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Abstract

Analytic solutions to the static and stationary boundary value field problems
relative to an arbitrary configuration of parallel cylinders are obtained by using
translational addition theorems for scalar Laplacian polar functions, to express the
field due to one cylinder in terms of the polar coordinates of the other cylinders
such that the boundary conditions can be imposed at all the cylinder surfaces. The
constants of integration in the field expressions of all the cylinders are obtained
from a truncated infinite matrix equation.

Translational addition theorems are available for scalar cylindrical and spherical
wave functions but such theorems are not directly available for the general solution
of the Laplace equation in polar coordinates. The purpose of deriving these addition
theorems and applying them to field problems involving systems of cylinders is
to obtain exact analytic solutions with controllable accuracies, thereby, yielding

benchmark solutions to validate other approximate numerical methods.
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Chapter 1

Introduction

The main focus of this thesis is on the derivation of the two-dimensional translational
addition theorems for scalar Laplacian functions in polar coordinates. The theorems
are then applied to some electrostatic and magnetostatic potential boundary
value problems for various locations of parallel circular cylindrical conductors.
Theoretically, a two-dimensional field model is an approximation for parallel
conductors of finite length, when the length is much greater than the cross-sectional
linear dimensions and the end effects are neglected.

Analytical solutions for boundary value field problems can only be obtained when
the boundary surfaces coincide with a coordinate surface in an orthogonal system
of coordinates. For the case of a single circular cylinder, the natural choice is
that of the polar coordinates and for two parallel circular cylinders that of the
two-dimensional bipolar coordinates. Then, existing classical methods, such as
separation of variables, images [1], or conformal mapping [2], can be applied to
solve for the field problem. For the general case of more than two cylinders, no
set of coordinate surfaces in any orthogonal system can be made to coincide with
all the cylinder surfaces. However, the combination of the method of images and
inversion [3] yields analytic techniques that can be used to solve for some systems
of parallel conductors.

For the general problem of N parallel circular cylinders we take a similar approach
as that used in [4], where translational addition theorems for the Laplacian spherical

functions were derived by particularizing the addition theorems for scalar spherical



wave functions [5]. In our case, we particularize the addition theorems for scalar
cylindrical wave functions [6] to derive addition theorems for scalar Laplacian
functions in polar coordinates.

Using the translational addition theorems allows for the field contributions from
all the cylinders to be expressed in terms of the polar coordinates attached to
each individual cylinder. Application of the boundary conditions at each cylinder
surface gives a set of algebraic equations in terms of the unknown constants of
integration from the field expressions of each cylinder.

The purpose of solving various field problems involving systems of parallel circular
cylinders is to yield benchmark solutions, with exact analytic expressions and of
controllable error, which are to be made available to the electromagnetic community
for establishing the range of validity for various approximate numerical methods,
such as the finite difference, finite element or boundary element methods [7]. This
control of accuracy is achieved by appropriate truncation of the infinite series in
the expressions for the harmonic fields and in the addition theorems.

The general problem for N arbitrarily located parallel cylinders is first formulated
in Chapter 2, for Dirichlet and Neumann boundary conditions, to find solutions
of Laplace’s equation for given values of charges or potentials of the conducting
cylinders. In Chapter 3, translational addition theorems are derived for the polar
Laplacian functions =" cosng, r~"sinng, r™ cosng, r" sinng and Inr and, then,
their convergence tested numerically for numerous cases.

The translational addition theorems are then applied, in Chapters 4 and 5, to
various electrostatic field problems for complete systems of parallel cylinders. For
the cases of a circular cylinder in the presence of a line charge and of two cylinders,
the numerical results are evaluated by comparison with results from existing exact
methods: images and the separation of variables in bipolar coordinates, respectively.
The translational method is also used to solve for the fields involving a charged
three-cylinder complete system and for a three-cylinder grounded system in the

presence of external electric fields.



A particular geometrical configuration of the cylindrical systems is considered in
Chapter 4, where the cylinder axes are in the same plane, which allows for the
simplification of the field expressions, where as, in Chapter 5, the parallel cylinders
are arbitrarily located and the field expressions are more complex.

In Chapter 6, the addition theorems are used to solve scalar magnetostatic field
problems for the case of two perfectly conducting cylinders in given external fields,
of arbitrary orientations. A scalar magnetic potential is used, but it is also shown

how the vector magnetic potential can be employed.



Chapter 2

Laplacian potential of a system of
circular cylinders

The purpose of this chapter is to present the theoretical background necessary
for the derivation and application of the addition theorems for circular cylindrical
Laplacian functions. The formulation involves a set of circular cylindrical bodies

under various boundary conditions.

2.1 Harmonic solution of the Laplace equation
in circular cylindrical coordinates

The general form!® of the Laplace equation is
V2u(r) = 0. (2.1.1)

The natural choice when a boundary condition is given on a circle is the polar (or
circular) coordinate system (r,¢). For an infinitely long cylinder (2.1.1) simplifies

to a two-dimensional problem with no z-dependence. The general solution to

'For the scalar electrostatic and magnetostatic potentials we use the general notation u
instead of the more common ® in order to avoid any confusion with the notation ¢ used for the
angular polar coordinate; the analysis being also applicable to other branches of engineering and
physics.



(2.1.1) in circular harmonics is [see Appendix A]

u(r,¢) = Ag+ Bolnr

o0 (2.1.2)
+ Z (Anr” + Bnr_") (Cp cosng + D, sinng) .
n=1
For convenience (2.1.2) can be expressed in the alternate form
u(r,¢) = Ao+ Bolnr
(2.1.3)

+ ) (A" + Bar™) (Co™ + Dpe %)
n=1

where n is an integer, j = +/—1 and Ay, By, A,, B,, C, and D,, are constants of
integration. The general solutions for (2.1.2) or (2.1.3) are uniquely determined if

one of the three boundary conditions are satisfied

ulg = fi(r,9), (2.1.4a)
ou
nl, fa(r, 9), (2.1.4b)

= f3(r,9), h>0, (2.1.4c)
S

ou
(% + hu)

where S is the boundary of the cylinder, fi, fo, f3 are given functions of position on

0

S, and n denotes the derivative with respect to the exterior normal to S. Dirichlet
n

and Neumann boundary problems of the form (2.1.4a) and (2.1.4b), respectively,

will be used for the electrostatic and magnetostatic problems in Chapters 4 to 6.

2.2 Geometry of a general system of parallel cir-
cular cylinders

Consider N parallel, non-intersecting and infinitely long circular cylinders placed
in a linear, homogeneous and isotropic medium as shown in Figure. 2.2.1. Each
cylinders axis is parallel with the z-axis of the circular coordinate system reducing

the problem to two-dimensional circular coordinate system. The radius of the



p'" cylinder is a, centred at rq, with local Cartesian coordinates (zop,yop). For

convenience N circular coordinate systems are defined, the origin of each being
centred at the axis of each respective cylinder. In the case of conducting cylinders,
for instance, the electrostatic potential due to the presence of the p** cylinder after
imposing the regularity conditions for (2.1.2) at r — oo and renaming of constants

can be written

Uy (1, Op) = A( P 4 B ' In rp+ Z [ AW cosng, + BP sinng, |, (2.2.1)

nlp

where r, > a, for all the cylinders p =1,2,..., N, with (r,, ¢,,) denoting the polar
coordinates of the observation point P, and Aép ), B((]p ) , Aép ) and BY representing
the constants of integration for the p** coordinate system.

For completeness, the potential for the case when the p'* cylinder is filled with a
homogeneous material different from the outside medium after imposing regularity

condition in (2.1.2) as r — 0, and renaming the constants, gives

e}

Up (T, Op) = Zr [ C'p) cos neg, + DU )sinmbp , (2.2.2)
n=0
where r, < a, for all the cylinders p =1,2,..., N, with C%) and DP representing
constants of integration for the p! coordinate system.
The resultant potential for any point outside all the cylinders due to the presence
of all N cylinders and to any external applied field in the local coordinate system

is then

Ut (T) = uo(r) + uc + Zu Ty > Gy, (2.2.3)

where ug(r) is the potential due to the applied field, uj(go)(r) is the potential of
the p' cylinder expressed in the local coordinates (rg, ¢9) and uc is an arbitrary
constant defined by a reference potential.

In order to impose the boundary conditions in (2.1.4) at the surface of the p*
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Figure 2.2.1: Geometry of N parallel cylinders arbitrarily located



cylinder the potential in (2.2.3) must be transformed to (7,, ¢,) coordinates

N

uyo)g (rps Bp) = u(()p) (rp, &p) + u(éf) + up(rp, dp) + Z u((]p) (rps @p)y 1o > ap, (2.24)
q=1
q7#p

where ugsz, uép ) and ug)) are respectively us, ug and uc expressed in coordinates

(rp, ¢p). The potential ugp )

(7, Pp) 1S ug(ry, ¢4) expressed in terms of coordinates
(rp, ¢p) which will be obtained using the translations from the ¢ to the p'

coordinate system.

2.3 Addition theorem for circular cylindrical scalar
waves

The application of the translational addition theorems for cylindrical wave functions
has been well documented. In [8] the translational addition theorems are applied to
some elementary cylindrical waves. In [9] the translations are used for some acoustic
or electromagnetic radiation scattering problems where an iterative method to
the successive scattering by the cylinders of the primary field is used to obtain
field quantities, and [6] employs a self-consistent method based on the known
response of the isolated cylinders. It is this self-consistent method that will be
applied to the problems here. The scalar Helmholtz wave equation used to describe

time-harmonic scalar waves is
V2(rq) + k*1h(rq) = 0, (2.3.1)

where 1 is the wave function, k is the wave number and rqy = r, that is, the
position vector is in terms of the ¢ coordinate system. The method of separation
of variables in circular cylindrical coordinates for (2.3.1) with no z-dependence

yields the cylindrical harmonics [10]

Un(ry, bg) = Zn(kry)e=Im00, (2.3.2)



where k7, is the argument of the cylindrical Bessel functions when k£ # 0 with
the integral orders of the functions represented by n = 0,1,2,.... Note for k =0
the harmonic solution to (2.3.1) reduces to that of the Laplace equation solved
earlier. The symbol Z,,(kr,) (referred to as Cylindrical Bessel function) represents
either the Bessel function J,(kr,), the Neumann function Y,,(kr,) or the linear
combination of Bessel and Neumann functions known as Hankel functions H,, (k).
To express the cylindrical wave in (2.3.2) in terms of a sum of cylindrical wave
functions translated to the p™ coordinate system the Graf addition theorem [11] is

used to obtain

o0

Zn(krg)e 700 = N (= 1) Zy e (k1 gp) Ty (o e 100 =m0l (2.3.3a)

Zy(krg)edm?e = i (=1)™ " Zp (kT gp) Ty (K )@ MOp—(m=midan]l (9 3 3})
for r, < rqp, and

Z(kry)el"?s = i (—1)™ Zpy o (k) T (g )M Op = man] (2.3.4a)

Zn(kry)e e = i (=)™ " Z (k) T (kg )2 (Mol (9 3 41)

for r, > r,,. The relationship between r,, r, and 74, in (2.3.3) and (2.3.4) are

given by

Yq = TpSIN @p + T¢p SIN gy,

Tq = Tp COS Pp + Tgp COS Pgp,

therefore,

- \/7“3 + 1oy + 21T gp C08(dgp — ), (2.3.5)



and

q

\

tan~! <£), when y, > 0 and z, > 0,
Yq
z,)’

21 + tan~! (Q
Lq

when z, <0,

,  when y, <0 and z, > 0.

10

(2.3.6)



Chapter 3

Translational addition theorems
for static and stationary fields

To obtain an analytical solution to the problem proposed in Section 2.2 translations
from the ¢* to the p* coordinate systems are first derived for the harmonic
functions in (2.2.1) and (2.2.2). Instead of deriving these theorems directly using
the cosine law in (2.3.5) and expanding into a series, we particularize the existing
translational addition theorems for Cylindrical Bessel functions in (2.3.3) and

(2.3.4) using the limiting case for a vanishing wave number, k — 0.

3.1 Limiting forms of the Bessel and Neumann
functions for small arguments

To obtain the addition theorems for the circular harmonics Inr,, r,™ cosng, and
" sinng, we derive them from (2.3.3) using the limiting forms of the Neumann
functions, valid only for small arguments, obtained from Abramowitz [12] for

integral orders

2
lim Yy (kr) = lim — In kr, n=0, (3.1.1a)
k—0 k—0 1
lim Y, (kr) = Tim —~(n — 1)1 (Lhr) — 1,2 (3.1.1b)
lim ¥;,(kr) = lim ——(n Hgkr) n=12,..., 1.

where the substitution I'(n) = (n — 1)! is used and r is some finite distance in any
of the coordinate systems. The limiting forms in (3.1.1) are valid approximations

only for positive integral order Neumann functions; when negative orders appear

11



the following relation will be used
Y_ . (kr) = (=1)"Y,(kr), n=0,1,2,..., (3.1.2)

to convert to Neumann functions of positive integer order.
The limiting form of the Bessel function will be used to obtain the addition theorems
for the circular harmonics 77 cosng, and ry sin ng,, which is

1 /1 "
lim J,(kr) = lim — (—kr) , n=0,1,2,..., (3.1.3)
k—0 2

k—0 n!

where the substitution I'(n 4+ 1) = n! is used. Again the limiting form of the Bessel

function (3.1.3) is not valid for negative integral orders and the relation
J_n(kr) = (=1)"Jn(kr), n=0,1,2,..., (3.1.4)

is used to convert to Bessel functions of positive order.

3.2 Derivation of the translational addition theo-
rems for two-dimensional circular cylindrical
Laplacian functions " cosn¢ and r " sinng

To obtain expressions for the circular harmonic functions r, ™ cos ng, and 7" sin ng,
the Neumann functions Y,, and Y,,.,, are substituted for Z,, and Z,,.,,, respectively
in (2.3.3) and (2.3.4) because the asymptotic behaviours are the same as r;™ cos ng,
and " sinng, functions. First, the addition theorem is derived when r, < 1,

thus (2.3.3a) is rewritten as

Yo(krg)e ™00 = " (= 1)V, pm(krgp) Jm (kry )/l or= () dar], (3.2.1)
Tp<Tqp m=—o00
for n =1,2,.... The series is split up according to all the negative order combi-

nations that functions Y, 1,,(kr,,) and J,,(kr,) make, and then all the series are
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changed over positive indices giving

(=)™ Yo (k) T e 40

NE

Y, (kry)e "% =
0

3
Il

i
L

) (1) (krgp) T (R ) eI méptHn=m)day]
(3.2.2)

3
I

+ (= 1)"Yo(krgp) Jn(kry)e 7"

T S o s G o WA (o P LR

m=n+1

Replacing the negative integral ordered Neumann and Bessel functions in (3.2.2)
with their positive integer equivalents and using the relations in (3.1.2) and (3.1.4)

gives, after some algebraic simplification
Ya(krg)e 7™ = (1) Yo (Krgp) Jun (ki )Tt 0r ()b
m=0

n—1
+ D Yaow(krgp) Ty )e 7 mortnmmtu]
m=l (3.2.3)

+ %(qup)Jn(krp)e_j”¢P

T3 (D) Yoy ey e )

m=n+1

Now all the Neumann and Bessel functions in (3.2.3) are of positive integer order,

thus for vanishing arguments krg, krg, and kr, as k — 0 the Neumann and Bessel

13



limiting forms (3.1.1) and (3.1.3) can be substituted in (3.2.3), which yields

rq_”e_j”% =
lim{i <_1)m|(” +m—1)! (L)n (i)m oFlmbp—(m+n)dq)
k=0 | £~ ml(n —1)! Tap Tap
+ i (_1)7;7((;"__1; — U (S)M iy dlmey+(n=m)oo)
m=n+1

2 k‘ n N i ]C n N
_m |:(§) Tp lnrqpe J ¢p+1nk(§> Tpe J ¢p:|}

Taking the limit as k& — 0 reduces (3.2.4) to only the first term. Note, the limit for

the last term in (3.2.4) is of indeterminate form but applying L’Hopital’s rule

confirms it vanishes, therefore (3.2.4) reduces to

o0

r;"e*jn% = Z <_1)m'((n * 7711)'_ D! (i) (i) o [mép—(m+n)dep] (3.2.5)
m!(n —1)!

i m—0 Tap Tap

Taking the real and imaginary parts of (3.2.5) gives, respectively,

o0

ot = 3L SN () () ot = m i)
(3.2.6a)
. S (=D)™n+m -1/ 1\" A\
T, sinng, = — Z (= 1] (r_) (r_) sin [mae, — (m +n)dg).
Tp<Tqp m=0 ’ ) a» ap
(3.2.6b)
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Now consider the case for r, > r,, for which Y, is substituted in for Z,, in (2.3.4)

to give
Ya(krg)el™t = Y = (= 1) Yo (kry) I (rgp) e Em 00 =mdar], (3.2.7)
for n =1,2,.... Once again the series range in (3.2.7) is split up according to all

the negative order combinations that the Cylindrical Bessel functions take. Using
the relations to convert negative ordered Cylindrical Bessel functions to positive

orders and converting all the series to positive indices, yields

Yo (krg )l = Z i () T (g ) (70000

+ ZY k?"p (qu Je~ Fl(m—n)¢p—meqgp]
(3.2.8)

+ Yi)(krp)l]n(qup)ejn%p

+ Y (D)"Y (k) T (kg eI g e

m=n+1

For vanishing arguments kry, kry, and kr, as k — 0 the Cylindrical Bessel function

limiting forms (3.1.1) and (3.1.3) are substituted in (3.2.8) to give

-n Jn¢q —
Tq (§

lim Z (_1)m(n Tm = 1)' l @ ej[(’fl’b+n)¢p_m¢qz)]
k—0 ml(n —1)! T T

2m
- w(ﬁ) =y g=dlim=n)éy-més

p e (3.2.9)

00 _1)ym— —n—10" [k 2n A
+ Z ( )m'((nm_ 1” ) (§> Tg—mr;;l?e—ﬂ[(m_an—m(bqp}

2 A 0
_ m |:<§) Tap lnfr’pej bap +Ink <§> rqpeJ ¢>qp:| }
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Taking the limit as & — 0 reduces (3.2.9) to

pngind _ Z (=1)™(n+m —1)! 1 Tap \  Lilm+n)gp—me] (3.2.10)
EN — ml(n —1)! T p

Taking the real and imaginary parts of (3.2.10) gives, respectively

—n _ — (=D)m(n+m—=1)! (1\" e\ _

= () () o=l
(3.2.11a)

e R
(3.2.11b)

For completeness it can be shown using the same method as above that the
Cylindrical Bessel function addition theorems for the opposite signed exponential

arguments in (2.3.3) and (2.3.4) give

T;nejnd)q = Z |n T m = 1) (i) (i) e*j[m¢p*(m+n)¢qp}7 (3212)
ro<Tap — ml(n — 1)! Tap Tap
. > ) /1\" "o
Tp>Tap m=0 P b

Taking the real and imaginary parts of (3.2.12) and (3.2.13) can be shown to be

the exact addition theorem equations in (3.2.6) and (3.2.11), respectively.

3.3 Derivation of the translational addition theo-
rems for two-dimensional circular cylindrical
Laplacian functions " cosn¢ and r" sin n¢

To obtain expressions for the circular harmonic functions ry cos ng, and ry sin ng,,
the Bessel functions J, and J,,.,, are substituted for Z, and Z,.,,, respectively,
in (2.3.4) since the limiting behaviours are similar to the functions 77 cos n¢, and

1y sinng,. The addition theorems for r;, < 1y, and rj, > 7y, can therefore be written

16



as

oo

Ta(krg)e 790 = N " (= 1) Ty (k7 gp) Ty (e )00 =m0l (3.3.1)
rp<Tgqp m=—o00

Tu(krg)e™ 0 = " (1) T (k) Ty (g )& o0 mar] (3.3.2)
Tp>Tqp m=—oo

for the integral orders n =0,1,2, .. ..

When we compare (3.3.1) and (3.3.2) to each other we notice the arguments for
the exponentials are of opposite sign and the arguments of the Bessel functions
under the series summations are interchanged. This implies that the final forms
will have exactly the same structure but with r, and ¢, interchanged with g, and
®qp, Tespectively, and the arguments of the exponentials will be of opposite sign.
Therefore only (3.3.1) is used to derive the addition theorem for both r, < r,, and
Tp > Tgp CASES.

The series in (3.3.1) is split up according to all the negative order combinations
that functions J,, 4., (krg,) and J,(kr,) make, then changing the series over positive

integer indices gives

Jn(qu)e_jn% - Z<_1)mJn+m(qup)Jm(krp)ej[m%_(wm)%p}
m=1
+ Z D)™ Ty (k) T (R eI mopt (1=m) 0] (3.3.3)

+ Z D)™ i (krgp) J - (krp)efj[md)pﬂn*m)d’“'}.

m=n+1

Replacing the negative integral ordered Bessel functions in (3.3.3) with their
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positive order equivalents using the relation in (3.1.4) gives

oo

Ta(krq)e 0 =3 (1) T (k7 gp) Jon (R )00~ (et 0]
m=1
+ 37 (k) Jon (K)o dn (nmm)) (3.3.4)
m=0
+ Z (_1>minjnfm(k7"qp>Jm<k7"p)eij[m¢p+(nim)¢qp]-
m=n+1

For vanishing arguments kr,, kr,, and kr, as k — 0 the limiting forms of the

Bessel functions (3.1.3) are substituted in (3.3.4) giving

lim iﬂ E . pmtnm o jmep—(m+n)éqp)
k—0 71m!(n—|—m)! 9 gqp 'p

n m 3.3.5
= ml(n—m)l ¥ \rg
=D RN bt
+Zm<§) e mdyt(nm)dn] |
m=n-+1
Taking the limit as & — 0 reduces (3.3.5) to
, - n! O\
rle—inde — - (_P> eI mep+(n—m)dep] (3.3.6)
qrp<rq,, mZ::O ml(n —m)l ¥ \rg,

Taking the real and imaginary parts of (3.3.6) gives, respectively

n

. n! e\
Ty COSNQ, = Z ol — ) To (r_p) cos [me@, + (n — m) gy, (3.3.7a)
Tp<Tqp m=0 ’ qp

n

' m
Ty sinng, = Z m T (T—p) sin [me, + (n — m)dgy). (3.3.7b)

Tp<Tqp m=0 Tqp

Now for the case when r, > r,,, we interchange 7, with r,,, ¢, with ¢4, and change

the signs of the exponential arguments in (3.3.6) which gives

rieimtn = § T n e (@) il(n=m)¢p+mgay] (3.3.8)
m:

— |
Tp>Tgp m=0 n m) ' p
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and taking the real and imaginary parts of (3.3.8) gives, respectively,

n

Ty COSTpy = Z m‘(n—' 7"; (@)m cos [(n — m)p, + Mgp), (3.3.9a)

Tp>Tap m—o ATV m)‘ "p
. & n! T\
Ty sinng, = Ty | =7 ] sin[(n — m)¢, + mag. (3.3.9b)
- m!(n —m)! p
Tp~Tqp m=0

3.4 Derivation of the translational addition theo-
rems for two-dimensional circular cylindrical
Laplacian function Inr

To obtain the addition theorem for the circular harmonic function Inr, for the
case when r, < rg,, the Neumann function of integral order n = 0 is substituted in

(2.3.3) yielding

Yo(kr,) = i (= 1)™Y, (k1) iy (kg ) @700~ Paw). (3.4.1)

m=—0oQ

Converting all the negative order Cylindrical Bessel functions in (3.4.1) to positive

order and rearranging the series gives

Yo(kr :Z ™Y, qup)Jm(krp)ejm(¢p_¢qp)

(1
m=1

+ Yo(krgp) Jo(kry) (3.4.2)

+ Z 1)™Y, qup)t]m(krp)eijm(d)pi%p)v

using the relation e/™(¢r=%w) 4 e=Im(é»=%w) = 2 cos [m (¢, — ¢,p)] simplifies (3.4.2)

to

Yo(kre) = Yo(krgp) Jo(kry)
(3.4.3)
+2 Z D)"Y (kryp) I (kry) cosm(dp — ¢gp)-
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Using the limiting forms of the Cylindrical Bessel functions for vanishing arguments

as k — 0 gives

2
—lim (Ink +1nr,) =

T k=0 ( )
o0 m 3.4.4
2 (=)™ [r
—lim | Ink +1 — £ — .
o (n +1In7gy m221 m (qu) cos [m(¢y ¢qp)]>
Taking the limit of (3.4.4) reduces it to
(=™ [, \"
Inr, =Inry, — Z (=1) (—p> cos [m(¢p — Pgp)]- (3.4.5)
Tp<Tgp m=1 m qu

For the case when r, > r,, we use the Neumann function of order n = 0 and

substitute in (2.3.4) which gives

[e.9]

Yolkrg) = Y (=1)"You(kry) Jun (krgy)ed™@r—ém). (3.4.6)
Converting all the negative order Cylindrical Bessel functions in (3.4.6) and simpli-

fying yields

Yo(krg) = Yo(krp)Jo(krqp)

(3.4.7)
+2 Z D)"Y (kry) I (krgp) cosm(dp — ¢gp)-
Using the limiting forms of the Cylindrical Bessel functions gives
2 im (Ink +Inry) =
Thoo T s
0o m 3.4.8
2 (=)™ (r
—lim | Ink+Inr, — £ — :
2 iy <n rinr, = 32 E0E (1) coslnts, %)1)
Taking the limit of (3.4.8) reduces it to
- (=)™ (1gp "
Inr, =Inr, — Z —= | cos[m(¢, — Pgp)]- (3.4.9)
Tp>Tap e Tp



The addition theorems (3.4.5) and (3.4.9) are also the recognizable harmonic

expansions of a line charge found in [10] where

oo 1 n
Inrg — Z — (i) [COS nby cos 6 + sin nfy sin 0} , <y
n \To
InR = = (3.4.10)
Inr — Z - (@) [cos nbg cos 0 4 sin nfy sin 6’] ,  Tr>rg
—~n\r

If the following substitutions are made in (3.4.10) to relate the geometries of the
variables R = ry, r = 1, 79 = 1¢p, 0 = ¢, and 0y = ™ — ¢, and, after some
trigonometric manipulation, the expansions are exactly those found in (3.4.5)
and (3.4.9). Since the problems considered here are two-dimensional, the addition
theorem for In R can also be obtained by positioning the centres of the local systems
q and p in the complex plane as in [10,13] and, then, substituting with z = re/?

and taking the real parts to yield the same expressions in (3.4.10).

3.5 Numerical analysis of the series expansions
in the addition theorems

The convergence of the series involved in the translational addition theorems given
in (3.2.6), (3.2.11), (3.3.7), (3.3.9), (3.4.5) and (3.4.9) can be tested for given n by
using numerical values for the variables in both sides of the respective equations.
The numerical testing for (3.2.6) is presented in detail to outline some convergence
properties as variables are changed because of its extensive use in the next three
chapters. The remaining addition theorems are tested only for a single case to
verify that the series converge for a particular set of variables.

Consider Figure 3.5.1 where point P moves along a circle of constant radius r,. In

the figure, it is evident that ¢4, = 0 when the z, and z, axes are aligned.

21



Yq . \% )
P

Oq Pap

Lq

Figure 3.5.1: Point P along a circle of radius r, when r, < rg,

3.5.1 Evaluation of the translational addition theorems for
Laplacian functions r " cosn¢ and r~ " sin n¢g

For Figure 3.5.1, where 7, < ry, and the point P moves along the circle of radius

rp, the addition theorems (3.2.6) must be used, which are normalized as

Tgp " B = (=1D)™(n+m—1)! Tp " B
\( Y ) cos ngf)ci = mz:(] mi(n = 1), oy cos [me, — (M + 1) g,
fl(T(;g(l)COS gl(Tg:(erp)cos
(3.5.1a)
T\ . L (=D™n+m =1 [, \" .
\( . ) sin ne, 7;) il (n = 1] o sin [me, — (m + n) oy,
fi (Tq 7¢q )sin g1 (ij(;p)sin
(3.5.1b)

The left hand sides of (3.5.1a) and (3.5.1b) are denoted as fi(ry, ¢4)cos and
f1(rq, @¢)sin and the right hand sides as g1 (rp, ¢p)eos and g1(7p, ¢p)sin, respectively.
The numerical values of the functions f; and g; are calculated at several discrete
locations on the circle. Theoretically, f; should yield the same results as ¢; if an

infinite number of series terms are taken. In order to find results for g;, the infinite
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series are truncated to a finite number of terms M.

Consider the situation where 7, = 75 cm, r, = 37.5 cm and ¢y, = 0, then r,, ¢,
and ¢, vary as P moves along the circle. Test point locations are taken by varying
¢p from 0° to 180°. In the case of n = 3, M is truncated to 20 and the numerical

results are shown in Table 3.5.1.

Table 3.5.1: Truncation errors of g1(7p, ®p)cos a0d g1(7p, @p)sin for n =3, M = 20,
¢gp =0 and r,/r,, = 0.5

Point ¢, 7e/Tq bg ‘ F1(rgs Bg)cos  G1(Tps Bp)cos % Error ‘ J1(rgs Bg)sin - 91(Tpy Dp)sin % Error

1 0 06667 0 0.2963 0.2964 2.6333 x 102 0.0000 0.0000

2 18 0.6740 5.98 0.2914 0.2914 2.6527 x 1072 0.0943 0.0943 —1.6908 x 1072
3 36 0.6969 11.82 0.2757 0.2758 2.7182 x 1072 0.1963 0.1963 —1.6547 x 1072
4 54 0.7377 17.36 0.2467 0.2467 2.8595 x 1072 0.3167 0.3166 —1.5883 x 1072
5 72 0.8009 22.39 0.1994 0.1995 3.1650 x 1072 0.4734 0.4734 —1.4818 x 1072
6 90 0.8944 26.57 0.1280 0.1281 3.9691 x 102 0.7040 0.7039 —1.3208 x 1072
7 108 1.0309 29.35 0.0370 0.0370 8.0480 x 1072 1.0949 1.0948 —1.0921 x 1072
8 126 1.2289 29.81 0.0187 0.0187 —4.1808 x 1072 1.8556 1.8554 —8.0271 x 1073
9 144 1.5059 26.27 0.6631 0.6630 —1.1625 x 102 3.3498 3.3497 —5.1046 x 1073
10 162 1.8290 16.41 3.9941 3.9939 —4.7191 x 1073 4.6345 4.6343 —3.0752 x 1073
11 180 2.0000 0 8.0000 7.9997 —3.3021 x 1073 0.0000 0.0000

For a first approximation the percentage errors are relatively high. By increasing
the truncation to M = 50 terms the percentage errors are reduced as shown in

Table 3.5.2.

Table 3.5.2: Truncation errors of g1(7p, ®p)cos a0d g1(7p, ¢p)sin for n =3, M = 50,
¢gp =0 and r,/ry,, = 0.5

Point ¢, qu/"'q ®q ‘ fi (Tqv d)Q)ms g1 (Tp9 ¢P)cos % Error ‘ fi ("'qv ¢q)sin 91 (Tp7 ¢p)sin % Error

1 0  0.6667 0 0.2963 0.2963 1.3596 x 10710 0.0000 0.0000 —

2 18 0.6740 5.98 0.2914 0.2914 —1.3667 x 10710 0.0943 0.0943 8.8806 x 10711
3 36 0.6969 11.82 0.2757 0.2757 1.3969 x 10710 0.1963 0.1963 —8.6745 x 1071
4 54 0.7377  17.36 0.2467 0.2467 —1.4615 x 10710 0.3167 0.3167 8.3149 x 107!
5 72 0.8009 22.39 0.1994 0.1994 1.5980 x 10710 0.4734 0.4734 —7.7281 x 1071
6 90  0.8944 26.57 0.1280 0.1280 —1.9559 x 1010 0.7040 0.7040 6.8490 x 107!
7 108 1.0309 29.35 0.0370 0.0370 3.6767 x 10710 1.0949 1.0949 —5.6114 x 1071
8 126 1.2289 29.81 0.0187 0.0187 3.3601 x 10710 1.8556 1.8556 4.0470 x 1011
9 144 1.5059 26.27 0.6631 0.6631 —6.2502 x 1071 3.3498 3.3498 —2.4963 x 1071
10 162 1.8290 16.41 3.9941 3.9941 2.3472 x 10711 4.6345 4.6345 1.4508 x 10~
11 180 2.0000 0 8.0000 8.0000 —1.5898 x 101 0.0000 0.0000 —

It is evident that for the same variable conditions simply by increasing the number
of terms M used before truncating the series results in a better approximation.
Table 3.5.3 shows the numerical results when the order n is increased to 9 and

keeping the series truncation at M = 50.
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Table 3.5.3: Truncation errors of g1 (7, ®p)cos a0 g1 (7, dp)sin for n =9, M = 50,
¢gp =0 and r,/ry, = 0.5

Point (rbp r(lp/rq ¢q ‘ fl (rqv ¢q)cos g1 (’r'pz ¢p)cos % Error ‘ fl (Tqy d)q)sin g1 (sz ¢p)sin % Error

1 0  0.6667 0 0.0260 0.0260 2.3999 x 1073 0.0000 0.0000 —

2 18 0.6740 5.98 0.0170 0.0170 —3.6494 x 1073 0.0232 0.0232 5.3978 x 1074
3 36 0.6969 11.82 —0.0109 —0.0109 —5.5110 x 1073 0.0372 0.0372 —6.8592 x 104
4 54 0.7377  17.36 —0.0592 —0.0592 9.6371 x 1074 0.0261 0.0261 1.5198 x 1073
5 72 0.8009 22.39 —0.1262 —0.1262 —4.0957 x 1074 —0.0496 —0.0496 1.1165 x 1073
6 90  0.8944 26.57 —0.1882 —0.1882 2.2675 x 1074 —0.3143 —0.3143 —2.3507 x 1074
7 108 1.0309 29.35 —0.1331 —0.1331 —2.0355 x 1074 —1.3081 —1.3081 7.3381 x 107°
8 126 1.2289 29.81 —0.1936 —0.1936 —8.4992 x 1076 —6.3871 —6.3871 —1.9078 x 1072
9 144 1.5059 26.27 —22.0307 —22.0307 2.6113 x 107° —33.1705 —33.1705 4.3733 x 107°
10 162 1.8290 16.41 | —193.6435 —193.6435  —8.0961 x 1077 122.2558 122.2558 1.0520 x 1076
11 180  2.0000 0 512.0000 512.0000  —4.5262 x 1077 0.0000 0.0000

The approximations of g; for f; are less accurate then that of Table 3.5.2, verifying
that with increasing n the percentage error increases correspondingly for the same
series truncation. Therefore, for increasing n more terms M need to be taken
to keep the percentage error of the same order. To emphasize this, the series
truncation is increased to M = 80 and the numerical results are shown in Table

3.5.4.

Table 3.5.4: Truncation errors of g1 (7, ®p)cos and g1 (7, ®p)sin for n =9, M = 80,
¢gp = 0 and r,/r,, = 0.5.

Point ¢, qu/"'q g ‘ fi (Tqa d)q)cos g1 (7'117 ¢p)cos % Error ‘ f1 (Tw ¢q)sin g1 (Tpa ¢p)sin % Error

1 0  0.6667 0 0.0260 0.0260 7.2557 x 1071 0.0000 0.0000 —

2 18 0.6740 5.98 0.0170 0.0170 1.4812 x 10710 0.0232 0.0232 —2.0360 x 1071
3 36 0.6969 11.82 —0.0109 —0.0109 —1.4115 x 10710 0.0372 0.0372 —4.7320 x 1071
4 54 0.7377  17.36 —0.0592 —0.0592 —5.3377 x 107! 0.0261 0.0261 —3.7922 x 101
5 72 0.8009 22.39 —0.1262 —0.1262 —1.0758 x 1071 —0.0496 —0.0496 2.7932 x 107!
6 90 0.8944 26.57 —0.1882 —0.1882 —9.6220 x 1071 —0.3143 —0.3143 9.1662 x 10712
7 108 1.0309 29.35 —0.1331 —0.1331 2.8743 x 10! —1.3081 —1.3081 3.7174 x 10712
8 126 1.2289 29.81 —0.1936 —0.1936 2.0980 x 10711 —6.3871 —6.3871 3.4764 x 10712
9 144 1.5059 26.27 —22.0307 —22.0307 —4.8379 x 1071 —33.1705 —33.1705 0.0000

10 162 1.8290 16.41 | —193.6435 —193.6435 1.7613 x 10713 122.2558 122.2558 5.8119 x 1071
11 180 2.0000 0 512.0000 512.0000  —3.3307 x 10~ 0.0000 0.0000 —

The convergence of (3.5.1) is also sensitive to the ratio r,/ry,, valid for r,/r,, < 1.
Table 3.5.5 shows how the percentage error changes for an observation point at
¢, = 72° for increasing circle radii r, for the ratios r,/r,, = 0.5, 0.7 and 0.9 each
shown for series truncations of M = 80, 200, and 1000. As the ratio approaches
rp/Tq — 1 the error increases and only with a greater number of series terms M

will g, converge to f;.
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Table 3.5.5: Truncation errors of g1(rp, ¢p)cos and g1(7p, ¢p)sin for n =19, ¢, = 72°,
¢gp = 0 and r,/r,, = 0.5,0.7,0.9

(a) for rp/rep = 0.5, ¢pq = 29.35° and rgp /14 = 1.0309

M ‘ fl('rqa ¢q)cos gl(Tpa ¢p)cos % Error ‘ .fl (Tq’ d)q)sin g1 (pr d—)p)sin % Error

80 —0.1331 —0.1331 2.7846 x 10711 —1.3081 —1.3081 3.7344 x 10712
200 —0.1331 —0.1331 3.3290 x 1071 —1.3081 —1.3081 1.5277 x 10712
1000 —0.1331 —0.1331 3.3290 x 10~ 1 —1.3081 —1.3081 1.5277 x 10712

(b) for rp/rep = 0.7, ¢q = 40.35° and 7y, /rq = 0.9725

M ‘ fl(rqa Pq)cos gl(rm ¢p)cos % Error ‘ f1(rgs @g)sin - 91(7Tps ¢p)sin % Error

80 0.7768 0.7851 1.0636 0.0425 0.0254 —40.233
200 0.7768 0.7768 —1.7719 x 107° 0.0425 0.0425 2.0964 x 1078
1000 0.7768 0.7768 —1.7719 x 107° 0.0425 0.0425 2.0964 x 1078

(c) for r,/rep = 0.9, ¢4 = 49.86° and ry,/ry = 0.8931

M ‘.fl(rq’d)q)cos 91 (Tps Dp)cos % Error ‘fl(rqyd)q)sin 91(7ps Pp)sin % Error

80 0.0081 6913208.608  8.4962 x 10'° 0.3613 —9671242.259  —2.6765 x 10°
200 0.0081 24188.768 2.9727 x 108 0.3613 —36702.5849  —1.0158 x 107
1000 0.0081 0.0081 3.1280 x 1073 0.3613 0.3613 1.0244 x 1074

Now consider the situation where ¢4, # 0. Table 3.5.6 shows that the series in the

addition theorems still converge for arbitrarily located cylinders.

Table 3.5.6: Truncation errors of ¢; (7, ®p)cos and g1 (7, Gp)sin for n =9, M = 80,
Ggp = /3 and 1, /1y, = 0.5

Point ¢, vgp/rq  Pq ‘ F1(rgs @g)cos  G1(Tps Bp)cos % Error ‘ J1(rgs Bg)sin - 91(Tps Dp)sin % Error

1 0 0.7559 40.89 0.0798 0.0798 —1.0228 x 10710 0.0113 0.0113 —1.3088 x 107
2 18 0.7083 46.29 0.0247 0.0247 5.2616 x 10710 0.0375 0.0375 —1.9967 x 10710
3 36 0.6799 52.05 —0.0098 —0.0098 7.5911 x 10710 0.0294 0.0294 —3.7486 x 10710
4 54 0.6675 58 —0.0250 —0.0250 3.1762 x 10710 0.0081 0.0081 1.2177 x 1079
5 72 0.6699 63.99 —0.0220 —0.0220 —5.5748 x 10~1° —0.0160 —0.0160 4.6539 x 10712
6 90  0.6874 69.90 —0.0006 —0.0006 8.7604 x 1079 —0.0343 —0.0343 4.3451 x 10710
7 108 0.7219 75.56 0.0408 0.0408 1.4142 x 10710 —0.0342 —0.0342 —3.7855 x 10710
8 126 0.7769  80.79 0.1023 0.1023 —1.4192 x 10710 0.0127 0.0127 —2.3110 x 107
9 144 0.8592 85.29 0.1720 0.1720 4.5305 x 10711 0.1886 0.1886 2.6252 x 10711

162 0.9796 88.63 0.1778 0.1778 7.9327 x 1071 0.8114 0.8114 1.1274 x 1071
11 180 1.1547 90 0.0000 0.0000 — 3.6494 3.6494 2.1539 x 10712
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For the case were 1, > 1y, as shown in Figure 3.5.2 the addition theorems in

(3.2.11) are used, the equations are normalized to give

" B — (D)™ +m = 1) (g \™
(Tq> cosng, = mzzo ml(n = 1)1 " cos [me, — (m + n)dg),
—_— 7 .
f2(rq,¢q)cos 92(7"1:;1?)005
(3.5.2a)
™\ _ — (D)™ +m = 1) e\
<rq) sinng, = mz::() i (n = 1)1 . sin [me, — (m + n)dgp),
fQ(Tq’(;SQ)sin 92("'1:gp)sin
(3.5.2b)

Let us denote the left hand sides of (3.5.2a) and (3.5.2b) as fa(ry, ¢g)cos and

fa(rq, @q)sin, and the right hand sides as ga(rp, ¢p)eos and ga(rp, ¢p)sin, respectively.

P2, Yn) Yp

Yq

q

Figure 3.5.2: Point P along a circle of radius r, when r, > rg,

Now consider the situation where r,, = 75 cm, r, = 125 cm and ¢, = 7/3, then r,
¢p and ¢, vary when P moves along the circle. Test point locations are taken by
varying ¢, from 0° to 180°. If n = 6 and M is truncated to 80 terms the numerical

results in Table 3.5.7 show good convergence of the series.
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Table 3.5.7: Truncation errors of ga(7,, ®p)cos a0 g2(7p, dp)sin for n =6, M = 80,
Ggp = /3 and 14, /1, = 0.6

Point ¢, Tp/rq Pq ‘ f2 (rqa d)q)cos g2 (Tpa ¢p)cos % Error ‘ fz(Tq, d)q)sin gz(Tpa ¢p)sin % Error
1 0 0.7143  21.79 —0.0866 —0.0866 2.7820 x 108 0.1007 0.1007 —1.0054 x 1078
2 18 0.6664 33.52 —0.0817 —0.0817 —2.3486 x 1078 —0.0315 —0.0315 4.7350 x 1078
3 36 0.6381 44.96 —0.0003 —0.0003 —1.1904 x 1076 —0.0675 —0.0675 —3.4181 x 1078
4 54 0.6258 56.25 0.0555 0.0555 —3.8572 x 108 —0.0230 —0.0230 3.4471 x 1078
5 72 0.6282 67.51 0.0434 0.0434 3.9995 x 1078 0.0435 0.0435 —3.4342 x 1078
6 90 0.6456 78.83 —0.0283 —0.0283 —1.6686 x 108 0.0667 0.0667 3.4610 x 10~8
7 108 0.6799 90.35 —0.0988 —0.0988 2.4061 x 10~% —0.0036 —0.0036 2.0507 x 1077
8 126 0.7356 102.22 —0.0454 —0.0454 —4.3477 x 1078 —0.1518 —0.1518 1.1982 x 1078
9 144 0.8205 114.69 0.2591 0.2591 2.5325 x 107° —0.1612 —0.1612 —1.8195 x 108
10 162 0.9489 128.16 0.4796 0.4796 —6.9465 x 107 0.5506 0.5506 1.9834 x 107?
11 180 1.1471 143.41 —1.7573 —1.7573 —1.9000 x 107 1.4496 1.4496 —1.8519 x 107*
3.5.2 Evaluation of the translational addition theorems for

Laplacian functions r" cosn¢ and r" sin n¢

Consider again Figure 3.5.1 where 7, < r,, for the addition theorem (3.3.7) when

normalized gives

r \" - n! o\
T_q COS nqbq = Z m T_p COS [mep -+ (n — m)gbqp]? (353&)
R qp , m=0 qp
f3(rq7¢Q)COS gs(TpT;p)cos
ro \" . " n! o\
(r_) = D (7) sin[mg, + (n — m)oy),  (3.5.3)

F3(rq,®q)sin

v~

gs (Tp7¢p)sin

Let the left hand sides of (3.5.3a) and (3.5.3b) be referred to as f3(7,, ¢q)cos and

f5(rq, ¢q)sin and the right hand sides as g3(rp, ¢p)eos and gs(ry, ¢p)sin, respectively.

Now consider the situation where 7, = 75 cm, 7, = 67.5 cm and ¢,, = 7/3. The

results are given for the case when n = 20 in Table 3.5.8, verifying the series

converges well for high order n and for ratios approaching r,/ry, — 1.
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Table 3.5.8: Truncation errors of g3(rp, ¢p)eos and gs(ry, ¢p)sin for n = 20, ¢,y =
/3 and r,/ry, = 0.9

Point ¢, 74/Tep Pq ‘ f3(Tgs @g)cos  G3(Tps ¢p)cos % Error fa(rgs d’q)sin 93(Tpa ®p)sin % Error
1 0 1.6462 31.74 1.7915 x 10% 1.7915 x 103 —4.6960 x 10712 | —2.1289 x 10* —2.1289 x 10* —2.0506 x 10713
2 18 1.7742  40.16 1.1390 x 10* 1.1390 x 10* 3.0982 x 10712 9.4791 x 10* 9.4791 x 10* —3.8379 x 1071
3 36  1.8586 48.64 | —7.1466 x 10* —7.1466 x 10* 6.1086 x 10713 | —2.3114 x 10° —2.3114 x 10° —1.6369 x 10~
4 54 1.8974 57.16 1.6514 x 10° 1.6514 x 10° 6.6972 x 10713 3.2636 x 10° 3.2636 x 10° —2.6753 x 10713
5 72 1.8896 65.68 | —1.9963 x 10° —1.9963 x 10° 1.4579 x 10713 | —2.7138 x 10> —2.7138 x 10° 3.0029 x 10713
6 90 1.8354 74.19 1.3580 x 10° 1.3580 x 10° 1.9288 x 10713 1.3042 x 10° 1.3042 x 10° —2.1201 x 10713
7 108 1.7362 82.66 | —5.1868 x 10* —5.1868 x 10* 4.9098 x 10713 | —3.3880 x 10* —3.3880 x 10* —2.3623 x 10713
8 126 1.5944  91.04 1.0533 x 10* 1.0533 x 10*  —1.7096 x 10712 4.0114 x 10° 4.0114 x 10> —6.5751 x 10712
9 144 14136  99.29 | —1.0095 x 10> —1.0095 x 10> —7.3202 x 10713 —101.4018 —101.4018 3.2659 x 10710
10 162 1.1982 107.28 36.0581 36.0581 5.5378 x 10710 —9.2405 —9.2405 —1.0569 x 107
11 180 0.9539 114.79 —0.2793 —0.2793 —3.2789 x 1078 0.2714 0.2714 —5.0121 x 1078

When r, > 1y, as

normalized gives

n

r
1) cosng, = E
Tp m!
————

f4 (Tq 7¢q)cos

n

p
Ja(rq:¢q)sin

r .

1) sinng, = g

r m!
—_——

shown in Figure 3.5.2 the addition theorem (3.3.9) when

S

- n! Tgp m
2 i —m)1 \ 7, cos [(n —m)p, + Mgy,
94(rpsbp)eos
- n! Top \ .
m ri: sin [(n — m) @, + Mgp),

m=0

J/

-~

g4(”‘pv¢?)sin

(3.5.4a)

(3.5.4b)

Let the left hand sides of (3.5.4a) and (3.5.4b) be referred to as fi(74, ¢q)cos and

f1(rg, ¢¢)sin and the right hand sides as ga(7p, @p)cos and ga(7,, @p)sin, respectively.

Now consider the situation where r,, = 75 cm, r, = 80 cm and ¢,, = 7/3. The

numerical results are given for the case when n = 20 in Table 3.5.9, showing good

convergence of the series at various points.

Table 3.5.9: Truncation errors of g4(rp, ¢p)eos and ga(ry, Pp)sin for n = 20, ¢,y =
/3 and ry,/r, = 0.9

Point ¢, 14/Tep Pq ‘ fa(rgs Pg)cos  9a(Tps Pp)eos % Error fa(rqy Pg)sin ~ 9a(Tps Pp)sin % Error
1 0 1.6782 28.93 | —2.4520 x 10* —2.4520 x 10* 1.7804 x 1071 | —1.9617 x 10* —1.9617 x 10* —5.5636 x 10713
2 18 1.8090 38.29 9.8126 x 10* 9.8126 x 10* 5.1905 x 10713 1.0094 x 10° 1.0094 x 10° —6.7754 x 10713
3 36 1.8952 47.61 | —2.1932 x 10° —2.1932 x 10° 5.3080 x 1071 | —2.8216 x 10° —2.8216 x 10° —3.0943 x 10~1?
4 54 1.9348 56.90 2.8601 x 10° 2.8601 x 10° 8.7512 x 10713 4.5883 x 10° 4.5883 x 10° —2.2835 x 10713
5 72 1.9269 66.19 | —2.1918 x 10° —2.1918 x 10° 9.0295 x 10713 | —4.4710 x 10° —4.4710 x 10° —9.1132 x 10~
6 90 1.8716  75.50 9.5515 x 10* 9.5515 x 10* 1.2188 x 10713 2.6107 x 10° 2.6107 x 10°  —2.0066 x 10713
7 108 1.7702 84.82 | —2.1374 x 10* —2.1374 x 10* 2.0765 x 10712 | —8.8733 x 10* —8.8733 x 10* 2.6239 x 10713
8 126 1.6253  94.20 1.7285 x 103 1.7285 x 103 —3.1781 x 1071 1.6451 x 10* 1.6451 x 10* —1.7249 x 1072
9 144 1.4405 103.66 84.4692 84.4692 1.1923 x 1071° | —1.4766 x 10®> —1.4766 x 103 3.9005 x 1071
10 162 1.2203 113.28 —14.4353 —14.4353 —1.3391 x 107° 51.6185 51.6185 2.0311 x 10710
11 180 0.9703 123.20 0.3054 0.3054 4.9050 x 1078 —0.4535 —0.4535 7.1061 x 1078
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3.5.3 Evaluation of the translational addition theorems for
Laplacian function Inr

Consider again Figure 3.5.1 where r, < r,, for the addition theorem (3.4.5) when

normalized gives

r — (=™ (m\"

| (%) - ( m) <7°_p) cos [m(¢p qup)], Tp < Tgp- (3.5.5)
P — ap

f5(7’qv¢q) 95(;(1511)

Let us denote the left hand side of (3.5.5) as f5(ry, ¢,) and the right hand side
as g5(rq, ¢q), respectively. For the situation where 7, = 75 c¢cm, r, = 37.5 cm
and ¢,, = 27/3, then r, and ¢, vary when P moves along the circle. Test point
locations are taken by varying ¢, over 0 to 180°. Numerical results are presented
in Table 3.5.10 for the series truncations M = 10 and 30. As expected with greater

values of M the better the convergence of the series.

Table 3.5.10: Truncation errors of gs(r,, ¢,) for ¢4, = 27/3, r,/re, = 0.5, and
M = 10 and 30

Point ¢p 7gp/rg ‘ J5(rq; @q)  gs5(Tps Pp) =10 % Error|pr=io ‘ I5(rqs dq)  g5(Tps dp)rr=s0 % Error|nr=so

1 0 1.1547 0.1438 0.1438 —2.9882 x 1072 0.1438 0.1438 —2.1712 x 10710
2 18 0.9796 | —0.0206 —0.0206 —2.0507 x 1071 | —0.0206 —0.0206 1.9487 x 1078
3 36 0.8592 | —0.1517 —0.1518 2.5584 x 1072 | —0.1517 —0.1517 —4.3629 x 107°
4 54 0.7769 | —0.2524 —0.2524 —1.3596 x 1072 | —0.2524 —0.2524 3.2555 x 1079
5 72 0.7219 | —0.3259 —0.3260 9.0235 x 1073 | —0.3259 —0.3259 —2.8234 x 107°
6 90 0.6874 | —0.3748 —0.3747 —6.4796 x 107% | —0.3748 —0.3748 2.6104 x 107°
7 108  0.6699 | —0.4006 —0.4006 4.7295 x 1073 | —0.4006 —0.4006 —2.5134 x 107
8 126 0.6675 | —0.4042 —0.4042 —3.2927 x 1073 | —0.4042 —0.4042 2.5004 x 107
9 144 0.6799 | —0.3859 —0.3859 1.8727 x 1072 | —0.3859 —0.3859 —2.5676 x 1079
10 162 0.7083 | —0.3449 —0.3449 —1.3819 x 107* | —0.3449 —0.3449 2.7357 x 1079
11 180  0.7559 | —0.2798 —0.2798 —2.5863 x 1073 | —0.2798 —0.2798 —3.0740 x 107

When r, > r,, as shown in Figure 3.5.2 the addition theorem (3.4.9) is normalized

to give

i (2) = S 5 (52) o puto, ol 1z (59

m j2
, 1n:1
fe(ra:éq) 96(Tp,bp)

Let us denote the left hand side of (3.5.6) as fs(ry, ¢,) and the right hand side as
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96(7p, ¢p), respectively. Now consider the situation where r,, = 75 cm, r, = 125
cm and ¢, = 27/3, the numerical results are shown in Table 3.5.11 for the series

truncations M = 10 and 30, verifying the series converge.

Table 3.5.11: Truncation errors of gg(r,, ¢,) for ¢,, = 27/3, ryy/r, = 0.6, and
M = 10 and 30

Point ¢p qu/rq ‘ .fﬁ("'tn ¢’q) gB("'pa¢p)M=10 % EI‘I‘OI‘|M=10 ‘ fe(T‘q,fﬁq) ge(Tpa¢p)M=3D % EI‘I‘OI‘lM=30

1 0 1.1471 0.1372 0.1369 —0.2468 0.1372 0.1372 3.3449 x 1077
2 18 0.9489 | —0.0524 —0.0521 —0.5956 —0.0524 —0.0524 2.7787 x 107°
3 36 0.8205 | —0.1979 —0.1981 0.1397 —0.1979 —0.1979 —1.0159 x 1076
4 54 0.7356 | —0.3071 —0.3068 —0.0779 —0.3071 —0.3071 7.6019 x 1077
5 72 0.6799 | —0.3857 —0.3859 0.0526 —0.3857 —0.3857 —6.5556 x 1077
6 90  0.6456 | —0.4376 —0.4374 —0.0382 —0.4376 —0.4376 6.0366 x 1077
7 108 0.6282 | —0.4649 —0.4650 0.0282 —0.4649 —0.4649 —5.8004 x 10~7
8 126 0.6258 | —0.4687 —0.4686 —0.0200 —0.4687 —0.4687 5.7686 x 1077
9 144 0.6381 | —0.4493 —0.4494 0.0121 —0.4493 —0.4493 —5.9322 x 1077
10 162 0.6664 | —0.4059 —0.4058 —0.0025 —0.4059 —0.4059 6.3418 x 1077
11 180 0.7143 | —0.3365 —0.3364 —0.0120 —0.3365 —0.3365 —7.1641 x 1077
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Chapter 4

Application of the addition
theorems to the solution of
electrostatic fields in systems of
parallel circular cylinders with
coplanar axes

In this chapter the derived addition theorems from Sections 3.2 and 3.4 will be
applied to the problem discussed in Section 2.2 for some simplified geometries.
All the boundary problems solved for in this chapter apply to either Dirichlet or
Neumann type.

For problems with all the cylinder axes coplanar on the x-axis the circular harmonic

solution of Laplace’s equation (2.2.1) can be simplified to

00 1 n
Uq(rg, Pq) = Ca+ AgInry + ZA” (—> COS NPy, (4.0.1)

r
n=1 q

where the sin function is excluded and the constants are renamed.

4.1 Conducting cylinder parallel with a line charge

A straight line charge with linear charge density +p; is placed parallel to and a
distance d away from the axis of a conducting cylinder of radius a; held at fixed
voltage such that the potential vanishes at infinity, as shown in Figure 4.1.1. The

medium outside the cylinder is linear and homogeneous, with permittivity €. The
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potential at any point outside the cylinder, expressed in (71, ¢1) coordinates, is

found.

P(Tpa ¢p)
Y1 T T2
u1 = Constant
Y2
®2
1 ¢z=0 P21 R Zo
x1 Po1 =T +pi
a1
< d >

Figure 4.1.1: Conducting cylinder near a parallel line charge

The potential due to the presence of the conducting cylinder is expressed in (ry, ¢1)

coordinates as

r1

00 1\"
Ul(Tl, ¢1) = CA + Ao 1117"1 + ZAn (—) COS n¢1, T > al, (411)

n=1

while the potential due to the line charge in (rq, ¢2) coordinates is

us(re, ¢2) = —% Inry+Cg = flnry + Cz, where (= P (4.1.2)

2me

and Cj is a reference constant.

The potential uy(rs, ¢o) is translated using the addition theorems of Section 3.4 into
the coordinate system (71, ¢1) and the boundary condition that the potential at
infinity vanish is imposed. To express us(r2, ¢2) using (3.4.5) and (3.4.9) with the
following substitutions ry = 12, ¢y = @2, 1p =71, Op = 1, Tgp = d, Qgp = P21 = T,

changing the series index m = n, and making use of the trigonometric equation
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cos (v — 1) = cosavcos Y + sin acsin P, gives

9] 1 n
us)(ry, ¢1) = Cs+ Blnd — BZ - (%) cos noy, r <d, (4.1.3a)
n=1
1) =1 /d\"
Usg (7“1>¢1) :C/g—Fﬁlnﬁ—ﬁZE T’_l COS?”L(bl, ™1 >d, (4.1.3b)
n=1

The total potential ugz (r1, ¢1) at any point outside the cylinder is then expressed

as

ng)t(rla 1) = ui(r1, ¢1) + Ugl)(ﬁ, &)+ C, (4.1.4)

where C' = C4 + Cp is an arbitrary constant defined by the reference potential.

Equation (4.1.4) is in the coordinates of the cylinder system and therefore the
boundary conditions at infinity and at the surface of the cylinder can be imposed to
solve for the constants of integration, C, Ay and A,,. First imposing the boundary

condition that the potential vanish at infinity using (4.1.3b) for ugl)

gives
0= lim ugz(rl, ®1)
71 —00
_ - \" 1 /d\"

= lim AolnT1+Blnr1+C+Z A, |l — | —B—| — coS Ny
T1—00 1 T n ™

= lim {Aglnry +flnr +C}.
r1—00

This expression is only valid if the constants are set to Ag = —f and C' = 0. Now

solving for the potential on the surface of the cylinder r; = a; using (4.1.4) with

(4.1.3a) since m < d and substituting for the solved values gives

Oanon = o (L) 35 [a, (L) 2 5L ()
utot(a17¢1) —6111 (Cll) +; [An <a1> ﬁn (Ch) ]Cosngbl, (4.1.5)

which after equating like terms since the potential on the cylinder is a constant,
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yields

Substituting all the constants Ay, A, and (§ into (4.1.4) and simplifying, for
a; < rp < d gives
o) Pl 1 r\n 2"
1 1
Ut (11, P1) = T ore { (7“1) + ; o <—> [( 1) - 1] COS”¢1} ., (4.1.6)
and for ry > d we get
Pl 1 /d\" ap\ 2"
ng(ﬁ,cﬁl) s Z o <7°_1) [(E) - 1] COS Ny . (4.1.7)

n=1

Note, using (4.1.6) the total potential on the cylinder is calculated as

d
ng(al, ¢1> = —ﬂ In (—) .

2me aq

Potential distribution using image method

Alternatively, the potential solution for this elementary problem can be obtained
using the image method. The equipotential surfaces of two parallel straight lines
are circular cylinders described by [1]

4 r
up (ro,r3) = Qﬂln (T_z> + ug, (4.1.8)

e

where uq is an arbitrary constant defined by the reference potential. The potential
distribution given by (4.1.8) must also describe the potential between a finite

cylinder of radius a; and a line charge +p;, as shown in Figure 4.1.2.
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P(rp, ¢p)

r1 T2

Uiy = constant

—Pi o

«b C——— >

< d >

Figure 4.1.2: Two straight line charges of equal and opposite sign

The cylinder will carry the total charge per unit length —p; and will have a potential
defined by the radial distances o and r3 along its surface. The radial distances can

be expressed in terms of (r1, ¢1) coordinates using the law of cosines relationship

giving ry = \/r% +d? — 2ridcos ¢y and r3 = \/7“% + b2 — 2r1bcos ¢1. Imposing the
boundary condition that the potential vanish at infinity sets ug = 0 thus, the total

potential is

ujm (11, ¢1) = % {ln (\/r% + b2 — 2r1bcos ¢1) —1In <\/7"% + d? — 2rd cos ¢1) } .

(4.1.9)
But using the harmonic expansions of a line charge [10]
lnd—il<ﬁ>ncosn¢ ry <d
n \d 1 1 )
In ( r? 4+ d? — 2ryd cos gzﬁl) = n=l n (4.1.10)
Inr —Zl i cosngy, 1 >d
1 £ n \r 1, 1 )
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and from the geometry in Figure 4.1.2 it can be shown that b = a?/d and thus,

2 1 (rd\"
(&) - E - (e cosngy, 11 <ai/d,
d n \ a?
In (\/r% + 0% — 2ribcos gbl) = o ’111( 2

n
lnrl—g — 1) cosnagy, r > a?/d,
n

n=1 rl_d
(4.1.11)

Using the expansions given in (4.1.10) and (4.1.11) the potential (4.1.9) can be
reduced to the same expressions (4.1.6) and (4.1.7) for regions a; < r; < d and

r1 > d, respectively.
Calculation of charge per unit length on the cylinder

The total charge on the cylinder can be found by integrating the surface charge

density over the surface of the cylinder, i.e.,

szfm%ﬂ (4.1.12)
S

Since the cylinder surface outward normal is only radial the charge density is

obtained from

(4.1.13)

[o I 2n
Pl 1 8] ! aj
=——1q — — E — -1 . 4.1.14
2m {7"1 < dr [(rl) ] cos nqbl} ( )
n= r1=a1

The total charge for the length [ of the cylinder can be calculated as

l 27
Qrot =/ / ps(a, ¢1) ardgrdz (4.1.15)
0o Jo
o Pi 1 = 7"711_1 ai 2
:l/o o a—l—; I Cl—l — 1| cosney p ardprdz;  (4.1.16)
= —pl (4.1.17)
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and the charge per unit length is Q;,;/l = —p; which is the image line charge —p,

given by the image method.

4.2 Two-cylinder system

Two conducting cylinders of radii a; and ay are placed parallel to each other with
a separation distance d between their axes, as shown in the Figure 4.2.1. Charges
per unit length of —¢ and ¢ are placed on cylinder 1 and 2, respectively, i.e., a
complete system, with the requirement that the potential vanish at infinity. The

medium outside the cylinders being homogeneous, with permittivity e.

P(TIH ¢())
n " r2 b2
q
—q
o2
” ¢32_ - _0 ____________________ $21 s -
I 2
ay
a2
d >

Figure 4.2.1: System of two conducting cylinders

The harmonic potentials of cylinders 1 and 2 are expressed in their respective

coordinate systems as

ui(ry, ¢1) = Ca+ Aglnry + ZA” <@> cosngy, ri>ap, (4.2.1)
n=1 B}

UQ(TQ, ¢2) = CB + BO In To + Z Bn <%) COS nng, T9 > Qg, (422)
T2

n=1

where C'4 and Cp are reference constants and the harmonics in the series expansions
have been normalized to the radii a; and a, respectively. Note, this has no effect

on the potential distribution only the magnitudes of the constant change.
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Then us(rg, ¢o) is translated into the coordinate system (7, ¢;) allowing the
boundary condition at the surface of cylinder r; = a; to be imposed. Using (3.2.6a)
and (3.4.5) with the following substitutions r, = re, ¢y = ¢2, 7, = 11, ¢p = ¢1,

rep = d and ¢4, = 7, the addition theorems reduce to

. > 1 /ri\»
Inry =Ind — nEZI - <E> cosnagy, (4.2.3)
\" (=D +m =1 1\ g™
(E) COS NPy = mgo (0 = 1)) (a) (El) COS My . (4.2.4)

Therefore the translated potential ugl) (r1,¢1) expressed in the coordinates of

cylinder 1 is

o = i y (4.2.5)
—1)"n+m—1 Ao \" /T1\™
* ; mz_:OBn ml(n —1)! (E) (E) cos M1
For convenience let us denote
. (—1)"(n+m—1)' as\"™ /ri\m
(M, n, 1, a,d) = ml(n— 1) <E> <E> ; (4.2.6a)
(n,r,d) = -~ (ﬁ>" (4.2.6b)
B sy 'l - n d 9 cL
so (4.2.5) can be rewritten as,
uM(ry,¢1) = Cs + By {lnd + ng(n, r1,d) coanSl}
n=1
+ Z Z B,tg(m,n,ry,as, d) cosmae;. (4.2.7)

n=1 m=0
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The total potential expressed in (71, ¢1) coordinates at any point P(ry, ¢1) is then

uli)(r1, ¢1) = un (11, d1) + uS? (r1, 1)

=C+ Aglnry + Bylnd + Z {An (ﬂ) + Boyg(n,ri,d) | cosneo,
(it
n=1
+ Z Z B,me(m,n,r, as, d) cosmaor, (4.2.8)

n=1 m=0

where C' = C'4 + C'g. Now applying the boundary condition at r; = ay, that is,

uSt) (r1 = ay, ¢1) = Vi reduces (4.2.8) to

Vi=C+ Ajlna; + Bolnd + Y [A, + Byyp(n, ar, d)] cosng,
o = (4.2.9)
+ Z Z B,m5(m,n, a1, az, d) cosme.

n=1 m=0

Making use of the orthogonal properties of trigonometric functions, which are

;

2 TOnm N F#0
/ cos g cosmeo dp = (4.2.10a)
0 27 n=m=20
;
27 TOpm N 7#0
/ sinng sinme d¢ = (4.2.10Db)
0 27 n=m=20
2m )
/ cosnosinmaeodg = 0 n,m all integral values (4.2.10c)
0

where 4, ,,, is the Kronecker delta'. Therefore multiply (4.2.9) by cosmg; and

integrating in ¢; from 0 to 2, for all positive integral values of m, gives the infinite

1 n=m

!The Kronecker delta symbol is d,, , = )
' 0 n#m
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set of equations

V1—C:Aolnal+Bolnd—|—ZBnTB(O,n,a1,d), m =0, (4.2.11)

n=1

0= Ap + Byys(m,a1) + > Bur(m,n,ar,a2,d), m=12,... (4212)

n=1

The same steps taken to apply the boundary conditions at cylinder 1, are followed
for cylinder 2. Now wuq(ry, ¢1) is translated into the coordinate system (79, ¢o) and
the boundary conditions at ry = ag, that is, u§§2 (ro = ag, o) = V4 gives the infinite

set of equations

VQ—C:Bolna2+Aolnd—|—ZAn7'A(O,n,@2,d), m =0, (4.2.13)

n=1

0 = By, + Aoya(m, as) + Z Apta(m,n,ag,aq,d), m=1,2,... (4.2.14)

n=1

where

Ta(m,n,re,a1,d) = (_1)258;17)1_ =k (%)n (%)m, (4.2.15a)
Ya(n,ra,d) = —# (%)n (4.2.15D)

The known boundary conditions are given in terms of the charges per unit length
on the cylinders, therefore, we need to find the charges in terms of the constants

of integration. The total charge on the p'* cylinder is given by

b= § o0 as
S

and the charge per unit length (q =Q/ l) is calculated with

, (4.2.16)

Tp=0ap

27
qt(gt) = / p(;)) rpdey
0
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where the surface charge density on cylinder p is

o) Duip!

ps (rp = ap, ¢p) = —¢ ar, (4.2.17)

Tp=ap

Solving for the charge density on cylinder 1, that is ,0(51)(7“1, ¢1), and substituting
into (4.2.16) gives

) 27 AO 00 n ay n
Giot (T1, $1) = —5/ P E :r— Boyp(n,r1,d) — A, | — | | cosngy
0 1

r
n=1 1 1

o0 oo m
+ Z Z B,—T7(m,n,r,as,d) cos mgbl} ridoy,

n=1 m=0 "
(4.2.18)
where the derivatives of 75(m,n,ry,as,d) and yg(n,ry,d) are given by
0
8_7"1 |:7_B(ma n,ri, as, d)] = %TB(ma n,r, az, d)7
O Tsnrad)] = ya(n,re,d)
— n,ri, = —~g(n,r,d).
ory B 1 " B 1
Evaluating (4.2.18) at the surface of cylinder 1, reduces it to
Gioi (a1, $1) = —2me A, (4.2.19)
Similarly, the charge per unit length of cylinder 2 can be found to be
02 (as, ¢s) = —2meB. (4.2.20)

This shows that the total charges per unit length qgt) and qu on cylinders 1 and

2 are proportional to the constants of integration Ay and By, respectively, by
the factor —2mwe. However, for the potential at infinity to vanish we require the
1

logarithms vanish in the potential distribution. For the potential utmz (r1, ¢1) when

r1 > d we use addition theorems (3.3.9a) and (3.4.9) to translate ug (72, ¢2) to
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(r1, ¢1) coordinates giving

W) =0+ ot B+ 3[4, () - By
n=1

1
EE L) (£ e

n=1 m=0
(4.2.21)
The potential as r; — 0o, reduces to
lim w)(r,¢1) = lim [C+ Aglnry + Bylnry] =0, (4.2.22)
r1—00 r1—00

The only way to satisfy that the logarithmic potential at infinity vanish is for
Ag + By = 0, i.e., the sum of the charges on all the conductors is equal to zero.
The uniqueness theorem states that C' can be set to any value because it makes no
contribution to the electric field intensity, since the addition of a constant makes
no difference to the gradient, thus, we choose C' = 0 for the potential to vanish at
infinity.

The equations (4.2.11) to (4.2.14), (4.2.19), (4.2.20) and with C = 0, form a
complete system that constitute an infinite set of coupled linear equations which
solved simultaneously determine the unknown constants of integration. To obtain
numerical results, the infinite series must be truncated to a finite number of
terms n = m = M. The truncated system can be written in matrix and vector
form, Az = b, where we use the abbreviations for 75(m,n,a;, as,d) = 75(m,n),

Ta(m,n, az, a1,d) = 7a(m,n), vp(n,a1,d) = yp(n) and va(n, as,d) = ya(n) to

give
-1 0 0 TB(O,l) 0 TB(O,M) V1 —Aolnal—Bolnd
0 -1 74(0,1) 0 oo T1a(0, M) 0 Va —Aplnd — Bylnas
0 0 1 TB(l,l) 0 TB(l,M> Al —BQ’yB(l)
0 0 7a(1,1) 1 oo Ta(1, M) 0 B | = —Agva(1)
0 0 0 TB(M,l) 1 TB(M,M) AM —Bo’yB(M)
0 0 74(M,1) 0 oo TA(M, M) 1 By —Agya(M)
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Once the constants of integration Ay, ..., Ay, By,..., By, along with potentials
Vi and V5, are numerically calculated, substitution back into the equation for the

potential distribution gives

Utot (71, P1|T2, P2) = Aglnry + Bylnry

ri>ai, re2>a2
+ Z {An (ﬂ) cosng; + By, (%> Ccos ngbg} . (4.2.23)
1 1 T

2

where the location of the observation point P(ry, ¢1|rs, ¢2) must be expressed in
terms of both (ry, ¢1) and (r2, ¢2) coordinates which can be done using the relations

in (2.3.5) and (2.3.6).
Planar bipolar coordinate solution to the two cylinder system

The two cylinder system can naturally be described in the planar (or two-dimensional)

bipolar coordinate system (7, &) where [14]

sinh B sin &

r =

(4.2.24)

acoshn—cosf7 acoshn—cosf’

where 1 = constant are Apollonian circles and & = constant are sections of circles
orthogonal to = constant (see Figure 4.2.2).

Eliminating 7 from (4.2.24) gives 2% + (y — acot £)* = a? csc? €, which defines the
coordinate surface £ = constant for 0 < ¢ < 27 as circular cylinders centred at
(0, acot &) with radius alcsc&|. In the same way, eliminating & from (4.2.24) gives
(z — acothn)? + y* = a® csch® i, which defines the coordinate surface n = constant
for —oo < m < oo as circular cylinders centred at (a cothn,0) with radius a|csch 7).
As n — £oo the circles degenerate to the focal points (+a,0).

Consider again, in bipolar coordinates, the case of two cylinders of radii a; and as

positioned parallel to each other in a homogeneous medium of permittivity e,
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n = conséqm; L

Figure 4.2.2: Two conducting cylinders in bipolar coordinates (7, §)

as shown in Figure 4.2.2. Charges of —q and ¢ are placed on cylinders 1 and 2,
respectively, with the potential vanishing at infinity. The total potential distribution

is governed by Laplace’s equation

coshn — cos§>2 [82ubi 82ub1} . (4.2.25)

V2ubi<n7§) = ( a 8772 + 862

The general harmonic solution of the Laplace equation for the configuration in

Figure 4.2.2 [15] is [see Appendix B]
wpi(1,€§) = Ao + Bon + Z (Ane™ + Bne™™) cosné. (4.2.26)
n=1

The potential distribution at a point near infinity, that is, (n — 0,& = 0), gives

ui(n = 0,6 =0)~ Ag+ Y (A, +B,). (4.2.27)
n=1
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For the potential to vanish near infinity Ay = 0 and A,, = — B,,, but since we require
the potentials on the cylinders to be fixed values, the constants A, = B, = 0.

Therefore, the potential distribution reduces to

upi(n, &) = Bon. (4.2.28)

To solve for the constant By in (4.2.28) we find the charge per unit length in terms

of the potential distribution. For cylinder 1, the charge density is

1 ani 1
(n= = —c— = ——Dy. 4.2.29
prz (T] 771’ 5) ghn 87] € h/n 0 ( )
The charge per unit length is
(1) 2 2m h{
= [ pshede ==y [ 5Ede, (4.2.30)
0 o Iy
since the scale factors he = h,,, we obtain qt(;t) = —27meBy. In the same way the

charge per unit length on cylinder 2 can be found to be qu = 2meBy. Therefore,
we see, using the bipolar method the charge on the cylinders must always be equal

and opposite. The cylinder surfaces in bipolar coordinates are given by

_ -1 (% _ —1 (@2
n1 = csch ( " ) : 12 = csch ( " > : (4.2.31)
L V(d+ar +ag)(d+a; — @;é(d —ay +az)(d —ay — a2)' (12.32)

Numerical results of the two cylinder system

Tables 4.2.1 and 4.2.2 for a1 = 1 cm, as = 2 cm, d = 5 cm, qt(;z = —1 nC/m
and qgt) = 1 nC/m show the percentage error between the potentials from the
translational and bipolar methods at various points for truncations of M =5 and
15, respectively. The points are chosen along circles of radii 0.25 ¢m, 5 ¢cm and
10 cm taken with respect to the global coordinates (z,y), where the origin of the

system can be easily seen in Figure 4.2.2.
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Table 4.2.1: Percentage error between the potential values of the translational
and bipolar boundary value methods for a; = 1 ¢m, as =2 cm, d = 5 cm, qt(;t) =—1

nC/m, q§§2 =1nC/m, and M =5

Point r[ecm] ¢[7] | mifem]  $1[7] rolem] @[] | 7 € | uwe[V] Uy [V] % Error
1 0.25 0 2.4500  0.00  2.5500  0.00 0.2566 —3.14 4.606248 4.611570  —1.1540 x 107!
2 0.25 72 | 2.2896 5.96 2.7331 175.01 0.0777 2.90 1.394524 1.397398  —2.0566 x 10!
3 0.25 144 | 2.0031 4.21 3.0058 177.20 | —0.2060 2.99 | —3.704300 —3.702575 4.6571 x 1072
4 0.25 216 | 2.0031 355.79 3.0058 182.80 | —0.2060 —2.99 | —3.704300 —3.702575 4.6571 x 1072
5 0.25 288 | 2.2896 354.04 2.7331 184.99 0.0777  —2.90 1.394524 1.397398  —2.0566 x 107!
6 5 0 7.2000 0.00 2.2000 0.00 0.8281 0.00 14.878705 14.885705 —4.7028 x 1072
7 5 72 | 6.0530 51.78 4.9181 104.78 0.2131 0.72 3.831194 3.831172 5.7578 x 1074
8 5 144 | 3.4701 122.12 7.4493 156.76 | —0.6180 0.50 | —11.107827 —11.107813 1.2691 x 1074
9 5 216 | 3.4701 237.88 7.4493 203.24 | —0.6180 —0.50 | —11.107827 —11.107813 1.2691 x 1074
10 5 288 | 6.0530 308.22 4.9181 255.22 0.2131 —-0.72 3.831194 3.831172 5.7578 x 1074
11 10 0 | 12.2000 0.00 7.2000 0.00 0.3971 0.00 7.137087 7.137083 6.0578 x 1075
12 10 72 | 10.8829 60.92 9.5150 88.25 0.1172 0.37 2.106041 2.106035 2.7153 x 107*
13 10 144 | 83213 135.06 12.3752 151.64 | —0.3154 0.24 | —5.669392  —5.669382 1.6997 x 1074
14 10 216 | 8.3213 224.94 123752 208.36 | —0.3154 —0.24 | —5.669392  —5.669382 1.6997 x 1074
15 10 288 | 10.8829 299.08 9.5150 271.75 0.1172  —0.37 2.106041 2.106035 2.7153 x 1074

The potentials for the translational method with truncations of M = 5 give

relatively good results compared with the bipolar method. It is evident that

at greater distances from the two cylinders the potential distribution has better

convergence, as points 11 to 15 show decreased errors. For the exact same conditions

but with the truncation increased to M = 15 the error between the two methods

is substantially decreased.

Table 4.2.2: Percentage error between the potential values of the translational
and bipolar boundary value methods for a; = 1 cm, a; = 2 cm, d = 5 cm, qt(;t) =-1
nC/m, qgt) =1nC/m, and M =15

Point rlecm] [ | rifem]  $1[7]  refem] @[] | 7 & | we[V] Up;i[V] % Error

1 0.25 0 2.4500 0.00 2.5500 0.00 0.2566 —3.14 4.611570 4.611570  —6.8462 x 1077

0.25 72 | 2.2896 5.96 2.7331 175.01 0.0777 2.90 1.397398 1.397398  —1.0175 x 1077
3 0.25 144 | 2.0031 4.21 3.0058  177.20 | —0.2060 2.99 | —3.702575  —3.702575 3.9939 x 1078
4 0.25 216 | 2.0031 355.79 3.0058 182.80 | —0.2060 —2.99 | —3.702575  —3.702575 3.9939 x 1078
5 0.25 288 | 2.2896 354.04 2.7331 184.99 0.0777  —2.90 1.397398 1.397398  —1.0174 x 1077
6 5 0 7.2000  0.00  2.2000  0.00 0.8281  0.00 14.885705 14.885705 —1.1418 x 1076
7 5 72 | 6.0530 51.78 49181 104.78 0.2131 0.72 3.831172 3.831172 1.4536 x 1011
8 5 144 | 3.4701 122.12 7.4493 156.76 | —0.6180 0.50 | —11.107813 —11.107813 3.5182 x 10712
9 5 216 | 3.4701 237.88 7.4493 203.24 | —0.6180 —0.50 | —11.107813 —11.107813 3.4383 x 10712
10 5 288 | 6.0530 308.22 4.9181 255.22 0.2131 —-0.72 3.831172 3.831172 1.4617 x 1071
11 10 0 | 12.2000 0.00 7.2000 0.00 0.3971 0.00 7.137083 7.137083 3.1858 x 10712
12 10 72 | 10.8829 60.92 9.5150  88.25 0.1172 0.37 2.106035 2.106035 3.4371 x 10712
13 10 144 | 83213 135.06 12.3752 151.64 | —0.3154 0.24 | —5.669382  —5.669382 3.4466 x 10712
14 10 216 | 8.3213 224.94 123752 208.36 | —0.3154 —0.24 | —5.669382  —5.669382 3.2742 x 10712
15 10 288 | 10.8829 299.08 9.5150 271.75 | 0.1172 -0.37 2.106035 2.106035 3.5214 x 10712
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4.3 Two-cylinder system in external electric field

Consider the same system in Section 4.2 but placed in an external electric field
oriented along the common z-axis of the cylinders, Eqg = Eya,, as shown in Figure
4.3.1. Here again, consider a complete system with the external electric field being

the only contribution to the potential at infinity.

P(rpv (/)p)

T2 Yo

\@
E, $12 =0 P21 \ %

a2

d >

—_—

Figure 4.3.1: Two conducting cylinders in an external electric field, Eq = Epa,

The potential due to the external field, expressed in the local coordinates of each
cylinder are

ul) = —Eyr; + CY = —Eyry cos ¢ + CY

exr ?

(4.3.1)

u?) = —Eyzy + C? = —Eyry cos ¢y + CP

exr ?

(4.3.2)

where C’é}v) and C’e(,%) are constants of reference. Lets consider the potential produced
by the external field to be C¢, at the origin of the global coordinate system (x,y),
see Figure 4.2.2, that is, in terms of the coordinates attached to cylinder 1 or 2 as
(r1 = acothny, ¢ = 0) or (ry = acothny, ¢po = ), respectively, where a, n; and 7
are defined in the previous section. Note (—acothn,0) and (acoths,0) are the
locations of the axes of cylinders 1 and 2, respectively, in the global coordinates.

Therefore (4.3.1) and (4.3.2) yield values for the constants Céglc) = Epacothn, +C,,
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and u(c2) = —Fyacothn, + C,, giving

ug‘p) (r1,¢1) = —Eqry cos ¢1 + FEoacothny + Ce,, (4.3.3)

ugc) (re, o) = —Egra cos oo — Ega cothny + Coy, (4.3.4)

To apply the boundary conditions at cylinder 1 the total potential distribution must
be expressed in terms of the attached coordinate system. We use the translational
addition theorems to express the potential us (72, ¢2) in terms of the coordinates

(r1,¢1) and the external potential ull) (r1, ¢1) to give

uSe) (1, 61) = ulD (11, 1) + (1, 1) + u (71, 1)

= —E(]Tl COS (bl -+ E()CL coth ™ + C + A(] In r1 -+ BO Ind (435)
+ ; |:An (%) + Bovyp(n, 11, d)] cosney + ; mZ:OBnTB(m, n,r1, ag, d) cos meo.

where vg(n,r1,d) and 75(m, n,r1,d) are defined in (4.2.6) and C' = Cy + Cp + C,,.

Applying the boundary condition u..) (r1 =a1,¢1) = V1 to (4.3.5) gives

Vi = —Epaq cos ¢ + Epacothny + C + Aglna, + Bolnd

+ Z [An, + Byyg(n, a1, d)] cosng, + Z Z B,tg(m,n, ay, az, d) cosmae,.

n=1 n=1 m=0

(4.3.6)

Multiplying (4.3.6) by cos m¢; and integrating in ¢; from 0 to 27 over all positive

integral values of m gives

~Vi+ Y Bats(0,n,01,02,d) = —C — Aglnay — Bylnd — Eya coth,

n=1

Av+)  Butp(1,n,a1,a5,d) = Egar — Byyp(1, ar, d), (4.3.7)

n=1

A, + ZBnTB(m,n, ar, ag,d) = —Byyg(m, a1, d), m=2,3,....

n=1
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In the same way when the total potential is expressed in terms of (rq, ¢o) coordinates
and the boundary condition ugz(m = ag, ¢2) = V4 is applied at the surface of

cylinder 2 yields the set of equations

—V5 + ZAnTA(O,n, as,ay,d) = —C — Bylnas — AgInd + Ega coth s,

n=1

B, + ZAnTA(L n,as,ay, d) = Epay — AO'VA(L az, d)7 (4-3-8)

n=1

B,, + Z Apta(m,n,as,ar,d) = —Agya(m, as, d), m=23,...,

n=1

where v4(n,r9,d) and T4(m,n,re, a1, d) are defined in (4.2.15).

The boundary conditions, given as the charge per unit length on the conductors are
then used to solve for constants Ay and By from qt(;g = —2meAy and q§§2 = —2meDBy,
respectively. As long as the charges are equal and opposite the logarithmic
potentials vanish at infinity and with C' = 0 the only contribution to the potential
at infinity will be due to the external field. Then, the constants of integration in

the infinite set of equations (4.3.7) and (4.3.8), with C' = 0, are solved for after

truncating the series to a finite number n = m = M.
Planar bipolar coordinate solution

The two cylinder system in an external field is analyzed using the two-dimensional
bipolar coordinates for comparison. The reference potential is zero at x = 0, i.e.,
the origin of the global coordinate system, thus the potential of the external field
is ug? (x,y) = —Epz. The coordinate x can be expressed in (7, £) coordinates using

the series expansion [15]

—FEya — EOaZe_"” cosné, n >0,
Uy (1,§) = e (4.3.9)
FEya + anz:e”77 cosng, n<O0.
n=1
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Note that the series expansions are not valid at n = 0 and as n — 0 greater
numbers of terms must be taken in the series for it to converge. The total potential

distribution outside the two cylinders is given by

wpi(n, &) = ugi (n,&) + Bon + Z B, sinh nn cos n&, (4.3.10)

n=1

where we set Ag = 0 and B, = —A,, in (4.2.26) for the contribution to the potential
from the cylinders to vanish at infinity. Solving for the constants in (4.3.10) yields

the potential distribution

1) e~

upi(n,€) = Epa + 2Epa Z e "M cosné — qmt ol + 2Fqa Z m sinh nn cos né,

n<0

" (4.3.11)
for n < 0 and
wpi(n, &) = —Epa — 2Epa Z e cosné +3 it By + 2FEya Z i sinh nn cos né,
>0 ! sinh n1,
(4.3.12)
for n > 0.

Numerical results

Table 4.3.1 for a; = 1 cm, ay = 2 cm, d = 5 cm, qt(;g = —1nC/m, q§§2 =1nC/m
and Fy = 10 V/m show the percentage error between the potentials from the
translational and bipolar methods at various points for truncation of M = 25. The
points are chosen along circles of radii 0.25 ¢cm, 5 cm and 10 cm taken with respect
to the global coordinates (x,y).

The results show that the potentials calculated from the two methods are in
relatively good agreement. Note that the potentials obtained from the bipolar
method for points approaching the n = 0 axis begin to diverge because our series
expansion for the uniform field diverges as n — 0o, as can be seen for points 3, 4,
8,9, 13, 14, 18, 19, 23, 24, 28 and 29 which all have higher percentage errors. For

these points the calculated potentials from the translational method are better
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approximations.

Table 4.3.1: Percentage error between the potential values of the translational
and bipolar boundary value methods for a; = 1 cm, as = 2 cm, d = 5 cm, qt(;g =-—1
nC/m, qgg =1nC/m, Ey =10 V/m and M = 25

Point r[ecm] @[] | mifem]  ¢1[7] 7afcm] @[] | m € | we[V] up;[V] % Error
1 0.25 0 2.4500  0.00 2.5500  180.00 0.2566 —3.14 4.467250 4.553559  —1.8954
2 025 36 | 24067  3.50  2.6019 176.76 | 0.2060  2.99 3.567551 3.655995  —2.4191
3 0.25 72 | 22896 596  2.7331 175.01 0.0777  2.90 1.285695 1.379815  —6.8212
4 0.25 108 | 2.1360  6.39 2.8871 175.28 | —0.0777 2.90 | —1.481503 —1.386378 6.8614
5 0.25 144 | 2.0031 4.21 3.0058 177.20 | —0.2060 2.99 | —3.764624  —3.673469 2.4814
6 0.25 180 | 1.9500  0.00 3.0500  180.00 | —0.2566 3.14 | —4.665113  —4.575388 1.9610
7 0.25 216 | 2.0031 355.79 3.0058 182.80 | —0.2060 3.29 | —3.764624  —3.673469 2.4814
8 0.25 252 | 2.1360 353.61 2.8871 184.72 | —0.0777 3.38 | —1.481503  —1.386378 6.8614
9 0.25 288 | 2.2896 354.04 2.7331 184.99 0.0777 3.38 1.285695 1.379815  —6.8212
10 0.25 324 | 24067 356.50 2.6019 183.24 | 0.2060  3.29 3.567551 3.655995  —2.4191
11 5 0 7.2000  0.00  2.2000  0.00 0.8281  0.00 14.590165 14.648429  —0.3977
12 5 36 | 6.9021 2520 3.1918 67.04 0.6180 0.50 10.770614 10.819361  —0.4505
13 5 72 | 6.0530 51.78 4.9181 104.78 0.2131 0.72 3.667479 3.702615  —0.9490
14 5 108 | 4.8002 82.16 6.4415 132.42 | —0.2131 0.72 | =3.717281  —3.684491 0.8899
15 5 144 | 3.4701 122.12 7.4493 156.76 | —0.6180 0.50 | —10.773232 —10.733350 0.3716
16 5 180 | 2.8000 180.00 7.8000 180.00 | —0.8281 0.00 | —14.481101 —14.437904 0.2992
17 5 216 | 3.4701 237.88 7.4493 203.24 | —0.6180 5.78 | —10.773232 —10.733350 0.3716
18 5 252 | 4.8002 277.84 6.4415 227.58 | —0.2131 5.56 | —3.717281  —3.684491 0.8899
19 5 288 | 6.0530 308.22 4.9181 255.22 0.2131 5.56 3.667479 3.702615  —0.9490
20 5 324 | 6.9021 334.80 3.1918 292.96 0.6180 5.78 10.770614 10.819361  —0.4505
21 10 0 ]12.2000 0.00 7.2000 0.00 0.3971 0.00 6.204628 6.236714  —0.5145
22 10 36 | 11.8506 29.74  7.9079  48.01 0.3154 0.24 4.904407 4.932395  —0.5674
23 10 72 | 10.8829 60.92  9.5150  88.25 0.1172 0.37 1.803740 1.820518  —0.9216
24 10 108 | 9.5521  95.35 11.1868 121.77 | —0.1172 0.37 | —1.817853  —1.802766 0.8369
25 10 144 | 83213 135.06 12.3752 151.64 | —0.3154 0.24 | —4.900172  —4.877071 0.4737
26 10 180 | 7.8000 180.00 12.8000 180.00 | —0.3971  0.00 | —6.184869  —6.159240 0.4161
27 10 216 | 8.3213 22494 12.3752 208.36 | —0.3154 6.05 | —4.900172  —4.877071 0.4737
28 10 252 | 9.5521 264.65 11.1868 238.23 | —0.1172 591 | —1.817853  —1.802766 0.8369
29 10 288 | 10.8829 299.08 9.5150 271.75 0.1172 5.91 1.803740 1.820518  —0.9216
30 10 324 | 11.8506 330.26 7.9079  311.99 0.3154 6.05 4.904407 4.932395  —0.5674

4.4 Three-cylinder system

Consider three conducting cylinders of radii a1, a; and a3 with charges per unit
length of qt(olt) , qu and q§§’2 , respectively, placed on them. The separation distances
between the axes of the cylinders, dio, di3 and dsg, are identified in the Figure
4.4.1. The medium outside the cylinders is homogeneous, with permittivity e.
The potential is found for a complete system, such that the potential vanishes at

infinity.
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Figure 4.4.1: Three conducting cylinder system with given charges

The harmonic potentials of the three cylinders can be expressed in their attached

coordinate systems as

U1<T1, ¢1) = CA + AO In T1 + Z An (ﬂ) COS ngbl, ry > as, (441)
n=1 &}
ug (72, p2) = Cp + Bolnry + Z B, (%) cosngy, 1o > ao, (4.4.2)
n=1 2
ug(rs, ¢3) = Co + Colnrs + Z C (@> cosngs, 13> as, (4.4.3)
T3
n=1

For the complete system, the sum of the charge per unit length of all the conductors
must equal zero, i.e., qgt) + q§§2 + q§§’2 = 0. The total charge per unit length on

each of the cylinders is (see Section 4.5)
¢t} = —2me Ay, ¢2) = —2meB,, 02 = —2meCy. (4.4.4)

Therefore Ag+ By+Cy = 0 and, as long as, the condition is satisfied this ensures the
logarithmic potentials disappear at infinity. Note as the radial distance r — oo the
coordinates are effectively equivalent r; = ro = r3 = r, therefore for the potential
to vanish at infinity, we have

Hm w1, ¢) = lm {uy(r, @) + ua(r, @) + uz(r, @)} =0

T—00 =00

= lim {C+(A0+B0+Oo)1HT} :0,
r—00
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where the constant is set to C' = C4 + Cg + Ce = 0. As shown in detail for the
two cylinder case, using the applicable translational addition theorems for (4.4.1),
(4.4.2) and (4.4.3) and imposing the boundary conditions at each of the three
cylinders, i.e., the fixed charges on cylinders 1, 2 and 3 results in the following sets

of linear equations. For cylinder 1

- AO In ay — BO In d21 - CO In d31 = —‘/1 (445)

+ Z [BnTél) (07 n,as, as, d21) + CnTél) (07 n,ap, as, d31>:| ) m = 07

n=1

- 3071(31)(7"’ ay, da) — Cwél)(m, ar,ds1) = Ap, (4.4.6)

o0

+ Z [Bnrg)(m, n, a1, az, dy) + Cor) (m,n, ay, as, dgl)] , m=1,2...,
n=1

where

Tél) (m7 n,ry, az, d21) = ( ) <n m ) (2) <T_1) > (447&)

m'(n — 1)' d21 d21
() _ DMt m = Mag \" (o \”
To (m,n,ﬁ,ag,dgl) = m,(ﬂ — 1)' d31 d31 , (447b)
1 n
%(31)(71,7”1,d21) — <£1 ) ) (4.4.7¢)
21
1 n
7(01)(7%7“1, d3) = —— (51 ) : (4.4.7d)
31
For cylinder 2, the infinite set of equations are
—Aolndiz — Bylna; — Cylndz = =V, (4.4.8)

+Z [ nTA (0,n,ay,a1,d12) + Cp, TC (O n ag,ag,d32)] ., m=0,

- A07£12 (m, az,di2) — 007(02) (m, as,dss) = B (4.4.9)

oo

—I—Z[ nTA mnag,al,dlg)—i—C’ TC (mnag,ag,dgg)}, m=12,...,
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where

(2)

(=D™(n+m—1! far \" (2 \"
dyo) = — — 4.4.1
TA (m7 n,rq,ay, 12) m‘(n — 1), dlg d12 ) ( Oa)
2) _(=D)Mntm =1 (ag \" 2\
7o (myn, e, a3, d32) = mi(n—1)! s 4 ) (4.4.10b)
—1)" n
) = - ES () (4.4.10c)
n d12
1/ rm\"
Vé)(nﬂ“z,dm) - (d_;) : (4.4.10d)
For cylinder 3, we have
- AO In d13 - Bo In d23 - CO In as = —‘/3 (4411)

—I—Z[ nTA (0,m,as,ay,di3) + By Té)(O n ag,ag,dgg)] ., m=0,

®3)

— Ay (m, a3, di3) — By (m, as, dag) = Ci (4.4.12)

[e.9]

—i—Z[ nTA mnG37a1,d13)+Bn7](3)(mna37G2,d23)}7 m=12,...,

where

3) _ (=DMt m =1 fan \" (s \"
T (m,n,13,a1,d13) = ml(n — 1)1 4 da) (4.4.13a)
(3) C(=D"Mn+m =1 La " s\
T (M, n, 73, a2, daz) = ml(n—1)! s &) (4.4.13b)
)™ (r3\"
’Yf)(nﬂ':a,dls) = _ n) (d_f:a) ; (4.4.13c)
" /rg \"
7§)(nar3,d23) = =D (—3) : (4.4.13d)
n d23

Equations (4.4.5), (4.4.6), (4.4.8), (4.4.9), (4.4.11), (4.4.12) and (4.4.4) constitute
the set of infinite equations which are solved for simultaneously using Gaussian
elimination for the constants of integration A, By, C1, As, By, Cs, ..., and the
unknown potentials Vi, V5 and V3. To obtain numerical results the infinite series

are truncated to a finite number of terms n = m = M.

Numerical results are plotted for the case a; =1 c¢m, as = 2 cm, a3 =3 cm, dis =5
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cm, dog = 7 cm, dy3 = 12 cm, qgt) = —2nC/m, qt(st) =1 nC/m, q§§2 =1 nC/m, and

truncation of M = 15 in Figure 4.4.2. The plots show how the potential varies
radially with respect to coordinate r; over the range 0 < r; < 80 cm along the lines
defined by the angles ¢; = 0, /6, 7/4, w/3 and /2. The results are as expected
the potential starts to decrease as r; — oo and the calculated potentials on the

cylinders are V; = —63.9160V, V5, = 10.7380V and V3 = 28.2765V.

30-_

Potential [V]

-75 DU NN N N N R
0 10 20 30 40 50 60 70 80

71 [cm]

Figure 4.4.2: Potential distribution with respect to r; for angles ¢; = 0, /6,
/4, /3 and 7/2, when a; = 1 cm, ay = 2 cm, ag = 3 cm, dig = 5 cm, dog = 7
cm, dyz = 12 cm, qgt) = —2nC/m, q§§2 =1 nC/m, q§§2 =1nC/m and M =15

4.5 Three-cylinder system in external electric field

Consider the three-cylinder system in Figure 4.5.1 placed in an external electric

field oriented along the common z-axis, Eg = Epa,, with the potentials on the

surfaces of the cylinders as unknowns. The electric field is determined when the

total charge per unit length of each of the cylinders is forced to be zero, that is
(1) (2) (3)

Qiot = Uot = Gy = 0, with only the external electric field remaining at infinity.

The surrounding medium is homogeneous, with permittivity e.
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V1 = constant, V5 = constant, V3 = constant,

1 2
s i =0 gl =0 " a2 =0 ”s

»'

€ >
€ P

Figure 4.5.1: Three conducting cylinders in an external field, Eg = Epa,

The total charge per unit length on the first cylinder is calculated by

27 (1)
ou
1 1)
q§02 = —5/0 a;lt rido,

(4.5.1)

ri=ai

where u!l)(r1, ¢1) is, after performing the translations of ug (72, 2) and us(rs, ¢3)

to the coordinates (71, ¢1),

) (71, 1) = uD (1, 1) + wr(r1, 61) + ub (71, 61) + 0§ (11, 1)

ng(rl, ¢1) = —Egricos g + C + Aglnry + Bylndyy + Cylndsy

o0 a/ n
+ Z |:An (r_1> + 30%(91)(71,7’1, do1) + 0078)(7%7’17 d31)] CoS Ny
1

+ZZ [ nTB m,n, 11, ag, dg1) + 1, (m,n,rl,ag,d;ﬂ)} cos maoy,

n=1 m=0

(4.5.2)

with %(91)(”77”17d21)> ’V(cl)(m 71, d31), T[(Bl)(manurl7a27d21) and Tél)(m,n,rl,a3,d?1))
1

9,
defined in (4.4.7) and C = C4 + Cp + C¢ + C¢, = 0. Taking the derivative g;Ot
1

and substituting back into (4.5.1) gives

qgt) = —2meAp.

Applying the boundary condition, qgt) = 0, at the surface of cylinder 1 yields Ay = 0.

Similarly, the charge per unit length on cylinders 2 and 3 are q§§2 = —2me By and
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q§§2 = —27eCy, which yield By = 0 and Cj = 0, respectively.

Using the orthogonal properties of the trigonometric functions at the surface of

cylinder 1, r; = a; gives the set of infinite linear equations

0=-Vi+ Z [Bnrj(;)((), n,ay,as, doy) + C’nTél)(O,n, ai, as, d31)i| ,  (4.5.3)

n=1

anl == Al + Z [BnTg)(l,n, ap, az, dgl) + OnTél)(l, n,a,as, dgl)] s (454)

n=1

0=A4, + Z [BnTg)(m,n, ay, ay, dy) + Co7s (m, n, ay, as, dgl)] . (4.5.5)

n=1

where m = 2,3, .... Similarly, the set of infinite equations that result from cylinders

2 and 3 are

E0d12 = —‘/2 Z |: nTA (O n Gg,al,dlg) —|—C TC (0 n ag,ag,dgg):| s (456)

E()CLQ Bl + Z |: 1 n (lg,ahdm) + C, TC (1 n ag,ag,d32>i| s (457)
0= B, + Z [AnT,gz) (m, n,as,a, dlz) + CnTéQ) (m, n, az, as, d32)} ) (4-5-8)
n=1
Eydys = — Vs + Z |:An7-1(43)<07 n,as, ay, diz) + CnT§3)(0, n,as, as, d23)} . (4.5.9)
n=1

E0a3 == Cl + Z |:An7_,513)(17 n,as,ay, dlg) + CnTég)(]_, n,as, as, dgg)] s (4510)
n=1

0= Cm + Z [AHTIE{O)) (m, n,as,a, dlg) + BnTés) (m, n,as,as, d23>:| s (4511)
n=1

where the notations Tf) (m,n,re, ay,dr2), 7'((;2)(m, n,ro, as, dss), TS’) (m,n,rs,ay,dr3)

and 71(33) (m, n,rs, as, dag) are defined in (4.4.10) and (4.4.13).
Like before, the constants of integration are determined by truncating the infinite
set of linear equations to n = m = M and then using Gaussian elimination to

solve the truncated system. Once the constants are determined the electric field is
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found from

E = =V (r1, 91|12, P2|rs, ¢3)

= Eoa, — |Viui(ry, ¢1) + Vaus(ra, ¢2) + Vaus(rs, ¢3)|,

where the subscripts the V operator indicate that the gradient is taken with respect

to the respective coordinate system. The electric field components are found to be

> n\ [(a;\" n\ (a\"
E,=Ey+ Z A=) (2) costn+1D)gr+Bo [ — ) (=) cos(n+ 1)y
—t T1 1 T2 T2
+ C, (g) (?) cos (n + 1)¢3} :
3 3
- n\ (a1 \" . n\ (a\" .
E, = Z {An ) sin (n + 1)¢1 + B, g Bl sin (n + 1)
n=1
+ G, Y () sin (n+1)¢ps
T3 r3

Numerical results are generated for the relative values of the electric field compo-
nents at various points, shown in Figure 4.5.1, for the three cylinder systems with
a; = as = az = a, dis = dog = 2a + g and dy3 = 2dy3 for some different g/a ratios,
that is, for different gap distances, in Table 4.5.1.

Table 4.5.1: Relative electric field components at selected points on the cylinders

in Figure 4.5.1 for different relative gaps g/a, when Eq = Epa, and zero total
charge of the cylinders

Gap ratios (g/a)
1.0 0.5 0.1 0.05 0.01 0.005 0.001
E./E, 2.2082 2.3140 2.5448 2.6196 2.7152 2.7238 2.7179

Point Fields

P E,/E, 0.0000 0.0000  0.0000 0.0000 0.0000 0.0000 0.0000
P E./E, 0.0000 0.0000  0.0000 —0.0007 —0.0224 —0.0445 —0.0875
2 E,/E, —0.1754 0.3256 —0.6980 —0.8241 —1.0352 —1.1030 —1.1978
P E./E, 2.7436 3.5679 7.7208 11.0076 23.8160  30.5329  41.2069
3 E,/E, 0.0000 0.0000  0.0000 0.0000 0.0000 0.0000 0.0000
P E./E, 2.7734  3.5802 7.7208 11.0072 23.8114  30.5280  41.2048
4 E,/E, 0.0000 0.0000  0.0000 0.0000 0.0000 0.0000 0.0000
P E./E, 0.0000 0.0000 —0.0001 —0.0014 —0.0455 —0.0904 —0.1781
’ E,/Ey 0.0000 0.0000  0.0000 0.0000 0.0000 0.0000 0.0000
P E./Ey 0.0000 0.0000  0.0000 —0.0007 —0.0224 —0.0445 —0.0875
6 E,/E, 0.1754 0.3256  0.6980 0.8241 1.0352 1.1030 1.1978
P E./E, 2.2082 2.3140 2.5448 2.6196 2.7152 2.7238 2.7179
7

E,/E, 0.0000 0.0000  0.0000 0.0000 0.0000 0.0000 0.0000
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The potentials on each of the cylinders changes depending on the gap size as shown

in Table 4.5.2.

Table 4.5.2: Potential on each cylinder in Figure 4.5.1 for different relative gaps
g/a, when Ey = Eya, and zero total charge of the cylinders

Cylinder Potential [V] Gap ratios (g/a)

1.0 0.5 0.1 0.05 0.01 0.005 0.001
Wi —0.1556 —0.2121 —0.3351 —0.3759 —0.4395 —0.4558 —0.4750
Vo —0.7500 —0.6250 —0.5250 —0.5125 —0.5025 —0.5013 —0.5003
Vs —1.3444 -1.0379 —0.7149 —-0.6491 —0.5655 —0.5467 —0.5255

Let now the direction of the electric field be oriented in the y-direction, Eq = Epa,,
for the same geometry in Figure 4.5.1. The harmonic potential of each cylinder

expressed in its attached coordinate system are, then

ur(ry, 1) = Caq + ZAn <%> sinng:, > a, (4.5.12)
us(re, p2) = Cp + Z B, ( ) sinng,, 12 > as, (4.5.13)
us(rs, ¢3) = Co + Z C, ( ) sinngs, 13> as. (4.5.14)

The cos n¢, functions can be excluded from the solution because the field is directed
only in the y-direction and, since Ay = By = Cy = 0, the cosng, terms from the
translations of the Inr, function disappear. Thus the set of linear equations that

is to be solved for, with a zero potential at infinity, is

O = —‘/1 — Z |:Bn7'él) (O, n,a,as, d21) =+ CnTél) (0, n,ap,as, dgl):| s (4515)
n=1
Eya, = A; — Z [BnTJ(B)(l n,ay,as,dsy) + C TC (1 n al,ag,dgl)] , (4.5.16)
n=1
0=A,, — Z [BnTél)(m,n, ar, as, dsy) + CnTg)(m,n, ar, as, dgl)] ., (4.5.17)
n=1
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O = —‘/é — Z |:An7_,£12) (0, n,as, ay, dlg) + CnTéQ)(O, n,as, as, dgg)] s (4518)

n=1
Eyas = By — i [An@(f)(l,n, as,ay, dia) + CnTéZ)(l, n, as, as, dgg)] , (4.5.19)
n=1
0=208,, — io: [Aan)(m, n,as, ay,dis) + C’nT((JQ)(m, n, as, as, dgg)] ., (4.5.20)
n=1
0=—-V5— i [AnTS)(O, n,as,ay,dys) + BnTg)(O,n, as, as, d23):| ,  (4.5.21)
n=1
Eyas = C — i [An@(lg)(l,n, as,ai,diz) + BnTl(;s)(l, n,as, as, dgg)] , (4.5.22)
n=1
0=0C,, — i [AnTS’)(m, n,as,ay,dis) + Bnrg’)(m, n, as, as, dgg)] . (4.5.23)
n=1

The constants of integration and the potentials Vi, V5 and V3 are solved for by first
truncating the infinite set of equations and, then, using Gaussian elimination to

solve the system. The electric field components are found to be

E, = 2 [An (%) (%)nsin (n+1)¢1 + By, (%) (i—z)nsm (n+1)¢s
(2)(2) v ).

E,=E,— i {An (%) (%)ncos (n+1)p1 + B, (%) (z—z)ncos (n+ 1)y

n=1
+ Cy, (£> (%)ncos (n+ 1)¢3} :
T3 T3

Numerical results are generated for the relative values of the electric field compo-

+

2

nents, for the different gap distances, at the same points, but only P, P5 and P

are shown in Table 4.5.3 because the fields at the other points are zero.
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Table 4.5.3: Relative electric field components at selected points on the cylinders
in Figure 4.5.1 for different gap ratios g/a, when Ey = Eya, and no charge on the
cylinders

Gap ratios (g/a)
1.0 0.5 0.1 0.05 0.01 0.005 0.001
E./Ey, 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

Point Fields

P E,/E, 1.8262 1.7924 1.7650 1.7617 1.7590 1.7587 1.7584

P E,/E, 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
E E,/E, 1.7214 1.6688 1.6276 1.6227 1.6189 1.6184 1.6180

P E./Ey, 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
6

E,/E, 1.8262 1.7924 1.7650 1.7617 1.7590 1.7587 1.7584

The potential on each of the cylinders for the different gap sizes is shown in Table

4.5.4.

Table 4.5.4: Induced potential on each cylinder in Figure 4.5.1 for different
relative gaps g/a, when Ey = Epa, and zero total charge of the cylinders

Cylinder Potential [V] Gap ratios (g/a)
1.0 0.5 0.1 0.05  0.01  0.005 0.001
Vi 01039 01158 0.1260 01272 01283  0.1284  0.1285
Vy 0.0000  0.0000  0.0000  0.0000  0.0000  0.0000  0.0000
Vs —0.1039 —0.1158 —0.1260 —0.1272 —0.1283 —0.1284 —0.1285
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Chapter 5

Application of the addition
theorems to the solution of
electrostatic fields in systems of
parallel cylinders with arbitrary
axis locations

In the previous chapter, applications of the translational addition theorems have
been illustrated for systems of parallel cylinders with axes in the same plane, which
simplified the expressions for the potential distributions. For problems that do not
exhibit any symmetry about the axes, the general solution of Laplace’s equation
for each cylinder expressed in its attached coordinate system, normalized to its

respective radius a,, becomes

nlry o) = CatAntnr, +3 (47 (%) cosns, + 45 (%) sinns,) . G021
q q

¢=12,...N o

5.1 Two-cylinder system arbitrarily located in
the system of coordinates

Two circular cylinders outside each other, of radii a; and ay are charged to —q and
q, respectively. The separation distance between the centres of the two cylinders is
dyo = da1, as shown in Figure 5.1.1. The system of cylinders being complete, let the

potential vanish at infinity. Consider the surrounding medium to be homogeneous,
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with permittivity €. The expressions for the total potential distribution is found,

in what follows.

P(Tp, ¢>p)
Y2
T2 q
1 w
U1 P2 X2
—q day a2
o1 e
P12 T
a1

Figure 5.1.1: Two conducting cylinders arbitrarily located in space

The individual potential from each of the two cylinders, in their respective coordi-

nate systems, are

u(ry, ¢1) = Ca+ Aglnry + Z [AS (ﬂ) cosng; + AJ (%) sin mbl} ,

— 1 1
(5.1.1)
uy(ra, ¢2) = Cp + Bylnry + Z {ij (?) cosngy + B (?) sin n¢2:| .
n=1 2 2
(5.1.2)

The translated potential uél)(rl, ¢1) is obtained by applying the addition theorems

(3.2.6) and (3.4.5), with the following substitutions r, = 72, ¢, = ¢, 1, = 171,
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¢p = ¢1a Tgp = doy and qup = ¢21. This gives

u$(r1,¢1) = Cs + By {lnd21 — Z (—i)" <;“_211) cos (ng; — n¢21)}

n=1

e (@) () o

n=1 m=0

[BS cos (me1 — (m + n)ga) — B sin (mgy — (m + n)ea1)] -

For convenience, let us denote the functions

R Vi Ut ] (d_> (_)m Sl (54

m!(n — 1)! dy; ) sin

—D"™ /r1 \" cos
2G5,y = — (—1) o, (5.1.4D)

n dgl

for which the abbreviated notation 72(’;/ S(m,n,r) and 7201/ %(n,r1) is understood
to be Tg/s(m,n,rl,ag,dgl,@l) and yg/s(n, r1,da1, o1), respectively. Using the

trigonometric relationships

cos (a — f3) = cos acos 8 + sin arsin 3,

sin (v — B) = sinacos f — cos asin f3,

allows the total potential ugiz(rl ap, ¢1) = ui(ay, ¢1) + u2 (al, ¢1), at the surface

of cylinder 1, to be expressed as

‘/1 :C+A01HT1+Bolnd21

+ Z{ [AS + Byys(n, a1)] cosngy + [AS + Boysy(n, aq)] sin nd)l}

+ ZZ{ [BS 75, (m,n, a1) + By 75, (m, n, a1)] cosmey

n=1 m=0

+ [BCTzl(m n,a) — Bng(m,n,al)] Sinmgbl}, (5.1.5)

where C' = C4 + Cg. Multiplying (5.1.5) by cos m¢; for all positive integral values

of m and integrating in ¢; from 0 to 27 gives the following infinite set of linear
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equations

_VYI + Z |:B7?7-201(07n7 (11) + BETQSi(O: n, (11)_ = _AO In ay — BO lnd21 — C,
n=1 d
Ag‘ T Z [BgTQCl(m’ n, al) + BSTi(mv n, al) = _BOPYZCl(mﬂ al)a (516)
n=1 i
Afn + Z [BST%(W% n, al) - BSTQCl(ma n, al) = _BOfygl(m, (11),
n=1 d

Likewise, after translating w;(ry, ¢1) to (re, ¢2) coordinates and applying the
boundary condition at the surface of cylinder 2, that is, u§§2 (ro = ag, o) = V4 gives

the infinite set of equations

_Vé + Z [AﬁTlCZ(O’ n, a2) + AET{S;(O’ n, CLQ)_ = _BO In ag — Ao In dlg — C,
n=1 i
B, +Z[Afﬁcz(m7n7 az) + Ayriy(m,n, az) | = —Agy§y(m, as), (5.1.7)
n=1 J
Bfr; + Z |:ASTF2(’I7’L, n, aQ) - A;?L’TlCZ(ma n, (12) = _AO,YfQ(m, (12),
n=1 i

i S (m,m,ry) = ()" n+m 1) (;_112>” (;—i)m €8 [(n+m)p1a], (5.1.8a)

ml(n —1)! sin
(=)™ [ ry\" cos
) = = () e (5.1.8b)

where again the abbreviated notation 7'102/ %(m,n,ry) and 7102/ %(n,r5) is understood
c/s c/s .

to be 712/ (m,n,re,ay,dy2, $12) and 712/ (n, 79, d12, ¢12), respectively.

Here again the charge per unit length must be found in terms of the constants of

integration to impose the known boundary conditions on the cylinders. The charge
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duly)
87“1

density on cylinder 1 was found to be p(sl)(rl, 1) = —¢ , which gives

Ay =1 ar\"
Pg)(ﬁ, ¢1) = —5{71() + ; - { {307201(”,7”1) — A (T_i> ] cos ey
+ |:BO'7§1<TL7T1) - A7 (ﬂ> } Sinnﬁbl}

™
o0 oo m
., E{ [By51(m, n,r1) + By (m,n, )] cos mey
n=1 m=0

_ [BSTQ%(m, n,r) + BSTQCl(m,n,rl)] sin mqﬁl}}, (5.1.9)

since

0 [ css m _c/s 01 ¢ys n /s
8_7"1[721/ (m,n,r)| = r_le/ (m,n,r) and (9_7"1[721/ (n,rl)} = 71721/ (n,71).

Therefore the total charge per unit length on cylinder 1, qt(;g = 027r pg) (a1, 1) ardgy,

is, as before,

Qt(;t? = —2meAy.

Similarly, the total charge per unit length on the second cylinder is

qu = —2meBy.

Like before for the potential to vanish at infinity, we require the total charges per
unit length on the cylinders be equal and opposite, i.e., —q,gcl,t) = qt(ft) = ¢ and the
reference constant set to C' = 0. The series are truncated to n = m = M in the
sets of linear equations (5.1.6) and (5.1.7), then, using Gaussian elimination we
solve the system to find the constants of integration.

Numerical results of the potential are obtained for the case a; = 1 cm, ay = 2 cm,
dig = dy1 = 5 cm, ¢12 = m/3 and ¢9; = 47/3 and plotted in Figure 5.1.2. The
charges, per unit length, placed on cylinders 1 and 2 are qt(ig = —1 nC/m and

q§§2 = 1 nC/m, respectively. Note, apart from the rotational shift of cylinder 2,
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the geometry and charges of the cylinders are the same numerical values used in
Section 4.2. Since the cylinders are of the same radii and separation distance, the
potential distribution for the arbitrarily located parallel cylinders along the lines
for ¢ = w/3, 7w /12 and 57/6 correspond, in the case of the coplanar symmetric

cylinder problem, to lines along ¢, = 0,7/4 and 7/2, respectively.

20
104
.
3 O F—
d= ]
5 ]
2 -104 O ¢1=7/3
Ay ] O ¢ =7r/12
209 | X 61 =57/6
A o ) S B L N L N LA |
0 5 10 15 20 25 30 35 40
Tl[Cm]
(a) Potentials distribution for ¢y = 7/3,77/12 and 57/6 over 0 < r; < 40 cm
47
© ]
> 2]
B
io:xmxwxﬂzzmxzxzﬂvmxxx
X ]
= '2__
—
o ]
2 -4
H ]
o -6
g 1 O ¢ =1/3
£ 8] O ¢ =7n/12
% _10_: X ¢ =57/6
A . b
2777
0 2 4 6 8 10

1 [cm]
(b) Percentage Error for ¢y = 7/3,77/12 and 57/6 over 0 < r; < 10 cm

Figure 5.1.2: Potential distribution and errors between translational and bipolar
methods for a; = 1 cm, ag = 2 cIn, d12 = d21 =5 c1mn, §b12 = 7T/3, ¢21 = 47T/3,
qt(it) = —1nC/m, qu =1nC/m and M =25
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Figure 5.1.2a compares the potential distribution between the translational and
bipolar methods for ¢; = 7/3,77/12 and 57 /6 with respect to r; over the interval
0 < r; < 40 cm. To emphasize that the percentage error between the two methods is
small the results are graphed in Figure 5.1.2b over the shorter range of 0 < r; < 10
cm, since for distances greater then 10 cm the percentage error is of order 1071% or

less.

5.2 System with N arbitrarily located cylinders

For the case with N = 2 cylinders a recognizable pattern emerges to the sets of
coupled linear equations obtained when applying the boundary conditions at the
cylinders. Therefore the linear equations found for the two cylinder case can be
generalized to N number of cylinders as shown in Figure 2.2.1. The potential

distribution for the p'* cylinder represented in its attached coordinate system is

(%> cos ngbp—kAflp)S <%) sinngbp] ,
Tp Tp

(5.2.1)

Up(rp, Pp) = Cz(Ap) + Aép) Inr, + Z {Aa(mp)c
n=1

where p = 1,2,..., N, for all the cylinders. Translating all the potentials to

(7, ®p) coordinates and applying the boundary condition at the p™ cylinder, that

is, u§§2 (rp = a,, ¢p) =V}, generates the set of linear equations

N
V,—Ca = A(()p) Ina, + Z { Al Ind,, + Z 0 n,a,) + AD5r S(O n,a,)] }
=1
Z;ﬁp
0 A(p)c + Z {A(()q 'yqp(m a,) + Z A(q (m n,ap) + A;Q)STS (m,n ap)}}
q=1
q#p

0 =APS —{—Z{ qupmap +Z A(Q)CSmnap) A(qsc(mnap)]}

n=1

q#Dp
(5.2.2)
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for all positive integral values of m = 0,1,2,..., with Cy = Z;VZI Cﬁf’ and the

notation

rifm ) = I D () () g, (5230

m!(n —1)! dgp dyp/) sin
(=)™ [ a, \" cos
1Sy =~ d_qf; g (5.2.3b)

If the infinite set of equations and series are truncated n = m = M, every cylinder
generates (2M + 1) linear equations. For a system of N cylinders the resultant
number of constants of integration to solve for becomes N(2M + 1).

As an example, let us take the case for N = 3 conducting cylinders with radii aq,
as and ag with placed charges, per unit length, of qu , qgt) and q,sz , respectively.
The distances between the centres of the cylinders are dio, di3 and dos with the

surrounding medium being homogeneous with permittivity ¢, as shown in Figure

5.2.1. Consider a complete system with the potential vanishing at infinity.

Y2
(2)
P(rp,¢p) Qtot
2
o2
S
r P21 2
1 r3 P2
d21 a2
Y1
(1)
Qtot o
di3 *
1 é1
@12 y3
4o
0)13k d32
i ®3 O
ds P31 2 -
3
as/ (3)
Qiot

Figure 5.2.1: Three conducting cylinders arbitrarily located in space

Using (5.2.1) the individual potential distributions from each of the three cylinders,
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in their respective coordinate systems, are

uy(ry, ¢1) = Ca + Aglnry + Z AS (%) cosneo; + AS (%) sinngbl} ,
n=1 - 1 1

S

ug(r2, p2) = Cp + Bolnrg + Z Bg (7*—2) cos Ny + Bf (%) sin n@} ,
n=1 - 2 2

Q

us(rs, ¢3) = Co + Colnrs + Z c¢ <T_§) cosngs + C2 <i—§) sin nes
n=1 "

(5.2.4)

where the substitution A = A, A® = B and A® = C for the constants is

made for simplification. As long as the sum of the charges on the conductors

equals zero, qgt) + qt(i? + qut) = 0, the system will be complete ensuring the

logarithmic potential vanishes at infinity. Then, setting the reference constant to
zero C' = Cy + Cp + Co = 0 and using (5.2.2) the coupled set of linear equations

becomes

—Aglna1 — Bohld21 — Colnd31 = —‘/1

+Z BC7'21 0,n,a1) + B375(0,n,a1) + CY75(0,n,a1) + Co73 (0, m, al)} ,

—Aolndlg —Bolna2 — Oolnd32 = _‘/2

+ Z [ASTS((L n, a2) + AngQ(Q n, a2) + CSTBC;(O» n, a2) + CET?FQ(Q n, a2)} )

n=1

— Aglnd13 —BolIld23 - O()hlag = —‘/3

+ Z [ASTIC;’)(O’ n, CL3) + AST%([)) n, CL3) + Bng(07 T, (l3) + 357-25;}(07 n, a3)} )

n=1
— Bovsy(m, ar) — Coysy (m, ar) = AS,
+ Z BC7'21 (m,n,a;) + 35721(771 n,ay) + CCT31(TTL n,ay) + CSTgl(m n, al)} ,
- 307591 (m,a1) — CO’V?iql (m,a1) = A}gn

+ Z [BS 5 (m,n,a1) — Barg (m,n,ar) + CS 3 (mun,ar) — Cor5i(myn, ar)]
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— Agvia(m, az) + Coysy(m, az) = BS,

+ Z AC7'12 (m,n,ay) + AS75(m,n, as) + CI5(m,n, as) + C15,(m, n ag)} ,

— Agyiy(m, az) — Coysy(m, az) = By

+ Z AC7'12 (m,n,ay) — AS75(m,n, ay) + CS5(m,n, ay) — Co5(m,n, CL2>] ,

— Ayyig(m, as) = Boyss(m, as) = Cy,
+ Z [Agﬁ%(m> n, a3) + Aiﬁ% (m’ n, a3) + BgTQC;‘)(m> n, a3) + BST;;}(ma n, a3)} )

n=1

— Agv(m, az) — Bovas(m,agz) = Ch)

+ Z AC7'13 (m,n,as) — A275(m,n, as) + BE 15, (m, n, a3) — Bng(m,n,ag)} ,

where
c/s _ED)mmAm =D Cag \" 1\ cos
T21 (m7 ™ rl) - m'(n — 1)' d21 d21 sin (n + m)¢217
o/s (=)™ (71 \" cos
721/ (n,r1) = — n (d_211> Sinn%b
c/s . (—l)m(n-I—m—l)' & " i ™ cos
7—31 <m7 ™ Tl) - m'(n — ].)' d31 d31 Sirl (n + m)¢317
c/s (=)™ (71 \" cos
731/ (”»7"1) = _T (d_gll> sinn%l’
c/s _ED)"mAm =D Ca \" g\ cos
12 <m, i TQ) N m'(n — 1)‘ d12 d12 sin (n + m)¢127
c/s (=)™ [ ry \" cos
’)’12/ (7%7”2) = - n <d_12> sinn¢12’
c/s _(=D)™(n+m—1) as " T2 " cos
T32 <m, ™ TQ) o m'(n — ]_)' d32 dgg Sin (n + m)¢32,
c/s (=)™ (75 \" cos
732/ (n77“2) = T (d_;> sinn%z’
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Tg/s(m,n,m) _ (—1)m‘(n+m.— 1)! (ﬂ)” (r_g)m 09s(n+m)¢13,

d13 dlg S1n
c/s (=)™ (73 \" cos
713/ (n,rg) = T (d_13> sinmblS’
o/ _=D)mn+m =1 fay " T3 " cos
T23 <m7 ™ T3) - m'(n — ].)' d23 d23 SiIl (n + m)¢237
c/s (=)™ (73 \" cos
723/ (n,r3) = — - <d_23) Sinn%s-

The set of linear equations is truncated to n = m = M to solve for the constants

of integration. The total charges per unit length of the cylinders are, respectively,

g = —2medy, ) = —2meBy, ¢ = —2meCy,

which are used to determine Ay, By and Cj for the linear set of equations.

Potential [V]

o 10 20 30 40 50
71 [cm]

Figure 5.2.2: Potential distribution with respect to ry for angles ¢, = 0, 7/6, 7/3,
/2, 2m/3 and 7 , when a; = 1 cm, as = 2 cm, a3 = 3 cm, dis = dog = dyz3 = 10
cm, qgg =1nC/m, qgg = —2nC/m, q§§2 =1nC/m and M =15

Numerical results are obtained for the case when a; = 1 cm, as = 2 cm, az = 3
cim, d12 = d13 = d23 = 10 cm, ¢12 = 7T/3, ¢13 = 0, ¢21 = 47T/3, 92523 = 571'/3,

¢31 = 7 and ¢z = 27/3, that is the axes of the cylinders form an equilateral
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triangle, and the charges qt(ig =1 nC/m, qgt) = —2 nC/m and qt(ost) =1 nC/m

are placed on the conductors. Figure 5.2.2 shows plots of the potential with
respect to the (ry, ¢;) coordinates as it varies radial out from cylinder 1 on the
lines defined by ¢, = 0, 7/6, 7/3, 7/2, 2m/3 and 7 over the range 0 < r; < 50
cm for a truncation of M = 15. The calculated potentials on the cylinders are

Vi =40.2284V, V, = —54.8842V and V5 = 20.4456V.

73



Chapter 6

Application of the translational
addition theorems to the solution
of magnetostatic fields

The magnetic field can be defined in terms of a magnetic scalar potential w,,,
for regions where J = 0 and, within homogeneous materials, satisfies Laplace’s

equation as in the electrostatic case. Thus,
Vu,, =0, wherever J = 0. (6.0.1)

The solution is obtained, as before, by using the method of separation of variables

in circular coordinates. The magnetic field intensity H is then found by

H=—Vu,,. (6.0.2)

6.1 Two perfectly conducting cylinders in an ex-
ternal magnetic field parallel to the plane of
their axes and normal to them

Consider two perfectly conducting cylinders of radii a; and as with a separation
d between their axes, as shown in the Figure 6.1.1. The cylinders are placed
in an external magnetic field oriented along the common z-axis of the cylinders

Hy, = Hya,. We define the external magnetic field as the only contribution to
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the magnetic scalar potential at infinity, i.e., the magnetic potentials from the
cylinders vanish at infinity. The medium surrounding the cylinders is homogeneous,

of permeability .

P(rp, dp)
r "2 Y2
_— 1
Y1
\%
¢ _
H, i ¢;;%1_—_ ______________ ?2y 2
ax
ag

_— > d ]

Figure 6.1.1: Two conducting cylinders in external magnetic field, Hy = Hpa,

The magnetic scalar potentials of each of the cylinders expressed in their attached

coordinate systems are

Uy (11, 01) = Ca + Aglnry + ZA” (%) cosngy, r1 > a, (6.1.1)
n=1 1

Uy (T2, P2) = Cp + Bylnry + ZB" (%) COSNdy, To > ao. (6.1.2)
n=1 2

The magnetic potential due the external magnetic field Hy = Hpa, in the local

coordinates of each cylinder is

Upy, (11, 1) = —Hory cos ¢y + Cy, (6.1.3)

Upy, (72, o) = —Hory cos ¢y + Cep, — Hod, (6.1.4)

where C., is a constant of reference.
To impose the boundary condition at r; = aq, the translational addition theorems

(3.2.6) and (3.4.5), with the substitutions r, = rq, ¢y = @2, 7, = 11, ¢p = 01,
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Tep = d and ¢4, = 7 are reduced to

Inry =Ind — i% <%>ncosn¢1,
n=1

1\" = (=D)*(n+m—1)! (1\" sri\m™
(52) omnen = S (B) () o

where again, for convenience, we denote

i, d) = SEERS D@ (T (s)
vp(n,11,d) = —% (%)n- (6.1.5b)

Therefore the total magnetic scalar potential in the coordinates of cylinder 1 is

ugzot (r1,¢1) = Aglnr; + Bolnd + Z { {An (%) + Boyg(n, 1, d)] cos n¢1}
n=1 1

+ Z Z B,tg(m,n,ry,as,d) cosmey + C — Hyry cos ¢, (6.1.6)

n=1 m=0

where C' = Cy + Cp + C,;. The boundary condition on the surface of cylinder
1 requires that the normal component of the magnetic field intensity to be zero.
Therefore, the Neumann boundary condition to be imposed on the surface of

cylinder 1 is
aU/?(?ilL?)tot

87”1

— 0. (6.1.7)

Taking the derivative of (6.1.6) with respect to 71 gives

oull) Ay & n
g ol — —Hycos ¢y + — + Z n [Bofyg(n, ri,d) — A, (ﬂ) } cos Ny
T1 L T1
(o] o0 m
+ —B,m8(Mm,n,r,as,d) cosmao. 6.1.8
3>yt ) o (615)
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Applying the boundary condition on cylinder 1 gives

00
n

A
0= —Hpcos¢; + = + — [BOVB(T% ai, d) - An] COS NPy
a1 1 a1

o0 (o] m
+ Z Z a—anTB(m, n,ay, asg, d) cos mao. (6.1.9)

n=1m=1

Using the orthogonal properties of the trigonometric functions, (6.1.9) gives the

set of infinite equations

Ay =0, m =0, (6.1.10a)

A1 — ZBnTB(l,TL, al,aQ,d) = —H(_)al, m = 1, (6110]3)
n=1

Am =Y Burp(m,n,ay, a5,d) =0, m=2,3,.... (6.1.10c)
n=1

The same steps taken to apply the boundary conditions at cylinder 1 are followed
for cylinder 2. Now wu,,, (1, ¢;1) is translated into the coordinate system (7, ¢2)

and the boundary conditions at r, = a are imposed, that is,

om'2)
=0 6.1.11
8T2 9 ( )
which gives the infinite set of equations
By =0, m = 0, (6.1.12a)
By = Aus(1,n,az,01,d) = —Hyay, m =1, (6.1.12D)
n=1
By =Y Anti(m,n,az, a1,d) =0, m=2.3,.... (6.1.12¢)
n=1
where
(=)™ +m—1)! rap\n fro\™
Ta(m,n,ra, a1,d) = ml(n — 1) (E> <E> ; (6.1.13a)
—1)" /o7
ya(n, 72, d) = —% <EZ) . (6.1.13b)



Like in the electrostatic cases the infinite set of equations is truncated ton = m = M
and then using Gaussian elimination, we solve for the constants of integration.

Once the constants are obtained the magnetic field intensity is found from

H - _vumtot (7"1, ¢l|/’n27 ¢2)

= Hpa, — [V1Um1 (11, 01) + Vol (T2, 02) |,

where the subscripts on the V operator indicate that the gradient is taken with
respect to the respective coordinate system. The magnetic field components are

found to be

H, = H,+ g [An (%) (%)ncos (n+1)¢1 + B, (%) <i—z>n cos (n + 1)@] :
H, = nf; [An (%) (%)nsin (n+ 1)y + B, (:‘—2) (%)nsm (n+ 1)@} .

Two-dimensional bipolar coordinate solution

The scalar magnetic potential obtained using the separation of variables in bipolar

coordinates [15], yields

e "mn

W (0.6) = Hoa + 2Hya Y { _

n<0 n=1

——sinh nn} cos né, (6.1.14)
cosh nn,

—nmn2

ub, (n,€) = —Hoa + 2Hoa ) {e‘”" +
n=1

n>0

sinh nn} cos né. (6.1.15)
cosh nny

To obtain the magnetic field intensity the gradient of the magnetic potential is
taken, in bipolar coordinates, giving
1 ou 1 ou

Mol Mot g, (6.1.16)

_ bi — _ Mtot
H=—-Vu, (1% B on a, he 0

Mtot

where we use the scale factors and geometrical relations between the bipolar and

Cartesian unit vectors in Appendix B to obtain the magnetic field components in
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terms of unit vectors a, and a,.

Numerical results of the two perfectly conducting cylinder system in
the presence of an external magnetic field

Numerical results are obtained for the case when a; = 1 cm, ay = 2 cm, Hy =
1 A/m, and truncation M = 50 for varying separation distances d in free space.
Figure 6.1.2 shows plots of the magnetic field intensity components H, and H,
around the surface of cylinder 1, i.e. r; = aq, for the separation distances d = 5

cm, 10 cm and 20 cm.

Hy[A/m]

H,[A/m]

29
1.754
157
" 1251
~
< 1
TH 0.75
T 0.5-
islational
0.257 lar
o4
-0.25 -1. T T T T T T T |
0 45 90 135 180 225 270 315 360
o
é1[°]
(d) H, field for d = 10 cm
2-
1.75-
1.5
B 125
~
< 1
5 0.75-
= 0.5-
0.25-
o R
0.25 T T T T T T T 1 1.25 ! T T T T
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¢1[] &[]
(e) H, field for d = 20 cm (f) H, field for d = 20 cm

Figure 6.1.2: Magnetic field intensity components H, and H, plots around
cylinder 1, r; = a; for different separation distances d =5 cm, 10 cm and 20 cm
between the translational and bipolar methods for a; = 1 cm, ay = 2 cm, Hy = 1
A/m, and M = 50

Notice as the separation distance decreases the translational method is no longer
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as good an approximation for the magnetic field components, especially near ¢; =
0 and 180° for the H, component in Figure 6.1.2a. However, as the separation
distance increase in relation to the cylinder radii we see the translational method

results are in excellent agreement with the results from the bipolar method.

6.2 Two perfectly conducting cylinders in an ex-
ternal magnetic field normal to the plane of
their axes

Now let the direction of the external magnetic field be oriented in the y-direction,

H, = Hpa,, as shown in Figure 6.2.1 for the same two cylinder system in Section

6.1.
P(rp, ép)
T "2 Y2
U1
(0P
1 012__2_ ______________ $21 \\ To
T
ai
az
d
Hy

Figure 6.2.1: Two conducting cylinders in external magnetic field, Hy = Hya,

The harmonic potential of each cylinder expressed in its attached coordinate system

are, then

U, (11, ¢01) = Ca + Aglnry + Z (%) {Ag cosnoy + Ag sinnqﬁl}, (6.2.1)
1

r1>a1 n=1

Uy (T2, 2) = Cp + Bolnry + Z <%) {BS cos npy + B2 sin nngQ}. (6.2.2)
2

ro>as n—=1
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The magnetic potential due the external magnetic field Hy = Hya, in the local

coordinates of each cylinder is

upy = —Horysin ¢y + Ceg, (6.2.3)

Upy = —Horysin ¢y + Ceg, (6.2.4)

where C,, is a constant of reference. To impose the boundary condition at r; = a4,
the translational addition theorems (3.2.5), (3.2.6) and (3.4.5), with the substitu-
tions 7y = 19, O = Pa, Tp =11, Op = @1, Tgp = d and ¢, = 7 to translate u,, into

the coordinate system (ry, ¢7). Thus, the total magnetic potential is

ugzot (r1,¢1) = C' — Hyrysingy + Aglnry + Bolnd
n 2\ " |
+ Z { { (_1) + Byys(n, 11, d)} cosng; + A (T—i) sin ngzﬁl}

+ ZZ{BCTB m,n,r1,as, d) cosme, — B3tg(m,n, 1, az,d) Sinmgbl},

n=1 m=0

(6.2.5)

where C' = Cy + Cp + C,, and the functions vg(n,r,d) and 75(m,n,r, as, d)
are defined in (6.1.5). The derivative of (6.2.5) with respect to 7 is taken so the
boundary condition, i.e., the magnetic field intensity normal to the surface of the

cylinder, r; = aq, is zero. Thus,

A > "
0= —Hpsing, + 04 Z n { [BovB(n,rl, d) — A,ﬂ cosng, — A;j (ﬂ> sinngbl}
ai aq ™

n=1 m=0

213

{B (M, n,r1, az, d) cosmep, — BETB(m,n,rl,ag,d) sinm¢1},
(6.2.6)

Using the orthogonal properties of the trigonometric functions, (6.2.6) gives the
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set of infinite equations

Ay =0, m =0, (6.2.7a)

—ZBSTB(m,n,al) =0, m=12,..., (6.2.7b)
n=1

A7+ Birp(1,n,a1) = —Hoay, m=1, (6.2.7¢)
n=1

Ai—i—ZBSTB(m, n,a;) =0, m=2,3,.... (6.2.7d)
n=1

In the same way, imposing the boundary condition at the surface of cylinder 2

gives the set of infinite equations

B, =0, m =0, (6.2.8a)

=Y ASra(m,n,az) =0, m=1,2,..., (6.2.8b)
n=1

BY + ZAfTA(l,n,ag) = —Hyas, m =1, (6.2.8¢)
n=1

BY + Z ASta(m,n, ay) = 0, m=2,3,..., (6.2.8d)
n=1

where the functions y4(n, 2, d) and 74(m,n,r2, a1, d) are defined in (6.1.13). The
infinite set of equations is truncated to n = m = M and then using Gaussian
elimination, we solve for the constants of integration. Once the constants are
obtained we use H = —Vu,,, , to find the magnetic field intensity.

Solving this same problem in bipolar coordinates, assuming the magnetic potential

vanishes at infinity, yields

2tioaS fe = " b b s 6.2.9

mt%t<((7]7 6 =— oa; {e - msm m]} sinng, (6.2.9)
—nn2

ult (77 £) = —2Hoa Z { m sinh nn} sin né. (6.2.10)

Again, as in the previous section, we use H = Vuff% .(1,€) to find the magnetic
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field intensity in terms of the unit vectors a, and a¢, then, using the relations in
Appendix B to find the magnetic field in terms of Cartesian unit vectors.

Numerical results are obtained for the case when a; = 1 cm, as = 2 cm, d = 20
cm, Hy =1 A/m and truncation M = 50 in free space. Figure 6.2.2 shows plots of
the magnetic field intensity components H, and H, around the surface of cylinder

1,ie. r =a;.

1.25

Hy[A/m]

-0.5
. O Translational
0.75 D Bipolar

-1
LEA" e S S S SN UL Y S P S ———

0 45 a0 135 180 225 270 315 360
¢1[°]
(a) H, field

O Translational

D Bipolar

Hy|A/m]

0 45 90 135 180 225 270 315 360

¢1[°]

(b) H, field

Figure 6.2.2: Magnetic field intensity component plots around cylinder 1, r, = a4
between the translational and bipolar methods for a; = 1 ¢m, as = 2 cm, d = 20
cm, Hy =1 A/m and M = 50
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6.3 The magnetic vector potential

The magnetic field can be defined in terms of a magnetic vector potential B = Vx A,
since one of Maxwell’s equations states that the divergence of B is zero. Maxwell’s

other equation to do with magnetic fields states

V x B = ud,

V x (VxA)=ul,

where p is the permeability and J is the current distribution. If we use the vector
relation V x (V x A) = V(V - A) — V?A and conveniently have V - A = 0 this
gives

VA = —puld. (6.3.1)

For two-dimensional magnetostatic problems is can be assumed that the fields are
not functions of the z-coordinate, as a result the magnetic vector potential can
have only the component A,, tangential to the cylindrical surfaces. The magnetic
problems will assume the region free from current J = 0, so the solution reduces to

the electrostatic case
V2A, =0, wherever J =0, (6.3.2)

and using the separation of variables method in circular coordinates to (6.3.2)
allows us to find the magnetic fields.

The boundary condition for a perfect conductor is a, x B = uJg where a,, is the
unit outward normal to the surface and Jg is the surface current, where the total
current on the p™ cylinder is I,. Therefore, the Neumann boundary condition on

the surface of cylinder the p* is

2 Agp) I
/ 04z d, S— (6.3.3)
0 ory ap

Tp=ap
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Chapter 7

Conclusion and Future Work

7.1 Conclusion

In this thesis, a novel analytic method is formulated for the solution of scalar
Laplacian field problems for arbitrary configurations of parallel, infinitely long
conducting cylinders. These exact analytic solutions are intended to be used
as benchmark solutions, with controllable accuracies, to validate more general
approximate numerical methods. In the real world, we understand the two-
dimensional field problem solutions to be good approximations for long conductors
only in the region between or sufficiently close to conductors, neglecting the end
effects.

For the boundary value problem with many parallel cylinders, the field contributions
from all the other cylinders were expressed in the polar coordinates attached to
each cylinder by using the translational addition theorems for polar Laplacian
functions derived from the cylindrical scalar wave addition theorems [6,9]. Then,
the boundary conditions were imposed at each cylinder surface resulting in an
infinite set of algebraic equations for the constants of integration, which were
appropriately truncated in terms of the desired accuracy.

The validity of the series in the addition theorems for polar Laplacian functions was
confirmed with numerical results showing excellent convergence. Then, the addition
theorems were applied to obtain numerical solutions to some electrostatic and
magnetostatic field problems relative to complete systems of cylinders, i.e., when

the sum of the charges on all the conductors is equal to zero, and as a consequence,

85



the potential vanishes at infinity. For the case of two cylinders, we compared
the results with the existing exact results obtained by applying the method of
separation of variables in two-dimensional bipolar coordinates [14,15], with excellent
agreement. Numerical results are also calculated for various configurations with

three parallel cylinders using the translational addition theorem method.

7.2 Continued research

The research presented in this thesis was confined to complete systems of conducting
cylinders. One of the first areas to explore is to extend this research to systems
of conducting cylinders describing actual real world arrangements of cables and
transmission lines in the presence of grounded conductors or planes. Another
engineering application is to consider a grounded array of conductors in the
presence of an external field in order to determine associated shielding effects.

A second area of study would be to use the results from this thesis to describe
fields in the presence of penetrable cylinders, dielectric or magnetic, where the
boundary conditions are more complex. Another extension would be to apply the
derived addition theorems to other engineering and physics disciplines, such as,
fluid dynamics and steady state temperature distributions in conducting bodies.
All the cylinders considered in the work presented are circular cylinders, but for the
more general case of elliptical cylinders, work can be done to derive translational
addition theorems for Laplacian elliptical cylindrical functions. Similarly, this can

be done for the Laplacian parabolic cylindrical functions.
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Appendix A

Circular cylindrical harmonics

Laplace’s equation in plane circular coordinates (r, ¢) is

d [ ou 0%u
— (r— — =0. Al
r (7’ ) +3 pe (A1)
To solve Laplace’s equation the separation method is used, let u(r, ¢) = R(r)®(¢),
substitute in (A.1) and divide by u. This gives

r o ( OR 1 0%u

T ¥ —Z 0. A2

Ror <r8r>+®8¢2 (4.2)
The two terms must be individually constant, therefore the separation parameter
—n?, where n represents only positive integer values, is chosen such that the circular
function, R(r)®(¢), is periodic in angle ¢. The result is two ordinary differential

equations

2
P
Ccll? +n*d =0, (A.3a)
d (d
T (rd—f) —n*R = 0. (A.3b)

The solutions to (A.3) for n # 0 are

R, =Ay" + B,r ",

®,, = C),, cosng + D, sinng,
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and for n =0,

RO = Ao—f-B()th’,

by = Cy + Dyop.

The general harmonic solution is obtained by linear superposition to give

u(r, ) = iRn(I)n
n=0

(e 9]

= (Ao + Bolnr)(Co + Dyo) + Z (Aur™ + Br™) (Cy cosng + Dy, sinng) .

n=1

(A4)

A necessary regularity condition of the harmonic solutions is for them to be periodic

over period 27 thus (A.4) is reduced to

u(r,¢) = Ao+ Bolnr + Z (Aur"™ + Byr™) (Cn cosng + Dy sinng) . (A5)

n=1
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Appendix B

Two-dimensional bipolar
coordinates

Bipolar Laplacian harmonics

Laplace’s equation in two-dimensional bipolar coordinates (7, §) is

coshn — cos €\ 2 [0%up 0%
wu,n.(n,g):< - ) {877;’ + ag‘; = 0. (B.1)

coshn — cos &

2
Note here the that < ) at infinity (n = 0,& = 0) is zero, therefore no

a
solution to (B.1) exists at infinity. However, for all other points Laplace’s equation

reduces to
821%1' 82ubi

R e

V2upi(n, €) = = 0. (B.2)

To solve Laplace’s equation the separation method is used, let u(n,&) = N(n)=(£),
substitute in (B.2) and divide by u. This gives

1 0%u 1 9%u

noi T 5o =" (B.3)

Thus using the separation parameter —n?, the resulting ordinary differential

equations are

2=,
i +n°=E =0, (B.4a)
>N
— +n°N =0. B.4b
e (B.4b)
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The general harmonic solution is then by linear superposition

u(n: 5) - Z N’]EE
n=0

= (Ao + Bon)(Co + Doé) + Z (Anem7 + Bne’”") (Cp cosné + D, sinné) .

n=1

(B.5)

A necessary regularity condition of the harmonic solutions is for them to be periodic

over period 27 thus (B.5) is reduced to

u(r, ¢) = Ay + Bon + Z (Ane™ + Bne™™) (Cy, cosné + Dysinng) . (B.6)

n=1

Bipolar coordinates relation to Cartesian coordinates

To relate bipolar coordinates to Cartesian coordinates we define the points (—a, 0),
(a,0) and (z,y) [14], where a is the semi-foci distances of the bipolar coordinates,

as shown in Figure B.1. Then the relationship between (7, ¢) and (z,y) can be

P(z,y)

<

U 2>
(—a,0) (a,0)

Figure B.1: Relation between bipolar and Cartesian coordinates

shown to be

and

§=¢1—¢2:tan—1( Y )—tan—l( Y ) (B.8)

Tr —a



Bipolar coordinates unit vectors and scale factors

The unit vectors and scale factors associated with these coordinates are

dS = a,hedédsz, (B.9a)
—a,(coshncosé — 1) — a, sinhnsiné
_ B.9b
A coshn — cosé ’ ( )
o sinh 7 sin & + a, (coshncos& — 1) (B.9¢)
£ coshn — cos ¢ ’ '
hy = he = ¢ (B.9d)

coshn — cos&’
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