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ABSTRACT

The advantages and disadvantages of several existing methods of
teaching programming are(discussed and the bésic requirements of én-
introductory programming language are considered. IPLAN (an
Introductory Programming LANguage) is proposed to f;lfill thésé

Yequirements and its design goals are stated.

The éyntax and semantics of IPLAN are specified and the details
of the implementation on an IBM 360/65 are outlined. The appendices
contain example programs illustrating the use and special features of

the language.
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CHAPTER I

Introductory Programming Languages

1.1 Introduction

- The growing iﬁportance of computers in our society reQuires that
a large proportion of future generations needs some knowledge of the
operation of computers, so that the iayman does not regard them with
the mystical admiration or fear that is typical of today's attitude.
In a few years it is reasonable to suppose that not only bright students
in a few high schools, but many students in most high schools will be
studying computer courses.and until such time as computers become
conversant in natural languages, students will be forced to learn

programming languages.

The language taught in introductory programming courses could be
selected from one of four groups :

scientific programming languages;

commercial programming languages;

assembly level programming languages and;

specially designed introductory programming languages.




1.2 Use of Scientific Programming Languages for Teaching

The present trend in teaching progrqmming languages in universities
-is to start with a diagnostic form of a scientific language, for eﬁample,
WATFOR [1], PUFFT [3], or DITRAN [2] if the main scientific language
of the universiéy is FORTRAN [4]. Although an honors student with a
scientific background can normally master the coﬁplexities of such'aﬁ
initial programming language; the average student and the high school

student may easily become confused and/or discouraged.

Both advantages and disadvantages of‘using a diagnostic scientific
language és a first programming language ate inherently related to its
parent language. At this university, second year st;dents are taught
the WATFOR version of FORTRAN IV. From the author's experience of é

demonstrating this course, several points can be made.

1.2.1 Advantages of WATFOR ' é;.

During the course the student may tackle problems of

considerable complexity, which may strongly stimulate his interest.

If WATFOR is well known by the student at the end of the course,
he has an almost complete knowledge of a standard and widely used

scientific language.




1.2.2 Disadvantages of WATFOR

Most problems fall into one of three groups related to design
faults in the parent language (i.e. FORTRAN), which WATFOR could easily

have avoided but for the design goal.of,compatibility with FORTRAN.

The groups are :
a) . Conceptual problems
b)+ Problems of detail

c) Errors.

a) Examples of conceptual probiems are

the meaning of the "=" sign;

the carriage control character for the printer;

the difference between array and function references and;
the rélationship between input-output executable statements

and format statements.

The problems created by the last one were severeenough for WATFOR
to introduce a minimal field-free format input-output at the expense of

full FORTRAN compatibility.

b) Problems of detail émbedded in the parent language absorb too much
time and effort and-lead to unnecessary errors. For example, consider
the format statement. There would seem to be no reason why a field
width should not be allowed with the 'X' format code (e.g. I5 is correct,

X5 is not). Also the action taken when the I/O list is longer than the
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numbef 6f format eleménts is not simple.‘ From the FORTRAN v Language
Specifications : "If there are more items in the I/0 list than there

are format codes in the FORMAT statement, control is transferred to the
group repeat count of the group format specification términated by the
last right parenthesis that precedes the right parenthesis ending tﬁe

format statement." [4]

c) The formidable problem of teaching students to find their own

errors is complicated by two factors

(i) The complexity of FORTRAN syntax allows "obvious'

errors to be compiled and executed without comment.

Consider this example in which a period has been keypunched in
place of a comma :
DO 55 I = 1.12

55 CONTINUE : :

Both the FORTRAN IV level G and the WATFOR compiler declare by
default a floating point variable 'DO55I" and assign to it a value of
1.12. The intended DO loop is executed-only once and with an invalid

value of I.

(ii) The debug facilities of WATFOR are inadequate.
Although it checks for the use of variables that have not been given

a value and checks the range of subscripts, it lacks, in particular,



a trace. Even though the studenf knéws.his program is in an endless
loop, the statement number in which his brogram was cancelled often is
insufficient helb for him ﬁo find his errof. (The FORTRAN IV level G ,
,compiler [4] has several debug rouﬁines; but'they have to be requested

and are unnecessarily complex to use.).

1.2.3 Disadvantages of Scientific Languages in Gemeral

Although the above ékamples are selected from teéching a
diagnostic form of FORTRAN, similar examples mayvbé found in most
other scientific programming languages (ex;ept that.the ALGOL-1ike
languaééS~are relatively free from the problems related to complex

syntax) .

A further general disadvantage is that it is not easy to start
' by teaching a simple subset since certain of the problems, for example,

complex syntax and input-output, cannot be avoided.

The last major disadvantage is the possibility'that even after
successfully learning a scientific programming lanzuage, the student
is still not aware of the basic computer operations. He has learned

how to control a powerful tool, but not how to use it most efficiently.

1.3 Use of Commercial Programming Languages for Teaching

Apart from the advantage that commercial programming languages




have in making the student familiar with a language used in business
applications,'the use of these languages'for~teaching seems to have more
disadvantages and fewer advantages than the use of scientific program—

ming languages.

For example, consider COBOL [5] since this is the main commercial
language. In COBOL, like FORTRAN, input-output is not simple, the
"=t sigﬁ raises conceptual prqbiems, and the complex syntax causes
unnecessary errors. The source program is very format sensitive

(blanks used as delimiters, 'A' margins defining paragraphs and 'B' "

margins defining statements). The concept of the four divisions,

=

identificétion, enviropment, data and procedure, is not basic and is
not necessary for an introductory languaée. Finally there are no
widely used, if any, diagnostic COBOL compilers-and the manufacturer
supplied compilers do not do the error checking necessary for an

introductory language.

1.4 ﬁse of Assembly level Programming Languages for Teaching

1.4.1 Actual Assembly Languages

. Although assembly level languages demonstrate exactly how
the computer operates and make available to the programmer its full

capabilities, these languages are usually too complex for the beginner




to program in, especially with respect to.input-output, and require a
far too detailed knowledge of the machine operation to be suitable for

an introductory programming language.

1.4.2 Assembly Languages for Simulated Computers

Such languages are very valuable as teaching aids, but are
normally only taught as a brief introduction to teaching a high level
language because of their clumsiness for advanced problems and their

restricted input—output.

For example, consider the SPECTRE computer [6], which is similér
to the hypoghetical computer described‘in T. E. Hull's book "Introduc-
tion to Computing" [7]. The SPECTRE-MAP* instructions "INP" (input)
and "OUT" (output) are the basic input-output instructions. "INP A"
inputs into location A the signed ten digit number punched in columns
1 fo 11 of the next data card. Sign and leading zeroes must be

punched. Similarly "OUT A" prints the signed ten digit number in

‘location A into a fixed field on a new line on the line printer.

Advanced problems in SPECTRE-MAP are complicated by the lack of
index registers and hence address modification (i.e. run time code

modification) has to be used to simulate indexed instructionms.

* SPECTRE-MAP is the assembly level language of the SPECTRE computer.
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1.5 Special Introductory Programming Languages

1.5.1 Existing Introductory Programming Languages

Several universities have written their own languages. Notéble
" in this group is thé Cornell Computing Language CORC [8], which has

had a major influence on later diagnostic sciertific languages. CORC
goes to considerable lengths to correct the programmer errors, in"
particular, the incorrect speiling of variable names. Unfortunately

- CORC is badly restricted in source program format (blanks used as
delimiters, FORTRAN type contingations, etc..) and has limited

input-output.

dther teaching languages are mainly scientific language subsets
and in particular are subsets.of FORTRAN. Examples are TFORGO [9]
and MAD [10]. None of the existing teaching languages fulfills all
of the basic requirements that the author feels are essential for an

introductory programming language.

1.5.2 . Basic Requirements of an. Introductory Programming Language

These reqﬁirements are felt to be

(1) Simple syntax.
(ii) Simple but powerful input-output.
(iii) Comprehensive error diagnostics.

(iv)  Adequate debug facilities.




(v)  Explicit data types. From early on, it is important
that the intrinsic difference in types be understood and in particular

the concepts of range and accuracy as related to real and integer

numbers.
(vi) An arithmetic instruction set. These should be in a
one-to-one relationship with basic machine instructions.
(vii) Conditional énd unconditional branch statements (and
hence statement labéls). |
(viii) Subscripting and loop facilities
(ix) Time, size and number of stateménts executed as

measures of program efficiency.

In particular, it is felt to be important that the following
are avoided :

(i) Implicit conversions.

(ii) Iﬁplicit declarations.

(i11)  Input-output with format statements.

; ;
3 i
{
5 x
I i
I

(iv) Field~dependent source statement format.
(v) A system of error analysis that allows an apparently

correct  statement to compile and perhaps even execute without warning.

. The author's views are in keeping with the following extract from

the detailed syllabus for a proposed course entitled "Introduction to

Computer Science" as outlined in "Specimen Courses in Computer Science"
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by a Computer Bulletin working party :

"Detailed syllabus : Introduction to a prdgfamming language

and the computer. The two facets should be integrated by allowing

the student to write simple programs which demonstrate : basic

input and output facilities; arithmetical operations; storage

and program control. The language used should be a simple teaching

language and not languages like FORTRAN and ALGOL ...." [11]

‘Theré are other features such as arithmetic expressions which might .
well be included in an introductory language.  Indeed several additional
features are discussed in Chapter 4. At this stage of the design and
development of the language it is not possible to state categorically
whic¢h features should and which should not be included in an introductory -
language. It is only possible to present a proposal and to be prepared'

to alter this as a result of experience gained through using the language

to tead¢h programming.

1.6 The Introductory Programming Language IPLAN

This thesis presents an'introductory programming language called
IPLAN (Introductory Programming LANguage) which is an attempt to fill

the need for a specialised teaching language.

1.6.1 IPLAN design-goais - : .

These goals are :
(i) 'Ease of learning
.- The language\must be simple to learﬁ. There will be
one statement to a card with a keyWor& (which will be a word in the
English language and not a mnemonic) followed by an oéerand(s) and
optionally preceded by a statement:labél. The source program and the

data Wili be field-free format or, simply, free format.
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(ii) ©Non logic errors
A1l errors will be flagged and a full diagnostic error

message (not .just an error code) given. In the case of a non terminal

execution error, the number of the card in which the error condition

arises will be given.

Compilation errors will not prevent execution and execution will

continue as far as is thought to be useful.

When a terminal error does occur, a full dump of data areas and

information about the state of the program will be given.

(iii) Logic errors

Adequate debug facilities to trace logic errors.

A further design goal arises in the implementation.

(iv) Fast throughput of student jobs.

1.6.2 Versions of IPLAN

Three versions of the IPLAN compiler and control program are

. envisaged :

The 'main' version described in this thesis.

An extended version as outlined in Chapter IV.

An integer version (see Appendix 6).




CHAPTER 1II

Semantic Definition of the Language

2.1 Introduction

Only one statement may appear on each card and there afe no
continuatioﬁs. The compiler ignores all blanks and all characters
between a left angle bracket (<) andva right angle bracket (>).
(Exception : see PRINT TEXT):"Chéracter strings thus enclosed are
called "comments" and are used to document the program. Comments may
precede or follow a statement and if no right angle bracket is found,

the comment ends at the end of the card.

For the remainder of this description blanks and comments are

1
{
§
i

assumed to have been deleted.

A definition of the meta-language is given in Appendix 1.

2.2 Programs

<program> ::=  BEGIN PROGRAM<declaration group><statement group>
' END PROGRAM
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A program is delimited by the keywords (or statéments) BEGIN
PROGRAM and END PROGRAM, and all the declaration statements must precede

any of the executable statements.

2.3 Keywords

<keyword> i <opcode>[<conversion>]<debug>]<transfer opcode>|
STORE | STOP| NEW PAGE|NEW LINE|SPACE|PRINT TEXT]
READ INTEGER|READ REAL|PRINT INTEGER|PRINT REAL|
CYCLE| FOR| REPEAT | REAL SCALAR|INTEGER SCALAR|REAL
VECTOR | INTEGER VECTOR|REAL MATRIX|INTEGER MATRIX|
BEGIN PROGRAM|END PROGRAM ' 4

Keywords are not reserved names.

..

2.4 Statement numbers

<unlabelled statement>|<integer>:<unlabelled

<statement< =
statement> e
<statement
group> 1= <statement>|#<statement>

Any statement may'be labelled by an integer. (See<integer>).
If the statement is non executable, the statement number is considered

to be attached to the first following executable statement.

2.5 Numbers

<digit< ::= 0[1|2]|3]4]5]6]7]8]9

<sign> H +|—

1
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<integer> 1= <digit>|*<digit>
<signed v .
~ integer> 1:=  <sign><integer>|<integer>
<real> se= <integer>.<integer>
<number> te= <integer>!<real>!<sign>{<integer>l<real>}

N

Numbers have their conventional meaning.

2.6 Variables

<letter>

.
..

aJslc]pls|¥]elu|z sk L u]xlo[2 ol r|s|z]ulv|u|x] ¥z
<identifier> t:= <1etter>]*<letter> .

<simple integer
variable> 1= <identifier>
<subscript> 1= <integer>|<simple integer variable>[{<integer>|
<simple integer variable>},{<integer>|<simple
integer variable>}

: <integer

; variable> ::= <simple integer variable>[<identifier>(<subscript>)

j <real variable>::= <identifier>|<identifier>(<subscript>)

! <variable> :i=  <integer Variable>|<real‘variab1e> }

Variable names serve for the identification of scalars, vectors
(one dimensional arrays) and matrices (two dimensional arrays). Each
variable name must have a unique first 16 characters. A variable has

a type (real or integer) and a form of storage (scalar, vector or matrix)

which are determined once in a declaration statement. Vectors and matrices
cannot be referred to as a whole, but must be referenced via their

elements as subscripted variables.



2.7 Declarations

<type scalar> ::
<scalar list> ::

<scalar
declaration>::

<type vector> :i:
<yector list>

<vector
declaration>::

<type matrix> ::
<matrix list>
<matrix
declaration>::
<declaration> ::

<declaration
group> HH

1t
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REAL SCALAR|INTEGER SCALAR

<identifier>|*,<identifier>

<type scalar><scalar list>
REAL VECTORIINTEGER VECTOR

<identifier>(<integer>)|#,<identifier>(<integer>)

<type vector><vector list>

REAL MATRIXIINTEGER MATRIX
<identifier>(<integer>,<integer>)l*,<identifier>
(<integer>,<integer>)-

<type matrix><matrix list>

<scalar declaration>[<vector dgclaration>

<matrix declaration>

<declaration>|#*<declaration>

Declarations define the properties of variables, i.e. their type

(real or integer) and their form of storage (scalar, vector or matrix),

which must be declared for all variables.

In vector and matrix declarations the lower subscript bound is

one and the upper is specified. There are no dynamic declarations.
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2.8 The Accumulator

All arithmetic and branch operations implicitly use the accumuiator.
The type of the accumulator (real, integer or undefined) is specified
by the most recently executed load or coﬁversioﬁ operation. Mixed type
operations are not permittgd. (At execution time, the operand type |
of an ADD, SUBTRACT, MULTIPLY, DIVIDE, dr STORE instruction is checked

against the accumulator type.)

2.9 Simple Statements

<opcode> ::=  LOAD|ADD|SUBTRACT |MULTIPLY|DIVIDE
<conversion> ::=  CONVERT TO REAL{CONVERT TO INTEGER
<debug> ::= TRACE ON|TRACE OFF|MONITOR ON|MONITOR OFF|
DUMP -ALL
<transfer ... GO TO|IF POSITIVE GO TO|IF NEGATIVE GO TO|
opcode> e IF ZERO GO TO '
<simple
statement> ::= <opcode>{<var1able>|<number>}ISTORE<var1able>|
<conver81on>!<transfer opcode><1nteger>]<debug>[
STOP
<unlabelled ... <simple statement>|<printer statement>|
statement> "' <i-o statement>'<loop>|<declatat10n>!BEGIN PROGRAM|

END PROGRAM

The LOAD statement copies into the accumulator the contents of

the storage location specified by the operand, which remain unchanged.

The STORE statement copies into the storage location specified by

the operand the contents of the aécumulator, which remain unchanged.
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The ADD (SUBTRACT) statement adds to (subtracts from) the
accumulator the contents of the Storage location specified by the’

operand.

The MULTIPLY (DIVIDE) statement multiplies (divides) the
accumulator by the contents of the storage location specified by the

operand.

The CONVERT TO INTEGER statement converts the type of the accumulator
to integer and assigns an integral valué to. the accumulator, which is
the nearest integer to the previous contents, i.e. in the terminology
of the "Revised Report on ALGOL 60", [12] entier (contents of the
accumulator +0.5). N.B. An errof will occur if an attempt is made to
convert a real number,largéf in magnitude than the largest integer

number.

The CONVERT TO REAL statement converts the type of the accumulator

to real and assigns a real value equal to the previous contents.

The GO TO statement transfers control unconditionally to the

statement whose statement number is specified by the operand.

The conditional GO TO statements test the accumulator and if the
condition is satisfied, control is transferred to the specified

statement without altering the contents of the accumulator.

The STOP statement terminates the execution of the program.
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The END PROGRAM statement, as well as delimiting the source

program, terminates the execution of the program.
!

‘The TRACE ON (OFF) statement causes a trace to be printed (or not).
After a TRACE ON statement has been executed and until a TRACE OFF
statement is executed the card number of each statement executed is

printed.

The MONITOR ON (OFF) statement causes the accumulator to be
monitored (or not). After a MONITOR ON statement has been executed
and until a MONITOR OFF statement is exécuted.the card number and the
type and*contents of the accumulator are printed for each statement

executed which changes the type or contents of the accumulator.

The DUMP ALL statement requests a program information dump. The

card numbers of the last forty executed statements are printed together

with the names and values of all variables.

¢
1
i
1
1
i

2.10 Input-Output

Input is from punched cards and output is on the line printer.

Both are basically considered as streamed, meaning that the records

(cards on input, lines on output) are viewed as concatenated into a
continuous stream. The exception to this concept is on input, since

a number is considered to end at the end of a card. In printing, the
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ability to split up the output into records exists with the NEW LINE
and NEW PAGE instructions. A line on the printer is 132 characters

long.

2.11 I-0 Statements

. <i-o statement>::= PRINT INTEGER{<integer variable>!<signed integer>},

<integer>|PRINT REAL{<real variable>|<real>|<sign>
<rea1>},<integer>,<integer?iREAD REAL<real variable>[
READ INTEGER<integer variable> ’
The READ INTEGER statement reads the next integer number in the

input stream into the integer storage location specified by the operand.

Blanks are ignored and a number is terminated by a comma or the end of

a data card, or both. An error arises if a comma is encountered before

a digit is found. Any character other than a blank, digit, sign or

comma encountered is invalid. The contents of the accumulator are

unaltered.

The READ REAL statément reads the next number in the input stfeam
into the real storage location specified by the operand. Blanks are
ignored and a number is terminated by a comma or the end of a data
card, or both. An érror arises if a comma is encountered before a
digit is found. Any chafacter otﬁer than a blank, digit, sign, decimal
point or comma encountered is invalid. The number does not have to

contain a decimal point. The contents of the accumulator are unaltered.
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The PRINT INTEGER statement prints either the éontents of the
integer storage.location ornthe integer number specified by‘the firsf
operand. The second opefand, an integer in the range [2,16], specifies
the number of spaces allowed to print these contents. If the second
operand is omitted or if the stated value allows too.few spaces to
pfint the first operand, a value of 11 is assumed. A space must be

allowed for the sign which is printed as a blank for positive operands.

The PRINT REAL statement prints either the contents of the real
storage location or the real number spécified by the first operand.
The last printed digit is rounded_up before printing if the first
unprinted digit is a 5 or abové. The second and'third operands, integers
in the range [2,16]and [0,16]respectively, specify the number of
spaces before and aftér the decimal poinf allowed to print these
contents. If the second and third operands are omitted, values of
11 and 3 are assumed respectively. A space must be allowed for‘tﬁe
sign which is printed as a blank for positive operands. The decimal

point is always printed.

2.12 Printer statements

<printer ..= NEW PAGE|NEW LINE<integer>|SPACE<integer>

statement> °° PRINT TEXT 'any character string not containing
quote'
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The NEW PAGE statement causes the printer to skip to a new page.

The NEW LINE statement causes the printer to start at the
beginning of a line after advancing n lines where n is the operand
which is an integer in the range [1,4] and if omitted or outside that

range is assumed to be 1.

The SPACE statement causes the printer to skip n spaces where n
is the operand which is an integer in the range [1,100] and if omitted

or outside that range is assumed to be 1.

The PRINT TEXT statement prints the character string enclosed

in quotes (') which forms the operand.

2.13 Loops

<cycle
statement>

CYCLE{{integer>[<simple integer variable>}TIMES

<for parameter>:: <simple integer variable>l<signed integer>

FOR<simple integer variable>=<for parameter>(

<for statement>::
: <for parameter>)<for parameter>

<repeat> :

REPEAT | <integer>:REPEAT
<loop > 1= {<cycle statement>l<for statement>}<statement
group><repeat>
The CYCLE REPEAT group of statements causes the group of statements

enclosed between the CYCLE statement and the closest following REPEAT
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statement to be repeatedly executed the number of times specified by

the operand. The operand must be an intéger‘or a simple integer variable
(i.e. unsubscripted) and must have, at the first execution of the CYCLE
étateﬁent,-a value in the range [0,100]. Ihis‘value.specifies ﬁhe
number of repetitions which is indepen&ent of ényAchange in the value

of tﬁe operand inside the CYCLE REPEAT group. A valug of zero means

no repetitions. If the value is Qutside the allowéble range, a value

of one is substituted and an error message is given.

The FOR REPEAT group of statements causes the group of statements
enclosed between the FOR statement and the REPEAT statement to be
repeatedly executed zero .or more times while the coﬂtrolled variable

i8 being changed.

Consider :
FOR i = a(b)e
statement group
REPEAT
where i is a simple intéger variable and a,b,c are simple integer -

variables or integer numbers.

The process may be visualised by the following flow-chart :
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>1oop

i<«i+b "
‘ complete

Execute
<statement
group>

The loop is complete if (i - ¢) * sign (b) > 0 where sign (b)

has a value of +1 if b is positive, 0 if b is zero and —i if b is

negative,

-

All the FOR parameters may be varied inside the statement group.

Nesting of CYCLE REPEATS and FOR REPEATS ‘is allowed to a depth of

10.



CHAPTER 1III

Description of the Control Program and the Compiler

3.1 Introduction

The purpose of the control program and the compiler, from hence

forth called the compiler, is to batch procesé small‘jobs with high

throughput. The jobs may not refer to peripherals apart from the card

reader and the line printer. The compile phase is one pass and the

compiler is resident in core at all times. Hence the job stream may

be processed without reference to any secondary storage.

An assembly level language (IBM System 360 Assembler [13]) was

used to write the compiler with the intention of making the obﬁéct code

both compact and efficient. The compiler program consists of 28
Assembler subroutines and occupies about 7500 32-bit words (or 30,000

bytes) -of core.

Logically the compiler may be split up into the following parts :

Controi-program
Analysis of source program

Code generation

- 24 -
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Input - Outpﬁt routines
Execution time routines
Error handling

Program information dump

and will be discussed under these sub;headings.

3.2 The Control Program

The control program (see figure 3.1) initialises the job stream

and then initialises the compilation phase of the first job and calls
the analyser routine. On return the control program initialises the
execution phase and executes the compiled code. When each job termin-

ates, the control program repeats the process, starting with the

initialisation of the compilation phase of the next job.

The control program cancels a job if its combined cdmpilagion and
execution time exceeds 15 seconds, if it prints more than 300 lines of
output (execution of a NEW PAGE instruction cownts as 10 lines), -
executes more than 20,000 sfatéments,'or has moré than 20 errors. These

cancellation parameters may be overridden by the options card.

When the end of the card file is sensed the control program ends

the processing of the job stream.
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Where CN is the card number

Figure 3.2

Analysis of source cards

.
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3.2.1 The Options Card

To override any or all of the cancellatién parameters, an
options card is inserted at the beginnipg of the source deck,
immediately following the '$JOB' éard. Thé first 9 spaces of this
card contain the charactgrs '"OPTIONS = (}, followed by up to four
parameters separated by commas and ended with a qlosing bracket. The

parameters are : first, the job time in seconds; second, the number

‘of lines of outpﬁt printed by the executing job; third, the instruc-

" tion count in nmultiples of 1000; and fourth, the error count.

Parameters that are missing or have a value of zero are ignored.

For example :
OPTIONS = (15,300,20,20)
specifies the standard cancellation parameters and

OPTIONS = (0,,30)

specifies : . o
job time = 15 seconds
output = 300 lines
instructions = 30,000
and error count = 20

since only the third parameter is changed.
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3.3 Analysis of Source Program

3.3.1 Job Control

Jobs are divided in the job stream by WATFOR [1] control cards.
A job is preceded by a card with the characters '$JOB' in the first four
columns. A job is terminated by a '$IBSYS' card and if data is used,

the source program and data aré separated by a '$ENTRY"card.

3.3.2 | The Analyser Routine

. #.  The analyser initially searches ﬁor the '$JOB' card, which
is printed. 1If the next card is an options card, ﬁhe specified
}arameters are overridden. Fach source card‘is printed, preceded by

a sequence number, known as the card number. One card is analysed

at a timé being scanned once from left tokright with blanks and aﬁy
characters enclosed between a left angle bracket (<) and a rigﬂf angle

bracket (>) being ignored. (These character strings are called

"comments" and are used to document the program.) -

Each card is scanned for a keyword and usually at least one
operand. When a letter is detected it is adﬁed to a character string:
which, if a keyword has not yet been found, is then compared to all
keywords of the same length. Error éonditions occur when a card (unless

it is blank or contains only a comment) does not have a keyword, or the
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first keyword in a program is not "BEGIN PROGRAM'.

If appliéable, on successful analysis of a éard, the coding routine
is called. The normal parameters are the opcode, the operand, thé
address and the operand type. If the operand is subscripted, the
parameters are as before plus two suﬁscripts and two dimensions.

Vector references are treated as matrix references with the second

dimension and the value of the subscript being one.

Information about statement labels is stored in a set of tables
with space for 100 entries and information about branch targets is
stored in a second set of the same size. " An error message is printed

if the tables overflow and the compilation is terminated.

At the end of the source deck (after a '$IBSYS' or 'SENTRY' card
has been found), the preceding keyword must have been 'END PROGRAM'

otherwise an error message is printed and 'END PROGRAM' coded.

The branch targets and the statement labels are matched and the

branch coding updated.

Finally, the compilation time, the object program size, and the
number of scalars and numbers used in the compilation are calculated and

printed.
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3;3.2.1 Hashing and Identifier Tables

’ Scalar Numbers

The type and location of the storage element assigned to
a scalar variable can be found by reférenéipé-four tables: the name
table, where ﬁhe identifier is stored; the type table; the address
table; and the pointer table which points to the next free position

in the overflow part of the tables.

In pseudo ALGOL, the building of the tables (initiated

by a declaration statement) is as follows :

-,

hash := remainder (identifier/127);

loop : if ptab (hash) # 0O

then begin hash := ptab (hash);
go to loop
end; B}

name tab (hash) := didentifier;
ptab (hash) := next;

next

= next + 1;

next add;

add tab (hash)

next add next add + 1;

..

type tab (hash) : type
where :

remainder is a pseudo function that returns the remainder when
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the identifier, treated as a bit pattern, is divided by 127;
.hash is the hashing index;
ptab is the pointer table;
name tab is the name table where the identifieré ére stored;
add ﬁab is the address table;
type tab is the type table;
next is the next free position in the overflow part of the tabies;

and next add is the address of the next free element of storage.

The method of finding the address and tyﬁe of a referenced
identifier is, in pseudo ALGOL :

‘hash := remainder (didentifier/127);

loop : }g_identifief # name tab (hash) then
begin if ptab (hash) = 0 then go to error end;
else begin hash := ptab (hash);
go to loop
end;
address := add tab (hash);

type := type tab (hash);

The size of the ﬁables allows for 192 entries, 127 for first
entries and 65 foerverflow entries. Therefore with this implementa-
tion it is possible to overflow the identifier tables if more than 65
scalars and numbers are used. If this happens compilation terminates

with an error message. (N.B. Considerable storage can be saved by a




33

slightly more involved hashing algorithm, allowing the identifiers to
be stored sequentially in the name table. Although storage conserva-
tion is in principle important, in this first implementation it was

not- considered critical.)

At the‘beginning of the compilation phaée of each job, all of
the pointer table is set to zero and the type table is set to 'Q',

meaning unspecified type.

Arrays

L

The type, absolute address, and dimensions of vectors i
and matrices may be found by referencing five tabiés; the name, address,

“row, column and type tables. The size of thé tables allows for 32

entries after which compilation terminates with an error message.

When an array is referenced a sequential search is employed to

find its name in the name table since, in view of the anticipated ?f»,

small number of arrays used in each program, this is quicker than a

hashing technique.

3.3.2.2 Storage of Variables, Numbers and Text

All storage elements are of word size.
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Scalars

Scalars are. stored together in an area called SCALSTOR,
which is initialised throughout to hexadecimal '5050.;.'. At
execution time a dedicated'general purposelregister points to SCALSTOR
so that in the compiied code the addreés of scalars can be given in

base-displacement form.

" Numbers

Numbers are treated as scalars with their name, which is
twelve blanks followed by their value, stored in the same identifier

tables. The assigned storage element is initialised to their value.

Vectors and Matrices

Vectors are treated as single column matrices. On

%' ; declaration the required storage area is obtained from main storage
by the GETMAIN macro. All array storage is initialised to hexadecimal
'5050...". The absolute address and the dimensions are stored in the

compiled code when a subscripted statement is compiled.

At the end of a job, all storage assigned to arrays is freed by

use of the FREEMAIN macro.

Text

~ The operands of the PRINT TEXT instructions are stored
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sequentially in an area of size 512 characters. If this is exceeded,

an error message is printed and further text is not stored.

3.4 Code Generation

After successful analysis of a card containing an executable -
statement, the corresponding code is generated and added to the compiled
éode. If the éard analysis failed, dpmmy code is added which on execu-
tion prints the message "THE STATEMENT ON CARD NUMBER ... HAS BEEN

DELETED BY THE COMPILER".

If the analysed card contained a CYCLE or FOR keyword information
is stored in a push down stack so that the foliowing REPEAT may complete
the coding belonging to that loop by accessing the information stored

most recently.

If the compiled code exceeds the maximum allowed size, an error
message is printed. Compilation continues but the location counter is’

reset so that new code overwrites the earlier generated code.

The compiled machine instructions are of three types : those

that reference the accumulator; those that branch and those that link

to execution time or I-0 routines.

The accumulator referred to in the language definition is in fact
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two registers, a floating point (FPR 4) for real numbers and a general
purpose (CPR 10) for integer numbers. At all times one of the pair is
flagged as unused by containing hexadecimal '50505050'. At any time

the ‘accumulator is defined by which register is unused.

As well as FPR 4 and GPR 10, general pufpoéé registers 9, 12 and
13 are dedicated throughout execution. GPR 9 points to an area called
'SCALSTOR', where all scalar;, numbers and address constants are
stored. Hence these may be addressed in the compiled code in base;
displacement form. The card numbers of the most recently executed
forty.statements are stored in an area called CARDNUMS. GPR 12 points
to tﬁéiiast entry in CARDNUMS (i.e. the card number of the most
‘;ecently executed statement). GPR 13 is the base register and the

register save area pointer. Branches are coded in RX format, using the

base register and a displacement.

The method of linking is to load GPR 15 with the address of the
required entry point (stored in 'SCALSTOR') and to branch to that
address linking GPR 14 to the following piece of code, normally a para-

meter.

3.4.1 The Basic Instruction

The basic instruction is a.System 360 Assembler RX format

instruction, using a particular general purpose register or floating

point register.
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For example, the .basic fixed point ADD instructionm is in
hexadecimal representation of machine code :
5A A0 90 60
where '5A' is the opcodé; A specifies general purpose register 10,
'0' specifies no index register and '9066' is the base and displacement

(S type of address) of the operand.

3.4.2 ADD, SUBTRACT, MULTIPLY, DIVIDE instructions

Byte count :0 6 8 14 16

Link to Card Link to Type Link to
CARD TRACE | No. | CHECK TYPE JP CHECK BOUND

22 24 28 34

Address Basic Link to
var. Instruction MONITOR

All the links are 11/2 words (or 6 bytes) long and the basic
instruction is one word long. Since all 360 machine code instructions

must be aligned on half-word boundaries, usually the parameters are

half-words.

In the fixed point MULTIPLY and DIVIDE instructions, since the

360 machine code instructions use a register pair, two shift instruc- s

tions are coded effectively making the basic instruction three words

" long.



3.4.3

LOAD instruction

38

0 6 8 14 16 20 24 30
Link to Card Link to Address ' | Set Basic Link to
CARD TRACE No. CHECK BOUND var. Flag | Instruction | MONITOR

The set flag word in the LOAD instruction flags the unreferenced

register, in the general purpose and floating point register pair, as

unused.

There is no link to the CHECK TYPE routine.

N

3.4.4 STORE instruction

“0 6 8 14 16 20
Link to Card Link to Type Basic
CARD TRACE | No. | CHECK TYPE | /P® [ Instruction

There are no links to the CHECK BOUND or MONITOR routines.

3.4.5

Subscripted Instructions

(ADD, SUBTRACT, MULTIPLY,

DIVIDE, LOAD, STORE)

These instructions have this coding inserted immediately

before the Basic Instruction :

0

6

8

10 12

S 14

18

Link to
SUBSCRIPT

Pl

P2

P3 | P4

P5
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where : Pl is the upper limit of the first subscript,
P3 is the upper limit of the second subscript,
P2 is the address of the first subscript,
P4 is the address of the second subscript,
P5 is the address of the first element of the array.

If the array is singly subscripted, P3 and P4 are dummy parameters.

3.4.6 Input -~ Output instructions

Unsubscripted READ :

0 6 8 .14 16

Link to Card Link to Address
CARD TRACE No. READ INTEGER var.

In tlie case of the READ REAL instruction, the link is to the entry

point, READ REAL.

Unsubscripted PRINT :

0 6 8 : 14 16 18

Link to Card Link to Address

CARD TRACE | No. | ourpur var. | Field(s)

In the PRINT REAL dinstruction, there are two field parameters
(spaces before and spaces after decimal point) which each take one byte

in the 'fields' parameter.

If the instruction is subscripted the code specified in 'Subscripted
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instructions' is inserted before the link to the I-0 routine.

3.4.7  Branch Instructions

Unconditional branch

0 6 8 14

Link to Card Basic
CARD TRACE No. Instruction

Conditional branch

0 6 8

Link to Card Test
CARD TRACE No. | accumulator type

12 16 18 22 % 24 28

Branch if ‘ Test Branch to - Test Basic
type REAL GPR Basic Instruction FPR Instruction

4

The accumulator type must be tested at execution time since it is

not known at compile time, and the sign of the corresponding register

(General Purpose or Floating Point) then found.

The basic instruction contains the condition for brancliing.
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3.4.8 Conversion Instructions (CONVERT TO REAL, CONVERT TO INTEGER)

0 6 8 14

Link to Card Link to.
CARD TRACE No. Conversion routine

3.4.9 TRACE and MONITOR instructions

0 6 8 12

Link to Card
CARD TRACE | No. | Set Flag

The 'Set Flag' is a Move Immediate instruction.

3.4.10 STOP and END PROGRAM instructions

0 6 8 12 16

Link to Card Load address Reload Set return
CARD TRACE No. save area registers flag

20 22

Return to
calling program

Bytes 8 - 22 are the same as the Assembler RETURN macro.
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3.4.11 NEW LINE and NEW PAGE instructions

0 6 8 14 18

Link to Card Link to N 14
CARD TRACE No. | NEW LINE 0. iines

For the NEW PAGE instruction, a link is made to 'NEW LINE' but the

number of lines dis set to -1.

3.4.12 SPACE instruction

6 8 14 18

Link to Card Link to No. space
CARD TRACE | No. SPACE - Spaces

3.4.13 PRINT TEXT instruction

8 14 15 18

Link to Card Link to Starting
CARD TRACE | No. | PRINT TEXT | P | address of text

where P is the length of the text in bytes.

3.4.14 CYCLE REPEAT instructions

The code generated by the CYCLE instruction is most easily

‘represented by the following Syétem 360 Assembler instructions



LA
LTR
BH

ERR L .

BALR

DC
LA

OKL ¢
BH
B .

LOOP ST

Q,Cv
Q, 1(Q)
Q,Q

OK1
15,=V(ERRMSG)
14,15

H'120"

Q,2

Q,=F'100"
ERR .

TEST

Q,AV
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CV = CYCLE VARIABLE
ADD 1 TO REGISTER Q

TEST SIGN OF REGISTER Q

" BRANCHES IF POSITIVE

LINK TO ERROR ROUTINE

ERROR PARAMETER

DUMMY 'CYCLE 1 TIMES'

COMPARE CYCLE VARIABLE TO 100

TOO HIGH
'"TEST' IS IN THE REPEAT CODING

AV = ACTUAL VARIABLE

The CYCLE VARIABiE is the variable referred to in the CYCLE

instruction, e.g. CYCLE variable TIMES. The ACTUAL VARIABLE initially

has the value of the CYCLE VARIABLE, and is decreased by one each time

the loop is executed.

The matching REPEAT instruction is represented by the following

System 360 Assembler instructions

L
LTR

BH

BALR

Q,AV

Q,Q

TEST

15,=V (ERRMSG)

14,15

AV = ACTUAL VARIABLE
TEST SIGN

ERROR IF NOT POSITIVE
ILLEGAL TRANSFER INTO CYCLE-REPEAT GROUP‘

LINK TO ERROR ROUTINE




DC
TEST BCT- Q,LOOP
ST Q,AV
3.4.15 FOR~-REPEAT instructions

H'156"
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- ERROR PARAMETER

DECREMENT R.Q, IF POSITIVE LOOP

LOOP COMPLETED

The code generated by the FOR instruction is represented

by the following System 360 Assembler instructions

L
LA
BR

=

LOOP ST

Q, START
P,TEST
P

Q,AV

"START' IS THE STARTING PARAMETER
"TEST' IS IN THE REPEAT CODING
BRANCH TO TEST

AV = ACTUAL VARTABLE

The code generated by the following REPEAT is represented by

these System 360 Assembler instructions :

L
A
TEST L
LTR
BM
01
B
11 ol
L2 ¢

BC BC

Q,AV
Q,STEP
S,STEP
s,S

Ll

BC+1,x'DO’

L2
BC+1,x'BO"
Q,UNTIL

0,L00P

AV = ACTUAL VARIABLE

ADD ON STEP

TEST SIGN OF STEP -
BRANCH IF NEGATIVE TO L1

INSERT 'BNH'

. INSERT 'BNL'

COMPARE R.Q. TO 'UNTIL'

- LOOP TF INSERTED CONDITION SATISFIED
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S Q,STEP ) SUBTRACT STEP, LOOP COMPLETED

ST Q,AV ACTUAL VARIABLE HAS LAST USED VALUE

The variable, ACTUAL VARIABLE, START, STEP, UNTIL, refer to the
parameters in the FOR instruction in the following Way :

FOR actual variable = start, step, until

3.5 Input - Output Routines

Input is from cards and output is on the line printer. Both
are stream except that on input a number is terminated by the end of

a card. A line on the printer is 132 characters long.

3.5.1 Input Routines

Basically the input routines read integers and perform
conversions. They are used at compile time and execution time by the

READ INTEGER and READ REAL instructions.

The input bgffer is éxamined and a decimal integer built up
from the digits. If the end of the buffer is encountered before a digit
is found the next card is read into the buffer and the scan continued.
If a decimal point is found; the iﬁteger terminated by it is converted
“to floating point and stored, and the fractional part is treated as

an integer with a scale factor. When the number terminates the fraction
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part is converted to floating point and the two parts added.

3.5.2 Qutput Routines

The output routines are used at execution time by the PRINT
INTEGER, PRINT REAL, NEW LINE, NEW PAGE, SPACE and PRINT TEXT

instructions.

The output buffer is 231‘chéracteré long. (The longest field length
which can be specified by the operand in an output ingstruction is 100
characters in a '"SPACE 100" statément andvthis could commence at the
132nd character position.) Whenever the output buffer pointer exceeds
131, thé first 132 characteré are printed énd the next 99 left adjusted

-and the next 33 are blanked.

The PRINT INTEGER instruction reéuires a binary to packed
decimal (internal IBM System 360 decimal integer representation) con-
version and the PRINT REAL instruction requires a-fldatiﬁg poiﬁt to
packed decimal conversion (See Figure 3.3). Both instructions create
edit patterns of the §pecified format and edit the packed decimal into

the output buffer.

The SPACE n instruction causes the output buffer pointer to be

advanced n spaces.

The NEW LINE and NEW PAGE insﬁructions cause the output buffer to

be printed and cleared, resetting ‘the buffer pointer to the beginning
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4] Add 1 to
scale factor

i

M <« 10*%M

[

M« M/16

i

J EXP « EXP + 1

Iv

Error Message
'NUMBER TOO
BIG TO BE
PRINTED'

Convert M
to packed
decimal

Where :
M initially contains the hexadecimal mantissa;
EXP initially contains the hexadecimal exponeﬁt;

MAX is the'maximum number that can be multiplied by 10 without

causing an overflow interrupt;
and the scale factor specifies where the decimal point is to be

considered.

" Figure 3.3 Floating point to packed decimal conversion
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of the buffer. If NEW LINE n is specified with n > 1 or if NEW PAGE
is requested, the BSAM 'CNTRL' macro is simulated with the corresponding

parameter.

The PRINT.TEXT instruction causes the text to be copied from the

text storage area into the output buffer.

3.6 Execution Time Routines

3.6.1 The Card Trace Routine

This routine records the card number of every statement as
it is executed in an array which stores the last forty executed state-
ments. If the trace has been requested (by a TRACE ON statement), this

routine prints the trace.

3.6.2 The Check Bound Routine

The check bound routine checks whether the storage location
specified by the parameter has been assigned a value. All variables

are initialised at compile time to a particular value (hexadecimal

'50505050"*) which has to be altered by either a READ or STORE dinstruction

before being used in any other instruction.

* This value has no significance and of course could arise legally in

the execution of a program.
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3.6.3 Check Type Routine

The check type routine checks the type of the operand

against the type of the accumulator.

3.6.4 Subscript Routine

N

The subscript routine checks the subscript range(s) and

returns the referenced element's address in a general purpose re ister.
g

3.6.5  Monitor Routine

The monitor routine prints the contents and the type of the
accumulator if there has been a monitoring request (by a MONITOR ON

statement).

3.6.6. Convert to Integer Routine

The convert fo integer routine is entered when a CONVERT TO
INTEGER statement isrexecuted. The real number in.the floating point
reéister is rounded to the nearest integer and loaded into the general
- purpose register. The accumulator type is changed to integer by

flagging the floéting point register as unused.

If the number is not within the range that can be converted

to an integer (—23¥5n<231), an error message is printed.




4
i
'
i

50

3.6.7 Convert to Real

The convert to real routine is entered when a CONVERT TO

- REAL statement is executed. The integer number in the general purpose

register is converted to a real number and loaded into the floating
point register. The accumulator type is'changed to real by flagging

the general purpose register as unused.

"3.7 Error Handling

The philosophy of this language is to attempt to flag all errofs,
and to print an error message stating.what the error is and what
action the compiler has taken. Where it is feasible, this action is
to make sﬁch assumptions as are necessary to continue the user's

program. Otherwise the action is to terminate the program.

3.7.1 Hardware Interrupts

In the control program thére is a trap to monitor hafd%are
interrupts in the form of a SPIE macro (Specify Program Interrupt Exit).
Siﬁce no specific error message can be given for most of these interrupts,
the error is termed as caﬁastrophic. The exceptions are divide by

zero and overflows and underflows.
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Compile Time Errors

These fall into four classes, of which the first three give

specific error messages :

a)

b)

c)

d)

Minor : Most of the information about the statement has
been successfully analysed. An assumption is made, normally

to ignore further information, and the statement is coded.

Majof : The statement cannot be successfully analysed.
Dummy code is insertea in fhe compiled code in place of
the statement. On execution of this dummy code, the
message ! THE STATEMENT ON CARD NUMBER nnn HAS BEEN
DELETED BY THE COMPILER is printed. (ann is the card

number of the deleted statement).

Terminal : After certain errors (e.g. an unresolved branch),
it is not comsidered worthwhile to execute thé compiled

program. The program is terminated at the end of-compilation.

¥

Catastrophic : The compiler is unable to continue compiling
the program. Compilation is terminated and a partial
program information dump given. The program is flushed and

the next program in the job stream started.
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3.7.3 Execution Time Errors

These fall into three classes, those in the first two giving

specific error messages :

a) Non terminal : The error méssage gives the card number of the
statement whose execution caused the error. Some assumption -

is made and execution of the program continued.

b) Terminal : Execution of the program beyond this point is not
possible or not considered useful. The program is terminated,

a program information dump given, and the program flushed.

c) Catastrophic : The program terminates, a program information

dump is given and the program flushed.

3.8 Program Information Dump

A program information dump occurs.after three types of
condition :

a terminal or catastrophic execution time error;

a catastrophic éompilation time error 6r;

the execution of a DUMP ALL statement.

The dump gives :

the card number of the statement causing the dump;

&
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the reason for the dump, i.e. execution or compilation error, or
DUMP ALL statement;

the contents and type of the accumulator;

after an execution error or DUMP ALL statement'a partial card
number trace is printed;

the names, values and types of all scalars;

the names, values, types and dimensions of vectors and matrices.

If a scalar or an element of an array has not been assigned a

value, the 'value' printed is "**UNUSED*#*".

For an actual example of the Program Informaticn Dump see

Appendix 4.

3.8.1 The Partial Card Number Trace

In the program information dump the card numbers of the
forty most recently executed statements are printed, in the order in
which the statements.were executed. Initall& the relevant storage area
is filled with zéroes and hence if the program has éxecuted fewer than

forty statements, the earliest card numbers printed are zero.
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CHAPTER 1IV

Further Developments, Compilstion Time Statistics and Conclusions

The following extensions to the IPLAN language are to be

V implemented.

4,1 New Cldasses of Variables and Comnstants

The new classes BINARY and.CHARACTER will be introduced. These
classes will not involve the declaration of new types, but will involve
a different interpretation of variables declared as either REAL or

INTEGER.

4.1.1 BINARY comnstants

A BINARY constant is a 32-bit string of 1's and 0's enclosed
in $§ signs. If there are fewer than 32 bits (i.e. 1's and 0's) the
string is right justified and padded on the left with O's. If there
are more than 32 bits, an error message is given and the rightmost

32 accepted.

Any character between the bracketing $ signs other than 0,1 or

blank is dinvalid.

- 54 -
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4.1.2 CHARACTER constants

A CHARACTER constant is é single character enclosed in
quotes ('). TFor exaﬁple 'A', "1', ' ', or ''"'., Each CHARACTER
constant'is right justified in a 32—bit word with éeroesvon the
left. The internal representation of_characfen?in storage is shown

in Appendix 7.

4,1.3 BINARY Input = OQutput

~

The READ BINARY statement reads into the specified storage
location the next string of 1's and 0's, which is terminated by a
comma or the end of a data card, or both. The same length and validity

“conditions apply as in paragraph 4.1.1 on BINARY constants.

The PRINT BINARY statement prints all 32 bits from the

specified location, on the line.printer.

4,1.4 CHARACTER Input - Output

-

The READ CHARACTER statement reads the next character in
the input stream into the bottom (rightmost) 8 bits of the specified

storage location. The top (leftmost) 24 bits are set to zero.

The PRINT CHARACTER statement ﬁrints the bottom (rightmost) 8 bits
of the specified storage location as a character on the line printer.

If the 8 bits do not represent a character then an invalid character
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symbol, a zero overprinted by a plus sign, is printed.

4.1.5 Jogical Operations

The logical keywords "AND", '"OR", "NOT", "SHIFT LEFT",

"SHIFT RIGHT" will be introduced.
AND and OR

The contents of the accumulator after the operation is the Boolean
union or intersection of the previous contents$ and the operand, with

both accumulator and operand being regarded as 32-bit binary strings-.

The accumulator type is unchanged.
NOT
There is no operand for this keyword.

The contents of the accumulator after the operation -are the previous
contents with '0' bits replaced by 'l' bits and 'l' bits replaced by

'0' bits. The accumulator type is unchanged.

SHIFT LEFT and SHIFT RIGHT

The contents of the accumulator‘after the operation are the previous
contents treated as a 32-bit binary string logically shifted left or
right the number of bits specified by the operand. Bits are dropped

off at the left (right) end of the accumulator and zeroes introduced
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at the right (left) end for a left (right) shift. If the operand
has a value > 32 the result is zero. If the operand has a value

< 0 an error message is printed and no shifting performed.

4.2 Dynamic Transfer of Control

The Backus Normal Form‘definition of <simple statement> (séé
"Appendix 1) will be extended to include : |
<gimple statement> ::= <transfer opééde><simple integer variable>
e.g. the statement

GO TO I

where I is declared as an integer scalar, will be valid.

At execution time if the value of T corresponds to a statement
number then control will be transferred to that statement, otherwise

] an error message will be printed.

This feature will allow simple ‘procedures' or 'subroutines' to

be_coded.

For example :
BEGIN PROGRAM

INTEGER SCALAR RETURN
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LOAD 10
STORE RETURN , <SET UP RETURN ADDRESS
GO TO 20 . <LINK TO ROUTINE
10: it
<ROUTINE

207 it it e e

GO TO RETURN

4.3 Compilation Time Statistics

IPLAN was developed in a multiprogrammed environment in which the

clock measures systém time. Therefore it was almost impéssible to
obtain accurate timing statistics and the best alternative was to take
the fastest timé, after several rums of a job, as the true time.

This was done to find the compilation time for the éxample program

in Appendix 3. 62 statements were compiled in 0.45 seconds indicating

compilation of at least 135 statements/second. The final version of
the compiler should give slightly faster times since the version that
was being used at the time of writing contained some unnecessary steps

which had been used for debugging.



59

4.4 Conclusions

At the time of writing only a very limited amount of.experience
had been gained using IPLAN. The need for an integer version (see
Appendix 6) resulted from teaching IPLAN to an adult education group
where the level of programming proficiency»attempted did'not exceed‘the

capabilities of this version.

IPLAN is designed for teaching gnd’therefore must ultimately be
judged on this basis. Further experience is necessary before conclusioné
can be drawn on whether or not the requirements of an introductory
programming language as outlined in Chapter I are correct. If IPLAN
does prove to be an acceptaEle introductory language in its present

implementation then the nextbstep in its development would be to

implement it in a conversational mode.




APPENDIX 1.

Backus Normal Form Definition of the IPLAN Language

Définition of t

The meta-charac

he Meta-Language

ter set

= l <>

The symbol ::=
The symbol | re
The symbols < >
(or a member of
The symbol * re
the left of the
The symbols { }

alternatives se

Basic symbols,

*  {}

reads "is defined as".

ads "or". : : -
brackéting a mnemonic represent a syntactic unit
the non terminal vocabulary). |

presents the syntactic unit being defined (i.e. tg
::= symbol). .
mean select from the bracketed list ome of the

parated by the [ symbol.

numbers and variables

<letter>
“<digit> -

<sign>

fl

0| 1]2|3]4|5]6]7]8|9

1i= 4 -
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<identifier>
<integer>

<signed
integer>

<real>

<number>

<simple integer

variable>

<subscript>

<integer
variable>

e

<real variable>::

<variable>

<keyword>

Statements

<opcode>
<conversion>
<debug>

<transfer
opcode>

X3

e

X3

<1ettef>[*<letter>

<digit>]|#*<digie>

<sign><integer>|<integer>
<integer>.<integer>

<integer>[<real>|<sign§{<intéger>l<real>}

<identifier>
<integer>]<simple integer variab1e>1{<integer>f
<simple integer variable>},{<integer>|<simple

integer variable>}

<simple integer variable>|<identifier>
(<subscript>) ' :

<identifier>|<identifier>(<subscript>)

<integer variable>l<real variable>

'<opcode>|<conversion>[<debug>]<transfer opcode>]

STORE |STOP [NEW PAGE |NEW LINE|SPACE|PRINT TEXT|
READ INTEGER|READ REAL|PRINT INTEGER|PRINT REAL |
CYCLE |FOR | REPEAT |REAL SCALAR|INTEGER SCALAR]
REAL VECTOR |INTEGER VECTOR |REAL MATRIX |

INTEGER MATRIX |BEGIN PROGRAM|END PROGRAM

LOAD |ADD | SUBTRACT |MULTIPLY |DIVIDE
CONVERT TO REAL|CONVERT TO INTEGER

TRACE ON |TRACE. OFF |[MONITOR ON |MONITOR OFF |
DUMP ALL

GO TO|IF POSITIVE GO TO|IF NEGATIVE GO TO|

- IF ZERO GO TO -
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<gsimple

statement>

<printer

statement>

<i-o statement>::

<cycle
statement>

<for parameter>::

<for

statement>

<repeat> -

<loop>

<

<unlabelled
statemgnt>

<statement>

<statement
group>

Declarations

<type scalar>
<gscalar list>

<scalar

declaration>::

It

]
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<opcbde>{<variab1e>l<number>}]STORE<Variable>|
<conversion>!<transfer opcode><integer>l
<debug>|STOP

NEW PAGE|NEW LINE<integer>|SPACE<integer>]

PRINT TEXT 'any character string not containing
quote'

PRINT INTEGER{<integer variable>|<si ned integer>},
<integer>|PRINT REAL{<real variab1e>i<real>|<sign>

<real>}, <integer>,<integer>|READ REAL<real variable>|
READ INTEGER<integer variable>

CYCLE{<integer>|<simple integer variable>}TIMES

<simple integer variable>!<signed integer>
p g g . g

FOR<simple integer variable>=<for parameter>(
<for parameter>)<for parameter>

REPEAT | <integer>:REPEAT

{<cycle statement>|<for statement>}<statement group>

<repeat>

<simple statement>|<printer statement>|
<i-o statement>]<loop>[<dec1aration>lBEGIN PROGRAM
END PROGRAM

<unlabelled statement>]<integer>:<unlabelled
statement>

<statement>|*<statement>

REAL SCALARIINTEGER SCALAR

<identifier>|*,<identifier>
<type scalar><scalar list>

-
-~




63

<type vector> :: REAL VECTORIINTEGER VECTOR

<vector list>

1t

<identifier>(<integer>)|*,<identifier>(<integer>)

<vector v .
declaration>::= <type vector><vector list>
<type matrix> ::= REAL MATRIXIINTEGER MATRIX
<matrix list> ::= <identifier>(<integer>,<integer>)!*,<identifier>
(<integer>,<integer>)
<matrix
declaration>::=  <type matrix><matrix list>
<declaration> ::= <scalar declaration>l<vector declaration>
<matrix declaration>
<declaration .
group> ::=  <declaration>|*<declaration>
Program
<program> ::=  BEGIN PROGRAM<declaration group><statement group>

END PROGRAM




APPENDIX 2

- Tmplementation Restrictions and Control Program Cancellations

The exceeding of any of these restrictions causes an error message

to be printed.

A2.1

Size of numbers

Internal to the machine

Internal numbers an values of integer variables may not be

outside the range R :

magnitude

(=2

31

-1)

)

31 3 (23 = 2,147,483, 648)

<R <2

Real numbers and values of real variables may not have a

outside the range R :

16703 < r < 1653 (16%3 = approx 107°) -

In Soufce or Data Deck

A number may not have an'iptegral magnitude > 2,147,483;647

- 64 «
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On Output

Any integer number can be printed.

-‘Real numbers may not have a magnitude > 232( = 4,294,967,296).

A2.2 Source Program

Size

The compiled instructions (i.e. excluding variable and number

storagé) may not occupy more than 4038 bytes.

Scalars and Numbers

The number of scalars and numbers may not exceed 65.

Statement numbers and branch statements

The number of statement numbers or branch statements

(i.el GO TO's) may not exceed 100.

Arrays

The number of arrays may not exceed 32. The number of elements

in any single array may not exceed 100. Array storage is not within
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the compiler prdgram and hence the total amount available depends on

the environment.

Text

The total character length of the operands of the PRINT TEXT

instructions may not exceed 512 characters.

A2.3 Control Program Cancellations

The control program cancels a job if it compiles and executes
for more than 15 seconds, prints more than 300 linés of output
(exécution of a NEW PAGE instruction counts as 10 lines), executes more
than 20,000 statements, or has more than 20 grrors; Theselparameters

may be overridden by the options card.




APPENDIX 3

An Example Program

The example program will sort up to 10 real numbers into
ascending order. ‘The logical steps in the program are related to the

source deck cards as shown in figure A3.1.

The variables used are :

N is the.number of numbers to bg sorted;

LIST is the vector into which they are read an in which they are
sorted;

J is a pointer to the biggest number found at a particular
moment in a sorting pass through LIST and BIG hés the value of that
biggest number (e.g: BIG = LIST(J)) and;

I and M are indices.

The sort algorithm is, in ALGOL;

for M := N step -1 until 2 do

begin BIG := LIST [1]; J = 1;

for T = 1 step 1 until M do

if BIG < LIST [I] then
begin BIG := LIST [I];
J = TI;
end;
LIST [J] := LIST [M];
LIST [M] := BIG

end;

-67 -



Card numbers in

Example Program

005

006 -

011 -
018 -

- 016 -

024 -

034 -

069 -

080

Figure A3.1

008 .

015
021

017

031.

066

078

DECLARE
VARIABLES

¢

SET UP_
OUTPUT
HEADINGS

¢

READ AND
PRINT IN

:

READ AND
PRINT
UNSORTED DATA

I

PERFORM
SORT

j!

PRINT
HEADINGS AND
SORTED DATA

Logical Steps related to cards of Example Program

68



sttt s o Dt

[:1]]
062
063
064
065

066

067
068
069
o710
o7l
072
073
074
075
076
07
018
079
0so

Figure A3.2

$J08 .
< : ' SORT PROGRAN
< READS IN *N' UNSORTED REAL NUMBERS INTO *LIST*Y, SORTS AND PRINTS THEM

BEGIN PRIGRAM
REAL VECYOR LIST (10}
REAL SCALAR BIG
INTEGER SCALAR NilsJ.M

< SET UP UUTPUT HEADINGS
NEW PAGE
SPACE 40

4]

PRINT TEXT *QUTPUT FROM SORI PROGRAM!

NEW LINE 4
PRINT TEXT *THERE ARE*
READ INTEGER N
PRINT- INTEGER N,2
PRINT TEXT ¢ NUMBERS TO BE SORTEO!
NEN LINE 2
" PRINT TEXT TYUNSORTED ELEMENTS:*
NEW LINE

< READ IN AND PRINT OUT UNSORTED DATA >

LOAD 1

STORE |

CYCLE N TIMES
READ REAL LIST(1)
PRINT REAL LIST(I) 742
ADD 1
STORE |

REPEAT

< THE FIRST M ELEMENTS IN LIST ARE UNSORTED

LOAD N
STORE B
402 LOAD 1
STORE 4
STORE 1
LOAD LISTHL)
STORE-BIG
CYCLE M-TIHES
LOAD BIG
SUBTRACT LISTIE)
IF POSITIVE GO TO 50
€< 816 = LIST(I) >
LOAD LIST (I}
STORE BIG
LOAD 1
STORE J
50: LOAD 1
ADD §
STORE 1
REPEAT .

€ REVERSE BIGGEST AND M'TH ELEMENTS @
LOAD LIST(M)
STORE LISTIN
LOAD BIG
STORE LIST(M)

€ M = SIZE OF UNSORTED LIST

€ J 1= 1 SIKCE BIG = LIST(1)
< INIVIALLY T 3= ]

< BIG 2= LIST(L) >

< BRANCH IF BIG =< LIST(IY

€ J 3= I OF MAX LIST(I) >

C 3= J+1 >

€ LIST(J} IS BIGGEST ELEHENT > R

€ UNSORTED LENGTH OF LIST NOW ONE SMALLER @

LOAD M
SUSTRACY 1
STORE K
SUBTRACT 1
AR PUSITIVE GO TO 40

< PRINT SORTLD LIST s .
REW LIKE 4

PRINT TEXT *ELEMENTS SORTED INTD ASCENDING ORDER:®

NEW LINE

LOAD 1

STORE |

CYCLE N TIMES
PRINT REAL LIST(I) 7,2
ADD 1
STORE 1

REPEAT

eND PRIGRAM

: SENTRY . :
TINE ELAPS

ED: 000,45 SECONDS

€ CONTINUE SORTING IF M MORE THAN L >

COMPILATION STATISTICS: 6 SCALARS AND NUMAFK CUNSTANTS USED, ©OB8JECT CODE =1574 BYTES

Listing of Example Program




OUTPUT FROM SORT PRCGRAM

: : THERE ARE 8 NUMBERS TO BE SORTED

UNSORTED ELEMENTSS
12.29 ° -=31.50 4.79 9.59 ~4.29 ,0.50° 8,79 - -0.09

ELEMENTS SCRTED INTO ASCENDING ORDERS
-31.50 ~4,29 ~J.09 0.50 4.79 8.79 9.59 12.29

TIME ELAPSED: 000,52 SECUNDS . PROGRAM EXECUTED 45T STATEMENTS AND PRINTED 24 LINES OF QUTPUT

- * Figure A3.3 Qutput ffom'Eiample Program




APPENDIX 4

Error Programs and Debug Facilities

A4.1 Example Error Program showing Program Information Dump -

The example program shown in Figure A4.1 illustrates
(i) The use of the OPTIONS.card. This has set the maximum
number of instructions that the program will execute to 1000. The other

cancellation parameters were unchanged.

(ii) An undeclared variable on card 011. This caused two
error messages and the latter prevented the statement from compiling

(see (iv)).

(iii) A minor syntax error on card 0l4. This was accepted

without comment by the compiler.

(iv) The execution of a deleted statement. Due to an
error (see (ii)) the statement on card 011 was not compiled and in
the statement's place in the object code, a call to a routine to

produce an error message was planted.

) The execution of an invalid CYCLE statement. When the

CYCLE statement on card 013 was executed, its cycle parameter (I) did

- 71 -
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$J08 ) ERROR PROGRAM "SHOWING PRUGRAM INFORMATION DUMP

OPTIONS={,,1) < SETS INSTRUCTION MAX TO 1000
001
002 BEGIN PROGRAM
003 INTEGER SCALAR I, VAR
004 INTEGER VECTUR V(6)
005
006 NEW LINE 4
007 PRINT TEXT *OUTPUT FROM ERROR PROUGRAM'
008 NE# LINE 3
009 LOAD -1
010 STURE I <1 3= -1
o1l STURE J
#%%  ERROR *## 050 [DENTIFIER vJ % NOT DECLARED
€% ERROR *%% 029 NO/INVALID OPERAND .
012 _ STORE V(1)
013 CYCLE. I TINES
ole PRINT. INTEGEK | 2 < MISSING CR4MA BEFORE 2
015 KEPEAT - . R
016 < PUT INTU CHOULESS LOOP:
017 10z LOAD I :
uls ADU 1
019 - STCRE 1 .
¢20 . 60 T 10 .
021 END PROGRAM

SENTRY

TIME eLAPSLD: 000.20 SECONDS COMPILATION STATISTICS: 4 SCALARS AND NUMBER CONSTANTS USED, OBJECT COOE

LUTPUT FROM ERROR PROGRAM

THE STATEMENT ON Cdku NUMEER Q11 HAS BEEN DELETED BY THE COGMPILER

*#5  FRRGR  ®#& 033 ON CA4D NUMBLR 013 CYCLE PARAMETER <O GR >100. 1 SUBSTITUTED

$4¢  ERRCR  *#¢ 035 [INSTRUCTIUN COUNT TuD HIGH. PROGRAM TERMINATED
-1

72

Figure A4.1 (part 1) Error Program showing Program Information Dump

382 BYTES

H
s
¢
i




73

EA2 223201

PRUGRAM [NFCRMATIUN QUNP
THE STATEMENT ON CakD NUMGER Q18 was BEING EXECUTED WHEN THE FRCG,

L L2 2 Y22

CONTENTS OF THE ACCUMULATCR 247 .

LASY 40 EXECUTED CaRD MUMBERS (EARLIEST FIRST);

RAM 4AS TERMINATED -

TYPE IS INTEGER

019; 020; o017; o1s; €193 0203
"019: 020; o017; o1s; 0193 Q2u;

.IDENTIFJER TYPE
1 . TB.. . INTEGER
VAR N INTEGER
ARRAY DUMP
ARRAY NAME ROAS COLS
v &
< -1 *+ UNUSED #32

TIME ELAPSED: 000.26 SECUNDS

Figure A4.1 (part 2)

017; e85 o0ls; 0201 M7 ols; o19;
O17; ©cl8s 019: 020: C17: o013: o1e:

VALuE

0203 0173 0195 019; w20: o17; o187
0205 017; 018; 019; 020; o17: 01s;

2646
*% UNUSED »+¢

TYPE
L INYEGER VECTOR
% UNUSED ==

‘¢.UNUSED 3 *3 UNUSED =% #% UNUSED »=

PRIGRAM EXECUTED 1001 STATEMENTS AND PRINTED 12 LINES OF QuTPUT

Error Program: showing Program Ipformation Dump

-
~
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not have a valid value (0 < I < 100). The CYCLE loop was executed once.

(vi) The termination of the program in an endless loop.
The statements on card 017 -~ 020 were executed until the maximum
instruction count was exceeded. This caused a terminal error which

provided a program information dump.

The "-1" appears after the terminal error message since although
it was placed in the output buffer when the statement on card 014 was
executed, the output buffer was never filled and could only be printed

when the program had finished execution.

(vii) The program information dump. This gives 'a full data

area dump and a trace of the last forty executed statements.

AL.2 - Example Program showing Debug Facilities

The example program shown in figure A4.2 illustrates the use

of the TRACE and MONITOR facilities.
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sJu8 EXAMPLE PROGRAN SHUWING DEBUG FACILITIES

001 BEGIN PRIGRAM

002 INTEGER SCALAR I

003 REAL SCALAR 2

€04 .

005 NEW LINE .

008 MONITOR ON . : .

007 TRACE ON :

003 LOAD 1.5 ) : .

009 CYCLE 3 TIMES . . . S . R

010 STORE 2 . . . o

on CONVERT TO INTEGER

012 STORE I

013 LOAD 2 .

014 *AOD 1.5 : . :

015 REPEAT .

oi6 MONITOR OFF
= . : 017 TRACE OFF B . ;
[ 018 PRINT REAL Z :
: - o1¢ PRINT INTEGER I _ . .

020 END PROGRAR

.

. ° SENTRY .
VIKE ELAPSED: 000,17 SECUNDS  COMPILATIGN STATISTICS: & SCALARS AND NUMBER CONSTANTS USED, MBJECT CODE = 364 BYTES

008 TRACE . :
. 008 ACCUMULATOR = 1.500000000000 TYPE 1S REAL
- 009 TRACE . .
010 TRACE
- 011 TRACE
011 ACCUNULATOR =. 2 TYPL IS INTEGER
012 TRAGE ) : -
013 TRACE .
013  ACCURULATOR = 1.500000000000 TYPE IS REAL
014 TRACE
014  ACCUMULATOR = ) 3.900000000000 . TYPE, IS REAL
015 TRACE
010 TRACE
011 IRACE
011 ACCURULATOR
012 TRACE
013 TRACE - . :
013 ACCUMULATOR = 3.000900090600 TYPE 1S KEAL - - :
TRACE

TYPE IS INTEGER

"
w

014" ACCUMULATOR = 4.500000000000 . TYPE IS REAL .
015 TRACE ) h )
010 TRACE
01l TRACE .
011 ACCUMULATUR TYPE S INTFGER

012 TRACE . ..
013 TRACE : ) ’

013  ACCUMULATOR
TRACE

: 014  ACCUMULATUR
i - : 015 TRACE

‘

i

[}
w

4.500000000000 TYPE IS REAL

©.0000000000C0 TYPE IS REAL

016 TRACE
017 TRACE
© 44500000 5

TIME ELAPSED: LU0.30 SECUNDS PROGRAM EXECUTED 28 STATEMENTS AND PRINTEO 34 LINES OF QuTPuUT

ssesesss ) END OF JUB STREAM ‘eteecoss

Figure A4,2 'Example Program showing Debug Facilities




APPENDIX 5

IPLAN Error Messages

The errors are listed in figure A5.1.

a) Compile Time Errors

Errors OCl, 041, 046, 047 and 048 prevent execution. Errors 024
and 029 prevent the statement from compiling and cause the dummy
statement coding to be planted in the statement's place in the object

code. Error 050 prints the undeclared identifier.

b) Non terminal Execution Time Errors

Errors 018 and 027 occur in read operations and print the data
card on which the error condition arose. Error 027 differs frbm error
018 by arising after a decimal point has been found in the number
being read in. After both errors the input printer is advanced to the
negt terminator (i.e. a comma or an end of a card). Error 037 occurs
when' the specified'field allows téo few spaces to print the operahd.
The specified field is overridden. If the instrqction.is PRINT
INTEGER, 11 spaces are allowed to print the operand. If the instruétion
is PRINT REAL the new fields are 11 and 3 (i.e. 11 places béfore the

decimal point and 3 after).

- 76 -
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COKPILE TIKE ERRORS

*6¢  ERROR ##& 001 UNDEFINED BRANCH, PROGRAM EXECUTION NOT ATTEMPTED

23 ERROR #%¢¥ 002 IDENTIFIER TRUNCATED TO 16 CHARACTERS

®8% ERROR #*0& 003 JLLEGAL CHARACTER, SCAN STOPPED

st ERROR  #%% 004 [ILLEGAL COMMA .

®&%  ERROR #%% Q06 ILLEGAL LEFT BRACKET

#2¢ ERRQOR #%% 007 ILLEGAL RIGHT BRACKET :

83 ERROR *%% 008 CHARACTER STORE OVERFLOW ’

#4&  ERROR #%#% 010 ODIMENSION TUO LARGE

$¢%  ERROR #%% 011 MDORE *REPEAT'S THAN *CYCLES'

$s&  ERROR %+ 012 ARRAY NOT OECLARED

®53  ERROR *%2 013 UNEXPECTED CHARAGCTER(S) FOUND. IGNORED

#o&%  ERROR #%% 023 ILLEGAL FIELD. OVERRIDDEN

®56  ERROR #%% 024 NO/INVALID KEYWORD

&3 ERROR  #%* 028 *BEGIN PROGRAM' NOT FIRST KEYWGRD

#&+ ERROR *%%¥ 029 NO/INVALID DPERAND

P . ¥ ERROR #%# 033 ILLEGAL CHARACTER IN REAL CONSTANT, SCAN STOPPED

| s&x  ERROR **% 024 ILLEGAL DIGIT, SCAN STOPPED

: . ®%%  ERROR * %% 038  TYPE CONFLICT
#¥+  ERROR #%% 040 INVALID OPTIONS CARD ’
#4& ERROR *#+ 041 ARRAYS DECLARED EXCEEDS 324 PROGRAM EXECUTION NOT ATTEMPTED : . !
#%3  ERROR *%& 042 NUMBER TOO LARGE, 1 DR 1.0 SUSSTITUTED ' '
#&* ERROR #%% 046 TUO MUCH UBJECT CODE GENERATED, PROGRAM EXECUTION NGT ATTEMPTED .
#¢+  ERROR #x* 047 STATEMENT HUMBERS EXCEEDS 100, PROGRAM EXECUTION NOT ATTEMPTED ) N

S #&%  ERROR *+* 043 GO TO STATEMENTS ‘EXCEEDS 100, PROGRAM EXECUTION NOT ATTEMPTED
B ®&% ERROR **# 050 [IDENTIFIER NOT DECLARED

EXECUTION TIME ERRORS (NOM-TERMINAL)

#¢&  ERROR #%& 005 ON CARD NUMBER 055 REAL NUMBER TOQ BIG TO BE CONVERTED TO INTEGER, -1 SUBSTITUTED
#e&  ERROR  #%* 009 OR CARD NUMBER 055 OPERAND HAS NOT BEEN ASSIGNED A VALUE, 1 SUBSTITUTED

*#2+  ERROR *#* Q14 ON CARD NUMBER 055 SU3SCRIPT 1 TQO HIGH, 1 SUASTITUTED

#x4  ERKROR *&+ Q15 ON CARD NUMBER 055 SUBSCRIPT 2 TOO HIGH, 1 SUBSTITUTED

*#+&  ERROR *¢+ 016 ON CARD NUMBER 055 SUBSCRIPT 1 TODO LOWy 1 SUBSTITUTED

k% ERROR #¢¢ 017 ON CARD MUMBER 055 SUBSCRIPT 2 T0O LOW, 1 SUBSTITUTED

4% ERROR #%# 013 ON CARD NUMBER 055 I[LLEGAL CHARACTER OR NUMBER TOO LARGE, OPERAND UNCHANGED

*#2x ERROR ##% 019 ON CARD NUMBER 055 WREAL OPERAND, ACCUMULATOR IS INTEGER AMD 1S CONVERTED TO REAL
##+ ERROR *%# 020 ON CARD NUMBER 055 INTEGER OPERAND, ACCUMULATOR IS5 REAL AND IS CONVERTED TD INTEGER
#t*¢ ERROR *%% 026 NO/MISPLACED $ENTRY CARD N .

#%¢&  ERROR  *** 027 ON CARD NUMBER 055 ILLEGAL CHARACTER, OPERAND HAS VALUE OF PRECEDING DIGITS

#&+  ERRUR ##% 030 ON CARD NUMBER 055 CYCLE PARAMETER <0 OR >100. 1 SUBSTITUTED

#e¢  ERROR #¢x 031 ON CARD NUMBER 055 REAL NUMBER TOO BIG TD 8E PRINTED ) . .
*2¢  ERRUR #%% 032 ON CARD NUMBER 055 NUMBER TO BE PRINTED HAS NOT BEEN ASSIGNED A VALUE ..
#¢&  ERROR ##* 037 ON CARD NUMBER 055 FIELD 10O SMALL. OVERRIDDEN

EXECUTION -TIME ERRORS (TERKINAL)

®¢s  ERROR *#8¢ 021 TIME EXCEEDED
$#5  ERROR ##% 025 END OF DATA i C . i
4% ERKCR #%2% 035 STATEMENT COUNT EXCEEDED
s&¢  ERROR *s¢ 036 ODUTPUT EXCEEDED )
#2%  ERROR #¢¢ 039 [LLEGAL TRANSFER HAS CAUSED INVALID EXECUTION OF “REPEAT
#9¢ ERRDR 6% 043 CATASTROPHIC ERROR. COMPILER INFORMATION ON FOLLOWING TKO PAGES
5%  ERROR ¥ 044 ATTEMPT TO DIVIDE BY ZERO
¥te. ERROR *#2 045 NUMBER IS OUT OF RANGE

. $#¢ ERRCR #%x 049 ERROR COUNT EXCEEDED

Figure A5.1 . IPLAN Error Messages

i
P
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c) Terminal Execution Time Errors

Errors 021, 035, .036 and 049 can be overridden at compile time

by use of the OPTIONS card (see paragraph 3 2.1).




APPENDIX 6

IPLAN Integer Version

This version of IPLAN has been introduced for situations where
the level of programming skill achieved will not exceed the capabilities

provided by working only with integer scalars.

Modification of keywords

The new keywords introduced are :
DECLARE Whiéh replaces INTEGER SCALAR
READ which replaces READ INTEGER
PRINT which replaces PRINT INTEGER

TITLE which replaces PRINT TEXT.

The following keywords are deleted from the IPLAN specifications

INTEGER SCALAR REAL SCALAR
INTEGER VECTOR REAL VECTOR
INTEGER MATRIX j REAL MATRIX
READ INTEGER. READ REAL
PRINT INTEGER PRINT REAL
CONVERT TO INTEGER PRINT TEXT

CONVERT TO REAL
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Undeclared variables are declared by default to a scalar

integer with an error message.

The integer version is not a subset of IPLAN since the keywords
DECLARE, READ, PRINT and TITLE do not exist in the main version. The
implementation is such that if the first declaration statement after
BEGIN PROGRAM is a DECLARE statement then the-integer version is

assumed, otherwise the main version is assumed.




APPENDIX 7

Character Map

Character Decimal Integer Biﬁary.Integer
A 1 | 1
B 2 10
C s 11
Ty 26 : 11010
) a 27 ' S 11011
b 28 11100
¢ 29 ' 11101 g
z 52 | 110100 i
0 53 110101 ’
1 54 | 110110,
2 s - 1o
9 62 111110
+ , 63 . ' 111111

- 81 -



Character

space

Decimal Integer

64
0
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88

89

Binary Integer

1000000
X
1000010
1000011
1000100
1000101
1000110
1000111
1001000
1001001
1001010
1001011
1001100
1001101
1001110
1001111
11010000
1010001
1010010
1010011
1010100
1010101
1010110
1010111
1011000

1011001

82



10.

References

Shantz, P.W., German, R.A., Mitchell, J.G., Shirly, R.S.K., aﬁd

Zarnke, C.R. WATFOR - The University of Waterloo FORTRAN IV
compiler., Comm. ACM 10, 1 (Jan. 1967), 41 - 44,
Moulton, P.G., and Muller, M.E. DITRAN - A compiler

emphasizing diagnostics. Comm. ACM 10, 1 (Jan. 1967),
45 - 52, : ‘

"Rosen, S., Spurgeon, R.A., and Donelly, J.K. PUFFT - The

Purdue University fast Fortranm translator. Comm. ACM 8, 11
(Nov. 1965), 661 - 666. ' - ' ’

IBM Corporation. FORTRAN IV Language. File 8360 - 25,

Form C28 - 6515 - 5 (1966). IBM Systems Reference Library,
Poughkeepsie, N.Y. : :

IBM Corporation. COBOL Language. File S360 - 24, Form
C28 - 6516 - 6 (1965). IBM Systems Reference Library,
Poughkeepsie, N.Y.

Brillinger, P.C., Ehle, B.H., and Graham, J.W. An Introduction
to the SPECTRE COMPUTER. University of Waterloo, Ontario. (1968)
‘Hull, T.E. Introduction to Computing. Prentice Hall.
Conway, R.W., and Maxwell, W.L. CORC : The Cornell

Computing Language. Comm. ACM 6,6 (June 1963), 317.
McClure, C.W., Sanderson, K., and Davis, J.  FORGO  COMMON

Program Library 1620 - 02.0.008, IBM Data Processing Program
Information Dept., Hawthorne, N.Y.

Shantz, P.W. Notes on the FORGO System. University of
Waterloo. :
Arden, B.W., Galler; B.A., and Graham, R.M, The internal

organisation of the MAD translator. Comm. ACM 4,1
(Jan. 1961), 28 - 31.

- 83 -




11.

12,

13

84

Computer Bulletin Working Party 7. Specimen courses in

computer science. Computer Bulletin (June 1967), 43 - 50
Naur, P. (Ed) Revised report on the algorithmic language
ALGOL 60. ' .

In : .

Rosen, S. (Ed) Programming Systems and Languages.

McGraw Hill (1967), 79 - 118.

IBM Corporation. Assembler Language. File S360 - 21,
Form €28 - 6514 - 5 (1967) .

IBM Corporation. Supervisor and Data Management Macro
Instructions. File 8360 - 36, Form C28 - 6647 - 0
(1967)

IBM Corporation. System 360 Brinciples of Operation.

File S360 - 01, Form A22 - 6821 - 7 (1968).
IBM Systems Reference Library, Poughkeepsie, N.Y.





