Applications of Algebraic Number
Theory to Cryptography

by

Renate Scheidler

A Thesis
Presented to the University of Manitoba
in Partial Fulfillment of the Requirements
for the Degree of
Doctor of Philosophy

Department of Computer Science
University of Manitoba
Winnipeg, Manitoba

© Renate Scheidler, 1993

National Library
of Canada

Acquisitions and

Bibliotheque nationale
du Canada

Direction des acquisitions et

Bibliographic Services Branch des services bibliographiques

395 Wellington Street
Ottawa, Ontario
K1A ON4 K1A ON4

The author has granted an
irrevocable non-exclusive licence
allowing the National Library of
Canada to reproduce, Iloan,
distribute or sell copies of
his/her thesis by any means and
in any form or format, making
this thesis available to interested
persons.

The author retains ownership of
the copyright in his/her thesis.
Neither the thesis nor substantial
extracts from it may be printed or
otherwise reproduced without
his/her permission.

395, rue Wellington
Ottawa (Ontario)

Your file Votre référence

Qur file Notre référence

L’auteur a accordé une licence
irrévocable et non exclusive
permettant a la Bibliotheque
nationale du Canada de
reproduire, préter, distribuer ou
vendre des copies de sa theése
de quelque maniéere et sous
quelque forme que ce soit pour
mettre des exemplaires de cette
these a la disposition des
personnes intéressées.

L’auteur conserve la propriété du
droit d’auteur qui protege sa
these. Ni la thése ni des extraits
substantiels de celle-ci ne
doivent étre imprimés ou
autrement reproduits sans son
autorisation.

ISBN 0-315-86064-2

Renatec

Name

SCHE(OLER

Dissertation Abstracts Infernational is arranged by broad, general subject categories. Please select the one subject which most
nearly describes the content of your dissertation. Enter the corresponding four-digit code in the spaces provided.

APPLIED Sclenwces —

CONVTER elapce

0111814

Subject Categories

THE HUMARNITIES AND SOCIAL SCIENCE

COMMUNICATIONS AND THE ARTS

Architecturecoocccveevvcieinne. 0729
Art History0377
Cinema ... 0900
Dance 0378

Fine Arts .o.oooeenns 0357
Information Science .

Journalism L0391
Library Science 0399

Mass Communications .
MUSIC ..o,
Speech Communication .. .
Tﬁeater 0465

EDUCATION
Generalocoeiviieinieeean
Administration

Adult and Continuing ..
Agricultural

rt

Bilingual and Multicultural ..
Businessc.ccovvieniine
Community College
Curriculum and Instruction ..
Early Childhood..............
Elementary
Financec.ocvveeicenns
Guidance and Counseling ..
Health ..o
Higher ..
History of
Home Economics .
Industrial c.c..eivinnnncnnn.
Language and Literature .
Matsf":emcﬁcs

SUBJECT TERM

-]
Psychology ...overevenererieiriinnns 0525
Reading ... 70535
Religious . ..0527
Sciences0714
Secondary0533
Social Sciences ..0534
Sociology of0340
Special0529

Teacher Training .
Technol%gKA
Tests and Measurements

LANGUAGE, LITERATURE AND
LINGUISTICS

Language
eneral ..o
Ancient
Linguistics . .
Modernocooceieeiiiienens
Literature
Generdlccooeeevivieeeeerenn
Classical ...
Comparative .
Medieval ..
Modern ...
African
American ..

Asian
Canadian (English} ..

Canadian (French) .. .0355
English ...ocvvevrnnen. .0593
Germanic L0311
Latin American0312
Middle Eastern . .0315

Rom
Slavic and East European0314

THE SCIENCES AND ENGINEERING

BIOLOGICAL SCIENCES
Agriculture
Eenerc]
ronomy .
Agimal C?J,“U
Nutrition
Animal Patholo

Food Science and
Technology 0359

Forestry and Wi 0478
Plant Culture .. 0479
Plant Pathology 0480
Plant Physiology . 0817
Range Managem Q777
Wood Technology . 0746
Biology
General . 0306
Anatom; 0287
Biostatistic 0308
Botany 0309
Cell .. 0379
Ecol . 0329
Entomolog 0353
Cenetics .. 0369
Limnolog 0793
Microbio 0410
Molecular 7., 0307
Neuroscienc 0317
Oceanography 0416
Physiology 0433
Radiation . 0821
Veterinary 0778
Zool e 0472
Biophysics
General ..0786
Medical0760
EARTH SCIEMCES

Biogeochemistry
Geochemistry ...

Geodesy
Geology ...
Geophysic
'\szro[ogy
ineralogy ..
Palecbotany
Palececology
Paleontology
Paleozoology

Palynology .. .
Phyys.ical %Zeog .0368
Physical Oceanography 0415
HEALTH AND ENVIRONMENTAL
SCIENCES
Environmental Sciences 0768
Health Sciences
General ...oocerriicnrrrinann, 0566
Audiologyccorveircieieniniees 0300
Chemotherapy 0992
Dentistry0567
Educationc.cc....... 0350

Hospital Management ..
Human Development ...
Immunolo

.............. .0982
Medicine and Surgery0564
Mental Health 0347
Nursing
NUIFHON . 0

Obstetrics and Gynecology ..0380
Occupational Health an

Therapy
Ophthoﬁnology
Pathology

Radiclogy
Recreation

PHILOSOPHY, RELIGION AND
THEOLOGY
Philosophycvciviiireiererenne. 0422
Religion
eneralocoooeivverieinnn. 0318
Biblical Studies .
Clergy
History of ...
Philosophy of ..
Theology .vvcveeveceriereriererreinien, 0469

SOCIAL SCIENCES
American Studiesc......... 0323
Anthropolog
Archaeology
Culturdl
Physicalocoocciriiiirnn,
Business Administration
General ccovecviiiriieie
Accounting .. .
Banking
Management ..
Markefing
Canadian Studies
Economics
General ..o
Agricultural
Commerce-Business

Finance0508

History0509

Labor”... ..0510

Theory .. 0511
Folklore0358
Geography0366
Gerontologyccooevrrireiiinnn 0351
History

Generalcoooveeiei, 0578

Speech Pathology
Toxicology ...
Home Economics ..

PHYSICAL SCIENCES

Pure Sciences
Chemisiry
Generdlccocoeiiiiien.
Agricultural ..
Analytical
Biochemistry
Inorganic
Nuclear ...
Organic..........
Pharmaceutical
Physical
Polymer
Radiation .. .
Mathematicscooeveeericnn..
Physics
Generaloovveeeeecce
ACOUSHES .ovveiiiiiieeiiiiiiins
Astronomy and
Astro&hysics
Atmospheric Science... .
AOMIC oo, .
Electronics and Electricig/ 0607
Elementary Particles an
High Energy
Fluid and Plasma . .
Molecular0609
Nuclear
Optics
Radiation ..
Solid State .
SEASHES wooviereeereiereereeeeeeee 0463

Applied Sciences
Applied Mechanicsoccuuen. 0346
Computer Sciencecceoeiee. 0984

SUBJECT CODE

0.
Asia, Australia and Oceania 0332

Canadiancccoevvveeeeenene, 0334
European0335
Latin American .. .0336
Middle Eastern0333
United States0337
History of Science0585
AW .t tirerieaeeeeneaneeaeesaesereereenneens 0398
Political Science
Generdlcccoviviirinnn. 0615
International Law and
Relationscceveveeee. 0616
Public Administration .0617
Recreationc.c..... .0814
Social Workoovviiiiien, 0452
Sociology
General ..o, 0626
Criminclogy and Penology ... 0627
Demographyc.cpcoceunne. 0938

Ethnic and Fg;:ciol Studies0631
Individual and Family

Studies .ooeweeereeiiieien 0628
Industrial and Labor
Relationscoevevrvereinnn. 0629

Public and Social Welfare 0630
Social Structure and
Development

Theory and Methods .
Transportation
Urban and Regional Planning 0999
Women's Studiesc..coeeenannn. 0453
Engineerin

Generalceeereeiiienn, 0537

Aerospace0538

Agricultural . ..0539

Automotive . ..0540

Biomedical0541

Chemical ..0542

VI v, ..0543

Electronics and Electrical 0544

Heat and Thermodynamics ... 0348

Hydraulic0545
Industrial
Marine
Materials Science ..
Mechﬁ:niccl
etaliurgy ..
Mining g)’
Nuclear
Packaging ..
Petroleum
Sanitary and Municipal
System Science

Geotechnology

Operations Research

Plastics Technology ..
Textile Technologyc........
PSYCHOLOGY

Generalcocooovvvviiieeen 0621
Behavioral0384
Clinical0622
Developmental0620
Experimental0623
Industrial0624
Personality0625
Physiological . ..0989
Psychobiology0349

Psychometrics ...
Socia

APPLICATIONS OF ALGEBRAIC NUMBER

THEORY TO CRYPTOGRAPHY

BY

RENATE SCHEIDLER

A Thesis submitted to the Faculty of Graduate Studies of the University of Manitoba
in partial fulfillment of the requirements of the degree of

DOCTOR OF PHILOSOPHY

© 1993

Permission has been granted to the LIBRARY OF THE UNIVERSITY OF MANITOBA
to lend or sell copies of this thesis, to the NATIONAL LIBRARY OF CANADA to
microfilm this thesis and to lend or sell copies of the film, and LIBRARY
MICROFILMS to publish an abstract of this thesis.

The author reserves other publication rights, and neither the thesis nor extensive
extracts from it may be printed or other-wise reproduced without the author’s written
permission.

I hereby declare that I am the sole author of this thesis.

I authorize the University of Manitoba to lend this thesis to other institutions or individuals

for the purpose of scholarly research.

I further authorize the University of Manitoba to reproduce this thesis by photocopying or
by other means, in total or in part, at the request of other institutions or individuals for the

purpose of scholarly research.

Renate Scheidler

Abstract

If two communication partners wish to engage in a private conversation across a public
channel, they need to encrypt their messages to prevent an eavesdropper from discovering
the contents of their conversation. To achieve this, the two parties must first agree on a
common cryptographic key. Such a key cannot be distributed across an open channel, as
this would enable an adversary to obtain the key and thus decrypt all communicated
information. The problem of key exchange can be overcome in two ways. The partners can
employ a public-key cryptosystem, i.e. use different keys for encryption and decryption,
where the encryption key is publicly known and the decryption key is known only to the
decrypter. Alternatively, they can communicate a sequence of messages according to a
specific protocol that allow them to agree on a common key without revealing it 10 an
opponent. This dissertation offers solution; to both approaches.

The first part of this thesis presents a generalization of several existing public-key
cryptosystems. The difficulty of breaking the new scheme is equivalent to the problem of
factoring a large integer, a task believed to be very difficult. This information regarding the
security of the scheme represents an improvement over the well-known RSA public-key
system. We describe the number theoretic fundamentals, present the algorithms required
for the system together with their computational complexity, analyze the scheme’s security,
and finally discuss an implementation.

All conventional protocols for key exchange rely strongly on the structure of a group.
Recently, for the first time, a modification of the standard protocol was suggeéted which
does not use a group, but is baséd instead on the infrastructure of a real quadratic field.
This loss of structure in the underlying set may increase the security of the scheme over that
of previously known protocols. Part II of this thesis introduces the specifics of the new
protocol. As before, we give the necessary number theoretic background, describe the
algorithms and their complexity, present a complete approximation and error analysis,

briefly discuss the security, and conclude with some computational results.

Acknowledgements

The author was assisted by many individuals during the development of this dissertation.
Although there is only room to mention a few by name, I am grateful for the help of all
those who weré involved.

First and foremost, I thank my advisor, Dr. Hugh C. Williams. He first introduced me to
the fascinating topic of cryptography, and has taught me a great deal over the years. He
continually challenged and motivated me during his supervision of this thesis. He was
extremely sensitive not only to academic difficulties I encountered, but also to occasional
times of self-doubt that I experienced. He provided generous financial support, including
assistance in attending several international conferences. Hugh’s time, patience, and
commitment are greatly appreciated.

I would like to thank the members of my examining committee, Professor Johannes A.
Buchmann, Dr. Jacek Fabrykowski, and Dr. Ralph G. Stanton, for their time and efforts in
reading and commenting on this thesis.

Special thanks go to Dr. Hendrik W. Lenstra, Jr., for his assistance in the development of
the Euclidean division algorithm given in Section 6.4.4.

Finally, I wish to acknowledge those many individuals who supported me throughout the
. years of work by lending a sympathetic ear when I needed it, offering words of
encouragement, and simply showing their friendship. In particular, I thank Jim Vincent for
patiently putting up with my fréquent mood swings and for his never-ending support and

faith in me.

vi

Table of Contents

ADSITACT. ..ottt e e e e ettt e et e e aeaeaeans v
Acknowledgementsooviiiiiiiiii i e vi
Frequently Used NOtAtON. ..ottt ee e e een, ix
L. INtroduCtioN. oo e e e eas 1
1.1 Introduction t0 Cryptology...ccieeiiiiuiariiiiieiiiieeeitiieeeereee e e e 1

1.1.1 Private-Key CryptoSyStemS. ..ccuceeiiuniiiiniiiiiiiieiineeeiieereinerenennnnns 1

1.1.2 Public-Key CryptoSySteIms evuinireeeeninienineniiiteeneeearenennnenans 7

1.1.3 Digital Signaturescooiiiiiiiiiiiiiiiiiiet e cieeeeneeeeas 12

1.1.4 Key EXChangec.vuininiiiiiiiiiiiiiiiiiieie e 13

1.1.5 Organization of the Thesisccooviiiiiiiiiiiiiiiiiiee 14

1.2 S0ME BaSICS ...vtiuiiiitiiiiiiiiei e 15
12,1 Complexity. ..ottt 15

1.2.2 Fermat's Little Theorem..........c.cocoiiiiiiiiiiiiiiiiiii 16

1.2.3 Extended Euclidean Algorithm e e 16

1.2.4 Chinese Remainder Theorem............co.oiiiiiiiiiiiiiiiiiiniiiinn., 17

1.3 Introduction to Algebraic Number Theorycccoeiiiiiiiiiiiinnnnn... 18

1.3.1 Algebraic Number Fieldsccoooiiiiiiiiiii e 18

1.3.2 Units and Primescoooiiiiiiiiiiiii i 20

L33 0deals....oouiniiiiiii e 21

1.3.4 Euclidean DiviSION......ccooeiiiiiiuiiieeieiiiinee i eeevvnneeeeeaennes 24

Part I: A Public-Key Cryptosystem Utilizing Cyclotomic Fields................cccevuenn.. 26
2. Public-Key Cryptosystems Based on Modular Exponentiation.......................... 27
2.1 The RSA Public-Key CryptosyStem........ocuiuininininiiiia e 27
2.1.1 Key Generation, Encryption, and Decryption...................cceueue.... 27

2.1.2 SECUTILY . ontiiite e 29

2.1.3 Choice of Safe Parameters...........ooeuvvniiinieiiiiiiiiieii e 31

2.1.4 Modifications of RSA ..ottt 33

2.2 Rabin's Signature Scheme........ i e, 33

2.3 Public-Key Systems Equivalent to Factoring...............coooeiiininviniuninnnn.. 37

3. Introduction to Cyclotomic Fieldscoooiiiiiiiiiii e 40
4. A New Public-Key Cryptosystemoo.viuiiniininiiiiiieie e eeeeenn, ... 45
S SECUTILY ottt et 49
6. The AlgOTIthMS.....ccooiiiiiiiiiiiiiii e 52
6.1 Prime Ideal Divisors and Integer Prime Divisors of Rational Primes............ 52

6.2 Roots of Unity (MOA N)..iiiimeriieoee e e 58

6.3 Residue SymbolS......cooeiiiiiiiiiiiiii e 59

6.4 Euclidean Division...... e e 66
6.4.1 Direct Euclidean DIvisionco.oviiiiiiiiiiin i 67

6.4.2 Uspensky's Euclidean Division................covvuiiniiiiiniiin e, 67

6.4.3 Kummer's Euclidean DiviSion............ccceevivoiieeeeieaeeiieinnenn, 69

6.4.4 Lenstra's Euclidean Divisionoooooiiiiiiiniiniii e, 71

vil

T ThE a8 A =2, 3, 5 ettt et e e e e 76

7.1 The Case A =2 .. cuiiiiiiiiiiii e e 76

7.2 The Case A =3 ittt 78
7.2.1 Modification of Williams' Scheme.....................ocooiiiinnnin. 78

7.2.2 ADifferent SCheme ...o.oviiiiiiiii e 82

7.3 The Case A =5 ..t 84
7.3.1 Quintic Residue Symbolsccoooiviiiiiiiii e 84

7.3.2 Computational Results........coooiiiiiiiiiiiiiiii e, 89

Part II: A Key Exchange Protocol Using Real Quadratic Fields....... e 95
8. Key Exchange Using Finite€ GIoUPS.......ccoovvciiiiiiiiiiiiniiiieeeeeeeeeeeieineeeeeans 96
8.1 The Diffie-Hellman Key Exchange Protocol...........cccccoovvvveveeeveennn... 96

8.2 The Discrete Logarithm Problem..........cc.oveveniiiiiiiniiniiiieeen, 98
8.2.1 Deterministic AIgorithms...........coocviiiiiiiiiiiiiiiii 98

8.2.2 The Index Calculus Method.......occooiviiiiiiiiiiiiiiiieeee e, 101

8.2.3 Other Schemes Using Discrete Logarithms.................c.cceoenn... 107

8.3 Key Exchange Without a Group Structure...............c..ooooeiiiinneinn.. .. 110

9. The Infrastructure of a Real Quadratic Field...........couvuviveeeeii e, 113
9.1 Reduced Principal Ideals and DiStancesc..coeuviiiivieeenennennnn.n, 113

9.2 Ideal ATIthMEtIC...cciumuiiiiiiiiiiiei e 117

10. The Main AlgOorithms..........cc.iviiiiiiiiiiiiiii e, 126
10.1 Preliminaries for the Implementation...................coooiiiiinininieini. 126

10.2 The AlGOTItRIMS. couuuiiiiiiiiieiiiiiie e 128

10.3 Ermor ANalysiS. .. cuuuniniiiiii i 136

L1, The Protocol........ouiiiii i, 141
11.1 Solving the Ambiguity Problem.........ccooooeieiiooieieeeeeeeeeeeeeeeeeeeea, 141

11.2 The Final Protocolouiiiii i 144

12, SECUTILY ©.ovtiei i e 146
12.1 The Discrete Logarithm in Rc.ooiiiiii e, 146

12.2 Safe ChoiCe Of D....oovveniiiii e e 149

13, IMpIEMENtAtioN.iiutiii ittt 151
13.1 OpHMIZAtONeueetiin i, 151

13.2 Computational RESULLSooiiuiitiiiiee e, 152

14. Conclusions and Open Problemsoovviiiiiini e 154
REFETENCES. ..ttt e e 156

viii

Frequently Used Notation

The following sets and structures are frequently used.

Symbol Description
Z Ring of rational integers
Q Field of rationals
R Field of real numbers
C Field of complex numbers
K,L Algebraic number fields
GF(g) Finite field of g elements
F* Multiplicative group F-{0} of any field F
S[x] Ring of polynomials in x with coefficients in S (S any ring)
GL,(S) Ring of non-singular n x n matrices over a ring S
G Any group
Ml Cardinality of a set M

For a given algebraic number field K, we use the following notation.

Symbol Description
0 ' Maximal order
I Set of integral ideals
P Set of principal integral ideals
R Set of reduced principal ideals
CI(K) Class group
a,b,e,r Ideals
P, q Prime ideals
n = (K:Q) Degree of K over Q
s Number of real conjugate mappings
t Number of complex conjugate mappings, s + 21 = n
r Unitrank, r=s+17-1
C1l, ... , Op Conjugate mappings
(for n =5 =2, o denotes the conjugate of)
N1 .. » N7 Fundamental units (for r = 1, write 111 = 1)
A Field discriminant
R Regulator

h Class number, 4 = ICI(K)!

ix

Symbol Description

€ Any unit
T, Y Primes in O
n
N(ot) Norm of a € K, N(e) = [Joi(o)
i=1
n
Tr(cr) Trace of . € K, Tr(ot) =Y 64(ct)
=1
o Complex conjugate a-biof . =a +bie C
L(a) The least positive rational integer in an ideal a,

L(a) = min{anZ>0}

The following special symbols occur frequently:

Notzation Description
a~b a and b are equivalent ideals
o= a and B are associates (o, B € O)
alb a is a divisor of b

(used for rational integers, integers, and integral ideals)

atib ' a" is the exact power of a dividing b

La] the floorofae R

[a] the ceilingofa e R

Ne(a) the integer nearest to @ € R, Ne(a) = La+21_|

The following abbreviations and acronyms are used.

Abbreviation/Acronym Meaning
CCA Chosen Ciphertext Attack
COA Ciphertext Only Attack
CPA Chosen Plaintext Attack
DES Data Encryption Standard
DLP Discrete Logarithm Problem
ERH Extended Riemann Hypothesis
KPA Known Plaintext Attack
PKC Public-Key Cryptosystem
RSA Rivest-Shamir-Adleman cryptosystem
UFD Unique Factorization Domain

The symbol U denotes the end of a proof or algorithm, or the end of a theorem or lemma

whose proof is omitted.

1. Introduction

1.1 Introduction to Cryptology

The art of cryptology consists of the combined art of cryptography and cryptanalysis.
Cryptography (Greek, xpuntél: hidden, ypddeiv: to write) provides secure
communication over insecure channels while cryptanalysis provides the means of
breaking into these communications. Historically, cryptology has been almost exclusively
of interest to the military and diplomats. However, this changed drastically with the
invention and widespread use of computers. Today, vast amounts of information are
transmitted over telephone lines, distributed across computer networks, or stored in
electronic data banks by individuals, private companies, government agencies, and
academic institutions. Much of this information is intended for the eyes of certain
designated recipients only, and its disclosure to unauthorized individuals may be harmful,
sometimes even to the point of posing a threat to national security. The need for privacy
in sharing sensitive data across public-access systems lead to civilian cryptology.
Cryptography and cryptanalysis are engaged in an on-going race that is bas‘old as the idea
of "disguising" one's messages, which in turn may well go back to the idea of writing

itself. For a detailed history of cryptology, see Kahn [Ka67].

1.1.1 Private-Key Cryptosystems

Most of the material presented in Section 1.1 can be found in any cryptography text, such
as Denning [De83] or Brassard [Br88].

The classic scenario of a cryptographic session consists of two communication partners
(traditionally called Alice and Bob in the world of non-classical cryptologic research),
who wish to engage in a private conversation across a public channel, usually any kind of
high speed data transmission line. We will only consider the case where Alice (the

sender) transmits a piece of confidential information to Bob (the receiver); if Bob wants

to reply, the same procedure is applied with reversed roles, i.e. Bob becomes the sender
and Alice the receiver.

To send a message M, also called the plaintext or cleartext, Alice uses a cipher to encrypt
or encipher the message, i.e. she applies a transformation that renders the plaintext
unintelligible to anyone but the intended recipient. She thus obtains a ciphertext or
cryptogram C, which she communicates over the insecure channel to Bob. Upon
receiving C, Bob decrypts or deciphers it, i.e. he converts it back to its original form.l
Both encryption and decryption are performed by means of a key K, which the two
communication partners need to agree upon ahead of time and which must not be
revealed to anyone else. Only individuals who know the key are able to encipher and
decipher messages.

An unauthorized individual tapping the communication line in an attempt to recover
plaintext from intercepted ciphertext is referred to variously as a cryptanalyst, adversary,
or opponent. The cryptanalyst's ultimate goal is to retrieve a cleartext message or even the
key, but he may be content with recovering partial information about either. If he is
successful, the cipher is considered broken. An opponent may pose a passive threat by
simply eavesdropping on a conversation, or an active threat by injecting information into
a channel, thus altering the transmitted ciphertext. The latter problem can be overcome if
the communication partners can authenticate their messages.

The scenario described in the previous two paragraphs is called a one-key or private-key
cryptosystem (short for cryptographic system). Fi;gure 1.1 below shows the scheme of a

one-key cryptosystem.

1 Some works on cryptography distinguish between decipherment as the recovery of the plaintext by the
intended recipient, and decryption as the same process attempted by an unauthorized individual. We will

not make this distinction.

Sender Receiver

(Message source)
C=ExM insecure channel . B M= DK(C) |
c
K (Eavesdropper) K
(@ secure channel
Figure 1.1

Formally, a private-key cryptosystem consists of a plaintext message space M, a
ciphertext space C, a key space X, and a family (Ex)ge g of encryption transformations
with domain A and range C, such that each encryption function Ex (K € %) has a left
inverse Dg: C— M, i.e. Dg(Egx(M)) = M for each M € 24 In addition, the system should
be both practical and secure, i.e. it must satisfy the following requirements.
Practicality:
1. Forall K € X, Ex and Dk should be easy to compute.
2. All keys should be small.
Security:
3. The secrecy of the system should depend entirely on the key K, not on the
encryption/decryption methods Eg, Dg.
4. For any K € X, given the encryption algorithm Eg and a ciphertext C =
Ex(M), M € 9, it should be infeasible to recover M or K
Clearly, these are not mathematically rigorous requirements. Usually, we will associate
with any cryptosystem a security parameter P € Z>0. Then requirement 1 states that the
computation time for encryption and decryption is polynomial in log P, and condition 2

implies that the number of bits in the binary representation of any key be polynomial in

log P. Requirement 4 can be formalized to mean that there is no polynomial-time
algorithm (in log P) to deduce M or K from Eg and C. In particular, the key space &
needs to be sufficiently large to prevent a cryptanalytic attack by exhaustive key search.
From condition 3, we see that it is possible to publicize the enciphering and deciphering
algorithms, i.e. their operations on M and K and C and K, respectively, without
compromising the security of the scheme, as long as the key K is kept secret. In
particular, the scheme must be secure against its own designer.

This somewhat more formal framework enables us to define cryptography as the
application of transformations (ciphers) to information to effect the concealment
(encryption) of that information. Cryptanalysis is the process by which an unauthorized
interceptor of a cryptogram determines either its corresponding plaintext without prior
knowledge of the key, or the key used in obtaining this ciphertext.

A very simple example of a private-key cryptosystem is the Caesar cipher, in which each
letter is replaced by a letter which occurs a fixed number K of positions beyond it in the
alphabet, with "wrap-around" if necessary.2 More specifically, first the position P of a
plaintext letter in the alphabet is determined, where A corresponds to 0, B to 1, etc., down
to Z corresponding to 25. Then the position Z of the encrypted letter is obtained by
computing Z = P + K (mod 26), 0 < Z < 25, where K is the number of positions skipped. Z
uniquely identifies the ciphertext letter. As an example, consider the plaintext HAL, the
computer's name in the well-known motion picture Space Odyssey 2001. If we choose
K =1, HAL encrypts to the familiar acronym IBM.

We distinguish between three different levels of cryptanalytic attack on a cryptosystem.
Ciphertext Only Attack (COA): The cryptanalyst is in possession of a number of distinct
cryptograms enciphered under the same key and attempts to infer the key or, if this is

impossible, find as many of the plaintexts corresponding to the cryptograms as possible.

2 According to Suetonius [Su65, Julius 56, p. 421, this cipher was used by Julius Caesar with X = 3.

Known Plaintext Attack (KPA): The cryptanalyst is in possession of a number of distinct
pairs of plaintext and corresponding ciphertexts, all encrypted under the same key. He
attempts to infer the key or, if this is impossible, find the plaintext corresponding to some
new ciphertext.

Chosen Plaintext Attack (CPA): The cryptanalyst chooses a number of distinct plaintexts
and is given the corresponding ciphertexts, all encrypted under the same key. He attempts
to infer the key or, if this is impossible, find the plaintéxt corresponding to some new
ciphertext.

A COA is often successful if partial information about the plaintext is available to the
cryptanalyst, such as redundancy in language (frequently occurring letters, sequences of
letters, or words) which is reflected in the cryptogram. Our example of the Caesar cipher
easily succumbs to such an attack. A KPA could be mounted if partial content of the
plaintext is known. For example, an opponent could be intercepting a remote login
message which he knows to contain the word LOGIN and the user's id. Encrypted
programs are particularly vulnerable to this kind of attack because of a limited number of
frequently occurring reserved words, such as BEGIN, END, IF, THEN, WHILE, etc. As
an example for a CPA, assume that an adversary has partial read/write access to a system.
He can implant changes into the system and observe the resulting changes in the stored
ciphertext. This information may be used to mount an attack on the part of the system that
he is not authorized to access. A CPA presents the most favourable circumstances to a
cryptanalyst. Hence, a cryptosystem needs to be designed to be secure against this kind of
attack.

There are two notions of security for a cryptosystem. A system is unconditionally secure
if a cryptanalyst cannot gain enough information to break it, while it is computationally
secure if he does not have sufficient resources (computing time and power).
Unconditionally secure systems provide perfect secrecy, i.e. regardless of how much

ciphertext is intercepted, it will never provide enough information to deduce the plaintext

uniquely. Such systems are mathematically unbreakable in the sense that the probability
that a cleartext M was sent (in encfypted form) is the same as the probability that M was
- transmitted, given that a cryptogram C was intercepted. An example of an
unconditionally secure system is the one-time pad, in which any key is used only once
and is bitwise XORed with the plaintext.

Unfortunately, such systems require the key space to be at least as large as the message
space (Shannon [Sh49]). This means essentially that a key must be at least as long as the
plaintext and that each key may be used no more than once. As a reéult, unconditionally
secure systems are highly impractical. In fact, most available ciphers are theoretically
breakable after intercepting only a few hundred bits of ciphertext, but the computational
requirements needed to extract plaintext are beyond all available resources. This leads to
the notion of computational security. A cryptosystem is computationally secure if it
cannot be broken by systematic cryptanalysis with available resources under favourable
conditions for an opponent (CPA).

Most available one-key ciphers use substitutions, transpositions, or both in their
encryption algorithms. A substitution cipher is one in which each letter of plaintext is
replaced by a character of ciphertext taken from one (or possibly several different)
ciphertext alphabet(s). The Caesar cipher discussed earlier represents an example of such
a cipher. In a transposition cipher, the plaintext characters are rearranged (permuted)
according to a specific algorithm and key. For example, the cleartext could be arranged in
a matrix of K columns (where K is the key), and the rows of the matrix represent the
cryptogram.

Unfortunately, ciphers based on either substitution or transposition reflect redundancies
in the language and are thus vulnerable to statistical attacks using frequency counts of
letters, digrams, trigrams (consecutive pairs and triples of letters, respectively), and
commonly occurring words. However, combining both substitution and transposition in a

single cipher will foil such attacks [Sh49]. The well-known Data Encryption Standard

(DES) [NBS77] is based on this idea. DES was designed by IBM in the early 1970's and
is widely used in commercial applications. So far, it remains unbroken.

'I“he main problem arising from one-key cryptosystems is that of key distribution. How
can a key generated by the encrypter (or a third party) be safely communicated to the
decrypter (or all participants)? One possibility is to send the key along a secure channel.
However, such channels often tend to be slow and hard to come by (after all, if the
communication partners had a fast and secure channel available to them, they need not
employ a cryptosystem!). Examples of a secure channel are a trusted courier or a personal
meeting of the participants. Clearly, this approach is too cumbersome and inefficient,
particularly if two individuals in geographically distant sites need to communicate
frequently and wish to use a new key for each session for reasons of security. In the
1970's, Diffie and Hellman proposed two different solutions to the problem of secure key
distribution. The first approach suggests using different keys for encryption and
decryption, thus eliminating the need for distributing the same key to different users. This
lead to the discovery of public-key cryptosystems [DH76] which will be discussed in the
next section. The other solution proposed the exphange of partial information about the
key across a public channel in a way that both partners can agree on a common key while
an eavesdropper cannot gain any knowledge about this key from the intercepted
information. This seemingly impossible goal was first achieved by the Diffie-Hellman key
exchange protocol [DH76] and a different approach was independently suggested by
Merkle [Me78]. Both these schemes will be briefly discussed in Section 1.1.4.

1.1.2 Public-Key Cryptosystems

The main difference between a public-key cryptosystem (PKC) and a private-key scheme
is that the sender and receiver use different keys, where the enciphering key is publicly
known, while the deciphering key is known only to the decrypter. More specifically,

every user generates a pair of keys K, Kp, where K, the decryption key, is kept secret,

and Kp, the encryption key, is publicized.3 If Alice wishes to send a private message to
Bob, she obtains his public key, encrypts the plaintext under this kéy, and transmits the
ciphertext to Bob. Upon receiving the cryptogram, Bob uses his secret key to decipher it
and recover Alice's original message. An eavesdropper tapping the line can intercept the
ciphertext and obtain Bob's public key, but cannot recover the corresponding plaintext
without knowledge of Bob's secret key. Furthermore, he should be unable to infer any
information about Bob's secret key from the cryptogram and Bob's public key. The‘

scheme of a PKC is given in Figure 1.2.

Sender | meceiver
(Message source)
C= EKb(M) insecure channel - o 7= OrlC)
A CJ
Ko C Eavesdmpper) Ks
Kp
Kt
insecure channel ey source
Figure 1.2

Formally, a PKC consists of a plaintext message space %4, a ciphertext space ¢, a public-
key space %p, a secret-key space %G, and pairs of functions E Ky M— Cand Dk C— M,
where Kp € %, Ks € X, such that DKS is the left-inverse of E Kp ie.D Ks(E Kp(M)) =M
forall M e M. Again, the system is required to be both practical and secure and must

satisfy the following conditions.

3 The encryption key could be published, together with the user's name, on an electronic bulletin board or a

key directory, the analogue of a phone book.

Practicality:
1. Forall Kpe %p, Kse % EKP and DKS should be easy to compute.
2. All public keys should be small.
Security:
3. Given a public key Kp, the encryption algorithm E Kp and a ciphertext

C=Eg p(M), it should be infeasible to recover M or the secret key K.

Here the terms "easy to compute”, "small ", and "infeasible" can again be formalized with
respect to a security parameter P.
Note that a cryptanalyst can easily create the circumstances of a KPA or a CPA, since the
recipient's encryption key and algorithm are public. Hence, we define a new level of
attack for PKC's:
Chosen Ciphertext attack (CCA): The cryptanalyst chooses a number of distinct
ciphertexts, all generated through encryption under the same public key, and obtains the
corresponding plaintexts. He attempts to infer the secret key or produce an efficient
algorithm for simulating decryption under the secret key or, if both these tasks are
impossible, find the plaintext corresponding to some new ciphertext.
At the heart of public-key cryptography lies the notion of a one-way and a trapdoor one-
way function. Informally, a one-way function is a function which is easy to compute and
hard to invert, and a trapdoor one-way function is a function which is easy to compute
and hard to invert unless some inside information is available, in which case the function
is also easy to invert. Somewhat more formally, a one-way function is a function £ X —
Y satisfying the following two conditions. |

1. Forall x € X, f(x) is hard to compute.

2. For almost all y € 7, if there exists x € X such that f(x) = y, then it is hard to

compute x.

An example for the use of a one-way function in cryptography is the safe storage of

passwords. Instead of storing the passwords P1, Py, ... of all users in the clear, we store

fP1), f(P2), ... , where f is a one-way function. To log on, a user id i and a password P;
are entered. The system computes f(P;), looks up the user id i in the password file, and
compares f(P;) with the password entry corresponding to id i. If the two match, the user
may access the system, otherwise access is denied.

It is unknown whether one-way functions exist; in fact a proof of their existence (or non-
existence!) would settle the famous "P = NP" question (Grollman & Sellman [GS88]).
However, we have a number of candidates for one-way functions, i.e. functions which are
easy to compute, but no efficient algorithm for their inversion is known. Two such
candidates are integer multiplication and modular exponentiation for a fixed base. While
it requires one arithmetic operation to multiply two integers, the number of arithmetic
operations required for the fastest general factoring technique is subexponential in the
number of bits of the integer to be factored. The difficulty of factoring is discussed in
more detail in Section 2.1. Similarly, given me Z>0, g e {0, ..., m-1 }, it takes no more
than 2log n multiplications and 2log n reductions (mod m) to compute b = a” (mod m),
0 < b <m-1 (see Algorithm 2.1 in Section 2.1). However, given m e Z>0 and q, b
{1, ..., m-1} such that a” = b (mod m) for some n € Z>0, the discrete logarithm problem
(DLP) of finding n is generally very difficult. More details on the DLP can be found in
Section 8.2.

Clearly, one-way functions cannot be used for encryption, since even the intended
recipient of a message would not be able to extract plaintext that has been enciphered
using a one-way function. But if the decrypter were given certain trapdoor information
which enabled him to invert the one-way function quickly, then such a function is a good
candidate to be used for a PKC. A trapdoor one-way function is a function f: X — ¥ such
that the following holds.

1. Forall x € X, f(x) is easy to compute.

10

2. For almost all y € 7, if there exists x € X such that f{x) =y, then it is hard to
compute x, unless some special information 7 used in the design of fis known. In
this case, there exists a function gy such that g/(y) = x is easy to compute.

Note that the encryption transformation Eg > of a PKC constitutes a trapdoor one-way

function. Here, the special information 7 is the secret key K, and the inverse function gy is
the decryption transformation &

A candidate for a trapdoor one-way function is squaring modulo a Blum integer, i.e. an
iﬁteger m = pq which is the product of two distinct primes p, ¢ = 3 (mod 4). For a € Z>0,
b=a? (rhod m) can be computed in one multiplication and reduction step, whereas
extracting an integer square root a (mod m) of b (mod m) (provided one exists) is
generally infeasible without extra information. However, if the factors p and g of m are
given as trapdoor information, then the following procedure finds a (mod m) using no
more than a multiple of logy m arithmetic operations (we assume that there exists a square

root x € Z such that x2 = b (mod m)).
p+l g+l
1. Computeu=b4 (modp),0<u<p-l,andv=>b 4 (modgq),0<v<g-1

2. Find a € Z such that g = u (mod p), a =v (mod ¢), 0 < a < m, using the Chinese
Remainder Theorem.

p+l ptl p-1

We have a2 = 42 E(b 4 7 =b 2 =b2b= xP1b= b (mod p), since by Euler's theorem
aP-1 =1 (mod p). Similarly, a2 = b (mod g), hence a2 = b (mod m). |
Another example of a candidate for a trapdoor one-way function is modular
exponentiation for a fixed exponent. As mentioned before, b = a” (mod m) can be
computed quickly, but no efficient algorithm is known to extract an n-th root of b (mod
m) (provided one exists), unless the factorization of m is given as trapdoor information, in

which case the n-th root can be computed in a multiple of log m steps. This trapdoor one-

way function is the basis for the RSA public-key system discussed in Section 2.1.

11

PKC's have the advantage of eliminating the problem of key distribution. Their main
disadvantage is the fact that they tend to be much slower than most one-key
cryptosystems; for example, a secure hardware implementation of the RSA system is
approximately 1000 times slower than a DES chip. Consequently, many practical
applications use a hybrid system. These systems employ a PKC to communicate a private
key for a one-key cryptographic session, and a private-key system is used for subsequent

data exchange.

1.1.3 Digital Signatures
A digiral signature is the cryptographic equivalent of a written signature, i.e. a means by
which a recipient of a message can verify the identity of the sender. If Alice sends a
digitally signed ﬁlessage to Bob, he not only knows that the message was signed by none
other than Alice, but he can also convince any third party of this. A digital signature must
satisfy three condiﬁons:‘

1. Nobody but the sender can generate the signature.

2. The receiver can easily verify the signature.

3. If the sender should disavow signing a message, it must be possible for any judge

or third party to resolve a dispute arising between sender and receiver.

A PKC provides signature capability if 4/ = ¢ and if for any pair K}, K of keys, the
property E Kp(DKS(M)) = M holds for any message M. To sign a (non-confidential)

message M, Alice uses her secret key K to compute § = Dy (M). She sends M along with

S and her identity to Bob. Bob establishes the sender's identity to be that of Alice, uses
A
Alice's public encryption key Kp to compute M = E Kp(S), and declares the signature valid
A
ifM=M.
Now assume that Alice wishes to send confidential information to Bob and he in turn
wants to be sure that none other than Alice sent the information. Alice generates a

signature § = D A(M) using her secret key. Then she uses Bob's public key to compute T =

12

Eg(M). She sends T and her identity to Bob. From the identity tag, Bob identifies Alice as
the sender, decrypts T to get S = Dg(T), and finally recovers Alice's original message M =
EA(S) by encrypting the signature under her public key.

Digital signatures can also be used to foil an attempt of impersonation by an opponent.
Suppose a tamperer generates a random "signature"” S, computes the "message" M =
DA(S), and transmits M, S, and Alice's identity to Bob. Bob validates the signature by
computing EA(M) = § and is lead to believe that Alice sent and signed M. Internal
redundancy exposes this attack — Bob will notice that M is a meaningless message — but if
the message being sent was supposed to be random (say, a key for a private-key
cryptographic session), the tamperer will have succeeded. To prevent this attack, Alice
could sign her message M with S = DA(f(M)) instead of § = D (M) where f is a public
one-way function. To validate the signature, Bob computes EA(S) and f(M). If the two are

the same, the signature is valid and the message must have come from Alice.

1.1.4 Key Exchange
PKC's present one solution to the problem of safe key distribution. Secure key exchange
is another approach. Suppose two communication partners wish to engage in a private-
key cryptographic conversation, but have no secure channel available to communicate a
key. In 1976, Diffie and Hellman [DH76] introduced the following cryptographic
protocol (i.e. an algorithm for communications between different parties) which allows
both partners to agree on a common key without revealing it to an eavesdropper.
1. Alice and Bob publicly agree on a large prime p and a primitive root g (mod p),
i.e. a generator of the multiplicative group of residues a (mod p) where p J a.
2. Alice generates a random integer a € {1, ..., p-2}. She computes x = g4 (mod p),
1 <x <p-1, and transmits x to Bob.
3. Bob generates a random integer be {1, ..., p-2}. He computes y = gb (mod p),

1 <y <p-1, and transmits y to Alice.

13

4. Alice computes K = y% (mod p), 1 <K < p-1.

5. Bob computes K = xb (mod p), 1 <K < p-1.
Note that xb = gab = ya (mod p), so Alice and Bob indeed generate the same key. The
protocol requires one round of communication and the quantities transmitted require no
more than log p bandwidth. Furthermore, all powers can be computed in at most 2log p
multiplications and 2log p reductions (mod p).
An opponent tapping the line can obtain p, g, x, and y, but does not know a or b. No
efficient method for retrieving K without knowledge of a or b‘ is known. If the
cryptanalyst has a fast algorithm which for any z € Z>0 and primitive root g (mod p)
computes ¢ € Z>0 such that g¢ =z (mod p) or ¢ = logg z in the finite field GF(p) of p
elements, then the key exchange protocol is broken. This is the already mentioned
discrete logarithm problem which will be discussed in more detail in Section 8.2.
A different approach to secure key distribution without the use of a private channel was
introduced by Merkle [Me78]. Here, two parties decide on a common key by exchanging
a number of puzzles. The cryptanalytic cost of this scheme grows as n2, where n is the
cost to the legitimate users, hence the system is secure for n sufficiently large. However,
the protocol requires large bandwidth, since n potential keys need to be communicated
before one key can be agreed upon. In fact, Merkle points out that the high transmission

overhead prevents his scheme from being practical.

1.1.5 Organisation of the Thesis

This thesis presents two cryptographic schemes that are based on the algebra and
arithmetic in certain number theoretic structures. Part I (Chapters 2-7) discusses public-
key cryptography based on modular exponentiation. We review previous work in Chapter
2, summarize the required mathematical ideas in Chapter 3, and introduce a new modular
exponentiation-based cryptosystem in Chapter 4. The security of our scheme is analyzed

in Chapter 5, and the algorithms used in our system are discussed in detail in Chapter 6.

14

Part T concludes with three specific cases and some computational results given in
Chapter 7.

Part II (Chapters 8-13) of this dissertation introduces a new key exchange protocol.
Chapter 8 presents the general Diffie-Hellman protocol and possible approaches for
breaking it. In Chapter 9, we discuss the mathematical basis for the new protocol. The
main algorithms of the new scheme are given in Chapter 10 and the problem of
establishing a unique key is solved in Chapter 11. The final protocol is introduced in
Chapter 11 as well; we point out that this is the first Diffie-Hellman profocol that does
not require a group structure. Chapter 12 analyzes the scheme's secv.irity. We discuss our
implementation and give some numerical examples in Chapter 13.

The dissertation concludes with some final remarks and a brief overview of open
problems arising from our previous discussions in Chapter 14.

In the remainder of this Chapter, we will review some well-known mathematical facts
that are repeatedly used throughout this document, and give a brief introduction to

algebraic number theory.

1.2 Some Basics
We will briefly review a few basic and well-known mathematical facts and tools which

we will use repeatedly throughout this dissertation.

1.2.1 Complexity

The performance of an algorithm is described in terms of its computational time and
space requirements. Since all our procedures will be performing integer arithemtic, we
will measure the time of an algorithm in terms of the number of basic integer arithmetic
operations performed; these include addition, subtraction, multiplication, division, and

comparison of two integers. We will not consider the computation time each such

15

operation requires. Hence when referring to the time complexity of an algorithm, we
mean the total number of integer operations performed. The space complexity of an
algorithm is the size of its largest input throughout the computation, i.e. the number of
bits in its largest input number, or the storage required by this number.

We will only be concerned with the asymptotic behaviour of the time and space
complexity of an algorithm. Recall that if f, g:Z>0 — R>0 are two functions, we say that
f(n) is big-Oh of g(n) and write f(n) = O(g(n)) if there exist ng € Z>0 and ¢ € R>0 such
that for all n > ng, f(n) < cg(n). We say that f(n) = Q(g(n)) if there exist ng € Z>0 and
¢ € R>0 such that f(n) > cg(n) for all n > ng. In general, our algorithms will have both
time and space complexity O((log P)*) where k > 1 (k = 1 most of the time) and P is a
parameter given by the cardinality of the mathematical structure underlying our

algorithm.

1.2.2 Fermat's Little Theorem
In 1640, Fermat made the following observation (today referred to as his "Little
Theorem"):

If p is a prime, then aP-1 = 1 (mod p) for any a € Z such thatp J a.
This statement is an immediate consequence of the fact that GF(p)* = GF(p)-{0} is a
cyclic multiplicative group, where GF(p) is the finite field of p elements. Tt is not to be
confused with Fermat's well-known "(Last) Theorem" regarding the existence of

solutions (x, y, z) € Z3 of the equation x" + y* = z# (n € Z>0).

1.2.3 Extended Euclidean Algorithm
It is well-known that we can compute the greatest comon divisor (ged) d = ged(a, b) of

two integers a, b (b > 0) by performing repeated division with remainder

a=qob +ry, 0<r;<b,
b=qir1+nr, 0<r<r,
r1=qiry +r3, O0<r3<r,

16

until we obtain r,.1 = gurp + rps1 such that r,41 = 0, in which case r, = gcd(a, b). Then
n = O(log max{lal, b}) (see for example [Kn81, p. 343]) and all numbers computed by the
algorithm require at most O(log max{lal, b}) bits of storage.

By substituting backwards from r, = rp.3 - q,,-ir,,-l =7n2 - Gn-10n-3 - Gp-2rn-2) = -, we
can obtain a representation of the gcd as a linear combination of @ and b, i.e. we can find
x,y € Z such that ged(a, b) =xa + yb, in time O(log max {lal, b}). This process is called
the Extended Euclidean Algorithm. '

If k, m € Z are relatively prime, we can use the Extended Euclidean Algorithm to find x,
y € Z such that xk + ym = 1 = gcd(k, m). Then xk = 1 (mod m). Hence if we assume that k
< m, then we can find the inverse x (mod m) of k (mod m) in time O(log m), and requiring

space O(log m).

1.2.4 Chinese Remainder Theorem

The Chinese Remainder Theorem is used to solve systems of simultaneous linear
congruences. Suppose mi, ... , m, € Z>0 are pairwise relatively prime and
m = mimy-mp. We wish to find a solution x (mod m) (x € Z) of the system of

congruences

x = a1 (mod my),
x = ap (mod mp),

x = a,, (mod my,).
For 1 <i < n, we first find ¢; such that e%_ = 1 (mod m;), using the Extended Euclidean
1

n
Algorithm, and set x; = e,%. Then x; = 1 (mod m;), x; = 0 (mod mj) for j # i. Set xskz?kxk
l =

(mod m). Clearly, x is our desired solution and can be found im time O(log m) (assuming

that the number of congruences # is bounded), and requiring space O(log m).

17

1.3 Introduction to Algebraic Number Theory
Most of this material can be found in any introductory algebraic number theory text (see

for example Stewart & Tall [ST79, Chapters 2, 4, 5, 9, 10.1, and 12]).

1.3.1 Algebraic Number Fields

Denote by Q the field of rationals, Z the ring of rational integers, R the field of real
numbers, and C the field of complex numbers. For any ring S, we let S[x] be the ring of
polynomials in x with coefficientsin S. Let 6 € Cand let f(x) =x" +ap.1x* 1+ +ap e

Q[x] be a monic irreducible polynomial with rational coefficients such that f(8) = 0 and
n = deg(flx)) is minimal. Then we say that 0 is algebraic over Q. The set K = Q(0)
=Q + Q8 + Q62 +-- + Q671 is a subfield of C and a vector space of dimension n over

Q for which the powers 1, 0, ... 671 form a basis. We call K an algebraic number field of
degree n = dian = (K:Q) over Q. fix) is called a generating polynomial for K. If L is

any subfield of K containing Q, then K is also a vector space over L, i.e. an algebraic"

number field of degree (K:L) = dimy K = T over L.

Denote by O the set of all @ € K such that there exists a monic polynomial g(x) € Z[x]
such that g(a) = 0. O is an integral domain in K, i.e. a commutative ring with no zero
divisors and multiplicative identity 1; and O is a Z-lattice of rank n, i.e. there exist 1,
W, ... , Wy € Ksuch that O = [wy, ..., 0p] =Zw1 + Zoy + - + Zwy, and ©1, 0y, ... , O is
a Q-basis of K. We call w1, wy, ... , W, an integral basis of K and O the maximal order or
the ring of integers in K. K is the quotient field of O, i.e. every a.e K can be written as o
= By ! where B, ye O and y# 0. Furthermore 0 N Q = Z.

Let 8 = 081, 02, ... , 8, be all the zeros of f(x). The field homomorphisms o;; K — C
defined by 6;(8) = 0; (1 <i < n) are the conjugate mappings of K, and for any o € K, the
numbers G;(a) (0 < i <n) are called the conjugates of o. After reordering the 0; if
necessary, we may assume that oy, ... , O are the real conjugate mappings, i.e. 6;(K) c R

for0 <i<s, and Gg41, Og41, ... », Osus, Ogeg are the complex conjugate mappings, i.e. 6;(K)

18

¢ R for s+1 <i < s+t (here o;(t) = o;(Q) for s+1 < i < 54, whech denotes the complex
conjugate of B for any e K). Thens +2tr=n.If t =0, i.e. s =n, then we call K a totally
real field; in the case where s = 0, i.e. n = 2¢, K is said to be rotally complex. K is a
normal extension of Q if 01, 67, ... , 8, € K and hence 6i(K) ¢ K and 6(0) c O for
1 <i < n. In this case, the conjugate mappings generate a group of order n, the Galois
group of K over Q. If K is normal over Q, then K is a normal extension over any subfield
L of K containing Q. The Galois group of K over L consists of all those conjugate

mappings which leave each elemement in L fixed. The order of the Galois group of K
over L is (1.:QQ).

Let o € K. We define N(o) = In{oi(a) to be the norm of o and Tr(a) = ﬁlci(a) to be the
= 1=

trace of a. Then N(K), Tr(K) ¢ Q and N(Q), Tr(O) c Z. Forthermore N(o8) = N(a)N(B)
and Tr(ao + bB) = aTr(a) + bTr(B) for a, e K and g, b € Q. Note that for a totally

complex field K, N(a) = Il{lo'i(a)lzz 0 for any o € K.

=
The discriminant A of K is the quantity A = (det [0j(w)); j=1,....a])? € Z, where @1, ... , @y
is any integral basis of K. A is independent of the choice of the integral basis and is thus
an invariant of K. For o € O, the (element) discriminant of o or the (lattice) discriminant
of Z[a] =Z + Za ++ + Za-1 is defined to be d(a) = d(Z[a]) = (det [o/(0d); j=1,....n])%
Then d(a) = I(o)2A where () = (O : Z[at]) is the index of a, i.e. the index of Zla]lin O,
or the cardinality of the factor ring O/Z[a]. Hence A is divides the discriminant of any

element a € O. If f{x) € Z[x] is a polynomial without multiple zeros such that f{cr) = 0,
n(n-1)
then d(a) = (-1) 2 d(f), where d(f) = N(f'(0)) is the (polynomial) discriminant of f(x)

and f'(a0) is the derivative of f(x) at x = .

19

1.3.2 Units and Primes

There are two special kinds of elemens in every algebraic number field, namely units and
primes. For two elements a, B € O, B # 0, we say that B divides o, written B | a, if there
exists Ye O such that By =a.

A number € € O such that el 1 (i.e. € is a divisor of 1 in Q) is called a unitin K. Ifeis a

unit in K, then €1 is a unit in K as well. € € O is a unit if and only if N@g) =+1.

Theorem 1.1: There exists a set of independent units 1y, ... , N, such that every unit € has
a unique representation € = {nf1 - n," where ey, ... , e, € Z, and € is a root of unity in
K. N1, ... , M, is called a set of fundamental units of K. Here r = s + ¢ - 1. r is called the

unit rank of K and is an invariant of K. O

Here, the term "independent" means that the equation 111 - m,¢r =-1 has no solutions
(e1, ... »e,) € Z7. In the case where r = 1, then wé will always fix 1 =M to be the unique
fundamental unit exceeding 1. Note that n-1, -n-1, and -n are also fundamental units
satisfying 0 <m-1<1,-1<-m-1<0,and m <-1.

If we define /(o) = log lo{a)l for 1 <i < sand lj(a) = log(lci(a)lz) for s+1 < i < s+t for
any o € K-{0}, then the r vectors (hiMp, ..., I(mp) (1 £j <r) can be shown to be
linearly independent over the reals R. The quantity R = |det [implij=1, ...l is called
the regulator of K. R is independent of the choice of the system of fundamental units and
is hence another invariant of K. |

If o, B € O are such that a = €} for some unit €, the o and B are said to be associates,
and we write o. ~ B. It is easy to see that the relation ~ is an equivalence relation on Q.

A prime in O is an eiement e Osuchthatif nlaf, thenw |l aor x| B forany a, p e O.
Every non-zero o € O can be written as a product of prime powers in O, but contrary to

the case of prime decomposition in Z, this representation need not be unique. For

20

example, the number 21 in the field Q(V-3) has two decompositions 21 = 3.7

= (1+2+/-5)(1-2v-5) into primes, none of which are pairwise associates.

1.3.3 Ideals

A subset a of O is an (integral O-)ideal in K if both a+a and Qa are subsets of O. Any
integral ideal a is a Z-sublattice of O of rank n; if ay, ..., o, € O is a Z-basis of a, write
a =[ay, ... , ay]. Denote by I the set of integral ideals in K. A subset b of K is a
(fractional O-)ideal in K if b = aa where a is a non-zero integral ideal in K and
0+# o € K. For any fractional ideal b, the set b-1 = {& € K | ab is an integral ideal in K)
is a fractional ideal in K. If we define ab= {af | a € a, B € b}, then the fractional ideals
form an Abelian group under multiplication with identity O, and the integral ideals I form
a semi-group.

If ag, ..., o € K, then the set Qoj +-+ + Qo is a fractional ideal in K which is said to
be generated by ay, ..., ay; writea = (a1, ... , 0). a is an integral ideal if and only if
o, ..., 0k € O.Ifb=(By,..,B), thenab = (o;f; 1 1 i<k, 1<j<). Any ideal can be
shown to require no more than two generators. An ideal a = () = aQ with a single
generator is called principal. If o, B € O,. then (o) = (B) if and only if o= B. In particular,
O = (¢) for any unit €. The set of fractional principal ideals is a subgroup of the group of
fractional ideals, and the set P of integral principal ideals is a sub-semigroup of the semi-
group I of integral ideals.

The norm of an integral a is defined to be the cardinality I0/al of the factor ring O/a. The
ideal norm is multiplicative, i.e. N(ab) = N(a)N(b) for any two integral ideals a, b in O.
If a = (o) is principal (@ € O), then N(a) = IN(a)l.

We say that an integral ideal a divides an integral ideal b, written a | b, if there is an
integral ideal ¢ such that ac = b, or equivalently, if b < a. We write a | o instead of

al(a),ae O,ae I. o = (mod a) is defined tomeana | o - B fora, Be O,ae L

21

Two integral ideals a, b are equivalent if there exist non-zero a, B € O such that
()a = (B)b, or equivalently, if there exists a non-zero Ye K such that a = (Y)b; write
a ~ b. This equivalence relation partitions the set of integral ideals into a set of
equivalence classes which form a finite group under multiplication, called the class group
CI(K) of K. The class group is exactly the factor group I/P. The order h of CI(K) is called
the class number of K.

There are special representatives called reduced ideals in each ideal class. The idea of
ideal reduction evolved out of the reduction theory for binary quadratic forms. It seems
that reduced ideals were first mentioned by Berwick [Be28] for quadratic fields, later by
Smadja [Sm73] for cubic fields, and finally by Williams [Wi85a]. For a fractional ideal a,
we define m(a) = {me Z, | ma c O} and L(a) =min{k e Z, | k€ m(a)a}. When a is an
integral ideal, we get m(a) = 1 and L(a) = min{a N Z,), i.e. L(a) is the least positive
rational integer in a. An integral ideal a is said to be primitive if it has no rational integer
divisors except 1, i.e. if k€ Z is such that (k) la, thenk=1. Anumber0# o e aisa

minimum in a if there is no B € a such that Io;(B)! < lofa)! for 0 < i < s+z.

Definition 1.2: An integral ideal a is said to be reduced if a is primitive and L(a) is a

minimumina.

The number of reduced ideals in O is finite and each ideal equivalence class contains at
least one reduced ideal. Denote by R = P the set of reduced principal ideals in K. R need
not be a group, since it is generally not closed under ideal multiplication.

An integral ideal p is called prime if p | ab implies p 1 a or p | b for any pair of integral
ideals a, b. It is easily shown that a principal integral ideal is prime if and only if its
generator is a prime in O.

Any non-zero integral ideal a has a unique representation (up to order) as a product of

prime ideal powers. In particular, for every prime p € Z, the ideal (p) in O has a unique

22

factorization (p) = pi€1 - p,°r where the p; are prime ideals. The factor ring Op, = O/p;

is a finite field and a vector space over the finite field GF(p) of p elements. Denote by f;

the degree of OPi over GF(p), i.e. f; = dim GF(p)OPi .

Theorem 1.3: Let p be a rational prime and let (p) = pf1 - p,é" be the unique prime

ideal factorization of the ideal (p) in O. Let f; = (Opl:GF(p)). Then p satisfies the

’
decomposition law Y effi=n. O
i=1

If K is a normal extension over Q, then f] = =f, and e] = = e,, so the decomposition
law reduces to rpepfp = n. A rational prime for which ¢; > 1 for some i is said to be

ramified. Tt can be shown that the ramified primes are exactly the prime divisors of A.

Theorem 1.4: Let f(x) € Q[x] be monic and irreducible, 6 a zero of f(x), and let p be a
rational prime such that pJ I(0), the index of 0. Let f(x) = g1(x)¢ 1--g(x)€r (mod p) be the
unique decomposition of f{x) into monic, modulo p irreducible polynomials. Then the
prime ideal factorization and decomposition law of (p) are given by (p) = p1€! - p,€" and

’
n= 'Zlelfi’ where f; = deg(gi(x)), and p; = (p, gi(0)) fori e {1, ...,r}. O
1=

If p is any prime ideal, then p N Z = pZ for some prime p, hence there exists a unique
rational prime p such that p | p. Let f = (O/p:GF(p)), i.e. |0/pl = p/. Then N(p) = p. If
a = py™1--p;s™s is the unique prime ideal factorization of a non-zero integral ideal a, then
N(a) = N(p1)™1--N(py)"s.

A field K has class number 1 if and only if every ideal is principal. In this case the prime
ideals are exactly those ideals whose generator is a prime in O. If () = (11)€1 - (7)er is
the unique prime ideal decomposition of an integral ideal (&) (0 £ € Q), then it follows

that o =~ 71€1 -+ m,€r and this representation is unique up to order and unit factors. In this

23

case we say that the maximal order is a Unique Factorization Domain (UFD). Thus the

fields of class number 1 are exactly those whose ring of integers is a UFD.

1.3.4 Euclidean Division

Let D be an integral domain. As for rings of integers, we define an element b € D-{0} to
be a divisor of a € D (b | a) if there exists ¢ € D such that bc = a. A unit is again a divisor
of 1, and two elements @, b € D are associates (a ~ b) if @ = €b for a unit €.

A Euclidean function is a mapping f: D-{0} — Z>0 such that the following two
conditions hold.

i) If alb, then fla) < fib) for any a, b € D-{0},

il) For any a, b € D-{0}, there exist ¢, r € D such thata = gb+r and r = 0 or f(r) <f(b).
D is said to be Euclidean (for the function f) if a Euclidean function f exists for D. The
process of finding g and r is called Euclidean division. For example, Z is Euclidean for
the identity, and Euclidean division in Z is simply division with remainder.

There is a variety of algebraic number fields whose ring of integers is Euclidean for the
absolute value of the norm INI. If K is an algebraic number field with maximal order O,
then it is easy to prove, using the fact that the norm is multiplicative, that O is Euclidean
for the absolute value of the norm INI if and only if for any x € K, there exists y e O such
that IN(x - y)l < 1. If O is Euclidean for INI, then O is a UFD.

For any integral domain D and elements a, b € D, we call a number d € D a greatest
common divisor (gcd) of a and b if d | a, d | b, and for any dp € D such that dg | a, dg | b,
we have dp | d. It is easy to see that d is unique up to multiplication by a unit. g and b are

said to be relatively prime if gcd(a, b) ~ 1. For any a, b € D, d =~ gcd(a, b) can be found

using the Euclidean Algorithm, i.e. by applying repeated Euclidean division

a=qob+ri, r1=0 or flr) <fb),
b=qir1+r, r2=0 or firp) <fir1),

ry=qiry +r3, r3=0 or flr3) <fir),

24

until we obtain 7,1 = g7, + rps1 such that 7,41 = 0. Then rp~ gcd(a, b), and as for the

Euclidean Algorithm in Z, it follows that n = O(log max{f(a), f(b)}), and all numbers x
computed by the algorithm satisfy f(ix) < max{f(a), f(b)}.

25

Part I

A Public-Key Cryptosystem
Utilizing Cyclotomic Fields

26

2. Public-Key Cryptosystems Based on
Modular Exponentiation

2.1 The RSA Public-Key Cryptosystem

The most widely used and tested PKC is the RSA system, named after its designers Rivest,
Shamir, and Adleman [RSA78]. It is commercially available and is used by both the private
sector and the US Government. The mathematical basis for this scheme is the problem of
factoring — while it is easy to multiply two primes p, g, it appears to be very hard to extract
the factors p, g from a given product N = pgq. |
Before presenting the details of RSA, we require the following definition. For any integer
N, we define Euler’s totient function ¢(N) to be the number of residues a (mod N) such
that a is relatively prime to N. If N is a prime, then clearly ¢(N) = N-1. If N = pq is the
product of two distinct primes p, g, then all the elements a e {0, 1, ..., N-1} are
relatively prime to N except for 0, the p-1 multiples of g, and the g-1 multiples if p. Hence

O(NV) =pq - (1 + (p-1) + (g-1) = (p-1)(g-1).

2.1.1 Key Generation, Encryption, and Decryption

To generate a pair Kp, K of RSA keys, thg: designer chooses two distinct odd large primes
P, q. (In [RSA78], it is suggested that p and ¢ be roughly 100 decimal digits each to make
the scheme sufficiently secure. For more details on prime generation, see Section 2.1.3).
Set N = pq, then O(N) =(p-1)(g-1). Next, the designer selects a random integer e such that
0 <e <N and gcd(e, p(V)) = 1. He solves the congruence ed =1 (mod ¢(V) ford e Z,
0 <d <N, using the Extended Euclidean Algorithm. The public key is the pair Kp=
{N, e}, the secret key is Ks = {d}. N is the modulus and e and d are the encryption and
decryption exponents, respectively, of the scheme. The primes p and ¢ are discarded once

the keys are generated. The size of the public key is bounded by 2log N.

27

Henceforth, we assume that our text which we wish to encrypt is represented numerically.
This could be achieved by assigning a two digit integer to each character (A =0,B =1,
... » £ =25, with further numbers for special characters and possibly lower case letters),
or by associating with each character the binary value used to for its internal computer
representation (i.e. the character's ASCII or EBCDIC code). We then divide our plaintext
into numerical blocks M bounded by the modulus, i.e. 0 < M < N, and treat each of these
blocks separately with regards to encryption and decryption.

We may further assume that any such message block M is relatively prime to N. For

suppose that gcd(M, N) > 1, then since 0 < M <N, ged(M, N) must be p or q. The

probability P of this event is% + —;— = —\/% if p and q are of approximately equal size. Hence

for N sufficiently large, we have P < 10-100, a quantity which is obviously negligibly

smalll.
If a sender Alice wishes to encrypt a message M, 0 <M < N, under RSA, and transmit it to

a receiver Bob, she first obtains Bob's public key K p = {N,e}. She computes

EKp(M) = C, where C = M¢ (mod N) and 0 < C <N, and sends C to Bob. Bob can
decrypt the ciphertext C, using his secret key K = {d}, by calculating Dg (C) =M,
where M' = C4 (mod N) and 0 < M' < N. Then it follows that M' = M from the following

theorem due to Euler which is a generalization of Fermat's Little Theorem.

Theorem 2.1 (Euler): If M, N € Z20 are such that gcd(M, N) = 1, then MO(N) = 1

(mod N).
Proof: The residues a (mod N) such that gcd(a, N) = 1 form a multiplicative group G of
order ¢(V) with identity 1 (mod N). Since M (mod N) € G, we must have M'G! = yoOV)

=1 (mod N). O

1 For comparison, the estimated number of hydrogen atoms in our galaxy is 1068 (Smith & Jacobs [SJ73,
p- 537}.

28

Corollary: Let ed = 1 (mod ¢(V)). If C = M¢ (mod N), thén Cd=M (mod N).
Proof: Leted = 1 + kO(N), k € Z. Then C4 = Med = pM1+k¢(N) = M(MWV))" =M (mod N)

by Euler's Theorem.

The Corollary implies DKS(EKP(M)) = M for any message M. Since EKp(D[(S(C)) =C
also holds for any ciphertext C, RSA can be used as a signature scheme as well.
To perform RSA encryption and decryption efficiently, the following well-known

exponentiation technique (see for example Knuth [Kn81, pp. 441f.]) can be used.

Algorithm 2.1: For M,N, ne Z>0,0 <M <N, compute X = M? (mod N), 0 <X <N.

1. Obtain the binary decomposition 7 =§bi 2r-iof n,bje (0,1}, by = 1.
i=

2. SetX « M.
3. Fori=1tordo
Set X « X2 (mod N), 0 <X <N.
Ifbi=1,then setX « XM (mod N),0 <X <N. I

Clearly, no input of this algorithm requires more that O(log N) bits of storage, and the time
complexity of the method is O(r) = O(log n), so since e, d <N, the time and space

complexity of RSA encryption and decryption is O(log N).

2.1.2 Security

The security of RSA is at most as hard as factoring the modulus. For if a cryptanalyst
knows p and g, he can easily compute ¢(N) = (p-1)(g-1) and obtain the secret key by
solving the congruence ed = 1 (mod ¢(N)) using the Extended Euclidean Algorithm. In
fact, to find the secret key d, it suffices to know ¢(V). However, knowledge of ¢(IV) is

equivalent to knowledge of the factorization of V.

29

Lemma 2.2: Let N = pq. Given N and ¢(V), the factors p and ¢ of N can be computed in

constant time.
Proof: Since (N)=(p-1)(g-1)=N-p-qg+1,wehavep+q=N-o(N) + 1. Let b =
N - ¢(:§V) + 1. Then p + ¢ =2b and pg = N, hence p and g must be equal to the roots b +

Vb2 - N of the quadratic equation x2 - 2bx + N =0.

In fact, even recovering d will enable an adversary to factor N. For if 4 is known, then ed-
1 is a multiple of ¢(N), and Miller [Mi86] shows how knowlédge of such a multiple
enables an adversary to factor N. Hence recovering the secret key is equivalent to factoring
N.

No way of breaking RSA is known other than retrieving the secret key. It is unknown
whether breaking RSA is equivalent in difficulty to the factoring of N, i.e. whether
plaintext messages can be retrieved illegitimately, without factoring N. Both exhaustive key
search and factoring N are infeasible if N is sufficiently large.

The difficulty of an attack on RSA by factoring depends on the complexity of the factoring
technique used. No polynomal-time algorithm for factoring is known; furthermore, it is not
known whether such an algorithm exists. The best known general purpose factoring
algorithms (Morrison & Brillhart [MB75], Pomerance [Po85], Coppersmith, Odlyzko &
Schroeppel [COS86], Seysen [Se87], Lenstra [Le87], Lenstra & Pomerance [LP92]) all

have a typical computation time of L(V)c+o(1), where L(N) = exp(Vlog N log log N)
and ¢ 2 1. The function L(N)+o(1) is subexponential in log N, since (log N)k < L(N)c+o(1)
<N for any k € Z>0 if N is sufficiently large. The asymptotic complexity of any of these
procedures cannot be proved rigorously, but is based on heuristic arguments, except for the
method in [LP92], where the bound is a rigorous one for the expected running time. In
[Le87], Lenstra introduced a method using elliptic curves whose time complexity is

L(P)2+o(1), where P is the largest prime factor of N, with a space requirement of O(log N)

30

(as opposed to a polynomial in L(N) for all other methods); this reduces to L(V) in the

case where N = pq and p and q are approximately the same size.

Recently, an L'(N)¢+0(1)) factoring method, where L'(N) = ex;(?\/ log N (log log N)Z),
was developed by Lenstra, Lenstra, Manasse, and Pollard [LLMP90] for numbers of the
form N = n¢ + s where n, s > 0 and small. It is called the number field sieve and has been
generalized to factor arbitrary integers by Buhler, Lenstra, and Pomerance [BLP93].
Pollard [Po75] gave a method for finding a factor of N having complexity O(VP) where P
is the smallest prime factor of N. He also developed a practical method for discovering a
prime divisor P of N when P-1 has only small prime factors [Po74], and Williams
extended his technique to the case where P+1 has only small prime divisors [Wi82].
Hence, primes p, g such that any one of p-1, p+1, g-1, g+1 has only small prime factors
should be avoided.

The ninth Fermat number 229 + 1, a 155 digit number, was factored in June 1990 by
Lenstra, Lenstra, Manasse, and Pollard [LLMP93], using the number field sieve. It took a
total of four months of computing time on a distributed network of workstations plus one
supercomputer. Factoring a 200 digit number is étill far beyond our present computational

technology, and presumably this will not change for some time.

2.1.3 Choice of Safe Parameters

In their original paper [RSA78], the authors suggested generating random integers of
approximately 100 digits and testing them for primality using the Solovay & Strassen test
[SS77] to find primes p, g. However, it should be pointed out that it is possible to
illegitimately retrieve plaintext messages and thus break RSA without factoring the
modulus, if the primes p, g or the encryption exponent e are chosen carelessly.

As pointed out above, some factoring methods are quite efficient if one of the primes is

chosen relatively small, hence p and ¢ should be roughly of the same size. On the other

hand, a difference of squares factoring attack is successful if Ip-gl is too small. If y =Z ;—q,

31

x =L-2Q , then N = y2 - x2. If x| is known to be small, say x <B € Z>0, then a linear

search through the values of x =1, 2, ... , B will yield a non-trivial factorization of
N = (y-x)(y+x), if a value of x is found such that N - x2 is a perfect square. Furthermore,
Lehmer [Le07] proved that if Ip-gl < ZW, then p and ¢ can be found directly from the
continued fraction expansion of VN. For other factoring attacks, see Schnorr [Sc83b].

In addition, & = gcd(p-1, ¢-1) should be small. Let the least common multiple of p-1 and
g-1 be MN), then ¢(N) = SA(N). The decryption exponent also satisfies the congruence
ed =1 (mod A(N)), so if d is large, then A(N) is small compared to ¢(N), and it will be
easy to find d using the molulus ‘?»(N)‘

It can be shown (DeMillo et al [DDDHLS3, p. 47]) that any exponent e will leave at least
nine messages unchanged when used for encryption, but a bad choice of e leaves up to half
the messages unconcealed (Blakley & Blakley [BB179], Blakley & Boro§h [BB079], Smith
& Palmer [SP79]). The number of unconcealed messages can be kept to a minimum if both
primes are chosen to be safe, i.e. p = ip' + 1 for some i € Z>0 even and p' is a large prime
(similarly for ¢); this guarantees that both p-1 and g-1 have at least one large factor. In
addition, we should ensure that p+1 and g+1 also have at least one large factor each. For
efficient techniques for choosing suitable primes see Gordon [Go83].

Cycling attacks using repeated encryption have been studied by Simmons & Norris
- [SN77], Herlestam [He78], Rivest [Ri78], [Ri79], Williams & Schmid [WS79], Berkovitz
[Be82], and Jamnig [Ja88], but such attacks can be féiled by choosing the primes to be -
doubly-safe, i.e. p = ip' + 1 for some i € Z>0 even and p' is safe; again similarly for q.
There are also successful attacks for small exponents. In [DDDHLS3, pp. 58f.], it is
shown how in the case where e = 2 a plaintext M can easily be retrieved if it is encrypted
under two different moduli, and how two message which differ in only a few bits can be

recovered if they are enciphered using the same modulus. Hasted [Ha86] showed that for

any given encryption exponent, sending more than e(ez-l) linearly related messages

32

encrypted under different moduli is insecure. Finally, Wiener [Wi90] introduced an attack

. . 4
which is based on the continued fraction expansion of ﬁ- € Q and is successful if d < YN.

To foil these attacks, e should be chosen to exceed the larger of p and ¢ and 4 should be

sufficiently large.

2.1.4 Modifications of RSA

Many modifications have been suggested for RSA. The scheme has been modified to be
used in structures other than the multiplicative group of residues @ (mod N) where
ged(a, N) =1 (see Ecker [E083],.or the extensions of RSA to matrix rings by Varadharajan
[Va85] and Chuang & Dunham [CD91}). Kravitz & Reed [KR82] suggested replacing the
primes p, q by irreducible binary polynomials p(x), ¢(x). Mueller & Noebauer [MN81] and
Lidl & Mueller [LM84] proposed substituting the polynomial f(x) = x¢ (mbd N) by more
complicated functions, and recently, the use of Lucas sequences was suggested for an
RSA-like scheme (Smith [Sm93], Smith & Lennon [SL93]).

Pohlig & Hellman [PH78] developed a secret-key cryptosystem similar to RSA. Here,
instead of a composite number N, a prime modulus is used, and the exponents e and d are
both kept secret as the private key. The security of this scheme depends on the difficulty of

extracting discrete logarithms (mod p) (see Section 8.2, Part II).

2.2 Rabin's Signature Scheme
Our analysis in the previous section leaves two open questions with regard to the security
. of RSA.

° How difficult is factoring the modulus?

° How difficult is breaking RSA?
The answers to both these questions are unknown. However, the problem of factoring has
been known and studied for centuries, and up to now no polynomial-time factoring

algorithm has been found, nor has the question of the existence of such an algorithm been

33

answered. Factoring is widely believed to be hard, and for our purposes, we will be
content to share this belief.

The situation with respect to the second problem is more hopeful. While we cannot give an
answer to the question of RSA's security, it is nevertheless possible to modify RSA to
obtain a PKC whose security is equivalent to the difficulty of factoring its modulus. This is
achieved essentially by replacing the encryption exponent e by Ae, where A is a small
prime. The receiver, upon decrypting C = M*¢ (mod N) using decryption exponent d,
obtains not M, but M*, and needs to extract A-th roots of M2 in order to retrieve the
original message M. This results in a A-fold ambiguity for the value of M. While a message
with internal redundancy (such as English text) can easily be distinguished, the ambiguity
causes a problem if the plaintext is random, such as a key for a single-key cryptographic
session. So the encrypter needs to provide information indicating the correct root of M to
the decrypter.

The idea of raising a text to the A-th power before transmission, and extracting A-th roots
upon receipt was first introduced by Rabin [Ra79] for the case A = 2. His system is a
signature scheme, in which the signature S to a message M is essentially any one of the
four square roots of M2 (mod N), so here the ambiguity does not cause a problem.
Specifically, a person wishing to sign a message selects two distinct odd large primes p, g,
computes N = pq, and chooses a random integer b such that 0 < b < N and ged(b, N) = 1.
N and b are made public. To sign a message M, 0 < M < N, the signer computes a solution
S,0 < S <N, of the congruence S'(S' + b) =M (mod N), i.e. aroot §' of the congruence

x2 +bx - M = 0 (mod N). To verify the signature §', the receiver computes
V'=S§'(S"+b) (mod N), 0 <V <N. The signature is valid if V=M. If weset S= §' +g~

2
(mod Myand V=V + %— (mod N), 0 < S,V <N, then the message M is signed with §

such that §2 = M (mod N) and verification is done by computing V = $2 (mod N) and
checking whether V = M. (Here, -lzze Z if b is even, and %E tb (mod N) where 2t=1

(mod N), if b is odd.)

34

To compute a square root S (mod N), the signer computes x, y € Z such that x2=M
(mod p) and y2 =M (mod q). Since S = +x (mod p), S = +y (mod ¢q), the Chinese
Remainder Theorem yields four different possibilities for S, anyone of which may be used
as a signature to M.
p+l

If p=3 (mod 4), thenx=M 4 (mod p) is a square root of M (mod p) as pointed out in
Section 1.1.2. If p = 1 (mod 4), then one can use the methods by Shanks/Tonelli (Shanks
[Sh73], Dickson [Di66, p. 215]) or Lehmer/Cipolla (Lehmer [Le69], [Di66, p. 218]) to
~compute a square root x (mod p). Rabin also gives an O(log p) probabilistic algorithm .for
finding x (mod p). Hence we can sign messages in time O(log N) and verify signatures in
constant time.

Clearly, a message M can only be signed if M = 52 (mod N) has a solution S € Z. This is
the case if and only if the two congruences x2 = M (mod p) and y2 = M (mod q) have

solutions, i.e. if and only if M is a quadratic residue (both (mod p) and (mod q) (opposite:

quadratic non-residue). There is an efficient algorithm for checking whether or not x e Z is

a quadratic residue (mod p) by computing its Legendre symbol.

Definition 2.3: Let p € Z be a prime and let a € Z. We define the Legendre symbol (1%)

of a over p as follows.

G

If n e 220 and n =p1°1 - p,°r is the unique prime factorization of n, then we define the

1 if ais a quadratic residue (mod p)
):{ -11if a is a quadratic non-residue (mod p)
Oifp la

Jacobi symbol (%) of a over n as (%):

Lemma 2.4: Let p € Z be a prime and a, b € Z. Then the following holds.
2) (D)= (2Yb
()=o)

35

b) (§)= (3) if a=b (mod p)

o) (§)=<-1)231 =

So §2 =M (mod N) has a solution § if and only if (%—) = (%[) = 1. If a message M is such
that (—g—) =-1or (%) = -1, then Rabin suggests appending a random string U to M to
. , . . M' M’ .
obtain M', 0 < M' <N, and checking whether (7) = (—a—) = 1. Since the number of
quadratic residues (mod p) is equal to the number of quadratic non-residues (mod p)
1 Ml

(namely%l , one expects to find M' such that (—Ig—-) = (—q—) = 1 after four trials at a

random string U. An O(log p) procedure for evaluating (%/I?) is given in Section 7.1.

The security of this signature scheme can be shown to be equivalent to the difficulty of
factoring N as follows. Suppose an adversary is able to extract a square oot S' (mod N) of
a message M (mod N) signed with signature S.If §'=S (mod N) or §' = -§ (mod N),A
then no knowledge is gained. However, if §'# S, -S (mod N), i.e. §'= S (mod p) and
§'=-§ (mod ¢) or §' =-S (mod p) and §' = S (mod ¢), then it follows from 2 =M = §2
(mod N) that N1 (S'-S)(S'+S),NJS'-S,and NJS'+ S. Hence $'- S is a multiple of
p or g, so computing gcd(S' - S, N) = p or g will reveal the factorization of N. Hence an
algorithm for extracting signatures requiring time T(N) will factor N in time
T(N) + O(log N) with a 50 percent likelihood.

Unfortunately, any constructive proof of the equivalence of breaking the scheme and
factoring its modulus, such as the one above, gives rise to a chosen message attack. This is
an attack by which a cryptanalyst can break the scheme if he is in possession of a particular
message of his choice and the corresponding signature (a similar chosen ciphertext attack
can be mounted on the cryptosystems discussed below, see Chapter 5). Suppose an
adversary generates a random integer S' and computes M = S'2 (mod N). He then asks the

signer to sign M and reveal the corresponding signature S to him. If S £ S, -§' (mod N),

36

then the attacker can factor N and the system is broken. As indicated above, this attack has
a 50 percent chance of success.
Rabin points out that his scheme can be extended to the cubic case where signatures S must

satisfy $3 = M (mod N). Here, each message M has nine possible signatures.

2.3 Public-Key Systems Equivalent to Factoring

Since Rabin's scheme, a number of PKCs based on modular exponentiation have been
designed whose security is equivalent to the problem of factoring the system's modulus.
Williams was the first to incorporate Rabin's idea of squaring and extracting square roots
into a cryptosystem. In Williams [Wi80], he introduced a quadratic scheme which is
generalized in Williams [Wi86]. A cubic system is also given in [Wi86]. Both these
schemes will be discussed in more detail in Chapter 7. Harn and Kiesler [HK89] presented
a different modification of Rabin's scheme which identifies the correct square root in the
encryption and decryption algorithms.

A different extension of [Wi80] to the cubic case was recently presented by Loxton, Bird,
Khoo, and Seberry [LKBS92]. In their system, encryption and decryption employ
arithmetic in the quadratic field Q(~-3) rather than the rational integers. Finally, another
quadratic scheme is given in [Wi85b] (see also Salomaa [Sa90, pp. 159-166]). Here,

encryption and decryption are performed in the quadratic field Q(v¢) where c € Z is
chosen such that p = -(l%) (mod 4) and g = «6) (mod 4). The system [Wi85b] is the only

one which does not place any restrictions on the primes p and g (other than that they both
be odd primes).

Chapters 3-7 of this dissertation present an RSA-like PKC which can be used as a
quadratic and a cubic variant as well as with prime exponents exceeding 3 (see also
Scheidler & Williams [SW92]). The scheme is a generalization of Williams' extended
quadratic and cubic schemes [Wi86]. Like all the previous systems, it solves the problem

of ambiguity in the decryption and its secuﬁty is equivalent to the difficulty of factoring its

37

modulus. Chapter 3 discusses the mathematical preliminaries, namely the algebra of
cyclotomic fields. The system itself is given in Chapter 4 and its security is analyzed in
Chapter 5. Chapter 6 presents in more detail the algori.thms required for key generation,
encryption, and decryption. In particular, we give methods for Euclidean division in
cyclotomic fields, a generalization of the well-known djvisioh with remainder in Z, and for
the evaluation of residue symbols — these represent an extension of Legendre and Jacobi
symbols to prime exponents other than 2. Finally, Chapter 7 discusses the quadratic and
cubic case as well as, for the first time for a modular exponentiation-based system, the
quintic case.

As mentioned before, all of the schemes discussed above address ahd solve the ambiguity
problem in decryption. This can be done in two ways. The information required for the
decrypter to distinguish the correctly deciphered message can be either given in the
decryption algorithm as done in [Wi80] and [LKBS92], or transmitted together with the
ciphertext, as done in [Wi86], [Wi85b], and our scheme.

Finally, it should be noted that for any system of this kind, there is a price to be paid for the
additional information regarding its security over that of RSA.

¢ All schemes, with the exception of [Wi85b], need to place certain restrictions on the
primes p, ¢, and thus on the modulus N. It is conceivable, though unlikely, that a
modulus N = pq of this special form is easier to factor than an arbitrary product of
two distinct primes.

* The mechanisms for key generation, éncryption, and decryption are more
complicated than those for RSA and require more computation. However, the
overall asymptotic complexity is the same as that of RSA, namely O(log N).

e The public key is larger than an RSA public key, up to twice as large (4log N bits
rather than 2log N bits in the quintic case).

° As mentioned in the discussion of Rabin’s signature scheme, the proof of the

equivalence of breaking the system to the problem of factoring its modulus is

38

constructive and can hence be used to mount a chosen ciphertext attack, similar to
the chosen message attack against Rabin's scheme. However, a decrypter can foil
such an attack by preventing any potential adversary from obtaining the decrypted
fnessage corresponding to a ciphertext of the adversary's choice.

It should be noted that our observations in Sections 2.1.3 and 2.1.4 regarding factoring

and the choice of safe paramters also apply to the cryptosystems discussed in this section.

39

3. Introduction to Cyclotomic Fields

Much of this material can be found in Washington [Wa82, Chapters 1 & 2]. LetA € Z bea
prime and let { € C be a primitive A-th root of unity, i.e. { € C such that { # 1 and

A
{* = 1. Then fi(x) =; -

_} =xM1 + - +x + 1 is the polynomial with rational coefficients

-1
and minimal degree such that f)({) = 0. In fact fi(x) = h(x-t_,i), so the powers (!
1=

(1 <i<A-1)of § are exactly the zeros of fy(x). The field K = Q({) generated by { is called
a cyclotomic field; its degree over Q is A-1, and fj(x) is a generating polynomial for K.

It can be shown (see [Wa82, Proposition 1.2, pp. 1ff.]) that the powers {/ (1 <i <A-1) of
€ form an integral basis of K, s0 O = Z{ + -+ + Z{A1 = Z[{]. f A = 2, then { = -1 and
K= Q, so assume A > 3 for the remainder of this section. The conjugate mappings of K are
given by 6;({) = {ifor 1 <i < A-1, so K is a totally complex field. It follows that N(ct) = 0
for all a € K. Note that the last conjugate mapping G).1 is exactly the compex conjugation
¢ — {1 on K. Since {f e K for 1 <i <A-1, K is a normal extension over Q whose Galois
group is isomorphic to the cyclic group GF(A)* = GF(A) - {0} of order A-1.

Any unit € € O has a unique reprentation € = {11 --- ,°" where ¢, e1, ..., ¢, € Z,
0<e<A-1,and 1, ..., M, is a set of fundamental units in K. Since the number s of real
conjugate mappings is zero, it follows that ¢ =2§l, and the unit rank of K is » =?-E-3-.

1

Henceforth, let @ = 1-{. Then @1 = -i—a where a = til;i e O.
1=1

Lemma 3.1: N(®) =A.

Proof: N(0) = ﬁ(l-ci) =AM =A. O
1=

40

(-1
Lemma 3.2: The discriminant of Kis A = (-1) 2 AA-2,
(A-D(A-2)
Proof: Since (K:Q) =A-1,wehave A=(-1) 2 d(A.(x)). Now
vor A - MDD AL A
A = 1)2 =1

‘ N(AV)NA-1 AA-1
= N®' = -
1 and d(f).(x)) 7 X(8)] NCD) Y

previous lemma. The rest follows from the fact that A-2 is odd. O

= AA-2, using the

so '(6) = A

Lemma 3.3 (Decomposition of rational primes in O): Let p be a rational prime.

- 1- i
If p = A, then p = ew*1 where € = ﬁei, €= —I-—C—is aunitfor1<i<A-l,and wisa
1=

prime. If p # A, then (p) = p1 -~ Pr, where fp = ord(p (mod 1)) = min(n eZ,l pr=1
A-1

(mod A)} and rp, =_fp_'

Proof: Assume p = A. By Lemma 3.1, A = N(0) = w*-1e where € is given as above. Since

. - (3
N(1-8%) = N(1-{) for any i, it is clear that &; —11 ¢ is a unit for 1 <i < A-1. To prove that

® is a prime, assume that p is a prime ideal such that p | A. Then p | ® and hence pA-1 | A.
By the decomposition law, we must have (L) = pM1, so in the decomposition law
ep =A-1, fp =rp =1, so N(p) = A. Suppose (®) = pq where q is an integral ideal. Then
A = N(®) = N(p)N(q) = AN(q) and hence N(q) =1, g = O, and p = (w). It follows that ®
must be a prime.

Now suppose that p # A, then p is not ramified by Lemma 3.2, hence by Theorem 1.3,
®) =p1 -~ Pry Letpe {p1, ..., p,.p}, ie. p|p. Then f, = (O/p:GF(p)) and the field
O/p is a normal extension over GF(p) whose Galois group is a cyclic group generated by
the Frobenius automorphism Tp, characterized by Tp(a) = 0P (mod p) foralla € O. In

particular, t,({) = { (mod p). Let m = ord(p (mod 1)), i.e. p™ =1 (mod A) and m € Z>0

-1
is minimal. Then (t,)({) = {P™ = { (mod p), and if o = :ai {ie 0,a;€ Z for
=

41

1<i<A-1, we have (Tpy™(@) = %ai(tp)m(t_,)" = a (mod p). Hence (tp)™" is the identity on

1=

1
1
O/p, and since m is minimal, we must have m = ord(tp) = fp. From the decomposition

- law, rp= 7};1 a
p

Corollary 1: p=1 (mod 1) = (p) = p1--Pr-1, S0 ¢p =fp =1, rp = A-1.
Proof : Clear fromp =1 (mod A) < ord(p (mod A)) =1. O

Corollary 2: Let p # A. Then N(p) = 1 (mod L) for any prime ideal divisor p of p.
Proof: Clear from N(p) = p/p and f,, = ord(p (mod 1)). O

Corollary 3: Let o € O, o # 0, and let p be a prime ideal such that p J o. Then oN®)-1 =
1 (mod p).

Proof: If p = (w), then N(p) =A. Now ® = 1-{ | 1-{, hence {i=1={M (mod w) for |
1 <i<A-1, and by Fermat's little theorem, @* = @ (mod A) for all a € Z. Since A | C‘) for

1 <i<A-1, it follows that (B + v)* = B2 + y* (mod o) for all B, ye O. Let

-1 -1 -1 -1
o =§1ai§i € 0. Thena?= [&la,{‘]x E%iaik@i E&laici = o (mod w).
= = i= i=

Assume now that p # (). Then if 1, is the Frobenius automorphism generating the Galois

group of O/p over GF(p), we have o = tfp(a) = PP = gN(D) (mod p). O

Corollaries 2 and 3 of Lemma 3.3 enable us to define for any ideal a in O a multiplicative

mapping K — C as follows.

Definition 3.4: Let @ € O and let p be a prime ideal in O. Then we define

42

0ifp |l a,
[9‘_]= N(p)-1
P Ckifp Jo,where 0 < k<A-landa * = {k (mod p).

[g—] is called the A-th residue symbol of o over p. For any non-zero integral ideal a, we

! ! e; _
deﬁne[%] = [g—] , where a = Il{p,-e‘ is the unique prime ideal factorization (up to
1= i =

order) ofa. U

For A = 2, the residue symbol is simply the Legendre and Jacobi symbol as defined in

Definition 2.3.

Lemma 3.5: Let a, B € O - {0} and let a, b be non-zero integral ideals in O.

a) [%] = LE} if o =P (mod a),

o[9= (2]
ozl [S]l5)

Proof: By the definition of the residue symbol for composite denominators, there is nothing

to prove for ¢), and it suffices to prove a) and b) for any prime ideal divisor of a. Let p be
N(p)-1 N(p)-1

such a divisor. Then o =3 (mod a) implies « =B (mod p),soa » =B * (mod p)
N(p)-1 N(p)-1 N(p)-1

and hence [E] = [g—} Similarly, (@B) » =a * B X (mod p), therefore

-2

HIEE

Definition 3.6: Leta e O and B € O-{0}. Then we define [%] = [E%]

43

Note that this definition implies [g—] = [ﬁ] for associates B, B'. For primes ®t, we have
N(m)-1
a A
N(r) = N((m)), hence|—|=a * (mod m).
T

We will see in the next chapter that our cryptosystem requires an algorithm for evaluating

A-th residue symbols without factoring the denominator. Such an algorithm is only known
for the case where the denominator of the residue symbol is an integer, rather than an

integral ideal, as in the previous definition. In fact, currently we even require that O be

Euclidean for the norm. This reduces our system to the cases where A < 11.

Lemma 3.7:

a) 2<A<19 & OisaUFD.

b) 2<A<11 = OisEuclidean for the norm N,

Proof: for a) see Masley & Montgomery [MM76]; for b) see Lenstra [Le75]. O

It is not known whether O is Euclidean in the cases A = 13, 17, 19 (Lenstra [Le79]).

4. A New Public-Key Cryptosystem

Let p, g € Z be rational primes such that p=¢ =1 (mod L) and p, ¢ # 1 (mod A2). Set

N=pgandf= 9{_2N)_’ where ¢(N) = (p-1)(g-1). Let e € Z>0, ged(e, O(N) = 1. Since A If

and ged(e, f) = 1, the congruence Aed = 1 (mod f) has a solutiond e Z.
From Corollary 1 to Lemma 3.3, we obtain the unique prime ideal factorizations
(@) = p1-PAr-1, (¢) = q1°-qx-1 for p and g, respectively. Let p € {p1, ..., pa-1},

q € {41, .., qr-1}, so N(p) = p, N(q) = g, and N(pq) =N.
Let r € Z>0 be such that ged(r-1, N) =1, =1 (mod N), and [E%] = 1. In Section 6.2,

we will prove that r exists and give an algorithm for finding it.

r r
L 4.1:(=[=1, [—J# 1.
emma [p] q

Proof: Since gcd(r-1, N) = 1, we have r # 1 (mod p), hence r # 1 (mod p). On the other

hand, r* = 1 (mod N), hence p Ip | rA-1 = (r-1)(r-{)-(r-£*-1), so p I'r-§¢ for some
pl p-l,]
ie {1,..,A-1}. Therefore [%] =r* ={* (mod p), and since A Y%i, we have

r r r
[p} #1. [q:l;& 1 follows from [pq] =1, [

Just as the RSA scheme is based on Euler's theorem, a similar theorem gives rise to our

cryptosystem.
Theorem 4.2: Let X € Z, gcd(X,N) =1, [;))(—q] = 1. Then X/ = r? (mod N) for some
ne {0,..,A-1}.

45

Proof: Let[] ¢, [—] ,0<i<A-1,1<j<A-1. Since [b%] =[5ra] = 1, we have
[] g, [‘] (M. Then ’“&l—‘[—] ¢/ (mod p) andrl —-[ﬁ-] {-J (mod q). Define

n € Z such that jn =fi (mod L) and 0 < n < A-1. Then {fi = Cj""rl (mod p), so, after
-1.

raising this congruence to the power ((P-1)/)-! (mod X), we get { A = rn (mod p).
o, 21, y72!
Similarly, {fi=r A" (modq)and { » =" (mod q). Therefore X/ = [={ l
xB
(mod p) and X/ = [a—ﬁs { * =r"(mod q), hence X/ = r" (mod pq). It follows that

X-rmepqnZ=pqgZ,soX =r" (mod N). O

Corollary: If Z = XM (mod N), then Z4 = X (mod N) for some k € {0, ..., A-1}.
Proof: Let hed =1 +If,l € Z, and let n be as in Theorem 4.2. Set k = nl (mod 1),
0 <k < A-1. Then Zd = XAed = X1+l = X(Xf)l = X7l = Xr* (mod N). O

We are now ready to present our scheme.

Key Generation:

1. Choose two large primes p, ¢ wherep=qg=1 (mod A), p, ¢ # 1 (mod A2).

2. Find prime ideals p | p, q | ¢. Compute pq.

3. SetN=pq,f= 22

4. Choseee Z,0<e <N, ged(e, O(NV)) = 1.

5. Solve the congruence Aed =1 (mod f) ford, 0 <d <N.
6. Find S € Z such that 0 <S<Nand[J A1,

7. Set the public key to Kp = {r, S, N, e} and the secret key to K = {d).

46

As in RSA, the secret key d in Step 5 is computed uSing the Extended Euclidean Algorithm
to find d, x € Z such that Aed + xf = 1 = gcd(Ae, /) and can be found in time O(log N),

requiring space O(log N) for each input.

In Step 6, we merely require [B%l—] # 1; the specification [E’%] = {1 serves to simplify our

arithmetic. In order to find S, generate a random integer T and compute [E’%] = {k for some

ke {0,..,A-1). If k = 0, try another T, otherwise set S = 7! (mod N), 0 <S <N,
I
where k= -1 (mod A) and 1 €1 < A-1. Then [:—q] = [plq] = [kl = A1,

Algorithms for finding 7, p, q, and pq and for evaluating residue symbols are given in
Chapter 6. Note that our public key is up to twice as large as an RSA key (4log N bits),
although § can usually be chosen small, resulting in a key size of approximately 3log(V)

bits (50 percent larger than an RSA key).

Encryption: Let M € Z,0 < M < N be a message, gcd(M, N) = 1. Encrypt M as follows:
1. Detemline[fg[ﬂ ={m for some me {0, ...,A-1}.

2. Compute Mo =MS™ (mod N), M; = riMo (mod N) such that 0 < M; <N for
0<i<A-1.
.) LA A A A
3. Sort the M; in ascending order to obtain My < -+ < My_1 where {My, ... , M 3.1} =
{Mo, ..., M).1}. (Note that all the M; are pairwise distinct.) Find » such that
0<n<A-1and Mg =M,
4. Compute C = My (mod N), 0 < C <N.

5. Transmit {C, m, n}.

Decryption: Upon receiving {C, m, n}:
1. Compute Ly = C4 (mod N), L; = riLy (mod N) such that 0 < L; <N for 0 <i < A-1.
2. Sort the L; in ascending order to obtain 20 < e < 21_1 where {20, e s £}~-1} =

(Lo, ..., Ly.1). Find k such that 0 < k <A-1 and Ly = 1.,

47

3. Compute S-1 (mod N). (This need only be done once for each modulus N).
4. Compute f{\/l = $"L; (mod N) such that 0 < ICI <N.

Lemma 4.3: A} =M.
Proof: For all i € {0, ..., A-1}, we have M» = C (mod N) for 0 <i < A-1, and

[%%] = [E%]l [-3%] [piq]m = {m{(A-Dm = 1, hence all M; satisfy the requirements for

Theorem 4.2 and its Corollary. It follows that for 0 < i < A-1: L; = rilLg = riCd
= ri+j (mod MMo = M;j (mod A) (mod N) for some j, where all subscripts are taken to be
between 0 and A-1. Hence (Lo, ..., Ly-1} = {Mo, ..., M-1}, and after sorting, we get
2,- = A//\I,- for 0 <i<A-1. Therefore Mg = ICI,, = 2,, = L, and finally M= SmL=S-mMgy=

M (mod N). SinceO<M,A/>I<N, we haveICI=M. a

Lemma 4.3 implies that decryption is inverse to encryption. The security of our scheme is

discussed in the next chapter, and efficient algorithms are given in Chapter 6.

48

5. Security

In order to prove that breaking our scheme is as difficult as factoring N, we first require

three lemmas which are generalizations of results in [Wi86].

Lemma 5.1: Let Y € Z. Then there exists for any i € {0, ..., A-1} an integer X; such

that X;A = YA (modN)and[] gz[]

Proof: Letie {0,...,A-1} and letj e Z be such that[:I {/. By Lemma 4.1, we can

chose je {1,..,A-1}. Let k; e Z be such that jk; =i (mod X). By the Chinese
Remainder Theorem, there exists X; € Z such that X; = rki¥ (mod p)and X; =Y (mod g).

0 3] 515 (V]) [[

Lemma 5.2: Let Y € Z such that gcd(Y,N) =1and let m,n e {0, ..., A-1}. If-
C =Y* (mod N) and 0 < C < N, then there exists a unique M € Z, 0 < M <N, such that

encrypting M under key K = {r, S, N, e} yields {C, m, n}.
Proof: Since gcd(e, 9(N)) = 1, there exists g € Z be such that ge = 1 (mod O(N)). By the
previous lemma, there exists X € Z such that X* = (Yg)7t (mod N) and [{’%:l = 1. For

0 <i<A-1, define X; = riX (mod N), 0 <X; <N . Sort the X; in ascending order,

obtaining X() <eer < Xl-l, where {Xg, ..., X).1} = {Xo, v s Xx-; }, and let k be such
that X = 9(,,. Set M = §mX; (mod N), 0 <M <N. We need to prove that encrypting M

under K yields {C, m, n}.

ot (43T [[t

Step 2: Mo = MS™ =X}, (mod N), M;= Xpri = Xj4k (mod 1) (mod N), 0 < M; <N for 0 <
i £\-1, where the subscript i+k (mod 1) is taken to be between 0 and A-1.

49

Step 3: Since {My, ..., M.1}= {Xo, ... , X)-1}, we have ICI,- =}A(,- 0<igA-1) after
sorting. Furthermore Mo =X} = /)\(',, = 1{'\1,,.

Step 4: More = Xre = XMe = YMeg = YA = C (mod N), using Euler's Theorem.

Hence encrypting M under key Kp gives {C, m, n}. Since decrypting {C, m, n} under

Ks = {d} yields M, M must also be unique. O

Lemma 5.3: IfX, 7 e Z, X* = Y* (mod N), and [gi] - [gi]’ then ged(X -ri¥, N) = p

for some i e {0, ..., A-1)}.
Proof: X} - YA = (X -Y)(X - rY) -+ (X - r*1Y) = 0 (mod N). Assume that X - 7i¥ = 0
(mod N) for some i € {0, ..., A-1}. Then X = Y (mod pq), hence [] [pq] [Yq]

[;;] in contradiction our assumption. So there must exist i € {0, ..., A-1} such that

X-rY=0(modp)and X - iY # 0 (mod q). But then ged(X - #iY,N) =p. O

Theorem 5.4: If A is an algorithm which, given any cipher {C, m, n} will find the

corresponding plaintext M, then the following algorithm will factor N:

1.FindYe Z such that 0 <Y <N and [Jq

] # 1 (note that S is a possible choice for Y).
2. Put C =Y* (mod N), 0 < C <N, and select any m, ne {0, ..., A-1}.

3. Use A to decrypt {C, m, n}, obtaining M.

4. Put My = MS™ (mod N), X = Mg¢ (mod N).

5. For 0 <i <A-1, compute gcd(X - Y, N) until a nontrivial factor is found.

X M S JmN\e
P M 1in Step 3 i by L — | = = ({mf(A-Dmye
roof: M in Step 3 is unique by Lemma 3.2. Smce[p q] pq] [pq]) (€m¢)

=1, [;,—q] # 1,and X} = C = Y2 (mod N), by Lemma 5.3 we must have ged(X - 77, N)

=pforsomeie {0,..,A-1}. Q

50

Theorem 5.4 states that breaking the scheme is equivalent in difficulty to factoring the
modulus N; hence, unless it is significantly easier to factor a number N = pg such that p =
g= 1 (mod A) and p, ¢ # 1 (mod A2), compared to factoriﬁg the product N = pg for
arbitrary primes p, g, our system is secure, assuming that factoring is a hard problem.
Unfortunately, the algorithm given in Theorem 5.4 can be used to mount a chosen
ciphertext attack similar to the chosen message attack which can be mounted against
Rabin's scheme [Wi80]. Any constructive method for proving that the security of a
cryptosystem is equivalent to factoring the modulus makes the system vulnerable to such an
attack. An attacker need only generate Y and the cipher {C, m, n} as in Theorem 5.4. Then
he must convince his opponent to decrypt the triple {C, m, n} .and reveal the corresponding
message M. By computing X and factoring N as in Theorem 5.4, he can then find the
secret key d.

If A is such that it can only decrypt a fraction % of all messages, then we expect to be able
to find M and procede as above after & trials at a value of Y.

Finally, as pointed out in [Wi86], revealing r does not seem to compromise the security of

the system. By Lemma 5.3, an adversary could factor N if he found a A-th root of unity

X (mod N) such that [E’XE] # 1. But this corresponds to the case C = 1 in Theorem 5.4, so,

unless the number 1 represents a special case, the problem of finding X is equivalent in

difficulty to factoring N.

51

6. The Algorithms

As for RSA, we wish the overall complexity of our system to be O(log N). The key to our
scheme is a fast method for evaluating the residue symbol [EA%:I for a message M, since the

efficiency of such a method determines the overall efficiency of the encryption. Clearly, [tg{ﬂ

needs to be computed without factoring the denominator, as the knowledge of p or q
would lead to the discovery of p and g, and would hence enable an adversary to break the
system.
In addition, in order to generate our keys efficiently, we require fast methods for
performing the following three tasks: _

1. Given p, g, find prime ideals p | p, q lg (or integer primes x| p, ¥ | g).

2. Find pq (or ny).

3. Given p and ¢, find r such that gcd(r-1, N) = 1, rA = 1 (mod N), and [ﬁ] = 1.

6.1 Prime Ideal Divisors and Integer Prime Divisors
of Rational Primes

Lemma 6.1: Let p € Z be a prime such that p=1(mod A) and let a € Z be a primitive
A-th root of unity (mod p), Then any b e Z is a primitive A-th root of unity (mod p) if and
only if b = @/ (mod p) for some j e {1, ..., A-1}. '

Proof: If b € Z, b = a/ (mod p) for some je {1, ..., A-1}, then clearly b # 1 (mod p) and
PrA=ar =1 (mod p). The polynomial f(x) =5;:_—11 has at most A-1 distinct roots (mod p),
all of which are primitive A-th roots of unity (mod p), Since the powers @/ (mod p), 1 < Jj<
A-1, are all distinct roots of fy(x) (mod p), they must represent all the primitive A-th roots

of unity (mod p). O

52

Lemma 6.2: Let p € Z be a prime such that p = 1 (mod A). If @ is a primitive A-th root of
unity (mod p), then (p) = p1--pir-1 where p; = (p, {-af) for 1 <i < A-1.

Proof: Consider the generating polynomial fj(x) = ﬁ(x - {) for K. The zeros of fi(x)
=

(mod p) are exactly the primitive A-th roots of unity (mod p), and by Lemma 6.1, these are
A-1

exactly the powers of a (mod p). So fi(x) = 'ngi(X) (mod p), where gi(x) = x - al. By
=

Theorem 1.4, (p) = p1--par-1 and p; = (v, gi(0)) = (p, {-a) for 1 <i<A-1. O

Theorem 6.3: Let p € Z be a prime such that p = 1 (mod A). Under the assumption of
the Extended Riemann Hypothesis (ERH), a prime ideal divisor p of p can be found in time
O((log p)3), but most likely in time O(log p), using no more than O(log p) bits of storage
at each point in the algorithm.,

Proof: By Lemma 6.2, p and a represent p uniquely, so if a is chosen such that 0 <a <p,

then all inputs are bounded by p. To compute a, find a A-th non-residue v (mod p), i.e.
p-1 p1
vA #1 (modp),and seta=v* (mod p) , where we can choose 2 < a < p-1. Since the

A-th residues (mod p) form a proper multiplicative subgroup of GF(p)-{0}, by a theorem
of Bach [Ba90], the least positive A-th non-residue n (mod p) satisfies n < 2 log(p)2,
assuming ERH. Hence we can find v in O((log p)?) steps, although we expect to find one

A-DE-1)

much faster (in fact, in constant time) by trial as there are T possible values for v
between 1 and p-1 (there are onlypk;1 A-th residues (mod p) in this range). Once we have
found v, a can be computed in time O(log p) using fast modular exponentiation. O

Lemma 6.4: Let p € Z be a prime such that p = 1 (mod A) and let p = (p, {-a). Then

{p, C-a, (C-a)?, ..., ((-a)*2} is a Z-basis for p.
Proof: Let a = [p, {-a, ((-a)?, ..., ((-a)*2]. We wish to prove a = p.

53

We first show that a is an ideal. Clearly, a + a < a holds, so it suffices to show Oa < a.
Since a + a c a, Za C a, and any a € O is a Z-linear combination of the powers of {, it
suffices to show {fa c a for 1 <i < A-1, for which in turn it is sufficient to prove {a c a.

A_
Let A(x) = x;_—ll and g(x) = fi(x+a). Since g(x) € Z[x] is a monic polynomial of degree

A-1 and 0 = fi(£) = g({-a), we see that there exist ag, ... , ar-2 € Z such that
-2 . ax-l
(¢-a)A1 =) ai({-a)i. Furthermore, ag = g(0) = fi(a) = 1= 0 (mod p). Therefore
i

(§-a)*-1 is a Z-linear combination of p ana (€-a)! (1 <i<A-1) and is hence in a. Since
L(C-a)i = (C-a)i*+1 + a({-a)i for 1 <i <A-2, we see that {({-a)ie a for 1 <i<A-2.
Furthermore, {p =ap + p({-a) € a,so {ac a.

To see that p = a, we first observe that p, {-a, ((-a)2, ..., ((-a)*-2 € p, so a c p. Now
Oa c a, in particular Op < a and O({-a) < a, and since a + a C a, it follows that

p=0p+0{-a)ca+aca O

Lemma 6.5: Let p, g =1 (mod 1), N =pq. Let p = (p, {-a) and q = (g, {-b) be prime
ideal divisors of p and g, respectively, according to Lemma 6.2. If ¢ € Z is such that _
¢ =a (mod p) and ¢ = b (mod ¢), then pq = N, {-¢).

Proof: p = (p, {-c), q = (g, {-c) by definition of c¢. Ideal multiplication yields
pq = (N, p(C-¢), g(C-¢), (C-c)). Leta = (N, {-c). We need to show that a = pq.

Since N € a, p({-¢), q({-c) € Za c a, and ({-¢)2 = ({-c)(€-¢) € Oa = a, we immediately
see pq C a. For the other inclusion a ¢ pq, it suffices to prove N € pq and {-c € pq. To
see that {-c € pq, note that since ged(p, q) = 1, there exist x, y € Z such that xp +yg =1,
hence {-c =xp({-c) + yqg({-c) e pq. O

Corollary 1: (N, {-c, ({-¢)2, ..., ((-c)*-2) is a Z-basis for pq.
Proof:The proof is very similar to the proof of Lemma 6.4. Let a = [N, {-¢, ({-¢)?, ...

x— 9
(£-¢)*2]. To show that a is an ideal, if suffices again to prove {a c a. Let fi(x) =§—_—-1-1-

54

‘and g(x) = fi(x+c). As before, we can conclude that (% =gai(C'C)i for some
!

A
ag, ... ,ay-2 € Z and ag = g(0) =failc) = %_—1—1— Now since ¢ =a (mod p) and ¢ = b (mod

q), it follows that ap = 0 (mod p) and ag = 0 (mod g), so ag = 0 (mod N). Using the same

reasoning as in the proof of Lemma 6.4, we conclude that {a c a and thata =pq. O

Corollary 2: The product ideal pq can be computed from p and q using O(log N)
arithmetic operations on inputs requiring O(log N) bits of storage.

Proof: c¢ is computed using the Extended Euclidean Algorithm. O

If A <19, then O is a UFD by Lemma 3.7, hence we can use prime elements instead of
prime ideals in our system. In this case, all ideals are principal. If x € O is a prime divisor
of a rational prime p = 1 (mod A), then the ideal (%) is a prime ideal divisor of p, so (1) =
(», { -a) for some primitive A-th root of unity a (mod p) as in Lemma 6.2. Hence to find n,'
it suffices to find a generator of the principal ideal p = (p, {-a). We will present two
methods for finding ®. The first method is a modification of the algorithm for principal
ideal testing described in Buchmann & Williams [BW87a], [BW87b]. The second method
uses Euclidean division and thus requires that O be Euclidean, i.e. A < 11. Assume

henceforth that A < 19,

Algorithm 6.1: For p=1 (mod A), A £19, find a prime ® € O such that x| p.
1. Find a prime ideal divisor p = (p, {-a) of p as in Lemma 6.2.
Compute the set R = {((Xl), vy (OU)) } of all reduced ideals in O.

Compute a reduced ideal a ~ p and o € O such that p = (®)a.

Bowo

Find i e {1,..,/} such thata = (o). Set = ao;. O

55

Theorem 6.6: Algorithm 6.1 generates a prime divisor ® of p using O(I + log p)
arithmetic operations on inputs requiring O(log p) bits of storage.

Proof: Since O € R, a in Step 3 exists and a = (o;) for some i € {1, ...,7}. Then
p = ()a = (a;), so T = oo must be a prime divisor of p.

By Theorem 6.3, Step 1 requires O(log p) binary operations on inputs bounded by p. From
Buchmann [Bu87a], it follows that all numbers generated in Step 2 are polynomially ‘
bounded by the absolute value of the discriminant of K, i.e. by IAl = A*-2, and the number
of binary operations required is O(J). By [BW87b], the complexity of Step 3 is given by
O(log IIBll IAl) where B is the transformation matrix obtained by expressing a Z-basis of p
in terms of an integral basis of K and IIBll = max{lb;;l}. Furthermore, all inputs require
space O(log p). By Lemma 6.4, the numbers p, ((-a)! (1 <i <A-2) form a Z-basis of p. If
we choose the powers ({-a)! (0 < i <A-2) as an integral basis of K as in the proof of
Lemma 6.2, then B = [bjlij=o0,..,A-2 where bog =p, bj;=1for 1 <i<A-2, and
bjj =0 for i # j, hence IIBIl = p, and the computation time required by Step 3 is O(log p).

Finally, Step 4 performs a linear search requiring O(log I) comparisons.

Corollary: If c is as in Lemma 6.5, then a generator p of the ideal (N, {-c) can be found

in time O(/ + log N) and requiring space O(log N). O

In general, / = O(R) where R is the regulator of K (Buchmann [Bu87b]), so / could be very
large and Algorithm 6.1 need not be polynomial in the size of p. For A =2 and A = 3, we
have I = 1, and computations by Buchmann & Williams [BW87a], [BW87b] show that the
same is true for A = 5 and A = 7. Consequently, the complexity of Algorithm 6.1 is

O(log p) for A < 7. For 11 <A £ 19, the number of reduced ideals in O is unknown.

There is a much simpler method for computing ©t. However, in order for this algorithm to

be practical, we require the ring of integeré O to be Euclidean.

56

Lemma 6.7: If p = 1 (mod A). Any prime divisor & of p in O satisfies © =~ ged(p, {-a) for
some primitive A-th root of unity a (mod p). |

Proof: Let a be any primitive A-th root of unity (mod p). By Lemma 6.2, p = T1---T)-1
where (1;) = (p, {-a¥) for 1 <i<A-1. Letie {1,..,A-1}be fixed. Clearly, ;| p and
7; | {-al. Now suppose that J is a divisor of both p and {-a’. We want to show that § | m;.

Since { = @’ (mod =), we have ;| {-af and m; J {-o/ for j # i, implying w;} -’ for j # i.
Now 8 | {-af, so m;} & for j # i, hence 8 | L - 7, 1t follows that m; ~ ged(p, {-ab). O

Corollary 1: If L < 11, then an integer prime divisor 7 of a rational prime p = 1 (mod A)
can be found in O(log p) arithmetic operations and the norms of all numbers computed
throughout the algorithm are bounded by a polynomial in p.

Proof : We use the Euclidean Algorithm to find n. To prove the complexity result, it

suffices to show that log(N({-a)) = O(log p). To see this, note that N({-a) =ﬁ(§i-a)
1=

-1
=§ai <Aar1 <ApM1 usinga <p. O
1=

Corollary 2: A prime divisor p of N can be found in time O(log N) and the norms of all

numbers computed throughout the algorithm are bounded by a polynomial in N.

Proof: Find ©t = ged(p, {-¢), ¥ = gcd(q, €-c), where ¢ is as in Lemma 6.5. Set p = ny.
Clearly p IN and p | {-c. Suppose 8 I N, 81 {-c. Then 8 | N = my...w).1Y1...w).1 where
() = (p, C-cb), (wd-= (g, {-cP) for 1 <i < \-1. From the proof of Lemma 6.7, we see that
mi) G-, Wi} C-c for 2 < i <A-1, 50 8 | mqyq = p. Hence p = ged(V, {-c). The time and

space bounds are clear from the previous corollary. O

57

The public key Kp = {r, S, N, e} describes the ideal pq completely by Lemma 6.5. In the

case where we employ prime elements, the encrypter needs to find a generator p = my of

Pq as precomputation. Alternatively, Kp could be modified to be Kp = {, §, ¢y, ..., €A-1,

-1
e} where p =§?1ci§i.
=

6.2 Roots of Unity (mod N)

Our next task is to generate a primitive A-th root of unity 7 (mod N), 0 < r < N, such that
ged(r-1, N) = 1 and [b—’(ﬂ =1.

Algorithm 6.2: Given p, g =1 (mod A), p, ¢ # 1 (mod A2), p = (p, {-a), q = (g, {-b), find
r € Z such that
i) 2<r<N-1, ii) ged(r-1, N) =1,
i) =1 (mod N), iv) [E’ﬂ = 1.
1. Solve gx=1 (mod p),py=1(mod q) forx,ye Z,1<x<p, 1 Squ.
2. Setr=qxar1 +pyb (mod N),2<r<N-1. O

Theorem 6.8: Algorithm 6.2 generates r such that conditions i) - iv) hold im time
O(log N) and computes only numbers requiring O(log N) bits of storage.

Proof: We have a ={ (mod p), so a1 = {A-1 (mod p), and b = { (mod q). Then
r=ahl#1 (mod p) and r =b # 1 (mod g), hence ged(r-1, N) = 1. In particular, f;& 1, so
2 <r < N-1. Furthermore, 7= g* = 1 (mod p) and r» = b = 1 (mod ¢), so r* = 1 (mod

o iy][5 [-

The congruences in Step 1 are solved using the Extended Euclidean Algorithm, so Step 1
performs O(log max {p, q}) arithmetic operations on numbers bounded by max{p, q}.

Step 2 can be done in constant time and all numbers are bounded by N. O

58

If we repiace the ideals p, q in Algorithm 6.2 by prime divisors =, ¥ of p and g,
respectively, then condition iv) changes to [-I—] = 1. Since © and ¥ were obtained from

ideals p = (p, {-a) and q = (¢, {-b) using Algorithm 6.1 or the Euclidean Algorithm in O,
we can use the same algorithm.
The following lemma shows that one element r € Z satisfying conditions i) - iv) of

Algorithm 6.2 determines the rest of them.

Lemma 6.9: Let p, ¢ € Z be primes such that p, g=1 (mod), p, ¢ # 1 (mod A2), and
let r be as in Algorithm 6.2. Then s € Z satisfies conditions 1) - iv) in Algorithm 6.2 if and
only if s=7i (mod N),0 <s <N, forsomeie {1,..,A-1].

Proof: Clearly, if s = ri (mod N) for some i € {1, ..., A-1}, then s» = 1 (mod N) and

[—'—Y——] = 1. Also, if p | s-1, then 1 = s = ¥ (mod p) in contradiction to Lemma 6.1 (similarly

pq
for q), so ged(s-1, N) = 1.

Now suppose s € Z is such that s satisfies the conditions of Algorithm 6.2. By Lemma

6.1, s = ri (mod p), s =r/ (mod gq) for some i,je {1,..,A-1}. Then 1 =[Fs(i]

riErry [ri[ry-d [r)-i r ..
_[pJ [q], _[pq:l [q]l "[q}, . But [q] # 1 by Lemma 2.1, so we must have A | j-i,

and s=ri (mod N). O

6.3 Residue Symbols

Let a € O and let a be an integral ideal in O. Tt is unknown if or how the A-th residue

o
symbol {5] can be evaluated without finding the prime ideal factorization of a. Hence we

will only discuss the computation of residue symbols[%] fora,pe O,p = 0.

59

Furthermore, we will assume that o and B are relatively prime, since this holds for the

residue symbols [ﬁ_] and [—M—] which need to be computed in our cryptosystem.
. .

Our algorithm for the evaluation of A-th residue symbols is based on the properties given in

Lemma 3.5, together with the law of reciprocity plus its complementaries which were first
introduced by Kummer ([Ku75], see also Smith [Sm65]). Let A € Z be any prime and set

® = 1-{. Recall that for ye K, ¥ = 0).1(}) denotes the complex conjugate of v.

Definition 6.10: Let a € O. a is said to be primary if one of the following holds.
a) Case A =2: o= 1 (mod 4).
b) ([Ku75, p. 350], [Sm65, p. 118]) Case A = 3: there exists B € Z such that

i) a # 0 (mod w) ii) o =B (mod w?) iii) ot = B2 (mod A). O

: -1 A-1
Lemma 6.11: Let =2a,-l;i € Oand b =-Zf1i € Z. Then Tr(a) = -b and Tr(al)) =
= 1=

ar-jh - bforje {1,..,A-1}, so Tr(al) = -b (mod A) forje {0, ..., A-1}.

-1 A-1 -1
Proof: Tr(o) =§1a,- Tr(() = - ,Zfli = -b, since Tr({f) =i§f = -1for1<i<A-1. Let
= 1=) j:

-1
je {1, .., A-1). Tr(al)) =§ai Tr({i*) = ap.; Tr(1) + ZaiATr(Z;iﬂ') =a);j(A-1)- 3q
= i#hj e
=apjh-b. O
-1 A A-1
Lemma 6.12: Let o = 2 a;{, b= Z{Zi, ¢ = Yia;. Then the following holds:
1= i= i=1
a) o=0(modw) = b=0 (mod A).

b) o=b (mod ?) = ¢ =0 (mod A).

-1 -1
Proof: a =2a,-(1~) E:a;(l -iw)=b - co (mod ®2) and o = b (mod ®). Hence
= =

a=0(mod) & b=0(mod ®) & wlb e N I N®) & AlbAl & b=0 (mod A).
Similarly o = b (mod w2) & c=0(mod ®) & c=0(modA). T

Lemma 6.12 shows that the number B in the definition of a primary number for A = 3 is
A-1

B =b = 3 a;. Furthermore, it provides a practical method for checking conditions i) and ii)
i=1 , _

of the definition. A practical test for condition iii) depends on the field, i.e on the value of

A.

Lemma 6.13: If a, B € O are primary, then so is af.

Proof: Clear for A = 2. Assume A 2 3. Then, since ® is a prime and a, B # 0 (mod ®), we
have af # 0 (mod o). If a = b(e) (mod ®2) and B = b(B) (mod w2), then op = b()b(B) -
(mod w?) and (aB)(aB) = ()(BP) = b(cw)2b(B)2 = (b()b(B))? (mod A). O

Lemma 6.14: Every o € O such that a # 0 (mod ®) has a primary associate.
Furthermore, if B, B' € O are primary associates, then B = B'e? for some unit € € O.
Proof: If A =2, then the condition o # 0 (mod ®) implies that o is odd, hence either a = 1
(mod 4) or -o. = 1 (mod 4). Furthermore, if B ="' and B, B'= 1 (mod 4), then B =B'=
B'(£1)2. For A > 3 the lemma is proved in [Ku75 , pp.349-351]. O

We will give explicit algorithms for obtaining a primary associate for a given number in the

cases A =2, 3 and 5 in Chapter 7.

61

Theorem 6.15 (Kummer’s Law of Reciprocity [Ku75, pp. 345ff.], [Sm6S5, pp. 120f.]):

Let &, ¥ be two distinct primary primes in O. Then [Zc-] = [-\E] Q
v] |=n

. o
Corollary: Let a, B € O be relatively prime and primary. Then [E:, = [E]
o

Proof: Clear from Lemma 3.5b)and ¢). O

In addition to the law of reciprocity, Kummer gave formulae for the residue symbols of ®
and of a unit over a primary prime ([Ku75, pp. 485ff.], [Sm65, pp. 121ff.]). These are
called complementaries to the reciprocity law and can be shown to hold for composite

numbers as well. The following two complemetaries can be easily proven.

+
Lemma 6.16: Let ©t be a primary prime. Then [3—1-] =1 and [Q:I = {k where 0 < k < A-1
T T

and k = N(n)-1

(mod A).

Proof. The complementary for { follows immediately from the definition of the residue

N
symbol. For the complementary for +1, note that N(r) is odd, hence (is even and

N(n)-1
) A =1. O

+
Corollary: Let B € O be primary. Then [—'El-] =1 and I:ﬂ = {k where 0 < k <A-1 and

k= N1 (mod A).
A
Proof: It suffices to show the Corollary for B ~ my where & and are primary primes. By
Lemma 3.5 c) [ﬁ] - H [ﬂ] = 1. We have A2 | (N(m)-1)(N(y)-1) = N(ry) - N(x) -
ny. TiLy

62

Uy

N(y) + 1, so N(n;[)_l = N(;)_l + N(\;i)‘l (mod 1) and [E] = [%] [—C—] = [k where

N(y)-1

O0<k<Al,k= (mod A). O

The idea for our residue symbol algorithm is as follows. Let a, B € O-{0} be relatively
prime. By Lemma 6.14, there exists a primary associate B' of . Then from Defintion 3.6,

[ﬁ] = [95] Let wk be the exact power of o dividing o, i.e. wk Il o.. Again by Lemma 6.14,

B’

we can write o = ewky where € is a unit, @ J v, and v is primary. Then by the law of

reciprocity, [9{’ = [9}—} = [i] [-(gjlk [—B—{l where [ijl and [9] can be evaluated directly,
Bl LBl LBILBY Ly X B

using the complementaries, and we can repeat this procedure for the residue symbol [%]

This gives rise to the following algorithm.

Algorithm 6.3: For o, B € O-{0} relatively prime, compute s such thatl:-g] = (s,

0<s<A-1.
1. Sets=0.
2. Find a primary associate B' of B.
3. Find ¥ e O such that [ﬂ - [_H and N(Y) < NB).

4. { Eliminate factors @ }

a) Setk=0.
b) While Tr(y) =0 (mod A) do
-1
setw—f-:(-y)-l it ke—k+ 1.
(0] Ai=1

5. { Make v primary }

Find a unit € such that y' = €y and 7 is primary.

63

® .| € .
6. Use the complementaries to find i, j € {0, ..., A-1} such that [B—] =, [B—'] ={.
Setse—s+ki+j(modA),0<s <A1
7. IfN(Y) =1, then

use the complementaries to find / € {0, ..., A-1} such that [By—'] =,

setse—s+I(modA),0<s<A-1,

else

set o « B, B' < v. Goto step 3. U

Theorem 6.17: Algorithm 6.3 terminates after a finite number of iterations and computes

the residue symbol [g} —(5,0<s <AL,

Proof: By Lemmas 6.11 and 6.12, we have X Il Y ¢ A% Il Tr(Y), so after Step 4, we have

v'# 0 (mod ®). The primary associate Yy of y' in Step 5 exists by Lemma 6.14. Then

{9‘—] = [ﬁ] li—y—'il ='[—(2Jk [_e_] [l] = Cikﬁ!:@—:], hence we need to add ik+j to s as done in
pJ LB'JLB'Y LB'J LB'JLP Y |

Step 6, and (in the case where N(y) > 1) replace a by B' and B' by vy as done in Step 7,
after which the procedure is repeated. Now N(y) = N(y) € Z>0 and since the norm strictly

decreases each time Step 3 is executed, we must eventually have N(Y) = 1, so [EY—] ={/can

be computed from the complementaries, and adding / to s yields the final value of s. O

e :
In order to compute [—J for a unit € as required in Steps 6 and 7 of Algorithm 6.3, we write

€ = +{mmJ1--n,Jr where 0 < m < A-l,jye Zfor1<v<r, {n1,..,N,} is a system of

fundamental units in K, and r=0ifA =2, r =2:2£ if A = 3. If the complementaries for the

=

fundamental units are givén by [V] = CeV(B), 0<ey(B)<A-1,forve {1,..,r}, then

NE-L, .S e By,

by Lemma 6.16[%] ¢ »

~ |

]
o

Theorem 6.18: If each individual step of Algbrithm 6.3 can be performed in constant
time, then Algorithm 6.3 performs O(log N(B)) arithmetic operations on inputs whose
norms are bounded by max {N(a), N(B)}.

Proof: The space bound is clear since the initial values of o and B have norm at least as
large as the norms of any of the numbers subsequently computed by the algorithm.
Suppose that N(y) = 1 after A iterations of Steps 3 - 7 of the algorithm. Let the loop in step
4 be executed my, times in iteration i (1 £ < h). Since each individual step only requires
constant time, the total number of arithmetic operations performed in A iterations is

N
O(h + mp + - + mp). Let é— (Q 2 1) be an upper bound on the ratio N(Y)

in Step 3. Since

division by ® reduces the norm by a factor of A, N(B") is reduced by a factor of at least
QA™Lin the p-th iteration of Steps 3 - 7, hence # iterations reduce N(B') by a factor of at
least QRAM1IT+Mh Tt follows that QA1+ Mh < N(B") = N(B), so the overall

complexity of Algorithm 4.3 is O(h + m1 + - + mp) = O(log N(B)). T

If &, y are prime divisors of p, ¢ = 1 (mod L), respectively, as in our cryptosystem, then

under the conditions of Theorem 6.18, the residue symbols [L] for a partial key S and
ny.

[ﬂ] for any message M using modulus N = pg can be computed in time O(log N(ny)) =
.

O(log N), and all norms are bounded by N.
In order for Theorem 6.18 to hold, we need to find constant time procedures for Steps 2,

3,5, 6, and 7 of Algorithm 6.3, Furthermore, it is clear that Algorithm 6.3 converges more

65

N(Y)

rapidly for small ratios 5 hence we will also seek to maximize the value of Q whose

reciprocal bounds this ratio.

6.4 Euclidean Division
Let x € K. Recall that Euclidean division yields y € O such that N(x - y) < 1. For A = 2,
Euclidean division reduces to division with remainder, modified to allow for negative

divisors. Forxe Q, sety = Lx), or alternatively, y = Ne(x). Here, LxJ denotes the largest

ineger not exceeding x and Ne(x) denotes the integer nearest to x, i.e. Ne(x) = |_x+%_|

1
Then0<x-y<1lfory= LxJ, and be-yl < ‘2' for y = Ne(x).

Assume that A 2 3 for the remainder of this section. We will find a simple sufficient

-1
condition guaranteeing N(x-y) < 1. Let z =$-:‘zil;i e K,z;e Q for 1 <i<A-1. Define
=

A-1
lizlly = 'ZIZi and lizlh =
l:

Lemma 6.19: Tr(zz) = Alizllp2 - lizll12.

A=-12-1 L a-1 A-1 ..
Proof: Tr(zz) = 2 z z,.ijr(Cl_J)=(l—l)Eszr(l))+ Z Zz,.zl.Tr(Cl—J)
i=1j=1 =1 i=1j#i
A-1 A-1 A-14A-1
= (l-l)ézf =Y Dzz; =MbY Y zz = Mizllp? - 12120

i=1j=#i i=1j=1

-

Corollary: Tf(z?) <AMizih2, O

A-1
Lemma 6.20: N(z2) < (%%2]7

66

Proof: Using the arithmetic-geometric mean inequality, we obtain

- _ 1 -1 o
2| Hoo | = Hiooe _1_2, ol [T
N(2) {ﬁo,(z)]z ijk)’,(z)l S[X-l;: Gi(2) 1 .

Since N(z) = 0 for all z € K, we can extract square roots in this inequality. O

A1
Corollary: N(z) < [% uzu22) 2. o

Hence we obtain a Euclidean division method if we can find for any x € K, y € O such

A-1
that Iyl <A | =—.

6.4.1 Direct Euclidean Division

-1
Letx =§1A;Ci, x;i€ Q for 1 <i<A-1. An obvious approach is to set y; = Ne(x;). Then
=

Ixj - yil £ 15, hence lix - yli;2 < }2—1 and by the Corollary to Lemma 6.20, we have
A1
N(x-y) < G) 2 . Hence this will yield Euclidean division only for A = 3, and we obtain

the bound N(x - y) < %

6.4.2 Uspensky’s Euclidean Division
Uspensky ([Us09], see also [La69], pp. 228-231) introduced a Euclidean division method
for the case A = 5. We will present his method for arbitrary odd A. For 0 <i < A-1, let

Ai=LTr(x¢{- . Then it follows that Tr(x{¥) = A; + 8; where 0 < 8; < 1 for 0 < i <A-1.
From Lemma 6.11, x; = i(Tr(xC'i) - Tr(x)) = %(A i-Ag+ 9;-8g) for 1 <i<A-1; hence

we obtain
A-1 -1 -1 A -1
0= i%i + Tr(x)J= ;(Ax; +Tr(x)) =1- Tr(x(?) =i§64,- +§6i,

67

-1
SOZ)& e {0, .., A-1}.
1=

-1
If§;=0forallie {0,.., A-1}, then set y;= Ne(x;)) and y = iﬁ’ici € 0. Then the fact
=

.1 -1
that A is odd, together with Ax; = A; - Age Z and Ix; - y;l < % implies Alx; - y;l < 7»7 or

bej -yl < &2:711- for 1 <i <A-1, hence in this case by the Corollary to Lemma 6.20:
A-1
(A-1)2
Ny s|——12,
Gyl
yielding the bounds N(x-y) < 1 for A =3, N(x-y) S 16 5 for A =5, and a bound exceeding 1

forA27.
If 8¢ > 0 for some k € {0, ..., A-1}, then set n; = A; - Ag (mod L) such that In;l < ;%1 for

A-1 -1 1
ISiSK-I.ThenO=.§O4,- 2) E(A, Ap) +2} = Zn, gﬁ (mod A).
i= I

Suppose nj = 0 for some j € {0, ..., A-2}. Then set again y; = Ne(x;) (1 £i < A-1) and
-1
y= irvc Clearly Ix; - yil < 2 for 1 <i <A-1. Furthermore, since nj = 0, we have
=

1 1 1 1 1 1
X(Aj-Ao) e Z and X(Sj'&’) ’ < 5»— <7, hence y; = 5: (Aj-Ag) and Ixj - yjl = ;L-(Sj-ﬁo) < x

Now suppose that n; # 0 forall i e {1, ..., A-1}. Then we must have nj = ny for some

-1 A-
5 ke {1,..,A-1}, j <k, for otherwise {ni, ..., nx-1} 2{_17, -712—3, e s A 21} and

-1
0= Zn, Z EZ) i (mod A), contradicting 0 <§)8, < A. In this case, consider

1 1 -1-f
X =xGJ= %1)' e ixzcl'ﬁx +xj + E‘ G = >211+l ALt - xjﬁ.cl +)ﬁr‘mﬁ’
i=j+1 [=A+1-j 1 =
1-j ' . -1
= le%(xu-j - x)G! - x AT + E(xm-x - x){! =§{YIC’,

[=A+1-j

68

-1
and set ¥y = Ne(X)) for | S/ <A-1,Y =2Y1C’, y = {JY. Again we have IX;- ¥/l < -12— and

since nj = ng, we have 71_» (Aj- Ap) € Z and li—(Sj - Sk)l <i< % Since 1 <k-j £ A-1-j, it
follows that Xp.j=xp-xj = i— Ap-Ap + II (O - Sj), $O0 Yi.j= II(Ak -Aj) and
Xg.j - Vil < 51: Hence x - y = {/(X - Y) has its k-th coefficient bounded in absolute value

by ;—h and all other coefficients by %

From the Corollary to Lemma 6.20, we obtain for the case &3 > 0 for some k:
A-1

A -2
N&-y) <[7L- (%—— + IIEJF

Wthh yields the following bounds:
A=3: Nx-y)< 23 Computing the norm directly yields a shghtly better bound of

1.1 .19
N(x - ¥) = (x1 - y1)2 - (x1 - y1)(x2 - y2)+(xz y2)? <22 23 32736

A=5 N(x- y)<(,)2 6241

For A 2 7, we obtain a bound exceeding 1, so this algorithm will not yield Euclidean

division.

6.4.3 Kummer’s Euclidean Division
An algorithm given by Kummer ([Ku75, p. 87]), details given by [Le79]) for the case

A = 5 slightly improves Uspensky’s bounds. It uses a slightly stronger version of Lemma

6.19. For reasons of symmetry, we will represent field elements as linear combinations of

all A roots of unity 1, , ..., (M1 (note that this representation is not unique anymore). Let

-1 A
= gzicie K,z;e Qfor0<i<A-1.
1=

-1 A-1
Lemma 6.21: Let ¢ € R. Then Tr(zz) = ké(z,- -¢)?- (Eézi - c)]l.
i

l

69

-1 A-1
Proof: KZ(Z,- - ¢)2 (2(2, c)]z = 2 2 - 2hc Zz, + (Ac)2 [%l - XCJZ
{ i=

-1 A-
= ngiz - (%,Jz = Tr(zz), where the last equality follows using the same reasoning as in
1 i=

the proof of Lemma 6.19.

Using Lemma 6.20, we obtain the following

. A-1
A &l 2
Corollary: Let ¢ € R. Then N(z) £ 1 (zi-¢)2| .
-1 =

-1
Now letx =D xilie K,x;je Q for 0 <i<A-1. For 0 < i <A-1, set y; = Lx;] Then
1=

-1 A-1
y = gyicie O andifz=x-y= ;)ziCi, then0<z;<1forie {0,..,A-1}. Let
! 1=

Zmax = max{z; 10 <i <A-1) and zpmin = min{z; 10 <i <A-1}. If Zmax - Zmin S%l then

there exist j, k€ {0, ..., A-1} such that Izj - z;l < i— Otherwise let i be such that z; = zmax.

Replace z; by z;-1, i.e. replace z by z-{! and y by y+{i € O. Then since l_)—} < Zmax - Zmin

<1, we have -51; < (zmax - 1) - zmin < 0, so again we have found j, k € {0, ..., A-1} such

that Izj - z¢l < l. Now let ¢ =—zi—§—zk. Then Izj- cl = Iz - cl = 12421 -zpl £ — 1 and for
A 2\

ie {J,k}, wehave lz; - cl S%{lzi -zjl +lzi - zp) < 1. If lzj - ¢l 2 ; then replacing z; by

one of z;1 or z;+1, i.e. again replacing z by one of z-{i or z+{# and y by one of y+{i or y-{

will achieve Iz; - ¢l < ; From the Corollary to Lemma 6.20, we get
A-1

A2 Y2
Nx-y) < [?\-1 (ﬁ + 2%2)]

70

2
which yields N(x - y) < % forA =3, N(x-y) < G—g) = 56?1_%0(9) for A = 5, and again a

bound larger than 1 for A 2 7.

6.4.4 Lenstra’s Euclidean Division

In [Le75], Lenstra proves that if { is a primitive m-th root of unity (m € Z,) such that
m # 16, m # 24, and o(m) < 10, then K = Q({) is Euclidean for the norm. Since his
results can be used as the basis for a Euclidean division algorithm, we will repeat some of
the ideas here.

Let K be an algebraic number field of degree n over Q. We define Kg to be the R-algebra

K®qR, i.e. if ay, ..., oy is a Q-basis of K, then KR ={£1aiai la;je R for 1<i < n}
=

is an integral domain and a vector space of dimension n over R. All conjugate mappings

0;:K — C have canonical extensions 6;:Kr — C (1 <i £ n). For x € KR, define p(x)

= ﬁ‘lci(x)ﬂ. Then :Kr — R is a positive quadratic form on the R-vector space Kr. The

1=

Sfundamental domain Fg with respect to O is Fg = {x € Kr ! u(x) < u(x-y) for all ye O}.

Lemma 6.22: Fgr + O = Kg.
Proof Lenstra [Le92]: We only need to prove Kg Fr + O. It is possible to choose an

R-basis By, ... , B of KR such that if x = gaiﬁ,- € KR (a; € R for 1 £i < n), then u(x)
1=

= zlaiz. Set lxll = 4 / Zaiz. Then p(x)= lIxli2 is the square of the Euclidean norm of x
1= =

with respect to the basis By, ... , Bp. Now x € FR if and only if llxll < llx - yll for ally € O,

i.e. if and only if x is at least as close to 0 with respect to II-ll as to any other point in O.

71

Let x € Kg. Since O is a lattice in KR, there exists a point y € O which is closest to x,
i.e. llx - yll is minimal. Then x - y has O as its closest lattice point, so x - y € Fr. Hence if

wesetz=x-y,thenx=z+ywhereze Frandye 0. O
Corollary: fF =FprnK={xe Klux) <u@-y)forallye O}, thenF+ 0 =K. O

Lemma 6.23: Let x € K and let y € O such that pu(x - y) is minimal. Then x -y € F.
Proof: We need to show that u(x -y) <pu(x-y+u)forallue O. Letue O and let

v=y-ue 0. Since iW(x - y) is minimal, we have p(x - y) Sux - v) = u(x -y +u). O

Now let K be a cyclotomic field generated by a m-th pﬁmitive root of unity (m € Z23).
Then w(z) = Tr(zz) for any z € K. Let x € K. If we can choose y € O such that u(x - y) is

sufficiently small, then Lemma 6.20 provides an upper bound on N(x - y), and the

previous lemma shows that ring elements u with z = x - u € F are possible candidates for
2. 1
y. Let m = A be a prime. Lenstra shows in [Le75] that in this case (z) € —5— l for all
A-1 A-1

z € F. From Lemma 6.20, we obtain N(z) < (u (z)) 121) 2 forze F, yielding the

following values for a bound Q on N(x - y): 0 =—;— forh=3,0= 211- forh=5,0= 58-7— for

A =7,and finally, @ =1 for A = 11.
Lenstra does not provide an explicit algorithm for generating for x € K a ring element

y € O such that p(x - y) is minimal. We will show that there are only A possible candidates

for y, all of which can be easily computed from x.

Lemma 6.24: Letay, ...,a,€ R,a1 < <a,. Letbj=a;for2<i<n-1,by=ay + 1,

bp=a,-1.1fa,-a; > 1, then i,biz <£1ai2.
= 1=

Proof:) bi2=(a1+1)2 +2ai2 +(ap-1)2= 2(1,‘2 +2(a1-ap+ 1) <£Xai2. 0
= = 1= =

72

Lemma 6.25: Let x € K and let y € O such that y(x - y) is minimal. Let z=x -y

=gz,{}1i where zg <+ <z).1. Then z).1 -z < 1.
i

Proof: Sety' =y -(HO +(HA-1e O, 2=z +(HO-(HA1=x -y ez =gz{CUi
i

where z;'=z;for 1 i <A-2,z9' =20 + 1, zp.1' = z)-1 - 1. Suppose z).1 - zg > 1.

A-1 A1 -1 -1
Then Y z;' = 3 z; and by Lemma 6.24 2)2,-'2 ‘>§zi2. Using Lemma 6.21 with ¢ =0, we
i=0 =0 1= !

obtain p(z') < u(z), contradicting the minimality of u(z). O

-1
Theorem 6.26: Let x = leK, z'=x;- I_x,-_l for0<i<A-1.Let z; = Zp; where
1=

-1 =
0<zp<<z7.1<1. Setz0) = gzi'ci = gzicui, 20D =z0-1) + CHjfor 1 <j < A-1. If
l i

y € O is such that y(x - y) is minimal, then x - y = z() for some k € {0, ..., A-1}.

-1
Proof: Let y € O be such that pw(w) is minimal where w=x-y. Setu = x,-_ll;i e O,
!

then x =u +z0 =y + w, so w- 2000 € 0. Hence if w =gwicui, then w;-z;=n;je Z
]

forallie {0,..,A-1}. If z;=zjand n; < nj for some i <j, then swap i and j to obtain
n; 2 nj. This does not change the order of the zy (0 < v <A-1).

Let0<i<j<A-1.Then 0 <zj-z <1, hence w; - wj<nj-n; <1+ w; - wj. Now since
H(w) is minimal, by Lemma 6.25, we must have lw; - wjl < 1,s0-1 <nj-n;<2or
nj-ni€ {-1,0, 1}. Suppose n; > n;, then nj- n; =1 and z; < zj by our renumbering of the
zy hence wj=nj+zj>n; + 1 + z; = w; + 1 in contradiction to lw; - wjl < 1. Therefore

nj < n;. 1t follows that nj - n; € {0, -1} and 0 2 n1-ng 2 -+ 2 ny.1-np = -1. Define k such

73

that n; - ng =0 fori <k and n; - ng =-1for i 2 k. Then w; = z; + ng for i <k and

wi=2z;+ng - 1fori=k. Hence

w =2(wi+no)t}li +i(wi+no-1)cui = Z(W{H)Cﬂi +2w,~§ui + (no—])gcm
i= i=k 1= i= I
= 7(0) +2Clli =70, O
[=
A2-1

Corollary: z®) e F for 0 <k <A-1, hence p(x - y) < T 4

The previous theorem and its corollary give rise to the following Euclidean division

algorithm.

-1
Algorithm 6.4: Givenx=) xi{ie K, find ye O such that x-y € F.
1=

-1 -1
1. ForO0<i<A-1sety;= |_)ci_| and z;'=x; - y;. Set z =§zi'§i, y =§)y,{i.
1= 1=
2. Sort the z;' in non-descending order, i.e. let z; = zui' and 0<z9<z1 < <231,

: A2-1
3. While u(z) > —1—2— do

sety <y - (M0, z « z + CHo.
sort the z; in non-descending order, i.e. set
1=120,20=121, ... 2\ 2= ZA-1, ZA-1 = ¢+ 1. OO
Clearly y € O in each step. By Theorem 6.26 and its Corollary, the algorithm terminates

-1
after at most A iterations of step 3, after which we will have added 2}@" = 0 to the value of
1

z in step 1. Hence this algorithm produces y € O such that N(x - y) < 1 in constant time.

74

6.4.5 Summary

We summarize the bounds obtained for the four Euclidean division algorithms given in the

previous four subsections in the following table.

| Algorithm A=3 A=5 A=7 A=11
Direct ; - - -
Uspensky % (%_(93)2 - -~
Kummer ;—}1 (.;%)2 - -
Lenstra %— % :28_7 1

75

7. ThecasesA=2,3,5

As mentioned in Section 2.3, Williams described a quadratic and a cubic scheme [Wi80],
[Wi86]. Both schemes are slightly more restrictive than our system, since they require

p = 14X (mod A2), ¢ = 1-A (mod A2) instead of the weaker conditions imposed on p and
q by our scheme. Then f=-1 (mod A), hence% € Z. Let e € Z be as in Chapter 2, and

letde Z,0 < d< N satisfy ed E%} (mod ¢(NV)). Again, we let T, ¥ € O be primes such

-1

that © | p, ¥ | g. Finally, let r € Z such that T 1= 0 (mod N). For A = 2, we have
, p-l, q-1 '
r=N-1 and by Lemma 2.4 ¢) (ﬁ)= -2 = 1. For A = 3, we will see in Section

7.2 that it is easy to compute 7 € Z such that 7 = { (mod my). Then [—':—] =3 3=1.
Yy

The encryption and decryption algorithm are based on a slightly different consequence of

Theorem 4.2.

Corollary to Theorem 4.2: Let X € Z, ged(X, N) = 1, and [—’—(—] =1.IfZ=X)e

oy

(mod N), then Z4 = rkX (mod N) for some k € {0, ..., A-1}.
Proof: Let ed =f‘;\—1 +I0(N), l € Z. By Theorem 4.2, X/ = rk (mod N) for some

ke {0, ..,A-1} and by Euler's Theorem X¢(V) = 1 (mod N). Then Zd4 = XAed =

Xf+1+MO(N) = pkX (mod N). O

7.1 The case A =2

This case is a modification of the generalized version of Williams' quadratic system [Wi80]
described in [Wi86]. Here we have p=g¢=3 (mod 4), t =p,y=¢q,7r=N - 1, and the

residue symbol reduces to the Jacobi symbol described in Definition 2.3. To generate a

76

key, we need to find a quadratic non-residue S of N such that 0 < § < N. The public key is
then Kp = {S, N, e} and its size is bounded by 3log(N) at worst and 2log(N) if S is small,
in which case K has the same size as an RSA public key. If we specify p = 3 (mod 8),

q =7 (mod 8) as done in [Wi80], then the key generator can always use § = 2, since

(_Z_) = -1. In this case, S need not be specified as part of the public key, so Kp has the

pq

same form as an RSA key.
To encrypt a message M, 0 <M <N, we compute C;—J) = %1. Then Mo = M if the plus

sign holds, Mo = MS (mod N), 0 < Mo < N, if the minus sign holds, and M| =N - M.

The bit n determines if M is the larger or the smaller of the two and could alternatively give

the parity of My as pointed out in [Wi86] (note that M is even if and only if M is odd).

Recall that p is said to be primary if p = 1 (mod 4). In this case, we have the quadratic law

of reciprocity (g) = (g) and the well-known quadratic complementaries(%) = 1 and
p-l

6—) =(-1) 4, so Algorithm 6.3 reduces to the following standard algorithm for computing

Legendre symbols.

Algorithm 7.1: For o, B € Z, B odd, ged(o, B) = 1, compute (%) =9 ==1.

1. Setd=1.
Set B « -B if B =3 (mod 4).
Use division with remainder to find Y€ Z such that o =7y (mod B) and y < IBl

v

{ Eliminate factors of 2)

a) Seti« 0.

b) While vy is even do
Setye—%,ie— i+1.

c) Ifiis odd and B =5 (mod 8) then
Set & « -6

71

5. Ify=1then
Setoo « B, B« v. Gotostep2. U

The algorithm terminates when 7y = *1. Step 2 insures that B is primary. For Step 4 ¢), note

that B = 5 (mod 8) if and only if 941 is odd, in which case (%) = -1. Since each step of

Algorithm 7.1 requires only constant time, the complexity of this algorithm is O(log IBl) by
Theorem 6.18. For a more detailed worst-case analysis of this and two other algorithms for

computing Jacobi symbols see Shallit [Sh90].

7.2 ThecaseA=3

7.2.1 Modification of Williams' Scheme
A modified version of this case is discussed in [Wi86]. The cubic scheme is more

complicated than the quadratic case, since the cryptosystem requires arithmetic in the
quadratic field K= Q({) = Q(vV-3) generated by a cube root of unity { = - %— + 12—-\/-_3

However, since the unit rank of K is %—% = (), the algorithms are much simpler than for

higher order cases. We have p=g =1 (mod 3), and p, ¢# 1 (mod 9), hence p,qg=4,7
(mod 9). Let & = a1l + a2(2, ¥ = b1 + b2{2 be prime divisors in O of p and q,
respectively. Then N = ¢12 - c1cp + 22 where my = 18 + cp02.

It is possible to find a primitive cube root of unity (mod N) such that gcd(r-1, N) = 1 and

[l—] = 1 directly from © and y without using Algorithm 6.2. Hence r need not be
Ty,

specified in the public key, and only needs to be computed once for each pair of keys Kp,

K (recall that the same is true for $-1 (mod N)).

Algorithm 7.2: From ©n = a18+a3{2, ¢ = b1{+b3{2, compute r such that 2 < r <N,
ged(r-1,N) =1, 3= 1 (mod N), and [——"—] = 1.
Ty

78

If p=q (mod 9), then
solve 7 = -ajaz’! (mod p), r = -bab1! (mod g), 2 < r < N-1,
else
compute ¢ = a2b) - axby - ayby, ca = ayby - axby - ajbs.
Setr=-cicp’l (mod N),2<r<N-1. O

Lemma 7.1: Algorithm 7.2 computes r satisfying all the conditions specified in the
Algorithm in time O(log N), with all inputs bounded by N.

Proof. The complexity speciﬁcations are clear since all the inverses (mod p), (mod g), and
(mod N) are computed using the Extended Euclidean Algorithm, and » can then be found in
constant time in the case where p # ¢ (mod 9), and in time O(log N) using the Chinese
Remainder Theorem if p = g (mod 9).

A short calculation shows that p = @12 - a1a2 + a22, ¢ = b12 - biby + by2, my = 1§ + 22,
N =32 - cjcp + c92. Suppose that p | ay, then p lai2 =p +ajay - a2, hence p l as,
implying the contradiction p2 | p. Hence p | a1, p | ay. Similarly ¢} by, ¢} by, and p, ¢} c1,
P, q J 3. So all the inverses in the algorithm exist.

Suppose first that p = ¢ (mod 9). Then %1 = %1— # 0 (mod 3), so ?%l + 2%—1 = 0 (mod 3).
If r =1 (mod p), then a1 = -ap (mod p), so p | aj+ay. Since p = (a1+a3)? - ayay, it follows
that p | ajaz, so p 1 ay or p | a3 in contradiction to our previous observation. So r # 1 (mod
p), r#1 (mod q), implying gcd (-1, N) =1 and 2 < r < N. Now & = a3{(ajaz1 + {), so

r=-ajay’! = { (mod) and r3 = 1 (mod =). Similarly, ¥ = b1£2({2 + b1-15,L), hence
r=-bpb1"l = {2 (mod y) and 3 = 1 (mod). It follows that 73 = 1 (mod N) and [L] =

1 1 ™
Pl 4q-1

U

TILY

Now assume p # g (mod 9), then%ls -q:.,’—lsé 0 (mod 3), so%l+ %l—s 0 (mod 3). If

r =1 (mod p), then ¢1 = -c2 (mod p), so p | c1+co, implying p | ¢1 or p | ¢3 as above and

resulting in a contradiction. Hence r# 1 ‘mod p), r # 1 (mod ¢), implying again

79

ged(r-1, Ny =1and 2 <r < N. Now ny = c3{(c1ca! + {2), sor = { (mod nty), so 3 = 1
pl, ¢l
(modN)and[L]=c3 3-1. 0
a

Lemma 7.2: Let a = a1{ + a2{? € O. Then o is primary if and only if aj=a2 % 0
(mod 3).

Proof: Assume that o is primary. Suppose that @1 = 0 (mod 3), then 0 = ¢(o) = 2a3 (mod
3), so a2 = 0 (mod 3), contradictory to aj + a2 # 0 (mod 3). So aj # 0 (mod 3). Similarly,
a2 #0 (mod 3). From aj + a2 # 0 (mod 3), it follows that a1 #-a2 (mod 3) ,soa1=a2# 0
(mod 3).

Now let a1 = a3 # 0 (mod 3). By Definition 6.10 and Lemma 6.12, we need to prove aj +
a2 #0 (mod 3), a1 + 2a2 = 0 (mod 3), and aa = (a1 + a2)? (mod 3). Since aj = a3 = +1
(mod 3), we have a1 + a2 =*1 # 0 (mod 3) and a1 + 2a2 = a; - a2 = 0 (mod 3). Finally,

oaa =N(@) =a12- a1 + @22 = a1? + 2a1a2 + a2 = (a1 + ap)? (mod 3). O

Lemma 7.3: Let a = a1{ + a2{2 € O such that aj + a2 # 0 (mod 3). Then one of o, {c,
(2aLis primary.

Proof: o.= a1l + @22, ol = a1{2 + ax = -az{ + (a1 - a2)(2, a2 = a1+ a2l = (a2 - ;)¢ -
a1{2. If a1, a2 # 0 (mod 3), then since a1 + a3 # 0 (mod 3), we must have a = a3 # 0 (mod
3), so by Lemma 7.2, o is primary. If a1 = 0 (mod 3), then a3 # 0 (mod 3), hence af is
primary. Finally, if @3 = 0 (mod 3), then a3 # 0 (mod 3), so a{? is primary. O

The law of reciprocity plus complementaries in K were first stated by Jacobi [Ja46] and

explicitly proved by Eisenstein [Ei44a], [Ei44b].

Lemma 7.4: Let 7, y be primary primes, & = a1{ + a2{2, a; =a2 = 1 (mod 3). Then
> [0
v] |«

80

—+‘I
=—|=1,
[
. Nm-1 1+a3-2ay
9 |ef=g 3 =g T,
Ed
o |2=¢3. o
.-Tc.-

Corollary: Lemma 7.4 holds if & and y are replaced by composite primary integers. O

This corollary enables us to compute cubic residue symbols as follows.

Algorithm 7.3: For o, B e O, Tr(B) # 0 (mod 3), gcd(at, B) ~ 1, evaluate [g—] = (s,

0<s<2.
1. Sets=0.
2. Find a primary associate B' = b1{ + b2 of B.
3. Use Euclidean division to find Y= ¢1{ + ¢2{2 € O such that Y= a (mod B') and

N(y) < N(B").
4. { Factorout @} Seti=0.
While c1 + c2 =0 (mod 3) do
Setye—l, ie—i+1.
® -
5. {Factorowt{} = Setj=0.

If c1 =0 (mod 3) then
setj=1

If c3 =0 (mod 3) then
setj = 2.

Set y « {Jy.

81

6. Sets<—s+ib23-1 -ijgzbz(mod 3), 0<s<2.

7. Ify# %1, then
if c1 =-1 (mod 3) then
set Y & -y

set o « B', B' « v. Goro step 3.

The algorithm halts when 7 is a primary unit, i.e. when y=%1. For the computation of s in

Step 6, we observe that i is the power of w contained in y whereas j is the power of { thaty

needs to be multiplied by to make it primary. The change of the sign of yin Step 7 does not
YI_|¥

change the residue symbol, since [B] = [E} by Lemma 7.4 b).

7.2.2 A Different Scheme
Recently, Loxton et al [LKBS92] presented a different cubic cryptosystem which is an

extension of Williams' quadratic scheme [Wi80] to the case A = 3. Fie_ld elements are

written as a rational linear combination of 1 and { = %(-1 +v-3). The designer generates two

primes &, ¥ € O such that © =8 + 6 (mod 9) and y = 5 + 6 (mod 9), i.e. ® and s are
primary. Then p = N(r) =7 (mod 9) and ¢ = N(y) =4 (mod 9), hence f = _])9(D -1

(mod 3). If we set p = -my and N(p) = N, then [g-] =1 and [9} = {. The encryption
P

p

exponent is 3e where e € {1, ..., N} such that ged(e, 9(NV)) = 1, and the decryption
exponentis d € {1, ..., N} where 3ed E%—l (mod ¢(V)). The public and private keys are

Kp = {e, p) and K = {d].
Define the fundamental region A with respecttop as A = {yp | Y= co+c18; co, c1€ R; 0 <

o, ¢1 < 1}. Then every B € O is congruent (mod p) to exactly one element @ € A which

can be obtained as follows. Write x == = N =X+ x18e K, xp,x1€ Q. Sety; = l_x,-_l,
' P

zi=xi-yi((=0,1),y=yo+y18, 2 =20+ z1{, and o = zp. Then B = xp = yp + & where

82

ac Aandye O.Set H=A U {A U [2A. H can be thought of as a hexagon-shaped
area in the compex plane with center 0 and corner points p, (1+{)p, {p, -p, {2p, and

-Cp, and A is the rhombus-shaped subset of H with corners 0, p, (1+{)p, and {p (see

Figure 7.1).
p
p (1+C)p
(1+0)p
-Cp
0 Cp
Cp &2p
—-p
A H
Figure 7.1

The message space M is obtained as follows. Let B O and find B'e A such that

B'=P (mod p). Set " =wP' + 1, s0 ® } B". Let [B—] ={m, 0<m < 2. Set
P

E1(B) = @3-mB", so ® | E{(B) and [E]_(B):' = 1. The message space M is defined to be
p

M={Me A | E\M)e H).

To encrypt M € M, compute Mg = E{(M) = 03-m(0M + 1) where[mMH] ={m,
_ p

0 <m < 2. Then find C € A such that C = Ep(Mg) = Mg3¢ (mod p). The ciphertext is
C = E2(E1(M)). To decipher C, the receiver first obtains M1 € A such that M| = D(C) =
C4 (mod p). Then Mo = (kM (mod p) for some k e {0, 1, 2. Tt is easy to identify the

three points in H that are congruent to M1 (mod p), exactly one of which, say X, is a

83

multiple of ®. Then we must have X = Ej(M). Suppose ®! Il X, then set D1(X) =
o (X - 1) =M, so M = D1(Dy(C)).

Any algorithm A which finds the plaintext M corresponding to a cryptogram C can be
shown to give rise to a pfobabilistic polynomial-time algorithm for factoring N requiring on

average a bounded number of applications of A.

7.3 The case AL =5

7.3.1 Quintic Residue Symbols
This is the smallest case with non-zero unit rank. Here, the unit rank is —5—2_—3- =1, so we have

one fundamental unit 1| = -({2 + £3). Hence every unit € in K has a unique representation €

. 2 i e
= +{/mkwhere j, k € Z and 0 <j < 4. If we choose { = exp (—SE)’ then n = 1 ;\G > 1.

For this case, we require Algorithms 6.1 - 6.3 in all their generality, i.e. there are no simple
methods for finding a fifth primitive root of unity (mod N) or prime divisors in O df
rational primes, as in the previous two cases. We will again give an explicit version of

Algorithm 6.3 to compute quintic residue symbols.

Leta= :a,{i € 0, gj e Z for 1 <i <4. Define the following quantities:
=

a=a(o)=aj-az-a3+ay,
b=b(o)=a1+ar+az+ag=-Tr(ew),
c=c(0)=a1 + 2ay + 3a3 + 4ay,
d=do)=a1-2ay+2a3-a4

Note that b and ¢ are defined as in Section 6.3.

Lemma 7.5: Let a € O be such that & =0 (mod ®) and & = b (mod ®2). Then oo = b2
(mod 5) if and only if @ = 0 (mod 5).

84

Proof: An easy calculation shows 5 = w4 where £ = ({ + 1)2{2 is a unit. Furthermore
®=1-{=-C¢wand
a+a=(a+a)+iH+@+a)@+P3)=al+H-(@+a3) =al+{H +%'-2-
From o = b (mod ®2) and ® ~ ®, we obtain & = b (mod ®w2), hence w? | (a -)@ - b).
Assume that o = b2 (mod 5). Then, since 2-1=-2 (mod 5) and 5 ~ w?:

0 =(a-b)o-b)=od-bla+a)+b2=b2-b[a({ + {4) - 2(a - b)] + b2

=b[2b - a({ ¢ {4 + 2(a - b)] =ab(2 - { - {4) = -abl4e? (mod 5).

Since w Jb and {4 is a unit, we have ®2 | g, so a = 0 (mod 5).

Conversely, assume ¢ =0 (mod 5). Thena + ot = -—bz- = 2b(mod 5), thus 0 = (. - b)(@ - b)

=aa-ba+a)+b2=a0-b2(mod5). O

Lemma 7.5 together with Lemma 6.12 gives rise to a practical test for a number to be

primary as follows.

Corollary: a € O is primary if and only if
a) b#0(mod)?5),
b) ¢=0(mod)?3),
¢ a=0(@mod5). O

Let a e O. If Tr(a) # 0 (mod 5), then by Lemma 6.14, o has a primary associate. The

following is a practical method for finding such an associate in constant time.

Lemma 7.6: Let o € O be such that Tr(c) # 0 (mod 5). Then o has a primary associate

of the form o' = {/nka where 0 < j, k < 4.

Proof: Leta = ﬁiaici. We have b = b(cr) # 0 (mod 5). Then al/ = b + (c+jb)® (mod w?),
=

so by Lemma 6.11, b(al/) = b # 0 (mod 5) and c(al)) = c+jb (mod 5) for 0 <j < 4. Since

85

one of c+jb (0 <j <4) must be divisible by 5, we have found an associate of o such that
conditions a) and b) of the Corollary to Lemma 7.5 hold.

Assume now b # 0 (mod 5) and ¢ =0 (mod 5). Let o= ary (0 £j < 4). A straightforward
calculation yields o = am = (a2-a4){ + (ap+az-a4)(2 + (ax+az-a1)(3 + (a3-a1){4 and 2=

N + 1, hence aj = ajon? = atjoN + @jp = ®j. + &g for 2 < j < 4. If we let

n =—a-§—b— =-(a2 + a3), then

a(a) = a, a(o) = (a2-aq) - (ax+az-ay) - (ayt+az-ay) + (a3-a1) = -(ax+az) =n,
a(ty) =n+a, a(oz)=2n+a, a(oy) =3n + 2a.

Furthermore, since 1 = -2 (mod ®2), it follows that b(a)) = (-2Yb # 0 (mod 5) and
c(a) = (-2Yc = 0 (mod 5), so all the 0, satisfy conditions a) and b) of the Corollary to
Lemma 7.5.

We need to prove that one of the a;j (0 <j < 4) satisfies a(a) = 0 (mod 5) and is hence
primary. If a = 0 (mod 5), then oy is primary and if » = 0 (mod 5), then ¢ is primary. So
suppose now that an # 0 (mod 5). Then if @ = -n (mod 5), then oy is primary, if a = -2n
(mod 5), then a3 is primary, and if @ = n (mod 5), then 0y is primary. The only remaining
case is @ = 2n (mod 5), in which case 0 = a - 2n = b (mod 5), a contradiction. Hence we

have found the required primary associate of . O

For the evaluation of quintic residue symbols, we require complementaries for 1} and o.
These were explicitly stated by Williams [Wi76]). We summarize all quintic

complementaries here.

Lemma 7.7: Let , ¥ be two distinct primary primes in O. Then

86

N(n)-1
o 48
T
Furthermore, if © = ﬁ{l,@ﬂ N(r) =p= 1 (mod 5), and b* € Z is such that
I= _

bb* = 1 (mod 5), then
d) [ﬂ] = C4db*’

T
w 4b*£+32i4‘

e |—|=¢ 5 5.0
n

Corollary: Lemma 7.7 holds if & and y are replaced by composite 'primary integers. U

In order to perform Step 7 of Algorithm 6.3 in constant time, we need to be able to

“determine [g] quickly for a primary unit €. Since 1| = -2 (mod @2), 1 is primary, whereas {

is not primary. Hence if € is a primary unit, then we must have € = #1) for some i € Z. Let

€= iajq. An easy proof using induction on i shows that in this case @1 = a4 and a3 = a3,
j:

hence € = a1({+{%) + ap({2+(3) = - 22 /5. As usual, define the Lucas and

a+ay aj-
2 T2

Fibonacci numbers, respectively, by

Ly=2, Ly =1, Livog =Liy1 +L; (i20),
Fo=0, F1=1, Fiyp=Fi1 +F; (i20).
1 ++5

It is well-known that NV =(3)v = ‘;‘ (Ly + FyV5) for v 2 0, hence if € = +nji for

i 20, then -(a1 +a2) =%L; and a1 - a3 = +F;. Now Ljz4 =L; (mod 5) and Fi00 = F;
(mod 5), and the pairs (L; (mod 5), F; (mod 5)) (0 <i < 19) are exactly the pairs (m, n)

(1 £m <4,0<n<4). Since by Lemma 7.7 b), the sign of € does not affect the value of

€
[—], this gives rise to the following constant time algorithm.

87

i
Algorithm 7.4: For € =ilajCi € O a primary unit, B € O-{0}, find i such that [—g—] = [g—:’ .

j=
Compute a table containing the triples (i, L; (mod 5) F; (mod 5)) for 0 <i < 19.
(This table need only be computed once and can be re-used for any subsequent
quintic residue symbol computation.)

Return j € {0, ..., 19} such that -(a1 + a2) = L; (mod 5), a1 - a2 = F; (mod 5).
Seti=j(mod5),0<i<4. U

We are now able to present our algorithm to evaluate the quintic residue symbol.

Algorithm 7.5: For a, B € O-{0}, Tr(B) # 0 (mod 5), gcd(c, B) ~ 1, evaluate li%} = (s,

S CR S

0<s<4.

. Sets=0.

Find a primary associate ' of B.
Compute N(B").
Use Euclidean division to find ye O such that y= a (mod ') and N(y) < N(B").
Compute b=bP)(modS), »b*=b1(mod?5),
c=c(B) (mod 25), d=d(B) (mod 5).
{ Factorout } Seti=0.
While b(y) = 0 (mod 5) do

Setye—l,i'&wl.
o

. {Factorout {} Setj=-c(y)b*(y) (mod 5), 0 <j< 4. Set vy« Y.

{ Factorout1} Compute a(y) (mod 5). Set k= 0.
If a(y) # 0 (mod 5), then

compute n() =2 2PD o ,4) - a33) (mod).

88

If 0=n(y) (mod 5), then set k = 1.

If a(y) = -n(y) (mod 5), then set k = 2.
If a(y) = -2n(y) (mod 5), then set k = 3.
If a(y) = n(y) (mod 5), then set k = 4.
Set ¥ « k.
N(B")+4

9. Sets<-—s+i(4b*§-+ 3=)-jN(%)-l - 4kdb* (mod 5),0<s5<4.

10. Compute N(y).
IfN(Y) > 1, then
Set o « B, B' « v. Goto Step 4.

else

l
Use Algorithm 7.4 to find / such that [ﬂ = [g:l .

Sets « s+4db* I (mod 5)0<s<4. O

For the computation of s in Step 9, note again that i is the power of @ contained in ¥,

whereas j and k are the powers of { and m, respectively, which y needs to be multiplied by

to obtain ¢(y) = 0 (mod 5) and a(y) = 0 (mod 5). Hence we need to add the appropriate

multiple of i given by Lemma 7.7 to s while subtracting the correct multiples of j and k.

7.3.2 Computational Results

We implemented a number of our algorithms for the quintic case. Our programs were

written in C language using the GNU multiple precision integer arithmetic library

(Granlund [Gr91]) and were run on a DECStation 5000. We wrote routines for the

following algorithms.

* Uspensky's Euclidean division method described in Section 6.4.2.
° Kummer's Euclidean division method described in Section 6.4.3.

* Lenstra's Euclidean division method described in Section 6.4.4.

89

* Finding a prime divisor of a rational prime p = 1 (mod 5) using the gcd method
described in Lemma 6.7.

e The Residue Symbol Algorithm 7.5, including Algorithm 7.4.

o Key generation, encryption, and decryption.

We now present some of our computational results.

Prime Divisors

Here, we used all three Euclidean division methods to compute prime divisors of rational
primes p = 1 (mod 5). Despite the different upper bounds on the quotient of the norms of
the remainder and the divisor given in Section 6.4, all three algorithms performed
essentially the same. In particular, even though Lenstra's method gives a better bound than
Uspensky's and Kummer's methods, it does not seem to run significantly faster in general.
We ran the different ged algorithms on three primes of apprbximately 100, 140, and 150
decimal digits, respectively. Each of the three algorithms produced a different prime divisor
for each prime. The table below presents the results of our computation. Column 1 gives
the rational prime p whose prime divisor T we computed and column 2 states the number of
digits of the largest coefficient a; of T, where © = a1{+a2{2+a3{3+as{? (the other
coefficients of © were always within a factor of 10 in absolute value of lg;l). Column 3
specifies the Euclidean division algorithm used and columns 4 and 5 contain the number of
Euclidean divisions performed and the CPU time (in seconds) required by the

corresponding prime divisor computation.

90

p Liogio lait J+ 1 " Eucl. Div. Alg. | # Bucl. Div. ECPU time (secs)

26 Uspensky 145 2.5

10100 + 2911 26 Kummer 139 2.4
26 Lenstra i 134 2.4 __
36 l Uspensky 185 5.7

10140 4+ 2691 37 Kummer 195 5.7
39 Lenstra i 186 5.7
39 Uspensky | H 202 7.4

10150 + 771 38 Kummer H 210 7.3
40 Lenstra H 198 7.3

Residue Symbols

o
We computed the quintic residue symbol [E] for two pairs of integers o, p € O whose

residue symbols are 2 and 1, respectively. Both numerator and denominator of the first pair
had coefficients of 25 digits, for the second pair the number of digits of each coefficient
was 50. Again, we give the number of Euclidean divisions performed and the computation
time in seconds required for each of the three Euclidean division methods. As before, all

three methods performed quite similarly.

91

digits / coeff. " Eucl. Div. Alg. # Eucl. Div. HQPU time (secs)

Uspensky 61 0.3
25 Kummer 56 0.3
Lenstra i 57 0.3

Uspensky 119 1.2
50

Kummer 133 1.2

Lenstra 115 1.1

The Cryptosystem

Since we were mainly interested in encryption and decryption speeds (rather than
generating a secure key for practical purposes), we did not attempt to find primes which are
considered safe according to the criteria in Section 2.1. Instead, we used the following
procedure to generate a modulus N of n digits. |
Choose a starting value 7 = VN (we used I = 10.#/2}). Find the smallest odd integer k
satisfying k =1, k=1 (mod 5), k £ 1 (mod 25) (in our case k = 10b4/2J+11). k is the first
candidate for a prime divisor of N. Trial-divide k by a few small primes (we used the first
12 primes except 2 and 5, i.e. 3, 7, 11, 13, 19, 23, 29, 31, 37, 41). If k has no small
prime divisor, apply a simple probabilistic primality test to k, such as the base » Fermat
test, which computes = b*-1 (mod k) 0, <f< k-1. If f = 1, then k satisfies Fermat's little
theorem with base b and is hence a base b probable prime. Since the primality test is quite
time-consuming, we generally apply no more than two rounds of the test (with b = 2 and
b = 3). In the unlikely event where we obtain a pseudo-prime (i.e. a composite number
which passes the probabilistic test) after our trial division and primality testing procedures,
our enciphering and deciphering routines will produce random results, if the pseudo-prime

is used as one factor of the modulus. Hence this situation will easily be detected after a few

92

test encryptions and decryptions. For our implementation, we used two rounds of a built-in
Fermat primality test routine which was part of the GNU mp library.

If k fails either the trial division or the primality test, repeat the procedure with k+50 (the
next odd number &' such that £'= 1 (mod 5) and &' # 1 (mod 25)). Once a probabilistic
prime p is found, repeat the process, starting with p+50 as the first candidate for g.

To find an encryption exponent e, we simply used the built-in GNU mp random number

generator to find a random positive integer €' of a specified size (Usually ¢' <N and €' =
N). Then we computed & = gcd(e', (V). Set e =§, unless 8 exceeds a certain bound (say

8 > 1020y, in which case we try again with e'+1.

Our implementation is much slower than a commercial RSA implementation for several
reasons. Most importantly, it is entirely done in software, whereas many RSA applications
have hardware available for their modular exponentiation. Furthermore, the residue symbol
computation required for each cryptogram reduces the encryption speed of our system
relative to RSA. This is also the reason why the rate of decipherment of our scheme is
noticeably faster than the rate of encipherment. Finally, we were not able to optimize our
multi-precision integer arithmetic routines mathematically or computationally, since they
were third party software.

We conclude with two computational examples using moduli of approximately 100 and 200
digits, respectively. We give the parameters for the encipherment/decipherment keys and

the corresponding encryption and decryption rates (cy, ... , ¢4 are the coefficients of

my =2 cil).
1=

Example 1 (101 digit modulus):
p =100 + 961, q = 1050 + 1441, N = 10100 + 2402-1050 + 1384801,

r= 84931547665997521504413684614632156842168287791540
5085526254488550972723602091 6307125712929698277223 (100 digits)

93

S = 4096

c1 =-19136962415978924892222019
¢y =-42309655017145551720914389
c3=-38328646001618243482946787
c4 = -10340542598589099160896792

e= 81227992491335015952405420535534223326596719742406
9736020004351337230083194425751151396644016825

d = 38348577020019051005425929707268080592343243504439
0678618190196551875876635899059411355762319672201

Key generation time: 2.9 seonds
Encryption rate: 55 characters/second (438 bits/second)

Decryption rate: 127 characters/second (1014 bits/second)

Example 2 (199 digit modulus):

(26 digits each)

(96 digits)

(99 digits)

p= 109 + 711, g =10% + 2191, N = 10198 + 2902109 + 1557801,

r= 19841667173631890576222801178500689564530478358349
40317663963772812536888504019567615811442887807822
76455018845488367286185393410115682830003301374143
902351412626927276227869125489540038751002392398

S = 4096

c1 =-336043338189666480827612322963380084482537477962065
c2 = 130248364308303176166329013581338757407688634701424
c3 =753419296226214300427093232597651775544590428954738
¢4 = 673411902810673123492520704219434618383499989881146

e = 30602494974337378197188096303216409530262243108541
59786417980102017939673386985158775037178350502849
39824415736943251822538042894474495797284102421894
2601058905129605292730316607041189314666605

d = 57003408258214914795329755246327607369549435623247
54457842319295154706693519706595265877532330419585
23159031283744154859226925349579300493549878358868
1043707306420521443146236469401845238052076813

Key generation time: 22 seconds

Encryption rate: 23 characters/second (183 bits/second)

Decryption rate: 38 characters/second (307 bits/second)

94

(198 digits)

(51 digits each)

(193 digits)

(196 digits)

o Part II

A Key Exchange Protocol
Using Real Quadratic
Fields

95

8. Key Exchange Using Finite Groups

8.1 The Diffie-Hellman Key Exchange Protocol

The first algorithm for exchanging a secret key across a public channel was given by Diffie
and Hellman. The original version of their protocol given in [DH76] has already been
outlined in Section 1.1.4. We will now repeat the scheme in more generality. Suppose that
two communication partners Alice and Bob wish to establish a key for a private-key
cryptographic conversation without making use of a secure channel. Then they perform the
following steps.
1. Alice and Bob agree on a finite multiplicative group G of order N = IG| and an
element g € G. Both G and g can be made public.
2. Alice generates a random integer a € {1, ..., N} and computes x = g4. She
transmits x to Bob, but keeps a secret.
3. Bob generates a random integer b e {1,..,N} and computes y = gb. He
transmits y to Alice, but keeps b secret.
4. From a and y, Alice computes k = yd = gha,
5. From b and x, Bob computes k = yb = gab,
After the protocol has been executed, both parties are in possession of the same group
element k, which can then be used to obtain their common key in whatever manner they
have agreed upon ahead of time (e.g., for a DES key, k could be associated with a bit
string § in some fashion, and the high order 56 bits of S represent the DES key).
The protocol requires one round of communication. Generally, the group should be chosen
in such a way that its elements can be represented in binary, where each element requires

no more than O(log N) bits of storage, so that the bandwidth of the communication channel

96

can be bounded by O(log N). Then the computational cost for each party is O(log N), since
both partners must perform two exponentiations involving exponents bounded by N.
For key distribution between multiple users, each user i generates a random number
ai€ {1,.., N}, computes x; = g&, and stores x; in a public directory. Now if Alice
wishes to exchange a key with Bob, she recalls her secret number ap which she used for
her directory entry xa = g@A, looks up Bob's entry xg in the directory, and sends xg%A to
Bob. Similarly, Bob looks up Alice's entry x and transmits xA9B to Alice. This reduces
the computational effort for each user to O(log N) per key exchange.
The original version of the protocol given in [DH76] used G = GF(p)*. Since then,
numerous other groups have been suggested to serve as the basis for a Diffie-Hellman-like
key exchange scheme, such as
i) the multiplicative group of an arbitrary finite field,
ii) the group of invertible » X n matrices over GF(p) (Odoni, Varadharajan & Sanders
[OVS84]),
iii) the group of integers (mod n) relatively to n, where n is the product of two primes
(Shmuely [Sh85], McCurley [Mc88]),
iv) the group of points on an elliptic curve over a finite field (Miller [Mi86], Koblitz
[Ko87b]),
v) groups associated with hyperelliptic curves (Koblitz [K090], [Ko88]),
vi) the class group of an imaginary quadratic field (Buchmann & Williams [BW88a],
Buchmann, Diillmann & Williams [BDW90]).
In order to break the scheme, an adversary needs to be able to infer k = gab from G, g,
x = g4, and y = gb, without knowledge of a or b. A cryptanalyst could achieve this if he
were able to compute for any z € G the discrete logarithm or index of zin G, i.e. an
integer ¢ € {0, ..., N-1} such that z = g¢, in time polynomial in log N. It is unknown
whether breaking the Diffie-Hellman protocol is equivalent in difficulty to solving the

discrete logarithm problem (DLP), regardless of the choice of group.

97

8.2 The Discrete Logarithm Problem

For a comprehensive survey of algorithms for solving the DLP, see Odlyzko [Od84] and

McCurley [Mc90]. Henceforth, assume that G is a finite multiplicative group of order N,

and that g € G is a fixed element in G. We wish to find, for an arbitrary element z e G

which is not the identity 1g of G, the index ¢ = log,z, i.e. the unique power c €

{1, ... N-1} such that g¢ = z.

8.2.1 Deterministic »Algorithms

The most direct approach to determining discrete logarithms in G is to precompute a table
of the powers gi (1 <i <N-1) of g and find the index of any group element by table look-
up. Clearly, this is infeasible, since the table requires N-2 group operations and storage of
N-1 entries.

We can improve the running time to O(¥'N log N) arithmetic operations and reduce the’
storage requirement to O(v'N) table entries by employing Shanks' "baby step-giant step”
idea (Knuth [Kn73, pp. 9, 575-576]. Set m = [VNT to be the least integer above VN.
Shanks' method makes use of the fact that every discrete logarithm c € {1, ..., N-1} can
be written as c =gm -r where 0 <r <m and 1 < ¢ < m. Assume that we can quickly
enumerate the group elements g1, ... , gn, i.e. there exists an easily computable function
f: G = {1, ..., N}. To find log,z, compute the sets § = {(i, g)lgi=28",0<i<m} and
T ={(i, g) | g = g™, 0 <i<m} (note that T need only be computed once whereas $ must
be recomputed for each logarithm). S and T require storage of a total of O(m) = O(VN)
group elements and can be generated using O(VN log N) arithmetic operations (O(VN)
exponentiations). Sort S and T according to the second coordinate of each element. This
requires O(WN log N) comparisons. Now scan S and T until two elements s = (7, gh)es

and ¢t = (q, gj) € T are found that match in their second coordinate. Then gj=1zg" and

gj = 8™, hence z = gMq-T,

98

A more practical algorithm was given by Pollard [Po78]. It's running time can be
heuristically estimated to be similar to that of the previous method, while the space required
seems to be much smaller. In the first stage of the algorithm, we find integers s and ¢ such
that z8 = g’. In order to do this, we partition G into three sets S, S2, 3 of approximately
equal size. Set xg = 1 and compute a sequence xg, X1, ..., where

zx;if x; € Sy

Xis1=1x2 if x; € S (iz20).
gx;ifx;e S3

This defines a sequence of integers a; and b; such that x; = z8igbi, which can easily be

shown to satisfy the following recurrences: ag = bg =0,

aj+1 (mod N) if x; € §; b; ifx;e S
Gi+1=) 2a; (mod N) ifx;e Sz , biy1=) 2b; (mod N) ifx;e S ((20),
a; ifxje S3 bi+1 (mod N) if x; € §3

where all remainders (mod N) are taken to be between 0 and N-1. If the sequence (x;)>0
were to behave like a random sequence — a reasonable assumption if the sets Sy, Sp, S3 are
chosen randomly — then we should expect that there exists i € {0, ... L(3VN]} such that
X = x24, and we can find i by computing the 6-tuples (x;, a;, b;, x2;, ap;, by;) recursively.
If x; = xp;, then 28 = gt is satisfied with s = g; - ap; (mod N) and 1 = by; - b; (mod N).

Let d = ged(s, N). Then the Extended Euclidean Algorithm yields u, v € Z such that
d = us + vN, hence z5 = g! implies 4= gut. If d = 1, then loggz = ut (mod N), otherwise
d>1 tzin_;\i/ we must have d | uz. Extracting d-th roots from the identity z4 = g yields

ut+i

z= g—d— for some i € {1, ... d}, so we can check this last equation for i = 0, 1, ... ,
until the correct value of i is found, in which case we have found loggz. Note that if s were
a random residue (mod N), then we expect d to be small most of the time.

The last algorithm to be discussed in this section is due to Pohlig and Hellman [PH78],

who credit its earlier independent discovery to Silver. It is very efficient if N is smooth, i.e.

99

if N has only small prime factors!. Let N = p1€1--p,€r be the unique prime factorization of
N. Tt suffices to find the index of z modulo each p;€i (1 <i <r); using the Chinese

Remainder Theorem, we can then combine the indices modulo p;€i to find the index of z in

G in time O(r log N).
Letpe {p1,...pr},pEIN(e21),and letc = logez (mod p¢), 0 < ¢ < p¢. We compute

the p-ary representation ¢ =) b;p!, 0 < b; <p-1forie {0, ..., e-1} as follows. Set
}=
N

Y= gP. From loggz = ¢ + kp¢ for some k € Z, it follows that

N cN . bg = .) bo

5 108gz =~ + Nkpe'! =N[; & bpil + kpe 1J=N(7)~ + M)
Nbo N

=g P =P0. To find by, we compute zP and Y for
N

i =0, 1, ..., until we obtain bg = i such that ¢ = zP. (Alternatively, we could use the baby

N
= —log,z
for M € Z, hence zP = gP Be

step-giant step method to search for the correct powér of y. This would reduce the running
time of the algorithm while increasing the storage space as well as introducing some

precomputation.)

If ¢ > 2, then determine b as follows. Compute & = g-1 = gN-1 and zq = zhP0. Then again
N N _boN Nby

ﬁéloggz=N(z—g+b;]+M)forMe Z,hencezlp2=zp2g p2=gp =Yb1,andas

SRS

before, we compute z;” and search through the powers of 'y to find by. If € 2 3, we set 23
N

W =

= z1hPb1, compute zp¥~, and generate powers of y until we find b7 such that sz = 22173 .
Continuing in this fashion, we can find b3, ... , be-1. This process is performed for all p;

(1 <i <r). Pohlig and Hellman show that there is a time-memory trade-off that can be

1 Pohlig and Hellman first introduced their algorithm using the group G = GF(p)* of order p-1. Recall that
Pollard gave a fast method for factoring an integer N when N-1 is smooth [Po75]. This is only one of a
number of parallels between the problems of factoring and extracting discrete logarithms.

100

exploited to result in a running time of O(Xe;(log N + p,-l'si(1+log p,-si))] group
operations, using O{log N Z‘ (1+p,-5i)] bits of memory, and requiring a precomputation
=

{z(p, ilog p,51 + log N)] group operations, where 8;€ R,0<6; <1 for

,...,

8.2.2 The Index Calculus Method

In contrast to the previous techniques, this algorithm is probabilistic rather than
deterministic. It is quite similar to the factor base factoring method by Morrison & Brillhart
[MB75]. The basic ideas are due to Western & Miller [WM68], although the approach first
appeared in the work of Kraitchik ([Kr22], pp. 119-123, [Kr24], pp. 69-70, 216-267])
and Cunningham (see [WM68]). The actual algorithm was introduced independently by
Adleman [Ad79], Merkle [Me79], and Pollard [Po78].

The method consists of two stages; a precomputation stage, in which a database of certain
discrete logarithms in G is generated, and a second stage, in which the logarithm of an

arbitrary group element is determined using this database. During the precomputation

phase, we collect identities of the form ﬁajsij = gli, where ay, ..., ag is a set of fixed

elements in G (the factor base) and s;1, ..., sig, tie {0, ... ,N-1} fori =0, 1, ... These
i)

relations give rise to a set of linear congruences ¥s;; logea; = #; (mod N), in which the
J=1

unknowns are the logga; (1 <j < B). We solve this system of congruences, thus creating

our database of known logarithms. Note that this stage need only be performed once.

101

To compute a particular index logez (z € G), we construct an identity of the form

B
IB{aJej = zg¢€ in G, whence it follows that logez = 'Efj loggaj - e (mod N). Usually, this
J= J=

process takes considerably less time than the first stage of the algorithm.

Clearly, this rough outline of the algorithm leaves many questions unanswered. First, it is

not at all obvious how to efficiently construct relations of the form ﬁajsij = gli and in fact,
j:

there are only a few groups for which it is known how to generate such identities.
Secondly, the number B of factor base elements ay, ... , ag must be chosen carefully. In
B

order to solve the system of linear congruences 'zfij logga =1 (mod N) (i =0,1, ..)
j:

uniquely for logea; (1 <j < B), we require a sufficient number of congruences (at least B).
If B were chosen too large, then it would be difficult to find enough factor relations, and in
addition, the effort of solving the linear system of congruences would be considerable. On
the other hand, if B were picked too small, then it is unlikely that a "typical" group element
would factor over our factor base. The optimal choice of B requires a sophisticated analysis
of probabilities.

We will now give more details with regard to the method and its complexity for some
specific groﬁps.

The case G = GF(p)*: Here the factor base consists of the first B primes p1,-.. , pg. To
generate the relations for stage one, we choose a random integer r € {1, ..., p-1} and
compute r = g! (mod p), 0 < r < p. We then try to factor r over {p1, ..., pp}, say by using
trial division. If r factors over our base, then we are successful in obtaining a factor

relation. To compute an index logez in GF(p)*, pick a random integer e, compute

r=zg¢ (mod p), 0 <r <p, and see if r factors as a product of py, ..., pg. f r = ﬁgiei,
=
B .
then log,z E'Zfi loggp; - e (mod p-1). More details of this case are given in Koblitz
1=

[Ko87a].

102

The running time of this algorithm is subexponential in log p and is comparable to the time

required for factoring an integer of magnitude p. Initially, the complexity was analyzed to

Zro(1)
be L(p)2+o(1) for stage one and L(p)? for stage two, where L(p) =

exp(Vlog p log log p). Pomerance [Po87] improved this estimate L(p)‘/_z:"o(l), and this
is the smallest asymptotic bound that is rigorously proved for GF(p)*. Coppersmith,
Odlyzko, and Schroeppel [COS86] described three index calculus algorithms whose
running time they heuristically estimate to be L(p)1+0(1) for the precomputation and
L(p);w(l) for the index computation. Recent results by Gordon [Go93a] suggest that a

technique similar to the number field sieve for factoring large integers could be used for

computing discrete logarithms over GF(p)*, resulting in a method with heuristic

complexity L'(p)¢ where L'(p) = exp(i/log p (log log p)z)

The case G = GF(p™), p a fixed small prime: For details, see again [Ko87al]. It is well-
known that GF(p") is isomorphic to the résidue ring GF()[x]/f(x), where f(x) € GF(p)[x]
is any irreducible polynomial of degree n, so if we fix f(x), then any element in GF(p”") can
be represented uniquely as a polynomial in GF(p)[x] of degree at most n-1. In particular, g
= g(x) € GF(p)[x]. In this case, the factor base is usually chosen to consist of all monic
irreducible polynomials over GF(p) of degree < m, where m < n is chosen such that the
size B of the factor base is optimal. It is possible to significantly improve the complexity of
this case over that of the case G = GF(p)*. This is due to the fact that féctoring
polynomials is much easier than factoring integers (see for example Berlekamp's method
[Be70]). The first subexponential DLP algorithm for GF(p®) (p fixed) was given by
Hellman and Reyneri [HR83]. The running time for the specific case GF(2%) (often a
popular choice for cryptographic schemes, since the arithmetic in this field can be nicely
implemented in hardware) was analyzed by Blake et al [BFMV84] and in detail by Odlyzko

[Od84]. Coppersmith’s heuristic arguments for GF(p") suggest a running time of L'(p#)¢ =

3
exp(Vn (log n)2 | [Co84].

103

The case G = GF(p"), n € Z>0 fixed: Here, the special case n = 2 was analyzed by
ElGamal [El85a]. Lovorn gave a subexponential method for solving the DLP if
log p < n998 [L092]. Recently, Gordon announced that there exists a L'(p™)¢ algorithm for
computing indices in Gf(p”) (» fixed), which again uses the technique of the number field
sieve [Go93b].

Finally, we point out that the first subexponential algon'thm for computing algorithms over
an arbitrary finite field GF(p") (p any prime, n € Z>0) is due to Adleman and Demarrais

[AD93].
The case G = CI(Q(-D)): Let K be the field generated by the square root of -D where D e

Z>V is squarefree. Then K has a generating polynomial f(x) = x2+D, hence (K:Q) =2. K

is called an imaginary quadratic field. The discriminant of K is A = %D, where
c

_{1ifD-=‘2,3(mod4),
“l2ifD =1 (mod4).

]

The DLP in the class group CI(K) of K can be stated as follows. If [g], [z] € CI(K) are .
two ideal classes (g, z ideals in K) such that [z] = [g]¢, or equivalently, z ~ g¢ for some
ce {1, ..., h}, find c. Here h = ICI(K)! denotes the class number of K. Note that this case
differs from all the previous ones in that the order 4 of the group is not known a priori.

The index calculus method can be used to find the invariants of CI(K) (Hafner & McCurley
[HM89], McCurley [Mc89], Cohen, Diaz y Diaz & Olivier [CDO92]) as well as solve the
DLP in CI(K) (Buchmann & Williams [BW90b], McCurley [Mc89], Buchmann &
Diillmann [BD91]). In fact, the precomputation stage is the same for both problems. The
method is described in terms of binary quadratic forms in [HM89] and [Mc89]. For our
purposes, we use the language of ideals in the field as in [BW90b] and [BD91].

Before we present the index calculus method in CI(K), let us state an observation. Let p be

. . A - .
a rational prime such that the Legendre symbol (E) = 1. Then the decomposition of p in K

is (p) = pp', where p' is the conjugate ideal of p. In particular, (p)p' = p-! and hence p' ~

p-l. Under certain Extended Riemann Hypotheses (ERH), it can be shown that CI(K) is

104

generated by the ideal classes [pi1], ... , [pB], where p; is either of the prime ideals dividing
AN
pi and p; is the i-th rational prime such that (;) =1 and p; < C(log IAI)2 for some constant
4

C > 0 (a value of C is given by Bach [Ba90}]). The factor base is B = {[p1], ... , [pB]}.

The algorithm differs fom the previous methods in that we compute relations of the form

[pil%i = [(1)], i.e. the right-hand side is the identity in CI(K) rather than a power of the

1=
class [g]. More formally, consider the group homomorphism ®: Z8 — CI(K) given by

D(s1, ... , sB) = | | [pi]%i. Any element in the kernel H of @ gives rise to a factor relation.
1=

Furthermore, H is a sublattice of ZB, and since @ is surjective, it follows that the factor
group ZB/H is isomorphic to CI(K) under ®.

It can be shown that the box X = {(x1, ... ,xg) € ZB 10<x;<IAlfor 1 <i <B]} contains
a basis of H. To find a relation over the factor base B, or equivalently, a vector in H,

generate a random vector (xi, ..., xg) € X. Then compute a reduced ideal a' in the class

ofa= ﬁp,xi. a' can be computed in time O(log IAl); for details see Williams [Wi85a].2
1=

Next, we compute the norm N(a') and attempt to factor it over the primes py, ..., pg. If

we are successful, then [a'] = [a] factors completely over B, or more exactly, we have

found a representation a' = ﬁpi}’ipizi, where p;p; = (p;) and y;z; =0for 1 <i<B. It
1=

follows that (1) ~ a(a’)-1 ~ ﬁp,xi'*'zi‘)’i, hence we have found a factor relation and

1=

(x1+z1-y1, ... , xp+zp-yg) € H.

2 It can be shown (see, for example, [BW88a, Theorem 2.7]) that there are at most two reduced ideals in
each ideal class. This is not true for real quadratic fields, where there is usually a very large number of
reduced ideals in each class. Hence this method fails for real quadratic fields, unless it is modified to identify
a particular reduced ideal, see Section 12.1

105

Suppose we have found a basis e1, ... eg of H. Then the class number 4 of K is the
determinant det(e1 T, ... , egT). Furthermore, any system dp, ... , dy € H containing A
linearly independent vectors generates a sublattice J of H of finite index (H:J), and the
determinant 4' of the lattice, which can be found using Hermite reduction, is a multiple of
h, namely /' = h(H:J). Hence the class number can be computed as follows. We first find
an approximation #* of & such that & < h* < 2h, using the analytic class number formula.
This can be done in time O(log IAl) (for details, see [Mc89]). Next, we successively
generate factor relations as described above, and add the corresponding vector of exponents
to J (initially, J = §). After each relation, we compute the determinant 4' of all the vectors
in J (initially, A' = 0). If (H:J) is finite and 4' < h, then &' = A énd we are finished,
otherwise generate the next relation. The running time of this algorithm is L{IA)V2+o(D),

McCurley shows how the second stage of the index calculus method can be used to solve
any instance of the DLP in CI(K) in time L(IAl)1+0(1) [Mc89]. Buchmann and Diillmann
[BD91] illustrate how knowledge of the structure 6f the class group can reduce the running
time as follows. At the end of the class number computation, J contains a basiser, ... , ep
of H. Computing the Smith normal form § = diag(N1, ... , N, 1, ..., 1) of the basis
yields an identity of the form § = U-1(e1T, ... , egT)V where S, U, V are nonsingular

matrices, i.e. S, U,V e GLg(Z),and N;>1for1 <i<l LetU = [ujjlij=1,... and
B

U-l= (uijlij=1,.B. Ifyi = p#ij (1 <i<), then CI(K) = <[y1]> X - x <[v/]> and
J=1

ord([y;]) = N; for 1 <£i <. Hence the Smith normial form computation of a basis of H
l

yields the invariants of CI(K) in time L(IAI)\/?*"O(U. Furthermore, since p; = yjuz!j

J=1

(1 £i<B), arepresentation of any element in CI(K) as a product of powers of the classes
of p1, ..., pa yields a representation in terms of the classes of y1v, .., Yt It should be
pointed out that the Cohen-Lenstra heuristics [CL84b] imply that / = 1, i.e. CI(K) is cyclic,

in over 97.75 % of all cases.

106

To solve z¢ ~ g for ¢ (g, z ideals in K), generate a random (x1, ... , xg) € X. Compute the

ideal a = gﬁp,‘xi and find a reduced ideal a' in [a]. Attempt to factor a' over the factor
=

base B. In case of success, we obtain a' = ﬁ pYipi%i, yizi =0 for 1 £i <B. Hence

=

g~ a'ﬁp,’xi ~ IB{p,-)’i‘Zi‘xi, whence we obtain a relation g ~ III}'JL Similarly, we find
= 1=

=
z~ Ili'y,ki. Then (1) ~ géz-1 ~ IL{y;iic‘ki, hence we can find ¢ by solving the system of
1= 1=

simultaneous congruences ¢j; = k; (mod N;) (1 <i <) for ¢, using a generalized Chinese
Remainder Theorem. Buchmann and Diillmann shlow that given the structure of CI(K), the
solution ¢ of g¢ ~ z can be computed in time L(IAl —+o(]).

It should finally be noted that even though the complexity of the index calculus method is
noticably better than exponential, all the above algorithms are still completely impractical if
the underlying structure is large. For example, with current technology, it would be
impossible to compute in reasonable time an arbitrary discrete logarithm in a finite field

GF(q) where ¢ has approximately 200 digits. Hence, cryptographic schemes based on the
DLP appear to be quite secure.

8.2.3 Other Schemes Using Discrete Logarithms

From the observations in the previous section, it follows that the original Diffie-Hellman
key exchange protocol in GF(p)* can be broken in subexponential time. The same is true
for all its extensions to arbitrary finite fields and for the variation using the class group of
an imaginary quadratic field [BW88a]. The scheme using matrix rings over GF(p)
proposed by Odoni et al [OVS84] can be shown to be no more secure than the original
Diffie-Hellman scheme, since discrete logarithms in its underlying group can be computed

by calculating logarithms in extension fields of GF(p) (see [0d84]).

107

Any system using the group of residues relatively prime to an integer #n which is the
product of two primes ([Sh85], [Mc88]) can be shown to be at least as difficult to break as
it is to factor n. Hence this variation has the advantage of remaining secure if either
factoring or the DLP in Galois fields GF(p) remain intractable, and may thus provide
additional security over the original Diffie-Hellman scheme.

Finally, the best known algorithms for solving the DLP in the group of points on an elliptic
curve over a finite field GF(q) as well as the curves of higher genus discussed in [Ko90]
and used in the scheme [Ko88] are only those algorithms that work in arbitrary finite
groups presented in Section 8.2.1, with one exception. If the elliptic curve is
supersingular, i.e. the order of the corresponding group G is ¢ + 1 - ¢ where 7 is a multiple
of the characteristic of GF(g), then Menezes, Okmnoto and Vanstone have shown that
there is a probabilistic polynomial-time algorithm (in log g) for reducing the DLP in G to
the DLP in an extension field GF(gk) of GF(g) [MOV91]. Hence the DLP in these groups
is probabilistically subexponential.

There are a number of other cryptographic systems which use exponentiation in a finite
field GF(q), and whose security is consequehtly based on the DLP in GF(q). We give a
brief overview of the most well-known ones.

The Pohlig-Hellman scheme [PHT78]: This private-key cryptosystem was already
mentioned in Section 2.1.4 and is very similar to RSA. The secret key is a pair of integers
e,de {1, .., p-1} such that ed = 1 (mod p-1). A message M is encrypted as C = Me
(mod p), and a cryptogram is deciphered as M = C4 (mod p). Any fast DLP algorithm in
GF(p)* will break this system.

The Massey-Omura cryptosystem (Massey [Ma83], Wah & Wang [WW84]): Here, any
finite field GF(g) can be used. Every user i secretly chooses an integer ¢; € {1, ..., g-1)}
relatively prime to ¢-1, and computes d; € {1, ..., g-1} such that e;d; = 1 (mod ¢-1). If
Alice wishes to send a message M to Bob, she computes x = M€A (mod g-1) and transmits

x to Bob. Bob computes y = x€B = M€A€B (mod ¢-1) and sends y back to Alice. Alice now

108

forms z = y4A = M€B (mod ¢-1) and transmits z to Bob, who finally computes
B =M (mod q-l)f Here, as usual, all remainders are taken to be between 1 and ¢-1. Note
that this scheme requires no key exchange, but 1.5 rounds of communication per message.
Furthermore, caution is advised in its use, since it is extremely vulnerable to an
impersonation attack. A cryptanalyst C intercepting x = M€A (mod ¢-1) could send
y' = M€A€C (mod g-1) back to Alice. Alice, thinking that C is Bob, returns z' = M€C
(mod g¢-1) to C, who could then read M = zdC (mod ¢-1). Hence all messages should be
authenticated in this system. '
The ElGamal cryptosystem [EI85b]: This public-key system also makes use of arithmetic in
an arbitrary finite field GF(q). All users publicly agree on g and an element g € GF(g).
User i's secret and public keys are a random integer @; € {1, ..., ¢g-2} and the element
g% € GF(q), respectively. In order for Alice to send a message M e GF(q) to Bob, she
chooses a random k € Z>0, looks up Bob's public key g@B, and sends the pair
(g5, M g3BK) to Bob (i.e. the message M is "masked" by g4B and the "clue" to unmask M is
gk, but the clue is only useful to Bob, since only he knows ap). To retrieve M, Bob
computes x = (gk)@B and MgadBkx-1 = M. Note that this system requires twice the
bandwidth of all the previous schemes.

The ElGamal signature scheme [EI85b]: This scheme uses GF(p)* as the underlying group.
The prime p and a primitive root g (mod p) are agreed upon ahead of time by all parties.
Then each user i secretly generates a random integer a; € {1, ..., p-1} and publishes
x; = g% (mod p), 0 <x; <p. To Sign amessage M € {1, ..., p-1}, Alice secretly chooses
a random integer k€ {1, ..., p-2} such that ged(k, p-1) = 1, and computes r = gk
(mod p), 0 <r <p. Then she finds s € {1, ..., p-2} such that M = aar + ks (mod p-1).
Then gM = gaar +ks =xA’r’ (mod p). The signature S of M is the pair S = (7, 5), and S can
easily be verified by computing both xA”rS (mod p) and g# (mod p) and comparing the
two. To forge a signature, a cryptanalyst must find r = gk (mod p) and s = (M - aar)k]

(mod p-1) without knowledge of k and as. This signature scheme has recently been

109

proposed for a US national standard by the National Institute of Standards and Technology
(NIST).

Schnorr’s identification scheme [Sc90]: This scheme, intended to be employed on smart
cards, can be used to prove one's identity, and is based in the DLP in a subgroup of
GF(p)*. We first require the establishment of a trusted key authentication centre (KAC) for
the registration of public keys. The KAC initially chooses primes p and ¢ such that g | p-1,
an element g € GF(p)* of order ¢, and its own private and public keys for a signature
scheme of its choice. p, ¢, and the KAC's public key are made public. Any user wanting to
register with the KAC chooses a secret integer s € {1, ..., g}, computes v = g-5 (mod p),
and submits v along with some identification to the KAC. The KAC verifies the users
identification and generates an identification string / and a signature S of the pair (7, v).

If Peggy (the prover) wishes to prove her identity to Vic (the verifier), she first chooses a
random integer 7 € (1, ..., ¢} and computes x = g” (mod p) (this need only be done once
and x can be reused for subsequent proofs of identity). Peggy now sends her identification.
string /1, her public key v, the KAC's signature S of (/, v), and x to Vic. Vic verifies the
validity of Peggy's public key v by checking the signature S. He then chooses a random
integer c € {1, ..., 2t} (the challenge) and sends ¢ to Peggy (here, t € Z>0is a security
parameter which should be chosen appropriately to make the scheme sufficiently secure and
at the same time efficient). Peggy returns the value y = r+sc (mod ¢) to Vic. Finally, Vic
computes z = g¥v¢ (mod p). If z = x, he believes that Peggy is indeed who she claims she
is. An improved version of this scheme was recently given by Brickell and McCurley

[BM92].

8.3 Key Exchange Without a Group Structure

An important issue concerning the design of cryptographic schemes is the problem of

whether the internal structure of the underlying mathematical set may give rise to

110

cryptanalytic attacks. For example, it may be possible for an adversary to exploit the
structure of the key space in order to drastically reduce the computational effort of an
exhaustive key search or mount an attack which would not be successful if a less structured
set were used as a key space. The Diffie-Hellman protocol is based on the arithmetic in a
very structured set, namely a group. Hence the question arises of whether the full structure
of a group is really essential for conducting this kind of key exchange. A close look at the
scheme reveals that we really only require a set G with a multiplicative operation such that
the following holds:

i) G is closed under the operation.

ii) From their respective computations, (g2)4 and (g#)?, the two parties need to be able

to agree on a common key.

In the case where G is a group, i) is satisfied by definition and ii) holds because
(gh)a = (ga)b by associativity. Our question can now be rephrased as follows: is there a set
satisfying conditions i) and ii), which can be used as the basis of a Diffie-Hellman-like key
exchange protocol that is both secure and efficient?
The answer to this question is yes. The first and so far the only example for such a set was
given by Buchmann and Williams [BW90a]. In abandoning the group structure, their
scheme not only introduces a cryptographically (and quite unexpected) idea, but also
employs a mathematically interesting concept which is due to Shanks, namely the
infrastructure of a real quadratic field [Sh72]. The Buchmann-Williams scheme uses as key
space the set of reduced principal ideals of such a field. There is a price to pay for giving up
the group structure. The algorithms of the new scheme are more complicated and
computationally more involved than the Diffie-Hellman protocol, and in fact, the overall
complexity increases from linear to quadratic. In addition, the scheme requires more
bandwidth and an additional round of communication, although in the second round, each
party transmits at most one bit, and in almost all cases, only one of the partners needs to

send the bit.

111

The basic ideas of the scheme are merely sketchéd in [BW90a]. Very few mathematical
details are given and no computational aspects are discussed. More details of the protocol
can be found in Scheidler, Buchmann & Williams [SBW93]. In the following ﬁve
chapters, we will review the idea of the scheme, give all the necessary algorithms, provide
é detailed approximation calculus, and discuss our implementation of the protocol. Chapter
9 presents the concept of infrastructure of a real quadratic field and how it can be used for
‘key exchange. In Chapter 10, we introduce the main algorithms underlying the protocol
and discuss implementation issues. Chapter 11 addresses the problem of establishing a
unique common key and gives the details of the protocol. Part II of the thesis concludes
with a brief analysis the scheme's security in Chapter 12 and a discﬁssion of our computer

implementation as well as some numerical examples in Chapter 13.

112

9 The Infrastructure of a Real
Quadratic Field

9.1 Reduced Principal Ideals and Distances

For the basics about real quadratic fields, we refer the reader to Cohn [C062] or Hua
[Hu82]. For the materiba] about ideals and their reduction, see Williams [Wi85a] and
Williams & Wunderlich [WW87].

Let be a positive sqarefree rational integer. By adjoining the square root VD to the rationals
Q, we obtain a real quadratic field K = Q(VD). A generating polynomial for K is

f(x) =x2 - D, hence (K:Q) = 2. As in Section 8.2.2, we define
{lifD52,3 (mod 4)
2 if D=1 (mod 4)

. D _
and we set ® Me K. Then the maximal order of K is O = Z[w]. Since VD and

c

VD are the roots of f(x) = x2 - D, K has two conjugate mappings, given by 61(ND) = VD
(the identity) and op('D) = -V D. Furthermore, since VD, -VD € R, we see that K is a
totally real field, i.e. s=2 and t=0. Forany a.=x +yVD €K (x, y € Q), we will denote
its algebraic conjugate by o' = 62(ct) =x - yVD. Then we have Tr(o) = a+a' = 2x and
N(a) = o’ =x2 - y2D.

The discriminant of K is given by A = é%D'. From s =2 and ¢ = 0, it follows that the unit
rank of K is r = 1, hence we have a unique fundamental unit 1 > 1. R = log 1 is the

regulator of K.

It can be shown that every ideal a in O has a Z-basis {a, b+cw}, i.e. a = [a, b + c®],
where a, b, c € Z. Here a, b, and c are unique, 0 < b <a,clb, cla, acl N(b +cow), and
a = L(a), the least positive raional integer in a. a is primitive if and only if ¢ = 1. The unit

ideal can be written as O =[1, w],i.e.a=c=1,b=0.

113

Recall that for any integral ideal a, an integer & € a-{0} is called a minimum in a if there
exists no f € a-{0} such that IBl < lal and IB'l < la'l. If o is @ minimum in a, then -ot is a
minimum in a as well, so henceforth we will require minima to be positive. Clearly, 1 is a
minimum in O. There is an iterative procedure which enables us to generate the sequence of
all the minima in O such that 1 = gy <o < p3 < - (see [Wi85a, pp. 630f.]). The method
essentially computes the continued fraction expansion of w; details are given in the next
section. Since M is @a minimum in O and 1} > 1, it follows that py,1 =1 for some / € Z>0,
and in fact Wiy = pum™ forall j e Z>0, m € Z such that j+ml > 1. If D is chosen
appropriately (see Section 12.2), then / might be as large as O(VD log log D).

From Definition 1.2, we recall that an integral ideal a is said to be reduced if a is primitive
and L(a) is a minimum in a. If a is reduced, then L(a) < \/Z The set R of all reduced
principal ideals in O consists of exactly those ideals which are generated by a minimum in
O. Thus the iterative algorithm for generating the ordered sequence (L;);>0 gives rise to a
procedure for computing an ordered sequence ry = (1), r, r3, ... of reduced principal
ideals. Since Wjymi =pum™, it follows that rjy,y =rjforallje Z>0, m € Z such that
Jj+ml 2 1. Hence the sequence (rj)j>0 is purely periodic with period length . If we set
M = (1 =y, 2, ... , Wy}, i.e. M consists of all the minima jt € O such that 1 <p <7,
then we can write R = {r; = (W) |pje M} = {(1) =r1,r2, ... , 1y}, 5O 9? is finite and of
cardinality .

We wish to make R the key space of a Diffie-Hellman key exchange protocol. The most
obvious approach to setting up such a scheme is for all parties to publicly agree on a real
quadratic field K and a minimum L € M. Then g = (i) is a reduced ideal in K. Now each
party generates a positive integera and computes the ideal g2 =(u4) (a should be bounded
by I, but since we generally do not know [, we can simply choose a suitable bound B for
a). At this point the protocol fails, since g2 need not be reduced.

We will see in the next section that it is possible to obtain a reduced principal ideal r from

g2 in O(log D) arithmetic operations. This gives rise to an operation * ("multiply &

114

reduce"), under which R is closed. Hence we can attempt to save our previous approach as
follows. Alice generates a random a € {1, ..., B}, computes g2 and a reduced ideal ra
equivalent to g%, which she sends to Bob. Similarly, Bob generates a random
be {1,..., B}, and transmits an ideal rg obtained from gb to Alice. From rg and a, Alice
computes rg? and from this a reduced ideal ka. Similarly, Bob finds a reduced ideal kg
from b and ra. At this point, our scheme fails once again, since in general ks # kg, and in
fact there is no connection or common feature between k and kg, other than that they are
both reduced principal ideals.

To overcome this second obstacle, we need to provide a means for locating ideals in R in
such a way that the two parties can identify a unique reduced ideal at the end of their
respective computations. In order to do this, we associate with each reduced ideal rj = (1),
Kj a minimum in O, a distance &; = log ;.1 Then §; is a strictly monotonically increasing
function, i.e. 8j+1 > Sj (j € Z>0). Furthermore, we can define the distance between a
reduced ideal rj and a real number x as 8(rj, x) = §; - x.2 The unique reduced principal ideal
closest to x is the r € R such that I3(r, x)! is minimal.

We can now attempt a third approach to key exchange in R. Alice generates a and
computes and sends to Bob the reduced principal ideal a closest to g, i.e. 13(a, @)l is
minimal. Similarly, Bob provides Alice with the ideal b closest to his secret b. From b and
a, Alice computes the ideal k closest to ba. Likewise, Bob uses b and a to find the ideal k
closet to ab. Then both parties have generated the same key ideal.

This version of the protocol is successful in theory, but causes a problem in practice.
Distances are irrational numbers and need to be rationally approximated. As we will see

later on, the uncertainty in our approximation prevent us from knowing for x € R the

1 This definition agrees with the distance definition given in Stephens & Williams [SW89], but differs
from the one in [Wi85a] and [WW87] by an additive term of log L(r,).

2 This definition differs from the one in [BW90z2] in its sign.

115

unique ideal r € R closest to x. However, we can identify two possible candidétes forr.
Let j be the unique positive integer such that 8; < x < §j;1. If rj = (4;) where §; = log J;,
then we call r; the ideal closest to the left of x and denote it by r.(x). Similarly, if
Tj+1 = (Ljs1) Where 841 = log ‘Llj+1, then rj1 = r4(x) is the ideal closest to the right of x.
Clearly, the ideal closest to x is either r.(x) or r;(x). For any x € R, we will be able to
generate an ideal which is either r.(x) or r3(x).
Now we are able to present our final and functioning version of a protocol for key
exchange in R. D (and thus K) is agreed upon publicly ahead of time. Alice secretly
chooses a positive integer a and computes a reduced ideal a € {r.(a), r+(a)} and a rational
approximation 3(3, a) of its distance &(a, @) from a. She sends both the ideal a and its
approximate distance g(a, a) from a to Bob. Similarly, Bob secretly chooses b € Z>0 and
determines a reduced ideal b € {r.(b), r+(b)} and an approximation g(b, b) of 3(b, b). He
transmits both b and g(b, b) to Alice. From b, 8(b, b) and a, Alice computes a reduced
ideal ka € {r.(ab), ri(ab)}. Likewise, Bob determines from a, g(a, a) and b a reduced
ideal kg € {r.(ab), r+(ab)}. ka and kg need not be the same ideal; in fact, the two parties
do not know whether they computed the same ideal. However, the exchange of at most
two more bits of information will enable them to agree on a common key ideal
k € {r.(ab), ro(ab)}.
Two problems arise from this scheme:
1. Given a number a, how to find an ideal a € {r.(@), r+(a)}. More generally, given a real
number a, an ideal b € {r.(b), r+(b)}, and g(b, b), how to find kp € {r.(ab), ry(ab)}
2. How do the communication partners detect whether or not ks = kg and, in case
ka # kg, how do they agree on a common key ideal k.
The arithmetic and algorithms to solve the first problem will be given in the next section
and in Chapter 10. Chapter 11 presents a solution to the ambiguity problem of the key

ideal.

116

9.2 Ideal Arithmetic

Let a = [L(a), b + ®] be any primitive ideal. If we set Q =L(a)o,P=bs + 0 - 1, thena

can be written as a =[Q . ii_i_ié] where P,Q € Z. Then 6 1 Q and L(a) | N(b+w)
4] c _

implies 6Q | D - P2. In this fashion, every primitive ideal a can be associated with a pair

(P, Q) of rational integer coefficients. For the unit ideal O, wehave P=06-1,Q0 =o0.

As mentioned earlier, there is a connection between ideal arithmetic and the theory of

continued fractions. As in Section 1.3, denote by P the set of integral principal ideals. Let
Po + VD

a=[Q,P_i__‘!:D_] € P be primitive. If we set Qg = Q, Pg =P, ¢g = 0y nd
(v} 9] ’

expand ¢y into a continued fraction as described in Algorithm 9.1 below, then we obtain a

_QJ';I.’ Pi1+ VD (je Z>0).

sequence of primitive principal ideals a, a3, ... where a; =[
G)

We call a;,1 the right neighbour and (in the case where j 2 2) aj. the left neighbour of a;.
If a; = a is reduced, then a; = ry, for some k € Z>0, aj = T4j.1 is reduced for all j > 1, and
the sequence (aj)1<j<; will generate all the ideals in R. In this case, we can compute
reduced principal ideals by starting at any r; (i 2 k) and generating r;41, rj32, ..., OT,
applying the recursion "backwards" as in Algorithm 9.2, r;.1, F;-2, ... , r1 (for the latter
sequence, we require i 2 k+1). In the case where a; is not reduced, this method will yield a
reduced ideal after O(log D) iterations. Hence, the continued fraction algorithm allows us to
step through R in either direction and to quickly find for any primitive principal ideal an

equivalent reduced one. The algorithm is given in [WW87] and operates as follows. Let

d=|DJ.

Algorithm 9.1 (Continued fraction algorithm, forward):
Input: Any primitive ideal a =[.Q., P_—t_\/_q e P.
c c

1 Pig+VvD
Output: A sequence of primitive ideals aj, ay, ... in P, where a; =[QJ'] el rjl Gg=D.
_ c c

117

Algorithm: Set Po=P, Qo=0,

Pj.1+D D-P? ,
%51 =g Pi=gj.1Qj-1-Pi1, @ = O/ G=12.)
P;1+VyD VD -P; .
Set aj=[Q]' , -]] Then aj+1 =y'ja; where j =_QY_1—L g=zn. 9
c c -

Algorithm 9.2 (Continued fraction algorithm, backward):
i1 Pji1+VD

Or1 Fil](izl).

c c

Input: Anyrie R, r; = [

0j-1 Pj_1+\fﬁ]

Output. The sequence of ideals rj.1, ri-2,... , 1 = O, where rj =[

c o
(1<j<i).
_D-Pjiyy? P+1+d L
Algorlthm QJ— Qj 1 o qj = P_] quj Pj+] ([=l'2, ees g 1).
. _+«/— +VD
Setrj=[g-’:l,].Thenrj=¢'jrj+1 where ¢j=—= _!Q'_(l <j<i. O
(4 o i j .

Q P+VD

Theorem 9.1 a) Let a —[
(] o

] be a primitive principal ideal and let a1, a3, ... be

the sequence computed by Algorithm 9.1. If 0 < Qg < VD, then for all j > 1:
i) aje R;if k> 1is such that aj = ry, then aj =Tjajl-
i) ¢j>1,0<P; <D, c<Qj <2VD.

Pj-VD
i) 1<—1-—=—iQ—<0'
v J

P +d
iv) gj = I_ —J—tl—j—_] so the expressions for gj in Algorithms 9.1 and 9.2 are

equivalent.
Qi1 Pi.1+D
b) Let r; = [i1 , - I € R, ({=2)and let rig, r;.p, ... be the sequence
c o

computed by Algorithm 9.2. If 0 < Q;.2 < VD, then for all 1 < <i-1:
D rje R, 8 = dj4+1 + log 19"}l = §j41 - log hy'jl.
ii) ¢.121,0< Pj—l <+vD,c< Qj-l <2VD.

118

.1-VD
iii)-1<¢'j_1._—1Ql—1— <0.

Proof: a) For i) - iii), see [Wi85a, p. 632]. iv) is proved in [WW87, Lemma 6.1].

b) It is easy to see that the recursion formulae of Algorithms 9.1 and 9.2 are the same.
Hence if we use Algorithm 9.1, starting with r1 = O, i.e. Qg = 6, Pg = 6-1, to compute a
sequence ri, rp, I;, then Algorithm 9.2, starting at r;, computes exactly the sequence

ri, ... , '1. This implies ii), iii), and the fact that rj€ R for 1 <j <i-1. The second part of

i) follows from rj = ¢'irj41 and ¢; = 1 for1<j<i-1. 4
Yj

The gain in distance in one step and in two consecutive steps of Algorithm 9.1 is bounded.

Theorem 9.2: Let ay be as in Theorem 9.1. Then for all j > 1:
a) qi<hjpil<gj+1.
b) vinvy'j>2
c) 1 +—1—<I\y’jl<\/z.

VA
Proof: Let j 2 1. Then Y11 + gj = m’QEM +gj= \D- Pzél"'qu, \/~—+P1 = ¢j=
J J

‘I’J
a) By Theorem 9.1 a) iii), -1 < —1—'— <0. Then y'j+1 + gj = —1'— implies -1 < \|I'j+] +gj <0,
v Vi
hence g;j <-W'je1 =yl <gj + 1. '
b) ¥ivi=1-qgyj=1+ gjty'jl > 1+ 1 =2 by Theorem 9.1 a) ii) & iii).

\/_D}P" < 2Jﬁ: \/X by Theorem 9.1 a) ii), and y'jl = -y'j.1 = gj.1 - 1
Qj-l G : W']

o =

=gj.1+ 1 >1+ L by Theorem 9.1 a) ii) and the previous result.

Vi1 VZ

By the Gauss-Kuz'min law (see for example Khinchin [Kh64, pp. 92f.]), for almost all
continued fractions, a partial quotient g occurs with probability logz(l + (—(;—1;—2———1-)

119

Hence, we expect gj to be small in most cases, for example gj = 1 in 41.5%, ¢j < 10 in

87.4% of all cases.

Let a; be a primitive principal ideal and let a,, (m € Z>0) be generated from aj using

Algorithm 9.1. Then a,, = 6',a; where 8;=1,0,, = ;I-li\pk. It follows that for any fixed

ie Z>0 and j > i, we have a~=gia,-. If we set {pm, =L, ie.{1=1,Cm = | |0k
' ey 0 =
1 m -

(m21), then for 1 <j<i, we have aj =§—|i a;.
i

In the special case where a1 =r1 = (1), i.e. a,, =rp, we have (0'y) =a, =Tp = Un),
and in fact Y, = 18'yl. The following lemma summarizes sorme properties of and gives a

simple recurrence relation for 0,,, {,, (m = 1).

Lemma 9.3: Forall m > 1:

a) Om+2 = -qmOm+1+ Om, Cm+2 = qmCms+1 + Cm-
b) 10+l > 10,1 2 1, 0 a1l < Il < 1.
c) sgn(0'y,) = (-1)m-1 sgn({'p) = (-1ym-1,

Proof: We have 0;1+2 = W+ 1WmOm. From the proof of the previous theorem, Wy4 1Wpm =
-dm¥m + 1, whence follows the recurrence relation for 8,,42. Similarly, we show ¢;,.410n

= gmdm + 1, which yields the recurrence relation for ;,42. Now 10',411 = W'p,1108',] and

by Theorem 9.1 a) iii), we have 1 > 1 , hence 18',+1] > 18',,l. We show

h.[f'm'
sgn(8',) = (-1)m-1 by induction on m. We have 0'1=1>0,02=vy"1= 'f%a'@< 0

by Theorem 9.1 a) ii), and for m > 0, using the induction hypothesis for m+1 and m:

8'm+2 = -qm(-1)M8" 1l + 1)1 18%,] = (-1)Y7(gm!0'me1! + 18'm)). The rest of the

lemma follows from the identity {,, = 1

m

120

In order to find for any x € R areduced ideal r; € {r.(x), ry(x)}, we could use Algorithm
9.1, starting at r1 = (1), to generate a sequence of reduced ideals ry, r3, ... with distances
3, = log 161, 83= log 163, ... , until we obtain r; such that 8; < x < §;,1. However, since
'yl < 2D forl =1 by Theorem 9.2 c), each step advances us O(log D) in distance, hence
this will require exponential computation time if x is polynomial in D. We need to move
through R at a much more rapid pace. To achieve this, we make use of Shanks'
infrastructure idea ([Sh72)).

We impose an operation * ("multiply & reduce”) in R as follows. If r;, rj are reduced
principal ideals with respective distances §;, 8;, then r; * r; is a reduced principal ideal ry,
such that 8, = §; + 6;, i.e. m = i + j. Now if we want to find a reduced principal ideal r;
such that 8; < x < 8,1, where x is polynomial in D, we start with a reduced ideal r; with

small §; = O(log D). r; can be obtained using Algorithm 9.1 on ry = (1). We then compute

. X .
Ij =T * I} % ... % r; where the number of terms is n = —8— Then Sj = nd; = x, and it can be
i

shown that a few applications of either Algorithm 9.1 or Algorithm 9.2, starting at rj, will

yield r;. If we adopt the fast exponentiation technique as described in Algorithm 2.1, we

can compute r; using O(log n) = O(log D) applications of *, hence this method is much
faster than the single step method, provided the operation * of two ideals can be done in
time O(log D) and the computation of r; from rj requires at most O(log D) iterations of

either one of Algorithms 9.1 or 9.2.

In order to define * more formally, consider ideal multiplication as given in Section 1.3.
Let rj, rje K. If we set ¢ = r;rj, then ¢ = () where log y=§; + d;, hence, ¢ would give
us exactly our required distance. Unfortunately, ¢ need not be reduced. However, by using

the reduction technique described in [WW87] (details will be given in Algorithm 9.4), we

can compute a fixed reduced ideal r, which we define to be r; * rj such that
dm = 8; + &; + € where lel = O(log D), so lel is usually very small relative to §;, 0. Iy can
be generated as follows. If we set aj = ¢ and apply the continued fraction algorithm as

given in Algorithm 9.1 to the product ideal ¢ = a; O(log D) times, then we obtain an ideal

121

aj which is reduced, i.e. a; = r,, for some m € Z>0. Since ideal multiplication requires
time O(log D), r; * rj can in fact be computed in time O(log D).

The algorithm for ideal multiplication, which is basically Shanks' modification to Gauss'
composition algorithm for quadratic forms, computes for two primitive ideals
aj = [a) b1+w], a3 = [ay, by+w] the product ideal a3 = [a3, b3+w], where a3 = aja2 and
b3 = by (mod ay), b3 = by (mod a7) (a3 need not be primitive). The method is described in
[Wi85a, p. 634] and in detail in [SW89, p. 624]. We will describe the latter version (the

factor U is extracted to ensure that the product ideal ¢ is primitive).

Algorithm 9.3 (Ideal multiplication):
Input: r; =[Qi'1 . Pi1 + VD], rj=[gj-’l, PM]E Raj=z1).
c

o o o

- Output: ¢ € P primitive, U € Z>0 such that r;rj = Ue.

Algorithm: D Solve—Q—‘-"lx +Qj'—1y =Y = ged il Q-1 for x1,y1,Y e Z.
o 1 o 1 G O©

2) Solve sz +Yy,=U-= gcd(Iiiit’ii;l, Y) for xg,y2, U € Z.
] o

_0i-1051
3) SetQ= —J(—S—l—]—é’——.

D-P;
4) Set X =ypx1(Pj.1-Pi-1) + x5 Qm” (dQ’])

5) SetP =P;.1+ Q‘ 1 (mod Q). (IfU=Y, then setxy =0,y,=1.)

6) Setc-[QF+\/D] a

18 0]

Theorem 9.4: If r;, rj are such that the coeficients Q; 1, Qj-1, Pi-1, Pj.1 satisfy the bounds
in Theorem 9.1 a) ii) and iii). Then Algorithm 9.3 performs O(log D) arithmetic operations
on numbers requiring O(log D) bits of storage.

Proof: Qi.1, Qj-1, Pi-1, Pj-1 = O(ND), hence all numbers throughout the algorithm are
* bounded by O(D). Our algorithm performs a fixed number of arithmetic operations plus

two applications of the Extended Euclidean Algorithm to solve the linear diophantine

122

equations. The number of arithmetic operations performed by the Extended Euclidean

Algorithm is logarithmic in its largest input number. O

The algorithm for reducing the product of two reduced ideals is simply the continued
fraction algorithm as given in Algorithm 9.1, applied to the product ideal a number of

times. The method is discussed in detail in [WW87].

Algorithm 9.4 (Ideal Reduction):

Input: a1 € Pwhereaj=c¢= —g7r,-rj = [Q, }i—t——\/—D :l is computed by Algorithm 9.3.
o c

] Gk-2'BQk-2\/5

Output: a; = 0'a1 € R, 0, = (-1 such that By.p, Gyoe Z20 and k> 2.

Algorithm: 1) SetQ'o=Q,Po=P,Bp=1,B.1=0.
2) Repeat, starting atj = 1:
compute ¢'j.1, Q'j, P'j as in Algorithm 9.1
set Bj.1 =q'j.1Bj.2 + Bj.3
untilc £Q'j<d.

3) Compute one more quadruple (¢'.1, @', P'j, Bj.1) as in Step 2.
Qk-l’ P'k.1+VD 0 = (-1)k-1 G2~ Be'D
c Q'o

4) Setk=j+1, a;= [

where Gp.2 = P'f.1Br2+ Q'k-1Br3. O

As soon as ('} is obtained such that 6 < Q' < d, the ideal a; = [Q':_-l, Pk- 1(: VD :l is
reduced, so ag = ry, for some m € Z>0. The extra iteration in Step 3 of the algorithm is to
ensure that the bounds 0 < P'.1 <VD, 0 < Q't-1 < 24D of Theorem 9.1 are satisfied.
(Note that we write P'j.1, Q'j.1 instead of Pj.1, Qj.1 to indicate that these are the cofficients
of an ideal a; which is not reduced for j < k-1. This notation is not to be confused with the

notation o' € K which denotes the conjugate of o).

123

Lemma 9.5: Letc, B; (-2 <i <k-2), Gg.2, 6k, a be as in Algorithm 9.4. Then

0<B;<Bj4+] <?£(2<1<k4) Bk2<(qk2+1)QF Gia <3VDBpa.

Proof: 0 < B; < Bj41 is clear from the recursion since all ¢'; > 1 for i > 1 by Theorem 9.1

a) 11) From Theorem 4.2 in [SW89], we get Bj_3 < \Q/_O_ The bound for By_p follows

from the recursion. The inequality for G2 can be obtained using the bounds on P'g.1,
Q't-11in Theorem 9.1 a) ii) (it is at this point that we need the extra iteration in Step 3 of

Algorithm 9.4). U

Theorem 9.6:If ¢ = %rirj where the coefficients of r; and r; satisfy the bounds of

Theorem 9.4, then Algorithm 9.4 performs O(log D) arithmetic operations on numbers of
O(log D) bits.

Proof: From Algorithm 9.3, we have Q'g = O(D), P'o= O(D) where ¢ = a1 =
nop' D 'v-1 P'p-1 + VD
[_Q__QP0+\/D].Ifak=[Qk1 k-1

k4 »
16 (o 4] o

:l, then it follows from Theorem 4.1

and Corollary 4.1.1 in [SW89] that IP'jl < VD + Q'¢, I0'1<Q'¢ for 0<i<k-2. Theorem
9.1 a) ii) yields P'k-1, Q'k-1 = O(¥D). From Lemma 9.5, we obtain B; = O (VD)
(-2 €i<k-3) and By.g < (q'g-2 + 1)Bg.3 = O(D3/2), since q'x» S—’—)k—Qz—g—g]—_——O(D)
and G = O(D?). (Indeed, by the Gauss-Kuz'min law, ¢'j_7 will be small most of the time,
so generally, we have IP',.5l = O(/D), Bp.n = O(\/—), G2 = O(D)). Hence all numbers

in the algorithm are by a fixed power of D. By [WW87, Corollary 4.2.1], the maximum
number of iterations is O(log %) =O(log D). U

Theorem 9.7: Let ¢ = %r,-rj where 1y, rj are as in Theorem 9.4 and let aj be the reduced

ideal computed from ¢ = a; using Algorithm 9.4. If az = ry, then 8, = §; + d; + € where

lel =log D + O(1).

124

, o - Qi1051 0%l _ Gyo + BioVD
Proof. We have From Algorithm 9.3: Q'g = o2 S 01051 oU. Since

10’ + By
Step 3 of Algorithm 9.4 ensures that k > 2, we have By.p 2 1, so Uk > G2 ;gk D 2

——, and from Lemma 9.5: ?Jkl <18l BBk 2r+Bk'2J— 43624—_ <4@Gpa2+1)=

4\/_’
10") :
O(D). Set e = log%‘—, then lel =log D + O(1). If r; = (), /= (W), and if ag = rp, = (Uym),

t

10 0' Il
then ry = 8'kc =—fjk'rirj., SO Uy = eTk“iuj, hence 8,;, = log Wm = log C———l";’”) =

e+9;+9. O

Let x, y € R. Our next goal is to compute efficiently from ideals r; € {r.(x), ry(x)} and
rje {r.(y), r+(»)} an ideal ry € {r.(x+y), ri(x+y)}. To achieve this, we first compute
c= —lljr,-rj and a reduced ideal ry, such that 6,, = §; + 3; + €, lel = log D + O(1), in time
O(log D), using Algorithms 9.3 and 9.4. Then 8(rj, x+y) =8, -x -y = d8(rj, x) +
d(rj, y) + €, and rp, need not yet be our correct ideal r,. However, r, can be computed
from ry using one of Algorithms 9.1 or 9.2. It remains to be shown that this requires no
more than O(log D) iterations of either of these algorithms. We prove this result and

discuss the details of the algorithm in the next section.

125

10 The Main Algorithms

10.1 Preliminaries for the Implementation

Since the evaluation of logarithms is computationally expensive and hence to be avoided,
we introduce exponential distances. If rj = (1) is any reduced ideal with distance &;, then
define its exponential distance as simply e = K. Similarly, if x € R>0, we define

Arj, x) = ed(rj, %) = Wie*,
As indicated before, distances are generally irrational numbers, which need to be rationally
approximated in our algorithms. More specifically, we approximate a distance A(r, x) € R

by X(r, x) € Q with a fixed precision of p bits, i.e. we write

M(r, x) x)
A, x) = >
where M(r, x) € Z>0. We define the relative error
x(r, x)
| P) = ACr, x)
We denote by £(x) the ideal actually computed by our algorithm, so we always have
() e (r.(x), r+(x)}. For abbreviation, let A(x) = MP(x), x), A(x) = AP (), x) = Mz(;)
pNe))
pix) = ey

The following lemma is an immediate consequence of Theorem 9.2 a) and ¢).

Lemma 10 1:Letx € R and let j > 0 be such that r.(x) = L), T4(X) = Tjy1.
a) PRy 1< Mr.(x), x) £ 1 <Mry(x), x) <gj1+ 1.

b) x(r_(x), X > j—-_ A+ (), 1) <V A.
A
Proof: We have ri(x) = y'ir.(x). The inequlities A(r.(x), x) £ 1 < Mr,(x), x) are clear. If

we show A(r.(x), x) < ' and A(r.(x), x) > rl’—l’ then the Lemma follows immediately
VY

126

from Theorem 9.2 a) and ¢). From Theorem 9.1 b) 1) K1 = '/, Now A(r (), x) =
A(r+(x), x) 51
iyl

Hjr1e* = y'jlije* = hy'jIA(r.(x), x) < hy'jl and A(r.(x), x) >

For our implementation, we need to define a number of constants and state their properties.

Let B € Z22 be an upper bound on the secretly chosen exponents a, b such that B is

polynomial bounded in D. Set

* _ P .
d*=[20JD], x—1+2p_1, g =1+,
) 1
y=[g127], K=[—% , A =g 1682,
1-41
Also recall that d =D and A = %D is the discriminant of K. For our computation, we
o
require
2P > 3072dB2,

i.e. our precision is polynomial in D. For example, if a, b are bounded by d = VD, we
3

must carry £2(D2) bits of precision; a bound of L%J on a and b requires a precision of

Q(D) bits, etc. Furthermore, v will be a lower bound for all our approximate distances

M(a, x) throughout our protocol. Then the following inequalities hold.

Lemma 10.2: a)y>1. - b) K >1.
Oy +2P< 1+5}:§<A <g. d)xz(l +§)~)<\/_I?<A3.
AP
7 1 (1+2P) 1
e)g <1+\/K Dl-g32‘P <1+\/K'
Proof: a) Clearly g <2.vy2 g'l?ﬂ >-1>1,
b) Clear from % > 1 and =1 > 1 since Yy> 1 by a).
1
. -yt v-1
cx+2P =1+ﬁ+$ =1 +%< 1 +—Z—Dl:—2—. To prove the inequality 1 +2—p-1j2—<A,
.2 16B2
1 \16B2 1 1682\ . Iy 1
note that(l + 27_5) = (1 + _2;77) 272 <exp (Z?} Since log (1+;)>m

127

. 1 1 _16B 1682
for x > 1, it follows that log(g)247d<!_1 2 48d2 - 2 So A16B2 _ g 2 exp (————J

P2
>(1 +——1-—-)1632,
p-2
d)Wehavey<2—ge+1, soy-1<2-§—and 1 +—§5,< 1 +Y} 1 - 1_17-1, hence
xz(l + —zgﬁ)<\/? To prove K < A5, we observe that 1 -y 1> 1 -fp— and g < 2, so it
i +—1—)4 [+—1—)4
2p- 2p-1
< <
1 AY 1 _.__1_._ _ 1___1_6
2P 2p-1 op-1
Now 0 < 1=2P"1.2P-2_1, 5o division by 22P-3 we obtain 0 < —x - —— .
’ y op-2 op-1 72p-3
1 1 1

1
P2 op1 oplopa (- 1X1 + 7 2) Therefore ———— L)

follows that K < (using 1+x <1z if bl < 1.

1<1+

-2

081+ 1o B0 () <)

1 1 . 7 7 635 7-47+6-35 _ 539
< @122 s472dfor 2<i<7.Sog <1+47d+ 72dSI+ 724 - 1 + 55094

Now4d22(d+1)>2\/—52\jz,sog7<l+ 4539 L

2209\F W
1 1

f) We first observe that g =1 + g1+ 7= j—g, hence g4 < (27)4 < 2. Tt follows that

2
2P(g-1)-g4>2P(g-1)-2=427pd-2230471333 -223%2- 2=62>1, hence g2P - g4 >

1 \6 6
and K<(1 + —= Y} <AO% by ¢).

i i 1+2°P (1 +2-p)gb 1
o39p D 7 —
1+2P,0rg(l-g22P)>2 +1.Thereforeg>1_g32_pand 1. g32» <g <1+\/K
by e).

10.2 The Algorithms

Our first algorithm in this section takes two input ideals fx) e {r.(x), r4(x)} and

?(y) € {r.(y), r+(»} (x,y € R) and computes ?(x+y) € {r.(x+y), ry(x+y)}. The

128

second algorithm computes from a positive integer m and 9(x) € {r_(x), ry(x)} an ideal |

f(mx) € {r_(mx), rp(mx)}.

Algorithm 10.1: Input: £(x), f(y) € R, M(x), M(y) (x, y € R) such that

i) M), M) 27,
i) P(x) e {r.(x), re(0)), fO) e {r.(0), rL)},

iii) g-1 < p(Wp() <.
Output: P(x+y) € R such that F(x+y) € {r_(x+y), To(x+y)}, M(x+y) > .

Algorithm:
1. Compute U e Z>0, ¢ = [Q—Q P+ ND] e Pc= }ﬁ?(x)?(y) using Algorithm 9.3.

b

18)

2. Setaj =c and compute ag =[Q k-1 Pra+ \/T)jl e R, 0, = (-1)1"‘(;1"2 -Qik'zm
c o

such that a; = 0'y¢ and Gy.9, Br2 2 0, using Algorithm 9.4.

el
{Then ay =—U&’r\(x)r°(y) andagp =Ty = [Qm'l, Pm-1+ ND for some m e 7>0.)
o o l

3. SetT = rz?’p G"'zng B"'Zd*_l, b= 213’;, L= gg’)t(x)’)i(y).

4. a)If1 <L Sg3, then {Case 1}
set P(X +) = Py, M(x +) = f%zpmxmfl = r%’i-l
b) IfL < 1, then {Case 2}
compute gp-1, P, O using Algorithm 9.1

Pp2P + d*
set Tm = Zp, Tm+1 == ———Q—m-_l_—

repeat, starting at j = m+2:

compute g;.2, Pj-l Qj-], using Algorithm 9.1, and T = qj_2Tj_1+ Ti2

umi17*jz-2L£>Tj_1

setn=j, Px+y)=r,, M(x+y)= F%@ﬁ(x)ﬁ@)_l = r%—l.

129

c) IfL>g3 then {Case 3}

(P,,.12P + d*)2p- 1"! rP 2p+d*']
set Ty = 2P - 1Tm1-l_ m-1 | m- 1
Om-2 2P-1 + 1) X0m-2

repeat, starting at j = m-2:
compute 0}, g;, P}, using Algorithm 9.2 and Ti=qTi+1+Tjs2
until Tj.1 >L2P 2 T; '

setn=j, Px+y) =1y MGx+y)= F oT, v >ﬁ(y>-| r“ - _l =

Theorem 10.3: Algorithm 10.1 computes l"\(x+y) and M(x+y) such that £ (x+y) e
(r-(e+y), T4)} and M(r+y) 2 . |

Proof: Once we have computed the product ideal a; = ¢ in Step 1 and from a; a reduced
ideal a; = ry,, we need to step through R in the appropriate direction, starting at ry, to
move close to x+y and obtain f'\(x+y) =rp € {r-(x+y), ry(x+y)}. To sée that r, is indeed
the correct ideal, it suffices to show that A(r,.1, x+y) < 1 < A(Tp41, X+Y).

Since A(ag, x+y) = l(%clk(x)?»(y), we see that § and L are approximations for 18" and

Mag, x +y), respectively. For simplicity, let 8 = 18'yl, G = Gy.2, B = By.2, O = Q'o. We

first prove

0 <8 <xo. (1)

3G +23 . .
Proof of 1): 230 = 2TCIZPBND ¢ 53, G LBA (i _ 30 OV L B"

G2 + B2PND + 1)

<22r 0

+1 =23p9+22pg+ 1.

2
Now 23Py =237 + 22p+1 and 22P > 30722424 >(3072) (2d)2 (30272) D, since

D =(WD) < (a!+1)2 < (2d)2. Furthermore, Step 3 of Algorithm 9.4 guarantees that k > 2,

2p+1 2p+1 2
5°B>BO>1andG>Pk1B>1'I'herefore22p+1g 2; >24’;) 215(3%72) > 1

130

and trivially 22p+1%—_5 >22p -g . Tt follows that T < 2370 + 22:% +1<2309 + 220+ 1%—75

+ 22p+lg = 23p@ + 22p+19 = 23py0, soA(l) holds.
We also have
;‘—3 < Mag, x+y) < L. @)

ox(R 6L
Proof of (2): Mag, x+y) = %"(")Mw - Up((i))piyy)) " Bepp(

L L L L
=< < < Mag, x+y) S———<L
g3 g% gxpp®) gp(OPY)

The bounds on A(ag, x+y) show that our three cases 1 <L <g3,L <1, L > g3 correspond

, SO since Y < g by

Lemma 10.2 ¢):

0 AT, x+y) = 1, A(rp, , x+y) < 1, M1, x+y) > 1, respectively. For each case, we need

to show M(rp, x +y) 2y and A(rp-1, x+y) < 1 < M(Fp41, X+Y).
Case I: Here we have g% < AT, x+y) < g3, so by Theorem 9.2 ¢) and Lemma 10.2 e):

-1
AT m-1 X+Y) = M, X+ 111 < g3(1 + —1—) <g4<1land
A

AT, X4Y) = N A (T, x+y) > (1 + %}ﬂ > g4 > 1.
A

Hence rpy € {r-(x+y), r+(x+y)}. Funhemore, M(x+y) 2 l—%—l =".

Case 2: Here A(rp, x+y) < 1, so we need to compute right neighbours of r,, in order to

:) . 0' T; .

increase distance and move closer to x+y. Note that if rj =(—)7er, then 5’15 is an
m

9

m

= ﬁl\y'il (j 2 m) and this expression increases as j increases.
i=m

approximation for

Hence, if Tj= 125 then 1 = Izt'L zl-:—'l- AEm, x+y) = A(rj, x+y). We have
m

8
0'm

9

o | G2m: 3)

T:
<-ley
2P

Proof of (3) by induction on j. The case j =m is 2P = T,, <x2P. For j = m+1, we have

P, 2P+d* P, 2P +d* P, 2P+ D2P+1

6'
=mEL < 2Pyl < O STmi <TG+ 1<

0'm

+1

pl4

9'm+1

t

= 2P| + 1 + 1 <2PW'pl + 2 = x2PWy'yl = 2P
Om-1

m

131

Oj+2| _ 9]+1 0
el

el

From Lemma 9.3 a) and ¢), it follows that , hence, since all

m

gj2 1for j 2 m, (3) follows trivially from the linear recursion for Tj
IG'jIM [} TjL 1
10'IT; 8 27 gp(x)p(y)

—L A(r . X+Y) =
m

Now ?»(rj, X+y) = for all j 2 m, so from (3),

(1), the end condition of the repeat loop in Step 4 b), and condition iii) of Algorithm 10.1:
0127 9 Tp.1 1 1

AT, 1, x4y) = — <1:1-1-—¢ =1 and as in case 1:
(Tp-1, x+y) 0T 71 8 122 2p00p0) 28

1\0n2° Tl 1 11 .1 g5
Ar,e1, x+y)>(1 + >gl—2.15=854351,
(1 31) (A }emlTn Z gotp0) © xx £ 22 P

hence ry € {r.(x +y), ry(x +y)}. Furthermore M(x + y) 2 r—-l Y.

Case 3: 1In this final case A(rp, x+y) > 1, so we need to compute left neighbours of ry, in

. . T;
order to decrease distance and move closer to x+y. Here, if rj =C—'”irm, then -—2-;; is an
J

approximation for %1— = 6' ﬁlw,l (j £m), and this expression increases as j
m =)
decreases. Hence, if T, = L2P, then 1 = Z;L C'm C'm AR, x+Y) = A(rp, x+Y).
n C'n C'n
We show by induction on j (j = m, m-1, ...):
', T ',
1——ch <=L EL G <m). @)
x|1Cm| 2 |Cnm 4
) 2P 2
Proof of (4): We have y2P =2P +2,s0 —=2P - =,
X pé
Therefore, since y < 2: 4 < 2P-1=T,, <2P, whence follows the case j = m. For j = m-1:
X
o d*-P,, 12P P, 12P+d*
—QEC}? 1 =-2—elw'm_lls m-1 ST,,1_1<——————m1 +
X m X XOm-2 XOm-2
Pyy,.12P+D2P+1
< m-1 +1=2hy’m_1l+ +1
XOm-2 X XCm-2

< 2Phy' 11+ 1 - ‘(ZI\lel o 2)
Fil-

132

12Pp,1+2VD - 1

=2, 1+ 1-=
2P0yl + ¥ Om2
1 2 + Qm_z - 1
<N, i+ 1-— :
Vim-1 x Om-2
= Dyl +1-L1(1 + NPy, g1+ 1-L(1 +
=W 1 (14)< W (' 2p)
<Py, 11+ 1 -1(1 + —l_-l-)=zp|w'm_1; =2 5’"—‘ :
X 2 C'm
using VD < 2P-2 for the last inequality. Now from Lemma 9.3 a) and c), we obtain
€42l = g1 + IG5, hence |2L| = g; Cienf $i2) (< m-2), so T and L
C'm C'm C'm C'm
satisfy the same recursion. Hence the above inéqualities follow since all g; 2 1 for j < m-2.
' IC' 1T ;
Now, for all j < m: k(rj, x+y) = S_):_n_ A(rp, x+y) = cfn J QLT%P 1» , SO as in the
g L1228 T gpxp()
previous case:
ICulTh-1 0
A(r,-1, x+y) = C;'n e 1—-%‘7} 1 <1-1'1'Lg=1and
n-127 8 Tr1gp(p(3) 8
1", T 5
?\(rn+1,x+y)> 1 + 1 C{n Ilgl%?p 1 >g7;1...1_. .—-1§=g-i->g3>1’
A) 1En22 8 Trgpp) ™ ° xx &% x

hence P(x +y) € {r_(x +y), ry(x +y)}, and again, M(x + y) > r%“l =Y. O

Theorem 10.4: If f(x), f(y) € R are such that the bounds of Theorem 9.4 and the
conditions of Algorithm 10.1 hold, then Algorithm 4 performs O(log D) arithmetic
operations on inputs requiring p+2log D+0(1) bits of storage at worst and p%%log D+0O(1)
in almost all cases. In particular, M(x+y) = O(2PVD) in the worst case and M(x+y) = 0(27)
almost always.

Proof: By Theorem 9.4, computing ¢ takes O(log D) arithmetic operations on numbers
bounded by O(D). By Theorem 9.6, the same is true for the computation of ry. By
Theorem 9.1, in obtaining f(x+y) from r,,, all coefficients computed by the neighbouring

algorithm are bounded by O(VD). So we only need to prove that r, = f(x+y) can be

133

obtained from ry, in O(log D) iterations (i.e. In-ml = O(log D)) and that the maximum value
of Tj is bounded by O(2rD?) at worst and O(2PVD) in almost all cases. From the proof of

e
Theorem 9.7, we have L <7 < 4(g+1) where q is as in Theorem 9.7. By Lemma 10.1

4D
a): A(x) < ¢'+1, A(y) < ¢"+1 for some partial quotients ¢', ¢" generated by the continued
fraction algorithm. This, together with condition iii) of Algorithm 10.1 and the inequalities

2
5;2[) 4\}552— and L < gx%p(x)p(y)?\.(x)k(y) yields the following bounds on L:

L>g

1 2 ' "
4g\/75<L <4xg. (g+1)(g'+1)(g"+1). 5)

Distinguish between the same three cases as in Algorithm 10.1.

Case I: M(x+y) = l_%p-—l < |—2Pg21 There is nothing else to prove.

Case 2: From Theorem 9.2 b), (5), and the terminating condition of the repeat loop in Step

1 Tpot |00 22 el
4 b) of Algorithm 10.1: 4gVD > 7> = > |-"=| = []yi>2 2 or
2p 6'm i=m

2n-m < 32¢2D. So n - m = O(log D). 4
Now Tp.1 < T 2 < 2P*+2g\D andTy, < (qp-2 + DT p-1 < (@p-2 + 1)g2P+2yD. From

Theorem 9.2, ;.2 <V A, and g, is almost always small by the Gauss-Kuz'min law, so

by Theorem 9.2 a) and) T.1 = O(2PD) at worst and Ty,.1 = O(2PVD) almost always.
Finally M(x+y) <| (q,- 2+1)——‘] <r(qn 2+ 1)—_]
7_'1___
Tth W>2 2,
i=n

Case 3: Here 4yg2%(q+1)(g'+1)(g"+1) > L > Tn _ En
mn< (4X82(q+1)((1'+1)(4"+1))2 = O(D4) in the worst case and O(1) in almost all cases.

2p

Cvm 91
Hence m-n = O(log D) and m-n = O(1) almost always.

Now Tj.1 is the largest value computed in the recursion. Ty.1 < (@ue14+1)T, < @ne1+1DL2P
< 4xg2(q+1)(q'+l)(q"+1)(q,,+1+1)2P, so again Ty.1 = O(2PD2) at worst and T.1 = 0o@p)

in almost all cases.
Finally 7}" Gne1t 1 <qntl * 1, $0 M(x+y) Sr(qnﬂ + 1)2{:‘]. a

Ty L2

134

Algorithm 10.2: Input: #(x) € R for x € R, M(x), m € Z>0,
Output: $(mx), M(mx).

Algorithm: 1. Obtain the binary decomposition m = g)bi 2m-iof m,b;e (0,1}, bg=1.
1=

2. Set f(zq) = P (x).
3. Fori=1tordo
a) Compute £(2z;_1), M2(2z;.1) using Algorithm 10.1.
Set £(z;) = £(2zj_1), M(zj) = M(2z;_1).
b) If b; = 1 then compute £(z;+x), M(z;+x) using Algorithm 10.1.
Set £(z;) = P(z;+x), M(zj) = M(zj+x).
4. Set f(mx) = £(z,), M(mx) = M(z,). O

This algorithm is the analogue of the exponentiation technique given in Algorithm 2.1.
From Algorithm 10.1, it is clear that if g-! < p(z;.1)2 < g after Step 3 a) and
g1 < p(2z;.1)p(x) < g after Step 3 b) in each iteration of the algorithm, we have M(z;) =y
and f(z) € {r.(z;), re(z)} (1 i <P |

Theorem 10.5: Let m € Z>0, x € R, and let f(x) satisfy the bounds of Theorem 9.4.
Furthermore, assume that conditions i) - iii) of Algorithm 10.1 are satisfied for each
application of Algorithm 10.1 in Step 3 of Algorithm 10.2. If m is polynomially bounded
by D,'then Algorithm 10.2 performs O((log D)2) arithmetic operations on inputs of size
O(log D). |

Proof: By Theorem 10.4, since p = O(log D), all numbers have input size O(log D). Step 1
of Algorithm 10.2 takes O(r) = O(log m) operations and this is O(log D) if m is
polynomially bounded by D. Steps 2 and 4 take O(1) operations. For each iteration, Steps
3 a) and 3 b) each perform O(log D) operations. So the number of operations needed for
Step 3 is O(r log D) = O((log D)2). O

135

Now that we have presented all the required algorithms for our protocol, two more

problems remain to be solved:

1.

Both communication partners need to start with an initial ideal such that conditions i) -
iii) of Algorithm 10.1 are satisfied throughout the protocol, i.e. for each iteration of
Algorithm 10.1.

Algorithm 10.2 computes one of two possible ideals. The two partners need not obtain
the same ideal from Algorithm 10.2 and must be able to agree on a common unique

key.

These two problems will be solved in Section 10.3 and Chapter 11, respectively.

10.3 Error Analysis
Lemma 10.6: Let x, y , £(x), £(), M(x), M(y) be as in Algorithm 10.1. Then

pP(IPQ) < plx+y) < VK (0)p ().

Proof: Assume M(x), M(y) =, ?(x) e {r.(x), r+(x)}, ?(y) e {r.(»), r+(»} and

gl <ppiy) <g.

8
Arprey) | THORO)

Proof: Case I: p(x+y) = Y = ap(x)p(y) = p(X)p»).
Y AAG)
%ﬁ(x)’)i(y) +2°P 3 | 3
plx+y) < 5 < px)p®) ot o - IF p(x)p(y)a(l + Zgzi)
THON) PAAR)

< p<x>p(y>§(1 + 21;,-)< p(x)p(v)x(l - §)< p(x)p(y)xZ(l + -7%)

<VKpx)p() by (1) in Theorem 10.3 and Lemma 10.2 d).

136

Zéﬁ(x)%)

Case 2: p(x+y) = ig”’ iii; > Z'jzpe . = p(x)p()’)g—z',; Y 2 px)p®).
| AOA)
m
T,0
T ARG + 2P 2[00 |8 .
plx+y) <] =p)p (y) »|o, |0 + o lo ‘
~ GAOAD) 2| H GhaRo)
m m

o'y

(] L8 |8nm 0'm g x2P)
< P(x)p(y)g[x Top J< p(x)p(y)x(x I T,)
< p(x)p(y)x2(1 + 2%)< Kp()p®) by (1) and (3) in Theorem 10.3, the ending

condition in the repeat loop in Step 4 b) of Algorithm 10.1, and Lemma 10.2 d).

» b
Rarm xt9) mxmy) @2}?

Case 3: plxty) =~ Sl o0p) > pp(y).
(Tn, X+Y) C m 7&(W) nil'm
- C'n
T——X(x)ﬁ(y)wp |00 6 |

p(JC+y) < 2 C p(X)p()’) T C P C' e

|7 FMOA) "2 ielo)

8 ' Ty
<pX)p®») a(x o §) p(x)p(y)x(iZZP)< P(X)P(Y)Xz(l + %)

<VKpx)p®) by (1), (4), Step 4 ¢) of Algorithm 10.1, and Lemma 10.2 d). U

Theorem 10.7:Letm € Z, 1 <m <B,x e R, f(x) € {r.(x), r4(x)}, M(x) = yand let

fix) = [-Q— s P_‘*’__}’Q :l be such that Q and P satisfy the boundary conditions in Theorem
(4] (4]

9.1 a) ii) and iii). If

1 1

£ <pim < (PP

then M(z;) = v and £(z;) € {r.(z), r4(z;)} throughout -Algorithm 102 (1 £igrn. In
particular, M(mx) 2, P(mx) € {r_(mx), ry(mx)}, and

min{1, p(x)zm'l} < p(mx) < max{1, p(x)2m'1 }Km‘l.
Proof: Let Ug=max{1,p(x)} 21, Lg=min{1, p(x)} <1, and 27 <m < 27+1. Define

Ujs1 =KUQU2, Li+1 =LoL2 O<isr1). (6
Then U;412U; 2 15since K> 1,and Lj;1 £L; < 1. We prove by induction on i:
U; =Ug2*-1k2-1 L =12l 0<i<r).)

Proof of (7): The case i = 0 is clear. Assume-that i 2 1 and show (7) for i+1 using (6) for i.
Uis1 = KUGUZ2 = KUg(Uo2™ - 1k2"-1)% = Ug 14223 - 142024 1) = y2i+2-1g241-1,
Lir1 = LoLi2 = LoL2*1-1y2 = Lp142Q231-1) o (272-1,

Setting i = r, we get U, = U()?f“‘lk'zr'1 < Ug2m-1km-1 < Up2B-1KB-1, 1f Ug = 1 then
3(B-1)
U,<KB-1<A6(B-1)=g 8B2 <g by Lemma 10.2 d). If Ug = p(x), then U, <

p(x)2B-1KB-1 < -I?‘%:—I-KB'I = g. Soin eithercase U;< g for0 <i <.
Similarly, L, =Lp2™*'-1 2 y2m-1 2 Lg2B-1. If Lo = 1, then L, > 1> g-1, and if
Lo=p(), thenL, > p(x)ZB‘1 > g1, so in either case L2 g1 for0<i<r. We have
Li<pz)<U; (0<i<r). (8)

Proof of (8) by induction on i: The case i =0is Lo < p (x) £Ug and p(zg) = p(x). Assume
now that i > (. From the induction hypothesis for i, (6) and Theorem 10.6, we obtain:
case bj+1 = 0: p(zj+1) =p(2zp 2 p(z,-)2 2 Liz 2Ly sincelg<1.

P(zi+1) < VK p(z)2 < VK U2 < Ujyq since K21, Ug 2 1.
case bjy+1 = L1 p(zi+1) = pRzi+x) = p(z;)2 p(z) 2 L;2Ly = Ljy1.

PGir1) < VK pQzpp(x) < Kp(z))2 p(z0) < KU;2UQ = Ujy 1.
From (8), it follows that Lo2™ 1< L. < p(z,) = p(mx) < U, < Ug?™ 1gm-1,

Next we prove that

L; < p(zi1)? < U; and Gf b; = DL; < p(2zi.1)p(x) < Uj (1<i<p. 9

138

Then it follows that g-1 < p(z;.1)2 < g after Step 3 a) and g1 < p(2z;.1)p(x) < g after Step 3
b) in each iteration of Algorithm 10.2, hence M(z;) = yand £(z;) € {r.(z)), r.(z;)} for1<i
< r, and from the r-th iteration f(mx) € {r_(mx), r4(mx)} and M(mx) > y.

Proof of (9): Again, we use induction on i. For simplicity, we let p(z.1) = 1.

The case i = 0 yields Lo < 1 < Ug and Lo < p(x) £ Ugy. Now assume that our claim holds
for i 2 1 and prove it for i+1. Then from (6), (8), and Theorem 10.6:

Liz1=L2Lo < L2 < p(z)2 < U2 < KU2Ug = Uiy 1, and in the case where bjy1 = 1:

Livi = L2Lo < p(zi)2p(x) < p(2z))p(x) < VKp(z)2p(x) < VKU;2Up < Uyy1. O

Theorem 10.8: Leta,be Z, 1<a,b<B,ce R and let f(c) = [Q, ’1—1—@} be
[e) [¢)

such that P(c) € {r.(c), r+(c)}, M(c) 2, A-l< p(c) €A, and Q and P satisfy the
boundary conditions in Theorem 9.1 a) ii) and iii). Then M(abc) = v, f(abc) € {r.(abc),
r+(abc)}, and g'1 < p(abc) < g. Here P(abc) is obtained by applying Algorithm 10.2 to
f(c) and b to compute f(bc), then applying Algorithm 10.2 to f(bc) and a.

Proof: We want to apply Theorem 10.7 first to 9({') and b, then to £(bc) and a. Hence we

1 =
first need to show that g 2B-1 < p(c) £ (I}—é:_—l)ZB'l. To prove these inequalities, observe
8B-7
that by Lemma 10.2 d): A2B-1KB-1 < A2B-1A6(B-1) = A8B-T = g16B2 5 5o 42B-1 ¢ E§3
1 1

< g, hence g 281 A1<p(c)<A< (Eg'_l B-1 By Theorem 10.7, we have M(bc) > v,

f(bc) € {r.(be), ri(be)}, and min{1, p(c)2b-1) < p(be) < max {1, p(c)2b-11kb-1 We

know that the coefficients of f(bc) satisfies the boundary conditions of Theorem 9.1, so
1 1

only g 2B-1 < p(bc) < (Eg_—l)ﬂ; "1 femains to be proven.

1
Assume first that p(c) = 1, then from our above result pbo)z21> g-23-1. From Lemma

10.2 d), we get g = A168% > A4B2K2B2 5 4 (2B-1)2k2B(B-1) = (A2B-1KB-1y2B-1KB-1 o

139

1

p(bc) < p(c)2b-1Kb-1 < p(c)2B-1KB-1 < A2B-1KB-1 « (Efg—l -1 Now consider the case

2B-1 2B
1682 (4B-2)2
> 8

p(c) < 1. Then p(bc) = p(c)2b-1 2 p(c)2B-1 > A-(2B-1) = ¢ > g 2B-1 and

from g > A1282 5 282 5 g2B(B-1) = KB-1)(2B-DKB-1 we obtain p(bc) < Kb-1 < KB-1 <

1
(Eg‘_l)m-]' If follows once again from Theorem 10.7 that M(abc) = v, f(abc) € {r.(abc),

r+(abc)}, and min{1, p(bc)za'l} < p(abc) £ max{1, p(bc)za’1 }Ka-1 and .

We finally need to show that g-1 < p(abc) < g. p(bc)'_>_ 1 implies p(abc) 2 1 > g-1, p(abc) <

p(bc)2a-1Ka-1 < p(bc)2B-1KB-1 SE%KB"I = g. In the case where p(bc) < 1, it follows that
3-1)

plabe) 2 p(be)2a1 > p(bc)2B-1 > g1 and p(abe) < Ko-1 <KB-1 < A6B-D = ¢ 8B% .5 [

Q P++D

Lemma 10.9: Let r = (u) =[]e R where r is obtained from O by
c o :

applying Algorithm 9.1 to O a few times (at least once). Set ¢ = log lul, f(¢) =r,
M(c) = 2P. Then £(c) and M(c) satisfy the conditions of Theorem 10.8.
Proof: P and Q satisfy the boundary conditions in Theorem 9.1 a) ii) and iii). Since AT, ©)

= lple=¢ =1, we have r € {r_(c), r4(c)}. Furthermore M(c) =2P > v, so poy=1. 0

Now if both communication partners start on an initial ideal £(c) generated as described in
Lemma 10.9, they can obtain their respective final ideals f(abc) such that M(abc) > v,
g1 <p(abc) < g, and the conditions of Algorithms 10.1 and 10.2 as well as those for

Theorems 10.4 - 10.8 are satisfied throughout their entire computation. Given the above

bounds on the relative error p(abc), we show in the next chapter that the parties are able to

agree on a common unique key.

140

11 The Protocol

11.1 Solving the Ambiguity Problem
Before resolving the ambiguity in the ideal computed in the protocol, we need a method for
computing from f(abc) not only its neighbouring ideals as done in Algorithms 9.1 and 9.2,

but also their approximate distances.

Algorithm 11.1 (Neighbouring):

Input: vj e R, M(rj,x) (xe R,j22).

Output: ¥j41,¥j.1 € R, M(rj+1, x), M(rj.1, X).

Algorithm: Compute rj41 using Algorithm 9.1 and rj.1 using Algorithm 9.2. Compute

rational approximations {[\lj, $ j-1 of l\y'jl and |¢'j_1|, respectively, as follows. Define
t=s+p where
0 if Pj.1 <d,
“\llogz2d + 1)) if Pj.y =d.

2PP; + d* d-2P;. - |
Set \?fj (ﬁ\J 1= —aa—u, where d =[2:D]. Compute M(rj+1,x) =
’j-1

(M ,x)l M(rj-l, 0 =[¢.1M@;, 0] T

Lemma 11.1:Letxe R, rj.1 € R, 50, rj,rj+1 € K. Then
1+2P (ri
1- M(rj+1, x)lp A

p(rj,x) <p(rjx1, x) <

Furthermore, if ¢ is as in Algorithm 11.1, then < p +log,d + 2.

/\
: L1 270d- P
Proof +2pi >1. Slrmlarly ¢J o 2 1.
'\le +D J 1l ‘/_ Pj 1
A
Y p +\/—+2‘P_1+____L.__<1+2-P,sincer20, VD > 1.
ijl P; ++D 2P(Pj+\/5)

141

2“+«/D-P-_ .

b Flo 1 1P <dthenVD-Pj1>1,50 —@L—I-
I’ 1D Pj.1 2/D - Pj.1) 01
1+2t=1+2P.IfP;1=d, then2d +1 <25 .\/—D p. =2 P 1> _D- az

<1+2F=1+2P.IfPj1=d,then2d +1<25,s0VD-Pj.1 = +le +d

1 1 9.1 1
ND _.l__ _ -
VD +d >57 + 12 2% using VD <d+l, andl¢111_1+2t_s_1+2P.A

Arji1,2) > YA}, %)

?»(rj+1 , X) I\y'jlk(rj, X)

A x 2 + z-p r; R

hdj (rj *) <(l+ 2'P)p(rj ,X) + —p(—-!—-—ﬂl , SO
hy'jiA(rj, x) 20(r j+15 %)

1 -
p(rj+1,x)(1 - m)< (1+2P)p(rj, x) and

1+2P o(r;
- Mrjep, 010077

P(rjs1,) = = p(rj ,X) and

p(rj+1,x) <

P(Tjs+1,%) < x).

Repacing j+1 by j-1, ¥'j by ¢'j.1, and \yj by $j_1, we can use exactly the same arithmetic to
1+2P

1 - M(rj.1, 2)

prove p(rj.1, %) 2 p(rj, x) and p(rj.1, %) < 7P, X).

IfPj1<d,thens=0,s0t=p. If Pj.1 =d, then 251 < 24+1 implies 252 < d, since 252
is even for s > 3 and at most 1 for s < 2, and 2d+1 is odd and at least 3. It follows that

25<4d and t <loga(4d) +p. O

Denote by r(x) the reduced ideal closest to x, i.e. I8(r(x), x)I < 18(r, x)I for any reduced
principal ideal r # r(x). Let Ag(x) = A(r(x), x); analogously, we define My(x), xo(x),
po(x). Then r(x) € {r-(x), r+(x)}, so Algorithm 10.1 computes either r(x+y) or one of its
neighbours; similarly, Algorithm 10.2 generates r(mx) or one of its neighbours.

Our protocol will be such that Alice and Bob are either both able to determine r(abc) or, if
this is impossible, they will both obtain r;(abc). The next two lemmas give the details of

resolving the ambiguity problem.

Lemma 11.2: Letxe Rand gl <p(x) <g. If g1 < Ao < g, then g2 < M) < g2.

142

Proof: For brevity omit the argument x. If 8 = 8(x) = 8(f(x), x), then by definition
169! < 161, which gives four cases, depending on the signs of 8(and 3:

1 1
DA2Ag21. 2)A<— <1. HArA>—21. 4HA<ip< 1.

Ag Ao

Suppose first g < g2, so Ap < 1.

If A < 1 then from case 4: A = pA < pAg < gg-2 = g-1 which is a contradiction.

If A > 1 then from case 3: A > pi— > g'1 g2 = g which is again a contradiction.
0

Suppose now that A > g2, so Ag > 1.
If A < 1 then from case 2: % < pxl— < gg‘2 = g‘1 again a contradiction.
0

If A2 1 then from case 1: & > pAg > g1 g2 = g, contradiction. O

Lemma 11.3: Let g, b, ¢, £(c), M(c) be as in Theorem 10.8.
If Ag(abe) 2 g2 or Ay(abe) < g2 then P(abc) = r4(abc).
If g2 < A(abc) < g2 then r(abc) can be determined from f(abc).

Proof: Again omit the argument abc for brevity. If A = g2 orig < g‘2, then by Lemma
11.2: X > g (we cannot have A< g1, since A=M2r> v2-P 2 g-1). Tt follows that
7»=g>gg'1 =1,s0f =r,.

P
Now let g2 < A0 < g2. From Theorem 10.8: gls< p<gandfe (r.,ry),sor=forr

1+2P
l—Mo'lp

Now Mg =4g2P = POr2P 2 ph2P > g 1g-20P = g-32P, 50 1 - Mg ! > 1 - ¢32P and

1+ 2P 1+2P 1+2P 1+2P
< .H 3<pipg< <——Z -T2 43
1 Mg 1 1-gd2p Hences” <phospolo<i— 3 5P <TT 358"

is one of the neighbours of f. Therefore by Lemma 11.1: p < po <

Since pghg = Aq, one can determine an ideal a which is either # or a neighbour of £ such
1+2P 1+2P

that g‘3 Sfl(a, abc) < —I-Wg and p < p(a, abc) < - g32'P p. If r = ya where
k a, abc -1 -2-Pp3
w e K* then hyl = Ao 0p()o__glp 1-2P3 1
Aa,abc) Aa,abc) 1+2P 3 (1+2P)gb6 |, L
1-g32-p VA

143

1+2P (1 +2P)gb 1 .
< < 1+-—, using Lemma 10.2 f). From Theorem
1-g32P" = 1-2Pg3 ya© e 0

9.2 ¢), it follows that a = r is the ideal closest to abc. O

and hyl < gg3

Now assume that either of the communication partners computes a final ideal f(abc) with

disiance M(abc). He/She then determines the ideal’s two neighbours and their respective

distances. If among these three ideals there is one, say a, which sat:isﬁes%; < M(a, abc) <

3
___8__(11 :2_22) 3~ then b = r(abc) from the proof of the previous lemma. Otherwise, by the same

lemma, we must have Ag(bac) < g'2 or Ag(bac) 2 g2 and hence P(abc) = r.(abc). With this

final observation, we are able to present the entire protocol.

11.2 The Final Protocol

1. Alice and Bob agree on D , an ideal r € R (obtained by applying Algorithm 9.1 to the
c-1+VyD

o

ideal O =[1, J one or more times), and a bound B € Z22. They compute

p =[10gy(3072dB2)] and M(c) = 2P according to Lemma 10.9 where ¢ =log Iyl r =

(W), i.e. v =(c). D, r, and B can be made public.

2. Alice secretly chooses a € {1, ..., B} and from £(c) computes f(ac) =[&, M J
c c
and M(ac), using Algorithm 10.2. She sends the triple (P, Oa, M(ac)) to Bob.
3. Bob secretly chooses b € {1, ..., B} and from £(c) computes £(bc) =[QB-, Pp + VD]
o} c

and M(bc), using Algorithm 10.2. He sends the triple (Pg, O, M(bc)) to Alice.
4. From f(ac), M(ac), and b, Bob computes f(bac) and its two neighbours as well as their

approximate distances (i.e. M values) using Algorithms 10.2 and 11.1. If he finds

3
among these an ideal a such thatg—g < M(a, bac) < §1 ;25) 3 then a = r(bac). In this
g -2Fg

case he sends '0' back to Alice. If he cannot find such an ideal, then he has computed

ry(bac). In this case he sends '1' to Alice.

144

5. From f(bc), M(bc), and a, Alice computes f(abc), M(abc) using Algorithm 10.2. If she
received '0' from Bob, then she computes the neighbours of f(abc) and their
approximate distances and attempts to compute r(abc). If successful, she sends 0’

back to Bob. The common key is then r(abc). Otherwise the ideal f(abc) she computed

is r4(abc). In this case she sends '1' to Bob. If Alice received 'l' from Bob, then he
was unable to determine r(bac) in which case the ideal f(abc) computed by Alice is
r4(abc). This is then the keyf

6. If Bob sent '1', then the ideal f(bac) = r . (bac) is the key. If Bob sent and received '0',
then the ideal a he computed in Step 4 is the key. If Bob sent '0" and received '1', then
Alice was unable to determine r(abc). The key is then the ideal f(bac) = r(bac) initially
computed by Bob.

Note that if Bob sends '1", Alice need not reply. Altogether:

Bob Alice
sends 'l l no reply necessary l ri(abc)
sends '0' sends 'l’ ry(abc)
sends '0' " sends '0' r(abc)

The actual key is the bit string given by the binary representation of the coefficients of the

key ideal (or any substring thereof).

145

12. Security

12.1 The Discrete Logarithm Problem in %

A cryptanalyst can break our protocol if he is able to determine {r.(abc). r(abc)}, given D,
¢, and the precision parameter p, but without knowing a or b. This can be achieved by
solving the problem of finding for any x € R>0 one of r_(x), ry(x). If r.(x) = rj¢G1),
then 8(r.(x), x) = §; - x, so this problem is equivalent to the problem of finding for any
x € R>0 a positive integer j such that 8; <x < dj41. We can formulate the discrete
logarithm problem in R as follows: for any givenrj e R, find its distance ;.

Any fast algorithm for solving the DLP in R gives rise to an efficient algorithm for

breaking our scheme. Suppose an eavesdropper can quickly solve any instance of the DLP.
To break the protocol, he intercepts f(ac) = rj and computes its distance ;. Then M;c;c)

'}\L(ac) = Mac) = exp(Sj-ac)nk for some k € Z (recall that 1 is the fundamental unit of K).

M(ac)

Therefore, a is an integer close to C“I(Sj - log +k R) where R is the regulator of

M(ac)

K. More specifically, g-! < p(ac) < g implies lac -8+ log - k Rl <log g. Since

R is usually larger than ac (see next section), k& will tend to be quite small; thus an
adversary can retrieve a in a few trials for & values. Similarly, he can find » and hence the
~ key ideal.

Since §; = log W; for rj = (u;) € R, the DLP in R is equivalent to the problem of finding,
for any reduced principal ideal r;j, a generator y j- Until recently, the fastest known
algorithm for solving this problem was due to Buchmann and Williams [113W88b] and has a
rigorous complexity bound of O(VRA?(1)), which can be as large as O(A?E) if D is chosen
appropriately. An index calculus method is sketched in [BW90b] and partially discussed in
more detail in [CDO92]. Tt is an extension of the DLP algorithm for imaginary quadratic

fields. For its discussion, we will use the same notation as in Section 8.2.2 (here, B

146

denotes the cardinality of the factor base B = {[p1], ... , [pg]}, not the bound on the

exponents in out protocol).
As pointed out before, there are many reduced ideals in the principal class, so we need to

associate with each reduced principal ideal a fixed generator in our computation. Instead of

using the sublattice H of ZB of all x = (x1, ..., xg) € ZB such that IB{pixi ~ (1), we
) =

define a new sublattice of ZB xR as H' = {(xy, ..., xg, loglal)e ZBxR | (xy, ... » XB)

€ H,a e K%, IB{p,‘xi = (a)}. So we identify with each vector in H a generator of the
1= :

corresponding principal ideal. The determinant of H' is kR, and in [CDO92], it is shown
how the computation of a generating system and a basis of H' can yield the structure of the
class group, the class number, and the regulator of K. In fact, the same transformations as
in the imaginary case are performed, except that they are now carried out on vectors of B+1

coordinates.
To find a generator of a reduced principal ideal r, find a random vector X1y e » XB, XB+1)

such that 1 <x;<Aforie {1, .., B+1}) and compute a reduced ideal r' in the class of

a= rﬁpgxi; say (o)r' = a, o € K*. Here, the last coordinate xg,1 randomizes the choice
1=

of r'. As before, we attempt to factor r' over B, obtaining in case of success a

representation r' = IB{pi)’ipi'Zi = ﬁpizipiYi'Zi, where y;z; =0 for 1 <i <B. Then
=

1=
r=ola= a'lrﬁplxi,)
1=

r= ar’ﬁp,—‘xi = aﬁpizipizi‘yi'xi,
I= 1=

hence if we set v; = z;-y;-x; for 1 <i < B, then ﬁpi"i ~(1),so0v=(vy,..,vg) e H. Let

1=
e'1, ..., €'p+1 be a basis of H' and define e; € H to be the vector consisting of the first B

coordinates of e'; (1 <i <B). Then ey, ..., ep is a basis of H, and we can express v in

147

B B
terms of this basis; write v = Yke;, k1, ... ,kpe Z.If vp,q =Y kie; B+1, then
i=1 i=1

¥ =(V1,..,vB,vB+1) € H'. Now ¢;p41 is the logarithm of a generator of the ideal

ﬁpjeij, say e; g+1 = log loy;l where IB{pjeij =(a;) (1 £i £B). Thus
1= J=

B » B
exp(vB+1) = exp (Zkiei,B+1)= ﬁeXp(ki log lah) = qlai'ki,
1=

= 1=
yielding the following identity of ideals:
B B B B
(exp(vBs1)) = H(Oﬂi)ki = [T Tesi* = [1p;i,
i= j=1

i=l j=1

hencer = aIB{pizip,-Vi = (aﬁplzi exp(v3+1)J and we have found a generator of r. The
1= 1=

complexity of this method appears to be the same as that of the imaginary case, assuming
ERH as usual.

The details for generating relations over the factor base and determining the structure ‘of
CI(K) as well as an implementation of the first stage of the index calculus method are given
in [CDO9Y2]. As a numerical example, we mention that the computation for A = 1040+1 (a
discriminant far too small to guarantee security in our scheme) took 8.3 hours on a
SparcStation 2. For large values of D, this method is totally impractical.

It should be pointed out that a fast algorithm for solving the DLP can be used to find the
regulator R of K quickly, see [BW90a] and [BW90b]. By a result of Schoof [Sc83a], we
know that if it is possible to find R quickly, then D can be factored quickly. Thus the DLP
in K = Q(VD) is at least as difficult as factoring D. Finally, no method for breaking our

scheme is known other than solving the DLP and exhaustive search.

148

12.2 Safe Choice of D

To prevent an exhaustive key search attack, we need to ensure that the number / of reduced

principal ideals in K is sufficiently large. Since n1 = 18'141! = ILII\W'I < (‘\/—A-)I by
J:

Theorem 9.2 ¢), we have R =log 1 < % log A, and therefore [> l 2RA' Hence we require a
og

lower bound on R,
Consider the analytic class number formula for real quadratic fields 2AR = L(1, x)\/z,
where L(1, x) is defined as follows. The Kronecker symbol of K is an extension of the

Jacobi symbol (é) For any odd prime p, set ¥ (p) = (%) Furthermore, set

0 if A is even,
X2)=31 if A=1 (mod 8),
-1 if A = 5 (mod 8).

n

Recall for this definition that A= 0, 1 (mod 4). For any n € Z>0 with unique prime

factorization n =p1€1---p,€r, set x(n) = x(p1)€1--x(p,)ér. Then for any s € C,

L{s,x) = X% is the Dirichlet L-series corresponding to the Kronecker symbol . By

: nz1

a result of Littlewood [Li82], we have L(1, %) > ¢ (assuming ERH), where
log log A

2
S n— and Y = lim 1 log n |=0.577... is Euler’s constant. Hence, we
Y, k
12¢'(1+0(1)) n—o| o1 .

expect that [> ¢

A Tog log A and we need to bound 4 from above.
No rigorous lower bound for 4 is known. Gauss conjectured that & = 1 for infinitely many
real quadratic fields, and his conjecture remains open. However, the heuristics of Cohen
and Lenstra [CL84a], [CL84b] suggest that the odd part of / is small with high probability.

While a rigorous proof of this result unfortunately remains unknown, there is strong

numerical evidence in support of the Cohen-Lenstra heuristics.

149

Let h* be the odd part of the class number, i.e. & = 2"h* where m > () and h* is odd. We
will attempt to bound h*. Let Clp(K) be the subgroup of CI(K) of order 4*. As in [CL84a,

1 .
w(n) = Z ARG

G up to isomorphism
IGl=n

p. 29], we define

where G is any finite group and Aut(G) denotes the group of automorphisms of G. The

heuristics in [CL84b] imply that for any group G, the probability that Cly(K) is isomorphic
to G is 2 IGTAGKGY for some constant ¢i > 0 (the explicit value of ¢j is given in

[CL84b]). Then the probability that A* = n for some odd n e Z>0is

N 11w
Pr(h*=n) = Z 2cinlAut(G) " 2¢1 n -
G up to isomorphism
IGl=n

Using the identities of Theorem 3.2 in [CL84a, pp. 29f.] and a technique analogous to the
one employed in Landau [La36], we can prove that ZW(n)= c1logx + cp + O(IOXg x) _

A>x
A

where ¢ > 0 is a constant that can be explicitly evaluated. Finally, partial summation yields

n>x
nodd
hence, Pr(h*>x) = ilx*‘ + O(I—%ng—x) » and it follows that A* is small with high probability.

Now it is known (see for example [Co62]) that h is odd if D =p,D=2p,orD =pip;
where p is any odd prime and p1, p; are primes congruent to 3 (mod 4). More cases of
values of D for which the even part of the class number can be bounded are given in

Kaplan [Ka76]. Thus by selecting such a D value which is large, we expect that it would be

VD
1020 log D log log D’

most unlikely that [< say. This renders the likelihood of

success of a search technique to be very slight indeed.

150

13. Implementation

13.1 Optimization

Consider the bounds on the value of L in each of the three cases of Algorithm 10.1. From
(5) in the proof of Theorem 10.4, we obtain 1 <L < g3 in case 1, Zg—l\f_5< L <1 in case 2,

and 1 <L < 4xg2(q+1)(q'+1)(q"+1) in case 3. Hence we expect case 1 to occur very
rarely, since it not only leaves an extremely narrow range for possible values of L, but also
corresponds to a very unlikely event, namely having found f(x+y) immediately after the
reduction step. Case 3 is expected to occur slightly more often, and case 2 should occur
almost always, since it permits a very large range of L values. Our computations verify this
observation. In all our examples, case 1 was never encountered, case 3 occurred very
rarely (at most once per application of Algorithm 10.2), and case 2 occurred almost all the
time.

In addition, we expect the number of iterations of Algorithm 9.2 in case 3 to be small, since
it was proven to be O(1) almost always. Again, our examples confirm this; in fact,
Algorithm 9.2 was never called more than twice, even for our largest discriminants which
were approximately 200 digits.

Considering the fact that in addition to the O(log D) calls in Algorithm 10.1, Algorithm 9.1
is also applied O(log D) times for each ideal reduction, we see from the above remarks that
Algorithm 9.1 is used very frequently throughout our protocol. Hence, we focused out
optimization efforts on this part of our computation and used the following modified
version of the continued fraction algorithm which is due to Tenner (see [WWS8T7]) in our

implementation. Let a = [Q, P—+@] be a primitive principal ideal. Set
o

[9)
D - Py2 0ifQ > 0

) I—P0+d+t0J
Po+d+1y=q000+ro, (i.e. qo = 0y and ro = Pg +d + 19 - q0Q0),

151

and forj 2 0:

Pjr1=d+4-1j, Oj+1=0j-1- 4jPj+1 - P),
0 if Qj4y1 >0, _
bj+1= {1 if Qjr1 <0, Pir1+d+1j41=qj410)41 +7j1s
Pi+1 +d+1j41

(i.e. gjs1 = 01 and 7j 1 =Pjy1 +d + 1j41 - ¢j+1Qj+1)-

This modification, though not as intuitive as the familiar version of the continued fraction
algorithm, represents a significant speed-up and can be used for both Algorithms 9.4 and
10.1. Tt is particularly useful if division with remainder is a single operation as was the case
in our multiprecise arithmetic package, sin;:e gj+1 and rj41 are computed in one step. It cuts
down the number of divisions and multiplications by half (i.e. from 2 to 1 per step) and

merely introduces one extra addition if the ideals are reduced.

13.2 Computational Results

We implemented our protocol in C language, using a multiprecise integer arithmetic
package written by Stephens [St89]. At the time, the only machine available to us was a
DEC MicroVAX. Tests show that a more modern environment (such as the hardware and
software used for the implementation of our cryptosystem presented in Part) yields
computation times which are approximately 100 times faster than those achieved by the
MicroVAX. This estimate was obtained by extensively running Tenner's continued fraction
algorithm on both the MicroVAX and the DECStation 5000.

In all our examples, we encountered the simple case of the protocol where Bob and Alice
both compute r(abc) and only Bob needs to send his bit 1. Again, we expect this, since
the bounds given in Step 4 of the protocol leave an extremely narrow range for M(a, abc)
and force M(a, abc) to be very close to 27.

We will give three numerical examples. The computations were done in two fields whose
discriminants are Mersenne primes (i.e. D = A =27 - 1 for some prime p). From Section

12.2, it follows that both fields have odd class number. The first example used a

152

discriminant of 33 digits (by no means secure enough for practical purposes) and was run
with an exponent of order VD; the other two computations were done in a field with a 183
digit discriminant and were performed on two exponents of order % (a size which we
consider sufficiently secure for such a large discriminant) and VD, respectively. Our

exponents were simply random integers. The computation times are given in the following

table.

Discriminant A =D B 2107-1 2607-1 2607-1
digits in D] 33 183 183
Size of exponent VD D VD

digits in exponent 16 45 91
order of precision D32 D D32
approx. # digits of precision 50 183 275
CPU time, MicroVAX 3.3 minutes }| 41 minutes | 97 minutes
CPU time, DECStation 5000 (estimated) 2 seconds 25 seconds | 58 seconds

153

14 Conclusion and Open Problems

In Part I of this dissertation, we presented a public-key cryptosystem using arithmetic in
cyclotomic fields of degree A-1, where A is a prime. The scheme's security is equivalent to
the difficulty of factoring the modulus. The scheme émploys a Euclidean division
algorithm, which in turn is used for computing integer prime divisors of rational primes
and computing residue symbols in the field. We gave details for the cases A = 2, 3, and 5.
A number of problems remain unsolved. While the Euclidean division algorithm as well as
the gcd method for finding prime divisors of rational primes can be used for the cases A =7
and A = 11, the residue symbol computation becomes more complicated, due to the fact that
there is more than one independent fundamental unit (two such units for A = 7 and four for
A = 11). The complexity of the other prime divisor method (Algorithm 6.1) depends on the
number / of reduced (principal) ideals in the field. If [is bounded, then the algorithm is
linear in log p, where p is the rational prime whose divisor we wish to compute. As pointed
out in Section 6.1, computations show that I = 1 if A < 7. These computations have not
been carried for the cases 11 < A £ 19. We conjecture that in these cases, / is small;
possibly I =1 as well.

. . . o
With respect to residue symbols, it is unknown how to compute [E] fora, B e 0-{0)

efficiently without making use of Euclidean division; nor do we know how to evaluate [;]

for a € O-{0} and a non-zero integral ideal a in O efficiently. In fact, it appears that the
only known method is factoring the denominator and computing the residue symbol for
each individual prime factor. The Euclidean division approach will fail for A > 23; the
question of whether or not the cases A = 13, 17, and 19 yield rings of integers which are
Euclidean remains open.

Finally, it may be possible to extend the approach by Williams [Wi80] and Loxton et al
[LKBS92] to fields with A > 5.

154

Part I of the thesis presented a key exchange protocol based on the infrastructure of a real
quadratic field. The schehe is the first and so far the only version of a Diffie-Hellman
protocol which does not require a group structure. It remains to be seen whether there are
other sets which are suitable for Diffie-Hellman key exchange, but which are not groups.

As with all the previous Diffie-Hellman protocols, the only known way of breaking our
scheme (other than exhaustive key search, which appears to be infeasible if our parameters
are chosen with care) is to solve the discrete logarithm in the underlying structure. The DLP
in the set R of reduced principal ideals in a real quadratic field K is essentially the problem
of finding for each ideal a € R a generator. It appears that an index calculus approach
similar to the one used for determining the structure of the class group and the regulator of
K can be used for solving the DLP. As usual, this method is subexponential in the size of
the discriminant of K. The DLP can be shown to be at least as difficult as the problem of
factoring the discriminant of K. Since the question of whether the DLP is equivalent in
difficulty to breaking the scheme remains unanswered, it is unknown whether the security

of the protocol is equivalent to the problem of factoring the field discriminant.

155

References

[Ad79]

[AD93]

[Ba90]

[BB179]

[BB079]

[BD91]

[BDW90]

[Be28]

[Be70]

[Be82]

[BFMV84]

[BLP93]

[BM92]

[Br88]

L. M. Adleman, "A subexponential algorithm for the discrete logarithm
problem with applications to cryptography", Proc. 20th Annual IEEE
Symposium on Foundations of Computer Science, 1979, p. 55-60.

L. M. Adleman and J. Demarrais, "A subeprnential algorithm for discrete
logarithms over all finite fields", to appear in Math. Comp.

E. Bach, "Explicit bounds for primality testing and related problems", Math.
Comp. v. 55, no. 191, July 1990, pp. 355-380.

B. Blakley and G. R. Blakley, "Security of number-theoretic public-key
cryptosystems against random attack", I, Cryptologia, vol. 2, no. 4, October
1978, pp. 305-321; II, Cryptologia, vol. 3, no. 1, January 1979, pp. 29-42;
I, Cryptologia, vol. 3, no. 2, April 1979, pp. 105-118.

G. R. Blakley and I. Borosh, "Rivest-Shamir-Adleman public-key
cryptosystems do not always conceal messages, Comps. & Maths. with
Appl. 5, 1979, pp. 169-178.

J. A. Buchmann and S. Diillmann, "On the computétion of discrete
logarithms in class groups", Advances in Cryptology — CRYPTO ‘90
Proceedings, Springer-Verlag, Berlin 1991, pp. 134-139.

J. A. Buchmann, S. Diillmann, and H. C. Williams, "On the complexity of a
new key exchange system", Advances in Cryptology — EUROCRYPT ‘89
Proceedings, Springer- Verlag, Berlin 1990, pp. 597-616.

W. E. H. Berwick, "The arithmetic of quadratic number fields", The
Mathematical Gazette, vol. XIV, no. 192, January 1928, pp. 1-11.

E. R. Berlekamp, "Factoring polynomials over finite fields", Math. Comp.,
vol. 24, no. 111, July 1970, pp. 713-735.

S. Berkovitz, "Factoring via superencryption”, Cryptologia, vol. 6, no. 3,
July 1982, pp. 229-237.

I. F. Blake, R. Fuji-Hara, R. C. Mullin, and S. A. Vanstone, "Computing
logarithms in fields of characteristic two", SIAM J. Algebraic Discrete
Methods 5, 1984, pp. 276-285.

J. P. Buhler, H. W. Lenstra, Jr., and C. Pomerance, "Factoring integers
with the number field sieve", The Development of the Number Field Sieve,
Springer-Verlag, to appear.

E. F. Brickell and K. S. McCurley, "An interactive identification scheme
based on discrete logarithms and factoring", J. Cryptology 5, 1992, pp. 29-
39.

G. Brassard, Modern Cryptology, Springer-Verlag, New York 1988.

156

[Bu87a]

[Bu87b]

[BW87a]

[BW8T7b]

[BW88a]

[BW88b]

[BW90a]

[BW90b]

[CD91]

[CDO92]

[CL84a]

[CL84b]

[Co62]
[Co84]

[COS86]

J. A. Buchmann, "On the computation of units and class numbers by a
generalization of Lagrange's algorithm"”, J. Number Theory, vol. 26, no. 1,
May 1987, pp. 8-30.

J. A. Buchmann, "On the period length of the generalized Lagrange
algorithm", J. Number Theory, vol. 26, no. 1, May 1987, pp. 31-37.

J. A. Buchmann and H. C. Williams, "On principal ideal testing in totally
complex quartic fields and the determination of certain cyclotomic constants”,
Math. Comp. v. 48, no. 177, January 1987, pp. 55-66.

J. A. Buchmann and H. C. Williams, "On principal ideal testing in algebraic
number fields, J. Symb. Comp. 4, 1987, pp. 11-19.

J. A. Buchmann and H. C. Williams, "A key-exchange system based on
imaginary quadratic fields", J. Cryptology, vol. 1, no, 2, 1988, pp. 107-
118.

J. A. Buchmann and H. C. Williams, "On the infrastructure of the principal
ideal class of an algebraic number field of unit rank one", Math. Comp., vol.
50, no. 182, April 1988, pp. 569-579.

J. A. Buchmann and H. C. Williams, "A key-exchange system based on real
quadratic fields", Advances in Cryptology — CRYPTO ‘89 Proceedings,
Springer-Verlag, Berlin, 1990, pp. 335-343.

J. A. Buchmann and H. C. Williams, "Quadratic Fields and Cryptography",
Number Theory and Cryptography, Cambridge University Press, Cambridge
(Mass.), 1990, pp. 9-25.

C. C. Chuang and J. C. Dunham, "Matrix extensions of the RSA
algorithm", Advances in Cryptology — Crypto ‘90 Proceedings, Springer-
Verlag, Heidelberg (Germany), 1991, pp. 140-155.

H. Cohen, F. Diaz y Diaz, and M. Olivier, "Calculs des nombres de classes
et de régulateurs de corps quadratiques en temps sous-exponentiel”, to
appear in Séminaire de Théorie des Nombres de Paris, 1992.

H. Cohen and H. W. Lenstra, Jr., Heuristics on class groups, Number
Theory (Nordwijkerhout, 1983), Lecture Notes in Mathematics, vol. 1052,
Springer-Verlag, New York, 1984, pp. 26-36.

H. Cohen and H. W. Lenstra, Jr., Heuristics on class groups of number
fields, Number Theory (Nordwijkerhout, 1983), Lecture Notes in
Mathematics, vol. 1068, Springer-Verlag, New York, 1984, pp. 33-62.

H. Cohn, Advanced Number Theory, Dover Publications, New York, 1962.

D. Coppersmith, "Fast evaluation of discrete logarithms in fields of
characteristic two" IEEE Trans. Inf. Theory, vol. IT-30, 1984, pp. 587-594.

D. Coppersmith, A. M. Odlyzko, R. Schroeppel, "Discrete logarithms in
GF(p)", Algorithmica 1, 1986, pp. 1-15.

157

[DDDHLS83] R. A. DeMillo, G. 1. Davida, D. P. Dobkin, M. A. Harrison, and R. J.

[De83]

[Di66]

[DH76]

[Ec83]

[Eid4a]

[Ei44b]

[El85a]

[EI85b]

[Go85]

[Go93a]

[Go93b]

[Gr91]

[GS88]

Lipton (eds.), Applied Cryptology, Cryptographic Protocols, and Computer
Security Models, American Mathematical Society, Providence, Rhode
Island, 1983.

D. E. R. Denning, Cryptography and Data Security, Addison Wesley,
Reading (Mass.), 1983.

Dickson, History of the Theory of Numbers, vol. 1, Chelsea, New York
1966.

W. Diffie and M. Hellman, "New Directions in Cryptography", IEEE Trans.
Inf. Theory, vol. IT-22, 6, November 1976, pp. 644-654.

A. Ecker, "Finite semigroups and the RSA cryptosystem", Cryptography
Proceedings, Burg Feuerstein 1982, Springer-Verlag, Heidelberg (Germany)
, 1983, pp. 353-370. '

G. Eisenstein, "Beweis des Reciprocitiitssatzes fiir die cubischen Reste in der
Theorie der aus dritten Wurzeln der Einheit zusammengesetzten compexen
Zahlen", J. Reine Angew. Math., vol. 27, no. IV, 1844, pp. 289-310.

G. Eisenstein, "Nachtrag zum cubischen Reciprocititssatzes fiir die aus
dritten Wurzeln der Einheit zusammengesetzten compexen Zahlen. Criterien
des cubischen Characters der Zahl 3 und ihrer Theiler.", J: Reine Angew.
Math., vol. 28, no. 1, 1844, pp. 28-35.

T. ElGamal, "A subexponential-time algorithm for computing discrete
logarithms over GF(p2)", IEEE Trans. Inf. Theory, vol. IT-31, 1985, PpP-
473-481.

T. ElGamal, "A public-key cryptosystem and a signature scheme based on
discrete logarithms", IEEE Trans. Inf. Theory, vol. IT-31, 1985, pp. 469-
472.

J. A. Gordon, "Strong primes are easy to find", Advances in Cryptology —
Proceedings of EUROCRYPT 84, Springer-Verlag, Heidelberg (Germany),
1985, pp. 216-223.

D. M. Gordon, "Discrete logarithms in GF(p) using the number field sieve",
preprint.

D. M. Gordon, "Discrete logarithms in GF(p”") using the number field
sieve", preprint.

T. Granlund, GNU MP — The GNU multiple precision Arithmetic Library,
Edition 1.2, Free Software Foundation, Inc., Cambridge (Mass.), 1991.

J. Grollman and A. L. Sellman, "Complexity measures for public-key
cryptosystems”, SIAM J. Comp., vol. 17, no. 2, April 1988, pp. 309-335.

158

[Ha86]

[He78]

[HK89]

[HM89]

[HR83]

[Hu82]

[Jad6]

[Ja88]

[Ka67]

[Ka76]

[Kh64]

[Kn73]

[Kn81]

[Ko87a]

[Ko87b]

[Ko88]

[Ko90]

J. Hasted, "On using RSA with low exponent in a public key network",
Advances in Cryptology — CRYPTO ‘85, Springer-Verlag, Berlin, 1986, pp.
403-408.

T. Herlestam, "Critical remarks on some public-key cryptoéystems", BIT,
vol. 18, no. 4, 1978, pp. 493-496.

L. Harn and T. Kiesler, "Improved Rabin's scheme with high efficiency"”,
Electronic Letters, vol. 25, no. 11, May 1989, pp. 726-728.

J. L. Hafner and K. S. McCurley, "A rigorous subexponential algorithm for
computation of class groups", J. Amer. Math. Soc., vol. 2, no. 4, October
1989, pp. 837-849.

M. E. Hellman and J. M. Reyneri, "Fast computation of discrete logarithms
in GF(q)", Advances in Cryptology — Proceedings of CRYPTO ‘82, Plenum
Press, New York, 1983, pp. 3-13.

L. K. Hua, Introduction to Number Theory, Springer-Verlag, New York,
1982.

C. G. J. Jacobi, "Uber die Kreistheilung und ihre Anwendung auf die
Zahlentheorie", J. Reine Angew. Math. 30, 1846, pp. 166-182.

P. Jamnig, "Securing the RSA cryptosystem against cycling attacks",
Cryptologia, vol. 12, no. 3, July 1988, pp. 159-164.

D. Kahn, The Codebreakers: The Story of Secret Writing, Macmillan
Publishing Co., New York 1967.

P. Kaplan, "Sur le 2-groupe des classes d'idéaux des corps quadratiques”, J.
Reine Angew. Math. 283/284, 1976, pp. 313-363.

A. Y. Khinchin, Continued Fractions, The University of Chicago Press,
Chicago, 1964.

D. E. Knuth, The Art of Computer Programming, vol. 3: Sorting and
Searching, Addison-Wesley, Reading (Mass.), 1973.

D. E. Knuth, The Art of Computer Programming, vol. 2: Seminumerical
Algorithms, Addison-Wesley, Reading (Mass.), 1981.

N. Koblitz, A Course in Number Theory and Cryptography, Springer-
Verlag, New York, 1987.

N. Koblitz, "Elliptic curve cryptosystems”, Math. Comp. 48, 1987, pp.
203-209.

N. Koblitz, "Hyperelliptic cryptosystems”, J. Cryptology, vol. 1, no. 3,
1988, pp. 139-150.

N. Koblitz, "A family of Jacobians suitable for discrete log cryptosystems",

Advances in Cryptology — CRYPTO ‘88 Proceedings, Springer-Verlag,
Berlin 1990, pp. 94-97.

159

[Kr22]
[Kr24]

[KR82]

[Ku75]
[La36]

[La69]
[Le07]

[Le69]

[Le75]

- [Le79]

[Le87]

[Le92]

[Li82]

[LKBS92]

[LLMP90]

[LLMP93]

[LM&4]

M. Kraitchik, Théorie des Nombres, vol. 1, Gauthier-Villars, Paris 1922.

M. Kraitchik, Recherches Sur la Théorie des Nombres, Gauthier-Villars,
Paris 1924.

D. Kravitz and I. Reed, "Extension of RSA cryptostructure: a Galois
approach", Electronic Letters 18, 1982.

E. E. Kummer, Collected Papers, v. 1, Springer, Berlin, 1975.

E. Landau, "On a Titchmarsh-Estermann sum", J. Lond. Math. Soc. 11,
1936, pp. 242-245.

E. Landau, Vorlesungen iiber Zahlentheorie, Chelsea, New York 1969.

D. N. Lehmer, "A theorem in the theory of numbers", Bull. Amer. Math.
Soc. 14, 1907, pp. 501-502.

D. H. Lehmer", Computer technology applied to the theory of numbers",
Studies in Number Theory, vol. 6, Math. Assoc. of America, 1969, pp.
117-151.

H. W. Lenstra, Jr., "Euclid’s algorithm in cyclotomic fields", J. Lond.
Math. Soc. (2), 10, 1975, pp. 457-465.

H. W. Lenstra, Jr., "Euclidean number fields I", Math. Intelligencer 2,
1979/80, pp. 6-15.

H. W. Lenstra, Jr., "Factoring integers with elliptic curves", Annals of
Math., vol. 126, no. 3, November 1987, pp. 649-673.

H. W. Lenstra, Jr., Private communication.

J. E. Littlewood, "On the class number of the corpus P(\-k)", Proc. London
Math. Soc. 27, 1982, pp. 358-372.

J. Loxton, D. S. P. Khoo, G. J. Bird, and J. Seberry, "A cubic RSA code
equivalent to factorization", J. of Cryptology, v. 5, no. 2, 1992, pp. 139-
150.

A. K. Lenstra, H. W. Lenstra, Jr., M. S. Manasse, and J. M. Pollard, "The
number field sieve", to appear, Extended Abstract in: Proc. 22nd Annual
ACM Symp. on the Theory of Computing, Baltimore (Maryland), May 14-
16, 1990, pp. 564-572.

A. K. Lenstra, H. W. Lenstra, Jr., M. S. Manasse, and J. M. Pollard, "The
factorization of the ninth Fermat number”, to appear in Math. Comp.

R. Lidl and W. B. Mueller, "Permutation polynomials in RSA

cryptosystems”, Advances in Cryptology — Proceedings of CRYPTO ‘83,
Plenum Press, New York, 1984, pp. 293-301.

160

[Lo92]

[LP92]

[Ma83]

[MB75]

[Mc88]

[Mc89]

[Mc90]

[Me78]

[Me79]

[Mi86]

[MM76]

[MN81]

[MOV91]

[NBS77]

[Od84]

[OVS84]

R. Lovorn, Rigorous, subexponential algorithms for disccrete logarithms
over finite fields, Ph.D. Thesis, University of Georgia, May 1992.

H. W. Lenstra, Jr. and C. Pomerance, "A rigorous time bound for factoring
integers", J. Amer. Math. Soc. 5, 1992, pp. 483-516.

J. L. Massey, "Logarithms in finite cyclic groups — cryptographic issues",
Proc. 4th Benelux Symposium on Information Theory, 1983, pp. 17-25.

M. Morrison and J. Brillhart, “A method of factoring and the factorization of
F7", Math. Comp. 29, 1975, pp. 183-205.

K. S. McCurley, "A key distribution scheme based on factoring", Journal of
Cryptology 1, 1988, pp. 95-205.

K. S. McCurley, "Cryptographic key distribution and computation in class
groups”, Number Theory and Applications, Kluwer, Dordrecht (The
Netherlands), 1989, pp. 459-479.

K. S. McCurley, "The discrete logarithm problem”, Proc. Symposia in
Applied Mathematics 42, 1990, pp. 49-73. :

R. C. Merkle, "Secure communication over insecure channels", Comm.
ACM 21, 1978, pp. 294-299.

R. Merkle, Secrecy, Authentication, and Public Key Systems, Ph.D.
dissertation, Electrical Engineering Department, Stanford University, 1979.

V. Miller, "Use of elliptic curves in cryptography", Advances in Cryptology
— Proceedings of Crypto ‘85, Springer-Verlag, New York, 1986, pp. 417-
426.

J. M. Masley and H. L. Montgomery, "Cyclotomic fields with unique
factorization", J. Reine Angew. Math. 286/287, 1976, pp. 248-256.

W. B. Mueller and W. Noebauer, "Some remarks on public-key
cryptosystems"”, Studia Sci. Math. Hung. 16, 1981, pp. 71-76.

A. J. Menezes, T. Okamoto, and S. A. Vanstone, "Reducing elliptic curve
logarithms to logarithms in a finite field", Proc. 23rd Annual Symp. on the
Theory of Computing, 1991, pp. 80-89.

"Data Encryption Standard", FIPS Publication 46, National Bureau of
Standards, Washington, D.C,, January 15, 1977.

A. M. Odlyzko, "Discrete logarithms and their cryptographic significance”,
Advances in Cryptology — Proceedings of EUROCRYPT ‘84, Springer
Verlag, Heidelberg (Germany), 1984, pp. 224-314.

R. W. K. Odoni, V. Varadharajan, and P. W. Sanders, "Public-key
distribution in matrix rings", Electronic Letters 20, 1984, pp. 386-387.

161

[PH78]

[Po74]
[Po75]
[Po78]

[Po85]

[Po87]

[Ra79]

[Ri78]

[Ri79]

[RSAT78]

[Sa90]
[SBW92]

[Sc83a]

[Sc83b]

[Sc90]

S. C. Pohlig and M. E. Hellman, "An improved algorithm for computing
logarithms over GF(p) and its cryptographic significance", IEEE Trans. Inf.
Theory, vol. IT-24, no. 1, January 1978, 106-110.

J. M. Pollard, "Theorems on factorization and primality testing", Proc.
Cambridge Philos. Soc. 76, 1974, pp. 521-528.

J. M. Pollard, "A Monte Carlo Method for factorization", BIT 15, 1975, pp.
331-334.

J. M. Pollard, "Monte Carlo methods for index computation mod p", Math.
Comp. 32, 1978, pp. 918-924.

C. Pomerance, "The quadratic sieve factoring algorithm", Advances in
Cryptology — Proceedings of EUROCRYPT '84, Springer Verlag,
Heidelberg (Germany), 1985, pp. 169-182.

C. Pomerance, "Fast, rigorous factorization and discrete logarithm
algorithms", Discrete Algorithms and Complexity: Proc. Japan-U.S. Joint
Seminar, June 4, 1986, Kyoto, Japan, Academic Press, Orlando (Florida),
1987, pp. 119-143.

M. O. Rabin, Digitized Signatures and Public-Key Functions as Intractable
as Factorization, M.I'T. Lab for Computer Science, Tech. Rep. LCS/TR-
212, 1979.

R. L. Rivest, "Remarks on a proposed cryptanalytic attack on the MIT
public-key cryptosystem”, Cryptologia, vol. 2, no. 1, January 1978, pp. 62-
65.

R. L. Rivest, "Critical remarks on "Critical remarks on some public-key
cryptosystems”, BIT, vol. 19, no. 2, 1979, pp. 274-275.

R. Rivest, A. Shamir, and L. Adleman, "A method for obtaining digital
signatures and public-key cryptosystems", Comm. ACM, vol. 21, no. 2,
February 1978, pp. 120-126.

A. Salomaa, Public-Key Cryptography, Springer-Verlag, Berlin, 1990.

R. Scheidler, J. A. Buchamnn and H. C. Williams, "Implementation of a
key exchange protocol using real quadratic fields", to appear in Journal of

Cryptology.

R. J. Schoof, "Quadratic Fields and Factorization", Computational Methods
in Number Theory (H. W. Lenstra, Jr. and R. Tijdeman, eds.), Math.
Centrum Tracts, no. 155, part II, Amsterdam, 1983, pp. 235-286.

C. P. Schnorr, "Is the RSA scheme safe?", Cryptography Proceedings,
Burg Feuerstein, 1982, Springer Verlag, Heidelberg (Germany), 1983, pp.
325-329.

C. P. Schnorr, "Efficient identification and signatures for smart cards",

Advances in Cryptology — CRYPTO '89 Proceedings, Springer-Verlag,
Berlin, 1990, pp. 239-252.

162

[Se87]
[Sh49]

[Sh72]

[Sh73]

[Sh85]

[Sh90]
[SJ73]

[SL93]
[Sm65]

[Sm73]
[Sm93]
[SN77]
[SP79]
[SS77]
[St89]

[ST79]

[Su65]

M. Seysen, "A probabilistic factorization algorithm with quadratic forms of
negative discriminant”, Math. Comp. 48, 1987, pp. 757-780.

C. E. Shannon, "Communication theory of secrecy systems", Bell Syst.
Tech. J. 28, October 1949, pp. 656-715.

D. Shanks, "The infrastructure of a real quadratic field and its applications",
Proc. 1972 Number Theory Conference, Boulder (Colorado), 1972, pp.
217-224. :

D. Shanks, "Five number-theoretic algorithms", Proc. Second Manitoba
Conference on Numerical Mathematics, October 5-7, 1992 , Congressus
Numerantium VI, Utilitas Mathematica, Winnipeg (Canada), 1973, pp. 51-
70.

Z. Shmuely, Composite Diffie-Hellman Public-Key Generating Systems are
Hard to Break, Technical Report # 356, Computer Science Department,
Technion-Israel Institute of Technology, February 1985.

J. Shallit, "On the worst case of three algorithms for computing the Jacobi
symbol”, J. Symb. Comp. 10, 1990, pp. 593-610.

E. Smith and K. Jacobs, Introductory Astronomy and Astrophysics, W. B.
Saunders Co., Philadelphia 1973.

P. Smith, M. Lennon, "LUC: A new public key system", preprint.

H. J. S. Smith, Report on the Theory of Numbers, Chelsea, New York
1965.

R. Smadja, "Sur le groupe des classes des corps de nombres", C. R. Acad.
Sc. Paris, vol. 276, Series A, June 25, 1973, pp. 1639-1641.

P. Smith, "LUC public-key encryption", Dr. Dobb’s Journal, January
1993, pp. 44-48.

G. J. Simmons and M. J. Norris, "Preliminary comments on the M.LT.
public-key cryptosystem", Cryptologia 1, 1977, pp. 406-414.

D. R. Smith and J. T. Palmer, "Universal fixed messages and the Rivest-
Shamir-Adleman cryptosystem, Mathematika 26, 1979, pp. 44-52.

R. Solovay & V. Strassen, "A fast Monte Carlo test for primality", STAM J.
of Computing 6, 1977, pp. 84-85.

A. J. Stephens, mp : A Multi-Precise Integer Package, Department of
Computer Science, University of Manitoba, June 9, 1989.

L N. Stewart and D. O. Tall, Algebraic Number Theory, Chapman and Hall,
London, 1979.

Suetonius, The Lives of the Twelve Caesars, Heritage Press, New York
1965.

163

[SW89]
[SW92]

[Us09]
[Va85]
[Wa82]

[Wi76]
[Wi80]

[Wi82]
[Wi85a]
[Wi85b]

[Wi86]

[Wi90]

[WMG68]

[WS79]

[WW8g4]

A. J. Stephens and H. C. Williams, "Some computational results on a
problem concerning powerful numbers", Math. Comp., vol. 50, no. 182,
April 1989, pp. 619-632.

R. Scheidler & H. C. Williams, A Public-Key Cryptosystem Utilizing
Cyclotomic Fields, Technical Report 15/92, Department of Compter Science,
University of Manitoba, November 1992.

J. Uspensky, "Note sur les nombres entiers dépendant d'une racine
cinquieme de I'unit€", Math. Ann. 66, 1909, pp. 109-112.

V. Vaharadharajan, "Extension of RSA cryptosystems to matrix rings”,
Cryptologia, vol. 9, no. 2, April 1985, pp. 140-153.

L.C. Washington,blntroduction to Cyclotomic Fields, Springer-Verlag, New
York, 1982. :

K. S. Williams, "Explicit forms of Kummer’s compleméntary theorems to
his law of quintic reciprocity", J. Reine Angew. Math. 288, 1976, pp. 207-
210.

H. C. Williams, "A modification of the RSA public-key encryption
procedure”, IEEE Trans. Inf. Theory, vol. IT-26, no. 6, November 1980,
pp. 726-729. :

H. C. Williams, "A p+1 method of fabtoring", Math. Comp. vol. 39, no.
159, July 1982, pp. 225-234.

H. C. Williams, "Continued fractions and number-theoretic computations”,
Rocky Mountain J. Math., vol. 15, no. 2, Spring 1985, pp. 621-655.

H. C. Williams, "Some public-key crypto-function as intractable as
factorization", Cryptologia, vol. 9, no. 3, July 1985, pp. 223-237.

H. C. Williams, "An M3 public-key encryption scheme", Advances in
Cryptology - CRYPTO ‘85 Proceedings, Springer, Berlin 1986, pp. 358-
368.

M. J. Wiener, "Cryptanalysis of short RSA secret exponents", IEEE Trans.
Inf. Theory, vol. 36, no. 3, May 1990, pp. 553-558.

A. E. Western and J. C. P. Miller, "Tables of indices and primitive roots",
Royal Society Mathematical Tables, vol. 9, Cambridge University Press,
1968.

H. C. Williams and B. Schmid, "Some remarks concerning the M.I.T.
public-key cryptosystem", BIT, vol. 19, no. 4, 1979, pp. 525-538.

P._K.S. Wah and M. Z. Wang, "Realization and application of the Massey-
Omura lock", Proc. International Ziirich Seminar, 1984, pp- 175-182.

164

[WW87] H. C. Williams and M. C. Wunderlich, "On the parallel generation of the
residues for the continued fraction factoring algorithm", Math. Comp., vol.
48, no. 177, January 1987, pp. 405-423.

165

