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Abstract

Given parameters n, k,p,t, an (n,k,p,t) Lotto design is a collection of k-sets such
that any arbitrary p-set, which are chosen from an n-set, intersects at, least one k-set
in the collection in at least ¢t elements. The number L(n, k, p, t) is size of the minimal
(n,k,p,t) Lotto design. We provide constructions and techniques for determining
upper and lower bounds for L(n,k,p,t). We also provide computer programs that
generate upper bounds for L(n,k,p,t).
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Chapter 1

Introduction

The study of Lotto designs is relatively new in combinatorics. The first major study
of Lotto designs was performed by Bate [1]. Lotto designs are directly related to
lottery wheels such as the Canadian Lotto 6/49. In general, this is how lotteries

work :

e A buyer buys tickets and each ticket has k distinct numbers on it chosen by

the buyer. The numbers are between 1 and n.

The government closes the buying and then picks p of the n numbers, randomly.

If one of the buyer’s tickets and the government’s pick intersects in ¢ numbers

or more, he/she wins a prize.

The bigger the value of ¢, the greater the prize. For small ¢, there is usually no

prize.

For Lotto 6/49, n = 49, k = 6, p = 6 and your ticket has to intersect the government’s
pick in at least t = 3 numbers in order to win a prize. In Lotto 6/49, it is clear that

you need to buy all C(49,6) = 13983816 tickets in order to be guaranteed a win of

1



CHAPTER 1. INTRODUCTION 2

the big jackpot where one of your tickets is exactly the same as the government’s

pick.

A Lotto design with parameters n, k, p, and t can be informally thought of as a
collection of tickets, each with k numbers from 1 to n such that any p numbers
chosen from 1 to n will intersect one of the tickets in at least ¢ numbers. Consider
the following question about Lotto 6/49: What is the minimum number of tickets one
needs to buy to be guaranteed matching at least three numbers of the government’s
pick? This question can be restated as : What is the smallest number of tickets in
a Lotto design wheren =49, k =6, p =6, and £ = 3 ? The answer for has not be

determined by it is known to be between 87 and 169. For ¢t = 2, the answer is 19.

The fundamental question in studying Lotto designs is : Given n, k, p, t, what is the
smallest number of tickets in a Lotto design satisfying the given parameters? The
goal of this thesis is to try to answer this question. In some special cases, such as
when p = ¢t and k = ¢ the answer is known. However, not much is known about

Lotto designs in general.

1.1 Definitions

In this section, we shall define the terms that will be used throughout this thesis.
The goal of this section is to make this thesis as self-contained as possible. We begin
by defining a Lotto design.

Definition 1.1.1 : If £ is an integer, then B is an z-set if B is a set containing =

elements.

Definition 1.1.2 : If n is an integer, let X(n) be the set of integers from 1 to n.
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Definition 1.1.3 : If X is a set, and y is an integer where y < |X|, then Y is a
y-subset of X if Y 1s a y-set such thatY C X.

We now formally defined a Lotto design.

Definition 1.1.4 : Suppose n,k,p and t are integers and B is a collection of k-
subsets of a set X of n elements (usually X is X(n)). We say B is an (n.k,p,t)
Lotto design if an arbitrary p-subset of X(n) intersects some k-set of B in at least
t elements. The k-sets in B are known as the blocks of the Lotto design B. The

elements of X are known as the varieties of the design.

An (n,k,p,t) Lotto design is usually denoted as B where B are the blocks of the
design. It is assumed that the elements of the blocks are chosen from X (n). Lotto
designs can also be denoted by (X, B) where B denotes the blocks of the design and
X denotes the set from which the elements of the blocks of B are chosen. From here
on , we assume that the elements of the design are from X(n) unless explicitly stated
otherwise. We will also assume that £k < n,p < n,t < min{k, p}. These assumptions
will guarantee that the parameters are not ambiguous. The following is an example

of an (7,5,4,3) Lotto design with 3 blocks.

Example 1.1.1 The following three blocks form a (7,5,4,3) Lotto design.

{1, 2, 3 4 17,
{1, 2 5 6 7},
{3: ‘{: 5; 6) 7}'

Suppose that B is a collection of k-sets and P is an arbitrary p-set. If P intersects
some block in B in t elements, we say that P is “t-represented” by a block from B.

We now formally define this term.
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Definition 1.1.5 : Suppose B is a (n,k,p,t) Lotto design. If P is p-set that inter-
sects some block of B in t or more elements, then P is said to be t- represented

(or simply represented) by a block of B or represented by B.

Clearly, B is an (n, k,p,t) Lotto design if and only if every p-set is represented by B.

It should be clear that if B is an (n, k,p,t) Lotto design with b blocks, then adding
additional k-subsets of X(n) to B will generate other (n, k, p, t) Lotto designs. Hence
Lotto designs in general are not unique. However, for fixed n, k£, p and ¢, there will
exist an integer b > 0 such that no (n,k,p,t) Lotto design will have fewer than b

blocks. This leads to the following definition.

Definition 1.1.6 : Let L(n,k,p,t) denote the minimum number of blocks of any
(n.k,p,t) Lotto design. An (n,k,p,t) Lotto design with L(n,k,p,t) blocks is called
an optimal or minimal (n, k, p, t) Lotto design. We also define LD*(n, k,p,t;b)
to denote an optimal (n,k,p,t) Lotto design with b blocks.

The main goal of the thesis is to determine the value of L(n, k,p, t). For small values
of n, k,p and ¢, this task is often easy. In general, the determination of L(n,k,p,t)

is very difficult.

Given an (n, k, p, t) Lotto design, each element from X (n) appears in the design with
a certain frequency. If 7 > 0, let f; denote the number of elements that appear

times in the design. Let fi denote the number of elements of frequency at least q.

During the construction of Lotto designs, collections of k-sets will be formed which

may or may not be Lotto designs. In this case we call them “Potential Lotto designs”
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or simply “Potential designs”. This term will be useful in distinguishing between an
actual (n, k, p,t) Lotto design or simply a collection of k-sets that may or may not
be a (n, k, p,t) Lotto design.

Another useful concept is the complement of a Lotto design. Suppose B is an
(n,k,p.t) Lotto design. The complement of B is the collection of (n — k)-subsets of
X(n) {X(n)\ B : B € B}. Bate [1] showed that the complement of an (n,k,p, t)
Lotto design is an (n,n — k,n — p,n — k — p + t) Lotto design. We now formally

define the complement of a Lotto design.

Definition 1.1.7 : Suppose B is a (n,k,p,t) Lotto design. The complement of B
is the collection of n — k-subsets of X(n), {X(n)\ B : B € B}.

In a Lotto design, there may be elements that do not appear together in any of the

blocks. In chapter 5, we will be using this concept often.

Definition 1.1.8 : Let i be an integer such that i < n. Consider {a; : 7 = 1 to i}
where each a; is an element of an (n,k,p,t) Lotto design B. These elements are
disjoint (in the design) if |[ANB| <1 for all B € B.

Lotto designs are relatively new in the field of combinatorics. They are a generaliza-

tion of other types of designs. We now discuss several of these designs.

One special class of Lotto designs is Covering designs. Covering designs are Lotto
designs where p = t. Extensive research has gone into Covering designs and much is

known. We now give a formal definition of Covering designs.
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Definition 1.1.9 : Let n > k >t be three integers. An (n,k,t) Covering design
is a pair (X, B) where X is an n-set of elements (points) and B is a collection of k-
subsets (blocks) of X, such that every t-subset of X is represented by B. The covering
number C(n,k,t) is used to denote the minimum number of blocks in any (n,k,t)

Covering design.

Combining definitions 1.1.4 and 1.1.9, we see that L(n,k,t,t) = C(n; k.t).

One of the most famous results on Covering designs is the Schéheim bound [20] which

states :

koL EREL] o

The recursive form of this bound is:

C(n, k,t) = [%C(n ~1,k—1,t— 1)] : (1.2)

Other designs that are related to both Lotto designs and Covering designs are Turan
designs.

Definition 1.1.10 : Let n > p > t be three integers. An (n,p,t) Turan design
is a pair (X,B) where X is a n-set of elements (points) and B is a collection of
t-subsets (blocks) of X, such that every p-subset of X contains a block of B. The
Turdn number T(n,p,t) is used to denote the minimum number of blocks in any

(n,p,t) Turdn design.
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Combining definitions 1.1.4 and 1.1.10, we see that L(n,t,p,t) = T(n,p,t). Also, it
is easy to show that the complement of a Covering design is a Turan design and vice

versa.

1.2 Organization of the Thesis

The main goal of this thesis is to develop methods for computing the lower and
upper bounds for L(n,k,p,t). Upper bounds are usually obtained by construction
techniques while lower bounds often have to be obtained analytically. Another goal
of this thesis is to construct tables that contain a wide range of values for L(n, k, p, t)
where 5 <n <20,2<k,p<nand2<t< min{k,p}.

Chapter 2 gives a brief history of the work that has been done relating to Lotto
designs. The results from Bate’s thesis [1] and from Bate and van Rees [2] relating
to Lotto designs with ¢ = 2 are discussed. A lower bound formula for L(n,k, p,2)
appearing in [11] is stated and proved. Also, the computational approach of con-

structing Lotto designs by Simulated Annealing {19] is also discussed.

Constructions are one of the most common techniques for obtaining upper bounds
on Lotto designs. Chapter 3 begins with a discussion of BIBDs and the construction
of Lotto designs from BIBDs. Special classes of BIBDs such as symmetric BIBDs
and resolvable BIBDs may also be used to construct Lotto designs. We then state
the monotonicity theorems that are quite useful for improving our tables. These
monotonicity results may be applied to the tables as soon as there is a change in
the tables. Our next result is a construction which we term “Semi-direct product”.
This construction takes several designs and puts them together to form a larger
design. The designs constructed using this technique are sometimes quite good. The

last major result in this chapter is a theorem on m-ing a design. This theorem
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give sufficient conditions for L(mn,mk,p,t) < L(n,k,p,t) to hold. A few other

constructions are also stated which have been generalized from results on Covering

designs.

Lower bounds for Lotto designs are hard to compute. The approach of constructing
a design cannot help compute lower bounds. Instead lower bounds are usually given
as formulas derived analytically. Chapter 4 lists the lower bound formulas that we
have developed. The first formula is a generalization of Schoheim’s lower bound
formula for Covering designs. The rest of the formulas apply to specific groups of

Lotto designs that are determined by their parameters.

In Chapter 5, we compute the values of L(n, k,p,t) for certain values of n,k,p and ¢
on an individual basis. One of the main goals of this chapter is to update the tables

from Bate'’s thesis [1].

Chapter 6 describes the computer programs that have been developed to compute
upper bounds for L(n, k, p,t). One of our new algorithms is based on an exhaustive
search taking into account average frequencies of elements in the design. Other
algorithms we discuss are greedy algorithms and random algorithms. Results from
simulated annealing are also discussed. The search for L(n, k,p.t) can also be done
using integer programming. We used the CPLEX program to compute values of
L(n,k,p,t). We also discuss how to improve the performance of our programs in
general. Finally, we discuss the organization of the tables used to hold the upper

and lower bounds of L(n, k, p, t).
Chapter T lists the lower and upper bounds for L(n,k, p,t) that we have collected.

Chapter 8 gives concluding comments for this thesis. We also discuss possible further
work that may be done on Lotto designs.
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1.3 Frequently Used Notation

Some of the symbols used frequently throughout this thesis are defined as follows :

o C(n,r) - nl/((n—r1)7)

e f; — The number of elements of frequency i

e f — The number of elements of frequency ¢ or more
e X(n) - The set {1,2,3,...,n}

e [z] — The ceiling of

e |z] — The floor of z



Chapter 2

History

2.1 Introduction

Lotto designs are a generalization of Covering designs. The amount of research that
has been done in Lotto designs is less than the amount done in other designs such
as Covering designs, BIBDS, ¢-designs and so forth. In this chapter, we will discuss
the major contributions to the study of Lotto designs. We begin by stating the main
results from Bate’s doctoral thesis which dealt mostly with the study of L(n, &, p, 2).
We then discuss a lower bound formula for L(n, k, p, 2) by Fiiredi, Székely and Zubor.
The results of Bate and van Rees are then mentioned where they computed the value
of L(n,6,6,2) for n < 54. Finally we mention the other contributions which did not

fit in with the previous three results.

2.2 Bate’s Thesis

One of the earliest mathematical studies on Lotto designs was performed by Bate in

his Doctoral thesis [1]. However, Bate did not use the term Lotto designs. Instead,

10
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he called them “generalized (T, K, L, V') designs” . In his work, the emphasis was in
dealing with designs where the value of ¢t was 2. By generalizing a result on covering
designs, Bate was able to show the following result which states that the complement

of a Lotto design is a Lotto design.

Theorem 2.2.1 : The complement of an (n,k,p,t)} Lotto design is an (n,n—k,n —
p.n—k—p+t) Lotto design and hence L(n,k,p,t) = L(n,n—k,n—p,n—k—p+t).

By employing a graph theoretical approach, Bate showed the following:

Theorem 2.2.2 :

n?2—(p—1)n

L(n,2,p2) = .
e = [P
This particular result was first proved by Turan [22] in 1941 and since then, addi-

tional proofs have appeared.

A formula for L(n,3,3,2) was also given in Bate’s thesis. This result was indepen-
dently derived by Brouwer [6] using Covering designs and stated in terms of Covering

numbers. However, we will state Bate’s version.

Theorem 2.2.3 :

rn’-2n ifn=2,4,6 (mod 12))
B [n ~2"] +1 ifn=0,8,10 (mod 12))
L(n1373! 2) - I'ﬂ ifn = 1,3, 5,7 (mod 12))

n 21 +1 ifn=9,11 (mod 12))

For Turan designs, Bate stated the following old result of Turan.

Theorem 2.2.4 : L(3n,3,4,3) <3C(n,3) + 3nC(n, 2).
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Proof : Partition the 3n elements into three sets A, B and C evenly. Consider
all possible 3-sets of the forms {z,,z2,z3}, {y1.v2.¥3}, {z1, 22,23}, {z1,Z2,01} .
{y1.y2.z1} and {z1,22,7:} where z,,22,23 € A, y1,¥%2,y3 € B and z;,2,23 € C.
There are 3C(n, 3) + 3nC(n, 2) such 3-sets. It is easy to show that these 3-sets form
an (3n, 3,4,3) Lotto design. O

The following two results are similar to the result stated above in Theorem 2.2.4 and

hence are stated without proofs.

Theorem 2.2.5 : L(3n +1,3,4,3) < 2C(n,3) +C(n + 1,3) + (2n + 1)C(n,2) +
nC(n,2).

Theorem 2.2.6 : L(3n+2,3,4,3) < C(n,3)+2C(n+1,3)+(2n+1)C(n+1,2) +
(n+1)C(n,2).

Another important result from Bate’s thesis is a theorem that allows us to consider
only minimal designs which have no elements of frequency zero, without loss of

generality.

Theorem 2.2.7 : If L{n,k,p,t) > % then there ezists a minimal design which con-

tains every element.

Theorem 2.2.8 : If L(n,k,p,t) < § then there exists a minimal design in which

blocks are pairwise disjoint.

Theorems 2.2.7 and 2.2.8 generalize to the following two results, respectively. The

proofs for the generalizations are nearly identical to those given by Bate.
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Theorem 2.2.9 : [f there erists an LD(n,k,p,t;b) Lotto design where b >

Ll B

then
there exist an LD(n, k,p.t;b) Lotto design which contains every element.

Theorem 2.2.10 : If there exists an LD(n,k,p,t;b) Lotto design where b < 2 then

xl

there exist an LD(n, k,p. t;b) Lotto design which consists of distinct elements.

A computer program included in Bate's thesis described how one can .construct, for
small parameters, a minimal (n,k,p,t) lottery design. The basic principle of this
computer program was to find a minimal (n, k, p, t) lottery design by considering all
possible potential designs. The basis of this search program is given by the following

algorithm.

Algorithm 2.2.1 :

/* returns true if design found*/
Bool GenerateDesign()
{
Find first p-set not covered
If all are represented then
Return true meaning a design has been found.
Else
{
If design contains mazimum number of blocks allowed then
Return false to mean no design found
Else
{

For each k-set representing the p-set do
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Add the k-set to the design.
Flag every p-set represented by this k-set.
Call GenerateDesign and store its return value in
variable named found.
If found is true then
Return true to mean a design has been found.
else
{
Unflag the p-sets.

Remove k-set from design.

}

Return false meaning not found.

With the exception of small values of n, these searches are not feasible because of
exponential growth. Therefore, techniques to reduce the size of the search tree were
employed. One of these techniques was based on the concept of preclusion. The idea
behind preclusion is to determine how many p-sets can be covered by a k-set. If at
any point in the search, the number of k-sets remaining to be selected for a design
cannot cover the remaining uncovered p-sets, the search returns to the previous level.
This simple technique often provided a dramatic improvement in the reduction of the
size of the search tree. The other technique that was implemented involved the idea
of isomorphism rejection. Bate defined the terms trivially isomorphic and trivially

equivalent as follows :

Definition 2.2.1 : Two elements are trivially tsomorphic if every block in a par-
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tially constructed design contains either both of them or neither of them. Two k-sets
are trivially equivalent if one of them can be transformed into the other by replacing

elements with trivially isomorphic elements.

Bate’s algorithm kept a table of the trivially isomorphic elements in the Lotto design
constructed by the program. When a new k-set B is added to the design, this table
is first updated, followed by an attempt to complete the design. The table is then
restored to its former status when the attempt is complete. Following this, the k-set
B and any k-sets which are trivially isomorphic to B are marked and rejected at this
level and any lower levels. Once every possible k-set has been attempted, all of the
k-sets are unmarked before the program returns to the previous level. According to
Bate, this form of isomorphism testing resulted in a dramatic decrease in the size
of the search tree with only a moderate increase in overhead. Table 2.1 from (1]

illustrates the size of the search tree for several designs.

n k [ t | Basic Algorithm | With Preclusion | With Isomorphism Rejection

Nodes searched | Nodes searched Nodes searched
8 3 2 2 16,663,323 211,205 7,224
9 3 3 2 5,126,742 2,567,524 10,173
7 3 4 3 324,467 80,234 7,786
8 4 2 2 432,061 38,920 5,710
8 3 5 3 958,842 130,275 2,335
8 4 4 3 283,972 88,183 8.676
9 4 5 3 859,644 845,825 1,471
9 5 2 2 747,682 145,192 4,062

Table 2.1: Comparison of Sizes of Search Trees in Exhaustive Search

Even with these techniques, the computer program could handle only small param-

eters.

Bate also included a collection of tables containing the the lower and upper bound

for L(v,k,p,2) where v < 16 and k,p < v.
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2.3 Result of Fiiredi, Székely and Zubor

Lower bounds are very difficult to compute for Lotto designs. The special case for
t = 2 was analyzed by Fiiredi, Székely and Zubor [11] in 1996. Their approach
was take a multi-graph representing an (n, k,p,2) Lotto design, transform it into
another multi-graph with the same degree sequence as the original multi-graph which
contains p — 1 disjoint subgraphs and analyze this new graph to obtain a lower bound
for L(n,k,p,2). Using this approach, Fiiredi, Székely and Zubor determined the
following lower bound for L(n,k,p,2) :

min 1 (20 rg;—1
L(n, k,p, 2) Z(lella.') E (; * [k —1 ]) .
Before proceeding to prove the above result (since no complete proof was given), we

thank John Bate for his help in this section. We begin by stating some definitions.

Definition 2.3.1 : A multi-graph G is a set of vertices and edges between the

vertices such that loops and multiple edges between two vertices are possible.

Definition 2.3.2 : A multi-graph G is a complete graph if any two distinct ver-

tices are adjacent.

Definition 2.3.3 : An independent set of size p in a multi-graph is a set of p

vertices where no two distinct vertices are adjacent.

If G is a multi-graph, then H is a subgraph of G if the vertices of H are a subset of
of the vertices of G and if £ and y are vertices in H joined by ¢ edges, then z and

y are vertices in G joined by ¢ or more edges. Note that nothing is said about the
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relationship between H and the rest of G. We now prove a result on multi-graphs

that is a slight generalization of a result in Bollobés [4].

Theorem 2.3.1 : If G is a multi-graph with vertez set V = {z,,...,z,} and G
contains no independent set I with |I| > p, then there is a graph H with the same
vertex set V' such that

degg(z:) = degr(z:)

fori=1,2,..,n and H contains p — 1 subgraphs A,, A,, ..., Ap_| such that each is a
complete graph and A; N A; =0 fori # j and U2} A; = V . It should be noted that
there may exist edges between the p — 1 subgraphs in the graph H.

Proof : We use induction on p. For p = 2, we have G = H = K™, the complete
graph. Hence the theorem is true for p = 2. Assume the theorem is true for p—1. We
now show it is true for p. Let z,, be the vertex connected to the minimum number
of other distinct vertices of G. Let W denote the set of vertices not adjacent to z,,
and let Y denote the set of vertices adjacent to z,,. The set W cannot contain an
independent set of size p — 1 since if it did, W U {z,,} would contain an independent
set of size p which contradicts our assumptions. By the induction hypothesis, W can
be made to consist of (p — 2) complete subgraphs A;, Az, ...A,_, without changing
the degrees of the vertices, and for which the vertex sets of the subgraphs are disjoint
by their union is W. Now all vertices in Y may be made adjacent to each other as
follows. Suppose y; € Y is not adjacent to y» € Y. Then, as all vertices in G are
adjacent to at least |Y'| distinct vertices, y; and y, must be connected to vertices
wy,ws € W where w; could equal ws;. Remove the edges y;,w; and y2, w2, and
add edges between y; and y. and between w; and w,. Repeat this process until all
vertices in Y are adjacent to each other. Clearly, {z,}UY is the (p — 1)** complete
subgraph of H and no degree has been altered.O
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If there exists an (n, k. p. 2; b) Lotto design B, we can construct a multi-graph G with
b x C(k,2) edges as follows :

1. Let the vertices of the graph be the n varieties in the design.

2. For every pair (Z,7) that appear in the Lotto design, add an edge between i

and j. We note that there may be muiltiple edges between two vertices.

The multi-graph G has the following properties :

A) The degree at each vertice is a multiple of £k — 1

B) There is no independent set of size larger than p — 1

We now state and prove the main result from Fiiredi et. al.[11].

Theorem 2.3.2 :

Lin k,p,2) 200 L (; [%g_;]) |
Proof : Let b = L(n,k,p,t). Then there exists a multi-graph G with vertex set
V = {z1,...,Zn} which is the multi-graph for an (n,k,p,2;b) Lotto design. This
multi-graph has b * C(k,2) edges. By Theorem 2.3.1, there exist a multi-graph H
whose vertex set is V, degg(z;) = degn(z;) for 2 = 1 to n and the vertex set V' can be
partitioned into p — 1 subsets Aj, Aj, ..., Ap—; where |A;| = a; and A; is a complete
subgraph of H fori =1top— 1.

Consider z € A;, for arbitrary . Since z has degree a multiple of k — 1 and z
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is adjacent to at least a; — 1 elements in the multi-graph H, the degree of z is at

least fﬂl-_—l'l(k — 1). Hence the number of edges in H is at least

S5

Since this is true for any multi-graph H with the properties :

1. Each vertex has degree a multiple of £ — 1

2. The vertex set of H can be partition into p — 1 subsets A, A;, ..., Ap_; where
|A;| = ai and A; is a complete subgraph of H forzi=1top — 1,

we have the number of edges in G is at least

min P! [ai_

(Ciied 32 ai | T

i=1

11] k—1).

But the number of edges in G is b * C(k, 2). Thus,

bx Ck,2) >(5orny -za,[ ](k—l)

i=1
which gives

min 1P} rg;—1
b2 an) EZ‘“[ ]’

i=1
as required. O
The lower bound stated above is one of the best lower bound formulas currently

known for L(n, k,p, 2).

The following is a standard result for obtaining an upper bound for L(n, k, p, 2) that
is stated in Fiiredi et. al [11].

Theorem 2.3.3 :

L(n. k,p,2) <ot 2™ o (L(ar, k,2,2) + ... L(ap-1, K, 2,2)) .
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Proof: Let A; be a partition of the numbers 1 to n, where [A;| = a;, fori = 1top—1.
We can construct a (n,k,p,2) design by putting p — 1 (a;, k, 2, 2) designs together
where 2 = 1 to p — 1. To show that it is an (n, k,p, 2) design, let P = (z,,z,,..,z,)
be an arbitrary p-set. By the pigeon hole principle, at least two z;'s must be from
the same A; for some j. Thus P must be represented by the (a;, k,2,2) design used

to form the (n, k,p, 2) design. O

Fiiredi et. al [11] gave a non-exhaustive list of cases where the bounds meet. The
approach taken by the authors generated good lower bounds for L{(n,k, p,2). How-
ever, no known, similar technique can be applied to generate good lower bounds for

L(n,k,p,t) where t > 3.

2.4 Result of Bate and Van Rees

In 1998, Bate and van Rees [2] determined the values for L{n,6,6,2) for n < 54.
Their approach was to examine the frequencies of elements in “nice” designs. By
considering only these “nice” designs, they were able to determine the values of
L(n.6,6,2) for n < 54. Before we state the main results in {2], we will give several

definitions.

Definition 2.4.1 : An independent set in a Lotto design is a set of size > 2 of
elements, no pair of which occurs together in any block of the design. It is maxi-
mal if the set can not be enlarged. The elements in an independent set are called
independent elements and the blocks in a Lotto design containing independent

elements are called independent blocks.

It is be obvious that there may be numerous independent sets in a design and that

the independent elements are relative to some fixed independent set.
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Definition 2.4.2 : An element that appears only once in the independent blocks of

a design is calied a single.

Definition 2.4.3 : Given an independent element of frequency i, the ¢ blocks con-

taining this independent element is called an i-clique.

Definition 2.4.4 : A maximum independent set for a design is an independent

set whose size is not less than the size of any independent set for the design.

It is clear that the maximum size of an independent set in a (n, k,p,t) Lotto design
cannot be larger than p — 1. The next result states, that, for certain values of n,k

and p, there must exist minimal Lotto designs with an independent set of size p — 1.

Theorem 2.4.1 : An LD*(n,k,p,2;b) with n > k(p — 2) implies the ezistence of
an LD*(n,k,p, 2;b) which has an independent set of size p — 1.

The following result states that every element in an (n,k,p,2) Lotto design must
occur in the independent blocks of an independent set with p — 1 elements. Clearly,
if an independent set of size p — 1 exists in an (n, k,p, 2) Lotto design, then it is a

maximum (and hence a maximal) independent set.

Theorem 2.4.2 : In any LD*(n,k,p,2;b) with an independent set of size p — 1,
every element of the design must occur in the independent blocks of the independent
set.

More generally, we have the following result.

Theorem 2.4.3 : In any (n,k,p,t) Lotto design, every element of the design must

occur at least once in the independent blocks of any mazimal independent set.
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Corollary 2.4.1 : The number of independent blocks of any mazimal independent

set of size m from an (n,k,p,t) Lotto design is at least [%1

Definition 2.4.5 : An isolated block of a Lotto design ts a block that contains
only elements of frequency one in the design.

Under certain conditions, all the elements of frequency one occur only in blocks that

contain only frequency one elements. The following result states these conditions.

Theorem 2.4.4 : Ifn > k(p — 1) and there is an (n,k,p,2) Lotto design with b
blocks, then there erists and (n,k,p,2) Lotto design with b blocks such that there are

Tk elements of frequency one occurring in r blocks, for r > 0.

Definition 2.4.6 : A nice (n,k,p,t;b) design is a Lotto design with b blocks
wherein each element occurs at least once, the elements of frequency one occur in

tsolated blocks and there is an independent set of sizep — 1.

It turns out that if b > ¥ and n > k(p— 1) then there exists a nice (n, k, p, ¢; b) Lotto

design.

Theorem 2.4.5 : If L(n,k,p,t) = b, b > % and n > k(p — 1) then there exists a
nice LD*(n,k,p,t;b).

By considering only nice designs and analyzing the frequencies of elements in these

designs, Bate and van Rees were able to show the following results.

Theorem 2.4.6 :
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[n | L(n6,6.2)]
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Another important result that first appeared in Hartman'’s thesis [16] and was applied

by Bate and Van Rees was the following :

Theorem 2.4.7 : In an (n, k,p,t) Lotto design, there ezist at least

disjoint elements of frequency two.

|

2

l

3k
2

J

|



CHAPTER 2. HISTORY 24

2.5 Other Historical Results

Many of the results on Lotto designs were influenced by the study of Covering and
Turan designs. The study of Lotto designs is relatively new compared to the study
Covering and Turan designs. We now list other important results known about Lotto
designs. We first state a result by Hanani, Ornstein and Sés [15] which gives a lower
bound for L(n,k,p,2). .

. n{n— 1
Theorem 2.5.1 : L(n,k.p,2) > F&JTI%%'

The following lower bound for L(n, k, p,t) made be found in [19].

Theorem 2.5.2 :

Lk p 1) > = C(n,k)
S Ck,i)*C(n—k,p—1)

De Caen [9] determined a lower bound for Turdn designs which states:

. C(n, =
Theorem 2.5.3 : T'(n,p,t) > C(p_('l“:)_l)',:_’,’_tll-

Brouwer and Voorhoeve (7| determined that L{n,k,p,t) > ZC%EPT)Q This result along

with that of de Caen yields the following general lower bound formula for L(n, &, p, t).

. C(n,t) —p+1
Theorem 2.5.4 : L(n,k,p,t) > C(p_mfl)c(k't):—_%?

Currently, this is the best known general lower bound for L(n,k,p,t). Many up-
per bound formulas are derived from construction techniques. One of these is the

following upper bound construction for L(n, k, p, t) found in The CRC handbook [8].
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Theorem 2.5.5 : Ifn = ny+n, andp = p1+p2—1, then L(n,k,p,t) < L(n;, k,p, t)
+L{na, k,p2, t).

This result was applied to L(49, 6,6, 3) yielding
L(49,6,6,3) < L(22,6,3,3) + L(27,6,4,3) < 77 + 91 = 168.

Thus, in Canada’s Lotto 6/49, if you buy a certain 169 tickets, you are guaranteed
to match 3 numbers giving you $10 .

Computer programs have also aided in the study of Lotto designs. One such program
(named cover) is the probabilistic search by Nurmela and Ostergard [19] based on
Simulated Annealing. The authors did not use the term“ Lotto designs” but instead
used “Covering designs”. Simulated annealing is an optimization technique, based
on the process of physical annealing. Physical annealing is a process where a crystal
is cooled down from the liquid phase to the solid phase in a heat bath. If the cooling
process is done carefully enough, the energy state of the solid at the end of the
cooling is at its minimum. The general idea of simulated annealing, taken from the

Metropolis algorithm [18], is stated in the following pseudo-code.

1. Obtain an initial solution $ and an initial temperature T
2. While stop criterion is not satisfied do the following :

(a) While inner loop criterion not satisfied do the following :
i. Select a neighbor S’ of S.
ii. Let § = cost(S') — cost(S).
iii. [fd <0,set S=95".
iv. If § > 0, set S = S’ with probability e~%/T.

(b) Reduce temperature T'
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3. Return §

When using simulated annealing to construct an (n, k, p, t) Lotto design , we have to
define the cost function and the neighborhood of a solution. A solution may be any

potential design. The most natural way of defining the cost function is :
cost(S) = Number of p-sets not represented by the solution S.

The most natural neighborhood structure is given as follows: Suppose we have a
solution S§. We can make another solution by selecting one of the k-sets K in S and
replacing it with another k-set K’ not already in S. This is done by replacing a point
in K by a point not belonging to K to generate the required k-set K’. We define
the neighborhood of S to be the set of all solutions obtained from S by one such
change. The stop criterion and inner loop criterion in steps 2 and 2a may vary. To
reduce the temperature in step 2b, the simplest technique is to multiply the current

temperature by a constant less than one.

Simulated Annealing has given excellent upper bounds for many values of L(n, k, p, t).
However, the memory and time requirements become large as the parameters become
large. Nonetheless, simulated annealing is a useful tool for computing upper bounds

for L(n,k,p,t) and for constructing Lotto Designs.

2.6 Conclusion

Lotto designs with parameters (n,k,p,2) have been studied and much is known
about them. Many lower and upper bound formulas are available for determin-
ing L(n,k,p,2). However, for general (n,k,p,t) Lotto designs, not much is known.
Computer searches do exist for constructing (n, k, p, t) designs, but they require large
amounts of resources. In the next chapter, we shall discuss some construction tech-

niques for Lotto designs which give upper bounds for L(n,k,p,t).



Chapter 3

Upper Bound Constructions

3.1 Introduction

The main goal of this thesis is to determine the values of L(n,k,p,t). In this chap-
ter, we describe constructions that give upper bounds for L(n, k,p,t). We begin by
considering BIBDs as sources of Lotto designs. Then we study formulas that relate
the lower and upper bounds of Lotto designs which we called monotonicity formu-
las. Next we describe a construction known as the semi-direct product construction
which entails putting several Lotto designs together to formm a new Lotto design.
We conclude this chapter with several other upper bound constructions for Lotto

designs.

3.2 Lotto Designs from BIBDs

The study of balanced incomplete block designs (BIBDs) was started by Euler and
has been continuously studied since the Fisher and Yates paper [10] in 1935. Our
focus is on determining which BIBDs are Lotto designs. We begin by stating condi-

27
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tions that a BIBD must satisfy in order for it to be a Lotto design. Then we consider
resolvable BIBDs and symmetric BIBDs. We state conditions that must be satisfied
in order for them to be Lotto designs. We begin by giving a definition for a BIBD.
A good reference on BIBDs can be found in “Combinatorial Theory” by Hall [14].

Definition 3.2.1 : A (v.b,r,k,\) BIBD is a collection of b k-sets with elements
chosen from X(v) such that each element appears r times and each pair of elements

in X (v) appears A times in the collection of k-sets.

Theorem 3.2.1 : If B is the set of blocks of a (v,b,7,k,A\) BIBD and p, t are
positive integers where (B |C(t —1,2) +C(pr — | ZJ(t —1),2) < C(p,2)A, then B
is the set of blocks of an (v, k,p,t) Lotto design. Hence L(v,k,p,t) < b.

Proof : Let B denote the blocks of a (v,b,r, k,A\) BIBD. Suppose P is a p-set not
represented by any block in 3. By the definition of a BIBD, each pair appears A
times in B. Thus, the pairs of P appear C(p,2)\ times in B. On the other hand,
since P is not represented in BB, at most t — 1 elements from P can appear together

in any block of B. The maximum number of pairs of P that can be forced in B is

L_’f—lj C(t—1,2) + C(pr — [t’f—lj (t—1),2). (3.1)

But [ Z|C(t—1,2) + C(pr — | Z](t - 1),2) < C(p,2)A by assumption, which is a
contradiction. Hence all p-sets are represented in B and therefore B is an (v, k,p,t)

Lotto design. O

We now give an example of the application of Theorem 3.2.1 using the existance of
a (17,34, 16,8,7) BIBD [8].

Example 3.2.1 : Since there ezists a (17,34, 16,8,7) BIBD that satisfies the con-
ditions of Theorem 3.2.1 withp =6 and t =4, L(17,8,6,4) < 34.
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The following three results are consequences of Theorem 3.2.1.

Corollary 3.2.1 : Suppose there exists a (v,b,r,k,\) BIBD. If r < 2\ , then
L(v,k,5.,4) <b.

Proof : With the current parameters, Equation (3.1) becomes

5r

[%"J C(3,2) + C(5r — [ 3

Js, 2).

This simplifies to 5r if 3|r and to 57 — 1 if 3 Jr. In any case , p < 57 < 10A. So we
can apply Theorem 3.2.1 and obtain L(v,k,5,4) < b. O

Corollary 3.2.2 : Suppose there ezists a (v,b,r,k,\) BIBD. Ifr < %/\, then L(v,k,6,4) <
b.

Proof : With the current parameters, Equation (3.1) reduces to

l63—rJ C(3,2) + C(6r — [%"J 3,2) = 6r-.

Since r < %)\, then 6r < 15A. Thus, the conditions of Theorem 3.2.1 are satisfied
and L(v,k,6,4) <b. O

Corollary 3.2.3 : Suppose there ezists a (v,b,7,k,\) BIBD. Ifr < 3], then L(v,k,7,4) <
b.

Proof : With the current parameters, Equation (3.1) reduces to

[73—’”J C(3,2) + C(7r — [%J 3,2). (3:2)
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Regardless of whether 3 divides r or not, Equation (3.2) is less than or equal to 7r.
Since r < 3\, we have 7r < 21). Thus, the conditions of Theorem 3.2.1 are satisfied
and L(n,k,7,4) <b. O

Theorem 3.2.1 is a general result that covers all types of BIBDs. It is possible
to determine weaker conditions than those given by Theorem 3.2.1 if the design is

resolvable. We begin by stating the definition of a resolvable BIBD.

Definition 3.2.2 : A (v,b,7,k,\) BIBD is resolvable if the blocks of the BIBD can
be partitioned into sets in such a way that every partition contains each element
ezactly once. A BIBD that is resolvable is called a resolvable BIBD (RBIBD). The

partitions are called resolution classes.
The parameters for a resolvable BIBD must be of the form (kz,rz,r k,A) where =

is the number of blocks in each resolution class and r = i(-kkz_—"lll Here is an example

of a (9,12,4, 3, 1) resolvable BIBD with four resolution classes.

Example 3.2.2 : The following is a (9,12,4,3,1) RBIBD.

{1, 2, 3}
{4, 5, 6}
{7, 8 9}

{1, 4, 7}
{2, 5, 8
{3, 6, 9}

{1, 5, 9}
{2,6 7%
{3 4, 8
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{1, 6, 8}

{2 4, 9}
{35 7}

For RBIBDs, a slightly weaker condition may be stated which is sufficient for it to
be a Lotto design.

Theorem 3.2.2 : If there exists a resolvable BIBD with parameters (zk, —(—:_kl_ 2,
—(—'—)‘i':l , k,A) and if p, t are positive integers where

(1EqIc- 12+ 0o - 121 - 0.2

, then L(zk,k,p,t) <b.

< C(p, 2),\)

Proof : Let B denote the blocks of a (zk, 2ZZE-Ll Mzk-l) - Mzb-D) '} )) BIBD.

k—1

Suppose P is a p-set not represented by any block in B. By the deﬁmtlon of a BIBD,
each pair appears )\ times in B. Thus, the pairs of P appear C(p, 2)) times in B. On
the other hand, since P is not represented in I3, at most ¢ — 1 elements from P can
appear together in any block of B. In each resolution class, the elements of the set
P must appear exactly once. Thus the maximum number of pairs of P in any given

resolution class of the design is :

;25| ce-12+ce- | 5] ¢-.2.

A(rk 1)

Since there are resolution classes in the design, the maximum number of pairs

from P in the desxgn is

Ht—lJC(t_l +Clp- l J(t—l) 2)]i(a:—k_—l—l. (3.3)
But by assumption,
|25 ce -2+ co- | 25| ¢~ 0.2] XD < o
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This is a contradiction since the number of pairs of P occurring in B must be at least

C(p.2)A. Therefore every p-set is represented by the design. G

Corollary 3.2.4 : Ifa (2a+ 2,4a+2,2a + 1,a+ 1,a) RBIBD exists, and 4 < t <
2a + 4, then L(2a+2,a+ 1,2t —- 3,t) < 4a + 2.

Proof : Consider a (22 +2,4a+2,2a+ 1,a+1,a) RBIBD B. Using the notation of
theorem 3.2.2, p=2t —3, A =a, k =a+ 1 and z = 2. Equation 3.3 becomes

(222 ct-1 w0t (228 0] .

If this is less than aC(2t — 3,2), then the conditions of theorem 3.2.2 are satisfied

and hence our result holds. Now,

2t -3
t—1

2t—3 C(t—1,2) +C(2t —3—
7=

r— J(t—1),2)] (2a + 1) < aC(2t — 3,2)

if and only if 2¢2 — (8+2a)t+4a+8 < 0. This is the case if and only if 4 < t < 2a+4.
But we assumed that this was the case. Hence, B is a (2a + 2,a + 1,2t — 3, t) Lotto
design with 4a + 2 blocks. O

We now state some examples of resolvable BIBDs that are Lotto designs. Notice

that one RBIBD may give several Lotto designs.

Example 3.2.3 : Consider a (12,22,11,6,5) resolvable BIBD. Since

Hg-J C(3,2) +C(5 — EJ (3),2)] 11 < 5C(5,2),
then L(12,6,5,4) < 22 by Corollary 3.2.4.

Example 3.2.4 : Consider an (8,14,7,4,3) RBIBD. By Corollary 3.2.4, we have
L(8,4,3,3) < 14 and L(8,4,5,4) < 14.
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Example 3.2.5 : Consider a (12.22,11,6,5) RBIBD. By Corollary 3.2.4, we have
L(12,6,3,3) < 22 and L(12,6,5,4) < 22.

Example 3.2.6 : Consider a (16,30, 15,8,7) RBIBD. By Corollary 3.2.4, we have
L(16,8,3,3) < 30, L(16,8,5,5) < 30 and L(16,8,7,5) < 30.

Symmetric BIBDs are another special type of BIBD. For a specific type of symmetric
BIBD, a sufficient condition may be stated for it to be a Lotto design.

Definition 3.2.3 : A BIBD is a symmetric BIBD (SBIBD) if v =b.
The following result applies specifically to symmetric designs.

Theorem 3.2.3 : [f there exists a (4a+3,4a+3,2a+1,2a + 1, a) symmetric BIBD
and a >t — 2, then L(4a + 3,2a + 1,2t — 2,t) < 4a + 3.

Proof: Let B denote the blocks of a (4a+3,2a+1, a) symmetric BIBD. Suppose P is
a (2t — 2)-set not represented by any block in B. There are aC(2t — 2, 2) pairs of P in
B. On the other hand, each variety appears 2a+1 times in B. Since P can intersect a
block in B in at most t — 1 elements, the maximum number of these pairs of elements
of P can be obtained if P intersects blocks in B only in ¢ — 1 or zero elements. The
number of blocks that P can intersect in ¢ — 1 elements is [_Qf’i'%d)if—':glj =2(2a+1)
giving 2(2a + 1)C(t — 1,2) pairs. Now 2(2a + 1)C(¢t — 1,2) < C(2t — 2,2)a which
simplifies to @ < t — 2 which is a contradiction. Hence, every (2t — 2)-set must be

represented by B and hence B is an (4a + 3,2a + 1,2t — 2,t) Lotto design. O

The following is an example of an SBIBD that is a Lotto design.
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Example 3.2.7 : Consider a (15,15,7,7,3) symmetric design. Since a = 3,t = 4
and a > t — 2, then the 15 blocks of the BIBD form an (15,7,6,4) Lotto design.

As we have seen, under certain conditions, balanced incomplete block designs may
be Lotto designs, and thus may be able to give upper bounds for Lotto Designs.
However. these upper bounds are not always very good due to the strict conditions
that BIBDs adhere to. In most cases, the upper bounds for L(n, k, p,t) derived from
BIBDs were superceded by upper bounds generated by other methods. However, a
BIBD was used in determining that L(13,4,5,3) = 13.

3.3 Monotonicity Formulas

Monotonicity formulas relate one Lotto design to another in which one or more of
the parameters of the designs differ by one. An upper bound of a Lotto design may
be used to determine upper bounds for other Lotto designs. Similarly, a lower bound
of one Lotto design my be used to determine lower bounds for other Lotto designs.
In our computer programs, we applied the monotonicity formulas each time an upper

or lower bound changed.
Theorem 3.3.1 : L(n,k,p,t) > L(n,k+1,p,t).

Proof : Let B be an (n, k,p, t) Lotto design. For each block in B, form a new block
by concatenating any element to that block that is not in it. We claim these new
blocks form an (n, k + 1, p, t) Lotto design. To see this, let P be a p-set. Then there
is some block in B that meets P in a t-set. The new block formed from this block
will also meet P in that t-set. Thus the collection of new blocks formed from B is

an (n, k,p,t) Lotto design, and hence L(n,k,p,t) > L(n,k +1,p,t). O
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Theorem 3.3.2 : L(n,k.p.t) > L(n+ 1,k +1,p,t)

Proof : Let B be an (n, k,p,t) Lotto design. For each block in B, form a new block
by concatenating the new element n + 1. This new collection of blocks is clearly an

(n+ 1.k +1,p,t) Lotto design. O

Theorem 3.3.3 : L(n,k,p,t) > L{n,k,p+ 1,¢t)

Proof : Let B be the blocks of an (n,k,p,t) Lotto design. Let P be a (p + 1)-set.
Since every p-set is represented by some block in B, then P is represented by some

block in B. Thus B forms an (n,k,p + 1,t) Lotto design. O

Theorem 3.3.4 : L(n,k,p,t) < L(n,k,p,t + 1)

Proof :Let B be the blocks of an (n, k,p, ¢t + 1) Lotto design. Let P be an arbitrary
p-set. Then P intersects some block of B in at least t + 1 elements and hence in at

least ¢ elements. Thus B forms an (n,k,p,t) Lotto design. O

Theorem 3.3.5 : L(n,k,p,t) < L{n+1,k,p,t)

Proof : Consider an (n + 1,k,p,t) Lotto design. Select an element x, and delete
every occurrence from the design. To the blocks which have been shortened, add any
element not already appearing in the block. This is possible since k < n. Clearly,

this new collection of blocks forms an (n,k, p,t) Lotto design. O

Theorem 3.3.6 : L(n,k,p,t) < L(n,k+1,p,t +1)
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Proof: Let B be the blocks of an (n,k+1, p,t+ 1) Lotto design. We will construct a
set of k-sets B’ such that [B| > |B’|. Let B’ = { B’ : B’ = B\ {the largest element of B},
B € B}. Clearly |B| > |B’|. Consider an arbitrary p-set P. It intersects some block
B in B in at least t + 1 elements. Hence it intersects a corresponding B’ of B’ in at

least t elements. Hence B’ are the blocks of an (n,k,p,t) Lotto design. O.

Theorem 3.3.7 : L(n,k,p,t) < L(n,k,p+1,t + 1)

Proof: Let B be the blocks of an (n,k,p + 1,t + 1) Lotto design. Consider an
arbitrary p-set P. Adjoin one element to the p-set P. This (p 4 1)-set will intersect
some block of B in at least ¢ + 1 elements. Hence P will intersect the same block in

at least ¢ elements. Thus the blocks of B form an (n, k,p,t) Lotto design. O

Corollary 3.3.1 : L(n,k,p,t) < L(n+ 1, k,p+1,t+1)

Proof: By Theorem 3.3.5, L(n,k,p,t) < L(n + 1,k,p,t) and by Theorem 3.3.7,
L(n+1,k,p,t) < L(n+1,k,p+1,t+1). This implies L(n,k,p,t) < L(n+ 1,k,p+
1.t+1). O

Corollary 3.3.2 : L(n,k,p,t) < L(n+ 1, k+1,p+1,t+1)

Proof: By Theorem 2.2.1, L(n,k,p,t) = L(n,n — k,n —p,n — k —p +t) and
Ln+1,k+1,p+1t+1)=L(n+1,n—kn—-pn—k—-p+t) Thusit suffices
to show L(n,n —k,n—p,n—k—p+t)< L(n+1,n—~k,n—p,n—k—p+t). But

this follows immediately from Theorem 3.3.5. O

The following result is a generalization of a result on Covering designs which states:

C(n.k,t) <C(n+1,k+1,t+1).
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Corollary 3.3.3 : L(n,k.p,t) < L(n+1,k+ 1,p,t+ 1)

Proof: By Theorem 3.3.1, L(n,k,p,t) < L(n,k + 1,p,t + 1) and by Theorem 3.3.5,
L(n,k+1,p, t+1) < L(n+1,k+1,p,t+1). Hence L(n,k,p,t) < L(n+1,k+1,p, t+1).
a

Corollary 3.3.4 : L(n,k,p,t) 2 L(n+1,k+1,p+1,t)

Proof: By Theorem 3.3.2, L(n,k,p.t) > L(n+ 1.k + 1,p,t) and by Theorem 3.3.3,
L(n+1,k+1,p,t) > L(n+1,k+1,p+1,t). Hence, L(n,k,p,t) > L(n+1,k+1,p+1,¢t).
a

Corollary 3.3.5 : L(n,k,p,t) > L(n+ 1,k,p+ 1,¢).

Proof : Let B be the blocks of an (n, k,p,t) Lotto design. Let P be an (p + 1)-set
with elements chosen from X(n +1). If n+1 € P, then P\ {n + 1} is a p-set
and hence is represented by some block of B as B is an (n,k,p,t) Lotto design.
Otherwise, if n + 1 € P, then P must be represented by some block of B as B is an
(n, k,p,t) Lotto design. In any case, P is represented by a block of B and hence B
isan (n+ 1,k,p + 1,t) Lotto design. Thus, L(n,k,p,t) > L(n+ 1, k,p+1,t). O

Corollary 3.3.6 : L(n,k,p,t) < L(n+1,k,p,t +1)

Proof: By Theorem 3.3.5, L(n,k,p,t) < L(n + 1,k,p,t) and by Theorem 3.3.4,
L(n+1,k,p,t) < L(n+1,k,p,t +1). Hence, L(n,k,p,t) < L(n+ 1,k,p,t +1). O.

Corollary 3.3.7 : L(n,k,p,t) 2 L(n,k+ 1,p+ 1,1).
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Proof : By Theorem 3.3.1, L(n.k,p.t) > L(n,k + 1,p.t) and by Theorem 3.3.3,
L{n,k+1,p.t) > L(n.k+1,p+1,t). Hence L(n,k,p,t) > L(n,k+ 1,p+ 1,t).

The main purpose of the monotonicity results in this thesis is to apply them to
our tables of lower and upper bounds as soon as a lower bound or an upper bound

changes in the table.

3.4 Semi-Direct Product Construction

Constructing Lotto designs based on other Lotto designs is one way to obtain upper
bounds. The method described in this section uses this technique. We termed the
construction in this section “Semi-Direct Product” construction. The construction
technique described may be used to obtain an (n, k,p,t) Lotto design for arbitrary
values of n,k,p and t. In general, the larger the value of &k, the better the construction
will be.

We begin with a useful lemma.

Lemma 3.4.1 : Suppose B is an (n,k,p,t) Lotto design. If m < p is an integer,

then any m-set intersects some block of B in at least t — p + m elements.

Proof : Let M be an m-set. Add p — m elements to M to form a p-set P. Since P
now has p elements, it is represented by some block B in B. Since at most p — m of
the elements added to M to form P can appear in B, then at least t —p+m elements

from M appear in B. O

We now state the main result of this section. This result will give us a way to

compute upper bounds for Lotto designs.
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Theorem 3.4.1 : Suppose n,k,p,t.ny,k, and r are integers such that n; < n,
p—r>t,kiy>2t—r—1landk, =k—n+n,. Then L(n.k,p,t) < L(n,, k,p —
rt)+ L(n,ki,p—1—=1,t—1—1).

Proof : We shall proceed to construct an (n, &, p, t) Lotto design using (n,,k,p—r, t)
and (n;,k;,p—71—1,t —r — 1) Lotto designs.

Let A be an (n1,k,p—r,t) Lotto design, B’ be an (ny,k,p—r—1,£ —r —1) Lotto
design and let C be the set {n, + 1,n; + 2,...,n}. For each block in B', adjoin the
set C to it. Denote this new collection of k-sets as B. We claim that AU B is an

(n,k,p.t) Lotto design.

Consider a p-set P from X(n). Suppose p—~z elements in P come from {1,2,3,...,n,}
and the remaining z elements of P come from {n; +1,n; +2,...,n}. Sincen—n, =
k —k,, the set {n;+1,n;+2,...,n} has exactly £k — k, elements and hence z can be at
most k—k;. We need to show that the p-set is represented by AUB. If £ < r then the
p-set would be represented by a block in A since it is an (n;, k,p—r,t) Lotto design.
Ifr+1 <z <p, then by Lemma 3.4.1, there is a block from B’ that intersects P in

at least t—z and P intersects C in z elements. Hence P is represented by a block in B.

Since P is always represented by some block in AU B, we conclude that AU B is an
(n,k,p, t) Lotto design. O

If r > n — n; in the previous theorem, then B is not used. The theorem can be

simplified to L(n,k,p,t) < L(ny,k,p — r,t) which is essentially Theorem 3.3.5.
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A construction of a (20. 10, 6,4) Lotto design using Theorem 3.4.1 will now be given.

Example 3.4.1 : Let n =20, k=10,p=6,t =4, n, = 15,7 = 1. Then k; = 5.
Let A = {{1.3,5,6,7.10,11,12,13,14}, {2,4,5,6,7,8,9,10,12,15}, {1,2,3,4,8,9
.11.13,14,15}}. Let B’ = {{3,5,6,10, 12}, {1,7,9,11, 14}, {2,4,8,13,15}} and let

C = {16,17,18,19,20}. It can be shown that A is a (15, 10, 5,4) Lotto design and B’

is an (15, 5.4, 2) Lotto design. We construct B from B’ and C by adjoining C to each
block of B’. Thus B = {{3,5,6, 10,12, 16,17, 18, 19, 20}, {1,7,9, 11, 14, 16, 17, 18, 19, 20},
{2.4.8,13.15,16,17,18,19,20}}. By Theorem 3.4.1, AUB is a (20, 15, 6,4) Lotto de-
sign. The blocks of this (20, 15,6, 4) Lotto design are {{1,3, 5,6, 7,10, 11, 12,13, 14},
{2.4,5,6,7.8,9,10, 12,15}, {1,2,3,4,8,9, 11, 13, 14, 15}, {3,5,6, 10,12, 16,17, 18, 19, 20},
{1,7,9,11, 14,16, 17,18, 19, 20}, {2,4,8,13,15,16,17,18,19,20}}.

By applying Theorem 3.4.1, we can compute uppers bounds for L(n,k,p,t) by vary-
ing the value of », (which in turn varies &;) in the construction of an (n, k, p, t) Lotto
design and taking the minimum size of all the designs constructed. This approach
can be easily programmed and used to update our tables. Table 3.1 displays upper
bounds for L(19,10,6,4) using the semi-direct product construction. We fixed the

value of r from Theorem 3.4.1 at 1.

ny Sub-designs used | upper bound obtained
18 (18,10,5,4) 14
17 | (17,10,5,4) and (17,8,4,2) 11
16 | (16,10, 5,4) and (16,7,4,2) 8
15 | (15,10,5,4) and (15,6, 4, 2) 6
14 | (14, 10,5,4) and (14,5,4,2) 6
13 | (13,10, 5,4) and (13,4,4,2) 8
12 | (12, 10,5,4) and (12,3, 4,2) 11
11 | (11,10,5,4) and (11,2, 4, 2) 16

Table 3.1: Some upper bounds generated by semi-product construction

We stop computing Table 3.1 at n, = 11 because for n; < 11, the construction makes

no sense. In general, for fixed r, we would stop when k; <t —r —1 for an (n, k,p,t)
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design. From Table 3.1, we see that the best upper bound for L(19,10,6,4) deter-

mined using the semi-direct product construction is 6.

The semi-direct product construction allowed us to construct an arbitrary (n, &k, p, t)
Lotto design from smaller Lotto designs. This construction empowered us with
another way of obtaining an upper bound for L{n,k, p,t). This construction works
best when k is large. This is because a large value of k gives mere ways of constructing
a Lotto design from smaller ones. This construction does not work well for cases
where k is close to p or t. Finally, since this construction depends on other Lotto

designs, better upper bounds for these designs would generate a better design.

3.5 Other Upper Bound Constructions

In this section, we will state other upper bound constructions that we have developed.

One way of constructing an (n+1,k+1,p+1,t+ 1) Lotto design from an (n,k, p, t)
Lotto design and an (n,k+ 1,p+ 1,t + 1) Lotto design is to attach to each row of
the (n,k,p,t) design the element n 4 1. The blocks of this new design along with the
blocks of the (n,k+ 1,p+ 1, + 1) design form an (n + 1,k + 1,p+1,£+ 1) Lotto
design. This result is a direct generalization of a result on Covering designs that can
be found in the CRC handbook (8.

Theorem 3.5.1 : L(n+1,k+1,p+1,t+1) < L(n,k,p,t)+ L(n,k+1,p+1,t +1).

Proof: Let A be an (n, k,p, t) Lotto design and B be and (n,k+1,p+1,t+1) Lotto
design. To each block of A, attach the element n + 1 and denote this new collection
by A*. We claim that A*UBisan (n+1,k+1,p+ 1,¢ + 1) Lotto design. To show
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this, let P be a (p+1)-set. If n+ 1 & P then there is a block in B that represents P.
Otherwise, n + 1 € P. Then, P\ {n + 1} is a p-set and hence intersects some block
A from A in t elements. The block {n + 1} U A belongs in A* by construction, and
intersects P in ¢ + 1 elements. Hence A*UBisan (n+ 1,k + 1,p+ 1,t + 1) Lotto
design and L(n+ 1,k +1,p+1,t+1) < L(n,k,p,t)+ L(n,k+ 1,p+ 1,t +1). O

In the study of Covering designs, it is well known that C(mn,mk,t) < C(n,k,t) for
any integer m > 1. For Lotto designs, the obvious generalization is not always true.

An extra condition must be added to the theorem.

Theorem 3.5.2 : Suppose there exists an (n,k,p,t) Lotto design D, where ev-
ery (t — 1)-set is contained in some block of the design. Then L(mn,mk,p,t) <

L(n,k.p,t) where m > 1 is an integer.

Proof: Let D, be an (n, k,p,t) Lotto design such that every (¢ — 1)-set appears in
the design and the elements of D, are {1!,2',3!, ..., n'}. Suppose the blocks of D,
are ordered using some ordering. Since every (¢t — 1)-set appears in the design, so
does every u-set, for any integer u < t. Create m — 1 copies D5, D3, ..., Dy, of D;
keeping D, ’s ordering of the blocks, relabeling the elements {1},2!,...,n!} in D; with
{1%,2%,...,n'}, for i = 2 to m in the obvious way. For each j from 1 to | D], unite the
jt* blocks of Dy, Dy, ..., Dm to form a mk-set. Let D denote the set of all mk-sets
formed. We claim that D is an (nm, km, p,t) Lotto design.

Suppose P is a p-set in D. In order to show that D is a Lotto design, we need to show
that P is represented by some block of D. Let P be denoted {(z,)", (z2)%, ..., (zp)"*}
where z; € {1,2,...,n} and i; € {1,2,...,m} for j =1 to p. There are three possible

cases that we need to consider.
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Case 1 : Suppose all the z;’s are distinct, then the p-set {(z1)!, (z2)!, ..(zp)'} is rep-
resented by some block in D;. Without loss of generality suppose {(z,)!, (z2)*, ..., (z:)'}
appears in this block of D;. Then the corresponding block in D will contain the sub-
set {(z1)%, (z2)®, ..., ()"} of P. Thus P is represented in this case.

Case 2 : Suppose not all the z;’s are distinct and some z; appears at least ¢ times in
the collection {zi, Z2,...z,}. Without loss of generality, suppose z; = z2 = ... = z,.
Since (z;)! has to appear in some block of D,, the corresponding block in D must

contain the subset {(z1)", (z3)*, ..., ()"} of P. Thus P is represented in this case.

Case 3 : Suppose not all the z;’s are distinct and at most ¢t — 1 of any of the
z;'s are the same, then select ¢t elements from the collection {z,z2,...,z,} such
that at least two of the chosen elements are the same. Without loss of generality,
suppose we chose r;,12,..z; where £, = r,. Now there are at most ¢ — 1 distinct
elements in the collection {(z,)?!, (z2)!, ..., (z:)!}, since £, = z,. By hypothesis, the
set {(z1)?, (z2), ..., (z¢)'} is contained in some block of D;. Then the corresponding
block in D will contain the subset {(z;)%,(z2)%,...,(z.)*} of P. Thus P is repre-

sented in this case.

In each case, the p-set P is represented in D. Hence D is an (nm,km,p,t) Lotto
design and L(mn,km,p,t) < L(n,k,p,t). O

The construction process above is called “m-ing a design”. The following is a special

case of a result from Bate [1] which we will need, to prove a later theorem.

Theorem 3.5.3 : If L(n,k,p,2) > § then there ezists a (n,k,p,2) Lotto design
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with 7 blocks such that every element appears in the design.

The following theorem states that m-ing an (n, k, p, 2) Lotto design is always possible

if every element appears in the original design.

Theorem 3.5.4 : If L(n,k,p,2) =b> % then L(mn,mk,p,t) < b. .

Proof: By Theorem 3.5.3 there is an (n,k,p,2) Lotto design with b blocks such
that every element appears in the design. By Theorem 3.5.2, L(mn,mk,p,t) <
L(n,k,p,2) =60

Theorem 3.5.5 : L(mn,2m,zn+ 2,2z + 2) < C(n,2) for z < m, where m is an

integer.

Proof : Let D, be the (n,2,2,2) Lotto design which consists of blocks that are all
pairs from the n-set. Order the blocks using some ordering. Create m — 1 copies
Dy, D5, ..., Dy, of Dy, each keeping D,’s ordering of the blocks, relabeling the ele-
ments {1}, 2!, ..., n'} in D; with {1%,2¢, ..., n}, for ¢ = 2 to m in the obvious way. For
each j from 1 to { D[, unite the j** blocks of Dy, Dy, ..., D;, to form a mn-set. Let D
denote the set of all 2m-sets formed. We claim that D is an (mn, 2m, zn + 2,2z + 2)
Lotto design. To show that D is an (mn,2m, zn + 2,2z + 2) Lotto design, let
P = {(z1)", (z2)?, ..., (Tzn+2)"*?} be an arbitrary (zn + 2)-set chosen from the el-
ements of D, where z; € {1,2,...,n} and ¢; € {1,2,...,m} for j =1 to zn + 2. We
need to show it intersects some block of D in at least 2z + 2 elements. We note that
there is at least one element in the collection {z,, z2, .-»Tm+2} that occurs z + 1 or

more times in the collection, as ﬂ"ﬂ > z. We need to consider the possible cases :
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Case 1 : Suppose the collection {z, z2,Z3, ..., Z:n+2} contains two elements, say T,
and z..2 such that z, # z.4+2 and z, is appears at least z + 1 times in the collection
and z.,, appears at least z + 1 times in the collection also. Then, without loss of
generality, assume z;, = T2 = ... = I 41 and ZT,42 = T;43 = ... = To42. Since D,
is an (n,2,2,2) Lotto design the the set {(z1)!, (z:+2)'} must appear in some block
of D;. Thus the subset {(z1)", (22), ..., (Tz+1)**1, (Tz42)'+2, ..., (T2242)22+2} (which
contains 2z + 2 elements of P) must be contained in some block of D. Since P was

arbitrarily chosen, D is an (mn, 2m, zn + 2,2z + 2) Lotto design.

Case 2 : Suppose the collection {z,, 12, z3, ..., Z:n+2} contains only one element, say
z; that appears at least z + 1 times in the collection. It is easy to see that there
exists an element z, distinct from z; that appears in the collection, and z, along
with z, together appear at least 2z + 2 times in the collection. To see this, suppose
that z; appears z + ! times in the collection where [ > 1 and suppose every element
in the collection distinct from z; appears fewer than z — [ 4+ 2 times in the collec-
tion. Counting the total number of elements in the collection, there are at most
(n=1)(z—I+1)+(2+!) = zn+ (n—nl+ 2l — 1) elements. We can easily show that
n—nl+2l—1 < 2since %‘T:‘ < 2. Hence our method of counting showed that there
are less than zn + 2 elements in the collection which is a contradiction. Considering
the elements z; and z, and using almost the same argument as in the previous case,
we conclude that P must be contained in some block of D. Since P was arbitrarily
chosen, D is an (mn,2m, zn + 2,2z + 2) Lotto design. O

Table 3.2 shows some upper bounds resulting from Theorem 3.5.5.

Gordon et. al [12] stated the following theorem for Covering designs.
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mn| k| (|t} # of blocks | n
12} 6| 64 6|4
16| 8| 614 6|4
16| 8|10|6 6|4
20| 8|12 6 105
20/ 10| 64 6|4
2011014 ( 8 6|4

Table 3.2: Some Upper Bounds generated by m-ing a base design

Theorem 3.5.6 : C(n+1,k+1,t+1) < [(2—~ £)C(n,k,t)| +C(n—1,k+1,t +1).

We shall generalize Theorem 3.5.6 for Lotto designs with the following construction.

Consider an (n, k,p,t) Lotto design D. Let £ € X(n) and choose 2 new points z’

and z” not in X(n). On the blocks of D, perform the following operations :

1. If a block B of D does not contain z, replace B with the two blocks : BU {z'}
and BU {z"}.

2. If a block B of D contains z, replace B with the block (B \ {z}) U {z/,z"}.

Let us denote this new design by V. Finally, add an (n — 1,k + 1,p + 1,¢) Lotto
design E on X(n) \ {z} to the end of D'.

Theorem 3.5.7 : The above construction gives an (n+1,k+1,p+1,t) Lotto design
on the elements X(n)\ {z} U {z',z"}.

Proof : Consider a (p+1)-set P = {a,,ay, ...,ap+1}. We must show it is represented
by some block in D' U E. Consider the three possible cases :
Case 1 : Suppose '’ &€ P and z” ¢ P. Then P is represented by E.
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Case 2 : Suppose ' € P but z” ¢ P. Then P\ {z'} U {z} is represented by some
block of B in D. If z € B, then P is represented by the block B’ constructed from B.
Otherwise, if &€ B, then the block BU {z'} from D’ represents P. Symmetrically,
the same is true if z”7 € P but z’ & P.

Case 3 : Suppose =’ and z” is in P. Let P = {z’,z",a1,a3,...,a5-2}. Consider
the set {z, a1, az, ..., ap_2,b} where b is any other element. This set is represented by
some block, B, in the original design. If B contains z, then B\ {z} intersects P in
at least ¢t — 2 elements. But then, P intersects B\ {z} U {z’,z"} in ¢t elements. If B
does not contain z then it intersects P in at least £ — 1 elements and either B U {z'}

or BU {z"} can represent P in t elements.

Since in each case, P was represented by the constructed design, the design must be

an (n+1,k+1,p+ 1,t) Lotto design. O

Corollary 3.5.1 : If £ € X(n) and by denotes the number of blocks in a minimal
(n,k,p,t) Lotto design that contain =, then L(n+ 1,k + 1,p+ 1,t) < 2L(n,k,p,t) -
b+ L(n—1,k+1,p+1,¢t).

Proof : The construction creates by + 2(L(n,k,p,t) — b;) + L(n—1,k+ 1,p+ 1,¢)
blocks. Hence L(n+1,k+1,p+1,t) < 2L(n,k,p,t) =b:+L(n—1,k+1,p+1,¢t). O

The next result follows immediately from Corollary 3.5.1.

Corollary 3.5.2 : L(n+1,k+1,p+1,t) < |2 - £L(n,k,p,t)| + L(n—1,k+1,p+
1,t).

Proof : For a minimal (n, k, p, t) Lotto design, there exists some z € X(n) such that
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T appears in at least [ﬁL(n, k,p. t)] blocks of the design. Then by Corollary 3.5.1,

we have
k
Lin+1,k+1,p+1.,t) <2L(n,k,p,t) — [;L(n,k,p,t)} +Ln-1,k+1,p+1,¢).

Hence we are done. O

The following results determine upper bound formulas for fixed values of p and ¢.
Theorem 3.5.8 : L(k +2,k,4,3) <3, fork > 3.

Proof: The blocks B; = {1,2,3,....k}, B2 = {1,2,3,...,k - 1,k + 1} and B; =
{1,2,3,....,k — 3,k,k+ 1,k + 2} form a (k + 2,k,4,3) Lotto design. To show this,
consider a 4-set P. If P is not represented by B; or B,, then [P N B;| < 2 which
implies {k + 1,k + 2} C P. Similarly, |P N By| < 2 implying that {k,k + 2} C P.
Thus, {k,k + 1,k + 2} C P which is contained in B;. Hence, the three blocks B,
B,, B3 form an (k + 2,k,4,3) Lotto design. O

Theorem 3.5.9 : L(2k + 1,k,5,3) <5, fork > 4.

Proof: Consider the five blocks: By = {1,2,3,...,k—2,k—1,k}, B, = {1,2,3, ..., k—
2,k+1,2k+1}, B3 = {3,....k—2,k - 1,k,k+ 1,2k + 1}, By = {k+2,...,2k —
1,2k,2k + 1} and Bs = {k+ 1,k + 2,...,2k — 1,2k}. We claim these five blocks
make up a (2k+1, k,5,3) Lotto design. To show this, divide X (2k + 1) into two sets
A=1{1,2,3,...,k} and B = {k+1,k+2,...,2k+ 1}. Consider an arbitrary 5-set P.
Clearly, if three or more of P’s elements come from A, then it will be represented by
the block B;. Similarly, if four or more of P’s elements come from B, then it will be

represented by the block Bs.
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We consider the remaining case where two elements of P are from A and three ele-
ments of P are from B. If 2k +1 ¢ P, then |[{k + 1,k + 2,...,2k} N P| = 3, which
implies that P is represented by Bs. So assume that 2k + 1 € P. Similarly, if
k+1¢ P, then |[{k+2,...,2k,2k + 1} N P| > 3, which implies that P is represented
by By. Thus we assume k+1 € P. So both k +1 and 2k + 1 € P. Now, consider
an element from P N A (there are two of these); it must be in B; or B3 or both. In

any case, since k+1 and 2k+1 appear in both B; and Bj, P is represented in this case.

We have shown that an arbitrary 5-set is represented by these five blocks, and hence,
it forms a (2k + 1,k, 5,3) Lotto design. O

Theorem 3.5.10 : L(2k + 2,%,8,4) <4, fork > 4.

Proof : We claim that the blocks By = {1,2,3,...,k}, Bo = {k+3,k+4,...,2k + 2},
By = {k+1,k+2,...,2k—2,2k—1,2k} and B; = {k+1,k+2,...,2k~2,2k+1,2k+2}
form a (2k + 2,k, 8,4) Lotto design. To show this, divide X(2k + 2) into two sets
A={1,2,3,....,k}and B={k+ 1,k +2,...,2k + 1,2k + 2}. Consider an arbitrary
8-set P. Clearly if four or more of P’s elements come from A, then it will be repre-
sented by the block B,;. Similarly, if six or more of P’s elements come from B, then

it will be represented by the blocks B> or Bj.

We consider the remaining case where three elements of P are from A and five ele-
ments of P are from B. Split the set B into two subsets C = {k+1,k+2,...,2k—2}
and D = {2k — 1,2k, 2k + 1,2k + 2}, and consider the possible subcases. If two or
more elements of P appear in C, then P is represented by either B3 or B;. If one of
P appear in C, then P is represented by B,. It is not possible for not elements of P

to appear in C since |P| =5 and |D| = 4. Thus all subcases have been considered.
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We have shown that an arbitrary 8-set is represented by these four blocks, and hence

it is a (2k 4+ 2,k,8,4) Lotto design. O

Theorem 3.5.11 : L(3k +2,k,8,3) <5, fork > 4.

Proof: Let the elements 1,2,3,....,k + 4 have frequency one and the rest of the ele-
ments have frequency two. Put the elements 1,2,..., k in the first block B,. Let the
second block By be {k + 1,k + 2,k + 3,k +4,k +5,...,2k}. Now put the elements
k+5,k+6,...,3k + 2 into the last three blocks B3, By and Bs in any way that does
not place the same element twice in any block. We claim this is a (3k + 2,%,8,3)
Lotto design. To show this, consider an arbitrary 8set P chosen from the two sets
A={1,2,..,k+4} and B = {k +5,...,3k + 2}. We must show that this 8-set is
represented. We denote the number of elements chosen for P from each set by (a,b)
where a is the number of elements from A and b is the number of elements from B. If
a = 5, then clearly, B, or B; contains at least three elements of the 8set and hence,
P is represented in this case. If a = 4, then it is easy to see that we may assume that
exactly two elements chosen from A appear in B; and the remaining two elements
chosen from A appears in B,. Otherwise, either B; or B; would contain at least
three elements of the 8-set, and hence, the P is represented. As B; contains two
elements from the 8-set, we may assume that no element in {k+ 5,k +6, ..., 2k} may
belong to the P, or else B, would represent P. So the 4 elements of the P chosen
from B must actually be contained in {2k + 1,2k + 2,..., 3k + 2}, all of which have
frequency two. This implies that at least one of three blocks Bs, By and Bs contains
3 elements of the P. Finally, consider the remaining cases where (a,b) = (4—z,4+z1)
where 0 < z < 4. If 0 or 1 elements of P are from {k + 5,k +6, ..., 2k}, then there
are at least 3+ z > 4 elements of P from {2k + 1,2k + 2, ..., 3k + 2} which can be
handled by the case where a = 4. If 2 elements of P are from {k + 5,k + 6, ..., 2k},
then there are at least 2 + z > 3 elements of P from {2k + 1,2k + 2, ..., 3k + 2},
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which implies that the elements of P appear at least 3(2)+2=8 times in the blocks
B3, B4 and Bs. Clearly, some block must contain at least three of these elements
of P and hence P is represented in this case. Finally, if 3 or more elements of P
are from {k + 5,k +6,...,2k}, then P is represented by the block B>. So, no matter
what 8-set we choose, it is always represented. Thus, the construction design is a
(3k + 2.k, 8,3) Lotto Design with five blocks. O

The next three results although specific are useful.

Theorem 3.5.12 : L(16,8,4,3) < 7

Proof : Theblocks {1, 3,4,6},{1,2,5,7}, {3,4,6,7},{2,3,5.8},{2,4, 5,8}, {1,6, 7,8},
and {2, 5, 6,8} form an (8,4, 4, 3) Lotto design on seven blocks where every 2-set ap-
pears in the design. Hence by Theorem 3.5.2, L(16,8,4,3) < 7. O

Theorem 3.5.13 : L(18,8,4,3) <9.

Proof : Since we can generate a (9,4,4,3) Lotto design cyclically from the block
{0,1,2,4} modulo 9, every 2-set appears in the constructed design. Hence by Theo-
rem 3.5.2, we can double this design to get an (18, 8,4, 3) Lotto design with 9 blocks.
Thus, L(18,8,4,3) <9. O

Theorem 3.5.14 : L(18,9,4,3) < 6.

Proof: The blocks {1,2,3},{1,3,5}, {2,4,5}, {1,4,6},{3,4,6},{2,5,6} form an
(6,3,4,3) Lotto design in which every 2-set appears. By tripling this design, we get
an (18,9,4, 3) Lotto design. Hence L(18,9,4,3) < 6. O
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3.6 Conclusion

We have presented several constructions of Lotto designs in this chapter. These
constructions give upper bounds for L(n, k, p, t). A few of these results are generalized
from the theory of Covering designs. The semi-direct product is one construction
that could be generalized further. All the constructions from this chapter have been
incorporated into our computer programs and they help generate upper bounds for
L(n,k,p,t).



Chapter 4

Lower Bound Formulas

4.1 Introduction

In the previous chapter, we presented several techniques for improving the upper
bound for L(n,k,p,t) . In this chapter, we discuss techniques for improving the
lower bound for L(n, k,p,t). Upper bounds are usually much easier to obtain than
lower bounds since upper bounds can be obtained often from constructions. Lower
bounds on the other hand cannot be generated from constructions. Lower bounds

often must be derived mathematically.

Our first lower bound formula is a generalization of the Schonheim bound for Cov-
ering designs. We follow this with lower bound formulas for L(n,k,p + 1,p) and
L(n,k,p + 2,p). After that we give a result that states the value of L(n, k,p, t) for
an infinite class of parameters. Finally, we prove several other sporadic lower bound

results.

53
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4.2 Generalized Schonheim Formula

The main goal of this section is to derive a lower bound formula for Lotto designs

that is a generalization of Schénheim’s lower bound formula for Covering designs.

Definition 4.2.1 : If (X,B) is an (n,k,p,t) Lotto design and S is a subset of X,
let B5* = {T e B:|SNT| < k~—t}andlet BS = {T* : if T € B thenT"* =
T\ SUXT where [ XT| =|TNS| and XT C X\ S}.

Theorem 4.2.1 : Let (X,B) be an (n,k,p,t) Lotto design and let S be a subset
of X such that |S| < n—pand |S| < n—k. IfBS #0, then (X \ S,B5) is an
(n —|S|,k,p,t) Lotto design.

Proof : It is easy to see that blocks in BS are made up of elements from X \ S
and since n > k + |S|, each block will not have repeated elements (although there
could be repeated blocks). Let P be a p-set from X \ S, then since (X, B) is a Lotto
design, there exists some T € B such that TN P| > ¢t. Since PN S = 0, then
E>(PAT+((SNT)|>t+|SNT|. Hence |[SNT|<k—t. AsB#0,T € B

and we are done. O

[t is possible to take (n, k,p, t) Lotto-designs found using techniques such as exhaus-
tive search, hill climbing or Simulated Annealing and try to find an optimal S such
that an (n — |S|, k,p,t) Lotto design is generated which has a better upper bound
than currently known. The only problem is that the number of choices for S be-
comes prohibitively large as n gets large. A future goal is to try discover the types

of subsets S which will improve upper bounds.

Definition 4.2.2 : If (X,B) is an (n, k,p,t) Lotto design and S is a subset of X,
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then we define degg(S) ={T € B: S C T}|.

Lemma 4.2.1 : Let (X,B) be an (n,k,p,t) Lotto design and S C X such that
|S| = k —t+ 1. Then |BS| = |B| — degs(S).

Proof : We see that |[BS| = |{T € B:|SNT| < k—t}| and degg(S) = |{T €
B:|SNT|=k—t+ 1}}. It is easy to see that any T € B must be counted in
one and only one of the two stated collections. Thus |{B| = |B%| + degs(S). That is,
|B5| = |B] — degs(S). O

Lemma 4.2.2 : Ifn>k—t+1+pandn>2k—t+1 and (X,B) is an (n,k,p, t)
design, then there cannot exist an S C X where |S| =k —t + 1 such that S C T for
all T € B.

Proof: Suppose there is some (n,k,p,t) design (X, B) and some S C X where
|IS|=k—t+1and § C T for every T C B. Then consider a p-set Q which has
empty intersection with S. Such p-sets exist, sincen >k —t+1+p. As (X,B)isa
Lotto design, there exists T € B such that {QNT'| > t. However,as QNS =0,SC T
and |S| = k—t+1, |TNQ| < t—1. This is a contradiction. Hence our lemma holds. O

This lemma implies that for a given (n,k,p,t) Lotto design (X, B), any S with
|S| = k—t+1,n > 2k—t+1and n > k—t+1+p, will generate an (n—k+t—1,k,p, t)
design. Notice that is not true in general as stated by the formulation of Theorem
4.2.1. More specifically, Theorem 4.2.1 states that BS must be non-empty. Lemma

4.2.2 states that this is always true under certain conditions.



CHAPTER 4 LOWER BOUND FORMULAS 56

Corollary 4.2.1 : Ifan (n,k,p,t) Lotto design with = blocks erist withn > p+k —
t+landn >2k—t+ 1 thenan (n —k+t—1,k,p,t) Lotto design with y blocks

erists where y < x

Proof : Consider aset S C X where |S| = k—~t+1. By Lemma4.2.2, BS # 0. Then,
|S]| < n—pand |S| < n—k and hence, Theorem 4.2.1 holds which immediately give
the desired result. O ‘

Example 4.2.1 :Consider the following (14, 5,4, 3) Lotto Design (X, B) where X =
{0,1....,13} which we obtained by simulated annealing :

{0, 1, 2, 5 7}
{1, 3, 4, 6, 7}
{2, 3, 5 8 10}
{o, 3, 6, 9, 10}
{2, 4 6, 9, 11}
{1, 2, 4, 10, 11}
{5, 6, 7, 10, 11}
{0, 1, 6, 8, 12}
{4, 5, 6, 8 12}
{o, 4, 8 9, 12}
{5, 7, 9, 10, 12}
{1, 2, 3, 11, 12}
{o, 7. 8, 11, 12}
{0, 3, 4, 5 13}
{2, 7, 8 9, 13}
{1, 5, 9, 11, 13}
{3, 8 9, 11, 13}
{1, 8 10, 11, 13}
{0, 2, 6, 12, 13}
{4, 7, 10, 12, 13}

Let S = {6,8,11,12}. By Theorem 4.2.1, the following collection of 5-sets form an
(10, 5,4, 3) Lotto design with 17 blocks whose elements are from {0, 1,2,3,4,5,7,9,
10 ,13}.
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{o, 1, 2, 5 7}
{1, 3, 4, 5 7}
{2, 3, 5, 9, 10}
{o, 3, 5 9, 10}
{2, 4, 5, 9, 13}
{1, 2, 4, 10, 13}
{4, 5, 7, 10, 13}
{o, 4, 5 9, 10}
{5, 7, 9, 10, 13}
{1, 2, 3, 4, 5}
{fo, 3, 4, 5, 13}
{2, 5, 7, 9, 13}
{1, 5, 9, 10, 13}
{3, 4, 9, 10, 13}
{1, 2, 9, 10, 13}
{o, 2, 3, 7, 13}
{4, 7, 9, 10, 13}

We now state our main Theorem which is a generalization of the Schonheim’s lower

bound for Covering designs.
Theorem 4.2.2 : If (X,B) is an (n,k,p,t) Lotto design and S C X such that
IS|l=k—-t+1,n>2k—t+1andn>k—t+1+p then

n
(k_t+1)LM—k+t—Lth
n _ k
k—t+1 k—t+1

Proof : By Corollary 4.2.1 |B5| > L(n — k +t — 1,k,p,t) and by Lemma 4.2.1
|B| — degp(S) = L(n —k+t—1,k,p,t). By Lemma 4.2.2, summing over all S C X
such that |S| =k —t + 1 yields :

|B| 2

3Bl - Y degs(S) 2 S L(n—k+t —1,k,p,t).

By simple counting, we get the following :
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n k n
(k—t-f—l)lBl*(k—t+1)|B|2(k—t+1 )L(""k+t_1’k’p’t)'

By re-arranging the terms, we get the desired result. O

The following result follows immediately from Theorem 4.2.2.

Corollary 4.2.2 :

n
ko ta1 ) Lin—k+t—1k,p,t)

(e-ter)~(e-t1)

forn>2k—-t+landn>k—-t+1+p.

L(n,k,p,t) > (

Corollary 4.2.3 : If n 22k —t+1andn > k—t+ 1+ p, then L(n,k,p,t) >
Lin—k+t—1,k,p,t)

Corollary 4.2.4 : If n > 2k —-t+1andn > k—t+ 1+ p, then L(n,k,p,t) >
L(m,k,p,t) forallm <n-—k+t—1.

Proof : Use Corollary 4.2.3 along with the fact that L(n,p,k,t) > L(n—1,k,p,t). O

We can now derive the Schénheim bound from Theorem 4.2.2.

Corollary 4.2.5 : L(n',K,t',t') > [EL(n — LK - 1,¢ — 1,t' - 1)].
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Proof : Putn=nk=n"—-—kK,t =n"—kK and p = n' — t in Theorem
4.22. We must show that n > 2k —t+1landn > k—t+ 1+ p. We see that
2k —t+1=2n"—FK)~(n"-K)+1=n"—K +1 <7, as required. We also have
k—t+l+p=Mn—-kK)—-(n—-kK)+1+p=p+1. Ifn=p,thenn'=n'— ¢ and
hence t' = 0 which is impossible. Thus n > p + 1 and both conditions of Theorem

4.2.2 are satisfied. Applying Theorem 4.2.2, we have

n*xL{n— l,t,p,t)l

>
L(n,t,p,t) > [ —

Since Turdn designs and Covering designs are complements,

n*L(n—l,n—l—t,n—l—p,n—l—p)]

L(n.n—t,n—p,n—p) >
(n.n—t,n—pmn p)_[ —

Hence,
L(n,k,t,t)> {%L(n -1,k -1t —1,t — 1)] ,

which is the Schonheim lower bound for Covering designs. O

4.3 Other Lower Bound Formulas

In this section we state other lower bound formulas that we have discovered. Only
formulas that give infinitely many lower bounds will be stated here. Lower bounds

determined on an individual basis are discussed in the next chapter.
Theorem 4.3.1 : L(n, k,t+1,t) > min{L(n,k,t—1,t—1), L(n—t+1,k—t+2,2,2)}.

Proof : Consider a minimal (n,k,t + 1,t) Lotto design B. If every (t — 1)-set
appears in some block of an B, then B is an (n, k,t —1,¢t— 1) Lotto design and hence,
L(n,k,t+1,t) > L(n,k,t—1,t—1). Otherwise, suppose the (t—1)-set {1,2,...,t— 1}
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does not appear in any block of B; then consider the (¢ + 1)-set {1,2,....¢ - 1,z,y}.
It can only be represented by a k-set containing {z,y} and exactly ¢ — 2 elements
from {1.2.....t —1}. Thus all 2-sets chosen from {t.t+1,£+2,...,n} must appear in
B. Thus, L(n,k,t +1.t) > L(n —t+ 1,k — t + 2,2,2). Combining both cases gives
us the formula L(n,k,t+1,t) > min{L(n. k,t—1,t—1),L(n—t+1,k—-t+2,2,2)},

as required. O

Theorem 4.3.2 : L(n,k,t+2,t) > min{L(n,k,t,t =1}, L(n —t,k —t +2,2,2)}.

Proof: Consider a minimal (n, k,t + 2,t) Lotto design B. If every t-set intersects
some block of B in at least t — 1 elements, then B is an (n,k,t,f — 1) Lotto design
and hence, L(n,k,t + 2,t) > L(n,k,t,t — 1). Otherwise, suppose that no (¢ — 1)
elements of the t-set {1,2,...,t — 1,t} appear together in B. Consider the (t + 2)-
set {1,2,...,t — 1,¢t,z,y}. It can only be represented by a k-set that must include
{z,y} and exactly t — 2 elements from {1,2,...,t}, since at most ¢ — 2 elements
from {1,2,3,...,t} may appear together in a block of the design. Hence, every pair
{z,y} where z,y & {1,2,...,t} must occur at least once in the B. This implies
L(n,k,t+2,t) > L(n—t,k—t+2,2,2). Combining both cases gives us the formula
L(n,k,t +2,t) > min{L(n,k,t,t —1),L(n ~¢t, k—t+2,2,2)}, as required. O

Theorem 4.3.3 : L(n,k,6,3) > min{L(n,k,4,2),L(n — 4,k — 1,2,2)}.

Proof : Consider a minimal (n, k, 6,3) Lotto design B. Either each 4-set intersects
some block of B in at least two elements or some 4-set intersects each block of the
design in at most one element. If every 4-set intersects some block of the design in
at least 2 elements, then L(n,k,6,3) > L(n,k,4,2). If a 4-set, say {1,2, 3,4}, does
not intersect any block of B in more than one element, then the 6-set {1,2,3,4, z,y}

where z,y € X(n) \ {1,2, 3,4} must be represented by a block that contains both =
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and y. This implies L(n.k,6,3) > L(n — 4,k — 1,2,2). Combining both cases, we
get the formula : L(n,k,6,3) > min{L(n,k,4,2),L(n -4,k -1,2,2)}. O

The following result is a generalization of a result from Bate [1].

Theorem 4.3.4 : Ifk, > k; then

L(n1 k27pv t)
Lk ot 2)

L(n, ki, p, t) 2
Proof: Consider a (n,k;,p,t) Lotto design B containing b blocks. For each block,
construct a (ki, ks, t,t) Lotto design. Let C denote the set of all k;-sets in the b
(k1, k2, t, t) Lotto designs. We claim that C is an (n, k2, p,t) Lotto design. To show
this, consider an arbitrary p-set P. P must intersect some block of B in ¢ elements as
Bis an (n, k;,p, t) Lotto design. These t elements must be a block in C by definition.
Hence, C is an (n, k2, p, t) Lotto design. So L(n, k2,p,t) < L(n, ki, p,t)* L(k1, k2, t,t),

L(n.ka,p.t)
or L(n, ki,p, t) 2 L(kl,l:z.t.t)' =

The following two results give the value of L(n, k, p, t) for infinite sets of parameters.

Theorem 4.3.5 : Ifn—k <p—t then L(n,k,p,t) =1.

Proof : Let B be an arbitrary k-set. There are exactly n — k elements not in B. If
P is a p-set, sincen — k < p—t, then n — k +¢ < p which implies at least ¢ elements
from p must be from B. Hence the single set B form an (n,k,p,t) Lotto design if
n—k<p-t. O
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Theorem 4.3.6 : Ifn—-k >p—t+1 and ‘-rlln] < k wherer = [;{ﬁj, then
L(n.k,p.t) =r+1.
Proof : Supposen—k > p—t+1 and [T:-Tn] < k where r = I.p_—%ﬁJ We first

need to show that an (n, k, p,t) Lotto design cannot have fewer than r + 1 blocks.

Suppose there is such a design with r blocks. Asn—k>p—¢t+1, pickp—t+1
elements from the complement of each block and denote this set as P. There are at
p—_ﬁj, thenr*(p—t+1) < p.
If |P] < p, add any other distinct elements to P until |[P| = p. The set P intersects

most 7*(p—t+ 1) distinct elements chosen. Since r = [

the complement of each block in at least p — ¢t + 1 elements and hence will intersect
each block of the design in at most ¢t — 1 elements. This contradicts the assumption
that there is an (n,k,p,t) Lotto design with r blocks. Hence we conclude that
L(n,k,p,t) > r 4+ 1. Now we need to show that L(n,k,p,t) < r+ 1. We can do
this by constructing such a design. Since [ﬁn] < k, then (r + 1)(n — k) < n. So
pick r + 1 (n — k)-sets by filling them with distinct elements. This implies that no
element in these blocks is repeated. Since r = IJ,—_%J thenr+1 > p—_{ﬁ which
impliesp < (r+1)(p —t+ 1) < (r+ 1)(n — k). This means that least one of the
(n — k)-sets intersects any p-set in at most p — t elements. This means that the
p-set will intersect the complement of the (n — k)-set in at least ¢ elements. The
complements of the (n — k)-sets are blocks of the (n,k,p,t) Lotto design that we
desire. Hence we have shown that L(n, k,p,t) < r + 1. Since we have inequalities in

both directions, we conclude that L(n,k,p,t) =r+1. O

We conclude this chapter with some lower bound formulas for several infinite classes
of Lotto designs. We can use these formulas to update our tables via a computer
program. These results along with the monotonicity formulas of the previous chapter

may be combined to yield lower bounds for other Lotto designs.
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Theorem 4.3.7 : Ifk > 3, then L(2k +1,k,5,3) > 5.

Proof : For k = 3, the design in question is a (7, 3, 5,3) Turan design. By comple-
menting the design, we get a (7,4, 2,2) design. From Bate’s tables, L(7,4,2,2) = 5,
hence the result is true for & = 3. We will now prove the result for & > 4. Sup-
pose there is a (2k + 1,k,5,3) Lotto design with four blocks. If a given 5-set is not
represented in this design, then the 5-set will intersect every block of the comple-
ment in at least three elements. We will show that we can always construct such a
5-set that intersects every block of the complement in at least three elements. Let
B,, B3, B3, B4 denote the four (k + 1)-sets in the complement of the design. Suppose
that there is an element of frequency zero in the design, say the element 1. Then
that element appears in each block of the complement. From this point on, we will
be speaking with respect to the complement blocks of the design unless otherwise
stated. There are 4k spots left to be filled using 2k elements. The average frequency
is 2.

Case 1 : If there is another element, say 2, of frequency 4, then there are 4k — 4
spots left to be filled by 2k — 1 elements. The average frequency of the remaining
elements is 1 + g:—:% Since k > 4, then there exists an element of frequency 2 or
higher. For if not, then every element has frequency at most 1 and the total number
of spots that can be filled is 8 + 1{2k — 1) =2k + 7 < 4k + 4, as k > 4. So suppose
that the element 3 has frequency at least 2. Without loss of generality, assume the
element 3 belongs to B; and B,. The 5-set {1,2,3,z,y} where z € B; and y € By is
a 5-set that intersects each block in at least three elements which implies that this
5-set is not represented by the Lotto design. This is a contradiction and hence it is
impossible to have two elements of frequency 4 in the complement.

Case 2 : If there is an element, say 2, of frequency 3, then there are 4k — 3 spots
left to be filled by 2k — 1 elements. The average frequency is 1 + %’ﬁ If there
is another element of frequency 3, say 3, then the blocks of the complement would

look like: B, = {1,2,,...}, B2 = {1,2,3,...}, B3 = {1,2,3,...} and By = {1,3,...},
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or else By = {1.2,3....}. B, = {1.2,3,..},B; = {1,2.3,...} and By = {1,...}. In
the former case, the 5-set {1,2,3,z,y} where £ € B; and y € B, intersects each
block of the complement in at least 3 elements, which is a contradiction. Similarly if
B, ={1,2,3,...},B.={1,2,3,..}, B3 = {1,2,3, ...} and By = {1, ...}, then the 5-set
{1.2.3,z,y} where z € B, and y € B, intersects each block of the complement in at
least 3 elements, which is a contradiction. Hence there is only 1 element of frequency
3 in the complements, which in turn implies there is exactly one element of frequency
1 in the original blocks. Let the element 2 occur in B;, B, and B;. Thus, all other
elements must have frequency 2, that is, there are 2k — 2 elements of frequency 2 in
the complements of the blocks. There must be an element of frequency 2 in block B,
say 3. Since it has frequency 2, it must also appear in one of By, B; or B;. Without
loss of generality, assume that element 3 occurs in B3 and By. Since B3 has room for
only k — 2 additional elements, there is an element, say 4, that does not appear in B3
but does appear in By. Without loss of generality, assume that 4 € B, and 4 € B;.
Now the 5-set {1,2,3,4,z} where £ € B, intersects every block of the complement
in at least 3 elements. This is a contradiction and hence implies that there are no
elements of frequency three in the complement, if there is an element of frequency
four in the complement.

Case 3 : In the remaining case, all elements, other than element 1, have frequency
2. Suppose element 2 belongs to both B; and B;. There are 4k — 2 spots left to be
filled by 2k — 1 elements. Since there are 2k spots remaining in blocks B; and By
together and only 2k — 1 elements remain, B3 and By shared a common element, say
3. Now, since B; and B; must be distinct blocks, suppose the element 4 is in B; and
not in B,. Since the element 4 has frequency 2, then suppose it also is in B3. Finally,
there are 2k — 2 spots left to be filled between B; and B, using 2k — 3 elements.
Hence, there exists a common element between these two blocks, say element 5. The
5-set {1,2,3,4,5} intersects every block in the complement in at least three elements,

which is a contradiction.
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If there is an element of frequency zero in the Lotto design, every scenario yields a
contradiction. Hence we conclude that there must not be any elements of frequency
zero in the Lotto design. Now there must be at least one element of frequency 1 in
the Lotto design. For if not, then every element in the Lotto design has frequency
at least two, and hence the total in the design is at least 2(2k + 1) = 4k + 2 > 4k,
which is a contradiction. Thus, we can assume that element 1 has frequency 3 in the
complement. Using the same reasoning again, there is another element of frequency
3. say the element 2. There are two cases for the arrangements of these two elements.
Case a: B, ={1,2,...}, B2 ={1,2,...}, B3 ={1,2,...} and By = {3,4,5,...,k+3}.
Then there are £ — 2 elements remaining to be used. These k — 2 elements cannot
fill up the £ — 1 spots in any one of the blocks B,, B, or B;. Hence, there exist
three elements, say 3, 4 and 5 such that z is in B, y is in B and z is in B; where
z,y,z € {3,4,5}. Now the 5-set {1,2,3,4,5} intersects every block of the comple-
ment in at least three elements, which is a contradiction.

Case b: B, ={1,2,...}, B, ={1,2,..}, B3 ={1,...} and By = {2,...}. There are
2k spots remaining to be filled between blocks B; and B; using 2k — 1 elements. So
there exists some common element between these two blocks, say the element 3. If
there is an element of frequency 3, say z, that belongs to every block except say Bj,
then the 5-set {1,2,3,z,y} where y € B; intersects every block of the complement
in at least three elements. On the other hand, if no element of frequency three ex-
ists, then every remaining element must be of frequency two. Since B; and B; are
distinct, let the element 4 be in B; and not in B,. Then since the element 4 has fre-
quency 2, then it must appear in either B3 or By. Without loss of generality, assume
it is in B3. Now B, and B4 have 2k — 2 spots remaining to be filled between them
using 2k — 3 elements. This implies B> and B; must have a common element, say
the element 5. Thus the 5-set {1,2, 3,4, 5} intersects every block of the complement

in at least 3 elements, which is a contradiction.
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Since every scenario leads to a contradiction, the assumption that there is a (2k +
1,k,5.3) Lotto design on 4 blocks must be false, and hence L(2k + 1,%,5,3) > 5. O

Theorem 4.3.8 : [fk > 3, then (2k +2,k,6,3) > 4 .

Proof: Assume that L(2k+2,%,6,3) < 3 and consider a (2k+2, k, 6,3) Lotto design
with three blocks. We shall construct a 6-set that is not represented by this design
and hence such a design cannot exist.

There are 3k total occurrences in the design. We consider the cases for the number
of elements of frequency 0.

Case 1 : Suppose fo = 0. Then, since each element can have frequency at most
3, the number of elements of frequency two or more is at most k£ — 2. This is be-
cause if there are £ — 1 or more elements of frequency at least two, then there are
at most k + 3 elements of frequency one, which give a total occurrences of at least
(k—1)2+(k+3)=2k—2+k+3=3k+1 > 3k. This implies that there are at
least two elements of frequency one in each block. Pick two such elements from each
block to form a 6-set that will not be represented.

Case 2 : Suppose fo = 1. Pick that element z, as part of our 6-set. There are
at most £k — 1 elements of frequency two or more since if there were k elements
of frequency two or more, then the total occurance of the the elements is at least
2(k)+(k+1) = 3k+1 > 3k, which is a contradiction. Hence, there exists an element
of frequency one in each of the three blocks. Pick three such elements a, b, c to be in
our 6-set. It should be noted that there are at least k 4+ 2 elements of frequency one
in the design. Consider the following subcases :

Case 2a : Suppose there exists elements e and f of frequency one in two different
blocks such that they are not a, b or ¢. Then the 6-set {a,b,c,e, f,z} is not repre-
sented by any block of the design.

Case 2b : Suppose no such frequency one elements e and f exists as stated in case

2a. Then, since there are at least kK + 2 elements of frequency one, there must be
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exactly k+ 2 elements of frequency one. The k—1 elements of frequency one which is
not a. b or ¢ must appear with one of these three elements. Without loss of generality,
assume that element is a. Then, the block containing element a is comprised entirely
of frequency 1 elements. Let d be an element in this block that is not the element
a. Now pick some frequency two element e in the design. The 6-set {a.b,c,d, e, z}
is not represented by any block of the design.

Case 3: Suppose fo = 2. Pick these two elements z, y as part of our 6-set. It is easy
to see that there are at least k elements of frequency one. We consider the following
cases based upon where the elements of frequency one lie, in the design.

Case 3a : Suppose all the elements of frequency one appear in one block B, in the
design. It is easy to see then that the number of elements of frequency one is exactly
k, since 1(k) + 2(k) = 3k. Pick two elements a,b from B,. Pick two elements e, f
from the remaining blocks that do not appear in B;. The 6-set {a,b, e, f,z,¥y} is not
represented by any block of the design.

Case 3b : Suppose the frequency one elements occur in only two blocks B; and Bs.
Pick a € B; and b € B, where a, b have frequency one. Note that since k¥ > 3 and
there are at least k elements of frequency one, one of the two biocks B;, B, must
have at least two elements of frequency one. If each of these blocks contain two or
more elements of frequency two, then picking another element of frequency one from
each of B; and B, say ¢ and d respectively. Then the 6-set {a,b,c,d,z,y} is not
represented by any block in the design. Otherwise, only one of the two blocks, say
B; has at least two elements of frequency one and B; has exactly one element of
frequency one. Let ¢ # a be an element of frequency one in B,;. Since B; # B,
there exists an element d € B, \ B, such that d # a,b,c. The 6-set {a,b,¢,d,z,y} is
not represented by any block in the design.

Case 3c : Suppose each block contains an element of frequency one. Pick one ele-
ment of frequency one from each block, say a, b and ¢. Now pick any other element e
that appears in the design. The 6-set {a,b,c, e, z,y} is not represented by any block
of the design.



CHAPTER 4 LOWER BOUND FORMULAS 68

The cases where 3 < fo < 6 trivially lead to contradictions. Hence L(2k+2,k,6,3) >
4.3

Theorem 4.3.9 : L(3k + 1,k,7,3) > 6 for k > 3.

Proof : Suppose there is a (3k + 1, k,7,3) Lotto design with five blocks. Let us de-
note these blocks as B, B», B3, By and Bs. By Theorem 2.2.9, we may assume every
element appears in this design. Looking at other frequencies, we see that at least
k+2 elements have frequency one and at most 2k — 1 elements have frequency two or
more. We will proceed to show that these five blocks cannot form a (3k + 1,%,7,3)
Lotto design. We will do this by considering the number of blocks which contain
elements of frequency one. We begin by considering the case where the elements of

frequency one appear in exactly two blocks.

Case 1 : The elements of frequency one appear in only two blocks, say B, and B..
Let a and b be two elements of frequency one from B, and let c and d be two elements
of frequency one from B;. There are 3k + 1 elements in the Lotto design and at most
2k of them are in B; and B,;. Thus, at least kK + 1 elements must occur only in Bj,
B4 or Bs. It is easy to see that in these k + 1 elements, there are at least three that
have frequency two. Let z, y, z be three such elements. These three elements can
occur in B3, B4 and Bs in three different ways.

Case 1a : B; = {z,y,...}, B4 = {z,z,...} and Bs = {y,z,...}. Then the 7-set
{a,b,¢,d,z,y, z} is not represented by the design.

Case 1b : B; = {z,¥,2,...}, By = {z,y,...} and Bs = {2,...}. Then there are at
least k + 1 —3 = k — 2 other elements that occur only in B;, B4 or Bs. If they were

all frequency three elements, then they would occur in B3, By and Bs. But then B3
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would contain £ —-2+3 = k+ 1 elements, which is a contradiction. Since B3 contains
{z.y, z}, it can contain another k£ — 3 elements. But there are at least k — 2 elements
that appears only in B3, B; and Bs (besides z, ¥ and z). Hence one of the &k — 2
elements, say element w, has frequency two and appears in B; and Bs. The 7-set
{a.b,c,d,y, z,w} is not represented in the design.

Case 1c: B; = {z,y,2,...} and By = {z,y, 2, ...}. Then there are at least k+1-3 =
k — 2 other elements that occur only in B3, B; or Bs. Since B3z # By, one of these
k — 2 elements, say element w, must have frequency two and appear in Bs. It also

appears in either B3 or By. In either case, it takes us back to case 1b.

We now consider the cases where the elements of frequency one appear in exactly

three blocks.

Case 2 : Suppose B; contains exactly one element of frequency one, B3 contains
exactly one element of frequency one and B; contains the rest of the elements of
frequency one (that is, B; and Bs have no elements of frequency one). Since the
number of elements of frequency one is at least k£ + 2 and they must appear in B,
B, or B;, B; must be made up entirely of frequency one elements. Let a and b be
two elements of frequency one from Bj, and let ¢ and d be the elements of frequency
one from B, and Bj, respectively. Since there are 2k — 1 elements remaining to be
considered and only 2k — 2 spots open between B; and Bj, there exists an element
z such that £ € By and £ € Bs and z is not in any other block. If B> and Bj are
disjoint, then we must be able to find two elements y € B, and z € Bj such that
they do not appear together in B4 and Bs. Then, the 7-set {a, b,c,d, z,y, z} is not
represented, which is a contradiction. On the other hand, if there is an element e
such that e € B, N Bj, then there there exists another element ¥y € B; N Bs such
that y is not in any other block. Then the 7-set {a,b,c,d, e, z,¥y} is not represented
by any block in the design, which is a contradiction.
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Case 3 : Suppose the elements of frequency one appear at least twice in each of
B, and B, exactly once in B3 and do not appear in B or B;. Let a and b be two
elements of frequency one from B,;, c and d be two elements of frequency one from
B; and e the element of frequency one from Bjz. Then there is at least one element
z in both By and Bs such that it is not in any other block because the first three
blocks contain at most 3k distinct elements. Also there must be an element y in Bj,
B; or Bs such that it is not in B; or B; since the first two blocks eontain at most
2k distinct elements. The 7-set {a,b,c,d, e,z,y} is not represented by any block of

the design. This is a contradiction.

Case 4 : Suppose the frequency one elements appear at most 3k times and are
contained within the blocks B,, B, and Bs. Let a,b be frequency one elements in
By, ¢,d be frequency one elements in B; and e, f be frequency one elements in Bj.
There exists an element z not in B,, B, or B3 as there are 3k + 1 elements in the
design and the first three blocks may contain at most 3k distinct elements. Since =
has frequency greater than one but does not appear in B;, B; or B;, then £ must
appear in By and Bs. The 7-set {a,b,c,d, e, f,z} is not represented by any block in
the design. This is a contradiction.

We now deal with the case where the elements of frequency one appear in exactly

four blocks.

Case 5 : Suppose B; has at least £ — 1 elements of frequency one and Bs, B3, By
each have exactly one element of frequency one. Then all other elements have fre-
quency two or more except for possibly one additional element of frequency one in
B;. Let a,b be elements of frequency one chosen from B; and c, d, e be the elements

of frequency one from Bj, B3 and By, respectively. If B, and Bj pairwise disjoint,
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there are at least (kK — 1)(k — 2) pairs {z,y} where z € By, y € B3, z & B, y € B
and both z and y have frequency two or more. The block B; may contain at most
C(k —1,2) of these pairs. As C(k—1,2) < (k—1)(k —2), there exists a pair {z’, ¥}
where ' € B,y € B3, z’ € By and y € B, such that {z/,y’} € By. Since By and
Bj are pairwise disjoint, the 7-set {a,b,c,d, e,z’,y'} is not represented by any block
in the design which is a contradiction. On the other hand, if there is an element
common between B; and Bj, say f, then we see that, not counting the elements, c,
d and f, there may be at most 2k — 4 distinct elements of frequency two or more
in B; and B3. Thus B;, B; and B; may contain at most 3k — 1 distinct elements.
This means that some element, say g, occurs in both B4 and Bs only. Then the 7-set

{a,b,c,d.e, f, g} is not represented by any block in the design.

Case 6 : Suppose that B; and B, each contain at least two elements of frequency
one, and B3 and By each contain exactly one element of frequency one. Let a,b be
elements of frequency one from B, c.d be elements of frequency one from B;, e be
the element of frequency one from B3 and f be the element of frequency one from
By4. Since B; and B, together may only contain 2k distinct elements, there is an
element z different from e or from f that does not appear in B, or B;. The 7-set

{a,b,c.d,e, f,z} is not represented by the blocks of the design.

Case 7 : Suppose B, B>, B; and B4 each contain at least one element of frequency
one and at least three of these blocks contain two or more elements of frequency one.

It is trivial that a 7-set may be formed that is not represented by the design.

We now deal with the cases where the frequency one elements appear in every block.
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Case 8 : If exactly one element frequency one appears in each block, then k& = 3,
fi=5, f2=>5and fff =0. Let a,b,c.d and e denote the elements of frequency one
from each block. Assume B, and B; contain an element = which has frequency two.
Since at most five distinct elements appear in B; and Bz, there exists an element y
not in By or B; with frequency two. The 7-set {a,b,c,d, e, z,y} is not represented

by the blocks of the design.

Case 9 : Consider the case where B, contains at least two elements of frequency
one and B, B3, By and Bs each contain at least one element of frequency one. Let
a,b be elements of frequency one chosen from B; and let c¢,d, e, f be elements of
frequency one chosen from B,, B3, B4 and Bs, respectively. Clearly, there exists an
element r that does not appear in B; and is different from a,b,c,d,e and f. The

7-set {a,b,c,d,e, f,z} is a 7-set not represented by any block in the design.

We have considered every possible case and each case led to a contradiction. Hence
our assumption that a (3k + 1, k&, 7,3) Lotto design with five blocks exists cannot be
correct, and thus L(3k + 1,k,7,3) > 6. O

The above result improves our table entries for L(13,4, 7,3), L(16, 5, 7,3) and L(19,6,7,3),
now all have the value 6. This result also allows the monotonicity results to improve

the tables further.

Theorem 4.3.10 : L(k +2,k,4,3) 2 3, fork> 3

Proof : Suppose there is a (k +2, k,4,3) Lotto design with 2 blocks. Since %2 < 2,
for Kk >> 3, by Theorem 2.2.9 , we may assume that there is a (k + 2, k,4,3) Lotto
design which contains no element of frequency zero. Consider such a design. We may

conclude that there are 4 elements of frequency one and k£ — 2 elements of frequency
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2. Since there are two blocks, the £ — 2 elements of frequency two must appear
once in each block. Each block must contain exactly two elements of frequency one.
The elements of frequency one form a 4-set that is not represented. This contradicts
the assumption that there is a (k + 2, k,4,3) Lotto design with 2 blocks. Thus we
conclude that no design of size two exists, so L(k + 2,k,4,3) > 3. O

Theorem 4.3.11 : L(3k + 2,k,8,3) > 5, for k > 3.

Proof : Suppose B is a (3k + 2, k, 8,3) Lotto design on four blocks. Since ﬂ‘:—2 <4
for K > 2, by Theorem 2.2.9, we may assume that this design has no elements of
frequency zero. By analyzing the frequencies of the design, there are at least 2k + 4
elements of frequency one and at most k—2 elements of frequency two or higher. Each
block must have at least two elements of frequency one. We can pick eight elements
of frequency one, two from each block to form an 8-set that is not represented by
the blocks of the design. Thus, there cannot exist a (3k + 2, k&, 8,3) Lotto design on
4 blocks. O

Theorem 4.3.12 : L(3k + 3,k,9,3) > 4, for k > 3.

Proof : Suppose Bis a (3k+3,k,9,3) Lotto design with three blocks. By Theorem
2.2.8, we may assume that the elements in the design of frequency 0 or 1. There
are exactly 3k elements in the design and hence three elements do not appear in the
design. A 9-set consisting of these three elements plus two elements from each of the
three blocks is not represented by the design. Hence L(3k + 3,%,9,3) > 4. O

Theorem 4.3.13 : Ifk > 4, L(2k + 3,k,9,4) > 4.
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Proof : Suppose that L(2k + 3,k,9,4) = 3; then there is a (2k + 3,%,9,4) Lotto
design B with three blocks B, B, and B;. Since %32 < 3, Theorem 2.2.9 implies
that B has no elements of frequency zero. By analyzing the frequencies of elements
in B we see that the number of elements of frequency one is at least £ + 6 and the
number of elements of frequency two or higher is at most £ — 3. Since there are at
most kK — 3 elements of frequency two or higher, each block must contain at least
three elements of frequency one. From each block of the design, select three elements
of frequency one. The nine selected elements form a 9-set that is not represented by
the design. Hence L(2k +3,%k,9,4) > 4. O

Theorem 4.3.14 : L(2k + 2,k,8,4) > 4, for k > 4.

Proof : By Theorem 4.3.13 L(2k+3,k,9,4) > 4, for kK > 4. Then by Theorem 3.3.5,
L(2k +2,k,8,4) > L(2k + 3,k,9,4) and hence L(2k + 2,%,8,4) > 4,for k> 4. O

Theorem 4.3.15 : L(3k +2,k,11,4) > 5, for k > 4.

Proof : Suppose B is a (3k + 2,k, 11,4) Lotto design with four blocks B;, B2, Bs
and B,. Since :"‘T” < 4, by Theorem 2.2.9, we may assume that this design has no
elements of frequency zero. By analyzing the frequencies of the design, there are at
least 2k + 4 elements of frequency one and at most k — 2 elements of frequency two or
higher. This implies that each block of the design must contain at least two elements
of frequency one. If there are at least three blocks with at least three elements of
frequency one, then we may select three elements of frequency one from three of these
blocks and two elements of frequency one from the remaining block in the design to
form an unrepresented 11-set in the design. Otherwise there must two blocks with

two elements of frequency one, say blocks B3 and B;. Then the blocks B, and B>
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must be made up of strictly frequency one elements since fo > 2k +4. Let z be
an element that does not appear in B; or Bs. Then the ll-set consisting of three
elements of frequency one from each of B; and B;, two elements of frequency one
from each of B; and B4 and z form an unrepresented 11-set in the design. Thus, the
four blocks B;, B2, B3 and By cannot form a (3k + 2,k,11,4) Lotto design. This
implies that L(3k + 2,k,11,4) 2 5. O

Theorem 4.3.16 : Ifk >4, L(3k + 3,k,12,4) > 5.

Proof : Suppose L(3k + 3,k,12,4) < 4 and consider a (3k + 3, k, 12,4) Lotto design
B with 4 blocks By, Bo, B; and Bs. As 3k + 3 < 4k for k > 4, Theorem 2.2.9 implies
that we may assume that our design has no elements of frequency zero. By analyzing
the frequencies of the elements in the design, we conclude there are at least 2k + 6
elements of frequency 1. We claim that each block in the design contains at least
three elements of frequency 1. For if not, suppose B; has at most two elements of
frequency 1. The remaining k£ — 2 elements in B4 must have frequency 2 or more
and hence must appear again in the other three blocks. Since there are at least
2k 4+6 — 2 = 2k + 4 elements of frequency 1 in B, B2 and Bj, these three blocks may
contain at most 3k — (2k + 4) = k — 4 other elements which is less than the £ — 2
elements they must hold. Hence, each block in the design has at least three elements
of frequency 1. By selecting three elements of frequency 1 from each of the 4 blocks,
we could form a 12-set that is not represented by any block in the design. Hence,
L(3k+3,k,12,4) 25. O

Theorem 4.3.17 : Ifk > 5, L(2k +4,k,12,5) > 4.

Proof : Suppose L(2k +4,k,12,5) < 3 and consider a (2k + 4, k, 12, 5) Lotto design
with 3 blocks By, B2 and B3. As 2k +4 < 3k for k > 5, Theorem 2.2.9 implies that



CHAPTER 4. LOWER BOUND FORMULAS 76

we may assume that our design has no elements of frequency zero. By analyzing
the frequencies of the elements in the design, we conclude there are at least k + 8
elements of frequency 1. We claim that each block in the design contains at least
four elements of frequency 1. For if not, suppose B3 has at most three elements of
frequency 1. The remaining £k — 3 elements in B3 must have frequency 2 or more
and hence must appear again in the other two blocks. Since there are at least
k+8—3 = k+35 elements of frequency 1 in B, and B,, these two blocks may contain
at most 2k — (k+5) = k— 5 other elements which is less than the £k — 3 elements they
must hold. Hence, each block in the design has at least foﬁr elements of frequency 1.
By selecting four elements of frequency 1 from each of the 3 blocks, we form a 12-set

that is not represented by any block in the design. Hence, L(2k +4,k,12,5) > 4. O

Theorem 4.3.18 : Ifk > 5, L(2k + 3,k,11,5) > 4.

Proof : By Theorem 4.3.17, L(2k + 4,k,12,5) > 4 for k > 5. Then by Theorem
3.3.5, L(2k + 3,k,11,5) > L(2k + 4,k,12,5) and hence L(2k + 3,k,11,5) > 4 for
k>5 0

4.4 Conclusion

A generalization of the Schénheim bound was proved for Lotto designs. We have also
stated proved bound formulas for infinite classes of parameters. These lower bound
formulas may be used to improve our collection of tables. Other results similar to

those given by Theorem 4.3.17 may also be obtained.



Chapter 5

Special Cases

5.1 Introduction

In this chapter, we will improve the lower and upper bounds for L(n,k,p,t) on a
case by case basis. Different techniques will be applied to improve these bounds. For
the cases where t = 2, the results from Bate and van Rees [2] may be applied. The
main goal of this Chapter is to complete the gaps in Bate’s tables [1] and ascertain

some of the smaller values.

5.2 Lower Bounds

The results from Bate and van Rees which are stated in Chapter Two are referenced
quite often in this section. Before we begin, we would like to state several results

that are useful for determining if a Lotto design has elements of a certain frequency.

Theorem 5.2.1 : If there erists an element of frequency z in an (n,k,p,t) Lotto
design with y blocks , then there exists an (n ~ (z(k—1) +1),k,p—1,t) Lotto design

77
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with y — z blocks, where n > maz{(z+1)(k—1)+2,z(k — 1) + p}.

Proof: Let the element a have frequency z in the (n, &, p,t) Lotto design. Delete the
blocks from the design that contain the element a. In the remaining blocks, replace
the elements that appeared in the deleted blocks with arbitrary elements. This is
possible since n is large enough. Let R be a (p — 1)-set chosen from the n —zk+z—1
elements. Then {a} UR is a p-set and so was represented in the original design. But
since the elements of R and a did not occur together in any block, {a} U R must
have been represented in one of the ¥y — z blocks not containing a. Hence R would
still be represented by one of the new y — z blocks. Hence the y — x blocks form an

(n—(z(k-1)+1),k,p—1,t) Lotto design. O

The following result is immediate from Theorem 5.2.1

Corollary 5.2.1 : If there erists an element of frequency zero in an (n, k,p,t) Lotto
design with y blocks, then there exists an (n — 1,k,p — 1,t) Lotto design on y blocks.

Corollary 5.2.2 : [f there ezists an element of frequency one in an (n,k,p,t) Lotto
design with y blocks, then there exists an (n —k +t—2,k,p — 1,t) Lotto design with
y — 1 blocks, wheren > 2k —t+1andn>k+p—1.

Proof : Suppose the element 1 has frequency one in an (n,k,p,t) Lotto design,
and say it occurs in the block B, = {1,2,...,k}. Delete B; from the design and
delete all but t — 2 elements that are in B;, say do not delete 2,3, ...,t — 1 and delete
1,¢,¢+1,...,k. In the remaining blocks, replace ¢,t+1, ..., k with arbitrary remaining
elements. This is possible as n is large enough. Let R be any (p — 1)-set chosen from
{2,3,4,...,t =1} U {k+ 1,k +2,...,n}. Consider RU {1}. This set is represented

in the original design by some block that is not B; as B; contains at most ¢ — 1



CHAPTER 5. SPECIAL CASES 79

elements from RU {1}. Thus, this block must still be in the new design with those

same elements. Hence, R is represented in the new design. O.

The following result is immediate from Corollary 5.2.1 and Corollary 5.2.2.

Corollary 5.2.3 : If L(n,k,p,t) < min{L(n—1,k,p—1,t),L(n —k+¢t —-2,k,p—
1,t) + 1}, then the elements of any minimal (n,k,p,t) Lotto design must have fre-

quency two or more.

The next four results may be used to improve lower bounds for L(n, k,p,t) for any
given n, k,p,t. These results were helpful in improving several of the lower bounds

found in Bate’s tables.

Theorem 5.2.2 : If L(n, k,p,t) = b < %, then L(n,k,p,t) > L(n ~- 1,k,p — 1,t).

Proof: Assume b < L(n—1,k,p—1,t). Then there exists an (n, k, p, t) Lotto design
with b blocks whose average occurrence for elements in the design is -’:Tb < ;’;’-% = 1.
This means that there is an element of frequency zero in the Lotto design. By The-
orem 5.2.1, there exists an {n — 1,k,p — 1,¢) Lotto design on b blocks. This is a
contradiction as we assumed b < L{n — 1,k,p—1,¢). O

Theorem 5.2.3 : If L(n,k,p,t) = b < 3, then L(n.k,p,t) > 1+ L(n —k+1t—
2,k,p—1,¢t).

Proof : Assumeb< 1+ L(n—-k+t—2,k,p—1,t). Then there exists an (n, k, p, t)

Lotto design on b blocks whose average occurrence for elements in the design is
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Kb < k21 — 2 This means that there must be an element of frequency zero or fre-
quency one in the design. If there is an element of frequency zero, then by Theorem
5.2.1, there exists an (n—1, k,p—1,t) Lotto designon b < 1+L(n—k+t—2,k,p—1,t)
blocks. But by Corollary 4.2.3, 1+ L(n—k+¢t—-2,k,p—1,t) < L(n—-1,k,p—1,¢).
This is a contradiction. If there is an element of frequency one, ther by Corollary
5.2.2, there exists an (n—k+¢t—2,k,p—1,t) Lotto design on b—1 < L(n—k,k,p—1,t)
blocks, which is again a contradiction. Since in either case we get a contradiction,

the theorem is true. [0

Theorem 5.2.4 : If L(n,k,p,t) = b < 32, then L(n,k,p,t) > min{22,1+ L(n —
k+t—2k,p—1,t)}.

Proof: Assumebd < min{-zkﬂ, 1+L(n—k+t—2,k,p—1,t)}. There exists an (n, k,p,t)
Lotto design with b blocks where the average occurrence for elements is less than
three. This means that there must be an element of frequency zero, frequency one
or frequency two. If there is an element of frequency zero, then by Theorem 5.2.1,
there existsan (n—1,k,p—~1,t) Lottodesignon b< 1+ L(n—k+t—2,k,p—1,t) <
L(n —1,k,p— 1,t) blocks, which is a contradiction. Similarly, if there is an element
of frequency one, then by Theorem 5.2.1, there exists an (n —k+t—2,k,p—1,¢) on
b—1< L(n—k+t—2k,p—1,t) blocks. Again, this is a contradiction. Therefore,
every element has frequency at least two and so there are at least 27" blocks in the

design. O

The following result is used often throughout the Chapter. It determines when a
pair of elements must appear together in a block of a Lotto design. In the proofs of
the next several results, the terms single, clique and 2-cliques are used. These terms

were first introduced in Section 2.4. Also recall the term disjoint from Section 1.1.
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Lemma 5.2.1 : Suppose {a;,as,...,ap_1} is a mazimum independent set in an
(n.k.p,2) Lotto design. If T,y are two singles appearing in different blocks with
one of the independent elements, say a,, then z,y must appear together in some

block of the design.

Proof : Consider the p-set {z,y,as, a3, ...,ap—1}. It must be represented by some
block in the design. Since a», a3, ...ap-; are independent elements in the design, no
two of them can appear together in a block of the design. As z, y are singles appear-
ing with a;, they cannot appear with any of the other independent elements. Hence

z,y must appear together in a block of the design. O

We now proceed with determining the values of L(n,k, p,t) on a case by case basis.

Theorem 5.2.5 : L(14,3,4,2) = 11.

Proof : From Bate’s tables, 10 < L(14, 3,4,2) < 11. Assume that L(14,3,4,2) =10
and consider a (14, 3, 4, 2) Lotto design on 10 blocks. By Corollary 5.2.3, all elements
in the design must have frequency at least 2. There are at least 12 elements of
frequency two and at most 2 elements of frequency three or more. By Theorem
2.4.7, there are 3 disjoint elements of frequency two, say 1, 6 and 11, forming a
maximal independent set in the design. The 6 independent blocks that contain these
3 elements contain every element in the design, by Theorem 2.4.3. In these 6 blocks,
there are exactly 4 elements that occur twice (where three of these elements are
the independent elements). Thus there are exactly 10 singles. Therefore there exists
some clique that has 4 singles, say {1, 2, 3}, {1,4,5}. The element 2 must appear with
elements 4 and 5, and the element 3 must appear with elements 4 and 5. To see why
the element 2 must appear with the element 4, suppose they did not appear together.

Then the 4-set {2,4,6, 11} is not represented in the design. The argument for why
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the other pairs {2,5}, {3,4} and {3,535} must appear in the design is similar. This
implies that the elements 4 and 5 (or 2 and 3) have frequency at least 3. If there is
another clique with 4 singles, then using the same argument as given above, another
2 elements would have frequency at least 3, which contradicts the fact that there are
at most 2 elements of frequency three or more. So. without loss of generality, the
two remaining cliques would look like {6, 7,8}, {6,9, 10} and {11, 12,13}, {11, 14, 10}
where the element 10 is the non-single. Now the 4-set {1, 7, 10, 12} is not represented
in the six blocks intersecting the independent set {1,6,11}. Since there are already
two elements of frequency at least three, the element 1OVcannot occur again. Also,
the element 1 cannot occur again in the design. Thus the pair {7, 12} must appear
in the design. Now the pair {7,9} must appear in the design or else the 4-set
{1,7,9,11} will not be represented. Similarly, the pair {7,13} must appear in the
design. Since the element 7 must appear with elements 9, 12, 13, this implies that
element 7 must have frequency at least three, which contradicts the fact that at most
two elements may have frequency three. Thus, L(14,3,4,2) > 10. Along with the
fact that L(14,3,4,2) < 11, this implies that L(14,3,4,2) =11. O

Theorem 5.2.6 : L(16,3,4,2) = 14.

Proof: From Bate’s tables, 13 < L(16,3,4,2) < 14. Assume L(16,3,4,2) = 13.
Then there exists a (16, 3,4, 2) Lotto design with 13 blocks. By Corollary 5.2.3, all
elements have frequency two or more. By looking at frequency counts, we see that at
least 9 elements must have frequency two and at most 7 elements have frequency three
or more. By Theorem 2.4.7, there exist 3 disjoint elements of frequency two forming
a maximal independent set in the design. But these 6 blocks cannot contain every

element of the design which contradicts Theorem 2.4.2. Thus L(16, 3,4,2) = 14.0

Theorem 5.2.7 : L(18,3,4,2) = 17.
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Proof: By Theorem 2.5.5, L(18.3,4.2) < 17. Suppose there exists a (17,3.4, 2)
Lotto design with 16 blocks. The minimum number of blocks that must contain
three disjoint elements is 8 since 7 blocks can hold only 2(7) +3 = 17 < 18 elements.
By Theorem 2.4.7, there are at two disjoint elements of frequency two, say 1 and 2.
There can be as many as 8 other elements occurring with these two elements. Each
of the remaining 8 elements must therefore have frequency at least 4. Therefore the
total number of occurances of elements in the design is at least 10(2) + 8(4) = 52 >
16(3) = 48, which is a contradiction. Hence, L(18,3,4,2) =17. O

Theorem 5.2.8 : L(19,3,4,2) = 18.

Proof: By Theorem 2.5.5, L(19,3,4,2) < 18. Suppose there exists a (19, 3,4, 2)
Lotto design with 17 blocks. By arguing exactly as we did in the previous Theorem,
we find that the 17 blocks must hold 56 elements, which is a contradiction. Hence,
L(19,3,4,2) =18. O

Theorem 5.2.9 : L(20,3,4,2) = 20.

Proof : By Theorem 2.5.5, L(20,3,4,2) < 20. Assume L(20,3,4,2) < 19 and
consider a (20, 3,4,2) Lotto design on 19 blocks. By Corollary 5.2.3, all elements
have frequency two or more. By looking at frequency counts, we see that at least
3 elements must have frequency two and at most 17 elements have frequency three
or more. If there are 5 or more elements of frequency two, Theorem 2.4.7 implies
there are two disjoint elements of frequency two. Since it is not possible for all el-
ements to appear with these two elements, then by Theorem 2.4.3, the remaining
elements must each have frequency five or more. This implies that the total number
of occurances of elements in the design is 2(5) + 2(5) + 5(10) = 70 which is larger

than 57. Hence the number of elements of frequency two must be 3 or 4. Suppose
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element 1 has frequency two. There are at least 15 elements of frequency three. The
elements of frequency two must all appear together in a 2-clique where element 1 is
the independent element of the clique. Then there must exist two disjoint elements
of frequency three, say 6 and 13 that do not appear in the 2-clique. {1,6,13} form
a maximal independent set of the design. By Theorem 2.4.3, every element must
appear with one of these independent elements. This is clearly not possible, since it

requires 9 independent blocks to hold all 20 elements. Hence L(20,3,4,2) =20. O

Theorem 5.2.10 : L(18,3,5,2) = 13.

Proof : By Theorem 2.5.5, L(18,3,5,2) < 13. Suppose L(18,3,5,2) = 12 and con-
sider an (18, 3,5,2) Lotto design on 12 blocks. By Corollary 5.2.3, every element in
the design has frequency two or more. By analyzing the elements’ frequencies, we see
that every element in the design must have frequency two. By Theorem 2.4.7, there
are 5 elements (of frequency two) that do no occur together in a block. Hence, these
five elements form a 5-set that is not represented by a block in the design. Thus,
L(18,3,5,2) = 13. O.

Theorem 5.2.11 : L(19,3,5,2) = 15.

Proof : By Theorem 2.5.5, L(19,3,5,2) < 15. Suppose L(19,3,5,2) < 14 and con-
sider a (19, 3, 5, 2) Lotto design on 14 blocks. By Theorem 5.2.3, all elements in the
design have frequency two or more. By analyzing the frequencies of the elements, we
see that there are at least 15 elements of frequency two. By Theorem 2.4.7, there are
four disjoint elements of frequency two. Since p = 5, this forms a maximum inde-

pendent set, so by Theorem 2.4.3 every element of the design must appear in one of



CHAPTER 5. SPECIAL CASES 85

the independent blocks. There are 8(2)=16 places for the remaining elements. So 14
of the elements are singles and one element appears twice in the independent blocks.
Now a least 10 of the singles have frequency two, so there is a clique with at least 3
singles of frequency two. If this clique had 4 singles of frequency two, say {1, 2, 3}
and {1,4,5} where element 1 is the independent element, then the 4 pairs {z,y}
where z € {2,3} and y € {4.5} must appear in the design or otherwise {a,b,c, z,y}
would not be represented, where a, b, c are the other independent elements. Since
element 2 has frequency two, the block {2,4,5} is forced in the design. As element
3 has frequency two, the block {3, 4, 5} is also forced in the design. This contradicts
the assumption that elements 4 and 5 had frequency two in the design. If the clique
has 4 singles with 3 singles of frequency two, say {1, 2, 3} and {1, 4,5} where element
2 has frequency greater than 2, then the block {3,4, 5} would be forced. As element
4 has frequency two, it cannot appear in a block with the element 2 and hence the
5-set {a, b, c,2,4} would not be represented by the blocks in the design, where a, b, ¢
are the other independent elements. Hence, there are exactly two cliques containing
3 singles of frequency two and a non-single. These cliques would then force the 3
singles of frequency two to occur in another block. Now the other two cliques would
be forced to have 4 singles, of which 2 have frequency two and 2 have frequency
three. Consider {11,12,13} and {11,14,15} where each element is a single and 12
is a single of frequency two. Element 12 occurs once again and must do so with 14
and 15, forcing the block {12,14,15}. If 14 or 15 have frequency two (say element
14), then the pair {13, 14} cannot occur and {a, b, ¢, 13, 14} would not be represented
by the blocks in the design. So element 13 must have frequency two and the block
{13,14,15} is forced. A similar argument may be applied to the remaining cliques.
So we have 8+1+1+2+2 = 14 blocks forced. Now consider the 5-set {a,b,z,r,s}
where a, b are independent elements that do not occur with the non-single z, and r
and s are singles that occur in a clique with z but not in a block with z. This requires
another block in the design to represent it. But this contradicts the assumption that
L(19,3,5,2) < 14 and therefore L(19,3,5,2) = 15. O
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Theorem 5.2.12 : L(20,3.5,2) = 16.

Proof : By Theorem 2.5.5, L(20,3,5,2) < 16. Suppose L(20,3,5,2) < 15 and
consider a (20, 3,5,2) Lotto design on 15 blocks. By Corollary 5.2.3, every ele-
ment in the design has frequency two or more. By analyzing the frequencies of
the elements, we see that there are at least 15 elements of frequency two. Theo-
rem 2.4.7 implies there are four disjoint elements of frequency two which make up
a maximal independent set. The eight blocks containing four such elements must
look like : {1,5,6}, {1,7,8}, {2,9,10}, {2, 11, 12}, {3, 13, 14}, {3, 15, 16}, {4, 17, 18},
{4,19,20} where the elements 1,2,3 and 4 are the elements of frequency two that
form the independent set. Consider the pairs {17,19}, {17,20}, {18, 19}, {18, 20}.
These pairs muét all appear in the remaining seven blocks of the design, because
5-sets of the form {1,2,3,17,19}, {1,2,3,17,20}, {1,2,3,18,19} and {1,2, 3, 18, 20}
must be represented. This requires at least two blocks in the design. Similarly,
the pairs {5,7}, {5,8}, {6,7}, {6,8}, {9,11}, {9, 12}, {10,11}, {10,12}, {13,15},
{13,16}, {14, 15} and {14, 16} must all appear in the design. To have all these pairs
in the design requires at least six blocks. Thus we require at least 16 blocks. Hence,
L(20,3,5,2) = 16. O

Theorem 5.2.13 : L(13,4,3,2) =8.

Proof : From Bate’s tables, 7 < L(13,4,3,2) < 8. Assume that L(13,4,3,2) =7
and consider a (13, 4, 3, 2) Lotto design on 7 blocks. By Corollary 5.2.3, every element
in the design has frequency two or more. By analyzing the frequency counts, at least
11 elements have frequency two and at most 2 elements have frequency three or

more. By Theorem 2.4.7, there are at least 2 disjoint elements of frequency two, say
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1 and 8, which form a maximal independent set for the design. Since every element
must appear with 1 or 8, there is at most one repeated element not belonging to the
independent set, giving at least 10 singles. This means that at least one clique has
at least 5 singles. Without loss of generality, suppose this clique contain the blocks
{1,2,3,4} and {1,5,6,7}. If this clique has 6 singles, then 2 must appear with 5, 6
and 7, otherwise the 3-sets {2, 5,8}, {2,6,8} and {2, 7,8} will not be represented by
the design. Similarly, the element 3 must appear with the elements 5,.6, and 7, and
the element 4 must appear with the elements 5, 6 and 7. This implies that three of 2,
3, 4, 5, 6, and 7 must have frequency at least three. This is a contradiction since the
number of elements of frequency three or greater is at most 2. Thus, the above clique
must have exactly 5 singles (and thus both cliques have 5 singles). Without loss of
generality, suppose the element 2 is a non-single. Element 3 must appear with 5, 6
and 7 elsewhere in the design and element 4 must also appear with 5, 6, 7 elsewhere
in the design. This clique has 3 elements that appear at least three times. The same
is true for the other clique. But this gives too many elements with frequency three.
Hence, L(13,4,3,2) =8. O

Theorem 5.2.14 : L(14,4,3,2) = 9.

Proof: From Bate’s tables, L(14,4,3,2) = 8 or 9. Suppose L(14,4,3,2) = 8 and
consider a (14,4, 3,2) Lotto design on 7 blocks. By Corollary 5.2.3, every element
in the design has frequency two or more. By analyzing the elements’ frequencies,
we see there are at least ten elements of frequency two and at most four elements of
frequency three or greater. Theorem 2.4.7 implies a maximal independent set with
two elements of frequency two. Without loss of generality, suppose the four inde-
pendent blocks look like {1, 3,4, 5}, {1,6,7,8}, {2,9,10,11}, {2,12,13,14}. At least
eight of {3,4,...,14} has frequency two and hence at least one of the cliques have
four elements of frequency two (not including the independent element). Suppose

this clique contains the independent element 1. Then without loss of generality, at
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least two of the elements 3, 4 and 5 (say elements 4 and 5) have frequency two.
This implies that the blocks {3,6,7.8} and {4,6, 7,8} are forced. Also the element
5 must appear with 6, 7 and 8 elsewhere in the design. This means that elements
5, 6, 7 have frequency at least three. Hence, only one of the elements between 9
and 14 has frequency at least three. So without loss of generality, suppose elements
9, 10, ...,13 have frequency two and element 14 has frequency at least three. But
then the blocks {9,12,13, 14}, {10,12,13,14} and {11,12,13, 14} are forced. There
are too many elements of frequency at least three, which is a contradiction. Hence
L(14.4,3,2) =9. O |

Theorem 5.2.15 : L(15,4,3,2) =11.

Proof : From Bate’s tables, L(15,4,3,2) = 10 or 11. Suppose L(15,4,3,2) = 10
and consider a (15,4, 3,2) Lotto design with 10 blocks. By Corollary 5.2.3, every
element in the design has frequency at least two. By analyzing the frequencies of
the elements in the design, we know there are at least five elements of frequency
two and at most 10 elements of frequency three or higher. There cannot exist two
disjoint elements of frequency two in the design, for if there were, they would form a
maximal independent set and by Theorem 2.4.2, all elements must appear with one
of these independent elements. This is impossible since there are too many elements.
Thus, by Theorem 2.4.7, the number of elements of frequency two is at most six. We

consider the value of f,.

Case 1 : f, = 6. Without loss of generality, suppose the elements {1,2,...,6} have
frequency two. Then the blocks containing the elements of frequency two must look
like: {1,2,3,4}, {1,2,5,6} and {3,4,5,6}. The remaining blocks of the design must
form a (9, 4, 2, 2) design. This requires 8 blocks. Thus the design has 11 blocks which
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is too many.

Case 2 : f; = 5. Suppose that the elements 1, 2, 3, 4, 5 are frequency two elements.
Consider the clique {1, 2,3,z}, {1,4,y, 2} where one of z,y, z must be the element 5.
All occurrences of the elements of frequency two must appear in three blocks of the
design where two of the blocks are stated above. Within these three blocks, there
are at most two elements that are not of frequency two. Every non frequency two
element must appear together in the rest of the design, except possibly for one pair
that may appear in the three blocks. This requires at least £(10,4,2,2) — 1 = 8

blocks, which means the size of the design is at least 11. This is a contradiction.

Since each case led to a contradiction, we conclude that L(15,4,3,2) = 11. O

Theorem 5.2.16 : L(16,4,3,2) = 12.

Proof : From Bate’s thesis, L(16, 4, 3,2) = 11 or 12. Suppose L(16,4,3,2) < 11 and
consider a (16,4, 3,2) Lotto design with 11 blocks. By Corollary 5.2.3, all elements
in the design have frequency two or more. By analyzing the elements’ frequencies,
we see there are at least four elements of frequency two. Suppose element 1 has fre-
quency two. Since not all elements can occur with element 1, there must be another
element, say 2, that does not occur with 1 in the design. Then elements 1 and 2
form an maximum independent set. If element 2 had frequency two, then not all
elements could occur with element 1 or with element 2, contradicting Theorem 2.4.2.
Hence all pairs of elements of frequency two must occur together in some block. By
Theorem 2.4.7, the maximum number of non-disjoint frequency two elements is 6. If
all elements not occurring with element 1 had frequency four or more, then the total
number of occurrences in the design is at least 7(2) + 9(4) = 50 > 44, which is a

contradiction. So, we may assume that there is an element that does not occur with
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element 1 and has frequency three. We consider the possible number of elements of

frequency two in the design.

Case 1 : Suppose the number of elements of frequency two in the design is 6, where
the elements {1,2,...,6} have frequency two. Then the blocks containing the ele-
ments of frequency two must look like : {1,2,3,4}, {1,2,5,6} and {3,4,5,6}. The
remaining blocks of the design must form a (10, 4, 2, 2) design. This requires 9 blocks.
Thus the design has 12 blocks, which is too many.

Case 2 : Suppose the number of elements of frequency two in the design is 5. Let
1, 2, 3, 4 and 5 be the elements of frequency two. Then the following is forced :
{1.2,3,z}, {1,4,y, 2} and {2, 3,4, w}, where two of z, y, w, z is the element 5. The
other two elements have frequency three or more. It is easy to check that all pairs
of frequency three or more elements must occur together in some block or there will
be some 3-set {a,b,c} not represented by the blocks of the design, where a is an
element of frequency two, b and c are not z,y, z or w and ¢ and has frequencies three
or more. This requires at least L(11,4,2,2) — 1 = 11 blocks. The 1 is subtracted
because y and z might be frequency three or more and that might mean that one
less than L(11,4,2,2) blocks are needed. But 11 + 3 = 14 blocks is too many, as we
assumed that the design has 13 blocks.

Case 3 : Suppose the number of elements of frequency two in the design is 4. Then
the number of elements of frequency three is exactly 12 and there are no elements

with frequency four or more. There are three non-isomorphic sub-cases to consider.
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Case 3a: The independent blocks are {1, 2,3, 4}, {1,5,6,7}, {8,9,10, 11}, {8,9,12,13}.
{8,14,15,16}. One of the two blocks containing 1 must have at least two more ele-
ments of frequency two. Let elements 2 and 3 have frequency two. Since elements 2
through 7 are singles, the blocks {,5,6,7} and {3,5,6,7} are forced. Further, ele-
ments 4 and 5 must occur in some block which implies element 5 must have frequency

three or more, which is too much.

Case 3b : The independent blocks are {1, 2, 3,4}, {1, 2,5, 6}, {7,8,9, 10}, {7.11, 12,13},
{7.14,15,16}. The first two blocks have 4 pairs that must appear in the design re-
quiring at least one full block. The remaining 10 elements 7, 8,.., 16 must form an
(10,4, 2,2) Lotto design, which requires at least 9 blocks. Hence, this case requires

at least 12 blocks, which is a contradiction.

Case 3c : The independent blocks are {1, 2, 3,4}, {1,5,6, 7}, {8,2,9, 10}, {8,11,12,13},
{8,14,15,16}. The element 9 must occur with elements 11 through 16 in the design
in two full blocks containing no other elements. This is also true for the element
10. Then elements 11 through 16 have occurred a total of 3 times and cannot occur
again. But none of the 9 pairs {z,y} where z € {11,12,13} and y € {14, 15, 16}
have yet appeared, so some 3-set {3,z,y} is not represented by the blocks of the

design. This is a contradiction.

Since each case led to a contradiction, we conclude that L(16,4,3,2) = 12. O

Theorem 5.2.17 : L(17,4,3,2) = 14.

Proof : From Bate’s tables, L(17,4,3,2) = 12, 13 or 14. Suppose L(17,4,3,2) <13
and consider a (17,4, 3,2) Lotto design on 13 blocks. By Corollary 5.2.3, every ele-

ment of the design must have frequency two or more. By analyzing the frequencies
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of the elements, we see that there are at least nine elements of frequency two. By
Theorem 2.4.7, there exist two disjoint elements of frequency two. These two ele-
ments form a maximal independent set, as p = 3. By Theorem 2.4.3, every other
element in the design must appear with these two elements. But this is clearly not
possible. Hence, L(17.4,3,2) =14. O

Theorem 5.2.18 : L(18,4,3,2) = 15.

Proof : By Theorem 2.5.5, L(18,4,3,2) < 15. Suppose L(18,4,3,2) < 14; then
consider an (18,4, 3,2) Lotto design with 14 blocks. By Corollary 5.2.3, all elements
in the design have frequency two or more. If there exists an element of frequency
two, then the elements that are disjoint from it must have frequency four or more by
Theorem 2.4.2. This implies that the total occurrences of the elements in the design
is at least 4(11)-+ 7(2) = 58, which is larger that 4(14) = 56, a contradiction. So
there are no elements of frequency two in the design. By analyzing the frequency of
elements, we see that there are at least sixteen elements of frequency three and at
most two elements of frequency four or more. If element 1 has frequency three, then
there exists an element, say 2, of frequency three that does not occur with element 1
in the design. These two elements form a maximum independent set for the design.
By Theorem 2.4.3, every element must occur with at least one of the 2 independent

elements. We consider the four possible configurations for the independent blocks.

Case 1 : One of the cliques, say the blocks containing 1, consists of the independent
element and 9 singles. At least 7 of the singles have frequency three, so one of the
blocks consists of 1 and three singles of frequency three. Let B; be that block so
B, = {1,3,4,5}, B, = {1,6,7,8} and B3 = {1,9,10,11}. Now 3 must appear with

elements 6 through 11 in its remaining two blocks. These blocks are full. The same is
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true for element 4 and element 5. So elements 6 through 11 each have frequency four
or more. But this contradicts the assumption that there are at most two elements

of frequency four or more in the design.

Case 2 : Each of the two cliques contains a repeated element besides the inde-
pendent elements. Consider By = {1,3,4,5}, B, = {1,3,6,7}, Bs; = {L,8,9,10},
By = {2,11,12,13}, Bs = {2,11,14,15} and Bs = {2,16,17,18}. The elements 4,
5,6, 7, 8,9, 10, 12, 13, 14, 15, 16, 17 and 18 are singles. If element 3 has frequency
three, the block {3,8,9,10} is forced. The elements 4, 5, 6, 7 must appear with 8
in the design. But this is also true for elements 9 and 10. This contradicts the fact
that there are at most two elements of frequency four or more. So element 3 must
have frequency four. A symmetric argument will give that element 11 has frequency
four. So, all the singles have frequency three. Now, since 8 must occur with 3, 4, 5,
6, and 7 in its last two remaining blocks, it cannot occur with both 9 and 10 again.
So let elements 8 and 9 not occur together again in the design. Thus 3,4, 5,6 and 7
must occur in the two blocks with element 8 and in two different blocks with element
9. As 3, 4, 5, 6 and 7 have frequency three, they cannot occur again in the design.
Now 3, 4, 5, 6, and 7 must also occur with 11. There is room for two occurances of
11 in those four blocks, but then element 11 can occur with a maximum of four of

the five elements 3, 4, 5, 6 and 7. This is a contradiction.

Case 3 : One of the cliques, say the blocks containing 1, has a non-single and eight
singles in it. Let element 3 be the non-single. The blocks are B; = {1, 3,4,5},
B, = {1,6,7,8} and B; = {1,9,10,11}. Since there are at most two elements of
frequency four or more, one of Bz or B3 must have at most one of those elements in
it. So let elements 9 and 10 have frequency three. If 9 and 10 occur together again,
then the blocks {9, a, b, ¢}, {9,d, e, 10} and {10, a, b, c} are forced in the design where
{a,b,c,d,e} = {4,5,6,7,8}. But element 11 then has not occurred with a, b, c and so
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those elements must occur at least four times, which is a contradiction. So elements
9 and 10 only occur together in B;. Thus elements 4, 5, 6, 7 and 8 must occur in
two blocks with element 9 and in two different blocks with element 10. So at least
four of the elements 4, 5, 6, 7 and 8 do not occur again but do have to occur with 11.
Hence, 11 must occur twice in these blocks and once more. Hence, element 11 has
frequency four. Using a similar argument, it can be proved that one of the elements
6. 7 or 8, say 8 is an element of frequency 4. So elements 8 and 11 oecur together in
a block not containing 9 and 10. So the elements 4, 5, 6, 7, 9, 10 all have frequency
three. In particular, elements 4 and 5 have frequency three. They must occur with
6, 7, 8, 9, 10, 11 and this happens in four full blocks where 4 and 5 do not occur
together. Now element 6 must occur once with element 4 and once with element 5
and does not occur again. So it must occur with 9, 10 and 11 in these two blocks,
say as follows : {4,6,9,11} and {5,6,10,z}. This is without loss of generality. Since
elements 7 and 8 must occur with 9, the block {5,7,8,9} is forced. Since elements 7
and 8 must also occur with element 4, the block {4, 7, 8, 10} is also forced and hence
z must be the element 11. But this is a contradiction, as the two singles 7 and 11

have not occurred together in any block of the design.

The next case considers the situation where the two cliques have two elements in

common. There are three sub cases.

Case 4a: B; = {1,3,4,5}, B, = {1,6,7,8}, By = {1,9,10,11}, By = {2,3,4,12},
Bs = {2,13,14,15} and Bs = {2, 16, 17,18}. Pairs of the type {z,y} where z € {5}
and y € {6,7,8,9,10,11}, or z € {6,7,8} and y € {9, 10, 11} must appear in the
design by Lemma 5.2.1. Similarly, pairs of the type {z,y} where z € {12} and
y € {13,14,15,16,17,18} or = € {13,14,15} and y € {16, 17, 18} must appear in the
design by Lemma 5.2.1. These pairs will be called type A pairs. There are 30 type A
pairs. Now the following 3-sets {3, 6,13}, {3,7,14}, {3, 8,15}, {3.9,16}, {3,10,17}
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and {3,11, 18} must be represented by pairs. We will call such pairs type B! pairs.
Similarly, 3-sets {4, 6,18}, {4,7,13}, {4,8,14}, {4,9,15}, {4,10,16} and {4,11,17}
must be represented by pairs. We will call such pairs type B? pairs. We will say
that a pair is a type B pair if it is either a type B! or type B? pair. There are no
common pairs between the type A pairs, type B! pairs and the type B? pairs. There
are at least 6 type B! and 6 type B? pairs needed to represent the listed 3-sets. The
total number of pairs needed is 30 + 6 + 6 = 42.

We now proceed to show that any block can contain at most z type A pairs, and
y type B pairs which represent distinct 3-sets from our list, where z + y < 6. Any
block in the design can hold C(4,2) = 6 pairs. So we must show that any block
has at least one pair that is neither a type A pair nor represents any of the listed
3-sets. Let M = {a,b,c,d} be a block in the design where M # B; for i = 1 to
6. If M has two elements from the same block B; for ¢ = 1,2 or 3, then those two
elements form the required pair. Also it is clear that element 3 and element 4 can
be interchanged in the following argument. There remain six situations under which
M may be formed. Let X = {5,6,7,8,9,10,11} and Y = {12,13, 14, 15,16, 17, 18}.
Consider the situation where {a,b,c} C X and d € Y. Clearly, element 5 must be
in B, and {5,d} is not type A and cannot represent one of our listed 3-sets. Now
consider the case where {a,b} € X and {c,d} C Y. The pair {a,c} represents
{3,a,c} or {4,a,c}. Suppose it represents {3, a,c}. Then the pair {a,d} must repre-
sent {4, a,d}; {b, c} represents {4,b,c}, and {b, d} represents {3,b,d}. But the 3-sets
have been set up to preclude this possibility. So the only situation left to investigate
is M = {3,by,b3,c} where b, € B,, by € B3 and ¢ € Y. Now {3,b;} represents
{3,b2,z}, {3,b3} represents {3,bs,y} and {3, c} represents {3, z,c}. The 3-sets must
be distinct. Now {b,,c} cannot represent {3,b2,c} = {3,b2,z} as that 3-set would
be represented twice and we need 3-sets to be represented once. So {b2, c} represents

{4,b2,c}. Similarly, {b3,c} represents {4,b3,c}. But there is only one 3-set with 4
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and c in it. so b = b3. which is a contradiction. The remaining three situations just
have X and Y interchanged. So any block has a pair that is neither type A nor a

pair that represents a unique 3-set from our list.

So any block contains at most = type A pairs and y type B pairs that represent
unique 3-sets from our list where z + y < 6. Since there are 42 pairs needed, we

need at least % or 9 blocks. This gives us a total of 15 blocks, which is a contradiction.

Case 4b: B, ={1,3,5,6}, B, = {1,4,7,8}, Bs = {1,9,10,11}, By = {2,3,12,13},
Bs = {2,4,14,15} and Bgs = {2, 16, 17,18}. Pairs of the type {z,y} where z € {5,6}
and y € {7,8,9,10,11}, or z € {7,8} and y € {9,10,11} must appear in the de-
sign by Lemma 5.2.1. Similarly, pairs of the type {z,y} where = € {12,13} and
y € {14,15,16,17,18}, or z € {14,15} and y € {16,17,18} must appear in the
design by Lemma 5.2.1. These pairs will be called type A pairs. There are 32 type
A pairs. Now the 3-sets {3,7, 14}, {3,8,15}, {3,9,16}, {3,10,17} and {3,11,18}
must be represented by pairs. We will call such pairs type B! pairs. Similarly,
3-sets {4,5,12}, {4,6, 13}, {4,9,18}, {4,10,16} and {4, 11,17} must be represented
by pairs. We will call such pairs type B? pairs. We will say that a pair is a type B
pair if it is either a type B! or type B? pair. There are no common pairs between
the type A pairs, type B! pairs and the type B? pairs. There are at least five type
B! and five type B? pairs needed to represent the listed 3-sets. The total number of
pairs needed is 32 + 5 + 5 = 42. Using a tedious argument similar to the one in case
4a, it can be proved that any block in the design has at most z type A pairs in it and
can represent y distinct 3-sets from the list of 3-sets above, where z +y < 6. Then
the total number of blocks in the design is at least 6+9 = 15, which is a contradiction.
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Case 4c : B, = {1,3,4,5}, B, = {1,6,7,8}, B; = {1,9,10, 11}, By = {2,3, 12,13},
Bs = {2,4,14,15} and Bs = {2,16,17,18}. Pairs of the type {z,y} where z € {5}
and y € {6,7,8,9,10,11}, or £ € {6,7,8} and y € {9,10,11} must appear in the
design by Lemma 5.2.1. Similarly, pairs of the type {z,y} where z € {12,13} and
y € {14,15,16,17,18}, or z € {14,15} and y € {16,17,18} must appear in the
design by Lemma 5.2.1. These pairs will be called type A pairs. There are 31 type
A pairs. Now the 3-sets {3,7,14}, {3,8,15}, {3,9,16}, {3,10,17} and {3,11,18}
must be represented by pairs. We will call such pairs type B! pairs. Similarly, 3-
sets {4,7,12}, {4, 8,13}, {4,9, 18}, {4,10,16} and {4, 11, 17} must be represented by
pairs. We will call such pairs type B? pairs. We will say that a pair is a type B pair
if it is either a type B! or type B? pair. There are no common pairs between the type
A pairs, type B! pairs and the type B? pairs. There are at least five type B! and five
type B? pairs needed to represent the listed 3-sets. The total number of pairs needed
is 31 + 5+ 5 = 41. Using an even more tedious argument similar to the one in case
4a, it can be proved that any block in the design has at most z type A pairs in it and
can represent y distinct 3-sets from the list of 3-sets above, where z + y < 6. Then

the total number of blocks in the design is at least 6+9 = 15, which is a contradiction.

Since each case led to a contradiction, we conclude that L(18,4,3,2) = 15. O
Theorem 5.2.19 : L(19,4,3,2) = 16.

Proof : By Theorem 2.5.5, L(19,4,3,2) < 16. Assume that L(19,4,3,2) < 15 and
consider a (19, 4, 3, 2) Lotto design with 15 blocks. By Corollary 5.2.3, all elements in
the design have frequency two or more. If there exists an element of frequency two,
then by Theorem 2.4.2, there must exist an element of frequency four which make up
a maximal independent set. This implies that the total occurrences of the elements

in the design is at least 4(12) + 7(2) = 62 which is larger that 4(15) = 60. Hence,
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there are no elements of frequency two in the design. By analyzing the frequency
of the elements. we conclude that there are at least sixteen elements of frequency
three and at most three elements of frequency four or more. This implies there are
two elements of frequency three, {1,2}, that form an maximum independent set.

Consider the following non-isomorphic configurations of the independent blocks.

Case 1 : Suppose the independent blocks are B, = {1,3,4,5}, B, = {1,6,7,8},
B, = {1,9,10,11}, C1 = {2,3,12,13}, C; = {2,14,15,16}, C; = {2,17,18,19}.
By Lemma 5.2.1, pairs of the form {z,y} where z € {4,5}, y € {6,7,8,9,10,11},
or z € {6,7,8}, y € {9,10,11} must appear in the design. Similarly, pairs of the
form {z,y} where = € {12,13}, y € {14,15,16,17,18,19}, or = € {14,15,16}, y €
{17, 18, 19} must also appear in the design. We will call the pairs type A pairs. There
are 42 type A pairs. Now 3-sets of the form {3,z,y} where =z € {6,7,8,9, 10,11},
y € {14,15,16,17, 18,19}, must also be represented. The pairs that represent these
3-sets will be called type B pairs. There are no common pairs between the type
A and type B pairs. Consider the 3-sets {3,6, 14}, {3,7,15}, {3,8,16}, {3,9,17},
{3,10, 18} and {3,11,19}. These 3-sets require at least 6 distinct pairs to represent
them. Hence the number of type B pairs that need to appear in the design is 6.
Thus the total number of pairs that need to appear in the design is at least 48.

We now proceed to show that given a block, it can contain at most five pairs of type
A and type B unless there are two pairs of type A or 1 pair of type A in the block.
To show this, consider a block in the design. It can hold at most C(4,2) = 6 pairs.
Clearly it cannot hold six pairs of type A and it cannot hold six pairs of type B. If
the block contains five pairs of type A, then it must be of the form {a, b, ¢,d}, where
a,b€ B;,c€ Bjand d € Bi or a,b € C;, c € Cj and d € Cy, where 1,3,k € {1,2,3},
1#j#k,a#3,b#3,c# 3and d # 3. Then no pairs of type B are in this block
and hence five pairs of type A and B appear in this block. If the block contains four
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pairs of type A, then it must be of the form {e,b.c,d}, where a.b € B;, c,d € B;
or a,b € Cj, c.d € Cj, wherei,j € {1,2,3}, i # j,a # 3, b # 3, c # 3 and d # 3.
Again, no pairs of type B are in this block and hence four pairs of type A and B
appear in this block. If the block contains three pairs of type A, then it must be of
the form form {a,b,c,d} where a € B;, b€ Bj and c € By or a € C;, b € C; and
c € Cr wherei, 7,k € {1,2,3} ,i#j#k,a#3,b# 3 and c # 3. Now one of a, b, c,
say a, must appear with the element 3. Hence, only the pairs {c,d}, -{b,d} may be

of type B. Thus, there are at most five pairs of type A and B in this case.

We will now show that there cannot be any blocks in the design that contain one
or two pairs of type A. If there are £ > 0 blocks that contain exactly one pair of
type A, then z pairs of type A appears in these blocks. Since there are 42 pairs of
type A, 42 — z pairs of type A must appear in the remaining 15 -6 —z =9 —z
blocks in the design. As each of the remaining blocks may contain at most five pairs
of type A, 5(9 — z) > 42 — z, which implies z < %, a contradiction. Hence, there
are no blocks that contain one pair of type A. If there are £ > 0 blocks that contain
exactly two pairs of type A, then 2z pairs of type A appears in these blocks. Since
there are 42 pairs of type A, 42 — 2z pairs of type A must appear in the remaining
15— 6 —z = 9 —z blocks in the design. As each of the remaining blocks may contain
at most five pairs of type A, 5(9 — z) > 42 — 2z which implies z < 1. If z = 1, then
9 — 1 = 8 blocks must each contain five pairs of type A (and hence no pairs of type
B). Thus, the block that contains two pairs of type A must contain all six pairs of
type B, which is impossible. Hence, there are no blocks that contain two pairs of

type A.

We conclude that a block in the design can contain at most five pairs of type A and
B. There are 48 pairs that need to be represented, each block holding at most five of
these pairs. This requires at least ten blocks making the total number of blocks in
the design to be at least 16. This is a contradiction.
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Case 2 : Suppose the independent blocks are B, = {1,3,4,5}, B, = {1,6,7,8},
By = {1,9,10,11}, C; = {2,12,13, 14}, C2 = {2,12, 15,16}, C; = {2, 17, 18,19}. As
there are at most three elements of frequency four or more, we may assume elements
3 and 4 have frequency three. Since element 3 must appear with {6,7,8.9,10, 11},
then the blocks {3.z,y, 2}, {3, w,u, v} are forced in the design, where z,y, z, w,u,v €
{6,7,8,9,10,11}. Similarly element 4 must appear with {6,7,8,9,10, 11}; then the
blocks {4, z,y, 2z}, {4, w, u, v} are forced in the design, where z,y, z, w,u,v € {6,7,8,
9.10,11}. Now element 5 is a single and must appear with {6, 7, 8.9, 10, 11}, forcing
these elements to appear once more. Hence, {6,7,8,9, 10,11} must have frequency
four or more which contradicts the fact that at most three elements have frequency

4 or more.

Since each case led to a contradiction, we conclude that L{19,4,3,2) =16. O

Theorem 5.2.20 : L(20,4,3,2) = 18.

Proof : By Theorem 2.5.5, L(20,4,3,2) < 18. Assume that L(20,4,3,2) < 17 and
consider a (20,4, 3,2) Lotto design with 17 blocks. By Corollary 5.2.3, all elements
in the design have frequency two or more. Let us assume there exists an element of
frequency two, say the element 1. By Theorem 2.4.2 and Theorem 2.4.1, there must
exist an element of frequency four which, together with element 1, make up a maxi-
mal independent set. Hence there are at least 13 elements of frequency four or more,
some of which must have frequency four. This implies there are at least five elements
of frequency two, all of which must occur with the element 1. The independent blocks
can now be determined up to isomorphism. The blocks containing the element 1 are
{1,2,3,4} and {1,5,6,7}. There are at least two elements of frequency two in one
of the blocks, say elements 2 and 3. By Lemma 5.2.1, pairs of the form {z,y} where
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z € {2.3.4} and y € {5.6.7}, must occur in the design. Thus the blocks {2,5,6, 7}
and {3.5.6, 7} are forced and elements 5, 6, 7 must occur at least once more with ele-
ment 4. Hence, elements 5, 6, 7 have frequency four or more and so there are at most
three elements of frequency two occurring with element 1, which is a contradiction.
This implies there are no elements of frequency two. We know there are at least 12
elements of frequency three and at most eight elements of frequency four or more.
Let element 1 have frequency three. Since at most nine elements of frequency three
can occur with the element 1, let element 2 have frequency three, and not occur with
element 1 in any block of the design. Then without loss of generality, the independent
blocks are B, = {1,3,4,5}, B, = {1,6,7,8}, B3 = {1,9,10, 11}, B, = {2,12,13, 14},
Bs = {2,15,16,17}, Bs = {2,18,19,20}. Since there are at least tweleve elements
of frequency three, there must be at least five of them occurring with element 1 or
2, say element 1. There must be at least two of them in By, B; or B;. Suppose
elements 3 and 4 are two such elements of frequency three. By Lemma 5.2.1, pairs
of the form {z,y}, where z € {3,4,5} and y € {6,7,8,9,10,11}, must occur in the
design. This implies element 3 occurs in two more blocks with just enough spaces for
elements 6, 7, 8, 9, 10, 11. The same is true for element 4. Now 6, 7, 8, 9, 10, 11 still
has to occur with element 5. Hence those six elements have frequency four or more.
This implies that there are at most three elements of frequency three occurring with
1. The same is true for element 2. Hence, there are at most eight elements of fre-

quency three in the design, which is a contradiction . Therefore L(20,4,3,2) = 18. O

Theorem 5.2.21 : L(19,4.4,2) = 11.

Proof: We know that L{19,4,4,2) =10 or 11. Assume that L(19,4,4,2) = 10 and
consider a (19, 4,4, 2) Lotto design on 10 blocks. By Corollary 5.2.3, all elements in
the design have frequency two or more. Thus there are at least seventeen elements

of frequency two and at most two elements of greater frequency. By Theorem 2.4.7,
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there are three disjoint elements of frequency two, say the elements 1, 8 and 15,
forming a maximal independent set of the design. Since every element must appear
in one of the six blocks containing the elements 1, 8, 15 and there are at most two
elements repeated in the independent blocks other than the independent elements,
there are at least fourteen singles. Either one of the cliques has six singles or two
of the three cliques have at least five singles. If one of the cliques has six singles,
then assume it looks like {1,2, 3,4}, {1,5,6,7}. Since there are at most two elements
of frequency three or more, we may assume elements 2 and 3 have frequency two.
Then the blocks {2,5,6,7} and {3,5,6,7} are forced in the design. Thus, elements
5, 6, 7 have frequency three or more, which is a contradiction. So there cannot
be a clique with six singles, and hence there exists two cliques with five singles
each. Suppose these two clique look like {1,z, 3,4}, {1,5,6,7}, {8,v,10,11} and
{8,12,13, 14}, where z,y are not singles. Now the elements 3, 4, 5, 6, 7 must appear
in pairs, or else the two elements not appearing in a pair along with 8 and 15 form
a 4-set that is not represented. Similarly, elements 10, 11, 12, 13, 14 must appear in
pairs. If elements 3 and 4 both have frequency three or more, then elements 10 and
11 must have frequency two, as f> > 17. This forces the blocks {10, 12,13, 14} and
{11, 12, 13, 14}, which gives too many elements of frequency three or more. Hence, at
least one of the elements 3 or 4 must have frequency two. If the both have frequency
two, then the blocks {3,5,6,7} and {4, 5,6, 7} are forced, giving too many elements
of frequency three or more. Hence, without loss of generality, assume element 3
has frequency two and element 4 have frequency three or more. As element 3 has
frequency two, it forces the block {3,5,6,7}. As element 4 must appear with 5, 6
and 7, then 5, 6 and 7 must appear again in the design. This implies that 5, 6 and 7
have frequency three or more, which contradicts the fact that the number of elements

of frequency three is at most two. Hence, L(19,4,4,2) =11. O

Theorem 5.2.22 : L(20,4,4,2) =12
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Proof : By Theorem 5.2.21, L(20.4.4,2) > 11. By Theorem 2.5.5, L(20,4,4,2) <
12. Suppose L(20.4,4,2) = 11 and consider a (20, 4. 4, 2) Lotto design with 11 blocks.
By Corollary 5.2.3, every element in the design has frequency two or more. By ana-
lyzing the elements’ frequencies, we conclude that there are at least sixteen elements
of frequency two in the design. By Theorem 2.4.7, there is a maximal independent
set (of size three) consisting only of elements of frequency two. Let these three ele-
ments be {1,2,3}. The three cliques look like {1,4, 5,6}, {1,7,8,9}, {2,10,11, 12},
{2,13, 14,15}, {3,16,17,18}, {3,19,20,z} where z € {4,5,...,18}. As there are at
least 16 elements of frequency two, there is a clique with six singles where at least
two of them have frequency two. We may assume that this clique is {2, 10, 11, 12},
{2,13.14,15}. Now the two singles of frequency two may be in the same block or in
different blocks of the clique. If they are in the same block, say elements 10 and 11,
then as element 10 has frequency two and by Lemma 5.2.1, the block {10, 13, 14,15}
is forced in the design. Similarly, the block {11, 13, 14,15} is forced in the design.
By Lemma 5.2.1, element 12 must also appear with elements 13, 14, 15 in the de-
sign. This implies elements 13, 14, 15 must appear at least once more in the design
and hence they all have frequency four or more. Thus, the total occurrences of the
elements in the design is at least 17(2) + 3(4) = 46, which is larger than 11(4) = 44.
This is a contradiction, and hence the two singles cannot appear in the same block.
Suppose the two singles of frequency two are elements 10 and 13. As element 10 has
frequency two and must appear with elements 13, 14, 15, the block {10, 13, 14,15}
is forced in the design. Now element 11 must appear with 13, 14, 15. This implies
element 13 must appear again, implying it has frequency three or more, which is a

contradiction.

As both cases led to a contradiction, we conclude that L(20,4,4,2) =12. O
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Theorem 5.2.23 : L(15.5.3.2) =7.

Proof : From Bate’s tables, 6 < L(15,5,3,2) < 7. Suppose L(15,5,3,2) = 6 and
consider a (15,5, 3,2) Lotto design on six blocks. By Corollary 5.2.3, every element
in the design has frequency two or more. There are exactly 15 elements of frequency
two. By Theorem 2.4.7, there are at least three disjoint elements of frequency two
in the design. These three elements form a 3-set set that cannot be represented in
the design. Hence, L(15,5,3,2) =7. O

Theorem 5.2.24 : L(16,5,3,2) =8

Proof : From Bate’s tables L(16,5,3,2) = 7 or 8. Suppose L(16,5,3,2) = 7 and
consider a (16, 5, 3, 2) Lotto design on seven blocks. By Corollary 5.2.3, every element
in the design has frequency two or more. By analyzing the elements’ frequencies,
we conclude that there are at least thirteen elements of frequency two in the design.

Table 5.2 states all possible frequency distributions of the elements in the design.

Case | fo f3 fi [fs # of disjoint elements of frequency two
A 13 3 0 0 2
B 4 1 1 0 2
C 15 0 0 1 3

Table 5.1: Possible Frequency Distributions for an LD*(16,5,3,2;7).

By Theorem 2.4.7, case C implies there are three disjoint elements of frequency two.
These three elements form a 3-set that is not represented by the design. Hence case
C need not be considered and we only need to consider cases A and B. Thus, the
design must have at least one element of frequency three. Let the elements {1,2}

be two disjoint elements of frequency two in the design. These two elements form
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a maximal independent set of the design. Consider the following 7 non-isomorphic

ways that the two cliques may look like.

Case 1 : Suppose the two cliques look like {1, 3,4, 5,6}, {1,7,8,9, 10}, {2,11, 12,13,
14} and {2, 3,4, 15,16}. Suppose one of elements 5 or 6 has frequency two, say ele-
ment 5. Then, the block {5,7,8,9, 10} is forced in the design. But element 6 must
also appear with elements 7, 8, 9, 10 in the design which implies 7, .8, 9, 10 must
appear at least one more time. Hence, the number of elements of frequency three
or more is at least four. This is a contradiction. Hence both elements 5 and 6 have
frequency at least three. Arguing exactly the same in the other clique, we conclude
that elements 15 and 16 must also have frequency at least three. But this implies
that there are at least four elements (5, 6, 15, 16) with frequency three or more. This

is a contradiction.

Case 2 : Suppose the two cliques look like {1, 3,4, 5,6}, {1,7,8,9, 10}, {2, 3,11, 12,13}
and {2,4,14,15,16}. Arguing as in case 1, elements 5 and 6 must have frequency
three or more. As the number of elements of frequency three or more is at most three,
at least 5 of the elements 11, 12, 13, 14, 15, 16 must have frequency two. Suppose
they are 11, 12, 13, 14, 15. Element 11 must appear with elements 14, 15, 16 and
hence the block B = {11, z, 14, 15, 16} is forced, where z can be some other element.
Now as elements 14 and 15 have frequency two and element 12 must appear with
them in a block, we see that £ = 12. Thus B = {11,12, 14, 15,16}. But element 13
must appear with elements 14, 15, 16 which implies elements 14, 15, 16 must appear
again in the design. This is a contradiction as we assumed that elements 14 and 15

have frequency two.

Case 3 : Suppose the two cliques look like {1, 3, 4, 5,6}, {1,7,8,9,10}, {2,3,11, 12,13}

and {2,7,14,15,16}. As there are at most three elements of frequency three or more
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in the design, one of the two cliques will have both its blocks with at most one single
with frequency three or more. Then let the elements 4, 5, 8 and 9 have frequency
two. As element 4 must appear with elements 8, 9, 10 in the design, the block
B = {4,z,8,9,10} is forced, where z is some other element. Now as elements 8 and
9 have frequency two and element 5 must appear with them, we see that z = 5. But
element 6 must also appear with elements 8, 9, 10 in the design. This implies that
elements 8, 9, 10 must appear again which is a contradiction as we assumed that

elements 8 and 9 had frequency two.

Case 4 : Suppose the two cliques look like {1, 3, 4,5, 6}, {1,7,8,9,10}, {2,3,11,12,13}
and {2, 11, 14,15,16}. As there are at most three elements of frequency three or more
in the design, one of the elements 7, 8, 9, 10 must have frequency two, say element
7. As 7 must appear with 4, 5, 6, the block B = {4,5,6,7,z} is forced in the design,
where z is some other element. As element 4 must appear with 8, 9, 10 in the de-
sign, it must have frequency three or more. Similarly, elements 5 and 6 must have
frequency three or more. This implies that elements 8, 9 and 10 have frequency two.
This forces the blocks {4,5,6,7,z} and {4,5,6.y, 2} where z,y, z € {8,9, 10}. The el-
ements in the other clique must all be of frequency two. The block {12, 13, 14, 15, 16}
is forced. But the 3-set {3, 7,14} needs to be represented. This can be accomplished
by having the pair {3,7}, {3,14} or {7,14} in the design. But these elements have
frequency two and they cannot appear again as they have already appeared twice in

the design. So the block {3, 7,14} cannot be represented which is a contradiction.

Case 5 : Suppose the cliques may look like {1, 3,4, 5,6}, {1,3,7,8,9}, {2,10,11,12,13},
and {2, 10, 14,15, 16}. There is a clique that contains a block with three singles of fre-
quency two. Suppose these three singles are the elements 4, 5, 6. As element 4 must
appear with elements 7, 8, 9, the block B = {4,z,7,8,9} is forced where z is some

other element. Now elements 5 and 6 must also appear with elements 7, 8, 9. This
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implies that elements 7, 8, 9 must appear at least once more in the design. Hence
elements 7, 8 and 9 have frequency three or more in the design. As there are at most
three elements of frequency three or more in the design, the rest of the elements must
have frequency two. As element 11 must appear with elements 14, 15, 16, this forces
the block B = {11, z, 14,15, 16}. Now as elements 12 and 13 must appear with ele-
ments 14, 15 and 16, this causes elements 14, 15 and 16 to appear at least once more.

This is a contradiction as we assumed that elements 14, 15 and 16 had frequency two.

Case 6 : Suppose the cliques may look like {1, 3, 4, 5,6}, {1,7,8,9, 10}, {2,11, 12,13, 14},
and {2,11,12,15,16}. As there are at least 13 elements of frequency two, at least one
of the blocks {1,3,4,5,6} and {1,7,8,9,10} have two or more singles of frequency
two. Suppose elements 3 and 4 are singles of frequency two. As element 3 must
appear with elements 7, 8, 9 and 10 in the design, the block {3, 7, 8,9, 10} is forced.
Similarly the block {4, 7,8,9, 10} is forced. Since element 5 must also appear in the
design with the elements 7, 8, 9 and 10, these elements must appear once more.
Hence, the elements 7, 8, 9 and 10 must have frequency three or more, which is a

contradiction.

Case 7 : Suppose the two cliques look like {1, 3, 4, 5,6}, {1,7,8,9,10}, {2,3,11,12, 13}
and {2, 3,14,15,16}. As there are at most three elements of frequency three or more
in the design, one of the elements 7, §, 9, 10 must have frequency two, say element
7. As 7 must appear with 4, 5, 6, the block B = {4,5,6,7,z} is forced in the design,
where z is some other element. As element 4 must appear with 8, 9, 10 in the design,
it must have frequency three or more. Similarly, elements 5 and 6 must have fre-
quency three or more. There are at least four elements in the design with frequency

three or more, which is a contradiction.
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Since each case led to a contradiction, we conclude that there is no (16, 5, 3,2) Lotto

design on seven blocks. Hence, L(16,5,3,2) =8. O

Theorem 5.2.25 - L[(17,5,3,2) = 9.

Proof : By Theorem 2.5.5, L(17,5,3,2) < 9. Suppose L(17,5,3,2) = 8 and consider
a (17,5,3,2) Lotto design with 8 blocks. By Corollary 5.2.3, every element in the
design has frequency two or more. By analyzing the elements’ frequencies in the
design, we conclude there are at least eleven elements of frequency two and at most
four elements with frequency three or more. By Theorem 2.4.7, there is a maximal
independent set of size two containing two elements of frequency two. Let {1,2} be
this maximal independent set. The blocks containing the elements of the indepen-
dent set are stated in the following two cases :

Case 1 : Let B, = {1,3,4,5,6}, B, = {1,7,8,9,10}, B; = {2,11,12,13,14} and
B; = {2,11,15,16, 17}. There exists an element from the set {3,4,5,6,7,8,9, 10},
say 3, that has frequency two. Since 3 must appear with the elements 7, 8, 9, 10
in the design, the block {3,7,8,9,10} is forced. Since 4, 5, 6 must appear with 7,
8, 9, 10 in the design, the elements 7, 8, 9, 10 must have frequency three or more.
Similarly, an element from the set {12, 13, 14, 15, 16, 17}, say 12, must have frequency
two. Since 12 must appear with the elements 15, 16, 17, the block {z, 12,15, 16, 17}
is forced, where z is any other element. Since 13, 14 must also appear with 15, 16,
17 in the design, the elements 15, 16, 17 must have frequency at least three. This is

a contradiction as there are too many elements of frequency three or more.

Case 2 : Let B; = {1,3,4,5,6}, B, = {1,7,8,9,10}, B; = {2,11,12,13,14} and
By = {2,3,15,16,17}. If the element 3 has frequency two, then the elements 7, 8,
9, 10 must appear with the elements 11, 12, 13, 14 because of 3-sets of the form
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{3.z.y}, where z € {7.8.9,10} and y € {11,12,13,14} must be represented by the
design. Also, elements 4, 5, 6 must appear with 7, 8, 9, 10 and elements 11, 12, 13,
14 must appear with 15, 16, 17 in the design. There are 16 + 12 + 12 = 40 pairs that
must appear in the design. Each block may hold at most six of these pairs. Hence
these forty pairs require at least an additional seven blocks in the design, which
contradicts the assumption that the design has eight blocks. Hence the element 3
must have frequency three or more. As in the previous case, elements 4, 5, 6 must
appear with 7, 8, 9, 10 and elements 11, 12, 13, 14 must appear with 15, 16, 17 in
the design. There are 12+ 12 = 24 pairs that must appear in the design. Each block
may hold at most six of these pairs. Hence these twenty four pairs require at least
an additional four blocks in the design. But since the element 3 must appear again,
it requires yet another block. Thus the design contains at least nine blocks which

contradicts the that the design has eight blocks.

Since each case led to a contradiction, we conclude that the is no (17,5, 3,2) Lotto
design on eight blocks. Hence, L(17,5,3,2) =9. O

Theorem 5.2.26 : L(18,5,3,2) = 10.

Proof : By Theorem 2.5.5, L(18,5,3,2) < 10. Assume L(18,5,3,2) = 9. Then there
is an (18, 5, 3,2) Lotto design on nine blocks. By Corollary 5.2.3, every element in the
design has frequency two or more. By analyzing the elements’ frequencies, there are
at least nine elements of frequency two and at most nine elements of frequency three
or higher. By Theorem 2.4.7, there exists two disjoint elements of frequency two,
which form a maximal independent set in the design. By Theorem 2.4.3, every ele-
ment must appear in the four independent blocks. The four independent blocks look
like {1,3,4,5,6}, {1,7,8,9,10}, {2,11,12,13,14}, {2,15,16,17,18}. By Theorem
5.2.1, each pair {zr,y} where z € {3,4,5,6} and y € {7,8,9, 10} must appear in the
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design. Similarly, each pair {z.y} where z € {11.12.13, 14} and y € {15, 16,17.18}
must appear in the design. There are 32 pairs listed above that must appear in
the design. Each block may hold at most six of these pairs. This mean the design
requires at least [ %] = 6 blocks to hold these 32 pairs. But this implies the design
must have at least 4 + 6 = 10 blocks which contradicts our assumption that the
design had 9 blocks. Hence, L(18,5,3,2) =10. O

Theorem 5.2.27 : L(19,5,3,2) = 11.

Proof : By Theorem 2.5.5, L(19,5,3,2) < 11. Assume L(19,5,3,2) = 10. Then
there is a (19,5, 3,2) Lotto design on 10 blocks. By Corollary 5.2.3, every element
in the design has frequency two or more. By analyzing the elements’ frequencies,
there are at least seven elements of frequency two and at most twelve elements of
frequency three or higher. If there were more than seven elements of frequency two,
we would have two disjoint elements of frequency two which would form a maximum
independent set, as p = 3. By Theorem 2.4.3, every element must appear in the four
independent blocks, which is impossible. Hence there are exactly seven elements
of frequency two and exactly twelve elements of frequency three. Now the seven
elements of frequency two can only appear one non-isomorphic way : {1,2,3,4,5},
{1.2,3,6,7}, {4,5,6,7,8} where the element 8 has frequency three and elements 1,
2, ..., 7 have frequency two. So {1,8} forms an maximum independent set. However,
the remaining two blocks containing element 8 can contain only eight other elements.
Theorem 2.4.3 requires that these two blocks hold all of the remaining 11 elements.
Hence, we have a contradiction and L(19,5,3,2) =11. O

Theorem 5.2.28 : L(20,5,3,2) = 12.
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Proof : Assume L(20.5,3,2) < 11. Then there exists a (20,5,3,2) Lotto design
on 11 blocks. By Corollary 5.2.3, every element in the design has frequency two
or more. By analyzing the elements’ frequencies, there are at least five elements
of frequency two and at most fifteen elements of frequency three or more. If there
are more than seven elements of frequency two, then by Theorem 2.4.7, there are
two disjoint elements of frequency two. These can occur with at most 4(4) = 16
elements, contradicting Theorem 2.4.2. So 5 < f2 < 7 and there cannot be any

disjoint elements of frequency two. We consider each possible value of f5.

If f =7, let the elements 1, 2, 3, 4, 5, 6 and 7 be elements of frequency two and
suppose element 1 is part of an independent set of the design. Then the three blocks
determined by the element 1 (up to isomorphism) are {1, 2,3,4, 5}, {1,2,3,6,7} and
{4,5,6,7,z}, where z is an element of frequency three. The remaining blocks of the
design must form an (13,5, 2,2) Lotto design. This requires at least ten blocks for a

total of at least thirteen blocks which is a contradiction.

If fo = 6, then all elements of frequency two must occur together in some 2-clique.
But this cannot happen to all of them in the same block. There are at most two
non-single elements occurring in any independent set of blocks. By examining pos-
sibilities, we see there are three non-isomorphic ways that the elements of frequency
two can occur. The number of elements of frequency two in a block (if not 0) is
{5,5,2}, {5,4,3} or {3,3,3}. We label these case a, case b and case c, respectively.

Let elements 1 to 6 have frequency two. We consider each case.

Case a : If the number of elements of frequency two in a block is {5, 5,2}. Then con-
sider the three blocks B; = {1,2,3,4,5}, B, = {1,6,7,8,9} and B; = {2,3,4,5,6}

in the design. B, and Bj share 3 non-singles, which a contradiction.
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Case b : If the number of elements of frequency two in a block is {5, 4, 3}, then con-
sider the three blocks By = {1,2.3,4,5}, B> = {1,2,3,6,z,} and B; = {4,5,6, 22, 23}
in the design. It may be that z3 = 1, but z; # z,. Now {1, z,} forms an independent
set and all elements must occur with it, forcing {z,9, 10, 11, 12}, {z., 13, 14, 15, 16},
{z2,17,18,19,20}. Now elements 9 through 20 are singles and there must be 48 other
pairs of singles that must be in the design (for example {9,13}, {9,17}, {10, 20},
etc). The most that can occur in one block is eight pairs. So there must be at least
48/8 = 6 more blocks. Hence, the design must have at least 12 blocks in all, which

is a contradiction.

Case c : If the number of elements of frequency two in a block is {4, 4,4}, then con-
sider the three blocks By = {1,2,3,4,z:}, B2 = {1,2,5,6,z2} and Bs = {3,4,5,6,z;}
in the design, where z;,z2 and z3 are not necessarily distinct. If £, = z, = z3,
then the remaining 13 elements form a covering which takes at least 10 blocks as
L(13,5,2,2) = 10. This is a total of 13 blocks which is a contradiction. Suppose
T, = T2 # 3. Let y be an element of frequency three so that {1, y} is an independent
set. Since {1,z3,y} must be represented, the pairs {z3,y} must occur in a block.
Similarly, for {1,z3,z4} where z4 > 6,74 # 1,Z3 or y, it must be represented be
represented by the pair {z3,z4}. So all pairs of z3,y and the other 11 elements must
occur in some block. This must take at least L(13,5,2,2) = 10 blocks. So there are
a total of at least 10 + 3 = 13 blocks, which is a contradiction. If z;,z; and z3 are

distinct, we get a similar contradiction.

If f =5, then f3 = 15 and f; = O for all other ¢. Consider the situation where
all elements of frequency two occur in one block {1,2,3,4,5}. We list the possible

non-isomorphic cases.
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Case 1a : Suppose two of the blocks in the design are {1,2,3,4,5} and {1, 6,7, 8, 9}
and there are no non-singles in these two blocks. Then the blocks {2,6,7,8,9},
{3,6,7,8,9}. {4,6,7,8,9} and {5,6,7,8,9} are forced in the design. This implies

that the elements 6, 7, 8, and 9 occur too frequently, which is a contradiction.

Case 1b : Suppose two of the blocks in the design are {1,2,3,4,5} and {1,6,7,8,9}
and element 9 is the only non-single. Without loss of generality, the blocks {2, 3,6, 7,8}
and {4,5,6,7,8} are forced. Now the 3-set {3,9,7} must be represented by {9,:}

where 7 > 10. But in two more blocks there is room for only eight such pairs.

Case 1c : Suppose two of the blocks in the design are {1,2,3,4,5} and {1,6,7,8,9}
and element 2 is the only non-single. So the blocks {3,6,7,8,9}, {4,6,7,8,9} and
{5,6,7,8,9} are forced. The elements 6, 7, 8 and 9 occur too frequently, which is a

contradiction.

Case 1d : Suppose two of the blocks in the design are {1,2, 3,4, 5} and {1,6,7,8,9}
where elements 8 and 9 are the only non-singles. Two blocks are forced in two non-
isomorphic ways. They are {2, 3,4,6,7}, {5,6,7,z1,z2} and {2,3,6,7,7:}, {4,5,6,7,z2}.
In the first case, 3-sets of the form {2, 8,7} must be represented by the pair {8,1},
where 7 > 10. But there is only room for at most eight such pairs in the remaining
two blocks containing the element 8, which is a contradiction. In the other case, if
z) # 8, 3-sets of the form {2, 8,7}, for ¢ > 10, must be represented by {8,1}, except
for perhaps when 7 = z,. There are at least nine of these pairs that must occur in
two blocks (as the element 8 has frequency three), which is impossible. If z;, = 8,
3-sets of the form {2,9,1}, for i > 10, must be represented by {8,7}. There are 11
of these pairs that must occur in two blocks that contain the element 9, which is

impossible.
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Case 1e : Suppose two of the blocks in the design are {1,2,3, 4,5} and {1,6,7,8,9}.
where elements 5 and 9 are the only non-singles. Without loss of generality, the
blocks {2,3,6,7,8} and {4,6,7,8,z} are forced where z is some element. Now the
3-set {2,9,:} is represented by the pair {9,7} for ¢ > 10. But there is not enough

room to hold these pairs.

Case 1f: Suppose two of the blocks in the design are {1, 2, 3,4, 5} and {1,6,7,8,9},
where elements 4 and 5 are the only non-singles. Without loss of generality, the
blocks {2,6,7,8,9} and {3,6,7,8,9} are forced. Let the element 10 be an element
of frequency three and let 11 be an element of frequency three that does not occur

with 4 or 5. But then, the 3-set {4, 8, 11} is not represented, which is a contradiction.

Case 1g : Suppose two of the blocks in the design are {1, 2, 3,4, 5} and {1,6,7,8,9},
where elements 3, 4, 5, 6, 7, 8 are singles. Without loss of generality, the blocks
{3.4,6,7,8} and {5,6,7,8,z} are forced. Then {1,9,7z} must be represented by

{9,7} for ¢ > 10. But there is not enough room.

Case 1h : Suppose two of the blocks in the design are {1, 2, 3,4, 5} and {1,2,6,7,8},
where 8 is the only non-single. There are two non-isomorphic sub cases determined by
blocks that are forced by the two blocks above : i) {3,4,5,6,7} and ii) {3,4,6,7, 2},
{5,6,7,z2,z3}. In the first sub case, 3-sets of the form {3, 8,:}, for ¢ > 9, must be
represented by the pair {8,7}. But there is no room to hold all such pairs. In the
second sub case, let the element 9 belong in {z,,z3,z3}. Then 3-sets of the form
{1,9,4} for i > 10 must be represented by the pair {9,7}. Again there is not enough

room to hold all such pairs.
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Case 1i : Suppose two of the blocks in the design are {1,2,3,4,5} and {1,2,6,7,8}
where 5 is the only non-single (other than 2). Then the blocks {3, 4, 6, 7,8}, {5,9, 10, 11,
12}, {9,13,14,15,16} and {9,17,18,19,20} are forced. Then, 3-sets of the form
{5.8,1} for i > 13 must be represented by the pair {8,7}. There is not enough rocom
to hold all such pairs.

Case 1j : Suppose two of the blocks in the design are {1,2,3,4,5} and {1,2,3,6, 7}.
This forces the block {4,5,6,7,z} where z is some element. Without loss of gener-
ality, let z = 8; then 3-sets of the form {1, 8,7} for ¢ > 9 must be represented by the

pair {8,7}. There is not enough room to hold all such pairs.

The remaining two non-isomorphic cases do not have all the frequency two elements

in a single block. We list them as case 2 and case 3.

Case 2 : Suppose the blocks of the design include {1, 2, 3, 4, 6}, {1,2,3,5,7}, {4,5, 21,
za, T3}, {8,9,10,11,12}, {8,13,14,15,16} and {8,17,18,19,20}. The elements 17,

18, 19 and 20 must appear two more times, which is a contradiction.

Case 3 : Suppose the blocks of the design include {1, 2,3, 4,6}, {1,2,5,7,8}, {9,10,11,
12,13}, {9, 14,15,16,17} and {9,18,19,20,z}. If z = 6, 7 or 8, then use an argument
like that of case 2 to get a contradiction. If £ = 10, then element 14 must appear
with elements 10, 11, 12, 13, 18, 19 and 20 with one spot left over. Suppose 15 does
not occur with 14. It also appears in two blocks with 10, 11, 12,13, 18, 19, 20 and
one space left over. Consider one of 16 or 17 that does not occur in both spots.
It must appear in another block with four of 10, 11, 12, 13, 18, 19, 20. But those

elements appear four times, which is a contradiction.
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Since we have considered all possible cases and each gave a contradiction, L(20,5,3,2) =
12. O

Theorem 5.2.29 : L(20,6,3,2) =8.

Proof: Since we know that L(20,6, 3,2) = 7 or 8, it suffices to show that L(20,6.3,2) >
7. Assume L(20,6,3,2) = 7 and consider a (20,6, 3,2) Lotto design with seven
blocks. By Corollary 5.2.3, all elements in the design must have frequency two or
more. The number of elements of frequency two must be at least eighteen and the
number of elements of frequency three or more is at most two. There are two possible

frequency distributions :

1. fo=18 and f3 = 2,

2. fa=19 and fy = 1.

By Theorem 2.4.7, the latter distribution implies there are three disjoint elements of
frequency two which is not represented by the design. So there must be exactly 18
elements of frequency two and two elements of frequency three. By Theorem 2.4.7,
there exist two disjoint elements of frequency two, say 1 and 2. These two elements
form a maximal independent set of the design. We consider each non-isomorphic

configurations of the two cliques.

Case 1 : Let the two cliques look like B, = {1, 3,4,5,6,7}, B> = {1,8,9, 10, 11,12},
Bz = {2,13,14,15,16,17} and Bs; = {2,3,4,18,19,20}. As the number of elements
of frequency two is at least 18, either B; or B4 has two singles of frequency two.
Suppose elements 5 and 6 of B; are 2 such singles. Then the block {5, 8,9, 10, 11, 12}
and {6,8,9, 10,11, 12} are forced in the design, by Lemma 5.2.1. Hence elements 8,
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9, 10, 11, 12 have frequency three or more, which is a contradiction.

Case 2 : Let the two cliques look like B, = {1, 3,4,5,6, 7}, B, = {1,8,9,10, 11, 12},
Bs = {2,3,13,14,15,16} and B; = {2,4,17,18,19,20}. As the number of elements
of frequency two is at least eighteen, one of elements 5, 6 or 7 must have frequency
two. Suppose element 5 has frequency two. Then the block {5,8,9,10,11,12} is
forced in the design. Since element 6 must also appear with elements 8, 9, 10, 11,
12, we conclude that elements 8, 9, 10, 11, 12 must have frequency three or more,

which is a contradiction.

Case 3 : Let the two cliques look like B, = {1, 3,4,5,6, 7}, B, = {1,8,9,10, 11, 12},
B; = {2,3,13,14,15,16} and By = {2,8,17,18,19,20}. The block B, has at least
two singles that have frequency two. Suppose elements 5 and 6 are two such singles.
Similarly the block B; has at least two singles, say elements 9 and 10, that have
frequency two. As the element 5 must appear with elements 9, 10, 11, 12, the block
B = {5,1,9,10, 11, 12} is forced where z is some other element. As elements 6 and 7
must also appear with elements 9, 10, 11, 12, the elements 9, 10, 11, 12 must appear
at least once more in the design. Hence they must have frequency three or more,

which is a contradiction.

Case 4 : Let the two cliques look like B, = {1, 3,4,5,6, 7}, B2 = {1,8,9,10, 11, 12},
B; = {2,3,13,14,15,16} and B; = {2,13,17,18,19,20}. The argument for case 3

can be used to handle this case.

Case 5 : Let the two cliques look like {1, 3,4, 5,6, 7}, {1, 3,8,9,10, 11}, {2, 12, 13, 14, 15, 16}
and {2, 12,17, 18,19, 20}. Since there are at most two elements of frequency three, ev-
ery element in one of the sets {4, 5,6, 7}, {8,9,10, 11}, {13, 14, 15, 16} or {17, 18, 19, 20}
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must have frequency two. Without loss of generality, suppose it is the set {4, 5,6, 7}.
Thus. 4 .5 ,6 ,7 must appear with 8, 9, 10, 11. This requires that the elements 8.
9, 10, 11 appear at least two more times in the design. Hence elements 8, 9, 10, 11
have frequency three or more. This is a contradiction since there is suppose to be at

most two elements of frequency three in the design.

Case 6 : Let the two cliques look like By = {1,3,4,5,6,7}, B> = {1,8,9,10,11, 12},
Bs = {2,13,14,15,16,17} and By = {2,13,14,18,19,20}. Since there are only two
elements of frequency three, at least two elements from {3,4,5,6,7} must have fre-
quency two. Suppose elements 3 and 4 have frequency two. Since they must appear
with elements in {8,9, 10, 11, 12}, the block {3, 8,9, 10, 11, 12} is forced in the design.
Similarly, the block {4, 8,9, 10,11, 12} is forced. Now element 5 must also appear
with the elements in {8,9, 10, 11,12}. This implies the elements in {8,9, 10, 11, 12}
have frequency three or more. This contradicts the assumption that there are only

two elements of frequency three.

Case 7 : Let the two cliques look like B; = {1,3,4,5,6,7}, B, = {1,8,9,10, 11, 12},
B3z = {2,3,13,14,15,16} and By = {2,3,17,18,19,20}. The argument for case 3

can be used to handle this case.

Since every case led to a contradiction, we have L(20,6,3,2) =8. O
Theorem 5.2.30 : L(11,5,4,3) > 8.

Proof : From Bate’s thesis [1], L(11,5,4,3) > 7. Suppose that L(11,5,4,3) = 7.
Let B be an optimal (11,5,4,3) Lotto design . If a pair, say {1,2}, does not appear
in the design, there are C(9, 2) = 36 4-sets containing {1,2}. A 4-set {1,2, z, y} must
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be represented by a block containing {1,z,y} or {2,z,y}. In this case B must also
be a (9, 4,2,2) Lotto design. But since L(9,4,2,2) = 8, then all pairs must appear
in B if L(11,5,4,3) = 7. This implies that f; = fo = 0. Hence there are at least 33
occurrences given at least seven blocks. Consider an element, say 1 that occurs three
times. We have the following three possible cases pertaining to the blocks containing

the element 1:

Case 1 : The blocks containing element 1 look like {1,2, 3,4,5}, {1,2,6,7,8} and
{1,2,9,10,11}. Blocks of the form {1,z,y, z} where z € {3,4,5},y € {6,7,8} and
z € {9,10, 11} must be represented by a block in B containing {z,y, z}. There are
3*3*3 = 27 such triples. Since each block can hold at most four such triples, the

minimum number of blocks in B in this case is 8 which is a contradiction.

Case 2 : The blocks containing element 1 look like {1,2,3,4,5}, {1,2,3,6,7} and
{1,8,9,10,11}. The number of triples that need to be in the design is 2% 2 x4 = 16,
which requires at least four blocks. But element 2 must also occur with element 8
in the design, which requires another block. So there are more than 7 blocks in the

design, which is a contradiction.

Case 3 : The blocks containing element 1 look like {1, 2, 3,4, 5}, {1,2,6,7,8} and
{1,3,9,10,11}. The number of triples that must be represented by a block of the
design is 2 * 3 * 3 = 18. This requires at least five blocks and hence the design has

at least 8 blocks in this case, which is a contradiction.

Since we have shown that no (11,5,4,3) Lotto design can 5, 6 or 7 blocks, then
L(11,5,4,3) is at least 8. O
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Theorem 5.2.31 : L(9.4.4.3) =9.

Proof : From Bate [1], L(9,4,4,3) > 8 and by Simulated Annealing, we were
able to show that L(9,4.4,3) < 9. Assume L{9,4,4,3) = 8 and B is an optimal
(9,4,4,3) Lotto design. Since 9 x4 = 36 > 32, there are elements of frequency
three or less. By Theorem 5.2.1, there cannot be a element of frequency zero, since
L(8,4,3,3) = 14. Let there be an element of frequency one, say the element 1 that
occur in block {1,2,3,4}. Consider 4-sets of the form {1, z,y, z}, where z € {2,3, 4}
and y,z,w € {5,6,7,8,9}. Such a 4-set must be represented by a block in B that
contains the triple {z,,y1,y2} where z; € {2,3,4} and ¥,y € {5,6,7,8,9}. There
are 3 * C(5,2) = 30 such triples. Also, consider 4-sets of the form {1,%, z,w}. Such
a 4-set must be represented by a block in B that contains the triple {y, z, w}. There
are at least 30 + 10 = 40 triples that must appear in the design B. But each block
can hold at most four of these triples, and hence B must have at least ten blocks.
This contradicts our assumption that the size of B was at most 8. Hence there are
no elements of frequency one.

If there is an element of frequency two, say the element 1, then consider the three

possible cases :

Case 1 : Suppose the blocks containing the element 1 look like {1,2,3,4} and
{1,5,6,7}. If £ € {2,3,4},y € {5,6,7} and z € {8,9}, then a 4-set of the form
{1,z,y, 2z} must be represented by a block in B that contains {z,y,z}. There are
3 % 3 * 2 = 18 such triples that must appear in B. Only two such triples can fit into

a single block. So there are at least 11 blocks in B, which is a contradiction.

Case 2 : Suppose the blocks containing the element 1 look like {1,2,3,4} and
{1,2,5,6}. If z € {3,4},y € {5,6} and z;,2; € {7,8,9}, then, as in case 1, twelve
triples of the form {z,y, z1} must appear in the blocks of B. Similarly, 6 triples of
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the form {y, z1, 22} and 6 triples of the form {z, z;, 2;} must appear in the blocks
of B. Now consider a 4-set of the form {1,2, 21, 22}. It must be represented by a
block that contains the triple {2, z;, z2} and there are three of these triples. Hence
B contains at least

=9

l’12+6+6+3‘|
4

blocks. which is a contradiction.

Case 3 : Suppose the blocks containing the element 1 look like {1,2,3,4} and
{1,2,3,5}. If z,,z2,z3 € {6,7,8,9}, the following table summarizes the types and

number of triples that must appear in B in order for the given 4-sets to be represented.

4-sets to be represented triple required | # of such triples
{1,4,5,21},{2,4,5,.’51},{3,4,5,1‘1} {4,5,1‘1} 4
{1,4,171, Ig} {41 IlaIZ} 6
{1,5, 1,22} {5, 71,72} 6
{1,.’131,.’132,1‘3} {SC[,IQ,.’L‘;;} 4
{1,2,z,,22},{2,3, 71,22} {2,z1, 22} 6
{1,3,113[,.’1?2} {3,1’1,.’1,'2} 6

Form the above table, the thirty-two triples stated must appear in the design B.
Since each block can hold at most four triples, this requires at least eight blocks.
These eight blocks along with the two blocks containing the element 1 makes the

size of B at least ten, which is a contradiction.

Since all three cases give a contradiction, we conclude that there are no elements of

frequency two. Thus, every element has frequency three or greater.

Now either B contains all pairs or some pair of elements is missing. If every pair oc-

curs in B then, without loss of generality, three of the blocks in B look like {1, 2, 3, 4},
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{1,2.5,6} and {1,7,8,9}. where the element 1 has frequency three since every ele-
ment in the design must appear with the element 1. If z € {3,4}, y € {5,6} and
z € {7,8,9}, then a 4-set of the form {1, z,y,z} must be represented by a block
in B that contains the triple {z,y, 2} and there are twelve such triples. It can be
easily seen that a block in B can contain at most two triples of this form. Hence
six blocks in B are required to contain these triples. These six blocks along with the
three blocks containing the element 1 mean that B has at least nine blocks, which
contradicts the assumption that the size of B is at most eight. Hence, we may assume

that there is a missing pair, say {1,2} in B.

Since {1,2} does not appear in the design, 4-sets of the form {1,2,z,,z,} where
Ty, T2 € {3,4,5,6,7,8,9} must be represented by a set that contains either {1, z;, z2}
or {2,z1,z2}. There are twenty-one of these triples. These twenty-one triples can
be contained in (the unique) seven blocks in the (7,7,3,3,1) BIBD (Fano Plane).
In this case, one of z or y occurs only three times in the seven blocks. The seven
blocks look like {a,3,4,6}, {a,4,5,7}, {a,5,6,8}, {a,6,7,9},{a,3,7,8}, {a,4,8,9}
and {a, 3, 5,9}, where a may be either 1 or 2. But then the sets {3, 5,6, 7}, {3,4,5,8},
{4,5,6,9} and {5,7,8,9} must be represented by the last block of the design, which
is impossible. Hence the twenty-one triples must be contained in all eight blocks. But
consider a 4-set of the form {z,y, z, w}, where z,y, z,w & {1,2}. There are thirty-
five such 4-sets that must be represented. Each of the eight blocks can represent
at most 4 of these 4-sets. Thus, the eight blocks together can represented at most
thirty-two of the thirty-five 4-sets. This is a contradiction. Hence, L(9,4,4,3) = 9. O
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5.3 Conclusion

This Chapter improved lower bounds for L(n,k,p,t) on a case by case basis. We
applied the results from Bate and van Rees[2] to deal with designs where ¢ = 2. The
results obtained were used to complete the gaps in Bate’s tables and find values for
other small Lotto designs. The techniques shown in this Chapter may be applied to

improve lower bounds of other designs not discussed in this Chapter.



Chapter 6

Computer Programs

6.1 Introduction

This chapter will present several algorithms that may be used to generate upper
bounds for L(n,k,p,t). Greedy algorithms are first presented. These algorithms
generate a Lotto design by selecting blocks to form a Lotto design based on some
ordering on the k-sets and p-sets. The orderings that we considered were lexico-
graphical, reverse lexicographical and colexicographical (colex) ordering. Techniques

for optimizing these searches are also discussed.

Another approach similar to the greedy approach is to randomly pick blocks to form
a Lotto design. Such designs generally do not give a good upper bound. However,
random algorithms are fast and if they are executed frequently enough, decent upper

bounds may be obtained.

An exhaustive search algorithm incorporating isomorphic rejection was discussed in
Chapter 2. By analyzing the frequencies of elements that appear in a Lotto design,
we can use this information to generate a search algorithm that is faster than an

exhaustive search. We present a search based on this idea.

124
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Finally, we briefly discuss how integer linear programming may be used to compute
L(n,k.p,t).

6.2 Greedy Algorithms

Greedy algorithms are algorithms that solve a problem that requires making a se-
quence of choices. Each choice is made such that it is the best possible at that
point, without regard to how it affects future choices that will make up the solu-
tion. Greedy algorithms in general do not generate optimal solutions [17]. Greedy
algorithms may be applied to many combinatorial problems such as the “Traveling
Salesman Problem”, computing the minimum spanning tree of a graph and the con-
struction of Covering and Turan designs. We can use greedy algorithms to generate

Lotto designs. Here is the basic algorithm :

Algorithm 6.2.1 :

void GreedyConstruction(n,k,p,t)
{
/* input : nk,p,t ¥/
/¥ output : A Lotto design */
1) Order the k-sets and p-sets using some ordering.
2) Create data structures for use in the algorithm.
3) Initialize C = @ (it will hold the k-sets picked for the design).
4) While there are still p-sets not represented
{
4a) Compute the first k-set not in C that represents the
most p-sets not yet represented and add it to C.
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4b) Mark all p-sets represented by this k-set as represented.
4c) Update the number of p-sets still not represented.

}

5) C is now a (n,k,p,t) Lotto design. Remove redundant blocks from C.

The algorithm stated above is quite simple to understand and implement. Our goal
is to make this algorithm run as fast as possible. It is possible to speed up the
algorithm by using more memory (storage). Before describing the algorithm, we
would like to formally define lexigraphic, colexigraphic and reverse lexicographical

orderings.

Definition 6.2.1 : Let (2,22, ..., Zk) and (y1,Ye2, ---, Yx) be two k-tuples where | <
T2 < . < Tk, Y < Y2 < ... < Y. We say that (z1,x2, ..., zk) s before (y1,y2, - Yk)
in the lexicographical ordering if for some 0 < j < k — 1, (z1,22,...,Z;) =

(y11 y?v“-vyj) and .’Ej.;.l < yj+l'

Definition 6.2.2 Let (z1,z2,-..,Zx) and (y1,¥Y2,-.-, Yk) be two k-tuples where z; <
T2 < ... < Tk, ) < Y2 < ... < yx. We say that (z,,z2, ..., Tk) is before (y1,y2, ..., Yk) in
the colexicographical ordering if either 1) for some 1 < j < k-1, (Tj4+1,Zj42, .-y Tk) =

(Yi+1> Yj+2s - Yk) and T; < y; or 2) Ty < y.

Definition 6.2.3 : Let (z,z2, ..., zk) and (y1, Y2, ---, Yx) be two k-tuples where z; <
Ty < ... < T, Y1 < Y2 < ... < Y. We say that (z1,z2, ..., Zk) is before (y1,y2, ..., Yx) in
the reverse lexicographical ordering if for some 0 < j < k-1, (z1,Z2,...,Z;) =

(Y1, Y2, -1 Y5) and Tjp1 > Yj1-

We now give a detailed description of the algorithm and the data structures used in

the algorithm.
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In step 1, we need to define the ordering of the k-sets and the p-sets. The orderings
that we considered were lexicographical, reverse lexicographical and colexicograph-
ical. k-sets and p-sets are associated with a non-negative integer that denotes the
“rank” of the k-set or p-set with respect to the chosen ordering. The ranks are
between 0 and C(n,k) — 1 for k-sets and between 0 and C(n,p) — 1 for p-sets.
Throughout the algorithm, it is necessary to compute the rank of a set and vice
versa. Thus we need a method for performing this task. Bate [1] discusses a method
for generating rank and sets using lexicographical ordering, while [21] discusses a
method for generating rank and sets using co-lexicographical ordering. Tables 6.1,
6.2 and 6.3 show the ordering of 3-subsets of X(6) using the lexicographical , reverse

lexicographical and colexicographical orderings respectively.

In step 2, we define some data structures that are required by the algorithm. We
require an array of integers indexed by the ranks of the k-sets. The value at a par-
ticular index of the array is non-zero if the k-set whose rank is that index is in the
design. It has the value zero otherwise. We shall called this array kSetIndez. You
may think of this array as a Boolean array that determines if a k-set is in the design
or not. Similarly we require an array of integers indexed by the ranks of the p-sets.
The value at a particular index of the array is non-zero if the p-set whose rank is that
index is represented by the k-sets in the design. It is zero otherwise. We shall called
this array pSetindez. The actual value in this array represents how many times that
p-set has been represented. That is, how many of the k-sets in the constructed design

represent that p-set.

The design is initially empty. k-sets will be added to it until it becomes a Lotto
design. In step 3, we initialize the set C to the empty set. C will contain the blocks
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rank set
01{1,2,3}
11{1,2,4}
21{1,2,5}
3|{1,2,6}
41{1,3,4}
5] {1,3,5}
61|{1,3,6}
71{1,4,5}
8| {1,4,6}
91| {1,5,6}
10 | {2,3,4}
11 | {2,3,5}
12 | {2,3,6}
13 | {2,4,5}
14 | {2,4,6}
15 | {2,5,6}
16 | {3,4,5}
17 | {3,4,6}
18 | {3,5,6}
19 | {4,5,6}

Table 6.1: Lexicographical ordering of 3-subsets of X (6)
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Table 6.2: Reverse lexicographical ordering of 3-subsets of X (6)
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rank set

Qoo ~NO UMW =O

Table 6.3: Colexicographical ordering of 3-subsets of X (6)
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in the constructed design.

Step 4 is the most time consuming step of the algorithm. This step must execute un-
til all p-sets are represented, that is, until a Lotto design is constructed. We discuss
each of the sub-steps in 4 individually, discussing techniques for speeding up each

step where possible.

In step 4a, the algorithm computes the k-set with lowest rank that represents the
most p-sets not previously represented by the k-sets in C. This requires that almost
every k-set be checked as a possible choice to be in C. The obvious thing to do
here is consider every k-set. However, if we store the number of p-sets represented
by the k-set chosen in the last iteration of step 4a, then it is not possible to find
a k-set that represents more than that number of p-sets in the current iteration.
Thus it may be possible to avoid considering every k-set as a choice to put into C
in the current iteration. For example, suppose the previous iteration of step 4a has
chosen a k-set to be added to the design and it represented 10 p-sets that were not
previously represented. In the current iteration of step 4a, if you encounter a k-set
that represent 10 p-sets that weren’t previously represented, then you will choose
this k-set to add to your design and it is not necessary to check the rest of the k-sets.
The process of determining how many p-sets are represented by a k-set which were
not previously represented is very time consuming. This process has to be performed
each time we consider a k-set in step 4a. One easy solution to this problem is to check
each p-set to see if it has been represented by checking the array pSetIndez. However
the running time of this is O(C(n, p)) which is much too slow, particularly since this
task is done often. It is very easy to see that the number of p-sets represented by a
k-set is : min(kp}

Z C(k,i))«C(n—k,p—1). (6.1)

i=t
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[t is easy to create a routine to generate these p-sets and check to see if they are
already represented by checking the array pSet/ndex. This is much better than check-
ing all the p-sets but we still have to generate these p-sets each time for a given k-set.
To speed up step 4a even further, we propose an array named numPSetsCovers of
length C(n. k) where each entry of the array holds the number of un-represented p-
sets that the k-set, whose rank is the array index, can represent. Initially, the value

in each array position is given by equation 6.1.

Once a k-set has been chosen in step 4a, step 4b must mark all p-sets represented
by the chosen k-set as represented. The can be done by generating the p-sets that
the k-set represents and updating the pSetInder array. Given the rank of the p-sets
represented by the k-set chosen in step 4a, the pSetInder entries indexed by these
ranks are incremented by 1. Note that we do this for all p-sets represented by the
k-set, not just the ones that were not previously represented. This fact a.llows us to
track how many blocks represent a particular p-set in the design which is useful in
step 5. We also need to update the array numPSetsCovers to reflect the fact that
these p-sets are now represented. To do this efficiently, for each p-set, we store the
ranks of the k-sets that can represent it. For each p-set, the number of k-sets that

can represent it is exactly

min{k,p}

> C(k,i)*C(n—k,p—1i).

i=t
An array of pointers (named pSetNeighbors) of length C(n, p) where each pointer
points to an array of length S™M*PY C(k,3) x C(n — k,p — i) is sufficient. The itk
pointer will point to the array of k-set ranks that represent the p-set with rank :.
This array of pointers can be constructed at the beginning of the algorithm. Once
this is done, the k-sets (actually their ranks) that represent a p-set can be deter-

mined simply by accessing this array of pointers. By keeping track of the number
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of unrepresented p-sets that each k-set can still represent, the algorithm is sped up

dramatically.

Step 4c takes one step since we know exactly how many p-sets were represented by
the k-set chosen in step 4a. Simply subtract this number from the previous number

of p-sets not represented.

Once step 4 is complete, a Lotto design has been constructed. The ranks of the
blocks in the design are the indices of the non-zero entries in the array kSetIndez.
The design may contain redundant blocks, that is, blocks that may be removed and
the remaining blocks still form a Lotto design. In step 5, redundant blocks are
removed. Our approach is very simple. For each block, determine whether or not
removing that block will give a Lotto design. If so, remove the block from the design.
Otherwise check the next block. The blocks are checked in order based on their rank.
This process can be made efficient since the array pSetinder not only states that a p-
set is represented or not, but also how many blocks represent it. Thus, given a block
in the design, generate all the p-sets that it represents and subtract one from the
entries in pSetInder corresponding to these p-sets. If these entries are still non-zero,

then the block is redundant and may be removed from the design.

The algorithm runs quite efficiently if we implement all the data structures de-
scribed above. However, these data structures require a lot of memory. To build
a (20,10,6,4) Lotto design, the amount of memory required is about 112 mega-
bytes! But removing the data structures discussed steps 4a and 4b would increase
the running time drastically. Adding an additional data structure to determine the
p-sets represented by a given k-set would make the algorithm even faster but would
approximately double the memory required. Tables 6.4 and 6.5 show the memory

requirements and time requirements for several values of n, k, p and ¢ using the
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greedy algorithm. These results were generated on an AMD K2-300 processor with

64 MB of RAM running under the Linux operating system.

[t should be noted that, based on our experiments, the difference in the size of the
designs generated for given n, k, p and ¢ using the various orderings of the k-sets

and the p-sets was very small.

n{kj|p]| t]| Memoryrequired | Time required | Number of blocks
14!51614 2.0 MB 3 seconds 42 blocks
15{716]|5 5.2 MB 11 seconds 11 blocks
2005143 10 MB 19 seconds 78 blocks
2014163 39 MB 90 seconds 59 blocks

Table 6.4: Memory and time required for greedy algorithm implementing all data
structures described above

n|k|p|t| Memory required | Time required | Number of blocks
145|614 0.5 MB 299 seconds 42 blocks
15|17(615 0.9 MB 11 seconds 11 blocks
2015413 0.5 MB 495 seconds 78 blocks
20/4|6|3 1.8 MB | 3086 seconds 59 blocks |

Table 6.5: Memory and time required for greedy algorithm without the array of
pointers pSetNeighbors and the numPSetsCovers described above

6.3 Random Algorithms

The idea of a random algorithm is to make a sequence of random choices, to form
a solution. Random solutions have been used to generate Covering designs. We

present a random algorithm to generate Lotto designs. Here is the basic algorithm.

Algorithm 6.3.1 :

void RandomConstruction(n,k,p,t)

{
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1) Seed the random number generator

2) Create data structures for use in the algorithm.

3) Initialize C = @ (it will hold the k-sets pick for the design).
4) While there are still p-sets not represented

{
4a)Randomly pick a k-set to add to C
4b) Mark all p-sets represented by this k-set as represented.
4c) Update the number of p-sets still not represented.

}

5) C is now a (n,k,p,t) Lotto design. Remove redundant blocks from C.

The algorithm is very similar to Algorithm 6.2.1 for construction of Lotto designs.
The main difference is step 4a. In the random case, step 4a is quite fast since it
randomly picks a k-set to add into the design. Being able to compute the number
of p-sets represented by a k-set and not by C efficiently is not as critical as for the
greedy algorithm. Nonetheless, we may still want to keep the data structures intro-
duced in Algorithm 6.2.1. One reason for this is that we would often like to execute
the random algorithm many times for a given n,k,p and ¢. If we have the data
structures of Algorithm 6.2.1 in the random algorithm, the initialization of the data
structures is done only once. Step 4a and 4b would be able to make use of them and

execute more quickly.

Instead of randomly picking a k-set and adding it to C, we could instead randomly
pick w k-sets where w > 1 and add the one that represents the most p-sets not
represented by C to C. Experiments have shown that the larger the value of w the
better the results. This would make sense since as w increases, the number of k-sets

considered increases.
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According to our experiments, our random algorithm did not perform as well as
Algorithm 6.2.1. However, that is not to say that they may not perform better given

enough iterations of the algorithm.

Using the random algorithm program, we were able to determine that L(16,6,6,5) <
358, L(17.6,6,5) < 510, L(18,6,6,5) < 727, L(19,6,6,5) < 1005 and L(20.6.6,5) <
1363.

6.4 Heuristic Search

Chapter 2 described a exhaustive search by Bate [1]. This algorithm determined
the value of L(n, k,p,t) given n,k,p and t. One of the major disadvantages of this
algorithm was the size of the search tree, which is measured by the number of tree
nodes visited by the algorithm. This section discusses a technique to reduce the size
of the search tree by considering the allowable frequencies that a constructed design
must have. This technique, will however, turn the exhaustive search algorithm into

an algorithm that generates only upper bounds for L(n, k,p,t).

Suppose you wanted to generate an (n, k,p,t) Lotto design with b blocks. There are
n elements that must be placed in each of the k = b spots in the design. Suppose we
divide k * b by n and obtain a quotient z and a remainder . We can see that if we
have n — r elements of frequency z and r elements of frequency = + 1, then this gives

exactly k * b occurrences. This idea gives the basis of our heuristic :

Heuristic 6.4.1 : Suppose L(n,k,p,t) < b. Then, there is an (n,k,p,t) Lotto
design with b blocks such that at most kb —n|bx k/n| elements have frequency |b
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n|k|p/! t| Nodes Searched | Starting Design Size | Best Design Constructed
121422 1,258,020 12 blocks 12 blocks
13{4|2]2 206 13 blocks 13 blocks
813|122 5234 12 blocks 11 blocks
91332 178 9 blocks 7 blocks
7131413 1698 13 blocks 12 blocks
Table 6.6: Performance of Heuristic Search Algorithm
k/n| +1.

By adding this heuristic to the exhaustive search, we are able to decrease the size
of the search tree substantially, thus making the program run faster. However, the
search is now not guaranteed to compute L(n, k, p, t) since the heuristic is not always

true.

Another minor difference between our algorithm and Bate’s is that in our algorithm
we have to input the starting size for the design to be constructed. The algorithm will
produce designs that cannot be larger than this starting size. Table 6.6 illustrates

how this heuristic performs on several values of n, k, p and ¢.

6.5 Results From Simulated Annealing

In chapter 2, we briefly discussed simulated annealing and how it applied to the
construction of Lotto designs. We have used the cover program by Nurmela and

Ostergard. Table 6.7 states some of the results that were generated by this program.

The main problem with simulated annealing is that a large amount of memory is
required for it to determine Lotto designs efficiently. It is possible to reduce the

amount of memory required at the expense of a much longer running time. Because
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n|k|p| t]| upper bound generated

914143 9
10{5]4|3 7
10554 15
11(5]5|4 24
121471413 26
121543 12
1216|143 6
13(4(4(3 35
1315(4|3 16
1316143 9
14141413 46
141543 21

Table 6.7: Some upper bounds obtained by simulated annealing

of this dilemma, the cover program could not feasibly be used to compute Lotto

designs for all values of n, k, p and ¢.

6.6 Determining L(n, k, p, t) using Integer Program-
ming

Let n,k,p,t be given. Suppose the k-sets are assigned an index between O and
C(n,k) — 1 and the p-sets are assigned an index between 0 and C(n,p) — 1. This
assignment may be based on orderings such as lexicographical, colexicographical or
reverse lexicographical as seen earlier. These indices are used to determine a unique
k-set (or p-set). Create an C(n,p) x C(n, k) matrix A = (a;;) where
o = 1 if the p—set with index i is represented by the k—set with index j
71 0 otherwise
for i = 0 to C(n,p) — 1 and for j = 0 to C(n,k) — 1. Then any binary vector

Z = (Zo, Z1, ---» TC(n.k)~1) Satisfying the inequality

AT >T1
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(where T = (1,1, 1, ..., 1)) determines an (n, k, p, t) Lotto design where the k-set with
index ¢ is part of the Lotto design if and only if z; = 1. To determine L(n,k,p,t) we

need to find a solution vector £ such that
C(n.k)~1
S =
i=0
is minimized. This implies that the determination of L(n, k,p, t) may be considered

to be an integer programming problem.

We used the CPLEX linear programming package to compute L(n, k,p, t) using the
above approach. For small values of n,k,p,t, the value of L(n,k,p,t) may be de-
termined given sufficient time. However, for larger parameters, this approach was
infeasible. We were able to determine that L(10,4,5,3) = 7 which improved our
tables.

6.7 Conclusion

Computer programs may be used to construct Lotto designs, thus giving upper
bounds on L(n, k, p, t). We have seen several types of computer programs that do this
in this chapter. Each program constructs Lotto designs in different ways. Other than
exhaustively considering the entire search space, a computer program cannot deter-
mine lower bounds for L{n, k, p, t) since a construction gives only information about
upper bounds and not lower bounds. Nonetheless, these programs are very useful.
Another drawback of these programs is that they typically requires vast amounts of
memory or vast amount of CPU cycles or both when constructing designs of good
quality. Random algorithms are fast and require little memory but the designs gen-
erated are not very good, meaning that the size of these designs is often greater than
the size of designs generated using other methods. The exhaustive search, on the

other hand, will always determine the value of L(n,k,p,t). However, the search is
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so computationally expensive that it is not performed except for very small values
of n, k, p and ¢t. We have discussed several computer programs in this chapter for
constructing Lotto designs. Which program to apply to which set of parameters is
not an easy question to answer. In general, the performance of two programs could
differ dramatically when constructing designs with the same parameters. This means

that different methods of constructing Lotto designs are often required.



Chapter 7

Tables

We begin by providing a short description of how the tables for the upper and lower
bounds for L(n,k,p,t) are organized. We then list these tables.

7.1 Organization of Tables

The tables are a major part of this thesis. We now describe how the tables are

organized and how they are updated.

The tables contain the lower and upper bounds for L(n,k,p,t) for 5 < n < 20,
2 < p,k <n,and 2 <t < min{k,p}. The actual data is stored in two binary data
files, one for the lower bounds and one for the upper bounds. Each row in the data
files holds the values n, k, p, t, the bound and a comment. The comment usually
holds the method that was used to compute the bound. The data files are sorted by
n, then k, then p and then finally by ¢. This was done so that we could easily search
for a particular bound. Most of the programs that manipulate the tables make use

of this fact.

141
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Many of the resuits in the previous chapters may be written up as computer programs
that can be used to update the table data files. Some of the results in the previous
chapters can only be applied to the table once, and these results are usually non-
recursive. Other results may be used over and over again, and are usually recursive.
An Example of a result that may be repeatedly applied is the monotonicity theorem
from Chapter 3. Results from other people can also be used to improve our tables. We
have made use of results of Gordon [13] via his web site at http://sdcc12.ucsd.edu/”
tm3dg/cover.html and of Bluskov [3]. Other times, we may rely on computer searches
such as our greedy algorithms, random algorithms, exhaustive searchs and simulated

annealing to generate upper bounds for designs.

When an entry has been updated (improved), all recursive results must be re-applied
to the tables. This is done until there are no more improvements in the tables. These

tables are constantly being updated.

7.2 The Tables

In the tables, the lower bound is followed by the upper bound for each n, k, p,t. The
superscripts denote how the bound was derived. For each table, the value of p and
t are fixed and the values of n and k vary. The column labels represent the value of
n and the row labels represent the value of k. Any row which consist entirely of the

values NA and 1 are not displayed.

We now list the meanings of the superscripts.
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The lower bound of 1 and the upper bound of C(n, k)
Theorem 2.5.4

Schénheim’s Lower Bound for Coverings

Tables from Bate’s thesis [1]

Gordon et. al.’s tables [13]

Theorem 4.3.5

8. Theorem 2.5.5

9. Results from Bluskov [3]

10. Results from BIBD’s (Theorems 3.2.1, 3.2.2 and 3.2.3)‘
11. Theorem 2.2.1

WP o

=~

12-25. Monotonicity theorems from Chapter 3

26. Theorem 3.5.1

28. Theorem 4.3.6

29. Corollary 3.5.2

30. Theorem 4.2.2 (Generalized Schoheim Bound)
31. Theorem 2.2.3

33. Theorems 4.3.1, 4.3.2, 4.3.3

34. Theorem 4.3.4

35. Theorem 3.5.2

36. Theorems 4.3.7, 4.3.8, 4.3.9, 4.3.10, 4.3.11, 4.3.12, 4.3.13, 4.3.14, 4.3.15, 4.3.16,
4.3.17 and 4.3.18

37. Lemma 4.1.1 from Bate [1]

38. Theorems 5.2.2, 5.2.3 and 5.2.4

39. Semi Direct Product (Theorem 3.4.1)

40. Greedy algorithms

41. Simulated Annealing

42. Theorem 3.5.5

43. Individual cases from Chapter 5

44. Boyer et. el. [9]
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45. Theorems 2.2.4, 2.2.5 and 2.2.6.
46. Linear programming using CPLEX.
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Chapter 8

Conclusion

8.1 Summary

The determination of the value of L(n,k,p,t) is an exponential problem. The use
of an exhaustive search program can compute the value of L(n, k,p,t) given enough

CPU cycles and memory. However, this approach is not feasible is most cases.

In this thesis we approach the problem of determining L(n, k, p,t) by finding upper
and lower bounds. We have developed constructions to determine upper bounds.
These included using BIBDs, combining designs, and adjoining designs to construct
new Lotto designs. Constructions are quite easy to program into a computer which

was useful for updating our table of upper bounds.

We have also developed several techniques for determining lower bounds for L(n, k, p, t)-
Our first formulation was a generalization of the Schéheim bound for Covering de-
signs. We also have formulas for computing lower bounds for infinite classes of
parameters. These formulas can all be programmed to automatically update our

table of lower bounds.
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Another approach to computing the value of L(n, k,p,t) is to compute them one at
a time. This approach can be quite tedious since it only handles one case at a time.
However, it is quite useful for completing gaps such as those in Bate’s tables. We

took this approach in Chapter 5 to complete Bate's tables [1].

Computer programs can be used to compute upper bounds by constructing designs.
When no formula is available for determining upper bounds or when a formula gives
an upper bound that is not very good, we may apply computer prograr;ls to generate
upper bounds or improve upper bounds for L(n, k,p,t). We have discussed several
types of algorithms : greedy algorithms, random algorithms, a heuristic search and
linear programming. Each of these programs constructs a design in a different man-
ner. But they can all be used to compute upper bounds for L(n, k,p,t). In general,
the random algorithm produced the biggest upper bounds while the heuristic search
and the linear programming approach produced the smallest (best) upper bounds
of the three algorithms. However, the heuristic search and the linear programming
approach were the slowest while the random algorithm was the fastest of the three

algorithms.

A major purpose of this thesis is to track the upper and lower bounds for L(n, k, p, t)
and update them as better results are obtained. We have listed these tables in

Chapter 7.

8.2 Further Work

The work presented in this thesis has barely scratched the surface on Lotto designs.
There is much more that can be done on this topic. We will briefly state several

ideas we have for future work.

It may be possible to state a lower bound formula similar to Theorem 2.3.2 for the
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case where ¢t > 3. Such a formula would be quite helpful since we don’t have any good
lower bound formulas that apply to cases other than ¢ = 2. The ideas of Bate and
van Rees [2] may be used to determine the value of L{(n, k,p, 2) by considering “nice”
designs and the frequency of the elements in these designs. It may be possible to
formulate similar ideas that can be used for computing L(n, k,p,t = 3). Finally, we
could parallelize the exhaustive search algorithm and the heuristic search algorithm
to speed up the algorithms. By parallelizing these algorithms, it may be feasible to

apply them to larger values of n, k, p and t than can currently be done.
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