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Abstract

The static magtretization of three very dilute Pd alloys, containing 700 ppm Fe,

700 ppm Mn, and 1000 ppm Mn, was measu¡ed for temperatures between 50

milli-K and 1 K, and applied fields of up to 10 Gauss. The zero'field-cooled

data possess featu¡es which can be replicated by numerical calcr¡lations based

on a mea¡-field effective field model with exchange-bond diso¡der a:rd arbitrary
spia. Moreover, the comparisons sr¡ggest that the alloys are within the ¡e-entrant

region of the magnetic phase diagram, and hence urtdergo sequential transitions,

from paramagnetic to ferromagnetic to spin glass ordering, as the temperature is

lorvered.
The time dependent thermo-remanent magnetization of the 700 ppm Fe sam-

ple, as measured ove¡ ?200 seconds for several temperatu¡es above and below the

proposed re-entraïLt t¡ansition temPeratu-re, is consistent with a logaritlrnic (or

possibly a stretched- exponential) decay. Horvever, the relaxation rate is appar-

ently temperatu-re ildependent.
Detailed numerical calculations of the theoretical tlifferential susceptibility re-

veai a singular anomaly in the non-Ii¡ear comPonents nea¡ the re-entrant t¡ansi-

tion temperatu¡e. Furthermore, experimental A.C. susceptibility isotherms, mea-

sured below the proposed re-entrant ttansition temperature of a (Pdo.ggssFø.oo¿¡)

+ 5 rrt.% Mn sample, display systematics rvhich are strikingly similar to the the-

oretical investigations. The analysis illustrates a potentialiy usefirl tecbnique for

identifying re-entrant transitions in experirnentaJ systems.
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Chapter 1-

Introduction and Theory

1.1 General Background

L.L.1 Phase Tlansitions in Pure Ferromagnets

Magnetic Ordering in lron-like Metals

The traditional concepts of magnetic phase transitions are t5'pefied by the proper-

ties of (non-dilute) transition metals such as lron or Nickel. These systems display

a form of critical phenomenon; a transition (at the Curie temperature) betrveel

a lor,r' temperature ferromagnetic phase and a high temperature paramagnetic

phase.

To describe the physics of magnetic materials it is necessary to approach

the problem at an atomic levei. Each atom in an lron-Iike metal lattice has a net

spin i and a corresponding magnetic dipole moment -slt"S þ: 2 is the Landé

factor, and ¡L,B -- ehf2rn.cis the Bohr magneton), due ma.inly to the incomplete

filling of the 3d-band electron states. The inhomogenous elect¡ic field produced

by the ions in the crystal tends to quench the orbital moments so that the efiects

of spin-orbit coupüng may be ignored. Though the magnetic properties are best



desc¡ibed b5, non-localized (itinerani) elect¡on models, it is convenient to assume

that the elect¡ons are iocalized on the lattice sites. With the application of a

uniform external magnetic field Ii¡, the dipoles tend to align themselves along the

field direction to minimize energy. summing over the lattice sites, the magnetic

energy is given by

gPaÐlio'S¡
i

The resultiug paramagnetic ordering must compete with random thermal motions

of the spin orientations. If there are no other sources of magnetic order, the

magnetization drops to zero rvhen the fleld is ¡emoved.

In ferromagnetic systems, there eústs another much stronger source of mag-

netic o¡de¡. The direcl exchange interaclion is actually a consequence of the

coulombic repulsion of elect¡onic charge distributions, together with the Pauli

exclusion principle. It is cha¡acterized by the exchange energy J, betrveen two

electronic rvavefunctions Õ1 and Õ2, such that (after Cohen-Tannoudji et al',

1977)

t - !a3,' !0",,r;(,i)ørr,)#oo¡(r'i)Õ,(rl) ,

whe¡e the magnitude depends on the amount ol ouerlap between the wavefunc-

tions. If J is positive, antisymmetric wavefunctio¡s minimize the energy and

overall symmetry considerations require the spin states to be symmetric' That

is, parallel arrangements of the spin orientations are favoured. It is inportant to

note that the direct exchange between the atoms in a lattice is of relatively shori

range, and only neighboring spins interact strongly.



The inte¡action between all the spins of the lattice can be modeiled using

the Eeisenberg Haniitonian,

-*I ¿¡sr.s, ; J;¡= J¡;, Jir=0,
o ¡,i

where the exchange parameter 4¡ determines the strength of the interaction be-

tween the ith and jth spins (and is related to the exchange integral above)'

Positive parameters favour parallel alignment of the spins, and there is a spon-

taneous magnetization (ferromagnetism) as iong as thermal fluctuations do not

overwhelm the magnetic order. Alternatively, negative Parameters favour anti-

parallel or anti-ferromagnetic alignment of the spins.

In the exact mean-field theo¡y of {erromagnetism, the i;dividual 4¡ are as-

sumed to be of infinite range, and are replaced by an average exchange bond

ñ/ lf , *U"t" JV is the number of spins in the system. Only spin components

(S,, = S,) along the field direction a¡e conside¡ed so that the magnetic energy is

described b¡' an Ising Hamiitonian

"=-*Ðot,-oTu ,

where /¿ : -gpBHo. The magnetization (or net dipole moment per volume

V) of the system is obtained by evaluating the partition function and ensemble

averaging the spins, over the thermal fluctuations, in the thermodynamic limit

(/f -' æ). The ¡esult is a transcendental equation which, for arbitrary quantum



spin 5 (i.e., -S S S, < S), is

(s¡),=m: sB'lsP(ñ-+t)] ; þ = (1.1)

The local magnetization z¿ is related to the bulk value of Ìtt : Ngppm. Fo¡

S¡: +L12, the Brillouin function (equation 1.56) simplifies to \ ¡2lzl - tanh[o].

.As can be seen in Figure 1.1, there is good agreement between experimentd re-

sults and mean-field theory calculations, despite the simple nature of the model.

For temperatures ? --- 0 the magnetization ¡eaches its saturation value of .[1r.r =

NgpBS. As ? is increased, thermal fl.uctuations gradually overcome the fer¡o-

magnetic order, until the spontaneous magnetization ltto = 7419,7¡ disappears

at the Curie temperature ?.. The ze¡o-field susceptibility xo - (ffi)""-o in .

the paramagnetic region (f > T.) is predicted by mean-field theory to obey a

Curie-lVeiss law:

1

ttT

C

Q -r.)
where c=Ns,p?íl!+tl (1.2)

Ðxperiments have shorvn this to be valid fo¡ large temperatures, but incorrect for

temperatures close to ?". The Curie temperatures tend to be quite large, u'ith

?":10a3K for lron, and 627K for Nickel (after Kittel, 1976).

The Ehrenfest Criterion

The transition between paramagnetism and ferromagnetism is a phase change in

the traditiona.l thermodynamic sense. Consider the following expression for the



Fisure 1.1: A comparison between the exacl mearr-field theory of ferromagnetism

ifo", ,pin ^S = 1 anâ S = l12) and experime.tal mag'etization measurements (t)
òn pur" Fe and Ni (after Stanley, 1971).



difierential Gibbs free energy of a magnetic system:

ds--SdT-MdH ,

where S is the entropy. The isothermal susceptibility is defrned as (Ausloos and

Ðlliott, 1983)

( 1.3).=(#),= -(#). ,

rvhile the specific heat is given by

Cn= (i.4)

B¡'the Ehrenfest criterion, a phase transition occurs u'henever there is a disconti-

nuity in a derivative of the Gibbs function, with the o¡der of the transition defined

by the lowest order derivative in rvhich the discontinuity occurs. In this regard,

the ferromagnets display second-order phase changes since thei¡ susceptibilities

and speciflc heats, evaluated in ze¡o field and as a function of T, diverge as the

Curie temperature is approached. (We shali ignore, for the present time, the ef-

fects of magnetic doma.ins and sample demagnetization, etc., which can artifrcially

'suppress the singular behavior of experimental systems.)

Critical Phenomena

In ferromagnetic systems, the zero-freld (spontaneous) magnetization plays the

part of an oriler pammeter, and indicates the breaking of symmetry that oc-

curs in going from the high-symmetry paramagnetic state to the low-symmetry

-'(#).



ferromagnetically ordered state. Àlso, the transition is an exampie of a critical

phenomenon because of the characteústic way in which various thermodynamic

functions behave as the Cu¡ie (or criiical) temperature is approached f¡om above

and below.

A simplified physical interpretation ol critical phenomena (in ferromagnetic

systems) is as follows. For ? ) ?", the direct exchange interactions (between the

spins of the system) are completely overwhelmed by thermaJ agitation of the spins,

and there is no spontaneous magnetic order. Elowever, for lorver temperatures

? > ?" the fluctuations are weakened enough to allow short range iocal ordering

in isolated parts of the system. That is, small islands of ferromagnetic order begin

to deveiop, but the net magnetization is still zero since the islands are too far apart

to affect one-anothe¡. A's î -- 7", the islands grow in size and their moments start

to interact and align along a common direction. Finally, when f = f,. the islands

liuk together to form a netrvork of long-range ferromagnetic order which extends

throughout the system. Hence, the spontaneous magnetization develops suddenly

(but continuously) at 1". The Cu¡ie-Weiss law (equation 1.2) is incorrect close to '

?" because the mean-field theory. does not allow for the occu¡¡ence of short-range

order.

Cútical behavior (not only in magnetic systems) is classifred according to

how the appropriate order parameter, susceptibiiity' and specific heat vary near

the critical point. For a ferromagnet in zero-field we w¡ite the following power

laws (alter Ausloos and Ellioit, 1983):

M(H:0,¿<0) - (-ùp



(1.5)

\ here we have introduced the reduced temperature t = (T - T")lT. and assumed

the limit ú -- 0. Additionally, the field dependence along the critical isotherm

T : T. is given by

I1I(H,t-0)-Htt6 (1.6)

Critical systems are grouped inlo uniuersalátg cl¿sses acco¡ding to the values

of the c¡itical indices, and ill the most general cases the exponents a¡e related to

one-another through inequalities For ferromagnets, hot'ever, the free energy is a

homogenous function such thaf (after Ausloos and Elliott, 1983)

f (o"H,aat): o' l$I't) , ( 1.7)

where ø is arbitrary. The critical exponents (a,p, elc.) can be extracted f¡om ø

and y by performing the appropriate derivatives, so that (after Stanley, 1971)

x(I/=0,¿<0)

x(I/:0,¿>0)
CE(H-0,¿<0)

CE(H:0,¿ < 0)

t)

'l = 'l'

a.=d'

6

(t -,)lv ,

(2æ -t)ly ,

(2s - r)ls ,

æl(r - a)

a

(-t)-"'

(¿)-"

(-¿)-"'

(ú)-" ,



They are related to one-anothe¡ through equalities such as the Widom relationship

(A,usloos and Eiliott, 1983)

1:p$-t) (1.8)

For example, the mean-field Ising model predictions arc B - l, ?: 1, and 6: 3.

The c¡itical behavio¡ can cÕnsequently be described tsing stalic scaling

functions. For instance, difrerentiating both sides of equation 1.7 v¡ith respect to

ff fields:

ôÍ(a"H,ø!t) ô(a"H)
0 (a" H) AH

a" M (a"H,avt)

aÍ@,t)o 
ôH

ø ltI (H,t) (1.e)

where tJ[ = -AÍ lôH has been used. Fu¡thermote, a value of a : ltl-t/v -"r' 5"

chosen so that equation 1.9 becomes

^r 
(H,t) = ltl{.-')/a ¡4.(# -t)

This expression can be rew¡itten in te¡ms of critical exponents and a scaling

function r*(a fltPlr) - u (n fVft,,*1) (after Stanley, 1971):

(1.10)

The left-hand-side is called the scaled magnetization M, while the argument of

the scaling function is the scaled field H. Figure 1.2 portrays a sca.led Arrott plot



T, = 627 .4 K

T>7"
o 630.0 K
.6325K
o 635.0 K
¡ 637.5 K
¿ 640 0 K

T <T"
ô 6t5.0 K¡ 6t7.5 K
o 620.0 K
. 622.5 K
o 625.0 K

á- zoO

X

04812t6zct
# (x105)

Figure 1.2; A scaling plot for Nickel. The superplsitio¡rjng of the data points,
alóng the tlo curves correspouding lo T > T, and ? < ?", implies that a critical
phase transition occurs at ?" (after Sfanley, 1971).
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of M2 versus H/M for Nickel. Notice that all the points for ? > Q fali along a

common cutve, as do those for ? < f .

A similar equation of state can also be derived for the suscepfibiiity (after

Yeung et al., 1987):

( 1.11)

The te¡m involving G1 describes the non-linear field dependence of the suscep-

tibility, while tire ze¡o-freld term represents the linear susceptibilit¡'. The leading

critical divergence of ferromagnetic s¡'s1sm5 occurs in the [near term, sucli that

X(0, ¿) - t-". This is important f¡om an experimental point of view, since the

non-linear response is typically much rveaker, and hence mo¡e dificult to analyse,

than the linear response.

Thus, critical scaling provides an indication of whether an experimental

system undergoes a thermodynamic phase transition. Aiso, the values of the

critical exponents are indicative of the universalit¡' class to which the system

belongs (for example, both metallic lron and Nickel belong to the same class).

Domain Wall Effects

The presence of a spontaneous magnetization in real ferromagnets is generaliy

not obse¡vable at a mactoscopic scale, unless an external magnetic field has been

appLied to the system. In explanation, it is understood that below I the specimen

is broken up inlo n'tagnetic domø'ins which are separated by thin ìlomain ualls'

Within each domain the spins are near-perfectly aligned (aside f¡om thermal

11

x(H,t) -x(0,¿) - ltl-'G+(ffi)



fluctuations), but to minimize energy, the domain orientations are such that the

bulk magnetization of the sample is approximately zero. With the application of

a weak field, the regions with favourable magnetization directions tend to grou'in

size at the expense ofothers and the sample, as a whoie, gains a net magnetization.

The associated domain rpall displacements may be reversed by applying a field

of equal strength but opposite 
. 
direction. Domain growth is, however, hinde¡ed

by the pinning of domain walls along point defects or impurities in the meta,l

lattice. \l¡ith large enough fields, the walls may overcome these obstacles, but the

process is irreve¡sible and ieads to magnetic hysteresis and a remanent (zero field)

bulk magnetization. Still larger fields ma¡' rotate the domain magnetizations into

favourable directions, despite any magnetic anisotropy in tlie sample, so that the

bulk magnetization can saturate.

Another manifestation of domains is the observed slow (non-exponentiaì )

drifting of the magnetization, after a change in the applied field has upset the

stability of the doma.in st¡uctu¡e. This relaxation is explained in terms of thermal

activation processes which enable the domain walls to eventually overcome pinning

obstacles, and hence allow the system to reorganize into a low-ene¡gy domain

conflguration. Typically, the magnetization has a logarithmic time dependence,

M(t): Mo - S ln(¿) , (1.12)

where ,5 = S(H,T) is the magnetic viscosity, and Mo is the initial magnetization.

t2



L.7,2 Magnetic Interactions in Dilute Alloys

Dilute magnetic alloys are. solid solutions formed by substituting magnetic im-

"purity:ptoms (Fer.Ma;'Oo;'Ni, -etrc'.)' rardoaly ¡threuglout -the lattice sites of

a non-magnetic host meta.i (such as Au, Cu, Ag, Pd, Pt, etc.). In this con-

text, the hosts may be strongly para,magnetic, but metals with spontaneous mag-

netic moments are generally excluded. The solute atoms tend to ma.inta.in thei¡

magnetic moments even while in solution, and varying thei¡ co¡cent¡ation efec-

tivel¡' ¿lleq'. adjustment of their average separation distance. Moreover, since the

impurity-impurit¡' exchange bonds have spatial dependence, the magnetic order-

ing of randomly-dilute magnetic systems is high\' concentration dependent, and

displays greater complexity than is found for pure metals. Before introducing

the specific experimental properties of these systems, it is helpful to first discuss

the magnetic interactions which are thought to be responsible fo¡ thei¡ magnetic

behavior.

Ferromagnetic Ordering in Dilute Systems

Alloys with high concentrations of ferromagnetic impurities tend to behave ferro-

magneticaìIy, with the Curie temperature roughl¡, proportionaJ to the concentra-

tion (Figure 1.3). That is, the relatively close proximity of the magnetic atoms

allorvs positive coupling via direct exchange. The ferromagnetic properties become

less pronounced and uìtimately disappear upon decreasing the concent¡ation.

Magnetically, the noble metals provide the simplest hosts. Thei¡ conduc-

tion electrons have weak paramagnetic susceptibilities, and hence a¡e influenced

relaiively little by the introduction of magnetic atoms into the noble matrix, .A

13
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Figure 1.3: Depeudence of the Curie temperature of PdFe on the Fe coucentra-
tioir. A changJfrom a c to a c2 dependence occurs as the concentration is lowered
(after Chouteau et al., 197i).



typical example of a binary alloy with an noble metal host is AuFe, which remains

predominantly ferromagnetic dorvn to a concentration o116 at.To Fe (Nieuwenhuys

et al., 1979).

Mo¡e inte¡estingly, alloys based on tra.nsition metal hosts, such as Pd or Pt,

have much iower ferromagnetic percolation limits. Though not quite {erromag-

netic, the 4d conduction elect¡on band in Pd (and to a lesser extent, the 5d band

in Pt) has a very large paramagnetic susceptibility. This can be understood in

te¡ms of Stone¡'s band theory of magnetism, where the susceptibility is enhanced

b¡' roughly an order of magnitude because of exchauge interactions between the

elect¡ons within the band (section 1.2.1). These highly-susceptible elect¡ons are

itinerant, and the iut¡oduction of loca.lized moments (such as Fe atoms) into the

Pd matrix induces positive spin polarization of tlte electrons surrounding each im-

purity atom. Tliat is, a large spherical polarizalion cfoød is formed. around each

magnetic atom, rvith the polarization along the direction of the impurity moment.

In úhe case of PdFe, studies indicate lhat giønl rnoments of up to 10pe (Crangle

and Scott, 1965) are associated with each cloud (as opposed to about 3¡rs for an

Fe atom in a noble host). Furthermote, neutton diffraction experiments by Low

and Hoiden (t966) have shown that the clouds extend - 10å from an impurit¡'

site and may encompass - 200 Pd atoms. The overlap of the ciouds effectivel¡'

enabies their giant moments to couple ferromagnetically down to extremely lou'

impurity concentrations. According to Chouteau and Tou¡nier (1971), the ferro-

magnetic percolation limit of PdFe is - 0.1 ot.ToFe, at which point the Fe atoms

are (on average) 15 io 20 Ä apart. Below this limit, the ferromagnetism gradually

disappears; the separation distances become too large to a.llow direct exchange

15



and it is no longer possible to have, as a ground state, an extensive netwo¡k of

ferromagnetically ordered spins.

Quenched Disorder, Frustration, and Spin Glass Ordering

According to RKKY theory (section 1.2. i ), the magnetic polarization of the host's

conduction electrons, due to the presence of a localized magnetic impurity mo-

ment, is osciilatory i¡ nature so that both the sign and the strength of the po-

iarization va¡ies with the distance from the impurity atom. Consequently, the

moment of a second magnetic atom can be influenced by these polarized elec-

trons; hence the impurity spins are indirectly coupled. Because of the long-range

cha¡acteristics of this indirect exchange, it dominates the magnetic ordering of

systems in which the magnetic atoms (or polarization clouds, as the case ma5'be)

are too far apart to interact via direct exchange

The random positioning of the magnetic impurities within such a soüd so-

lution is knorvn as quenched. d'isoriler, as it occu¡s in addition to, but independent

of, the more usual temperature-induced thermal diso¡der' Theoretically, the com-

bination of quenched disorder and the oscillating RKKY inte¡action provides a

Írastrøtion mechønism. Ðach of the impurity moments receives instructions f¡om

all the othe¡ impurity moments (by means of RKKY exchange bonds) as to which

di¡ection it should point. However, because the individual exchange bonds are

either ferromagnetic o¡ anti-ferromagnetic, depending on the distance between

the atoms, the¡e is ¡andom couflict between the types of o¡der. Since no simple

parailel or anti-parallel arrangements will simultaneously satisfy all the required

exchange couplings, the spins a¡e said to be f¡ustrated, and they mtsl coopero'
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fiuel3r determine a configuration which satisfies the random exchanges. Inflnitel¡'

many stable solutions are possible, but they a¡e all characterized by freezing of the

impurity spins into random orientations. There is no long range magnetic order

in the usual sense, and hence no spontaneous magnetization. As in ferromagnetic

systems, this frozen o¡de¡ must conpete with therma,l fluctuations, and gives way

to the more usual paramagnetic ordering above some fteezing temperature 196.

The te¡m spin gloss is commonly used to denote the ground state of such systems.

A great deal of experimental and theoretical research has been aimed to-

wards identifying spin glass systems, and characte¡izing the spin glass/paramag-

netic transitio¡r in terms of critical phenomena. Apparently, PdFe alloys are spin

glasses only up to 0.01 øt.To Fe (Peters et 41., 1984) since the iarge spatial ex-

tent of the polarization clouds enables some long-ranged ferromagnetic coupling

to occur, even at extremely lou' concentrations. Also, the paramd.gnetic/spin

glass transition temperature is given by ?s6 : 0.83ã#tr.X, Í'here X is the Fe

concent¡ation.

The situation in.A,uFe is more complex (Coles et aJ., 1978), due to metal-

lurgical considerations. \{ithout exchange enhancement, the spin giass ordering

begins at a much higher concentration, and it is statistically more likely that some

short-ranged ferromagnetic ordering wili occur randomly throughout the system.

Below 8 øt.%Fe, the system is an archetypical spin glass. flowevet, from 8 to 24

at.To Fe, it condenses into clusters of ferromagneticaJly ordered spins which grou'

in size with increasing concent¡ation. The clusters inte¡act via the the RKKY

mechanism so that thei¡ moments are f¡ust¡ated and have cluster glass order

(Figure 1.4).
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Figure 1.4: The magnetic phase diagram of Á.uFe. The various regimes are
paramagnetic (P), ferromagneiic (F), super-paramagnetic (SP), spin glass (SG),
and cluste¡ glass (CG) (after Coles et al., 1978).
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Re-entrant tr'erromagnets

Alloys with impurity concent¡ations between those required for a spin glass or a

ferromagnetic ground state are predicted, by some mean-field models (particularlS'

the Sherrington-Kirkpatrick model of section 1.2.3), to yield behavio¡ which is a

combination of ihe two. That is, the average separation distance between the

magnetic impurities is such that the di¡ect exchange and RKKY interactions are

competitive in some way. These systems have the potential to display re-entrønl

behauior, which is defined as a set of sequential transitions, from paramagnetic to

ferromagnetic to some sort of spin glass ordering, as the temperatu¡e is lowered

from above the Curie temperature. For example, AuFe seems to be re-ent¡ant

within the concentration range 16 < at.ToFe < 24 (Nieuwenhuys et al., 1979),

while the h¡'potheticaì range for PdFe is about 0.01 < at.ToFe < 0.10. Figure

1.3 shou's that, within the proposed re-entrant region, the Curie temperature Ior

PdFe va¡ies as the square of the concentration. lt{uch of the cur¡ent interest in

dilute.magnetic alloys is focused on understanding the nature of such systems;

moreover, the very existence of the ¡e-entrant spin glass transition is the subject

of theoretica.l and experimentaJ controvers¡'.

Flustration in Alloys with,A.nti-ferromagnetic Impurities

The concent¡ation dependence of the magnetic o¡der can be complicated fur-

ther by choosing magnetic impurity atoms (such as Manganese) ri,hich couple

anti-ferromagnetically througb direct exchange. For example, PdMn is a giant

moment ferromagnef (- 7.51"p per Mn atom) fo¡ Mn concent¡ations f¡om about

0.1 to 2.5 øt.% (see Figure 1.5). However, above 5 at.Ta there is a signifrcantly
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Figure 1.5: The magnetic phase diagram of PdMn. The bold solid line indicates
the Curie temperature, while the bold dashed line indicates the paramagnet-
ic/spin glass transition temperature. The region denoted by M is re-entrant. Not
shown are the secondary spin glass and re-entrant regimes at c < 0.1 (after Zastre
et a1., 1985).
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increased probability that I{n atoms will be flrst, second, and thi¡d nearest-

neighbors, enabling direct anti-ferromagnetic coupling between them. The con-

flict, betrveen the short-ranged anti-ferromagnetic (Mn-Mn) exchange and the

longer-ranged ferromagnetic (giant moment-giant moment) exchange, provides a

f¡ust¡ation mechanism which leads to a spin glass ground state. Experimeuts indi-

cate that more conventional RKKY-induced spin glass ordering is possible below

0.06 øt.% (Thomson and Thompson, 1979). Hence, two concentration regimes

are expected to yield ¡e-entrant behavior in PdMn; 2.5 to 5 øÍ.%, and 0.06 to

0.1 ot.% (Ho et al., 1981, and Zastre et al., 1985).
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1.1.3 Experimental Properties of Very Dilute Alloys

Since the early 1970's there has been a great deal of interest in the study of very

dilute magnetic alloys, due iargely to the exceptional magnetic behavior of spin

glass and (poteniially) re-entrant systems. The central question is whether or not

the low temperature anomalies, observed in only some of their properties, are due

to thermodynamic phase transitions into spin-glass-like states.

Experimentally, spin glasses are characte¡ized by apparently contradictory

results for thei¡ A.C. susceptibilit¡' and specific heat measu¡ments as a function of

temperature. There is genera.Ily a cusp found in the low field susceptibilitl' at some

temperature ?s6, perhaps indicating a thermodynamic phase transition f¡om a

paramagnetic state to a spin glass state. Seemingìy contrary to the Ehrenfest

criterion, the specific heat measurements typically shon' nothing mo¡e than a

b¡oad maximum with no obvious cor¡elation to Tsc. Furthermore, resistivity

measurements generally do not reveal clear anomalies as evidence oI a sudden

phase change at ?56, and the history-dependent efiects which spin glass systems

possess could be construed as non-equilibrium behavior.

On the other hand, experiments involving neutron diffraction and Mössbaue¡

spectroscopy tend to support the existence of frozen disorde¡ed states. Analyses

of the spin glass transition within the frame-work of non-linear critical phenomena

have also been very successful in recent years (Bouchiat 1986, for example). As a

result, the present experimental consensus generally supports the existence of the

paramagnetic/spin glass transition, though it is cleariy higher lhan ¡econd-o¡der

in the Ehrenfest sense, and therefore mo¡e subtle than the familiar lerromagnetic

transition. (For comprehensive reviews of spin glass properties, see Binder and
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Young 1986, and Huang 1985.) The importance of understanding spin glasses is

fuelled by the increasingly large number of systems which display spin-glass-like

behar.io¡. Initial efiorts focused on archetypical systems such as AuFe, though the

Iist has since expanded to include amorphous and insulating systems, for which

the f¡ustration mechanisms a¡e somewhat dife¡ent than in dilute alloys.

During the past decade, similar cont¡oversy has developed over ferromag-

netic re-entrant systems. They are unique because they show evidence of a high-

tempe¡ature paramagnetic/ferromagnetic transition, as well as a low-temperature

transition f¡om one spontaneously ordered magnetic state to another (i.e., from

ferromagnetic to spin glass ordering). Ilowever, their analysis is more chalìeng-

ing since ferromagnetic domain s'all effects compiicate the magnetic behavio¡ for

temperatures T < T.. The follou'ing sections introduce the salient featu¡es of

susceptibility measurements on re-entrant s¡'stems, as weI as dynanical efrects

in spin glass systems.

Susceptibility Measurements on Re-entrant Systems

As mentioned in section 1.1,2, the magnetic impurity concentration of a dilute

alloy is crucial in determining the magnetic ordering of the system. This depen-

dence is indicated most obviously by the temperature dependent low-field A.C.

susceptibility. In this respect, the ternary alloy (PdFe)Mn has been well repre-

sented in the Iiteratu¡e.

Like PdMn, (PdFe)Mn is expected to have concetrtration regions which

yield re-entrant behavior. With a concentration of 0.35 ot.To Fe, PdFeis a strong

giant-moment ferromagnet with ?i x 8.7 K . Adding Mn to the PdFe matrix
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introduces anti-ferromagnetic exchange bonds to the system; hence there is a

f¡ustration mechanism that depends on the ¡elative amounts of Fe and Mn (Figure

1.6 )

Ve¡beek et al.(1978) studied (Pde.se55Fe¡.ss35), -" Mn' {or Mn concentrations

of ¿ = 0.01, 0.05, and 0.065, and thei¡ ze¡o-field susceptibility measurements

a¡e shown in Figure 1.7. Curve (a) represents a transition from paramagnetism

to ferromagnetism, but the susceptibiüty has not been corrected for the shape-

dependent demagnetizing factot D, which is appreciable since they used spherical

samples. (That is, the impurity spins are partially shielded from the applied

field 11, by means of a diamagnetic component to the sample magnetization; the

resulting efective inte¡nal field is Ili = H" - DM, whe¡e Iy' is the magnetization

component in the direction of ll..) They attempted to compensate fö¡ the efiects

of D by means of the follorving relation (after Verbeek et aJ., 1978):

Xm¿o¿u¡ed
Xt¡ue : l__Ë--

L - uX¡n¿acu¡ed
( 1.13)

At the Curie temperature T", X*u" diverges to infinity, whtle y,".""",.¿ - lll.
They estimated a value of f * 13 ff by locating the point on the knee of the

cuÌve ì,vhere d x,n,o"ur"d liIT )s a maximum.

Curve (c) displays typical spin glass characteristics, with a sharp cusp ob-

se¡ved at the spin glass freezing temperature Ts6 x 4.7 K. The decrease in X

as the temperature is lowe¡ed through ?5ç is symptomatic of the freezing of the

impurity moments into ¡andom orientations as T -t 0.

Curve (b) potentially shows re-entrant ferromagnetic behavior. As temper-

atu¡e is lowe¡ed, a change from paramagnetism to ferromagnetic ordering seems to

24



T

a

I

/.4

¿

j.. Tsc

-l'

0246810

c(at.% Mn)

Figure 1.6: The magnetic phase diagram of (P de.ee6sFee.oors ) + c oú.% Mn. The
region 3 ( c ( 6 is re-entrant (after Huang, 1985).

20

\--.,, lU
Fr



.-)
j
d
X

1510

T(K)

Figure 1.7: Ze¡o-field A.C. susceptibility measurements (using a driving field of
0.i Gauss and 210 Hz) on several (Pd6.es65Fe6.6¡3 t) * c øt '% {n alloys:
(a) ferromagnet (" = 6.5),
(b) re-entrant (c = 5),
(c) spin glass (c - 1).
The dashed Iine represenls a theoretical re-entrant calculation (Irom the Sherring-
lon-Kirkpatrick model) which has been artificially demagnetization limited (after
Ve¡beek et al,, 1978).
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occur at T" æ I K. Note that the knee is much broade¡ than for curve (a), indicat-

ing perhaps that the ferromagnetic ordering is not as well defined in the re-ent¡ant

case. The system displays ferromagnetic characteristics dorsn to abotl T = 5 K,

at which point a reversed knee and then a rapid decrease in X are encountered.

!'e¡beek et al. associated this dec¡ease with the onset of spin glass ordering. They

aiso compared their results with predictions made by the Sherrington-Kirkpatrick

model (section 1.2.3), with good qualitative agreement-they did, however, arti-

ficially introduce demagnetization limiting to the theoreticaJ susceptibility curve.

The sirnilarity is significant because the model predicts the existence of a spin

glass/ferromagnetic phase t¡ansition, They studied other concentrations as weil,

and found similar re-ent¡ant-like behavior throughout the conceintration range

3 1 at.Vo I\[n < 6. For the sake of comparison, Figure 1.8 shou's the susceptibiLitS'

of seve¡al AuFe alloys whicli displa¡' spin glass and ¡e-entrant characteri sti cs.

Nieuwenhuys et ai. (1978) investigated the effects of applying D.C. biasing

fields, along the dìrection of the A.C. probing field, to (PdFe)Mn alloys of various

Mn concentrations. Figure 1.9(a) shows a typical spin glass case with 8 ¿f.%

l\{n. The movement of the cusp to lower temperatures with increasing field is

cha¡acteristic of spin glass systems, and is a.lso duplicated by the Sherrington-

Kirkpatrick solutions.

Figure 1.9(b) shows the possibly ¡e-entrant 5 øt.Vo Mn case. In a finite

biasing field, the susceptibility clearly develops two peaks around the proposed

transition temperatures ?s6 and 1". \trhile the upper peak mot'es to higher

temperatures as the field is increased, the field dependence of the lower peak

is much like thai of the paramagnetic/spin glass cusp, thus lending support to
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Figure 1.8: Ze¡o-field A.C. susceptibiiity measurements (- 0.5 G,210 Hz) on
AuFe atloys of various Fe concent¡ations. The 12 at '% and 73 øt.To Fe cu¡ves
show typical spin glass characteristics, while the remaining cutves are re-ent¡ant
(after Coles ei al., 1978).
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Figure 1.9: In figure (a), the left hand curves represent the A.C. susceptibility
of the (P de.ee6sFeo.oosu) * I at.% Mn spin glass in various D.C' biasing fields I{
fGauss]. The right-hand curves are theo¡etical calculations based on the Sher-
rington-Kirkpatrick model. As explained in section 1.2.3, the vaJue of fi/7 = 0.S
used fo¡ the c¿lculations places them within the spin glass region of the theoreti-
cal phase diagram.

In figure (b), the lefi-hand curves represent the susceptibility of the
(Pde.ee65Fes.qs3 r) + 5 ot.% Mn ¡e-entrant alloy in various biasing fields, while the
righi-hand curves illustlate theo¡etical ¡e-entranú calculations with Jr-/7 = 1.1.
Ai before, the theo¡etical øero-field curve has been artifrcially demagnetization
limited (after Nieuwenhuys et al., 1978).
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the notion of a re-ent¡ant spin glass phase. Nieuwenhuys et al. also compared

the fleld dependence of thei¡ ¡e-ent¡ant system to predictions of the Sherrington-

Kirkpatrick model, and once again a good qualitative agreement is observed.

Unfortunately, the above qualitative analysis does not preclude the possi-

bility that non-critical ferromagnetic domain wall efects are responsible for the

Iow temperature re-ent¡ant-Iike. behar.ior. Additionall5', the method of obtaining

?" and lsc from the ze¡o-fleld susceptibility is somewhat questionable, as the

positions of the knees are presumably functions of the demagnetizing factor.

Re-ent¡ant Critical Behavior?

Iüore recently, Kunkel and Williams (1988) studied the (Pd6.se65Feo.oos; ) + 5

at.Tø Mn ¡e-entrant system in much greater detail, and attempted to characte¡ize

both the upper and lowe¡ t¡ansitions in terms of linear and non-iinear c¡itica,l

phenomena. Their susceptibility measurements we¡e not demagnetization limited,

as the geometric shapes of their samples we¡e chosen to minimize such effects.

Even so, their temperature-dependent zero-field susceptibility curve displayed an

intermediate plateau structure simila¡ to the ¡esults of Verbeek et aJ. (1978). This

implies that the piateau is not simply a manifestation of the limits imposed b¡'

demagnetization, but is instead an int¡insic property of the experimental system.

The formation of magnetic domains between ?sc and ?" is conjectured to be the

underlying cause.

To investigate critical behavior, Kunkel and Williams carefully measured the

efects of applying various D.C. biasing frelds, and obtained the typical double-

peaked structure for the susceptibility. They analysed the field dependence of the
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high temperature peak (centered nea¡ - I K) in terms of the usual ferromagnetic

static scaling law (equation 1.11), which can be ¡ervritten in the form

(1.14)

n,here ú: l3l is the ¡educed temperature. Moreover, they were able to ex-

tract a self-consistent set of critical parameters such that the exponents satisfy

the Widom relationship (equation 1.8). The quality of the corresponding scaling

plot (Figure 1.10) illustrates that the upper transition is a well-defined paramag-

netic/ferromagnetic phase change.

Characterizing the lorver temperature (- 4 K) transition within the fiame-

wo¡k of critical phenomena is more dificult. Solutions ofthe Sherrington-Kirkpat-

rick coupled equations (1.51 and 1.52) obiained anaiyticaliy through expansions

of the B¡illouin function, indicate that the critical behavior at the d,irect pata-

magnetic/spin glass transition is apparent only in the non-linear susceptibility

(Yeung et al. 1987, Roshko et at. 1985). In other words, the theory predicts a

linear susceptibility rvhich is finite and continuous for all temperatures (includ-

ing 1s6). Since the non-linear nagnetic response is iypically much weaker than

the [nea¡ lesponse, the corresponding critical behavior is not easy to observe ex-

perimentally. Even so, several experimental investigations have apparently been

successful in critically scaling spin glass data in te¡ms of the theoretical predic-

tions (Bouchiat 1986, and }'eung 1988, for instance). The appropriate scaling

equation shares the same basic form as equation 1..11. Horvever, as the scaling

function must be an even function of the field IJ (otherwise the corresponding
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Figure 1.10: A scaling plot for the potentially ¡e-entrant (P de.se65Fe{.¡s36 ) 1
5 at,To Mn system. Various internal frelds are indicated, and the temperatures
all lie above 9.3 K. The reduced temperature úpeoÈ represents the location of the
high temperature peak in X(ú) for a particular field. The quality of the scaling
illust¡ates that a weli defined paramagnetic/ferromagnetic transition occurs al
?" = 9.3 K (after Kunkel et al,, 1988).



magnetic lesponse would contain diamagnetic components), it can be expanded

as (Kunkel et al. 1988)

x@,t) - x(0,¿) - t-, ".(*-!T")
- x(0, ¿) * az(t\ Hz * øaU) Ha - ' . . (i.15)

The primes are used to distinguish the spin glass critical exponents f¡om those of

the ferromagnetic case, and the reduced temperature is ¡edefined 
"r 

¿: l#l
In analog5' to tlie spin glass studies, Kunkel and Williams used thei¡ data

f¡om around the lower transition to check for a divergence in the coefficient ø2(ú) of

the leading nonlinea¡ term. (As an aside, it should be noted that valid expansions

of the aforementioned coupled equations are not possible to perform within the

¡e-ent¡ant region, and hence no critical predictions for the re-ent¡ant transition

can be de¡ived analytically. Ilou'ever, the detailed nume¡ica,l solutions expiored in

Chapter 3 of this thesis do ve¡ify that the non-Iine¿r critical behavior theoreticall¡'

extends to the re-ent¡ant transition as well.) In particular, they plotted X(.I/, ú)

ve¡sus I/2 for temperatures both above and below thei¡ flnal choice of ?s6. Atlow

frelds these plots are linear since the IJz te¡m dominates the expausion. Hence,

the initial slopes of the isotherms yield the the va.lues of the coeficient at each

temperature. These a¡e plotted versus temperature in Figure 1.11. Though not

divergent, the distinct anomaly at 4.07 K is highly suggestive of a phase úransition,

and Kunkel and lÃ¡illiams used it to identify 1s6. The lack of a divergence could

be due partl¡' to an underestimate of the coefficient values for temperatures near

îsc. As t -' 0, úhe initial linea¡ portions of the isotherms (in the X versus
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112 plots) become confi,ned to lower and lower fields, and it is experimentaJì¡'

difficult to ensure that the measu¡ed data represent the true initia.l slope. Kunkel

and Williams also propose thai dynamical effects, related to the onset of c¡itical

slowing dot'n as 7 - ?s6, together rvith the use of a probing field of finite

(as opposed to zero) frequency, a¡e to blame. Nevertheless, their analysis shows

intriguing evidence of critica.l re-ent¡ant behavior.
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of critical ¡e-entrant behavior, and is used to identify the re-ent¡ant t¡ansition
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Dynamical and History-Dependent Properties of Spin Glasses

Spin glasses have unique d¡'namical and histoiy dependent properties which cha¡-

acteristically set in near the paramagnetic/spin glass transition temperature ?s6.

These are manifest in many ways, such as the differences between f,elil-cooled

(FC) and zero-fielil-cooled (ZFC) magnetization measurements (as a function of

temperature). The ZFC magnetization curve is obtained by cooling the spin glass

specimen in zero applied freld, from a temperature T > Tse to the lowest desired

measuring temperature T, < Tsc, ai which point a smaJl D.C. field fl is applied.

Sirnilarl¡', the FC magnetization is obtained by cooling in the specimen down to

7., l Tse in the same finite field used above. In both cases, successive measure-

ments are obtained by incrementing the temperatu¡e and stabilizing at each of

the desired fi values, until the highest required temperature is reached.

As shor¡'n in Figure 1.12, the FC and ZFC curves are identical dorvn to

some rvell defined temperature, belorv which thei¡ behavior differs dramatically.

Experimentalists often identify this point of departure with ?s6, and we shall

adopt this approach. The FC cu¡ve is roughly temperature independent beiow

?s6, while the. ZFC shows a cusp at ?s6. Significantly, below ?sc the ZFC

magnetization slowly relaxes (quasiJogarithmically) with time torvards the FC

state, which it is expected to reach as time f --+ oo. On the othe¡ hand, only

extremely weak time efiects have been obse¡ved for the FC case (Lundgren et

al., 1982). Note that the ZFC magnetization is similar in nature to low frequency

A.C. susceptibility measurements, though the time efrects in the A.C. case appear

a,lso as a frequency dependence of the cusp.

Às shown in Figure 1.13 the ZFC and FC cu¡ves fo¡ re-entrant systems
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Figure 1.12: The FC and ZFC magnetization of the Pt * 2400 ppm Mn spin
glass, using an applied freld of 2 Gauss. The peak in the ZFC curve is associated
with ?56 ry 200 mK (after Yeung, 1988).
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Figure 1.13: The FC and ZFC magnetization curves for the (Pd6.es5sFø.ooss ) *
5 aL.Va l{l¡t ¡e-entrant system, using al applied field of 0.1 Gauss (after Carnegie
et al., 1979).
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displa¡' features simila¡ to those found for spin giasses. However, analysis is

hinde¡ed by time effects (induced by ferromagnetic doma.in waJI motion) which

occur in the ZFC cu¡ve below the Curie temperature. These tend to obscu¡e the

(possible) lorver temperature t¡ansition into the spin glass state. For this reason,

the ¡emainder of this discussion deals with the simpler dynamics of typical spin

glass systems.

Upon zero-field-cooling a spin glass to a temperatute T* < ?s6, one might

intuitively expect the system to quickly reach equilibrium if no fleld is ever applied.

Lundgren et al. (1983) studied a CuMn spin glass (?s6:26K) for fixed 11 and

?L. They found that the rate of relaxation is a function of the time ú,, that one

v'aits at constant 1- before the field .F1 is tu¡ned on. Hence, the ZFC state must

evolve over time, even without the influence of an external fieid.

Analogous behavior occurs after cooling to Ç in a field, and then turning

the freld of after a time ú- has elapsed since passing through ?e6. This is called

lhe thertno-remanent magnelizalion (o¡,,"). Chamberlin (1984, 1985) studied sev-

eral AgMn and CuMn spin glasses and determined that ø¡,- is a function of .t,,.

Thus, even the FC state cannot be in equilibrium (at least over finite obse¡va-

tion times). I\{oreover, he found thai for ull ?- < Tsc, or.^ relaxes rvith time

(5 < f[seconds] < 103) accordin g to a stretched,-etponent'ial ltnction (Chamberlin,

i985)

(1.16)

The exponent zi and prefactor ø¡ are functions of 7t, where ¿ < 1. Hoogerbeets et

al. (1985,1986) also discove¡ed a temperature dependence fo¡ the ¡elaxation ¡ate

o,,- = oo 
"*p [-

(å)'"1
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such that 7p - 103 
""p [t#] seconds. In addition, rp increases exponentially

with the wait time l-. Figure 1.14 illust¡ates the appropriate log-log plot required

to yield a stra.ightJine with slope -z¿. The deviations for times ú ( 5 seconds

were att¡ibuted to eddy-current efrects and ignored.

Hoogerbeets et al. (i986) attempted to show that the stretched-exponential

relaxation is an intrinsic property of a spin glass perturbed from equilibrium.

Their argument was based on comparisons to a dynamical mean-fieid Ising model

which predicts that many difierent thermodynamic equilibrium states (each with

a difie¡ent configuration of randomly-oriented, frozen spins) are ava.ilable to the

system below îsc. The stabilit¡'of each state is a function of applied field and fl".

Some of the states a¡e more stable than others and upon changing ihe field, the

system will relax from state to state until (as I --+ æ) it ¡eaches true equiLibrium in

the most stable conflguration. Remarkably, the relaxation is predicted to follow a

stretched-exponential dependence. Hoogerbeets et aJ. argued that this agreement

betlveen theory and experiment is significant.

The above comparison is controve¡siaI, and Nordbiad et al. (1986) allege

that the stretched-exponential fo¡m is not an intrinsic property of the spin glass

state. They looked at drîm over a wide range of times ( 1 < ú[seconds] < 10n)

and discovered that the quality of the stretched-exponential frt is misìeading, and

adequate only in the interval 5 < ú[seconds] < 103. the deviations for t < 5

seconds, u'hich Chamberlin had discarded on the basis of eddy-current effects,

were considered by Nordblad et al. to be real.

They proposed thai the spin glass equilibrium state is dynamic in nature,

and characterized b¡' a purely logarithmic relaxation. Figure 1.15 shows plots of
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Figure 1.14: Several stretched-exponential fits to the ø¿,- decay of the (Ag*2.6
at.% Mn) 4 0.46 at.% Sb spin glass system are shown. F¡om top to bottom,
the dotted lines represent temperatures of T lTsc-\.966, 0.897, 0.856, and 0.771.
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spin glass (?sc = 28K) There is clearl¡' deviation from logarithmic decay, and
the wait time ú., is apparently related to the location of f,he peak in each curve
(after Nordblad et al., 1986).



the total ¡elaxation rate, 5(f ) = + ffi, fo¡ fixed temperature ?- < ?sc and

various wait times ú-. Cleariy there is deviation from logarithmic decay, especially

at times t = tu. In explanation, they introduced a time-dependent øgàng of

the spin glass state, which is superimposed upon the logarithmic relaxation and

follows a stretched-exponential form. There exists recent theoretical evidence

(Lundgren, 1988) that the aging efect could be ¡elated to the growth of spin

glass domains, within which the spins are in dynamic equilibrium. Therefore, the

total relaxation is described by (Nordblad et aJ., i986)

( 1.17)

where øs: S(¿: lsec), o.r,,¡ is the relaxation rate at dynamic equilibrium, and

the last te¡m characterizes the influence of aging. Figure 1.16 shows a plot of a¡,-

versus ú. Indeed, the aging scheme fits the data over a wider range of times than

the st¡etched-exponentiaJ alone.

Ilypotheticall¡', the relaxation o{ a re-ent¡ant system might be expected

to follow a form simila¡ to equation 1.16 or 1.17, but with an additional te¡m

to represent the effects of ferromagnetic domain wall motion. In any case, the

stretched exponential relaxation may provide a means of identif¡"ing magnetic

systems which have some degree of spin glass o¡de¡ing,
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Figure 1.16: A typical comparison between the ø¿,- deca¡' 61 llte Cu I 5 at.Vo
À{n spin glass (bold line), the aging scheme(dashed line) and the st¡etched-ex-
ponential functio¡r (thin line). The aging scheme provides the superior functional
description (after Nordblad et al,, 1986).
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1.2 Models of Disordered Magnets

1,.2.1 The RKKY Indirect Exchange Interaction

The RKKY (Ruderman, Kittel, Kasuya, \'osida) inte¡action is an indirect ex-

change mechanism which provides long-ranged coupling betrveen the magnetic

atoms in very dilute alloys, through intermediate interactions with the host's

conduction electrons. The interaction oscillates spatially and, when combined

with quenched disorder, may cause f¡ustration of the spin o¡ientations and spin

glass ordering. The folìowing is a derivation of the RKKY functional form, based

on White (1970) and Kittel (1968).

Consider a magnetization lû (fl anå a static magnetic field lÇ (i). lVe can

write these spatial functions in terms of Fourie¡ se¡ies as follows (after White,

1970):

urn = i¿o(r),,i.'- ,

À

H(í) : f,4e6"'*'q

,ù (É) =Ðx(Ë,¡) ¡1,
í

(1.18)

(1.1e)

where ã and q-are wavevectors, ,nZ (Ë) 
""a 

.ü (q-) rt. Fourier components, and the

volume of the specimen is V. The response of the magnetization to the magnetic

fieid is given b¡'a general susceptibility X such that (after \ilhite, 1970)

(1.20)



By substituting equation 1.20 into equation 1.18 and introducing the identity

, -- + l, d; eid'(;'-;')eíÃ(;'-'1) ,

we get

ì
it <n = l,l"*-{?1" F,a) Ê <ø,;i(r-,1),r(ã-e').'r ",,"r}

Furthermore, assuming that the susceptibilit5' is translationally invariant (imply-

ing g- = ã and X (rr, Ð -- X (q] ) and independent of the freld, it follows that

(after Kittel, 1968 )

^;t@: t"aí'x(r-,-), (;) , (1.2i)

where

('-- t) : ITtrnr "re-(;-''r)
s

Equation 1.21 can a.1so be w¡itten in terms of Fou¡ier components:

¡t<O= j\*@É{û",r' , (r.22)
s

with

úra:xrùÉ@ .

Of course, the susceptibility depends on the nature of th" .p""i-"o, and the form
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of the applied magnetic fieid must be known to dete¡mine the magnetic response

of the system.

To evaluate the functional form of the RKKY interaction, the response of

a sea of conduction elect¡ons to the presence of a single magnetic impurity atom

(which is imme¡sed in the sea) is dete¡mined. The simplest approximation is to

use a free electron gas at a temperature of absolute zero. Elowever, to desc¡ibe

the conduction elect¡ons within the nar¡ow d-bands of exchange-enhanced hosts

such as Palladium or Platinum, it is necessary to inciude the effects of exchange

interactions between the electrons. We shall only consider the fo¡me¡ case in

deta,il, since the basic oscillating properties are common to both schemes, though

the latter develops giant moments about the impurity atoms.

The fr¡st step is to find the susceptibility of the f¡ee electron gas. This is

related to the change in energy caused b¡' the application of an arbìtrary, zon-

uniJonn field .É (q] cos (q-. rl). The appropriate Hamiltonian (including kinetic

energy) is

?{=t'L*on
7 zzn.

A?1: sp, D "i 
.ã (sl "o'(d.4)i

(1.23)

u'here

is the perturbation Hamiltonian due to the field. To avoid redist¡ibution of elec-

t¡ons between spin-up and spin-down states, the field is applied perpendicular to

the direction of quantization. In particular, È tql : ã (q-J ó so ihat (after Kittel,
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1e68)

and

The unperturbed free electron eigenstates with energy E; are denoted * 
Iã, ") =

lË) l"), *h"t" l") - 11) is spin up and lø) : lJ) ir spin down. Kittel used

perturbation theor¡', along with the identities

(fr'l e='e"t l&) = 'l'A¡-,,¡+a

and (Jl'- l1) (11"+ 11) = a

to obta.in the total second-order energy correction

AE = -+lspB7 (ûlr¡ ?¡- - ?*-rq-

1 '=.L..--.8;
I 'c+9

The Fermi-Dirac function,

zi : {exp [4Å: 
ir] 

+ 1]-'

is the probability that the state lã) is occupied (at absolute zero), and E¡ is the

Fermi energ¡'.
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The electron gas susceptibility is given by (after Kittel, 1968)

x(û=-rffi
-- g'Pî>#- !':-

Ã "À+s-

By converting the sum to an iategration, it can be shown that (after Kittel, 1g68)

x@ =lWPl{;. (Ef)*låo=l}, 024)

wlrere 1{ is the number of electrons per unit volume, E, = #, and the factor

inside the b¡ackets [] is the Pauli paramagnetic susceptibility for a uniform field.

The next step is to represent the field produced b5'the magnetic impurity

atom. Assuming thai the impurit¡'spin is localized, then the Heisenberg exchange

Hamiltonian (after White, 1970)

(1.25)

describes the inte¡action between the conduction electron spins o-¡ (located at r-] )
and the impurity spin ^i (located at r = 0 ). The exchange parameter J describes

the strengh of the interaction. We can rewrite equation 1.25 in the lo¡m

sr"fÈ 1,1¡ ' 
"-,i

Hence, due to the impurity atom, each electron is subject to an effective field

- Jts: .ã;6(rt)
i
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(after White, 1970)

with a Fourier transform o{

Êþ',):-1s:¡t¿l
gltB

Substituting equations 1.24 and 1.26 into !.22 gives the elect¡on polarization .À7

as a function of the distance ¡ from the impurity atom. After converting the sum

to an integral, it can be shorvn that (after \4/hiie, 1970)

t1 t-t_ ( JNS¡B_\/ 3 \Jsin2k¡r-2ft¡rcos2frrr\"-rt'r \r)= {-=--;-\ bpkpti ) \1,28/ I 'n 1""

This, in turn, plays the part of an efective-field actiug on another magnetic atom

with spin ^Ç. fU" Heisenberg exchange inte¡action between spins ^i and .g]

(separated by distance r) is

.T
nG)= - - s"

g ILB

'llaxxt' : -Jnxxt' Sl 'S] ,

, J'N / 3 \ f sin 2lc¡r - 2kpr cos2kpr)rnKKt'=Efrr"U28/1 l J

(1.26)

(1.27)

(1.28)

The expression in braces { } is plotted in Figure 1.17, curve (a). Note the diver-

gence as r --+ 0. Fo¡ larger separations, the interaction oscillates as a cosine with

an r-3 envelope. It is ihe superpositioning of the many such inte¡actions, between
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all the magnetic impurities in a dilute alloy, which ultimately can lead to frus-

tration efiects and spin glass behavior. Since exchange inte¡actions between the

conduction electrons (of the host metal) have been ignored in the above derivation,

it is only valid for non-exchange-enhanced hosts such as Gold or Copper.

For hosts such as Palladium o¡ Platinum, the conduction d-band is quite

narro$ so that the efects of direct exchange inte¡actions must be included, They

may be estimated by replacing equation 1.24 with an enhanced susceptibility of

the form (after Foner, 1976)

xentonced@,-_ . '!û,^t - r x\q)

The denominator is the Stone¡ enhancement factor, u'here.I rep¡esents the strength

of the conduction electron exchange interactions, and is generall¡' a function of

gl In Pd, the susceptibility is enhanced by roughl¡' an o¡der of magnitude, and

tends to suppress the positive-negative oscillations of the RKKY interaction out

1o r - 704 (-see curve (b)). In other words, a iarge polarization cloud develops

around each magnetic impurity, outside ol which the RKKY oscillations ¡esume.
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Figure 1.17: Curve (a) represents the functional fo¡m of ihe basic RKKY indi¡ect
exchange mechanism, while curve (b) includes the effects of exchange enhance-
ment (after Foner, 1976).



1.2.2 The Edwards-Anderson Model

In 1975, Edwards and Anderson (E-A) developed a simple model which displays

aspects of spin glass behavior. In particular, it successfull5' shows a cusp in

the difierentia.l susceptibility at a temperature Tsc, separating the pa.ramagnetic

phase from the low temperature spin glass phase.

The model is based on a set of gþEgþ!! spins or magnetic dipoles 5¡, subject

to a¡ exte¡nally uppú"d magnetic field d¿, and interacting via the Heisenberg

exchange Hamiitonian so that the total energy is

(i.2e)

The exchange pa¡ameter 4¡ between the ith and jth spins determines the strength

of their inte¡action and whethe¡ the¡' are coupled ferromagneticalb' (4¡ > 0) ot

antiferromagnetically ({¡ < 0). In ou¡ notation we require Jr¡ : J¡; and J¡; - 0.

E-A postulated that a metallic spin glass can be thought of as a distributio¡

of spins iocated randomJy throughout a periodic lattice, and interacting with one

anothe¡ by means of a common (spatially oscillaiing) RKKY exchange patamete¡.

Belori'some critical temperature ?56, frustration causes a ground state to exist

in u'hich the spins f¡eeze fo¡ al1 time in random orientations, and there is no long

range magnetic order (in the usual sense). The spins settle into this ground state

as temperature ? approaches zero. Note that f¡ustration can a.lso occur in systems

without RKKY inte¡actions, as long as there exists a mechanism for ¡andom

competition between ferromagnetic and anti-fer¡omagnetic exchange bonds.

Mathematically, it is cumbersome to deal with site disorder and complex

u= -rrD t,ii, sj - t/J.'s,
i
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interactions in a di¡ect manne¡. Instead, E-A chose to place a spin on eoery latlice

site and independently distribute each parameter J¡¡ according to a Gaussian

probabiiity dist¡ibution (from Sherrington and Kirkpatrick, 1978)

P(Jü) = (1.30)

where J is the standard deviation. The distribution is centered about a mean

exchauge of zero, thus limiting the modei to paramagnetic and spin glass behavior,

since on average tliere is no net ferromagnetic exchange. Only nearest-neighbor

interactions are considered.

In anaJogy to the magnetization in mean-field theories of ordered systems,

E-A introduced a neu order parameter q to characterize the onset of spin glass

behavior. In particular, q is the probability (thermaJly averaged over all spins)

that a spin 
^9] 

at time ú6 will point in the same di¡ection at a much late¡ time f.

That is (after Binder and lbung, 1986),

ø - (( s1ir,).s-:{t) )r) i r )) ro (1.31)

rvhe¡e the (0r), denotes the thermal avetage and the average over all spins. For

ze¡o field and temperatures T aboue the spin glass temperature ?s6, g = 0 since

the system is paramagnetic and the spins at difrerent times are not cor¡elated.

Ilowever, for temperatures ? less than ?s6 the spins begin to fteeze, so there is

cor¡elation and C * 0. As ? ---+ 0 the thermal fluctuations dec¡ease and q -+ I

(assuming unit spins). Note that in zero field the magnetization is zero for all

temperatures, providing no indication of a phase change. In contrast, the o¡de¡

1 / -4,\jã"*P\u, )
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parameter g does indicate the trausition into a spin glass regime.

To evaluate the equilibrium properties of the model, E-A sought to minimize

the quenched free energy. The free energy of a spin glass system with a particular

random confrguration of exchange bonds betrveen y'f spins is -fr37in2, where

z is the partition function of the system. Since an infinite variety o{ ¡a¡rdom

configurations are possible, the free energy must be averaged ove¡ all of them.

Therefo¡e

f - -kBT (h z\ (1.32)

where 0 denotes an average over al1 possible exchange configurations. Introducing

the identity (from Sherrington and Kirkpatrick, 197ä)

rve have

/,ñ _ 1\
ln¿ = lim l- 'ì

n-0 \ n ,/

_L^T
.f = Ii¡q '"õ- ((zn) - l)

TL

( 1.33 )

(1.34)

To evaluate (.z"), E-A int¡oduced the concept of replicas. For integer ri.

(from Sherrington and Kirkpatrick, 1978),

,":fi"., (1.35)

where the set a: 1,...,n, represents z replica spin glass syslems, all wiih the

same f¡ee energy as the actual system, but with difrerent exchange configurations.

The average over the different configurations is no longer required, though we
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must account fo¡ the individual [¡ distributions, so that (after Sherrington and

Southern, 1975)

¡:ts (#) (l n,r,',"¡ u r,.t¿,¡ -')

The classical partition function for replica a is

z.(r;¡)=/lg"r] *,{#}

(1.36)

(1.37)

and the Hamiltonian is

(1.38 )

(1.3e)

Eence, the spins in replica a and replica B effectively inte¡act with one another.

This lead E-A to ¡edefine thei¡ o¡der parameter as (Edwards and Anderson, 1975)

q:u"1(si.s?) ia#p ,n+u \ lT

n" = -;I 4¡si s¡ - Ia. sr
|,1

Substituting equations 1.30, 1.37, and 1.38 into equation 1.36 and evaiuating the

integrals over the J¡¡ yields

/ = I$(#Xil++-*l "",h{#(Ð', *)(;'i'i)}

(1.40)



That is, repiicas are used to represent the actual spin glass system at diffe¡ent

times. E-A assumed the value of g is independent of the choice ol replicas so that
/,-,2\

ø - ((s,)"/,.
After writing the f¡ee energy in terms of g, E-A were able to minimize it

with respect to g and obtain the susceptibility and the speciflc heat. They found

the zero-field susceptibility to be (from Edwards and Anderson, 1975)

x-x"0-ò 1
(1.41)

rvlrere X" - C lT is the usual paramagnetic susceptibility with Cu¡ie constant C,

For ? > Tsc, I : 0 and the susceptibilit¡' is paramagnetic. Also, for

T < Tsc and near lsc the-v found

(r.42)

so that

-o(Tsc-T)'z (1.43)

Hence, the susceptibility shorvs a cusp at temperature 1s6 (which becomes rounded

with the application of an external field) and is qualitatively similar to experi-

mental results. As ? -+ 0, the susceptibility approaches a constant value of

(1.44)

Contrary to experimental observations, the specific he¿t also displays a

1 [. /Tsc\2fn--tL'-\."iJ

Cn Tse

c / 2\1/2
a/: 

- 

| 
- 

I

^ 7"6 \ 32./
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cusp around ?s6. Furthermore, the E-A order parameter is nou'considered to be

too simple, as menúioned in section 1.2.5. Despite these drawbacks, the model

provides a basis for more sophisticated investigations of spin glass behavior.



1.2.3 The Sherrington-Kirkpatrick Model

Sherrington and Kirkpatrick (S-K) int¡oduced a model of disordered magnets

in 1975, based on the Edwards-Ande¡son replica technique. Tire model is more

sophisticated in that it adopts a quantum mechanical approach and allou's {o¡

competition between ferromagnetic and spin glass ordering. Furthermore, (in

analogy to the etacl mean-field theor¡' of ferromagnets) the system is evaluated

in the the¡modynamic limit, using inflnitell' ranged exchanges that are scaled

with tlie number of spins.

The model involves a lattice of N Ising spins ("9; : l1), subject to an

exte¡naì field I1s (applied in the direction of quantization), and interacting via

the Ising Hamiltonian so that the total Hamiltonian is

'tl = JijSiSi - hÐ Si
i

where l¿ : -g¡taHo. The exchange parameters are

using a Gaussian function

1_1\-
t ¿-/ , (1.45)

independently dist¡ibuted

(1.46)

whe¡e J is the standard deviation. Ferromagnetic ordering is allowed to exisl by

centering the distribution about a non-zero mean (Js > 0).

To scale J and Js with ihe numbe¡ of spins 1û (and prevent inflnite energy

in the thermodynamic limit), the i¡tensive variables 7 and Te are int¡oduced such

P(r,i):#"-,e+ifl) ,
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Ã
¡tt an o T: J

- N1/2

The ¡atio ÃlJ " important in determining the properties of the system, and

is related to the fractional concentration of magnetic impurity atoms in a dilute

magnetic allo¡'.

Following the Edwards-A.nderson replication procedure, the thermodynamic

limit of the free energv per spin is obtained b¡.modifying equation 1.36 such that

.r = .rim ri- (:&r) ( l¡'to¿,S*,,1 ¡¡ i""t¿,1:- r) e.47)' rv_con_o\ ¡/n / \J i;. 
. .. . 

"Ë.-'.,,- )

Also, the quantum mechanical partition function for replica a is given b¡.

(1.48)

whe¡e ?lo is the Hamiltonian and the t¡ace is ove¡ all the spins ofthe replica. Sub-

stituting equations 1.46 and 1.48 into equation 1.47 anð. evaluating the integrals

ove¡ the Ie yields (after Sherrington and Kirkpatrick, 1975 and 1978)

¡ = r,*l,s (#){*" *{Ð {*(Ð,,,,) (?,r,r)

(1.4e)

where the trace is over all the spins of the r¿ replicas. Ilence, as in the Edrvards-

Anderson model, there is a¡ efrective interaction betrveen the spins in an¡' two

r #Ð',"ry)-'#ÐÐ"r] -') ,
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replicas o and B. The identity (from Sherrington and Kirkpatrick, 1gZ8)

exp(Àa2) = i, t a, 
"*nl-15,, + (2À),t,o,f

is used to convert the problem to a trace over z replicas at a single spin site.

Employing a method of steepest-descent to perform the integrals and minimize the

free energy, S-K eventually obta.ined the following expression (from SLerrington

and Kirkpatrick, 197õ):

f = 
jom2

"2 -+ f-. *ol*) rn(2cosri;) , (1.50)t/2rJ-* '\ 2 /

rvhere E = (To^ +J{4u + h) lkBT. The rn and q are deflned b¡, the coupled

equations

- = ((s,)r)¡ = W [: ^*o(#) '.,,n= (1.51)

n = (tnrå), = jñ[:.*'(#) ranh2E , (1.52)

where (0r)" denotes the thermal and exchange bond averages.

Ðquation 1.51 is simply a generalization of the transcendental equation ob-

tained from the mean-field tireory of ferromagnetism (equation 1.1). The relation-

ship is made obvious by setting 7 = 0. Physically, zz represents the local mag-

netization (or magnetization per spin site) and is a measure of the ferromagnetic

order of the system. On the othe¡ hand, g represents an Edwards-Anderson-like

order parameter and is a measure oî. the frozen order of the system, whether it be
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ferromagnetic or spin glass in nature.

Solving the coupied equations, as a function of temperature I and the ¡atio

n -i"lJ, yields the zero-field magnetic phase diagram of Figure 1.18. The

paramagnetic region is that portion of the phase diagram for rvhich both m and

q ale zeto. In othe¡ regiots, the ferromagnetic o¡der competes with the spin

glass order and ihe resuìting phase is determined by rvhichever is dominant. The

ferromagnetic region has non-zero values for both rr¿ and q, whereas the spin glass

phase is defined as the region for which q is non-zero but rr¿ is zero. All three phases

are separated b¡'abrupt secold-order phase transitions, though these become less

well defined in finite frelds (for u'hich r¿ and q are aÌu'ays non-zero).

For Z 2 1.25 , the paramagnetic region gives u'ay to ferromagnetic orderiug

below a temperature T,: jolkB Similarl¡', for q S 1 there is a transition from

paramagnetic to spin glass ordering at a temperature ?56 = 7/&¡. Lastly, the

region 1 < ? < 1.25 is re-entrant, rvith sequential transitions from paramagnetic

to ferromagnetic to spin glass ordering as the temperature is lowe¡ed through the

phase boundaries. The solutions for zn(?) and q1/2(T) that we¡e obtained by S-K

(using numerical methods) are portrayed in Figure 1.19. Note that for T + æ,

m = Ç1/2, indicating that the spin glass order has disappeared and the f¡ozen

order is entirely ferromagnetic.

EvaJuating 0mlôh and letting Iz ---r 0 yields the zero-fleld difie¡entia.l sus-

ceptibility (ftom Sherrington and Kirkpatrìck, 1978)

^.t.r'\- t-s(r)x\' ) - k';r -' -iolt - n(r)l
(1.53)
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Figure 1.18: The ze¡o-field magnetic phase diagram of the Sherringúon-Kirk-
patrick model, The region 1 < 7 < 1.25 is re-entrant (after Sherrington et a1.,

1e75).
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Figure 1.19: Numerical solutions of the S-K coupled equations for va¡ious va,lues
. of q'=filJ:

(a) pure spiu glass,
(b) re-entrant,
(c) disordered ferromagnet,
(d) pure ferromagnet.
(After Sherrington et aJ., 1978)
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for the spin glass region 17 < 1. There is a cusp at the paramagnetic to spin glass

ordering temperature, above which 9 = 0 and a Curie-Weiss lau'is obeyed. The

cusp becomes rounded wiih the application of a finite field, as shown in Figure

1.20.

Though X is qualitatively similar to experimental results, there are dificul-

ties with other thermodynamic functions. Contrary to experiment (but like the

Edwards-.A,nderson model) the specific heat shows a cusp at the paramagnetic to

spin glass transition temperalure. At all the other t¡ansition temperatures (in-

cluding the ¡e-ent¡ant ferromagnetic to spin glass transition) the specific heat is

step-discontinuous.

In addition, the entrop¡' of the system becomes unphysical (i.e. negative)

as I --+ 0, indicating problems with the replica technique at lor¡' temperatures.

Further investigations bl'other groups have ¡evealed instabilities in the S-K solu-

tions fo¡ the low temperature spin glass and ferromagnetic regions -see section

1.2.5 for a discussion of the consequences. Nonetheless, the S-K solutions display

some desirable features (especially in regards to ¡e-ent¡ant systems) and ¡emain

a popular interpretation of the magnetic behavio¡ of dilute alloys.
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Figure 1.20: Difrerential susceptibilities of fwo spin glasses, as calculated bv the
S-K model. The solid curves aìe for zero field, ühile"the dáshed curves repräsent
å = 0.1¿-' (after Sherringion et al., 1975).
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1.2,4 The Effective Field Model for Arbitrary Spin

In 1976, Southern i¡troduced an efective field theory of disordered magnets, based

oa the,9¡ - *1 Ising Elamiltonian used by Sherrington and Kirkpatrick (S-K). The

technique does not use replicas and allows discussion of diferent quenched systems

by varl.ing lhe nature ofthe exchange bond distributions. In particular, the model

ca¡ be used to obtain the Sherrington-Kirkpatrick (S-K) coupled equations, but

avoids the low-temperature negative entropy problems associated with the S-K

replica method.

The foliowing is a de¡ivation of the S-K-like coupled equations for a sys-

tem with arbitrary spin, and is based on Southern's work (Southern, 1g7G). For

comparison, equations corresponding to a spherical model (i.e,, a system u,ith a

continuous spin-space of infinite dimensionalit¡') are also developed.

The Ising Hamiltonian for arbitrar¡' spin quantum numbe¡ S is

r..e.c. (1.54)

where each .9; has 2,9* i components (i.e., -S S St f 5). After Mühlschlegal and

Zittaúz (1963), ihe following exact relation can be derived (Roshko and ü¡illiams,

1e84):

1s,)' = (sas[5þ(h+ H;)]lr

where the thermal average of an operator.4 is given by

(1.55)

It Ae-9H
Ît e-þx
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The effectiue f.eld acting on spin fi due to a.ll other spins is fI. = ¡, J;¡S¡, and

/z is related to the magnetic field .I1o (applied in the di¡ection of quantization) by

h = -sþBHo. Also. the Brillouin function is defined as

*,r,(e+&) -25+1
2S * -'n(#)Belal = (1.56)

By averaging equation 1.55 over the exchange bonds, expressions involving the

local magnetization n and the cor¡elation function q can be written as

m=
¡+co

((,t,)'), = /__
l+cé

((s.)i), : /__

dt't SBs[SBol p,@) ,

dþ S' B2slS pu't Þ;(a) ,

(i.57)

(1.58)

( 1;59)

(The symbol S indicates the imaginar¡'part ofthe expression.) Äside from the a.r,-

eraging over (0r)r, equation 1.59 is similar to a ó-function. The averaging serves

to introduce thermal and exchange fluctuations jn the fieids fl¡ which depend on

the particuJar dist¡ibution schemes chosen.

Iu evaluating the thermal average, the simplest scheme is the Weiss rnean-

field approùmaúion which involves no f.uctuations and corresponds to replacing

(//i),' with (I/i)i (rvhe¡e n is a positive integer). Thus

;/,.\- Tnrt*// 1 \\P¡\u):-- ìt xm ( ( -----r--:r ó_o+ lrr,r+26_h_Hí/rf r

(1.60)



wlrere æ; : (H¡)r is lhe rnean field, or thermally averaged efective field acting on

spin 5;.

To calculate the average of the mean fields.over the exchanges, a bette¡

approximation scheme is used which includes the effects offluctuations and yields

a Gaussian dist¡ibution for p;(a,). That is, letting (after Southern, 1976)

(@,-e,¡'"), = (2n-1)!!di2",
/¿ - r2¿+1\
\(n;- cil l, = , ,

yields

t'he¡e the va¡iables a¡e introduced belou..

Define a¡ average, õ1, such that (after Southern, 1976)

(1.61)

(1.62)

æ; : (æ¡) t

/-,,.''\- \/-,'rii\Diìr I\J l¡

* (1s;).)" (r,o,,,) , (1.64)

whe¡e a mean-field approximation has been used so that

,¡=¡oJo with ñ=I(4¡), (i.65)
j



Also define a variance

(1.66)

Once again using a mean-fieid approximation it can be shown that (after Southern,

1e76)

(,?), = (,,1,t,,t,,(s;)' (s*)r)" - (?¿ {s;)å),

= m'Js' + SJ' ,

J' = \- {1-¡..'.\ - ¿¿ r'ì' + l\-'r/ J t"tttJ J
J

Equations 1.65, 1.66, and 1.67 give

ñ'= sj' (1.68)

The va¡iables e; and 42 describe the distribution of mean fields c¡. Note that

f and J are related to the mean exchange Jo and the deviation J of the cor¡e-

sponding exchange bond dist¡ibution in the S-K model b¡'

-l-=

r.=# and r=;n ,

whe¡e N is the number of spins.

Returning to equation 1.63, set a - (u - h -tî)lfi. Thus equatiors 1.57

(1.67)

rvith
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and 1.58 become (Roshko and \4¡illiams, 1984)

m:

q-

- s(s + i)ñ
J- = 

-

' 3kp

?-^_S(S+1)J¿ ¡þ - óLB

o" "*(#) sBsisl (Ã*+J¡a. + n)], (1.6e)

," "*(#) s,B,slsl(Ã*+J¡a.+n)l . (1.20)

-t
J2" l-*

J2r J-*

Ðquations 1.69 and 1.70 for arbitrary spin are analagous to the S-K coupled equa-

tions for 5, = +1. To recover the S-K and Southern results, set 5 : 1 and ¡eplace

Bsi¿] rviih tanh(c). The phase diagram which Southern obtained is identical to

that of S-K (Figure 1.18). For arbitrar¡' spin 5, the transitions between para-

magnetism and ferromagnetic or spin glass ordering occur, respectively, at the

temperatures

and

(1.71)

(r.72)

Furthermore, there exists a re-entrant region (1 a Ãli < i.2S) with any one

of the th¡ee magnetic phases possible, depending on the temperature. The phase

diagram is, however, sensitive to the type of exchange bond distribution used.

A similar phase diagram is obtained fo¡ tire 5 = 1 spherical model, where

Ð; Si = .lV is the only constraint on the spins of the system. Equations 1.61 and

1.62 are replaced by the following exchange fluctuation approximations:
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(,?"*'), = (,:); þ¡)¡ : (,?),n (1.74)

As a result, equation 1.63 becomes a double 6-function dist¡ibution (Southern,

i976),

1l \
ø(,) : ; (,,_ffi,) t(,_n_ {þù

-/ \
=å (' - ffi) o(, - n- ,Á'rt) (r zð)

Substituting equation 1.75 into equations 1.57 and 1.58 and setting li : 0 yields

the coupled equations (Southern, 1976)

8 : ranh2lr{t nl

The spherical model phase diagram difiers f¡om the S-K results in that a re-ent¡ant

region does not appear at aJl. Instead, a ve¡tica.l t¡ansition I)ne at filJ : 1 joins

the t¡i-critical point to the horizontal axis.

(1.76)

(1.77)



1.2,5 Instabilities and R,eplica-Symmetry-Breaking

A-T Lines

The negative entropy of the Sherringr,on-Kirkpatrick (S-K) solutions to the mean-

field model of diso¡dered magnets (section 1.2.3) indicates problems rvith the

replica procedure at lou' temperatures. Implicit in their method of steepest-

descent is the evaluation of the f¡ee energy / at the saddle-point (Binder and

\bung, 1986)

( 1.78)

where so6 : lim,,-o (S¡Sf), and rao : lim"*o (Si)r. In using the Edwards-

Anderson replica method, one assumes that g"p is inl.ariant (symmetric) under

permutation of the replicas (qnt = q"ø for all o I B), anð that the saddle-point

conditions minimize the free energy.

De Almeida and Thouless (1978) scrutinized these assumptions and dis-

covered low-temperature regions o{ the phase diagram fo¡ which the leplica-

symmetric solutions do not represent the ground state of the system, but are

unstable. Their argument is based on the following inequalit¡, (after de Almeida

and Thouless, 1978):

(Y)', w l::r" "*(#) .""t'n[É(ñ- +r¡a,+ n)] . (r ze)

Stable solutions correspond to areas of the phase diagram which satisfy the in-

equalit¡', v¡hile so-called A-T instabilit¡'lines, separating stable and unstable re-

gions, are calculated by converting to an equality. Various instability lines for



both ze¡o and non-zero field are displayed in Figure 1.21. Notice that for zero

field the entire spin glass region has unstable solutions and the S-K re-ent¡ant

t¡ansition line, between ferromagnetic and spin glass ordering, is lost. However,

increasing the fleld strength pushes the instability region to lower temperatures,

and for irigh enough fields the solutions around the re-entra"nt line are stable. This

is important, as it implies that manifestations of the zero-field re-ent¡ant t¡ansi-

tion ca¡ be disce¡ned from the stable S-K solutions in finite field. A-T suggested

tlrat the instabilities can be ¡emoved by brealcing the symrnetry between repiicas,

but the¡' rvere unable to ofe¡ an appropriate solution.

Parisi's Broken-Replica-Symmetry Soluúions

Parisi (1979. 1980) developed a popular scheme to b¡eak the symmetry, such

that (in the unstable S-K regions) the Edu'ards- Anderson order parameter q¿¡

is replaced bi' a function q(c) which represents the o¡der parameters of infrnitely

many pairs of replicas. The eflective order parameter is then an integration over

all c:
,¿=7

sqr = J,=o 
q@)d'æ

Each value of c corresponds to a set containing all the pairs of replicas r.r¡ith the

same parameter q(c). Parisi proposed a complex hie¡archial structure to choose

theq(z),with0<z(1and cG) - søe.

According to Binder and Young (1g36), ihis structure impììes the existence

of a f¡ee energy hypersuiace f (m,q) with a complicated landscape of valleys

within valleys. Ðach point on the hypersurface represents a particular spin con_

figuration, wlúle the valley bottoms denote the various (stable or meta-stabre)
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Figure 1.21: The A-T instability lines of the sherrinston-Kirkpatrick llsins soinì
phase diagram. The unstable regions represent brokèn replica-symmeìry. " '

75



thermodynamic states available to the system. Upon decreasing the temperature,

increasingly manv coufigurations gain stabiiity so that the landscape gradually

develops neu' valleys.

G¡est et al. (1983) further suggest that valleys are destroyed with increasing

temperature, while both dest¡uction and c¡eation occur fo¡ even small changes

in applied field. Whenever the system finds itself in an unstable confrguration

(i.e., along the wall of a valley), it will rapidly reconfigure itself until it sits in the

nearest local minimum. Once there, however, it ma5' eventuall¡' relax into a more

stable state by hopping over free energy barriers (via thermaì activation). or be

{orced into a neu' conflguration by evolution of the landscape with temperature

or freld changes. since the destruction of energS' minima irnpÌies irreversibilìt¡',

u'hile minima-hopping implies slow relaxation, Grest et ¿1. deem it ¡easonable

to associate the onset of replica-symmet¡r'-b¡eak ng with the onset of hysteresis,

remanence, and time efrects.

In this context, the original S-K solutions correspond to a time during which

the system is caught within one of the meta-stable valleys that satisfy the symmet-

ric saddle-point condition (equation 1.78). Such a state is not considered to be in

true equilibrium, as the system has not sampled the other thermodynamic states

to find the most stable configuration. The S-K solutio¡s presumably correspond

to a hypothetical zero-field-cooied (ZFC) magnetization curve which has not had

a chance to evolve rvith time ton'ards the field-cooled (FC) values, though this

non-evolved curve is impossible to obtain experimentalls'. Even so, since the ZFC

magnetization is closely related lo the A.C. susceptibility, this notion is supported

by the strong qualitative agreement betr¡¡een the S-K predictions and (pdFe)Mn

to



susceptibility measurements (section 1.1.3), in both the spin glass and re-entrant

regimes.

Continuing with the mean-field model, it has been proposed that the free

energ¡' barriers between states actually diverge in the thermodynamic limit, as do

the times for the system to relax from one valley to another (i.e., the system is

essentially non-ergodic). Nevertheless, in the limit of iong times, the system has a

chance to sample the thermodynanic states according to a statistical probability

distribution, and eventually reaches true equilibrium in a stable vaJle¡'. This

sampling of dife¡ent states is facilitated in the Parisi theor5,b¡,a probabilit¡,

distribution P(q) - d.æ ld.q such that (after Binder and Young, 1986)

The distribution represents the amount of degenerac¡' or overlap betu,een the

various valleys. Eowever, P(q) depends on the exchange configurations of the

valleys in question, and so is itself represeated by a distribution of some sort.

Above the A-T lines, there is onl¡' a single ground state configuration available

to the system so that P(q) : t(q - 9¡¡) and gelt = Qp,r.

Since FC magnetization measu¡ements tend to display only very weak time

efiects (section 1.1.3), they may be near t¡ue equilibrium and hence compara-

ble to results obtained by the Parisi theory. This notion is supported rvith the

susceptibility obtained by Parisi for the pure spin glass case (7 = 0). The zero-

field susceptibility levels off to a constant maximum value fo¡ all temperatures

belou ?56, and this behavio¡ is at least vaguely reminiscent of the FC magnetiza-

tion curves (rvhich essentiall5' represent the static susceptibility MIH) obfatneð,

%t: | øPk)d'q
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through experiment (Figure 1.12).

The PaT Hypothesis

The Parisi schemeis generaJly conside¡ed to yield exact solutions to the mean-field

modei, but evaluation is hindered by the lack of a lunctional form {or q(æ) (except

near ?s6). In 1980, Parisi and Toulouse (PaT) introduced a project'ion scheme to

derive some of the properties of the spin gìass region (for 4 - 0 and /¿ I 0) ftom

the stable solutions along the A-T line. In doing so, they hypothesized that the

follou'ing expressions are vaLid in the unstable region (after Parisi,. lg81):

ôrn"
AT

s'here .9 is the entropy. The terms involving /z impl¡'that the macroscopic behar,-

ior of the system is insensitive to changes of applied field. Thai is, upon changing

the field, there are many diferent microscopic states available to the sysiem, but

the¡' are all nearly degenerate with the original state, and have roughly the same

macroscopic properties. The magnetization is assumed to be completely indepen-

dent of temperature, though this is a-lso an approximation. They discovered weak

jumps in the specific heat and susceptibilit5' across the instabilit¡' l_ine, suggesting

some so¡t of third-order phase change. Later that year, Touìouse determined that

the PaT h¡'pothesis is also valid lor q 10. He derived fhe t¡ l0 case by adding

the term -Ã( to the fiee energ¡' for T = 0. A t¡ansition üne at 2 = 1 was also

found (similar to that of Southern's spherica.l model-see section 1.2.4). Ilowever,

a description as to the nature of the phases was ¡ot provided.

AS

0h
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G-T Lines

A possible ans\ er came in 1981, when Gaba¡'and Toulouse (G-T) investigated a

S-K-like system witit classical r¿-component lleisenberg spins (as opposed to the

usual mean-field model with m = 1, or the spherical model with m --+ oo). Using

Cartesian components (m - 3) and a fieid in the direction p = 1, the appropriate

Hamiltonian is (after Toulouse and Gaba¡', 1981)

(1.80)

wlrere i and j are site labels, F:1,,...,m denotes the spin components, and

Ð|j=, STr: r¿. For convenience, ka andi are set to unity, so that r7 : f.
As in tlie m = I case, there is an order parameter

ø, = ((s,,)å)"

which desc¡ibes the longitudinal order (i.e., along the fieÌd direction). It follows

that another order parameter

ø' - ((si,)å)" ; p+l

exists to indicate ordering in di¡ections transve¡se to the applied field.

They obtained trvo difie¡ent types of transition lines for the phase diagram.

The ljnes for h I 0 and Jo = 0 (i.e., no ferromagnetic ordeúng possible) are shown

in Figure L.22. Line (a) is a so-called G-T line, and separates the paramagnetic

phase (qr = 0) from a lowe¡ temperature phase in which the transve¡se spin

?{: -;Ð o, Ì s;,si, -o ? u,

70



Ferromagnetic

Spin Gìass

Figure 1.22: The magnetic phase diagram of the classical sher¡ineton-Ki¡kpat-
rick-like model with 3-dimensional Heisenberg spins. Curves (a) anã (c) ur" b_T
lines, while curves (b).and (d) are A-T lines. ihe mixed phäse M¡ ìs'a canted
ferromagnetic. phase with spiu glass or.dering of the transverse spin ìomponents.
r nase A!2 ls stmllar, Þut possesses b¡oken rep.llca symmetry.
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components are ftozen into ¡andom di¡ections (so that q¿ I 0). Since the field is

finite, there is some polarization along the field direction and 91 is non-zelo on

both sides of the transition. Upon lowering the temperature further, line (b) is

encountered. It is the rn-component analogue of the A-T line, and corresponds

to replica symmetry breaking.

The5' also obta.ined the transition lines for å. : 0 and f I 0 (i.e., fer-

romagnetic ordering possible). These are also shown in Figure 1.22. Line (c) is

another G-T line, and separates the ferromagnetic region (u,ith q, _ 0 and q1 I 0)

from a lower temperatule mixed phase,lzft (u'ith gr a¡td gr both non-zero). That

is, the coliinear ferromagnetic region (with no t¡ansverse ordering) gites way to

a canled ferromagnetic phase in which the t¡ans.r'erse spin components are spin

glass ordered. Line (d) is another A-T line. and indicates the transition into a

mixed phase 112 with broken replica symmetry. There is an additibnal line at

ñ = 1, separating the mixed phase M2 ftom an unmixed phase in rvhich all the

spin components have spin glass order. It should be noted that the C-T model

is presently incapable of pro'iding detailed quantitative predictions, so that its

relationship to experimentaì systems (particulariy those rvhich displa¡, re-entrant

characteristics) is not yet clear.

To add more experimentally accessible elements to the G-T model, Cragg,

Sherrington, and Gabay (1982) suggested that the breaking of replica symmetrJ,

occurs immediately upon entering regions with transverse spin glass o¡der. As a

result, the mixed phase Jl,l¡ is associated (supposed\,) with weak irreversibility

o{ the longitudinal spin components, rvhile the phase M2 corresponds to strong

irreversibility of these components. stroag irreversibility of the transverse degrees
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o{ freedom is associated u'ith all the phases tvith broken symmetry. These efiects

are, however, particularly difficult to analyse in experimental re-entrant systems,

due to the non-critical domain wali dynamics which complicate the magnetic

behavior below the Curie temperature.

To summarize, the instabilities of the los' temperature S-K solutious (due

to the breaking of replica symmetry) were studied b¡'several groups. The original

phase diagram has been modified to iuclude canted ferromagnetic phases with spin

glass ordering of the transve¡se spin components. I\{oreover, these mixed phases

seem to exist at the expense of the simple S-K ¡e-entrant transition (from ihe

coilinea¡ lerromagnetic state to the unmixed spin glass state) rvhich, theoretically,

is no longer thought. to occur. The phases with broken symmetry are conjectured

to be associated rvith i¡¡eversibilities and time efiects, so that the properties of

the system are intrinsicall¡' history dependent in those regions. However, because

of the obse¡r'ed complexity of actual experimental systems, as well as the ¡athe¡

esoteric nature of the popular mean-field model descriptions (aside from the S-K

solutions), the relevant connections betrveen experiment and theory are not yet

rvell unde¡stood. Indeed, the S-K solutions are presently the only ones capable of

providing detailed quantitative predictiols which can be tested experimentally.

Furthermore, the excellent qualitative agreement between ihe S-K predictions and

experimenl indicates that the replica-symmetric solutions are worthy of furthe¡

studl'.
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Chapter 2

Apparatus and Sample
Preparation

2.1 Apparatus for Magnetization
and Susceptibility Measurements

2.1.L The Theory and Operation of the RF SQUID

Superconducting QUantum Interfe¡ence Devices (or SQUIDs) provide an ex-

temely sensitive means of measuring changes in magnetic fieids. The¡' are ideal fo¡

studying ver¡' diiute magnetic alloys, which often create much weaker magnetic

signals than can be detected efiectivel¡' using more conventioual techniques.

The¡e a¡e basicall¡'two types of SQUIDs. The D.C. SQUID uses a to¡oid of

superconducting metal, u'ith two Josephson junctions introduced into the loop.

On the othe¡ hand, the RF SQUID is more common since it requires the use

of only a single Joseplison junction, and hence is easier to fab¡icate. As ou¡

SQUID systems we¡e obtained commercially f¡om the S.H.Ð. Corporation of San

Diego and are of the RF variety, the following discussion pertains iargely to these

systems.
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S u p ercondu ctivity:

Cooper Pairs and the Meissner Efrect

The elect¡ical resistivity of normal elect¡ical conductors arises from the scattering

of conduction electron wavefunctions by the positively charged lattice ions. In

between scattering events, the wavefunction is a piane-wave characterized b¡, a

particular phase angle a(û - p.F, where lis the electron momentum, a¡d r-is its

position vector. Each time an interaction with the lattice occurs, the phase angle

is changed and the cohe¡ence of the wavefunction (relative to its phase before the

interaction) is lost. The average distance that the electrons can,move through

the lattice without }osing coherence is known as the mean-f¡ee-path. However, if
the lattice were per{ectly periodic with no imperfections, impurities. or thermal

vibrations, it can be sÌrown that the mean-free-path ofthe elect¡ons would become

infinite and the electrical ¡esistance would be ze¡o. The above c¡iteria cannot be

fulfrlìed in real systems. Even so, many metals display a low temperature phase

transition into a superconducting (ihat is, a zero resistivity) state.

When superconducting maieriaJs are cooled belou' some critical tempera-

ture [, their conduction eiectrons inte¡act with the lattice in such a way that two

electrons ma.y experience a net mutual attraction, despite their strong Coulombic

repulsion. As a result, some ftactio¡ of the electrons are fo¡ced to occupy elec-

t¡onic states in pairs, with the number of such pairs increasing as temperature

approaches zero. These so-caJled Cooper pairs have zero net spin, and the¡efo¡e

behave as bosons of mass 7r¿ = 2m" anà charge g - -2q,. Most importantly,

the cohe¡ence of the pair wavefunction is preserved over laboratory-scale dimen-

sions, so that a single well-defined phase angle ú(r-') may be used to characterize
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the pairs as they travel through the specimen. Hence, the pairs play the roie of

superconducting charge-carriers. As shown belorv, the cohe¡ence is very sensi-

tive to applied magnetic fields, and leads to macroscopically observable quantum

inte¡ference efects.

We may w¡ite the pair wavefunction as

V = P1/2 eieT) ,

where p = ù'!l (assumed constant) is the numbe¡ density of Cooper pairs, and

r-is the cente¡ of mass position of a pair. Under the influence of a magnetic field

E = f t ,4', the center of mass velocitv of a pa.ir (in CGS unit,s) is given by

The super-current densit¡' is

j - q'ú-õv

= w(nne6-tÃ) (2.1)

Taking the curl of equation 2.1 yields the second Lond,on equøtion

nn2 -Vxj=-" 8 ,rnc

rvhich implìes that wiihin the superconducting specimen, the cur¡ent density and

magnetic field dec¡ease exponentiall5' wiih the distance from the su¡face. That



IS,

È : 5o "-"¡xo and j : ¡'o e-"/st ,

rvhere .À¿ : +^l= is the London penetration depth.- ¿ev øt

A strong superconductor has large p and small À¿ (- .ipm), so super-

cu¡¡ents circulate only within a thin surface layer of depth - À¿. These currents

spontaneouslr adjust so that the magnetic flux they create opposes aud almost ex-

actl5,cancels anl,other flr:x (from exte¡ior sources) that is trapped deeper within

the superconducting specimen. The expulsion of flux f¡om the inte¡ior of a su-

perconductor is known zs the Meissner effecl

The Magnetic Flux through a Superconducting Toroid

with a single Weak-link

A to¡oidal SQUID consists of a ring of strongly superconducting material (?" -
4.2K) \vith a thin non-superconducting rseak-link of iength 2a and c¡oss-sectional

area a. Consider a change in phase Ad of the Cooper pairs as they travel around

the ring along a contour C which, to avoid skin efects, is situated well below the

surface. Using equation 2.1 gives (after Lounasmaa, lg7 4)

1-a0 - hvq.dr

= -:=ó¡.¿i-9ø ,np gl rc hc
(2.2)
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where (by Stokes'theorem) the magnetic flux through the area enclosed b¡.con-

tou¡ C is

Moreover, -ã - 0 inside a superconductor and ¿ is assumed very small, so that Õ

efectively represents the flux through the hoie in the to¡oid. As the wavefunction

must ¡emain single-va.1ued, then Ad = 2¡rn (n an integer). Rewriting equation

2.2 in te¡ms oL lhe f.uxon, Õo = # = 2.0678 x l0-?Gauss . cm2, yieids (after

Lounasmaa, 1974)

(2.3)

where 7t - 0 has been used for deep u,ithin the superconductor.

Removing the weakJink by setting ¿ = 0, we see that the flux Õ through

the hole is then quantized in units of iÞ¡. It is understood that iÞ is made up

of cont¡ibutions f¡om exte¡nal magnetic field sources, as well as shielding super-

cu¡rents which ci¡culate (around the hole) along the inne¡ su¡face of the toroid.

That is,

iÞ : iÞ."r + LIs , (2.4)

*'here .L is the self-inductance of the toroid, .Is is the shielding super-current, and

Õ."¿ is the external flux. The currents automatically compensate for changes in

exte¡nal flux to mainta.in iÞ at an integer multiple of the fluxo¡. The¡e is an uppel

limit to the magnitude of the shielding curreût, but it is only reached for external

1--1-
Þ= f"o.dt = JcB.di

^o 
= -;h,l_,¡ or-':e
=2rn,
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fields greater than those encountered in no¡mal SQUID operations.

On the othe¡ hand, when a very small non-zero value of ø is chosen, the

Cooper pairs may quantum tunnel through the non-superconducting barrier, giv-

ing a non-zero contribution to 3t aìong the contour C. Therefore, the weak-ünk

plays the part of a Josephson junction and, as shown below, serves to substa¡-

iialb'limit the maximum amount of super-culrent which can circulate around the

"ing.
The super-current through the weak-link is

Is : oj
lol ho ,
i;, ('l;, Vü',¡ - {.'',¿ Vü;r) ,

where ü.,¡ is the Cooper pair t'avefunction u'ithin the rveak-link. To evaiuate ü.,¿

we consider the tunneling of the wavefunctions

Vt = pt/2 eiat

and v2 : pr/2 eíê,

(on either side of the rveak-link ) through the barrier. It is straight-forward to show

that the wavefunctions decay exponentially upon entering the non-superconducting

region, and (after Lounasmaa, Ig74)
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(The constant ) is a characte¡istic of the weak-link.) Thus,

, lqlha2p ( 2al l¿i(ez-e') - "-i10'-a'¡1rs=- mT""Pt-)ll. ,r I

That is, the tunneling current depends periodically on the difierence in the phases

of the wavefunctions on either side of the weak-Iink. F¡om equation 2.3 we can

relate this quantum interference úo the flux through the hole:

.l:ii,

a,0=(02-d,)-l =2¡n

Therefore (after Lounasm aa, 797 4),

. ( %rQ\Is = -I..t"t.o,1 (2.5)

wiih ," = 't*\'o *r{-ii

1" is the maximum (or critical) super-current which can tunnel through the weak-

link, and is typically - 1 to 100 p.4.

Ðquations 2.4 and 2.5 yield

iÞ : Õ""¿ - ¿¿,t, {H}
The flux through the hole osciliates sinusoidally about the straight üne iÞ : Q."¿,

with an amplitude LI" and period Q¡. Though the period is common to all



SQUlDs, the slope is not (after Lounasmaa, 1g74):

l. 2z¡LI. f2riÞìl-1['* o. *'t Õ. J.]

d.þ

dþ""t

For the strongly superconducting case, + t t, uustable regions of ueg-

ative slope occur. As shown in Figure 2.1, Õ iniiially increases slowly as Õ."¿ is

inc¡eased from zero, due to the strong shielding cur¡ents which begin to circulate

around the ring. .A,s the super-current approaches tire weak-ünk critical value

l, the shielding becomes less efective until, at point P (where ;ffi --+ oo ), O

jumps discontinuouslv to point Q. In other words, since 1" cannot be exceeded, a

flux jump occurs to reset .I5 at a value well below 1". Similar flux jumps occur as

(Þ""¿ is decreased, though iÞ then {ollorvs a dife¡ent path. practical RF SQUID

systems exploit tiris hystereticaì behavior to good efrect.

The Staircase Pattern

OperationaJly, the SQUID toroid is coupled inductively (via the .RF coil of induc-

tance .L¡¡) to an LCR ¡esonant citcuit. This circuit is, in turn, Ioosely coupled

(via a capacitor Cnru,.t) to an RF sinusoidal signal generator which d¡ives the

circuit at a resonant frequency of 1g * .5 MHz (Figure 2.5). The tuning ma¡,be

adjusted with the variable capacitor C¿,,,,", while the amplitude (or RF level) of

the RF oscillations is adjusted via a va¡iable attenuato¡.

The SQUID to¡oid and resonant circuit are sealed within a S.H.E. model

MFP multifunction cryogenic probe, which functions f¡om 0 to 5K (optimally

4.2K). The RF signal generator is conta.ined witLin a S.E.E. model 300 RF Eead,
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studied.
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while the tune and RF level are controlled from a S.H.E. model 30 SOUID control

unit.

Nou' the external flux can be written as

Q.,t = þúÍ*t * Õn * iÞnr ,

where Õ¡¡ is the flux (through the hole) due to the RF signaJ, iÞo¡¡,"1 is a manua115,

adjustable constant offset, and Õ, is a quasi-static flux which changes very slov,l¡'

relative to Õ¡¡. Actuall¡'. (Þn represents the flux created b¡' the magletic specimen

to be studied, and is coupied into the SQUID via a flut transformer. The details

ofthe sample arrangement are discussed later. Together tþo!i¿et and Õn determine

ll'te workàng poinl 11' of the SQUID.

Consider an arbit¡arv working point I4'' as sholi'n in Figure 2.1. \4re may

increase the amplitude Õfrfllof the Õ¡¡ oscillations b¡, increasing the RF level.

Several cases are of importance:

In the range 0 < Õff' < d1, the flux Õ oscillates reversibl¡' aJong the curle

about the point l4l. However, when d1 < ÕäH' ( dz, a flux jump (from A to B)

occurs, and the oscillations proceed reversibly about the nerv efective working

point l4l'. The amplitude 'lfifrel, of tire RF voltage Il¡¡ across the tuned circuit,

increases linearl¡'from 0 to izf¡ with the RF level (Figure 2.2).

'When d2 < OiF' < dr, Õ is d¡iven counter-clocku'ise around a hysteresis

loop (Loop 2). The corresponding energS' absorbed ftom the tuned circuit is

proportional to the a¡ea of the loop, and is manifest as a dramatic decrease in

l/¡¡ from its vaiue of I/"$ just before the loss¡, ¿y"1" took place. At relatively low

RF levels, the tuned circuit is rveakl¡'coupled to the RF signal generator, and

ot



1 / ampl
YRF

VÊï(W)

vÅ:,(w)

vÊï(w)

,''-1,----,
,i'-- + -

2"¿ Y Plateou

2ú W Platezu
l'r X Plateau
1" I/ Plate¿u

l'r Y Plateau

.-. +.-. -'-'/

' l/'
rP'

RF Level

Figure 2.2: The stai¡case pattern, The RF levels a, å, and c optimize the ampli-
tude of the triangle pattern of Figure 2.4.

- vÃF

Figure 2.3: The modul¿tio¡ of V¡r with time. lVhenever Õ is driven a¡ound a
hysteresis loop, the amplitude dec¡eases rapidly from VfipPI to 0. The rate of the
subsequent energy build-up depends on the RF level (after Lounasmaa, 1974).

vó



a finite amount ol time is required to overcome the damping of Iç¡ and gather

enough energy fo¡ another lossy cycle to occur. Therefore, Vþ¡ is modulated in

time (Figure 2.3). The rate of energy build-up, and hence the frequency of the

rnodulation, can be increased via the RF level. Ilowever, Õffitl utd lr¡'frP¿ will

nol exceed d,, and 1$lr, respectively, until the modulation frequency matches the

RF frequency (that is, until one.lossy cycle occurs for ever¡'i,'¡¡ oscillation - the

maximum rate possible). Thus, the graph of ï/f,frP¡ versus RF ievel (Figure 2.2)

shows a plateau of constant voltage 1.!d!. Once the RF level is high enough to

completely compensate for the hvsteretical losses, {urther increases enable l.fifrei

to grow linearl¡'from lr!7 to l,|¡, and ÌÞfr|ryr to vary from d,2 to ds.

In the range d" < ú"äot ( d¿ there occu¡s anothe¡ plateau, corresponding

to l,¡"frer = If¡. Ilere Q is driven around !¡g9 liysteresis loops (Loop 2 and Loop

3) during each loss¡' cycle. Once again the plateau ends when the RF tevel is high

enough that tire rate of hysteretical energy dissipation is matched b¡' the rate

of energy build-up in the tuned circuit. At the end of the plateau, I.'f,frPl rises

linearly from IädÈ to l/di.

Lastly, for ÕfrH' > da, plateaus occu¡ ad inflnitum, and correspond succes-

sively to transits of 3,4,5,... loops per loss¡' cycle. As illustrated in Figure 2.2,

the ¡esuit is a staircase-Iike pattern.

The location of the working point 14; (Figure 2.1) is such that the loop

pattern is not symmetric about it. That is, d, I d, and d4 f da, therefore

trvo step heights (Figure 2.2) are associated with I4l. However, if we move the

working point to position -)f or I'in Figure 2.1, then the symmetry of the loop

pattern results in only one step height for the corresponding staircase pattern.
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The plateaus for X correspond to t¡ansits of even numbers of hysteresis loops per

loss¡' cycle, while those for )' correspond odd numbers of loops. The staircase

patterns fo¡ aÌl other working points fall betrveen these trvo limiting cases.

The TYiangle Pattern

Experiment¡lìJ' we a¡e interested in measuring changes in the quasi-static flux

Qn, rvhi ch represents the magnetic signal of our dilute magnets. The variation of

I¡fperwith the rvorking point (for flxed RF level) must be dete¡mined.

Sa¡ we choose the RF ievel represented b1'the vertical line ¿ in the middle

of lhe first plateau region (Figure 2.2). and start at the working point X (Figure

2.1). Sliding the working point over from -\ to )'-, the external flux iÞ",¿ increases

by Õ¡/2, and I'ÉËP¡ decreases linearl¡, from point p to point a. Like-rvise, by

sliding the rvorkirLg point from )' to ,4, the exte¡¡ral flux increases by Õ¡/2, while

' ,amol 'I i'ii"' increases linearl¡' from point a- to point B. Obviously, a plot of 'l!"$'e¿ versus

working point yields a triangular t¡'aveform rvith a period equal to the fluxon Õg

(Figure 2.4). This non-linear ¡elation is the basis of all SQUID measurements.

The peak-to-peak amplitude I,'¿ is a function of the RF level and is maxi-

mized (I2 - 60 milli-Vblts) around the lines a, b, c, etc. Any of these RF levels

can be used, though the lowest RF level (line ø) is most convenient and sometimes

provides the best signal-to-noise ratio.
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Figure 2,4: The triangle pattern.



The RF SQUID Magnetometer

The RF SQUID can be used directly for measuring the magnetization of a speci-

men, simply by noting the non-linear variation ol l/åF'' as iÞ, changes with time.

However, as tlús is awkward, a FItn Locked.Loop is utilized to conve¡t the signaJ

into one which va¡ies linearly witli iÞr. The components of the loop are conta.ined

rsithin the model 30 SQUID control unii, and shown schematicali¡' in Figure 2.5.

The SQUID flux is oscillated about an average value (represented by the

point 14' in Figure 2.1) by an audio (50kEz) ôquare rl¡ave with a peak-to-peak

amplitude of f . The amplitude is adjusted via the I\{OD cont¡ol on the control

unil. The idea is to lock llte system into a particular triangle valiey (the bottom

of which is represented by the point I¡) by means of an appropriate feedback flux

iÞ.ro'

The e¡ro¡ parameter 6Õ indicates the flux diference between points I4l

and 1/. Necessarily, áÕ < f , otherwise the audio flr¡x osciilations will carry the

system into another valley. As shorvn in Figure 2.6, the resulting time dependence

oî LIåF'I , for a particular value of ôÕ, is essentially an audio square wave 11¡¡(ú)

with the same period as the flux oscillation. It can be shown that the peak-to-

peak amplitude of I/¡¡(¿) is proportional to 6iÞ. Of course, 1/¿¡(ú) is modulated

as 6Õ changes with time, and an amplified version of this waveform is output

ftom the detector D1.

The phase difierence between I/¿¡(f) and the original flux oscillation is eithe¡

0 or a-, depending on whether 14'is iocated to the right or left (respectively) of

point I/. Hence, the output of the phase sensitive detecto¡ D2 is a positive or

negative D.C. signal proportional to that required to ¡eturn the average flux to
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point I,'. After appropriate scaling and phase shifting (via an integrator), this

signal is fed back into the SQUID by means of the RF coil. The resulting {eedback

flux Õ¡i canceis changes in.tÞn to within f , and keeps the system locked within

the chosen vailey. The feedback voltage varies linearly wiih the magnetization o{

the sample, and is ¡ead via a Racal-Dana model 5003 digital voltmeter.
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The Flux TÌansformer

In utilizing the SQUID as a magnetometer, it is impractical to place the mag-

netic specimen directly within the superconducting toroid. The use of a flur
transformer ailows the specimen and the SQUID proper to be separated physi-

caJl¡', and placed in diffe¡ent field and temperature environments. The latter is

especia"ll¡' important since the SQUID probe will not function at tempe¡atures

above 5 K. A flux t¡ansformer generaily has th¡ee basic components; the pickup

coils. a signal coil, and the leads bettveen them.

The pickup coils consist of two coils u'hich are wound, with the same num-

ber of turns, on opposite ends of a cylindrical spool. The coils are wound in

opposite directions, connected in series, and care{ully constructed to have nea¡l¡'

identical dimensions. The trvo leads from the pickup coiis a¡e joined, by means

of superconducting wire, to the leads of a superconducting signal coil which is

coupled inductively to the SQUID toroid (Figure 2.5). To minimize the pickup

of noise, the connecting wi¡es a¡e tightly twisted around each other, or enclosed

in a superconducting tube.

The pickup coils form the a¡ms of an astatic pair. When both a¡ms are

exposed to exactlv the same magnetic field, the cur¡ents induced in each a¡m

cancel each other exactly (assuming perfect coil geometry), and the net current

through the circuit is zero. However, by placing a magnetic specimen within onl5'

one arm, a non-zero current (rvhich varies l-inearly rvith the sample magnetization)

is set up within the pa.ir. This cur¡ent a^lso flows through the signal coil so that

the magnetic signal of the sample is transfe¡red into the SQUID, and measured

as the quasi-static flux iÞn.
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Eitlter a solenoid or a Helmholtz pair is used to appiy a D C' magnetic field

to our samples. \!'ith proper coil geometry and positioning, the D'C' field is the

same for both arms of ihe astatic pair and onl5' the sample magnetization' not

the D.C. fieid, is measured. Also, since our samples are maintained at cryogenic

temperatures for the duration of the measurements, the use of superconducting

pickup coils is made possible. Section 2'1'2 provides the design details fo¡ the

D.C. field coils and PickuP coils
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The RF SQUID A,C. Susceptometer

The elect¡onic components of our susceptometer were obtained from the S.H.E.

Corporation of San Diego, and consist of a model RBU Precision Lou-level A.C.

Impedence Bridge Unit, a model BPD Bi-Phase Detector, plus the components

of the RF SQUID magnetomete¡. These are shown schematicaliy in Figure 2.7.

In the susceptometer confrguration, the pickup coils play the part of the

secondary in a mutual inductor .À4. As usual, the sample is inse¡ted into one a¡m

of tlie astatic pair. and its temperatute and D.C. magnetic field environment are

adjusted as desired. The primar¡' coil, which is wound co-axiall¡' about the sec-

ondar¡' and close-coupled (througli resistor -R¡4 ) to a sinusoidal signal generator,

creates the driving freld. The signal generator prol'ides an A.C. voltage r.r"""¡"

of selectable angular frequenc¡. tr. Like ihe D.C. field coils, the primar¡' coil is

designed and positioned such that the driving field itself is not detected bJ' the

astatic pair. The designs of the various coils are provided in Section 2.1.2.

In general, the A.C. susceptibility of a magnet has both ¡eal and imaginar¡'

parts:

*o": y' + iy"

The real component Xtis in phase with the magnetic field produced b¡'the pri-

mary coil, and efieciivel¡' represents the zero-frequency susceptibility. On the

other hand, y" is r f2 out of phase (or in quadrature) with the driving field, and

represents a frequency-dependent energy dissipation. lt can be shown that M is

also a complex quantity, with components Mt and, M" proportional to yt and. y¡,,

respectively.

103



llf ode r.r,, I n.s.. I

Multiplv 10-'Àa -10-s Àßu
Divide 10-€ + -10-, qe

Table 2.1: The_ ¡elationships between the bridge balance conditions ard the in-
phase and quadrature components of .tì4.

The model RBU bridge is used to measure AtIt ar.d Mtt , and operates as

follou's. The secondary of M is connected in series with the secondary of a fixed

nrutual inductance m (l'hich is sealed within the muitifunction SQUID probe).

Tn'o ¡atio t¡ansforme¡s a¡e used to tap voltages a1)eo,cíu- a;nò. Buer.¡¿" from the signal

generator. The component aueccir€ is close-coupled (through resistor .R,,,) to the

primar¡' of m, and is in phase wiih the voltage across the primary of /ì1 (actuall¡,,

use of the Forward/Reverse srvitch, which reve¡ses the polarity of the signal, ma¡,

be required to obtain phase matching). The componett 84,.¡. is loosel".r, coupled

(through ca,pacitor C, ) to the primary of zn, and provides a quadrature signal.

Ä.n additional ratio transformer is used to either multipl¡'o¡ divide o and p b1,

an amount ).

The idea is to adjust a, B, and ) until the emf induced in the secondary of

m exactl¡' balances the emf induced in the secondar -\ ol À[ . In this respect, the

RF SQUID magnetometer is used as a sensitive null-cur¡ent detector by placing

the signal coil in series with the secondary coils. A bi-phase detecto¡ is required

to measure separately the in-phase and quadrature components of the current

between the secondaries, as both must be nulled for true balance to occur. Table

2.1 shows how AtI' anð, M" are related to r.r and the balance values of a, 8,, and

).
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Figure 2.7: The RF SQUID Susceptometer.
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2,1,.2 Cryogenic Sample Environments

The weak magnetic natu¡e ofour dilute alloy samples requires the use of cryogenic

techniques to maintain them at low temperatures. Two difre¡ent s¡'stems are used;

a IIe3-He4 dilution refrigerator purchased from the S.H.E. Corporation, and a

home-made tlea cryostat. The dilution refrigerator is operated in conjunction

with an RF SQUID magnetometer, while the cryostat is used togethe¡ with an

RF SQUID in an A.C. susceptometer configuration. The general iayout and

operation of these two systems is documented belorr.

The Ðilution Refrigerator/Magnetometer

At low temperatures, the helium isotopes He3 and Hea a¡e both liquid, even near

absolute zero. The normal boiiing point o{ He4 is 4.2 K, but the temperature of

such a bath ma¡¡ be reduced to - 0.9 K by pumping on its vapour (due to the

latent heat of evapo¡ation). Similarly, the no¡mal boiling point of He3 is B.Z K,

and its bath temperature may be reduced to as lol' as - 0.3 K through vigorous

pumping.

Even lorve¡ temperatures are obtainable when a liquid mixture of Hes and

Hea is conside¡ed. Figure 2.8 shows the phase diagram for such a mixture. Be-

cause the Ee3 and Hea atoms a¡e fermions and bosons, respectively, their low

temperature behavio¡ difie¡s conside¡ably. Äbove 0.86 K, the fluid is a homoge-

nous mixtu¡e of the trvo isotopes, and has either normal or superfluid (i.e. zero

viscosity) properties, depending on whether úhe concentration of Ee3 is to the

right or left of tlÌe À-curve. At lower temperatures, the mixtu¡e begins to sepa-

¡ate into two distinct phases. One phase is a no¡mal fluid and is ¡ich in Ee3; the
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Figure 2.8: The He3.He4 phase diagram. The quantity o represents the fractional
concent¡¿tion of He3 atoms in the fluid mixture, Below 0.86 K the mixiu¡e
spontaneousl.y separates into two distinct phases. As I -- 0 K, oue phase consists
entirely of no¡mal fluid He3, while the other phase is mosily superfluid Hea, but
with a finite concentration (o = 0.06a) of Hes atoms (after Lounasmaa, Lg74),
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He3 atomic concent¡ation approaches 100% as the temperature approaches abso-

lute ze¡o. The other phase is a Ilea-rich superfluid. Ilowever, even at absolute

zero, the Hea-¡ich phase is a dilute solution with mo¡e than 6 at. % Hes.

The He3-rich phase floats on top ofthe Hea-rich phase, due to their differing

densities. Since the Hea-rich phase is superfluid, the össolved HeS atoms behave

much like gas atoms in a vacuum. lf He3 atoms are somehor,ç ¡emoved from the

solution, they are immediately replaced by by Hes atoms which cross ove¡ the

phase boundary from the He3-rich phase. There is a latent heat involved which is

analogous to that ofliquid evaporation. As a result, it is possible to cool the fluids

dorvn to temperatures of tens of milli-Keh'in. Our dilution refrigerator operates

by this principle, but continuousll' cycles the Hes atoms in a closed loop so that

cooling can occur over long periods of time.

A schematic of our S.H.E. model DRI-236 Dilution Refrigerator Cryostat,

along rvith its Pumping and Gas Eandling system, is shorvn in Figure 2.g. To

thermaJly isolate the cryogenic co¡e of the refrigerator from room temperature,

it is situated within a high-vacuum can immersed in a Hea bath. The can is

evacuated to - 10-5 Torr b¡' means of a Sargent !trelch 1402 mechanical pump

and an oil difusion pump. Our system uses a rnixture of approximately 30% Hea

a¡d 70v/o Eea. As shown in Figure 2.10, the major components of the core a¡e the

cold-plate, the siill, the continuous heat exchanger, the six step heat exchangers,

and the mixing chamber. Most of the components are const¡ucted {rom copper,

since it provides high thermal conductivity.

The copper cold-plate contains a small chambe¡ into rvhich liquid Hea is

drawn from the bath through a capillary. Pumping on the chamber (with a
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Sargent Welch 1374 mechanical pump) cools the cold-plate dorvn to about 1K.

The heate¡ on the plate is used only during a prelìminary bahe-out procedure,

in rvhich llea exchange gas (used to thermally couple the core to the He4 batlì)

is evacuated from the vacuum can. A Speer carbon ¡esisto¡ (nominalìy 100O) is

used to measure the approximate temperature of the plate.

During operation, the copper still contains a non-phase-separated mixture

of superfluid He3-He{. A heate¡ preferentially boils of the lighter He3, and the

vapour is pumped on through a specially designed orifice which rest¡icts the escape

of Hea. The still temperature is monitored with a calib¡ated carbon resistor, and

is optinall¡'0.7 K. Horvever, our system seems to run slightl¡,hot, as the resistor

indicates an operating temperature of about 0.8 to 0.g5 K.

The copper mixing chamber, where the actual phase separation occurs,

is lined with sintered copper to euhance thermal contact with ihe cold liquid.

\4¡arm iiquid He3 florvs into the mixing chamber through a tube, and continuaili,

replenishes the Hes-rich phase. SimuJtaneousl¡', He3 atoms (from the He3-¡ich

phase) are drau'n across the phase boundary, and removed f¡om the chamber via

a tube flooded rvith Hea-rich superfluid (more about this later).

Ðach o{ the six step heat exchangers is constructed from tu,o short copper

tubes which a¡e welded together length-wise and packed with sintered copper.

The mixing chambe¡'s warm incoming IIe3 flows through one tube, while the

out-going cold fluid florvs through the other.

In the continuous heat exchanger, the wa¡m IIes üue is threaded through

the cold line to place it in direct contact with the out-going cotd fluid.

The ciosed-cycle operation of the co¡e is as follows. Fo¡ convenience rpe
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sha,ll assume that the circulating medium is entirely He3, though there is a small

amount of Hea which escapes through the o¡ifice in the still. An Ðdwards model

660 sealed mechanica.l pump is used to ci¡culate the IIe3 through the core.

Gaseous He3 is frrst cooled to 4.2 K by the Hea bath. Upon entering the

vacuum can, the gas is liquefied b¡' passing it through a condenser (piaced in

the¡ma.l contact rvith the 1 K cold-plate) and a flow impedence. After furthe¡

cooling by means of the siill heat exchanger and the continuous and step heat

exchangers, the liquid IIes enters the rrixing chamber.

The out-going cold line (from the mixing chamber) passes back through the

step and continuous heat exchangers, and opens into the superfluid bath jn the

still. In this rvar, the mixing chamber and the still a¡e connected b5' an unb¡oken

column of llea-¡ich superfluid. B¡' pumping on the still, the concentration of

dissolved HeB at the top of the column is made to be lower than that at the

bottom. The resulting osmotic pressure gradient (see Lounasmaa, 1974) draws

He3 atoms across the phase boundary in the mixing chamber, and up into the still.

Subsequently, Hes vapour f¡om the still is recirculated into the core b-l means o{

the sealed mechanical pump at room temperature.

The system is potentiall¡' capable o{ cooling the mixing chamber to approx-

in:atel¡' 30 mK. However, our refrigerator is in need of flne tuning, and is only

able to reach about 50 mK. Stabilization at higher tempe¡atures requires the use

of a heater and a carbon resister (both in good thermal contact with the mixing

chamber), together with a feed-back system (see Figure 2.12). The temperaúure

stabiliiy is 5 x 10-a K at 50 mK, and 5 x 10-3 K at 800 mK (after Yeung, 1988).

The sample environment is shown in Figure 2.11. The copper sample cham-
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ber/hoider is bolted in good thermai contact with the mixing chamber, and a

calibrated germanium resistor (model GR-2004-30 from Lake Shore Cryotronics

of Westerville, Ohio), together with a S.H.E. model PCB Porentiometric Conduc-

tance Bridge, is used for precision temperature determination (see Yeung, 1g88).

The sample is attached to the holder with G.E. varnish, and postioned haìf-way

into the lorver pickup coii.

The pickup coils for the magnetometer are made of 0.007,¡ superconducting

Niobium-Titanium wire, and counte¡-rvound (9 turns each) on a spool machined

from Eme¡son and Cuming Stycast 1266 epox)'. The coils have a radius of 0.170//

and a center-to center separation of 0.750". The leads of the pickup coils are con-

nected to the appropriate terminals on the cryogenic SQUID probe. and enclosed

b¡' superconducting PbSn tubing to shield them f¡om noise.

A uniform and highl5' stable D.C. magnetic field is applied to the sampìe

by means of a Helmholtz pair (mounted outside the vacuum can) and a constant

cur¡ent source with a maximum 1 ampere capability (see Yeung, 1988). Each coil

consists of 650 turns of 31-guage copper wire. The pair has a mean coil radius

and separation distance of 6.033 cm, and delivers g6.81 gauss per ampere at its

center.

To help ¡educe noise in the SQUID due to relative motion between the

sample and the pickup coils, measures a¡e taken to isolate the cryostat from

vibration. The vibration of the mechanical pumps is decoupled from the cryostat

by means of flexible bellows on the pumping lines. In addition, the cryogenic core

and the entire der,ç'ar assembly are supported b5'a sf¡¡d¡' piywood bridge which

rests on massive sand foundations.
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Our refrigerator/magnetometer is capable of measuring the magnetization

of the sample as a funcúion of temperature, applied magnetic field, and time.

The magnetomete¡ is not calibrated, holever, so that the changes in the sample

magnetization are measu¡ed in arbitrary units.



rf

Figure 2.9: The Pumping and Gas Eandling System (after S.E,Ð. Corporation).
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Figure 2.11: The sampie environment of the magnetometer (after Yeung, 1988).
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Figure 2.12: Temperature control of the mixing chambe¡. The ca¡bon ¡esisto¡
and heater a¡e in good thermal contect with lhe copper mixi¡e chamber. A
bridge compa"s! thã carbon resistance to a set vaJue coìiespondinfto the desired
temperature. The difference is fed iuto the ATC, which in turn adjusts the heater
current to oppose the imbaia¡ce (afier Yeung, 1988).
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The Hea Cryostat/A,C. Susceptometer

Like the dilution tefrigerator, the Hea cryostat basically consists of a pumping

system and a cryogenic co¡e sur¡ounded bl'a Hea bath. Horvever, the¡e is no need

for a large vacuum can since the cryogenic plumbing of the refrigerator is avoided.

Instead, only a small volume containiug the magnetic sample ueed be evacuated.

The pumping netwo¡k is also much simpler, and consists onìy of provisions to

pump on the I{e{ bath, the sample chamber, and the walls of the Hea dewar. By

pumping on the bath with an Alcatel model 2033 pump, the system can be cooled

to as lov'as 1.5 K. A schematic diagram of t,he Hea cryostat is displayed in Figure

2.13.

The sample chambe¡ is machined out of Emerson and Cuming 1266 Stycast

clear epoxy, and giued to one end of a meter long stainless steel pumping tube of

lorv thermal conductivit¡r The use of epoxy avoids the skin-depth problems asso-

ciated with metals in A.C. fields. During normal operation the sample chamber

and much of the pumping tube are sur¡ounded by the Hea bath, white the far end

of the pumping tube is exposed to ¡oom temperature.

The magnetic sampìe is attached with G.E. varnish and high-purity silver

paint (from SPI Supplies, Wesi Chester PA) to the bottom of a g9.99% pure

silver sample block of high thermal conductivity. A 25O sarnple heater is made

by l'inding 36-guage Manganin rryire a¡ound the top of the sample block, while

precise temperature measureme¡t is obtained via a calibrated Silicon diode (model

DT-470-SD-13 f¡om Lake Shore Cryotronics) placed in good thermal contact with

the block.

A sample ¡od of low the¡mal conductivity is constructed by bonding the
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top of the sample block to a !.25" quartz tube, which in turn is glued to an

approximately meter long stainless súeel tube of small diameter. The heate¡ and

diode a¡e connected b¡'copper leads to an electrical socket at the opposite (room

temperature) end of the rod. To suspend the sample within the sample chamber,

the rod is fed down through the pumping tube. B¡ass spacers on the ¡od a¡e used

as a guide to prevent the sample from touching the sides of the chamber. The

top end of the ¡od sc¡ews onto the top of the pumping tube with a vacuum-tight

seal, enabling the sample chamber to be evacuated.

Between 1.5 and 4.2 K, the temperature of the sample is controlled solely

by pumping on lhe Hea bath through a manostat. A heat leak ftom room tem-

perature (possibly due to the copper wire leads fo¡ the heater, etc.) makes it
necessaty to flll the sample chamber u'ith Hea exchange gas (about 10 Tor¡ at

4K) to enhance the the¡ma.l coupling between the sample and the bath.

To heat the sample above 4.2 K, it is necessary to evacuate the sample

chamber dos'n to - 10-5 Torr (using a Sargent Weich model 1402 mechanical

pump and an oil difiusion pump) because the 25O heater is not efiective enough to

overcome strong thermal couplìng to the cold bath. with the manostat disabled,

the temperature is controlled by connecting the heater and the Silicon diode

to a model 520 Cryogenic Temperature Cont¡oller f¡om Lake Shore Cryotronics,

Incorporated. The system is hypothetically capable of controlled operation as high

as 300 K, though at the time this thesis was prepared, the highest temperature

tested was about 250 K.

Figure 2.13 also portrays the coil geometr¡' for the A.C. susceptometer.

The pickup coils, A.C. field coil, and the D.C. field coil are all wound on clea¡
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epoxy formers and designed to fil concentrically about the boftom of the sample

chamber.

The pickup coils are wound (8 turns each) on a cylindrical spool, and have

an inner diameter of 0.274'l and a cente¡-to-cente¡ coil separation of 0.625,,. Super-

conducting Niobium-Titanium 0.006,, wi¡e is used. The sample rod is positioned

such that the sample is half-way into the upper arm of the astatic pair.

The A.C. field coil (or primary coil) has an inne¡ diamete¡ of 0.41,,, and is

wound in a single la¡'er with about 21,5 turns of 0.006,/ Niobium-Titanium wire.

The primary coil completely surrounds the pickup coils and the sarnple.

Tbe superconducting leads fo¡ both the astatic pair and the primary coil are

threaded through Pb tubing and connected to the appropriate te¡mina.ls on the

SQUID probe. The leads are a^lso passed through a small Teflon box containing

a ca¡bon resisto¡. By supplying current to the resistor, the leads may be heated

and driven into no¡mal conduction to eliminate unwanted persistent currents in

the coils.

The D.C. field coil is rvound f¡om 0.008,, copper wire, and is designed to

provide a fairly uniform magnetic field fo¡ the sample and the astatic pair. It
consists of a cent¡al solenoid with a single layer of 68 turns, plus two cornpensating

soienoids (one at each end) l'ith 3 layers and about 24 turns per layer. All
three windings have the same inne¡ diameter oî l.!024tt. A fieid proflle along the

central axis of the coii is shown in Figure 2.14. The D.c. coil utilizes the same

constant current source as the He3-Hea dilution refigerator/magnetometer, a.nd

is capable of delivering about 45 gauss at the maximum available current of 1

ampere. Copper wire is used to avoid remanent fields which can be produced
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by superconducting solenoids. The leads for the D.C. coil are twisted together,

th¡eaded through a sta.inless steel tube, and connected to an electrical socket at

room lemperature.

RF noise is reduced by surrounding the SQUID probe and the sample cham-

ber b¡'a metal can covered in lead Ioil. To suppress vib¡ational noise, the cryostat

is supported by a stand with a massive sand foundation, and flexible bellows are

used on the pumping lines.

Besides measuring the A.C. susceptibility as a function of field and temper-

ature, the system can be configured as a magnetometer simply bJ. ¡e-connecting

the pickup coils to the appropriate terminals on the SQUID probe, and discon-

necting the primary coil. As shown in Figure 2.13, the sampie rod is ¿ttached

through a vacuum seal to a hydrauìical\' activated piston. This allows the sam-

ple to be withd¡awn f¡om the pickup coils at any time, and provides a means of

determining whether the sample has been magnetized. Hence, it also provides a

direct method to find the current required such that the D.C. field coil cancels

the earth's magnetic freld exactiy.
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Figure 2.13: A schematic diagram of the Hea cryostat/A.C. susceptometer, The
sample chambe¡ and various field-coil fo¡mers are d¡awn to scale, with the sample
lengih representing 1 cm,
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Figure 2.14: Magnetic freld profrle along the central axis of the D.C. field coil,
for a current of 50 mA. The slight asymmetry is due to the measuring technique,
and not úhe coil const¡uction.
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2.2 Preparation of Dilute Alloy Samples

A total of one ternary and three binary alloys were prepared with the following

consistencies: Pd + 0.07 ot.To Fe, Pd + 0.07 at.Vo Mr', pd + 0.1 at.%Mn, anà

(Pd + 0.35 øt.% Fe) * 5 at.% Mn. The magnetic impurity concentrations ¡ender

all of the alloys potentially re-entrant.

The fabrication started wiih lhe creation of PdFe and PdMn master alloys

of fairl¡'high magnetic impurity concentration (- l0 øt.%). The basic components

were 99.999% pure Pd sponge (Johnson-Mathey, London), gg.gg% pure Mn flake

(Aldrich Chemical Company, Inc., Milu'aukee, Wisconsin), and gg.99% pure Fe

pellets (Johnson-Mathey, London). To begin, the Pd sponge was pressed into

disc-shaped pellets and melted on the wate¡-cooled hearth of an arc fu¡nace with

an ine¡t A,rgon atmosphe¡e. The resulting button was then cold-rolled between

Mylar sheets until il rpas thin enough to cut r¡¡ith 6cisso¡s. A simila¡ procedure

was followed to obtain Fe and Mn foils. Next, the appropriate amounts of either

Fe foil o¡ Mn foil we¡e wrapped within the Pd foil, and the metals were melted

together in the arc furnace. Each aJloy button was inve¡ted and ¡e-melted several

times over to ensure homogeneity, and negLigably small melting losses we¡e noted

at every súage of the master alloy preparation.

lVith the master alloys prepared, it was straight-fo¡wa¡d to add the appro-

priate amounts of pure Pd and dilute them down to the concentrations required

lor the three binary alioys-in the case of the ternary alloy, it was also necessary

to mix the two types of maste¡ alloys together in the proper ratio. The new

mixtures were repeatedly melted and inve¡ted in the a¡c furnace, as described

previously, and once again negligabie melting losses were observed fo¡ all of the
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samples. To remove carbon scoring etc., eacli allo¡' 1yu. etched in a mixtu¡e of 3

parts hydrochloric acid, 1 part nitric acid, and a {ew drops of hydrogen perox-

ide. They were then placed in Vycor quartz tubes evacuated to - 5 x 10-6 Torr,

annealed at 970 t 5"C for approximately 24 hours, and rapidly quenched in ice

water. (The quenclúng is inessential, however, considering that impurity atom

clustering is unlikel¡'to occur in such dilute alloys.)

The three binary alloys were spark cut (using a copper-tube iype blade) iuto

needles of aboui 0.7 mm öameter and 1 cm length. Each needle was etched and

cleaned by rolling it aJong the bottom of a beake¡ filled with the aforementioned

acid mixture, and the resulting needle diameters vrele ry 0.5 mm. the PdFe

needle was annealed (in vacuum) for 17 hours at 970 * 5'C, and quenched in

ice water, while the PdMn needles were annealed fo¡ 12 hours at 650 "C, and

slow cooled in vacuum. Needle-üke shapes were chosen to minimize the efects

of sample demagnetization. The samples were destined to be measu¡ed on the

SQUID magnetometer, so that A.C. skin depth efects were not a facto¡ in deciding

their shapes.

On the othe¡ hand, the ternar5'alloy was intended to be analysed on the

SQUID A.C. susceptometer, so that skin depth considerations were of prime im-

portance in deciding the sarrple shape. To this end, the alloy was cold-¡olled

into a foil of thickness 0.18 mm and cut into th¡ee identical strips of dimension

11.5x1.2 mmz. The strips were then placed in a Vycor glass tube, and annealed

for 6 hou¡s with at a pressure of 0.7 x 10-6 Tor¡ and a temperature of 650 "C.

Lastly, the strips were stacked upon one another (beiug careful to separate the

adjacent surfaces with masking tape) and bound together with masking tape.
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Chapter 3

Data and Analysis:
A Study of the Effective Field
Model and Several Potentially
Re-entrant Palladium Alloys

3.1 Phase Diagrams of PdFe and PdMn

The magnetic properties of dilute PdFe and PdMn alloys are highly dependent

on the atomic concentrations of the magnetic Fe and Mn impurities (see section

1.1.2 for an overview). Ðxperiments indicate that PdFe alloys sustain paramag-

netic to fe¡romagnetic transitious fo¡ Fe concent¡ations as low as c x 0.02 øt.To$e

(Figure 1.3); the persistence of ferromagnetic ordering in such dilute systems is a

consequence of the spherical clouds of polarized (exchange-enhanced) conduction

eiect¡ons which sur¡ound each Fe impurity atom in the Pd host matrix. Asso-

ciated with each cloud is a giant-moment of up to 10ps, and thei¡ large spatial

extent (diameter- 10Å) enables overlapping and direct ferromagnetic exchange

coupLing to occur between them, even in very dilute alloys. Furthermore, the

1.rR



Curie temperature ?" displays a linea¡ c dependence above c * 0.1 aú.%Fe, and

a quadratic dependence below. A.C. susceptibility studies performed by Peters

et aJ. (198a) have shov¡n that aJloys rvith concent¡ations belou' 0.01 aú.%Fe are

typical RKKY-induced spin glasses. Based on extrapolations ofthe existing data,

the intermediate regime 0.01 < cløú.%Fe] < 0.10 hypoihetically corresponds to

a ¡e-entrant doma.in of the magnetic phase diagram, but the very dilute natu¡e

of such aJloys requires the use of a sophisticated cryogenic apparatus to reveal

their magnetic behavio¡, and hence little direct experimental evidence for such

¡e-entrant t¡ansitions has been forthcoming in the literatu¡e.

The PdMn systems possess similar characte¡istics (including the develop-

ment of giant-moment polarization clouds about the Mn atoms), though the mag-

netic phase diagram (Figure 1.5) is more complex, due to anti-ferromagnetic ex-

change interactions whjch can occur between closely spaced Mn impurities. For

certain concentrations, these short ranged couplìngs may compete in some way

rvith the longer ranged ferromagnetic exchange bonds which act between the gianl-

moment polarization clouds, and f¡ust¡ation of the impurity spin orientations can

occur. Consequently, there exists in the phase diagram a ferromagnetic regime

0.1 < c < 2.5 (in rvhich tire variation of 4 with c is [near at iow concentrations),

foilowed b3' a re-entrant regime (2.5 < " < 5) and a spin glass regime (c > 5)

at higher concent¡ations, The static magnetization measu¡ements of Thomson

and Thompson (1979) reveal that a more usual RKKY-induced spin giass domain

exists for concent¡ations c < 0.06 at.VoMn. Extrapolations of the existing data

predict the existe¡ce of an RKKY-induced ¡e-entrant ¡egion for inte¡mediate con-

centrations of 0.06 < c < 0.1. However, as in the PdFe studies, the lite¡ature has
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not yet provided direct experimental support for such an assertion.

The SQUID magnetometer/dilution refrigerator is ideally suited to the

stud¡' of these weakly magnetic systems, since it provides the appropriate tem-

perature window (50mK to lK) and sensitivity. P¡esented below are the fi¡st ever

detailed measurements of the tenrperature and field dependent static magnetiza-

tions of several potentially re-entrant (and very dilute) PdFe and PdMn alloys.

Because significant impurity atom clustering is unlikely to occur in these ver¡'

dilute samples, the experimental ze¡o.field-cooled magnetization cu¡ves should

provide a good foundation lor comparisons to a simple mean-field model u'hich

displays genuine ¡e-ent¡ant transitions, from paramagnetic to fe¡romagnetic to

spin glass (as opposed to cluster glass) ordering.

3.2 PdFe Magnetization Measurements

The dilution refigerator/magnetometer was used to measu¡e the magnetization

of the Pd * 700 ppm Fe needle as a function of temperature, applied magnetic

field, and time. The Fe concentration was deliberately chosen to fall wiihin the

potentialìy re-entrant regior oI the PdFe phase diagram, and the needlelike shape

of the sample rendered demagnetizing co¡rections to the interna.l field unnecessary.

3,2.1 Temperature Dependence of
FC and ZFC Magnetization

The freld-cooled (FC) magneiization curve was obta.ined by cooling the sample

down to 0.0548 K in a net applied field of 1.25 * .25 Gauss (parallel to the long

axis of the needle). Next, the temperature was incremented in steps and the
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magnetization recorded until the highest temperature of 0.898 K was reached.

The uncertainty in the field is due to the dificuìty in determining the helmholtz

pair current required to cancel the ea¡th's magnetic field in the neighborhood of

the sample.

To acquire the zero-field-cooled (ZFC) curve, the sample was cooled down

io 0.0568 K in ze¡o field (t0.25 Gauss); a freld of 1.25 t.25 Gauss was then

applied and the magnetization ¡eco¡ded as the temperatute ìtras iacremented up

to 0.737 K in steps.

As shown in Figure 3.0, the FC and ZFC curves are essentially identical

above a point of inflection which occurs at temperature T¡nl = 0.470 + 0.10 K,

but thei¡ behavior difiers cousiderably at lorver temperatures. In particular, the

FC magnetization inc¡eases monotonically as the temperature is lowered, and dis-

played no discernible time efects ove¡ the duratio¡ of the measu¡eménts. On the

other hand, the ZFC curve peaks aí 0.264 K, and tends towards a zero magne-

tization ground state at absolute ze¡o. The ZîC magnetization also displayed a

noticible upward drift v¡ith time for all temperatures below about 0.315 K; to be

consistent,8 to 10 minutes were allorved to elapse befo¡e the magnetization was

¡ecorded at these temperatures.

Since the magnetometer does not measure in emu/gram, but in volts reìative

to an arbitrary zero, it was necessa¡y to calib¡ate the system in some way. This

was accomplished by associating \n¡r with the Curie temperature T", and fltting

the high temperature ZFC and FC data to a Curie-Weiss law such that

CH
lut - T-T
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The applied field is denoted by .F1, while C is the Curie constant. B¡' plotting

Jtffvolts] versus ¡fo¡ for both the ZFC and FC data, it was possible to extrapolate

to the inflnite temperature limit and obtain the true zeroes (in volts) for the two

sets of data.

As shown in Figure 3.1, high temperature plots of ¡'Éi;61- versus ?[K] yield

straight lines with slopes of # :2.0+.2 h'olts-r.¡ç-t1. However, the mean-fleld

theory of ferromagnetism predicts that

cN ag2 S(S - 7)u2oH

M 3lc¡

: (1 4+.3) x 10-a
emu.K

gram

where c = 7 x 10-a is the atomic ratio of Fe to Pd in the sample, ÀI¡ is Avogadro's

ruumber, M is the molar mass of Pd, and the efiective spin .9 = 5 is chosen in

accordance to the results of Chouteau and Tou¡nie¡ (19?1). Hence, a calib¡ation

of about I volt = 3.4 x 10-a [emu/gram] was derived, r¡,hich can also be w¡itten

in te¡ms of the saturation magnetization IttI ""t - # Sp" S such that 1 volt --
8.5 x !0-a M,"t.

It is clear that the high temperature behavio¡ of both the ZFC and FC

magnetizations is ferromagnetic in character. tlowever, the low temperatu¡e be-

havior of the ZFC curve also suggests a furthe¡ ¡e-ent¡ant transition into a phase

with a spin glass ground state. Such t¡ansitions a¡e in fact predicted to occur in

the ¡e-entrant doma.in (0.8 3 j lÃ S i.0) of the mean-field Efiective Field Model

(section 1.2.4). With this in mind, the Sherrington-Kirkpatrick-like coupled equa-

tions we¡e solved nume¡icalty (the technique is described in section 8.5), and the
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theo¡etical temperature dependence of the magnetization was compared to the

ZFC experimental curve.

Such a calcu-lation requires the specification of seve¡al parameters. Firstly,

the spin quantum number is predetermined as S=5. The ¡educed neld h = sf#

is also predetermined to within the range 0.0003 to 0.0005. Lastly, the exchange-

bond parametel q = i lÃ must fall u'ithin the re-ent¡ant region defined previ-

ousiy.

Figure 3.2 displays a best fit to the experimental data, wit,h l¿ = 0.0005 and

? = 0.98. The temperature ?s6 indicates the approximate location of the theoret-

ical ferromagnetic/spin-glass phase boundary, and coincides with the location of

the peak in the ZFC cu¡r'e. Also shown is the de Almeida-Thouless temperature

?¿¡, rvhich indicates the theo¡etical onset of broken replica-symmetry.

The discrepanc¡' at temperatures below the peak is at least partly at-

tributable to the dynamic component of the ZFC magnetization; the model is

static and hence incapable of duplicating the time-dependent behavior of the

experimental system. Even so, the resemblance between the experirirental data

and the nume¡ical calculations is striking, and provides some evidence that the

experimental system is re-entrant.

3.2.2 Field Dependence of Magnetic Isotherms

Magnetic isotherms were measured for eight temperatures I between 0.4645 K

and 0.611 K. Each isothe¡m was obtained by first cooling in zero field f¡om about

I K to the desired measuring temperature. With the temperature stabilized, the

magnetization was ¡eco¡ded as the field 11 was increased from approximately 0
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to 10 Gauss. Figure 3.3(a) shows the experimental isotherms plotted in terms of

M lM""t versus the ¡educed field iz, such that 0 < å < 0.0030.

For comparison, the Effective Field Model was used to generate isotherms

over the same interval of reduced field and rryith a value of 4 - ¡.gg chosen to

be within the re-entrant region. The theoretical isotherms are plotted in Fig-

ure 3.3(b). The calculations span the range of reduced temperature t - TlT"

from 1.001 to 1.5, while the experimental isotherms have reduced temperatures

f¡om about 1.001 io 1.3 (assuming T. - 0.464 K). Once again the behavior of

the experimental data is remarkabll' similar to that of the theo¡etical ¡e-ent¡ant

system.

The initial slopes of the experimental isothe¡ms represent the zero field

susceptibilities, and were found to diverge as l(T - T.)lf.fl *'ith .¡ : 1.7 + 0.1

and [ - 0.464 K. The exponent is greater than the typical value o1 1 - 4lB,

as determined f¡om the th¡ee-dimensional Heisenberg model of ferromagnetism.

Eorvever, even larger exponents have been observed by Eo et al. (1g81) in their

investigations of PdMn alloys with concent¡ations between those typical of the

ferromagnetic and spin glass systems.

3.2.3 Time Dependence of the
Thermo-remanent Magnetization

Äs mentioned in the first chapter, the :nagnetic ¡elaxation of ferromagnets is

generally associated with a logarithmic time dependence, while the ¡elaxation in

spin glass systems is better described by a stretched-exponential function, Hence,

an anomaly in the relaxation of a ¡e-entrant system might be expected to occu¡

as the system is passed through the spin glass/ferromagnetic phase boundary.
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Figure 3.3: (1) Exnerimental magnetic isotherms of pd * 700 ppm Fe. The
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? i,0:9!._ From,top to bottom the ¡educed terñperatures a¡e ú =1.001r i.0i;i¡ã,
1.05, 1.07, 1.1, 1.2, and 1.5.



To search for such an anomaly in the PdFe system, the decay of the

thermo-¡emanent magnetizatiol d¿¡y¿ rrr/ãs measured for five temperatures ? be-

tween 0.0788 K and 0.354 K. These temperatures are indicated in Figure 3.0, and

¡epresent the entire range ove¡ which time-efiects were obse¡ved in the ZFC mag-

netization measu¡ements. To measure the decay, a fleld of - 2 Gauss was applied

while the sample was cooled dow¡ to ? f¡om a ¡efe¡ence temperature of 0.475

K (at which no time efects we¡e observed). After stabiljzing at ? fo¡ about 30

minutes, the applied field was set to zero and the o¿,- relaxation was monito¡ed

{o¡ 7200 seconds on a chart recorder. The same reference temperature lr, as used

fo¡ all the runs, as this allorved scaling of the magnetization data ¡elative to a

common zero,

Figure 3.4 displays semiJog plots of a¿,- versus time for all the temperatures

?-linea¡ behavior indiôàtes a logarithmic deca¡'. The time zeroes are chosen so

that the curves are as linear as possible within the range of uncertaint¡'; all times

could be increased b¡' up to 8 seconds, though this enhances the curvature, es-

pecially at lorv times. The discrepancies for times f > 103 seconds are accounted

lor b¡' slight field drifts and temperature inst¿bilities. Clearly, the data are al-

most logarithmic, except for the appearance of small deviations at times I < 100

seconds. The ¡elaxation nte ôo¡.,"f 0logú is, however, essentially independent of

temperature, with no indication of an anomaly.

As demonst¡ated in Figure 3.5, the lowest temperatu¡e data (which are

representative of all ihe measurements) are well described over the full range of
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times b5' a stretched-exponentia.l function

Ïlowever, the extracted value of the exponent z is unusualiy close to unity. A

Iikeìy explanation is that the weakness of the deca¡' renders the fit somervhat

insensitive to the parameters ¿ and r. The suggestion of a st¡etched-exponential

decay (for all temperatures studied) implies that the distinction betrveen the spin

glass and ferromagnetic phases is becoming vague in this system.

I z¿rt-"1
ør,,a = ao exr 
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Figure 3.4: Logarithmic tests of the ø¿,- decay for the Pd * 700 ppm Fe system.
From top to bottom the temperatures correspond to ? = 0.0788 +-.0004, 0-.1i3 +
.001, 0.161 + .001, 0.300 *.002, and 0.354 +.002 K. The straight linés have a
cornmon slope, and are provided to guide the eye.
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Figure 3.5: A typical stretched-exponentia.l test of the ø¡,- decay (1 - 0.0788 t
.0004 K). The slope represents the exponent -rr. and, as indicaied by the straighi
line, is unusually close to unity.
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3.3 PdMn Magnetization Measurements

Like the Pd + 700 ppm Fe sysfem, alloys of Pd * 700 ppm Mn and Pd +
1000 ppm Mn have concent¡ations withiu a potentially re-entrant region of their

phase diagram. Samples of these two PdMn alloys were prepared as needles and

investigated using the dilution refigerator/ magnetometer. Once again the shape

of the samples made demagnetizing corrections unnecessary.

3.3.1 Temperature Dependence of ZFC Magnetization

The ZFC curves fo¡ the PdMn samples rvere acquired and anaJysed in a lashion

identical to the PdFe system. Each sample u'as first cooled down to - 0.05 K

under approximatel¡' 2s¡6 field conditions. A field of H = 7.25 * .25 Gauss was

then applied and the magnetization reco¡ded as the temperature was increased

up to - 0.5 K in steps. As shown in Figure 3.6, both of the curves dispiay a peak

similar to that of the PdFe system, though the lon' temperature structures are

not ¡evealed.

The 700 ppm Mn curve has an inflection poini at 4"1r = 0.085 t.005

K (tentatively associated with ?"), above which the data follows a Cu¡ie-Weiss

behavior. A plot of M versus I was constructed to zero the data, s'hile a plol

oflversusTgaveaslopeof&-S*1[volts-l . *-t1 and a calib¡ation of

approximately 1 volt=1.l x 10-3 [emu/gram] (assuming a spin of .9 = 5 and an

impurity concentration of c :7 x 10-a).

Similarly, the 1000 ppur Mn curve displays Curie-\4¡eiss behavior above the

inflection point fr^¡¿ = ?" = 0.135 +.005 K, and the data were ze¡oed in the

usual way. The calibration plot yielded a slope of # = 3.0 + .1 lvolts-l . K-1],
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Figure 3.6:_ The ZF,C magnetization cu¡ves of the Pd * 700 ppm Mn and pd *
1000 ppm Mn needles are compared to theo¡etical ¡e-ent¡ani ialculations (solid
curves).
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which corresponds to 1 volt=6 x 10-a [emu/gram] (using c = 10-3 and 5 = 5).

Incidently, the independent calibrations for the two aJloys are self consisúent; the

value of ¿þ (in units of [gram/emu.K]) for the 700 ppm Mn case is a facto¡ of

ffi larg.t than the value for the 1000 ppm Mn data.

The Efective Field Model rvith spin S=5 was used to generate theoretical

cu¡ves within the ¡e-entrant region 0.8 < ? < 1.0. The best frt to the 700 ppm Mn

data is displayed in Figure 3.6, and corresponds to an exchange bond parameter

oI rt : 0.97 and a reduced fieid of å = # : 0.0017 (equivalent to fl - I

Gauss). AIso included is the best fit to the 1000 ppm Mn curve; this calculation

used 1 : 0.93 and a ¡educed field of h-0.0010 (¡1 - 1 Gauss). Note that the two

values of 4 have internal consistency, as the alloy of higher concentration is, as

expected, fa¡the¡ from the tric¡itical point 4 = 1.0. Moreover, the basic featu¡es

of the two ZFC curves are duplìcated b¡'the re-entrant model calcu-iations.

Field Dependence of Magnetic Isotherms

Several magnetic isothe¡ms were measured for the Pd * 700 ppm Mn sample by

zero field cooling the specimen down to the appropriate measuring temperature;

with the temperature stabilized, the magnetization was then reco¡ded as the ap-

püed fieid was inc¡eased f¡om approximately 0 to 10 Gauss. This is equivalent to a

¡educed field range of about 0 < ¡¿ < 0.0030. The calib¡ation of 1 volt:1.1 x 10-3

[emu/gram] was used to scale the data which are plotted in Figure 3.7(a). The

isotherms were measu¡ed for temperatures T between 0.061 K and 0.182 K, or a

reduced temperature interval o1 0.72 < T lT" < 2.t4 (assuming ?" = 0.085 K).

Figure 3.7(b) portrays the curves generated f¡om the Efective Field Model

9.3.2
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with 5 = 5, ,t : O.gZ, and reduced temperature and field ranges of 0.6 < f lT. S
1.4 and 0 < l¿ < 0.0030, respectively. The re-entrant caJculations are able once

again to mimic the behavio¡ of the experimental curves.
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Figure 3.7: (a) Dxperimental magnetic isothe¡ms of Pd * 700 ppm Mn for tem-
peratures (from top to bottom) of? = 0.061, 0.070, 0.098, 0.118, 0.133, and 0.182
K.

(b) Theoreiical isothe¡ms calculated rvith a ¡e-entrant value of q - 0.97. F¡om
top to bottom the reduced temperatures are I = 0.6, 1.01, 1.1, 1.15, 1.2, 1.3, and
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0.1

O)

E
q)

0.1

144



3.4 A Possible Mean-Field Criterion for
Identifying a Re-entrant Phase Transition

As introduced in section 1.1.3, Kunkel and Williams (1988) have presented intrigu-

ing evidence for the existence of a re-entrant t¡ansition in a (PdFe)Mn system.

In particular, they discovered a weak anomall' in the non-Iinea¡ component of

the susceptibilit¡' which, though not singular, is suggestive of ¡e-entrant c¡itical

behavio¡. Based on the success of the mean-field Ðffective Fieid Model (sec-

tion 1.2.4) in describing the magnetization of the potentiall¡' ¡e-entrant PdFe

and PdMn systems, it rvas decided to determine whether the ¡e-entrant model

calculations are also able to duplicate the systematics of the (PdFe)Mn suscepti-

bility measurements. Additionally, the calculations are compared to more recent

SQUID A.C. susceptometer measurements on the same allo.v. An explanation of

the numerical techniques involved rvith solving the model is provided in Section

3,4.L Temperature Dependence of the
Magnetization and Susceptibility

All of the simulations in the sections following were pe¡formed using spin S - 512,

and a value ol q = ilS - 0.9 within the re-ent¡ant regime 0.8 < ? < 1.0.

Figure 3.8 shows a plot of the ca.lculated local magnetization r¿ versus the ¡educed

temperature t - TlT" fo¡ various values of the ¡educed field Â = # wìthin the

interval 0 < ¡¿ < 0.01. By carefully noting where the spontaneus magnetization

cu¡r'e vanishes for t < 1.0, a ratio of Ts6lT" - 0.269285 was established fo¡ the

ferromagnetic/spin glass re-entrant temperature ?56.

t45



Figure 3.9 shows the diferential susceptibility X : ômlôh plotted versus

i over the Eame range of reduced úenperatures and fieids as the .magnetization.

For It, I 0, the curves are quaiitativeiy tlìe same as those shown in Figure 1.8(b)

for the experimental (PdFe)Mn system iu a finile static biasing field. The ex-

perimental and theo¡etical curves both display twin peaks which are driven apart

and reduced in amplitude b¡' increasing the field. Furthermore, the heights of

the lower-temperature peaks are (in both systems) generally greater than those

of the corresponding higher-temperature peaks. Though the theoretical zero-field

curve diverges at 7s6 and 7", the experimental zero-field susceptibility is quite

diffe¡ent. Instead, the experimental data possess an essentiall]' temperature in-

dependent plateau, iocated roughly between 7s6 and Q, which is thouglit to be

caused primarily b¡' domain rvaìl dynamics rvlúch cannot be reproduced by the

simple model. These efects tend to rest¡ict the experimental criticaì analyses to

temperatures T > T. and 7 < Tsç. (Experiments performed by Zastre et aJ.

(1985) indicate that the magnetic time efiects observed in spin glass systems do

zol conceal the associated criticai behavior, and it is probable that the same is

true for re-entrant systems beiow ?56.)

3.4.2 Field Dependence of Susceptibility Isotherms

The model was used to generate susceptibility isotherms in the vicinity of boih the

upper and lowe¡ transitions. \4¡ith the data separated into four regions (? > ?s6,

T < Tsc, T > 7., and ? < ?"), the susceptibilit¡' X, which can generally be

expanded in powers of ñ, as

x(h,t): x(O,t) - ar(t)h'z + øa(t)ha - ...
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J /J"= 0,9

h= 0.01

0.006

0,001

Figure 3,8: A theoretical plot of the local magnetization r¿ versus ihe reduced
temperature t for various reduced fields å. The calcuiations used 5 = 512 and a"

re-entrant value of ? = 0,9. The arrow indicates ?9ç.

L47



Figure 3.9: The diffe¡ential suscepiibility curves corresponding to the magnetiza-
iion plots of the previous figure. Again, the a¡row indicates îs6.
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'\¡r'as plotted versus l¿ and å.2. In this way, it was possible to determine rvhether the

theoreiical leading critical behavior occurs in the linear o¡ the non-linear response.

Critical Behavior at the Ferromagnetic TÏansition

Isothe¡ms for the paramagnetic phase 7 > ?" and the ferromagnetic phase ? < ?"

were calculated within the ¡educed field domain 0 < ñ < 10-5, and for respective

reduced temperature ranges of 1.0004 < (t =.TlT") < 1.0750 and 0.9250 < ú <

0.9995.

Some typical pa¡amagnetic isothèrms are plotted ve¡sus l¿2,in Figure 3.1.0

to demonstrate the domiuance of the quadratic field term in this region. In

particular, the ze¡o field slopes represent the values of the coefficient a2(ú) at

each temperature, '*'hile the extent of the quadratic field dominance is indicated

by the field range over which the data are linea¡. Moreover, as ? --+ f ftom

above. the higher order susceptibilit5' terms (I14, I{6, etc.) grou'in strength, and

a pronounced curvature develops to confine the linear portions to lower and lower

fields. Incidentl¡', these same systematics were observed by Kunkel and Wi iams

for the quadratic response of their (PdFe)Mn system within the paramagnetic

region.

The theoretical critical behavior is cha¡acte¡ized by the divergence of the

zero-field slope as ? ---+ [ from above; a power law dependence of the form

a2(t)-lt-Ll-1

was established, with ,y : 4, by means of the logJog plot of Figure 3.12. The

weak deviations f¡om a strict power law are due to non-critical components which
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become increasingl¡' evident an'a¡'f¡om 7" and near the tri-critical point 4 = l.Q

(see I'eung et al. 1987).

In Figure 3.11, some typical fer¡omagnetic isothe¡ms (f < T") are plotted

ve¡sus l¿ to shor¡'that the magnetic response in this region is dominated by a linear

freld dependence. (The linear susceptibility is a consequence of the existence belorç

?" ofa spontaneous magnetization component.) .As before, the range of dominance

for the leading term becomes confined to lower fields as T --+ T, (from below).

Furthermore, the log-1og piot of Figure 3.12 reveals a power larv divergence of the

zero field slope (and hence the linea¡ coeficient) as T - 7", but rvith an exponent

Critical Behavior at the Re-entrant Tlansition

The isothe¡ms for the fe¡¡omagnetic phase T > Tse were generated rvithin the

reduced field and temperature doma.ins of 0 < /¿ ( 10-5 and 1.0015 < (¿- =

TlTso) S 1.3926, while those in the re-entrant spin glass phase î ( ?s6 \\'ere

calculated over the same field range, but with 0.4085 < l'< 0.9971.

As iilustrated in Figure 3.13 fo¡ the fe¡¡omagnetic phase, the presence of a

spontaneous magnetization once again results in a dominant linear susceptibilit¡.

component. The loglog plot of Figure 3.15 indicates a critical divergence of

the linea¡ field coeficient, with a power lat'dependence lt- - t¡-t and expoaent

1 - 512. Though not shown explicitly, the model also predicts singular behavior

in the quadratic field coeficient, but it is uot the dominant term in this region.

The corresponding experimental data of Kunkel and \ffilliams does not display

a leading linear response; this is probably the result of a ferromagnetic domain
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Figure 3.10: Typical theoretical susceptibilitJ' irotn"r-r for the paramagnetic
region 7 > ?". In orde¡ of decreasing intercept, the ¡educed temþeraturés are
, = 1.0004, 1.0010, 1.0014, 1,0020, i.0020, 1,0030, and 1,0050. A ¡e-ent¡ant value
of ? = 0.9 is used.
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i^., Figure 3.11: Typical theoretical isolherms for the ferromagnetic region T 1T".: From top to bottom the ¡educed temperatures are ú = 0.9995, 0.9992, 0.9988,
: 0.9984, 0,9979, 0.9965, and 0.9950.
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, Iigure 3.12: Double logarithmic plots of the ze¡o-freld slope of the susceptibility
isotherms in the viscinity oîT", as a function of l¿ - 11.
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structure which conceals the spontanteous magnetization component. Ilowever,

they did observe an increase in the quadratic field coefficient which, though too

weak to dete¡mine a c¡itical exponent, is ¡eminiscent of the theoretical behavior.

\lithin the !g:e¡EèB! phase, the model isotherms display features very sim-

iia¡ to those found rviihin the paramagnetic phase, and are plotted in Figure 3.14

as a function of /r2. Ee¡e the leading field dependence o{ the susceptibility is

quadratic, and the coefrciert ø2(ú) diverges as a power lau' with an exponent

-¡ - 4 (Figure 3.15). Once again, the experimental quadratic coeficient (nou'

on the spin glass side of the transition) does not diverge, though Kunkel and

\4¡illiams u'ere able to extract a polver law dependence, using data far awa5'from

?56, u'ith an exponent 7 = 3.6 + .6.

Critical Behavior in the

Re-entrant Phase of (PdFe)Mn

A sample of the re-entrant allo¡' (Pd¡.ee55Fe¡.6¡35)o.ssl\{no.os was prepared as a

stack ofthree 1i.5 x 1.2 x 0.18 mm3 strips bound together with masking tape, and

electrically insulated from o¡e a¡othe¡ to avoid A.C. field skin depth problems.

The Hea cryostat/A.C. susceptomete¡ was used to measure severa^l susceptibility

isothe¡ms within the proposed ¡e-entrant spin glass phase of the system. Previous

¡esults of Ve¡beek et al. (1978) and Kunkel et al. (1988) indicate that the transition

temperature ?s6 for this alloy is located just above 4 K.

An A.C. driving fieid of 16 Hz and amplitude 7 milli-Gauss was applied

parallel to the longest axis of the sample, as were the D.C. biasing fields I/.

However, the field ÍI; r.vithin the sample is efiectively given by H; = Il - DIII,
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: Figure 3.13: Typical theoretical isothe¡ms fo¡ the fer¡omagnetic region T > Tsc.
: The ¡educed temperatures from top to bottom are ú' = 1.0015, 1.0027, 1.0041,
| 1.0060, 1.0101, and 1.0212.
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^40 1.0

h'(ro'o)

Figure 3.14: Typical theoretical isothe¡ms for the spin glass region T 1Te6. In
order of decreasing vertical intercept, the reduced temperatures are ú' = 0.9971,
0.9952, 0.9934, 0.9915, 0.9878, 0.9841, 0.9804, and 0.9581.
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Figure 3.15: Double logariúhmic plots of the ze¡o-freld slope of the susceptibility
isothe¡ms in the viscinity of Ts6, as a function of lú- - 11.
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where M is the magnetization of the sample (along the freid direction) and D æ

0.06 is the estimated iongitudinal demagnetizing factor due to the geometry of

the sample. The data we¡e co¡rected for the demagnetizing efiect bJ'means of

the expression

. Xneo¿u¡edx""' = 1- Dx""""'d '

where X-"o".,,"¿ represents the real component of the complex susceptibiiity.

Each isothe¡m u'as obtained by initial\' warming the sample above the Curie

temperature f," æ 10 K to remove magnetic remanence) follorved by cooling down

to the appropriate measuring tempetatute ?. \\¡ith the temperature stabilized,

the magnetization was recorded as the internal field rvas incremented, in roughly

50 steps, from 0 to 42 Gauss. In Figure 3.16, the isotherns are plotted in terms

of Xú,u€ versus .I1¡; though not shown, tlie-v aJl conYerge to a commo4 satulation

value for fields above H; - 20 Gauss. The plots clearly demonstrate the lack of

any critical behavio¡ in the linear component of the susceptibility. Eowever, with

the isotherms replotted versus ff (Figure 3.17), the curves bear a rema¡kable

similarit¡'to the theoretical X versus lz2 plots of Figure 3.14.

Both the model and experimental curves ate dominated initially b¡'a quad'

¡atic field dependence which sh¡inks to lower fields as T - Tsc (again, this

is caused by the increasing strength of the higher o¡der field terms in equation

3.1). Also, both sets of curves possess intersecting isotherms which result from

the peaked st¡ucture of y(T) in fixed freld. However, while the quadratic coef-

frcient ø2(ú) theoretically diverges as l? - ?scl-" r.vith ? = 4, the experimental

coefi.cients ¡eveal a much less pronounced temperature dependence. Even so,

the experimental quadratic coeficient, plotted versus temperature in Figure 3.18,
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clearly increases monotonically as ? - ?56, and shows no tendancy to satu-

rate like the zero-field susceptibility (also plotted). Moreover, as illust¡ated in

Figure 3.i9, the low temperature data do obel' a power lart, rvith an exponent

7 : 3.0 + 0.4 roughly the same as the theo¡etical vaiue.

The deviation from power law behavior as T -t Tsc has ¿lso been observed

by Zastre et al. (1985) in their study of direct paramagnetic/spin glass transi-

tions in PdMn. Furthermore, as explained by Kunkel et aJ. (1988), experiments

invoh'ing dynamical scaling of spin glass data tend to suppo¡t the notion that

critical slorving dorvn is at least partiaJl¡' to blame. That is, the c¡itica.l fluctu-

ations of the system become slou' enough, nea¡ the transition temperature, that

the A.C. probing field is unable to register the full amplitude of the magnetic

response rvithin the period of oscillation. (An anaìogous efect occurs at param-

agnetic/ferromagneti c transitions, but generall¡' to a lesser extent.) This would

certainly result in an unde¡estimate of the coefrcient values near ?56, and the

same argument might be true of the ¡e-entrant case as well.

Unlike the ¡esuits of Kunkel and Williams, the present data do BEL reveal

an anomaly in the quadratic field coeficient around 4.07 K, despite the fact

that the isotherms extend as high as 4.19 K. Since the coefficients which Kunkel

and Williams extracted from their data were, by necessit¡', based on linear fits

to as feu' as three data-points, while the present SQUID measurements provide

well-defined isotherms (even at los'fields), it is evident that no anomaly occurs

below 4.19 K. Neithe¡ of the experiments ru.le out the existence of an anomaly

at higher temperatures, though such measurements were not pursued with the

SQUID susceptometer.
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Nonetheless, the ¡emarkable similarit¡' betweeu the mean-field re-entrant

simulations and the (PdFe)Mn system, especially in regards to the systematics

of the susceptibilitv isotherms for temperatures within the proposed re-ent¡ant

spin glass region, suggests that the experimental system does indeed possess a

re-ent¡a¡t c¡itical transition of the sort defrned by the Sherrington-Kirkpatrick

model. Perhaps nrore importantly. the analysis illustrates a potentially valuable

technique for identifl.'ing such re-entrant t¡ansitions.
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Figure 3.19: A double logarithmic plot of the experimental quadratic field co.
efficient versus temperature. Assuming that ?56 - 4,5 K, thé low temperature
data follorv q power law with exponent 7 x 2.75. By considêring othe¡ reâsonable
guesses for ?s6, one gels an exponent of .y = 3.0 + .4.



3.4.3 Discussion of Model Validity

The numerical simulafions presented in section 3.4.2 suggest a va"luable crite-

rion for experimentall¡' identifying a sequence of genuine phase transitions, from

paramagnetic to ferromagnetic to spin glass ordering, and lend supporf to the con-

tention that the anomalous behavio¡ observed in the (PdFe)Mn system is indeed

a manifestation of critical fluctuations. The calculations are based on a particuìar

mean-field ve¡sion of the Ðfective Field Model, in which the the¡mal fluctuations

a¡e int¡oduced using a üieiss mean-fieid approximation, while the exchange bond

distribution takes a Gaussia¡r form. Although this hierarchy of approximations

yields a set of coupled equations r,r'hich, aside from being generaJized for arbitrary

spin, are idenlical to those obtained b¡' Sherrington and Kirkpatrick (S-K). the

corresponding expressions fo¡ the free ene¡gy and entrop¡'are ilifferent. Unlike the

S-K results, the thermodynamic properties of the Effective Field Model are well

behaved at low temperatures, and tlie thi¡d law is not vioìated (Southern, 1976).

Mo¡eove¡, *'ithin the limitations of the efective field.approach, the solutions of

the coupled equations are not subject to the instabiüties normally associated with

replica-s¡'mmetry breaking belol'the A-T lines in the S-K phase diagram, and

the ¡e-entrant phase boundary is well defined.

In explanation, the Effective Field tr{odel essentia"lly ignores the Onsager

¡eaction-fleld letm -Jlry¡¡m; in the so-caJled TAP equations fo¡ the local mag-

netizatiol at each spin site (after Thouiess et al. 1977):

r,?; = ranh 
þ4 Q,*, - ti,x,,*,)f ,
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where X¡¡ is the local susceptibility at site j, and unit Ising spins and zero applied

freld are assumed. The local magnetization mi al 6ile i arises from the fields

J;¡n¡ crealed b5' the neighboring magnetizations rn¡, but Thouless et al. argue

that the contributions to r¿i f¡om z¿i should be removed when considering the

efiects of mj on rni. This is accomplished via the ¡eaction-field te¡m. flowever,

its inclusion leads directl¡'to instabilities of the sort encounte¡ed in the replica--

symmetric S-K soiutions. (Recall from section 1.2.5 that the S-K solutions a¡e

apparently superceded, belov' the A-T lines, b5'those of Parisi.) By avoiding the

reaction-field term, the Effective Field Model solutions are able to remain stable

throughout the phase diagram, albeit a¡tificiall¡'. I\{oreover, other considerations

suggest that the instabilities are not ¡elevant to the experimental situation.

The¡e is reason to believe that, in spite of the A-T instabilities, nume¡i-

cal ca.lculations of the differential susceptibiiity and magnetization based on the

replica-svmmetric S-K model, or the Efrective Field Model, ma.\' possess physical

relevance as the theoretical equiva.lents of d1'¡¿-¡"¡ probes such as the (in-phase

part of ihe) A.C. susceptibilit¡' and the ZFQ magnetízation. The peaks observed in

susceptibility measurements of PdMn spin glasses below ?sc dispiay systematics,

as a function of applied field and temperature, which are replicated remarkably

well by the model calculations (Gash et a"l. 1984). The symmetry, with respect

to î¡6, of the critical behavior observed in the non-linear components of the

PdMn spin glass susceptibility is also a characteristic of the models (Zastre et

af. 1985). Further evidence fo¡ such critical symmetry is provided by a recent

dynamical stud¡' at ultra-]orv frequencies of the non-linear susceptibility of a very

dilute Agl\{n spin glass (Levy, 1988): in a static freld of g0 Gauss and just below
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?sc, the system appears to approach quasistatic thermodynamic equilibrium for

applied frequencies iess than about 10-3 Hz, with an efiective non-linea¡ critical

exponent .¡, rvhich is close to its value above ?56, and hence consistent witli the

predictions of the Efrective Field Modei (but not rvith the Parisi solution, which

does not yield singular behavio¡ beiow ?s6). In contrast, neithe¡ the A.C. sus-

ceptibility no¡ the ZFC magnetization of spin glasses ever seem to exhibit the

temperature independent plateau predicted by the Parisi solution (even in the

ultra-lot' frequencS' limit); ihis feature appears to be uniquel¡' characteristic of

the FC magnetizatiou, rvhich mal' correspond to the equilibrium response of the

system.

The numerical calculations of sections 3.2 and 3.3 indicate that these cor-

relations betrveen experiment and theory extend into the ¡e-entrant region of the

magnetic phase diagram as well. The ZFC magnelization curves of three ver¡'

dilute PdFe and PdMn alloys. with concentrations intermediate between those

of the usual spin glass and ferromagnetic phases, have been fitted successfuliy

rvith curves generated numericall3'in the 'r'icinit¡' of the t¡i-critical point of the

Effective Field Model, using re-entrant values for the parametet i lÃ.
Alihough the zero field A-T instability line in the ferromagnetic regime of

the magnetic phase diagram (Figure 1.21) lies above the re-entrant boundary in

temperature, the curvature of the instability surface, plotted rvith field and 7/J¡=

as independent variables, is stongl¡' concave up, particularly in the vicinitl' of

the t¡i-critical point (7/f = 1) whe¡e the slope ôTA'r lAh approaches infinity.

This means that the instability temperature in the re-entrant regime is rapidly

depressed by the application of a finite field l¿. While the zero-field boundary itself
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may not be visible, manifestations of tlie transition in finite field, both above and

below the re-ent¡ant temperature, will penetrate the surface and survive in the

region where the solulions are considered to be stable. (An analogous situation

occurs in the pure spin glass regime, rvhere the model susceptibility peaks for fixed

field lie above the A-T line, but below the (zero field) critical temperature 7sç, and

provide a valuable anomaiy for comparing theo¡etical predictions to experimentaJ

systematics (Gash et al. 1984).) Thus, while the actua.l singularity in the non-

Iinear susceptibilit¡' may be obscured close to the re-entrant temperature ?56,

evidence of the critical behavio¡ in the nou-linear components will nonetheless

still be identifiable farther fiom ?sc.

Based on these arguments. the mean-fieid Ðffective Field Model seems par-

ticularly rvell suited to describing the physics o{ ver¡'dilute magnetic ello¡.'s, and

its use in developing a meaningful c¡iterion for identifying re-entrant transitions

in experimentaJ. systems is justifred.
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3.5 Numerical Solution of the
Effective Field Model

The mea¡-field ve¡sion of the Efiective Field Model for arbitrary spin ,9 (section

1.2.4) yields Sherrington-Kirkpatrick-like coupled equations for the local magne-

tization nz and the order parameter g (equations 1.69 and 1.70). flowever, for

exchange parameters q = * < 1.0, there exists a paramagnetic/ferromagnetic

phase transition at temperature 
"" 

= 91r*{tf,so that the coupled equations can

be written in the {o¡m

s(S + 1)i¿\
s)

(3.2)

(3.3)

with

(3.4)

The ¡educed temperature and ¡educed field are defrned by t = T lT" and h = #,
respectively, where IJ is the applied fieid. (Note that the present definition of r7

is the inve¡se of that used in the frrst chapter).

For a particular choice of z¡, l, and h, the coupled equations were solved

numerically b¡' means of the FORTRAN program in Figure 3.20. The Gaussian

form of the integrands enabled the infinite integration limits úo be replaced by the

flnite domain -10 ( a < 10, with an insignificant loss of accuracy. Ðvaluation

of the integrals was faciLitated by dividing the domain into 50 sectors of equal

" = a=h (*+n,/t^+
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width A, and then applying a 10-point Gauss-Legendre quadrature technique to

numerically compute the area corresponding to each secto¡.

An ite¡ative technique (based on Newton's Method) v¡as used to solve the

equations for rri, and g, with the qualiiy of the solutions characterized by the

fractional difierences between the left-hand and right-hand sides of equations 3.2

and 3.3. Note that for a system of N spins, the buJk magnetization is given b¡' M =

Ng¡tnm, while the saturation value is M,o¿ - Ngp,sS. These expressions allow

direct quantitative comparisons to be made between the theoretical calcu.lations

and experimental data.

.A.n expression for the diffe¡ential magnetic susceptibility X = ffi was de-

rived by difierentiating equations 3.2 and 3.3 with respect to l¿ and anaJyticaJil'

soìving for ¡. The resuiting integral equation, shown below, depends on the values

of rn and g. Hence,

.,_ N
^ 

_ t_ S2KzZe_ ffif ,

where I¡ and Bs{Y] a¡e defined in equations 3.4 and 1.56, and

(3.5)

K1

Kz

SsKtKz(Xzh - XJ4) + SKtXl ,

slt,
3t¡

\fqt(S + Ð '

1 /*- )^ -_^(-ar\ aBl,Yl
J2" l-- ** "^"\ z / a\' '

jñl::'"".'(#) 'ry,
J¿| 

-

Tz=



x, = h lll 0"""'(#) a4v1e!-Ð ,

z -- rtflo"""'(#) '",¡1aff,
W = - ti# *'r({f ')l' * [,,a 

*"(#)]'-r +
The integrals were evaluated by means of the quadrature technique outlined pre-

viously.
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Figure 3.20: A FORTRAN program to numerically solve the coupled equations
fo¡ rn and g, and calculate the diferential susceptibility 1.
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3.6 Summary

The static magnetization of three Pd alloy needles (witir 700 ppm Fe, 700 ppm Mn,

and 1000 ppm Mn) was measured as a function of temperature and applied mag-

netic field. The characteristic {eatures of the experimenta,l data are duplicated by

theo¡etical ¡e-ent¡ant calcuìations performed ove¡ similar ranges of temperature

and field.

For temperatures above and belou' the proposed ¡e-ent¡ant transition tem-

perature Îsc, the thermo-remanent magnetization of the 700 ppm Fe sample dis-

plays an essentially logarithmic, or perhaps a stretched-exponential, deca¡' rvith

time. The lack of an anomaly in the relaxation rate as a function of tempera-

ture, together with the possibility of a stretched-exponential dependence (albeit

weak), suggests that the ferromagnetic and spin glass dynamics are indistinct in

re-ent¡ant systems.

Extensive numerical studies of the differential susceptibilit¡' provide clear

theoretical evidence for the occur¡ence, in the vicinit¡'of the ferromagnetic/spin

glass transition, of a critical anomaly in the non-linear susceptibiiit¡' components.

Furthermore, the systematic behavior of the theoretical isotherms is highly rem-

iniscent of A.C. susceptibility measurements performed within the (proposed)

¡e-entrant spin glass phase of a (Pdo.sgssFeo.oo.u) + 5 at.To Mn sample. The

theo¡etical predictions may provide a practical crite¡ion for identifying critical

behavio¡ in experimentaJ ¡e-entrant systems.
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