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Subsurface seawater 
methylmercury maximum explains 
biotic mercury concentrations in 
the Canadian Arctic
Kang Wang1, Kathleen M.  Munson1, Alexis Beaupré-Laperrière2, Alfonso Mucci2,  
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Mercury (Hg) is a contaminant of major concern in Arctic marine ecosystems. Decades of Hg observations 
in marine biota from across the Canadian Arctic show generally higher concentrations in the west than in 
the east. Various hypotheses have attributed this longitudinal biotic Hg gradient to regional differences 
in atmospheric or terrestrial inputs of inorganic Hg, but it is methylmercury (MeHg) that accumulates 
and biomagnifies in marine biota. Here, we present high-resolution vertical profiles of total Hg and MeHg 
in seawater along a transect from the Canada Basin, across the Canadian Arctic Archipelago (CAA) and 
Baffin Bay, and into the Labrador Sea. Total Hg concentrations are lower in the western Arctic, opposing 
the biotic Hg distributions. In contrast, MeHg exhibits a distinctive subsurface maximum at shallow 
depths of 100–300 m, with its peak concentration decreasing eastwards. As this subsurface MeHg 
maximum lies within the habitat of zooplankton and other lower trophic-level biota, biological uptake 
of subsurface MeHg and subsequent biomagnification readily explains the biotic Hg concentration 
gradient. Understanding the risk of MeHg to the Arctic marine ecosystem and Indigenous Peoples will 
thus require an elucidation of the processes that generate and maintain this subsurface MeHg maximum.

Monitoring data collected during the past four decades have shown Hg concentrations in Canadian Arctic marine 
mammals (e.g., beluga whales, ringed seals, polar bears) to be highly elevated, frequently exceeding toxicity 
thresholds1,2. This has raised major concerns over the health of marine mammals and Indigenous Peoples whose 
traditional diets include marine mammal tissues. Mercury concentrations in marine biota are generally higher 
in the Beaufort Sea and western Canadian Arctic Archipelago (CAA) than in the eastern CAA and Baffin Bay1–3. 
This longitudinal gradient is not limited to apex predators4,5, but extends to organisms at lower trophic levels 
such as zooplankton (e.g., Themisto spp., Calanus spp.)6 (Fig. 1a). Whereas regional variations in top predator Hg 
concentrations may be linked to feeding behavior and dietary preference5, observed spatial patterns persist after 
adjustments are made to account for trophic position3.

Extensive efforts have been made to identify factors that control the spatial trends in marine biota and to develop 
appropriate mitigation strategies to reduce biotic Hg concentrations. Most hypotheses attribute higher marine 
biotic Hg concentrations in the western Canadian Arctic to elevated inputs of inorganic Hg to these regions. These 
inputs include (1) atmospheric deposition of anthropogenic Hg from Asian sources3, which is enhanced locally by 
atmospheric mercury depletion events (AMDEs) during polar sunrise7; (2) riverine Hg input from the Mackenzie 
River8,9, which may be enhanced by tundra uptake of atmospheric elemental Hg10 [and permafrost thawing11; and 
(3) a naturally high geological background of Hg12. These inorganic Hg-based hypotheses do not account for the 
fact that it is methylmercury (MeHg), not inorganic Hg, that accumulates and biomagnifies in marine biota2. The 
discovery of a subsurface MeHg enrichment in global oceans13–16 suggests that seawater MeHg may play a more 
important role in determining marine biotic Hg concentrations17,18, especially in regions such as the Beaufort Sea15 
and the central Arctic Ocean16 where the maximum MeHg concentration was observed at shallow depths.
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During the 2015 Canadian Arctic GEOTRACES cruises (July 14–September 16, 2015) aboard the Canadian 
Research Icebreaker CCGS Amundsen, we measured high-resolution vertical profiles of total mercury (HgT) 
(Fig. 1b) in unfiltered seawater, along a 5200-km transect (150°–53° W) from the Canada Basin in the west, 
through CAA to Baffin Bay in the east, reaching the Labrador Sea in the North Atlantic Ocean (Figs 1a, S1). 
Total Hg concentrations show a distinctive longitudinal gradient along the transect (Fig. 1b, Table 1), with con-
centrations increasing from the Canada Basin and the western CAA (1.76 ± 1.15 pM) to the eastern CAA and 
Baffin Bay (2.62 ± 1.97 pM). These results are comparable to the limited HgT dataset reported for Canadian Arctic 
waters15,19,20. The lowest concentrations were found in the Labrador Sea (0.65 ± 0.18 pM), slightly higher than 
those (0.44 ± 0.10 pM, 0.25–0.67 pM) measured in June 2014 in a similar area21.

The low seawater HgT concentrations in the Canada Basin, to the west, contrast with expectations based on the 
hypothesized elevated atmospheric and riverine inputs of Hg into this region. Whereas AMDEs do result in high 
springtime deposition, the low Canada Basin HgT concentrations are consistent with findings that most AMDEs 

Figure 1.  Mercury concentrations in the marine food web and seawater across the Canadian Arctic and 
Labrador Sea. (a) Map showing Hg concentrations in the marine food web, and seawater sampling sites; (b) 
distribution of total Hg (HgT); and (c) methylmercury (MeHg) in seawater along a longitudinal (west-to-east) 
section. The bar charts in (a) show mean concentrations ± one standard deviation of monomethylmercury 
(MMHg) in Calanus spp. and Themisto spp. collected from 1998 to 20126, total Hg (HgT) in muscle of adult 
ringed seals collected in 2007 and 20113,5, and HgT in liver of polar bears collected from 2005 to 20083. The base 
map with bathymetry was created using Ocean Data View (version 4.0)40.



www.nature.com/scientificreports/

3SCiEntifiC ReportS |  (2018) 8:14465  | DOI:10.1038/s41598-018-32760-0

occur in coastal regions and most of the deposited Hg is re-emitted to the atmosphere before snow melts22, thus lim-
iting its transfer into the ocean. Likewise, Hg transported by rivers, possibly enhanced by tundra uptake, permafrost 
thawing, or geological enrichment, is likely deposited with sediment in coastal areas23 or escapes rapidly from the 
river plume to the atmosphere9. Furthermore, because MeHg accounts for <1% of the HgT in the Mackenzie River 
water8,23, and the atmospheric input of Hg is predominantly inorganic22,24,25, the Hg delivered to Canada Basin waters 
requires transformation to MeHg, the biomagnifying Hg species, to account for observed higher biotic Hg concen-
trations. Therefore, elevated input of inorganic Hg in the western relative to the eastern Arctic does not provide, by 
itself, a plausible mechanism to explain higher biotic Hg concentrations in the western Canadian Arctic (Fig. 1b).

Concentrations of MeHg (0.23 ± 0.12 pM, 0.02 to 0.56 pM), measured during the 2015 Canadian Arctic 
GEOTRACES cruises (Fig. 1c), are comparable to values reported in previous studies15,19,20 and show an overall 
decoupling from HgT distributions in the water column (Fig. 1c). The improved sampling resolution reveals 
distinctive vertical and longitudinal variations along the transect. Vertically, MeHg concentrations are lowest 
at the surface, increase with depth to a subsurface maximum, and subsequently decrease towards the bottom. 
Longitudinally, the subsurface MeHg peak value is highest (~0.5 pM) in the western part of the section and 
decreases to ~0.2 pM over the Barrow Strait sill into the eastern CAA, eventually dropping to ~0.1 pM in the 
Labrador Sea (Fig. 1c, Table 1). The depth of the subsurface MeHg maximum varies from west to east: MeHg 
peaks at depths of ~300 m at the westernmost station in the Canada Basin and shoals progressively eastward to 
~100 m in the western CAA. Farther east, the subsurface MeHg peak remains at ~100 m in the eastern CAA and 
Baffin Bay, but deepens to ~200 m in the Labrador Sea.

Regional differences in polar bear hair Hg concentrations between the Beaufort Sea and Hudson Bay were 
tentatively attributed to regional differences in seawater MeHg concentrations that resulted in different degrees 
of bioaccumulation18, but high-resolution (vertical and horizontal) water-column MeHg concentration data were 
not available at that time to support this hypothesis. The distribution of the subsurface MeHg peak along our 
transect directly links the spatial distribution of aqueous MeHg concentrations to biotic uptake (Fig. 1a,c).

Enrichment of MeHg in the subsurface water column (300–1000 m) is a common feature of many ocean 
basins13,14. A notable difference is that the subsurface MeHg peak occurs at a much shallower depth in the western 
Canadian Arctic (100–300 m), in agreement with recent reports from the Beaufort Sea15 and the central Arctic 
Ocean16. This MeHg maximum occurs at shallow depths that are just below the surface productive layer (see 
Fig. S2), which may enhance MeHg availability to organisms at the base of the marine food webs16. Phytoplankton 
are known to bioconcentrate MeHg from seawater26, and zooplankton bioaccumulate it directly from seawater and 
by trophic transfer through their diet27,28; as a result, higher phytoplankton and zooplankton MeHg concentrations 
have been linked to higher seawater MeHg concentrations29. Among the three most important herbivores in Arctic 
waters, Calanus hyperboreus and C. finmarchicus are concentrated in shallow water (<300 m) except during winter, 
whereas C. glacialis spend all life stages in the top 300 m30,31. The amphipod consumers of these Calanus species, 
Themisto spp., also inhabit shallow waters32, as does Arctic cod (Boreogadus saida,<500 m), key species in the 
Arctic marine food web33. Given that the MeHg-enriched waters lie within the main habitat of low trophic level 
marine biota in these waters, spatial variations in MeHg concentrations within the subsurface zone can readily 
explain the higher biotic Hg concentrations in the western compared to the eastern regions of the section.

Therefore, to understand what controls Arctic biotic Hg distributions and predict future conditions, character-
ization of atmospheric and terrestrial sources of inorganic Hg inputs to the Arctic Ocean is not sufficient. Detailed 
investigations will be required to identify processes controlling the production and loss of MeHg associated with the 
upper halocline waters of the western Arctic Ocean and how these processes respond to the changing climate. The 
subsurface seawater MeHg maximum in the oceans is typically attributed to in situ MeHg production associated 
with organic matter remineralization13–16. In the central Arctic Ocean, Heimbürger et al.16 suggested that sinking 
particles are slowed down at the shallow pycnocline where they undergo remineralization and stimulate in situ 
MeHg production. It remains unclear what microbial or abiotic processes are responsible for Hg methylation at 
such shallow depths where dissolved oxygen is well above 75% of the saturation value (Fig. S2). Alternatively, the 
MeHg maximum in the upper halocline in the western Canadian Arctic could be supported by isopycnal transport, 
along with the metabolite-enriched upper halocline waters, from sediments of the productive Chukchi and Beaufort 
Shelves34. Understanding the risk of MeHg to the Arctic marine ecosystem and Indigenous Peoples will thus require 
an elucidation of the processes that generate and maintain the subsurface seawater MeHg maximum.

Regions Stations Depth HgT (pM) MeHg (pM)

Canada Basin, Beaufort Sea, 
and Western CAA

CB1–4; 
CAA6–9

0–500 m 1.90 ± 1.25, 
0.73–8.55, n = 77

0.30 ± 0.14, 
0.02–0.56, n = 77

Full depth 1.76 ± 1.15, 
0.55–8.55, n = 101

0.27 ± 0.14, 
0.02–0.56, n = 100

Eastern CAA and Baffin Bay CAA1–5; 
BB1–3

0–500 m 2.60 ± 2.06, 
0.80–12.35, n = 78

0.19 ± 0.08, 
0.04–0.44, n = 78

Full depth 2.62 ± 1.97, 
0.80–12.35, n = 93

0.20 ± 0.09, 
0.04–0.44, n = 93

Labrador Sea K1
0–500 m 0.62 ± 0.19, 

0.30–0.92, n = 9
0.09 ± 0.04, 
0.03–0.12, n = 9

Full depth 0.65 ± 0.18, 
0.30–0.95, n = 14

0.12 ± 0.06, 
0.03–0.24, n = 15

Table 1.  Concentrations of total Hg (HgT) and methylmercury (MeHg) in seawater from the Canadian Arctic 
and Labrador Sea.
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Methods
Seawater sampling and analyses were carried out following ultraclean techniques recommended for the 
GEOTRACES program35,36. Seawater was collected onboard the Canadian Research Icebreaker CCGS Amundsen 
in pre-cleaned, 12-L Teflon-coated Go-Flo bottles mounted on a Trace Metal-Clean Rosette System. Following 
rosette retrieval, the Go-Flo bottles were promptly moved to a clean laboratory van where seawater for HgT and 
MeHg analyses was collected into pre-cleaned, 250-mL amber glass bottles37. Immediately after collection, the 
seawater samples were acidified with 0.5% (v:v) ultraclean acid (CMOS grade JT Baker HCl for HgT, and trace 
metal clean grade Fisher Scientific H2SO4 for MeHg) and stored at 4 °C until analysis. The acidification breaks 
down dimethylmercury (DMHg) to monomethylmercury (MMHg)38 and, thus, the MeHg reported herein rep-
resents the sum of MMHg and DMHg.

Within 48 hr of sampling, HgT was analyzed in the Portable In-situ Laboratory for Mercury Speciation (PILMS) 
onboard the icebreaker (http://www.amundsen.ulaval.ca/capacity/portable-insitu-lab-mercury-speciation.php). 
The analysis was carried out on a Tekran 2600 Hg analyzer following U.S EPA Method 1631, which involves 
BrCl oxidation, SnCl2 reduction, gold trap pre-concentration and measurement by cold vapor atomic fluores-
cence spectrometry (CVAFS). Water samples were analyzed for MeHg at the PILMS or at the Ultra-Clean Trace 
Elements Laboratory (UCTEL) at the University of Manitoba. Concentrations of MeHg were measured on an 
automated MeHg analyzer (MERX-M, Brooks Rand) following an adapted ascorbic acid-assisted direct ethylation 
method39, which involves ethylation, Tenax trap pre-concentration, gas chromatographic separation and CVAFS 
quantification. The original method39 was modified for use with ~40-mL sample volumes using acetate buffers to 
adjust pH. Daily calibration curves were prepared by adding standards solutions to filtered seawater to improve 
recovery from the seawater matrix. The detection limit (DL) was estimated at 0.25 pM and 0.014 pM for HgT and 
MeHg, respectively, as three times the standard deviation of seven laboratory blank replicates. Whenever seawa-
ter was sampled, Milli-Q water was collected in pre-cleaned 250-mL amber glass bottles to serve as field blanks, 
the concentrations of which were always lower than the DL for both HgT and MeHg. Certified reference seawa-
ter BCR579 (9.5 ± 2.5 pmol kg−1 or 9.7 ± 2.5 pM when corrected for density, Institute for Reference Materials 
and Measurements, European Commission - Joint Research Centre) was analyzed for HgT and the recovery was 
93–116%. Since no certified reference seawater is available for MeHg, a 0.01 pmol MMHg spike was used during 
sample analysis and its recovery was 87–114%.

Seawater fluorescence was measured in real-time with a chlorophyll fluorometer (Seapoint) installed on the 
rosette. To calibrate the fluorometer output, discrete seawater samples were measured for chlorophyll-α fluores-
cence concentrations.

Data Availability
The datasets generated during and/or analysed during the current study are available from the corresponding 
author on reasonable request.
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