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The Canadian Food lnspection Agency (CFIA) requires the meat industry to ensure

Escherichia coli (E.col| O157:H7 does not survive in dry fermented sausage

(salami) because a series of food-borne illness outbreaks have resulted from the

presence of this pathogenic bacterium. The industry is in need of an alternative

technique like 'predictive modeling' for estimating bacterial viability because

traditional microbiological enumeration is a time-consuming and laborious method.

Testing the accuracy and speed of artificial neural networks (ANNs) for this purpose

is a current trend in predictive microbiological research, especially for online

processing in industries. Two experimental data sets, one on interactive effects of

different levels of pH, water activity (A*), the concentration of allyl isothyocyanate

(AlT) at various time intervals and the second on interactive effects of Lactoferrin,

ethylene-diamine-tetraacetic-acid and sodium bi-carbonate during sausage

manufacture in reducing Escherichia coli 0157:H7 were used to develop predictive

models using General Regression Neural Network (GRNN) (a form of ANN) and a

statistical linear polynomial regression technique. Both models were compared for

their prediction error using various statistical indices. GRNN predictions for training

and test data sets had fewer and less serious errors when compared with the

statistical model predictions. GRNN models were far superior and considerably

superior respectively, for training and test sets than the statistical model. Because it

is simple, fast and quite accurate, the ANN model can be used for online processing

by research and development departments or quality control sections of the meat
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processing industry to ensure product safety, and specifically for processing to

eliminate Escherichia coli0157:HT from dry fermented sausage.
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A series of food borne illness outbreaks caused by Escherichía coti 0157:H7 in

fermented sausages (Anon, 1995; WHo, 1gg7) led the Canadian government

adopting new U.S. food safety regulations which require sausage manufacturers

to protect these products from this pathogen (Reed, 1995) by ensuring at least a

5 log reduction. E.coli O157:H7 is a pathogenic microorganism which rarely

causes host animals (ruminants) to become ill but causes illness in humans who

consume contaminated meat. About 4.1 cases per 100,000 population are

reported annually. Ground beef is a common vehicle for spread of contamination

by E.coli O157:H7 and, raw or undercooked meat products prepared using

ground beef have been implicated (Health Canada, 2000).

1.0 INTRODUCTION

It is generally reported that the salami industry does not use any modeling

techniques to predict the presence of E.coli0157:H7 in the end product because

the existing models have not been easily understood or are not easy to use. lf

such systems were available, industry would be in a better position to understand

the most important factors and how these could be changed to reduce pathogen

viability during processing. The growth of micro organisms has high biological

variability in relation to the intrinsic and extrinsic factors of food. Their

physiological responses to these factors are very complex and poorly understood

(Geeraerd et al., '1998a).



The primary objective of food microbiologists is to identify and quantify the micro

organisms that have both beneficial and deleterious effects on the safety and

quality of raw or processed foods. An extensive amount of work is needed to

generate and accumulate data on behavior of micro organisms in food. lt is

expensive too. Unfortunately, these data provide little insight in explaining the

relationship between manufacturing processes and the growth or survival of

micro organisms. The models developed based on these data are helpful in

solving this limitation and in predicting unknown values through interpolation.

Predictive modeling is a rapidly emerging food safety engineering technique with

microbiological applications.

Predictive microbiology has rapidly emerged in the last two decades. Now,

quality control sections of the meat industry and the food safety regulators are

able to make reasonable assessment of the relative risk posed by a food or food

process. Simple primary statistical models were successfully developed to model

the bacterial growth rate using one or two environmental factors (Ratkowsky et

al., 1991; McMeekin et al., 1993).

Polynomial models are the most common and attractive secondary models

applied within predictive microbiology for describing the interplay of many factors

affecting bacterial growth. Pond et al. (2001) developed polynomial models to



describe the survival of E.coli0157:H7 by using published data on inactivation of

E.coli 0157:H7 in uncooked fermented salami. Polynomial models are

considered simple and relatively easy to fit to experimental data by multiple linear

regression, which is available in most statistical packages (Ross et al., 2OO4).

The application software packages identified as the "Pathogen Modeling

Program" and "Food Micro Model" rely primarily on the use of polynomial models

(Buchanan, 1993; McClure et al. 1gg4a).

Artificial Neural Networks (ANNs) have been used to generate complex models

using predictor and response variables. The ANNs learn and remember the

underlying implicitly non-linear relationship between the input and output

variables following'back propagation' techniques.

Secondary models have also been developed using ANNs for estimating

microbial growth rates (Garcia-Gimeno et a|.,2003; Geeraerd et al., lgggb;

Jeyamkondan et al,.,2001; Lou and Nakai,2ool; Najjar et al., 1gg7), under

fluctuating environmental conditions (Cheroutre-Vialette and Lebert, 2000;

Geeraerd et al., 1998a), and have also been used to predict microbial

inactivation (Geeraerd et al., 1gg8b). ANNs have been suggested as an

alternative to logistic regression polynomial modeling techniques (Tu, 1996).

Generalized Regression Neural Network (GRNN) predictions were found to be

superior to statistical modeling for the training data set, whereas they were



similar or slightly worse than statistical models for test data (Jeyamkondan et al.,

2001).

A data set from Chacon (2006) (Appendix l) for the reduction of E.coli 0157:HT

(36 data sets of mean values of 3 replications) in response to changes in the

level of the natural antimicrobial Alr (0, 500, 7s0, and 1000 ppm), days of

processing (0 to 45 days), water activity (0.864-0.948), and pH (4.70-5.57) were

used to develop a GRNN model for survival of E.coti 0157:H7. The fermentation

temperature during salami production was 26"C (< 3days) and drying was done

at 13"C (25 days). These are common temperatures used by the industry for

salami production.

Another data set from Al-Nabulsi (2006) (Appendix ll) for the reduction of E.coli

O157:H7(324 data sets) in response to changes in the level of the natural

antimicrobial LF alone (0, 1.8, 3.0, and 6.0 mg / g sausage batter) or with

different chelating agents namely sodium bicarbonate (SB) (0, 2.5, 5.0 mM)

which is used linearly proporlionate with ethylene diamine tetraacetic acid

(EDTA) (0, 250, 500) for 0, 1.8, 6.0 levels of LF, days of processing (0 to 2g

days) were used to develop a GRNN model for predicting the survival of E.coti

O157:H7. The data on injured cells recovered on All Purpose Tween (APT) broth

overlaid with selective medium cefixime-tellurite sorbitol McConkey agar (ct-

sMAC).
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For both data sets, the salami was manufactured in the pilot plant of the

Department of Food Science at the University of Manitoba. The same method

which is followed in Pillers' sausages plant, Waterloo, oN was adopted for

manufacturing the salami.

The hypothesis of this research is that ANNs could be used for developing

models for predicting the survival of E.coli 0157:H7 for ensuring food safety in

meat products. The developed models may be used by the meat industry as an

online processing tool, because of its accuracy, prediction performance and

speed.

The objectives formulated in this study to validate the hypothesis are:

to develop suitable statistical and ANN models using commercial neural network

software for predicting the survival of E.coli 0157:H7 in dry fermented sausage

processing of two experiments where allylisothiocyanate (AlT) and lactoferrin

(LF) were used as antimicrobial agents, and

to compare both the models using some statistical indices for determining their

suitability so that the best modeling technique may be used as a tool for

predicting process performance in the meat industry from a safety perspective.



2.0 REVIEW OF LITERATURE

2.1 General Emphasis on Food Quality and Safety

Most countries and the Food and Agriculture Organization reaffirmed at the

World Food Summit that it is fhe right of everyone to have access to safe and

nutritious food, consistent with the right to adequate food and the fundamental

right of everyone to be free from hunger. This is the Rome declaration of world

food security (FAO, 1996). This declaration emphasizes the need for every

country to concentrate on ensuring the availability of a safe and nutritious food to

its citizens.

About 30 - 40 percent of world food production is wasted because of improper

storage. Micro organisms play a major role in reducing quality; spoiling and

poisoning of stored foods and rendering them unsuitable for consumption. Food

Technology has developed methods for controlling the growth of micro

organisms physically, chemically and biologically. To assist in activities to

prevent losses due to spoilage there also exists a need for predicting the growth

and/or inactivation of micro organisms in foods during processing, storing and

preservation. ln order to ensure the stability and safety of food products until they

reach consumer's hands, the growth or activity of micro organisms should be

below levels found in the Food Safety Objectives (Jay et al. 2005) for specific

foods to ensure quality and safety. Predictive microbiology is a rapidly emerging

science which has attained separate sub-discipline status in the field of food

o



microbiology. lt has the potential to be a powerful tool for development and

evaluation of methods to improve the stability and safety of food.

2.2. Why Predictive Models?

Why do we need a model when the accumulated knowledge of the response

pattern itself can provide significant information on the behavior of micro

organisms with respect to the combined effect various intrinsic and extrinsic

factors of food?

To answer this question in a practical sense, it is clear that the additional efforts

made to develop and validate a model will, if properly done, lead to formulation of

a general rule for describing the effect of environmental factors on microbial

activity. Whereas the response pattern itself, if no model is developed, is more

likely to describe only the output of limited experimental trials. lts applicability will

again need challenge testing often under slightly changed conditions. Challenge

testing is also expensive and time consuming.

The answer to the above question in a philosophical sense lies in the nature of

science itself. "When you can measure what you are speaking about and express

it in numbers, you have something about it; but when you can not measure it,

when you can not express it in numbers your knowledge is of a meager and

unsatisfactory kind"(sic)-Lord Kelvin (McMeekin 2004). So modeling is nothing

but a quantitative science which is inherently more useful than the qualitative
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description of a phenomenon. Modeling will be helpful in interpreting, analyzing

data and inferring decisions.

ln a general sense, models which are a combination of descriptions,

mathematical functions or equations, and specific starting conditions can be used

to simplify and study a variety of system.

2.3 Origin and History of Predictive Microbial Modeling

The canning industry in 1920 started and developed the methods for calculating

the thermal death time of bacteria. The modeling of behavior of micro organisms

with respect to controlling parameters like temperature began from then. lnterest

in predictive modeling resurged again from 1980 with a growing number of

refrigerated foods being developed, the development of hurdle technology and of

computer technology. Predictive microbiology is centered on the assumption that

the grov'rth or inactivation of mícro organisms is due to varying levels of

controlling parameters that can be predicted within biological variability.

2.3.1. lnactivation models for thermal processing of foods

Among the earliest work on predictive modeling of microbial activity, Scott (1g37)

did a study on the effect of temperature on microbial growth on meat. He

emphasized the importance of the knowledge of microbial growth rates at

different temperatures while studying meat spoílage. The relative influence of

spoilage caused by various microbes at each storage temperature and their

I



changes in population could be predicted using these data. He also díd a study

on the effect of water content on microbial growth and spoilage (Scott 1g36). The

accumulated knowledge from both the studies, at a time when there was no

explicit model, allowed the shipment of non-frozen meat from Australia to

Europe.

2.3.2. Origin of mathematical expressions

A mathematical equation can describe the effect of integrated functions of

controlling parameters on microbial growth in food. Models should be validated

with a number of selected tests. Use of the Arrhenius law equation is a basic

theoretical approach for finding the relationship between the reaction rate and

temperature in theories, but it is more applicable for chemistry reactions. lnstead

of using this equation, the following model was developed to describe the

relationship between the growth rate of micro organisms and the temperature

minimum and optimum (Ratkowsky, 1982)

Where

.li =b(T-To)

r = growth rate, CFU per hour;

b = slope of the regression line drawn between growth and time,

constant, hr -o 5 / 'C;

To = theoretical minimum temperature for growth, the

intercept between the model and the temperature axis, .C;

and T = temperature of food, 'C.

(Eq,1)
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Using this formula, (Ratkowsky, 1982) showed a linear relationship between

temperature and the growth of spoilage bacteria in foods or in broth media

utilizing amino acids.

The spoilage of highly perishable foods depends on the temperature of storage.

According to olley and Ratkowsky (1973) spoilage can be predicted by a

spoilage rate curve; the general spoilage curve was incorporated into the circuitry

of a temperature function integrator that read out the equivalent days of storage

at 0'C. So, it could predict the remaining shelf life at 0"C.

The model has been further developed (Wijtzes et a1.,2001) to include the

effects of other factors like pH and Aw on growth rate.

",lr = þ ( | - I m¡n) 
^!(A*- 

Awmin)(pH - pH min)(pH _ pH max)

where,

Aw, pH and r - water activity, pH and temperature of given food;

Aw min, pH min and r min - lower or minimum limits of above

factors; and

pH max - Maximum limits of pH of food.

This model is popularly known as the square root model.

(Eq 2)
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2.3.3 Development of predictive model sfudies

The lab-generated data from studies on the effect of cultural parameters on

microbial growth rate at different pH, Aw, temperature and preservative

concentrations was used to develop several types of mathematical models.

Computers are used for rapid analysis of this multi-factorial data. The traditional

viable count method is still the dominant method used to monitor bacterial

response in modeling studies. This method is standard where other methods

need validation. Though it is laborious and time consuming it can be done with

good lab practice, and has adequate sensitivity, accuracy, precision,

reprod ucibility and repeatability.

2.3.3.1 Sigmoidal model

A kinetic-based statistical model which is capable of indicating the growth rate for

both lag and exponential phases is discussed below: The growth curves were

statistically fitted by using non-linear regression analysis in conjunction with

Gompertz functions. The results were then analyzed to develop this sigmoidal

model which was introduced by Gibson et al. (1987). This model has been

recognized and also developed by the United States Department of Agriculture

for predicting microbial growth in food environments containing many control

parameters (Ray, 2004). The expression of this asymmetric sigmoidal model is:

11



Where A = logle CFU per ml at initial time (asymptotic count)

N = log ro CFU per ml at time ,t'

¡/= A+Çxe-ut-B(.-M)l

C = the difference in value of the upper and lower asymptote

M = time at which maximum growth rate occurs

B = relative growth rate at time M

This model gives us the

maximum microbial load

numbers and time data.

2.3.3.2 Polynomial and multiple linear regression models

lag time, the maximum

directly from non-linear

Polynomial models are the most common models used in predictive

microbiology, especially for modeling the survival of microorganism against the

environmental conditions. Pond et al. (2001) developed four polynomial models

to describe the survival of E.coli0157:H7 by using published data on inactivation

of E.coli 0157:H7 in uncooked fermented salami. The variables included in the

models were significant at the P<0.0001 level. The correlation between predicted

and observed values was at R2value of 0.BBB, 0.82g, 0.g36, and 0.g1g forthose

models. Over-prediction of reductions in E.coti 0157:H7 was found by these

models which is 'fail-dangerous'. They concluded that modeling can be a useful

tool in assessing manufacturing practices for uncooked fermented sausage

12
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growth rate constant, and the

regression between the growth



processes. However, the authors did not include all relevant variables such as

drying temperature and relative humidity.

Polynomial models are considered simple and relatively easy to fit to

experimental data by multiple linear regression, which is available in most

statistical packages (Ross et al., 2oo4). The application software packages

identified as the "Pathogen Modeling Program" and "Food Micro Model" rely

primarily on the use of polynomial models (Buchanan, 1gg3; Mcclure et al.

1994a)' Logistic regression is comparatively good against linear polynomial

regression for modeling the percentage of data that are "bounded" and may be

considered as rescaled probability values (Zhao et al. 2001). Lebert et al. (2000)

developed a polynomial model that satisfactorily predicted the growth of

Pseudomonas spp. in meat.

Polynomial models allow virtually any input variable and its interaction to be

taken into account. lt is easy to use the estimated coefficients when the model is

included in application software. However, polynomial models also have some

limitations' For a few parameters, there are many coefiicients that have no

biological interpretation. This makes it diffícult to compare the polynomial model

with other secondary predictive models. Baranyi et al. (1996) recommended that

the interpolation region of a polynomial model be within the minimum convex

polyhedron (MCP) defined by the ranges of environmental conditions used for

developing the model.

13



2.3.3.3 Need for E.coli olsr:H7 survival models in the salami industry

Tomicka et al. (1997) explored the survival of E.coti olST:H7 in a model

representing fermented salami production. They determined the combined effect

of starter culture (107 CFU of lactic acid bacteria per ml), dextrose (0.g%), sodium

chloride (2%), nitrite (200 ppm), plus temperature (37 and 22o c) and concluded

that a lower temperature and longer fermentation time ("European style") were

better for elimination of E.coti 0157:H7 from a model system than fermentation at

high temperature and sho¡t time ("American style"). Thus, there is a need for

predictive models to facilitate choice of the optimal levels of ingredients and

environment factors to use in processed meat manufacturing.

2.3.3.4 Effect of full and partial experimental data on the models

McClure et al. (1994b) demonstrated the stages in developing a predictive

mathematical model for estimating the growth of Aeromonas hydrophla when the

eflects of variables, temperature (3-20oC), NaCl concentration (0.5-4.5% w/v)

and pH (4.6-7.0) were considered. The growth curves were generated from

viable counts and fitted using the Gompertz equation. Quadratic response

surface equations were fitted to the log of lag and generation times, in response

to the above variables. This modelwas compared with other models for growth of

A. hydrophila developed with viable count data and optical density

measurements which were used to obtain predicted growth rates and lag times.

Also, the same was done with data from the literature on the growth of this

bacterium in food. This study concluded that there is a potential for combining

14



data sets from difierent studies and to extend the useful range of the resulting

models and allow their application for all kinds of variables and all kinds of foods.

Bratchell et al. (1989) attempted to determine the result of systematic removal of

data from a model and its consequences. Their study illustrated the

consequences of using insufficient data and demonstrated the risk of using an

erroneous model. A mathematical model of the growth responses of salmonellae

in a laboratory medium was developed by including the factors pH, Nacl

concentration, and storage temperature. A part of the data was systematically

removed from the whole data set and then the model was examined. Results

highlighted the diflerence between the 3-D plots of fitted response surfaces for

the whole data set and the reduced data sets. This study was useful in

understanding the risks arising from inaccurate or incorrect models which are

more acute when predicting bacterial growth than in any other system. However,

a model with insufficient sampling will become less important with increasing use

of automated sampling. Also, from this study, it was understood that the

robustness of a model is characterized by the ease of identification of ouliers,

and other unusual observations. Data reduction imposes limitations on the ability

of the model to predict with accuracy.
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2.4 Model Gategories

Primary vs. Secondary: Whiting and Buchanan (19g3) have classified models

into primary and secondary types. The models which describe the response of

micro organisms with change in a small set of parameters, for example,

temperature over time are called primary models. whereas the models which

describe the effect of environmental conditions, sây, physical, chemical, and

biotic features, like storage atmosphere, water activity, pH, food preservatives

and additives on the values of the parameters of primary models are called

secondary models. The various primary and secondary models are detailed by

McKellar and Lu (2004).

Growth vs. Survival: Growth models and survival models are respectívely,

describing the growth and inactivation of microorganism during the process.

Descriptive vs. Explanatory: Descriptive models are data driven. They are

observational, empirical, "block box" or inductive approaches such as polynomial

functions, artificial neural nets, and principal component analysis. As these

models can not be extrapolated beyond the data used to build them, true

predictions are difficult to make. ln spite of that, they have been widely used with

considerable success in predictive microbiology. Explanatory models are

mechanistic; 'white box'; or deductive models which will relate the given data with

fundamental scientific principles, or at least to measurable physiological

processes. They are composed of analytical and numerical models,
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Stochastic or Probabilistic models are the ones that can recognize and account

for the uncertainty or variability in an experimental systems.

Tertiary models are the models incorporated with environmental values of

interest continuously entered into the secondary models in order to obtain the

values of the predicted variable. Application software, risk assessment

simulations and expert or decision support systems are the main examples of

tertiary model systems. These make the modeling technology and data bases

readily available for application in industry. This paves the way for choosing the

type of new data collection needed in such a way that it can be merged with

existing data bases.

The rules (parsimony, parameter estimation properties, and range of variables,

stochastic assumption, and interpretability of parameters) for model selection

were formulated by Ratkowsky (1993). Selection of an appropriate experimental

design consistent with the purpose of the study should be an important pre-

requisite. No model is mechanistic in predictive microbiology. Predictions can be

done by interpolation only. The interpolation region only defines the applicability

of a model, and the interpolation region is affected not only by the range of

individual variables but also by the experimental design (Ross et al., 2000)
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Moving from an empirical or phenomenological description to a mechanistic or

deterministic description of a process indicates advancement in 'good science'

hierarchy. The former stochastic models give a just mathematical relationship,

whereas the latter have a theoretical basis i.e., interpreting the observed

biological response on the basis of underlying theory. None of the secondary

models is truly mechanistic. So Arrhenius type dependence models have a

greater mechanistic basis than the Square root or Ratkowsky type models. But

Belehradek (1930) did not support use of these because the Arrhenius models

are based on chemical kinetics which can not be used for biological reactions.

The secondary models like square root type or Ratkowsky type (1982) were

developed based on the Belehradek type.

2.5 Use of Artificial Neural Networks for Predictive Modeling

The use of ANN in predictive modeling remains limited. ANNs area data driven,

black box approach to predictive modeling in contrast to other secondary models

that can be written as an equation with coefficients and parameters. Neural

network models are empirical ones and many methodological issues remain to

be resolved. ANNs are robust and are able to handle high biological variability

and non-linear data as long as enough data from well planned studies are used

during their development.

Lou and Nakai (2001) developed an ANN model for predicting the thermal

inactivation of E.coli due to combined effects of temperature, pH and water
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activity, and compared this model with two others using root-mean-square-error

and R2. They showed that the ANN prediction per.formance - 0. 144, 0.g4g was

better to that of response surface methodology model - 0.292, 0.86g and Cerf's

model -0.234,0.815 (Cerf et al., 1996).

Cheroutre-Vialette and Lebert (2002) developed a dynamic model based on

recurrent neural networks (RNN) and concluded that the complex effects of

environmental variable conditions on microorganism behavior can be

represented by this kind of model.

Two neural networks were developed by Mittal and Zhang (2002) to predict

thermal process evaluation parameters like g (retort temperature - temperature

of food at slow heating location) and found that ANN models closely followed the

observed values.

Hajmeer and Basheer (2003) developed a hybrid model by integrating ANN and

Bayes' statistical theorem for computing the probabilistic modeling of the

bacterial growth and no growth interface. lt outperformed the other approaches ín

its accuracy as well as flexibility to extract the implicit interrelationships between

the various parameters.

Yu et al. (2006) developed and compared an ANN model of a three-layer back-

propagation neural network trained using the survival and growth interfacing

data-set and the model of McKellar et al. (2002). ANN's accuracy was more than
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99 % for training data; 90% on classification accuracy for additional literature

data-sets used for validation; and 1OO o/o on all observed growth. The ANN

model has been recommended as an alternative tool for evaluation of survival

and growth conditions in predictive microbiology.

The effect of temperature, pH and NaCl on the heat resistance o'f Baciltus

stearothermophilus spores was described using low-complexity, black box

models based on ANN by Esnoz et al. (2006). Published data were used to build

and train the neural network. The ANN models gave better predictions than the

classical quadratic response sudace model in all the experiments tried. Good

predictions were also obtained when the neural networks were evaluated using

new experimental data, providing fail-safe predictions of D values in all cases.

2.5.1 Generalized Regression Neural Networks

GRNN perform regression rather than classification tasks (Specht, 1gg1). There

are three hidden layers in this network. The first layer containing the radial units

is the input layer. The second hidden layer units help to estimate the weighted

average as the transformation is applied to them at the hidden nodes. lt is a

specialized procedure. Here, the weighting is related to the distance of the point

from the point being estimated (so that points nearby contribute most heavily to

the estimate). A single special unit in this layer calculates the weighted sum.

Hence, the second layer always has one more unit than the output layer. The
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weighted sum should be divided by the sum of weighting factors to get a

weighted average. Third layer is the output layer, and performs actual division

(using special division units). Gaussian kernel functions are located at each

training case. Each case can be regarded as evidence. The GRNN copies the

training cases into the network for estimating the response to new points

(Statsoft, 2006). GRNN applications are able to produce continuous valued

output values. This is useful for continuous function approximation. GRNN can

have multidimensional input, and it will fit multidimensional surfaces through the

data.

2.5.2. Comparing ANN and Statistical models

By using published data, Jeyamkondan et al. (2001) used Generalized

Regression Neural Networks (GRNN) to develop a model for predicting the lag

phase period and generation time of Brochothrix thermosphacta, Aeromonas

hydrophila, and Shigella flexneri. They compared the predictions of GRNN and of

the published statistical models with the observed data. Six statistical indíces,

namely graphical plot, mean relative percentage residual (MRPR), bias factor,

mean absolute relative residual (MARR), accuracy factor, and root mean square

residual (RMSR) were used for comparison. GRNN predictions were found to be

far superior to statistical modeling for the training data set, whereas they were

similar or slightly worse than statistical models for test data (Jeyamkondan et al.,

2001).
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Several secondary ANN models have been developed so far for Aeromonos

hydrophila, Brochothrix thermosphacta, Shigella flexneri, E.coli, Listeria

monocytogenes, and lactic acid bacteria (Jeyamkondan et al. 2001; Garcia-

Gimeno et al., 2003; Cheroutre-Vialette and Lebert 2000; and Lou and Nakai

2001). Predictions from the ANN models were compared with polynomial, square

root type models and in general, ANN models provided slightly improved

predictions. Currently, the development of ANN models has become relatively

easy with the use of available commercial neural network software. But it can not

provide classical secondary models (equations with coefficients and parameters),

which are essential in order to allow incorporation with user-friendly application

software in industry, teaching and research. This issue has to be sorted out by

future researchers of predictive microbiology (Ross et al., 2004).

2.5.2.1 Advantages and disadvantages of ANN models

Tu (1996) compared the advantages and disadvantages of the ANN approach

with those of statistical regression modeling.

Advantages:

i. Require less formal statistical training to develop.

ii. Detect implicitly the non-linear relationship between predictor and response

variables.

iii. Detect the possible interactions between predictor variables.
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iv. There would not be many methodological issues during model development

and usage because it is empirical.

Disadvantages:

It is a black box approach and has limited ability to specifically identify

casual relationships.

Requires greater computational resources.

Prone to over-pred iction.

ii.

ilt.

2.6 Limitations of Predictive Models

Some researchers contend that because predictive models are often developed

based on the data generated from well controlled laboratory conditions, there are

possibilities for the model to fail in predicting the behavior of target organisms in

real food and environments which represent actual situations that occur during

production, processing, and storage. Brocklehurst (2004) directs our attention

towards the effects of food structure, including emulsions and surfaces which

may significantly affect microbial behavior,

The predictive power of a model will always be constrained by the complexities of

interactions of food microbes. Most of the models are developed based on only

one targeted microorganism or at most a few strains in a homogeneous broth.

But a variety of heterogeneous strains of the same organism may be present in

the food and behave differently (Barbosa et al. , 1994).
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A model can be satisfactory only if it overestimates the observed growth. A

model that over predicts the generation time or under estimates the growth rate

is always'fail-dangerous' (Ratkowsky, 2004).

A chosen model should be used to predict within the applicable boundary

conditions and prediction should not be made beyond these (Ross, l ggg).

2.7 lndustrial Applications of Predictive Microbial Modeling

Presently, the predictive modeling technique is not being used at all by the meat

industry. Even though they may be willing to use the one or two predictive

models so far developed, there is no simple and easy way for the meat industry

to incorporate these models into their online processing systems. An ANN model

with the data informatics of salami processing variables would be very useful in

'online processing' for choosing the best combination of environmental variables

for salami processing or predicting the residual population of E.coli 0157:H7

under any environmental conditions within a minute by a single person. Little

time, labour or laboratory equipment is needed to complete the ANN analysis. ln

addition, the plate count requirement is eliminated.

Devices that can monitor environmental conditions, a tertiary model (spreadsheet

program) that can convert the temperature history into estimates of microbial

growth, a decision supporl expert system including software packages
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(bioinformatics data bases and biomathematics models), set up together in the

food industry can support on-line processing systems (McKellar and Lu 2004).

The 'front end' of the modeling process including data collection, model

development, and model fitting are reviewed and discussed above. As a result of

a substantial amount of work, this area of research now has a firm scientific

foundation. While looking at the industrial application part i.e., the 'middle bit' like

tertiary models, applications software, expert systems should be given attention

in order to make this technology readily available to provide solutions to industrial

problems. Potential users of this concept should adopt predictive modeling as a

food safety management tool in the short term (McMeekin, 2004). A suitable

model should be developed using numerical techniques for modeling the lag

phase of bacteria. ln spite of this limitation, predictive modeling can be a

potentially valuable food safety management tool.
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3.1 Neural network software

commercial neural network software, Neuroshell@2 (1gg3) (Release 4.0, ward

systems Group, lnc.,), was used in this study. The purpose of using commercial

software was that the industries could easily get and use this software. GRNN

structure, which is a most suitable network for predictive microbiology purposes

especially when regression is involved, is available in this software (Specht,

1991; Neuroshell@2, 1993; Bishop, 1995; Patterson, 19g6; Jeyamkondan et al.,

2001; and Statsoft, 2006). The other probabilistic neural networks were meant for

classification purposes. As this was a user-friendly program, the user needed to

know only the basics of neural networks and did not need to be an expert in

programming neural network structures.

3.0 MATERIALS AND METHODS

GRNN consisted of one input, one hidden and one output layer, with the number

of neurons respectively, in each layer, equal to the number of input variables, the

number of training sets and the number of output variables (Specht 1991).

Different scaling functions (linear, logistic, or hyperbolic tangent) could be used to

transform the variables at the input nodes, Each neuron of the hidden layer

received input data from the input layer and computed the output by using

transfer, estimator, or kernel functions (a Gaussian function defined by the

parameter and standard deviation). This function was also known as the

smoothing factor. A lower smoothing factor tightly fits (over-fit) the data and
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higher smoothing factor loosely fíts (under fit) the data. The appropriate selection

of this smoothing factor determínes the success of future predictions. lf the

smoothing factor is lower than needed for prediction, the GRNN would not output

the predicted value for production sets. The smoothing factor used ranged from

0.01 to 1.0. The default terminal condition for the learning process was no

improvement in mean squared error by at least 1 % for 20 successive

reproductions of the whole training data set. This method prevented overtraining

of networks and minimized memorizing problems. For feeding the unseen data,

the production set was chosen as the last pattern input and the test set was

randomly chosen for the rest of the seen data.

GRNN is randomly extracts the test set for every run of a software application, in

order to validate the model. So, the model predictions will vary for each run. An

analysis (Appendix ll) was done on this issue and proved that there would not be

any significant difference in the predictions for different runs.

3.2 SAS Program

The windows version of SAS (Statistical Analysis Systems, SAS lnstitute lnc.,

Cary, North Carolina) was used to develop a statistical model for this study. SAS

version 9.1.3 was used. The advantage of selecting a SAS program was that it

was easy to write and it took less than half a minute to run and generate the

results.
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3.3 Data

Data (Appendix 1) from Chacon (2006) for the reduction of E.coli 0157:H7 (36

data sets that are mean of three replicated values) in response to changes in the

level of the natural antimicrobial allyl isothiocyanate (AlT) (0,500,750, and 1000

ppm), days of processing (0 to 45 days), water activity (0.864-0.948), and pH

(4.70-5.57) were used to develop a GRNN model for survival of E.coti 0157'H7.

The product was inoculated with 6.45 loglsCFU/g of E.coli O157:H7 on the day 0

of manufacturing with all the treatments. The fermentation temperature during

salami production was 26"c (< 3 days) and drying was done at 13"C (25 days).

These are common temperatures used by industry for salami production. Three

replications of the parameters, population of E.coli 0157:H7, water activity and

pH were observed and the mean values were used as data for model

development.

Another data set from Al-Nabulsi (2006) (Appendix Vl) for the reduction of E.coti

O157:H7(324 data sets) in response to changes in the level of the natural

antimicrobial lactoferrin (LF) alone (0, 1.8, 3.0, and 6.0 mg / g sausage batter) or

with different chelating agents namely sodium bicarbonate (SB) (0, 2.5, 5.0 mM)

which was used in linear propoftion with ethylene-diamine-tetraacetic-acid

(EDTA) (0,250, 500) for 0,1.8,6.0 levels of LF, for 0 to 28 days of processing

were used to develop a GRNN model for predicting the survival of E.coti

0157:H7. Six replications for each measurement were done using cefixime-
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tellurite sorbitol McConkey agar (ct-SMAC) alone in the experiments. All those

measurements were used for developing the models. The mean inoculation

levels of E.coli 0157:H7 on day 0 of manufacturing for the six treatments were

5.76, 5.79, 5.83, 5.65, 5.75, and 5.g0, respectivery. Normal LF was used for

treatments 2 and 3. Paste-like micro capsules of LF were used for treatment 4.

Dried powder microcapsules of LF were used for treatment 5 and 6. lt was also

observed in the experiment that the reduction of E.coli 0157:H7 was due to cell

injury (and not lethality) since significantly greater numbers of cells were

recovered (Fig. 2 and Fig. 3) on All Purpose Tween (APT) agar overlaid with the

selective medium ct-SMAC on the 28th day of observation for all the treatments.

The salami was manufactured in the pilot plant of the Department of Food

Science at the University of Manitoba. The same method which is followed in

Pillers'sausages plant, Waterloo, ON was adopted for manufacturing the salami.

3.4 GRNN modeling

An excel format of the data set (Chacon, 2006) was imported as input. The

logarithmic transformation of E.coli 0157:H7 numbers was modeled with GRNN.

No function was used to scale the input values at the input nodes because the

transformed value was given as input. The data set was split randomly into two

groups (4:1), the best ratio (Jeyamkondan et al., 2001) as training and test sets

for training and validating the GRNN model. An analysis (Appendix lll) was also

done and proved that 80:20 would be the best split ratio to be adopted. The
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scaling function 'none' was used for equalization. The production set (unseen

data for modeling) was created in such a way that the predicted value would be

near to 1.45 (a 5 log reduction from the initial count 6.45) at 28 and 35 days. The

production set (Table 1) was fed as last patterns along with training and test set.

The maximum smoothing factor 1.0 was chosen as the other values less than 1.0

could not produce the predicted values for all patterns of the production set. The

configuration was saved. The output file contained the GRNN predictions for the

training, test and production sets.

3.4.1 Creation of Production set for Chacon's data

Table 1: Production set (man made unseen data) for future model predictions

of survival of E.coli 0157:H7 based on Chacon's Data

Aw

0.89
0.89
0.89
0.89
0.89
0.89
0.89
0.89
0.89
0.89
0.89

0.877
0.877
0.877
0.877
0.877
0.877
0.877
0.877
0.877
0.877

AIT in ppm

500
505
510
515
520
530
540
550
560
570
580
500
490
480
470
460
450
440
430
420
410

pH

4.93
4.93
4.93
4.93
4.93
4.93
4.93
4.93
4.93
4.93
4.93
4.93
4.93
4.93
4.93
4.93
4.93
4.93
4.93
4.93
4.93

No. of days

28
28
28
28
28
28
28
28
28
28
28
35
35
35
35
35
35
35
35
35
35
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Of 19 data sets (Table 1), 10 data sets are targeting to know the E.colipopulation

at the 35th day and g data target the 28th day. The AIT levels have been chosen

from 500 to 410 ppm at 10 ppm intervals for 35 days and from 500 to 580 ppm at

10 ppm intervals for 28 days to know the combination of factors which can

reduce E.coli by 5 logls CFU/g E.coli cells. So, the value of the E.coli target

population of interest is 1.45 (iniiial population 6.45 minus 5.00). The water

activity levels 0.89 and 0.877 represent, respectively, levels achieved at 28 and

35 days during processing of salami.

The same procedure was followed for the other data set (Al-Nabulsi, 2006) used

for developing the validated GRNN model. The default initial smoothing factor

was 0.3. The production set was not created to find a 5 log reduction because

the highest reduction achieved in this experiment was 4.2 loglsCFU/g and the

GRNN could not perform an extrapolation. So, the modeling was done only for

the experimentally observed values.

3.5 Statistical Modeling

Chacon data: A polynomial regression modeling technique was followed to

develop the model and describe the effect of the parameters AlT, days of

processing, water activity and pH. The interaction between these parameters
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was also taken into account in developing the model. All 36 data sets were used

to develop this model.

Al-Nabulsi data: The same polynomial multiple linear regression procedure was

followed here too. All 324 data sets were used to develop the statistical model.

The contributions of each individual factor LF, sB, EDTA and D"y; the

interactions of LF, Day with the interaction of SB and EDTA; LF with Day; and

interaction of all these four factors in the model was estimated using the SAS

Reg procedure, and then the model was formulated. As there was no production

set, future prediction was not done using this model.

3.6 Criteria for comparison

The same criteria used by Jeyamkondan et al. (2001) for comparing the GRNN

model and statistical models were also used in this study. They are briefly

explained (see Table 2 for mathematical expression) and here for clarity.

Graphical plots: A bias plot is the graph of predicted versus observed values to

show the region of over-prediction and under-prediction. A plot between residuals

and the observed values is the best way of comparing competitive models as it

gives a clear picture of the magnitude and distribution of residuals (Ratkowsky,

1990). Mean relative percentage residual (MRPR) is equal to zero when there is

no bias in the prediction; a positive value occurs when there is under-prediction

and vice-versa. Bias factor: When the model has no bias, it will be equal to 1. lf it
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is greater than 1, it indicates the model overestimates survival of the pathogen. lf

it is less than 1, it indicates the model underestimates the bacterial numbers.

Mean absolute relative residual (MARR) is the percentage by which the predicted

values deviate from observed values (either above or below). The accuracy

factor indicates the average deviation of the predicted values from the observed

values. Root Mean Square Residual (RMSR): lf it is 0, it indicates there is no bias

between predicted and observed values. While considering the reduction of

E.coli, an under-prediction is considered as 'fail-dangerous' and over-prediction

as'fail-safe'.

Table 2: Mathematical expressions of statistical indices for comparing the model
pred iction performance

Statistical indices

Mean Relative Percentage Residual
(MRPR)

Bias Factor

Mean Absolute Percentage Residual
(MARR)

Accuracy Factor

Root Mean Square Residual

O - Observed value; P - Predicted value

Mathematical Expressions

1/N.I(O-P).100 / O

A.log10 flog10(P/O)/N

1/N.IlO-pl.rOOlO

A.los10 f I loslo(P/o) I /N

^/¡1o-e¡2ru
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4.1 GRNN Models

Chacon's data: GRNN converged to the local minima (smoothing factor) as

0.9650588 and gave the predictions for all training, test (Table 3) and productíon

patterns (Table 4). The value of the correlation factor R2 was 0.869. The

correlation coefficient was 0.9588. The GRNN model curves for the combined

training and test sets and the trend of observed values are shown in Fig. 1.

4.0 RESULTS AND DISCUSSIONS

Since the data set having the mean values was used for the GRNN model

development, there needs to be justification that the model developed with mean

data will be able to predict the values for the whole size range (for all three

replications) of each mean value. This was analyzed and reported in Appendix

tv.

Al-Nabulsi's data: GRNN finally converged to local minima of 0.961 17646 and

gave the predictions for all training and test set (Table 5). The R2 value was

0.858. The GRNN model curves for the combined training and test sets and the

trend of observed values of the treatments 2, 3, and 6 (Fig. 2) and of the

treatments 1 , 4, and 5 (Fig. 2) are separately shown in the figures.
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Ïable 3: Chacon's data and the predictions of the GRNN model for training and
test sets and of statistical model for its full set

Aw

0.948
0.936
0.908
O.BB

0.878
0.874
0.87
0.943
0,9-38

0,939
0.91
0.89
0.877
0.873
0.87
0.946
0.925
0.9

0.902
0.886
0.873
094
0.923
0.911

0.905
0.874
0.87
O.86B

0.864

0.941
0.92
0.918
0.936
087
0.866
0.941

AIT in
ppm

0
0

0

0
0
0

0

500
500-

500
500
500
500
500
500
750
750
750
750
750
750

1 000
1 000
1 000
1 000
1 000
1 000
1 000
1 000

0
0

500
750
750
750

1 000

pH

5.57
4.70
4.79
4.93
4.93
4.93
4.93
5.57
4,81

4,81

-4,8-0
4.93
4.93
4.93
4.93
5.57
4.71
481
4.80
5.01
5.01
4,87-

4,80
486
4.87
5.01
5.01

5.01
5.01

4.87
4.78
4.77
4.78
501
5.01

5.57

No. of
days

0

6
16

28
35
40

45
0

3

6

:16

28

35
40
45

0

6
9

16

28
35
J

6
I
l6
28
35
40
45

Observed

E coli population loq CF

6.453
5.1 40
4.670
4.583
4.117
4.079
4.023
6.453
4.102
4,112
2,280
1.702
1.068
0.000
0.000
6.453
3.165
2.162
1.068
0.000
0 000
3,455
2,7-04

1.962
0.000
0.000
0.000
0.000
0.000

4.916
4.735
2,580
3.550
0.000
0.000
6.453

Traininq set
GRNN

6.453
5.140
4.670
4.583
4.117
4.079
4.023
6.453
4:102
4,103

_2,269
1.686

1.058
0.000
0.000
6.453
3.170
2.161
1.069
0.016
0 010
3 455
2,708
1.964
0.010
0.000
0.000
0.000
0.000

Test set
4.916
5.140
2.162
3.779
0.000
0.000
6.453

Statistical
Fullset
6.591
5.000
4.049
4.495
3.923
3.843
3.849
6.702
4,345
3.671
1.994
1.444
1.229
0.961
0.690
6.819
2.946
2.183
1.017
1.208
0.887
3 420
2.180
1.485
0.379
0.026
-0.355
-0.591
-0.835

5.1 96
4.842
3.'183

3.768
0.663
0.494
6.6'18

Data source, Chacon (2006)

3
o

o
ô
J

40
45

0
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Table 4: Results of GRNN and statistical model predictions of
E.coli O157:H7 population in loglsCFU/g for production sets (man

made unseen data) for industrial use

0.89
0.89
0.89
0.89
0.89
0.89
0.89
0.89
0.89
0.89
0.89

0.877
0.877
0.877
0.877
0.877
0.877
0.877
0.877
0.877
0.877

AIT in
ppm

500
505
510
515
520
530
540
550
560
570
580
500
490
480
470
460
450
440
430
420
410

pH
- E.coli population

No. of logro iFulg
daYs -- cRñÑ statisticat

4.93
4.93
4.93
4.93
4.93
4.93
4.93
4.93
4.93
4.93
4.93
4.93
4.93
4.93
4.93
4.93
4.93
4.93
4.93
4.93
4.93

28
28
28
28
28
28
28
28
28
28
28
35
35
35
35
35
35
35
35
35
35

Production set
1.686

1.679

1.669
1.654
1.633
1.604
1.563
1.508
1.434
1.058
1.061
1.063
'1.065

1.066
'1.066

1.067
1.067
1,068
1.068

1.444
1.423
1.401
1.380
1.358

1.229
1.285
1.341
1.397
1.453
1.509

* - corresponding input set was not applied to GRNN model.
**- corresponding input set was not applied to statistical model.
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Table 5: The Al-Nabulsi's data and the predictions of the GRNN model for
training and test set and of statistical model for its full set

Treat
ment #

Trtl
Trtl
Trtl
Trt'1

Trtl
Trtl
Trtl
Trtl
Trtl
Trtl
Trtl
Trtl
Trtl
Trtl
Trtl
Trtl
Trtl
Trtl
Trtl
Trtl
Trtl
Trtl
Trtl
Trtl
Trtl
Trtl
Trt'1

Trtl
Trtl
Trtl
Trtl
Trtl
Trtl
Trtl
Trtl
Trtl

mgLF/g
sausage

batter

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

EDTA mM f\sP[ ----
por SB IJaYS catio observedppm

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

Repli E coll population log10 CFU/g

0

0

0

0

0

1

1

1

2

2

3

3

3

3

3

6

6

6

6

6

I
9
o

9

15

15

15

15

15

21

21

21

28

28

28

28

2

J

4

5

6

2

J

6

2

3

1

2

J

4

5

1

3

4

5

o

1

2

3

4

1

2

4

5

6

1

3

4

1

2

3

4

5:78-

5.30

6:og

5.82

5.64

5:03

4.94

4,30

4.96

4,-88

486
4,96

4,58

4.48

4:65-

4:40

4.57

4:58

4.20

4,20-

4.72

3,86

3P2
348
4.47

3.68

3,6 
-2

3:97

3,8'1

320
3.31

3.53

3.00

315
329
3.34

GRNN

Traininq set Fullset
5,65

5.65

5:65

565
565
495
4.95

4.95

4.85

4:85

472
4.72

4,72

4.72

4.72

439
4,39

4139

439
4:39

4.00

400
4:oo

4.00

3.91

3.91

3,91

3:-91

3,91

335
3.35

335
3.22

3,2_2

322
3.22

Statistical

5:17

5.17

517
5.17

517
5:09

5.09

5.09

5.01

501
4.92

4.92

4.92

4.92

4.92

4.67

4.67

467
4.67

4.67

4.43

4.43

4.43

443
3.93

3.93

3,93

393
393
3.44

3.44

3.44

2.86

2.86

286
2.86
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Treat
ment #

Trtl
Trtl
Trl-2
Tr+2

Tt12

Tt12

Tt12

Tr12

Tt12

Trt2

Trt2
Tftz
Trt2

Tr12

Trt2

Tr12

Trl2
Tt12

Trtz
Tr12

Trtz
Tftz
Ttt2
Tftz
TrI2

Tft2

Tr12

Trt2

Trt2

Trtz
Tt12

Tft,z

Ttt2

Tft2
Trtz
Tt12

Tft2

Tfiz
Trt2

mg LF/g
sausage

batter

0

0

6

6

6

6

6

6

6

6

o

6

6

6

6

6

o

6

6

6

6

6

6

o

6

6

6

6

6

6

6

b

6

o

ó

6

b

o

b

EDTA mM

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

Table 5 Continued

SB

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

neOti

29

28

0

0

0

0

0

0

1

1

1

2

2

2

2

2

3

3

3

J

é

6

6

o

I
I
I
I
9

15

15

15

15

15

21

28

28

28

28

catio observed
NS

5

6

1

2

J

4

5

6

1

J

6

1

2

3

4

5

1

J

4

6

2

4

5

6

1

2

3

4

5

2

J

4

5

o

6

2

3

4

5

3.50

304
5,91

5.60

-5,53
5:75

594
5ì99

5.19

506
4.10

4,84

-4169-
482
4,15

3.90

4,84

4..82

4.30

3,90

4.28

4,30

4.57

4.44

3:60

3,62

3:45-

3.81

3.66

345
3.45

320
3.83

3.48

1.00

2.08

158
100
1.45

GRNN

Traininq set Fullset
3.22

3.22

572
5.72

5.72

5.72

5,72

5:72

4.93

4.93

4.93

4,50

4:50

450
4,50

4.50

447
4:47

4.47

4,47

4.40

4,4!0

4.40

4.40

3,63

3,63

,3:63
3.63

3.63

3.48

3.48

3:48

3.48

3.48

1.00

1.66

166
1,66

1.66

Statistical

2.86

2.86

516
5.16

5,16

5''16

516
5,16

5.01

5.01

5.01

4.87

487
4.87

4.87

4.87

4.72

4.72

4.72

4.72

4.29

4.29

4.29

4,29

3.85

385
385
3.85

3.85

2.98

2.98

2.98

2.98

2.98

2.11

1.09

109
109
1.09
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mgLF/gRepl¡E.coliPoPulationlogl0CFU/g
Treat sausage EDTA mM catio Observed GRNN Statistical

ment # batter ppm sB Days ns - ---' '-- Training set Full set
T-rt2 6
Trt3 6

Trt3 6

Trt3 6
Trt3 6

Trt3 6

Trt3 6
Trt3 6

Trt3 6

Tri3 6

Trt3 6

Trt3 6

Trt3 6
Trt3 6
Trt3 6

Trt3 6

Trt3 6

Trt3 6

Trt3 6
Trt3 6
Trt3 6
Trt3 6

Trt3 6
Trt3 6

Trt3 6

Trt3 6

Trt3 6

Trt3 6

Trt3 6
Trt3 6
Trt3 6

Trt3 6
Trt3 6

Trt3 6

Trt3 6

Trt3 6

Trt3 6

Trt3 6

Trt3 6

0028
50050
50050
50050
50050
50050
50050
50051
50051
50051
50051
50051
50052
50052
50052
50052
50052
50052
50053
50053
50053
50053
50053
50053
50056
50056
50056
50056
50056
50059
50059
50059
50059
50059
500 5 15
500 5 15

Table 5 Continued

2.2:0

5,_B-4

609
548
5,91

5,92
5.76
5:52
487
523
497
5.17
4.95
4.76
4.91

5.12
4.88
4.92
4.94
5.11

5.05
5:24
5.09
470
4.89
3.34
350
4:48
446
360
4.36
435
3.08
3,0-6

4.59_

472
448
4.40
4.32

1 6-6

5-:76

5:76
576
576
5.76
5:76
5.21

5:21

5.21

5.21

5.21

4.96
4.96
4.96
4.96
4.96
4.96
5.01

5.01

5.01

5.01

5.01

501
4:13
4.13
4.13
4.13
4:13
3:6-9

3.69
3.69

3.69
369
4:5'o

4:50
450
4.50
4.50

1.09

504
504
5.04
5.04

5.04

5.04

5.00

500
500
5.00

5.00
4.96
4.96
4.96
4.96
4.96
4.96
4.91

4.91

4.91

4.91

4.91

4.91

478
4.78
4.78
4.78
478
466
4.66
4.66
466
a 6;6

440
4.40
4.40
4.40
4.40

500
500

500 5 '15

515
5 15
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mg LF / g Repti E coli PoPulation log10 cFU/g
Treat sausage EDTA mM catio ,,ìhc^----, GRNN Statistical
ment+ oatt"î ppm sg oays -is" uÞset"d ffiTrt3 6 500 5 21 2 4.20 4.34 4.14
Trt3 6 500 5 21 3 4.40 4,34 4.14
Trt3 6 500 5 21 4 4.50 4.g4 4.14
Trt3 6 500 5 21 5 4.10 4.34 4.14
Trt3 6 500 5 21 6 4.SO 4.94 4.14
Trt3 6 500 5 28 1 3.5 O 4.OT Z.B4
Trt3 6 500 5 28 2 3 73 4.07 3.84
Trt3 6 500 5 28 3 4.60 4.07 3.84
Trt3 6 500 5 28 4 4.44 4.07 3.84
Trt3 6 500 5 28 5 3 gT 4.07 3.84
Trt3 6 500 5 28 6 4.17 4.07 3.84

Tr14 3 0 0 0 4 ST2 563 S.rO
Trt4 3 0 0 0 S 5:66 563 516
Tt1430011S.08S.045.05
Trt4300124.99S.04S.05
Trt4300'1 35:0-65,04S.0S

Tt14300224:47.4:624.94
Ttt4300234.644.624.g4

Tr14 3 0 0 2 S 422 4:62 4.94
Trt4 3 0 0 2 6 451 4.62 4.94
Tft4 3 0 0 3 1 468 4.45 482
Trt4 3 0 0 3 -2 460 4.45 4.82
TtÍ4 3 0 0 3 3 4.56 4.45 482
Trt4 3 0 0 3 4 471 4.45 4.82
Trt4 3 0 0 3 S 4]2 445 482
Ttt4300363,304:454.92
TtÍ4 3 0 0 6 i 452 4.5i 448
Trt4 3 0 0 6 2 456 4.53 448
Trt4 3 0 0 6 3 452 4,Sj 4.48
Ttt4 3 0 0 6 4 4,68 453 4.48
Ttt4 3 0 0 6 5 4S8 4.53 448
Trt4 3 0 0 6 6 4.91 4.53 448
Trt4 3 0 0 I 2 4,00 404 4.14
Tt14300934.154.044.14

Table 5 Continued
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mgLF/g
Treat sausage

ment # batter

Trt4

Trt4

Tr14

Trt4
Trt4

Trt4

Ttt4
Ttt4
Trt4

TtÍ4
Trt4

Trt4

Trt4

Tft4
Trt4

Trt4

Trt4

Trts

TrtS

TrtS

Trt5

Trts

Trt5

Trt5

TrtS

TrtS

Trts

Trts

Trt5

TrtS

Trts

Trts

TrtS

Trt5

Trts

Trts

TrtS

TrtS

Trts

3

J

3

3

.)

3

3

3

J
;
J
;
J

3

J

J

3

3

J

1.8

1,8

1.8

1'8

1.8

1.8

1.8

1'8

1'8

1,8

1,8

1.8

1.8

1.8

1.8

1.8

1.8

1,8

1.8

1.8

1,8

1.8

EDTA mM

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0
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SB

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

Repli

I
o

I
'15

15

15

15

15

21

21

21

21

21

28

28

28

28

0

0

0

0

1

1

1

1

2

2

-2

2

3

3

3

3

3

6

6

o

6

6

catio Observed
NS

4

5

b

1

J

4

5

6

2

3

4

5

6

1

3

4

5

2

3

4

6

1

4

5

6

1

3

5

6

1

2

4

5

6

1

2

4

5

6

E.coli

383
3.45

4.73

3,59-

3.53

366
3.84

3:75

1:Bo

2,00

1.70

1.75

2.30

2.45

2,38-

2.20

1.48

5.73

5,56

583
579
5.13

4,98

5.26

5.1B

4,93

4.75

4 9-5

4.20

468
4.82

488
5.13

3,78

4:50

460
4.64

4,76

4.71

10 cF

4.04

4.04

4.04

368
368
368
3.68

3,69

192
1.92

1.92

1.92

192
2.13

2,13

2.13

2.13

5.65

565
565
5.65

5.15

-5 
15

5.15

5.15

4,75

4.75

475
4.75

4.66

466
4.66

4.66

4,66

4.64

464
4.64

4.64

4.64

Statistical

Full set

4.14

4.14

4.14

3.45

3.45

345
3.45

3.45

277
2.77

2.77

2.77

2.77

1.97

1.97

1.97

1.97

5.17

517
5.17

517
5.06

506
5.06

5.06

4.96

4.96

4:96

4.96

486
4.86

4.86

4.86

486
456
4.56

4.56

4.56

4.56
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Treat sausage EDTA mM , catio Observed GRNN Statistical
ment # batter ppm SB Days ns - ---' '-- Training set Full set

Trt5
TrtS

Trts
TrtS

TrtS

Trts
TrtS

TrtS

Trts
TrtS

TrtS

TrtS

T-rt5

T-rt5

TrtS

Trts
T-rt5

Trts
TrtS

Trt5
Trt6
Trt6
Trt6
Trt6
Trto
Trt6
Trt6
Trt6
Trt6
Trt6
T-rt6

Trt6
Trt6
Trt6
Trt6
Trt6
Trt6
Trt6
Trt6

mgLF/g

1.8

1.8

1.8

1.8

1.8

1.8

1B
1.8

1.8

1.8

1,8
18
1,8

1,8

1,8

18
1,8

1,8

1.8

1'8
1,8

1,8

1.8

1'B

1,8

1,8

1.8

1.8

1.8

1.8

1.8

1.8

1,8

1,8

1.8

1.8

1.8

1'8
1.8

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

250
250
250
zþ0
z90

,250
250
250
250
250
250
zp0
250
250
250
250
250
250
250

Table 5 Continued

0

0

0

0

Rsp¡¡ E coli PoPulation log10 CFU/g

I
9

I
I

09
0 15

0 15

0 15

0 15

0 15

021
021
0 

-21021
021
028
o28
028
028
028
25 0

25 0

2,5 0

2,5 0

2,5 0

2,5- 0

2,5 1

2:5 1

25 1

2,5 1

2,5 1

2,5 1

2.5- 2

2:5 
-22,5 2

2,5 2

2.5 2

2.5 2

2.5 3

1

J

4

5

6

1

3

4

5

6

1

2

3

4

6

1

2

3

5

6

I
2

J

4

5

6

1

2

3

4

5

6

1

2

3

4

5

o

t

4.47 5.04
5.13 5.04
5.38
5.22
5.05
4.68
4.58
4.64
4.54
4.20
2.60
2t7B

3:-58_

4:15-

o:-oo

294
283
208
2.48

5.04
5.04 4.25
5.04 4.25
4.52 3.65
4.52 3.65
4.52 3.65
4.52 3.65
4.52 3.65
2.62 3.04

4.25
4.25
4.25

262
2.62
26 -2 3 04
2 6:2 3.04
2 38 2.33
2:38 2.33
2.38 233
2.38 2.33

1 60 2:38
5:78- 5 79
6 53 579
5.92 5.79

304
3.04

615
6 4!
4:60-

5?5
495
491
519
496
480
5.07

5,79
5.79

2.33
5.45

5.45

5.45

545
5.45

5179 5 45
5,11 5 33
5.11 5.33
5.11

5,_06 4 92
5.18 4.92
4 96 492
4.91 4.92
4.50 4.92

5.11 5.33
5,11

5.11

4.92 5.22

5.33

4.88

5,33

5.33

5.22

522
522
522
5.22

4.65 5.10
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Treat
ment #

Trt6

Trt6

Trt6

Trt6

Trt6

Trt6

Trt6

Trt6

Trt6

Trt6

Trt6

Trt6

Trt6

Trt6

Trt6

Trto

Trt6

Trt6

Trt6

Trt6

Trt6

Trt6

Trt6

Trt6

Trt6

Trt6

Trt6

Trto

Trt6

Trtl
Trt-f

Trtl
Trtl
Trtl
Trtl
Trtl
Trtl
Trtl

mgLF/g
sausage

batter

1.8

1,8

1.8

1.8

1.8

1.8
'1.8

1'B

1.8

1.8

1.8

1.8

1,8
'1.8

1,8

18
1.8

1.8

1.8

1.8

1'B

1.8

1.8

1,8

1.8

1'8

1'8

1B

1.8

EDTA
ppm

250

250

250

250

250

250

250

250

250

250

250

250

-250
250

250

250

250

250

250

250

250

250

250

250
250

250

250

250

250

0

0

0

0

0

0

0

0

0

Table 5 Continued

mM
SB

Repli
Days catio

2,5

25
2.5

2.5

2,5

2,5

2.5

2.5

2,5

2.5

2.5

2.5

2.5

2'5
2,5

2,5

2.5

2.5

2.ç

25
2'5
2.5

2.5

2.5

2.5

2,5

2.5

2'5
2.5

0

0

0

0

0

0

0

0

0

3

J

ä
J

o

6

6

6

6

6

I
I
I
I
I
15

15

15

21

21

21

21

21

21

28

-z:B

28

28-

28

0

ì'

1

1

2

2

2

-2

3

ns

3

4

5

6

1

2

3

4

5

o

1

2

J

i
6

J

4

5

1

2

3

4

5

6

2

3

4

5

6

Observed

E coli population log10 cFU/g

5,04

4:69

4.61

378
4:69:

4.72

4.66

4:53

510
4,79

4.67

4,Bg

4:83-

4-:99

4.20

5:05

489
4.99

3,15

3,53

3:-82

3.50

0.00

o:oo

1.90

1.70

160
2,78

3.23

5.93

s,so

4.60

4,78

4186

4.45

4,76

481
4.77

GRNN Statistical

Traininq set Fullset
4.65

465
4.65

4.65

475
4.75

4.75

4.75

4,75

4,75

4.71

4,71

471
4.71

4.71

498
4.98

4.98

2.33

2,33

233_

2.33

233
2.33

2.24

2.24

2.24

224
2.24

Te_s! Set

5,65

4:95

4.95

4.95

4:85

4.85

4.85

485
4.72

5.10

510
5.10

5.10

475
4.75

4.75

4.75

475
4.75

4.41

4.41

441
4.41

441
3.71

3.71

3.71

3.0 
-2

3.02

3.02

3.02

3.02

3.02

2.21

2.21

2.21

2:21

2.21

5.17

5.09

5.09

5.09

501

5.01

5.01

5.01

4.92

0

0

0

0

0

0

0

0

0

1

1

4

5

1

4

5

6

6
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Trtl
Trtl
Trtl
Trt'1

Trtl
Trtl
Trtl
Tt12

Tr12

Trt2
Tt12

Tr12

Trt2
Ttt2
1t12
-h12

Tt12

Trt2
rft2
Trt2
Trl2
ïr12
rft2
Trt3
Trt3
Trt3
Trt3
Trt3
Trt4
Tt14

Tt14

Trt4
Ttt4
Tr14

frU
Trt4
Trt4
TrtS

TrtS

0

0

0

0

0

0

0

6

6

6

6

6

6

6

6

6

6

6

6

6

o

é

6

6

6

6

6

6

ó

.)

3

3

3

J

3

J

3

LB
1.8

EDTA
ppm

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

500
500
500
500

500

0

0

0

0

0

0

0

0

0

0

0
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iy Days "Jti" observed

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

5

5

5

5

5

0

0

0

0

0

0

0

0

0

0

0

Repli

6

9

I
15

21

21

21

1

1

1

2

3

3

6

6

I
15

21

21

21

21

21

28
1

6

I
15

21

0

0

1

1

o

15

21

28

28

0

0

NS

2

5

6

3

2

5

6

2

4

5

6

2

5

1

3

6

1

1

2

3

4

5

1

2

1

1

5

1

J

o

5

6

1

2

1

2

o

1

5

E coll population log10 cFU/g

4.20:
4.00
4.00
383
3.51

3.68
3.28
5.23
508
4.40
4.76
4.69
4.15
4.16
4.29
3.59
3:48
2:oo
230
1.00
'1.00

1.48

1:60

4.99
4.67
3.90
4.44
4.15
563
5:39
4.79
4.66
400
3.68
245
1.30

1,30

5.75
5.82

GRNN

Test set
439
4.00
4.00
3.91

3.35
3.35
335
4.93
4.93
4.93
4.50
4.47
4.47
4.40
4.40
363
3.48
100
1.00

1.00

1.00

100
1,66

5.21

413
3.69
4.50
4.34
5.63
563
5.04
504
4.04
3.68
1.92

2.13
2.13
5.65
5.65

Statistical

Full set
4.67
4.43
4.43
?01

3.44

3.44
3.44

5.01

5.01

5.01

4.87
4.72
4.72
4.29
4.29
3.85

2.98
2.11

2.11

2.11

2.11

2.11

109
5.00

4.78
4.66
4.40
4.14
5.16

5.16

5.05

5.05

4.14
3.45

2.77
1.97

1.97

5.17

5.17
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batter

Trt5

Tft5

Trt5

TrtS

TrtS

Trts

Trt5

Trts

TrtS

TrtS

Trt6

Trt6

Trt6

Trt6

Trt6

Trt6

'1.8

1.8

1.8

I'B
1,8

1.8

1'B

1.8

1.8

1.8

1,8-

1.8

1.8

1.8

1.8
'1.8

EDTA
ppm

0

0

0

q

0

0

0

0

0

0

250

250

250

250

250

250

mM Repli

sB uays catto
NS

Table 5 Continued

0

0

0

0

0

0

0

0

0

0

2,5

2,5

2.5

2.5

25
2.5

1

1

2

2

3

6
o

15

21

28

3
o

15

'15

15

28

Source: Al-Nabulsi (2006).

4.2 Statistical Models

E coli population log10 CFU/q

Observed

5.34

506
4.80

4,53

4167

4.67

4.67

4.29

3:30

1.60

4:85-

398
5:02

4.77

487
1.30

GRNN Statistical

chacon's Data: As the days of processing were increased, the Ecoli 0157:H7

numbers were decreased due to anti-microbial effects of processing and use of

AlT. This effect was higher at high concentrations of AlT. The pH was reduced

from 5.57 to around 4.70 and then slightly increased at week 5. Thus, it was

assumed that a quadratic relationship existed between the E.coli 0157:H7

numbers and pH. The water activity was reduced from 0.948 to 0.864. so, a

negat¡ve linear relationship existed between water activity and E.coli O157:H7

Test set Full set

5.15

515
4.75

475
466
4.64

504
452
2.62

2.38

4.65

4.71

4.98

4.98

4.98

2.24

5.06

506
4.96

4.96

486
4.56

4.25

365
3.04

2.33

510
4.41

3171

3.71

3.71

2.21

46



numbers. The interaction between factors played a major role in determining the

reduction of E.coli 0157:H7.

The Regression Procedure of SAS version 9.1.3 was used to develop the

statistical model. For the production set the near interpolation region was created

in such a way that the reduction of the Y value was 5 logroCFU at28 and 35 days

from the initial value, and the E.coli 0157:H7 numbers were predicted using this

model. One pattern among the created unseen data set (Table 1) which gave a Y

value as 1.45 (5 log reduction from the initial count of 6.45) was chosen for use

with this model. The statistical polynomial model developed was as follows:

Y = 256.85 - 0.082X1+ 0.778X2 -127 .44X3 - 69.951X 4 - 0.0012X1X2 +

0.071X1X3 + 0.003X1X4 - 2.144X2X3 + 0.202X2X4 +
19.745 X3 X 4 + 5.026 X 4X 4 + 0.003 X|XLX3X 4

(Eq 4)

Where Y = 10 based logarithm of the E.coliO157:H7 number;

X1 - AIT in ppm;

X2 - number of days of processing;

X3 - water activity; and

X4 - pH.

The correlation factor (R2 ) for this model was 0.964.

Model predictions are shown in Table 3 and Fig.1.
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It was understood from the SAS program result (Appendix V) that none of the

individual factors or interaction of factors significantly contributed to the reduction

of the pathogen except the interaction of AIT and pH (Probability of t value is less

than 0.05). lt was true because the AIT use was more effective at pH values

below 5.0 to reduce the numbers of the pathogen. Low pH by itself contributed to

the reduction of pathogen.

When we consider other factors which have a probability of t value less than

0.30, the factor AIT alone (<0.09), pH alone (<0.12), the interaction of AIT and

water activity (<0.16), the quadratic pH with time (<0.29) contributed for the

reduction of the pathogen.

Because the interaction of water activity and AIT has contributed, to pathogen

reduction, it is understood that the drying process was also important in reducing

pathogen viability.

Al-Nabulsi's data: The factors EDTA and SB level used in the experimental

design were proportionately linear. So, both the factors were confounding in the

model. Therefore, 0 degrees of freedom was reported for EDTA and the

parameter estimate for SB was found to be biased. The statistical model for Al-

Nabulsi's data was

Y = 5.1703 -0.0022XL+0.1369 X2 - 0.08261 X4- 0.0000534 X|X2X3
-0.01044 XlX4 - 0.000051X2X3X 4 + 0.0000153 XIX2X3X4

(Eq 5)
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Where Y = 10 based logarithm of the E.coli O1\T:HT numbers

X1 - LF in mg / g sausage batter;

X2 - SB in mM;

X3 - EDTA in ppm; and

X4 - Day of processing.

The correlation factor 1#¡ tor this model was 0.736.

The statistical model curves for the combined training and test sets and the trend

of observed values for treatments 2, 3, and 6 (Fig 3) and for treatments 1, 4, and

5 (Fig 4) are separately shown in figures.

The SAS program result (Appendix Vll) of this model indicates that the individual

factor 'Day of processing'(X4) and the interactions of factors LF and Day of

processing (X1 *X4); LF, SB and EDTA (X'1 *X2xX3)i SB, EDTA and Day

(X2*X3*X4)i LF, SB, EDTA and Day (X'1 *X2*X3*X4) significantly contributed

to the reduction of E.coli 0157:H7 with the probability of t-value less than 0.05.

But, the LF(X1) alone did not have significance in the reduction. For this, the

probability of t value was only less than 0.936. The common reason was the

presence of the factor Xa (Day) in all the interactions. So, the drying process that

is taking place from 3 to 28 days alone and with LF has made the significant

reduction in all the treatments.
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The result also indicates that the factor SB (X2) and lor EDTA(X3) contributed to

an increase in number of cells during processing. Both the factors were

confounding in the model. But, the real contribution of each of the factors in

either increasing or reducing the cells could not be understood. This was due to

the experimental design in which the levels of both the factors were present in a

linear proportion in the treatments concerned. Al Nabulsi and Holley (2006) found

that ËDTA enhanced the antimicrobial activity of LF in reduction of E.coli

0157:H7 strains 0627 and 0628, the same strains used for this experiment. They

also showed that when SB was added to LF and EDTA a 4 log reduction was

obtained that may have been due to the enhancement of LF stability by

bicarbonate. Also, it was evident that treatment 6 (1.8 LF + 250 EDTA + 2.5S8)

performed better than treatment 5 (1.8 lÐ. But treatment2 (6 LF) pereformed far

better than treatment 3 (6 LF + 500 EDTA + 5 SB) (Fig. a). This might have been

due to the use of SB in treatment 3, which maintained high pH values in the meat

because of its buffering capacity. So, there was an ambiguity present which

prevented to comment whether EDTA or SB or both contributed to an increase in

number of cells. This could be solved only if we have the experimental data were

available without linear proportionate levels of EDTA and SB.

The treatment2 at a higher level of LF (unencapsulated LF) has performed better

than all other treatments with the largest reduction of 4.2 log. But, the results

from samples at the 28th day (only) plated on All Purpose Tween (APT) broth

overlaid with ct-SMAC showed that part of this reduction occurred as a result of
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cell injury. The recovered cell increase is shown in Fig. 2 and Fig.3. So, the

lethality of treatment 2 was only 3 log (Al-Nabulsi and Holley, 2000).

4.2 Comparison of Models' Performance using Statistical lndices

Chacon's data: The results of GRNN and statistical model predictions in terms of

statistical indices are shown in Fig.5 and Table 6 for the E.coli 0157:H7 count.

They show the bias and the residual plots for the GRNN predictions for training

and test data sets as well as the statistical predictions for whole data sets. The

GRNN predictions for the training data set are very close to having no bias from

the observed values, whereas the same predictions for the test data set are

slightly biased from observed values. Statistical model predictions for the whole

data set are comparatively far biased from the observed values. The R-square

value 0.964 shows that the statistical model is well developed. Even then, the

GRNN prediction for the training data set is far superior to the statistical model

predictions, while the prediction for the test set is slightly superior to the statistical

model predictions. The test set prediction was similat or slightly worse than

statistical prediction obtained by Jeyamkondan et al. (2001). The number of

negative residual points was greater than the number which was positive (Fig. 5).

This means that the predictions by both the GRNN and statistical models are

under-predictions, which was again confirmed by the MRPR values, which were

positive for both the GRNN and statistical models. Under-estimation of bacterial
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Table 6: Comparison of GRNN and Statistical models of Data Set 1 (Chacon) and Data Set 2 (Al-Nabulsi)

Statistical indices

Mean Relative
Percentage

Residual (MRPR)

Bias Factor

Mean Absolute
Percentage

Residual (MARR)

Mathematical
Expressions

1/N.I(O-P).100 / O

Accuracy Factor

A.los10 flos1O(P/O)/N

Root Mean
Square Residual

1/N * IIO-pl.rOO l O

Model

* indicates that the model has under-predicted;
** indicates that the model has over-predicted E.colisurvival.

GRNN

A.log10
f l logl o(P/o) l /N

Statistical

Data set

GRNN

VXo-p)?tt

Traininq

Statistical

For AIT
(Data 1)

treatments

GRNN

Test

Statistical

Full

Traininq

GRNN

Test

0.075*

Statistical

Full
Traininq

0.1 6g-

For LF
+EDTA+SB

(Data 2)
treatments

GRNN

1.500.

Test

0.999.

Full

Statistical

Traininq

0.995.
0.981.

Test

-0.033**

0.112

Full
Training

4.456

2.14*
0.281*

5.600

Test

1.001

0.995*

Full

1.047

1.001**
1.002"*

1. 060
0.006

8.079
10.942

0.236

12.181

0.470

1.070
1.107
1.120
0.447

0.391
0.607
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numbers by both methods indicates that the models are fail-dangerous. This

suggests that care is needed while applying these models.

From the MRPR values in Table 6, it was found that the GRNN has under-

estimated the E.coli 0157:H7 numbers by 0.075 o/ofor the training set, and 0.168

o/o for the test set. All other indicators, including the bias factor, predicted and

residual graphical plots also confirm the under-prediction. The same was the

case for the statistical model. MRPR, MARR and RMSR values clearly

differentiate the predicting power of the models, but since the bias and accuracy

factor values are very close for all the models, they could not be used to clearly

evaluate the predictability of these models. This is because the residuals are

normalized in the MRPR, MARR and RMSR, whereas the predicted values are

normalized in the bias and accuracy factors.

Al-Nabulsi's data: Fig. 6 and Table 6 show the comparison of the prediction

performance of GRNN and Statistical models for the Al-Nabulsi data, using

statistical indices. The predictions of the GRNN model for the training set was

modestly better than that of the statistical model while considering all the indices.

The predictions of the GRNN model for the test set was worse than that of the

statistical model when MRPR was considered, whereas it was slightly better

when other indices were considered.
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GRNN prediction for training vs. test sets: The predictions of the GRNN model for

test set was also slightly better than that of the GRNN model for training set, and

when the bias factor and RMSR were considered it was worse for other indices.

The test set was randomly chosen by GRNN. lt may vary for another run and

change the validation of model and there by the predictions. So, GRNN predictions

for the training set was always better than that of the test set while considering

MRPR, MARR (the total deviation) and the accuracy factor.

Also, the indices MRPR and Bias factor are misleading when assessing whether

the models have over- or under-predicted. The GRNN test and statistical models

have under predicted and GRNN training model has over predicted based on

MRPR. lt was opposite when considering the bias factor. The index'graphical plot'

has helped clear this ambiguity. The graphs in Fig. 6 show that all the Predicted

vs. Observed plots (have more points in the upper side of the diagonal) and

Residual vs. observed plots (have more negative residual points) confirm the over-

prediction performance of all three models. This is 'fail-safe'.

4.3 ANN vs. Statistical Model Predictions for Unseen Data

The ANN model predictions were best for the training data set and reasonably

good for the test data set. Similar results were obtained by Hajmeer et al. (1997)

and Jeyamkondan et al. (2001). Unless the number of data points is much larger

than the number of variables of the polynomial equations, there will be little
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assurance that the statistical model predictions for unseen data will be accurate

(Specht, 1991). The response surfaces produced by statistical models developed

using partial data were quite different and quite erratic. Thus, the predictions for

unseen data by this type of statistical model may not be accurate (Bratchell et al.,

1989,1990).

From Table 4 and Fig. 1 it can be seen that the GRNN has predicted the AIT level

should be 580 ppm in order to reduce the E.coli O157:H7 count 1.45 logleCFU/g at

day 28, whereas the statistical model predicted a similar result at 500 ppm.

However, at 500 ppm, the observed value was 1.70 logl6CFU/9. ln order to reduce

the E.coli 0157:H7 a further 0.25 logl6CFU/9, the AIT level should be greater than

500 ppm as noted above. Therefore, the GRNN produced an acceptable result,

whereas the statistical model was unsuccessful. To achieve a count of 1.45

logloCFu/g (or a 5 loglsCFU/g reduction) at day 35, the GRNN generated an

inaccurate result. lt predicted a number of 1.06 logleCFU/g for all concentrations of

AIT from 500 ppm to 400 ppm at 10 ppm intervals. The GRNN prediction of 1.45

logroCFU/g for AIT levels from 400 to 500 ppm appears incorrect. We suspect this

has occurred because the GRNN has seen the data set which has only one AIT

level below 500 ppm (0 ppm only). There was insufficient data available to train

the GRNN between 0 and 500 ppm AlT. However, the statistical model predicted

that the required 1.45 loglsCFU at day 35 can be achieved at 460 ppm AlT, which

is a reasonable estimate. Results indicate that if sufficient data for training and

prediction are available, prediction by the GRNN model will be very accurate. The

statistical model may be used when the data set is not as complete as desirable
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and still generate a useful model. However, under these conditions, the predictions

may or may not be accurate (Bratchell et al., 1989). Both the models have under-

predicted the numbers of bacterial survivors. This problem could be easily

addressed by modifying the criterion for stopping the training period. An

introduction of an offset of 5o/o over-prediction in the program as a safety margin

instead of minimizíng the residual toward zero is possible with ANN. As the

performance of ANN is based on training, the greater accuracy may be achieved

by altering training and selecting suitable criteria (Jeyamkondan et al., 2001).
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There is no significant difference in model predictions since ANN is randomly

choosing the test set for every run. The best split ratio between training and test

set for ANN model development is 80:20.

GRNN may perform better for future predictions for production set when the

mean values were used for model development.

5.0 CONCLUSIONS

GRNN predictions for the training data set were always best and those for test

set were slightly best or similar to those of the statistical model predictions.

The performance of the GRNN for future predictions (production data sets) was

accurate when sufficient data were used for training. The GRNN model may not

perform well for future predictions when incomplete data are available for

training. The statistical model for future predictions was not as good for

production data sets as the ANN model when sufficient data were used for

developing the model.
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It is uncertain whether the statistical model would be more accurate than the

ANN model when only partial data sets are available. ANN-based models are

proposed as the best option for use by the meat industry for predicting results

from new sets of parameters which fall into an interpolation region of the data

used for training because of better model performance, accuracy and speed.

The meat industry can use commercial neural network software as it is easy to

handle and does not require expert knowledge of the basic operation of neural

networks to develop models. With basic computer skills, an operator can predict

bacterial survival or any other output variable from a new set of input variables

during processing. ANN-based modeling could be a valuable tool for predictive

microbiology to ensure food safety in the meat industry and for preventing fufiher

foodborne illness outbreaks from meat products. Unfortunately, profiles of

experimental data available for use in this study for bacterial response to 0 to 500

ppm AIT were not available and this did not allow complete evaluation of a

comparison of ANN and statistical model performance.

There is an opportunity for further food safety engineering research to test the

feasibility of ANN use in the meat industry for online processing during

manufacture of dry fermented sausages,
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Treatment Day 0 Day 2 Day 3 Day 6 Day 9 Dav 16 Dav 21 Dav 2g
T1

T1

T1

APPENDIX I

DATA Set I (Chacon,2006)

5.56
5.57
5.57
5.57

5.56
5.57
5.57
5.57
5.56
5.57
5.57
5.57
5.56
5.57
5.57
5.57

T2
T2
T2

T3
T3
T3

4.90
4.85
4.88
4.88

4.84
4.90
4.89
4.88
4.88
4.88
4.84
4.87
4.90
4.91
4.87
4.89

4.88 4.72
4.88 4.69
4.84 4.70
4.87 4.70

4.81 4.81
4.80 4.78
4.83 4.83
4.81 4.81
4.79 4.70
4.80 4.72
4.76 4.72
4.78 4.71
4.86 4.80
4.87 4.80
4.88 4.80
4.87 4.80

T4
T4
T4

4.76
4.79
4.80
4.78

4.73
4.80
4.78
4.77
4.81
4.82
4.81

4.8',1

4.89
4.89
4.80
4.86

Bolded numbers are mean values

4.77
4.80
4.79
4.79

4.77
4.82
4,82
4.80
4.82
4.76
4.83
4.80
4.87
4.88
4.85
4.87

rrear Day
ment Day 0 Day 3 Day 6 Day g Dav 16 Dav 28 Dav 3s Dav 40 45

4.99
4.89
4.96
4.95

4.94
4.90
4.95
4.93
5.02
5.02
4.96
5.00
4.98
4.98
5.03
5.00

T1 0.948 0.941 0.936
T2 0.943 0.938 0.939
T3 0.946 0.936 0.925
T4 0.941 0.940 0.923

4.88
4.94
4.96
4.93

4.90
4.96
4.93
4.93
5.00
5.02
5.00
5.01

4.99
5.02
5.03
5.01

Source: Chacon (2006)

T1 - Controltreatment

T2 - 500 ppm AIT treatment

T3 - 750 ppm AIT treatment

T4 - 1000 ppm AIT treatment

0.920
0.918
0.900
0.911

0.908 0.880
0.910 0.890
0.902 0.886
0.905 0.874

0.878
0.877
0.873
0.870

0.874
0.873
0.870
0.868

0.870
0.870
0.866
0.864
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Treat Day Day Day
ment036

T1
T1
T1

T2
T2
T2

T3
T3
T3

14
T4
T4

6.58 5.19 4.99 4.87 4.56 4.65 4.68
6.30 4.75 5.19 4.86 4.79 4.78 4.37
6.48 4.81 5.24 4.48 4.66 4.55 4.70
6.45 4.92 5.14 4.73 4.67 4.66 4.58
6.58 4.56 3.90 2.38 2.08 1.60 1.60
6.30 3.92 4.36 2.64 2.38 1.90 1.60
6.48 3.82 4.07 2.72 2.38 0.00 1.90
6.45 4.10 4.11 2.58 2.28 1.17 1.70
6.58 3.35 3.15 2.08 1 .60 0.00 0.00
6.30 3.58 3.45 2.20 1.60 0.00 0.00
6.48 3.72 2.90 2.20 0.00 0.00 0.00
6.45 3.55 3.17 2.16 1.07 0.00 0.00
6.58 3.30 2.51 1.60 0.00 0.00 0.00
6.30 3.59 2.75 2.08 0.00 0.00 0.00
6.48 3.48 2.86 2.20 0.00 0.00 0.00
6.45 3.45 2.70 1.96 0.00 0.00 0.00

Appendix l- DATA Set I continued

E.coli O 1 57 :H7 population
Day Day Day Day
9162128

Bolded numbers are mean values

Source: Chacon (2006)

T1 - Controltreatment

T2 - 500 ppm AIT treatment

T3 - 750 ppm AIT treatment

T4 - 1000 ppm AIT treatment

Day Day Day
35 40 45

4.13
4.07
4.15
4.12
1.60
1.60
0.00
1.07
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00

4.05 4.01
4.08 4.08
4.11 3.98
4.08 4.02
0.00 0.00
0.00 0.00
0.00 0.00
0.00 0.00
0.00 0.00
0.00 0.00
0.00 0.00
0.00 0.00
0.00 0.00
0.00 0.00
0.00 0.00
0.00 0.00
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APPENDIX II

ls there significant difference in model predictions because the test set is randomly chosen by ANN?

GRNN models were developed from the data sets (Chacon, 2006) of 5 different trials of each split ratio 80:20,

70.30, and 90:10 between training and test sets. T-tests were done using SAS t-test procedure for determining if

the predicted values significantly differed from the observed values.

Results of GRNN predictions and of t-tests for five different trials of each split ratio 80:20, 70:30' and 60:40

Observed
value

6.45
4.92
5.14
4.73
4.67
4.58
4.12
4.08
4.02
6.45
4.10
4.11
2.58
2.28
1.70

6.45 4.94
5.14 4.95
5.14 4.93
5.14 4.88
4.67 4.73
4.58 4.44
4.12 4.19
4.08 4.09
4.02 4.05
6.45 6.21
4.10 4.42
4.11 4.07
2.58 3.60
2.28 2.50
1.70 1.47

6.45 6.45 5.71

4.92 4.92 5.23
5.14 5.14 5.06
4.73 5.14 4.96
4.73 4.67 4.74
4.58 4.58 4.44
4.12 4.12 4.20
4.08 4.07 4.12
4.02 4.02 4.09
6.45 4.10 5.98
4.10 4.10 4.51
4.11 4.11 3.64
2.58 2.58 3.05
2.28 2.28 2.49
1.70 1.70 1.43

Predicted Values

6.45 6.45
5.14 4.92
5.14 5.14
5.14 4.73
4.67 4.67
4.58 4.58
4.12 4.12
4.12 4.08
4.12 4.02
4.10 6.45
4.10 3.55
3.94 4.10
2.78 3.35
2.28 2.26
1.70 1.70

6.44
4.94
5.10
4.76
4.62
4.58
4.12
4.07
4.02
6.44
4.11
4.01
2.68
2.28
1.68

6.45 5.66
4.92 5.25
5.14 5.06
5.14 4.95
4.67 4.73
4.58 4.44
4.12 4.30
4.12 4.23
4.12 4.18
4.10 5.60
4.10 4.40
4.11 3.88
2.58 3.39
2.28 2.52
1.70 1.26

60:40 60:40 60:40 60:40 60:40

6.45 4.90 4.95
5.14 4.91 4.97
5.14 4.90 4.96
5.14 4.87 4.90
5.14 4.77 4.78
4.58 4.45 4.53
4.12 4.32 4.18
4.12 4.26 4.12
4.12 4.21 4.12
4.11 6.21 6.36
4.11 3.90 4.90
4.11 3.65 3.16
2.58 3.35 2.62
2.28 2.62 2.32
1.70 1.38 1.61

6.45 6.43
4.92 4.94
5.14 4.82
5.14 4.73
4.67 4.67
4.58 4.58
4.12 4.12
4.12 4.12
4.12 3.38
4.10 6.45
4.10 5.13
3.35 3.10
2.58 2.33
2.28 1.07
1.07 1.69
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Observe
d value

1.07
0.00
0.00
6.45
3.55
3.17
2.16
1.07
0.00
0.00
0.00
0.00
6.45
3.45
2.70
1.96
0.00
0.00
0.00
0.00
0.00

t-value
Pr>t

80:2
0

80:2 80:2
0 80:20 0

1.07 0.80
0.00 0.35
0.00 0.11
6.45 5.87
3.55 3.56
3.17 3.27
2.16 2.88
1.17 1.38
0.00 0.05
0.00 0.00
0.00 0.00
0.00 0.00
6.45 5.86
3.45 2.90
2.70 2.38
1.96 1.99
0.00 0.78
0.00 0.00
0.00 0.00
0.00 0.00
0.00 0.00

-'1 .58 0.13
0.13 0.90

1.07 1.07
0.00 1.07
0.00 0.96
6.45 6.45
3.55 3.55
3.17 3.17
3.17 2.16
1.14 1.07
0.00 0.00
0.00 0.00
0.00 0.00
0.00 0.00
6.45 6.45
3.46 3.45
2.70 2.70
2.70 1.96
0.00 0.00
0.00 0.00
0.00 0.00
0.00 0.00
0.00 0.00

-1.53 -0.02
0.13 0.98

endix ll - Table Gontinued

70:3
80:20 0

0.80
0.35
0.11
4.87
3.65
3.18
2.76
1.59
0.05
0.00
0.00
0.00
5.14
3.50
2.75
2.17
0.79
0.00
0.00
0.00
0.00

0.22
0.82

Predicted Values
70:3 70:3
0 70:30 0

1.06 1.05
0.01 0.00
0.00 0.00
6.45 6.45
3.51 3.55
3.13 3.17
2.25 1.96
2.16 1.08
0.00 0.85
0.00 0.01

0.00 0.00
0.00 0.00
3.45 6.45
3.37 3.55
2.70 2.71
2.05 1.96
0.00 1.07
0.00 0.00
0.00 0.00
0.00 0.00
0.00 0.00

0.86 -1.22
0.39 0.23

The probability is higher than 5 % of t-value (from 0.98 to 0.08) for

concluded that there is no significant difference in predicted values

sets randomly chosen by GRNN for 20 o/o,30o/o,40% test sets.

1.07 1.07
0.05 1.07
0.00 0.00
6.44 6.45
3.54 3.55
3.20 2.86
3.08 2.16
1.15 1.07
0.02 0.00
0.51 0.00
0.00 0.00
0.00 0.00
6.43 6.45
3.43 3.45
2.76 2.70
2.71 1.96
0.00 0.00
0.00 0.00
0.00 0.00
0.00 0.00
0.00 0.00

70:
0

0.77 1.07 0.93
0.44 1.07 0.68
0.22 1.07 0.50
4.49 6.45 6.02
3.54 3.55 3.21

3.18 3.17 2.98
2.84 2.16 2.77
1.83 2.16 2.06
0.15 0.00 0.93
0.01 0.00 0.13
0.00 0.00 0.02
0.00 0.00 0.00
4.56 3.45 5.88
3.30 3.45 2.68
2.73 2.70 2.48
2.27 1.96 2.40
1.22 0.00 1.78
0.06 0.00 0.10
0.00 0.00 0.01

0.00 0.00 0.00
0.00 0.00 0.00

60:4 60:4
00

60:4
0

1.12 1.07 1.05
0.53 1.07 0.01
0.02 0.01 0.00
5.51 6.45 6.43
3.92 3.55 3.51
3.50 2.87 3.08
3.31 2j6 2.32
1.92 1.07 1.07
0.02 0.00 0.01
0.03 0.00 0.01
0.01 0.00 0.00
0.00 0.00 0.00
5.35 6.45 6.39
3.79 3.46 2.73
3.22 2.70 2.59
2.60 1.96 2.08
0.05 0.00 1.09
0.00 0.00 0.00
0.00 0.00 0.00
0.00 0.00 0.00
0.00 0.00 0.00

60:4
0

-1.78
0.08

0.39
0.70

0.14
0.89

all the 15 trials of GRNN models. lt was

of the models developed for different test

0.20
0.84

-0.66
0.51

-0.45
0.65

0.86
0.39

0.84
0.40
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What is the best split ratio between training and test data sets for GRNN
model development?

GLM procedure was used to determine if there is a significant difference among

the observed values, and the values predicted by the models developed with

80:20, 70:30, and 60:40 split ratios between training and test sets (Appendix ll).

The mean and standard deviation for observed values of three replications

(Appendix l) and for GRNN predicted values with five trials for each ratio is given

for each pattern (combination of parameters) in the following table. All the four

values were compared one another and grouping was done according to the

SAS program results (given here after the table). The values grouped as 'a' and

'b' in the table are significantly differing one another for the corresponding

pattern.

APPENDIX I¡¡

For the pattern 12, the GRNN predicted value for 60:40 ratio, is significantly

differing with other values. For the pattern 17, the GRNN predicted value for

60:40 ratio is significantly differing with observed value only. But the GRNN

predicted value for 80:20 and 70:30 ratios are falling under both the groups 'a'

and 'b'which means they are significantly same to both observed value and the

predicted value for 60:40.
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Data
Patterns Mean * SD

P1

P2

P3

P4

P5

P6

P7

P8

P9

P10

P11

P12

P'13

P14

P15

P16

P17

P18

P19

P20

P21

P22

P23

P24

P25

P26

P27

P28

P29

P30

P3'1

P32

P33

P34

P35

Observed

6.45+ 0.144

4.92+ 0.244

5.14+ 0.134

4.74+ 0.22"

4.67 + 0.124

4.58 + 0.19 a

4.12+ 0.044

4.08 + 0.03 a

4.02 + 0.05 "

6.45+ 0144
4.10+ 0.404

4.11+ 0.234

2.59 + 0.19 a

2.28+ 0.17 "

1.70+0174
1.07 + 0.924

0.00 + 0.00 a

0.00 + 0.00 a

6.45+ 0.144

3.55 + 0.19 a

3.17 t0.284
2.16+ 0.07 a

1.07 + 0.924

0.00 + 0.00 a

0.00 + 0.00 a

0.00 + 0.00 a

0.00 + 0.00 "

6.45+ 0.14'
3.46 + 0.15'
2.71+ }lga
1.96 + 0.32 a

0.00 + 0.00 "

0.00 + 0.00 "

0.00 + 0.00'
0.00 + 0.00 "

80:20 predictions 70:30 predictions

ation for 36

Mean* SD

ô.00 + 0.67 "

5.03 + 0.14 a

5.08 + 0.09 "

4.97 + 0.ßa
4.71+ O.O3a

4.52 + 0.08 "

4.15+ 0.044

4.09+ 0.024

4.04 + 0.03 a

5.84 + 0.99 a

4.25+ 0.204

4.01+ 0.214

2.88+ 0.454

2.37 + 0.124

1.60+ 0t4a
0.96 + 0.15 a

0.35 + 0.44"b

0.24+ 0.41"

6.02 + 0.69 a

3.57 + 0.044

3.19 + 0.04 a

2.63+ 0.454

1.27 + 0.21"

0.02 + 0.03 u

0.00 + 0.00 a

0.00 + 0.00 a

0.001 0.00 a

6.07 + 0.58 a

3.35 + 0.25 "

2.65 t 0.15 a

2.16!0.32"
0.31 + 0.43 a

0.00 + 0.00 "

0.00 + 0.00'
0.00 + 0.00 "

Mean + SD

6.29 + 0.35 a

5.03 + 0.15 a

5.12+ 0.044

4.94+ 0.20"

4.67 + 0.04"

4.55 + 0.06'
4.16 + 0.09 "

4.12+ 0,064

4.09 + 0.07 a

5.34+'1.184

4.05 + 0.31 a

4.01 + 0.10 a

2.96 + 0.38 a

2.32+ 0.114

1.6'1 + 0.19 a

1 .00 + 0.13 4

0.31 + 0.46"b

0.04 + 0.10 a

6.06 + 0.88 a

3.54+ 0.02"

3.11+ 0.144

2.46+ 0.49"

1.46 + 0.50 a

0.20+ 037 a

0.11+ 0.234

0.00 + 0.00 a

0.00 + 0.00 a

5.47 + 1.394

3.42 t 0.09 u

2.72+ 0.034

2.19+ 0.32"

0.46 + 0.63'
0.0'1 + 0.03'
0.00 + 0.00 a

0.00 + 0.00 "

60:40predictions

Mean* SD

5.84 + 0.83'

4.98 + 0.09 "

4.99+ 0.144

4.96 t 0.18 '
4.81 + 0.19 a

4.54 + 0.06 a

4.17 + 0.094

4.'15 + 0.06 '
3.99 + 0.34 a

5.45+ 1.234

4.43+ 0.55"

3.47 + 0.42b

2.69 + 0.39 a

2.11+ 0.604

1.49 + 0.27 a

1.05 + 0.07 "

0.67 + 0.44h

0.32+ 0.47 a

6.17 + 0.414

3.55 + 0.25'
3.12+ 0.244

2.54 + 0.50 a

1.66 + 0.54 a

0.19+ 0.414

0.03 + 0.06 a

0.01 + 0.01 a

0.00 + 0.00 a

5.50 t 1.23 a

3.22+ 0.49'
2.74+ 0.284

2.20+ 0.29"

0.58 + 0.81 '
0.02 + 0.04 a

0.00 + 0.00 "

0.00 + 0.00 a

P36 0.001 0.00 4 0.00 t 0.00 4 0.00 t 0.00 a 0.00 t 0.00 a

Data Source: Chacon, 2006. a and b are significantly different
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It is concluded that either 80:20, 70:30 and 60:40 ratios could be considered as

acceptable split ratio between training and test sets for GRNN model

development as far as the 'seen' data is concerned.

Comparing the GRNN model predictions for unseen data for the split
ratios 80:20, 70:30, and 60:40 between training and test sets.

Aw

0.89 500
0.89 5'10
0,89 s20
0.89 530
0.89 540
0.89 550
0.89 560
0.89 570
0.89 580
0.877 500
0.877 490
0.877 480
0.877 470
0.877 460
0.877 450
0.877 440
0.877 430
0.877 420
0.877 410

pH

4.93
4.93
4.93
4.93
4.93
4.93
4.93
4.93
4.93
4.93
4.93
4.93
4,93
4.93
4.93
4.93
4.93
4.93
4.93

Day

28
28
28
28
28
28
28
28
28
35
35
35
35
35
35
35
35
35
35

80:20 70:30 60:40
Predicted values

1.69 1.68 1.56
1.68 1.67 1.56
1.67 1.66 1.56
1.66 1.64 1.56
1.64 1.62 '1.56

1.61 1.59 '1.56

1.57 1.54 1.56
1.51 1.49 1.56
1.44 1.41 1.56
1.06 1.07 1.14
1.06 1.07 1.14
1.06 1.07 1.14
1.06 1.07 1.14
1.07 1.07 1.14
1.07 1.07 1.14
1.07 1.07 1.14
1.07 1.07 1.14
1.07 1.07 1.14
1.07 1.07 '1.08

The GRNN model developed from 80:20 and 70:30 split data were able to predict

the E.colipopulation successfully for 28 day sets. lt could give different values for

each set. But, the model of 60:40 split data has predicted the same values for all

the corresponding sets. Of 10 sets for 35 days, the model of 80:20 split has

predicted two different values for 4 and 6 sets. The model of 70:30 split has

predicted only one value for all 10 sets. The model of 60:40 split data has

predicted one value for first 9 sets and another value for the last set.
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It is concluded that the split ratio between training and test sets should be 80:20

for developing a best model for sufficient training and validation and for future

predictions for unseen data.
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Data one;

Input Trt Rep EcoliPl;
Datal-ines;

Trt Rep Eco.l-iP1

1 1 6.58

r 2 6.3

1 3 6.48
2 1 6 Aq

2 2 4.94

2 3 6.45

¿ ¿t b.45

2 5 5.1I
3 1 6.45

3 2 6.45

3 3 6.44

3 4 6.45

3 s 5.66

4 1 6.45

4 2 4.9

4 3 4.95

4 4 6.45

4 5 6.43

Proc GLM Data=one;

Cfass Trt;
Model EcoliPl:Trt,/sof ution,'
Lsmeans Trt/stderr;
Estimate 'ir:tl- r¡s T::t2' Trt l- -1 0

Est.irnate 'lil¡:t1 r¡s Trt3' Trt l- 0 -1
Est.imate 'i'r:t1 vs'irt4' Trt 1 0 0

Estimate "lrt? vs Trt3' Trt 0 1 -1
Estimate "frf2 vs Trt4' Trt 0 1 0

Estimate 'Trt3 vs Trt4' Trt 0 0 1

guit;

SAS Program results for Appendix lll

o;

0;

-L;
0,.

-1 .
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The sAS system l-4:05 wednesday, August 9, 2006 L

The GLM Procedure

c'lass Level rnformation

cl ass Level s val ues

Number of observations nead Lg

Number of observat'i ons used l-8

The SAS System 14:05 wednesday, August 9' 2006 2

The GLM Procedure

oependent vari abl e: eco'l 'i Pl-

Trt

Sum of
source DF squares N4ean Square F value Pr > F

¡¡odel

Error

4 1,234

corrected Total

3 0. 95!50778 0.317L6926 0.87 0.4811

14 5.11958667 0.36568476

t7 6.07]-09444

sou rce

Tt't

R-square coeff var Root MSE eco'l 'i p1 ¡¡ean

0.a56728 9.896297 0.6047]-9 6. l-10556

sou rce

Trt

DF Type I SS Mean Square F va'ì ue Pr > F

3 0. 95L50778 0.3171,6926 0.87 0.4811

DF Type III SS Mean Squane F va'lue Pr > F

3 0.951s0778 0.317L6926 0.87 0.4811-
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rnrercept 5.836000000 B 0.27043844 21_.58 <.0001
rrt 1 0.6173333338 0.441624L3 1.40 0.1839
rr t 2 0.l_64000000 B 0.3824s772 0.43 0.6746
rrt 3 0.454000000 B 0.38245772 1.19 0.2550
rrt 4 0.000000000 B

NOTE: The x'x matrix has been found to be sìngular, and a generaìized inverse was used tosoìve the normal equations. rerms whose estiñates'aiè rðlfõwe¿-ov-iñe ï"iiõ; iËr ãiã-nòi
unl que I y

esti mab'l e .

The SAS System L4:05 urednesday, August 9, 2006 3

The GLM Procedure

Least Squares ¡4eans

Pa ramete n Esti mate

Stan da rd

Error t va'l ue pr > lt I

Ecol i p1 standard
Trt LSMEAN Error pr > ltl

1 6.45333333 0.34913453 <.0001
2 6.00000000 0.27043844 <.0oO1_

3 6.29000000 0.27043844 <. OO01

4 5.83600000 0.27043844 <.0001

The SAS System 14:05 wednesday, August 9, 2006 4

The GL¡4 procedure

Dependent variab'le: ecolipl

Parameter

Trtl vs Trt2
Trtl vs Trt3
Trtl vs Trt4
Trt2 vs Trt3
Trt2 vs Trt4
Trt3 vs Trt4

Esti mate

0.45333333 0.44r624L3 t_.03 0.3221,

0.1_6333333 0.44L62413 0.37 o.7t7o
0.6r_733333 0.44L62413 1.40 0.1839

-0. 29000000 0.3824s772 -0.76 0.4609
0.16400000 0.38245772 0.43 0.6746
0.45400000 0.38245772 1.19 0.2550

Standard

Error t value pr > ltl
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The SAS System L4:05 wednesday, August 9,

The GLM procedure

Dependent vari ab'l e: eco'l i p2

Pa ramet e r

Trtl vs Trt2
Trtl vs Trt3
Trtl vs Trt4
Trt2 vs Trt3
Trt2 vs Trt4
Trt3 vs Trt4

Esti mate

-0.1r_s33333

-0. 11733333

-0.0s933333

-0.00200000

0.0s600000

0.0s800000

2006

The sAS system

Standard

Error

0.t1L26745

0.11a26745

0.7L126745

0.09636043

0.09636043

0.09636043

14:05 wednesday, August 9, 2006 lz

The GLM procedure

oependent Variabìe: ecolip3

Paramete r

Trtl vs Trt2
Trtl vs Trt3
Trtl vs Trt4
Trt2 vs Trt3
Trt2 vs Trt4
Trt3 vs Trt4

t Va'l ue

-r.04
-1.05
-0. s3

-0.02
0. 58

0.60

pr > Itl

0. 3t-75

0. 3095

0.6022

0.9837

0 .5704

0. ss69

Esti mate

0.05800000

0.02400000

0. r_4800000

-0.03400000

0.09000000

0. l_2400000

Standard

Error

0.07725776

0.07725776

0.07725776

0.0669071_9

0.06690719

0.06690719

t Va'l ue

0.75

0. 31

L.92

-0. s1

1.35

1-.8s

Pr > ltl

0.4652

0. 7606

0.0761

0.6192

0. 2000

0.08s0
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The sAS system l-4:05 wednesday, August 9, 2006 16

The GLM procedure

oependent variable: Ecolip4

Paramete r

Trtl vs Tnt2

Trtl vs Trt3
Trtl vs Trt4
Trt2 vs Trt3
Trt2 vs Trt4
Trt3 vs Trt4

Esti mate

-0.23333333

-0.20733333

-0.21933333

0.02600000

0.01400000

-0.01_200000

The SAS System

standard

Error

0.l_3915482

0. 13915482

0. 1_391s482

0.12051161

0.120s1r_61

0.l_2051_161-

14:05 wednesday, August 9, 2006 20

The GLM Procedure

Dependent variab]e: Ecolip5

Paramete r

Trtl vs Trt2
Trtl vs Trt3
Trtl vs Trt4
Trt2 vs Trt3
Trt2 vs Trt4
Trt3 vs Trt4

t Val ue

-r..68

-r.49
-1. 58

0.22

0.1,2

-0. L0

pr > ltl

0. l_l_58

0.1s84

0.1,373

0.8323

0.9092

0.9221"

Est'i mate

-0.03800000

-0.00200000

-0.13600000

0.03600000

-0.09800000

-0.13400000

Standard

Error

0.08464604

0.08464604

0.08464604

0.07330s62

0.07330s62

0.07330562

t Val ue

-0.45
-0.02
-1_.61

0.49

-L.34

-1. 83

pr > ltl

0.6604

0.981-5

0. 1_304

0.6310

0.2026

0.0889
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The SAS System 14:05 wednesday, August 9, 2006 24

The cLM Procedure

Dependent varjable: ecolip6

Paramete r

Trti- vs Trt2
Trtl vs Trt3
Trtl vs Trt4
Trt2 vs Trt3
Trt2 vs Trt4
Trt3 vs Trt4

Esti mate

0.05933333

0.03133333

0.03933333

-0.02800000

-0.02000000

0.00800000

The SAS System

Standard

Error

0.0677774L

0.0677774A

0.0677774a

0.0s869696

0.05869696

0.0s869696

14:05 wednesday, August 9, 2006 28

The cLM procedure

Dependent var"i abl e: Ecol i p7

Parameter

Trtl vs Trt2
Trtl vs Trt3
Trtl vs Trt4
Trt2 vs Trt3
Trt2 vs Trt4
Trt3 vs Trt4

t Va'l ue

0. 88

0.46

0. 58

-0.48
-0. 34

0.L4

pr > ltl

0. 3961

0.6s10

0. 5709

o.6407

0.7384

0.893s

Esti mate

-0.03333333

-0.03933333

-0.05s33333

-0.00600000

-0.02200000

-0.01_600000

Standard

Error

0.05024385

0.05024385

0.0s02438s

0.04351_245

0.04351245

0.043 51_24 s

t Val ue

-0.66
-0. 78

-1_.1_0

-0. t_4

-0. 5l_

-0.37

Pr > ltl

0. 5t_78

0 .4468

0.2893

0.8923

0.6210

0. 7186

B3



The SAS system 14:05 Wednesday, August 9, 2006 32

The GLM procedure

Dependent Variab'le: ecolipB

Parameter

Tntl vs Trt2
Trtl vs Trt3
Trtl vs Trt4
Trt2 vs Trt3
Trt2 vs Trt4
Trt3 vs Trt4

Esti mate

-0.00800000

-0.04400000

-0.06800000

-0.03600000

-0.06000000

-0.02400000

The SAS system

standard

Error

0.036 5 56s4

0. 036 s s654

0.036s5654

0.031_65890

0.0316s890

0.0316s890

14:05 wednesday, August 9, 2006 36

The GLN4 procedure

Dependent variab'le: Ecolip9

Parameter

TrtL vs Trt2
Trtl vs Trt3
Trtl vs Trt4
Trt2 vs Trt3
Trt2 vs Trt4
Trt3 vs Trt4

t Va'l ue

-0.22
-r_. 20

-1.86
-1.1"4

-1. 90

-0.76

pr > ltl

0.8299

0.2487

0.0840

0.2746

0.0789

0.4610

Esti mate

-0.01_666667

-0. 06866667

0.03333333

-0.0s200000

0.0s000000

0. r_0200000

Standard

Error

0. r_3800s7s

0. l_3800s7s

0. l_3800575

0. t-1951649

0. 119s1649

0. 1_l_951649

t Val ue

-0. l_2

-0. 50

0.24

-0 .44

0.42

0.8s

pr > ltl

0.90s6

0.626s

0. 8126

0.6701

0.6820

0.4078
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The GLM procedure

oependent Variable: ecoìip10

Parameter

Trtl- vs Trt2
Trtl vs Trt3
IrtL vs Trt4
Trt2 vs Trt3
Trt2 vs Trt4
Trt3 vs Trt4

Esti mate

0.6r.s33333

1".11s33333

r-.00733333

0. 50000000

0. 39200000

-0. t_0800000

Standard

Error

0.77033442

0.77033442

0.77033442

o.667L29L7

0.667129a7

0.66712917

The sAs system

t Va] ue

0. 80

1.4 5

L.3i_

0.75

0.59

-0. l_6

14:05 wednesday, August 9, 2006 44

The GLM Procedure

Dependent variable: ecolipll-

Pr > ltl

0.4378

0.7697

0.2721_

0.4660

0. s662

o.8737

Paramete r

TrtL vs Tnt2

Trtl vs Trt3
Trtl vs Trt4
Trt2 vs Trt3
Trt2 vs Trt4
Trt3 vs Trt4

Esti mate

- 0 . 14600000

0.04800000

-0. 32800000

0. r_9400000

-0. l_8200000

-0. 37600000

Standard

Error

0.28084770

0.28084770

0.28084770

0.24322724

0.24322124

0.24322124

t Va'l ue

-0. s2

0.L7

-1,.1,7

0.80

-0. 75

-1.55

pr > ltl

0.6113

0.8667

o.2624

0.4384

0.4667

0.L444
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The SAS System 14:05 Wednesday, August 9,

The GLM pt ocedure

Dependent variable: ecolipL2

Panamete r

Trtl vs Trt2
Trtl vs Trt3
Trtl vs Trt4
Trt2 vs Tnt3

Trt2 vs Trt4
Trt3 vs Trt4

Esti mate

0.l_0200000

0.10200000

0.63600000

0.00000000

0. s3400000

0 . s 3400000

2006 48

The SAS System

Standard

Error

0.l-9594751

0.19594751_

0.19s94751_

0.16969553

0.1_6969ss3

0. 16969s s 3

14:05 wednesday, August 9,

The GLM Procedure

oependent variable: ecolipl3

Parameter

Trtl vs Trt2
TrtL vs Trt3
Trtl vs Trt4
Trt2 vs Trt3
Trtz vs Trt4
Trt3 vs Trt4

t Va'l ue

0. s2

0. s2

3.25

0.00

3.1s

3.1s

Pr > ltl

0.6r.08

0.6108

0.00s9

1_.0000

0.007r_

0.0071_

Esti mate

-0. 29800000

-0. 37600000

-0. r_1_200000

-0.07800000

0. r_8600000

0.26400000

2006 s2

Standard

Error

0. 28060343

0. 28060343

0.28060343

o.24300970

0.24300970

0.24300970

t Va'l ue

-r_.06

-1-.34

-0.40
-o.32
o.77

1.09

er > ltl

0. 3062

0.2016

0.69s8

0.7530

0.4567

0.2957
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The GLM procedure

oependent vari abl e: Ecol'i pl_4

Paramete r

Trtl vs Trt2
TrtL vs Trt3
Trtl vs Trt4
Trt2 vs Trt3
Trt2 vs Trt4
Trt3 vs Trt4

Esti mate

-0.08600000

-0.04400000

0. 16600000

0.04200000

0.25200000

0.21000000

2006 56

Standa rd

Error

0.24745254

o.24745254

0.24745254

0.2143001_9

0.21_430019

0.21-430019

The SAS System

t Val ue

-0.3s
-0.18
0.67

0.20

l_. r.8

0.98

14:05 wednesday, August 9, 2006 60

The GLM procedure

oependent variable: Ecolipl5

Paramete r

Trtl vs Trt2
Trtl- vs Trt3
Trtl vs Trt4
Trt2 vs Trt3
Trt2 vs Trt4
Trt3 vs Trt4

pr > ltl

0.7334

0.8614

0. st-32

0.8474

0.2592

0. 3438

Esti mate

0. t_0000000

0.09200000

0. 21_000000

-0.00800000

0. 11000000

0.1_1800000

Standard

Error

0.L4793s64

0.1,4793564

0.1,4793564

0. t_281_1602

0.128i-1602

0. 12811602

t va'l ue

0.68

0.62

1,.42

-0.06
0. 86

0.92

Pr > ltl

0. 5101

0. s440

0.t776
0.9511

0.40s0

0.3726
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The GL¡4 Procedure

Dependent variable: ecolipl6

Pa ramet e r

Trtl vs Trt2
Trtl- vs Trt3
Trtl vs Trt4
Trt2 vs Trt3
Trt2 vs Trt4
Trt3 vs Trt4

Esti mate

0.10466667

0.06266667

0.01866667

-0.04200000

-0.08600000

-0.04400000

2006 64

Standard

Error

0.26782700

0.26782700

0.26782700

0.23194499

0.23194499

0.23194499

The SAS System

t val ue

0. 39

0.23

0.07

-0.18
-0.37
-0. 19

14:05 wednesday, August 9, 2006 68

The cLM procedure

Dependent Vari ab'l e: eco'l i pl_7

Parameter

Trtl- vs Trt2
TrtL vs Trt3
Trtl- vs Trt4
Trt2 vs Trt3
Trt2 vs Trt4
Trt3 vs Trt4

pr > ltl

0. 701-8

0.8184

o.9454

0.8589

o.7L64

0.8523

Esti mate

-0. 35400000

-0. 31_400000

-0.67200000

0.04000000

-0. 3i_800000

-0.3s800000

standard

Error

0. 30153386

0. 301_53386

0.301s3386

0. 26r_r_3s98

0. 2611_3598

0.261-r_3s98

t Val ue

-t.17
-t.04
-2.23

0. t-s

-t.22
-1.37

Pr > ltl

0. 2600

0. 31s4

0.0427

0.8804

0.2434

0.1,920
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The GLM procedure

Dependent var j abl e: eco'l i p1-8

Parameter

TrtL vs Trt2
Trtl vs Trt3
Trtl vs Trt4
Trt2 vs Trt3
Trt2 vs Trt4
Trt3 vs Trt4

Esti mate

-0.23600000

-0.04400000

-0. 32000000

0.19200000

-0.08400000

-0. 27600000

2006 72

The SAS System

Standard

Error

0.24606929

0.24606929

0.24606929

0.2t310226

0.213a0226

0.2L310226

L4:05 wednesday, August 9, 2006 76

The GLM Procedure

Dependent variable: eco'lip19

Paramete r

Trtl vs Trt2
Trtl vs Trt3
Trtl- vs Trt4
Trt2 vs Trt3
Tnt2 vs Trt4
Trt3 vs Trt4

t Va'l ue

-0.96
-0. l_8

-r_.30

0.90

-0. 39

-1_. 30

Pr > ltl

0. 3538

0.8606

o.2744

0. 3828

0.6994

0.21,62

Est'i mate

0.43s33333

0. 39733333

0.28133333

-0.03800000

-0. l_5400000

-0.11600000

Standard

Error

0.46s4929s

0.46549295

0.46549295

0.40312872

0 .40312872

0.40312872

t Val ue

0.94

0.85

0.60

-0.09
-0. 38

-0.29

Pr > ltl

0.36ss

0.4077

0. 5553

0.9262

o.7082

0.7778
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The cLM Procedure

Dependent variable: Eco'lip20

Pa ramet e r

Trtl- vs Trt2
Trtl vs Trt3
Trtl vs Trt4
Trt2 vs Trt3
Trt2 vs Trt4
Trt3 vs Trt4

Esti mate

0.43s33333

0.39733333

0.28133333

-0.03800000

-0.1s400000

-0. t-l_600000

standa rd

Error

0.46549295

0.46s4929s

o .46549295

0.40312872

o .403t2872
0.403!2872

The sAS system

t Val ue

0.94

0.85

0.60

-0.09
-0. 38

-0.29

14:05 Wednesday, August 9,

The GLM Procedure

Dependent vari ab] e: eco'l i p20

Parameter

Trtl vs Trt2
Trtl vs Trt3
Trtl vs Trt4
Trt2 vs Trt3
Trt2 vs Trt4
Trt3 vs Trt4

pr > ltl

0.36ss

o.4077

0.5553

0.9262

0.7082

0.7778

Esti mate

-0.02200000

0.01_200000

0.00200000

0.03400000

0.02400000

-0.01000000

2006 84

standard

Error

0.112s6998

0.112s6998

0.112s6998

0.09748846

0.09748846

0.09748846

t Val ue

-0. 20

0.11

0.02

0.35

0.25

-0. 10

pr > ltl

0.8479

0.9166

0.9861

0.7325

0.8091

0.9198
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The cLM Procedure

Dependent Variable: Eco'l jp21

Parameter

Trtl vs Trt2
Trtl vs Trt3
Trtl vs Trt4
Trt2 vs Trt3
Trt2 vs Trt4
Trt3 vs Trt4

Esti mate

-0.02s33333

0. 05866667

0.04666667

0.08400000

0.07200000

-0.01200000

The SAS System

Standa rd

Error

0.L3372704

0.1-3372704

0.L3372704

0.1_1s81101

0. 1_r_s8r_101

0. 11_581i.01_

14:05 wednesday, August 9,

The GLM Procedure

oependent variab'le: Ecolip22

Pa ramete r

Trtl vs Trt2
Trtl vs Trt3
Trtl vs Trt4
Trt2 vs Trt3
Trt2 vs Trt4
Trt3 vs Trt4

t va] ue

-0. 19

o.44

0.3s

0.73
o.62

-0.l_0

pr > ltl

0.8s25

0.6676

0.7323

0.4802

o.544L

0.9189

Esti mate

-0. 46600000

-0.29800000

-0. 38400000

0. 1_6800000

0.08200000

-0.08600000

2006 92

Standard

Error

0.32178786

0.32178786

0.32t78786

0.27867646

0.27867646

0.27867646

t va'l ue

-1.45
-0.93
-t_.1_9

0.60

0. 29

-0. 31_

Pr > Irl

0. t_696

0.3701

0.2s26

0. ss62

0.7729

0.7622
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The GLM Procedure

oependent variabìe: rcolip23

Parameter

Trtl- vs Trt2
Trtl vs Trt3
Trtl vs Trt4
Trt2 vs Trt3
Trt2 vs Trt4
Trt3 vs Trt4

Esti mate

-0. 20333333

-0.39133333

-0. s8933333

-0.18800000

-0. 38600000

-0.1-9800000

standard

Error

0. 394305 50

0.39430550

0. 39430550

0. 34147858

0.34L478s8

0. 341478 58

The SAS System

t val ue

-0. s2

-0.99
-L.49
-0.55
-l_. r_3

-0. s8

L4:05 wednesday, August 9,

The cLM Procedure

Dependent variable: eco'lip24

Pa ramete r

Trtl vs Trt2
Tntl vs Trt3
Trtl vs Trt4
Trt2 vs Trt3
Trt2 vs Trt4
Trt3 vs Trt4

pr > ltl

0. 6141

0. 3378

0.L572

0. s906

0.2773

0.s712

Esti mate

-0.02000000

-0. 20400000

-0. 19200000

-0. 18400000

-0.17200000

0.01-200000

2006 r.00

Standard

Error

0.21570703

0.2t570703

0.2Ls70703

0.1-8680777

0.18680777

0.L8680777

t val ue

-0.09
-0.95
-0.89
-0.98
-0.92
0.06

Pr > ltl

0.9274

0. 3603

0. 388s

0.3414

0.3728

0.9497
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The Gltvt Procedure

Dependent Vari abì e: eco'l i p25

Pa ramet e r

Tntl vs Trt2
Trtl vs Trt3
Trtl vs Trt4
Trt2 vs Trt3
Trt2 vs Trt4
Trt3 vs Trt4

Esti mate

- 0 . 00000000

-0.10600000

-0.03400000

-0.10600000

-0.03400000

0.07200000

The SAS System

standard

Enror

0. 09076r_8 s

0 . 0907618 s

0. 0907618 s

0.07860207

0.07860207

0.07860207

L4:05 Wednesday, August 9, 2006 108

The GL¡4 Procedure

Dependent variabìe: Ecolip26

Pa ramete r

Trtl vs Trt2
Trtl vs Trt3
Trtl vs Trt4
Trt2 vs Trt3
Trt2 vs Trt4
Trt3 vs Trt4

t va'l ue

-0.00
-]_.L7

-0.37
-1-.35

-0.43
0.92

Pr > ltl

1.0000

0.2624

0.7136

0.1989

0.67L9

0.3752

Esti mate

0.00000000

0.00000000

-0.00600000

0.00000000

-0.00600000

-0.00600000

standard

Error

0.00349L49

0.00349149

0.00349149

0.00302372

0.00302372

0.00302372

t Value

0.00

0.00

-L.72

0.00

-r_.98

-1. 98

Pr > ltl

1.0000

1.0000

o.1077

1_.0000

0.0672

0.0672
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The Gllvt Procedure

oependent Variable: ecolip2T

Pa ramete r

Trtl vs Trt2
Trtl vs Trt3
Trtl vs Trt4
Trt2 vs Trt3
Trt2 vs Trt4
Trt3 vs Trt4

Esti mate

0

0

0

0

0

0

The sAS system

Standard

Error

0

0

0

0

0

0

14:05 wednesday, August 9, 2006 LL6

The GLM Procedure

oependent variabje: ecolip2S

t val ue

Panamete n

Trtl vs Trt2
Trtl vs Trt3
Trtl vs Trt4
Trt2 vs Trt3
Trt2 vs Trt4
Trt3 vs Trt4

er > ltl

Esti mate

0.38333333

0.98533333

0.94933333

0.60200000

0. 56600000

-0.03600000

Standard

Error

0.76088336

0.76088336

0.76088336

0.6s894432

0.6s894432

0.6s894432

t val ue

0. 50

1.29

1.25

0. 91

0. 86

-0.0s

Pr > ltl

0.6222

0. 2163

0.2326

0.3764

0.4048

o.9s72
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The GLl"l procedure

oependent variable: Ecolip29

Paramete r

Trtl vs Trt2
Tntl vs Trt3
Trtl vs Trt4
Trt2 vs Trt3
Trt2 vs Trt4
Trt3 vs Trt4

Esti mate

0.t0466667
0.03666667

0.23466667

-0.06800000

0.1-3000000

0. r_9800000

The sAS system

Standard

Error

0.22269575

0.22269575

0.22269575

0.192860r"8

0.19286018

0. t_928601_8

14:05 wednesday, August 9,

The Gltvl procedure

oependent variable: ecolip30

Pa ramete r

Trtl vs Trt2
Trtl vs Trt3
Trtl vs Trt4
Trt2 vs Trt3
Trt2 vs Trt4
Trt3 vs Trt4

t Val ue

0 .47

0. r_6

1_.0 s

-0.3s
0.67

1_.03

Pr > ltl

0.6456

0.871,6

0. 3098

0.7296

0. 511_2

0.3220

Esti mate

0.06066667

-0.01333333

-0.03r_33333

-0.07400000

-0.09200000

-0.01_800000

2006 124

Standard

Error

0.13s3r_8ss

0.13s318ss

0.1_3s31855

0. t_l_718931

0.11718931

0. t_1_7i.8931_

t val ue

0.45

-0. t_0

-0.23
-0.63
-0.79

-0.1s

Pr > ltl

0.6608

0.9229

0.8202

0. 5379

0.4455

0.8801
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The GLM Procedure

Dependent vari abl e: ecol i p31

Parameter

Trtl vs Trt2
Trtl vs Trt3
Trtl vs Trt4
Trt2 vs Trt3
Trt2 vs Trt4
Trt3 vs Trt4

Esti mate

-0.19600000

-0.23000000

-0. 24000000

-0.03400000

-0.04400000

-0.01000000

standard

Error

0.22s42404

0.22s42404

0.22542404

0.L952229s

0.19522295

0.1,9s2229\

The SAS System

t val ue

-0. 87

-r.02
-l_.06

-0.1,7

-0.23
-0.0s

14:05 wednesday, August 9, 2006 132

The GLM Procedure

Dependent variable: EcoliP32

Paramete r

Trtl vs Trt2
Trtl vs Trt3
Trtl vs Trt4
Trt2 vs Trt3
Trt2 vs Trt4
Trt3 vs Trt4

pr > ltl

0.3993

0.3249

0. 30s0

0.8642

0.8249

0.9s99

Esti mate

-0. 31400000

-0.45800000

-0. s8400000

-0.14400000

-0.27000000

-0. r_2600000

Standard

Error

0.43546232

0.43546232

0 .43s46232

0.377L21-43

0.377L2143

0.377L2143

t va'ì ue

-0.72

-t-.05

-r.34
-0. 38

-0.72

-0.33

pr > ltl

0.4827

0. 31_07

0.20t2
0.7083

0.4858

0.7432
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The cLN4 procedure

oependent variable: Ecolip33

Paramete r

Trtl vs Trt2
Trtl vs Trt3
TrtL vs Trt4
Trt2 vs Trt3
Trt2 vs Trt4
Trt3 vs Trt4

Esti mate

0.00000000

-0.0r_200000

- 0 . 02000000

-0.01200000

-0.02000000

-0.00800000

The SAS System

Standard

Error

0.0203s869

0.02035869

0.02035869

0.01763tt4
0.0L763r1-4

0.01763114

l-4:05 wednesday, August 9, 2006 140

The GLM Procedure

oependent varjable: EcoliP34

Paramete r

Trtl vs Trt2
Trtl vs Tnt3

Trtl vs Trt4
Trt2 vs Trt3
Trt2 vs Trt4
Trt3 vs Trt4

t Va'ì ue

0.00

-0. s9

-0.98
-0. 68

-l_. L3

-0.45

pr > ltl

1. 0000

0. s6s0

0.3426

0.5072

0.2757

0.6570

Esti mate

0.00000000

0.00000000

-0.00200000

0.00000000

-0.00200000

-0.00200000

Standa rd

Error

0.00174574

0.00!74574
0 .00L7 457 4

0.00r_s1186

0.001_5i_r_86

0.001_s1186

t va'l ue

0.00

0.00

-l_.15

0.00

-L.32

-L.32

pr > ltl

1.0000

1.0000

0.2711

L.0000

0.207L

0.2077
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The GLM procedure

oependent vari abì e: eco'l i p35

Parameter

Trtl vs Trt2
Trtl vs Trt3
Trtl vs Trt4
Trt2 vs Trt3
Trt2 vs Trt4
Trt3 vs Trt4

Esti mate

0

0

0

0

0

0

2006 1_44

Standard

Error

0

0

0

0

0

0

The SAS System

t val ue

14:05 tíednesday, August 9, 2006 l-48

The GLM Procedure

oependent vari ab] e: Eco'l i P36

Paramete r

Trtl vs Trt2
Trtl vs Trt3
Trtl vs Trt4
Trt2 vs Trt3
Trtz vs Trt4
Trt3 vs Trt4

Pr > ltl

Estì mate

0

0

0

0

0

0

standard

Error

0

0

0

0

0

0

t val ue pr > ltl

9B



Developing model with the data set of mean of replicated values

Need: lt was observed that the GRNN model developed with the data set of

means of 3 replicated values (Chacon's data) was able to predict the E.coti

population for the all production set patterns. Whereas the model developed with

the entire data of 3 replicated values was not able to predict the same. So, there

needs to be justification that the model developed with mean data will be able to

predict the values for the whole size range of each mean value.

APPENDIX IV

The GRNN models were separately developed from the data sets having

replication 1, replication 2, and replication 3. The GLM procedure of SAS

program was used to compare the means of these three model predictions with

the mean of observed values (See the SAS program results). Scheffe's test was

used to group all these means. The results showed that all the mean values

2.800, 2.749,2.700,2.666 were coming under a same group 'A'with a minimum

significant difference of 1.4161. lt was concluded that there is no significant

difference among the means of mean values and the three individual replicated

values. So, the model developed with the mean observed values will be

applicable to replicated values too.
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Comparing the means - Scheffe's test using Proc GLM of SAS

Prorgam & Results

Options Ìinesize:110;
Data one,'

Input rep $ G;

Do Plant = 1 to 36;

Input cp @;

Output,'

End;

Cards,'

Rl 6.525 5. 000 4 . 955
3.190 3.036 2.684
1.881 0.295 0.093
0.103 0.040 0.015

R2 6.L25 4.918 4.961
3. 634 3.382 2.652
2.141 0.000 0.000
0.000 0.000 0. 000

R3 6.2r9 4.893 4.862
3.336 3.191 2.162
2.026 0.189 0.032
0.035 0. 008 0.002

Rm 6.453 4 .916 5. 140
4.1r2 2.580 2.280
1.068 0.000 0.000
0.000 0. 000 0.000

Proc GLM Data:one,'

class rep;

4.920 4.782 4.409 4.261 4.20I
1.82r 1.398 1.154 0.946 6.468
0.040 0.016 6.392 2.205 2.048

4.960 4.878 4.2'tr 4.130 4.087
I.632 1.430 0.846 0.239 6.093
0.000 0.000 5.941 3.211 2.936

Model cp:rep,/solutlon;
ConCrast 'A,Li .¡s. Rm' rep .33 .33 .33 -1;
Means rep,/Schef fe hovtest=bartl-ett;
u'*Lsrneans rep/stcìerr Fcliff acìjust:Scheffe,'

4.840 4.136 4.384 4.250 4.183
r.462 0.826 0.516 0.306 6.184
0.008 0.002 5.821 2.127 2.452

4.135 4.610 4.583 4.rr1 4.079
r.102 1.068 0.000 0.000 6.453
0.000 0.000 6.453 3.4s5 2.104

Ou t-pr.r I or.r't-:on eOu1.. Re s -i.dtra -1.:cpRe s P::ed-L ci: ecl:cpPrecj ;

P::oc [JrLi.,.'ari,aLe P,Loi. l.ior:rnal Data:oneOut-;

r/1./:\\.,4, ./

guit;

4.155 6.480 3.304
3.015 2.910 2.626
1.848 1.339 0.331

4.080 6.055 3.826
3.610 3.540 3.537
2.4r3 0.526 0.001

4.132 5. 906 3.443
3.306 3.190 3.009
2 .21.5 r .525 0 .23r

4.023 6.453 4.r02
3.550 3. 165 2.162
r.962 0.000 0.000
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The SAS System 16:36 Wednesday, July 26,2006 3

The GLM Procedure

Class Level lnformation

Class Levels Values

rep 4 R1 R2 R3 Rm

Number of Observations Read 144

Number of Observations Used 144

The SAS System 16:36 Wednesday, July 26,2006 4

The GLM Procedure

Dependent Variable: cp

Sum of

Source DF Squares Mean Square F Value Pr > F

Model

Error

Corrected Total 143 631.3980147

3 0.3664182 0.1221394 0.03 0.9940

140 631.0315965 4.5073685

R-Square Coeff Var Root MSE cp Mean

0.000580 77.80108 2.123056 2.728826
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Source

rep

Source

rep

DF Type I SS Mean Square F Value Pr > F

3 0.36641819 0.12213940 0.03 0.9940

DF Type lll SS Mean Square F Value Pr > F

3 0.36641819 0.12213940 0.03 0.9940

Standard

Parameter Estimate Error t Value Pr > ltl

lntercept 2.666250000 B 0.35384274 7.54 <.0001

rep R1 0.082416667 B 0.50040920 0.16 0.8694

rep R2 0.1337222228 0.50040920 0.27 0.7897

rep R3 0.034166667 B 0.50040920 0.07 0.9457

rep Rm 0.000000000 B

NOTE: The X'X matrix has been found to be singular, and a generalized inverse was
used to solve the normal equations. Terms whose estimates are followed by the letter
'B'are not uniquely estimable.

The SAS System 16:36 Wednesday, July 26,2006 5

The GLM Procedure

Bartlett's Test for Homogeneity of cp Variance

Source DF Chi-Square Pr > ChiSq

rep 3 0.3559 0.9492
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The SAS System

The GLM Procedure

Scheffe's Test for cp

NOTE: This test controls the Type I experimentwise error rate.

16:36 Wednesday, July 26,2006 6

Alpha

Error Degrees of Freedom 140

Error Mean Square 4.507369

CriticalValue of F 2.66926

Minimum Significant Difference 1.4161

Means with the same letter are not significantly different

0.05

Scheffe Grouping

A

A

A

A

A

A

A

2.8000

2.7487

2.7004

2.6663

Mean N rep

36 R2

36 R1

36 R3

36 Rm
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APPENDIXV-SAS program

The SAS System Resufts

Stat.istical- model- 1: for Chacon, s data

Results for modeling DATA Set 1

The REG procedure
Model-: MODELl

Dependent Variabl-e: y

Nunlcer of Observations Read
Number of Observations Used

Analysis of Variance

Source

ModeÌ 12
Error 23
Corrected Total 35

16:42 Friday, January 2f, 2006

DF
Sum of
Squares

170.88513
6.39136

I7'7 .21649

RooI MSE
Dependent Mean
Coeff Var

Vari-abl-e

Intercept
X1
x?
X3
x4
xIx2
X 1X3
X1X4
v,)v ?

x2x4
X3X4
x4x4
X1X2X3X4

Mean
Square

14.24043
0.21189

DF

1

1

1

1

1

1

1

1

1

7

1

1

1

36
36

Parameter
Estimate

256 .84602
-0.08195

0 .111 59
-r21 .43541
-69.95012
-0.00123

0.07060
0.00211

-2.r4422
0 .20270

19.14483
5.02615
0.00029

0.521]-5
2 .66556

79 .11630

F Value

5I .25

ParameLer Estimates

Pr>F

<.0001

Standard
Error

259 .80541
0.04637
4.00953

369.42398
43.34235

0 .0021 0
0.04834
0.00133
2 .2201 6

0 .4434I
1 6 .7'7 43r

4 .62203
0.00064

R-Square
Adj R-Sq

0.9639
0.9451

t Value

0.99
-r.11

n 10

-0.34
-1.61
-0 .46

7 .46
2 .08

-0 .91
0 .46
0.26
1.09
0.45

Pr > ltl
0.3331
0.0905
0 .8 419
0.7333
0.1202
0. 6s1B
0.r511
0.0481
0.3443
0.6528
0.1918
0.2881
0.6557
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Experimental desiqn used for challen
Treat E. coli0157:H7
ments sausaqe batter EDTA

Control

1+
z + LF3 6.0

3 + LF + Ep14+ SB4 6.0 500 5.0

4 + Paste-like microcapsules of LF s 3.0

5 + Dried powder microcapsules of LF 6 1.8

Appendix Vl - DATA Set 2 (Al-Nabulsi's data)

6 + Dried powder microcapsules of LF with EDTA and SB ' 1.8 250

'+' and '-'signs mean respectively that the component was present and absent in the treatment

1- Meat starter cultures (7 .2log cfulg L. curvatus and 6.6 log cfu/g S. carnosus) were added to all treatments.

2- 5.8log cfu/g sausage batter

3- lactoferrin dlssolved in distilled water and added to sausage batter.

4- lactoferrin , ethylene diamine tetraacetic acid (EDTA) and sodium bicarbonate (SB) dissolved in distilled water and

added to sausage batter.

5- Water-in-oil emulsion; lactoferrin in distilled water was encapsulated in oil (78% corn oil + 22% butter fat with 0.1%

polyglycerol polyricinoleate, PGPR).

6- Water-in-oil-in-water emulsion; lactoferrin in distilled water was encapsulated in oil (78% corn oil + 22% fat butter

containing 0.1% PGPR) in 30% (w/v) whey protein isolate (WPl).

7- Water-in-oil-in-water emulsion; lactoferrin, ethylene diamine tetraacetic acid (EDTA) and sodium bicarbonate (SB)

in distilled water were encapsulated in oil (78% corn oil + 22o/o fat butter with 0.1% PGPR) in 30% (w/v) WPl.

Source: Al-Nabulsi (2006)

e studies of lactoferrin against E. coli 0157.H7 in dry fermented sausaoes
Lactoferrin mg lactoferrin /g Ppm mM SB
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Treat time time time time time time time time time
ment d0 d1

Control 0.00 0.00

Control 0.00 0.00

Control 0.00 0.00

Control 0.00 0.00

Control 0.00 0.00

Control 0.00 0.00

0.00 0.00

T1 5.93 5.50

T1 5.78 5.03

T'1 5.30 4.94

T'1 6.09 4.60

T1 5.82 4.78

T1 5.64 4.30

5.76 4.86

12 5.91 5.'19

T2 5.60 5.23

T2 5.53 5.06

T2 5.75 5.08

12 5.94 4.40

T2 5.99 4.10

5.79 4.84
T3 5.84 5.52

T3 6.09 4.99

T3 5.48 4.87

T3 5.91 5.23

T3 5.92 4.97

T3 5.76 5.17

5.83 5.13

Appendix Vl - Data Set 2 - cont¡nued
E.coli 0157.H7 cells recovered on

on ct-SMAC agar

0.00 0.00

0.00 0.00

0.00 0.00

0.00 0.00

0.00 0.00

0.00 0.00

0.00 0.00

4.86 4.86

4.96 4.96

4.BB 4.58

4.45 4.48

4.76 4.65

4.81 4.77

4.79 4.72

4.84 4.84

4.69 4,69

4.82 4.82

4.15 4.30

3.90 4.15

4.76 3.90

4.53 4.45

4.95 4.94

4.76 5.11

4.91 5.05

5.12 5.24

4.BB 5.09

4.70

4.92 5.02

0.00 0.00 0.00

0.00 0.00 0.00

0.00 0.00 0.00

0.00 0.00 0.00

0.00 0.00 0.00

0.00 0.00 0.00

0.00 0.00 0.00

4.40 4.72 4.47

4.20 3.86 3.68

4.57 3.92 3.83

4.58 3.48 3.62

4.20 3.97

4.20 3.81

4.36 4.00 3.90

4.16 3.60 3.48

4.28 3.62 3.45

4.29 3.45 3.45

4.30 3.81 3.20

4.57 3.66 3.83

4.44 3.59

4.34 3.62 3.48

4.67 3.90 4.59

4.89 3.60 4.72

3.34 4.36 4.48

3.50 4.35 4.40

4.48 3.08 4.44

4.46 3.06 4.32

4.22 3.73 4.49

d15 d21

0.00 0.00

0.00 0.00

0.00 0.00

0.00 0.00

0.00 0.00

0.00 0.00

0.00 0.00

3.20 3.00

3.51 3.15

3.31 3.29

3.53 3.34

3.68 3.50

3.28 3.04

3.42 3.22

2.00 1.60

2.30 2.08

1.00 1.58

1.00 1.00

1.48 1.45

1.00 2.20

1.46 1.65

4.15 3.50

4.20 3.73

4.40 4.60

4.50 4.44

4.10 3.97

4.50 4.17

4.31 4.07

on APT/
ct-SMAC

time

0.00

Bolded numbers are average values of six replications

Source: Al-Nabulsi (2006)

4.52

2.74
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Treat
ment do d1

T4 5.83 5.08 4.66

T4 5.69 4.99 4.47

14 5.63 5.06 4.64

ï4 5.72 5.01 4.61

T4 5.66 4.79 4.72

T4 5.39 4.66 4.51

5.65 4.93 4.60

T5 5.75 5.13 4.93

T5 5.73 5.34 4.80

T5 5.56 5.06 4.75

T5 5.83 4.98 4.53

T5 5.82 5.26 4.95

T5 5.79 5.18 4.20

5.75 5.16 4.69

T6 5.78 5.25 5.07

T6 6.53 4.95 5.06

T6 5.92 4.91 5.18

T6 6.15 5.'19 4.96

T6 6.44 4.96 4.91

T6 4.60 4.80 4.50

5.90 5.01 4.95

time time

E.coli 0157:H7 cells recovered on

Appendix Vl- Data Set 2 - continued

time time time time time time time

on ct-SMAC agar

4.68 4.52

4.60 4.56

4.56 4.52

4.71 4.68

4.72 4.58

3.30 4.31

4.43 4.53

4.68 4.50

4.82 4.60

4.67 4.67

4.BB 4.64

5.13 4.76

3.78 4.71

4.66 4.65

4.85 4.68

4.88 4.72

5.04 4.66

4.69 4.53

4.61 5.10

3.78 4.79

4.64 4.75

4.00 3.58

4.00 3.68

4.15 3.53

3.83 3.66

3.45 3.84

4.73 3.75

4.03 3.67

4.47 4.68

4.67 4.29

5.13 4.58

5.38 4.64

5.22 4.54

5.05 4.20

4.99 4.49

4.67 5.02

4.88 4.77

4.83 5.05

4.99 4.89

3.98 4.99

4.20 4.87

4.59 4.93

d15 d21 d28

2.45 2.45

1.80 1.30

2.00 2.38

1.70 2.20

1.75 1.48

2.30 1.30

2.00 1.8s
2.60 2.94

2.78 2.83

3.58 2.08

4.15 1.60

3.30 2.48

0.00 1.60

2.74 2.26

3.15 1 .30

3.53 1.90

3.82 1.70

3.50 1.60

0.00 2.78

0.00 3.23

2.33 2.09

on APT/
ct-SMAC

d28

Bolded numbers are average values of six replications

Source: Al-Nabulsi (2006)

3.88

4.53

4.42
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Appendix Vl¡ - SAS program Results for modeling DATA Set 2
the sns system results 1_7:38 sunday, May 28, 2006 1

the nrc Procedure

statistical uode'l 2: MoDEL FoR nl-¡¡abulsi's data
oependent variab'le: yo

Number of observations Read 324

Number of observations Used 324

nnalysìs of variance

Sum of Mean

Source DF Squares Square F Va'lue pr > F

¡¡ode'l 7 333.08985 47 .58426 t_26.09 <.0001

Error 316 A19.25657 0.37739

corrected Tota'l 323 452.34642

Root MSE 0.61,432 R-Square 0.7364
Dependent Mean 4.24355 ndj n-sq 0.7305

coeff var 14.47666

ruote: n¡ode'l is not ful'l rank. Least-squares soìutions for the parameters are not unique.
some statistics wil'l be misleading. A reported DF of 0 or B meäns that the estimate'is
bi ased.

NoTE: The following parameters have been set to 0, sìnce the variab'les are a'l'inear
combination of her variab'ìes as shown.

ED = l-00 t' SB

Parameter Estimates

Parameter Standard

variable DF Estimate Error t value pr > ltl

rntercept L 5 .17027 0.09473 54. 58 <.0001

LF 1 -0.00221 0.02728 -0.08 0.9355

sB B 0.13686 0.06365 2.L5 0.0323

EDOO
Day 1- -0.08261- 0.0071-5 -11. 56 <.0001-

LFEDSB L -0.00005340 0.00002403 -2.22 0.0270

LFDay L -0.01044 0.00206 -5 .07 <.0001

EDSBDay 1 -0.0000505i_ 0.00002333 -2.17 0.031_i_

LFEDSBDay 1 0.00001-525 0.00000399 3 .82 0.0002
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