 

min P-1 

~ ( n ,  k, P, 21 ~(xrz; ail k (x i, [SI) 
Before proceeding to prove the above result (since no complete proof was given), we 

thank John Bate for his help in this section. We begin by stating some defhitions. 

Definition 2.3.1 : A multi-graph Ç 2s a set of uertices and edges between the 

vertices such that loops and multiple edges between two vertices are possible. 

Definition 2.3.2 : A rnulti-graph Ç is a complete graph ij any two distinct ver- 

tices are adjacent. 

Definition 2.3.3 : An independent set of size p in a multi-graph is a set of p 

vertices where no two distinct uertices are adjacent. 

If Q is a multi-graph, then H is a subgraph of Ç if the vertices of H are a subset of 

of the vertices of Ç and if x and y are vertices in 'H joined by i edges, then x and 

y are vertices in O joined by i or more edges. Note that nothing is said about the 
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relationship between H and the rest of Ç- We now prove a result on multi-graphs 

that is a slight generalization of a result in Bollobth [4]. 

Theorem 2.3.1 : If G is a multi-graph math v e r t e  set V = {xi, ..., x,) and Ç 

contains no  independent set 1 with II 1 > p, then there is a graph 'H vith the same 

vertex set V s m h  that 

d e g d x * )  = d e g - ~ ( x d  

for i = 1,2, .., n and 'H contairu p - 1 subgraphs Al, A*, ..., Aphl such that each is a 

complete graph and Ai n Aj = 0 for i # j and L ~ = ; L A ~  = V . It should be noted that 

there may  ezrist edges between the p - 1 subgraphs in the graph 'H. 

Proof : We use induction on p. For p = 2, we have Ç = 3.1 = Kn, the complete 

graph. Hence the theorem is true for p = 2. Assume the theorem is true for p- 1. We 

now show it is true for p. Let z, be the vertex connected to the minimum number 

of other distinct vertices of Ç. Let W denote the set of vertices not adjacent to x, 

and let Y denote the set of vertices adjacent to x,. The set W cannot contain an 

independent set of size p - 1 since if it did, W U {x,) would contain an independent 

set of size p which contradicts our assumptions. By the induction hypothesis, W c m  

be made to consist of ( p  - 2) complete subgraphs Ai,  A2, ...Ap-2 without changing 

the degrees of the vertices, and for which the vertex sets of the subgraphs are disjoint 

by their union is W. Now d l  vertices in Y may be made adjacent to each other as 

follows. Suppose yl E Y is not adjacent to y2 E Y. Then, as al1 vertices in Ç are 

adjacent to  at l e s t  IYI distinct vertices, y1 and y2 must be connected to vertices 

wl, E W where wl could equal w2. Remove the edges y1 , wr and y2, u 2 ,  and 

add edges between yl and y2 and between wl and wn. Repeat this process until al1 

vertices in Y are adjacent to each other. Clearly, {x,) U Y is the ( p  - 1)" complete 

subgraph of 7f and no degree has been aitered.0 



If there exists an (n, k. p. 2; 6) Lotto design B, we can construct a multi-gaph Ç with 

b * C ( k ,  2) edges as follows : 

1. Let the vertices of the graph be the n varieties in the design. 

2. For every pair (2, j) that appear in the Lotto design, add an edge between i 

and j. We note that there rnay be multiple edges between two-vertices. 

The multi-graph Ç has the following properties : 

A) The degree at each vertice is a multiple of k  - 1 

B )  There is no independent set of size larger than p - 1 

We now state and prove the main result from Füredi et. al.[ll]. 

Theorem 2.3.2 : 

Proof : Let b = L(n, k ,  pl t ) .  Then there exists a multi-graph Ç with vertex set 

V = { x 1 7  ..., x,) which is the multi-graph for an (n, k,p, 2; b) Lotto design. This 

multi-graph has b * C ( k 7  2 )  edges. By Theorern 2.3.1, there exist a multi-graph 'H 

whose vertex set is V, degG(xi) = degX(xi) for i = 1 to n and the vertex set V can be 

partitioned into p - 1 subsets Ai, A*, ..., Ap-l where lAil = and Ai is a complete 

subgraph of 'H for i = 1 to p - 1 .  

Consider x E Ai, for arbitrary i. Since x has degree a multiple of k - 1 and x 



is adjacent to at least ai - 1 elements in the multi-graph X, the degree of x is at 

least (k - 1). Hence the number of edges in X is at least 

1 P-1 
3 - x q q  ( k - 1 ) .  

2 i=i k-1 

Since this is true for any multi-graph X with the properties : 

1. Each vertex has degree a multiple of k - 1 

2. The vertex set of % can be partition into p - 1 subsets Al ,  A*: ..., where 

[Ail = ai and Ai is a complete subgraph of 'H for i = 1 to p - 1 ,  

we have the number of edges in Ç is a t  least 

min 1 P - l  

k - 1  

But the number of edges in G is b * C(k ,  2). Thus, 

min 1 P-1 

b r C ( k . 2 )  >(EL=,> 1-1 (k - 1), 
i=l k - 1  

which gives 

as required. Ci 

The lower bound stated above is one 

k - 1  

of the best lower bound formulas currentIy 

known for L(n, k, p, 2 ) .  

The following is a standard result for obtaining an upper bound for L(n, k, p, 2 )  that 

is stated in Füredi et. al [Il]. 

Theorem 2.3.3 : 

min L(n,  k , p ,  2 )  <=l+...+.p-l= (L(al ,  k ,  2,2) + ... L(a,,-1, k ,  2,2)) . 



Proof: Let Ai be a partition of the numbers 1 to n, where lAil = Q, for i = 1 to p-1 .  

We can construct a (n, It:  p, 2) design by putting p - 1 (ai, k, 2,2) designs together 

where i = 1 to p - 1. To show that it is an (n, k,p,2) design, let P = (xi,x2, .. ,x,) 

be an arbitrary pset .  By the pigeon hole principle, at least two xi's must be from 

the  same i?, for some j. Thus P must be represented by the (aj, k, 2,2) design used 

to form the (n, k, p, 2) design. [3 

Füredi et. al [Il] gave a non-exhaustive list of cases where the bounds meet. The 

approach taken by the authors generated good Iower bounds for L(n, k, p, 2). How- 

ever, no known, similar technique can be applied to generate good lower bounds for 

L(nt  k, p,  t )  where t 2 3. 

2.4 Result of Bate and Van Rees 

In 1998, Eate and van Rees [2] determined the values for L(n, 6 , 6 , 2 )  for n $ 54. 

Their approach was to  examine the frequencies of elements in "nice" designs. By 

considering only these "nice" designs, they were able to  determine the values of 

L(n,  6,6,2) for n 5 54. Before we state the main results in [2 ] ,  we will give several 

definit ions. 

Definition 2.4.1 : An independent set in a Lotto desagn i s  a set of size 2 2 of 
elements, no pair of which ocars  together in any  block of the design. It is maxi- 

mal zf the set can not be enlarged. The elements in an independent set are called 

independent  elements and the bloclcs zn a Lotto design containing independent 

elernents are called independent blocks. 

It is be obvious that there may be numerous independent sets in a design and that 

the independent elements are relative to  some fixed independent set. 



Definition 2.4.2 : A n  element that appears only once in the independent blocks of 

a design is calied a single. 

Definition 2.4.3 : Given a n  independent element of fi-equency i, the i blocks con- 

taining this independent element is calted a n  i-clique. 

Definition 2.4.4 : A maximum independent set for a design is an independent 

set whose size is not less than the size of any 2ndependent set for the design. 

It is clear that the maximum size of an independent set in a (n, k,p, t )  Lotto design 

cannot be larger than p - 1. The next result states, that, for certain values of n, k 

and p, there must exist minimal Lotto designs with an independent set of size p - 1. 

Theorem 2.4.1 : A n  LDS(n,  k , p , 2 ; b )  urith n > k(p - 2) implies the existence of 

an LD8(n,  k ,  pl 2; b)  which hm a n  zndependent set of size p - 1. 

The following result states that every element in an (n, k, pl 2) Lotto design must 

occur in the independent blocks of an independent set with p - 1 elements. Clearly, 

if an independent set of size p - 1 exists in an (n, k, pl 2 )  Lotto design, then it is a 

maximum (and hence a maximal) independent set. 

Theorem 2.4.2 : I n  any LD' (n, k, p, 2; b) with an independent set of size p - 1, 

every element of the design m u t  occur in the independent blocks of the independent 

set. 

More generaily, we have the following result. 

Theorem 2.4.3 : In any (n, k , p ,  t )  Lotto design, every element of the design m u t  

occur ut least once in the independent blocks of any maximal independent set. 



Corollary 2.4.1 : The nvmber of independent blocks of any maximal independent 

set of sire rn from an (n, k , p , t )  Lotto design is ut least 1 ~ 1 -  

Definition 2.4.5 : An isolated block of a Lotto design is a block that contains 

only elements 

Under certain 

of frequency one in the design. 

conditions, al1 the elements of frequency one occur only in blocks that 

contain only frequency one elements. The following result states these conditions. 

T h e o r e m  2.4.4 : If rt 2 k@ - 1)  and there 2s an (n, k , p ,  2 )  Lotto design with b 

blocks: then there exists and (n: ky pl 2) Lotto design with b bloclcs svch that there are 

rk elements offrequency one occun-ing in r blockç, for r 2 0. 

Definition 2.4.6 : A nice (n,k,p,t;b) design is a Lotto design with b blocks 

wherein each element occurs ut least once, the elernents of frequency one occur in 

isolated bloch and there is an Ondependent set of size p - 1. 

It turns out that if b 2 p and n 2 k(p- 1) then there exists a nice (72, k , p ,  t ;  b) Lotto 

design. 

T h e o r e m  2.4.5 : If L(n, k , p ,  t )  = b, b 2 " k and n 2 k(p - 1 )  then there exists a 

nice LD*(n, k, p, t;  b) .  

By considering only nice designs and analyzing the frequencies of elernents in these 

designs, Bate and van Rees were able to  show the foilowing results. 

T h e o r e m  2.4.6 : 
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Another important result that first appeared in Hartman's thesis [16] and was applied 

by Bate and Van Rees was the following : 

Theorem 2.4.7 : In an (n, k, p, t )  Lotto design, there exist at least 

disjoint elernenis of frequencg two. 
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2.5 Ot her Historical Results 

Many of the results on Lotto designs were influenced by the study of Covering and 

Turan designs. The study of Lotto designs is relatively new compared to the study 

Covering and Turan designs. We now list other important results known about Lotto 

designs. We first state a result by Hanani, Ornstein and S b  [15] which gives a lower 

bound for L(n, k, p, 2 ) .  

n n- 1 Theorem 2.5.1 : L(n,k:p,2) 2 k & l ~ - ) l l .  

The following lower bound for L(n, k,p, t) made be found in [19]. 

Theorem 2.5.2 : 

De Caen [9] determined a lower bound for Turh  designs which states: 

Theorem 2.5.3 : T(n,p, t) 2 ,";&, %. 

Brouwer and Voorhoeve [7] deterrnined that L(n, k , p ,  t) > W. This result dong 

with that of de Caen yields the following general lower bound formula for L(n, k, p, t). 

Currently, this is the best known general lower bound for L(n, k, p, t) . Many u p  

per bound formulas are derived from construction techniques. One of these is the 

following upper bound construction for L(n, k, p, t) found in The CRC handbook [a]. 
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This result was applied to L(49,6,6,3) yielding 

Thus, in Canada's Lotto 6/49, if you buy a certain 169 tickets, you are guaranteed 

to match 3 numbers giving you $10 . 

Computer programs have also aided in the study of Lotto designs. One such program 

(named cover) is the probabilistic search by Nurmela and Ostergard [19] based on 

Simulated Annealing. The authors did not use the term" Lotto designs" but instead 

used "Covering designs" . Simulated annealing is an optimization technique, based 

on the process of physical annealing. Physical annealing is a process where a crystal 

is cooled down from the liquid phase to the solid phase in a heat bath. If the cooling 

process is done carefully enough, the energy state of the solid at the end of the 

cooling is at its minimum. The general idea of simulated annealing, taken from the 

Metropolis algorithm [18], is stated in the following pseudcxode. 

1. Obtain an initial solution S and an initial temperature T 

2. While stop criterion is not satisfied do the following : 

(a) While inner loop criterion not satisfied do the following : 

i. Select a neighbor S' of S. 

ii. Let 6 = w s t ( S f )  - w s t ( S ) .  

iii. If 6 5 0, set S = S'. 

iv. If 6 > 0, set S = S with probability ed6IT. 

(b) Reduce temperature T 
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3. Return S 

When using simulated annealing to construct an (n, k, p, t) Lotto design , we have to 

define the cost function and the neighborhood of a solution. A solution may be any 

potential design- The most natural way of defining the cost function is : 

cost(S) = Number of p-sets not represented by the solution S. 

The most natural neighborhood structure is given as follows: Suppose we have a 

solution S. W e  can make another solution by selecting one of the k-sets K in S and 

replacing it with another k-set K' not already in S. This is done by replacing a point 

in K by a point not belonging to K to generate the required k-set K'. We define 

the neighborhood of S to be the set of al1 solutions obtained from S by one such 

change. The stop criterion and inner loop criterion in steps 2 and 2a may vary. To 

reduce the temperature in step 2b, the simplest technique is to multiply the current 

temperature by a constant less than one. 

Simulated Annealing has given excellent upper bounds for many values of L(n, k, p, t ) .  

Hoarever, the memory and time requirements become large as the parameters become 

large. Nonetheless, sirnulated annealing is a useful tool for computing upper bounds 

for L(nl k, p, t )  and for constructing Lotto Designs. 

2.6 Conclusion 

Lotto designs with parameters (n, k, p, 2) have been studied and much is known 

about them. Many lower and upper bound formulas are available for determin- 

ing L(n, k, p, 2). However, for general (n, k, p, t) Lotto designs, not much is known. 

Computer searches do exist for constructing (n, k, p, t )  designs, but they require large 

amounts of resources. In the next chapter, we shall discuss some construction tech- 

niques for Lotto designs which give upper bounds for L(n, k,p, t ) .  
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Upper Bound Constructions 

3.1 Introduction 

The main goal of this thesis is to determine the d u e s  of L(n, k , p , t ) .  Iu this c h a p  

ter, we describe constructions that give upper bounds for L(n, k ,  p, t ) .  We begin by 

considering BIBDs as sources of Lotto designs. Then we study formulas that relate 

the Iower and upper bounds of Lotto designs which we called monotonicity formu- 

las. Next we describe a construction known as the semi-direct product construction 

which entails putting several Lotto designs together to form a new Lotto design. 

We conclude this chapter with several other upper bound constructions for Lotto 

designs. 

3.2 Lotto Designs from BIBDs 

The study of balanced incomplete block designs (BIBDs) was started by Euler and 

has been continuously studied since the Fisher and Yates paper [IO] in 1935. Our 

focus is on determining which BIBDs are Lotto designs. We begin by stating condi- 
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tions that a BIBD must scttisb in order for it to be a Lotto design. Then we consider 

resolvable BIBDs and symmetric BIBDs. W e  state conditions that must be satisfied 

in order for them to be Lotto designs. We begin by giving a definition for a BIBD. 

A good reference on BIBDs c m  be found in "Combinatorial Theory" by Hall [14]. 

Definition 3.2.1 : A (W. 6 ,  r,  k, A) BlBD is a collection of b k-seki with elements 

chosen Ji-om X(v) such that each elernent appears r times and each pair of elements 

in X (v) appears X times in the coltection of k-sets. 

Theorem 3.2.1 : If B Zs the set of blocks of a (v, b, r ,  k, A) BIBD and p, t are 

positzve integers where 1 5 1  c(t - 1,2)  + C(pr  - 1 5 1  ( t  - 1) , 2 )  < C@, 2) A, then B 

is the set of blocks of an (v, k , p ,  t) Lotto design. Hence L(v,  k ,  pl t )  5 b. 

Proof : Let B denote the blocks of a (v, b , r ,  k, A) BIBD. Suppose P is a pse t  not 

represented by any block in B. By the definition of a BIBD, each pair appears X 

times in B. Thus, the pairs of P appear C ( p ,  2)X times in B. On the other hand, 

since P is not represented in B, at most t - L elements from P can appear together 

in any block of B. The maximum number of pairs of P that can be forced in B is 

1-1 C(t  - 1.2) + C(P. - [--J ( t  - 1) ,2 ) .  t - l  t - 1  

But L f i  JC(t  - 1, 2 )  + C(pr - LsJ (t - 1).  2) < C(p, 2)A by assumption, which is a 

contradiction. Hence al1 psets  are represented in B and therefore B is an (v, k , p ,  t )  

Lotto design. O 

We now give an example of the application of Theorem 3.2.1 using the existance of 

a (17,34,16,8,7) BIBD [8]. 

Example 3.2.1 : Since there &ts a (17,34,16,8,7) BIBD that satisfies the con- 

ditions of Theorem 3.2.1 with p = 6 and t = 4, L(17,8,6,4) 5 34. 
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The following t hree results are consequences of Theorem 3.2.1. 

Corollary 3.2.1 : Suppose there exists a (v, b, r, k ,  A) BIBD. If r < 2X , then 

L(v ,  k, 5,4) 1 b. 

Proof : With the current parameters, Equation (3.1) becornes 

This simplifies to 5r if 31r and to 5r - 1 if 3 /r. In any case , p 5 5r < 10A. So we 

can apply Theorem 3.2.1 and obtain L(v,  k, 5,4) 5 6. 

Corollary 3.2.2 : Suppose there eRsts a (v, 6 ,  r ,  k, A) BIBD. If r < ;A, then L(v, k: 6,4) 5 

b. 

Proof : With the current parameters, Equation (3.1) reduces to 

Since r < $A, then 67 < 15A. Thus, the conditions of Theorem 3.2.1 are satisfied 

and L(v, k, 6 , 4 )  5 b. 0 

Corollary 3.2.3 : Suppose there ezists a (v, 6, T ,  k, A) BIBD. If r < 3A, then L(v, k ,  7,4) < 
b. 

Proof : With the current parameters, Equation (3.1) reduces to 
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Regardless of whether 3 divides r or not, Equation (3.2) is l e s  than or equal to  7r. 

Since r < 3X, we have 7r < 21X. Thus, the conditions of Theorem 3.2.1 are satisfied 

and L(n? k, 7,4) < b. O 

Theorem 3.2.1 is a general result that covers al1 types of BIBDs. It is possible 

to determine weaker conditions than those given by Theorem 3.2.1 if the design is 

resolvable- W e  begin by stating the definition of a resolvable BIBD. 

D e  finition 3.2.2 : A (v, b, r,  k ,  A) BIBD is resolvable if the blocks of the BIBD can 

be partitioned into sets in such a way that every partition contains each element 

exactly once. A BIBD that is resolvable is called a resoluable BIBD (RBIBD). The 

partitions are called resolution classes. 

The parameters for a resolvabie BIBD must be of the form (kx, rx, r, k, A) where x 

is the number of blocks in each resolution class and r = W. Here is an example 

of a (9,12,4,3,1) resoIvab1e BIBD with four resolution classes. 

E x a m p l e  3.2.2 : The following is a (9,12,4,3,1) RBIBD. 
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For RBIBDs, a slightly weaker condition may be stated which is sufficient for it to 

be a Lotto design. 

kr rk 1) Theorem 3.2.2 : If there ezists a resolvable BIBD with purumeters (zk, &=-, 
w, k, A) and if p, t are positive integers where 

X zk 1 )  Proof : Let B denote the blocks of a (xk, "EL', *, -, k, A) BIBD. 

Suppose P is a p-set not represented by any block in B. By the definition of a BIBD, 

each pair appears X times in B. Thus, the pairs of P appear C@, 2)X times in B. On 

the other hand, since P is not represented in B, a t  most t - 1 elements from P can 

appear together in any block of B. In each resolution class, the elements of the set 

P must appear exactly once. Thus the maximum nurnber of pairs of P in any given 

resolution class of the design is : 

X(xk-lf  Since there are resolution classes in the design, the maximum number of pairs 

from P in the design is 

But by assumption, 
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This is a contradiction since the number of pairs of P occurring in t3 must be at least 

C ( p .  3)X. Therefore every pse t  is represented by the design. O 

Corollary 3.2.4 : If a (2a + 2,4a + 2 ,2a  + 1, a + 1,  a) RBIBD erktst and 4 < t  < 
2a + 4? then L(2a + 2, a + 1,2t  - 3 ,  t )  5 4a + 2. 

Proof : Coosider a f2a + 2 , 4 a  + 2,2a + 1 ,  a + 1,  a) RBIBD B. Using the notation of 

theorem 3.2.2, p = 2t - 3, A = a, k = a + 1  and x = 2. Equation 3.3 becomes 

If this is less than aC(2 t  - 3 , 2 ) ,  then the conditions of theorem 3.2.2 are satisfied 

and hence Our result holds. Now, 

if and only if 2t2 - (8 + 2a) t  +4a + 8  < O .  This is the case if and only if 4 < t  < 2a +4. 

But we assumed that this was the case. Hence, B is a (2a + 2 ,  a + 1,2t  - 3, t )  Lotto 

design with 4a + 2  blocks. 0 

We now state some examples of resolvable BIBDs that are Lotto designs. Notice 

that  one RBIBD rnay give several Lotto designs. 

Example  3.2.3 : Consider a (12 ,22 ,11 ,6 ,5 )  resolvable BIBD. Since 

then L ( 1 2 , 6 , 5 , 4 )  5 22 by Corollary 3.2.4. 

ExampIe 3.2.4 : Consider an ( 8 , 1 4 , 7 , 4 , 3 )  RBIBD. By Corollary 3.2.4, we have 

L ( 8 , 4 , 3 , 3 )  < 14 and L(8,4,5,4) 5 14. 
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Exarnple 3.2.5 : Consider a ( 1 2 . 2 2 , 1 1 , 6 , 5 )  RBIBD. By Corollary 3-26, we have 

L(12,6 .3!  3 )  5 22 and L ( 1 2 , 6 , 5 , 4 )  5 22. 

Example 3.2.6 : Consider a ( 1 6 , 3 0 , 1 5 , 8 , 7 )  RBIBD. By  Corollary 3-24, we have 

L(16 ,8 ,3 ,3 )  5 30, L ( 1 6 , 8 , 5 , 5 )  5 30 and L(16,8,7,5) < 30. 

Symmetric BIBDs are another special type of BIBD. For a specific type of symmetric 

BIBD, a sufficient condition may be stated for it to be a Lotto design. 

Definition 3.2.3 : A BIBD is a symrnetric BIBD (SBIBD) if v = b. 

The following result applies specifically to syrnmetric designs. 

Theorem 3.2.3 : If there ercits a (4a + 3 ,4a  + 3 , 2 a  + 1,2a + 1, a)  symmetn'c BIBD 

anda> t - 2 ,  then L ( 4 a + 3 , 2 a + 1 , 2 t - 2 , t )  5 4 a f 3 .  

ProoE Let B denote the blocks of a ( 4 a + 3 , 2 a + l ,  a )  symmetric BIBD. Suppose P is 

a (2 t  - 2)-set not represented by any block in B. There are a C ( 2 t  - 2 , 2 )  pairs of P in 

B. On the other hand, each variety appears 2a+ 1 times in B. Since P can intersect a 

block in B in at most t - 1 elements, the maximum number of these pairs of elements 

of P can be obtained if P intersects blocks in B only in t - 1  or zero elements. The 
2afl 2t-2) number of blocks that P c m  intersect in t - 1 elements is LI J = 2(2a + 1) 

giving 2(2a + 1)C(t - 1 , 2 )  pairs. Now 2(2a + l ) C ( t  - 1,2) 5 C ( 2 t  - 2 , 2 ) a  which 

simplifies to a 5 t - 2  which is a contradiction. Hence, every (2 t  - 2)-set must be 

represented by 8 and hence B is an (4a  + 3,Za + 1,2t  - 2,  t )  Lotto design. 

The following is an example of an SBIBD that is a Lotto design. 
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Example 3.2.7 : Consider a (15,15,7,7,3) symmetric design. Since a = 3, t = 4 

and a > t - 2, then the 15 blocks of the BIBD form an (15,7,6:4) Lotto design. 

As we have seen, under certain conditions, balanceci incomplete block designs may 

be Lotto designs, and thus may be able to give upper bounds for Lotto Designs. 

However. these upper bounds are not always very good due to the strict conditions 

that BIBDs adhere to. In most cases, the upper bounds for L(n, k? p,'t) derived from 

BIBDs were superceded by upper bounds generated by other methods. However, a 

BIBD  vas used in determining that L(13,4,5,3) = 13. 

3.3 Monotonicity Formulas 

Monotonicity formulas relate one Lotto design to another in which one or more of 

the parameters of the designs differ by one. An upper bound of a Lotto design may 

be used to determine upper bounds for other Lotto designs. Similarly, a lower bound 

of one Lotto design my be used to determine lower bounds for other Lotto designs. 

In Our computer programs, we applied the monotonicity formulas each time an upper 

or lower bound changed. 

Proof : Let B be an (n, k, p, t) Lotto design. For each block in B, form a new block 

by concatenating any element to that block that is not in it. We claim these new 

blocks form an (n, k + 1, p, t)  Lotto design. To see this, let P be a pset.  Then there 

is some block in f3 that meets P in a t-set. The new block formed from this block 

will also meet P in that t-set. Thus the collection of new blocks formed from B is 

an (n, k, p, t )  Lotto design. and hence L(n, k, p, t) 2 L(n, k + 1, p, t )  . O 
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Theorem 3.3.2 : L(7z.k.p.t) 3 L(n+ 1 , k +  l , p , t )  

Proof  : Let B be an (n,  k,pl t )  Lotto design. For each block in B, form a new block 

by concatenating the new element n  + 1. This new collection of blocks is clearly an 

(n + 1. k + I ,  p, t) Lotto design. O 

Theorem 3.3.3 : L(n,k ,p , t )  2 L ( n , k , p + l , t )  

Proof : Let B be the blocks of an (n, k , p ,  t )  Lotto design. Let P be a @ + 1)-set. 

Since every p se t  is represented by sorne biock in B, then P is represented by some 

block in B. Thus B forms an (n, k, p + l , t )  Lotto design. O 

Theorem 3.3.4 : L(n, k,p,  t )  5 L(n, k , p ,  t  + 1) 

Proof :Let B be the blocks of an (n, k , p ,  t  + 1 )  Lotto design. Let P be an arbitrary 

pset.  Then P intersects some block of B in at  least t  + 1 elements and hence in at 

least t elements. Thus B forms an (n, k, p,  t)  Lotto design. D 

Proof : Consider an (n + 1, k, p, t) Lotto design. Select an element x ,  and delete 

every occurrence from the design. To the blocks which have been shortened, add any 

element not already appearing in the block. This is possible since k  < n. Clearly, 

this new collection of blocks forms an (n, klpl t )  Lotto design. 

Theorem 3.3.6 : L(n ,k ,p , t )  4 L ( n , k + l , p , t + l )  



Proof: Let B be the blocks of an (n, k + 1, p, t + 1) Lotto design. We will construct a 

set of k-sets Br such that 1 BI 3 1 B'I. Let B' = { B r  : B' = B\{the largest element of B), 

B E B). Clearly IBI 2 IB'l. Consider an arbitrary pset  P. I t  intersects some block 

B in D in a t  least t + 1  elements. Hence i t  intersects a corresponding B' of B' in at 

least t elements. Hence B' are the blocks of an (n, k , p ,  t )  Lotto design. 0- 

Theorem 3.3.7 : L(n, k, pl t )  5 L(n, k , p  + 1,  t + 1)  

Proof: Let B be the blocks of an (n, k , p  + 1, t + 1)  Lotto design. Consider an 

arbitrary pset  P. Adjoin one element to the pset  P. This ( p  + 1)-set will intersect 

some block of B in a t  l e s t  t + 1 elements. Hence P will intersect the same block in 

at least t e1ement.s. Thus the blocks of L3 form an (n, k , p ,  t )  Lotto design. O 

Corollary 3.3.1 : L(n,  k ,  p, t )  5 L(n + 1, k ,  p + 1,  t + 1 )  

Proof: By Theorem 3.3.5, L(n, k, p, t )  5 L(n + 1, k ,  p, t )  and by Theorem 3.3.7, 

L(n + 1, k ,  p, t )  5 L(n + 1,  k ,  p  + 1, t + 1). This implies L(n, k ,  p, t )  5 L(n + 1, k l p  + 
1, t + 1) .  

Corollary 3.3.2 : L ( n ,  k ,  p, t )  9 L(n + 1, k + 1,  p  + 1,  t + 1) 

Proof: By Theorem 2.2.1, L ( n , k , p , t )  = L ( n , n - k , n - p , n - k - p + t )  and 

L ( n + 1 , k + 1 , p + l 1 t + 1 )  = L ( n + l , n - k , n - p , n - k - p f t ) .  Thusitsuffices 

toshow L ( n , n -  k , n - p , n - k - p f t )  5 L ( n + l , n - k , n - p , n -  k - p + t ) .  But 

this follows immediately from Theorem 3.3.5. U 

The following result is a generalization of a result on Covering designs which states: 

C(n, k, t )  5 C(n + 1,  k + 1,  t + 1).  



Corollary 3.3.3 : L(n,k.p,  t )  5 L ( n +  1 , k+  l ,p , t  + 1 )  

Proof: By Theorem 3.3.1, L(n,  k ,p ,  t )  5 L(n ,  k + 1,p, t  + 1) and by Theorem 3.3.5, 

L(n,  k+l ,p , t+l)  5 L(n+l,  k+l ,p , t+l) .  HenceL(n,k,p,t) 5 L(n+l,k+l,p, t+l) .  

O 

Corollary 3.3.4 : L(n ,k ,p , t )  2 L(n+ l . k +  l , p + l , t )  

Proof: By Theorem 3.3.2, L(n,  k ,  p: t )  2 L(n  + 1. k + 1, p, t )  and by Theorem 3.3.3? 

L(n+l,  k+i,p,  t )  2 L(n+l,  k+l,p+l, t ) .  Hence, L(n, k ,p ,  t )  2 L(n+l. k+l,p+l, t ) .  

O 

Corollary 3.3.5 : L(n , k ,p , t )  2 L ( n + l , k , p + l , t ) .  

Proof : Let B be the blocks of an (n, k ,  p, t )  Lotto design. Let P be an (p + 1)-set 

with elements chosen from X ( n  + 1). I f  n + 1  E Pl then P \ {n + 1)  is a pset  

and hence is represented by some block of B as 4 is an (n, k ,  p, t )  Lotto design. 

Otherwise, if n + 1  4 Pl then P must be represented by some block of i3 as i3 is an 

(n, k ,  p, t )  Lotto design. In any case, P is represented by a block of t3 and hence B 

is an (n + 1, k ,  p + 1, t )  Lotto design. Thus, L(nl k,p, t )  2 L(n  + 1, k ,  p  + 1, t) .  O 

Corollary 3.3.6 : L(n , k ,p , t )  5 L(n  + l , k , p l t  + 1) 

Proof: By Theorem 3.3.5, L(n,  k, pl t )  5 L(n  + 1, k ,  pl t )  and by  Theorem 3.3.4, 

L(n + 1, k ,  p, t )  5 L(n + 1, k, p, t + 1). Hence, L(n,  k,p, t )  5 L(n  + 1, k ,  p, t + 1). 0- 

Corollary 3.3.7 : L(n ,k ,p , t )  2 L ( n , k + l , p + l , t ) .  
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The main purpose of the monotonicity results in this thesis is to apply them to 

our tables of lower and upper bounds as soon as a Iower bound or an upper bound 

changes in the table. 

3.4 Semi-Direct Product Construction 

Constructing Lotto designs based on other Lotto desi,- is one way to obtain upper 

bounds. The method described in this section uses this technique. We termed the 

construction in t his section "Semi-Direct Product" construction. The construction 

technique described may be used to obtain an (n, k,p, t) Lotto design for arbitrary 

values of n,k ,p  and t. In general, the larger the value of k, the better the construction 

will be. 

Pie begin with a useful lemma. 

Lemma 3.4.1 : Suppose B is a n  (n, k ,  p, t) Lotto design. If rn 5 p is a n  integer, 

then any m - s e t  intersects some block of B in at least t - p + m elements. 

Proof : Let M be an m-set. Add p - m elements to M to form a pse t  P. Since P 

now has p elements, it is represented by some block B in B. Since a t  most p - m of 

the elernents added to M to form P can appear in B ,  then a t  least t - p  + m elements 

from M appear in B. O 

We now state the main result of this section. This result will give us a way to 

compute upper bounds for Lotto designs. 



Theorem 3.4.1 : Suppose n, k, p, t .  nl, kl and r are integers such that n l  < nl 
p - r z t ,  k l Z t - r - l a n d k l = k - n + n l .  T h e n L ( n , k . p , t ) s L ( n l , k , p -  

r , t ) + L ( n l , k l , p - r - 1 , t - r - 1 ) .  

Proof : We shall proceed to construct an (n, k, p. t )  Lotto design uing (nl, k ,  p -  r' t )  

and (nI, kl, p - r - 1, t - r - 1) Lotto designs. 

Let A be an (n l ,  k , p  - r,  t )  Lotto design, B' be an (nl ,  k l , p  - r - 1, t - r - 1) Lotto 

design and let C be the set {ni + 1, nl + 2, ..., n} .  For each block in Br, adjoin the 

set C to it. Denote this new collection of k-sets as B. We claim that d u B is an 
(n, k. p, t )  Lotto design. 

Consider a p s e t  P from X ( n ) .  Suppose p- x elements in P corne from {1,2,3, .. . , n t )  

and the remaining x elements of P corne from {nl + 1, nl + 2, ..., n). Since n - nl = 

k - k t ,  the set {ni + 1, nl + 2, . . . , n )  has exactly k - kl  elements and hence x can be a t  

most k - kl . We need to show that the p-set is represented by AuB. If z 5 r then the 

p-set would be represented by a block in A since it is an (nl ,  k, p - r, t )  Lotto design. 

If r + 1 5 x 5 p, then by Lemma 3.4.1, there is a block from B' that intersects P in 

at least t-x and P intersects C in x elements. Hence P is represented by a block in B. 

Since P is always represented by some block in d U B,  we conclude that d ü B is an 

(n, k, p, t) Lotto design. 

If r 2 n - ni in the previous theorem, then L3 is not used. The theorem can be 

simplified to L(n, k, p, t )  5 L(nl,  k ,  p - T ,  t) which is essentially Theorem 3.3.5. 



A construction of a (20.10: 6,4) Lotto design using Theorem 3-41 will now be given. 

Example 3.4.1 : Let n = 20, k = 10, p = 6, t = 4, nl = 15,r = 1. Then ki = 5. 

Let A = {{1.3,5,6,7.10,11,12,13,14),  {2,4,5,6,7,8,9,10,12.15}, {1,2,3,4,8,9 

. 3 ,  1 1 Let Br = {{3,5,6: 10,12), {1,7,9,11,14), {2,4,8,13,15}) and let 

C = {16,17.18,19,20). Itcan beshown that A i s  a (15,10,5,4) Lotto design and 8' 

is an (15,5 ,4 ,2)  Lotto design. We construct B from Dr and C by adjaining C to each 

block of Br. Thus B = {{3,5,6,10,12,16,17,18,19,20), {1,7,9,11,14,16,17,18,19,20), 

(2.4.8,13.15,16,17,18,19,20)}. By Theorem 3-4.1, dUB is a (20,15,6,4) Lotto de- 

sign. The blocks of this (20,15,6,4) Lotto design are {{1,3,5,6,7,10,11,12,13,14), 

{2.4,5,6,7,8,9,10,12,15), {1,2,3,4,8,9,11,13,14,15), {3,5,6,10,12,16, If, 18,19,20), 

{1,7? 9, 11, 14,167 17,18,19,20); (27 478,137 15,16, 17, 18,197 20)). 

By applying Theorem 3.4.1, we can compute uppers bounds for L(n, k, p, t )  by vary- 

ing the value of nl (which in turn varies kl) in the construction of an (n, k , p ,  t) Lotto 

design and taking the minimum size of al1 the designs constructed. This approach 

can be easily programmed and used to update our tables. Table 3.1 displays upper 

bounds for L(19,10,6,4) using the semi-direct product construction. We fixed the 

value of r from Theorem 3.4.1 at 1. 

Sub-designs used upper bound obtained 
(18,10,5, 4) 14 

(17,10,5,4) and (17,8,4,2) 
(16,10,5,4) and (16,7,4,2) 
(15,10,5,4) and (15,6,4,2) 
(14,10,5,4) and (14,5,4,2) 
(13,10,5,4) and (13,4,4,2) 
(12,10,5,4) and (12,3,4,2) 

Table 3.1: Some upper bounds generated by semi-product construction 

We stop computing Table 3.1 at nl = 11 because for nl < 11, the construction makes 

no sense. In general, for fixed r,  we would stop when kl < t - r - 1 for an (n, k, p, t )  



design. From Table 3.1, we see that the best upper bound for L(19,10, 6,4) deter- 

mined using the semi-direct product construction is 6. 

The semi-direct product construction allowed us to construct an arbitrary (n, k, p, t )  

Lotto design from smaller Lotto designs. This construction empowered us with 

anot her way of obtaining an upper bound for L(n, k, p, t) . This construction works 

best when k is large. This is because a large value of k gives more ways of constructing 

a Lotto design from smaller ones. This construction do& not work well for cases 

where k is close to p or t. Finally, since this construction depends on other Lotto 

designs, better upper bounds for these designs would generate a better design. 

3.5 Other Upper Bound Constructions 

In this section, we will state other upper bound constructions that we have developed. 

One way of constructing an (n + 1, k + 1, p + 1, t  + 1) Lotto design from an (n, k, p, t) 

Lotto design and an (n, k + 1, p + 1, t  + 1) Lotto design is to attach to each row of 

the (n, k, p, t )  design the element n + 1. The blocks of this new design dong with the 

blocksofthe ( n , k + l , p + l , t + l )  designforman ( n + l , k + l , p + l , t + l )  Lotto 

design. This result is a direct generalization of a result on Covering designs that can 

be found in the CRC handbook [8].  

Theorem 3.5.1 : L ( n + l , k + l , p + l , t + l )  5 L(n, k ,p , t )+L(n,  k + l , p + l , t + l ) .  

Proof: Let A be an (n, k, p, t) Lotto design and B be and (n, k + 1, p+ 1, t + 1) Lotto 

design. To each block of A, attach the element n + 1 and denote this new collection 

by A*. We daim that A' U B is an (n + 1, k + 1 , p +  l , t  + 1) Lotto design. To show 
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this. let P be a (p + 1)-set. If n + 1 @ P then there is a block in B that represents P. 

Otherwise, n + 1 E P. Then. P \ {n + 1) is a pse t  and hence intersects some block 

A from A in t elements. The block {n + 1) U A belongs in A' by construction, and 

intersects P in t + t elements. Hence A' U B is an (n + 1, k + 1 ,p  + 1, t + 1) Lotto 

design and L ( n + l , k + l , p + 1 , t + 1 )  5 L ( n , k , p , t ) + L ( n , k + l , p + l , t + l ) -  

In the study of Covering designs, it is well known that C(mn,mk, t ) . s  C(n, k, t) for 

any integer n 2 1. For Lotto designs? the obvious generalization is not always true. 

An extra condition must be added to  the tbeorem. 

Theorern 3.5.2 : Suppose there &ts an (n, k,p,t) Lotto design Dl where eu- 

ery (t - 1)-set is contained in some block of the design. Then L(mn,mk,p, t )  5 

L(n,  k. p, t )  where rn > 1 is an znteger. 

Proof: Let Dl be an (n, k , p ,  t) Lotto design such that every (t - 1)-set appears in 

the design and the elements of Dl are {11, 2', 3l, ..., n l ) .  Suppose the blocks of Dl 

are ordered using some ordering. Since every (t - 1)-set appears in the design, so 

does every u-set, for any integer u < t. Create m - 1 copies Dz , D3, .-. , Dm of Dl 

keeping Di 's ordering of the blocks, relabeling the elements {11, 2l, ..., nl)  in Di with 

{ l i ,  2', ..., ni), for i = 2 to m in the obvious way. For each j from 1 to 

jth blocks of Dl ,  4, . . . , Dm to form a mk-set. Let D denote the set 

formed. We claim that D is an (nm, km, p, t) Lotto design. 

]D1l, unite the 

of al1 mk-sets 

Suppose P is a pset  in D. In order to  show that D is a Lotto design, we need to show 

that P is represented by some block of D. Let P be denoted {(xl)'l, ( ~ 2 ) ' ~ ~  ... , (xp)'p} 

where x, E {1,2, ..., n)  and ij E (1,2, ..., m) for j = 1 to p. There are three possible 

cases that we need to consider. 



Case 1 : Suppose al1 the xj's are distinct, then the pset  {(x')', (x2)', ..(x~)~) is rep- 

resented by some block in Dl. Without l o s  of generality suppose {(x~) ' ,  (x2) ', ..., (xJ1 ] 

appears in this block of DI. Then the corresponding block in D will contain the sub- 

set {(x1)'l, (x2)12, ...! ( x ~ ) ' ~ )  of P. Thus P is represented in this case. 

Case 2 : Suppose not al1 the zj's are distinct and some Xj appears at Ieast t times in 

the collection {xl, 2 2 ,  - - -xp}. Without l o s  of generality, suppose xl = x2 = ... = xt. 

Since (xi)' has to appear in some block of Dl ,  the corresponding block in D must 

contain the subset {(xi)'l , (x2)'2, .. ., (zt)'t} of P. Thus P is represented in this case. 

Case 3 : Suppose not al1 the xj's are distinct and at most t - 1 of any of the 

x,'s are the same, then select t elements from the collection {xl, xz, ..., x,) such 

that at Ieast two of the chosen elements are the same. Without loss of generality, 

suppose we chose xl , x2, ..xt where xl = xt. NOW there are at most t - 1 distinct 

elements in the collection {(xi)', (x2)', ..., (xJi}, since xl = xt. By hypothesis, the 

set {(xi)', (x2)', ..., (xt)') is contained in some block of Di. Then the corresponding 

block in D will contain the subset {(xl)'l, (x2)'2, ..., (xt) '~)  of P. Thus P is repre- 

sented in this case. 

In each case, the pse t  P is represented in D. Hence D is an (nm, km,p, t) Lotto 

design and L(mn, km, p, t) 5 L(n, k, p, t). O 

The construction process above is called "m-ing a design". The following is a special 

case of a result from Bate [l] which we will need, to prove a later theorem. 

Theorem 3.5.3 : If L(n, k, p, 2 )  2 then there erists a (n, k, p, 2) Lotto design 
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with blocks such that every elernent appears in the  design. 

The following theorem states that m-ing an (n, k, p, 2) Lotto design is always possible 

if every element appears in the original design. 

Theorem 3.5.4 : If L(n, k, p, 2) = b 2 P t h en  L(rnn, rnk, p, t) 5 b. 

Proof: By Theorem 3.5.3 there is an (n, k , p ,  2) Lotto design with b blocks such 

that every element appears in the design. By Theorem 3.5.2, L(mn, mk,p, t) 5 

L ( n , k , p , 2 )  = b 0 

Theorem 3.5.5 : L(mn, 2m, zn + 2,2z + 2) 5 C(n, 2) for z 5 rn, uhere m is an 

integer. 

Proof : Let Dl be the (n, 2,2,2) Lotto design which consists of blocks that are al1 

pairs from the n-set. Order the blocks using some ordering. Create m - 1 copies 

D2, D3 , ..., Dm of Dl, each keeping Dl's ordering of the blocks, relabeling the ele- 

ments {11, 2I, . .. , nl) in Di with {la, 2', ... , ni), for i = 2 to m in the obvious way. For 

each j from 1 to IDiI, unite the jth blocks of Dl, 4, ..., Dm to form a mn-set. Let D 

denote the set of al1 Pm-sets formed. We claim that D is an (mn, 2772, zn + 2,2z + 2) 

Lotto design. To show that D is an (mn, 2m, zn + 2,22 + 2) Lotto design, let 

P = {(zl)'1, (z2)'2, .. . , ( X ~ + ~ ) ~ Z ~ + ' )  be an arbitrary (zn + 2)-set chosen from the el- 

ements of D, where Xj E {1,2, ..., n) and ij E {1,2, ..., m) for j = 1 to zn + 2. We 

need to show it intersects some block of D in at  least 22 + 2 elements. We note that 

there is at  least one element in the collection {xi, x2, ..., x , + ~ )  that occurs z + 1 or 

more times in the collection, as > z. We need to consider the possible cases : 



Case 1 : Suppose the collection {xi. x2, x3, ..., x ~ + ~ }  contains two elements, Say x l  

and x=+2 such t hat xi # xz+2 and x l  is appears at least z + 1 times in the collection 

and xr+2 appears at least z + 1 times in the collection also. Then, without 1- of 

- generality, assume x1 = 2 2  = .-- = xz+l and xz+2 = xt+3 = ... - x2=+2. Since Dl 

is an (n, 2,2.2) Lotto design the the set {(XI)', (xZ+2)') must appear in some block 

of Dl .  Thus the subset {(xl)'l, ( x ~ ) ~ ~ ,  . .-, (x,+$~+~ , ( X , + ~ ) ~ Z + ~ ,  .-., (x2r+Z)i2r+2) (which 

contains 22 + 2 elements of P) must be contained in some block of D, Since P was 

arbitrarily chosen, D is an (mn, Zm, zn  + 2,Zz + 2) Lotto design. 

Case 2 : Suppose the collection {xi, x2, x3, .. . , z,+~) contains only one element, Say 

x1 that appears a t  least z + 1 times in the collection. It is easy to see that there 

exists an element x2 distinct frorn XI that appears in the collection, and x l  dong 

with 2 2  together appear at l e s t  22 + 2 times in the collection. To see this, suppose 

that X I  appears z + 1 times in the collection where 1 > 1 and suppose every element 

in the coIlection distinct from X I  appears fewer than z - 1 + 2 times in the collec- 

tion. Counting the total number of elements in the collection, there are at most 

(n - 1) ( z  - I + 1) + ( z  + l )  = zn + (n  - nl + 21 - 1) elements. We can easily show that 

n - nl + 21 - 1 < 2 since < 2. Hence our rnethod of counting showed that there 

are less than zn + 2 elements in the collection which is a contradiction. Considering 

the elements x1 and 2 2  and using almost the same argument as in the previous case, 

we conclude that P must be contained in some block of D. Since P was arbitrarily 

chosen, D is an (mn, 2712, z n  + 2,2z + 2) Lotto design. O 

Table 3.2 shows some upper bounds resulting from Theorem 3.5.5. 

Gordon et. al [12] stated the following theorem for Covering designs. 
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Table 3.2: Some Upper Bounds generated by m-ing a base design 

Theorern 3.5.6 : C(n+  1, k+ l , t  + 1) 5 L(2 - $ ) ~ ( n ,  k, t)] +C(n- 1, k+ 1, t + 1). 

We shall generalize Theorem 3.5.6 for Lotto designs with the following construction. 

Consider an (n, k, p, t )  Lotto design D. Let x E X(n) and choose 2 new points x' 

and x" not in X ( n ) .  On the blocks of D, perform the following operations : 

1. If a block B of D does not contain x, replace B with the two blocks : B U {x') 

and B U {x"). 

2. If a block B of D contains x, replace B with the block ( B  \ {x)) u {x', x"}. 

Let us denote this new design by D'. Finally, add an (n - 1, k + 1, p + 1, t) Lotto 

design E on X ( n )  \ {x) to the end of LY. 

Theorem 3.5.7 : The above construction gzves an (n+l, k + l , p + l ,  t )  Lotto design 

o n  the elements X ( n )  \ {x) U {x', x"). 

Proof : Consider a @+ 1)-set P = {ai, a*, ..., We must show it is represented 

by some block in D' U E. Consider the three possible cases : 

Case 1 : Suppose x' $ P and z" 4 P. Then P is represented by E. 
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Case 2 : Suppose z' E P but x" 6 P. Then P \ {x') U {x) is represented by some 

block of B in D. If x E B, then P is represented by the block B' constructed from B. 

Otherwise, if x B, then the block B U {XI) from D' represents P. Symmetrically, 

the same is true if z" E P but xf 4 P. 

Case 3 : Suppose x' and XI' is in P. Let P = {XI, x", al,  az, ..., g-2}. Consider 

the set {x' ai, a2, ...' %-2, 6 )  where b is any other element. This set is represented by 

some block, B, in the original design. If B contains x, then B \ {x) intersects P in 

at least t  - 2 elements. But then, P intersects B \ {x) U {XI, xf') in t elernents. If B 

does not contain x then it intersects P in at least t - 1 elements and either B U {z') 

or B u {x") can represent P in t elements. 

Since in each case, P was represented by the constructed design, the design must be 

an ( n  + 1 ,  k + 1,p  + 1 ,  t )  Lotto design. O 

Corollary 3.5.1 : If x E X(n)  and b, denotes the number of blocks in a minimal 

(n ,  k, p, t )  Lotto design that contain x, then L(n + 1, k  + 1 ,  p + 1,  t )  5 2L(n, k,  p, t )  - 
b, + L(n - 1, k + l , p +  1 , t ) .  

Proof : The construction creates b, + 2(L(n, k, p, t )  - b,) + L(n - 1 ,  k  + 1 ,  p + 1 ,  t )  

blocks. Hence L ( n + l , k + l , p + l , t )  5 2L(n,k ,p , t )  -b ,+L(n-1 ,k+17p+1, t ) .  

The next result follows immediately from Corollary 3.5.1. 

Proof : For a minimal (n, k, p, t) Lotto design, there exists some z E X ( n )  such that 
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r appears in at least [ $ ~ ( n ,  k ,  p. t ) ]  blocks of the design- Then by Corollary 3.5.1, 

we have 

Hence we are done. O 

The following results determine upper bound formulas for fixed values of p and t. 

Theorem 3.5.8 : L(k +2 ,k ,4 ,3 )  5 3, for k 3 3. 

Proof: The blocks Bi = {1,2,3, ..., k ) ,  B2 = {1,2,3, ..., k - 1, k  + 1 )  and B3 = 

{l, 2,3, ..., k - 3, k, k + 1, k + 2 )  form a ( k  + 2, k ,  4.3) Lotto design. To show this, 

consider a 4se t  P. If P is not represented by BI or B2, then IP n B1l 5 2 which 

implies { k  + 1, k + 2 )  c P. Similarly, 1 P n B21 5 2 implying that { k ,  k + 2 )  c P. 

Thus, { k ,  k  + 1, k  + 2 )  c P which is contained in B3. Hence, the three blocks B I ,  

Ba, BJ form an (k + 2, k ,  4 ,3)  Lotto design. O 

Theorem 3.5.9 : L(2k + 1, k ,  5,3) 5 5,  for k 2 4. 

Proof: Consider the five blocks : B1 = {1,2,3, ..., k-2, k-1, k ) ,  B2 = {1,2,3, ..., k- 

2 , k + l 7 2 k + l ) ,  B3 = {3 ,..., k - 2 , k -  l , k , k + 1 , 2 k + l ) ,  BI = { k + 2  ,..., 2 k -  

1,2k, 2k + 1 )  and B5 = { k  + 1, k + 2, ..., 2k - 1,2k}. We claim these five blocks 

make up a (25 + 1, k ,  5,3) Lotto design. To show this, divide X(2k + 1) into two sets 

A = {1,2,3,  ..., k )  and B = { k  + 1, k + 2, ..., 2k + 1). Consider an arbitrary %set P. 

Clearly, if three or more of P's elements come from A, then it will be represented by 

the block B I .  Similady, if four or more of P's elements come from B, then it will be 

represented by the block Bs. 
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We consider the remaining case where two elements of P are from A and three ele- 

ments of P are from B. If 2k + 1 # P, then i{k + 1, k + 2, ..., 2k) n PI = 3, which 

implies that P is represented by Bg. SO assume that 2k + 1 E P. Similarly, if 

k + 1 # Pl then I{k + 2, ..., Zk, 2k + 1) n PI 2 3, which irnplies that P is represented 

by B4. Thus we assume k + 1 E P. So both k + 1 and 2k + 1 f P. Now, consider 

an elernent from P n A (there are two of these); it must be in B2 or & or botti. In 

any case, since k + l  and 2 k t l  appear in both B2 and B3, P is represented in this case. 

We have shown that an arbitrary 5-set is represented by these five blocks, and hence, 

i t  forms a (2k + 1, k, 5,3) Lotto design. O 

Theorem 3.5.10 : L(2k + 2, k, 8,4) 5 4, for k 2 4. 

Proof : We daim that  the blocks B1 = {1,2,3, ..., k), B2 = {k + 3, k + 4, ..., 2k + 21, 

B3 = { k f l ,  k+2, ..., 2&2,2k-1,Îk) and B4 = {k+l ,  k t 2 ,  ..., 2k-2, 2k+ll2k+2) 

form a (2k + 2, k. 8,4) Lotto design. To show this, divide X(2k + 2) into two sets 

A = {1,2,3, ..., k) and B = {k + 1, k + 2, ..., 2k + 1,2k + 2). Consider an arbitrary 

%set P. Clearly if four or more of P's elements come from A, then it will be repre- 

sented by the block B1. Similarly, if six or more of P's elements come from B, then 

i t  will be represented by the blocks B2 or Bq. 

We consider the remaining case where three elements of P are from A and five ele- 

ments of P are from B. Split the set B into two subsets C = {k+ 1, k +  2, ..., 2k - 2) 

and D = {2k - 1,2k, 2k + 1,2k + 21, and consider the possible subcases. If two or 

more elements of P appear in C, then P is represented by either B3 or Bq. If one of 

P appear in Cl then P is represented by 8 2 .  It is not possible for not elements of P 

to appear in C since IPI = 5 and [DI = 4. Thus al1 subcases have been considered. 
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\Ve have show-n that an a r b i t r a .  &set is represented by these four blockso and hence 

it is a (2k + 2, k' 8: 4) Lotto design. 0 

Theorem 3.5.11 : L(3k + 2, k, 8,3) 5 5, for k 2 4. 

Proof: Let the elements l,2,3, ..., k + 4 have frequency one and the rest of the ele- 

ments have frequency two. Put the elements 12, ..., k in the first block BI. Let the 

second block B2 be {k + 1, k + 2, k + 3, k + 4, k + 5, ..., 2k). Now put the elements 

k i 5 ,  k + 6, ..., 3k + 2 into the last three blocks B3, B4 and B5 in any way that does 

not place the same element twice in any block. We claim this is a (3k + 2, k ,  8,3)  

Lotto design. To show this, consider an arbitrary &set P chosen from the two sets 

A = {1,2, ..., k + 4) and B = {k + 5, ..., 3k + 2). We must show that this &set is 

represented. We denote the number of elements chosen for P from each set by (a, b) 

where a is the number of elements from A and b is the number of elements from B. If 

a 2 5, then clearly, BI or Bs contains at least three elements of the &set and hence, 

P is represented in this case. If a = 4, then it is easy to see that we may assume that 

exactly two elements chosen from A appear in BI and the remaining two elements 

chosen from A appears in B2. Otherwise, either BI or B2 would contain a t  least 

three elements of the &set, and hence, the P is represented. As B2 contains two 

elements from the û-set, we rnay assume that no element in (k + 5, k + 6, .. . ,2k) may 
beiong to the P, or else B2 would represent P. So the 4 elements of the  P chosen 

from B must actually be contained in (2k + 1,2k + 2, ..., 3k + 21, al1 of which have 

frequency two. This implies that at least one of three blocks &, Bq and Bg contains 

3 elements of the P. Finally, consider the rernaining cases where (a, b) = (4 - X, 4+x) 

where O < x 5 4. If O or 1 elements of P are from {k + 5, k + 6, ..., 2k), then there 

are at least 3 + x 2 4 elements of P from (2k + 1,2k + 2, .. ., 3k + 2) which can be 

handled by the case where a = 4. If 2 elements of P are from {k + 5, k + 6, ..., 2k}, 
then there are a t  least 2 + z 2 3 elements of P from {2k + 1,2k + 2, ..., 3k + 21, 
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which implies that the elements of P appear at least 3(2)+2=8 times in the blocks 

B3, Bq and B5. CIearly, some block must contain at least three of these elements 

of P and hence P is represented in this case. Finally, if 3 or more elements of P 

are from {k + 5, k + 6, ..., 2k), then P is represented by the block B2. SO, no matter 

what &set. we choose, it is always represented. Thus, the construction design is a 

(3k + 2. k,  8,3) Lotto Design with five blocks. O 

The next three results although specific are useful. 

Theorem 3.5.12 : L(l6 ,8 ,4 ,3)  5 7 

Proof : The blocks {1,3,4,6),  {1,2,5,7),  {3,4,6,7). {2 ,3 ,53) ,  {2,4,5,8) ,  {1,6,7,8),  

and { 2 , 5 , 6 . 8 )  form an (8,4,4,3)  Lotto design on seven blocks where every 2-set a p  

pears in the design. Hence by Theorem 3.5.2, L(l6,8,4,3) 5 7. O 

Theorem 3.5.13 : L(l8,8,4? 3) 5 9. 

Proof : Since we can generate a (9 ,4 ,4 ,3)  Lotto design cyclically from the block 

{O, 1,2,4) modulo 9, every 2-set appears in the constructed design. Hence by Theo- 

rem 3.5.2, we can double this design to get an (18,8,4,3) Lotto design with 9 blocks. 

Thus, L(18,8,4,3) 5 9. O 

Theorem 3.5.14 : L(18,9,4,3) 5 6. 

Proof: The blocks {1,2,3), {1,3,5}, (2,4,5),  {l, 4,6), {3,4,6), { 2 , 5 , 6 )  form an 

(6 ,3 ,4 ,3)  Lotto design in which every 2-set appears. By tripling this design, we get 

an (18,9,4,3) Lotto design. Hence L(18,9,4,3) 5 6. O 
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3.6 Conclusion 

CVe have presented several constructions of Lotto designs in this chapter. These 

constructions give upper bounds for L(n,  k, p, t )  . A few of these results are generalized 

from thes theory of Covering designs. The semi-direct product is one construction 

that could be generalized further. Ail the constructions from this chapter have been 

incorporated into our compter programs and they help generate upper bounds for 

u n ,  k, p,  t ) -  



Chapter 4 

Lower Bound Formulas 

4.1 Introduction 

In the previous chapter, we presented several techniques for improving the upper 

bound for L(n, k, p, t) . In this chapter, we discuss techniques for improving the 

lower bound for L(n, k, pl t). Upper bounds are usually much easier to obtain than 

lower bounds since upper bounds can be obtained often from constructions. Lower 

bounds on the other hand cannot be generated from constructions. Lower bounds 

often must be derived mathematically. 

Our first lower bound formula is a generalization of the Schonheim bound for Cov- 

ering designs. We follow this with lower bound formulas for L(n, k, p + 1, p) and 

L(n, k , p  + 2,p). After that we give a result that  states the value of L(n, k,p, t )  for 

an infinite class of parameters. Finally, we prove several other sporadic lower bound 

results. 
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4.2 Generalized Schonheim Formula 

The main goal of this section is to derive a lower bound formula for Lotto desibgps 

that is a generalization of Schonheim's lower bound formula for Covering designs. 

Definition 4.2.1 : If ( X ,  13) is an (n, k, p, t )  Lotto design and S is a subset of X ,  

let BS' = {T E B : [SnTl 5 k - t )  and let BS = {T* : zfT E BS' thenT' = 

T \ S U X  where =ITnSI a n d X T ~ X \ S ) .  

Theorem 4-2.1 : Let ( X ,  B) be an (n, k, p, t )  Lotto design and let S be a szlbset 

of X such that [SI 5 n - p and ISI 5 n - k. If BS # 0, then (X \ S, B') is an 

(n - [SI, k, p, t) Lotto design. 

Proof : It is easy to see that blocks in BS are made up of elements fiom X \ S 

and since n 2 k + [SI, each block will not have repeated elements (although there 

could be repeated blocks). Let P be a pset from X \ S, then since (X, B) is a Lotto 

design, there exists some T E B such tha t  IT n PI 2 t. Since P n S = 0, then 

k >  I ( P r i T ) I + I ( S n T ) I  > t + I S n T I .  Hence ISnTI S k - t .  A S B # ~ , T E B ~ *  

and we are done. O 

I t  is possible to take (n, k,p, t) Lottedesigns found using techniques such as exhaus- 

tive search, hi11 climbing or Sirnulated Annealing and try to find an optimal S such 

that an (n - ISI, k , p ,  t )  Lotto design is generated which has a better upper bound 

than currently known. The only problem is that the number of choices for S be- 

cornes prohibitively large as n gets large. A future goal is to try discover the types 

of subsets S which will improve upper bounds. 

Definition 4.2.2 : If (X, B) i s  an (n, k, p, t) Lotto design and S is a svbset of X ,  
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Lemma 4.2.1 : Let (X, B) be an (n, k, p, t) Lotto design and S E X such that 

ISl = k - t + 1. Then !sSI = IBI - degs(S). 

Proof: Wesee that lBSl = I{T E L I :  ISnTI 5 k - t ) l  and deg8(S) = I{T E 

i3 : ISr i  Tl = k - t + 1)l. It is easy to see that any T E B must be counted in 

one and only one of the two stated collections. Thus If31 = 1 BSI + degB(S). That is, 

lBSl = If31 - dego(S). 0 

Lemma 4.2.2 : I f n  2 k - t + l + p  andn 2 2 k - t + l  and ( X , B )  is an (n ,k ,p , t )  

design, then there cannot ercist an S C X where ISI = k - t + 1 such that S c T for 

al1 T E O. 

Proof: Suppose there is some (n, k , p ,  t )  design (X, B) and some S C X where 

ISI = k - t + 1 and S 2 T for every T C B. Then consider a pse t  Q which has 

empty intersection with S. Such psets exist, since n 2 k - t + 1 +p. As (X, D) is a 

Lotto design, there exists T E B such that IQnTl 2 t. However, as QnS = 0, S E T 

and ISI = k - t f l ,  ITnQl 5 t- 1. This is a contradiction. Hence our lemma holds. a 

This lemma implies that for a given (n, k, p, t) Lotto design (X, B), any S with 

ISI = k- t+l ,  n 2 2k-t+l  and n 2 k- t+l+p,  willgenerate an (n-k+t-1, k , p ,  t) 

design. Notice that is not true in general as stated by the formulation of Theorem 

4.2.1. More specifically, Theorem 4.2.1 states that B~ must be non-empty. Lemma 

4.2.2 states that this is always true under certain conditions. 
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Corollary 4.2.1 : If an (n, k, p, t )  Lotto design with x blocks &t with n 2 p+  k - 
t +  1 andn 2 2 k - t + 1  then an ( n - k + t - l , k , p , t )  Lottodeszgn with y bloc& 

exists where y 5 x 

Proof : Consider a set S C X where ISI = k-t + 1. By Lemma 4.2.2, B~ # 0. Then, 

1 SI 5 n - p and 1 SI 5 n - k and hence, Theorem 4.2.1 holds which immediately give 

the desired result. (3 

Exarnple 4.2.1 :Consider the following (14,5,4,3) Lotto Design (X, B) where X = 

(0 :  1. ..., 13) which we obtained by simulated annealing : 
{O, 1: 2, 5, 7) 
1 ,  31 4, 6 ,  7) 
{ z l  3, 5, 8, 10) 
{O, 3, 6, 9, 10) 
(2, 41 61 9, Il} 
1 2, 4, 10, 11) 
{5: 6, 7, 10, 11) 
{O, 1, 6, 8, 12) 
{4, 51 61 8, 12) 
{O, 41 8, 9, 12) 
{ 5 ,  7, 9, 10, 12) 
(1, 21 31 111 12) 
{O, 7: 8, 11, 12) 
{O, 3, 4, 5, 13) 
(2 ,  7, 81 91 13) 
1 ,  5, 9, 11, 13) 
(3, 8, 91 11, 13) 
1 8, 10, 11, 13) 
{O, 2, 6, 12, 13) 
{a, 7, IO, 12, 13) 

Let S = {6,8,11,12). By Theorem 4.2.1, the following collection of bsets form an 

(10,5,4,3) Lotto design with 17 blocks whose elements are from {O, 1,2,3,4,5,7,9, 

10 ,131. 
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We now state our main Theorem which is a generalization of the Schonheim's Iower 

bound for Covering designs. 

Theorem 4.2.2 : If (X, B) is an (n,  k , p ,  t )  Lotto design and S E X such that 

Proof : By Corollary 4.2.1 1 ~~l 2 L(n - k + t - 1 ,  k ,  p, t )  and by Lemma 4.2.1 

If31 - degB(S) > L(n - k  + t - 1 ,  k , p ,  t ) .  By Lemma 4.2.2, summing over al1 S X 

such that ISI = k - t  + 1 yields : 

By simple counting, we get the following : 
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By re-arranging the terms, we get the desired result. O 

The following result follows immediately from Theorem 4-2.2. 

Corollary 4.2.2 : 

Corollary 4.2.3 : If n 2 2k - t + 1 and n 2 k - t + 1 + p, then L(n, k,p, t) > 

L(n - k + t - l ,k ,p , t )  

Corollary 4.2.4 : If n 2 2k - t + 1 and n 2 k - t + 1 + p, then L(n, k,p, t )  > 
L(m,  k, pl t) for al1 m 5 n - k + t - 1. 

Proof : Use Corollary 4.2.3 along with the fact that L(n, p, k, t )  2 L(n- 1, k, p, t) .  O 

We can now derive the Schonheim bound from Theorem 4.2.2. 

Corollary 4.2.5 : L(nf, k', t', t') 2 r$~(n '  - 1, k' - 1, t' - 1, t' - 1)l. 
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Proof : Put n = n', k = n' - k', t = n' - k' and p = n' - t' in Theorem 

4.2.2. Vie must show that n >_ 2k - t  + 1 and n 2 k - t  + 1 + p .  We see that 

2k - t + 1 = 2(nf - k') - (nt - k') + 1 = nt - K + 1 5 nt, as required. We also have 

k - t + 1 + p = ( n 8 - K ) - ( n t - k ' ) + l + p = p + l .  I f n = p ,  thennl=n'- t 'and 

hence t1 = O which is impossible. Thus n 2 p + 1 and both conditions of Theorem 

4.2.2 are satisfied. Applying Theorem 4.2.2, we have 

n 4 L(n - l , t , p , t )  
L(n, t ,  pl t )  2 1 n - t  1 .  

Since Turan designs and Covering designs are complements, 

n* L ( n - 1 , n -  1 - t , n - 1  - p , n -  1 - p )  
L ( n , n - t , n - p , n  - p )  2 

n - t  1 
Hence, 

n  
~ ( n ,  kt, t r ,  t ')  2 I k ; ~ ( n  - 1 ,  k' - 1 ,  t1 - 1, t  - 

which is the Schonheim lower bound for Covering designs. O 

4.3 Other Lower Bound Formulas 

In this section we state other lower bound formulas that we have discovered. Only 

formulas that give infinitely many lower bounds will be stated here. Lower bounds 

determined on an individual basis are discussed in the next chapter. 

Proof : Consider a minimal (n, k, t  + 1 ,  t )  Lotto design B. If every (t - 1)-set 

appears in some block of an B, then 8 is an (n, k, t  - 1, t - 1 )  Lotto design and hence, 

L(n, k ,  t + l ,  t )  > L(n, k , t - 1 , t - 1 ) .  Otherwise, suppose the (t-1)-set {1 ,2 ,  ..., t - 1 )  



does not appear in any block of B: then consider the (t + 1)-set 11.2, ..., t - 1, x. TJ}. 

It  can only be represented by a k-set containing {z, y} and exactly t - 2 elements 

from 11.2. .... t - l}. Thus al1 2-sets chosen from { t !  t + 1, t +2, ..., n) must appear in 

B. Thus, L(n, k , t  + 1. t)  2 L(n - t + 1, k - t + 2,2,2). Combining both cases $ves 

us the formula L(n, k. t + 1. t) 5 min{l(n, k, t - 1, t - l ) ,  L(n - t + 1, k - t +2,2,2)}. 

as required. 

Theorem 4.3.2 : L(n,  k, t + 2, t) 2 min{L(n, k , t , t  - 11, L(n - t, k - t + 2,2,2)). 

Proof: Consider a minimal (n, k, t + 2, t )  Lotto design B. If every t-set intersects 

some block of L3 in a t  least t - 1 elements, then B is an (n, k, t, t - 1) Lotto design 

and hence, L(n ,k , t  + 2,t) 2 L(n,k , t , t  - 1). Otherwise, suppose that no (t - 1) 

elements of t he  t-set {1,2, ..., t - 1, t} appear together in B. Consider the (t + 2)- 

set {l, 2, . .., t - 1, t ,  z ,  y). It can only be represented by a k-set that must include 

{x, y} and exactly t - 2 elements from {1,2, ..., t), since at most t - 2 elements 

from {1,2,3, ..., t} may appear together in a block of the design. Hence, every pair 

{x. y} where x, y { 1,2, .. . , t} must occur a t  least once in the B. This implies 

L(n ,  k, t + 2, t )  ) L(n - t ,  k - t + 2,2,2). Combining both cases gives us the formula 

L(n, k , t  + 2, t )  2 min(L(n, k , t , t  - l), L(n - t, k - t + 2,2,2)}, as required. O 

Theorem 4.3.3 : L(n, k,  6,3) 2 min{L(n, k, 4,2), L(n - 4, k - 1,2,2)). 

Proof : Consider a minimal (n, k, 6,3) Lotto design B. Either each 4set  intersects 

some block of l? in a t  least two elements or some 4se t  intersects each block of the 

design in a t  most one element. If every 4-set intersects some block of the design in 

at least 2 elements, then L(n, k, 6 , 3 )  2 L(n, k, 4,2). If a 4set ,  Say {1,2,3,4), does 

not intersect any block of B in more than one element, then the Bset {1,2,3,4, x, y) 

where x, y E X ( n )  \ {1,2,3,4) must be represented by a block that contains both x 
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and y. This irnplies L(n. k, 6.3) 2 L(n  - 4. k - 1,2,2).  Combining both cases, we 

get the formula : L.(n, k,6,3) 2 min{L(n,  k , 4 , 2 ) ,  L(n  - 4, k - 1,2,2)).  O 

The following result is a generalization of a result from Bate [l]. 

Theorem 4.3.4 : If kl > k2 then 

Proof: Consider a (a, kl, p, t )  Lotto design B containing b blocks. For each block, 

construct a ( k l ,  k2, t ,  t )  Lotto design. Let C denote the set of ail kz-sets in the b 

(kl, k2, t , t )  h t t o  designs. We claim that C is an (n, k2,p,t) Lotto design. To show 

this, consider an arbitrary p-set P. P must intersect sorne block of B in t elements as 

B is an (n, k l .  p, t )  Lotto design. These t elements rnust be a block in C by definition. 

Hence: C is an (n, k2, p, t )  Lotto design. So L(n,  k ~ ,  p, t )  5 L(n, kl, p, t )  * L(ki ,  kz, t ,  t ) ,  
L(n.k2.p.t) 

Or u n ,  kl ,  P, t )  2 ,qk , ,k2, ,* t ) .  

The following two results give the value of L(n,  k ,  p, t )  for infinite sets of parameters. 

Theorem 4.3.5 : If n - k 5 p  - t then L(n, k ,  pl t )  = 1. 

Proof : Let B be an arbitrary k-set. There are exactly n - k elements not in B. If 

P is a p-set, since n - k 5 p - t ,  then n - k + t 5 p which implies at l e s t  t elements 

from p must be from B. Hence the single set B form an (n, k. p, t) Lotto design if 

n - k s p - t .  O 
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Theorem 4.3.6 : If n - k 2 p - t + l and [*n] 5 k where r = [---&], then 

L(n. k , p .  t )  = r + 1 .  

Proof : Suppose n - k 3 p - t + 1 and [*nl 5 k where r = L-&. We k s t  

need to show that an (n, k , p ,  t )  Lotto design cannot have fewer than r + 1 blocks. 

Suppose there is such a design with r blocks. As n - k 2 p - t + 1, pick p - t + l 
elernents from the complement of each block and denote this set as P. There are a t  

most r * @- t + 1) distinct elements chosen. Since r = LA], then r * (p- t + 1) 5 p. 

If IP[ < pl add any other distinct elements to P until IPI = p. The set P intersects 

the complement of each block in at least p - t  + 1 elements and hence will intersect 

each block of the design in at  m a t  t - 1  elements. This contradicts the assurnption 

that there is an (n, k , p ,  t )  Lotto design with r blocks. Hence we conclude that 

L(n, k , p ,  t )  > r + 1. Now we need to show that L(n, k , p ,  t )  5 r + 1. We can do 

this by constructing such a design. Since [-&n] 5 k, then (r + 1 )  (n - k )  5 n. So 

pick r + 1 (n - k)-sets by filling them with distinct elements. This irnplies that no 

dernent in these blocks is repeated. Since r = LA] then r + 1 > p_t?, which 

implies p < (r  + 1) ( p  - t + 1 )  $ (r + l ) ( n  - k). This means that least one of the 

(n - k)-sets intersects any pset  in at  most p - t elements. This means that the 

pset will intersect the complement of the (n - k)-set in a t  least t elements. The 

complements of the (n - k)-sets are blocks of the (n, k , p ,  t) Lotto design that we 

desire. Hence we have s h o w  that L(n, k, p, t )  5 r + 1. Since we have inequalities in 

both directions, we conclude that L(n, k ,  p, t )  = r + 1. O 

We conclude this chapter with some lower bound formulas for several infinite classes 

of Lotto designs. We can use these formulas to update Our tables via a cornputer 

program. These results dong wit h the monotonicity formulas of the previous chapter 

may be combined to yield lower bounds for other Lotto designs. 
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Theorem 4.3.7 : If k 3 3: then L(2k + 1, k, 5,3)  > 5. 

Proof : For k = 3, the design in question is a (7,3,5,3) Turan design. By comple- 

menting the design, we get a (7,4,2,2) design. Fkom Bate's tables, L(7 ,4 ,2 ,2 )  = 5, 

hence the result is true for k = 3. We will now prove the result for k 2 4. S u p  

pose there is a (2k + 1, k, 5,3) Lotto design with four blocks. If a given 5-set is not 

represented in this design, then the 5set will intersect every block of the comple- 

ment in at least three elements. We will show that we can always construct such a 

5 s e t  that intersects every block of the complement in at least three elernents. Let 

BI, B2, B3. Bq denote the four (k + 1)-sets in the complement of the design. Suppose 

that there is an element of frequency zero in the design, Say the element 1. Then 

that element appears in each block of the complernent. From this point on, we will 

be speaking with respect to the complement blocks of the design unless otherwise 

stated. There are 4k spots left to be filled using 2k elements. The average frequency 

is 2. 

Case 1 : If there is another element, Say 2, of frequency 4, then there are 4k - 4 

spots left to be filled by 2k - 1 elements. The average frequency of the remaining 

elements is 1 + z. Since k 3 4, then there exists an element of frequency 2 or 

higher. For if not, then every element has frequency at most 1 and the total number 

of spots that can be filled is 8 + 1(2k - 1) = 2k + 7 < 4k + 4, as k 2 4. So suppose 

that the element 3 has frequency a t  l e s t  2. Without loss of generality, assume the 

element 3 belongs to Bi and B2. The 5-set {1,2,3, x, y) where x E B3 and y E B4 is 

a Sset  that intersects each block in at least three elements which implies that this 

5-set is not represented by the Lotto design. This is a contradiction and hence it is 

impossible to have two elements of frequency 4 in the complement. 

Case 2 : If there is an element, Say 2, of frequency 3, then there are 4k - 3 spots 

2k-2 If there left to  be filled by 2k - 1 elements. The average frequency is 1 + G- 

is another element of frequency 3, Say 3, then the blocks of the complement would 

Iook like: Bi = {l, 2, , ...}, B2 = {l, 2,3, ...}, 9 3  = {l, 2,3, ...) and B4 = {l, 3, ...}, 
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or else BI = {1.2,3. ...). B2 = {1.2.3, ...}. B3 = {1,2.3' . . . )  and Bq = (1, ...}. In 

the former case, the Sse t  { lo2,  3,x'y)  where x E B1 and y E B4 intersects each 

block of the complement in at least 3 elements, which is a contradiction. Similarly if 

Bl = { 1 , 2 , 3  ,... ),Bz = {1.2,3 ,... ),B3 = {1,2,3 ,...) and Bq = (1 ,..- }, then the %set 

{ 1.2 ,3 ,  x, y) where x E Ba and y E B4 intersects each block of the complement in at 

l e s t  3 elements, which is a contradiction. Hence there is only 1 element of frequency 

3 in the complernents, which in turn implies there is exactly one element of frequency 

1 in the original blocks. Let the element 2 occur in BI, B2 and B3. Thus, al1 other 

elements must have frequency 2, that is, there are 2k - 2 elements of frequency 2 in 

the complements of the blocks. There must be an element of frequency 2 in block Bqt 

Say 3. Since it has frequency 2, i t  must also appear in one of BL, B2 or B3- Without 

loss of generality, assume that element 3 occurs in B3 and Bq. Since B3 has room for 

only k - 2 additional elements, there is an element, say 4, that does not appear in B3 

but does appear in a. Without loss of generality, assume that 4 E BI and 4 E B4. 

Now the &set {1,2,3,4, x} where x E B1 intersects every block of the complement 

in at least 3 elements. This is a contradiction and hence implies that there are no 

elements of frequency three in the complement, if there is an element of frequency 

four in the complement . 

Case 3 : In the remaining case, al1 elements, other than element 1, have frequency 

2. Suppose element 2 belongs to both Bl and B2. There are 4k - 2 spots left to be 

filled by 2k - 1 elements. Since there are 2k spots remaining in blocks B3 and Bq 

together and only 2k - 1 elements remain, B3 and Ba shared a common elernent, Say 

3. Now, since BI and Ba must be distinct blocks, suppose the element 4 is in B1 and 

not in B2. Since the element 4 has frequency 2, then suppose it also is in 8 3 .  Finally, 

there are 2k - 2 spots left to be filled between B2 and Bq using 2k - 3 elements. 

Hence, there exists a common element between these two blocks, say element 5- The 

5-set { 1,2,3,4,5} intersects every block in the complement in at least three elements, 

which is a contradiction. 
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If there is an  element of frequency zero in the Lotto design, every scenario yields a 

contradiction. Hence we conclude that there must not be any elements of frequency 

zero in the Lotto design. Now there must be at least one element of frequency 1 in 

the Lotto design. For if not, then every element in the Lotto design has frequency 

a t  Ieast twq and hence the total in the design is at least 2(2k + 1) = 4k + 2 > 4k, 
which is a contradiction. Thus, we can assume that element 1 has frequency 3 in the 

complement. Using the same reasoning again, there is another element of frequency 

3. Say the element 2. There are two cases for the arrangements of these two elements. 

Case a : BI = {1,2 ,... }, B2 = {1,2 ,... }, B3 = {1,2 ,...) and Bq = {3,4,5 ,..., k + 3 ) .  

Then there are k - 2 elements remaining to be used. These k - 2 elements cannot 

fil1 up the k - 1 spots in any one of the blocks BI, B2 or B3. Hence, there exist 

three elements, say 3, 4 and 5 such that 3: is in BI, y is in B2 and z is in B3 where 

x. y, z E (3,4,5). Now the Sset  {l, 2,3,4,5) intersects every block of the comple- 

ment in a t  least three elements, which is a contradiction. 

Case b : BI = {1,2 ,... ), B2 = {1,2 ,... ), B3 = {Il ...) and Bq = {2 , . . - ) .  There are 

2k spots remaining to be filled between blocks B3 and B4 using 2k - 1 elements. So 

there exists sorne common element between these two blocks, Say the element 3. If 

there is an element of frequency 3, Say x, that belongs to every block except Say BI, 

then the bset  {1,2,3, x, y) where y E BI intersects every block of the complement 

in at least three elements. On the other hand, if no element of frequency three ex- 

ists, then every remaining element must be of frequency two. Since B1 and B2 are 

distinct, let the element 4 be in B1 and not in B2. Then since the element 4 has fre- 

quency 2, then it must appear in either B3 or Bq. Without l m  of generality, assume 

it is in BS- Now B2 and B4 have 2k - 2 spots remaining to be filled between them 

using 2k - 3 elements. This implies B2 and B4 must have a common element, Say 

the element 5. Thus the 5-set {1,2,3,4,5} intersects every block of the complement 

in a t  l e s t  3 elements, which is a contradiction. 
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Since every scenario leads to a contradiction, the assumption that there is a (2k + 
1, k. 5 . 3 )  Lotto design on 4 blocks must be false, and hence L(2k + 1, k ,  5,3)  2 5.  O 

Theorem 4.3.8 : I f k  2 3, then (2k + 2, k,6,3) 2 4 . 

Proof: Assume that L(2k + 2, k? 6 , 3 )  5 3  and consider a (2k + 2, k, 6,3) Lotto design 

with three blocks. We shail construct a &set that is not represented by this design 

and hence such a design cannot exist. 

There are 3k total occurrences in the design. We consider the cases for the number 

of elements of frequency O. 

Case 1 : Suppose fo = O. Then, since each element can have frequency at most 

3, the number of elements of frequency two or more is at most k - 2. This is be- 

cause if there are k  - 1 or more elernents of frequency a t  least two, then there are 

at most k + 3 elements of frequency one, which give a total occurrences of at least 

(k - 1)2 + (k + 3) = 2k - 2 + k + 3 = 3k + 1 > 3k. This implies that there are at 

least two elements of frequency one in each block. Pick two such elements from each 

block to form a &set that will not be represented. 

Case 2 : Suppose fo = 1. Pick that element z, as part of our 6-set. There are 

at most k - 1 elements of frequency two or more since if there were k  elements 

of frequency two or more, then the total occurance of the the elements is at least 

2(k) + (k + 1) = 3k + 1 > 3k, which is a contradiction. Hence, there exists an element 

of frequency one in each of the three blocks. Pick three such elements a, 6 ,  c to be in 

Our 6-set. It should be noted that there are a t  l e s t  k +- 2 elements of frequency one 

in the design. Consider the following subcases : 

Case 2a : Suppose there exists elements e and f of frequency one in two different 

blocks such that they are not a, b or c. Then the &set {a, b, c, e, f ,  x) is not repre- 

sented by any block of the design. 

Case 2b : Suppose no such frequency one elements e and f exists as stated in case 

2a. Then, since there are at l e s t  k + 2 elements of frequency one, there must be 



CHAPTER 4. LOWER BOUND FORAIULAS 67 

esactly k +2 elements of frequency one. The k - 1 elements of frequency one which is 

not a. b or c must appear with one of these three elements. Without l o s  of generality, 

assume that element is a. Then, the block containing element a is comprised entirely 

of frequency 1 elements. Let d be an element in this block that is not the element 

a. Now pick some frequency two element e in the design. The &set {a. b, c, d, e, x) 

is not represented by any block of the design. 

Case 3: Suppose fo = 2. Pick these two elements x, y as part of our &set. It is easy 

to see that there are at least k elements of frequency one. We consider the following 

cases based upon where the elements of frequency one lie, in the design. 

Case 3a : Suppose al1 the elements of frequency one appear in one block B1 in the 

design. It is easy to see then that the number of elements of frequency one is exactly 

f i ,  since l(k) + 2(k) = 3k. Pick two elements a, b from BI. Pick two elements e, f 

from the remaining blocks that do not appear in BI. The &set {a, 6 ,  e, f ,  x, y} is not 

represented by any block of the design. 

Case 3b : Suppose the frequency one elements occur in only two blocks BI and B2. 

Pick a E BI and b E B2 where a,  b have frequency one. Note that since k 2 3 and 

there are a t  least k elements of frequency one, one of the two biocks Br ,  B2 must 

have at least two elements of frequency one. If each of these blocks contain two or 

more elements of frequency two, then picking another element of frequency one from 

each of BI and B2, Say c and d respectively. Then t.he &set {a, b, c, d,  x, y) is not 

represented by any block in the design. Otherwise, only one of the two blocks, Say 

B1 has at least two elements of frequency one and B2 has exactly one element of 

frequency one. Let c # a be an element of frequency one in B1. Since B1 # &, 
there exists an element d E B2 \ Bi such that d # a, 6, c. The &set {a, b, c, d, x, y) is 

not represented by any block in the design. 

Case 3c : Suppose each block contains an element of frequency one. Pick one ele- 

ment of frequency one from each block, Say a, b and c. Now pick any other element e 

that appears in the design. The &set {a, b, c, e, x, y) is not represented by any block 

of the design. 
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The cases where 3 5 fo 5 6 trivially lead to contradictions. Hence L(2k+2, ko 6,3) 2 

4. O 

Theorern 4.3.9 : L(3k + 1, k, 7,3) 2 6 for k 2 3. 

Proof : Suppose there is a (3k + 1, k, 7,3) Lotto design with five blocks. Let us de- 

note t hese blocks as  Bi, B2, &, Bq and B5. By Theorem 2.2.9, we may assume every 

element appears in this design. Looking at other frequencies, we see that a t  l e s t  

k + 2 elements have frequency one and at most 2k - 1 elements have frequency two or 

more. We will proceed to show that these five blocks cannot form a (3k + 1, k, 7,3) 

Lotto design. We will do this by considering the number of blocks which contain 

elements of frequency one. We begin by considering the case where the elements of 

frequency one appear in exactly two blockç. 

Case 1 : The elements of frequency one appear in only two blocks, say BI and B2. 

Let a and b be two elements of frequency one from BI and let c and d be two elements 

of frequency one from B2. There are 3k + 1 elements in the Lotto design and at most 

2k of thern are in BI and B2. Thus, at l e s t  k + 1 elements must occur only in B3, 

Bq or Bs. It is easy to see that in these k + 1 elements, there are a t  least three that 

have frequency two. Let x, y, z be three such elements. These three elements can 

occur in B3, Bq and B5 in three different ways. 

Case la : B3 = {x,y, ...), B4 = { x , ~  ,...) and B5 = {y,z, ...). Then the 7-set 

{a ,  b,  c, d, x, y, z )  is not represented by the design. 

Case lb : B3 = {x, y, Z, ...), B4 = {x, y, ...) and B5 = {z, ...). Then there are a t  

least k + 1 - 3 = k - 2 other elements that occur only in B3> B4 or B5. If they were 

al1 frequency three elements, then they would occur in B3, Bq and B5. But then B3 
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would contain k - 2 + 3 = k + 1 elements, which is a contradiction. Since B3 contains 

{x' y, z ) ,  it can contain another k - 3 elements. But there are at l e s t  k - 2 elements 

that appears only in B3, Bq and B5 (besides x, y and z). Hence one of the k - 2 

elements, Say element w, has frequency two and appears in Bq and B5- The 7-set 

{a, 6, c, d, y, z ,  tu) is not represented in the design. 

Case l c  : B3 = {x, y, t ,  ...) and B4 = {x, y, r , ...). Then there are at least kfl-3 = 

k - 2 other elements that occur only in B3, Bq or B5. Since B3 # B4, one of these 

k - 2 elements, say element w, must have frequency two and appear in B5- It &O 

appears in either B3 or B4. In either case, it takes us back to  case lb. 

We now consider the cases where the elements of frequency one appear in exactly 

t hree blocks. 

Case 2 : Suppose B2 contains exactly one element of frequency one, B3 contains 

exactly one element of frequency one and BI contains the rest of the elements of 

frequency one (that is, Bq and Bs have no eiements of frequency one). Since the 

number of elements of frequency one is at l e s t  k + 2 and they must appear in BI, 

B2 or B3, Bi must be made up entirely of frequency one elements. Let a and b be 

two elements of frequency one from BI, and let c and d be the elements of frequency 

one from B2 and B3, respectively. Since there are 2k - 1 elements remaining to be 

considered and only 2k - 2 spots open between B2 and B3, there exists an eiement 

x such that x E Bq and 2: f B5 and x is not in any other block. If Bz and B3 are 

disjoint, then we must be able to  find two elements y E B2 and z E B3 such that 

they do not appear together in Bq and B5. Then, the 7-set {a, b,c,d,x,y,  r} is not 

represented, which is a contradiction. On the other hand, if there is an element e 

such that e E B2 n B3, then there there exists another element y E Bq n B5 such 

that y is not in any other block. Then the Fset {a, b, c, dl e, x, y} is not represented 

by any block in the design, which is a contradiction. 
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Case 3 : Suppose the elements of frequency one appear a t  least twice in each of 

B1 and B2. exactly once in B3 and do not appear in B4 or B5. Let a and b be two 

eIements of frequency one from BI, c and d be two elements of frequency one from 

B2 and e the element of frequency one from B3. Then there is at least one element 

x in both B4 and Els such that it is not in any other block because the first three 

blocks contain a t  most 3k distinct eiements. Also there must be an element y in B3, 

B4 or B5 such that it is not in BI or B2 since the first two blocks eontain a t  most 

2k distinct elements. The 7-set {a, b: c, d ,  e, x, y) is not represented by any block of 

the design. This is a contradiction. 

Case 4 : Suppose the frequency one elements appear at most 3k times and are 

contained within the blocks Bl, B2 and B3. Let a, b be frequency one elements in 

BI, cl d be frequency one elernents in B2 and e, f be frequency one elements in B3. 

There exists an element x not in BL, B2 or B3 as there are 3k + 1 elements in the 

design and the first three blocks may contain at most 3k distinct elements. Since x 

has frequency greater than one but does not appear in BI, B2 or B3, then x must 

appear in B4 and B5. The 7-set {a, b, c, d, e, f ,  x) is not represented by any block in 

the design. This is a contradiction. 

We now deal with the case where the elements of frequency one appear in exactly 

four blocks. 

Case 5 : Suppose B1 has a t  least k - 1 elements of frequency one and B2, B3.84 

each have exactly one element of frequency one. Then al1 other elements have fre- 

quency two or more except for possibly one additional element of frequency one in 

Bi. Let a, b be elements of frequency one chosen from Bi and c, d, e be the elements 

of frequency one from &, B3 and Bq, respectively. If B2 and & pairwise disjoint, 
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t here are at l e s t  (k - 1) (k - 2) pairs {z, y)  where x E B2, Y E B3, x # Bi, y Bi 
and both x and y have frequency two or more. The block B4 may contain a t  most 

C ( k  - 1.2) of these pairs. As C(k - 1,2) < (k - 1) (k - 2), there exists a pair {x', g'} 

where x' E B2, y' E B3,x1 @ B1 and y' BI such that {z',y') 8. Since B2 and 

B3 are pairwise disjoint, the ?-set {a, b, c, d, e, x', y') is not represented by any block 

in the design which is a contradiction. On the other hand, if there is an element 

common between B2 and B3, Say f ,  then we see that, not counting the elements, c, 

d and f ,  there may be at most 2k - 4 distinct elements of frequency two or more 

in Bz and B3. Thus Bi, B2 and B3 rnay contain at most 3k - 1 distinct elernents. 

This means that sorne element., Say g, occurs in both Bq and Bg only. Then the 7-set 

{a, b, c, d. e, f ,  g )  is not represented by any block in the design. 

Case 6 : Suppose that BI and B2 each contain at least two elements of frequency 

one, and  B3 and B4 each contain exactly one element of frequency one. Let a ,  b be 

eiements of frequency one from BI, C: d be elements of frequency one from B2? e be 

the element of frequency one from & and f be the element of frequency one from 

Bq. Since B1 and B2 together may only contain 2k distinct elements, there is an 

element x different from e or from f that does not appear in B1 or BP. The ?-set 

{a, b, c. d, e.  f ,  x) is not represented by the blocks of the design. 

Case 7 : Suppose B I ,  B2, B3 and B4 each contain at least one element of frequency 

one and a t  least three of these blocks contain two or more elements of frequency one. 

It is trivial that a 7-set may be formed that is not represented by the design. 

We now deal with the cases where the frequency one elements appear in every block. 
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Case 8 : If exactly one element frequency one appears in each block, then k = 3, 

f i  = 5, f2 = 5 and fz = O. Let a, 6, c7 d and e denote the elements of Requency one 

from each block. Assume B1 and B2 contain an element x which has frequency two. 

Since at most five distinct elements appear in BI and B2, there exists an element y 

not in Bi or Bz with frequency two. The ?-set {a7 6, c! d, e: x, y) is not represented 

by the blocks of the design. 

Case 9 : Consider the case where B1 contains a t  l e s t  two elcments of frequency 

one and Ba, B3, B4 and Bs each contain at Ieast one element of frequency one. Let 

a, b be eIements of frequency one chosen fiom BI and let c,d, e, f be elements of 

frequency one chosen from Bz, B3, Bq and B5, respectively. Clearly, there exists an 

element x that does not appear in BI and is different from a, b, cl dl e and f .  The 

7-set {a, 6, c, d, el f, x) is a Fset not represented by any block in the design. 

We have considered every possible case and each case led to a contradiction. Hence 

Our assumption that a (3k + 1, k, 7,3) Lotto design with £ive blocks exists cannot be 

correct, and thus L(3k + 1, k, 7,3) 1 6. 

The above result improves our table entries for L(13,4,7,3), L(16,5,7,3) and L(19.6,7,3), 

now al1 have the value 6. This result also allows the rnonotonicity results to improve 

the tables further. 

Theorem 4.3.10 : L(k + 2, k, 4,3) 1 3, for k 2 3 

Proof : Suppose there is a (k +2, k,4,3) Lotto design with 2 blocks. Since y < 2, 

for k >? 3, by Theorem 2.2.9 , we may assume that there is a (k + 2, k, 4,3) Lotto 

design which contains no element of frequency zero. Consider such a design. We may 

conclude that there are 4 elements of frequency one and k - 2 elements of fiequency 
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2. Since there are two blocks, the k - 2 elements of frequency two must appear 

once in each block. Each block must contain exactly two elements of frequency one. 

The elernents of frequency one form a 4-set that is not represented. This contradicts 

the assumption that there is a (k + 2, k ,  4,3) Lotto design with 2 biocks. Thus we 

concfude that no design of size two exists, so L(k  + 2, k ,  4,3) 2 3. 0 

Theorem 4.3.11 : L(3k + 2, k, 8,3) 2 5, for k 2 3. 

3k+2 Proof : Suppose B is a (3k + 2, k, 8,3) Lotto design on four blocks. Since 7 < 4 

for k > 2, by Theorem 2.2.9, we may assume that this design has no elements of 

frequency zero. By analyzing the frequencies of the design, there are a t  least 2k + 4 

elements of frequency one and a t  most k-2 elements of frequency two or higher. Each 

block must have at least two elements of frequency one. We can pick eight elements 

of frequency one, two from each block to form an %set that is not represented by 

the blocks of the design. Thus, there cannot exist a (3k + 2, k, €43) Lotto design on 

4 blocks. 0 

Theorem 4.3.12 : L(3k + 3, k ,  9,3) 2 4, for  k 2 3. 

Proof : Suppose f3 is a (3k + 3, k ,  9,3) Lotto design with three blocks. By Theorem 

2.2.8, we may assume that the elements in the design of frequency O or 1. There 

are exactly 3k elernents in the design and hence three elements do not appear in the 

design. A %set consisting of these three elements plus two elements from each of the 

three blocks is not represented by the design. Hence L(3k + 3, k, 9,3) 2 4. 0 

Theorem 4.3.13 : I j k  2 4, L(2k + 3, k,9,4) 2 4. 
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P roof : Suppose that L(2k + 3, k, 9? 3) = 3; then there is a (2k + 3,  kt 9,4) Lotto 

design B with three blocks BI, B2 and B3. Since 5 3, Theorem 2.2.9 implies 

that B has no elements of frequency zero. By analyzing the fiequencies of elements 

in B ive see that the number of elements of frequency one is at least k + 6 and the 

number of elements of frequency two or higher is at most k - 3. Since there are a t  

most k - 3 elements of frequency two or higher, each block must contain at least 

three elements of frequency one. From each block of the design, select three eIements 

of frequency one. The nine selected elements form a %set that is not represented by 

the design. Hence L(2k + 3, k ,  9,4) > 4. O 

Theorem 4.3.14 : L(2k + 2, k ,  8,4) 2 4,  for k >_ 4. 

Proof : By Theorem 4.3.13 L(2kf3, k, 9,4) 2 4, for k 2 4. Then by Theorem 3.3.5, 

L(2k + 2 , k , 8 , 4 )  2 L(2k+ 3, k , 9 , 4 )  and hence L(2k+ 2, k,8,4)  2 4 ,  for k 2 4.  

Theorem 4.3.15 : L(3k + 2, k ,  11,4) 2 5 ,  for k 2 4 .  

Proof : Suppose B is a (3k + 2, k, 11,4) Lotto design with four blocks Bi, B2, B3 

and Bq. Since y 5 4,  by Theorem 2.2.9, we may assume that this design has no 

elements of frequency zero. By analyzing the frequencies of the design, there are at 

least 2k + 4 elements of frequency one and at rnost k - 2 elements of frequency two or 

higher. This implies that each block of the design must contain at l e s t  two elements 

of frequency one. If there are at least three blocks with at l e s t  three elements of 

frequency one, then we may select three elements of frequency one fiom three of these 

blocks and two elements of frequency one from the remaining block in the design to 

form an unrepresented Il-set in the design. Otherwise there must two blocks with 

two elements of frequency one, say blocks B3 and Bq. Then the blocks Bi and B2 



m u t  be made up of strictly frequency one elements since fo 2 2k + 4. Let x be 

an element that does not appear in BI or &. Then the Il-set consisting of three 

elements of frequency one from each of BI and B2, two elements of frequency one 

from each of B3 and B4 and x form an unrepresented Il-set in the design. Thus, the 

four blocks B1, &, B3 and B4 cannot form a (3- + 2, k, 11,4) Lotto design. This 

implies that L(3k + 2, k, 11.4) 3 5. O 

Theorem 4.3.16 : If k > 4, L(3k +3, k, 12,4) > 5. 

Proof : Suppose L(3k + 3, k, 12,4) 5 4 and consider a (3k + 3, k ,  12,4) Lotto design 

B with 4 blocks BI ,  B2, B3 and Bq. As 3k + 3 5 4k for k 2 4, Theorem 2.2.9 implies 

that we may assume that our design has no elements of frequency zero. By analyzing 

the frequencies of the eiements in the design, we conclude there are at least 2k + 6 

elements of frequency 1. We claim that each block in the design contains at least 

three elements of frequency 1. For if not, suppose Bq has at most two elements of 

frequency 1. The remaining k - 2 elements in B4 must have frequency 2 or more 

and hence must appear again in the other three blocks. Since there are at least 

2k + 6 - 2 = 2k + 4 elements of frequency 1 in BI, B2 and B3, these three blocks may 

contain a t  rnost 3k - (2k + 4) = k - 4 other elements which is less than the k - 2 

elements they must hold. Hence, each block in the design has a t  least three elements 

of frequency 1. By selecting three elements of frequency 1 from each of the 4 blocks, 

we could form a 12-set that is not represented by any block in the design. Hence, 

L(3k + 3, k, 12,4) 1 5. 0 

Theorem 4.3.17 : If k 2 5, L(2k+4,k,12,5) > 4. 

Proof : Suppose L(2k + 4, k, 12,5) $ 3 and consider a (2k + 4, k, 12,5) Lotto design 

with 3 blocks BI, Bz and B3. AS 2k + 4 < 3k for k 2 5, Theorem 2.2.9 implies that 
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may assume that Our design has no elements of frequency zero. By analyzing 

the frequencies of the elements in the design, we conclude there are a t  least k + 8 
elements of frequency 1. We claim that each block in the design contains at  Ieast 

four elements of frequency 1. For if not, suppose B3 has a t  most three elernents of 

frequency 1. The remaining k - 3 elements in B3 must have frequency 2 or more 

and hence must appear again in the other two blocks- Since there are a t  least 

k + 3 - 3 = k + 5 elements of frequency 1 in Bi and B2, these two blocks may contain 

at most 2k - (k + 5) = k - 5 other elements which is less than the k - 3 elements they 

must hold. Hence, each block in the design has at l e s t  four elements of frequency 1.  

By selecting four elements of frequency 1 from each of the 3 blocks, we forrn a 12-set 

that is not represented by any block in the design. Hence, L(2k + 4 ,  k ,  12,5) 1 4.  O 

Theorem 4.3.18 : I f k  2 5 ,  L ( 2 k + 3 , k 7 1 1 , 5 )  2 4 .  

Proof : By Theorem 4.3.17, L(2k + 4 ,  k ,  12,5) 2 4 for k > 5. Then by Theorem 

3.3.5, L(2k + 3 , k ,  11,5) 2 L(2k + 4 , k ,  12,5) and hence L(2k + 3 , k ,  11,5) 2 4 for 

k 1 5 . 0  

4.4 Conclusion 

A generalization of the Schonheim bound was proved for Lotto designs. We have also 

stated proved bound formulas for infinite classes of parameters. These lower bound 

formulas may be used to improve our collection of tables. Other results similar to 

those given by Theorem 4.3.17 may also be obtained. 



Chapter 5 

Special Cases 

5.1 Introduction 

In this chapter, we will improve the lower and upper bounds for L(n, k , p ,  t) on a 

case by case basis. Different techniques will be applied to improve these bounds. For 

the cases where t = 2, the results from Bate and van Rees [2] may be applied. The 

main goal of this Chapter is to complete the gaps in Bate's tables [l] and ascertain 

some of the smaller values. 

5.2 Lower Bounds 

The results from Bate and van Rees which are stated in Chapter Two are referenced 

quite often in this section. Before we begin, we would like to state several results 

that are useful for determining if a Lotto design has elements of a certain frequency. 

Theorem 5.2.1 : If there &ts an element of frequency x in an (n, k,p, t) Lotto 

design with y blocks , then there exists an (n - (x(k - 1) + l ) ,  k, p - 1, t) Lotto design 
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vith y - x bloc&: where n 1 m a x { ( x  + l)(k - 1) + 2, x(k - 1) + p } .  

Proof : Let the element a have frequency x in the (n, k, pl t) Lotto design. Delete the 

blocks from the design that contain the element a. In the remaining blocks, replace 

the elements that appeared in the deleted blocks with arbitrary elements. This is 

possible since n is large enough. Let R be a (p - 1)-set chosen from the n - xk + x - 1 

elements. Then {a} u R is a pse t  and so was represented in the original design. But 

since the elements of R and a did not occur together in any block, {a) U R must 

have been represented in one of the y - x blocks not containing a. Hence R wouid 

still be represented by one of the new y - x blocks. Hence the y - x blocks form an 

(n - (x(k - 1) + l ) ,  k ,p  - 1, t )  Lotto design. 

The following result is immediate from Theorem 5.2.1 

Corollary 5.2.1 : If there ezists an element of frequency zero in an (n, k ,  p, t) Lotto 

design &th y blocks, then there exists an (n - 1, k,p - 1, t) Lotto design on y blocks. 

CoroHary 5.2.2 : If there exists an element of frequency one in an (n, k,p, t) Lotto 

design with y bloc&, then there ezists an (n - k + t - 2, k, p - 1, t )  Lotto design vith 

y -  1 blocks, wheren> 2 k - t + 1  a n d n >  k + p - 1 .  

Proof  : Suppose the element 1 has frequency one in an (n, k, pl t) Lotto design, 

and Say it occurs in the block B1 = {l,  2, . .. , k}. Delete BI from the design and 

delete d l  but t - 2 elernents that are in BI, Say do not delete 2,3, ... , t  - 1 and delete 

2, t ,  t + 1, ..., k. In the remaining blocks, replace t ,  t + 1, ..., k with arbitrary remaining 

elements. This is possible as n is large enough. Let R be any ( p  - 1)-set chosen from 

{2,3,4, ..., t  - 1 )  U {k + 1, k + 2,  ..., n). Consider R u (1). This set is represented 

in the original design by some block that is not B1 as BI contains at most t - 1 
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elements from R U (1). Thus, this block must still be in the new design with those 

same elements. Hence, R is represented in the new design. 0. 

The following result is immediate from Corollary 5.2.1 and Corollary 5.2.2. 

Corollary 5.2.3 : If L(n, k , p ,  t )  < min{L(n  - 1 ,  k , p -  l , t ) ,  L(n - k-+ t - 2,  k , p  - 
1, t + 1 ,  then the elements of any minimd (n ,  k ,p ,  t )  Lotto design must have fie- 

quency two or  more. 

The next four results may be used to improve lower bounds for L(n, k , p ,  t )  for any 

given n, k , p ,  t .  These results were helpful in improving several of the lower bounds 

found in Bate's tables. 

Theorem 5.2.2 : I f L ( n , k , p , t ) = b < % ,  then L ( n , k , p , t ) z  L ( n - l , k , p - 1 , t ) .  

Proof : Assume b < L(n - 1,  k ,  p  - 1 ,  t ) .  Then there exists an (n ,  k, p, t )  h t t o  design 

with b blocks whase average occurrence for elements in the design is -no < h" = 1 .  n k  

This means that there is an element of frequency zero in the Lotto design. By The- 

orern 5.2.1, there exists an (n - 1, k , p  - 1 , t )  Lotto design on b blocks. This is a 

contradiction as we assumed b < L(n - 1 ,  k ,  p - 1, t ) .  O 

Theorem 5.2.3 : If L ( n , k , p , t )  = b  < T, then L ( n , k , p , t )  2 1 + L(n - k + t  - 

2, k, p - 1 ,  t ) .  

Proof : Assume b  < 1 + L(n - k + t  - 2 ,  k , p  - 1 ,  t ) .  Then there exists an (n, k , p ,  t )  

Lotto design on b blocks whose average occurrence for elements in the design is 
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< k-  = 2. This means that there must be an elernent of frequency zero or fre- 
n n k  

quency one in the design. If there is an element of frequency zero, then by Theorem 

5.2.1. there exists an (n-1, k,p-1, t )  Lotto design on b < l+L(n-kft-2, k,p-1, t) 

blocks. But by Corollary 4.2.3, 1 + L(n - k +  t - 2, k ,p -  1,t) 5 L(n - 1, k ,p -  1, t ) .  

This is a contradiction. If there is an element of frequency one, ther, by Corollary 

5 - 2 3 .  there exists an  (n- k+t -2, k .  p- 1, t) Lotto design on 6-1 < L(n-k, k? p- 1, t )  

blocks, which is again a contradiction. Since in either case we get a contradiction, 

the theorem is true. 

3n Theorem 5.2.4 : If L(n ,k ,p , t )  = b < T ,  then L(n,k,p, t )  2 min{?, 1 + L(n - 
k + t - 2, k o p  - 1, t)). 

Proof : Assume b < min{?, 1+ L(n- k+t -2, k, p- 1, t)). There exists an (n, k, p, t) 

Lotto design with b blocks where the average occurrence for elements is less than 

three. This means that there must be an element of frequency zero, frequency one 

or frequency two. If there is an element of frequency zero, then by Theorem 5.2.1, 

thereexistsan ( n - l , k , p - 1 , t )  Lotto designon b < l + L ( n - k f t - 2 , k , p - 1 , t )  5 

L(n  - 1, k, p - 1, t) blocks, which is a contradiction. Similady, if there is an element 

of frequency one, then by Theorem 5.2.1, there exists an (n  - k + t - 2, k, p - 1, t )  on 

b - 1 c L(n - k + t - 2, k, p - 1, t) blocks. Again, this is a contradiction. Therefore, 

every element has frequency at least two and so there are at  least y blocks in the 

design. 

The following resuk is used often throughout the Chapter. It determines when a 

pair of elements must appear together in a block of a Lotto design. In the proofs of 

the next several results, the terms single, clique and i-cliques are used. These terms 

were first introduced in Section 2.4. Also recall the term disjoint from Section 1.1. 
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Lemma 5.2.1 : Suppose {al, a*, ..., is a maximum independent set in an 

(n. k. p, 2 )  Lotto design. If x, y are two singles appeanng in diffment bloch un'th 

one of the independent elements, say a l ,  then x, y must appear together in sorne 

block of the design. 

Proof : Consider the p s e t  (z, y, a ~ ,  a3, .. ., ap-l). It must be represented by some 

block in the design. Since az, a3, ... a,-1 are independent elements in the design, no 

two of them can appear together in a block of the design. As z, y are singles appeiu- 

ing with a l ,  they cannot appear with any of the other independent elements. Hence 

x, y must appear together in a block of the design. O 

We now proceed with determining the values of L(n, k , p ,  t) on a case by case basis. 

Theorem 5.2.5 : L(14,3,4,2) = 11. 

Proof : From Bate's tables, 10 5 L(14,3,4,2) 5 11. Assume that L(14,3,4,2) = 10 

and consider a (14,3,4,2) Lotto design on 1C blocks. By Corollaxy 5.2.3, dl elernents 

in the design must have frequency at least 2. There are at least 12 elements of 

frequency two and a t  most 2 elements of frequency three or more. By Theorem 

2.4.7, there are  3 disjoint elements of frequency two, Say 1, 6 and 11, forming a 

maximal independent set in the design. The 6 independent blocks that contain these 

3 elements contain every element in the design, by Theorem 2.4.3. In these 6 blocks, 

there are exactly 4 elements that occur twice (where three of these elements axe 

the independent elements). Thus there are exactly 10 singles. Therefore there exists 

some clique tha t  has 4 singles, Say {1,2,3), {1,4,5). The element 2 must appear with 

elements 4 and 5, and the element 3 must appear with elements 4 and 5. To see why 

the element 2 must appear with the element 4, suppose they did not appear together. 

Then the 4 s e t  {2,4,6,11) is not represented in the design. The argument for why 
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the ot her pairs {2.5}, {3,4) and {3.5) must appear in the design is sirnilar. This 

implies that the elements 4 and 5 (or 2 and 3) have frequency at least 3. If there is 

another clique with 4 singles, then using the same argument as given above, another 

2 elements would have frequency a t  l e s t  3, which contradicts the fact that there are 

at most 2 elements of frequency three or more. So. without loss of generality, the 

two remaining cliques would look like {6,7,8}, {6,9,10) and { I l ,  12,13), {11,14, IO} 

where the element 10 is the non-single. Now the 4se t  {Il?,  10,12) is not represented 

in the six blocks intersecting the independent set {1,6,11). Since there are already 

two elements of frequency a t  l e s t  three, the element 10 cannot occur again. Also, 

the element 1 cannot occur again in the design. Thus the pair {7,12) must appear 

in the design. Now the pair {7,9} must appear in the design or else the 4set  

{1,7,9,11) will not be represented. Similady, the pair {7,13) must appear in the 

design. Since the element 7 must appear with elements 9, 12, 13, this implies that 

eIement 7 must have frequency a t  l e s t  three, which contradicts the fact that a t  most 

two elements may have frequency three. Thus, L(14,3,4,2) > 10. Along with the 

fact that L(14,3,4,2) 5 11, this implies that L(14,3,4,2) = 11. O 

Theorem 5.2.6 : L(16,3,4,2) = 14. 

Proof: From Bate's tables, 13 5 L(16.3,4,2) 5 14. Assume L(16,3,4,2) = 13. 

Then there exists a (16,3,4,2) Lotto design with 13 blocks. By Corollary 5.2.3, al1 

elements have frequency two or more. By looking at frequency counts, we see that a t  

least 9 elements must have frequency two and at most 7 elements have frequency three 

or more. By Theorem 2.4.7, there exist 3 disjoint elements of frequency two forming 

a maximal independent set in the design. But these 6 blocks cannot contain every 

element of the design which contradicts Theorem 2.4.2. Thus L(16,3,4,2) = 14.0 

Theorem 5.2.7 : L(18,3,4,2) = 17. 
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Proof: By Theorem 2.5.5, L(18.3,4.2) 5 17. Suppose there exists a (17,324 2) 

Lotto design with 16 biocks- The minimum number of blocks that m u t  contain 

three disjoint elements is 8 since 7 blocks can hoid only 2(7) + 3 = 17 < 18 elements. 

By Theorem 2.4.7, there are at two disjoint elements of fiequency two, Say 1 and 2. 

There can be as many as 8 other elements occurring with these two elements. Each 

of the remaining 8 elements must therefore have frequency at  least 4. Therefore the 

total number of occurances of elements in the design is at least lO(2) + 8(4) = 52 > 

16(3) = 48, which is a contradiction. Hence, L(18,3,4,2) = 17. O 

Theorem 5.2.8 : L(19,3,4,2) = 18. 

Proof: By Theorem 2.5.5, L(19,3,4,2) 18. Suppose there exists a (19,3,4,2) 

Lotto design with 17 blocks. By arguing exactly as we did in the previous Theorem, 

we find that the 17 blocks must hold 56 elements, which is a contradiction. Hence, 

L(19,3,4,2) = 18. 

Theorem 5.2.9 : L(20,3,4,2) = 20. 

Proof : By Theorem 2.5.5, L(20,3,4,2) 5 20. Assume L(20,3, 4,2) 5 19 and 

consider a (20,3,4,2) Lotto design on 19 blocks. By Corollary 5.2.3, al1 elements 

have frequency two or more. By looking at frequency counts, we see that at l e s t  

3 elements must have frequency two and at most 17 elements have frequency three 

or more. If there are 5 or more elements of frequency two, Theorem 2.4.7 implies 

there are two disjoint elements of frequency two. Since it is not possible for al1 el- 

ements to appear with these two elements, then by Theorem 2.4.3, the remaining 

elements must each have frequency five or more. This implies that the total number 

of occurances of elements in the design is 2(5) + 2(5)  + 5(10) = 70 which is larger 

than 57. Hence the number of elements of frequency two must be 3 or 4. Suppose 
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element 1 has frequency two. There are at least 15 elements of frequency three. The 

elements of frequency two must al1 appear together in a 2-clique where element 1 is 

the independent element of the clique. Then there must exist two disjoint elements 

of frequency three, Say 6 and 13 that do not appear in the 2-clique. (1,6,13) form 

a maximal independent set of the design. By Theorem 2.4.3, every element must 

appear with one of these independent elements. This is clearly not possible, since it 

requires 9 independent blocks to hold al1 20 elements. Hence L(20,3; 4,2) = 20. O 

Theorem 5.2.10 : L(18,3,5,2) = 13. 

Proof : By Theorem 2.5.5, L(18,3,5,2) 5 13. Suppose L(18,3,5,2) = 12 and con- 

sider an (18,3,5,2) Lotto design on 12 blocks. By Corollary 5.2.3, every element in 

the design has frequency two or more. By analyzing the elements' frequencies, we see 

that every element. in the design must have frequency two. By Theorem 2.4.7, there 

are 5 elements (of frequency two) that do no occur together in a block. Hence, these 

five dements form a %set that is not represented by a block in the design. Thus, 

L(18,3,5,2) = 13. 0. 

Theorem 5.2.11 : L(19,3,5,2) = 15. 

Proof : By Theorem 2.5.5, L(19,3,5,2) 5 15. Suppose L(19,3,5,2) < 14 and con- 

sider a (19,3,5,2) Lotto design on 14 biocks. By Theorem 5.2.3, al1 elements in the 

design have frequency two or more. By analyzing the frequencies of the elements, we 

see that there are at least 15 elements of frequency two. By Theorem 2.4.7, there are 

four disjoint elements of frequency two. Since p = 5, this forms a maximum inde- 

pendent set, so by Theorem 2.4.3 every element of the design must appear in one of 
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the independent blocks. There are 8(2) =l6  places for the remaining elements. So 14 

of the elements are singles and one element appears twice in the independent blocks. 

Xow a least 10 of the singles have frequency two, so there is a clique with at l e s t  3 

singles of frequency two. If this clique had 4 singles of frequency two, Say {1,2,3} 

and {1,4.5) where element 1 is the independent element, then the 4 pairs {x, y} 

where x E {2$3) and y E {4.5) must appear in the design or otherwise {a, b, c, x, y) 

would not be represented, where a, b, c are the other independent elements. Since 

element 2 has frequency two, the block (2.4.5) is forced in the design. As element 

3 has frequency two, the block {3,4,5} is also forced in the design. This contradicts 

the assumption that elernents 4 and 5 had frequency two in the design. If the clique 

has 4 singles wit h 3 singles of frequency two, Say {1,2,3) and {1,4,5} where element 

2 has frequency greater than 2, then the block {3,4,5} would be forced. As element 

4 has frequency two, it cannot appear in a block with the element 2 and hence the 

5-set {a, b, cl 2,4) would not be represented by the blocks in the design, where a, b. c 

are the ot  her independent elements. Hence, t here are exactly two cliques containing 

3 singles of frequency two and a non-single. These cliques would then force the 3 

singles of frequency two to occur in another block. Now the other two cliques would 

be forced to have 4 singles, of which 2 have frequency two and 2 have frequency 

three. Consider {Il, 12,13} and {11,14,15) where each element is a single and 12 

is a single of frequency two. Element 12 occurs once again and must do so with 14 

and 15, forcing the block {12,14,15). If 14 or 15 have frequency two (say element 

14), then the pair {13,14} cannot occur and {a, 6 ,  c, 13,14) would not be represented 

by the  blocks in the design. So element 13 must have frequency two and the block 

{13,14,15) is forced. A similar argument may be applied to the remaining cliques. 

So we have 8+1+1+2+2 = 14 blocks forced. Now consider the bse t  {a, b, x, r, s) 

where a, b are independent elements that do  not occur with the non-single x, and T 

and s are singles that occur in a clique with s but not in a block with x. This requires 

another block in the design to represent it. But this contradicts the assurnption that 

L(19,3,5,2) j 14 and therefore L(19,3,5,2) = 15. 0 
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Theorem 5.2.12 : L(20,3,5,2) = 16. 

Proof : By Theorem 2.5.5, L(20,3,5,2) 5 16. Suppose L(20,3,5,2) 5 15 and 

consider a (20,3,5,2)  Lotto design on 15 blocks. By Corollary 5..2.3, every ele- 

ment in the design has frequency two or more. By analyzing the frequencies of 

the elements, we see that there are at least 15 elements of frequency two. The* 

rem 2.4.7 implies there are four disjoint elements of frequency two which make up 

a maximal independent set. The eight blocks containing four such elements must 

look like : {1,5,6),  (1, 7,8), {2,9, IO), {? , I l ,  121, {3,13,14), {3,15,16), {4,17,18), 

{4,19,20) where the elements 1,2 ,3  and 4 are the elements of frequency two that 

form the independent set. Consider the pairs {17,19), (17,201, {18,19), {18,20). 

These pairs must al1 appear in the remaining seven blocks of the design, because 

5-sets of the form {1,2,3,17,19), {1,2,3,17,20), {1,2,3,18,19} and {l, 2,3,18,20} 

m u t  be represented. This requires at least two blocks in the design. Similady, 

the pairs {5,7) {5,8) {6,7), { 6 , 8 ) ,  9 1 ,  {9,12), {Io, Il}, {Io, 12}, {13,15)9 

{w, 161, (14,151 and {14,16} must d l  appear in the design. To have al1 these pairs 

in the design requires at  least six blocks. Thus we require at l e s t  16 blocks. Hence, 

L(20: 3,5,2)  = 16. O 

Theorem 5.2.13 : L(13,4,3,2) = 8. 

Proof : From Bate's tables, 7 5 L(13,4,3,2) 5 8. Assume that L(13,4,3,2) = 7 

and consider a (13,4,3,2) Lotto design on 7 blocks. By Corollary 5.2.3, every element 

in the design has frequency two or more. By analyzing the frequency counts, at  least 

11 elements have frequency two and at  most 2 elements have frequency three or 

more. By Theorem 2.4.7, there are at least 2 disjoint elements of frequency two, say 
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1 and 8, which form a maximal independent set for the design. Since every element 

must appear with 1 or 8, there is a t  most one repeated element not belonging to the 

independent set, giving a t  least 10 singles. This means that at least one clique has 

a t  least 5 singles. Without loss of generality, suppose this clique contain the blocks 

{1, 2,3 ,4)  and {1,5,6,7}. If this clique has 6 singles, then 2 must appear with 5, 6 

and 7, otherwise the Ssets {2,5,8), {2,6,8) and {2,7,8) will not be represented by 

the design. Similarly, the element 3 must appear with the elements 5,. 6, and 7, and 

the element 4 must appear with the elements 5, 6 and 7. This implies that three of 2, 

3, 4, 5, 6, and 7 must have frequency a t  least three. This is a contradiction since the 

nurnber of elements of frequency three or greater is a t  most 2. Thus, the above clique 

must have exactly 5 singles (and thus both cliques have 5 singles). Without loss of 

generality, suppose the element 2 is a non-single. Element 3 must appear with 5, 6 

and 7 elsewhere in the design and element 4 must also appear with 5, 6, 7 elsewhere 

in the design. This clique has 3 elements that appear at l e s t  three times. The same 

is true for the other clique. But this gives too many elements with frequency three. 

Hence, L(13,4,3,2) = 8. 

Theorem 5.2.14 : L(14,4,3,2) = 9. 

Proof: From Bate's tables, L(14,4,3,2) = 8 or 9. Suppose L(14,4,3,2) = 8 and 

consider a (14,4,3,2) Lotto design on 7 blocks. By Corollary 5.2.3, every element 

in the design has frequency two or more. By analyzing the elements' frequencies, 

we see there are a t  least ten elements of frequency two and at m a t  four elements of 

frequency three or greater. Theorem 2.4.7 implies a maximal independent set with 

two elements of frequency two. Without loss of generality, suppose the four inde- 

pendent blocks look like {1,3,4,5), {1,6,7,8), {2,9,10,11), {2,12,13,14). At least 

eight of {3,4, .. ., 14) has frequency two and hence at l e s t  one of the cliques have 

four elements of frequency two (not including the independent element). Suppose 

this clique contains the independent element 1. Then without loss of generality, at 
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least two of the elernents 3, 4 and 5 (say elements 4 and 5) have frequency two. 

This implies that the blocks {3.6,7.8) and {4,6,7,8) are forced. Also the element 

5 must appear with 6, 7 and 8 elsewhere in the design. This means that elements 

5, 6, 7 have frequency a t  least three. Hence, only one of the elements between 9 

and 14 has frequency at least three. So without loss of generality, suppose elements 

9: 10, .... 13 have frequency two and element 14 has frequency a t  least three. But 

then the blocks {9,12,13,14), {10,12,13,14) and {Il, 12,13,14) are forced. There 

are too many elements of frequency a t  least three, which is a contradiction. Hence 

L(14,4,3,2) = 9. O 

Theorem 5.2.15 : L(15,4,3,2) = 11. 

Proof : From Bate's tables, L(15,4,3,2) = 10 or 11. Suppose L(15,4,3,2) = 10 

and consider a (15,4,3,2) Lotto design with 10 blocks. By Corollary 5.2.3, every 

element in the design has frequency a t  l e s t  two. By analyzing the frequencies of 

the elements in the design, we know there are at l e s t  five elements of frequency 

two and a t  most 10 elements of frequency three or higher. There cannot exist two 

disjoint elements of frequency two in the design, for if there were, they would form a 

maximal independent set and by Theorem 2.4.2, al1 elements must appear with one 

of these independent elements. This is impossible since there are too many elements. 

Thus, by Theorem 2.4.7, the number of elements of frequency two is at most six. We 

consider the value of f2. 

Case 1 : f2 = 6. Without l o s  of generality, suppose the elements {1,2, ..., 6) have 

frequency two. Then the blocks containing the elements of frequency two must look 

like : {1,2,3,4), {1,2,5,6) and {3,4,5,6). The remsining blocks of the design must 

form a (9,4,2,2) design. This requires 8 blocks. Thus the design has 11 blocks which 
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is too many. 

Case 2 : f2 = 5. Suppose that the elements 1, 2, 3,1,  5 are frequency two elements. 

Consider the clique {1,2,3, x), {l ,  4, y, r )  where one of z, y, z must be the element 5. 

Al1 occurrences of the elements of frequency two must appear in three blocks of the 

design where two of the blocks are stated above. Within these three blocks, there 

are at most two elements that are not of frequency two. Every non frequency two 

eIement must appear together in the r a t  of the design, except possibly for one pair 

that may appear in the three blocks. This requires a t  least L(10,4,2,2) - 1 = 8 

blocks, which means the size of the design is at least 11. This is a contradiction. 

Since each case led to a contradiction, we conclude that L(15,4,3,2) = 11. i~ 

Theorem 5.2.16 : L(16,4,3,2) = 12. 

Proof : From Bate's thesis, L(16,4,3,2) = 11 or 12. Suppose L(16,4,3,2) 5 11 and 

consider a (16,4,3,2) Lotto design with 11 blocks. By Corollary 5.2.3, all elements 

in the design have frequency two or more. By analyzing the elements' frequencies, 

we see there are at Ieast four eiements of frequency two. Suppose element 1 has fre- 

quency two. Since not ail elements can occur with elernent 1, there must be another 

element, say 2, that does not occur with 1 in the design. Then elements 1 and 2 

form an maximum independent set. If element 2 had frequency two, then not al1 

elements could occur with element 1 or with element 2, contradicting Theorem 2.4.2. 

Hence al1 pairs of elements of frequency two must occur together in some block. By 

Theorem 2.4.7, the maximum number of non-disjoint frequency two elements is 6. If 

al1 elements not occurring with element 1 had frequency four or more, then the total 

number of occurrences in the design is at least 7(2) + 9(4) = 50 > 44, which is a 

contradiction. So, we may assume that there is an element that does not occur with 
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element 1 and has frequency three. We consider the possible number of elements of 

frequency two in the design. 

Case 1 : Suppose the number of elements of frequency two in the design is 6, where 

the elements { 1,2,  ... , 6 )  have frequency two. Then t h e  blocks containing the ele- 

ments of frequency two must look like : {l, 2,3: 41, {1,2,5,6) and {3,4,5,6). The 

remaining blocks of the design must form a (10,4,2,2) design. This requires 9 blocks. 

Thus the design has 12 blocks, which is too many. 

Case 2 : Suppose the number of elements of frequency two in the design is 5. Let 

1, 2, 3, 4 and 5 be the elements of fiequency two. Then the following is forced : 

(1.2: 3, x),  {l, 4, y,  t) and {2,3,4,  w}, where two of x, y, w, z is the element 5. The 

other two elements have frequency three or more. It is easy to check that al1 pairs 

of frequency three or more elements must occur together in some block or there wil1 

be some %set {a, b , c )  not represented by the blocks of the design, where a is an 

element of frequency two, b and c are not x, y, z or w and c and has frequencies three 

or more. This requires a t  least L(11,4,2,2) - 1 = 11 blocks. The 1 is subtracted 

because y and z might be frequency three or more and that might mean that one 

less t han L (1  1 ,4,2,2)  blocks are needed. But 11 + 3 = 14 blocks is too man- as we 

assumed that the design fias 13 blocks. 

Case 3 : Suppose the number of elements of frequency two in the design is 4. Then 

the number of elements of frequency three is exactly 12 and there are no elements 

with frequency four or more. There are three non-isomorphic subcases to consider. 
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Case 3a : The independent blocks are {l,  2,3, a), {l, 5,6,7), {8,9,10, I l ) ,  { S .  9,12,13)' 

{8,14,15,16). One of the two blocks containing 1 must have a t  least two more ele- 

rnents of frequency two. Let elements 2 and 3 have frequency two. Since elements 2 

through 7 are singles, the blocks { P l  5 ,6 ,7 }  and {3,5,6,7) are forced. Further, ele- 

ments 4 and 5 must occur in some block which implies element 5 must have frequency 

three or more, which is too much. 

Case 3b : The independent blocks are {l,  2,3,4), (1' 2 , 5 , 6 ) ,  {7,8,9,10), (7: 11,12,13). 

{7.14,15,16}. The first two blocks have 4 pairs that musc appear in the design re- 

quiring at l e s t  one full block. The remaining 10 elernents 7, 8,.., 16 must form an 

(10,4,2,2) Lotto design, which requires at least 9 blocks. Hence, this case requires 

at least 12 blocks, which is a contradiction. 

Case 3c : The independent blocks are {l ,  2,3,4), {1,5,6,7), {8,2,9,10), {8,11,12,13), 

{8,14,15,16). The element 9 must occur with elernents 11 through 16 in the design 

in two full blocks containing no other elements. This is also true for the element 

10. Then elements 11 through 16 have occurred a total of 3 times and cannot occur 

again. But none of the 9 pairs {x, y) where x E {11,12,13) and y E {14,15,16} 

have yet appeared, so some %set {3, x, y) is not represented by the blocks of the 

design. This is a contradiction. 

Since each case led to a contradiction, we conclude that L(16,4,3,2) = 12. 0 

Theorem 5.2.17 : L(17,4,3,2) = 14. 

Proof : From Bate's tables, L(17,4,3,2) = 12, 13 or 14. Suppose L(17,4,3,2) $ 13 

and consider a (17,4,3,2) Lotto design on 13 blocks. By Corollary 5.2.3, every ele- 

ment of the design must have frequency two or more. By analyzing the frequencies 
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of the elements, a-e see that there are at least nine elernents of frequency two. By 

Theorem 2.4.7, there exist two disjoint elements of frequency two. These two ele- 

ments form a maximal independent set, as p = 3. By Theorem 2.4.3, every other 

element in the design m u t  appear with these two elements. But this is clearly not 

possible. Hence, L(17,4,3,2) = 14. 

Theorem 5.2.18 : L(18,4,3,2) = 15. 

Proof : By Theorem 2.5.5, L(18,4,3,2) 5 15. Suppose L(18,4,3,2) 5 14; then 

consider ar. (18,4,3,2) Lotto design with 14 blocks. By Corollary 5.2.3, dl elements 

in the design have frequency two or more. If there exists an element of frequency 

two, then the elements that are disjoint from it rnust have frequency four or more by 

Theorem 2.4.2. This implies that the total occurrences of the elements in the design 

is at least 4( l l ) -  + 7(2) = 58, which is larger that 4(t4) = 56, a contradiction. So 

there are no elements of frequency two in the design. %y anaiyzing the frequency of 

elements, we see that there are a t  least sixteen elements of frequency three and at 

most two elements of frequency four or more. If element 1 has frequency three, then 

there exists an element, Say 2, of frequency three that does not occur with element 1 

in the design. These two elements form a maximum independent set for the design. 

By Theorem 2.4.3, every element must occur with at least one of the 2 independent 

elements. We consider the four possible configurations for the independent blocks. 

Case 1 : One of the ctiques, Say the blocks containing 1, consists of the independent 

element and 9 singles. At least 7 of the singles have frequency three, so one of the 

blocks consists of 1 and three singles of frequency three. Let Bi be that block so 

BI = {1,3,4,5), BÎ = {1,6,7,8) and B3 = {1,9,10,11). Now 3 must appear with 

elements 6 through 11 in its remaining two blocks. These blocks are full. The same is 
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true for element 4 and element 5. So elements 6 through 11 each have frequency four 

or more. But this contradicts the assumption that there are a t  most two elements 

of frequency four or more in the design. 

Case 2 : Each of the two cliques contains a repeated element besides the inde- 

pendent elements. Consider Bi = {l ,  3,4,5), B2 = {l, 3,6,7),  B3 = {l ,  8,9,10), 

B4 = {2,11,12,13), B5 = {2,11,14,15} and Bs = {2,16,17,18}. The elements 4, 

5, 6, 7, 8: 9, 10, 22, 13, 14, 15, 16, 17 and 18 are singles. If element 3 has frequency 

three, the block {3,8,9,10} is forced. The elements 4, 5, 6, 7 must appear with 8 

in the  design. But this is also true for elements 9 and 10. This contradicts the fact 

that there are at  most two elements of frequency four or more. So element 3 must 

have frequency four. A symmetric argument will give that element 11 has frequency 

four. So, ail the singles have frequency three. Now, since 8 must occur with 3, 4, 5, 

6, and 7 in its last two remaining blocks, it cannot occur with both 9 and 10 again. 

So let elements 8 and 9 not occur together again in the design. Thus 3, 4, 5, 6 and 7 

must occur in the two bIocks with element 8 and in two different blocks with element 

9. As 3, 4, 5, 6 and 7 have frequency three, they cannot occur again in the design. 

Now 3, 4, 5, 6, and 7 must also occur with 11. There is room for two occurances of 

11 in those four blocks, but then element 11 can occur with a maximum of four of 

the five elements 3, 4, 5, 6 and 7. This is a contradiction. 

Case 3 : One of the cliques, Say the blocks containing 1, has a non-single and eight 

singles in it. Let element 3 be the non-single. The blocks are Bi = {l ,  3,4,5}, 

B2 = {l ,6,7,8)  and B3 = {1,9,10,11}. Since there are at most two elements of 

frequency four or more, one of & or B3 must have a t  most one of those elements in 

it. So let elements 9 and 10 have frequency three. If 9 and 10 occur together again, 

then the blocks (9, a, 6, c) ,  (9, d, el 10) and (10, a, b, c )  are forced in the design where 

{a, 6, cl d, e) = {4,5,6,7,8}. But element 11 then has not occurred with a, b, c and so 
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those elements must occur at  least four times, which is a contradiction. So elements 

9 and 10 only occur together in B3. Thus elements 4, 5, 6, 7 and 8 must occur in 

two bIocks with element 9 and in two different blocks with element 10. So at least 

four of the elements 4, 5,6,  7 and 8 do not occur again but do have to occur with 11. 

Hence, 11 must occur twice in these blocks and once more. Hence, element 11 has 

frequency four. Using a similar argument, it can be proved that one of the elements 

6. 7 or 8, Say 8 is an element of frequency 4. So elements 8 and 11 occur together in 

a biock not containing 9 and 10. So the elements 4, 5, 6, 7, 9, 10 ail have frequency 

three. In particular, elements 4 and 5 have frequency three. They must occur with 

6, 7, 8, 9: 10, 11 and this happens in four full blocks where 4 and 5 do not occur 

together. Xow element 6 must occur once with element 4 and once with element 5 

and does not occur again. So it must occur with 9, 10 and 11 in these two blocks, 

Say as follows : {4,6,9,11) and {5,6,10, x). This is without loss of generality. Since 

elements 7 and 8 must occur with 9, the block {5,7,8,9) is forced. Since elements 7 

and 8 m u t  also occur with element 4, the block {4,7,8,10) is also forced and hence 

x must be the element 11. But this is a contradiction, as the two singles 7 and 11 

have not occurred together in any block of the design. 

The next case considers the situation where the two cliques have two elements in 

common. There are three sub cases. 

Case 4a : BI = {1,3,4,5), B2 = {1,6,7,8), B3 = {1,9,10, I l ) ,  Bq = {2,3,4,12), 

B5 = {2? 13,14,15) and Bs = {2,16,17,18). Pairs of the type {x, y) where x E {5} 

and y E {6,7,8,9,10, I l ) ,  or x E {6,7,8) and y E {9,10,11) must appea  in the 

design by Lemma 5.2.1. Similarly, pairs of the type {x, y) where x E (12) and 

y E {13,14,15,16,17,18) or z E {13,14,15) and y E {16,17,18) must appear in the 

design by k m m a  5.2.1. These pairs will be called type A pairs. There are 30 type A 

pairs. Now the following bsets {3,6,13), (3,7,14), {3,8,15), (3,9,16), {3,10,17) 
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and {3.11,18)  must be represented by pairs. We will call such pairs type B1 pairs. 

Simiiarly, Psets {4 ,6 ,18 ) ,  { 4 , 7 , 1 3 ) ,  (48,  141, {4 ,9 ,15 ) ,  {4 ,10 ,16)  and {4 ,11 ,17 )  

must be represented by pairs. We will call such pairs type B2 pairs. We will Say 

that  a pair is a type B pair if it is either a type BL OC type B2 pair. There are no 

comrnon pairs between the  type A pzirs, type BL pairs and the type Et2 pairs. There 

are a t  least 6 type B1 and 6 type B2 pairs needed to represent the listed Ssets. The 

total number of pairs needed is 30 + 6 + 6  = 42. 

LVe now proceed to show that any block can contain a t  rnost z type A pairs, and 

y type B pairs which represent distinct Ssets from our list, where z + y < 6. Any 

block in the design can hold C ( 4 , 2 )  = 6 pairs. So we must show that any block 

has a t  least one pair that is neither a type A pair nor represents any of the listed 

Psets. Let M = { a ,  b, c, d )  be a block in the design where M # Bi for i = 1 to 

6. If M has two elements from the same block Bi for i = 1,2  or 3, then those two 

elements form the required pair. Also it is clear that element 3 and element 4 can 

be interchanged in the following argument. There remain six situations under which 

M may be formed. Let X = { 5 , 6 , 7 , 8 , 9 , 1 0 , 1 1 )  and Y = {12,13,14,15,16,17,18) .  

Consider the situation where { a ,  b, c )  C X and d  E Y. Clearly, element 5 must be 

in B, and {5, d )  is not type A and cannot represent one of OUT listed Ssets. Now 

consider the case where { a ,  b)  C X and { c , d )  C Y .  The pair {a ,  c )  represents 

( 3 ,  a ,  c )  or 14, a, c ) .  Suppose it represents (3, a, c) .  Then the pair {a ,  d )  must repre- 

sent (4, a, d ) ;  { b ,  c )  represents ( 4 ,  b,  c ) ,  and {b,  d )  represents (3, b, d). But the S s e k  

have been set up to preclude this possibility. So the only situation left to investigate 

is M = { 3 , b ,  b3, c )  where b2 E B2, b3 E B3 and c E Y. Now (3, &) represents 

(3 ,  b2, x) , (3, b3)  represents {3, b3, Y) and {3, c )  represents { 3 ,  z, c) . The bsets must 

be distinct. Now {b2, C )  cannot represent { 3 , b ,  C )  = (3, &, x) as that Sset  would 

be represented twice and we need %sets to be represented once. So {b2, c} represents 

(4, b2, c ) .  Similarly, {b3, C )  represents {4, 63, c ) .  But there is only one Sset  with 4  
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and c in it. so bz = b3. which is a contradiction. The remaining three situations just 

have X and Y interchanged. So any block has a pair that is neither type A nor a 

pair that represents a unique Sset  from our list. 

So any block contains a t  most x type A pairs and y type B pairs that represent 

unique 3-sets from Our list where x + y < 6. Since there are 42 p@rs needed, we 

need at least y or 9 blocks. This gives us a total of 15 blocks, which is a contradiction. 

Case 4b : BI = {l,  3 , 5 , 6 ) ,  B2 = {1,4,7,8), B3 = {1,9,10,11), B4 = {2,3,12,13}. 

B5 = {2,4,14,15) and B6 = {2,16,17,18). Pairs of the type {x, y) where z E {5,6) 

and y E {7,8,9,10, I l ) ,  or x E {7,8) and y E {9,10,11) must appear in the de- 

sign by Lemma 5.2.1. Similarly, pairs of the type {z, y) where x € {12,13) and 

y E {14,15,16,17,18), or x E (14,15) and y E {I6,17,B) rnust appear in the 

design by Lemma 5.2.1. These pairs will be called type A pairs. There are 32 type 

A pairs. Now the 3-sets {3,7,14), {3,8,15), {3,9,16}, {3,10,17) and {3,11,18} 

must be represented by pairs. We will call such pairs type B' pairs. Similarly, 

bsets {4,5,12), {4,6,13), (4,9,18), {4,10,16) and {4,11,17) must be represented 

by pairs. We will call such pairs type B2 pairs. We will say that a pair is a type B 

pair if i t  is either a type B' or type B2 pair. There are no common pairs between 

the type A pairs, type B1 pairs and the type B2 pairs. There are a t  least five type 

B1 and five type B2 pairs needed to represent the listed Ssets. The total number of 

pairs needed is 32 + 5 + 5 = 42. Using a tedious argument similar to the one in case 

4a, it c m  be proved that any block in the design has at most x type A pairs in it and 

can represent y distinct bsets from the list of 3-sets above, where x + y < 6. Then 

the total nurnber of blocks in the design is at least 6+9 = 15, which is a contradiction. 
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Case 4c : BL = {1,3,4,5), B2 = {1,6,7,8), B3 = {1,9,10, Il}, B4 = {2,3,12,13), 

B5 = {2,4,14,15) and Bs = {2.16,1?. 18). Pairs of the type {x, y) where x E {5) 

and y E {6,7,8,9,10, I l ) ,  or x E {6,7,8) and y E {9,10,11) must appear in the 

design by Lemma 5.2.1. Similady, pairs of the type {x, y) where x E {12,13) and 

y E {14,15,16117. 181, or z E (14.15) and y E {16,17,18) must appear in the 

design by Lemma 5.2.1. These pairs will be called type A pairs. There are 31 type 

A pairs. Now the Bsets {3,7,14), {3,8,15}, {3,9,16), {3,10,17) and {3,11,18) 

must be represented by pairs. We will call such pairs type B' pairs. Similady, 3- 

sets {4,7,12), {4,8,13}, {4,9,18), {4,10,16) and {4,11,17) must be represented by 

pairs. We will call such pairs type B2 pairs. We will Say that a pair is a type B pair 

if i t  is either a type B1 or type g2 pair. There are no common pairs between the type 

A pairs, type B1 pairs and the type B2 pairs. There are a t  l e s t  five type B1 and five 

type B2 pairs needed to represent the listed 3-sets. The total number of pairs needed 

is 31 + 5 + 5 = 41. Using an even more tedious argument similar to  the one in case 

4a, it can be proved that any block in the design has a t  m a t  z type A pairs in it and 

can represent y distinct 3-sets from the list of Ssets above, where x + y < 6. Then 

the total number of blocks in the design is a t  l e s t  6+9 = 15, which is a contradiction. 

Since each case led to a contradiction, we conclude that L(18,4,3,2) = 15. D 

Theorem 5.2.19 : L(19,4,3,2) = 16. 

Proof : By Theorem 2.5.5, L(19,4,3,2) < 16. Assume that L(19,4,3,2) 5 15 and 

consider a (19,4,3,2) Lotto design with 15 blocks. By Corollary 5.2.3, all elements in 

the design have frequency two or more. If there exists an element of frequency two, 

then by Theorem 2.4.2, there must exist an element of frequency four which make up 

a maximal independent set. This implies that the total occurrences of the elements 

in the design is at  least 4(12) + 7(2) = 62 which is larger that 4(15) = 60. Hence, 
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there are no elernents of frequency two in the design. By analyzing the frequency 

of the elements. we conclude that there are at least sixteen elements of frequency 

three and a t  most three elements of frequency four or more. This implies there are 

two elements of frequency three, {1,2}, that form an maximum independent set. 

Consider the following non-isomorphic configurations of the independent blocks. 

Case 1 : Suppose the independent blocks are Bi = {l, 3,4,5),  B2 = I l ,  6,7,8}, 

B2 = {1,9,10,11), CI = {2,3,12,13), C2 = {2,14,15,16), C3 = {2,17,18,19). 

By Lemma 5.2.1, pairs of the form {x, Y) where x E {4,5), y E {6,7,8,9,10,11), 

or x E {6,7,8),  y E {9,10,11) must appear in the design. Similarly, pairs of the 

form {z, y) where x E {12,13), y E {14,15,16,17,18,19), or x E {14,15,16), y E 

{17,18,19) must also appear in the design. We will cal1 the pairs type A pairs. There 

are 42 type A pairs. Now %sets of the form {3,x, Y) where x E {6,7,8,9,10, I l ) ,  

y E {14,15,16,17,18,19), must also be represented. The pairs that represent these 

3-sets will be called type B pairs. There are no common pairs between the type 

A and type B pairs. Consider the Ssets {3,6,14), {3,7,15), {3,8,16), {3,9,17}, 

{3,10,18) and {3,11,19). These bsets require at least 6 distinct pairs to represent 

them. Hence the number of type B pairs that need to appear in the design is 6.  

Thus the total number of pairs that need to appear in the design is at  least 48. 

Mie now proceed to show that given a block, it can contain at most five pairs of type 

A and type B unless there are two pairs of type A or 1 pair of type A in the block. 

To show this, consider a block in the design. It can hold a t  most C(4,2) = 6 pairs- 

Clearly it cannot hold six pairs of type A and it cannot hold six pairs of type B. If 

the block contains five pairs of type A, then it must be of the form {a, b, c, d), where 

a ,b  E Bi, c E Bj and d E Bk or a,b E Ci, c E Cj and d E Ck, where i, j , k  E {1,2,3), 

i # j # k, a # 3, b # 3, c # 3 and d # 3 . Then no pairs of type B are in this block 

and hence five pairs of type A and B appear in this block. If the block contains four 
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pairs of type A. then it must be of the form {a, 6. c, d), a-here a. b E Bi! c, d E Bj 

or a , b ~  Ci, c.d EC,. where i , j  E {1,2,3),  i # j, a # 3 ,  b # 3 ,  c f 3  a n d d # 3 .  

Again, no pairs of type B are in this block and hence four pairs of type A and B 

appear in this block. If the block contains three pairs of type A, then it must be of 

the form form {a. 6,  c, d )  where a E Bi, b E Bj and c E Bk or a E Ci, b E Ci and 

c ~ ~ ~ w h e r e z , j , k ~ { 1 . 2 , 3 }  , i # j # k , a # 3 , b # 3 a n d c # 3 .  Nowoneofa,b,c, 

say a, must appear with the element 3. Hence, only the pairs {c, d), -{b,  d} may be 

of type B. Tbus, there are at most five pairs of type A and B in this case. 

We will now show that there cannot be any blocks in the design that contain one 

or two pairs of type A. If there are x > O blocks that contain exactly one pair of 

type A, then x pairs of type A appears in these blocks. Since there are 42 pairs of 

type A, 42 - x pairs of type A must appear in the remaining 15 - 6 - x = 9 - x 

blocks in the design. As each of the remaining blocks may contain at most five pairs 

of type A, 5(9 - x) 3 42 - x,  which implies x 5 $, a contradiction. Hence, there 

are no blocks that contain one pair of type A. If there are s > O blocks that contain 

exactly two pairs of type A, then 2x pairs of type A appears in these blocks. Since 

there are 42 pairs of type A, 42 - 22 pairs of type A must appear in the remaining 

15 - 6 - x = 9 - x blocks in the design. As each of the remaining blocks may contain 

at most five pairs of type A, 5(9 - x) 2 42 - 2 1  which implies x 5 1. If x = 1, then 

9 - 1 = 8 blocks must each contain five pairs of type A (and hence no pairs of type 

B). Thus, the block that contains two pairs of type A must contain al1 s k  pairs of 

type B, which is impossible. Hence, there are no blocks that contain two pairs of 

type A. 

We conclude that a block in the design can contain at most five pairs of type A and 

B. There are 48 pairs that need to be represented, each block holding at most five of 

these pairs. This requires at l e s t  ten blocks making the total number of blocks in 

the design to be a t  l e s t  16. This is a contradiction. 
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Case 2 : Suppose the independent blocks are BI = {1,3,4,5), B2 = {l ,  6,7,8), 

B2 = { l ,  9.10, I l ) ,  CL = {2,12,13,14), C2 = {2,12, 15,16), C3 = {Z, 17,18,19). AS 

there are a t  most three elements of frequency four or more, we may assume elements 

3 and 4 have frequency three. Since element 3 must appear with {6,7,8' 9,10, I l ) ,  

then the blocks {3' x l  y, z ) ,  (3, w, u, v) are forced in the design, where 2 ,  y: r ,  w, u, v E 

{6,7, 8,9,10,11). Similarly element 4 must appear with {6,7,8,9,10,11); then the 

blocks (4, x, y, z ) ,  {4, w ,  u, v)  are forced in the design, where x, y, z, w, u, v E {6,7,8, 

9.10,11). Now element 5 is a single and must appear with {6,7,8,9,10, Il}, forcing 

t hese elements to  appear once more. Hence, {6,7,8,9,10,1 l} must have frequency 

four or more which contradicts the fact that a t  most three elements have frequency 

4 or more. 

Since each case led to a contradiction, we conclude that L(19,4,3,2) = 16. 0 

Theorem 5.2.20 : L(20,4,3,2) = 18. 

Proof : By Theorem 2.5.5, L(20,4,3,2) < 18. Assume that L(20,4,3,2) 5 17 and 

consider a (20,4,3,2) Lotto design with 17 blocks. By Corollary 5.2.3, al1 elements 

in the design have frequency two or more. Let us assume there exists an element of 

frequency two, Say the element 1. By Theorem 2.4.2 and Theorem 2.4.1, there must 

exist an element of frequency four which, together with element 1, make up a maxi- 

mal independent set. Hence there are at least 13 elements of frequency four or more, 

some of which must have kequency four. This implies there are at least five elements 

of frequency two, al1 of which must occur with the element 1. The independent blocks 

can now be determined up to isomorphism. The blocks containing the element 1 are 

{ 1,2,3,4} and { 1,5,6,7}. There are at least two elements of frequency two in one 

of the blocks, Say elements 2 and 3. By Lemma 5.2.1, pairs of the form (x, y) where 
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x E (2.3. -4) and y E {S. 6.71, must occur in the design. Thus the blocks {2,5' 6 ,7)  

and {3 .5 .6 ,  '7) are forced and elements 5, 6, 7 must occur a t  least once more with ele- 

ment 4. Hence. elements 5, 6, 7 have frequency four or more and so there are a t  most 

three elements of frequency two occurring with element 1, which is a contradiction. 

This implies there are no elements of frequency two. We know there are at least 12 

elements of frequency three and a t  most eight elements of frequency fout or more. 

Let element 1 have frequency three. Since at most nine elements of frequency three 

can occur with the element 1, let element 2 have frequency three, and not occur with 

element 1 in any block of the design. Then without loss of generality, the independent 

blocks are Bi = {1,3,4,5),  B2 = {l, 6,7,8) ,  B3 = {1,9,10,11), B4 = {2,12,13,14), 

B5 = {2,15,16,17), B6 = {2,18,19,20}. Since there are at least tweleve elements 

of frequency three, there must be a t  l e s t  five of them occurring with eiement 1 or 

2, Say element 1. There must be at least two of them in BI, B2 or &. Suppose 

elements 3 and 4 are two such elernents of frequency three. By Lemma 5.2.1, pairs 

of the form {z, y}, where x E {3,4,5} and y E {6,7,8,9,10,11), must occur in the 

design. This implies element 3 occurs in two more blocks with just enough spaces for 

elements 6, 7, 8, 9, 10, 11. The same is true for element 4. Now 6, 7, 8, 9, 10, 11 still 

has to  occur with element 5. Hence those six elements have frequency four or more. 

This implies that there are a t  most three elements of frequency three occurring with 

1. The same is true for element 2. Hence, there are a t  most eight elements of fre- 

quency three in the design, which is a contradiction . Therefore L(20,4,3,2) = 18. O 

Theorem 5.2.21 : L(19,4: 4,S) = 11. 

Proof: We know that L(19,4,4,2) = 10 or 11. Assume that L(19,4,4,2) = 10 and 

consider a (19,4,4,2) Lotto design on 10 blocks. By Corollary 5.2.3, al1 elements in 

the design have frequency two or more. Thus there are at least seventeen elements 

of frequency two and at most two elements of greater frequency. By Theorem 2.4.7, 
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there are three disjoint elernents of frequency two, Say the elements 1? 8 and 15, 

forming a maximal independent set of the design. Since every elernent must appear 

in one of the six blocks containing the elements 1, 8, 15 and there are at most two 

elements repeated in the independent blocks other than the independent elements, 

there are at least fourteen singles. Either one of the cliques has six singles or two 

of the three cliques have at least five singles. If one of the cliques has six singles, 

then assume it looks like {1,2,3? 4}, {1,5,67 7). Since there are at most two elements 

of frequency three or more, we may assume elernents 2 and 3 have frequency tw-o. 

Then the blocks {2,5,6,7) and {3,5,6,7) are forced in the design. Thus, elements 

5, 6, 7 have frequency three or more, which is a contradiction. So there cannot 

be a clique with six singles, and hence there exists two cliques with five singles 

each. Suppose these two clique look like {1,2,3,4), {1,5,6,7), {8,y, 1 0 , l l )  and 

{8,12,13,14}, where x, y are not singles. Now the elements 3, 4' 5, 6, 7 must appear 

in pairs, or else the two elements not appearing in a pair along with 8 and 15 form 

a 4-set that is not represented. Similarly, elements 10, 11, 12, 13, 14 must appear in 

pairs. If elements 3 and 4 both have frequency three or more, then elements 10 and 

11 must have frequency two, as fi 2 17. This forces the blocks {IO, 12,13,14) and 

(1 1,12,13,14), which gives too many elements of frequency three or more. Hence, at 

Ieast one of the elements 3 or 4 must have frequency two. If the both have frequency 

two, then the blocks {3,5,6,7) and {4,5,6,7) are forced, giving too many elements 

of frequency three or more. Hence, without loss of generality, assume element 3 

has frequency two and element 4 have frequency three or more. As element 3 has 

frequency two, it forces the block {3,5,6,7). As element 4 must appear with 5, 6 

and 7, then 5, 6 and 7 must appear again in the design. This implies that 5, 6 and 7 

have frequency three or more, which contradicts the fact that the number of elements 

of frequency three is at most two. Hence, L(19,4,4,2) = 11. O 

Theorem 5.2.22 : L(20,4,4,2) = 12 
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Proof: By Theorem 5.2.21, L(20.4.42) 2 11. By Theorem 2.5.5, L(20,4,4!2) 5 
12. Suppose L ( 2 0 . 4 , 4 , 2 )  = 11 and consider a (20,4,4: 2) Lotto design with 11 blocks. 

By Corollary 5.2.3, every element in the design has frequency two or more. By ana- 

lyzing the elements' frequencies, we conclude that there are a t  least sixteen elements 

of frequency two in the design. By Theorern 2.4.7, there is a maximal independent 

set (of size three) consisting only of elements of frequency two. Let these three ele- 

ments be { l ,  2.3). The three cliques look like {1,4,5,6), {1,7,8,9), {2,10,11,12), 

(2, 13,14,15), {3,16,17,18), {3,19,20,x) where x E {4,5, ..., 18). As there are at  

least 16 elements of frequency two, there is a clique with six singles where a t  least 

two of them have frequency two. We rnay assume that this clique is {2,10,11,12), 

{2,13.14,15). Now the two singles of frequency two may be in the same block or in 

different blocks of the clique. If they are in the sarne block, Say elements 10 and 11, 

then as element 10 has frequency two and by Lemma 5.2.1, the block {10,13,14, 15) 

is forced in the design. Similarly, the block {11,13,14,15} is forced in the design. 

By Lemma 5.2.1, element 12 must also appear with elements 13, 14, 15 in the de- 

sign. This implies elements 13, 14, 15 m u t  appear a t  l e s t  once more in the design 

and hence they al1 have frequency four or more. Thus, the total occurrences of the 

elements in the design is a t  least 17(2) + 3(4) = 46, which is larger than 11(4) = 44. 

This is a contradiction, and hence the two singles cannot appear in the same block. 

Suppose the two singles of frequency two are elements 10 and 13. As element 10 has 

frequency two and must appear with elements 13, 14, 15, the block {10,13,14,15} 

is forced in the design. Now element 11 must appear with 13, 14: 15. This implies 

element 13 must appear again, implying it  has frequency three or more, which is a 

contradiction. 

As both cases led to a contradiction, we conclude that L(20,4,4,2) = 12. O 
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Theorem 5.2.23 : L(15.5.3.2) = 7. 

Proof : From Bate's tables, 6 5 L(15,5,3 ,2)  5 7 .  Suppose L(15 ,5 ,3 ,2)  = 6 and 

consider a (15,5' 3 , 2 )  Lotto design on six blocks. By Corollary 5.2-3, every element 

in the design has frequency two or more. There are exactly 15 elements of frequency 

two. By Theorern 2.4.7, there are at  least three disjoint elements of frequency two 

in the design. These three elements form a %set set that cannot be represented in 

the design. Hence, L(15 ,5 ,3 ,2)  = 7 .  O 

Theorem 5.2.24 : L(16.5,3 ,2)  = 8 

Proof : From Bate's tables L(16,5,3 ,2)  = 7 or 8. Suppose L(16,5,3 ,2)  = 7 and 

consider a (16 ,5 ,3 ,2 )  Lotto design on seven blocks. By Corollary 5.2.3, every element 

in the design has frequency two or more. By analyzing the elements' frequencies, 

we conclude that there are at least thirteen elements of frequency two in the design. 

Table 5.2 states al1 possible frequency distributions of the elements in the design. 

Table 5.1: Possible Frequency Distributions for an LD* ( l 6 , 5 , 3 , 2 ;  7 ) .  

Case 
A 

By Theorem 2.4.7, case C implies there are three disjoint elements of frequency two. 

These three eIements form a 3-set that is not represented by the design. Hence case 

C need not be considered and we only need to consider cases A and B. Thus, the 

design m u t  have at  least one element of frequency three. Let the elements { 1 , 2 )  

be two disjoint elements of frequency two in the design. These two elements form 

f2 f3 ,f4 f5 # of disjoint elements of frequency two 
1 3 3 0 0  2 
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a maximal independent set of the design. Consider the following 7 non-isomorphic 

ways t hat the two cliques rnay look like. 

Case 1 : Suppose the two cliques look like {1,3,4,5,6}, 11, 7,8,9,10}, {2,11,12,13, 

14) and {2,3,4,15,16}. Suppose one of elements 5 or 6 has frequency two, Say ele- 

ment 5. Then, the block {5,7,8,9,10) is forced in the design. But element 6 must 

also appear with elements 7, 8, 9, 10 in the design which implies 7, 8, 9, 10 must 

appear a t  least one more tirne. Hence, the number of elernents of frequency three 

or more is at Ieast four. This is a contradiction. Hence both elements 5 and 6 have 

frequency a t  least three. Arguing exactly the same in the other clique, we conclude 

that elements 15 and 16 must also have frequency a t  least three. But this implies 

that there are at  least four elements (5, 6, 15, 16) with frequency three or more. This 

is a contradiction. 

Case 2 : Suppose the two cliques look like {l ,  3,4,5,6), {1,7,8,9,10), {2,3,11,12,13) 

and {2,4,14,15,16). Arguing as in case 1, elements 5 and 6 must have frequency 

three or more. As the number of elements of frequency three or more is at most three, 

at least 5 of the elements 11, 12, 13, 14, 15, 16 m u t  have frequency two. Suppose 

they are 11, 12, 13, 14, 15. Elemcnt 11 must appear with elements 14, 15, 16 and 

hence the block B = { l l ,  x, 14,15,16) is forced, where x can be some other element. 

Now as elements 14 and 15 have fiequency two and element 12 must appear with 

them in a block, we see that x = 12. Thus B = {I l ,  12,14,15,16). But element 13 

must appear with elements 14, 15, 16 which implies elernents 14, 15, 16 must appear 

again in the design. This is a contradiction as we assumed that elements 14 and 15 

have frequency h o .  

Case 3 : Suppose the two cliques look like { l ,  3,4,5,6), {1,7,8,9,10), {2,3,11,12,13) 

and {2,7,14,15,16). As there are at most three elements of frequency three or more 
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in the design. one of the two cliques will have both its blocks with a t  most one single 

with frequency three or more. Then let the elements 4, 5, 8 and 9 have frequency 

two. As element 4 must appear with elements 8, 9, 10 in the design. the block 

B = {4, x' 8,9, 10) is forced, where x is some other element. Now as  elements 8 and 

9 have frequency tw-O and element 5 must appear with them, we see that x = 5. But 

element 6 must also appear with elements 8, 9, 10 in the design. This implies that 

elements 8, 9, 10 must appear again which is a contradiction as we assurned that 

elements 8 and 9 had frequency two. 

Case 4 : Suppose the two cliques look like {1,3,4,5,6),  {1,7,8,9, IO), {2,3,11,12,13} 

and {2,11,14,15,16). As there are at most three elements of hequency three or more 

in the design, one of the elements 7, 8, 9, 10 must have fiequency two, say element 

7. As 7 must appear with 4, 5, 6, the block B = {4,5,6,7, x) is forced in the design, 

where x is some other element. As element 4 must appear with 8, 9, 10 in the de- 

sign, it must have frequency three or more. Similarly, elements 5 and 6 must have 

frequency three or more. This implies that elements 8, 9 and 10 have frequency two. 

This forces the blocks {4,5,6,7,  x) and {4,5,6: y, r )  where x, y, r E {8,9,10). The el- 

ements in the other clique must al1 be of frequency two. The block {12,13,14,15,16) 

is forced. But the Sset  {3,7,14) needs to  be represented. This can be accomplished 

by having the pair {3,7}, {3,14) or {7,14) in the design. But these elements have 

frequency two and they cannot appear again as they have already appeared twice in 

the design. So the block {3,7,14) cannot be represented which is a contradiction. 

Case 5 : Suppose the cliques may look like {1,3,4,5,6),  {l, 3,7,8,9), {2,10,11,12,13), 

and {2,10,14,15,16). There is a clique that contains a block with three singles offre- 

quency two. Suppose these three singles are the elements 4, 5, 6. As element 4 must 

appear with elements 7, 8, 9, the block B = (4, x, 7,8,9) is forced where x is some 

other element. Now elements 5 and 6 must also appear with elernents 7, 8, 9. This 
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implies that elernents 7, 8, 9 must appear a t  least once more in the design. Hence 

elements 7, 8 and 9 have frequency three or more in the design. As there are at rnost 

three elements of frequency three or more in the design, the rest of the elements must 

have frequency two. As element 11 must appear with elements 14, 15, 16, this forces 

the block B = {11, x, 14,15,16). Now as elements 12 and 13 must appear with ele- 

ments 14, 15 and 16, this causes elements 14, 15 and 16 to appear at least once more. 

This is a contradiction as we assumed that elements 14, 15 and 16 had frequency two. 

Case 6 : Suppose the cliques may look like {l ,  3,1,5,6), {l, 7,8,9, IO}, {2,11,12,13, 141, 

and {2,11,12,15,16). As there are a t  l e s t  13 elements of frequency two, at least one 

of the blocks {1,3,4,5,6} and (1, 7,8,9,10) have two or more singles of frequency 

two. Suppose elements 3 and 4 are singles of frequency two. As element 3 must 

appear with elements 7, 8, 9 and 10 in the design, the block {3,7,8,9,10) is forced. 

Similarly the block {4,7,8,9,10) is forced. Since element 5 must also appear in the 

design with the elements 7, 8, 9 and 10, these elements must appear once more. 

Hence, the elements 7, 8, 9 and 10 must have frequency three or more, which is a 

contradiction. 

Case 7 : Suppose the two cliques look like { 1,3,4,5,6), {1,7,8,9, IO), {2,3,11,12,13) 

and {2,3,14,15,16). As there are a t  most three elements of frequency three or more 

in the design, one of the elements 7, 8, 9, 10 must have frequency two, Say element 

7. As 7 must appear with 4, 5, 6, the block B = {4,5,6,7, x) is forced in the design, 

where x is some other element. As element 4 must appear with 8,9,  10 in the design, 

it must have frequency three or more. Similarly, elements 5 and 6 must have fre- 

quency three or more. There are at least four elements in the design with frquency 

three or more, which is a contradiction. 



CH.4PTER 5. SPECIAL CASES 108 

Since each case led to a contradiction, we conclude that there is no (16,5,3,2) Lotto 

design on seven blocks. Hence. L(16,5,3,2) = 8. O 

Theorem 5.2.25 : L(17,5: 3,2) = 9. 

Proof : By Theorem 2.5.5, L(17,5,3,2) < 9. Suppose L(17.5,3,2) = 8 and consider 

a (17,5.3,2) Lotto design with 8 blocks. By Corollary 5-23,  every element in the 

design has frequency two or more. By analyzing the elements' frequencies in the 

design, we conclude there are at least eleven elernents of frequency two and at  most 

four elements with frequency three or more. By Theorem 2.4.7, there is a maximd 

independent set of size two containing two elements of frequency two. Let {1,2) be 

this maximal independent set. The blocks containing the elements of the indepen- 

dent set are stated in the following two cases : 

Case 1 : Let Bi = {1,3,4,5,6), Bz = {1,7,8,9, IO), B3 = (2, 11, 12, 13, 14) and 

B4 = {2,11,15,16,17). There exists an element from the set {3,4,5,6,?, 8,9, IO), 

Say 3, that has frequency two. Since 3 must appear with the elements 7, 8, 9, 10 

in the design, the block {3,7,8,9,10) is forced. Since 4, 5, 6 must appear with 7, 

8, 9, 10 in the design, the elements 7, 8, 9, 10 must have frequency three or more. 

Similarly, an element from the set {12,13,14,15,16,17), Say 12, must have frequency 

two. Since 12 must appear with the elements 15, 16, 17, the block {x, 12,15,16,17) 

is forced, where x is any other element. Since 13, 14 must also appear with 15, 16, 

17 in the design, the elements 15, 16, 17 must have frequency at  least three. This is 

a contradiction as there are too many elements of frequency three or more. 

Case 2 : Let Bi = {1,3,4,5,6), B2 = {1,7,8,9,10), B3 = {2,11,12,13,14) and 

B4 = {2,3,15,16,17). If the element 3 has frequency two, then the elements 7, 8, 

9, 10 must appear with the elements 11, 12, 13, 14 because of 3-sets of the form 
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(3. z. y). where x E (7.8.9,10} and y E {I l ,  12,13,14} must be represented by the 

design. Also, elements 4, 5, 6 must appear with 7, 8, 9: 10 and elements 11, 12, 13: 

14 must appear with 15, 16. 17 in the design. There are 16+ 12 + 12 = 40 pairs that 

must appear in the design. Each block may hold a t  m a t  six of these pairs. Hence 

these forty pairs require a t  l e s t  an additional seven blocks in the design, which 

contradicts the assumption that the design has eight blocks. Hence the element 3 

must have frequency three or more. As in the previous case, elements 4, 5, 6 must 

appear with 7, 8, 9, 10 and elements 11, 12, 13, 14 must appear with 15, 16, 17 in 

the design. There are 12 + 12 = 24 pairs that must appear in the design. Each block 

may hold a t  most six of these pairs. Hence these twenty four pairs require at  least 

an additional four blocks in the design. But since the element 3 must appear again, 

i t  requires yet another block. Thus the design contains at least nine blocks which 

contradicts the that  the design has eight blocks. 

Since each case led to a contradiction, we conclude that the is no (17,5,3,2) Lotto 

design on eight blocks. Hence, L(17,5,3,2) = 9. O 

Theorem 5.2.26 : L(18,5,3,2) = 10. 

Proof : By Theorem 2.5.5, L(18,5,3,2) 5 10. Assume C(18,5,3,2) = 9. Then there 

is an (18,5,3,2) Lotto design on nine blocks. By Corollary 5.2.3, every element in the 

design has frequency two or more. By analyzing the elements' frequencies, there are 

a t  least nine elements of frequency two and at  most nine elements of frequency three 

or higher. By Theorem 2.4.7, there exists two disjoint elements of frequency two, 

which form a maximal independent set in the design. By Theorem 2.4.3, every ele- 

ment must appear in the four independent blocks. The four independent blocks Iook 

like {l, 3,4,5,6), {1,7,8,9,10), {2,11,12,13,14), {2,15,16,17,18). By Theorem 

5.2.1, each pair (x, y) where x E {3,4,5,6) and y E {7,8,9,10) must appear in the 
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design. Similarly. each pair {x' y) where x E {II. 12.13,14) and y E (15, 16,17.18} 

must appear in the design. There are 32 pairs listed above that must appear in 

the design. Each block may hold a t  most six of these pairs. This mean the design 

requires a t  least [a] = 6 blocks to hold these 32 pairs. But this implies the design 

must have a t  least 4 + 6 = 10 blocks which contradicts Our assumption that the 

design had 9 blocks. Hence, L(18,5,3,2) = 10. O 

Theorem 5.2.27 : L(19,5,3,2) = 11. 

Proof : By Theorem 2.5.5, L(19,5,3,2) 5 11. Assume L(19,5,3,2) = 10. Then 

there is a (19,5,3,2) Lotto design on 10 blocks. By Corollary 5.2.3, every element 

in the design has frequency two or more. By analyzing the elements' frequencies, 

there are at least seven elements of frequency two and at  most twelve elements of 

frequency three or higher. If there were more than seven elements of frequency two, 

we would have two disjoint elements of frequency two which would form a maximum 

independent set, as p = 3. By Theorem 2.4.3, every element must appear in the four 

independent blocks, which is impossible. Hence there are exactly seven elements 

of frequency two and exactly twelve elements of fiequency three. Now the seven 

elements of frequency two can only appear one non-isomorphic way : {1,2,3,4,5}, 

{l: 2,3 ,6 ,7) ,  {4,5,6,7,8) where the element 8 has frequency three and elements 1, 

2, ... , 7 have frequency two. So {l,  8) forms an maximum independent set. However, 

the remaining two blocks containing element 8 can contain only eight other elements- 

Theorem 2.4.3 requires that these two blocks hold a11 of the remaining II elements. 

Hence, we have a contradiction and L(19,5,3,2) = 11. O 

Theorem 5.2.28 : L(20,5,3,2) = 12. 
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Proof : Assume L(20.5,3.2) 5 11. Then there exists a (20,5,3,2) Lotto design 

on 11 blocks. By Corollary 5.2.3, every element in the design has frequency two 

or more. By anaiyzing the elements' fiequencies, there are at least five elements 

of frequency two and at most fifteen elements of frequency three or more. If there 

are more than seven elements of frequency two, then by Theorem 2.4.7, there are 

two disjoint elements of frequency two. These can occur with at most 4(4) = 16 

elements, contradicting Theorem 2.4.2. So 5 5 fi _< 7 and there cannot be any 

disjoint elements of frequency two. We consider each possible value of f2. 

If f2 = 7, let the elements 1, 2, 3, 4, 5, 6 and 7 be elements of frequency two and 

suppose element 1 is part of an independent set of the design. Then the three blocks 

deterrnined by the element 1 (up to isomorphism) are {1,2,3,4,5), {l, 2,3,6,7) and 

{4,5,6,7, x) , where x is an element of frequency three. The remaining blocks of the 

design must form an (13,5,2,2) Lotto design. This requires at  least ten blocks for a 

total of at  least thirteen blocks which is a contradiction. 

If f2 = 6, then al1 elements of frequency two m u t  occur together in some 2-clique. 

But this cannot happen to al1 of them in the same block. There are a t  most two 

non-single elements occurring in any independent set of blocks. By examining pos- 

sibilities, we see there are three non-isomorphic ways that the elements of frequency 

two can occur. The number of elements of frequency two in a block (if not 0) is 

{5 ,5 ,2 ) ,  {5,4,3) or {3,3,3). We label these case a, case b and case c, respectively. 

Let elernents 1 to 6 have frequency two. We consider each case. 

Case a : If the number of elements of frequency two in a block is {5,5,2). Then con- 

sider the three blocks BI = {l, 2,3,4,5), B2 = {1,6,7,8,9) and B3 = (2, 3,4,5,6) 

in the design. BI and B3 share 3 non-singles, which a contradiction. 
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Case b : If the number of elements of frequency two in a block is ( 5 :  4.3), then con- 

sider the three blocks Bi = {l, 2.3,4,5}, B2 = {l ,  2,3,6,  X I )  and B3 = (4: 5 ,6 ,  x2. x3) 

in the design. It may be that x3 = xi, but x l  # 1 2 .  Now {l ,  x2) forms an independent 

set and al1 elements must occur with it, forcing {x2, 9,10,11,12}, {x2, 13, 14, 15, 161, 

{x2, 17, 18, 19,20}. NOW elements 9 through 20 are singles and there must be 48 other 

pairs of singles that must be in the design (for example {9,13), {9,17), {10,20), 

etc). The most that can occur in one block is eight pairs. So there must be at least 

48/8 = 6 more blocks. Hence, the design must have at least 12 blocks in alf, which 

is a contradiction. 

Case c : If the number of elements of fiequency two in a block is {4,4! 41, then con- 

sider the three blocks Bi = {1,2,3? 4, xi) ,  B2 = {1,2,5,6, x2) and B3 = {3,4,5,6, x3) 

in the design, where XI, x2 and x3 are not necessarily distinct. If x i  = 2 2  = x3, 

then the remaining 13 elements form a covering which takes at least 10 blocks as 

L(13,5,2,2) = 10. This is a total of 13 blocks which is a contradiction. Suppose 

X I  = 1 2  # x3. Let y be an element of frequency three so that {l, y) is an independent 

set. Since (1, XJ,Y) must be represented, the pairs {x3, Y) must occur in a block. 

Similarly, for {1,x3,x4) where x4 > 6, z4 # ~ , X J  or y, it must be represented be 

represented by the pair {x3, z4). SO al1 pairs of x3, y and the other 11 elements must 

occur in some block. This must take at l e s t  L(13,5,2,2) = 10 blocks. So there are 

a total of at l e s t  10 + 3 = 13 blocks, which is a contradiction. If XI, xz and x3 are 

distinct, we get a similar contradiction. 

If f2 = 5, then f3 = 15 and fi = O for d l  other i. Consider the situation where 

al1 elements of frequency two occur in one block {1,2,3,4,5). We list the possible 

non-isomorphic cases. 
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Case la : Suppose two of the blocks in the design are { 1 , 2 , 3 , 4 , 5 )  and {l, 6,7,8,9} 

and there are no non-singles in these two blocks. Then the blocks {2 ,6 ,7 ,8 ,9 ) ,  

{ 3 , 6 , 7 , 8 , 9 ) 0  { 4 , 6 , 7 , 8 , 9 )  and { 5 , 6 , 7 , 8 , 9 )  are forced in the design. This irnplies 

that the elements 6, 7, 8, and 9 occur too frequently, which is a contradiction. 

Case l b  : Suppose two of the blocks in the design are { 1 , 2 , 3 0  4: 5 )  and { 1 . 6 , 7 , 8 , 9 )  

and element 9 is the only non-single. Without loss of generdity, the blocks { 2 , 3 , 6 , 7 , 8 )  

and { 4 , 5 , 6 , 7 , 8 }  are forced. Now the %set {3 ,9 ,  i) must be represented by {9, i) 

where i 2 10. But in two more blocks there is room for only eight such pairs. 

Case lc  : Suppose two of the blocks in the design are {1,2,3,4,5) and { 1 , 6 , 7 , 8 , 9 )  

and element 2  is the only non-single. So the blocks (3:  6 , 7 , 8 , 9 ) ,  { 4 , 6 , 7 , 8 , 9 }  and 

{ 5 , 6 , 7 , 8 , 9 )  are forced. The elements 6 ,  7, 8 and 9 occur too frequently, which is a 

contradiction. 

Case Id : Suppose two of the blocks in the design are {1,2,3,4,5) and { 1 , 6 , 7 , 8 , 9 )  

where elements 8  and 9  are the only non-singles. Two blocks are forced in two non- 

isomorphic ways. They are { 2 , 3 , 4 , 6 , 7 ) ,  { 5 , 6 , 7 , z l ,  x2} and { 2 , 3 , 6 , 7 ,  XI}, {4 ,5 ,6 ,7 ,  x2). 

In the first case, Ssets  of the form { 2 , 8 , i )  must be represented by the pair (8, i}, 

where i 2 10. But there is only room for a t  most eight such pairs in the remaining 

two blocks containing the element 8, which is a contradiction. In the other case, if 

x 1 # 8, Psets of the form { 2 , 8 ,  i )  , for i > 10, must be represented by {8, i )  , except 

for perhaps when i  = X I .  There are at least nine of these pairs that must occur in 

two blocks (as the element 8 has frequency three), which is impossibte. If xl = 8 ,  

3-sets of the form {2 ,9 ,  i ) ,  for i  2 10, must be represented by (8 ,  i). There are 11 

of these pairs that must occur in two blocks that contain the element 9, which is 

impossible. 
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Case le  : Suppose two of the blocks in the design are (1,2,3,1,5} and {1,6,7,8,9). 

where elernents 5 and 9 are the only non-singles. Without l o s  of generality, the 

blocks {2,3,6,7,8) and {4,6,7,8, x) are forced where x is some element. Now the 

3-set (2.9. i) is represented by the pair (9,i) for i 2 10. But there is not enough 

room to hold t hese pairs. 

Case If : Suppose two of the blocks in the design are (1,2,3,4,5) and {1,6,7.8,9}, 

where elements 4 and 5 are the only non-singles. Without l o s  of generality, the 

blocks {2,6,7,8,9) and {3,6,7,8,9) are forced. Let the element IO be an element 

of frequency three and let 11 be an element of frequency three that does not occur 

with 4 or 5. But then, the Sse t  {4,8,11) is not represented, which is a contradiction. 

Case lg : Suppose two of the blocks in the design are {l ,  2 ,3,4,5)  and {1,6,7,8,9), 

where elements 3, 4, 5, 6, 7, 8 are singles. Without loss of generality, the blocks 

{3:4,6,7,8) and {5,6,7,8,2) are forced. Then {1,9;i) must be represented by 

{ 9 , i )  for i 2 10. But there is not enough room. 

Case l h  : Suppose two of the blocks in the design are {1,2,3,4,5) and {1,2.6,7,8), 

where 8 is the only non-single. There are two non-isomorphic sub cases determined by 

blocks that are forced by the two blocks above : i) {3,4,5,6,7) and ii) {3,4,6,7; XI}, 

{5,6,7,52, x3}. In the first sub case, bsets  of the form {3,8, i), for i 1 9, must be 

represented by the pair {8,i). But there is no room to hold al1 such pairs. In the 

second sub case, let the element 9 belong in {xl, x2, x3). Then bsets  of the form 

{1,9, i) for i 5 10 must be represented by the pair ( 9 , ~ ) .  Again there is not enough 

room to hold al1 such pairs. 
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Case l i  : Suppose two of the blocks in the design are {l. 2,3,4,5) and {1,2,6,7,8) 

where 5 is the only non-single (other than 2). Then the blocks {3,4,6,7,8), {5,9,10,11, 

12), {9,13,14: 15,161 and {9,17,18,19,20) are forced. Then, 3-sets of the form 

{5,8, i) for i 2 13 must be represented by the pair (8,~). There is not enough room 

to hold ail such pairs. 

Case l j  : Suppose two of the blocks in the design are {1,2,3,4,5) and {l, 2,3,6,7). 

This forces the block {4,5,6,7, x) where x is some element. Without l o s  of gener- 

ality, let x = 8; then 3-sets of the form (1.8. i) for i 2 9 must be represented by the 

pair (8,~) .  There is not enough room to hold al1 such pairs. 

The remaining two non-isomorphic cases do not have al1 the frequency two elements 

in a single block. We list them as case 2 and case 3. 

Case 2 : Suppose the blocks of the design inciude {1,2,3,4,6), {1,2,3,5,7), {4,5, XI, 

x2, x,), {8,9,10,11,12), {8,13,14,15,16) and {8,17,18,19,20). The elements 17, 

18, 19 and 20 must appear two more times, which is a contradiction. 

Case 3 : Suppose the blocks of the design include {1,2,3,4,6), {1,2,5,7,8), {9,10,11, 

12,13), {9,14,15,16,17) and {9,18,19,20, x). If x = 6,7 or 8, then use an argument 

like that of case 2 to get a contradiction. If x = 10, then element 14 must appear 

with elements 10, 11, 12, 13, 18, 19 and 20 with one spot left over. Suppose 15 does 

not occur with 14. It also appears in two blocks with 10, 11, 12,13, 18, 19, 20 and 

one space left over. Consider one of 16 or 17 that does not occur in both spots. 

It must appear in another block with four of 10, 11, 12, 13, 18, 19, 20. But those 

elements appear four times, which is a contradiction. 
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Since we have considered al1 possible cases and each gave a contradiction, L(20,5,3,2) = 

12. O 

T h e o r e m  5.2.29 : L(20,6,3,2) = 8. 

Proof:  Since we know that L(20,6,3,2) = 7 or 8, it suffices to show that L(20 ,6 .3 ,2)  > 
7. Assume L(20 ,6 ,3 ,2)  = 7 and consider a (20,6,3,2)  Lotto design -5th seven 

blocks. By Corollary 5.2.3, al1 elements in the design must have frequency two or 

more. The number of elements of frequency two must be a t  least eighteen and the 

number of elements of frequency three or more is a t  most two. There are two possible 

frequency distributions : 

1- f2 = 18 and f3 = 2, 

By Theorem 2.4.7, the latter distribution implies there are three disjoint elements of 

frequency two which is not represented by the design. So there m u t  be exactly 18 

elements of frequency two and two elements of frequency three. By Theorem 2.4.7, 

there exist two disjoint elements of frequency two, Say 1 and 2. These two elements 

form a maximal independent set of the design. We consider each non-isomorphic 

configurations of the two cliques. 

Case 1 : Let the two cliques look like Bi = {l ,  3,4,5,6,7), B2 = {l,  8,9,10,11,12), 

B3 = {2,13,14,15,16,17) and B4 = {2,3,4,18,19,20). As the number of elements 

of frequency two is a t  least 18, either BI or Bq has two singles of frequency two. 

Suppose elements 5 and 6 of BI are 2 such singles. Then the block {5,8,9,10,11,12) 

and {6,8,9,10,11,12) are forced in the design, by Lemma 5.2.1. Hence elements 8, 
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9, 10, 11, 12 have frequency three or more, which is a contradiction. 

Case 2 : Let the two cliques look like BI = {1,3,4,5,6,7}, B2 = {1,8,9,10,11,12), 

B3 = {2,3,13,14,15,16) and Bq = {2,4,17,18,19,20). As the number of elements 

of frequency two is a t  least eighteen, one of elements 5, 6 or 7 must have frequency 

two. Suppose element 5 has frequency two. Then the block {5,8,9,10,11,12) is 

forced in the design. Since element 6 must &O appear with elements 8, 9, 10, f 1, 

12, we conclude that elements 8, 9, 10, 11, 12 must have frequency three or more, 

which is a contradiction. 

Case 3 : Let the two cliques look like BI = {1,3,4,5,6,7), B2 = {1,8,9,10,11,12}, 

B3 = {2,3,13,14,15,16) and B4 = {2,8,17,18,19,20}. The  block Bi has at least 

two singles that have frequency two. Suppose elements 5 and 6 are two such singles. 

Similarly the block B2 has a t  l e s t  two singles, Say elements 9 and 10, that have 

frequency two. As the element 5 must appear with elements 9, 10, 11, 12, the block 

B = (5, x, 9,10,11,12) is forced where x is some other element . As elements 6 and 7 

must also appear with elements 9, 10, 11, 12, the elements 9, 10, 11, 12 must appear 

at Ieast once more in the design. Hence they m u t  have frequency three or more, 

which is a contradiction. 

Case 4 : Let the two cliques look like BI = {1,3,4,5,6,7), Ba = {1,8,9,10,11,12), 

B3 = {2,3,13,14,15,16) and B4 = {2,13,17,18,19,20). The argument for case 3 

can be used to hsndle this case. 

Case 5 : Let the two cliques look like {1,3,4,5,6,7), {1.3,8,9,10, Il), {2,12,13,14,15,16) 

and {2,12,17,18,19,20). Since t here are at mos t two elements of frequency t hree, ev- 

ery element in one of the sets {4,5,6,7), {8,9,10, Il), (13,14,15,16) or {17,18,19,20) 
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must have frequency tw-o. Without loss of generality, suppose it is the set {4,5,6.7}.  

Thus. 4 .5 ,6 ,7 must appear with 8, 9, 10, 11- This requires that the elements 8. 

9, 10, 11 appear at l e s t  two more times in the design. Hence elements 8, 9, 10, 11 

have frequency three or more. This is a contradiction since there is suppose to be at  

most two elements of frequency three in the design. 

Case 6 : Let the two cliques look like Bi = {1,3.4,5,6,7), B2 = {1,8,9,10,11.12), 

B3 = {2,13,14,15,16,17) and El4 = {2,13,14,18,19,20)~. Since there are only two 

elements of frequency three, at least two elements from {3,4,5,6,7) must have fre- 

quency two. Suppose elements 3 and 4 have frequency two. Since they must appear 

with elements in {8,9,10,11,12), the block {3,8,9,10,11,12} is forced in the design. 

Similarly, the block {4,8,9,10,11,12) is forced. Now elernent 5 must also appear 

with the elements in {8,9,10,11,12). This implies the elements in {8,9,10,11,12} 

have frequency three or more. This contradicts the assumption that there are only 

two elements of frequency t hree. 

Case 7 : Let the two cliques look like BI = {1,3,4,5,6,7), B2 = {1,8,9.10,11,12), 

B3 = {2,3,13,14,15,16) and Bq = {2,3,17,18,19,20). The argument for case 3 

can be used to handle this case. 

Since every case led to a contradiction, we have L(20,6,3,2) = 8. O 

Theorem 5.2.30 : L(11,5,4,3) 2 8. 

Proof : From Bate's thesis [l], L(11,5,4,3) 2 7. Suppose that L(11,5,4,3) = 7. 

Let B be an optimal (11,5,4,3) Lotto design . If a pair, Say { l ,  21, does not appear 

in the design, there are C(9,2) = 36 Csets containing {1,2). A 4set  {1,2, x, y) must 
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be represented by a block containing {1,x. y} or (2 ,  x, y). In this case B must also 

be a (9,4,2,2)  Lotto design. But since L(9,4,2,2) = 8, then al1 pairs m u t  appear 

in 13 if L(11,5,4,3) = 7. This implies that fi = f2 = O. Hence there are a t  l e s t  33 

occurrences given a t  least seven blocks. Consider an element, Say 1 that occurs three 

times. We have the following three possible cases pertaining to the blocks containing 

the element 1: 

Case 1 : The blocks containing element 1 look like {l ,  2,3,4,5}, I l ,  2,6,7,8) and 

2 9, O ,  1 1  Blocks of the form (1, x, y,  2) where z E {3,4,5}, y E {6,7,8) and 

z E {9,10, 11} must be represented by a block in B containing {x, y, 2). There are 

3*3*3 = 27 such triples. Since each block can hold at most four such triples, the 

minimum number of blocks in f3 in this case is 8 which is a contradiction. 

Case 2 : The blocks containing element 1 look like {1,2,3,4,5), {1,2,3,6,7) and 

8 9, O 1 The number of triples that need to be in the design is 2*  2 * 4  = 16, 

which requires a t  least four blocks. But element 2 must also occur with element 8 

in the design, which requires another block. So there are more than 7 blocks in the 

design, which is a contradiction. 

Case 3 : The blocks containing element 1 look like {1,2,3,4,5), {1,2,6,7,8) and 

3 9 0 1 The number of triples that must be represented by a block of the 

design is 2 * 3 * 3 = 18. This requires at least five blocks and hence the design has 

at le& 8 blocks in this case, which is a contradiction. 

Since we have shown that no (11,5,4,3) Lotto design can 5, 6 or 7 blocks, then 

L(11,5,4,3) is at least 8. 
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Theorem 5.2.31 : L(9.4.4.3) = 9. 

Proof : From Bate [l] , L(9,4,4,3) 2 8 and by Simulated Annealing, we were 

able to show that L(9,4.4,3) 5 9. Assume L(9,4,4,3) = 8 and B is an optimal 

(9: 4 ,4 .3 )  Lotto design. Since 9 t 4 = 36 > 32: there are elements of frequency 

three or less. By Theorem 5.2.1, there cannot be a element of frequency zero. since 

L ( 8 , 4 , 3 , 3 )  = 14. Let there be an element of frequency one, Say the'element 1 that 

occur in block { l ,  2,3,4}. Consider &sets of the form (1, x, y, z), where z E {2,3,4) 

and y, r!  w E {5,6,7,8,9). Such a Cset must be represented by a block in B that 

contains the triple {xi, yl, y2} where xi E {2,3,4) and yl, y* E {5,6,7,8,9). There 

are 3 * C ( 5 . 2 )  = 30 such triples. Also, consider Csets of the form (1, y, z, w). Such 

a Cset must be represented by a block in B that contains the triple {y, z, w). There 

are at least 30 + 10 = 40 triples that must appear in the design B. But each btock 

can hold a t  most four of these triples, and hence f3 must have at least ten blocks. 

This contradicts our assumption that the sue  of B was a t  most 8. Hence there are 

no elements of frequency one. 

If there is an element of frequency two, Say the element 1, then consider the three 

possible cases : 

Case 1 : Suppose the blocks containing the element 1 look like {l, 2,3,4) and 

{1,5,6,7}. If x E {2,3,4), y E {5 ,6 ,7 )  and z E {8,9), then a Cset  of  the form 

{l, x, y, z )  must be represented by a block in B that contains {x, y, r). There are 

3 * 3 * 2 = 18 such triples that must appea. in B. Only two such triples can fit into 

a single block. So there are a t  least 11 blocks in B, which is a contradiction. 

Case 2 : Suppose the blocks containing the element 1 look like {1,2,3,4) and 

{1,2:5,6}. If z E {3,4), y E {5,6) and q , z z  E {7,8,9), then, as in case 1, twelve 

triples of the forrn {x, y, r i )  must appear in the blocks of B. Similarly, 6 triples of 
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the form {y, zl, z2) and 6 triples of the form {x, ri ,  q) must appear in the blocks 

of B. 'iow consider a 4se t  of the form {1,2, t l ,  z 2 )  It m u t  be represented by a 

block that contains the triple {2, zl, z2) and there are three of these triples. Hence 

contains at least 

r12+64f6+3 
blocks. which is a contradiction. 

Case 3 : Suppose the blocks containing the element 1 look like {1,2,3,4} and 

{1 ,2 ,3 ,5) .  If xl, x2,x3 E {6,7,8,9), the following table summarizes the types and 

number of triples that must appear in B in order for the given 4sets to be represented. 

Form the above table, the thirty-two triples stated must appear in the design B. 
Since each block can hold at  most four triples, this requires a t  least eight blocks. 

These eight blocks dong with the two blocks containing the element 1 makes the 

size of B at l e s t  ten, which is a contradiction. 

4sets to be represented 
{1,4,5, xi),  {2,4,5, xi}, {3,4,5, xi) 

Since al1 three cases give a contradiction, we conclude that there are no elements of 

frequency two. Thus, every element has frequency three or greater. 

Now either D contains al1 pairs or some pair of elements is missing. If every pair oc- 

curs in B then, without l o s  of generality, three of the blocks in B look like {1,2,3,4), 

triple required 
{4,5, xi} 

# of such triples 
4 
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{ 1 , 2 . 5 , 6 )  and { 1.7,8.9). where the element 1 has frequency t hree since every ele- 

ment in the design m u t  appear with the element 1. If x E {3,4), y E {5,6) and 

r E {7,8.9), then a 4 s e t  of the form (1, x, y, z )  must be represented by a block 

in B that contains the triple {x, y, r )  and there are twelve such triples. It can be 

easily seen that a block in B can contain a t  most two triples of this form. Hence 

SLY blocks in B are required to contain these triples. These six blocks dong with the 

three blocks containing the element 1 mean that B has a t  least nine blocks, which 

contradicts the assumption that the size of L? is at  most eight. Hence, we may assume 

that there is a missing pair, Say (1.2} in B. 

Since {1,2) does not appear in the design, Csets of the form {1,2, zi, xz) where 

XI, x2 E {3,4,5,6,7,8,9) must be represented by a set that contains either (1, xi, xz) 

or (2, XI, 2 2 )  There are twenty-one of these triples. These twenty-one triples can 

be contained in (the unique) seven blocks in the (7,7,3,3,1) BIBD (Fano Plane). 

In this case, one of x or y occurs only three times in the seven blocks. The seven 

blocks look like {a, 3,4,6), {a, 4,5,7), {a, 5,6,8), {a, 6,7,9}, {a, 3,7,8), {a, 4,8,9} 

and {a, 3,5,9) ,  where a may be either 1 or 2. But then the sets {3,5,6,7), {3> 4,5,8), 

{4,5,6,9)  and {5,7,8,9) must be represented by the 1 s t  block of the design, which 

is impossible. Hence the twenty-one triples must be contained in al1 eight blocks. But 

consider a Cset of the form {x, y, z, w), where z, y, z,  w $Z {1,2). There are thirty- 

five such 4se t s  that must be represented. Each of the eight blocks can represent 

a t  most 4 of these Csets. Thus, the eight blocks together can represented a t  most 

thirty-two of the thirty-five Csets. This is a contradiction. Hence, L(9,4,4,3) = 9. 0 
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5.3 Conclusion 

This Chapter improved lower bounds for L(n, k , p ,  t )  on a case by case basis. We 

applied the results from Bate and van Rees[2] to ded with designs where t = 2. The 

results obtained were used to complete the gaps in Bate's tables and find values for 

other small Lotto designs. The techniques shown in this Chapter may be applied to 

improve lower bounds of other designs not discussed in this Chapter. ' 



Chapter 6 

Computer Programs 

6.1 Introduction 

This chapter will present several algorithms that rnay be used to generate upper 

bounds for L(n, k, p, t ) . Greedy algorithms are first presented. These algorit h m  

generate a Lotto design by selecting blocks to form a Lotto design based on some 

ordering on the k-sets and psets. The orderings that we considered were lexicw 

grap hical, reverse lexicograp hical and colexicograp hical (colex) ordering. Techniques 

for op t imizing t hese searches are also discussed. 

Another approach similar to the greedy approach is to randomly pick blocks to form 

a Lotto design. Such designs generally do not give a good upper bound. However, 

random algorithms are fast and if they are executed frequently enough, decent upper 

bounds may be obtained. 

An exhaustive search algorithm incorporating isomorphic rejection was discussed in 

Chapter 2. By andyzing the fiequencies of elements that appear in a Lotto design, 

we can use this information to generate a search algorithm that is faster than an 

exhaustive search. We present a search based on this idea. 
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Finally, we briefly discuss how integer linear programming may be used to compute 

L(n,  kW p,  t ) .  

6.2 Greedy Algorit hms 

Greedy algorithms are algorithms that solve a problem that requires making a se- 

quence of choices. Each choice is made such that it is the best possible at that 

point, without regard to how it affects future choices tha t  wil1 make up the solu- 

tion. Greedy algorithms in general do not generate optimal solutions [17]. Greedy 

algorithms may be applied to many combinatorial problems such as the "Traveling 

Salesman Problem", computing the minimum spanning tree of a graph and the con- 

struction of Covering and Turàn designs. We can use greedy algorithms to generate 

Lotto designs. Here is the basic algorithm : 

Algorithm 6.2.1 : 

uoid Greedy Constrcrction(n, k, p, t )  

{ 
/* input : n,k, p, t */ 
/* output : A Lotto design */ 

1) Order the k-sets and p-sets wing some ordering. 

2) Create data structures for use in the algorithm. 

3) Initialire C = 0 (it wàll hold the k-sets picked for the design). 

4) While there are still p-sets not represented 

{ 
da) C o m p t e  the first k-set not in C that represents the 

most p-sets not yet represented and add at to C .  
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4b) Mark all p-sets represented by this k-set as represented. 

dc) Update the number of p-sets still not  represented. 

1 
5) C is now a (n, k ,  p, t )  Lotto design. Remoue redundant blocb from C .  

1 

The algorithm stated abot-e is quite simple to understand and implement. Our god 

is to make this algorithm run as fast as possible. It is possibie to speed up the 

algorithrn by using more memory (storage). Before describing the algorithm, we 

would like to formally define lexigraphic, colexigraphic and reverse lexicographical 

orderings. 

Definition 6.2.1 : Let ( x l ,  x2, .... xk) and ( y l ,  yz, ..., yk) be two k-tuples zuhere xi < 
x2 < ... < xk: y1 < y2 < ... < y*. We Say that (x i ,  xi, -.., xk) is before ( y t ,  y2, ..., yk) 

in the lexicographical ordering i f  for some O 5 j 5 k - 1, (x i ,  x2, .. . , x j )  = 

(YI,Y~~ - - - , ~ j )  and xj+i < Y j + i  

Definition 6.2.2 Let (x i ,  x2, ..., xk) and ( y l ,  y,, ..., yk) be two k-tuples where xi < 
x2 < . . . < xk, y1 < y2 < ... < y*. We say that (xl, 2 2 ,  -.- , xk) is bejOre (y, ,  y2, .. . , yk) in 

the colexicographical ordering 2f either 1) for sorne 1 5 j 5 k- 1, , xj+al ... , xk) = 

( ~ j + i  1 yj+2, ..-, yk) and Xj < Yj or 2) X k  < Yk- 

Definition 6.2.3 : Let ( 2 1 ,  2 2 ,  .. . , xc) and ( y l ,  y2, ... , yk) be two k-tuples where xi < 
x2 < ... < x k ,  y1 < y2 < ... < yk. We Say that (x i ,  x2, ..., z k )  is before ( y l ,  y2, ..., M) in 
the reverse lexicographical ordering i f  for some O 5 j 5 k - 1, ( x i ,  x,, ..., xj) = 

( Y I ,  - - - Y  Y,) and zj+i > y j t i  

We now give a detailed description of the algorithm and the data structures used in 

the algorithm. 
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In step 1, we need to define the ordering of the k-sets and the psets. The orderings 

that we considered were lexicographical, reverse lexicographical and colexicograph- 

ical. k-sets and psets  are associated with a non-negative integer that denotes the 

"rank" of the k-set or p e t  with respect to the chosen ordering. The ranks are 

between O and C(n, k) - 1 for k-sets and between O and C ( n , p )  - 1 for psets. 

Throughout the algorithm, it is necessary to cornpute the rank of a set and vice 

versa. Thus we need a method for performing this task. Bate [l] discusses a method 

for generating rank and sets using lexicographical ordering, while [21] discusses a 

method for generating rank and sets using ccAexicographicd ordering. Tables 6.1, 

6.2 and 6.3 show the ordering of 3-subsets of X(6) using the lexicographical , reverse 

le'ùcographical and colexicographical orderings respectively. 

In step 2, we define some data structures that are required by the algorithm. We 

require an array of integers indexed by the ranks of the k-sets. The value a t  a par- 

ticular index of the array is non-zero if the k-set whose rank is that index is in the 

design. It has the value zero otherwise. We shall called this array HetIndez. You 

may think of this array as a Boolean array that determines if a k-set is in the design 

or not. Similarly we require an array of integers indexed by the ranks of the p-sets. 

The value at a particular index of the array is non-zero if the pse t  whose rank is that 

index is represented by the k-sets in the design. It is zero otherwise. We shall cdled 

this array pSet1nde.z The actual value in this array represents how many times that 

pset  has been represented. That is, how many of the k-sets in the constructed design 

represent that pset .  

The design is initially empty. k-sets will be added to i t  until it becornes a Lotto 

design. In step 3, we initialize the set C to the empty set. C will contain the blocks 



Table 6.1: Lexicographical ordering of 3-subsets of X ( 6 )  



rank 
O 
1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 
16 
17 
18 
19 

Table 6.2: Reverse lexicographical ordering of 3-subsets of X ( 6 )  
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rank 
O 
1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 
16 

1 

17 
18 

l 19 

Table 6.3: Colexicographical ordering of Ssubsets of X(6) 
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in the constructed design. 

Step 4 is the most tirne consuming step of the algorithm. This step must execute un- 

t il al1 psets  are represented, that is, until a Lotto design is constructed. We dkcuss 

each of the sub-steps in 4 individually, discussing techniques for speeding up each 

step where possible. 

In step 4a, the algorithm computes the k-set with lowest rank that represents the 

most p e t s  not previously represented by the k-sets in C. This requires that almost 

every k-set be checked as a possible choice to be in C. The obvious thing to do 

here is consider every k-set. However, if we store the number of psets represented 

by the k-set chosen in the last iteration of step 4a, then it is not possible to find 

a k-set that represents more than that number of p-sets in the current iteration. 

Thus it may be possible to avoid considering every k-set as a choice to put into C 

in the current iteration. For example, suppose the previous iteration of step 4a has 

chosen a k-set to be added to the design and it represented 10 p e t s  that were not 

previously represented. In the current iteration of step 4a, if you encounter a k-set 

that  represent 10 psets that weren't previously represented, then you will choose 

this k-set to add to your design and it is not necessary to check the rest of the k-sets. 

The process of determining how many psets are represented by a k-set which were 

not previously represented is very time consuming. This process has to be performed 

each time we consider a k-set in step 4a. One easy solution to this problem is to check 

each pse t  to see if it has been represented by checking the array pSetIndex. However 

the running time of this is O(C(n, p)) which is much too slow, particularly since this 

task is done often. It is very easy to see that the number of p-sets represented by a 

k-set is : 
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It is easy to create a routine to generate these psets and check to see if they are 

already represented by checking the array psetinderr. This is much better than check- 

ing al1 the psets  but we still have to generate these psets each time for a given k-set. 

To speed up step 4a even further, we propose an array named numPSetsCovers of 

length C(n. k) where each entry of the array holds the number of un-represented p 

sets that the k-set, whose rank is the array index, can represent. Initially, the value 

in each array position is given by equation 6.1. 

Once a k-set has been chosen in step 4a, step 4b must mark al1 psets represented 

by the chosen k-set as represented. The can be done by generating the psets that 

the k-set represents and updating the pSetIndex array. Given the rank of the psets  

represented by the k-set chosen in step 4a, the pSetlndex entries indexed by these 

ranks are incremented by 1. Note that we do this for al1 p e t s  represented by the 
-. - 

k-set, not just the ones that were not previously represented. This fact allows us to 

track how many blocks represent a particular pset  in the design which is useful in 

step 5. We also need to update the array numPSetsCouers to reflect the fact that 

t hese psets  are now represented. To do this efficiently, for each p e t ,  we store the 

ranks of the k-sets that can represent it. For each pset, the number of k-sets that 

can represent it is exactly 

An array of pointers (named pSetNeighbors) of length C(n,  p) where each pointer 

m i n ( k * ~ }  C ( k ,  i) * C(n - k, p - i) is sufficient . The ith points to an array of length Ci=: 
pointer will point to the array of k-set ranks that represent the pse t  with rank i. 

This array of pointers can be constructed at the beginning of the aigorithm. Once 

this is done, the k-sets (actuaily their ranks) that represent a pse t  can be deter- 

mined simply by accessing this array of pointers. By keeping track of the number 
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of unrepresented psets that each k-set can still represent , the algorithm is sped up 

dramatically. 

Step 4c takes one step since we know exactly how many psets  were represented by 

the k-set chosen in step 4a. Sirnply subtract this number from the previous number 

of psets not represented. 

Once step 4 is complete, a Lotto design has been constructed. The  ranks of the 

blocks in the design are the indices of the non-zero entries in the array kSetIndex. 

The design may contain redundant blocks, that is, blocks that may be  removed and 

the remaining blocks still form a Lotto design. In step 5, redundant blocks are 

removed. Our approach is very simple. For each block, determine whether or not 

rernoving that block will give a Lotto design. If so, remove the block fiom the design. 

Otherwise check the next block. The blocks are checked in order based on their rank. 

This process can be made efficient since the array pSetindex not only states that a p 

set is represented or not, but also how many blocks represent it. Thus, given a block 

in the design, generate al1 the p e t s  that it represents and subtract one from the 

entries in pSetIndez corresponding to these psets. If these entries are still non-zero, 

then the block is redundant and may be removed from the design. 

The algorithm runs quite efficiently if we implement d l  the data structures de- 

scribed above. However, these data structures require a lot of memory. To build 

a (20,10,6,4) Lotto design, the arnount of memory required is about 112 mega- 

bytes! But removing the data structures discussed steps 4a and 4b would increase 

the running time drastically. Adding an additional data structure t o  determine the 

psets represented by a given k-set would make the algorithm even faster but would 

approximately double the memory required. Tables 6.4 and 6.5 show the memory 

requirements and time requirements for several values of n, k, p and t using the 
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greedy algorithm. These results were generated on an AMD K2-300 processor with 

64 b1 B of RASI running under the Lin= operating system. 

I t  should be noted that, based on our experiments, the difference in the size of the 

designs generated for given n, k, p and t using the various orderings of the k-sets 

and the psets  was very srnall. 

Table 6.4: Memory and time required for greedy algorithm implementing al1 data 
structures described above 

n 

p 
6 

Table 6.5: Memory and time required for greedy algorithm without the array of 
pointers pSetNe2ghbors and the num PSetsCovers described above 

k 
1 4 5 6 4  
1 5 7 6 5  
2 0 5 4 3  
2 0 4 6 3  

6 
4 
6 

6.3 Random Algorithms 

Memory required 
2.0 M B  
5.2 MB 
10 MB 
39 MB 

t 
4 

The idea of a random algorithm is to make a sequence of random choices, to form 

a solution. Randorn solutions have been used to generate Covering designs. We 

present a random aigorithm to generate Lotto designs. Here is the basic algorithm. 

p 

5 
3 
3 

Algorithm 6.3.1 : 

t Time required 
3 seconds 

11 seconds 
19 seconds 
90 seconds 

Memory required 
0.5 hdB 

void RandomConstruction(n,k, p, t )  

{ 

Number of blocks 
42 blocks 
11 blocks 
78 blocks 
59 blocks 

0.9 MB 
0.5 MB 
1.8 MB 

Time required 
299 seconds 

Number of blocks 
42 blocks 

11 seconds 
495 seconds 

3086 seconds 

11 blocks 
78 blocks 
59 blocks 

. ; 

. . . .- 
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1) Seed the random nurnber generator 

2) Create data structures for use in the algorithm. 

3) Initiaiire C = 0 (it uill hold the k-sets pick for the d e s i d .  

4)  While there are still p-sets not represented 

{ 
4a)RandomZy pick a k-set to  add to C 

4 b )  Mark ail p-sets represented by this k-set as represented. 

4c) Update the number of p-sets still not represented. 

1 
5) C is now a (n,  k ,  p, t )  Lotto design. Remoue redundant blocks frorn C. 

1 

The dgorithm is very similar to Algorithm 6.2.1 for construction of Lotto designs. 

The main difference is step 4a. In the random case, step 4a is quite fast since it 

randomly picks a k-set to add into the design. Being able to cornpute the number 

of psets  represented by a k-set and not by C efficiently is not as critical as  for the 

greedy algorithm. Nonetheless, we may still want to keep the data structures intro- 

duced in Algorithm 6.2.1. One reason for this is that we would often like to execute 

the random algorithm many times for a given n, k , p  and t .  If we have the data 

structures of Algorithm 6.2.1 in the random algorithm, the initialization of the data 

structures is done only once. Step 4a and 4b would be able to make use of them and 

execute more quickly. 

Instead of randomly picking a k-set and adding it to Cl we could instead randomly 

pick w k-sets where w 2 1 and add the one that represents the most pse t s  not 

represented by C to C .  Experirnents have shown that the larger the value of w the 

better the results. This would make sense since as UJ increases, the number of k-sets 

considered increases. 
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Xccording to our experiments, our random algorithm did not perform as well as 

Algorithm 6.2.1. However, that is not to Say that they may not perform better given 

enough iterations of the algorithm. 

Using the random algorithm program, we were able to determine that L(16,6,6,5) 5 

358, Lj17.6,6,5) 5 510, L(18,6,6,S) 5 727. L(l9: 6: 6 ,5 )  5 1005 and L(20' 6.6,s) 5 

1363. 

6.4 Heuristic Search 

Chapter 2 described a exhaustive search by Bate [II. This algorithm determined 

the value of L(n, k , p ,  t) given n, k,p and t .  One of the major disadvantages of this 

algorithm was the size of the search tree, which is measured by the number of tree 

nodes visited by the algorithm. This section discusses a technique to reduce the size 

of the search tree by considering the allowable frequencies that a constructeci design 

must have. This technique, will however, turn the exhaustive search algorithm into 

an algorithm that generates only upper bounds for L(n, k,  pl t). 

Suppose you wanted to generate an (n, k, p, t)  Lotto design with b blocks. There are 

n elements that must be placed in each of the k * b spots in the design. Suppose we 

divide k * b by n and obtain a quotient x and a remainder r .  We can see that if we 

have n - r elements of frequency x and r elements of frequency x + 1, then this gives 

exactly k * b occurrences. This idea gives the basis of our heuristic : 

Heuristic 6.4.1 : Suppose L(n, k, pl t )  5 6. Then, there is an (n, k, p, t) Lotto 

design w-th b blocks such that ut most kb - n l b  * k/nJ elements have frequency lb * 



Table 6.6: Performance of Heuristic Search Algorithm 

n 

1 3 4 2 2  

By adding this heuristic to the exhaustive search, we are able to decrease the size 

of the search tree substantially, thus making the program run faster. However, the 

search is now not guaranteed to compute L(n, k, p, t )  since the heuristic is not aiways 

true. 

p k 
1 2 4 2 2  

Another minor difference between our algorithm and Bate's is that  in our algorithm 

we have to input the starting size for the design to be constructed- The algorithm will 

produce designs that cannot be larger than this starting size. Table 6.6 illustrates 

how this heuristic performs on several values of n, k, p and t .  

8 3 2 2  
9 3 3 2  
7 3 4 3  

6.5 Result s F'rom Simulat ed Annealing 

In chapter 2, we briefly discussed simulated annealing and how it applied to the 

construction of Lotto designs. We have used the cover prograrn by Nurmela and 

Ostergard. Table 6.7 states some of the results that were generated by this prograrn. 

t 

206 
5234 

178 
1698 

The main problem with simulated annealing is that a large amount of memory is 

required for it to determine Lotto designs efficiently. It is possible to reduce the 

amount of memory required a t  the expense of a much longer running time. Because 

Starting Design Size 
12 blocks 

' Nodes Searchecl 
1,258,020 

Best Design Constructed 
12 blocks 

13 blocks 
12 blocks 
9 blocks 

13 blocks 

13 blocks 
11 blocks 
7 blocks 

12 biocks 
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Table 6.7: Some upper bounds 

p t 
4 3 

obtained by simulated annealing 

upper bound generated 
9 

of this dilemma, the cover program could not feasibiy be used to compute Lotto 

designs for al1 values of n, k, p and t. 

6.6 Determining L(n, k, p, t )  using Integer Program- 
ming 

Let n, k, p, t be given. Suppose the k-sets are assigned an index between O and 

C(n, k) - 1 and the p e t s  are assigned an index between O and C(n,p)  - 1. This 

assignment may be based on orderings such as lexicographical, colexicographical or 

reverse lexicographical as seen earlier. These indices are used to  determine a unique 

k-set (or pset)  . Create an C(n,  p) x C(n, k) matrix A = (ai where 

1 if the p-set with index i is represented by the k-set with index j 
ai,j = 

O otherwise 

for i = O to C(n,p)  - 1 and for j = O to C(n, k) - 1. Then any binary vector 

i? = (xo, X I ,  . .. , X C ( ~ , ~ ) - ~ )  satisbing the inequdity 
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9 

(where 1 = (1,1,1, . .. , 1)) determines an (n, k, p, t) Lotto design where the k-set with 

index i is part of the Lotto design if and only if xi = 1. To determine L(n, k, pl t) we 

need to find a solution vector 5 such that 
C(n,k) - 1 

is minimized. This implies that the determination of L(n, k, p, t) may be considered 

to be an integer programming problem. 

We used the CPLEX linear programming package to compute L(n, k.p, t) using the 

above approach. For sma l  values of n, k,p,t ,  the value of L(n, k , p ,  t) may be de- 

termined given sufficient time. However , for larger parameters, t his approach was 

infeasible. We were able to determine that L(10,4,5,3) = 7 which improved Our 

tables. 

6.7 Conclusion 

Cornputer prograrns may be used to construct Lotto designs, thus giving upper 

bounds on L(n, k, p, t). We have seen several types of computer programs that do this 

in this chapter. Each program constructs Lotto designs in different ways. Other than 

exhaustively considering the entire search space, a computer program cannot deter- 

mine lower bounds for L(n, k, p, t) since a construction gives only information about 

upper bounds and not lower bounds. Nonetheless, these programs are very useful. 

Another drawback of these programs is that they typically requires vast arnounts of 

memory or vast amount of CPU cycles or both when constructing designs of good 

quality. Randorn algorithms are fast and require little memory but the designs gen- 

erated are not very good, meaning that the size of these designs is often greater than 

the size of designs generated using other methods. The exhaustive search, on the 

other hand, will always determine the value of L(n, k , p ,  t). However, the search is 
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so computationally expensive that it is not performed except for very small values 

of n, k, p and t. We have discussed severd cornputer programs in this chapter for 

constructing Lotto designs. Which program to appiy to which set of parameters is 

not an easy question to answer. In general, the performance of two programs could 

differ dramatically when constructing designs with the sarne parameters. This means 

that  different methods of constructing Lotto designs are often required. 
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Tables 

We begin by providing a short description of how the tables for the upper and lower 

bounds for L(n, k , p ,  t) are organized. We then list these tables. 

7.1 Organization of Tables 

The tables are a major part of this thesis. We now describe how the tables are 

organized and how they are updated. 

The tables contain the lower and upper bounds for L(n, k ,  p, t )  for 5 < n 5 20, 

2 $ p, k 5 n, and 2 < t $ rn in{k ,p ) .  The actual data is stored in two binary data 

files, one for the lower bounds and one for the upper bounds. Each row in the data 

files holds the values n, k, p, t,  the bound and a comment. The comment usually 

holds the method that was used to  compute the bound. The data files are sorted by 

n, then k, then p and then finally by t. This was done so that we could easily search 

for a particular bound. Most of the programs that manipulate the tables make use 

of this fact. 
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Many of the results in the previous chapters rnay be written up as computer prograrns 

that can be used to  update the table data files. Some of the results in the previous 

chapters can only be applied to the table once, and these results are usually non- 

recursive. Other results may be used over and over again, and are usually recursive. 

.4n Example of a resuit that may be repeatedly applied is the monotonicity theorem 

from Chapter 3. ResuIts from other people can aIso be used to  improve Our tables. \Ve 

have made use of results of Gordon [13] via his web site at http://sdcclZ.ucsd.edu/- 

n3dg/cover .  html and of Bluskov 131. Ot her times, we may rely on computer searches 

such as  Our greedy algorithms, random algorit hms, exhaustive searchs and simulated 

annealing to  generate upper bounds for designs. 

When an entry has been updated (improved), al1 recursive results must be re-applied 

to the tables. This is done until there are no more improvements in the tables. These 

tables are constantly being updated. 

7.2 The Tables 

In the tables, the lower bound is followed by the upper bound for each n, k, p, t. The 

superscripts denote how the bound was derit-ed. For each table, the value of p and 

t are fixed and the values of n and k Vary. The column labels represent the value of 

n and the row labels represent the value of k. Any row which corisist entirely of the 

values NA and 1 are not displayed. 

We now list the meanings of the superscripts. 
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O. The Iower bound of 1 and the upper bound of C(n, k) 

1. Theorem 2.5.4 

2. Schonheim's Lower Bound for Coverings 
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7. Theorem 4.3.5 
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40. Greedy algorit hms 
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Chapter 8 

Conclusion 

8.1 Summary 

The determination of the value of L(n, k, p, t) is an exponential problem. The use 

of an exhaustive search program can compute the value of L(nl k, pl t) given enough 

CPU cycles and rnemory. However, this approach is not feasible is most cases. 

In this thesis we approach the problem of determining L(n, k, p, t )  by finding upper 

and lower bounds. We have developed constructions to determine upper bounds. 

These included using BIBDs, combining designs, and adjoining designs to construct 

new Lotto designs. Constructions are quite easy to program into a computer which 

was useful for updating our table of upper bounds. 

We have also developed several techniques for determining lower bounds for L(n, k, p, t )  . 

Our first formulation was a generalization of the Schoheim bound for Covering de- 

sign~. W e  also have formulas for computing lower bounds for infinite classes of 

paxameters. These formulas can al1 be programmed to automatically update our 

table of lower bounds. 



Another approach to computing the value of L(n, k , p ,  t) is to compute them one a t  

a time. This approach can be quite tedious since it only handles one case a t  a time. 

However, it is quite useful for completing gaps such as those in Bate's tables. We 

took this approach in Chapter 5 to complete Bate's tables [l]. 

Computer programs can be used to compute upper bounds by constructing designs. 

When no formula is available for determining upper bounds or when a formula gives 

an upper bound that is not very good, we may apply computer programs to generate 

upper bounds or improve upper bounds for L(n, k, p, t). We have discussed severai 

types of algorithms : greedy algorithms, random algorithms, a heuristic search and 

linear programming. Each of these programs constructs a design in a different man- 

ner. But they can ail be used to  compute upper bounds for L(n, k,p, t). In general, 

the random aIgorithm produced the biggest upper bounds while the heuristic search 

and the linear programming approach produced the smallest (best) upper bounds 

of the tliree algorithms. However, the heuristic search and the linear prograrnming 

approach were the slowest while the random algorithm was the fastest of the three 

algorithms. 

A major purpose of this thesis is to track the upper and lower bounds for L(ny k , p ,  t)  

and update them as better results are obtained. We have listed these tables in 

Chapter 7. 

8.2 Further Work 

The work presented in this thesis has barely scratched the surface on Lotto designs. 

There is much more that can be done on this topic. We will briefly state several 

ideas we have for future work. 

It may be possible to  state a lower bound formula similar to Theorem 2.3.2 for the 
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case where t > 3. Such a formula would be quite helpful since we don% have any good 

lower bound formulas that apply to cases other than t = 2. The ideas of Bate and 

van Rees [2] may be used to determine the d u e  of L(n, k, p, 2) by considering "nicez 

designs and the frequency of the elernents in these designs. It may be possible to 

formuIate similar ideas that can be used for computing L(n, k, p, t 2 3). Finally, we 

could parallelize the exhaustive search algorithm and the heuristic search algorithm 

to speed up the algorithms. By parallelizing these algorithms, it maybe feasible to 

apply t hem to larger values of n, k, p and t than can currently be done. 
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