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Abstract

Analytic solutions to the static and stationary boundary value field problems

relative to an arbitrary configuration of parallel cylinders are obtained by using

translational addition theorems for scalar Laplacian polar functions, to express the

field due to one cylinder in terms of the polar coordinates of the other cylinders

such that the boundary conditions can be imposed at all the cylinder surfaces. The

constants of integration in the field expressions of all the cylinders are obtained

from a truncated infinite matrix equation.

Translational addition theorems are available for scalar cylindrical and spherical

wave functions but such theorems are not directly available for the general solution

of the Laplace equation in polar coordinates. The purpose of deriving these addition

theorems and applying them to field problems involving systems of cylinders is

to obtain exact analytic solutions with controllable accuracies, thereby, yielding

benchmark solutions to validate other approximate numerical methods.
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Chapter 1

Introduction

The main focus of this thesis is on the derivation of the two-dimensional translational

addition theorems for scalar Laplacian functions in polar coordinates. The theorems

are then applied to some electrostatic and magnetostatic potential boundary

value problems for various locations of parallel circular cylindrical conductors.

Theoretically, a two-dimensional field model is an approximation for parallel

conductors of finite length, when the length is much greater than the cross-sectional

linear dimensions and the end effects are neglected.

Analytical solutions for boundary value field problems can only be obtained when

the boundary surfaces coincide with a coordinate surface in an orthogonal system

of coordinates. For the case of a single circular cylinder, the natural choice is

that of the polar coordinates and for two parallel circular cylinders that of the

two-dimensional bipolar coordinates. Then, existing classical methods, such as

separation of variables, images [1], or conformal mapping [2], can be applied to

solve for the field problem. For the general case of more than two cylinders, no

set of coordinate surfaces in any orthogonal system can be made to coincide with

all the cylinder surfaces. However, the combination of the method of images and

inversion [3] yields analytic techniques that can be used to solve for some systems

of parallel conductors.

For the general problem of N parallel circular cylinders we take a similar approach

as that used in [4], where translational addition theorems for the Laplacian spherical

functions were derived by particularizing the addition theorems for scalar spherical
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wave functions [5]. In our case, we particularize the addition theorems for scalar

cylindrical wave functions [6] to derive addition theorems for scalar Laplacian

functions in polar coordinates.

Using the translational addition theorems allows for the field contributions from

all the cylinders to be expressed in terms of the polar coordinates attached to

each individual cylinder. Application of the boundary conditions at each cylinder

surface gives a set of algebraic equations in terms of the unknown constants of

integration from the field expressions of each cylinder.

The purpose of solving various field problems involving systems of parallel circular

cylinders is to yield benchmark solutions, with exact analytic expressions and of

controllable error, which are to be made available to the electromagnetic community

for establishing the range of validity for various approximate numerical methods,

such as the finite difference, finite element or boundary element methods [7]. This

control of accuracy is achieved by appropriate truncation of the infinite series in

the expressions for the harmonic fields and in the addition theorems.

The general problem for N arbitrarily located parallel cylinders is first formulated

in Chapter 2, for Dirichlet and Neumann boundary conditions, to find solutions

of Laplace’s equation for given values of charges or potentials of the conducting

cylinders. In Chapter 3, translational addition theorems are derived for the polar

Laplacian functions r−n cosnφ, r−n sinnφ, rn cosnφ, rn sinnφ and ln r and, then,

their convergence tested numerically for numerous cases.

The translational addition theorems are then applied, in Chapters 4 and 5, to

various electrostatic field problems for complete systems of parallel cylinders. For

the cases of a circular cylinder in the presence of a line charge and of two cylinders,

the numerical results are evaluated by comparison with results from existing exact

methods: images and the separation of variables in bipolar coordinates, respectively.

The translational method is also used to solve for the fields involving a charged

three-cylinder complete system and for a three-cylinder grounded system in the

presence of external electric fields.
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A particular geometrical configuration of the cylindrical systems is considered in

Chapter 4, where the cylinder axes are in the same plane, which allows for the

simplification of the field expressions, where as, in Chapter 5, the parallel cylinders

are arbitrarily located and the field expressions are more complex.

In Chapter 6, the addition theorems are used to solve scalar magnetostatic field

problems for the case of two perfectly conducting cylinders in given external fields,

of arbitrary orientations. A scalar magnetic potential is used, but it is also shown

how the vector magnetic potential can be employed.
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Chapter 2

Laplacian potential of a system of
circular cylinders

The purpose of this chapter is to present the theoretical background necessary

for the derivation and application of the addition theorems for circular cylindrical

Laplacian functions. The formulation involves a set of circular cylindrical bodies

under various boundary conditions.

2.1 Harmonic solution of the Laplace equation

in circular cylindrical coordinates

The general form1 of the Laplace equation is

∇2u(r) = 0. (2.1.1)

The natural choice when a boundary condition is given on a circle is the polar (or

circular) coordinate system (r, φ). For an infinitely long cylinder (2.1.1) simplifies

to a two-dimensional problem with no z-dependence. The general solution to

1For the scalar electrostatic and magnetostatic potentials we use the general notation u
instead of the more common Φ in order to avoid any confusion with the notation φ used for the
angular polar coordinate; the analysis being also applicable to other branches of engineering and
physics.
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(2.1.1) in circular harmonics is [see Appendix A]

u(r, φ) = A0 +B0 ln r

+
∞∑
n=1

(
Anr

n +Bnr
−n) (Cn cosnφ+Dn sinnφ) .

(2.1.2)

For convenience (2.1.2) can be expressed in the alternate form

u(r, φ) = A0 +B0 ln r

+
∞∑
n=1

(
Anr

n +Bnr
−n) (Cnejnφ +Dne−jnφ

)
,

(2.1.3)

where n is an integer, j ≡
√
−1 and A0, B0, An, Bn, Cn and Dn are constants of

integration. The general solutions for (2.1.2) or (2.1.3) are uniquely determined if

one of the three boundary conditions are satisfied

u|S = f1(r, φ), (2.1.4a)

∂u

∂n

∣∣∣∣
S

= f2(r, φ), (2.1.4b)(
∂u

∂n
+ hu

)∣∣∣∣
S

= f3(r, φ), h > 0, (2.1.4c)

where S is the boundary of the cylinder, f1, f2, f3 are given functions of position on

S, and
∂

∂n
denotes the derivative with respect to the exterior normal to S. Dirichlet

and Neumann boundary problems of the form (2.1.4a) and (2.1.4b), respectively,

will be used for the electrostatic and magnetostatic problems in Chapters 4 to 6.

2.2 Geometry of a general system of parallel cir-

cular cylinders

Consider N parallel, non-intersecting and infinitely long circular cylinders placed

in a linear, homogeneous and isotropic medium as shown in Figure. 2.2.1. Each

cylinders axis is parallel with the z-axis of the circular coordinate system reducing

the problem to two-dimensional circular coordinate system. The radius of the

5



pth cylinder is ap centred at r0p with local Cartesian coordinates (x0p, y0p). For

convenience N circular coordinate systems are defined, the origin of each being

centred at the axis of each respective cylinder. In the case of conducting cylinders,

for instance, the electrostatic potential due to the presence of the pth cylinder after

imposing the regularity conditions for (2.1.2) at r →∞ and renaming of constants

can be written

up(rp, φp) = A
(p)
0 +B

(p)
0 ln rp +

∞∑
n=1

1

rnp

[
A(p)
n cosnφp +B(p)

n sinnφp

]
, (2.2.1)

where rp > ap for all the cylinders p = 1, 2, . . . , N , with (rp, φp) denoting the polar

coordinates of the observation point P , and A
(p)
0 , B

(p)
0 , A

(p)
n and B

(p)
n representing

the constants of integration for the pth coordinate system.

For completeness, the potential for the case when the pth cylinder is filled with a

homogeneous material different from the outside medium after imposing regularity

condition in (2.1.2) as r → 0, and renaming the constants, gives

up(rp, φp) =
∞∑
n=0

rnp

[
C(p)
n cosnφp +D(p)

n sinnφp

]
, (2.2.2)

where rp < ap for all the cylinders p = 1, 2, . . . , N , with C
(p)
n and D

(p)
n representing

constants of integration for the pth coordinate system.

The resultant potential for any point outside all the cylinders due to the presence

of all N cylinders and to any external applied field in the local coordinate system

is then

utot(r) = u0(r) + uC +
N∑
p=1

u(0)p (r), rp > ap, (2.2.3)

where u0(r) is the potential due to the applied field, u
(0)
p (r) is the potential of

the pth cylinder expressed in the local coordinates (r0, φ0) and uC is an arbitrary

constant defined by a reference potential.

In order to impose the boundary conditions in (2.1.4) at the surface of the pth

6



Figure 2.2.1: Geometry of N parallel cylinders arbitrarily located
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cylinder the potential in (2.2.3) must be transformed to (rp, φp) coordinates

u
(p)
tot(rp, φp) = u

(p)
0 (rp, φp) + u

(p)
C + up(rp, φp) +

N∑
q=1
q 6=p

u(p)q (rp, φp), rp > ap, (2.2.4)

where u
(p)
tot , u

(p)
0 and u

(p)
C are respectively utot, u0 and uC expressed in coordinates

(rp, φp). The potential u
(p)
q (rp, φp) is uq(rq, φq) expressed in terms of coordinates

(rp, φp) which will be obtained using the translations from the qth to the pth

coordinate system.

2.3 Addition theorem for circular cylindrical scalar

waves

The application of the translational addition theorems for cylindrical wave functions

has been well documented. In [8] the translational addition theorems are applied to

some elementary cylindrical waves. In [9] the translations are used for some acoustic

or electromagnetic radiation scattering problems where an iterative method to

the successive scattering by the cylinders of the primary field is used to obtain

field quantities, and [6] employs a self-consistent method based on the known

response of the isolated cylinders. It is this self-consistent method that will be

applied to the problems here. The scalar Helmholtz wave equation used to describe

time-harmonic scalar waves is

∇2ψ(rq) + k2ψ(rq) = 0, (2.3.1)

where ψ is the wave function, k is the wave number and rq ≡ r, that is, the

position vector is in terms of the qth coordinate system. The method of separation

of variables in circular cylindrical coordinates for (2.3.1) with no z-dependence

yields the cylindrical harmonics [10]

ψn(rq, φq) = Zn(krq)e
±jnφq , (2.3.2)

8



where krq is the argument of the cylindrical Bessel functions when k 6= 0 with

the integral orders of the functions represented by n = 0, 1, 2, . . .. Note for k = 0

the harmonic solution to (2.3.1) reduces to that of the Laplace equation solved

earlier. The symbol Zn(krq) (referred to as Cylindrical Bessel function) represents

either the Bessel function Jn(krq), the Neumann function Yn(krq) or the linear

combination of Bessel and Neumann functions known as Hankel functions Hn(krq).

To express the cylindrical wave in (2.3.2) in terms of a sum of cylindrical wave

functions translated to the pth coordinate system the Graf addition theorem [11] is

used to obtain

Zn(krq)e
−jnφq =

∞∑
m=−∞

(−1)mZn+m(krqp)Jm(krp)e
j[mφp−(m+n)φqp], (2.3.3a)

Zn(krq)e
jnφq =

∞∑
m=−∞

(−1)m−nZm−n(krqp)Jm(krp)e
j[mφp−(m−n)φqp], (2.3.3b)

for rp < rqp, and

Zn(krq)e
jnφq =

∞∑
m=−∞

(−1)mZn+m(krp)Jm(krqp)e
j[(m+n)φp−mφqp], (2.3.4a)

Zn(krq)e
−jnφq =

∞∑
m=−∞

(−1)m−nZm−n(krp)Jm(krqp)e
j[(m−n)φp−mφqp]. (2.3.4b)

for rp > rqp. The relationship between rq, rp and rqp in (2.3.3) and (2.3.4) are

given by

yq = rp sinφp + rqp sinφqp,

xq = rp cosφp + rqp cosφqp,

therefore,

rq =
√
x2q + y2q

=
√
r2p + r2qp + 2rprqp cos(φqp − φp), (2.3.5)
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and

φq =



tan−1
(
yq
xq

)
, when yq > 0 and xq > 0,

π + tan−1
(
yq
xq

)
, when xq < 0,

2π + tan−1
(
yq
xq

)
, when yq < 0 and xq > 0.

(2.3.6)
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Chapter 3

Translational addition theorems
for static and stationary fields

To obtain an analytical solution to the problem proposed in Section 2.2 translations

from the qth to the pth coordinate systems are first derived for the harmonic

functions in (2.2.1) and (2.2.2). Instead of deriving these theorems directly using

the cosine law in (2.3.5) and expanding into a series, we particularize the existing

translational addition theorems for Cylindrical Bessel functions in (2.3.3) and

(2.3.4) using the limiting case for a vanishing wave number, k → 0.

3.1 Limiting forms of the Bessel and Neumann

functions for small arguments

To obtain the addition theorems for the circular harmonics ln rq, r
−n
q cosnφq and

r−nq sinnφq we derive them from (2.3.3) using the limiting forms of the Neumann

functions, valid only for small arguments, obtained from Abramowitz [12] for

integral orders

lim
k→0

Y0(kr) = lim
k→0

2

π
ln kr, n = 0, (3.1.1a)

lim
k→0

Yn(kr) = lim
k→0
− 1

π
(n− 1)!

(
1

2
kr

)−n
, n = 1, 2, . . . , (3.1.1b)

where the substitution Γ(n) ≡ (n− 1)! is used and r is some finite distance in any

of the coordinate systems. The limiting forms in (3.1.1) are valid approximations

only for positive integral order Neumann functions; when negative orders appear

11



the following relation will be used

Y−n(kr) = (−1)nYn(kr), n = 0, 1, 2, . . . , (3.1.2)

to convert to Neumann functions of positive integer order.

The limiting form of the Bessel function will be used to obtain the addition theorems

for the circular harmonics rnq cosnφq and rnq sinnφq, which is

lim
k→0

Jn(kr) = lim
k→0

1

n!

(
1

2
kr

)n
, n = 0, 1, 2, . . . , (3.1.3)

where the substitution Γ(n+ 1) ≡ n! is used. Again the limiting form of the Bessel

function (3.1.3) is not valid for negative integral orders and the relation

J−n(kr) = (−1)nJn(kr), n = 0, 1, 2, . . . , (3.1.4)

is used to convert to Bessel functions of positive order.

3.2 Derivation of the translational addition theo-

rems for two-dimensional circular cylindrical

Laplacian functions r−n cosnφ and r−n sinnφ

To obtain expressions for the circular harmonic functions r−nq cosnφq and r−nq sinnφq

the Neumann functions Yn and Yn+m are substituted for Zn and Zn+m, respectively

in (2.3.3) and (2.3.4) because the asymptotic behaviours are the same as r−nq cosnφq

and r−nq sinnφq functions. First, the addition theorem is derived when rp < rqp,

thus (2.3.3a) is rewritten as

Yn(krq)e
−jnφq

rp<rqp

=
∞∑

m=−∞

(−1)mYn+m(krqp)Jm(krp)e
j[mφp−(m+n)φqp], (3.2.1)

for n = 1, 2, . . . . The series is split up according to all the negative order combi-

nations that functions Yn+m(krqp) and Jm(krp) make, and then all the series are
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changed over positive indices giving

Yn(krq)e
−jnφq =

∞∑
m=0

(−1)mYn+m(krqp)Jm(krp)e
j[mφp−(m+n)φqp]

+
n−1∑
m=1

(−1)mYn−m(krqp)J−m(krp)e
−j[mφp+(n−m)φqp]

+ (−1)nY0(krqp)J−n(krp)e
−jnφp

+
∞∑

m=n+1

(−1)mYn−m(krqp)J−m(krp)e
−j[mφp+(n−m)φqp].

(3.2.2)

Replacing the negative integral ordered Neumann and Bessel functions in (3.2.2)

with their positive integer equivalents and using the relations in (3.1.2) and (3.1.4)

gives, after some algebraic simplification

Yn(krq)e
−jnφq =

∞∑
m=0

(−1)mYn+m(krqp)Jm(krp)e
j[mφp−(m+n)φqp]

+
n−1∑
m=1

Yn−m(krqp)Jm(krp)e
−j[mφp+(n−m)φqp]

+ Y0(krqp)Jn(krp)e
−jnφp

+
∞∑

m=n+1

(−1)m−nYm−n(krqp)Jm(krp)e
−j[mφp+(n−m)φqp].

(3.2.3)

Now all the Neumann and Bessel functions in (3.2.3) are of positive integer order,

thus for vanishing arguments krq, krqp and krp as k → 0 the Neumann and Bessel

13



limiting forms (3.1.1) and (3.1.3) can be substituted in (3.2.3), which yields

r−nq e−jnφq =

lim
k→0

{
∞∑
m=0

(−1)m(n+m− 1)!

m!(n− 1)!

(
1

rqp

)n(
rp
rqp

)m
ej[mφp−(m+n)φqp]

+
n−1∑
m=1

(n−m− 1)!

m!(n− 1)!

(
k

2

)2m

rmp r
m−n
qp e−j[mφp+(n−m)φqp]

+
∞∑

m=n+1

(−1)m−n(m− n− 1)!

m!(n− 1)!

(
k

2

)2n

rmp r
n−m
qp e−j[mφp+(n−m)φqp]

− 2

n!(n− 1)!

[(
k

2

)n
rnp ln rqpe

−jnφp + ln k

(
k

2

)n
rnp e−jnφp

]}
.

(3.2.4)

Taking the limit as k → 0 reduces (3.2.4) to only the first term. Note, the limit for

the last term in (3.2.4) is of indeterminate form but applying L’Hopital’s rule

lim
k→0

ln k

k−n
≡ lim

k→0

d
dk

(ln k)
d
dk

(k−n)

≡ lim
k→0

kn = 0,

confirms it vanishes, therefore (3.2.4) reduces to

r−nq e−jnφq

rp<rqp

=
∞∑
m=0

(−1)m(n+m− 1)!

m!(n− 1)!

(
1

rqp

)n(
rp
rqp

)m
ej[mφp−(m+n)φqp]. (3.2.5)

Taking the real and imaginary parts of (3.2.5) gives, respectively,

r−nq cosnφq
rp<rqp

=
∞∑
m=0

(−1)m(n+m− 1)!

m!(n− 1)!

(
1

rqp

)n(
rp
rqp

)m
cos [mφp − (m+ n)φqp],

(3.2.6a)

r−nq sinnφq
rp<rqp

= −
∞∑
m=0

(−1)m(n+m− 1)!

m!(n− 1)!

(
1

rqp

)n(
rp
rqp

)m
sin [mφp − (m+ n)φqp].

(3.2.6b)
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Now consider the case for rp > rqp for which Yn is substituted in for Zn in (2.3.4)

to give

Yn(krq)e
jnφq =

∞∑
m=−∞

(−1)mYn+m(krp)Jm(krqp)e
j[(m+n)φp−mφqp], (3.2.7)

for n = 1, 2, . . .. Once again the series range in (3.2.7) is split up according to all

the negative order combinations that the Cylindrical Bessel functions take. Using

the relations to convert negative ordered Cylindrical Bessel functions to positive

orders and converting all the series to positive indices, yields

Yn(krq)e
jnφq =

∞∑
m=0

(−1)mYn+m(krp)Jm(krqp)e
j[(m+n)φp−mφqp]

+
n−1∑
m=1

Yn−m(krp)Jm(krqp)e
−j[(m−n)φp−mφqp]

+ Y0(krp)Jn(krqp)e
jnφqp

+
∞∑

m=n+1

(−1)m−nYm−n(krp)Jm(krqp)e
−j[(m−n)φp−mφqp].

(3.2.8)

For vanishing arguments krq, krqp and krp as k → 0 the Cylindrical Bessel function

limiting forms (3.1.1) and (3.1.3) are substituted in (3.2.8) to give

r−nq ejnφq =

lim
k→0

{
∞∑
m=0

(−1)m(n+m− 1)!

m!(n− 1)!

(
1

rp

)n(
rqp
rp

)m
ej[(m+n)φp−mφqp]

+
n−1∑
m=1

(n−m− 1)!

m!(n− 1)!

(
k

2

)2m

rm−np rmqpe
−j[(m−n)φp−mφqp]

+
∞∑

m=n+1

(−1)m−n(m− n− 1)!

m!(n− 1)!

(
k

2

)2n

rn−mp rmqpe
−j[(m−n)φp−mφqp]

− 2

n!(n− 1)!

[(
k

2

)n
rnqp ln rpe

jnφqp + ln k

(
k

2

)n
rnqpe

jnφqp

]}
.

(3.2.9)
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Taking the limit as k → 0 reduces (3.2.9) to

r−nq ejnφq

rp>rqp

=
∞∑
m=0

(−1)m(n+m− 1)!

m!(n− 1)!

(
1

rp

)n(
rqp
rp

)m
ej[(m+n)φp−mφqp]. (3.2.10)

Taking the real and imaginary parts of (3.2.10) gives, respectively

r−nq cosnφq
rp>rqp

=
∞∑
m=0

(−1)m(n+m− 1)!

m!(n− 1)!

(
1

rp

)n(
rqp
rp

)m
cos [(m+ n)φp −mφqp],

(3.2.11a)

r−nq sinnφq
rp>rqp

=
∞∑
m=0

(−1)m(n+m− 1)!

m!(n− 1)!

(
1

rp

)n(
rqp
rp

)m
sin [(m+ n)φp −mφqp].

(3.2.11b)

For completeness it can be shown using the same method as above that the

Cylindrical Bessel function addition theorems for the opposite signed exponential

arguments in (2.3.3) and (2.3.4) give

r−nq ejnφq

rp<rqp

=
∞∑
m=0

(−1)m(n+m− 1)!

m!(n− 1)!

(
1

rqp

)n(
rp
rqp

)m
e−j[mφp−(m+n)φqp], (3.2.12)

r−nq e−jnφq

rp>rqp

=
∞∑
m=0

(−1)m(n+m− 1)!

m!(n− 1)!

(
1

rp

)n(
rqp
rp

)m
e−j[(m+n)φp−mφqp]. (3.2.13)

Taking the real and imaginary parts of (3.2.12) and (3.2.13) can be shown to be

the exact addition theorem equations in (3.2.6) and (3.2.11), respectively.

3.3 Derivation of the translational addition theo-

rems for two-dimensional circular cylindrical

Laplacian functions rn cosnφ and rn sinnφ

To obtain expressions for the circular harmonic functions rnq cosnφq and rnq sinnφq,

the Bessel functions Jn and Jn+m are substituted for Zn and Zn+m, respectively,

in (2.3.4) since the limiting behaviours are similar to the functions rnq cosnφq and

rnq sinnφq. The addition theorems for rp < rqp and rp > rqp can therefore be written
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as

Jn(krq)e
−jnφq

rp<rqp

=
∞∑

m=−∞

(−1)mJn+m(krqp)Jm(krp)e
j[mφp−(m+n)φqp], (3.3.1)

Jn(krq)e
jnφq

rp>rqp

=
∞∑

m=−∞

(−1)mJn+m(krp)Jm(krqp)e
j[(m+n)φp−mφqp], (3.3.2)

for the integral orders n = 0, 1, 2, . . ..

When we compare (3.3.1) and (3.3.2) to each other we notice the arguments for

the exponentials are of opposite sign and the arguments of the Bessel functions

under the series summations are interchanged. This implies that the final forms

will have exactly the same structure but with rp and φp interchanged with rqp and

φqp, respectively, and the arguments of the exponentials will be of opposite sign.

Therefore only (3.3.1) is used to derive the addition theorem for both rp < rqp and

rp > rqp cases.

The series in (3.3.1) is split up according to all the negative order combinations

that functions Jn+m(krqp) and Jn(krp) make, then changing the series over positive

integer indices gives

Jn(krq)e
−jnφq =

∞∑
m=1

(−1)mJn+m(krqp)Jm(krp)e
j[mφp−(m+n)φqp]

+
n∑

m=0

(−1)mJn−m(krqp)J−m(krp)e
−j[mφp+(n−m)φqp]

+
∞∑

m=n+1

(−1)mJn−m(krqp)J−m(krp)e
−j[mφp+(n−m)φqp].

(3.3.3)

Replacing the negative integral ordered Bessel functions in (3.3.3) with their
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positive order equivalents using the relation in (3.1.4) gives

Jn(krq)e
−jnφq =

∞∑
m=1

(−1)mJn+m(krqp)Jm(krp)e
j[mφp−(m+n)φqp]

+
n∑

m=0

Jn−m(krqp)Jm(krp)e
−j[mφp+(n−m)φqp]

+
∞∑

m=n+1

(−1)m−nJn−m(krqp)Jm(krp)e
−j[mφp+(n−m)φqp].

(3.3.4)

For vanishing arguments krq, krqp and krp as k → 0 the limiting forms of the

Bessel functions (3.1.3) are substituted in (3.3.4) giving

rnq e−jnφq =

lim
k→0

{
∞∑
m=1

n!(−1)m

m!(n+m)!

(
k

2

)2m

rm+n
qp rmp ej[mφp−(m+n)φqp]

+
n∑

m=0

n!

m!(n−m)!
rnqp

(
rp
rqp

)m
e−j[mφp+(n−m)φqp]

+
∞∑

m=n+1

n!(−1)m−n

m!(m− n)!

(
k

2

)2(m−n)

rm−nqp rmp e−j[mφp+(n−m)φqp]

}
.

(3.3.5)

Taking the limit as k → 0 reduces (3.3.5) to

rnq e−jnφq

rp<rqp

=
n∑

m=0

n!

m!(n−m)!
rnqp

(
rp
rqp

)m
e−j[mφp+(n−m)φqp]. (3.3.6)

Taking the real and imaginary parts of (3.3.6) gives, respectively

rnq cosnφq
rp<rqp

=
n∑

m=0

n!

m!(n−m)!
rnqp

(
rp
rqp

)m
cos [mφp + (n−m)φqp], (3.3.7a)

rnq sinnφq
rp<rqp

=
n∑

m=0

n!

m!(n−m)!
rnqp

(
rp
rqp

)m
sin [mφp + (n−m)φqp]. (3.3.7b)

Now for the case when rp > rqp, we interchange rp with rqp, φp with φqp and change

the signs of the exponential arguments in (3.3.6) which gives

rnq ejnφq

rp>rqp

=
n∑

m=0

n!

m!(n−m)!
rnp

(
rqp
rp

)m
ej[(n−m)φp+mφqp] (3.3.8)

18



and taking the real and imaginary parts of (3.3.8) gives, respectively,

rnq cosnφq
rp>rqp

=
n∑

m=0

n!

m!(n−m)!
rnp

(
rqp
rp

)m
cos [(n−m)φp +mφqp], (3.3.9a)

rnq sinnφq
rp>rqp

=
n∑

m=0

n!

m!(n−m)!
rnp

(
rqp
rp

)m
sin [(n−m)φp +mφqp]. (3.3.9b)

3.4 Derivation of the translational addition theo-

rems for two-dimensional circular cylindrical

Laplacian function ln r

To obtain the addition theorem for the circular harmonic function ln rq for the

case when rp < rqp, the Neumann function of integral order n = 0 is substituted in

(2.3.3) yielding

Y0(krq) =
∞∑

m=−∞

(−1)mYm(krp)Jm(krqp)e
jm(φp−φqp). (3.4.1)

Converting all the negative order Cylindrical Bessel functions in (3.4.1) to positive

order and rearranging the series gives

Y0(krq) =
∞∑
m=1

(−1)mYm(krqp)Jm(krp)e
jm(φp−φqp)

+ Y0(krqp)J0(krp)

+
∞∑
m=1

(−1)mYm(krqp)Jm(krp)e
−jm(φp−φqp),

(3.4.2)

using the relation ejm(φp−φqp) + e−jm(φp−φqp) = 2 cos [m(φp − φqp)] simplifies (3.4.2)

to

Y0(krq) = Y0(krqp)J0(krp)

+ 2
∞∑
m=1

(−1)mYm(krqp)Jm(krp) cosm(φp − φqp).
(3.4.3)
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Using the limiting forms of the Cylindrical Bessel functions for vanishing arguments

as k → 0 gives

2

π
lim
k→0

(ln k + ln rq) =

2

π
lim
k→0

(
ln k + ln rqp −

∞∑
m=1

(−1)m

m

(
rp
rqp

)m
cos [m(φp − φqp)]

)
.

(3.4.4)

Taking the limit of (3.4.4) reduces it to

ln rq
rp<rqp

= ln rqp −
∞∑
m=1

(−1)m

m

(
rp
rqp

)m
cos [m(φp − φqp)]. (3.4.5)

For the case when rp > rqp we use the Neumann function of order n = 0 and

substitute in (2.3.4) which gives

Y0(krq) =
∞∑

m=−∞

(−1)mYm(krp)Jm(krqp)e
jm(φp−φqp). (3.4.6)

Converting all the negative order Cylindrical Bessel functions in (3.4.6) and simpli-

fying yields

Y0(krq) = Y0(krp)J0(krqp)

+ 2
∞∑
m=1

(−1)mYm(krp)Jm(krqp) cosm(φp − φqp).
(3.4.7)

Using the limiting forms of the Cylindrical Bessel functions gives

2

π
lim
k→0

(ln k + ln rq) =

2

π
lim
k→0

(
ln k + ln rp −

∞∑
m=1

(−1)m

m

(
rqp
rp

)m
cos [m(φp − φqp)]

)
.

(3.4.8)

Taking the limit of (3.4.8) reduces it to

ln rq
rp>rqp

= ln rp −
∞∑
m=1

(−1)m

m

(
rqp
rp

)m
cos [m(φp − φqp)]. (3.4.9)
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The addition theorems (3.4.5) and (3.4.9) are also the recognizable harmonic

expansions of a line charge found in [10] where

lnR =


ln r0 −

∞∑
n=1

1

n

(
r

r0

)n [
cosnθ0 cos θ + sinnθ0 sin θ

]
, r < r0

ln r −
∞∑
n=1

1

n

(r0
r

)n [
cosnθ0 cos θ + sinnθ0 sin θ

]
, r > r0

(3.4.10)

If the following substitutions are made in (3.4.10) to relate the geometries of the

variables R ≡ rq, r ≡ rp, r0 ≡ rqp, θ ≡ φp and θ0 ≡ π − φqp and, after some

trigonometric manipulation, the expansions are exactly those found in (3.4.5)

and (3.4.9). Since the problems considered here are two-dimensional, the addition

theorem for lnR can also be obtained by positioning the centres of the local systems

q and p in the complex plane as in [10,13] and, then, substituting with z = rejθ

and taking the real parts to yield the same expressions in (3.4.10).

3.5 Numerical analysis of the series expansions

in the addition theorems

The convergence of the series involved in the translational addition theorems given

in (3.2.6), (3.2.11), (3.3.7), (3.3.9), (3.4.5) and (3.4.9) can be tested for given n by

using numerical values for the variables in both sides of the respective equations.

The numerical testing for (3.2.6) is presented in detail to outline some convergence

properties as variables are changed because of its extensive use in the next three

chapters. The remaining addition theorems are tested only for a single case to

verify that the series converge for a particular set of variables.

Consider Figure 3.5.1 where point P moves along a circle of constant radius rp. In

the figure, it is evident that φqp = 0 when the xq and xp axes are aligned.
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Figure 3.5.1: Point P along a circle of radius rp when rp < rqp

3.5.1 Evaluation of the translational addition theorems for
Laplacian functions r−n cosnφ and r−n sinnφ

For Figure 3.5.1, where rp < rqp and the point P moves along the circle of radius

rp, the addition theorems (3.2.6) must be used, which are normalized as

(
rqp
rq

)n
cosnφq︸ ︷︷ ︸

f1(rq ,φq)cos

=
∞∑
m=0

(−1)m(n+m− 1)!

m!(n− 1)!

(
rp
rqp

)m
cos [mφp − (m+ n)φqp]︸ ︷︷ ︸

g1(rp,φp)cos

,

(3.5.1a)(
rqp
rq

)n
sinnφq︸ ︷︷ ︸

f1(rq ,φq)sin

= −
∞∑
m=0

(−1)m(n+m− 1)!

m!(n− 1)!

(
rp
rqp

)m
sin [mφp − (m+ n)φqp]︸ ︷︷ ︸

g1(rp,φp)sin

.

(3.5.1b)

The left hand sides of (3.5.1a) and (3.5.1b) are denoted as f1(rq, φq)cos and

f1(rq, φq)sin and the right hand sides as g1(rp, φp)cos and g1(rp, φp)sin, respectively.

The numerical values of the functions f1 and g1 are calculated at several discrete

locations on the circle. Theoretically, f1 should yield the same results as g1 if an

infinite number of series terms are taken. In order to find results for g1, the infinite
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series are truncated to a finite number of terms M .

Consider the situation where rqp = 75 cm, rp = 37.5 cm and φqp = 0, then rp, φp

and φq vary as P moves along the circle. Test point locations are taken by varying

φp from 0° to 180°. In the case of n = 3, M is truncated to 20 and the numerical

results are shown in Table 3.5.1.

Table 3.5.1: Truncation errors of g1(rp, φp)cos and g1(rp, φp)sin for n = 3, M = 20,
φqp = 0 and rp/rqp = 0.5

Point φp rqp/rq φq f1(rq, φq)cos g1(rp, φp)cos % Error f1(rq, φq)sin g1(rp, φp)sin % Error

1 0 0.6667 0 0.2963 0.2964 2.6333× 10−2 0.0000 0.0000 ——
2 18 0.6740 5.98 0.2914 0.2914 2.6527× 10−2 0.0943 0.0943 −1.6908× 10−2

3 36 0.6969 11.82 0.2757 0.2758 2.7182× 10−2 0.1963 0.1963 −1.6547× 10−2

4 54 0.7377 17.36 0.2467 0.2467 2.8595× 10−2 0.3167 0.3166 −1.5883× 10−2

5 72 0.8009 22.39 0.1994 0.1995 3.1650× 10−2 0.4734 0.4734 −1.4818× 10−2

6 90 0.8944 26.57 0.1280 0.1281 3.9691× 10−2 0.7040 0.7039 −1.3208× 10−2

7 108 1.0309 29.35 0.0370 0.0370 8.0480× 10−2 1.0949 1.0948 −1.0921× 10−2

8 126 1.2289 29.81 0.0187 0.0187 −4.1808× 10−2 1.8556 1.8554 −8.0271× 10−3

9 144 1.5059 26.27 0.6631 0.6630 −1.1625× 10−2 3.3498 3.3497 −5.1046× 10−3

10 162 1.8290 16.41 3.9941 3.9939 −4.7191× 10−3 4.6345 4.6343 −3.0752× 10−3

11 180 2.0000 0 8.0000 7.9997 −3.3021× 10−3 0.0000 0.0000 ——

For a first approximation the percentage errors are relatively high. By increasing

the truncation to M = 50 terms the percentage errors are reduced as shown in

Table 3.5.2.

Table 3.5.2: Truncation errors of g1(rp, φp)cos and g1(rp, φp)sin for n = 3, M = 50,
φqp = 0 and rp/rqp = 0.5

Point φp rqp/rq φq f1(rq, φq)cos g1(rp, φp)cos % Error f1(rq, φq)sin g1(rp, φp)sin % Error

1 0 0.6667 0 0.2963 0.2963 1.3596× 10−10 0.0000 0.0000 ——
2 18 0.6740 5.98 0.2914 0.2914 −1.3667× 10−10 0.0943 0.0943 8.8806× 10−11

3 36 0.6969 11.82 0.2757 0.2757 1.3969× 10−10 0.1963 0.1963 −8.6745× 10−11

4 54 0.7377 17.36 0.2467 0.2467 −1.4615× 10−10 0.3167 0.3167 8.3149× 10−11

5 72 0.8009 22.39 0.1994 0.1994 1.5980× 10−10 0.4734 0.4734 −7.7281× 10−11

6 90 0.8944 26.57 0.1280 0.1280 −1.9559× 10−10 0.7040 0.7040 6.8490× 10−11

7 108 1.0309 29.35 0.0370 0.0370 3.6767× 10−10 1.0949 1.0949 −5.6114× 10−11

8 126 1.2289 29.81 0.0187 0.0187 3.3601× 10−10 1.8556 1.8556 4.0470× 10−11

9 144 1.5059 26.27 0.6631 0.6631 −6.2502× 10−11 3.3498 3.3498 −2.4963× 10−11

10 162 1.8290 16.41 3.9941 3.9941 2.3472× 10−11 4.6345 4.6345 1.4508× 10−11

11 180 2.0000 0 8.0000 8.0000 −1.5898× 10−11 0.0000 0.0000 ——

It is evident that for the same variable conditions simply by increasing the number

of terms M used before truncating the series results in a better approximation.

Table 3.5.3 shows the numerical results when the order n is increased to 9 and

keeping the series truncation at M = 50.
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Table 3.5.3: Truncation errors of g1(rp, φp)cos and g1(rp, φp)sin for n = 9, M = 50,
φqp = 0 and rp/rqp = 0.5

Point φp rqp/rq φq f1(rq, φq)cos g1(rp, φp)cos % Error f1(rq, φq)sin g1(rp, φp)sin % Error

1 0 0.6667 0 0.0260 0.0260 2.3999× 10−3 0.0000 0.0000 ——
2 18 0.6740 5.98 0.0170 0.0170 −3.6494× 10−3 0.0232 0.0232 5.3978× 10−4

3 36 0.6969 11.82 −0.0109 −0.0109 −5.5110× 10−3 0.0372 0.0372 −6.8592× 10−4

4 54 0.7377 17.36 −0.0592 −0.0592 9.6371× 10−4 0.0261 0.0261 1.5198× 10−3

5 72 0.8009 22.39 −0.1262 −0.1262 −4.0957× 10−4 −0.0496 −0.0496 1.1165× 10−3

6 90 0.8944 26.57 −0.1882 −0.1882 2.2675× 10−4 −0.3143 −0.3143 −2.3507× 10−4

7 108 1.0309 29.35 −0.1331 −0.1331 −2.0355× 10−4 −1.3081 −1.3081 7.3381× 10−5

8 126 1.2289 29.81 −0.1936 −0.1936 −8.4992× 10−6 −6.3871 −6.3871 −1.9078× 10−5

9 144 1.5059 26.27 −22.0307 −22.0307 2.6113× 10−6 −33.1705 −33.1705 4.3733× 10−6

10 162 1.8290 16.41 −193.6435 −193.6435 −8.0961× 10−7 122.2558 122.2558 1.0520× 10−6

11 180 2.0000 0 512.0000 512.0000 −4.5262× 10−7 0.0000 0.0000 ——

The approximations of g1 for f1 are less accurate then that of Table 3.5.2, verifying

that with increasing n the percentage error increases correspondingly for the same

series truncation. Therefore, for increasing n more terms M need to be taken

to keep the percentage error of the same order. To emphasize this, the series

truncation is increased to M = 80 and the numerical results are shown in Table

3.5.4.

Table 3.5.4: Truncation errors of g1(rp, φp)cos and g1(rp, φp)sin for n = 9, M = 80,
φqp = 0 and rp/rqp = 0.5.

Point φp rqp/rq φq f1(rq, φq)cos g1(rp, φp)cos % Error f1(rq, φq)sin g1(rp, φp)sin % Error

1 0 0.6667 0 0.0260 0.0260 7.2557× 10−11 0.0000 0.0000 ——
2 18 0.6740 5.98 0.0170 0.0170 1.4812× 10−10 0.0232 0.0232 −2.0360× 10−11

3 36 0.6969 11.82 −0.0109 −0.0109 −1.4115× 10−10 0.0372 0.0372 −4.7320× 10−11

4 54 0.7377 17.36 −0.0592 −0.0592 −5.3377× 10−11 0.0261 0.0261 −3.7922× 10−11

5 72 0.8009 22.39 −0.1262 −0.1262 −1.0758× 10−11 −0.0496 −0.0496 2.7932× 10−11

6 90 0.8944 26.57 −0.1882 −0.1882 −9.6220× 10−11 −0.3143 −0.3143 9.1662× 10−12

7 108 1.0309 29.35 −0.1331 −0.1331 2.8743× 10−11 −1.3081 −1.3081 3.7174× 10−12

8 126 1.2289 29.81 −0.1936 −0.1936 2.0980× 10−11 −6.3871 −6.3871 3.4764× 10−13

9 144 1.5059 26.27 −22.0307 −22.0307 −4.8379× 10−14 −33.1705 −33.1705 0.0000
10 162 1.8290 16.41 −193.6435 −193.6435 1.7613× 10−13 122.2558 122.2558 5.8119× 10−14

11 180 2.0000 0 512.0000 512.0000 −3.3307× 10−14 0.0000 0.0000 ——

The convergence of (3.5.1) is also sensitive to the ratio rp/rqp, valid for rp/rqp < 1.

Table 3.5.5 shows how the percentage error changes for an observation point at

φp = 72° for increasing circle radii rp for the ratios rp/rqp = 0.5, 0.7 and 0.9 each

shown for series truncations of M = 80, 200, and 1000. As the ratio approaches

rp/rqp → 1 the error increases and only with a greater number of series terms M

will g1 converge to f1.
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Table 3.5.5: Truncation errors of g1(rp, φp)cos and g1(rp, φp)sin for n = 9, φp = 72°,
φqp = 0 and rp/rqp = 0.5, 0.7, 0.9

(a) for rp/rqp = 0.5, φq = 29.35° and rqp/rq = 1.0309

M f1(rq, φq)cos g1(rp, φp)cos % Error f1(rq, φq)sin g1(rp, φp)sin % Error

80 −0.1331 −0.1331 2.7846× 10−11 −1.3081 −1.3081 3.7344× 10−12

200 −0.1331 −0.1331 3.3290× 10−11 −1.3081 −1.3081 1.5277× 10−12

1000 −0.1331 −0.1331 3.3290× 10−11 −1.3081 −1.3081 1.5277× 10−12

(b) for rp/rqp = 0.7, φq = 40.35° and rqp/rq = 0.9725

M f1(rq, φq)cos g1(rp, φp)cos % Error f1(rq, φq)sin g1(rp, φp)sin % Error

80 0.7768 0.7851 1.0636 0.0425 0.0254 −40.233
200 0.7768 0.7768 −1.7719× 10−9 0.0425 0.0425 2.0964× 10−8

1000 0.7768 0.7768 −1.7719× 10−9 0.0425 0.0425 2.0964× 10−8

(c) for rp/rqp = 0.9, φq = 49.86° and rqp/rq = 0.8931

M f1(rq, φq)cos g1(rp, φp)cos % Error f1(rq, φq)sin g1(rp, φp)sin % Error

80 0.0081 6913208.608 8.4962× 1010 0.3613 −9671242.259 −2.6765× 109

200 0.0081 24188.768 2.9727× 108 0.3613 −36702.5849 −1.0158× 107

1000 0.0081 0.0081 3.1280× 10−3 0.3613 0.3613 1.0244× 10−4

Now consider the situation where φqp 6= 0. Table 3.5.6 shows that the series in the

addition theorems still converge for arbitrarily located cylinders.

Table 3.5.6: Truncation errors of g1(rp, φp)cos and g1(rp, φp)sin for n = 9, M = 80,
φqp = π/3 and rp/rqp = 0.5

Point φp rqp/rq φq f1(rq, φq)cos g1(rp, φp)cos % Error f1(rq, φq)sin g1(rp, φp)sin % Error

1 0 0.7559 40.89 0.0798 0.0798 −1.0228× 10−10 0.0113 0.0113 −1.3088× 10−9

2 18 0.7083 46.29 0.0247 0.0247 5.2616× 10−10 0.0375 0.0375 −1.9967× 10−10

3 36 0.6799 52.05 −0.0098 −0.0098 7.5911× 10−10 0.0294 0.0294 −3.7486× 10−10

4 54 0.6675 58 −0.0250 −0.0250 3.1762× 10−10 0.0081 0.0081 1.2177× 10−9

5 72 0.6699 63.99 −0.0220 −0.0220 −5.5748× 10−10 −0.0160 −0.0160 4.6539× 10−12

6 90 0.6874 69.90 −0.0006 −0.0006 8.7604× 10−9 −0.0343 −0.0343 4.3451× 10−10

7 108 0.7219 75.56 0.0408 0.0408 1.4142× 10−10 −0.0342 −0.0342 −3.7855× 10−10

8 126 0.7769 80.79 0.1023 0.1023 −1.4192× 10−10 0.0127 0.0127 −2.3110× 10−9

9 144 0.8592 85.29 0.1720 0.1720 4.5305× 10−11 0.1886 0.1886 2.6252× 10−11

10 162 0.9796 88.63 0.1778 0.1778 7.9327× 10−11 0.8114 0.8114 1.1274× 10−11

11 180 1.1547 90 0.0000 0.0000 —— 3.6494 3.6494 2.1539× 10−12
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For the case were rp > rqp as shown in Figure 3.5.2 the addition theorems in

(3.2.11) are used, the equations are normalized to give

(
rp
rq

)n
cosnφq︸ ︷︷ ︸

f2(rq ,φq)cos

=
∞∑
m=0

(−1)m(n+m− 1)!

m!(n− 1)!

(
rqp
rp

)m
cos [mφp − (m+ n)φqp]︸ ︷︷ ︸

g2(rp,φp)cos

,

(3.5.2a)(
rp
rq

)n
sinnφq︸ ︷︷ ︸

f2(rq ,φq)sin

= −
∞∑
m=0

(−1)m(n+m− 1)!

m!(n− 1)!

(
rqp
rp

)m
sin [mφp − (m+ n)φqp]︸ ︷︷ ︸

g2(rp,φp)sin

,

(3.5.2b)

Let us denote the left hand sides of (3.5.2a) and (3.5.2b) as f2(rq, φq)cos and

f2(rq, φq)sin, and the right hand sides as g2(rp, φp)cos and g2(rp, φp)sin, respectively.

Figure 3.5.2: Point P along a circle of radius rp when rp > rqp

Now consider the situation where rqp = 75 cm, rp = 125 cm and φqp = π/3, then rq,

φp and φq vary when P moves along the circle. Test point locations are taken by

varying φp from 0° to 180°. If n = 6 and M is truncated to 80 terms the numerical

results in Table 3.5.7 show good convergence of the series.
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Table 3.5.7: Truncation errors of g2(rp, φp)cos and g2(rp, φp)sin for n = 6, M = 80,
φqp = π/3 and rqp/rp = 0.6

Point φp rp/rq φq f2(rq, φq)cos g2(rp, φp)cos % Error f2(rq, φq)sin g2(rp, φp)sin % Error

1 0 0.7143 21.79 −0.0866 −0.0866 2.7820× 10−8 0.1007 0.1007 −1.0054× 10−8

2 18 0.6664 33.52 −0.0817 −0.0817 −2.3486× 10−8 −0.0315 −0.0315 4.7350× 10−8

3 36 0.6381 44.96 −0.0003 −0.0003 −1.1904× 10−6 −0.0675 −0.0675 −3.4181× 10−8

4 54 0.6258 56.25 0.0555 0.0555 −3.8572× 10−8 −0.0230 −0.0230 3.4471× 10−8

5 72 0.6282 67.51 0.0434 0.0434 3.9995× 10−8 0.0435 0.0435 −3.4342× 10−8

6 90 0.6456 78.83 −0.0283 −0.0283 −1.6686× 10−8 0.0667 0.0667 3.4610× 10−8

7 108 0.6799 90.35 −0.0988 −0.0988 2.4061× 10−8 −0.0036 −0.0036 2.0507× 10−7

8 126 0.7356 102.22 −0.0454 −0.0454 −4.3477× 10−8 −0.1518 −0.1518 1.1982× 10−8

9 144 0.8205 114.69 0.2591 0.2591 2.5325× 10−9 −0.1612 −0.1612 −1.8195× 10−8

10 162 0.9489 128.16 0.4796 0.4796 −6.9465× 10−9 0.5506 0.5506 1.9834× 10−9

11 180 1.1471 143.41 −1.7573 −1.7573 −1.9000× 10−9 1.4496 1.4496 −1.8519× 10−9

3.5.2 Evaluation of the translational addition theorems for
Laplacian functions rn cosnφ and rn sinnφ

Consider again Figure 3.5.1 where rp < rqp for the addition theorem (3.3.7) when

normalized gives

(
rq
rqp

)n
cosnφq︸ ︷︷ ︸

f3(rq ,φq)cos

=
n∑

m=0

n!

m!(n−m)!

(
rp
rqp

)m
cos [mφp + (n−m)φqp]︸ ︷︷ ︸

g3(rp,φp)cos

, (3.5.3a)

(
rq
rqp

)n
sinnφq︸ ︷︷ ︸

f3(rq ,φq)sin

=
n∑

m=0

n!

m!(n−m)!

(
rp
rqp

)m
sin [mφp + (n−m)φqp]︸ ︷︷ ︸

g3(rp,φp)sin

, (3.5.3b)

Let the left hand sides of (3.5.3a) and (3.5.3b) be referred to as f3(rq, φq)cos and

f3(rq, φq)sin and the right hand sides as g3(rp, φp)cos and g3(rp, φp)sin, respectively.

Now consider the situation where rqp = 75 cm, rp = 67.5 cm and φqp = π/3. The

results are given for the case when n = 20 in Table 3.5.8, verifying the series

converges well for high order n and for ratios approaching rp/rqp → 1.
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Table 3.5.8: Truncation errors of g3(rp, φp)cos and g3(rp, φp)sin for n = 20, φqp =
π/3 and rp/rqp = 0.9

Point φp rq/rqp φq f3(rq, φq)cos g3(rp, φp)cos % Error f3(rq, φq)sin g3(rp, φp)sin % Error

1 0 1.6462 31.74 1.7915× 103 1.7915× 103 −4.6960× 10−12 −2.1289× 104 −2.1289× 104 −2.0506× 10−13

2 18 1.7742 40.16 1.1390× 104 1.1390× 104 3.0982× 10−12 9.4791× 104 9.4791× 104 −3.8379× 10−13

3 36 1.8586 48.64 −7.1466× 104 −7.1466× 104 6.1086× 10−13 −2.3114× 105 −2.3114× 105 −1.6369× 10−13

4 54 1.8974 57.16 1.6514× 105 1.6514× 105 6.6972× 10−13 3.2636× 105 3.2636× 105 −2.6753× 10−13

5 72 1.8896 65.68 −1.9963× 105 −1.9963× 105 1.4579× 10−13 −2.7138× 105 −2.7138× 105 3.0029× 10−13

6 90 1.8354 74.19 1.3580× 105 1.3580× 105 1.9288× 10−13 1.3042× 105 1.3042× 105 −2.1201× 10−13

7 108 1.7362 82.66 −5.1868× 104 −5.1868× 104 4.9098× 10−13 −3.3880× 104 −3.3880× 104 −2.3623× 10−13

8 126 1.5944 91.04 1.0533× 104 1.0533× 104 −1.7096× 10−12 4.0114× 103 4.0114× 103 −6.5751× 10−12

9 144 1.4136 99.29 −1.0095× 103 −1.0095× 103 −7.3202× 10−13 −101.4018 −101.4018 3.2659× 10−10

10 162 1.1982 107.28 36.0581 36.0581 5.5378× 10−10 −9.2405 −9.2405 −1.0569× 10−9

11 180 0.9539 114.79 −0.2793 −0.2793 −3.2789× 10−8 0.2714 0.2714 −5.0121× 10−8

When rp > rqp as shown in Figure 3.5.2 the addition theorem (3.3.9) when

normalized gives

(
rq
rp

)n
cosnφq︸ ︷︷ ︸

f4(rq ,φq)cos

=
n∑

m=0

n!

m!(n−m)!

(
rqp
rp

)m
cos [(n−m)φp +mφqp]︸ ︷︷ ︸

g4(rp,φp)cos

, (3.5.4a)

(
rq
rp

)n
sinnφq︸ ︷︷ ︸

f4(rq ,φq)sin

=
n∑

m=0

n!

m!(n−m)!

(
rqp
rp

)m
sin [(n−m)φp +mφqp]︸ ︷︷ ︸

g4(rp,φp)sin

, (3.5.4b)

Let the left hand sides of (3.5.4a) and (3.5.4b) be referred to as f4(rq, φq)cos and

f4(rq, φq)sin and the right hand sides as g4(rp, φp)cos and g4(rp, φp)sin, respectively.

Now consider the situation where rqp = 75 cm, rp = 80 cm and φqp = π/3. The

numerical results are given for the case when n = 20 in Table 3.5.9, showing good

convergence of the series at various points.

Table 3.5.9: Truncation errors of g4(rp, φp)cos and g4(rp, φp)sin for n = 20, φqp =
π/3 and rqp/rp = 0.9

Point φp rq/rqp φq f4(rq, φq)cos g4(rp, φp)cos % Error f4(rq, φq)sin g4(rp, φp)sin % Error

1 0 1.6782 28.93 −2.4520× 104 −2.4520× 104 1.7804× 10−13 −1.9617× 104 −1.9617× 104 −5.5636× 10−13

2 18 1.8090 38.29 9.8126× 104 9.8126× 104 5.1905× 10−13 1.0094× 105 1.0094× 105 −6.7754× 10−13

3 36 1.8952 47.61 −2.1932× 105 −2.1932× 105 5.3080× 10−14 −2.8216× 105 −2.8216× 105 −3.0943× 10−13

4 54 1.9348 56.90 2.8601× 105 2.8601× 105 8.7512× 10−13 4.5883× 105 4.5883× 105 −2.2835× 10−13

5 72 1.9269 66.19 −2.1918× 105 −2.1918× 105 9.0295× 10−13 −4.4710× 105 −4.4710× 105 −9.1132× 10−14

6 90 1.8716 75.50 9.5515× 104 9.5515× 104 1.2188× 10−13 2.6107× 105 2.6107× 105 −2.0066× 10−13

7 108 1.7702 84.82 −2.1374× 104 −2.1374× 104 2.0765× 10−12 −8.8733× 104 −8.8733× 104 2.6239× 10−13

8 126 1.6253 94.20 1.7285× 103 1.7285× 103 −3.1781× 10−11 1.6451× 104 1.6451× 104 −1.7249× 10−12

9 144 1.4405 103.66 84.4692 84.4692 1.1923× 10−10 −1.4766× 103 −1.4766× 103 3.9005× 10−11

10 162 1.2203 113.28 −14.4353 −14.4353 −1.3391× 10−9 51.6185 51.6185 2.0311× 10−10

11 180 0.9703 123.20 0.3054 0.3054 4.9050× 10−8 −0.4535 −0.4535 7.1061× 10−8
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3.5.3 Evaluation of the translational addition theorems for
Laplacian function ln r

Consider again Figure 3.5.1 where rp < rqp for the addition theorem (3.4.5) when

normalized gives

ln

(
rqp
rp

)
︸ ︷︷ ︸
f5(rq ,φq)

=
∞∑
m=1

(−1)m

m

(
rp
rqp

)m
cos [m(φp − φqp)]︸ ︷︷ ︸

g5(rq ,φq)

, rp < rqp. (3.5.5)

Let us denote the left hand side of (3.5.5) as f5(rq, φq) and the right hand side

as g5(rq, φq), respectively. For the situation where rqp = 75 cm, rp = 37.5 cm

and φqp = 2π/3, then rq and φp vary when P moves along the circle. Test point

locations are taken by varying φp over 0 to 180°. Numerical results are presented

in Table 3.5.10 for the series truncations M = 10 and 30. As expected with greater

values of M the better the convergence of the series.

Table 3.5.10: Truncation errors of g5(rp, φp) for φqp = 2π/3, rp/rqp = 0.5, and
M = 10 and 30

Point φp rqp/rq f5(rq, φq) g5(rp, φp)M=10 % Error|M=10 f5(rq, φq) g5(rp, φp)M=30 % Error|M=30

1 0 1.1547 0.1438 0.1438 −2.9882× 10−2 0.1438 0.1438 −2.1712× 10−10

2 18 0.9796 −0.0206 −0.0206 −2.0507× 10−1 −0.0206 −0.0206 1.9487× 10−8

3 36 0.8592 −0.1517 −0.1518 2.5584× 10−2 −0.1517 −0.1517 −4.3629× 10−9

4 54 0.7769 −0.2524 −0.2524 −1.3596× 10−2 −0.2524 −0.2524 3.2555× 10−9

5 72 0.7219 −0.3259 −0.3260 9.0235× 10−3 −0.3259 −0.3259 −2.8234× 10−9

6 90 0.6874 −0.3748 −0.3747 −6.4796× 10−3 −0.3748 −0.3748 2.6104× 10−9

7 108 0.6699 −0.4006 −0.4006 4.7295× 10−3 −0.4006 −0.4006 −2.5134× 10−9

8 126 0.6675 −0.4042 −0.4042 −3.2927× 10−3 −0.4042 −0.4042 2.5004× 10−9

9 144 0.6799 −0.3859 −0.3859 1.8727× 10−3 −0.3859 −0.3859 −2.5676× 10−9

10 162 0.7083 −0.3449 −0.3449 −1.3819× 10−4 −0.3449 −0.3449 2.7357× 10−9

11 180 0.7559 −0.2798 −0.2798 −2.5863× 10−3 −0.2798 −0.2798 −3.0740× 10−9

When rp > rqp as shown in Figure 3.5.2 the addition theorem (3.4.9) is normalized

to give

ln

(
rp
rq

)
︸ ︷︷ ︸
f6(rq ,φq)

=
∞∑
m=1

(−1)m

m

(
rqp
rp

)m
cos [m(φp − φqp)]︸ ︷︷ ︸

g6(rp,φp)

, rp > rqp. (3.5.6)

Let us denote the left hand side of (3.5.6) as f6(rq, φq) and the right hand side as
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g6(rp, φp), respectively. Now consider the situation where rqp = 75 cm, rp = 125

cm and φqp = 2π/3, the numerical results are shown in Table 3.5.11 for the series

truncations M = 10 and 30, verifying the series converge.

Table 3.5.11: Truncation errors of g6(rp, φp) for φqp = 2π/3, rqp/rp = 0.6, and
M = 10 and 30

Point φp rqp/rq f6(rq, φq) g6(rp, φp)M=10 % Error|M=10 f6(rq, φq) g6(rp, φp)M=30 % Error|M=30

1 0 1.1471 0.1372 0.1369 −0.2468 0.1372 0.1372 3.3449× 10−7

2 18 0.9489 −0.0524 −0.0521 −0.5956 −0.0524 −0.0524 2.7787× 10−6

3 36 0.8205 −0.1979 −0.1981 0.1397 −0.1979 −0.1979 −1.0159× 10−6

4 54 0.7356 −0.3071 −0.3068 −0.0779 −0.3071 −0.3071 7.6019× 10−7

5 72 0.6799 −0.3857 −0.3859 0.0526 −0.3857 −0.3857 −6.5556× 10−7

6 90 0.6456 −0.4376 −0.4374 −0.0382 −0.4376 −0.4376 6.0366× 10−7

7 108 0.6282 −0.4649 −0.4650 0.0282 −0.4649 −0.4649 −5.8004× 10−7

8 126 0.6258 −0.4687 −0.4686 −0.0200 −0.4687 −0.4687 5.7686× 10−7

9 144 0.6381 −0.4493 −0.4494 0.0121 −0.4493 −0.4493 −5.9322× 10−7

10 162 0.6664 −0.4059 −0.4058 −0.0025 −0.4059 −0.4059 6.3418× 10−7

11 180 0.7143 −0.3365 −0.3364 −0.0120 −0.3365 −0.3365 −7.1641× 10−7
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Chapter 4

Application of the addition
theorems to the solution of
electrostatic fields in systems of
parallel circular cylinders with
coplanar axes

In this chapter the derived addition theorems from Sections 3.2 and 3.4 will be

applied to the problem discussed in Section 2.2 for some simplified geometries.

All the boundary problems solved for in this chapter apply to either Dirichlet or

Neumann type.

For problems with all the cylinder axes coplanar on the x-axis the circular harmonic

solution of Laplace’s equation (2.2.1) can be simplified to

uq(rq, φq) = CA + A0 ln rq +
∞∑
n=1

An

(
1

rq

)n
cosnφq, (4.0.1)

where the sin function is excluded and the constants are renamed.

4.1 Conducting cylinder parallel with a line charge

A straight line charge with linear charge density +ρl is placed parallel to and a

distance d away from the axis of a conducting cylinder of radius a1 held at fixed

voltage such that the potential vanishes at infinity, as shown in Figure 4.1.1. The

medium outside the cylinder is linear and homogeneous, with permittivity ε. The
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potential at any point outside the cylinder, expressed in (r1, φ1) coordinates, is

found.

Figure 4.1.1: Conducting cylinder near a parallel line charge

The potential due to the presence of the conducting cylinder is expressed in (r1, φ1)

coordinates as

u1(r1, φ1) = CA + A0 ln r1 +
∞∑
n=1

An

(
1

r1

)n
cosnφ1, r1 > a1, (4.1.1)

while the potential due to the line charge in (r2, φ2) coordinates is

u2(r2, φ2) = − ρl
2πε

ln r2 + Cβ = β ln r2 + Cβ, where β ≡ − ρl
2πε

(4.1.2)

and Cβ is a reference constant.

The potential u2(r2, φ2) is translated using the addition theorems of Section 3.4 into

the coordinate system (r1, φ1) and the boundary condition that the potential at

infinity vanish is imposed. To express u2(r2, φ2) using (3.4.5) and (3.4.9) with the

following substitutions rq ≡ r2, φq ≡ φ2, rp ≡ r1, φp ≡ φ1, rqp ≡ d, φqp ≡ φ21 = π,

changing the series index m = n, and making use of the trigonometric equation
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cos (α− ψ) = cosα cosψ + sinα sinψ, gives

u
(1)
2 (r1, φ1) = Cβ + β ln d− β

∞∑
n=1

1

n

(r1
d

)n
cosnφ1, r1 < d, (4.1.3a)

u
(1)
2 (r1, φ1) = Cβ + β ln r1 − β

∞∑
n=1

1

n

(
d

r1

)n
cosnφ1, r1 > d, (4.1.3b)

The total potential u
(1)
tot(r1, φ1) at any point outside the cylinder is then expressed

as

u
(1)
tot(r1, φ1) = u1(r1, φ1) + u

(1)
2 (r1, φ1) + C, (4.1.4)

where C ≡ CA + Cβ is an arbitrary constant defined by the reference potential.

Equation (4.1.4) is in the coordinates of the cylinder system and therefore the

boundary conditions at infinity and at the surface of the cylinder can be imposed to

solve for the constants of integration, C, A0 and An. First imposing the boundary

condition that the potential vanish at infinity using (4.1.3b) for u
(1)
2 gives

0 = lim
r1→∞

u
(1)
tot(r1, φ1)

= lim
r1→∞

{
A0 ln r1 + β ln r1 + C +

∞∑
n=1

[
An

(
1

r1

)n
− β 1

n

(
d

r1

)n]
cosnφ1

}

= lim
r1→∞

{A0 ln r1 + β ln r1 + C} .

This expression is only valid if the constants are set to A0 = −β and C = 0. Now

solving for the potential on the surface of the cylinder r1 = a1 using (4.1.4) with

(4.1.3a) since r1 < d and substituting for the solved values gives

u
(1)
tot(a1, φ1) = β ln

(
d

a1

)
+
∞∑
n=1

[
An

(
1

a1

)n
− β 1

n

(
d

a1

)n]
cosnφ1, (4.1.5)

which after equating like terms since the potential on the cylinder is a constant,
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yields

0 = An

(
1

a1

)n
− β 1

n

(
d

a1

)n
An = β

1

n

(
a21
d

)n
.

Substituting all the constants A0, An and β into (4.1.4) and simplifying, for

a1 6 r1 6 d gives

u
(1)
tot(r1, φ1) = − ρl

2πε

{
ln

(
d

r1

)
+
∞∑
n=1

1

n

(r1
d

)n [(a1
r1

)2n

− 1

]
cosnφ1

}
, (4.1.6)

and for r1 > d we get

u
(1)
tot(r1, φ1) = − ρl

2πε

∞∑
n=1

1

n

(
d

r1

)n [(a1
d

)2n
− 1

]
cosnφ1. (4.1.7)

Note, using (4.1.6) the total potential on the cylinder is calculated as

u
(1)
tot(a1, φ1) = − ρl

2πε
ln

(
d

a1

)
.

Potential distribution using image method

Alternatively, the potential solution for this elementary problem can be obtained

using the image method. The equipotential surfaces of two parallel straight lines

are circular cylinders described by [1]

uimtot(r2, r3) =
ρl

2πε
ln

(
r3
r2

)
+ u0, (4.1.8)

where u0 is an arbitrary constant defined by the reference potential. The potential

distribution given by (4.1.8) must also describe the potential between a finite

cylinder of radius a1 and a line charge +ρl, as shown in Figure 4.1.2.
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Figure 4.1.2: Two straight line charges of equal and opposite sign

The cylinder will carry the total charge per unit length −ρl and will have a potential

defined by the radial distances r2 and r3 along its surface. The radial distances can

be expressed in terms of (r1, φ1) coordinates using the law of cosines relationship

giving r2 =
√
r21 + d2 − 2r1d cosφ1 and r3 =

√
r21 + b2 − 2r1b cosφ1. Imposing the

boundary condition that the potential vanish at infinity sets u0 = 0 thus, the total

potential is

uimtot(r1, φ1) =
ρl

2πε

{
ln

(√
r21 + b2 − 2r1b cosφ1

)
− ln

(√
r21 + d2 − 2r1d cosφ1

)}
.

(4.1.9)

But using the harmonic expansions of a line charge [10]

ln

(√
r21 + d2 − 2r1d cosφ1

)
=


ln d−

∞∑
n=1

1

n

(r1
d

)n
cosnφ1, r1 < d,

ln r1 −
∞∑
n=1

1

n

(
d

r1

)n
cosnφ1, r1 > d,

(4.1.10)
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and from the geometry in Figure 4.1.2 it can be shown that b = a21/d and thus,

ln

(√
r21 + b2 − 2r1b cosφ1

)
=


ln

(
a21
d

)
−
∞∑
n=1

1

n

(
r1d

a21

)n
cosnφ1, r1 < a21/d,

ln r1 −
∞∑
n=1

1

n

(
a21
r1d

)n
cosnφ1, r1 > a21/d,

(4.1.11)

Using the expansions given in (4.1.10) and (4.1.11) the potential (4.1.9) can be

reduced to the same expressions (4.1.6) and (4.1.7) for regions a1 6 r1 6 d and

r1 > d, respectively.

Calculation of charge per unit length on the cylinder

The total charge on the cylinder can be found by integrating the surface charge

density over the surface of the cylinder, i.e.,

Qtot =

∮
S

ρS dS. (4.1.12)

Since the cylinder surface outward normal is only radial the charge density is

obtained from

ρS = −ε ∂u
(1)
tot

∂r1

∣∣∣∣∣
r1=a1

(4.1.13)

= − ρl
2π

{
1

r1
−
∞∑
n=1

rn−11

dn

[(
a1
r1

)2n

− 1

]
cosnφ1

}
r1=a1

. (4.1.14)

The total charge for the length l of the cylinder can be calculated as

Qtot =

∫ l

0

∫ 2π

0

ρS(a1, φ1) a1dφ1dz1 (4.1.15)

= l

∫ 2π

0

− ρl
2π

{
1

a1
−
∞∑
n=1

rn−11

dn

[(
a1
a1

)2n

− 1

]
cosnφ1

}
a1dφ1dz1 (4.1.16)

= −ρll (4.1.17)
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and the charge per unit length is Qtot/l = −ρl which is the image line charge −ρl

given by the image method.

4.2 Two-cylinder system

Two conducting cylinders of radii a1 and a2 are placed parallel to each other with

a separation distance d between their axes, as shown in the Figure 4.2.1. Charges

per unit length of −q and q are placed on cylinder 1 and 2, respectively, i.e., a

complete system, with the requirement that the potential vanish at infinity. The

medium outside the cylinders being homogeneous, with permittivity ε.

Figure 4.2.1: System of two conducting cylinders

The harmonic potentials of cylinders 1 and 2 are expressed in their respective

coordinate systems as

u1(r1, φ1) = CA + A0 ln r1 +
∞∑
n=1

An

(
a1
r1

)n
cosnφ1, r1 > a1, (4.2.1)

u2(r2, φ2) = CB +B0 ln r2 +
∞∑
n=1

Bn

(
a2
r2

)n
cosnφ2, r2 > a2, (4.2.2)

where CA and CB are reference constants and the harmonics in the series expansions

have been normalized to the radii a1 and a2, respectively. Note, this has no effect

on the potential distribution only the magnitudes of the constant change.
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Then u2(r2, φ2) is translated into the coordinate system (r1, φ1) allowing the

boundary condition at the surface of cylinder r1 = a1 to be imposed. Using (3.2.6a)

and (3.4.5) with the following substitutions rq ≡ r2, φq ≡ φ2, rp ≡ r1, φp ≡ φ1,

rqp ≡ d and φqp = π, the addition theorems reduce to

ln r2 = ln d−
∞∑
n=1

1

n

(r1
d

)n
cosnφ1, (4.2.3)(

1

r2

)n
cosnφ2 =

∞∑
m=0

(−1)n(n+m− 1)!

m!(n− 1)!

(
1

d

)n (r1
d

)m
cosmφ1. (4.2.4)

Therefore the translated potential u
(1)
2 (r1, φ1) expressed in the coordinates of

cylinder 1 is

u
(1)
2 (r1, φ1) = CB +B0

{
ln d−

∞∑
n=1

1

n

(r1
d

)n
cosnφ1

}

+
∞∑
n=1

∞∑
m=0

Bn
(−1)n(n+m− 1)!

m!(n− 1)!

(a2
d

)n (r1
d

)m
cosmφ1.

(4.2.5)

For convenience let us denote

τB(m,n, r1, a2, d) =
(−1)n(n+m− 1)!

m!(n− 1)!

(a2
d

)n (r1
d

)m
, (4.2.6a)

γB(n, r1, d) = − 1

n

(r1
d

)n
, (4.2.6b)

so (4.2.5) can be rewritten as,

u
(1)
2 (r1, φ1) = CB +B0

{
ln d+

∞∑
n=1

γB(n, r1, d) cosnφ1

}

+
∞∑
n=1

∞∑
m=0

BnτB(m,n, r1, a2, d) cosmφ1. (4.2.7)
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The total potential expressed in (r1, φ1) coordinates at any point P (r1, φ1) is then

u
(1)
tot(r1, φ1) = u1(r1, φ1) + u

(1)
2 (r1, φ1)

= C + A0 ln r1 +B0 ln d+
∞∑
n=1

[
An

(
a1
r1

)n
+B0γB(n, r1, d)

]
cosnφ1

+
∞∑
n=1

∞∑
m=0

BnτB(m,n, r1, a2, d) cosmφ1, (4.2.8)

where C ≡ CA + CB. Now applying the boundary condition at r1 = a1, that is,

u
(1)
tot(r1 = a1, φ1) = V1 reduces (4.2.8) to

V1 = C + A0 ln a1 +B0 ln d+
∞∑
n=1

[An +B0γB(n, a1, d)] cosnφ1

+
∞∑
n=1

∞∑
m=0

BnτB(m,n, a1, a2, d) cosmφ1.

(4.2.9)

Making use of the orthogonal properties of trigonometric functions, which are

∫ 2π

0

cosnφ cosmφdφ =


πδn,m n 6= 0

2π n = m = 0

(4.2.10a)

∫ 2π

0

sinnφ sinmφdφ =


πδn,m n 6= 0

2π n = m = 0

(4.2.10b)

∫ 2π

0

cosnφ sinmφdφ = 0 n,m all integral values (4.2.10c)

where δn,m is the Kronecker delta1. Therefore multiply (4.2.9) by cosmφ1 and

integrating in φ1 from 0 to 2π, for all positive integral values of m, gives the infinite

1The Kronecker delta symbol is δn,m =

{
1 n = m

0 n 6= m
.
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set of equations

V1 − C = A0 ln a1 +B0 ln d+
∞∑
n=1

BnτB(0, n, a1, d), m = 0, (4.2.11)

0 = Am +B0γB(m, a1) +
∞∑
n=1

BnτB(m,n, a1, a2, d), m = 1, 2, . . . (4.2.12)

The same steps taken to apply the boundary conditions at cylinder 1, are followed

for cylinder 2. Now u1(r1, φ1) is translated into the coordinate system (r2, φ2) and

the boundary conditions at r2 = a2, that is, u
(2)
tot(r2 = a2, φ2) = V2 gives the infinite

set of equations

V2 − C = B0 ln a2 + A0 ln d+
∞∑
n=1

AnτA(0, n, a2, d), m = 0, (4.2.13)

0 = Bm + A0γA(m, a2) +
∞∑
n=1

AnτA(m,n, a2, a1, d), m = 1, 2, . . . (4.2.14)

where

τA(m,n, r2, a1, d) =
(−1)m(n+m− 1)!

m!(n− 1)!

(a1
d

)n (r2
d

)m
, (4.2.15a)

γA(n, r2, d) = −(−1)n

n

(r2
d

)n
, (4.2.15b)

The known boundary conditions are given in terms of the charges per unit length

on the cylinders, therefore, we need to find the charges in terms of the constants

of integration. The total charge on the pth cylinder is given by

Q
(p)
tot =

∮
S

ρ
(p)
S dS

and the charge per unit length
(
q = Q/l

)
is calculated with

q
(p)
tot =

∫ 2π

0

ρ
(p)
S rpdφp

∣∣∣
rp=ap

, (4.2.16)
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where the surface charge density on cylinder p is

ρ
(p)
S (rp = ap, φp) = −ε ∂u

(p)
tot

∂rp

∣∣∣∣∣
rp=ap

. (4.2.17)

Solving for the charge density on cylinder 1, that is ρ
(1)
S (r1, φ1), and substituting

into (4.2.16) gives

q
(1)
tot (r1, φ1) = −ε

∫ 2π

0

{
A0

r1
+
∞∑
n=1

n

r1

[
B0γB(n, r1, d)− An

(
a1
r1

)n]
cosnφ1

+
∞∑
n=1

∞∑
m=0

Bn
m

r1
τB(m,n, r1, a2, d) cosmφ1

}
r1dφ1,

(4.2.18)

where the derivatives of τB(m,n, r1, a2, d) and γB(n, r1, d) are given by

∂

∂r1

[
τB(m,n, r1, a2, d)

]
=
m

r1
τB(m,n, r1, a2, d),

∂

∂r1

[
γB(n, r1, d)

]
=
n

r1
γB(n, r1, d).

Evaluating (4.2.18) at the surface of cylinder 1, reduces it to

q
(1)
tot (a1, φ1) = −2πεA0. (4.2.19)

Similarly, the charge per unit length of cylinder 2 can be found to be

q
(2)
tot (a2, φ2) = −2πεB0. (4.2.20)

This shows that the total charges per unit length q
(1)
tot and q

(2)
tot on cylinders 1 and

2 are proportional to the constants of integration A0 and B0, respectively, by

the factor −2πε. However, for the potential at infinity to vanish we require the

logarithms vanish in the potential distribution. For the potential u
(1)
tot(r1, φ1) when

r1 > d we use addition theorems (3.3.9a) and (3.4.9) to translate u2(r2, φ2) to
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(r1, φ1) coordinates giving

u
(1)
tot(r1, φ1) = C + A0 ln r1 +B0 ln r1 +

∞∑
n=1

[
An

(
a1
r1

)n
−B0

1

n

(
d

r1

)n]
cosnφ1

+
∞∑
n=1

∞∑
m=0

Bn
(−1)n(n+m− 1)!

m!(n− 1)!

(
a2
a1

)n(
d

r1

)m
cosmφ1,

(4.2.21)

The potential as r1 →∞, reduces to

lim
r1→∞

u
(1)
tot(r1, φ1) = lim

r1→∞
[C + A0 ln r1 +B0 ln r1] = 0, (4.2.22)

The only way to satisfy that the logarithmic potential at infinity vanish is for

A0 + B0 = 0, i.e., the sum of the charges on all the conductors is equal to zero.

The uniqueness theorem states that C can be set to any value because it makes no

contribution to the electric field intensity, since the addition of a constant makes

no difference to the gradient, thus, we choose C = 0 for the potential to vanish at

infinity.

The equations (4.2.11) to (4.2.14), (4.2.19), (4.2.20) and with C = 0, form a

complete system that constitute an infinite set of coupled linear equations which

solved simultaneously determine the unknown constants of integration. To obtain

numerical results, the infinite series must be truncated to a finite number of

terms n = m = M . The truncated system can be written in matrix and vector

form, Ax = b, where we use the abbreviations for τB(m,n, a1, a2, d) ≡ τB(m,n),

τA(m,n, a2, a1, d) ≡ τA(m,n), γB(n, a1, d) ≡ γB(n) and γA(n, a2, d) ≡ γA(n) to

give



−1 0 0 τB(0, 1) . . . 0 τB(0,M)

0 −1 τA(0, 1) 0 . . . τA(0,M) 0

0 0 1 τB(1, 1) . . . 0 τB(1,M)

0 0 τA(1, 1) 1 . . . τA(1,M) 0

...
...

...
...

. . .
...

...

0 0 0 τB(M, 1) . . . 1 τB(M,M)

0 0 τA(M, 1) 0 . . . τA(M,M) 1





V1

V2

A1

B1

...

AM

BM



=



−A0 ln a1 −B0 ln d

−A0 ln d−B0 ln a2

−B0γB(1)

−A0γA(1)

...

−B0γB(M)

−A0γA(M)
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Once the constants of integration A1, . . . , AM , B1, . . . , BM , along with potentials

V1 and V2 are numerically calculated, substitution back into the equation for the

potential distribution gives

utot(r1, φ1|r2, φ2)
r1>a1, r2>a2

= A0 ln r1 +B0 ln r2

+
∞∑
n=1

{
An

(
a1
r1

)n
cosnφ1 +Bn

(
a2
r2

)n
cosnφ2

}
, (4.2.23)

where the location of the observation point P (r1, φ1|r2, φ2) must be expressed in

terms of both (r1, φ1) and (r2, φ2) coordinates which can be done using the relations

in (2.3.5) and (2.3.6).

Planar bipolar coordinate solution to the two cylinder system

The two cylinder system can naturally be described in the planar (or two-dimensional)

bipolar coordinate system (η, ξ) where [14]

x = a
sinh η

cosh η − cos ξ
, y = a

sin ξ

cosh η − cos ξ
, (4.2.24)

where η = constant are Apollonian circles and ξ = constant are sections of circles

orthogonal to η = constant (see Figure 4.2.2).

Eliminating η from (4.2.24) gives x2 + (y − a cot ξ)2 = a2 csc2 ξ, which defines the

coordinate surface ξ = constant for 0 ≤ ξ ≤ 2π as circular cylinders centred at

(0, a cot ξ) with radius a|csc ξ|. In the same way, eliminating ξ from (4.2.24) gives

(x− a coth η)2 + y2 = a2 csch2 η, which defines the coordinate surface η = constant

for −∞ < η <∞ as circular cylinders centred at (a coth η, 0) with radius a|csch η|.

As η → ±∞ the circles degenerate to the focal points (±a, 0).

Consider again, in bipolar coordinates, the case of two cylinders of radii a1 and a2

positioned parallel to each other in a homogeneous medium of permittivity ε,
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Figure 4.2.2: Two conducting cylinders in bipolar coordinates (η, ξ)

as shown in Figure 4.2.2. Charges of −q and q are placed on cylinders 1 and 2,

respectively, with the potential vanishing at infinity. The total potential distribution

is governed by Laplace’s equation

∇2ubi(η, ξ) =

(
cosh η − cos ξ

a

)2 [
∂2ubi
∂η2

+
∂2ubi
∂ξ2

]
= 0. (4.2.25)

The general harmonic solution of the Laplace equation for the configuration in

Figure 4.2.2 [15] is [see Appendix B]

ubi(η, ξ) = A0 +B0η +
∞∑
n=1

(
Anenη +Bne−nη

)
cosnξ. (4.2.26)

The potential distribution at a point near infinity, that is, (η → 0, ξ = 0), gives

ubi(η → 0, ξ = 0) ≈ A0 +
∞∑
n=1

(An +Bn) . (4.2.27)
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For the potential to vanish near infinity A0 = 0 and An = −Bn, but since we require

the potentials on the cylinders to be fixed values, the constants An = Bn = 0.

Therefore, the potential distribution reduces to

ubi(η, ξ) = B0η. (4.2.28)

To solve for the constant B0 in (4.2.28) we find the charge per unit length in terms

of the potential distribution. For cylinder 1, the charge density is

ρSbi
(η = η1, ξ) = −ε 1

hη

∂ubi
∂η

= −ε 1

hη
B0. (4.2.29)

The charge per unit length is

q
(1)
tot =

∫ 2π

0

ρSbi
hξdξ = −εB0

∫ 2π

0

hξ
hη
dξ, (4.2.30)

since the scale factors hξ = hη, we obtain q
(1)
tot = −2πεB0. In the same way the

charge per unit length on cylinder 2 can be found to be q
(2)
tot = 2πεB0. Therefore,

we see, using the bipolar method the charge on the cylinders must always be equal

and opposite. The cylinder surfaces in bipolar coordinates are given by

η1 = csch−1
(a1
a

)
, η2 = csch−1

(a2
a

)
, (4.2.31)

a =

√
(d+ a1 + a2)(d+ a1 − a2)(d− a1 + a2)(d− a1 − a2)

2d
. (4.2.32)

Numerical results of the two cylinder system

Tables 4.2.1 and 4.2.2 for a1 = 1 cm, a2 = 2 cm, d = 5 cm, q
(1)
tot = −1 nC/m

and q
(2)
tot = 1 nC/m show the percentage error between the potentials from the

translational and bipolar methods at various points for truncations of M = 5 and

15, respectively. The points are chosen along circles of radii 0.25 cm, 5 cm and

10 cm taken with respect to the global coordinates (x, y), where the origin of the

system can be easily seen in Figure 4.2.2.

45



Table 4.2.1: Percentage error between the potential values of the translational
and bipolar boundary value methods for a1 = 1 cm, a2 = 2 cm, d = 5 cm, q

(1)
tot = −1

nC/m, q
(2)
tot = 1 nC/m, and M = 5

Point r[cm] φ[°] r1[cm] φ1[°] r2[cm] φ2[°] η ξ utot[V] ubi[V] % Error

1 0.25 0 2.4500 0.00 2.5500 0.00 0.2566 −3.14 4.606248 4.611570 −1.1540× 10−1

2 0.25 72 2.2896 5.96 2.7331 175.01 0.0777 2.90 1.394524 1.397398 −2.0566× 10−1

3 0.25 144 2.0031 4.21 3.0058 177.20 −0.2060 2.99 −3.704300 −3.702575 4.6571× 10−2

4 0.25 216 2.0031 355.79 3.0058 182.80 −0.2060 −2.99 −3.704300 −3.702575 4.6571× 10−2

5 0.25 288 2.2896 354.04 2.7331 184.99 0.0777 −2.90 1.394524 1.397398 −2.0566× 10−1

6 5 0 7.2000 0.00 2.2000 0.00 0.8281 0.00 14.878705 14.885705 −4.7028× 10−2

7 5 72 6.0530 51.78 4.9181 104.78 0.2131 0.72 3.831194 3.831172 5.7578× 10−4

8 5 144 3.4701 122.12 7.4493 156.76 −0.6180 0.50 −11.107827 −11.107813 1.2691× 10−4

9 5 216 3.4701 237.88 7.4493 203.24 −0.6180 −0.50 −11.107827 −11.107813 1.2691× 10−4

10 5 288 6.0530 308.22 4.9181 255.22 0.2131 −0.72 3.831194 3.831172 5.7578× 10−4

11 10 0 12.2000 0.00 7.2000 0.00 0.3971 0.00 7.137087 7.137083 6.0578× 10−5

12 10 72 10.8829 60.92 9.5150 88.25 0.1172 0.37 2.106041 2.106035 2.7153× 10−4

13 10 144 8.3213 135.06 12.3752 151.64 −0.3154 0.24 −5.669392 −5.669382 1.6997× 10−4

14 10 216 8.3213 224.94 12.3752 208.36 −0.3154 −0.24 −5.669392 −5.669382 1.6997× 10−4

15 10 288 10.8829 299.08 9.5150 271.75 0.1172 −0.37 2.106041 2.106035 2.7153× 10−4

The potentials for the translational method with truncations of M = 5 give

relatively good results compared with the bipolar method. It is evident that

at greater distances from the two cylinders the potential distribution has better

convergence, as points 11 to 15 show decreased errors. For the exact same conditions

but with the truncation increased to M = 15 the error between the two methods

is substantially decreased.

Table 4.2.2: Percentage error between the potential values of the translational
and bipolar boundary value methods for a1 = 1 cm, a2 = 2 cm, d = 5 cm, q

(1)
tot = −1

nC/m, q
(2)
tot = 1 nC/m, and M = 15

Point r[cm] φ[°] r1[cm] φ1[°] r2[cm] φ2[°] η ξ utot[V] ubi[V] % Error

1 0.25 0 2.4500 0.00 2.5500 0.00 0.2566 −3.14 4.611570 4.611570 −6.8462× 10−7

2 0.25 72 2.2896 5.96 2.7331 175.01 0.0777 2.90 1.397398 1.397398 −1.0175× 10−7

3 0.25 144 2.0031 4.21 3.0058 177.20 −0.2060 2.99 −3.702575 −3.702575 3.9939× 10−8

4 0.25 216 2.0031 355.79 3.0058 182.80 −0.2060 −2.99 −3.702575 −3.702575 3.9939× 10−8

5 0.25 288 2.2896 354.04 2.7331 184.99 0.0777 −2.90 1.397398 1.397398 −1.0174× 10−7

6 5 0 7.2000 0.00 2.2000 0.00 0.8281 0.00 14.885705 14.885705 −1.1418× 10−6

7 5 72 6.0530 51.78 4.9181 104.78 0.2131 0.72 3.831172 3.831172 1.4536× 10−11

8 5 144 3.4701 122.12 7.4493 156.76 −0.6180 0.50 −11.107813 −11.107813 3.5182× 10−12

9 5 216 3.4701 237.88 7.4493 203.24 −0.6180 −0.50 −11.107813 −11.107813 3.4383× 10−12

10 5 288 6.0530 308.22 4.9181 255.22 0.2131 −0.72 3.831172 3.831172 1.4617× 10−11

11 10 0 12.2000 0.00 7.2000 0.00 0.3971 0.00 7.137083 7.137083 3.1858× 10−12

12 10 72 10.8829 60.92 9.5150 88.25 0.1172 0.37 2.106035 2.106035 3.4371× 10−12

13 10 144 8.3213 135.06 12.3752 151.64 −0.3154 0.24 −5.669382 −5.669382 3.4466× 10−12

14 10 216 8.3213 224.94 12.3752 208.36 −0.3154 −0.24 −5.669382 −5.669382 3.2742× 10−12

15 10 288 10.8829 299.08 9.5150 271.75 0.1172 −0.37 2.106035 2.106035 3.5214× 10−12
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4.3 Two-cylinder system in external electric field

Consider the same system in Section 4.2 but placed in an external electric field

oriented along the common x-axis of the cylinders, E0 = E0ax, as shown in Figure

4.3.1. Here again, consider a complete system with the external electric field being

the only contribution to the potential at infinity.

Figure 4.3.1: Two conducting cylinders in an external electric field, E0 = E0ax

The potential due to the external field, expressed in the local coordinates of each

cylinder are

u(1)ex = −E0x1 + C(1)
ex = −E0r1 cosφ1 + C(1)

ex , (4.3.1)

u(2)ex = −E0x2 + C(2)
ex = −E0r2 cosφ2 + C(2)

ex , (4.3.2)

where C
(1)
ex and C

(2)
ex are constants of reference. Lets consider the potential produced

by the external field to be Cex at the origin of the global coordinate system (x, y),

see Figure 4.2.2, that is, in terms of the coordinates attached to cylinder 1 or 2 as

(r1 = a coth η1, φ1 = 0) or (r2 = a coth η2, φ2 = π), respectively, where a, η1 and η2

are defined in the previous section. Note (−a coth η1, 0) and (a coth η2, 0) are the

locations of the axes of cylinders 1 and 2, respectively, in the global coordinates.

Therefore (4.3.1) and (4.3.2) yield values for the constants C
(1)
ex = E0a coth η1 +Cex
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and u
(2)
C = −E0a coth η2 + Cex giving

u(1)ex (r1, φ1) = −E0r1 cosφ1 + E0a coth η1 + Cex, (4.3.3)

u(2)ex (r2, φ2) = −E0r2 cosφ2 − E0a coth η2 + Cex, (4.3.4)

To apply the boundary conditions at cylinder 1 the total potential distribution must

be expressed in terms of the attached coordinate system. We use the translational

addition theorems to express the potential u2(r2, φ2) in terms of the coordinates

(r1, φ1) and the external potential u
(1)
ex (r1, φ1) to give

u
(1)
tot(r1, φ1) = u(1)ex (r1, φ1) + u1(r1, φ1) + u

(1)
2 (r1, φ1)

= −E0r1 cosφ1 + E0a coth η1 + C + A0 ln r1 +B0 ln d (4.3.5)

+
∞∑
n=1

[
An

(
a1
r1

)n
+B0γB(n, r1, d)

]
cosnφ1 +

∞∑
n=1

∞∑
m=0

BnτB(m,n, r1, a2, d) cosmφ1.

where γB(n, r1, d) and τB(m,n, r1, d) are defined in (4.2.6) and C ≡ CA +CB +Cex.

Applying the boundary condition u
(1)
tot(r1 = a1, φ1) = V1 to (4.3.5) gives

V1 = −E0a1 cosφ1 + E0a coth η1 + C + A0 ln a1 +B0 ln d

+
∞∑
n=1

[An +B0γB(n, a1, d)] cosnφ1 +
∞∑
n=1

∞∑
m=0

BnτB(m,n, a1, a2, d) cosmφ1.

(4.3.6)

Multiplying (4.3.6) by cosmφ1 and integrating in φ1 from 0 to 2π over all positive

integral values of m gives

−V1 +
∞∑
n=1

BnτB(0, n, a1, a2, d) = −C − A0 ln a1 −B0 ln d− E0a coth η1,

A1 +
∞∑
n=1

BnτB(1, n, a1, a2, d) = E0a1 −B0γB(1, a1, d), (4.3.7)

Am +
∞∑
n=1

BnτB(m,n, a1, a2, d) = −B0γB(m, a1, d), m = 2, 3, . . . .
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In the same way when the total potential is expressed in terms of (r2, φ2) coordinates

and the boundary condition u
(2)
tot(r2 = a2, φ2) = V2 is applied at the surface of

cylinder 2 yields the set of equations

−V2 +
∞∑
n=1

AnτA(0, n, a2, a1, d) = −C −B0 ln a2 − A0 ln d+ E0a coth η2,

B1 +
∞∑
n=1

AnτA(1, n, a2, a1, d) = E0a2 − A0γA(1, a2, d), (4.3.8)

Bm +
∞∑
n=1

AnτA(m,n, a2, a1, d) = −A0γA(m, a2, d), m = 2, 3, . . . ,

where γA(n, r2, d) and τA(m,n, r2, a1, d) are defined in (4.2.15).

The boundary conditions, given as the charge per unit length on the conductors are

then used to solve for constants A0 and B0 from q
(1)
tot = −2πεA0 and q

(2)
tot = −2πεB0,

respectively. As long as the charges are equal and opposite the logarithmic

potentials vanish at infinity and with C = 0 the only contribution to the potential

at infinity will be due to the external field. Then, the constants of integration in

the infinite set of equations (4.3.7) and (4.3.8), with C = 0, are solved for after

truncating the series to a finite number n = m = M .

Planar bipolar coordinate solution

The two cylinder system in an external field is analyzed using the two-dimensional

bipolar coordinates for comparison. The reference potential is zero at x = 0, i.e.,

the origin of the global coordinate system, thus the potential of the external field

is uexbi (x, y) = −E0x. The coordinate x can be expressed in (η, ξ) coordinates using

the series expansion [15]

uexbi (η, ξ) =


−E0a− E0a

∞∑
n=1

e−nη cosnξ, η > 0,

E0a+ E0a
∞∑
n=1

enη cosnξ, η < 0.

(4.3.9)
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Note that the series expansions are not valid at η = 0 and as η → 0 greater

numbers of terms must be taken in the series for it to converge. The total potential

distribution outside the two cylinders is given by

ubi(η, ξ) = uexbi (η, ξ) +B0η +
∞∑
n=1

Bn sinhnη cosnξ, (4.3.10)

where we set A0 = 0 and Bn = −An in (4.2.26) for the contribution to the potential

from the cylinders to vanish at infinity. Solving for the constants in (4.3.10) yields

the potential distribution

ubi(η, ξ)
η<0

= E0a+ 2E0a
∞∑
n=1

e−nη cosnξ − q
(1)
tot

2πε
η + 2E0a

∞∑
n=1

e−nη1

sinhnη1
sinhnη cosnξ,

(4.3.11)

for η < 0 and

ubi(η, ξ)
η>0

= −E0a− 2E0a
∞∑
n=1

enη cosnξ +
q
(2)
tot

2πε
η + 2E0a

∞∑
n=1

e−nη2

sinhnη2
sinhnη cosnξ,

(4.3.12)

for η > 0.

Numerical results

Table 4.3.1 for a1 = 1 cm, a2 = 2 cm, d = 5 cm, q
(1)
tot = −1 nC/m, q

(2)
tot = 1 nC/m

and E0 = 10 V/m show the percentage error between the potentials from the

translational and bipolar methods at various points for truncation of M = 25. The

points are chosen along circles of radii 0.25 cm, 5 cm and 10 cm taken with respect

to the global coordinates (x, y).

The results show that the potentials calculated from the two methods are in

relatively good agreement. Note that the potentials obtained from the bipolar

method for points approaching the η = 0 axis begin to diverge because our series

expansion for the uniform field diverges as η →∞, as can be seen for points 3, 4,

8, 9, 13, 14, 18, 19, 23, 24, 28 and 29 which all have higher percentage errors. For

these points the calculated potentials from the translational method are better
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approximations.

Table 4.3.1: Percentage error between the potential values of the translational
and bipolar boundary value methods for a1 = 1 cm, a2 = 2 cm, d = 5 cm, q

(1)
tot = −1

nC/m, q
(2)
tot = 1 nC/m, E0 = 10 V/m and M = 25

Point r[cm] φ[°] r1[cm] φ1[°] r2[cm] φ2[°] η ξ utot[V] ubi[V] % Error

1 0.25 0 2.4500 0.00 2.5500 180.00 0.2566 −3.14 4.467250 4.553559 −1.8954
2 0.25 36 2.4067 3.50 2.6019 176.76 0.2060 2.99 3.567551 3.655995 −2.4191
3 0.25 72 2.2896 5.96 2.7331 175.01 0.0777 2.90 1.285695 1.379815 −6.8212
4 0.25 108 2.1360 6.39 2.8871 175.28 −0.0777 2.90 −1.481503 −1.386378 6.8614
5 0.25 144 2.0031 4.21 3.0058 177.20 −0.2060 2.99 −3.764624 −3.673469 2.4814
6 0.25 180 1.9500 0.00 3.0500 180.00 −0.2566 3.14 −4.665113 −4.575388 1.9610
7 0.25 216 2.0031 355.79 3.0058 182.80 −0.2060 3.29 −3.764624 −3.673469 2.4814
8 0.25 252 2.1360 353.61 2.8871 184.72 −0.0777 3.38 −1.481503 −1.386378 6.8614
9 0.25 288 2.2896 354.04 2.7331 184.99 0.0777 3.38 1.285695 1.379815 −6.8212
10 0.25 324 2.4067 356.50 2.6019 183.24 0.2060 3.29 3.567551 3.655995 −2.4191
11 5 0 7.2000 0.00 2.2000 0.00 0.8281 0.00 14.590165 14.648429 −0.3977
12 5 36 6.9021 25.20 3.1918 67.04 0.6180 0.50 10.770614 10.819361 −0.4505
13 5 72 6.0530 51.78 4.9181 104.78 0.2131 0.72 3.667479 3.702615 −0.9490
14 5 108 4.8002 82.16 6.4415 132.42 −0.2131 0.72 −3.717281 −3.684491 0.8899
15 5 144 3.4701 122.12 7.4493 156.76 −0.6180 0.50 −10.773232 −10.733350 0.3716
16 5 180 2.8000 180.00 7.8000 180.00 −0.8281 0.00 −14.481101 −14.437904 0.2992
17 5 216 3.4701 237.88 7.4493 203.24 −0.6180 5.78 −10.773232 −10.733350 0.3716
18 5 252 4.8002 277.84 6.4415 227.58 −0.2131 5.56 −3.717281 −3.684491 0.8899
19 5 288 6.0530 308.22 4.9181 255.22 0.2131 5.56 3.667479 3.702615 −0.9490
20 5 324 6.9021 334.80 3.1918 292.96 0.6180 5.78 10.770614 10.819361 −0.4505
21 10 0 12.2000 0.00 7.2000 0.00 0.3971 0.00 6.204628 6.236714 −0.5145
22 10 36 11.8506 29.74 7.9079 48.01 0.3154 0.24 4.904407 4.932395 −0.5674
23 10 72 10.8829 60.92 9.5150 88.25 0.1172 0.37 1.803740 1.820518 −0.9216
24 10 108 9.5521 95.35 11.1868 121.77 −0.1172 0.37 −1.817853 −1.802766 0.8369
25 10 144 8.3213 135.06 12.3752 151.64 −0.3154 0.24 −4.900172 −4.877071 0.4737
26 10 180 7.8000 180.00 12.8000 180.00 −0.3971 0.00 −6.184869 −6.159240 0.4161
27 10 216 8.3213 224.94 12.3752 208.36 −0.3154 6.05 −4.900172 −4.877071 0.4737
28 10 252 9.5521 264.65 11.1868 238.23 −0.1172 5.91 −1.817853 −1.802766 0.8369
29 10 288 10.8829 299.08 9.5150 271.75 0.1172 5.91 1.803740 1.820518 −0.9216
30 10 324 11.8506 330.26 7.9079 311.99 0.3154 6.05 4.904407 4.932395 −0.5674

4.4 Three-cylinder system

Consider three conducting cylinders of radii a1, a2 and a3 with charges per unit

length of q
(1)
tot , q

(2)
tot and q

(3)
tot , respectively, placed on them. The separation distances

between the axes of the cylinders, d12, d13 and d23, are identified in the Figure

4.4.1. The medium outside the cylinders is homogeneous, with permittivity ε.

The potential is found for a complete system, such that the potential vanishes at

infinity.
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Figure 4.4.1: Three conducting cylinder system with given charges

The harmonic potentials of the three cylinders can be expressed in their attached

coordinate systems as

u1(r1, φ1) = CA + A0 ln r1 +
∞∑
n=1

An

(
a1
r1

)n
cosnφ1, r1 > a1, (4.4.1)

u2(r2, φ2) = CB +B0 ln r2 +
∞∑
n=1

Bn

(
a2
r2

)n
cosnφ2, r2 > a2, (4.4.2)

u3(r3, φ3) = CC + C0 ln r3 +
∞∑
n=1

Cn

(
a3
r3

)n
cosnφ3, r3 > a3, (4.4.3)

For the complete system, the sum of the charge per unit length of all the conductors

must equal zero, i.e., q
(1)
tot + q

(2)
tot + q

(3)
tot = 0. The total charge per unit length on

each of the cylinders is (see Section 4.5)

q
(1)
tot = −2πεA0, q

(2)
tot = −2πεB0, q

(3)
tot = −2πεC0. (4.4.4)

Therefore A0+B0+C0 = 0 and, as long as, the condition is satisfied this ensures the

logarithmic potentials disappear at infinity. Note as the radial distance r →∞ the

coordinates are effectively equivalent r1 ≡ r2 ≡ r3 ≡ r, therefore for the potential

to vanish at infinity, we have

lim
r→∞

utot(r, φ) = lim
r→∞
{u1(r, φ) + u2(r, φ) + u3(r, φ)} = 0

= lim
r→∞
{C + (A0 +B0 + C0) ln r} = 0,
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where the constant is set to C ≡ CA + CB + CC = 0. As shown in detail for the

two cylinder case, using the applicable translational addition theorems for (4.4.1),

(4.4.2) and (4.4.3) and imposing the boundary conditions at each of the three

cylinders, i.e., the fixed charges on cylinders 1, 2 and 3 results in the following sets

of linear equations. For cylinder 1

− A0 ln a1 −B0 ln d21 − C0 ln d31 = −V1 (4.4.5)

+
∞∑
n=1

[
Bnτ

(1)
B (0, n, a1, a2, d21) + Cnτ

(1)
C (0, n, a1, a3, d31)

]
, m = 0,

−B0γ
(1)
B (m, a1, d21)− C0γ

(1)
C (m, a1, d31) = Am (4.4.6)

+
∞∑
n=1

[
Bnτ

(1)
B (m,n, a1, a2, d21) + Cnτ

(1)
C (m,n, a1, a3, d31)

]
, m = 1, 2, . . . ,

where

τ
(1)
B (m,n, r1, a2, d21) =

(−1)n(n+m− 1)!

m!(n− 1)!

(
a2
d21

)n(
r1
d21

)m
, (4.4.7a)

τ
(1)
C (m,n, r1, a3, d31) =

(−1)n(n+m− 1)!

m!(n− 1)!

(
a3
d31

)n(
r1
d31

)m
, (4.4.7b)

γ
(1)
B (n, r1, d21) = − 1

n

(
r1
d21

)n
, (4.4.7c)

γ
(1)
C (n, r1, d31) = − 1

n

(
r1
d31

)n
. (4.4.7d)

For cylinder 2, the infinite set of equations are

− A0 ln d12 −B0 ln a2 − C0 ln d32 = −V2 (4.4.8)

+
∞∑
n=1

[
Anτ

(2)
A (0, n, a2, a1, d12) + Cnτ

(2)
C (0, n, a2, a3, d32)

]
, m = 0,

− A0γ
(2)
A (m, a2, d12)− C0γ

(2)
C (m, a2, d32) = Bm (4.4.9)

+
∞∑
n=1

[
Anτ

(2)
A (m,n, a2, a1, d12) + Cnτ

(2)
C (m,n, a2, a3, d32)

]
, m = 1, 2, . . . ,
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where

τ
(2)
A (m,n, r2, a1, d12) =

(−1)m(n+m− 1)!

m!(n− 1)!

(
a1
d12

)n(
r2
d12

)m
, (4.4.10a)

τ
(2)
C (m,n, r2, a3, d32) =

(−1)n(n+m− 1)!

m!(n− 1)!

(
a3
d32

)n(
r2
d32

)m
, (4.4.10b)

γ
(2)
A (n, r2, d12) = −(−1)n

n

(
r2
d12

)n
, (4.4.10c)

γ
(2)
C (n, r2, d32) = − 1

n

(
r2
d32

)n
. (4.4.10d)

For cylinder 3, we have

− A0 ln d13 −B0 ln d23 − C0 ln a3 = −V3 (4.4.11)

+
∞∑
n=1

[
Anτ

(3)
A (0, n, a3, a1, d13) +Bnτ

(3)
B (0, n, a3, a2, d23)

]
, m = 0,

− A0γ
(3)
A (m, a3, d13)−B0γ

(3)
B (m, a3, d23) = Cm (4.4.12)

+
∞∑
n=1

[
Anτ

(3)
A (m,n, a3, a1, d13) +Bnτ

(3)
B (m,n, a3, a2, d23)

]
, m = 1, 2, . . . ,

where

τ
(3)
A (m,n, r3, a1, d13) =

(−1)m(n+m− 1)!

m!(n− 1)!

(
a1
d13

)n(
r3
d13

)m
, (4.4.13a)

τ
(3)
B (m,n, r3, a2, d23) =

(−1)m(n+m− 1)!

m!(n− 1)!

(
a2
d23

)n(
r3
d23

)m
, (4.4.13b)

γ
(3)
A (n, r3, d13) = −(−1)n

n

(
r3
d13

)n
, (4.4.13c)

γ
(3)
B (n, r3, d23) = −(−1)n

n

(
r3
d23

)n
. (4.4.13d)

Equations (4.4.5), (4.4.6), (4.4.8), (4.4.9), (4.4.11), (4.4.12) and (4.4.4) constitute

the set of infinite equations which are solved for simultaneously using Gaussian

elimination for the constants of integration A1, B1, C1, A2, B2, C2, . . ., and the

unknown potentials V1, V2 and V3. To obtain numerical results the infinite series

are truncated to a finite number of terms n = m = M .

Numerical results are plotted for the case a1 = 1 cm, a2 = 2 cm, a3 = 3 cm, d12 = 5
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cm, d23 = 7 cm, d13 = 12 cm, q
(1)
tot = −2 nC/m, q

(2)
tot = 1 nC/m, q

(3)
tot = 1 nC/m, and

truncation of M = 15 in Figure 4.4.2. The plots show how the potential varies

radially with respect to coordinate r1 over the range 0 < r1 < 80 cm along the lines

defined by the angles φ1 = 0, π/6, π/4, π/3 and π/2. The results are as expected

the potential starts to decrease as r1 → ∞ and the calculated potentials on the

cylinders are V1 = −63.9160V, V2 = 10.7380V and V3 = 28.2765V.
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Figure 4.4.2: Potential distribution with respect to r1 for angles φ1 = 0, π/6,
π/4, π/3 and π/2, when a1 = 1 cm, a2 = 2 cm, a3 = 3 cm, d12 = 5 cm, d23 = 7

cm, d13 = 12 cm, q
(1)
tot = −2 nC/m, q

(2)
tot = 1 nC/m, q

(3)
tot = 1 nC/m and M = 15

4.5 Three-cylinder system in external electric field

Consider the three-cylinder system in Figure 4.5.1 placed in an external electric

field oriented along the common x-axis, E0 = E0ax, with the potentials on the

surfaces of the cylinders as unknowns. The electric field is determined when the

total charge per unit length of each of the cylinders is forced to be zero, that is

q
(1)
tot = q

(2)
tot = q

(3)
tot = 0, with only the external electric field remaining at infinity.

The surrounding medium is homogeneous, with permittivity ε.
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Figure 4.5.1: Three conducting cylinders in an external field, E0 = E0ax

The total charge per unit length on the first cylinder is calculated by

q
(1)
tot = −ε

∫ 2π

0

∂u
(1)
tot

∂r1
r1dφ1

∣∣∣∣∣
r1=a1

(4.5.1)

where u
(1)
tot(r1, φ1) is, after performing the translations of u2(r2, φ2) and u3(r3, φ3)

to the coordinates (r1, φ1),

u
(1)
tot(r1, φ1) = u(1)ex (r1, φ1) + u1(r1, φ1) + u

(1)
2 (r1, φ1) + u

(1)
3 (r1, φ1)

u
(1)
tot(r1, φ1) = −E0r1 cosφ1 + C + A0 ln r1 +B0 ln d21 + C0 ln d31

+
∞∑
n=1

[
An

(
a1
r1

)n
+B0γ

(1)
B (n, r1, d21) + C0γ

(1)
C (n, r1, d31)

]
cosnφ1

+
∞∑
n=1

∞∑
m=0

[
Bnτ

(1)
B (m,n, r1, a2, d21) + Cnτ

(1)
C (m,n, r1, a3, d31)

]
cosmφ1,

(4.5.2)

with γ
(1)
B (n, r1, d21), γ

(1)
C (n, r1, d31), τ

(1)
B (m,n, r1, a2, d21) and τ

(1)
C (m,n, r1, a3, d31)

defined in (4.4.7) and C ≡ CA + CB + CC + Cex = 0. Taking the derivative
∂u

(1)
tot

∂r1
and substituting back into (4.5.1) gives

q
(1)
tot = −2πεA0.

Applying the boundary condition, q
(1)
tot = 0, at the surface of cylinder 1 yields A0 = 0.

Similarly, the charge per unit length on cylinders 2 and 3 are q
(2)
tot = −2πεB0 and
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q
(3)
tot = −2πεC0, which yield B0 = 0 and C0 = 0, respectively.

Using the orthogonal properties of the trigonometric functions at the surface of

cylinder 1, r1 = a1 gives the set of infinite linear equations

0 = −V1 +
∞∑
n=1

[
Bnτ

(1)
B (0, n, a1, a2, d21) + Cnτ

(1)
C (0, n, a1, a3, d31)

]
, (4.5.3)

E0a1 = A1 +
∞∑
n=1

[
Bnτ

(1)
B (1, n, a1, a2, d21) + Cnτ

(1)
C (1, n, a1, a3, d31)

]
, (4.5.4)

0 = Am +
∞∑
n=1

[
Bnτ

(1)
B (m,n, a1, a2, d21) + Cnτ

(1)
C (m,n, a1, a3, d31)

]
, (4.5.5)

where m = 2, 3, . . . . Similarly, the set of infinite equations that result from cylinders

2 and 3 are

E0d12 = −V2 +
∞∑
n=1

[
Anτ

(2)
A (0, n, a2, a1, d12) + Cnτ

(2)
C (0, n, a2, a3, d32)

]
, (4.5.6)

E0a2 = B1 +
∞∑
n=1

[
Anτ

(2)
A (1, n, a2, a1, d12) + Cnτ

(2)
C (1, n, a2, a3, d32)

]
, (4.5.7)

0 = Bm +
∞∑
n=1

[
Anτ

(2)
A (m,n, a2, a1, d12) + Cnτ

(2)
C (m,n, a2, a3, d32)

]
, (4.5.8)

E0d13 = −V3 +
∞∑
n=1

[
Anτ

(3)
A (0, n, a3, a1, d13) + Cnτ

(3)
B (0, n, a3, a2, d23)

]
, (4.5.9)

E0a3 = C1 +
∞∑
n=1

[
Anτ

(3)
A (1, n, a3, a1, d13) + Cnτ

(3)
B (1, n, a3, a2, d23)

]
, (4.5.10)

0 = Cm +
∞∑
n=1

[
Anτ

(3)
A (m,n, a3, a1, d13) +Bnτ

(3)
B (m,n, a3, a2, d23)

]
, (4.5.11)

where the notations τ
(2)
A (m,n, r2, a1, d12), τ

(2)
C (m,n, r2, a3, d32), τ

(3)
A (m,n, r3, a1, d13)

and τ
(3)
B (m,n, r3, a2, d23) are defined in (4.4.10) and (4.4.13).

Like before, the constants of integration are determined by truncating the infinite

set of linear equations to n = m = M and then using Gaussian elimination to

solve the truncated system. Once the constants are determined the electric field is
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found from

E = −∇utot(r1, φ1|r2, φ2|r3, φ3)

= E0ax −
[
∇1u1(r1, φ1) +∇2u2(r2, φ2) +∇3u3(r3, φ3)

]
,

where the subscripts the ∇ operator indicate that the gradient is taken with respect

to the respective coordinate system. The electric field components are found to be

Ex = E0 +
∞∑
n=1

[
An

(
n

r1

)(
a1
r1

)n
cos (n+ 1)φ1 +Bn

(
n

r2

)(
a2
r2

)n
cos (n+ 1)φ2

+ Cn

(
n

r3

)(
a3
r3

)n
cos (n+ 1)φ3

]
,

Ey =
∞∑
n=1

[
An

(
n

r1

)(
a1
r1

)n
sin (n+ 1)φ1 +Bn

(
n

r2

)(
a2
r2

)n
sin (n+ 1)φ2

+ Cn

(
n

r3

)(
a3
r3

)n
sin (n+ 1)φ3

]
.

Numerical results are generated for the relative values of the electric field compo-

nents at various points, shown in Figure 4.5.1, for the three cylinder systems with

a1 = a2 = a3 ≡ a, d12 = d23 = 2a+ g and d13 = 2d23 for some different g/a ratios,

that is, for different gap distances, in Table 4.5.1.

Table 4.5.1: Relative electric field components at selected points on the cylinders
in Figure 4.5.1 for different relative gaps g/a, when E0 = E0ax and zero total
charge of the cylinders

Point Fields
Gap ratios (g/a)

1.0 0.5 0.1 0.05 0.01 0.005 0.001

P1
Ex/E0 2.2082 2.3140 2.5448 2.6196 2.7152 2.7238 2.7179
Ey/E0 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

P2
Ex/E0 0.0000 0.0000 0.0000 −0.0007 −0.0224 −0.0445 −0.0875
Ey/E0 −0.1754 0.3256 −0.6980 −0.8241 −1.0352 −1.1030 −1.1978

P3
Ex/E0 2.7436 3.5679 7.7208 11.0076 23.8160 30.5329 41.2069
Ey/E0 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

P4
Ex/E0 2.7734 3.5802 7.7208 11.0072 23.8114 30.5280 41.2048
Ey/E0 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

P5
Ex/E0 0.0000 0.0000 −0.0001 −0.0014 −0.0455 −0.0904 −0.1781
Ey/E0 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

P6
Ex/E0 0.0000 0.0000 0.0000 −0.0007 −0.0224 −0.0445 −0.0875
Ey/E0 0.1754 0.3256 0.6980 0.8241 1.0352 1.1030 1.1978

P7
Ex/E0 2.2082 2.3140 2.5448 2.6196 2.7152 2.7238 2.7179
Ey/E0 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
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The potentials on each of the cylinders changes depending on the gap size as shown

in Table 4.5.2.

Table 4.5.2: Potential on each cylinder in Figure 4.5.1 for different relative gaps
g/a, when E0 = E0ax and zero total charge of the cylinders

Cylinder Potential [V]
Gap ratios (g/a)

1.0 0.5 0.1 0.05 0.01 0.005 0.001

V1 −0.1556 −0.2121 −0.3351 −0.3759 −0.4395 −0.4558 −0.4750
V2 −0.7500 −0.6250 −0.5250 −0.5125 −0.5025 −0.5013 −0.5003
V3 −1.3444 −1.0379 −0.7149 −0.6491 −0.5655 −0.5467 −0.5255

Let now the direction of the electric field be oriented in the y-direction, E0 = E0ay,

for the same geometry in Figure 4.5.1. The harmonic potential of each cylinder

expressed in its attached coordinate system are, then

u1(r1, φ1) = CA +
∞∑
n=1

An

(
a1
r1

)n
sinnφ1, r1 > a1, (4.5.12)

u2(r2, φ2) = CB +
∞∑
n=1

Bn

(
a2
r2

)n
sinnφ2, r2 > a2, (4.5.13)

u3(r3, φ3) = CC +
∞∑
n=1

Cn

(
a3
r3

)n
sinnφ3, r3 > a3. (4.5.14)

The cosnφp functions can be excluded from the solution because the field is directed

only in the y-direction and, since A0 = B0 = C0 = 0, the cosnφp terms from the

translations of the ln rp function disappear. Thus the set of linear equations that

is to be solved for, with a zero potential at infinity, is

0 = −V1 −
∞∑
n=1

[
Bnτ

(1)
B (0, n, a1, a2, d21) + Cnτ

(1)
C (0, n, a1, a3, d31)

]
, (4.5.15)

E0a1 = A1 −
∞∑
n=1

[
Bnτ

(1)
B (1, n, a1, a2, d21) + Cnτ

(1)
C (1, n, a1, a3, d31)

]
, (4.5.16)

0 = Am −
∞∑
n=1

[
Bnτ

(1)
B (m,n, a1, a2, d21) + Cnτ

(1)
C (m,n, a1, a3, d31)

]
, (4.5.17)
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0 = −V2 −
∞∑
n=1

[
Anτ

(2)
A (0, n, a2, a1, d12) + Cnτ

(2)
C (0, n, a2, a3, d32)

]
, (4.5.18)

E0a2 = B1 −
∞∑
n=1

[
Anτ

(2)
A (1, n, a2, a1, d12) + Cnτ

(2)
C (1, n, a2, a3, d32)

]
, (4.5.19)

0 = Bm −
∞∑
n=1

[
Anτ

(2)
A (m,n, a2, a1, d12) + Cnτ

(2)
C (m,n, a2, a3, d32)

]
, (4.5.20)

0 = −V3 −
∞∑
n=1

[
Anτ

(3)
A (0, n, a3, a1, d13) +Bnτ

(3)
B (0, n, a3, a2, d23)

]
, (4.5.21)

E0a3 = C1 −
∞∑
n=1

[
Anτ

(3)
A (1, n, a3, a1, d13) +Bnτ

(3)
B (1, n, a3, a2, d23)

]
, (4.5.22)

0 = Cm −
∞∑
n=1

[
Anτ

(3)
A (m,n, a3, a1, d13) +Bnτ

(3)
B (m,n, a3, a2, d23)

]
. (4.5.23)

The constants of integration and the potentials V1, V2 and V3 are solved for by first

truncating the infinite set of equations and, then, using Gaussian elimination to

solve the system. The electric field components are found to be

Ex =
∞∑
n=1

[
An

(
n

r1

)(
a1
r1

)n
sin (n+ 1)φ1 +Bn

(
n

r2

)(
a2
r2

)n
sin (n+ 1)φ2

+ Cn

(
n

r3

)(
a3
r3

)n
sin (n+ 1)φ3

]
,

Ey = E0 −
∞∑
n=1

[
An

(
n

r1

)(
a1
r1

)n
cos (n+ 1)φ1 +Bn

(
n

r2

)(
a2
r2

)n
cos (n+ 1)φ2

+ Cn

(
n

r3

)(
a3
r3

)n
cos (n+ 1)φ3

]
.

Numerical results are generated for the relative values of the electric field compo-

nents, for the different gap distances, at the same points, but only P2, P5 and P6

are shown in Table 4.5.3 because the fields at the other points are zero.
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Table 4.5.3: Relative electric field components at selected points on the cylinders
in Figure 4.5.1 for different gap ratios g/a, when E0 = E0ay and no charge on the
cylinders

Point Fields
Gap ratios (g/a)

1.0 0.5 0.1 0.05 0.01 0.005 0.001

P2
Ex/E0 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
Ey/E0 1.8262 1.7924 1.7650 1.7617 1.7590 1.7587 1.7584

P5
Ex/E0 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
Ey/E0 1.7214 1.6688 1.6276 1.6227 1.6189 1.6184 1.6180

P6
Ex/E0 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
Ey/E0 1.8262 1.7924 1.7650 1.7617 1.7590 1.7587 1.7584

The potential on each of the cylinders for the different gap sizes is shown in Table

4.5.4.

Table 4.5.4: Induced potential on each cylinder in Figure 4.5.1 for different
relative gaps g/a, when E0 = E0ay and zero total charge of the cylinders

Cylinder Potential [V]
Gap ratios (g/a)

1.0 0.5 0.1 0.05 0.01 0.005 0.001

V1 0.1039 0.1158 0.1260 0.1272 0.1283 0.1284 0.1285
V2 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
V3 −0.1039 −0.1158 −0.1260 −0.1272 −0.1283 −0.1284 −0.1285
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Chapter 5

Application of the addition
theorems to the solution of
electrostatic fields in systems of
parallel cylinders with arbitrary
axis locations

In the previous chapter, applications of the translational addition theorems have

been illustrated for systems of parallel cylinders with axes in the same plane, which

simplified the expressions for the potential distributions. For problems that do not

exhibit any symmetry about the axes, the general solution of Laplace’s equation

for each cylinder expressed in its attached coordinate system, normalized to its

respective radius aq, becomes

uq(rq, φq)
q=1,2,...,N

= CA+A0 ln rq+
∞∑
n=1

[
ACn

(
aq
rq

)n
cosnφq + ASn

(
aq
rq

)n
sinnφq

]
. (5.0.1)

5.1 Two-cylinder system arbitrarily located in

the system of coordinates

Two circular cylinders outside each other, of radii a1 and a2 are charged to −q and

q, respectively. The separation distance between the centres of the two cylinders is

d12 = d21, as shown in Figure 5.1.1. The system of cylinders being complete, let the

potential vanish at infinity. Consider the surrounding medium to be homogeneous,
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with permittivity ε. The expressions for the total potential distribution is found,

in what follows.

Figure 5.1.1: Two conducting cylinders arbitrarily located in space

The individual potential from each of the two cylinders, in their respective coordi-

nate systems, are

u1(r1, φ1) = CA + A0 ln r1 +
∞∑
n=1

[
ACn

(
a1
r1

)n
cosnφ1 + ASn

(
a1
r1

)n
sinnφ1

]
,

(5.1.1)

u2(r2, φ2) = CB +B0 ln r2 +
∞∑
n=1

[
BC
n

(
a2
r2

)n
cosnφ2 +BS

n

(
a2
r2

)n
sinnφ2

]
.

(5.1.2)

The translated potential u
(1)
2 (r1, φ1) is obtained by applying the addition theorems

(3.2.6) and (3.4.5), with the following substitutions rq ≡ r2, φq ≡ φ2, rp ≡ r1,
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φp ≡ φ1, rqp ≡ d21 and φqp = φ21. This gives

u
(1)
2 (r1, φ1) = CB +B0

{
ln d21 −

∞∑
n=1

(−1)n

n

(
r1
d21

)n
cos (nφ1 − nφ21)

}

+
∞∑
n=1

∞∑
m=0

(−1)m(n+m− 1)!

m!(n− 1)!

(
a2
d21

)n(
r1
d21

)m
×

[
BC
n cos (mφ1 − (m+ n)φ21)−BS

n sin (mφ1 − (m+ n)φ21)
]
.

(5.1.3)

For convenience, let us denote the functions

τ
C/S
21 (m,n, r1) =

(−1)m(n+m− 1)!

m!(n− 1)!

(
a2
d21

)n(
r1
d21

)m
cos

sin
[(n+m)φ21], (5.1.4a)

γ
C/S
21 (n, r1) = −(−1)n

n

(
r1
d21

)n
cos

sin
nφ21, (5.1.4b)

for which the abbreviated notation τ
C/S
21 (m,n, r1) and γ

C/S
21 (n, r1) is understood

to be τ
C/S
21 (m,n, r1, a2, d21, φ21) and γ

C/S
21 (n, r1, d21, φ21), respectively. Using the

trigonometric relationships

cos (α− β) = cosα cos β + sinα sin β,

sin (α− β) = sinα cos β − cosα sin β,

allows the total potential u
(1)
tot(r1 = a1, φ1) = u1(a1, φ1) + u

(1)
2 (a1, φ1), at the surface

of cylinder 1, to be expressed as

V1 = C + A0 ln r1 +B0 ln d21

+
∞∑
n=1

{[
ACn +B0γ

C
21(n, a1)

]
cosnφ1 +

[
ASn +B0γ

S
21(n, a1)

]
sinnφ1

}
+
∞∑
n=1

∞∑
m=0

{[
BC
n τ

C
21(m,n, a1) +BS

n τ
S
21(m,n, a1)

]
cosmφ1

+
[
BC
n τ

S
21(m,n, a1)−BS

n τ
C
21(m,n, a1)

]
sinmφ1

}
, (5.1.5)

where C ≡ CA +CB. Multiplying (5.1.5) by cosmφ1 for all positive integral values

of m and integrating in φ1 from 0 to 2π gives the following infinite set of linear
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equations

−V1 +
∞∑
n=1

[
BC
n τ

C
21(0, n, a1) +BS

n τ
S
21(0, n, a1)

]
= −A0 ln a1 −B0 ln d21 − C,

ACm +
∞∑
n=1

[
BC
n τ

C
21(m,n, a1) +BS

n τ
S
21(m,n, a1)

]
= −B0γ

C
21(m, a1), (5.1.6)

ASm +
∞∑
n=1

[
BC
n τ

S
21(m,n, a1)−BS

n τ
C
21(m,n, a1)

]
= −B0γ

S
21(m, a1).

Likewise, after translating u1(r1, φ1) to (r2, φ2) coordinates and applying the

boundary condition at the surface of cylinder 2, that is, u
(2)
tot(r2 = a2, φ2) = V2 gives

the infinite set of equations

−V2 +
∞∑
n=1

[
ACn τ

C
12(0, n, a2) + ASnτ

S
12(0, n, a2)

]
= −B0 ln a2 − A0 ln d12 − C,

BC
m +

∞∑
n=1

[
ACn τ

C
12(m,n, a2) + ASnτ

S
12(m,n, a2)

]
= −A0γ

C
12(m, a2), (5.1.7)

BS
m +

∞∑
n=1

[
ACn τ

S
12(m,n, a2)− ASnτC12(m,n, a2)

]
= −A0γ

S
12(m, a2),

where,

τ
C/S
12 (m,n, r2) =

(−1)m(n+m− 1)!

m!(n− 1)!

(
a1
d12

)n(
r2
d12

)m
cos

sin
[(n+m)φ12], (5.1.8a)

γ
C/S
12 (n, r2) = −(−1)n

n

(
r2
d12

)n
cos

sin
nφ12. (5.1.8b)

where again the abbreviated notation τ
C/S
12 (m,n, r2) and γ

C/S
12 (n, r2) is understood

to be τ
C/S
12 (m,n, r2, a1, d12, φ12) and γ

C/S
12 (n, r2, d12, φ12), respectively.

Here again the charge per unit length must be found in terms of the constants of

integration to impose the known boundary conditions on the cylinders. The charge
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density on cylinder 1 was found to be ρ
(1)
S (r1, φ1) = −ε∂u

(1)
tot

∂r1
, which gives

ρ
(1)
S (r1, φ1) = −ε

{
A0

r1
+
∞∑
n=1

n

r1

{[
B0γ

C
21(n, r1)− ACn

(
a1
r1

)n]
cosnφ1

+

[
B0γ

S
21(n, r1)− ASn

(
a1
r1

)n]
sinnφ1

}
+
∞∑
n=1

∞∑
m=0

m

r1

{[
BC
n τ

C
21(m,n, r1) +BS

n τ
S
21(m,n, r1)

]
cosmφ1

−
[
BC
n τ

S
21(m,n, r1) +BS

n τ
C
21(m,n, r1)

]
sinmφ1

}}
, (5.1.9)

since

∂

∂r1

[
τ
C/S
21 (m,n, r1)

]
=
m

r1
τ
C/S
21 (m,n, r1) and

∂

∂r1

[
γ
C/S
21 (n, r1)

]
=
n

r1
γ
C/S
21 (n, r1).

Therefore the total charge per unit length on cylinder 1, q
(1)
tot =

∫ 2π

0
ρ
(1)
S (a1, φ1) a1dφ1,

is, as before,

q
(1)
tot = −2πεA0.

Similarly, the total charge per unit length on the second cylinder is

q
(2)
tot = −2πεB0.

Like before for the potential to vanish at infinity, we require the total charges per

unit length on the cylinders be equal and opposite, i.e., −q(1)tot = q
(2)
tot = q and the

reference constant set to C = 0. The series are truncated to n = m = M in the

sets of linear equations (5.1.6) and (5.1.7), then, using Gaussian elimination we

solve the system to find the constants of integration.

Numerical results of the potential are obtained for the case a1 = 1 cm, a2 = 2 cm,

d12 = d21 = 5 cm, φ12 = π/3 and φ21 = 4π/3 and plotted in Figure 5.1.2. The

charges, per unit length, placed on cylinders 1 and 2 are q
(1)
tot = −1 nC/m and

q
(2)
tot = 1 nC/m, respectively. Note, apart from the rotational shift of cylinder 2,
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the geometry and charges of the cylinders are the same numerical values used in

Section 4.2. Since the cylinders are of the same radii and separation distance, the

potential distribution for the arbitrarily located parallel cylinders along the lines

for φ1 = π/3, 7π/12 and 5π/6 correspond, in the case of the coplanar symmetric

cylinder problem, to lines along φ1 = 0, π/4 and π/2, respectively.
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(a) Potentials distribution for φ1 = π/3, 7π/12 and 5π/6 over 0 < r1 < 40 cm
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(b) Percentage Error for φ1 = π/3, 7π/12 and 5π/6 over 0 < r1 < 10 cm

Figure 5.1.2: Potential distribution and errors between translational and bipolar
methods for a1 = 1 cm, a2 = 2 cm, d12 = d21 = 5 cm, φ12 = π/3, φ21 = 4π/3,

q
(1)
tot = −1 nC/m, q

(2)
tot = 1 nC/m and M = 25
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Figure 5.1.2a compares the potential distribution between the translational and

bipolar methods for φ1 = π/3, 7π/12 and 5π/6 with respect to r1 over the interval

0 < r1 < 40 cm. To emphasize that the percentage error between the two methods is

small the results are graphed in Figure 5.1.2b over the shorter range of 0 < r1 < 10

cm, since for distances greater then 10 cm the percentage error is of order 10−10 or

less.

5.2 System with N arbitrarily located cylinders

For the case with N = 2 cylinders a recognizable pattern emerges to the sets of

coupled linear equations obtained when applying the boundary conditions at the

cylinders. Therefore the linear equations found for the two cylinder case can be

generalized to N number of cylinders as shown in Figure 2.2.1. The potential

distribution for the pth cylinder represented in its attached coordinate system is

up(rp, φp) = C
(p)
A + A

(p)
0 ln rp +

∞∑
n=1

[
A(p)C
n

(
ap
rp

)n
cosnφp + A(p)S

n

(
ap
rp

)n
sinnφp

]
,

(5.2.1)

where p = 1, 2, . . . , N , for all the cylinders. Translating all the potentials to

(rp, φp) coordinates and applying the boundary condition at the pth cylinder, that

is, u
(p)
tot(rp = ap, φp) = Vp, generates the set of linear equations

Vp − CA = A
(p)
0 ln ap +

N∑
q=1
q 6=p

{
A

(q)
0 ln dqp +

∞∑
n=1

[
A(q)C
n τCqp(0, n, ap) + A(q)S

n τSqp(0, n, ap)
]}

,

0 =A(p)C
m +

N∑
q=1
q 6=p

{
A

(q)
0 γCqp(m, ap) +

∞∑
n=1

[
A(q)C
n τCqp(m,n, ap) + A(q)S

n τSqp(m,n, ap)
]}

,

0 =A(p)S
m +

N∑
q=1
q 6=p

{
A

(q)
0 γSqp(m, ap) +

∞∑
n=1

[
A(q)C
n τSqp(m,n, ap)− A(q)S

n τCqp(m,n, ap)
]}

,

(5.2.2)
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for all positive integral values of m = 0, 1, 2, . . ., with CA =
∑N

p=1C
(p)
A and the

notation

τC/Sqp (m,n, rp) =
(−1)m(n+m− 1)!

m!(n− 1)!

(
aq
dqp

)n(
rp
dqp

)m
cos

sin
(m+ n)φqp, (5.2.3a)

γC/Sqp (n, rp) = −(−1)n

n

(
ap
dqp

)n
cos

sin
nφqp. (5.2.3b)

If the infinite set of equations and series are truncated n = m = M , every cylinder

generates (2M + 1) linear equations. For a system of N cylinders the resultant

number of constants of integration to solve for becomes N(2M + 1).

As an example, let us take the case for N = 3 conducting cylinders with radii a1,

a2 and a3 with placed charges, per unit length, of q
(1)
tot , q

(2)
tot and q

(3)
tot , respectively.

The distances between the centres of the cylinders are d12, d13 and d23 with the

surrounding medium being homogeneous with permittivity ε, as shown in Figure

5.2.1. Consider a complete system with the potential vanishing at infinity.

Figure 5.2.1: Three conducting cylinders arbitrarily located in space

Using (5.2.1) the individual potential distributions from each of the three cylinders,
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in their respective coordinate systems, are

u1(r1, φ1) = CA + A0 ln r1 +
∞∑
n=1

[
ACn

(
a1
r1

)n
cosnφ1 + ASn

(
a1
r1

)n
sinnφ1

]
,

u2(r2, φ2) = CB +B0 ln r2 +
∞∑
n=1

[
BC
n

(
a2
r2

)n
cosnφ2 +BS

n

(
a2
r2

)n
sinnφ2

]
,

u3(r3, φ3) = CC + C0 ln r3 +
∞∑
n=1

[
CC
n

(
a3
r3

)n
cosnφ3 + CS

n

(
a3
r3

)n
sinnφ3

]
,

(5.2.4)

where the substitution A(1) = A, A(2) = B and A(3) = C for the constants is

made for simplification. As long as the sum of the charges on the conductors

equals zero, q
(1)
tot + q

(2)
tot + q

(3)
tot = 0, the system will be complete ensuring the

logarithmic potential vanishes at infinity. Then, setting the reference constant to

zero C ≡ CA + CB + CC = 0 and using (5.2.2) the coupled set of linear equations

becomes

− A0 ln a1 −B0 ln d21 − C0 ln d31 = −V1

+
∞∑
n=1

[
BC
n τ

C
21(0, n, a1) +BS

n τ
S
21(0, n, a1) + CC

n τ
C
31(0, n, a1) + CS

n τ
S
31(0, n, a1)

]
,

− A0 ln d12 −B0 ln a2 − C0 ln d32 = −V2

+
∞∑
n=1

[
ACn τ

C
12(0, n, a2) + ASnτ

S
12(0, n, a2) + CC

n τ
C
32(0, n, a2) + CS

n τ
S
32(0, n, a2)

]
,

− A0 ln d13 −B0 ln d23 − C0 ln a3 = −V3

+
∞∑
n=1

[
ACn τ

C
13(0, n, a3) + ASnτ

S
13(0, n, a3) +BC

n τ
C
23(0, n, a3) +BS

n τ
S
23(0, n, a3)

]
,

−B0γ
C
21(m, a1)− C0γ

C
31(m, a1) = ACm

+
∞∑
n=1

[
BC
n τ

C
21(m,n, a1) +BS

n τ
S
21(m,n, a1) + CC

n τ
C
31(m,n, a1) + CS

n τ
S
31(m,n, a1)

]
,

−B0γ
S
21(m, a1)− C0γ

S
31(m, a1) = ASm

+
∞∑
n=1

[
BC
n τ

S
21(m,n, a1)−BS

n τ
C
21(m,n, a1) + CC

n τ
S
31(m,n, a1)− CS

n τ
C
31(m,n, a1)

]
,
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− A0γ
C
12(m, a2) + C0γ

C
32(m, a2) = BC

m

+
∞∑
n=1

[
ACn τ

C
12(m,n, a2) + ASnτ

S
12(m,n, a2) + CC

n τ
C
32(m,n, a2) + CS

n τ
S
32(m,n, a2)

]
,

− A0γ
S
12(m, a2)− C0γ

S
32(m, a2) = BS

m

+
∞∑
n=1

[
ACn τ

S
12(m,n, a2)− ASnτC12(m,n, a2) + CC

n τ
S
32(m,n, a2)− CS

n τ
C
32(m,n, a2)

]
,

− A0γ
C
13(m, a3)−B0γ

C
23(m, a3) = CC

m

+
∞∑
n=1

[
ACn τ

C
13(m,n, a3) + ASnτ

S
13(m,n, a3) +BC

n τ
C
23(m,n, a3) +BS

n τ
S
23(m,n, a3)

]
,

− A0γ
S
13(m, a3)−B0γ

S
23(m, a3) = CS

m

+
∞∑
n=1

[
ACn τ

S
13(m,n, a3)− ASnτC13(m,n, a3) +BC

n τ
S
23(m,n, a3)−BS

n τ
C
23(m,n, a3)

]
,

where

τ
C/S
21 (m,n, r1) =

(−1)m(n+m− 1)!

m!(n− 1)!

(
a2
d21

)n(
r1
d21

)m
cos

sin
(n+m)φ21,

γ
C/S
21 (n, r1) = −(−1)n

n

(
r1
d21

)n
cos

sin
nφ21,

τ
C/S
31 (m,n, r1) =

(−1)m(n+m− 1)!

m!(n− 1)!

(
a3
d31

)n(
r1
d31

)m
cos

sin
(n+m)φ31,

γ
C/S
31 (n, r1) = −(−1)n

n

(
r1
d31

)n
cos

sin
nφ31,

τ
C/S
12 (m,n, r2) =

(−1)m(n+m− 1)!

m!(n− 1)!

(
a1
d12

)n(
r2
d12

)m
cos

sin
(n+m)φ12,

γ
C/S
12 (n, r2) = −(−1)n

n

(
r2
d12

)n
cos

sin
nφ12,

τ
C/S
32 (m,n, r2) =

(−1)m(n+m− 1)!

m!(n− 1)!

(
a3
d32

)n(
r2
d32

)m
cos

sin
(n+m)φ32,

γ
C/S
32 (n, r2) = −(−1)n

n

(
r2
d32

)n
cos

sin
nφ32,
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τ
C/S
13 (m,n, r3) =

(−1)m(n+m− 1)!

m!(n− 1)!

(
a1
d13

)n(
r3
d13

)m
cos

sin
(n+m)φ13,

γ
C/S
13 (n, r3) = −(−1)n

n

(
r3
d13

)n
cos

sin
nφ13,

τ
C/S
23 (m,n, r3) =

(−1)m(n+m− 1)!

m!(n− 1)!

(
a2
d23

)n(
r3
d23

)m
cos

sin
(n+m)φ23,

γ
C/S
23 (n, r3) = −(−1)n

n

(
r3
d23

)n
cos

sin
nφ23.

The set of linear equations is truncated to n = m = M to solve for the constants

of integration. The total charges per unit length of the cylinders are, respectively,

q
(1)
tot = −2πεA0, q

(2)
tot = −2πεB0, q

(3)
tot = −2πεC0,

which are used to determine A0, B0 and C0 for the linear set of equations.
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Figure 5.2.2: Potential distribution with respect to r1 for angles φ1 = 0, π/6, π/3,
π/2, 2π/3 and π , when a1 = 1 cm, a2 = 2 cm, a3 = 3 cm, d12 = d23 = d13 = 10

cm, q
(1)
tot = 1 nC/m, q

(2)
tot = −2 nC/m, q

(3)
tot = 1 nC/m and M = 15

Numerical results are obtained for the case when a1 = 1 cm, a2 = 2 cm, a3 = 3

cm, d12 = d13 = d23 = 10 cm, φ12 = π/3, φ13 = 0, φ21 = 4π/3, φ23 = 5π/3,

φ31 = π and φ32 = 2π/3, that is the axes of the cylinders form an equilateral
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triangle, and the charges q
(1)
tot = 1 nC/m, q

(2)
tot = −2 nC/m and q

(3)
tot = 1 nC/m

are placed on the conductors. Figure 5.2.2 shows plots of the potential with

respect to the (r1, φ1) coordinates as it varies radial out from cylinder 1 on the

lines defined by φ1 = 0, π/6, π/3, π/2, 2π/3 and π over the range 0 < r1 < 50

cm for a truncation of M = 15. The calculated potentials on the cylinders are

V1 = 40.2284V, V2 = −54.8842V and V3 = 20.4456V.
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Chapter 6

Application of the translational
addition theorems to the solution
of magnetostatic fields

The magnetic field can be defined in terms of a magnetic scalar potential um,

for regions where J = 0 and, within homogeneous materials, satisfies Laplace’s

equation as in the electrostatic case. Thus,

∇2um = 0, wherever J = 0. (6.0.1)

The solution is obtained, as before, by using the method of separation of variables

in circular coordinates. The magnetic field intensity H is then found by

H = −∇um. (6.0.2)

6.1 Two perfectly conducting cylinders in an ex-

ternal magnetic field parallel to the plane of

their axes and normal to them

Consider two perfectly conducting cylinders of radii a1 and a2 with a separation

d between their axes, as shown in the Figure 6.1.1. The cylinders are placed

in an external magnetic field oriented along the common x-axis of the cylinders

H0 = H0ax. We define the external magnetic field as the only contribution to
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the magnetic scalar potential at infinity, i.e., the magnetic potentials from the

cylinders vanish at infinity. The medium surrounding the cylinders is homogeneous,

of permeability µ.

Figure 6.1.1: Two conducting cylinders in external magnetic field, H0 = H0ax

The magnetic scalar potentials of each of the cylinders expressed in their attached

coordinate systems are

um1(r1, φ1) = CA + A0 ln r1 +
∞∑
n=1

An

(
a1
r1

)n
cosnφ1, r1 > a1, (6.1.1)

um2(r2, φ2) = CB +B0 ln r2 +
∞∑
n=1

Bn

(
a2
r2

)n
cosnφ2, r2 > a2. (6.1.2)

The magnetic potential due the external magnetic field H0 = H0ax in the local

coordinates of each cylinder is

uexm1
(r1, φ1) = −H0r1 cosφ1 + Cex, (6.1.3)

uexm2
(r2, φ2) = −H0r2 cosφ2 + Cex −H0d, (6.1.4)

where Cex is a constant of reference.

To impose the boundary condition at r1 = a1, the translational addition theorems

(3.2.6) and (3.4.5), with the substitutions rq ≡ r2, φq ≡ φ2, rp ≡ r1, φp ≡ φ1,
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rqp ≡ d and φqp = π are reduced to

ln r2 = ln d−
∞∑
n=1

1

n

(r1
d

)n
cosnφ1,(

1

r2

)n
cosnφ2 =

∞∑
m=0

(−1)n(n+m− 1)!

m!(n− 1)!

(
1

d

)n (r1
d

)m
cosmφ1,

where again, for convenience, we denote

τB(m,n, r1, a2, d) =
(−1)n(n+m− 1)!

m!(n− 1)!

(a2
d

)n (r1
d

)m
, (6.1.5a)

γB(n, r1, d) = − 1

n

(r1
d

)n
. (6.1.5b)

Therefore the total magnetic scalar potential in the coordinates of cylinder 1 is

u(1)mtot
(r1, φ1) = A0 ln r1 +B0 ln d+

∞∑
n=1

{[
An

(
a1
r1

)n
+B0γB(n, r1, d)

]
cosnφ1

}
+
∞∑
n=1

∞∑
m=0

BnτB(m,n, r1, a2, d) cosmφ1 + C −H0r1 cosφ1, (6.1.6)

where C ≡ CA + CB + Cex. The boundary condition on the surface of cylinder

1 requires that the normal component of the magnetic field intensity to be zero.

Therefore, the Neumann boundary condition to be imposed on the surface of

cylinder 1 is

∂u
(1)
mtot

∂r1
= 0. (6.1.7)

Taking the derivative of (6.1.6) with respect to r1 gives

∂u
(1)
mtot

∂r1
= −H0 cosφ1 +

A0

r1
+
∞∑
n=1

n

r1

[
B0γB(n, r1, d)− An

(
a1
r1

)n]
cosnφ1

+
∞∑
n=1

∞∑
m=0

m

r1
BnτB(m,n, r1, a2, d) cosmφ1. (6.1.8)
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Applying the boundary condition on cylinder 1 gives

0 = −H0 cosφ1 +
A0

a1
+
∞∑
n=1

n

a1

[
B0γB(n, a1, d)− An

]
cosnφ1

+
∞∑
n=1

∞∑
m=1

m

a1
BnτB(m,n, a1, a2, d) cosmφ1. (6.1.9)

Using the orthogonal properties of the trigonometric functions, (6.1.9) gives the

set of infinite equations

A0 = 0, m = 0, (6.1.10a)

A1 −
∞∑
n=1

BnτB(1, n, a1, a2, d) = −H0a1, m = 1, (6.1.10b)

Am −
∞∑
n=1

BnτB(m,n, a1, a2, d) = 0, m = 2, 3, . . . . (6.1.10c)

The same steps taken to apply the boundary conditions at cylinder 1 are followed

for cylinder 2. Now um1(r1, φ1) is translated into the coordinate system (r2, φ2)

and the boundary conditions at r2 = a2 are imposed, that is,

∂m
(2)
mtot

∂r2
= 0, (6.1.11)

which gives the infinite set of equations

B0 = 0, m = 0, (6.1.12a)

B1 −
∞∑
n=1

AnτB(1, n, a2, a1, d) = −H0a2, m = 1, (6.1.12b)

Bm −
∞∑
n=1

AnτB(m,n, a2, a1, d) = 0, m = 2, 3, . . . . (6.1.12c)

where

τA(m,n, r2, a1, d) =
(−1)m(n+m− 1)!

m!(n− 1)!

(a1
d

)n (r2
d

)m
, (6.1.13a)

γA(n, r2, d) = −(−1)n

n

(r2
d

)n
. (6.1.13b)
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Like in the electrostatic cases the infinite set of equations is truncated to n = m = M

and then using Gaussian elimination, we solve for the constants of integration.

Once the constants are obtained the magnetic field intensity is found from

H = −∇umtot(r1, φ1|r2, φ2)

= H0ax −
[
∇1um1(r1, φ1) +∇2um2(r2, φ2)

]
,

where the subscripts on the ∇ operator indicate that the gradient is taken with

respect to the respective coordinate system. The magnetic field components are

found to be

Hx = H0 +
∞∑
n=1

[
An

(
n

r1

)(
a1
r1

)n
cos (n+ 1)φ1 +Bn

(
n

r2

)(
a2
r2

)n
cos (n+ 1)φ2

]
,

Hy =
∞∑
n=1

[
An

(
n

r1

)(
a1
r1

)n
sin (n+ 1)φ1 +Bn

(
n

r2

)(
a2
r2

)n
sin (n+ 1)φ2

]
.

Two-dimensional bipolar coordinate solution

The scalar magnetic potential obtained using the separation of variables in bipolar

coordinates [15], yields

ubimtot
(η, ξ)

η<0

= H0a+ 2H0a
∞∑
n=1

{
enη − e−nη1

coshnη1
sinhnη

}
cosnξ, (6.1.14)

ubimtot
(η, ξ)

η>0

= −H0a+ 2H0a
∞∑
n=1

{
e−nη +

e−nη2

coshnη2
sinhnη

}
cosnξ. (6.1.15)

To obtain the magnetic field intensity the gradient of the magnetic potential is

taken, in bipolar coordinates, giving

H = −∇ubimtot
(η, ξ) = − 1

hη

∂ubimtot

∂η
aη −

1

hξ

∂ubimtot

∂ξ
aξ, (6.1.16)

where we use the scale factors and geometrical relations between the bipolar and

Cartesian unit vectors in Appendix B to obtain the magnetic field components in
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terms of unit vectors ax and ay.

Numerical results of the two perfectly conducting cylinder system in
the presence of an external magnetic field

Numerical results are obtained for the case when a1 = 1 cm, a2 = 2 cm, H0 =

1 A/m, and truncation M = 50 for varying separation distances d in free space.

Figure 6.1.2 shows plots of the magnetic field intensity components Hx and Hy

around the surface of cylinder 1, i.e. r1 = a1, for the separation distances d = 5

cm, 10 cm and 20 cm.
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(c) Hx field for d = 10 cm
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(e) Hx field for d = 20 cm
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Figure 6.1.2: Magnetic field intensity components Hx and Hy plots around
cylinder 1, r1 = a1 for different separation distances d = 5 cm, 10 cm and 20 cm
between the translational and bipolar methods for a1 = 1 cm, a2 = 2 cm, H0 = 1
A/m, and M = 50

Notice as the separation distance decreases the translational method is no longer

79



as good an approximation for the magnetic field components, especially near φ1 =

0 and 180° for the Hx component in Figure 6.1.2a. However, as the separation

distance increase in relation to the cylinder radii we see the translational method

results are in excellent agreement with the results from the bipolar method.

6.2 Two perfectly conducting cylinders in an ex-

ternal magnetic field normal to the plane of

their axes

Now let the direction of the external magnetic field be oriented in the y-direction,

H0 = H0ay, as shown in Figure 6.2.1 for the same two cylinder system in Section

6.1.

Figure 6.2.1: Two conducting cylinders in external magnetic field, H0 = H0ay

The harmonic potential of each cylinder expressed in its attached coordinate system

are, then

um1(r1, φ1)
r1>a1

= CA + A0 ln r1 +
∞∑
n=1

(
a1
r1

)n {
ACn cosnφ1 + ASn sinnφ1

}
, (6.2.1)

um2(r2, φ2)
r2>a2

= CB +B0 ln r2 +
∞∑
n=1

(
a2
r2

)n {
BC
n cosnφ2 +BS

n sinnφ2

}
. (6.2.2)
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The magnetic potential due the external magnetic field H0 = H0ay in the local

coordinates of each cylinder is

uexm1
= −H0r1 sinφ1 + Cex, (6.2.3)

uexm2
= −H0r2 sinφ2 + Cex, (6.2.4)

where Cex is a constant of reference. To impose the boundary condition at r1 = a1,

the translational addition theorems (3.2.5), (3.2.6) and (3.4.5), with the substitu-

tions rq ≡ r2, φq ≡ φ2, rp ≡ r1, φp ≡ φ1, rqp ≡ d and φqp = π to translate um2 into

the coordinate system (r1, φ1). Thus, the total magnetic potential is

u(1)mtot
(r1, φ1) = C −H0r1 sinφ1 + A0 ln r1 +B0 ln d

+
∞∑
n=1

{[
ACn

(
a1
r1

)n
+B0γB(n, r1, d)

]
cosnφ1 + ASn

(
a1
r1

)n
sinnφ1

}
+
∞∑
n=1

∞∑
m=0

{
BC
n τB(m,n, r1, a2, d) cosmφ1 −BS

n τB(m,n, r1, a2, d) sinmφ1

}
,

(6.2.5)

where C ≡ CA + CB + Cex and the functions γB(n, r1, d) and τB(m,n, r1, a2, d)

are defined in (6.1.5). The derivative of (6.2.5) with respect to r1 is taken so the

boundary condition, i.e., the magnetic field intensity normal to the surface of the

cylinder, r1 = a1, is zero. Thus,

0 = −H0 sinφ1 +
A0

a1
+
∞∑
n=1

n

a1

{[
B0γB(n, r1, d)− ACn

]
cosnφ1 − ASn

(
a1
r1

)n
sinnφ1

}
+
∞∑
n=1

∞∑
m=0

m

a1

{
BC
n τB(m,n, r1, a2, d) cosmφ1 −BS

n τB(m,n, r1, a2, d) sinmφ1

}
,

(6.2.6)

Using the orthogonal properties of the trigonometric functions, (6.2.6) gives the
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set of infinite equations

A0 = 0, m = 0, (6.2.7a)

ACm −
∞∑
n=1

BC
n τB(m,n, a1) = 0, m = 1, 2, . . . , (6.2.7b)

AS1 +
∞∑
n=1

BS
n τB(1, n, a1) = −H0a1, m = 1, (6.2.7c)

ASm +
∞∑
n=1

BS
n τB(m,n, a1) = 0, m = 2, 3, . . . . (6.2.7d)

In the same way, imposing the boundary condition at the surface of cylinder 2

gives the set of infinite equations

B0 = 0, m = 0, (6.2.8a)

BC
m −

∞∑
n=1

ACn τA(m,n, a2) = 0, m = 1, 2, . . . , (6.2.8b)

BS
1 +

∞∑
n=1

ASnτA(1, n, a2) = −H0a2, m = 1, (6.2.8c)

BS
m +

∞∑
n=1

ASnτA(m,n, a2) = 0, m = 2, 3, . . . , (6.2.8d)

where the functions γA(n, r2, d) and τA(m,n, r2, a1, d) are defined in (6.1.13). The

infinite set of equations is truncated to n = m = M and then using Gaussian

elimination, we solve for the constants of integration. Once the constants are

obtained we use H = −∇umtot to find the magnetic field intensity.

Solving this same problem in bipolar coordinates, assuming the magnetic potential

vanishes at infinity, yields

ubimtot
(η, ξ)

η<0

= −2H0a
∞∑
n=1

{
enη − e−nη1

coshnη1
sinhnη

}
sinnξ, (6.2.9)

ubimtot
(η, ξ)

η>0

= −2H0a

∞∑
n=1

{
e−nη +

e−nη2

coshnη2
sinhnη

}
sinnξ. (6.2.10)

Again, as in the previous section, we use H = −∇ubimtot
(η, ξ) to find the magnetic
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field intensity in terms of the unit vectors aη and aξ, then, using the relations in

Appendix B to find the magnetic field in terms of Cartesian unit vectors.

Numerical results are obtained for the case when a1 = 1 cm, a2 = 2 cm, d = 20

cm, H0 = 1 A/m and truncation M = 50 in free space. Figure 6.2.2 shows plots of

the magnetic field intensity components Hx and Hy around the surface of cylinder

1, i.e. r1 = a1.
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Figure 6.2.2: Magnetic field intensity component plots around cylinder 1, r1 = a1
between the translational and bipolar methods for a1 = 1 cm, a2 = 2 cm, d = 20
cm, H0 = 1 A/m and M = 50
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6.3 The magnetic vector potential

The magnetic field can be defined in terms of a magnetic vector potential B = ∇×A,

since one of Maxwell’s equations states that the divergence of B is zero. Maxwell’s

other equation to do with magnetic fields states

∇×B = µJ,

∇× (∇×A) = µJ,

where µ is the permeability and J is the current distribution. If we use the vector

relation ∇× (∇×A) = ∇(∇ ·A)−∇2A and conveniently have ∇ ·A = 0 this

gives

∇2A = −µJ. (6.3.1)

For two-dimensional magnetostatic problems is can be assumed that the fields are

not functions of the z-coordinate, as a result the magnetic vector potential can

have only the component Az, tangential to the cylindrical surfaces. The magnetic

problems will assume the region free from current J = 0, so the solution reduces to

the electrostatic case

∇2Az = 0, wherever J = 0, (6.3.2)

and using the separation of variables method in circular coordinates to (6.3.2)

allows us to find the magnetic fields.

The boundary condition for a perfect conductor is an ×B = µJS where an is the

unit outward normal to the surface and JS is the surface current, where the total

current on the pth cylinder is Ip. Therefore, the Neumann boundary condition on

the surface of cylinder the pth is

∫ 2π

0

∂A
(p)
ztot

∂rp
dφp

∣∣∣∣∣
rp=ap

= − Ip
ap
. (6.3.3)
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Chapter 7

Conclusion and Future Work

7.1 Conclusion

In this thesis, a novel analytic method is formulated for the solution of scalar

Laplacian field problems for arbitrary configurations of parallel, infinitely long

conducting cylinders. These exact analytic solutions are intended to be used

as benchmark solutions, with controllable accuracies, to validate more general

approximate numerical methods. In the real world, we understand the two-

dimensional field problem solutions to be good approximations for long conductors

only in the region between or sufficiently close to conductors, neglecting the end

effects.

For the boundary value problem with many parallel cylinders, the field contributions

from all the other cylinders were expressed in the polar coordinates attached to

each cylinder by using the translational addition theorems for polar Laplacian

functions derived from the cylindrical scalar wave addition theorems [6, 9]. Then,

the boundary conditions were imposed at each cylinder surface resulting in an

infinite set of algebraic equations for the constants of integration, which were

appropriately truncated in terms of the desired accuracy.

The validity of the series in the addition theorems for polar Laplacian functions was

confirmed with numerical results showing excellent convergence. Then, the addition

theorems were applied to obtain numerical solutions to some electrostatic and

magnetostatic field problems relative to complete systems of cylinders, i.e., when

the sum of the charges on all the conductors is equal to zero, and as a consequence,
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the potential vanishes at infinity. For the case of two cylinders, we compared

the results with the existing exact results obtained by applying the method of

separation of variables in two-dimensional bipolar coordinates [14,15], with excellent

agreement. Numerical results are also calculated for various configurations with

three parallel cylinders using the translational addition theorem method.

7.2 Continued research

The research presented in this thesis was confined to complete systems of conducting

cylinders. One of the first areas to explore is to extend this research to systems

of conducting cylinders describing actual real world arrangements of cables and

transmission lines in the presence of grounded conductors or planes. Another

engineering application is to consider a grounded array of conductors in the

presence of an external field in order to determine associated shielding effects.

A second area of study would be to use the results from this thesis to describe

fields in the presence of penetrable cylinders, dielectric or magnetic, where the

boundary conditions are more complex. Another extension would be to apply the

derived addition theorems to other engineering and physics disciplines, such as,

fluid dynamics and steady state temperature distributions in conducting bodies.

All the cylinders considered in the work presented are circular cylinders, but for the

more general case of elliptical cylinders, work can be done to derive translational

addition theorems for Laplacian elliptical cylindrical functions. Similarly, this can

be done for the Laplacian parabolic cylindrical functions.
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Appendix A

Circular cylindrical harmonics

Laplace’s equation in plane circular coordinates (r, φ) is

r
∂

∂r

(
r
∂u

∂r

)
+
∂2u

∂φ2
= 0. (A.1)

To solve Laplace’s equation the separation method is used, let u(r, φ) = R(r)Φ(φ),

substitute in (A.1) and divide by u. This gives

r

R

∂

∂r

(
r
∂R

∂r

)
+

1

Φ

∂2u

∂φ2
= 0. (A.2)

The two terms must be individually constant, therefore the separation parameter

−n2, where n represents only positive integer values, is chosen such that the circular

function, R(r)Φ(φ), is periodic in angle φ. The result is two ordinary differential

equations

d2Φ

dφ2
+ n2Φ = 0, (A.3a)

r
d

dr

(
r
dR

dr

)
− n2R = 0. (A.3b)

The solutions to (A.3) for n 6= 0 are

Rn = Anr
n +Bnr

−n,

Φn = Cn cosnφ+Dn sinnφ,
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and for n = 0,

R0 = A0 +B0 ln r,

Φ0 = C0 +D0φ.

The general harmonic solution is obtained by linear superposition to give

u(r, φ) =
∞∑
n=0

RnΦn

= (A0 +B0 ln r)(C0 +D0φ) +
∞∑
n=1

(
Anr

n +Bnr
−n) (Cn cosnφ+Dn sinnφ) .

(A.4)

A necessary regularity condition of the harmonic solutions is for them to be periodic

over period 2π thus (A.4) is reduced to

u(r, φ) = A0 +B0 ln r +
∞∑
n=1

(
Anr

n +Bnr
−n) (Cn cosnφ+Dn sinnφ) . (A.5)
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Appendix B

Two-dimensional bipolar
coordinates

Bipolar Laplacian harmonics

Laplace’s equation in two-dimensional bipolar coordinates (η, ξ) is

∇2ubi(η, ξ) =

(
cosh η − cos ξ

a

)2 [
∂2ubi
∂η2

+
∂2ubi
∂ξ2

]
= 0. (B.1)

Note here the that

(
cosh η − cos ξ

a

)2

at infinity (η = 0, ξ = 0) is zero, therefore no

solution to (B.1) exists at infinity. However, for all other points Laplace’s equation

reduces to

∇2ubi(η, ξ) =
∂2ubi
∂η2

+
∂2ubi
∂ξ2

= 0. (B.2)

To solve Laplace’s equation the separation method is used, let u(η, ξ) = N(η)Ξ(ξ),

substitute in (B.2) and divide by u. This gives

1

n

∂2u

∂η2
+

1

Ξ

∂2u

∂ξ2
= 0. (B.3)

Thus using the separation parameter −n2, the resulting ordinary differential

equations are

d2Ξ

dξ2
+ n2Ξ = 0, (B.4a)

d2N

dη2
+ n2N = 0. (B.4b)

89



The general harmonic solution is then by linear superposition

u(η, ξ) =
∞∑
n=0

NηΞξ

= (A0 +B0η)(C0 +D0ξ) +
∞∑
n=1

(
Anenη +Bne−nη

)
(Cn cosnξ +Dn sinnξ) .

(B.5)

A necessary regularity condition of the harmonic solutions is for them to be periodic

over period 2π thus (B.5) is reduced to

u(r, φ) = A0 +B0η +
∞∑
n=1

(
Anenη +Bne−nη

)
(Cn cosnξ +Dn sinnξ) . (B.6)

Bipolar coordinates relation to Cartesian coordinates

To relate bipolar coordinates to Cartesian coordinates we define the points (−a, 0),

(a, 0) and (x, y) [14], where a is the semi-foci distances of the bipolar coordinates,

as shown in Figure B.1. Then the relationship between (η, ξ) and (x, y) can be

Figure B.1: Relation between bipolar and Cartesian coordinates

shown to be

η = ln

(
s1
s2

)
= ln

(√
(x− a)2 + y2√
(x+ a)2 + y2

)
(B.7)

and

ξ = ψ1 − ψ2 = tan−1
(

y

x− a

)
− tan−1

(
y

x+ a

)
. (B.8)
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Bipolar coordinates unit vectors and scale factors

The unit vectors and scale factors associated with these coordinates are

dS = anhξdξdz, (B.9a)

aη =
−ax(cosh η cos ξ − 1)− ay sinh η sin ξ

cosh η − cos ξ
, (B.9b)

aξ =
−ax sinh η sin ξ + ay(cosh η cos ξ − 1)

cosh η − cos ξ
, (B.9c)

hη = hξ =
a

cosh η − cos ξ
. (B.9d)
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