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ABSTR.ACT

The nathenatical- Eheory of syrmetry is a significånt part of the
knowledge an architect applies in design.

The mathematical- Ídea of synmetry is defíned as the highest possibl-e
grouP of automorphisms napping any sËructural. configuration onto itself.
The nature of mathematics is a prescripËive framework of ruLes which enhance
and externalize a designerts ínsíght. Space ís created by the ar¡areness of
rel-ations betçzeen architecËural- elemenËs; in which psychologicaL systems of
cognition are the most imporËant process. The clear cognition of space,
whaË rnight be called order, relies upon the presence of an underlyíng struc-
ture which transfor:urs architectural elemenËs into self-regulaEíng wholes.
Ihe mathematical Ëhecry of syrrnetry classífies the sÉructure of certain
space creaËing confígurations, enhancing and externalizi,ng a designerts
insight into order,

The derivaËion of the mathemaËÍcal theory of syumeËry emphasizes
the combinatíon of an underlying Bravaís lattÍce r¡ith a point group
distríbuted on that laËtice, The one Bravaís LaEtíce in one dimension
combínes r.¡íth trro point groups to produce Ëhe seven ItFreizetr groups of
symleËrica1- configuraËions. The fíve Bravais 1atËices ín ftro dimensions
combine with ten point groups to produce Ëhe seventeen r\,Iallpapertt groups
of spetrical configuraË.ions. ltre fourteen Bravaís lattíces in Ëhree
dímensions combine with Ëhirty-tt7o point groups Ëo produce Ëhe tvro hundred
thirty rrFedorovtt groups of symuretrícal configuraËions in space.

The applicatíon of the maËhematical Ëheory of symetry in desígn
is as an arousâL moderating device to provide order with structural com-
plexity; to reach maximum aesËhetic preferences for the resultíng work
of architecËure. An approach to design involves Ëhe selectfve search
for an aesthetically appropriaËe underrying strucËure Ëhrough varyíng
the dimensíons and angles of Bravais LaËtíces; and varying the elements in
the point grouPs combined r¡iËh those Lattices. The potential- for Ëhought-
ful creatÍvity tvith Ëhe theory is shown by the unselfconscíous use of
spmetry structures in a ¡1rmþg¡ of díverse sorËs of architecture.
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l.lhoever condemns Ëhe supreme cerËainËy of maEhemaEics feeds on

confusion, and can never silence Ëhe contradictions of the sophistical-

scíences, which leaC to an eternal- quackery.

treonardo da Víncí
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INTRODUCrION

Music, maEhemaEics, and architecËure are anong the highest pursuits

of the human nind. This ís because coqrposers, maEhenaËicians, and archiËects

have sought to go beyond surface appearances to create deeper patËerns.

PatËerns of harmcny and díssonance, of equality and value, of shape and

and maËeriaL. They are patËerns in sound, Ín ideas, and ín light; patterns

that creaEe time, logíc, and space. PaËËerns, that Ëo which sone kind of
1

repeaLed arrangenenË msy be found , are the keys thaË unlock understanding

for people. Pattern finding and pattern making are Ëhe essence of most

human a:ËiviËy. In all significant products of human energy, in píeces of

music, in Ëheories of maEhematics, in works of architecEure, abstract pattern

is manifest.

The architecE, whaËever else he may be, is a maker of patterns.

Frank Lloyd t^IrÍght argued thaË patterns dísËinguish çrorks of architecture

from mere buildings:

ArchíËecture is abstract. AbsËract forrn is the paËtern of the essential.
1Ë is, we inay see, spirit ín objecËified forms. Strictly speaking,
abstracËion has no reality except as iË is enbodíed in material-s.
ReaLization of form is always geometricaL. fnat ís eo say, íË is math-
enatical. We caLL it pattern. Geometry ís the obvious frame"¡ork upon
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r¡hich nature works to keep her scaLe in desígning. She relates
Ëhings to each other and to Ëhe r¿trole, while meanËíma she gives to
your eye inost subtLe, mysterious, and apparently spontaneous irreguLarity
in effects. So iL is,through the enboCied abstracË Ëhat any Ërue
architect, or any true arEísË, musË work to put his inspiration into
Ídeas of form in Ëhe realm of created things. To arríve at expressíve

-foru, he too, must work from r+ithin, with the geometry of matheioatic
pattern. Building is irself onlV archiEecture when it is essential
patËern sígníficanË of purpose.-

This thesis seeks to explore an archiËecLure of significanË pattern naking.

IË is an aËLempË to bring together the abstract sEudy of paËterns in mathematics

with the material einbodiment of paËterns by architects. The overaLl goaL is

to l-ink mathe¡natícs and architecËure as one creaEive activity of the mind.

The conposition of music ís also a making of patterns. A piece of

music is firstly a conposition that provídes the paÉterns underlying Ehe

subseque,:.t p,erforrnence. The design of architecEure should be exactly such a

conposition thaË provides the paËterns underlying the making of the buildi-ng.

Rudolf Arnheim has eornmented, rrEhaË the forces -rrhich organize visual shapes

and endorr then .,rÍËh expressíon lrere e¡nbodied in the geometry of architecture

qrith a purity found elsewhere onl-y in music."3 A design shouLd províde a

structure which organizes the spaces created in the aork of architecture.

Líke the composition which organizes the piece of music, this structure is a

result of the desire of the human mínd to understand, IË is a desire to

find and make patterns. Just as music is only noise u¡ithout a strucËure

provided by its composiËion, architecEure is only building without a strucEure

provideC by its design.

Mathematicians, as we1L, have

provide Ehe patterns underlyíng the

sËructure rshich organizes the ideas

creaËed patterns, Theorems of mathe¡natics

use of mathematics. They provide a

of maEhematics, G.II, IIardy has reveaLed

the special beauty of maËheroaEical patterns:
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A nathematician, like a painter or a poeË, is a maker of patterns.
If his paËterns are.nore permanenE than Ëheirs, iË Ís beeause they
are naCe'¡ith ideas. A painter makes patterns with shap¿s and colours,
a poet r¡'ith rrords, .,.4 naËhematician, on the other hand, has no
material buË ideas, and so hís paËterns are likely to Last longer, since
ideas rsaar Less r¡iËh time than trords. The matheoaticiants paËËerns,
like the painterfs or pcatrs, m'rsË be beautÍful; the ideas, like Ëhe
colours or the words, must fiË Ëogether in a harmoníous !ray. BeauËy
is the firsc test; Ëhere is no permanent place in the rsorld for
ugly mathenaties,+

The mathmemaËical Ëheory of syrnrmetry ls one of the very speciaL resulËs of

meËhernaËicían¡s desíre to understand the sËructure of their paËterns. It

is a Ëheory of strucËure; and like coinpositions for pieces of rnusic or designs

for works of architecture, iË underlies Ëhe surface appearance of maËheinatic.s.

Ultimately, this thesis is abouË structure. It is about Ëhe investigatíon

of strucËures to create space. The resource for thaË investigatÍon ís the

naËhe¡raËical Ëheory of syumetry. ïhe investigation is relevant Ëo the practice

of design sinply because the architect musË saEisfy Ehe human need to

undersËand a r,rork of architecËure. Tluman needs in architecture are not

prirnarily the naËerial comforË or sound engineering of the building, they are

matËers of the mind. These needs afe not met by good planning and good

consËruction, they require a concern for the âesthetic qualities of space.

One of Ëhe most signifícanË of Ëhose qualÍties is order. Order does noË

irnply enpty rÍgíd geometríc fonns, but rather a clarity of paËtern from an

underlying sËructure. The significance of the investigation lies in its

applicatíon in Ëhe creaEion of order in design. The order in a work of

architecture is the resul-t of the syuneËry of its underl-yíng structure.

In the Tean]-0 Primer Ëhe authors noted,'that, rrEach generation

feels a nett dissatísfaction, and conceives a ne¡¡ idea of order. This is

architectrlre.tt5 It also seems to be Ehe ease that a:r emerging generaËion
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of archítecËs are coming Ëo an ever-increasing abstraction in Ëhe practice

of design. Hopefully, this thesis will línk the search for a ne',r idea of

order vrith the abstracË knowledge of the mathenatícal Ëheory of symretry.

IË ís very important that this link shoul-d provide a relevant contríbuÉion

to the changing pracËice of design in architecture, The arguments of this

Ëhesfs, Ëherfore, seen Eo divide into three parts. The first part rùill be

a groundwork of Ëheory fron.¡rhich to make rhe link between the nathenatícal

theory of syruoetry and Ëhe design of r¿orks of architecËure. The second part

ç,7i11 be an explanaËion and illustration of the resources of the mathe,ratical

Ëheory of sywnetry. Ihe third parË r¡iLL be some speculaËions about the

contributíon of the mathemaËical theory of syrmuetry in the practice of

design.

TLre first part of the thesis is concerned sriËh a theory formíng the

basis of the link beËween Ëhe maËhemaËical Ëheory of symnetry and desígn in

archiËecture. There are four lmporËanÉ concepts in thaË Ëheory. The first

is Ëhe precíse mathematical idea of spoetry itself, which ís discussed in

section 1.1- r,¡ithin Êhe conËext of archílecture. The second concept is the

nature of mathemaËics, discussed ín section 1.2, which shows hovr mathematical

knowleCge nay be linked with an art actívity like the practice of design. The

third concept i" "n und,erstandíng of space creation, discusseC in secEion 1.3r

which links spaces in maËhematics wÍth spaces created in desígn. The fourEh

concept Ís the crucial investigation of structrrre that eaerges from these

discussions, in section 1.4, whích completes the link withín the conËext of

principles for creaËing order in archítecEure. ïhe overall goal of the

Ëheory part is Eo establish the Ëhesis that Ëhe nathemaËical theory of

symetry may be a signíficant part of the knorrledge an archiËect applíes
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in design

The second part of the Ëhesis is concerneC rsith the explanation. of ,

the rnathematical Ëhecry of symureËry by graphical iLlustratíon of the resources

of the Ëheory. There are four steps in that expLanaËion. The first step

is a non-technícal elrposition of the derivation of the ;nathemaËical theory

of symmetry Ín section 2.1 which leads into Ëhe _visual presenËaËÍon following.

Tne next step is a quíck íLlustration of syrmretry in one dímension, in

section 2,2, wíEln a careful buË non-technical conunentary. The Ëhird step

ís an exhaustive í1l-ustraEion of syrunetry in two dimensions, in section 2.3,

r¡tith the saîne sort of comentary. The fourth step is the extension of the

íllustraËion to symnetry Ín three dírnenslons, in secEioç¡ 2.4, wÍth a

coinplete commenËary Êhat should allor¡ an exhausËive visual undersËandíng

of symnetry in space. The overalI. goal of the resources part 1s to supPort

Ëhe thesis thac Ëhe ¡nathemeËical theory of symretry may be a signifÍcant

parË of the knowledge an architect aþplies in design.

The third part of the Ehesis is concerneC with speculaËions abouË the

conEribution of Ehe mathematícal Ëheory of symmetry Ëo the pracËice of

archiËecture. There are four areas of speculatíon to be considereC. The

first to be considered ís the application of Ëhe maËhematical thecry of

symretry ín design, in secËion 3,1, whích shows ÍË to be a neans for dealing

with Ëhe aeSËhetLcs of complexíty in archíËecture, The second area Ëo

be considered is an approach Eo design, díscusseC in secËion 3.2, wiEh Ëhe

mathematical theory of symuetry. Ihe Ëhird area Ëo be considared is the

poËential for application in design that ís provided by Ëhe nathenatÍcal

Ëheory of syumeËry, discussed in section 3,3, which concludes all the

argunents presenËed. The fourth and finaL area for speculaÊion is the
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directions for research, suggested in secEion 3,4, that foIloi.¡ from

Ëhis thesis. The ovarall goal of the speculations parË is to evaluate

Ëhe thesis ËhaË Ëhe mathemaËical Ëheory of syrmetry m.ay be a significant

part of the kno'¡¡1edge an archiËecË applies in design.

An introduction Eo the Ëechnical definítions needed to discuss the

maËhematical theory of synrnetry ís covereC by a urathemaËical appendix. The

definítions and Ëheorems have been presenteC separately fron the body of

lhe Ëhesís because they require some specíal knowl-eCge in maËhenaËics. Only

a s''nalL number of maËhematicians have investigated the subltetíes of Ëhe

proofs leading Ëo the aaËhematical Ëheory of syuunetry, For Ëhose uho wish to

pursue these proofs, the elemenËs of maËhemaËícs in the appendix are just a

beginning. The general importance of the'¡naÉhemaËÍcal appendix is the

precise Cefinitions for some of the Ëerms used ín the Ëhesis.

Tt ç,rill be diffícult to'judge Ëhe success or faiLure of this thesis,

In Ëerrs of meeting specific goals, it wÍll be successful if Ehe first parE

does establish the thesis, the second parE doas support the thesís, and Ëhe

thÍrd does evaluaEe the thesís. In a cerËain sense, it wí1l be successfuL if it

allols the conclusion that the methematical theory of symretry may indeeC be

a signifieant part of the knowledge thaË an architecË applies in design.

Beyond this, the success of the thesis can only be measureC fn Ëezms of the

stimulaËion thaË ít provides. If Ëhe archiËect ís moËívated to invesËigaËe

and experiment wiËh the mathemaEicat theory of syunatry, then Ëhe thesis will

be '1uite successful. Iïowever, lÍke all thecreËical investigations of the art

of architecture, Ëhe success or failure of the idea of applying the naËhemaËical

Eheory of symreËry in design can onLy be judged by the evaluation of actual

buildings resulËing from Ëhat applícationr
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The inspíration for this thesís has come fron Eço sources. The

first source ís Ëhe tradition of the signifícance of basic design in architecture'

enbodied most recenËly at the U1u llochschui.e fur Gestaltung. The idea fhat

design 1s a skil1 that may be learned through absËracË basic exercises is

still a relevant idea in architecËure. A faíËh in Ëhe ability and respcnsibiLity

of the designer to integraEe Ëhese exercises inËo the Practice of architecËure

ís a noral pcsiËion. I,iillian Huff argued in the ULm Journal Ëhat:

...Ëhe desígnerts prima concern ís his responsibílicy for Ëhe aesËhetie
culture, in which he musE ultÍúately take a inoral position. The

designer is the coordinaËor, Ëhe inËegrator' the unÍfier of the
environment--rvhere he works more Ín Ëeñrs 3f relaËíonships or
arrangements, than of objects or elements.

The second source of inspiration is Ëhe trend Ëowaids the acadenic study of

the pracËice of archiËecËure, ín parEicular Ëhe applícatíon of knowledge frou

dÍseiplines not formerly studied by designers. The application of ttmodernrl

maËhemaËics surveyed ly Lionel March and Philip Steadman in The GeomeËrv of

EnvíronmentT is mosË encouraging conËribution to that trend. March has

said of the eCucaËion of the desígner:

If Ëhe architectural and planning education is Ëo be anything more
Lhan the acquisítÍon of a hag of unrelateC tricks, Ehe style of the
bag ,beíng consídered '¡oore imporEant in this case perhaps Ehan any of
Ëhe tricks it míght conËain, then iEs eCucators f,usË eschew fashion
and popularity for nothing less Ëhan the tough díscipline of Símonts
noEíon of the sciences of che arËificial. ContenPcrary engineering
education is already well developed in this dírectíon: environmental
design education should be no exceptíon. When a school of environ¡qenËal
deslgn a,:lopts as Íts notto |tresearch paystr, then t¡a shall kno'¿ ËhaE Ëhe

much needeC ËransformaEíon in education and professional attÍtudes has

taken p1aee,8

This is also a moral posiËion. The ínaginative and creative erploiËation of

matherna¡ical knowledge in desígn q¡ill be an impcrtanË sËeP Ínto the fuËure

discipLine of architecture. Tf Ëhis thesis is but a small contribution in

that direcÉíon, if iË does no more than to ailil Ëo the ehange in moral positions

Ëowards na¡hemaEical research in archíËecËure, Ëhen iË doas something of value.



PART ONE: TI#ORY
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1.]" THE ÏDEA OF SA4ME13.Y

People associate different Ídeas niËh the word s5rmruetry. Certainly,

Ëhe maËhesnaËician means scmethÍng very differenË by iË Ëhan Ëhe âverage

archiËectural criËic. For Ehe mathenaËical Ëheory of symnetry Eo be

appLied in design, iË is necessary Ehat the archiËecË first undersËand

the idea of syrmetry. Synmetry, like so many rrrords use.:l to describe t¡orks

of archítecËure, has no precíse coûnon definition. the Oxford Concise

Dictionary defines synmeËry as beauËy resulting from rrrighË proportion

beËween the parts of a boly of any whole.rt Websterrs Dictionary defines

syrn?netry as t,he rrsimilarity of forur or arrangement on either side of a

dividing line; beauty of for"u or proportion as a result of such correspcndence.tt

The average architectural critic probably defines syrrneËry as Ëhe reflection

of the parts of a figure abo,rt an axis, although neiÊher dictionary

definiËion mentions mirror reflectÍon, The inËenË of this sectíon is to

abandon Ëhese vague notions by exploring the Ínathematical ídea of syrmeËry,

within the conEext of archiËecture, reaching a precise definition.

Symetry fs noË a neùülucrd, neíther is it new to apply the idea of

syf,metry ín architecËure. The orígin of the idea and the word is AncienË
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Greece, from the rocË rnrcrds l.tsptl, meaning together, and llmetrontt, neaning

Ëo neasure. I.lterally the idea of symrnetry lras rtËo measure Ëogethertt. The

applicaLion of the idea in architecture as part of the basíc dasign kno¡r-

Ledge of rhe arehítecË !¡as suggested as early as VíËruvius Ín The Ten Books

on Architecture. VÍtruvÍus Íncluded rrsymraeEriart as one of the fundanental

princíples for design in archiËecture. In Book I, Chapter IT,, Vitruvius

suggested Ëhis definiËion:

S5nünetry is a propelagreemenË between the mernbers of the work
ítse1f, and relations beËween the dÍfferent parts and the whole
general schegre, Ín a¿cordance r,rith a certain parË selecËeC
as sËandard.'

CerEainly, VÍtruvius is Ëhe firsË authoriËy thaE may be cíËed for the

applicaeion of the idaa of syumetry in archiËecËure. l[hat Vítruvius rreant

by Ëhe word symnetry is probably close to iËs Greek origins, but clearly

it nay be interpreted as something more than just mírror reflection about

an axis. ThaË something more nay onLy be modular coordination, buË íË

may just as well be the maËhematical idea cf sr¡mmetry.

In or,ler to understand the mathematical idea of syurmetry, it is necessary

to develop a precise definition of syffiietry using some naËhenaËical

concepËs. The clearest meËhod of developing this definiËíon is to follors the

nodel of ttzo najor sËudíes of symmetry avaiLable in English;,I{ermann !ileylts

Svrnmetrvlo aod Aleksei Shubnikovts Symuretry in Science and ArelX ,n" problen

is noË Ëhat symmeLry has losË iËs meaning, but ËhâË iËs meaning has lost its

usefulness in actívíties like architrecËural design. To regain that usefulness

a precise definition of syn",netry usíng mathernaÊical concep¡s should be built

up fron the comon notion of mirror reflectíon about an axis. Such a

definitíon should al1o"¡ che idea of symetry to be applied in dasign.
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There appears Ëo be a sÍnple reason Ëhat the linited noËion of

mirror refleceion about an axis persisËs as the idea of sytrctry in art.

It is Ëhis symlnetry Chat ís found in most rsobile higher 1ífe forms,

including the human body. For Ehis rêason, IIuff observed:

Man, professíng to have been made in-the image of his'go'å, has ,
Ín Ëurn, seen the universe replicated ín hinself, For him the
mosË persisËent of symrneEries is the one possessed of his o¡vn

bocly--6i1aEeral sJ¡rmetry. IIis aestheËic preferences are intermingled
wiLh his co¡poral being, and hÍs product,s often reflect that
condíËion. L¿

In archiËecËure this idea of symmetry has nanifesËed itself most clearly

in the Beaux ArËs tra.åítíon thaË relíes uPon axial planning, both in

cíËies and buildings (Fig. L.101)."The reaction 1n the lufoilern Move'¡nenË

agaÍnsE Ëhe simplistic and overpowering nature of ehis tradition is part

of the reason the idea of symetry, even in Ëhis limíËeC notion, has lost

iËs usefulness in architectural desígn. One of the more dÍsturbing

dÍscussions in recent liËeraËure on Êhis idea of syxmetry advocaLes an

even,mofê. simpl.istic applicaËíon of mirror refLection about an axis in the

elevatÍon of houses as a oetaphor for Ëhe human body, or the þrrma¡ face.

Charles l,foore and Kent Bloomer in Bo.dy. Menory. and Architecture have

Éaken- Ëhis .pcsiËíon:

FronÊ doors and house facades aLmost always,exhibit a measure of
s)mmetry. In traditional architecture thís ¡sas achieved with
porEicoes and baLanced facades, whereas today Ehe symneËry is more
tikely Ëo be expressed by speciaL bushes sËanding guard aË each side
of the front entrance. Thís ís certainLy related to the frontal
syffinetry of mobilÍzaEion characËeristic of body posËure, r'¡here Ëhe

eyes and ears are focused for defence. In houses +hese symetríes
are facial and are usualLy oriented to the public.'-

Ttre !üinslorr I{ouse by Frank Lloyd rairight, with Íts spneËrical fronË (Fig. 1.102)

and asymetrical rear (FÍg. 1.103), is given in evidence to support Ëhís

inËerpreËation. This seeos Ëo be a clear misunderstanding of rrlrightts staËed
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Fíg. 1.101

FÍg. L.L02

Fig. 1.103
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belief in the absEract nature of architecture; and given tr^fríghtts

exEensive use of geo.netric patËerns boËh in pLan aad elevation in oËher

works, the syrnetry of the fronË facade of the Ï^Iinslo"¡ llouse is best seen

as an aLËerûpE Ëo creaÉe order.

I?re idea of symroetry in archiÊecture should quickLy abandon the

liniËeC noÊion of mirror reflecËion abouË an axis in either of the

exaorpLes above. TnaE is because the effecË of syruneËry is neither due to

the nonumenÊal pckTer of axial planning, nor due to the ímitaËion of the

h 'man body. Shubnikov argued that Ëhere is a nore subËle reason for

effect of mirror reflection about an axis:

An ínk bLoË is noË reaL1y beauËiful. IIowever, if sre fold a piece
of paper in twc before the ink is dry, we obtaÍn a picture which

' conveys a pleasing impression. Ilere the determining factor givíng
the idea of beauty is the regular pyËual disposition of parts of
the figure, thaË is, its symmeËry.ra

The seed of the mathematÍcal idea of syrmmetry is ín this position on the

reason for the use of mirror reflection Ín art.

3ilateral symmeËry entails the concept of Ëhe parts on either side

of the axís Éeing exactLy the same, only reversed in sense relative Eo one

another. In some tradÍtional ritual systems even this linited idea of

symnetry night be denÍed because left and righr have Íntrinsíc symbolic

qualiËies.15 ÏIowever, ín modern trüesËern thought, left and right are

consídered indiscernÍble. The left side of a symnetrical arrangeuent has

no intrinsic qualiËies that the riþht side doesntË, and vice-versa. The

condiËion of being the left or righE síde of a roirror reflection is called

enantiomorphisrn. The nature of an enanËiomorph is ËhaE in no sense of

super-position can it be flade Ëo coincide rr¡íth its reflection. To use the

ofËen given example, there ís no way thaE a left hand glove nay be worn on
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the right hand. Therefore, Ëhe idea of left and right enantíomorphs forrning

a syfftreËrical- configuraËion ínvolves an operaEion of the human mind, One

is already developirrg t nowtedge that is the basis of the ¡naËhenaËical

idea of sJmtreËry.

The absEracL mathenaËical concepË at the root of the mathenaËical

theory of symneËry ís the noËion of gecnetric equality. Clearly the

operation of Che nind ç,¡hich 1Ínks enanËiomorphs inËo syÛnetricâl

configurations involves noËicing Eheir equal size, equal shape, and equal

position relaËive t,o an axis. Shubníkov has suggesEed this leads to

a basic, yet precise, definition of sy:mmetrÊcal as, rtany object which

consísts of geomeËricaIly equaL parts appropriately disposeC Eo one

another.ttl6 All maËhemaEÍcs is bullt upon the manÍpulaËíon of equalities;

the maËheunatícal theory of sy'rrl.etry ís built from the geonetríc equalitíes

between the parts of symuetrical configurations,

The concepË of geornetric equaliËy adniËs many configuratl,ons-Þesides

jusË mirror reflecËions abouË an axis. Many figures in which Ëhe parEs

are not reversed in sense, yeË are stilL geometrically equal, may be

describe,l as sJmnetrical. l"faËhenaticÍans call those configuraËions in

which Ëhe sense of the parts is noE nirrored, direct symetries. those in

r¡hich Ëhe sense of the parts Ís mírrored, are called opposite symeËries.

In order to classify and differenËiate symetrical configurations

mathenaticians have developed Ëhe concepË; of syÍrneËry operaËions' The

concept is that be a rfmoËiontt, ín the absËract non-kíneinaËic sense, each

part of a syûtreËrícal configuraËion nay be inaCe Ëo coincíde with anoËher

part !üith whích it is geometrÍcally equal. IË is a useful idea because

there is the paral1e1 in desígn 'ç¡hen an archíËecË speaks of frmovingtt an
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elemenË in plan. If Ëhe sense of the part is noË mitrored, the operation

pro,Cucing direcË symetry, then it ís called a proper motion. If the

sense of the parË is mirrored, the operaËion producing opposiËe s]¡mrnetry,

Ëhen iË is call an improper mr:tíon.

IË is worEhr,¡hile i1lusËrating the concept of a syrûretry operation

gtaphícally (Fig. 1.104). Architects seem to be Ëhe mosË farnilÍar wÍth

two Cimensional illustrations fron their convenËíons of drawing plan, secËion,

and elevation. In &¡o dimensions, maËhem.tËicians have identified just

four syrmretry op'3ratíons, tllo proper notions of translaËion and rotation,

and two ímproper motions of reflecËion and glide relfectíon. These four

operaËions produce all the possible symetrical configuraËions in the

plane. ïn the drarling, the motion of an arbitrary Ëriangle accordíng Ëo

each operaEíon has been indícáted... Each configuration consisting of fi¡o

triangles should be recogaized as symmeËrícal.

The moLion of a syúrneËry operation does not alter Ehe lengfhs, angles,

of ratios within the parE, respectÍng Ëhe concepË of geoneËric equality.

Such an operaËion is called an isometry in matheoaËÍcs. Architects are

faniliar wiËh thís Ëerm from their graphÍcs, a projecËion of a plan that,

unlike a perspective, does not alter the lenghts, angLes, or ratios in the

plan is also catled an isometric. A symetry operation is, by definition,

an isometrÍc operaEiona Shubnikov has suggested a further, noore precise,

definition of symetrical as, rra:ry finite or ínfinite fígure whÍch nay be

ma,Je Eo coincide lrith ítseLf by one or several isomeÊric operaËion"."17

This definitíon should be enough to make Ëhe maËhernaËical idea of synmêËry

clear in desLgn.

But, one more level of precision is reached by absËracËÍng tt¡o
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Fig. 1.104
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Glidc- Rof l<tion _

* DIRECT SYMMETRY OPPOSTE SYMMETRY -

other mathematical concepËs contained in thÍs defÍnÍËion. The first

concepL should be easily undersËood, enough applicatíons of a syrmeËry

operaË1on will trmovett the part back to its original posíËion. The

mathematcian calls thís iomplete motÍon an automorphism. For example,

in the illustraËÍon of the rotaËlon operation (Fig. 1.104), t!üo motions

through 180o nake an âuËomorphisn for Ëhe tríangle. Any symretrícal

configuration conËains an automorphism consisting of two or more syrmetry

op.r"tiorr".fB rhe second conept is more techníca1, the autonorphisns

resulting from syrmeËry operaËíons ha've the property of forming a group

(DEFINITION D:01, MaÈhemarical Appendíx). It is suffícienr to understand

thaÈ groups have a particul-ar maËhematical structure Ëhat may be studieil

Ëo, in this case, alLow Ehe classification of syumetrical,configuraËions

by their group sËructure.

A very precise definitíon of the matheinaticaL ídea of symmetry,

based on these t'$¡o concepts, was developec by weyl: ttcÍven a spaËiaL

configuration, T, those autornorphisms of space which leave T unchanged

form a group, G, and the group describes exactLy Ehe symetry possessed
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by 1.rr19 Shubnikov also developed a sÍní1íar precise definition.20 IË

has been sLightl-y alËereC Ëo provida the working definiËion of syrureËry

for Ehis Ëhesis. Syrmretry is defined as the highest possible group of

automorphisms mapping any structural object, consisting of geonetrically

equal parEs, onËo itself. The nathenaËical ídea of symreEry contained in

this definítion should be a clear foundaÊion for Ehe :naËhernaËícal theory of

syrmeËry in archítecture.

1\,ro oEher ideas which involve the Ídea of syrn'neËry in Ëheir definitions

may be useful for che application of Ëhe ¡oaËhernatical theory of symmetry in

design. The first idea is as)mneËry, nhích is defined only as the abscence

of syffitratry. Ilowaver, !üeyl suggested that asymnetry refers nore accuraËely

to the near presence of .y*.rry.zl ThÍs should be conËrasËed çvith the

seeond Ídea, t¡hlch is dÍssymmeËry. Disspetry ís defÍned as the purposeful

variaEion from Ëhe symetry any strucËural object night others¡íse have.

Deliberate variaËion from an e:<pected syrnrnetry wiËh:'elements of dissymmetry

may be an important idea in basic design. The subtle distincËion beËween

asymeEry and dÍssymleËry ís significanË in any application of sy'mmetry

in arË.

1t Ís inËeresting to noËice the unselfconscious use of the ¡nathenatical

idea of symeËry in architecture. March and Steadman present several

examples of Ëwo dimensional synmetry in works of modern archiËecture, they

argued, trÏË could be said thaË Ëhose who vare Ëhe BosË successful innovators

of architectural form, in parËicuLar le Corbusier and Frank Lloyd türight,

qrere Ëhose who most understood slmetry aS an abstracË ídea."22 Exa:rrples

of Corbusier and t{right plans reveal the creaËion of a complex varieËy

of spaces pithin a paËtern of differenË syrÍmetrical configuraËíons, Ihe
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design of such works appears to be the search for a sËruccure created by

syrureËry operaËions applied Ëo the arrangeilenË of archiËectural elenents,

The architecËure of Louis Kahn, ínfluenced by his study of Roman

archiËecture, his educaËion in the Beaux ArËs Ëradition, and his or¡n ideas

on order, demonstraËes an understandíng of symretry operaËions in design,

The mathematÍcal idea of symretry may be used. to study the order in the

design of the NaËíonal Assembly building for Bangladesh (Fig. 1.105). In

Kahnts plan for the buílding it is possible Ëo see the underLying structure

resulting fron the syruîetry of Ëhe configuratíon. The assenbly hall

iËse1f ís created by. two elements, a column and a wall, which are reflected

about a line, then rotateC eight turns abouË a centre pcinË,(Fig. 1,106).

lhe eight lines generated by Ëhis operatíon become the controlling feature

of the design. About every second 1ine, the spaces for admÍnistraËion offíces

is createC by the reflectÍon of a square about Êhe IÍne, of course this

also creaËes a four turn rotaËíon about the centre point (Fig. 1.106).

AbouË Lhe east-west axis, Ëhere are reflectÍons aE eÍËher end of half-cylinders

and rectangles creatÍng space for dining/recreaËíon and ÍqínfsËersr lounges

(Fíg.1.107). About the north-south axis, there are four turn roÊations at

eiËher end creaËing space for each enEry (FÍ9.1.107). Bett¡een the assenbli¡

halL and each of Ëhese entries/Ioúnges'.are stairs or elevators reflected about

the axis. But the four turn roËatíon about the cenËre poínt is varied from

by Ëhe Large circular elenent of the abluËion court on the north axis. Thís

is a clear case of dissymnetry. Also, Kahn has Ëurned the mosque main

entry, while reËaining íts roËaËional synneËry, a few ilegrees off the line

of the a.:<is. Thís seems Eo be a case of "ay*,utry in Ëhe sense suggesËed

by Înley1. The applicaËionc'of the Ídea of syumeËry, wÍEh Ëhe inËerplay of



-19-

Fig. 1.105

Fig, 1.106

Fíg. L.L07
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asyrnecry and dissymmetry, to creaEe order in desígn ís clearly demonstrated

by this and other examples of Kahnts archíËecËure.

The point of this example has been not just to shor.¡ the presence of

the idea of symoetry in a najor s¡ork of modern architecture, buË Êo shorr

the usefuLness of the naËhemaËical theory of symmetry, as la çray of understandíng

order in architecËure. It ís the abstract strucËure which orders the

space creating elenenËs of the building that is the feaËure Ëo be aC¡nired

in Kahnrs archiËecture. IË is not the foms of the elements, cylínders

or cubes cr Eríangles, thaË make the design so inËeresËing; iË is the

underlying sËructure in v¡hich those for^ms are used, UnfortunaËely, the

NaËíonal Asseinbly buílding does exhibiË some of the simplístic and

overpolrering Ëendencies reminiscenË of the Beaux Arts Ëradition, however

it is an example of the subtle appreeiation of the ídea of spetry in

architecture.

For a knowledge of the mathematícal theory of sym'netry to be applieC

ín design, Ëhe architecÊ should undersËand Ëhe idea of syrtretry as a principle

for creatÍng order, Kahnts llational Assenbly buÍlding is an exanple of

that principle, noË a resulË to be copied. March and Steadnan included a

useful- quote froin Olven Jonest The Grarnar qi OrEaneEEZ3 ^t this point in

theír argument:

The prineiples díscoverable in the works of the past belong Eo
usr noË so the resulËs. It ís taking the end for the rneans. No
improvement can take placé in the art of the present generation
untíl all classes, artists, manufacËurers, and the public, are beËter
educateC in arË, and the existence of general. principles is more
ful1y recognízed. If the arËísË, earnest in his search after
knorledge, will only 1ay aside all temptation Ëo indolence, will
s¡¡mi¡1s for himself the arts of Ëhe past, compare Ëhen with r¡crks of
naËure, bend his rnínd to a Ëhorough appreciâtion of theoprinciples
whÍch reign ín each, he cannot fail Lo be a creator...'-

Therefore, íË Ís not for the student of archiËecËure, ín the practice of
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design, Ëo imitaLe the geonetric forn..of Ëhe eleinenËs ín the architecture

of Frank Lloyd tfright, Le Corbusier, or Louis Kahn; but Ëo apprecíate the

syÍ¡netry sËrucË.ure presenË in Ëhat architecture.

Tne development of the premise that the mathe'natical theory of

symeËry may be a signifÍgant parË of the knowl-edge an'architect appties

ín design, follows naturally from an appreciation of the Ídea of symretry

in architecture. An appreciation of the rnaËhematical idea of symreEry ín

architecËure seens to involve three Ëheoretical issues. As defíned in Ëhis

sectíon, Ëhe idea of syrorneÈry provides a mathematical meËhod for differentiaËing

and classifyíng absËract structures underlying spatial confíguratíons. lhe

three issues raiseC are, therefore, Ëhe nature of that meËhod, Ëhe creaEion

of those configurations, and the inveétígaEion of ehe abstract structures.

The next three sections of the theory part will cover Ehe nature of

mathemaËics, an understanding of space creaËion, and the investigatíon of

structure. Ttre argunents provided by combining the conepËs disscussed in

each section should establish the thesis that the nathemaËical theory of

symmetry nay be a signÍficant part of the knowLedge an architecË applies

in dasign.
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L,2 T¡TE NATURE OF },fATHM,ÍATTCS

Whenever the applícation of naËhematics to an ârÊ acËÍvity, such as

design, Ís proposed there is a theoreËical problen to be confronËed. Many

críËics insist that mathemaËical knowledge, because of the very naËure of

mathematics, has no place. in the judgements creaË,íng works., of art. They

suggest ËhaË maËhemaËÍcs is only suitabLe for Ehe explanatíons of science.

The issue here is noË wheËher archiËecËure is an arE or a science, but

trhat is the nature of mathematícs. If Ëhe nathematical theory of symrnetry,

or any mathematicaL knowledge, is Eo be applieC in design, then the naËure

of thet knowledge musË a1Low thaË applic,ation. The intenË of this sectÍon

is to jusEify ehe application of mathematics 1n architecËure, by consideríng

the philosophical foundatíon of maEheaatics.

As an epigraph, I.Ieyl once used GoeËhers remark -that, tUaEhematicians

are like Frenchnan; whatever you. say to theln they translate ínto their otrn

language, and forttn¡ith it ís somethíng entirely díffererrË.,,25 This reflects

the suspicion many artists hold that it is not justifieC to apply maËhe.naËics

in arË. Equally many architects seem Ëo be nystífied by the propositions

of maËhematícs. Indeed, an ignorance of maËhemaEícs has attained a certain
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social sËaËus arnong artisÈsr. especiâlly archíËects. They har/e no cLear

concepË of maEhe¡uaËical entiLies, sueh as numbers or poinËs in space. Nor

do they have a clear concept of the sourre for mathematical truËhs, such

as arithmetic or geometric equalities. T'hese are the two basic problems

in Ëhe philosophy of maEhenatics. the resolution of them provÍdes

foundation for any applícaËion of maËhemaËics in architecture.

The phílosophy of maËhematics is a relaËively recenË developnenË,

beginning only about Ëhe turn of the century. Many ansr,rers have been

offered by nany philosopher Ëo resolve Êhe two problems sËated above, buË

Ëhree najor Ërends may be identified: Logicism, forrnalism, and intuÍtionism.

Each Ëreacl has several weaknesses, especíally when considering Ëhe differenË

jusËificatÍons-for;egpl,ying.:any'i maEhemaEics in archiËecture Ëhey provide.

A more pertinent approach Ëo the phÍlosophy of mathematlcs, whlch does

justÍfy Ëhe applicaËíon of mathematics ín archítecture, is developed tron the

critícism of Ëhese three trends,

Logicísm is the label given to the philosophy of uraEhenatícs developed

by such philosophers as GoEËlieb Frege and Bertrand Russell. The generaL

posítíon is very símpIe, mathematícs is logic, and nothing more Ëhan logic.

IË suggests ËhaE m.aËhecnaEics may be reduced to logic; this ís Ëhe progranma

for Russell and t{hiteheailts Principia Mathematica.26 In logiclsm, maËhematícal

entitíes are simply defined by Ëhe maËhenaËician as nominal enEities within

â slstam of logic. The source of maËhematical Ëruth, ln Logícism, is the

logical relations beËween these enË,iËies. thus, the propositíons of mathemaËics

are persuasive just because they are logic.

The other Ewo trends in Ëhe philosophy of naEhematics developad as

reactíons to the logicist positions. Many philosophers argued ËhaE
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although mathemaÉics proceeds according Ëo the rules of logic, it is not

initself 1ogic. The suggesËion ís that maËhematical entiËies have some

kínd of real exístence, and that Ëhe source of mathernatÍcal truth is more

Ëhan just the logic used by mathematicians.

Fornalism is the labeL given to Ëhe philosophy of matheiratics developed

by the maËhematician Davíd liilberE; and later exËended by such philosophers

as H.B. Cutry. The general position is that roaEhemaËics ís an exampLe of

the eonstructíon and nanÍpulaËion of fornal systeins. fne prograsme r,ras to

shoÌr ËhaË Ëhe proposítions of mathenaËícs were about, rather thaË in, Ëhe

formal sysËeE of . symÞols used by maËhernaËicians. In formalism, mathemaEical

entiÉies are díscovered by Ëhe rnathematican in the symbolíc representatíon

for fotmal systems of maËheoatics. The source of matheoatical truth, in

fornalism, is the fo¡ma1 releËions beÊ¡¡een Ëhese entities. Thus, Ëhe

proposÍtions of maËhenatics are persuasíve because Ëhey are part of the

Itgamert fcir;:aforsral systeo.

Intuitionism ís the Label given to the phíLosophy of nathemaËícs

developed by che phiLosopher I.E.J. Brorn¡er; and laËer extended by Arend

Ileyting ín direct oppositÍon to formalism. The general position, influenced

by Kantts syntheËie a-príori classíficaËíon of maËhematics, is ËhaË

mathemaEics is an activity of inËuitíve concept fornation by Ëhe mind. The

programme tsas to show Ehat the propcsitions of mathematics are'the result of

the conception and manipulatíon of cerEain a-priori maËhemaËical inËuitions.

In inËuitíonÍsm, maËhematical entities are discovered by Ehe mathematician

in Ëhe introspection of his intuition. lhe source of mathematical truth,

ín intuitÍonísm, is the rrself-evÍdenËtr reLaEions beËsreen Ëhese entiËies.

lhus, Ëhe propositions of maËhematícs are persuasive because they are
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constructed through intuitions-of the human mind.

These three positions are not as clear cut or schenatic as presenËed

here; neither do they characterize every actempË in roodern philosophy to

aecounL for maËhenatics. In certain sense they are a1L pLausib1e; mathenatics

someËimes seems to be jusÊ a sysËen of Logic, other Ëimes to be a gane of

manipulaEing a forrnal sysËeil, and occasionally to be a lvorking of human

inËuiEion aË a very deep 1eveL. Architectural decisions seern remarkably

similiar, they often have all three of these characteristics themselves.

Various Ërends in design methods tshich apply mathenatics Ín archiËecture,

Ëherefore, seen to follotr one of these three posiËions on Ëhe nature of

maËhe¡naËics.

Any discussion abouË the philosophy of maËhematics should oention

Godelts proof, a bríllÍanË result in mathematlcal logic, that casts doubt

on the trhole subjecË. Nagel and Ne¡sinan have summarized GoCelts achievêmenË:

Godelts conclusions are tr¡o-fold. In the first place he showad
that no metanaËhenatical proof is possíble for the forual consistency
of a sysËem comprehensive enough to conEain the whole of ariËhmeCíc.
Godelts second main conclusÍon is even more suryrising and revolutionary
in iËs imporE, for ít made evident a fundanental. limitaEion in the
po\.ver of the axíomatic method. GoCel sho'nred Ëhat Principia, or any
oËher systeç-withín s¡hich arithmetíc can be Ceveloped is essentially
inconpllte. z /

GoCel never argued Ëhat any of Ehe philosophical foundaËions of maËhematics

Ì,rere qrrong; he sinply shorn¡ed thaË any progrrúme they ruighË propose would

noË consistenË1y account for all of arithmeËic. A para11eL warníng should

be issued to those who seek to use a-naËh€maEical Frogr¿Eûme Ëo account for

all archiËectural decisions. The application of maLheuaËics in archítecture

is noË such a panacea.

In eqe¡ks on LLe- feundeqíon of Mathqqqtjcs2S l,lirrg"nsËeÍn criticízed
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all of the three major positions described above: logicism, formalism,

and intuiËionisro. A review of his criËicism will Lead to an acceptable

view of the naËure of mathematics Ëhat justÍfies Íts applícaËion in

architecture. trlíËËgensteinrs nose fundamenËal positíon rejects the ídea,

which has come down from Plato, Ëhat maËhematics is a body of knowledge

about mathenatícal enËitíes. Wittgenstein expressed Ëhe opiníon Ëhat,

ftËhe mathernaËicain is an invenËor, not a discovet.r."29 Thís position

rejecËs Ëhe idea ËhaË Ehe nathe:natical,entities are discovered by'þêople

and the idea thaE mäËhe¡natical truÊh is disêovered Ín relations beÉwaen

those entities. AccepËing Wittgensteints posiËion, it is possible to

critísíze design methods which apply mathematícs in archiËecture following

the Ëhree posiËions of logicÍsm, fomalism, and inÈuítionÍsm.

There have been several methods justífying Ëhe applicatíon of

maËhematics Ëo design based on an,assumpËion of the'lógfcXst posftion.

The early work of Christopher Alexander 1s Ëypical of an attenPt Ëo

reduce archÍtecËural design to logic by applying mathematícs. Alexander

discussed the force of logíc in Ëhe introductfon of Notes on the SVnthesis

ef For^m' and concluded in the epllogue:

The shapes of nathematfcs are abstracË, of course, and the shapes
of architecture concrete and hr:man. But that difference is
ineesential. The crucíaL qualíty of shape, no matter of whaE klnd,
líes in its organization, and when v¡e Ëhink of it in this way
r.¡e call it form. Manrs fealing for mathematical form r^ras ablg . r
to Cevelop only fron his feeling for the Processes of proof. I
believe ËhaË our feellng for architectural form can never reach a

comparable order of development, untíl Ìre Loo h4¡e flrst learned
a comparable feeling for Ëhe process of design.-"

Alexanders emphasis on Ëhe logic of the Process of proof underlying

maËhematics reveals his belief thaË Ëhe applicaEíon of nathenatÍcs ín

archiËecture would be jusË a coüparable reduction of the ôesign Process
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An attempt Ëo reduce design to logic through maËhenaËics is quesËionable

because it assumes Ëhe posiËion of logícism. MathenaËícaL enËiËies are

noE discovered in any systsem of logíc to rrhich the archiEect may appeal

in naking decisions. Simílarly, Ëhe source of rnaËhematical truth is

not Ciscovered in the logic of the'proof of maËhernatical proposÍtions. TLre

architect applying maËhematícs does not guaranËee Ëhe logic of the

design process. It ís not accepËable for the application of mathenatics

in architecture to claim Ëhat maËhemaËics, init,self, makes Ëhe design

process logÍcal.

RecenËly, there have been developed several signifícant meËhods

jusEifying the application of mathemaËics to design based on an assumpËion

of the formalist posíEion. ihe research inËo applyíng graph thecry using

compuËer-aided design is typicaL of an attempË to formalize archítecËural

desígn by applying mathematics. Steadnan has dlscussed Ëhe basÍs for

this approach:

It is, by now, a ¡,¡e11 established idea ËhaË the theory of graphs
rníghË find useful application in architecËural layout and planning.
Tt is usual to represenË a graph wiEh a diagram, showing poínts
joineC by Ehe appropriate lines¡ and to refer Ëo this diagran
itself as the graph. Graph pcints roíght be used Ëo represent the
relation of adjacency betsreen pairs of rooms. It is possible Ëo
regard the plan itself as forming yet another different kínd of graph.
The plan graph and the correspondíng adjacency graph bearr¡ specÍal
relaËionship Ëo each oËher. They are nathemaËical duals.

Steadmants enphasis on the foroal diagræ being Êhe graph, and the formal

archiËectural plan a mathematically dual diagran/graph, relreals his

belief Ëhat the application of maËheaaËics in archiËecËure wouLd formalÍze

the design process

An attempE to formalLze design through mathenaËics is questionable
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because ít assumes Ëhe posÍËion of fonnalisrn. Mathenatical enËiËíes are

not dÍscovered. in the diagrarns or represenËatÍons Ëhat the architect may

use to make decisions. Slnilarly, the source of mathenatical Ëruth is

not díscovered in the representations of mathematical propositÍons. The

architect applying mathemaËÍcs does noË make valíd the foffral plans of

the design process. It is noË acceptable for the applicaËion of mathenatics

in architecÊure to c1aín thaË rnathematics, initself, makes the design process

f or¡nalized.

There have also been many meËhods jusËifying Ëhe applieation of

mathematícs to design based on an assumpËion of Ëhe intuitlonist positíon.

The approach Ëo archiËecture using geometrical forms of BuckminsËer Fuller

is typÍcal of an attempt to make intuítively reliable archiËectural design

by applying maËhematics. Ful-ler has poeËically stated the basis of hís

intuitive approach:

Key to humanityts scientific díscoveries/Iechnical lnventíons/Design
conceptioning/And production realizations. That key is the first/
And utterly unpremediated event/Of having come unwittingly upon/An
heretofore unknowa truth/Of an a-priori uníverse/An eternal principle.
And then moments later/A second intuiËive awareness/Regarding what the
conceíving individual hr:oan/Must do aË once/To capture Ëhe awareness
of/And secure Ëhe usefulnesg^of/That eternally reliable generalized
prlncíple/For all humanity.s¿

Fullerts emphasis on the inËuitive discovery of eternal prÍnciples of

mathenatics and Ëhe awareness of their ímnediaÉe ueefulness, reveels hís

belief Ëhat the application of maËhematics in architecture v¡ould reLiably

reflect the intuitive desÍgn process,

An aËËempt to reflect ÍntuiEive design through mathematics is quesËíonable

because it assumes the posÍtion of intuitionism. MathemaEical enËities are

not discovered in an a-prÍori intuíËion of which the archiËect is airare in
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loaking decisions. Sirnilarly, Ëhe source of mathemâticâl- truth is noË

discovered in Íntuitive inËrospection of mathematical proposÍtions. ïhe

archiËecË applying mathematics does noË make reliable the intuíËíve

judgements of the desÍgn process. IË is not. acceptable for Ëhe applicaËion

of mathenatics in architecËure to claim Ëhat maËhematics, ínitself, makes

the design process reliable íntuÍËion¡

Though they misunderstand Ëhe nature of mathemaÊics, and consequently

are liable to make unjustified claíms, each method has resulted some

favourable directions for the applicaËion of mathematics in archÍtecture.

Alexanderts work, if nothing else, has produced a signÍfícanË change in

Ëhe attiËude of archiËecËs to the academic study of design process. The

research of Steadman and oËhers ín graph theory will Lead to a very

powerful planníng tool tiri.th Ëhe advent of computer aideC architecture. The

engÍneering principles of Fuller are already consider landmarks of construcËion

teehníques in archítecËure. l^IhÍLe Ëhis may vindicate Ëhese methods, an

alternative philosophÍcal positÍon leading to a justífication of the

applícaEion of mathemaËícs in archítecÉure is required.

A justification for applying rnathematics to design ís suggested by

further readíngs of Ìüittgensteín. The inËentíon of the archíËecË applying

mathematics should be no different than if he r¡ere not applying naËhematics,

In many instances, mathematics, geometry in particular, has been applied

in architecËure t¡ith the intention of Eurning oËher.lv"ise ordinary designs

ÍnËo souethíng special. I,iÍtËgenstein opposed this kínd of thinking:

The comparíson wiËh alcheny suggests itself, l^Ie night speak of
a kÍnd of slchemy in maËhemaËÍcs. It is the ear:nark of thís
mathenaËícal alchemy Ëhat nathemaËícal propositíons are regarded
as statenents about maËhenatical objects, and so maËhemaËics as
the exploraËion of these objects. In a cerËain sense it is noË
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possible to appeal to Ëhe meaníng of the signs in maËhematicsU"jusË
because it is onLy mathematics that gives them their meaning.-"

Clearly, if the architectts inEenËion in the use of maËhematics, f.ike alchenry,

is Ëo auËomaËically produce something that anoËher desígn neËhod would not,

then Ehe naËure of mathematícs has already been misunderstood. The inËention

in the applÍcaËion of mathematics, jusË as wiËh any design meËhod, musË

be Ëo produce good archÍtecture. The evaluaEion of good or bad architecture

cannot be nade according Ëo whether or not mathenatics rvas applied in the

design.

Once !üittgensËeinfs position thaL Ëhe maËhematicÍan is an lnventor

is accepted, the two'cenËral problems of the philosophy of maËhemaËÍcs

may be resolved.34 A concept of mathenatical enËities is easily

developed; there exisË no such Ëhings as maËhemaËícal enËiËies. There

are no such thíngs as a number or a. point in space, They are only ideas

invented by human beings; Ëhe meaning of whích has become clear through

the use of Ëhose ideas, noE by their being or representing objecËs or

properties of objects. For example, symnetry is only an idea invenËed

by some person, theneaning of r¿hich has become establíshed in maËhematics

by Íts use for undersËanding the structure of certain coafigurations.

SymeËry is not an entity, fË is not defÍned in a systef, of logic, or

discovered in foroal representations or intuiËions of Ëhe s7orld. The

applícation of mathematics to desÍgn is noË Ëhe res.ult of either logical,

for^mal, or íntuítive naËhenatical enËitíes discovered in atchitecture.

Such enËiËies do not exisË Ëo be discovered, for they are ÍnvenËed'

SirniLarly, a concepË of mathemaËical truËh is easily developed;

maËhematical proposiËions are Ërue by virtue of the conventions for use

of mathemaËical ideas. The sourée of mathemaLical ËruËh is the tacit
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agreement beËç¿een people abouË what to accepË as truth. AríËhueËíc or

geometric equalities are only truths invented by human beings; the accePtance

of which has been. the resuLt of conventions abouË mathenatical ideas r not

by their being relaËions between maËhematíca1 enËities. 3or exanple, Ëhe

isomorphÍsn @EFINITION D:08, MathemaËical Appendix) of cerËain sywtreËry

groups are proposiËions lnvented by some person, the truth of which has

been accepteC according to the conventions agreeC to for rrse of such ideas.

The isomorphisrn of syuuretry groups are noË truths discovered in the logical'

formal, or inËuitive relaËions beLween mathenatical enËitÍes. The applicaËion

of maËhenaËics to design Ís not Ëhe result of eÍther logical, formal, or

intuÍtive mathemaËical relations díscovered to be Ërue of archiËecture.

Such mathernatical truths are not to be discovered, for Ëhey are invented.

The naËure of mathernatics can be best understood as simply a human

actívity, similar to Ehe actívity of language. Mathematics is a seË of

ideas and conventions about those ideas that has evotved Ín human culture.

A proposiËion of maËheînaeics is persuasfve because \{e are bound by the

rules of mathemaËics, much as !üe are bound by the rules of language when

l,re speak. To nake or apply propoeÍtions, of maLhemaËics requires being

bound by the meaning of Che Ídeas and agreement to the truth convenËions

of mathematics; much as Ëo make or apply propcstíons Ín languages requires

being bound by Ehe meaning of the words and agreement Eo the grammar of

languages. Therefore, mathernatics may serve as an alLernatÍve way of

understanding and comunfcafing desÍgn intentions. Matheuatical propositions

then harre Ëhe status of rules bounding the design process. The architect

is free to creatively apply Ëhose rules according Ëo design intenËions.

Ilowever, applying maËhematics requíres accePËing whaË íË presríbes.
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MaËheioaËics, raËher that being a body of knorvledge abouË mathenaËical

entities, is a body of prescriptÍve rules about rnaËhemaËÍcal ideas; one

of which is the idea of sytrnetry.

WittgensËeín expressed Ëhe sËatus of mathenatÍcal propositions

in Ëhis way:

The mathenratical propositíon has the ËypÍcal (buË thaË doesntË
mean simple) role of a ru1e. If you know a mathematical proposiËion
Ëhatts noË to say you yet know anything. If Ëhere is confusion
in our operaËions, if everyone calculaËes dÍfferently, and each one
differenËly aË differenË times, Ëhen there isnrË any calculatíng
yet; if we agree, then we have only seË our tratches, but not yet
measured any timå. If you know a mathemaËical proposÍtíon, thatrs
noË Ëo say you yeË kno!ü anyËhín. The naËhemaËical proqqsition is
only supposed to supply a franersork for a descripËion.--

The mathenatical proposiEions thaË make up Ehe maËhemaËical cheory of

sFmetry therefore provide a fræer¡ork for a descri.ption, Ëhat ís, for an

undersËanding and communication, of the::eËructure certain configurations.

They, like all mathematics, in no way limit the creatfviËy of the designer,

just as language in no way lírníts the creativity of the Poet.

The architect, who undersËands the nature of mathematics in this way'

justifies Ëhe applicaËíon of maËhenatics ín architecture sinply because íË

does give a creative framework of rules within r.zhich to desÍgn. The

rnathematical theory of symretry does gíve a franework for understandíng

and conmunicating the etructure of space creating configurations of

archítecËural elenents. A knowledge of the theorY is, initself, rrnot to

yeË know anyËhingrr, but the applicaËion of that knowledge in design may

be a powerful creative framework for describing design intenË1ons. Ttre

architecË whose mind is preJudiced either for or agaínst Ehe application

of mathemaËics in architecËure, by assuming some oËher positíon on the

nature of maEhemaËics, is limited ín the creaËíve frameworks thaË rnay
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be applied in design.

There ís noË only that justificaËion for the application of mathemaËics

in architecture, but also posiËive value that results fron Ëhe applícation'

The value in appl-ying maËhematícs to design lies in íncreasing Ëhe creative

capaciËy of the mind, and the abilíty Eo make public that capacity' Pascal

observed in the ?ensees thaË:

Mathe,naticians who are mereLy mathematicÍans therefore reason
soundLy as long as everything is explainec to then by definiËíons
and princíples, othetwíse Ëhey are unsound and inËol-erable, because

Lhey reason only from clearly defineC principles '
And intuftive rninds which are merely intuíËive lack Ëhe patience Ëo

go right into the flrat principles of speculative and imaginative
matËers whích Ehey h4ye never ãeen in pracËiee and are quite outside
ordinary experience.Jo

It ls inËrínsically valuable for the deslgner l¿ho has, hereËofore, relied

upon inËuitíve insights into archítecture to apply maËhemaËica to subjective

judgernents ín design. Equally, subjective judgernents should and do Ëemper

the applicaËion of oaËhematics in architecture. The capacity of the archítect

Ëo have creaËíve insights inËo archiËecËure, and to employ those insights

ín desÍgn, is greatly Íncreased by applylng matheroatical kno¡Ledge with value

judgements. The second intrinsic value of mathematics in archítecture ís,

ln the words of J. Christopher Jonesi

...Ëo make public the hítherto Private thínking of designers; Ëo

externalíze the design Process. Tn some cases this is done wiËh

ñffu s"r"times in mathematical syubols, and nearly always wiËh a

díagram repreåentíng parts of the design problem and the relationships
bet¡seen thän. Clearly, Ëhe underlyíng aim is Ëo bring designing
into the open so that oËher people can see what is going on and

contribute to iË information and insights ËhaË are outside the
designerts knowledge and exPerience.J/

More Ehan any oËher design nethod proposed in the last decade of research,

the applicaËion of mathematical knowleCge in architectule achíeves this

exËernalization. Mathenatics increases the abílíty Ëo exËefnalize the
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design process, noË because it is an objective method of making design

logical, or for.malLzi-ng design, or reflecting design intuitions; but

because ít is an inËersubjeetive meËhod, like language' for describing

desígn íntentlons.

The maËhematical Ëheory of synmetry in archítecture is, Eherefore,

a framework of prescripËive rules, not to replace, but Ëo íncrease and

externalize aa architecËrs insíght into design. Specifícally, iË provides

an exËernal method for describing Ëhe strucËure of cerËaÍn sPace creating

configuratÍons. The application of Ëhat knowl-edge in desígn ís a way of

undersËanding and coønunicaËíng the intentlon to create order, by giving a

sËrucËure to the sPace created by architectural elemenËs. the archíËect

musË have a special undersËanding of sPace creaËíon and must ínvesËigate

strucËure Ín a specíal way for the naËhematical knowledge of syfimetry

to be useful for externelízing that part of the design Process. The nexË

trüo sections of Ëhe Ëheory part wll1 cover an understanding of space creatÍon'

and the ívesËigation of sËrucËure. Ihis should furËher establish Ehe thesis

that the maËhemaËical theory of syrmetry may be a signÍficant part of the

knowleCge an architect applies in desígn.
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1.3 AN TNIDERSTANDING OF S?ACE CREATION

Architecture is commonly defined as an art of space creatÍon, that ls'

Ëhe essence of architecËural design, unlike any other arË, ís the creation

of space. ThÍs definition has become raËher useless ín the practíce of

archiËecLure since few archítects explain exactly what they mean by the

word space. There ís little aPParenË consensus on a philosophícal and

psychologieal concept of sPace on r¿hÍch Ëo base design meËhods. The coÍlnon

pracËice seems to be to distinguÍsh beËtreen several concePts of space

by prefacing it with another term. ConbinaËions such as virtual space,

physical space, personal space, PercePtual space and existentÍal space

are typical in Ehe literature relaËed Ëo sPace in architecture. It is

no r¿onder thaË people are confused by enclless, and in most cases inconsequential,

distinctions between kínds of space. For Ëhis reason Èany designers seem

to avoid confronËing the essential issue of space creation. For the

maËhematical theory of syrmetry, which describes the sËructure of spatial

configuratíons, to be applled in design it is lmportant Ëo develop an

understand.íng of space creaËion. The inËent of this section is Ëo

establish an undersËanding of space creation in architecture that allotus
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Ëhe application of the mathemaÊica1 theory of synunetry ín desígn.

The unforËunate effect of the excessÍve use of jargon ín mosË

dÍscussions of space in architecture is that many desígner have Lapsed

into a naíve understanding of space creaËion. Susanne Langer was forced

to the conclusion:

Architecture is so generally regarded as an arË of space, meaníng
acËual, Practical space, and buÍlding is so certainly the rnaking
of soneEhing that defines and arranges spatial units, that everybody
talks about archiËecËure as tspaËial çgeatÍont l¡íthout asking what
is created, or how space is involved.'"

The haphazard consideration of space by archítects has lead to an understanding

of space creaËion baseC on what night be philosophically and psychologically

naive concePÉs. This understanding leaves most important questíons about

space not only unansÍ,rered, but unconsÍdered.

There are Ë!üo imporËant questÍons to be resolved by archiËecËs in

a concePË of space on whích to base desígn ¡oeËhods. The fÍrst ís the

straíghËfor¡¡ard but díffículË question, what is space? This is essentiall-y

a phílosophical problen Ëo resoLve Ëhe nature of the existence of space.

The second is the nore involved questíon, how do people know space? This

is essentially a psychological problen Eo resolve the relatíve funclions

of pereeption and cognition of space.

MosË architeets seen uniformed on Ëhe ansqrers to these questions, Charles

Moorets essay on space in Dimensions reflected an,'rinclear concepË of space:

Space in architecture is a special category of free space, phenomenally
created by the archiËecË when he gives a part of free space shape
and scale I{e talk of snakingt a space, and others point out Ëhat
we have not made a space, at all; iË was there a1L along. trIhat r.¡e have
done, or Ëried to do, when we cuË a piece of space off frorn Ëhe
continuum of all space, is"Ëo rnake Ít recognizable as a dorn3$n,
responsive to the perceptual dimensÍons of its inhabítants.

Moorers phrases seem to be baseC on the philosphical position chat space,
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or the continuum of sPace, exísts as some sorÈ of objecË that designers

divide uP' or cuË off píeces. They also seem to be based on the psychological

posiËion thaË People parceive space ínitself as some sort of domain. The

suggesËion is Ëhat designers then control the ttdimensionsrt of space as an

objecË, and Ëhereby conËrol the parception of that objecË. Thís leads

to an architectural determinism Ín desígn, suggesting ËhaË space creaËion

ís a'¡noulding of some object and peoplets perception of that objecË.

Such determinism wculd noL aLlow an applícatíon of the mathematíca1 theory

of synrmetry in design, because syrûmetry does not concern itself r¡iËh the

dÍmensions of space but the strucËure of spatíal configurations. A1Ëernative

philosophical andpsychologícal posÍËions are required to allot¡ that applicatl.on.

The phílosophical problen of the nature of the existence of space

is as old as the activiËy of philosophy. IË doês noË seem necessary Ëo

discuss the nethod ôl groundgton.which,pe6p1e;knolr..sfacexlsËs; in order to
discuss the nature of its exisËence. There are many theories Ëhat explain

the grounds on rshich people claim knowledge of objects; which are defined

as episternologicaL positions, Theoríes ËhaË erplain the nature of the

existence of Ëhose ôbjects are defined as onËological positíons. The quesËion of
r'¡haË is sPace that archiËects should resoLve is an ontological problem.

There are Ëhree basic ontological poslËlons about spâce Ëhat should be

consÍdered. The first considers space to be a substance exisËing in reality
much like ordinary objects. Ttte second considers space Ëo be an ar,zareness

of relatíons betr'reen those objects, not as any sort of entíty existing initself.
The third considers sPace Ëo be an inËegral part of human existance being

Ëhe basis of the relationshÍp between man and reality, The architect should

disËinguish beËween Ëhese ontological pcsitlons, as noË alL of thea
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suggesË or allow ehat the mathematical thecry of s¡rnrnetry, or similar

nethodsr Dây be íncluded in an understandíng of space creation.

The viet¿ of space as a substance existing in realíty much like an

object of everyday experíence, is the most widely held vierr anong

non-philosophers. IË ís this phílosophical posiËíon Ëo which a concept

of space like the one e:<pressed by Moore is most l-ikely to reduce. This

pcsition comnonLy explains space by characËerizing it as a recepaËacle,

container, or arena in which objecËs exíst. The idee is that trempËy

spacett Ís someËhing whích does exist and may be experienced by itseLf.

Sirnilarly, matheroaËical poinËs and lines as Ídeas about space may be

conceived índependenË of the experience of objects, Ehrough the experience

of space itself. An object Ís thought of as being placed in space, or

of having its extension in space. There is very littLe ín the way of

justifícation ever given for this posiËíon; e:<cept thaË ít is the

ttnaË.uralrt concepË of space as ít is used Ín ordinary language. However,

thíscoacepË nas held by almost every philosopher from P1aËo Ëo Ëhe beginníng

of thís èentury; and by mosË scÍentists under the influence of Newtonian

classical physics.

The viev of space as an ¿nüareness of relaËions betr,z'aan objects, buË;: r

not an entity itself, ís less obvfous to the non-phiLosopher. ït is ühis

philosophicaL posíËion Ëo which nany philsophers have resorted since the

experimenüs of Mach and the development of the theory of relatívlty by

Einstein. Many phÍlosophers now specí aLízLng in space 
"nd 

tír"40 s,rggest

ËhaË those q¡ho believe space to be a substance are beign misleC by the

appearance of ordinary language. The propenent of this position r,ras

Leíbniz in the 18Ëh century, who debatec Éhe Ëopic of space in letters
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to a follo'¿er of Newton:

r hoLd space Ëo be someËhÍng merely relaËÍve, as tíme is; thaÈ
isr I hold it Ëo be an order of coexistences, as Ëíme is an.orderof succesions. For space denoËes, in terms of possiblity, an orderof things vrhich exist at the sa¡ne Ëime, consideiEf 

". e*isting togeËher,
wiËhout inquiring ínËo their manner of existiDB.*r

t\,À.

The idea ís that rfempËy spacert ís..something that does not exíst and may not

be experienced by itself. Sirnilarly, mathematical poinÊs and lines as

ídeas abouË sPace rnay only be conceived through the experience of objects

in the appropriate relaËíons (or aË least Ëhe possibility of such experíencg).

Space is LhoughË of as Ítself beíng conceived through the ai¡areness of

relaËions beËween objects. The primary justification for this position

is that spacg as a- substance cannot be detected the way ordinary objects

are; Ëhat Ís, there are no epístemological grounds for space as a subsËance.

The use of space in ordinary language shouLd be undersËood as noË asserting

Ëhe exisËence of a substance, but only as aËtributing actual or possible

relatíons betwaen objects; asserËing the exÍstence of those objects on1y,

. The víerr,'of space as an Íntegral part of hrman exisËence is a founding

concePt of exisËentíal philosophy. Proponents of this view, including

ivferleau-Ponty and Heidegger, are occasÍonally cited by architectural theorists

such as Christian Norberg-S "hr.l..42 thÍs posítion co¡rmronly explains space

as an Ínescapable phenomenum of the relatíon beûveen man and realíËy;-nothíng

morer sPace ís neither a physical subsËance nor a conceptual awareness,

EumaulExisËence.is characterizeC as spaËíal, that space cannot be separaËeC

from mants being, ít 1s aphenonenr:m Ëhat cannoË be classed as.eíther an

exËernaL subsËance or an internal concept. Itre idea Ís ËhaE quesËions about

the exístence of ttempËy spacetr do not make sense. Sirnílarly mathemaËical

poínts and lines as ideas about space may be conceived through the phenomena
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of mants being in space, they are not associaËed çríth any experience of

sPace as a subsËance or any possible exoeríence of objecËs ín certain

relatíons. The jusËification for this posiËion eeems to be self-fulfilling;
it assrrmes sPace to be a phenomanuro of human existence because human

existence is inescapably spatial because space is a phenomenum of human

existence. Because of this circuLar reasoníng, it ls doubtfuL v¡heËher

Ëhís posiËÍon actually provÍde an ontology for space,

fhe applicatíon of the maËhematical theory of syu.netry in design

irnplies Ëhe use of ideas abouË space such as roËaËion. about points and

reflectlon about lines. An account of the ontology,of space nust allow for
Ëhe usefulness of mathenatíca1 ideas such as" these. The exisËentía1Íst

posíËion may be easÍly rejected; noË onlyt.ig ít self-fulfilling, but íË
is basícally useless ín design. Norbêrg-Schulz has been typícally vague

about design method; he indícated only thaË, trArchitecËural space, therefore,

can be defined as a concretizatÍon of mants exisEential spacs.,,43 Concretízation

ís not realLy a principle for doing design. The more relevant decÍsion is
therefore to be made beËween the position Ëhat space is a substance and the

position thaË space is an alrareness of relations. Both of these have

clear ínplÍcaËions for design methods involing roathemaËÍcal ideas.

If Ëhe architect accepts Ëhe position that space is a substance, Ëhen

the emphasis in the design process wouLd be the creation of elements in
sPace. The dÍrection of desÍgn methods q¡ould be Ëowards the dimensioning

of archíËectural elemenËs; ËhaE Ís, Ëhe forn of architecural objects as they

have their extension ín space. The obvious tendency would think of space

in terms of substanËive volumes in which objects are Ëo be createc. on the

oËher hand, if the architect accepts the positlon that space is an awareness
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of relations betç¡een objecËs, then the emphasis in the design process

ç¡ould be the creation of spaces by architectural eLenents. The directíon
of design methods r'¡ould be to¡vards Ëhe arranglng of architectural elemenËs;

that ís, the structure of relations betr,¡een archiËectural objects as they

creaËe an a!üareness of sPace. Ttre obvious tendency would think of space

in terms of'relations creaËed between objects. clearly, principles for
doÍng design in archítecËure tend to follow one of these two positions.

The appLication of the mathenaËical theory of symroetry in design

is based on the architectrs acceptance of Ëhe posiÊion that space is an

atüareness of relations between objects. If architecture is to be concerned

wiËh space creatíon, iË suggests Ëhat Ëhe designer Ëhínk ín terms of relations
that create sPacer not Ín terms of Ëhree, dimensíonal objects in space.

The emphasis of the desígn process should be the strucËure of reLaËions

between archítec*-ural objects, rather Ehan the form of those objects.
Architecture doas not and should not deal with Ëhe inventíon of three

dimensional objects in space; and thus the concept of space as a substance

is to be eliminaEed. Design should deal r¿ith the creation of reLaËíons

between objects (often virÉually twc dimensional objects such as waL1 planes);
and Ëhus the concepË of sPace as an anareness of relatíons between objecËs

is to be accepËec. An understandíng of space creation should be based on the

ontological position that sPace exisËs only in relaËíons beËween objects.
ThÍs understandíng best aLlons the application of the mathematical Ëheory

of syrurneËry because it implies design is basêd-on principles about the

relaËÍons beÊween objects ËhaË create',an ae¡areness of space. ïhe nathematical
Eheory of symneEry describes the sËrucËure underlying :. relaËions betç¡een

elemenËs of cerËain spaEial confÍgurations. The Ëheory najr:.be a usefu!-ø.4',ii ,-¡,,,,',,.-,,-"-

. o,:'' _r\
"'i;jßi'il' ,i

1r''ì-,,_' j,'' :' ;'i"-::-6i,€
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principle for doíng design if the understanding of space creation íÉ

based on Ëhe ontological position Ëhat space is an ailareness of relatíons

between objecËs

The architect musË still consider the psychologícal problem of the

relaÊive funcËion of perception and cogniËÍon of space. A designer

should have some concepË of the effecË of perception and cognition in

Ëhe processes by which people know space. rhis is a cenËral actívity

of environmenËal psychology, a rather ne.:¡ discipline in contrast to

Ëhe philosophy of space. The questíon of how do people know space thaË

archiËects should resolve is an environmenËal problem.

The Ímportant dístincËíon Ís between Ëhe tlro psychological processes

of percepËíon and cognÍtion. A possible distinction betçreen them is Ëhe

process/producË distinction; 1n ç¡hích percepËion is a process leacli4g to

cognition as a product. This seems to sinplistic, because cogniËion clearly

seeins to be more than just the resuLË of percepËion. The distinction

betç¡een PercePËíon and cogníËÍon may be betËer ínterpreteC as a parËicular

process, perception; versus a general system, cogniËion, which involves

Ëhat Process. CogniËion Ëhen refers to general systems of the nind including

Ëhe processes of perception, recording into me;nory, organízing into images,

and thi'nking about things. The boundary uray only be a.naËter of

physical size, PercepËion being a parËicular process in response to the

iÍmgdi¿ts enviríonnenti : uith cogniËion being a general process of a¡¡areness

of the larger conËext. Roger Downs and David Stea developed this into

useful definitÍons of the Ël¡o ter:rns:

trIe reserve the tenn perception for Ëhe process Ëhat occurs because
of the presence of an object, and that resuLts in Ëhe inrnediate
apprehensíon of that object by one or more of the senses. Tenporally
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it is cLosely connected t¡ith evenËs in the innedfaËe surroundings
and in general is linked eTith ímnediaËe behaviour . ...Cognition
need not be LinkeC'¿ith írmediate behaviour and therefore need not
be directly related to any sbj.eqçç or evenËs occuring in the
proximaËe environment. Consequently, it may be conep¡ed u¡íth r,¡haË

. has passed or whaË is going to happen in Ëhe fuËure.**

I^IhaË dístÍnguishes proccesses of perceptÍon from systems of cogníËion is

an enphasis on the study of responses to Ëhe presence cf objects rather than

Ëhe study of aËtítudes and dl.sposiËions noË relaËed to the presence of

objects. The study of systems of cognition re1Íes on the effects of objects

fron Ehe PasË or in Ëhe future, or so large as Ëhey cannoË be seen at once,

or part of an overatleontext.

An understanding of space creaËíon involving Ëhe ontological posítion

that space is noË a subsËance, seems to also involve Ëhe posiËion that

perception is noË the most inportanË process in Ëhe way people know space.

Ctearly, the concept of sPace as a subsËance ,¡¡ould suggest that the percepËion

of that substance ís a simple and direct rray of knowing space. But the

accePtance of Ehe concePË of space as an ar¿areness of relations beËween

objects suggests thaE Èhe cogníËion of Ëhose relations is the actual way

people know space; thaË Ëhe process of perceptíon ís only involveC in the

apprehension of those objects. Assuming that design methods should respond

to the way p'eople 'inight act in space, and assuming that actÍon Ís linked

t¡'ith Ëhe way people know space, then an undersËanding of space crea¡ion should

emphasÍze systens of cogniËion. The trend in envíronmental psychoLogy

seems to a3cepË this posiËíon; for example, Downs and stea arguec Ëhat,

rrHuman sPatial behaviour is dependent on the lndividualts cogniËíve map

of the spaËial environmerrt.tt45 In Ttre psychology of pLace, David Canter

stressec Ëhat the essence of the argument is, rtthaE any act is made in
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reLaËion Ëo Ëhe conËe:rt r¡ithín which the individual thinks hÍ¡nself, to b".rr46

Clearly, principLes for doíng design should emphasize sysËems of cogniËion.

The application of the mathematical Ëheory of syrmnetry in desígn

is based on Ëhe architectrs acceptance of the posltion that space is kno,r¡a

through systems of cognition. If archítecture ís Ëo be concerned wiËh space

creation, iË suggests Ëhat the designer think in terms of cognÍtíon of the

relatíons LhaË creaËe'space, not in teras of perceptíon of Ëhree dimensíonal

obJacts iri space. The enohasís of Ëhe design process should be the cognitíon of

the structure of rel-ations between architectural objects, rather Ëhan Ëhe

PercePËíon of the form of those objects, lhus, the pïocâgs of the percepËÍon

of space as a substance is to be eliminated. Desígn should deal with the

creaËion of c1eàr cognitions of relatíons beËrraen objecËs; and thus the

knowledge of space through systems of cognition is to be accepËec. An

understanding of sPace creaËíon should be based on the psychological posiËion

that space is knot¿n only through Ëhe cogniËion of relations betr.¡een objects.

This undersËanding best allows the application of the nathematical theory of

sJmmeËry because ít inplies desígn is based on príncÍples about the reLations

between objects Ëhat are knot¡n through systems of cognÍtion. The mathematical

theory of symnetry describes the structure underlying the relations betr,¡een

elenents Ëhat effects Ehe cognftÍon of cerËaín spaËial configurations. The

Ëheory may be a useful principle for doing desÍgn if Ëhe understancling of
sPace creatlon is based on the psychological position thaË space is known

through systeÍos of cognition.

An undersËanding of space creaEion for Ëhe applicaLion of the

mathemaËícal theory of syrnureËry in architecËure is based on these t-wo

importanË posÍËions. The firsË is that, ontoLogically, space should be
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PosËulaËed only as the awareness of relations between objects. The second

is Ëhat, psychoLogicaLly, space should be understood as known through systeus

of cognition of those relatÍons. In The Dvnamics of Architectural Eorm,

Arnheín suggested ê practical importance of accepting these pcsitions:

By way of lofty abstraction rüe have cone accross a fundamental
prÍncíple cf practical imporËance Ëo the archÍtecË. In spite of
whaË sponËaneous percepËion indicates, space is no way given byiËself. It is crested by a parCicular consËellation ãf natural
and nan-mede objecËs ro which Ëhe archir".. """.;i;;r;;. rn rhe
mind of the creaËor, user, or beholder, every architectural constellation
establishes its own spaËíal fraoe¡rork. This fraoe,rrork derives form the
sírnplest strucÊure cornpaËible with the physical and psychological
situaËion, + /

IË ís desirable ËhaË archÍtecËure, as an arË of space creation, be produced

by Ëhe capabilíty of the human mind Ëo '¿ork aË the level of abstract relations
between maËerÍal objects. The desígn process is rooted in basic sËudy of and

reflection uPon Ëhose abstract relations that create an awareness of space.

Architecture based on Éhis understanding of space creation ís an.absËract

art activiËy oo, a very high level.

Ihe mathematÍcal theory of synnrnetry may be a signÍficanË par¡ of the

knowledge that an archiËect applies in desfgn becasue it descrÍbes the

structure underlyíng the relations that creaÉe spece in certain configurations.

The study of structure in the refLectíve abstracLion of the naËhenatícal

theory of symmeËry providesa baÊic knowl'edge of the creatíon of space. ïhe

applicatíon of that knowledge in design ís a way of gceàtl.rg a clear cogniËion

of space through the presence - ofr a strucËurei in the relaËíons bet*een

archiËectural elements. The archíËecË musË investigate structure in a special

!¡ay Èo dfrect the -creatíon of space through the use of maËhemaËical knowledge

of symmetry. lhe next section of the theory parË wilL cover Ëhat investigation
of strucËure. This should fínally establish the thesís stated above.
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L.4 TIIE INVESTIGATION OF STRUCTIIRE

Order seens to be universally recognízed as one of the basÍc concerns

of the architect in design. This thesís has sËressed the ídea that the

significance of the maÉhematical Ëheory of slmnetry in archiËecture is iËs

application for the purpose of giving order. It achieves Ëhis by giving a

sËructure to the relaËions beËween architectural elements creatíng Èpace.

Indeed, order can be equated in architecture, as inalmost every arË actívity,
with the Presence of an underlying and abstracÈ strucËure in íts creatíon.

The íntent of thís sectíon is Ëo ínvesËígate the absËracË idea of structure

in Ëhe context of giving dírecEion to the application of the mathematical

Ëheory of symrnetry ín design.

The role of order in architecture should be understood before the

investigation of absËract structures is developed. Arnheim åefined order

Ín the essay Entropy and Art as:

...â rêcêssary conditlon for anythíng the human nind is to understand.
Arrang.msnts such as the layouË of a ciËy or building, a set of tools,
a display of merchandise, the verbal exposiËion of fãcts or ideasr or
a painËing or piece of musíc are calleC orderly when an observer orListener can grasP their overall sËructure and the rau¡ifÍcations of thestructure is some Cetail. Order makes ít possíble to focus on whaË isalike and whaÊ is different, what belongs together and what is
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segregated. I,Ihen nothing superfluous is included and nothing
indispensible is Left ouË, then one can understand the interrelation of
Ehe whole and its pârËs, as well as the híerarchic scale of importance
and power by which some features are dominanË, oÊhers subordinàte.4ö

Order must be Present in a work of archítecture as a prerequisite for
comprehending the sPâce created by Ëhe relaÈions betl¡een architectural

elemants. It allows for the clear cognition of the spaces of a building.

The design Process ín architecture must ínclude the creaËion of spatial order

among Ëhe goals of its nethods. Tnis invoLves the creation of a strucËure

that faciliËates the parËicular design inËenËions of the designer, Arnheimrs

view nras that;

Order must be understoorl as indÍspensible Eo the functioning of any
organízed sysËem' wheËher its funcËion be physícal or mental. Jusl
as neither an engíne nor an orchestra nor a sports team can perform
without the integrated cooperation of all its parEs, so a l¡oik of artor architecture cannot fuLfí11 its funcÉion anã ËransmÍt its message
unless it presents an ordered paËtern. Order is possible at any lãvelof complexiÈy...but if there is,.no order, Ëhere ís no way of .telling
what the work is Ërying to say.49

Order is necessary for the conmunícatÍon of design Íntentions about space

creation through a work of architecture. the knowledge of abstracË structure

described by Ëhe maËhemaËÍcal Ëheory of symnetry contains jusË Ëhe sorË of
order Ín spatial confígurations Ëhat seems Ëo be necessary ín architecture.

ThÍs ís Ëhe purpcse of a design meËhod involving the applicatíon of the

mathematical Ëheory of symmetry as an abstract structure.

Unfortunately, sËructure has become a fashionable word to describe

nany different ldeas. Indeed, in the sense of sËructuralÍsn, iË has lead

to a very acacemic set of ja-rgons and convoluËed critegori_e".to, The

invesËígation of strucËure which is so essentíal to the creatÍon of order

in architecËure and arË must avoid these drar¿backs associated r¡ith
structuraLism. rn fact, the idea of sËructure must be kept separate
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from any' particular acadeinic exercise of strucËuralísm.

The source of the ímporEance of the idea of strucËure lies in
claims of its assocÍation with funda¡nental proccesses of Ëhe human mind,,

such as the cognition of space. Tne application of knowledge about abstracË

sËructure has been explained by Edmund Leach as based on belief that,

...concePËs in the mind can be combined and recombined by sorne
deeper level of menËaL process, a kínd of meËa-thinkíng which does
not of icsêlf generate conscious thoughts but makes crãatíve
origínal-ity possible in that-it consísËs in the establishment of
relations betr.reen relatíons.)l

The applícation of the naËheÆatical Ëheory of syruneËry in architecture

exactly this kind of meta-Ëhinkíng that makes ËhoughËful creativity possible

ín design.

As suggested above, it is necessary to invesËigate Ëhe trnature of
the afflrmaËíve ideal Ëhat goes t¡iËh the very idea of structurertt52 as

Piaget didrindependent of sËructuralism. Moreover, the invesËígation of
Ëhat ldeal suggest dÍrections for the application of structural knowledge,

exeuplÍfied by Ëhe maÊhematical theory of syrnrnetry, in architecture. piaget

idenËified ¿hree key Ídeas rrhich together compríse the idaa of srructure.

They are wholeness, Ëransformation, and self-regulatton. Each of Ëhese

ideas províde specifíc directions for Ehe creaËive applieation of

strucËural knowledge in desÍgn.

lhe idea of wholeness is crucial to Ëhe ínvestigation of structure.

A disËinction must be nade beËt¡een structures and aggregaËes. Structures

are whole, while aggregaEes are built up by the associaËíon of separa¡e

Parts. Structures do, of course, have ídenËifíable elenenËs, but these

elements are subordinated to Ëhe rules of composition of the r.¡hore.

It is Ëhe framework of rules r,¡hich relate each elemenË Ëo every other
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Ëhat 'defÍnes a whole. the whole ís not reducible to a one-by-one associatíon

of its elements. It is ímporEant Ëo note that r,¡ith a sËructure it is not

necessary or important to say whether the whoLe precedes Ëhe parts, or whether

Ëhe parts precede the r,rhole; such a question is irrelevant. rt is the

relations between the parts according Ëo a framework of rules defining

the rshole that is the important feature of structures.

The design direction ímplieC by accepËing the ídea of wholeness ín

architecture ís sígnifÍcant. A buildíng should be thought of as a whole,

not as an aggregate of individual places through an assocation according

Ëo certaín program requírements. This requires replacing the popular

emphasís in desígn methods upon the sense of place and accomodeËion of-function

wíth an emphasís on Ëhe creaËÍon of structures relaËing places and functions

ínto a clearly defined whole. It would not be lmportant for the archíËect

to understand how elements of a building conbÍne to create particular

Perceptions of place or accomodaËe partícular activitíes. Rather, the

relations beËr,reen those combinations of elemenËs throughout the t¡hole

of a work of architecture should be ímporËanË in design. The acceptance

of thís direction could radically alter the way architects approach design.

It suggests thaË the architect Ín the creation of a work of architecËure

emphasíze a sËrucËure providíng a framework for relaËions between the space

creating elemenËs of the buÍlding. A dírection of the application of the

mathenatical Ëheory of syrnmetry ín design is Ëo.provide a sËructure rrhích

defines Ëhe r¿hole in the resulting v¡ork of archítecture.

Tne idea of Ëransfornation ís the ¡rost obvious aspect of the investigation

of structure. An applicatíon of the idea of sËructure Ínherently involves

Ëhe presence of transforming operations. A part of element is transformed
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or changed through the rules of composition of the structure. A dísËinctíon

rníght be made between styles and structures. SËy1es have rules for the

formation of each element of the work; r¡hile strucËures have rules only for

Ëhe Ëransfor^mation of those elements. Structure do, of course, have eLements

thaË have form, buË Ëhat form issubordinated to Ëhe rules for transforuration,,

vrhich relate each element to every other. IË is imporËant to not that ç¡ith

a strucËure iË is not necessary thaË Ëhe form of the elemenËs be Ëhe same for

every work of the saue kind; the nature of transformations is that they

may operate on any form of elemenËs. IË is Ëhe relations beËs¡een the eleuents

according to a framework of rules transforming each elemenË that ís the

importanË feature of structures.

The design direction implíed by accepting the ídea of ËransformaËion

in architecture is also significant. A buílding should be thought of as

the resulË of creatively applied Ërnsformations of space creâtíng elements;

not just the invention of those elements, The parËicular forms of the

elements is not as importanË as theÍr transformation by the rules underlying

theÍr arrangement ínto certain relatÍons. thís requíres replacíng the

popular enphasis in design roethods upon the invenËÍon of formal elements

thaË create parËícuLar effects r,rÍth an erophasis on the creatíon of structures

Ëhat transforms Ëhese elements into c!.eår relationshíps. It ¡,rould not be

important for Ëhe archítect Ëo invent a vocabulary or forns or to rely on

any particular forrnal style. Rather, the relatíons beËr,reen those elements

of whatever form through the transformation .of,:thern ínËo a work of archítecËure

should be important ín design. The acceptance of this direction could

radícally alter Ëhe way archítecËs approach design. It suggests Ëhat the

architecË in Ëhe creaËion of a c¿ork of architecËure emphasÍze a sËructure
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providing a framework for relations transforrning the space creatíng elemenËs

of the building. A direction of the applÍcatíon of the naËhematical theory

of symnetry in design ís to provide a strucËure which Ëransforms each

elemenË ín the resulËing work of archiLecture.

The idea of self-regulaËion is quite necessary to the ínvestigation

of sËructure. Self-regulation is tlefÍned by two ínherent consequences of

creating a structure. First, the result of transformatÍons of elements

vithin Ëhe r.¡hole arealso elemenËs of that whole. Second, no ËransfolxraËions

are applied to elements trithin the whole thaË violaËe Ëhe frarnework of. rules

t¡hich define that r.¡hole, A distÍnction is Ëo be ¡oade beËween self-regulatíon

and regulariËy. Self-regulation conserves Ëhe structure that was created;

trhile regularity merely repeaËs the forms that have been invenËed. Structures

do, of course, repeat formsbuË thaË regulariËy is subordinaÈed to Ëhe

self-regulation rglating each elemenË to every oËher. It is imporËant Ëo noËe

that wiËh a structure it is not necessary to regularly repeaË certain

forrnal elements as often and whereever possible; the nature of self-regulaËion

ís that. self-regulaËÍon controls Ëhe arrengement of elamenËs. It is the

relations beËween the elements controlled by Ëhe self-regulation ËhaË is the

impcrtant feature of sËrucËures.

The desígn directlon inplied by accepting Ëhe idea of self-regulaËion

ís again sígnificant. A building should be thought of as controlled by

Ëhe self-regulaËÍon of the strucËure, consístently and completely, underlying

the relaËfons beftreen space creating elemenËs. The regular repetition of

particular forus of elemenËs is noË as important as Ëhe consistency and

compleËeness of the self-regulation in relations between those elemenËs.

Thís requires replacing the poputar enphasis ín design methods upon the
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repecítion of rtsuccessfulfr or preferred for:ns wiËh an emphasís on the

creation of structures Ëhat Ëhemselves reguLaËe the relatíons bet$reen

these elements. It lsouLd nùt be important for the archiËect jusË to use

cerËain fornal elements as regularly as possible. RaËher, the relaËions

beÊween those elements should conËrol the self-regulaËíon of them into

a work of architecËure. The acceptance of this dírection could radlcally

alter Ëhe way architecËs approach design. It suggests Ëhat the architect

in the creaËion of a work of architecture emphasize a structure províding

a franer¿ork for relations that is seLf-regulaËing. A direction of the

application of the mathematícal theory of syuretry in desígn is to provide

a self-regulaËíng sËructure Ëhat conËrols each eLemenË Ín the resulting

work of archÍtecture.

The combfnation of these Ëhree features of the ÍnvesËigation of

structure vrhich give direction to the applícation of Ëhe mathemaËical theory

of speËry in archítecËure results in a very special attÍËude to _

design meËhods. The cognitíon of spatial order thaË night be produced by

Ëhe underlying Presence of an abstracË strucËure is a very deep leve1 of

human thought. The application of structural knovrledge in design is

an entíreLy human activity, and the results of that acËivity should prod.uce

a very human quality in archítecture. In collaboration !¡ith the painËer

Amadee Ozenfant, Le Corbusier concluded that any art activi¡y has but one

goal, il...to put the sPectator in a sËaËe of a maËhematÍcal quality, ËhaË

is, a sËaËe of an.eleváted order.tt53 An appLication of the mathematical

knowledge of sËructure embodied in such Ëhíngs as the theory of sytrmetry

should be understood as a nethod for creating that quality in archítècture.

It Ís archiËecture which provldes Ëhe most approprÍaËe human activÍty
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for the application of the mathemaËical theory of synmetry s.imply because

ít, more Ëhan any other art54, is produced by space creaËÍng sËructures.

Abstract structure resulting ín spatial order seems to be essence of
archítectural design. Le corbusier inspired this point of view by

argueing that:

...in plastíc art, the senses should be sËrongly moved in orderto predíspose the mind to release ínto play the subjective reactionst¡íthout r,¡hich there is no work of arË. But there is no art northhaving ',¡ithout this excitement of an intellectual order, ot amathematical order; archiËecture is the arË which up uÁtil no,has the most sËrongly induced states of this category, The.peasonís that everything in architecture is expressed by ord"r...5) ---

The investigation of structure dÍrects the applícation of the nathematÍcal

theory of synmetry ín desigo towards anemphasis ín design methods on

trholeness, transformation, and self-regulaËion. Ttrís imparts the quality
sf â nathenatÍcal order in the resulting works of archÍtecture.

There Ís danger latenË in the applícaËion of maËhemaËicaL knowLedge

of structure in desigo. That danger Ís Ëhe tendency to lapse inËo design

meËhods Ëhat are theorf.es of proportion, instead of principles o€ or,ler.
For many good reason"tu architects have come by and Large to reject
matheuatÍcaL proportion as part of their desÍgn methods, one excepËion

was Le corbusÍer who developed an aríÈhemetic sysËem of proporËion in
l'e uodulor?7 rË, when seen ín the contexË of the quotaËíon above, exemprifÍes
Ëhe confusion bet¡seen Proportion and order, which resulEs in mathematÍcs

being uisdírecËed atray from the Ínvestigation of structure torrards the

ÍnvestígaËÍon of form.
f;.,, , 1'- ;-'i

The bóundary of theoråes of proportion have been defined by Scholfield
as Ëhose studies, tt...concerned only with the relatíonshÍp of the shapes

and sÍzes of objects whÍch please the eye.,r58 Tneories of proportion
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seem to contain two components. The first ís an emphasis on a parEicular

vocabulary of shapes; and Ëhe second is a system, usually based, on a series

of numerical raËios, for gívíng dimensions to Ëhose shapes. Scholfield

explained what happens in desígn methods relying on theories of proportion,
ItOnce adnired shpaes have been selected--and ËhÍs ís where the dífficulty

lies--archiËectural proportion becomes a straightforr.rard matter of usíng thero

as often as possib1"."59

Theories of proportion may be seen in direct conËrasË to princÍples

of otder by opposing their emphasis on for:n to an emphasis on structure.

The motfvaEion for theoríes of propcrtion is generally the desire for a

PercePtual beauËy of form ín a v¡ork of architecture. The directíon of

desígn meËhods emphasize the indÍvídual parËs, the foroaËion of those

Parts and the mere repitÍon of them. On the other hand, Ëhe motivatÍon

for principles of order is general.ly the desire for cognitive clariËy of

structure in a work of architecËure. Tne directíon of desígn ûethods

emphasíze the overall whole, the transformatíon of parts into that vahole,

and the self-regulation of the whóle, -.clearly, theoríes of proportíon

emphasize form in desígn; while princíples of order emphasize structure ín

desÍgn.

Scholfield argued Ëhat, rrËhe object of architectural proportion is

the creation of visÍble order by the repetÍtion of shapes.tt60 Thís reveals

confusion, for cLearly theoríes of proportion have a totally different

conËenË and direction for desígn than do principles of order. There is no

way Ëhat merê proporËion may achieve the underlyíng abstract structure thaË

is the essence of order ín architecËure. The ¡oathematical Ëheory of syrmretry

provides a descripËíon of structure; and the application of such knowledge



-56-

ín design is a method for creaLing order. It is not theoreËically coherent

to apply Ëhe maËhemaËical theory of symmetry Ëo proportion architectural

elements or volumes. An applicatíon of the mathematical theory of symmeËry'

may ernploy any vocabulary of shapes with any proportion; and Ëransform them

according Ëo the three directíons suggested by the investigaËion of structure,

TLre mathemaËical theory of symmetry provides a descrÍption of certain space

creating sËructures; Ëo apply iË to the invention of forms is to confuse the

distinction betqreen order and proportíon.

Sorne kind of boundary should be drawn between sculpËure and architecture.

Sculpture seems to emphasÍze the invenËion of Ëhree-dÍmensíonal forns in

sPace. Architecture, on the other hand, should emphasize the creaËion of

three-dimensionaL sËructures makÍng space. One of the reasons thaË the

so-called lvfodern Movement seems to have reached a poinË where Ëhe

architecture produced is aesthetically empty seems Ëo be designers assumíng

the primary role of tfform-givers.rt Such a role suggesË Ëhat every desígn

problem requires the invenÊÍon of new fornaL elemenËs; establÍshing new

foms trfoilow.i.ngtr. functioir. . The clistinctíon betr.¡een sculpture and archíËecËure

suggests Ëhat desígners should assune the primary role of creaËing structure.

Thís role nlght allow the production of architecEure thaË communicaËes

aestheÈic infor¡nation abouË space. Every design problera would requíre only

Ëhe creaËive application of sËructures relating existing or adapted fonual

eleoents; establishing clear cogníËions of space. The architect applying

the maËhematÍcal theory of synrnetry should understand that iË ís an

ínvestigaËion of.sËrucËures for orderLy space creation; noË a study for

sculpËing Ëhe forns of architectural elemenËs.

The results of the investigation of structure, an undersËanding of space
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creation, and realizing Ëhe nature of rrathematícs seem to involve a

change in aËtiËude towards design methods in archiËecËure. An imporËant

feaËure of ehe art of archiËecture is the strÍking parallel beËvreen the

mental. habits of the designer and the character of the resulting archítecËure.

The applicaEion of the mathernatícal theory of symn,etry in architecture lies

as part of the trend towards the absËract sËudy of human comprehension

of the environment; specífically Ëhe clear cogniËíon of space. Therefore,

Ëhe mental habits of the desígner, ínvolvíng an abstract knoqrledge of

structures available to creaËe sPace, will be reflected in the resulËing

work of architecture. By adopËÍng Ëhe mental habits of maËhemaËicians in

Ëhe invesËigaËion of structure Ëhrough the maËhenatÍcal theory of synnetry'

the designer should see it paralleled ín Ëhe clear orderly spaces of

the resultÍng architecËure.

the theory part of Ëhe thesis may now be concluded by sírnply argueing

back through the ideas of, the four sections. clearly, order in the

comprehension of a work of archiËecture is the result of there being an

abstract structure underlying Ëhe deslgn. The structure emphasizes the

definition of the who1e, the transfomatíon of elements, and the self-regulation

of the structure in design methods. ftrose design meËhods result in Ëhe

clear cognition by people of the relatíons between the elements of Ëhe work

of archítecture. 'In.*e cognition of those relations creates an awareness of

space, which is nothing sþre than such an.awareness. Mathenatics provides

a prescriptive framework of rules for externalizíng the desígners insight

ínLo the creation of Ëhese relaËions. The idea of symmeËry is based on

the ídea of napping structural configurations, consisting of geo'inetrically

equal parËs, onËo Ëhemselves. ILre rnathematical Ëheory of symmetry differentiaËes
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and classifies configurations according Ëo the structure of syrmetry

relations they contain. The structures the theory prescríbes çÍLl be

paralled by an orderly cognition of space in Ëhe architecËure resulËing

from an application of Lhe Ëheory. Such an order is one of the essential

qualities in works of architecture. T'herefore, the thesis that Ëhe

maËhemaËical theory of slmrmetry may be a sígnificant part of the knowledge

an archiËect applies in design Ís establíshed.



PART 1T,I0: RESOTJRCES
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2.L THE I4ATI{B{ATTCAL TIIEORY OF SYI.û4ETRY

FascínaËion with slmmetry has existed for many centuries, but the

rigorous maÈhematical investigation of symnetry sËructure is a relatively
recent invesËigation. Indeed, the maËhematÍcal tools for describing

sËructure and classifying s)meËrícal configurations were only devetoped

Ín the 19th Century. The emergence of whaË may be called a mathematícal

theory of sy-rmetry has only taken place w'iËh nodern mathematÍcs. Because

such a thecry may be a significant part of the knowledge an archÍtect applíes

in design, the resources of the theory should be integrated ínto design

education. Ttre inËenË of this t¡hoLe part is to provide a non-technical,

but precise, erplanation of the mathematical theory of symrretry. The prímary

vehicle for that explanation will be Ehe vísual- íllusËraËíon of Ehe

s tructuies provided by the theory. Ttre inËenË of this partícular

sectíon ís to outline Ëhe derivaËion of the theory thaË is íllustrated in
Ëhe follors1ng Ëhree sections. An exposition of Ehe technical definitions

and theorems that rnight accompany an explanatíon of the mathemaËícal theory

of sÏmmeËry has been limíted to the MaEhernatical Appendíx. Reference ,:¡i1L be

made to that appendix r¡here necessary,
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There are several slightly dÍfferent ways authors take to approach

an explanaEion of the .¡atheoaËical theory of spetry. The difference

betr¿een them is of emphasis, not direcËion. IË ís generally due to Ëhe

conËext in'the theory is Ëo be applied. March and Steadman presenËed in

Ihe Geometrv of Environment6X a eery coherenË explanaËíon of symneËry in

one and two dfmensions in the context of Íts presence as an underlying

sËructure in works of architecËure. This is the only readiLy available

díscussíon of Ëhe mathematical Ëheory of syurmetry in Ëhe specific context

of architecture. IË emphasizes an architectts intuitive understandíng of

Ëhe mathematical ldeas of mappings and transfornaEions.' fn" mathemaÈícal

idea of symetry operaËions (see sectÍon 1.1, Fig. 1-104) was used to

explain Ëhe symetry structures described by Ëhe theory. Ttris is a

reasonable procedure to allow the non-mathemaËician archiËect to vísualize

symeËry in Ëtro dimensions. But the explanation here w'ill be dífferenË.

This ís becausé the intention is to make Ëhe application useful as- a desÍgn

method in architecture; both ín two and three dímensions.

The enphasis in the following illustratÍons ís noË on the symetry

operatÍon, but on the r¿hole sËructure of symmetricaL configuraËíons.

TLre level of precision to r¿hich the working definíËion of spmetry r,¡as

taken in Section 1.1 suggest thaË Ëhe group structure of symeËrical-

configurations be einphasized. the idea of a group of automorphisms (DEFïIç¡1¡ION

D:09, Mathematical Appendix) is the basis of the ÍllusËraËÍons. The

architecËrs intuiËive understanding of the urathematical ideas of latËices

and point groups distributed on Ëhose lattices will be the key to

understanding the íllustrations. It is hoped Ëhat this wi11 not only

a1Low Ëhe non-maËhenaËician Ëo visualize slrmeËry groups in Ëwo and three



-62-

dimensions; buË, because of lhe architecËrs experience wíth grids, Ëo allow

the application of spetry strucËures in design.

Ultinately, Ëhe direcËion of Êhe presentaËion here is the explanation

of symeËry groups associaËed with Ëhe syrmetrical configurations iLLustrated.

A tabLe of those groups will be presenËed in the appendix (TABLE MA:0L,

Mathematícal Appendix). Group theory Ís a branch of modern higher maËhemaËics

that, among oËher Ëhings, provide Ëhe Ëools for the invesËigatíon of

strucËure and the derívation of the mathemaËical thoery of syruneËry. The

concept of a group @EFINITION D:01, MaËhematical Appendix) r¡as invented

by Ëhe French mathemaËician Galois in L830. IË has proved to be one of

the ¡nost powerful and significanË absËractions Ín all of maËhemaËics.

Newman explained the signíficance of the concept, by suggesting,

The theory of groups is a branch of maËhenatÍcs in vhich one does
someÊhíng Ëo somethíng and then compares Ëhe result r¡ith the
result obtained form doíng Ëhe same thÍng to something eLse, or
someËhing else Ëo the same thíng. This is a broad definÍËion but
iË ís noË Ërivial. The theory Ís a suprene example of the arE of
maËhemaËical abstracËion. It is concerneC only with the fine filÍgree
of underlyÍng relationships; íË.is the mgtt ponerful instrumenË
yeË invented for illuminating strucËure. "

lhe Ëheory also sounds remarkalby appropriate in design. The idea of group

Ëheory is Ëo differentíate and elassify the structure of relatíons in the

thing to which it is applied. IË is possible to shon that there are a

finite number of space creating confíguraËions of geomeErically equal parts

possessing an auËomorphism. Itrose automorphisms foru a group, and by

definition this is the symreËry group associated wíËh Ëhose configuraËions.

The mathemaËicaI theory of symrnetry describes Ëhe finite number of

structurally different synnetrícal configurations in one, Ëq¡o and three

dímensions using group Ëheory. The folLowing sections illustrate examples

of symetrical configuratíons associated with each s1metry group,
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The reason that there are only a finiËe number of synaretry groups

is because of the requireinent for automorphism of the whole configuratíon.

A group of automorphísms of an entire confíguraËion is the resul-t of the

presence of an underlying latËice and Èhe repeaËed appearance of a poi.nt

group at each poínt in Ëhat laËtice. A synrmetrical configuraËíon is

always produced simply by cornbining a point group with a l-aËtice. There

are a fÍnite number of syrrnetry groups just because Ëhere are a limited

number of structurally different lattíces and a limiËed number of poinË

groups conpatible r¡ith those lattices.

A lattice may be defined as a collection of points arranged in such

a eray thaË each pcint has Ëhe same spaËíal relaËÍonships in Ëhe same directions

as every other point in the lattice, IntuÍtively, the archítectural

equivalent is a grid, in which every poínt of ínËersection of para11eL

grid lines Ís ídentical with every other. Because grids are conmon design

devices in architecture, it is appropriate to emphasÍze the ídea of an

underlying lattíce in syrmeËricaL configurations. The classic study of

lattices in maEhematics was undertaken by anoËher French maEhemaËfcian,

Bravais, in t850. Bravaís showed ËhaL Ëhere are only fourteen strucËurally

differenË Lattices ín three dimensions, dÍstinguished by theír uniË cells.

The arciriÈectural equivalent of a unit cell v¡ould be the smallesË bay defíned

in a gríd. the fourEeen spatial lattices have becone kno¡¡n as Bravais

tattices. Later, it v¡as sholün Ëhat Ëhere are only five Bravais laËËices in

ft,ro dimensions; and only a single Bravais lattice in one dimension.

A poinË group may be defined as a group of automorphísms acËing abouË

a poinË r,¡hích leave ËhaË poinË rrinvariantrr, that is, Ëhe same for each auto-

morphisn. Intuitively, a point group may be equaËeC ç¿íth an amangemenË of
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architectural elemenËs about a point such thaE each elenent is the same

disËance and aÉ the same angle from the point. The investígation of point

grouPs was orignínally undertaken Ëo sËudy the shapes of crystals. !ileyl

aÉtributed the first listing of the Ëwo-dimensional point groups to

Leonardo da vinci63 although he did not use the maËhematícs of group

theory, obvÍously. The maËhematical treatment of the subject proceeded

only after Ëhe developmenË of group Ëheory. IË has been shov¡n Ëhat there

are only thirty-two dífferenÊ pointgroups in three dimensions, Ëen in t!ùo

dimensíons, and just tlro in one Cimension that are conpatible tríth Ëhe

Bravais latËices aË each dimensÍon. This results from a proof of the

ftcystallographic restrícËiontt; exceLlenË examples of whích may be found

in wey164 and in March and Steadnang5

The mathemaËícal theory of spmetry r,ras first formulated at Ehe very

end of the 19th Century by combining these point groups with the Bravaís

latËices in an exhaustive manner; using group theory to ídentify and classify

all possible syrrretry groups. The theory was the producË of Ëwo major

independent works. The Russian crystallographer Fed,orov tras. the first, about 1885,

Ëo esËablish the existence of only E+¡o hundred thírty symetry groups in

sPace. But the German mathenaËican Schoenflies was the firsË to publísh,

about 1891r the nathematical derivation and exhaustive classification of

the Ëwo hundred thirËy groups. Schoenflies dÍd concede Fedorov the credit

for establishing Ëhe mathematical Ëheory of syrnraetry.66 IË has also been

shown using simiLar mathemaËical classification that there are only sevenËeen

syDrnetry grouPs in tlto dimansions, and only seven ín one dimension. DespÍte

Ëhe facË thaË the mathematical theory of syrornetry díd not compLetely emerge

unËil the 20th century, all sevenËeen sJ¡mmetry structures possible
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in Et¡o dimensions may be found in the decoratíve tradition of AncíenË

Egyptian arE. I^IeyI commenËed:

One can hardly overesËimate the depth of geometric l-magination and
invenËiveness reflected in Ëhese paËterns. Theor consËrucËion Ís far
from naËhematically LrívÍal. Ihe art of ornament contains in ímplícit
form the oldest piece of higher maËheroaËics known to us. To be sure
the concepËual meâns for a compleËe abstracË formulatÍon of Ëhe
underlying problem, namely the naËhenaËical notíon of a group of
transformations, tras not provided before the 19th Century; and only
on Ëhís basís is one able to ptove Ëhat Ëhe 17 syranetries already e-,inplícitly known to the EgypËian crafstman exhaust all possibiliEies."

rndeedrall decorative paËterns, waLLpaper paEterns, frieze patterns, and

símiLar ornamenËatíon in archiEecËure, as it has been used for centuries

ín many parËs of the world, is based on two-dÍmensÍonal 
"y*"try.68

Because Fedorov is credited ¡,¡ith theír enumeration, the t¡¡o hundred

thirty sPace groups describing syÍEnetrical confÍguratÍons in three dÍmensions

are corîmonly callecl the rrFedorov groupsft. BuË the origins of the plane

grouPs descríbing spetrical configuratÍons in Ët¡o dímensions are losË

in antíquíty, hence Ëhey are just ca11ed the rWallpaper groupsrr. Sicil.arly,

the linear groups describing synrneËrícal configuraË1on in one dimension are

called trFríeze groupsrr. TLre nathemaËÍcal theory of symrneËry is abouË

the idenÉifÍcation and classiflcatíon of these spmetry groups. The numbers

assocíated !¡"ith Ëhe theory may be suumarlzed in a Ëable (TABLE 2.1:01).

Dímensíon

One

Tþo

Three

Thís table indícates the

TABLE 2.1:01

Bravais lattices Point Groups

t2
510

L4 32

number of Bravais lattices and Ëhe

SynaeËrv Groups

7 (Freize)

L7 ([üallpaper)

230 (Fedorov)

number of poínt
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groups compatible sTith Ëhero; they courbine Ëo forro the number of synnneËry

groups indicated.

The fornat for Ëhe explanation of the mathemaËical theory of symmetry

in the next three sections is to illustrate examples of all the Bravais

lattices and all the point groups compatÍble with Ëhem. In the section

on syrmetry in one dimenslon, typÍcal symre.tr.ical configuratíons assocíated

with all seven Frieze groups are í1Lustrated. Síurílarly, in the section on

s]¡mmetry in two dÍmensions, typícal symrnetrical confíguraËions associated ..

t¡ith all seventeen I^Iallpaper groups are Íllustrated. Ilowever, in the sectíon

on syrmetry in three dimensÍons, it would sinply not be practlcal to

illustrate symetrical confíguraÊions associated with all two hundred Ëhirty

Fedorov grouPs. Only one such configuration has been íllustraËed just

as an example. Ilowever, with all fourteen Bravaís latËÍces and all thirty
two point grouPs Ín three dimensions illustrated, it is stil1 possible

to use the section as a resource for applicaËion in design. This is the

advantage of the approach Ëaken here, as opposed to the approach taken by

March and SËeadman.

lhe maÊhematical Ëheory of s¡rmnetry is one of those areas in which

there are several competing notations, each q¡ith iËs own advantage and

disadvantage. In general, to the lower left in the illustrations that follol¡
is Ehe Internatíonal synbol, sometimes called the Herrann-Maugin notation.

It consits of nr¡mbers índicatÍng Ëhe nuuber of turns of rotaËion, for
example, tt3tt, indicaËes a three turn rotation in an auËomorphism, Ttrere

are also small letters; ttmtt, indicatÍng a nírror reflection, ttgtt, indicating
a glide reflection. A number with a bar over iË indicates an inversion

in space Ëhrough the point about which there is a roËation of Ëhat number



- ot

of turns. To indicate that staËe of the underlyíng laËËice ín tç¡o dímensions,

lower case leËËers, ttptt and ttctt, are used, meaning prinitive and cenËered.

Simílarly, the sËate of the underlying laËtlce in three dimensíons is indicaËed

with upper case 1eËËers, ttPtt, ItCtt, ItFlt, and tlTtr, meaning primitíve, cenËered,

face-centeredrand body-centered. fhe meaníng of these sËaEes should be clear

through the visual inforrnaEion in the illustraÈions'of the Bravais lattices

in the followíng three sections. To deonte a sytrmeËry wiËh the International

symboL, one first wrÍtes a letter indicatíng the sËate of the underlying

laËËice, Ëhen a series of numbers and letters índícating the rotations and

reflections present. For example, trp4gmrr, indicates a spmetry group based

on a prlmitLve Ël¡o dimensional latÊice, with four turn rotations, glide

reflection, and mirror rflection.

In general, to Ëhe lower right in the illustrations that follot¡ ís

a mathematical notaËion. These are of &ro tnes. The prímary notation is

the symbols developed by Schoenflies in his pÉonee¡ing enumeraËíon of the

synmetry groups. To indicaËe the poinË groups, the spobol uses an upper case

letter, ttCtt, ftDrt, rrTrr, and rrorr, which is associated w1Ëh Ëhe structure of

the group in reLation to the synmetry of cyclic, dihedral, Ëetrahedral, and

ocËahedral soLids. The leËter ís followed r¡iËh a sub-scripË nunber whÍch

indicaËes the number of turns of rotation in the poínt group. For.example,

ttC4tt, indicaËes the four turn cyclíe group. However, to l-ndicaËe the symetry

groups, Ëhe Schoenflies synbol is ofËen replaced by second type of notation69

that is a sort of shorËhand. For syrmetry groups Ín one dimension, Ëhe upper

case leËter, trFrr, fortrfrieze, ís used. For spureËry groups in two dimensions,

Ëhe upper case leËter, ttWtr, for walLpaper, is used. These are Ëhen folloçsed

by a sub-script number, indicating the number of Ëurns of rotation; and by a
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super-scripË nr:nber, arbitrarily indieating the different reflections

present, if any. So Ëhe sptetry grouP, ttp4gmtt, in Ëhe InÉernational

sprbols is given Ëhe syurbor, t*?*" in this mathematical shorEhand. llowever;

for the Fedorov syffitreËry groups in Éhree dimensions, Ëhere is no shorËhand.

For Ëhese groups, iË is conventLonal Ëo use the Schoenflies synbol for the

point group, again wiËh a super-scrÍpË nurnber arbitrarily Índicating the

different instances of all the syuuretry groups based on that same point group.

- .._8,,For example, ttDätt, indicaËes the eighth ÍnsËance of symetry groups in

Ëhree dimensíons based on the Ëwo turn dÍhedral poínt group

BoËh the Internatfonal and Schoenflíes symbols are more subtle than

the erplanatíon above. They boËh, also¡ have certain advanËages over Ëhe

other as systems of notation. T'[re International synbol tel1s more abouË

Ëhe actual physical symnetrical configuration in terms of the underlying

laËtÍce and spetry operations, This is why Ít is preferred by

cyrsËallographers, Unfortunately, it teL1s very 1íttle about the maËhemaË1cal

group structure assocíaËed with the confíguration. Ihe Schoenflies symbol

does tell exactly that, ít is a ltpurerr mathemaËical noËatlon indícating

the group structure. It allows Ëhe maËhematician to ínvestigaËe and

classify symtretry groups accordíng to ËheÍr mathemaËical properties. Thís is

why Ít Ís preferred by mathecraËicíans. Because they are each better for

cerËain purposes, both the LnternaËional and Schoenflies synboLs have been

Íncluded in the illustraËions following.

Ttrere are also conventíons for numberLng the sym,eËry groups established

in the ïnternational Tables of X-Ray CrvstallographvlO lhese numbers are

aLso shot^m in the ríght side of the tíËle box for each íllustration of a

sl¡meËry group in the following sections. These tabLe rníghË be consulted
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in any evenË, as Ëhey provide an encyclopedia of the tr¿o hundred thirty

Fedorov symetry SrouPs in sPace.

The next three sections illustraËe the resources,of the naËhematícal

Ëheory of syrmetry as they níght be applied in architecture. Perhaps

the archiËecË will most apprecíate ühe visual eçlanation of Ehe theory

provided by il1usËratíons of sSrmneËrical configuraËíons, rather than a

technícal mathematical explanaËion. Trregardless of notations and emphasis,

a designer wouLd cerËainly deveLop a deep sense for the naËhemaËical theory

of symreËry by actually drawing spmetrícal configuratÍons. Sinilarly,

the observaËion of symnetrical conffgurations in boËh the man-made and

natural worlds t¡ould help deveLop that sense. The illustraËion of

Bravaís LaËtices and point groups Ín the following Ëhree secËions are

inËended as an educaËional. resource for Ehose exercises. Tttose exercises,

Ëogether r¡iËh the Ëheoretical groundwork provided 1n Part One, should

support the thesís that the matheuraËícal theory of syrmetry may be a

sígnificant part of the knowLedge an architect applÍes in design.
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2.2 SN4METRY IN ONE DTMENSTON

The intent of thÍs secËion ís Ëo illustraËe the single Bravais

lattÍce, two point groups, and seven freíze groups of spmetry in one

dímensions. Tn-e presentatÍon here is the same as it víll be in Ëhe

following Ëwo sections, a small black asynmeËric Ëriangle has been taken

as an element Ëo be transformed into symneËrical configurations. ïhe

choice of elemenËs is Ëotally arbÍtrary, alËhough if the form of the

element Ìtere sJ¡Inmetrical iÉseLf (say involvíng a refleetion) Ít q¡ould

noË be suíËable for í1lusËraËing all possíbLe synmetrÍcal configuraËions.

In one dímensíon, Ëhe single Bravais latËÍce consisËs of a series

of points in a straíght líne, separated by an arbitrary dimension,rfar (FÍg. Z.ZO!).

The tt¿o pcint grouPs that nay be combined with that lattice are the cyclic
grouP of one tuln roËatíon, CL , and the cyclic trsyronneËryt gronp, CS , whích

níght also have been called the dÍhedraL group of one turn rotation, .Dl.-,

(Fig. 2.20L). These Ewo point groups combine with Ëhe síngle Bravais lattice
to prod,uce the seven fíeze groups, Fl , Fl , E| , ana rl (Fig. z.zoz); Fz,
Lc

F2 , EU (FÍg. 2.203). Ihese groups exhausË alL the possibilÍtíes for symerrícal

configurations in one dimension.
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2.3 SY¡ßÍETR.Y IN tt¡O DII,fENSIONS

The lntent of this sectíon is to illustrate Ëhe five Bravais laËtices,

ten poínt groups, and seventeen wallpaper groups of symetry ín two dimensions.

The presentatíon uses the saoe black asynmetrLc Ëriangle Ëransforned inËo

syrrmetrÍcal confÍguratÍons associaËed s¡'iËh each group. BuË, unlike Ëhe

prevíous section, this secËion is divÍcled into five. sub-sectÍons, one for

each of Ëhe Bravais LaËËices and Ëhe symeËry groups based on Ëhose lattices.

In each of the sub-secËions, the unit celL of the Bravais latËice has been

Índicated ín hearry lines; and the condiËions r^rhich create, thaË ce1l are

indícated.

But, fírst Ëhe Een point groups which may be combined t¿ith all five

laËtices are illusËraËed. The proof of the crystallographic resËriction

(see reference in section 2.1) estabLishes Ëhat only poÍnË groups of one, tlro,

three, four, and six turn roËations arg present in syrmetrical configurations.

Therefore, the ten poinË groups in two dimensions are C1 , CZ , C3 , C4 , and

CO Gie. 2.301); and Cs (or D1), DZ , D3 , D4 r and DU (Fig. 2.302). Each

of these point groups combine $rith certaín of Ëhe fíve Bravais laËËices

Ëo produce Ëhe seventeen waLlpaper groups of synnreËry in two dimensions.
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Fí9. 2,3OL

Fig. 2.302
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2.3.L 0BÎ,IQIIE FÍg. 2.303

Ïhe first Bravais lattíce in two dimensíons is the oblique lattice
(Fig. 2.303). The unit ce1L is primitive, in the sense thaË Ëhere are no

points ínsíde the cell creaÊed by a gríd of parallel lines Ëhrough rhe

PoinËs. The unit cel1 consists in tlro unequaL arbitrary lengthsr-ä and bo

with an angle behveen them, Ø , of. anyËhíng except 90o, This is the ¡oost

generaL and least resËricted latËíce in t:lro dímensíons.

The oblique lattÍce combines v¡íËh the cyclic point groups, C, and C2 r

to produce Ëhe first Ërwo syûmetrical configurations of the seventeen

wallpaper groups of synmetry in t¡ro dimensions. ïhey are the groups:

I^I1 Gis. 2.304) and W2 (Fie. 2.305). No other point groups combine wiËh

the oblique latËice to produce any syrirnetry distíncË from ühese two groups.

This is typical of the presenËations to follor¡ ín each of the

sub-sectíons; it is hoped ËhaË a feelíng for the approach used will allow

Ëhe use of the ÍllustraËions as resources for design.

LAÍTICE IN TWO DIMENSIONS
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Fig, 2.304

Fig, 2.305



2.3.2 RECTÆ{GULAR Fig. 2.306
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o¡b, ¡-99o

LAÍTICE IN f\¡/O DIMENSIONS

The second Bravais latËice in'Ëwo dimensíons ís Ëhe recËangular laËtice

(Fig. 2.306). The uniË cel1 is also primitive, consisting in Ëwo unequal

arbitrary lengths, a and b, with an angle be&reen them, Ø , of exactly 90o.

The lattice is, obviously, equívalent to Ëhe rectanguLar gríds ofËen used

by architects, In ttris sense Ëhis'ís'a very important sub-section of symoeË.ry

in Ër¡o dímensions.

The rectangular latËice combines wíth the point groups, Cl., C2, Cg in

two ways, and Dt to produce the next five spmetríca1 confígurations of the

sevenËeen wallpaper groups of symnetry in two dimen"iorr". They are the gror-ps:

r^il (Fis, 2.307), ÍÃl (Fie. z.3oÐ, :wzz (Fis, z.3oÐ, wZ (Fis. 2,310) , ana wl

(FÍg. 2.311). No other point groups combine wiËh the oblíque laËtice Ëo

produce any spmetry ilisÉinct from these fíve groups. It should be noted
tL

that I,f2 G'íg. 2.3L1) has been shown wiËh the point group C, aË an angle

bisecting the angle of the Lattice. This is necessary if the poinc group is

to occur aË every poinË Ín the lattice, buË thÍs group is often shown with

the poinË group noË on the angLe at every other poinË in the lattice.71
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2.3.3 RHOI4BIC Fig. 2.3L2

llre third Bravais latËice ín Ëwo dimensions Ís the rhonbic lattÍce

(Fig. 2.313), The unit cell is not prímitive, ít is centered because iË is

possibLe Ëo draw a cel1 created by patallel lines (shown as broken) that

has a point exactly at iËs cenËer. lhe unit cell consists in Ëwo equal

arbíErary lengËhsr â = b, with an angLe bet¡reen Ëhem, 6 , of anything excepË

600 or 90o.

llre rhombic laËËice combines wiËh Ëhe poinË groups, C, and D, r to

produce t!¡o more syunetrical configuraËions of the seventeen wallpaper

groups of symnetry in tl¡o dimensions. They are the groups: ï{l (Fig. 2.3L3),
7

and I.Ii Gig, 2,314). No oËher point groups combine wiËh the rhombic lattÍce

to produce any sltmetry dísËÍnct from these Ët¡o groups.

IATTICE IN fWO DIMENSIONS
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2.3,4 SQUARE Fie.2.3L5

Ihe fourËh Bravais laËËice in tlro dimensions is the square lattíce

CFig, 2.3L5). Ttre unit ceIl is, once again, prÍmitive, consisting in Ëwo

equal arbítrary lenghts, â = b, and an angle between them, Ø , of exactly

9Oo. ThÍs is also eq.uívalent to Ëhe squarè grÍds conrmonly used as design

devices in architecËure.

The square lattíce combines Ìrith the point groups , c4 Ln two ways

and DO, to produce Ëhree rnore s)mmetrical configurations of the seventeen

wallpaper groups of symmetry in ts¡o dimensions. ïhey are Ëhe g"o,rp",

wo cFíe, 2.3L6), w| {r'is, 2.3L7), and wf e'ie. 2.318). No orher poínr

grouPs combine with the square laEtice Ëo produce any symetry distÍnct

from Ëhese three groups. rt should be noted that llf Gig, 2.31g) again

involve the point grouP CO at an angle bisecting the angle of the lattíce,
and again this group is often shotm with the point group noË on the angl.e

aË every oËher point in the Lattice.T2

t.ÀlllcE rN TWO DIMENSTONS
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2,3"5 TtsIAI{GULAR Fig. 2,3L9

'In-e fifËh and final Bravais lattice in Ëvo dimensÍons ís the triangular

latËíce CFig. 2.3L9). The unÍt cell is primíËive, consisting in tlto equal

arbitrary dÍmensions, a = b, wíth an angle between then, Ø , of exactly 600.

The laËtice is also not dÍsi¡nilíar to some grids in modern architecËure,

especíaL1y those based on the use of space fra¡aes, which often involve

600 geometry.

The ËrianguLar latËice combines wiËh the point grouPs, C3 , CU ' D3 .in

tero qrays, and D5 , Ëo produce the fínal five symeËrical configuraËions of

Ëhe sevenÊeen wallpaper groups of symmetry in ft¡o dímensÍons. They are the

sroups: w3 (Fíg. 2.320), ï^il (Fig. 2.32Ð, w3 (Fig. 2.322), w6 (Fig. 2.323),

ana W| CFig. 2.324). No othe¡ point groups combÍne with the triangular laËtice

Ëo produce any syrnnetry distinct from these five groups.

This coropleËes the illustration of the sèventèen'wallpaper symetry g::uups in

û¡o dÍmensions. These groups exhaust all the possibilities for symetricaL

configuraËions in two dimensions.

T.ATTICE IN TWO DIMENSIONS



-84-

w3

No. 13Fie. 2.320

Fig. 2.32L

SYMMEÌRY GROUP fWATLPAPÉRIFig, 2.322



-85-
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2,4 SYT,ÍIÍETRY IN THREE DTI4ENSTONS

The intent of this section ís Ëo illustraËe the fourteen Biavais

lattices, and thirty two point grouPs Ëhat combine Ëo produce the Ëlro

hundred ËhírËy Fedorov groups of synrmetry in three dimensions. As indicated

earli.er, it is noË practÍcal to illusËrate all two hundred thirty syfftretry

groups in space, buË Ëhe ÍllustraËÍons provided should be enough to allow

the designer to use this section as a resource. Like the previous section,

this sectÍon Ís divided ínto sub-sections. The fourteen Bravais latÉices

and thirty tr¡o point groups may be classifÍed into seven gystens; comonly

caLLed Ëhe seven crystal classes in three dimensions. Iike previous

sections, a sma1I black asymetríc tríanglerprojecËed into a Ëriangular soLid,

has been Ëaken as the elemenE. Sinilarly, Ëhe Bravais lattices have been

shown in projection, w'ith the unit cells indicated in heavy lines, and

the conditions which create that cell a¡e indicaËetl t¡ith Ëhe tr.¡o dimensional

lattice facing the vfer¡er also indicated. Because archítecture is an

art of space creaËion (see section 1.3), symetry in three dimensions may

be the most importanE parË of the maËhemaËical theory of spetry.
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2.4.! TRICTINIC Fig, 2.40t

The first crystal class ín three dimensions l-s Ëhe tríclinic class.

In thís class there is only one Bravais lattice, the priníËive triclínic

(Fig. 2.4OLJ. The unit cell consísts in Ëhree unequal arbiErary lengths'

a) b, and c; with an oblique tv¡o dfmensional lattice facing the viewer'

projecting into spaceaË an angle (to the.p4ge\r,Ø-, of anything except 90o.

Again, this ís the r¡osË general and least restricted lattice in three

dimensÍons.

This single laËtÍce combines wiEh two point grouPs ín Ëhree dímensionst

they are Ëhe cyclic point grouPs, C1 and Ci (Fig. 2.402). The two tríclinic

poinË groups combine with the primiËÍve latËice Ëo generaËe only two

of che two hundred, thirËy Fedorov groups ín space (see TABT,E 14.{:01, MaËhemaËical

Appendtx), the triclinic crysËal class contains jusË Ëhese two syÍmeËry

groups in space.

I,ÀTTICE IN THREE DIMENSIONS
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Fie. 2,402 ÍRICI.INIC POINT GROUPS
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2.4.2 MONOOLINIC Fig. 2.403

T'he second crystal class in three dimensions is the monocLínic class.

In Ëhis class there are ËÌro Bravais laËËices, the primítíve rnonoclinic

(Fie. 2.403) and the centered monocliníc (Fíg. 2.404). The prímitive unit

celL consists Ín Éhree unequal arbitrary lengths, 4, b, and c; sríth a

rectangular lattíce facíng Ëhe viewer, projectíng into sPace ât ân angle,

Ø , of anything excepË 90o. The cenËered unit celL is Ídentical, except

there is a point at Ëhe center in the side of cell projecting ínto space.

ltese t¡,¡o laEtices combíne wÍth three poínt groups in three dimensions,

they are the cyclic point groups, CZ , CS , and Crn Gie. 2.405). These

groups rnay be drawn in tl¡o \,rays, since Ëhey occur in crysËals in both ways,

they have been caIled the lst setËing (top row, Fig. 2.405) and the 2nd

seËting. (botton row, Fig. 2.406). The three monoclinic poinË groups combine

wiEh Ëhe p:rímítive lattice to generate eight of the Fedorov groups; and

lvith Ëhe centered laÉËíce Ëo gnerate five more (see TABT.E MA:01, MaËhematícal

Appendix). In toËaL, Ehe monoclÍnic crystal,class conËaÍns thirteen

synmeËry groups in space,

TATTICE IN fHREE OIMENSIONS
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TATTICE IN fHREE DIMENSIONS

The Ëhird crystal class in Ëhree dimensions is Ëhe orËhorhombic class.

In this cLass there are four BravaÍs lattices, Ëhe prímitive orthorhombíc

(Fig. 2.406), the centered orthorhombíc (Fig. 2.407), the face-centered

orrhorhombic (Fig. 2.408), and the body-centered orthorhombic (Fig. 2.4O9).

The primitive unit celL consists in three unequal lengths, â, b, and c;

r¡ith a rectangUlar lattice facíng Ëhe vieç¡er, projecting into sPace at

an angle, Ø , of exactly 90o. The centeúed unit cel1 is identÍcalr excePt

Ëhere is a poinË at the center of the side of the cell projecting into space.

I'tre face-centered unit cell is aLso idenÉícalr excePt Ëhere is a point

at the cenËer of every face of Ëhe cell. ttte body-centered unít ce1l is

also ídenËicaL to Ëhe prímitive unit cell, excePt there is a point aÉ Ëhe

center of the body of the ceLL'

These four lattices combine with three point grouPs in three dimensÍons,

Ëhey are the cyclic poínË group, CZu , and the dihedral poÍnt grouPs, D2 end

Orn (Fíg. 2.4t0). The three orËhorhombic point grouPs combine with the

prímítive 1aËtíce Ëo generaËe thirËy of the Fedorov grouPs; wíËh Ëhe centered

Lattice to generaËe fÍfËeen; with the face-centered Ëo generate five; and wiËh

(contrd. p. 93)
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(conËtd. froro p. 92)

Ëhe body-centered to generate another nine of the Fedorov groups (sêe TABLE.

MA:01' Mathe¡natical Appendix). In total, Ëhe orthorhombíc crysËal class

contaíns fifty nine spetry groups in space.
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TATTICE ¡N THREE DIMENS¡ONS

The fourth crystal class Ín three dimensions is the Ëetragonal elass.

In this class there are tv¡o Bravais lattices, the prÍmitíve Ëetragonal

CFig. 2.4L1), and the body-centered tetragonal (Fig. 2.4L2). The prímitive
unit cel1 consists in two unequal arbitrary lengths, a and b, ând a ËhÍrd

length, c, equal Ëo one of Ëhen, b = c ; wiËh a rectangular lattice facing

Êhe víeser, projecting ínto space at an angle, Ø , of, exactly 90o, The body_

centered unlË ceL1 is idenËical, except that there is a point at the cenËer

of the body of the cell.

These Ëwo Lattices combíne w1th seven point point groups in Ëhree

dimensions, they are the cycLic point groups, c4 , con and the special
point group so (Fle: 2.413); as well as Ëhe díhedral poinr groups, D4, D4h,
D2u and the cyclÍc point group, c4v (Fig. 2.4L4). The seven tetragonal

point grouPs combÍne wÍth the primíËive lattice to generate forty nine of
Ëhe Fedorov grouPs; and wíth the body-cenËered lattíce to generate another

níneteea.-(see TABLE IcA:01, Mathenatíca!. Appendix). In total, the Ëetragonal

c¡ystaL class conËains fifËy eight symetry groups in space.
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TRIGONAL IPI

HExAGoNAL (c,

The fifËh crystal class ín Ëhree dÍmensions ís the trígonal class.

In this class Ëhere are t?¡o Bravaís lattices, Ëhe primÍtive .rËrígonal

(Fig, 2.4L5) and the trigonal rhomõohedral (FÍg. 2.4L6). The primítive
unit cel1 consisËs in Ewû equal lengËhs, ¡t = b , and a third length, c ,

not equal to eíther a or b; wiËh a tÍangular laËtice facing the vierrer,

projectíng into space at an angLe, S , of exactly 9oo. The rhombohedral

_ unit cell consists in three equal dimensions, a = b = c,; ¡¡íËh a rhoubic

latËice facing the vier¡er, projecting rnto space aË an angLe, Q , exactly

equaL to the angle, Ø^b , in the rhonbÍc lattice.

These t:9ro lattices combíne wfth five point groups in three dimensions,

they are the cyclíc point groups, c3 , a3., , the special poínË group, su ,
and the dÍhedral point groups, D3 , Du' CFig. 2.417). The five trigonal
point grouPs combine with the primítive 1atËice to generate eighteen of

the Fedorov grouPs, and t¡"ith the rhombohedral lattice to generaËe another

seven (see TABI,E t"fA:01, MathenaËical Appendíx), In toËal, the Ërigonal crysta1

class contains t¡renty five symnetry groups in space.
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2.4.6 ITEXAGONAT

The sixth crystal class in three dlmensions is Ëhe hexagona1 class.
Ïn this class there is just one Bravais lattice, the centered hexagonal

(Fig. 2-4L5) which is not distínct from Ëhe príuÍtíve trÍgonal.. IË is
not consídered a seParate menber of the fourteen Bravais lattices. The

cenËered hexagonal unit ce1l, shown Ín broken 1ine, consists ín Êhe same

conditions as the trigonal príuíËÍve.

Ttris LatÊíce combines with seven point $roupsin three dímensions,

they are the cyclic poinr groups, C6 , C6h , Cgt, Cgig. Z.+ta¡; as well
as Ëhe cycLÍc poÍnt group, C6., , and the dÍhedral point groups, D3h , D6 ,
D6h fFig. 2.4L9). The seven point groups combine wÍth the cenËered hexagonal

laËtice to generate t¡,7enty seven of the Fedorov groups (see TABï.8 14Á.:01,

Mathematical Appendix). Ttre hexagonal crystal class contains jusË these

fwenty seven symetry groups in space.
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2.4.7 CüBIC Fíg. 2.42O

ltre seventh and final crysËal class in three dimensÍons Ís the cubÍc

class. In thís class there are three Bravais lattices, Ëhe primitive cubic

(Fíg' 2.420), the face-centered cubic (líg. 2.42L)r and Ëhe body-cenrered.

cubíc (FÍg. 2.422). The primitive unit cell consists in three equal lengths,

a = b = c r wÍËh a square laËtice facing the viewer, projectíng into space aË

an angLe, Ø , of exaetly 90o. Ihe face-centered unit ce1l is ídenËical,

eacePt that Lhere is a point at the center of every face of the cel1. The

body-centered uniË cell is also íd,entical, except thaË there is a point at
the center of the body of the ce1l.

These three laËtices combine with fíve point groups in Ëhree dÍmensÍons,

they are the teËrahedral poÍnt groups, T , tn (Fig. 2.423); the tetrahedral

poÍnt group, Tu , and the ocrahedral point group, o (rig. 2.424); as well as

the octahedral point group, O¡ (Fie. 2.425). Each of the illustrations of
Ëhese poinË grouPs shot¡s only half of the elements, there is an identical

Pattern of elemenËs Ín the three dírectÍons facing away from Ëhe víewer.

Ttre five cubic poínË groups combine with the prinitÍve lattice to generate

fifteen of the Fedorov groups; with Ëhe face centered, laËtice Ëo generaËe

IAÍTICE IN IIIREE DIMENSIONS

(contrd. p.101)
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eleven; and w'ith the body-centered lattice to generate the fÍnal ten

Fed,orov groups, (see TABLE MA:01, MathematicaL Appendix). ïn Ëotal, Ehe

cubíc crystaL class contains ËhirËy síx symetry groups in space.



-L02-

FÍ9. 2.423

Fig. 2.424

fl
4

Fíg. 2.425



-103-

Fig. 2.426 I syMMETRy GRoup tspAcEì , , N".81

This conpletes the iLlustration of the fourteen Sravaís lattices

and thirty Ëlro point groups ín Ëhree d,imensions, To provide an example

of the synmeËrical configurations that rnay be generated. from these, there

is an illustration of the Fedorov group, o| {ris. 2.426), ËhaË results from

the combinatÍon of the poÍnt group, D4 r with the prirni tive Ëetragonal

lattice. All two hundred thírty Fedorov groups Ín space night be so

illustrated, but for practical space liuiËations they are not shoqrn here.

thís aLso conpleËes the explanation of the resources of the

mathematical Ëheory of syrnmeËry in Part T\¡o. I^Iith the visual ínformaËíon

here, Ëogether qrith the Mathecnatícal Appendíx, the thesis'that the maËhematícal

Ëheory of symretry may be a signifÍcant part of the knovrledge an archítect

applies in design is supported.



PART THREE: S?ECULATIONS
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3.1 TITE AESTITETTCS OF COMPLEXTTY

Sír Henry Wottonr s The El.ements of Archítecture, first published in

L624, provided a famous description of the condiËíons for good ârchitecture,
rrln architecËure, as in all other operaËíve arts, lhe end.,musË direct the

operaËion. The end ís buíld well. tr^Iell buildÍng has three conditíons:

Comnodíty, Firmness, and Delight.tt73 The applicaËion of the mathe.natical

Êheory of symetry must be directed to one of those condítions in the

resulting work of archiËecture. The intent of this overall part is to

make some speculations abouË the conËribution of that applícatÍon in

archiËecture. The particular intent of this section fs to speculate Ëhat

the mathenatical theory of spometry Ís a means df.rected by the end of

aesthetic dèlight and a nethod for dealing wíth the aesthetícs of conplexity

in architecture.

A work of arÈ ÈhaË is only a work of art, that serves no oEher purpose,

has iÊs aesthetic methods as an end in themselves. Nothing more is comrounicaËed

by the ¡¡ork than to dran attentÍon to the intrinsíc values of the aesËhetic

effects of the qrork. But, architecture, almosË by definítion, must serve

some other purPose; including the accomodaËion of human activity, and, more
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importantly, the coulutunÍcation of a meaningful awareness of space. The

work of architecture has the comrunication of spatial inforrnation, to

express and induce meaníng, as one of its prlmary ends. The fact thaË

archiËecture is also an art suggests ËhaË the methods of the designer

and their effects in the resulËing lrork of archiËecture are channels

for cottrmunication. A r.rork of arE, such as architecËure, thaË draqrs

aËtenËion to extrinsic values of aestheËic effects, such as Ëhe âríareness

of space, allows communicaËion between viewer and creator. The methods

applied in these r,rorks are channels for that cou¡nunication.

Ttre mathematical Ëheory of syrmretry in archíËecËure is a meËhod.

for the creation-of òrcler-ín the transmission of spaËial info¡matíon by

the l¡ork of archítecture. The creatÍon of this order Ís not an important

aesËheËic effect Íf the desígn probLen is very well understood, and

therefore the spaËial infornaËion sennnu¡ig¿ted is simple. Ilowever, mosË

desígn problems are noË well under"toodT4 and Ëhe informaËion conmunicated

by the architecture Ís complex. rndeed, Ehe complexiËy of information cornmunicated

is an importanË asPect of the study of design problens. Herbert Simon has

defined complexity fn design:

...by a complex systen r mean one made up of a large number ofparËs thaË inËeract in a nonsÍuple way. rn such slsteros, Ëhenhole is more than the sun of the parts, not r-n an ultÍmate,
metaphysÍcaI sense, but ln the impiotani pragmatic sense Ëhat, giventhe properties of the parËs and tñe laws òf ihuir inreraction...lrís noË a trÍvíal matter to infer the properÉíes of the *tot".'75-

conplexity is an importanÈ Ëoplc in any discussion of methods for creaËing

order, because there is an interaction between thé.aesthetic.effeclsiof
order and conplexiËy. The naËure of that interaction should guÍde the

application of xcethods such as the mathematical Éheory of spetry in design.
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An important point Ëo be made ís the recognlËion of the paradox

of studying Ëhe methods of the artisË and Ëhe effects of those metho,¿ls Ín

works of art as one thíng. Ttre persístence of this paradox usually results
in aesthetic recipes linking eertaín methods and effects lrith certain
Ëypes of inforrraËion to be cormunicaËed. Those recipes then become the

críËeria for the evaluation of good or bad r¿orks of arË¡ that is, they

became lat'rs of beauËy. This was the subjecË of classical aesthetícs. ThaË shouLd

not be Ëhe subject of a discussion aesËhetic methods and effects in
desÍgn. AnËon Ehrensweig explaíned that:

There Rras no need for disputÍng at length their spurious lavrs ofbeauty. The passage of Ëime alone saqr Ëo that. 'i,rÍth the ríse
modern psychology, the aestheticians changed theÍr aím. Insteadof search for objecËÍve properties of beauty in the external worldthey turned ínwaçfs to find Ëhe source of the aestheËÍc experiencein our own mínd.,o

The study of aestheËÍc meËhods and effects in qrorks of art should be seen in
the contexË of undersËanding psychologlcal processes. The application of
the mathemaËÍcal theory of syameËry as a meËhodfor creaËíng the effect of
order in architecture is not an aesËhetic recipe for good architecture
(see section 1.1, p. 3o). rË is only a way of understandíng certain
psychological' processes involved in aesthetic preferences of indíviduals.

ïË is appropríate to rely upon experimentaL psychology to make

speculations about the aesthetÍcs of cooplexíty in design to whÍch

Ëhe maËhemaËical theory of symetry ís applied. D.E. Berlyne was a pioneer

in the experimenËal sËudy of psychological processes in aestheËics; his
major concept is rrarousaltt, whích is defined as:

... Ëhe acËivaËÍng or energizing aspects of motívaËion or emotion.This work has given rise Ëo the psychophysiological concept oftarousalt, which, a'ong many othãr-aruå äf r""""rch that iÊ hasaffected, seems to have great potentÍal for throwing 1íght on
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aesËhetic phenomena. A human beÍng or higher animal can be regarded
as possessíng, aË a particular moment, a parËícu1ar tlevel of
arousalr or racEivationt, His positLon along this dimenslons cane
be regarded roughly as a mg4sure of hon wide awake, alert, or
emotionally exciteã hu i". /i

The concept of arousal ís significant because iË allor¡s the ecpecimenËal_

study of aesËhetic nehËods and effecËs. In Ëhe context of works of

archiËecture, ÍË ís clear thaË íf Ëhe ¡vork is to co'rmunicaËe an awareness

of space, then iË must arouse the people Lnvolved ín Ëhe creation and

appreciation of the work. The study of design methods aimed at cerËain

aesËhetic effecËs, such as spatial order, is inËerested in Ëhose qualities

Ëhat influence levels of arousal. Berlyne suggested:

,..it will be conveníent to refer to all propertíes of sËímulus
paÉterns that Ëen, on Ëhe whole, Ëo raise arousal as the arousal
potential. Thís terro will denote someËhing 1íke Ëhe psychological
strengËh of a stímulus patËern, the degree Ëo which iË can dÍsturb
and alerc the organism, the ease wiËh ç,¡hich igocan take over control
and overcooe the claims of competing stimul,L.'u

The trro concepts of arousal and arousal potenËfal provide a psychological

conËexË w'ithin which Ëo undersËand the applícation of the mathematical theory

of syrnmetry Ín desÍgn as a method for dealíng with the aestheËics of

complexity.

Berlyne identified three classes of properËies that influence the

arousal potential of stimulus patterns such as works of art. A work of

archiËecture may be thoughË of as just such a stimulus paËËern. The firsË

class is the psychophysioLogical properties, which refer to the effects of

Ëhe Íntensíty and frequeney of physÍcal stímuli. In architecture, this includes

thÍngs líke bright f.ights, loud noíses, inËense colours, hard surfaces,

crowds of people, and similar things. I'he second class is the ecoLogicaL

properties, which refer Ëo Ëhe effecËs of boiLogical and envirÍonmenËa1
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condÍtíons. In architecture, thís includes Ëhings like shelËer from

wind and râin, warm aír, natural sunlight, close contact qríth the ground.,

Ëhe way energy is consumed, and similar things. The third class is the

collative propertÍes, which refer Ëo the effects of relations and tack

of relations between sËímul.i or condÍtions. ïn architecture, Ëhís

includes things like order, complexity, novelty, syrnbolic assocÍations,

cogniËive Ímages, and similar things. These laËter properties are

those to which meËhods applying knowledge of strucËure, sdch as the

maËhenaËical theory of syrnmetry, are direcËed.

Tfie acËivity of design must Ëake into account all three Ëypes of

effects.. . The work of archiËecture.does provide certain ínËensiÊy and

frequency of physical stÍmuLi, reflectÍng the archiËectts concern Ëo

accomodate the functÍon of the buílding, EquaIly, the work of archítecture

does provide certain bÍologícal and environmenËal condition;, reflecting
the architectrs Ëo meet the technologícal demands of the buildÍng. The

arousaL potential resuLting from these Ë1,¡o classes of properties relates

to the planníng and construction of the buÍldíng; or in l,IoËtonts condíËíons

for wel.1 buÍlding, Ëhe cosmodÍËy and fÍrnness. But, iË ís the thírd
class of effects that reLates to the aesËhetics of the buíldÍng; the delight
of t¡e1l building. ltre work of architecture d,oes provide certaÍn relations
between stímuli and condítÍons, reflecËing the architecËts concern Ëo

indícaËe the reLative aeschetic values of elenenËs of the buílding. It
Ís che strtrcfure of these relations that should be central Ëo the d.Íscussion

of architectural aesthetícs. 0f course, the planning and, consËruction

of the buÍldíng are iurportant, because poor qualiËy in eiËher one may

provÍde such arousal potential as to detract from Ëhe structure of relaËíons

Ëhat convey Ëhe aesthetic effect. But, granted ËhaË the pLanning and
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construcËion dífficui.ties of a buílding may be handled adequaËely by the

Ërainíng of archítecËs; it Ís the knowledge of structure applied by

archítecté that conveyé,Ëhe,-aestheEÍc ef,fects of a building,

The mathematical theogy of syrunetry may be a signíficanË part of

an invesËigation od.structures ín space (see section 1.4), The application

of the Ëheory as a meËhod for creating the relations beËween archíËectural

elenents creaËes one of Ëhe basic aestheËic effecËs in archÍtecËure, that

is, the quality of order. the appLication should be directed by Ëhe

aesthetic concerns of an architect, not either the planning or construction

concerns, The importanË question becomes, rhaË aestheËic concern Ís

dealt wiËh by an applícation of the naËhenatical theory of syn'meËry to

create order?

The effecËs of strucËures ËhaË íncrease 
".ousaI 

generally depend

on Ëhe contrast of elements with accompanyÍng elements or prevíous

elements of the same sort. In architecture, devices such as Ëhe

juxtaposiËion of bright colours and differenË shapes produce Ëhis kind of

arousal . The Íncreased nr:mber of forns of elements and wide varfatÍon .in

Ehe awareness , of space createvaríety íncreasing Ëhe arousal poËentíal.

NovelËy is one of the EosË common derrices of this sort. The innovation

resulËing from Ëhe invention of new eleoents or the use of existing elements

ín new ways Provides excitement in Ëhe design. A work of archÍtecture that

differs ín a striking way from previous examples of the s¡me building type,

produces a signÍfÍcanË raising of arousal. Raising certain expectatÍons

for the building, then surprísing the viewer w'ith something unexpected

or not contiguous t¿ith whaË preceded it, ís a basíc device for increasing

arousal potentíaL. some degree of unpredictabilíty or ambíguiry will
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also raise Ëhe leveL of arousaL in Ëhe víewer. ConËrasËing paËËerns of

sËímulation rnay also be very arousíng. Perhaps, alL these devices can be

collected in Ëhe ídea of courplexify, as defÍned earlíer. In general,

structural. complexity increases the arousal poËential of the r¡ork

of architecËure.

the effects of structures that decrease arousal generally depend

on the association of eLements with acconpanying elements or previous

eloments of the same sorË. Tn archiËecËure, devices such as Ehe bLending

of courplementary coLours and similar shapes produce this kind of lack of

arousal . The decreased nr:nber of for:rrs of elenenËs and f.inited variaËion

in the a!üareness of space create redundancy decreasíng the arousal poËentíal.

FamiliariËy is one of Ehe rnosË cormon devíces of this sort. The conventíon

resultíng from the adoption of existing elemenÊs or the use of new eLoments

in exísting lrays provides traditíon ín Ëhe design. A work of architecture

that differs in no stríkÈng ltay from previous examples of the sane building

type, produces a significant lowering of arousal. Raising certain expecËaËions

for Ëhe building, then fulfilling the vierrer with the Ëhing e:<pecred or

conËíguous with what preceded 1t, is a basíc device for decreasÍng arousal

poËenËial. Some degree of predictability or claríty will also lower Ëhe

leve1 of arousal Ín the viewer. SimÍ1ar paËterns of stÍmulaËion may aLso

ncË be arousing. Perhaps, all these devices can be colLected in the idea

of order, as defined earlier (see section 1.4). fn general, sËructural

order decreases the arousal poËentíal of Ëhe trork of archítecture.

Ït Ís imporËanË to relate the aesËhetic preferences of both the

designer and the vievrer Ëo Ëhe raising and lolrerÍng of arousal through

structuraL complexÍty and order, Clearly, íf Èhe work of archiËecture
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has the intentíon to create an aestheËíc arrareness of space, then Ëhe

designer should be concehned with maxÍuizing the aesËhetíc preferences

for the vrork. AesËheËic preference cannot be siraply equated with beauty

or pleasingness, iË refers only to the ÍndÍvidualrs judgemenË of Ëhe

attention Ëhat is due the work, boËh for its methods and its conÊent.

cerËaínly, the application of the mathemaËical theory of syrn¡eËry in
desígn must be parË of Ëhe methods for creating an aesËheËically preferable

v¡ork of architecËure.

T1rere is a need Ëo balance the devÍces tha,t create structural
complexíËy wiËh the devices that creaËe structural order. BuË Ëhe

naËure of their ínteraction is not simple. This is one of Ëhe crucial
issues in discussÍons of architecturaL aesÊheËícs. Berlyne saÌr cogmon

ground in mosË aesthetic philosophies; he argued:

Ðespite the very different Ëerms in ¡rhich the Ëwo couponenËs
have been specifíed through the cenËurÍes, it is not Lard Ëo discern
courlrc,n ground. There is aluays one factor, whether ít be calledtnultíplícityt, rvarÍeËTt, or tconplexityj that can be expected toraise arousal. Then, there is Éhe other factor, runityr, rordert
or tlawfulnessl that can be-çxpected to lov¡er arousal or at least
keep arousal ¡,rithín bounds. /Y

Ït makes sense Ëo suggest that works of architecture musË be sËiEulaËing;

they must ínclude arousal Íncreasing devíces of conpleri.ty. Generally then,

as the complexiËy of a r¡ork increases, so will the arousal gf'ttre^iâer¡et and

this will make Ëhe ç¡ork more aesthetically preferablå. But aË some point,
increases in arousal wíll become uncomfortabLe for the vieq¡er and Ëhis wíl1
make Ëhe ¡'rork less aesthetica!.ly preferable. Eventually, at some extreme.

tn¡el of arousal; the work v¡Íll actually become .aversive. Berlyne suggested

that Lhe nature of the relaËlonship between aesthetic preference and arousal

night be a lüundt 
",rrv.80. 

(Fig. 3.10L).
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Fie. 3.101

To creaËe 'a :r,¡ork of architecËure thaË is at the poínt or in the

rânge of maximr¡¡n aesthetÍc preference for the viewer, there is the need

Ëo moderate the etlntrlatÍon of complexity wiËh the arousal decreasing devices

of order. In desígn, the creation of structural eornplexiËy is desirable,

but only Ëo a point. After Ëhat point, any íncrease in structural complexity

should be balanced wiËh an increase in structural order; to allots the

leve1 of arousal of the víet¡er Ëo rpmain in the range of maxímum aesEheËic

preference. Certainly, every viewerts judgenent is individual for each

work of architecture; hence, the profÍle of Ëhe curve and exacË point of

maximum aestheÊic preference, is differenË for each viel¿er and each building,

IÏowever, the shape of the curve; Ëhe naËure of the reLationshíp Ít

explaíns between aesthetíc preference and the ínËeraction of strucËuraL

conplexiÊy with structuraL order, is significant.

Ttre maËhstatícal theory of synrmetry in architecËure Ís a method

for creaËÍng sErucËural order in the ã?rareness of space. It is a device

for noderating the effecËs of increased complexiËy. Due Ëo the inherenË

structural complexity in the creation of a Large number or variety of

o
.F{
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o
.tJ
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spaces, Ëhe contenporaqz architect rrill alnosË certainly be compelled to

use some method for creaËíng structural order ín design. An application of

the maËhemaËicaL theory of speËry is a meËhod for dealíng with this

aestheËic concern to creaËe sËructural order to balance complexity.

In architecture, as in mosË art, the sËate of maxímum aesthetic

preference may be descríbed as ordered complexiËy. Venturi argued the

case for complexity ín modern archiËecËure adrnirably:

Architects can no longer afford to be inËirnidated by the puritanically
moraL language of orthodox Modern archiËecËure. I like elements
trhich are hybrid rather than pure, compromising raEher than clean,
dísËorted rather Ëhan straíghtforward, ambiguous rather Ëhan arËiculated,
peryerse as uell as Ímpersonal, boring as r.relt as inËerestÍng,
accomodatlng rather than excludÍng, redundant and equivocal raËher o',
Ëhan direct and cLear. I am for messy vitality over obvious uníËy."-

Indeed, ín terms of creatÍng aestheËically preferable r¡orks of archiËecture

through increased structural complexíty, thore is noË less.tt82 But, and

thÍs 1s an ímportant PoínË, Ëhe applÍcatfon of devÍces to ínerease compLexity

in desÍgn must be restrained at some poínt by the application of methods

for creaËing sËructural order. Increasing complexíty must be balanced by

increasing order in the underlyíng sËructure. ArnheÍm has made a similar

conmentary on VenËuri:

Order is found at all 1eveLs of eonplexity. The more complex the
structure, the greater the need for order and the rnore admirable its
achievenenË, because it is harder to obtaín. VenËuri shows many
excellent examples of complexity. But he misleads in asserting thaË
Ëhose complexÍties involve contradícËion and therefore are disorderly,
¡rhfch Ín fact mosË of th,.m are not. The misuse of the Eerm contra-
diction must rieË, be permftted to justify the exístence of chaoËic
wilfuln;'ss, caused in our line Eg Ëhe.aËomízation of society and the
h¡¿a¡'-iiown of the sense of forr.o

BoÉh Venturí and Arnheim have made good arguments. There should be structural

complexity in Éhe work of archiËecture Ëo increase the likely aesthetic

preferences of Ëhe víetrers, buË this does not ínp1y Ëhe abandonment of
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sËructural order.

T'he speculacion here Ís Ëhat Ëhe aþplication of the maËhematical

Ëheory of symretry is a method for dealing with Ëhe aesthetícs of complexíty

ín architecËure. IË a1Lol¡s Ëhe designer to moderaËe Ëhe effects of increasing

complexÍty in the nr¡mber and variety of spaces created by applying

t'he Ëheory to sËructure the relatíons between the elernents used lo mäker:c:

sPace. This has Ëhe effect of creating a balance betr,¡een the ínherenË

structural complexity of Ëhe design and Ëhe structural order provided by

the Ëheory. Thís balance is aimed aË Ëhe aesthetíc concernÉ of the designer

to make the t¡ork worthy of attenËion by Ëhe viener, to corofounicate a

meaningful atrareness of space. Clearly, the mathemaËícaL theory of symretry

musË be evaluated as a sÍgnifícanË part of the knowledge an architecË

applÍes in design.
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3.2 AN APPROACIT TO DESTGN

0nce Ëhe archítect develops a knowledge of the matheflatical Ëheory

of syurnneËry, perhaps through basic desÍgn exercíses based on the resources

of the Ëheory (see Part Tþo), and Ís ar,rare of the theory behind its

application (see Part One) i the Eost imporËant Ëhing is an approach to

desígn involvíng that application. lhe intent of this section ís to

make speculations about an approach to design, ín which the resources of

the maËhemaËical theory of sSrmmeËry are applied. Clearly, thls secËion musË

also folü.or,¡ the speculations made about Ëhe end, that fs, Ëhe aestheËics

of complexiËy (see section 3.1), to whích Ëhe theory is applíed, This section

is very much an operational conclusion about the applícatÍon of Ëhe

mathernatical Ëheory of symeËry in design. This conclusion shouLd not be

seen as an architeciural trhor,r Ëorr or recipe book, buË only as speculaËions

abouË an approach to design wíËh Ëhe Ëheory.

IË is essenËial to reiterate the level and role of the mathemaËical

Ëheory of spetry ín architecËure. Symmetry is a method for creatíng

underLyÍng structures in works of architecture; that ís, self-regulating

Ëransformations of archítectural elements inËo space creaÈíng whoLes.
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Symetry is not a method for inventing forns ín works of archÍtecture;

Ëhat is, particular formaEions of architectural elements, The proper

application of Ëhe maEhematical Ëheory of symeËry ís as principles

of order in archiËecture, noË as Ëheoríes of proportÍon. The leve1 of
an underlying structure and the role of creating order are the basis of
any aPproach to design applying Ëhe nathematicsl thoery of syrmreËry. Ihese

two ideas should be kept in mind aË all times.

The effect of applying knowledge of the rnathematical eheory of syrunerry

ín design is on the aesthetic quality of structural order in Ëhe ç¡ork of
architecture. This must also be kept in perspectíve at all tÍrnes. Synnetry

is an arousal moderating device Ëo balance the arousal stimulatÍng devices

of cooplexity ín architecËure. Symetry alloqrs an archítecË Ëo judge

' the range of maximr¡n aesthetic preference ln complex works of architecture.

The creaËion of a lrork ín that range ís an important part of conmunication

wiËh architecËure; and is dependent on the knowledge and application

of sËructural devices such as syrmetry. But, the whole work of architecËure

depends also on the p1anníng and construction of the buílding. Ttre

maËhematical Ëheory of symetry does noË concern itself lrith these aspects

' of design, and should not be applied to them. It ultimately deals with

only the aesËheËic qualíty of order in complexity.

Some funcËional organiztions seem to ínply an inherent spetry, but

t'he forclng of planning problems into syunetrical configurations is stÍl1
; a mísËaken ídea. The application of sy-mnetry Ëo plannÍng is totälly .

inappropriate ín the 1íght of the ËheoretícaL basis for ÊhaË application.
One of the dangers Ëo be avoíded in an approach to design is the applicatíon
of symetlT Ëo the planning of the buílding; that ís, to Ëhe space aLlocaËion
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and functíonal organization of the building. Similarly, some technological

systems seem to imply an inherenË symretry, but the sinplifÍcation of

consËruction problems into symetrieal confÍguratíons for that reason ís

sËil1 a mísËaken idea. The applicaËion of synneËry Ëo negineering is

Ëotally inappropriate in the light of the theoretical basis for that applÍcatíon.

Arother danger to be avoided in an approach to design is the application of

sytrmeËry to the construction of the building; Ëhat is, the building systems

and performance specificaLions of the buílding. An approach Ëo design should

onry apply synnnetry to the aesËheËie problems of space creation.

The mqthematical theory of symrûetry is only a franework of prescriptive

rules to be applied in creaËing an underlying structure effectÍng Ëhe

aesËhetic quality of order in the qrork of architecËure. An approach Ëo desígn

must be based on Ëhat posiËion. IË makes no sense to exËend syrmetry as

methods to resolve planning or construction problems. Therefore, there

seems to be two PrerequísiËes for the application of the mathematical theory

os s@eEry in desígn. That is, the archítect musË also resolve the

planníng and construction difficulties through oËher desígn methods. But,

these methods may afm aË developlng space allocations and functíonal

organizaËion that meet the planning requiremenËs of the design; with Ëhe

idea of applying Ëhe maËhematicaL theory of syrmetry for the assocíaEed

aesËhetic problems. These methods may also aim at devísing building sysËems

and outlíning performance specifications Ëhat meeË the consËruction requirements

of the design; wíth Ëhe ídea of applying s-rmrnetry for Ëhe associaÈed aesthetic

proble'ns. For example, the result of planning may be a functional zoning

of activities from public to private, served, to servant, or one sorË to

another sort thaË lends ítself to being organlzed on a Bravais laËtíce. The
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resulË of investigating construction may be a set of industrialized

comPonenËs such as exËerior and inËerior wal1 panels, columns and beams,

roof and floor spans, or windows and doors that lends itself to beÍng

organized ínËo poinË groups. T'herefore, an approach to design may involve

partÍcular sorËs of pLanning and construction that are dírected at being

compatfble r¡ith an applícaÈion of the mathematical. theory of symmetry.

The nathematÍcal theory of syrunetry should noË be appLÍed Lo force

pLanning or siry-lify construction, but planning and construction may be

made compaËible wÍth the theory.

Once the planning and constructíon concerns of the designer have

been resolved to some satisfaetory poinË, there are tlvo approaches to

design Ëo go about ordering elements into aesthetieally preferable works

by applying the maËhematical theory of symetry. The reason there are ËÌ.ro

approaches is that symetry groups in space are generated by the combinaËion

of a Bravais laËËíce and a point group on that lattíce. A deslgner may

eíther select and fix the Bravais latËice in accordance s¡"Íth Ëhe zoning

established by planning methods; then ttplaytt with various poínt groups

Ëo arrange the elements from construction vocabularies on EhaË laËtice,

to make Ëhe spaces of the building. Or, a designer may select and fix Ëhe

poínt grouPs Ín accordance l¡ith the construcËÍon vocabulary; Ëhen rrplaytf

with varíous Bravais lattices to position the elements ín accordance trith
planning, Ëo make the spaces of the buildíng. rn any partÍcular desígn

Process, an archiËect rûay actually choose to do both, switchíng back and forth
between Ëhe Ëwo approaches seLectively searchíng84 for the space creaËing

structure thaË seems to maximize aesthetic preferences.

Ïn either approach to design, a designer need not play wíth all ËhirËy
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tno point groups and all 14 Bravais lattíces at the sane Ëíme. Because

Ëhey are arranged ínËo seven crysËal classes, once Ëhe selectíon of an

appropriate crysËal elass has been made, the designer works just wiËh the

poinË groups and laËtices in thaË class. The selection of a crysËal class

is a judgemenË Ëhat Ëhe class r"¡i1l best inËegraËe ídeas about Ëhe planning,

consËruction, and aesthetic quality of the work of archítecËure. This

judgement is not as critÍcal as iË may seem aË first, because there is no

reason that the seLecËion should be fixed. Anyuay, within most crysËa1

classes Ëhere is enough varieËy of spomeËry groups and creative possibllíties

to accomodate most approaches to design, Ihe more critical judgenenË is

abouË whaË Ëo fix or what to ttplrytt wÍth when generaÉing syrmetrical

configurations from Bravaís laËtÍces and point groups associaEed qrith

partícular planning and consËrucËion.

Creatíve origínaliËy is one of the most desirable by-products of

Ëhe appLieaËion of the mathematical Ëheory of spetry Ín creaËing an

underlyíng structure to.the r¡ork of architecture. Both,approaches to design

suggested above have thís feaËure of alLowing great amounts of creativity.

Bravais lattices in space generally have three arbÍtrary lengths Ín Ëheir

unit cells, and in some cases a wide range of angles possible beËr,reen Ëhem.

A desígner has infinite choices for dimensionÍng Ëhose Lengths, as long as

the dimensions meet Ëhe conditions for the unlt cell, A designer, where

possible, has infÍnite choice for seËËíng Ëhe angles in Ëhe latËice, as long

as Ëhey meeù the conditions for the uniË ce1L. An architecË rrplaystt çrith a

lattice by changing Ëhe dímensíons and angles selected rriËhin Ëhe boundaries

prescribed by the conditions of the unit ce1L. Similarly, point groups in

space also ínvolve an arbitrary lengËh in the distance of the elemenËs from
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Ëhe poínËr and an arbitrary orientatíon to that poinË. Thus, an archítect
trplays wiËh a poÍnt group by eiËher changing Ëhe acËual eLements in iË,

or by changing the dietänce or orientation of elements to the point r,¡íthín

Ëhe boundarÍes presrcibed by Ëhe structure of the point group. The varying

of dimensions and seËting of angLes are Ëhe Ër.ro basic meËhods in an

approach to design combining Bravais lattices and point groups Éo generaÉe

any nr:mber of syrometrical configurations with the same underlying sËructure;

that is, described by the same syrîmeËry group.

There are Erore creative possíbiliËies in the applicaËion of the

mathe¡naËicaL theory of synmetry gtoups in creatíng an underlying sËructure.

Perhaps, the rnost imporËant of Ëhese Ís the layering of several slmmeËry

grouPs togeËher to create a rnore compLex underlying structure responding

to greaËer complexiÊy. It is an endless source of possible sËrucËures for
an imagÍnatlve desLgner. Layering involves Ëhe use of several Bravais latËices,

of the sâme or different class, at the same Ëime producing sophisticaËed

courposiËe Lattíces; for example, Ëhe Ëartan layering of grids. Similarly,

layering may also involve Ëhe use of several point groups of the same class

on a sÍng1e Bravais lattice, Ëo provide an interesting inËeraction beËween

syrnnetrical configurations. Layering, then involves Ëhe creatíon of several

synnetrícal confígurations at the same Ëime by creaËíng sËrucËures Ëhat

are aggregaËes of many syInmetry groups. An approach to design involving

Layering of spetry grouPs creates complex yet ordered underlying structures

roaking sPace Ëhat may be Ëhe most poç¡erful method for dealíng with Ëhe

aesËheËics of conplexiËy in architecture.

ÏË is importanË Ëo suggest Ëhat an approach to desfgn should consider

Ëhe applícaËíon of asymneËry and dissy'nmetry ln connection with an application
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of the maËhemaËical theory of syrmretlT ín architecture. Tfiís is another

source of creative possibílities. !üeyl described the application of
as]¡meËry in q¡orks of art as not, rt...merêly the absence of symnetry. Even

in asymetric desígns one feels syrmeËry as the norm from vrhich one devÍates

under the influence of forces of a non-fornal 
"ha-""t.r.tt85 In r,¡orks

of architecËurer asÏEnetry may be.created by the slight deviatíon from

an underlying structure in the design. It is inporËanÊ to note thaË the

reason for thís deviatÍon is usually ndn-for:nal; that is, not in response

Ëo aesthetic qualities ín the '¡ork. rf for some reason of planning or
constructÍon deviatÍon from sYmeËry makes sense, then Ëhe applícatíon of
asyrnmeËry in that situation ís jusËifíed wíth the underlying space creating
sÉructure. on the other hand, dissymetry is the purposeful breaking

of a poËentíal symetry groFp by varying an elenenË of a point group, or
warpÍng a Bravais Lattice. IË is prinarily for the aesËheËÍc emphasÍs of
some special.space of the buiLding, not for planning or consÉruction

reasons. Ttre contrasË of one-of-a-kind díssymmetry tziËh the synrnetry of
an overall space creating structure may be one of Ëhe .mosË iurportant methods

of arÊistic communicaËion. shubnikov believed it to be an essentíâl
conponenË:

Symetryr considered as a 1aq¡ of regular conposition of structura1objecËs, is simÍlar to harro-ny. More precisãly, syrîmettT ís,one ofits couponents, whíle Ëhe oEher componänt is ¿iésy¡our.try. rn ouropinÍon the uhoLe aesËhetics of scíãntific and artisÊíc creativitv^ -lies in rhe abiliry ro feel rhis r,¡here orhers fail Ëo pJ;;;;';;:96
The application of asyr,metry and dissyu'rneËry wiËh Ëhe mathematical theory
of spetry are matters for ÍndÍvidual judgement for designers. They both
enhance the opportunÍty for imaginative applícation of Ëhe nathemaËÍcal

thoery of symetry in an approach to design.
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An approach to design applying Ëhe mathemaËical theory of syrÍmeËry,

wiËh alL Ëhe creative possibilities suggested above, leads to some inËeresting

and significant aesËhetÍc effecËs, Ëhrough the quality of spatial order,

in the qrorks of architecËure created. lhese effecËs are of three kínds;

Ëhey parallel closely Ehe properties of crystaLs ín naËure as tr^ieyl described:

The dynamics of the crystal lattice is also responsible for the
crystalts physical þehavlourr in particular for Ëhe manner of its
growËh, and thÍs in turn deteruines the'-parËicular shape it assumes
under Ëhe influence of environmenËal facËors. No vronder Ëhen that
crystaLs acËually occuring in naËure display the possible types
of syunetry in Ëhat abundance of different forms at which Hans
Castorp on his Magic MounËain marvelled. Ttre visible characterisËics
of physical gþjects usually are Ëhe result of constitution and
envíronnenË. t/

Ttre three effects on ¡¡orks of archÍtecture of the underLying symetry

structure suggested by this passage are that first, just as with snowflakes,

there ís no 1Í!ilit to the invenËiveness possíble in the particular buÍlding;

second, Ëhat the manner of growth and change of the building, f.ike a crystal,

is regulaËed by the underlyÍng strucËure; and third, ËhaË the uniqueness

of a particular building, lÍke the particular crystal, Ís the resuLË of

Ëhe influence of Ëhe environnent. Tt is the combinaËíon of frconstitutÍon

and envíronmentrt, which may be ÍnterpreËed in architecture as the general

slmmetry of the underlyíng space creatÍng strucËure and the.parËicular social

or envíronnental context of the buÍlding, thaË determÍnes the final

visible product of an approach to design applying the mathematical theory of

s)¡xnrneËry. f Ë is the desígn response w'lËhin the syrmetry of Ëhe underlying

strucËure to the social and enrriromental conËexts thaË really results in

the :i.nriividual spatial order in every uork of architecËure. This is the final

and perhaPs mosË important speculaËíon about élr.approach to design with

Ëhe mathemaËícaL theory of symetry.
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3.3 TI{E POTENTTAT. OF SIIT4METR,Y IN ARCTTI]ECTIIRE

HavÍng taken an approach Ëo design applying the maËhematícal theory

of synmeËry (see sectíon 3.2) as a meËhod for creaËíng spaËial order, Ehe

next specualtion EhaË is important is the resultíng potentÍal for that

method. The easiest way of seeing Ëhat poËenËíal ís to examíne díverse

numbers of r.¡ork of architecture wíth a variety of aestheËíc íntentions,

to see thaË each night have applied the maÉhematical theory of syrmretry

in Ëheir design. The intent of this section is to make specualËions about

Ëhe wÍdespread potentÍal of syrmetry in archítecture. The vehícle for that

speculation is Lhe presentaËion and discussion of the underlying space

creating sËrucÉure in a number o,f designs from several architects.

The first archiËecË Ëo be considered is, appropríaËely, T.ouis Kahn,

t¡hose Bangldesh National Assenbly buildÍng (Fig. 1.105) was used to

illustraËe Ëhe mathemaËicäI. idea of syuuretry. Kahnf s nost famous statêment

on spatial order was, ItOrder Ís.../Oesign is fomr-making in order.ttSS Clearly,

Kahn felt Ëhat a deslgnerts insíght inËo order was so íntangible and deeply

inËuiËive Ëhat he couldntË put any words after, trorder is...tt But, it is

also cLear, boËh in the remainder of Ëhat statement plus his enËire ouËput
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of designs, that Ëhe quality of order ín the spaces created ín architecËure

Ìrâs essentíal. for Kahnts phílosophy.

Kahnrs design sketches for the Bryn Marrr DormiËory (Fig. 3.301) may be

inLerpreËed as a selective search for a space creaËing structure. IË is

a method thaË orders Ëhe arrangenenË of indívidual rooms thaË Kahn is searchíng

for in Ëhese sketches. The point to be made here is thaË Ëhe maËhematical

theory of symeËry in tt¡ro dÍmensions rnight have been applied Ëo describe

and classify the structures Kahn was sketching. It might have been much

Fíg. 3.301
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Fie. 3.302

easLer to approach thls desígn through Ëhe mathematical Ëheory of symetry.

Surely then, Kahnrs insight into the order he desÍred, and the creation of

Ëhat order in desígn, is noË so deep or mysteriously inËuíËive that iË

could not have been externalized through the mathematieal theory of s¡metry.

The plan for Kahnrs Trenton Jesrish Conrmuníty Center Gfg.,3¡302) provides

suPPorË for this speculaËion. The basíc spatial order of Ëhis design Ís

creaËed by L-shaped column elements arranged in the poínË group, Cg , on a

square Bravais latËice in two dimensions; combíning to generâte a spetrical

configuratíon associated r+ith the wallpaper group, w| . The structural

conptexitry in the variety of spaces created in the building is balanced by

the order of this synmetry. Occasionally this order has been broken, an

example of dissyneËry, by the omission of these columns to accomorlate large

sPaces such as the gymnasium. Clearly, the mathematícal theory of sSrmrneËry

míght have been applíed ín the design of this buii.ding to externalize rhe

underlying space creaËing strucËure of the work.

The second architect to be considered is a forner ernployee of Kahnts,

Moshe Safdíe, whose Habitat housing devel.opment (Fig. 3.3û3) is knoqrn and
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sËudíes widely. The apparenË disordered complexíty of the HabiËaË

facades, acËual1y depends on two símple repeaËs of symetrical clusËerings.

safdiets original design for a much larger llabitat (Fig. 3.304); as well

as his first post-iÏabítat desÍgn for Ëhe Publíc Housing AuËhority of

trIashÍngto", o.C. (Fig. 3.305), boËh reveal the clariËy of Ëhree dimensional

symeËry underlyíng Ëhe desígn. The original HabitaË appears to be based on

. a sJ¡nmetrf.cal configuration from the trigonal crysËal cl-ass; whíle the

llashíngËon, D.C. design appears to be based on one from Ëhe teËragonal class.

ùa.eÆir-¡ T

ã;t,n
: i lt
;_l-'

ú:-

Fig, 3.303
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Fig. 3.304

Fig, 3.305
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Clearly, Sardiers philosophy Ëhat Ëhe housing envíronment may be

created through the arrangeíaent of prefabrícated units inËo t¡¡ho1e developments

relies on the ídea that there is an underlyíng strucËure in those arrangements,

Indeed, Safdie seens Ëo also search for order in complexity; Ëo create

aestheËícalIy pleasing designs from Ehe complexify of highly índustrialized

technologies, He argued abouË architecture Ín general that:

Once the environment is ËhoughË of in terms of morpholory, then iË
is easy Ëo see and say that the environnent is made up of a multÍtude
of strucËures and that Ëhe understanding of these struçËt1res is
essenËial to the understanding of the design process."'

Clearly, the theoretical basís for the application of Ëhe mathematical

theory of syrooetry shows it to be part of the basÍc ÍnvesËígatíon of space

creating structures. The maËhenatical Ëheory of syurneËry níght have been

applied in Ëhese large scale housing developments based on the repiËion

of prefabricaËed units; to exËernalLze Ëhe underlying space ereaLíng structure

of Ëhese complex designs.

The thírcl archítect to be considered, also relies on industrialízed

Ëechnolory, is the Japanese designer, Kisho Kurokarra, who is a leader of the

metabolist movemenË in architectrrre.90 MeËabolism, Ín general, relies

on the separaËion of the physical structure EhaË holds Ëhe building up, from

Lhe space creating coraponents. Ttris allows the buildíng Ëo grow and

change, Índefinitely. Kurokatra pioneered the use of ÍndustrÍalized capsules

in architectrrre. ftre NakagÍn Capsule Tower (Fig. 3.306) is an example of

Kurokawars approach to design. It clearly reveals the search for an underlying

strucfure in the arrangêrnent of these capsulesi each layer ínvesËigaËes

the possible relaËionships bet'q¡een the capsules. An appLication of the

maËhemaËicaL theory of symmetry rnight have prowÍded a clear three dÍmensional



-130-

Fig. 3.306

sËructure in this work that t¡ould have added to the visual richness.

Kurokat¡ats Takara BeauËillion (Fig. 3.307) is Ëhe prime exanple of

metabolist archÍteeture. The main physÍcal support for the building is
provided by twelve right-angled steel tubes welded together to make sÍx

a]:llts; this is an exalrple of the three dímensíonal poinË group, Td., from the

cubic crystal class. This is combined viËh Ëhe prírrÍËive cubic Bravais 1aËtÍce

(see section, Fig. 3.308), Ëo generate a syrmeËrícaL configuratíon associaËed

ç¡'ith the Fedorov group, Tå Clearly, the mathenatical theory of synnneËry
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Fig. 3.307

itr. 3.308
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rrighË have been applied in Ëhis netabolist design. llre fact that the

building was assembled in a fe¡¿ days, disassembled equally rapidly; and

nÍght have grown or changed in between noË onl-y demonstraËes the concept

of metabolisn in archítecËure, but Ëhe power ,of the mathematical- theory of

symrnetry ås a nethod for creaËing an underlying strucËure ËhaË responds to

the context to determíne the final character of the building.

The concept of â megasËrucËure may or may not be, rUrban futures

of the recenË pastrtt9l and a dead issue in the energy conscíous desigrr of

conËemporary architecËure. The philosophy behÍnd megasËructure, large

physícal frames carrying essentÍal services, infilled with a varíeËy of

space making components, involve an over¡rhelning complexiËy. The resulË

r,¡as the applicaËion of sÍmple symreËqy únderLying Ëhe design of the

frames. Ttre Graz-Ragnitb project by Domenig and IIuth (Figs. 3.309 and 3.310),

which Banham labelled |tthe ulËlmate megastructure rnodelr"92 h"" a complex

three dimensíonal sËructure based on a body-centered teËragonal Bravais

laËËice in three dímensions. the infill appears to be totally wi1fu1L,

a sort of unínteresting dissyneÊry, in contrasË to the overwheLmíng presence

of the fræe. However, most megastrucËures rnight also have been designed

w'ith an applicatíon of the maËhenatical theory of spmetry, boËh to the

frame and Ëhe repeated eleg'ents infiLling Ëhat frame.

The impressÍon night be aE ehis poínË Ëhat the mathenatical theory

of symrnetry is a method for creating spatial orCer to balance Êhe conplexiËy

of Large scale, technologicalLy ÍnnovaËive, highly indusËrializeC projects.

But, structural complexiËy nay just be the product of planning difficulties

due Ëo the large nr:mber of spaces involved. An example of this are Ëhe

universiEy projects of the next archiËects Ëo be considered, Candilfs, Josic,
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FÍ9. 3.309

Fig. 3.310
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and tr^Ioods. The university of. zurich project, (Fig. 3.311) demonstrates

the organízaELon of complex plans by a relaËivel-y simple underlying

structure. lhe basic organizing eLements are the staírs, lrashroom, and

serr¡ice rooms in little plans which have no internaL syumetry, they night
be considered. as point groups, cl . These are then arranged on a large

square Bravais lattíce; generaËing a synmetrical configuration associated

t¡iËh Ëhe wallpaper group, W, . It should be noËed thaË Candilis dÍd not

Ëake advanËage of the fact iË was a square lattíee, it rnighË just as

well' have been an obLique lattice. This incredibly simple Ël¡o dimensional

symetry seems Ëo be enough to order Ëhe hÍgh structural complexity in the

plan' tr'iiËhín each bay, indivídual underlying strucËures may be found

thaË nÍght be described by various frieze and wallpaper sy-rnmetry groups.

Indeed, it seems Ëo be this layering of Bany sËructures r¡iËhin the sirapLe

overall structure that is the basis of the symeËry Ín thís plan. Not

surprisingly, aslmetry and dÍssy'r'-etry also occur for various planning

and emphasis reasons. This project cLearly níght have applíed the maËhemaËica1

theory of synmetry in íts desígn to exËernalize Candílisr approach to the

order in its formal organization.

The sixth and fínal architect to be considered is ÏTerman llerzberger.

His design for an office building, Ëhe Centraal. Beheer in Appeldoorn, Holland

(Fis. 3-3Lz), has been prai".d93 for iËs atËenpt to creaËe qualÍtÍes of
sPace. The underlying structure that creates Ëhose spaces that accomodaËe

a variety of differenË places is one of the more subËle spretrícal configurations
in Ëwo dimensions. The basíc elcment ís the T-shaped colr:mn arranged in
the poinË grouP, C4, on a.square latËice on the angle bisecting Ëhe cells,
generaËing a symetricaL configuraËíon associated r¡íth the wallpaper
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Fig,
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Fig 3.31-2

,
group, I^Ii . The quality of order resulting from Ëhis syrnmetry eubtly

balances Ëhe couplexity of the varíety of spaces inside the building¡

It produces an aesthetically preferable design Ëhat seens Ëo strike

just Ëhe rÍght balance beËneen order and sËructural complexiËy, Clearly,

the maËhenaËÍcal Ëheory of symretry uÍghË have been applied in thís design

llíth some careful judgement

The purAose of providÍng all these examples of the poÉenËíal of

Ëhe maËhemaËical theory of symetry in synnnetry is noË to argue that Ëhey

are all good architecture. Ttre inËent is onLy to shot¡ ËhaË the maËhemaËÍcal

theory of syrnrnetry does have poËential as a design neËhod, not only because

ít is theoretical possible as establÍshed in ParË-One, or because the

resources of the theory tend Ëo support ËhaË as established in Part ï\vo, but

because it Ís possible Ëo see that potenËial in a nr.¡mber of diverse sorts

of archÍtecËure.
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This concludes Ëhe speculations ËhaË atËenpË to evaluate the thesis Ëhat

Ëhe mathematÍcal theory of symetry may be a significanË parË of the

knowledge an architecË appLies in d,esígn. IË also concludes the arguments

of the whole thesis. Weyl concluded his famous Lecture on symetry

wiËh this thought:

Symetry ís a vast subjecË, significant in art and nåture.
MaËhenraËícs f.ies at its root, and ít would be hard Ëo find a beËËer
one on qrhich Ëo demonsËraËe Ëhe working of the maËhemaËicai- inteLlect.
T hope I have not completely failed in giving you an indication
of its many ramificaËions, and ín leading ðA" up Ëhe ladder
from intuítive concepËs to absËract ideas.

IIopefully, Ëhe maËhematical theory of synnnetry may be brought t¿ithin the

everyday acËivíty of design in architecture. There cerËain1y is the

pedagogícal ímplication that iË should be taught in any course of basic

desígn. Clearly, ÍË is a significant method for the creation of

Ëhe aesthetic qualiËy of spaËiaL order in architecture; ÍË deserves to

be among the meËhods of the desígner. llre mathemaËical theory .of sy'r'metry

may indeed. be a signíficanË parË of the knowledge an architecË applíes ín

desígn.



-138-

3.4 DIRECTTONS FOR RESEARCH

The only renaining task of Ëhe thesis is to suggest some dírecËions

for research that fo[-lot¡ from the work put ínto Ëhís thesís. Tlhe ínËent

of thÍs sectÍon is to make some speculaËions abouË those directions

for research as a post-scrípË Ëo the conclusions reached earlier.
There are four dístinct areas Ëo be considered as possÍble spin-offs from

this thesis. They are first, Ëhe extension of Ëhe mathemaËical Ëheory to

include colour symetry; second, a phílosophical investígatÍon of the

foundatíon of matheoatics in archÍtecture; third, the developmenË of a, semíotic

approach Ëo architectural syntâx based on symreËry; and fourth, an operationalization

of the application of the theory of symetry withÍn computer aided d,esígn.

the first area of research thaË nighË be considered. is to extend Ëhe

matheúatÍcal theory of synnetry as iË has bee,n presenËed here inËo co1our

sJmnetrT. The possibility for describing coloured symmetrical confÍgurations

wlËh group theory tras developed by ShubnÍkov, Belov and others in the U.S.S.R.
oc

in the 1.950ts." The ídea is based on the concept of treaËíng coLour

equivalence exactly as the geometric equÍvalence Ëhat Ís Ëhe basis of classical
symeEry (see secËion L.1). I,IiËh only ttro colours, Shubnikov has shown
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Ëhat Ëhe L:wo hundred thirty Fedorov groups in space, may be extended

exhaustively to one thousand six hundred fifËy one groups Ín space.

Ihese so-called Shubnikov groups night be appi.ied Ëo archítecture because

Ëhe one aspect affectÍng the aesthetic quality of the work, other Ëhan the

spatiaL order, is the maËerials used ín Ëhe space creating eLemenËs. ThaË

both aspects might be dealt w"ÍËh through Ëhe maËhemaËícaL theory of syrureËry

seenrs to open even more creative poËenËial for Ëhe desígner. Ttre use of

colour and materials is an imporËant aestheËic concern in space creatíon,

and the maËhematical theory of symeËry, if exËended Ëo colour sJ¡smeËry,

vould provide a meËhod for reLating colours and maËerÍals Ëo.Ëhe

underlyíng sËructure in Ëhe design.

The second area of research thaË oíght be consídered is the more

academíc exercise of a Ëheory estabLishing the philosohical foundatÍon

of maËhomatics applied Ín archiËecture. In Ërying to clarify the

nature of mathenaËics (sae section 1.2), it emerged that Ëhe philosophy

of mathenatics is a fascinating and unduly ígnored part of the Íncreasing

applicatÍon of maËhemaËics in design. If the pracËÍce of architecËure is

to become a rígourous disciplÍne like the practice of nedicine, Ëhen there

is a need to undersËand how mathemaËícal meËhods fit ÍnËo ËheË discipline,
jusË as medicine needs to undersËand hol¡ iËs method.s fit Ínto their

discipLÍne. ArchitecËure ís not a science, in the sense Ëhat scien.e äims

only at explanatíon, while architecture aíms at change. There is a need

then Ëo und,erstand the discipline of architecture itseLf. Such an undersËandíng

of architecture and maËheoatical methods ín design is inherently nor-mative,

not descriptive. The ethics ín an appraach to archiËecture applying

mathenaËics shouLd be the startÍng point for this research. The research
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in Ëhe philosophical foundation of design is among the mosË significanË

that should be assocÍaËed w-íth the appl.ication of mathenatical- meËhods

in architecture.

The third area of research thaË nighË be considered is the developmenË

of a semiotic approach to architectural syntax based on ËhemrathematicaL

theory of symeËry. Ihe díscussion of architectural aestheËics (see section

3.1) assr:med the r,¡ork of archítecËure Êo be a channel for c.oÍTmunfg¿¡ien

betlreen designer and user. The study of the semioËics of chaË co¡r¡orunicaËion

must assess whaË provides Ëhe synËax for thaË communicaËion. The orderly

cognítion of space Ëhrough a clear underlying structure must surely have

some relevance to that synËax. Hence, Ëhe mathematicaL theory of synrmetry

uÍght provide a method for descríbing spaËial synËax in archítecËure

through the synmetry of Ëhe relaËions beËween architectual elemenËs. This

is however, a highly speculatíve assumption Ëhat requires a much furËher

theoretically basis in archÍtecËural semiotics. But, any research

in the exüernaLizing of archiËectural syntax r.¡ouLd lead to significant

design methodsfor the architecË, The mathemaËical theory of. synmeËry applÍed

to the relationships between architecËural eleslents may be involved in

those methods.

The fourth, and by far the mosË stimulaËing, area of research that

night be consÍdered is an operatíonalízing oË the appLication of the

mathematicaL theory of slnmetry within conpuËer aicled desígn. The resources

of the maËhamatícal theory of synrneËrT as presented in Part T\vo are

passive knowledge. ltre next sËep in research should be acËívating that

knowledge in the desÍgn process so that it actually becomes a Ëechnique for

doíng design, not just a method applied in design, This requires
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maËheûlaËically representing Ëhe Fedorov groups in space with an aètÍve

description, perhapse seËs of matrices, ínto which Ëhe architect could

subsËiËuËe dÍmensíons and angles;and, of course, a descríption of the

space creating elelnents. This s¡ould suggest an ínteracËive comPuter Program

thaË allor¿s the desÍgner to Itplayrr with Bravais latËíces and poínt

groups as suggesËed in an aPProach to design applying the mathenatical

Eheory of syurnneËry (see section 3.2). This ínvolves a system for

representing archíËecËural elesrenEs and a system for manipulating then

according Ëo an underl-ying strucËure. These might be tt¡o dÍrections that

computer aíded design should investigaËe. T'he excitíng fuËure of

maËhemaËics in architecture almosË ccrtaÍnly lies ín compuËer aided clesign;

.The . interactive situation where a designer could use subjectÍve

judgenents w'ith an operatÍonal applícation of the maËhenratícal theory

of symmetry vould alloçr computer aided design to become involved in

aesthetíc concerns such as Ëhe creation of spatÍal order in architecture.

This research, like all research, should go beyond research to

become practice. As nas indicated Ín the inËroduction, the ultimate goal of

research ín architecture is to change Ëhe way builtlings are designed Ín the

trreal worldtt. The only test of that research is, ulcímately, Ëhe evaluation

of buiLdings designed and builË with Ëhese meËhods, The knowledge of the

Ëhe maËhematical theory of synrmetry nust be invoLved ín nore than just

research or acadeni: exercises, it should involve a signíficant archiËecturaL

practíce r¡-ith that knowledge. ïtris will be Ëhe mosË sígnificant rrresearchtr

that invol.ves the maËhematical theory of s1'mneËry.
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MATÏN4ATI C.A]. APPENDTX

The intent of thís appendix is Ëo presenË an inËroduction to the.

elements of group: theory involved in the mathematícal theory of syrrnetry.

The presentaËíon; consists primarily of definÍtÍons and well-established

theorams fron group theory. The dÍscussion ís límiËed, and no rigourous

rnathpmatícal derivation of- symeËry groups is attempted; they musË be

found in the technical literaËure on Ëhe maËhenaËieal, theory of symnetry

listed in the Bibliography. Ttre obvÍous sËarËÍng poinË is rhe definíËion

of a group, everything follov¡s from thaË.

DEFïI{ITTON D:01 GROUP A group, G , is a seË of elenents together wiËh
a composition lavl, called a product, such that:
(1) Ëhe product of any Ër,¡o elaments, âb , of the group ís

defined and Ëhere is an element, c , in the group, such Ëhat
ab=ci

(2) Ëhe product is assocíarÍve: a (bc) = (ab) e , for all arbrc ( e ;(3) there exists a uníque idenËÍty element, e , in the gro,.rp:
êâ=€tê=âr forall aêe ! and

(4) for every elenent in the group Ëhere exigts a unique inverse
elêgent: ,for a1L a ê G, ifterä exists a'LêG, such that
aa-t="-1"=".

DEFTNITT0N D:02 ABETTA¡T cRouP A group, G , is said ro be Abelian if
iË meeËs all the condiËÍons in D:01, and the extra condiÉion:
(5) the product ís conmutative: ab = ba , for all arb ( G.
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DEFINITION D:03 ORDB, The number of
Ëo be the order of the grouP;

DEI'IÎVITION D:04 GENERATORS A set of
Ëo be a set of generators of
be wriËten as the producË of
Ëheir inverses

elements in a group, G , is said
and is denoted lGl

elements of a group, G , Ís said
Ëhe group if any element a G can
Ehe powers of the generators and

DEFT}tr¡TTON D:05 DEFTNING RHLATIONS A seË of relaËions satisfied by Ëhe
generaËors of a group, G , which are suffícíent to completely
deternine every element of Ëhe grouPr is said to be Ëhe
clefiniig relatÍons of G.

DEFINITTON D:06 I4APPING Amappingr6, ofaseË, S, to aseË, T;
denoted Øt S:Ð t , is a rule which assígns to each element s € S

a unique element t€ T.

DEFIIIITI0N Dt07 TIOMOI,ÍORPIIISM Given Ëwo groups, G and H , a mappÍng,
Øz e4H , which preserves the multiplication, Ø(a)Ø(b) = Ø(ab)

' for all arb ( G, is saítl to be an homomorphism.

DEFTNITION D:08 ISOI"IORPI{ISM A homomorphísrn, Ø , of G onto II, Ø:C -à n ,
in uhích Ëhere is a one-to-one correspondence of the elemenËs
of G with the elements of II is said to be an isonorphism. tllo
groups, G and H, are saíd to isomorphic, denoted G ë H t if
Ëhere is an ísonorphísm mappíng G onto II, and an inverse
isonorphísm mappíng II onto G,

DEFINITION D:09 AUTOMORPIIISM An isourorphÍsm, I , which maPs a group, G ,
onto iËseLf , ØzC{G , Ís said to be an autooorphism,

TTTEORffi

It is signíficant here Ëo reíteraËe the defLniËion of synmetry that was

developed in section 1-.1. The symeCry of a configuration r'ras defined as

the highest possible (of the hÍghest order) of automorphÍsros mappíng any

structural configuratíon onËo Ítself. I\uo more defÍnÍËions should aLLoçr

the classification of symretry groups. Tttey are:

ÐEFI1IITTON D:L1 SIJBGROU? A subset, II , of elements of a group, G, Ëhat
the¡nselves form a group under the same composition law as in
G, is said to a subgroup of G. A11 groups have at least Ëwo

subgroups, namely the group iËself and the group consisËing of
the identity eleoenË alone; these Ëwo groups are called improper
subgroups, aLL oËhers are called proper subgroups.

II:01 T.f, Ø1 and Q2 are t!¡o autornorphism of a grouP' G -, -Ëhen
the mapping frroduct, ØúZ , where the nultipLication, (ØyØ2)a = \(ØZa)for all a € G is preseivãd, is also an automorphisrn. Fuitñer the -
set of all auËonorphisms of a group, G , is itself a grouP' of
which the composíËion Laçr is Ëhe mapping product just defined"
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DEFTNITTON DzL2 OUTER DIRECT ?RODUCT l,eË G be a group, with two proper
subgroups, H and K, such that:
(1) if h €I{, and k €K, Ëhen hk = kh ;
(2) all g å e nay be ørpressed in the forr, g = hk ;(3) the intersecËion of the seË of eLemenËs of II and the seË'of

elemenËs of K is the idenËiËy element, e , of G, H ñK = e .
Then G is said to be the ouËer direct pEoduct of H and K, and
iswrittenrG=H X K.

trrliËh these definítions, iË is now possible to make a table of the

Fedorov groups; classifying thern accordÍng to crysËa1 class, BravaÍs laËËice,

point groups, isomorphisms, and order. The number of Fedorov sJ¡rumetry groups

wiËh these properËies is also shor¡n ín the Ëable (TABLE MA:01), .- '- t

¿ ì : ¡ : ' _r

TABIE I'fA:01

CrysËal Class State of Point Group IsomorÞhism 0rder

Triclinic

Lattice

primitíüe

Monoclínic prinitÍve

centered

Orthorhornbic primítíve

ra"2
nlY^v^
"2h-uzou2

No. of
Symnetrv Groups

1

1

2

2

4

I

2

2

4

10

t6

2

7

6

ct

c.
l-

,z

cs

czn

cz

cs

czn

,2

czu

Dzt

D2

czu

c2

1

2

2

2

4

2

2

4

4

4

I

4

4

8

c2

r, 4¡
"zh - "2

orE c, x

Dz

D Eo2h2

'zE'z
Dz

oznÉ'z

XC
2

xcz

*cz
c

2

cenËered

Dzn
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CrvsËal Class SËaËe of
Lattice

face-
centered

body-
cenËered

TeËragonal primiËive

body-
cenËered

Trígona1 primítíve

Isomorphism

DzÊ C2X C2

D2

DztÈDzxcz

oro- c2 x cz

D2

Dzt,E Ð2 x c2

c4

c,, c- Cz, X C^¿$NT¿

D,
4

D4

ot Ê D4x c2

c
4

,4n€ 
"4* 

,Z

D
4

D4

D ê¡ xc^4:r,4:¿

c.
o

No. of
Svmnetrv Groups

1

2

2

2

3

4

1

4

I

8

I

L6

2

1

2

2

4

4

4

3

1

6

4

4

PoinË Group

D2

c¿̂v

Dzr,

D2

czu

Den

c4

s+

c4n

D4

Q4u

Dza

o4t

c+

s4

can

D4

c4u

Dza

D¿tt

c3

S5

D
3

c3.,

D^5V

o:

D
6

Order

4

I

4

4

8

4

4

I

I

I

I

L6

4

4

I

8

I

I

16

âJ

6

6

6

L2
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CrvstaL Cl-ass State of
T.attice

rhombo-
hedral

Hexagonal

Isomorphism

D3

D6

coÈ cs x cz

C6

cot € c6x cz

or€orxo,
D.

o

Do

oonËD6xc2

Tnttxc,

0

o €o x ch2

tntrxc,

0

gnãoxc,

ttr€Txc2

0

ondoxc2

No. of
Sr¡rmretrv Groups

1

1

1

2

2

6

1

2

6

4

4

4

2

3

4

2

4

1

2

2

2

4

2

2

2

2

2

centered
(prímitÍve
trigonal)

primitive

face-
centered

body-
cenËered

?oinË Group

ca

s,
o

D^
J

c^
5V

DĴV

c6

cgr,

c
6h

D
6

c6u

Dgt

D.,on

T

Th

o

td

0h

T

T.
h

0

T-d

O¡

T

th

o

T¿

O¡

C5

0rder

3

6

6

6

L2

6

6

L2

L2

L2

L2

24

1t

24

24

24

48

L2

24

24

24

48

L2

24

24

24

48

Cubic
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