
Placement of Replicas in Large-Scale Data Grid
Environments

by

Mohammad Shorfuzzaman

A thesis submitted to

The Faculty of Graduate Studies of

The University of Manitoba

in partial fulfillment of the requirements

of the degree of

Doctor of Philosophy

Department of Computer Science

The University of Manitoba

Winnipeg, Manitoba, Canada

March 2012

c© Copyright by Mohammad Shorfuzzaman, 2012

Thesis advisor Author

Dr. Rasit Eskicioglu and Dr. Peter Graham Mohammad Shorfuzzaman

Placement of Replicas in Large-Scale Data Grid

Environments

Abstract

Data Grids provide services and infrastructure for distributed data-intensive applica-

tions accessing massive geographically distributed datasets. An important technique

to speed access in Data Grids is replication, which provides nearby data access. Al-

though data replication is one of the major techniques for promoting high data access,

the problem of replica placement has not been widely studied for large-scale Grid en-

vironments. In this thesis, I propose improved data placement techniques useful when

replicating potentially large data files in wide area data grids. These techniques are

aimed at achieving faster data access as well as efficient utilization of bandwidth and

storage resources. At the core of my approach is a new highly distributed replica

placement algorithm that places data in strategic locations to improve overall data

access performance while satisfying varying user/application and system demands.

This improved efficiency of access to large data will improve the practicality of large-

scale data and compute intensive collaborative scientific endeavors.

My thesis makes several contributions towards improving the state-of-the-art for

replica placement in large-scale data grid environments. The major contributions are:

(i) development of a new popularity-driven dynamic replica placement algorithm for

ii

Abstract iii

hierarchically structured data grids that balance storage space utilisation and access

latency; (ii) creation of an adaptive version of the base algorithm to dynamically adapt

the frequency and degree of replication based on such factors as data request arrival

rates, available storage capacities, etc.; (iii) development of a new highly distributed

algorithm to determine a near-optimal replica placement while minimizing replication

cost (access and update) for a given traffic pattern; (iv) creation of a distributed QoS-

aware replica placement algorithm that supports multiple quality requirements both

from user and system perspectives to support efficient transfers of large replicas.

Simulation results using widely observed data access patterns demonstrate how

the effectiveness of my replica placement techniques is affected by various factors such

as grid network characteristics (i.e. topology, number of nodes, storage and workload

capacities of replica servers, link capacities, traffic pattern), QoS requirements, and

so on. Finally, I compare the performance of my algorithms to a number of relevant

algorithms from the literature and demonstrate their usefulness and superiority for

conditions of interest.

Contents

Abstract . ii
Table of Contents . vii
List of Figures . viii
Acknowledgments . xiv

1 Introduction 1
1.1 Grid Computing . 1
1.2 Motivation for Replication in Data Grids 6
1.3 Research Problem and Solution Strategy 9
1.4 Contributions . 14
1.5 Thesis Organization . 16

2 Background and Related Work 18
2.1 Preliminaries . 18
2.2 Data Grids: An Overview . 19

2.2.1 Architecture . 22
2.2.2 Models . 25
2.2.3 Applications . 28

2.3 Data Replication . 31
2.3.1 Issues related to replication in data grids 33

Replica Placement . 33
Replica Selection . 34
Replica Consistency . 35
The Impact of Data Replication on Job Scheduling 36

2.4 Related Data-Intensive Research . 37
2.4.1 Web Caches . 37
2.4.2 Content Delivery Networks . 39
2.4.3 Peer-to-Peer Networks . 40
2.4.4 Distributed Databases . 41
2.4.5 Mobile Environments . 44
2.4.6 Discussion . 45

iv

Contents v

2.5 Replica Placement Strategies in Data Grids 50
2.5.1 Algorithms Focused on Access Latency and Bandwidth 51
2.5.2 Algorithms Focused on Reliability and Availability 56
2.5.3 Algorithms Focusing on QoS Requirements 59
2.5.4 Summary of Replica Placement Algorithms 64

3 Motivation and Problem Description 70
3.1 Problem Description . 74
3.2 Positioning the Thesis . 79

4 Centralized Replica Placement 82
4.1 Assumed Data Grid Structure . 83
4.2 Basic Popularity Based Replica Placement Algorithm 86

4.2.1 Bottom-Up Access Aggregation 88
4.2.2 Top Down Replica Placement 89

4.3 Adaptive Replica Placement Algorithm 93
4.3.1 Determining the Initial Threshold Value 96
4.3.2 Dynamic Adjustment of the Threshold Value 96

4.4 Simulation Setup . 98
4.4.1 OptorSim System Architecture 100
4.4.2 Simulator Internals . 102
4.4.3 Data Grid Topology . 106
4.4.4 Simulation Inputs and Data Access Patterns 108

4.5 Results and Observations . 112
4.5.1 Job Execution Time . 115

Job times when the access rate fluctuates 125
Job times when the access rate is consistently decreasing . . . 129
Job times when the access rate is consistently increasing . . . 130

4.5.2 Average Bandwidth Cost . 133
Average bandwidth cost when access rate fluctuates 138
Average bandwidth cost when the access rate is consistently

decreasing . 139
Average bandwidth cost when the access rate is consistently

increasing . 142
4.5.3 Storage Use . 143

Storage use when the access rate fluctuates 145
Storage use when the access rate is consistently decreasing . . 147
Storage use when the access rate is consistently increasing . . 149

4.6 Summary of Centralized Algorithms 150

vi Contents

5 Distributed Replica Placement 156
5.1 Base System Model . 157
5.2 Base Distributed Replica Placement Algorithm 160

5.2.1 Cost Function . 161
5.2.2 Bottom-up Computation Phase 162
5.2.3 Top-down Replica Placement Phase 168
5.2.4 Placement Example . 169
5.2.5 Computational Complexity . 171

5.3 Performance Evaluation of the Base Distributed Algorithm 172
5.3.1 Job execution time . 173

Constant data access rate . 173
Fluctuating data access rate 175

5.3.2 Average Bandwidth Cost . 177
Constant data access rate . 178
Fluctuating data access rate 180

5.3.3 Storage Use . 181
Constant data access rate . 182
Fluctuating data access rate 183

5.3.4 Discussion . 185
5.4 QoS-Aware Distributed Replica Placement 187

5.4.1 Hop Count . 188
Algorithm . 189
Placement Example . 190

5.4.2 Workload Capacity . 191
Algorithm . 192
Placement Example . 194

5.4.3 Link Capacity . 196
Algorithm . 197
Placement Example . 200

5.5 Performance Evaluation of the QoS-Aware Distributed Algorithms . . 202
5.5.1 Job Execution Time . 203

Effects of user QoS, constant data access rate 203
Effects of user QoS, varying data access rate 207
Effects of workload capacity constraints for constant access rate 209
Effects of link capacity constraints for constant access rate . . 215

5.5.2 Average Bandwidth Cost . 217
Effects on bandwidth consumption of user QoS for constant

data access rate . 218
Effects on bandwidth consumption of user QoS, varying data

access rate . 221
Effects on bandwidth consumption of workload capacity con-

straints for constant access rate 221

Contents vii

Effects on bandwidth consumption of link capacity constraints
for constant access rate 224

5.5.3 Storage Use . 225
Effects on storage use of user QoS, constant data access rate . 226
Effects on storage use of user QoS, varying data access rate . . 228
Effects on storage use of workload capacity constraints, con-

stant access rate . 228
Effects on storage use of link capacity constraints, constant ac-

cess rate . 230
5.5.4 Discussion . 230

6 Overall Assessment and Scope of Application 233
6.1 Replica Placement Using Centralized Algorithms 234
6.2 Replica Placement Using Distributed Algorithms 242
6.3 Applicability . 249

7 Conclusions and Future Work 254

Bibliography 281

List of Figures

2.1 A high level view of a data grid [VBR06] 20
2.2 A layered view of a data grid architecture 24
2.3 Various models for organization of data grids [VBR06] 27
2.4 Data grid projects in various application domains [VBR06] 30
2.5 Taxonomy of issues in data replication 34
2.6 An example of the history and the node relations 55
2.7 Summary of replica placement techniques in data grids 68

4.1 An example hierarchical data grid . 84
4.2 Bottom-up aggregation of access counts 88
4.3 Top-down placement of replica . 89
4.4 Replication process through dynamic adjustment of the threshold value 95
4.5 System architecture (built on top of OptorSim Architecture) 100
4.6 A typical interaction between different components of OptorSim, Num-

bers indicate the sequence of operations 103
4.7 Details of access cost determination 106
4.8 (a) Simulated data grid topology, (b) Different storage configurations 107
4.9 Example access patterns for a job containing ten files 110
4.10 Zipf distribution . 111
4.11 Job execution times for different replication methods using storage

configuration one (left) and comparison of execution times for Zipf-
0.85 distribution (right) . 116

4.12 Comparison of execution times for different access patterns using var-
ious storage configurations . 117

4.13 Number of replicas created for different access patterns using various
storage configurations . 118

4.14 Comparison of job times from an increased simulation period using
Zipf-0.85 access pattern . 119

4.15 Comparison of job times from an increased simulation period for dif-
ferent access patterns . 122

viii

List of Figures ix

4.16 Execution times by file size (left), Number of replicas created by file
size (right) . 124

4.17 Execution times and number of replicas: PBRP by file size, Configu-
ration one . 125

4.18 Job execution times using resource configuration one (left) and com-
parison of execution times for Zipf-0.85 distribution (right) when the
access rate fluctuates . 125

4.19 Comparison of execution times for different access patterns when the
access rate fluctuates regularly . 126

4.20 Number of replicas created for various storage configurations when the
access rate fluctuates regularly . 127

4.21 Job execution times using resource configuration one when the access
rate consistently decreases . 127

4.22 Number of replicas created for various storage configurations when the
access rate consistently decreases . 128

4.23 Comparison of execution times for different access patterns when the
access rate consistently decreases . 129

4.24 Job execution times using resource configuration one when access rate
increases consistently . 130

4.25 Number of replicas created for various storage configurations when the
access rate consistently increases . 131

4.26 Comparison of execution times for different access patterns when access
rate consistently increases . 132

4.27 Average bandwidth costs for different replication methods using re-
source configuration one . 132

4.28 Comparison of average bandwidth costs for different access patterns 134
4.29 Average bandwidth costs (read and replicate) for Zipf access patterns 135
4.30 Comparison of average bandwidth costs from an increased simulation

period for different access patterns 136
4.31 Average bandwidth cost by file size, Replica server configuration one 137
4.32 Average bandwidth cost: PBRP by file size, Replica server configura-

tion one . 137
4.33 Average bandwidth costs using resource configuration one when access

rate fluctuates . 138
4.34 Comparison of average bandwidth costs for different access patterns

when the access rate fluctuates . 138
4.35 Average bandwidth costs (read and replicate) for the Zipf-0.85 access

pattern when the access rate fluctuates 139
4.36 Average bandwidth costs using resource configuration one when the

access rate is consistently decreasing 140
4.37 Average bandwidth costs (read and replicate) for the Zipf-0.85 and flat

random access patterns when the access rate is decreasing 140

x List of Figures

4.38 Comparison of average bandwidth costs when the access rate is con-
sistently decreasing . 141

4.39 Average bandwidth costs using resource configuration one when the
access rate is increasing consistently 142

4.40 Comparison of average bandwidth costs when the access rate is in-
creasing consistently . 143

4.41 Storage use for different replication methods using resource configura-
tion one (left) and comparison of storage costs for the Zipf-0.85 distri-
bution (right) . 143

4.42 Comparison of storage costs for different access patterns 145
4.43 Comparison of storage costs from an increased simulation period for

different access patterns . 146
4.44 Storage use by file size, Replica server configuration one 147
4.45 Storage use: PBRP by file size, Replica server configuration one . . . 147
4.46 Storage costs using resource configuration one when the access rate

fluctuates . 148
4.47 Comparison of storage costs for different access patterns when the ac-

cess rate fluctuates . 148
4.48 Storage costs using resource configuration one when the access rate is

consistently decreasing (left) and increasing (right) 149
4.49 Comparison of storage costs for different access patterns when the ac-

cess rate is consistently decreasing . 149
4.50 Comparison of storage costs as the access rate increases consistently . 150

5.1 An example hierarchical data grid with access and update frequencies 159
5.2 Example sub-tree for illustrating cost function 161
5.3 (a) A hierarchical data grid with client access counts, (b) Calculation

of replication costs and replica locations for the example data grid . . 170
5.4 Execution time for DPBRP and PBRP, Configuration one, Constant

rate . 173
5.5 No. of replicas for all storage configurations, Constant rate 174
5.6 Execution time for all access patterns and configurations, Constant rate174
5.7 Execution time, Configuration one, Fluctuating rate 175
5.8 No. of replicas for all storage configurations, Fluctuating rate 176
5.9 Execution time for all access patterns and configurations, Fluctuating

rate . 177
5.10 Average bandwidth for DPBRP and PBRP, Configuration one, Con-

stant rate . 178
5.11 Average bandwidth for DPBRP and PBRP, All configurations, Con-

stant rate . 178
5.12 Average bandwidth costs (read and replicate) for Zipf and Gaussian

access patterns . 179

List of Figures xi

5.13 Average bandwidth, Configuration one, Fluctuating rate 180
5.14 Average bandwidth, All algorithms, Configuration One, Fluctuating

Rate . 181
5.15 Average bandwidth costs (read and replicate) for Zipf and random

access patterns . 182
5.16 Storage use for DPBRP and PBRP, Configuration one, Constant rate 183
5.17 Storage use for DBRP and PBRP, All configurations, Constant rate . 184
5.18 Storage use, Configuration one, Fluctuating rate 185
5.19 Storage use, All configurations, Fluctuating rate 186
5.20 (a) A hierarchical data grid with client access counts and QoS require-

ments, (b) Calculation of replication costs and replica locations for the
example data grid. Highlighted entries indicate the modified costs and
locations due to QoS support. 191

5.21 (a) A hierarchical data grid with client access counts, QoS require-
ments, and workload capacity constraint, (b) Calculation of replication
costs and replica locations for the example data grid. 195

5.22 (a) A hierarchical data grid with client access counts, QoS require-
ments, and link capacity constraint, (b) Calculation of replication costs
and replica locations for the example data grid. 201

5.23 Run time, Configuration one, Constant and uniform QoS constraints 203
5.24 No. of replicas, Configuration one, Constant and uniform QoS constraints204
5.25 Satisfaction rates, Zipf-0.85 access, Constant and uniform QoS con-

straints . 205
5.26 Run time, Zipf-0.85 and Gaussian access, Constant and uniform QoS

constraints . 206
5.27 No. of replicas, Zipf-0.85 and Gaussian access, Constant and uniform

QoS constraints . 207
5.28 Run time, Varying Zipf-0.85 access, Constant and uniform QoS con-

straints . 208
5.29 No. of replicas, Zipf-0.85 access, Fluctuating rate 208
5.30 Run time, Zipf-0.85 and Gaussian access, Replica server configuration

one . 209
5.31 Different workload configurations . 210
5.32 No. of replicas, Zipf-0.85 and Gaussian access 211
5.33 Satisfaction rates, Zipf-0.85 and Gaussian access 212
5.34 Run time, Zipf-0.85 and Gaussian access, Constant and uniform QoS

constraints . 213
5.35 No. of replicas, Zipf-0.85 and Gaussian access, Constant QoS constraints214
5.36 No. of replicas, Zipf-0.85 and Gaussian access, All storage configurations215
5.37 Run time, Zipf-0.85 and Gaussian access, Replica server configuration

four . 216
5.38 Run time with link constraints, Uniform QoS constraints 217

xii List of Figures

5.39 No. of replicas with link constraints, Uniform QoS constraints 217
5.40 Run time with both link and workload constraints (left), No. of replicas

(right), Uniform QoS constraints . 218
5.41 Average bandwidth, Configuration one, Constant and uniform QoS

constraints . 219
5.42 Read and replication cost for Zipf-0.85 for uniform QoS values 219
5.43 Average bandwidth, Zipf-0.85 access, Constant and uniform QoS con-

straints . 220
5.44 Average bandwidth, Gaussian access, Constant and uniform QoS con-

straints . 221
5.45 Average bandwidth, Varying Zipf-0.85 access, Constant and uniform

QoS constraints . 222
5.46 Average bandwidth cost, Zipf-0.85 and Gaussian access, Replica server

configuration one . 223
5.47 Read and replication cost for Zipf-0.85 for a QoS value of [1–3] 224
5.48 Average bandwidth cost, Zipf-0.85 and Gaussian access, Replica server

configuration four . 225
5.49 Average bandwidth with link constraints, Uniform QoS constraints . 226
5.50 Average bandwidth with both link and workload constraints, Uniform

QoS constraints . 226
5.51 Storage cost, Configuration one, Constant and uniform QoS constraints 227
5.52 Storage cost, Zipf-0.85 and Gaussian access, Constant QoS constraints 227
5.53 Storage cost, Zipf-0.85 and Gaussian access, Uniform QoS constraints 228
5.54 Storage cost, Varying Zipf-0.85 access, Constant and uniform QoS con-

straints . 229
5.55 Storage cost, Zipf-0.85 and Gaussian access, Replica server configura-

tion one . 229
5.56 Storage cost with link constraints, Uniform QoS constraints 230
5.57 Storage cost, Zipf-1.0 and Gaussian access, Constant and uniform QoS

constraints . 231

6.1 Percentage savings in job time for different replication methods com-
pared to Fast spread using sufficient storage at the replica servers (i.e.
storage configuration one) . 234

6.2 Percentage savings in job time as compared to Fast spread for different
access patterns using various relative storage capacity (Section 4.4.3) 235

6.3 Performance savings in average bandwidth usage as compared to Fast
spread using various storage configurations 236

6.4 Performance savings in storage usage as compared to Fast spread using
various storage configurations . 237

6.5 Percentage savings in job time for APBRP as compared to PBRP for
all data access rates . 238

List of Figures xiii

6.6 Percentage savings in job time for APBRP as compared to PBRP using
various storage configurations . 239

6.7 Performance savings in average bandwidth usage (left) and storage
usage (right) as compared to PBRP using various storage configurations240

6.8 Percentage savings in job time (left) and average bandwidth usage
(right) for DPBRP and APBRP as compared to PBRP using various
storage configurations . 241

6.9 Performance savings in storage usage as compared to PBRP using var-
ious storage configurations . 242

6.10 Percentage savings in job time (left) and average bandwidth usage
(right) for QoS-DPBRP as compared to DPBRP using various storage
configurations . 243

6.11 Performance savings in storage usage for QoS-DPBRP as compared to
DPBRP using various storage configurations 244

6.12 Percentage savings in job time as compared to Greedy Remove for
different user QoS using various workload configurations 245

6.13 Performance savings in average bandwidth usage (left) and storage
usage (right) as compared to Greedy Remove using various workload
configurations . 246

6.14 Percentage savings in job time (left) and average bandwidth usage
(right) for QoS-DPBRP as compared to DPBRP for varied link capacities247

6.15 Performance savings in storage usage for QoS-DPBRP as compared to
DPBRP for varied link capacities . 248

Acknowledgments

I would like to thank my advisors, Dr. Rasit Eskicioglu and Dr. Peter Graham,

for their continuous guidance, encouragement, and contributions in the development

of this work. They were a constant source of support, without which this thesis could

not have been completed. I would also like to extend my thanks to all my committee

members, Dr. Alexander Reinefeld, Dr. Jeff Diamond and Dr. John Anderson for

providing excellent reviews of my research, which helped me compile a quality thesis.

I would like to extend my sincere gratitude to the Faculty of Graduate Studies for

supporting me with the University of Manitoba Graduate Fellowship throughout my

PhD. I also appreciate the financial support from the Faculty of Science, University

of Manitoba.

Finally, a special thanks to my family members for their constant support and

perseverance to accomplish this endeavor. Above all, I would like to express my

profound gratitude to the Almighty and the Majestic for enabling me complete this

thesis and granting me continuing success in my life.

xiv

Chapter 1

Introduction

This chapter presents an introduction of this thesis. It starts with a high-level

overview of the key concepts related to the research problem addressed. Then the

fundamental motivations behind this research are stated and the proposed solution

to address the research challenges is briefly presented. The chapter ends with a

discussion on the research contributions and the organization of the rest of this thesis.

1.1 Grid Computing

The next-generation of large-scale scientific applications in areas as diverse as

high-energy physics, molecular modeling, and earth sciences involves the processing

of large datasets from simulations or from large-scale experiments [ABB+02; ABB+01;

AFN+01; FAC+01; Che02; CFK+00]. Analysis of these datasets and their dissemina-

tion among researchers located over a wide geographical area require high capacity

resources such as supercomputers, high bandwidth networks, and mass storage sys-

1

2 Chapter 1: Introduction

tems. Many such applications may also require new paradigms that address issues

such as multi-domain applications, co-operation and co-ordination of resource owners

and removing system boundaries. Grid computing [KF98] is one such paradigm that

enables the aggregation of large scale computing, storage, and networking resources.

A grid provides an environment where a widely distributed scientific community can

share its resources, across different administrative and organizational domains, to

solve large-scale compute- and data-intensive problems and collaborate in a wide va-

riety of disciplines. A grid, therefore, enables the creation of a virtual environment

including a pool of physical resources across different administrative domains; these

resources are then abstracted into computing or storage units that can be transpar-

ently accessed and shared by large numbers of remote users.

The concepts used in grid computing are not new. The invention of networking

and the introduction of network operating systems enabled access to resources across

geographically distributed locations [CDK01]. More technological advances brought

up by parallel processing and distributed computing allowed not only remote access to

resources but also the simultaneous sharing of these distributed resources by different

remote users [CDK01]. Parallel processing enabled different tasks to be run simulta-

neously on different, usually homogeneous computers, and to compete for access to

computational resources. Using distributed computing, users can employ widely dis-

tributed heterogeneous computers to run jobs that require more resources than may

be available in local networks and laboratories. The emerging need for more resources

and also for collaborative problem solving in cost efficient ways led to the develop-

ment of middleware that transparently provides access to distributed resources and

Chapter 1: Introduction 3

route data from back-end sources to end-user applications in a seamless and relatively

scalable manner; this became known as meta-computing and later “computing on the

Grid” [KF98]. Grid computing has the potential to support different kinds of applica-

tions. These include compute-intensive applications, data-intensive applications and

applications requiring distributed services. Various types of grids have been developed

to support these applications and have been categorized as follows [YBdA+07].

1. Computational Grids. These provide distributed computing facilities for exe-

cuting compute-intensive applications, such as Monte Carlo simulations [AGK00],

and Bag-of-Tasks (BoT) applications [CBS+03], where each consists of a collec-

tion of independent tasks or jobs. UC Berkley leads the SETI@home [ACK+02]

project that takes advantage of extra processing power from a distributed collec-

tion of volunteered systems. SETI@home allows users to download and install

their program which in turn uses the idle cycles of personal computers to get

data from a SETI@home server over the Internet, analyze that data, and then

report the results in the hope at finding extraterrestrial life forms. Another

project, Nimrod-G [BAG00], utilizes grids to schedule compute-intensive appli-

cations on available resources.

2. Data Grids. These provide the infrastructure to access, transfer and man-

age large datasets stored in distributed repositories. Data grids typically fo-

cus on satisfying the requirements of scientific collaborations, where there is

a need for analyzing large collections of data and sharing the results. Such

applications are found in areas including astronomy [Hol01], climate simula-

tion [AFN+01; FAC+01], and high energy physics [RAD+02]. The amount

4 Chapter 1: Introduction

of data required to analyze natural phenomena and conduct experiments in

these applications is very large. These experiments in turn generate large data

sets that need to be collected and appropriately stored in geographically dis-

tributed data centers to be accessed for further processing at different additional

sites [BCF03; HJMS+00; TTGD04; Hol01; CFK+00]. Experiments in high en-

ergy particle physics such as those running at the European Center for Nuclear

Research (CERN) (e.g. the CMS and ATLAS [Hol01; eur01; gri01a; SSA+02]

experiments running on the Large Hadron Collider (LHC) produce and collect

massive amounts of data and involve thousands of researchers from around the

world to analyze the data and initiate future experiments. High performance

data grid architectures facilitate these requirements by applying a number of un-

derlying technologies in a coordinated fashion to support data intensive petabyte

scale applications.

3. Interaction Grids. These provide services and platforms for users to interact

with each other in a real-time environment, e.g. Access Grid [CDO+00]. This

type of grid is suitable for multimedia applications, such as large-scale video

conferencing, and those that otherwise require fast networks.

4. Application Service Provisioning (ASP) Grids. These concentrate on

providing access to remote applications, modules, and libraries hosted at data

centers or on computational grids(e.g. NetSolve [SYAD05]).

5. Knowledge Grids. These work on knowledge acquisition, data processing, and

data management. Moreover, they provide business analytics services driven

Chapter 1: Introduction 5

by integrated data mining services. Some projects in this field are Knowledge

Grid [CT03] and the EU Data Mining Grid [EU:08].

6. Utility Grids. These focus on providing one or more of the above grid ser-

vices to end-users as information technology (IT) utilities on a pay-to-access

basis. In addition, they set up a framework for the negotiation and establish-

ment of contracts, and allocation of resources based on user demands. Existing

projects in this area are Utility Data Center [GPS03], at the enterprise level

and Gridbus [BV04] at the global level.

This thesis focuses specifically on data grid infrastructures and aims at developing

techniques to achieve faster data access as well as efficient utilization of bandwidth

and storage resources. Based on existing data grid applications we envision that the

size of the data is expected to be multiple terabyte or even petabyte scale for some

applications. Maintaining a local copy of such data on each site that needs the data

is cost prohibitive due to consistency management and storage requirements. Also,

storing such huge amounts of data in a centralized manner is impractical due to the

slowness of remote data access and concerns about a single point of failure. Given

the high latency of wide-area networks that underlie many grid systems, and the

need to access or manage multiple petabytes of data in data grid environments, data

availability and access optimization become key challenges to be addressed.

Grid systems typically involve loosely coupled jobs that require access to a large

number of datasets. In most situations, the datasets requested by a user’s job cannot

be found at the local nodes in the data grid. In this case, data must be fetched from

other nodes in the grid which incurs high access latency. An important technique to

6 Chapter 1: Introduction

speed up access in data grid systems is to replicate data at multiple locations, so a

user can access the data from a nearby site [VBR06]. This thesis presents a family of

algorithms that intelligently and transparently places data in strategic locations to

improve overall data access performance while satisfying varying user, system, and

application demands.

1.2 Motivation for Replication in Data Grids

Data grids primarily deal with providing services and infrastructure for distributed

data-intensive applications that need to access, transfer and modify massive datasets

stored in distributed storage resources. A data grid aims to present the following

capabilities to its users: (a) ability to search through numerous available datasets for

the required dataset and to discover suitable data resources for accessing the data,

(b) ability to transfer large-sized datasets between resources in minimal time, (c)

ability for users to manage multiple copies of their data, (d) ability to select suitable

computational resources and process data on them, and (e) ability to manage access

permissions for the data. Therefore, data grids aim to combine high-end computing

technologies with high-performance networking and wide-area storage management

techniques.

To realize these abilities, a data grid needs to provide tools, services and APIs

(Application Programming Interfaces) for managing collaborative access to data and

computational resources. These include administration tools to manage authenticat-

ing and authorizing widely dispersed members for accessing disparate resources and

data collections, data search tools to allow users to discover datasets that may be

Chapter 1: Introduction 7

available within a collaboration, intelligent data replication and caching techniques

to ensure that the users can access the required datasets in the fastest and/or cheap-

est manner, resource management services and APIs to allow applications and users

to utilize the infrastructure effectively by processing the data at idle resources that

offer better turnaround times and reduced costs, and so on. This thesis, however,

concentrates only on replication techniques for placing data in strategic locations in

the grid.

Availability and efficient accesses are critical requirements in many data intensive

applications [Che02; GKL+02]. Delayed accesses due to availability problems or non-

responsiveness may cause undesired results. To effectively address these challenges,

the need for data replication is apparent. For example, consider the case of data

distribution that follows a hierarchical structure. In the CMS and ATLAS experi-

ments, for example, the data grid system spans worldwide distributed locations, and

is organized in “Tiers”. Tier 0 represents the main site located at CERN (European

Center for Nuclear Research), Tier 1 includes national centers, Tier 2 represents re-

gional centers that cover one region of a large country such as a state in the USA

or a smaller country, Tier 3 represents workgroup servers, and Tier 4 the (thousands

of) researchers’ workstations and desktops. In this scenario, all data is collected at

CERN, located in Geneva, Switzerland. It is preprocessed online and stored in the

CERN computer center, which is Tier 0 in the data grid hierarchy. Subsets of that

data are then replicated at national centers in France, Germany, Italy, Canada, the

USA, and so on. Meanwhile, smaller subsets of the data are replicated at individ-

ual institutions such as individual universities. Existing systems such as the Globus

8 Chapter 1: Introduction

Replica Location Service (RLS) [Che02] enable users to locate replicas of a given

data file. A physicist working at Caltech can use the RLS to find the location of

the data originally collected at the experiment site. It is possible that the data is

already located on a storage server at Caltech, in which case access to the data is fast.

However, if the data is located only at CERN, network latencies are likely to result

in slow data access. A good replication strategy can be used to anticipate and/or

analyze the users’ requests for data and to place subsets of the data and replicas at

strategic locations. Given the size of the data sets and number of users, it is difficult

to make manual decisions about where the data needs to be placed. An automated

data replication system is needed that can take into account the data access patterns

by multiple users and applications.

In addition to achieving access efficiency and availability, data replication can also

be used to improve data locality and increase robustness and scalability for many ap-

plications. Replication of data has been demonstrated to be a practical and efficient

method to achieve high network performance in distributed environments, and has

been applied in some data grid applications [RF01b; CFK+00]. Creating replicas

effectively distributes client requests to different replica sites and offers higher access

speed than a single server. At the same time, the workload on the original server is

distributed across the replica servers and, therefore, also decreases significantly. Ad-

ditionally, the network load is also distributed across multiple network paths thereby

decreasing the probability of congestion-related performance degradation. In these

ways, replication plays a key role in improving the performance of data-intensive

computing in data grids. Replication is, of course, limited by the amount of storage

Chapter 1: Introduction 9

available at each site in a data grid and by the bandwidth available between those

sites and access locations. Experience from parallel and distributed systems design

shows that replication promotes high data availability, lower bandwidth consump-

tion, increased fault tolerance, and improved scalability. However, the replication

algorithms used in such systems cannot always be directly applied to data grid sys-

tems due to the wide-area (mostly hierarchical) network structures and different data

access patterns seen in data grid systems.

1.3 Research Problem and Solution Strategy

A scientist located at a small university may need to run a time consuming pro-

cessing job on a huge data set. She may choose to get the data from where it exists to

the local computing resource and run the job there. Alternatively, it may be better

to transfer the job to where the data exists or, both the job specification and the

data may be sent to a third location that will perform the computation and return

the results to the scientist. My focus here is only on the data distribution aspect

of a grid. When a user generates a request for a file, large amounts of bandwidth

could be consumed to transfer the file from the server to the client. Furthermore,

the latency involved could be significant considering the size of the files involved and

the geographic distance between source and sink. New challenges are also faced in

the grid. For example, huge data file sizes, system resources belonging to multiple

owners, and dynamically changing resources and user behaviors. To address these

challenges, my research investigates the usefulness of creating replicas by distributing

data sets among the various locations in the grid.

10 Chapter 1: Introduction

Replication methods can be classified as static or dynamic [TLYT05]. For static

replication, after a replica is created, it will be stored in the same place until it is

deleted. The drawback of static replication is evident – when client access patterns

change, the benefits brought by replicas may decrease. On the contrary, dynamic

replication takes into consideration changes in the data grid environment and auto-

matically creates new replicas for referenced data files or moves the replicas to other

sites as needed to improve performance. Although the usefulness of replication in

data grid systems is evident, it entails a number of issues such as replica placement,

resource discovery and management, selecting suitable replicas, the impact of repli-

cation on the performance of job scheduling, replica consistency maintenance, and

so on. In this thesis, I concentrate on the replica placement issue. The overall file

replication problem consists of making the following decisions [RF01b]: (1) which

files should be replicated; (2) when and how many replicas should be created; and

(3) where the replicas be placed in the system.

Although a substantial amount of work has been done on data replication in grid

systems, most of it has focused on infrastructure for replication and mechanisms for

creating and deleting replicas [CSK+05; BCC+03; BCCS+03? ; HJMS+00; LSsD02;

RIF02; SSA+02]. However, to obtain the maximum benefit from replication, a strate-

gic placement of replicas considering many factors is essential. In this thesis, I study

replica placement in data grid systems taking into account a number of important is-

sues. The first is to consider the highly dynamic behavior of a data grid environment

where resource availability, network latency, and users requests may vary constantly.

Such a system needs a replication strategy that uses available storage capacities, data

Chapter 1: Introduction 11

access arrival rates, network state, and other factors to determine the frequency and

degree of replication to reduce data access time and to use network and storage re-

sources efficiently. Secondly, in grids where operation control is decentralized and

resources are under the control of their own local administrative domains, placing the

replicas of an object through a centralized algorithm is undesirable. This motivates

decentralized replica placement algorithms for large-scale data grid environments to

ensure improved scalability and reliability of the system. Another important issue is

to consider the quality of service (QoS) requirements imposed by data requesters and

grid infrastructure. As noted earlier, grid computing infrastructure usually consists of

various types of resources and the performance of these resources can be quite diverse.

Moreover, different sites may have different service quality requirements according to

the system performance of the sites. Base quality of service requirements can be

specified in the form of a general distance metric or access time deadlines by users,

and the system must ensure that there exists a replica of a server within that quality

range to answer the request. Finally, workload capacity constraints on the servers

must be considered and it must be recognized that the bandwidth capacity of a link is

bounded. The average number of requests serviced by a replica server directly affects

the average response time of the requesting sites due to queuing delays and network

congestion.

In my thesis, I address the aforementioned problems in large-scale data grids to

improve the performance of data access while ensuring efficient use of both com-

putational and storage resources. To this end, I propose and evaluate a family of

efficient algorithms for replica placement in a hierarchical data grid structure (as

12 Chapter 1: Introduction

is common in current data grid systems [BCCS+03; LCG01; RF01b; RF01a]). My

basic popularity-driven dynamic replica placement strategy, called Popularity Based

Replica Placement (PBRP), for hierarchical data grids, aims to increase data access

performance from the perspective of the clients by dynamically creating replicas for

“popular” files. In the real world, some files will be more popular than others (e.g.

current or “hot” areas of experimentation in ATLAS or CMS). Moreover, data access

patterns may change over time, so any dynamic replication strategy must keep track

of file access histories to decide on when, what and where to replicate. The “popular-

ity” of a file is determined by its recent access rate by the clients. It is assumed that

recently popular files will tend to be accessed more frequently than others in the near

future. The idea behind PBRP is to create replicas as close as possible to those clients

that frequently request the corresponding files subject to storage availability. The ef-

fectiveness of this algorithm depends on the selection of a threshold value that relates

to the popularity of files and is used to determine their placement in the hierarchy.

I also propose an adaptive version of this algorithm that determines the threshold

dynamically considering data request arrival rates and available storage capacities at

the replica servers resulting in faster access and more efficient use of bandwidth and

storage in spite of changing access patterns and loading conditions.

Further, I develop a distributed popularity based replica placement (DPBRP) al-

gorithm the goal of which is to determine optimal locations for replicas to minimize

overall replication cost/overhead (access and update) for a given traffic pattern (i.e.

a recurring pattern of access frequencies from clients for different files) while offering

enhanced performance and reliability due to its distributed nature. The use of dy-

Chapter 1: Introduction 13

namic programming is natural in distributed systems. In particular, when designing

a dynamic programming algorithm for a hierarchical structure, results of a function

computed at child nodes can be combined to give the result for the parent. I show

that my replica placement problem can be formulated as a dynamic programming

problem and its solution can be obtained for hierarchical data grids in a distributed

fashion.

To satisfy the QoS requirements specified both from the user (imposed by data

requests) and system perspectives, I then describe a modified DPBRP algorithm to

determine the locations of replicas to improve system performance while satisfying

quality of service requirements simultaneously. I consider the replica distance as the

user QoS requirement where each client may specify a maximum distance allowable

to the nearest replica server. The system must ensure that a replica server exists to

answer all user requests. Since the QoS requirement can be specified by distance (e.g.

number of hops) between the client and the replica server, this distance constraint can

easily be incorporated when the replication costs for clients are calculated considering

various distance possibilities for the replica servers. The bandwidth constraint on a

link is specified by an upper bound on link capacity. The constraint mandates that

the amount of data that can pass through the link over a period of time will be limited

to that bound. If the total amount of data passing through a link is greater than

its capacity constraint, then the link is congested. Furthermore, it is assumed that

the workload capacity of a replica server is bounded which means a node hosting a

replica can only process up to a certain number of requests per unit of time from the

clients of its subtree. My replication strategy has to ensure that the user requests

14 Chapter 1: Introduction

are satisfied while limiting the workload of each replica server to its capacity and

ensuring that none of the communication links is congested.

To evaluate the performance of my algorithms, I use the OptorSim [BCC+03]

data grid simulator applied to a hierarchical data grid structure reflecting the charac-

teristics of the Compact Muon Spectrometer (CMS) experiments [Hol01] at CERN.

Simulations are done to evaluate the performance of the algorithms and to demon-

strate how the effectiveness of replica placement is affected by various factors, such

as replica server capacities, link capacities, and data access rates and patterns. I

also compare the performance of my algorithms to a number of other existing replica

placement algorithms.

1.4 Contributions

This thesis makes several contributions towards improving the understanding of

replication for data grid environments, particularly towards advancing the area of

replica placement in large-scale hierarchical data grids. The major contributions are

as follows:

• A popularity-driven dynamic replica placement algorithm (PBRP) for hierar-

chically structured data grids that improves the performance of data access

while ensuring efficient use of network, and storage resources. Performance of

this replica placement algorithm has been evaluated using a modified version

of OptorSim and compared against various prior solutions with good results

derived from making better trade-offs between storage costs and runtime.

Chapter 1: Introduction 15

• Since a grid environment is highly dynamic, resource availability, network la-

tency, and user requests vary. To address these issues the system needs a dy-

namic replica placement strategy that adapts to the dynamic behavior in data

grids. A novel adaptive placement algorithm (APBRP) has been designed to

use available storage capacities and data access arrival rates to tune the fre-

quency and degree of replication. The results obtained are superior to PBRP

and thus, transitively, to the other tested algorithms.

• Due to decentralized operation and resources being under the control of their

own local administrative domains, placing the replicas of an object through a

centralized algorithm is undesirable. This motivates distributed replica place-

ment algorithms for large-scale grid environments to ensure improved scalability

and reliability. Thus, I developed a new highly distributed and decentralized

replica placement algorithm for data grids that transparently places data in

strategic locations to improve the overall data access performance. The replica-

tion mechanism is guided by a replication cost function that takes into account

current demand for the data, network resources availability, and storage capac-

ity. A dynamic programming algorithm is presented to determine a near-optimal

replica placement for large-scale hierarchical data grids while minimizing repli-

cation cost.

• A QoS-aware replica placement problem has been formulated to guide develop-

ment of a replication strategy that supports QoS requirements from users and

involves minimal replication cost.

16 Chapter 1: Introduction

• An extended QoS-aware distributed placement algorithm has been designed to

generate a near-optimal solution of the replica placement problem taking into

account workload capacity of replica servers and link capacity constraints while

supporting efficient transfers of large replicas. The novelty of this extended

QoS-aware algorithm comes from the ability to integrate multiple types of QoS

both from user and system (workload and link capacity constraints) perspec-

tives. Performance of this extended QoS-aware algorithm has been evaluated

and compared against two prior QoS-aware replica placement algorithms with

results.

• Extensive performance evaluation over a wide range of system parameters has

been carried out from which a number of useful observations are obtained re-

garding deploying my replica placement algorithms in a real data grid.

1.5 Thesis Organization

The rest of this thesis is organized as follows. Chapter 2 reviews the background

material on data grids and data replication in grid environments. Existing dynamic

replication strategies in data grids are also discussed. Chapter 3 provides motivation

for my work and gives a problem definition. In Chapter 4, I propose a popularity-

driven dynamic replica placement algorithm to be used in hierarchically structured

data grids and also presented an adaptive version of this replica placement algorithm.

I also discuss the performance of these two placement algorithms and compare them

to a number of other existing replica placement strategies. Chapter 5 presents my

Chapter 1: Introduction 17

distributed replica placement approach. It starts with a base distributed algorithm

and then develops QoS-aware techniques that support QoS requirements both from

the user and system perspectives. Simulation results are then presented. Chapter 6

compares my centralized and distributed replica placement algorithms and provides

an overall assessment of their applicability. The thesis concludes in Chapter 7 with

a summary of contributions made and a brief discussion of some possible areas for

future work.

Chapter 2

Background and Related Work

This chapter provides a general overview of data grids and a detailed discussion

on the issues and challenges in data replications. Data replication is a well-known

technique and has been realized and extensively used within the context of other

distributed data-intensive paradigms such as the World Wide Web, peer-to-peer file-

sharing networks, and distributed and mobile databases. I discuss the caching or

replication strategies in each of these environments and address the similarity and

differences with data grid replication. The chapter ends with a discussion on the

existing techniques for replica placement in data grids and some of the problems and

issues that I will address in this thesis.

2.1 Preliminaries

Data grid applications produce, manipulate or analyse data in the range of hun-

dreds of GegaBytes (GB) to hundreds of PetaBytes (PB) and beyond. The data is

18

Chapter 2: Background and Related Work 19

organised as collections or datasets that are stored on mass storage systems (also

called repositories). The datasets are accessed by users in different locations who

may create local copies or replicas of the datasets to reduce the latency involved in

wide-area data transfer. A replica can be defined as a complete copy of the original

dataset. A data replication mechanism allows users to create, register, access and

update replicas. The replica management system may also create replicas on its own,

guided by replication strategies that consider current and expected future demand for

the datasets, locality of requests and storage capacity of the repositories. Metadata,

or “data about data”, is information that describes the datasets and could consist

of attributes such as name, time of creation, size on disk and time of last modifica-

tion. Metadata may also contain specific information such as details of the process

that produced the data. A replica catalog contains information about the locations

of datasets and their associated replicas. Users can query the catalog to locate the

nearest replica of a particular dataset. A catalog may be centralized or distributed.

2.2 Data Grids: An Overview

The efficient management of huge distributed and shared data resources across

Wide Area Networks (WANs) is a significant challenge for both scientific research

and commercial applications. The data grid [CFK+00] as a specialization and ex-

tension of the Grid [BBL06] provides one possible solution to this problem. Es-

sentially, data grids deal with providing services and infrastructure for distributed

data-intensive applications that need to access, transfer and modify massive datasets

stored in distributed storage servers. At the minimum, a realistic data grid must pro-

20 Chapter 2: Background and Related Work

Replica Catalog Replica Catalog

Compute Resource

Instruments

Storage Resource

User

Figure 1: A High-Level view of a Data Grid.

tors and maintain state information about the data seamlessly across institutional and geographical
boundaries. Often cited examples for Data Grids are the ones being set up for analysing the huge
amounts of data that will be generated by the CMS (Compact Muon Solenoid), ATLAS (A Toroidal
LHC AppratuS), ALICE (A Large Ion Collider Experiment) and LHCb (LHC beauty) experiments
at the Large Hadron Collider (LHC) (Lebrun, 1999) at CERN when they will begin production in
2007. These Data Grids will involve thousands of physicists spread over hundreds of institutions
worldwide and will be replicating and analysing terabytes of data daily.

Resources in a Grid are heterogeneous in terms of operating environments, capability and avail-
ability and are under the control of their own local administrative domains. These domains are
autonomous and retain the rights to grant users access to the resources under their control. There-
fore, Grids are concerned with issues such as: sharing of resources, authentication and authoriza-
tion of entities, and resource management and scheduling for efficient and effective use of available
resources. Naturally, Data Grids share these general concerns, but have their own unique set of
characteristics and challenges listed below:

Massive Datasets: Data-intensive applications are characterised by the presence of large datasets
of the size of Gigabytes (GB) and beyond. For example, the CMS experiment at the LHC is
expected to produce 1 PB (1015 bytes) of RAW data and 2 PB of event summary data (ESD)
annually when it begins production (Holtman et al., 2001). Resource management within
Data Grids therefore extends to minimizing latencies of bulk data transfers, creating replicas
through appropriate replication strategies and managing storage resources.

Shared Data Collections: Resource sharing within Data Grids also includes, among others, sharing
distributed data collections. For example, participants within a scientific collaboration would
want to use the same repositories as sources for data and for storing the outputs of their
analyses.

4

Figure 2.1: A high level view of a data grid [VBR06]

vide two basic capabilities: a high-performance, reliable data transfer mechanism, and

a scalable replica discovery and management mechanism [CFK+00]. Depending on

application requirements, other services may also be needed (e.g. security, account-

ing, etc.). Examples of such services include consistency management for replicas,

metadata management and data filtering and reduction mechanisms. All operations

in a data grid are typically mediated by a security layer that handles authentication

of entities and ensures conduct of only authorized operations.

Figure 2.1 shows a high-level view of a hypothetical worldwide data grid con-

sisting of computational and storage resources located in different countries that are

connected by high speed networks. The thick lines show high bandwidth networks

linking the major data centres and the thinner lines correspond to lower bandwidth

network links that connect the subsidiary centres to those major data centres. The

data generated from an instrument, experiment, simulation or a network of sensors

is usually stored at its principal storage site and transferred to the other storage

Chapter 2: Background and Related Work 21

sites around the world on request through the data replication mechanism. Users

can query their local replica catalog to locate datasets that they require. The data is

fetched from a repository local to their area, if it is available there; otherwise it must

be fetched from a remote repository. As an example, data may be transmitted to a

computational site such as a cluster or a supercomputer facility for processing before

the results are sent to a visualisation facility, a shared repository or to the desktops

of individual users. A data grid, therefore, provides a platform through which users

can access aggregated computational, storage and networking resources to execute

their data-intensive applications on remote data. It promotes a rich environment for

participating users to analyse data, share results with their collaborators and main-

tain state information about data seamlessly across institutional and geographical

boundaries.

Resources in a grid are often heterogeneous in terms of operating environments,

capability and availability and are under the control of their own local administra-

tive domains. These domains are autonomous and possesses the rights to grant users

access to the resources under their control. Therefore, data grids must also be con-

cerned with such issues as: authentication and authorization of entities, sharing of

resources, and resource management and scheduling for efficient use of available re-

sources. However, certain characteristics of data grids are specific to the applications

for which they are targeted. For instance, for astrophysics or high energy physics

experiments, the principal instrument such as a telescope or a particle accelerator is

the single site of data generation. This means that all data is written at a single site,

and then replicated to other sites for, typically, read access. Updates to the source

22 Chapter 2: Background and Related Work

are propagated to the replicas either by the replication mechanism or by a separate

consistency management service.

Providing access to different types of resources using grid computing faces numer-

ous challenges. Foster et al. [FKT01] have proposed a grid architecture for resource

sharing among different entities based on the concept of Virtual Organizations (VOs).

A VO is formed when different organisations pool resources and collaborate to achieve

a common goal. A VO defines the resources available for the participants and the

rules and conditions for accessing and using the resources. A VO also provides proto-

cols and mechanisms for applications to determine the suitability and accessibility of

available resources. The use of VOs impacts the design of data grid architectures in

many ways. For example, a VO may be standalone or may be composed of a hierarchy

of regional, national and international VOs. In the latter case, the underlying data

grid may have a corresponding hierarchy of repositories and the replica discovery and

management systems must be structured accordingly. More importantly, sharing of

data collections is guided by the relationships that exist between the VOs that own

each of the collections.

2.2.1 Architecture

Many initiatives were undertaken by different groups of researchers from differ-

ent institutions and universities towards building frameworks for computational and

data grids. The Globus Toolkit [Fos06; KF98; FKT01] project is a leading effort

which provides a framework for building grids based on a service-oriented architec-

ture. The framework offers Security, Information, Resource Management, and Data

Chapter 2: Background and Related Work 23

Management services. The toolkit relies on a grid Security Infrastructure (GSI),

which provides a set of security features to allow users to authenticate their commu-

nication and use single sign-on to access grid resources and services. The Information

Services provide information about the status of grid resources using a notification

approach where resources publish their status and subscribers receive updates about

specific instruments, machines, or storage components they want to access. This in-

cludes the monitoring as well as the discovery of information resources. The Resource

Management component uses input from the Information Services to enable users to

access available resources and to allow the system to schedule resource allocations.

The Data Management component (or data grid) provides the ability to access and

manage data and data resources in the grid. The Globus toolkit provides several

components to move, copy, and locate data. The major components are: GridFTP,

RFT (Replica File Transfer), and RLS (Replica Location Service) [FKT01; Fos06].

GridFTP provides tools for fast, secure, convenient, and parallel data transfers in the

grid by extending the FTP protocol. The RFT service provides reliable management

of multiple GridFTP transfers. RLS maintains and provides access to information

about the location of data available within the data grid. The RLS service uses

Replica Catalogs to register, index, and locate data. The Replica Catalog is a reg-

istry in which users maintain records for all the shared files in the grid. Each record

contains the locations of all file replicas, and provides a mapping between file names

and these replicas. The aforementioned components of the data grid can be orga-

nized in a layered architecture as shown in Figure 2.2, reproduced from descriptions

in [CFK+00; ABB+01]. The layers outlined in Figure 2.2 represent different compo-

24 Chapter 2: Background and Related Work

Replication Management Resource Allocation Resource Allocation

File Transfer Protocol

Authentication Protocol

Networking Protocol

High Energy Physics Climate Modelling Earth Science

Resource Monitoring

Operating System File System Databases

Storage System Network Hardware/Instruments

Replication Job Submission

Applications

Services

Communication

Grid Fabric

Figure 2.2: A layered view of a data grid architecture

nents of the data grid infrastructure. Components at the same level can co-operate

to offer certain services, and components at higher levels use services and compo-

nents offered at lower levels and build on top of them. The Grid Fabric consists

of computing resources such as workstations and supercomputers, storage resources

such as disks and tapes, as well as scientific instruments. Most of these resources are

widely distributed and are connected by high bandwidth wide area networks. These

computing, storage and networking resources represent the physical layer of the data

grid. The operating systems and software that manage these heterogeneous resources

represent the basic software layer of the data grid. The Communication layer consists

of data transfer protocols to copy data from resources in the Grid Fabric layer. The

data transfer protocols are typically based on the TCP/IP communication protocol

Chapter 2: Background and Related Work 25

and authentication protocols are used to verify users identities and ensure security

and data integrity. The data grid Services layer consists of core services such as

replication and resource monitoring that provide transparent discovery, location, and

access to data and compute resources. These services can be used to contribute re-

sources to the grid and define access policies for these resources. The monitoring

service is equivalent to the Information Services in the Globus architecture and im-

plementation [FKT01]. The next components of the Services layer provide higher

level services that use the lower level services to enable efficient management and al-

location of replicas and data resources in the data grid. The collective set of services

provided at this layer represents the data grid middleware. The middleware abstracts

and hides the complexity of managing access to resources and provides API’s for users

and applications to transparently take full advantage of the utilities available in the

data grid. The Applications layer provides services and access interfaces that are

specific to a domain (such as high energy physics, biology or climate modelling) or

Virtual Organization.

2.2.2 Models

A data grid model represents the manner in which data sources are organized in

the grid. A variety of models are in place for the operation of a data grid. They are

based on the source of data, whether single or distributed, the size of data and the

mode of data sharing. A few of the common models found in data grids are shown in

26 Chapter 2: Background and Related Work

Figure 2.3 and are discussed below:

a) Central Repository: This is the general form of a data grid in which all the

data is gathered at a central repository and users obtain the requested data through

queries. The data can be from many sources such as distributed instruments and

sensor networks and is made available through a centralized interface such as a web

portal which also verifies users and checks for authorization. Figure 2.3(a) shows such

a grid model which has been applied by the NEESgrid (Network for Earthquake En-

gineering Simulation) project [PKG+04] in the United States. The difference between

this and other models of data grid organization is that there is only a single point

for accessing the data. In contrast, with other models, the data can be wholly or

partially accessed at different points where it is made available through replication.

The central repository may be replicated in this case for fault tolerance but not for

improving locality of data. Thus, this model serves better in scenarios where the

overhead of replication is not compensated by an increase in efficiency of data access

such as the case where all accesses are local to a particular region.

b) Hierarchical: This model maintains a single source for data but the data is

distributed across the world for collaborations. For example, the MONARC (Models

of Networked Analysis at Regional Centres) group within CERN has proposed a

tiered infrastructure model for data distribution [ea00]. This model is presented in

Figure 2.3(b) and specifies requirements for transfer of data from CERN to various

groups of physicists around the world. The first tier is the compute and storage

farm at CERN which stores the data generated from the detector. This data is then

distributed to Regional Centers (RCs) located around the world. From the RCs, the

Chapter 2: Background and Related Work 27

(b) Hierarchical

Source

Distributor Distributor

Institution Institution

Distributor

Institution

(d) Hybrid (c) Federation

Instruments

Central Data
Repository

Institution

Sensors

Local Data
Repository

Tape

CERN Tier 0

Tier 1
(Regional Centers)

Tier 2
(National Centers)

Tier 3
(Institutions)

~ 2.5 Gbps

622 Mbps

0.6 ~ 2.5 Gbps

Institution

Institution

Institution

InstitutionInstitution

(a) Central Repository

Figure 2.3: Various models for organization of data grids [VBR06]

data is then passed downstream to the national and institutional centers and finally

onto the physicists working on the data. The massive amounts of data generated in

these experiments motivate the need for a robust data distribution mechanism. Also,

researchers at participating institutions may be interested only in subsets of the entire

dataset that may be identified by querying using metadata. One advantage of this

model is that maintaining consistency is much simpler as there is only one source for

the data.

c) Federation: The federation model [RWMS04] is shown in Figure 2.3(c) and

is found in data grids created by institutions who wish to share data in existing

28 Chapter 2: Background and Related Work

databases. One example of a federated data grid is the BioInformatics Research

Network (BIRN) [bir05] in the United States. Researchers at a participating institu-

tion can request data from any of the databases within the federation if they have

the proper authentication. Each institution retains control over its local database.

Varying degrees of integration can be present within a federated data grid. Moore

et al. [MJR+04] pointed out different types of federations that are possible using a

Storage Resource Broker (SRB) [BMRW98] in various configurations. The differences

are based on the degree of autonomy of each site, constraints on cross-registration of

users, degree of data replication and synchronization.

d) Hybrid: Hybrid models that combine the above models are beginning to emerge

as data grids are being used by scientists in different domains of applications. These

models meet the demand for researchers to collaborate and share the products of

their analysis. Figure 2.3(d) shows a hybrid model of a hierarchical data grid with

peer linkages at the edges. Lamehamedi et al. [LSsD02] uses a hybrid topology for

replica creation in a data grid.

2.2.3 Applications

There are a number of scientific applications in the area of High Energy Physics

(HEP), bioinformatics, and earth sciences that are adopting data grid technologies as

part of their computing infrastructure. For example, a HEP device called the Large

Hadron Collider (LHC) [LCG01], at CERN will produce roughly 15 Petabytes (15

million Gigabytes) of data annually, which thousands of scientists around the world

will access. The goal of the LHC Computing Grid (LCG) project is to build and

Chapter 2: Background and Related Work 29

maintain a data storage and analysis infrastructure for the entire high energy physics

community that will be using the LHC. ATLAS (A Toroidal LHC ApparatuS) and

CMS (Compact Muon Solenoid) are two particle detector experiments that have been

constructed at the LHC. The ATLAS project involves approximately 2100 physicists

at 167 institutions in 37 countries. At the same time, approximately 2600 physicists

from 180 institutions in 32 countries form the collaboration for the CMS project. The

data from these LHC experiments will be distributed, world-wide, using a four-tier

model with CERN as the root, or tier 0, site. A primary backup of raw data will be

stored in tier-0. After initial processing, this data will be distributed to a series of

regional tier-1 centers that will make data available to many national tier-2 centers.

Individual scientists will access these data through tier-3 centers, which might consist

of local clusters in a University Department. All the tier-3 centers of the hierarchy

are local sites where users can issue requests to access their required data stored in

the data grid system.

There are also a number of other grid projects around the world that are setting

up the infrastructure for physicists to process data from HEP experiments. Some of

these are the Particle Physics Data Grid (PPDG) [PPD03] and Grid Physics Network

(GriPhyN) [gri01a] in the United States, GridPP [Gri01b] in the UK and Belle Anal-

ysis Data Grid (BADG) [BAD05] in Australia. These projects have common features

such as a hierarchical model for distributing the data, shared facilities for computing

and storage and personnel dedicated towards managing the infrastructure.

The increasing importance of realistic modeling and simulation of biological pro-

cesses along with the need for accessing existing databases has led to data grid solu-

30 Chapter 2: Background and Related Work

tions being adopted by bio-informatics researchers worldwide. These projects involve

federating existing databases and providing common data formats for the information

exchange. Among these projects are BioGrid [Bio02] in Japan for online brain activity

analysis and protein folding simulation, and the eDiaMoND project [edi01] in the UK

for breast cancer treatment and the BioInformatics Research Network (BIRN) [bir05]

for imaging of neurological disorders using data from federated databases.

Name Application
Domain

Grid Model Comments Scope

LCG High energy
physics

Hierarchical model,
Collaborative VO

To build and maintain a data
storage and analysis
infrastructure for the entire HEP
community that will be using the
LHC.

Global

GriPhyN High energy
physics

Hierarchical model,
Collaborative VO

To create an infrastructure
integrating computational and
storage facilities for high energy
physics experiments.

United
States

GridPP High energy
physics

Hierarchical model,
Collaborative VO

Grid infrastructure for Particle
Physics in the UK.

United
Kingdom

Bell Analysis
Data Grid

High energy
physics

Hierarchical model,
Collaborative VO

Grid infrastructure for
Australian physicists
involved in the Belle and
ATLAS experiments.

Australia

BioGrid Bioinformatics Federated model,
Collaborative VO

Grid infrastructure for protein
simulation and brain activity
Analysis

Japan

eDiaMoND Breast cancer
treatment

Federated model,
Collaborative VO

To provide medical professionals
and researchers access to
distributed databases of
mammogram images

United
Kingdom

BIRN Bioinformatics Federated model,
Collaborative VO

To advance collaboration in
biomedical science through
sharing of data.

United
States

NEESgrid Earthquake
engineering

Central repository
model, Intra-domain,
Collaborative
VO

To enable scientists to carry out
experiments in distributed
locations and analyse data
through a uniform interface.

United
States

Earth System
Grid

Climate modelling Federated model,
Intra-domain,
Collaborative
VO

To integrating computational
and analysis resources for
next generation climate research.

United
States

Figure 2.4: Data grid projects in various application domains [VBR06]

Chapter 2: Background and Related Work 31

Similarly, researchers in earthquake engineering and climate modeling and simula-

tion are also adopting grids to solve their computational and data access requirements.

NEESgrid [nee01] is a project to link earthquake researchers with high performance

computing and sensor equipment so that they can collaborate on designing and per-

forming experiments. Earth System Grid [ESG00] aims to integrate high-performance

computational and data resources to study the petabytes of data resulting from cli-

mate modeling and simulation. A list of all these projects and a brief summary of

each of them is provided in Figure 2.4.

2.3 Data Replication

This section provides an introduction to data replication and then discusses some

general issues and challenges in replication for data grids. Data replication can be

applied to provide good performance, high availability, and fault tolerance in a range

of distributed systems. When data is stored at a single location on a single data server,

that server can be a bottleneck if too many requests need to be served at the same

time and consequently, the whole system slows down, i.e. slow response time and

limited throughput in terms of requests per second. By providing multiple replicas

at multiple locations, requests can be served in parallel with each replica providing

data access to a smaller community of users. If multiple users access data over a

network from geographically distant locations, data access will be slower than in a

small local-area network given that LANs have lower network latencies than WANs.

By providing data as close to the user as possible (data locality), the smaller distances

over the network can also contribute to higher performance and lower response times.

32 Chapter 2: Background and Related Work

Moreover, if a single data item is only stored at a single server, this data item

cannot be accessed if the server crashes or otherwise does not respond. In contrast, if

a copy (replica) of the data item is stored at a different server, this additional server

can provide the data item in case of a server or network failure. Thus, the availability

of data can be increased even in the event of natural disasters like earthquakes.

To differentiate between an independent copy of a file and a replica of the same,

consider the following example. A person creates a file and sends a copy to another

person who can then use the private copy. Since the location of the second copy is

neither stored in a file catalog nor any guarantee is given that both copies have the

same contents after one is changed, these files cannot be regarded as replicas. Unlike

“conventional” data items that exist only once in a data store, replicated data items

also require an extended naming convention. A set of identical replicas is identified by

a logical name and each individual replica is identified by a physical name indicating

a particular replica storage location. A client needs to know the logical name for

a file and an additional data structure (i.e. catalog) that maps the logical name to

a set of physical names. Thus, a replica is more sophisticated than an independent

copy as it requires some data management and special data structures. Each replica

is dependent on at least one other data item called, primary copy, which is created

first. When a replica is created, it is assigned the same logical name as the primary

copy and new physical name.

Chapter 2: Background and Related Work 33

2.3.1 Issues related to replication in data grids

Although the necessity of replication in data grid systems is evident, its implemen-

tation entails issues such as selecting suitable replicas, maintaining replica consistency,

and so on. The following fundamental issues are identified:

a) Strategic placement of replicas is needed to obtain maximum gains from repli-

cation based on the objectives of applications.

b) The degree of replication must be selected to use the minimum possible number

of replicas without excessively reducing the performance of applications.

c) Replica selection should identify the replica that best matches the user’s qual-

ity of service (QoS) requirements and, perhaps, achieves one or more system-wide

management objectives.

d) Replica consistency management should ensure that the multiple copies (i.e.

replicas) of a given file are kept consistent in the presence of concurrent updates.

e) The impact of replication on the performance of job scheduling must also be

considered.

Figure 2.5 presents a visual taxonomy of these issues which will be used in the

following subsections.

Replica Placement

Although, data replication is one of the major optimization techniques for pro-

moting high data availability, low bandwidth consumption, increased fault tolerance,

and improved scalability, the problem of replica placement has not been well stud-

ied for large-scale grid environments. To obtain the maximum possible gains from

34 Chapter 2: Background and Related Work

Data Replication

Replica
Placement

Replica
Selection

Replica
Consistency

Replication and
Scheduling

Figure 2.5: Taxonomy of issues in data replication

file replication, strategic placement of the file replicas in the system is critical. The

replica placement service is that component of a data grid architecture that decides

where in the system a file replica should be placed. In fact, different replication

strategies can be defined depending on when, where, and how replicas are created

and destroyed. A detailed discussion of existing work in replica placement in data

grids will be presented later in this chapter.

Replica Selection

A system that includes replicas also requires a mechanism for selecting and lo-

cating them at file access time. Choosing and accessing appropriate replicas are

very important to optimize the use of grid resources. A replica selection service dis-

covers the available replicas and selects the “best” replica given the user’s location

and, possibly, quality of service (QoS) requirements. Typical QoS requirements when

doing replica selection might include access time as well as location, security, cost

and other constraints. The replica selection problem can be divided into two sub-

problems [RKA05]: 1) discovering the physical location(s) of a file replica given a

Chapter 2: Background and Related Work 35

logical file name, and 2) selecting the best replica from a set based on some selection

criteria.

Network performance can play a major role when selecting a replica. Slow network

access limits the efficiency of data transfer regardless of client and server implemen-

tation. Correspondingly, one optimization technique to select the best replica from

different physical locations is by examining the available (or predicted) bandwidth

between the requesting computing element and various storage elements that hold

replicas. The best site, in this case, would be the one that has the minimum (pre-

dicted)transfer time required to transport the replica to the requested site. Although,

network bandwidth plays a major role in selecting the best replica, other factors in-

cluding additional characteristics of data transfer (most notably, latency), replica host

load, and disk I/O performance are important as well.

Replica Consistency

Consistency and synchronization problems associated with replication in data grid

systems are not well addressed in the existing research with files often being regarded

as being read-only. However, as grid solutions are increasingly used by a range of ap-

plication types, requirements will arise for mechanisms that maintain the consistency

of replicated data that can change over time. The replica consistency problem deals

with concurrent updates made to multiple replicas of a file. When one file is updated,

all other replicas then have to have the same contents and thus provide a consis-

tent view. Consistency maintenance therefore also requires some form of concurrency

control.

36 Chapter 2: Background and Related Work

Replica consistency is a traditional issue in distributed systems, but it introduces

new problems in data grid systems. Traditional consistency maintenance techniques

such as invalidation protocols [DPM00], distributed locking mechanisms [WL88],

atomic operations [DDW08] and two-phase commit protocols [CP85] are not nec-

essarily suitable for data grid environments because of the long delays introduced

by the use of a wide-area network and the high degree of autonomy of data grid

resources [DDP+04]. For example, in a data grid, the replicas for a file may be dis-

tributed over different countries. So, if one node which holds a replica is not available

when the update operation is underway, the whole update process could fail.

The Impact of Data Replication on Job Scheduling

Dealing with the large number of data files that are geographically distributed

causes many challenges in a data grid. One that is not commonly considered is the

scheduling of jobs to take data location into account when determining job placement.

The locations of data required by a job clearly impacts grid scheduling decisions and

performance [TLYT06], so, it is important to pick an appropriate job execution site.

Traditional job schedulers for grid systems are responsible for assigning incoming

jobs to compute nodes in such a way that some desirable conditions are met, such

as the minimisation of the overall execution time of the jobs or the maximisation of

throughput or processor utilisation. Such systems generally take into consideration

the availability of compute cycles, job queue lengths, and expected job execution

times, but they typically do not consider the location of data required by the jobs.

Indeed, the impact of data and replication management on job scheduling behaviour

Chapter 2: Background and Related Work 37

has largely remained unstudied.

One must consider not only the abundance of computational resources but also

data locations. A site that has enough available processors may not be the opti-

mal choice for computation if it doesn‘t have the required data nearby. (Allocated

processors might wait a long time to access the remote data.) Similarly, a site with

local copies of required data is not a good place to compute if it doesn’t have ade-

quate computational resources. An effective scheduling mechanism is required that

will allow the fastest possible access to the required data, thereby reducing the data

access time. Since creating data replicas can significantly reduce the data access cost,

a tighter integration of job scheduling and automated data replication could bring

substantial improvement in job execution performance.

2.4 Related Data-Intensive Research

This section describes data replication in various distributed data-intensive envi-

ronments that share similar requirements, functions and characteristics. These have

been chosen because of the similar properties and requirements that they share with

data grids.

2.4.1 Web Caches

To increase access performance in the web, web documents can be cached on the

clients, using either proxies or the servers directly [RSB01]. Client side caching can

be accomplished in two ways; either by using a browsers caching facility, or via a web

proxy. Upon visiting a website, the client’s browser retains a local copy of the page

38 Chapter 2: Background and Related Work

visited in its cache. The page can be loaded directly from the local browsers cache, if it

is requested again. The concept of web proxy [LA94] was first proposed for companies

who maintain a firewall for their clients. In this model, the requests from a client are

directed to the web server through the proxy server. When a response comes in, the

web proxy sends the result back to the requesting client. The proxy also stores a copy

of the requested document in its own cache so that it can satisfy requests from other

clients in the near future. Caceres et al. and Kroeger et al. [CDF+98; KLM97] show

that a web proxy can improve performance significantly by reducing network and

server loads and decreasing the latency of web access. However, one of the demerits

of a proxy is the extra processing time taken by the proxy when a cache miss occurs.

Different co-operative caching approaches [SN02; BO00] have been studied to improve

the cache effectiveness (i.e. hit rates and response times) by communicating with other

neighboring proxy caches. Moreover, it is possible to maintain a hierarchy of proxies

or to distribute the proxies. In hierarchical caching, caches are located at different

network levels or tiers. On encountering a cache miss, the proxy makes requests for

the missed object to the proxies at the next tier. Such a caching technique has been

used by Netscape and MS Explorer and implemented by Squid [squ00]. However,

hierarchical caching suffers from a number of disadvantages: each tier introduces

additional delay, caches at the higher level becomes overloaded when frequent cache

misses occur at lower levels, and high storage overhead due to several copies that exist

at different levels. To address these problems, several researchers propose distributed

caching where caches cooperate to serve client requests. The Internet Cache Protocol

(ICP) [icp97] and the Cache Array Routing Protocol (CARP) [VR07] are distributed

Chapter 2: Background and Related Work 39

techniques that support document discovery and retrieval from neighboring caches.

The query based scheme used in ICP can incur substantial bandwidth consumption

and increased latency. To overcome this problem, a summary of the contents of other

cooperating caches is proposed by Fan et al. [FCAZ00] to avoid the queries or polls

needed by ICP. A number of optimistic replication techniques for Web documents have

been proposed [PvST02], where weak consistency algorithms are used. However, data

accesses in the web and in grids have different patterns. In the web, updates are very

frequent and requested data (documents) are small compared to data in data grids.

Therefore, these two environments require different validation mechanisms. However,

a decentralized optimization model for a general approach to replica placement might

be useful in improving the performance of replication techniques for the web.

2.4.2 Content Delivery Networks

A Content Delivery Network (CDN) consists of a collection of servers that at-

tempt to speed up the delivery of web content and reduce the load on origin servers

as well as the network generally. That is, within a CDN, client requests are satis-

fied from other servers distributed around the Internet (also called edge servers) that

cache the content stored at the origin server. A client request is redirected from the

origin server to an available server close to the client that is likely to host the content

required [DMP+02]. If the selected server does not have the requested data then it is

retrieved from the origin server or another edge server. The content is replicated ei-

ther on-demand when users request it, or it can be replicated beforehand, by pushing

the content to the content servers [KRR02]. One of the issues in CDNs is to de-

40 Chapter 2: Background and Related Work

cide where to place site contents in the CDN infrastructure. This problem has been

proven to be NP-Complete, and several caching and replica placement algorithms

have been proposed and used in the literature based on heuristic and relaxation algo-

rithms [KRR02; KM02]. However, most of the existing algorithms do not scale well for

larger systems. CDNs are generally employed by commercial web content providers

such as Akamai [aka07] and Digital Island [dil07] who have built dedicated infrastruc-

ture to serve web content for multiple clients. However, CDNs have not gained much

acceptance for data distribution generally because currently CDN infrastructures are

proprietary in nature and owned completely by the providers.

2.4.3 Peer-to-Peer Networks

Another mechanism for content distribution is the use of Peer-to-Peer (P2P) net-

works that are formed by ad hoc aggregation of resources to form a decentralized

system within which each peer is autonomous and depends on other peers for re-

sources, information and forwarding requests [Ora01]. The following key features are

found in P2P networks: ensuring scalability and reliability by removing the central-

ized authority, ensuring reliability via redundancy, sharing resources, and ensuring

anonymity. P2P networks have been designed and implemented for many areas such

as compute resource sharing (e.g. SETI@Home [ACK+02], Compute Power Mar-

ket [BV01]), content and file sharing (Napster, Gnutella, Kazaa [CHNB05], etc.) and

collaborative applications such as instant messengers (Jabber [jab05]). Milojicic et

al. [MKL+02] present a detailed taxonomy and survey of peer-to-peer systems. Their

review focuses mostly on content and file-sharing P2P networks as these involve data

Chapter 2: Background and Related Work 41

distribution. Such networks have mainly focused on creating efficient strategies to

locate particular files within a group of peers, to provide reliable transfers of such

files in the face of high volatility and to manage high load caused due to demand for

highly popular files. Currently, major P2P content sharing networks do not provide

an integrated computation and data distribution environment.

2.4.4 Distributed Databases

A distributed database (DDB) [OV99] is a logically organized collection of data

stored at different sites of a computer network. Each site has a degree of autonomy and

thus is capable of executing local applications, and also participates in the execution

of a global application (the DDB management system). A distributed database can be

formed either by taking an existing single site database and splitting it over different

sites (top-down approach) or by federating existing database management systems so

that they can be accessed through a uniform interface (bottom-up approach) [SL90].

The latter are also called multidatabase systems. Distributed databases have evolved

to serve the needs of large organizations which need to remove the constraints of a

centralized computer center, to interconnect existing databases, to replicate databases

for increased reliability, and to add new databases as new organizational units are

created. Distributed database replication can be divided into two different categories:

synchronous/eager and asynchronous/lazy replication. To understand these replica-

tion strategies, a brief introduction of transaction management and two phase locking

is now given.

A transaction allows clients to access and modify data items as a single atomic

42 Chapter 2: Background and Related Work

operation. However, it is possible for two operations from different transactions to

access the same data item concurrently. If one or more of those operations is a write,

the database may be left in an inconsistent state. To address this problem Two Phase

Locking (2PL) [Tho79] has been proposed to guarantee serializability (i.e. equivalence

to a serial execution of the transactions). The 2PL algorithm has two phases, one

is the growing phase where it acquires locks and accesses data items; and then a

shrinking phase where locks are released [EN03]. By following the 2PL rules for lock

acquisition and release serializability is guaranteed.

In synchronous replication, an update transaction synchronizes all copies of mod-

ified data before it commits whereas in lazy replication [PS00] the update can be

done to one copy and the propagation of changes to other copies is deferred until

later. A replica copy is characterized as a primary copy if it is updatable [OV99]. In

primary copy replication, each data item is assigned a primary or master copy and

the replication first takes place in the master copy with updates propagated later to

other copies. On the other hand, the update-everywhere approach allows updates

to any copy [GHaDO96]. Eager primary copy and eager update-everywhere replica-

tion strategies use a 2 Phase Commit (2 PC) [TS02] protocol to ensure that all sites

commit the transaction.

The problem of allocating data in a distributed database was investigated by a

number of researchers. This problem deviates from the well known file allocation

problem. The representative research related to the file allocation problem and the

data allocation problem in distributed databases is presented below.

The file allocation problem deals with allocating files to different computer nodes

Chapter 2: Background and Related Work 43

in a network for a given set of queries, updates and executions such that a cost

function is minimized. Chu [Chu73] developed a model that allocates files to several

computers to minimize the overall storage and transmission cost. They formulate

the problem as a linear zero-one programming problem and solved it using standard

linear integer programming techniques. Chandy et al. [CH76] proposed a model that

allows multiple copies to be stored at different sites. The objective of their model was

to minimize the overall cost associated with updating a copy and transmission cost

for satisfying a query.

Allocation in distributed file system differs from data allocation in a distributed

database. In a distributed database, relations are broken up into logical units called

fragments that are distributed to different sites. In distributed query processing,

fragments at different sites needs to be accessed to process a query. Therefore, frag-

ments can not be allocated in isolation as in file allocation. There is a relationship

between fragments and the placement of one fragment has an impact on the place-

ment of other fragments. Different quantitative data needs to be considered for data

allocation [OV99]. For example, the size of fragments, the read and update access fre-

quencies of the fragments, the processing and storage capabilities at each site and the

characteristics of the communication network among sites. Distributed queries are

decomposed into a set of sub-queries. Each sub-query may need to access fragments

stored at different sites and make a join between fragments to answer a query. Fur-

ther, the cost associated with data integrity, concurrency control, etc., should take

into account. Although distributed database systems are very robust and provide

distributed transaction processing, distributed query optimization and efficient man-

44 Chapter 2: Background and Related Work

agement of resources, these systems cannot be employed in their current form at the

scale of data grids envisioned as they have strong requirements for ACID (Atomic-

ity, Consistency, Isolation and Durability) properties [GR93] to ensure that the state

of the database remains consistent and deterministic and these cannot be efficiently

provided at grid scale.

2.4.5 Mobile Environments

Mobile computing is gaining popularity with the explosive growth of wireless tech-

nology and mobile devices. Wireless technology has several challenges such as narrow

bandwidth, frequent disconnections, and low battery power. Therefore, replicating

or caching of frequently accessed data items at the client/device side is important

because it increases data availability during disconnection as well as saving battery

power. Cache invalidation techniques are required to validate the cached data items

at the client site. Two approaches are proposed in the literature to manage caches in

mobile environments: 1) Stateful [DH95]: where the server tracks the states of mobile

clients caches so if the data item is changed the server can broadcast the changed data

to the clients that hold that data and 2) Stateless [KL01; Cao00]: where the server

has no information about mobile caches. In this case, the server periodically broad-

casts invalidation reports to all mobile clients. Sistla et al. [SWH98] propose a sliding

window algorithm for replica allocation on the mobile nodes. The algorithm is based

on the client access frequency, which determines whether to allocate or de-allocate a

data object according to the number of read and update accesses.

Unlike the technique of Sistla et al. [SWH98], which considers minimizing ac-

Chapter 2: Background and Related Work 45

cess cost in a network with only a base node and a mobile node, the techniques

in [Har01; Har03; HMN04] consider data replica allocation in unstructured mobile

ad hoc networks to improve data availability in the presence of network partitioning.

Hara [Har01] proposes three methods for allocating replicas in ad hoc networks for

data objects shared by multiple mobile hosts. The major goal is to allocate data ob-

jects such that they are distributed evenly in the system without having many replicas

clustered in a neighborhood. In such a way, the data availability will be improved if

the network partitioning probability is random. This work assumes that there is no

update request and all hosts have knowledge of the read access probability of each

independent data object. In a subsequent effort [Har03], Hara extends the previous

work and considers update requests, and replicates the data objects with higher access

frequencies and a larger update time period. Hara et al. [HMN04] further improve

this work and consider correlation among data objects. They define pairs of data

objects that are correlated with each other when the two data objects are accessed

by multiple requests in the same session. They make a further assumption that the

correlation strength between the two data objects is known in advance and does not

change with time and location.

2.4.6 Discussion

I now compare the data-intensive paradigms described in the previous sections

with data grids to bring out the uniqueness of the latter by highlighting their respec-

tive similarities and differences. Also, each of these areas have their own mature solu-

tions which may be applicable to similar problems in data grids either wholly or with

46 Chapter 2: Background and Related Work

some modification. The following characteristics are important to consider [VBR06]:

a) - Considering the purpose of the network, it is generally seen that P2P content

sharing networks are vertically integrated solutions for a single goal (for example,

file-sharing). CDNs are dedicated to caching web content so that clients are able to

access it faster. DDBs are used for integrating existing diverse databases to provide

a uniform, consistent interface for querying and/or replicating existing databases for

increasing reliability or throughput. In contrast to these single purpose networks,

data grids are primarily created for enabling collaboration (by forming VOs) through

sharing of distributed resources including data collections and support various ac-

tivities including data transfer and computation over the same infrastructure. The

overall goal is to bring together existing disparate resources to obtain benefits from

aggregation.

b) Access type distinguishes the type of data access operations done in the net-

work. P2P content sharing networks are mostly read-only environments. Write op-

erations occur only when an entity introduces new data into the network or creates

copies of existing data. CDNs are almost exclusively read-only environments for end-

users and updating of data happens at the origin servers only. In DDBs, data is

both read and written frequently. Data grids are similar to P2P networks as they are

mostly read-only environments into which either data is introduced or existing data is

replicated. However, a key difference is that depending on application requirements,

data grids may also support updating of data replicas when the source is modified.

c) A key element of performance in distributed data-intensive networks is the

manner in which they reduce the latency of data transfers. Some of the techniques

Chapter 2: Background and Related Work 47

commonly used in this regard are replicating data close to the point of consumption,

caching of data, streaming data and pre-staging the data before the application starts

executing. Replication is different from caching as the former involves creation and

maintenance of copies of data at different places in the network depending on access

rates or other criteria while the latter involves creating just a copy of the data close

to the point of consumption. Replication is, therefore, done mostly from the source

of the data (provider side) while caching is done at the data consumer side. While

both replication and caching seek to increase performance by reducing latency, the

former also aims to increase reliability by creating multiple backup copies of data.

CDNs employ caching and streaming to enhance performance especially for deliv-

ering media content. While several replication strategies have been suggested for a

CDN, Karlsson and Mahalingam [KM02] experimentally show that caching provides

equivalent or even better performance than replication. In the absence of require-

ments for consistency or availability guarantees in CDNs, computationally expensive

replication strategies do not offer much improvement over simple caching methods.

P2P networks also employ replication, caching and streaming of data to various de-

grees. Replication and caching are used in distributed database systems explicitly for

optimizing distributed query processing.

In data grids, all of the techniques mentioned are implemented in one form or

another. However, additionally, data grids are differentiated by the requirement for

transfer of massive datasets across geographically distributed sites. This is either

absent in the other data-intensive networks or is not considered while designing these

networks. This motivates use of high-speed data transfer mechanisms that have

48 Chapter 2: Background and Related Work

separation of data communication - that is, sending of control messages happens

separately from the actual data transfer. In addition, features such as parallel and

striped data transfers among others, are required to further reduce time for data

movement. Optimization methods to reduce the amount of data transfered, such as

accessing data close to the point of its consumption, are also employed in data grids.

d) Most well-established Data Grid applications are used in scientific and en-

gineering fields and they primarily require large read-only datasets so replica syn-

chronization is not a critical concern in grids [ABB+02]. However, synchronization

and consistency are key features for Distributed Database (DDB) replication or web

caching. A DDB typically uses short transactions while scientific ones tend to be

long, so the issues are very different.

e) Computational requirements in data intensive environments originate from op-

erations such as query processing, applying transformations to data and processing

data for analysis. CDNs are exclusively data-oriented environments with a client ac-

cessing data from remote nodes and processing it at its own site. While current P2P

content sharing networks have no processing of the data, it would be possible to inte-

grate such a capability in the future. Computation within DDBs involves transaction

processing which can be conducted in two ways: the requested data is transmitted to

the originating site of the transaction and the transaction is processed at that site, or

the transaction is distributed among the different nodes which have the data. High

volumes of transactions can cause heavy computational load within DDBs and there

are a variety of optimization techniques to deal with load balancing in parallel and

distributed databases.

Chapter 2: Background and Related Work 49

Data grids have heavy computational requirements that are caused by workloads

often involving extensive analysis of datasets. Many operations in data grids, espe-

cially those involving analysis, can take significant time (measured in many hours

or even days/weeks). This is in contrast to the situation within DDBs where the

turnaround time of requests is short and for applications such as OLTP (On Line

Transaction Processing), commonly measured in milliseconds. High performance

computing sites, that generally constitute existing data grids, are shared facilities

and are oversubscribed most of the time. Therefore, application execution within

data grids has to take into account the time to be spent in queues at these sites as

well.

f) Autonomy deals with the degree of independence allowed to different nodes in

a network. However, there can be different types and different levels of autonomy

provided [SL90]. Access autonomy allows a site or a node to decide whether to grant

access to a user or another node in the network. Operational autonomy refers to the

ability of a node to conduct its own operations without being overridden by external

operations of the network. Participation autonomy implies that a node has the ability

to decide the proportion of resources it donates to the network and the time it wants

to be connected or disconnected from the network. Data grid nodes support all three

kinds of autonomy to their fullest extent. While nodes in a P2P network do not

have fine-grained access controls against users, they have maximum independence in

deciding how much share of resources they will contribute to the network. CDNs

are dedicated networks and so, individual nodes have no autonomy at all. Tightly

coupled databases retain all control over the individual sites whereas multi-database

50 Chapter 2: Background and Related Work

systems retain control over local operations.

g) Mobile data replication is addressed differently than in a data grid. Due to

frequent disconnections and low battery power, the mobile-clients cache frequently

accessed data items. The data items in a mobile environment are typically rather

small in size whereas the file size in a grid is normally large, on the magnitude of

multiple GBs or more. Therefore, caching frequently accessed data items needs a huge

amount of space making caching many data items difficult at the client site. In a grid,

users submit jobs which in turn request a number of files to run the job. Moreover,

the grid environment is usually based on network stability and high transmission

bandwidth. These two requirements conflict with the key characteristics found in

mobile environments [LS97]; so results from this research are normally not directly

applicable to data grids.

2.5 Replica Placement Strategies in Data Grids

Most existing replica placement algorithms for data grids focus on one of two

types of objective functions for placing replicas. The first type of replica placement

strategy looks towards decreasing the data access latency and the network bandwidth

consumption. The other type of replica placement strategy focuses on how to improve

system reliability and availability. A combination of strategies is, of course, also

possible. Further, other criteria might also be envisioned.

Chapter 2: Background and Related Work 51

2.5.1 Algorithms Focused on Access Latency and Bandwidth

Ranganathan and Foster [RF01b; RF01a] present and evaluate different replica-

tion strategies for a hierarchical data grid architecture. These strategies are defined

depending on when, where, and how replicas are created and destroyed in a hierarchi-

cally structured grid environment. They assess six different replication strategies: 1)

No Replication: only the root node holds files (the base case for comparison); 2) Best

Client: a replica is created for the client who accesses the file the most; 3) Cascading:

a replica is created somewhere on the path from the root node to the best client;

4) Plain Caching: a local copy is stored at clients upon initial request; 5) Caching

plus Cascading: combines plain caching and cascading; 6) Fast Spread: file copies

are stored at each node on the path from the root to the best client. They show

that the cascading strategy reduces response time by 30% over plain caching when

data access patterns contain both temporal and geographical locality. When access

patterns contain some locality, Fast Spread saves significant bandwidth over other

strategies. These replication algorithms assume that popular files at one site are also

popular at others. The client site counts hops for each site that holds replicas, and

the model selects the site that is the least number of hops from the requesting client;

but it does not consider current network bandwidth and also limits the model to a

hierarchical grid. The replication algorithms described can be refined so that time

interval and threshold of replication change automatically based on user behaviour

such as file access rates from users.

Lamehamedi et al. [LSsD02; LSSD03] study replication strategies where the replica

sites can be arranged in different topologies such as a ring, tree or hybrid. Each site

52 Chapter 2: Background and Related Work

or node maintains an index of the replicas it hosts and the other locations that it

knows about that host replicas of the same files. Replication decisions are made

based on a cost model that evaluates both the data access costs and performance

gains of creating each replica. The estimation of costs and gains is based on factors

such as run-time accumulated read/write statistics, response time, bandwidth, and

replica size. Their replication strategy places a replica at a site that minimises the

total access costs including both read and write costs for the datasets. The write

cost considers the cost of updating all the replicas after a write at one of the replicas.

They show, via simulation, that the best results are achieved when the replication

process is carried out closest to the users.

Bell et al. [BCCS+03] present a file replication strategy based on an economic

model that optimises the selection of sites for creating replicas. Replication is trig-

gered based on the number of requests received for a dataset. Access mediators receive

these requests and start auctions to determine the cheapest replicas. A Storage Bro-

ker (SB) participates in these auctions by offering a “price” at which it will “sell”

access to a replica if it is available. If the replica is not available at the local storage

site, then the broker starts an auction to replicate the requested file onto its storage

if it determines that having the dataset is economically feasible. Other SBs then bid

with the lowest prices that they can offer for the file. The lowest bidder wins the

auction but is paid the amount bid by the second-lowest bidder.

In subsequent research, Bell et al. [BCC+03] describe the design and implemen-

tation of a grid simulator, OptorSim which allows the analysis of various replication

algorithms. The goal is to evaluate the impact of the choice of an algorithm on the

Chapter 2: Background and Related Work 53

throughput of typical grid jobs. Various algorithms were compared to a novel algo-

rithm [BCCS+03] based on an economic model. The comparison was based on several

grid scenarios with various work loads. The results obtained from OptorSim suggest

that the economic model performs at least as well as traditional methods. However,

the economic model shows marked performance improvements over other algorithms

when data access patterns are sequential.

The OptorSim simulator was constructed assuming that the grid consists of sev-

eral sites, each of which may provide computational and data-storage resources for

submitted jobs. Each site consists of zero or more Computing Elements (CEs) and

zero or more Storage Elements (SEs). Computing Elements run jobs, which use the

data in files stored on Storage Elements. A Resource Broker controls the scheduling

of jobs to Computing Elements. Sites without Storage or Computing Elements act

as network routing nodes.

Park et al. [PKKY03] propose a dynamic replication strategy, called BHR (Band-

width Hierarchy based Replication), to reduce data access time by avoiding network

congestion in a data grid network. The BHR algorithm exploits ‘network-level local-

ity’, so that any required file is located at the site that has the broadest bandwidth

to the site of the job‘s execution. In data grids, some sites may be located within a

region where sites are linked closely. For instance, a country or province/state might

constitute a network region. Network bandwidth between sites within a region will be

broader than bandwidth between sites across regions. That is, a hierarchy of network

bandwidth may appear in the Internet. If the required file is located in the same

region, less time will be consumed to fetch the file. Thus, the benefit of network-level

54 Chapter 2: Background and Related Work

locality can be exploited. The BHR strategy reduces data access time by maximizing

this network-level locality.

Rahman et al. [RBA05b] present a replica placement algorithm that considers both

the current state of the network and available file requests. Their replication strategies

are mainly based on “utility” and “risk”. Before placing a replica at a site, expected

utility and risk index are calculated for each site by considering current network load

and user requests. A replication site is then chosen by optimizing expected utility or

risk indexes. Utility is used by their proposed algorithm to select a candidate site to

host a replica by assuming that future requests and current load will follow current

loads and user requests. The algorithm uses the risk index to expose sites far from all

other sites and assumes a worst case scenario whereby future requests will primarily

originate from that distant site thereby attempting to provide good access throughout

the network. One major drawback of these strategies is that the algorithms select

only one site in each simulation interval and place a replica there. Grid environments

can be highly dynamic and thus there might be a sudden burst of requests such that

a replica needs to be placed at multiple sites simultaneously to quickly satisfy the

large spike of requests.

Two dynamic replication mechanisms [TLYT05] are proposed for a multi-tier

architecture for data grids: Simple Bottom-Up (SBU) and Aggregate Bottom-Up

(ABU). The SBU algorithm replicates any data file that exceeds a pre-defined thresh-

old of access rate as close as possible to the accessing clients. The main shortcoming

of SBU is the lack of consideration of the relationship to historical access patterns.

To address this problem, ABU was designed which takes into account access histories

Chapter 2: Background and Related Work 55

of files used by sibling nodes and aggregates the access record of similar files so that

those frequently accessed files are replicated first. This process is repeated until the

root is reached. An example of a data file access history and the network topology

of the related nodes is shown in Figure 2.6. The history indicates that node N1 has

accessed file A five times, while N2 and N3 have accessed B four and three times,

respectively. Nodes N1, N2 and N3 are siblings and their parent node is P1.

nodeID fileID numOfAccesses

N1 A 5
N2 B 4
N3 B 3

P1

N1 N2 N3

Figure 2.6: An example of the history and the node relations

If we assume that the SBU algorithm is adopted and the given threshold is five,

the last two records in the history will be skipped and only the first record will be

processed. The result is that file A will be replicated in node P1 if it has enough

space, and file B will not be replicated. Considering this example it is clear that the

decision of SBU is not optimal, because from the perspective of the whole system, file

B, which is accessed seven times by nodes N2 and N3, is more popular than A, which

is only accessed five times. Hence, the better solution is to replicate file B to P1

first, then replicate file A to P1 if it still has enough space available. The Aggregate

Bottom-Up (ABU) algorithm works in a similar fashion. While access latency can

be improved significantly, significant storage space may be needed. Storage space

utilization and access latency must be traded off against each other.

56 Chapter 2: Background and Related Work

Rahman et al. [RBA05a] propose a multi-objective approach to address the replica

placement problem in data grid systems. A grid environment is highly dynamic, so

predicting user requests and network load, a-priori, can be difficult. Only considering

a single objective, variations in user requests and network load will have larger impacts

on system performance. Rahman et al. use two models: the p-median and p-center

models [Hak64], for selecting the candidate sites at which to host replicas. The

p median model places replicas at sites that optimize the request-weighted average

response time (which is the time required to transfer a file from the nearest replication

site). The response time is zero if a local copy exists. The request-weighted response

time is calculated by multiplying the number of requests at a particular site by the

response time for that site. The overall average is calculated by averaging the request

weighted response times for all sites. The p-center model selects candidate sites to

host replicas by minimizing the maximum response time.

2.5.2 Algorithms Focused on Reliability and Availability

Once bandwidth and computing capacity become relatively cheap, data access

time can decrease dramatically. How to improve the system reliability and availabil-

ity then becomes the focal point for replication algorithms. Lei and Vrbsky [LV06]

propose a replica placement strategy to improve availability when storage resources

are limited without increasing access time.

To better express system data availability, Lei and Vrbsky introduce two new mea-

sures: the file missing rate and the bytes missing rate. The File Missing Rate (FMR)

represents the number of files potentially unavailable out of all the files requested

Chapter 2: Background and Related Work 57

by all the jobs. The Bytes Missing Rate (BMR) represents the number of bytes po-

tentially unavailable out of the total number of bytes requested by all jobs. Their

replication strategy is aimed at minimizing the FMR and BMR. To do this, their

proposed strategy makes the replica and placement decisions based on the benefits

received from replicating files in the long term. If a requested file is not at a site, it is

replicated at the site if there is enough storage space. If there is not enough free space

to store the replica, an existing file must be replaced. Their replication algorithm can

be enhanced by differentiating between the FMR and BMR in the grid.

Ranganathan et al. [RIF02] present a dynamic replication strategy that creates

copies based on trade-offs between the cost and the future benefits of creating a

replica. Their strategy is designed for peer-to-peer environments where there is a

high-degree of unreliability and hence, considers the minimum number of replicas

that might be required given the probability of a node being up. In their approach,

peers create replicas automatically in a decentralized fashion, as required to meet

availability goals. The aim of the framework is to maintain a threshold level of

availability at all times.

Each peer in the system possesses a model of the peer-to-peer storage system that

it can use to determine how many replicas of any file are needed to maintain the de-

sired availability. Each peer applies this model to the (necessarily incomplete and/or

inaccurate) information it has about the system and replication status of its files to

determine if, when, and where it thinks new replicas should be created. The result is

a completely decentralized system that can maintain performance guarantees. These

advantages come at the price of accuracy since nodes make decisions based on par-

58 Chapter 2: Background and Related Work

tial information, which sometimes leads to unnecessary replication. Simulation results

show that the redundancy associated with distributed authority is more evident when

nodes are highly unreliable.

An analytical model for determining the optimal number of replica servers to guar-

antee a specific overall reliability given unreliable system components is presented by

Schintke and Reinefeld [SR03]. Two views are identified: the requester who requires

a guaranteed availability of the data (local view), and the administrator who wants

to know how many replicas are needed and how much disk space they would oc-

cupy in the overall system (global view). Their model captures the characteristics of

peer-to-peer-like environments as well as that of grid systems.

Abawajy [Aba04] focuses on the issue of strategic replica placement with the

objectives of increased data availability and improved response time while distributing

load equally among replica servers. Abawajy proposes a replica placement approach

called Proportional Share Replication (PSR). The main idea underlying the PSR

policy is that each file replica should serve an approximately equal number of requests

in the system. The objective is to place the replicas on a set of sites in such a way

that file access parallelism is increased while the access costs are decreased. Abawajy

argues that no replication approach balances the load of data requests within the

system both at the network and host levels. Simulation results show that his file

replication strategy improves the performance of data access but the gains depend on

several factors including where the file replicas are located, burstiness of the request

arrivals, packet losses and file sizes.

To use distributed replicas efficiently and to improve the reliability of data trans-

Chapter 2: Background and Related Work 59

fer, Wang et al. [WHCW06] propose an efficient multi-source data transfer algorithm

for data replication, whereby a data replica can be assembled in parallel from multi-

ple distributed data sources in a fashion that adapts to various network bandwidths.

The goal is to minimize the data transfer time by scheduling sub-transfers among all

replica sites. All replica sites must deliver their source data continuously to max-

imize their aggregated bandwidth, and all sub-transfers of data should, ideally, be

fully overlapped throughout the replication. Experimental results show that their

algorithm can obtain more aggregated bandwidth, reduce connection overheads, and

achieve superior network load balance.

2.5.3 Algorithms Focusing on QoS Requirements

Although a substantial amount of work has been done on data replication in grid

systems, most of it has focused on infrastructure for replication and mechanisms

for creating and deleting replicas. However, to obtain the maximum benefit from

replication, a strategic placement of replicas considering many factors is essential.

Notably, different sites may have different service quality requirements. Therefore,

quality of service is an important additional factor in overall system performance.

An early effort by Tang and Xu [TX05] describes a QoS-aware replica placement

problem to cope with the QoS issues. Every edge uses the distance between the two

end points as a cost function for quality assurance. A request must be answered by

a server that is within the distance specified by the request. Every request knows

the nearest server that has a replica and the request takes the shortest path to reach

the server. Their goal has been to find a replica placement that satisfies all requests

60 Chapter 2: Background and Related Work

without violating any range constraint, and which minimizes the update and storage

cost at the same time. They show that their QoS-aware replica placement problem

is NP-Complete for general graphs, and provide two heuristic algorithms, called l-

Greedy-Insert and l-Greedy-Delete, for general graphs, and a dynamic programming

solution for tree topologies.

l-Greedy-Insert starts with an empty replication set, R. In the first step, l+1

nodes with maximum Normalized Benefits (NB) are selected and added into R. NB

is defined as the increased number of satisfied requests divided by the increased repli-

cation cost due to the selection. In each subsequent step, l-Greedy-Insert examines

all possibilities of replacing some already assigned replicas with (l+1) replicas. Thus,

each step exactly finds one more replica and the process continues until all QoS

requirements are fulfilled. l-Greedy-Delete works the opposite way from l-Greedy-

Insert. It begins with having a replica in every node, then it deletes replicas whose

deletion maximizes the replication cost reduction until there is no replica that can be

deleted without violating QoS requirements. There is a trade-off between the time

complexity and the quality of solution on l value. Although the time complexity

is a polynomial function of the number of nodes, the execution times of these two

algorithms are very slow in practice even when l = 1.

Jeon et al. [JGN06] propose a simpler formulation of the QoS-aware replica place-

ment problem for arbitrary overlay networks. Their goal is to minimize the number

of replicas in the system. They did not consider update cost and assumed each server

has identical storage cost. They present simple centralized as well as distributed so-

lutions to the problem and provide a proof of the problem’s NP-Completeness. Their

Chapter 2: Background and Related Work 61

centralized algorithm can be described as follows. Let A be a distance matrix, where

each entry (i, j) denotes the shortest path distance between node i and j. B is an

equal size matrix as A. Every entry in row i in B has identical value that represent

the quality requirement of node i. Then each entry of A − B is examined and if it

is less than or equal to 0, set the entry to 1, otherwise, set the entry to 0. Let the

resulting 0-1 matrix be called C. Column j in C represents which nodes are covered

by node j. In each step, the column j with the most rows not covered so far will be

selected. The node j will then be added into the replica strategy. This process will

continue until all rows in the matrix have been covered.

In Jeon et al.’s first distributed solution, called Core-selection, each node contin-

uously monitors whether there is at least one replica either at itself or at one of its

neighbor nodes which is reachable within its QoS constraint. If false, this node should

either fetch a replica, or it should choose a neighbor node with maximum in-degree

for fetching the replica. This approach tries to maximize the number of nodes that

can access this new replica. Their other distributed algorithm, called TTL (Time to

Live)-based method, a node decides when to create a replica at itself when future

requests might come to itself from a different node. In this approach, every node

containing a replica maintains a depending-on list to indicate the nodes relying on

it for accessing the required data. Any non-replica node periodically creates a QoS

advertising message, called QoS-advert that contains its QoS deadline value, δ, and

the depending-on list. The QoS-advert is then broadcast to each of its immediate

neighbors connected by a link with a delay smaller than δ. Each received QoS-advert

is re-broadcast by the receiving node, but only if the QoS value (δ) in the QoS-advert

62 Chapter 2: Background and Related Work

message is greater than or equal to the delay on the outgoing link.

When a node has sent out a QoS-advert with a non-empty depending-on field, it

waits for the node specified therein to send a reply. If no such reply is received (deter-

mined by a timeout), another QoS-advert is sent immediately with the depending-on

field empty. When a node has sent out a QoS-advert with an empty depending-on

field, it waits to receive replies, makes a decision about whom to depend on, and

sends out a QoS-advert with the depending-on field set.

Wang et al. [WLW06] propose another solution called, Greedy-Cover, with the

concept of cover set using the same system model as [TX05]. Again this is a centralized

algorithm and the heuristic information is the normalized benefit which has the same

meaning as described. The algorithm starts by finding the cover set of every server in

the network. The cover set of a node, u is the set of other nodes that are within the

QoS requirement from u. Then the algorithm identifies and deletes super cover sets

(that contain some other cover set) in the network. In each subsequent step, Greedy-

Cover chooses the smallest cover set from the sets of cover sets, examines every node

in the set, and puts a replica on the node with the highest normalized benefit. If

the newly placed replica satisfies other cover sets, these cover sets are also removed.

This process continues until all replica sets are removed. Experimental results show

that Greedy-Cover efficiently finds near-optimal solutions and is more scalable than

l-Greedy-Insert and l-Greedy-Delete. However, the authors did not consider any

workload capacity constraint on the replica servers or link capacity constraints.

A similar instance of the problem has been studied by Lin et al. [LLW06], who

describe a three-fold objective in a hierarchical data grid model. First, the replicas

Chapter 2: Background and Related Work 63

should be placed in server locations so that the workload on each server is balanced.

Another important issue is choosing the optimal number of replicas when the maxi-

mum workload capacity for each replica server is known. They also consider the issue

of service locality. Each user may specify the minimum distance he will accept to the

nearest data server. This serves as a locality assurance that users may specify, and

the system must make sure that within the specified range there is a server to answer

any file request. Lin et al. devise efficient dynamic programming algorithms that

find optimal solutions for the placement problems described above. However, they

did not consider any replication cost model in their solution. Also, the link capacities

are not bounded. In subsequent work [WLL08], Wu et al. evaluate the effectiveness

of their algorithms by comparing them with a modified affinity replica placement

heuristic algorithm [Aba04] and show that their algorithms consistently outperform

the heuristic algorithm both in terms of minimum number of replicas and the actual

data transmission time.

In a recent study, Cheng et al. extend the system model in [CWL09] and propose

two heuristic algorithms, called, greedy remove and greedy add to approximate the

optimal solution. They study the QoS-aware replica placement problem for general

graphs, which in addition to storage and update cost, also takes access cost of replicas

into account. They assume that the workload capacity of a replica server is bounded.

The goal is to make sure that each request will be serviced by a replica server within

its quality requirement and without violating the capacity limits of the replica server.

The algorithm greedy remove starts with having a replica on every server. This

replication strategy is feasible since every server can serve itself locally, and thus any

64 Chapter 2: Background and Related Work

QoS constraint is satisfied. Therefore, the service set (i.e. the set of servers receiving

services) of each server contains only itself. Greedy remove then repeatedly adjusts

the service sets of a pair of replica servers and tries to remove replicas to reduce

the replication cost. While removing replicas, the algorithm must simultaneously

maintain the feasibility of the replication strategy.

The greedy add algorithm works the opposite way as greedy remove does. The

algorithm begins with an empty replica server set R, and adds replicas to R one at a

time. The replication process completes in two stages. In the first stage, greedy add

repeatedly adds the replicas into R until the replication strategy is feasible. In the

second stage, replicas are added into the replica server set R until it is impossible to

reduce the replication cost.

2.5.4 Summary of Replica Placement Algorithms

In this section, I summarize current and past research on different replica place-

ment techniques for data grid environments. Several important factors such as grid

topology, data access patterns, network traffic conditions, and so on are taken into

account when choosing a replica placement strategy. In the presence of diverse and

varying grid characteristics it is difficult to create a common ground for comparison

of different strategies. To gain insight into the effectiveness of different replication

strategies, we discuss their usability by considering metrics including access latency,

bandwidth consumption, QoS requirements imposed by data requests, and server

work load.

Access Latency : This is the time that elapses from when a node sends a request for

Chapter 2: Background and Related Work 65

a file until it receives the complete file. If a local copy of the file exists, the response

time is assumed to be zero.

Bandwidth Consumption: This includes the bandwidth consumed for data transfers

occurred when a node requests a file and when a server creates a replica at another

node.

QoS Requirements : The QoS requirement can be any function that represents, for

example, the number of hops between the user and the replica server, the access

latency between them, or a combination of things. For example, each user may

specify a maximum distance allowable to the nearest replica server. The system must

ensure that a replica server exists to answer all user requests.

Server Work Load : This is the amount of work (measured in terms of the number of

requests served) done by the servers. Ideally, the replicas should be placed so that

the workload on each server is balanced.

We start with the initial work [RF01b] on replication strategies proposed for hier-

archical data grids. Among these strategies, Fast Spread shows relatively consistent

performance and is best both in terms of access latency and bandwidth consump-

tion given random access patterns. The disadvantage is that it has high storage

requirements. The entire storage space at each tier is fully utilized by Fast-Spread.

If, however, there is sufficient locality in the access patterns, Cascading would work

better than the others in terms of both access latency and bandwidth consumption.

The Best Client algorithm is naive and illustrates the worst case performance among

those presented in [RF01b].

An improvement to the Cascading technique is the Proportional Share Replica

66 Chapter 2: Background and Related Work

policy [Aba04]. The method is a heuristic one that places replicas at “optimal”

locations assuming that the number of sites and the total number of replicas to be

distributed are already known. Firstly, an ideal load distribution is calculated and

then replicas are placed on candidate sites that can service replica requests slightly

greater than or equal to that ideal load. This technique was evaluated based on

mean response time (mean access latency). Simulation results show that it performs

better than the cascading technique with increased availability of data and considers

load sharing among replica servers. Unfortunately, the approach is inflexible once

placement decisions have been made and thus is unrealistic for most scenarios.

With the aim of improving the performance of data access given varying work-

loads, dynamic replication algorithms were presented by Tang et al. [TLYT05]. In

their paper, two dynamic replication algorithms, Simple Bottom-Up (SBU) and Ag-

gregate Bottom-Up (ABU), were proposed for a multi-tier data grid. Their simulation

results show that both algorithms can reduce the average response time of data access

significantly compared to static replication methods. ABU can achieve noteworthy

performance improvements for all access patterns even if the available storage capac-

ity of the replication server is relatively small. Comparing the two algorithms to Fast

Spread, the dynamic replication strategy ABU proves to be superior. As for SBU,

although the average response time of Fast Spread [RF01b] is better in most cases,

Fast Spread’s replication frequency may be too high to be useful in the real world.

A multi-objective approach to dynamic replica placement exploiting operations

research techniques was proposed in [RBA05a]. In this method, replica placement

decisions are made considering both the current network status and data request

Chapter 2: Background and Related Work 67

patterns. Dynamic maintainability is achieved by considering replica relocation cost.

Decisions to relocate are made when a performance metric degrades significantly in

a specific number of recent time periods. Their technique was evaluated in terms of

request-weighted average response time, but the performance results were not com-

pared to any of the other existing replication techniques.

The BHR [PKKY03] dynamic replication strategy focuses on ‘network-level local-

ity’ by trying to place the targeted file at a site that has broad bandwidth to the site

of job execution. The BHR strategy was evaluated using the OptorSim [BCC+03]

simulator in terms of job execution time (which includes access latency) with varying

bandwidths and storage capacities. The performance of BHR was compared with ag-

gressive replication strategies like LRU Delete and Delete Oldest [BCC+03]. In LRU

Delete, the least recently accessed file is chosen for deletion whenever replacement

takes place. Delete Oldest is another replacement-based approach which deletes the

oldest file first when a newly required replica is received and replacement is necessary.

The simulation results show that BHR can outperform LRU Delete and Delete Oldest

in terms of data access time especially when grid sites have relatively small storage

capacity and a clear hierarchy of bandwidths.

Lin et al. [LLW06] is one of the relatively few replication efforts that focuses

on overall grid performance. Their proposed placement algorithm, targeted for a

tree-based network model, finds optimal locations for replicas so that the workload

among the replicas is balanced. They also propose a new algorithm to determine

the minimum number of replicas required when the maximum workload capacity of

each replica server is known. All their algorithms ensure that QoS requirements from

68 Chapter 2: Background and Related Work

Authors
(Grid
Model)

Replication
Technique

Replica Placement Method Comments: Pros (+) and Cons (-) Performance Metric

Average system performance based techniques

Best Client

A replica is created at a node
that accesses the file the most

- Naïve and shows worst case
performance
- Not suitable for Grid

Cascading

Replica drips down to lower tiers
if number of file requests
exceeds threshold

+ Works better for sufficient degree of
locality in access patterns
- Worse for random access pattern

Caching A replica is stored at the client
locally

- Relatively high response time

Ranganathan
and Foster
(2001)
(Tree)

Fast Spread Replicas are stored at each node
on the path to the client

+ Relatively consistent performance
+ Best for random access pattern
- High storage requirement

Average response
time and bandwidth
conservation

Abawajy
(2004)
(Tree)

Proportional
Share
Replica

Replicas are distributed based on
a calculated ideal workload

+ Performs better than the cascading
technique
+ Load sharing among replica servers
- The approach is inflexible once
placement decisions made

Mean response time

Tang et al.
(2005)
(Tree)

Dynamic
Replication
Algorithms

Simple Bottom Up (SBU),
Aggregate Bottom Up (ABU)

+ ABU proves to be superior to Fast
Spread
- Fast Spread performs better than SBU

Response time,
bandwidth cost,
replication frequency

Rahman et
al. (2005)
(Tree)

Multi-
objective
Approach

Solved as p-facility problem to
decide on sites for replica
placement

+ Considers current network status and
data access patterns
+ Dynamic maintainability through
replica relocation
- Results are not compared to any existing
replication technique

Request-weighted
average response
time

Park et al.
(2003)
(Tree)

Bandwidth
Hierarchy
based
Replication

Exploits the benefit of ‘network
level locality’ to place replicas

+ Performs better than aggressive
replication strategies like LRU Delete,
Delete Oldest
- Suitable only for grid sites with a clear
hierarchy of bandwidth

Job execution time
(includes access
latency)

Lei and
Vrbsky
(2006)
(Tree)

Replication
based on
data missing
rate

Uses two data availability
metrics, File Missing Rate
(FMR) and Byte Missing Rate
(BMR)

+ Aims at improving data availability
- Can be enhanced by differentiating
between FMR and BMR when file size
varies

Replica availability
and job execution
time

Ranganathan
et al. (2002)
(P2P)

Model-
driven P2P
Replication

Creates replicas based on trade-
offs between cost and benefits,
maintain a minimum no. of
replicas all the time

+ No single point of failure
- Possibility of unnecessary replication
due to decisions based on partial
information

Replica availability

Lamehamedi
et al. (2002)
(Hybrid)

Hybrid
Replica
Connection
Service

Based on a cost model that
evaluates access costs and
performance gains of creating
and placing replicas

+ Performance gains increase with the
size of data
- Results based on synthetic workload;
real user access patterns could be used

Response time

QoS-aware techniques

Lin et al.
(2006)
(Tree)

Replica
Placement
with
Locality
Assurance

Finds optimal locations for
replicas so that workload among
replicas are balanced, finds
minimum no. of replicas given
maximum server workload

+ Ensures QoS requirement from the
users
+ Measures server workload
- Doesn’t consider any replication cost
model or link capacities
- Other network topologies should be
considered instead of only tree

Number of replicas,
QoS from user and
system perspectives

Wang et al.
(2006)
(General
 Graph)

Greedy-
Cover

A heuristic algorithm to position
replicas based on a calculated
normalized benefit

+ Satisfy quality requirements from users
+ Considers general network graphs
- Doesn’t consider workload capacity of
servers or link capacities

QoS from users

Cheng et al.
(2009)
(General
 Graph)

Greedy
remove and
greedy add

Two heuristic algorithms to
approximate optimal solution
based on incremental addition or
deletion of replicas

+ Satisfy quality requirements from users
+ Considers general network graphs
+ Consider workload capacity of servers
- Does not consider link capacities

QoS from user and
system perspectives

Figure 2.7: Summary of replica placement techniques in data grids

Chapter 2: Background and Related Work 69

the users are satisfied. However, the algorithms did not consider any replication cost

model and also the link capacities are not bounded. Wang et al. [WLW06] address

the replica placement problem when the underlying network is a general graph, in-

stead of a tree. Their experimental results indicate that their proposed algorithm

efficiently finds near-optimal solutions. However, their solution does not take into

account workload capacity of replica servers or bandwidth capacity constraints on

the communication links.

In a recent work, Cheng et al. [CWL09] study the QoS-aware replica placement

problem for general graphs and propose two heuristic algorithms, called greedy remove

and greedy add to approximate the optimal solution. In addition to storage and

update cost, the replication model also takes access cost of replicas into account, and

assumes that the workload capacity of a replica server is bounded. Simulation results

demonstrate that both the algorithms find a near-optimal solution effectively and

efficiently and can adapt to various parallel and distributed environments.

Figure 2.7 summarizes the major research work done on replica placement in data

grid environments.

Chapter 3

Motivation and Problem

Description

The motivation for grids was initially driven by large-scale, resource intensive ap-

plications that require more resources than available in a single computing unit, be

it a workstation, a supercomputer, or even a cluster within a single administrative

domain. The emerging trend in scientific applications in many areas such as high

energy physics and large scale simulations suggests that these applications process

and produce large amounts of data. The resulting data needs, in turn, to be stored

for further analysis and shared with collaborating researchers within scientific com-

munities that are often spread around the world. With increasingly levels of global

collaboration between researchers, data storage and collection centers are spreading

around the world.

Experiments in high energy particle physics such as those running at the European

Center for Nuclear Research (CERN) serve as good example. The Compact Muon

70

Chapter 3: Motivation and Problem Description 71

Solenoid (CMS) detector and ATLAS [Hol01; eur01; gri01a] experiment designed

to study particle physics, produce and collect massive amounts of data and involve

thousands of researchers from around the world. The goal of these experiments is to

find rare events that are produced from the decay of massive new particles. Similarly,

in Astronomy the Sloan Digital Sky Survey (SDSS) is an ambitious experiment with

the goal of producing a detailed image of a quarter of the sky and determining the

positions and brightness of more than 100 million celestial objects [sds00]. These

experiments and scenarios emphasize the challenges introduced by combining the

management of large amounts of data and computing resources in grid environments.

Massive amounts of data are currently being produced by the aforementioned research

for scientific analysis; some experiments indeed produce over a petabyte of data in

one year. To effectively and efficiently address these challenges, a framework that

enables transparent access to and sharing of widely distributed large data sets and

computing resources is needed.

A general design framework has been proposed for a data grid architecture by Fos-

ter et al. in [KF98]. In data grids, data and data management utilities and resources

are treated as the most important entities. In addition to accessing large amounts of

data, most collaborative applications running across data grid environments require

simultaneous and coordinated access to extensive computational power to process

and analyze this data. Ensuring efficient and reliable access to such huge and widely

distributed data is a major challenge to grid designers. The major barrier to fast data

access in a grid is the high latency of communication in the WANs that underlie many

grid systems, which impacts scalability and fault tolerance of applications running on

72 Chapter 3: Motivation and Problem Description

the grid. To address these problems and enhance performance, replication has been

widely used to place copies of data sets across different domains in the grid.

Clearly a good replication strategy is needed to anticipate and/or analyze the

users’ requests for data and to place subsets of the data and replicas at strategic

locations. Since grids are heterogeneous and dynamic environments consisting of

computing, storage and network resources with varying capability and availability,

any replication strategy that is based on only static resource information would lead

to inefficient placement and degraded application performance. Thus, grid replica

placement strategies should incorporate dynamic approaches that adapt to changing

resource conditions in grids. Such a replication strategy should also be able to create

an appropriate number of replicas in suitable locations. The denser the distribution

of replicas is, the shorter the distance between a client site and the closest replica.

However, as noted earlier, maintaining multiple copies of data in grid systems is

expensive, and therefore, the number of replicas should be bounded. Clearly, mini-

mizing the access time for data requests and reducing the cost of replication are two

conflicting goals. Thus, finding a suitable trade-off between them is necessary.

The existing replica placement strategies for grid environments studied in the lit-

erature are generally centralized. In grids where operation control is decentralized and

resources are under the control of their own local administrative domains, placing the

replicas of an object through a centralized algorithm is undesirable. The existing cen-

tralized replica placement strategies become unattractive as the number of users and

resource providers increase in the system. Further, existing grid systems are expected

to provide sufficient support to a large community of users as originally intended by

Chapter 3: Motivation and Problem Description 73

the designers and developers of these systems. This motivates distributed replica

placement algorithms for large-scale grid environments. Moreover, when dealing with

communication networks distributed algorithms are more desirable.

Although there has been much work done on replica placement, little has focused

on quality of service (QoS) issues. Most of the existing work focuses only on the

average system performance, for example, minimizing the total access cost, or the

total communication cost, etc. Although such factors are important to overall system

performance, under some circumstances, they cannot meet individual user or system

requirements adequately. Grid computing infrastructure usually consists of various

types of resources and the performance characteristics of these resources can be quite

diverse. Moreover, different sites may have different service quality requirements

according to the system performance of the sites. Therefore, site/user specific quality

of service is an important factor in addition to overall system performance.

The average number of requests serviced by a server node directly affects the

average response time that the nodes covered by the server will observe due to queuing

delays and, possibly, network congestion. Further, most of the earlier research efforts

only consider user requests for replica placement and ignore network latencies. While

network bandwidth plays a vital role in large file transfers, substantial transfer time

can be saved if we place file replicas at neighboring sites even with limited bandwidth

in such a way that network congestion can be avoided. Thus, taking into account

limited link capacity in replica placement is also an important consideration. All

these requirements are examples of different types of QoS issues.

74 Chapter 3: Motivation and Problem Description

3.1 Problem Description

Data grid infrastructures facilitate the execution of data-intensive computing jobs

in a variety of application areas. An end user/client (scientist, researcher, organiza-

tion, etc.) who wishes to solve a data-intensive problem will typically use a data grid

environment by submitting requests for the data that is needed by their application

for execution. As discussed earlier, a possible problem that may arise during the

course of job execution is the data retrieval time due to high latency of communica-

tion in the underlying grid system. One way to deal with this problem is to place

replicas close to the client. A challenge in doing this is to ensure that the data read

performance from the perspective of the clients is increased while minimizing the

overall replica creation cost (including storage and access/bandwidth costs). This is

the focus of my thesis research, as applied to data grid environments.

The specific replica placement problem I consider deals with hierarchical data grid

structures as is common in current data grid systems [BCCS+03; LCG01; RF01b;

RF01a] and assumes a limit on storage size at the replica servers in the grid. Thus,

the challenging part of the problem entails identifying appropriate files for replication

at appropriate locations (nodes) in the grid aiming to achieve a trade-off between

space utilization and access latency of the files.

In the real world, data access patterns may change over time, so any dynamic repli-

cation strategy must keep track of the system state, particularly, file access histories

to guide the replication by dynamically creating replicas for selective files throughout

the grid. A simple “popularity” measure can be used for this purpose. The popularity

of a file can be represented by its recent access rate by specific clients. The challenge

Chapter 3: Motivation and Problem Description 75

is to track the exact value of access counts to find out which files are popular. A

pre-defined threshold on access counts can be used to determine popularity. If some

files have access counts greater than or equal to the threshold, they will be considered

to be popular. Identifying potential popular files is a key task of the dynamic replica

placement algorithm. Usually, it is assumed that recently popular files will tend to

be accessed more frequently than others in the near future.

Once the popular files have been identified they need to be replicated as close

as possible to those clients that frequently request the corresponding files. To make

replication decisions, the replica placement algorithm needs to be invoked at regular

intervals. The interval should be based on the arrival rate of data access requests, for

example, a shorter interval will be chosen for higher arrival rates because files become

popular in a short period of time due to frequent accesses. Implementing this in

practice, however, requires a careful selection of this threshold and other parameters.

Depending on this selection, a file may not be replicated or may be replicated on all

nodes. This issue is critical to the usefulness of a threshold-based approach. This

suggests an adaptive algorithm that uses data access arrival rate from the client,

available storage capacities of the replica servers, and other factors to dynamically

adjust this threshold and the interval length used for sampling accesses. The replica

servers will, of course, become filled with replicas over time so an efficient replacement

strategy is also needed so that popular files are retained and not displaced when new

files arrive.

As mentioned, the primary goal of the replica placement algorithm is to increase

the data read performance from the client’s perspective by dynamically creating repli-

76 Chapter 3: Motivation and Problem Description

cas for “popular” files. At the same time, from the perspective of the whole system,

efficient use of bandwidth and storage resources must be considered to ensure that

the dynamic replication algorithm does not cause heavy load on the system. We as-

sume that all data are initially located at the root, and a data replica can be placed

in any node other than the root. All the leaves of the grid hierarchy are local sites

where users can issue requests to access their required data. The data “access cost”

is calculated based on accumulated read statistics, network latency (bandwidth), and

replica size. It is expected that data updates will be infrequent in the applications

being considered. However, it is necessary to guarantee that the updates will be

eventually propagated to and that the users will have access to consistent copies of

the data. Thus, to maintain data consistency, the root node issues updates to every

replica server. The communication involved in this update process is captured as an

“update cost”. The number of replicas to be placed will be a trade-off between the

cost of data access by users and the cost of data updates from the root. The problem

that needs to be solved is therefore the construction of replica server sets among the

grid sites that minimizes the total sum of the data access and update costs under

a given traffic pattern (i.e. a recurring pattern of access frequencies from clients for

different files).

The replica placement problem so described can be modelled as a dynamic pro-

gramming problem and its solution can be obtained for large-scale hierarchical data

grids in a distributed fashion. In dynamic programming when designing an algo-

rithm for a hierarchical structure (i.e. a tree), results for some function computed for

children nodes can be combined to produce the result for the parent node. Hence,

Chapter 3: Motivation and Problem Description 77

a distributed replica placement algorithm can be designed for large-scale hierarchi-

cal data grids considering the overhead/cost incurred in placing and maintaining the

replicas.

The issue of quality of service (QoS) also needs to be factored into the replica

placement problem to determine locations of replicas that improve system perfor-

mance and at the same time satisfy the quality requirements both from the user and

system perspectives. Each user in the lowest tier of the data grid hierarchy may have

some QoS requirement on retrieving the requested data. The QoS requirement of each

user can be specified by an upperbound on retrieval cost. The requirement mandates

that all requests generated by the user will be serviced by a server within that bound.

The QoS requirement can be any function that represents, for example, the number of

hops between the user and the replica server, the access latency between, and so on.

Currently, we consider the replica distance as the QoS requirement where each user

may specify a maximum distance allowable to the nearest replica server. The system

must ensure that a replica server exists to answer all user requests. Since the QoS

requirement can be specified by the distance (e.g. number of hops) between the client

and the replica server, this distance constraint can easily be incorporated when the

replication costs for clients are calculated considering various distance possibilities for

the replica servers.

From the system perspective, link and workload capacity constraints should be

added to the replica placement problem while satisfying the quality requirements

specified by the user. Each link in the data grid hierarchy has some capacity constraint

on transferring data down the hierarchy. The bandwidth constraint on each link is

78 Chapter 3: Motivation and Problem Description

specified by an upper bound on link capacity. The constraint mandates that the

amount of data that can pass through the link over a period of time will be limited

within that bound. The replication strategy has to ensure that the user requests are

satisfied while limiting the bandwidth use of each link to its capacity. The bandwidth

constraint associated with different links can be different. If the total amount of

data passing through a link is greater than its capacity constraint, then the link is

congested. Furthermore, it is assumed that the workload capacity of a replica server

is bounded which means a node equipped with a replica can process up to a certain

number of requests per unit of time from the clients of its subtree. The replication

strategy has to ensure that the user requests are satisfied while limiting the workload

of each replica server to its capacity. The workload capacity constraint associated

with different servers can be different. If the total workload that a server services is

greater than its capacity constraint, then the server is overloaded. The goal is to find

a replication strategy with the minimal replication cost that limits the workload of

each server to its capacity and where none of the communication links is congested.

Finally, to properly evaluate the performance of the above mentioned placement

algorithms an extensive assessment designed over a range of parameters is required.

The assessment results will be used to demonstrate how the effectiveness of replica

placement is affected by numerous factors such as grid network characteristics (i.e.

topology, number of nodes, node and link capacities, traffic patterns, etc.), QoS pa-

rameters, and so on.

Chapter 3: Motivation and Problem Description 79

3.2 Positioning the Thesis

From the literature, it’s clear that most of the early work done on data replication

in grid environments has focused on infrastructures for replication and mechanisms

for creating/deleting replicas [RIF02; LSsD02; CSK+05; BCC+02; BCCS+03; DAS04;

SSA+02]. However, to obtain maximum benefits from replication, a strategic place-

ment of replicas is essential. A large part of the work that deals with replica placement

concerns optimizing the average system performance [KDW01; KRW01; TLM+05;

UC04; WM91], for example, to minimize the total access cost, or to minimize the

total communication cost, etc. In addition, to address the resource heterogeneity

and varied user requests, quality of service issue are also considered by a number of

researchers [TX05; JGN06; WLW06; LLW06; CWL09].

The replica placement problem studied in this thesis differs from the previous

work in several ways. First, since a grid environment is highly dynamic, resource

availability, network latency, and users requests may change frequently. My replica

placement algorithms provide adaptivity to these changing characteristics by dynami-

cally adapting the degree of replication based on data access arrival rate and available

storage capacities. Further, unlike earlier work, my algorithms support constraints

on the storage size of the replica servers. Second, a data grid system usually consists

of multiple data servers connected by routers that enable concurrent data transfer

between independent pairs of users and servers. Therefore, in a data grid environ-

ment, the overall performance of the system is affected by the workload capacity of

replica servers and by link capacities. Although it is believed that workload capacity

constraints on replica servers and link capacity constraints are the key optimization

80 Chapter 3: Motivation and Problem Description

criteria for data grid systems, it is also important to consider these two factors and

user quality of service simultaneously. To date, this aspect has not been adequately

addressed in the literature. My solution to the dynamic programming problem sup-

ports multiple QoS parameters both from the user and system perspectives. Each

user/client can specify its own acceptable QoS, in terms of the number of hops to-

wards the root of the hierarchy or access time deadlines to ensure timely retrieval

of the requested data. In addition, from the system perspective, link and workload

capacity constraints can also be added to the problem. Finally, due to decentralized

operation control and resources being under the control of their own local adminis-

trative domains, placing the replicas of an object through a centralized algorithm is

unattractive. This motivates my distributed replica placement algorithm for large-

scale grid environments to ensure improved scalability of the system. The related work

mentioned in the literature (except the model in [JGN06]) only provides a central-

ized solution. My proposed distributed model emphasizes minimizing the replication

cost (update and data access cost) for optimal replica placement while the model

in [JGN06] emphasizes minimizing storage use for overlay networks. Apart from the

differences mentioned above, among the studied QoS-aware replica placement sce-

narios in the literature, the replication cost model in [CWL09] seems closest to my

replication model. However, their heuristic algorithms are targeted for general net-

work graphs and link capacities are not bounded. Also, the replication cost includes

storage cost in addition to update and data access cost.

My proposed model focuses on tree topologies in which the requests can only go

up towards the root. In real-world grid systems, like LCG [LCG01], the requests go

Chapter 3: Motivation and Problem Description 81

from tier-2 to tier-1 sites, then to tier-0 sites if necessary, searching for data. The

grid hierarchy usually reflects the structure of administrative organizations, or the

geographic locality, so the assumption that the requests go up towards the root is

reasonable.

The next chapters describe in detail my contributions towards the research prob-

lem in this thesis by defining a family of related algorithms, starting with a simple

(baseline) popularity based replica placement algorithm which is centralized in na-

ture. This will evolve into a number of distributed replica placement algorithms that

will also be described with added QoS constraints both from the user and system

perspectives.

Chapter 4

Centralized Replica Placement

Recall that the over-arching goal of this thesis is to address the problem of replica

placement in large-scale data grids to improve the performance of data access while

ensuring efficient use of both computational and storage resources. In this chapter, a

centralized “popularity-driven” dynamic replica placement algorithm is proposed for

use in the hierarchically structured data grids. I also propose an adaptive version of

the basic replica placement algorithm which considers both data access arrival rates

from the clients and the storage capacities of the replica servers to select the best

candidate sites at which to place replicas. The algorithms presented in this chapter

are centralized– the replication decisions are made by a single entity in the data grid

system which invokes the algorithms at regular intervals. The performance of the

proposed placement algorithms is evaluated with a set of carefully designed simulation

experiments over a range of data access patterns and replica server capacities and is

compared to a number of other existing replica placement algorithms. The results

constitute a preliminary investigation into the placement problem and has provided

82

Chapter 4: Centralized Replica Placement 83

helpful formation into placement strategies for real data grids.

4.1 Assumed Data Grid Structure

Data on the grid needs to be easily accessible to users regardless of the location

of data. Data access models are formed by community organizations and are affected

by the direction of data flow and users’ access patterns. The location and number

of data sources as well as data size play important roles in shaping the map of the

community sharing access to that data. The scope of this thesis covers scientific data

grids, where a number of researchers from different institutes share their resources

to collaborate on solving scientific problems. The most prevalent data model used in

these settings is the hierarchical model. This model is used in an environment where

there is a single source of data, and that data has then to be distributed to multiple

locations to be shared by a large community of collaborators. This model is shown

in Figure 2.3(b) as described in Section 2.2.2. It shows the data distribution model

for the CERN (LHC) experiments where data is first generated and stored at CERN,

and later copied to different distribution and regional centers. From these centers the

data is then distributed to different labs worldwide to give access to scientists from

around the world. Such hierarchical grid management is frequently found in other

current data grid systems [BCCS+03; LCG01; RF01b; RF01a].

The hierarchical data grid has many advantages. First, it allows hundreds or even

thousands of scientists everywhere to access the resources in a common and efficient

way. Second, the datasets can be distributed to appropriate resources and accessed

by multiple sites. The network bandwidth for access will be used efficiently because

84 Chapter 4: Centralized Replica Placement

Tier 0

Tier 1

Tier 2

Tier 3

rootr

cb

d e f g

h i j k l

R

RR

R- replica of a file

 3 2 1 2 4

3

T

Figure 4.1: An example hierarchical data grid

most of the data transfers will only use local or national network resources, hence

alleviating the workload of international network links. Third, with the support of

grid middleware, the resources located in different centers and even end-users machine

can be utilized to support data-intensive computing. Furthermore, the hierarchical

structure enables flexible and scalable management for datasets and users.

I begin with a detailed discussion of my data grid model before addressing the

placement problem itself. I use a hierarchical structure (i.e. a tree) T as shown in

Figure 4.1 to represent a data grid system. The root of the tree is denoted by r. I

assume that all data are initially located at the root. A data replica can be placed on

any node except the root. To minimize data access time and network load, replicas

must be spread from the root to regional, national, and institutional centers. All the

leaves of the tree are local sites where users can issue requests to access the required

data stored in the data grid system.

Chapter 4: Centralized Replica Placement 85

In such a system, a user at a local site will try to locate a replica locally. If a

replica is not present, the request will go to the parent node to find a replica there.

Generally, a user request goes up the hierarchy and uses the first replica encountered

along the path towards the root. If, after traveling up the path, a replica is not found,

the root will service the request. For example, in the four-tiered hierarchical data grid

in Figure 4.1, the user at node k tries to access a data file required by the job running

on it. The user cannot find the data locally, so the request goes to the parent node

g, where the data is not available either. Finally, the request reaches node c, and is

served there. Each leaf node is associated with a non-negative number which is the

access frequency of a data file of interest by that node during a certain period of time.

The goal of my dynamic replica placement strategy is to place the replicas such

that various objectives (e.g. fast access) can be satisfied. This raises a number of

issues. For example, if we can accurately estimate how frequently a client (leaf node)

accesses a specific data file, where do we place the replicas to improve data read

performance from the client’s perspective. At the same time, from the perspective of

the whole system, efficient use of bandwidth and storage resources must be considered

to ensure that the dynamic replica placement does not cause heavy load on the

system. For example, every file could be replicated at every site if the replica servers

have sufficient storage. However, in reality, this is not possible due to limited storage

capacity of the replica servers. My dynamic replica placement algorithms will aim

to balance the space utilization and access latency trade-off by selectively replicating

files among grid sites.

86 Chapter 4: Centralized Replica Placement

4.2 Basic Popularity Based Replica Placement Al-

gorithm

In this section, I describe my basic popularity-driven dynamic replica placement

strategy, called Popularity Based Replica Placement (PBRP), for hierarchical data

grids. The primary goal of the algorithm is to increase data access performance from

the perspective of the clients by dynamically creating replicas for “popular” files.

As mentioned, in the real world, some files will be more popular than others and

data access patterns may change over time, so any dynamic replication strategy must

keep track of file access histories to decide on when, what and where to replicate.

The “popularity” of a file is determined by its recent access rate by the clients.

Identifying popular files is thus a key task of PBRP. We assume that recently popular

files will tend to be accessed more frequently than others in the near future (i.e. will

continue to be popular). In PBRP, popular data files are identified by analyzing

file access histories. The replica placement algorithm is invoked at regular intervals

and it processes the access histories to determine new replica locations based on file

popularity. Old replicas are retained at those replica locations that are common

between the new and old replica sets. The rest of the replicas from the old set are

deleted and new replicas are created for the remaining new locations. New replica

locations are determined after each interval since file popularity varies with time. The

access history logs are cleared at the beginning of each replication interval to capture

access pattern dynamics. The interval chosen is determined by the arrival rate of

data accesses so a shorter interval will be chosen for higher arrival rates. This incurs

Chapter 4: Centralized Replica Placement 87

greater overhead but adapts more rapidly to changing access patterns.

Unlike most of the existing data replication techniques, the proposed replica place-

ment strategy assumes limited storage capacity on each replica server. Over time, the

replica servers will become filled so a replacement strategy is needed. Such a scheme

must ensure that popular files are retained and not displaced when new files arrive. I

will use a popularity-based form of the Least Recently Used (LRU) replacement pol-

icy with a constraint added to ensure that replicas created in the current replication

interval will not be replaced. This additional constraint is needed to avoid the dele-

tion of newly created replicas by the dynamic replication algorithms. If the available

space on a given replica server is less than the size of the new replica, some removable

replicas need to be deleted to make room for the new replica. Removable replicas are

defined as those replicas that were created before the current replication interval and

which were not recently used by any client. Let Rs be the set of all replicas in server

s, then the set of removable replicas R’s is:

R’s = {r|r ∈ Rs , r is created before the current replication interval, and r is not

recently used}.

The first condition prevents the deletion of any newly created replicas. The second

condition chooses (hopefully) unneeded replicas for replacement and also avoids the

interruption of any ongoing data accesses.

The idea behind PBRP is to create replicas as close as possible to those clients

that frequently request the corresponding files or more specifically to the clients that

request the files with high rates exceeding a pre-determined replication threshold.

The file access count as a measure of popularity is, in itself, not new. The novelty

88 Chapter 4: Centralized Replica Placement

2 3 1 4 2 2 4 2 2 0 3 2 2 1

2+3=5 1+4=5 4 6 2 1 5 3

0 1

5+5=10 10 3 8

20 11

Root 31

Clients
Access counts

Tier 3

Tier 4

Tier 2

Tier 1

Tier 0

Figure 4.2: Bottom-up aggregation of access counts

with the (PBRP) algorithm is its aim to balance the space utilization and access

latency trade-off by selectively replicating files. All the replication algorithms from

the literature except ABU process the records in the access history individually for a

client and do not study the relations among these records. In hierarchical data grids,

every node accesses replicas only from its ancestor nodes. Thus, the relationship

among the access records of the clients that are siblings can be used to determine the

effective utilization of various replicas. For example, in Figure 4.2, if the replication

threshold value is set to five and no aggregation of access counts is considered, no

replica will be created in tier-3. However, with the aggregation of access counts, four

replicas are created in different nodes in tier-3 because their new access counts exceed

or become equal to the threshold value. The whole replication process is done in two

phases as described below.

4.2.1 Bottom-Up Access Aggregation

The bottom-up aggregation phase aggregates access history records for each file

to upper tiers, step by step, until the root is reached. The computation simply adds

Chapter 4: Centralized Replica Placement 89

2 3 1 4 2 2 4 2 2 0 3 2 2 1

5 5 4 6 2 1 5 3

0 1

10 10 3 8

20 11

Root

F

F F F

F

F

F

31

c

a b

d e f

g h i j k l m n

Threshold = 5

(Clients)
Access counts

Tier 3

Tier 4

Tier 2

Tier 1

Tier 0

Figure 4.3: Top-down placement of replica

up the access counts for records whose nodes are siblings and which refer to the same

files. The result record after aggregation is stored in the parent node. An example of

the computation of access counts of a file (F) by different clients is shown in Figure 4.2

(client counts shown at leaves).

4.2.2 Top Down Replica Placement

Using the aggregated access information, replicas are placed from the top to the

bottom of the tree. The idea is to traverse down the hierarchy as long as the aggre-

gated access count is greater than or equal to the pre-defined threshold that is used

to determine sufficiently popular files. A replica is placed at a node if the threshold

prevents further traversal through one or more of its children. An example of replica

placement is shown in Figure 4.3 where, for example, we traverse down the tree from

the root to node d through node a since both nodes have access counts greater than

the threshold value of five. From node d further traversal through node i does not

occur since its access count is less than the threshold. Hence, a replica is placed on

node d. Node j is also traversed through since its access count is six. A replica is

90 Chapter 4: Centralized Replica Placement

also placed on this node since none of its descendants’ counts exceed the threshold.

The rationale for this approach is to ensure that the replicas are created close to the

clients accessing popular files and at the same time to facilitate placement of replicas

in locations relatively closer than the root for clients accessing unpopular files.

Algorithm 4.1 Top-Down-Replica-Placement(threshold)

1: recentHistory ← getAccessHistory()
2: recentHistory ← Bottom-up-compute(recentHistory)
3: for tier ← RootT ier + 1 to ClientT ier − 1 do
4: records ← getRecords(recentHistory, tier)
5: records ← sortRecords(records)
6: for all record r of records do
7: if r.accessCount ≥ threshold then
8: if checkChild(r.nodeID, r.fileID) then
9: if r.nodeID does not contain a replica of r.fileID then

10: requestForReplication(r.nodeID, r.fileID)
11: end if
12: end if
13: end if
14: end for
15: end for

The replica placement procedure is shown in Algorithm 4.1. The input to the

algorithm is a threshold value on access counts of files. A single threshold is used for

all files that are accessed by the clients. Function getAccessHistory is called in line 1

to scan the most recent access history covering the last pre-defined interval and the

results are stored in recentHistory. Each record in the history is a tuple of <nodeId,

fileID, accessCount>, which means that the client of nodeID has accessed the data in

file fileID with a frequency of accessCount. In line 2 Bottom-up-compute aggregates

the access records in recentHistory for all tiers. The details of this processing will

be discussed later in the section. Once the aggregation of access counts is done, the

replica placement algorithm processes the new aggregated history in the for loop (lines

Chapter 4: Centralized Replica Placement 91

3-12) for each middle-tier from the tier below the root to the tier above the clients

(which execute at the leaves). Function getRecords (line 4) retrieves the aggregated

records of the current tier. In line 5, the records are then sorted in descending order

by accessCount for different files so that the replicas are created for files with higher

access counts first. For each record r in records if the accessCount is greater than or

equal to the threshold it will be processed in lines 7-9. Function checkChild checks

if any of the children of r.nodeID have accessCount less than the threshold or if the

children are client nodes. If the result is true, a request for replication is submitted

to the replica handler to carry out replication of the data file at the current node.

Before creating new replicas on the determined node (replica server), its available

storage capacity needs to be checked. At a given time, the available storage of a

replica server is the maximum space that the server can provide for the new replicas.

It includes the unused space and the space used by potentially removable replicas.

Thus, the available storage capacity of a replica server can be obtained by determining

the removable replicas as described earlier. If the available storage capacity of the

replica server is greater than or equal to the size of the file r.fileID, the replica handler

will actually replicate the file from the root or the grid site which is the closest ancestor

node that contains the replica.

Bottom-up-compute is shown in Algorithm 4.2. The input parameter recentHistory

contains the file access records whose nodeIDs are in the same tier. The variables

history and temp are buffers with the same structure as recentHistory. The outer for

loop (lines 3-13) processes the access records from the tier above the clients to the

root. The inner for loop (lines 4-10) aggregates all records in recentHistory. Lines

92 Chapter 4: Centralized Replica Placement

Algorithm 4.2 Bottom-Up-Compute(recentHistory)

1: history ← NULL
2: temp ← NULL
3: for tier ← ClientT ier − 1 to RootT ier + 1 do
4: for all record r of recentHistory do
5: parent ← findParent(r.nodeID)
6: if parent’s record has the same file as in temp then
7: Increase the accessCount of parent record by r.accessCount
8: else
9: Put the parent record in temp

10: end if
11: end for
12: Append(history, temp)
13: recentHistory ← temp
14: end for
15: return history

5-7 try to merge each record r with a record in temp. If there is a record in temp,

whose nodeID is the parent of r.nodeID and whose fileID is the same as r ’s, then

record r is merged with the corresponding record in temp by adding corresponding

accessCounts. If merging is not possible, a new record is added to temp where the

new record’s nodeID is the parent of r.nodeID and its fileID and accessCount is the

same as r ’s. After all records in recentHistory are processed, the aggregated history

temp becomes the new recentHistory for the next tier up in the hierarchy and will

processed as stated above. Finally, Bottom-up-compute returns history as the overall

aggregated access records for the considered sampling interval.

PBRP improves on ABU by making replicas accessible nearer to clients with lower

access counts (which don’t exceed the threshold value). This, in turn, reduces overall

data access latency and bandwidth consumption at the cost of greater storage use.

A bottom-up replica placement is also done in ABU but if the access count of a file

Chapter 4: Centralized Replica Placement 93

at a replica server becomes greater than or equal to the threshold value, a replica is

created there and the corresponding access record for that file is deleted. Consider

Figure 4.3. A replica would be created in node j (with access count 6) using ABU but

due to the deletion of this access count at node j, the aggregated count in d would

become 4 which is less than the threshold value and hence no other replica would be

created. However, PBRP retains all the aggregated access records and place replicas

in a top-down fashion. A replica is placed at a node if the threshold prevents further

traversal through one or more of its children. In the example, this creates a replica

at node d.

4.3 Adaptive Replica Placement Algorithm

In this section, I describe my new adaptive dynamic replica placement strategy,

called Adaptive Popularity Based Replica Placement (APBRP) for hierarchical Data

grids. Creation of the replicas is guided by dynamic adjustment of the threshold value

in PBRP. The effectiveness of PBRP depends on careful selection of this threshold

value that determines the popularity of a data file. Hence, APBRP aims at determin-

ing the threshold value dynamically by using such factors as data access arrival rate

from the client and available storage capacities of the replica servers. APBRP tries to

balance the storage utilization and access latency trade-off by selectively replicating

data files through this dynamic adjustment method.

The replication process in APBRP is similar to its non-adaptive counterpart

(PBRP) and is, again, done in two phases. The bottom-up aggregation phase ag-

gregates access history records for each file to upper tiers, step by step, till the root

94 Chapter 4: Centralized Replica Placement

is reached. In the second phase, replicas are placed from the top to the bottom of

the tree using this aggregated information. Determining the threshold value dynam-

ically is the key new task of APBRP. Like PBRP, the APBRP algorithm is invoked

at regular intervals and replication decisions are made based on file popularity.

I consider data access arrival rate and the available storage capacities of replica

servers as two logical factors that should affect the value of the threshold. A high

access arrival rate indicates frequent access requests from the clients which results in

an increased number of popular data files (i.e. their access counts become greater

than or equal to the threshold). This will in turn require creating a large number of

replicas which will incur substantial replication overhead (in terms of both bandwidth

and storage usage). In such a scenario, increasing the threshold will lessen the number

of replicas that will be created. On the other hand, if the access arrival rate becomes

low, the number of popular data files will be less which in turn will result in the

creation of a reduced number of replicas even though the system might be capable (in

terms of available bandwidth and storage) of creating more replicas to improve access

latency. In this case, decreasing the threshold will increase the number of replicas

that will be created.

Likewise, the available storage capacities of replica servers should play an impor-

tant role in deciding to change the threshold value. The required threshold value can

be decreased to create more replicas if replica servers have sufficient available storage

space. Also, the threshold value can be increased to lessen the number of replicas

if the replica servers become heavily filled with existing replicas. Figure 4.4 shows

the flow of replica creation with a threshold controller. First, the variation in data

Chapter 4: Centralized Replica Placement 95

access rate from users is calculated to determine the “initial” change in threshold

value (which will be discussed later). Then, the replica placement algorithm uses the

new threshold value to determine the replica locations for creating new replicas. A

storage checker then verifies the percentage of storage usage for all replica servers to

decide whether any further adjustment in threshold value is necessary or not. Feed-

back information is sent to the threshold controller in case of a heavily loaded or

underutilized (in terms of storage capacities of replica servers) system. Otherwise,

the replica servers will retain the newly created replicas to serve data requests from

the users.

Determine
replica locations
& create replicas

Check storage
usage

Threshold
Controller

New threshold

System with a new
set of replicas

System heavily loaded
or under utilized

Calculate change
in access rate Data access rate

from users

Figure 4.4: Replication process through dynamic adjustment of the threshold value

Now, the challenge is to determine how much change (increase or decrease) in the

threshold value the system can tolerate based on the change in data access arrival

rate or available storage capacities of replica servers. If we consistently increase the

threshold value, at some point the number of replicas will drop drastically which will

decrease the data access performance and storage utilization of the replica servers.

On the contrary, if the threshold value is decreased consistently, the increased num-

ber of replicas will eventually make the system non-viable to manage. Hence, the

threshold value has to be adjusted in such a way that the space utilization and access

latency trade-off is effectively balanced using access arrival rate and available storage

96 Chapter 4: Centralized Replica Placement

capacities of replica servers. The details of how the determination of an initial value

of threshold and the adjustment in the threshold value afterwards are done in an

adaptive manner are now described.

4.3.1 Determining the Initial Threshold Value

The initial threshold value is set based on the average aggregated access counts

at the replica servers in the lower tier of the data grid. The value of the average ag-

gregated access count is calculated by dividing the total number of aggregated access

counts for a file at the replica servers in the second to the lowest tier of the hierarchy

by the number of replica servers at that tier. This is done during the bottom-up

aggregation phase of APBRP. The initial value is then adjusted dynamically (de-

scribed in the next subsection) based on available storage at the replica servers and

the request arrival rates.

4.3.2 Dynamic Adjustment of the Threshold Value

The threshold value is adapted dynamically to ensure efficient utilization of stor-

age at replica servers while satisfying both bandwidth and access latency constraints.

As mentioned, the increase or decrease in the threshold value is done based on an

increase or decrease in the data access arrival rate, respectively. However, this change

in the threshold is not applied immediately to avoid over reacting to transient changes

in the access arrival rate. Rather, if the increasing or decreasing trend of access ar-

rival rate is steady for a sufficient period of time, the effect of the new threshold takes

place. The challenge is to determine this time interval and the relationship between

the change in the threshold value and the access arrival rate. The time interval is cal-

Chapter 4: Centralized Replica Placement 97

culated as a fraction of the interval length for sampling access histories of clients. The

threshold value is increased or decreased by the difference between the current and

previous average aggregated access counts of replica servers in the lower tier of the

data grid. For example, the threshold value for the ith sampling interval, thresholdi,

is calculated as follows:

Assume, Ri = New average aggregated access rate in ith interval and Ri−1 =

Average aggregated access rate in (i -1)th interval

thresholdi = thresholdi−1 +4 (4.1)

where 4 is defined as:

4 =


0, for the first interval of sampling access histories of clients

Ri −Ri−1, otherwise

(4.2)

The relationship in equation 4.1 can easily be justified since the initial thresh-

old value is determined by the average aggregated access rate for the first sampling

period. For any subsequent sampling interval, the threshold value will either be in-

creased or decreased based on the difference in aggregated access rates for the current

and immediately preceding intervals. Once the threshold value is changed, the avail-

able storage capacities of the replica servers are checked. Further adjustment of the

threshold value is done based on the available storage at the replica servers to ensure

efficient space utilization. More specifically, the threshold controller (as shown in

Figure 4.4) updates the threshold value on the basis of the ratio between the desired

percentage of storage usage and the actual percentage of storage usage by replica

98 Chapter 4: Centralized Replica Placement

servers. The new threshold value for the ith interval is thus calculated as follows:

thresholdi(updated) = thresholdi × offset (4.3)

where offset is the described ratio. To facilitate this, I have defined three states of

the system in terms of storage utilization by the replica servers. The system is lightly,

moderately, and highly loaded if the percentage of storage size used by replica servers

is less than 50%, 50% to 70%, and greater than 70%, respectively. If the system is

heavily loaded or under utlilized then the calculated ratio contributes in updating the

threshold value. Like PBRP, APBRP also uses a modified form of the Least Recently

Used (LRU) replacement policy based on popularity for replica replacement.

4.4 Simulation Setup

Often, the evaluation of complex scenarios can not feasibly be carried out using a

real grid environment due to issues of scale, cost, and availability. It is also difficult to

do performance evaluation in a repeatable and controlled manner due to the dynamic

nature of grids. Grid testbeds are thus limited, and further creating an adequately-

sized testbed is not only expensive but also time consuming. Moreover, the testbed

requires the handling of different administration policies at each resource. There-

fore, I chose to assess the effectiveness of my replica placement algorithms through

simulation.

Simulation has been used extensively for modeling and evaluation of real world

systems, from business process and factory assembly lines to computer systems design.

Consequently, modeling and simulation has emerged as an important discipline and

Chapter 4: Centralized Replica Placement 99

many standard and application-specific tools and technologies have been built. These

include simulation languages (e.g. Simscript [Sim08]), simulation environments (e.g.

Parsec [BMT+98]), simulation libraries (e.g. SimJava2 [Sim02]), and application spe-

cific simulators (e.g. the NS-2 network simulator [ns208]). While there exists a large

body of knowledge and tools, there are only a few well-maintained tools available for

simulation in grid computing environments. The SimGrid toolkit [CLQ08], developed

at the University of California at San Diego (UCSD), is a C language based toolkit for

the simulation of application scheduling. It supports modeling of resources that are

time-shared and the load can be injected as constants or from real traces. SimGrid is

a powerful system that allows creation of tasks in terms of their execution time and

resources, with respect to a standard machine capability. GangSim [DF05], developed

at the University of Chicago, is targeted towards the study of usage and scheduling

policies in a multi-site and multi-VO (Virtual Organization) environment. It is able

to combine discrete simulation techniques and modeling of real grid components to

achieve scalability to simulated grids of substantial size. GridSim [gri08], developed

at the University of Melbourne, supports simulation of various types of grids and ap-

plication model scheduling. Finally, OptorSim [BCC+03] was developed as part of the

European Data Grid project and is a data grid simulator written in Java that is de-

signed to allow experiments and evaluations of various replication strategies in a data

grid environment. To evaluate the performance of my replica placement algorithms

I extended the OptorSim to support the necessary information gathering needed for

my algorithms. The basic architecture and detailed simulation configurations, includ-

ing the data grid topology, data file access patterns, and storage capacities of replica

100 Chapter 4: Centralized Replica Placement

Replica
Catalogue

Replica
Manager

Resource
Broker

Access
History
Checker

Job Handler

Local Replica
Handler

CE

SE

Job Handler

Local Replica
Handler

CE

SE User
Interface

Access
Pattern

Generator

Submit
jobs

Choose the next
file to access

Find a CE to put Replication
request

Select the
best file

Local Replica
Handler

SE

Jobs to its Job
Handler

Middle-tier
node

Clients

Replica
Optimizer

Figure 4.5: System architecture (built on top of OptorSim Architecture)

servers considered, are now described.

4.4.1 OptorSim System Architecture

Figure 4.5 shows the architecture of OptorSim. The simulator is designed assum-

ing that the grid structure consists of a number of sites, each consisting of zero or more

computing elements (CEs) and zero or more storage elements (SEs) [BCC+03]. The

computing elements provide computational resource and the storage elements serve as

data storage resources for submitted jobs. A resource broker acts as a meta-scheduler

that controls job scheduling to different CEs. A job accesses a set of files that may

be located remotely. A logical filename (LFN) is an abstract reference to a file irre-

spective of its location in the storage elements. A physical file name (PFN) refers to

a specific replica of a LFN stored to a specific storage element. There may be many

Chapter 4: Centralized Replica Placement 101

physical locations of a logical file. To get the physical locations of a logical file, each

CE consults a replica manager. After getting information from the replica catalogue

(RC), the replica manager returns the locations of the physical files for the requested

logical file to the computing element. In general, the best replica of a file would be

the one that has the minimum transfer time given current network state. The net-

work bandwidths simulated by OptorSim are shared equally by all connections. The

available bandwidth for a connection is determined by the lowest bandwidth along

the transmission path. Replica update management is also supported in the system.

The locks of all data files in the grid are stored in the RC and managed by the replica

manager. If a node wants to update a data file, it must obtain the file write-lock from

the replica manager. Once the write is done, the replica manager will propagate the

updates to all replicas of the data file and release the lock.

In OptorSim, optimization is seen as an ongoing activity, which is performed at two

points during the lifetime of a job. The first optimization phase occurs when the CE

where the job should be run is chosen. Various job scheduling strategies are supported

by OptorSim including: a) Random scheduling : Schedules a job to candidate sites

picked randomly; b) Shortest queue scheduling : Schedules a job to a candidate site

that has the shortest job queue; c) Access cost scheduling : For each file listed in the

job configuration file, get the access cost of each file depending on the current network

state. By adding the times to access the best replica of each file, the method returns

the estimated file access time the job would have if scheduled to a given computing

element. The scheduling algorithm then schedules a job to the computing element

that has the minimum access cost; d) Queue access cost scheduling : Schedules the

102 Chapter 4: Centralized Replica Placement

job to the computing element that has the lowest access cost for the job itself and

the access costs of all jobs in the queue.

In the second optimization phase, optimal dynamic replica selection is achieved

during the run time of a job; in this phase creation of replicas can be triggered by the

replica placement algorithms. In this thesis, I consider only optimization that occurs

after a job has been scheduled to a CE. This allows us to focus on the performance

of the proposed replication algorithms.

In the European Data Grid project, the grid optimization service is called the

replica optimizer and it is embedded into the replica manager as shown in Figure 4.5.

The replica optimizer makes decisions about data movement associated with jobs

between sites and creation or deletion of replicas. I added Access History Checker

(AHC) and Local Replica Handler (LRH) modules to the OptorSim architecture as

shown in Figure 4.5. The AHC keeps track of data access histories that collectively

contain the information of client access patterns. The AHC also invokes the necessary

replica placement algorithms to process the histories at regular intervals, to discover

popular files, and to decide on replication. If the AHC determines that a replica

should be created in a certain node, it will send a request to the LRH of the node and

ask it to carry out the replication. When the new replica is created successfully, the

LRH will notify the replica manager and let it update the RC to ensure consistency

of the directory information.

4.4.2 Simulator Internals

The simulator starts by distributing the master files (original copies) to the storage

elements specified. These files are then registered in the replica catalog. A job is

Chapter 4: Centralized Replica Placement 103

OptorSim
Main

Storage
Element

Replica
Manager

AHC

CE
Access
History

Resource
Broker

LRH

Job

PFN1

PFN2

1. Distribute
master files

2. Register files to
Catalogue

3. Start the resource broker

4. getAccessCost(LFN[])

4a. accessCost[]

5. Schedule the job to the best CE

6. Start the job

7. getBestFile(LFN1, LFN2,
…)

7a. bestPFN1, bestPFN2,…

7b. Read ()

7c. Read ()

8. Write the
access history

13. Job completion

9a. Get the access history

10. Request for
replication

11. Replica placement to storage elements
based on replication algorithms

12. Register the new
files to Catalogue

9. Request access history

Figure 4.6: A typical interaction between different components of OptorSim, Numbers
indicate the sequence of operations

picked up by the resource broker from the user interface, and scheduled to a suitable

computing element by following any of the four scheduling strategies described earlier.

Once the scheduling of the job is done to a specific computing element, the computing

element requests the files that are needed by the job. Since there might be multiple

copies of a file available on the grid, the computing element calls the getBestFile()

104 Chapter 4: Centralized Replica Placement

method that locates the best file given current network conditions. When a file

transfer is made, the logical filename, the requesting grid site, and file access count

are written into the history log file which is later used for replica placement decisions.

The execution flow (shown in Figure 4.6) where a typical interaction between different

components of the simulator has taken place is as follows:

1. OptorSimMain initializes the storage elements and distributes the master files

among different storage sites as specified in the configuration file. In my exper-

iments, the master files are initially stored in the root node.

2. Storage elements register those master files in the replica catalogue.

3. OptorSimMain starts the resource broker.

4. For Access cost scheduling strategy, the resource broker calls getAccessCosts([LFN1

... LFNN], CE[], ...) to get the minimum access costs for all candidate CEs with

respect to physical locations of the data corresponding to each logical file name

(LFNx). This information is used to determine the best CE for job execution.

5. The resource broker schedules the job to the best CE.

6. The computing element starts the job.

7. The job calls getBestFile([LFN1, LFN2],) to determine the best physical loca-

tions of logical files considering current network state.

8. While reading the files from other storage sites, the CE saves the access histories

of the files.

Chapter 4: Centralized Replica Placement 105

9. The access history checker gets the history for a given file from the log and

determines how to place replicas to the appropriate grid sites based on the

replica placement algorithms.

10. If a replication decision is made for a grid site, the access history checker sends

a request for replication to the local replica handler of the site.

11. The local replica handler carries out the replication to the storage element of

the chosen site.

12. The replica catalog is then updated about the new replica that has been created

in the storage element.

Figure 4.7 shows the sequence of events that happen when the resource broker

calls the function getAccessCosts():

1. The replica manager’s listReplicas() method is called to find the physical loca-

tions of the logical files. A number of physical filenames (PFN) will be found

for each logical filename (LFN).

2. Network cost is estimated for each site that holds a PFN corresponding to the

LFN.

3. The access costs for each CE are calculated based on the values returned by

getNetworkCosts() .

4. The scheduler schedules the job to the computing element that has the lowest

expected access costs.

106 Chapter 4: Centralized Replica Placement

 Resource Broker Replica Optimizer Replica Catalogue Network Client Computing Element

1. getAccessCost(LFN[])

1a. listReplicas(LFN1)

1b. PFN1[]

1c. listReplicas(LFN2)

1d. PFN2[]

2. getNetworkCost(source site of PFN1,
destination site)

2a. networkCost()

2b. getNetworkCost(source site of PFN2,
destination site)

2c. networkCost()

3. accessCost[]

4. Schedule the job

Figure 4.7: Details of access cost determination

4.4.3 Data Grid Topology

The simulated data grid structure and network bandwidths between sites used

in my experiments are based on estimates for the CMS experiment [Hol01]. The

topology of the simulated data grid is shown in Figure 4.8 (a) which has four tiers,

a root at tier-0, five regional centers in tier-1, 25 national centers in tier-2, and 125

Chapter 4: Centralized Replica Placement 107

Config Tier 1 (GB

per node)
Tier 2 (GB
per node)

Tier 3 (GB
per node)

Relative
storage

capacity (%)
1 1000 300 50 75
2 500 200 50 55
3 250 100 50 40
4 125 50 20 17.5
5 50 25 20 13.75

Tier 0

Tier 1

Tier 2

Tier 3

2.5 Gbps

2.5 Gbps

622 Mbps

1 5

6 10 26 30

51 55 131 155 31 35 135 151

0 Root

(a)

(b)

Figure 4.8: (a) Simulated data grid topology, (b) Different storage configurations

institutional centers in tier-3. Each center in tier-0, -1 and -2 serves five centers in

the lower tier. Each center represents a node in the resulting hierarchical topology.

All data requests are generated by the leaf nodes. The links between nodes show the

available network bandwidth.

The effectiveness of my replica placement algorithms are studied for a wide range

of storage resource configurations based on the relative storage capacity of the replica

servers, defined as a ratio between the total capacity of the replica servers (S) and the

total size of all data files in the system (F). There are 2500 data files in the system

and each is 10 GB, so F is approximately 25 TB. The relative storage capacity of the

replica servers in the data grid is varied from 75% down to 13% across five simulation

108 Chapter 4: Centralized Replica Placement

cases to reflect the varying amount of storage available at the replica servers. The

specific storage configurations for all five cases are shown in Figure 4.8 (b). For

example, in configuration 2, each node in tier-1, tier-2, and tier-3 has 500 GB, 200

GB, and 50 GB storage available for replicas, respectively. The absolute capacities

are actually of little interest but the relative capacities affect placement decisions.

The total storage size of the replica servers is 13.75 TB and the relative storage

capacity is 55% (13.75
25
× 100). To assess the impact of file size distribution on the

performance of the replication algorithms, I also considered file sizes of 2 GB and 20

GB. I adjusted the storage capacity of each server in different tiers so that the relative

storage capacity of the servers was unchanged.

4.4.4 Simulation Inputs and Data Access Patterns

The OptorSim simulator reads input from three configuration files. The first

describes the network topology (i.e. available network links between grid sites and

the bandwidth of each defined link) and the components of each site (i.e. number of

computing and storage elements, as well as their sizes). The second configuration file

contains information about simulated jobs and the names of logical files that the jobs

need to access. It also contains the index of each logical file and a schedule table for

each computing element specifying which jobs each computing element will run. The

third configuration file specifies different simulation parameters including information

such as the total number of jobs to be run, file processing time, delays between each

job submission, maximum queue size in each computing element, file access pattern,

and the replication algorithm used.

A resource broker acts as a meta-scheduler that controls job scheduling to different

Chapter 4: Centralized Replica Placement 109

client nodes with computing resources based on the estimated data access cost for the

current and all queued jobs. As described, a job will request from a predefined set of

logical filename(s) for data access. The order in which the files are requested is deter-

mined by the selected access pattern. The following access patterns were considered:

sequential (files are accessed in the order stated in the job configuration file), random

(files are selected randomly from a set with uniform probability distribution), unitary

random walk (file requests are one element away from previous file request but the

direction is random), Gaussian random walk (as with unitary random walk, but files

are selected from a Gaussian distribution centered on the previous file request), and

Zipf. The Zipf distribution is given by: Pi = K
is

, where Pi is the frequency of the

ith ranked item, K is the popularity of the most frequently accessed data item and

s determines the shape of the distribution. The frequency of a request is the inverse

of its rank in the frequency. This means that some file requests will occur frequently

while many others will occur rarely. Examples of the first four file access patterns

and the probability mass function for the Zipf distribution are shown in Figures 4.9

and 4.10 respectively (Note the logarithmic scales for the Zipf graph).

Using the sequential access pattern, every file in the job will be accessed in the

order stated in the job configuration file. For all other access patterns, any file in the

job may be accessed zero or many times. However, the number of file requests always

corresponds to the number of file requests in the job description. For example, using

the unitary random walk access pattern (example from Figure 4.9),the job requests

ten files so ten requests were made in total. The first file was randomly selected as

the sixth in the list of possible files. The next file had an equal probability of being

110 Chapter 4: Centralized Replica Placement

2 4 6 8 10 12
0

2

4

6

8

10

12

File request

Sequential

F
ile

 ID

2 4 6 8 10 12
0

2

4

6

8

10

12

File request

Random

F
ile

 ID

2 4 6 8 10 12
0

2

4

6

8

10

12

File request

Unitary Random Walk

F
ile

 ID

2 4 6 8 10 12
0

2

4

6

8

10

12

File request

Gaussian Random Walk
F

ile
 ID

Figure 4.9: Example access patterns for a job containing ten files

file 5 or file 7. As 5 was chosen, the next file had an equal probability of being file 4

or file 6, etc. In this example, the job requested file 3 four times whereas files 1, 7, 8,

9, and 10 were never requested.

The Gaussian and Zipf data access patterns are expected to reflect the behavior of

real world applications that will use data grids. Moreover, the Gaussian distribution

is the most widely used family of distributions in statistics and many statistical tests

are based on the assumption of normality. As such, it is a good base measure which

Chapter 4: Centralized Replica Placement 111

10
0

10
1

10
2

10
3

10
−1

10
0

10
1

10
2

10
3

Rank

Zipf Distribution, K = 1000, s = 1

F
re

qu
en

cy

Figure 4.10: Zipf distribution

can be used for easy informal comparison to known applications. Further, in Zipf,

the frequency of a request is the inverse of its rank in the frequency. This means that

some file requests will occur frequently while many others will occur rarely. Zipf-like

distributions exist widely in the Internet. In a system that is designed to react to file

popularity, the Zipf distribution offers a natural testing ground.

The data access requests from the clients follow Poisson arrivals. On average,

each client sends one request per 2500 milliseconds. According to the properties of a

Poisson process, if all the clients are assigned jobs for execution, the merging of 125

Poisson streams results in a Poisson stream with about 50 requests per second for

the whole system. Also, it is assumed that request patterns for the files can exhibit

various locality properties such as temporal and spatial locality. Temporal locality

implies that recently accessed files are likely to be accessed again. On the other hand,

spatial or “file locality” infers that files near a recently accessed file are likely to be

112 Chapter 4: Centralized Replica Placement

accessed. In this definition of spatial locality, we need to specify what “near” means.

This definition involves a study of the nature of the data in the files and how we can

relate files to each other. This thesis focuses on temporal locality of file accesses and

leaves the study of relationships between data files for future work.

As yet we do not know to what extent file access patterns will exhibit the locality

properties described above and whether there will be any locality. We can only make

reasonable guesses at this point. The worst-case scenario is when the access patterns

do not exhibit any locality at all; generating random access patterns (Gaussian ran-

dom walk, unitary random walk, and flat random distributions) can simulate this

situation. More realistic access patterns that contain varying amounts of temporal

locality can be generated using the Zipf distribution. The index used to measure the

amount of locality in the patterns is denoted by s, which determines the shape of the

distribution. The observed parameter values are in the range of 0.65 < s < 1.24. A

higher value of s indicates an increased degree of locality. In this research, parame-

ters of s = 0.85 and s = 1.0 are used individually, and hereafter we refer to them as

Zipf-0.85 and Zipf-1.0 distributions, respectively. The selected values of s will allow

Zipf distribution to show a relatively low and high degree of temporal locality.

4.5 Results and Observations

In this section, the performance results of my centralized replica placement al-

gorithms are presented and discussed. The studied performance metrics include job

execution time, average bandwidth cost, storage use, and the number of replicas

created.

Chapter 4: Centralized Replica Placement 113

• Job execution time: Job execution time is the total time to execute all the jobs.

Execution time for each job includes the response time for accessing the files

contained in the job. The response time for a data file access is represented by

the interval between the beginning of the data request sent by the client and

the end of the data transmission. If a local copy of the file exists, the response

time is assumed to be zero. Job execution time is the primary consideration

from the perspective of the data consumer.

• Average bandwidth cost : Usually, the price of an international network link

is higher than that of a national link [AAR89], and the prices for LAN and

campus networks are negligible. In this research, for the sake of simplicity, the

unit price is set as one for link between all the tiers. For each data transmission,

the bandwidth cost is the data size multiplied by the summation of costs along

the data transmission path. The average bandwidth cost is the total bandwidth

cost divided by the number of client data requests. This includes the bandwidth

consumed for data transfers incurred when a client requests a file and when a

replica is created at a replica server down the hierarchy. This is an issue both

for network providers and end-users (since excessive use of bandwidth can lead

to slow downs due to network congestion).

• Storage use: Storage use is the percentage of the available storage used by the

replicas. The total use of storage in a data grid is important to grid providers

but due to its relatively low cost can be effectively traded-off for improvements

in job execution time and network bandwidth consumed, as needed.

114 Chapter 4: Centralized Replica Placement

• Number of replicas : The metric of number of replicas represents the total num-

ber of replicas created for all data accesses requested by the clients in a sim-

ulation session. An increased number of replicas implies a higher replication

frequency which is the value of how many replications occur per data access.

For each replication operation, not only is the network bandwidth resource con-

sumed, but also replica server load is increased because of the disk I/O and

CPU use. Therefore, the frequency of replication operations must be controlled

to avoid heavy network and server load.

First, I compared my basic placement algorithm (PBRP) with five other repli-

cation algorithms: aggregate bottom-up (ABU) [TLYT05], Fast Spread, Cascading,

Best Client, and Caching with LRU replacement [RF01b; RF01a]. Then to determine

the effectiveness of my adaptive algorithm I compared APBRP with its non-adaptive

counterpart PBRP considering three scenarios: when the data access rate is consis-

tently increasing, consistently decreasing, and when it fluctuates. In real worlds, data

access arrival rate from clients may vary with time. With variation in data access rate,

the number of popular data files will change over the simulation session. To generate

the data access pattern with dynamically changing rate, every simulation session is

partitioned into a number of evenly spaced sub-sessions or sampling intervals. The

first sampling interval in the simulation is considered as a warm-up period for PBRP

and other considered replication algorithms. The reason is that in this period the

replication algorithms collect data access statistics from clients to use them in replica

placement in the second sampling interval. However, the performance data collected

over the warm-up period is included in the overall performance results of the replica-

Chapter 4: Centralized Replica Placement 115

tion algorithms. In each sub-session, the data access requests from the clients follows

a Poisson arrival. The access arrival rate (which is expressed as the average number

of arrivals during a unit of time) is changed across sub-sessions to reflect the three

scenarios mentioned. The arrival rate is regularly increased and decreased throughout

the simulation session to simulate a regular fluctuation in access rate. Likewise, the

arrival rate is continuously increased or decreased to a certain level during the entire

simulation period to simulate a consistent increase and a consistent decrease in access

rate, respectively.

4.5.1 Job Execution Time

Figure 4.11 (left) shows the job execution times of PBRP and the pre-existing

replica placement algorithms using storage configuration one (significant storage through-

out the hierarchy, refer to Figure 4.8 (b)). Since, in this case, the clients have substan-

tial storage capacity for replicating files locally the Caching technique significantly

reduces the access time. In a more realistic grid scenario, the client nodes (having

both computing and storage resources) which are primarily meant for job execution

are likely to have less available space for large scale data storage compared to the

middle-tier replica servers. For example, the Large Hadron Collider (LHC) [LCG01]

project at CERN is expected to produce roughly 15 Petabytes (15 million Gigabytes)

of data annually, which thousands of scientists around the world will access. Individ-

ual scientists (clients) will access these data through the lowest tier centers, which

might consist of local servers or small clusters in a University Department having

storage capacity far less than the total produced data size. Due to this limited ex-

pected storage capacity of clients, using caching files will get replaced quickly which

116 Chapter 4: Centralized Replica Placement

in turn will increase access time causing an increase in job execution time (as can

be seen in Figure 4.12 and 4.15). The same is also true for sequential data access

due to frequent replacement of replicas. Apart from this, Best Client consistently

performs worse than other algorithms for all data access patterns. Among the other

four strategies, for sequential and flat random data, Fast spread shows the least job

execution time though the difference in job time is marginal (2%) in the latter case

when compared to PBRP. For Zipf-0.85, Gaussian, and Unitary Random Walk access

patterns, PBRP gives the best job execution time. This is due to the fact that the

Zipf−0.85 Guas. Unit. Rand. Seq.
1

2

3

4

5

6

7

8

9
x 10

5

Data access patterns

Jo
b

tim
es

 (
se

c)

Replica server configuration one

PBRP
ABU
Fastspread
Cascading
Best Client
Caching (LRU)

1 2 3 4 5
0

1

2

3

4

5

6
x 10

5

Replica server configurations

Jo
b

tim
es

 (
se

c)

Zipf−0.85

PBRP
ABU
Fastspread
Cascading
Best Client
Caching (LRU)

Figure 4.11: Job execution times for different replication methods using storage con-
figuration one (left) and comparison of execution times for Zipf-0.85 distribution
(right)

data access latency in PBRP is significantly reduced by selectively replicating popular

(likely to be accessed) data files close to the clients. In the case of Zipf-0.85 (with a

small amount of temporal locality), the advantage of PBRP over the other algorithms

increases. Once the data contains more locality, PBRP has a significant improvement

in performance; its job execution time is almost 6% and 25% less than that for ABU

Chapter 4: Centralized Replica Placement 117

1 2 3 4 5
0

1

2

3

4

5

6
x 10

5

Replica server configurations

Jo
b

tim
es

 (
se

c)
Zipf−1.0

PBRP
ABU
Fastspread
Cascading
Best Client
Caching (LRU)

1 2 3 4 5
2

3

4

5

6

7

8
x 10

5

Replica server configurations

Jo
b

tim
es

 (
se

c)

Gaussian Random Walk

PBRP
ABU
Fastspread
Cascading
Best Client
Caching (LRU)

1 2 3 4 5
1

2

3

4

5

6

7
x 10

5

Replica server configurations

Jo
b

tim
es

 (
se

c)

Unitary Random Walk

PBRP
ABU
Fastspread
Cascading
Best Client
Caching (LRU)

1 2 3 4 5
1

2

3

4

5

6

7
x 10

5

Replica server configurations

Jo
b

tim
es

 (
se

c)

Random

PBRP
ABU
Fastspread
Cascading
Best Client
Caching (LRU)

Figure 4.12: Comparison of execution times for different access patterns using various
storage configurations

and Fast spread, respectively. This is because when the data access patterns follow

Zipf, some file requests occur frequently making them “popular” where many others

occur rarely. Thus, the clients focus on a smaller range of data files with higher

frequencies compared to other access patterns. Cascading also reduces the perfor-

mance difference in execution time compared to Fast spread for patterns that contain

temporal locality. PBRP requires only a small number of replicas compared to Fast

Spread and a slightly higher number of replicas than ABU. As an example, using a

118 Chapter 4: Centralized Replica Placement

Zipf-0.85 distribution, the approximate numbers of replicas created by PBRP, ABU,

and Fast Spread are 194, 149, and 274, respectively for replica server configuration

one. Figure 4.13 shows the number of replicas created by different strategies using

various data access patterns. The storage capacity of the replica servers has a major

1 2 3 4 5
0

100

200

300

400

500

600

700

800

900

1000

Replica server configurations

N
o.

 o
f r

ep
lic

as

Zipf−0.85

PBRP
ABU
Fastspread
Cascading
Best Client
Caching (LRU)

1 2 3 4 5
0

100

200

300

400

500

600

700

800

900

1000

Replica server configurations

N
o.

 o
f r

ep
lic

as

Gaussian

PBRP
ABU
Fastspread
Cascading
Best Client
Caching (LRU)

1 2 3 4 5
0

100

200

300

400

500

600

700

800

900

1000

Replica server configurations

N
o.

 o
f r

ep
lic

as

Unitary

PBRP
ABU
Fastspread
Cascading
Best Client
Caching (LRU)

1 2 3 4 5
0

200

400

600

800

1000

1200

Replica server configurations

N
o.

 o
f r

ep
lic

as

Random

PBRP
ABU
Fastspread
Cascading
Best Client
Caching (LRU)

Figure 4.13: Number of replicas created for different access patterns using various
storage configurations

impact on the performance of the placement algorithms. With decreasing capacity,

the execution times of all methods are increased but by different degrees. Relatively

frequent replacement of replicas due to the scarcity of storage capacity in replica

servers causes an overall increase in data access latency which, in turn, increases the

Chapter 4: Centralized Replica Placement 119

job execution time. Figure 4.11 (right) and 4.12 show the job execution times of

different strategies for the five storage configurations considered using various data

access patterns. For all configurations, PBRP shows consistently better performance

than the other algorithms except Caching using Zipf, Gaussian, and Unitary data.

When the available storage capacity is smaller, the benefit of PBRP over ABU de-

creases slightly. When the relative storage capacity is 17%(Configuration 4), PBRP

shows improvement over Fast spread for flat random access pattern. The job execu-

tion time for Caching increases drastically as the storage capacities of the client sites

decrease (Configurations 4 and 5). In particluar, for random data access patterns,

the job execution time is higher than PBRP for most cases. Since the storage size in

the client-tier is the same in both of these configurations, the job execution times for

Caching and Best Client remain almost the same. This is because files are replicated

on the client sites in both strategies.

1 2 3 4 5
2

4

6

8

10

12

14

x 10
5

Replica server configurations

Jo
b

tim
es

 (
se

c)

Zipf−0.85

PBRP
Caching (LRU)

Figure 4.14: Comparison of job times from an increased simulation period using
Zipf-0.85 access pattern

As seen from the foregoing discussion, Caching outperforms PBRP and other

120 Chapter 4: Centralized Replica Placement

algorithms when the clients at tier-3 have sufficient storage (e.g. Configurations 1, 2

and 3) although the performance gap in terms of job time between Caching and PBRP

almost diminishes in case of flat random access behavior. This can be attributed to

the fact that Caching with sufficiently high storage at clients experiences minimal

cache misses compared to the cases when storage is limited (e.g. Configurations 4,

and 5). Also, once the simulation is started, Caching can take advantage of temporal

locality relatively quickly to reduce the cache miss which in turn reduces job execution

time, whereas the other methods need a little longer to collect statistics and place

replicas down the hierarchy.

That said, I made a number of changes in the simulation that highlight the advan-

tages of PBRP over Caching. First, the simulation length is doubled by increasing

total number of jobs from 100 to 200. This increased simulation period facilitates

a large pool of files to be accessed by clients and gives simulation enough time to

reach a point where Caching starts getting more cache misses (similar to what hap-

pens in Configurations 4 and 5 when storage is limited) which increase its job time.

This is due to the fact that on a cache miss Caching needs to retrieve the file all

the way from the root causing an increased access latency compared to PBRP which

also experiences misses as simulation progresses. However, due to the placement of

replicas down the hierarchy PBRP can retrieve the files from relatively close locations

which reduces its file access latency thus improving job execution performance. Also,

increasing total simulation length reduces the impact of warm-up period (first simula-

tion sub-session) on the performance of PBRP. This means that, as the length of the

simulation increases, the effect of having a warm-up period that is too short is ame-

Chapter 4: Centralized Replica Placement 121

liorated somewhat because the initial period of the simulation has less weight than it

would in a shorter simulation. Second, increasing warm-up period for better reflection

of file access history in making replica decisions and decreasing the subsequent sam-

pling intervals to take advantage of temporal locality gives PBRP little improvement

in job time though not significant. It is important to note that substantial increase

in warm-up period affects the performance of PBRP adversely since it further delays

the placement of replicas close to the clients. Also, if sampling intervals are too short

the algorithm incurs an increased overhead due to the frequent creation and deletion

of replicas. Third, storage capacity of each node at tier-3 in Configuration 5 (refer to

Figure 4.8(b)) has been changed to 10 GB resulting in the relative storage capacity

of 8.5%.

As shown in Figure 4.14 and 4.15, PBRP consistently performs better than Caching

in terms of job execution time for the random data access patterns (such as Gaussian

and flat Random) where data requests from clients occur for a wider range of files.

This causes an increased cache misses thereby resulting in high job execution times

for Caching compared to PBRP. The performance improvement of PBRP in terms of

job time is not terribly significant compared to Caching when clients have sufficient

storage (i.e. Configurations 1, 2 and 3) and data access patterns contain temporal

locality (i.e. Zipf-0.85 and Zipf-1.0). In fact once the access patterns contain more

locality Caching in some cases shows somewhat better job execution time than PBRP

though the difference in this case is up to 6%. This is because when the data access

patterns follow Zipf, some file requests occur frequently where many others occur

rarely. Thus, the clients focus on a smaller range of data files with higher frequencies

122 Chapter 4: Centralized Replica Placement

1 2 3 4 5
2

4

6

8

10

12

14

x 10
5

Replica server configurations

Jo
b

tim
es

 (
se

c)

Zipf−1.0

PBRP
Caching (LRU)

1 2 3 4 5

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

x 10
6

Replica server configurations

Jo
b

tim
es

 (
se

c)

Gaussian Random Walk

PBRP
Caching (LRU)

1 2 3 4 5

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

x 10
6

Replica server configurations

Jo
b

tim
es

 (
se

c)

Unitary Random Walk

PBRP
Caching (LRU)

1 2 3 4 5

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

x 10
6

Replica server configurations

Jo
b

tim
es

 (
se

c)
Random

PBRP
Caching (LRU)

Figure 4.15: Comparison of job times from an increased simulation period for different
access patterns

compared to other access patterns. Caching takes advantage of this temporal locality

provided clients have sufficient storage. This leads us to conclude that the perfor-

mance of Caching in terms of job time will be better if there is sufficient temporal

locality in the access patterns and the clients have enough storage.

Given the fact that in e-science applications, a large number of files (not necessarily

with frequent repetition) will be accessed by clients over the time, the use of relatively

longer simulations to highlight the benefit of PBRP is justified. Although file access

Chapter 4: Centralized Replica Placement 123

may not be frequently repeated by a single client, a collection of clients are likely

to reuse access to copies above the leaves in the hierarchy. This gives the benefit

of PBRP for multiple clients in a sub-tree. These simulation results now help us

better understand the performance of Caching and its relative performance with other

algorithms as claimed by Ranganathan and Foster [RF01b].

Figure 4.16 shows the approximate job times for storage configuration one for

all data access patterns using different file sizes of 2 GB and 20 GB. The relative

performance of the algorithms in terms of job execution time and average number

of replicas created is almost the same as the performance obtained using a file size

of 10GB. The reason is that the performance of the replication strategies is directly

dependent on the percentage of files that can be stored at each node. This can be

achieved by scaling both the file size and the storage capacity at each node.

To demonstrate the relative performance of PBRP, Figure 4.17 compares its ap-

proximate run times and the number of replicas created using different file sizes for

all data access patterns. The job time using a file size of 20 GB is much higher than

the other two cases due to the increased data transfer latency. The algorithm shows

the lowest execution time for 2GB files, as expected. The average number of replicas

required does not differ significantly since the number of files in the system remains

unchanged in all three cases.

As discussed earlier, the effectiveness of the PBRP algorithm depends on care-

ful selection of the threshold value that determines the popularity of a data file. In

PBRP, once the threshold value is initially calculated, as described in Section 4.2, it

remains constant during the entire simulation period irrespective of variation in data

124 Chapter 4: Centralized Replica Placement

Zipf−0.85 Gaus. Unit. Rand. Seq.

0.6

0.8

1

1.2

1.4

1.6

1.8

2

2.2

2.4

x 10
5

Data access patterns

Jo
b

tim
es

 (
se

c)

Replica server config. one, File size = 2GB

PBRP
ABU
Fastspread
Cascading
Best Client
Caching (LRU)

Zipf−0.85 Gaus. Unit. Rand. Seq.
0

100

200

300

400

500

600

700

800

900

1000

Data access patterns

N
o.

 o
f r

ep
lic

as

Replica server config. one, File size = 2GB

PBRP
ABU
Fastspread
Cascading
Best Client
Caching (LRU)

Zipf−0.85 Gaus. Unit. Rand. Seq.
0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2
x 10

6

Data access patterns

Jo
b

tim
es

 (
se

c)

Replica server config. one, File size = 20GB

PBRP
ABU
Fastspread
Cascading
Best Client
Caching (LRU)

Zipf−0.85 Gaus. Unit. Rand. Seq.
0

100

200

300

400

500

600

700

800

900

1000

Data access patterns

N
o.

 o
f r

ep
lic

as
Replica server config. one, File size = 20GB

PBRP
ABU
Fastspread
Cascading
Best Client
Caching (LRU)

Figure 4.16: Execution times by file size (left), Number of replicas created by file size
(right)

access arrival rate and the available storage capacities of the replica servers. APBRP

addresses this issue by dynamically changing the threshold value based on the data

access rate and storage availability. To determine the effectiveness of this adaptive

technique I considered three different scenarios as described earlier; when the data

access rate is consistently increasing, consistently decreasing, and when it fluctu-

ates. The following subsections discuss the results obtained for each of these cases

by comparing the job execution time of APBRP with its non-adaptive counterpart,

Chapter 4: Centralized Replica Placement 125

Zipf−0.85 Gaus. Unit. Rand. Seq.

2

4

6

8

10

12

14

x 10
5

Data access patterns

Jo
b

tim
es

 (
se

c)
Replica server config. one, PBRP

2GB
10GB
20GB

Zipf−0.85 Gaus. Unit. Rand. Seq.
0

50

100

150

200

250

300

350

400

450

500

Data access patterns

N
o.

 o
f r

ep
lic

as

Replica server config. one, PBRP

2GB
10GB
20GB

Figure 4.17: Execution times and number of replicas: PBRP by file size, Configuration
one

Zipf−0.85 Guas. Unit. Rand. Seq.
2

2.5

3

3.5

4

4.5

5

5.5

6

6.5
x 10

5

Data access patterns

Jo
b

tim
es

 (
se

c)

Replica server configuration one

PBRP
APBRP

1 2 3 4 5
2.5

2.6

2.7

2.8

2.9

3

3.1

3.2
x 10

5

Replica server configurations

Jo
b

tim
es

 (
se

c)

Zipf−0.85

PBRP
APBRP

Figure 4.18: Job execution times using resource configuration one (left) and compari-
son of execution times for Zipf-0.85 distribution (right) when the access rate fluctuates

PBRP (and transitively, to the other non-adaptive algorithms previously compared

to PBRP).

Job times when the access rate fluctuates

Figure 4.18 (left) compares the job execution times of APBRP and PBRP using

storage configuration one when the data access arrival rate from the clients fluctu-

126 Chapter 4: Centralized Replica Placement

1 2 3 4 5
2.5

2.6

2.7

2.8

2.9

3

3.1

3.2
x 10

5

Replica server configurations

Jo
b

tim
es

 (
se

c)

Zipf−1.0

PBRP
APBRP

1 2 3 4 5

4.6

4.8

5

5.2

5.4

5.6

x 10
5

Replica server configurations

Jo
b

tim
es

 (
se

c)

Gaussian

PBRP
APBRP

1 2 3 4 5
3

3.2

3.4

3.6

3.8

4

4.2
x 10

5

Replica server configurations

Jo
b

tim
es

 (
se

c)

Unitary

PBRP
APBRP

1 2 3 4 5

4.6

4.8

5

5.2

5.4

5.6

x 10
5

Replica server configurations

Jo
b

tim
es

 (
se

c)
Random

PBRP
APBRP

Figure 4.19: Comparison of execution times for different access patterns when the
access rate fluctuates regularly

ates regularly. APBRP gives better job execution times for all data access patterns.

APBRP adjusts the threshold value based on changes in access arrival rate which

leads to the creation of an increased number of replicas compared to PBRP. This in

turn decreases the job execution time. As an example, using a Gaussian distribution,

the average number of replicas created by APBRP and PBRP are 237 and 215, re-

spectively for Configuration one. Figure 4.20 shows the number of replicas created

by both strategies using various data access patterns and replica server configura-

Chapter 4: Centralized Replica Placement 127

1 2 3 4 5
50

100

150

200

250

300

350

400

Replica server configurations

N
o.

 o
f r

ep
lic

as
Zipf

PBRP, Zipf−0.85
APBRP, Zipf−0.85
PBRP, Zipf−1.0
APBRP, Zipf−1.0

1 2 3 4 5
50

100

150

200

250

300

350

400

Replica server configurations

N
o.

 o
f r

ep
lic

as

Random

PBRP, Gaussian
APBRP, Gaussian
PBRP, Unitary
APBRP, Unitary
PBRP, Random
APBRP, Random

Figure 4.20: Number of replicas created for various storage configurations when the
access rate fluctuates regularly

tions. The number of replicas gradually decreases due to the storage constraints in

the replica servers. Like PBRP, APBRP shows the lowest job execution time for the

Zipf distribution compared to other access patterns. The benefit of APBRP is most

significant when the data access pattern shows a degree of randomness. ABRP clearly

adapts well to fluctuating accesses.

Zipf−0.85 Guas. Unit. Rand. Seq.
2

2.5

3

3.5

4

4.5

5

5.5

6

6.5
x 10

5

Data access patterns

Jo
b

tim
es

 (
se

c)

Replica server configuration one

PBRP
APBRP

Figure 4.21: Job execution times using resource configuration one when the access
rate consistently decreases

128 Chapter 4: Centralized Replica Placement

Figures 4.18(right) and 4.19 compare the job execution times for all access patterns

and storage configurations as the access rate fluctuates. With decreasing storage

size, the execution times of both techniques are increased but by different amounts.

APBRP shows shorter job times for all storage configurations. Overall, the percentage

of job time improvement by APBRP for access patterns with some randomness is

more than the case when access patterns contain temporal locality (i.e. Zipf-0.85 and

Zipf-1.0). This makes the adaptive technique a suitable choice when files are accessed

using random distribution given storage constraints on the replica servers. However,

when the available capacity is smaller, the benefit of APBRP over PBRP decreases

since there is less available space to allocate additional replicas via adaptation of the

popularity threshold. Hence, the increased total number of replicas provides little

benefit in term of access latency.

1 2 3 4 5
0

50

100

150

200

250

300

350

400

450

500

Replica server configurations

N
o.

 o
f r

ep
lic

as

Zipf

PBRP, Zipf−0.85
APBRP, Zipf−0.85
PBRP, Zipf−1.0
APBRP, Zipf−1.0

1 2 3 4 5
0

50

100

150

200

250

300

350

400

450

500

Replica server configurations

N
o.

 o
f r

ep
lic

as

Random

PBRP, Gaussian
APBRP, Gaussian
PBRP, Unitary
APBRP, Unitary
PBRP, Random
APBRP, Random

Figure 4.22: Number of replicas created for various storage configurations when the
access rate consistently decreases

Chapter 4: Centralized Replica Placement 129

1 2 3 4 5
2

2.2

2.4

2.6

2.8

3

3.2

3.4

3.6

3.8

4
x 10

5

Replica server configurations

Jo
b

tim
es

 (
se

c)
Zipf

PBRP, Zipf−0.85
APBRP, Zipf−0.85
PBRP, Zipf−1.0
APBRP, Zipf−1.0

1 2 3 4 5
3

3.5

4

4.5

5

5.5

x 10
5

Replica server configurations

Jo
b

tim
es

 (
se

c)

Random

PBRP, Gaussian
APBRP, Gaussian
PBRP, Unitary
APBRP, Unitary
PBRP, Random
APBRP, Random

Figure 4.23: Comparison of execution times for different access patterns when the
access rate consistently decreases

Job times when the access rate is consistently decreasing

Figure 4.21 shows the job execution times of APBRP and PBRP, again for Con-

figuration one, as the client request arrival rate decreases. APBRP shows consistently

better performance for all data access patterns. This is due to the fact that when the

access arrival rate decreases consistently, APBRP also decreases the threshold value

accordingly which maintains an increased number of replicas compared to PBRP.

This, in turn, decreases the data access latency since files are accessed closer and

hence faster. Figure 4.22 shows the number of replicas created by both strategies

using various data access patterns and replica server configurations. As before, the

number of replicas gradually decreases due to the storage constraints in the replica

servers. Again, the Zipf distribution shows the lowest execution time for APBRP

compared to other access patterns. The benefit of APBRP over PBRP is particularly

significant for the Zipf-0.85 and sequential access patterns. Figure 4.23 compares the

job execution times of the two placement algorithms using different storage resource

130 Chapter 4: Centralized Replica Placement

Zipf−0.85 Guas. Unit. Rand. Seq.
2

2.5

3

3.5

4

4.5

5

5.5

6

6.5
x 10

5

Data access patterns

Jo
b

tim
es

 (
se

c)

Replica server configuration one

PBRP
APBRP

Figure 4.24: Job execution times using resource configuration one when access rate
increases consistently

configurations as the access rate decreases consistently. With decreasing capacity,

the execution times for both algorithms increase but, again, by different amounts.

APBRP shows better job execution times for all storage configurations except for

configuration four (relative storage capacity is 17%) where the Gaussian and flat ran-

dom access patterns have shorter job times for PBRP by almost 2% over APBRP.

When the available storage capacity is smaller, the benefit of APBRP over PBRP

decreases as before. This happens because of frequent replica replacement in APBRP

when the replica servers have limited storage.

Job times when the access rate is consistently increasing

Figure 4.24 compares the run times of APBRP and PBRP, again for configuration

one, as the request arrival rate increases. When the request arrival rate increases,

APBRP increases the threshold value based on the increase in the rate and tries to

limit the number of replicas to a reasonable level based on the storage available (as

described in Section 4.3) while PBRP experiences a drastic increase in the number of

Chapter 4: Centralized Replica Placement 131

1 2 3 4 5
50

100

150

200

250

300

350

400

Replica server configurations

N
o.

 o
f r

ep
lic

as
Zipf

PBRP, Zipf−0.85
APBRP, Zipf−0.85
PBRP, Zipf−1.0
APBRP, Zipf−1.0

1 2 3 4 5
0

50

100

150

200

250

300

350

400

450

500

Replica server configurations

N
o.

 o
f r

ep
lic

as

Random

PBRP, Gaussian
APBRP, Gaussian
PBRP, Unitary
APBRP, Unitary
PBRP, Random
APBRP, Random

Figure 4.25: Number of replicas created for various storage configurations when the
access rate consistently increases

replicas (that eventually fills the replica servers). PBRP performs as well as APBRP

or somewhat better for all access patterns due to a significantly increased number of

replicas when using PBRP with sufficient storage at the replica servers. Figure 4.25

shows the number of replicas created by both strategies using various data access pat-

terns and replica server configurations. PBRP consistently maintains a larger number

of replicas compared to APBRP and, as before, the number of replicas gradually de-

creases due to the storage constraints in the replica servers. Overall, APBRP does

not show any significant benefit over PBRP, for the tested scenarios, when the replica

servers have sufficient storage and the client request rate is consistently increasing.

Figure 4.26 compares the job execution times of the two placement algorithms

using different storage resource configurations with consistently increasing access rate.

With decreasing capacity, the job execution times using both algorithms increase but

by different amounts. PBRP maintains better job execution times for all five storage

configurations except for the Unitary random walk distribution and when the access

132 Chapter 4: Centralized Replica Placement

1 2 3 4 5
2.5

2.6

2.7

2.8

2.9

3

3.1

3.2
x 10

5

Replica server configurations

Jo
b

tim
es

 (
se

c)

Zipf

PBRP, Zipf−0.85
APBRP, Zipf−0.85
PBRP, Zipf−1.0
APBRP, Zipf−1.0

1 2 3 4 5

3.4

3.6

3.8

4

4.2

4.4

4.6

4.8

5

5.2

5.4

x 10
5

Replica server configurations

Jo
b

tim
es

 (
se

c)

Random

PBRP, Gaussian
APBRP, Gaussian
PBRP, Unitary
APBRP, Unitary
PBRP, Random
APBRP, Random

Figure 4.26: Comparison of execution times for different access patterns when access
rate consistently increases

pattern contains an increased amount of temporal locality (i.e. Zipf-1.0). For these

two access patterns, when the relative storage capacity is less than 40%(Config. 3),

APBRP shows improvement over PBRP.

Values

Row Labels Read Replicate

Zipf-0.85 118521.2239 22158.37913

PBRP 20661.76471 2265.294118

ABU 21938.52941 2149.411765

Fastspread 22941.94737 4538.947368

Cascading 26269.31579 568.6842105

Bestclient 26709.66667 1373.666667

Caching 0 11262.375

Gaussian 139297.5333 36986.5

PBRP 27094.26667 3887.066667

ABU 27476.66667 3741

Fastspread 26811.8 5852.133333

Cascading 28578 599

Bestclient 29336.8 1399.2

Caching 0 21508.1

Unitary 127556.7167 28639.36275

PBRP 23381.33333 4799.666667

ABU 23969.33333 4391.666667

Fastspread 24375.35 5149.9

Cascading 27701 633.5294118

Bestclient 28129.7 1425

Caching 0 12239.6

Random 139039.2361 37187.08389

PBRP 27039.07143 3169.714286

ABU 27719.5 3022.6

Fastspread 26435.76471 6163.352941

Cascading 28461.9 656.35

Bestclient 29383 1530

Caching 0 22645.06667

Sequential 148203.2 37275.45

PBRP 29671.85 1170.85

ABU 29677.9 1170.85

Fastspread 29335.1 3750.8

Cascading 29631.8 403.15

Bestclient 29886.55 1080.9

Caching 0 29698.9

Grand Total 672617.9101 162246.7758

0

5000

10000

15000

20000

25000

30000

35000

P
B
R
P

A
B
U

Fa
st
sp
re
ad

C
as
ca
d
in
g

B
es
tc
lie
n
t

C
ac
h
in
g

P
B
R
P

A
B
U

Fa
st
sp
re
ad

C
as
ca
d
in
g

B
es
tc
lie
n
t

C
ac
h
in
g

P
B
R
P

A
B
U

Fa
st
sp
re
ad

C
as
ca
d
in
g

B
es
tc
lie
n
t

C
ac
h
in
g

P
B
R
P

A
B
U

Fa
st
sp
re
ad

C
as
ca
d
in
g

B
es
tc
lie
n
t

C
ac
h
in
g

P
B
R
P

A
B
U

Fa
st
sp
re
ad

C
as
ca
d
in
g

B
es
tc
lie
n
t

C
ac
h
in
g

Zipf-0.85 Gaussian Unitary Random Sequential

A
v
e

ra
g

e
 b

/w
 c

o
s
t

Data access patterns

Replica server configuration one

Replicate

Read

Figure 4.27: Average bandwidth costs for different replication methods using resource
configuration one

Chapter 4: Centralized Replica Placement 133

4.5.2 Average Bandwidth Cost

We now discuss the bandwidth consumption for different cases. Figure 4.27 shows

the average bandwidth cost (as defined earlier) for the non-adaptive algorithms and

storage configuration one. For all access patterns, the costs of Caching are, naturally,

the lowest because the amount of bandwidth consumed is due only to replication

as there are no read costs other than the first access. Apart from this, none of the

algorithms performs best for all data access patterns. PBRP gives the best average

bandwidth cost among the studied placement methods for the Zipf and Unitary ran-

dom walk access patterns. This is due to the fact that a relatively larger number of

data access requests from the clients are served by the middle-tier nodes. As a result,

the workloads of the upper tier links are alleviated and the read cost is reduced which

in turns makes average bandwidth costs comparatively low. ABU does not differ sig-

nificantly from PBRP in terms of bandwidth consumption. Fast spread on the other

hand leads to the highest bandwidth usage, up to 17% more compared to PBRP when

the access pattern contains some locality (Zipf-0.85). This is due to higher replication

cost as shown in Figure 4.27 even though in some cases such as for flat random data

the read cost is lower compared to others which gives an improvement in job time,

as discussed before. Concerning the impacts of the data access patterns, PBRP’s

bandwidth cost for the Zipf pattern (Zipf-0.85 and Zipf-1.0) is the lowest as a whole.

As mentioned before, this is because when the data access pattern follows Zipf, the

clients focus on fewer data files with higher frequencies of use. As a consequence, the

popular data files can be easily identified by PBRP and the performance is improved.

The difference between PBRP and the other strategies is thus more pronounced for

134 Chapter 4: Centralized Replica Placement

1 2 3 4 5
1

1.5

2

2.5

3

3.5

4
x 10

4

Replica server configurations

A
ve

ra
ge

 b
/w

 c
os

t

Zipf−0.85

PBRP
ABU
Fastspread
Cascading
Best Client
Caching (LRU)

1 2 3 4 5
1

1.5

2

2.5

3

3.5

4
x 10

4

Replica server configurations

A
ve

ra
ge

 b
/w

 c
os

t

Gaussian

PBRP
ABU
Fastspread
Cascading
Best Client
Caching (LRU)

1 2 3 4 5
0.5

1

1.5

2

2.5

3

3.5
x 10

4

Replica server configurations

A
ve

ra
ge

 b
/w

 c
os

t

Unitary

PBRP
ABU
Fastspread
Cascading
Best Client
Caching (LRU)

1 2 3 4 5
1

1.5

2

2.5

3

3.5

4
x 10

4

Replica server configurations

A
ve

ra
ge

 b
/w

 c
os

t
Random

PBRP
ABU
Fastspread
Cascading
Best Client
Caching (LRU)

Figure 4.28: Comparison of average bandwidth costs for different access patterns

the Zipf distribution.

Figures 4.28 compares the average bandwidth costs of all replication strategies for

the different storage configurations. As the storage size is decreased, the bandwidth

costs of all the strategies are generally increased by different amounts due to an

increase in read costs. Fast spread shows an exception to this trend where the overall

bandwidth usage drops with the decrease in storage capacity. This happens due to a

lesser frequency of replica creation resulting in a lower replication cost. This fact is

reflected in Figure 4.29 for the Zipf access patterns.

Chapter 4: Centralized Replica Placement 135

Values

Row Labels Read Replicate

1 118521.2239 22158.37913

PBRP 20661.76471 2265.294118

ABU 21938.52941 2149.411765

Fastspread 22941.94737 4538.947368

Cascading 26269.31579 568.6842105

Bestclient 26709.66667 1373.666667

Caching 0 11262.375

2 118801.3418 22323.30113

PBRP 20834.89474 2246.736842

ABU 21982.75 2200.7

Fastspread 22851.4 4633.55

Cascading 26317.65 555.1

Bestclient 26814.64706 1335

Caching 0 11352.21429

3 119327.215 22130.9994

PBRP 20943.82353 2203.529412

ABU 22103.64706 2171.705882

Fastspread 22966.11111 4487.5

Cascading 26329.5 557.8333333

Bestclient 26984.13333 1352.2

Caching 0 11358.23077

4 120227.2712 25596.43505

PBRP 21116.72222 2169.944444

ABU 21833.22222 2171.333333

Fastspread 23660.88235 3222.705882

Cascading 26347.44444 481.3888889

Bestclient 27269 1017

Caching 0 16534.0625

5 125019.0643 23804.13686

PBRP 22369.25 1753.85

ABU 22917.11111 1958.166667

Fastspread 24620.76471 2290

Cascading 27550.4 230.5

Bestclient 27561.53846 989.3076923

Caching 0 16582.3125

Grand Total 601896.1163 116013.2516

0

5000

10000

15000

20000

25000

30000

P
B
R
P

A
B
U

Fa
st
sp
re
ad

C
as
ca
d
in
g

B
es
tc
lie
n
t

C
ac
h
in
g

P
B
R
P

A
B
U

Fa
st
sp
re
ad

C
as
ca
d
in
g

B
es
tc
lie
n
t

C
ac
h
in
g

P
B
R
P

A
B
U

Fa
st
sp
re
ad

C
as
ca
d
in
g

B
es
tc
lie
n
t

C
ac
h
in
g

P
B
R
P

A
B
U

Fa
st
sp
re
ad

C
as
ca
d
in
g

B
es
tc
lie
n
t

C
ac
h
in
g

P
B
R
P

A
B
U

Fa
st
sp
re
ad

C
as
ca
d
in
g

B
es
tc
lie
n
t

C
ac
h
in
g

1 2 3 4 5

A
v
e

ra
g

e
 b

/w
 c

o
s
t

Replica server configurations

Zipf-0.85

Replicate

Read
Values

Row Labels Read Replicate

1 115704.5923 21264.9379

PBRP 19485.8125 2318.6875

ABU 20701.9 2187.5

Fastspread 22915.76923 4687.384615

Cascading 26029.21053 541.3157895

Bestclient 26571.9 1310.55

Caching 0 10219.5

2 115800.4396 21255.72239

PBRP 19538.63158 2286.368421

ABU 20718.21053 2186.210526

Fastspread 22859.07692 4687.384615

Cascading 26080.05 526.15

Bestclient 26604.47059 1341.058824

Caching 0 10228.55

3 116126.15 21133.05

PBRP 19578.6 2291.55

ABU 20817.6 2207.5

Fastspread 22951 4520.25

Cascading 26117.15 554

Bestclient 26661.8 1332.5

Caching 0 10227.25

4 117727.8025 24347.89223

PBRP 19771.52632 2222.368421

ABU 21095.5 2080

Fastspread 23631.83333 3333.5

Cascading 26195.14286 481.3571429

Bestclient 27033.8 1047.466667

Caching 0 15183.2

5 121953.1944 22602.92565

PBRP 21264.05 1809.45

ABU 21582.2 1966.55

Fastspread 24742.6875 2395.0625

Cascading 27254.3125 232.0625

Bestclient 27109.94444 1008.388889

Caching 0 15191.41176

Grand Total 587312.1788 110604.5282

0

5000

10000

15000

20000

25000

30000

P
B
R
P

A
B
U

Fa
st
sp
re
ad

C
as
ca
d
in
g

B
es
tc
lie
n
t

C
ac
h
in
g

P
B
R
P

A
B
U

Fa
st
sp
re
ad

C
as
ca
d
in
g

B
es
tc
lie
n
t

C
ac
h
in
g

P
B
R
P

A
B
U

Fa
st
sp
re
ad

C
as
ca
d
in
g

B
es
tc
lie
n
t

C
ac
h
in
g

P
B
R
P

A
B
U

Fa
st
sp
re
ad

C
as
ca
d
in
g

B
es
tc
lie
n
t

C
ac
h
in
g

P
B
R
P

A
B
U

Fa
st
sp
re
ad

C
as
ca
d
in
g

B
es
tc
lie
n
t

C
ac
h
in
g

1 2 3 4 5

A
ve

ra
ge

 b
/w

 c
o

st

Replica server configurations

Zipf-1.0

Replicate

Read

Figure 4.29: Average bandwidth costs (read and replicate) for Zipf access patterns

Figure 4.30 compares the average bandwidth use by PBRP and Caching when

the simulation length is increased as mentioned in Section 4.5.1. Caching leads to

higher bandwidth use compared to PBRP except the cases when clients have sufficient

storage and data access pattern follows Zipf-1.0 and Unitary distributions.

Figure 4.31 shows the approximate average bandwidth costs for all data access

patterns using file sizes of 2 GB and 20 GB. For both cases, the relative performance

of the algorithms in terms of bandwidth cost is almost the same as the performance

obtained using a file size of 10GB. To assess the relative performance of PBRP, Fig-

ure 4.32 compares the approximate average bandwidth costs of PBRP using different

136 Chapter 4: Centralized Replica Placement

1 2 3 4 5
1

1.5

2

2.5

3

3.5

4

4.5

5
x 10

4

Replica server configurations

A
ve

ra
ge

 b
/w

 c
os

t

Zipf−1.0

PBRP
Caching (LRU)

1 2 3 4 5
1.5

2

2.5

3

3.5

4

4.5

5

5.5
x 10

4

Replica server configurations

A
ve

ra
ge

 b
/w

 c
os

t

Gaussian

PBRP
Caching (LRU)

1 2 3 4 5
1.5

2

2.5

3

3.5

4

4.5

5

5.5
x 10

4

Replica server configurations

A
ve

ra
ge

 b
/w

 c
os

t

Unitary

PBRP
Caching (LRU)

1 2 3 4 5
1.5

2

2.5

3

3.5

4

4.5

5

5.5
x 10

4

Replica server configurations

A
ve

ra
ge

 b
/w

 c
os

t
Random

PBRP
Caching (LRU)

Figure 4.30: Comparison of average bandwidth costs from an increased simulation
period for different access patterns

file sizes for all data distributions. As expected, the bandwidth cost using 20 GB files

is much higher than the other two cases due to the increased data transfer cost. The

bandwidth costs are medium for 10 GB files and low when 2 GB files are used.

I now compare the performance of APBRP and its non-adaptive counterpart in

terms of average bandwidth cost when the data access rate is consistently increasing,

consistently decreasing, and when it fluctuates.

Chapter 4: Centralized Replica Placement 137

Values
Row Labels Read Replicate
Zipf‐0.85 23704.24479 8263.595814
PBRP 4132.352941 1132.647059
ABU 4387.705882 1074.705882
Fastspread 4588.389474 2269.473684
Cascading 5253.863158 284.3421053
Bestclient 5341.933333 686.8333333
Caching 0 2815.59375

Gaussian 27859.50667 13116.225
PBRP 5418.853333 1943.533333 8000

9000
10000

Replica server config. one, File size = 2GB

PBRP 5418.853333 1943.533333
ABU 5495.333333 1870.5
Fastspread 5362.36 2926.066667
Cascading 5715.6 299.5
Bestclient 5867.36 699.6
Caching 0 5377.025

Random 27807.84723 12932.27528
PBRP 5407.814286 1584.857143
ABU 5543.9 1511.3
Fastspread 5287.152941 3081.676471
Cascading 5692.38 328.175
Bestclient 5876.6 765
Caching 0 5661.266667

Unitary 25511 34333 11259 78137

0
1000
2000
3000
4000
5000
6000
7000
8000
9000
10000

PB
RP

A
BU

Fa
st
sp
re
ad

Ca
sc
ad
in
g

Be
st
cl
ie
nt

Ca
ch
in
g

PB
RP

A
BU

Fa
st
sp
re
ad

Ca
sc
ad
in
g

Be
st
cl
ie
nt

Ca
ch
in
g

PB
RP

A
BU

Fa
st
sp
re
ad

Ca
sc
ad
in
g

Be
st
cl
ie
nt

Ca
ch
in
g

PB
RP

A
BU

Fa
st
sp
re
ad

Ca
sc
ad
in
g

Be
st
cl
ie
nt

Ca
ch
in
g

PB
RP

A
BU

Fa
st
sp
re
ad

Ca
sc
ad
in
g

Be
st
cl
ie
nt

Ca
ch
in
g

Zipf‐0.85 Gaussian Random Unitary Sequential

A
ve

ra
ge

 b
/w

 c
os

t

Data access patterns

Replicate

Read

Unitary 25511.34333 11259.78137
PBRP 4676.266667 2399.833333
ABU 4793.866667 2195.833333
Fastspread 4875.07 2574.95
Cascading 5540.2 316.7647059
Bestclient 5625.94 712.5
Caching 0 3059.9

Sequential 29640.64 11213
PBRP 5934.37 585.425
ABU 5935.58 585.425
Fastspread 5867.02 1875.4
Cascading 5926.36 201.575
Bestclient 5977.31 540.45

hi

Zipf‐0.85 Gaussian Random Unitary Sequential

Data access patterns

Caching 0 7424.725
Grand Total 134523.582 56784.87747

ValuesValues
Row Labels Read Replicate
Zipf‐0.85 237042.4479 66475.13739
PBRP 41323 52941 6795 882353PBRP 41323.52941 6795.882353
ABU 43877.05882 6448.235294
Fastspread 45883.89474 13616.84211
C di 52538 63158 1706 052632Cascading 52538.63158 1706.052632
Bestclient 53419.33333 4121
Caching 0 33787.125

80000

Replica server config. one, File size = 20GB

Gaussian 278595.0667 89451.4
PBRP 54188.53333 11661.2
ABU 54953.33333 11223 60000

70000

80000

os
t

Replica server config. one, File size = 20GB

Fastspread 53623.6 17556.4
Cascading 57156 1797
Bestclient 58673.6 4197.6

30000

40000

50000

60000

70000

ra
ge

 b
/w

 c
os

t

Bestclient 58673.6 4197.6
Caching 0 43016.2

Random 278078.4723 88916.18501
PBRP 54078 14286 9509 142857 10000

20000

30000

40000

50000

A
ve

ra
ge

 b
/w

Replicate

ReadPBRP 54078.14286 9509.142857
ABU 55439 9067.8
Fastspread 52871.52941 18490.05882
C di 56923 8 1969 05

0

10000

20000

PB
RP

A
BU

sp
re
ad

sc
ad
in
g

st
cl
ie
nt

Ca
ch
in
g

PB
RP

A
BU

sp
re
ad

sc
ad
in
g

st
cl
ie
nt

Ca
ch
in
g

PB
RP

A
BU

sp
re
ad

sc
ad
in
g

st
cl
ie
nt

Ca
ch
in
g

PB
RP

A
BU

sp
re
ad

sc
ad
in
g

st
cl
ie
nt

Ca
ch
in
g

PB
RP

A
BU

sp
re
ad

sc
ad
in
g

st
cl
ie
nt

Ca
ch
in
g

A

Replicate

Read

Cascading 56923.8 1969.05
Bestclient 58766 4590
Caching 0 45290.13333

PB
RP

A
BU

Fa
st
sp
re
ad

Ca
sc
ad
in
g

Be
st
cl
ie
nt

Ca
ch
in
g

PB
RP

A
BU

Fa
st
sp
re
ad

Ca
sc
ad
in
g

Be
st
cl
ie
nt

Ca
ch
in
g

PB
RP

A
BU

Fa
st
sp
re
ad

Ca
sc
ad
in
g

Be
st
cl
ie
nt

Ca
ch
in
g

PB
RP

A
BU

Fa
st
sp
re
ad

Ca
sc
ad
in
g

Be
st
cl
ie
nt

Ca
ch
in
g

PB
RP

A
BU

Fa
st
sp
re
ad

Ca
sc
ad
in
g

Be
st
cl
ie
nt

Ca
ch
in
g

Zipf‐0.85 Gaussian Random Unitary SequentialUnitary 255113.4333 85918.08824
PBRP 46762.66667 14399
ABU 47938.66667 13175

F F F F F
Zipf‐0.85 Gaussian Random Unitary Sequential

Data access patterns
ABU 47938.66667 13175
Fastspread 48750.7 15449.7
Cascading 55402 1900.588235
Bestclient 56259 4 4275Bestclient 56259.4 4275
Caching 0 36718.8

Sequential 296406.4 82127.45
PBRP 59343 7 3512 55PBRP 59343.7 3512.55
ABU 59355.8 3512.55
Fastspread 58670.2 11252.4
Cascading 59263.6 1209.45
Bestclient 59773.1 3242.7
Caching 0 59397.8g

Grand Total 1345235.82 412888.2606

Figure 4.31: Average bandwidth cost by file size, Replica server configuration one

Zipf−0.85 Gaus. Unit. Rand. Seq.
0

1

2

3

4

5

6

7

8

9

10
x 10

4

Data access patterns

A
ve

ra
ge

 b
/w

 c
os

t

Replica server config. one, PBRP

2GB
10GB
20GB

Figure 4.32: Average bandwidth cost: PBRP by file size, Replica server configuration
one

138 Chapter 4: Centralized Replica Placement

Values

Row Labels Read Replicate

Zipf-0.85 36558.28922 8290.039216

PBRP 18421.70588 4193.705882

APBRP 18136.58333 4096.333333

Gaussian 56148.03509 7099.74386

PBRP 28171.36842 3551.210526

APBRP 27976.66667 3548.533333

Unitary 46990.71579 9028.329825

PBRP 23705.31579 4504.263158

APBRP 23285.4 4524.066667

Random 55072.15789 7481.627193

PBRP 27703.15789 3764.210526

APBRP 27369 3717.416667

Sequential 59623.25 5090.15

PBRP 29808.4 2541.7

APBRP 29814.85 2548.45

Grand Total 254392.448 36989.89009

15000

17000

19000

21000

23000

25000

27000

29000

31000

33000

P
B
R
P

A
P
B
R
P

P
B
R
P

A
P
B
R
P

P
B
R
P

A
P
B
R
P

P
B
R
P

A
P
B
R
P

P
B
R
P

A
P
B
R
P

Zipf-0.85 Gaussian Unitary Random Sequential

A
v
e

ra
g

e
 b

/w
 c

o
s
t

Data access patterns

Replia server configuration one

Replicate

Read

Figure 4.33: Average bandwidth costs using resource configuration one when access
rate fluctuates

1 2 3 4 5
2

2.05

2.1

2.15

2.2

2.25

2.3

2.35

2.4

2.45

2.5
x 10

4

Replica server configurations

A
ve

ra
ge

 b
/w

 c
os

t

Zipf

PBRP, Zipf−0.85
APBRP, Zipf−0.85
PBRP, Zipf−1.0
APBRP, Zipf−1.0

1 2 3 4 5
2.6

2.7

2.8

2.9

3

3.1

3.2
x 10

4

Replica server configurations

A
ve

ra
ge

 b
/w

 c
os

t

Random

PBRP, Gaussian
APBRP, Gaussian
PBRP, Unitary
APBRP, Unitary
PBRP, Random
APBRP, Random

Figure 4.34: Comparison of average bandwidth costs for different access patterns
when the access rate fluctuates

Average bandwidth cost when access rate fluctuates

Figure 4.33 shows the average bandwidth cost of APBRP and PBRP using stor-

age configuration one when the data access arrival rate from the clients fluctuates

regularly. APBRP gives better average bandwidth cost between the two placement

methods for all cases except the sequential access pattern. APBRP adjusts the thresh-

Chapter 4: Centralized Replica Placement 139

old value based on the varying access arrival rate which leads to the creation of an

increased number of replicas close to the clients compared to PBRP. This decreases

the (dominant) read cost and in turn lowers overall bandwidth consumption. Like

PBRP, APBRP shows the lowest bandwidth consumption for the Zipf distributions

compared to other access patterns.
Values

Row Labels Read Replicate

1 36558.28922 8290.039216

PBRP 18421.70588 4193.705882

APBRP 18136.58333 4096.333333

2 36885.57219 8277.802139

PBRP 18550.11765 4172.529412

APBRP 18335.45455 4105.272727

3 36919.79257 8299.659443

PBRP 18578.26316 4156.894737

APBRP 18341.52941 4142.764706

4 38358.85294 6929.102941

PBRP 19286.5 3464.75

APBRP 19072.35294 3464.352941

5 39759.63248 5795.350427

PBRP 19946.07692 2891.461538

APBRP 19813.55556 2903.888889

Grand Total 188482.1394 37591.95417

15000

16000

17000

18000

19000

20000

21000

22000

23000

24000

25000

P
B
R
P

A
P
B
R
P

P
B
R
P

A
P
B
R
P

P
B
R
P

A
P
B
R
P

P
B
R
P

A
P
B
R
P

P
B
R
P

A
P
B
R
P

1 2 3 4 5

A
v
e

ra
g

e
 b

/w
 c

o
s
t

Replica server configurations

Zipf-0.85

Replicate

Read

Figure 4.35: Average bandwidth costs (read and replicate) for the Zipf-0.85 access
pattern when the access rate fluctuates

Average bandwidth costs for the three different storage configurations are com-

pared in Figure 4.34. With decreasing storage size, the bandwidth costs of both

techniques are increased but by different amounts. APBRP shows better bandwidth

costs for all storage configurations. However, the benefit of APBRP over PBRP de-

creases when the storage capacities of the replica servers are reduced as the difference

in read costs between the two strategies drops as shown in Figure 4.35.

Average bandwidth cost when the access rate is consistently decreasing

Figure 4.36 shows the bandwidth costs for storage configuration one when the

request arrival rate from the clients is decreasing. APBRP shows considerable im-

140 Chapter 4: Centralized Replica Placement

Zipf−0.85 Guas. Unit. Rand. Seq.
2

2.2

2.4

2.6

2.8

3

3.2

3.4
x 10

4

Data access patterns

A
ve

ra
ge

 b
/w

 c
os

t

Replica server configuration one

PBRP
APBRP

Figure 4.36: Average bandwidth costs using resource configuration one when the
access rate is consistently decreasing

Values

Row Labels Read Replicate

1 92873.13737 13044.76405

PBRP, Zipf-0.85 20796.4 2039.466667

APBRP, Zipf-0.85 18819.55556 3505.944444

PBRP, Random 26957 3372.352941

APBRP, Random 26300.18182 4127

2 93076.16048 12918.39332

PBRP, Zipf-0.85 20859.94444 1985.277778

APBRP, Zipf-0.85 18873.71429 3501.785714

PBRP, Random 26960.13333 3384.066667

APBRP, Random 26382.36842 4047.263158

3 93273.49649 12876.64232

PBRP, Zipf-0.85 20882.27778 2050.888889

APBRP, Zipf-0.85 18954.47059 3451.764706

PBRP, Random 26978.10526 3392.631579

APBRP, Random 26458.64286 3981.357143

4 95591.20606 10944.6303

PBRP, Zipf-0.85 21028.66667 1921.266667

APBRP, Zipf-0.85 19759.66667 2888

PBRP, Random 27500.27273 2935.363636

APBRP, Random 27302.6 3200

5 100512.4167 8484.461111

PBRP, Zipf-0.85 21897.33333 1585.533333

APBRP, Zipf-0.85 20646.8 2445.55

PBRP, Random 29029.45 2154.1

APBRP, Random 28938.83333 2299.277778

Grand Total 475326.4171 58268.8911

15000

18000

21000

24000

27000

30000

33000

P
B

R
P

, Z
ip

f-
0

.8
5

A
P

B
R

P
, Z

ip
f-

0
.8

5

P
B

R
P

, R
an

d
o

m

A
P

B
R

P
, R

an
d

o
m

P
B

R
P

, Z
ip

f-
0

.8
5

A
P

B
R

P
, Z

ip
f-

0
.8

5

P
B

R
P

, R
an

d
o

m

A
P

B
R

P
, R

an
d

o
m

P
B

R
P

, Z
ip

f-
0

.8
5

A
P

B
R

P
, Z

ip
f-

0
.8

5

P
B

R
P

, R
an

d
o

m

A
P

B
R

P
, R

an
d

o
m

P
B

R
P

, Z
ip

f-
0

.8
5

A
P

B
R

P
, Z

ip
f-

0
.8

5

P
B

R
P

, R
an

d
o

m

A
P

B
R

P
, R

an
d

o
m

P
B

R
P

, Z
ip

f-
0

.8
5

A
P

B
R

P
, Z

ip
f-

0
.8

5

P
B

R
P

, R
an

d
o

m

A
P

B
R

P
, R

an
d

o
m

1 2 3 4 5

A
v
e

ra
g

e
 b

/w
 c

o
s
t

Replica server configurations

Zipf and Random

Replicate

Read

Figure 4.37: Average bandwidth costs (read and replicate) for the Zipf-0.85 and flat
random access patterns when the access rate is decreasing

provement in bandwidth savings when the access pattern contains temporal locality.

When the access arrival rate decreases consistently, APBRP also decreases the thresh-

old value accordingly which maintains an increased number of replicas compared to

PBRP resulting in reduced read cost. This in turn decreases the overall bandwidth

Chapter 4: Centralized Replica Placement 141

1 2 3 4 5
2

2.05

2.1

2.15

2.2

2.25

2.3

2.35

2.4

2.45

2.5
x 10

4

Replica server configurations

A
ve

ra
ge

 b
/w

 c
os

t
Zipf

PBRP, Zipf−0.85
APBRP, Zipf−0.85
PBRP, Zipf−1.0
APBRP, Zipf−1.0

1 2 3 4 5
2.6

2.7

2.8

2.9

3

3.1

3.2
x 10

4

Replica server configurations

A
ve

ra
ge

 b
/w

 c
os

t

Random

PBRP, Gaussian
APBRP, Gaussian
PBRP, Unitary
APBRP, Unitary
PBRP, Random
APBRP, Random

Figure 4.38: Comparison of average bandwidth costs when the access rate is consis-
tently decreasing

costs even though replication cost increases (but by a lesser amount) due to the cre-

ation of additional replicas. Figure 4.37 shows the read and replicate components

of bandwidth costs when access patterns contain a degree of temporal locality and

randomness as well. The overall bandwidth costs for the flat random and sequential

distributions are very similar. The benefit of APBRP over PBRP is insignificant

when the data access pattern follows the Gaussian and Unitary distributions.

Figure 4.38 shows the average bandwidth costs of both strategies for all storage

configurations. APBRP has less bandwidth cost compared to PBRP for the Zipf-0.85,

Gaussian, and Unitary distributions. On the other hand, the random access pattern

leads to more bandwidth consumption by APBRP for all configurations though the

difference is not terribly significant. As the storage size is decreased, the bandwidth

costs of both strategies are increased proportionally.

142 Chapter 4: Centralized Replica Placement

Zipf−0.85 Guas. Unit. Rand. Seq.
2

2.2

2.4

2.6

2.8

3

3.2

3.4
x 10

4

Data access patterns

A
ve

ra
ge

 b
/w

 c
os

t

Replica server configuration one

PBRP
APBRP

Figure 4.39: Average bandwidth costs using resource configuration one when the
access rate is increasing consistently

Average bandwidth cost when the access rate is consistently increasing

Figure 4.39 shows the bandwidth costs for configuration one when the access ar-

rival rate from the clients consistently increases. When the access arrival rate consis-

tently increases, PBRP experiences a drastic increase in the number of replicas. This

in turn results in consumption of extra bandwidth for unnecessary data movement.

Under the same conditions, APBRP adjusts the threshold value to reduce the number

of replicas and thus saves significant link bandwidth consumption which is evident

from Figure 4.39. For all data access patterns, APBRP shows lower bandwidth use

compared to PBRP.

Figure 4.40 compares the average bandwidth costs of the two placement algorithms

for different storage configurations for all data access patterns. With decreasing

capacity, the bandwidth costs of both methods are increased but by different amounts.

APBRP maintains lower average bandwidth costs for all access patterns for all storage

configurations. However, the performance difference is more pronounced when access

Chapter 4: Centralized Replica Placement 143

1 2 3 4 5
2

2.05

2.1

2.15

2.2

2.25

2.3

2.35

2.4
x 10

4

Replica server configurations

A
ve

ra
ge

 b
/w

 c
os

t
Zipf

PBRP, Zipf−0.85
APBRP, Zipf−0.85
PBRP, Zipf−1.0
APBRP, Zipf−1.0

1 2 3 4 5
2.75

2.8

2.85

2.9

2.95

3

3.05

3.1

3.15

x 10
4

Replica server configurations

A
ve

ra
ge

 b
/w

 c
os

t

Random

PBRP, Gaussian
APBRP, Gaussian
PBRP, Unitary
APBRP, Unitary
PBRP, Random
APBRP, Random

Figure 4.40: Comparison of average bandwidth costs when the access rate is increasing
consistently

patterns show randomness.

Zipf−0.85 Guas. Unit. Rand. Seq.
0

10

20

30

40

50

60

70

80

90

100

Data access patterns

%
 o

f s
to

ra
ge

 u
sa

ge

Replica server configuration one

PBRP
ABU
Fastspread
Cascading
Best Client
Caching (LRU)

1 2 3 4 5
0

10

20

30

40

50

60

70

80

90

100

Replica server configurations

%
 o

f s
to

ra
ge

 u
sa

ge

Zipf−0.85

PBRP
ABU
Fastspread
Cascading
Best Client
Caching (LRU)

Figure 4.41: Storage use for different replication methods using resource configuration
one (left) and comparison of storage costs for the Zipf-0.85 distribution (right)

4.5.3 Storage Use

The storage used by the various non-adaptive placement schemes for storage con-

figuration one are shown in Figure 4.41. For all data access patterns, the storage

144 Chapter 4: Centralized Replica Placement

costs of Caching and Fast Spread are the highest, PBRP and ABU are medium, and

Best Client and Cascading are the lowest. The storage used by PBRP is due to its

moderate number of replicas created down the hierarchy of the Data Grid which gives

its performance benefits in terms of shorter execution times and lower bandwidth con-

sumption. The capacity of the storage resources has a clear impact on the percentage

of storage used by different replication strategies. Naturally, reducing the storage size

leads to a significant increase in the percentage of available storage used as shown in

Figure 4.41 (right) and 4.42. For example, 15.25% of storage is used by PBRP for

Zipf in configuration two and it increases to 70.54% in configuration five. One might

expect that the reduction of storage size should lead to 100% use of storage but in

the simulations some grid sites use the storage completely while others might not use

the space at all depending on the data access pattern. It is worthwhile to note that

PBRP shows higher storage use compared to other algorithms for access patterns

containing temporal locality when the server storage capacities are most constrained

(e.g. Configuration 5). Figure 4.43 shows the storage use by PBRP and Caching

when the simulation length is increased as mentioned in Section 4.5.1. Caching leads

to higher storage use compared to PBRP except the cases when clients have limited

storage and data access patterns show temporal locality.

Figure 4.44 shows the approximate storage use for all data access patterns using

file sizes of 2 GB and 20 GB. For both cases, the relative performance of the algorithms

in terms of storage use is almost the same as the performance obtained using the file

size of 10GB. As before, this is due to the fact that the number of files and the

relative storage capacity in all three cases are the same. To demonstrate the relative

Chapter 4: Centralized Replica Placement 145

1 2 3 4 5
0

10

20

30

40

50

60

70

80

90

100

Replica server configurations

%
 o

f s
to

ra
ge

 u
sa

ge
Zipf−1.0

PBRP
ABU
Fastspread
Cascading
Best Client
Caching (LRU)

1 2 3 4 5
0

10

20

30

40

50

60

70

80

90

100

Replica server configurations

%
 o

f s
to

ra
ge

 u
sa

ge

Gaussian

PBRP
ABU
Fastspread
Cascading
Best Client
Caching (LRU)

1 2 3 4 5
0

10

20

30

40

50

60

70

80

90

100

Replica server configurations

%
 o

f s
to

ra
ge

 u
sa

ge

Unitary

PBRP
ABU
Fastspread
Cascading
Best Client
Caching (LRU)

1 2 3 4 5
0

10

20

30

40

50

60

70

80

90

100

Replica server configurations

%
 o

f a
va

ila
bl

e
st

or
ag

e
us

ag
e

Random

PBRP
ABU
Fastspread
Cascading
Best Client
Caching (LRU)

Figure 4.42: Comparison of storage costs for different access patterns

performance of PBRP, Figure 4.45 compares the approximate storage costs of PBRP

using different file sizes for all data access patterns. The percentage of storage use

does not differ significantly since the average number of replicas created by the system

in all three cases is almost the same.

Storage use when the access rate fluctuates

Figure 4.46 shows the storage use of APBRP and PBRP using configuration one

when the data access arrival rate from the clients fluctuates regularly. APBRP re-

146 Chapter 4: Centralized Replica Placement

1 2 3 4 5
0

10

20

30

40

50

60

70

80

90

100

Replica server configurations

%
 o

f s
to

ra
ge

 u
sa

ge

Zipf−0.85

PBRP
Caching (LRU)

1 2 3 4 5
0

10

20

30

40

50

60

70

80

90

100

Replica server configurations

%
 o

f s
to

ra
ge

 u
sa

ge

Zipf−1.0

PBRP
Caching (LRU)

1 2 3 4 5
0

10

20

30

40

50

60

70

80

90

100

Replica server configurations

%
 o

f s
to

ra
ge

 u
sa

ge

Gaussian

PBRP
Caching (LRU)

1 2 3 4 5
0

10

20

30

40

50

60

70

80

90

100

Replica server configurations

%
 o

f a
va

ila
bl

e
st

or
ag

e
us

ag
e

Random

PBRP
Caching (LRU)

Figure 4.43: Comparison of storage costs from an increased simulation period for
different access patterns

quires more storage resources than PBRP for all data access patterns. This is due to

the creation of an increased number of replicas in APBRP compared to PBRP but

this yields corresponding runtime and bandwidth benefits in most cases.

Figure 4.47 compares the storage use of the two placement algorithms using differ-

ent storage configurations for all data access patterns. With decreasing storage size,

the percentage of storage use for both techniques increases but by different amounts.

When the available storage capacity is smaller, the difference in storage use for AP-

Chapter 4: Centralized Replica Placement 147

Zipf−0.85 Gaus. Unit. Rand. Seq.
0

10

20

30

40

50

60

70

80

90

100

Data access patterns

%
 o

f s
to

ra
ge

 u
sa

ge
Replica server config. one, File size = 2GB

PBRP
ABU
Fastspread
Cascading
Best Client
Caching (LRU)

Zipf−0.85 Gaus. Unit. Rand. Seq.
0

10

20

30

40

50

60

70

80

90

100

Data access patterns

%
 o

f s
to

ra
ge

 u
sa

ge

Replica server config. one, File size = 20GB

PBRP
ABU
Fastspread
Cascading
Best Client
Caching (LRU)

Figure 4.44: Storage use by file size, Replica server configuration one

Zipf−0.85 Gaus. Unit. Rand. Seq.
0

5

10

15

20

25

30

35

40

45

50

Data access patterns

%
 o

f s
to

ra
ge

 u
sa

ge

Replica server config. one, PBRP

2GB
10GB
20GB

Figure 4.45: Storage use: PBRP by file size, Replica server configuration one

BRP and PBRP increases for most access patterns.

Storage use when the access rate is consistently decreasing

Figure 4.48 (left) shows storage costs for APBRP and PBRP using storage con-

figuration one when the access arrival rate from the clients is decreasing. In this

situation, APBRP decreases the threshold value accordingly which maintains an in-

creased number of replicas compared to PBRP. This in turn increases the storage use

148 Chapter 4: Centralized Replica Placement

Zipf−0.85 Guas. Unit. Rand. Seq.
0

5

10

15

20

25

30

35

40

45

50

Data access patterns

%
 o

f s
to

ra
ge

 u
sa

ge

Replica server configuration one

PBRP
APBRP

Figure 4.46: Storage costs using resource configuration one when the access rate
fluctuates

1 2 3 4 5
0

10

20

30

40

50

60

70

80

90

100

Replica server configurations

%
 o

f s
to

ra
ge

 u
sa

ge

Zipf

PBRP, Zipf−0.85
APBRP, Zipf−0.85
PBRP, Zipf−1.0
APBRP, Zipf−1.0

1 2 3 4 5
0

10

20

30

40

50

60

70

80

90

100

Replica server configurations

%
 o

f s
to

ra
ge

 u
sa

ge

Random

PBRP, Gaussian
APBRP, Gaussian
PBRP, Unitary
APBRP, Unitary
PBRP, Random
APBRP, Random

Figure 4.47: Comparison of storage costs for different access patterns when the access
rate fluctuates

(with corresponding benefits). Figure 4.49 compares the storage use of the two algo-

rithms for all storage configurations. As the storage size is decreased, the storage costs

of both strategies are increased proportionally. However, when the available storage

capacity is smaller, the difference in storage use for APBRP and PBRP increases as

before for all access patterns.

Chapter 4: Centralized Replica Placement 149

Zipf−0.85 Guas. Unit. Rand. Seq.
0

5

10

15

20

25

30

35

40

45

50

Data access patterns

%
 o

f s
to

ra
ge

 u
sa

ge
Replica server configuration one

PBRP
APBRP

Zipf−0.85 Guas. Unit. Rand. Seq.
0

5

10

15

20

25

30

35

40

45

50

Data access patterns

%
 o

f s
to

ra
ge

 u
sa

ge

Replica server configuration one

PBRP
APBRP

Figure 4.48: Storage costs using resource configuration one when the access rate is
consistently decreasing (left) and increasing (right)

1 2 3 4 5
0

10

20

30

40

50

60

70

80

90

100

Replica server configurations

%
 o

f s
to

ra
ge

 u
sa

ge

Zipf

PBRP, Zipf−0.85
APBRP, Zipf−0.85
PBRP, Zipf−1.0
APBRP, Zipf−1.0

1 2 3 4 5
0

10

20

30

40

50

60

70

80

90

100

Replica server configurations

%
 o

f s
to

ra
ge

 u
sa

ge

Random

PBRP, Gaussian
APBRP, Gaussian
PBRP, Unitary
APBRP, Unitary
PBRP, Random
APBRP, Random

Figure 4.49: Comparison of storage costs for different access patterns when the access
rate is consistently decreasing

Storage use when the access rate is consistently increasing

Figure 4.48 (right) shows the percentage of storage use for APBRP and PBRP

using replica server configuration one when the data access arrival rate from the

clients is consistently increasing. In PBRP, the number of replicas increases drastically

with the increase in data access rate whereas APBRP tries to limit the number of

150 Chapter 4: Centralized Replica Placement

replicas to a reasonable level by increasing the threshold value. This in turn results

1 2 3 4 5
0

10

20

30

40

50

60

70

80

90

100

Replica server configurations

%
 o

f s
to

ra
ge

 u
sa

ge

Zipf

PBRP, Zipf−0.85
APBRP, Zipf−0.85
PBRP, Zipf−1.0
APBRP, Zipf−1.0

1 2 3 4 5
0

10

20

30

40

50

60

70

80

90

100

Replica server configurations

%
 o

f s
to

ra
ge

 u
sa

ge

Random

PBRP, Gaussian
APBRP, Gaussian
PBRP, Unitary
APBRP, Unitary
PBRP, Random
APBRP, Random

Figure 4.50: Comparison of storage costs as the access rate increases consistently

in higher storage costs for PBRP compared to the adaptive technique. Figure 4.50

compares the storage costs of the two algorithms using all storage configurations for

all access patterns. With decreasing capacity, the percentage of storage used by both

algorithms increases but by different amounts. APBRP maintains lower storage costs

for all access patterns using any storage configuration yet still delivers mostly better

execution times and lower bandwidth costs.

4.6 Summary of Centralized Algorithms

The primary goal of dynamic replication is to reduce the job execution time ex-

perienced by the end-user (which is impacted by data access latency). At the same

time, from the perspective of the whole system, the performance metrics of band-

width consumption and storage use need to be considered to ensure that the dynamic

replications do not incur heavy load on the system.

Initial simulation results show that Caching’s performance in terms of job execu-

Chapter 4: Centralized Replica Placement 151

tion time is better than that of the other algorithms for access patterns containing

both randomness and temporal locality provided client sites have sufficient storage.

However, in cases of limited storage capacity of clients, cached files will get replaced

quickly which in turn will increase access time causing an increase in job execution

time (refer to Figure 4.12). Relatively longer simulation runs highlight the advantage

of PBRP over Caching. PBRP consistently performs better than Caching in terms

of job execution time for the random data access patterns (such as Gaussian and flat

Random) where data requests from clients occur for a wider range of files. This causes

an increased cache misses thereby resulting in high job execution times for Caching

compared to PBRP. The performance improvement of PBRP in terms of job time is

not terribly significant compared to Caching when clients have sufficient storage (i.e.

Configurations 1, 2 and 3) and data access patterns contain temporal locality (i.e.

Zipf-0.85 and Zipf-1.0). In fact once the access patterns contain more locality Caching

in some cases shows somewhat better job execution time than PBRP though the dif-

ference in this case is up to 6%. This is because when the data access patterns follow

Zipf, some file requests occur frequently where many others occur rarely. Thus, the

clients focus on a smaller range of data files with higher frequencies compared to other

access patterns. Caching takes advantage of this temporal locality provided clients

have sufficient storage. This leads us to conclude that the performance of Caching

in terms of job time will be better than PBRP if there is sufficient temporal locality

in the access patterns and the clients have enough storage. In such cases, Caching

also shows somewhat better performance in terms of bandwidth consumption. For

all other cases except Unitary Random Walk with sufficient storage at the clients,

152 Chapter 4: Centralized Replica Placement

Caching leads to the higher bandwidth use due to higher replication cost compared

to PBRP. On the other hand, the naive Best client algorithm consistently performs

worse than other algorithms in most situations.

Considering PBRP and the remaining strategies Fast spread, Cascading, and ABU

there is no sure best strategy for all possible scenarios. Fast spread consistently

performs better than Cascading in terms of job execution time for all access patterns.

The job time savings of Fast spread are up to 13% more than that of Cascading. In

spite of the advantage Fast spread has, it’s overhead in terms of high frequency of

replication is obvious. It also has high storage requirement (up to 36% more) and

consumes more bandwidth (up to 12%) compared to Cascading.

PBRP consistently performs better in terms of job execution time and bandwidth

consumption compared to ABU, Fast Spread, and Cascading for data access patterns

that contain temporal locality (i.e. Zipf-0.85 and Zipf-1.0). The advantage of PBRP

over other algorithms increases once the access patterns contain more locality and

this is the case of interest. The job time savings of PBRP are up to 6% and 25%

more than that for ABU and Fast spread, respectively. This is because when the data

access patterns follow Zipf, some file requests occur frequently making them “popular”

where many others occur rarely. Thus, the clients focus on a smaller range of data

files with higher frequencies compared to other access patterns. Consequently, PBRP

can identify the popular files effectively based on past data access histories. It also

considers the locations of replica servers and clients for determining the replication

destinations, so that the replica server storages are properly utilized.

For the random data access patterns, the performance improvement of PBRP in

Chapter 4: Centralized Replica Placement 153

terms of job time is not terribly significant compared to Fast spread and ABU and in

fact for the flat random distribution Fast spread shows somewhat better job execution

time than PBRP though the difference in this case is marginal (about 2%). This can

be attributed to the fact that the overhead in creating additional replicas in PBRP

is not offset by the advantage of moving them closer to the clients. ABU does not

differ significantly from PBRP in terms of bandwidth consumption in this case. Fast

spread on the other hand leads to the higher bandwidth use (up to 8% more) due to

higher replication cost compared to PBRP.

Compared to the other algorithms PBRP shows moderate requirements for storage

utilization. This moderate use of (relatively cheap) storage space by PBRP makes it

a good candidate when data access performance and bandwidth use are of primary

concern. Overall, the storage capacities of the replica servers have a major impact on

the performance of replication techniques. Increasing the replica server capacity leads

to performance improvement for job execution time and average bandwidth cost as

more (nearby) replicas are possible.

These results lead us to conclude that if there is sufficient temporal locality in the

access patterns then the strategy that would work best is PBRP. With a moderate

amount of storage utilization, PBRP lowers job times significantly, while judiciously

using network resources. If, however, grid users exhibit total randomness in accessing

data, then depending on what is more important in the grid scenario, lower access

times or lesser bandwidth consumption, a trade-off between PBRP and Fast spread

might be warranted. If the chief aim is to elicit faster responses from the system,

Fast spread might work better. On the other hand if conserving bandwidth is of top

154 Chapter 4: Centralized Replica Placement

priority, PBRP is a better grid replication strategy in this scenario.

It is clear that the relative performances of the studied replication algorithms are

not impacted by the data file size distributions. Furthermore, the files can be chopped

into uniform sized blocks to facilitate system deployment. It is thus reasonable to

assign the same size to all the files in the simulation experiments.

In PBRP, the threshold value remains constant irrespective of variation in data

access arrival rate and the available storage capacities of the replica servers. APBRP

addresses this by dynamically changing the threshold value based on the data access

rate and storage availability. Simulation results show that APBRP is able to further

reduce the job execution time and bandwidth use in most cases when the data access

rate regularly fluctuates and decreases at the expense of additional storage cost.

PBRP performs as well as APBRP or somewhat better in terms of job execution time

and bandwidth use for all access patterns due to a significantly increased number of

replicas when the replica servers have sufficient storage and the client request rate is

consistently increasing.

In my algorithms, I assume that recently popular files will tend to be accessed

more frequently than others in the near future. Violation of this assumption will

lead to decreased performance until the next sampling period commences. Also, my

algorithms discussed (in this chapter) don’t consider any limit on the amount of

data a replica server can serve or on the link capacity. Taking these into account

will be important for ensuring the usefulness of my algorithms in real Grid systems.

Furthermore, scientific collections of data comprise tens to hundreds of millions of

files. It will be necessary to determine the feasibility of aggregating access information

Chapter 4: Centralized Replica Placement 155

about files cached at multiple hierarchical levels for real scenarios to ensure efficient

implementation.

My Popularity Based Replica Placement (PBRP) algorithm for hierarchical data

grids and a performance comparison of PBRP to other dynamic replication methods

including ABU, Fast Spread, and Cascading are published in [SGE08]. APBRP and

its performance compared to the non-adaptive counterpart (PBRP) are presented

in [SGE10a; SGE09].

Chapter 5

Distributed Replica Placement

In grids where operation control is decentralized and resources are under the

control of their own local administrative domains, placing the replicas of an object

through a centralized algorithm may be impractical. In this chapter, I introduce a

family of new highly distributed replica placement algorithms for hierarchical data

grids. As with my centralized algorithms, my distributed algorithms exploit data ac-

cess histories to identify popular files and determines replication locations to improve

access performance by minimizing overall replication overhead (access and update)

for a given traffic pattern. The replica placement problem is formulated using a dy-

namic programming method and its solution is obtained for large-scale hierarchical

data grids in a distributed fashion.

I also now consider the issue of quality of service (QoS) in the replica placement

problem to determine the locations of the replicas to improve system performance

and at the same time satisfy the quality requirements both from the user and system

perspectives. Each user in the lowest tier of the data grid hierarchy may have some

QoS requirements on retrieving requested data. Such a requirement mandates that

all requests generated by the user will be serviced by a server within the QoS bound.

156

Chapter 5: Distributed Replica Placement 157

From the system perspective, link and workload capacity constraints are added to

the replica placement problem while still satisfying the quality requirements specified

by the users. Each link in the data grid hierarchy has some capacity constraint on

transferring data down the hierarchy. Furthermore, it is assumed that the workload

capacity of each replica server is bounded. The goal is to find a replication strategy

with the minimal replication cost that limits the workload of each server to its capacity

and ensures that none of the communication links is congested. Thus, the novelty of

my QoS-aware algorithm comes from the ability to integrate multiple types of QoS

both from user and system (workload and link capacity constraints) perspectives.

The performance of my algorithms is evaluated with simulation experiments over

a wide range of parameters and is compared to a number of other similar existing

replica placement algorithms. The results demonstrate how the effectiveness of replica

placement is affected by numerous factors such as grid network characteristics (i.e.

number of nodes, node and link capacities, traffic patterns, etc.), QoS parameters,

and so on.

5.1 Base System Model

As mentioned, the replica placement problem addressed in this thesis focuses on

hierarchical data grids. As in the centralized case, such a data grid is modeled as

an undirected tree T = (V, E), where V is a set of grid sites and E is the set of

communication links among the sites. Each link (u, v) ∈ E is associated with a cost

d(u, v) that denotes the communication cost of the link. The communication cost of a

path is defined as the sum of the communication cost of the links along the path. As

158 Chapter 5: Distributed Replica Placement

before, it is assumed that all data are initially located at the root, and a data replica

can be placed in any node other than the root. All the leaves of the tree are local

sites where users can issue requests to access their required data. Each leaf node

v has associated non-negative numbers {c(v, f)}, which are the access frequencies

(representing the popularities) of each data file, f , at v during a certain period of

time. These data access frequencies contribute to the weighted communication cost

for servicing the data requests from the clients. To maintain data consistency, the

root node r issues updates to every replica server. The update frequency µ(f) denotes

the number of update operations during a certain time period for the data file f . I

assume that update operations must first be performed on the authoritative/original

copy stored at the root, where they are then propagated to the replica servers. That

is, updates only come from the root and the replica servers act as repositories for

data retrieval. The communication involved in this update process is captured as an

“update cost”. The number of replicas to be placed will be a trade-off between the

cost of data access by clients and the cost of data updates from the root.

I use replication cost, in part, to evaluate my replication strategy. Let R be a set

of replica servers. For the replica servers in R the replication cost, cost(R), is defined

as the sum of the read cost RC(R) and the update cost UC(R):

cost(R) = RC(R) + UC(R) (5.1)

a) Read cost: Given a set of replica servers, R, the read cost is defined to be the

overall cost of accessing data required by the clients. Let F (v, R) denote the lowest

ancestor of v which is contained in R, (i.e. the first replica server that is met while

going from the client v to r). Again, F (v, R) could be v itself when a replica is placed

Chapter 5: Distributed Replica Placement 159

Tier 0

Tier 1

Tier 2

Tier 3

rootr

ba

c d e

f g h i j

F

FF

F- replica of a data file f

Access freq. 4 3 2 2 6

T
Update rate = 3

R- {b, c, d}

Tier 0

Tier 1

Tier 2

Tier 3

rootr

cb

d e f g

h i j k l

R

RR

R- replica of a file

 3 2 1 2 4

3

T

Figure 5.1: An example hierarchical data grid with access and update frequencies

at v, or it could be r when no replica is met on its way to r.

Given the access frequency c(v, f) of a client v for a file f , the read cost for client

v to access f is:
c(v, f).d(v, F (v,R)) (5.2)

The total read cost for all clients in T to access f is therefore:

RC(R) =
∑
v∈T

c(v, f).d(v, F (v,R)) (5.3)

I still assume that both reads and updates require one bandwidth unit per data file

transfer per hop of the grid network1. For example, in Figure 5.1 if the replication

strategy R is {b, c, d} for file f , then the read cost is 4+3+2+(2×2)+(2×6) = 25.

b) Update cost: By using a multicast communication model, the root, r, can multi-

cast data to all replica servers via a shortest path tree (SPT) [Cah98]. The SPT is

an induced “update distribution tree” for T , which contains all the replica servers.

Multicasting involves sending a single copy of the data over the SPT to all replica

servers.
1This assumption generalizes easily.

160 Chapter 5: Distributed Replica Placement

Given an update frequency µ(f) for a file f , the update cost of replicas in R is

defined as follows. Let p(v) be the parent of node v in the update distribution tree,

and Tv be the subtree rooted at node v. If Tv ∩ R 6= φ, the link (v, p(v)) contributes

to the update multicast. Therefore, the update cost is the sum of the data transfer

costs from the links (v, p(v)) when v 6= r.

UC(R) =
∑

Tv∩R 6=φ

µ(f).d(v, p(v)) (5.4)

If we assume that the number of updates issued by the root is 3 for a particular

time period then, for example, in Figure 5.1 (where the replication strategy R for file

f is {b, c, d}) the update cost is 6 + 6 + 3 = 15.

The total replication cost of all clients in T to access file f with a set of replicas

R can thus be defined as:

cost(R) =
∑
v∈T

c(v, f).d(v, F (v,R)) +
∑

Tv∩R 6=φ

µ(f).d(v, p(v)) (5.5)

Considering Figure 5.1, the total replication cost (read and update) will be 25 + 15

= 40. The problem that needs to be solved is therefore the construction of some R

among the grid sites that minimizes this cost under a given traffic pattern (i.e. a

recurring pattern of access frequencies from clients for different files).

5.2 Base Distributed Replica Placement Algorithm

I now describe the base form (no QoS support) of my new distributed popularity

based replica placement (DPBRP) algorithm for allocating replicas in a hierarchical

data grid to minimize the total replication cost. We show that the replica placement

problem described can be modeled as a dynamic programming problem and its solu-

Chapter 5: Distributed Replica Placement 161

Tier 3 (clients)

Rootr

s

v

a b c
Access freq. 4 3 5 5

d

Tier 2

Tier 1

Tier 0
 Update rate = 3

T

Figure 5.2: Example sub-tree for illustrating cost function

tion can be obtained for large-scale hierarchical data grids in a distributed fashion.

Using the replication cost function, it is possible for each node to calculate the cost

of creating a local replica and the cost of transferring data from a server higher up

in the hierarchy. In DPBRP, a parent node uses the results obtained by its children

to assess the cost of creating a local replica versus the cost of transferring data to

access a remote replica. This process starts at the leaves and continues till the root

is reached. The process of actually placing the replicas begins at the root and ends

at the leaves where each node determines (based on the previously calculated results)

whether to create a replica locally or not. The details of the algorithm follow.

5.2.1 Cost Function

We begin by defining some terminology. Consider a hierarchical data grid T with

root r. If v is a node in T , then we use Tv to denote the subtree rooted at v and T ′
v =

Tv − v, namely the descendants of v. Also, we use a(v, i) to denote the i-th ancestor

of v while traversing towards the root of T .

162 Chapter 5: Distributed Replica Placement

We now define a cost function C. C(v, i) indicates the replication cost contributed

by Tv when a replica is placed at a(v, d) , 0 ≤ d ≤ i. C(v, 0) represents the replication

cost for subtree Tv when the replica is placed at v. In this case, the replication cost

includes the read cost of all the descendants of v and the update cost for the replica

at v. For 1 ≤ d ≤ i when the replica is placed in any of the ancestors of v, C(v, d)

represents the replication cost for subtree Tv which includes only the read cost of all

the nodes in Tv. Figure 5.2 illustrates an example sub-tree for discussion of the cost

function. Assume that both read and update operations require one bandwidth unit

per data file transfer per hop of the data grid and the number of updates issued by

the root is 3 for a particular time period. If a replica is placed at v, the replication

cost for Tv is C(v, 0) = 17(read cost) + 6(update cost over 2 hops) = 23. However,

if we place a replica at s, the replication cost for Tv is C(v, 1) = 34(read cost over 2

hops) = 34.

5.2.2 Bottom-up Computation Phase

Replica placement in DPBRP is done in two phases. Phase one, bottom-up com-

putation, begins at the clients in the lowest tier of the hierarchy and ends at the root.

It computes the C functions for every node. Each grid node v calculates the replica-

tion cost, C(v, d), for the subtree rooted at it for each value of d when 0 ≤ d ≤ i and

a(v, i) = r. Thus, node v calculates the cost function for each possible distance up

to the root. For each case it also determines the optimal location of the replica, as

described below. A node calculates its cost functions only after all its children have

done so.

We need to calculate an initial (replication) cost for each node considering each

Chapter 5: Distributed Replica Placement 163

replica distance (d) possibility towards the root as described in Section 5.2.1. The

optimal replication cost for that node when d = 0 is then calculated by comparing

its initial cost with the cost of placing replicas at all of its children nodes (if there is

any). For d ≥ 1, the optimal replication cost is determined by comparing its initial

cost for each value of d with the cost of placing replica at the node itself. We start

by calculating an initial cost for each client (i.e. leaf) node which then calculates its

optimal cost as described above. The initial cost for a non-client (i.e. non-leaf) node

is then computed by combining the optimal replication costs of its children. The

details of the computation follow.

For a client node, v, an initial cost function, iC, is calculated for each value of d

as:

iC(v, d) =


UC(v), if d = 0

RC(v, d), if 1 ≤ d ≤ i and a(v, i) = r

(5.6)

When d = 0, the replication cost does not include a read cost since the replica is at v

itself. For d ≥ 1, the replication cost (as explained earlier in Section 5.2.1) for subtree

Tv (in this case only v) includes only the read cost of v. For a non-client node, v, iC,

is calculated for each value of d as:

iC(v, d) =


∑

n∈ch(v) C(n, d + 1) + UC(v), if d = 0∑
n∈ch(v) C(n, d + 1), if 1 ≤ d ≤ i and a(v, i) = r

(5.7)

where ch(v) denotes the children of node v. iC represents the initial replication cost

for subtree Tv. When d = 0 (which means the potential replica is at v itself), the

initial cost consists of the replication costs of its children nodes considering the replica

one hop away and the update cost from the root to v. For d ≥ 1, the initial cost

164 Chapter 5: Distributed Replica Placement

includes only the replication costs of its children since the potential replica is not at

v.

We then calculate the optimal replication cost, C, and the corresponding replica

location in the data grid for v considering each distance possibility, d. We first need

to calculate the sum of costs for all children of v when d = 0 as:

chC(v, 0) =


∑

n∈ch(v),ch(v) 6=φ C(n, 0), v is not a client

iC(v, 0) v is a client

(5.8)

If v is a non-client node, the above sum includes the replication costs for all of its

children considering potential replicas at themselves (i.e. d = 0). On the other hand,

if v is a client node, the sum includes only the initial replication cost for placing the

replica at v itself since it does not have any children.

When d = 0, the dynamic programming equation for optimal replication cost for

Tv and replica location is then formulated as:

C(v, d) =


chC(v, 0), if iC(v, d) > chC(v, 0)

iC(v, d), otherwise

(5.9)

loc(v, d) =


−1, if iC(v, d) > chC(v, 0)

v, otherwise

(5.10)

This means that if the sum of costs for all children of v is less than the initial cost

calculated, it is cheaper to have a replica in each child of v and thus the replica

location loc is set to -1 to indicate that the replicas should be placed in the children

of v. If this is not true, the replica will be created locally at v and the replication

cost will be the initial cost as calculated.

Chapter 5: Distributed Replica Placement 165

When 1 ≤ d ≤ i and a(v, i) = r,

C(v, d) =


C(v, 0), if iC(v, d) > C(v, 0)

iC(v, d), otherwise

(5.11)

loc(v, d) =


loc(v, 0), if iC(v, d) > C(v, 0)

a(v, d), otherwise

(5.12)

Here, the cost calculated for d = 0 is compared to the cost obtained for each distance

possibility, d ≥ 1, to determine the optimal cost and the replica location. If the cost

at d = 0, C(v, 0), is less than the cost for higher values of d, C(v, d) is set to C(v, 0)

and the replica location is set to the location given by loc(v, 0). Otherwise, the replica

will be created higher in the hierarchy based on the value of d and the location will

be d-th ancestor of v. The pseudo code for bottom-up computation of replication

cost for a client (leaf) and a non-client (middle-tier) node is shown in Algorithms 5.1

and 5.2, respectively. The computation is triggered upon receiving a start message

by a client node at the beginning of same sampling interval. The computation in a

middle-tier node only starts upon receiving the costs from its children.

Theorem 5.2.1 Consider a hierarchical data grid T with r as the root, T ′
r = Tr− r,

namely the descendants of r, and an overall cost function C. There exists an optimal

replica set R in T ′
r that minimizes C for a given traffic pattern.

Proof We show the correctness of Equations 5.9 - 5.12 to illustrate the correctness of

the theorem. We consider two different types of grid nodes: leaf nodes and non-leaf

nodes.

166 Chapter 5: Distributed Replica Placement

Algorithm 5.1 Compute-Replication-Cost-Client(v)

1: Receive START message
2: Cv[0]← UCv

3: locv[0]← v
4: for d← 1 to distanceToRoot do
5: if RCv[d] < Cv[0] then
6: Cv[d]← RCv[d]
7: locv[d]← a(v, d)
8: else
9: Cv[d]← Cv[0]

10: locv[d]← locv[0]
11: end if
12: end for
13: Send Cv to parent

Algorithm 5.2 Compute-Replication-Cost-Non-Client(v)

1: Receive Cch from a child ch of v // Cch refers to the cost for child ch for each
distance value towards the root

2: if Cch of all children of v received then
3: iCv[0]← sum(Cch[1]) + UCv

4: chCv[0]← sum(Cch[0])
5: if chCv[0] < iCv[0] then
6: Cv[0]← chCv[0]
7: locv[0]← -1
8: else
9: Cv[0]← iCv[0]

10: locv[0]← v
11: end if
12: for d← 1 to distanceToRoot do
13: iCv[d]← sum(Cch[d + 1])
14: if Cv[0] < iCv[d] then
15: Cv[d]← Cv[0]
16: locv[d]← locv[0]
17: else
18: Cv[d]← iCv[d]
19: locv[d]← a(v, d)
20: end if
21: end for
22: Send Cv to parent
23: end if

Chapter 5: Distributed Replica Placement 167

For a leaf node when d = 0, T contains only a single node which is the root. Since

there is no cost for updating replicas and also no read cost in this case, the optimality

of the algorithm is trivially true.

For a non-zero distance between the client (a leaf node) and the root, i.e. when

d ≥ 1, the cost calculated for d = 0 (replica is in the client itself) is compared to the

cost obtained for each replica distance possibility, d ≥ 1, to determine the optimal

cost and replica location. For a client v, if the cost while d = 0 (update cost for

the replica in v) is less than the cost for d ≥ 1 (read cost of v considering replica at

any ancestor a(v, d)) it is cheaper to use the replica from v. Otherwise, the replica is

created at a(v, d) higher up in the hierarchy based on the value of d.

To complete the proof, it remains to show that the algorithm produces optimal

results for non-leaf nodes in the grid. Recall that a grid node only starts to calculate

the cost functions after all its children have completed their calculations. We showed

that the cost calculated for a leaf node is optimal for all replica distance possibilities.

So, the non-leaf nodes one up from the bottom of the grid hierarchy have children

(leaf nodes) whose computed replication costs are optimal. More generally, we can

assume that the cost for a subtree rooted at a child of a non-leaf node is optimal

for all possible replica distances. We need to show that that the algorithm optimally

allocates replicas in the tree rooted at any non-leaf node, v, for all distance values.

When d = 0, we find from Equations 5.9 and 5.10 that the cost for the subtree rooted

at the non-leaf is the minimum of the cases where:

1. a replica is placed at v. The cost is the sum of the costs of the subtrees that

are rooted at the children of v with d = 1 and the update cost at v.

168 Chapter 5: Distributed Replica Placement

2. no replica is placed at v. The cost is the sum of the costs of the subtrees that

are rooted at the children of v with d = 0.

The minimum cost thus obtained is optimal for any node v.

5.2.3 Top-down Replica Placement Phase

In the second phase, DPBRP places replicas from the top to the bottom of the grid.

The process begins at the root and ends at the leaves with each node independently

determining whether a replica should be created locally or not. From calculations in

the bottom-up computation phase, the root node contains the optimal replication cost

C(r, 0) for the entire data grid and the location of the replica loc(r, 0). The value of

loc(r, 0) can be either r (the root itself) or -1 (children nodes at tier-1). The value of

loc(r, 0) being r indicates that the replica is zero distance away from the root. So, the

root sends a message, either distance = 0 or distance = −1 to its children. A child

node, v, which receives such a distance message increases the value of distance by

one and then checks loc(v, distance). If the value of loc(v, distance) is v, a replica is

placed locally and v sets distance = 0 and sends the distance message to its children

. If the value of loc(v, distance) is -1 v sets distance = −1 before sending it to its

children. Finally, if the value of loc(v, distance) is a(v, distance) v sends the distance

message to its children without modifying the value. When the message distance is

received by all clients at the lowest tier of the hierarchy, the replica placement process

ends. The pseudo code for replica placement for root, a non-client (middle-tier), and

a client (leaf) node is shown in Algorithms 5.3, 5.4 and 5.5, respectively.

Chapter 5: Distributed Replica Placement 169

Algorithm 5.3 Place-Replica-Root(r)

1: Receive Cch from a child ch of v
2: if Cch of all children of v received then
3: iCr[0]← sum(Cch[1]) + UCv

4: chCr[0]← sum(Cch[0])
5: if chCr[0] < iCr[0] then
6: Cr[0]← chCv[0]
7: locr[0]← -1
8: else
9: Cr[0]← iCr[0]

10: locr[0]← r
11: end if
12: if locr[0] = r then
13: distance← 0
14: else if locr[0] = −1 then
15: distance← -1
16: end if
17: Send distance to all children of r
18: end if

Algorithm 5.4 Place-Replica-Non-Client(v)

1: Receive distance message from parent
2: distance← distance + 1
3: if locv[distance] = v then
4: distance← 0
5: copy a replica at node v
6: else if locv[0] = −1 then
7: distance← -1
8: end if
9: Send distance to all children of v

5.2.4 Placement Example

Figure 5.3(a) shows an example data grid with 15 nodes. The access counts for a

given data file are shown in the client-tier of the hierarchy and the number of updates

issued by the root is assumed to be 4 for the time period considered. We continue to

assume that both read and update operations require one bandwidth unit per data file

170 Chapter 5: Distributed Replica Placement

Algorithm 5.5 Place-Replica-Client(v)

1: Receive distance message from parent
2: distance← distance + 1
3: if locv[distance] = v then
4: copy a replica at node (leaf) v
5: end if

Grid sites (v) {cost(v,d), loc(v,d)}
Tier 3 Tier 2 Tier 1 Tier 0 d = 0 d = 1 d = 2 d = 3

8 (12, 8) (4, 4) (8, 2) (12, 1)
 4 (15, 4) (14, 2) (15, 4)

9 (12, 9) (3, 4) (6, 2) (9, 1)
 2 (36, 2) (36, 1)

10 (12, 10) (10, 5) (12, 10) (12, 10)
 5 (21, 5) (18, 2) (21, 1)

11 (12, 11) (3, 5) (6, 5) (9, 1)
 1 (71, 1)

12 (12, 12) (7, 6) (12, 12) (12, 12)
 6 (20, 6) (20, 6) (20, 6)

13 (12, 13) (5, 6) (10, 3) (12, 13)
 3 (37, -1) (35, 1)

14 (12, 14) (1, 7) (2, 3) (3, 1)
 7 (17, 7) (14, 3) (15, 1)

15 (12, 15) (8, 7) (12, 15) (12, 15)

4 3 10 1

Root 1

4

2 3

5 6 7

8 9 10 11 12 13 14 15

3 7 5 8

Update rate = 4

(a)

(Clients)

Access counts

Tier 3

Tier 2

Tier 1

Tier 0

(b)

Figure 5.3: (a) A hierarchical data grid with client access counts, (b) Calculation of
replication costs and replica locations for the example data grid

transfer per hop of the grid network. Figure 5.3(b) shows the calculation of cost and

loc functions for each grid node considering all possible distance for the replication

location. The calculation starts from the client tier (tier 3) of the hierarchy and ends

Chapter 5: Distributed Replica Placement 171

at the root. Each node sends its cost and loc values to its parent which receives these

values from its children and then calculates its own cost and loc functions.

In the top-down replica placement process, the root determines that the optimal

replication cost for the entire data grid is 71 and sets distance to zero before sending

messages to its children. The placement process is then carried out as described in

Section 5.2.3. For example, node 2 receives distance = 0 and increments it by one

and checks the entry where d = 1. The value of loc is 1, therefore, it sends distance

to all its children. Node 4 receives distance = 1 and increments it by one and checks

the entry where d = 2. The value of loc is 4 which is the node itself. So, node 4 copies

a replica (marked in grey in Figure 5.3(a)) and sets distance = 0 before sending the

message to its children. Similarly, a replica is placed in nodes 6, 10, and 15 in tier 2

and tier 3 based on the distance and loc values. The total resulting replication cost

for the replication strategy (4,6,10,15) is 31(read cost) + 40 (update cost) = 71 which

is the same as the cost calculated at the root node in Figure 5.3(b).

5.2.5 Computational Complexity

I now analyze the computational complexity of my algorithm by focusing on the

bottom-up computation of the cost function since this dominates the total computa-

tion time. For each node v in the data grid we need to compute its C(v, d) for the

subtree rooted at it for each value of d, 0 ≤ d ≤ i, and a(v, i) = r. Node v computes

the cost function for each replica distance possibility d by combining the results from

all its children. Node v’s computation consists of (i + 1) sums of |ch(v)| elements

where i is the distance of v from the root, r, and |ch(v)| denotes node v’s number of

children. Thus, the number of computations for node v is (i + 1).|ch(v)|. The overall

172 Chapter 5: Distributed Replica Placement

number of computations for all nodes in the grid is:

∑
v∈V

(iv + 1).|ch(v)|.

where iv denotes the distance of v from the root.

If the total number of grid nodes, |V | = N , it is clear that iv ≤ N − 1 for all v.

So, we have

∑
v∈V

(iv + 1).|ch(v)| ≤ N.
∑
v∈V

|ch(v)| = N(N − 1)

The above equality holds because the total number of children in the data grid

over all the nodes is N −1, since each node, except the root, has a parent. Therefore,

the total cost of computing C functions for all nodes is O(N2). Now, as a special

case, if the data grid structure is a balanced binary tree, we get iv ≤ log2N for all v.

Hence, the overall complexity becomes O(Nlog2N).

As mentioned, the computation of replication cost and location begins at the

clients in the lowest tier of the hierarchy and ends at the root. This computation is

done concurrently on individual client nodes and is sent to the parent nodes. A parent

node calculates its cost functions once the cost information from all of its children

are received.

5.3 Performance Evaluation of the Base Distributed

Algorithm

To determine the effectiveness of the DPBRP algorithm two different scenarios

were considered: when the data request arrival rate remains constant, and when

Chapter 5: Distributed Replica Placement 173

it regularly fluctuates, as described earlier. I compared DPBRP with PBRP (non-

adaptive) when the access rate was constant for the different server configurations. For

the other case, I compared DPBRP, PBRP, and its adaptive counterpart, APBRP.

As it is already shown that the file size distribution does not impact the relative

performances of the replication algorithms, the remaining experiments use a file size

of 10GB only.

Zipf−0.85 Guas. Unit. Rand. Seq.
2

2.5

3

3.5

4

4.5

5

5.5

6

6.5
x 10

5

Data access patterns

Jo
b

tim
es

 (
se

c)

Job times for constant data access rate

PBRP
DPBRP

Figure 5.4: Execution time for DPBRP and PBRP, Configuration one, Constant rate

5.3.1 Job execution time

We begin by considering DPBRP’s performance in terms of job execution time,

the primary consideration from the perspective of the data consumer.

Constant data access rate

Figure 5.4 compares the job execution times for the DPBRP and PBRP algo-

rithms using storage configuration one (refer to Figure 4.8) when the access rates

from clients remain constant. In most cases, DPBRP shows somewhat shorter exe-

cution times than PBRP. This is because the replica locations selected by DPBRP

174 Chapter 5: Distributed Replica Placement

1 2 3 4 5
100

150

200

250

300

350

400

Replica server configurations

N
o.

 o
f r

ep
lic

as

Zipf

PBRP, Zipf−0.85
DPBRP, Zipf−0.85
PBRP, Zipf−1.0
DPBRP, Zipf−1.0

1 2 3 4 5
50

100

150

200

250

300

350

400

Replica server configurations

N
o.

 o
f r

ep
lic

as

Random

PBRP, Gaussian
DPBRP, Gaussian
PBRP, Unitary
DPBRP, Unitary
PBRP, Random
DPBRP, Random

Figure 5.5: No. of replicas for all storage configurations, Constant rate

reduce the data access latency experienced which in turn reduces the overall job ex-

ecution time. It is noteworthy that DPBRP also requires fewer replicas than PBRP.

As a representative example, using the Zipf-0.85 distribution and storage configura-

tion one, the approximate number of replicas created by DPBRP and PBRP are 230

and 265, respectively. Figure 5.5 shows the number of replicas created for different

storage configurations for all data access patterns. The storage capacity of the

1 2 3 4 5
2.5

2.6

2.7

2.8

2.9

3

3.1

3.2
x 10

5

Replica server configurations

Jo
b

tim
es

 (
se

c)

Zipf

PBRP, Zipf−0.85
DPBRP, Zipf−0.85
PBRP, Zipf−1.0
DPBRP, Zipf−1.0

1 2 3 4 5
3

3.2

3.4

3.6

3.8

4

4.2

4.4

4.6

4.8

5

5.2
x 10

5

Replica server configurations

Jo
b

tim
es

 (
se

c)

Random

PBRP, Gaussian
DPBRP, Gaussian
PBRP, Unitary
DPBRP, Unitary
PBRP, Random
DPBRP, Random

Figure 5.6: Execution time for all access patterns and configurations, Constant rate

Chapter 5: Distributed Replica Placement 175

Zipf−0.85 Gaus. Unit. Rand. Seq.
2

2.5

3

3.5

4

4.5

5

5.5

6

6.5
x 10

5

Data access patterns

Jo
b

tim
es

 (
se

c)

Job times as access arrival rate fluctuates

PBRP
APBRP
DPBRB

Figure 5.7: Execution time, Configuration one, Fluctuating rate

replica servers has a noticeable impact on the performance of the placement algo-

rithms. With decreasing capacity, the execution times of all methods are increased

but by different amounts. Figure 5.6 shows the execution times for all distributions

for all five storage configurations. DPBRP shows shorter run times for all the cases.

Fluctuating data access rate

Figure 5.7 shows the times for DPBRP, APBRP, and PBRP using configuration

one when the request arrival rate from the clients fluctuates. DPBRP shows shorter

execution times for all access patterns. Among the other two algorithms APBRP

displays shorter execution times in most cases. This is because APBRP adjusts the

threshold value based on the varying request arrival rate which leads to the creation

of more replicas which decreases the run time. Using the Zipf-0.85 distribution and

storage configuration one, the approximate number of replicas created by APBRP

and PBRP are 275 and 240 respectively. Figure 5.8 shows the number of replicas

created for different storage configurations for all Zipf-0.85 and Random data access

176 Chapter 5: Distributed Replica Placement

1 2 3 4 5
50

100

150

200

250

300

350

400

Replica server configurations

N
o.

 o
f r

ep
lic

as

Zipf−0.85

PBRP
APBRP
DPBRB

1 2 3 4 5
50

100

150

200

250

300

350

400

Replica server configurations

N
o.

 o
f r

ep
lic

as

Gaussian

PBRP
APBRP
DPBRB

1 2 3 4 5
50

100

150

200

250

300

350

400

Replica server configurations

N
o.

 o
f r

ep
lic

as

Unitary

PBRP
APBRP
DPBRB

1 2 3 4 5
50

100

150

200

250

300

350

400

Replica server configurations

N
o.

 o
f r

ep
lic

as
Random

PBRP
APBRP
DPBRB

Figure 5.8: No. of replicas for all storage configurations, Fluctuating rate

patterns. The benefit of DPBRP over the other two algorithms reflects the fact that,

like, APBRP, it is able to adapt to changing conditions. This is due to fact that

the DPBRP takes into account access frequencies from clients while determining the

replica locations by calculating replication costs.

Figure 5.9 compares the job execution times for all access patterns and storage

configurations as the access rate fluctuates. With decreasing storage size, the execu-

tion times are increased in most cases for all the algorithms but by different amounts.

DPBRP tends to show shorter execution times for all storage configurations and dis-

Chapter 5: Distributed Replica Placement 177

1 2 3 4 5
2.5

2.6

2.7

2.8

2.9

3

3.1

3.2
x 10

5

Replica server configurations

Jo
b

tim
es

 (
se

c)
Zipf−0.85

PBRP
APBRP
DPBRB

1 2 3 4 5
4.2

4.4

4.6

4.8

5

5.2

5.4

5.6

x 10
5

Replica server configurations

Jo
b

tim
es

 (
se

c)

Gaussian

PBRP
APBRP
DPBRB

1 2 3 4 5

3

3.2

3.4

3.6

3.8

4

4.2

4.4
x 10

5

Replica server configurations

Jo
b

tim
es

 (
se

c)

Unitary

PBRP
APBRP
DPBRB

1 2 3 4 5
4

4.2

4.4

4.6

4.8

5

5.2

5.4

5.6

5.8
x 10

5

Replica server configurations

Jo
b

tim
es

 (
se

c)

Random

PBRP
APBRP
DPBRB

Figure 5.9: Execution time for all access patterns and configurations, Fluctuating
rate

tributions. The benefit of DPBRP over others decreases when data accesses exhibit

a low degree of temporal locality and it is therefore harder to select a lasting optimal

placement.

5.3.2 Average Bandwidth Cost

Bandwidth consumption is an issue both for network providers and end-users

(since excessive use of bandwidth can lead to slow downs due to network congestion).

In almost all cases, DPBRP consumes less bandwidth than its predecessors while also

178 Chapter 5: Distributed Replica Placement

Zipf−0.85 Guas. Unit. Rand. Seq.
2.4

2.6

2.8

3

3.2

3.4

3.6

3.8

x 10
4

Data access patterns

A
ve

ra
ge

 b
/w

 c
os

t

Average b/w cost for constant data access rate

PBRP
DPBRP

Figure 5.10: Average bandwidth for DPBRP and PBRP, Configuration one, Constant
rate

providing shorter run times for accessing jobs.

1 2 3 4 5
2.5

2.6

2.7

2.8

2.9

3

3.1

3.2

3.3
x 10

4

Replica server configurations

A
ve

ra
ge

 b
/w

 c
os

t

Zipf

PBRP, Zipf−0.85
DPBRP, Zipf−0.85
PBRP, Zipf−1.0
DPBRP, Zipf−1.0

1 2 3 4 5
3

3.1

3.2

3.3

3.4

3.5

3.6

3.7

3.8

3.9

4
x 10

4

Replica server configurations

A
ve

ra
ge

 b
/w

 c
os

t

Random

PBRP, Gaussian
DPBRP, Gaussian
PBRP, Unitary
DPBRP, Unitary
PBRP, Random
DPBRP, Random

Figure 5.11: Average bandwidth for DPBRP and PBRP, All configurations, Constant
rate

Constant data access rate

Figure 5.10 shows the average bandwidth consumption for configuration one. For

all access patterns, the costs of DPBRP are less since more client requests are served

Chapter 5: Distributed Replica Placement 179

by mid-tier nodes. As a result, the bandwidth used in the upper tier links is decreased

Values

Row Labels Read Replicate

1 37988.80952 19004.96032

PBRP 19167.66667 9520.388889

DPBRP 18821.14286 9484.571429

2 38014.09211 18973.73158

PBRP 19185.25 9478.1

DPBRP 18828.84211 9495.631579

3 38051.08224 18827.46053

PBRP 19209.1875 9377.25

DPBRP 18841.89474 9450.210526

4 38122.61607 16441.27679

PBRP 19272.42857 8041.214286

DPBRP 18850.1875 8400.0625

5 40393.57778 14002.78889

PBRP 20432.27778 6762.388889

DPBRP 19961.3 7240.4

Grand Total 192570.1777 87250.2181

15000

17000

19000

21000

23000

25000

27000

29000

31000

P
B
R
P

D
P
B
R
P

P
B
R
P

D
P
B
R
P

P
B
R
P

D
P
B
R
P

P
B
R
P

D
P
B
R
P

P
B
R
P

D
P
B
R
P

1 2 3 4 5

A
v
e

ra
g

e
 b

/w
 c

o
s
t

Replica server configurations

Zipf-0.85

Replicate

Read

Values

Row Labels Read Replicate

1 54482.33333 17165.33333

PBRP 27314 8664

DPBRP 27168.33333 8501.333333

2 54691 16810

PBRP 27482.5 8411.5

DPBRP 27208.5 8398.5

3 54550 16702.5

PBRP 27380 8415.5

DPBRP 27170 8287

4 55137.33333 15227.5

PBRP 27709 7773.5

DPBRP 27428.33333 7454

5 56904.31471 11904.79118

PBRP 28534.55 5994.85

DPBRP 28369.76471 5909.941176

Grand Total 275764.9814 77810.12451

22000

24000

26000

28000

30000

32000

34000

36000

38000

P
B
R
P

D
P
B
R
P

P
B
R
P

D
P
B
R
P

P
B
R
P

D
P
B
R
P

P
B
R
P

D
P
B
R
P

P
B
R
P

D
P
B
R
P

1 2 3 4 5

A
v
e

ra
g

e
 b

/w
 c

o
s
t

Replica server configurations

Gaussian

Replicate

Read

Figure 5.12: Average bandwidth costs (read and replicate) for Zipf and Gaussian
access patterns

and the average bandwidth used by DPBRP is lower. As mentioned, PBRP requires

more replicas than DPBRP. Thus, PBRP also results in more bandwidth consumption

for updating the additional replicas. For Zipf-0.85, the difference between DPBRP

and its counterpart is more pronounced. Figure 5.11 shows the bandwidth cost for

all access patterns and storage configurations. DPBRP shows less average bandwidth

consumption for all storage configurations. As the storage capacity decreases, the

bandwidth costs of both strategies tend to decrease. This happens due to a lesser

180 Chapter 5: Distributed Replica Placement

frequency of replica creation resulting in a lower replication cost. This fact is reflected

in Figure 5.12 for the Zipf-0.85 and Gaussian access patterns.

Zipf Gaus. Unit. Rand. Seq.
2.5

3

3.5

4
x 10

4

Data access patterns

A
ve

ra
ge

 b
/w

 c
os

t

Average b/w cost as access arrival rate fluctuates

PBRP
APBRP
DPBRB

Figure 5.13: Average bandwidth, Configuration one, Fluctuating rate

Fluctuating data access rate

Figure 5.13 shows the average bandwidth costs of DPBRP, APBRP, and PBRP for

configuration one as the request arrival rate fluctuates. DPBRP requires less band-

width for most file access patterns. DPBRP’s increased number of client requests

served by mid-tier nodes compared to the other algorithms results in decreased band-

width consumption. APBRP normally shows less and in some cases slightly higher

bandwidth consumption compared to its non-adaptive counterpart due to the addi-

tional replicas in APBRP that incur some extra data transfer cost.

The average bandwidth costs for all storage configurations and access patterns

under regular fluctuation in request rates are shown in Figure 5.14. DPBRP shows

less average bandwidth consumption for all storage configurations but the benefit of

DPBRP over other algorithms decreases as the storage capacities of replica servers

Chapter 5: Distributed Replica Placement 181

1 2 3 4 5
2.5

2.6

2.7

2.8

2.9

3

3.1

3.2

3.3

3.4

3.5
x 10

4

Replica server configurations

A
ve

ra
ge

 b
/w

 c
os

t
Zipf−0.85

PBRP
APBRP
DPBRB

1 2 3 4 5
3

3.1

3.2

3.3

3.4

3.5

3.6

3.7

3.8

3.9

4
x 10

4

Replica server configurations

A
ve

ra
ge

 b
/w

 c
os

t

Gaussian

PBRP
APBRP
DPBRB

1 2 3 4 5
3

3.1

3.2

3.3

3.4

3.5

3.6

3.7

3.8

3.9

4
x 10

4

Replica server configurations

A
ve

ra
ge

 b
/w

 c
os

t

Unitary

PBRP
APBRP
DPBRB

1 2 3 4 5
3

3.1

3.2

3.3

3.4

3.5

3.6

3.7

3.8

3.9

4
x 10

4

Replica server configurations

A
ve

ra
ge

 b
/w

 c
os

t

Random

PBRP
APBRP
DPBRB

Figure 5.14: Average bandwidth, All algorithms, Configuration One, Fluctuating
Rate

are reduced and it too is hard pressed to select replica locations. Figure 5.15 shows

read and replication cost components for the Zipf-0.85 and random access patterns.

As before, both read and replication costs for DPBRP are less compared to the

centralized counterparts.

5.3.3 Storage Use

The total use of storage in a data grid is important to grid providers but due to

its relatively low cost can be effectively traded-off for improvements in job execution

time and network bandwidth consumed, as needed.

182 Chapter 5: Distributed Replica Placement

Values

Row Labels Read Replicate

1 55571.5 28750.33333

PBRP 18755 9708.333333

APBRP 18486.5 9783

DPBRP 18330 9259

2 55706.63333 28614.26667

PBRP 18818.33333 9631

APBRP 18506.8 9763.266667

DPBRP 18381.5 9220

3 55764 28346.16667

PBRP 18736.5 9623

APBRP 18537.5 9665.5

DPBRP 18490 9057.666667

4 56124.36993 24379.59281

PBRP 18811.05882 8122.470588

APBRP 18776.11111 8012.722222

DPBRP 18537.2 8244.4

5 60220.98529 20555.05418

PBRP 20156.23529 6839.764706

APBRP 20136 6780.789474

DPBRP 19928.75 6934.5

Grand Total 283387.4886 130645.4137

14000

16000

18000

20000

22000

24000

26000

28000

30000

P
B
R
P

A
P
B
R
P

D
P
B
R
P

P
B
R
P

A
P
B
R
P

D
P
B
R
P

P
B
R
P

A
P
B
R
P

D
P
B
R
P

P
B
R
P

A
P
B
R
P

D
P
B
R
P

P
B
R
P

A
P
B
R
P

D
P
B
R
P

1 2 3 4 5

A
v
e

ra
g

e
 b

/w
 c

o
s
t

Replica server configurations

Zipf-0.85

Replicate

Read

Values

Row Labels Read Replicate

1 82295.47778 25401.85556

PBRP 27553 8829

APBRP 27534.2 9259.3

DPBRP 27208.27778 7313.555556

2 82452.36667 25295.46667

PBRP 27640.5 8741

APBRP 27537.8 9255.8

DPBRP 27274.06667 7298.666667

3 82474.51103 24958.15074

PBRP 27638.75 8702.5

APBRP 27550.82353 8977.588235

DPBRP 27284.9375 7278.0625

4 83989.93333 20148.42778

PBRP 28318.33333 6957.333333

APBRP 28048.5 7011.444444

DPBRP 27623.1 6179.65

5 87246.68333 14354.07778

PBRP 29308.66667 4876.666667

APBRP 29029.66667 4994.111111

DPBRP 28908.35 4483.3

Grand Total 418458.9721 110157.9785

22000

24000

26000

28000

30000

32000

34000

36000

38000

P
B
R
P

A
P
B
R
P

D
P
B
R
P

P
B
R
P

A
P
B
R
P

D
P
B
R
P

P
B
R
P

A
P
B
R
P

D
P
B
R
P

P
B
R
P

A
P
B
R
P

D
P
B
R
P

P
B
R
P

A
P
B
R
P

D
P
B
R
P

1 2 3 4 5

A
v
e

ra
g

e
 b

/w
 c

o
s
t

Replica server configurations

Random

Replicate

Read

Figure 5.15: Average bandwidth costs (read and replicate) for Zipf and random access
patterns

Constant data access rate

The storage used by the placement schemes for configuration one are shown in

Figure 5.16. For all access patterns, the storage used by DPBRP is lower than

PBRP due to the fewer number of replicas created down the hierarchy. This does

Chapter 5: Distributed Replica Placement 183

Zipf−0.85 Guas. Unit. Rand. Seq.
0

5

10

15

20

25

30

Data access patterns

%
 o

f s
to

ra
ge

 u
sa

ge

Storage usage for constant data access rate

PBRP
DPBRP

Figure 5.16: Storage use for DPBRP and PBRP, Configuration one, Constant rate

not, however, impact performance negatively as was seen in earlier results for PBRP

using consistently decreasing data access rate (Figures 4.21 and 4.38).

The capacity of the replica servers has a clear impact on the percentage of storage

used by different strategies. Reducing the available storage naturally leads to an

increase in the percentage of storage used as shown in Figure 5.17. One might expect

that a significant reduction in storage size should lead to 100% use of storage but,

this was not commonly seen. Depending on access patterns, some nodes’ storage was

used completely while others were not used at all. Despite this, DPBRP consumed

less overall storage in most cases while also providing faster execution.

Fluctuating data access rate

Figure 5.18 shows the storage use of DPBRP, APBRP, and PBRP using server

configuration one as the request arrival rate fluctuates. DPBRP often requires less

storage than the other algorithms for all data access patterns. In most cases, the

storage consumption of PBRP is moderate while APBRP is higher due to its creation

184 Chapter 5: Distributed Replica Placement

1 2 3 4 5
0

10

20

30

40

50

60

70

80

90

100

Replica server configurations

%
 o

f s
to

ra
ge

 u
sa

ge

Zipf−0.85

PBRP
DPBRP

1 2 3 4 5
0

10

20

30

40

50

60

70

80

90

100

Replica server configurations

%
 o

f s
to

ra
ge

 u
sa

ge

Gaussian

PBRP
DPBRP

1 2 3 4 5
0

10

20

30

40

50

60

70

80

90

100

Replica server configurations

%
 o

f s
to

ra
ge

 u
sa

ge

Unitary

PBRP
DPBRP

1 2 3 4 5
0

10

20

30

40

50

60

70

80

90

100

Replica server configurations

%
 o

f s
to

ra
ge

 u
sa

ge
Random

PBRP
DPBRP

Figure 5.17: Storage use for DBRP and PBRP, All configurations, Constant rate

of an increased number of replicas.

Finally, Figure 5.19 compares the storage use of the placement algorithms for

all storage configurations and access patterns as the request rate fluctuates. With

decreasing storage availability, the percentages of storage used by each algorithm

increase but by different amounts. APBRP shows relatively high storage requirements

for all storage configurations among the studied algorithms. DPBRP and PBRP

demonstrate somewhat varied relative consumption based on the data access pattern

used.

Chapter 5: Distributed Replica Placement 185

Zipf−0.85 Gaus. Unit. Rand. Seq.
0

5

10

15

20

25

30

Data access patterns

%
 o

f s
to

ra
ge

 u
sa

ge

Storage usage as access arrival rate fluctuates

PBRP
APBRP
DPBRB

Figure 5.18: Storage use, Configuration one, Fluctuating rate

5.3.4 Discussion

The primary goal of my distributed dynamic replication algorithm is to reduce the

job execution time experienced by the end-user (by decreasing data access latency).

At the same time, from the perspective of the whole system, the performance met-

rics of bandwidth consumption and storage use need to be managed to ensure that

DPBRP does not induce unduly heavy load on the system.

In most situations, DPBRP shortens job execution time, sometimes significantly,

and reduces bandwidth consumption compared to my other algorithms and those

described in [RF01a]. Further, the storage costs incurred by DPBRP are less than

the other algorithms in most cases. The benefits of DPBRP are achieved by creating

an appropriate number of well-placed replicas. My results suggest that my algorithm

is successful in deciding which data files should be replicated and where the replicas

should be placed. The available storage capacities of the replica servers naturally has

a major impact on the performance of replication techniques. Increasing the replica

186 Chapter 5: Distributed Replica Placement

1 2 3 4 5
0

10

20

30

40

50

60

70

80

90

100

Replica server configurations

%
 o

f s
to

ra
ge

 u
sa

ge

Zipf−0.85

PBRP
APBRP
DPBRB

1 2 3 4 5
0

10

20

30

40

50

60

70

80

90

100

Replica server configurations

%
 o

f s
to

ra
ge

 u
sa

ge

Gaussian

PBRP
APBRP
DPBRB

1 2 3 4 5
0

10

20

30

40

50

60

70

80

90

100

Replica server configurations

%
 o

f s
to

ra
ge

 u
sa

ge

Unitary

PBRP
APBRP
DPBRB

1 2 3 4 5
0

10

20

30

40

50

60

70

80

90

100

Replica server configurations

%
 o

f s
to

ra
ge

 u
sa

ge
Random

PBRP
APBRP
DPBRB

Figure 5.19: Storage use, All configurations, Fluctuating rate

server capacity leads to performance improvement in terms of job execution time and

average bandwidth cost. DPBRP appears to be better able to exploit increases in

available capacity than other algorithms.

In my original PBRP algorithm, the threshold value remained constant irrespec-

tive of variation in access request rate and the available storage capacities of the

replica servers. APBRP addresses this by dynamically changing the threshold value

based on request rates and storage availability. Simulation results show that APBRP

is able to further reduce the job execution time and, in some cases, bandwidth use

Chapter 5: Distributed Replica Placement 187

when the data access rate regularly fluctuates at the expense of additional storage

cost. My earlier results show that PBRP can shorten job execution time significantly

and reduce bandwidth consumption compared to other dynamic methods including

ABU, Fast Spread and Cascading placement. Thus, transitively, DPBRP also per-

forms better than these other non-adaptive dynamic replication methods. Further,

as DPBRP is distributed, it does not suffer from the limitations associated with cen-

tralized algorithms (e.g. reliability issues and performance bottlenecks). DPBRP and

its performance results compared to my centralized algorithms (PBRP and APBRP)

have been published in [SGE10b].

5.4 QoS-Aware Distributed Replica Placement

Although assessing overall system performance is important, this does not meet

the performance requirements of individuals. Meeting Quality of Service (QoS) con-

straints is an important consideration in addition to overall system performance. In

this section, I present a modified distributed replica placement algorithm for hierar-

chical data grids that determines replica locations by minimizing overall replication

cost (read and update) while satisfying certain QoS requirements both from the user

and system perspectives for a given traffic pattern. Users can specify their QoS pref-

erences in terms of an upper bound or a range on the distance (e.g. number of hops)

to the nearest replica server. The system can also enforce workload capacity con-

straints on the replica servers and assumes that the bandwidth capacity of a link is

bounded. The goal is to make sure that each request from a user can be serviced

by a replica server within its quality requirement and without violating the capac-

188 Chapter 5: Distributed Replica Placement

ity limits of the replica server(s) and network links. Each of these QoS constraints

will be added incrementally to the unconstrained DPBRP algorithm described in the

previous section. The details of the QoS constrained DPBRP follow.

5.4.1 Hop Count

My modified, QoS-aware, replica placement algorithm, QoS-DPBRP is designed

to simultaneously improve system performance and satisfy the quality requirements

of users. The QoS requirement q(v) can be any function that represents, for example,

the number of hops between the user and the replica server, the access latency between

them, or a combination of things. Responsiveness, which refers to how fast the users

can access the requested data, is an important type of QoS requirement needed by

a wide range of applications. I address the challenges introduced by responsiveness

QoS requirements in data replication to improve the performance of replication in

large-scale data grid systems. The effectiveness of replication, to a large extent,

depends on the replica locations in the system. In general, a client would experience

shorter access latency if a replica of the requested data is placed in its closer proximity.

Therefore, I consider replica distance as a fundamental QoS requirement in this thesis

(though the implementation strategy generalizes to other QoS measures). Thus, each

user may specify a maximum distance allowable to the nearest replica server. This

means a request must be served by a replica, or the root, within a fixed number of

hops towards the root. In other words, a request can reach a server if the number

of communication links between it and the nearest replica on the path to the root is

no more than its hop count limit. Formally, I define my objective which is to find a

replication strategy, R, with the minimal replication cost such that R ∪ {r} satisfies

Chapter 5: Distributed Replica Placement 189

the QoS requirement of every client v, i.e. mins∈R∪{r}d(v, s) ≤ q(v), where d(v, s) is

the distance between v and s.

Algorithm

QoS-aware replica placement in hierarchical data grids can be performed by modi-

fying the existing DPBRP algorithm. As described in DPBRP, each node v calculates

the cost function for each distance possibility up to the root and also for each case it

determines the optimal location of the replica. Since the QoS requirement, q(v), can

be specified by the distance (i.e. number of hops) between the client and the replica

server, this distance constraint can easily be incorporated without any additional

complexity when the replication costs for clients are calculated considering various

distance possibilities for the replica servers. For a client node, v with QoS require-

ment, q(v), an initial replication cost, iC, is calculated (extending Equation 5.6) as:

iC(v, d) =



UC(v), if d = 0

RC(v, d), if 1 ≤ d ≤ q(v), q(v) ≤ i, and a(v, i) = r

∞, if d > q(v)

(5.13)

In the above equation, when d = 0, replication cost does not include a read cost

since the replica is in v itself. For d ≤ q(v), i.e. the distance of the replica server

is within the QoS requirement of the client, the replication cost for subtree Tv (in

this case only v) includes only the read cost of v. When d > q(v), the placement of

a replica cannot satisfy the client’s requirement and hence the cost is set to infinity.

The replication cost, C, and the corresponding replica locations can now be calculated

using Equations 5.8 - 5.12. Essentially, for the case, d > q(v), the replication cost,

190 Chapter 5: Distributed Replica Placement

C(v, d) will be C(v, 0) (from Equation 5.11) which is the cost if the replica is created

locally.

Placement Example

Consider the data grid in Figure 5.20(a) which consists of 15 nodes. The access

counts and QoS requirements for a particular file are shown beneath the leaves (e.g.

the QoS requirement is 2 hops for node 8). Assume the number of updates from the

root is 4 and, again, that both accesses and updates require one bandwidth unit per

file per hop. Figure 5.20(b) shows calculations of cost and loc functions, done bottom-

up for each node and all distance possibilities considering QoS. The calculation starts

from the client tier (tier 3) of the hierarchy and ends at the root. Each node sends

its cost and loc values to its parent which receives these values from its children and

then calculates its own cost and loc functions.

In the example, during top-down placement, the root determines that the opti-

mal replication cost for the entire data grid is 73 and sets distance to zero before

sending it to its children. The placement process is then carried out as described in

Section 5.2.3. Replicas are placed in nodes 4, 6, 7, and 10 in tier 2 and tier 3 based

on the distance and loc values. The total replication cost considering the replication

strategy (4,6,7,10) is 37(read cost) + 36 (update cost) = 73 which is the same as

the cost calculated at the root node in Figure 5.20(b) and all QoS constraints were

satisfied. Note that the total replication cost, 73, considering the QoS requirements of

the clients is greater than the optimal cost (71) obtained in Figure 5.3(b). This is due

to the creation of a replica in node 7 to satisfy the QoS requirements of both nodes

14 and 15. This shows that certain QoS constraints specified by the clients can have

Chapter 5: Distributed Replica Placement 191

Grid sites (v) {cost(v,d), loc(v,d)}
Tier 3 Tier 2 Tier 1 Tier 0 d = 0 d = 1 d = 2 d = 3

8 (12, 8) (4, 4) (8, 2) (12, 8)
 4 (15, 4) (15, 4) (15, 4)

9 (12, 9) (3, 4) (12, 9) (12, 9)
 2 (36, -1) (36, 1)

10 (12, 10) (10, 5) (12, 10) (12, 10)
 5 (21, 5) (18, 2) (21, 1)

11 (12, 11) (3, 5) (6, 2) (9, 1)
 1 (73, 1)

12 (12, 12) (7, 6) (12, 12) (12, 12)
 6 (20, 6) (20, 6) (20, 6)

13 (12, 13) (5, 6) (12,13) (12, 13)
 3 (37, -1) (37, 1)

14 (12, 14) (1, 7) (2, 3) (12, 14)
 7 (17, 7) (14, 3) (17, 7)

15 (12, 15) (8, 7) (12, 15) (12, 15)

4 3 10 1

Root 1

4

2 3

5 6 7

8 9 10 11 12 13 14 15

3 7 5 8

Update rate = 4

2 2 3 1 1 2 1
Access counts

Tier 0

Tier 1

Tier 2

Tier 3

(a)
QoS Req. 1

(b)

Figure 5.20: (a) A hierarchical data grid with client access counts and QoS require-
ments, (b) Calculation of replication costs and replica locations for the example data
grid. Highlighted entries indicate the modified costs and locations due to QoS support.

an overall impact on the optimal placement of replicas and the optimal replication

cost.

5.4.2 Workload Capacity

I modified my QoS-aware replica placement problem to determine the locations of

the replicas considering workload capacity constraints while at the same time satis-

192 Chapter 5: Distributed Replica Placement

fying the quality requirements specified by the users. Every server, v, has a workload

capacity constraint W (v) which is specified as an upper bound on the number of

user requests processed by v for a particular period of time. The replication strategy

has to ensure that the user requests are satisfied while limiting the workload of each

replica server to its capacity. The workload capacity constraint associated with differ-

ent servers can, of course, be different. If the total workload that a server services is

greater than its capacity constraint, then the server is overloaded. The goal is to find

a replication strategy, R, with the minimal replication cost such that R∪{r} satisfies

the QoS requirement of every client v, i.e. mins∈R∪{r}d(v, s) ≤ q(v), where d(v, s) is

the distance between v and server s and none of the servers in R is overloaded.

Algorithm

Workload capacity constraints on the replica servers can be easily incorporated by

modifying the existing DPBRP and QoS-DPBRP algorithms. Each node v calculates

the replication cost, C(v, d), for the subtree rooted at it for each value of d for the

replica location when 0 ≤ d ≤ i and a(v, i) = r. While calculating the cost function

for each replica distance possibility, node v can verify that the total aggregated access

counts for its subtree does not exceed the workload capacity of each node on the path

from node v to the root. For example, for a node v with children v1, ..., vn, the

aggregated access counts, AC(v) =
∑

1≤i≤n c(vi) should be less than W (v) where

v represents each node (potential server) on the path from v to the root. For a

client node v, AC(v) will include only its own access frequency which should be

less than W (v). If AC(v) is greater than W (v), we have to place some replicas on

the children, vi’s (for a non-client node) or on v itself (for a client node) to bound

Chapter 5: Distributed Replica Placement 193

the incoming request on W (v). In the former case, this can be done by repeatedly

considering a potential replica at vi’s that has the largest access count, until the

remaining aggregated request from the children is within W (v). Let this set of vi’s

be potrep(ch(v)), which is the set of children of v that are potentially determined to

be equipped with a replica.

Now, we need to calculate the initial replication cost using Equations 5.7 and 5.13

for a node v (considering the cost for placing potential replicas to limit the total

request to the workload capacity). For a client node, v, with access count, c(v), an

initial replication cost, iC, is calculated (extending Equation 5.13) as:

iC(v, d) =



UC(v), if d = 0

RC(v, d), if 1 ≤ d ≤ q(v), q(v) ≤ i, c(v) ≤ W (v), and

a(v, i) = r

iC(v, 0), if 1 ≤ d ≤ q(v), q(v) ≤ i, c(v) > W (v), and

a(v, i) = r

∞, if d > q(v)

(5.14)

In the above equation, when d = 0, replication cost does not include a read cost since

the replica is in v itself. For d ≥ 1 and c(v) ≤ W (v), i.e. the replica server is up

in the path from v to the root and the access count is within the workload capacity,

the replication cost for subtree Tv (in this case only v) includes only the read cost of

v. When c(v) > W (v), the replication cost is the cost of placing a replica in v itself.

Both of these cases consider d ≤ q(v), i.e. the distance of the replica server is within

the QoS requirement of the client. When d > q(v), the placement of a replica cannot

194 Chapter 5: Distributed Replica Placement

satisfy the client’s requirement and hence the cost is set to infinity.

For a non-client node, v, iC, is calculated (extending Equation 5.7) as follows

when AC(v) > W (v):

iC(v, d) =



∑
n/∈ch(v)

T
potrep(ch(v)) C(n, d + 1)

+
∑

n∈potrep(ch(v)) C(n, 0) + UC(v), if d = 0∑
n/∈ch(v)

T
potrep(ch(v)) C(n, d + 1)

+
∑

n∈potrep(ch(v)) C(n, 0), if 1 ≤ d ≤ i and a(v, i) = r

(5.15)

In this case, the cost for placing potential replicas on the potrep(ch(v)) nodes is

added to the cost of the rest of the children nodes of v. The replication cost, C, and

the corresponding replica locations can now be calculated using Equations 5.8 - 5.12.

Placement Example

Consider the data grid in Figure 5.21(a) which consists of 15 nodes. The access

counts for a particular time period and QoS requirements for a data file are given

in the client-tier of the hierarchy. Assume the number of updates from the root is 4

and, again, that both accesses and updates require one bandwidth unit per file per

hop. The workload capacity of each node is 8. Figure 5.21(b) shows the calculation

of cost and loc functions for each grid node considering all distance possibilities for

the replication location. The calculation starts from the client tier (tier 3) of the

hierarchy and ends at the root. Each node sends its cost and loc values to its parent

which receives these values from its children and then calculates its own cost and loc

functions.

Chapter 5: Distributed Replica Placement 195

Example for Workload Capacity Constraint

Grid sites (v) {cost(v,d), loc(v,d)}
Tier 3 Tier 2 Tier 1 Tier 0 d = 0 d = 1 d = 2 d = 3

8 (12, 8) (4, 4) (8, 2) (12, 8)
 4 (15, 4) (15, 4) (15, 4)

9 (12, 9) (3, 4) (12, 9) (12, 9)
 2 (37, 2) (36, 1)

10 (12, 10) (12, 10) (12, 10) (12, 10)
 5 (23, 5) (18, 2) (21, 1)

11 (12, 11) (3, 5) (6, 2) (9, 1)
 1 (78, 1)

12 (12, 12) (7, 6) (12, 12) (12, 12)
 6 (24, -1) (24, 3) (24, 1)

13 (12, 13) (5, 6) (12,13) (12, 13)
 3 (42, 3) (42, 3)

14 (12, 14) (1, 7) (2, 3) (12, 14)
 7 (21, 7) (14, 3) (21, 7)

15 (12, 15) (8, 7) (12, 15) (12, 15)

4 3 10 1

Root 1

4

2 3

5 6 7

8 9 10 11 12 13 14 15

3 7 5 8

Update rate = 4

2 2 3 1 1 2 1

Workload capacity = 8

Access counts

Tier 0

Tier 1

Tier 2

Tier 3

(a)
QoS Req. 1

(b)

Figure 5.21: (a) A hierarchical data grid with client access counts, QoS requirements,
and workload capacity constraint, (b) Calculation of replication costs and replica
locations for the example data grid.

During top-down placement, the root determines that the optimal replication cost

for the entire data grid is 78 and sets distance to zero before sending it to its children.

The placement process is then carried out as described in Section 5.2.3. Replicas are

placed in nodes 3, 4, 10, 12, 13, and 15 in tier 1, tier 2, and tier 3 based on the

distance and loc values. Now, the total replication cost for the replication strategy

(3,4,10,12,13,15) is 18(read cost) + 60(update cost) = 78 which is the same as the

196 Chapter 5: Distributed Replica Placement

cost calculated at the root node in Figure 5.21(b).

5.4.3 Link Capacity

Taking into account limited link capacity in replica placement is an important

consideration in addition to user QoS requirements. User QoS constraints are local

to a node, hence, each client has to cope with its own limitation. On the other

hand, bandwidth constraints have a global influence on the resources as a link may

be shared by multiple clients and consequently all of them are concerned. To this

end, I modify the QoS-aware replica placement problem to determine the locations of

the replicas considering link capacity constraint while at the same time satisfying the

quality requirements specified by the user. Each link in the data grid hierarchy has

some capacity constraint on transferring the data down the hierarchy. The bandwidth

constraint on each link l is specified by an upper bound bc(l) on link capacity. Such

a constraint mandates that the amount of data that can pass through the link, l,

over a period of time will be limited within bc(l). The replication strategy has to

ensure that the user requests are satisfied while limiting the bandwidth usage of each

link to its capacity. The bandwidth constraint associated with different links can,

of course, be different. If the total amount of data passing through a link is greater

than its capacity constraint, then the link is congested. The goal is therefore to find

a replication strategy, R, with the minimal replication cost such that R∪{r} satisfies

the QoS requirement of every client v, i.e. mins∈R∪{r}d(v, s) ≤ q(v), where d(v, s) is

the distance between v and server s and none of the communication link l(u, v) ∈ E

is congested.

Chapter 5: Distributed Replica Placement 197

Algorithm

Bandwidth capacity constraints on the communication links can also be incorpo-

rated by modifying the existing DPBRP and QoS-DPBRP algorithms. Each node v

calculates the replication cost, C(v, d), for the subtree rooted at it for each value of

d for the replica location when 0 ≤ d ≤ i and a(v, i) = r. While calculating the cost

function for each replica distance possibility, node v can verify that the total aggre-

gated bandwidth requirement for its subtree does not exceed the bandwidth capacity

of each link on the path from node v to the root in a manner similar to checking

that aggregate server load is not exceeded. For example, for a node v with children

v1, ..., vn, the aggregated bandwidth, ABW (v) =
∑

1≤i≤n bw(vi) should be less than

bc(l) where l represents each link on the path from node v to the root. For a client

node v, ABW (v) will include only its own bandwidth requirement which is assumed

to be less than bc(l). If ABW (v) is greater than bc(l), we have to place some replicas

on the vi’s (for a non-client node) or on v itself (for a client node) to bound the

incoming request on bc(l). In the former case, this can be easily done by repeatedly

considering a potential replica at vi’s that has the largest bandwidth requirement,

until the request is within bc(l). Let this set of vi’s be potrep(ch(v)), which is the set

of children of v that are potentially determined to be equipped with a replica.

Now, we need to calculate the initial replication cost using Equations 5.7 and 5.13

for a node v (considering the cost for placing potential replicas to limit the bandwidth

requirement to the link capacity). For a client node, v with bandwidth requirement,

198 Chapter 5: Distributed Replica Placement

bw(v), an initial replication cost, iC, is calculated (extending Equation 5.13) as:

iC(v, d) =



UC(v), if d = 0

RC(v, d), if 1 ≤ d ≤ q(v), q(v) ≤ i, bw(v) ≤ bc(l), and

a(v, i) = r

iC(v, 0), if 1 ≤ d ≤ q(v), q(v) ≤ i, bw(v) > bc(l), and

a(v, i) = r

∞, if d > q(v)

(5.16)

In the above equation, when d = 0, replication cost does not include a read cost since

the replica is in v itself. For d ≥ 1 and bw(v) ≤ bc(l), i.e. the replica server is up in

the path from v to the root and the requested bandwidth is within the link capacity,

the replication cost for subtree Tv (in this case only v) includes only the read cost of

v. When bw(v) > bc(l), the replication cost is the cost of placing a replica in v itself.

Both of these cases consider d ≤ q(v), i.e. the distance of the replica server is within

the QoS requirement of the client. When d > q(v), the placement of a replica cannot

satisfy the client’s requirement and hence the cost is set to infinity.

Chapter 5: Distributed Replica Placement 199

For a non-client node, v, iC, is calculated (extending Equation 5.7) as:

iC(v, d) =



∑
n∈ch(v) C(n, d + 1) + UC(v), if d = 0∑
n∈ch(v) C(n, d + 1), if 1 ≤ d ≤ i,ABW (v) ≤ bc(l), and

a(v, i) = r∑
n/∈ch(v)

T
potrep(ch(v)) C(n, d + 1)

+
∑

n∈potrep(ch(v)) C(n, 0), if 1 ≤ d ≤ i, ABW (v) > bc(l), and

a(v, i) = r

(5.17)

For ABW (v) > bc(l), the cost for placing potential replicas on the potrep(ch(v))

nodes is added to the cost of the rest of the child nodes of v. The replication cost, C,

and the corresponding replica locations can now be calculated using Equations 5.8

- 5.12.

Considering link and workload capacity constraints together in the QoS-aware

replica placement algorithm requires modifications in Equations 5.16 and 5.18 where

the initial costs, iC’s, are calculated for a client and a non-client node respectively.

As for the client node, the second condition in Equation 5.16 must ensure that both

c(v) ≤ W (v) (i.e. the replica server is up in the path from v to the root and the

access count is within the workload capacity) and bw(v) ≤ bc(l) (i.e. the replica

server is up in the path from v to the root and the requested bandwidth is within the

link capacity) are true. The other change is in the third condition of Equation 5.16

which requires that either c(v) > W (v) or bw(v) > bc(l) should be true. As for the

200 Chapter 5: Distributed Replica Placement

non-client node, iC(v, d) can be calculated by merging Equations 5.15 and 5.18:

iC(v, d) =



∑
n∈ch(v) C(n, d + 1) + UC(v), if d = 0 and AC(v) ≤ W (v)∑
n/∈ch(v)

T
potrep(ch(v)) C(n, d + 1)

+
∑

n∈potrep(ch(v)) C(n, 0) + UC(v), if d = 0 and AC(v) > W (v)∑
n∈ch(v) C(n, d + 1), if 1 ≤ d ≤ i,ABW (v) ≤ bc(l),

AC(v) ≤ W (v) and a(v, i) = r∑
n/∈ch(v)

T
potrep(ch(v)) C(n, d + 1)

+
∑

n∈potrep(ch(v)) C(n, 0), if 1 ≤ d ≤ i, (ABW (v) > bc(l) or

AC(v) > W (v)) and a(v, i) = r

(5.18)

Placement Example

Consider the data grid in Figure 5.22(a). The access counts for a particular time

period and QoS requirements for a data file are given in the client-tier of the hierarchy.

Assume the number of updates from the root is 4 and, again, that both accesses and

updates require one bandwidth unit per file per hop. Moreover, each link has a

capacity of 7 bandwidth unit for data transfer per time period. Figure 5.22(b) shows

the calculation of cost and loc functions for each grid node considering all distance

possibilities for the replication location. The calculation starts from the client tier

(tier 3) of the hierarchy and ends at the root. Each node sends its cost and loc values

to its parent which, again, receives these values from its children and then calculates

its own cost and loc functions.

Chapter 5: Distributed Replica Placement 201
Example for Link Capacity Constraint

Grid sites (v) {cost(v,d), loc(v,d)}
Tier 3 Tier 2 Tier 1 Tier 0 d = 0 d = 1 d = 2 d = 3

8 (12, 8) (4, 4) (8, 2) (12, 8)
 4 (15, 4) (15, 4) (15, 4)

9 (12, 9) (3, 4) (12, 9) (12, 9)
 2 (37, 2) (36, 1)

10 (12, 10) (12, 10) (12, 10) (12, 10)
 5 (23, 5) (18, 2) (21, 1)

11 (12, 11) (3, 5) (6, 2) (9, 1)
 1 (74, 1)

12 (12, 12) (7, 6) (12, 12) (12, 12)
 6 (20, 6) (20, 6) (20, 6)

13 (12, 13) (5, 6) (12,13) (12, 13)
 3 (38, 3) (38, 3)

14 (12, 14) (1, 7) (2, 3) (12, 14)
 7 (21, 7) (14, 3) (21, 7)

15 (12, 15) (12, 15) (12, 15) (12, 15)

4 3 10 1

Root 1

4

2 3

5 6 7

8 9 10 11 12 13 14 15

3 7 5 8

Update rate = 4

2 2 3 1 1 2 1

Link capacity = 7

Access counts

Tier 0

Tier 1

Tier 2

Tier 3

(a)
QoS Req. 1

(b)

Figure 5.22: (a) A hierarchical data grid with client access counts, QoS requirements,
and link capacity constraint, (b) Calculation of replication costs and replica locations
for the example data grid.

During top-down replica placement, the root determines that the optimal replica-

tion cost for the entire data grid is 73 and sets distance to zero before sending it to

its children. The placement process is then carried out as described in Section 5.2.3.

Replicas are placed in nodes 3, 4, 6, 10, and 15 in tier 1, 2, and 3 based on the

distance and loc values. Now, the total replication cost using the replication strategy

(3,4,6,10,15) is 30(read cost) + 44(update cost) = 74 which is the same as the cost

202 Chapter 5: Distributed Replica Placement

calculated at the root node in Figure 5.22(b).

QoS-DPBRP has been shown to satisfy QoS requirements both from the user and

system perspectives. However, the algorithm does not guarantee that all the QoS

requirements (especially when the QoS requirements become more stringent) can be

met at all times due to the fact that the actual replica placement depends on factors

such as storage availability at the replica servers, file popularity, and so on. For

example, if all the clients need replicas to be accessed locally, the requests from all

of them may not be satisfied due to the storage limitation. This issue will further be

discussed with experimental results in Section 5.5.1.

5.5 Performance Evaluation of the QoS-Aware Dis-

tributed Algorithms

The QoS preferences from users were taken in terms of an upper bound (number

of hops) to the nearest replica server or from a uniform distribution over a range on

the acceptable distance the replica server. To determine the effectiveness of my QoS-

DPBRP algorithm, user satisfaction rate was also included as a performance metric.

This refers to the percentage of users whose QoS requirements are met. Two different

scenarios were considered: when the data request arrival rate remains constant, and

when it regularly fluctuates as described earlier. First, I compared DPBRP with

QoS-DPBRP using different replica server configurations while considering only user

QoS requirements for both scenarios. Then I compared QoS-DPBRP with QoS-

aware replica placement algorithms Greedy Add and Greedy Remove by Cheng et

al. [CWL09] considering both user QoS and workload constraints on replica servers

when the data access rate remains constant. Finally, link capacity constraint was

Chapter 5: Distributed Replica Placement 203

added to QoS-DPBRP and was compared to its unconstrained counterpart, DPBRP

for constant data access rate.

5.5.1 Job Execution Time

I begin by considering DPBRP’s performance in terms of job execution time. The

results are presented by demonstrating the effects of user QoS constraints, workload

capacity, and link capacity constraints on job execution time of DPBRP.

Effects of user QoS, constant data access rate

Figure 5.23 compares job times for DPBRP and QoS-DPBRP using storage con-

figuration one (refer to Figure 4.8) when the access rates from clients remain con-

stant. User QoS requirements/constraints are taken from a constant (i.e. a distance

to the server) and a uniform distribution (i.e. the distance requests are uniformly

distributed over the range). System QoS (server load and link capacity) constraints

are not considered here. For the constant distribution, QoS-DPBRP shows shorter

Zipf−0.85 Gaus. Unit. Rand. Seq.
0.5

1

1.5

2

2.5

3
x 10

5

Data access patterns

Jo
b

tim
es

 (
se

c)

Constant data access rate, Configuration one

QoS−DPBRP,QoS=2
QoS−DPBRP,QoS=1
QoS−DPBRP,QoS=0
DPBRP

Zipf−0.85 Gaus. Unit. Rand. Seq.
0.5

1

1.5

2

2.5

3
x 10

5

Data access patterns

Jo
b

tim
es

 (
se

c)

Constant data access rate, Configuration one

QoS−DPBRP,QoS=0−1
QoS−DPBRP,QoS=0−2
QoS−DPBRP,QoS=0−3
QoS−DPBRP,QoS=1−2
QoS−DPBRP,QoS=1−3
DPBRP

Figure 5.23: Run time, Configuration one, Constant and uniform QoS constraints

204 Chapter 5: Distributed Replica Placement

execution times when the QoS request is 2 (hops) for most data access patterns. This

is because the replica locations selected in this case reduce the data access latency

experienced which in turn reduces the overall job execution time. It is noteworthy

that for the QoS value of 2, QoS-DPBRP requires (Figure 5.24) fewer replicas than

with QoS= 0 or 1, but more replicas than DPBRP.

Zipf−0.85 Gaus. Unit. Rand. Seq.
0

100

200

300

400

500

600

Data access patterns

N
o.

 o
f r

ep
lic

as

Constant data access rate, Configuration one

QoS−DPBRP,QoS=0
QoS−DPBRP,QoS=1
QoS−DPBRP,QoS=2
DPBRP

Zipf−0.85 Gaus. Unit. Rand. Seq.
0

100

200

300

400

500

600

Data access patterns

N
o.

 o
f r

ep
lic

as

Constant data access rate, Configuration one

 QoS−DPBRP,QoS=0−1
QoS−DPBRP,QoS=0−2
QoS−DPBRP,QoS=0−3
QoS−DPBRP,QoS=1−2
QoS−DPBRP,QoS=1−3
DPBRP

Figure 5.24: No. of replicas, Configuration one, Constant and uniform QoS
constraints

The increased number of replicas in QoS-DPBRP compared to DPBRP serve to

satisfy more requests which in turn reduces the access latency. Even though QoS=0

results in more replicas, the execution time is still higher in this case. The reason

is that replicas are being created mostly in the lower tiers and cannot satisfy an

increased number of user requests from the subtrees of the nodes containing replicas.

Also, in this case, not all replicas can be created locally to the clients (as requested,

QoS=0) due to storage capacity limitations and consequently the satisfaction rate

reduces. This is evident from Figure 5.25. Thus, for a “reasonable” QoS request, QoS-

DPBRP performs better in terms of execution time and satisfaction rate by creating

Chapter 5: Distributed Replica Placement 205

1 2 3 4 5
50

55

60

65

70

75

80

85

90

95

100

105

Replica server configurations

S
at

is
fa

ct
io

n
ra

te
(%

)
Zipf−0.85

QoS−DPBRP,QoS=0
QoS−DPBRP,QoS=1
QoS−DPBRP,QoS=2

1 2 3 4 5
50

55

60

65

70

75

80

85

90

95

100

105

Replica server configurations

S
at

is
fa

ct
io

n
ra

te
(%

)

Zipf−0.85

QoS−DPBRP,QoS=0−1
QoS−DPBRP,QoS=0−2
QoS−DPBRP,QoS=0−3
QoS−DPBRP,QoS=1−2
QoS−DPBRP,QoS=1−3

Figure 5.25: Satisfaction rates, Zipf-0.85 access, Constant and uniform QoS
constraints

more replicas than DPBRP. Somewhat surprisingly, both the algorithms show almost

the same execution times for a sequential distribution. When QoS values are taken

from a uniform distribution, QoS-DPBRP shows the lowest job time for a QoS range

of [1–2]. A moderate number of replicas, as shown in Figure 5.24, are created in the

middle of the hierarchy reducing the access latency experienced which in turn reduces

the overall job execution time. As before, QoS-DPBRP shows a somewhat increased

job time when QoS ranges include requests for creating replicas locally (for example,

[0–1], [0–2], and [0–3]).

The storage capacity of the servers has a noticeable impact on the performance

of the placement algorithms. With decreasing capacity, the execution times of all

methods are increased but by different amounts. Figure 5.26 shows the execution

times for the Zipf-0.85 and Gaussian access patterns for the five storage configurations

with constant and uniform QoS distributions. QoS-DPBRP shows shorter run times

for all the cases when a QoS value of 2 and a range of [1–2] are used. The benefit

206 Chapter 5: Distributed Replica Placement

1 2 3 4 5

1

1.1

1.2

1.3

1.4

1.5

x 10
5

Replica server configurations

Jo
b

tim
es

 (
se

c)

Zipf−0.85

QoS−DPBRP,QoS=0
QoS−DPBRP,QoS=1
QoS−DPBRP,QoS=2
DPBRP

1 2 3 4 5

1

1.1

1.2

1.3

1.4

1.5

x 10
5

Replica server configurations

Jo
b

tim
es

 (
se

c)

Zipf−0.85

QoS−DPBRP,QoS=0−1
QoS−DPBRP,QoS=0−2
QoS−DPBRP,QoS=0−3
QoS−DPBRP,QoS=1−2
QoS−DPBRP,QoS=1−3
DPBRP

1 2 3 4 5

1.3

1.4

1.5

1.6

1.7

1.8

1.9

2

2.1

2.2

x 10
5

Replica server configurations

Jo
b

tim
es

 (
se

c)

Gaussian

QoS−DPBRP,QoS=0
QoS−DPBRP,QoS=1
QoS−DPBRP,QoS=2
DPBRP

1 2 3 4 5

1.3

1.4

1.5

1.6

1.7

1.8

1.9

2

2.1

2.2

x 10
5

Replica server configurations

Jo
b

tim
es

 (
se

c)
Gaussian

QoS−DPBRP,QoS=0−1
QoS−DPBRP,QoS=0−2
QoS−DPBRP,QoS=0−3
QoS−DPBRP,QoS=1−2
QoS−DPBRP,QoS=1−3
DPBRP

Figure 5.26: Run time, Zipf-0.85 and Gaussian access, Constant and uniform QoS
constraints

of QoS-DPBRP over DPBRP in terms of job time reduces with more constrained

storage configurations. The number of replicas created also reduces (Figure 5.27)

with decreasing storage capacity. Limited storage capacity also results in lower QoS

satisfaction rates. Figure 5.25 shows the satisfaction rates of client requests for QoS

values from constant and uniform distributions using the Zipf-0.85 distribution. The

satisfaction rates are higher for QoS requests of wider range and not including requests

for creating local replicas (for example, QoS requests of [1–3], [1–2], and [2]). With

Chapter 5: Distributed Replica Placement 207

1 2 3 4 5
50

100

150

200

250

300

350

Replica server configurations

N
o.

 o
f r

ep
lic

as
Zipf−0.85

QoS−DPBRP,QoS=0
QoS−DPBRP,QoS=1
QoS−DPBRP,QoS=2
DPBRP

1 2 3 4 5
50

100

150

200

250

300

350

Replica server configurations

N
o.

 o
f r

ep
lic

as

Zipf−0.85

QoS−DPBRP,QoS=0−1
QoS−DPBRP,QoS=0−2
QoS−DPBRP,QoS=0−3
QoS−DPBRP,QoS=1−2
QoS−DPBRP,QoS=1−3
DPBRP

1 2 3 4 5
50

100

150

200

250

300

350

400

450

500

550

Replica server configurations

N
o.

 o
f r

ep
lic

as

Gaussian

QoS−DPBRP,QoS=0
QoS−DPBRP,QoS=1
QoS−DPBRP,QoS=2
DPBRP

1 2 3 4 5
50

100

150

200

250

300

350

400

450

500

550

Replica server configurations

N
o.

 o
f r

ep
lic

as

Gaussian

QoS−DPBRP,QoS=0−1
QoS−DPBRP,QoS=0−2
QoS−DPBRP,QoS=0−3
QoS−DPBRP,QoS=1−2
QoS−DPBRP,QoS=1−3
DPBRP

Figure 5.27: No. of replicas, Zipf-0.85 and Gaussian access, Constant and uniform
QoS constraints

limited storage (i.e. configurations 4 and 5), the satisfaction rate drops significantly.

Effects of user QoS, varying data access rate

Figure 5.28 compares job execution times for all storage configurations for QoS

values from constant and uniform distributions as the access rate fluctuates. With

decreasing storage size, the execution times are increased in most cases for all the

algorithms but by different amounts. As before, QoS-DPBRP shows shorter run

times for all storage configurations for QoS values of [1–2] and 2.

208 Chapter 5: Distributed Replica Placement

1 2 3 4 5

1

1.1

1.2

1.3

1.4

1.5

1.6

x 10
5

Replica server configurations

Jo
b

tim
es

 (
se

c)

Zipf−0.85

QoS−DPBRP,QoS=0
QoS−DPBRP,QoS=1
QoS−DPBRP,QoS=2
DPBRP

1 2 3 4 5

1

1.1

1.2

1.3

1.4

1.5

1.6

x 10
5

Replica server configurations

Jo
b

tim
es

 (
se

c)

Zipf−0.85

QoS−DPBRP,QoS=0−1
QoS−DPBRP,QoS=0−2
QoS−DPBRP,QoS=0−3
QoS−DPBRP,QoS=1−2
QoS−DPBRP,QoS=1−3
DPBRP

Figure 5.28: Run time, Varying Zipf-0.85 access, Constant and uniform QoS
constraints

The popularity of files varies due to the fluctuation in data access rate. The

resulting performance is largely unchanged from the performance when the access

rate is constant as the fluctuation in access rate does not significantly affect the

replicas that need to be created. Figure 5.29 shows this for all storage configurations

for the Zipf-0.85 distribution.

1 2 3 4 5
50

100

150

200

250

300

350

Replica server configurations

N
o.

 o
f r

ep
lic

as

Zipf−0.85

QoS−DPBRP,QoS=0
QoS−DPBRP,QoS=1
QoS−DPBRP,QoS=2
DPBRP

1 2 3 4 5
50

100

150

200

250

300

350

Replica server configurations

N
o.

 o
f r

ep
lic

as

Zipf−0.85

QoS−DPBRP,QoS=0−1
QoS−DPBRP,QoS=0−2
QoS−DPBRP,QoS=0−3
QoS−DPBRP,QoS=1−2
QoS−DPBRP,QoS=1−3
DPBRP

Figure 5.29: No. of replicas, Zipf-0.85 access, Fluctuating rate

Chapter 5: Distributed Replica Placement 209

1 2 3 4 5 6
1.4

1.5

1.6

1.7

1.8

1.9

2

2.1

2.2
x 10

5

Workload configurations

Jo
b

tim
es

 (
se

c)
Zipf−0.85, Rep. Server Conf. = 1, QoS = 1−3

Greedyadd
Greedyremove
QoS−DPBRP

1 2 3 4 5 6
3

3.2

3.4

3.6

3.8

4

4.2

4.4

4.6

4.8

5
x 10

5

Workload configurations

Jo
b

tim
es

 (
se

c)

Gaussian, Rep. Server Conf. = 1, QoS = 1−3

Greedyadd
Greedyremove
QoS−DPBRP

1 2 3 4 5 6
1.6

1.7

1.8

1.9

2

2.1

2.2

2.3

2.4
x 10

5

Workload configurations

Jo
b

tim
es

 (
se

c)

Zipf−0.85, Rep. Server Conf. = 1, QoS = 0−1

Greedyadd
Greedyremove
QoS−DPBRP

1 2 3 4 5 6
2

2.2

2.4

2.6

2.8

3

3.2

3.4

3.6

3.8

4
x 10

5

Workload configurations

Jo
b

tim
es

 (
se

c)

Gaussian, Rep. Server Conf. = 1, QoS = 0−1

Greedyadd
Greedyremove
QoS−DPBRP

Figure 5.30: Run time, Zipf-0.85 and Gaussian access, Replica server configuration
one

Effects of workload capacity constraints for constant access rate

I have chosen Greedy Add and Greedy Remove [CWL09] to compare with DPBRP

since both the methods take update and access costs of replicas into account, and also

consider that the workload capacity of a replica server is bounded as DPBRP does.

For a fair comparison of the algorithms, a number of assumptions were made while

simulating Greedy Add and Greedy Remove. First, only a hierarchical grid topology

was considered even though these two algorithms were originally targeted for a general

210 Chapter 5: Distributed Replica Placement

 (a)

 (b)

Workload
config.

Tier 1 (GB
per node)

Tier 2 (GB
per node)

Tier 3 (GB
per node)

1 350 300 250
2 300 250 200
3 250 200 150
4 200 150 100
5 300 150 80
6 150 100 50

Storage
config

Tier 1
(GB per
node)

Tier 2
(GB per
node)

Tier 3
(GB per
node)

Relative st.
capacity (%)

Workload
config.

Tier 1
(GB per
node)

Tier 2
(GB per
node)

Tier 3
(GB per
node)

1 1000 300 50 75 1 350 300 250
2 500 200 50 55 2 300 250 200
3 250 100 50 40 3 250 200 150
4 125 50 20 17.5 4 200 150 100

5 300 150 80 5 50 25 20 13.75

6 150 100 50

Tier 0

Tier 1

Tier 2

Tier 3

2.5 Gbps

2.5 Gbps

622 Mbps

1 5

6 10 26 30

51 55 131 155 31 35 135 151

0 Root

Figure 5.31: Different workload configurations

grid model (being aware of the fact that this may cause performance impact on the

algorithms). Second, the storage capacities of the replica servers were assumed to be

limited and the same replica replacement policy was used as discussed in Section 4.2.

The detailed workload configurations for the replica servers in different tiers of the

grid hierarchy are shown in Figure 5.31. For example, in configuration 1, each server

in tier-1, tier-2, and tier-3 have workload capacities of 350 GB, 300 GB, and 250 GB,

respectively. This means that a tier-2 server can process client requests of data for a

maximum size of 300GB for a sampling period.

Now I compare (Figure 5.30) the job execution times of DPBRP, Greedy Add,

and Greedy Remove using storage configuration one for the Zipf-0.85 and Gaussian

distributions as the workload capacity of replica servers is varied. User QoS require-

ments are taken from both relaxed and relatively more constrained ranges of [1–3]

and [0–1], respectively. DPBRP shows the shortest execution times compared to the

other algorithms for almost all cases. This is because the replica locations selected

in DPBRP reduce the data access latency experienced which, in turn, reduces the

overall job execution time. Greedy Add shows better execution time than Greedy

Remove in most cases. For the QoS constraint [0–1], Greedy Remove surprisingly

Chapter 5: Distributed Replica Placement 211

shows better performance than the other two algorithms when the Gaussian access

pattern is used. In this case, the replica locations determined by Greedy Remove is

relatively more scattered in the lower tiers of the hierarchy due to the constrained

QoS requirements. Consequently, the randomness in data access pattern results in

reduced job execution times. The performance difference between DPBRP and the

other algorithms is more evident when relaxed user QoS requirements are considered.

1 2 3 4 5 6
300

320

340

360

380

400

420

440

460

480

500

Workload configurations

N
o.

 o
f R

ep
lic

as

Zipf−0.85, Rep. Server Conf. = 1, QoS = 1−3

Greedyadd
Greedyremove
QoS−DPBRP

1 2 3 4 5 6
500

550

600

650

700

750

800

850

900

950

1000

Workload configurations

N
o.

 o
f R

ep
lic

as

Gaussian, Rep. Server Conf. = 1, QoS = 1−3

Greedyadd
Greedyremove
QoS−DPBRP

1 2 3 4 5 6
300

320

340

360

380

400

420

440

460

480

500

Workload configurations

N
o.

 o
f R

ep
lic

as

Zipf, Rep. Server Conf. = 1, QoS = 0−1

Greedyadd
Greedyremove
QoS−DPBRP

1 2 3 4 5 6
700

710

720

730

740

750

760

770

780

790

800

Workload configurations

N
o.

 o
f R

ep
lic

as

Gaussian, Rep. Server Conf. = 1, QoS = 0−1

Greedyadd
Greedyremove
QoS−DPBRP

Figure 5.32: No. of replicas, Zipf-0.85 and Gaussian access

DPBRP creates (Figure 5.32) a moderate number of well-placed replicas compared

212 Chapter 5: Distributed Replica Placement

to Greedy Remove and Greedy Add which, as a result, satisfies more user requests

and reduces the access latency. Figure 5.33 shows the user satisfaction rate for all

the algorithms. DPBRP consistently shows better performance in all cases. The

satisfaction rates are higher for QoS requests of wider range. When the workload

capacity of replica servers decreases, the average number of replicas is increased and

consequently job times are improved in all cases but by varying amounts.

1 2 3 4 5 6
50

55

60

65

70

75

80

85

90

95

100

Workload configurations

S
at

is
fa

ct
io

n
ra

te
 (

%
)

Zipf−0.85, Rep. Server Conf. = 1, QoS = 0−1

Greedyadd
Greedyremove
QoS−DPBRP

1 2 3 4 5 6
50

55

60

65

70

75

80

85

90

95

100

Workload configurations

S
at

is
fa

ct
io

n
ra

te
 (

%
)

Zipf−0.85, Rep. Server Conf. = 4, QoS = 0−1

Greedyadd
Greedyremove
QoS−DPBRP

1 2 3 4 5 6
50

55

60

65

70

75

80

85

90

95

100

Workload configurations

S
at

is
fa

ct
io

n
ra

te
 (

%
)

Gaussian, Rep. Server Conf. = 1, QoS = 1−3

Greedyadd
Greedyremove
QoS−DPBRP

1 2 3 4 5 6
50

55

60

65

70

75

80

85

90

95

100

Workload configurations

S
at

is
fa

ct
io

n
ra

te
 (

%
)

Gaussian, Rep. Server Conf. = 4, QoS = 1−3

Greedyadd
Greedyremove
QoS−DPBRP

Figure 5.33: Satisfaction rates, Zipf-0.85 and Gaussian access

Figure 5.34 shows the job execution times under different user QoS requirements

from constant and uniform distributions for the Zipf-0.85 and Gaussian access pat-

Chapter 5: Distributed Replica Placement 213

terns using replica storage and workload configurations one (sufficient storage in all

tiers) and four (moderate workload capacities in all tiers) respectively. In the case

of Zipf-0.85, DPBRP outperforms Greedy Remove and Greedy Add for both types

(constant and uniform) of QoS requirements. The performance difference between

DPBRP and the other algorithms increases for relaxed QoS requirements (i.e. [1–2]

and [1–3]). Greedy Add shows consistently better execution time than Greedy Remove

for Zipf-0.85 except for the QoS constraint of 3. The average number of replicas that

0 1 2 3
1.5

1.6

1.7

1.8

1.9

2

2.1

2.2

2.3

2.4

2.5

2.6
x 10

5

User QoS

Jo
b

tim
es

 (
se

c)

Zipf−0.85, Workload config. = 4, Replica server config. = 1

QoS−DPBRP
Greedyadd
Greedyremove

0 1 2 3
2.5

3

3.5

4

4.5

5

5.5

6
x 10

5

User QoS

Jo
b

tim
es

 (
se

c)

Gaussian, Workload config. = 4, Replica server config. = 1

QoS−DPBRP
Greedyadd
Greedyremove

0−1 0−2 0−3 1−2 1−3
1.5

1.6

1.7

1.8

1.9

2

2.1

2.2

2.3

2.4

2.5
x 10

5

User QoS

Jo
b

tim
es

 (
se

c)

Zipf−0.85, Workload config. = 4, Replica server config. = 1

QoS−DPBRP
Greedyadd
Greedyremove

0−1 0−2 0−3 1−2 1−3
2.5

3

3.5

4

4.5

5

5.5

6
x 10

5

User QoS

Jo
b

tim
es

 (
se

c)

Gaussian, Workload config. = 4, Replica server config. = 1

QoS−DPBRP
Greedyadd
Greedyremove

Figure 5.34: Run time, Zipf-0.85 and Gaussian access, Constant and uniform QoS
constraints

214 Chapter 5: Distributed Replica Placement

Greedy Add creats in this case is significantly less (Figure 5.35) than Greedy Remove

which in turn increases the job time. This is because the first stage of Greedy Add

tries to find a feasible solution with less replicas and in most cases the second stage

(i.e. reducing replication cost) never runs due to the specification of the least con-

strained QoS request. As for the Gaussian distribution, DPBRP performs better than

the other algorithms for constant user QoS values. However, Greedy Remove shows

shorter job times for relatively constrained ranges of QoS requests (i.e. [0–1],[0–2],

and [0–3]).

0 1 2 3
50

100

150

200

250

300

350

400

450

500

550

600

User QoS

N
o.

 o
f r

ep
lic

as

Zipf−0.85, Workload config. = 4, Replica server config. = 1

QoS−DPBRP
Greedyadd
Greedyremove

0 1 2 3

100

200

300

400

500

600

700

800

900

1000

User QoS

N
o.

 o
f r

ep
lic

as

Gaussian, Workload config. = 4, Replica server config. = 1

QoS−DPBRP
Greedyadd
Greedyremove

Figure 5.35: No. of replicas, Zipf-0.85 and Gaussian access, Constant QoS constraints

With decreasing storage capacity of replica servers, the execution times of all meth-

ods are increased but by different amounts. Figure 5.37 shows the execution times

for the Zipf-0.85 and Gaussian access patterns for storage configuration four. DP-

BRP shows shorter run times for all the cases. However, the benefit of DPBRP over

the other algorithms in terms of job time reduces when faced with more constrained

storage configurations. Limited storage capacity also results in lower user QoS sat-

Chapter 5: Distributed Replica Placement 215

1 2 3 4 5
0

50

100

150

200

250

300

350

400

450

500

Replica server configurations

N
o.

 o
f r

ep
lic

as
Zipf−0.85, Workload configuration = 4, QoS = 1−3

Greedyadd
Greedyremove
QoS−DPBRP

1 2 3 4 5
0

100

200

300

400

500

600

700

800

Replica server configurations

N
o.

 o
f r

ep
lic

as

Gaussian, Workload configuration = 4, QoS = 1−3

Greedyadd
Greedyremove
QoS−DPBRP

Figure 5.36: No. of replicas, Zipf-0.85 and Gaussian access, All storage configurations

isfaction rates. Figure 5.33 (right) shows the satisfaction rates of client requests for

storage configuration four. Similarly, the number of replicas created decreases with

the decrease of available storage capacity. Figure 5.36 shows the number of replicas

created for all five storage configurations using workload configuration four.

Effects of link capacity constraints for constant access rate

Figure 5.38 compares job execution times using storage configuration one for uni-

form QoS values as the reserved link capacities for data transfer are varied from 10%

reserved to 100%. With increasing reserved link capacity, the execution times are

decreased for all the variants but by different amounts. DPBRP, however, shows

exception to this trend for the Gaussian pattern. This is due to the significant drop

in the number of replicas that are created (as shown in Figure 5.39). Figure 5.39

shows that the average number of replicas drops for DPBRP with the increase in

link capacity while QoS-DPBRP does not show sigficant variation in the number of

replicas created for all QoS values. The reason is that additional replicas are created

216 Chapter 5: Distributed Replica Placement

1 2 3 4 5 6
1.8

1.9

2

2.1

2.2

2.3

2.4

2.5

2.6
x 10

5

Workload configurations

Jo
b

tim
es

 (
se

c)

Zipf−0.85, Rep. Server Conf. = 4, QoS = 1−3

Greedyadd
Greedyremove
QoS−DPBRP

1 2 3 4 5 6
3

3.5

4

4.5

5

5.5

6
x 10

5

Workload configurations

Jo
b

tim
es

 (
se

c)

Gaussian, Rep. Server Conf. = 4, QoS = 1−3

Greedyadd
Greedyremove
QoS−DPBRP

1 2 3 4 5 6
1.6

1.7

1.8

1.9

2

2.1

2.2

2.3

2.4
x 10

5

Workload configurations

Jo
b

tim
es

 (
se

c)

Zipf−0.85, Rep. Server Conf. = 4, QoS = 0−1

Greedyadd
Greedyremove
QoS−DPBRP

1 2 3 4 5 6
3

3.2

3.4

3.6

3.8

4

4.2

4.4

4.6

4.8

5
x 10

5

Workload configurations

Jo
b

tim
es

 (
se

c)
Gaussian, Rep. Server Conf. = 4, QoS = 0−1

Greedyadd
Greedyremove
QoS−DPBRP

Figure 5.37: Run time, Zipf-0.85 and Gaussian access, Replica server configuration
four

due to constrained user QoS which results in the creation of more replicas even with

the increase of link capacity. As before, QoS-DPBRP shows shorter run times in most

cases for QoS requests of [0–2].

I also tested the scenario when both workload and link constraints are considered.

The resulting performance is largely unchanged from the performance when either

workload or link capacity constraint is considered in addition to user QoS because

this does not significantly affect the replicas that need to be created. Figure 5.40

Chapter 5: Distributed Replica Placement 217

10 20 30 40 50 60 70 80 90 100
1.3

1.4

1.5

1.6

1.7

1.8

1.9

2
x 10

5

Link capacity constraints (%)

Jo
b

tim
es

 (
se

c)
Zipf−1.0

QoS−DPBRP,QoS=0−1
QoS−DPBRP,QoS=0−2
QoS−DPBRP,QoS=0−3
DPBRP

10 20 30 40 50 60 70 80 90 100
3.2

3.4

3.6

3.8

4

4.2

4.4

4.6

4.8
x 10

5

Link capacity constraints (%)

Jo
b

tim
es

 (
se

c)

Gaussian

QoS−DPBRP,QoS=0−1
QoS−DPBRP,QoS=0−2
QoS−DPBRP,QoS=0−3
DPBRP

Figure 5.38: Run time with link constraints, Uniform QoS constraints

10 20 30 40 50 60 70 80 90 100
200

250

300

350

400

450

500

Link capacity constraints (%)

N
o.

 o
f r

ep
lic

as

Zipf−1.0

QoS−DPBRP,QoS=0−1
QoS−DPBRP,QoS=0−2
QoS−DPBRP,QoS=0−3
DPBRP

10 20 30 40 50 60 70 80 90 100
0

100

200

300

400

500

600

700

800

900

1000

Link capacity constraints (%)

N
o.

 o
f r

ep
lic

as

Gaussian

QoS−DPBRP,QoS=0−1
QoS−DPBRP,QoS=0−2
QoS−DPBRP,QoS=0−3
DPBRP

Figure 5.39: No. of replicas with link constraints, Uniform QoS constraints

shows this for all storage configurations for the Zipf-1.0 and Gaussian distributions.

5.5.2 Average Bandwidth Cost

This section analyzes the results on bandwidth consumption considering the effects

of both user and systems QoS constraints. In almost all cases, DPBRP consumes

somewhat less bandwidth than QoS-DPBRP but at the cost of longer job times and

218 Chapter 5: Distributed Replica Placement

1 2 3 4 5
1.5

1.6

1.7

1.8

1.9

2

2.1

2.2

2.3

2.4

2.5
x 10

5

Replica server configurations

Jo
b

tim
es

 (
se

c)

Zipf−1.0, Workload config. = 4, Link capacity = 50%

QoS−DPBRP,QoS=0−1
QoS−DPBRP,QoS=0−2
QoS−DPBRP,QoS=0−3
DPBRP

1 2 3 4 5

3

3.2

3.4

3.6

3.8

4

4.2

4.4

4.6

4.8

5

x 10
5

Replica server configurations

Jo
b

tim
es

 (
se

c)

Gaussian, Workload config. = 4, Link capacity = 50%

QoS−DPBRP,QoS=0−1
QoS−DPBRP,QoS=0−2
QoS−DPBRP,QoS=0−3
DPBRP

1 2 3 4 5
0

50

100

150

200

250

300

350

400

450

500

Replica server configurations

N
o.

 o
f r

ep
lic

as

Zipf−1.0, Workload config. = 4, Link capacity = 50%

QoS−DPBRP,QoS=0−1
QoS−DPBRP,QoS=0−2
QoS−DPBRP,QoS=0−3
DPBRP

1 2 3 4 5
0

100

200

300

400

500

600

700

800

900

1000

Replica server configurations

N
o.

 o
f r

ep
lic

as
Gaussian, Workload config. = 4, Link capacity = 50%

QoS−DPBRP,QoS=0−1
QoS−DPBRP,QoS=0−2
QoS−DPBRP,QoS=0−3
DPBRP

Figure 5.40: Run time with both link and workload constraints (left), No. of replicas
(right), Uniform QoS constraints

no guarantee of user QoS satisfaction.

Effects on bandwidth consumption of user QoS for constant data access
rate

Figure 5.41 shows the average bandwidth cost for configuration one. For all ac-

cess patterns, the bandwidth cost of DPBRP is somewhat less than the QoS-DPBRP

variants. This is due to the creation of fewer replicas resulting in less bandwidth

for creating and updating the replicas which outweighs the increased bandwidth con-

Chapter 5: Distributed Replica Placement 219

Zipf−0.85 Gaus. Unit. Rand. Seq.
2

3

4

5

6

7

8
x 10

4

Data access patterns

A
ve

ra
ge

 b
/w

 c
os

t
Constant data access rate, Configuration one

QoS−DPBRP,QoS=0
QoS−DPBRP,QoS=1
QoS−DPBRP,QoS=2
DPBRP

Zipf−0.85 Gaus. Unit. Rand. Seq.
2

3

4

5

6

7

8
x 10

4

Data access patterns

A
ve

ra
ge

 b
/w

 c
os

t

Constant data access rate, Configuration one

QoS−DPBRP,QoS=0−1
QoS−DPBRP,QoS=0−2
QoS−DPBRP,QoS=0−3
QoS−DPBRP,QoS=1−2
QoS−DPBRP,QoS=1−3
DPBRP

Figure 5.41: Average bandwidth, Configuration one, Constant and uniform QoS
constraints

sumption for nearby data access.

Values
Row Labels Read Replicate
1 102080.392 104602.695
QoS‐DPBRP, QoS=0‐1 16146 20232.54
QoS‐DPBRP, QoS=0‐2 16179.41 20419.43522
QoS‐DPBRP, QoS=0‐3 16343.44 18110.46512
QoS‐DPBRP, QoS=1‐2 15629.15 19406.14618
QoS‐DPBRP, QoS=1‐3 17026.57807 16677.74086
DPBRP 20755.81395 9756.367663

2 103563.12 105184.1085
QoS‐DPBRP, QoS=0‐1 16401.58 20519.103 35000

40000

Zipf-0.85

QoS DPBRP, QoS 0 1 16401.58 20519.103
QoS‐DPBRP, QoS=0‐2 16368.35548 20589.701
QoS‐DPBRP, QoS=0‐3 16403.66 18272.42525
QoS‐DPBRP, QoS=1‐2 16029.89 19793.74308
QoS‐DPBRP, QoS=1‐3 17840.53156 16611.29568
DPBRP 20519.10299 9397.840532

3 103323.6533 107310.3544
QoS‐DPBRP, QoS=0‐1 16810.64 20083.05648
QoS‐DPBRP, QoS=0‐2 16451.41196 20299.00332
QoS‐DPBRP, QoS=0‐3 16011.22 18442.69103
QoS‐DPBRP, QoS=1‐2 16443.1 19608.25028
QoS‐DPBRP, QoS=1‐3 16610.60355 19608.25028
DPBRP 20996.67774 9269.10299

4 108199 7585 75901 16281

0
5000
10000
15000
20000
25000
30000
35000
40000

Q
oS

‐D
PB

RP
, Q

oS
=0

‐1
Q
oS

‐D
PB

RP
, Q

oS
=0

‐2
Q
oS

‐D
PB

RP
, Q

oS
=0

‐3
Q
oS

‐D
PB

RP
, Q

oS
=1

‐2
Q
oS

‐D
PB

RP
, Q

oS
=1

‐3
D
PB

RP
Q
oS

‐D
PB

RP
, Q

oS
=0

‐1
Q
oS

‐D
PB

RP
, Q

oS
=0

‐2
Q
oS

‐D
PB

RP
, Q

oS
=0

‐3
Q
oS

‐D
PB

RP
, Q

oS
=1

‐2
Q
oS

‐D
PB

RP
, Q

oS
=1

‐3
D
PB

RP
Q
oS

‐D
PB

RP
, Q

oS
=0

‐1
Q
oS

‐D
PB

RP
, Q

oS
=0

‐2
Q
oS

‐D
PB

RP
, Q

oS
=0

‐3
Q
oS

‐D
PB

RP
, Q

oS
=1

‐2
Q
oS

‐D
PB

RP
, Q

oS
=1

‐3
D
PB

RP
Q
oS

‐D
PB

RP
, Q

oS
=0

‐1
Q
oS

‐D
PB

RP
, Q

oS
=0

‐2
Q
oS

‐D
PB

RP
, Q

oS
=0

‐3
Q
oS

‐D
PB

RP
, Q

oS
=1

‐2
Q
oS

‐D
PB

RP
, Q

oS
=1

‐3
D
PB

RP
Q
oS

‐D
PB

RP
, Q

oS
=0

‐1
Q
oS

‐D
PB

RP
, Q

oS
=0

‐2
Q
oS

‐D
PB

RP
, Q

oS
=0

‐3
Q
oS

‐D
PB

RP
, Q

oS
=1

‐2
Q
oS

‐D
PB

RP
, Q

oS
=1

‐3
D
PB

RP

A
ve

ra
ge

 b
/w

 u
se

Replicate

Read

4 108199.7585 75901.16281
QoS‐DPBRP, QoS=0‐1 17468.85382 14401.99336
QoS‐DPBRP, QoS=0‐2 17425.25 14439.36877
QoS‐DPBRP, QoS=0‐3 17408.65 11416.11296
QoS‐DPBRP, QoS=1‐2 17375.41 13916.11296
QoS‐DPBRP, QoS=1‐3 17392.02658 13056.47841
DPBRP 21129.56811 8671.096346

5 119117.5435 63477.2979
QoS‐DPBRP, QoS=0‐1 20080.99 11366.27907
QoS‐DPBRP, QoS=0‐2 19468.45 11262.45847
QoS‐DPBRP, QoS=0‐3 19520.35 10726.74419
QoS‐DPBRP, QoS=1‐2 19233.8 11118.49391
QoS‐DPBRP, QoS=1‐3 19684.38538 10631.22924

Q
oS

‐D
Q
oS

‐D
Q
oS

‐D
Q
oS

‐D
Q
oS

‐D

Q
oS

‐D
Q
oS

‐D
Q
oS

‐D
Q
oS

‐D
Q
oS

‐D

Q
oS

‐D
Q
oS

‐D
Q
oS

‐D
Q
oS

‐D
Q
oS

‐D

Q
oS

‐D
Q
oS

‐D
Q
oS

‐D
Q
oS

‐D
Q
oS

‐D

Q
oS

‐D
Q
oS

‐D
Q
oS

‐D
Q
oS

‐D
Q
oS

‐D

1 2 3 4 5
Replica server configurations

DPBRP 21129.56811 8372.093023
Grand Total 536284.4673 456475.6187

Figure 5.42: Read and replication cost for Zipf-0.85 for uniform QoS values

Figure 5.42 shows the replication (create and update) and read costs for the Zipf-

0.85 access pattern when QoS values are taken from a uniform distribution. QoS-

DPBRP shows less read cost for all configurations when a QoS range of [1–2] is used

220 Chapter 5: Distributed Replica Placement

which results in faster execution, as described earlier. In this case, more client requests

are served by better placed replicas in mid-tier nodes. As a result, the bandwidth

used for data access is decreased. However, in this case, read cost is outweighed by

replication cost. A QoS constraint of [1–2] shows moderate overall bandwidth cost

for all storage configurations. The same is true for a constant QoS requirement of 2.

Figures 5.43 and 5.44 show the bandwidth cost for all storage configurations.

DPBRP has less average bandwidth consumption for all configurations. Among the

QoS-DPBRP variations, QoS of 2 and a range of [1–3] show less average bandwidth

cost due to lower read cost and replication cost, respectively. With limited storage

capacity the bandwidth costs of all strategies are significantly reduced due to the

creation of fewer replicas.

1 2 3 4 5

2.6

2.8

3

3.2

3.4

3.6

3.8

x 10
4

Replica server configurations

A
ve

ra
ge

 b
/w

 c
os

t

Zipf−0.85

QoS−DPBRP,QoS=0
QoS−DPBRP,QoS=1
QoS−DPBRP,QoS=2
DPBRP

1 2 3 4 5

2.6

2.8

3

3.2

3.4

3.6

3.8

x 10
4

Replica server configurations

A
ve

ra
ge

 b
/w

 c
os

t

Zipf−0.85

QoS−DPBRP,QoS=0−1
QoS−DPBRP,QoS=0−2
QoS−DPBRP,QoS=0−3
QoS−DPBRP,QoS=1−2
QoS−DPBRP,QoS=1−3
DPBRP

Figure 5.43: Average bandwidth, Zipf-0.85 access, Constant and uniform QoS
constraints

Chapter 5: Distributed Replica Placement 221

1 2 3 4 5
2.5

3

3.5

4

4.5

5

5.5

6
x 10

4

Replica server configurations

A
ve

ra
ge

 b
/w

 c
os

t
Gaussian

QoS−DPBRP,QoS=0
QoS−DPBRP,QoS=1
QoS−DPBRP,QoS=2
DPBRP

1 2 3 4 5
2.5

3

3.5

4

4.5

5

5.5

6
x 10

4

Replica server configurations

A
ve

ra
ge

 b
/w

 c
os

t

Gaussian

QoS−DPBRP,QoS=0−1
QoS−DPBRP,QoS=0−2
QoS−DPBRP,QoS=0−3
QoS−DPBRP,QoS=1−2
QoS−DPBRP,QoS=1−3
DPBRP

Figure 5.44: Average bandwidth, Gaussian access, Constant and uniform QoS
constraints

Effects on bandwidth consumption of user QoS, varying data access rate

The average bandwidth cost for all storage configurations with fluctuating access

request rates is shown in Figure 5.45. With decreasing storage size, bandwidth costs

decrease for all algorithm variants but by different amounts. As before, DPBRP has

somewhat less average bandwidth consumption for all storage configurations. The

performance of the QoS-DPBRP variants are, again, consistent with DPBRP when

the access rate is constant due to creation of a similar number of replicas. Figure 5.29

reflects this for all storage configurations for the Zipf-0.85 distribution.

Effects on bandwidth consumption of workload capacity constraints for
constant access rate

Figure 5.46 shows the average bandwidth cost for storage configuration one when

the workload capacities of replica servers are varied. For both access patterns, the

bandwidth cost of DPBRP is moderate among the studied algorithms and in some

222 Chapter 5: Distributed Replica Placement

1 2 3 4 5

2.6

2.8

3

3.2

3.4

3.6

3.8

x 10
4

Replica server configurations

A
ve

ra
ge

 b
/w

 c
os

t

Zipf−0.85

QoS−DPBRP,QoS=0
QoS−DPBRP,QoS=1
QoS−DPBRP,QoS=2
DPBRP

1 2 3 4 5

2.6

2.8

3

3.2

3.4

3.6

3.8

x 10
4

Replica server configurations

A
ve

ra
ge

 b
/w

 c
os

t

Zipf−0.85

QoS−DPBRP,QoS=0−1
QoS−DPBRP,QoS=0−2
QoS−DPBRP,QoS=0−3
QoS−DPBRP,QoS=1−2
QoS−DPBRP,QoS=1−3
DPBRP

Figure 5.45: Average bandwidth, Varying Zipf-0.85 access, Constant and uniform
QoS constraints

cases (for example, when the Zipf-0.85 distribution and QoS range of [0–1] are used)

DPBRP shows the lowest bandwidth consumption. This is due to the creation of

a moderate number of better placed replicas down the hierarchy resulting in less

bandwidth consumption for data access. Greedy Remove shows the lowest bandwidth

cost in most cases due to the creation of a large number of replicas up in the hierarchy

which results in a low replication (create and update) cost outweighed by a higher

read cost. When the workload capacity of replica servers decreases, the bandwidth

cost increases in all cases due to the creation of an increased number of replicas.

Figure 5.47 shows the replication (create and update) and read costs for the Zipf-

0.85 access pattern and user QoS values of [1–3]. DPBRP shows less read cost for all

workload configurations which results in faster job execution, as mentioned before. In

this case, more client requests are served by better placed replicas in mid-tier nodes.

As a result, the bandwidth used for data access is decreased.

Figures 5.48 shows the bandwidth cost for storage configuration four for the Zipf-

Chapter 5: Distributed Replica Placement 223

1 2 3 4 5 6
2

2.05

2.1

2.15

2.2

2.25

2.3

2.35

2.4

2.45

2.5
x 10

4

Workload configurations

A
ve

ra
ge

 b
/w

 c
os

t
Zipf−0.85, Rep. Server Conf. = 1, QoS = 1−3

Greedyadd
Greedyremove
QoS−DPBRP

1 2 3 4 5 6
3

3.2

3.4

3.6

3.8

4

4.2

4.4

4.6

4.8
x 10

4

Workload configurations

A
ve

ra
ge

 b
/w

 c
os

t

Gaussian, Rep. Server Conf. = 1, QoS = 1−3

Greedyadd
Greedyremove
QoS−DPBRP

1 2 3 4 5 6
2

2.05

2.1

2.15

2.2

2.25

2.3

2.35

2.4

2.45

2.5
x 10

4

Workload configurations

A
ve

ra
ge

 b
/w

 c
os

t

Zipf−0.85, Rep. Server Conf. = 1, QoS = 0−1

Greedyadd
Greedyremove
QoS−DPBRP

1 2 3 4 5 6
3.5

3.6

3.7

3.8

3.9

4

4.1

4.2

4.3

4.4

4.5
x 10

4

Workload configurations

A
ve

ra
ge

 b
/w

 c
os

t

Gaussian, Rep. Server Conf. = 1, QoS = 0−1

Greedyadd
Greedyremove
QoS−DPBRP

Figure 5.46: Average bandwidth cost, Zipf-0.85 and Gaussian access, Replica server
configuration one

0.85 and Gaussian access patterns. DPBRP has moderate bandwidth consumption

for all workload configurations. Greedy Remove shows less average bandwidth cost

due to lower replication cost when the Gaussian distribution is used. Greedy add,

however, performs better than the other algorithms for the Zipf-0.85 distribution

under conditions of limited storage capacity. The bandwidth costs of all strategies are

significantly reduced with limited storage capacity due to the creation of fewer replicas

and user QoS variants of larger ranges show less overall bandwidth consumption.

224 Chapter 5: Distributed Replica Placement

Values
Row Labels Read Replicate
1 39714.255 27666.335
QoS‐DPBRP 12608.025 9938.27
Greedyadd 12629.63 10117.285
Greedyremove 14476.6 7610.78

2 39633.265 27608.56
QoS‐DPBRP 12475.31 10061.725
Greedyadd 12697.535 10098.765
Greedyremove 14460.42 7448.07

3 39408.322 27684.56
QoS‐DPBRP 12395.06 10086.42
Greedyadd 12606.172 10002.47
Greedyremove 14407.09 7595.67

4 39116.7075 28495.93
QoS‐DPBRP 12104.94 10475.305
Greedyadd 12609.5675 10175.925
Greedyremove 14402.2 7844.7

5 39086.03 28511.5725
QoS‐DPBRP 12086.42 10487.6525
Greedyadd 12601.85 10259.26
Greedyremove 14397.76 7764.66

6 38612.14333 29462.96333
QoS‐DPBRP 11978.395 10617.285
Greedyadd 12497 94333 10246 91333Greedyadd 12497.94333 10246.91333
Greedyremove 14135.805 8598.765

Grand Total 235570.7228 169429.9208

0

5000

10000

15000

20000

25000

Q
oS

‐D
PB

RP

G
re
ed

ya
dd

G
re
ed

yr
em

ov
e

Q
oS

‐D
PB

RP

G
re
ed

ya
dd

G
re
ed

yr
em

ov
e

Q
oS

‐D
PB

RP

G
re
ed

ya
dd

G
re
ed

yr
em

ov
e

Q
oS

‐D
PB

RP

G
re
ed

ya
dd

G
re
ed

yr
em

ov
e

Q
oS

‐D
PB

RP

G
re
ed

ya
dd

G
re
ed

yr
em

ov
e

Q
oS

‐D
PB

RP

G
re
ed

ya
dd

G
re
ed

yr
em

ov
e

1 2 3 4 5 6

A
ve

ra
ge

 b
/w

 u
se

Workload configurations

Zipf-0.85, Rep. Server Conf. = 1, QoS = 1-3

Replicate

Read

Figure 5.47: Read and replication cost for Zipf-0.85 for a QoS value of [1–3]

Effects on bandwidth consumption of link capacity constraints for constant
access rate

Figure 5.49 compares bandwidth cost using storage configuration one for uniform

QoS values as the reserved link capacities for data transfer are varied from 10% to

100% reservation. With increasing link capacity, bandwidth costs decrease for all

algorithm variants but by different amounts. As before, DPBRP has less average

bandwidth consumption for all cases. As before, among the QoS-DPBRP variants,

aQoS range of [0–3] shows less average bandwidth cost due to lower replication cost.

The performance of the QoS-DPBRP variants are, again, consistent with DPBRP for

the scenario when both workload and link constraints are considered due to creation

of a similar number of replicas. Figure 5.50 reflects this for all storage configurations

for the Zipf-1.0 and Gaussian distributions.

Chapter 5: Distributed Replica Placement 225

1 2 3 4 5 6
1.8

1.85

1.9

1.95

2

2.05

2.1

2.15

2.2

2.25

2.3
x 10

4

Workload configurations

A
ve

ra
ge

 b
/w

 c
os

t
Zipf−0.85, Rep. Server Conf. = 4, QoS = 1−3

Greedyadd
Greedyremove
QoS−DPBRP

1 2 3 4 5 6
3

3.1

3.2

3.3

3.4

3.5

3.6

3.7

3.8

3.9

4
x 10

4

Workload configurations

A
ve

ra
ge

 b
/w

 c
os

t

Gaussian, Rep. Server Conf. = 4, QoS = 1−3

Greedyadd
Greedyremove
QoS−DPBRP

1 2 3 4 5 6
1.8

1.85

1.9

1.95

2

2.05

2.1

2.15

2.2

2.25

2.3
x 10

4

Workload configurations

A
ve

ra
ge

 b
/w

 c
os

t

Zipf−0.85, Rep. Server Conf. = 4, QoS = 0−1

Greedyadd
Greedyremove
QoS−DPBRP

1 2 3 4 5 6
3

3.1

3.2

3.3

3.4

3.5

3.6

3.7

3.8

3.9

4
x 10

4

Workload configurations

A
ve

ra
ge

 b
/w

 c
os

t

Gaussian, Rep. Server Conf. = 4, QoS = 0−1

Greedyadd
Greedyremove
QoS−DPBRP

Figure 5.48: Average bandwidth cost, Zipf-0.85 and Gaussian access, Replica server
configuration four

5.5.3 Storage Use

As mentioned, the available replica storage capacity greatly impacts the perfor-

mance of the replication algorithms. The increased use of storage due to its relatively

low cost can be traded-off for improvements in job execution time, network bandwidth

used, and QoS satisfaction, as needed. The section describes how replica storage

utilization is affected by the enforcement of user QoS, workload, and link capacity

constraints.

226 Chapter 5: Distributed Replica Placement

10 20 30 40 50 60 70 80 90 100
1.8

1.85

1.9

1.95

2

2.05

2.1

2.15

2.2

2.25

2.3
x 10

4

Link capacity constraints (%)

A
ve

ra
ge

 b
/w

 c
os

t

Zipf−1.0

QoS−DPBRP,QoS=0−1
QoS−DPBRP,QoS=0−2
QoS−DPBRP,QoS=0−3
DPBRP

10 20 30 40 50 60 70 80 90 100
3.2

3.3

3.4

3.5

3.6

3.7

3.8

3.9

4

4.1

4.2
x 10

4

Link capacity constraints (%)

A
ve

ra
ge

 b
/w

 c
os

t

Gaussian

QoS−DPBRP,QoS=0−1
QoS−DPBRP,QoS=0−2
QoS−DPBRP,QoS=0−3
DPBRP

Figure 5.49: Average bandwidth with link constraints, Uniform QoS constraints

1 2 3 4 5
1.5

1.6

1.7

1.8

1.9

2

2.1

2.2

2.3

2.4

2.5
x 10

4

Replica server configurations

A
ve

ra
ge

 b
/w

 c
os

t

Zipf−1.0, Workload config. = 4, Link capacity = 50%

QoS−DPBRP,QoS=0−1
QoS−DPBRP,QoS=0−2
QoS−DPBRP,QoS=0−3
DPBRP

1 2 3 4 5

2.6

2.8

3

3.2

3.4

3.6

3.8

4

4.2

4.4

4.6

4.8
x 10

4

Replica server configurations

A
ve

ra
ge

 b
/w

 c
os

t

Gaussian, Workload config. = 4, Link capacity = 50%

QoS−DPBRP,QoS=0−1
QoS−DPBRP,QoS=0−2
QoS−DPBRP,QoS=0−3
DPBRP

Figure 5.50: Average bandwidth with both link and workload constraints, Uniform
QoS constraints

Effects on storage use of user QoS, constant data access rate

The storage used by the various placement schemes for configuration one are

shown in Figure 5.51. For all access patterns, the storage cost of DPBRP is lower

than QoS-DPBRP due to the fewer number of replicas created.

Chapter 5: Distributed Replica Placement 227

Zipf−0.85 Gaus. Unit. Rand. Seq.
0

10

20

30

40

50

60

70

80

Data access patterns

%
 o

f s
to

ra
ge

 u
sa

ge
Constant data access rate, Configuration one

QoS−DPBRP,QoS=0
QoS−DPBRP,QoS=1
QoS−DPBRP,QoS=2
DPBRP

Zipf−0.85 Gaus. Unit. Rand. Seq.
0

10

20

30

40

50

60

70

80

Data access patterns

%
 o

f s
to

ra
ge

 u
sa

ge

Constant data access rate, Configuration one

QoS−DPBRP,QoS=0−1
QoS−DPBRP,QoS=0−2
QoS−DPBRP,QoS=0−3
QoS−DPBRP,QoS=1−2
QoS−DPBRP,QoS=1−3
DPBRP

Figure 5.51: Storage cost, Configuration one, Constant and uniform QoS constraints

1 2 3 4 5
0

10

20

30

40

50

60

70

80

90

100

Replica server configurations

%
 o

f s
to

ra
ge

 u
sa

ge

Zipf−0.85

QoS−DPBRP,QoS=0
QoS−DPBRP,QoS=1
QoS−DPBRP,QoS=2
DPBRP

1 2 3 4 5
0

10

20

30

40

50

60

70

80

90

100

Replica server configurations

%
 o

f s
to

ra
ge

 u
sa

ge

Gaussian

QoS−DPBRP,QoS=0
QoS−DPBRP,QoS=1
QoS−DPBRP,QoS=2
DPBRP

Figure 5.52: Storage cost, Zipf-0.85 and Gaussian access, Constant QoS constraints

The capacity of the replica servers has a clear and expected impact on the per-

centage of storage used by both DPBRP and QoS-DPBRP as shown in Figures 5.52

and 5.53. One might expect that the reduction of storage size should lead to 100%

use of storage but some grid sites use their storage completely while others might not

use any space at all, depending on data access patterns. The benefit of DPBRP in

terms of storage used is offset by its higher job execution time. QoS-DPBRP effec-

228 Chapter 5: Distributed Replica Placement

1 2 3 4 5
0

10

20

30

40

50

60

70

80

90

100

Replica server configurations

%
 o

f s
to

ra
ge

 u
sa

ge

Zipf−0.85

QoS−DPBRP,QoS=0−1
QoS−DPBRP,QoS=0−2
QoS−DPBRP,QoS=0−3
QoS−DPBRP,QoS=1−2
QoS−DPBRP,QoS=1−3
DPBRP

1 2 3 4 5
0

10

20

30

40

50

60

70

80

90

100

Replica server configurations

%
 o

f s
to

ra
ge

 u
sa

ge

Gaussian

QoS−DPBRP,QoS=0−1
QoS−DPBRP,QoS=0−2
QoS−DPBRP,QoS=0−3
QoS−DPBRP,QoS=1−2
QoS−DPBRP,QoS=1−3
DPBRP

Figure 5.53: Storage cost, Zipf-0.85 and Gaussian access, Uniform QoS constraints

tively trades off additional storage used to achieve faster access times while consuming

moderate bandwidth.

Effects on storage use of user QoS, varying data access rate

Figure 5.54 compares the storage use of my placement algorithms for all storage

configurations when the request rate fluctuates. With decreasing storage availability,

the percentage of storage used naturally increases but by different amounts. DPBRP

shows less storage requirements for all storage configurations. In most cases, the cost

of QoS-DPBRP for such demanding QoS constraints of 0 and [0–1] is higher due to

its creation of an increased number of replicas.

Effects on storage use of workload capacity constraints, constant access
rate

The storage used by the placement schemes for storage configuration one with

varied workload capacities is shown in Figure 5.55. For both access patterns, the cost

Chapter 5: Distributed Replica Placement 229

1 2 3 4 5
0

10

20

30

40

50

60

70

80

90

100

Replica server configurations

%
 o

f s
to

ra
ge

 u
sa

ge
Zipf−0.85

QoS−DPBRP,QoS=0
QoS−DPBRP,QoS=1
QoS−DPBRP,QoS=2
DPBRP

1 2 3 4 5
0

10

20

30

40

50

60

70

80

90

100

Replica server configurations

%
 o

f s
to

ra
ge

 u
sa

ge

Zipf−0.85

QoS−DPBRP,QoS=0−1
QoS−DPBRP,QoS=0−2
QoS−DPBRP,QoS=0−3
QoS−DPBRP,QoS=1−2
QoS−DPBRP,QoS=1−3
DPBRP

Figure 5.54: Storage cost, Varying Zipf-0.85 access, Constant and uniform QoS
constraints

of DPBRP is moderate among the studied algorithms corresponding to a moderate

number of replicas created. When the workload capacity of replica servers decreases,

the storage overhead increases in all cases due to the creation of an increased number

of replicas.

1 2 3 4 5 6
0

5

10

15

20

25

30

35

40

45

50

Workload configurations

%
 o

f s
to

ra
ge

 u
sa

ge

Zipf−0.85, Rep. Server Conf. = 1, QoS = 1−3

Greedyadd
Greedyremove
QoS−DPBRP

1 2 3 4 5 6
50

55

60

65

70

75

80

85

90

95

100

Workload configurations

%
 o

f s
to

ra
ge

 u
sa

ge

Gaussian, Rep. Server Conf. = 1, QoS = 1−3

Greedyadd
Greedyremove
QoS−DPBRP

Figure 5.55: Storage cost, Zipf-0.85 and Gaussian access, Replica server configuration
one

230 Chapter 5: Distributed Replica Placement

Effects on storage use of link capacity constraints, constant access rate

10 20 30 40 50 60 70 80 90 100
20

30

40

50

60

70

80

90

100

Link capacity constraints (%)

%
 o

f s
to

ra
ge

 u
sa

ge

Zipf−1.0

QoS−DPBRP,QoS=0−1
QoS−DPBRP,QoS=0−2
QoS−DPBRP,QoS=0−3
DPBRP

10 20 30 40 50 60 70 80 90 100
20

30

40

50

60

70

80

90

100

Link capacity constraints (%)

%
 o

f s
to

ra
ge

 u
sa

ge

Gaussian

QoS−DPBRP,QoS=0−1
QoS−DPBRP,QoS=0−2
QoS−DPBRP,QoS=0−3
DPBRP

Figure 5.56: Storage cost with link constraints, Uniform QoS constraints

Figure 5.56 compares the storage use using replica server configuration one for

uniform QoS values as the reserved link capacities for data transfer were varied from

10% to 100% reservation. With increasing link capacity, the percentage of storage

used naturally increases but by different amounts. DPBRP shows less storage re-

quirements for all cases. The cost of QoS-DPBRP for QoS values of [0–1] is higher

due to its creation of an increased number of replicas. Figure 5.57 shows the storage

use for all replica server configurations when both workload and link constraints are

considered. As before, the percentage of storage used is increased with the decrease

of available storage.

5.5.4 Discussion

The primary goal of my QoS-aware distributed dynamic replica placement algo-

rithm is to reduce job execution time and to satisfy QoS constraints as much as

Chapter 5: Distributed Replica Placement 231

1 2 3 4 5
10

20

30

40

50

60

70

80

90

100

110

Replica server configurations

%
 o

f s
to

ra
ge

 u
sa

ge
Zipf−1.0, Workload config. = 4, Link capacity = 50%

QoS−DPBRP,QoS=0−1
QoS−DPBRP,QoS=0−2
QoS−DPBRP,QoS=0−3
DPBRP

1 2 3 4 5
10

20

30

40

50

60

70

80

90

100

110

Replica server configurations

%
 o

f s
to

ra
ge

 u
sa

ge

Gaussian, Workload config. = 4, Link capacity = 50%

QoS−DPBRP,QoS=0−1
QoS−DPBRP,QoS=0−2
QoS−DPBRP,QoS=0−3
DPBRP

Figure 5.57: Storage cost, Zipf-1.0 and Gaussian access, Constant and uniform QoS
constraints

possible. At the same time, from the perspective of the whole system, the perfor-

mance metrics of bandwidth consumption and storage use need to be managed to

ensure that QoS-DPBRP does not induce unduly heavy load on the system.

In most situations, QoS-DPBRP shortens job execution time, sometimes signif-

icantly, compared to its unconstrained counterpart at the cost of moderate to high

bandwidth consumption. The benefits of QoS-DPBRP are achieved by creating a

number of additional, well-placed replicas to meet user QoS requests. This, of course,

incurs higher storage cost. Moreover, QoS-DPBRP shows improved job execution

time compared to Greedy Add and Greedy Remove at the cost of moderate use of

bandwidth and storage resources to meet user and system (workload) QoS require-

ments. The results suggest that our algorithm is successful in deciding which data

files should be replicated and where the replicas should be placed to meet both types

of QoS constraints. Adding workload and link constraints on replica servers gives

performance benefit in terms of execution times. The available storage capacities of

232 Chapter 5: Distributed Replica Placement

the replica servers naturally has a major impact on the performance of replication

techniques. Increasing the replica server storage capacity leads to performance im-

provement in terms of job execution time and satisfaction rates of user QoS requests.

QoS-DPBRP appears to be better able to exploit increases in available storage size

than its non-QoS-aware counterpart. Overall, relaxed QoS constraints (i.e. wider

acceptable ranges) lead to improved satisfaction of requests compared to strict QoS

requirements.

QoS-DPBRP supports the optimization of multiple QoS parameters concurrently.

Each user/client can specify its own acceptable QoS, in terms of the number of hops

towards the root of the hierarchy to ensure timely retrieval of the requested data. The

resulting replica locations due to the satisfaction of this user QoS constraints reduce

the server load and bandwidth use up in the hierarchy. This, in turn, helps meeting

the workload and link capacity constraints. Replicas are pushed down the hierarchy

by QoS-DPBRP to meet any of the specified QoS requirements. This facilitates

optimization of multiple QoS parameters concurrently and does not impose heavy

load on the system. QoS-DPBRP thus offers the benefit of this flexibility and its

potential usefulness for other applications than data grids.

My QoS-aware distributed dynamic replica placement algorithm (QoS-DPBRP)

and a performance comparison of QoS-DPBRP to its unconstrained counterpart (DP-

BRP) have been published in [SGE11b]. Only user QoS requirement in terms

of hop count (replica distance) is considered in this paper. In our subsequent pa-

per [SGE11a], the QoS-aware replication problem is addressed from a system point of

view where the workload capacity of replica servers and link capacities are bounded.

Chapter 6

Overall Assessment and Scope of
Application

A data grid enables thousands of scientists sitting at geographically distributed

universities and research centers to effectively share their data. The sheer volume

of the data and computation calls for sophisticated data management and resource

allocation. This thesis is one step towards better understanding the dynamics of

such a system and the issues involved in increasing the overall efficiency of a data

grid by intelligent replica creation and movement. This chapter presents an overall

assessment of the studied replication algorithms based on the results obtained from

simulation experiments and also analyses the benefits and challenges of deploying the

placement strategies in real data grid applications and applications in other domains

as well. The chapter starts with discussing the efficiency of my centralized and dis-

tributed popularity-driven replica placement algorithms. Then it analyses the aspect

of incorporating QoS constraints into the base distributed algorithm and investigates

to what extent these quality expectations are met given that the required resources

(computation, communication, and storage) are typically limited. The goal of the

assessment is to look for patterns between various performance metrics to be able to

233

234 Chapter 6: Overall Assessment and Scope of Application

report on general trends that will tell us when my approach is likely to work well. As

mentioned, there will be “hot” files in real applications which means some files will

be more popular than others. This access behavior makes my results significant.

6.1 Replica Placement Using Centralized Algorithms

To address the replica placement problem in large-scale data grids, a base “popularity-

driven” dynamic replica placement algorithm was introduced in this thesis for use in

hierarchically structured data grids. I also presented an adaptive version of my basic

replica placement algorithm which considers both data access arrival rates from the

clients and the storage capacities of the replica servers to select the best candidate

sites at which to place replicas. The performance of my placement algorithms was

evaluated using a set of simulation experiments over a wide range of data access pat-

terns and replica server capacities and was compared to a number of other existing

replica placement algorithms.

Zipf−0.85 Gaus. Unit. Rand. Seq.
−60

−40

−20

0

20

40

60

Data access patterns

P
er

ce
nt

ag
e

sa
vi

ng
s

in
 jo

b
tim

e
(%

)

Replica server configuration one

PBRP
ABU
Cascading
Best Client
Caching (LRU)

Figure 6.1: Percentage savings in job time for different replication methods compared
to Fast spread using sufficient storage at the replica servers (i.e. storage configuration
one)

Chapter 6: Overall Assessment and Scope of Application 235

Figures 6.1 and 6.2 show the performance results of the studied algorithms for dif-

ferent data access patterns and replica server configurations. All the algorithms are

compared with Fast spread being the standard of comparison. Thus the graphs illus-

trate the savings achieved by the algorithms beyond those achieved by Fast spread.

Caching’s performance in terms of job execution time is better than that of other

12.6% 17.5% 40% 55% 75%

−60

−40

−20

0

20

40

60

Percentage of storage capacity

P
er

ce
nt

ag
e

sa
vi

ng
s

in
 jo

b
tim

e
(%

)

Zipf−0.85

PBRP
ABU
Cascading
Best Client
Caching (LRU)

12.6% 17.5% 40% 55% 75%

−60

−40

−20

0

20

40

60

Percentage of storage capacity

P
er

ce
nt

ag
e

sa
vi

ng
s

in
 jo

b
tim

e
(%

)

Gaussian

PBRP
ABU
Cascading
Best Client
Caching (LRU)

12.6% 17.5% 40% 55% 75%

−60

−40

−20

0

20

40

60

Percentage of storage capacity

P
er

ce
nt

ag
e

sa
vi

ng
s

in
 jo

b
tim

e
(%

)

Unitary

 PBRP
ABU
Cascading
Best Client
Caching (LRU)

12.6% 17.5% 40% 55% 75%

−60

−40

−20

0

20

40

60

Percentage of storage capacity

P
er

ce
nt

ag
e

sa
vi

ng
s

in
 jo

b
tim

e
(%

)

Random

PBRP
ABU
Cascading
Best Client
Caching (LRU)

Figure 6.2: Percentage savings in job time as compared to Fast spread for different
access patterns using various relative storage capacity (Section 4.4.3)

algorithms for access patterns containing both randomness and temporal locality

provided client sites have sufficient storage. However, in cases of limited storage ca-

236 Chapter 6: Overall Assessment and Scope of Application

pacity of clients, caching files will get replaced quickly which in turn will increase

access time causing an increase in job execution time (refer to Figure 6.2). Relatively

longer simulation runs (as shown in Section 4.5.1) highlight the advantage of PBRP

which consistently performs better than Caching in terms of job time for the random

data access patterns (such as Gaussian and flat Random) where data requests from

clients occur for a wider range of files. The performance improvement of PBRP in

terms of job time is minimal compared to Caching when clients have sufficient storage

(i.e. Configurations 1, 2 and 3) and data access patterns contain temporal locality

(i.e. Zipf-0.85 and Zipf-1.0). In fact once the access patterns contain more locality

Caching in some cases shows somewhat better job execution time than PBRP though

the difference in this case is up to 6%. On the other hand, Best client consistently

performs worse than other algorithms in most situations both in terms of job time

and bandwidth consumption.

12.6% 17.5% 40% 55% 75%

−60

−40

−20

0

20

40

60

Percentage of storage capacity

P
er

ce
nt

ag
e

sa
vi

ng
s

in
 a

ve
ra

ge
 b

/w
 c

os
t(

%
)

Zipf−0.85

PBRP
ABU
Cascading
Best Client
Caching (LRU)

12.6% 17.5% 40% 55% 75%

−60

−40

−20

0

20

40

60

Percentage of storage capacity

P
er

ce
nt

ag
e

sa
vi

ng
s

in
 a

ve
ra

ge
 b

/w
 c

os
t (

%
)

Random

PBRP
ABU
Cascading
Best Client
Caching (LRU)

Figure 6.3: Performance savings in average bandwidth usage as compared to Fast
spread using various storage configurations

Considering the remaining strategies Fast spread, Cascading, ABU, and PBRP,

Chapter 6: Overall Assessment and Scope of Application 237

there is no sure best strategy for all scenarios. Fast spread consistently performs

better than Cascading in terms of job execution time for all access patterns. The job

time savings of Fast spread are up to 13% more than that of Cascading. In spite of

the advantage Fast spread has, it’s overhead in terms of high frequency of replication

is obvious. It has high storage requirement (up to 36% more) and consumes more

bandwidth (up to 12%) compared to Cascading. This is shown in Figures 6.3 and 6.4.

12.6% 17.5% 40% 55% 75%
−250

−200

−150

−100

−50

0

50

100

150

200

250

Percentage of storage capacity

P
er

ce
nt

ag
e

sa
vi

ng
s

in
 s

to
ra

ge
 u

sa
ge

 (
%

)

Zipf−0.85

PBRP
ABU
Cascading
Best Client
Caching (LRU)

12.6% 17.5% 40% 55% 75%
−150

−100

−50

0

50

100

150

Percentage of storage capacity

P
er

ce
nt

ag
e

sa
vi

ng
s

in
 s

to
ra

ge
 u

sa
ge

 (
%

)

Random

PBRP
ABU
Cascading
Best Client
Caching (LRU)

Figure 6.4: Performance savings in storage usage as compared to Fast spread using
various storage configurations

PBRP consistently performs better in terms of job execution time and bandwidth

consumption compared to ABU, Fast Spread, and Cascading for data access patterns

that reflect temporal locality (i.e. Zipf-0.85 and Zipf-1.0). The advantage of PBRP

over other algorithms increases as the access patterns contain more locality. The job

time savings of PBRP are up to 6% and 25% more than that for ABU and Fast

spread, respectively as shown in Figures 6.1 and 6.2. This is because when the data

access patterns follow Zipf, some file requests occur frequently making them “popular”

238 Chapter 6: Overall Assessment and Scope of Application

where many others occur rarely. Thus the clients focus on a smaller range of data

files with higher frequencies compared to other access patterns. Consiquently, PBRP

can identify the popular files effectively based on past data accesses. PBRP also

considers the locations of replica servers and clients for determining the replication

destinations, so the replica servers are properly utilized. As for the random data

access patterns, the performance improvement of PBRP in terms of job time is not

terribly significant compared to Fast spread and ABU and in fact for flat random

distribution Fast spread shows somewhat better job time than PBRP though the

difference in this case is marginal (about 2%). This can be attributed to the fact that

the overhead in creating additional replicas in PBRP is not offset by the advantage

of moving them closer to the clients. ABU does not differ significantly from PBRP in

terms of bandwidth consumption. Fast spread on the other hand leads to the higher

bandwidth usage (up to 8%) due to higher replication cost compared to PBRP (refer

to Figure 6.4).

Zipf−0.85 Gaus. Unit. Rand. Seq.
−30

−20

−10

0

10

20

30

Data access patterns

P
er

ce
nt

ag
e

sa
vi

ng
s

in
 jo

b
tim

e
(%

)

Replica server configuration one

APBRP, Fluctuate
APBRP, Consistent Decrease
APBRP, Consistent Increase

Figure 6.5: Percentage savings in job time for APBRP as compared to PBRP for all
data access rates

Chapter 6: Overall Assessment and Scope of Application 239

Compared to the other algorithms PBRP shows moderate requirements for storage

use. This moderate use of (relatively cheap) storage space by PBRP makes it a good

candidate when data access performance and bandwidth use are of primary concern.

Overall, the storage capacities of the replica servers have a major impact on the

performance of replication techniques. Increasing the replica server capacity leads to

performance improvement for job execution time and average bandwidth cost.

12.6% 17.5% 40% 55% 75%
−30

−20

−10

0

10

20

30

Percentage of storage capacity

P
er

ce
nt

ag
e

sa
vi

ng
s

in
 jo

b
tim

e
(%

)

Zipf−0.85

APBRP, Fluctuate
APBRP, Consistent Decrease
APBRP, Consistent Increase

12.6% 17.5% 40% 55% 75%
−30

−20

−10

0

10

20

30

Percentage of storage capacity

P
er

ce
nt

ag
e

sa
vi

ng
s

in
 jo

b
tim

e
(%

)

Random

APBRP, Fluctuate
APBRP, Consistent Decrease
APBRP, Consistent Increase

Figure 6.6: Percentage savings in job time for APBRP as compared to PBRP using
various storage configurations

These results lead us to conclude that if there is sufficient temporal locality in

the access patterns then the strategy that would work best is PBRP. With only a

moderate increased amount of storage use, PBRP lowers job times significantly, while

judiciously using network resources. If, however, grid users exhibit total randomness

in accessing data, then depending on what is more important in the grid scenario,

lower access times or lesser bandwidth consumption, a trade-off between PBRP and

Fast spread can be made. If the chief aim is to elicit faster responses from the system,

Fast spread might work better. On the other hand if conserving bandwidth is of top

240 Chapter 6: Overall Assessment and Scope of Application

priority, PBRP is a better grid replication strategy.

12.6% 17.5% 40% 55% 75%
−15

−10

−5

0

5

10

15

Percentage of storage capacity

P
er

ce
nt

ag
e

sa
vi

ng
s

in
 a

ve
ra

ge
 b

/w
 u

sa
ge

 (
%

)

Zipf−0.85

APBRP, Fluctuate
APBRP, Consistent Decrease
APBRP, Consistent Increase

12.6% 17.5% 40% 55% 75%
−50

−40

−30

−20

−10

0

10

20

30

40

50

Percentage of storage capacity

P
er

ce
nt

ag
e

sa
vi

ng
s

in
 s

to
ra

ge
 u

sa
ge

 (
%

)

Zipf−0.85

APBRP, Fluctuate
APBRP, Consistent Decrease
APBRP, Consistent Increase

12.6% 17.5% 40% 55% 75%
−15

−10

−5

0

5

10

15

Percentage of storage capacity

P
er

ce
nt

ag
e

sa
vi

ng
s

in
 a

ve
ra

ge
 b

/w
 u

sa
ge

 (
%

)

Random

APBRP, Fluctuate
APBRP, Consistent Decrease
APBRP, Consistent Increase

12.6% 17.5% 40% 55% 75%
−50

−40

−30

−20

−10

0

10

20

30

40

50

Percentage of storage capacity

P
er

ce
nt

ag
e

sa
vi

ng
s

in
 s

to
ra

ge
 u

sa
ge

 (
%

)

Random

APBRP, Fluctuate
APBRP, Consistent Decrease
APBRP, Consistent Increase

Figure 6.7: Performance savings in average bandwidth usage (left) and storage usage
(right) as compared to PBRP using various storage configurations

In PBRP, the threshold value remains constant irrespective of variation in data

access arrival rate and the available storage capacities of the replica servers. APBRP

addresses this issue by dynamically changing the threshold value based on the data

access rate and storage availability. Figures 6.5 to 6.7 compare the performance

of PBRP and APBRP considering three scenarios: when the data access rate is

consistently increasing, when it is consistently decreasing, and when it fluctuates.

Chapter 6: Overall Assessment and Scope of Application 241

Simulation results show that APBRP is able to further reduce the job execution time

and bandwidth use in most cases when the data access rate regularly fluctuates and

decreases at the expense of some additional storage consumption. PBRP performs

as well as APBRP or somewhat better for all access patterns due to a significantly

increased number of replicas when the replica servers have sufficient storage and the

client request rate is consistently increasing.

12.6% 17.5% 40% 55% 75%
−15

−10

−5

0

5

10

15

Percentage of storage capacity

P
er

ce
nt

ag
e

sa
vi

ng
s

in
 jo

b
tim

e
(%

)

Zipf−0.85

APBRP
DPBRP

12.6% 17.5% 40% 55% 75%
−15

−10

−5

0

5

10

15

Percentage of storage capacity

P
er

ce
nt

ag
e

sa
vi

ng
s

in
 a

ve
ra

ge
 b

/w
 u

sa
ge

(%
)

Zipf−0.85

APBRP
DPBRP

12.6% 17.5% 40% 55% 75%
−15

−10

−5

0

5

10

15

Percentage of storage capacity

P
er

ce
nt

ag
e

sa
vi

ng
s

in
 jo

b
tim

e
(%

)

Random

APBRP
DPBRP

12.6% 17.5% 40% 55% 75%
−15

−10

−5

0

5

10

15

Percentage of storage capacity

P
er

ce
nt

ag
e

sa
vi

ng
s

in
 a

ve
ra

ge
 b

/w
 u

sa
ge

 (
%

)

Random

APBRP
DPBRP

Figure 6.8: Percentage savings in job time (left) and average bandwidth usage (right)
for DPBRP and APBRP as compared to PBRP using various storage configurations

242 Chapter 6: Overall Assessment and Scope of Application

6.2 Replica Placement Using Distributed Algorithms

A distributed solution to the replica placement problem was then presented that

minimizes overall replication overhead (access and update costs) for a given traffic

pattern. The primary goal of my basic distributed dynamic replication algorithm

(DPBRP) is to reduce the job execution time experienced by the end-user (by de-

creasing data access latency). At the same time, from the perspective of the whole

system, the performance metrics of bandwidth consumption and storage use need to

be managed to ensure that DPBRP does not induce heavy load on the system.

12.6% 17.5% 40% 55% 75%
−50

−40

−30

−20

−10

0

10

20

30

40

50

Percentage of storage capacity

P
er

ce
nt

ag
e

sa
vi

ng
s

in
 s

to
ra

ge
 u

sa
ge

(%
)

Zipf−0.85

APBRP
DPBRP

12.6% 17.5% 40% 55% 75%
−50

−40

−30

−20

−10

0

10

20

30

40

50

Percentage of storage capacity

P
er

ce
nt

ag
e

sa
vi

ng
s

in
 s

to
ra

ge
 u

sa
ge

 (
%

)

Random

APBRP
DPBRP

Figure 6.9: Performance savings in storage usage as compared to PBRP using various
storage configurations

Figures 6.8 and 6.9 show the performance results for DPBRP, APBRP, and PBRP.

The first two strategies are compared, with PBRP being the standard of comparison.

In most situations, DPBRP shortens job execution time (up to 10%) and reduces

bandwidth consumption compared to APBRP and PBRP while offering the benefits of

a distributed algorithms (no single point of failure, distribution of algorithm overhead

across many machines). Further, the storage cost incurred by DPBRP is less than

Chapter 6: Overall Assessment and Scope of Application 243

APBRP and PBRP in most cases. The benefits of DPBRP are achieved by creating

12.6% 17.5% 40% 55% 75%
0

5

10

15

20

25

30

35

40

45

50

Percentage of storage capacity

P
er

ce
nt

ag
e

sa
vi

ng
s

in
 jo

b
tim

e(
%

)

Zipf−0.85

QoS−DPBRP,QoS=0−1
QoS−DPBRP,QoS=0−2
QoS−DPBRP,QoS=0−3
QoS−DPBRP,QoS=1−2
QoS−DPBRP,QoS=1−3

12.6% 17.5% 40% 55% 75%
−60

−40

−20

0

20

40

60

Percentage of storage capacity

P
er

ce
nt

ag
e

sa
vi

ng
s

in
 a

ve
ra

ge
 b

/w
 u

sa
ge

 (
%

)

Zipf−0.85

QoS−DPBRP,QoS=0−1
QoS−DPBRP,QoS=0−2
QoS−DPBRP,QoS=0−3
QoS−DPBRP,QoS=1−2
QoS−DPBRP,QoS=1−3

12.6% 17.5% 40% 55% 75%
0

5

10

15

20

25

30

35

40

45

50

Percentage of storage capacity

P
er

ce
nt

ag
e

sa
vi

ng
s

in
 jo

b
tim

e
(%

)

Gaussian

QoS−DPBRP,QoS=0−1
QoS−DPBRP,QoS=0−2
QoS−DPBRP,QoS=0−3
QoS−DPBRP,QoS=1−2
QoS−DPBRP,QoS=1−3

12.6% 17.5% 40% 55% 75%
−60

−40

−20

0

20

40

60

Percentage of storage capacity

P
er

ce
nt

ag
e

sa
vi

ng
s

in
 a

ve
ra

ge
 b

/w
 u

sa
ge

 (
%

)
Gaussian

QoS−DPBRP,QoS=0−1
QoS−DPBRP,QoS=0−2
QoS−DPBRP,QoS=0−3
QoS−DPBRP,QoS=1−2
QoS−DPBRP,QoS=1−3

Figure 6.10: Percentage savings in job time (left) and average bandwidth usage (right)
for QoS-DPBRP as compared to DPBRP using various storage configurations

an “appropriate” number of well-placed replicas. Performance results suggest that the

DPBRP algorithm is successful in deciding which data files should be replicated and

where the replicas should be placed. The available storage capacities of the replica

servers naturally has a major impact on the performance of all replication techniques.

Increasing the replica server capacity leads to performance improvement in terms of

job execution time and average bandwidth cost. DPBRP also appears to be better

244 Chapter 6: Overall Assessment and Scope of Application

able to exploit increases in available capacity than my other algorithms.

My earlier results show that PBRP can shorten job execution time significantly

and reduce bandwidth consumption compared to other dynamic methods including

ABU, Fast Spread and Cascading placement. Thus, transitively, DPBRP also per-

forms better than these other non-adaptive dynamic replication methods.

12.6% 17.5% 40% 55% 75%
−200

−150

−100

−50

0

50

100

150

200

Percentage of storage capacity

P
er

ce
nt

ag
e

sa
vi

ng
s

in
 s

to
ra

ge
 u

sa
ge

 (
%

)

Zipf−0.85

QoS−DPBRP,QoS=0−1
QoS−DPBRP,QoS=0−2
QoS−DPBRP,QoS=0−3
QoS−DPBRP,QoS=1−2
QoS−DPBRP,QoS=1−3

12.6% 17.5% 40% 55% 75%
−200

−150

−100

−50

0

50

100

150

200

Percentage of storage capacity

P
er

ce
nt

ag
e

sa
vi

ng
s

in
 s

to
ra

ge
 u

sa
ge

 (
%

)

Gaussian

QoS−DPBRP,QoS=0−1
QoS−DPBRP,QoS=0−2
QoS−DPBRP,QoS=0−3
QoS−DPBRP,QoS=1−2
QoS−DPBRP,QoS=1−3

Figure 6.11: Performance savings in storage usage for QoS-DPBRP as compared to
DPBRP using various storage configurations

My modified, QoS-aware, replica placement algorithm, QoS-DPBRP aims simul-

taneously to improve system performance and satisfy the quality requirements of

users. In most situations, QoS-DPBRP shortens job execution time, sometimes sig-

nificantly (up to 20% for a QoS request range of [1–2]), compared to its unconstrained

counterpart at the cost of moderate to high bandwidth consumption. This is shown

in Figure 6.10. The benefits of QoS-DPBRP are achieved by creating a number of

additional, well-placed replicas to better meet user QoS requests. This, of course,

incurs higher storage cost (refer to Figure 6.11). As before, the available storage

capacities of the replica servers has a major impact on the performance of replica-

Chapter 6: Overall Assessment and Scope of Application 245

tion techniques. Increasing the replica server storage capacity leads to performance

improvement in terms of job execution time and also satisfaction rates of user QoS

requests.

1 2 3 4 5 6
−30

−20

−10

0

10

20

30

Workload configuratins

P
er

ce
nt

ag
e

sa
vi

ng
s

in
 jo

b
tim

e(
%

)

Zipf−0.85, Rep. Server Conf. = 1, QoS = 1−3

Greedyadd
QoS−DPBRP

1 2 3 4 5 6
−30

−20

−10

0

10

20

30

Workload configuratins

P
er

ce
nt

ag
e

sa
vi

ng
s

in
 jo

b
tim

e(
%

)

Gaussian, Rep. Server Conf. = 1, QoS = 1−3

Greedyadd
QoS−DPBRP

1 2 3 4 5 6
−30

−20

−10

0

10

20

30

Workload configuratins

P
er

ce
nt

ag
e

sa
vi

ng
s

in
 jo

b
tim

e
(%

)

Zipf−0.85, Rep. Server Conf. = 1, QoS = 0−1

Greedyadd
QoS−DPBRP

1 2 3 4 5 6
−30

−20

−10

0

10

20

30

Workload configuratins

P
er

ce
nt

ag
e

sa
vi

ng
s

in
 jo

b
tim

e
(%

)

Gaussian, Rep. Server Conf. = 1, QoS = 0−1

Greedyadd
QoS−DPBRP

Figure 6.12: Percentage savings in job time as compared to Greedy Remove for dif-
ferent user QoS using various workload configurations

QoS-DPBRP appears to be better able to exploit increases in available storage

size than its non-QoS-aware counterpart. Overall, relaxed user QoS constraints (i.e.

wider acceptable ranges) lead to improved satisfaction of requests compared to strict

QoS requirements.

246 Chapter 6: Overall Assessment and Scope of Application

1 2 3 4 5 6
−15

−10

−5

0

5

10

15

Workload configuratins

P
er

ce
nt

ag
e

sa
vi

ng
s

in
 a

ve
ra

ge
 b

/w
 u

sa
ge

 (
%

)

Zipf−0.85, Rep. Server Conf. = 1, QoS = 0−1

Greedyadd
QoS−DPBRP

1 2 3 4 5 6
−30

−20

−10

0

10

20

30

Workload configuratins

P
er

ce
nt

ag
e

sa
vi

ng
s

in
 s

to
ra

ge
 u

sa
ge

 (
%

)

Zipf−0.85, Rep. Server Conf. = 1, QoS = 1−3

Greedyadd
QoS−DPBRP

1 2 3 4 5 6
−15

−10

−5

0

5

10

15

Workload configuratins

P
er

ce
nt

ag
e

sa
vi

ng
s

in
 a

ve
ra

ge
 b

/w
 u

sa
ge

 (
%

)

Gaussian, Rep. Server Conf. = 1, QoS = 0−1

Greedyadd
QoS−DPBRP

1 2 3 4 5 6
−30

−20

−10

0

10

20

30

Workload configuratins

P
er

ce
nt

ag
e

sa
vi

ng
s

in
 s

to
ra

ge
 u

sa
ge

 (
%

)
Gaussian, Rep. Server Conf. = 1, QoS = 1−3

Greedyadd
QoS−DPBRP

Figure 6.13: Performance savings in average bandwidth usage (left) and storage usage
(right) as compared to Greedy Remove using various workload configurations

QoS-DPBRP shows improved job execution time in most cases compared to the

Greedy Add and Greedy Remove algorithms by Cheng et al. [CWL09] at the cost of

low to moderate increases in use of bandwidth and storage resources to meet user and

system (i.e. workload) QoS requirements as shown in Figures 6.12 and 6.13. Using a

Gaussian data request distribution and user QoS of [0–1] shows an exception to this

in which case Greedy Remove performs better than the other algorithms. In this case,

the replica locations determined by Greedy Remove is relatively more scattered in the

Chapter 6: Overall Assessment and Scope of Application 247

lower tiers of the hierarchy due to the constrained QoS requirements. Consequently,

the randomness in data access pattern results in reduced job execution times. Overall,

adding workload constraints on replica servers gives performance benefit in terms of

execution times.

10 20 30 40 50 60 70 80 90 100
−50

−40

−30

−20

−10

0

10

20

30

40

50

Link capacity constraints (%)

P
er

ce
nt

ag
e

sa
vi

ng
s

in
 jo

b
tim

e(
%

)

Zipf−1.0

QoS−DPBRP,QoS=0−1
QoS−DPBRP,QoS=0−2
QoS−DPBRP,QoS=0−3

10 20 30 40 50 60 70 80 90 100
−30

−20

−10

0

10

20

30

Link capacity constraints (%)

P
er

ce
nt

ag
e

sa
vi

ng
s

in
 a

ve
ra

ge
 b

/w
 u

sa
ge

 (
%

)

Zipf−1.0

QoS−DPBRP,QoS=0−1
QoS−DPBRP,QoS=0−2
QoS−DPBRP,QoS=0−3

10 20 30 40 50 60 70 80 90 100
−50

−40

−30

−20

−10

0

10

20

30

40

50

Link capacity constraints (%)

P
er

ce
nt

ag
e

sa
vi

ng
s

in
 jo

b
tim

e(
%

)

Gaussian

QoS−DPBRP,QoS=0−1
QoS−DPBRP,QoS=0−2
QoS−DPBRP,QoS=0−3

10 20 30 40 50 60 70 80 90 100
−30

−20

−10

0

10

20

30

Link capacity constraints (%)

P
er

ce
nt

ag
e

sa
vi

ng
s

in
 a

ve
ra

ge
 b

/w
 u

sa
ge

 (
%

)

Gaussian

QoS−DPBRP,QoS=0−1
QoS−DPBRP,QoS=0−2
QoS−DPBRP,QoS=0−3

Figure 6.14: Percentage savings in job time (left) and average bandwidth usage (right)
for QoS-DPBRP as compared to DPBRP for varied link capacities

Support for link capacity constraints were also added to QoS-DPBRP and assessed

by varying the available link capacities (as shown in Figures 6.14 and 6.15). With

increasing link capacity, the execution time decreased for all the variants of QoS-

248 Chapter 6: Overall Assessment and Scope of Application

DPBRP compared to DPBRP but by different amounts. The performance savings in

job time when compared to DPBRP for the Gaussian distribution is more pronounced

than for Zipf-1.0. This is due to the significant drop in the number of replicas created

by DPBRP for the Gaussian distribution. With increasing link capacity, bandwidth

costs decrease for all algorithm variants but, again, by different amounts. As before,

DPBRP has less average bandwidth consumption for all cases. Finally, the percentage

of storage used naturally increases with increasing link capacity. DPBRP shows less

storage requirements for all cases. The resulting performance due to the addition of

both workload and link constraints is largely unchanged from the performance when

either the server workload or link capacity constraint is considered in addition to user

QoS because this does not significantly affect the replicas that need to be created.

12.6% 17.5% 40% 55% 75%
−200

−150

−100

−50

0

50

100

150

200

Percentage of storage capacity

P
er

ce
nt

ag
e

sa
vi

ng
s

in
 s

to
ra

ge
 u

sa
ge

 (
%

)

Zipf−0.85

QoS−DPBRP,QoS=0−1
QoS−DPBRP,QoS=0−2
QoS−DPBRP,QoS=0−3
QoS−DPBRP,QoS=1−2
QoS−DPBRP,QoS=1−3

12.6% 17.5% 40% 55% 75%
−200

−150

−100

−50

0

50

100

150

200

Percentage of storage capacity

P
er

ce
nt

ag
e

sa
vi

ng
s

in
 s

to
ra

ge
 u

sa
ge

 (
%

)

Gaussian

QoS−DPBRP,QoS=0−1
QoS−DPBRP,QoS=0−2
QoS−DPBRP,QoS=0−3
QoS−DPBRP,QoS=1−2
QoS−DPBRP,QoS=1−3

Figure 6.15: Performance savings in storage usage for QoS-DPBRP as compared to
DPBRP for varied link capacities

Chapter 6: Overall Assessment and Scope of Application 249

6.3 Applicability

In this section, I briefly consider the applicability of my various algorithms for

data grid applications. Collaborating scientists in data grids can form Virtual Orga-

nization (VO) [FKT01], which enables them to access different resources over Wide

Area Networks (WANs) without regard to their own organizational and administra-

tive domains. As mentioned earlier, the size of the data that needs to be accessed

in these VOs is on the order of petabytes today and is fast growing [Hol01; gri01a].

In high energy physics applications such as the ones considered in this thesis, the

data distribution can follow a hierarchy. In this scenario, data is collected at a sin-

gle location, where the detector is located, for example CERN, and then shared by

geographically distributed collaborators. Not all potential applications fit this sort

of data model. In some cases, data can be collected at multiple sites, replicated to

other locations, and then shared among collaborators. This type of replication sce-

nario can be found, for example, still within the E-science domain in the gravitational

wave community, where there are multiple detectors (two in the US and two in Eu-

rope) [gri01a]. This replication scheme can be fit into a peer-to-peer organization

model as other non-E-science applications (e.g. media content distribution).

My centralized popularity-driven base replica placement algorithm and its adap-

tive version aims to balance the storage utilization and access latency trade-off by

determining the frequency and degree of replication given changing grid conditions.

The simplicity of the approach makes it easy to deploy on a large number of nodes.

The data in this scenario is read-only and so there are no consistency issues. This

assumption holds at least reasonably for grid applications where data updates are ex-

250 Chapter 6: Overall Assessment and Scope of Application

pected to be infrequent. However, it is necessary to guarantee that the updates will be

eventually propagated and that the users will have access to consistent copies of the

data. This aspect of replication is taken care of by my distributed replica placement

model. My algorithms can handle limited storage capacities at the replica servers and

cope with different file sizes as the file sizes are likely to vary across various grid and

other applications.

In my algorithms, I assume that recently popular files will tend to be accessed

more frequently than others in the near future. Violation of this assumption will

lead to decreased performance until the next sampling period commences so that

popularity information can be updated. Furthermore, scientific collections of data

may comprise tens to hundreds of millions of files. The time to aggregate access

information about files cached at multiple hierarchical levels in real scenarios might

significantly increase the run time of the algorithms.

My distributed replica placement approach is capable of performing automatic

and “best possible” data replication based on the user and application demands. It

has many attractive features that make it suitable for grid applications. First, to

address the data placement policy I use a cost model to evaluate the overhead (access

and update) of replicating data before deciding when and where to create and place

new replicas. The cost model is formulated as a dynamic programming problem and

its solution is obtained for large-scale hierarchical data grids in a distributed fashion

where different performance metrics are evaluated against the different optimization

goals (e.g. minimizing replication overhead) and both user and system quality of

service requirements are supported. Each grid node is able to calculate the cost of

Chapter 6: Overall Assessment and Scope of Application 251

creating a local replica or the cost of transferring data from a remote replica server

up in the hierarchy, an important feature that enables the algorithm to scale well.

Second, an important aspect of replication-based systems is the protocol used to

maintain consistency among replicas. The main issue in such systems is maintaining

scalability with large numbers of replicas distributed over the grid while maintaining

the same view of all replicas (i.e. consistency). The updates are delivered from

the original copy to all replicas via application-level multicast, in which each server

receives the updates from its parent and is responsible for further distributing the

updates to its children. It is assumed that in grid applications, updates to the data

are infrequent and that the consistency can be more relaxed than in, for example,

high-performance commercial databases. Given this, I have used an approach that

achieves greater scalability while making modest compromises in terms of update

propagation and replica synchronization.

My replica placement algorithms can also adapt to various distributed environ-

ments. Since the algorithms in this thesis are designed for hierarchical data grids,

however, they cannot directly be applied to environments requiring other network

topologies. Some grid-like complex and other parallel and distributed applications

cannot always be organized and controlled in a hierarchical manner. Any central di-

rectory service would inevitably become a performance bottleneck and a single point

of failure. One open question for replica placement in such environments is how to

determine replica locations when the network topology is a general graph, instead of

a hierarchy. It will be challenging to consider the properties of such networks and

adapt my algorithms for use with them. One possible solution to this problem might

252 Chapter 6: Overall Assessment and Scope of Application

be to embed a tree in the available network topology and use the solution for the

resulting embedded tree topology.

Let the network model be represented by an undirected graph G = (V,E), where

V is the set of servers, and E ⊆ V × V denotes the set of network links among the

servers. Each link (u, v) ∈ E will be associated with a cost d(u, v) that will denote the

“communication cost” of the link as discussed in the previous section. Assuming that

the graph is connected, one server can connect to any other server via some path.

Again, define the communication cost of a path as the sum of the communication

cost of the links along the path and define d(u, v) between two servers u, v to be the

communication cost of the shortest path between them. I could then define a special

server called the origin server, in the network. Without loss of generality, assume

that this origin server constitutes the root of the tree that is going to be embedded.

We can calculate the all-pairs shortest paths and build a shortest path tree rooted at

the origin server.

Another issue would be to decide whether the embedded tree should be static or

dynamic. A static tree would definitely be easier to maintain while a dynamic tree

would be more appropriate to capture the dynamics of the Grid at the cost of extra

maintenance (i.e. restructuring) overhead. Embedded trees would certainly be less

balanced than those I have worked with to this point and could have a significant

impact on the performance of my algorithms.

Further, in certain types of applications, such as image, video, and map servers,

it is necessary to place with each copy of an object replica a copy of an appropriate

software system, for example a DBMS or a GIS system, for servicing read and write

Chapter 6: Overall Assessment and Scope of Application 253

requests. In many cases, however, such systems impose restrictions on the number of

concurrent users. This kind of situation can be modeled by using loads and capacity

constraints for the nodes.

The issue of maintaining consistency among object replicas has been addressed in

previous distributed file systems, databases, content distribution networks, and web

applications by the use of optimistic consistency protocols [SL00; EM02]. However,

these consistency issues have not been addressed in a similar fashion by my algorithms

on the scale of a grid environment that crosses multiple organizational domains. Ad-

ditionally, some of the requirements for such systems are different from those of the

applications targeted in this thesis (e.g. updates are only generated from the root).

The sizes of the data stored in data grids are often much bigger than those supported

by existing distributed file systems, and the replica granularity is much higher. Hence,

a modified replica consistency mechanism might be needed for effective adaptation of

my algorithms to these environments.

Chapter 7

Conclusions and Future Work

In this thesis, I have addressed the problem of replica placement in large-scale

hierarchical data grids to improve the performance of data access while ensuring

efficient use of both bandwidth and storage resources. To this end, I have proposed

a family of efficient algorithms for dynamic replica placement in a hierarchical data

grid structures as is common in current data grid systems [BCCS+03; LCG01; RF01b;

RF01a]. My basic popularity-driven dynamic replica placement strategy, Popularity

Based Replica Placement (PBRP), underpins the family and aims to increase data

access performance from the perspective of the clients by dynamically creating replicas

for “popular” files. I have also proposed an adaptive version of this algorithm which

considers data request arrival rates and available storage capacities at the replica

servers when doing placement resulting in faster access and efficient use of bandwidth

and storage in spite of changing access patterns and loading conditions. These two

algorithms are centralized in nature due to the fact that replication decisions are

made by a single entity in the data grid system which invokes the algorithms at

regular intervals.

I have also developed a distributed popularity based replica placement (DPBRP)

254

Chapter 7: Conclusions and Future Work 255

algorithm the goal of which is to determine appropriate locations for replicas to min-

imize overall replication cost/overhead (access and update) for a given traffic pattern

(i.e. a recurring pattern of access frequencies from clients for different files). To

satisfy QoS requirements from both the user (imposed by data requests) and system

perspectives, I have provided a QoS-DPBRP algorithm to determine the locations of

the replicas to improve system performance while satisfying the quality requirements

simultaneously.

The idea behind PBRP is to create replicas as close as possible to those clients

that frequently request the corresponding files or more specifically to the clients that

request the files with access rates exceeding a threshold value. While the file access

count as a measure of popularity is not new PBRP uniquely balances the space uti-

lization and access latency trade-off by selectively replicating files. In hierarchical

data grids, every node accesses replicas only from its ancestor nodes. Thus, PBRP

exploits the relationship among the access records of clients that are siblings to deter-

mine the effective utilization of various replicas. All the replication algorithms from

the literature except ABU process the records in the access history individually for a

client and do not study the relations among these records.

Simulation results show that PBRP consistently performs better in terms of job

execution time and bandwidth consumption compared to ABU, Fast Spread, and

Cascading for data access patterns of interest (those that contain a degree of temporal

locality). The advantage of PBRP over other algorithms increases as the access

patterns contain more locality. The job time savings of PBRP are up to 6% and 25%

more than that for ABU and Fast spread, respectively. The performance improvement

256 Chapter 7: Conclusions and Future Work

of PBRP in terms of job time is minimal compared to Caching when clients have

sufficient storage (i.e. Configurations 1, 2 and 3) and data access patterns contain

temporal locality (i.e. Zipf-0.85 and Zipf-1.0). In fact once the access patterns contain

more locality Caching in some cases shows somewhat better job execution time than

PBRP though the difference in this case is up to 6%. For flat random distribution

Fast spread shows somewhat better job time than PBRP though the difference in this

case is marginal (about 2%). This can be attributed to the fact that the overhead in

creating additional replicas in PBRP is not offset by the advantage of moving them

closer to the clients. However, PBRP consistently performs better than Caching

in terms of job time for the random data access patterns (such as Gaussian and flat

Random) where data requests from clients occur for a wider range of files. This causes

an increased cache misses thereby resulting in high job execution times and bandwidth

consumption for Caching compared to PBRP. ABU does not differ significantly from

PBRP in terms of bandwidth consumption. Fast spread, on the other hand, leads

to the higher bandwidth use (up to 8%) due to higher replication cost compared

to PBRP. Compared to the other algorithms PBRP shows a moderate increase in

storage utilization. This moderate use of (relatively cheap) storage space by PBRP

makes it a good candidate when data access performance and bandwidth use are

of primary concern. Naturally, the storage capacities of the replica servers have a

major impact on the performance of all replication techniques. Increasing the replica

server capacity leads to performance improvement in job execution time and average

bandwidth cost.

These results lead us to conclude that if there is sufficient temporal locality in the

Chapter 7: Conclusions and Future Work 257

file access patterns then PBRP is to be preferred. With moderate storage utilization,

PBRP lowers job times significantly, while judiciously using network resources. If the

chief aim is to elicit faster responses from the system at all costs, Fast spread might

work better. On the other hand if conserving bandwidth is also of priority, PBRP is

a better grid replication strategy.

In PBRP, the threshold value remains constant irrespective of variation in data

access request rate and the available storage capacities of the replica servers resulting

in performance degradation. APBRP addresses this issue by dynamically changing

the threshold value based on the data request rate and storage availability. Sim-

ulation results show that APBRP is able to further reduce the job execution time

and bandwidth use in most cases when the data access rate regularly fluctuates and

decreases at the expense of some additional storage cost. PBRP performs as well as

APBRP or somewhat better for all access patterns due to creation of a significantly

increased number of replicas when the replica servers have sufficient unallocated stor-

age and the client request rate is consistently increasing. Naturally, this quickly fills

the servers with replicas that may or may not be useful in the future.

The performance of my base distributed algorithm (DPBRP) was compared to its

centralized counterparts. In most situations, DPBRP shortens job execution time,

sometimes significantly, and reduces bandwidth consumption compared to my cen-

tralized algorithms and thus to those described in [RF01a]. Despite this, the storage

cost incurred by DPBRP is less than the other algorithms in most cases. The benefits

of DPBRP are achieved by creating an appropriate number of well-placed replicas.

I also analyzed the performance of DPBRP once QoS requirements from users

258 Chapter 7: Conclusions and Future Work

were incorporated into the algorithm (QoS-DPBRP). QoS-DPBRP further shortens

job execution time compared to its unconstrained counterpart while effectively sat-

isfying user QoS requirements at the cost of moderate to high bandwidth consump-

tion. A number of additional replicas are created by QoS-DPBRP to meet user QoS

requests. This, of course, also incurs higher storage consumption. Moreover, QoS-

DPBRP shows improved job execution time compared to the QoS-aware Greedy Add

and Greedy Remove algorithms at the cost of moderate use of bandwidth and storage

resources to meet both user and system (workload) QoS requirements. The results

suggest that my algorithm is successful in deciding which data files should be repli-

cated and where the replicas should be placed to meet both types of QoS constraints.

Further, adding workload and link constraints on replica servers gives performance

benefit in terms of execution times while providing the ability to manage system costs.

Increasing the replica server storage capacity leads to performance improvement in

terms of job execution time and satisfaction rates of user QoS requests. QoS-DPBRP

appears to be better able to exploit increases in available storage size than its non-

QoS-aware counterpart. Relaxed QoS constraints (i.e. wider acceptable ranges) lead

to improved overall satisfaction of requests compared to strict QoS requirements.

This thesis contributes to our understanding of replica placement in large-scale

data grid environments and advances the state-of-the-art through its contributions.

The work done in this thesis and the contributions made have led to new challenges

that need to be addressed. I plan to explore several directions for future research.

Some are natural continuations of my work, while others deal with more general and

outstanding issues in data replication.

Chapter 7: Conclusions and Future Work 259

An obvious extension to my work would be to modify my replica placement al-

gorithms to determine replica locations when the data grid topology represents a

general graph, instead of a hierarchy (as discussed in the previous chapter). This

would broaden the scope of applicability of my algorithms across various parallel

and distributed and other complex grid environments that require non-hierarchical

network structures. Additionally, an extended replication model should take into con-

sideration the replica consistency issue to meet different applications’ requirements

without imposing undue overheads on those not requiring strict consistency.

Another extension of my work would be to modify PBRP to determine replica

locations by considering LRU Caching at the lowest tier, with PBRP and other al-

gorithms at the higher tiers. It would be also interesting to see how LRU Caching

performs relative to other methods when caching is done in all tiers.

In my work, the replication strategies I discussed exploited temporal locality in

the request patterns. I put off considering the spatial locality of the requests. Once

the relationship among various files in a scientific data set is better understood, some

amount of anticipatory pre-fetching would also be possible. To accomplish this I

therefore plan to investigate the data access patterns of real scientific and engineering

computing applications that run in grid-like distributed environments.

The number of sites is fixed in my simulations and the connection between sites

is assumed to be reliable throughout the simulations. As future research, I want to

explore modest dynamism of sites such that sites can add join and quit the grid and

the replica placement algorithm is capable of taking care of the resulting dropped

connections between sites. Also, at present, I consider a single resource broker that

260 Chapter 7: Conclusions and Future Work

submits jobs to different sites and makes decisions about replica placement. I plan to

consider multiple resource brokers submitting jobs across the grid sites and making

replica placement decisions.

Moreover, I am planning to explore ways to handle peak bandwidth use and

its relation to capacity constraints on network links. Due to the dynamic nature

of the grid, candidate sites that hold currently replicas may not be the best sites

to fetch replicas from in the future due to network load changes. Thus, I plan to

explore dynamic replica maintenance issues. Taking these factors into account will

be important for implementing my replica placement techniques in real data grids

including those operating without leased network lines offering bandwidth guarantees.

Another area for further research is to study the movement of code towards data

instead of vice versa. In this thesis, I assumed that clients ask for data files and locally

run the data through their code to analyze the data. Thus, I have only considered

moving data towards code. Another option might be to move code towards where

data resides and communicate only the result of the computation back to the client.

This could be a feasible option considering that in data grid scenarios the data may

be tens of thousands or more times larger than either the code or the result.

Before deploying replica placement algorithms in a real grid environment, the

algorithms must be tested thoroughly. I evaluated the performance and feasibility

of my replication algorithms by using the OptorSim simulation toolkit. As future

research, I also want to validate my model by deploying the replication algorithms in

a real grid environment such as WestGrid or EUGrid. This will include integrating

my algorithms with a Replica Location Service (e.g. Giggle framework [Che02]).

Bibliography

[AAR89] The Historical Charges for AARNet Services.

http://www.aarnet.edu.au/services.aspx, 1989. Last accessed: Mar 26,

2006.

[Aba04] J.H. Abawajy. Placement of file replicas in data grid environments.

In Proceedings of International Conference on Computational Science,

volume 3038, pages 66–73, Jun 2004.

[ABB+01] B. Allcock, J. Bester, J. Bresnahan, A. Chervenak, I. Foster, C. Kessel-

man, S. Meder, V. Nefedova, D. Quesnal, and S. Tuecke. Secure, effi-

cient data transport and replica management for high-performance data-

intensive computing. In Proceedings of the 18th IEEE Symposium on

Mass Storage Systems and Technologies (MSS’01), pages 13–28, Apr

2001.

[ABB+02] B. Allcock, J. Bester, J. Bresnahan, A. L. Chervenak, I. Foster,

C. Kesselman, S. Meder, V. Nefedova, D. Quesnal, and S. Tuecke. Data

management and transfer in high performance computational grid envi-

ronments. Parallel Computing Journal, 28(3):749–771, May 2002.

[ACK+02] D. P. Anderson, J. Cobb, E. Korpela, M. Lebofsky, and D. Werthimer.

261

262 Bibliography

SETI@home: An experiment in public resource computing. Communi-

cations of the ACM, 45:56–61, Nov 2002.

[AFN+01] W. Allcock, I. Foster, V. Nefedova, A. Chervenak, E. Deelman,

C. Kesselman, J. Lee, A. Sim, A. Shoshani, B. Drach, and D. Williams.

High-performance remote access to climate simulation data: A challenge

problem for data grid technologies. In Proceedings of the Supercomput-

ing, pages 20–35, Nov 2001.

[AGK00] D. Abramson, J. Giddy, and L. Kotler. High performance parametric

modeling with Nimrod-G: Killer application for the global grid. In Pro-

ceedings of the 14th International Parallel and Distributed Processing

Symposium (IPDPS’00), pages 520–528, May 2000.

[aka07] Akamai. http://www.akamai.com, 2007. Last accessed: Mar 21, 2009.

[BAD05] Australian Belle Analysis Data Grid.

http://epp.ph.unimelb.edu.au/epp/grid/badg/, 2005. Last accessed:

Oct 20, 2011.

[BAG00] R. Buyya, D. Abramson, and J. Giddy. Nimrod-G: An architecture for a

resource management and scheduling system in a global computational

grid. In Proceedings of the 4th International Conference and Exhibition

on High Performance Computing in Asia-Pacific Region, pages 283–289,

May 2000.

[BBL06] M. Baker, R. Buyya, and D. Laforenza. Grids and grid technologies

Bibliography 263

for wide-area distributed computing. Software: Practice and Experience

(SPE), 32:1437–1466, Dec 2006.

[BCC+02] W. Bell, D. Cameron, L. Capozza, A. Millar, K. Stockinger, and F. Zini.

Simulation of dynamic grid replication strategies in optorsim. In Pro-

ceedings of the 3rd International IEEE Workshop on Grid Computing

(GRID’02), 2002.

[BCC+03] W. Bell, D. Cameron, L. Capozza, P. Millar, K. Stockinger, and F. Zini.

Optorsim - A grid simulator for studying dynamic data replication strate-

gies. International Journal of High Performance Computing Applica-

tions, 17:403–416, Nov 2003.

[BCCS+03] W. Bell, D. Cameron, R. Carvajal-Schiaffino, A. Millar, K. Stockinger,

and F. Zini. Evaluation of an economy-based file replication strategy

for a data grid. In Proceedings of the 3rd IEEE/ACM International

Symposium on Cluster Computing and the Grid, pages 661–668, May

2003.

[BCF03] D. Bosio, J. Casey, and A. Frohner. Next generation EU DataGrid data

management services. In Proceedings of Computing in High Energy and

Nuclear Physics (CHEP’03), pages 1–8, Mar 2003.

[Bio02] BioGRID. http://www.thebiogrid.org/, 2002. General Repository for

Interaction Datasets. Last accessed: Mar 5, 2009.

264 Bibliography

[bir05] Biomedical Informatics Research Network (BIRN).

http://www.nbirn.net/, 2005. Last accessed: Sep 20, 2007.

[BMRW98] C. Baru, R. Moore, A. Rajasekar, and M. Wan. The SDSC storage

resource broker. In Proceedings of the Centre for Advanced Studies Con-

ference(CASCON’98), IBM, pages 5–16, Nov 1998.

[BMT+98] R. Bagrodia, R. Meyer, M. Takai, Y. an Chen, X. Zeng, J. Martin, and

H. Y. Song. Parsec: A parallel simulation environment for complex

systems. Computer, 31(10):77–85, Oct 1998.

[BO00] G. Barish and K. Obraczka. World wide web caching, trends and tech-

niques. EEE Communications, Internet Technology Series, 38:178–184,

May 2000.

[BV01] R. Buyya and S. Vazhkudai. Compute power market: Towards a market-

oriented grid. In Proceedings of the 1st International Symposium on

Cluster Computing and the Grid (CCGRID’01), pages 574–581, May

2001.

[BV04] R. Buyya and S. Venugopal. The Gridbus toolkit for service oriented grid

and utility computing: An overview and status report. In Proceedings of

the 1st International Workshop on Grid Economics and Business Models

(GECON’04), pages 19–66, Apr 2004.

[Cah98] R. Cahn. Wide Area Network Design: Concepts and Tools for Optimiza-

tion. Elsevier Science, 1998.

Bibliography 265

[Cao00] G. Cao. A scalable low-latency cache invalidation strategy for mobile

environments. In Proceedings of the 6th annual International Conference

on Mobile computing and Networking, pages 200–209, Aug 2000.

[CBS+03] W. Cirne, F. Brasileiro, J. Sauve, N. Andrade, D. Paranhos, E. Santos-

Neto, and R. Medeiros. Grid computing for bag of tasks applications.

In Proceedings of the 3rd IFIP Conference on E-Commerce, E-Business

and E-Government, Sep 2003.

[CDF+98] R. Caceres, F. Douglis, A. Feldmann, G. Glass, and M. Rabinovich. Web

proxy caching: the devil is in the details. ACM Performance Evaluation

Review, 26:11–15, Dec 1998.

[CDK01] G. Coulouris, J. Dollimore, and T. Kindberg. Distributed Systems, Con-

cepts and Designs. Addison Wesley, 2001.

[CDO+00] L. Childers, T. Disz, R. Olson, M. E. Papka, R. Stevens, and T. Udeshi.

Access grid: Immersive group-to-group collaborative visualization. In

Proceedings of the 4th International Immersive Projection Technology

Workshop, May 2000.

[CFK+00] A. Chervenak, I. Foster, C. Kesselman, C. Salisbury, and S. Tuecke. The

Data Grid: Towards an architecture for the distributed management and

analysis of large scientific datasets. Journal of Network and Computer

Applications, 23:187–200, Jul 2000.

[CH76] K. Chandy and J.E. Hewes. File allocation in distributed systems. In

266 Bibliography

Proceedings of the International Symposium on Computer Performance

Modeling, Measurement, and Evaluation, pages 10–13, Mar 1976.

[Che02] A. Chervenak. Giggle: A framework for constructing scalable replica

location services. In Proceedings of the IEEE Supercomputing, pages

1–17, Nov 2002.

[CHNB05] D. Choon-Hoong, S. Nutanong, and R. Buyya. Peer-to-Peer Computing:

Evolution of a Disruptive Technology, chapter Peer-to-Peer Networks for

Content Sharing, pages 28–65. Idea Group Publishers, Hershey, PA,

USA, 2005.

[Chu73] W. Chu. Computer-Communication Systems, chapter Optimal File Al-

location in a Computer Network, pages 577–587. N Abramson and FF

Kuo, Eds., Prentice-Hall, 1973.

[CLQ08] H. Casanova, A. Legrand, and M. Quinson. SimGrid: A generic frame-

work for large-scale distributed experimentations. In Proceedings of the

10th International Conference on Computer Modeling and Simulation,

pages 126–131, Apr 2008.

[CP85] S. Ceri and G. Pelagatti. Distributed Databases- Principles and Systems.

McGraw-Hill, 1985.

[CSK+05] A. Chervenak, R. Schuler, C. Kesselman, S. Koranda, and B. Moe. Wide

area data replication for scientific collaborations. In Proceedings of the

6th International Workshop on Grid Computing, pages 1–8, Nov 2005.

Bibliography 267

[CT03] M. Cannataro and D. Talia. The knowledge grid. Communications of

the ACM, 46:89–93, Jan 2003.

[CWL09] C. Cheng, J. Wu, and P. Liu. QoS-aware, access-efficient, and storage-

efficient replica placement in grid environments. Journal of Supercom-

puting, 49:42–63, Jul 2009.

[DAS04] M. Deris, J. Abawajy, and H. Suzuri. An efficient replicated data ac-

cess approach for large-scale distributed systems. In Proceedings of the

First IEEE/ACM International Conference on Cluster Computing and

the Grid (CCGRID’04), pages 588–594, Apr 2004.

[DDP+04] A. Domenici, F. Donno, G. Pucciani, H. Stockinger, and K. Stockinger.

Replica consistency in a Data Grid. Nuclear Instruments and Methods

in Physics Research, 534:24–28, Nov 2004.

[DDW08] A. Devulapalli, D. Dalessandro, and P. Wyckoff. Data structure consis-

tency using atomic operations in storage devices. In In Proceedings of

the 5th IEEE International Workshop on Storage Network Architecture

and Parallel I/Os, pages 65–73, Sep 2008.

[DF05] C. Dumitrescu and I. Foster. GangSim: A simulator for grid scheduling

studies. In Proceedings of the 5th International Symposium on Cluster

Computing and the Grid (CCGRID’05), pages 1151–1158, May 2005.

[DH95] M. Dunham and A. Helal. Mobile computing and databases: Anything

new? SIGMOD Record, 24:5–9, Dec 1995.

268 Bibliography

[dil07] Digital island. http://www.digitalisland.co.nz/, 2007. Last accessed: Jul

25, 2008.

[DMP+02] J. Dilley, B. Maggs, J. Parikh, H. Prokop, R. Sitaraman, and B. Weihl.

Globally distributed content delivery. IEEE Internet Computing, 6:50–

58, Sep 2002.

[DPM00] D.Li, P.Cao, and M.Dahlin. WCIP: Web cache invalidation protocol.

IETF Internet Draft, May 2000.

[ea00] M. Aderholz et al. Monarc project phase 2 report. Technical report,

Technical Report, CERN, 2000.

[edi01] eDiaMoND. http://www.ediamond.ox.ac.uk/, 2001. Diagnostic Mam-

mography National Database Project. Last accessed: Apr 5, 2011.

[EM02] J. A. Elias and L. N. Moldes. A demand based algorithm for rapid

updating of replicas. In Proceedings of IEEE Workshop on Resource

Sharing in Massively Distributed Systems, pages 686– 691, Jul 2002.

[EN03] R. Elmasri and S. B. Navathe. Fundamentals of Database Systems. Ad-

dison Wesely, fourth edition, 2003.

[ESG00] Earth System Grid. http://www.earthsystemgrid.org/, 2000. Climate

Modeling and Simulation. Last accessed: Mar 5, 2009.

[EU:08] EU Data Mining Grid. http://www.datamininggrid.org/, 2008. Last

accessed: Jan 21, 2009.

Bibliography 269

[eur01] The european data grid project, the datagrid architecture. http://eu-

datagrid.web.cern.ch/eu-datagrid/, 2001. Last accessed: Jun 21, 2011.

[FAC+01] I. Foster, E. Alpert, A. Chervenak, B. Drach, C. Kesselman, V. Nefedova,

D. Middleton, A. Shoshani, A. Sim, , and D. Williams. The earth system

grid: Turning climate datasets into community resources. In Proceedings

of the American Meteorological Society Conference, May 2001.

[FCAZ00] L. Fan, P. Cao, J. Almeida, and A. Z.Broder. Summary cache: A scal-

able wide-area web cache sharing protocol. IEEE/ACM Transactions on

Networking, 8:281–293, Jun 2000.

[FKT01] I. Foster, C. Kesselman, and S. Tukcke. The anatomy of the Grid:

Enabling scalable virtual organizations. International Journal of High

Performance Computing Applications, 15(3):200–222, Aug 2001.

[Fos06] I. Foster. Globus toolkit version 4: Software for service-oriented systems.

In Proceedings of the International Conference on Network and Parallel

Computing, pages 2–13, Oct 2006.

[GHaDO96] G. Gray, P. Helland, and a. D. O’Neil. The dangers of replication and a

solution. In Proceedings of the ACM SIGMOD International Conference

on Management of Data, pages 173–182, Jun 1996.

[GKL+02] L. Guy, P. Kunszt, E. Laure, H. Stockinger, and K. Stockinger. Replica

management in data grids. In Global Grid Forum 5, Apr 2002.

[GPS03] S. Graupner, J. Pruyne, and S. Singhal. Making the utility data center a

270 Bibliography

power station for the enterprise grid. Technical report, Technical Report

HPL-2003-53, HP Labs, Palo Alto, USA,, 2003.

[GR93] J. Gray and A. Reuter. Transaction processing : concepts and techniques.

Morgan Kaufmann Publishers, 1993.

[gri01a] Grid Physics Network (GriPhyN). http://www.griphyn.org/, 2001. Last

accessed: Mar 10, 2007.

[Gri01b] GridPP- UK Computing for Particle Physics.

http://www.gridpp.ac.uk/, 2001. Last accessed: Mar 21, 2009.

[gri08] GridSim. http://www.gridbus.org/gridsim, 2008. Last accessed: Feb 1,

2010.

[Hak64] S. Hakami. Optimum location of switching centers and the absolute

centers and medians of a graph. Operations Research, 12:450–459, 1964.

[Har01] T. Hara. Effective replica allocation in ad hoc networks for improving

data accessibility. In Proceedings of the IEEE INFOCOM, pages 1568–

1576, Apr 2001.

[Har03] T. Hara. Replica allocation methods in ad hoc networks with data up-

date. Mobile Networks and Applications, 8:343–354, Aug 2003.

[HJMS+00] W. Hoschek, J. Jaen-Martinez, A. Samar, H. Stockinger, and

K. Stockinger. Data management in an international data grid project.

In Proceedings of the first IEEE/ACM International Workshop on Grid

Computing, pages 77–90, Dec 2000.

Bibliography 271

[HMN04] T. Hara, N. Murakami, and S. Nishio. Replica allocation for correlated

data items in ad hoc sensor networks. SIGMOD Record, 33, Mar 2004.

[Hol01] K. Holtman. CMS Data grid system overview and requirements, 2001.

CMS Experiment Note 2001/037, CERN.

[icp97] Application of Internet cache protocol (ICP), version 2. Internet Draft

IETF, Jul 1997.

[jab05] Jabber project. http://www.jabber.org/protocol/, 2005. Last accessed:

Mar 19, 2008.

[JGN06] W. Jeon, I. Gupta, and K. Nahrstedt. QoS-aware object replication in

overlay networks. In Proceedings of IEEE GLOBECOM, pages 42–63,

Jul 2006.

[KDW01] K. Kalpakis, K. Dasgupta, and O. Wolfson. Optimal placement of repli-

cas in trees with read, write, and storage costs. IEEE Transactions on

Parallel and Distributed Systems, 12:628–637, Jun 2001.

[KF98] C. Kesselman and I. Foster. The Grid: Blueprint for a New Computing

Infrastructure. Morgan Kaufmann Publishers, November 1998.

[KL01] H. Kang and S. Lim. Bandwidth-conserving cache validation schemes in

a mobile database system. In Proceedings of the Mobile Data Manage-

ment Conference, pages 121–130, Jan 2001.

[KLM97] T. M. Kroeger, D. D. E. Long, and J. C. Mogul. Exploring the bounds

of web latency reduction from caching and prefetching. In Proceedings

272 Bibliography

of the Usenix Symposium on Internet Technologies and Systems, pages

13–22, Dec 1997.

[KM02] M. Karlsson and M. Mahalingam. Do we need replica placement algo-

rithms in content delivery networks? In Proceedings of the 7th Inter-

national Workshop on Web Content Caching and Distribution (WCW),

Aug 2002.

[KRR02] J. Kangasharju, J. Roberts, and K. Ross. Object replication strategies in

content distribution networks. Computer Communications, 25:367–383,

Mar 2002.

[KRW01] C. Krick, H. Racke, and M. Westermann. Approximation algorithms

for data management in networks. In Proceedings of the 13th ACM

Symposium on Parallel Algorithms and Architectures (SPAA’01), pages

237–246, Jul 2001.

[LA94] A. Luotonen and K. Altis. World wide web proxies. Computer Networks

and ISDN Systems, 28:147–154, Apr 1994.

[LCG01] Worldwide LHC computing grid. http://lcg.web.cern.ch/lcg/, 2001. Dis-

tributed Production Environment for Physics Data Processing. Last ac-

cessed: Jan 20, 2010.

[LLW06] Y. Lin, P. Liu, and J. Wu. Optimal placement of replicas in data grid

environments with locality assurance. In Proceedings of the 12th Inter-

Bibliography 273

national Conference on Parallel and Distributed Systems(ICPADS’06),

01:465–474, Jul 2006.

[LS97] H. Leong and A. Si. On adaptive caching in mobile databases. In Pro-

ceedings of ACM Symposium of Applied Computing, pages 302–309, Feb

1997.

[LSsD02] H. Lamehamedi, B. Szymanski, Z. shentu, and E. Deelman. Data repli-

cation strategies in grid environments. In Proceedings of the 5th Inter-

national Conference on Algorithms and Architectures for Parallel Pro-

cessing, pages 378–383, Oct 2002.

[LSSD03] H. Lamehamedi, B. Szymanski, Z. Shentu, and E. Deelman. Simulation

of dynamic data replication strategies in data grids. In Proceedings of

the International Parallel and Distributed Processing Symposium, pages

10–20, Apr 2003.

[LV06] M. Lei and S. V. Vrbsky. A data replication strategy to increase data

availability in data grids. In Proceedings of the International Conference

on Grid Computing and Applications, pages 221–227, Jun 2006.

[MJR+04] R. Moore, A. Jagatheesan, A. Rajasekar, M. Wan, and W. Schroeder.

Data grid management systems. In Proceedings of the 21st IEEE Con-

ference on Mass Storage Systems and Technologies, Apr 2004.

[MKL+02] D.S. Milojicic, V. Kalogeraki, R. Lukose, K. Nagaraja, J. Pruyne,

274 Bibliography

B. Richard, S. Rollins, and Z. Xu. Peer-to-peer computing. Technical

report, Technical Report HPL-2002-57, HP Labs, 2002.

[nee01] NEESgrid. http://www.neesgrid.org/, 2001. Building the National Vir-

tual Collaboratory for Earthquake Engineering, Last accessed: Mar 5,

2010.

[ns208] NS-2 network simulator. http://www.isi.edu/nsnam/ns, 2008. Last ac-

cessed: May 15, 2010.

[Ora01] A. Oram. Peer-to-Peer: Harnessing the Power of Disruptive Technolo-

gies. O’Reilly and Associates, Inc., 2001.

[OV99] M. Ozsu and P. Valduriez. Principles of distributed database systems.

Prentice-Hall, Inc., 2nd edition, 1999.

[PKG+04] L. Pearlman, C. Kesselman, S. Gullapalli, Jr. B. F. Spencer, J. Futrelle,

K. Ricker, I. Foster, P. Hubbard, and C. Severance. Distributed hybrid

earthquake engineering experiments: Experiences with a ground-shaking

grid application. In Proceedings of the 13th IEEE International Sympo-

sium on High Performance Distributed Computing, pages 14–23, Jun

2004.

[PKKY03] S. Park, J. Kim, Y. Ko, and W. Yoon. Dynamic data grid replication

strategy based on Internet hierarchy. In Proceedings of the Second Inter-

national Workshop on Grid and Cooperative Computing(GCC’03), pages

838–846, Dec 2003.

Bibliography 275

[PPD03] Particle Physics Data Grid (PPDG). http://ppdg.net/, 2003. Last ac-

cessed: Jan 21, 2009.

[PS00] E. Pacitti and E. Simon. Update propagation strategies to improve

freshness in lazy master replicated databases. The VLDB Journal, 8:305–

318, Feb 2000.

[PvST02] G. Pierre, M. van Steen, and A. Tanenbaum. Dynamically selecting

optimal distribution strategies for web documents. IEEE Transactions

on Computers, 51:637–651, Jun 2002.

[RAD+02] M. Russel, G. Allen, G. Daues, I. Foster, E. Seidel, J. Novotny, J. Shalf,

and G. von Laszewski. The astrophysics simulation collaboratory: A

science portal enabling community software development. Cluster Com-

puting, 5(3):297–304, Aug 2002.

[RBA05a] R. M. Rahman, K. Barker, and R. Alhajj. Replica placement in data

grid: A multi-objective approach. In Proceedings of the International

Conference on Grid And Cooperative Computing, pages 645–656, Nov

2005.

[RBA05b] R. M. Rahman, K. Barker, and R. Alhajj. Replica placement in data grid:

Considering utility and risk. In Proceedings of the International Con-

ference on Information Technology: Coding and Computing (ITCC’05),

volume 1, pages 354–359, Apr 2005.

[RF01a] K. Ranganathan and I. Foster. Design and evaluation of dynamic repli-

276 Bibliography

cation strategies for a high performance data grid. In Proceedings of

the International Conference on Computing in High Energy and Nuclear

Physics, Sep 2001.

[RF01b] K. Ranganathan and I. T. Foster. Identifying dynamic replication strate-

gies for a high-performance data grid. In Proceedings of the International

Workshop on Grid Computing (GRID’01), pages 75–86, Nov 2001.

[RIF02] K. Ranganathan, A. Iamnitchi, and I. Foster. Improving data availability

through dynamic model-driven replication in large peer-to-peer commu-

nities. In Proceedings of the 2nd IEEE/ACM International Symposium

on Cluster Computing and the Grid (CCGRID’02), pages 376–381, May

2002.

[RKA05] R. M. Rahman, K.Barker, and R. Alhajj. Replica selection in grid envi-

ronment: A data-mining approach. In Proceedings of the ACM sympo-

sium on Applied computing, pages 695–700, Mar 2005.

[RSB01] P. Rodriguez, C. Spanner, and E. W. Biersack. Analysis of web caching

architectures: Hierarchical and distributed caching. IEEE/ACM Trans-

actions on Networking, 9:404–418, Aug 2001.

[RWMS04] A. Rajasekar, M. Wan, R. Moore, and W. Schroeder. Data grid fed-

eration. In Proceedings of the 11th International Conference on Paral-

lel and Distributed Processing Techniques and Applications (PDPTA),

pages 541–546, Jun 2004.

Bibliography 277

[sds00] Sloan digital sky survey (sdss). http://www.sdss.org/, 2000. Last ac-

cessed: Mar 10, 2008.

[SGE08] M. Shorfuzzaman, P. Graham, and R. Eskicioglu. Popularity-driven

dynamic replica placement in hierarchical data grids. In Proceedings of

the 9th International Conference on Parallel and Distributed Computing,

Applications and Technologies (PDCAT’08), Workshop on HPDataGrid,

pages 524–531, Dec 2008.

[SGE09] M. Shorfuzzaman, P. Graham, and R. Eskicioglu. Adaptive popularity-

driven replica placement in hierarchical data grids. Journal of Super-

computing, 51(3):374–392, 2009.

[SGE10a] M. Shorfuzzaman, P. Graham, and R. Eskicioglu. Adaptive placement

of replicas in hierarchical data grids. In Proceedings of the High Perfor-

mance Computing Symposium (HPCS’10), Jun 2010.

[SGE10b] M. Shorfuzzaman, P. Graham, and R. Eskicioglu. Distributed popularity

based replica placement in data grid environments. In Proceedings of the

11th International Conference on Parallel and Distributed Computing,

Applications and Technologies (PDCAT’10), pages 66–77, Dec 2010.

[SGE11a] M. Shorfuzzaman, P. Graham, and R. Eskicioglu. Distributed placement

of replicas in hierarchical data grids with user and system qos constraints.

In Proceedings of the the Sixth International Conference on P2P, Paral-

lel, Grid, Cloud and Internet Computing (3PGCIC’11), pages 177–186,

Oct 2011.

278 Bibliography

[SGE11b] M. Shorfuzzaman, P. Graham, and R. Eskicioglu. Qos-aware distributed

replica placement in hierarchical data grids. In Proceedings of the 25th

IEEE International Conference on Advanced Information Networking

and Applications (AINA’11), pages 291–299, Mar 2011.

[Sim02] C. Simatos. Making SimJava count. Technical report, The University of

Edinburgh (UK), Master’s Thesis, 2002.

[Sim08] Simscript: A simulation language for building large-scale, complex sim-

ulation models. http://www.simscript.org, 2008. Last accessed: Feb 10,

2011.

[SL90] A. Sheth and J. Larson. Federated database systems for managing dis-

tributed, heterogeneous, and autonomous databases. ACM Computing

Surveys, 22:183–236, Sep 1990.

[SL00] Y. Saito and H. M. Levy. Optimistic replication for Internet data ser-

vices. In Proceedings of International Symposium on Distributed Com-

puting, pages 297–314, Oct 2000.

[SN02] V. J. Sosa and L. Navarro. Influence of the document valida-

tion/replication methods on cooperative web proxy caching architec-

tures. In Proceedings of the Communication Networks and Distributed

Systems Modeling and Simulation, pages 238–245, Jan 2002.

[squ00] Squid Internet object cache. http://squid.nlanr.net/, 2000. Last ac-

cessed: Dec 20, 2009.

Bibliography 279

[SR03] F. Schintke and A. Reinefeld. Modeling replica availability in large data

grids. Journal of Grid Computing, 1(2):219–227, Sep 2003.

[SSA+02] H. Stockinger, A. Samar, B. Allcock, I. Foster, K. Holtman, and B. Tier-

ney. File and object replication in data grids. Cluster Computing, 5:305–

314, Jul 2002.

[SWH98] A. Sistla, O. Wolfson, and Y. Huang. Minimization of communication

cost through caching in mobile environments. IEEE Transactions on

Parallel and Distributed Systems, 9:378–390, Apr 1998.

[SYAD05] K. Seymour, A. YarKhan, S. Agrawal, and J. Dongarra. Netsolve: Grid

enabling scientific computing environments. Grid Computing and New

Frontiers of High Performance Processing, 14:33–51, 2005.

[Tho79] R. Thomas. A majority consensus approach to concurrency control

for multiple copy databases. ACM Transactions on Database Systems,

4:180–209, Jun 1979.

[TLM+05] M. Tu, P. Li, Q. Ma, I. Yen, and F. Bastani. On the optimal placement

of secure data objects over internet. In Proceedings of the 19th IEEE In-

ternational Parallel and Distributed Processing Symposium (IPDPS’05),

pages 237–246, Apr 2005.

[TLYT05] M. Tang, B. Lee, C. Yeo, and X. Tang. Dynamic replication algo-

rithms for the multi-tier data grid. Future Generation Computing Sys-

tem, 21(5):775–790, May 2005.

280 Bibliography

[TLYT06] M. Tang, B. Lee, C. Yeo, and X. Tang. The impact of data replica-

tion on job scheduling performance in the data grid. Future Generation

Computing System, 22(3):254–268, Feb 2006.

[TS02] A. Tanenbaum and M. Steen. Distributed Systems Principles and

Paradigms. Prentice Hall, 2002.

[TTGD04] R. Tuchinda, S. Thakkar, Y. Gil, and E. Deelman. Artemis: Integrat-

ing scientific data on the grid. In Proceedings of the 16th Innovative

Applications of Artificial Intelligence, pages 892–899, Jul 2004.

[TX05] X. Tang and J. Xu. Qos-aware replica placement for content distribution.

IEEE Transaction on Parallel and Distributed System, 16(10):921–932,

Oct 2005.

[UC04] O. Unger and I. Cidon. Optimal content location in multicast based

overlay networks with content updates. World Wide Web, 7:315–336,

Sep 2004.

[VBR06] S. Venugopal, R. Buyya, and K. Ramamohanarao. A taxonomy of data

grids for distributed data sharing, management, and processing. ACM

Computing Surveys, 1:1–53, Jun 2006.

[VR07] V. Valloppillil and K. W. Ross. Cache array routing protocol v1.0. In-

ternet Draft, 2007.

[WHCW06] C. Wang, C. Hsu, H. Chen, and J. Wu. Efficient multi-source data

transfer in data grids. In Proceedings of the Sixth IEEE International

Bibliography 281

Symposium on Cluster Computing and the Grid (CCGRID’06), pages

421–424, May 2006.

[WL88] C. T. Wilkes and R. J. Jr LeBlanc. Distributed locking: A mechanism

for constructing highly available objects. In Proceedings of the Seventh

Symposium on Reliable Distributed Systems, pages 194–203, Oct 1988.

[WLL08] J. Wu, Y. Lin, and P. Liu. Optimal placement of replicas in data grid

environments with locality assurance. Journal of Parallel and Distributed

Computing, 68(12):1517–1538, Dec 2008.

[WLW06] H. Wang, P. Liu, and J. Wu. A QoS-aware heuristic algorithm for replica

placement. In Proceedings of the 7th ACM/IEEE International Confer-

ence on Grid Computing, pages 96–103, Sep 2006.

[WM91] O. Wolfson and A. Milo. The multicast policy and its relationship to

replicated data placement. ACM Transactions on Database Systems,

16(1):181–205, Mar 1991.

[YBdA+07] C. S. Yeo, R. Buyya, M. D. de Assuncao, J. Yu, A. Sulistio, S. Venugopal,

and M. Placek. Utility Computing and Global Grids. The Handbook of

Computer Networks. John Wiley and Sons, 2007.

	Abstract
	Table of Contents
	List of Figures
	Acknowledgments
	Introduction
	Grid Computing
	Motivation for Replication in Data Grids
	Research Problem and Solution Strategy
	Contributions
	Thesis Organization

	Background and Related Work
	Preliminaries
	Data Grids: An Overview
	Architecture
	Models
	Applications

	Data Replication
	Issues related to replication in data grids
	Replica Placement
	Replica Selection
	Replica Consistency
	The Impact of Data Replication on Job Scheduling

	Related Data-Intensive Research
	Web Caches
	Content Delivery Networks
	Peer-to-Peer Networks
	Distributed Databases
	Mobile Environments
	Discussion

	Replica Placement Strategies in Data Grids
	Algorithms Focused on Access Latency and Bandwidth
	Algorithms Focused on Reliability and Availability
	Algorithms Focusing on QoS Requirements
	Summary of Replica Placement Algorithms

	Motivation and Problem Description
	Problem Description
	Positioning the Thesis

	Centralized Replica Placement
	Assumed Data Grid Structure
	Basic Popularity Based Replica Placement Algorithm
	Bottom-Up Access Aggregation
	Top Down Replica Placement

	Adaptive Replica Placement Algorithm
	Determining the Initial Threshold Value
	Dynamic Adjustment of the Threshold Value

	Simulation Setup
	OptorSim System Architecture
	Simulator Internals
	Data Grid Topology
	Simulation Inputs and Data Access Patterns

	Results and Observations
	Job Execution Time
	Job times when the access rate fluctuates
	Job times when the access rate is consistently decreasing
	Job times when the access rate is consistently increasing

	Average Bandwidth Cost
	Average bandwidth cost when access rate fluctuates
	Average bandwidth cost when the access rate is consistently decreasing
	Average bandwidth cost when the access rate is consistently increasing

	Storage Use
	Storage use when the access rate fluctuates
	Storage use when the access rate is consistently decreasing
	Storage use when the access rate is consistently increasing

	Summary of Centralized Algorithms

	Distributed Replica Placement
	Base System Model
	Base Distributed Replica Placement Algorithm
	Cost Function
	Bottom-up Computation Phase
	Top-down Replica Placement Phase
	Placement Example
	Computational Complexity

	Performance Evaluation of the Base Distributed Algorithm
	Job execution time
	Constant data access rate
	Fluctuating data access rate

	Average Bandwidth Cost
	Constant data access rate
	Fluctuating data access rate

	Storage Use
	Constant data access rate
	Fluctuating data access rate

	Discussion

	QoS-Aware Distributed Replica Placement
	Hop Count
	Algorithm
	Placement Example

	Workload Capacity
	Algorithm
	Placement Example

	Link Capacity
	Algorithm
	Placement Example

	Performance Evaluation of the QoS-Aware Distributed Algorithms
	Job Execution Time
	Effects of user QoS, constant data access rate
	Effects of user QoS, varying data access rate
	Effects of workload capacity constraints for constant access rate
	Effects of link capacity constraints for constant access rate

	Average Bandwidth Cost
	Effects on bandwidth consumption of user QoS for constant data access rate
	Effects on bandwidth consumption of user QoS, varying data access rate
	Effects on bandwidth consumption of workload capacity constraints for constant access rate
	Effects on bandwidth consumption of link capacity constraints for constant access rate

	Storage Use
	Effects on storage use of user QoS, constant data access rate
	Effects on storage use of user QoS, varying data access rate
	Effects on storage use of workload capacity constraints, constant access rate
	Effects on storage use of link capacity constraints, constant access rate

	Discussion

	Overall Assessment and Scope of Application
	Replica Placement Using Centralized Algorithms
	Replica Placement Using Distributed Algorithms
	Applicability

	Conclusions and Future Work
	Bibliography

