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Abstract

The static magnetization of three very dilute Pd alloys, containing 700 ppm Fe,
700 ppm Mn, and 1000 ppm Mn, was measured for temperatures between 50
milli-K and 1 X, and applied fields of up to 10 Gauss. The zero-field-cooled
data possess features which can be replicated by numerical calculations based
on a mean-field effective field model with exchange-bond disorder and arbitrary
spin. Moreover, the comparisons suggest that the alloys are within the re-entrant
region of the magnetic phase diagram, and hence undergo sequential transitions,
from paramagnetic to ferromagnetic to spin glass ordering, as the temperature is
lowered.

The time dependent thermo-remanent magnetization of the 700 ppm Fe sam-
ple, as measured over 7200 seconds for several temperatures above and below the
proposed re-entrant transition temperature, is consistent with a logarithmic (or
possibly a stretched- exponential) decay. However, the relaxation rate is appar-
ently temperature independent.

Detailed numerical calculations of the theoretical differential susceptibility re-
veal a singular anomaly in the non-linear components near the re-entrant transi-
tion temperature. Furthermore, experimental A.C. susceptibility isotherms, mea-
sured below the proposed re-entrant transition temperature of a (Pdo.ss65Feo.0035)
+ 5 at.% Mn sample, display systematics which are strikingly similar to the the-
oretical investigations. The analysis illustrates a potentially useful technique for
identifying re-entrant transitions in experimental systems.
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Chapter 1

Introduction and Theory

1.1 General Background
1.1.1 Phase Transitions in Pure Ferromagnets
Magnetic Ordering in Iron-like Metals

The traditional concepts of magnetic phase transitions are typefied by the proper-
ties of (non-dilute) transition metals such as Iron or Nickel. These systems display
a form of critical phenomenon; a transition (at the Curie temperature) between
a low temperature ferromagnetic phase and a high temperature paramagnetic
phase.

To describe the physics of magnetic materials it is necessary to approach
the problem at an atomic level. Each atom in an Iron-like metal lattice has a net
spin § and a corresponding magnetic dipole moment —g,u,Bg (g = 2 1s the Landé
factor, and up = eh/ 27;150 is the Bohr magneton), due mainly to the incomplete
filling of the 3d-band electron states. The inhomogenous electric field produced
by the ions in the crystal tends to quench the orbital moments so that the effects

of spin-orbit coupling may be ignored. Though the magnetic properties are best



described by non-localized (itinerant) electron models, it is convenient to assume
that the electrons are localized on the lattice sites. With the application of a
uniform external magnetic field H,, the dipoles tend to align themselves along the
field direction to minimize energy. Summing over the lattice sites, the magnetic
energy is given by

Q!LBZH—‘D'S:'

The resulting paramagnetic ordering must compete with random thermal motions
of the spin orientations. If there are mo other sources of magngtic order, the
magnetization drops to zero when the field is removed.

In ferromagnetic systems, there exists another much stronger source of mag-
netic order. The direct exchange interaction is actually a consequence of the
Coulombic repulsion -of electronic charge distributions, together with the Pauli
exclusion principle. It is characterized by the exchange energy J, between two
electronic wavefunctions ®; and ®,, such that (after Cohen-Tannoudji et al.,

1977)

2
szfﬁffm@wn@wg—éfrémm¢m@,

| 71 73 |

where the magnitude depends on the amount of overlap between the wavefunc-
tions. If J is positive, antisymmetric wavefunctions minimize the energy and
overall symmetry considerations require the spin states to be symmetric. That
is, parallel arrangements of the spin orientations are favoured. It is important to
note that the direct exchange between the atoms in a lattice is of relatively short

range, and only neighboring spins interact strongly.



The interaction between all the spins of the lattice can be modelled using

the Heisenberg Hamiltoman,
1 I
-EZ JiiSi+S; 5 Jij=J5, Ju=0
i,

where the exchange parameter J;; determines the strength of the interaction be-
tween the ith and jth spins (and is related to the exchange integral above).
Positive parameters favour parallel alignment of the spins, and there is a spon-
taneous magnetization (ferromagnetism) as long as thermal fluctuations do not
overwhelm the magnetic order. Alternatively, negative parameters favour anti-
parallel or anti-ferromagnetic alignment of the spins.

In the exact mean-field theory of ferromagnetism, the individual Jij are as-

sumed to be of infinite range, and are replaced by an average exchange bond
Jo / N, where N is the number of spins in the system. Only spin components
(5. = S;) along the field direction are considered so that the magnetic energy is

described by an Ising Hamiltonian

__hss s
H= 2N§S,S, RS,

1

where b = —gppH,. The magnetization (or net dipole moment per volume
V) of the system is obtained by evaluating the partition function and ensemble
averaging the spins, over the thermal fluctuations, in the thermodynamic limit

(N — 00). The result is a transcendental equation which, for arbitrary quantum



spin § (ie., —S < 8, < 5), is
@%Tsmzssqaﬁzm+@] D B= = . (1.1)

The local magnetization m is related to the bulk value of M = Ngupm. For
S; = £1/2, the Brillouin function (equation 1.56) simplifies to By /,{z] = tanh[z].
As can be seen in Figure 1.1, there is good agreement between experimental re-
sults and mean-field theory calculations, despite the simple nature of the model.
For temperatures 7' — 0 the magnetization reaches its saturation value of M, =
NgugpS. As T is increased, thermal fluctuations gradually overcome the ferro-
magnetic order, until the spontaneous magnetization My = M(0,T) disappears

at the Curie temperature 7,.. The zero-field susceptibility x¢ = ( gﬁ,{}

) in .
He=0

the paramagnetic region (I > T.) is predicted by mean-field theory to obey a

Curie-Weiss law:

Xo = _g__ where C = Ng'upS(S +1)

(T—T.) 3Vkg

(1.2)

Experiments have shown this to be valid for large temperatures, but incorrect for
temperatures close to 7.. The Curie temperatures tend to be quite large, with

T. = 1043K for Iron, and 627K for Nickel (after Kittel, 1976).

The Ehrenfest Criterion

The transition between paramagnetism and ferromagnetism is a phase change in

the traditional thermodynamic sense. Consider the following expression for the
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Figure 1.1: A comparison between the exact mean-field theory of ferromagnetism
(for spin S = 1 and § = 1/2) and experimental magnetization measurements (s)

on pure Fe and Ni (after Stanley, 1971).



differential Gibbs free energy of a magnetic system:
dg=-5dT - MdH ,

where S is the entropy. The isothermal susceptibility is defined as (Ausloos and

Elliott, 1983)
(oM _ (9%
""(BH)T B (aHﬂ)T ! (9

while the specific heat is given by

0%g
Cy=-T (—) X (1.4)
ar? ) , -

By the Ehrenfest criterion, a phase transition occurs whenever there is a disconti-
nuity in a derivative of the Gibbs function, with the order of the transition defined
by the lowest order derivative in which the discontinuity occurs. In this regard,
the ferromagnets display second-order phase changes since their susceptibilities
and specific heats, evaluated in zero field and as a function of T, diverge as the
Curie temperature is approached. {We shall ignore, for the present time, the ef-
fects of magnetic domains and sample demagnetization, etc., which can artificially

suppress the singular behavior of experimental systems.)

Critical Phenomena

In ferromagnetic systems, the zero-field (spontaneous) magnetization plays the
part of an order parameter, and indicates the breaking of symmetry that oc-

curs in going from the high-symmetry paramagnetic state to the low-symmetry



ferromagnetically ordered state. Also, the transition is an example of a critical
phenomenon because of the characteristic way in which various thermodynamic
functions behave as the Curie (or critical) temperature is approached from above
and below.

A simplified physical interpretation of critical phenomena (in ferromagnetic
systems) is as follows. For T >> T, the direct exchange interactions (between the
spins of the system) are completely overwhelmed by thermal agitation of the spins,
and there is no spontaneous magnetic order. However, for lower temperatures
T > T. the fluctuations are weakened enough to allow short range local ordering
in isolated parts of the system. That is, small islands of ferromagnetic order begin
to develop, but the net magnetization is still zero since the islands are too far apart
to affect one-another. As T — T, the islands grow in size and their moments start
to interact and align along a common direction. Finally, when T = T the islands
link together to form a network of long-range ferromagnetic order which extends
throughout the system. Hence, the spontaneous magnetization develops suddenly
(but continuously) at T.. The Curie-Weiss law (equation 1.2} is incorrect close to -
T. because the mean-field theory does not allow for the occurrence of short-range
order.

Critical behavior (not only in magnetic systems) is classified according to
how the appropriate order parameter, susceptibility, and specific heat vary near
the critical point. For a ferromagnet in zero-field we write the following power

laws (after Ausloos and Elliott, 1983):

MH=0,t<0) ~ (=t)°



where we have introduced the reduced temperature ¢ = (T' — T.}/T. and assumed
the limit ¢ — 0. Additionally, the field dependence along the critical isotherm
T = T, is given by

M(H,t=0)~ HY® | : (1.6)

Critical systems are grouped into universality classes according to the values
of the critical indices, and in the most general cases the exponents are related to
one-another through inequalities. For ferromagnets, however, the free energy is a

homogenous function such that (after Ausloos and Elliott, 1983)
f(a®H,a%) = a f(H,t} , (1.7)

where @ is arbitrary. The critical exponents (a, 3, etc.) can be extracted from z

and y by performing the appropriate derivatives, so that (after Stanley, 1971)

g = (1-=)ly ,
¥y =7 (2z -1)/y ,
a=cd = (2y—-1)/y ,

z/(1 -z} .

1
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They are related to one-another through equalities such as the Widom relationship

(Ausloos and Elliott, 1983)
y=B8(6-1) . (1.8)

For example, the mean-field Ising model predictions are = 1,y = 1, and § = 3.
The critical behavior can consequently be described using static scaling

functions. For instance, differentiating both sides of equation 1.7 with respect to

H yields:
0f (e*H,a¥t) 0(a*H) a@f(H,t)
8(a=H) 8H 0H
a®* M (a®H,a%t) = oM (H,t) , (1.9)

where M = —8f/8H has been used. Furthermore, a value of a = [t|~}/¥ may be

chosen so that equation 1.9 becomes

H
— [pl(i-=)fy
M (H,t) = |t] M (mz/y ,:1:1)

This expression can be rewritten in terms of critical exponents and a scaling

function F (H /|t|=/y) =M (H/|t|2/” ,:l:l) (after Stanley, 1971):

|t| M (H,t) = Fy (TEI%E) : (1.10)

The left-hand-side is called the scaled magnetization M, while the argument of
the scaling function is the scaled field H. Figure 1.2 portrays a scaled Arrott plot
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Figure 1.2: A scaling plot for Nickel. The superpositioning of the data points,
along the two curves corresponding to T' > T and T' < T, implies that a critical

phase transition occurs at T, (after Stanley, 1971).
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of M? versus H/M for Nickel. Notice that all the points for T > T, fall along a
common curve, as do those for T < T..

A similar equation of state can also be derived for the susceptibility (after

Yeung et al., 1987):

X(EO=x00) <l 6s ()

The term involving G4 describes the non-linear field dependence of the suscep-
tibility, while the zero-field term represents the linear susceptibility. The leading
critical divergence of ferromagnetic systems occurs in the linear term, such that
%(0,2) ~ t=7. This is important from an experimental point of view, since the
non-linear response is typically much weaker, and hence more difficult to analyse,
than the linear response.

Thus, critical scaling provides an indication of whether an experimental
system undergoes a thermodynamic phase transition. Also, the values of the
critical exponents are indicative of the universality class to which the system

belongs (for example, both metallic Iron and Nickel belong to the same class}.

Domain Wall Effects

The presence of a spontaneous magnetization in real ferromagnets is generally
not observable at a macroscopic scale, unless an external magnetic field has been
applied to the system. In explanation, it is understood that below 7. the specimen
is broken up into magnetic domains which are separated by thin domain walls.

Within each domain the spins are near-perfectly aligned (aside from thermal

11



fluctuations), but to minimize energy, the domain orientations are such that the
bulk magnetization of the sample is approximately zero. With the application of
a weak field, the regions with favourable magnetization directions tend to grow in
size at the expense of others and the sample, as a whole, gains a net magnetization.
The associated domain wall displacements may be reversed by applying a field
of equal strength but opposite direction. Domain growth is, however, hindered
by the pinning of domain walls along point defects or impurities in the metal
lattice. With large enough fields, the walls may overcome these obstacles, but the
process is irreversible and leads to magnetic hysteresis and a remanent (zero field)
bulk magnetization. Still larger fields may rotate the domain magnetizations into
favourable directions, despite any magnetic anisotropy in the sample, so that the
bulk magnetization can saturate. |

Another manifestation of domains is the observed slow (non-exponential)
drifting of the magnetization, after a change in the applied field has upset the
stability of the domain structure. This relaxation is explained in terms of thermal
activation processes which enable the domain walls to eventually overcome pinning
obstacles, and hence allow the system to reorganize into a low-energy domain

configuration. Typically, the magnetization has a logarithmic time dependence,
M(t)= My — S In(t) , (1.12)

where § = S(H,T) is the magnetic viscosity, and M, is the initial magnetization.

12



1.1.2 Magnetic Interactions in Dilute Alloys

Dilute magnetic alloys are solid solutions formed by substituting magnetic im-
v «*pﬁritjr%}afdfns {Fe,"Mn; €o;-Ni, ete] ramdomly threughout -the lattice sites of
a non—magﬁetic Eost metal (such as Au, Cu, Ag, Pd, Pt, etc.). In this con-
text, the hosts may be strongly paramagnetic, but metals with spontaneous mag-
netic moments are generally excluded. The solute atoms tend to maintain their
magnetic moments even while in solution, and varying their concentration effec-
tively allows adjustment of their average separation distance. Moreover, since the
impurity-impurity exchange bonds have spatial dependence, the magnetic order-
ing of randomly-dilute magnetic systems is highly concentration dependent, and
displays greater complexity than is found for pure -metals. Before introducing
the specific experimental properties of these systems, it is helpful to first discuss
the magnetic interactions which are thought to be responsible for their magnetic

behavior.

Ferromagnetic Ordering in Dilute Systems

Alloys with high concentrations of ferromagnetic impurities tend to behave ferro-
magnetically, with the Curie temperature roughly proportional to the concentra-
tion (Figure 1.3). That is, the relatively close proximity of the magnetic atoms
allows positive coupling via direct exchange. The ferromagnetic properties become
less pronounced and ulfimately disappear upon decreasing the concentration.
Magnetically, the noble metals provide the simplest hosts. Their conduc-
tion electrons have weak paramagnetic susceptibilities, and hence are influenced

relatively little by the introduction of magnetic atoms into the noble matrix. A

13
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Figure 1.3: Dependence of the Curie temperature of PdFe on the Fe concentra-

tion. A change from a c to a ¢ dependence occurs as the concentration is lowered
(after Chouteau et al., 1971).
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typical example of a binary alloy with an noble metal host is AuFe, which remains
predominantly ferromagnetic down to a concentration of 16 at.% Fe (Nieuwenhuys
et al., 1979).

More interestingly, alloys based on transition metal hosts, such as Pd or Pt,
have much lower ferromagnetic percolation limits. Though not quite ferromag-
netic, the 4d conduction electron band in Pd (and to a lesser extent, the 5d band
in Pt) has a very large paramagnetic susceptibility. This can be understood in
terms of Stoner’s band theory of magnetism, where the susceptibility is enhanced
by roughly an order of magnitude because of exchange interactions between the
electrons within the band (section 1.2.1). These highly-susceptible electrons are
itinerant, and the introduction of localized moments {such as Fe atoms) into the
Pd matrix induces positive spin polarization of the electrons surrounding each im-
purity atom. That is, a large spherical polarization cloud is formed around each
magnetic atom, with the polarization along the direction of the impurity moment.
In the case of PdFe, studies indicate that giant moments of up to 10pp (Crangle
and Scott, 1965) are associated with each cloud (as opposed to about 3up for an
Fe atom in a noble host). Furthermore, neutron diffraction experiments by Low
and Holden (1966) have shown that the clouds extend ~ 10A from an impurity
site and may encompass ~ 200 Pd atoms. The overlap of the clouds effectively
enables their giant moments to couple ferromagnetically down to extremely low
impurity concentrations. According to Chouteau and Tournier (1971), the ferro-
magnetic percolation limit of PdFe is ~ 0.1 af.% Fe, at which point the Fe atoms
are (on average) 15 to 20 A apart. Below this limit, the ferromagnetism gradually

disappears; the separation distances become too large to allow direct exchange

15



and it is no longer possible to have, as a ground state, an extensive network of

ferromagnetically ordered spins.

Quenched Disorder, Frustration, and Spin Glass Ordering

According to RKKY theory (section 1.2.1), the magnetic polarization of the host’s

conduction electrons, due to the presence of a localized magnetic impurity mo-
ment, is oscillatory in nature so that both the sign and the strength of the po-
larization varies with the distance from the impurity atom. Consequently, the
moment of a second magnetic atom can be influenced by these polarized elec-
trons; hence the impurity spins are indirectly coupled. Because of the long-range
characteristics of this indirect exchange, it dominates the magnetic ordering of
systems in which the magnetic atoms (or polarization clouds, as the case may be)
are too far apart to interact via direct exchaﬁge.

The random positioning of the magnetic impurities within such a solid so-
lution is known as gquenched disorder, as it occurs in addition to, but independent
of, the more usual temperature-induced thermal disorder. Theoretically, the com-
bination of quenche& disorder and the oscillating RKKY interaction provides a
frustration mechanism. Each of the impurity moments receives instructions from
all the other impurity moments (by means of RKKY exchange bonds) as to which
direction it should point. However, because the individual exchange bonds are
either ferromagnetic or anti-ferromagnetic, depending on the distance between
the atoms, there is random conflict between the types of order. Since no simple
parallel or anti-parallel arrangements will simultaneously satisfy all the required

exchange couplings, the spins are said to be frustrated, and they must coopera-

16



tively determine a configuration which satisfies the random exchanges. Infinitely
many stable solutions are possible, but they are all characterized by freezing of the
impurity spins into random orientations. There is no long range magnetic order
in the usual sense, and hence no spontaneous magnetization. As in ferromagnetic
systems, this frozen order must compete with thermal fluctuations, and gives way
to the more usual paramagnetic ordering above some freezing temperature Ts¢.
The term spin glass is commonly used to denote the ground state of such systems.

A great deal of experimental and theoretical research has been aimed to-
wards identifying spin glass systems, and characterizing the spin glass/paramag-
netic transition in terms of critical phenomena. Apparently, PdFe alloys are spin
glasses only up to 0.01 at.% Fe (Peters et al., 1984) since the large spatial ex-
tent of the polarization clouds enables some long-ranged ferromagnetic coupling
to occur, even at extremely low concentrations. Also, the paramagnetic/spin
glass transition temperature is given by Ts¢ =~ 0.83;—17{—7{@}(, where X 1s the Fe
concentration.

The situation in AuFe is more complex (Coles et al., 1978), due to metal-
lurgical considerations. Without exchange enhancement, the spin glass ordering
begins at a much higher concentration, and it is statistically more likely that some
short-ranged ferromagnetic ordering will occur randomly throughout the system.
Below 8 at.% Fe, the system is an archetypical spin glass. However, from 8 to 24
at.% Fe, it condenses into clusters of ferromagnetically ordered spins which grow
in size with increasing concentration. The clusters interact via the the RKKY
mechanism so that their moments are frustrated and have cluster glass order

(Figure 1.4},

17
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Figure 1.4: The magnetic phase diagram of AuFe. The various regimes are

paramagnetic (P), ferromagnetic (F), super-paramagnetic (SP), spin glass (SG),
and cluster glass (CG) (after Coles et al., 1978).
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Re-entrant Ferromagnets

Alloys with impurity concentrations between those required for a spin glass or a
ferromagnetic ground state are predicted, by some mean-field models (particularly
the Sherrington-Kirkpatrick model of section 1.2.3), to yield behavior which is a
combination of the two. That is, the average separation distance between the
magnetic impurities is such that the direct exchange and RKKY interactions are
competitive in some way. These systems have the potentiai to display re-entrant
behavior, which is defined as a set of sequential transitions, from paramagnetic to
ferromagnetic to some sor‘t of spin glass ordering, as the temperature is lowered
from above the Curie temperature. For example, AuFe seems to be re-entrant
within the concentration range 16 < at.%Fe < 24 (Nieuwenhuys et al., 1979),
while the hypothetical range for PdFe is about 0.01 < at.%Fe < 0.10. Figure
1.3 shows that, within the proposed re-entrant region, the Curie temperature for
PdFe varies as the square of the concentration. Much of the current interest in
dilute magnetic alloys is focused on understanding the nature of such systems;
moreover, the very existence of the re-entrant spin glass transition is the subject

of theoretical and experimental controversy.

Frustration in Alloys with Anti-ferromagnetic Impurities

The concentration dependence of the magnetic order can be complicated fur-
ther by choosing magnétic impurity atoms (such as Manganese) which couple
anti-ferromagnetically through direct exchange. For example, PdMn is a giant
moment ferromagnet (~ 7.515 per Mn atom) for Mn concentrations from about

0.1 to 2.5 at.% (see Figure 1.5). However, above 5 at.% there is a significantly
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Figure 1.5: The magnetic phase diagram of PdMn. The bold solid line indicates
the Curie temperature, while the bold dashed line indicates the paramagnet-
ic/spin glass transition temperature. The region denoted by M is re-entrant. Not
shown are the secondary spin glass and re-entrant regimes at ¢ < 0.1 (after Zastre

et al., 1985).
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increased probability that Mn atoms will be first, second, and third nearest-
neighbors, enabling direct anti-ferromagnetic coupling between them. The con-
flict, between the short-ranged anti-ferromagnetic (Mn-Mn) exchange and the
longer-ranged ferromagnetic {giant moment-giant moment) exchange, provides a
frustration mechanism which leads to a spin glass ground state. Experiments indi-
cate that more conventional RKKY-induced spin glass ordering is possible below
0.06 at.% (Thomson and Thompson, 1979). Hence, two concentration regimes
are expected to yield re-entrant behavior in PdMn; 2.5 to 5 at.%, and 0.06 to
0.1 at.% (Ho et al., 1981, and Zastre et al., 1985).
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1.1.3 Experimental Properties of Very Dilute Alloys

Since the early 1970°s there has been a great deal of interest in the study of very
dilute magnetic alloys, due largely to the exceptional magnetic behavior of spin-
glass and (potentially) re-entrant systems. The central question is whether or not
the low temperature anomalies, observed in only some of their properties, are due
to thermodynamic phase transitions into spin-glass-like states.

Experimentally, sﬁin glasses are characterized by apparently contradictory
results for their A.C. susceptibility and specific heat measurments as a function of
temperature. There is generally a cusp found in the low field susceptibility at some
temperature Tsq, perhaps indicating a thermodynamic phase transition from a
paramagnetic state to a spin glass state. Seemingly contrary to the Ehrenfest
criterion, the specific heat measurements typically show nothing more than a
broad maximum with no obvious correlation to Tgs. Furthermore, resistivity
measurements generally do not reveal clear anomalies as evidence of a sudden
phase change at Tsg, and the history-dependent effects which spin glass systems
possess could be construed as non-equilibrium behavior.

On the other hand, experiments involving neutron diffraction and Mossbauer
spectroscopy tend to support the existence of frozen disordered states. Analyses
of the spin glass transition within the frame-work of non-linear critical phenomena
have also been very successful in recent years (Bouchiat 1986, for example). As a
result, the present experimental consensus generally supports the existence of the
paramagnetic/spin glass transition, though it is clearly higher than second-order
in the Ehrenfest sense, and therefore more subtle than the familiar ferromagnetic

transition. (For comprehensive reviews of spin glass properties, see Binder and
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Young 1986, and Huang 1985.) The importance of understanding spin glasses is
fuelled by the increasingly large number of systems which display spin-glass-like
behavior. Initial efforts focused on archetypical systems such as AuFe, though the
list has since expanded to include amorphous and insulating systems, for which
the frustration mechanisms are somewhat different than in dilute alloys.

During the past decade, similar controversy has developed over ferromag-
netic re-entrant systems. They are unique because they show evidence of a high-
temperature paramagnetic/ferromagnetic transition, as well as a Jow-temperature
transition from one spontaneously ordered magnetic state to another (i.e., from
ferromagnetic to spin glass ordering). However, their analysis is more challeng-
ing since ferromagnetic domain wall effects complicate the magnetic behavior for
temperatures 7' < T.. The following sections introduce the salient features of
susceptibility measurements on re-entrant systems, as well as dynamical effects

in spin glass systems.

Susceptibility Measurements on Re-entrant Systems

As mentioned in section 1.1.2, the magnetic impurity concentration of a dilute
alloy is crucial in determining the magnetic ordering of the system. This depen-
dence is indicated most obviously by the temperature dependent low-field A.C.
susceptibility. In this respect, the ternary alloy (PdFe)Mn has been well repre-
sented in the literature.

Like PdMn, (PdFe)Mn is expected to have concentration regions which
yield re-entrant behavior. With a concentration of 0.35 at.% Fe, PdFe is a strong

giant-moment ferromagnet with 7, ~ 8.7K. Adding Mn to the PdFe matrix
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introduces anti-ferromagnetic exchange bonds to the syétem; hence there is a
~ frustration mechanism that depends on the relative amounts of Fe and Mn (Figure
1.6).

Verbeek et al.(1978) studied (Pdy.asssFeo.0035 )., Mn, for Mn concentrations
of z = 0.01, 0.05, and 0.065, and their zero-field susceptibility measurements
are shown in Figure 1.7. Curve (a) represents a transition from paramagnetism
to ferromagnetism, but the Sus-ceptibility has not been corrected for the shape-
dependent demagnetizing factor I, which is appreciable since they used spherical
samples. (That is, the impurity spins are partially shielded from the applied
field H, by means of a diamagnetic component to the sample magnetization; the
resulting effective internal field is H; = H, — DM, where M is the magnetization
component in the direction of H,.) They attempted to compensate for the effects

of D by means of the following relation {after Verbeek et al., 1978):

Xmeasured
rue — . 1.13
Xt 1-— DXmeaaured ( )

At the Curie temperature T., Xirue diverges to infinity, while Xmeasured = 1/D.
They estimated a value of T, =~ 13 K by locating the point on the knee of the
curve where d Xmeasured /@7 is 2 maximum.

Curve (c) displays typical spin glass characteristics, with a sharp cusp ob-
served at the spin glass freezing temperature Tsg =~ 4.7 K. The decrease in x
as the temperature is lowered through T'sg is symptomatic of the freezing of the
impurity moments into random orientations as T — 0.

Curve (b) potentially shows re-entrant ferromagnetic behavior. As temper-

ature is lowered, a change from paramagnetism to ferromagnetic ordering seems to
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Figure 1.6: The magnetic phase diagram of (Pd.geesFegco3s) + ¢ at.% Mn. The
region 3 < ¢ < 6 is re-entrant (after Huang, 1985).
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Figure 1.7: Zero-field A.C. susceptibility measurements (using a driving field of
0.1 Gauss and 210 Hz) on several (Pdo.0essFes.00s5) + ¢ at.% Mn alloys:

(a) ferromagnet (¢ = 6.5),

(b) re-entrant (c = 5),

(¢) spin glass (¢ = 1).

The dashed line represents a theoretical re-entrant calculation (from the Sherring-
ton-Kirkpatrick model) which has been artificially demagnetization limited (after
Verbeek et al., 1978).
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occur at 7. = 9 K. Note that the knee is much broader than for curve (a), indicat-
ing perhaps that the ferromagnetic ordering is not as well defined in the re-entrant
case. The system displays ferromagnetic characteristics down to about 7' =5 K,
at which point a reversed knee and then a rapid decrease in  are encountered.
Verbeek et al. associated this decrease with the onset of spin glass ordering. They
also compared their results with predictions made by the Sherrington-Kirkpatrick
model (section 1.2.3), with good qualitative agreement—they did, however, arti-
ficially introduce demagnetization limiting to the theoretical susceptibility curve.
The similarity is significant because the model predicts the existence of a spin
glass/ferromagnetic phase transition. They studied other concentrations as well,
and found similar re-entrant-like behavior throughout the concentration range
3 < at.% Mn < 6. For the sake of comparison, Figure 1.8 shows the susceptibility
of several AuFe alloys which display spin glass and re-entrant characteristics.

Nieuwenhuys et al. (1978) investigated the effects of applying D.C. biasing
fields, along the direction of the A.C. probing field, to (PdFe)Mn alloys of various
Mn concentrations. Figure 1.9(a) shows a typical spin glass case with 8 at.%
Mn. The movement of the cusp to lower temperatures with increasing field is
characteristic of spin glass systems, and is also duplicated by the Sherrington-
Kirkpatrick solutions.

Figure 1.9(b) shows the possibly re-entrant 5 at.% Mn case. In a finite
biasing field, the susceptibility clearly develops two peaks around the proposed
transition temperatures Tse¢ and T,. While the upper peak moves to higher
temperatures as the field is increased, the field dependence of the lower peak

is much like that of the paramagnetic/spin glass cusp, thus lending support to
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Figure 1.8: Zero-field A.C. susceptibility measurements (~ 0.5 G, 210 Hz) on
AuFe alloys of various Fe concentrations. The 12 at.% and 13 at.% Fe curves
show typical spin glass characteristics, while the remaining curves are re-entrant

(after Coles et al., 1978).
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Figure 1.9: In figure (a), the left hand curves represent the A.C. susceptibility
of the (Pdg.esesFep.00as) + 8 at.% Mn spin glass in various D.C. biasing fields H
Gauss]. The right-hand curves are theoretical calculations based on the Sher-
rington-Kirkpatrick model. As explained in section 1.2.3, the value of Jo/J = 0.5
used for the calculations places them within the spin glass region of the theoreti-
cal phase diagram.
In figure (b), the left-hand curves represent the susceptibility of the
(Pdo.g9s5Fe0.0035) + 5 at.% Mn re-entrant alloy in various biasing fields, while the
right-hand curves illustrate theoretical re-entrant calculations with Jo/J = 1.1.
As before, the theoretical zero-field curve has been artificially demagnetization
limited (after Nieuwenhuys et al., 1978).
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the notion of a re-entrant spin glass phase. Nieuwenhuys et al. also compared
~ the field dependence of their re-entrant system to predictions of the Sherrington-
Kirkpatrick model, and once again a good qualitative agreement is observed.
Unfortunately, the above qualitative analysis does not preclude the possi-
bility that non-critical ferromagnetic domain wall effects are responsible for the
low temperature re-entrant-like behavior. Additionally, the method of obtaining
T. and Ts¢ from the zero-field susceptibility is somewhat questionable, as the

positions of the knees are presumably functions of the demagnetizing factor.

Re-entrant Critical Behavior?

More recently, Kunkel and Williams (1988) studied the (Pdo.gsesFeo.0035) + 5
at.% Mn re-entrant system in much greater detail, and attempted to characterize
both the upper and lower transitions in terms of linear and non-linear critical
phenomena. Their susceptibility measurements were not demagnetization limited,
as the geometric shapes of their samples were chosen to minimize such effects.
Even so, their temperature-dependent zero-field susceptibility curve displayed an
intermediate plateau structure similar to the results of Verbeek et al. (1978). This
implies that thé plateau is not simply a manifestation of the limits imposed by
‘demagnetization, but is instead an intrinsic property of the experimental system.
The formation of magnetic domains between Tsg and 7, is conjectured to be the
underlying cause.

To investigate critical behavior, Kunkel and Williams carefully measured the
effects of applying various D.C. biasing fields, and obtained the typical double-
peaked structure for the susceptibility. They analysed the field dependence of the
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high temperature peak (centered near ~ 9 K) in terms of the usual ferromagnetic

static scaling law (equation 1.11), which can be rewritten in the form

H
— g1,
x(H,t) = HO-1 g, (mw) , (1.14)
where { = |L;-,—czf-i is the reduced temperature. Moreover, they were able to ex-

tract a self-consistent set of critical parameters such that the exponents satisfy
the Widom relationship (equation 1.8). The quality of the corresponding scaling
plot (Figure 1.10) illustrates that the upper transition is a well-defined paramag-
Vnetic/ferromagnetic phase change.

Characterizing the lower temperature (~ 4 K) transition within the frame-
work of critical phenomena is more difficult. Solutions of the Sherrington-Kirkpat-
rick coupled equations (1.51 and 1.52) obtained analytically through expansions
of the Brillouin function, indicate that the critical behavior at the direct para-
magnetic/spin glass transition is apparent only in the non-linear susceptibility
(Yeung et al. 1987, Roshko et al. 1985). In other words, the theory predicts a
linear susceptibility which is finite and continuous for all temperatures (includ-
ing Ts¢). Since the non-linear magnetic response is typically much weaker than
the linear response, the corresponding critical behavior is not easy to observe ex-
perimentally. Even so, several experimental investigations have apparently been
successful in critically scaling spin glass data in terms of the theoretical predic-
tions (Bouchiat 1986, and Yeung 1988, for instance). The appropriate scaling
equation shares the same basic form as equation 1.11. However, as the scaling

function must be an even function of the field H (otherwise the corresponding
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Figure 1.10: A scaling plot for the potentially re-entrant (Pdo.ssssFeo.00as) +
5 at.% Mn system. Various internal fields are indicated, and the temperatures
all lie above 9.3 K. The reduced temperature iy represents the location of the
high temperature peak in x(t) for a particular field. The quality of the scaling
illustrates that a well defined paramagnetic/ferromagnetic transition occurs at
T, = 9.3 K (after Kunkel et al., 1988).
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magnetic response would contain diamagnetic components), it can be expanded

as (Kunkel et al. 1988)

) H?
— — 7 ——
X('H3 t) - X(O?t) i G:t (t27'+2ﬂ')

= x(0,8) — ay(t) H: + ag(t) H* — -+ . (1.15)

The primes are used to distinguish the spin glaés critical exponents from those of
the ferromagnetic case, and the reduced temperature is redefined as ¢ = I%&m.

In analogy to the spin glass studies, Kunkel and Williams used their data
from around the lower transition to check for a divergence in the coefficient ay(t) of
the leading non-linear term. (As an aside, it should be noted that valid expansions
of the aforementioned coupled equations are not possible to perform within the
re-entrant region, and hence no critical predictions for the re-entrant transition
can be derived analytically. However, the detailed numerical solutions explored in
Chapter 3 of this thesis do verify that the non-linear critical behavior theoretically
extends to the re-entrant transition as well.) In particular, they plotted x(H,t)
versus H? for temperatures both above and below their final choice of Tsg. At low
fields these plots are linear since the H? term dominates the expansion. Hence,
the initial slopes of the isotherms yield the the values of the coefficient at each
temperature. These are plotted versus temperature in Figure 1.11. Though not
divergent, the distinct anomaly at 4.07 K is highly suggestive of a phase transition,
and Kunkel and Williams used it to identify Tsg. The lack of a djvergence could

be due partly to an underestimate of the coefficient values for temperatures near

Tsg. Ast — 0, the initial linear portions of the isotherms (in the x versus
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H? plots) become confined to lower and lower fields, and it is experimentally
difficult to ensure that the measured data represent the true initial slope. Kunkel
and Williams also propose that dynamical effects, related to the onset of critical
slowing down as T — Tgg, together with the use of a probing field of finite’
(as opposed to zero) frequency, are to blame. Nevertheless, their analysis shows

intriguing evidence of critical re-entrant behavior.
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Figure 1.11: A peak in the quadratic field coefficient of the (Pdo.e0s5Fe0.0035) + 5
at.% Mn susceptibility apparently occurs near 4.07 K. The anomaly is suggestive
of critical re-entrant behavior, and is used to identify the re-entrant transition
temperature Tsg (after Kunkel et al., 1988).
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Dynamical and History-Dependent Properties of Spin Glasses

Spin glasses have unique dynamical and history dependent properties which char-
acteristically set in near the paramagnetic/spin glass transition temperature Tsg.
These are manifest in many ways, such as the differences between field-cooled
(FC) and zero-field-cooled (ZFC) magnetization measurements (as a function of
temperature). The ZFC magnetization curve is obtained by cooling the spin glass
specimen in zero applied field, from a temperature T' > Ts¢ to the lowest desired
measuring temperature T, < Tsg, at which point a small D.C. field H is applied.
Similarly, the FC magnetization is obtained by cooling in the specﬁmen down to
T < T'sg 1n the same finite field used above. In both cases, successive measure-
ments are obtained by incrementing the temperature and stabilizing at eéch of
the desired T, values, until the highest required temperature is reached.

As shown in Figure 1.12, the FC and ZFC curves are identical down to
some well defined temperature, below which their behavior differs dramatically.
Experimentalists often identify this point of departure with Tsg, and we shall
adopt this approach. The FC curve is roughly temperature independent below
Tsi, while the ZFC shows a cusp at Tsg. Significantly, below Tsg the ZFC
magnetization slowly relaxes (quasi-logarithmically) with time towards the FC
“state, which it is expected to reach as time £ — oo. On the other hand, only
extremely weak time effects have been observed for the FC case (Lundgren et
al., 1982). Note that the ZFC magnetization is similar in nature to low frequency
A.C. susceptibility measurements, though the time effects in the A.C. case appear
also as a frequency dependence of the cusp.

As shown in Figure 1.13 the ZFC and FC curves for re-entrant systems
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Figure 1.12: The FC and ZFC magnetization of the Pt + 2400 ppm Mn spin
glass, using an applied field of 2 Gauss. The peak in the ZFC curve is associated
with Ts¢ =~ 200 mK (after Yeung, 1988).
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Figure 1.13: The FC and ZFC magnetization curves for the (Pdo.gessFep.0035) +

5 at.% Mn re-entrant system, using an applied field of 0.1 Gauss (after Carnegie
et al., 1979).
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display features similar to those found for spin glasses. However, analysis is
hindered by time effects {induced by ferromagnetic domain wall motion) which
occur in the ZFC curve below the Curie temperature. These tend to obscure the
- (possible) lower temperature transition into the spin glass state. For this reason,
the remainder of this discussion deals with the simpler dynamics of typical spin
glass systems.

Upon zero-field-cooling a spin glass to a temperature T,, < T's¢, one might
intuitively expect the system to quickly reach equilibrium if no field is ever applied.
Lundgren et al. (1983) studied a CuMn spin glass (Tse = 26K) for fixed H and
T They found that the rate of relaxation is a function of the time £,, that one
waits at constant Ty, before the field H is turned on. Hence, the ZFC state must
evolve over time, even without the influence of an external field.

Analogous behavior occurs after cooling to Ty, in a field, and then turning
the field off after a time t,, has elapsed since passing through Tsg. This is called
the thermo-remanent magnetization (04, ). Chamberlin (1984, 1985) studied sev-
eral AgMn and CuMn spin glasses and determined that o, 15 a function of 4,,.
Thus, even the FC state cannot be in equilibrium (at least over finite observa-
tion times). Moreover, he found that for all T}, < T'sg, 0irm relaxes with time

(5 < t[seconds] < 10%) according to a stretched-ezponential function (Chamberlin,

Umnzammp{—(%)hq . (1.16)

The exponent n and prefactor oy are functions of T, where n < 1. Hoogerbeets et

1985)

al. (1985,1986) also discovered a temperature dependence for the relaxation rate
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such that 7, >~ 10% exp [ﬁ%m] seconds. In addition, 7, increases exponentially
with the wait time {,,. Figure 1.14 illustrates the appropriate log-log plot required
to yield a straight-line with slope —n. The deviations for times ¢ < 5 seconds
were attributed to eddy-current effects and ignored.

Hoogerbeets et al. (1986) attempted to show that the stretched-exponential
relaxation is an intrinsic property of a spin glass perturbed from equilibrium.
Their argument was based on comparisons to a dynamical mean-field Ising model
which predicts that many different thermodynamic equilibrium states (each with
a different configuration of randomly-oriented, frozen spins) are available to the
system below Tsg. The stability of each state is a function of applied field and 75;,.
Some of the states are more stable than others and upon changing the field, the
system will relax from state to state until (as ¢ — o0o) it reaches true equilibrium in
the most stable configuration. Remarkably, the relaxation is predicted to follow a
stretched-exponential dependence. Hoogerbeets et al. argued that this agreement
between theory and experiment is significant.

The above comparison is controversial, and Nordblad et al. (1986) allege
that the stretched-exponential form is not an intrinsic property of the spin glass
state. They looked at oy, over a wide range of times ( 1 < f[seconds] < 10%)
and discovered that the guality of the stretched-exponential fit is misleading, and
adequate only in the interval 5 < t[seconds] < 10®. The deviations for ¢ < 5
seconds, which Chamberlin had discarded on the basis of eddy-current eflects,
were considered by Nordblad et al. to be real.

They proposed that the spin glass equilibrium state is dynamic in nature,

and characterized by a pu;:elg' logarithmic relaxation. Figure 1.15 shows plots of
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Figure 1.14: Several stretched-exponential fits to the oy, decay of the (Ag+2.6
at.% Mn) + 0.46 at.% Sb spin glass system are shown. From top to bottom,
the dotted lines represent temperatures of T'/Ts5=0.966, 0.897, 0.856, and 0.771.
The straight lines indicate best fits to the experimental data, while their slopes
equal the exponent —n (after Chamberlin, 1985).
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Figure 1.15: A plot of the relaxation rate 5(t) = 8= for the Cu + 5 at.% Mn

spin glass (Tsg = 28K). There is clearly deviation from logarithmic decay, and
the wait time {,, is apparently related to the location of the peak in each curve

(after Nordblad et al., 1986).
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the total relaxation rate, S(t) = % %‘;}‘f(ﬁ’ for fixed temperature T, < Tsg and
various wait times ¢,,. Clearly there is deviation from logarithmic decay, especially
at times { ~ {,. In explanation, they introduced a time-dependent aging of
the spin glass state, which is superimposed upon the logarithmic relaxation and
follows a stiretched-exponential form. There exists recent theoretical evidence
(Lundgren, 1988) that the aging effect could be related to the growth of spin

glass domains, within which the spins are in dynamic equilibrium. Therefore, the

total relaxation is described by (Nordblad et al., 1986)

Otrm = 00 + Cequit H In{t) + 044e(tw) exp [-— (;;)I—n] . (1.17)
where og = S(t = 1sec), oequir is the relaxation rate at dynamic equilibrium, and
the last term characterizes the influence of aging. Figure 1.16 shows a plot of oypm
versus ¢t. Indeed, the aging scheme fits the data over a wider range of times than
the stretched-exponential alone.

Hypothetically, the relaxation of a re-entrant system might be expected
to follow a form similar to equation 1.16 or 1.17, but with an additional term
to represent the effects of ferromagnetic domain wall motion. In any case, the
stretched exponential relaxation may provide a means of identifying magnetic

systems which have some degree of spin glass ordering.
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Figure 1.16: A typical comparison between the oy,,, decay of the Cu + 5 at.%
Mn spin glass (bold line), the aging scheme(dashed line) and the stretched-ex-
ponential function (thin line). The aging scheme provides the superior functional
description (after Nordblad et al., 1986).
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1.2 Models of Disordered Magnets

1.2.1

The RKKY Indirect Exchange Interaction

The RKKY (Ruderman, Kittel, Kasuya, Yosida) interaction is an indirect ex-

change mechanism which provides long-ranged coupling between the magnetic

atoms in very dilute alloys, through intermediate interactions with the host’s

conduction electrons. The interaction oscillates spatially and, when combined

with quenched disorder, may cause frustration of the spin orientations and spin

glass ordering. The following 1s a derivation of the RKKY functional form, based

on White (1970) and Kittel (1968).

Consider a magnetization M (7) and a static magnetic field H (7). We can

write these spatial functions in terms of Fourier series as follows (after White,

1970):

=3 M (k) ™, (1.18)
k

LS A@E (119)

where & and § are wavevectors, M (,i;) and H (§) are Fourier components, and the

volume of the specimen is V. The response of the magnetization to the magnetic

field is given by a general susceptibility x such that (after White, 1970)

M (k) :Zx(ﬁ,q*)ﬁ(q“) . (1.20)
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By substituting equation 1.20 into equation 1.18 and introducing the identity

we get

1) = 7 [, 4 { Y x (F,q) B (@) 57 ()7 i
E T

Furthermore, assuming that the susceptibility is translationally invariant (imply-

ing § = k and x (E, tj') — x(g) ) and independent of the field, it follows that

(after Kittel, 1968)
1 (7) :fvdﬁx (F-m)E(7)

where

x(F-7) =5 >ox(@) )
q

Equation 1.21 can also be written in terms of Fourier components:

()= 5 Lx @ @7

with
M) =x(H@

(1.21)

(1.22)

Of course, the susceptibility depends on the nature of the specimen, and the form
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of the applied magnetic field must be known to determine the magnetic response
of the system.

To evaluate the functional form of the RKKY interaction, the response of
a sea of conduction electrons to the presence of a single magnetic impurity atom
(which is immersed in the sea) is determined. The simplest approximation is to
use a free electron gas at a temperature of absolute zero. However, to describe
the conduction electrons within the narrow d—bands of exchange-enhanced hosts
such as Palladium or Platinum, it is necessary to include the effects of exchange
interactions between the electrons. We shall only consider the former case in
detail, since the basic oscillating properties are common to both schemes, though
the latter develops giant moments about the impurity atoms.

The first step is to find the susceptibility of the free electron gas. This is
related to the change in energy caused by the application of an arbitrary, non-
uniform field H (§)cos (§- 7). The appropriate Hamiltonian (including kinetic

energy) is

2
H=S"L 4 an | (1.23)

2m,

1

where

AH =gpp Y &i- H(q)cos (¢ 7)

is the perturbation Hamiltonian due to the field. To avoid redistribution of elec-
trons between spin-up and spin-down states, the field is applied perpendicular to

the direction of quantization. In particular, H (§) = H () & so that (after Kittel,

47



1968)
a A= (T

and
1

_ 2 + 4 o) i L —id
AH = 49#BH(@;(0,. +o7) (47 4 emieR)
The unperturbed free electron eigenstates with energy Ej are denoted as ig, a’> =

|E> |o), where |o) = |1} is spin up and |o}) = }|) is spin down. Kittel used

perturbation theory, along with the identities

<§} o1 E E) - VA 7 Eed
and (o7 ) (TleT 1) = 4
to obtain the total second-order energy correction
1 . T — Mi+g
AE = —=[gupH (Y 5L
7 loraH () ZE;:+~—E:;
E g

The Fermi-Dirac function,

1s the probability that the state 'E) is occupied (at absolute zero), and E is the

Fermi energy.
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The electron gas susceptibility is given by (after Kittel, 1968)

_, (A
(0H (9))°

2.2 e T Titg
- 9EBL T TR
§ Tke T Y

x(@) =

By converting the sum to an integration, it can be shown that (after Kittel, 1968)

1 [3Ng%u%] [1 4kt — g2 2k + q
(== |29k )L 1 . .
x(9) = 5 [ 2Er |12\ 8krg /¥ 2Er g ) ¢+ (12

where NV is the number of electrons per unit volume, B =

MEit and the factor

Zm, )

inside the brackets [] is the Pauli paramagnetic susceptibility for a uniform field.
The next step is to represent the field produced by the magnetic impurity

atom. Assuming that the impurity spin is localized, then the Heisenberg exchange

Hamiltonian (after White, 1970)

~JY S, - 6:6(7) (1.25)

describes the interaction between the conduction electron spins &; (located at 7} )
and the impurity spin S, (located at » = 0 ). The exchange parameter J describes

the strengh of the interaction. We can rewrite equation 1.25 in the form
grs ) H (%) 6
Hence, due to the impurity atom, each electron is subject to an effective field
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(after White, 1970)

with a Fourier transform of

H()=——235, . _ (1.26)

Substituting equations 1.24 and 1.26 into 1.22 gives the electron polarization M
as a function of the distance » from the impurity atom. After converting the sum

to an integral, it can be shown that (after White, 1970)

- _ JNg,u,B) ( 3 ) sin 2kpr — 2kpr cos 2kpr | =
M(r) = ( Erkpn ) \128 4 S

This, in turn, plays the part of an effective-field acting on another magnetic atom
with spin ST@ The Heisenberg exchange interaction between spins S, and .STL;

(separated by distance 7) is
Hrxky = —Jrrky S Sp (1.27)

where

(1.28)

J:N 3 sin 2kpr — 2kpr cos 2kpr
JRKEY = ( )

EFkFTr 128

rd

The expression in braces { } is plotted in Figure 1.17, curve (a). Note the diver-
gence as r — 0. For larger separations, the interaction oscillates as a cosine with

an 7~3 envelope. It is the superpositioning of the many such interactions, between
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all the magnetic impurities in a dilute alloy, which ultimately can lead to frus-
tration effects and spin glass behavior. Since exchange interactions between the
conduction electrons (of the host metal) have been ignored in the above derivation,
it is only valid for non-exchange-enhanced hosts such as Gold or Copper.

For hosts such as Palladium or Platinum, the conduction d-band is quite
narrow so that the effects of direct exchange interactions must be included. They
may be estimated by replacing equation 1.24 with an enhanced susceptibility of
the form (after Foner, 1976)

Xenhanced (é) = %

The denominator is the Stoner enhancement factor, where 7 represents the strength
of the conduction electron exchange interactions, and is generally a function of
q. In Pd, the susceptibility is enhanced by roughly an order of magnitude, and
tends to suppress the positive-negative oscillations of the RKKY interaction out
to r ~ 104 (—see curve (b)). In other words, a large polarization cloud develops

around each magnetic impurity, outside of which the RKKY oscillations resume.
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<o
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Figure 1.17: Curve (a) represents the functional form of the basic RKKY indirect
exchange mechanism, while curve (b) includes the effects of exchange enhance-

ment (after Foner, 1976).
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1.2.2 The Edwards-Anderson Model

In 1975, Edwards and Anderson {E-A) developed a simple model which displays
aspects of spin glass behavior. In particular, it successfully shows a cusp in
the differential susceptibility at a temperature Tsg, separating the paramagnetic
phase from the low temperature spin glass phase.

The model is based on a set of classical spins or magnetic dipoles S;, subject
to an externally appiied magnetic field H,, and interacting via the Heisenberg

exchange Hamiltonian so that the total energy is
1 - - . -
H:—EZ J;jS('Sj—ZHg~S,- . (1.29)
i i

The exchange parameter J;; between the ith and jth spins determines the strength
of their interaction and whether they are coupled ferromagnetically (J;; > 0) or
antiferromagnetically (J;; < 0). In our notation we require J;; = J;; and J;; = 0.
E-A postulated that a metallic spin glass can be thought of as a distribution
of spins located randomly throughout a periodic lattice, and interacting with one
another by means of a common (spatially oscillating) RKKY exchange parameter.
Below some critical temperature Ts¢, frustration causes a ground state to exist
in which the spins freeze for all time in random orientations, and there is no long
range magnetic order (in the usual sense). The spins settle into this ground state
as temperature T approaches zero. Note that frustration can also occur in systems
without RKKY interactions, as long as there exists a mechanism for random
competition between ferromagnetic and anti-ferromagnetic exchange bonds.

Mathematically, it is cumbersome to deal with site disorder and complex
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interactions in a direct manner. Instead, E-A chose to place a spin on every lattice
site and independently distribute each parameter J;; according to a Gaussian

probability distribution (from Sherrington and Kirkpatrick, 1978)

1 —JE
P(J,) = 7—2—” BXP( 2‘],2'7) s (130)

where J is the standard deviaﬁon. The distribution is centered about a mean
exchange of zero, thus limiting the model to paramagnetic and spin glass behavior,
since on average there is no net ferromagnetic exchange. Only nearest-neighbor
1nteractions are considered.

In analogy to the magnetization in mean-field theories of ordered systems,
E-A introduced a new order parameter g to characterize the onset of spin glass
behavior. In particular, ¢ is the probability (thermally averaged over all spins)
that a spin S; at time ¢ will point in the same direction at a much later time {.

That is (after Binder and Young, 1986),

g=((Si(to)-Sit)),). it>to (1.31)

where the ({);), denotes the thermal average and the average over all spins. For
‘zero field and temperatures T above the spin glass temperature Tse, ¢ = 0 since
the system is paramagnetic and the spins at different times are not correlated.
However, for temperatures T less than Tse the spins begin to freeze, so there is
correlation and ¢ # 0. As T — 0 the thermal fluctuations decrease and g — 1
(assuming unit spins). Note that in zero field the magnetization is zero for all

temperatures, providing no indication of a phase change. In contrast, the order
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parameter g does indicate the transition into a spin glass regime.

To evaluate the equilibrium properties of the model, E-A sought to minimize
the quenched free energy. The free energy of a spin glass system with a particular
random configuration of exchange bonds between N spins is —kgT In z, where
z is the partition function of the system. Since an infinite variety of random
configurations are possible, the free energy must be averaged over all of them.

Therefore

f=-ksT({lnz) |, (1.32)

where () denotes an average over all possible exchange configurations. Introducing

the identity (from Sherrington and Kirkpatrick, 1975)

Inz = lim (:z: — 1) , (1.33)
n—0 13
we have
—k
f=tlim =B oy gy (1.34)

n-—+Q n

To evaluate (z"), E-A introduced the concept of replicas. For integer n

(from Sherrington and Kirkpatrick, 1978),

Z"=1] za , (1.35)
where the set @ = 1,...,n represents n replica spin glass systems, all with the

same free energy as the actual system, but with different exchange configurations.

The average over the different configurations is no longer required, though we
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must account for the individual J;; distributions, so that (after Sherrington and

Southern, 1975)

n—0

;o tim ( kBT) (fHW’ ) i f[{z&(.f,-j)]_1) . (1.36)

The classical partition function for replica a is

- —He
za(Jij) = f {HdS“] exzn{ kBT} (1.37)
and the Hamiltonian is

He = —%Z Ji;Se - 852~ S Hy- 57 . (1.38)
1,7 H

Substituting equations 1.30, 1.37, and 1.38 into equation 1.36 and evaluating the

integrals over the J;; yields

/- () s ol {ry (4 -9) (59

+ mzzﬂo Sa} —1} . (1.39)

Hence, the spins in replica a and replica 8 effectively interact with one another.

This lead E-A to redefine their order parameter as (Edwards and Anderson, 1975)

q=}1i_rg<54;°-5?>21 s a#f (1.40)
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That is, replicas are used to represent the actual spin glass system at different
times. E-A assumed the value of ¢ is independent of the choice of replicas so that
(%),

After writing the free energy in terms of g, E-A were able to minimize it
with respect to ¢ and obtain the susceptibility and the specific heat. They found
the zero-field susceptibility to be (from Edwards and Anderson, 1975)

X=Xe(l—q) , (1.41)

where x. = C/T is the usual paramagnetic susceptibility with Curie constant C.
For T' > Tsg, ¢ = 0 and the susceptibility is paramagnetic. Also, for

T < Tsg and near Tsg they found

q= - [1 - (%‘gﬂ , (1.42)

so that

c .
X= 5=~ O(Tse — T)* . (1.43)

Hence, the susceptibility shows a cusp at temperature ¢ (which becomes rounded
with the application of an external field) and is qualitatively similar to experi-

mental results. As T — 0, the susceptibility approaches a constant value of

C 2 1/2

Contrary to experimental observations, the specific heat also displays a
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cusp around Tsg. Furthermore, the E-A order parameter is now considered to be
too simple, as mentioned in section 1.2.5. Despite these drawbacks, the model

provides a basis for more sophisticated investigations of spin glass behavior.
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1.2.3 The Sherrington-Kirkpatrick Model

Sherrington and Kirkpatrick (S-K) introduced a model of disordered magnets
in 1975, based on the Edwards-Anderson replica technique. The mode] is more
sophisticated in that it adopts a quantum mechanical approach and allows for
competition between ferromagnetic and spin glass ordering. Furthermore, (in
analogy to the ezact mean-field theory of ferromagnets) the system is evaluated
in the thermodynamic limit, using infinitely ranged exchanges that are scaled
with the number of spins.

The model involves a lattice of N Ising spins (S; = =%1), subject to an
external field Hy (applied in the direction of quantization), and interacting via

the Ising Hamiltonian so that the total Hamiltonian is

1 ' .
H= ——52 Ji;5:i5; — hz Si (1.45)
4 i
where h = —gupH,. The exchange parameters are independently distributed

using a Gaussian function

P(Ji) =

LE —— 2
i —Jof J"]) , (1.46)

1
JV 2w emp( 2J?

where J is the standard deviation. Ferromagnetic ordering is allowed to exist by
centering the distribution about a non-zero mean (Jy > 0).
To scale J and Jy with the number of spins N (and prevent infinite energy

in the thermodynamic limit), the intensive variables J and J; are introduced such
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that

Jo =

Jo J
}\7 and J= N1/z
The ratio Jo / J is important in determining the properties of the system, and
is related to the fractional concentration of magnetic impurity atoms in a dilute
magnetic alloy.

Following the Edwards- Anderson replication procedure, the thermodynamic

limit of the free energy per spin is obtained by modifying equation 1.36 such that

N—ocon—0

f.— lim hm( ’”BT) (fH dr;) lea g —1) L (.47

Also, the quantum mechanical partition function for replica a is given by

zo(Ji;) = Tr exp{ ;:; } . (1.48)

where H° is the Hamiltonian and the trace is over all the spins of the replica. Sub-
stituting equations 1.46 and 1.48 into equation 1.47 and evaluating the integrals
over the J;; yields (after Sherrington and Kirkpatrick, 1975 and 1978)

f o= Jim lim (_]’GBT) { Tr,, exp[% {Rfff)—f (g 505 ) (% S?S?)

—oc nn—0 Ti

ngTZS‘*S“} ;ngm'“} —1} , (1.49)

where the trace is over all the spins of the n replicas. Hence, as in the Edwards-

Anderson model, there is an effective interaction between the spins in any two
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replicas a and 8. The identity (from Sherrington and Kirkpatrick, 1978)

exp(Aa®) = -\/%fdm exp [—%:ﬂ? + (2)\)”%3}

1s used to convert the problem to a trace over n replicas at a single spin site.
Employing a method of steepesi-descent to perform the integrals and minimize the
free energy, S-K eventually obtained the following expression (from Sherrington
and Kirkpatrick, 1973):

2

Tom?2  TH1 — )2 +00 —
_Jom J-gf hksT dw exp(——;—) In(2coshZ) ,  (1.50)

‘f* 2 4kpT  VorJ-w

where = = (J—gm + 7\/§w + h) /kgT. The m and g are defined by the coupled

equations

2

1 +oo w
m = ((Si)p); = ﬁf—m dw exp(T) tanh = (1.51)

AZN _1_ oo —w? 2=
<(S,)T>J~ \/2_%_/;00 dwexp( 5 ) tanh* = | (1.52)

=
il

where (()7); denotes the thermal and exchange bond averages.

- Equation 1.51 is simply a generalization of the transcendental equation ob-
tained from the mean-field theory of ferromagnetism (equation 1.1). The relation-
ship is made obvious b;V setting J = 0. Physically, m represents the local mag-
netization (or magnetization per spin site) and is a measure of the ferromagnetic
order of the system. On the other hand, g represents an Edwards-Anderson-like

order parameter and is a measure of the frozen order of the system, whether it be
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ferromagnetic or spin glass in nature.

Solving the coupled equations, as a function of temperature T and the ratio
7= Jo / J, vields the zero-field magnetic phase diagram of Figure 1.18. The
paramagnetic region is that portion of the phase diagram for which both m and
g are zero. In other regions, the ferromagnetic order competes with the spin
glass order and the resulting phase is determined by whichever is dominant. The
ferromagnetic region has non-zero values for both m and g, whereas the spin glass
phase is defined as the region for which g is non-zero but m is zero. All three phases
are separated by abrupt second-order phase transitions, though these become less
well defined in finite fields (for which m and g are élwa.ys NON-ZETO).

For 7 > 1.25 , the paramagnetic region gives way to ferromagnetic ordering
below a temperature T, = Jo/kp. Similarly, for 1 <1 thereis a transition from
paramagnetic to spin glass ordering at a temperature Tsg = J/kg. Lastly, the

region 1 <7 < 1.25 is re-entrant, with sequential transitions from paramagnetic

to ferromagnetic to spin glass ordering as the temperature is lowered through the
phase boundaries. The solutions for m(T) and ¢*/?(T) that were obtained by S-K
(using numerical methods) are portrayed in Figure 1.19. Note that for 7 — oo,
m = ¢*/?, indicating that the spin glass order has disappeared and the frozen
order is entirely ferromagnetic.

Evaluating 8m/0h and letting h — 0 yields the zero-field differential sus-
ceptibility (from Sherrington a.ﬁd Kirkpatrick, 1978)

_ 1 —g(T)
X(T) = 7T ol = e (1.53)
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Figure 1.18: The zero-field magnetic phase diagram of the Sherrington-Kirk-
patrick model. The region 1 < 7 < 1.25 is re-entrant (after Sherrington et al.,
1975).
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Figure 1.19: Numerical solutions of the S-K coupled equations for various values
of n = Jo/J:

(a) pure spin glass,

(b) re-entrant,

(c) disordered ferromagnet,

(d) pure ferromagnet.

(After Sherrington et al., 1978)
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for the spin glass region 7 < 1. There is a cusp at the paramagnetic to spin glass
ordering temperature, above which ¢ = 0 and a Curie-Weiss law is obeyed. The
cusp becomes rounded with the application of a finite field, as shown in F iguré
1.20.

Though x is qualitatively similar to experimental results, there are difficul-
ties with other thermodynamic functions. Contrary to experiment (but like the
Edwards- Anderson model) the specific heat shows a cusp at the paramagnetic to
spin glass transition temperature. At all the other transition temperatures (in-
cluding the re-entrant ferromagnetic to spin glass transition) the specific heat is
step-discontinuous.

In addition, the entropy of the system becomes unphysical (i.e. negative)
as T' — 0, indicating problems with the replica technique at low temperatures.
Further investigations by other groups have revealed instabilities in the S-K solu-
tions for the low temperature spin glass and ferromagnetic regions —see section
1.2.5 for a discussion of the consequences. Nonetheless, the S-K solutions display
some desirable features (especially in regards to re-entrant systems) and remain

a popular interpretation of the magnetic behavior of dilute alloys.



Figure 1.20: Differential susceptibilities of two spin glasses, as calculated by the
S-K model. The solid curves are for zero field, while the dashed curves represent
h

= 0.1J, (after Sherrington et al., 1975).
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1.2.4 The Effective Field Model for Arbitrary Spin

In 1976, Southern introduced an effective field theory of disordered magnets, based
on the 5; = 41 Ising Hamiltonian used by Sherrington and Kirkpatrick (S-K). The
technique does not use replicas and allows discussion of different quenched systems
by varying the nature of the exchange bond distributions. In particular, the model
can be used to obtain the Sherrington-Kirkpatrick (S-K) coupled equations, but
avoids the low-temperature negative entropy problems associated with the S-K
replica method.

The following is a derivation of the S-K-like coupled equations for a sys-
tem with arbitrary spin, and is based on Southern’s work (Southern, 1976). For
comparison, equations corresponding to a spherical model (i.e., a system with a
continuous spiﬁ-space of infinite dimensionality) are also developed.

The Ising Hamiltonian for arbitrary spin quantum number S is

M= S JsSiS~hES: (1.54)
where each S; has 25+1 components (i.e., -5 < §; < §). After Miihlschlegal and
Zittartz (1963), the following exact relation can be derived (Roshko and Williams,
1984):

(Sr = (SBsISB(h+ Hy (1.55)

where the thermal average of an operator A is given by

Tr Ae~PH 1
(A)T T Tre-fH ;8= -I;—B-T
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The effective field acting on spin S; due to all other spins is H; = >; Ji; 5, and
h is related to the magnetic field Hy (applied in the direction of quantization) by

h = —gppH,. Also, the Brillonin function is defined as

Bglz] = 25;; ! coth (@‘9—2—;1—)?—) - %5'- coth(%) i (1.56)

By averaging equation 1.55 over the exchange bonds, expressions involving the

local magnetization m and the correlation function g can be written as

+oo ,
m = (S)p);= [ dwSBs|SPwl pilw) | (1.57)
_ 2 oo 2p2ica, = :
¢ = ((S97),= [ dwS*BYSBu i) (1.58)
where
pi(w) = ~2 G i < ! ) (1:59)
P Y \\o TR m /], ‘

(The symbol § indicates the imaginary part of the expression.) Aside from the av-
eraging over {{)r);, equation 1.59 is similar to a 6-function. The averaging serves
to introduce thermal and exchange fluctuations in the fields H; which depend on
the particular distribution schemes chosen.

In evaluating the thermal average, the simplest scheme is the Weiss mean-
field approzimation which involves no fluctuations and corresponds to replacing

(HP')p with (H;)7 (where n is a positive integer). Thus

N P 1
pilw) = w\sél—lorca<w+i5—h—a:g>,y ’ (1.60)
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where z; = (H;) is the mean field, or thermally averaged effective field acting on
spin 5;.

To calculate the average of the mean fields-over the exchanges, a better
approximation scheme is used which includes the effects of fluctuations and yields

a Gaussian distribution for p;(w). That is, letting (after Southern, 1976)

<(:c;—'m';)2n>J ~ (20— DiE | (1.61)

vields

o) = oy enp( ) (1.69)

where the variables are introduced below.

Define an average, Z;, such that (after Southern, 1976)

Il
’Eﬂ\
o~
o
<2
~
——
L

~ {((Si), (z: <J.J>,,) , (1.64)
j
where a mean-field approximation has been used so that
T; X m.]_g with _J—.S = z (J,'J')J . (165)
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Also define a variance

ot = (a), - (@)} (1.66)

Once again using a mean-field approximation it can be shown that (after Southern,

1976)

(&), = (T dida (S (5r) +<§J5 %)

Ik J J

~ m¥o +q) (1.67)

with

—3 /
7= {5), - a3
7
Equations 1.65, 1.66, and 1.67 give
57 =q) . (1.68)

The variables Z; and 7;% describe the distribution of mean fields z;. Note that
Jo and J are related to the mean exchange Jy and the deviation J of the corre-

sponding exchange bond distribution in the S-K model by

J
Jg = —ﬁ and J = AT1/2 N

where N is the number of spins.

Returning to equation 1.63, set & = (w — k — %;)/5;. Thus equations 1.57
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and 1.58 become (Roshko and Williams, 1984)

—a?

m :\/—%fj’da exp(T) SBs[SE (Tom + Tyfga+h)] , (1.69)

_a2

- {3 e o] o

Equations 1.69 and 1.70 for arbitrary spin are analagous to the S-K coupled equa-
tions for 5; = £1. To recover the S5-K and Southern results, set § = 1 and replace
Bg|z] with tanh(z). The phase diagram which Southern obtained is identical to
that of S-K (Figure 1.18). For arbitrary spin S, the transitions between para-

magnetism and ferromagnetic or spin glass ordering occur, respectively, at the

temperatures

I = i%.‘;;i‘! (1.71)
and

Tse = 5(53;; )J (1.72)

Furthermore, there exists a re-entrant region (1 < _fd/j < 1.25) with any one
of the three magnetic phases possible, depending on the temperature. The phase
diagram is, however, sensitive to the type of exchange bond distribution used.

A similar phase diagram is obtained for the § = 1 spherical model, where
;82 = N is the only éonstraint on the spins of the system. Equations 1.61 and

1.62 are replaced by the following exchange fluctuation approximations:

(), ~ (32)3 , (1.73)



<m?"+1>J ~ (:z:f)j (i), = <;nf>J':E: . (1.74)

As a result, equation 1.63 becomes a double §-function distribution (Southern,

1976),

(1 ] (Z)J) 5(w —h+ \/(?2)7) . (1.75)

1

Substituting equation 1.75 into equations 1.57 and 1.58 and setting & = 0 yields

the coupled equations (Southern, 1976)

m = \/(%}TJ tanh[ﬁ\/@;} , | (1.76)

g = tanh’ [,8 (mg)J} | (1.77)

The spherical model phase diagram differs from the S-K results in that a re-entrant
region does not appear at all. Instead, a vertical transition line at Jo/J = 1 joins

the tri-critical point to the horizontal axis.

72



1.2.5 Instabilities and Replica-Symmetry-Breaking
A-T Lines

The negative entropy of the Sherrington-Kirkpatrick (S-K) solutions to the mean-
field model of disordered magnets (section 1.2.3) indicates problems with the
replica procedure at low temperatures. Implicit in their method of steepest-
descent is the evaluation of the free energy f at the saddle-point (Binder and
Young, 1986)

of of

Bqa,_; - amu

0 , (1.78)

where gop = lim,,_¢ <S;"SE>T and m, = lim,_g (S¢)p. In using the Edwards-
Anderson replica method, one assumes that gup is invariant (symmetric) under
permutation of the replicas (954 = gap for all a # 3), and that the saddle-point
conditions minimize the free energy.

De Almeida and Thouless (1978) scrutinized these assumptions and dis-
covered low-temperature regions of the phase diagram for which the replica-
symmetric solutions do not represent the ground state of the system, but are
unstable. Their argument is based on the following inequality (after de Almeida

and Thouless, 1978):

2

(g) > = [ daesp( ) sea' (o (Tom + Tyaa 1)) (179

Stable solutions correspond to areas of the phase diagram which satisfy the in-
equality, while so-called A-T instability lines, separating stable and unstable re-

gions, are calculated by converting to an equality. Various instability lines for
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both zero and non-zero field are displayed in Figure 1.21. Notice that for zero
field the entire spin glass region has unstable solutions and the S-K re-entrant
transition line, between ferromagnetic and spin glass ordering, is lost. However,
increasing the field strength pushes the instability region to lower temperatures,
and for high enough fields the solutions around the re-entrant line are stable. This
is important, as it implies that manifestations of the zero-field re-entrant transi-
tion can be discerned from the stable S-K solutions in finite field. A-T suggested
that the instabilities can be removed by breaking the symmetry between replicas,

but they were unable to offer an appropriate solution.

Parisi’s Broken-Replica-Symmetry Solutions

Parisi (1979, 1980) developed a popular scheme to break the symmetry, such
that (in the unstable 5-K regions) the Edwards-Anderson order parameter GEA
1s replaced by a function g(z) which represents the order parameters of infinitely
many pairs of replicas. The effective order parameter is then an integration over
all z:
=1
Gess = /E_O g(z)dx

Each value of = corresponds to a set containing all the pairs of replicas with the
same parameter g(z). Parisi proposed a complex hierarchial structure to choose
the g(z), with 0 <z <1 and ¢(1) = gg4.

According to Binder and Young (1986), this structure implies the existence
of a free energy hypersurface f(m,q) with a complicated landscape of valleys
within valleys. Each point on the hypersurface represents a particular spin con-

figuration, while the valley bottoms denote the various (stable or meta-stable)
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unstable

Figure 1.21: The A-T instability lines of the Sherrington-Kirkpatrick (Ising spin)
phase diagram. The unstable regions represent broken replica-symmetry.
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thermodynamic states available to the system. Upon decreasing the temperature,
Increasingly many configurations gain stability so that the landscape gradually
develops new valleys.

Grest et al. (1983) further suggest that valleys are destroyed with increasing
temperature, while both destruction and creation occur for even small changes
in applied field. Whenever the system finds itself in an unstable configuration
(i.e., along the wall of a valley), it will rapidly reconfigure itself until it sits in the
nearest local minimum. Once there, however, it may eventually relax into a more
stable state by hopping over free energy barriers (via thermal activation), or be
forced into a new configuration by evolution of the landscape with temperature
or field changes. Since the destruction of energy minima implies irreversibility,
while minima-hopping implies slow relaxation, Grest et al. deem it reasonable
to associate the onset of replica-symmetry-breaking with the onset of hysteresis,
remanence, and time effects.

In this context, the original S-K solutions correspond to a time during which
the system is caught within one of the meta-stable valleys that satisfy the symmet-
ric saddle-point condition (equation 1.78). Such a state is not considered to be in
true equilibriurﬁ, as the system has not sampled the other thermodynamic states
‘to find the most stable configuration. The S-K solutions presumably correspond
to a hypothetical zero-field-cooled (ZFC) magnetization curve which has not had
a chance to evolve with time towards the field-cooled (FC) values, though this
non-evolved curve is impossible to obtain experimentally. Even so, since the ZFC
magnetization is closely related to the A.C. susceptibility, this notion is supported

by the strong qualitative agreement between the S-K predictions and (PdFe)Mn
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susceptibility measurements (section 1.1.3}, in both the spin glass and re-entrant
regimes.

Continuing with the mean-field model, it has been proposed that the free
energy barriers between states actually diverge in the thermodynamic limit, as do
the times for the system to relax from one valley to another (i.e., the system is
essentially non-ergodic). Nevertheless, in the limit of long times, the system has a
chance to sample the thermodynamic states according to a statistical probability
distribution, and eventually reaches true equilibrium in a stable valley. This
sampling of different states is facilitated in the Parisi theory by a probability

distribution P(g) = dz/dg such that (after Binder and Young, 1986)

Qefs = fqP(q)dq

The distribution represents the amount of degeneracy or overlap between the
various valleys. However, P(g) depends on the exchange configurations of the
valleys in question, and so is itself represented by a distribution of some sort.
Above the A-T lines, there is only a single ground state configuration available
to the system so that P(q) = §(¢ — gpa) and g.zs = qpa.

Since FC magnetization measurements tend to display only very weak time
effects (section 1.1.3), they may be near true equilibrium and hence compara-
ble to results obtained by the Parisi theory. This notion is supported with the
susceptibility obtained .by Parisi for the pure spin glass case (n = 0). The zero-
field susceptibility levels off to a constant maximum value for all temperatures
below T'sg, and this behavior is at least vaguely reminiscent of the FC magnetiza-

tion curves {which essentially represent the static susceptibility M/H ) obtained
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through experiment (Figure 1.12).

The PaT Hypothesis

The Parisi schemeis generally considered to yield exact solutions to the mean-field
model, but evaluation is hindered by the lack of a functional form for g(z) (except
near Tsg). In 1980, Parisi and Toulouse (PaT) introduced a projeciion scheme to
derive some of the properties of the spin glass region (for # = 0 and k # 0) from
the stable solutions along the A-T line. In doing so, they hypothesized that the

following expressions are valid in the unstable region (after Parisi, 1981):

85 Om. 0Oqpa

ok~ 8T on =0

where S is the entropy. The terms involving h imply that the macroscopic behav-
ior of the system is insensitive to changes of applied field. That is, upon changing
the field, there are many different microscopic states available to the system, but
they are all nearly degenerate with the original state, and have roughly the same
macroscopic properties. The magnetization is assumed to be completely indepen-
dent of temperature, though this is also an approximation. They discovered weak
Jumps in the specific heat and susceptibility across the instability line, suggesting
some sort of third-order phase change. Later that year, Toulouse determined that
the PaT hypothesis is also valid for 7 # 0. He derived the 5 # 0 case by adding
the term —_ja—'f’z,—z to the free energy for 7 = 0. A transition line at 5 = 1 was also
found (similar to that of Southern’s spherical model—see section 1.2.4). However,

a description as to the nature of the phases was not provided.
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G-T Lines

A possible answer came in 1981, when Gabay and Toulouse (G-T) investigated a
S-K-like system with classical m-component Heisenberg spins (as opposed to the
usual mean-field model with m = 1, or the spherical model with m — o0). Using
Cartesian components (m = 3) and a field in the direction p = 1, the appropriate

Hamiltonian is (after Toulouse and Gabay, 1981)

1
H=-3 Do Ji Y SwSiu—h> Sa (1.80)
1,3 H i
where 7 and j are site labels, g = 1,...,m denotes the spin components, and

Y, 8%, = m. For convenience, kg and 7 are set to unity, so that 5 = Jp.

As in the m = 1 case, there is an order parameter

o ={(Sa)7),

which describes the longitudinal order (i.e., along the field direction). It follows

that another order parameter

g=((Sz), su#l

exists 1o indicate ordering in directions transverse to the applied field.

They obtained two different types of transition lines for the phase diagram.
The lines for b # 0 and J; = 0 (i.e., no ferromagnetic ordering possible) are shown
in Figure 1.22. Line (a) is a so-called G-T line, and separates the paramagnetic

phase (¢, = 0) from a lower temperature phase in which the transverse spin
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Figure 1.22: The magnetic phase diagram of the classical Sherrington-Kirkpat-
rick-like model with 3-dimensional Heisenberg spins. Curves (a) and (c) are G-T
lines, while curves (b) and (d) are A-T lines. The mixed phase M is a canted
ferromagnetic phase with spin glass ordering of the transverse spin components.
Phase M, is similar, but possesses broken replica symmetry.
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components are frozen into random directions {so that g, # 0). Since the field is
finite, there is some polarization along the field direction and ¢, is non-zero on
both sides of the transition. Upon lowering the temperature further, line (b} is
encountered. It is the m-component analogue of the A-T line, and corresponds
to replica symmetry breaking.

They also obtained the transition lines for b = 0 and J, # 0 (i.e., fer-
romagnetic ordering possible). These are also shown in Figure 1.22. Line (c) is
another G-T line, and separates the ferromagnetic region (with ¢, = 0 and g, # 0)
from a lower temperature mized phase, M; (with ¢, and g; both noxn-zero). That
is, the collinear ferromagnetic region (with no transverse ordering) gives way to
a canted ferromagnetic phase in which the transverse spin components are spin
glass ordered. Line (d) is another A-T line, and indicates the transition into a
mixed phase A, with broken replica symmﬁry. There is an additional line at
Jo = 1, separating the mixed phase M, from an unmixed phase in which all the
spin components have spin glass order. It should be noted that the G-T model
1s presently incapable of providing detailed quantitative predictions, so that its
relationship to experimental systems (particularly those which display re-entrant
characteristics) is not yet clear.

To add more experimentally accessible elements to the G-T model, Cragg,
Sherrington, and Gabay (1982) suggested that the breaking of replica symmetry
occurs immediately upon entering regions with transverse spin glass order. As a
result, the mixed phase M is associated (supposedly) with weak irreversibility
of the longitudinal spin components, while the phase M, corresponds to strong

irreversibility of these components. Strong irreversibility of the transverse degrees

81



of freedom is associated with all the phases with broken symmetry. These effects
_ are, however, particularly difficult to analyse in experimental re-entrant systems,
due to the non-critical domain wall dynamics which complicate the magnetic
behavior below the Curie temperature.

To summarize, the instabilities of the low temperature S-K solutions (due
to the breaking of replica symmetry) were studied by several groups. The original
phase diagram has been modified to include canted ferromagnetic phases with spin
glass ordering of the transverse spin components. Moreover, these mixed phases
seem to exist at the expense of the simple S-K re-entrant transition (from the
collinear ferromagnetic state to the unmixed spin glass state) which, theoretically,
1s no longer thought to occur. The phases with broken symmetry are conjectured
to be associated with irreversibilities and time effects, so that the properties of
the system are intrinsically history dependenf in those regions. However, because
of the observed complexity of actual experimental systems, as well as the rather
esoteric nature of the popular mean-field model descriptions (aside from the S-K
solutions), the relevant connections between experiment and theory are not yet
well understood. Indeed, the S-K solutions are presently the only ones capable of
providing detajied quantitative predictions which can be tested experimentally.
Furthermore, the excellent qualitative agreement between the S-K predictions and
experiment indicates that the replica-symmetric solutions are worthy of further

study.
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Chapter 2

Apparatus and Sample
Preparation

2.1 Apparatus for Magnetization
and Susceptibility Measurements

2.1.1 The Theory and Operation of the RF SQUID

Superconducting QUantum Interference Devices {or SQUIDs) provide an ex-
temely sensitive means of measuring changes in magnetic fields. They are 1deal for
studying very dilute magnetic alloys, which often create much weaker magnetic
signals than can be detected effectively using more conventional techniques.
There are basically two types of SQUIDs. The D.C. SQUID uses a toroid of
superconducting metal, with two Josephson junctions introduced into the loop.
On the other hand, the RF SQUID is more common since it requires the use
of only a single Josephson junction, and hence is easier to fabricate. As our
SQUID systems were obtained commercially from the S.H.E. Corporation of San
Diego and are of the RF variety, the following discussion pertains largely to these

systems.

83



Superconductivity:

Cooper Pairs and the Meissner Effect

The electrical resistivity of normal electrical conductors arises from the scattering
- of conduction electron wavefunctions by the positively charged lattice jons. In
between scattering events, the wavefunction is a plane-wave characterized by a
particular phase angle a(7) = §- 7, where 7'1s the electron momentum, and 7 is its
position vector. Each time an interaction with the lattice occurs, the phase angle
is changed and the coherence of the wavefunction (relative to its phase before the
interaction) is lost. The average distance that the electrons can'move through
the lattice without losing coherence is known as the mean-free-path. However, if
the lattice were perfectly periodic with no imperfections, impuriﬁes, or thermal
vibrations, it can be shown that the mean-free-path of the electrons would become
infinite and the electrical resistance would be zero. The above criteria cannot be
fulfilled in real systems. Even so, many metals display a low temperature phase
transition into a superconducting (that is, a zero resistivity) state.

When superconducting materials are cooled below some critical tempera-
ture 7., their conduction electrons interact with the lattice in such a way that two
electrons may experience a net mutual attraction, despite their strong Coulombic
repulsion. As a result, some fraction of the electrons are forced to occupy elec-
tronic states in pairs, with the number of such pairs increasing as temperature
approaches zero. These so-called Cooper pairs have zero net spin, and therefore
behave as bosons of mass m = 2m, and charge ¢ = —2¢.. Most importantly,
the coherence of the pair wavefunction is preserved over laboratory-scale dimen-

sions, so that a single well-defined phase angle 6(7) may be used to characterize
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the pairs as they travel through the specimen. Hence, the pairs play the role of
superconducting charge-carriers. As shown below, the coherence is very sensi-
tive to applied magnetic fields, and leads to macroscopically observable quantum
interference effects.

We may write the pair wavefunction as

T = pl/? H8(7)

where p = WU (assumed constant) is the number density of Cooper pairs, and
7 is the center of mass position of a pair. Under the influence of a magnetic field

B =¥ x A, the center of mass velocity of a pair {in CGS units) is given by

<
[l

(_m\-fr _ 2,@)
C

1
m
The super-current density is

7 = qUF¥

= 2 (nYe() - 24) . (2.1)

c

Taking the curl of equation 2.1 yields the second London equation

2

-~ - pg° =
VXJZ—;EB 3

which implies that within the superconducting specimen, the current density and

magnetic fleld decrease exponentially with the distance from the surface. That



18,
B=DBye®* and j= Joe =M
where Ap = i\/% is the London penetration depth.

A strong superconductor has large p and small Ay (~ .1pm), so super-
currents circulate only within a thin surface layer of depth ~ Ay. These currents
spontaneously adjust so that the magnetic flux they create opposes and almost ex-
actly cancels any other flux (from exterior sources) that is trapped deeper within
the superconducting specimen. The expulsion of flux from the interior of a su-

perconductor is known as the Meissner effect.
The Magnetic Flux through a Superconducting Toroid
with a single Weak-link

A toroidal SQUID consists of a ring of strongly superconducting material (7, ~
4.2K) with a thin non-superconducting weak-link of length 2a and cross-sectional
area 0. Consider a change in phase Af of the Cooper pairs as they travel around
the ring along a contour C which, to avoid skin effects, is situated well below the

surface. Using equation 2.1 gives (after Lounasmaa, 1974)

A8 = j{:f?o-dz"

(2.2)
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where (by Stokes’ theorem) the magnetic flux through the area enclosed by con-

tour C is
(I):jgff-df=f§-ds" .
C C

Moreover, B = 0 inside a superconductor and a is assumed very small, so that @

effectively represents the flux through the hole in the toroid. As the wavefunction

must remain single-valued, then Af = 27n (n an integer). Rewriting equation

2.2 in terms of the fluzon, &, = —2;;—7“ = 2.0678 x 10~ "Gauss - cm?, yields (after

Lounasmaa, 1974)

m e, o 27d
Al = ——— - dl —
holgl J-a’ 3,
= 2mn (2.3)

where j = 0 has been used for deep within the superconductor.

Removing the weak-link by setting a = 0, we see that the flux & through
the hole is then quantized in units of ®,. It is understood that ® is made up-
of contributions from external magnetic field sources, as well as shielding super-
currents which circulate (around the hole) along the inner surface of the toroid.
That is,

® =%+ Lls , (2.4)

where L is the self-inductance of the toroid, Is is the shielding super-current, and
®ert 1s the external flux. The currents automatically compensate for changes in
external flux to maintain @ at an integer multiple of the luxon. There is an upper

limit to the magnitude of the shielding current, but it is only reached for external
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fields greater than those encountered in normal SQUID operations.

On the other hand, when a very small non-zero value of a is chosen, the
Cooper pairs may quantum tunnel through the non-superconducting barrier, giv-
ing a non-zero contribution to ; along the contour C. Therefore, the weak-link
plays the part of a Josephson junction and, as shown below, serves to substan-
tially limit the maximum amount of super-current which can circulate around the
ring.

The super-current through the weak-link is

I_g:tfj

LA

where ¥, is the Cooper pair wavefunction within the weak-link. To evaluate ¥,

we consider the tunneling of the wavefunctions

‘1‘1 — p1/2 6181

and ¥, = pi/2ei

(on either side of the weak-link) through the barrier. It is straight-forward to show
‘that the wavefunctions decay exponentially upon entering the non-superconducting

region, and (after Lounasmaa, 1974)

U, = p1/2 it exp { —(l;‘ ‘L)} + p1/2 392 exp {i ; a}
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(The constant A is a characteristic of the weak-link.) Thus,

lg| ho 2p 92 [eilf2=61) _ o~i(62-61)
—=——-exp{—— :
m A { A } 2t

Is =

That is, the tunneling current depends periodically on the difference in the phases
of the wavefunctions on either side of the weak-link. From equation 2.3 we can

relate this quantum interference to the flux through the hole:

A9=(92—91)—@:27rn
@0
Therefore (after Lounasmaa, 1974),
Is = —L sin {-2-@} (2.5)
®o
. _ 2iqlhop { 2@}
with I, = p—y exp § — 3

I is the maximum (or critical) super-current which can tunnel through the weak-
link, and is typically ~ 1 to 100 pA.
Equations 2.4 and 2.5 yield

& =3, — LLsin {@}
&,

The flux through the hole oscillates sinusoidally about the straight line ® = @.,,,

with an amplitude LI, and period ®,. Though the period is common to all
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SQUIDs, the slope is not (after Lounasmaa, 1974):

e 1%21.—LIC Cos{@}]“l
APyt % @0

For the strongly superconducting case, 2—%11;—1‘ > 1, unstable regions of neg-
ative slope occur. As shown in Figure 2.1, & initially increases slowly as @eq i
increased from zero, due to the strong shielding currents which begin to circulate
around the ring. As the super-current approaches the weak-link critical value

I, the shielding becomes less effective until, at point P (where dgig — o0 ), ®

Jumps discontinuously to point . In other words, since I, cannot be exceeded, a
flux jump occurs to reset Is at a value well below I.. Similar flux jumps occur as
@, 15 decreased, though @ then follows a different path. Practical RF SQUID

systems exploit this hysteretical behavior to good effect.

The Staircase Pattern

Operationally, the SQUID toroid is coupled inductively (via the RF coil of induc-
tance Lpr) to an LCR resonant circuit. This circuit is, in turn, loosely coupled
(via a capacitor CRFiever) to an RF sinusoidal signal generator which drives the
circuit at a resonant frequency of 19 & .5 MHz (Figure 2.5). The tuning may be
adjusted with the variable capacitor Ciyune, while the amplitude (or RF level) of
the RF oscillations is adjusted via a variable attenuator.

The SQUID toroid and resonant circuit are sealed within a S.H.E. model
MFP multifunction cryogenic probe, which functions from 0 to 5K (optimally

4.2K). The RF signal generator is contained within a S.H.E. model 300 RF Head,
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Figure 2.1: The dependence of the flux @, through the SQUID toroid, on the
external flux @,.;. The sinusoidal flux oscillation ®gp is used to drive ® around
hysteresis loops, and @, represents the flux due to the magnetic specimen to be

studied.
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while the tune and RF level are controlled from a $.H.E. model 30 SQUID control
unit.

Now the external flux can be written as
(I)en:t = q)offset -+ @q + @RF s

where ® g is the flux (through the hole) due to the RF signal, D4 1set 15 @ manually
adjustable constant offset, and &, is a quasi-static flux which changes very slowly
relative to @gr. Actually, &, represents the flux created by the magnetic specimen
to be studied, and is coupled into the SQUID via a fluz transformer. The details
of the sample arrangement are discussed later. Together, ®ossset and &, determine
the working point W of the SQUID.

Consider an arbitrary working point W as shown in Figure 2.1. We may
increase the amplitude 333 of the ®pr oscillations by increasing the RF level.
Several cases are of importance:

In the range 0 < 537 < dy, the flux & oscillates reversibly along the curve
about the point W. However, when d; < 85 < ds, a flux jump (from A to B )
occurs, and the oscillations proceed reversibly about the new effective working
point W'. The amplitude Vam?', of the RF voltage Var across the tuned circuit,
increases linearly from 0 to Vg3 with the RF level (Figure 2.2).

When d, < &5 ' < ds, ® is driven counter-clockwise around a hysteresis
loop (Loop 2). The corresponding energy absorbed from the tuned circuit is
proportional to the area of the loop, and is manifest as a dramatic decrease in

Vrr from its value of Vg% just before the lossy cycle took place. At relatively low

RF levels, the tuned circuit is weakly coupled to the RF signal generator, and
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Figure 2.2: The staircase pattern. The RF levels @, b, and ¢ optimize the ampli-
tude of the triangle pattern of Figure 2.4.
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Figure 2.3: The modulation of Vgr with time. Whenever ® is driven around a
ampl

hysteresis loop, the amplitude decreases rapidly from Vgpg* to 0. The rate of the
subsequent energy build-up depends on the RF level (after Lounasmaa, 1974).
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a finite amount of time is required to overcome the damping of Vgr and gather
enough energy for another lossy cycle to occur. Therefore, Vgr is modulated in
time (Figure 2.3). The rate of energy build-up, and hence the frequency of the
modulation, can be increased via the RF level. However, ®47F and VAP will
not exceed d, and V¢ 'r¥> Tespectively, until the modulation frequency matches the
RF frequency (that is, until one lossy cycle occurs for every Vgr oscillation — the
maximum rate possible). Thus the graph of Vor® versus RF level (Figure 2.2)
shows a plateau of constant voltage V3%. Once the RF level is high enough to
completely compensate for the hysteretical losses, further increases enable Vg~ r
to grow linearly from V& to V2, and ®37' to vary from ds to ds.

In the range d3 < &5 < d, there occurs another plateau, corresponding
to VAP = V&.. Here & is driven around two hysteresis loops {Loop 2 and Loop
3) during each lossy cycle. Once again the plateau ends when the RF level is high
enough that the rate of hysteretical energy dissipation is matched by the rate

of energy build-up in the tuned circuit. At the end of the plateau, Vam?

rises
linearly from V&% to V.

Lastly, for @“m”l > dg, plateaus occur ad infinitum, and correspond succes-
sively to transits of 3,4,5,... loops per lossy cycle. As illustrated in Figure 2.2,
‘the result is a staircase-like pattern.

The location of the working point W (Figure 2.1) is such that the loop
pattern is not symmetric about it. That 1s, d; # dy and d; # d,, therefore
two step heights (Figure 2.2} are associated with W. However, if we move the

working point to position X" or Y in Figure 2.1, then the symmetry of the loop

pattern results in only one step height for the corresponding staircase pattern.
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The plateaus for X correspond to transits of even numbers of hysteresis loops per
lossy cycle, while those for }" correspond odd numbers of loops. The staircase

patterns for all other working points fall between these two limiting cases.

The Triangle Pattern

Experimentally we are interested in measuring changes in the quasi-static flux
@4, which represents the magnetic signal of our dilute magnets. The variation of
V52" with the working point (for fixed RF level) must be determined.

Say we choose the RF level represented by the vertical line a in the middle
of the first plateau region (Figure 2.2), and start at the working point X (Figure
2.1). Sliding the working point over from X to Y, the external flux ®.., increases
by ®/2, and VrP' decreases linearly from point @ to point a. Like-wise, by
sliding the working point from ¥ to 4, the external flux increases by ®,/2, while
Vir? increases linearly from point o to point 3. Obviously, a plot of Vam® versus
working point yields a triangular waveform with a period equal to the fluxon &,
(Figure 2.4). This non-linear relation is the basis of all SQUID measurements.

The peak-to-peak amplitude V, is a function of the RF level and is maxi-
mized (Va ~ 60 milli-Volts) around the lines a, b, ¢, etc. Any of these RF levels

can be used, though the lowest RF level (line a) is most convenient and sometimes

provides the best signal-to-noise ratio.
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The RF SQUID Magnetometer

The RF SQUID can be used directly for measuring the magnetization of a speci-
men, simply by noting the non-linear variation of Vg~ "as ¢, changes with time.
However, as this is awkward, a Fluz Locked Loop is utilized to convert the signal
into one which varies linearly with ®,. The components of the loop are contained
within the model 30 SQUID control unit, and shown schematically in Figure 2.5.

The SQUID flux is éscillated about an average value (represented by the
point W in Figure 2.1) by an audio (50 kHz) square wave with a peak-to-peak
amplitude of %ﬁ. The amplitude is adjusted via the MOD control on the control
unit. The idea is to lock the system into a particular triangle valley (the bottom
of which is represented by the point 17) by means of an appropriate feedback flux
Dy

The error parameter §% indicates the flux difference between points W
and V. Necessarily, 6@ < %‘1, otherwise the audio flux oscillations will carry the
system into another valley. As shown in Figure 2.6, the resulting time dependence
of Ig;‘}"”f, for a particular value of 6@, is essentially an audio square wave Vyp(t)
with the same period as the flux oscillation. It can be shown that the peak-to-
peak amplitude of V4p(t) is proportional to §&. Of course, Vyp(t) is modulated
as 6 changes with time, and an amplified version of this waveform is output
from the detector D;.

The phase difference between 4¢(¢) and the original flux oscillation is either
0 or 7, depending on whether W is located to the right or left (respectively) of
point V. Hence, the output of the phase sensitive detector D, 1s a positive or

negative D.C. signal proportional to that required to return the average flux to
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point V. After appropriate scaling and phase shifting (via an integrator), this
signal is fed back into the SQUID by means of the RF coil. The resulting feedback
flux @y, cancels changes in @, to within %‘l, and keeps the system locked within
the chosen valley. The feedback voltage varies linearly with the magnetization of

the sample, and is read via a Racal-Dana model 5003 digital voltmeter.
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The Flux Transformer

In utilizing the SQUID as a magnetometer, it is impractical to place the mag-
netic specimen directly within the superconducting toroid. The use of a flux
transformer allows the specimen and the SQUID proper to be separated physi-
cally, and placed in different field and temperature environments. The latter is
especially important since the SQUID probe will not function at temperatures
above 5 K. A flux transformer generally has three basic components; the pickup
coils, a signal coil, and the leads between them.

The pickup coils consist of two coils which are wound, with the same num-
ber of turns, on opposite ends of a cylindrical spool. The coils are wound in
opposite directions, connected in series, and carefully constructed to have nearly
identical dimensions. The two leads from the pickup coils are joined, by means
of superconducting wire, to the leads of a superconducting signal coil which is
coupled inductively to the SQUID toroid (Figure 2.5). To minimize the pickup
of noise, the connecting wires are tightly twisted around each other, or enclosed
in a superconducting tube.

The pickup coils form the arms of an astatic pair. When both arms are
exposed to exactly the same magnetic field, the currents induced in each arm
cancel each other exactly (assuming perfect coil geometry), and the net current
through the circuit is zero. However, by placing a magnetic specimen within only
one arm, a non-zero current (which varies linearly with the sample magnetization)
is set up within the pair. This current also flows through the signal coil so that

the magnetic signal of the sample is transferred into the SQUID, and measured

as the quasi-static flux @,.
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Either a solencid or a Helmholtz pair is used to apply a D.C. magnetic field
to our samples. With proper coil geometry and positioning, the D.C. field is the
same for both arms of the astatic pair and only the sample magnetiiation, not
the D.C. field, is measured. Also, since our samples are maintained at cryogenic
temperatures for the duration of the measurements, the use of superconducting
pickup coils is made possible. Section 2.1.2 provides the design details for the
D.C. field coils and pickup coils.
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The RF SQUID A.C. Susceptometer

The electronic components of our susceptometer were obtained from the S.H.E.
Corporation of San Diego, and consist of a model RBU Precision Low-level A.C.
Impedence Bridge Unit, a model BPD Bi-Phase Detector, plus the components
of the RF SQUID magnetometer. These are shown schematically in Figure 2.7.

In the susceptometer configuration, the pickup coils play the part of the
secondary in a mutual inductor A/. As usual, the sample is inserted into one arm
of the astatic pair, and its temperature and D.C. magnetic field environment are
adjusted as desired. The primary coil, which is wound co-axially about the sec-
ondary and close-coupled {through resistor Rps) to a sinusoidal signal generator,
creates the driving field. The signal generator provides an A.C. voltage egcite
of selectable angular frequency w. Like the D.C. field coils, the primary coil is
designed and positioned such that the driving field itself is not detected by the
astatic pair. The designs of the various coils are provided in Section 2.1.2.

In general, the A.C. susceptibility of a magnet has both real and imaginary

parts:

Xac — XI + iXH .

The real component x' is in phase with the magnetic field produced by the pri-
mary coil, and effectively represents the zero-frequency susceptibility. On the
other hand, x" is /2 out of phase (or in quadrature) with the driving field, and
represents a frequency-dependent energy dissipation. It can be shown that M is
also a complex quantity, with components M’ and M" proportional to y/ and x”,

. respectively.
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Mode | M' [ofin) | M" o
Multiply | 10%Xa | —10"°MBw
Divide 10-° ¢ —1079 &2

Table 2.1: The relationships between the bridge balance conditions and the in- -
phase and quadrature components of M.

The model RBU bridge is used to measure M’ and M", and operates as
follows. The secondary of M is connected in series with the secondary of a fixed
mutual inductance m (which is sealed within the multifunction SQUID probe).
Two ratio transformers are used to tap voltages avegeire and BPezcite from the signal
generator. The component awegee is close-coupled (through resistor R,,) to the
primary of m, and is in phase with the voltage across the primary of M (actually,
use of the Forward/ Rever'se switch, which reverses the polarity of the signal, may
be required to obtain phase matching). The component Bvepeire is loosely coupled
(through capacitor Cy,) to the primary of m, and provides a quadrature signal.
An additional ratio transformer is used to either multiply or divide o and 2 by
an amount A.

The idea is to adjust o, 8, and X until the emf induced in the secondary of
m exactly balances the emf induced in the secondary of M. In this respect, the
RF SQUID magnetometer is used as a sensitive null-current detector by placing
the signal coil in series with the secondary coils. A bi-phase detector is required
to measure separately the in-phase and quadrature components of the current
between the secondaries, as both must be nulled for true balance to occur. Table
2.1 shows how M’ and M" are related to w and the balance values of a, 3, and

A.
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2.1.2 Cryogenic Sample Environments

- The weak magnetic nature of our dilute alloy samples requires the use of cryogenic.
techniques to maintain them at low temperatures. Two different systems are used;
a He®~He* dilution refrigerator purchased from the S.H.E. Corporation, and a
home-made He* cryostat. The dilution refrigerator is operated in conjunction
with an RF SQUID magnetometer, while the cryostat is used together with an
RF SQUID in an A.C. susceptometer configuration. The general layout and

operation of these two systems is documented below.

The Dilution Refrigerator/Magnetometer

At low temperatures, the helium isotopes He® and He* are both liquid, even near
absolute zero. The normal boiling point of He® is 4.2 K, but the temperature of
such a bath may be reduced to ~ 0.9 K by pumping on its vapour (due to the
latent heat of evaporation). Similarly, the normal boiling point of He® is 3.7 K,
and its bath temperature may be reduced to as low as ~ 0.3 K through vigorous
pumping.

Even lower temperatures are obtainable when a liquid mixture of He® and
He® is considered. Figure 2.8 shows the phase diagram for such a mixture. Be-
cause the He® and He* atoms are fermions and bosons, respectively, their low
temperature behavior differs considerably. Above 0.86 K, the fluid is a homoge-
nous mixture of the two isotopes, and has either normal or superfluid (i.e. zero
viscosity) properties, depending on whether the concentration of He® is to the
right or left of the A-curve. At lower temperatures, the mixture begins to sepa-

rate into two distinct phases. One phase is a normal fluid and is rich in He®; the

106



T T ] I
1.5 —/ NORMAL FLUID
ks
¢
D
S
SUPERFLUID
—— 1.0 - -—
X
=~
O
5 ¢
609*\ 04’//@
0.5} —
0.064
0 ;| I!’ I I | H
0 0.2 0.4 0.6 0.8 RN
r = Ny
na+ny

Figure 2.8: The He®.He* phase diagram. The quantity # represents the fractional
concentration of He® atoms in the fluid mixture. Below 0.86 K the mixture
spontaneously separates into two distinct phases. As 7' — 0 K, one phase consists
entirely of normal fluid He®, while the other phase is mostly superfluid He*, but
with a finite concentration (z = 0.064) of He® atoms (after Lounasmaa, 1974).
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He® atomic concentration approaches 100% as the temperature approaches abso-
lute zero. The other phase is a He'-rich superfluid. However, even at absolute
zero, the He'-rich phase is a dilute solution with more than 6 at. % He®,

The He*-rich phase floats on top of the He®~rich phase, due to their differing
densities. Since the He®-rich phase is superfluid, the dissolved He® atoms behave
much like gas atoms in a vacuum. If He® atoms are somehow removed from the
solution, they are immediately replaced by by He® atoms which cross over the
phase boundary from the He®~rich phase. There is a latent heat involved which is
analogous to that of liquid evaporation. As a result, it is possible to cool the fluids
down to temperatures of tens of milli-Kelvin. Our dilution refrigerator operates
by this principle, but continuously cycles the He® atoms in a closed loop so that
cooling can occur over long periods of time.

A schematic of our S.H.E. mode] DRI-236 Dilution Refrigerator Cryostat,
along with its Pumping and Gas Handling system, is shown in Figure 2.9. To
thermally isolate the cryogenic core of the refrigerator from room temperature,
1t 1s situated within a high-vacuum can immersed in a He? bath. The can is
evacuated to ~ 107° Torr by means of a Sargent Welch 1402 mechanical pump
and an oil diffusion pump. Our system uses a mixture of approximately 30% He®
and 70% He®. As shown in Figure 2.10, the major components of the core are the
cold-plate, the still, the continuous heat exchanger, the six step heat exchangers,
and the mixing chamber. Most of the components are constructed from copper,
since it provides high thermal conductivity.

The copper cold-plate contains a small chamber into which liquid He? is

drawn from the bath through a capillary. Pumping on the chamber (with a
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Sargent Welch 1374 mechanical pump) cools the cold-plate down to about 1 K.
The heater on the plate is used only during a preliminary bake-out procedure,
in which He® exchange gas (used to thermally couple the core to the He® bath)
1s evacuated from the vacuum can. A Speer carbon resistor (nominally 1009) is
used to measure the approximate temperature of the plate.

During operation, the copper still contains a non-phase-separated mixture
of superﬂui_d He®-He®. A heater preferentially boils off the lighter He®, and the
vapour is pumped on through a specially designed orifice which restricts the escape
of He®. The still temperature is monitored with a calibrated carbon resistor, and
1s optimally 0.7 K. However, our system seems to run slightly hot, as the resistor
indicates an operating temperature of about 0.8 to 0.95 K.

The copper mixing chamber, where the actual phase separation occurs,
1s lined with sintered copper to enhance thermal contact with the cold liquid.
Warm liquid He® flows into the mixing chamber through a tube, and continually
replenishes the He®-rich phase. Simultaneously, He® atoms (from the He3-rich
phase) are drawn across the phase boundary, and removed from the chamber via
a tube flooded with He®-rich superfluid (more about this later).

Each of the six step heat exchangers is constructed from two short copper
tubes which are welded together length-wise and packed with sintered copper.
- The mixing chamber’s warm incoming He® flows through one tube, while the
out-going cold fluid flows through the other.

In the continuous heat exchanger, the warm He® line is threaded through
the cold hine to place it in direct contact with the out-going cold fluid.

The closed-cycle operation of the core is as follows. For convenience we
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shall assume that the circulating medium is entirely He®, though there is a small
amount of He* which escapes through the orifice in the still. An Edwards model
660 sealed mechanical pump is used to circulate the He® through the core.

Gaseous He® is first cooled to 4.2 K by the He® bath. Upon entering the
vacuum can, the gas is liquefied by passing it through a condenser {placed in
thermal contact with the 1 K cold-plate) and a flow impedence. After further
cooling by means of the still heat exchanger and the continuous and step heat
exchangers, the liquid He® enters the mixing chamber.

The out-going cold line {from the mixing chamber) passes back through the
step and continuous heat exchangers, and opens into the superfluid bath in the
still. In this way, the mixing chamber and the still are connected by an unbroken
column of He-rich superfluid. By pumping on the still, the concentration of
dissolved He® at the top of the column is made to be lower than that at the
bottom. The resulting osmotic pressure gradient (see Lounasmaa, 1974) draws
He® atoms across the phase boundary in the mixing chamber, and up into the still.
Subsequently, He® vapour from the still is recirculated into the core by means of
the sealed mechanical pump at room temperature.

The system is potentially capable of cooling the mixing chamber to approx-
imately 30 mK. However, our refrigerator is in need of fine tuning, and is only
able to reach about 50 mK. Stabilization at higher temperatures requires the use
of a heater and a carbon resister (both in good thermal contact with the mixing
chamber), together with a feed-back system (see Figure 2.12). The temperature
stability is 5 x 107* K at 50 mK, and 5 x 1072 K at 800 mK (after Yeung, 1988).

The sample environment is shown in Figure 2.11. The copper sample cham-
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ber/holder is bolted in good thermal contact with the mixing chamber, and a
calibrated germanium resistor (model GR-200A-30 from Lake Shore Cryotronics
of Westerville, Ohio), together with a S.H.E. model PCB Potentiometric Conduc-
tance Bridge, is used for precision temperature determination (see Yeung, 1988).
The sample is attached to the holder with G.E. varnish, and postioned half-way
into the lower pickup coil.

The pickup coils for the magnetometer are made of 0.007” superconducting
Niobium-Titanium wire, and counter-wound (9 turns each) on a spool machined
from Emerson and Cuming Stycast 1266 epoxy. The coils have a radius of 0.170"
and a center-to center separation of 0.750”. The leads of the pickup coils are con-
nected to the appropriate terminals on the cryogenic SQUID probe, and enclosed
by superconducting PbSn tubing to shield them from noise.

A uniform and highly stable D.C. magnetic field is applied to the sample
by means of a Helmholtz pair (mounted outside the vacuum can) and a constant
current source with a maximum 1 ampere capability (see Yeung, 1988). Each coil
consists of 650 turns of 31-guage copper wire. The pair has a mean coil radius
and separation distance of 6.033 cm, and delivers 96.81 gauss per ampere at its
center.

To help reduce noise in the SQUID due to relative motion between the
sample and the pickup coils, measures are taken to isolate the cryostat from
vibration. The vibration of the mechanical pumps is decoupled from the cryostat
by means of flexible bellows on the pumping lines. In addition, the cryogenic core
and the entire dewar assembly are supported by a sturdy plywood bridge which

rests on massive sand foundations.
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Our refrigerator/magnetometer is capable of measuring the magnetization
of the sample as a function of temperature, applied magnetic field, and time.
The magnetometer is not calibrated, however, so that the changes in the sample

magnetization are measured in arbitrary units.
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Figure 2.9: The Pumping and Gas Handling System (after S.H.E. Corporation).
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Figure 2.11: The sample environment of the magnetometer (after Yeung, 1988).
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Figure 2.12: Temperature control of the mixing chamber. The carbon resistor
and heater are in good thermal contact with the copper mixing chamber. A
bridge compares the carbon resistance to a set value corresponding to the desired
temperature. The difference is fed into the ATC, which in turn adjusts the heater
current to oppose the imbalance (after Yeung, 1988).
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The He! Cryostat/A.C. Susceptometer

Like the dilution refrigerator, the He* cryostat basically consists of a pumping
system and a cryogenic core surrounded by a He* bath. However, there is no need
for a large vacuum can since the eryogenic plumbing of the refrigerator is avoided.
Instead, only a small volume containing the magnetic sample need be evacuated.
The pumping network is also much simpler, and consists only of provisions to
pump on the He* bath, the sample chamber, and the walls of the He? dewar. By
pumping on the bath with an Alcatel model 2033 pump, the system can be cooled
to as low as 1.5 K. A schematic diagram of the He* cryostat is displayed in Figure
2.13.

The sample chamber is machined out of Emerson and Cuming 1266 Stycast
clear epoxy, and glued to one end of a meter long stainless steel pumping tube of
low thermal conductivity. The use of epoxy avoids the skin-depth préblems asso-
ciated with metals in A.C. fields. During normal operation the sample chamber
and much of the pumping tube are surrounded by the He* bath, while the far end
of the pumping tube is exposed to room temperature.

The magnetic sample is attached with G.E. varnish and high-purity silver
paint (from SPI Supplies, West Chester PA) to the bottom of a 99.99% pure
silver sample block of high thermal conductivity. A 25 sample heater is made
by winding 36-guage Manganin wire around the top of the sample block, while
precise temperature measurement is obtained via a calibrated Silicon diode (model
DT-470-SD-13 from Lake Shore Cryotronics) placed in good thermal contact with
the block.

A sample rod of low thermal conductivity is constructed by bonding the
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top of the sample block to a 1.25” quartz tube, which in turn is glued to an
approximately meter long stainless steel tube of small diameter. The heater and
diode are connected by copper leads to an electrical socket at the opposite (room
temperature) end of the rod. To suspend the sample within the sample chamber,
the rod is fed down through the pumping tube. Brass spacers on the rod are used
as a guide to prevent the sample from touching the sides of the chamber. The
top end of the rod screws onto the top of the pumping tube with a vacuum-tight
seal, enabling the sample chamber to be evacuated.

Between 1.5 and 4.2 K, the temperature of the sample is controlled solely

by pumping on the He* bath through a manostat. A heat leak from room tem-
perature (possibly due to the copper wire leads for the heater, etc.) makes it
necessary to fill the sample chamber with He? exchange gas (about 10 Torr at
4K) to enhance the thermal coupling between the sample and the bath.

To heat the sample above 4.2 K, it is necessary to evacuate the sample
chamber down to ~ 10~* Torr {using a Sargent Welch model 1402 mechanical
pump and an oil diffusion pump) because the 25§ heater is not effective enough to
overcome strong thermal coupling to the cold bath. With the manostat disabled,
the temperaturé 1s controlled by connecting the heater and the Silicon diode
to a model 520 Cryogenic Temperature Controller from Lake Shore Cryotronics,
Incorporated. The system is hypothetically capable of controlled operation as high
as 300 K, though at the time this thesis was prepared, the highest temperature
tested was about 250 K.

Figure 2.13 also portrays the coil geometry for the A.C. susceptometer.

The pickup coils, A.C. field coil, and the D.C. field coil are all wound on clear
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epoxy formers and designed to fit concentrically about the bottom of the sample
chamber.

The pickup coils are wound (8 turns each) on a cylindrical spool, and have
an inner diameter of 0.274” and a center-to-center coil separation of 0.625". Super-
conducting Niobium-Titanium 0.006” wire is used. The sample rod is positioned
such that the sample is half-way into the upper arm of the astatic pair.

The A.C. field coil (or primary coil) has an inner diameter of 0.41”, and is
wound in a single layer with about 215 turns of 0.006” Niobium-Titanium wire.
The primary coil completely surrounds the pickup coils and the sample.

The superconducting leads for both the astatic pair and the primary coil are
threaded through Pb tubing and connected to the appropriate terminals on the
SQUID probe. The leads are also passed through a small Teflon box containing
a carbon resistor. By supplying current to the resistor, the leads may be heated
and driven into normal conduction to eliminate unwanted persistent currents in
the coils.

The D.C. field coil is wound from 0.008" copper wire, and is designed to
provide a fairly uniform magnetic field for the sample and the astatic pair. It
comsists of a central solenoid with a single layer of 68 turns, plus two compensating
solenoids (one at each end) with 3 layers and about 24 turns per layer. All
three windings have the same inner diameter of 1.1024”. A field profile along the
central axis of the coil is shown in Figure 2.14. The D.C. coil utilizes the same
constant current source as the He3-He* dilution refigerator/magnetometer, and
1s capable of delivering about 45 gauss at the maximum available current of 1

ampere. Copper wire is used to avoid remanent fields which can be produced
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by superconducting solenoids. The leads for the D.C. coil are twisted together,
threaded through a stainless steel tube, and connected to an elecirical socket at
room temperature.

RF noise is reduced by surrounding the SQUID probe and the sample cham-
ber by a metal can covered in lead foil. To suppress vibrational noise, the cryostat
1s supported by a stand with a massive sand foundation, and flexible bellows are
used on the pumping lines.

Besides measuring the A.C. susceptibility as a function of field and temper-
ature, the system can be configured as a magnetometer simply byl re-connecting
the pickup coils to the appropriate terminals on the SQUID probe, and discon-
necting the primary coil. As shown in Figure 2.13, the sample 1od is attached
through a vacuum seal to a hydraulically activated piston. This allows the sam-
ple to be withdrawn from the pickup coils at any time, and provides a means of
determining whether the sample has been magnetized. Hence, it also provides a
direct method to find the current required such that the D.C. field coil cancels

the earth’s magnetic field exactly.
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for a current of 50 mA. The slight asymmetry is due to the measuring technique,

and not the coil construction.

122



2.2 Preparation of Dilute Alloy Samples

A total of one ternary and three binary alloys were prepared with the following
consistencies: Pd + 0.07 at.% Fe, Pd + 0.07 at.% Mn, Pd + 0.1 at.% Mn, and
(Pd + 0.35 at.% Fe) + 5 at.% Mn. The magnetic impurity concentrations render
all of the alloys potentially re-entrant.

The fabrication started with the creation of PdFe and PdMn master alloys
of fairly high magnetic impurity concentration (~ 10 at.%). The basic components
were 99.999% pure Pd sponge (Johnson-Mathey, London), 99.99% pure Mn flake
(Aldrich Chemical Company, Inc., Milwaukee, Wisconsin), and 99.99% pure Fe
pellets (Johnson-Mathey, London). To begin, the Pd sponge was pressed into
disc-shaped pellets and melted on the water-cooled hearth of an arc furnace with
an inert Argon atmosphere. The resulting button was then cold-rolled between
Mylar sheets until it was thin enough to cut with scissors. A similar procedure
was followed to obtain Fe and Mn foils. Next, the appropriate amounts of either
Fe foil or Mn foil were wrapped within the Pd foil, and the metals were melted
together in the arc furnace. Each alloy button was inverted and re-melted several
times over to ensure homogeneity, and negligably small melting losses were noted
at every stage of the master alloy preparation.

With the master alloys prepared, it was straight-forward to add the appro-
priate amounts of pure Pd and dilute them down to the concentrations required
for the three binary alloys—in the case of the ternary alloy, it was also necessary
to mix the two types of master alloys together in the proper ratio. The new
mixtures were repeatedly melted and inverted in the arc furnace, as described

previously, and once again negligable melting losses were observed for all of the
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samples. To remove carbon scoring ete., each alloy was etched in a mixture of 3
parts hydrochloric acid, 1 part nitric acid, and a few drops of hydrogen perox-
ide. They were then placed in Vycor quartz tubes evacuated to ~ 5 x 10~® Torr,
annealed at 970 £ 5°C for approximately 24 hours, and rapidly quenched in ice
water. (The quenching is inessential, however, considering that impurity atom
clustering 1s unlikely to occur in such dilute alloys.)

The three binary alloys were spark cut (using a copper-tube type blade) into
needles of about 0.7 mm diameter and 1 cm length. Each needle was etched and
cleaned by rolling it along the bottom of a beaker filled with the aforementioned
acid mixture, and the resulting needle diameters were ~ 0.5 mm. The PdFe
needle was annealed (in vacuum) for 17 hours at 970 & 5°C, and quenched in
ice water, while the PdMn needles were annealed for 12 hours at 650 °C, and
slow cooled in vacuum. Needle-like shapes were chosen to minimize the effects
of sample demagnetization. The samples were destined to be measured on the
SQUID magnetometer, so that A.C. skin depth effects were not a factor in deciding
their shapes.

On the other hand, the ternary alloy was intended to be analysed on the
SQUID A.C. susceptometer, so that skin depth considerations were of prime im-
portance in deciding the sample shape. To this end, the alloy was cold-rolled
into a foil of thickness 0.18 mm and cut into three identical strips of dimension
11.5x1.2 mm?. The strips were then placed in a Vycor glass tube, and annealed
for 6 hours with at a pressure of 0.7 x 10~® Torr and a temperature of 650 °C.
Lastly, the strips were stacked upon one another (being careful to separate the

adjacent surfaces with masking tape) and bound together with masking tape.
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Chapter 3

Data and Analysis:

A Study of the Effective Field
Model and Several Potentially
Re-entrant Palladium Alloys

3.1 Phase Diagrams of PdFe and PdMn

The magnetic properties of dilute PdFe and PdMn alloys are highly dependent
on the atomic concentrations of the magnetic Fe and Mn impurities (see section
1.1.2 for an overview). Experiments indicate that PdFe alloys sustain paramag-
netic to ferromagnetic transitions for Fe concentrations as low as ¢ = 0.02 at.%Fe
(Figure 1.3); the persistence of ferromagnetic ordering in such dilute systems is a
consequence of the spherical clouds of polarized (exchange-enhanced) conduction
electrons which surround each Fe impurity atom in the Pd host matrix. Asso-
ciated with each cloud is a giant-moment of up to 10xp, and their large spatial
extent (diameter~ 10A) enables overlapping and direct ferromagnetic exchange

coupling to occur between them, even in very dilute alloys. Furthermore, the
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Curie temperature T, displays a linear ¢ dependence above ¢ ~ 0.1 at.%Fe, and
a quadratic dependence below. A.C. susceptibility studies performed by Peters
et al. (1984) have shown that alloys with concentrations below 0.01 at.%Fe are
typical RKKY-induced spin glasses. Based on extrapolations of the existing data,
the intermediate regime 0.01 < c{at.%Fe] < 0.10 hypothetically corresponds to
a re-entrant domain of the magnetic phase diagram, but the very dilute nature
of such alloys requires the use of a sophisticated cryogenic apparatus to reveal
their magnetic behavior, and hence little direct experimental evidence for such
re-entrant transitions has been forthcoming in the literature.

The PdMn systems possess similar characteristics (including the develop-
ment of giant-moment polarization clouds about the Mn atoms), though the mag-
netic phase diagram (Figure 1.5) is more complex, due to anti-ferromagnetic ex-
change interactions which can occur between closely spaced Mn impurities. For
certain concentrations, these short ranged couplings may compete in some way
with the longer ranged ferromagnetic exchange bonds which act between the giant-
moment polarization clouds, and frustration of the impurity spin orientations can
occur. Consequently, there exists in the phase diagram a ferromagnetic regime
0.1 < ¢ < 2.5 (in which the variation of T, with c is linear at low concentrations),
followed by a re-entrant regime (2.6 < ¢ < 5) and a spin glass regime (¢ > 5)
at higher concentrations. The static magnetization measurements of Thomson
and Thompson (1979) reveal that a more usual RKKY-induced spin glass domain
exists for concentrations ¢ < 0.06 at.%Mn. Extrapolations of the existing data
predict the existence of an RKKY-induced re-entrant region for intermediate con-

centrations of 0.06 < ¢ < 0.1. However, as in the PdFe studies, the literature has
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not yet provided direct experimental support for such an assertion.

The SQUID magnetometer/dilution refrigerator is ideally suited to the
study of these weakly magnetic systems, since it provides the appropriate tem-
perature window (50mK to 1K) and sensitivity. Presented below are the first ever’
detailed measurements of the temperature and field dependent static magnetiza-
tions of several potentially re-entrant (and very dilute) PdFe and PdMn alloys.
Because significant impurity atom clustering is unlikely to occur in these very
dilute samples, the experimental zero-field-cooled magnetization curves should
provide a good foundation for comparisons to a simple mean-field model which
displays genuine re-entrant transitions, from paramagnetic to ferromagnetic to

spin glass (as opposed to cluster glass) ordering.

3.2 PdFe Magnetization Measurements

The dilution refigerator/magnetometer was used to measure the magnetization
of the Pd + 700 ppm Fe needle as a function of temperature, applied magnetic
field, and time. The Fe concentration was deliberately chosen to fall within the
potentially re-entrant region of the PdFe phase diagram, and the needle-like shape

of the sample rendered demagnetizing corrections to the internal field unnecessary.

3.2.1 Temperature Dependence of
FC and ZFC Magnetization

The field-cooled (FC) magnetization curve was obtained by cooling the sample
down to 0.0548 K in a net applied field of 1.25 & .25 Gauss (parallel to the long

axis of the needle). Next, the temperature was incremented in steps and the
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magnetization recorded until the highest temperature of 0.898 K was reached.
The uncertainty in the field is due to the difficulty in determining the helmholtz
pair current required to cancel the earth’s magnetic field in the neighborhood of
the sample.

To acquire the zero-field-cooled (ZFC) curve, the sample was cooled down
to 0.0568 K in zero field (£0.25 Gauss); a field of 1.25 + .25 Gauss was then
applied and the magnetization recorded as the temperature was incremented up
to 0.737 K in steps.

As shown in Figure 3.0, the FC and ZFC curves are essentially identical
above a point of inflection which occurs at temperature i,z = 0.470 £ 0.10 K,
but their behavior differs considerably at lower temperatures. In particular, the
FC magnetization increases monotonically as the temperature is lowered, and dis-
played no discernible time effects over the duration of the measurements. On the
other hand, the ZFC curve peaks at 0.264 K, and tends towards a zero magne-
tization ground state at absolute zero. The ZFC magnetization also displayed a
noticible upward drift with time for all temperatures below about 0.315 K; to be
consistent, 8 to 10 minutes were allowed to elapse before the magnetization was
recorded at these temperatures.

Since the magnetometer does not measure in emu/gram, but in volts relative
to an arbitrary zero, it was necessary to calibrate the system in some way. This
was accomplished by associating Tins with the Curie temperature T,, and fitting

the high temperature ZFC and FC data to a Curie-Weiss law such that
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Figure 3.1: The calibration plot of the ZFC data. The straight line represents a
fit to a Curie-Weiss law with slope 7z = 1.8 [volts- K]~'. A similar plot of the

FC data yields a slope g5 = 2.2 [volts - K],
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‘The applied field is denoted by H, while C is the Curie constant. By plotting
M{volts] versus T;Y] for both the ZFC and FC data, it was possible to extrapolate
to the infinite temperature limit and obtain the true zeroes (in volts) for the two
sets of data.

As shown in Figure 3.1, high temperature plots of F[;l;l—h—s} versus T{K] yield
straight lines with slopes of Z = 2.0+ .2 [volts™ - K~]. However, the mean-field

theory of ferromagnetism predicts that

eNag?S(S + 1)} H
M3kg .

; emu- K

CH

= (14=.3)x10" ram
where ¢ = 7x 107 is the atomic ratio of Fe to Pd in the sample, N4 is Avogadro’s
number, M is the molar mass of Pd, and the effective spin § = 5 is chosen in
accordance to the results of Chouteau and Tournier (1971). Hence, a calibration
of about 1 volt = 3.4 x 10~ %[emu/gram] was derived, which can also be written
in terms of the saturation magnetization M,, = %}ingS such that 1 volt =
8.5 x 107* Miqr. |
It is clear that the high temperature behavior of both the ZFC and FC
magnetizations is ferromagnetic in character. However, the low temperature be-
havior of the ZFC curve also suggests a further re-entrant transition into a phase
with a spin glass ground state. Such transitions are in fact predicted to occur in
the re-entrant domain (0.8 < J/Jp < 1.0) of the mean-field Effective Field Model
(section 1.2.4). With this in mind, the Sherrington-Kirkpatrick-like coupled equa-

tions were solved numerically (the technique is described in section 3.5), and the
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theoretical temperature dependence of the magnetization was compared to the
ZFC experimental curve..

Such a calculation requires the specification of several parameters. Firstly,
the spin quantum number is predetermined as S=5. The reduced field h = %ﬁ,ﬁ
is also predetermined to within the range 0.0003 to 0.0005. Lastly, the exchange-
bond parameter 7 = J/J, must fall within the re-entrant region defined previ-
ously.

Figure 3.2 displays a best fit to the experimental data, with h = 0.0005 and
n = 0.98. The temperature Ts¢ indicates the approximate location of the theoret-
ical ferromagnetic/spin-glass phase boundary, and coincides with the location of
the peak in the ZFC curve. Also shown is the de Almeida-Thouless temperature
T4r, which indicates the theoretical onset of broken replica-symmetry.

The discrepancy at temperatures below the peak is at least partly at-
tributable to the dynamic component of the ZFC magnetization; the model is
static and hence incapable of duplicating the time-dependent behavior of the
experimental system. Even so, the resemblance between the experimental data

and the numerical calculations is striking, and provides some evidence that the

experimental system is re-entrant.

3.2.2 Field Dependence of Magnetic Isotherms

Magnetic i1sotherms were measured for eight temperatures T between 0.4645 K
and 0.611 K. Each isotherm was obtained by first cooling in zero field from about
1 K to the desired measuring temperature. With the temperature stabilized, the

magnetization was recorded as the field H was increased from approximately 0
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Figure 3.2: A comparison between the ZFC curve (o) of the Pd + 700 ppm Fe
sample and a theoretical re-entrant calculation (solid curve) with k = 0.0005,
S = b, and 5 = 0.98. The theoretical re-entrant spin glass temperature Ts¢ is
indicated, as is the de Almeida-Thouless instability temperature Tr.
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to 10 Gauss. Figure 3.3(a) shows the experimental isotherms plotted in terms of
M[M,q; versus the reduced field k, such that 0 < & < 0.0030.

For comparison, the Effective Field Model was used to generate isotherms
over the same interval of reduced field and with a value of = 0.98 chosen to
be within the re-entrant region. The theoretical isotherms are plotted in Fig-
ure 3.3(b). The calculations span the range of reduced temperature t = 7/7.
from 1.001 to 1.5, while the experimental isotherms have reduced temperatures
from about 1.001 to 1.3 (assu.ming T. = 0.464 K). Once again the behavior of
the experimental data is remarkably similar to that of the theoretical re-entrant
system.

The initial slopes of the experimental isotherms represent the zero field
susceptibilities, and were found to diverge as [(7 — 7%.)/T.]”" with v = 1.7+ 0.1
and 7. ~ 0.464 K. The exponent is greater than the typical value of v = 4/3,
as determined from the three-dimensional Heisenberg model of ferromagnetism.
However, even larger exponents have been observed by Ho et al. (1981) in their
investigations of PdMn alloys with concentrations between those typical of the

ferromagnetic and spin glass systems.

3.2.3 Time Dependence of the
Thermo-remanent Magnetization

As mentioned in the first chapter, the magnetic relaxation of ferromagnets is
generally associated with a logarithmic time dependence, while the relaxation in
spin glass systems is better described by a stretched-exponential function. Hence,
an anomaly in the relaxation of a re-entrant system might be expected to occur

as the system is passed through the spin glass/ferromagnetic phase boundary.
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h(107%)

Figure 3.3: (a) Experimental magnetic isotherms of Pd + 700 ppm Fe. The
temperatures from top to bottom are T =0.4645, 0.475, 0.488, 0.500, 0.516, 0.530,
0.561, and 0.611 K.

(b) Theoretical isotherms calculated using § = 5 and a re-entrant value of
7 = 0.98. From top to bottom the reduced temperatures are ¢ =1.001, 1.01, 1.03,
1.06, 1.07, 1.1, 1.2, and 1.5.
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To search for such an anomaly in the PdFe system, the decay of the
thermo-remanent magnetization o4, was measured for five temperatures T be-
tween 0.0788 K and 0.354 K. These temperatures are indicated in Figure 3.0, and
represent the entire range over which time-effects were observed in the ZFC mag-
netization measurements. To measure the decay, a field of ~ 2 Gauss was applied
while the sample was cooled down to T from a reference temperature of 0.475
K (at which no time effects were observed). After stabilizing at T for about 30
minutes, the applied field was set to zero and the o,,,, relaxation was monitored
for 7200 seconds on a chart recorder. The same reference temperature was used
for all the runs, as this allowed scaling of the magnetization data relative to a
common zero.

Figure 3.4 displays semi-log plots of oy, versus time for all the temperatures
T—1lhinear behavior indicates a logarithmic decay. The time zeroes are chosen so
that the curves are as linear as possible within the range of uncertainty; all times
could be increased by up to 8 seconds, though this enhances the curvature, es-
pecially at low times. The discrepancies for times t > 10° seconds are accounted
for by slight field drifts and temperature instabilities. Clearly, the data are al-
most logarithmic, except for the appearance of small deviations at times ¢ < 100
seconds. The relaxation rate 86¢,,/0logt is, however, essentially independent of
temperature, with no indication of an anomaly.

As demonstrated in Figure 3.5, the lowest temperature data (which are

representative of all the measurements) are well described over the full range of
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times by a stretched-exponential function

i l-n
Tirm = O €XP |:'— (") :|
T

However, the extracted value of the exponent n is unusually close to unity. A
likely explanation is that the weakness of the decay renders the fit somewhat
insensitive to the parameters n and 7. The suggestion of a stretched-exponential
decay (for all temperatures studied) implies that the distinction between the spin

glass and ferromagnetic phases is becoming vague in this system.
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Figure 3.4: Logarithmic tests of the oy,,, decay for the Pd + 700 ppm Fe system.
From top to bottom the temperatures correspond to T = 0.0788 £.0004, 0.113 &
.001, 0.161 = .001, 0.300 £ .002, and 0.354 & .002 K. The straight lines have a

common slope, and are provided to guide the eye.
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3.3 PdMn Magnetization Measurements

Like the Pd + 700 ppm Fe system, alloys of Pd + 700 ppm Mn and Pd +
1000 ppm Mn have concentrations within a potentially re-entrant region of their
phase diagram. Samples of these two PdMn alloys were prepared as needles and
investigated using the dilution refigerator/ magnetometer. Once again the shape

of the samples made demagnetizing corrections unnecessary.

3.3.1 Temperature Dependence of ZFC Magnetization

The ZFC curves for the PdMn samples were acquired and analysed in a fashion
identical to the PdFe system. Each sample was first cooled down to ~ 0.05 K
under approximately zero field conditions. A field of H = 1.25 £ .25 Gauss was
then applied and the magnetization recorded as the temperature was increased
up to ~ 0.5 K in steps. As shown in Figure 3.6, both of the curves dis.play a peak
similar to that of the PdFe system, though the low temperature structures are
not revealed.

The 700 ppm Mn curve has an inflection point at Ti,z; = 0.085 £ .005
K (tentatively associated with T.), above which the data follows a Curie-Weiss
behavior. A plot of M versus 7 was constructed to zero the data, while a plot
of 3; versus T gave a slope of g = 9+ 1 [volts™ - K~} and a calibration of
approximately 1 volt=1.1 x 10~® [emu/gram| (assuming a spin of S = 5 and an
impurity concentration of ¢ = 7 x 107*).

"Similarly, the 1000 ppm Mn curve displays Curie-Weiss behavior above the
inflection point Tinyy = 7. = 0.135 £ .005 K, and the data were zeroed in the

usual way. The calibration plot yielded a slope of 57 = 3.6 + .1 [volts™ - K1,
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Figure 3.6: The ZFC magnetization curves of the Pd + 700 ppm Mn and Pd +
1000 ppm Mn needles are compared to theoretical re-entrant calculations (solid
curves).
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which corresponds to 1 volt=6 x 10~* [emu/gram] (using ¢ = 1072 and § = 5).
Incidently, the independent calibrations for the two alloys are self consistent; the

value of Z5 (in units of [gram/emu-K]) for the 700 ppm Mn case is a factor of

1000

200 larger than the value for the 1000 ppm Mn data.

The Effective Field Model with spin S=5 was used to generate theoretical
curves within the re-entrant region 0.8 < 5 < 1.0. The best fit to the 700 ppm Mn
data is displayed in Figure 3.6, and corresponds to an exchange bond parameter
of » = 0.97 and a reduced field of h = %ﬂ% = 0.0017 (equivalent to H =~ 1
Gauss). Also included is the best fit to the 1000 ppm Mn curve; this calculation
used 7 = 0.93 and a reduced field of h=0.0010 (H =~ 1 Gauss). Note that the two
values of 7 have internal consistency, as the alloy of higher concentration is, as
expected, farther from the tricritical point 5 = 1.0. Moreover, the basic features

of the two ZFC curves are duplicated by the re-entrant model calculations.

3.3.2 Field Dependence of Magnetic Isotherms

Several magnetic isotherms were measured for the Pd + 700 ppm Mn sample by
zero field cooling the specimen down to the appropriate measuring temperature;
with the temperature stabilized, the magnetization was then recorded as the ap-
plied field was increased from approximately 0 to 10 Gauss. This is equivalent to a
reduced field range of about 0 < & < 0.0030. The calibration of 1 volt=1.1 x 10~3
[emu/gram| was used to scale the data which are plotted in Figure 3.7(a). The
isotherms were measured for temperatures T between 0.061 K and 0.182 K, or a
reduced temperature interval of 0.72 < T'/T, < 2.14 (assuming 7. = 0.085 K).

Figure 3.7(b) portrays the curves generated from the Effective Field Model
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with § = 5, = 0.97, and reduced temperature and field ranges of 0.6 < T/T, <
1.4 and 0 < £ < 0.0030, respectivelj The re-entrant calculations are able once

again to mimic the behavior of the experimental curves.
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Figure 3.7: (a) Experimental magnetic isotherms of Pd + 700 ppm Mn for tem-
peratures (from top to bottom) of T = 0.061, 0.070, 0.098, 0.118, 0.133, and 0.182

" (b) Theoretical isotherms calculated with a re-entrant value of 7 = 0.97. From .

top to bottom the reduced temperatures are ¢t = 0.6, 1.01, 1.1, 1.15, 1.2, 1.3, and
1.4.
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3.4 A Possible Mean-Field Criterion for
Identifying a Re-entrant Phase Transition

Asintroduced in section 1.1.3, Kunkel and Williams (1988) have presented intrigu-
ing evidence for the existence of a re-entrant transition in a (PdFe)Mn system.
In particular, they discovered a weak anomaly in the non-linear component of
the susceptibility which, though not singular, is suggestive of re-entrant critical
behavior. Based on the success of the mean-field Effective Field Model (sec-
tion 1.2.4) in describing the magnetization of the potentially re-entrant PdFe
and PdMn systems, it was decided to determine whether the re-entrant model
calculations are also able to duplicate the systematics of the (PdFe)Mn suscepti-
bility measurements. Additionally, the calculations are compared to more recent
SQUID A.C. susceptometer measurements on the same alloy. An explanation of
the numerical techniques involved with solving the model is provided in Section

3.5.

3.4.1 Temperature Dependence of the
Magnetization and Susceptibility

All of the simulations in the sections following were performed using spin § = 5/2,
and a value of = J/J, = 0.9 within the re-entrant regime 0.8 < 5 < 1.0.
Figure 3.8 shows a plot of the calculated local magnetization m versus the reduced
temperature t = T'/T, for various values of the reduced field h = 9;‘;3% within the
interval 0 < h < 0.01. By carefully noting where the spontaneus magnetization
curve vanishes for ¢ < 1.0, a ratio of Tsg/T. = 0.269285 was established for the

ferromagnetic/spin glass re-entrant temperature Tsg.

145



Figure 3.9 shows the differential susceptibility x = Om/8h plotted versus
t over the same range of reduced temperatures and fields as the magnetization.
For h # 0, the curves are qualitatively the same as those shown in Figure 1.8(b)
for the experimental (PdFe)Mn system in a finite static biasing field. The ex-
perimental and theoretical curves both display twin peaks which are driven apart
and reduced in amplitude by increasing the field. Furthermore, the heights of
the lower-temperature peaks are (in both systems) generally greater than those
of the corresponding higher-temperature peaks. Though the theoretical zero-field
curve diverges at Tsc and 7., the experimental zero-field susceptibility is quite
different. Instead, the experimental data possess an essentially temperature in-
dependent plateau, located roughly between Ts¢ and T, which is thought to be
caused primarily by domain wall dynamics which cannot be reproduced by the
simple model. These effects tend to restrict the experimental critical analyses to
temperatures T > T, and T < Tgsg. (Experiments performed by Zastre et al.
(1985) indicate that the magnetic time effects observed in spin glass systems do
not conceal the associated critical behavior, and it is probable that the same is

true for re-entrant systems below Ts¢.)

3.4.2 Field Dependence of Susceptibility Isotherms

The model was used to generate susceptibility isotherms in the vicinity of both the
upper and lower transitions. With the data separated into four regions (T > Tsg,
T < Tsg, T > T, and T < T.), the susceptibility x, which can generally be

expanded in powers of k as

x(h,t) = x(0,t) — az(t)h® + as(t)R* — ... (3.1)
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Figure 3.8: A theoretical plot of the local magnetization m versus the reduced
temperature ¢ for various reduced fields h. The calculations used § = 5/2 and a
re-entrant value of 7 = 0.9. The arrow indicates Tsg.
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Figure 3.9: The differential susceptibility curves corresponding to the magnetiza-
tion plots of the previous figure. Again, the arrow indicates Tsg.
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was plotted versus h and k2. In this way, it was possible to determine whether the

theoretical leading critical behavior occurs in the linear or the non-linear response.

Critical Behavior at the Ferromagnetic Transition

Isotherms for the paramagnetic phase T > T, and the ferromagnetic phase T < T,
were calculated within the reduced field domain 0 < h €107%, and for respective
reduced temperature ranges of 1.0004 < (f = T/7.) < 1.0750 and 0.9250 < ¢ <
0.9995.

Some typical paramagnetic isotherms are plotted versus h? in Figure 3.10
to demonstrate the dominance of the quadratic field term in this region. In
particular, the zero field slopes represent the values of the coefficient ax(f) at
each temperature, while the extent of the quadratic field dominance is indicated
by the field range over which the data are linear. Moreover, as T — T. from
above, the higher order susceptibility terms (H*, H®, etc.) grow in strength, and
a pronounced curvature develops to confine the linear portions to lower and lower
fields. Incidently, these same systematics were observed by Kunkel and Williams
for the quadratic response of their (PdFe)Mn system within the paramagnetic
region.

The theoretical critical behavior is characterized by the divergence of the

zero-field slope as T — T, from above; a power law dependence of the form
ax(t) ~ |t — 1177

was established, with 4 = 4, by means of the log-log plot of Figure 3.12. The

weak deviations from a strict power law are due to non-critical components which
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become increasingly evident away from 7, and near the tri-critical point 5 = 1.0
(see Yeung et al. 1987).

In Figure 3.11, some typical ferromagnetic isotherms (T < 7) are plotted
versus h to show that the magnetic response in this region is dominated by a linear
field dependence. (The linear susceptibility is a consequence of the existence below
T, of a spontaneous magnetization component.) As before, the range of dominance
for the leading term becomes confined to lower fields as T — T, (from below).
Furthermore, the log-log plot of Figure 3.12 reveals a power law divergence of the
zero field slope (and hence the linear coeflicient) as T — T, but with an exponent

v =25/2.

Critical Behavior at the Re-entrant Transition

The 1sotherms for the ferromagnetic phase T' > Tsg were generated within the
reduced field and temperature domains of 0 < k < 107° and 1.0015 < (¢t~ =
T/Tsc) < 1.3926, while those in the re-entrant spin glass phase T < Tsg were
calculated over the same field range, but with 0.4085 < ¢~ < 0.9971.

As illustrated in Figure 3.13 for the ferromagnetic phase, the presence of a
spontaneous magnetization once again results in a dominant linear susceptibility
component. The log-log plot of Figure 3.15 indicates a critical divergence of
the linear field coeflicient, with a power law dependence |[t* — 1|~” and exponent
v = 5/2. Though not shown explicitly, the model also predicts singular behavior
in the quadratic field coefficient, but it is not the dominant term in this region.
The corresponding experimental data of Kunkel and Williams does not display

a leading linear response; this is probably the result of a ferromagnetic domain
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Figure 3.10: Typical theoretical susceptibility isotherms for the paramagnetic
region T > T,. In order of decreasing intercept, the reduced temperatures are
t = 1.0004, 1.0010, 1.0014, 1.0020, 1.0020, 1.0030, and 1.0050. A re-entrant value

of n = 0.9 is used.
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Figure 3.11: Typical theoretical isotherms for the ferromagnetic region T < T..
From top to bottom the reduced temperatures are ¢t = 0.9995, 0.9992, 0.9988,
0.9984, 0.9979, 0.9965, and 0.9950.
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Figure 3.12: Double logarithmic plots of the zero-field slope of the susceptibility
isotherms in the viscinity of Tt, as a function of |t — 1].
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structure which conceals the spontanteous magnetization component. However,
they did observe an increase in the quadratic field coefficient which, though too
weak to determine a critical exponent, is reminiscent of the theoretical behavior.

Within the re-entrant phase, the model isotherms display features very sim-
ilar to those found within the paramagnetic phase, and are plotted in Figure 3.14
as a function of h?. Here the leading field dependence of the susceptibility is
quadratic, and the coefficient az(t) diverges as a power law with an exponent
~ = 4 (Figure 3.15). Once again, the experimental quadratic coeflicient (now
on the spin glass side of the transition) does not diverge, though Kunkel and
Williams were able to extract a power law dependence, using data far away from

Ts¢, with an exponent v = 3.6 = .6.

Critical Behavior in the

Re-entrant Phase of (PdFe)Mn

A sample of the re-entrant alloy (Pdo.sgesFep.o03s)o.9sMngos was prepared as a
stack of three 11.5 x 1.2 x 0.18 mm?® strips bound together with masking tape, and
electrically insulated from one another to avoid A.C. field skin depth problems.
The He* cryostat/A.C. susceptometer was used to measure several susceptibility
isotherms within the proposed re-entrant spin glass phase of the system. Previous
results of Verbeek et al. (1978) and Kunkel et al. (1988) indicate that the transition
temperature Ts¢ for this alloy is located just above 4 K.

An A.C. driving field of 16 Hz and amplitude 7 milli-Gauss was applied
parallel to the longest axis of the sample, as were the D.C. biasing fields H.
However, the field H; within the sample is effectively given by H; = H — DM,
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Figure 3.13: Typical theoretical isotherms for the ferromagnetic region T' > Tgq.
The reduced temperatures from top to bottom are t* = 1.0015, 1.0027, 1.0041,
1.0060, 1.0101, and 1.0212.
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Figure 3.14: Typical theoretical isotherms for the spin glass region T’ < Tsq. In
order of decreasing vertical intercept, the reduced temperatures are ¢* = 0.9971,
0.9952, 0.9934, 0.9915, 0.9878, 0.9841, 0.9804, and 0.9581.
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Figure 3.15: Double logarithmic plots of the zero-field slope of the susceptibility
isotherms in the viscinity of Tsg, as a function of |t* — 1].
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where M is the magnetization of the sample (along the field direction) and D =
0.06 is the estimated longitudinal demagnetizing factor due to the geometry of
the sample. The data were corrected for the demagnetizing effect by means of

the expression
Xmeasured

s
1- DXmeusured'

Xitrue =

Where Ymeasured Tepresents the real component of the complex susceptibility.

Each isotherm was obtained by initially warming the sample above the Curie
temperature T, =~ 10 K to remove magnetic remanence, followed by cooling down
to the appropriate measuring temperature 7. With the temperature stabilized,
the magnetization was recorded as the internal field was incremented, in roughly
50 steps, from 0 to 42 Gauss. In Figure 3.16, the isotherms are plotted in terms
of Xirue versus H;; though not shown, they all converge to a common saturation
value for fields above H; ~ 20 Gauss. The plots clearly demonstrate the lack of
any critical behavior in the linear component of the susceptibility. However, with
the isotherms replotted versus H? (Figure 3.17), the curves bear a remarkable
similarity to the theoretical y versus h? plots of Figure 3.14.

Both the model and experimental curves are dominated initially by a quad-
ratic field dependence which shrinks to lower fields as T — Ts¢ (again, this
is caused by the increasing strength of the higher order field terms in equation
3.1). Also, both sets of curves possess intersecting isotherms which result from
the peaked structure of x{7') in fixed field. However, while the quadratic coei-
ficient ay(¢) theoretically diverges as |T — Tsg|™™ with 4 = 4, the experimental
coefficients reveal a much less pronounced temperature dependence. Even so,

the experimental quadratic coefficient, plotted versus temperature in Figure 3.18,
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clearly increases monotonically as T — Tsg, and shows no tendancy to satu-
rate like the zero-field susceptibility (also plotted). Moreover, as illustrated in
Figure 3.19, the low temperature data do obey a power law, with an exponent
¥ = 3.0 & 0.4 roughly the same as the theoretical value.

The deviation from power law behavior as T — Ts¢ has also been observed
by Zastre et al. (1985) in their study of direct paramagnetic/spin glass transi-
tions in PdMn. Furthermore, as explained by Kunkel et al. (1988), experiments
involving dynamical scaling of spin glass data tend to support the notion that
critical slowing down 1s at least partially to blame. That is, the critical fluctu-
ations of the system become slow enough, near the transition temperature, that
the A.C. probing field is unable to register the full amplitude of the magnetic
response within the period of oscillation. (An analogous effect occurs at param-
agnetic/ferromagnetic transitions, but generally to a lesser extent.) This would
certainly result in an underestimate of the coefficient values near Ts¢, and the
same argument might be true of the re-entrant case as well.

Unlike the results of Kunkel and Williams, the present data do not reveal
an anomaly in the quadratic field coefficient around 4.07 K, despite the fact
that the isotherms extend as high as 4.19 K. Since the coefficients which Kunkel
and Williams extracted from their data were, by necessity, based on linear fits
to as few as three data-points, while the present SQUID measurements provide
well-defined isotherms (even at low fields), it is evident that no anomaly occurs
below 4.19 K. Neither of the experiments rule out the existence of an anomaly
~ at higher temperatures, though such measurements were not pursued with the

SQUID susceptometer.
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Nonetheless, the remarkable similarity between the mean-field re-entrant
simulations and the (PdFe)Mn system, especially in regards to the systematics
of the susceptibility isotherms for temperatures within the proposed re-entrant
spin glass region, suggests that the experimental system does indeed possess a
re-entrant critical transition of the sort defined by the Sherrington-Kirkpatrick
model. Perhaps more importantly, the analysis illustrates a potentially valuable

technique for identifving such re-entrant transitions.
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Figure 3.16: A typical set of susceptibility isotherms for the (potentially) re-
entrant (Pdo.gpssFeo.00ss) + 5 at.% Mn system, as plotted versus the internal field
H;.
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Figure 3.17: The same set of susceptibility isotherms as in the last figure, but
re-plotted as a function of H?.
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Figure 3.18: Temperature dependence of the quadratic field coefficient and the
zero-field susceptibility, as determined from the (Pdo.oeesFeo.0035) + 5 at.% Mn
isotherms below 4.2 K.
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Figure 3.19: A double logarithmic plot of the experimental quadratic field co-
efficient versus temperature. Assuming that Tsg = 4.5 K, the low temperature
data follow a power law with exponent v & 2.75. By considering other reasonable
guesses for Tsg, one gets an exponent of v = 3.0 + 4.

164



3.4.3 Discussion of Model Validity

- The numerical simulations presented in section 3.4.2 suggest a valuable crite-
rion for experimentally identifying a sequence of genuine phase transitions, from
paramagnetic to ferromagnetic to spin glass ordering, and lend support to the con-
tention that the anomalous behavior observed in the (PdFe)Mn system is indeed
a manifestation of critical fluctuations. The calculations are based on a particular
mean-field version of the Effective Field Model, in which the thermal fluctuations
are introduced using a Weiss mean-field approximation, while the exchange bond
distribution takes a Gaussian form. Although this hierarchy of approximations
vields a set of coupled equations which, aside from being generalized for arbitrary
spin, are identical to those obtained by Sherrington and Kirkpatrick (S-K), the
corresponding expressions for the free energy and entropy are different. Unlike the
S-K results, the thermodynamic properties of the Effective Field Model are well
behaved at low temperatures, and the third law is not violated (Southern, 1976).
Moreover, within the limitations of the effective ﬁeldla.pproach, the solutions of
the coupled equations are not subject to the instabilities normally associated with
replica-symmetry breaking below the A-T lines in the S-K phase diagram, and
the re-entrant phase boundary is well defined.

In explanation, the Effective Field Model essentially ignores the Onsager
reaction-field term —~JZx;m; in the so-called TAP equations for the local mag-

netization at each spin site (after Thouless et al. 1977):

m; = tanh |G (ijmj - J:?ij:imi) ;
3
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where X;j; 1s the local susceptibility at site j, and unit Ising spins and zero applied
field are assumed. The local magnetization m; at site ¢ arises from the fields
Jiym; created by the neighboring magnetizations m;, but Thouless et al. argue
that the contributions to m; from m; should be removed when considering the
effects of m; on m;. This is accomplished via the reaction-field term. However,
its inclusion leads directly to instabilities of the sort encountered in the replica--
symmetric S-K solutions. (Recall from section 1.2.5 that the S-K solutions are
apparently superceded, below the A-T lines, by those of Parisi.} By avoiding the
reaction-field term, the Effective Field Model solutions are able to remain stable
throughout the phase diagram, albeit artificially. Moreover, other considerations
suggest that the instabilities are not relevant to the experimental situation.
There is reason to believe that, in spite of the A-T instabilities, numeri-
cal calculations of the differential susceptibility and magnetization based on the
replica-symmetric 5-K model, or the Effective Field Model, may possess physical
relevance as the theoretical equivalents of dynamical probes such as the (in-phase
part of the) A.C. susceptibility and the ZFC magnetization. The peaks observed in
susceptibility measurements of PdMn spin glasses below Tsg display systematics,
as a function of applied field and temperature, which are replicated remarkably
well by the model calculations (Gash et al. 1984). The symmetry, with respect
to Tsg, of the critical behavior observed in the non-linear components of the
PdMn spin glass susceptibility is also a characteristic of the models (Zastre et
al. 1985). Further evidence for such critical symmetry is provided by a recent
dynamical study at ultra-low frequencies of the non-linear susceptibility of a very

dilute AgMn spin glass (Levy, 1988): in a static field of 90 Gauss and just below
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T'sg, the system appears to approach quasistatic thermodynamic equilibrium for
applied frequencies less than about 10-2 Hz, with an effective non-linear critical
exponent 4 which is close to its value above Tsg, and hence consistent with the
predictions of the Effective Field Modél (but not with the Parisi solution, which
does not yield singular behavior below Tsg). In contrast,‘ neither the A.C. sus-
ceptibility nor the ZFC magnetization of spin glasses ever seem to exhibit the
temperature independent plateau predicted by the Parisi solution (even in the
ultra-low frequency limit}; this feature appears to be uniquely characteristic of
the FC magnetization, which may correspond to the equilibrium response of the
system.

The numerical calculations of sections 3.2 and 3.3 indicate that these cor-
relations between experiment and theory extend into the re-entrant region of the
magnetic phase diagram as well. The ZFC magnetization curves of three very
dilute PdFe and PdMn alloys, with concentrations intermediate between those
of the usual spin glass and ferromagnetic phases, have been fitted successfully
with curves generated numerically in the vicinity of the tri-critical point of the
Effective Field Model, using re-entrant values for the parameter J/Jp.

Although the zero field A-T instability line in the ferromagnetic regime of
the magnetic phase diagram (Figure 1.21) lies above the re-entrant boundary in
temperature, the curvature of the instability surface, plotted with field and J/Jp
as independent variables, is stongly concave up, particularly in the vicinity of
the tri-critical point (J/Jy = 1) where the slope 8T47/0h approaches infinity.
This means that the instability temperature in the re-entrant regime is rapidly

depressed by the application of a finite field 2. While the zero-field boundary itself
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may not be visible, manifestations of the transition in finite field, both above and
below the re-entrant temperature, will penetrate the surface and survive in the
region where the solutions are considered to be stable. (An analogous situation
occurs in the pure spin glass regime, where the model susceptibility peaks for fixed
field lie above the A-T line, but below the (zero field) critical temperature Ts¢, and
provide a valuable anomaly for comparing theoretical predictions to experimental
systematics (Gash et al. 1984).) Thus, while the actual singularity in the non-
. linear susceptibility may be obscured close to the re-entrant temperature Tsg,
evidence of the critical behavior in the non-linear components will nonetheless
still be identifiable farther from Tsg.

Based on these arguments, the mean-field Effective Field Model seems par-
ticularly well suited to describing the physics of very dilute magnetic alloys, and
1ts use in developing a meaningful criterion for identifying re-entrant transitions

in experimental systems 1s justified.
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3.5 Numerical Solution of the
Effective Field Model

The mean-field version of the Effective Field Model for arbitrary spin S (section
1.2.4) yields Sherrington-Kirkpatrick-like coupled equations for the local niagne-
tization m and the order parameter g {equations 1.69 and 1.70). However, for
exchange parameters 7 = % < 1.0, there exists a paramagnetic/ferromagnetic
phase transition at temperature 7, = ﬂg—zﬁ, so that the coupled equations can

be written in the form

1 oo —a? -

m = —\-/—2_;[’{” do exp(T) SBslY} (3.2)
_ ! teo —a® 227

g = m/_wdaexp(2)SBS[}] , (3.3)

with

-_ 3 L S(S+ 1)k
Y —E—(—STl) (m+n\/§a+~———3———-—)

The reduced temperature and reduced field are defined byt = T/T. and h = %c'fifci,

respectively, where H is the applied field. (Note that the present definition of 7
_ is the inverse of that used in the first chapter).

For a particular choice of %, {, and h, the coupled equations were solved
numerically by means of the FORTRAN program in Figure 3.20. The Gaussian
form of the integrands enabled the infinite integration limits to be replaced by the
finite domain —10 < a < 10, with an insignificant loss of accuracy. Evaluation

of the integrals was facilitated by dividing the domain into 50 sectors of equal
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width A, and then applying a 10-point Gauss-Legendre quadrature technique to
numerically compute the area corresponding to each sector.

An iterative technique (bﬁsed on Newton’s Method) was used to solve the
equations for m and g, with the quality of the solutions characterized by the
fractional differences between the left-hand and right-hand sides of equations 3.2
and 3.3. Note that for a system of N spins, the bulk magnetization is given by M =
Ngupm, while the saturation value is M,,; = NgugS. These expressions allow
direct quantitative comparisons to be made between the theoretical calculations
and experimental data.

An expression for the differential magnetic susceptibility x = %—’: was de-
rived by differentiating equations 3.2 and 3.3 with respect to A and analytically

solving for v. The resulting integral equation, shown below, depends on the values

of m and ¢. Hence,

N

XTI SKT - i N

(3.5)
where Y and BgY] are defined in equations 3.4 and 1.56, and

N = SSK1K:2 (121-3 b 1-114) -+ SK:;[I; y

K} - S/t 3
37
Ky = —o——
T 2./qH5+1)
1 e —a?\ OB4Y]
L = = j;w da exp( 5 ) 5

1 e —a? 0B4Y]
I, = —\—/——2_.;100 daexp( 5 )a 3y
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R . 0B4Y]
I = \/2_;—._./_ da exp( ) BdY] oy

2 +oo SB,S{Y}
I, = _E f_ da exp ( ) oY 3y

dBJY] _[2S+1 (S } [_1_ Y r S+1
vy 25 55 ) 25 C°th(2s) T

The integrals were evaluated by means of the quadrature technique outlined pre-

viously.
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Figure 3.20: A FORTRAN program to numerically solve the coupled equations
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3.6 Summary

The static magnetization of three Pd alloy needles (with 700 ppm Fe, 700 ppm Mn,
and 1000 ppm Mn) was measured as a function of temperature and applied mag-
netic field. The characteristic features of the experimental data are duplicated by
theoretical re-entrant calculations performed over similar ranges of temperature
and field.

For temperatures above and below the proposed re-entrant transition tem-
perature Tgg, the thermo-remanent magnetization of the 700 ppm Fe sample dis-
plays an essentially logarithmic, or perhaps a stretched-exponential, decay with
time. The lack of an anomaly in the relaxation rate as a function of tempera-
ture, together with the possibility of a streiched-exponential dependence (albeit
weak), suggests that the ferromagnetic and spin glass dynamics are indistinct in
re-entrant systems.

Extensive numerical studies of the differential susceptibility provide clear
theoretical evidence for the occurrence, in the vicinity of the ferromagnetic/spin
glass transition, of a critical anomaly in the non-linear susceptibility components.
Furthermore, the systematic behavior of the theoretical isotherms is highly rem-
iniscent of A.C. susceptibility measurements performed within the (proposed)
re-entrant spin glass phase of a {(Pdo.ssssFeo.03s) + 5 at.% Mn sample. The
theoretical predictions may provide a practical criterion for identifying critical

behavior in experimental re-entrant systems.
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