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ABSTRACT

The propagation of transient waves in linear, elastic,
isotropic and homogeneous plates and shells of revolution is
treated in this thesis. The analysis is based on the concept

of a wave as a carrier of discontinuities in the field var-
iable and/or its derivatives. The one to one relationship
that exists between a particular transient problem and the

corresponding time harmonic problem is first established and

then exploited. This relationship makes it possible to deal

with transient problems in terms of asymptotic series expan-

sions, thereby making the analysis very much simpler than the

usual method of discontinuity analysis.

The transient problems considered are due to impulsive

loads acting at the boundaries of structures and specified in
the form of strain, velocity or aceeleration boundary condi-

tions. Several numerical examples are solved to illustrate
the method of solution as well as to establish its validity.
The results are compared with existing solutions, wherever

possible, and we obtain excellent agreement. A numerical

superposition technique is developed which makes it possibre

to treat transient problems due to boundary loads of longer

duration. This technique is applied to sorve the probrems of
transient wave propagation in cylindrical sherl structures
subjected to ground excitation.
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CHAPTER I

INTRODUCTTON

The problems of the propagation of transient waves in
linear, elastic, isotropic and homogeneous plaLes and shelrs
are treated in this dissertation. rn the case of sheJ-rs,

consideration is restricted to shells of revol-ution with
straight line generators. The transient waves that we

consider are due to time dependent loads acting at the bound-

aries of the structure and specified in the form of strain,
verocity or accereration boundary conditions. Though the
treatment stems from the concept of the propagation of dis-
continuities, the method of solution is somewhat different
from the usual method of discontinuity analysis.

The equations of Naghdi tl] are employed in this
thesis and we obtain a set of coupred displacement equations
of motion for each case considered. Naghdi's equations are

based on the Cosserat theory and include the effects of trans-
verse shear' transverse normal stress and strain and rotatory
inertia. Due to the presence of lower order derivatives, the
governing displacement equations of motion are dispersive I2l
causing the distortion of transient waves and the phase

velocities of time harmonic waves to be frequency dependent.

However, finite wave front speeds are assured due to the
hyperbolic nature of these equations t3]. This is a primary
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requirement for solution by the method of discontinuity
analysis.

The method of discontinuity analysis is well known

and described in detail in 1.41 , t5l and t6l. According to

this method a wave is considered as a carrier of discontinui-

ties in the field variable and./or its derivatives. The order

of a wave is defined as the order of the lowest derivative of

the field variable that is discontinuous across the wavefront.

The discontinuities satisfy certain conditions across the

wavefront from which it is possible to obtain a set of recur-

sive relaLions known as transport-induction equations [5],

17l. These equations which govern the propagation of discon-

tinuities, can be solved together with the specified time-

dependent boundary condition to determine the discontinuities

of all order at the \^Tavefront. The transient sol-ution is

then represented in terms of a Taylor series expansion be-

hind the wavefront, where the coefficients involved are the

very discontinuities discussed above. Such expansions are

suggested in the monographs of Achenbach t4] and Friedlander

t8l. This method of solution will be known as the direct

method.

certain transient problems that we consider involve

boundary loads that act for a finite time. For such cases the

direct method if possible, will be tedious and it is prefer-

able to adapt the Greenrs function concept. We define Lhe

unit pulse solution as the transient solution to the problem
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with a boundary condition involving the Heaviside unit
function. This solution is easy to determine by the direct
method and upon differentiation with respect to time gives
the Greenrs function for the problem concerned t9]. The

Greenrs function, together with the Duhamel integral, wirl
yield the required transient solution IBl.

The corresponding time harmonic problem can be solved

by the Karal-Keller technique [10], where we formally assume

asymptotic time harmonic series solutions to the equations of
motion. The equations governing the variation of the co-

efficients in these series turn out to be exactry the trans-
port-induction equations for the unit pulse problem. There

is thus a one to one correspondence between the unit pulse

problem and the corresponding time harmonic problem. For a

given set of equations of motion it. is much simpler to gener-

ate the transport-induction equations by the Karal-Keller
technique than by the method of discontinuity analysis. This

fact is first established and then exploited in this thesis.

In Chapter II the aim is twofold ¡ vj-z to obtain the

solutions to all the possible wave types in a plate and to

establish the relationship between the unit pulse solution

and the corresponding time harmonic solution. Earlier in this

chapter the method of discontinuity analysis is described and

applied to obtain the transport-induction equations necessary

for a transj-ent solution. To this end the field equations are

cast into integral form in space-time allowing us to extract

the form of the fietd equations when derívatives of the dis-

placement are discontinuous t5]. The analysis yields a class-
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ification of the possible wave types in a plate together with
their speeds and propagation conditions. For each wave type

the transport-induction equations governing the propagation

of an arbitrary order displacement discontinuity are obtained.

These results are an extension to those presented by Cohen

[11] who dealt hrith the geometric acoustics case, which is
the value of the disturbance at the wavefront.

Later on in the same chapter, the Karal-Keller techni-
que is used to obtain general steady state time-harmonic

solutions to the plate equations. The coefficients in these

serj-es expansions are found to satisfy a set of recurrence

relations from which we obtain the very same classification
of the wave types. It is here that we establish the definite
relationship that exists between the unit pulse solution and

the corresponding time harmonic solution. The results ob-

tained turn out to be in complete agreement with those of
Kline and Kay t5] who considered the analogous problem for the

electromagnetic fíeld equations by a somewhat different
approach.

In general the waves of the various types become

coupled together in a fashion governed by the induction egua-

tions. We consider certain special types of wave motion in
which there is no coupling between wave types and refer to

these as pure wave motions. Some of these motions require

constraining body forces or couples in order to be maintained,

Finally in this chapter we consider the wave propagation
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problems corresponding to (i) a shear stress applied to a

circular cavity in an unbounded plate, and (ii) a bending

moment applied to a st.raight edge in an unbounded plate whose

faces are constrained between two rigid plates. The results
obtained are compared with existing closed form solutions

lr2l , [13] .

In Chapter III the propagation of axi-symmetric tran-
sients in shells of revolution with straight line generators

is considered. The Karal-Kel1er technique is used, firstly
to obtain the classification of the possible v¡ave types to-
gether with their speeds and propagati-on conditions. The

results so obtained are in agreement \^rith those of Cohen [14]

who proceeded along somewhat different lines. The transport-
induction equations for the various wave types are then ob-

tained. The prescribed boundary conditions together with the

appropriate transport-induction equations can be used to obtain

the solution to the given problem.

The series solutions obtained by our method are found

to converge slowIy, especially at large values of T, the time

elapsed after the wavefront. The probJ-em is similar as in the

eval-uaLion of the exponential of negative T using its Taylor

series expansion, when T is large. l"lainardi and Turchetti

[15] used Padõ approximants to accelerate the convergence of
these series solutions. !{e present a simple numerical super-

position technique as an alternative means of overcoming the

same difficulty. The results obtained by using this technique
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agree with those of Mainardi and Turchetti who used Padõ

approximants.

Later on in the chapter Ìve solve several numerical ex-

amples and discuss the results. The first example deals with
the longitudinal impact of a conical shell. Herein we not

onry illustrate our technique of solution, but al-so verify
them by comparing the results obtained with those obtained by

using Laplace transforms [16]. The next two examples treat
the propagation of axi-symmetric transients in a cylindrical
shell due to velocity and acceleration boundary conditions.
We also demonstrate how the response due to certain ground

motions resulting from earthquake and blast loading may be

obtained by incorporating the superposition technique. The

effect of shell l-ocation and the effect of the thickness of a

cylindrical shell on the response are next studied. FinaLly,

in this chapter we discuss the approximate rod theories avail-
abre for treating longitudinal transients in a cylinder.

The problem of general transient waves in cylindricar
shells is treated in chapter rv. The various displacement

components are expressed in the form of Fourier series in 0

(the circumferential coordinate) and the displacement egua-

tions of motion are written for each harmonic. The Karal--

Keller technique is used as before to obtain the classifica-
tion, speeds and propagation conditions of the possible wave

types - once again the resurts are in agreement with those

obtained by cohen [14]. T\¡¡o of the possibre wave types are

coupled and as a result we obtain a coupled transport equation
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for these trvo waves and coupled induction equations for the

other wave types. The prescribed boundary conditions, to-
gether with the transport-induction equations, can be used to
obtain the solution to the given transient problem.

The approximate rod and beam theories available for
treating transients in a cylinder are next discussed. This

is followed by three numericar examples. rn the first ex-
ample the rateral impact of a cylinder is treated and the

results obtained are compared with those obtained by using

Laprace transforms [r7]. The other two exampres dear with
the flexurar and torsional problems pertaining to a cylindri-
ca1 tank whose base is subjected to horizontal ground excita-
tion. rn the frexurar problem v¡e compare the solutions
obtained by using the shelI and beam theories. The effects
of higher order waves induced due to homogeneous boundary

conditions are illustrated and discussed in the first two

examples.
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CHAPTER I]

TRÄNSIENT AND TT¡48 HARMONIC WAVES IN PLATES

2.L Eguations of Motion

lrle consider the propagation of waves in linear, iso-
tropic and homogeneous elasLic plates. The plate eguations
that we utilize are those of linearised Cosserat plate theory
as developed by Naghdi ttl. These equations deveroped from

a din¿ct two-dimensionar approach are based on a director
model and are equivalent to those developed from three-dimen-
sional considerations, and. include the effects of transverse
shear deformation, transverse normal stress and strain and

rotatory inertia. The displacement equations of motion sep-

arate into tvro sets governing the ¿xte-n¿ionaL and. bending

motions, respectively llf]. These are

(À+u)v(v.u) + Àv63

for the extensional theory, and

uvr: +

arv2ô3

+9r=9ü'h:h:' (2.r)

(2.2)

(2.3)v'g + tt#åiìv(v.ô)

V.6 + v2u3 * ftu' = ftUt

for the bending theory.

;fu(ô+vus) + uf;' ! =Löun

(2.4)
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In the above equations the displacement of the Cosserat

plane is given by g* = (u,ut) and the displacement of the dir-
ector by 9o = (ô,ð3). The vectors :,9 represent the displace-
ments parallel to the plane of the ptate, while u3rô3 represent

the displacement normal to the plate. From the three-dimen-

sional point of view, the assumed displacement U* across the

plate space is given by [I1], tll

U*=t¡*+zô* (2.5)

where z ís the co-ordinate along the normal to the prate mid-

surface. v is the two-dimensional gradient operator in the

plane of the plate. Also À, U are Lamers constants, IrFt are
t2

body forces, L,L3 are body couples, a = lT, while the consti-
tutive coefficients cr3 and t1g are taken as constants and

could take on values depending on the problem at hand [11], [1]

The mass per unit area is p while h is the plate thickness.

The plate equations (2.1) (2.4) being hyperbolic,
ensure finite wave front velocities for the propagation of
disturbances l2l. In this respect they are similar to the

equations of motion in three-dimensional elasticity and are

suitable for studying the dynamic response in plates. However

due to the presence of terms of lower order differentiation,

these plate equations are dÍrpørttive [3]. Thus a pulse will
suffer distortion and the phase velocity of a harmonic wave-

train will depend on the frequency ür.



-10-

Introducing the notations

ll = lurô3), Y, = -(F,L3), !, = -(L,F3) (2.6)

conveniently written as

(2.7)

equations ( 2 .1)

(ô,u3), ¡; =

(2.4) can be

!oTo=PIorct=L'2

where L is a suitably defined línear second order differen--0
tial operator.

2.2 Transient lrlaves and Discontinuities
Consider a source of disturbance acting over some

curve in a homogeneous isotropic elastic plate as shown in
Figure Ia.l If the source begins to act at time t = 0, then

for t,>0 this disturbance will spread into the plate with a

constant wave front velocity G. The wave front will consti-
tut.e a family of parallel curves ü(xry¡ = Gt in the xty plane of

the plate while sweeping out a hypercone 0 (x,yrt) = 0 in
space-tirne. The value of the field at a point po (oo,yo,t-o) on

the wave front is called the geomøttLLcaL acouôtic field by

analogy to the geometrical optics situation arising in t5l.

The results to follow are readily generalized to nonhomogeneous platses.
The general features of the analysis are analogous to those presented
here. t'he complication appears as an algebraic one, due to the fact
that the speed of propagation is no longer constant.



-11-

The value of. this field at any point p(xoryort), ttto, behind

the wave front w.ill constitute the so-calleð, tnan¿ient or

pulle solution to the disturbance problem.

We assume a transient solution to eguation (2.7) in the

form of a Taylor's series expansion [4],[B] at the wave front
into the region behind it. Thus we write

co ânw <t-t >n
kr=Ir-alo-c n!o-'Atn 1t=to n! (2.8)

where 1,) = 0 if the argument is negative while J ]. indicates

the di¿eontinuitq ox ju^p of the argument across the wave

front. These discontinuities occur at the wave front sinie

the region ahead of the wave is undisturbed. The wave is thus

naturally a carrier of discontinuj-ties. The lowest order

derivative of Ta having a discontinuity defines the order of

the wave. À first order wave is called a shock or strain wave

and waves of this type will constitute the subject matter dealt

with herein. Higher order waves yield results which are com-

pletely analogous to those for first order waves. For first

order sraves, a knowledge of the first order discontinuities on

the wave front wilI constitute the geometric acoustics solution,

while a knowledge of the higher order discontinuities will

allow calcul-ation of the transient solution from equation (2.8).

Associated with the geometry of the wave front at any

point are its unit tangent À and unit normal :. We use 1, and

s to denote arc lengths along the wave cLrrve, and perpendicular
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to it, respectively" Thus s measures distance aÌong the rays

defined as the orthogonal trajectories to the wave curves,

which for homogeneous isotropic plates are straight lines. We

find it, convenient to define the vector differential operator

vo bY

vo = v . å k (2.st

This operator allows calculation of all one-sided directional
derivatives along the wave surface 4(x,y,t) = 0. In particular
the operator 3¡ t= defined by

Gu. V
-D

where r is the curvature of the

In terms of the operator

Lemma 17) takes the form

JvoYol =

(2.11)

$/ave f ront.

V the so-called Hadamard's
D

D-
Dt

â:-¿
ât. Gv"V (2.10)

calcuÌa-

the

front.
(xry,t) =

This is the so-called dítplacenønt derivative [7] and

tes rate of change as seen by an observer moving along

rays with the wave speed G, i.e. moving with the wave

Apptying equation (2.10)to the wave surface equation 0

rf (x,V) Gt = 0, v/e compute that

=VO=VürK=-Vtüv

voJY"l (2.r2)
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In what is to follow it is convenient to represent

vector quantities in terms of components tangent and normal

to the wave front. Thus we write

w-=rÀÀ+rYu
-ct o- û- (2.r3)

and moreover define the directional derivatives

uq7 =À.v, å=:.v (2.r4)

In particular we obtain from equations (2.I2), (2.9) and (2.I4)z

the compatibility relations

dw

Jïo,r,*rl = -oj*oi * 3¡Jyo,"l, n ¿ 0, (2-rs)

where the comma forlowed by the subscript n indicates an
thn order time derivative.

rn order to determine the possible types csf discontin-
uities and their behaviour at the wave front we must utilize
the field equations (2.7) to obtain the appropriate governing

discontinuity equations. since we are dealing with first
order wav€s we shal1 require discontinuity equations of a

lower order than can be obtained by taking the jumps of an

nth order (n>0) time derivative of equation(2.7). These

rower order equations are obtained by fol-lowing the proce-.
dure utirised in t5l to deal with Maxwell,s equations. lve
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introduce a teatíng function e, which possesses derivatives
of aI1 order- The testing function and it.s derivatives vanish
on and outside the boundary âR of a domain R in space-time.
lvlultiplyinq the extensional field equation (2.I) and (2.2) by
n, integrating over R and utirising integration by parts we

obtai-n

(À+¡r¡ vn (v.g)+Àvoo r-*öú-nf,Il = o (2.16)

3+(À+2u)hO6t-À(V0.u)fr-paOð3-Opr,:¡ 
= O (2.I7)

Equations (2-16) and (2.r7) are integrar forms of the fierd
equations (2-r) and (2-z¡ respectivery, and. these are mathem-

atically equívalent to one another in regions where the deri-
vatives 

,involved 
are .continuous. We also define ù = u, r etc.

We now assume the surface of discontinuity ó(xryrt) =

to pass through the region R, dividing it into regions Rl

and R2 as in Figure lb. Reversing the procedure used to ob-
tain equations (2.16) and (2.:_1¡ with appropriate integration
by parts over the domains R, and Re, inside of which the
necessary derivatives are continuous, r^re f ind2

(v{.V)ul + (l+¡r) V0{V. ul + rv0 (2.r8)

r
l{u(V0.V)u+

J
R

r
f {a, (vo.v) ô

J
R

J6'l + fr"u{ Jyl=Q

In this analysis we

that the continuity

assume that the body

of f has been used-c

forces f are C@ and note
-0

in obtaining (2.18) and (2.19)
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orl(vO.v)6'l Àhtv4"ul + occ¡å3] = o . (2.Ls)

Equations (2.18) and (2.I9) are the required discontinuity
equations and are a conseguence of the field equations (2-l-)

and (2.2) at a surface of discontinuity. In an analogous

fashion, the plate bending equations (2.3) and (2.4) lead to
the discontinuity equations.

-r(v6.v)ôt + (#åËìvôrv.ôl -ho*l''l + f;n.til = o , (2.20)

Iv0.jl+l(vO.v)u3l.fuc{ù31=0 (2.2r)

In order to obtain discontinuity equations .of higher

order, i.e. governing jumps in higher order derivativesr wê

need only take the jumps of "r,y ,rth order (n>0) time deriva-
tive of equation (2.7) . This leads to

ul(:-v):,r,1 + (À+¡1¡YIv':,r,J + Àvtô3nl + c*J3,n+rl
(2.22',)

= c{pVo.Ivg,r,-rl + (À+¡r) VoJV.:,r,-rl + ÀVD{6?"-rl} '

orl(y.v) ô?"i Àt'rJ:.g,,,1 + cpq[61r,*rl

= G{arVo.JVô;,.,-tl - (^+2U)htôlr,-rl ÀhvD.jg,r,-rl} , 
(2'23)

for the extensional theory, and

J (:.v) 9,"I * 
(ä+31ì 

:Io. !,,,l.u* :J"I"I*ff;ãI9,,,*rI
(2.24)

: G{vD. Ivg, n-rr * 
(?+#ì oojo. 9,,,_rl-hjg,,,_rJ-þ".vojr?,,_rl},
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c{vD"J9,r,_rl+VD.

for the bending theory. we note that in writing equations
(2-22) - (2.25) we have modified their forms by use of equa-

tion (2.9) .

I E xtøn¿ ío naÍ- Lt) av e¿

we now turn our attention to the consequences of the
above discontinuity equations for the case of extensional_

waves. Equations (2.18) and (2.I9) determine the p,Lopagation

eonditíon¿ for extensional waves. These conditions determine

the possibre types of waves which can propagater ês welr as

their associated speeds of propagation. rf we take the scalar
product of equation (2.18) wittr À and u, utilise equation (2.13)

as well as the appropriate first order compatibility relation
obtained from equation (2.I5) by putting n = 0 and Jyr] = Ol

we find from equations (2.18) and (2.l-9) that

Iy"9,,,1*I(v'v)u?

(cf -c'zl t.r), 1 = o, (cfi-c'?

where

= o, {cf-c'llol,l = o, Q.26)

:I.fft"?,,*rl 
= tVu?r,-rl ],

(2.25)

(2.27 )

) tu), ¡

uh
P , GI =

(ì+zu )fr 12 = h-, (:_ :Psqo,

Equations (2.26) will define the three types of waves. For

each of these, if the values of the possible jurnps are given

on an initial curve, their variations as they move with the
wave front will be governed by equations (z-22) and (2.23) .
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ïf we take the scalar product of equation (2.22) witfr À and

u, use equations (2.12)-(2.15), þre obtain as a consequence of
equations (2.22) and (2.23), a system of three first order
differential equations which involve jurnps of order n, (n-1)

and (n-2) in the field quantities. These equations determine

t.}:e tnanápo,Lt-índuetLon equations for each type of wave by

substitution of the appropriate sorution to equations (2.26)

into them. we now proceed to give a crassification of the

wave types along with their transport-induction equations.

(i) Lctngitud.ína.L 0tave

t,.,Y,t * o , ju),i = jôl,J = o , c2 = ci , e.2B)

,å;l'Y,,1-r ru),,1 = -#-, t å¡.1,,),,1 -cr. å;,0. Iy,,.,_rl) )
(2.2e)

,-]rD (rô?nr-"" åJô1,,-r1,.*r.v,J:,n-rJ,

J,'.1,.,1 = - ( r-2v) cL,rå;J')r,-rJ-*J'),.,_rl-o"ì.vt J:,r,_zl)
(2.30)

*GL fu,"' v. J:, n_2!* 2v""!ô lr,_ r!- lrYr,_rl),

^2 ^
tcl-c2) rôtnr :,-ä.ï!,1 ,Y,,_rl-""v. jg,,", _z!)-

G-u 
(2.3I)

"" o 3 
t'å;J ô 1,.,- r I -* J 

6 3,,-, 1 ) +clc! v' j 6 1,,- r I -#l ô l r,- zl

(ii) Sl.t¿an- Wave

J")rL¡o, joY,l= jôl,l=o,cz=c2 , (2.32)
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rj;1")"1 -* r,,),,r. = -,,|¡,t¡ r r"Y,,r -cr(v. j3,,,_rr )

-zvcrt6lr,_rl ) -crl.v2j:,rr_rl ,

J"Y"J = ", fuI')"-rl + 2o-v)", trþrr,rY"_r.J -*j'Y,,_rl)
(2.34)

-(r-2v)"iy.o'Jt,r,_rl + 2vcr ( rôln_tl-c, $=roi*zl) -c; j;tv.J:,,,_rl) ,

tcfi-clr J6 l"l = ,t'*,F ,J'Y"-rl-", v. j3,,,-zl ) - 
"r.Ê r ,$;ro I ,,- ,l

(2.3s)
-rtö1,,-rt) + 

"i"3v.jô ? n-zl-{Ë¡ô 1,,-zJ

(iii) Squø¿z¿- g¡adi¿nt wav¿

tô?rl * o , j:,rJ = 0., G2

(2.33)

(2.36)

,å;lô l,,l-r r6 l,,r = 1t'fi, *,J"Y"l-"rv..!:,,.,-, r )
---s 

e.37)
+ "rvrJô1,,-rl-+ rô?.,-rl,

OG;

rcf-clr j,'Y,.,1 = oi",,,å;J,,Y,,-rl-*j"Y,,-rl I -"i"3:.vtJ:, n-zt-

+ ¡ft¡, r "Í, åut'Ì'-,.i-"í,", 3;(v-J:,,,-zl) ) (2.38)

*rt'*r "i", ( t61,,-rJ-"rå;Jol,,-rt I ,
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{";-cå) tu}nl = "l"rr r$rr"}"-rl-oJ'},,-rl-"

G

+ Ats-r$utc;r"Yn-rl-.Í,", rv.J:,n-z)-) - (

"l'vti:'r,-zl)
(2 .3s )

#^,"å"3Jô1,,- z!) '

We have written the above equations in terms of the Poisson's

ratio v and we note that n > I in them. l"loreover we add that

in obtaining the above equations we have used t - rf (xry)C-I

to eliminate explicit dependence on time at the wave front.
Equations (2.29), (2.33) ano (2.37) are the transport or

deeaq equations and determine the variation in the quantities

JrrY"l, l")"1 and Jô1,.,1, respectively , for the three types of

waves'provided these are specified on an initial wave curve.

The role played by the pairs of equations following the decay

equation in each case is to determine the higher order dis-

continuities induced by those of lower order. Moreover, they

bring into play the coupling of wave types that will occur

for the discontinuities of order greater than one.

II Bending U)avø¿

For the case of benoing waves, the analysis is entirely
analogous to that of extensional- waves. In this case we utilise
equations (2.20) , (2.2J-) to obtain the propagation conditions

and equations (2.24), (2.25) to obtain the transport-induction

equations. We now present the classification and transport-

induction equations for the three types of bending waves"
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(i) Bønding wave

t o , Io),1

(l+v¡ ^ ^2
t r-vl *BtT

rcfi-clr J"l,.,J

+ .å"i r v.Jg,

-r + lt"? .r),n-I- cts- n-I-

= Jtl,l =Jo), I Or'Gz ^2
=.(J B

(2.40)

(2.4r)

(2.43)

(2.44)

(2.4s)

,å;loY,,l-r roY,.,r = - t+' tåz lo)"1-""å;(v. Jg,,,-rl))

cz G- c'
--I-f"l I + =Iu.Vti6, .l-+ (
oG;- n- GB- n-I- o.B

tcl-cfir -"""1,rå;Jo)"-rl-*J o)"-rl) *

r6Y

ro) r =-n-

$or roY

t6Y I = tul I =ry I l-
ro),1

,,-rl-""v' Jq,
^z^t(:Lr

,,_zl)- å 
*trol

ciciò.v'J9,,,_zl
(2.42)

n-.,l.*fu1"',r,-zl) '

-l+roY -t)n-1- - n-l -
= -crcfir tå;I"?r,-r]- rJu?

^l+V2tr.tl ^l)¡-l-¿- - n-¿-

( ii) Twi¿ting wavø

lo, orG2=cfi

,9-ro) r-rctô) r =os- n- - ft:

c?.* "rl'vt Jg 'n- rl *;

l+*lår t r6Y,,t -o"v.ig,

(rô) .l * *r'; .t)
- n-l.- o,L- n-I-

- l)n-I-

t
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rci-cft) tôYnt - gå"* ,rLJuY,,-rl-* toY,,-rt I + 1Ér"?,'-rl

+ [+*ì"å tå¡to],,- rl-", å;,0-I9,,,-zJ)] -"åy'v'Jg 'n-zt Q '46)

aa

" + r roY,,-zl * å;J"?,,-zll'

rcfi-clt J"?"1

+ "åoi 
(v.Jl,r,-rl. +

, rå;I' 1,,- rl-* J" ?,.,-,. J)

v2 [,.r? ^ ll- Ír- ¿-

-"r"i.JoYr,- rl
(2 .47 )

= -"roi

(iii) Kínt¿ wav ø

ru? I I o ,
- I-

,9-t"? t-rt"?-l =-ds; 'n- - ¡r-

ro) r =^- n-

(r+v) ^ ^z d+ i5, tK'r df,

"*"å t t$;re Ì,,-rl-*I61"-rl,

( t ôYn- rl-o*v .Ji , ,,- zl) *

(2 .48).

ciciì.v' j6 ,r,_z I

(!ô),,-zl + åfl"ln-zL)
(2. s1)

O,G, =tK

-J6Y"l + "*v-I9,r,-r.l 
+ "*vt!"?r,-rl' Q'49)

rci-ci) i6l,,l = "*"å , rktôYr,-r.l -r tôY,,-rl)

+ lì*ì o*"i t å¡,u),,-rl-"*å;,0'!9',-,-r1l ] -"i"å:'v'J9"'-zl

^3* F,"*jôY,,-rl + "*å;J'?,,-zJ-!"?r,-rl) ' 
(2's0)

t ci-cir
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In equations (2.40 ) - ( 2 .51) tnre have set

4 (À+u) uh a2 uh õz-ïTTãIP-' '1, - n' 'K
(2.52)

The above results for boLh the extensional and bending

waves are generalisations of those obtained by Cohen in [11].

We remark that the procedure used here to obtain the proPaga-

tion conditions is an alternative to that utilised in [11].

We note finally that the transport equations for aII

of the above types of waves are of the form

(2.s3)

0
Ĵ=- p^2*rB -

This equation has the s

!t',.,1 = !t ', /r-\ L
'nol,(roi

olution
c

* 9o& f,*¿t
J
q

o

ndicates

(2.54)

where the subscript o i

wave-curve.

evaluation at the initial

2.3 Steadv State Time Harmonic tnJaves

Cohen in [1I] examined the question of steady state time

harmonic pLan¿ wave solutions of the plate equations (2.7) in

the absence of bocly forces, i.e. with fo = 0. For waves of

this type the possible phase velocities v = ok-I, where o is

the frequency and k the wave number'were found as a function

of wave number. It was found that with the exception of one

mode of propagation in the case of extensional $raves, that all

other ltrave types were dispersive. In the limiting case of
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infinite frequency or wave number, a11 phase velocities
reduced to the çorresponding speeds of propagation of pulses
found in section 2-2 of this chapter. ¡iere we seek harmonic
h¡ave sorutions of a more general nature than those in [11],
corresponding to waves which are generally curved and which
arise as a consequence of a time harmonic dÍsturbance applied
to an arbitrary curve in the plane of the p1ate.

Thus we begin by assuming an asymptotic series for the
displacements in the form

-o
A
-Cn
( j-t^l) t"Í'(s-t) in=o

(2"s5)

which is to represent the steady state behaviour of the plate
for large frequencies. series of this type were introduced
in [10],where s is called the phate function,to investigate
steady state time harmonic behaviour in an unbounded three-
dimensionar elastic non-dispersive medium. For high frequen-
cies the first ternr in the series predominates and v/e may

regard this as an approximation to the solution. For other
frequencies the higher order terms in the series may be viewed

as corrections to the disturbance arising due to (a) the dis-
persive nature of the governing equations, (b) the geometry

of the wave bcing non-pJ-anar, ancl (c) the variation of
amplitude over the wave.

On substituting equation (2.55)
(2-2) with I, = g , serring l1r, = (ln,
that the coefficients of powers of (iur)

into equation (2.I) and

O;) and formally requiring
separately vanish, wÊ
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obtain the recurrence relations for n : las

(Vs.V)A - +uV2sA
-n-l *n-1

Àvs A: , (2.56)n-¡

(a -.vs)
-n-I

(2.57 )

lrriu (vs) 2

+ (À+U) Vs

+ uV2a
-fr- ¿

-l--ph ) + (À+U)VS(An.VS) + 2V

(V.e .) + (À+¡r¡Y1o ..Vs) +
-n-I -n-l

+ (À+y)v(v.À ^) + Àve3 ^ =
-ll- Z n- ¿

n3{a. (Vs) 2-pa} + 2aB (Vs.V)oå_r * orVtr o;_r-Àh

+ orvto,l_r- (À+2y) A;_2-Àh (v. An_2) = o

The above equations govern v/aves of the type (2.55) witirin the
framework of the extensional theory.

Similarly substituting equation (2.55) into equations
(2 ' 3) and (2 - 4) with lz = 0 , setting [zn = (nr., el) we obtain
for the bending theory the recurrence ::elatic;ns

lr,{ (vs)'-p(uht-t }+t*#iìvs(Bn.vs) + 2 (vs.v)3r,_r * v2s ln_r

tmì {vs tv.l,,-r) * v (Pn-

Vt!,.,_ 2. dt(pho) -t {e3_rVs +

e3{(vs)2
n

+ V.a
-t1- ¿

-l-Pcs J + 2

+ v2g3 ^
^-¿

(Vs.V)s3
n-I

-u

+ V2s B3n-r B _.Vs
-n-l-

,.VS) +

B ^+-n-¿

v(v.s ^))-n- ¿

Ve3 ^) = Qn-¿

(2.58)

(2 "se)

A = 0,
-0,O

first order

In equations (2.56)-(2.59) we set the leading term
an assumption which is consistent with the case of
waves. In addition r r¡lê set
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(2.60)

in the recurrence relations (2.56)-(2.59). If we now put n =

I in equations (2.56) and (2"57) and take the scalar product

of equation (2.56 ) with À and u , lve obtain the set of equations

(2.26) and note that the magnitude lVsl = c-r. Thus it foll-ows

immediately that the classification of harmonic extensional

waves corresponds directly to those of the extensional pulse

propagation case. In addition, the equations (2.56) and (2.57)

for n ) f, yield a set of equations which are precisely the

transport-induction equations given in the previous section

for the extensional pulse propagation problem. Entirely analo-

gous remarks and results pertain to equations (2.58) and (2.59)

and the corresponding bending hrave classification and transport-
induction equations given in section 2.2.

We thus see that there is a one to one correspondence

between pulse solutions in the form (2.8) and steady state

time harmonic solutions (2.55). For a given set of boundary

conditions, solution of the transport-induction equations given

in section 2.2, simultaneously solves each of these problems.

The. method of obtaining the transport-induction equations by

using asymptotic series of the type (2.55) is called the Karal-

Keller technique [I0] " We note that the geometric acoustics

soLution corresponds to the leading term in equation (2.55)

and hence for large u), the amptitude of the harmonic solution

decays as the geometrical acoustics solution. l'loreover, the

curves of constant phase correspond to the wave fronts in the

s = c-t,J, , 4or, = (-l)nlyo,r,l , n ) 1 ,
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pulse propagation problem, and we may regard this leading
term as representing a decaying harmonic h/ave whose phase

velocity is equal to the wave front velocity.
We shall now give a specific example of the afore-

mentioned correspondence. Define the unít puLte solution wH
-g

as the transient solution of equation (2.7) with fo : 0

satisfying the boundary condition

;:=ùoo"(t) , (2-6L)_ct _co

where w = ; (g) is specified on an initial curve C in the,0,o -o'0 - o

plate and H(t) is the Heaviside function.3 From equations
(2.55) and (2.60) one sees that corresponding t" yl will be a

steady state time harmonic solution w1 of equation (2.7) with_o

f = O, satisfying the boundary condition
-G

- o - -ir¡tw = w e ' (2.62)
¿&' -C,O

on the initial curve Co.

An alternate procedure for showing this correspondence

between wH. and wl may be produced by foltowing an analysis
-d, -cf

similar to that used in t5l. The transient solution to egua-

tion (2.7) satisfying an arbitrary time dependent boundary

condition

to' : ioo tttl ' (2'63)

on C^, may be given in the form of a Duhamel integral f9lo

AS

3

The Heaviside function is defined by H(t) = 0, t < 0, and H(t) = 1,
t >. 0. It is related to the Dirac delta function by 

^(t) 
= rl(t), where

tJle differentiation is in the generalised sense t8l.



t
^(

Yo = hJ *|tt-')r(t)dt
o

Applying equation (2.63) to the choice f (t) = t{

after repeated integration by parts and letting
tain a steady state solution in the form of the
tith too = 0 and 1or, = (-r) !lÏ,"1 , for n I r.
(2.64) may be written in the equivalent form

t
f 

^.lo = I y"(t-t)f (r)dt
Jwhere o
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(2.64)

(t) e-t",

t -+ -, We Ob_

series (2.55)
4 Equation

(2.6s)

A .H
Yo = Y0 (2.66)

a Greenrs function for the problem at
to what may be termed the unit ímpuLre

(2.7), arising due to the boundary

each
0 nake

wave,
of this
it rafses

(2 .67 )

onC
o

once a unit purse solution orl n-r been found for any
boundary we courd use it to find solutions corresponding to
arbitrary time dependence on the boundary. on the other hand
if this time dependence is Fourier analyzed to obtain its
frequency spectrum, then we can use the time harmonic sorution
fÏ to obtain sol-utions by Fourier tr¡nthø¿i¿.

Vùe observe that wA is
-0

hand. ft corresponds

solution of equation

condition

4 rn actual fact we obtafn up to three serres of this type fort = Ir2, depending upon how many of the wave surfaces þ(xryrt) =contributions on belng crossed in the fnÈegration process.
t

I'Ie observe that the solutio., gj corresponds to a zeroth orderwhich ís inadmlssibre on physic"ïogro.r'd". However, if we thinksolutíon as giving velocfty (or strain) rather than displacementno concepEual probleu.
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2.4 Uncoupled Wave Motíons

In generaln for each of the classes of extensional

and bending wavås, coupling will occur between the various

wave types. As seen in [11] tfris is true even in the case of
plane waves, where coupling occurs between the longitudinal
and sgueeze gradient waves within the framework of the exten-

sional theory and between the bending and kink waves within
the framework of the bending theory. The shear and twisting
waves were uncoupled and might be ref erred to as purLe r¡¡aves.

our objective here is to see if it is possibì-e to expand the

category of pure plane waves. This in fact can be done by

introducing suitabre constrained motions, for which the con-

straints are produced by application of appropriate body

forces f
-d

(i) Pune TiLtLng and Twi¿tíng Nave¿

In equations (2.3) , (2.4) we assume w2 = î, (xrt),

9 = Sti + 6'!, u3 = 0, ! = 0, where !,! are unit vect.ors along

the rectangular cartesian coordinate axes x,y. We obtain,

^2¡2 12 \:
c:èl|.*:-{62=o'I àxz d

â2ð2

at2

Equation (2.68), defining a pure tilting6 wave corres-

ponds to a t.ilting of the plate cross-section and requires a

(2.6e)

bending wave, but since
since the terminology

6

LogicalJ-y we should call this wave a pure
this terminology usually has another meaning and
tilting is descriptive, we inrroduce it here.
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constraining body force given by equation (2.68)2. This con_

straint can be ñraintained by sandwichj_ng the plate between

two rigid layers. Equation (2.69) defines a pure twisting hrave

and its existence requires no constraint.

(ii) Putte Shøa.¡t and Squeeze Gnadient Utav¿¿

In equations (2.7) and (2.2) we assume wl = yr (x,t),

I = utl * rtl, ur = O, L3 = o,I: Fri and find that these
conditions are satisfied provided

â2ô3 ^2 a2ô3 G:

ar, -"roJ*+63=o,F'=-P# , (2.70)

ð2u2 a2 ð2u2 
^Vñ

ât2 t âx2

ð2u3 ^z A2u3 ^ ,l - ^2 âu3

}f-"*rr* *KGftu3=o,L' =cKF (2.72)

(2.7L)

Equation (2.70) defines a pure squeeze grad.ient wave and re-
quires that the plate midsurface be made inextensible.
Eguation (2.7I) governs the propagation of pure shear waves

and their existence requires no constraint.

(iii) Punø Kinl¿ Alave¿

In equation (2.3) and (2.4) we now assume T, = y, (x,t) ,

P3 ='* rr', K > 0, 6 = O, L - Lti and we obtain the gover-P_
ning equation of a plane kink wave as
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rn order that this wave propagates, a constraining couple Lr
must be applied in order to assure that normars to the plane
of the plate are constrained to remain normar. rn the case
K I 0, the problem corresponds to a plate on an elastic
foundation with modulus K.

vüe note that each of the waves defined by equations
(2-68)-(2-70) and (2.72) satisfy the same differential equa-
tion and some form of constraining equation and hence it is
only necessary to dear with one of these in order to sol-ve

them all. The governing Lransport eguation z may be obtained
by making the appropriate substitutions in the appropriate
general forms of these in section 2.2, or by directly seeking
a solution to equation (2.68)r in the form (2.55). An example
will be considered in the next section.

The pure shear and twisting plane \^/aves defined by
equations (2.7I) and (2.69) may be generalized. By examining
the induction equations (2.34) | (2.3s) and (2.46), (2.47),
which correspond to these two types of wavesr wê see that no

coupling will exist provided the wave discontinuities are con-
stant along the wave fronts. From the form of the transport
equations we see that this wilr be true only if the wave curves
are of constant curvature, i.e. circular and if the discontin-
uities are constant on the initial \¡¡ave curve. Hence we can
have pure shear and twisting r¡/aves with circular wave fronts.

7 Since there is no eoupling, the induction equations rnake no contrÍbutfonto the anarysís. They are replaced by the apoi.rpriate constraint equatlons.For the case K # 0, the transporÈ equatron (ã.¿9) for rhe kink wave doesnot apply, as it r.¡as derfved on the basfs of c- body forces.
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2.5 Examples

(i) Ton¿LonaL Sh¿att UlaveÁ

we consider the problem of an unbounded plate having

a circular cavity of radius âo and subjected to a steady

state time harmonic uniform shear stress. For this problem

the curves of constant phase will be concentric circl-es and

it is natural to employ plane polar coordinates (rr0¡ to

formulate the problem. If we assume

: = u(r)À , 63 = 0 , I, - 0 , L3 = 0 , (2.73)

then the governing equations (2.I) and (2.2) reduce to

â"*! "_u =1 â2u , (2.74)
^ t r âr ) -2 ^., 

t
âr' 12 ci at2

where u denotes the circumferential- component of displacement.

The appropriate boundary condition is

, âu u. -iotrr0 = u(f -;) =.o. -*" at r =.o , (2.75)

where .o is a constant. From equaLions (2.33) , (2.60)2 ,

(2.53) and (2.54) we obtain the solution to the appropriate

transport equation as

An = A,,,.",* - *f:,") (:þ. r Tþ - F,(r)a, e.76)
a

From equations (2.75) and (2.76) we obtain
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TG I
A = o Tl

1U\

I
2

,A='2

(þ)uJ,û,(g'A

a\
ol

-t
rl

3tczffft'
5

'(þ)1

t3

(a. )1 (3"i ,

(2 "77)
15r G3oT
128Ia3o

etc.

Moreover sincelvsl = Git, v¡e also find

The solution

setting w, =

and (2.78') .

to

uÀ

(2.78)

the problem is given by equation (2.55) on

-rd 1rr, = Ar,¡ and utilising equations (2.77')

The solution to the corresponding unit pulse problem

is given by

A
n

nt
æ

HFu=L
n=1

(-1) " <r- (r-.o ) /c.?" (2.79)

The resulting shear stress may now be calculated from

equations (2.75) | and (2.79) . This problem has been solved

in closed form by Goodier and Jahsman LIzl, using Laplace

transform technigues. Achenbach in I4] deart with the soru-

tion via discontinuity analysis, proceeding in a slightly
different but equivalent fashion to that emproyed here. To

illustrate the efficiency of the procedure v¡e compute the

shear stress using the three coefficients given in equation
(2.77). The results are plotted in Figure 2 where they are

compared with the exact analysis of [12]. The first term

alone in the series qives the wave front solution and hence
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the perfect agreement in the peak values " By using additi-

onal terms in the series (2.79) we could improve the agree-

ment elsewhere. Similar results for the velocity ùH showed

analogous comparison with those in [12].

(ii) Pute TíI-tíng U)ave¿

As an illustration of the class of constrained waves

discussed earlier, we deal with pure tilting waves as governed

by equation (2.68)r and subject to the boundary condition

*=e-i't'atx=o

where for convenience \^Ie have set 6 t =

(2.4I), Q.60)z and conditions leading

find the required transport equation to

ô. From equations

to equation (2.68) we

be

(2.81)

(2.80)

dB
--.!' =dx

where A
-2n = I v.n-

å " -5 
u'""-' 

- h!2 = crJ' , n > I
"tt-L-T - , ¡ u 

KB CIX-

FromlVSl = Ç-t and equation (2.80) we findrrB

^xÞ=õ-,
B

(2.82)

subject to (2.80) have the solutionwhile equations

n
Bn+l = -G"nt I

m=n

nn=lfor
m!-(m-klTtr!

equation (2

- n*Ieven n and 7-
Substituting

.55) with w, =

( 2. B1)

-2m
rlt

where

(Ð=
into

,h, -lo (-r)'*-u*' (i)(iläJ'-', (2-83)

foroddnrn>0and

equation (2.82) and (2.83)

ôv and Arr, = B'y gives the
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solution to the posed time harmonic probrem. The constraining
body force may be calculated using equation (2.6g)2.

The sorution to -the corresponding unit purse probrem
i.e. one for which

=H(t) râtx=O (2.84)

is given by

âô
¡;

üænô" = I f_fl
n=I

X\
dí

B
nil <t-

This solution can be used to obtain the Green's function 6^

by application of equation (2.66) , i.e. 6A : åH.

crosed forms for the time-harmonic solution 6ûr and

unit impurse sorution ô^ may be obtained from equation (2.68)
by the methods of separation of variabres and Laplace trans-
forms, respectively. These are given in tI3] and are

(2.8s)

(2.86)

(2.87)

¡üJ GÞ -i(kx-trtt): = -(r,rt 1", t '(r_;î) -

^ô̂ =GsJ

k2 = 4rt- 4lG: u'
IJ

o (bt t'-*1?')E , rtB
-x

Gs

where 
"o 

is the Besser function of order zero. when equation
(2-86) is expanded in inverse pov/ers of (it^r), we obtain term
by term agreement with our Lime harmonic sorution as given
by equations (2.55), (2-92) and (2.83) . Moreover, when the
Besselrs function in equation (2.87) is expanded as a Taylor
series about | = 

= 
r w€ obtain precisely the series for ô^tB

obtained by differentiating eguation (2.85)
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C}IAPTER III

AXI-SYMMETRTC TRANSIENTS IN S1IELLS OF REVOLUTTON

3.1 Eguations of Motion

We now consider the propagation of axi-symmetric

transients in linear, isotropic and homogeneous sherrs of
revolution with straight line generators. Thus the solutions
to be presented in this chapter are applicabre to conical and

cylindrical shells and to circular plates. We utilise
Naghdirs equations [1] which are based on the cosserat theory

and which include the effects of transverse shear, transverse

normar stress and strain and rotatory inertia. rf the meri-
dional and normar dispracements of the shelr midsurface, the

rotation of the normal to t.his surface about the tangential
direction and the transverse normal strain are denoLed by

u, w, þ_, ìl_ respectively, the displacement equations of's z

motion can be written as

â 2u 
_

âs 2

a t,J,
s

ttt

â2w _

Es 2

¿2Vz

1

G2
L

^) I
d -U r

- 
= ) a. V.

At2 ilf to r-o
( 3.1)

(3.2)

(3.3)

Gz at2
B

1 ¿'v.
b. v.r_o J_o

. v.lo r-o

o

=f L
i=1

I
Ic

i=1

I=i
i=1

I
G2

K

â'* -
at2

T à,V=

G3 ðt2
d. v.ao roâs2

(3.4)
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In the above equations s is the meridional co-ordinate

and the wavefront speeds are as given below:

czL= c(1-v)/(r-2v)p, cå:c/e, ci =ur/e, Gå =d./pa, (3.5)

where v is the Poissonrs ratio, p the density, d = h2/L2, h

being the thickness, Q = n/(L-vz), E being the Youngrs modulus

and the material constants o3, o, are taken as having the

approximate values 5E/12 (I+v) and 7Ea/20 (l+v) respectively.
Moreover the quantities Vro are given by

vro = #, vro = r, vro= þ, Vuo = ûr,
(3.6)

tuo= H, v.o= *, vro= þ, Vro= þr,

and the coefficients "io, bio, cio, dio which contain the
material and geometric properties of the sherl are given in
the Appendix I.

The equations of motion corresponding to the uniaxial
theory [16] and the modified membrane and bending theories of
Mortimer et ar [r8], [19] can be obtained from equations (3.r)-
(3.4) by assigning appropriate varues to the coefficients
.io, bio, cio, and dio . Thus the solutions that will be pre-
sented could also be utirised to obtain those corresponding

to the above mentioned theories.
Due to the presence of lower order derivatives, equations

(3.1)-(3.4) are dispersive l2l, causing transient waves to be

distorted and the phase velocities of time harmonic waves to be
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freguency dependent" However, these equations do not contain

mixed spatial and temporal derivatives and are hyperbolic, en-

suring finite wavefront speeds for transients and bounded phase

verocities for time harmonic rnraves 13]. For this reason

these equations become very suitable for solution by the

method of discontinuity analysis or by the method of charac-

teristics IfB], [19] .

3.2 Method o'f Solution

The method of discontinuity anarysis is werl known and

is described in detail by Achenbach t4l and by Kline and Kay

t5]. According to this method a wave is considered as a
carrier of discontinuities ín the field variabre and/or its
derivatives. These discontinuities satisfy certain conditions
at the wavefront from which it is possible to obtain a set of
recursive relations known as the transport-induction equations.

These equations giovern the propagation of the discontinuities
of all order at the wavefront, and determine them if the bound-

ary condition is known. The transient solution due to time

dependent loads acting at the boundary of a structure can then

be determined in the form of a Tayror series expansion behind

the wavefront. This is the method suggested by Achenbach f.41,

and we call it the direct method.

The time dependent loads that we consider, are those

that act for a finite time and are specified in the form of
strain, velocity or acceleration boundary conditions. For

these cases the direct method if appricabÌe, will be tedious
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and it is preferabre to utilise the Greenrs function concept.

we define the unit pulse solution as the transient solution
corresponding to the boundary condition involving the Heavi-

side step function. The unit pulse solution can easily be

determined by the direct method and then its time derivative
gives us the Greents function for the problem at hand t9].
The Duhamel integral together with the Green,s function wirl
then give usr at least numericarry, the required sorution to
any transient problem.

The solution to the corresponding time harmonic problem

can be determined by the Karal-Ke1ler technique IfOl.
According to this we formally assume asymptotic time harmonic

series solutions to the equations. The coefficients of these

series are forrnd to satisfy a set of differential recurrence

relations which are exactly the transport-induction equations

discussed above. There is found to exist a one to one re-
lationship between the unit pulse problem and the corresponding

time-harmonic problem. rn practice for a given set of equa-

tions of motion, it is much simpler to generate the transport-
induction equations by the Karal-Kerrer technique than by the
method of discontinuity analysis

To this end, we assume time-harmonic solutions to

equations (3.1)-(3.4) in the form

u = eit¡(s-t)

$/ = eiul(s-t)

i
n= l-

æ

I
n=l-

,rþ=n 's
_io(s-r)e

^ior(s-t)E

æ
r
L

n=1( ir¡)

C
n

( iur)

D
n

( io) nn 'þ, in=I( io)

(3.7)
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where S is the phase function, trt the circular freguency and

the amplitude functions of the time harmonic series are

given by

Ar,=(-1) t{rr',.],".,={-r) "¡r¡f ,r,],cr,=(-r) 
nrwHr,],Dr,=(-r) "[ú:,"]. (3.8)

In the above equations [ ] indicates the discontinuity or
jump of the argument across the wavefront , the comma followed

by n denotes nth ord"r time derivative and the superscript H

denotes the unit pulse solution. On substituting equations

(3"7) into equations (3.1)-(3.4) and formally requiring that
the coefficients of powers of (iur) separately vanish, we obtain

the recurrence relations for n > I as

dA
An (1-c'/el) + ," i|1

dB
Bnt-G2/G|) + 2c ¡|l

dC
cn ( 1-G' /c'*) + 2" uta

dD
Dn(1-c2,/c3) + 2c -ã=

Gt, oArr- I = G2fl-, '

cb B , =c2îB ^,30 n-1 n-z

GcC=50 n-1

GdD-=70 n-1

crÍcn-¿

G 
2îD

tt- ¿

(3.e)

( 3.10)

( 3 .11)

(3.12)

In equations

to S in the

(3.9)-(3.12), c is

form

the wavefront speed, related

(3.r3)

d2e n-¿
os

dS_=
ds

dA n-¿

-1d,

to ds 20

B .dB. n-1. n-2.
T d r.'......-. ----=-t

30 G ds

I
G,

and

-AI n-2
Arr- 

2
+a E¡{0 n-¿

(3.14)
D -dD, ñ-f, n-¿

,o (-ä-*-ãï) * tro Dn'2 
'
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n-¿

d2g
_ n_¿ +b

- 2 ]0
cls

_40_

AdA
(-++ =t-2) +b A'G ds zo"n-2

c,dcn-l-. n-2.Ðso ( G-" d, ) *baoc,,-2*bro
D, n-L

tG

dB n-21D
30 ds

dD n- ¿.+--=-) +os

+b Bqo n-2

(3"ls)
bro Dn-2 ,

-cñr Í̂t- ¿

;D
I_ n-2

d2c n-¿
_2 l0
dS

d2c n-¿-.,
os

c -dc+ duo 
"r,_ z + dro ,#*-å-, * d.o cn_2 * dro

+ deo Drr-2

dc-D-dD(3'16)
c.-B ^ +c ;!--2 +c--C ^+c 1-t-- l*l¡a?t *. D40. n-¿ 50 ds -60 n-2 -zo' G ds , 'vao"n_2

,þ*1}=, * 
"roA,,-2 *',0 r5-" t.{5,

A.dÀ^B_dB
* dro tÌ4"uF¿, * dro Ar,_2 * dro ,*J.]}-3,

dD n-2
ds (3.17)

The rowest order derivative of the fierd variabre
lur\Þr rw,ür) having a discontinuity defines the order of the

\^/ave. A f irst. order wave is carted a shock or strain vJave and
will constitute the subject matter deart with herein. The re-
sults for higher order waves wilr be compretery analagous to
those of f irst order rÁ¡aves. considering f irst order r^¡aves and
setting n=I in equations (3.9)_(3.12) we obtain,

{c'?-cllo,= o, (G'-"Ê)8,= o, (c'z-ci)C, = o, (Gt-"$1o,= o . (3.18)

From the above set of equations we can obtain the
classification [r4], speeds and propagation conditions for
axi-symmetric first order \¡/aves. Moreover substituting the
appropriate speed c in turn, into equations (¡.9)_(3.12) with
n > 2r wê obtain the transport induction equations for each
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wave type " The transport equations will- be first ord.er or-
dinary differential equations and can readily be integrated.
We present below the results for each case.

(i) LongLtudLna.L 0)a"vø¿

Lt-Lt
L

A(s)=A(nn

B =HBnn

, Arl O , Br= O , Cr= O , Dl

,o) (3) ' . gi Hu ,l-,(,)dr
S

o

'crr=HcrDr,=HD

(:)* r
S.f

zJ
S

o

,D n

,(þ) 
*.

s

. z[(:)*
c

o

,D=HDnn

=Q (3.1e)

(3.20)

(3.21)

(3.22)

(3.23)

(3 "24)

(3.2s)

(3.26)

(3.27)

(ii) Bendíng ûlav¿¿

G = G" , BLI O , Ar= O , Cr= O , Dt= O

B (s)-B (SnnÕ
B

.(t)dtn-r

Arr=HAr c =Hcnn =HD.

( iii ) Kính ú)av e¿

G-G*,CllO Ar= o ' Br= o ' þ=O
t

Cr.,(s) = Cr(So, (9'

A=HA,B=HBnnnn

(iv) Squ¿ez¿-Gnadi¿nt t'tlavø¿

T' - (t)dt
n-I

G=Gr, Dtf O, Ar= O, E= O, Cr=O (3.28)
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=Hcn

,(þ) 
-. :

(:)'

S

sl
2J

s
o

c
n

-nT" - (r)dr
n-,L (3.2e)

A =HAnn

In the

functions of

,B=H"ìnn

above sets of equations

the wave speed G and are

(3"30)

HA, HB, ni and HD are

given by

e c-t I dA IHÀ= t 1-z-l:-t+a.^A-_.,+"ri_, l, (3.3r)n 
"í-"' I 

ds Io n-l 
)

ul = |{ {- rul:-' + b.^B_ . + "i:_, }, (3.32)n 
"É-"' I 

ds -30-n-1 
)

r cc: I a" ìH'=+þt z-i-' *csoc,,-r.+cÍc-rf (3'33)

--D c c: I uo.-, -,\ ]H-= " {_z=\,-r +d-^D_ *crf_ri, (3.34)n 
"i_", L 

- ds -70 -n_r n_¿ 
J

For each wave type G denotes the eigenvalue correspond-
ing to the eigenvector (Al rBl rcr ro, ) . The equation with the
integral is the sorution to the transport equation and the set
of three following it are the induction equations. The bound-
ary value of s is denoted by so. Moreover for cyrindrical
shell-s the quantities (so/s)L and (r/s)å app"-ring in the
transport equations are to be repraced by unity. we utilise
the boundary conditions, equation (3.9) and the appropriate
transport-induction equations to determine the required dis-
continuities. The corresponding unit pulse solution uH is then

ffr-tttiueçç

{/6¡1¡i¡ii-¿3
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given by the Taylor series

with

uH = 
"i' 

tuT,.l <t-s ,n ¡n! ,

S = S(so) + (s-so),/G ,

t

u- /'*ro-)r(.)u' ,
J dL
o

(3.3s)

(3.36)

(3.37)

where u stands for any one of the field variables rrü",hr or
þ r' and

transient solution is then given by t9l

where f(r) is the time dependence of the boundary data. The

results for second order or acceleration !ùaves could be obtained
in an analagous manner by starting with tr=2, in equations (3.7)-
(3.12).

rn section 3.4, we will use the results presented above

to solve some numerical problems, after discussing a numerical
scheme for the solution, in the next section.

3.3 Superposition Technique

Our experience in the numerical evaluation of the series
solutions given by equations (3.35) and (3.37) indicates that
their convergence is usuarJ-y srow. This is especially so at
large val-ues of T

The problem is simitar to that in the evaluation of exp (-T) for
large val-ues of T, using its Taylor series expansion.
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Although we expect an improvement if the nu¡nl¡er of terms in
equations (3.35) or (3.37) is increased, in practice the task
becomes very tedious. Moreover beyond a critical_ value T - To,

the numerical convergence of the series is lost no matter how

many terms are computed [r5]. Mainardi and Turchetti t15l
have introduced Padõ approximants to accelerate the convergence

of series solutions of the types in equations (3.35) or (3.37)

for the case of viscoelastic hraves. I{e have devised a numeri-
cal superposition technique that assures convergence in alr
cases. Furthermore¡ wê have verified that the resurts ob-
tained by incorporating this technique agree with those of
Mainardi and Turchetti.

For a boundary load of the step type having a magnitude

of unity and a duration to, acting on a structure, we know that
on physical grounds the response at any location must decay to
zero after some time [20], By choosing a small enough varue
for to' say tj, it is possible in most cases to obtain a re-
sponse that decays to zeyo by using a few terms in the series
(3-35) together with the Duhamel integral, eguation (3.37).
To such a response \À¡e give the name "test solution,'. Thus the
test solution is assumed to be zero after a definite period of
time. A typicar test solution for the strain response due to
a first order (strain or velocity) boundary condition is shown

in Figure 3a. The given boundary load is then subdivided into
step loads of duration ti* as shown in Figure 3b, where the
magnitude of a step load is equar to the mean value of the
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boundary load during the appropriate time. we then solve the
equivarent probrem by considering the superposition of the
responses due to each step road originating from the boundary
at the appropriate time.

rn the examples considered in the next section the
superposition technique is applied. The solutions obtained
without and with the incorporation of this technique will be
denoted by "series sorutions" and "modified sorutions,, res-
pectively.

we used the superposition technique to solve the problem
considered in example 1 0f section 2.5 in the previous
chapter- The series and modified sorutions are shown i-n
Figure 2. we observe the good agreement between the modified
sorution and the sorution obÈained by Goodier using Laprace
transforms.

3.4

3 - 4 - r 
-E 

x e sp 
-1 

e - r : - : - r, g l g _i ! g g 
_i l g I _ _r re g g ! _ 9 r _ 3 _ g 

9 l l g 3 _1 _ : ! : _r J
we consider the transient response of a truncated conical

shelr which is impacted at its smarrer end. utilising the uni_
axial theory and Laplace transforms, this problem was sor-ved
by Kenner et al tr6l - cohen and Berker l,z].l obtained the wave-
front sorution for the same problem, using the method of dis-
continuity anarysis. The relevant boundary condition is

E
o

sin2l't/t , O < t < tOO

,t>S{ro,r) = t
o

(3.38)
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hrhere E^ is a constant.o

To obtain the solution corresponding to the uniaxial
theoryr w€ consider the transport equation (3.20) for the
J-ongitudinar $¡ave and set the coef f icients 

"io , i = l-g, zero.
The appropriate boundary condition for the unit pulse solu-
tion, together with equation (3.7)r yields

dA
Arr(so) = 1; Arr(so) = -""#l=_r, n ) 2ì s{so) = 0 . (3.39)

o

From equations (3.20) and (3.39) we obtain,
3

A, = EoG" (=o /ÐI , Ar= uo"Í,13 (so /=)à + (so/s)T\/e=o ;
3 5 

(3"40)

A, = 3Eocí{11 ( ro/s)È + 2 (so /s)T + 3(so,/s lT}/t28so2 , erc.

For this problem based on the uniaxial theory, v = 0 giving us

Gi = E/p. Using eguations (3.8)r , (3.37) , (3.3g) and (3.40)
I¡¡e obtain the transient solution as

(-t) ne ft
Lr = 

"lr. 
G=if J ' 

t-t-s >n-r sin 2 (nt/to) dr ( 3 .41)

o

For s = 5.6cm the strains fr obtained from equation (3.41),
using six terms for the cases to = lIU secsr to = 22V secs
are shown in Figure 4a and that using nine terms for the case

to = 50u secs is shown in Figure 4b. These are the series
solutions. The corresponding strains obtained by Kenner et aI
are also shown in these figures.

The boundary condition for the test solution is
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1,0<

0, t

t<t*
o

(3 " 42)
t*

o

using t* = 0.5 p secs and four terms in equation (3.37) weo

constructed the test solution. The modified solution for each

case is obtained by using the superposition technique together
with equation (3.38). The resurts so obtained are arso shown

in Figrures 4a and 4b.

We observe that for the cases to = 1I U secs and to =

22 u secs, the series sol-utions agree werl with Kenner's

solutions. lr{oreover the peak values for these cases match

exactly. However for the case to = 50 U secs, the series
sorution begins to diverge beyond T = 30 u secs. No improve-

ment was observed by doubling the number of terms in the series
solution. The modified solutions not only showed better agree-

ment with the results of Kenner for the cases to = 11 and

t- = 22 u secs, but also provided us with comparabre resultso

for the case to = 50 u secs. simirar solutions at other
l-ocations showed analogous comparisons with those of Kenner.

By decreasing the varue of tf ¡ \¡rê can expect an almost per-
fect agreement.

3.4.2 E-¿4ryp!e__Z: Çyr_+.s{rlc_e1__T.È[l!_s_gÞiec_!.e{_r_o__ye_Lç.r_c_e.L

Qro_gqd_Ye.1_o_c_tt:._BqI_EeE

we consider the reinforced concrete cylindrical tank
discussed by Billington 1.221 having a mean radius a = 8.23m,

thickness h - 0.68m, Poissonrs ratio v = 0.2, youngrs modulus
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= z.LI x 10s Rg/cmz and density p

the tank is subjected to vertical
the form

: 0.002 Rg/cm3. The base

ground velocity pulses

Sto,.l =

Ir0<t<t
o

(3.43)
0rt>t

o

A first order longitudinal wave is generated by this boundary

condition and higher order rrraves of the other types are in-
duced due to the assumed homogeneous boundary conditions on

the other field variabres. These higher order waves produce

effects at least two orders higher than the order of the gen-

erated $¡ave. For axisymmetric transients these effects are
usually negrigible (and completely absent for smalr varues of
T) and therefore do not appreciably affect the peak response.
Using equations (3.20) and (3.21) together with the corres_
ponding boundary condition for the unit pulse solutionr w€

obtain

Ar= -1, Br= 0,

Ar= -6.94 x 10

A, = -r7 .62 x to

cr= o' D, =

u=, Br: o,

-r2=2, B, =

þ=
3

0,

cr= -3-50 x 1o-6,

2757 x 10-r2, C,

385 .16 x 10-r 2s,

Dr: 55.55 x

= -24.52 x

etc.
t0

(3

10-6,

-I2 s,

.44)

using equations (¡.35), (3.37), (3.43) and (3.44) we can obtain
Lhe required transient sorution. rn Figure 5 we have plotted
the response of the predominant strain ff witrr respect to T,
the time after the arrival of the wavertorra. The resurts for
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t_ = 10, 20, 30 U secs together with that for t -> æ areo-o
shown. ft must be remarked here that these series solutions

begin to diverge at some value of T > 53 U secs.

The modified solutions were obtained by using the

superposition technique with t* = I U sec. For the range of
T shown in Figure 5, we obtained perfect agreement between

the series and modified solutions for the cases t = I0, 20
o

and 30 U secs.

The results at other l-ocations displayed similar be-

haviour- As the responses presented for the cases to = 10

and 20 U secs decay approximately to zero, they could be used

as test solutions in seeking the responses due to boundary

loads with longer durations. Such a situation is presented

below.

The ground motion resulting from a blast load has been

determined by Awojobi and Sobaya [23] and also by Pekeris and

Lifson ï24). We wish to obtain the response of our cylindri-
ca1 tank when its base is subjected to this blast load. For

the case r/H = 0.25 of Pekeris [24], the boundary condition
due to the vertical ground velocity pulse is given by

^.-Aro<t<t^ff{o,t)=',(3.45)0rtrto

while the boundary conditions on the other field variables

are assumed to be homogeneous. In the above equation A is a

constant. Considering the case to = 2000 U secs and the test

solution with t* = t0 u secs we obtain the modified sol-ution
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for the strain ff. This is shown in Figure 6 together with
the corresponding series solution. Às expected, the series
solution begins to diverge beyond T = 53 u secs. Anarogous

results r+rere obtained at other locations.

3.4.3
-eteuple-3 - ÇyI¡lÈrisel_TclE_ggÞieqleg_!e_ Vertical

Gresl4_ 4eselere!isl_E glqe:
we nov¡ consider the tank of the previous exampre but

the base being subjected to verticar ground acceleration
pulses of the form

1r0<t<t
o

0rt>t
o

{g(0,.) =
at2

(3.46)

This boundary condition generates a second order longitudinal
vJave. The effects of the higher order waves, induced by the
homogeneous boundary conditions on the other field variables,
are negligibre. proceeding in a similar manner to that de-
scribed abover wê compute the series solutions for the predom-

inant strain $. we wish to remark here that the coefficientsdS

for the corresponding unit purse solution wirl be the same as

before, provided we increase the subscripts by one and change

the signs. The series solutions for the cases to = 5, 10, ZO

and 30 u secs and for the case to -' @ are shown in Figure 7,
plotted with respect to T, the time after arrival of the wave-
front at the location. As in the previous exampre all these
solutions begin to diverge at some value of T > 53 u secs.

The modified sorutions $¡ere obtained by using the
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superposition technique with t* = I u sec. For the range of
T shown in Figure 7, we obtained perfect agreement between

the series and modified sorutions for alr cases except for
that with t -' æ. Moreover, the responses for the caseso

to = 5, 10 and 20 u secs decay to zero in the range of T con-

sidered. Hence they can be utilised as test sol_utions to
obtain the response due to an acceleration boundary condition
of longer duration.

rn the solution of transient problems, the peak res-
ponse is the important consideration t25]. For the case of
a structure subjected to ground excitation due to an earth-
quake, veletos et al [26] and walker tzTl consider the rargest
pulse from the accelerogram record and solve for the transient
response due to this. usually such pulses can be approximated

by sine functions [26]. For the cylindricar tank subjected to
such a ground accereration purse, the boundary condition is of
the form

A sin (rt/t-o)

0
(3.47)

= 2000 u secs

0<t

t>t

<t
oÀ1g(0,.) =

ät2

where A is a constant. Considering the case t
and utilising the test solution with t* = zo u secs, we ob-

tained the modified solution for the strain ff. The result
is shown in Figure B where we can clearly observe the peak re-
sponse. The procedure r¡Jas repeated using test solutions with
t* = 10 u secs and t* = 5 u secs. No appreciabre change in
the previous response curve v¡as noted, thereby confirming the
the plot in Figure 8.



-52-

3 - 4 - 4 gglellgsg_eg_pi!!erelË_Lgqe!rgls

To obtain the responses at different locations in a

structure we need test solutions at these locations. These

test sorutions as a rule have certain properties and display
a particular pattern. rn Figure 9 we illustrate some of the
sorutions obtained from example 2 at different locations.
The wavefront (T = 0) values of arl the test solutions depend

on the first term in the series (3.35) or (3.37). In the case
of cylindrical sherls this term has the constant varue of
unity resulting in the same varue of c"l at r = 0 for arr the
solutions. This fact is observed in Figure 9 where alI the
curves start from the same point. For conicar sherls and for
circular plates the first term in the series (3.35) or (3.37)
decays as (s^rzs)à and the wavefront values of the testo

solutions at al-I locations can be determined if one such value
is known. Moreover the test solutions wirr have jumps at
f = t* , which will be equat to their wavefront varues. rn
Figure 9 the jumps AA', BBr and ccr are all equar to the con-
stant wavefront value G-- 

I of the test solutions. The aboveL

observations become of use in determining test sorutions.
Finatly the boundary road together with the test solutions
yields the required responses by the superposition technique.
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3 "4'5 E€feg!-e€-!þigEless-il-e-gvlrlgrrgel-gþeII

we now wish to study the effect of the thickness on

the response of a cylindrical shell. rn example 2 we in-
crease the thickness keeping the radius constant and thereby
obtain differenL h/a ratios. The test solutions with
tJ = 10 u secs v/ere computed for the predominant strain $ds
for the different rati-os. rn Figure 10, we illustrate these
strain pulses, protted with respect to T. lrle observe that
the time taken for the response to decay to zero increases
with increasing thickness. Moreover the slopes of the re-
sponse curve decrease with increasing thickness and as a
consequence decrease the magnitude of the strain reversal
after the passage of the puIse. The pulse distortions shown

in Figure 10 are a consequence of dispersion.
The decrease in the slope of the response curves with

increase in thickness can be exprained by considering the in-
tegrand fÎ_,- in equation (3.20), which is the transport
equation for the case considered. The contributions to ÍAn-l
are predominantly from the induction equation (3.2I)3 as can

be observed from equation (3.44). The discontinuities D' are
determined by equations (3.2I)s , (3.34) and (3.17). The non

zero coefficients dio appearing in equation (3.17) depend on
I/h2 and the contribution to 4_, from equation (3.2I)3 is
decreased with increase in h. This wilr decrease the values
of A, and A, determined by equation (3.20) and will cause the
decrease in the sropes mentioned earrier. Arthough purse dis-
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tortion will not be eliminated
the other induction equations,
cylindrical sheIls.

due to the contributions from

it will be reduced for thick

3.4.6 êpprgxil,eËe_!bi!_Beg_Tbeet¿eg

ïn the example considered in section 3.4.r, the uni-
axiar theory was employed for dealing with longitudinal
transients in a conicar sherr. Analogousry the propagation
of longitudinal transi-ents in a cylindricar shelr can be
approximately treated by the various rod theories available.
A brief discussion on the suitability of the rod theories for
treating transient phenomena, wir-l be in order at this stage.

For cylinders the elementary theory, where the non
dispersive wave equation governs the propagation of rongitu-
dinal pulses, was the first to be used. According to this
theory there wirr- be no distortion of pulses and the response
will be identicar to the input pulse. rn contrast, the
elementary theory for a cone, referred to as the uniaxial
theory, gives a dispersive equation due to the change in the
cross-sectional_ area.

Experiments showed the distortion of pulses in cyrin-
ders and prompted the need for improved theories. The first
improvement was to inctude the effects of radiar inertiar âs
suggested by Rayreigh I28l. Love lzgl incorporated this
correction and presented the governing eguation which is dis_
persive - However as this theory predicts instantaneous purse
propagation without a definite wavefront, it cannot account
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for the high frequency components in a transient. Flindlin
and Herrman [30] incruded the effects of radiar shear in ad-

dition to those of radial inertia and presented a more refined
theory. The governing equations are both hyperbolic and dis-
persive giving two finite varues for the wavefront speeds.

Vlithin its order of approximation, the Mindlin-Herrmann theory
can account for all the frequencies in a transient. For a
more detailed discussion on the above theories and related
references we refer the reader to Graff tl3].

The shell equations thaL we empJ-oyed in this paper re-
present a theory two orders higher than that of Mindlin and

Herrmann. These sherr equations can be reduced to give those
corresponding to the above mentioned rod theories by assigning
appropriate values to the coefficients uio, bio, "io and d.o.
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CHAPTER TV

TRANSIENTS IN CYLINDRTCAL SHELLS

4.1 Equations of Motion

rn this chapter we consider the propagation of tran-
sients in linear, elastic, isotropic and homogeneous cyrindri-
cal shells subjected to boundary roads. The present theory
contains the case of axi-symmetric transients in a cylindri-
cal shell as a special case.

As beforer hr€ utilise Naghdi,s equations [I], tl4]
which are derived from the cosserat theory and which include
the effects of transverse shear, transverse normal- stress and

strain and rotatory inertia. we denote the axial (x),
circumferential- (e) and the radial displacements of the shetl
mid-surface by u, v, w respectively and the rotations of the
normal to the mid-surface about the circumferential- and axial
directions by Ux, ü0 respectively and the transverse normal

strain by v z- since e'e are considering propagation in the
axial direction and the complete shell in the circumferential
direction, v/e express the field variables in the forrn of
Fourier series in 0 as

co

Lr= Iucosm0-mm=o

æ

ú = Iu cosmo'z " 'zm
m=o

, þ- = i r!---cosmo r w =' 'x " 'xm
m=o

æ

tv= Ivsitmm=o 'nmo ' þg =

æ

I
m=o

æ

I
m=o

v/ cosmO
m

tJr ^ s inm0
UM

(4.1)
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The displacement equations of motion now take the
form

â"* ã2u
R=

ât2ci

1 ¡ 2ü¡m L2= I ¡ v.]-m l-m
r-=.L

a. V.l-m l_m

c. V.l_m l_m

I2
T

i=1

I2= Ia Ìml=1

âx2

à2,Jt'xm

âx2

a2úom I
âx2

V.
tm

o âtüo*
a âx2

(4.2)

(4.3)

(4-4)

(4.s)

(4.6)

(4.7)

the cylinder.

e. V.l_m am

: rl¡

'zm 
t

: rlr
2m 'Um

âx2

â2wm_
ôx2

A 
2 

ri.''zm

cå âr2

ð2w
m

L2

I
i=f

I
Gi ar2

G-,
5

A 
2 

rJ.r'zm
aa'

ð2v
(I+a/¿z)' -m 

- 1

àxz cå

ât,Jrĝm

â2v
m

at2

I
a

â2v
m

--=ðx2
f . v.l_m].m

V
8m

L2
\'
L

i=1

n2 ¡r2\r arL
T

I2
I

i=l

In the above equations a is the radius of
The wavefront speeds are given by

"í,=c 
(1-v) / (r-2v) p ,G|=c/p, Gi=o ,/ o ,e!=a r/ ea, G,î=c (t-v) /2p . (4 . B )

The quantities V. _ are qiven by

ðu
m;--dX

âw
m

:i-öx

âv
m

ãF

,Vm3m âx'

âú'zm
Ax'

= 'üun',âx

aìl
,V=u

2mlm
V

,V-=w,V=bm m 7m
V=

5m

tur = Ú*r t

,V,V=
9m V=vl0m m 'Vrrrn

(4.e)
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The constant coefficients -i*, bi*, ci*, di*, êir,
fi. (i=1-12) which involve the material and geometric
parameters of the cylinder are given in Appendix rr. The

other quantities v¡ere defined earlier. By setting m = o

equations (4-2)-(4.7') will uncoupre to give those correspon-
ding to torsionless axi-symmetric and torsional motions.

Equations (4-Z)-(4.7) being dispersive [2], will cause

transient purses to suffer distortion and the phase veroci-
ties of time-harmonic b¡aves to be frequency dependent. How-

ever, finite wavefront speeds for transients and bounded phase

velocities for time-harmonic waves are assured due to the
hyperboric nature of these equations t3]. Thus the disprace-
ment equations of motion presented above are amenable to
solution by the method of discontinuity anarysis or by the
method of characteristics.

4.2 Ivlethod of Solution

As discussed in the previous chapter, the first step
in obtaining a transient sorution by our method is the deter-
mination of the unit purse solution. we defined the unit purse
solution as the sorution due to a step boundary purse of unit
magnitude. The Duhamel integrar and the specified boundary
condition then give us the required transient sorution. rn
order to determine the unit pulse solutionr wê need to deter-
mine the displacement discontinuities of all order at the
wavefront, and represent the solution in the form of a Taylor
series expansion behind the wavefront t|l. The equations that
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determine these discontinuities are carled the transport-
induction equations and are generated much more easily by the
Karal-Ke11er technique [fO1 than by the method of discontin-
uity analysis.

To this end we assume time-harmonic solutions to
equations (¿ .2)- (4.7) in the form

(4.10)

u = "i'(s-t) 
æ À 

: ^iûJ(s-t) 
- B

*m - = 
"1, ,i- 

, v** = "it(s-t'"i, Ë-

where s is the phase function, o the circular frequency and

the amplitude functions of the time-harmonic series are given
b"y Is],

o' = (-1) "t"l.r,l, 
"., = (-r) tlüT*,r,1, c., = (-1) n!*1,"1_

(4.11)
Dr, = (-1) t!*:.,"1, Er, = (-1) tlrrl,"l, Fr, = (-r) t[uä*,"1

rn the above equations I I indicates the discontinuity or
jump of the argument across the wavefront, the comma followed
by n denotes .rth ord"t time derivative and the superscript H

denotes the unit pulse solution. on substituting equations
(4. I0 ) into equations (4 .2) - (4 -7) and formally requiring that
the coefficients of powers of (io) separately vanish, we obtain
the recurrence relations for n > 1 as
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An ( l-c '/cl) + r" Ti- 
t = "rrï-,

nnlver/crr) + zc

cn(r-c'/cfl + 2c

Dn (t-G'/cll + 2G

dB n-I-ãx

dcn-l--ãx-

dDn--L-r = G2TD
ft- ¿

G2TB
t\- ¿

G, TCn-2

dc
* ___)

ox

dE
r D-zr'-E-',

(4.L2)

( 4 .13)

(4.14)

(4.rs)

(4.18)

(4.19)

E',(l+a,/a2-c2/c'r)+2G( r+a/a2,uäi-t- (a/a)(r,.,+2c 
uåi-t,=crrï- 

2.(4.L6)

rntt-c2/c2r) + ," 
uåo-t 

-

equations (4.12) - (4 .]-7) , c

S in the form

cdc
ou,n(#a * ui3)

FdF
* brr.(õr * -ã-)

dEn-r

ïn

to

(En+2c -¡fi1zu = G?rl_, (4.r7)

L/G

n

i the wavefront speed, related

dS

-:dx

and

rl_,
d2An-¿

dx'
D, n- Ia (=-7mu

d2B n-¿

-+

dx2

En-lo, * (õ-

aA
2m n-¿

dD
* ." -)

clx

bB
4m n-¿

dE. n-¿,-f --;-)ctx

+a
t_, n-I

I-

5m(J

E, n-Ia (=-
9m ('

_B
n-¿

(4.20)
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(4.22)
* dr,n Drr-2 * d, 

om 
En-2 ,

rï-, = -( r+a/a',u"ï-' * î 
u'ul-' 

+ e-* (\-, - ù'-r'
1 t 

dx2 a dxz rm G- * -ã-)

B-dB
* tr* (õI3 * uf,-¿) * ".*cr,-2 * 

"rr Dr,- 2 (4.23)

+eE-+eF,
I 0m n_¿ l2m n_2

-F ut_u"-¿ * ! u'ur,-, * ,r* ,þ ..,. +_-r)J.^n-¿ dx2 a dx2

(4.24)
+ f _c_ ^ + f E ^ + f F6m n-2 -r om -n-2 -t zm - n_2 3

9üe have used the fact that certain coefficients are zero in
writing down the right hand sides of the above equations.

considering first order waves and setting n=l in
equations (4 .I2) - (4 . I7) will yietd,

(c2-cl)4,= o, (c2-cf,)Br= o, (cr-ci)C,= o, (cr-c!)o, = o
(4.2s)
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From the above set of equations we can obtain the
crassification [14], speeds and propagation conditions for
f irst order waves. rvloreover substituting the appropriate
speed G in turn, into equations (4.L2)-(4.I2) with n > 2r \nrê

obtain the transport-induction equations for each v¡ave type.
However eguations (4-16) and (4.r7) are coupJ-ed and have to
be solved simurtaneousry. As a result we obtain a couprecì
transport equat.ion for the waves pertaining to these t\^/o

equations and coupled induction eguations for the other rÁ¡ave

types- we present berow the resurts for each case.

(i) LongitudínaL Utave

G = G", Arl o, Br= o, cr= o, Dr= o, Er= o, Fr= o G.26)

A_(x) = A (x ) +nno (4.27)

(4.28)

(ii) Be.nding Ha-ve.

G = 
"u, 

Brl O, Cr= O, Dr= O, Er= O, Fr= O (4 -2e)

Bn = PB' c., = n:,

3 í",:, 
(r)dt

x
o

D : pD, E =n n' n

sË'J
xo

D=
n

PE,F=pFnnn

A, = o'

B (x) = B (x ) +nno
B 

- (t)dtn-r

PD. En' n = PE,
n

(4.30)

( 4. 31)A = PA, c = Pc,nnnn P =PFnn
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G: G*o Crl O, Ar= O,
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B, = o' Dt: o' E, = o' F=O
I

(4.32)

(4-33)

(4 - 34)

(4-3s)

(4.36)

(4.37)

(4.40)

c (x)
n

c(x)no

¡x
g I t:_,(t)dt

"o
D=PD,En n' n

Ar, = PA' Br, : nT'

(iv) Squ¿øz¿-Gnadíønt úJav ¿

G - Gs, Dll o, Ar= o, Br= o,

=PE, F
n

F:P^nn

F:O
I

ir= o' Er: o'

or, (x) = þ

_ÞE-n'

,,(*o) * t/;:,(t)dt
x

o
A' = pA, Br, = pB, cr, = pc, E'

(v) Tnan¿v¿uø and Twí¿Í.íng r¿tavø,s

G = G- {t+u¡Zaz+ (4u/a2+a2¡ar)L /z}T

Erl o, Erl o, A, = o, B, = o,

(4. 38)

D=O
I

Ku= c'-cl , (4-39)

¡'' : PFnn

c, = o'

Kr= c2-(I+a/a',)"1,

( = (L+a/a')X. +
5l+

dGl/a, Kr= K2/u,

K=aK/a+K
6 r+' 2

K=
2

/a,

X

I ,*,
x

o

K
2

Lr

2L (x)
n

where

-L(x)+no
rçT" _ (r) -K T' . (r)]dr
n-l z Il-L (4-41)

L K.E5n KF5n
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E-KtL+(K/X\{rEn n '6' z"-n-2
^dE
1Q*o/uz ¡ -n-l-(Jds

There will be two separate solutions corresponding to the two

values of G obtained from equation (4.38)r . These two solu-
tions have to be superposed taking into account the time lag
that exists between them.

rn the above sets of equation= nl, pB, pc, pD, pE and

P: are functions of the wave speed and are given by

F = (K E L l/Kn 5 n n" 6

n

Ar, = PA, B., = pB, c'

-A cci
P=-

= Pc, D = pDn' n n

(crAn-¿
dÀ

ñ- I

2-l
d.x

dB
^ n-l-.) 

-l

dX

dc
^ n-l-.l-l dx

dD
h- I

? ¡¡ rl
-dxt

*l_, ) / (x,

(4 .42)

(4 .43)

(4 .44)

(4.4s)

(4.46)

(4 .47 )

(4.48)

(4 .4e)

(4-s0)

2^2
L -\:

PB=
n

Pc=
n

PD=
n

F
P"=

n

DF
n

^2t tB 
(crB

^z ^2 n-¿tB-t

^2tJ tJ K (ctc
^2 ^2 n-¿*K-*

^2(: t: s (crD
^2 ^2 n-¿(J-(Jq

(*, 
o 
*Ï*r K,

,

K KKì
l0 I g',

(RE
n-l- - K7Eì /K8

whereKrK,
78

and are given

K , K , RE -, RF - are also9 l0 n-r n-I
by,

functions of G
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dE n-1
ax

+ (x-xo ),/G

(4 " s1)

(4.52)

(4.s3)

(4.s4)

(l+a/a') /c'-r/c,T , K, = -a/aG2

Kr/a , Kro = L/G2-r/GrT ¡

'ï-, - !a*o¡"') 
u:ï-' . # if.

E
T"n-2

,2-ãE -?
G

dFn-1
dx

For each wave type G denotes the eigen varue corres-
ponding to the eigen vector (ArrBtrCrrDtrErrFr). The equation
with the integral is the solution to the transport equation
and the P: represent the induction equations. The boundary
value of x is denoted by xo. The boundary conditions and

equation (4.11) together with the appropriate transport-induc,
tion equations wirr determine the required discontinuities.
The corresponding unit purse sol-ution uH is then given by the
Taylor series I5l

uH = 
"1, 

loT"l <t-s>n/nt

with

where U stands for any one of the

w*, þr^, vm or üe*, and

The required transient solution is

(4.ss)

field variables u*, ú**,
the argument is negative.

then given by t9l

(4.s6)

s(x )o

t
-H/ au(r-r)

[J = l=|-: (t)d'r ,I At
J
o

where f (t) is the time dependance of the boundary condition.
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Finally the solutions for all- the appricabre values of m,

depending on the boundary condition, have to be superposed.

The resurts for second and higher order waves courd be

obtained in an analogous manner by starting with the appro-

priate value of n in equations (4._f 0) - (4.17) .

Later on in this chapter, in section (4.4) r wê present

some numerical examples to illustrate our method of solution.

4.3 Approximate Thin Rod Theories

The propagation of transients in cylindricar shells
can also be approximately treated by the various rod theories

[13]. Hence it is of interest to discuss the suitability of
these rod theories in treating transient phenomena. There are

three different types of wave motion in thin rods; these being

classed as longitudinal, torsional and flexural. rn shells,
there are motions corresponding to each of the above types and

the appropriate equations of motion can be obtained from

equations (4.2'l-(4.7) . By setting m = 0, the shel1 equations

uncouple to give the equations for axi-symmetric and torsional
motions' on the other hand, if we set m = 1, rnre obtain the
shell equations for flexural motion. The propagation of long-
itudinal \^raves in a rod corresponds to that of axi-symmetric
waves in shells and this was discussed in the previous chapter.
rn this section we propose to discuss briefry the other two

types of wave motion.

Whether we use the strength of materials approach or
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the general elasticity relations ¡ \¡rê arrive at the non dis-
persive wave equationr âs the one governlng the torsional
mode in a rod- Thus a torsional pulse wilr propagate undis-
torted with a finite wavefront speed and torsional harmonic
rìraves will have bounded phase velocities. As the wave

equation is amenable to solution by various methods, \de do not
attempt to sorve it in this chapter. However, we wish to re-
mark that our shell eguations, (4.6) and (4.7) with m = O,

are dispersive- This is due to the fact that they were
derived from the cosserat theory. The propagation of non
axi-symmetric torsionar transients can also be treated by
using the results presented in the previous section, together
with appropriate boundary conditions. rn this case , m I 0 and
there will be coupring vùith ar-I the possibre wave types. rn
the next section we present a numericar exampre which wir-l
illustrate the distortion of a non axi_symmetric pulse.

The Euler-Bernourri theory derived from the strength
of materials approach was the first to describe the flexural
motion in a rod- The resulting equation is dispersive but
predicts instantaneous purse propagation without a distinct
wavefront and unbounded phase verocities for high frequency
time harmonic waves. Hence this theory cannot account for the
high frequency components in a transient. Rayreigh t2gl in-
corporated the correction for rotatory inertia and presented
a dispersive equation which gives a finite wavefront speed for
the bending wave. The nayleigh theory neglects the shear
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correction and hence an infinite wavefront speed for the
shear or kink v/ave is predicted. rf the shear correction is
incruded without the correction for rotatory inertia, the
resulting equation will predict finite and infinite wavefront
speeds for the kink and bending,waves respectively. rn either
case the mathematical model does not describe the motion com-

pletely and the high frequency components in a transient are
not compretely accounted for. Timoshenko I31l included both
the corrections mentioned above and presented a theory with
two coupred second order equations. According to this theory,
rn7e obtain finite wavefront speeds for both the bending and

kink waves. Hence the Timoshenko theory can satisfactorily
account for the high frequency components of the transients in
the flexural motion. Equations (4.3) and (4.4) can be reduced
to the Timoshenko equations by assigning m = I and then
appropriate values to the coefficients b., and cir.

rn the next section we first solve a Timoshenko beam

problem and validate our method by comparing the solution with
an existing one. we then treat the flexurar and torsional
problems in a cyrindricat shell. For the former probrem the
results obtained from the shell and beam theories are compared.

4.4 Numerical Examples and Discussion

As we had deart with the axi-symmetric motion in
cylinders in the previous chapter, herein we confine our atten-
tion to the flexural and torsional motions.
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4' 4 -r " Ere$ple-l:-:rrgl:ver:e_I$p3el_e!_e_Tr!9eþe'ue_Eees,
we consider a semi infinite beam subjected to a trans-

verse step vel0city and a zero bending moment at the end. The
appropriate boundary conditions for the Timoshenko beam

equations are

âw aú

,.ato,tl = H(t), #".(o,r) = o

This problem has been solved by Boley and Chao

place transforms. Using eguations (¿.11)z , (4

(4.34) we obtain in a recursive manner.

(4.57)

Irz] using La-

-t1). and (4.29)

B, =0, 
", =0 .26 ,Bs --0 .0 34x, , 

"u 
:0 .O0Z2x2 +O .077 ,

C, :-l rCr=0.13xr r", =-O.00B5x2 r"u =0 . 0003 7xr2+O .024xrretc.

for the first order kink rÂ¡ave and

"rt=O,Bl=-0 
.26,8:=-0.IIx,8i =-0.013x, +0.0065,

"rt 
=O,Cl =0,C1 =0 .22,Cf,=O.0 S2xr,"tu =0.006x2 +0. O97,etc.

for the higher order bending wave. ïn the above two eguations
xr=x//î where o \das defined previously. using equations
(4'1L)3 , (4'54) and (4-55) we obtain the unit purse sorution,
which is the required transient sorution for this case.

rn Figure 11 we have pl0tted the variation of the
velocity ff wittr position and compare the resurts with those
of Borey and chao. The time of observation is given by
t, = LG"//l= 5' The bending wave is the faster of the two
h/aves and its wavefront is at x, = 5 in the figure. The velo_

(4.s8)

(4.se)
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ciby increases behind the wavefront, until the srower moving

kink wave is encountered. At the wavefront of the kink r¡¡ave

there is a discontinuity in the velocity equal in magnitude

to the input velocity at the boundary. Behind this wavefront

the contributions due to both the waves are superposed. we

observe that our soluLion obtained by using a few terms in
the series (4.54 ) compares quite we1l with that of Boley and

Chao. Analogous comparisons v¡ere obtained for the shear force

Q, demonstrating the validity of the method of sorution.

4.4.2. Ground Excitation
An important application of non axi-syrnmetric \¡¡ave

propagation is found in the case of a cylindrical sherl-

structure subjected to ground excitation, resulting from blast
l-oads' earthquakes, etc. such ground waves are generally
incident at an angle with the verticar and can be decomposed

into their verticar and horizontal components. The verticar
ground excitation gives rise to axi-symmetric wave motion and

this has been treated in the previous chapter.

The horizontar ground excitation wirl give rise to
flexurar and torsionar wave motions. Referring to Figure L2,

if we denote the ground dispracement by uc, then the boundary

conditions for the generation of rth ord"r waves are given by

^nu(o,t)
âtn

Thus in general

^ndu
G=_cosg,

âtn

the kink wave

^ndu
G=--slnu

atn
dr(0,.)
âtn

(4-60)

and the transverse-twisting waves
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are generated due to horizontal ground excitation. rn the
examples that folIow, the boundary conditions on the fietd
variables v' rlx and rfz are assumed to be zero, whire the
boundary conditon ott rle is coupled to that on v[1] and is
given by

Uo(0,t) = v(0,t)/a

From equations (4-1) and (4.60) we observe that only the case
m = 1, need to be considered in solving problems due to ground
excitation. under the above conditions the generation of the
kink and transverse-twisting waves are referred to as the
flexural and torsional problems respectively.

rn exampre 2 we consider the flexural problem due to a

first order kink vrave and in example 3 we dear with the tor-
sional problem.

4 - 4 - 3 " E¡euple-?:-:-gvl¡ldriger_TelE-ggÞicsted_te_lerisellsl
9regl9_Ers¿!sËiel_ :_!be_IIerureI_preÞl eu
l¡le consider the cylindricar tank discussed in the pre-

vious chapter with its base subjected to a step velocity re-
sulting from horizontal ground excitation. The only non-
homogeneous boundary condition for the flexurar probrern is

(4 .61)

(4.62\
ãw

*1to,tl = H(t) r

where we have assumed the horizontal ground velocity to be the
Heaviside unit function. The resulting unit purse sorution
can be used to obtain the transient solutions due to other
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boundary conditions with the aid of the Duhamel integral.
Using equation (4.11) and the transport-induction equation
for the first order kink r¡¡ave we obtain

Ar=0, or=-0.30xl0-t, Ar=0.03x10-6x, A,*

Br= O, Br=-7i-BxI0-6, Br=0.65xI0-6x, Bu

Cr=-f, Cr=359x10-6x, Cr=-0.16xI0-6x2,

D, =0 , Dr=O, O, =0 .71x10- 6 
,

E, =O , Er=O, E, =0.44xI0-6,

Fr=0, Fr=0, Fr=0.14x10-', etc.

:- (13x10-t 2

=- ( 312x10-r

C =51x10-l 2

4

x2+o.o2xl-o-t),

' x'+o. r a*r o 
-' 

)

x3+o.oBxro-t*,

(4.63)

rn order to satisfy the homogeneous boundary conditions
on the other field variabres, we observe that higher orcler
\{aves of the other types are induced. The predominant higher
order wave is the bending wave as seen from the above resurts,
and it travers faster than the rower.order kink wave. proceed-

ing in an analogous manner, for the second order bending r^¡ave

we obtain

ol=o'

"rt 
=o ,

"l=o'
oi =0,

trt =0,

rl =0,

ol =0, ol =o r

nl =zrBxlo- 5 , "l 
:o.45xl-o- 6x, 

Bl

"rt=0, "l=17x10-6, 
al=0.0Ixl0-6

ol =0,

Urt =O , trt =0 . 1IxI0 - 6 
,

tl=0, 
"l=o.32xlo-6, etc.

= (0.00014x2+o .03) to-G ,

x,
(4.64)

Using equations (4 .54) , (4 .55 ) , (4 .6 3) and (4 -64) we

compute the unit pulse solution. rn Figure 13 the dispracement
*, at x= 30.5 cms is shown with respect to time after arrival,
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of the bending \^/ave. The corresponding displacement obtained
by using the Timoshenko beam theory, is also shown. we ob-
serve that the contribution from the bending wave is neglibible
for the beam and very smalr for the sherr, prior to the
arrival of the kink hrave. The arrivar of this hrave at the
particular location in the cylinder, is at K and K' according
to the shel-l and beam theories respectively. The time rag is
due to the slight difference in the wavefront speeds in the
two theories. After the arrival_ of the kink wave, the contri-
butions from both v¡aves are superoosed. The effect of the
higher order bending wave becomes appreciabre with increasing
time -

4 - 4 - 4 " E¡csple-3:.-=-gvlilÊ*gcl-Te!E-gsþiested_Ëe_Eerizellel
greglÈ_Ersi!e!re!_: _Ëbe -Ter¡ iglel_ grqÞIcIl

rn this example we treat the torsional problem for.the
cylindrical tank discussed earrier. we present the test sol-
utions for the predominant strain due to first and second

order transverse-twisting waves. rf the test sorutions are
known, then they could be utilised to obtain the soÌutions
corresponding to other boundary conditions. From equations
(4.60) and (4.61) trre non-homogeneous boundary conditions for
the torsional problem are

ânv ^n '- r a--üo. I' 0 < t < t*
t.,, 

(o't) = ";;=t o, t , a.- 
o 

' (4 '65)

where we have assumed a step ground ,rerl"ity (n=l) and a step



-7 4-

g'round acceleration (n=2) pulse. First and second order
transverse-twisting waves are generated for n = 1 and n = 2

respectivery, due to the above boundary condition. consider-
ing the value of Ç = O.tB74 cms/g sec in equation (4.3g)r and

using equations (4.38)-(4.44) we obtain in a recursive manner

A, =0 , A"=45x10-6, o, =-0.015x10-6x, Au =0 -013x10-t-1*1 o-" *' ,

B, =0 r B, =-10x10- 6 , B, =-0.003x10-6x, Bu =-0.23xr0-txt-0.31x10-6,

Cr=0, Cr=0, Cr=0.2Ix10-6x,

D, =0, Dr=0, Or=-0.0007xI0-6,
(4.66)

E, =0.503 t Er=L'l0x10-6x, E, =0.03x10-t*t-36xl0-6,
E, =r .27x:-o-tt xt-o-oo2xro-6x,

4

F, =0.117, E, = 39xI0-6x, Fr=0.006xl0"6x2+82x10-6,

F, =0.34xr0-l' *t+0.0007xr0-u*, etc.
4

for the unit pulse sorution corresponding to the verocity
boundary condition. The coefficients for the accereration
boundary condition can be obtained from the above set by

merery increasing the subscript varues by one and by changing

the signs. Using equations (4.54) - (4.56) and equations (4.65) ,

{4.66 ) we can obtain the transient solutions for both boundary

conditions. For tå = r,2,5 v secs and t* * -, the predominant

strain e0* = å,# * #l was calcurared and the resurrs are
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shor¡¡n in Figures 14 and 15 " The appropriate response curves

in these figures could be used as test solutions to obtain
the response due to ground excitations as in the previous

chapter.

Analogous results \¡¡ere obtained for the solutions at
other locations and for the sorutions corresponding to the
other val-ue of G(:0.1899 cms/y sec) in equation (4.3g)r.
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APPENDIX T

The coefficients appearing in equations (3.I)_(3.4)
are defined as follows:

-ro= -I/s , uro= (I+E)/s2 , -ro: -vFtanß , âu0= -Ftanß,/s ,

auo= v otß,/(1-v)s , â.0= uro"otß , uro: -v/(1-v) r Et^^= O
80

bro = vcotB/sz , b20 = - (1+v)cot B/sz , b30 = -l/S f

buo = L/s'+ar/ac , b-o = ar/aC-vcot 82./s2 , b50 = -bro cotg ,

bro= 0 , b'o: 0

cro = -v (l-v) ccotß/ (1-2v)ors , "ro= -{ (r-v)2/ (r-v)+H}ccot ß/urs2 ,

",0= 1-CvH/4, r cuo= -Ã-c\/ar)/s, cs0= -I/s, c6o= -crocotß r

"ro= o , cro= 
"ro

dro= Cv(t-v)/(I-2v)a" , dro= dro/=, dro= O , duo= 0 ,

dro= 0 , d.o= -drocotß , dro= -L/s, dro= (l-v)dro/u

rn the above expressions, ß is the semi-verticar angle of the
generator, p = (1-2v)H/(1_v)2, H = acotrB/"r. rn this thesis
o. and o, are assumed to have the values SE/I2 (1+v) and
7Ea/20(1+v). For a conical_ shetl, the radius r at any section
is given by r = s sinß, s I 0.

For a cylindrical sheIl, ß = 0 and we have to substitute
s sin$ = a, cosß = I

For a circular p1ate, ß = f ana we have s = r.
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APPENDIX II

The non zero coefficients appearing in eguations
(4.2) - (4 "7) are defined as follows :

ur^ = (1-2v)m2 ¡Z (I-v) a2 , -u* = v,/ (l-v) a , .r,n = =v,/ (1-v) ,

tr* = -m/2 (1-v) a

bu* = ur/ca+(I-v)m2¡2a2 , br* = ar/ca-v/az ,

br* = (1+v)m/2a2 , brr*= -(l+v)m/2a

"r* = -Cv (t-v) /u, (I-2v) a , .,* = Cav/ar-r-1 r

= {m2+c(t-v)'/o^(r-2v)+cu/ar^r}/u, , c^ = c- ,6m 3 3 " -- ' Bm tm
= -m{I+c(I+v)'/o-(l_-2v)+cu/a-ar}/a, , c = m(ca/a az-I)/a10m 3 3 t2m 3

dr* = Cv (l-v) /sa (1-2v) , U.* = -ð,r^/a ,

dr* = m2/az+C(l-v)2/ar(I-2v) , dro*= mdr*,/a

êr* = m/(L-2v)a, êr* = -mo(t+v)/(f-v)a2 ,

êu* = -2m{ (t-v) 2 / (I-2v¡ +a¡a2} / (t-u) u' -zorn/c(l-v) a2,
ÊB* = Zvm/(1-2v)a , êro.= 2m2{ (I-v) ,/e-;v)+a/a2}/(I-vla2

+ 2a r/C (l-v) a2 , €t ,* = 2a r/C(1-v) a-2cm2,/ ( 1-v) a3

fr* = m(l+v)/(l-v)a , fr* = 2m{I/a2-ar/Ca}/(l-v)a ,

f ,o*= 2{ar/ca-mz /a2}/ (1-v)a , f ,r*= 2m'/ (1-v) a2+2ar/ca(l-v)
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