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ABSTRACT

The propagation of transient waves in linear, elastic,
isotropic and homogeneous plates and shells of revolution is
treated in this thesis. The analysis is based on the concept
of a wave as a carrier of discontinuities in the field var-
iable and/or its derivatives. The one to one relationship
that exists between a particular transient problem and the
corresponding time harmonic problem is first established and
then exploited. This relationship makes it possible to deal
with transient problems in terms of asymptotic series expan-
sions, thereby making the analysis very much simpler than the
usual method of discontinuity analysis.

The transient problems considered are due to impulsive
loads acting at the boundaries of structures and specified in
the form of strain, velocity or acceleration boundary condi-
tions. Several numerical examples are solved to illustrate
the method of solution as well as to establish its validity.
The results are compared with existing solutions, wherever
possible, and we obtain excellent agreement. A numerical
superposition technique is developed which makes it possible
to treat transient problems due to boundary loads of longer
duration. This technique is applied to solve the problems of
transient wave propagation in cylindrical shell structures

subjected to ground excitation.
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CHAPTER I

INTRODUCTION

The problems of the propagation of transient waves in
linear, elastic, isotropic and homogeneous plates and shells
are treated in this dissertation. In the case of shells,
consideration is restricted to shells of revolution with
straight line generators. The transient waves that we
consider are due to time dependent loads acting at the bound-
aries of the structure and specified in the form of strain,
velocity or acceleration boundary conditions. Though the
treatment stems from the concept of the propagation of dis-
continuities, the method of solution is somewhat different
from the usual method of discontinuity analysis.

The equations of Naghdi [l] are employed in this
thesis and we obtain a set of coupled displacement equations
of motion for each case considered. Naghdi's equations are
based on the Cosserat theory and include the effects of trans-
verse shear, transverse normal stress and strain and rotatory
inertia. Due to the presence of lower order derivatives, the
governing displacement equations of motion are dispersive [2]
causing the distortion of transient waves and the phase
velocities of time harmonic waves to be frequency dependent.
However, finite wave front speeds are assured due to the

hyperbolic nature of these equations [3]. This is a primary



requirement for solution by the method of discontinuity
analysis.

The method of discontinuity analysis is well known
and described in detail in [4], [5] and [6]. According to
this method a wave is considered as a carrier of discontinui-
ties in the field variable and/or its derivatives. The order
of a wave is defined as the order of the lowest derivative of
the field variable that is discontinuous across the wavefront.
The discontinuities satisfy certain conditions across the
wavefront from which it is possible to obtain a set of recur-
sive relations known as transport-induction equations [5],
[7]. These equations which govern the propagation of discon-
tinuities, can be solved together with the specified time-
dependent boundary condition to determine the discontinuities
of all order at the wavefront. The transient solution is
then represented in terms of a Taylor series expansion be-
hind the wavefront, where the coefficients involved are the
very discontinuities discussed above. Such expansions are
suggested in the monographs of Achenbach [4] and Friedlander

[8]. This method of solution will be known as the direct

method.

Certain transient problems that we consider involve
boundary loads that act for a finite time. For such cases the
direct method if possible, will be tedious and it is prefer-
able to adapt the Green's function concept. We define the

unit pulse solution as the transient solution to the problem



with a boundary condition involving the Heaviside unit
function. This solution is easy to determine by the direct
method and upon differentiation with respect to time gives
the Green's function for the problem concerned [9]. The
Green's function, together with the Duhamel integral, will

yield the required transient solution [8].

The corresponding time harmonic problem can be solved
by the Karal-Keller technique [10], where we formally assume
asymptotic time harmonic series solutions to the equations of
motion. The equations governing the variation of the co-
efficients in these series turn out to be exactly the trans-
port-induction equations for the unit pulse problem. There
is thus a one to one correspondence between the unit pulse
problem and the corresponding time harmonic problem. For a
given set of equations of motion it is much simpler to gener-
ate the transport-induction equations by the Karal-Keller
technique than by the method of discontinuity analysis. This

fact is first established and then exploited in this thesis.

In Chapter II the aim is twofold; viz to obtain the
solutions to all the possible wave types in a plate and to
establish the relationship between the unit pulse solution
and the corresponding time harmonic solution. Earlier in this
chapter the method of discontinuity analysis is described and
applied to obtain the transport-induction equations necessary
for a transient solution. To this end the field equations are
cast into integral form in space-time allowing us to extract
the form of the field equations when derivatives of the dis-

placement are discontinuous [5]. The analysis yields a class-



ification of the possible wave types in a plate together with
their speeds and propagation conditions. For each wave type
the transport-induction equations governing the propagation
of an arbitrary order displacement discontinuity are obtained.
These results are an extension to those presented by Cohen
[11] who dealt with the geometric acoustics case, which is

the value of the disturbance at the wavefront.

Later on in the same chapter, the Karal-Keller techni-
gue is used to obtain general steady state time-harmonic
solutions to the plate equations. The coefficients in these
series expansions are found to satisfy a set of recurrence
relations from which we obtain the very same classification
of the wave types. It is here that we establish the definite
relationship that exists between the unit pulse solution and
the corresponding time harmonic solution. The results ob-
tained turn out to be in complete agreement with those of
Kline and Kay [5] who considered the analogous problem for the

electromagnetic field equations by a somewhat different

approach.

In general the waves of the various types become
coupled together in a fashion governed by the induction equa-
tions. We consider certain special types of wave motion in
which there is no coupling between wave types and refer to
these as pure wave motions. Some of these motions require
constraining body forces or couples in order to be maintained.

Finally in this chapter we consider the wave propagation



problems corresponding to (i) a shear stress applied to a
circular cavity in an unbounded plate, and (ii) a bending
moment applied to a straight edge in an unbounded plate whose
faces are constrained between two rigid plates. The results
obtained are compared with existing closed form solutions
[121, [13].

In Chapter III the propagation of axi-symmetric tran-
sients in shells of revolution with straight line generators
is considered. The Karal-Keller technique is used, firstly
to obtain the classification of the possible wave types to-
gether with their speeds and propagation conditions. The
results so obtained are in agreement with those of Cohen [14]
who proceeded along somewhat different lines. The transport-
induction equations for the various wave types are then ob-
tained. The prescribed boundary conditions together with the
appropriate transport-induction equations can be used to obtain
the solution to the given problem.

The series solutions obtained by our method are found
to converge slowly, especially at large values of T, the time
elapsed after the wavefront. The problem is similar as in the
evaluation of the exponential of negative T using its Taylor
series expansion, when T is large. Mainardi and Turchetti
[15] used Pade approximants to accelerate the convergence of
these series solutions. We present a simple numerical super-
position technique as an alternative means of overcoming the

same difficulty. The results obtained by using this technique



agree with those of Mainardi and Turchetti who used Pade
approximants.

Later on in the chapter we solve several numerical ex-
amples and discuss the results. The first example deals with
the longitudinal impact of a conical shell. Herein we not
only illustrate our technique of solution, but also verify
them by comparing the results obtained with those obtained by
using Laplace transforms [16]. The next two examples treat
the propagation of axi-symmetric transients in a cylindrical
shell due to velocity and acceleration boundary conditions.
We also demonstrate how the response due to certain ground
motions resulting from earthquake and blast loading may be
obtained by incorporating the superposition technique. The
effect of shell location and the effect of the thickness of a
cylindrical shell on the response are next studied. Finally,
in this chapter we discuss the approximate rod theories avail-
able for treating longitudinal transients in a cylinder.

The problem of general transient waves in cylindrical
shells is treated in Chapter IV. The various displacement
components are expressed in the form of Fourier series in 6
(the circumferential coordinate) and the displacement equa-
tions of motion are written for each harmonic. The Karal-
Keller technique is used as before to obtain the classifica-
tion, speeds and propagation conditions of the possible wave
types. Once again the results are in agreement with those
obtained by Cohen [14]. Two of the possible wave types are

coupled and as a result we obtain a coupled transport equation



for these two waves and coupled induction equations for the
other wave types. The prescribed boundary conditions, to-
gether with the transport-induction equations, can be used to
obtain the solution to the given transient problem.

The approximate rod and beam theories available for
treating transients in a cylinder are next discussed. This
is followed by three numerical examples. In the first ex-
ample the lateral impact of a cylinder is treated and the
results obtained are compared with those obtained by using
Laplace transforms [17]. The other two examples deal with
the flexural and torsional problems pertaining to a cylindri-
cal tank whose base is subjected to horizontal ground excita-
tion. In the flexural problem we compare the solutions
obtained by using the shell and beam theories. The effects
of higher order waves induced due to homogeneous boundary
conditions are illustrated and discussed in the first two

examples.



CHAPTER II

TRANSIENT AND TIME HARMONIC WAVES IN PLATES

2.1 Equations of Motion

We consider the propagation of waves in linear, iso-
tropic and homogeneous elastic plates. The plate eguations
that we utilize are those of linearised Cosserat plate theory
as developed by Naghdi [1]. These equations developed from
a direct two-dimensional approach are based on a director
model and are equivalent to those developed from three-dimen-
sional considerations, and include the effects of transverse
shear deformation, transverse normal stress and strain and
rotatory inertia. The displacement equations of motion sep-
arate into two sets governing the extensionaf and bending

motions, respectively [11]. These are

WU+ (A4 V(V.u) + AVeT + BF = £ -~ (2.1)

a,V26° = (A+2u)h6® - A(V.u)h + pL® = pad® , (2.2)

for the extensional theory, and

a
2 (3Xx+2yu) _ 3 3 p = P_ 3 (2.3)
v § + (;\+2u)V(v‘§) ——-uha(§+Vu ) + Tha E‘ R S
V.5 + V2u® + §;F3 = g—ﬁs , (2.4)
~ 3

for the bending theory.



In the above equations the displacement of the Cosserat
plane is given by g* = (E,ua) and the displacement of the dir-
ector by §* = (g,ds); The vectors E’é represent the displace-
ments parallel to the plane of the plate, while u?,8? represent
the displacement normal to the plate. From the three-dimen-

sional point of view, the assumed displacement U* across the

plate space is given by [11],[1]

U* = E* + z§* , ) (2.5)

where Z is the co-ordinate along the normal to the plate mid-
surface. V is the two-dimensional gradient operator in the
plane of the plate. Also A, u are Lame's constants, E,Fs are
body forces,.I:,L3 are body couples, o = ?;, while the consti-
tutive coefficients a; and «g are taken as constants and
could take on values depending on the problem at hand [11],[1].
The mass per unit area is p while h is the plate thickness.
The plate equations (2.1) - (2.4) being hyperbolic,
ensure finite wave front velocities for the propagation of
disturbances [2]. In this respect they are similar to the
equations of motion in three-dimensional elasticity and are
suitable for studying the dynamic response in plates. However
due to the presence of terms of lower order differentiation,
these plate equations are didpensdive [3]. Thus a pulse will

suffer distortion and the phase velocity of a harmonic wave-

train will depend on the frequency uw.
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Introducing the notations

w, o= (u,8%), w, = (§,u’), £ =-(F,L%), £, = -(L,F’) , (2.6)
equations (2.1) - (2.4) can be conveniently written as
Ea W, = pga , a=1,2 , (2.7)

where L is a suitably defined linear second order differen-

tial operator.

2.2 Transient Waves and Discontinuities

Consider a source of disturbance acting over some
curve in a homogeneous isotropic elastic plate as shown in
Figure la.! 1If the source begins to act at time t = 0, then
for t>0 this disturbance will spread into the plate with a
constant wave front veiocity G. The wave front will consti-
tute a family of parallel curves Y (x,y) = Gt in the x,y plane of
the plate while sweeping out a hypercone ¢(x,y,t) = 0 in
space-time. The value of the field at a point Po(xo,yo,to) on
the wave front is called the geomeitrical acousiic field by

analogy to the geometrical optics situation arising in [5].

! The results to follow are readily generalized to nonhomogeneous plates.
The general features of the analysis are analogous to those presented
here. The complication appears as an algebraic one, due to the fact
that the speed of propagation is no longer constant.



-11-

The value of this field at any point P(xo,yo,t), t>to, behind
the wave front will constitute the so-called transdient or
pufse solution to the disturbance problem.

We assume a transient solution to equation (2.7) in the
form of a Taylor's series expansion [4],[8] at the wave front
into the region behind it. Thus we write

o 37w <t-t >0
O

n ~t=t n! ! (2.8)
: o 1

where <,> = 0 if the argument is negative while 1 l indicates
the discontinuity or jump of the argument across the wave
front. These discontinuities occur at the wave front since
the region ahead of the wave is undisturbed. The wave is thus
naturally a carrier of discontinuities. The lowest order
derivative of v, having a discqntinuity defines the order of
the wave. A first order wave is called a shock or strain wave
and waves of this type will constitute the subject matter dealt
with herein. Higher order waves yield results which are com-
pletely analogous to those for first order waves. For first
order waves, a knowledge of the first order discontinuities on
the wave front will constitute the geometric acoustics solution,
while a knowledge of the higher order discontinuities will
allow calculation of the transient solution from equation (2.8).
Associated with the geometry of the wave front at any
point are its unit tangent A and unit normal v. We use & and

s to denote arc lengths along the wave curve, and perpendicular
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to it, respectively. Thus s measures distance along the rays
defined as the orthogonal trajectories to the wave curves,
which for homogeneous isotropic plates are straight lines. We

find it convenient to define the vector differential operator

VD by ‘
3_

2t * (2.9)

o
Qe

This operator allows calculation of all one-sided directional

derivatives along the wave surface ¢(x,y,t) = 0. 1In particular
the operator g{ is defined by

D _ _ 3

BTE = GB.VD = € + GY.V . . (2.10)

This is the so-called displacement derivative [7] and calcula-
tes rate of change as seen by an observer moving along the

rays with the wave speed G, i.e. moving with the wave front.
Applying equation (2.10) to the wave surface equation ¢(x,y,t) =

Y(x,¥y) - Gt = 0, we compute that
v=Vy=V , k=-V¢y , (2.11)

where Kk is the curvature of the wave front.
In terms of the operator VD the so-called Hadamard's

Lemma [7] takes the form

1 =vVplw 1 - (2.12)
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In what is to follow it is convenient to represent
vector quantitiés in terms of components tangent and normal

to the wave front. Thus we write

A Y
‘.',Va = wai\ + wa\~) ’ (2.13)

and moreover define the directional derivatives

= 2.V, gg'= V.U . (2.14)

CL,QJ
1)

In particular we obtain from equations (2.12), (2.9) and (2.14),

the compatibility relations

dw D

- ~d,,n D
IYa,n+11 = —Gl—5g 1 +pglvg 20, (2.15)

where the comma followed-by the subscript n indicates an
nth order time derivative.

In order to determine the possible types of discontin-
uities and their behaviour at the wave front we must utilize
the field equations (2.7) to obtain the appropriate governing
discontinuity equations. Since we are dealing with first
order waves we shall require discontinuity equations of a
lower order than can be obtained by taking the jumps of an
nth order (n>0) time derivative of equation (2.7). These

lower order equations are obtained by following the proce-

dure utilised in [5] to deal with Maxwell's equations. We -
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introduce a testing function 2, which possesses derivatives
of all order. The testing function and its derivatives vanish
on and outside the boundary 3R of a domain R in space~time.
Multiplying the extensional field equation (2.1) and (2.2) by
$2, integrating over R and utilising integration by parts we

Obtain

[ .. -
(V. 7) ut (A+1) V2(7.0) 2708 *- 2au-0fF} = 0 (2.16)

R

J

( ..
{ae(VQ.V)53+(A+2u)h963—k(VQ.u)h—paQé3—QpL3} =0 . (2.17)

J
R

Equations (2.16) and (2.17) are integral forms of the field
equations (2.1) and (2.2) respectively, and these are mathem-
atically equivalent to one another in regions where the deri-

vatives involved are ‘continuous. We also define u = u,, etc.

We now assume the surface of discontinuity ¢(x,y,t) = 0
to pass through the region R, dividing it into regions R,
and R, as in Figure lb. Reversing the procedure used to ob-
tain equations (2.16) and (2.17) with appropriate integration
by parts over the domains R, and R,, inside of which the

necessary derivatives are continuous, we find?

HLVé.V)ul + +wIVEIv.ul + ave[s] + Eeril =0 (2.18)

~

2
In this analysis we assume that the body forces fa are C« and note

that the continuity of fa has been used in obtaining (2.18) and (2.19)
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ag[(V$.V)8%] - Ah[Vé.u] + paG[&®] =0 . (2.19)

-~

Equafions (2.18) and (2.19) are the required discontinuity
equations and are a consequence of the field equations (2.1)
and (2.2) at a surface of discontinuity. In an analogous
fashion, the plate bending equations (2.3) and (2.4) lead to

the discontinuity equations.

(3A+2y) %s 37 4+ P Gral =
[(Ve.M)8] + "Tixzm Velv-81 - qrgVelu’) + gy GI8] = 0, (2.20)
[v6.8] + [(Vo.")u®}] + 2-=GI&°] = 0 . (2.21)

In order to obtain discontinuity equations of higher

order, i.e. governing jumps in higher order derivatives, we

need only take the jumps of any nth order (n>0) time deriva-

tive of equation (2.7). This leads to

HLQ-Du, ]+ O pTen, 1+ 0082 1 + g

= G{uv, . [vu, ;1 + +u) Vo [Vew, 1 + AV (87 .1} .

a [(v.V)G?n] - khly.g,nl + Gpaié? ]

8 -~ ~ n+l>
(2.23)
= 3 - 3 -
= G{aBVD.EVG,n_ﬂ (A+2u)h£6,n_ll )\hVD Eg, ll},
for the extensional theory, and
(3A+2y) +Gp
Lo 8, 1+ 555 vIv-8, 1+ uha viud 14218, 0]
(2.24)
= (3A+2u)
G{VD’Evé’n—llf (>\+2u)V {V .‘§ n- 1] uhaff b uh D.

LY,
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~ n-1lx

1 = G{v_.[8, _,1+V .[va] 1},
(2.25)

for the bending theory. We note that in writing equations

(2.22) - (2.25) we have modified their forms by use of equa-

tion (2.9).

I Extensdional Waves

We now turn our attention to the consequences of the
above discontinuity equations for the case of extensional
waves. Equations (2.18) and (2.19) determine the propagation
conditions for extensional waves. These conditions determine
the possible types of waves which can propagate, as well as
their associated speeds of propagation. If we take the scalar
product of equation (2.18) with 5 and v, utilise equation (2.13)
as well as the appropriate first order compatibility relation
obtained from equation (2.15) by putting n = 0 and lyll =0,

we find from equations (2.18) and (2.19) that

2_ A2 A _ 2_ A2 v _ 2_p2 3 _
(Gp=G™) [uy,] = 0, (G -G") [u,,] = 0, (G§-G*)[8} ] = 0, (2.26)

where
uh o
2 _ = 2 - (A+2u)h 2 . 8 2.2
G, P+ Gl o Gy ca (2.27)

Equations (2.26) will define the three types of waves. For
each of these, if the values of the possible jumps are given
on an initial curve, their variations as they move with the

wave front will be governed by equations (2.22) and (2.23).
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If we take the scalar product of equation (2.22) with A and
v, use equations (2.12)~(2.15), we obtain as a consequence of
equations (2.22) and (2.23), a system of three first order
differential equations which involve jumps of order n, (n-1)
and (n-2) in the field guantities. These equations determine
the transport-induction equations for each type of wave by
substitution of the appropriate solution to equations (2.26)
into them. We now proceed to give a classification of the

wave types along with their transport-induction equations.

(1) Longifudinal Wave
AV A _ 3 _ 2 __ 2 ’
£u,11 # 0 , Eu,ll = Ed,ll = 0 , G = GL R (2.28)
a Y v _ 1 a . A 4
2E;£u'nl—K£u'nl o -2(l—v){d2£u'nl GL ds(v'gg'n—ll)}
2 (2.29)
-y 3 y_g 8 (3 _T, g2
(l-v)(Ea'nl GL ds!s'n—ll)+GLY'v Lg’n—ll ’
A e 1. d A _ A _ 2
Turpl = (=206, (2ggluy g 1-kluy 11-G A Vi[u, 1)
4 v (2.30)
a_ - 3 _
+GL dQ(GL v‘if'n—21+ 2vGL16'n-2l Eu'n—ll) !
G2G
2_ .2 3 = 2V T L v _ _
(GL Gs)£6’nl (L-2v)°" « (Eu'n—ll GLV‘IB'n—zl)
G (2.31)
2(,9 g3 - 3 2~2g2g3 __ L cs .
GLGS(2d5£6'n-ll Klé'n-ll)+GLGSv Eé'n-ll a Eé'n-Zl
(ii) Shean Wave
A AY 3 2 2
fwrl 7o, Wi1=1801=0,¢6 =3 , (2.32)
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da . A AL 1 4 . v
zdslu,nl -KEurnl' = (1_2\))d2’ (-.[.u'nl—GT(v°-[-E'n~l])
(2.33)
3 _ 2
296183, 110 -6 Vi, )
Vo, 4a A _ a . v EPTARY
Eu'nl - GT d2£u'n—1l + 20 V)GT (zdsiu’n—ll Klu'n—ll)
(2.34)
—(1- 2y y2 3 8 rc3 .2 d _
(1 2V)GTY'V EE'n-Zl * 2\)GT( Ea'n ll GT dsgé'rk2l) GT ds(v'ig'n—Zl) ’
G3
2__2 3 = 2y T v -c v - 2,4 (o3
(GT GS)~[—6' ']~ (1-2v)a (—gu'n—ll GT '-Eg'n—Zl) GTGs(zdsja'n 1,]_
- 3 _ 3
K£5WP11)+ GTGSV Eﬁ’n—zl o lﬁ'n—zl :
(iii) Squeeze-gradient wave
3 _ 2 _ .2
871 #0, fu, )1 =0, 6% = 6. (2.36)
G2
a4 3 4. 3 2v T Vo,
235187 1-x 087 1 = 750y —; (Ius 1-G V. [u, 1)
aGS
(2.37)
G2
223 __L 3
*GgVIISy - 8 01,
oG
S
(c2-¢H Y 1 = 626 (29-1uY  1-vuY 1) -62¢2y.V2[u ]
L S ~ 'n’v L S dS~ ’n—l~ ~ ’n"‘1~ T S~ ~~,n_2~
s _ {62 S (o} 1-62¢ (V. [u 1} (2.38)
Y- 'L agit n-127616gas Vet qanl .

2V 2 3 _ _d__ 3
1-2v) 6r6s (187, ,1-6 18

+( - ~ "sds~ n—Zl) !
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2 2 Ao oR2 a . A - A \
(GT_GS)Eu'nl ?TGS(ZdSEu’n—ll Klu, 11 Gsb v [u, 21)
(2.39)
GS AV 2 2V
2 8% (a2 - A 2 3
Y v)dl(G fuv 31-6065(Volu, 1) = 5755,6:65 187 LD -

We have written the above equations in terms of the Poisson's
ratio v and we note that n > 1 in them. Moreover we add that
in obtaining the above equations we have uéed t = \1)(>-:,y)G_l
to eliminate explicit dependence on time at the wave front.
Equations (2.29), (2.33) and (2.37) are the transport or
decay equations and determine the variation in the quantities
[u, ], [u, ] and !63 1, respectively, for the three types of
waves, provided these are specified on an initial wave curve.
The role played by the pairs of equations following the decay
equation in each case is to determine the higher order dis-
continuities induced by those of lower order. Moreover, they

bring into play -the coupling of wave types that will occur

for the discontinuities of order greater than one.

I1 Bending Waves

For the case of bending waves, the analysis is entirely
analogous to that of extensional waves. In this case we utilise
equations (2.20), (2.21) to obtain the propagation conditions
and equations (2.24), (2.25) to obtain the transport-induction
equations. We now present the classification and transport-

induction equations for the three types of bending waves.



(1)

-20-

Bending wave

V) #0, (87,1 = i1 =0,6 =6 , (2.40)
d_ v v ,_ _(14+v) d A . 4
2o18Y, 1okt 1= -0 (Gp 1 1-e o s, 0
, . ) (2.41)
~?ﬁy[u? 1+ 233 v2is, -1]’€§" ([8) _ql o+ %—[u? _
aGB~ n-~ B ~~ N ~ O B ~ n -~ ) S~ n ~
2_ .2 A _ 2,4 A _ A 2.2 2
(GB GT)£6,nl = GBGT(Zd £6, 1) kIS, -11)+ GBGTA.V fé’n—zl
g2 (2.42)
(14V) 2@ ( oV _ _BUK, oA a
(T-v) %z gg 107 n-117CGpV- [0 1) -—— (18] lraglur )
G2-g2 3 = - 2,,8 [ 3 _ 3 v
( B K)!u nl GBG (zdSEu'n—ll '4u'n—ll+£6'n-ll)
(2.43)
2,~2 2 3
* Gpl (V- 18, 14V [y o0
(ii) Twisting wave
56§|1 0, [8)1=[ul]=0,6"=¢2, (2.44)
a A, A _ _(1+v)d Vo
2qalér 1-xl6 ) = - (Tyyar U8y ,1-6V- 08 4 1)
(2.45)

2
G
2 __K_ A d .3
+ GT&'V £§'n—ll aGT (Eé'n—ll + dﬁiu'n-ll)

14
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G, G2
2_p2 v _ a2 4 sV eV 3
(GB 'GT)—EG'n-]v = F;BG'I‘ (zds-gé'n—ll K.[.(S'n—l-]v) A [u'n—ll
(1+V) 3,4 A _ a4 4 2
(1—v)GT{d2£6’n—1l Cr ds(v'fé'n—zl)}'GTY'v S TNPY. (2.46)

GG

2.2
T K AV a . 3
([6 1 + ds.[.u' N ’

+
o ~ 'n-2% n-2-

3

2 _ 2 - - 2 4 ..,3 _ 3 T 2 2V
(GT GK)Eu,nl GTGK (zdsiu'n—ll Kiu'n—ll) GTGKEG'n—ll
) , (2.47)
3
+ GpGp (V. 18, o1+ ¥ fur o))
(iii) Kdink wave
3 2 _ .2
fal ] #0 ., [8,1 =0, 6" =Cg v . (2.48)
a (.3 y_ 3 ~ &V | 2,3
ZdSLH,nl Klu,nl = Eé,nl + GKV'Eé'n—ll + GKV Eu'n—ll' (2.49)

2_pn2 v - 2 a4 gV _ Y
(GB—GK)ES,nl = GG, (Zasié,n_ll Kia’n—1l)

(1+4V) 2 d A a _n2a2 2
—1G,G {dlta'n—ll-Gde(v'Lé'n—Zl)} GGV -V (8, _,1

(1-v) KT ~e'mn
3
* EE (GK—EG\')n—Zl * GK g—s—Eu?n—Zl-‘Eu?n—ll) ! (2.50)
(62-62) [84 1 = 6,67 GEted 1-k18h, 1)+ 6RGIA-TRI6. o)
G“
t%é%;ché-%E (Eéyn-ll-va'Lé'n 2D 'EE (Eéén—zl + dz[“?n—zl)'
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In equations (2.40)-(2.51) we have set

' o
g2 = 2(A+uluh g2 = kb o2 _ 3 (2.52)
B (A+2u) P’ T p ¢ °K p

The above results for both the extensional and bending
waves are generalisations of those obtained by Cohen in [11].
We remark that the procedure used here to obtain the propaga-
tion conditions is an alternative to that utilised in [11].

We note finally that the transport equations for all

of the above types of waves are of the form

d
2535lw, 1-xw, 1 =GF _, ,n21 . (2.53)
This equation has the solution [10]
s :
% -
w, 1= lw,nol(gj +'£2;— K}ﬁf(K(T)) F__,(Dart , (2.54)

O
where the subscript o indicates evaluation at the initial

wave—-curve.

2.3 Steady State Time Harmonic Waves

Conen in [11] examinedthe question of steady state time
harmonic pfane wave solutions of the plate equations (2.7) in
the absence of body forces, i.e. with §a = 0. For waves of
this type the possible phase velocities V = wk-l, where w is
the frequency and k the wave number,were found as a function
of wave number. It was found that with the exception of one
mode of propagation in the case of extensional waves, that all

other wave types were dispersive. In the limiting case of
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infinite frequency or wave number, all phase velocities
reduced to the corresponding speeds of propagation of pulses
found in section 2.2 of this chapter. Here we seek harmonic
wave solutions of a more general nature than those in [11],
corresponding to waves which are generally curved and which
arise as a consequence of a time harmonic disturbance applied
to an arbitrary curve in the plane of the plate.

Thus we begin by assuming an asymptotic series for the

displacements in the form

iw (s-t) f S , (2.55)

n=o0 (iw) n

w = e
~Q

which is to represent the steady state behaviour of the plate
for large frequencies. Series of this typé were introduced
in [10],where S is called the phase function,to investigate
steady state time harmonic behaviour in an unbounded three-
dimensional elastic non-dispersive medium. For high frequen-
cies the first térm in the series predominates and we may
regard this as an approximation to the solution. For other
frequencies the higher order terms in the series may be viewed
as corrections to the disturbance arising due to (a) the dis-
persive nature of the governing equations, (b} the gyeometry
of the wave being non-planar, and (c) the variation of
amplitude over the wave.

On substituting equation (2.55) into eqguation (2.1) and
(2.2) with £, =0 , setting A} = (A, A;) and formally requiring

that the coefficients of powers of (iw) separately vanish, we
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obtain the recurrence relations for n > 1 as

gn{u(Vs)z—ph“l} + (A+u)Vs(a _.Vs) + 2u(Vs.V)§n'

S
+ (A+u)Vs(V.§n ) + (A+u)V(§n_l.Vs) + AVs A

-1

2 3 -
+ uV én + (A+u)V(V.§n_2) + AVAn_ =0 ,

-2 2

3 2 _ 3
A {ag (Vs)®-pa} + 204 (Vs.V)a

2,3 _ 3 =
+ a,V A_q (A+2p)An_2 Ah(V.é ) 0

n-2

-1

1

+ uvVis a

~n-1

(2.56)

+ 0gV%s A’ . -Anh(a__ .Vs)

(2.57)

The above equations govern waves of the type (2.55) within the

framework of the extensional theory.

Similarly substituting eguation (2.55) into equations

(2.3) and (2.4) with £, = 0, setting A, =~(§n,B;) we obtain

for the bending theory the recurrence relations

2 -1 (3A+2y)
gn{(Vs) —g(uh) BE: TXIEH)VS(En.VS) + 2(Vs.V)B_
(3A+2))
77:35){VS(V.§n_1)+ V(gn_l.VS) + V(V‘§n-2)}

2 - REEE vl _} =0
+ VOB @y (ho) “{B _ Vs + B _ +

2 3 +
* VIS B, v B

3 2_ 7} 3
B {(Vs)*-pa, } + 2(Vs."yB’

2.3
. = 0
+ Vv En-z + Vv Bn—2

-1

.Vs

2
+ B
Ves B 1

(2.58)

(2.59)

In equations (2.56)-(2.59) we set the leading term Aao =0,

an assumption which is consistent with the case of first order

waves. 1In addition, we set
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S _ , .n
S=G vy , éan = (-1) lYa,nl , n>1 (2.60)
in the recurrence relations (2.56)-(2.59). If we now put n =

1 in equations (2.56) and (2.57) and take the scalar product
of equation (2.56) with 5 and v, we obtain the set of equations
(2.26) and note that the magnitude |VS| = G~ '. Thus it follows
immediately that the classification of harmonic extensional
waves corresponds directly to those of the extensional pulse
propagation case. In addition, the equations (2.56) and (2.57)
for n > 1, yield a set of equations which are precisely the
transport-induction eguations given in the previous section
for the extensional pulse propagation problem. Entirely analo-
gous remarks and results pertain to equations (2.58) and (2.59)
and the corresponding bending wave classification and transport-
induction equations given in section 2.2.

We thus see that there is a one to one correspondence
between pulse solutions in the form (2.8) and steady state
time harmonic solutions (2.55). For a given set of boundary
conditions, solution of the transport-induction equations given
in section 2.2, simultaneously solves each of these problems.
The method of obtaining the transport-induction equations by
using asymptotic series of the type (2.55) is called the Karal-
Keller technique [10]. We note that the geometric acoustics
solution corresponds to the leading term in equation (2.55)
and hence for large w, the amplitude of the harmonic solution
decays as the geometrical acoustics solution. Moreover, the

curves of constant phase correspond to the wave fronts in the
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pulse propagation problem, and we may regard this leading
term as representing a decaying harmonic wave whose phase
velocity is equal to the wave front velocity.

We shall now give a specific example of the afore-
mentioned correspondence. Define the unit pufse solution Yz
as the transient solution of equation (2.7) with fa =0

satisfying the boundary condition

“H .
W, = YaoH(t) ' (2.61)
where w__ = w (2) is specified on an initial curve Co in the

~Q0
plate and H(t) is the Heaviside function.?® From equations

(2.55) and (2.60) one sees that corresponding to wg will be a

steady state time harmonic solution wz of equation (2.7) with

fa = 0, satisfying the boundary condition
W o= emivt (2.62)
~G.- ~(LO

on the initial curve Co.

An alternate procedure for showing this correspondence
between YZ and 32 may be produced by following an analysis
similar to that used in [5]. The transient solution to equa-
tion (2.7) satisfying an arbitrary time dependent boundary

condition

Yo = Yoo £(E) (2.63)

on Co, may be given in the form of a Duhamel integral [9]

as

3

The Heaviside function is defined by H(t) = 0, t < O, agd H(t) = 1,
t > 0. It is related to the Dirac delta function by A(t) = H(t), where

-the differentiation is in the generalised sense [8].
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t

= 9 B
w, = at‘j.Ya(t )f(r)dat . (2.64)
O
Applying equation (2.63) to the choice f(t) = H(t)e—iwt,

after repeated integration by parts and letting t + «, we ob-

tain a steady state solution in the form of the series (2.55)

with A = 0 and A = (-1) [wH 1 , forn > 1. * Equation
~00 ~0n ~~CX.,n~ -

(2.64) may be written in the equivalent form

t
A
v, =-[-Ya(t—T)f(T)dt . (2.65)
where ° A
Wo = we . (2.66)

We observe that wé is a Green's function for the problem at
hand. It corresponds to what may be termed the unit impulse

solution of equation (2.7), arising due to the boundary

condition
aA _ -
W, = YaoA(t) , (2.67)
onC . °®
(o}

Once a unit pulse solution Yg has been found for any
boundary we could use it to find solutions corresponding to
arbitrary time dependence on the boundary. On the other hand
if this time dependence is Fourier analyzed to obtain its
frequency spectrum, then we can use the time harmonic solution

wg to obtain solutions by Fourier synthesis.

In actual fact we obtain up to three series of this type for each
0 = 1,2, depending upon how many of the wave surfaces ¢(x,y,t) = 0 make
contributions on being crossed in the integration process.
5
We observe that the solution gA corresponds to a zeroth order wave,
which is inadmissible on physical grounds. However, if we think of this
solution as giving velocity (or strain) rather than displacement it raises
no conceptual problem.
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2.4 Uncoupled Wave Motions

In general, for each of the classes of extensional
and bending wavés, coupling will occur between the various
wave types. As seen in[ll] this is true even in the case of
plane waves, where coupling occurs between the longitudinal
and squeeze gradient waves within the framework of the exten-
sional theory and between the bending and kink waves within
the framework of the bending theory. The éhear and twisting
waves were uncoupled and might be referred to as pune waves.
Our objective here is to see if it is possible to expand the
category of pure plane waves. This in fact can be done by
introducing suitable constrained motions, for which the con-
straints are produced by application of appropriate body

forces fa'

(i) Punre Tilting and Twisting Waves

In equations (2.3), (2.4) we assume w, = w,(x,t),

§=¢8'i+ 8%, ud = o, L = 0, where i,j are unit vectors along

~

the rectangular cartesian coordinate axes x,y. We obtain,

2
3251 » 328! | Sx o, s _ _ 0y 238!
F - GB 3x2 + — § =0 , F°= -p—-—a ' (2.68)
252 202 G2
-l iy K=o (2.69)
at?. T axl o ¢

Equation (2.68% defining a pure tilting® wave corres-

ponds to a tilting of the plate cross-section and requires a

6 .
Logically we should call this wave a pure bending wave, but since

this terminology usually has another meaning and since the termlnology
tilting is descriptive, we introduce it here.
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constraining body force given by equation (2.685. This con-

straint can be maintained by sandwiching the plate between
two rigid layers. Equation (2.69) defines a pure twisting wave

and its existence requires no constraint.

(ii) Pure Shean and Squeeze Gradient Waves

In equations (2.1) and (2.2) we assume wo= wl(x,t),

u = uli + u?j, u! = 0, L3 = o0, F = F!i and find that these

conditions are satisfied provided

G 3
5243 2 9288 L 3 _ 1 _ _ Ah 987
vy Sax2+——56—0,F~ o ax (2.70)
32u? 9%2u?  _
" - G; - =0 . (2.71)
X

Equation (2.70) defines a pure squeeze gradient wave and re-
guires that the plate midsurface be made inextensible.
Equation (2.71) governs the propagation of pure shear waves

and their existence requires no constraint.

(iii) Punre Kink Waves

In equation (2.3) and (2.4) we now assume w, = W,(x,t),
F3 = - % u?, K >0, § =0, L= L‘i and we optain the gover-

ning equation of a plane kink wave as

azus 2 32u3
ot? K 5x?2

+ K Gpul=0 , L' = G =— . (2.72)
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In order that this wave propagates, a constraining couple L!
must be applied in order to assure that normals to the plane
of the plate are constrained to remain normal. In the case
K # 0, the problem corresponds to a plate on an elastic
foundation with modulus K.

We note that each of the waves defined by equations
(2.68)-(2.70) and (2.72) satisfy the same differential equa-
tion and some form of constraining equation and hence it is
only necessary to deal with one of these in order to solve
them all. The governing transport equation ’ may be obtained
by making the appropriate substitutions in the appropriate
general forms of these in section 2.2, or by directly seeking
a solution to equation (2.68), in the form (2.55). An example
will be considered in the next section.

The pure shear and twisting plane waves defined by
equations (2.71) and (2.69) may be generalized. By examining
the induction equations (2.34), (2.35) and (2.46), (2.47),
which correspond to these two types of waves, we see that no
coupling will exist provided the wave discontinuities are con-
stant along the wave fronts. From the form of the transport
equations we see that this will be true only if the wave curves
are of constant curvature, i.e. circular and if the discontin-
uities are constant on the initial wave curve. Hence we can

have pure shear and twisting waves with circular wave fronts.

7 Since there is no coupling, the induction equations make no contribution
to the analysis. They are replaced by the approoriate constraint equations.
For the case K # 0, the transport equation (2.49) for the kink wave does
not apply, as it was derived on the basis of C° body forces.
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2.5 Examgles

(i) Torsional Shearn Waves

We consider the problem of an unbounded plate having
a circular cavity of radius a_, and subjected to a steady
state time harmonic uniform shear stress. For this problem
the curves of constant phase will be concentric circles and
it is natural to employ plane polar coordinates (r,0) to

formulate the problem. If we assume

u=u(r)x , 83¥=0, f =0, L =0 |, (2.73)

~ ~1

then the governing equations (2.1) and (2.2) reduce to

2 2
9“1 1 3u u 1l 9%°u , (2.74)

where u denotes the circumferential component of displacement.

The appropriate boundary condition is

A" S (G —iwt =
Tyg = U(Br ) = T1.e at r = ao ' (2.75)

where To is a constant. From equations (2.33), (2.60)2,
(2.53) and (2.54) we obtain the solution to the appropriate

transport equation as

az ¢ d?a da A
_ o _ C1_ 3,—n-1 1 n-1l  n-lyyeo 0 (2.76)
Ay = Ag(ag) =3 Zr%f(T ) r — o (mar

From equations (2.75) and (2.76) we obtain
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1 1 3
TG fa\? 31 G2 a\? a\?2
o T o) _ o T o o
A = - , A = 5\ —} - | — ’
1 H r 2 8uao r r

(2.77)
1 3 5
lSTOG; aj\? a_ P a 2
A=———-—-.__323'r_-6i——-z:— r etc.
®  128Ma
o
-1
Moreover since|VS| = GT » we also find
S = (r—ao)/GT . (2.78)

The solution to the problem is given by equation (2.55) on
setting wo= ué and éln = Ané and utilising equations (2.77)
and (2.78).

The solution to the corresponding unit pulse problem
is given by
A

(-1)"° = <e-(r-a ) /6 >" . (2.79)
. ]

o
ol
i
he~8

n

The resulting shear stress may now be calculated from
equations (2.75)l and (2.79). This problem has been solved
in closed form by Goodier and Jahsman [12], using Laplace
transform techniques. Achenbach in [4] dealt with the solu-
tion via discontinuity analysis, proceeding in a slightly
different but equivalent fashion to that employed here. To
illustrate the efficiency of the procedure we compute the
shear stress using the three coefficients given in equation

(2.77). The results are plotted in Figure 2 where they are

compared with the exact analysis of [12]. The first term

alone in the series gives the wave front solution and hence
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the perfect agreement in the peak values. By using additi-

onal terms in the series (2.79) we could improve the agree-
.H

ment elsewhere. Similar results for the velocity u showed

analogous comparison with those in [12].

(ii) Pure TiLting Waves

As an illustration of the class of constrained waves
discussed earlier, we deal with pure tilting waves as governed

by equation (2.68), and subject to the boundary condition

%% = e_lwt, at x =0 , (2.80)
where for convenience we have set 8! = §. From equations
(2.41), (2.60), and conditions leading to equation (2.68) we

find the required transport equation to be

dB 2 G, d’B -
_n._b B el 2 g2t > 2.81
B dx
=1 . .
where A, = B v. From|VS| = G, and equation (2.80) we find
s =% (2.82)

while equations (2.81) subject to (2.80) have the solution

_ n b2m 1 m _ 2m-k+n m\/2 % 2m-n
Biap = G0t L Q) gz L (D) (k)(n)j{'(?;) /(283
m=n k=n

where n = % for even n and E%l for odd n, n > 0 and
(g) = TE:%%TET . Substituting equation (2.82) and (2.83)

into equation (2.55) with w, = dv and A2n = an gives the
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solution to the posed time harmonic problem. The constraining

body force may be calculated using equation (2.68)2.

The solution to -the corresponding unit pulse problem

i.e. one for which

ad

I (2.84)

]
=
G
~
jr)
ot
bS]

I
o

is given by

foe) n
= n X
87 = ) (-1) g} <t-z=>" (2.85)

This solution can be used to obtain the Green's function GA
by application of equation (2.66), i.e. GA = éH.

Closed forms for the time-harmonic solution §° and
unit impulse solution GA may be obtained from equation (2.68),

by the methods of separation of variables and Laplace trans-

forms, respectively. These are given in [13] and are

@ _ _ OB etlkx-ut) w?y_ b? (2.86)
- (lw) b2 15 ! G2 w2 ’ °
1—-—= B
( o
A _ 2 x?b2 3 X
B B

where JO is the Bessel function of order zero. When equation
(2.86) is expanded in inverse powers of (iw), we obtain term
by term agreement with our time harmonic solution as given
by equations (2.55), (2.82) and (2.83) . Moreover, when the
Bessel's function in equation (2.87) is expanded as a Taylor

series about t = g— » We obtain precisely the series for GA
B

obtained by differentiating equation (2.85) .
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CHAPTER IIT

AXI-SYMMETRIC TRANSIENTS IN SHELLS OF REVOLUTION

3.1 Equations of Motion

We now consider the propagation of axi-symmetric
transients in linear, isotropic and homogeneous shells of
revolution with straight line generators. Thus the solutions
to be presented in this chapter are applicable to conical and
cylindrical shells and to circulaf plates. We utilise
Naghdi's equations [1] which are based on the Cosserat theory
and which include the effects of transverse shear, transverse
normal stress and strain and rotatory inertia. If the meri-
dional and normal displacements of the shell midsurface, the
rotation of the normal to this surface about the tangential
direction and the transverse normal strain are denoted by
u, w, ¢ , wz respectively, the displacement equations of

S

motion can be written as

52 1 32 8
egu _ 1 ou_ 2 a. v. , (3.1)
852 G2 atZ i=1 10 10O
L
2 2
AT B PR 3.2
3g 2 G2 5t2 -1 ioido ’ (3.2)
B
52 1 22 8
T2 2¥_ ye v (3.3)
9s?  GZ at?  i=1 *© *°
K
3%y 32y 8
z 1 z _
9s2 G2 at? 1§1di°vi° ) (3-4)
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In the above equations s is the meridional co-ordinate

and the wavefront speeds are as given below:

2 _ _ P 2 _ 2 _ 2 _
GL = C(1-v)/(1-2v)p, GB C/o, GK aa/p, GS aa/pa , (3.5)

where v is the Poisson's ratio, p the density, o = h?/12, h
being the thickness, C = E/(1-v?), E being the Young's modulus

and the material constants ,, a, are taken as having the

8

approximate values 5E/12(1+v) and 7Ea/20(1+v) respectively.

Moreover the quantities V., are given by

ou 81Ps
Vie = 357 Y%o= W V0= 550 Vo = Vg
oo o =awz —— (3.6)
50 9s’ ‘eo0 " Y70 9s " Tso z '

+ C. , d. which contain the

and the coefficients a. , b
10 10 10

io
material and geometric properties of the shell are given in
the Appendix I.

The equations of motion corresponding to the uniaxial
theory [16] and the modified membrane and bending theories of
Mortimer et al [18], [19] can be obtained from equations (3.1)-
(3.4) by assigning appropriate values to the coefficients
a0 bio’ Cin? and dio’ Thus the solutions that will be pre-
sented could also be utilised to obtain those corresponding
to the above mentioned theories.

Due to the presence of lower order derivatives, equations

(3.1)-(3.4) are dispersive [2], causing transient waves to be

distorted and the phase velocities of time harmonic waves to be
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frequency dependent. However, these equations do not contain
mixed spatial and temporal derivatives and are hyperbolic, en-
suring finite wavefront speeds for transients and bounded phase
velocities for time harmonic waves [3]. For this reason

these equations become very suitable for solution by the
method of discontinuity analysis or by the method of charac-

teristics [18], [19].

3.2 Method of Solution

The method of discontinuity analysis is well known and
is described in detail by Achenbach [4] and by Kline and Kay
[5]. According to this method a wave is considered as a
carrier of discontinuities in the field variable and/or its
derivatives. These discontinuities satisfy certain conditions
at the wavefront from which it is possible to obtain a set of
recursive relations known as the transport-induction equations.
These equations govern the propagation of the discontinuities
of all order at the wavefront, and determine them if the bound-
ary condition is known. The transient solution due to time
dependent loads acting at the boundary of a structure can then
be determined in the form of a Taylor series expansion behind
the wavefront. This is the method suggested by Achenbach [4],
and we call it the direct method.

The time dependent loads that we consider, are those
that act for a finite time and are specified in the form of
strain, velocity or acceleration boundary conditions. For

these cases the direct method if applicable, will be tedious
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and it is preferable to utilise the Green's function concept.
We define the unit pulse solution as the transient solution
corresponding to the boundary condition involving the Heavi-
side step function. The unit pulse solution can easily be
determined by the direct method and then its time derivative
gives us the Green's function for the problem at hand [9].
The Duhamel integral together with the Green's function will
then give us, at least numerically, the required solution to
any transient problem.

The solution to the corresponding time harmonic problem
can be determined by the Karal-Keller technique [10].
According to this we formally assume asymptotic time harmonic
series solutions to the equations. The coefficients of these
series are fonnd to satisfy a set of differential recurrence
relations which are exactly the transport-induction equations
discussed above. There is found to exist a one to one re-
lationship between the unit pulse problem and the corresponding
time-harmonic problem. In practice for a given set of equa-
tions of motion, it is much simpler to generate the transport-
induction eqguations by the Karal-Keller technique than by the

method of discontinuity analysis.

To this end, we assume time-harmonic solutions to

equations (3.1)-(3.4) in the form

. o A . ® B
w(sS-t -
u = el ) z n L ws - elw(S t) 2 n
n=1 (ig) n=1 (iw)"
3 _ o C . . D (3.7)
w iw(s-t) n , v = elw(S—t) 2 n ,

n=1l (ig)"
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where S is the phase function, w the circular frequency and

the amplitude functions of the time harmonic series are
given by

- H _ H
An—(—l)n[u n!,Bn—(—l)n[ws n!,c =(—1)n[w?n2,Dn=(_1)n£w§'n]. (3.8)

n ~ -

~ ’ ~ 2

In the above equations L 1 indicates the discontinuity or

jump of the argument across the wavefront , the comma followed
by n denotes nth order time derivative and the superscript H
denotes the unit pulse solution. On substituting equations
(3.7) into equations (3.1)-(3.4) and formally requiring that
the coefficients of powers of (iw) separately vanish, we obtain

the recurrence relations for n > 1 as

dA

A (1-G?/GI) + 26 —gI™% - Ga, A | = G*T* (3.9)
dB
B,(1-G*/G}) + 26 —go~= - @b B, = G'To__ .,  (3.10)
C (1-G*/G2) + 26 f-c—“—‘—l- - Ge, C = G2T¢ (3.11)
n K ds 50 n-1 n-2 ' .
D (1-G2/G2%) + 2G Py _ Gd. D . = G2TP (3.12)
n S ds © 7770 n-1 n-2 -

In equations (3.9)-(3.12), G is the wavefront speed, related

to S in the form

ds 1
ds = g ' (3.13)
and
2
A dA B dB
-2 _ n-2 n-2 + n-1, n-2) +a
Tn-2 - a 2 +a10 ds +a20An—2 a30( G ds 40 n-2
(3.14)
C dac D dp
n-1l, n-2 n-1, n-2, ,. p
+ aso( G ds ) asocn—2-+a7o( G ds ) 80 n-2 !/
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2
da 4aB
-B a'B -2 + An-l n-2 + +b n=-2 B
T = -—=+b__( + ) *b, A 4 4o Sp-2
n-2 2 10 G ds 20 n-2 30 s
ds
c _, &, D _, 4> _, (3.15)
oo o - <) +b
T Pe (T g ) H P Oy TRy (g ) 80 “n-2
2 B dB
-~C d Cn—2 An--l dAn—2 n-1 n-2
= - + c ( + ) +¢c A +C ( + 3 )
n-2 dsz 10 G ds 20 n-2 30 G s
(3.16)
dc D dap
n~2 n-1 n-2
+ + ) + ¢ D
+ 40 n-2 * 50 ds csocn—z c7o( G ds 80 n-2
2 da B dB
=D _ d C1'1—2 +4a (An—l+ n—2) +d +d n-1, n—2)
Tn--2 -7 2 10 G ds 20 n-2 30 G ds
ds
C dcC dp
n-1 n-2 n-2
+ 4
* dm n—2'+dso( G * ds )'+dsocn—2 70 ds (3.17)
* deo n-2 °

The lowest order derivative of the field variable
(u,ws,w,wz) having a discontinuity defines the order of the
wave. A first order wave is called a shock or strain wave and
will constitute the subject matter dealt with herein. The re-
sults for higher order waves will be completely analagous to
those of first order waves. Considering first order waves and

setting n=1 in equations (3.9)-(3.12) we obtain,

V 2_pn2 _
(GZ—GE)A1= O’ (GZ—Gé)BI;_ O’ (Gz.—GIz{)C1= O' (G GS)DI o - (3-18)

From the above set of eéquations we can obtain the
classification [14], speeds and propagation conditions for
axi-symmetric first order waves. Moreover substituting the
appropriate speed G in turn, into equations (3.9)-(3.12) with

n > 2, we obtain the transport induction equations for each
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wave type. The transport equations will be first order or-
dinary differential equations and can readily be integrated.

We present below the results for each case.

(i) Longiftudinal Waves

G=G ,A#0,B=0,C¢=0, D=0 (3.19)
1 S
(50)2 S| ) g (3.20)
A (s)=2(s) \ +3 (;) T _ (Ddt . -
S
(o]
B =H ,c =8, D =HuP | (3.21)
n n n n n n
(ii) Bending Waves
G=6G, , B#0, Aa=0,C=0, D,=0 . (3.22)
I
S
= -2 S (1) = 2
Bn(S) Bn(So) (s ) + 2jﬁ(s) Tn—l(T)dT . (3.23)
S
@)
A = g® , C = € , D = P . (3.24)
n n n n n n

(iii) Kdink Waves

G=G ,C#0,A=0,B=0,D=0 . (3.25)
f{%i G S T c 3.26)
Cn(s) = cn(so) 3 + 5 (g) Tn_l(r)dr . (3.
S
(e}
a =8 ,B =48, p =gP. (3.27)
n n n n n n

(iv) Squeeze-Gradient Waves

G=6G, ,D#0, A=0,B3 (3.28)

S 1 1

il
o]
O
Wi
(&)
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’ S
5 : G T 3 D
- _o S (LY &
D,(s) =D (s ) {s] *+ 2f(s) T _,(t)ydr . (3.29)
S
(o]
A =8,B =8, c =mu° . (3.30)
n n n n n n

B

In the above sets of equations Hﬁ, Hn, Hg and Hg are

functions of the wave speed G and are given by

-
G G2 da
g? = L - 22l L4 A + Gt , (3.31)
n G2-g2 1 ds 10 n-1 n-2
L .
5 GG [ aB__, s
H = e 1‘— 2gg— + b, B__ + GT, _, , (3.32)
B
C G G; dcn-—l =C
H™ = - 2—2"2 4 c. C + GT , (3.33)
n G2—G2 ds 50 "n-1 n-2
K .
G G? dap
P = S -2l L4 p + GTP , (3.34)
n c2-g2 ds 70 n-1 n-2
S

For each wave type G denotes the eigenvalue correspond-
ing to the eigenvector (A1’B1’C1’D1)' The equation with the
integral is the solution to the transport equation and the set
of three following it are the induction equations. The bound-
ary value of s is denoted by S,+ Moreover for cylindrical
shells the gquantities (so/s)% and (T/S)% appearing in the
transport equations are to be replaced by unity. We utilise
the boundary conditions, equation (3.8) and the appropriate
transport~induction equations to determine the required dis-

continuities. The corresponding unit pulse solution vt is then
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given by the Taylor series

[
oo
I
Il ~18

[U} _1<t-$>"/n! , (3.35)

n=1

with

i

S S(So) + (s—so)/G ’ (3.36)

where U stands for any one of the field variables u,ws,w or
wz, and < > = 0, if the argument is negative. The required

transient solution is then given by [9]

t

H
- 9U(t-1) 3.37
U = f 5T f(T)yar , ( )

o]

where f£(1) is the time dependence of the boundary data. The
results for second order or acceleration waves could be obtained
in an analagous manner by starting with n=2, in equations (3.7)-
(3.12).

In section 3.4, we will use the results presented above
to solve some numerical problems, after discussing a numerical

scheme for the solution, in the next section.

3.3 Superposition Technique

Our experience in the numerical evaluation of the series
solutions given by equations (3.35) and (3.37) indicates that
their convergence is usually slow. This is especially so at
large values of T = (t-S), the time elapsed after the wavefront.
The problem is similar to that in the evaluation of exp (-T) for

large values of T, using its Taylor series expansion,
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Although we expect an improvement if the number of terms in
equations (3.35) or (3.37) is increased, in practice the task
becomes very tedious. Moreover beyond a critical value T = TO,
the numerical convergence of the series is lost no matter how
many terms are computed [15]. Mainardi and Turchetti [15]

have introduced Pade approximants to accelerate the convergence
of series solutions of the types in equations (3.35) or (3.37)
for the case of viscoelastic waves. We have devised a numeri-
cal superposition technigue that assures convergence in all
cases. Furthermore, we have verified that the results ob-
tained by incorporating this technique agree with those of
Mainardi and Turchetti.

For a boundary load of the step type having a magnitude

of unity and a duration to’ acting on a structure, we know that
on physical grounds the response at any location must decay to
zero after some time [20]. By choosing a small enough value
for to, say g:, it is possible in most cases to obtain a re-
sponse that decays to zero by using a few terms in the series
(3.35) together with the Duhamel integral, equation (3.37).
To such a response we give the name "test solution". Thus the
test solution is assumed to be zero after a definite period of
time. A typical test solution for the strain response due to
a first order (strain or velocity) boundary condition is shown
in Figure 3a. The given boundary load is then subdivided into
step loads of duration tg as shown in Figure 3b, where the

magnitude of a step load is equal to the mean value of the
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boundary load during the appropriate time. We then solve the
equivalent problem by considering the superposition of the
responses due to each step load originating from the boundary
at the appropriate time.

In the examples considered in the next section the
superposition technique is applied. The solutions obtained
without and with the incorporation of this technique will be
denoted by "series solutions" and "modified solutions" res-
pectively.

We used the superposition technique to solve the problem
considered in example 1 of section 2.5 in the previous
chapter. The series and modified solutions are shown in
Figure 2. We observe the good agreement between the modified
solution and the solution obtained by Goodier using Laplace

transforms.

3.4 Numerical Examples and Discussion

3.4.1 Example 1: - Longitudinal Impact of a Conical Shell

- 1 o v s —.—__.__.—._._—...—......_._.-.—._..___.__.___

We consider the transient response of a truncated conical
shell which is impacted at its smaller end. Utilising the uni-
axial theory and Laplace transforms, this problem was solved
by Kenner et al [16]. Cohen and Berkel [21] obtained the wave-
front solution for the same problem, using the method of dis-

continuity analysis. The relevant boundary condition is

E sin’7t/t , 0 < t < ¢
O O - O
- (3.38)

O

0 ¢ t

v
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where EO is a constant.

To obtain the solution corresponding to the uniaxial
theory, we consider the transport equation (3.20) for the
longitudinal wave and set the coefficients a; s i = 1-8, zero.
The appropriate boundary condition for the unit pulse solu-

tion, together with equation (3.7)lyields

da
_ . - - n-1 . -
An(so) = 1; An(so) GL—EE—— , N> 2; S(so) 0 . (3.39)

S=5
(0]

From equations (3.20) and (3.39) we obtain,

3
_ 2 _ 3 2 ‘
A = EOGL(SO/S) , A= EOGI?;{B(SO/S) + (so/s) }/szso ,
\ (3.40)
5

N 3 3
2 2 2 2 2
A 3EOGL{ll(so/s) + 2(so/s) + 3(so/s) }/1285O , etc.

3

I

For this problem based on the uniaxial theory, v = 0 giving us
GE = E/p. Using equations (3.8)1, (3.37) , (3.38) and (3.40)
we obtain the transient solution as

(—l)nA t
u = j —7;:17¥- <t—T—S9P*sin2(ﬁt/to)dt . (3.41)
n=1 )

o

For s = 5.6cm the strains gg obtained from equation (3.41),
using six terms for the cases to = 1lluy secs, t0 = 22u secs
are shown in Figure 4a and that using nine terms for the case
to = 50u secs is shown in Figure 4b. These are the series

solutions. The corresponding strains obtained by Kenner et al

are also shown in these figures.

The boundary condition for the test solution is
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——(Solt) = . (3.42)

Using t; = 0.5 p secs and four terms in equation (3.37) we
constructed the test solution. The modified solution for each
case is obtained by using the superposition technique together
with equation (3.38). The results so obtained are also shown
in Figures 4a and 4b.

We observe that for the cases to = 11 y secs and to =
22 u secs, the series solutions agree well with Kenner's
solutions. Moreover the peak values for these cases match
exactly. However for the case tO = 50 u secs, the series
solution begins to diverge beyond T = 30 py secs. No improve-
ment was observed by doubling the number of terms in the series

solution. The modified solutions not only showed better agree-

ment with the results of Kenner for the cases to = 11 and
to = 22 y secs, but also provided us with comparable results
for the case to = 50 p secs. Similar solutions at other

locations showed analogous comparisons with those of Kenner.
By decreasing the value of tg + We can expect an almost per-

fect agreement.

3.4.2 Example 2: - Cylindrical Tank Subjected to Vertical

We consider the reinforced concrete cylindrical tank
discussed by Billington [22] having a mean radius a = 8.23m,

thickness h = 0.68m, Poisson's ratio v = 0.2, Young's modulus
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E = 2.11 x 10° Kg/cm® and density p = 0.002 Kg/cm®. The base
of the tank is subjected to vertical ground velocity pulses

of the form

(o, t) = . (3.43)

A first order longitudinal wave is generated by this boundary
condition and higher order waves of the other types are in-
duced due to the assumed homogeneous boundary conditions on
the other field variables. These higher order waves produce
effects at least two orders higher than the order of the gen-
erated wave. For axisymmetric transients these effects are
usually negligible (and completely absent for small values of
T) and therefore do not appreciably affect the peak response.
Using equations (3.20) and (3.21) together with the corres-
ponding boundary condition for the unit pulse solution, we

obtain

A= -6.94 x 10 °s, B,= 0, C,= -3.50 x 10°°, D= 55.55 x 107°,
A= -17.62 x 10 %s?, B,= 2757 x 107%2, c = -24.52 x 10 '7%s,
D = 385.16 x 10 %5, etc. (3.44)

Using equations (3.35), (3.37), (3.43) and (3.44) we can obtain

the required transient solution. In Figure 5 we have‘plotted
the response of the predominant strain %g with respect to T,

the time after the arrival of the wavefront. The results for
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to = 10, 20, 30 y secs together with that for to + ® are
shown. It must be remarked here that these series solutions
begin to diverge at some value of T > 53 u secs.

The modified solutions were obtained by using the
superposition technique with tg = 1 u sec. For the range of
T shown in Figure 5, we obtained perfect agreement between
the series and modified solutions for the cases t = 10, 20
and 30 u secs.

The results at other locations displayed similar be-
haviour. As the responses presented for the cases to = 10
and 20 u secs decay approximately to zero, they could be used
as test solutions in seeking the responses due to boundary
loads with longer durations. Such a situation is presented
below.

The ground motion resulting from a blast load has been
determined by Awojobi and Sobaya [23] and also by Pekeris and
Lifson [24]. We wish to obtain the response of our cylindri-
cal tank when its base is subjected to this blast load. For
the case r/H = 0.25 of Pekeris [24], the boundary condition
due to the vertical ground velocity pulse is given by
dug gy = TS (3.45)
0, t > t
while the boundary conditions on the other field variables
are assumed to be homogeneous. In the above equation A is a
constant. Considering the case to = 2000 u secs and the test

solution with t; = 10 p secs we obtain the modified solution
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for the strain %§° This is shown in Figure 6 together with

the corresponding series solution. As expected, the series

solution begins to diverge beyond T = 53 u secs. Analogous

results were obtained at other locations.

3.4.3 Example_3 -Cylindrical Tank Subjected to Vertical

We now consider the tank of the previous example but
the base being subjected to vertical ground acceleration
pulses of the form

l, 0 <t < ¢t
- - o

2
974y, ¢) = ] (3.46)
at? 0, t > t

This boundary condition generates a second order longitudinal
wave. The effects of the higher order waves, induced by the
homogeneous boundary conditions on the other field variables,
are negligible. Proceeding in a similar manner to that de-
scribed above, we compute the series solutions for the predom-
inant strain %g. We wish to remark here that the coefficients
for the corresponding unit pulse solution will be the same as
before, provided we increase the subscripts by one and change
the signs. The series solutions for the cases tO =5, 10, 20
and 30 py secs and for the case tO + « are shown in Figure 7,
plotted with respect to T, the time after arrival of the wave-
front at the location. As in the previous example all these

solutions begin to diverge at some value of T > 53 U secs.

The modified solutions were obtained by using the
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superposition technique with tg = 1 u sec. For the range of
T shown in Figure 7, we obtained perfect agreement between
the series and modified solutions for all cases except for
that with to > ®. Moreover, the responses for the cases
to = 5, 10 and 20 u secs decay to zero in the range of T con-
sidered. Hence they can be utilised as test solutions to
obtain the response due to an acceleration boundary condition
of longer duration.

In the solution of transient problems, the peak res-
ponse is the important consideration [25]. For the case of
a structure subjected to ground excitation due to an earth-
quake, Veletos et al [26] and Walker [27] consider the largest
pulse from the accelerogram record and solve for the transient
response due to this. Usually such pulses can be approximated
by sine functions [26]. For the cylindrical tank subjected to

such a ground acceleration pulse, the boundary condition is of

the form
A sin(mt/t ) , 0 < t < t
3%u © - - °
ot ? ! o)
where A is a constant. Considering the case to = 2000 u secs
and utilising the test solution with t; = 20 1 secs, we ob-

tained the modified solution for the strain gg. The result
is shown in Figure 8 where we can clearly observe the peak re-
sponse. The procedure was repeated using test solutions with
t; = 10 p secs and t; = 5 u secs. No appreciable change in
the previous response curve was noted, thereby confirming the

the plot in Figure 8.



~52-

3.4.4 Solutions at Different Locations

To obtain the responses at different locations in a
structure we need test solutions at these locations. These
test solutions as a rule have certain properties and display
a particular pattern. 1In Figure 9 we illustrate some of the
solutions obtained from example 2 at different locations.
The wavefront (T = 0) values of all the test solutions depend
on the first term in the series (3.35) or (3.37). In the case
of cylindrical shells this term has the constant value of
unity resulting in the same value of G;1 at T = 0 for all the
solutions. This fact is observed in Figure 9 where all the
curves start from the same point. For conical shells and for
circular plates the first term in the series (3.35) or (3.37)
decays as (so/s)% and the wavefront values of the test
solutions at all locations can be determined if one such value
is known. Moreover the test solutions will have jumps at
T = t; + Which will be equal to their wavefront values. In
Figure 9 the jumps AA', BB' and CC' are all equal to the con-
stant wavefront value G£1 of the test solutions. The above
observations become of use in determining test solutions.

Finally the boundary load together with the test solutions

yields the required responses by the superposition technique.
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3.4.5 Effect_of Thickness_in a Cylindrical Shell

We now wish to study the effect of the thickness on
the response of a cylindrical shell. 1In example 2 we in-
crease the thickness keeping the radius constant and thereby
obtain different h/a ratios. The test solutions with
t: = 10 y secs were computed for the predominant strain %g
for the different ratios. 1In Figure 10, we illustrate these
strain pulses, plotted with respect to T. We observe that
the time taken for the response to decay to zero increases
with increasing thickness. Moreover the slopes of the re-
sponse curve decrease with increasing thickness and as a
consequence decrease the magnitude of the strain reversal
after the passage of the pulse. The pulse distortions shown
in Figure 10 are a consequence of dispersion.

The decrease in the slope of the response curves with
increase in thickness can be explained by considering the in-
tegrand ii-l in equation (3.20), which is the transport
equation for the case considered. The contributions to Ti_l
are predominantly from the induction equation (3.21)3 as can
be observed from equation (3.44). The discontinuities Dn are
determined by equations (3.21),,(3.34) and (3.17). The non
zero coefficients dio appearing in equation (3.17) depend on
1/h* and the contribution to Tﬁ—l from equation (3.21)3 is
decreased with increase in h. This will decrease the values

of A, and A, determined by equation (3.20) and will cause the

decrease in the slopes mentioned earlier. Although pulse dis-
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tortion will not be eliminated due to the contributions from
the other induction equations, it will be reduced for thick

cylindrical shells.

3.4.6 Approximate Thin Rod_Theories

In the example considered in section 3.4.1, the uni-
axial theory was employed for dealing with longitudinal
transients in a conical shell. Analogously the propagation
of longitudinal transients in a cylindrical shell can be
approximately treated by the various rod theories available.
A brief discussion on the suitability of the rod theories for
treating transient pPhenomena, will be in order at this stage.

For cylinders the elementary theory, where the non
dispersive wave equation governs the propagation of longitu-
dinal pulses, was the first to be used. According to this
theory there will be no distortion of pulses and the response
will be identical to the input pulse. 1In contrast, the
elementary theory for a cone, referred to as the uniaxial
theory, gives a dispersive equation due to the change in the
Cross-sectional area.

Experiments showed the distortion of pulses in cylin-
ders and prompted the need for improved theories. The first
improvement was to include the effects of radial inertia, as
suggested by Rayleigh [28]. Love [29] incorporated this
correction and presented the governing equation which is dis-
persive. However as this theory predicts instantaneous pulse

propagation without a definite wavefront, it cannot account
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for the high frequency components in a transient. Mindlin

and Herrman [30] included the effects of radial shear in ad-
dition to those of radial inertia and presented a more refined
theory. The governing equations are both hyperbolic and dis-
persive giving two finite values for the wavefront speeds.
Within its order of approximation, the Mindlin-Herrmann theory
can account for all the frequencies in a transient. For a
more detailed discussion on the above theories and related
references we refer the reader to Graff [13].

The shell equations that we employed in this paper re-
present a theory two orders higher than that of Mindlin and
Herrmann. These shell equations can be reduced to give those
corresponding to the above mentioned rod theories by assigning

appropriate values to the coefficients a. , b, , c. and 4. .
10 10 10 10
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CHAPTER IV

TRANSTIENTS IN CYLINDRICAL SHELLS

4.1 Equations of Motion

In this chapter we consider the propagation of tran-
sients in linear, elastic, isotropic and homogeneous cylindri-
cal shells subjected to boundary loads. The present theory
contains the case of axi-symmetric transients in a cylindri-
cal shell as a special case.

As before, we utilise Naghdi's equations [1], [14]
which are derived from the Cosserat theory and which include
the effects of transverse shear, transverse normal stress and
strain and rotatory inertia. We denote the axial (x),
circumferential () and the radial displacements of the shell
mid-surface by u, v, w respectively and the rotations of the
normal to the mid-surface about the circumferential and axial
directions by wx, we respectively and the transverse normal
strain by wz. Since we are considering propagation in the
axial direction and the complete shell in the circumferential
direction, we express the field variables in the form of

Fourier series in 6 as

u = Z u cosmg , y = y Y cosme , w = f w_cosm8
m=o m=o0 m=o0
(4.1)
Vo= Z b cosmé , v = 2 v,sinmé , ¢y, = ) Yo Sinme .
m=o0 m=o0 m=o

|



-57-

The displacement equations of motion now take the

form
3%u 1 9%u 12
-1 R =V a v, , (4.2)
ax? G2 at? =) 10 Im
L
3%y 32y 12
mo_ L _ Cam o Yy oy (4.3)
%2 Gé 3¢2 jop 1im im
2 2
e} wm 1 d°w 12
- s m_ V. , (4.4)
ox2 G2 3t? j=1 0 IW
K
32y 3%y 12
zm _ 1 zm _ T d. v , (4.5)
3X2 GSZ atZ i=1 im im
2 2 2
(l+a/a2)a o1 -B-XE e Von = lzze \ (4.6)
ax G2 atZ a axz i=1 im im ’
T
2 2 2
BXZ G2 3t2 a axz =1 im im ( °
T

In the above equations a is the radius of the cylinder.

The wavefront speeds are given by

Gi=C(l—v)/(l—2v)p,G§=C/p,G;=a3/p,G§=a8/pa,G;=C(l—v)/ZQ.(4.8)

The quantities Vim are given by

aum oy n
Vv = = = X =
im  ox ' V2m Un 7 Vam ox ’ Vlfm lpxm ’
ow Y
_ m _ — zm _
VSm_ ax ' vsm W 7 v?m ox ! Vem_ lp:e:m ’ (4.9)
av oY
v = I = = Om =
Im ax ' Vwm Vm ! V11m ax ! V1.2m wem °
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The constant coefficients a; bim' Cim? dim’ ein
fim (i=1-12) which involve the material and geometric
parameters of the cylinder are given in Appendix II. The
other quantities were defined earlier. By setting m = 0
equations (4.2)-(4.7) will uncouple to give those correspon-
ding to torsionless axi-symmetric and torsional motions.

Equations (4.2)-(4.7) being dispersive [2], will cause
transient pulses to suffer distortion and the phase veloci-
ties of time-harmonic waves to be frequency dependent. How-
ever, finite wavefront speeds for transients and bounded phase
velocities for time-harmonic waves are assured due to the
hyperbolic nature of these equations [3]. Thus the displace-
ment equations of motion presented above are amenable to

solution by the method of discontinuity analysis or by the

method of characteristics.

4.2 Method of Solution

As discussed in the previous chapter, the first step
in obtaining a transient solution by our method is the deter-
mination of the unit pulse solution. We defined the unit pulse
solution as the solution due to a step boundary pulse of unit
magnitude. The Duhamel integral and the specified boundary
condition then give us the required transient solution. 1In
order to determine the unit pulse solution, we need to deter-
mine the displacement discontinuities of all order at the
wavefront, and represent the solution in the form of a Taylor

series expansion behind the wavefront [4]. The equations that
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determine these discontinuities are called the transport-
induction equations and are generated much more easily by the
Karal-Keller technique [10] than by the method of discontin-
uity analysis.

To this end we assume time-harmonic solutions to

equations (4.2)-(4.7) in the form

4 = eiw(s-t) "f A , = elw(s-t) °X° By ,
m n=1 (iw)™ xm n=1 (iw)"
. o C ; o D
wm - elw(S"t) 2 n , w = e:LU.)(S-t) z n (4.10)
n=1 (iw)" zm n=1 (iw)™ '
w E w F
iw(s-t) iw(S-t
n=1 (iw) n=1 (iw)

where S5 is the phase function, w the circular frequency and

the amplitude functions of the time-harmonic series are given

by [5],
‘ _b _ n H _ H
An = (=1) Eum,nl' Bn - (_l)ngwxm,nl’ Cn = (_l)niwi,nl
. (4.11)
= _ n _ _ n H _ H
Dn (-1) szm,nl' En = (-1) Lvm,nl' Fn - (—l)nlwem,nl *

In the above equations i 1 indicates the discontinuity or
jump of the argument across the wavefront, the comma followed
by n denotes nth order time derivative and the superscript H
denotes the unit pulse solution. On substituting equations
(4.10) into equations (4.2)—(4.7) and formally requiring that

the coefficients of powers of (iw) separately vanish, we obtain

the recurrence relations for n > 1 as
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2 2 ' n-1 A
- -l _ ~2
An(l G /GL) + 2G = = G Tn—2 , (4.12)
2 2 n-1 B
- -1 _ .2
Bn(l G /GB) + 2G ax = G Tn_2 ’ (4.13)
2 2 an 1 C
C_(1- —= = G2
n( G /GK) + 2G = G Tn_2 ' (4.14)
2 2 an 1 D
- -1l .2
Dn(l G /GS) + 2G m——- = G Tn_2 7 (4‘15)
E (l+a/a2-—G2/G2)+2G(1+a/a2)dE”‘l- o1 2qpE
n T dx (Ot/a) (Fn+2G "*d—}'(—)zG Tn_z. (4.16)
F (1-G?/G2) + 2 Taa oy 2qF
n T G Ix - (En+2G Tx Y/a = G Tn_2 . (4.17)

In equations (4.12)-(4.17), G is the wavefront speed, related

to S8 in the form

E_}E = l/G (4.18)
-and )
d<a C dc
TA - - n-2 + a a ( n-1 + n-—2)
n-2 ax? 2m n-2 sm G dx
X (4.19)
D dD dE
n-1 n-2 n-1 n-2
+ a_7m (G * ax )+ %m (G T ax Yoo
2
B _ d Bn-—2 Cn-—l dcn—Z
T = - + ( + )
n-2 dx? ym n-2 sm G dx
X (4.20)
E dE F dr
n-1 n-2 n-1 n-2
+ qnn(G + ax ) + um(G + ax ) !
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2
g TC - _ d Cn--2 c (An—l + dAn-2) c (Bn—l + dBn—Z)
n-2 dx? 1m G dx im G dx
(4.21)
+ c c c
6m n-2 gm n-2 10m n-2 12m n-2 4
D 2Dn-—2 An—l dAn 2
T = - —
n-2 dx?2 d1m(G + dx )+ dsmcn-z
(4.22)
+
%nan—2 10m n-2 ’
E d2En-—2 o szn—2 An--l dAn—2
T = -(l+a/a’)—2"2 ¢ 2 B2 4 o + )
n-2 dx? a dx? im G dx
Bn-l dBn~2
* e3m(G * dx )+ emncn—Z + eMnDn~2 (4.23)
+ i1om n-2 12m n-2 !
2 2
F _ d Fn—2 1 d En—2 Bn—l dBn-2
Tn—Z - 2 + a 2 f3m (G t dx ) !
dx dx
(4.24)

&

mncn—2 + f1omEn—2 + f12an--2

We have used the fact that certain coefficients are zero in
writing down the right hand sides of the above equations.

Considering first order waves and setting n=1 in

equations (4.12)-(4.17) will yield,

(GZ—GE)AI= o, (GZ—GI‘;)BI = 0, (GZ-GIz()C1= o, (Gz-—c;é)n1 =0
(4.25)

2 _ 2 2 2p 2_p~2 2p
{G*-(1+a/a )GT}E1+ (OL/a)GTFl 0, (G GT)F1+ G.E =0 .
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From the above set of equations we can obtain the
classification [14], speeds and propagation conditions for
first order waves. Moreover substituting the appropriate
speed G in turn, into equations (4.12)-(4.17) with n > 2, we
obtain the transport-induction equations for each wave type.
However equations (4.16) and (4.17) are coupled and have to
be solved simultaneously. As a result we obtain a coupled
transport equation for the waves pertaining to these two
equations and coupled induction equations for the other wave

types. We present below the results for each case.

(1) Longitudinal Wave

G = GL, Al# o, B = 0, C,=0, D=0, E =0, F =0 . (4.26)

A (x) =A (x) + & XTA (t)dr (4.27)
n n' o 2 n-1 °
X
B C © D E F
B =P ,C =P ,D =P°,E =2p , F =p° . (4.28)
n n n n n n n n n n
(ii) Bending Wave
G = GB, Bl# o, Al= o, c = 0, D = 0, E =0, F =0. (4.29)
_ ; G B . (4.30)
Bn(x) = Bn(xo) + 5 Fn_l(l‘)d’l'
XO
C D _ pE = pf . (4.31)
A =P, C =P,D =P,E =P, F =P
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(iii) Kink Wave

G = G, cl;é O, a =0, B = 0, D=0, E =0, F =0 . (4.32)
X
C(x) =c (x) + & |2 (par (4.33)
n n "o 2 n-1 y -
XO
" A _ B _ D _~E _ F
An - Pn' Bn - Pn' Dn - Pn' En‘_Pn' Fn - Pn' (4.34)

(iv) Squeeze-Gradient Wave

=g —_— = v p—t —4 - 4.35
G =Gy, D#0, A=0, B=0,C=0, E=0, F=0 . )
x
D (x) =D (x) + G D (t)dr (4.36)
n n o 2 n-1 - *
x
o
_ pA _ B _ C _ »E _ oF
An - Pn' Bn - Pn' Cn - Pn' En a Pn' 1:‘n - Pn : (4.37)

(v) Transvense and Twisting Waves

G = 6, {1+a/2a%+ (4a/a%+a?/a")? /2} (4.38)

El# o, Fl# o, A1=O, B1=O, C1=O, D1=O .

2
K = G>-(l+a/a®)Gk, K = oG /a, K= K, /a, K = G*-G2 , (4.39)

= + K .
K = (l+a/a®)K. + K /a, K = oK /a + K, (4.40)
X
G E _ F
Ly(x) = L (x) + “z‘f{KuTn-lm K, Ty (74T (4.41)
X
(@]
where
Ln = Ks'En - Kan .
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E =K [L + (K /K){TF _ - g(l+ / 2)35511

n 2 n 6 2 n-2 G a/sa ds

aF (4.42)
n-1
+ (2a/Ga) a5 }]/(K2K5+K1K6) .

F = (KsEn - Ln)/K6 . (4.43)
A =p% B =978 ¢ =p% p =pP . (4.44)

n n n n n n n n

There will be two separate solutions corresponding to the two
values of G obtained from equation (4.38), . These two solu-
tions have to be superposed taking into account the time lag

that exists between them.

B C D E

In the above sets of equations PA, P, P, P, P and
n n n n n

Pi are functions of the wave speed and are given by

G G? da :
A L A _ n-1
Pn = (GTn_2 2 I ) ’ (4.45)
G:—-G
L
G G2 dB
B _ B B _ n-1
Pn = = (GTn_2 2 I ) ’ (4.46)
Gi-G
B
G G? dac
p¢ = X (er® . - p—Rzl, (4.47)
n 2 2 n-2 dx
G:-G
K
G G? dp
D -
pD = 5 (gr? | - p__R-1, (4.48)
n 2 2 n-2 dx
GZ-G
S
E _ E _ F _
Pn - (KloRn~1 KeRn—l)/(K7K1o K8K9) ! (4.49)
F E .
P (R._, -~ K,E)/K (4.50)
where XK , K , K , K , RE ’ RY are also functions of G
7 8 ] 10 n-1 n-1

and are given by,
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K7 = (l+a/a2)/G2—l/G; ’ K8 = —-a/aG?
, (4.51)
— _ 2_
K9 = Ka/a ’ Klo— 1/G l/GT P
dE dar
E _ LB _2 2 n-1 . 20 n-1
Rn—l = Tn__2 G(l+a/a ) = + 7€ dx , (4.52)
RE = qF 2 dEn—l _ 2 an-l (4.53)
n-1 n-2 aG dx G dx - :

For each wave type G denotes the eigen value corres-
ponding to the eigen vector (Al'Bl’Cl'Dx’E1'F1)‘ The equation
with the integral is the solution to the transport equation
and the Pi represent the induction equations. The boundary
value of x is denoted by X - The boundary conditions and
equation (4.11) together with the appropriate transport-induc-
tion equations will determine the required discontinuities.
The corresponding unit pulse solution u” is then given by the

Taylor series [5]

vt = ] [o¥ 1<t-s>"/nr (4.54)
n=1" ~
with
S =8(x) + (xx)/G6 , (4.55)
(e} Q

where U stands for any one of the field variables um, wxm,

W wzm, V., or wem, and < > = 0, if the argument is negative.

The required transient solution is then given by [9]
t
H
oU(t~-1)

=T f(t)dr , (4.56)

U =

O
where f(t) is the time dependance of the boundary condition.
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Finally the solutions for all the applicable values of m,
depending on the boundary condition, have to be superposed.
The results for second and higher order waves could be
obtained in an analogous manner by starting with the appro-
priate value of n in equations (4.10)-(4.17).
Later on in this chapter, in section (4.4), we present

some numerical examples to illustrate our method of solution.

4.3 Approximate Thin Rod Theories

The propagation of transients in cylindrical shells
can also be approximately treated by the various rod theories
[13]. Hence it is of interest to discuss the suitability of
these rod theories in treating transient phenomena. There are
three different types of wave motion in thin rods; these being
classed as longitudinal, torsional and flexural. 1In shells,
there are motions corresponding to each of the above types and
the appropriate equations of motion can be obtained from
equations (4.2)-(4.7). By setting m = 0, the shell eguations
uncouple to give the equations for axi-symmetric and torsional
motions. On the other hand, if we set m = 1, we obtain the
shell equations for flexural motion. The propagation of long-
itudinal waves in a rod corresponds to that of axi-symmetric
waves in shells and this was discussed in the previous chapter.
In this section we propose to discuss briefly the other two
types of wave motion.

Whether we use the strength of materials approach or
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the general elasticity relations, we arrivé at the non dis-
persive wave equation, as the one governing the torsional
mode in a rod. Thus a torsional pulse will propagate undis-
torted with a finite wavefront speed and torsional harmonic
waves will have bounded phase velocities. As the wave
equation is amenable to solution by various methods, we do not
attempt to solve it in this chapter. However, we wish to re-
mark that our shell equations, (4.6) and (4.7) with m = 0,
are dispersive. This is due to the fact that they were
derived from the Cosserat theory. The propagation of non
axi-symmetric torsional transients can also be treated by
using the results presented in the previous section, together
with appropriate boundary conditions. 1In this case, m #¥ 0 and
there will be coupling with all the possible wave types. 1In
the next section we present a numerical example which will
illustrate the distortion of a non axi-symmetric pulse.

The Euler-Bernoulli theory derived from the strength
of materials épproach was the first to describe the flexural
motion in a rod. The resulting equation is dispersive but
predicts instantaneous pulse propagation without a distinct
wavefront and unbounded phase velocities for high frequency
time harmonic waves. Hence this theory cannot account for the
high frequency components in a transient. Rayleigh [28] in-
corporated the correction for rotatory inertia and presented
a dispersive equation which gives a finite wavefront speed for

the bending wave. The Rayleigh theory neglects the shear
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correction and hence an infinite wavefront speed for the
shear or kink wave is predicted. If the shear correction is
included without the correction for rotatory inertia, the
resulting equation will predict finite and infinite wavefront
speeds for the kink and bending waves respectively. In either
case the mathematical model does not describe the motion com—
pletely and the high frequency components in a transient are
not completely accounted for. Timoshenko [31] included both
the corrections mentioned above and presented a theory with
two coupled second order equations. According to this theory,
we obtain finite wavefront speeds for both the bending and
kink waves. Hence the Timoshenko theory can satisfactorily
account for the high frequency components of the transients in
the flexural motion. Equations (4.3) and (4.4) can be reduced
to the Timoshenko equations by assigning m = 1 and then
appropriate values to the coefficients bil and SPI

In the next section we first solve a Timoshenko beam
problem and validate our method by comparing the solution with
an existing one. We then treat the flexural and torsional
problems in a cylindrical shell. For the former problem the

results obtained from the shell and beam theories are compared.

4.4 Numerical Examples and Discussion

As we had dealt with the axi-symmetric motion in
cylinders in the previous chapter, herein we confine our atten-

tion to the flexural and torsional motions.
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We consider a semi infinite beam subjected to a trans-
verse step velocity and a zero bending moment at the end. The
appropriate boundary conditions for the Timoshenko beam

equations are

Bw1 BwXI
5{*(0,t) = H{t) , - (0,t) =0 (4.57)

This problem has been solved by Boley and Chao [17] using La-
place transforms. Using equations (4.11)2, (4.11)3 and (4.29)-

(4.34) we obtain in a recursive manner.

B1=O,B2=O.26,B3=—0.034x1,B“=O.0022xf+0.077 p

(4.58)
¢, =-1,C =0.13x ,C_=-0.0085x2,C =0.00037x%+0.024x ,etc.
1 2 1 3 1 4 1 1
for the first order kink wave and
B:=O,B;=—0.26,B;=—0.11% ,B:=—0.0l3x +0.0065 ,
1
(4.59)

cj=o,c;=o,c;=o.22,c;=o.052xl,c§=o.ooexf+o.097,etc.

for the higher order bending wave. In the above two equations
x1==X/W§-where o was defined previously. Using equations
(4.11)3, (4.54) and (4.55) we obtain the unit pulse solution,
which is the required transient solution for this case.

In Figure 11 we have plotted the variation of the
velocity %%-with position and compare the results with those
of Boley and Chao. The time of Observation is given by
t, = tGB/ﬂT= 3. The bending wave is the faster of the two

1

waves and its wavefront is at x =5 in the figure. The velo-
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city increases behind the wavefront, until the slower moving
kink wave is encountered. At the wavefront of the kink wave
there is a discontinuity in the velocity equal in magnitude

to the input velocity at the boundary. Behind this wavefront
the contributions due to both the waves are superposed. We
observe that our solution obtained by using a few terms in

the series (4.54) compares quite well with that of Boley and
Chao. Analogous comparisons were obtained for the shear force

Q, demonstrating the validity of the method of solution.

4.4.2. Ground Excitation

An important application of non axi-symmetric wave
propagation is found in the case of a cylindrical shell
structure subjected to ground excitation, resulting from blast
loads, earthquakes, etc. Such ground waves are generally
incident at an angle with the vertical and can be decomposed
into their vertical and horizontal components. The vertical
ground excitation gives rise to axi-symmetric wave motion and
this has been treated in the previous chapter.

The horizontal ground excitation will give rise to
flexural and torsional wave motions. Referring to Figure 12,
if we denote the ground displacement by u., then the boundary
conditions for the generation of nth order waves are given by
30, 3"u 50y 3™y

—_(Ort) = < cosg , (Olt) =-

G
sin 6 . (4.60)
at™ at™? at™ ot™

Thus in general the kink wave and the transverse-twisting waves
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are generated due to horizontal ground excitation. 1In the
examples that follow, the boundary conditions on the field
variables v, wx and wz are assumed to be zero, while the
boundary conditon on we is coupled to that on v[1l] and is
given by A
we(O,t) = v(0,t)/a . (4.61)

From equations (4.1) and (4.60) we observe that only the case
m = 1, need to be considered in solving problems due to ground
excitation. Under the above conditions the generation of the
kink and transverse-twisting waves are referred to as the
flexural and torsional problems respectively.

In example 2 we consider the flexural problem due to a
first order kink wave and in example 3 we deal with the tor-

sional problem.

4.4.3. Example_2: - Cylindrical Tank Subjected to Horizontal

We consider the cylindrical tank discussed in the pre-
vious chapter with its base subjected to a step velocity re-
sulting from horizontal ground excitation. The only non-

homogeneous boundary condition for the flexural problem is

Bw1

53—(0,t) = H(t) , (4.62)
where we have assumed the horizontal ground velocity to be the
Heaviside unit function. The resulting unit pulse solution

can be used to obtain the transient solutions due to other



-72-

boundary conditions with the aid of the Duhamel integral.
Using equation (4.11) and the transport-induction equation

for the first order kink wave we obtain

A =0, A2=—o.30x10"5, A3=o.03x10“6x, Au=—(l3x10-12x2+0.02x10—6),

6 6
)y

1

B,= 0, B =-718x10" 2%2+40.18x10"

. , B, =0.65x10" °%x, B, =-(312x10"

C,=-1, C =359x10 °x, C,=-0.16x10"°x?, C,=51x10" “x°+0.08x10 ‘x,
D,=0, D,=0, D =0.71x10"°, (4.63)
6

E =0, E,=0, E _=0.44x10"°,

F, =0, F,=0, F =0.14x10"°, etc.

In order to satisfy the homogeneous boundary conditions
on the other field variables, we observe that higher order
waves of the other types are induced. The predominant higher
order wave is the bending wave as seen from the above results,
and it travels faster than the lower order kink wave. Proceed-
ing in an analogous manner, for the second order bending wave

we obtain

Al =0, al=0, A:=0 ,

b N e

3

¢ B;=0.45x10—6x, Bi=<0.00014x2+o.o3)1o",,

B.=0, B =718x10

N

1
c§=o, c, =0, C;=l7x10_6, Ci=0.01x10-6x,
1 1 (4.64)
p'=0, D'=0,
1 2
E =0, E =0, E =0.11x10"°,
1 2 3
Fi=0, F;=O, F:=o.32x10“6, etc.

Using equations (4.54), (4.55), (4.63) and (4.64) we
compute the unit pulse solution. In Figure 13 the displacement

w oat x= 30.5 cms is shown with respect to time after arrival
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of the bending wave. The corresponding displacement obtained
by using the Timoshenko beam theory, is also shown. We ob-
serve that the contribution from the bending wave is neglibible
for the beam and very small for the shell, prior to the
arrival of the kink wave. The arrival of this wave at the
particular location in the cylinder, is at K and K' according
to the shell and beam theories respectively. The time lag is
due to the slight difference in the wavefront speeds in the
two theories. After the arrival of the kink wave, the contri-
butions from both waves are superposed. The effect of the
higher order bending wave becomes appreciable with increasing

time.

In this example we treat the torsional problem for -the
cylindrical tank discussed earlier. We present the test sol-
utions for the predominant strain due to first and second
order transverse-twisting waves. If the test solutions are
known, then they could be utilised to obtain the solutions
corresponding to other boundary conditions. From equations
(4.60) and (4.61) the non-homogeneous boundary conditions for
the torsional problem are

3"v 3"y 1, 0 < t < t*

L0,t) =a—01 - = o (4.65)
at™ at™ 0, t > t*

where we have assumed a step ground velocity (n=1l) and a step



-74~

ground acceleration (n=2) pulse. First and second order

transverse-twisting waves are generated for n =1 and n = 2

respectively, due to the above boundary condition. Consider-

ing the value of G = 0.1874 cms/i sec in equation (4.38)1 and

using equations (4.38)~(4.44) we obtain in a recursive manner
12 2

A =0, A2=45x10‘5, A3=—o.015x10"6x, Aq=0.013x10_6—1x10_ x?,

B. =0, Bz=—10x10'6, B3=—O.003x10—6x, Q*=—O.23x10—6x2—0.31x10—6,

c,=0, c, =0, C3=0.21x10-6x,

D, =0, D =0, D3=—O.0007x10—6,

(4.66)

E =0.503, E2=170x10'6x, E3=o.03x10'6x2-36x10“6,

Eu=l.27x10_12x3—0.002x10—6x,

F, =0.117, F2==39x10_6x, F3=o.006x10'6x2+82xlo'6,

12

F =0.34x10"  x°+0.0007x10  °x, etc.

for the unit pulse solution corresponding to the velocity
boundary condition. The coefficients for the acceleration
boundary condition can be obtained from the above set by
merely increasing the subscript values by one and by changing
the signs. Using equations (4.54)-(4.56) and equations (4.65),
(4.66) we can obtain the transient solutions for both boundary
conditions. For tg =1,2,5 u secs and t; +~ o, the predominant

strain ¢ = %(35 + %%) was calculated and the results are

Ox 6
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shown in Figures 14 and 15. The appropriate response curves
in these figures could be used as test solutions to obtain
the response due to ground excitations as in the previous
chapter.'

Analogous results were obtained for the solutions at
other locations and for the solutions corresponding to the

other value of G(=0.1899 cms/p sec) in equation (4.38)1.
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APPENDIX I

The coefficients appearing in equations (3.1)-(3.4)

are defined as follows:

a =-1/s , a = (1+F)/s® , a = =-VFtanB , a = -FtanB/s ,

10 20 30 40
aso= v otB/(1-v)s , a60= azocotB R a7o= -v/(1-v) , a80= o .
byo= VeotB/s® , b, = -(1+V)cotB/s? , b, = -1/s ,
b,,= 1/s*+a,/aC , b.,= a,/aC-vcotp?/s? , b,,= -b,,cotB ,
b,,= 0 , byy=0 .
c,= —v(l—\))CcotB/(l-Zv)ass PG, = —{(l-\))2/(1—\))+H}Ccot8/oaas2 ,
C.p= l-C\)H/a3 ’ qu= —(l-CH/gs)/s v C = -1/s , C.o= —czocotB '
c, =0, ¢ =rc .

80 10

d = C\)(l—\))/(l—Z\))a8 ’ d20= dlo/s rd._=0,d =0,
d

60 70 80

In the above expressions, B is the semi-vertical angle of the
generator, F = (1-2v)H/(1-v)?, H = acot?B/s?. In this thesis
o, and @, are assumed to have the values 5E/12(1+v) and
7E0/20(1+v). For a conical shell, the radius r at any section

is given by r = s sinB, s # 0.

For a cylindrical shell, B = 0 and we have to substitute

S sinf = a, cosBf = 1 .

For a circular plate, B = g and we have s = r.
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APPENDIX II

The non zero coefficients appearing in equations

(4.2)~(4.7) are defined as follows:

v
i

2m

9m

4m

9m

im

6m

10m

1m

il

8m

lm

6m

8m

it

3m

lom

(1-2v)m?/2(1-v)a?, a; =v/(l-via , a, = wv/(1-v) ,

-m/2(1l-v)a .

- 2 2 -
as/Ca+(l v)m*/2a% , bsm

7m

aa/Ca—\)/a2 ,

(1+v)m/2a® , b1“n= -(1+v)m/2a

“Cv(l-v)/a (1-2v)a , c =
3 3m

Cav/a3az—l ,

{m2+C(l-\))2/a3(l—2\))+Ca/a3a2}/a2 , c = c¢

8m lm

-m{1+C(1+v)2/a3(1—2v)+¢a/a3a2}/a2 , C = m(Ca/asaz—l)/a .

12m

Cv(l—v)/ae(l—2v) ’ dGm = —d“n/a ’

m?/a?+C(1-v)2?/a (1-2v) , 4
8 10m

m/(1-2v)a , e,

mdnn/a .

= -ma(l+v) /(1-v)a? ,

-—2m{(1—v)2/(1-—2v)+a/a2}/(1—v)a"‘—2oc3m/c(1-v)a2 s

2vm/(1-2v)a , € lon= 2m?{(1-v) 2/(1-2v)+a/a?}/(1-v)a?

+ 2a3/C(l—v)a2 pe, = 2a3/C(l-—v)a—2am2/(l—\))a3

m(1l+v)/(1l-v)a , me = 2m{l/a2-a3/Ca}/(l—v)a ’

2{a3/Ca—m2/a2}/(l—v)a , £

12m

2m2/(l—v)a2+2a3/Ca(l—v) .
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A
Solution of Kenner et ai
=¥—¥—¥% Series Solution (39 Terms)
£ 70 0—0—0 Modified Solution (4 Terms)
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E 60 —
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o 50
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3l w 40 _—
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[7p) 20
10 t+—
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la | ]
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Fig.4b. Strain Response in the Conical Shell
(s=5.6cms)
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Fig. 1. Variation with Position of the Velocity (,=Ggt/a=5)
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