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ABSTRACT

The mathematical theory of symmetry is a significant part of the
knowledge an architect applies in design.

The mathematical idea of symmetry is defined as the highest possible
group of automorphisms mapping any structural configuration onto itself,
The nature of mathematics is a prescriptive framework of rules which enhance
and externalize a designer's insight. Space is created by the awareness of
relations between architectural elements; in which psychological systems of
cognition are the most important process. The clear cognition of space,
what might be called order, relies upon the presence of an underlying struc-
ture which transforms architectural elements into self-regulating wholes.
The mathematical theory of symmetry classifies the structure of certain
space creating configurations, enhancing and externalizing a designer's
insight into order.

The derivation of the mathematical theory of symmetry emphasizes
the combination of an underlying Bravais lattice with a point group
distributed on that lattice. The one Bravais lattice in one dimension
combines with two point groups to produce the seven "Freize' groups of
symmetrical configurations., The five Bravais lattices in two dimensions
combine with ten point groups to produce the seventeen "Wallpaper! groups
of symmetrical configurations, The fourteen Bravais lattices in three
dimensions combine with thirty-two point groups to produce the two hundred
thirty "Fedorov'" groups of symmetrical configurations in space.

The application of the mathematical theory of symmetry in design
is as an arousal moderating device to provide order with structural com-
plexity; to reach maximum aesthetic preferences for the resulting work
of architecture, An approach to design involves the selective search
for an aesthetically appropriate underlying structure through varying
the dimensions and angles of Bravais lattices; and varying the elements in
the point groups combined with those lattices. The potential for thought-
ful creativity with the theory is shown by the unselfconscious use of
symmetry structures in a number of diverse sorts of architecture,
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Whoaver condemns the supreme certainty of mathematics feeds on
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sciences, which lead to an eternal quackery.
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INTRODUCTION
Music, mathematics, and architecture are among the highest pursuits
of the human mind., This is becauss composers, mathematicians, and architects
have sought to go beyond surface appearances to create deaper patterns,
Patterns of harmony and dissonance, of equality and value, of shape and
and material, They are patterns iﬁ sound, in ideas, and in light; patterns
that create time, logic, and space, Patterns, that to which some kind of
repzated arrangement may be foundl, are the keys that unlock understanding
for people, Pattern finding and pattern making are the essence of most
human activity. In all significant products of human energy, in pieces of
music, in theories of mathematiecs, in works of architecture, abstract pattern
is manifest.
The architect, whatever else he may be, is a maker of patterns.
Frank tloyd Wright argued that patterns distinguish works of architecture
from meres buildings:
Architecture is abstract. Abstract form is the pattern of the essential.
It is, we may see, spirit in objectified forms, Strictly speaking,
abstraction has no reality except as it is embodied in materials.

Realization of form is always geometrical. That is to say, it is math-
ematical. We call it pattern. Geometry is the obvious framework upon



which nature works to keep her scale in designing. She relates

things to each other and to the whole, while meantime she gives to

your eye most subtle, mysterious, and apparently spontaneous irregularity

in effects. So it is.through the embodied abstract that any true

architect, or any true artist, must work to put his inspiration into
ideas of form in the realm of created things. To arrive at expressive

“form, he too, must work from within, with the geometry of mathematic

pattern, Building is itself on&y architecture when it is essential

pattern significant of purpose.
This thesis seeks to explore an architecture of significant pattern making.
It is an attempt to bring together the abstract study of patterns in mathematics
with the material embodiment of patterns by architects. The overall goal is
to link mathematics and architecture as one creative activity of the mind.

The composition of music is also a making of patterns. A piece of
music is firstly a composition that provides the patterns underlying the
subsequent parformance. The design of architecture should be exactly such a
composition that provides the patterns underlying the making of the building,
Rudolf Arnheim has commented, '"that the forces which organize visual shapes
and endow them with expression were embodied in the geometry of architecture

. . . . 3 . .
with a purity found elsewhere only in music."”™ A design should provide a
structure which organizes the spaces created in the work of architecture.
Like the composition which organizes the piece of music, this structure is a
result of the desire of the human mind to understand. It is a desire to
find and make patterns. Just as music is only noise without a structure
provided by its composition, architecture is only building without a structure
provided by its design.

Mathematicians, as wall, have created patterns, Theorems of mathematics

provide the patterns underlying the use of mathematics. They provide a

structure which organizes the ideas of mathematics. G.H. Hardy has revealed

the special beauty of mathematical patterns:



A mathematician, like a painter or a poet, is a maker of patterns.
If his patterns are more permanent than theirs, it is because they
are made with ideas., A painter makes patterns with shapas and colours,
a poet with words. ...A mathematician, on the other hand, has no
material but ideas, and so his patterns are likely to last longer, since
ideas waar less with time than words. The mathematician's patterns,
like the painter's or poet's, must be beautiful; the ideas, like the
colours or the words, must fit together in a harmonious way. Beauty
is the first test; there is no parmanent place in the world for
ugly mathematics. ’
The mathmematical theory of symmetry is one of the very special results of
mathematician's desire to understand the structure of their patterns. It
is a theory of structure; and like compositions for pieces of music or designs
for works of architecture, it underlies the surface appearance of mathematics.
Ultimately, this thesis is about structure, It is about the investigation
of structures to create space, The resource for that investigation is the
mathematical theory of symmetry, The investigation is relevant to the practice
of design simply because the architect must satisfy the human need to
understand a work of architecture. Human needs in architecture are not
primarily the material comfort or sound engineering of the building, they are
matters of the mind, These needs are not met by good planning and good
construction, they require a concern for the aesthetic qualities of space.
One of the most significant of those qualities is order., Order does not
imply empty rigid geometric forms, but rather a clarity of pattern from an
underlying structure. The significance of the investigation lies in its
application in the creation of order in design. The order in a work of

architectura is the result of the symmetry of its underlying structure,

In the Team 10 Primer the authors noted.:that, "Each generation

feels a new dissatisfaction, and conceives a new idea of order, This is

architecture.”” It also seems to be the case that aa emerging generation



of architects are coming to an ever-increasing abstraction in the practice
of design, Hopefully, this thesis will link the search for a ne& idea of
order with the abstract knowledge of the mathematical theory of symmetry,

It is very important that this link should provide a relevant contribution
to the changing practice.of.design in architecture, The arguments of this
thesis, therfore, seem to divide into three parts. The first part will be

a groundwork of theory from which to make the link betwgen the mathematical
theory of symmetry and the design of works of architecture. The second part
will be an explanation and illustration of the resources of the mathematical
theory of symmetry, The third part will be some speculations about the
contribution of the mathematical theory of symmetry in the practice of
design.

The first part of the thesis is concerned with a theory forming the
basis of the link between the mathematical theory of symmetry and design in
architecture, There are four important concepts in that theory. The first
is the precise mathematical ideg of symmetry itself, which is discussed in
section 1.1 within the context of architecture., The second concept is the
nature of mathematics, discussed in section 1.2, which shows how mathematical
knowledge may be linked with an art activity like the practice of design. The
third concept is ;n understanding of space creation, discussed in section 1.3,
which links spaces in mathematics with spaces created in design. The fourth
concept is the crucial investigatiqn of structure that emarges from these
discussions, in section 1.4, which completes the link within the context of
principles for creating ordér in architecture, The overall goal of the
theory part is to establish the thesis that the mathematical theory of

symmetry may be a significant part of the knowledge an architect applies



in design.

The second part of the thesis is concerned with the explanation of .
the mathematical theory of symmetry by graphical illustration of the resources
of the theory, There are four steps in that explanation. The first step
is a non-technical exposition of the derivation of the mathematical theory
of symmetry in section 2.1 which leads into the _visual presentation following.
The next step is a quick illustration of symmetry in one dimension, in
section 2,2, with a careful but non-technical commentary, The third step
is an exhaustive illustration of symmetry in two dimensions, in section 2.3,
with the same sort of commentary. The fourth step is the extension of the
illustration to symmetry in three dimensions, in ssction 2,4, with a
complete commeﬁtary that should allow an exhaustive visual understanding
of symmetry‘in space., The overall goal of the resources part is to support
the thesis that the mathematical theory of symmetry may be a significant
part of the knowledge an architect applies in design.

The third part of the thesis is concerned with speculations about the
contribution of the mathematical theory of symmetry to the practice of
architecture, There are four areas of speculation to be considered. The
first to be considered is the application of the mathematical theory of
symﬁetry in design, in section 3,1, which shows it to be a means for dealing
with the aesthetics of complexity in architecture, The second area to
be considered is an approach to design, discussed in section 3.2, with the
mathematical theory of symmetry., The third area to be considered is the
potential for application in design that is provided by the mathematical
theory of symmetry, discussed in section 3.3, which concludes all the

arguments presented, The fourth and final area for speculation is the



directions for research, suggested in section 3.4, that follow from

this thesis, The overall goal éf the spaculations part is to evaluate
the thesis that the mathematical theory of symmetry may be a significant
part of the knowledge an architect applies in design;

An introduction to the technical definitions needed to discuss the
mathematical theory of symmatry is covered by a mathematical éppendix. The
definitions and theorems have been presented separately from the body of
the thesis because they require soms spacial knowledge in mathematics. Only
a small number of mathematicians have investigated the sublteties of the
proofs leading to the mathematical theory of symmetry. For those who wish to
pursue these proofs, the elements of mathematics in the appendix are just a
beginning. The general importance of the mathematical appendix is the
precise definitions for some of the terms used in the thesis,

It will be difficulf to judge the success or failure of this thesis.

In terms of meeting specific goals, it will be successful if the first part

does establish the thesis, the second part doas support the thesis, and the
third does evaluate the thesis. In a certain sense, it will be successful if it
allows the conclusion that the mathematical theory of symmetry may indeed be

a significant part of the knowledge that an architect applies in design.

Beyond this, the success of the thesis can only be measured in terms of the
stimulation that it provides, If the architect is motivated to investigate

and expariment with the mathematical theory of symmetry, then the thesis will

be quite successful, Howevér, like all theoretical investigations of the art

of architecture, the success or failure of the idea of applying the mathematical
theory of symmetry in design can only be judged by the evaluation of actual

buildings resulting from that application.



The inspiration for this thesis has come from two sources. The
first source is the tradition of the significance of basic design in architecture,
embodied most recently at the Ulm Hochschule fur Gestaltung, The idea that
design is a skill that may be learned through abstract basic exercises is
still a relevant idea in architecture., A faith in the ability and responsibility
of the designer to integrate these exercises into the practice of architecture
is a moral position., William Huff argued in the Ulm Journpal that:
...the designer's prime concern is his responsibility for the aesthetic
culture, in which he must ultimately take a moral position. The
designer is the coordinator, the integrator, the unifier of the
environment--where he works more in terms of relationships or
arrangements, than of objects or elements,
The second source of inspiration is the trend towards the academic study of

the practice of architecture, in particular the application of knowledge from

disciplines not formerly studied by designers. The application of "modern"

mathematics surveyed by Lionel March and Philip Steadman in The Geometry of
Environmant7 is most encouraging contribution to that trend. March has
said of the education of the designer:

If the architectural and planning education is to be anything more

than the acquisition of a bag of unrelated tricks, the style of the

bag being considered more important in this case perhaps than auy of
the tricks it might contain, then its educators wmust eschew fashion
and popularity for nothing less than the tough discipline of Simon's
notion of the sciences of the artificial, Contemporary engineering
education is already well developed in this direction: envirommental
design education should be no exception. When a school of environmental
design adopts as its motto "research pays", then wa shall know that the
much needed transformation in education and professional attitudes has
taken place.

This is also a moral position., The imaginative and creative exploitation of
mathematical knowledge in design will be an important step into the future
discipline of architecture, If this thesis is but a small contribution in

that direction, if it does no more than to add to the change in moral positions

towards mathematical research in architecture, then it doess something of value.



PART ONEF: THEORY



1.1 THE IDEA OF SYMMETRY

People associate different ideas with the word symmetry, Certainly,
the mathematician means something very different by it than the average
architectural critic., TFor the mathematical thepry of symmatry to be
applied in design, it is necessary that the architect first understand
the idea of symmetryQ Symmetry, like so many words used to describe works
of architecture, has no precise common definition., The Oxford Concise
Dictionary defines symmetry as beauty resulting from "right proportion
between the parts of a body of any whole." Webster's Dictionary defines
symmetry as the "similarity of form or arrangement on either side of a
" dividing line; beauty of form or proportion as a result of such correspondence,"
The average architectural critic probably defines symmetry as the reflection
of the parts of a figu;e about an axis, although neither dictionary
definition mentions mirror reflection, The intent of this section is to
abandon these wvague notions by exploring the mathematical idea Qf symmetry,
within the context of architecture, reaching a precise definition;

Symmetry is not a new word, neither is it new to apply the idea of

symnetry in architecture. The origin of the idea aand the word is Ancient
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Greece, from the root words '"sym', meaning together, and "metron', meaning
to measure, Literally the idea of symmetry was "to measure together", The
application of the idea 1in architecture as part of the basic dasign know-

ledge of the architect was suggested as early as Vitruvius in The Ten Books

on Architecture., Vitruvius included "symmestria' as one of the fundamental

principles for dasign in architecture, In Book I, Chapter II, Vitruvius
suggested this definition:

Symmetry is a proper -agreement between the members of the work

itself, and relations between the different parts and the whole

general schege, in accordance with a certain part selected

as standard.
Certainly, Vitruvius is the first authority that may be cited for the
applicétion of the idea of symmetry in architecture, What Vitruvius meant
by the word symmetry is probably close to its Greek origins, but clearly
it may be interpreted as sométhing more than just mirror reflection about
an axis. That something more may only be modular coordination, but it
may just as wall be the mathematical idea of symmetry;

In order to understand the mathematical idea of symmetry, it is necessary
to develop 2 precise definition of symmetry using some mathematical
concepts., The clearest method of developing this definition is to follow the

modal of two major studies of symmetry available in English; Hermann Weyl's

nggetrzlo and Aleksei Shubnikov's Symmetry in Science and Art].'1 The problem

is not that symmetry has lost its meaning, but that its meaning has lost its
usefulness in activities like architectural design; To regain that usefulness
a precise definition of symmetry using mathematical concepts should be built
up from the common notion of mirror reflection about an axis., Such a

definition should allow the idea of symmetry to be applied in dasign;
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There appears to be a simpie reason that the limited notion of
mirror reflection about an axis persists as the idea of symmetry in art.
It is this symmetry that is found in most mobile higher life forms,
including the human body; For this reason, Huff observad:

Man, professihg to have been made in.the image of his god, has,

in turn, seen the universe replicated in himself. For him the

most persistent of symmetries is the one possessed of his own

body--bilateral symmetry, His assthetic preferences are intermingled

with his cogporal being, and his products often reflect that

condition,!
In architecture this idea of symmetry has manifested itself most clearly
in the Beaux Arts tradition that relies upon axial planning, both in
cities and buildings. (Fig. 1.101).-. The reaction in the Modern Movement
against the simplistic and overpowering nature of this tradition is part
of the reason the idea of symmetry, even in this limited notion, has lost
its usefulness in architectural design. One of the more disturbing
discussions in recent literature on this idea of symmetry advocates an
even more. simplistic application of mirror reflection about an axis in the

elevation of houses as a metaphor for the human body, or the human face.

Charles Moore and Kent Bloomer in Body, Memory, and Architecture have

taken this .position:

Front doors and house facades almost always exhibit a measure of
symmetry, In traditional architecture this was achieved with
porticoes and balanced facades, whereas today the symmetry is more
likely to be expressed by special bushes standing guard at each side
of the front entrance, This is certainly related to the frontal
symmetry of mobilization characteristic of body posture, where the
eyves and ears are focused for defence. 1In houses fgese symmetries
are facial and are usually oriented to the public.

The Winslow House by Frank Lloyd Wright, with its symmetrical front (Fig. 1.102)
and asymmetrical rear (Fig. 1.103), is given in evidence to support this

interpretation., This seems to be a clear misunderstanding of‘Wright's stated
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Fig. 1.101

Fig, 1.102

Fig, 1.103
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belief in the abstract nature of architecture; and given Wright's
extensive use of geometric patterns both in plan and elevation in other
works, the symmetry of the front facade of the Winslow House is best ssen
as an attempt to create order. ' -

The idea of symmetry in architecture should quickly abandon the
limited notion of mirror reflection about an axis in either of the
examples above. That is because the effect of symmetry is neither due to
the monumental powar of axial planning, nor due to the imitation of the
human body. Shubnikov argued that there is a more subtle reason for
effect of mirror reflection about an axis:

An ink blot is not really beautiful, However, if we fold a piece

of paper in two before the ink is dry, we obtain a picture which

conveys a pleasing impression, Here the determining factor giving
the i?ea of beauty is the regular %2tua1 disposition of parts of
the figure, that is, its symmetry.
The seed of the mathematical idea of symmetry is in this position on the
reason for the ugse of mirror reflection in art,

Bilateral symmetry entails the concept of the parts on either side
of the axis being exactly the same, only reversed in sense relative to one
another, In some traditional ritual systems even this limited idea of
symmetry might be denied because left and right have intrinsic symbolic

qualities.15

Howaver, in modern Western thought, left and right are
considered indiscernible, The left side of a symmetrical arrangement has
no intrinsic qualities that the right side doesn't, and vice-versa., The
condition of being the left or right side of a mirror reflection is called
enantiomorphism, The nature of an enantiomorph is that in no sense of

super-position can it be made to coincide with its reflection. To use the

often given example, there is no way that a left hand glove may be worn on
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the right hand. Therefore, the idea of left and right enantiomorphs foruing
a symmetrical configuration involves an operation of the human mind. One

is already developing kno&ledge that is the basis of the mathematical

idea of symmetry.

The abstract mathematical concept at the root of the mathematical
theory of symmetry is the notion of geomeéric equality; Clearly the
operation of the mind which links enantiomorphs into - symnetrical
configurations involves noticing their equal size, equal shape, and equal
position relative to an axis, Shubnikov has suggested this leads to
a basic, yet precise, definition of symmetrical as, "any object which
consists of geometrically equal parts appropriately disposed to one
another."® A1l mathematics is built upon the manipulation of equalities;
the mathematical theory of symmetry is built from the geometric equalities
between the parts of symmetrical configurations.

The concept of geometric equality admits many configurations besides
just mirror reflections about an axis, Many figures in which the parts
are not raversed in sense, yet are still geometrically equal, may be
described as symmetrical. Mathematicians call thoss configurations in
which the sense of the parts is not mirrored, direct symmetries. Those in
which the s2nse of the parts is mirrored, are called opposite symmetries.

In order to classify and differentiate symmetrical configurations
mathematicians have developed the concept: of symmetry operations. The
concept is that be a "motion", in the abstract non-kinematic sense, each
part of a symmetrical configuration may be made to coincide with another
part with which it is geometrically equal. It is a useful idea because

there is the parallel in design when an architect speaks of '"moving" an
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element in plan, If the sense of the part is not mirrored, the oparation "
producing direct symmetry, then it is called a proper motion: If the

sense of the part is mirrored, the operation producing opposite symmetry,
then it is call an improper motion,

It is worthwhile illustrating the concept of a symmetry operation
graphically (Fig., 1.104), Architects seem to be the most familiar with
two dimensional illustrations from their conventions of drawing plan, section,
and elevation, In two dimensions, mathematicians have identified just
four symmetry opezrations, two proper motions of translation and rotation,
and two improper motions of reflection and glide relfection., These four
oparations produce all the possible symmetrical configurations in the
plane. In the drawing, the motion of an arbitrary triangle according to
each operation has been indicatéd.., Each configuration consisting of two
triangles should be recbgnized as symmetrical,

The motion of a symmetry operation does not alter the lengths, angles,
of ratios within the part, respecting the concept of geometric equality;
Such an oparation is called an isometry in mathematics. Architects are
familiar with this term from their graphics, a projection of a plan that,
unlike a perspective, does not alter the lenghts, angles, or ratios in the
plan is also called an isometric, A symmetry operation is, by definition,
an isometric operationy Shubnikov has suggested a further, more precise,
definition of symmetrical as, "any finite or infinite figure which may be
made to coincide with itself by one or several isometric operations."17
This definition should be enough to make the mathematical idea of symmetry

clear in design,

But, one more level of precision is reached by abstracting two
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other mathematical concepts contained in this definition. The first
concept should be easily understood, enough applications of é symmetry
operation will "move".the part back to its original position. The
mathematcian calls this complete motion an automorphism, For example,
in the illustration of fhe rotation operation (Fig, 1.104), two motions |
through 180° make an automorphism for tﬁe triangle. Any symmetrical
configuration contains an auto?orphism consisting of two or more symmetry
oy.veraﬂ::i.ons.1‘8 The second conept is more technical, the automorphisms
resulting from symmetry operations have the property of forming a group
(DEFINITION D:01, Mathematical Appendix)., It is sufficient to understapd
that groups have a particular mathematicalbstructure that may be studied
to, in this case, allow the classification of symmetrical .configurations
by their group structure.

A very precise definition of the mathematical idea of symmetry,
based on these two concepts, was developed by Weyl: "Given a spatial
configuration, T, those augomorphisms of space which leave T unchanged

form a group, G, and the group describes exactly the symmetry possessed
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by T."19 Shubnikov also developed a similiar precise definition.zo It

“has been slightly altered to provide the working definition of symmetry

for this thesis, Symmetry is defined as the highest possible group of
automorphisms mapping any structuralisbjééi,.éonsisting of geometrically
equal parts, onto itself, The mathematical idea of symmetry contained in
this definition should be a clear foundation for the mathematical theory of
symmetry in architecture,

Two other ideas which involve the idea of symmetry in their definitions
may be useful for the application of the mathématical theory of symmetry in
design., The first idea is asymmetry, which is defined only as the abscence
of symmetry, Howaver, Weyl suggested that asymmetry refers more accurately
to the near presence of symmetry.21 This should be contrasted with the
second idea, which is dissymmetry, Dissymmetry is defined as the purposeful
variation from the symmetry any structural object might otherwise have,
Deliberate variation from an expected symmetry with:elements of dissymmetry
may be an important idea in basic design., The subtle distinction between
asymmetry and dissymmetry is significant in any application of symmetry
in art,

It is interesting to notice the unselfconscious use of the mathematical
idea of symmetry in architecture, March and Steadman present several
examples of two dimensional symmetry in works of modern architecture, they
argued, "It could be said that those who were the most successful innovators
of architectural form, in particular Le Corbusier and Frank Lloyd Wright,
were those who most understood symmetry as an abstract idea."22 Examnples
of Corbusier and Wright plans reveal the creation of a complex variety

of spaces within a pattern of different symmetrical configurations. The
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design of such works a@pears to be the search for a structure created by
symmetry operations applied toAthe arrangemant of architectural elements,

The architecture of Louis Kahn, influenced by his study of Roman
architecture, his education in the Beaux Arts tradition, and his own ideas
6n order, demonstrates an understanding of symmatry operations in design.
The mathematical idea of symmetry may be used. to study the order in the
design of the National Assembly building for Bangladesh (Fig. 1.105). 1In
Kahn's plan for the building it is possible to see the underlying structure
rasulting from the symmetry of the configuration. The assembly hall
itself is created by two elements, a column and a wall, which are reflected
about a line, then rotated eight turns about a centre point:(Fig. 1.106),
TFhe éight lines generated by this operation become the controlling feature
of the design., About every second line, the spaces for administration offices
is created by the reflection of a square about the line, of course this
also creates a four tufn rotation about the centre point (Fig. 1.106).
About the east-west axis, there are reflections at either end of half-cylinders
~and rectangles creating space for dining/recreation and ministers' lounges
(Fig. 1.107). About the north-south axis, there are four turn rotations at
either end creating space for each entry (Fig. 1.107). Between the assembly
hall and each of these entries/lotnges .are stairs or elevators reflected about
the axis., But the four turn rotation about the centre point is varied from
by the large circular element of the ablution court on the north axis. This
is a clear case éf dissymmetry, Also; Kahn has turned the mosque main
entry, while retaining its rotational symmetry, a few degrees ofif the line
of the axis, This seems to be a case of asymmetry in the sense suggested

by Weyl., The applicationcof the idea of symmetry, with the interplay of
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asymmetry and dissymmetry, to create order in design is clearly demonstrated
by this and other examples of Kahn's architecture,

The point of this example has been not just to show the presence of
the idea of symmetry in a major work of modern architecture, but to show
the usefulness of the mathematical theory of symmetry.as :a way of understanding
order in architecture, It is the abstract structure which orders the
space creating slements of the building that is the feature to be admired
in Kaha's architecture, It is not the forms of the elements, cylinders
or cubes or triangles, that make the design so interesting; it is the
underlying structure in which those forms are used. Unfortunately, the
National Assembly building does exhibit some of the éimplistic and
overpéwering tendencies reminiscent of the Beaux Arts tradition, howaver
it is an example of the subtle appreciation of the idea of symmetry‘in
architecture,

For a knowledge of the mathematical theory of symmetry to be applied
in design, the architect should understaﬁd the idea of symmetry as a principle
for creating order, Kahn's National Assembly building is an example of
that principle, not a result to be copied. March and Steadman included a

useful quote from Owen Jones' The Grammar of Ornament23 at this point in

their argument:

The principles discoverable in the works of the past belong to

us, not so the results, It is taking the end for the means, No
improvement can take placeé in the art of the present generation

until all classes, artists, manufacturers, and the public, are better
educated in art, and the existence of general principles is more
fully recognized, If the artist, earnest in his search after
knowledge, will only lay aside all temptation to indolence, will
examine for himself the arts of the past, compare them with works of
nature, bend his mind to a thorough appreciation of thezgrinciples
which reign in each, he cannot fail to be a creator,,..

Therefore, it is not for the student of architecture, in the practice of
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design, to imitate the geometfic form.of the elements in the architecture
of Frank Lloyd Wright, Le Corbusier, or Lopis Kahn; but to appreciate the
symmetry structure present in that architecture,

The development of the premise that the mathematical theory of
symmetry may be a significant part of the knowledge an-architect applies ~
in design, follows naturally from an appreciation of the idea of symmetry
in architecture, An appreciation of the mathematical idea of symmetry in
architecture seems to involve three theoretical issues, As defined in this
section, the idea of symmetry provides a mathematical method for differentiating
and classifying abstract structures underlying spatial configurations., The
three issues raised are, therefore, the nature of that method, the creation
of those configurations, and the investigation of the abstract structures.
The next three sections of the theory part will cover the nature of
‘mathematics, an understanding of space creation, and the investigation of
structure, The arguments provided by combining the conepts disscussed in
each section should establish the thesis that the mathematical theory of
symmetry may be a significant part of the knowledge an architect applies

in design.
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1.2 THE NATURE OF MATHEMATICS

Whenever the application of mathematics‘tq an art activity, such as
design, is proposed there is a theoretical problem to. be confronted, Many
critics insist that mathematical knowledge, because of the very nature of
mathematics, has no place in the judgements creating works.. of art. They
suggest that mathematics is'only suitable for the explanations of science,
The issue here is not whether architecture is an art or a science, but
what is the nature of mathematics, If the mathematical theory of symmetry,
or any mathematical knowledge, is to be applied in design, then the nature
of that knowledge must gllowfthat application, The intent of this section
is to justify the application of mathematics in architecture, by considering
ﬁhe philosophical foﬁndation of mathematics,

“ As an epigraph, Weyl once used Goethe's remark .that, "Mathematicians
are like Frenchman; whatever you say to them they translate into their own
language, and forthwith it is something entirely different."25 This reflects
the suspicion many artists hold that it is not justified to apply mathematics
in art. Equally many architects seem to be mystified by the propositions

of mathematics, Indeed, an ignorance of mathematics has attained a certain
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social status among artists, especially architects. They have no clear
concept of mathematical entities, such as numbers or points in space, Nor
do they have a clear concept of the source for mathematical truths, such
as arithmatic or geometric equalities, These are the two basic problems
in the philosophy of mathematicé. The resolution of them provides
foundation for any application of mathematics in architecture,

The philosophy of mathematics is a relatively recent development,
beginning only about the turn of the century. Many answars have been
offered by many philosopher to resolve the two problems stated above, but
three major trends may be identified: logicism, formalism, and intuitionism,
Each trend has several w=aknesses, especially when considering the differeng
justifications. for: applying :any’; mathematics in architecture they provide.

A more pertinent épproach to thé philosophy of mathematics, which doess
justify the application of mathematics in archifecture, is develpped Erom the
criticism of these three trends,

Logicism is the label given to the philosophy of mathematics developed
by such philosophers as Gottlieb Frege and Bertrand Russell, The general
position is very simple, mathematics is logic, aund ﬁothing more than logic,
It suggests that mathematics may be reduced to logic; this is the programme

for Russell and Whitehead's Principia Mathematica.26 In logicism, mathematical

entities are simply defined by the mathematician as nominal entities within
a system of logic. The source of mathematical truth, in logicism, is the
logical relations between these entities, Thus, the propositions of mathematics
are persuasive just because they are logic.

The other two trends in the philosophy of mathematics developad as

reactions to the logicist positions. Many philosophers argued that
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although mathematics proceeds according to the rules of logiec, it is not
initself logic, The suggestion is that mathematical entities have some
kind of real existence, and that the source of mathematical truth is more
than just the logic used by mathematicians.

Formalism is the label given to the philosophy of mathematics developed
by the mathematician David Hilbert; and later extended by such philosophers
as H,B, Curry., The general position is that mathematics is an example of
the construction and manipulation of formal systems, The programme was to
show that the propositions of mathematics were about, rather that in, the
formal system of . symbols used by mathematicians.,  In formalism, mathemﬁtical
entities are discovered by the mathematican in the symbolic representation
for formal systems of mathematics, The source of mathematical truth, in
formalism, is the formal relations between these entities. Thus, the
propositions of mathematics are persuasive because they are part of the
"oame' fdri:aformal . system.

Intuitionism is the label given to the philosophy of mathematics
developad by the philosopher L.E.J. Brouwer; and later éxtended by Arend
Heyting in direct opposition to formalism, The general position, influenced
by Kant's synthetic a-priori classification of mathematics, is that
mathematics is an activity of.intuitive concept formation by the mind., The
programme was to show that the propositions of mathematics are the result of
the conception and manipulation of certain a~priori mathematical intuitions.
In intuitionism, mathematical entities are discovered by the mathematician
in the introspaction of his intuition., The source of mathematical truth,
in intuitionism, is the "self-evident'" relations between these entities.

Thus, the propositions of mathematics are persuasive because they are
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constructed through intuitions-of the human mind.

These three positions are not as clear cut or schematic as presented
here; neither do they characterize every attempt in modern philosophy to
account for mathematics., In certain sense they are all plausible; mathematics
sometimes seems to be just a system of logic, other times to be a game of
manipulating a formal system, and occasionally to be a working of human
intuition at a very deep level. Architectural decisions seem remarkably
similiar, they cften have all three of these characteristics themselves.
Various trends in design methods which apply mathematics in architecture,
therefore, seem to follow one of these three positions on the nature of
mathematics.

Any discussion about the philosophy of mathematics should mention
Godel's proof, a brilliant result in mathematical'logic, that casts doubt
on the whole subject, Nagel and Newman have summarized Godel's achievement:

Godel's conclusions are two-fold., In the first place he showad

that no metamathematical proof is possible for the formal consistency

of a system comprehensive enough to contain the whole of arithmetic,

Godel's second main conclusion is even more surprising and revolutionary

in its import, for it made evident a fundamental limitation in the

powar of the axiomatic method., Godel showed that Primcipia, or any
other syste¥7within which arithmetic can be developad is essentially

incomplete. S
Godel never argued that any of the philosophical foundations of mathematics
were wrong; he simply showed that any programme they might propose would
not consistently account for all of arithmetic. A parallel warning should
be issued to those who seek to use a mathematical programme to account for
all architectural decisions, The application of mathematics in architecture

is not such a panacea.

In Remarks on the Foundation of Mathematics28 Wittgenstein criticized
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all of the three major positions described above: logicism, formalism,
and intuitionism. A review of his criticism will lead to an acceptable
view of the nature of mathematics that justifies its application in
architecture, Wittgenstein's most fundamental position‘rejects the idea,
which has come down from Plato, that mathematics is a body of knowledge
about mathematical entities., Wittgenstein expressed the opimion that,
"the mathematicain is an inventor, not a discoverer."29 This position
rejects the idea that the mathematical .enfities are discovered by pecple
and the idea that mathematical truth is diséovered in relations betwaen
those entities., Accepting Wittgenstein's position, it is possible to
critisize design methods which apply mathematics in architecture following
the three positions of logicism, formalism, and intuitionism,

There have bean several methods justifying the application of
mathematics to design based on anxassumptiop of the’logicist position,
The early work of Christopher Alexander is typical of an attempt to
reduce architectural design to logic by applying mathematics. Alexander

discussed the force of logic in the introduction of Notes on the Synthesis

of Form  and concluded in the epilogue:

The shapes of mathematics are abstract, of course, and the shapes
of architecture concrete and human. But that difference is
ineesential. The crucial quality of shape, no matter of what kind,
lies in its organization, and when we thirk of it in this way

we call it form, Man's feeling for mathematical form was able . =
to develop only from his feeling for the processes of proof. I
believe that our feeling for architectural form can never reach a
comparable order of development, until we too hgge first learned

a comparable feeling for the process of design.

Alexanders emphasis on the logic of the process of proof underlying
mathematics reveals his belief that the application of mathematics in

architecture would be just a comparable reduction of the design process
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to logic,

An attempt to reduce design to logic through mathematics is questionable
because it assumes the position of logicism, Mathematical entities are
not discovered in any system of logic to which the architect may appeal
in making decisions., Similarly, the source of mathematical truth is
not discovered in the logic of the proof of mathematical propositions. The
architect applying mathematics does not guarantee the logic of the
design process, It is not acceptable for the application of wmathematics
in architecture to claim that mathematics, initself, makes the design
process logical,

Recently, there have been developad several significant methods
justifying the application of mathematics to design based on an assumption
of the formalist position, The research into applying graph theory using
computer-aided design is typical of an attempt to formalize architectural
design by applying mathematics, Steadman has discussed the basis for
this approach:

It is, by now, a well established idea that the theory of graphs

might find useful application in architectural layout and planning.

-It is usual to represent a graph with a diagram, showing points
joined by the appropriate lines, and to refer to this diagram

itself as the graph., Graph points might be used to represent the

relation of adjacency between pairs of rooms, It is possible to

regard the plan itself as forming yet another different kind of graph.

The plan graph and the corresponding adjacency graph bear3f special

relationship to esach other, They are mathematical duals,

Steadman's emphasis on the formal diagram being the graph, and the formal
architectural plan a mathematically dual diagram/graph, reveals his
belief that the application of mathematics in architecture would formalize

the design process.

An attempt to formalize design through mathematics is questionable
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because it assumes the position of formalism, Mathematical entities are

not discovered in the diagrams or representations that the architect may

use to make decisions, Similarly, the source of mathematical truth is

not discovered in the representations of mathematical propositions. The
architect applying mathematics does not make valid the formal plans of

the design process., It is not acceptable for the application of mathematics
in architecture to claim that mathematics, initself, makes the design process
formalized,

There have also been many methods justifying the application of
mathematics to design based on an assumption of the intuitionist position.
The approach to architecture using geometrical forms of Buckminster Fuller
is typical of an attempt to make intuitively reliable . architectural design
by applying mathematics, Fuller has poetically stated the basis of his
intuitive approach:

Key to humanity's scientific discoveries/Technical inventions/Design

conceptioning/And production realizations., That key is the first/

And utterly unpremediated event/Of having come unwittingly upon/An

heretofore unknowa truth/Of an a-priori universe/An eternal principle.

And then moments later/A second intuitive awareness/Regarding what the

conceiving individual human/Must do at once/To capture the awareness

of/And secure the usefulnesgzof/That eternally reliable generalized
principle/For all humanity.
Fuller's emphasis on the intuitive discovery of eternal principles of
mathematics and the awareness of their immediate usefulness, reveals his
belief that the application of mathematics in architecture would reliably
reflect the intuitive design process.
An attempt to reflect intuitive design through mathematics is questionable

because it assumes the position of intuitionism. Mathematical entities are

not discovered in an a-priori intuition of which the architect is aware in
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making decisions, Similarly, the source of mathematical truth is not
discovered in intuitive introspection of mathematical propositions, The
architect applying mathematics does not make reliable the intuitive
judgements of the design process, It is not acceptable for the application
of mathematics in architecture to claim that‘mathematics, initsélf, makes
the design process reliable intuition

Though they misunderstand the nature of mathematics, and consequently
are liable to make unjustified claims, each method has resulted some
favourable directions for the application of mathematics in architecture,
Alexander's work, if nothing else, has produced a significant change in
the attitude of architects to the academic study of design process, The
research of Steadman and others in graph theory will lead to a very
powerful planning tool ﬁith the advent of computer aided architeqture. The
engineering principleé of Fuller are aiready consider landmarks of construction
techniques in érchitecture. While this may vindicate tﬁese methods, an
alternative philosophiéal position leading to a justification of the
application of mathematics in grchitecture is required.

A justification for applying mathematics to design is suggested by
further readings of Wittgenstein, The intention of the architect applying
mathematics should be no different than if he were not applying mathematics,
In many instances, mathematics, geometry in particular, has been applied
in architecture with the intention of turning otherwise ordinary designs
into something special., Wittgenstein opposed this kind of thinking:

The comparison with alchemy suggests itself, We might speak of

a kind of slchemy in mathematics., It is the earmark of this

mathematical alchemy that mathematical propositions are regarded

as statements about mathematical objects, and so mathematics as
the exploration of these objects. In a certain sense it is not
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possible to appeal to the meaning of the signs in mathematics3 just
because it is only mathematics that gives them their meaning.

Clearly, if the architect's intention in the use of mathematics, like alchemy,
is to automatically produce something that another design method would not,
. then the nature of mathematics has alréady been misunderstood. The intention
in the application of mathematics, just as with any design method, must
be to produce good architecture. The evaluation of good or bad architecture
cannot be made according to whether or not mathematics was applied in the
design.

Once Wittgenstein's position that the mathematician is an inventor
is accepted, the two central problems of the philosophy of mathematics

34 A concept of mathematical entities is easily

may be resolved.
developad; there exist no such things as mathematical entities., There
are no such things aé a_number or a.point in space. They are only ideas
invented by human beings; the meaning of which has become clear through
the use of those ideas, not by their being or representing objects or
properties of objects. For example, symmetry is only an idea invented
by some person, themeaning of.which has become established in mathematics
by its use for understanding the structure of certain configurations.
Symmetry is not an entity, it is not defined in a system of logic, or
discovered in formal representations or intuitions of the world. The
application of mathematics to design is not the result of either logical,
formal, or intuitive mathematical entities discovered in architecture.
Such entities do not exist to be discovered, for they are invented,
Similarly, a concept of mathematical truth is easily developed;

mathematical propositions are true by virtue of the conventions for use

of mathematical ideas. The source of mathematical truth is the tacit
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agreement between people about what to accept as truth. Arithmetic or
geometric equalities are only truths invented by human beings; the acceptance
of which has been.the result of conventions about mathematical ideas, not

by their being relations between mathematical entities, For example, the
isomorphism (DEFINITION D:08, Mathematical Appendix) of certain symmetry
groups are propositions invented by some person, the truth of which has

been accepted according to the conventions agreed'to for use of such ideas.
The isomorphism of symmetry groups are not truths discovered in the logical,
formal, or intuitive relations betwean mathematical entities, The application
of mathematics to design is not the result of either logical, formal, or
intuitive mathematical relations discovered to be true of architecture.

Such mathematical truths are not to be discovered, for they are invented.

The nature of mathematics can be best understood as simply a human
activity, similar to the activity of language. Mathematics is a set of
ideas and conventions about those ideas that has evolved in human culture.

A proposition of mathematics is persuasive because we are bound by the

rules of mathematics, much as we are bound by the rules of language when

we speak, To make or apply -propositions of mathematics requires being
bound by the meaning of the ideas and agreement to the truth conventions

of mathematics; much as to make or apply propostions in languages requires
being bound by the meaning of the words and agreement to the grammar of
languages. Therefore, mathematics may serve as an alternative way of
understanding and communicating design intentions, Mathematical propositions
then have the status of rules bounding the design process. The architect

is free to creatively apply those rules according to design intentions,

However, applying mathematics requires accepting what it presribes,
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Mathematics, rather that being a body of knowledge about mathematical
entities, is a body of prescriptive rules about mathematical ideas; one
of which is the idea of symmetry.

Wittgenstein expressed the status of mathematical propositions
in this way:

The mathematical propoéition has the typical (but that doesn't

mean simple) role of a rule. If you know a mathematical proposition

that's not to say you yet know anything. If there is confusion

in our operations, if everyone calculates differently, and each one

differently at different times, then there isn't any calculating

yet; if we agree, then we have only set our watches, but not yet
measured any time. If you know a mathematical proposition, that's
not to say you yet know anythin, The mathematical proggsition is
only supposed to supply a framework for a description..
The mathematical propositions that make up the mathematical theory of
symmetry therefore provide a framework for a description, that is, for an
understanding and communication, of the:structure certain configurations.
They, like all mathematics, in no way limit the creativity of the designer,
just as language in no way limits the creativity of the poet.

The architect, who understands the nature of mathematics in this way,
justifies the application of mathematics in architecture simply because it
does give a creative framework of rules within which to design. The
mathematical theory of symmetry does give a framework for understanding
and communicating the structure of space creating configurations of
architectural elements. A knowledge of the theory is, initself, '"nmot to
yet know anything', but the application of that knowledge in design may
be a powerful creative framework for describing design intentions. The
architect whose mind is prejudiced either for or against the application

of mathematics in architecture, by assuming some other position on the

nature of mathematics, is limited in the creative frameworks that may
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be applied in design.

There is not only that justification for the application of mathematics
in architecture, but also positive value that results from the application.
The value in applying mathematics to design lies in increasing the creative
capacity of the mind, and the ability to make public that capacity. Pascal
observed in the Pensees that:

Mathematicians who are merely mathematicians therefore reason

soundly as long as everything is explained to them by definitions

and principles, otherwise they are unsound and intolerable, because

they reason only from clearly defined principles.

And intuitive minds which are merely intuitive lack the patience to

go right into the firat principles of speculative and imaginative

matters which they h ge never seen in practice and are quite outside

ordinary experience.
Tt is intrinsically valuable for the designer who has, heretofore, relied
upon intuitive insights into architecture to -apply mathematics to subjective
judgements in design. Equally, subjective judgements should and do temper
the application of mathematics in architecture. The capacity of the architect
to have creative insights into architecture, and to employ those insights
in design, is greatly increased by applying mathematical knowledge with value
judgements, The second intrinsic value of mathematics in architecture is,
in the words of J. Christopher Jones:

...to make public the hitherto private thinking of designers; to

externalize the design process. In some cases this is done with

words, sometimes in mathematical symbols, and nearly always with a

diagram representing parts of the design problem and the relationships

between them. Clearly, the underlying aim is to bring designing

into the opan so that other people can see what is going on and

contribute to it information and ins%ghts that are outside the

designer's knowledge and experience,
More than any other design method proposed in the last decade of research,

the application of mathematical knowledge in architecture achieves this

externalization. Mathematics increases the ability to externalize the
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design process, not because it is an objective method of making design
logical, or formalizing design, or reflecting design intuitionsj but
because it is an intersubjective method, like language, for describing
design intentions.

The mathematical theory of symmetry in architecture is, therefore,
a framework of prescriptive rules, not to replace, but to increase and
externalize an architect's insight into design. Specifically, it provides
an external method for describing the structure of certain space creating
configurations, The application of that knowledge in design is a way of
understanding and communicating the inmtention to create order, by giving a
structure to the space created by architectural elements. The architect
must have a special understanding of space creation and must investigate
structure in a spacial way for thg mathematical knowledge of symmetry
to be useful fg; externalizing that part of the design process, The next
two sections of the theory part will cover an understanding of space creation,
and the ivestigation of structure. This should further establish the thesis
that the mathematical theory of symmetry may be a significant part of the

knowledge an architect applies in design.
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1.3 AN UNDERSTANDING OF SPACE CREATION

Architecture is commonly defined as an art of space creation, that is,
the essence of architectural design, unlike any other art, is the creation
of space. This definition has become rather useless in the practice of
architecture since few architécts explain exactly what they mean by the
word space., There is little apparent consensus on a philosophical aﬂd
psychological concept of space on which to base design methods., The common
practice seems to be to distinguish between several concepts of space
by prefacing it with another term. Combinations such as virtual space,
physical space, personal space, perceptual space and existential space
are typical in the literature related to space in architecture., It is
no wonder that people are_confused by endless, and in most cases inconsequential,
distinctions between kinds of space. TFor this reason many designers seem
to avoid confronting the essential issue of space creation, For the
mathematical theory of symmetry, which describes the structure of spatial
configurations, to be applied in design it is important to develop an
understanding of space creation. The intent of this section is to

establish an understanding of space creation in architecture that allows
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the application of the mathematical theory of symmetry in design,
The unfortunate effect of the excessive use of jargon in most
discussions of space in architecture is that many designer have lapsed
into a naive understanding of space creation. Susanne Langer was forced
to the conclusion:
Architecture is so generally regarded as an art of space, meaning
actual, practical space, and building is so certainly the making
of something that defines and arranges spatial units, that everybody
talks about architecture as 'spatial ggeation' without asking what
is created, or how space is involved,
The haphazard consideration of space by architects has lead to an understanding
of space creation based on what might be philosophically and psycholagically
naive concepts., This understanding leaves most important questions about
space not only unanswered, but unconsidered.
There are two important questions to be resolved by architects in
a concept of space on which to base design methods, The first is the
straightforward but difficult question, what is space? This is essentially
a philosophical problem to resolve the nature of the existence of space.
The second is the more involved question, how do people know space? This
is essentially a psychological problem to resolve the relative functians
of perception and cognition of space.
Most architects seem uniformed on the answers to these questions, Charles
Moore's essay on space in Dimensions reflected an inclear concept of gpace:
Space in architecture is a special category of free space, phenomenally
created by the architect when he gives a part of free space shape
and scale, ... We talk of ‘making' a space, and others point out that
we have not made a space at all; it was there all along. What we have
done, or tried to do, when we cut a piece of space off from the
continuum of all space, is" to make it recognizable as a dom§§n,

responsive to the perceptual dimensions of its inhabitants.

Moore's phrases seem to be based on the philosphical position that space,



- 38 -

or the continuum of space, exists as some sorﬁ of object that designers

divide up, or cut off pieces. They also seem to be based on the psychological
position that people psrceive space initself as some sort of domain. The
suggestion is that designers then control the "dimensions" of space as an
object,.énd thereby control the perception of that object. This leads

to an architectural determinism in design, suggesting that space creation

is a moulding of some object and people's perception of that object,

Such determinism would not allow an application of the mathematical theory

of symmetry in design, because symmetry doas not concern itself with the
dimensions of space but the structure of spatial configurations. Alternative
philosophical andpsychological positions are required to allew that application.

The philosophical problem of the nature of the existence of space
is as old as the activity of philosophy. It does not seem necessary to
discuss the method b;-groundsuop»whichgpeﬁple;knchs#acexists; in order to
discuss the nature of its existence., There are many theories that explain
the grounds on which people claim knowledge of objects; which are defined
as epistemological positions, Theories that explain the nature of the
existence-pf those objects are defined as ontological positions, The question of
what is space that architects should resolve is an ontological problem.

There are three basic ontological positions about space that should be
considered, The first considers space to be a substance existing in reality
much like ordinary objects. The second considers space to be an awareness
of relations between those objects, not as any sort of entity existing initself.
The third considers space to be an integral part of human existance being
the basis of the relationship between man and reality, The architect should

distinguish between these ontological positions, as not all of them
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suggest or allow that the mathematical theory of symmetry, or similar
methods, may be included in an understanding of space creation.

The view of space as a substance existing in reality much like an
object of everyday experience, is the most widely held view among
non-philosophers., It is this philosophical position to which a concept
of space like the one expressed by Moore is most likely to reduce. This
position commonly explains space by characterizing it as a recepatacle,
container, or arena in which objects exist, The idea is that "empty
space" is something which does exist and may be experienced by itself,
Similarly, mathematical points and lines as ideas about space may be
conceived independent of the experience of objects, through the experience
of space itself, An object is thought of as being placed in space, or
of having its extension in space. There is very little in the way of
justification ever given for this position; except that it is the
"natural" concept of space as it is used in ordinary 1anguage; However,
thisconcept was held by almost every philosopher from Plato to the beginning
of this century; and by most scientists under the influence of Newtonian
classical physics.

The view of space as an awareness of relations betwezan objects, but:
not an entity itself, is less obvious to the non-philosopher; It ié‘this
philosophical position to which many philsophers have resorted since the
experiments of Mach and the development of the theory of relativity by
Einstein, Many philosophers now specializing in space and time40 suggest
that those who believe space to be a substance are beign misled by the
appearance of ordinary language. The:bfopenent of this position was

Leibniz in the 18th Century, who debated the topic of space in letters
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to a followar of Newton:
I hold space to be something merely relative, as time is3 that
is, T hold it to be an order of coexistences, as time is an.order
of succesions., For space denotes, in terms of possiblity, -an order

of things which exist at the same time, considergf as existing together,
without inquiring into their manner of existing,

o
The idea is that "empty space" is“something that does not exist and may not
be experienced by itself. Similarly, mathematical points and lines as
ideas about space may only be conceived through the experience of objects
in the appropriate relations (or at least the possibility of such zxperience),
Space is thought of as itself being conceived through the awareness of
relations between objects, The primary justification fo; this position
is that space as ‘a.substance cannot be detected the way ordinary objects
-are; that is, there are no epistemological grounds for space as a substance,
The use of space in ordinary.language should be understood as not asserting
the exiséence of a substance, but only as attributing actual or possible
relations betwzen objects; asserting the existence of those objects only.

The view-of space as an integral part of human existence is a founding
concept of existential philosophy, ~Proponents of this view, including
Merleau-Ponty and Heidegger, are occasionally cited by architectural theorists .
such as Christian Norbérg--Schulz.42 This position commonly explains space
as an inescapable phenomenum of the relation betwaén man and reality;.nothing
more, space is neither a physical substance nor a conceptual awareness,
Eumam. Kxistence is characterized as spatial, that space cannot be separated
from man's being, it is aphenomenum that cannot be classed as either an
external substance or an internal concept. The idea is.that questions about
the existence of "empty space" do not make sense, Similarly mathematical

points and lines as ideas about space may be conceived through the phenomena
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of man's being in space, they are not associated with any experience of
space as a substance or any possible experience of objects in certain
rélations. The justification for this position seems to be self-fulfilling;
it assumes space to be a phenomenum of human existence because humin
existence is inescapably spatial because space is a phenomenum of human
existence, Because of this circular reasoning, it is doubtful whether

this position actually provide an ontology for space,

The application of the mathematical theory of symmetry in design
implies the use of ideas about space such as rotation. about points and
reflection about lines. An account of the ontology :of space must allow for
the usefulness of mathematical ideas such as.these., The existentialist
position may be easily rejected; not énlytis it self-fulfilling, but it
is basically useless in design, Norberg-Schulz has been typically vague
about design method; he indicated only that, "Architectural space, therefore,
can be defined as a concretization of man's existential space."43 Concretization
is not really a principle for doing design. The more relevant decision is
therefore to be made betwesen the position that space is a substance and the
position that space is an awareness of relations. Both of these have
clear implications for design methods involing mathematical ideas.

If the architect accepts the position that space is a substance, then
the emphasis in the design process would be the creation of elements in
space, The direction of design methods would be towards the &imensioning
of architectural elements; that is, the form of architecural objects as they
have their extension in space., The obvious tendency would think of space
in terms of substantive volumes in which objects are to be created. On the

other hand, if the architect accepts the position that space is an awareness
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of relations between objects, then the emphasis in the design process
would be the creation of spaces by architectural elements. The direction
of design methods would be towards the arranging of architectural elements;
that is, the structure of relations between archirectural objects as they
create an awareness of space. The obvious tendency would think of space
in terms of .relations created between objects.’ Clearly, principles for
doing design in architecture tend to follow one of these two positions.

The application of the mathematical theory of symmetry in design
is based on the architect's acceptance of the position that space is an
awareness of relations betwesen objects, If architecture is to be concerned
with space creation, it suggests that the designer think in terms of relations
that create space, not in terms of threefdimensional.objects in space,
The emphasis of the design process should be the structure of relations
between architectural objects, rather than the form of those objects,
Architecture does not and should not deal with the invention of three
dimensional objects in space; and thus the concept of space as a subs;;nce
is to be eliminated, Design should deal with the creation of relations
between objects (often virtually two dimensional objects such as wall planes);
and thus the concept of space as an awareness of relations between objects
is to be accepted., An understanding of space creafion should be based on the
ontological position that space exists only in relations betwsen objects.
This understanding best allows the application of the mathematical theory
of symmetry because it implies design is based-on principles about the
relations betwzen objects that create.an awareness of space, The mathematical
theory of symmetry describes the structure underlying . relations between

elements of certain spatial configurations,
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principle for doing design if the understanding of space creation is
based on the ontological position that space is an awareness of relations
between objects;

The architect must still consider the psychological problem of the
relative function of perception and ' cagnition of space: A desigﬁer
should have some concept of the effect of perception and cognition in
the processes by which pzople know space, This is a central activity
of environmental psychology, a rather new discipline in contrast to
the philosophy of space. The question of how do people know space that
architects should resolve is an envirommental problem,

The important distinction is between the two psychological processes
of perception and cognition., A pdssible distinction betweén thembis the
process/product distinction; in which perception is a process leading to
cognition as a product, This seems to simplistic, because cognition clearly
seems to be more than just the result.of perception., The distinction
between perception and cognition may be better interpreted as a particular
process, parception; versus a general system, cégnition, which involves
that process, Cognition then refers to genéral systems of the mind including
the processes of perception, recording into memory, organizing into images,
and thinking about things. The boundary may only be a matter of
physical size, perception being a particular process in response to the
immediate envirionment; :with cognition being a general process of awareness
of the iarger context, Roger Downs and David Stea developed this into
useful definitions of the two terms:

We reserve the term perception for the process that occurs because

of the presence of an object, and that results in the immediate
apprehension of that object by one or more of the senses. Temporally
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it is closely connected with events in the immediate.éurroun&ings

and in general is linked with immediate behaviour. .,.Cognition

need not be linked with immediate behaviour and therefore need not

be directly related to any objects or events occuring in the

proximate environment.. Consequently, it may be coneg&ed with what

has passed or what is going to happen in the future,

What distinguishes proccesses of perception from systémé of cognition is

an emphasis on the study of responses to the presence of objects rather than
the study of attitudes and dispositions not related to the presence of
objects. The study of systems of cognition relies on the effects of objects
from the past or in the future, or so large as they cannot be sean at once,
or part of an overallcontext.

An understanding of space creation involving the ontological position
that space is not a substance, seems to also involve the position that
perception is not the most importént process in the way people know space.
Clearly, the concept of space as a substance_would suggest that the perception
of that substance is a;éimple and direct way of knowing space., But the
acceptance of the concept of space as an awareness of ralatibns between
objects suggests that the cognition of those relations is the actual way
people know space; that the process of perception is only involved in the
apprehehsion of those objects, Assuming that design methods should respond
to the way pesople might act in space, and assuming that action is linked
with the way people kaow space, then an understanding of space creation should
emphasize systems of cognition, The trend in envirommental psychology
seems to accept this position; for example, Downs and Stea argued that,
"Human spatial behaviour is dependent on the individual's cognitive map

n45

of the spatial environment, In The Psychology of Place, David Canter

stressed that the essence of the argument is, "that any act is made in
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relation to the context within which the individual thinks himself to be."46

Cleariy, principles for doing design should emphasize systems of cognition;
The application of the mathematical theory of symmetry in design
is based on the architect's acceptance of the position that space is known
through systems of cognition; If architecture is to be concerned with space
creation, it suggests that the designer think in terms of cognition of the
relations that create space, not in terms of perception of three dimensional
objects i space, The emphasis of the design process should be the cognition of
the structure of relations between architectural objects, rather than fhe
perception of the form of those objects. Thus, the process of the perception
of space as a substance is to be eliminated., Design should deal with the
creation of clear cognitions of relations between objects; and thus the -
knowledge of space through systems of cognition is to be accepted,. An
understanding of space creation should be based on the psychological position
that space is known only through the cognition of relations between objects,
This understanding best allows the application of the mathematical theory of
symmetry because it implies design is based on principles about the ralations
betwzen objects that are known through systems of cognition, The mathematical
theory of symmetry describes the structure underlying the relations between
elements that effects the cognition of certain spatial configurations, The
theory may be a useful principle for doing design if the understanding of
space creation is based on the psychological position that space 1is known
through systems of cognition,
An understanding of space creation for the application of the

mathematical theory of symmetry in architecture is based on these two

important positions. The first is that, ontologically, space should be
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postulated only as the awareness of relations between objects. The second
is that, psychologically, space should be understood as known through systems

of cognition of those relations. In The Dynamics of Architectural Form,

Arnheim suggested a practical importance of accepting these positions:

By way of lofty abstraction wa have coma accross a fundamental

principle of practical importance to the architect, In spite of

what spontaneous perception indicates, space is no way given by

itself, It is created by a particular constellation of natural

and man-made objects to which the architect contributes. In the

mind of the creator, user, or beholder, every architectural constellation

establishes its own spatial framework. This framework derives form the

simplest szructure compatible with the physical and psychological

situation, 7
It is desirable that architecture, as an art of space creation, be produced
by the capability of the human mind to work at the level of abstract relations
betwaen material objects, The design process is rooted in basic study of and
reflection upon those abstract relations that create an awareness of space,
Architecture based on this understanding of space creation is an -abstract
art activity on a very high level,

The mathematical theory of symmetry may be a significant part of the
knowledge that an architect applies in design becasue it describes the
 structure underlying the relations that create space in certain configurations,
The study of structure in the reflective abstraction of the mathematical
theory of symmetry providesa basic know}edge of the creation of space, The
application of that knowledge in design is a way of ereating a clear cognition
of space through the presence - of:a structure: in the relations between
architectural elements, The architect must investigate structure in a special
way to direct the -creation of space through the use of mathematical knowledge

of symmetry, The next section of the theory part will caver that investigation

of structure. This should finally establish the thesis stated above. -~ -



- 47 -

1.4 THE INVESTIGATION OF STRUCTURE

Order seems to be universally recognized as one of the basic concerns
of the architect in design, This thesis has stressed the idea that the
significance of the mathematical theory of symmetry in architecture is its
application for the purpose of giving order, It achieves this by giving a
structuré to the relations betwaen architectural eiements creating space,
Indeed, order can be equated in architecture, as inalmost every art activity,
with the presence of an underlying and abstract structure in its creation.
The intenﬁ of this section is to investigate the abstract idea of structure
in the context of giving direction to the application of the mathematical
theory of symmetry in design,

The role of order in architecture should be understood before the
investigation of abstract structures is developed, Arnheim éefined order

in the essay Entropy and Art as:

-+.a necessary condition for anything the human mind is to understand.
Arrangements such as the layout of a city or building, a set of toois,
a display of merchandise, the verbal exposition of facts or ideas, or

a painting or piece of music are called orderly when an observer or
listener can grasp their overall structure and the ramifications of the
structure is some detail. Order makes it possible to focus on what is
alike and what is different, what belongs together and what is
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segregated, When nothing superfluous is included and nothing
indispensible is left out, then one can understand the interrelation of
the whole and its parts, as well as the hierarchic scale of importggce
and power by which some features are dominant, others subordinate,
Order must be present in a work of architecture as a prerequisite for
comprehending the space created by the relations between architectural
elements., It allows for the clear cognition of the spaces of a building.
The design process in architecture must include the creation of spatial order
among the goals of its methods., This involves the creation of a structure
that facilitates the particular design intentions of the designer, Arnheim's
view was that;
Order must be understood as indispensible to the functioning of any
organized system, whether its function be physical or mental, Just
as neither an engine nor an orchestra nor a sports team can perform
without the integrated cooperation of all its parts, so a work of art
or architecture cannot fulfill its function and transmit its message
unless it presents an ordered pattern, Order is possible at any level
of complexity...but if there is no order, there is no way of telling
what the work is trying to say, :
Order is necessary for the communication of design intentions about space
creation through a work of architecture. The knowledge of abstract structure
described by the mathematical theory of symmetry contains just the sort of
order in spatial configurations that seems to be necessary in architecture,
This is the purpose of a design method involving the application of the
mathematical theory of symmetry as an abstract structure,
Unfortunately, structure has become a fashionable word to describe
many different ideas, Indeed, in the sense of structuralism, it has lead
to a very academic set of jargons and convoluted cétegories.so- The
investigation of structure which is so essential to the creation of order

in architecture and art must avoid these drawbacks associated with

structuralism, In fact, the idea of structure must be kept separate
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from any particular academic exercise of structuralism,
The source of the importance of the idea of structure lies in
claims of its association with fundamental proccesses of the human mind,
such as the cognition of space, The application of knowledge about abstract
structure has been explained by Edmund Leach as based on belief that,
.ss.concepts in the mind can be combined and recombined by some
deeper level of mental process, a kind of meta-thinking which does
not of itsélf generate conscious thoughts but makes creative
originality possible in that_it consists in the establishment of
relations between relations,
The application of the mathematical theory of symmetry in architecture
exactly this kind of meta-thinking that makes thoughtful creativity possible
in design,
As suggested above, it is necessary to investigate the "n;ture of
the affirmative ideal that goes with the very idea of structure,"52 as
Piaget did,independent of structuralism. Moreover, the investigation of
that ideal suggest directions for the application of structural knowledge,
exemplified by the mathematical theory of symmetry, in architecture. Piaget
identified‘three key ideas which together comprise the idea of structure.
They are wholeness, transformation, and self-regulation, Each of these
ideas provide specific directions for the creative application of
structural knowledge in design,
The idea of wholeness is crucial to the investigation of structure,
A disﬁinction must be made between structures and aggregates. Stfucturas
are whole, while aggregates are built up by the association of separate
parts, Structures do, of course, have identifiable elements, but these

elements are subordinated to the rules of composition of the whole,

It is the framework of rules which relate each element to every other
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that 'defines a whole. The whole is not reducible to a one-by-one association
of its elements. It is important to note that with a structure it is not
necessary or important to say whether the whole precedes the parts, or whether
the parts precede the whole; such a question is irrelevant. It is the
relations between the parts according to a framework of rules defining
the whole that is the important feature of structures.

The design direction implied by accepting the idea of wholeness in
architecture is significant. A building should be thought of as a whole,
not as an aggregate of individual places through an assocation according
to certain program requirements. This requires replacing the popular
emphasis in design metﬁods upon the sense of place and accomodation of -funétion
with an emphasis on the creation of structures relating places and functions
into a clearly defined whole. It would not be important for the architect
to understand how elements of a building combine to create particplar
perceptions of place or accomodate particular activities. Rather, the
relations betwazen those combinations of alements throughout the whole
of a work of architecture should be important in design. The acceptance
of this direction could radically alter the way architects approach design.
It suggests that the afchitect in the creation of a work of architecture
emphasize a structure providing a framework for relations between the space
creating elements of the building. A direction of the application of the
mathematical theory of symmetry in design is to:provide a structure which
defines the whole in the resulting work of architecture,

The idea of transformation is the most obvious aspect of the investigation
of structure. An application of the idea of structure inherently involves

the presence of transforming operations., A part or element is transformed
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or changed through the rules of composition of the structure. A distinction
might be made between styles and structures., Styles have rules for the
formation of each element of the work; while structures have rules only for
the transformation of those elements. Structure do, of course, have elements
that have form, but that form issubordinated to the rules for transformation.,
which relate each element to every éther. It is important to not that with
a structure it is not necessary that the form of the elements be the same for
every work of the same kind; the nature of transformations is that they
may operate on any form of elements. It is the relations between the elements
according to a framework of rules transforming each element that is the
important feature of structures,

The design direction implied by accepting the idea of transformation
in architecture is also significant, A building should be thought of as
the result of creatively applied trnsformations of space creating elements;
not just the invention of those elements, The particular forms of the
elements is not as important as their transformation by the rules underlying
their arrangement into certain relations, This requires replacing the
popular emphasis in design methods upon the invention of formal elements
that create particular effects with an emphasis on the creation of structures
that transforms these elements into clear'relationships; It would not be
important for the architect to invent a vocabulary or forms or to rely on
any particular formal style, Rather, the relations between those elements
of whatever form through the transformation .of ‘them into a work of architecture
should be important in design., The acceptance of this direction could
radically alter the way architects approach design. It suggests that the

architect in the creation of a work of architecture emphasize a structure
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providing a framework for relations transfbrming the space creating elements
of the building; A direction of the applicatidn of the mathematical theory
of symmetry in design is to provide a structure which transforms each °
element in the resulting work of architecture,

The idea of self-regulation is quite necessary to the investigation
of structure, Self-regulation is defined by two inherent consequences of
creating a structure. First, the result of transformations of elements
within the whole arealso elements of that whole., Second, no transformations
are applied to elements within the whole that violate the framewonk df"ruleé
which define that whole, A distinction is to be made between self-regulation
and regularity, Self~-regulation conserves the structure that was created;
while regularity merely repeats the forms that have been invented., Structures
do, of course, repeat formsbut that regularity is subordinated to the
self-regulation rgléting each element to every other, It is important to note
that with a structure it is not necessary to regularly repeat‘certain
formal elements as often and whereever possible; the nature of self-regulation
is that self-regulation controls the arrangement of elements, It is the
relations between the elements controlled by the self-regulation that is the
important feature of structures,

The design direction implied by accepting the idea of self-regulation
is again significant, A building should be thought of as controlled by
the self-regulation of the structure, consistently and completely, underlying
the relations between space creating elements, The regular repetition of
particular forms of elements is not as important as the consistency and
completeness of the self-regulation in relations between those elements,

This requires replacing the popular emphasis in design methods upon the
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repetition of "successful" or preferred forms with an emphasis on the
creation of structures that themselves regulate the relations between
éhese elements, It would not be important for the architect just'to use
certain formal elements as regularly as possible; Rather, the relations
between those elements should control the self-regulation of them into

a work of architecture., The acceptance of this direction could radically
alter the way architects approach design., It suggests that the architect
in the creation of a work of architecture emphasize a structure providing
a framework for relations that is self-regulating, A direction of the
application of the mathematical theory of symmetry in désign is to provide
a self-regulating structure that controls each element in the resulting
work of architecture;

The combination of these three features of the investigation of
structure which give direction to the application of the mathematical theory
of symmetry in architecture results in a very special attitude to . . . _
design methods, The cognition of spatial order that might be produced by
the underlying presence of an abstract structure is a very deep level of
human thought, The application of structural knowiedge in design is
an entirely human activity, and the results of that activity should produce
a very human quality in architecture, In collaboration with the painter
Amadea Ozenfant, Le Corbusier concluded that any art activity has but one
goal, ".,.to put the spectator in a state of a mathematical quality, that
is, a state of an.elevated order;"53 An application of the mathematical
knowledge of structure embodied in such things as the theory of symmetry
should be understood as a method for creating that quality in architecture,

It is architecture which provides the most appropriate human activity
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for the application of the mathematical theary of symnetry simply because
it, more than any other art54, is produced by space creating structures,
Abstract structure resulting in spatial order seems to be essence of
architectural design. ' Le Corbusier inspired this point of view by
argueing that:

.+.in plastic art, the senses should be strongly moved in order

to predispose the mind to release into play the subjective reactions

without which there is no work of art, But there is no art worth

having without this excitement of an intellectual order, of a

mathematical order; architecture is the art which up until now

has the most strongly induced states of this category, Thesgeason

is that everything in architecture is expressed by order...

The investigation of structure directs the application of the mathematical
theory of symmetry in design towards anemphasis in design methods on
wholeness, transformation, and self-regulation, This imparts the quality
of 4 mathematical order in the resulting works of architecture.

There is danger latent in the application of mathematical knowledge
of structure in desiga., That danger is the tendency to lapse into design
methods that are theories of proportion, instead of principles of order.

56
For many good reasons architects have come by and large to reject
mathematical proportion as part of their design methods, One exception
was Le Corbusier who developed an arithemetic system of proportion in
Le Mbdulor§7 It, when seen in the context of the quotation above, exemplifies
the confusion between proportion and order, which results in mathematics

being misdirected away from the investigation of structure towards the

investigation of form,

T

The Béhhd¢fy of theories of proportion have been defined by Scholfield
as those studies, ".,.concerned only with the relationship of the shapes

and sizes of objects which please the eye."58 Theories of proportion
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seem to contain two components, The first is an emphasis on a particular
vocabulary of shapes; and the second is a system, usually based.on a series
of numerical ratios, for giving dimensions to those shapes; Scholfield
explained what happens in design methods relying on theories of proportion,
"Once admired shpaes have been selected--and this is where the difficulty
lies--architectural proportion becomes a straightforward matter of using them
as often as possible."s9

Theories of proportion may be seen in direct contrast to principles
of order by opposing their emphasis on form to an emphasis on structure.
The motivation for theories of proportion is generally the desire for a
perceptual beauty of form in a work of architecture, The direction of
design methods emphasize the individual parts, the formation of those
parts and the mere repition of them. On the other hand, the motivation
for principles of order is generally the desire for cognitive clarity of
structure in a work of architecture., The direction of design methods
emphasize the overall whole, the transformation of parts into that whole,
and the self-regulation of the whole. "Clearly, theories of proportion
emphasize form in design; while principles of order emphasize structure in
design,

Scholfield argued that, "the object of architectural proportion is

160 This reveals

the creation of visible order by the repetition of shapes.
confusion, for clearly theories of proportion have a totally different
content and direction for design than do principles of order. There is no
way that mere proportion may achieve the underlying abstract structure that

is the essence of order in architecture. The mathematical theory of symmetry

provides a description of structure; and the application of such knowledge
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in design is a method for éreating order, It is not theoretically coherent
to apply the mathematical theory of symmetry to proportion architectural
elements or volumes. An application of the mathematical theory of symmetry"
may employ any vocabulary of shapes with any proportion; and transform them
according to the three directions suggested by the investigation of structure,
The mathematical theory of symmetry provides a description of certain space
creating structures; to apply it to the invention of forms is to confuse the
distinction between order and proportion.

Some kind of boundary should be drawn between sculpture and architecture.
Sculpture seems to emphasize the invention of three-dimensional forms in
space, Architecture, on the other hand, should emphasize the creation of
three-dimensional structureslmaking space. One of the reasons that the
so-called Modern Movement seems to have reached a point where the
architecture produced is aesthetically empty seems to be designers assuming
the pfimary role of "form-givers." Such a role suggest that every design
problem requires the invention of new formal elements; establishing new
forms "following'". function. . The distinction between sculpture and architecture
suggests that designers should assume the primary role of creating structure,
This role might allow the production of architecture that communicates
aesthetic information about space, Every design problem would require only
the creative application of structures relating existing or adapted formal
elements; establishing clear cognitions of space. The architect applying
the mathematical theory of symmetry should understand that it is an
investigation of structures for orderly space creation; not a study for
sculpting the forms of - architectural elements,

The results of the investigation of structure, an understanding of space
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creation, énd realizing the nature of mathematics seem to involve a

change in attitude towards design methods in architecture, An important
feature of the art of architecture is the striking parallel between the
mental habits of the designer and the character of the resulting architecture;
The application of the mathematical theory of symmetry in architecture lies
as part of the trend towards the abstract study of human comprehension

of the environment; specifically the clear cognition of space, Therefore,
the mental habits of the designer, involving an abstract knowledge of
structufes available to create space, will be reflected in the resulting
work of architecture. By adopting-the mental habits of mathematicians in
the investigation of structure through the mathematical theory of symmetry,
the designer should see it paralleled in the clear orderly spaces of

the resulting architecture.

The theory part of the thesis may now be concluded by simply argueing
back through the ideas of the four sections. Clearly, order in the
comprehension of a work of architecture is the result of there being an
abstract structure underlying the design. The structure emphasizes the
definition of the whole, the transformation of elements, and the gelf-regulation
of the structure in design methods., Those design methods result in the
clear cognition by people of the relations between the elements of the work
of architecture., The cognition of those relations creates an awéreness of
space, which is nothing more than gsuch anuawareness..’Mathamatics provides
a prescriptive framework of rules for externalizing the designers insight
into the creation of these relations., The idea of symmetry is based on
the idea of mapping structural configurations, consisting of geometrically

equal parts, onto themselves, The mathematical theory of symmetry differentiates

>
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and classifies configurations according to the structure of symmetry
relations they contain., The structures the théory prescribes will be
paralled by an orderly cognition of space in the architecture resulting
from an application of the theory., Such an order is one of the essential
qualities in works of architecture. Therefore, the thesis that the
mathematical theory of symmetry may be’a significant part of the knowledge

an architect applies in design is established.



PART TWO: RESOURCES
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2,1 THE MATHEMATICAL THEORf OF SYMMETRY

Fascination with symmetry has existed for many centuries, but the
rigorous mathematical investigation §f symmetry structure is a relatively
recent investigation., Indeed, the mathematical tools for deseribing
structure and classifying symmetrical configurations were only developed
in the 19th Century. The emergence of what may be called a mathematical
theory of symmetry has only taken place with modern mathematics. Because
such a theory may be a significant part of the knowledge an architect applies
in design, the resources of the theory should be integrated into design
education, The intent of this whole part is to provide a non-~technical,
but precise, explanation of the mathematical theory of symmetry, The primary
vehicle for that explanation will be the visual illustration of the
structutes . provided by the theory; The intent of this particular
section is to outline the derivation of the theory that is illustrated in
the following three sections. An exposition of the technical definitions
and theorems that might accompany an explanation of the mathematical theory
of symmetry has been limited to the Mathematical Appendix. Reference will be

made to that appendix where necessary;
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There are several slightly different ways authors take to approach
an explanation of the mathematical théory of symmetry; The difference
between them is of emphasis, not direction. It is generally due to the
context in-the theory is to be applied. March and Steadman presented in

61

The Geometry of Environment * a very coherent explanation of symmetry in

one and two dimensions in the context of its presence as an underlying
structure in works of architecture, This is the only readily available
discussion of the mathematical theory of symmetry in the specific context
of architecture, It emphasizes an architect's intuitive understanding of
the mathematical ideas of mappings and transformations. The mathematical
idea of symmetry operations (see Section 1;1, Fig. 1;104) was used to
explain the symmetry structures described by the theory; This is a
reasonable procedure to allow the nbn-mathematician architect to visualize
symmetry in two dimensions, But the explanation here will be different.
This is because the intention is to make the application useful as.a design
method in architecture; both in two and three dimensions,

The emphasis in the following illustrations is not on the symmetry
Operation; but on the whole structure of symmetrical configurations.
The level of precision to which the working definition of symmetry was
taken in Section 1.1 suggest that the group structure of symmetrical
éonfigurations be emphasized. The idéa of a group of automorphisms (DEFINITION
D:09, Mathematical Appendix) is the basis of the illustrations. The
architect's intuitive understanding of the mathematical ideas of lattices
and point groups distributed on those lattices will be the key to
understanding the illustrations. It is hoped that this will not only

allow the non-mathematician to visualize symmetry groups in two and three



- 62 -

dimensionsj but, because of the architect's experience with grids, to allow
the application of symmetry structures in design,

Ultimately, the direction of the presentation here is the explanation
of symmetry groups associated with the symmetrical configurations illustrated,
A table of those groups will be presented in the appendix (TABLE MA:01,
Mathematical Appendix), Group theory is a branch of modern higher mathematics
that, among other things, provide the tools for the investigation of
structure and the derivation of the mathematicagl thoery of symmetry; The
concept of a group (DEFINITION D:01, Mathematical Appendix) was invented
‘ by the French mathematician Galois in 1830, It has proved to be one of
the most powerful and significant abstractions in all of mathematics,

Newman explained the significancé of the concept by suggesting,

The theory of groups is a branch of mathematics in which one does

something to something and then compares the result with the

result obtained form doing the same thing to something else, or

something else to the same thing, This is a broad definition but

it is not trivial, The theory is a supreme example of the art of

mathematical abstraction, It is concerned only with the fine filigree

of underlying relationships; it is the mgit powerful instrument

yet invented for illuminating structure, :

The theory also sounds remarkalby appropriate in design, The idea of group
theory is to differentiate and classify the structure of relations in the
thing to which it is applied. It is possible to show that there are a
finite number of space creating configurations of geometrically equal parts
possessing an automorphism, Those automorphisms form a group, and by
definition this is the symmetry group associated with those configurations.
The mathematical theory of symmetry describes the finite number of
structurally different symmetrical configurations in one, two and three

dimensions using group theory, The following sections illustrate examples

of symmetrical configurations associated with each symmetry group;
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The reason that there are only a finite number of symmetry groups
ig because of the requirement for automorphism of the whole configuration.
A group'of automorphisms of an entire configuration is the result of the
presence of an underlying lattice and the repeated appearance of a point
group at each point in that lattice. A symmetriéal configuration is
always produced simply by combining a point group with.a lattice. There
are a finite number of symmetry groups just because there are a limited
number of structurally different lattices and a limited number of point
groups compatible with those lattices,

A lattice may be defined as a collection of points arranged in such
a way that each point has the same spatial relationships in the same directions
as every other point in the lattice, Intuitively, the architectural
equivalent is a grid, in which every point éf intersection of parallel
grid lines is identical with every other. Becauée grids are common design
devices in architecture, it is appropriate to emphasize the idea of an
underlying lattice in symmetrical configurations, The classic study of
lattices in mathematics was undertaken by another French mathematician,
Bravais, in 1850. Bravais showad that there are only fourteen structurally
different lattices in three dimensions, distinguished by their unit cells.
The architeétural equivalent of a unit cell would be the smallest bay defined
in a grid, The fourteen spatial lattices havé become kaown as Bravais
lattices, Later, it was shown that there are only five Bravais lattices in
two dimensions; and only a single Bravais lattice in one dimension.

A point group may be defined as a group of automorphisms acting about
a point which leave that point "invariant'", that is, the same for each auto-

morphism, Intuitively, a point group may be equated with an arrangement of
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architectural elements about a point such that each element is the same
distance and at the same angle from the point., The investigation of point
groups was origninally undertaken to study thg shapes of crystﬁls; Weyl
attributed the first listing of the two-dimensional point groups to
Leonardo da Vinci63 although he did not use the mathematics of group
theory, obviously. The mathematical treatment of the subject proceeded
only after the development of group theory. It has been shown that there
are only thirty-two different pointgroups in three dimensions, ten in two
dimensions, and just two in one dimension that are compatible with the
Bravais lattices'at each dimension. This results from a proof of the
"cystallographic restriction"; excellent examples of which may be found
in Wey164 and in March and Steadman?5

The mathematical theory of symmetry was first formulated at the very
end of the 19th Century by combining these point groups with_the Bravais
lattices in an exhaustive manner; using group theory to identify and classify
all possible symmetry groups. The theory was the product of two major
independent %orks. The Russian crystallbgrapher Fedorov was.tbelfirst,-about 1885,
to establish the existence of only two hundred thirty symmetry groups in
space, But the German mathematican Schoenflies was the first to publish,
about 1891, the mathematical derivation and éxhaustive classification of
the two hundred thirty groups. Schoenflies did concede Fedorov the credit
for establishing the mathematical theory of symmetry.66 It has also been
shown using similar mathematical classification that there are only seventeen
symmetry groups in two dimensions, and only seven in one dimension., Despite
the fact that the mathematical theory of symmetry did not completely emerge

until the 20th Century, all seventeen symmetry structures possible
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in two dimensions may be found in the decorative tradition of Ancient
Egyptian art. ~Weyl commented:

One can hardly overestimate the depth of geometric imagination and

inventiveness reflected in these patterns., Theor construction is far

from mathematically trivial. The art of ornament contains in implicit
form the oldest piece of higher mathematics known to us. To be sure
the conceptual means for a complete abstract formulation of the
underlying problem, namely the mathematical notion of a group of
transformations, was not provided before the 19th Century; and only
on this basis is one able to prove that the 17 symmetries already
implicitly known to the Egyptian crafstman exhaust all possibilities,

Indeed,all decorative patterns, wallpaper patterns, frieze patterns, and

similar ornamentation in architecture, as it has been used for centuries

in many parts of the world, is based on two-dimensional symmetry.

Because Fedorov is credited with their enumeration, the two hundred
thirty space groups describing symmetrical configurations in three dimensions
are commonly called the "Fedorov groups”. But the origins of the plane
groups deseribing symmetrical configurations in two dimensions are lost
in antiquity, hence they are just called the "Wallpaper groups". Similarly,
the linear groups describing symmetrical configuration in one dimension are
called "Frieze groups'", The mathematical theory of symmetry is about

the identification and classification of these symmetry groups. The numbers

associated with the theory may be summarized in a table (TABLE 2,1:01).

TABLE 2,1:01

Dimension Bravais lattices Point Groups Symmetry Groups
One 1 2 7 (Freize)
Two 5 10 17 (Wallpaper)
Threa 14 32 230 (Fedorov)

This table indicates the number of Bravais lattices and the number of point
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groups compatible with them; they combine to form the number of symme try
groups indicated.

The format for the explanation of éhe mathematical theory of symmetry
in the next three sections is to illustrate examples of all the Bravais
lattices and all the point groups compatible with them., In the section
on symmetry in one dimension, typical symmetrical configurations associated
with all seven Frieze groups are illustrated. Similarly, in the section on
symmetry in two dimensions, typical symmetrical configurations associated .
with all seventeen Wallpaper groups are illustrated, However, in the section
on symmetry in three dimensions, it would simply not be practical to
illustrate symmetrical configurations associated with all two hundred thirty
Fedorov groups. Only one such configuration has been illustrated just
as an example. However, with all fourteen Bravais lattices and all thirty
two point groups in three dimensions illustrated, it is still possible
to use the section as a resource for application in design, This is the
advantage of the approach taken here, as opposed to the approach taken by
March and Steadman.

The mathematical theory of symmetry is one of those areas in which
there are several competing notations, each with its own advantage and
disadvantage. In general, to the lower left in the illustrations that follow
is the International symbol, sometimes called the Hermann-Maugin notation,
It consits of numbers indicating the number of turns of rotation, for
example, "3", indicates a three turn rotation in an automorphism, There
are also small letters; "m'', iqdicating a mirror reflection, "g", indicating
a glide reflection., A number with a bar over it indicates an inversion

in space through the point about which there is a rotation of that number
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of turns, To indicate that state of the underlying lattice in two dimensions,

1 n

lower case letters, "p'" and "c"

, are used, meaning primitive and centered,
Similarly, the state of the underlying lattice in three dimensions is indicated
with upper case letters, "P", "C", "F", and "I", meaning primitive, centered,
face-centered, and body-centered, The meaning of these states should be clear
through the visual information in the illustrations of the Bravais lattices
in the following three sections, To deonte a symmetry with the International
symbol, one first writes a letter indicating the state of the underlying
lattice, then a series of numbers and letters indicating the rotations and
reflections present. For example, 'p4gm'", indicates a symmetry group based
on a primitive two dimensional lattice, with four turn rotations, glide
reflection, and mirror rflection.

In general, to the lower right in the illustrations that follow is
a mathematical notatioh. These are of two types. The primary notation is
the symbols developed by Schoenflies in his pioneé;ing enumeration of the
symmetry groups. To indicate the point groups, the symbol uses an upper case
letter, "C", '"D", "I", and "O", which is associated with the structure of
the group in relation to the symmetry of cyclic,Adihedral, tetrahedral, and
octahedral solids, The létter is followed with a sub-script number which
indicates the number of turns of rotation in the point group., For .example,
"C,", indicates the four turn cyclic group. However, to indicate the symmetry
groups, the Schoenflies symbol is often replaced by second type of notation69
that is a sort of shorthand., For symmetry groups in one dimension, the upper
case letter, "F", for "frieze, is used., For symmetry groups in two dimensions,
the upper case letter, "W", for wallpaper, is used. These are then followed

by a sub-script number, indicating the number of turns of rotation; and by a
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super-script number, arbitrarily indicating the_different reflections
present, if any; So the symmetry group, ''pi4gm', in the International
symbols is given the symbol, "Wi" in this mathematical shorthand., However;
- for the Fedorov symmetry groups in three dimensions, there is no shorthand.
For these groups, it is conventional to use the Schoenflies symbol for the
point group, again with a super-script number arbitrarily indicating the
different instances of all the symmetry groups based on that same poipt group,
For example, "Dg", indicates the eighth instance of symmetry groups in
three dimensions based on the two turn dihedral point group.

Both the International and Schoenflies symbols are more subtle than
the explanation above. They both, also; have certain advantages over the
other as systems of notatioh. The International symbol tells more about
the actual physical symmetrical configuration in terms of the underlying
lattice and symmetry operations. This is why it is ﬁreferred by
cyrstallographers. Unfortunately, it tells very little about the mathematical
group structure associated with the configuraFion. The Schoenflies symbol
does tell exactly that, it is a "pure'" mathematical notation indicating
the group structure, It allows the mathematician to investigate and
classify symmetry groups according to their mathematical properties. This is
why it is preferred by mathematicians. Because they are each better for
certain purposes, both the Internatioqal and Schoenflies symbols have been
included in the illustrations following.

There are also conventions for numbering the symmetry groups established

in the International Tables of X-Ray Crystallography?o These numbers are

also shown in the right side of the title box for each illustration of a

symmetry group in the following sections., These table might be consulted
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in any event, as they provide an encyclopedia of the two hundred thirty
Fedorov symmetry groups in space, |

The next three sections illustrate the resources of the mathematical
theory of symmetry as they might be applied in architecture. Perhaps
the architect will most appreciate the visual explanation of.the theory
provided by illustrations of symmetrical configurations, rather than a
technical mathematical explanation, Irregardless of notations and emphasis,
a designer would certainly develop a deep sense for the mathematical theory
of symmetry by actually drawing symmetrical configurations; Similarly,
the observation of symmetrical configurations in both the man-made and
natural worlds would help develop that sense., The illustration of
Bravais lattices and point groups in the following three sections are
intended as an educational resource for those exercises, Those exercises,
together with the theoretical groundwork provided in Part One, should
support the thesis that the mathematical theory of symmetry may be a

significant part of the knowledge an architect applies in design.
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2,2 SYMMETRY IN ONE DIMENSION
The intent of this section is to illustrate the single Bravais
lattice, two point groups, and seven freize groups of symmetry in one
dimensions. The presentation here is the same as it will be in the
following two sections, a small black asymmetric triangle has been taken
as an element to be transformed into symmetrical configurations., The
choice of elements is totally arbitrary, although if the form of the
element were symmetrical itself (say involving a reflection) it would
not be suitable for illustrating all possible symmetrical configurations,
In one dimension, the single Bravais lattice consists of a series
of points in a straight line, separated by an arbitrary dimension:'a' (Fig. 2.201).
The two point groups that may be combined with that lattice are the cyclic
group of one turn rotation, C1 , and the cyclic "symmetry® group, CS , which
might also have been called the dihedral group of one turn rotation, 'D17,V
(Fig. 2.201). These two point groups combine with the single Bravais lattice
to produce the seven fieze groups, Fq , F% s F% , and Fi (Fig. 2.202); F2 s
F; . Fg (Fig. 2.203). These groups exhaust all the possibilities for symmetrical

configurations in one dimension,
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2,3 SYMMETRY IN TWO DIMENSIONS

The intent of this section is to illustrate the five Bravais lattices,
ten point groups, and seventeen wallpaper groups of symmetry in two dimensions,
The presentation uses the same black asymmetric triangle transformed into
symmetrical configurations associated with each group. But, unlike the
previous section, this section is divided into five. sub-sections, one for
each of the Bravais lattices and the symmetry groups based on those lattices.
In each of the sub-sections, the unit cell of thé Brévais lattice has been
indicated in heavy lines; and the conditions which create that cell are
indicated,

But, first the ten point groups which may be combined with all five
lattices are illustrated. The proof of the crystallographic restriction
(see reference in section 2.1) establishes that only point groups of one, two,
three, four, and six turn rotations are present in symmetrical configurations.
Therefore, the ten point groups in two dimensions are Cj , C2 » Cq C4 , and
C6 (Fig. 2.301); and CS (or Dy), Dy , Dy, D4 » and Dg (Fig. 2.302), Each

of these point groups combine with certain of the five Bravais lattices

to produce the seventeen wallpaper groups of symmetry in two dimensions,
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2,3,1 OBLIQUE Fig. 2,303 ' LATTICE IN TWO DIMENSIONS

The first Bravais iattice in two dimensions is the oblique lattice
(Fig. 2.303). The unit cell is primitive, in the sense that there are no
points inside the cell created by a grid of parallel lines through the
points. The unit cell consists in two unequal arbitrary lengths, a and b,
with an angle between them, @ , of anything except 90°, This is the most
general and least restricted lattice in two dimensions.

The oblique lattice combines with the cyclic poinf groups, C1 and Cy
to produce the first two symmetrical configurations of the seventeen
wallpaper groups of symmetry in two dimensions. They are fhe groups;

Wl (Fig. 2.304) and W, (Fig. 2.305). ©No other point groups combine with
the oblique lattice to produce any symmetry diétinct from these two groups;

This is typical of the presentations to follow in each of the
sub-sections; it is hoped that a feeling for the approach used will allow

the use of the illustrations as resources for design;
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axb, ¢—90° rectangular

2,3.,2 RECTANGULAR Ffig, 2.306 LATTICE IN TWO DIMENSIONS

The second Bravais lattice in two dimensions is the rectangular lattice
(Fig. 2.306), The unié cell is also primitive, consisting in two unequal
arbitrary lengths, a and b, with an angle between them, @ , of exactly 90°,
The lattice is, obviously, equivalent to the rectangular grids often used
by architects. In this sense thiS'isla very important sub-section of symmetry
in two dimensions,

The rectangular lattice combines yith the point groups, Cl” Cy , Cg in
two ways, and D, to produce the next five symmetrical configurations of the
seventeen wallpaper groups of symmetry in two dimensiens. They are the groups:
W2 (Fig. 2.307), W (Fig. 2.308), Wa (Fig. 2.309), WD (Fig. 2.310), and Wy
(Fig. 2.311). No other point groups combine with the oblique lattice to
produce any symmetry distinct from these five groups. It should be noted
that Wé (Fig. 2.311) has been shown with the point group C, at an angle
bisecting the angle of the lattice. This is necessary if the point group is
to occur at every point in the lattice, but this group is often shown with

the point group not on the angle at every other point in the 1attice.71
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awmb, g%90°, ¢+60° : {centered] rhombic

2,3.3 RHOMBIC Fig, 2,312 LATTICE _IN__TWO _DIMENSIONS

The third Bravais lattice in two dimensiong is the rhombic lattice
(Fig. 2;313); The unit cell is not primitive, it is centered because it is
possible to draw a cell created by parallel lines (shown as broken) that
has a point exactly at its center. The unit cell consists in two equal
arbitrary lengths, a = b, with an anglevbetween them, @ ; of anything except
60° or 90°.

The rhombic lattice combines with the point groups, Cq and D2 , to
produce two more symmetrical configurations of the seventeen wallpaper
groups of symmetry in two dimensions., They are the groupsf Wi (Fig; 2;313),
and Wé (Fig. 2.314), Né other point groups combine with the rhombic lattice

to produce any symmetry distinct from these two groups;
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a=b, g=90° ’ square

2.3.4 SQUARE TFig, 2.315 LATTICE _IN_TWO  DIMENSIONS

The fourth Bravais lattice in two diﬁensions is the square lattice
(Fig. 2.315). The unit cell is, once again, primitive, consisting in two
equal arbitrary lenghts, a = b, and an angle between them, §§ , of exéctly
90°, This is also equivalent to the sguaré grids commbnly used as design
devices in architecture, |

The square lattice combines with the point groups, C, in two ways
and D4, to produce three more symmetrical configurations of the seventeen
wallpaper groups of symmetry in two dimensions, They are the groups;
W, (Fig. 2.316), Wy (Fig. 2.317), and W (Fig. 2.318). No other point
groups combine with the square lattice to produce any symmetry distinct
from these three groups. It should be noted that WZ (Fig. 2.318) again
involve the point group C4 at an angle bisecting the angle of the lattice,
and again this group is often shown with the point group not on the angle

at every other point in the 1attice.72



Py Al sa

A2 & /rua {
sa |l A

Y (Y7
p .A,.«mv.sr,

SN
»a |l A

A 4 4T AT
o
AN AN AN
l'fk‘l:'! I’j‘ h:‘l !’j‘ k:‘l I’:‘ ‘:‘!
QUSSP
AN AN AN AN
QU IR P

A »a ’ \lsa”

A 444

- 82 -

v N /\Y( N (\\

y ¢ A2 4

Fig, 2.316
Fig. 2.317

Fig, 2,318



- 83 -

A/ V\A
AVAV)

/NN /N

1 awmb, g =60° triangular
'

2,.3,5 TRIANGULAR TFig. 2.319; LATTICE IN_TWO _ DIMENSIONS

The fifth and final Bravais lattice in two dimensions is the triangula;
lattice (Fig. 2.319). The unit cell is primitive, consisting in two equal
arbitrary dimensions, a = b, with an angle between them, @ , of exactly 60°.
The lattice is also not disimiliar to some grids in modern architecture,
especially those based on the use of space frames, which often involve
60° geometry,

The triangular lattice combines with the point groups, C3 , C6 » Dg in
two ways, and Dg , to produce the final five symmetrical configurations of
the seventeen wallpaper groups of symmetry in two dimensions. They are the
groups: W, (Fig. 2.320), Wy (Fig. 2.321), W3 (Fig. 2.322), Wy (Fig. 2.323),
and Wé (Fig. 2.324). ©No other point groups combine with the triangular lattice
to produce any symmetry distinct from these five groups;

This completes the illustration of the seventéen -wallpaper symmetry gruups in
two dimensions, These groups exhaust all the possibilities fo; symmetrical

configurations in two dimensions,
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2.4 SYMMETRY IN THREE DIMENSIONS

The intent of this section is to illustrate the fourteen Bravais
lattices, and thirty two point groups that combiné to produce the two
hundred thirty Fedorov groups of symmetry in three dimensions, As indicated
earlier, it is not practical to illustrate all two hundred thirty symmetry
groups in space, but the illustrations provided should be enough to allow
the designer to use this section as a resource. Like the previous section,
this section is divided into sub-sections, The fourteen Bravais lattices
and thirty two point groups may be classified into Qeven gystems; commonly
called the seven crystal classes in three dimensions. Like previous
sections, a small black asymmetric triangle,projected into a triangular solid,
has been taken as the element, Similarly, the Bravais lattices have been
shown in projection, with the unit cells indicated in heavy lines, and
the conditions which create that cell are indicated with the two dimensional
lattice facing the viewer also indicated, Because architecture is an
art of space creation (see section 1.3), symmetry in three dimensions may

be the most important part of the mathematical theory of symmetry.
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awbwc, oblique, g =%90° TRICLINIC (P}

2,4,1 TRICLINIC Fig. 2.401 LATTICE IN THREE DIMENSIONS

The first crystal class in three dimensions is the triclinic class.

Tn this class there is only one Bravais lattice, the primitive triclinic
(Fig. 2.401), The unit cell consists in three unequal arbitrary lengths,
a, b, and c; with an oblique two dimensional lattice facing the viewer,
projecting into spaceat an angle (to:the”pagé),r¢., of anything except 90°,
Again, this is the most general and 1eést restricted lattice in three
dimensions.

This single lattice combines with two point groups in three dimensions,
they are the cyclic point groups, Cq and C; (Fig. 2.402). The two triclinic
point groups combine with the primitive lattice to generate only two
of the two hundred thirty Fedorov groups in space (see TABLE MA#Ol, Mathematical
Appendix). fhe triclinic crystal class contains just these two symmetry

groups in space,
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2 R 4‘ 2 MONOQCLINIC Fig. 2 . 403 LATTICE IN THREE DIMENSIQNS

The second crystal class in three dimensions is the monoclinic class,
In this class there are two Bravais lattices, the primitive monoclinic
(Fig. 2.403) and the centered monoclinic (Fig; 2.404); The primitive unit
cell consists in three unequal arbitrary lengths, a, b, and cj with a
rectangular lattice facing the viewer, projecting into space at an angle,
@ , of anything except 90°, The centered unit cell is identical, except
there is a point at the center in the side of cell projecting into space.

These two lattices combine with three point groups in three dimensions,
they are the cyclic point groups, C, , Cg , and Cop (Fig. 2.405), These
groups may be drawn in two ways, since they occur in crystals in both ways,
they have been called the lst setting (top row, Fig; 2;405) and the 2nd
setting (bottom row, Fig. 2.406). The three monoclinic point groups combine
with the primitive lattice to generate eight of the Fedorov groups; and
with the centered lattice to gnerate five more (see TABLE MA#Ol, Mathematical
Appendix). 1In total, the monoclinic crystal: class contains thirteen

symmetry groups in space.
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2.4,3 ORTHORHOMBIC TFig. Z. 406 __LATTICE IN_THREE DIMENSIONS

The third crystal class in three dimensions is the orthorhombic class.
In this class there are four Bravais 1attices; the primitive orthorhombic
(Fig. 2.406), the centered orthorhombic (Fig. 2.407), the face-centered
orthorhombic (Fig. 2.408), and the body-centered orthorhombic (Fig, 2.409).
The primitive unit cell consists in three unequal lengths, a, b, and cj
with a rectangular lattice facing the viewer, projecting into space at
an angle, @ , of exactly 90°. The centefed unit cell is identical, except
there is a point at the center of the side of the cell projecting into space.
The face-centered unit cell is also identical, except there is a point
at the center of every face of the cell, The body-centered unit cell is
also identical to the primitive unit cell, except there is a point at the
center of the body of the cell,

These four lattices combine with three point groups in three dimensions,
they are the cyclic point group, Gy » and the dihedral point groups, Dy end
Doy, (Fig. 2.410)., The three orthorhombic point groups combine with the
primitive lattice to generate thirty of the Fedorov groups; with the centered

lattice to generate fifteen; with the face-centered to generate fives; and with

(cont'd. p; 93)
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(cont'd, from p. 92)
the body-centered to generate another nine of the Fedorov groups - (sée TABLE.
MA:01, Mathematical Appendix); In total, the orthorhombic crystal class

contains fifty nine symmetry groups in space;
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2.4.4 TETRAGONAL Fig ' 2.411 LATTICE IN THREE DIMENSIONS ;
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The fourth crystal class in three dimensions is the tetragonal class,
In this class there are two Bravais lattices, the primitive tetragonal
(Fig. 2.411), and the body-centered tetragonal (Fig; 2.412); The primitive
unit cell consists in two unequal arbitrary lengths, a and b, and a third
length, ¢ , equal to one of them, b = ¢ 3 with a rectangular lattice facing
the viewer, projecting into space at an angle, ¢ , of exactly 90°, The body-
centered unit cell is identical, except that there is a point at the center
of the body of the cell,

These two lattices combine with seven point point groups in three
dimensions, they are the cyclic point groups, C4 s Cun and the special
point group S, (Fig. 2.413); as well as the dihedral point groups, D4 s D4h s
D,y and the cyclic point group, C4v (Fig. 2.414),., The seven tetragbnal
point groups combine with the primitive lattice to generate forty nine of
the Fedorov groups; and with the body-centered lattice to generate another

nineteen,.(see TABLE MA:01, Mathematical Appendix). In total, the tetragonal

crystal class contains fifty eight symmetry groups in space;
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o=b e, triangular, g =90° " CENTERED HEXAGONAL (C)

2 4 5 TRIGONAL Figo 2.415 LATTICE IN THREE DIMENSIONS

The fifth crystal class in three dimensions is the trigonal class,
In this class there are two Bravais lattices, the primitive .trigonal
(Fig. 2.415) and the trigonal rhombohedral (Fig. 2,416), The primitive
unit cell consists in  two equal lengths, a = b » and a third length, c ,
not equal to either a or b; with a tiangular lattice facing the viewer,
projecting into space at an angle, § , of exactly 90°, The rhombohedral
_unit cell consists in three equal dimensions, a = b = c,; with a rhombic
lattice facing the viewer, projecting into space at an angle, ¢ , exactly
equal to the angle, @, , in the rhombic lattice,

These two lattices combine with five point groups in three dimensions,

they are the cyclic point groups, C3 , C, , the special point group, S6 s

3v
and the dihedral point groups, Dy, D3v (Fig. 2.417). The five trigonal
point groups combine with the primitive lattice to generate eighteen of
the Fedorov groups, and with the rhombohedral lattice to generate another

seven (see TABLE MA:01, Mathematical Appendixz). In total, the trigonal crystal

class contains twenty five symmetry groups in space,
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2.4,6 HEXAGONAL

The sixth crystal class in three dimensions is the hexagonal class,
In this class there is just one Bravais lattice, the centered hexagonal
(Fig. 2.415) which is not distinct from the primitive trigonal, It is
not considered a separate member of the fourteen Bravais lattices. The
centered hexagonal unit cell, shown in broken line, consists in the same
conditions as the trigonal primitive.

This lattice combines with seven point groupsin three dimensions,
they are the cyclic point groups, Cq » Cey, » CBh (Fig. 2;418); as well
as the cyclic point group, C6v s and the dihedral point groups, D3h s Dg »
D¢y, (Fig. 2.419). The seven point groups combine with the centered hexagonal
lattice to generate twenty seven of the Fedorov groups (see TABLE MA:01,
Mathematical Appendix)., The hexagonal crystal class contains just these

twenty seven symmetry groups in space,



Fig., 2.418

Fig., 2.419
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Tﬁe seventh and final crystal class in three dimensions is the cubic
class., In this class there are three Bravais lattices, the primitive cubic
(Fig. 2.420), the face-centered cubic (Fig, 2.421), and the body-centered
cubic (Fig. 2.422). The primitive unit cell consists in three equal lengths,
a=b=c, with a square lattiée facing the viewer, projecting into space at
an angle, @ , of exactly 90°, The face-centered unit cell is identical,
except that there is a point at the center of every face of the cell. The
body-centered unit cell is also identical, except that there is a point at
the center of the body of the cell,

These three lattices combine with five point groups in three dimensions,
they are the tetrahedral point groups, T , T, (Fig, 2.423); the tetrahedral
point group, Td » and the octahedral point group, 0 (fig. 2.424); as well as
the octahedral pqint group, O, (Fig. 2.425), Each of the illustrations of
these point groups shows only half of the elements, there is an identical
pattern of elements in the three directions facing away from the viewer.

The five cubic point groups combine with the primitive lattice to generate
fifteen of the Fedorov groups; with the face centered lattice to generate

(cont'd. p. 101)"”
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(cont*d, from p. 100)
eleven; and with the body-centered lattice to generate the final ten
Fedorov groupsf(see TABLE MA:01, Mathematical Appendix)., In total, the

cubic crystal class contains thirty six symmetry groups in space,
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This completes the illustration of the fourteen Bravais lattices
and thirty two point groups in three dimensions, To prov;de an example
of the symmetrical configurations that may be generated from these, there
is an illustration of the Fedorov group, Di (Fig; 2;426), that results from
the combination of the point group, D4 ,» with the primitive tetragonal
lattice, All two hundred thirty Fedorov groups in space might be so
illustrated, but for practical space limitations they are not shown here.
This also completes the explanation of the resources of the
mathematical theory of symmetry in Part Two. With the visual information
here, together with the Mathematical Appendix, fhe thesis5that the mathematical
theory of symmetry may be a significant part of the knowledge an architect

applies in design is supported.



PART THREE: SPECULATIONS
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3.1 THE AESTHETICS OF COMPLEXITY

Sir Henry Wotton's The Elements of Architecture, first published in

1624, provided a famous description of the conditions for good architecture,
"In architecture, as in all other operative arts, the end.must direct the
operation. The end is build well. Well building has three conditions:

n’3 The application of the mathematical

Commodity, Firmness, and Delight,
theory of symmetry must be directed to one of those conditions in the
resulting work of architecture., The intent of this overall part is to
make some speculations aboﬁt the contribution of that application in
architecture., The particular intent of this section is to speculate that
the mathematical theory of symmetry is a means directed by the end of
aesthetic delight and a method for dealing with the aesthetics of complexity
in architecture,

A work of art that is only a work of art, that serves no other purpose,
has its aesthetic methods as an end in themselves., Nothing more is communicated
by the work than to draw attention to the intrinsic values of the aesthetic

effects of the work, But, architecture, almost by definition, must serve

some other purpose; including the accomadation of human activity, and, more
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importantly, the communication of a meaningful awareness of space; The
work of architecture has the communication of spatial information, to
express and induce meaning, as one of its primary ends; The fact that
architecture is also an art suggests that the methods of the designer
and their effects in the resulting work of architecture are channels
for communication. A work of art, such as architecture, that draws
attention to extrinsic values of aesthetic effects, such as the awareness
of space, allows communication between viewer and creator., The methods
applied in these works are channels for that communication.

The mathematical theory of symmetry in architecture is a methadi
for the creation.of order.in the transmission of spatial information by
the work of architecture. The creation of this order is not an important
aesthetic effect if the design problem is very well understood, and
therefore the spatial information communicated is simple. However, most
design problems are not well understood74 and the information communicated
by the architecture is complex, Indeed, the complexity of information communicated
is an important aspect of the study of design problems; Herbert Simon has
defined complexity in design:

«+oby a complex system I mean one made up of a large number of

parts that interact in a nonsimple way. In such systems, the

whole is more than the sum of the parts, not in an ultimate,

metaphysical sense, but in the improtant pragmatic sense that, given

Fhe propert?e§ of the parts.and the laws of Fheir interaction,ﬁét

1s not a trivial matter to infer the properties of the whole.
Complexity is an important topic in any discussion of methods for creating
order, because there is an interaction between thé\aésthefic‘effecpslof

order and complexity., The nature of that interaction should guide the

application of methods such as the mathematical theory of symmetry in design.



- 107 -

An important point to be made is the recognitiqn of the paradox
of studying the methods of the artist and the effects of those methods in
works of art as one thing, The persistence of this paradox usually results
in aesthetic recipes linking certain methods and effects with certain
types of information to be communicated. Those recipes then become the
criteria for the evaluation of good or bad works of art; that is, they
became laws of beauty. This was the subject of classical aesfhetics.. That should
not be the subject of a discussion aesthetic methods and effects in
design. Anton Ehrensweig explained that:
There was no need for disputing at length their spurious laws of
beauty, The passage of time alone saw to that, With the rise
modern psychology, the aestheticians changed their aim. Instead
of search for objective properties of beauty in the external world
Fhey turned %nwasgs to find the source of the aesthetic experience
in our own mind, :
The study of aesthetic methods and effects in works of art should be seen in
the context of understanding psychological p;ocesses; The application of
the mathematical theory of symmetry as a methodfor creating the effect of
order in architecture is not an aesthetic recipe for good architecture
(see section 1.1, p. 30), It is only a way of understanding certain
psychological processes involved in aesthetic preferences of individuals.
It is appropriate to rely upon experimental psychology to make
speculations about the aesthetics of complexity in design to which
the mathematical theory of symmetry is applied. D.E. Berlyne was a pioneer
in the experimental study of psychological processes in aesthetics; his
major concept is "arousal', which is defined as:
...the activating or energizing aspects of motivation or emotion,
This work has given rise to the psychophysiological concept of

'arousal', which, among many other ares of research that it has
affected, seems to have great potential for throwing light on
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aesthetic phenomena; A human being or higher animal can be regarded

as possessing, at a particular moment, a particular ‘'level of

arousal' or 'activation'. His position along this dimensions cane

be regarded roughly as a m§9sure of how wide awake, alert, or

emotionally excited he is,
The concept of arousal is significant because it allows the experimental
study of aesthetic mehtods and effects, In the context of works of
architecture, it is clear that if the work is to communicate an awareness
of spéce, then it must arouse the people involved in the creation and
appreciation of the work. The study of design methods aimed at certain
aesthetic effects, such as spatial order, is interested in those qualities
that influence levels of arousal. Berlyne suggested:

.s.it will be convenient to refer to all properties of stimulus

patterns that ten, on the whole, to raise arousal as the arousal

potential. This term will denote something like the psychological
strength of a stimulus pattern, the degree to which it can disturb

and alert the organism, the ease with which i;scan take over control

and overcome the claims of competing stimuli,
The two concepts of arousal and arousal potential provide a psychological
context within which to understand the application of the mathematical theory
of symmetry in design as a method for dealing with the aesthetics of
complexity.

Berlyne identified three classes of properties that influence the
arousal potential of stimulus patterns such as works of art, A work of
architecture may be thought of as just such a stimulus pattern; The first
class is the psychophysiological properties, which refer to the effects of
the intensity and frequency of physical stimuli, 1In architecture, this includes
things like bright lights, loud noises, intense colours, hard surfaces,

crowds of people, and similar things. The second class is the ecological

properties, which refer to the effects of boilogical and envirionmental



- 109 -

conditions. In architecture, this includes things like shelter from
wind and rain, warm air, natural sunlight, close contact with the ground,
the way energy is consumed, and similar things; The third class is the
collative properties, which refer to the effects of relations and lack
of relations between stimuli or conditions., In architecture, this
includes things like order, complexity, novelty, symbolic associations,
cognitive images, and similar things. These latter properties are

those to which methods applying knowledge of structure, such as the
mathematical theory of symmetry, are directed,

The activity of design must take into account all three types of
effects,. . The work of architecture.does provide certain intensity and
frequency of physical stimuli, reflecting the architect's concern to
accomodate the fupction of the building., Equally, the work of architecture
does provide certain biological and environmental condition;, reflecting
the architect's to meet the techmological demands of the building. The
arousal potential resulting from these two classes of properties relates
to the planning and construction of the building; or in Wotton's conditions
for well building, the commodity and firmness. But, it is the third
class of effects that relates to the aesthetics of the building; the delight
of well building. The work of architecture does provide certain relations
between stimuli and conditions, reflecting the architect's concern to
indicate the relative aesthetic values of elements of the building. It
is the structure of these relations that should be central to the discussion
of architectural aesthetics, Of course, the planning and comstruction
of the building are important, because poor quality in either one may
provide such arousal potential as to detract from the structure of relations

that convey the aesthetic effect, But, granted that the planning and
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construction difficulties of a building may be handled adeguately by the
training of architects; it is the knowledge of structure applied by
architects that cepveys. the.aesthetic effects of a building;

The mathematical theory of symmetry may be a significant part of
an investigation of .structures in space (see section 1,4), The application
of the theory as a method for creating the relations between architectural
elements creates one of the basic aesthetic effects in architecture, that
is, the quality of order. The application should be directed by the
aesthetic concerns of an architect, not either the planning or construction
concerns, The important question becomes, what aesthetic concern is
dealt with by an application of the mathematical theory of symmetry to
create order?

The effects of structures that increase<;rousa1 generally depend
on the contrast of elements with accompanying elements or previous‘
elements of the same sort. In architecture, devices such as the
juxtaposition of bright colours and different shapes produce this kind of
arousal, The increased number of forms of elements and wide variation in
the awareness. of space createvariety increasing the arousal potential,
Novelty is one of the most common devices of this sort., The innovation
resulting from the inyention of new elements or the use of existing elements
in new ways provides excitement in the design, A work of architecture that
differs in a striking way from previous examples of the same building type,
produces a significant raising of arousal. Raising certain expectations
for the building, then surprising the viewer with something unexpected
or not contiguovs with what preceded it, is a basic device for increasing

arousal potential, Some degree of unpredictability or ambiguity will
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also raise the level of arousal in the viewer. Contrasting patterns of
stimulation may also be very arousing. Perhaps, all these devices can be
collected in the idea of complexity, as defined earlier, In general,
structural. complexity increases the arousal potential of the work
of architecture,

The effects of structures that decrease arousal generally depend
on the association of elements with accompanying elements or previous
elements of the same sort., 1In architecture, devices such as the blending
of complementary colours and similar shapes produce this kind of lack of
arousal. The decreased number of forms of elements and limited variation
in the awareness of space create redundancy decreasing the arousal potential,
Familiarity is one of the most common devices of this sort., The convention
resulting from the adoption of existing elements or the use of new elements
in existing ways provides ﬁradition in the design, A work of architecture
that differs in no striking way from previous examples of the same building
type, produces a significant lowering of arousal, Raising certain expectations
- for the building, then fulfilling the viewer with the thing expected or
contiguous with what preceded it, is a basic device for decreasing arousal
potential. Some degree of predictability or clarity will also lower the
level of arousal in the viewer, Similar patterns of stimulation may also
net be arousing., Perhaps, all these dévices can be collected in the idea
of order, as defined earlier (see section 1,4). In general, structural
order decreases the arousal potential of the work of architecture.

It is important to relate the aesthetic preferences of both the
designer and the viewer to the raising and lowering of arousal through

structural complexity and order, Clearly, if the work of architecture
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has the intention to create an aesthetic awareness of space, then the
designer should be concerned with maximizing the aesthetic preferences
for the work. Aesthetic preference cannot be simply equated with beauty
or pleasingness, it refers only to the individual's judgement of the
attention that is due the work, both for its methods and its content,
Certainly, the application of the mathematical theory of symmetry in
design must be part of the methods for creating an aesthetically preferable
work of architecture,
There is a need to balance the devices that create structural
complexity with the devices that create structural order. But the
nature of their interaction is not simple., This is one of the crucial
issues in discussions of architectural aesthetics. Berlyne saw common
ground in most aesthgtic philosophies; he argued:
Despite the very different terms in which the two components
have been specified through the centuries, it is not hard to discern
common ground, There is always one factor, whether it be called
'multiplicity’, 'variety'!, or 'complexity® that can be expected to
raise arousal. Then, there is the other factor, 'unity'!, 'order!,
or '1awfu1nessf t?at can be73xpected to lower arousal or at least
keep arousal within bounds,
It makes sense to suggest that works of architecture must be stimulating;
they must include arousal increasing devices of complexity; Generally then,
as the complexity of a work increases, so will the arousal gf*éﬂeTGiewer and
this will make the work more aesthetically preferablé. But at some point,
increases in arousal will become uncomfortable for the viewer and this will
make the work less aesthetically preferable. Eventually, at some extreme. -
level of arousal, the work will actually become .aversive. Berlyne suggested

that the nature of the relationship between aesthetic preference and arousal

might be a Wundt curvesom(Fig. 3.101).
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To create - a work of architecture that is at the point or in the
range of maximum aesthetic preference for the viewer, there is the need
to moderate the gtimulation of complexity with the arousal decreasing devices
of order. 1In design, the creation of structural coﬁplexity is desirable,
but only to a point. After that point, any increase in strﬁctural complexity
should be balanced with an increase in structural order; to allow the
level of arousal of the viewer to remain in the range of maximum aesthetic
preference., Certainly, every viewer's judgement is individual for each
work of architecture; hence, the profile of the curve and exact point of
maximum aesthetic preference, is different for each viewer and each building;
However, the shape of the curve; the nature of the relationship it
explains between aesthetic preference and the interaction of structural
complexity with structural order, is significant,

The mathematical theory of symmetry in architecture is a method
for creating structural order in the awareness of space; It is a device
for moderating the effects of increased complexity. Due to the inherent

structural complexity in the creation of a large number or variety of
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spaces, the contemporaxy architect will almost certainly be compelled to
use some method for creating structural order in design, An application of
the mathematical theory of symmetry is a method for dealing with this
aesthetic concern to create structural order to balance complexity.
In architecture, as in most art, the state of maximum aesthetic
preference may be described as ordered complexity; Venturi argued the
case for complexity in modern architecture admirably:
Architects can no longer afford to be intimidated by the puritanically
moral language of orthodox Modern architecture, I like elements
which are hybrid rather than pure, compromising rather than clean,
distorted rather than straightforward, ambiguous rather than articulated
perverse -as well as impersonal, boring as wel} as interesting,

accomodating rather than excluding, redundant and equivocal rather
than direct and clear, I am for messy vitality over obvious unity.

81

Indeed, in terms of creating aesthetically preferable works of architecture

through increased structural complexity, "more is not less,"82 But, and

this is an important point, the application of devices to increase complexity

in design must be restrained at some point by the application of methods

for creating structural order. Increasing complexity must be balanced by

increasing order in the underlying structure. Arnheim has made a similar

commentary on Venturi:
Order is found at all levels of complexity; The more complex the
structure, the greater the need for order and the more admirable its
achievement, because it is harder to obtain., Venturi shows many
excellent examples of complexity, But he misleads in asserting that
those complexities involve contradiction and therefore are disorderly,
which in fact most of them are not, The misuse of the term contra-
diction must oot be permitted to justify the existence of chaotic
wilfulness, caused in our time gg the. atomization of society and the
brzskdown of the sense of form,

Both Venturi and Arnheim have made good arguments; There should be structural

complexity in the work of architecture to increase the likely aesthetic

preferences of the viewers, but this does not imply the abandonment of
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structural order,

The speculation here is that the application of the mathematical
theory of symmetry is a method for dealing with the aesthetics of complexity
in architecture, It allows the designer to moderate the effects of increasing
bcomplexity in the number and variety of spaces created by applying
the theory to structure the relations between the elements used to make:c
space. This has the effect of creating a balance between the inherent
structural complexity of the design and the structural order provided by
the theory. This balance is aimed at the aesthetic concers8 of the designer
to make the work worthy of attention by the viewer, to communicate a
meaningful awareness of space., Clearly, the mathematical theo:ﬁ of symmetry
must be evaluated as a significant part of the knowledge an architect

applies in design.
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3.2 AN APPROACH TO LESIGN

Once the architect develops a knowledge of the mathematical theory
of symmetry, perhaps through basic design exercises based on the resources
of the theory (see Part Two), and is aware of the theory behind its
application (see Part One); the most importaﬁt thing is an approach to
design involving that application., The intent of this section is to
make speculations about an approach to design, in which the resources of
the mathematical theory of symmetry are applied. Clearly, this section must
also follow the speculations made about the end, that is, the aesthetics
of complexity (see section 3,1), to which the theory is applied. This section
is very much an operational conclusion about the application of the
mathematical theory of symmetry in design. This conclusion should not be
seen as an architectural "how to" or recipe book, but only as‘speculations
about an approach to design with the theory.

It is essential to reiterate the level and role of the mathematical
theory of symmetry in architecture. Symmetry is a method for creating
underlying structures in works of architecture; that is, self-regulating

transformations of architectural elements into space creating wholes.
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Symmetry is not a method for inventing forms in works of architecture:

that is, particular formations of architectural elements.. The proper
application of the mathematical theory of symmetry is as principles

of order in architecture, not as theories of proportion. The level of

an underlying structure and the role of creating order are the basis of
any approach to design applying the mathematicgl thoery of symmetry, These
two ideas should be kept in mind at all times.

The effect of applying knowledge of the mathematical theory of symmetry
in design is on the aesthetic quality of structural order in the work of
architecture, This must also be kept in perspective at all times. Symmetry
is an arousal moderating device to balance the arousal stimulating devices
of complexity in architecture., Symmetry allows an architect to judge
the range of maximum aesthetic preference in complex works of architecture.
The creation of a work in that range is an important part of communication
with architecture; and is dependent on the knowledge and application
of structural devices such as symmetry, But, the whole work of architecture
depends also on the planning and construction of the building, The
mathematical theory of symmetry does not concern itself with these aspects
of design, and should not be applied to them. Tt ultimately deals with
only the aesthetic quality of order in complexity;

Some functional organiztions seem to imply an inherent symmetry, but
the forcing of planning problems into symmetrical configurationé is still
a mistaken idea. The application of symmetry to planning is toféily .
inappropriate in the light of the theoretical basis for that application;
Cne of the dangers to be avoided in an approach to design is the application

of symmetry to the planning of the building; that is, to the space allocation
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and functional organization of the building. Similarly, some technological
systems seem to imply an inherent symmetry, but the simplification of
construction problems into symmetrical configurations for that reason is

still a mistaken idea, The application of symmetry to negineering is

totally inappropriate in the light of the theoretical basis .for that application.
Another danger to be avoided in an approach to design is the application of
symmetry to the construction of the building; that is, the building systems

and performance specifications of the building. An approach to design should
only apply symmetry to the aesthetic problems of space creation.

The mathematical theory of symmetry is only a framework of prescriptive
rules to be applied in creating an underlying structure effecting the
aesthetic quality of order in the work of architecture, An approach to design
must be based on that position. It makes no sense to extend symmetry as
methods to resolve planning or construction problems, Therefore, there
seems to be two prerequisites for the application of the mathematical theory
os symmetry in design, That is, the architect must also resolve the
planning and construction difficulties through other design methods., But,
these methods may aim at developing space allocations and functional
organization that meet the planning requirements of the designj with the
idea of applying the mathematical theory of symmetry for the associated
aesthetic problems., These methods may also aim at devising building systems
and outlining performance specifications that meet the construction requirements
of the design; with the idea of applying symmetry for the associated aesthetic
problems, For example, the result of planning may be a functional zoning
of activities from public to private, served to servant, or one sort to

another sort that lends itself to being organized on a Bravais lattice. The
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result of investigating construction may be a set of industrialized
components such as exterior and interior wall panels, columns and beams,
roof and floor spans, or windows and doors that lends itself to being
organized into point groups. Therefore, an approach to design may involve
particular sorts of planning and construction that are directed at being
compatible with an application of the mathematical theory of symmetry.

The mathematical theory of symmetry should not be applied to force
planning or simplify construction, but planning and construction may be
made compatible with the theory.

Once the planning and construction concerns of the designer have
been resolved to some satisfactory point, there are two approaches to
design to go about ordering elements into aesthetically preferable works
by applying the mathematical theory of symmetry; The reason ﬁhere are two
approaches is that symmetry groups in space are generated by the combination
of a Bravais lattice and a point group on that lattice. A designer may
either select and fix the Bravais lattice in accordance with the zoning
established by planning methods; then "play" with various point groups
to arrange the elements from construction vocabularies on that lattice,
to make the spaces of the building, Or, a designer may select and fix the
point groups in accordance with the construction vocabulary; then "play"
with various Bravais lattices to position the elements in accordance with
planning, to make the spaces of the building., In any particular design
process, an architect may actually choose to do both, switching back and forth
between the two approaches selectively searching84 for the space creating
structure that seems to maximize aesthetic preferences,

In either approach to design, a designer need not play with all thirty
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two point groups and all 14 Bravais lattices at the same time., Because
they are arranged into seven crystal classes, once the selection of an
appropriate crystal class has been made, the designer works just with the
point groups and lattices in that class, The selection of a crys?al class
is a judgement that the class will best integrate ideas about the planning,
construction, and aesthetic quality of the work of architecture. This
judgement is not as critical as it may seem at first, because there is no
reason that the selection should be fixed, Anyway, within most crystal
classes there is enough variety of symmetry groups and creative possibilities
to accomodate most approaches to design, The more critical judgement is
about what to fix or what to "play'" with when generating symmetrical
configurations from Bravais lattices and point groups associated with
particular planning and construction,

Creative originality is one of the most desirable by-products of
the application of the mathematical theory of symmetry in creating an
underlying structure to.the work of architecture, Both approaches to design
suggested above have this feature of allowing great amounts of creativity;
Bravais lattices in space generally have three arbitrary lengths in their
upit cells, and in some cases a wide range of angles possible between them.
A designer has infinite choices for dimensioning those lengths, as long as
the dimensions meet the conditions for the unit cell, A designer, where
possible, has infinite choice for setting the angles in the lattice, as long
as they meet the conditions for the unit cell, An architect "plays' with a
lattice by changing the dimensiahs and angles selected within the boundaries
prescribed by the conditions of the unit cell, Similarly, point groups in

space also involve an arbitrary length in the distance of the elements from
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the point, and an arbitrary orientation to that point., Thus, an architect
"'plays with a point group by either changing the actual elements in it,

or by changing the distan¢e or orientation of elements to the point within
the boundaries presrcibed by the structure of the point group., The varying
of dimensions and setting of angles are the two basic methods in an
approach to design combining Bravais lattices and point groups to generate
any number of symmetrical configurations with the same underlying structure§
that is, described by the same symmetry group,

There are more creative possibilities in the application of the
mathematical theory of symmetry groups in creating an underlying structure.
Perhaps, the most important of these is the layering of several symmetry
groups together to create a more complex underlying structure responding
to greater complexity. It is an endless source of possible structures for
an imaginative designer, Layering involves the use of several Bravais lattices,
of the same or different class, at the same time producing sophisticated
composite lattices; for example, the tartan layering of grids., Similarly,
layering may also involve the use of several point groups of the same class
on a single Bravais lattice, to provide an interesting interaction between
symmetrical configurations. Layering, then involves the creation of several
symmetrical configurations at the same time by creating structures that
are aggregates of many symmetry groups. An approach to design involving
layering of symmetry groups creates complex yet ordered underlying structures
making space that may be the most powerful method - for dealing with the
aesthetics of complexity in architecture.

It is iﬁportant to suggest that an approach to design should consider

the application of asymmetry and dissymmetry in connection with an application
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of the mathematical theory of symmetry in architecture, This is another
source of creative possibilities. Weyl deseribed the application of
asymmetry in works of art as not, ";;;merely the absence of symmetry; Even
in asymmetric designs one feels symmetry as the norm from which one deviates
under the influence of forces of a non-formal character:"85 In works
of architecture, asymmetry may be created by the slight deviation from
an underlying structure in the design; It is important to note that the
reason for this deviation is usually non-formal; that is, not in response
fo aesthetic qualities in the work, If for some reason of planning or
construction deviation from symmetry makes sense, then the application of
asymmetry in that situation is justified with the underlying space creating
structure, On the other hand, dissymmetry is the purposeful breaking
of a potential symmetry group by varying an element of a point group, or
warping a Bravais lattice. It is primarily for the aesthetic emphasis of
some special .space of the building, not for planning or construction
reasons. The contrast of one-of-a-kind dissymmetry with the symmetry of
an overall space creating structure may be one of the most important methods
of artistic communication. Shubnikev believed it to be an essential
componentﬁ
Symmetry, considered as a law of regular composition of structural
objects, is similar to harmony., More precisely, symmetry is one of
its components, while the other component is dissymmetry, In our
o?ini?n the wh91? aesthetics o? gcientific and aFtistic cre?tivnz.tys6
lies in the ability to feel this where others fail to perceive it,
The application of asymmetry and dissymmetry with the mathematical theory
of symmetry are matters for individual judgement for designers. They both

enhance the opportunity for imaginative application of the mathematical

thoery of symmetry in an approach to design;
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An approach to design applying the mathematical tﬁeory of symmetry,
with all the creative possibilities suggested above, leads to some interesting
and significant aesthetic effects, through the quality of spatial order,
in the works of architecture created., These effects are of three kinds;
they pavallel closely the properties of crystals in nature as Weyl described:

The dynamics of the crystal lattice is also responsible for the
crystal's physical behaviour, in particular for the manner of its
growth, and this in turn determines the .particular shape it assumes
under the influence of environmental factors. No wonder then that
crystals actually occuring in nature display the possible types

of symmetry in that abundance of different forms at which Hans
Castorp on his Magic Mountain marvelled., The visible characteristics
of physical g;jects usually are the result of constitution and
environment.

The three effects on works of architecture of the underlying symmetry
structure suggested by this passage are that first, just as with snowflakes,
there is no limit to the inventiveness possible in the particular buildiﬁg;
second, that the manner of growth and change of the building, like a crystal,
is regulated by the underlying structure; and third, that the uniqueness

of a particular building, like the particular crystal, is the result of

the influence of the environment, It is the combination of "constitution
and enviromment', which may be interpreted in architecture as the general
symmetry of the underlying space creating structure and the particular social
or environmental context of the building, that determines ghe final

visible product of an approach to design applying the mathematical theory of
symmetry., It is the design response within the symmetry of the underlying
structure to the social and enviromental contexts that really results in

the individual spatial order in every work of architecture. This is the final
and perhaps most important speculation about af .approach to design with

the mathematical theory of symmetry,
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3.3 THE POTENTIAL OF SYMMETRY IN ARCHITECTURE

Having taken an approach to design applying the mathematical theory
of symmetry (see section 3.2) as a method for creating spatial order, the
next specualtion that is important is the resulting potential for that
method. The easiest way of seeing that potential is to examine diverse
numbers of work of architecture with a variety of aesthetic intentions,
to see that each might have applied the mathematical theory of symmetry
in their design. The intent of this section is to make specualtions about
the widespread potential of symmetry in architecture, The vehicle for that
speculation is the presentation and discussion of the underlying space
creating structure in a number of designs from several architects,

The first architect to be considered is, appropriately, Louis Kahn,
whose Bangldesh National Assembly building (Fig, 1.105) was used to
illustrate the mathematical idea of symmetry. Kahn's most famous statement

88 Clearly,

on spatial order was, '""Order is;;;/Design is form-making in order.
Kahn felt that a designer's insight into order was so intangible and deeply
intuitive that he couldn't put any words after, "order is..." But, it is

also clear, both in the remainder of that statement plus his entire output
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of designs, that the quality of order in the spaces created in architecture

was essential for Kahn's philosophy.

Kahn's design sketches for the Bryn Mawr Dormitory (Fig. 3.301) may be

interpreted as a selective search for a space creating structure, It is

a method that orders the arrangement of individual rooms that Kahn is searching

for in these sketches, The point to be made here is that the mathematical

theory of symmetry in two dimensions might have been applied to describe

and classify the structures Kahn was sketching., It might have been much
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easier to approach this design through the mathematical theory of symmetry.
Surely then, Kahn's insight into the order he desired, and the creation of
that order in design, is not so deep or mysteriously intuitive that it
could not have been externalized through the mathematical theory of symmetry;

The plan for Kahn's Trenton Jewish Community Center (Fig;‘3g302) provides
support for this speculation. The basic spatial order of this design is
created by L-shaped column elements arranged in the point group, Cg , on a
square Bravais lattice in two dimensions; combining to generate a symmetrical
configuration associated with the wallpaper group, Wi . The structural
complexity in the variety of spaces created in the building is balanced by
the order of this symmetry; Occasionally this order has been broken, an
example of dissymetry, by the omission of these columns to accomodate large
spaces such as the gymnasium, Clearly, the mathematical theory of symmetry
might have been applied in the design of this building to externalize the
underlying space creating structure of the work.

The second architect to be considered is a former employee of Kahn's,

Moshe Safdie, whose Habitat housing development (Fig. 3.303) is known and
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studies widely, The apparent disordered complexity of the Habitat

facades, actually depends on twg simple repeats of symmetrical clusterings.
Safdie's original design for a much larger Habitat (Fig; 3;304); as well

as his first post-Habitat design for the Public Housing Authority of
Washington, D:C: (Fig. 3.305), both reveal the clarity of three dimensional
symmetry underlying the design. The original Habitat appears to be based on
.a symmetrical configuration from the trigonal crystal class; while the

Washington, D.C. design appears to be based on one from the tetragonal class,

Fig. 3,303
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Clearly, Sardie"s philosophy that the housing environment may be
created through the arrangement of prefabricated units into whole developments
relies on the idea that there is an underlying structure in those arrangements.
Indeed, Safdie seems to also search for order in complexity; to create
aesthetically pleasing designs from the complexity of highly industrialized
technologies., He argued about architecture in general thaté

Once the environment is thought of in terms of morphology, then it

is easy to see and say that the environment is made up of a multitude

of strgctures and that the querstanding o? these struggures is

essential to the understanding of the design process,
Clearly, the theoretical basis for the application of the mathematical
theory of symmetry shows it to be part of the basic investigation of space
creating strugtures. The mathematical theory of symmetry might have been
applied in these large scale housing developments based on the repition
of prefabricated unitsj to externalize the underlying space creating structure
of these complex designs.

The third architect to be considered, also relies on industrialized
technology, is the Japanese designer, Kisho Rurokawa, who is a leader of the
metabolist movement in architecture.90 Metabolism, in general, relies
on the separation of the physical structure that holds the building up, from
the space creating components. This allows the building to grow and
change, indefinitely, Rurokawa pioneered the use of industrialized capsules
in architecture., The Nakagin Capsule Tower (Fig., 3.306) 1s an example of
Kurokawa's approach to design, It clearly reveals the search for an underlying
structure in the arrangement of these capsules; each layer investigates

the possible relationships between the capsules. An application of the

mathematical theory of symmetry might have provided a clear three dimensional
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structure in this work that would have added to tﬁe visual richness.
Kurokawa's Takara Beautillion (Fig. 3.307) is the prime example of
metabolist architecture, The main physical support for the building is
provided by twelve right-angled steel tubes welded together to make six

arms; this is an example of the three dimensional point group, T from the

d ’
cubic crystal class. This is combined with the primitive cubic Bravais lattice
(see section, Fig. 3.308), to generate a symmetrical configuration associated

with the Fedorov group, Té . Clearly, the mathematical theory of symmetry
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might have been applied in this metabolist design., The fact that the
building was assembled in a few days, disassembled equally rapidly; and
might have grown or changed in between not only demonstrates the concept
of metabolism in architecture, but the power .0f the mathematical. theory of
symmetry as a method for creating an underlying structure that responds to
the context to determine the final character of the building.

The concept of a megastructure may or may not be, "Urban futures

91 and a dead issue in the energy conscious design of

of the recent past,’
contemporary architecture. The philosophy behind megastructure, large
physical frames carrying essential services, infilled with a variety of
space making components, involve an overwhelming complexity; The result
was the application of simple symmetry underlying the design of the
frames. The Graz-Ragnit¥ project by Domenig and Huth (Figs. 3.309 and 3.310),
which Banham labelled "the ultimate megastructure m;odel,"g2 has a complex
three dimensional structure based on a body-centered tetragonal Bravais
lattice in three dimensions, The infill appears to be totally wilfull,
a sort of uninteresting dissymetry, in contrast to the overwhelming presence
of the frame, However, most megastructures might also have been designed
with an application of the mathematical theory of symmetry, both ta tﬁe
frame and the repeated elements infilling that frame.

The impression might be at this point that the mathematical theory
of symmetry is a method for creating spatial order to balance the complexity
of large scale, technologically innovative, highly industrialized projects.
But, structural complexity may just be the product of planning difficulties
due to the large number of spaces involved. Anmexample of this are the

university projects of the next architects to be considered, Candills, Josic,
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Fig. 3.309

Fig., 3.310
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and Woods. The University of Zurich project. (Fig. 3;311) demonstrates
the organization of complex plans by a relatively simple‘underlying
structure, The basic organizing elements are the stairs, washroom, and
service rooms in little plans which have no internal symmetry, they might
be considered as point groups, C1 . These are then arranged on a large
square Bravais lattice; generating a symmetrical configuration associated
with the wallpaper group, W1 . It should be noted thaﬁ Candilis did not
take advantage of the fact it was a square lattice, it might just as
well have been an oblique lattice., This incredibly simple two dimensional
symmetry seems to be enough to order the high structural complexity in the
plan, Within each bay, individual underlying structures may be found
that might be described by various frieze and wallpaper éymmetry groups..
Indeed, it seems to be this layering of many structures within the simple
overall structure that is the basis of the symmetry in this plan, Not
surprisingly, asymmetry and dissymmetry also occur for various planning
and emphasis reasons. This project clearly might have applied the mathematical
theory of symmetry in its design to externaiize Candilis' approach to the
order in its formal organization.

The sixth and final architect to be considered is Herman Herzberger,
His design for an office building, the Centraal Beheer in Appeldoorn, Holland
(Fig. 3;312), has been praised93 for its attempt to create qualities of
space. The underlying structure that creates those spaces that accomodate
a variety of different places is one of the more subtle symmetrical configurations
in two dimensions, The basic element is the T-shaped column arranged in
the point group, C4 » on a square lattice on the angle bisecting the cells,

generating a symmetrical configuration associated with the wallpaper
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Fig.



Fig 3.312

group, Wi . The quality of order resulting from this symmetry subtly
balances the complexity of the variety of spaces inside the building,
It. produces an aesthetically preferable design that seems to strike
just the right balance between order and structural complexity. Clearly,
the mathematical theory of symmetry might have been applied in this design
with some careful judgement,

The purpose of providing all these examples of the potential of
the mathematical theory of symmetry in symmetry is not to argue that they
are all good architecture, The intent is only to show that the mathematical
theory of symmetry does have potential as a design method, not only because
it is theoretical possible as established in Part.One, or because the
resources of the theory tend to support that as established in Part Two, but
because it is possible to see that potential in a number of diverse sorts

of architecture.
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This concludes the speculations that attempt to evaluate the thesis that
the mathematical theory of symmetry may be a significant part of the
knowledge an architect applies in design; It also concludes the arguments
of the whole thesis. Weyl concluded his famous lecture on symmetry
with this thought:
Symmetry is a vast subject, significant in art and nature,
Mathematics lies at its root, and it would be hard to find a better
one on which to demonstrate the working of the mathematical intellect.
I hope T have not completely failed in giving you an indication
of its many ramifications, and in leading gou up the ladder
from intuitive concepts to abstract ideas.
Hopefully, the mathematical theory of symmetry may be brought within the
everyday activity of design in architecture, There certainly is the
pedagogical implication that it should be taught in any course of basic
design. Clearly, it is a significant method for the creation of
the aesthetic quality of spatial order in architecture; it deserves to
be among the methods of the designer. The mathematical theory of symmetry

may indeed be a significant part of the knowledge an architect applies in

design.
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3.4 DIRECTIONS FOR RESEARCH

The only remaining task of the thesis is to suggest some directions
for research that follow from the work put into this thesis. The intent
of this section is to make some speculations about those directions
for research as a post-script to the conclusions reached earlier,
There are four distinct areas to be considered as possible spin-offs from
this thesis. They are first, the extension of the mathematical theory to
include colour symmetry; second, a philosophical investigation of the

foundation of mathematics in architecture; third, the development of a. semiotic

approach to architectural syntax based on symmetry; and fourth, an operationalization

of the application of the theory of symmetry within computer aided design,

The first area of research that might be considered is to extend the
mathematical theory of symmetry as it has been presented here into colour
symmetry. The possibility for describing coloured symmetrical configurations
with group theory was developed by Shubnikov, Belov and others in the U,S.S.R.
in the 1950's.95 The idea is based on the concept of treating colour

equivalence exactly as the geometric equivalence that is the basis of classical

symmetry (see section 1.1)., With only two colours, Shubnikov has shown
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that the two hundred thirty Fedorov groups in space, may be extended
exhaustively to one thousand six hundred fifty one groups in space.
These so-called Shubnikov groups might be applied to architecture because
the one aspect affecting the aesthetic quality of the work, other than the
spatial order, is the materials used in the space creating elements, That
both aspects might be dealt with through the mathematical theory of symmetry
seems to open even more creative potential for the designer. The use of
colour and materials is an important aesthetic concern in space creation,
and the mathematical theory of symmetry, if extended to colour symmetry,
would provide a method for relating colours and materials to .the
underlying structure in the design,

The second area of research that might beAconsidered is the more
academic exercise of a theory establishing the philosohical foundation
of mathematics applied in architecture, In trying to clarify the
nature of mathematics (see section 1.2), it emerged that the philosophy
of mathematics is a fascinating and unduly ignored part of the increasing
application of mathematics in design, If the practice of architecture is
to become a rigourous discipline like the practice of medicine, then there
is a need to understand how mathematical methods fit into thet discipline,
just as medicine needs to understand how its methods fit into their
discipline. Architecture is not a science, in the sense that science aims
only at explanation, while architecture aims at change; There is a need
then to understand the discipline of architecture itself. Such an understanding
of architecture and mathematical methods in design is inherently normative,
not descriptive, The ethics in an appraach to architecture applying

mathematics should be the starting point for this research. Thé research
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in the philosophical foundation of design is among the most significant
that should be associated with the application of mathematical methods
in architecture,

The third area of research that might be considered is the development
of a semiotic approach to architectural syntax based on themmathematical
theory of symmetry, The discussion of architectural aesthetics (see section
3.1) assumed the work of architecture to be a channel for communication
between designer and user, The study of the semiotics of that communication
must assess what provides the syntax for that communication., The orderly
cognition of space through a clear underlying structure must surely have
some relevance to that syntax, Hence, the mathematical theory of symmetry
might provide a method for describing spatial syntax in architecture
through the symmetry of the relétions between architectual elements. This
is however, a highly speculative assumption that requires a much further
theoretically basis in architectural semiotics. But, any research
in the externalizing of architectural syntax would lead to . significant
design methodsfor the architect., The mathematical theory of symmetry applied
to the relationships between architectural elements may be involved in
those methods,

The fourth, and by far the most stimulating, area of research that
might be considered is an operationalizing of the application of the
mathematical theory of symmetry within computer aided design, The resources
of the mathematical theory of symmetry as presented in Part Two are
passive knowledge, The next step in research should be activating that
knowledge in the design process so that it actually becomes a technique for

doing design, not just a method applied in design, This requires
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mathematically representing the Fedorov groups in space with an acétive
description, perhapse sets of matrices, into which the architect could
substitute dimensions and anglesjand, of course, a description of the
space creating elements. This would suggest an interactive computer program
that allows the designer to "play" with Bravais lattices and point
groups as suggested in an approach to design applying the mathematical
theory of symmetry (see section 3.2)., This involves a system for
representing architectural elements and a system for manipulating them
according to an underlying structure. These might be two directions that
computer aided design should investigate, The exciting future of
mathematics in architecture almost certainly iies in computer aided design,
‘The . interactive situation where a designer could use " subjective
judgements with an operational application of the mathematical theory
of symmetry would allow computer aided design to becéme involved in
aesthetic concerns such as the creation of spatial order in architecture,
This research, like all research, should go beyond research to
become practice. As was indicated in the introduction, the ultimate goal of
research in architecture is to change the way buildings are designed in the
"real world", The only test of that research is, ultimately, the evaluation
of buildings designed and built with these methods. The knowledge of the
the mathematical theory of symmetry must be involved in more than just
research or academi:z exercises, it should involve a significant architectural
practice with that knowledge. This will be the most significant "research"

that involves the mathematical theory of symmetry,
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MATHEMATICAL APPENDIX

The intent of this appendix is to present an introduction to the
elements of group: - theory involved in the mathematical theory of symmetry,
The presentation: consists primarily of definitions and well-established
theorems from group theory; The discussion is limited, and no rigourous
mathematical derivation of symmetry groups is attempted; they must be
found in the technical literature on the mathematical. theory of symmetry
listed in the Bibliography, The obvious starting point is the definition

of a group, everything follows from that.

DEFINITION D:01 GROUP A group, G , is a set of elements together with
a composition law, called a product, such that:
(1) the product of any two elements, ab , of the group is
defined and there is an element, ¢ , in the group, such that
ab = ¢ 3
(2) the product is associative: a (bc) = (ab) ¢ , for all a,b,c € G ;
(3) there exists a unique identity element, e , in the group:
ea = ae = a, for all a € G ; and
(4) for every element in the group there ex1sts a unique inverse
element: _for all a ¢ G, there exists a” é‘G, such that
aa~l = a 1a = e,

DEFINITION D§02 ABELIAN GROUP A group, G , is said to be Abelian if
it meets all the conditions in D:01, and the extra condition:
(5) the product is commutative: ab = ba , for all a,b £ G.
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DEFINITION D:03 ORDER The number of elements in a group, G , is said
to be the order of the group; and is denoted |G} .

DEFINITION D:04 GENERATORS A set of elements of a group, G , is said
to be a set of generators of the group if any element a G can
be written as the product of the powers of the generators and
their inverses

DEFINITION D:05 DEFINING RELATIONS A set of relations satisfied by the
generators of a group, G , which are sufficient to completely
determine every element of the group, is said to be the
definifg relations of G,

DEFINITION D:06 MAPPING A mapping, #§ , of a set, S, to a set, T ;
denoted @: S=»T , is a rule which assigns to each element s &S
a unique element t<& T,

DEFINITION D:07 HOMOMORPHISM Given two groups, G and H , a mapping,
@: G-%Ii, which preserves the multiplication, @#(a)@(b) = @(ab)
for all a,b € G, is said to be an homomorphism,

DEFINITION D:08 ISOMORPHISM A homomorphism, § , of G onto H, $:G=? H ,
in which there is a one-to-one correspondence of the elements
of G with the elements of H is said to be an isomorphism, Two
groups, G and H , are said to isomorphic, denoted G®H, if
there is an isomorphism mapping G onto H, and an inverse
isomorphism mapping H onto G.

DEFINITION D:09 AUTOMORPHISM An isomorphism, # , which maps a group, G ,
onto itself, @:G=¥G , is said to be an automorphism,

THEOREM TH:01 If §; and @y are two automorphism of a group, G , then :
the mapping product, @@, , where the multiplication, (§;@y)a = @ (f2a) ,
for all a & G is preserved, is also an automorphism., Further the
set of all automorphisms of a group, G , is itself a group, of
which the composition law is the mapping product just defined.

It is significant here to reiterate the definition of symmetry that was
developed in section 1,1, The symmetry of a configuration was defined as
the highest possible (of the highest order) of automorphisms mapping any
structural configuration onto itself. Two more definitions should allow
the classification of symmetry groups. They are:
DEFINITION D:11 SUBGROUP A subset, H , of elements of a group, G , that
themselves form a group under the same composition law as in
G, is said to a subgroup of G. All groups have at least two
subgroups, namely the group itself and the group consisting of

the identity element alone; these two groups are called improper
subgroups, all others are called proper subgroups.
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DEFINITION D:12 OUTER DIRECT PRODUCT Let G be a group, with two proper

subgroups, H and K , such that:

(1) if h éH, and k €K, then hk = kh

(2) all g & G may be expressed in the form, g = hk 3

(3) the intersection of the set of elements of H and the set of
elements of K is the identity element, e , 0o£ G, HAK=e .

Then G is said to be the outer direct product of H and R, and

is written, G =H X K.

With these definitions, it is now possible to make a table of the
Fedorov groups; classifying them according to crystal class, Bravais lattice,
point groups, isomorphisms, and order. The number of Fedorov symmetry groups

with these properties is also shown in the table (TABLE MA:Ol)', Sl

3

TABLE MA:01
Crystal Class State of Point Group Isomorphism Order No., of
Lattice Symmetry Groups
Triclinic primitive C1 — 1 1
C; Coy 2 1
Monoclinic primitive 02 _ 2 2
CS C:2 2 2
Lo d
CZh C2h = C2 X C2 4 4
centered 02 . 2 1
Cq Cy 2 2
e
Copy Cp, ¥ C,XC, 4 2
Orthorhombic  primitive D D,=c,XC 4 4
2 2 2 2
sz D2 4 10
D =p XC 8 16
2h 2h 2 T,
tered , ~
centere ,D2 D2 c2 X 02 4 2
sz D2 4 7
Ly
Pon Dpp=Dp X G, 8 6



- 145 -

Crystal Clagss State of Point Group Isomorphism Order No. of
Lattice Symmetry Groups
face~- D D, =C. X 4 1
2
centered 2 2 2 )
sz D, 4 2
P
Doh Dy Dy X Cy 8 2
body- D D ®c,XcC 4 2
centered 2 2 2 2
sz D2 4 3
D Dre D, X C 8 4
2h 2h 2 2
Tetragonal primitive C4 . 4 4
S4 c, 4 1
D4 . 8 8
Cév 1)4 8 8
D2d D4 8 8
Dla-h Dh = Dé— X C2 16 16
body~- C4 . 4 2
centered
S c 4 1
4 4
~t
Cin Ch®C . ¥ Cy 8 2
D4 . 8 2
C4v D4 8 4
D2d D4 8 4
D D ®D X 16 4
48 4h 4 2
Trigonal primitive 03 _ 3 3
Sg Cq 6 1
D 6 6
3 ——
Cay D3 6 4
D3V D6 12 4
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Crystal Class State of Point Group Isomorphism Order No., of

Lattice Symmetry Groups
rhombo= Cq — 3 1
hedral
D3 _ 6 1
C3v D3 6 2
D3v Dg 12 2
Hexagonal centered Cq Cg=C3XCy 6 6
(primitive
trigonal) C3h Cq 6 1
pal
>4
D6 D6 = D3 X D2 12 6
CGv Dg 12 4
D3h D6 12 4
D6h D6h = D6 X C2 24 4
Cubic primitive T . 12 2
Ty, T, = T X C, 24 3
0 . 24 4
Ta 0 24 2
0 0 To0Xc 48 4
h h 2
face- T . 12 1
centered ~
ZTX
Th Th T 02 24 2
0 . 24 2
Td 0 24 2
On oh’-—? 0Xc, 48 4
body - T . 12 2
centered ~
Ty, Th =TZX 02 24 2
0 _— 24 2
Td 0 24 2

~t
O 0, =0XC, 48 2
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