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ABSTRACT

Structural optimization is important for product design in order to improve the

performance and decrease the production time as well as total cost of a product. In the

past, engineers used costly and time consuming trial-and-error methods to find the

optimum for their structural design problems. Today, with steadily increasing

computational power, computers are increasingly used to design, manufacture, and

evaluate the performance of a product without having to physically building it to reduce

the cost of development. The finite element analysis (FEA) used in such developmental

process are expensive and hence, often hinders the direct use of conventional

optimization techniques such as the mathematical programming and most heuristic

approaches. When there are multiple objectives and constraints, the difficulty

compounds. Eff,rcient optimization of structural design problems with computationally

intensive FEA processes has been studied intensely by many researchers for the past

decade. Only recently, researchers have started to focus on optimization of multiple

objective problems using these expensive FEA. This thesis aims to develop a multi-

objective optimization algorithm which can handle multiple design variable, objectives,

and constraints of expensive FEA models. A new algorithm, called non-dominated

sorting genetic quantum algorithm CI{SGQA), is developed by integrating a newly

developed evolutionary algorithm, genetic quantum algorithm (GeA), and a multi-

objective sorting mechanism. The perforïnance of NSGQA is intensively evaluated using

inexpensive optimization problems and compared with state-oÊthe-art meta-heuristics

multi-objective optimization algorithms. Subsequently, NSGQA is applied to a real

structural optimization problem with 47 trusses and many constraints. From the tests and

application to structural optimization, NSGQA demonstrates promising performance. The

NSGQA is integrated with a FEA-based process model for composite processing a¡d is
applied to optimize tool shape to reduce the process-induced warpage. This preliminary

benchmarking was done to pave the way for further research on multi-objective tool

shape optimization for composite processing.
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CHAPTER 1

INTRODUCTION

1.1 Challenges in Structural Optimization

Structural optimization includes a wide range of applications from aerospace

industry to auto industry. Depending on the type of problems, the optimization goals

often seek to minimize one or more of the following, cost, weight, drag force, fuel

consumption, and others. For example, a body of wing can be optimized to achieve

minimum drag. Hague et al. 11] proposed a technique, composed of nine separate

search strategies, which use parametric representation of airfoil surface and two- and

three-dimensional situations, to minimize drag.

The f,reld of structural optimization presents an anay of challenging problems,

usually charactenzed by their computational intensity, multi-modalify, non-convexity,

high dimensionality, and multi-objectivity. As a result, only a limited number of such

problems are fairly amenable to conventional mathematical programming approaches,

for which the design space is continuous and convex, and the problem dimensionality

is low. However a significantly larger class of structural design problems is

chaructenzed by unknown non-convexity in the design space, and a mix of

continuous, discrete, and/or integer design variables, as well as multiple objectives.

Conventional mathematical programming techniques rely heavily on a smooth

and continuous design space and the starting point; they also yield locally optimal

solutions only. Alternatively, exhaustive enumeration and random search methods are

among the simplest and most robust shategies for automated structural design. They



are applicable to a wide range of problems and are not so severely limited by

discontinuous design spaces such as in techniques derived from mathematical

programming principles. However they are saddled with heavy computational

requirement. Population-based stochastic search mechanisms, such as genetic

algorithms (GA), also do not need gradient information and are in general more robust

and present a better global behavior. However, similar to their competing random

search approaches, GA may still also suffer from a slow rate of convergence towards

the global optimum. Consequently, while it is promising, it is also challenging to

develop an evolution-based search method that is computationally efficient for

structural optimization problems, which is the aim of this research.

1.2 Mathematical Programming (or Gradient-Based optimization)

Many practical design problems such as the sfructural and tool shape design

problem are charactenzedby high computational cost, mixed continuous and discrete

variables, as well as discontinuous and often non-convex design space. These features

hinder the direct application of traditional gradient-based mathematical programming

techniques. Some issues with gradient-based mathematical programming methods are:

' Only a single design point for starting the procedure and the choice of the

starting point is blind and often has significant effect on the quality of the

converged optimum.

o Derivatives of objective function are required, which in practice are often

unavailable or unreliable, and they have difficulty in solving discrete and

integer programming problems.

¡ Most of the gradient-based techniques are local optimization techniques and

can get trapped in a local optimum of mediocre performance.



In order to overcome these difficulties various non-gradient based optimization

methods have been proposed. Next, we will briefly describe one of the most widely

recognized categories of non-gradient based methods.

1.3 Metaheuristic

In recent years, some optimization methods that are conceptually different from

the haditional mathematical programming techniques have been developed. These

methods are based on certain biological, molecular, and neurological phenomena.

Methods known as genetic algorithmsf2], or in general evolutionary optimization, are

based on the principles of natural genetics and natural selection. Simulated annealing

[3]is based on the simulation of thermal annealing of heated solids. Both genetic

algorithm and simulated annealing are stochastic methods that can find the global

minimum with a high probabilify and are naturally applicable to the solution of

optimization problems. Particle Swarm Optimization (PSO) [4] attempts to simulate

the choreographed, graceful motion of swarms of birds as part of a socio-cognitive

study investigating the notion of "collective intelligence" in biological populations.

Ant colony l5], inspired by the behavior of ants, is that of a parallel search over

several constructive computational threads based on local problem data and on a

dynamic memory structure containing information on the quality of previously

obtained result.

All of the above mentioned methods are called metaheuristics because they are

not problem-specific, so that a method which works for one problem can be used to



solve a different one. Extended from regular metaheuristics, multiple objective

metaheuristics (MOMH) are methods that aim to provide a good tradeoff between an

approximation of a set of eff,rcient solutions and the time to obtain it. These methods

may manipulate a complete or incomplete single solution or a collection of solutions

at each iteration. While most real world problems require the simultaneous

optimization of multiple, often competing, criteria (or objectives), the solution to such

problems is usually computed by combining them into a single criterion to be

optimized, according to some assumption. In many cases, however, the assumption is

not well known prior to the optimization process. The whole problem should then be

freated as a multi-objective problem with objectives that cannot be reasonably

combined into a single objective. ln this way, a number of solutions can be found

which provide the decision maker with insight into the characteristics of the problem

before a final solution is chosen.

Metaheuristics (either single objective or multi-objective) methods provide us

with the following advantages:

Capabilify to search for global optimum

Being independent of types of design space

Allowing multiple starting points

No need for derivatives of objective function

Despite all these advantages of metaheuristics methods (for both single

objective and multi-objective) they suffer from slow rate of convergence and they are

computationally expensive. In other words expensive fitness evaluation is when the



time for evaluating the objective function is at least on magnitude greater than the

optimization run. For example, if the convergence criterion is to stop after reaching

1000 function evaluations and if the time for each design analysis or function

evaluation is t hour, we need 1000 hours to f,rnd the optimal design by metaheuristics

methods. Therefore, many researchers are working towards decreasing the number of

function evaluations so that these methods can be applied for highly expensive

function evaluation like the tool shape design while maintaining their other

advantages.

Since, in structural design, we have to take into account different aspect of design

like strength, vibration, and drag of airplane wing, considering single olrjective for all

these different phenomena often does not lead to desired optimal design. Using multi-

objective optimization (MOO) algorithm for this fype of structural design problem is

expected to result in better optimal design and this def,rnes the main goal of thesis.

Detailed research objectives arc organized in the next section.

L.4 Research Objectives

The objectives of this thesis include:

a) to develop a metaheuristics multi-objective optimizatton algorithm that can

efficiently solve multiobjective structural optimization problems with

reasonable accuracy

to integrate the developed algorithm with FEM simulation for design automation

To test the developed algorithm using two applications

- design of a truss towel, which was used as a bench mark problem

b)

c)



- tool-shape optimization to minimize warpage in autoclave cured composite

parts; This includes developing FEM based process model incorporating

tool-part interaction that occurs during autoclave manufacturing.

1.5 Organization of Thesis

CHAPTER 2 presents a review of published research on multi-objective

optimization and structural optimization. The multiobjective optimization algorithm

developed as a part of this thesis is presented in CHAPTER 3. Performance

evaluation of this algorithm and benchmarking with state-of:the-art multiobjective

optimization algorithms are presented and discussed in CHAPTER 4. Preliminary

evaluation of applicabilify of this atgorithm for tool shape optimization with an

objective to minimize process-induced warpage is described in GHAPTER 5.

Conclusions will be given in CHAPTER 6.



CHAPTER 2

LITERATURE REVIEW

A review of the relevant literature is provided in this chapter. It details the

existing related research and identifies useful ideas and concepts that could contribute

to the success of this work. Basic concepts of multiobjective optimization (MOO) are

introduced first, followed by a brief review of MOO with a focus on metaheuristic

approaches. Stmctural optimization and its categorization are described. Detailed

review on shape optimization is conducted. A summary of the literature review is

then given at the end of this chapter.

2.1 Multi-Objective optimization

A design problem often involves several criteria or design objectives. If the

objectives are conflicting, the problem ¡educes to finding the best design trade-off

among objectives. Consequently MOO is widely used in design and practical

application. In MOO problems, the most important task is to find the values for the

design variables, which optimize several objective functions simultaneously. A MOO

problem is defined as follows,

minimize "f (X) = (f,(X), "fr(X),...,f.(X))

Subject to

h,(X)=0;i=1,'..,p
g,(X) < 0; j =I,'.. ,tn

2-1



where Æ is the number of objective function, p is the number of equality conshaint,

and m is the number of inequality constraint.J(X) is Æ-dimensional vector of objective

function. h¡ (X) is equality and gi ('! is inequality constraint. The solution of a MOO

problem is often chosen from a so-called Pareto optimal set.

We say that a vector of decision variables X* e ,F is Pareto optimal front if there does

not exist anorher xe F such thatl(x; sÍØ) for all i: t, . . ., k andfi@ sfr(Ì) for

at least onej. Here, ,F represents the feasible region of the problem.

Figure 2.i illustrates the FON multiobjective problem Xe[-4,41and the objecrive

functions are in Equatíon2-2:

.ft =t-"*p(-i(,r ,-ir,
fz =t-*p(-i( x, +#),)

2-2

As depicted in Figure 2.1 there is no point in the objective space better than those

square points, therefore these points in the objective space which correspond to points

in the design space are Pareto optimal front. X e[-4,41is the design space and;/j and

f2 are objective functions here.
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MOO has been an intensively studied area. Given the difficulty of mathematical

programming approaches for simulation based structural optimization, this review will

focus on MOO methods based on metaheuristic.

The Niched Pareto Genetic Algorithm (GA) was introduced by Jeffrey Horn et

al.l6] as an algorithm to find the Pareto optimal set. The performance and ability of

Niched Pareto GA to find and maintain a diverse "Pareto optimal population" were

demonstrated using two artificial problems and an open problem in hydro-systems.

The study stated that the algorithm could be used to search any partially ordered space.

A novel evolutionary approach to approximate the shape of the Pareto-optimal set of

Moo problems was presented on the basis of a spatial predator-prey approach [7].

The main concern of the study was to find whether the predator-prey approach could

be applied to MOO problems.

Knowles and Corne [8] proposed Pareto Archived Evolution Strategy (PAES) as

the simplest possible non-trivial algorithm. The PAES uses a reference archive of

previously found solutions to approximate dominance ranking of the current and

candidate solution vectors. PAES is compared with Niched Pareto GA on a real world

application from the telecommunications field. In Ref. [9], an extended 0/l knapsack

problem was taken as a basis to compare quantitatively four multi-olrjective

evolutionary algorithms (EA). Furtherrnore, a new evolutionary approach to multi-

criteria optimization, the Strength Pareto EA (SPEA), which combines several features

of previous multi-objective EAs in a unique manner, was introduced. Simulation

10



results showed that SPEA could be very effective in sampling from the entire Pareto-

optimal front and distributing the generated solutions over the trade-off surface.

Moreover, SPEA clearly ouþerformed the other four multi-objective EAs on the 0/1

knapsack problern. Deb 110] investigated that features of a MOO problem may cause

difficulties for an EA in converging to the True Pareto Front (TPF). Test problems

containing features that were known to cause EAs difficulty in converging to the

Pareto-optimal front were also developed. A systematic comparison of various EAs to

Moo was carried out by zitzler et al. [11] by using a design example,. This

investigation concluded that elitism was an important factor for improving

evolutionary multi-objective search. The mechanism of natural immune system and

entropy principle in multi-objective evolutionary process were applied in Reference

[12]. Furtherrnore, a strategy of preserving diversity in the population of multi-

objective EA based on immune and entropy principles was introduced. Experimental

results indicated that this strategy effectively preserved population diversity. Basic

principles of evolutionary MOO algorithms were explained by Zitzler et al. [13] using

an algorithm design example, which include issues such as fitness assignment,

diversity preservation, and elitism in general. Moreover, a thorough discussion was

undertaken on different techniques to implement these strongly related concepts. Other

important aspects such as constraint handling and preference articulation were treated

as well. In reference [14], an improved version, namely SPEA2, was proposed, which

improved its predecessor with a fine-grained fitness assignment strategy, a density

estimation technique, and an enhanced archive truncation method. A comparison

between SPEA2 with SPEA and two other modern elitist methods, PAES and NSGA-

tr [15], demonstrated that SPEA2 perform better than SPEA and it has similar

11



performance like NSGA-II and in higher dimensional objective space SPEA2 is more

successful

Non-dominated sorting-based multi-objective EA (MOEA), called non-dominated

sorting genetic algorithm tr G\fSGA-II) was developed by Deb et al. [15]. A fast non-

dominated sorting approach with low computational complexity was proposed in the

work. The authors also proposed a selection operator which created a mating pool by

combining the parent and offspring populations and selecting the best (with respect to

fitness and spread) N solutions. The proposed NSGA-II, for most test problems, was

able to find much better spread of solutions and better convergence near the TPF

compared to existing methods.

Recently, Iorio and Li [16] incorporated a cooperative co-evolutionary algorithm

idea into the non-dominated sorting procedure. The algorithm has demonstrated its

ability to obtain well spread PF in comparison with the NSGA-II on some

multiobjective optimization problems. A new MoO method was presented by

Keerativuttitumrong et al. [17], which was based on the integration between two types

of genetic algorithm: a multi-objective genetic algorithm (MOGA) and a co-operative

co-evolutionary genetic algorithm (CCGA). The comparison between two GA's

showed that MOCCGA was superior to MOGA in terms of the variety in solutions

generated and the closeness of solutions to the TpF. Zeng et al. [lg] applied the

orthogonal and statistical optimal designs to speed up the computation of EA. Jin and

Wong [19] proposed a novel E-dominance concept, an Adaptive Rectangle Archiving

12



(ARA) strategy, which does not need prior knowledge with this archiving technique.

Coello and Becerra proposed a novel cultural algorithm, which uses evolutionary

programming, Pareto ranking, and elitism to solve Moo problems [20]. Cultural

algorithm also demonstrated comparable performance with NSGA-II. Reference [2i]

introduced a novel Pareto-frontier Differential Evolution (PDE) algorithm. Sato and

his colleagues l22l enhanced multi-objective evolutionary algorithms with a

distributed search based on local dominance. They chose NSGA-II and SPEA2 as two

representatives' of multi-objective evolutionary algorithms and then enhanced NSGA-

II and SPEA2 with distributed search based on local dominance. A new algorithm was

also developed based on the idea of emulation of the immune system [23] behavior .

This algorithm was also compared with NSGA-II on three test problems. Tran [24]

developed the elitist non-dominated sorting GA for multi-objective optimization as a

parameter-less version of NSGA-tr. Subsequently, he investigated the performance of

the parameter-less NSGA-tr against the original NSGA-II. He concluded the

parameter-less NSGA-tr performed well compared to original NSGA-tr.

The evaluation of different Pareto solutions has been a challenging task. Ang and

his colleagues L25l investigated the multi-objective evolutionary algorithm

performance measurement. The results indicated that while some perfonnance

indicators were conclusive and consistent, in some cases the 'diversity' indicator in a

benchmark test should be included. Lu and Yen [26] proposed the rank-density-based

genetic algorithm (RDGA). Statistical results show that RDGA is competitive with

four other representative MOEAs in terms of keeping the diversity of the individuals

along the hadeoff surface, tending to extend the PF to new areas and finding a well-

l3



approximated Pareto optimal front. From the literature, it is also found that NSGA-II

developed by Deb et al. [15] has been used intensively for comparison.

Archive-based hYbrid Scatter Search (AbYSS) l27l is a hybrid metaheuristic

algorithm which follows the scatter search structure but using mutation and crossover

operators coming from evolutionary algorithms. This algorithm combines ideas of

three state-of-the-art multiobjective evolutionary algorithms. On one hand, an extemal

archive is used to store the non-dominated solutions found during the search,

following the scheme applied by PAES, but using the crowding distance of NSGA-tr

as a niching measure instead of the adaptive grid; on the other hand, the selection of

solutions from the initial set to build the reference set applies the density estimation of

SPEA2.

CellDE [28] present a new hybrid cellular genetic algorithm. They take MOCell

as starting point, a multi-objective cellular genetic algorithm, and typical genetic

crossover and mutation operators are replaced by the reproductive operators used in

differential evolution. An external archive is used to store the non-dominated

solutions found during the search process and the SPEA2 density estimator is applied

when the archive becomes full.

Fast Pareto genetic algorithm (FastpGA) has been recently developed by H.

Eskandari and C.D. Geiger 129]. FastPGA uses a new fitness assignment and ranking

strategy for MOOs where each solution evaluation is relatively computationally-

and/ot f,rnancially-expensive. This is often the case when there are time or resource

t4



constraints involved in finding a solution. A population regulation operator is

introduced to dynamically adapt the population size as needed up to a user-specified

maximum population size.

optimized Multi-objective Particle Swarm optimizarion (oMopSo) l30l is a

particle swarrn optimization algorithm for solving Moos proposed by Reyes and

Coello.Its main features include the use of the crowding distance of NSGA-II to filter

out leader solutions, the use of mutation operators to accelerate the convergence of the

swarrn, and the concept of epsilon-dominance to limit the number of solutions

produced by the algorithm.

strength Pareto Evolutionary Algorithm (SPEA2) t31] was proposed by zitler,

Laumarms, and Thiele. In this algorithm, each individual has assigned a fitness value

that is the sum of its strength raw fitness and density estimation. The algorithm

applies the selection, crossover, and mutation operators to fill an archive of

individuals; then, the non-dominated individuals of both the original population and

the archive are copied into a new population. If the number of non-dominated

individuals is greater than the population size, a truncation operator based on

calculating the distances to the Æ-th nearest neighbor is used. In this way, the

individuals having the minimum distance to any other individual are chosen.

In summary the research on metaheuristics-based MOO has been intensive and

many good algorithms have been developed recently. All these methods, however, are

developed for inexpensive objective functions. While for optimization involving

expensive objective functions, new MOO methods need to be developed. In this work,
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2.3 Sizeoptimization

In the first approach, also known as "automatic dimensioning of structures", the

only design variables are cross-sectional dimensions or transversal thicknesses. For

example in trusses, rods cross section area is design variables, and weight

minimization is the objective which satisfies a set of constraints.

2.4 Shape optimization

In shape optimization, the design variables are geometrical parameters that define

the shape of the structure. These shape parameters are the coordinates of specific

points, the poles. In 2D, these poles define the contour of the structure as a set of

curves, for instance by using Lagrangian, Bézier or B-splines interpolations.

we can also model the geometry using lengths of segments, radii, angles, etc. For

example in the case of a support skucture: the objective is mass minimization and the

constraint is critical Von Mises stress. Figure 2.3 shows load and boundary

conditions. 10 independent design variables are used, modeling the support geometry

through lengths and arcs of circles.

2.5 Topological optimization

ln topological optimization, the aim is to determine the optimal shape of a

structure by starting from a bulk of material, and gradually taking off removing the

material which carries less stress. And the final structure must still satisfy the user-

defined constraints.
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the developed new algorithm, NSGQA, will be compared to the best of these recently

developed to gauge the performance of NSGQA.

2.2 Structural optimization

Numerical method has greatly enhanced the design of mechanical components

since the 1960's. Now Finite Element software's has an application in aeronautical,

mechanical, naval and civil engineering. Meanwhile different fast and eff,rcient

optimization algorithm has been developed for wide range of mathematical problem.

Structural optimization rvas introduced base on building a model in Finite Element

software and using optimization algorithm to find the optimum for it. The design

variables are usually geometrical, material and/or topological parameters, and the

design should meet the constraint. Structural optimization is haditionally classified in

three families following the nature of the variables involved.

. in size optimization, design variables are cross-sectional dimensions or

thicknesses

in shape optimization, the design variables are parameters which defines

geometry of the structure

in topological optimization design variables can modify the shape and the

topology of the structure.

These categories are briefly discussed below.

l6



Figure 2.4 illustrate topological optimization benchmark, the Michell truss

problem, which is proposed by Reynolds [33] et al. They optimized it with the reverse

adaptivity technique, the algorithm is as follows: first modeling the initial finite

element problem, the method continues with a refinement of low (Von Mises) stress

regions of the mesh by element subdivision. Then, low stress subdivided elements are

removed and the process is repeated. The structures obtained after respectively 6,42,

75 and 120 iterations of this process are represented in Figure 2.5. At the 120th

iteration, only 8.8% of the whole (initial) area remains.

18



t)\\
\"/,//

1>//

;tr ¿,.Y
,(:'i/

Figure 2.2 Distinction between design (a) shape (b) and topology (c) optimization
1321.

Figure 2'3 Shape optimization of a support: definition of the initial geometry (left) and
solution obtained after 5 iterations of the optim jzationprocess (right) l32l
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Figure 2-4 Definition of the Michell truss problem [Boundary condition the inner
circular hole is fixedl [32].

Figure 2'5 . Topological optimizationapplied to the Michell truss problem: results at
irerarions 6 (a),42 (b),75 (c) and t20 (d) t3}l.
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From all three categories of structural optimization problems, this work targets at

sizing and shape optimization problems. The sizing problem is conceptually simple.

Therefore next section will be devoted to review of research in shape optimization.

2.6 Review of Research in Shape Optimization

shape optimization was first originated from ship building. on June 20, l g09

[34]: Sir Georgw Cayley proposed "Solid of least resistance," a boat with the trout

shape to minimize resistance in water. This is the first known publication on shape

optimization.

The most application of shape optimization today is in aerospace industries, where

the body or wing of an airplane is optimized. in order to achieve minimum drag.

Hague et al' [1] used nine separate search strategies on a parametric representation of

airfoil surface to minimize drag for two- and three-dimensional situations. They also

included comparisons with known variational solutions. In all cases compared results

are in close agreement with previously obtained solutions. The nine separate search

strategies are sectioning, pattem, magnification, steepest-descent, adaptive creeping,

quadratic, Davidon's method, random point, and random ray search.

Vanderplaatsf35] investigated multidisciplinary shape optimization of combined

structural and aerodynamic design. For instance the optimum skuctural and

aerodynamic designs of aircraft wing are not the same; therefore the optimum design

is not the summation of optimum design of each part. Applications of shape
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optimization in addition to structural design were investigated in [35]. Then he

discussed mathematical and numerical aspect of multidisciplinary shape optimizafion.

He concluded that optimization in multidisciplinary design needs disfributed

computing to make process time reasonable.

Fully automatic mesh generation and design model based on design-oriented

geometric primitives are used in new optimization approach which is proposed by

Botkin [36]. Subsequently Botkin combined shape optimization with futly automatic

mesh generation. His study's shown that the algorithm exhibited good convergence in

less than 10 finite element analyses after making design models and obtaining

adequate mesh sensitivities from the geometric model operations for design

optimization.

A finite element-based shape optimization program for large shape changes of

three-dimensional shell structures was developed [37]. Adaptive mesh generation,

substructuring, and linear and nonlinear optimization techniques along the commercial

finite element analysis program (MSCÆ\IASTRAN) are building blocks of this new

shape optimization program. The program has the capability of optimizing shapes by

allowing multiple edges to move.

The authors in reference 138] described a different approach to shape optimization

based on the use of high-order p-type finite elements tightly coupled to a

patametenzed computational geomeky module. Accurate results with much fewer

f,rnite elements, large shape changes without remeshing, and automatic adaptive

analysis for accurate results at each step of the optimization process are the
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advantages of their approach. They implemented their approach on sizing and shape

optimization and compared with previous results from the literature.

Before 1995 topology and the shape optimization \¡/ere molded separately. Maute

[39] and his colleagues in their paper proposed an integrated model for topology and

shape optimization. An analysis model was built based on the material distribution in

the design model. Finite element was used for the parametenzation of the analysis for

topology optimization. Lagrangian curve or Bezier splines parametenzation of the

contours was used for shape optimization. The advantages of this algorithm were

capability to find the optimum layout of a structure by using material based topology

optimization, to include directly boundary variation techniques, and to improve the

quality of the optimization results and the numerical efficiency of the optimization

process.

Continuous optimization of the mechanical structural behavior using a flexible

optimization model that may be changed during the optimization process is called

interactive optimization. ln reference 140] a concept for interactive shape optimization

of plane and axisymmetric continuum structures is presented. This algorithm

integrates the analytical formulation of hybrid mixed finite elements for structural and

sensitivity analysis, adaptive mesh generation scheme for the automatic derivation of

the analysis model, and non uniform rational B-splines OruRBS) curves for changing

boundary representation.

Shape optimization of flat or curved 3D shell structures is presented by Lindby et

at. [4Il and it is composed of the geometric modeling and automatic meshing
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capabilities of an existing parametric/associative CAD system. The calculation of

analytical sensitivities with the discrete method and the implementation of the used

shell elements are described in reference [a1]. The validity of their method is

demonstrated with the optimization of two complex 3D sheil sfructures.

A general two-dimensional shape optimization by an improved growth-strain

method was investigated by Han 1421. His study showed that growth-strain method

could not provide reasonable optimized shapes for structures with two or more free

surfaces such as structures with holes inside. Using the finite element method he built

an automatic shape optimization system by the improved growth-strain method. This

new method was verified by some examples in[a2] in order to show the performance

and application of the developed shape optimization system.

Lin and Chao 143] proposed a fully automated configuration optimization system

for two-dimensional struchrres. Their algorithm is as follows: first creatin g a grey

level image of a structure with minimum compliance by homogenization or material

distribution methods, then performing image interpretation that converts the grey level

image to a parametenzed structural model ready to undergo shape optimization.

Finally shape parameters are treated as design variables in a shape optimization that

search for the optimum that satisfies all constraints. They concluded that this

automated method increases the efficiency of the integrated topology and shape

optimization for configuration designs.

In reference l44l an automated approach for simultaneous

optimization of shell structures is presented. They optimized

shape and topology

shape and material
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distribution of the shell structure simultaneously to maximize the stiffness of the shell.

This algorithm uses a variable ground structure for topology optimization, since the

shape of the shell is modified during process. The efficacy of this method was

demonstrated using several examples.

Zhou and his colleagues [45] proposed simultaneous sizing, shape, and topology

optimization in a single process because they believe that separate optimization

methods pose a limitation on the design space and therefore prevents f,rnding possible

better designs since the interaction of sizing and shape variables with topology

modification is excluded.

Free-form deformation technique suitable for aerodynamic shape optimization

which is independent of grid topology is proposed in reference [a6]. This method can

be used on structured and unstructured computational fluid dynamics grids in the

same manner. Better confrol of surface shape changes and decreasing the number of

design variables by an order of magnitude are advantages of this method. The

proposed technique is simple, compact, and efficient. They provided the complete

formulation and aero dynamics shape optim ization results.

Kegl and Marko l47l presented an approach to parameterization based shape

optimization of statically loaded structures. A rational Bezier body is used to serve as

the design element which is used to retrieve the nodal geometrical data of finite

elements for shape parameterization. They concluded that their method can be applied

for shape optimization of both continuous and discontinuous strucfures.
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Shape optimization of two-dimensional anisotropic structures is done in reference

[a8] by the integration of boundary-element method with an optimization algorithm.

The objective was to maximize stiffrress by finding the optimum shape of a structure

and to minimize the elastic compliance of the structure subject to constraints upon

stresses, weight, and geometry. Since compliance, weight, and shesses are behaving

nonlinearly they used feasible direction method along golden section method as the

numerical optimization algorithm for the one-dimensional search. Hermitian cubic

spline functions are used to represent boundary shapes that offer considerable

advantages in fitting a wide range of cuwes and in the automatic remeshing process.

Sayed et al. [49] employed numerical optimization techniques for the shape

optimization of fluid flows using CFD. To show the efficacy of the developed tool

and its ability to produce results with ¡easonable CPU time, the shape optimization of

an airfoil and S-shaped duct are sfudied with different numbers of design variables.

Then they discussed the optimization and CPU time results.

Reference 150] presents a method for the structural optimization of variable

thickness plates and free-form shells. First they considered topology, sizing and shape

optimization independently. Then these tools are combined to form a robust and

reliable fully integrated design optimization tool to obtain optimum designs. They

implemented this method for flexible integrally stiffened plate and shell formulation

to the design of stiffened plates and shells.

Reference [51] investigated aerodynamic shape optimization of aircraft wings

under the effect of aeroelastic deformations at supersonic regime. Their approach is
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composed of a high-fidelity aeroelastic analyzer and an aerodynamic optimizer. The

shape optimizer is based on a "CAD-free" approach and an exact gradient method

with a single adjoint state. They concluded that this method reduces the sonic boom

production, while preserving the aerodyramic performances of flexible wings.

From the literature review, there are many approaches for shape optimization and

a growing interest in integrating sizing, shape, and topology optimization into one

optimization problem. The shape optimization on tooling, however, has not been

found in the literature.

2.7 Summary of Literature Review

In section 2.1 different metaheuristic multi-objective optimization algorithms are

reviewed. These studies highlight fitness assignment, diversity preservation, and

elitism mechanism for better spread of solutions and better convergence near the TpF.

None of these reviewed papers investigated the convergence to TPF for expensive

optimization with a small numbers of function evaluations. Hence, this thesis is

focused on this knowledge gap using a new metaheuristic method called genetic

quantum algorithm, which provides diversity preservation. Non-dominated sorting

mechanism, which presents fitness assignment and elitism mechanism, is integrated

with genetic quantum algorithm.

Structural optimization, its categonzation, and a detailed review on shape

optimization have been reviewed. The literature review shows that multi-objective
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metaheuristic optimization has not been applied to structural optimization with

expensive objective functions.

Based upon the existing knowledge, this research is focused on developing a

computationally efficient optimization algorithm for multiobjective structural

optimization problems with expensive objective functions. The genetic quantum

algorithm and the non-dominated sorting method are integrated to yield NSGQA. The

performance of NSGQA is evaluated on classical multi-objective benchmark

problems, a sfructural optimization problem, and a tool shape optimizationproblem.
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CHAPTER 3

NON-DOMINATED SORTING GENETIC QUAI\TUM

ALGORITHM

Based on the concept of Genetic Quantum Algorithm (GQA) [53]- [54], this

chapter will discuss in detail the developed non-dominated sorting Q.{S) genetic

algorithm (NSGA). The performance measurement of this algorithm and comparison

with the state-of-the-art algorithms will be presented in Chapter 4, along with a¡

application of NSGQA to a challenging structural optimization problem. Before

introducing NSGQA, basic concepts of GQA will be described.

3.1 Genetic Quantum Algorithm

3.1.1 Representation

Genetic Quantum Algorithm [53] is inspired from the principles of quantum

computation, and its superposition of states is based on qubits, the smallest unit of

information stored in a two-state quantum computer. A qubit could be either in state

"0" or "1", or in any superposition of the two as described below,
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lù=alo>+ Blr¡

where a and B are complex numbers, whose square values denote the probability of the

appearance of their corresponding state, "0" or "1", as determined by the constraint

given below,

lol'+lpl': t

This probabilistic representation implies that if there is a system of ru qubits, the

system can represent 2"' states simultaneously. At each observation, a qubit's quantum

state collapses to a single state as determined by its corresponding probabilities.

Consider the j-th individual inthe i-th generation as defined by an m-qubit as below,

where ¡n is the number of qubits, i.e., the string length of the qubit chromosome, forj

:1,2, ... , ft, t: 1,2,..-,rrx,wheÍe zl is populatíon size. since a qubit is a probabiristic

representation, any superposition of states is simultaneously represented. For instance

if there is a three-qubit (m: 3) individual such as below,

The possible states of the individual can alternatively be represented as,

3-1

3-2

3-3o]=ll;,,W,,,,1";¡l)i,.:1,

3-4
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ftÞ00,, ftlooa,ftloto,, JÞt u, ftl'00,, ftlror, rtt,,0>, 
jl', u 

3_5

The number left to each state is the product of a and B values of corresponding

bits in Equation 3-3, whose square is the probability of achieving such a state. For

instance, states looo),loot¡,lioo¡, ana loio) can be realizedwith the probabilities IlZ4,IlB,

ll24 and l/12 respectively. Consequently, the three-qubit system of Equation 3-4

carries the information of all eight states simultaneously.

Evolutionary computing with the qubit representation has a better characteristic

of diversity than classical approaches since it can represent superposition of states.

Only one qubit chromosome such as in Equation 3-4 is sufficient to represent all

possible states in the initial stages of evolution, whereas in classical representation

eight chromosomes are needed.

The binary state of the individual is f,rrst converted into an integer using the following

Equations 3-6 and3-7.

Integer =b r2''-t +b rZ"-2 +... + b__, 2 +b 
^

design variable= Integerx ('! -, 
tt\* ru- \ 2^-t )

3-6

3-7

The value of design variable is calculated using the above equation where UB is

the upper limit of the design variable and LB is the lower bound limit of the design

variable, and b : b1, b2, b3, .. b* are either 0 or l.
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Hence, if the binary state of the individual is 101, and design variable's range is

0.0056< radius < 0.0222,

Integer =1x22 + 0x 2t + 1 = 5

Design variabte = t"(gjIlÏWJ+ o.ooso = 0.0175 (m) 3-8

3.1.2 Algorithm of GQA

The general structure of GQA is described in [53]. In the initialization

step, Pe(i)1,= o , ol,, and. 80,,, of all Q0 are initialized to ber¡Jã. This implies that each

qubit chromosome Ø'1,=o in the initial population represents the linear superposition of

all possible states with equal probability. A population of randomly generated binary

instants Px(í): {xi,x;,...,x;,...,x:,} is then created by observing their corresponding

qulrit chromosome ínPn(i). In other words, each binary instant, 4', of length ¡ll, is

formed by serecting each bit using rhe probabiliry pairs of qub ft (1"],,1' ,lp;.,1') ot g,,.

Fitness of each instant ,{'i is then evaluated, and the best instant solution

X'r=ig¡{f(Xj)} is then selected and stored from among the binary instanrs of X(i).

Next a mating pool is generated from preserving a population of elites. In the next

step, 'Update PnQ),' the ith population of qubit chromosomes pn(i) is updated by

applyng quantum rotation gaßs rJQ). t{i) manipulates the popularion of qubit

chromosomes Pn(i) and steers them towards the qubit with best instant solution. The

appropriate quantum gate is usually designed in accordance with problems under

consideration. This process is repeated in a "while" loop until convergence is

achieved.
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3.1.3 Quantum Gates Assignment

A quantum-inspired crossover operator, quantum rotation gate U(0), updates the

qubit values a and B towards the best performing individual in the population, so that

better individuals will have higher probability of survival in the next iteration.

Specifically,the t-th qubit value qa,¡,,,Ê),,) is updated as

lo', ,'l_ [cos(.t 
* laell - sin(s ,lteþ]l a;,,1

lO;' ) [sin(.s*¡neþ cos(,Sxl^01) )lB;,,]

where Aálmagnitude of rotation) and S(rign of rotation angle) are determined from

Table 3-l and Table 3-2.

In Table 3-1 here P(X) is the fitness, and X'u,,, where Xí =i?Í{p(x,)l,and xi¡,,

are the t-th bit of the best instant and the binary solution x;¡respectively 153]. In

Table3-2, xlu,, and. xi.,,, arethe t-th bit of the best instant solution xj and the t-th

bit ofj-th binary instantXj. , respectively. And Âd is the rotation angle that controls

the speed of convergence. In order to demonstrate how the rotation gate helps GeA

find better solutions, let us consider Figure 3.2. For example, in the case of xi¡,, :1,

xL., =0, if F(\t) Z F(xÐ is false, in order to get a better chromosome, the probability

of current solution xi.,,, for becoming a "o" should be larger, i.e. if the qubit

(o',,,,þ",,) is in the first or third quadrant,0 should rotate clockwise and if

(o'r,,,þ',,,) is in the second or forth quadrant,0 should rotate counter clockwise, as

plotted in Figure 3.2.

3-9
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Table 3-1 Look up table of L2'j,, 1531.

,'j,, X;,, P(X,i) > P(X^i) Le" .

0 0 false L9l: 7T

0 0 brue lÁozl: 0.73332tr
0 I false lA0sl: 0.5608n
0 I true l^e¿l: 0.76471r
I 0 false lAOsl: 0.21171r
I 0 lrue lÂ0al: 0.90196n
I I false lAer¡: 0.9294n
I I true lÂOsl: 0.87844tr

Table 3-2 Sign of L0,,., is determined as below [53].

S(a'¡,, , Þj,, )

Ix:, Á1r.,
d'j,,xp;.,>o ø'r.,x Þ'r,, <o o'i,, = p;., =0

0 0 I 0
0 0 -1 1 1 0
0 I 0 0
0 I 1 I 0 I
I 0 1 1 I
1 0 I 1 0 I
I I -1 I 0 I
I I 0 1 I I
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I Initialize a population of qubit chromosomes, pe(i)1,=o = {e',,e;,...,Ø¡,...,e,,} ,

wheren: population size ,j:1,2, ...,nandi: generation number.

2 Determirz¿ instants of qubit chromosomes in the population

i, Px(i) = {Xi,X;,...,X'¡,...,Xj}, Where ,X¡iis an instant ofTth individual ìn

generation i.

3 Analysis step:

a. Determine fitness F(X]).

b. Store the best instant X'r=ig¡{f (X,,D

c. Insert the pair set (e,,,rçx¡,x,,) to arnating pool up to population

size, while preserving a population of elites.

4 Update Po(i) using quantum gates U(i), increment i: i +1.

s while not converged, go to Step 2; If convergence conditions satisfied, stop.

Figure 3.1 Algorithm of GQA

Figure 3.2. Consider a case in which xi¡., :1, xi., :0. So 1øi, ,,pi.) should move
toward higher probabilify of 0 state (increasing o) and consequently it should rotate

clock wise.
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The developed NSGQA method uses the non-dominated sorting concept

originally from the non-dominared sorring GA (NSGA) merhod in [15]. NSGeA is

thus to be compared with NSGA, together with a few other recently developed

methods in the field. The next section will briefly introduce NSGA.

3.2 Non-Dominated Sorting Genetic Algorithm

NSGA-rI [15] was advanced from its original version, NSGA. In NSGA-II, a

non-dominated sorting approach is used for each individual to create a pareto rank;

and a crowding distance assignment method is applied to implement density

estimation. In a fitness assignment between two individuals belonging to the same

front, NSGA-II prefers the point with a lower rank value, or the point located in a

region having fewer points. Therefore, by combining a fast non-dominated sorting

approach, an elitism scheme and a parameter-less sharing method with the original

NSGA, NSGA-II claims to produce a better spread of solutions in some testing

problems [15]. In below section some key features of NSGA-II were described, as

they are integrated into the proposed NSGeA.

3.2.1 tr'ast Non-dominated Sorting Approach

First sorting a population into different non-domination levels is described and

next the modified method of sorting in o¡der to decrease the computational time is

presented. In conventional approaches, in order to identi$r solutions ofthe first non_

dominated front in a population, each solution should be compared with other
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solutions in the population to find if it is dominated or not. This requires comparisons

of all solution pairs. At this stage, all individuals in the first non-dominated front are

found. In order to find the individuals in the next non-dominated front, the solutions

of the first front are discounted temporarily and the above procedure is repeated for

the next rank. In the modified method, all ranks are recorded in the ascending order.

In the next generation, which is expected to have a better average solution than the

previous generation, all solutions in the first rank will be compared with new

individuals. If the new individuals dominate all solutions in the first rank, then

comparison will be stopped and these solutions will be stored as a new f,irst rank.

Otherwise these individuals will be added to the current f,rrst rank. Then the same

procedure is repeated for fast rank assignment, or sorting.

3.2.2 Crowding Distance Assignment

Deb and his colleagues 115] presented a new operator called crowded-

comparison, which has two main advantages: it has low computational complexity

and it does not ask for any user defined parameter. The crowded-comparison operator

and the density-estimation are the two parts of the crowding distance assignment

which are described as follows.

3.2.2.1 Density Estimation

For each objective, the average distance of two points on either side is

calculated to obtain the density of solutions around a particular solution in the

population. In Figure 3.4 the average side length of the cuboids is the crowdino
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distance of the i-th solution in its front. A population is sorted for each objective

function in the ascending order of the objective function value. Then the maximum

and minimum values of each objective function are given an infinite distance value.

The rest of solutions' absolute distance value with two neighboring solutions is then

calculated. The same procedure is repeated for the other objective. So for each

individual, the crowding-distance value is the sum of its objectives distance values. It

should be noted that all objectives are normalized for the calculation of the crowing

distance. Figure 3.4 shows the algorithm of calculating the crowding-distance for all

solutions in arbitrary fronts.
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For each individual i,set dis (Ð : 0, i : 1,2,3,...,n (population size)

For each objective L¡, j:1,2,...,k, where Æ is the number of objectives

Z': sort (L¡), and L¡ is an objective function value

dis (l): dß(t):0, where r and I are boundary solutions for all objectives for

the current population.

For i:2 to (/-1)

dß (i): dts (i) + (L¡,(r+t) _ Lj, (t_t) )t(-fd,* _frj,,,), where r is rhe

location of L¡in sorted L,, t:\,2,...,n

End

End

End

Figure 3.3 Crowding-distance calculation algorithm.

tfitl-l r olo
a

Cuboidl-lt------t o
' i¡ iL_____{ 

Ii-r-l .

rì

Figure 3.4 Crowding-distance calculation (points ma¡ked in filled circles are solutions
of the same non-dominated front) [15].
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3.2.2.2 Crowded-Comparison Operator

Selection is done by the crowded-comparison operator to achieve a well-spread

Pareto frontìer. There are two parameters for each individual in the population:

1) Non-domination rank rank (i), and

2) Crowding distance dís (i).

Between two different individual solutions, the lower rank is preferred but in the

same rank the solution with a smaller distance wilt be selected. All main operators of

NSGA-II are defined above. The NSGA-II algorithm consists of following main steps:

o Generate an initial population, whose objective values are evaluated and then

sorted based on the non-domination. Thereafter a children population is

created by using binary toumament selection, recombination, and mutation

operators.

. Combine parent and children populations to form R¡

o F : fast-non-dontÌnated-sort (Ã); F: (F ¡Fz, . ..)

o Crowding-distance-assignnrent (F) calculates the crowding distances in -tr¡

o sort the.R, in the ascending order using the crowded-comparison operator

. Choose the first l/ elements of the sorted population

¡ Use selection, crossover and mutation to create a new population from the

chosen ly'elements; repeat until convergence.

Details on coupling NSGA with GeA are presented in the next section.
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3.3 Non-Dominated Sorting Genetic Quantum Algorithm

The probabilistic/super-positional containment of information in quantum bit

representation may have provided a fertile ground for efficient and robust search by

GQA. It has been shown previously in [53] that GQA can perform better than GA on

some famous test beds. Since finding a well spread Pareto optimal front needs a

powerful tool to explore and exploit design space, it is expected that implementing

GQA for Moo will lead to a new and high performance Moo algorithm.

NSGQA uses the fast non-dominated sorting approach, crowding distance

assignment, and crowded-comparison operator like NSGA. Figure 3.5 illustrates

NSGQA in more detail. In the inirialization step, pe(i)1, 
=0, d,2., and Bl,, of all e¡0 are

initialized to ttJl. This implies that each qubit chromosome Ø,¡=o in rhe initial

population represents the linear superposition of all possible states with equal

probability. A population of randomly generated binary instants

PxQ) = {Xi,X;,...,X'j,...,X:,} is then created by observing their corresponding qubit

chromosome inPe?). In other words, each binary instant, 4', of length rz, is formed

by serecring each bit using the probabiliry pairs of qubit (1",,,,1',1ø;,,1') ot g,,.

Fitness of each instant ,{'¡ is then evaluated. In next steps the fast non-dominated

sorting, crowding distance assignment, and crowded-comparison operators are

performed and the best instant solution X,u=m1¡{F(Xj.)} is then selected and stored

from among the binary instants of x(i). Next a mating pool is generated while

preserving a population of elites. In the next step, ,update p.Q),, the ith population of
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qubit chromosomes Pp(i) is updated by applying quantum rotation gates U(t).

Selection is performed in order to identify next generation parents. This process is

repeated in a "whiIe" loop until convergence is achieved, as shown in Figure 3.5.

In single objective optimization (SOO), the criterion to find the best parent

for the next generation is elitism which is related to the objective function value. For

example in minimization, the smaller the objective function value for an individual in

a population, the higher the chance of having offspring in the next population. Thus,

in SOO the process of ranking the parent from current population for offspring

reproduction is straightforward with elitism mechanism. The challenges arise for

MOO, where there are multiple objectives. The question is how we can rank the

parents for offspring reproduction of the next generation in metaheuristic algorithm.

Initially this problem was solved by weighting each objective and then adding them

together. This rough approximation does not provide one with required information

about the quality of answer. To overcome this issue, different methods and algorithms

have been proposed to rank the parent for the next generation of ofßpring based on

different criteria.

For NSGQA, non-dominated sorting will find all the Pareto f¡onts of the current

population. As we know all points in the Pareto front do not dominate each other. In

other words, none of the individuals in one Pareto front can ouþerform the other

individual in the same Pareto front. The sorting method in NSGeA works first by

finding different orders of domination in the current population. This mean finding

Pareto fronts of different orders in one population. The Pareto front which is ranked
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first in domination will eventually dominate the second, third, and other Pareto fronts.

That process is done usingfasrnoru-donzinated-sort algorithm as stated earlier.

After having the levels of domination, we have to rank each individual in their

corresponding Pareto hont. Density estimation, the averase distance of two points on

either side around a particular solution is calculated to obtain the density of solutions

in the population. Therefore those individuals that have lower density wilt be ranked

higher in the Pareto front in order to raise their chance of getting more points in their

neighborboods. Therefore, we rank individuals in a population þased on their

domination level and for those individuals that have the same level of domination, the

individuals with lower density will be ranked higher. Now that we have a mechanism

to rank our individuals in a population, Individuals with the highest rank in the

population will then be fed to the quantum gate update mechanism and the best

chromosome of the best individual will be chosen and the quantum gate will try to

rotate the qubits of the rest of individuals toward the best individual chromosome.

This process will continue till convergence criteria are met. In this work, the

convergence criteria include the number of generations or reaching specific values for

objective function.

GQA and non-dominated sorting algorithm are described in detail in this chapter.

And developed NSGQA which is inspired from GQA and non-dominated sorting is

proposed and explained. The performance evaluation of NSGQA algorithm in Figure

3.5 is in the next chapter. Four mathematical multi-objective test beds and six multi-

objective algorithms are chosen from the literatu¡e and their results are compared for
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500 function evaluation which means for expensive evaluation. At the effrcacy of the

developed algorithm is checked on a FEM problem.
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t Initialize a population of qubit chromosomes, ps(Ð1,=o = {e:,,e;,...,Ø,,...,Ø,} ,

where z: population size ,j:1,2, ... , nand i: generation number.

2 Determine instants of qubit chromosomes in the population l,

PxQ) = {X'r,X;,...,X',,...,Xj,}, Where S¡is an instant ofTtl'individual in generation

ì.

3 Analysis step:

Determine firness F(X j) for all individuals in population

4 Fast non-dominated sorting

Find all PFpoints and their corresponding rank

s Crowding distance assignment

calculate distances among all the individuals in the same rank

6 Crowded-comparisonoperalor

Assign single objective values to each individual according to their

rank and distance

z Store the best n

instant 
x;= nax{F(x'j)\

s Mating Pool

Insert the pair set (e,,,t {x,,¡,x,,) to amating pool up to population size,

while preserving a population of elites.

9 Update Pn(i) using quantum gates U(i), increment t: i +1.

l0 Determine instants of qubit chromosomes in the population r,

PxG) = {X'L,X;,...,X'¡,...,X)}, Where X7¡ is an instant ofyth individual in generation

i using Roulette wheel selection.

I I þ'[/hile not converged, go to Step 3; if convergence conditions satisfied, stop.

Figure 3.5 Algorithm ofNSGQA
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CHAPTER 4

APPLICATION AND VALIDATION

4.1 Performance Evaluation of Non-Dominated Sorting Genetic Quantum

Algorithm

In order to evaluate the performance of NSGQA, test beds presented in reference

[15] are used in this thesis and results are compared with results form 6 other

algorithms. It should be noted that we ran jMetal [61] code for all 6 other algorithm

and for performance comparison jMetal [61] is used as well. jMetal stands for

Metaheuristic Algorithms in Java, and it is an object-oriented Java-based framework

aimed at the development, experimentation, and study of metaheuristics for solving

multi-objective optimization problems. jMetal provides a rich set of classes which can

be used as the building blocks of mutti-objective metaheuristics. Taking advantage of

code-reusing, the algorithms share the same base components, such as

implementations of genetic operators and density estimators, thus facilitating the

development of new multiobjective algorithms. Table 4-1, Table 4-2, Table 4-3,

Table 4-4, and Table 4-5, show the 4 test beds used and the performance comparison

for 30 runs average for all test beds using 5 different comparison mechanisms. The

number of f,rtness function evaluation is 500 for all methods and this number is chosen

because the main purpose of this research is to develop a multiobjective algorithm for

computational expensive problems. Here we describe that how we can compare two

different MOO algorithms on a same multi-objective problem.
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4.1.1 Performance Measurement

Moo performance measure is totally different from soo. Because Moo

optimum solution is a set of solutions, not a single one, we have to consider different

aspects of Pareto front (PF) like spread, diversity and how close the solutions to true

Pareto front (TPF) are. Below are five different criteria which have been widely used

in literature.

4.1.1.1 Spread

Well spread PFs are desired for a set of solutions. To get that, Euclidean distance

befween any two neighbor solutions in non-dominated solutions is calculated and then

the average of this distance, d , can be obtained. Then we should find the extreme

solutions (in the objective space). The non-uniformity in the distribution, a, is

calculated using the following Equation 4-l [15]:

¡r'-1.

d, +ct,.>V,-ol
^- 

i=l

d, + d,+ (N - t)7
4-1

Here, the parameters d¡ and d¡ are the Euclidean distances between the extreme

solutions and the boundary solutions of the obtained non-dominated set or they mean

minimum and maximum for objective of Z7 respectively. The parameter 7 is the

average of all distances d¡, which are dis (i,L¡) in crowding-distance calculation, and i
:1,2, ..., (¡/-1). with ¡/ solutions, dis are consecutive distances. Figure 4.1

demonstrates how this performance measure works. The lower A, the better the spread

of Pareto front.
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f,2

Figure 4.1 Diversity metric [15].
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4.1.1.2 Generational Distance

The generational distance quality indicator was introduced by Van Veldhuizen

and Lamont 158] for measuring how far the elements are in the found non-dominated

pareto front from those in the TPF set. It is defined as:

where n is the number of vectors in the set of non-dominated solutions found so far

and d¡ is the Euclidean distance (measured in objective space) between each of these

solutions and the nearest member of the TPF set. A value of GD: 0 indicates that all

found non-dominated Pareto front are in the TPF. In order to get comparable results,

non-dominated sets are normalized before calculating this distance measure. In other

word this metric calculate the error between found pF and TpF.

4.1.1.3 Inverted Generational Distance

4-2

The inverted generational distance

and Lamont [58] for measuring how far

the set of non-dominated vectors found.

indicator was introduced by Van Veldhuizen

the elements are in the TPF set from those in

It is defined as:

4-3

where ¡z is the number of vectors in the Pareto optimal set and d¡ is the Euclidean

distance (measured in objective space) between each of these solutions and the nea¡est

member of the set of the non-dominated vectors found. A value of IGD: 0 indicates
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that all the generated elements are in the PF and they cover all the extension of the

Pareto front. ln order to get comparable results, non-dominated sets are normalized

before calculating this distance measure.

Here is the description to clarifz the difference between GD and 1GD. When we

measure the Generational Distance (GD) of a obtained PF, we compute the distance

between each solution contained into the PF and it closest solution contained in the

TPF. While when we measure the Inverted Generational Distance (IGD), we compute

the distance between each solution contained in the TPF and the closest solution in

our PF fiust the same but in both directions, from obtained PF to the TPF and from the

TPF to obtained PF). Then, suppose that you have two obtained pF's of a given

problem:

- A PF with only two points.

- A PF containing the two points of the previous PF and many other non-dominated

points.

It is clear that from the multi-objective perspective the second PF is preferable to the

first one. However, GD may not reflect it because it only measure the distances in the

way from PF to TPF. Meanwhile IGD wtllreflect that the second one is better because

the distances are measured from TPF to the obtained pF.

4.7.1.4 Hyper-volume

Hyper-volume quality indicator [9] catculates the volume (in the objective space)

covered by members of a non-dominated set of solutions Q (he region enclosed into

the discontinuous line in Figure 4.2, Q: {A,B,C} for problems where all objectives
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are to be minimized. Mathematically, for each solution i.e, a hypercube v¡ is

constructed with a reference point W/ and the solution i as the diagonal comers of the

hlpercube. The reference point can simply be found by constructing a vector of worst

objective function values. Thereafter, a union of all hyper-cubes is found and its

lryper-volume (Hn is calculated:

(lol \
HV =volumel U v, 

I

li=l l\./

Algorithms with larger values of HV are desirable. Since this metric is

arbitrary scaling of objectives, normalized objective function values

evaluate the metric.

4.1.7.5 Generalized Spread

The generalized spread metric calculates the distance between two consecutive

solutions, which works only for two-objective problems. Reference [65] makes an

extension by calculating Equation 4-5, the distance from a point to its nearest

neighbor:

Ð¿k,,pF)+ |
L(PF,TPF) _ i=l XeTpF

laçx,rr¡ - al

d(x,s)= min llrrx¡ - F(Y)ll',
Y=PF ,y +X

, =#tè*!(x,PF)

4-5

f o@,,pF) +lrenla

where PF is the current optimal Pareto Front or found optimal Pareto Front, TpF is the

True Pareto Front, {nt, . . . , e,,} are m extreme solutions in TpF and

4_4

not free from

are used to

5I

4-6



If the achieved solutions are well distributed and include those extreme solutions,

/(PF, TPF¡: g.

Here IZPFI mean number of point in hue pareto front and d(e¡,,PF) is distance between

m extreme solutions of TPF and PF solution.
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Figure 4.2This illustrates how v¡ is calculated [66]

Table 4-1 Test bed functions

Variable
bounds Objective function Optimal solutions

f =t-"*p1-i1", -år',
3 I ,,.f, =1-exp(-l(x,++)')

a/J

xI=x2=x3

e¡-rtJi,ttJil

[-5,5]

_f,

f,

= Ë(-,0"* p(-o.z

= Ë(r|o'+5sin.,r,3)
Not available

ft = | - exp(-4x, sin6 (6m, ))

f,= sQ)U-U,@)t s(x))'z1

s(x) = 1 + 9[(fl 
,;r ,) l(n-t)]o2s

x, e 10,1]

r, =0,
i = 2,...,n

¡-t03, to31 f,(r) : *2
fz(x): (r-2)z

x el0,2l
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4.1.2 Test Results

Brief description for each of these algorithm are described inZ.l and,the code for

all of these algorithm are available in jMetal [61].

In Table 4-1 test bed functions are described. Since development of this algorithm

is for expensive function evaluation, 500 fitness function evaluation is chosen in order

to measure the performance of proposed method for low number of function

evaluation. Optimization and comparison results are listed in 3 columns under each

criterion; the first is the 30 run average value for the criterion, next is the variance of

these 30 runs and the last one is the ranking of this algorithm for that criterion among

I available algorithms. As described earlier we have 5 performance measurements and

7 algorithms to compare with each other. Since it is not possible to find an algorithm

which can be best with respect to all 5 performance criteria we decided to rank each

algorithm for each performance measurement with I means the best and,7 the worst.

By adding the ranks of performance measures for each MOO, we can evaluate the

algorithm performance in comparison with others in the test bed.

In order to demonstrate the performance of these algorithms, we also show typical

simulation resulrs of NSGeA-II on the resr problems KUR Ir5], FoN lr5l, scH Ii5],
andZDT6 [15]. Test bed characteristics are described in Table 4-6.

As one can see in Table 4-7, NSGQA ranked I in two of the benchmarks and

ranked the lowest in the other 2. As structural optimization tends to involve relativelv
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large dimensions, ZDT6, which has 10 design variables, is of more relevance and

importance than other problems.

For KUR and FON the NSGQA ranks the lowest, and a plot of the solution

distribution for all algorithms is provided in Figure 4.3 and, Figure 4.4 for a closer

look at the solution qualify. Problem KUR has three discontinuous regions in the

Pareto-optimal front. As one would see in Figure 4.3, NSGQA and Abyss yields better

optimal and denser Pareto solutions on the entire solution space than others do, which

just covers part of the solution space. Figure 4.4 depicts the convergence ability of

NSGQA, as compared to all other algorithms on the function FoN. NSGeA,

FastPGA, and Abyss have similar performance and converge close to TpF.

The solution distribution for the other two functions is also plotted in Figure 4.5

and Figure 4'6. As described in Table 4-6, ZDT6 is a unimodal non-uniformly

distributed objective with a high number of design variables. One can see from Figure

4.5 that all the algorithms have difficulty to approach to TpF. But among all

algorithms, NSGQA (visually) spreads well and close to TpF.

The SCH function is convex. NSGQA has found well spread solutions in

comparison with all other algorithms.

From the above comparison, NSGeA demonstrates good performance

state-oÊthe-art Moo algorithms from both the spread and solution

perspectives. Next the performance of NSGeA will be evaluated on a

skuctural optimization problem.

over the

quality

practical
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Table 4-6 Characteristics of chosen test bed functions

Test Beds

ZDT6 is a unimodal non-uniformly distributed ob;ective

space, both orthogonal and lateral to the pareto_optimal front.

It has been proposed to test the algorithms' ability to find a

good distribution of points even in this case.

Kur is a multi-modal function in one o@
wise variable interactions in the other. The pareto_optimal

front is not connected and has an isolated point as well as

concave and convex regions.

SCH is convex and there is a trade-off b"t*""" th" t*o

Fon is non-convex.

Table 4-7 Summary of ranking for all test beds.

FON
500

SCH
500

ZDT6
s00

KUR
500

NSGQA
6 2 6

Abyss
3 5 6 5

CellDE
5 4 2 I

FastPGA
2 3 3 4

NSGAII-Real
I I 5 2

OMOPSO
6 6 5 J

SPEA2
4 J 4 4
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4.2 Performance of NSGQA on an Engineering Problem

A 4l -bar truss transmission power tower [58] shown in Figure 4.7 is often used as

a test problem in structural size and shape optimization (with single objectives). The

truss structure consists of 22 nodes and 47 members, and the load is for the case of

two power lines passing the tower at an angle. Fr 26.68 kN and Fy: -62.27 kN on

node 22 and 71. There is a stress constraint of 137.89 (MPa) in tension and. -103.42

(MPa) in compression for each bar. The truss tower is symmetric with respect to Y

axis. Nodes 1 and 2 are not moving along Y axis but they are free to move along X

axis. The coordinates of nodes 15, 16, 17 and22 arc kept fixed. Therefore the¡e are 17

independent shape variables and 27 independent size vanables. More details of design

variables are in Table 4-8.

The objectives for The 47-bar truss problem include the total weight of truss and

the sum of deflections of node 22 inX and Y directions. Regarding to constraints, the

maximum stress in tension and minimum stress in compression for all bars are

determined as follows:

õ n a* ren,io,, < 137 .89 (MP a)

a tttax 
"oo,p,usion 

> -103 '42(MPa)
4-7

Table 4-8 lists detailed conshaints among design variables, ranges of each variable,

and the material properly of the structure. For stress and deflection analysis, ANSyS

is used. Hence for each fitness function evaluation a 47-bar ANSYS ApDL code

should be called from Matlab in order to run the multi-objective constrained

optimization using NSGQA.
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Table 4-8 Design variables detail for the 47-bar truss tower problem

Objectives
I Minimization of Weight

2Minimization of Node22Deflection under applied load

Shape variables

Xz: -Xl, )L: -X¡,Y+:Y¡,X6: -X5, Y6:Y5, Xs: -X?, Y8= -Yz,

Xro: -Xq, Ylo:Ys, Xrz: -Xlr, Yrz:Yll, Xl4: -X¡3, Y1a:Y13,

Xzo: -Xls, Yzo:Yls, )hr: -Xls, Yzr:Yla

Size variables

Ar:A¡, Az:Aq, Ao:As, As:As, Alr:Arz, Ar¡:Ar¿, Al6:Als,

Al7=418, Als:Azo, AzFAzz, Azt:Az+, Azs:Aza, Azs:A:0,

A¡z:A¡1, A:¿:A¡s, An:At6, A:s:A¿0, A+z:Aqt, Au:A¿s,

447:A46 Aa3, A3g, A¡3, Azs, A7, A.rc, A27

Design sets

Material properties Modulus of elasticity,E206.Bg G (pa)
Density, p (8304) Kg/-'
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It takes about 10 hrs on a Pentium 4 with 1.5 GB RAM desktop computer for

one optimization run, with the generation number of 200 and population size of 50.

Hence the number of function evaluations is 10000 and time for each evaluation is 3.6

seconds. The length for each qubit is i6 and total number of points found in the PF is

67. The optimal results show that our algorithm is capable of performing MOO on a

high dimensional engineering problem with 44 design variables and constraints, while

high dimensional MOO problems are generally difficult for MOO algorithms. Figure

4.8 is the Pareto optimal front which was plotted with respect to weight and

deflection. In Table 4-9, rhe weight, deflection, maximum tensile sfress, and

minimum compressive stress of three chosen Pareto solutions are listed. Among the

chosen solutions, one has the maximum deflection, another has the maximum weight,

and the last is at the middle of the Pareto front. The optimal tower designs of these

solutions are shown in the last row of Table 4-9.

while attempting to find comparable problems and solutions from the

engineering design literature, we could not f,rnd any literature that solves a MOO

problem of this scale (44 design variables with many constraints). Nor could we find

any literature solves the 47-bar truss problem with multiple objectives. This has

brought difficulty in comparing our results with others, which may not exist at the

moment.

In summary this chapter entitles the performance measurement of NSGeA on 4

classical benchmarks in MOO and one multi-objective structural optimization

benchmark. The results of 4 classical benchmarks are compared using 5 measuring

tool collected form 4 different papers.
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Table 4-9 Shape and performances of three chosen solutions for the 47-bar truss tower

Casel Case2 Case3
Maximum Tensile

Stress lMPa) 82.53 53.71 70.71

Minimum
compressive
Stress (MPa)

-94.71}/l. -56.70 M -83.55

Weisht lKs) r04t.6 1820.8 1372.7
Deflection of
Node 22 fm) 0.01941 0.0115s 0.01397

'''i-x

blem
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CHAPTER 5

WARPAGE TOOL SHAPE OPTIMZATION FOR
MINIMIZATION OF WARPAGE IN AUTOCLAVE CURED

COMPOSITE PART

5.1, Introduction

In this chapter applicability of shape optimization to composite manufacturing is

evaluated. Composite parts used in aircraft, vary greatly in size and shape and are

typically cured in batch loads in autoclaves. During autoclave manufacturing,

composite prepreg, tape or fabric, consisting of a single layer of reinforcing fibers

impregnated with B-staged thermoset resin, are cut to desired shape and stacked on a

tool to form the desired part. The plies are oriented in pre-determined directions to

yield desired mechanical properties. The staked plies are vacuum bagged as shown in

Figure 5.1 and then loaded into an autoclave. The autoclave is subjected to a cure

cycle illustrated in Figure 5.2. At time 0 the pressure is 0; as the process begins the

pressure is applied and held constant (45 or 85 Psi) during the process and then

reduced to 0 after the hold period. Temperature is initially the room temperature and it

increases to i80 oC and it will cool down as desired degree of cure is achieved. Under

the action of pressure and temperature, the polymer resin melts, flows, and cures

resulting in a well consolidated composite part. The dimensions of the autoclave-

cured composite parts often deviate from the intended values due to the warping of the

composite parts. Figure 5.3 [68] shows one of the primaryAutoclave Systems in use

by Boeing and their parfners to produce the new 787 Dreamliner.
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Figure 5.1 Schematic of composite and toolassembly in an autoclave
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Figure 5.2 Atypical autoclave cure cycle
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Figure 5.3 Two views of the autoclave TEC installed at Spirit Aerosystems in Wichita
for Boeing 787 Program [68]. (Reproduced with permission from the web-site of

Thermal Equipment Corporation (www thermalequipment.com))
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A high quality autoclave cured composite part is expected to have a maximum

degree of cure, uniform thickness, minimum voids, minimum residual stress, and

minimum warpage. However, process-induced residual stress and warpage are two

major current concerns during autoclave processing of large complex composite

laminates. The selection of cure cycle parameters and design of a tool to produce a

fully cured and void fiee composite structure without any warpage is a challenging

task. Currently, the process-induced warpage is minimized through allowances in the

tool. During the process development stages, the tool material selection, tool shape

and the process are fweaked by trial-and-error to minimize the warpage. This process

is costly and often requires repeated tweaking when the tool or the process is changed

because warpage changes. Figure 5.4 shows a half-syrnmetry mesh of a Boeing

aircraft partthat has been processed in autoclave and Figure 5.5 shows the maximum

warpage measured at the edge along the length of the part, after autoclave process.

ln order to eliminate the trial and error process of changing the tool shape, there is

need for automated tool shape optimization, which results in desired part shape after

the autoclave process. since autoclave processed parts are 3-D complex shape, the

objective of this thesis is to investigate the efficiency of single objective optimization

for simple 2-D shape first, which is still expensive function evaluation. Results of this

are evaluated to determine the applicability of NSGQA for optimization of complex 3-

D shape of a tool.

This is achieved by interfacing a process model with GeA and validated using

experimental results generated by Koteshwara [67]. A simple right-angled composite

part, as shown in Figure 5.6 is chosen for this study. This part warps after
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manufacturing with reduction in the included angle. Shape optimization problem is

illustrated in Figure 5.7 in which design variables are the angle y and the radius r. The

objective function here is g, which is the warpage angle after the autoclave process.

While this is a single objective optimization problem, in case of more complicated

shapes shown in Figure 5.4 the warpage cannot be defined by just a single value of <p.

There will be multiple values, since the warpage varies along the length as illustrated

in Figure 5.5. Hence, it is essential to develop a multi-objective optimization code, in

the near future, to extend the current work on 2-D shape optimization.

The model framework is presented in Figure 5.8. The two main components, the

GQA (Genetic Quantum Algorithm) and the process model, are discussed in sections

3.1and 5.2, respectively. A population consisting of a certain number of individuals is

selected. Each individual, defined by GQA and assigned to a set of values for design

variables, is input to the process model. Warpage data from the process model for

these individuals are compared to select the best individual i.e. values for design

variables. If the convergence is reached, this solution is taken to be the optimum.

Otherwise, the next generation population with individuals is created using the best

solution of the previous generation. The procedure is then iterated. The process

model, details of optimization, and the results are discussed next.
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Figure 5.4 Half symmetry of a Boeing aircraft.part [57].
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Figure 5.5 Maximum warpage measured at the edge of the part along its length.
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Figure 5.6 Observed warpage after tool removal.

Figure 5.7 Tool shape design variables.
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Initialize a population of individuals, with
probabilistic states defined by Qubits

Select the most probable state with assigned
set ofvalues for design variables, for each

individual

Prediction of warpage using
the Process Model

Using the best solution & quantum
gates to select the next generation of

individuals

Output the Optimal solution

Figure 5.8 Optimization model frame work
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5.2 Process Model

There are numerous publications on the causes for process-induced warpage in

autoclave cured part as well as on process models for autoclave processing. A good

review of this can be found in the reference 1671. The CMSRG (Composite Materials

and Structures Research Group) have developed FEM based 2-D and 3-D process

models and have recently validated the latter using a Boeing aircraft.partl57l.

In this thesis the 2-D model was used to demonstrate the applicability of NSGeA

to warpage minimization through tool-shape optimization. It is hoped that this

exercise would lay the foundation for extending this work in the near future to

optimization of a complex part using the 3-D process model

o A brief introduction to the 2-D finite elements (ANSYS) based process model,

developed at University of Manitoba for the prediction of process-induced

residual stress and warpge of 2-D composite parts, is presented below. Similar

to models available in the literafure, UM model also has sub-module structure

as shown in Figure 5.9. Input Module: Input tool-part geometry and mesh, tool

material and composite material properties, cure cycle details, lay-up

sequence, and boundary conditions

o Thermochemical Module: Predicts part temperature and resin degree of cu¡e

during the entire cure cycle.

o Material Module: Predicts evolution of composite properties during the entire

cure cycle, and
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o Stress Module: Predicts thermal stress development during the entire cure

cycle and final part shape after tool removal

with the exception of part - tool geometr¡i, mesh, and mechanical boundary

conditions, which could be input through GUI of ANSYS, all other input parameters

to thermochemical module, stress module and tool removal module requires special

functions that are not available in ANSYS. Therefore these modules have been

programmed using ANSYS Parametric Design Language (APDL) and interfaced with

Frontal solver of ANSYS program. The 2-D model developed by Koteshw ara 167l did,

not include tool-part interaction, which is a major factor that affects warpage. Hence,

in this thesis tool-part interaction was added to the model and the accuracy of

resulting warpage was compared with experimental results from reference [67]. This

was done prior to optimization studies.

Since the ANSYS solver cannot account for resin cure shrinkage strain and elastic

constitutive model for a laminate with a stacking sequence of a0, the

thermomechanical properties of the plies and effective thermal strain of the composite

were obtained using a separate material module. The material module has been written

using FORTRAN 77 and interfaced with the stress module. The modules were solved

sequentially in the following order thermo-chemical module, material module, and

stress module.

5.3 Details on Composite Part and Simulation

composite part details and simulation details are presented below.
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5.3.1 Composite Part Details

The L-shaped composite part was made up of Cytec Fiberite's HMF5-322134C pre-

preg tape made of unidirectional carbon fibers and 934neat resin. The pre-preg tapes

were stacked such that the fibers in the pre-preg were oriented either parallel or

perpendicular to the length of the part. The part had an included angle of 90o and the

thickness and length of the parts were 0.00337 (m) and 0.l4\g7 (m). The various

input properties are composite pre-preg properties such as cure kinetics, thermo-

mechanical properties and its dependence on degree of cure tool properties including

modulus, coefficient of thermal expansion, specific heat capacity and thermal

conductivity. Convective heat transfer coefficient as well as air temperature for the

autoclave used in generating the experimental warpage results used in this study tool-

part friction coeffrcient. The fi¡st three were generated by Koteshwara and. were taken

from reference 1671. The last one is discussed below.

Koteshwara [67] cured this part on an aluminum tool in an autoclave using the

cure cycle shown in Figure 5-2. The warpage of this part measured by him were used

in this study. As mentioned above, these experimental warpage results were compared

with predictions from the modified 2-D process model developed in this study to

validate the latter. Since Koteshwara did not generate any frictional data, those

generated by Kaushik et al l57l was used in this study.

They investigated the tool-part interaction during autoclave processing and the

factors that influence them. They used a modified friction test fixture originally

designed by Boeing, to measure the static and dynamic friction coefficients at various

times during the process, which are tabulated in Table 5-1 and Table 5-2 [57].
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However, these values were generated using cytec Fiberite,s MXB770r-r7gr-83 - a

plain weave glass fiber - epoxy composite, cu¡ed at 260 'F on steel tool. Despite this

difference, the latter was used in this simulation assuming that the magnitude of

friction coefficient and its dependence on the degree of cure was the same for both

material-tool pairs. Implications of this are discussed later in this chapter.

During the early stage of curing process, i.e. before gelation when the material is in

liquid state, the part can not sustain any load. This gel point for this material is 0.37

and the gelation occurred at a process time of 76 min when the part was ramped at the

rate of 3 oF/ min. Geration time for a ramp rate of 2 oF/ min is 96 min. Hence, the

stress analysis was done only for the process cycle time beyond the above mentioned

gelation times.
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Calculates the composite
Perform stress and material properties during the

displacement solution cure cycle

Part &. tool geometry,
properties of the composite &

tool, and the cure cycle

Predicts the part temperature
rnd degree of cure during cure

cycle

Figure 5.9 ANSYS based process model [67].

Table 5-1 Friction coefficienr [57] for 3 deg F/min

G p (static) ¡.t (dynamic)

0 0.618 0.439

0.2 0.1 85 0.r 11

0.4 0.222 0.112

0.6 0.115 0.03

1 0.456 0.02

MaterialModule Thermo-chemical Module

Table 5-2 Fricrion coefficienr [57] for 2 deg F/min

ü, p (static) ¡r (dynamic)

0 0.618 0.43

0.2 0.1 86 0.1 I

0.4 0.222 0.12

0.6 0.313 0.05

I 0.120 0.02
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5.3.2 Simulation Details

ln this section details on tool part interaction, contact analysis, and optimization

are presented. A typical FEM mesh of the tool and part is given in Figure 5.10. The

element type was changed through GUI depending on the modules. pLANE 55

(Thermal solid) [52] was used for Thermochemical module and pLANE 42 (z-D-

Structural Solid) was used for stress & tool removal module. During thermochemical

analysis, both tool and part, as shown in Figure 5.10, were considered. Boundary

conditions, as shown in the Figure 5.10 were applied to avoid rigid body motion. The

process cycle used in the analysis is given in Figure 5.1 1 and the time step is 1 minute.

In order to simulate tool part interaction in FEA two types of elements should be

defined between the two contact surfaces. Contact element CONTA172 [52], which

is a 2-D and 3-Node Surface-to-Surface contact element, was used to define the

surface of the tool. 2-D "target" surface of the tool was defined using TARGEI69

Figure 5.12 and Figure 5.13 depict f,rnite element definition of CONTAIZZ and,

TARGE169 respectively. Those lines representing the contact surface befween tool

and part were divided equally for contact element generation. Contact nodes were

created on the part first. Subsequently, target nodes v/ere generated on the tool.

Finally, contact elements were defined by pairing of one contact node with one target

node. The default values of the ANSYS program were chosen for all the contact

parameters which are Normal penalty stiffrress, Penefration tolerance, Tangent penalty

stiffüess, contact cohesion, Maximum friction stress, Static/d1,namic ratio, and

Exponential decay coefficient, except the friction coefficient, which was taken from

Table 5-1 and Table 5-2.
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Simulation was done with and without tool and compared with the results of

Koteshwara [67]. Details on optimization are presented next.

The design variables are the angle y and the radius, as shown in Figure 5.7. The

measured warpage is denoted as q in Figure 5.7. GeA assigns a population of

individuals with values for the radius and y in the range of 0.01 to 0.0222 (m) and, 0-

2.5o respectively. They are used by the process model to calculate the warpage, which

is subsequently used by GQA to determine the optimized values for the design

variable. GQA used a population size of 20, a generation size of 10, and a

chromosome length Qn) of 16.

In addition to GQA, non-linear programming in MATLAB was also used for

optimization and compared with GeA. For optimization using non-linear

programming fmincon [55], a routine to find a minimum of consfrained nonlinear

multivariable function, was used. The constraints used for the current problem were

0.01< radius < 0.0222 m, and 0 < y < 2.5o. Radius of the tool used in generating the

experimental results in reference [67] was chosen as the upper limit for the radius.

Limitation posed by ANSYS during meshing dictated the selection of 0.01 to be the

Iower limit. The optimization runs were completed using a pentium 4 with 1.5 GB

RAM desktop computer.
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Figure 5.1i A typical autoclave cure cycle [67].
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5.4 Process Model Validation

As a part of this thesis, an existing ANSYS based 2-D process model was

substantially upgraded by incorporating the tool-part interaction. Hence, prior to tool

shape optimizafion, the model was verif,ied by simulating the warpage of the chosen

composite part and comparing with the results of Koteshwara 1671. Owing to the

difference in friction data, initial comparison was done using predictions without tool.

Warpage of the part processed without tool (appropriate boundary conditions were

applied during simulation to prevent rigid body motion of the part) using the modified

process model are compared with the predictions from reference 167] in Table 5-3.

Warpage here is based on the slope of the line joining end point of the arm of the

angle laminates.
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Table 5-3 Comparison of predicted warpage in L-shaped part cured without any tool.

Details of cycle are given in reference [67] .

Table 5-4 Comparison of predicted warpage (accounting for tool-part interaction) with

experimental results.

CYCLE Warpage from ref. [67] : (deg)
Warpage predicted by

Current Process Model (dee)

I 2.00 r.97

2 2.72 2.74

3 2.12 2.15

4 2.68 2.57

I{eat Ramp rate during
cure

3 F/ min
(dee)

2F lmin
(dee)

Experimental 167l
for3.89F/min

(dee)
Predicted Warpage 1.80 1.87 t.69
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The two predictions compared very well within an eïïor of 3.3%. This small

difference is attributed to the small changes made to the mate¡ial models used by

Koteshwara. The above results confirmed simulation capability of the modified

model.

Subsequently, the process model was used to predict the warpage of the L-shaped

part processed in contact with the tool. The predictions are compared with

experimental results in Table 5-4.It can be observed that the predicted results are in

close agreement with experimental results with 6.5yo error for the cycle with 3 oF/ min

ramp rate. Koteshwhara16Tl used a ramp rate of 3.89 (deg F/ min) during autoclave

manufacturing the L-shaped composite parts. It can be observed from Table 5-1 and

Table 5-2 that the füction coefficients are sensitive to ramp rate during autoclave

manufacturing. Using these two sets of data, the warpage was predicted for two rates

(2 and 3 "F/ min) and tabulated in Table 5-4.It can be observed that the predicted

warpage decreases with increase in ramp rate. Hence, for accurate comparison with

experimental results, friction data at 3.89 "F/ min is required. Since it was not

available, the prediction using friction data for 3 oF/ min is compared in Table 5-4.

While this is one source of error, another source is the use of frictional data for a

different material - tool pair. Despite this the error in prediction is within 6.5%. This

appears to confirm the assumption on the magnitude of friction coefficient and its

dependence on degree of cure. Further experiments are required to verify this.

Nevertheless, the good correlation in Table 5-4 valid,ates the predictive capabilify of

the modified process developed in this thesis.
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5.5 Results and discussion of Tool Shape Optimization

GQA optimization runs were completed using the developed software for an L-

shaped part processed on an aluminum tool. The optimal tool shape that resulted in

minimal warpage of the part after autoclave processing is shown in Figure 5.14. The

variables corresponding to this optimal shape, as tabulated in Table 5-5, are y :2.11"

and r : 0.014 m. Please note that the tool shape is also the part shape since the pre-

preg material before processing is pliable and conforms to the shape of the tool. The

variables corresponding to this optimal shape, as tabulated in Table 5-5, are y : z.rl"

and r:0.01a (m). The predicted part shape after processing is shown in Figure 5.i5

with a fìnalwarpage of <p :0.003" (degree) warpage. The negligible warpage obtained

through this optimization demonstrates the potential of GQA for multi-objective

optimization of complex tool shapes for composite manufacturing. The convergence

to optimal solutions involved about 200 iterations and the time of this convergence is

about 13.5 hours (i.e. roughly 4 minutes per iteration). It is believed that this

computation time can be reduced by improving the programming.

The optimized tool shape obtained using non-linear programming functions of

MATLAB and the same design variables and constraints used in GQA, is shown in

Figure 5.16. The variables corresponding to this optimal shape, as tabulated in Table

5-5, are T : 0" and r : 0.022 m. The predicted part shape after autoclave processing is

shown on Figure 5.r7 and the warpage of was 1.15.. The warpage of the part

optimized by GQA is much lower (almost negligible) when compared to warpage of

the part optimized by non-linear programming. This comparison demonstrates the

ability of GQA to find a better optimal than Nonlinear programming.
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Table 5-5 Optimized tool shape and final warpage for a L-shaped part processed on an
aluminum tool.

Warpage (") Optimal radius (m) Optimal design y (o)

GQA ç :0.003' r:0.014 T 
:2.11"

Matlab-NLP e: 1.15' r:0.022 y:0o

FEB 5 2009
09:55: 12

Figure 5.14 Optimized tool / part shape using GeA
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Figure 5.15 Shape of the GQA optimizedpart after manufacturing.
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Figure 5.16 optimized tool / part shape using Non-Linear programming
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Figure 5.17 Shape of the Non-Linear Programming optimized part after
manufacturing

Figure 5.18 GQA optimized tooVpart shape
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Figure 5.19 Final shape of the GQA optimizedpart after manufacturing
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Since the frictional data used in this analysis did not correspond to the tool -

material pair used in this study, additional optimization simulations were completed

without any tool in contact with the part (i.e. the part could freely slide on the tool).

The optimal tool shape obtained using GQA is shown in Figure 5.18. The variables

corresponding to this shape, tabulated in Table 5-6, are y : 2.5" and r : 0.010 m.

warpage after the autoclave process (without tool) was g : 0.056" (degree) as shown

in Figure 5.19. The results are similar to that obtained for the simulation of the part

processed on a tool. The negligible warpage obtained through this optimization for a

part processed without tool demonsfrates again the potential of NSGQA for multi-

objective optimization of complex tool shapes for composite manufacturing

The optimized tool shape obtained using non-linear programming functions of

MATLAB and the same design variables and constraints used in GQA, is shown in

Figure 5.20. The variables corresponding to this optimal shape, as tabulated in Table

5-6, ate T : 0o and r : 0 .022 m. The predicted part shape after autoclave processing is

shown on Figure 5.2r and the warpage was 2.6869". The warpage of the part

optimized by GQA is much lower (almost negligible) when compared to warpage of

the part optimized by non-linear programming. This comparison demonstrates again

the ability of GQA to find a better optimal than Nonlinear programming.

Tool shape optimization is examined on warpage minimization of composite part

using GQA and compared with Nonlinear Programming results. Optimization results

show the advantageous of using GQA for shape optimization and applicability of

optimizing 3-D complex autoclave cured composite part.
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Table 5-6 Without tool part interaction optimization.

Warpage (")
Optimal radius

(*)

Optimal design

Yc)

GQA q: 0.056' r:0.010 (m) v :2.5"

Matlab-

NLP
q :2.6869 " r:0.0222 (m) y:0o

Figure 5.20 Tool / Part shape optimized using non-linear programming
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STEP=l
SIJB =l
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Figure 5.21 Final shape of the Nonlinear programming optimized part after
manufactudng.
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CHAPTER 6

CONCLUSION & RECOMMENDATION

This thesis presents a new multi-objective optimization (Moo) method,

which is inspired from the idea of non-dominated sorting genetic algorithm

CNSGA) and genetic quantum algorithm (GQA). The developed method is called

non-dominated sorting genetic quantum algorithm (NSGQA). The developed

method is tested with benchmark problems collected from literature, which have

characteristics representing various aspects of a MOO problem. Test results show

that NSGQA has overall better performance on most benchmark problems than

current state-of-the-art MOO methods, when the total number of function

evaluations is limited. The NSGQA is also successfully applied to a 47-bar truss

tower design problem, which entails 44 design variables, 44 d,esign variable

constraints, and 2 inequalify constraint. The integration of GeA with Moo, and

the systematic comparison with other MOO methods on benchmark problems and

its application in engineering design, should be of general interests to researchers

on Moo and practitioners using Moo methods in design. The developed

NSGQA was applied to the problem of 2-D tool shape optimization to minimize

process-induced warpage in autoclave cured composites. It was integrated with an

ANSYS-based 2-D process model (which was developed by significantly

augmenting an existing process model) to successfully demonstrate that the tool

shape (i.e. initial shape of the un-cured part) could be optimized to minimize

warpage in L-shaped composite part considering tool part interaction. GeA

resulted in a better optimal solution when compared to nonlinear programming.
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The results confirm the potential of NSGQA in multi-objective shape optimization

of complex 3-D tools to reduce process-induced warpage in a complex autoclave

cured composite structures.
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