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"Though I cannot say clearly how I ride a bicycle nor how I recognize

my macinËosh (for I donrt know it clearly)¡ yet Ëhís wíl1 not prevent me

from saying that I lcnow how to ríde a bicycle and hovi to recognize my

macintosh. For f lcnow that I know perfectly well hor,r to do such thíngs,

though I know the particulars of what I knorv only in an ínstrumenLal manner

and am focally quÍte ignorant of them; so that I may say Ëhat I knor¿ these

matters even though I cannot te11 clearly, or hardly at all, nhat it ís

that I know."

- M. Polanyi

TO MY LANDLORD
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ABSTRACT

The applícatíon of semiclassical Lheories to lov¡ energy atom-atom

and atom-diaËom collísions is discussed. The theories are developed in

such a way that translatíonal motíon ís treated classically while ínternal

degrees of freedom (electroníc or víbrational) are treated quantum mech-

anically. The emphasís is on the development of an intuitively suggestive

'rpícture" of the collision process, occasionally at the expense of math-

ematical rigor. For the cases studíed here, the translaËional and internal

degrees of freedom of the system are íntimaËely coupled to each oËher

duríng the collisíon, and it is shor^¡n that some care must be Ëaken ín the

treatment of thís coupling. Particular attenËíon ís given to the effect of

a change in the ínternal states of Ëhe system on the translational degree

of freedom.

A relatívely sirnple version of semiclassícal theory is applied to

1orø energy collisions between H and B"# in order to obtain some qualit-

aËive informaËion about the effect of translational motion on the elect-

ronic state of the system during a ttcurve-crossíngtt event. A more

sophísËicated semiclassical theory, based on Feynmanrs path-integral

formulaËion of quantum mechanics, ís then developed and applied to

col-lisions between He* and Ne. In thís case the effect of the electronic

Tearrangement on the translational motion is very important. It is found

ËhaL this effect can be Ëaken accounË of in a varLety of waysu and some

qualitatíve comparísons of different avail-able methods are made. The

applícaËíon of Lhís type of Ëheory to vibrationally ínelastíc collÍsíons
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betrueen He and H, is also discussed.

It is concluded that semíclassical theoríes are a useful tool ín

Ëhe qualitat.íve ínterpretaËíon of experímental results, but Ëhat the

precise form of the appropríate theory can ofËen be determined only by

trial and error. A purely maËhematical comparison of dífferent availabl-e

theories is not always suffícienË to det.ermine whích one r,¡ill be most

useful in practice.
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CHAPTER I. INTRODUCTION

The role of semíclassical theories in fhe study of atomic and

molecular collisíons is a somewhat. curíous one, in the sense ËhaË the

practical usefulness of such theories ís generally recognísed whíle, at

the same time, ít is almost ímpossible to give a precise a priorí just-

ificatíon of such theoríes, at least for the examples to be discussed

in thís thesís. In many cases Ëhe "justífication" of the theories dís-

cussed here is one which has been developed after the fact on the basís

of íntuitive, ínstead of mathematícal, arguments. A mathematical der-

ivation of the theories used in thís thesis will be gíven (or referred

to) whenever possible, but the final arguments ín favor of (or against)

a particular theory lrí11 invariably be qualítative arguments which can

be developed only after the fact (and only after a rather deËailed com-

parison of numerical results obtained in the different theories). It

does not seem very 1íke1y that this situation wíll change signifícanËly

v¡ithin the foreseeable future, for reasons whích vrí1l be discussed below.

The interest ín semiclassical col-lisíon Ëheory has normally arísen

from two types of experímental situations:

1) Electronícal1y inelastíc atomic collisions (1r2).

2) Electronically adiabatíc, but vibrational.Ly and/or rotatj-onally

ínelastíc, co11ísions betvreen small molecules (3).

A certain amount of interest has also been generated by informatíon ob-

Ëaíned from ion-molecule reacËions (4), but these wíl-1 not be díscussed
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in any detail. No attempt wí1l be made to discuss eíther collisíons

betvreen large molecules or unimolecular rearrangement problems, sínce

the theories which are líke1y to be useful in these cases are raËher

dífferent from the theory used in Ëhis thesis. The follorving processes

will be consídered:
¿1) A+B+A'+B

\E

2) A+B-+A+B'
Jri

3) A+BC+A+BC

(electron transfer)

(electron excítaËion)

(vibrational- excitation)

where A and B are atoms, and the asterisk indicates eíther eleetronic

or víbratíonal excitation. These processes 'n¡i11 be termed ttínelastícrt,

v¡hile the process

A+BC-}AB+C

will be termed a t'Tearrangementtt. Rearrangement collisions are somewhat

more difficult to study Ëhan inelasËíc collisions, especially if one

wishes to quantize tlne vibrational states of the diatom before and after

Ëhe collisíon, and will therefore be mentioned only briefly. For prac-

tical purposes, the only type of experíment to which the presenË díscuss-

íon ís relevant is the trstate-selected" experiment; i"e. one in which Ëhe

initial and fínal electroníc and vibrational states are knovrn for each

individual co11ísíon.

A semiclassical collision theory will be defined as one in whích some

degrees of freedom of the sysËem (such as relative translational motion)

are treated classically whíle other degrees of freedom (such as elecËronic

or vibrational motion) are treaËed quanËum mechanícally. It is perhaps

worthwhile notíng that a quantum mechanical Ëreatment ímplies that
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noË only the íníËial and final sËationary staLes of a degree of freedom,

but also Ëhe evolutíon of this degree of freedom ín time, are treated

quantum mechanically. In some Ëheories (see Chapter IV) a distinction

between these Ëwo problems is made, but these Ëheories will not be called

semiclassical. trlhenever a classical degree of freedom ís coupled to a

quantum mechanical degree of freedom the definition of "classícal"

becomes a non-trivíal problem. A general definiËíon of I'classical"

motíon will be attempted only ín Chapter III. For the momenË, it ís

sufficient Ëo say tlnat a classícal degree of freedom behaves, at leasË

maËhematícally, líke a poinË particle. The theory is therefore of the

following type: ín an atomic collision Ëhe nuclei are treated as point

particles while electrons are treated quanËum mechanically; in an atom-

diatom collísíon the víbrational motíon is treaËed quanËum mechanícally

v¡hi1e translatíon is Ëreated classícal-ly. If the quanËum mechanícal

state ís a unÍque function of the classícal state then the problem will

be termed t'síngle-channel"o and if not, Ëhen ít will be called a multí-

channel problem. Single-channel theory ís useful at very 1ow energies

where the quantum mecharrícal state has time t.o respond uníquely (adiabat-

ica11y) Ëo changes in the classícal state. For curve-crossíng problems

(see the discussion of Landau-Zener theory) there may a1-so be a hígh

energy (díabatic) limit ín vrb.ich síngle-channel theory is useful. A

channel is specífied in terms of initial and final quantum mechanícal

sËaLes; í.e. the initial sËate, o,, and the f.LnaL stater ß, collectively
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defíne a partícular channel. It will normally be Ëaken for granted that

two dífferent channels are experímenËally disLinguíshable excepË when

degeneracies occur at Laxge separations.

The motivation for usíng a semiclassícal theory is two-fold: to

decrease computatíonal labor, and to símplÍfy Ehe problem of interpret-

ing experimental ínformaËíon. For some 1ow energy atomíc collisíon

problems it is found that the experimentally observed differential

cross sectíons display a surprisingly complex behaviour as a functíon

of the scattering angle. This behaviour clearly reflects at least some

of the details of the interaction between the different electroníc

staËes of the composíte system formed during Ëhe col-l-ision, regardless

of whether or not the composite sysEem ís stable. In partícular, íf a

deËaíled ínterpretatíon of the differential cross sectíon ís made, ít

should be possible to extract ínformatÍon about Ëhe nature of inter-

atomic (or intermolecular) forces aË smal1, as \^7e11 as 1arge, separ-

ations. Semíclassical theories have long been used Ëo perform this type

of interpretation for single-channel problems, but ít is only recently

that extensioris Ëo multichannel situations have been attempted (5-9).

The most inËerestíng atomíc collisíon problem ís that in vrhích the

impact energy is suffíciently high that Ëhe electrons no longer behave

adiabaËícaLLy, but still low enough so Ëhat the nuclei are sígnificantly

perturbed by the electronic rearrangement which occurs. (A low energy

co1lísíon is defined as one in whích Ëhe impact energy ís of the same

order of magnítude as the energy spacing between the relevant quantum
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mechanÍcal states, vrheËher they be electronic or vibratíonal") For thís

type of problem a ful1y quantum mechanícal treatmenË is often feasible

(10'11), but vzíll not normally yield much insight inËo the nature of the

process. A semiclassical approach, on Ëhe other hand, can lead to a very

deËailed understanding of the way in which the system evolves in tíme.

UnforËunately, it ís exactly this type of process for v¡hich Ëhe semi-

classical theory is very dífficult to justify. rn Ehe high energy limit,

ín which the nuclei are not signífícantly affected by changes in Ëhe

electronic state, it is not too diffícult to justífy semiclassical

theoríes such as impact parameËer, eikonal, and related approaches (L12,

12), Símilarly, in the very low energy 1imít ín which the process may

be reducible to a single-channel problem, it is agaín easy to justify

semiclassícal approaches (13r14) . For íntermediate eneïgíes, however,

Ëhe process is neíÈher a síngle-channel one, nor are the nuclear equat-

ions of motíon easy to determine. Some controversy exísts as to the

approprÍ-ate form of semíclassical equations in thís case. Two basíc

approaches suggest themselves: tíme-dependent and time-independent.

The most sophístícated tíme-dependenË approach seems to be that of

Pechukas (i5), rvhile the time-independent theorv has been brought to a

comparable level of sophistication by Eu (16-18) and by Eu and Tsíen

(L9-20). In the tíme-dependent approach one is concerned with the evolution

of a quantum state in tíme, under the ínfluence of a perturbation due to

"classical" nuclear moËion. This theory is the natural extensíon of ímpact

parameËer theory to low energy col1ísíons. The tíme-independent approach

ís concerned with the
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evaluaËíon of matrix elements betrveen statíonary scatteríng states of

the systemo where the nuclear contríbution Ëo the sËate of the entÍre

system is determined using a generalizatíon of single-channel WKB theory

(2L), Both theories use equaËions which can be regarded as truncated

asympËotic expansíons (22r23) of the corresporÌding quantum mechanical

expressions, buË the original expressions used ín each case are diff-

erent and the resulting semíclassical theories are apparently not

equivalent. The time-dependent approach starts by defining the quanËum

mechanical scattering amplítude in terms of a Feynman path íntegraL (24)

and by developing a second-order asymptoËic approxímation to this

íntegral expression. The time-independent approach begins with the

multichannel Schroedinger equation appropriate to the problem and dev-

elopes a uniformly asympËotic approximaËion to the solution of thís

equatíon. Although the origínal (quantum mechanical) definitions of the

scatterÍng amplitude in each case are compatible (i.e. the Schroedínger

and Feyrunan formulations of quantum mechanícs are equÍvalent), the

f.íD.a]. semíc1assíca1 approximatíons obËaíned in Ëhe tr,ro cases are not.

At Ëhe present moment there does not seem to be any rvay of determining

a prÍorí whÍch procedure ís beËter" This apparent arnbíguity in the def-

ínition of semíclassícal theories for multichannel processes is part of

the reason why ít r^ras sËated earlier that the semiclassical theoríes

used here can be jusËified only after Ëhe facË. Tn the discussion to

follow, only time-dependent. theories will be used, largely because of

Ëheir close relationshíp to t'ímpact parameter type" theoriesn which have
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already been studíed extensívely.

fn the discussion of semiclassical theorv it is instructive to

distínguish between those theoríes in which one can, at least ín prín-

ciple, observe Ëhe classical nature of Ëhe nuclei duríng the collision

and those ín which one cânnot. For example, during an atomíc collision,

if the nuclear trajectoríes for the cx + cl and cr + ß events are identical

then it is at least conceivable that one could observe the nuclei as

classical particles (or possibly wave packeËs) duríng Ëhe course of the

entire collision. Thís is not a sufficient condítion for 'robservabiliLvtr

but ít is aË least necessary. 0n the other hand, if the nuclear t.raject-

ories for these two events are different, then one cannot even conceive

of hor,r the point partícle nature of the nucleí can he experimentally

observed during the collisíon. The disËincLion between Ëhese Ewo types

of theoríes has been díscussed by Delos and Thorson (25126), As far as

the present díscussion is concerned, the maín poínt is that the der-

ivation of the semiclassical equations used here will normally be

developed independently of whether or not the classical parËícles are

observable as such. Tt ís possible to use semiclassícal theory to ínter-

pret experímental ínformation even though Ëhe classical nature of the

particles cannoË be observed during Ëhe collision. For example, it will

be shown below that Ëhe differentíal cross sectíon for a multíchannel

scattering process is uniquely defined by the classical trajectoríes

which the nucleí follow during the collísíon, and by the electronic

response to this nuclear motion. The problem of "interpreting" an exper-

imentally observed differentíal cross section can Ëherefore be broken

up into two smaller problem" if a semiclassical Ëheory is used" The
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first problem is that of understanding how the nuclei behave duríng a

collísíon. It can be solved either by inspecting the classical nuclear

trajectoríes themselves, or by ínspecËíng the poËential energy surfaces

which determÍne Ëhese Ërajectories. The second problem is thaË of under-

standing horrr Ëhe elecËrons are perturbed by nuclear motíon during the

collisíon. Thís problem can be solved by ínspecting the behaviour of the

coeffícients which define Ëhe elecËroníc state wiËhín a partícular basís

seË. Once both of these individual problems are understood ít is not

too diffícult Eo interpret the differential cross section as well.

Although the nuclear trajectoríes whích are used ín this interpretation

are not necessaríly observable they are still very useful, ín the sense

thaË Ëhey help one to develop an intuítively suggestive picture of the

collision process.

The theories used here will be put ínto Ëwo caËegories, depending

on wheËher Ëhe nuclei obey initial-value or boundary-value equaËíons of

moËion ín time. In Ëhe ínitial-value Ëheoríes the nuclear trajectoríes

for the series of events cx -> o¡ o ) ß, c + y wíll all be Ëhe same and

one can therefore, in principle, vísua1íze tlrre nucleí as being hTave-

packets whích are observable under the right condítions aË high impact

energíes (27). The inadequacy of an initial-value Ëheory for low energy

collisions will be discussed in Chapter II. In a boundary-value theory

the nuclear trajectoríes for the o + cr and a + S events are different

and this type of semiclassical theory can therefore be deríved only

using relatívely sophísticated mathematical arguments. Two different

versions of the boundary-value Ëheory will be discussed in Chapter III,

while vibrational excitaËion will be considered ín ChapËer IV.
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C}IA?TER II. ELECTRONIC EXCITATION: INITIAI-VALUE THEORIES

In a time-dependent approach the theory of low energy atomic coll-

isions can be developed ín trvo stagesn the firsË of whích deals with the

effect of the nuclear motion on the electronic staLe, while Ëhe second

deals r¿ith the reverse effect. Because of thís partial separation of the

two problems ít ís also possible Ëo develop an ínterpretation of exper-

ímental results in two stages, by first consideríng the effect of simple

nuclear motion on the electronic state and then developing better nuclear

models. The fírst stage r^rill be discussed in thís chapter. The form of Ëhe

electronic equations of motion ís independenË of the way ín which the

nuclear moËion is determíned and the same electroníc equatíons carl there-

fore be used in conjunction with progressively more sophísticated nuclear

models until acceptable resulËs are obtained. The simplest nuclear model

r,rhích will be consídered ís one in whích the nucleí move in response to

a stationary energy surface; i.e. an energy surface whích ís a uníque

functíon of the internuclear disËance. A more sophisticaËed theor,rr ís

obtained when an ttaverage energy Surfacett is used: the energy surface

is defined as an average over the existing electroníc state at ar,y part-

ícular tíme (28-30) . The t'appropriateness" of these two theoríes, for

1ow energy collisíon pïobleins, vrill be mentíoned at the end of thÍs chapter

once the electronic equations of motíon are known. Both of these Ëheories

are ca1led initial-value Ëheoríes because the nuclear force Law at a
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particular tíme recognizes only the present and pasË electronic states.

The soluËion of Ëhe equations of motion is therefore characterízed com-

pletely by the specífícation of nuclear and electronic states long before

the collísíon. (In a boundary-value theory the nuclear force lavi aË a

partícular time recognizes future, as well as past and present, elect-

ronic sËates. )

The main emphasis ín this thesis will be on problems in which Ëhe

electronic (or víbratíonal) rearrangement duríng the collision exerts a

signifícant effect on the nuclear motion. The type of problem to be

consídered wíll therefore be one in which t.he effect of nuclear motíon

on electroníc (or vibratíonal) motíon is relatívely símp1e, so that more

aËËention can be given to the reverse effect (v¡hích is more difficult Ëo

handle properly) " All of Ëhe calculations reported ín this thesís were

performed either by using very símple electroníc basís seËs or by usíng

"model" electronic interactíons based on molecular-orbital calculaËíons

performed by oËher research groups. The discussion of electronic eguatíons

of motion which ís given below wíll therefore not be utílized very ful1y

ín the actual calculations reported here¡ but was undertaken in order to

show thaË it is possible to develop fairly general, internally consístent,

electroníc equations íf the need for them should aríse. (Uote thaË atomic

uníts (36) will be used Ëhroughout.)
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Electronic EquaËions of Motion

Consider a system consisting of tvro nucleí (masses mn and mo) and
.ó

an arbítrary number of elecËrons. The relative positíon of nucleus B

->
with respect to nucleus A is R. Within the centre-of-mass coordinate

I

system the posítíon of the íth electron ís i-. The disËance between the

i th electron and nucleus B is

->t.
a

->l
ÛIIR ì

%"* ,.'b I

(Note that the mass of

of the cenËre-of-mass.

the electrons has been ígnored in the definíËíon

) The fu1l hamiltonianr Hoo , can be r+ritLen as

H--op vi + n"1(?,È)

where U = mA nU / (mO * t¡) and ? stands for the ensemble of electron

coordínates" The operaËor nllC?,ñ> contains the electronic kinetic energy

operators as well as the electron-electron, electron-nuclear, and nuclear-

nuclear potentíal energies. If Ëhe nucleí are treated as classical part-
el +->

ícles then H^-(rrR) can be regarded as a tíme-dependent hamiltonian whích
OD

determines the electroníc response to a particular nuclear trajectory.

^1 :> -+
C1ear1y, Htt(rrR)'has no explicit time-dependence, but it has an implicíË

op

dependence on tíme through n(t). Tn r¿hat follows, iË r+ill be assumed that

the function È(t) ís knor,rn j-n some sense, without yet specifying how it
a

is known; í"e. R(t) is deËennined by some external criteríon vrhích is of

no ínteresË at Ëhe moment. (fnis procedure can be best undersËood r,líthin

- -1
2"
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a paËh-íntegraL notatíon (24, pages 68-71).)

the nuclear motion is given by the soluËion

dependent eduation

The electronic response

of Schroedingerrs time-

v (i,ñ, t)

to

el --+ + + ->
Hon(tr*) Y(rrRrt) = i 1s-)

\ ðt¡->r
( 1)

(?\

where ít must be

for example:

+
rememhered thaË R ís noË an índependent variable;

/a \ = ra \| 
-t 

| 
-l\ âtl+ [ ât/+ ->'rrrR

->+dR
d,t

(o*)i,.

r^rhere the subscripËs

electroníc state is

índicate which varíab1es are held fíxed. The

re-expressed as

v(?,ñ, t) n -àà

) b.(R,t) 0.(r,R)-JJ
j

(3)

The validity of ES. (3) will be discussed ín more detail below. The states
-+ ->-

Õ. (rrR) are chosen in such a Ì¡ray that they approxímately represent the

possible electronic behavíour for all values of R. The form of the equa-

Ëions of motion does not really depend on hovi thís choice ís made. rt

will not be assumed that the sËate" o, {?rÈ) form a complete, orthonormal,

basís set; in addítion ro this, rhe Õ.C?rñ) may be aromíc orbítals or

molecular orbiËals, and in a many-"1.ltron problem they may be síngle

SlaËer determinants (3t¡ or linear combinations of many Slater det.ermin-
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anLs. Substitutíon of Eq.(3) into Eq.(1) yíe1ds

Ij
b. (R, L) Htl(?,ñ)
Jop

-> -+
Õ. (r,n) = i

J lffB'(R't))
r i o., (n,t)

J"

-à ->
Õ. (r,R)

J

( oo.r l?,Èl

(4)

+ )..ñdt

obtains the

(s)

After pre-multiplyíng by

maËrix equaËion

O.(rnR) and íntegrating over
l_

->
'dR

ãE

->r one

N

->
P

-+dh + í Pb
dr

where H, N, and

respectívely:

\ï
_].l

->Þ

are Ëhe hamí1tonian, overlap, and momentum matrices (32),

II

-'t 1

J.++

I Õ. (r,R)'a
->++

0. (r,R) di
J

(6)

1 oici,Èl {vnoj r?,ñl } di .

(Note that N and H are hermitian (33r page 120) rqhí1" F i" neírher herm-

ítian nor anti-hermítian in general") The q.uantity þ is a column vector

v¡hose elements are Ëhe coefficienËs b.(nnt)" Before proceeding further

ít will be convenient Ëo discuss nq. C:l in more deËail. rt ís important

to recogníze t1nat Eq. (3) íncorporaËes the so-called "loú¡-energy approx-
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ímatíonrr; i.e. the assumption that Ëhe electronic states depend only on

++
i and n. As an illustration of this approxímatíon, consíder the proËon-

hydrogen scattering problem. The electroníc behaviour for thís prohlem

can be described faírly adequately (34r35) using three hydrogenic

orbitals (1s, Zsr 2p) centred on each nucleus. In atomic units (36)

the orbiËals centred about nucleus A are gíven by

7, -r^O(lsA) ='tÍ-'?-e-lr

-, -r^ /)
Õ(2sA) = (32n) ' (2 - ro) e -lr'-

o(2pA) = (lZn¡-'< z^ e-r\'/2

where tine z axis is parallel to the relative nuclear velocity R at

large R and ro = lì + i.tZl (".. page 11). These three orbitals are

normalízea "ig"rr"tates of the ísolaËed hydrogen atoms; thaË is,

(7)

(.-'4 v?^ - L/r¡) o = EO

Ilowever, they do not satisfy the time-dependent Schroedinger equation

for fínite nuclear velocítíes even at large R. This is due to the facË

that the operaËors in the Schroedínger equation (Uq. l) are defined within

a centre-of-mass coordinate system r,¡hile Ëhe orbítals are defined rel-

ative to movi-ng nuclei. For example, when the operator (A/at)* is applied,
t

the nuclear posiËior, ñ i-" allowed to move (since Ê i" d.p.ndent on Ë)

->
whíle r is fíxed, which has the effect of changing the electron-nuclear

distance rO. As a result of this change iË ís found that



- 15-

o(rn) = V-0(r.) dR

'.,*ãr

Because this term is not zero, the orbital Õ(rO) wíl1 not satisfy Eq.(1)

at large R. As R approaches ínfinity, the left hand síde of Eq. (1) v¡i1l

conËain a term of the type E0(r4) which is easily cancelled on the ríght

hand side by the íntroduction of a phase factor e-íEt in the definition

of Õ(r^). The term due Ëo the dependence of Õ(r^) on R, however, wíllA-A

,tot 
"rrr."1 v¡ith any other term, even at large R. In general, Ëherefore,

if a basis set of the type represenËed by Eq. (3) is substituted ínto the

tíme-dependent Schroedinger equation, Eq. (1), ít wíl1 be found Ëhat the

Schroedínger equation r,rí11 not be satísfíed in the limit as R + *, even

+->íf the staËes Õ.(rrR) are eigenstates of the indivídual atoms. The ínad-

equacy of thís Ëype of basis set was ínítíally recognized by Brinkman

and Kramers (37) but has occasionally 1ed to diffículties in subsequent

treatments of the problem (3S¡. For the purposes of the present discuss-

ion, the formal inadequacy of Eq. (3) is of no particular ínterest except

insofar as it may lead to practical diffículties r^¡hen the solution of

the Schroedínger equation is atËempËed. The most obvious way ín whÍch

Ëhese difficulties may arise is Ëhrough the preserrce of "non-physical"

off-diagonal coupling terms whích do not disappear as R + -. If a trans-

iËion probability for a partícular process is Ëo be uníquely defined, it

is necessary that H, N, 
"rr¿ 

Ë become diagonal as R + -. The basis set

used in Eq. (3) does not alrvays satisfy Èhis requirement" As an example,

(#[
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consider the follovring maEríx element

proton-hydrogen problem:

as it is defíned for thenfÞvr r t

I oçzpa¡

->+o
I^rhere R = (xrYrz) and R = (ororz) at large R. This matrix element can

be evaluated to yield (-B/2/BI). The i matrix is rherefore nor díagonal

as R -+ -, even though the N" and H matrices are. The coefficients bj(Rrt)

will therefore not approach stationary values asympËotieally. rt is

ímportant that this type of off-diagonal couplíng be recognized as being

spurious, in Ëhe sense that it ís due to improper definiEíon of the elec-

tronic basis set at large R. A formal solutÍon to this diffículty ís

available and has been discussed by Bates and McCarrol (39r40) Ín conn-

ection wíth the perturbed-staËionary-sËaËe theory (41). rt consists of

multiplying Ëhe orbítals o, {ÌrÈ) by a phas e f actor eívz , r,rhere v is

proportional Ëo the relaËil. ,rr"t"ar velocíËy and z is an electroníc

coordinaËe. (strictly speaking, Ëhis phase factor ís applied to índív-

ídual atomic orbitals, not molecular orbítals. A discussion of the

problem of developing a general, workable, prescription for choosing

these phase factors has been given by Riley and Green (42¡.) The effect

of the phase factor is to Ëake account of the facË that the electrons

possess translational ener1V (by vírtue of being bound to a moving nucleus)

ín addition to orbital energy. The formal diffículËíes mentioned above

are removed v¡hen these phase factors are used, but are usually replaced

by practícal problems. In practíce, the main diffículty introduced by the

{ a ø(rsa)\ a?
\az /



-t7-

factor aít' i" that one can no longer evaluate matríx elements of N,
-+

E, and p analytícally since Ëhe Ëerm .tt' irrtroduces a Bessel function

into the integrand of a two-dimensional integral over the electronic

coordínate (43). From a qualitative point of víew, ignoring the phase

factors mentioned above is tantamount to ignoring the translational

energy of Ëhe electron compared to its orbital energy. Thís approximr

ation will alvrays be used in Ëhe present discussíon, sínce ít is quite

reasonable for the processes consídered here. (For example, for the

proton-hydrogen system the translational and orbíta1 energies of the

electron become comparable only at an impact energy of L2 keV Ín the

centre-of-mass frame. )

An associated approximaEíon, whích r.¿i1l also 1¡e used in this dis-

cussíon, is that of ignoríng rotational coupling between electronic

states. This coupling arises from the fact Ëhat the operators in the

Schroedinger equation are oríginally defined ín an ínertial, non-roË-

ating, reference frame, v¡hi1e the electroníc states are most naturally

defined rvithin a non-ínertial, rotaËing, frame. The ímportance of this

type of coupling ín proton-hydrogen scaËteríng has been discussed

previously (44r45) and some experimental eviderrce concerning íts imporË-

ance in other scaËtering problems is also available (46r47). A thorough

treatment of rotatÍonal couplíng, as it. applíes to impact ionízatÍon

collisions, has been gíven by Thorson and co-r^lorlçers (48, and references

ciËed therein). If rotational coupling is ígnored, the operator V* ín

the definitíon of i inq. (6)l can be replaced by A/AR. The equaríons

of motíon [Eq. (S)] ttrerefore have the form
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Hb = iNdþ + iPbdR (B)
dL dr

where

(e)

The procedure of ignoríng the phase factors mentíoned above can

have two serious consequences ín practice, even Ëhough the approxímaËíon

may in fact be a valíd one, in the sense that the translational kinetíc

energy of the electron ís much less than its orbítal kinetic energy.

First of all, ít can lead to spurious off-díagonal coupling between

sËates at large R. If it ís clear Ëhat the low-energy approximation ís

valid, then these couplÍng terms can simply be deleted from the P matríx"

The second problem whích may be introduced by the lor,r-energy approxím-

atíon concerns normalization conservaËion. Green (49) has shornm that

Ëhis approximatíon may destroy both normaLization conservatíon and

detailed balancíng, parËicularly when ít is made wiËhin a non-ortho-

gonal basis set. A bríef díscussion of both of these features of the

equations of motion will fherefore be given, in order to shor,¡ that the

equations can be developed in such a vray that Ëhese tr^¡o propertíes are not

destroyed.

If Ëhe basís set in Eq. (3) ís regarded as a r¡alid representation

of the elecËroníc state at arbítrcty ñ and t, then the equatíons of

tij = / oic?,Èl taor{Ì,ñ)/an} ¿i
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motion of the electronic state are given by Eq. (8), which can be re-

written as

-1 -1db = -iN-Hb - lI-PbdR
dr dr

( 10)

( r l)

The followíng property of N ís of ínterest:

Therefore

+
D I DI _ Å Nt-uf\

m-

r,¡here it must be remembered that â/ân operates v¡íth the electrons held

fixed wíËhín a centre-of-mass, cartesian, coordinate system so thaË ðÕ./ar.

is non-zero even though Õ, may be an atomic orbital of the form O, (rO)

or Or(rU). The radial momentum matríx, P, is clearly antí-hermítian

lf ("n¿ only if) the basis set ís orËhogonal. FortunateLy, aproof of

notmaLization conservatíon does not requíre that P be anti-hermítian,

alËhough the hermítÍcity of N and H is needed. The 'tnormaLizatíon

consËantrt is given by
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,*++->->+I tY lr R r\ \/lr Þ rl ,1+
J t \!trltLl ¡\!tt\rLl u!

after using Eqs. (3) and (6). (Itrote that bf,

b, is a rov¡ vector \^/hose elements are complex

onding elements of b.) NormalízatÍon rví1l be

where

d
dr

(12)

the hermitian conjugate of

conjugates of the corresp-

conserved ir ¿(ntu Þ)/dt = 0,

(14)

b'N b

= /¿¡f\u ¡ + ¡flau\t ¿n + ¡tu ¿¡¡.:!---1:r_--_-

\dtl \dR/ dr dË
d
ãã

(b'N b) ( 13)

The first and last terms on the right hand side of Eq. (13) are gíven by

1f

- h 'P'h dR::-: *" t
dË

Þt* aÞ - -í
dË

Therefore, after using Eq. (11), we find

/ ¿ur\u ¡ =
IaE /- -

+(b'N b) = 0

i b'H b

!.tgÞ - Þt¿ÞdR
dr

Normalízation is therefore conserved within the lov¡-energy approximaËion

even if Ëhe basís set is not orthogonal" The only properËies of the

matríces which have been used in Ëhis derívation are the hermiËícity

of N and H, and the fact Ëhat P satisfies Eq. (11). The matrices N, H,

and P display these properËies quíte generally; i.e. they display them

índependently of the nature of the basis set, whether iË be orËhogonal



-2L-

or non-orËhogonal and r'rheËher iË consist of atomic orbítals or molecular

orbitals. This conclusion is somer^¡hat more opt.imístic than that reached

by Green (49, section 6) concerning norrnalizatíon r¿ithin the lor¿-energy

approximation, apparently because the equations of motion used on page

1027 of Ref. 49 do not contain any equivalent of Lhe P matrix. (Note

that ít is not claimed that the present equaËions of motion constítute

an unambíguous formulation of the low-energy approxímatíon, but símply

Ëhat they are internally consístent. Furthermore, the problem of eval-

uat.ing P- in practíce may r¿ell be non-trívial in some cases.)

Before discussing detailed-balancing (49-S1) r¿e r,¡il1 first shovr

that the equations of motion are invariant under a transformation of the

electronic basis set and wíll menLion a fer¿ properties of the differenË

types of basis sets whích are avaílable. If the equations of motion are

invaríanÉ under transformatíon then ít is possible to carry out formal

proofs of certain propertíes of the equatíons rvithin special represent-

ations of the electronic state instead of continuing to use the general

basis set described above. For example, ít will be possible to show thaË

detaíled-balancing is satisfied r,rithin the díabatic representatíon (32).

If an expressíon of detailed-balaneing within a general basis set is req-

uíred, it can be obtaíned simply by transformation of the diabatíc express-

íon of this property, assuming Ëhat the equations of motion are invariant

under Ëransformatíon.

Consider a situation in whích the oríginal descríption of the elec-

Ëroníc wave-function V(irÈrt) ís gíven in terms of the basis seË {OrC?rÈ)}
J

as shornm by Eq. (3). A nevr descríption of the same state, ,y(;rÈrt), ís
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desíred, ín terms of a nerø basis set {o:Ci,ñl} r,rhere the ÕlCi,il are,-;* r
R-dependent linear combínations of the Õr(rrR) states. The new descrip-

+-ù
tíon of y(rrRrt) is given by

v (í,È, t) = | o j (n, t) oj (?,È) o

The relationshíp betv¡een the nev¡ and o1d basis sets is given by

Õi(?,Ê) = f E5r{*l o.(?,Ê) (1s)

r,ihere I^I(R) ís an arbitrary square matrix. The transformaËion procedure

is to be developed in such a r¡ray that ít does not change the "physical

contenËtrof the equations; i.e" the state V(?rÊrt¡ is to be unaffected

by the transformatíon. The constraint that ry(;rÈrt) be unaffected by the

transformation defines a relatíonship between the Þ(Rrt) and br(nrt)

vectors:

-1bt = i^I-b ( 16)

rshere b(Rrt) contains the components of y(?rñrt), as ít is projecËed

onto the old basis set, {Or{?rR)}, whíle þ,'(nrt¡ conËains Ëhe components
J

of the same statu V(irñrt) in the new basís set. IË is also possible to

relate the matríces defined using the o1d basís set to those defíned

usíng the nerv basis set. The Nn E, and I matrices transform according

to the following equaËions:



= T^ÏlNr TJ

f= I^I H I^I

+= I^I'P W

-1N lIb = w

D=W

Nr

ll ?
.r1

nlr

-1T¿

)

-/Ãt::
\dR
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++ I^I'N d W
-*dR-

rühere the primes indicate matríces defÍned usíng the basis ser {Õ:(?,Ê)}.
For problems in whích there are no electroníc degeneracíes at large n

the transformaËion I^I(R) wíl1 be defined Ëo approach the ídentity as

R + -. Tf Eqs. (16) and (17) are used to derive ner¿ eouations of motion

(for br(nrt) in terms of Ëransformed. matríces), then it is clear that

the observable results defined by the nevT equations of motion rvi11 be

Ëhe same as those defíned by the original equaËíons of motíon ín the

old basis set" Idhat ís not clear, however, ís the form of the new equa-

tíons of motion. rf the equations of motion for br(Rrt¡ possess a d,íff-

erenË form than those for b(Rrt) then, for practical purposes, it lsill

be very difficult to relate numerícal- results obtaíned usíng two diff-

erent Ëypes of basis sets even though Ëhe basís sets may be physically

equivalent in the sense implíed by Eq. (15). To display ínvaríance

under transformatíon it is riecessary to deríve equations of motíon for

þ', starting from Eq. (10) and using Eqs. (16) and (17). The follovríng

ídentítíes are useful:

(r7)

-i(N') -Hr br

-1(N') -pr bt

( 1B)
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Equations (10) and (18) imply

d (t^t b') = -i I^I (N')-1H'b' I{ (I')-1a'b' gB
dr dr

Therefore

-l -1db.' = -i(I') E' b' - (N') 3' b' d.[
dr dr

The for¡n of the electronic equations of motion ís therefore ínvaríanË

under a transformaËíon of the electronic basis set. (Note that this

invaríance ís not something that can be taken for granted; for example,

the equations of motion used in the average-energy-surface theory (28-30)

do not display it.) Because of the invariance of the form of the equat-

ions, it is possíb1e to transform from non-orthogonal to orthogonal

basis seËs quíte easí1y, aL least ín principle. (The practical diffícult-

ies associated wíth such transformations are discussed below. ) For

example, r,¡ithin an adiabatic representation (32), r¿here N = 1. and

11 = H^ (dÍagonal) , the eguatíons of mot.ion can be writËen dor^m by_D

inspecËíon:

-iH^b - lÞ dE
dt

dþì:-
OE

where P ís an antí-hermitian matrix [see Eq. (11) ] defined using

( 1e)
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adíabatic molecul-ar orbitals. Símílarly, in a

(32), r¿here N = I and P = 0r the equatíons of

diabatic representation

motion are:

db=-í
dT

l?n\

r¿here H ís defined using diabatic states. The formal ínvariance of the

equaËions ís of interest for the following reason: it ís often conven-

ient to perform numerical calculations r,rithin a non-orthogonal aLomic

orbital basÍs set whíle, at the same tíme, the interpreËaËion of the

results may be símplest r,lithin an orthogonal, either diabatic or adiab-

atíc, representation. The invariance of the equations of motion allows

one to Ëransform at will beËween different basís sets whenever the need

arises. This procedure does noË símplify the numerical problem in any

way, but it does allow for more flexibílity ín the interpreËation of

results. If the orígínal basis set consisËed of non-orthogonal atomic

orbitals (40's) and if expressions for N, H, and I in thÍs basis set

are available, then there r¿ill not normally be any point in trying to

transform these matrices ínto an orthogonal basís set before the

equations of motíon are solved. The best procedure wíll usually be to

solve the equaËíons of motion wíthín the original basís set and then

to Ëransform the results into a different representation if desíred.

Ilowever, some exceptíons to the rule exist. For example, in resonant

charge exchange problems ít may be possible to partially de-couple the

equations vlíthín an adíabaËic representation usíng symmetry arguments.

In this case the advantages of de-coupling override Èhe numerical diff-

sÞ
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iculties assocíated lvith the Ëransformati-on to an adíabatic basís set.

Similarly, in some cases it may be found that a transformation to a ner^r

representation allows one to tTuncate the basís set even further than

origínal1y supposed.

The dífficulties associated with the transformation from an AO

to an adíabatic (or díabatic) basis set can be seen by inspectíng Eq. (L7)

In each case the transformatíon is uníquely defíned by I,f(R). In Ëhe

transformaËíon from an A0 to an adíabatíc basis set, w(R) must satisfy

Isee Eq. (i7) ]

(2r)

(díagonal)

rvhere H^ is the adiabaËic hamiltonian. This can be rewritten as an
-t)

eígenvalue problem:

(22)

The solution of this eigenvalue problem is not very much more difficult

than the diagonalizatíon of a síngle hermitian matrix (52r paBe lss);

however, iË would still be impractical to try to solve Eq. (22) at each

particular R value encountered in a collision calculaËion. The only prac-

tical .way to perform this transformation r¿ould be to solve Eq" (22) at

a small number of discrete values of R and then obtain I^I(R) (and íncid-

entally EO(n) and P(R)) by ínterpolatíon or curve-fitting. The resulting

¿
il'N InI - 1

+I^iHI^i = H^_U

-1N HI^l = Í'iH
--D
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matrices a1lor¿ one to solve the electronic eguations wíthin an adiahatic

representatíon.

The I,I(R) matrix whÍch effects Ëhe transformation from an AO to a

diabatíc basís set must satisfy the equations [see Eq. (i7)]:

where P and N are knov,¡n withín an AO basís set. It can be shovm Ëhat a

símultaneous solutíon of Eqs. (23) and (24) is given by the solution of

the followÍng equation:

+
I^I'N I^I = I

'r. +I^I'PI^I + I^INd I^I = 0
--dR-

-1d I¡I = -N-Ptrnl
dR-

r2 ?'ì

\¿+ )

(2s)

subject to Ëhe initíal conditions that I,l(-¡ Ou unirary (i.e. gtI * J
as R + -). If I^I(R) satisfíes Eq. (25) then ir wíll clearly sarisfy

Eq. (24) as well. All that remains is to shot¡ that a solution of Eq. (25)

is also a solution of Eq. (23). Consíder

¿ ("t" 
"l = f¿wt¡¿nl N r¡r + wt(au/¿n) w + wtu (dr^r/dR)

dR---

If I,I(R) satísfies Eq. (25), then
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and Eq. (11) implies

-rì

Therefore, Lf a solution

value of R, Lhen ít will

Eq. (25) satisfies Eq. (23) at a particular

so for al1 R; furthermore, the initíal cond-

itíons associated with Eq. (25) ensure that I^l(R) will satisfy Eq, (23) as

R ) -r since the basis set wíll invariably be defined in such a way that

N * 1 as R + -. The transformation natríx W(R) can Ëherefore be obtained

by solving Eq. (25), which should not be too dífficult ín principle since

it is a linear, first-order, equation. Tt ís therefore possible to rigor-

ously transform the N, H, and P matrices from a non-orthogonal AO basis

set to a diabatic basis set, so that the equations can be solved withín

thís representation. In practice, of course, the only feasible approach

would be to calculate trl(R) at discrete values of R and obtain intermediate

versions of w(R) [and the dÍabaËic hamiltonian Et(R) J by interpolation.

The precedíng discussion shows that, although ít is possíble to

transform rigorously from an A0 basís set to a díabatic (or adiabatic)

basis set, Ëhis Ëransformation procedure will not normally be of any

practical value, except ín those cases where the basís set wíthín the

neÌ,r representation can be drastically Ëruncated compared to the one used

ín the A0 representation. The maín value of the Ëransformation proced-

ure lies in the fact that it allows one to develop a set of alternatíve

víewpoínts of the co11isíon process, all of r,rhích are physícally equiv-

alent but look quite dífferent mathematically.

A serious problem encountered in ab initio díscussions of elec-

Ëronic excitation is that of decídins r,/hat kind of basis seË to use.

+
d (I^I'N I,l)
dR---

of

do
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Most molecular orbiËal (I{0) calculatíons are performed using adíabatic

states, which may be very conveníent ín díscussions of molecular spec-

troscopy, but are not nearly as useful in collision problems. In coll-

Ísion theory the diabaËic representaËíon r¿ou1d frequenËly be the most

convenient one to use (36155), except for the fact that it is not easy

to develop a diabatic basis seË rigorously in practice. A very promising

method of handling this problem has recently been discussed by sidis

and Lefebvre-Brion (s0¡. Their approach makes full use of existing M0

theory, while at the same time ensuring that the results of the MO

calculation wí11 be of interest to the collision theorist. The choíce

of basis set for the Ëhree physícal systems considered ín this thesis

r¡ras not very diffícult. For the H-Be# system an ab initío calculatíon

r.uas performed (30) using an atomic orbital (non-orthogonal) basis set. The

ínËerp.reËaËíonr-:,,. was aided by transforming to an adiabatic basís set,

but thís transformation was performed only after the original equations

had been solved. For the He*- Ne system (nef. (S:¡ and Chapter III) rhe

equatíons vrere solved withín the diabatic representatíon. In thís pïob-

lem the diabatíc hamiltonian \¡ras obtaíned semí-empiríca1ly (54); no

aËtempt was made to perform a rigorous transformation inËo the díabatic

representation. For the vibrational excítatíon problem (Chapter IV) it

was possible to define a diabatic basís set quíte rigorously, because of

the simple form of the hamiltonian operator, and the equations were solved

wíthin thís basís set.

It is perhaps worthwhile noting that the problems associated wiËh

the calculaËion of F r.ri11 depend a lot on Ëhe nature of the basis seË.
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For example, if an A0 basis set (in r¿hich the orbitals are all of the

type Õ(r^) or O(r.)) is used, Lhen only one type of contríbution to pAB'
r¿ill aríse: that due to the dependence of rO and rU on R, when i is

fixed. In a molecular orbital basis set two quite different conËribut-

ions Ëo I wí1l arise since the molecular orbitals will be R-dependent

linear combínations of atomic orbíta1s: the molecular orhitals r,¡í11

depend on R through ro and ru as menËioned above, but they will also

have an R-dependence due Ëo the coefficients in the linear combínatíon

of atomÍc orbiËals. There is, hovrever, one feature of p which slightly

simplífies the problem. It can be shovm that any square matrix such as P

(whích ís neither hermitiari nor anti-hermitian) can be uníguely r¿ritten

as a sum of hermitian and anti-hermitian matrices; í,e. p = A * B, where

Equation (11) noru ímplies that

writËen in the form

(hermítían)

(anËi-hermitian)

¡ 1 r,- , r-Ã = I dN/dR. Therefore P can always be

(P +
- p'), /)

N+1d
ZãR

B (26)

where B is antí-hermítian. The interesting feature of Eq. (26) is that

it may províde a r,uorthwhíle sËarting point for an approxímate method of

evaluatíng P., for two reasons: 1) as long as B is anËí-hermitíann norm-

aILzatíon of the wave-function vlí11 automatícally be conserved; i.e. one

can evaluate B approximately r+ithout destroying normaLization conservation.
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2) fn an atomic orbítal basís set B wíll probably not be very ímporrant

as a source of off-díagonal coupling (see proËon-hydrogen example below).

Tf the basis set is strongly non-orthogonal, then the N, H, and dN/dR

matríces may r'rell contain all of the ínterestíng off-diagonal coupling

terms and it may be reasonable to evaluate B only approximately. (Note

that in the adiabatic representation Ëhe situaËíon is quiËe different

since, in thís case, å is the only source of off-díagonal couplírg.)

An example of a case where P can be easily evaluated and where Ëhe

transformaËion theory developed above can be used to good advantage is

gíven by the proton-hydrogen system. Consider the basis set and coordin-

ate system of Ref. (28); ít viill be shovzn here that the B marríx for this

problem possesses a Í.aírlry simple strucËure and that the ímplicatj-ons of

the present equations of motion [Eq. (10)_] are rather dífferent from

those used ín Ref. (28). The P matríx consísts of the following type of

matríx elements:

where tjne z axís ís para11el to È, and r,rhere 6. and 6. are any members
l_J

of the set of orbitals { ls (A) o 2s (A) ,2p r(A), 1s (r) ,2s (B) ,2p r(B) } . An evat_

uation of P- shov¡s that the major contributions are of Ëhe type represented

bv'¿ aY/aR in Eq" (26). (The matrix elements of N(R) have been rabulared

by corrígarL (57).) rhat ísr g is almosr enrirely hermirian. Thís is due

largely to the fact thaË Ëhe centre-of-mass of the system lies at the mid-
+

poínt of R. rf P is expressed in the form of Eq. (26), then ít can be

shovrn that B is given by
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0000

0000

0000

000o

0000

0-o00

where the or:dering of the states ís as shor^m above, a = B/Z/AI , and the

non-zero matrix elements are all of the t.ype discussed on page 16. The

matríx P therefore consists entírely of spurious terms, due to the neglect

of the high-energy phase factor 
"iu'" rf these terms are ígnored the

equaLions of motion for the proton-hydrogen syst.em become Isee Eqs. (10)

and (26) l

_r4 (27)-1N 7d N\b dR
\dn / dt

From Ref. (28) it is knovrn that

structure

II

(and therefore dN/dR) have rhe

-tdb = -f N-Hb:
dr

C DI
I
ID CI

NandH

(28)

where Ç and D are 3 x 3 hermítian matríces. This structure expresses the

fact that Ëhe charge-exchange process in the proton-hydrogen sysËem is

resonant. Consider a change of basis setu defined by the Ëransformatíon

matríx
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where I is a 3 x 3 identity matríx" The states in the new basis set are

either gerade or ungerade linear combínations of aËomic orbítals. The

transformed version of a matrix of the type shorm ín Eq. (28) ís

T.T

Ilr

(ii)

lc+D 0= 2l--
\g s-e

(2e)

(30)

The Ëransformed matrices (¡t, Htu and dNr/dR) are therefore bloclc

diagonal. After making use of Eqs. (16) and (17) it can be seen that

the equations of moËíon for the coefficients in the new basis set are

parËíally de-coupled" Instead of six coupled equatíons of motion for the

old coefficients one has Ëwo independent sets of three coupled equatíons

for the new coeffícients. Furthermore, the Ëhree coeffícienËs for the

gerade sËates (r,rhich may be labelled ls^, 2s , 2p_) obey a normalizatLong' g' 'c'
conservatíon law independently of the three coefficients for the ungerade

states, and vice-versa. If the expressíon for the average-energy-surface

(28)r elnrt¡ = þfg b,is examined, it can be seen thaË E(Rrt) is a sum of

tI,lo terms (r¿íËhin the nevr basis set) , one of rvhích comes from the three

gerade states ruhile the other comes from the three ungerade states. An

ínspection of the individual t.erms shows Ëhat the gerade conËríbution to

s(nrt) is necessaríly greaËeï than tv(lo*) where vClo*) ís rhe energy of

the (adíabatíc) ground state, while Ëhe ungerade contríbutíon is necessar-

i1y greater Ëhan %V(fo,r), Ëhe energy of the first (adiabatic) excited

state. The present predíction of the absolute minímum of the average

energy surface is therefore greater than anv of the dynamic energy sur-
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faces shovm in Fig" (3) of Ref , (28). From a quali-tative poínt of vier¡

Ëhís conclusi-on is quite imporËant; the calculation of Ref. (ZS¡ ímplíes

that Ëhere is no low-energy "adiabatic'r limiË even r^¡hen the ímpacË energy

is below thermal energÍ-es, whíle the equatíons díscussed here [Eq. (27)l

imply that a low-energy limit can be defíned, ín which the energy surface

is símp1y an average of Ëhe tv¡o lowest adiabatic energy surfaces, V(lor)

and y(lo ) " (Note that symmetry arguments of Ëhis type are very useful-u'

ín the general theory of resonant charge-exchange (58-60). This point

vrí11 be re-examined in Chapter IlI.)

Given the fact that conclusíons reached in one basis set can be

applied to other basis sets as we11, by transformation of Ëhe appropríate

equations, the discussion of detaíled-balancing can be carríed out vrithín

Ëhe diabatíc representatíon" It is convenient Ëo first convert the equat-

íons into an evolution matríx notation. Consider the column vector bí{nrt)

representíng a state at time t which ín the far past, at time tt, was the

i th eígenstate of an unperturbed atom. If a second column vector ¡j {nrt¡

ís defined as representíng a state v¡hích iníËía1-ly was the j lþ eigenstate,

then it is found that bí(Rrt) and bj(nrt) evolve independently in Ëime.

In general, if the basis set consists of n states, one can visuaLize n

unique ways of preparing the column vector b(nrt) initially, each of whích

leads to a unique fínal state" Consíder a square I'evolution matrix" U(trtt)
:

defíned such that the í th column of U(t,tr) represents a state l,þ-(n,t)J

iqhich r,ras ínitially the i th eigenstate of the system. The evoluËion

matrix conËains all of the ínformation needed to fo11ow the evolution of

any state in Ëirne, regardless of how that state !üas prepared. Because the
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columns of u(trtr) evolve independently, Eq. (10) can be re-r¡ritren as an

equaËíon for Ëhe evolutíon matrix:

'| 
-14 u(r,Ë') - -í I H u(t,rr) - U--f q(r,Ë') g (3t¡

dt dr

I^Iithín the diabatic representation Ëhis becomes:

d. u(r,Ë') - -i H(R) u(Ë,r,) Gz¡
dr

IË can readily be shown that Q(trtr) has the followíng propertíes within

the diabatic representation:

V(t',t') = I

!(t",t'¡ = u(Ë",t) u(trË')

g-1{t,t') = gt[r,t') = u(r',r) .

(33)

Consider a problem ín which Ëhe origín of the time axís ís defined

such that t = 0 aË the Ëurning point of the nuclear motíon. Iüith this

restríction a scaËËering matrix S r.^rill defined such that

g = 1im U(r r_r)
T+€

From Eq. (3:¡, therefore:

(34)

!" lim Il(t,0) U(0,-r)
T+@
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By comparing the equatíons of motion

and U-(0r-t) it can be shoum that

= uË (0, -r)

(and inítía1 conditions) of U(r,0)

( 3s)

( 36)

U(r r 0)

if (and only if) the classical trajectories R(t) for the íncomíng and

ouËgoing portíons of the collision are mirror ímages of each other; i.e.

if R(t) = A(-r). (See, for example, Eq. (26) of Ref. (6t¡.) Therefore,

S = lim u(t,0) uE (t r 0)
T+a

In practice, the origin of Ëhe tíme axís will not

point of the nuclear motion. Instead, Ëíme will be zero

That is, the S matrix is symmetric as r¿el1 as beíng unitarv. Since -S is

symmetric Ëhe transitíon probabílity for the s + B evenË will equal that

for the ß + s event. For Ëwo-body scaËteríng this symmeËry is observed

only when Ëhe potential energy surfaces for Ëhe incoming and ouËgoing

porËions of the collision are idenËical" Equation (36) is the desired

expression of detailed-balance. It is of some interest as a check on

computational precision (51) as well as being useful in formal manipul-

ations of the equations of motion. It must be noted that thís expression

of deËailed-balance has meaning only when the same nuclear traj ectory is

used for all electronic events í -> j, regardless of i and j. !trhen a more

sophisticated nuclear model ís developed (ChapËer III) the definitíon of

detaíled-balance must be appropríately revísed.

be

dL

at the turning

some point Ro
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long before the ínteraction region is reached. The effect of Ëhis change

ín the time axis is sirnply Ëo íntroduce addíËional phase factors ínto

!(Ë"rtr) without changíng the magniËudes of any transítion probabilíties.

Before an attempt is made to solve Eq. (10) or Eq. (31) in practíce,

ít is conveníent to introduce a modification in the defínition of the
->->states Õi(úrR) of Eq. (3). Normally¡ as R + -, the \, H, and p matrices

will become the identity, díagonal, and zero, respecËively. Because the

H matrix does not approach zero as R + * Ëhe phase of the coefficients

b.(Rrt) [or U.*(trt')] will noË be stationary at Large R, although theír._J -J r-

magnítudes will be constanË. For example, if

lim H(R)
R-+-

-E

where E is díagonal, then at Targe

where lb, (-) | is_J

b. (n, t) decreases_J

ally removed by a

(37)

(38)

is tantamount to using states of

transformed matrÍces and equatíons

ís seen that the phases of the

Þ, (n' t) --íF. , f
lb, (-) | e -=JJ -
-J

l{", (t)
-¡ |

constant. The time-dependence of the phase factor of

the efficiency of the calculation and can be analytic-

transformation W(t) [Eq. (I5) ], røhere

-iï'.¡;f
e<J"i-í

The inËroduction of thís
+ + -iI'..fthe type Õ . (r. n) " 

-=:: "
J-

of motion can be quickly

transformation

in Eq. (3). The

derívedn and it
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nevü coeffícients, b:(Rrt), are statiorrary at large R, while their magniË-

udes are unaffected by I¡I(t).
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ñ
S tueckelb erg-Landau-Z enet Theory

Since both of the electronic excítation calculations presented

here involve curve-crossíng (L 12) of two electroníc states ít ís conven-

íent to díscuss a fer,¡ of the ídeas associated with the Stueckelberg-

Landau-Zener (Sl,Z) theory of curve-crossing" The simplest example of

Ëhis phenomenon is an atomic collision in which the electroníc state can

be descríbed as a linear combínaËion of two atomic orbírals, whích may

or may not be on the same aLomíc centre. If the energies of the two

orbitals are accidentally degenerate at a particular internuclear dist-

ance R and if the off-diagonal couplíng ín a neíghbourhood of R-- is a
--- - -1ç '- X

non-zero, slowly varying, funcËion of Rn then it will be said that the

system displays a curve-crossíng. In general, the Ëwo states ¡¿hich become

degeneraËe at R* do not have to be atomic orbítals: all that ís required

is Ëhat they violate the t'non-crossing ru1e" (62). For the purposes of

a qualitatíve díscussion, states which violate the non-crossing rule will

be loosely termed "díabaËic" (36155), keeping in mínd that it is possíble

to defíne díabatic states quite precísely (32). It will normally be taken

for granted that the behaviour of Ëhe atomic orbital and diabatic hamil-

tonían matríces ís qualítatively similar, as descríbed above.

The curve-crossing problem is of f.aLr1-y general interesË as an

effícient mechanism for electron trarisfex and/or excitation during aËomíc

and molecular collisíons. It was oríginally discussed by Landau (63164)

and Zener (65). Zener rs treatmenË made use of the fact that the time-

dependent semÍclassícal equations of motion wíthin a tlnlo-staËe díabaËic
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representation can be reduced t,o the form of l^Ieberrs equation (66) :.Í.

the hamíltonian matrix elements are evaluated approximately. Both theoríes

assume Ëhat the difference beËween Ëhe two díagonal elements of the

diabaËic hamiltonirn, ë11(R) - H22(R), is a linear funcrion of R (aË

least wíËhin a sma11 regíon around R*) and that Ëhe off-díagonal coupling

Ht, ís constant. There is no need to assume that these restrictions are

satisfied at all R, buË they must be satísfied within the neÍghbourhood

in whích the tttransition'r occurs (see belovr). The probabíliLy of a non-

adiabatic transition during a single passage through the curve-crossíng

region ís then given by

P = exp(-2¡ Hi ^ /u ld(H, , - H.,.,) /dRl)- -r¿ 
--.1 I -¿¿

(3e)

where v is Ëhe radíal velocity at R = R* and the matrix elements are

evaluated aË R*. During a collísion Ëhe nuclei wíl1 pass through the

curve-crossing region tr,ríce. The Landau and Zener theoríes assume that

these tr¡ro evenËs are essentially índependenË; i.e. the probabilities for

the two evenËs can be calculated separately and multiplied together to

obtain a final transíËíon probability" (For example, the probabitiËy of

an ínelasËÍc event would be 2P(1 - P).) A more sophísticated treatment of

the problem lras developed by Stueckelberg (67) usíng "conneetíon formulae"

to relate the solution va1íd for R > R* to Èhat rshich is valid for *. R*"

This neËhod is remini-scent of Ëhe procedure sometimes used in single-

channel I^IKB theory to relate the I^IKB solutíon valid ín the classically

allowed regíon Ëo that valid in the classically forbidden region (see Èhe
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discussion on page 656 of Ref. (20)). stueckelberg's procedure has been

díscussed ín detaí1 by Delos and Thorson (61,68). It yields the following

expression for the final transition probability, @, for an Ínelastíc event:

P = 4P(1 - P) sir,26 (40)

where P is given by Ëhe Landau-Zener formula [Eq. (39) ] and þ introduces

the possíbility of rapid oscillations in @ r" r function of impacc energy

or impact parameter. (These v¡ill be ca11ed SËueckelberg oscillations.)

The exact definition of 0 depends to some exËent on the nature of the

nuclear model and wí1l be díscussed in more detail below.

As mentioned above, the origínal version of. sLZ Ëheory made use

of the ídea that the two passages of the nuclei Ëhrough the curve-cross-

ing region could be regarded as independent events. This wíl1 be true if

the off-dÍagonal coupling (in the adiabatic representation) is sharply

peaked about R* and íf the turning point of the nuclear motion, Ror is

sufficientLy f.ar away from Rx that the off-díagonal couplíng aË Ro ís

neglígib1e. More recent treatments of SLZ theory have somewhat relaxed

this restriction (69-7I), but it remaíns an essential parË of the SLZ

flñ{ 
^+r,,^tt ^ç +t^prt:Lure or tne curve-crossing mechanism. The assumptíon that the matríx

elements of the diabatic hamiltonían are línear ín R has also been mod-

ified to ínclude the possibility that F rry be an exponentía1 funetíon

of R (72-74). In addítion, Ëhe SLZ theory of elecËronic motion has been

discussed in connection vlith nuclear models rvhích are considerably more

sophisticaËed than those used in the original development of the theory
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(r8,7 5,7 6) .

For the purposes of this díscussion, tr.,¡o features of SLZ theory are

of special ínterest: 1) the concept of a fast transitíon, and 2) the behav-

Íour of the phase { in Eq. (40). Tt is clear that rvíthin the diabatic

representation the electroníc transition raill not appear to occur quiclcly,

because the off-diagonal coupling 812(n¡ is a non-zero (generalLy monotoníc)

function ruhich induces rrtransítíons" over a broad. range of R (see Section

C of this chapter). I',Iithin the adiabatic representatíon, hovrever, the

electroníc ,Ëransitíon r^rill appear to occur wjËhin a relatívely localized

regíon around \. (Note that the final, observable, transj-tion prohabÍlity

is the same in both cases.) This can be íllustrated by considering a tvro-

state diabatic hamiltonian H(R), defined such rhar 
"tt(**) 

= !22(\).
within the díabatíc representatíon the off-díagonal eoupling is gíven

Ay EIZ(R) = 821 (n¡ " It can be shovm (32) rhar rhe off-díagonal couplíng

in the adiabatic basis set is peaked about R = R*. The transformatíon,

I,,{(R), ínto the adiabaËic basís set musË sarisfy [Eq. (17)]:

+
I^I'I^I = 1

+ggI = gD (diagonal)

(41)

where I1^(R) is Ëhe adíabatic hamiltonían. The I^I(R) maËrix is therefore
-Ð

given by

/ cos cr -sÍn o
r^r(R) = |

\sin o cos o'

(42¡
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where

ran(2o) = 2!tz/(\:f1-Er) (43)

Tn the adiabatic basis set the off-diagonal couplíng is given by Ltt,
where P satisfies [Eq. (17)]:

I = I^tt(dI,,t/dR) (4+¡

rf ít is now assumed thaL H' and d(H, t - Ezz) /dR are constant r,rithin a

neighbourhood of R*r then ít ís easí1y shor¿n that Prr(R) has a Lorentz].an

line-shape, cenËred about R = Lo with a fu11-wídth-at-haLf-maxímum of

ôR* units and a peak heíght of 1/6R*, where

6Rx = I4Er2(Rx) /td(Hl t - Hzz) /dRlR=Rx I
(4s)

Therefore, as long as the 1ínear approxímatíon Ëo the maËrix elemenËs of

4(R) is va1id, the off-díagonal couplíng withín the adíabatic represenr-

aËion lsill be localized rvithín the curve-erossing region, r¿here the extent

of this regíon is gíven bl ôR*. (A more general díscussion of the shape of

F, "(R) 
in an adiabatic representatíon has been given by Oppenheímer (77),)

-I¿

Tf one considers a collision in whích the turníng point of the nuclear

/ o -do/dn=l
\ aolan o
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motion, Ro, ís less than R* - !ôR*r then \.ríthÍn the adiabaËic represent-

aËion the electronic rearrangement will seem to occur in two well defined

stages, one for each passage through Ëhe crossing point. The guantity 6R*

can be regarded as a defínition of the width of the 'rtransiËíon zonet'

about R-. (tlote thaË at hígh irnpact energies Ëhís definition may faílx
(73178179).) The collisíon process, as it ís viewed r¿ithín the adíabatic

representationo can therefore be broken up int,o segments. Beginning at

time tt in the far past, the system wÍ11 evolve adiabatically until the

point R* + %ôn* is reached (at time t, - e), aË vrhich tíme it wíl1 temp-

orarÍly evolve non-adíabatically unLil R = R* - %6R* (at tíme t, + e).

It will then Pvolve adiabatically (íf R . R* %0n*) until the second

curve-crossing region is reached on the outgoíng portion of the collision

(at tíme tr - e) and will experience a second non-adíabatic perturbaËion

ín the tíme-íntervaL (tr- ert2+ e)¡ after whích ít leaves the ínteract-

ion region and concludes its journey adiabatícal1y. The corresponding

evolution matríx can be written as

p(t"rt') = u(t", t2+e)u(t2*e,t2-e)rJ.(tz-e,tl+e )u(r1*e,r1-e)u(tr-e ,tr) (46)

where U(L,r*g, t.r-e) and U(t.,*e, t,-e) represent the evoluËion during non-¿¿rl
adiabatic portíons of the motion, and are Ëherefore non-diagonal in any

basís set. The other three evolution maËríces ín Eq. (46) represent adiab-

aËíc evolution and are díagonal withín the adiabatíc representatíon. Tf.

the transiËíons aË tI and t, occur sufficiently quíckly, Ëhen Eq - (46)

can wríËËen as (74):
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u(r" , t I ) = A(r" ,, z) lt A(r2, rl) T A(t1' t r )

where the

a typical

õ and T matrices are defined wÍthín

matríx is given by

(47)

an adíabatic basís set. and

(4s¡
E2

Ai5(t2't1) = urj exP(-í 
{.8::(*) 

dt)
_I

where E. . (R) is an adiabatíc energy surface. (the discrepancy between the_JJ

present definition of the A matrices and rhat of Ref. (74) t¡í]--L be disc_

ussed in Section C of Chapter III.) The T matríx represenrs non-adíabatíc

evolution and ís determined entirely by the diabatic matrices g(Rx) and

(dII/dR)- ^ , and the nuclear velocity at R = R_-. Equatíon (47) containsR=R^-' - x'
the assumoiron that thenucleai motionat time t, is a mirror Ímage of Ehe

motíon at time t1i i-.e" n{tr) = -å(tr). rnis r¿í11 noË always be srríctly

true (see ChaPter III) but it ís a good first approxímaËíon sínce the two

adiabatic surfaces, E1I(R) ar'd !zz(R), wí11 be quíte close to each oËher

at R = R* and Ëhe ambiguíty in n{n*) is therefore noË very great. rt ís

ínteresting to noËe thaË Eq. (47) may be sensible even if sLZ theory is

not valíd. The only major assunption incorporated in Eq. (47) ís that Ëhe

transiËion occurs quickly, regardless of whaË the mechanism for the Ërans-

ition is" Sínce T íc rrnr'f qrv i t- can be r¿ritten as (74) Z

nI-
(t-P)% 

"ia
-p4 "-tß

o4 ^ig
,<(1-P)' e

I
\

-to 
/

(4e)
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r^Ihere P is the probabílity of a non-adiabatic transition during a síngle

passage through the curve-crossing regíon. The phases o and s will be

called non-adiabaËíc phases. The fínal elastíc and ínelastíc transítion

amplitudes are Ëherefore given by

t" i (')n-n.\
u,., (Ë",r') = exp(-i @'., (n)dt) t (l-p)er-(zq'-n1/ + pe-í(2ß+n2) 1 *
-Il- ' ¿_-1 r t,

exp (-í ,/s,. I (n) at¡
z '-

L2 r4 t" í (cr.+R_¡1) _ e_i (cr+ß+¡2) , ,.!21(r",Ë') = P-'z(l-P)-' 
"*p 

(-i 
{L22(n)dt) 

f e-"*'r'-
t1

(s0)

tz exP (-i 
/åt t 

(R) dt) (st¡

where n = f E (R) dt, i = 1r2" Equations (50) and (51) are useful in.,í 
t, _íí

the discussion of multi-trajectory curve-crossing theoríes (15,54) where

the phase of Ir1(t"rtt) and rJrr(t"rtt) determínes the nuclear trajecËory.

The inelastíc transition probabÍlity obtaíned from Eq" (St¡ can be

wriËten as:

lu2t(t" ,t') 12 = 4p(1 - p) sir,2[o + ß + (nr-nr) /21 (52¡

whích has the form of Eq. (40), wírh ó = s * ß + (nZ-n)/2. Ir ís now

possible Ëo ídentífy Ëhe source of Stueckelberg oscíllations. The phase $,

which induces the oscillaËions, is composed of an adíabaËic contribution
t¿

given bv % !G.,., (R) - En..,(R))dt, and a "non-adiabaticrt phase shift rep-t, -r.l -¿¿
resented by o * ß" The adiabatic contríbution to the Stueckelberg oscí11-

atíon allows one to relaËe the frequency of Ëhe oscillation to Ëhe splít-

tíng beËween adíabatic energy surfaces in a \ray r,¡hich is strongly remín-

iscent of resonant charge-exchange Ëheory [see Eq. (13) of Ref. (36)].
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(tlote that the discussion presented here assumes that only one nuclear

trajectory ís found ruiLhin a partícular channel. If more than one nuclear

ÈrajecËory is used wiËhín one channel then the ínterpretation of the

adiabaËic contribution to the Stueckelberg phase changes somewhat (see

Ref. (54) and Sectíon C of Chapter III).) The non-adíabatic phase shift

has been díscussed by Child (73180) and Kotova (8) and is of interest

whenever a direct comparison between SLZ lulneoxy and the exact result is

aËtempted (81r82)" For the purposes of the present discussion it can be

taken to be L<tr (82).

Before concluding this section íË ís useful to discuss the behaviour

of the Landat-Zener result at very low and very high energies. At 1ow

energies the probabílity P of a non-adiabatic transition during a single

passage through the curve-crossíng approaches zeTo and therefore

lU--(t""Ër)12 * O ín Eq. (SZ¡. Thís type of behavíour will be called the'j21'- '' / |

adiabatic limit. At hígh energíes, however, r^re agaín find that

lU^,(t".tt)l- + 0 since P + 1 in this limit. The behaviour of tho qwqtem'-zr '

duríng a co11ísíon in whích P - I will be called díabatíc. In both the

adiabatic and diabatic limits the coll-isíon problem may be handled using

single-channel theory (keepíng in mind that the behaviour at hígh energies

may be complieaËed by the presence of a manifold of highly excited states).

The Ëheoretical interest in the diabatic representation (32t36r55) seems

to stem from the fact that some of the most ínteresting experímenËal

informatíon produced for systems such as He-He* and Ne-He* h"" b..r,

obtained in the high energy límit. The behavíour of the final transítion

probability as a function of impact parameter ís qualitatively different
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in the adíabatíc and diabatic lírnítst ¿.t low energies the "envelope",

4P(b)(i - P(b)), under whích Lhe final transition probabilítíes líe, ís

a monoLonically decreasing function of the ímpact parameter b, while aË

hÍ-gh energies this envelope displays a single peak near the threshold
-r-Jregion in whích Ro - R*. The H-Be" calculation of sectíon c of this

chapter is an example of the adiabatic limit (p < rò while the He*-Ne

calculation exhibits díabatíc behaviour (p > ,4).

Although the numerícal results presented in thís thesís do not

make explj-cit use of sLZ theory, the interpreËatíon suggested by it

is quite useful" For example, the fact that the off-diagonal couplíng

in the adiabatic representation ís peaked about R = ç helps one to

understand the behaviour of the coefficients in this representatíon

(see following Section). similarly, rhe behaviour of Ëhe phases ín Eqs"

(50) and (51) allows one to qualitatively raËionaLize Ëhe success of

multi-trajectory, eurve-crossing theoríes (Rer" $+¡ and chapter rrr).

+ The impact parameter, b, ís

of closesË approach of the tr¿o

oËher during the collísion. Tt

the system by the equation .Q, =

momentum"

Ëhat dístance whích vrould be the distance

atoms if Ëhey did not interact r¡¡ith each

ís related to the angular momentum, 9", of

bp, where p is the iniËial relative
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Collisions between H and Be-

+
The H-Be system was studied (30) ín order to obtaín some qual-

ítative undersËanding of the behaviour of the electrons during a curve-

crossing event. The Process of interest is asymmetríc charge-exchange

between Ëwo atoms:

+++
flflJe+Li+

+
Be'

This process l{as previously investígated by Bates, Johnston, and stewart

(83) using linear-trajectory (constant velocíty) ímpact parameter theory.

The present calculation ruas performed usíng Ëhe average-energy-surface

theory of Corrigall, Kuppers, and l^iallace (28). The nuclear trajectories

in thís theory are obtained from a potential energy surface of the form

Þtg ¡, which ís an average of the harniltonian mat,rix over Ëhe exÍsting

electronic state at arty time t. The trajectories therefore reflect at

least some of the detaíls of the electronic behavíour during the col1-

ision, although it ís not yet clear whether they do so "correctly'r. For

low-energy collísíons of the type considered here thís nuclear model is

ultimately unsatisfactory regardless of how accurately the electronic

motíon is evaluated, but ít represents a disËinct ímprovement uÞon linear-

trajeetory ímpact-parameËer theory"

The electroníc equaËions of motion used in thís calculation have

the form (28):
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- Ll¡+ (dN/dR) bl ( )J,,

According to the derivatíon of section A of thís chapËer, Eq. (53) is

noË the correct electroníc equatíon of moËíon. The results of this calc-

ulation are therefore not quantítatively reliable; however, they can be

expected to be qualíËatively reasonable. For a curve-crossing problem
1the quanËity n-'H ís the most ímportant term ín the equation of mot.ion

since ít contains the maËrix elements HI1(R) and 4rr(Ð vrhich become

degenerate at R = R*" The maín effect of the second term on the right

hand side of Eq. (SS¡ ís to ensure conservatíon of nomaLizatíon, in the

sense that 6f1¡ ¡ = 1. (Note that the equations used by Batesu Johnston,

and stewart (Ref. (83), denoted BJS) are also not comparible with rhe

dÍscussíon of Sectíon A of this chapter, sínce they use the trsymmetriz-

atíon proced.ure" descríbed by Green (49) ín r¿hích the matri* m-ln i"

replaced ¡v %tI-18.+ (N-19)tl. rne BJS equations therefore yíeld a mod-

ified normalizatíon conservation taw: bfþ = 1.) Because of the approx-

imate nature of the nuc.lear and electronic equatíons used here, no aËtempt

will be made to dravr quantitative conclusions from the H-Be# results:

instead, attenËion rui11 be focused on the qualitatíve behavíour of the

coefficients which describe the electronic sËaLe ín dífferent represenE-

ations.

The electronic moËíon is described rrithín the one-electron approx-

imatíon (84185). rt Ís assumed that two of the electrons are "passíve"

in the sense thaË they occupy the same atomíc orbiËal, Be(ls), through-

out the entire collision" Thís orbítal ís given by

lL 
- 

i

dr
-lN.Hb bdR

- -77
clt
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al-
Õu.( ls) = (zr /r)-4 "-2r3"

where z = 3.6875. The third electron is 'tactive" in the sense that it may

move from the H atom to the Be# core. The active electron is assumed to

be dístinguishable from the two passive electrons. The state of the active

elecËron ís represented as

v(ï,È, t) = hr (n, t) on(ts) + Þr{n, r) Õu"(2s)

H = -%v: - ! - t + 2 + v(R) (ss¡- tB" tH 'rz

where rB. "rd rH are electron-nuclear separatíons and trz í, an inter-

electron separation beËr,reen passive and actíve electrons. V(R) represenEs

(s4)

where 0"(1s) is a hydrogenic orbital rvith an ionization energy of 13.60 eV"

The Be(2s) orbital is given by (84):

ou"(2s) = N(l - cru.) .-YtB.

where N ís a normaLizatíon constant and c ensures orthogonalíty of OU.(ls)

and OU"(2s): c = (y + z)/3. fne parameter y is chosen to minímize the

energy of Be*. usíng integrals taburaËed by Moiseír,ritsch (86) it can be

shovm thaË the optÍmum value of y is 1,329, which yields an ionization

energy of 17.90 eV for the Be(2s) orbítal. The one-electron hamiltonian

operator ís gíven by
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the classical electrostatic interaction between Il* and Be#. (At large R,

V(R) - 2/R, w]njj-e at smal1 R, V(R) - 4/R,) In the evaluarion of rhe ham-

iltonían matríx, some two-electron (trøo-centre) integrals are encountered.

These can all be re-expressed in terms of one-electron, two-centre, integ-

rals using a method outlíned by Schiff (87, page 258). The remainíng one-

electron integrals have been tabulated by Coulson (BB). Appendix I of this

documenË contaíns the fína1 expressions for the matrix elements used ín

the calculatíon. The (40) potential energy surfaces Hl1(R) and Hrr(R)

cross at R* = 6.3 a.u. (3.3 Å) and the separation of the two adíabatic

surfaces at this point ís approxímately 0.025 a.u" (0.7 eV). The equations

of motion were integrated using the program discussed by Corrigall (see

Appendix IT of Ref. (52¡¡, T,rith appropríate modífications in the defin-

ítion of N and H (Appendix I of this document).

Numerical calculations r¡rere performed in two raËher distinct energy

ranges. One such set at high energy (re1aËive kínetic energy: 56.2 eY;

Ëotal kinetic energy z LO2'75 .v) , \¡ras carried out largely for purposes of

comparison wiËh the calculatíon of Bates, Johnston, and SËewart (83). The

ímpact parameters for Ëhese calculaËions T,rere so high that our nuclear

trajectoríes did not deviate very much from linearÍty and the electroníc

motion was quíte simple. The asymptotic transítíon probabilíËíes, plotted

as a function of impacË parameter, are shovTn ín Fig. 1, along with the

corresponding results of Bates, Johnston, and Ster¡art (83). The tv¡o seLs

of results are sufficiently sirnilar that Ëhere ís no point ín attempting

t.o atËribute any signífieance to the dífferences beËween Ëhem. The toËal

cross sections obtained from these probabilítíes are as follows:
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-t¡ l-gure r .

Electron exchange probabilíty as a function of impacË parameter. Total

initial kínetíc energy2 ro2'75 .v. solíd curve: presenË calculation.

Dashed curve: Bates, Johnston, and Stewart (Ref. 83).
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results ís Ëhe hístory of the collÍsion process as the system evolves

towards íts final state. This hísËory a11ows us to ínterpret the final

transition probability ín relatively physical terms. For example, if we

choose those impact parameters r g, for which the final exchange probab-

ility is a maximum and plot Ëhe exchange probabiliËy as a function of

Ëíme from Ëhe iniËíal to the fínal staËe, the results are as shown in

Fig. 2. Considering that the initial state ís H-Be#, one can see that

at p = 6.25 a.u. the active electron simply exchanges once and is cap-
-F-{-tured by the Be'' ion. At 0 = 5.25 a.u. the eleetron is fírst "captured"

bv Be#^ then rtre-capturedrr by H*, and finally exchanges once again. The

oËher graphsr at p = 4.5 a.u" and 4.0 a.u., can be interpreted in a

símilar manner. One can therefore inËerpret the results by ídentífying

each exchange peak in Fig. I wíth a given number of multiple electron

exchangeso as shoum in Fig. 2" Thís ínterpretaLion is a direct result

of the fact that an A0 basis set has been used in the calculation, sínce

only ín an AO basis set can we uniquely identífy a coefficient such as

,tbl(Rrt)1" with a charge density around a parËicular nucleus. In an adiab-

atíc basis set the history of the collísíon process shows itself ín quite

a dífferent $ray, as seen below"

In order Ëo demonstrate the flexibility of the present model (índep-

endenËly of íts "validíty") r¿e also performed some calculations for low-

energy head-on collísions. The exchange probabílities for these collisions

2¿) TA
o
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Figure 2 
"

Electron exchange probabí1iËy as a function of tíme through the inter_
actíon regíon. Relative kinetic energy: 56.2 eV. Dashed vertical línes
indícaËe times at which R = \. The ínteraction Ëíme is roughly equar

to the Ëime spent between the dashed lines.
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are shoÍ/n in Table I as a function of ímpact energy in the cenËre-of-

mass frame. The main feature whích can be seen ín Table I is a reasonably

r¿ell defíned threshold energy for electron exchange at about 2 - 3 eu

relative kínetic energy. The history of the exchange probability through-

out the collision is shown in Fig. 3 for various impact energíes. The

low-energy head-on collisions in Fig" 3 dísplay roughly the same type

of multíple electron exchange as did the high energy collisions. One

ínteresting feature of Fig" 3 ís thaË, durÍng the collísion' the AO

coeffícients can undergo a sígnificant amount of perturbation away from

their oríginal values without necessarily yielding a Latge final trans-

ition probability" For example, during the 1 eV collisíon in Fig. 3,

Ëhe charge distribution experiences a major shíft from the H atom Ëo

-¡-J-
the Be" atom during the incomíng portíon of the collision, so Ëhat one

might expect a large final exchange probabílity; however, what actually

occurs ís that this shíft in charge distríbution reverses iËself almost

entirely duríng the outgoing portion of the collision, so ËhaË the final

transiËíon probabilíty ís only 0.00f. One might say that the elecËronic

moLion during the incomíng portion of the collision was reversible, in

the sense that the final transiËíon probabí1ity ís very small. As the

impact energy is increased to 4 eV, hornrever, we find that the electroníc

motion duríng the outgoing portion of the collísion bears less and less

resemblance to the behaviour duríng the incoming portion. In thís case

Ëhe electronic behaviour during the fírst half of the co11ísíon is no

longer completely "reversíb1e" and we obtain a large final transition

probability. One can therefore decompose the behaviour of the A0 coeff-
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Table I

Asymptotíc exchange probabilities e(-) as a funcËíon of energy for

zero-impact-pararneter collisions.

Kinetíc energy
(ev)

Pl*)

1.0

)^

4,0

4"5

6.0

1^

8.0

on

0.001

0.034

0.2L4

0 .4s6

0. L97

0.010

O. 2BB

0. 503

0.660

0 .716

0. 758
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.b aqure J "

Electron exehange probability Ín terms of atomic states as a function

of ínternuclear distance for a variety of. zero-impact-parameter collísions.

The dashed curves represent the square of Ëhe Be(2s) coefficient in the

upper adiabatic state.
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ícients ínto tr¿o types of moËion: that r¿hich is reversible (and which

leads to no net transítíon probabiliËy) and that vrhích ís írreversible,

in the sense Ëhat ít does lead to a net transition probability. tr^Ie

antícipate that the reversible component of the electronj-c motíon is

related to the nature of Ëhe basís set (i.e. whether ít be AO or MO)

while the írreversíble eomponent ís independent of the naËure of Ëhe

basís set. To illustrate thís we define the adiabatic MOfs for thís

problem and consider the contribution of ÕU"(2"¡ to the upper molecular

orbital which leads to H * Be# as R + @" tr,Ie find that, as R decreases,

ÕU"(Zs) makes an íncreasingly strong contríbutíon to this M0" Therefore,

even if the system evolves adíabatically we will see a significant

(reversible) transfer of electron densiry from H(is) to Be(2s) during

the first half of the collision. The extent of thís reversible electron

transfer is gíven by the square of the Be(2s) coefficient in the upper

adíabatic staËe, and ís shovrn as a dashed 1íne ín Fig. 3. The difference

beËween the solid and dashed 1Ínes of Fíg. 3 ís a rough measure of the

"irreversíb1e" (ín this case non-adiabaËic) contributíon to the electroníc

motíon. A more preci-se measure is gíven by transformíng the coefficients

in the AO representaËion [Eq. (S+) I to their counterparts in the adíabatic

Tepresentation, using the equations of Section A of this chapter. The

resultíng transítion probabi-litíes are shornm ín Fig" 4. Figure 4 shows

that, if the electrons experience a non-adiabatíc perturbation during the

first half of the collision, then ít is unlikely that they will be able

Ëo find their way back to the sËaËe ín which they were originally located.

(Note that the final Ëransítion probabílities of Fig. 4 are identical to
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Figure 4.

Electron exchange probabí1iEy in terms of adiabatic states as a function

of internuclear distance for Ëhe same collisíons as shown in Fíg. 3.
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those of Fig. 3, even t.hough the electroníc behaviour inside the ínter-

acËion region (R < Rx) ís quite different.)

In Ëhe high energy límit the roles of the adiabatic and AO represenË-

aËions are, to some extent, interchanged. If the ímpact energy is suffic-

iently high, Lhen the coeffícients in the adíabaËic represenËation will

dísplay a large amount of I'reversíble" motíon during the collisíon, while

the A0 coeffíci-ents wíl1 not.

The maín feaËure of ínterest ín Fig. 4 is Ëhat the elecËronic trans-

íËions appear to occur withín two relatively LocaLized regíons of space

surrounding the poinË R = R*. This is in keeping with the discussíon of

the prevíous section. I^IÍthin the AO basis seË (Fig. 3) the electrons

undergo rearrangement throughout the entire course of the collisíon, not

just at R = R--. The two basÍs seËs used here yíeld raËher different pic--x
tures of the electronic behaviour during Ëhe collision. These two píctures

musË not be regarded as being mutually exclusive; they are, instead,

complementary views of Ëhe same process. Both pictures provide us with a

descríptíon of the evoluËion of an electroníc state V(?rÈrt) in time,
+->

where V(rrRrt) is inj-tía11y the O"(ls) orbítal. This electronic staËe is

the same regardless of which basis set is used to describe it (in fact,

Ëhe transformaËion procedure has expliciËly been defined in such a way

Ëhat Ëhe state V1ìrñrt¡ is unaffected by the transformatíon); however,

the appearance of the state Y(?rRrt), as it ís projected onto a parti-

cular basis seË, changes whenever the basís set is changed. Neither of

the above two pictures can be regarded as a complete descrípËíon,,of the

electroníc state, since a complete description would have to contaín
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information about the phases of the b.(Rrt) coefficients, as vrel1 as their

magnítudes. Because these two pictures describe the evolution of Ëhe same

state ín timen and since neither pícture is complete, \^re may sav that

they enhance each other instead of conflictíng wiËh each other. It must

be remembered that the electronic state VGrlrt) ís noË directly observ-

able when the tr,¡o atoms are interacting sËrongly r¿íËh each other. (Thís

is due partly to the fact that v(?rÈ,t) is changing rapídly in tírne.)

There are only trøo píeces of informaËion which are of dírect interesË

in the calculation of observable quantitíes: 1) Ëhe final value of the

b.(Rrt) coeffícients, and 2) the Ërajectory which the nucleí follow duríng

the collísíon. NeiËher of Ëhese Ëwo píeces of informaÉíon are affected by

the change of basis set which ís descríbed above, and therefore the díff-

erences between the above two píctures of the collisíon process do noË

affect the quantíties r¿hich are actually observed in practíce.

The potential energy surfaces for the low energy collisíons are

shown ín Fig. 5. The surfaces are given ¡V þfff b, as prevíously discussed

(28). Figure 5(a) refers to collisions ín which there ís a high exchange

probability; Fig" 5(b) refers Ëo collisions whích have lor+ exchange prob-

abilíËy. In and of Ëhemselves, Ëhese surfaces are of no particular interest

sínce Ëhe present nuclear model is not very good at low energies, but they

show ËhaË the quantity Þttt b is surprisingly well-behaved, considering the

complexiËy of rhe a.a;;;f Ëhe Ao coefficíenËs. The welr-behaved, non-

oscillaËory, nature of bttt b ís a definite asseË ín the study of more
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Figure 5.

Dynamíc poËential energy surfaces for a variety of zeto-impact-parameter

collisíons. Dashed curves represenË upper and lower adiabatic energy

levels. Fígure 5(a) portrays collisions wíËh hígh exchange probability.

Solid curves, Ëop to bottom: 4 eV and 9 eV, respecËívely. Fígure 5(b)

porËrays collisions wiËh small exchange probabitíty. solíd curves, Ëop

to bottom: 2 eY, 5 eV, and 10 eV, respectively.
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sophisticated nuclear models since, even when a more sophistícated force-

law is developed (Chapter III), the quantity ÞtII b- still represents an

ímportanË conLríbution to the energy surface.

The hígh and low energy collisíons discussed above are examples of

tvro extreme types of nuclear motion during a collísion: almost-línear

motion during high-ímpacË-parameËer (glancíng) collisions, and linear

motion during zero-impact-parameter (head-on) collisíons. The íntermed-

íate type of nuclear motíon was sËudied by performing col1isíons at a

relative kinetic energy of 4 eV with a wide range of ímpact parameters.

The results are shor,m in Fig. 6. The area under the curve in Fíg. 6(a)

represents the total cross section for electron transfer at 4 eVn which

r^rorks ouË to be 5na2^" (lt is encouragíng to note that the shape of the

curve in Fig. 6(a) i" "i*if"r to that which can be obtained from a fu1ly

quantum mechanícal calculation (10)") Figure 6(b) shor¿s Ëhe scattering

angle in the centre-of-mass frame as a funcËíon of ímpact parameter. The

nuclear trajectories for these collisions show the intermediate type of

behavíour, betvreen Ëhe ttglancíngtt and tthead-onrr extremes.

The numerical results shor,¡n above make ít clear that the present

model is capable of producing inËellígíble ínformatíon abouË elecËroníc

motion during a collisíon" ldhat is noË yet clear is the role of the

nucleí ín lor¿-energy collisions. The questíon whích must be answered is

whether a simple classical nuclear model such as that used above ís

adequate for the descríptíon of low-energy inelastic processes" In single-

channel scattering problems thís question ís not too difficult to ans!/er

since, íf Ëhe classícal nuclear model ís not good enough, Ëhen Ëhis inad-



-64-

Figure 6.

(a) Electron exchange probability rnultiplíed by the Ímpact paramerer as

a function of ímpact parameter. Relative kínetic energy 4 ev.

(b) Scatteríng angle of the nuclei ín the centre-of-mass frame as a

function of impact parameter.
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equacy wí1l ofËen show iËself quite dramatically as a singularíty in the

classical predíction of the observable (see, for example, rainbow scaËt-

ering' glory scattering, and metastable states (r3rB9-91)). rn a multi-

channel scattering problemn however, a classical nuclear model may be

inadequate even though the observable calculated usíng this model is a

well-behaved quanËíty. A few of the features of a "good" nuclear model

for low-energy collisions will Ëherefore be mentioned here, ín an antic-

ipaËíon of the results presented ín Ëhe next tr^ro chapters:

1) It should be possible to show how the semiclassical equatíons

of motion are related to the corresponding quanËum mechanical eq.uations.

In the ímpact-parameter, eíkonal, and average-energy-surface theoríes it
j-s assumed Ëhat the nuclear trajecËory for the c! -> o, event ís the same

as that for Ëhe cr + ß event (unless these ttro channels can be de-coupled

usíng symneËry arguments). The relationship between this type of semí-

cl-assícal theory and the fu11y quantal theory has been discussed by

BaËes and Holt (027 " They conclude that the relationship is a simple

one only if the impacË energy ís so high Ëhat the differences berrveen

the varíous possible nuclear Ërajectories, corresponding to different

electronic eigenstates, can be ignored. For the processes considered here

this type of nuclear model wí1l therefore be unintelligíb1e in the sense

that the relatíonship between the semíclassícal and quantal equations

cannot be clearly defined.

2) For Ëhe cx + ß event one would expect the nucrei to move along

the cr th eigensurface before the collision takes place, and the ß th

eigensurface after the collisÍon ís oveï. That is, if the elecËrons lose
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the energY Eoo - F drrrino tha sgllision, then the nuclei should gaín------, =ús -(}0 ---*.'ö

the same amount. Tn general, the nuclei wÍll satísfy thís conditíon only

íf they obey boundary-value equations of some type, \,rhere the boundary

conditíons are eíther spatial or temporal.

3) A good nuclear model should satisfy the detailed-balancing

requirement. However, since the nuclear motíon for the a + ß and g + ¡x

events wí11 not normally be the same, it liill be necess ary Lo revise the

original definiËion [Eq. (36)] of detailed-balance. The revísed definitíon

[for example, Eq. (3.11) of Ref. (15)] musË ínclude a sËaËement about the

relaËíonshíp beÈrreen the nuclear trajectories (as well as the electronic

transition probabílitíes) for Ëhe q -+ ß and ß + or everits. This statement

imposes a raËher stringent condítion on arry low-energy semíclassical

theory. It also provídes us i¿iËh a good test of thetrusefulnesst'of a

particular theorye since there wíl1 not normally be any poinË ín com-

paríng the semíclassical and quantum mechanícal predictíons if ít is

not satisfíed.

4) At sufficiently low energies one \,rould expect a good semi-

classícal theory Ëo recognize tlne existence of energetically forbidden

events (which will be called closed channels). There are situations in

which the presence of closed channels wíl1 affect the hehavíour of the

system ín the open (energeËícally allowed) channels (93 194). If these

channels are included in the basís set of a multichannel semiclassícal

collision theory (as they should be) o and if Ëhe theory does not recog-

nize the exisËence of energetically forbidden events, then it will

predicË norr-zero transitíon probabí1ítíes for evenËs which are knornm
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to be forbidden. More specifically, such a theory will not be able to

describe Ëhe threshold behaviour in a partícular channel just after it

becomes energetíca11y allowed.

The nuclear model used in this chapter does not satisfy these four

"requírements". In Chapter TII a more sophistícated mod.el r,¡ill therefore

be developed, and applíed to a problem for which the average-energy-

surface theory ís inadequate.
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CHAPTER III. ELECTRONIC EXCITATION: BOI]NDARY-VA],UE THEORIES

A. Derívatíon of nuclear model

In this section a famílíaríty with Ref. (15) and pages 6B-7L of.

Ref. (24) wiIL be assumed. The nuclear model discussed here is designed

to overcome some of Ëhe shortcomings of ímpact-parameter and eíkonal

theories (Lr2r59), with regard to whích the statement has been made (Lz):

"There remains a general collisíon problem whích has not yet been satis-

factorily solved by either treatment: the problem of how to carry out

calculatíons if the classical trajectories in the inítial and final

states differ markedly." The qualitative díscussion of the presenË

nuclear model wí11 be posËponed until later.

For the sake of simplicity, consider a one-dímensional scatt-

ering problem in vrhich the nuclei can ínitially and fínally be regarded

as point particles, whíle the electrons (or the víbraËional degree of

freedom) are treated quantum mechanícaLLy at all times. In time-depend-

ent quantum mechanícs this problem is charactexLzed by a reduced Feyn-

man propagator (75,24) z

The quantíty Kgo(x"t"rxttt) is a quantrim mechanical transition amplítude

that the state defíned at tî (tt * --) nil1 lead to the state defined at

Ë" (t" + *¡. The staËe at t? ís gíven by the relatíve nuclear posítion xr

and the elecËronic state cx. At ttr it is defined analogously. A cenËre-of-

mass reference frame will be used throughout. (A general discussion of

xttttt
Kuo(x"t",x't', 

;,r{.9ßo(.",.') 
exp{iso[x(r)l] 9x(r) (so)
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the reduced propagator, in Lhe context of formal scatteríng theory, has

aLready been given (15).)

The path inËegral in Eq. (56) represenËs a suflrmation over all con-

ceivable nuclear paths {x(t)} which have the end-points (xrot') and

(x"nt"), wíth the evolution maËrix U(t"rtr) beíng evaluated exactly f.or

every Índivídual path, usíng the methods of Chapter II. The functional

so[x(t) J is given by

ttt
s-tx(r)l = lr^ir'aro-

tl
(st¡

LtriËhín the diabatic representatíon, U(trtr) satisfies Eq. (32). (The

gånetaLizatíon to arbiËrary basis seËs ís carried out most sirnply by derív-

íng the propertíes of the nuclear model in the diabatic represenËation,

and then transformíng the final results, if desired.) Inlhen evaluaËíng

the response of U(t"rËr) to a change ín the nucleax trajectory it will

be conveníent to use the following representation of U(ttrrtt):

N

IJ(t",t') = 1im ]ftl-íen(xr)J (ss¡
N+æ j=0 J

where x. = x(t.), Ne = t" - ttr and to (Ëm) equals tr (t"). Ir,le re-express

Eq. (56) in the form

xttttt
Kgo(x"t",x't', 

;,.i 
lußcI(t"nt') I exp(ió) exp{íso[x(t) ]]"â"(t) (59)

r¡here 0 = Im ln U'o(t"rtt). In a semiclassical theory we wish to make
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use of the fact that some paths {x(t)} may be more important than others.

The integrand of Eq. (59) is híghly oscillaËory, especially íf we consider

the limit as fi + 0, whích ís the usual way of approaching Ëhe classical

lirnit of quantum mechanics (see Sectíon 2-3 of Ref. (24) ). i{e therefore

anticipate Ëhat some nuclear paths r¿í11 not be very ímportanË, in the

sense thaË they will be surrounded by neighbourhoods of destructive

inËerference between paËhs. The paths which are most ímportant are Èhose

v¡hích are surrounded by neíghbourhoods of constructive interference. If

r¡re can define a path (or a finite set of paths) whose phase, so[x(t) ] +

0, is statíonary røíEh respect to first-order varíatíons ín x(t), then íË

ís clear Ëhat this paËh (which wíll be called classical), together viith

a small neighbourhood surrounding ít, wíll represent an important con-

tributíon to the path íntegral.

The semiclassical equations of motion will therefore be derived

using the method of stationary phase (220 page 27), w]njeh is a specíal

kind of (second-order) asympËoËic expansion. Two disËinct problems are

encountered: i) deËermination of rrhích trajectories are mosË ímportant,

and 2) evaluatÍon of Ëhe contributions of the neighbourhoods surrounding

each "imporËantfr trajectory. rt will be assumed here that only one Ëraj-

ectory ís important withj-n each channel, sínce the generaLízatíon to

many trajecËories is noË very díffícult if Ëhey are "well separatedrt.

lnle therefore consÍder a second-order Volterra expansion (95, pages 33-34)

of Q abouË the "classícalrrpath given by {x(t)}, where the classical path

satisfies a stationary-phase constraint analogous to the Principle of

Least Actíon used in single-channel problems Qe¡ " The phase of the integ-
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Kgo(x"t",x't', 

;,.i 
lußcI(t"nt') I exp(ió) exp{íso[x(t) ]]"â"(t) (59)

r¡here 0 = Im ln U'o(t"rtt). In a semiclassical theory we wish to make
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rand of Eq. (59) is given by So[x(t)] + Im ln Uro(r",r'). If rhís phase

is extremízed (96, page 32) wittr respect to first-order varíatíons in

Ëhe nuclear path [using Eqs. (Sl¡ and (Se¡1, rhe following equation of

motion j-s obtained after some manipulation:

rn x(t)
( 60)

E,

r
(

î
g

t

t) lE(x)pr(r)
U^^. (ttt,

-Re
fFr'"'L-

Ir') 
|

JÉg

with x(tt) = xt, E(t") = xrr. This result is comparable Ëo that obtained

by Pechukas [Eq. (3.3) of Ref. (i5)], after allowíng for dífferences ín

notaLion. Tt is a force law governing (classical) nuclear motíon for a

collisíon in rr¡hich the electrons are prepared in state c and observed

in state ß. (Note that the force law is non-causal in the sense that ít

recognízes future electronic and nuclear staËes before they ín fact occur.)

I¡le novr ignore varíations in lp*o{tt'rtt) | as the path varíes about the

classícal path {f(r)}, and facror lV.ål(r"rr')l our of rhe parh ínregral

in Eq" (59), where lgÎ]Ct",t')I is evaluared atong rhe parh {x(r)}. rne
-[Jcl

phase $ is approximated by:

ó - rm rn u[](t",r,) * ó(i)tr(.)l + ó(')tr(.)l (6i¡

where 6(1)ty{r)l (and

x(t) - x(t). From the

rhar þ(t)tr(.)l wíll

So[x(t) + y(t)]. the

ót"[y(t)]) are línear (and quadratic)

definitíon of 1(t) in Eq. (60) r¡re can

cancel wíth a term linear ín y(t) whictr

semiclassical approxímation Ëo the path

in y(t) =

easily shor,r

comes from

íntegral ín
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Eq. (59) is now given by

¡1
Kl'(xttttt.xttt)

Rd

Ì,ühere K(0Ë" ,0t t ) ís

- ,rc1/ ått + | \= !ã;(t",Ë') exp{iso[l(t)]] K(0t",0t')

the ttnormal-izíng integraltt :

(62)

K(0t"r0tt) tv (t)o- I + i4 
(2) rv(r) I ] þvG) ( 63)

Equation (62) ís a semiclassical transítion ampl-itude Ias opposed to

the quantum mechanical amplítude given in Eq. (56) I for an event in

which the inítial and fínal nuclear and electronic states are knor^rn.

IË is composed of three partsr g::(t"rt') is the electronic transition

amplitude, evaluated usíng a classical nuclear Ërajectory; exp{iSo[1(t)]]

ís the contribution due to the síngle classícal nuclear trajectory, and

has a magnítude of one; K(Ot"r0tt) conËains the contríbutions of nuclear

paËhs within a smal1 neighbourhood of the classieal path. irle noËe that

the semiclassical approximation, as defined here, consísts of ignoring

aLL varíations in the magnitude of the íntegrand of Eq. (59) (and takíng

account of the phases only to second order) as the path varies about the

classical path. (It ís perhaps worthwhile noting thaË K(0t"r0tr) is

actually a functional of 1(t), although the notatíon does not shov¡ this

dependence (95, pages 33-34).)

The problem ís novr one of calculating K(Ot"rOtt). I'Ie assume that

the path {f(t) } ís knovm and concentrate instead on the independenË var-
(r\

iable y(t). 0'-'[y(t)J is expressible as (95):

Qt"
= I ovn{iq

0tr
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where the time interval (t" - tr) has been broken up into N steps of

length e (wiËh N arbítrarily large), and where U(t"rtt) is given by Eq.

(SA¡. It ís convenient to distínguísh three cases in Eq. (64), namely

j . i, j = i, and j > í, in order Ëo avoíd confusion in the time-ordering

of operators. After some manipul_ation ure obËain

ö(2) tv(.) I B(0t"rott) ( 6s)

where g(Ot",Ott) is a special case of the functional

g(ytr0tr) -,
r[]l"r vG¡z

ufl 1t" , tt ¡

E

- '.i Lm I o.s

tr
I

tr
dr

F^ (s,r) v(s) v(r)

(66)

NN
'4L I a â []mrn!,^,(r",r')ly.,y,

í=1 j=l axí 41. 's 
r J

"c1r-r, -,tj1ßott ¡L )

Igo(t,s) v(s) v(r)

ó(2) t"(.) I (64)

t
ne/ds

tr

- lftr
t

Idr
ò

lzllløII

E

JqS
tr

ftll I
ll.{tl

^1Ul-(trr,Ët)

-+- 
"4 | fn

The notation g(yt,Ot') implíes that the path {y(s) } fras endpoínts y(t) = y,

y(t') = 0, The F matríces are given by:

¡'Í1) (") v(")
ds --Pq 

-

u!1qt",t'¡
-lJ cl
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T(t) {.)

,(t) (.)

!"t(r", r) ðE(x)u"l(t, t')
aÎ(t)

!"t (.", t) a2E(x)u"1(r, t' )
ðE( E)z

!"t(.", s) ôE(x)!c1(", r¡
^- / \dx\sJ

aE(x)ucr(r,t') s>t.

(6t¡

F(s, t)
dx(rJ

The definition ot 6Q)ty(t)J in nq. (65) is ro be compared wírh Eq. (3.5)

of Ref" (i5).

There are túio distinct types of conrríbutions to 6(2)l-y(t)1. rfre

first type is contaíned r,¡iËhín a síngle integral in Eq. (66), and has been

taken account of in the previous normaLizatíon of this path íntegraf (15) 
"

This type of term has a f.aírLy well defíned single-channel analogue (14).

The second type is due to double integrals in Eq. (66), and has no síngle-

channel analogue. (We are not ar^rare of any previous attempts to take exact

account of these doubl-e integral terms.) It represents coupling betrveen

two first-order deviaËions from classical motíon, occurring at different

times¡ and is a reflectíon of Ëhe non-causal naËure of the theory. ThÍs

type of couplíng is due to Ëhe fact that the poËenËial energy which con-

trols the nuclear motion cannot be expressed in the form v(*rt), but must

be regarded as a functíonal of Ëhe entire path {f(s) }. The presence of

such coupling terms in a closely related problem has been noËed by Feyn-

man, and the remarks made at the end of Sectíon 3-10 of Ref. (24) apply

here. In parËicular, \"re noËe that it is not possible to define a I^IKB-

type T'rave function for the Ëranslational moËion of the nucleí, and that
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r¡/e are therefore quite unable to observe thettclassical naturertof the

nuclei during the course of the collísíon. It should, hovever, be possible

Ëo define this type of wave funcËion long before, oï long aftero the

collísion if the net effect of the non-causal Èerms is constant in these

regíons.

Despite the conceptual diffículties associated with the double

íntegral contríbuËíons, ít is possible Ëo evaluate Êhe normalízing ínteg-

ra1 exact.ly in practice. one possible approach would be to try to find

a change of variable from y(t) to z(r) such Ëhat the definiËíon of
(9\

þ'"'lz(r)l in terms of zG) would conËain only single integrals. The

relatíonshíp between z(r) and y(t) would have to be of the type:

ttt
z(r) = [ nþ,t) y(t) dr

tt

In this way the non-causal contributíons rvould be temporarily hidden

wíthin the definition oÍ z(t) and the treatment of rhem could be post-

poned untíl later ín the derivatíon. An approach simílar to thís has

been used by Friedríchs and Shapíro (97, page T-18) o and is probably

more amenable to rigor than our approach. lnle use a method similar Ëo

ËhaË of Pechukas (Appendix of Ref. (i4)).

consíder the quantity K(0Ër0t'), satisfying the consËraint that

K(Otu0tr) + K(Ot"r0tt) as t + t'r. K(Otr0t') ís not uniquely specified

by Ëhís constraint and vre arbiËrarily choose a definition which yields

the simplest possíble dependence on t. Define K(0t,0t') as Ëhe lirnit
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asy+0of

\7r
K(yrr0r') = / e*p{is^(yt,0r') + ig(yr,0r')}þvG)

0tf

where g(ytr0tr) is defined by Eq. (66), and where

S lr¡t fìt r I-ot' -'"" / my cr

u[] ( r", r' )

c l' (o r) z(r)J-P^ r" ¡ -
Tñ I .1v v-

ri ,rCl¡*rr ¡r1
\u ,e I_Kru

t
t1=t4

L

( 6e¡

(6e)

trnle are ínterested in the time-dependence of K(OtrOtt), but it is conven-

ienË to first consider the deJ,endence of K(yt,Ott) on y. To determine

this dependence we consider the particular path r¿hích makes the phase

of the integrand of Eq" (04¡ stationary wíth respect to first-order

variations in the paËh. This path (denoted by {y(") }) will move berween

the space-tíme points (ortt) and (yrt), and can be shovm Ëo satísfy the

integro-dif f erentíal equatíon

* ii(") = - rtg(s) l tf < s < t (7 0)

where

f Iz(s) ] =
rÍ2) r"l I

I.l

l
z(s)t-

I

I
It-

I

L

Re

+

(conËinued on nexË page)
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FUo(r,s) z(r)

ÌTL¿rfrf l- f \
-:R^t- ,- /

ve

(7 r¡

Im
¡')'/ (") ¡áj) c'l ,c'l

ufij{t",t')ufil {t", t' )

t
l¿,

tr

Because K(yËr0tt) has an I'action" which ís quadratic in y(s) we can

perform an exact quadratic expansíon of K(ytr0t') about the path {v-(")}
in terms of Ëhe varíable n(s) = l(s) _ 1(s) ro obrain

K(yt,otr) = K(ot,or') exp(io) (7 2)

whereU=So(ytr0tt)+

in Eqs. (66) and (69).

n(s), but ís idenËical

y(t) + 0. Furthernore,

Because 0 is evaluated

g(ytrOt'), and 0 is evaluared using rhe parh {y(")}
In Eq. (72), K(Orr0rt) is defined using rhe varíable

to K(0t,0r') defined as Ëhe limír of Eq. (6a¡ as

K(Otr0tr) has no dependence on rhe parh {V(")}.
along a path of statíonary phase, vle have

âo/ây(t) = m ì7lt\"' J \'/

The quantity a20/ày2(t) is also of Ínreresr and can be re-expressed as

a2o/ay2G) = md"lnu(t)
dr

(7 3)

(7 4)

where u(r) = tay(r) /aiG')l_,_,,,y(r') and vrhere u(t) is a solution of the
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equation

(7 s)

which is solved between the times tr and to wíth f[u(s)J given by Eq. (7I)

and wíth u(Ë') = 0, ù(tt) = 1. i'Ie note that u(t) does not depend on Ëhe

path {}(s) } and that 0 ís therefore a quadratíc function of the endpoint

y(t). I^ie consíder a Taylor SerÍes expansion of 0 abour the poínt y(t) = O

and noËe that it can be Ëruncated to second order without introducing any

error. fn order Ëo determíne the zeroËh-order and first-order coefficients

ín the expansíon it is necessary to find the path {y(") } between the

poínts (0rt') and (ort¡. A solution of the equatíon of motion for y(s),

subject. to these endpoint constrainËs, is the path g(s) = 0 for t > s > tr.

The tractionrr developed along thís path and the momentum my(t) are both

zero. Therefore the first tTi'Io terms of the expansion do noË contribute,

and rve find

= 1.<m (7 6)
¡-ì,
I 
g_r" u(t) I y'
Ldr I

on

is

t\

AE

The dependence of K(ytr0t

Given this resulË,

K(0t;0rf ):

y is therefore knovrn exactly.

norv possíble to relaËe K(0, t+e;0t t ) and

zt
/ exptis^(0,Ë+e;0rt) + íg(0,r*e;0r')låv(") (77)

0tr
= Ik
-æA

K(0rt+e;ot')
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where 6 = (Zrielm)z [see nef. (24)]. From Eq. (69) we find

The relationshíp between g(0rt+e;0t') and g(ztr0t') is not as simple as

Eq. (78), because the diffeTence of these tÌ4ro quantitíes ís Ítself a

funcËional of Ëhe path {y(s)} between the poinrs (0rr') and (z,t). Hovr-

ever, ít is possible to show Ëhat

g(0,t+e;0t') g (zt, 0Ër) + ezh[y(s) ] (7 e)

where hty(s)l is a línear functional of the path {y(s)}. Beeause rhe

second term in Eq. (79) is of order e, one míght expect ít to contribute

only negligíbly. Inle substítuËe Eqs. (ZS¡ and (79) ínro Eq. (77) and make

use of the defínítion of K(zrrOrt) ín Eq. (6S¡, ro obËain

So(0,t+€;0Lr)

K(0,t+e;ot')

K(0, Ë+e; 0Ë')

so(ztrot') + *"2/2,

I txGr,or') + ezÃþ,r)l exp (r^r2/zr)

( zs¡

( B0)

(79). Usíng Eqs.

, and integratíng

dz
-i-
l\

r,rhere ñ(zrt¡ ís the leadíng rerm d.ue to hiy(s)J in nq.

(72) and (76) to specify the z-dependence of K(zt,Orr)

over z, we obËaín

K(or, or') 
[r 

+

thi-s becomes

ed ln
ã"t ",.,] 

-'

In Ëhe limít as e + 0

+ o(r3/") ( 81)
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Éj(ot, ot')
dt

- % x(ot, or') ln u(t) (82)

and integraËion yields

K(0r, 0r r 
)

-,C u '(t) ( B3)

where C is a constant. The expression obtained here for K(OtrOtt) is

comparable to Eq. (a+¡ of Ref. (14), except thaË ín our case u(t) is

determined by an integro-dífferential equation [Eq. (75) ] ínsËead of

an inítial-value differential equation.

we now consíder the limit as Ë + trt. rn this 1imít we find that

K(Ot"r0t') is derermined by Iay(r") /aiG')]-r_,r. Sínce rhis quanËiry- y(E'l
is known Ëo be independent of the path {y(t)}, we anticipate that it may

be uniquely determined by Ëhe path {1(t)}. rn particular, it can be

shovrn thaË

d
dr

/a=(t"l \
la*(t')l_\ . , F(r')

The left hand síde of

wíth respect to *(tt)

motion for [ã*(r) /aX(t

U(Ërtf), and U(t"rËt)

for example:

/ay(t"l'¡
\nyr. ') /u,1¡,¡

(84)

Eq. (84) is obtaíned by dífferentíatíng Eq. (60)

and deriving an integro-dífferentíal equatíon of

') J¡¡r, 
¡ , takíng accounr of the fact that U.(t", t) ,

[as well as âH(x)/af(¡¡] are all functions of f(.');
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A comparison of the resulting equatíon for [â1(t")/aÎ(t')]-,.,. withx(c')
Eq. (75) wíll yíeld Ëhe equalíËy in Eq. (84). We rherefore fínd thar

(86)

where the proportionality constant ís determíned by the free-partícle

limit, and where the phase may undergo discontinuous changes at Ëurning

points of the nuclear motíon (14). For a scattering problem thís result

can be revrritten as (14)

(87)

r,rhere tttis a tíme just afËer the scattering has occurred, and tt is a

tíme in the far past. InliËh t" and tr defíned ín this way ít can be seen

thaË the parËial derivatíve in Eq. (87) is given by Ëhe ratio of the

final momentum over the ínitíal momentum.

A generalízatíon to three dimensions ís also possible (I4), in

which case the partía1 derívatÍve ín Eq. (87) becomes a Jacobían deter-

mínant of a final positíon with respecË to an ínítial position. The

expression for K(0t"r0tt) ín a three dimensional problem will therefore

contaín Ëhe quanËíËy da/do, whích yíelds the classíca1 expression for

the differential cross section.

K(0r",0r') = 
ltzrt(r'r-Ër)[a=1t"¡/ax(t')]i(.,r]'
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The form of the result obtained here for the normaLizatíon constant

[sq. (87)] ís identical to that obtained ín Eq. (3.9) of Ref. (15) in the

sense that both normaLizations are determined by the response of the end-

poinË of a classícal trajectory to a change in the iniËial position, but

the way in whích this response is calculated ín practice in the tv¡o cases

is quite dífferent. To evaluate the normalization constant derived by

Pechukas (15) one must perform a síngle traJectory calculatíon with a

particular set of initial condítíons, parameterize the resulting energy

surface to have the form V(*rt), and subsequentlv constraín the energy

surface to ret.ain this form as the response of the trajectory to a change

ín the inítial conditions is evaluated" To evaluate our result for the

normalízat.ion r¿e r,¡ould perform two entíre1y independent classical Ëraj-

ectory calculatíons, r,rith slightly dÍfferent initía1 condítions, and the

partial derivatíve which is requíred would be evaluated numerícally usíng

these two Ërajectoríes. In thís case it ís clear that no constraints are

beíng ímposed on the "response" of the energy surface to a change in

initial conditíons. The difference between these two methods of deter-

míníng the normaLization is due precíse1y to the presence of double

integrals in the expressíon for ó(2)tv(a)l ín Eq. (65). To some exrenr,

Ëhis result has been antícipated

íng Eq. (3.9) of Ref. (i5)1, but

ivation of it.

Pechukas Isee the paragraph follorv-

are not avtare of anv previous der-

It ís of some interest to consider sítuations in whích the cwo

definitions of the normalizatíon yíe1d different numerical results. To

do thís, it is necessary to consider a three dimensíonal problem sínce

by

T¡7e
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Ëhe normaLLzatíon for a one dimensional problem is determined entirely

by the long-range behaviour of the energy surface and rvill therefore be

the same regardless of whích definítion ís used. In a three dimensional

calculatíon vre fínd that K(0tr'rOË') is related ro da/do = sinO dO/b db.

The quantity d0/db is of particular interest, since the two procedures

described above for the calculation of this type of derivative will

yield different ansT^Iers" The acËual energy surface for the collisíon

can be put into the form v^ (R-rtrErb), where E and b are the totei ímneer
ßcl'' '-7'-"

energy and impact paramet,er, respectively. If this energy surface j-s used

to evaluate the quantity de/aA, then we will not obËain the same result

as \^7e would íf Èhe energy surface vrere constraíned to have the form V'o(nrt)

whí1e d0/db t¡as evaluated" The difference between these tvro methods of

evaluating dA/do will be due Ëo the dependence of the energy surface on

the impact parameter b. (For an example of a síËuation in which this dep-

endence ís raËher pronounced, see Figure B.)

The ímportance of the normalizíng íntegral K(Ott'r0tt) lies in the

fact that ít contains the expression for the dífferential cross section

in a three dímensional scaËtering problem. Usíng the arguments of formal

scatËeríng theory, and the value of K(Ot"r0tt) given by Eq. (87), iË can

be shown (15) thaË the differential cross sectíon for the o¿ + ß event Ís

gíven by

b db lu^ (t",Ë,)|2
ffie-E- -Þc'

r¿here b and 0 are the impact parameËer and scattering angle, respectively,
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and \^Ihere it must be remembered that no constraínts are ímposed on the

potenËial energy surface whíle de / db is evaluated. The interpretation

of this expression has been given by pechukas (15): "The cross section

for scattering in a given direction and r¿ith a gíven quantum Ëransition

is simply the classical cross section for scattering of the atoms in
that direction times the probability for the quantum transítÍon"" This

compleËes the formal aspect of the boundary-value nuclear mode1. Applíc-

ations wíll be discussed below.
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R Collísíons betr¿een Het and Ne

The He'-Ne system is a good test of the usefulness of Ëhe boundary-

value theory described above since iË dísp1-ays nevr qualitative features

which are experÍmentally observable, and whích cannot be understood ín
terms of an inítía1-va1ue nuclear model. Experímental information about

this system has been produced by Aberth and Lorents (gg) and has been

given an extensíve theoretícal analysis (5-9). The present calculation

is an atËempt to supplement the existing ínterpretatíon of some of this
information. hle present the results of elastic and inelastíc scattering

-Lof He' off Ne, at an impaet energy of 70"9 ev, usíng a trnro-state elec-
tronic basis set together with a classical nuclear mode1. The ímpact

energy is sufficíently low so that the exact nature of the nuclear model

is quite important for both elastic and inelastíc processes. This there-
fore allows one to critícally test the value of the nuclear model used

here even though the comparison with experimental resurËs is onry a qual-

ítatíve one.

The main experimental feaËure in which r^re are inËerested ís a peït-
urbation (99) ín the elastíc scatËering dífferential cross section which

has been observed for He+-Ne, as v¡ell as for other systems. rt has been

associated with the onset of inelastic processes due to a curve-crossing

of diabatic energy surfaces. A number of theoreËícal discussions of this
perturbation have already been gíverL (54r91r100-102). They have been

successful in qualitatively explaining the fact that the perturbation

is localized in the threshold regíon where Ëhe classical Ëurníng point
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is close to the point at which the energy leve1s cross. Hol^lever, they

suffer from the fact that the ínterpretatíon is based on a Stueckelberg-

Landau-Zener (St Z) model of electroníc behavÍour. The present calculation

ís an attempt to find out v¡heËher the same interpretation is obtaÍned

when SLZ theory is noË appealed to. In the course of the calculation ít

was found that the precise nature of Ëhe nuclear model vlas crucial ín

determiníng the form of Ëhis perturbation, and therefore the Ëheory

presented here concenËrates only on the nuclear motíon, assuming that

the electronic interactíons are knovm in some sense" The nuclear model

used here was developed by Pechukas (15) and has been díscussed ín the

prevíous sectíon. The classíca1 equations are retrieved by performíng a

statíonary-phase approximatíon to a reduced Feynman propagator IEq. (56)].

As a result, one obËains an inËerpretation of the electronic motíon

which is qualitatively quite símilar to the impact-parameter interpretation,

although the nuclear equatíons of motion are quíte different. rn Ëhe

present theory iË is found that the nuclear trajectory can only be deter-

mined through the solution of a non-linear trúo-point boundary-value prob-

1em (f03). The reason for Ëhís ís that the force 1aw governing nuclear

motion has a dependence on the future behavíour of Ëhe electrons, as rvell

as theír past behaviour. In specíal cases it has been shovm (151104) that

thís difficulty can be removed (or at least simplifíed) if one is wílling

to make analytical approxÍmations, such as SLZ, in the electroníc equat-

ions of moËion. rn general, however, one ís left v¡iËh a boundary-value

problem whose numerícal solution ís non-trívíal.

Before attempting a boundary-value calculation lüe míght briefly
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consider two other ttclassicaltt nuclear models: stationary-energy-surface-

impact-parameter (sESrP) theory, and the correspondíng average-energy-

surface theory. For the reasons díscussed at the end of Chapter II, neither

of Ëhese theoríes yielded r¡¡orthwhile information ín the present case, but

boËh rvere helpful ín the qualitative ínterpretation of Ëhe elecËronic

motíon. The SESIP theory will also be used here as a first approximation

ín an íterative procedure to be descríbed below.

Two problems whích must be dealt with before a numerical calculation

can be attempËed are: how to interpret the force lavr of Eq. (60), and how

to numerically solve the boundary-value problem represented by Eqs. (32)

and (60). The numerical method will be discussed below" The discussion

of the force 1av¡ centres around thís question: How many trajectoríes con-

tribute to any partícular event and how are Ëhey ínterrelated? I^Ie mention

here three ways in whích multiple nuclear trajectories can occur in the

presenË model. The first T^/ay can be seen by noting that the trajectory

for the o¿ + o (elastíc) event ís ín general not the same as that for the

cv + ß (inelastíc) event. fË is at this point that the present calculation

differs from both the staËíonary- and the average-energy-surface theories

sínce they do not make thís distinction. An example of the second type of

multiplícíËy is the raínboÌ,r-scattering phenomenon, where two or more Ëraj-

ecËoríes wiËh different impact parameters lead to Ëhe same scattering ang1e.

This type of multíplicíty did not occur in Ëhe present calculation, alth-

ough it could have, íf the matrix elements and ímpact energy had been

dífferent" As a resulË, our interpreËation of the perturbatíon in the
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elastíc cross sectíon states that ít ís not a rainbovr-scattering effecË,

ín conËrast to the interpretation given by oËher workers (54,I02)" In

order to understand Ëhe rainbow-scattering interpretation (S+¡, one must

consider a third type of multíplicity of trajecËoríes. Thís occurs when

the same ímpact parameÉer leads to tvro different scaÉËeríng angles. For

a tr¿o-state curve-crossíng problem, if SLZ theory ís used, it occurs for

the following reason: It is assumed that the electronic transitíon occurs

instantaneously. Once thís assumption ís made íE is natural to treat the

region inside the crossíng poínt separately from the outside region. In

the inside region the nuclear motíon is decomposed into t!Ío components 
n

each followíng a dífferent diabatic energy surface. (This procedure wíll

be discussed in more detail in the following secËion. ) These Ëwo compon-

ents are regarded as represenËíng two distincË physical sítuationsn whose

relatíve probabílity ís given by sLZ theory. As a result of this decomp-

osiËion one fínds a single Ímpact parameter leadíng to two different

scatteríng angles " In special cases (54) this decompositíon incídenËa11y

leads one to conclude that raínbo\¡/-scatteríng wi1-l occur. (Note that Ëhe

numerícal results obtained by Olson and SmiËh do not depend on this

assumptíon, although their interpreËaËion does.) An ínteresting formal

motívat.ion for this procedure has been given by Pechukas and Davis [see

the paragraph following Eq" (2.6) of Ref . (104) _1. However, \^re emphasize

that this procedure is reasonable only if one is wílling to make the

assumptíon that Éhe transitíon aË the erossing poínt occurs essentíally

instantaneously. In the present calculation r4re have not made Ëhis assump-

tíon and therefore observe only one trajecËory correspondíng t.o any part-
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icular impact parameter"

Because of the fact that the eq_uations of motion are non-linear

the present boundary-value problem must be solved iteratívely; i.e. ín

additíon to the iterative procedure (Runge-Kutta-Gi11) used to solve the

ínítial-value elecLroníc equatíons of motion, a separate iteratíve proc-

edure is required before Ëhe nuclear force law can be saËísfied exacË1y.

Quadratícal1y convergent algorithms for the solutíon of non-linear

boundary-value problems are avaílable (103), buË were not Ëhought to

be very useful ín the present case; ínsteado an ad hoc algoríËhm r,ras

developed. The rate of convergence of this algoritfun is not known apriori

but ít has the advanËage of requíring very líttle modification in the

program used to solve the initíal-value problem encountered in the average-

energy-surface Ëheory (28r57). The algorithm proceeds by changíng Ëhe

original boundary-value problem ínto a sequence of ínitial-value problems

which ultímately converge to a boundary-value sol-utíon. This is done by

isolating all of the dependence on the future r,rithín a single constant

maËrix U(t"rt'). Given Eq. (33), the force law [Eq. (60)] is rewritten as

Iu(r"
-Ré (BB)

16o(t",tt)

The form of thís force 1aw suggesËs the followíng procedure: Guess an

energy surface and perform a SESIP calculatíon, using it to obtain an

approxímate estimate of U(t"otr). Given this esËímate one can then calc-

ulaËe an improved force law using Eq" (BB) and eventually an ímproved

value of U(t'rrtt) " In Ëhis \ray a sequence of ínitial-value problems is

mR =

\
\

)

, r' )gt (r, r' ) vRH (R)u(t, Ë' ) lBcr

I

\
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solved unËil two esËimates of U(t'frtr) agree.

force lar¿ i,¡hích was used was, therefore,

The soecifíc form of the

->
mR = - *.(

tgt-t (r", Ë')gtf (r, r') vRg(R)gn(t, t')
n-,1

u'uo'(ttt, t t ) I ( 8e)

EquaËion (32), whích deËermínes U"(trtr), is solved símultaneously with

Eq. (89). The label n refers to the n th inítial-value collision. The

force lar,r for the n th collision recognizes Ëhe future electroníc behav-

íour through Ëhe matrix On-lltttrtt), obtaíned from the prevíous collísion.

The fírst quesËion vrhich must be answered is the following: Does the fact

that Ëwo successíve estimates of q,(t"rtr) agree necessarily ímply Ëhat we

have converged to a Ërue solutíon of the boundary-value problem represent-

ed by Eqs. (32) and (60)? This can be quickly ansr^¡ered by setting n = n - 1

ín Eq" (89). We mighË also ask whether ËhÍs algorithm necessarily converges,

or how quickly ít converges, or even whether it converges to a unique so1-

utíon. None of these questions have been gíven a general ansvrer here, but

Èhey will be partially answered below.

It is of some interest to note the behavíour of the potential energy,

both exact and approximate, before and af.Ler the collisíon. First of aLl-,

rnre noËe that if convergence has been obtaíned, then an energy conservation

law can be proven, in the sense that

[,u(t", r)H(R)V(r, r' ) ]a^t,o

%r;-i<'+ Re const.anË 
"

(e0)
Igo(t"rtt) )=

Second, it can be shown that even Íf convelgence nas not been obtained,
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one sËill has the ídentity

. +2 /ig*t(r",r')gt+(r,r')s(n)un(r,r')lo^\ZmR + Rel '*¡ = consËant.
\ gä-t{'",t'¡ I

(et¡

This last idenËity ís very useful ín pracËice sínce ít provides one with

a sensible criteríon with v¡hich to determíne the time ínËerval in the

Runge-Kutta-Gíll procedure used to solve the inítial-value problem.

EquaËion (90) is of formal interest but is of no value in the actual

numerical calculaËion. Formally, Eq. (90) shows that at Ëíme Ër the

potential energy is given Ot goo(-) and at time Ët' it is given bl HUU(-),

as was antícipaËed on page 65. Equatíon (91), on the other hand, shows

that at time tr the poËential energy ís given by Ecxcy(-), and at time t't

the potential energy could be anything, dependíng on how close one ís to

corrvergence. Inlhen convergence Ís obtaíned Eq. (Ot¡ reduces to Eq. (90).

The program used to solve thÍs problem is a modified version of

one developed for use with the average-energy-surface theory. (One

version of the boundary-value program is given in Appendix II.) The

maín difference ís Ëhe presence of a ner^r force law [Eq. (89)]. Tn add-

ition, the original progran r,/as rnodífíed so that ít auËomaËically per-

formed a whole series of collisíons wíLh the same iníËia1 condiËions

but wíth a revísed estímate of U(trtrtt). The cal-culation was iniËiall-

ízed by choosing the diabatic energy surface Err(n) and performing one

SESIP calculation. The succeedíng collisions aË that ímpact parameËer

r¿ere then performed using Eq. (89) to generate the force law. The most

sensitive criterion for convergence was found Ëo be the scaËtering ang1e.
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The íterative procedure \^ras normally continued unLíl two successive scatt-

ering angles differed by less than 0.001o. An additíonal convergence

criËerion was the final value of the potentíal energy, since Ëhis value

is known for any partícular elecËroníc event.

The matríx H(R), whích governs Ëhe electronic interactíon between

+He' and Ne, üras identical to Ëhat already used by 01son and Smith (54),

and wíl1 noË be repeated here. The ímpact energy was 70.9 eV, røith an

exciËatíon energy of 16.8 eV for the ínelastic col-l-ísions. The pseudo-

crossing occurs at R* = 2.02 aeu., wiËh Hrr(R*) = HZZ(R.) = 0.530 a.u.

and H, ^ 
(R ) = 0.00819 a.u.

-!¿ x

The elastic dífferenËíal cross sectíon was obËaíned by perforrníng

collisíons aË fifËy different impact parameters, with a constant spacing

of 0"02 a"u" between neighbouring ímpact parameters. At any gíven ímpact

parameter bn less Ëhan five ínitial--value collisions hTeTe required in

order to obtain convergence. (Each initíal-value collísíon Ëook about

60 sec. computing Ëime on an IBM 360-65 system.) The reason for Ëhis

was that the diabatíe surfa"" Etr(R) lrovided a very good inítíal est-

ímate of the true energy surface, at least for elastic scatteríng.

However, the deviations of the Ërue energy surface from the diabaËic

surface led to pronounced effects in Ëhe differentíal cross section.

figure 7(b) shor¿s the quantity PtZ plotted as a functíon of angular

momentum. The angular momenÈum .Q, is obtained from the relation I = bp

where p is the inítial momentum (i78.76 a"u,). ft can be seen that P'

shows Ëhe usual oscillatíons associated with a curve-crossíng. A rough

estímate of the threshold for Ëhese oscillatíons is given by L_ = 322.
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Fígure 7.

(a) 0---/0^-.- as a function of angular momentum g" for elastic collísÍons.-BV' -DIA3

(b) P., o as a functíon oÍ. L f.or the same collisions as in (a) .LZ
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Tf. 9- > L*t then the nuclei will noË reach the crossíng point at R = R*.

The results ín Fig" 7(b), hor¿ever, do not explicitly recognize thís

threshold since SLZ theory is not beíng used. It ís of some interest to

compare Fig. 7(b) r"¡íth the dístorted-r,rave (Dtrnl) resulr [Fig" 4 of Ref . (54) ].

Qualitatively, the two results are very similar, although there are quant-

itatíve differences. The present calculaËion dísplays a spacing of about

25.Q, units between successive peaks, whereas the DI,rI spacíng is approxim-

ately 16.0 units. Thís díscrepancy is presumabl-y due to the fact l-ir,at prz

in Fig. 7(b) has been calculated usíng an elastíc trajectory. If pr, ís

obtained using an inelastic scaËËering trajectory the comparíson ís much

more encouraging (see below) . Another fearure of Fíg . 7 (b) ís Ëhe facr

thaË the value oÍ P t, r¡ras essentíally Ëhe same regardless of whether Ëhe

diabatíc surface or the fínal (dynamic) surface was used. That is, Ëhe

electroníc behaviour for elastíc scattering r^ras quite insensíËive Ëo

changes ín the nuclear model"

I^Ie now consider the effect of the elecËroníc behaviour on the nuc-

lear moËíon. It ís thís effect r¿hich ís particularly dramatic in the

present calculation, and ín fact provídes the only justification for

taking Ëhe trouble to solve the fult boundary-value problem ín Ëhe first

place. It can be seen by an ínspection of Ëhe deflection function (scatr-

ering angle 0 vs. impact. parameter b). por el_astic scattering, 0 was

invaríably very close to the diabatic prediction, which excludes the

possibility of rainbow-scatteríng. The dífference between the two angles

vras never more than 0.5'. Instead of plotting 0 dírectly we have shown,

in Fíg. 7(a), a plot of 0.'.rr/O.,-.,a¡p vs. 0. 0o,, is obtaíned from the boundary-
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value calculation and UO'¡U is the díabatic predicËÍ-on. The mosË striking

(and unexpected) feature of Fig.7(a) is the fact thaË UUU/UO'* ís osc-

illatory and can be correlated closely vrith the oscíllatíons of P L2. The

only exceptíon to the correlatíon ís the shallow mínimum at g, = 334. This

minimum comes from a collision where the turning poinË is greater than

the crossing point and is therefore ín the "subexciËaËionil region. It can

be qualiËatively understood by noting that the nuclei dísplay a tendeney

to fol1or¿ the bottom adíabatic, noL the díabatíc, surface in thís region.

For collisions where 9" < 322 this iníËíal tendency Ëo\^rards adiabatic

behavíour ís quickly replaced by a tendency to follow the diabatíc pred-

icËíon instead" The interpretatíon of the seatËering angle can best be

done by an inspection of the energy surfaces for these collisions. Fig. B

shornts the energy surfaces for collisíons aË impact parameters L"42, 1.50,

1.60, and 1.70 a.u. The quantity E(Rrt) - Efr(n) nas been plorred vs. R,

r¿here Elnrt¡ ís the potential energy obtained in the boundary-value calc-

ulation. For comparison, the adiabatic surfaces, r¿hích display an avoided

crossíng, have also been shor.vn. The impacË parameËers 1.50 and 1.70 corr-

espond to the first Ëwo maxi-ma ín Fíg. 7. The other two impact parameters

generaËe minima ín Fig. 7. One can see that the energy surface for any

particular collision is veïy smooËh (non-oscillaËory), but that the sur-

face as a whole displays an oscillatory dependence on b. rt is this dep-

endence on b rrrhích generates the oscillatory behavíour in thq functíon

Ã tA Thâ çact that thís oscillation ís eorrelated with p"BV, "DIA3 fÞ Lv! .'*-" - 
12

analytícally understood by an inspection of Eq. (90). Hor¡everr we

been able to analytically explain why the energy surfaces aË b =

can be

have

1"50

not

and
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Figure 8.

Dífference between the dynamic energy surface s(nrt) obtaíned from Ëhe

boundary-value calculation and the diabatic surfa"" Itt (R), plotted as

a function of internuclear separation, for elastic collisions at ímpact

parameLers r.42r 1.50, 1.60, and 1.70 a.u. The dashed lines are the

correspondíng adiabatic surfaces.
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1.70 a.u. are above instead of bel-ow the other two surfaces; i.e. the

exisËence of the correlaËion is reasonable, but there ís a plus or mínus

ambiguity as to r¡hích way it should affecË Ëhe energy surface. Another

feaËure seen in Fíg. 8 is the fact Ëhat the energy surfaces corresponding

to a zero in P, fa11 completely beËween the two adiabatic límits, whereas

those corresponding to PL2 * 0 do not. Thís can be easily understood by

seËting PtZ= 0 in Eq. (OO¡ and making use of the unitariËy of g(t,t').

A fínal feature of Fig. 8 ís the fact that the energy surface is a uníque

function of R; i.e" Ëhe íncomíng and outgoíng surfaces are reflectíons

of each other. This reflectíon symmetry is presumably a consequence of

the fact that the forrnal theory saËisfies the detailed-balancing requíre-

ment (15). Computationally, ít provides a non-Erivial test of numerical

accuracy, since the slrnnnetry exists only after good conveTgence to a

boundarv-value soluËíon has been obtaíned.

As has aLready been poínted ouË (15r104), it is dífficult to obtaín

mathematieal assurance that any particular solution at a gíven b is uníque.

We have numerically searched for other possÍble solutions by usíng an

iniËíal esËimate differenË fronthat given above. The collísions at b =

L.16, L.22, 1.60, L,70? and 1.86 a.u. ürere re-calculated using Ëhe boËtom

adiabatíc, instead of the diabaËic, surface as an initial estimate. Tn

every case it was found that the final soluËíon obtaíned was the same as

the one shovrn above, even for those values of b where the adiabatic and

diabatic predíctíons of 0 differ greatly. I^le therefore feel justifíed in

regardJ-ng the above solutíon as uníque.
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Having rationalized the behaviour of 0 ín terms of the energy

surfaces one can now consider the effect that this behaviour of 0 will

have on the cross section. The reduced (54) dífferential cross sectíon

ís given by the quanËity be(db/dg)pll . If this $rere calculated usíng

SESIP theory then the quantity b0(db/dO) vrould be a monotonic function

of 0 and Ëhe only source of oscíllations would be the term Prr. In the

boundary-value calculatíon, however, both terms can nohT conËribute osc-

í1latíons since Fig. 7(a) inplíes tlnat dbldO ís an oscíllatory function

of 0. Figure 9 shows the results of a SESIP calculaËíon of the cross

section, as well as the boundary-value result. Both are compared Ëo the

DW result (54). The Dtr^l result shovrs two major features, an isolated peak

at 1450 eV-deg. and a smooth series of oscillatíons betv¡een 3000 and 5000

eV-deg" Essentially the same features are seen experimentally [Fíg. 9(e)

and Refs. (5)-(7)1. The SESIP result does not display any peaks ín the

threshold region, although iË does qualitatívely reproduce Ëhe smooth

oscillations aË large 0. The boundary-value calculatíon shows the same

oscillatíons aË large 0, but they are strongly accentuated due to the

fact that db/dA is also oscillaËory. The maín new feaËure of the boundary-

value result is that the peaks in the dj-fferentíal cross section rise

above Ëhe single-channel prediction. These peaks are predominantly due

to peaks ín the funcËion db/dO and can be easily undersËood if one con-

siders the behavíour of OUU ín FíS, 7(a). It can be seen that the boundary-

value theory used here generates a perturbation in the elastic cross

section which looks quite different from the perturbatíon thaË one vrould

exPect íf the raínbow-scattering inËerpretation were used. In particular,
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Figure 9.

Comparison of three theoretical calculaËíons of the reduced differentíal

cross section for elastic scattering at 70.9 eV. The long dashed línes

are the single-channel (diabatíc) predictions" The theories used are:

(a) sESrP, (b) boundary-value, and (c) distorted-ürave [net. (5a¡1. The

shorË dashed líne ín (c) ís Ëhe experímental resulË at 83.5 eV, raísed

by 0.2 units [Refs. (5)-(7) and (54)].
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Ëhe numerical results presenËed here are not compatible with Ëhose

obtained by KoËova and Ovchinnikova (I02). 0n Ehe basis of the comparison

wíth experjmental results ít would appear that their results (102) are

superior to ours, at least for elastic processes. This ís presumably due

to the fact that the decomposiËion procedure, whieh leads Ëo raínbow-

scaËtering' yields a more detailed pícture of nuclear motion inside Ëhe

crossing region than our approach does. The relative meríts of the two

ínËerpretatíons for those systems where SLZ theory is not necessaríly

reliable (10) remain Ëo be seen.

The above comparísons lead us to the followíng conclusions:

1) SESTP theory, as expecËed, does not even begin Ëo provide a

reasonable account of the perturbaËion ín the elastic differential cross

section, since thís perturbation is due to the effect of the electronic

rearrangemenL on the nuclear motion.

2) Boundary-value theory, ín the forn in whích r¡e have used it,
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Ëakes account of the effect of the electrons on the

predicts a perturbatíon in the elastíc results, but

perturbatíon is not correct.

nuclei and therefore

the form of the

3) rne only three dimensional semiclassical theory rvhich predícts
the correct perturbation is that of Olson and Smíth (54) and. Kotova and

ovchinníkova (102). (Note that ít is relatívely easy to obËaín the correct
perturbation if a t'one-dimensíonal" semiclassical theory is used (20,105),

but that the one-dímensional theoríes are not as easy to "interpretff. A
ttone-dimensional?r theory is one in which angular motíon ís treated. guantum

mechanically and only radial motion is treated elassica11y.)

The inelastÍc scattering calculation üras performed usíng the same

seË of ímpact parameters and initiallízaxíon procedure as for elastic
scaËLering. The only dif f erence r,ras that the f orce law r¿as altered Ëo

correspond to the r -+ 2 elecËronic evenË. From a qualiËatíve poínt of
view the results are noË partícularly exciting since the behaviour of
Ëhe differentíal cross sectíon ís very sÍmilar to the DW predictíon. The

naín difference between the boundary-value and SESrp calculaËions for
inelastic scattering is that the angular threshold predicted þy the bound_

ary-value calculation is considerably lower than the SESIp predíction

since the final energy surface is 16.8 ev higher than the initíal energy

surface. From a numerical poínt of view some ínterestÍng problems were

encounËered in the inelastic calculation. The main one \,ras that of ínit-
íal-Lizíng the íteraËive procedure reasonably" The present calculation
used the elastíc diabatíc surface as an ínitial estímate, even though

this surface does not possess the correcË long-range behaviour after the
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collisíon. For strongly inelasËíc collisíons a more sophísticated proc-

edure would probably be required (see page I2I). Another diffículty was

encountered for Ëhose collisíons which display a transítion probabílity

P, which ís close to zero. Tn this case the force lavr [Eq. (89) ] consists

of a ratio of two arbíËrarily srnall terms and the calculaËion is numer-

ícally ill-condítíoned. The main effect of these two problems vras simply

to decrease the efficiencv of the calculatíon. It was found that ten

iteraËions r¡rere normally requíred to obËain convergence to a boundary-

value solution.

We begin the discussion of the inelastíc results by consídering

PI2 ^" a function of .Q,. As expected, the qualitatíve behavíour ís the

same as for elastÍc scattering, although significant quantitative ð,if.f-

erences were observed sínce the trajectories are dífferent. When P,

for inelastic scattering r¡/as compared to the DI{ predíction [fíg . 4 of

Ref. (S+¡1, it was found that the agreement r^ras so close that the díff-

erences could probably be attributed to plotting errors. Thís is quíte

encouraging since it ímplíes thaË a single-trajectory calculaËion may

be capable of providing a quantítatively, as well as qualitaËívely,

reasonable account of inelastíc processes.

The nexË feature of the ínelastíc collisions is the behaviour of

the energy surface. Figure 10 presents energy surfaces for collisions

atb = L.44 and 1.90 a"u" The collísion at b = L.44 eorresponds to the

top of the third exciËation peak (rn 0.115). The one at b = 1.90

corresponds to a collisíon rnlhere Ëhe nuclei do not even reach the cross-

íng point (Pr. = 0.005). The arroÍ^rs indicate the direetion ín which the' tz
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Figure 10.

Energy surfaces E(n, t) obtained from the boundary-value calculation, as

a function of ínternuclear separation, for inelastic co11ísions at

impact parameters 1.44 and 1.90 a.u" The dashed lines are the adiabatic

surfaces. The arrovrs indicate the direction ín whích the nuclei move

along the surface.
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nucleí move along the surface sínce the energy ís a tr,ro-valued functíon

of R. The adiabatic surfaces are shor¡n for comparison. In both collisíons

Ëhe nucleí originally follow Ëhe bottom and finally follow the top adíab-

aËíc (or diabaËic) surface. In the intermedíate region they follow a

surface which smoothly sv¡itches over from the bottom to Ëhe top eigen-

surface. It was found Ëhat the energy surfaces for the other collísíons

had essentially the same shape as the ones shown here. In every case the

energy near the nuclear turning poínt was roughly Ëhe average value of

the two adiabatíc surfaces. As already observed for elastíc collisíons,

the energy surface is not necessarily bounded by the two adÍabatíc

extremes, especially near the pseudocrossing.

A Ëest of detaíled-balancing was performed at b = L.44 a.u., mostly

as a check on numerical accuracy. This was done by changing the force lar¿

to correspond to the elecËronic event 2 -> I, as well as changing the

íniËial condítions on the nuclear motíon to correspond to Ëhe fínal

behaviour observed for the L -> 2 electronic event. TË was found that

Ëhe transítion probability and scaËteríng angle for the t\nro runs \,rere

ídentícal" In addítion to Ëhís, Ëhe two events followed the same energy

surface, but in opposite directíons.

Figure 1l shows the reduced differenËial cross secËíon for ínel-

asËic scatteríng, given by Ëhe quantítv b0(db/de)P,2, as well as the DI¡l

result (S+¡ " The overall shapes of the two results are quite simílar.

The maín dífference is that the present calculatÍon is shifted Ëo the

right by abouË 200 eV-deg" compared to the DInl resulË. This shift is not

enough to seríously affect the comparison i¿ith the experímental results"
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Figure 11.

Comparison of the boundary-value and the distorted-T/ave [Ref. (54)]

calculations of the reduced differential cross sectíon for inelastic

scatËering at 70.9 eV. The dashed líne is the experimenËal result

IRefs. (s)-(7) and (54)].
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A certain amount of ambiguity as to the exact behaviour of the díffer-

ential cross secËion near the míníma exists ín the present calculatíon.

Thís is because of the zero-over-zeto problem ment.ioned earlíer. It is

possible that these míníma may not rigorously approach zero although vre

know them to be quite small. This ambiguiËy r¡zas not felt to þs sf anrz

great importance in the present calculation and was ígnored.

The results obtaíned for inelastic scatteríng are much more encour-

aging than those obtaíned for elastic scatËeríng. Fírst of all, the func-

tíon Prr(9), which displays Stueckelberg oscíllations, agrees very well

with Ëhe DW predíction, and secondly, the inelastic differentíal cross

section (Fig" 11) ís quite similar to the DI,{ resulË. There are two main

features of the ínelastíc cross section which are of experimental interest:

the frequency of the Stueckelberg oscillatíons, and the angular threshold

at r^/hich Ëhe first inelastíc peak (Fig. 11) appears. The presenË calc-

ulation ímp1íes thaË both of these features are adequately described by

a síng1e-trajectory theory of the type used here.

The most obvious shortcomíng of the present theory is that ít does

noË predict a loca1-ized perturbation (99) ín the elastic differential

cross secËion close to Ëhe threshold angle, while the theory of Refs.

(S+¡ and (102) does, IË is therefore of interest to discuss the relat-

ionshíp between the present theory, which will be ca11ed a single-

Ërajectory theoryu and thaË of Olson and SmiËh (54), referred Ëo as a

multí-Ëraj ectory theory.
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C. Multi-traj ectory Curve-crossing Theory

Briefly, a mulËí-trajectory curve-crossing theory (54,76?lO2) yields

the following picture of the collísion process: The nuclei proceed along

the ínitial adíabatíc energy surface untíl- they reach a curve-crossing.

At this poínt the nuclei- are faced with two alternatives since there are

two diabatic surfaces rr¡hich become degenerate aË R = R*. Both of Ëhese

alternatives are taken inËo account. That is, the nuclei may follow the

top or the botËom díabatíc surface after goíng through a curve-crossing,

and the probabílity in each case is given by SLZ theory. I,rrhen the second

curve-crossing is reached, on the outgoing portíon of the collision, the

choice is agaín made, and the way in whích this choíce is made wíll deter-

míne wheËher the event ís to be elastic or ínelastic. In any partícular

channel, whether it be elastíc or inelastie, Ëhere r.¡ill therefore be at

least two nucle ar tlaJectoríes. (¡'or the He*-Ne system there are three

trajecËoríes ín Ëhe elastic channel just above the threshold for inelastic

processes.) The different branches of the nuclear motion are regard.ed as

interfering alternatives [page l4 of Ref. (24)1, not mutually exc]-usive

alternatíves, since Ëhey are not experímentally distinguishable. (A good

qualítatíve discussion of this type of Ëheory, as ít applíes to Ëhree-

body reacËive collisíons, has been given by Tu11y and Preston Isection

IV of Ref " (106) I " )

rn terms of a path-ínLegral approach, a mult.í-trajectory Ëheory can

be ratíonalized quíËe easily, províded Ëhat one is not concerned with

rigor. The problem ís characEerized by rhe path inËegral [Eq. (56)]:
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;rrÊff
KL

, Tt frtr rl\

Èta" 
Jgo\" r" z exp{isolfr(r) ]] ÐÈf.l (e2)

In

to

a síngle-trajectory theory r,re develop a stationary-phase approxímatíon

Eq. (92¡ dírecrly, wírhour making use of rhe possibility Ëhar llßq(r"rr')
may be expressible in a simpler form than that given by Eq. (58). For

curve-crossing problems, however, it is clear that thís procedure is not

entirely satisfactory, for the follorøing reason: the stationary-phase

method íncorporates the assumption that llgo(Ë"rtt) | does not change

very much as the path {x(t) } is varíed. ThaË ísn we assume that the

variations in the íntegrand of Eq. (gz) due Ëo varíations in the phase

are much more importanË than those due to varíations in lu'o(t"rtt)1"

If the magniËude of the íntegrand has a monotoníc dependence on the paËh

then thís assumpËion may be faírly reasonable, but for a curve-crossíng

problem Iu-r^,(t"rtt)l behaves ín a highly oscillatory fashion as the path
-þd

ís varied. (see, for example, rhe behaviour of pLzU,) ín Fig" 7(b).) The

validity of Ëhe statíonary-phase method is therefore quesËionable if it
is applíed directly to Eq. (gZ). As an alternative, rre míghË consider re-

expressinC Eq. (OZ¡ as a sum of (hopefully sírnpler) paËh inLegrals which

may be more amenable to approxÍ-matíon by the stationary-phase method.

That ís, íf Eq. (sz¡ can be re-expressed as a sum of path íntegrals (r(1)
t)\

and K\-') whose integrands have magnitudes which vary more slowly than

luuo{t"rt')l as the path is variedo then it would clearly be desírable

to perform separate statíonary-phase approximations to the índividual

path integrals, r(r) ..ra r(2), rather than performing a single stationary-

phase approximatÍon to Eq. (92¡. For curve-crossíng problems , SLZ theory
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al-lolrs us to carry out this procedure. (Note that a similar procedure
can be carried out quite rigorously for resonant charge-exchange (15,58).)
rn chapter rr it was shown that u(tr'rtr) can be re-expressed as a sum of
tv/o terms if the transitíon occurs quiekly. For exampre, for the I + 1

event we have [see Eq. (50)]:

ull(t"rtr) = (1 - p) .2ío .-iÓ1 * p e-2i-ß 
"-Lþz ( e3)

where P is the Landau-Zener transition probabílÍty given by Eq. (39) and

the non-adíabatic phase shífËs s and g are essentially constant (74)" The
phases ó, and Þ, can be obtaíned from Eq. (50):

,t1 t- tttói = / 'n.,, (R) dË + ,/ 
2urr {n) dr + / n' ., (n) dr ,- t? rr 

"1 Ë2

(e4)

ó - l 
tlo 

/Þ\ .7þ r fE2^ /ñ\ ,ttt'2 )- t, 
"11\À/ uL - 

,J 
¡22\R) dt + 

_J 
E11(R) dt ,-l '2

where the E.. (R) are the adiabatíc energy levels. I.tïe re-express $1 and ó^
âq

ttt
,I91 = I v.|(R) dr ,t'

ttt
þ2 = / vr(n) dr ,t'

rq q\

where v1(R) = Err(R) everywher"o vz(n) = Eii(R) if R > R*, and v2(R) = Err(R)



-110-

if R < Rx. If Eq. (O:¡ is substituted inËo Eq, (OZ7 we will have succeeded

Ín re-expressíng the original paËh integral ín terms of Ërso simpler path
fll (t\

inËegrals, K'-' and K\'/. The magnitudes of the íntegrand.s of these t\n7o

path integrals are given by P and (1 - p). rt ís clear that both p and

(1 - P) will vary much more slow1y than does lUrr(t"rt')l as the path is

varied, and that the statíonary-phase approximatíon r,¡i1l therefore be more

reliable íf iË is applied separaËely to r(1) 
"rr¿ 

r(2), insread of heing

applíed to Ëhe origínal path íntegral ín Eq. (gz), rf r,¡e now ignore var-

íatíons in P as the path varies about the classical path, we obtain

K11(Ê"Ë"rÈtt') (1 - P) "2i* *(1)

where P, G, and ß are evaluated using classícal

not yet knovm), and

Ërajectories (which are

i=l) (et¡

(es¡

-t: a ()\
+ Pe-¿PK\-/ (e6)

K(í)

EquaËíon (97) can be put ínto Ëhe form

fr"¡"
=1, I u*p{isotË(t)t - iO.} pi(t)

RttI

Ii I
I\.

Rr

-> -+
Li(RrR, r)

->
Rfi trr
I

J

tt
exp{

ti r 1,-i'-i
-+ + ¡-+(R,R,r) drÌ fJR(r)

where has Ëhe form of a Lagrangian:

.a

%mR
+i

Li (R, R, r) V. (R) (ee)
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A stationary-phase evaluation of f(i) therefore yíelds a classical traj-

ectory whích follor^rs Ëhe energy surface Vi(R) during the collision and

which, íncÍdentally, determínes the value of p, o,, and g in Eq. (OO¡.

The Ëransitíon. anplítude for the elastic event which is actually obser-

ved is therefore a sum of two Ëerms. The first term has an (Landau-Zener)

amplitude of (1 - p) and corresponds to a trajectory which follows E11(R)

everywhere. rn this case the electrons have not experienced a non-

adiabatic transítion duríng either passage through R = &*. The second

term has an (Landau-Zener) amplitude of P and corresponds to a tTaJectory

r^rhich follows the surface Err(R) if R > R* and the surface Err(R) if

R < R--. In thís case the electrons have experíenced a non-adiabaËíc tïans-x

ition during both passages Ëhrough R = R*. This interpreËation is compat-

ible r^rith that of 01son and Srnith (54) and Kotova and Ovchinníkova (102).

The final expression which ís obtaíned for the dífferent.ial cross section

[see, for example, Eq. (32) of Ref. (54)] will therefore contaín contríb-

utions from each índívídual term of Eq. (96), as well as conËaíning an

oscillaËory contribution due to interference between the terms of Eq. (96).

A multí-trajectory curve-crossing theory differs from a single-

trajectory theory both in its description of SLueckelberg oscillat.ions

and in the description of the localized perturbatíon (99) observed ín the

elastíc scattering cross sectíon for He--Ne collisíons. In a single-traj-

ectory theory Stueckelbergts oscillaËíons can be regarded as a multiple

charge-exchange effect ín the sense that the electrons seem to move back

and forth between atomic centres (or between two states on the same atomic

centre). The frequency of the Stueckelberg oscíllatíon in Ëhis case is
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related ro E",(R) - E^^(R) [see Eq. (sz)1. In a multi-trajectory theory
II '¿Z

the SËueckelberg oscíllatíon arises as an ínterference patËern between

two "branches" of the combined nuclear-electronic moËion. The phase of

the Stueckelberg oscillatíon ín this case is closely related to the

difference in the phases of f(1) ".ra 
f(2) in Eq. (96). The phase of the

semiclassical approximation to r(í) tEq' (98)l is gíven by the classíca1
t" +å

actíon, / f--(ÉrÉrt) dt, evaluated along a classícal path r¿hich follows
¡f !

tr,e .rr"r!y surface v* (R). The phase differenc. b.tw..r, t<(1) trr¿ r(2) is

Ëherefore a difference between two classícal actíons, evaluated using

v, (R) and v^(R), respectively. Both the single-trajectoly and multi-
LL

trajectory theories regard the Stueckelberg oscíllation as an ínterfer-

ence patËern, but in the síng1e-trajectory theory this interference

pattern is a purely electronic effect whích can be understood quite

independently of the nuclear equatíons of motion, vlhile ín the multi-

trajecËory theory the inËerference pattern contaíns some ttnucleartt

contributíons (due Ëo the kinetic energy term in l,-(ÈrÈrt)) and some

*!
"electronicil contributíons (due to the poËential energy term in L.(nrnrt)).

From a qualitative poínt of view, the ínËerpretation of the Stueckelberg

oscillation is therefore quite differenË in the tl,7o cases even though

boËh theories are closely related within a path-integral formalism.

Fínally, Ëhe reason why the two Ëheories differ ín their descrip-

tíon of the perturbation (99) in the elastic scatteríng paËtern is that

the multí-traj ectory Ëheory rnay yíeld three "branchest' in the nuclear

motion (54,L02), two of which coalesce and disappear rlear the inelastic
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threshold, thus leading to a 'trainbowt' effect, while the síngle-trajectory

theory does not predict any such effect, at least not for the ease studied

here"

In conclusion, it should be noted that multí-trajectory curve-

crossing Ëheorj-es can be used to describe three-body Tearrangement col1-

isíons wiËhout too much difficulty (761106), r,rhere the rearrangement

occurs only afËer an elecËroníc transíËion at a curve-crossing has taken

plaee. This type of Ëheory has already been applied (1061107) to the

reacLion

++D^-+HD+D
¿

A multí-traj ectory curve-crossing Ëheory has also been used to discuss

the quenching of electronícal1y excited aËoms by dÍaËoms (108r109), and

would probably be useful in the interpretation of cerËaín ion-molecule

reacËíons, such as (f10-1i2):

H

Jo' + Nz
-L+ NO' + N
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CHAPTER IV. VIBRATIONAI EXCITATION

The boundary-value semíclassíca1 Lheory of Chapter IIf was applied

to the problem of vibrational excíËation during co11ínear atom-diatom

collisions, partly in order to show Ëhe flexibility of the model, and

partly to compare our results with the predictions of oËher semíclassical

theories. Sínce the Ëhree atoms of the system are constraíned to lie on

a straight line, and sínce this consËraint would not be present ín an

actual collision, it will not be possible to compare the present theo-

retical results vrith any experimental rvork. The purpose of the calculation

is simply to determine the value of the present theory by eomparing it

with other theories" If the present theory compares favorably with other

available theories, then there might be some poinË in trying to perform

calculations in the absence of the collinear constraínt so that a com-

parison wÍËh experímental \.^rork could be made" There are currently Ëwo

types of time-dependent "semíclassícalrr theory which have been applÍed to

the problem of vibratíonal excítaËion duríng collinear atom-dlatom

collisions. The first Ëype has been developed recenËly by Miller (1i3-115)

and Marcus (116, and references cited therein) and will be called S MaËrix

theory. In this theory Ëhe I'dynamics" of both Ëhe víbrat.ional and trans-

laËional mot.ion are treated classically during the co11ísíon itself,

while the inítial and final sËationary states are constrained to satísfy

quantum mechanícal boundary conditions. fn addition Ëo this, a certaín

amount of care is taken in the defínition of the observable, especíally

in those cases where two classíca1 solutions coalesce or become complex.

This theory has been applied to a wíde range of vibratíonally ínelastic
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evenËs (IL41115r1L7tLLB), and the results have been compared with exact

quanËum mechanical calculatíons (94). The second type of theory, which

wíll be called semiclassical, treats the vibraËíonal motion completely

quanËum mechanically while translation is described classically. rn

principle, a semiclassical descrípËÍon of vibrational excíËation should

be superior to Ëhe S Matrix theory sínce the dynamícs of the vibrational
motíon duríng the collision ís treated guantum mechanical_ly. (Both

theoríes satísfy essentially Ëhe same boundary conditions, before and

af Ëer the collision, but the r,ray in which Ëhey treat the moËíon of the

system during
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the collision is different.) Unfortunately, ít Ís quite díffícult to derive

general equations of motion for the semiclassical theory, and even more

diffíeult to solve them exactly in practice. The diffículty is due to the

fact that the frdynamÍcs, of the classical and quantum mechanical degrees

of freedom are coupled to each other, and that this couplíng ís non-causal.

As a result, only approximate semiclassícal descríptions of víbrational

excitation have been gíven so far. One such description is the ITFITS

theory of Heídrich, trnlilson, and Rapp (1i9). Tn that theory the víbrational
motion ís treated wíthín the Landau-Teller approximation (120) and the

translational motion is obtained using an energy surface which does not

respond to changes in the víbratíonal state during the co11isíon. The

energy surface is an average of the surface which is initía1ly appropriate

and that vrhích is finally appropriate. The success of the ITFITS theory

ís rather surprisingo considering the approximatíons that are made, and

leads to the conjecture that íË rnight be possíble to produce nearly perfect

results if a more sophistícated semíclassical theory vrere used. lle have

therefore performed calculatíons using the semíclassíca1 Ëheory of pechukas

(15) 
' 

as described in Chapter III (Section A) of thís document. The Ëheory

ís based upon the Feynman path-integral formulatíon of quantum mechanics

and ís quite general in Ëhe sense that, in príncíple, ít allows one to

develop semiclassí-cal equations of motion for virtually any collision
problem ín whích some degrees of freedom are Ëo be ËreaËed quanËum mechan-

ica11y whíle others are treated classícally. For the víbrational exciË-

ation problem, the quantíty of interest is a transítion amplitude for an

event ín which the translational coordinaËe moves from xt (at time tt)
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Lo x" (at time t'r) while the (quantum mechanical) víbraËional state
changes from o to ß. If a completely quantum mechanícal calculation of

this quantity !üere desired it would be necess ary to consider all possíble

translational trajectoríes between the poínËs (xtrtt) and (xt'rt"), and to

calculaËe the vibrational transítíon amplitude from state o to state ß

along each trajectory. The víbrational transition amplítudes obtaíned

from Ëhe indívidual trajectoríes would then have to be added coherenËly

to produce the transítion amplitude for the event whích is actually
observed. In a semíclassical theory r¡re are ínteresËed in selectíng a

partícular traj ectory (one røhich exËremizes the phase of Ëhe path íntegral)
and using it to evaluate Ëhe transition amplítude for this event approx-

ímately. This trajectory is of partícu1ar inËerest because Ëhe paths whích

líe r¿ithin a small neíghbourhood around it wíll interfere consËructívely

r¿ith each other. For low-energy co11isíon problems it is sometímes quite
ímportant that the Ëranslational trajectory be chosen as carefullv as

possible and we anticípaËe Ëhat the traj ectories used in our Ëheorv

should yíeld betËer results than those used ín the rrFrrs theory.

AnoLher inËeresting possíbility regardíng the present calculation

ís that one might expect it to yíeld worthvrhíle ínformation on "strongly
forbidden" events (LI7 1118) wíthout having to resorË to the use of complex

translational trajectories. This possíbility has been discussed previously

(f04) and is sufficiently intriguing to v¡arrant an applicaËion of semí-

classícal theory in its original form.

The physícal system r¡/e are concerned with consists of an aËom and a
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diatom constrained to 1íe on a straight line. inle want Ëo calculate a

transition probabiliËy from a víbratíonal state d, to a state ß of the

di-atom during a collisíon r^ríËh the atom. I^IiËhin the coord.inate sysrem

of secrest and Johnson (e+¡, the full hamíltonian ís gíven by:

( i00)

r¿here y ís the vibratíonal coordínate of a harmoníc oscillator and x ís
the translational coordinate between the atom and the díaËom. The potential
. -cx (x-v)Ae represents the ínteractíon between the atom and the diatom. The

parameters m and o' are chosen to corïespond Ëo a collision between He and

H, (from Ref" (e+¡, m = 2/3¡ o = 0.3). The varue of the parameter A is
arbítrary in thís calculaËion sínce A has no effect on transítion prob-

abilities (94). rn our calculatíon r^7e used the value A = 30. Tn a semi-

classical theory the hamíltonían of interest ís:

h--op = -'¿a' /n"' + ,"y2 + Ae-c 
(x-Y)

(101 )

where hon contaíns all of the dependence of Hop on y. If Ëhe translational
trajecËory {x(t) } is knovm, then noo .m be regarded as a time-dependent

hamiltoniarl governing quantum mechanical evolutíon of the vibrational

state of the diatom. The víbrational state is expressed as a time-depend-

ent linear combinatíon of the eigenstates of the unperturbed harmonic

oscillator, whose coeffícients define an evolution matrix u(trtr). The

o th column of ]J(trËt) represents a state, aË time È, which ín the far

op = -L--ð2 /à*2 - r"ð2 / ðy2 + W2 * o.-c(x-v)
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the cx th eígensEate

Eq. (32), wíth H(x)

of the oscillator. The evolu-

given by

The wave function Vr(V) is the i th. eígenstaËe of the unperturbed oscil-

1aËor. (I¿e noËe Ëhat, because of the símple form of hoor the basis set

for this problem is automaÈically a diabatic one. ) The matrix elemenrs

of H(x) can be re-expressed as

Eir(*) = _-/-rl(v) hoo vr(v) dv

. -o* o2/4fl (x) Ae e
-mn

(i02)

(103)

( 10s)

(n

V+E
-mn -mn

where å,,r, = (n +'¿) ôo* and the symmetríc matríx V is given by (I2I)

Ll-* Gaz /2) m(n ( 104)

An importanË feature of the hamíltonian H(x) ís that the depen-

dence on x enters only as a scalar factor u-o*. The only non-trivíal

calculation which must be performed before H(x) Ís knor,rn is the evalua-

tíon of vr r.øhich is expressed ín terms of associated Laguerre polynom-

íals. rn practíce, r^/e evaluated y. using Ëhe recurïence relations

ro,, = (*)'(ä)*'

-Un

{* + r>Ç1,n*1 (n + 1)4 ,n + @//z)4,n*,
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These relations elimínate the need to derive explícit analytical expres-

síons for the Laguerre polynomials. The hamiltonian Ïl(x) can novr be calc-

ulated readily for arbitrary x, and Eq, (32) can be solved for u(t,Ër)

if the Ëranslational trajectory is knovm.

The classical trajectory {x(t) } satísfíes the equatíon of motion

IEq. (60) ]:

Ë) aH(x)u(1,
* i(r) = -Re ,.) ,

[-u(t",
L_

{ffi"}

a' ,]
ðx(t) ( 106)

ugo(t"rtt)

and also obeys the energy conservation law [Eq. (90)]:

'^*2 (r) +Re (i07)

r¡here E is measured in uniËs of ãa-r, twice t]ne zero-poínt energy of the

oscillator. For the case studied here, fio - 0.5 eV" To obtaín a trans-

ítíon probability for Ëhe a + B event at a t.otal energy E one must

símultaneously solve Eqs" (32) and (106). EquaËion (106) defínes a class-

ical trajectory {x(t) } for a parËícular evenË while Eq. (32) ð,ef.ines rhe

response of the víbrational sËate to this time-dependent perËurbaËíon.

The energy conservatíon law, Eq. (107), sËates Ëhat the translational

motion inítially (final1y) recognízes a potential energy surface belong-

íng Ëo the o t4 (ß .th) state of the oscíllator, and that duríng the col-

lision the energy surface swítches over smooËhly frorn one to Ëhe oËher.
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The translational motion in this theory is clearly coupled to the vib-

ratíonal moËion and the coupling is such thaË Ëhe path which the sysEem

follo¡^¡s is a path of least acËion.

The numerical soluËíon of the semicl-assical equatíons proceeds

by three steps. First of all, it is necessary Ëo calculaËe U(t,Ët),

which involves the solutíon of n sets of n coupled equations [Eq. (32)1,

where n is the number of vibrational states and where the translaËional

motíon is assumed to be knovrn, eíËher exactly or appïoxímately. This

solution is obtained using a fourth-order Runge-Kutta-Gill method

previously developed for use in electroníc excitatíon problems (28),

wiËh appropriate modífications in Ëhe defínition of .E(x). Secondly,

ú7e must determine Ëhe translaËional moËíon in such a way Ehat it satis-

fíes Eq. (106). Thís ís accomplished by the algorithm discussed ín Chapter

III (Section B). Thirdly, we need to ensure that the vibratíonal basis

set is complete. The aim of this calculation ís to produce a precise

semiclassical solution, and it ís therefore necessary to íncrease the

number of vibrational sËates until further increases no longer affect

the transítion probabiliËy. rn practice, no more Éhan 15 states were

ever required. (Note that ín the quantum mechanícal calculation a símílar

problem is encounËered (94rt22) ")

0f the three problems mentioned above, Ëhe most difficulË one is

the determinatíon of the t.ranslaËíonal motíon. The algorithm used to

solve Ëhís problem proceeds as follows: one guesses an approximace energy

surface for a particular evenË and solves an ínitíal-value problem for

I(t"rt?) using the trajectory determíned by thís energy surface. This
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value of U(t"rtf) is then used to determíne an "Í-mproved" force lav¡ for

translatíonal motíon, rvhich allows one to calculate an ttimprovedtt value

of U(t'rrtt), etc. Convergence to a boundary-value solution is obtained

r,vhen two successive estimates of U(Ë'rrtr) agree" The number of iteratíons

required Ëo produce good convergence varíed considerably, depending on

Ëhe nature of Ëhe event. For 1ow energy elastic collísíons as few as five

iËerations r,,Iere often sufficíent, whÍ1e for other evenËs convergence \¡ras

never obËaíned (i.e. no solution to the semíclassícal equaLíons rras

found). Although the final transítion probabílíty for an event does not

depend on the initíal estimate of the energy surfacen it ís clear thaË

Ëhe rate of convergence will depend on Ëhis choice. For elastÍc (0 + 0)

events r^/e nonnally used the díabatic surface $O(x) to ínitíallíze the

calculaËíon. For Ëhose inelastic events whích converged quickly we

conËínued to use $O(x) to inítiaLLize Ëhe calculation even Ëhough it

does not possess the correct long-range behaviour after the collísion.

I.ühenever convergence díffícultíes \rere encountered in an ínelastic event

we used a modified (velocíty dependenË) energy surface as an initía1

estímate. The velocíty dependence r^ras íntroduced in such a hray that Ëhe

kíneËíc energy lost exacËly one (or two) quanta of energy during the col-

lision. For Ëhese calculatíons the translational motion would behave as

though ít was followi-ng an energy surface whích was monotonically swiËching

over from the surface H o(x) to the surface E6U(") duríng the col1ísíon"

The only effect of thís velocity dependence ís to provide a more soph-

isticated ínitial estímate of.u(Ërrrtr) and thus increase the rate of

convergence of the algorithn. (A copy of the program used ín this calc-
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ulation is given ín Appendíx II.)

I^Ie noËe, fina11y, that the converged boundary-va1ue soluËion in

this theory obeys detailed-balancing (15), but that the Ëransítion

probabílíties are not normalLzed in general.

CalculaËions r^rere performed for Ëhe evenËs 0 + 0, 0 * 1, and O -+ 2,

usíng parameters (mro) which correspond to Ëhe sysËem He * Hr. The trans-

ition probabílítíes are shovm in Table II. The results were obtained by

solving Eqs. (32) and (106) exacËly, using a compleËe basis seË in each

case. They should therefore represent the best that can be obtained

rrriËhin a tíme-dependent semíclassical theory, as we have defined ít.

Fígure l2 shows a comparison of our results and the exacË calculation

of secresË and Johnson (94) for the 0 + 0 and 0 -> 1 events. For the 0 + 0

event we find Ëhat the semiclassícal result (represented by dots) becomes

progressively worse as the total energy is increased. I,rIe also found it

increasíngly diffícult to obtaín solutions to the semíc1assíca1 equations

at high energies. Thís r¡as due partly to Ëhe large basis set which vras

required and partly to the fact that the rate of convergence to a bound-

ary-value solution became poorer at hígh energies. At a total energy E = 10

r^re T¡/ere unable to produce a solution. (The solution may in fact existo

but we could not fínd it.) Prelíminary calculations which we performed

at this energy indicated that at least 15 states would be required and

Ëhat convergence Ëo a boundary-value solution could be obËained only if

exËreme care T^ras taken ín the defíniËion of the energy surface used to

initiallíze ti.:.e iterative procedure. The energy surface which the trans-

lational motion recognizes durl-ng Ëhese elastíc events is consisËent1y
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Table II.

vibrational transítíon probabilíties for the events 0 -t 0, 0 -+ l, and

0 -+ 2 as a function of total energy E.

E 0-+0 0+l 0-+2

?n

4.0

4.63

4.70

q^

6.0

7.0

8.0

qn

10. 0

94L

8L2

62L

4rb

t /,,)

L22

054

111

L32

L92

325

362

309

215

r00

2LL

265

240
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Figure 12.

Logarithm of the transistion probabilíty as a function of total

energy E for the events: a) 0 -+ 0o b) 0 + 1. The solid line in

each case is the exact result of secresË and Johnson (94). The dots

are the semíclassícal result. The dashed line in a) is obtaíned

using the diabatic energy surfaee, as explained ín the text.
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less repulsíve than the díabatÍc surface IOO("), and the atom therefore

approaches the diatom more closely than one would expect (see Fig. 13).

This leads to an increasingly complex behavíour of the evolution matríx

U(trtr) during the col1ísion, which ín turn complícates the problem of

convergíng to a boundary-value solution. It is ínterestíng to note that

the 0 + 0 event at E = 10 ís classically forbídden (114) in the S Matrix

theory, and that our results become progressively worse as \"/e approach

this region of forbiddenness. For the 0 -+ 0 event we have also performed

calculaËions using a simpler theory in r,¡hích the t.ranslaËional motion

follows Ëhe diabatic energy surface SO(x), while Il-(t"ot') is calculated

as usual, using a compleÉe basis set. These resulËs r^¡il1 be termed

"diabatíc", and are shovm as a dashed line in Fig. Lz(a). Surprisingly

enough, Ëhe diabatic predicËíon yÍelds better resulËs at high energies

than does Ëhe exact semiclassical theory, ar: indication that the semi-

classícal Eheory in its presenË form may not be as good as one would

expect it to be. trIe also note that Ëhe presenË numerícal results do

not represent an ímprovement over the predictíons of the ITFITS theory.

(ffris applies to ínelastic events as well as Ëo the 0 + 0 event.)

Transítíon probabilitíes for Ëhe 0 * 1 event are shor^m ín Fig. i2(b)

and a typical energy surface for this event is shown in Fíg. 13. (The

energy surface for an ínelasËíc event ís a two-valued function of x,

as discussed ín Chapter III.) Inie find thaË our transítion probabilítíes

are best at energies betLreen E = 5 and E = B and become progressively

hrorse aË hígher or lower energies. At a total energy E = 10 r^re vrere

unable to produce a solutíon (although it may exíst) because of con-
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Fígure 13.

Potential energy V(xrt) as a function of the Ëranslational coordínate

x, where V(xot) is given by Eq. (i07). The three solid lines are for the

following three events at a total energy E = 6: (1) 0 + 0, (2) 0 + l,
(3) 1 + 1. The dashed línes are Ëhe diabaríc surfaces %o(") and Hrr(x).
The potentíal energy surfaces aË other impact energies show a similar
behaviour.
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vergence difficultíes and also because of the size of the basis seË

which T^ias required. rn the low energy region of Fig, L2(b) a more thor-

ough study of the behaviour of the solution was possible sínce only a

small mrmber of st.ates \¡rere required. rn this regíon we note ËhaË the

transitíon probability drops very rapídly (relatíve to the exact resrrl r)

as the energy is decreased below E = 5. Furthermore, hre found that

E = 4.63 was the lowest energy aË whích a solution could be obtaíned for

thís event. For energies below this value iË was impossible to conveïge

to a boundary-value soluËion. The behaviour of the algoríthm for energíes

below 4.63 was the followíng: the sequence of successíve approxímaËions

to Ëhe solution would inítially appear to converge to a r^¡ell defined

result but would ultimately diverge away from this apparent solution.

That is, the fírst ten (or so) iterations would show a convergenË pattern

while the next Ëen showed a divergent one. The behavíour r¡/as essentially

independent of the Ínitíal estimate of the energy surface. I^le have Ëhere-

fore concluded that Ëhere ís in fact no solution Ëo our equaËions for

energies below E = 4.63. To the besË of our knowledge, this is noË the

fault of our particular numerícal method for fínding Ëhe solution, but

ís a case of complete disappearance of a soluËíon regard.less of which

argoríthm were used. rË is ínterestíng to note that, the energy E = 4,63

is very close to Ëhe energy at r,rhieh the 0 + 1 event becomes forbidden

wíthin Ëhe S MaËrix theory (see below)

An inspectíon of the transítion

0 '> 2 evenË shows a behaviour whích is

Ëhe 0 + 1 event; thaË is, Ëhe accuracy

probabílíties ín Table II for rhe

very simílar to that obtaíned for

of the transition probabilitíes
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deËeriorates in both the high energy and row energy límíts. rn summary,

therefore, we fínd that for inelastic events Ëhere is an ínLermed.iate

energy range in which our transitíon probabilitíes are relativery good

(and ín which v/e encounter no numerical dif fículties) u r,¡hile at hígher
or lower energies they become progressively r^rorse (whí1e, at the same

Èime, vre encounter severe numerical difficultíes) ; f.or elastíc evenËs

there is a low energy region in which we obtain relatívely good results
and a high energy region in which our results again become r¡rorse" For
boËh types of events, the energy range ín which Ëhe semiclassical so1-
uËíon ís reasonably good happens to be a regíon of classically allor^,¡e.

(rr4) events, wíth the result that whenever \nre attempË to approach a

forbídden (1i4) regíon r¡re encounter dífficulties. The difficultÍes are
partíally,numerieal, in the sense that the computing time increases,
and partially analytical, in the sense that the sorution dísappears

entirely for the 0 + 1 event at low energies. As a resurt, it is not
possible to use this Ëype of semíclassical Ëheory for strongly forbíd_
den (117r118) events, as prevíous1y hoped.

The main conclusion reached during thís calculation ís Ëhat the
relationship beËween our theory and the reaL-trajectory version (r14)
of the s Matrix theory is much closer than antícipated. üiíthin the
(real-trajectory) s Matrix theory one can dístínguish betr¿een classically
allowed and classícally forbídden events, and our numerical resurts
ímply Ëhat the semíclassical theory also recognízes this distinction,
for reasons which are Írot entirery crear. rn an aËËempt Lo compare our

soluËions more closely with the S MaËrix solutions r¿e have performed



calculatíons using the

ecËory versíon of that

-r29-

equations which are appropriate

theory. The hamíltonian ís given

Ëo the real-traj-

by (114)

( 108)

Both x and y are ËreaËed as real classical varíables and the classical

equaËions of moËion are solved (usíng the coordínaËes x and y ínstead

of acËion-angle varíables) with appropriate boundary condiËíons. For

the event o, -+ ß Ëhe vibratíonal degree of freedom is given cr * | uníts

of energy inítially, and the ínitial phase of the oscillator is chosen

in such a r,üay that the f inal vÍbraËional energy is ß * I units. At any

particular total energy E either zero or Ëwo solutions are found" The

purpose of Ëhe calculation is two-fold: Ëo fínd the exact energíes at

which an event becomes forbídden and to compare the translational traj-

ectories obtaíned in the S Matrix theory and the semiclassical theory.

trIe fínd thaË the energy at which the 0 + 0 event becomes forbidden is

between 8.0 and 8.05. The low energy limiË of forbiddenness for the

0 + 1 event ís beËween 4.80 and 4.850 while the hígh energy límit is

between 10.75 and 10.80. The hígh energy limíts at which the s Matríx

solution becomes forbídden do not agree very closely wíth the energíes

at r^rhích \¡Ie encounËered numerícal diffícultíes in our theory, but Ëhis

may be partly due to the fact that Ëhe collísion problem aË high energies

is a sËrongly coupled one and we vrould expect differences betr¿een the

two theories to become more pronounced as the coupling between vibration

and translation increases" At lovl energies our semíclassical soluËíon

H = P*2 /2^ + er2 /z + '-"y2 + ¿,e-*(x-Y)
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for Ëhe 0 + I event disappears at E = 4.63 whíle the S MaËríx solution

becomes forbidden aË E = 4.80. The agreement between Ëhese energíes is

sufficiently close to suggest that these Lv¡o occurrences are related"

In order to compare the translaËíona1 Ërajectories obtained in

Èhe two theories we have calculaËed the distances of closest approach

in each caseo These are Ëhe minimum values of x, at whích Ëhe direc-

Ëion of translaËíonal motion is reversed. The S MaËrix theory always

yields two (or none) values for any particular event while our theory

yields one (or none) . Fígure 14 shorrls these values of **ír, as a func-

tÍon of E for the 0 + 0 and 0 + 1 events. The bottom dashed line in

both Fig. 14(a) and Fig. 14(b) represents the absolute mínímum dístance

of closest approach in the s Matrix theory. This is obtaíned by set-

ting the potential energy V equal to the total energy E (rnzhere V =

Lry' I Ae-o(x-Yl), and by choosing y such that x*.r, takes on the smal-

lesË possíble value. The actual turning points ín the s Matríx theory

(solid lines in Fíg. 14) are ínvariably greater than thís mínímum value.

The top dashed 1íne in Fig. 14(a) and the middle dashed line in Fig.

L4(b) are the turníng points which would be obËained if the translatíonal

trajectory moved along the diabatic surfa". I.OO(x), which conËains the

zero-poínt energy of. % unj-t. The Ëop dashed líne ín Fig. 14(b) ís rhe

Eurníng poinË obtained if the translaËíonal Ërajectorv moves along tlrr(x).

For the 0 -+ 0 event we fínd that at 1ow energíes both the S MaËríx theory

and the semiclassical theory yield values of **i' vrhich agïee closely

v¡ith the diabatic prediction based or ë00(x). At hígh energiu" **ír,

Ëakes on values which are progressively lor,¡er than the diabatic predict-



- 131-

-t lgure r4"

Turning points in the semíclassical and S Matrix theoríes as a functÍon

of Ëotal energy Eo for the events: a) o + 0¡ b) 0 + 1" solid línes:

s Matrix theory. Dots: semiclassical theory. The dashed lines are

explaíned ín the Ëext.
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ion, índicaËíng that the atom and díatom approach each other more

closely than one v¡ould expect on the basis of a weak-coupling theory"

The maín feature of Fig " I4(a) is that the semiclassícal and S MaËrix

Ëheoríes predict essentially the same trend ir **ír, as a function of E,

and that the semiclassical Ëurníng poínt ís always very close Ëo being

an average value of the turo S Matríx resul-ts whenever the event is

a11owed.

For the 0 + 1 eventu shov,rn in Fig. i4(b), the turning poínts in
the S Matrix theory form a closed contour within whích almost all of
the semiclassical results lie. At low energies (E = 4.63) the turning

poinË in the semíclassícal theory comes close to being an average value

of the tvro diabatíc predicËions, based on $o(x) and 4rr(x), while at

high energies Ëhe turning points come close to the absolute minímum

predíction given by rhe borËom dashed line in Fig. i4(b). The overall

trend ís essentíally the same as for the 0 + 0 event, except Ëhat the

i-nelastic event is forbídden at both low and hígh energies. I^Ie fínd
that the semiclassical turning poínt agaín lies close to the average

value of the two S MaËrix predictíonso índícating that the relaËÍonshíp

betr,reen the translaËional trajectoríes obtained i-n the two theorÍes is
quíte close even though the vj.brational motion ís treated quíte differ-

entlr¡.

These comparísons serve to shorv that both

and the real-trajectory versíon of the S Matríx

and analytícal difficulties at roughly the same

it is found that Ëhe translational tra,iecËoríes

the semiclassical theory

theory encounter numerícal

energies. Furthermore,

ín boËh cases show simílar
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Ërends as a function of E. 0n the basis of Ëhese comparísons we have

come to the conclusion that it is not líkely Ehat the present theory

will ever yietd better results than the real-trajectory version of the

S Matríx theory, quíte apart from the fact that it is much more difficult

to vrork with ín practice. This conclusion ís somewhat more pessimísËic

than thaË r,rhích \¡ras recently formed by Pechukas and Davis (104). Clearly,

one could ímprove the present Ëheory by consídering the possibílity of

using complex translational trajectoríes and by Ëakíng account of var-

iations in the magnítude ot 
%,r(Ët'ott) 

as Ëhe path varíes about the

classical paËh (15), but the improved theory vrould probably be too

difficult to r¿ork with in practice.

A comparison of the conclusions reached in this chapter wíth those

reached in Chapter TII shov¡s that both seËs of conclusions are surprís-

ingly similar" In Chapter III iË was found Ëhat a mulEi-Ërajectory theory

yíelded better informaËíon (at least for elastic scattering) Ëhan did a

single-trajecËory theory, even though the síngle-trajecËory Ëheory treats

electroníc motíon precíselyu ínstead of using SLZ theory. In Ëhis chapter

r¡e have used a Ëheory which t.reats vibraËíonal motion completely quantum

mechanícally and have found that íË ís not as useful as Ëhe S Matrix

Ëheory which treats the dynamics of vibration classically. The multi-

Ërajectory curve-crossing theory and the S Matríx theory of víbratíonal

excitation have one feature in cofitmon: they both develop approxímate

treatments of a quanËum mechanícal degree of freedom and as a result

they are boËh able to produce a more detaíled pícture of the classícal

(translatíona1) degree of freedom, in the sense thaË more than one solutíon
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is found to correspond to the same observable event. From a formal poínt

of víew both of these theories succeed ín breakíng the origínal path

integral [Eq. (56) ] up ínto smaller, more manageable, pieces and this

seems to be the reason why they are so successful.

In conclusíon, ít should be noted that both the rnultí-trajectory

curve-crossing theory and the real-Ërajectory version of the S Matríx

Ëheory can be regarded as specíal cases of the general theory discussed

ín Ref. (15) and chapter rrr (section A) of rhís documenr. since rhe

numerícal results which r¿e have produced usíng the general theory are

not as encouraging as anticipated, we conclude that the real value of

the general theory lies not so much in its ability to produce good

numbers as it does in its abí1íty Ëo serve as a starËing poínt in the

development of more specLaLízed approaches.
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Appendix I

MATRIX ELEMENTS FOR THE H-BEI-+ CAICI]LATION

(This subroutine replaces Ëhe QUANTM suhroutine used by corrigall

[Appendix II of Ref. (SZ¡ 1 for rhe proron-hydrogen calcularion.)
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SUBROUTTI{E QUÄ}IT}1 ( T, R, B, DBT,Ajìe, DRT, PTE, FTiI.sT)
II'ÍPLTCTT CC¡,IPLEX* 1 6 (A-IJ, O-Z)
REAL*B Trrl.rRrlwrAl.tronl''rrxR1 ,>íG? rxRzrxc2rNza,DllxprDCosrDSlNrDRTrTRl.lrl

)iRG'G oz, T1 
'c1 ,civoRl\1'JcLl (2) ,,rcL2 (2) ,Jcr3 (2) ,DJci1 (2) ,DJcLä (2) 

'DJCL::< (2), N, G2, It 1 1 B, Ìt 1 1 c, H 1 1 D, ?, 1 JL1 1 A, TRI.,.2, TRli:3, ðCr,ASS, DSçRT
DÀTA r.tDÍri/Z/
cot:PLE)í'*16 r¡[Acl(0.D0!r1,qqO) /,tl(2.,2),RESULT (2,2) ,B(2),DBT(2),FDBIx(2) 

't{rNV(2,2) ,Tr(2'2) f PDNR (z,zj,¡¡srå,âÍ ,vscrlzi,n.r(2) ,pDBRtzl ,énuñl\fî .)\
¿\4ral

EQUTVALENCB (¡¡N(I ,1) ,i$IN\r(1 ,1) ,PD}JR(1,1) )
I,C)GTCÀL*4 FTRST

C
C TllO PITASE FÃ,CTORS AL-.E NOT¡í EVÂ¡IJ¿T,¡¡
c
C

FIIPOS=DCOS (. 15809D00*T) + I¡{À.G*DSIN( " 1 SB09D00eT)
P}II{EG=DCOS (. 15809D00*T) r¡,trr.G*DSfN(. 1 5809D00*T)
RrtdV = 1"D00lR
XR1 = DE)tp (-R)
r3 (xR1 .LT. 1.D-20) xRl = 0"D00c - 1 "3290D00z - 3.6875D00
T1=G*G_G*Z+Z*Z
c1 = (c + n) /3"D00
CNORI{ = DSÇRT (3.o00*G**5/!1)
XG1 = DIiXp (-c*R)
IF (XC',t ,LT" 1.Ð-20) xc1 = 0"D00
XR2 = XR1*XR1
IF (xnz .LT. 1.Ð-20) xnZ = 0"D00
Xcz = XG1 *XG1
IF (XG2 "LT" 1"D-20) XeZ = 0"D0CI
XZz = DEXp(-2.D00*Z*R)
IF ()<ZZ .LÎ. 1"D-20) >(.2,2 = 0"D00

C
C CAÌ,C" OF J TNTBGFåLS AS P!]R CL)I.JLSOI{ 1941
C

X _ I.DOO G*G
TRlf = (p.*x - 4.D00*c) *xc1 + G*(R*X + 4,D00)*xiì1
JCLl ( 1 ) = 8.D00*TRl.'tlR,/ (X*\r3)

C

G2 = c + 2.D00*U
x - 1.D00 c2*c2
TRl,i = (R*x - 4.D00*G2) *]íz2rxc1 + G2* (R'kX + 4. D00 ) *xn1
JCl,1 (2) = 8.D00*TRtl/R/ ("y**3)

L
X = G*G 1"D00
TÏìÌ{. = (-Rc.x*x + 4"D00c,>í* (1"D00 + Rc..rr*G) 24.D00*G+c) *}cR1
TRI{ = TP.}II + (X*X*R*R + 4.D00*}i* (Z.DOo*G*p. - 1,D00) + Zq.D00*G*G) åt

X XG1
JCL2 (1) = 8.D0CIx,f¡¡:,/R/(X{.*4)
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X = G2*G2 - 1"D00
TRl.t = (-R*)r*x + 4.D00*X*
TRI'( = ÎRl1 + (X*X*R*R + 4X *XZ2*XG1
JCL2(2) = B "D0 Ö*TRy/?/ ()i**4 )

x-1.D00-c*c
TRlr,f = 2.D00*XG1 - (2"D00 + R*X) *XR1
JCL3(1) = 4.D00*Tp.y,/n/X/y

f, = 1.D00 G2*G2
TRili = 2 "D00*XZ2*yc1 - (2. D00 + R*X) *XR1
JCL3 (2) = 4.D00xTPIt,/R/x/>i

N] ¡4A.TRTX TS CÃ.LCULÀÎE])

N(1,1) = 1"Doo
N(2,2) = t{(1ri)
TRI'i = cbIORt"lrE(,TCL1 (1) cî*Jcl2(1))N(1,2) = TRII*PIII'TBG
N(2r1) = TR¡{*PHPOS
rF ("NOr. lrrRST) cO 10 35
DO 2A f = 1,2
Br(r) = DCONJG(B(r))
CALL CDG¡,ÍPD (Itr, B, VECT, ÀfDIl.r,t, I\TDI¡t, 1 )CA]'L CDGIJPD (Br,17¡61'TBNOR¡1I, l rNÐi¡|l, 1 )ANOR¡4 = BITIOF,ÞÍ
Al'lÕRlt = DSQRT (AliORJ.iî)
DO 30 I = 1,2B(r) - B(T),/arqon¡r

EVALUÀTTOhI oF IT T,ÍATRTY I'i'nE¡¡¡

H11

CONTT}üUE
FIl 1B = c* (c*G - 2 "D00*c*z + 3.D00 *7,*Z) /2 "D00/T1If 11C - c*c* (Z*z _ G,þc) /t!1
I]1Ð = q*r'3/3"D00* (G + z)t,*2¡717,1 = (1.D00 + 7,)*"(1 .D00 - z)Ill1A = 1"D00 + 2.D00*X?,2 + XGzil(1,1)=H11A*RIiw+ 2.D00*z*XuZ + xc"z*(H1113 + I{11c*n + HltD+R*F.)H(1,1) = H(1,1) "6S809D00

IT22

( 1 . D00 + R*c2*G2) 24. D00*c2*ca) *xR1
"D00*x*(2"D00*G*R - 1"D00) + 24.D00*c2*c2)

C

(-

C

20

30

J3

C

C
c
c

Il(2 o2)=4 "DC0*RItV\r+ 2.D00* ( (:lZZ -IT(2,2) = ÍI(2t2) + 4.D00*((XnZ 1

1"D00) *nlUV + Z"*XZ,Z)
.D00 ) *IìINV + XRZ )
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TRll = (1.r:OO (1.n00 + Z*jì)*XZ2)*n,li,Tt¡
TR¡I2 = - (XZz - XR2) *2.D00*Z*RIiW/?,1/21 + (>i2,2 + Z*XI'2) /21TRll2 = TR.ì.,'t2+z*z*z/21
TRl"f3 = -7x Q17,2 xF.2) *nl¡¡\.r/21
TRI'{3 = Z*Z4Z',t (TR¡.'f3 + X?"2) /21
TRlil = 1'R¡{ - TR¡.12 - TF¡,,13
H (2 ,2) = Ír (2 ,Z) + 2 " D00 *TR¡i - . 5D0cJ

tr12

CCLASS = 2,D00*(1.D00 + XZ2)x,q1¡1rr7 4 2"D00x-z.+Nzz
TRI'Í = cNoRI' * (Jctl ( 1) c1*JCr2 ( 1) )
TRlf2 = ccI,Ass*TRlr - 2"D0O*CNOR}.!* (JCr3 ( 1 ) c1*JCLI (1 ) )TRI¡12 = Tr${2 + 2"D00*cNcR}/r* (- (z c1) "''¡ç"1 (a) -JCL3 (à)+z*c1*.TcLz (z)
TRÌ.f3 = -TR¡1/2.D00 + TR.trz
\I(1 cZ) = TRlt{3*PIINEG
H (2 , 1) = TP,i1f3 *PliPOS

CAI,C " À]B ¡.ÍATRTX

DO 40 I=1 oZ
NE(fr1) = -N(f,1),þ"65809Ð00
llB(I,2) = -l{(f ,2)*.5D00

CREI\TE }J T¡TVE]ìS]T

CALL i\fOVEC (t{rNV(1, 1 ),64rN(1, 1 ) )c/iLL CDI4rt,iV (NIhv, I{DI}{, NDI},[, DBT)

IìIOVI CALCULATION Olr PAP.TTAL DER. OF B W.R.T" T

CALL CDGMPD (WTT'IV, I.I, RXSULT, NDT¡{, }.]DT}"î, NDTI,Í )RESULT(1,1) = RESTJLT(1,1) + "6S809D00RIISULT (2r2) = RES[ILT (2,2) + .SD00
CALL CDc¡IpD (RESULT,B, PDBT r tdDÏ¡itr NDII.{, 1 )D0 60 I=1 oZ
PDBT(I) = -I}.!AG*PDBT(I)

CALC" PrE (nngurnr BTTLDA)

Do 70 f = 1rZ
BT ( I) = DCO¡ÌJG (B ( I) )
IF ("NOT. I¡IRST) GO TC 75
CALL CDG¡lPD (IT,B,\rtrCT,NDTI,4,I.JDTT{, 1 )CAI,L CDG}.,IPD (BT,VECT, PTE, 1,NDT¡.,i, 1 )

CALC" TOT¡IL DBR. OF B W.R.T. T
1. PARTTAL DER" OF N Tf"R.T" R

CALL E){CLOR (PDNR(1, t ) r64,pD¡.lR( 1, 1 ) )

c

C

40

(.

C
c
c

c
c
C

c

C

60

't^

75
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c
C CALC. DER. OF' J ridTNGRÃI,S

x - 1.D00 G*C
TP.l.f= ( -R* R*X+ 4 . D 0 0 *G * R+ 4 . D 0 fJ ) * Xc 1 - ( iì* R*x+ 4 . D 0 0 *R+4 . D 00 ) * )iR 1

ÐJCL1 (1 ) = B.Ð00*Ç*TìFJI*RIIIV*RIIIV/ (X**3)
c

G2=G+2"D00t2
x - 1"D00 - G2*G2
TRIr{= ( -R*R*X+4 " 

D 0 0 *c2 *R+4 
" D 00 ) tXzZ*XG 1 - (R* p,*X+ 4 " D 0 0 *R+4 . DOg ) *.XR1

DJCLI (2) = B.D0fl#G2'ßTÌìì.t*RTI\n/*RIltV,/ (X*+3)
c

X = G*G - 1"D00
TRli=(R*R*x*X-4.D00*X* (c*c{.R*R+R+1"D00) +ZLI.D00#c*G,* (r:ì+1"D00) ) *xnt
TRI{=TRM+ (R*R*X*X* (1 .D00-c*n) -4.D00*X* (2"D00*G*cì,(R*R-G*R-1 "D00) -X 24,D00*c*c* (c*R+1.D00) ) rXGl
DJCL2 ( 1 ) = 8.D00*TR¡,f*RIì{V*RIN\¡/ (X**4)

c
X = G2*G2 1.D00
TRI'I= (R*R*)(*x-4.DCCI*X* (c2*G2\kR*F+R+1"D00) +24.D00ËG2*G2* (R+1"oOo¡ ¡ x)í )iR1
TRI,!=TRìî* (R*R*x*x* ( 1.D00-G2*F")-t¡.D00*x* (2.D00 *ca*GZ*R*R-ca*R-1 .D00)x _24 "D00*c2*c2d. (G2{.p,+1.D00) ) *.*<22*xc1
DJCL? (2) = B "Ð00 *TRli*RIIJI,/*RIN\¡/ (X**4 )

C
)( = 1"D00 c+c
TRI{=-2.D00* ( 1 .nO0+c*R) *)ic1+ ( 2,D00* ( 1 .D0CI+R) +X*R*R) *XR.l
DJCL3 ( 1) = 4.D00*TR¡. *RI¡1V*R1N\¡/X/X

I

x - 1.D00 G2*G2
TRM=-2 . D00 * ( 1 . D00 +c2 *R) *:<22*Xc1 + ( Z " D00 x ( 1 " ¡OO+R) +X*éR*R) *XRt
D.TCL3 (2) = 4.D00*TR¡,1*RI¡!ÎV'{.RINV/X/X

TRt,tl = CNC)R¡,I* (DJCLI (1 ) C1*DJCL2 (1 ) )
PDI{Iì, (1 ,2) = TRI1*PIìNEG
PDNR (2 r1) = TRM*PI1POS
CA],L CT)G¡,ÍPD (PDNR,B,VNCT,NDT}4,NDr}.], 1 )
CALL CDG¡ltpD (BT r\ZECT , iìES , 1 , NDr¡.Í, .l 

)
DO B0 I = 1,2
PDBR(I) = -"5D00*RES*B(l)

B0 DBT(I) = PDBR(I)*nnr + pDBT(I)
C

C P¡.RTIA.L DER" O11 tr hI.R..T. R
C 1" PARTT¡,L DRR. OF H W.R"T" R
C H11

TR¡4 = -If11A*RINV*RINV - (4"D00*z*xzz+z"D}a*c*xcz)*ntNv
TRI"Í = TRI\Î- 4 . D0 0 * 7,t Z* NZz- 2 

" 
D0 0 *c* (II 1 1 B+II 1 1 C*R+H 1 1 D *R*F.) *Xcz

TRìÍ = Tml + (H1 1C + 2 "D00*H1 1D*R) *:,icz
PÐHR (1 ,1) = TRI!
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C H22
TRÌ.{ = -4.D00*RTI{V*RINV+2"D00* (_2"D00*Z*PJN\¡*XZ2_nr}J\/*F.r}tV* (xz2_1 .ix00) 2 "D00*.7r*z*X?z)
PDIIR (2 ,2) = T}ìlil+4 "D00 * (-2 , D00 *RTN\/*:tF.2-Rrtr\¡tRrt{v* (xR2- 1 . D00 ) -?. D0{X *XR2)
TRI{=-RIlw*Rr}.TV+Rrt'w* (2 "D00*z* ( 1 .D00+z*R) +Rr}Ív) *xzz
TRII2=-2.D00*z* (-RINV*RIM¡* (xzz-xp,2) +Rrt,rv* (-2.D00 *z*:tz2+2.D00*XF"2) 

;x /7,1/21
TRl42 = TRM2 2.D00*7* (XZz + XR.Z) /21
TRtf2 = TRlf2*'Z*Z*Z/21
TRI'Í3=-Z* (-RI¡nz*nINr¡* (XZz-XRz ) +Rlut¡* (-2 "Ð00 *?,*XZZ+2, D00 *XF.z ) ) /21TR¡{3 = Z*7,*Z {. (TRIU3 2 "D00 

*?,*XZz) /21
TRl.{ = TIl}4 - TR"¡'t2 TR¡ti3
PDIIR (2 oZ) = PDIIR (2,2) + 2 "D00*TR.l'iic n12
TRlf = cNoRI\.1t* (D.TCL1 (1)_C1*DJCL2 (i¡ ¡* (_.5n00+ccLASS)
cclÄ.ss = -2"D00*nrln/trRrNv*(1.D00+xz?)-4"D00*z*F.r¡TV*x2,2-q"D00*-z*24)

xz2
TRl.r = TR.¡Í + CCT,ASS*CIJOF-¡4* (JCL1 ( 1) C1*JCLz ( 1) )
TF.t,'t = TR¡{ _ 2.D00*CltOIì}f*(DJCL3(1) C1*D.TCI,1 (1))
TRFÏ=TR.}'{+2.D00*cNoIì.¡4* (- (Z-C1) *n.rcr,1 (2) -DJCL3 (2) +Z*C1*DJCLz (2) )
PDiiR (1 ,2) = îR¡1*PHI\IEG
PDIiR (2 o 1) = TRI1*PHPOS

c
CALL CDG¡4PD (I.I rpDBr{TVECT,NDI¡{rNDrtl, 1 )
cALr, cDct4pD (BTTVECTTPDER,1 ,i'üDÏl"tr 1)
CALL CDcß{pD (PDHRrB r\IECT TNDIHr¡.IDIM, 1 )
cÄLL CDGMPD (BTTVECT,RES,1 ,NDI¡Í ,1)
PDER = RBS + PDER. + DCONJG (PDER)
ARG = PDBR
RETURN
END
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Appendix II

COMPUTER PROGRAM FOR THE VIBRATIONA], EXCITATION CALCIILATION
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*******d<**¡t**+:i.****rF:F****:þst<***€t*t*****¡t*******¡**:F{<***ys**}t*ìr******
TI TS PROGFÂ}í-COLTTIJ\T.TS-VERSTON 2 s TTTULATES SEI,iÏ-CLASS TCAL
SCATTBRTNG OF AT\T .ATO}.{ oFtr A VIBP.ATTITG DTATOIIïTC.

c
c
(-

C
c
C
c
c
C
I

c
c

TIIE SYI{BOL SET IS CHOSIIII TO BE AS CLöS!ì TO I,IOIìITAL NOTATIOI.J
POSS IBLE.

REFER TO VARTOUS DOCU}IE}.3TATTO}I T}I PROGF.¡J.{ ANÐ TTI ¡-fY
ESSTON"

ÀS

POSS-

c
C
C
C
C

ÏIUPLTCTT REAL* B (A-U ,O-Z)
¡þ*tó{t*****tF********}t:S*+*****rF**<+*******rÉ***:1.***å1.)þ{r**d{*******rþ****ìk
PROGRA¡4IIîER B "I(UPPERS (A 

" 
p. PI!-¡INER)

REÄL*B ERRORX(1),El?,RORy(t) ,ERRORZ (1) ,rnpx(1) ,ERpy(1) ,rnpz (1) ,onr,px ( 1) , DELPY ( 1) ,nnr,pz (1) ,/{LpHå. (4) /. sD00 , .zg28932t Bg I34s3D00 t
t.1 . 7 07 1 A67 81 18654D00, " 1 6 666 €,66666 66 66 7D00 /, BHTA (4) /. 5D00,
x.292893218813453D00 ,1 .7071067811865¿t7D00 ,,sD0a/,ANUI,IB (qi /2"D00,2'Èx1"D00 ,2 "D1A/,VTNI'f (13,13)

REAL*4 TM.TNT, TCPU , Tt(Tlì¡4, Tt4Ã.CCtî
INTEGER STATET, STATET¡
EQUIVÂLENCE (Jlr, L)
DATA TOOLRB,ÍOASB/1 .D- A7, 1 "O-1 A/
DATA NT,ENG T NOPART/ 8 ,1 /
DATA TlfR.rTElG /,ñÐfit/ 1 3/
COI,ÍPLEX*16 UTPIETUSÀVE(13r13),UCOp:a(13ri3),ERROF.Ì-](13,13) rTERI,:oX UFThI ( 13)
LOGICAL+4 }¡TEST,trTRST

FOLLOI.üTI{G CO¡,II},'ION BI,OCI(S STORH

TI{B POSITIONS lti.tD ¡ÍOI'íEI{TU¡.! ARII STOF.ED ftil COt,,?,rOr,I COjìpRp.ALSO I.,f\SSE

co¡'cfol'r /coF*)Fìp/iì>i(1r3) ,F.y(1,3) ,Rz (1,3),px(1,3) ,py(1 ,3) ,pz(1,3) ,XTMASS ( 1 )
co¡&1oN /P.h?/NORUN , TI4ÌINT, UOTI{}.TG, T¡,tTRt4, T¡.ÍÀCC¡,I, TCPU
c0¡0,'Iotd /u¡4ÄT1ì,\(/U ( 1 ¡, 13,3 )

Ï\]ITTAL INFORIqATION READ BY ITBAD ROUTTI{E
PARA¡1TETERS

TOOLRG IS T4/{XTIV[U¡Í TOTAL ERROR FOR POSTTTOT.IS AND I":iCIIiiBNTA.
TOOSM TS I1{TNTI,1U}4 TOTAL ERROR FOR POSTTIONS AT.TD ¡{OI.,1ENTA.
NtE}'iG LE}TGT}I TN BYTBS FOR A}ÍY SET CF POST'TTONS OR I\,TO}{IEI.TTA ALONG :

A GT\¡EN AXTS

CALCULATE VINIT I":ÂTRIX

RI¡AD (5 ,2) ST¡.TIrr , STt\iEr¡

I

C

t-

C

l-
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2 FoRr,(A.T (2r2)
IlfRïTE (6 n9) STATEI, ST.A"TEF

9 Pozu4AT( ' TTITTT¡\L STATE = , ,T2, ¡ ]IINAL STÀTE = , ,T2)READ (5,3) ALPHAV,CONST
3 troRMAT (2D20" 1 0)

ÞtRrrB (6,4) AT,PHAVTCONST
4 FORI'5?\T (///,' ALPIIA = ',D13"5,20X,I BO CONSTÄ.ìJT = 

"D1B"1O)
DO 5 I = 1,NDI¡17
RE/_\D (5,15) UrIN(r)

15 FOR¡I/\T(2D10.4)
DO 5 J = 1,NDf¡,Î5 vrt{rr(r,J) = o"Doo
WRITE (6,16) (Urrt,l (r) ,I = I ,NDI¡.1)16 FoR¡'lÀT(/rt uFrll = 'r/n1x,72D1 1,4 r/r1xr12D1 1.4 r/,1x,2Ð11"4)c

C GIJI.TERATE T.ÍATRIX EI.E¡îENTS OF' VT}.ITT USTI.ÏG RECURRENCH RELATTON"

ALPIIÄ.2 = ÀLPHAV/DSQRT (2 . DOO )
VII'IIT(1,1) = 1"0D00
DO21 f=2rNDIl¡
REALï=I-1

21 VII{IT( I ,f ) = ALPI-IA2*VI}JIT( 1,1-1) /DSORT (RËALI)
DO22 I=2rNDf¡4
IIEALI=I-1
REALï = DSQRT(REALI)
DO 22 J - I, NDr¡i
RNALJ-J.1
REALJ = DSORT(REALJ)

22 VINIT (I,J) = (REALJtÉVIt,IIT (I-1,J-l ) + ÄLFI{A2*VfNrT (I_1,J) ) /REALIDO 7 I = irNDfI.j
WRITE (6 06) (VIÌ,JIT(IrJ) ,J = 1,NDI¡,I)

6 troR¡,fAT (////////,6D20"10,/,1ta20.10)
7 CONTTNUE

DO B r = 1rNDrt,l
DO B J = I,NDTI{

B \/INIT(IrJ) = VINII(IrJ)*COI'JST
C

CALL ARRS]IT (208, 256,-1 r1, 0, 0)
1 0 CALL REÄD (DELTAT 

T I\TorIìy, Trl\ta , NInTIìrr, NTDST, Jti2 , EIREV, TüND, TooLRG,
xToos¡,f )

NCOUNT=0
DO 11 I = lrtIDIl4
DO 11 .T = I ,NDI¡1
Do 11 I{ = 113

11 U(frJrIi) = (0"D00r0.D00)
DO 12 I = lrl.lD1i'ri
DO 12 J = 1r3

12 U(IrrrJ) = (1.D00,0.D0CI)
c
C TEST TO SEE IF PREVIOTJSI,Y RU¡I. Itr NOT GO TO SîÄRTfÀlG BLOCK( r¿eU
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C 40) I,VHTCH T.ISES RUÌ.1G8 -I{UTTÂ BLOCI( IN ¡, SPECTAL trÃSTiTON ¡'ORC Ti. O ITtrRÀTTONS 
"

rlr (.t¡oT.l{TEsr) co To 50
Jitr1=JI:12*1
f F (Jt{1 . cT. 3) JÌ{1= 1

.Tfi=.TN1*1
IF (Jl.l. GT. 3) JN=1
C.A,LL MOVEC (UCOpy( 1, 1),27A4,U (1, ?,JN) )
GO TO 70

C * * * * * * * * * * * * * * *:l * )k * *;k * * *c ì! *t * * * * )F * * * * * * ÌÈ .* er * * * * * * jt * ]t * y¡ * * * * * ;þ * !ft * * * * * *
C
C

c $Norn$
c I'lovEC AND EXcr,oR ARE rBlii A$SEHBLEF. ROUTTT'TES
c t4ovEc (t¡¡ro,NLEIIrFRO¡4)
C ¡IIOVES IiILEI']G BYTES FROIT STARTTNG BYTE I¡ROIU TNTO STARTING BYTEC TNTO
C THIS IS USND TO ¡.,iO\/E ARPÀY CITT]NKS "c
C EXCLOR ( IIÏTO, NLEtdG , FP"C)!T)
C BXCLUSTVE OTT'S trRO¡,î ONTO II{TO FO]ì. A ST}ìTI.ïG.}ILEI.]G BYïES LO¡TG.C THTS Ts USED To ztrRo oUT I\II\TRIX.

C
C DERIVATIVES OF POSITIONS AidD ¡ÍOI¡EN'IA, JN1 ,JN2, SÀ\./ED.C TAST TO SEE IF FTJIST I,OOP OF R.-K. I\}{T] ÀPPROPRTÂTE POÏI,IT CÂLC.
C
C * * ;È * * * * * ¡F * * * * * d< * * * t¡ * * s >:6 * * * * ;þ * * * * * * it * * * * * * * * * {: * * * * * {Ê * * t * * * * :& :s * * * * tr
C
C
c TrllE TNTBRVAL rs sF.roRTElTEÞ rF i\,:iorr0td roo LAtrGE-BACI{ srnp TO }r-3C STBP ¡\ND P.C.RESTARTED"
C LOSE TI'IO ITERåTI()NS SIt'lCB POINTEIIJII3 HÀS ALFÃÄDY BEn¡T SI-IIFTED.
C

2 0 TII4II=TII{E-DELTAT
NOTRY=ttOTRY- 1

DELTAT=DELT.AT* . 5D0 0
NORUN= 2 *NORUtt-¡¡OTRy
I'\IIìITE ( TI4IRITE ,160) DELT.ZT.T , TIOTRY ,l,IORUtl
I'ITEST= 

" 
FALSE 

"IF (NNT,TAT .LT.1"D-07) CAII. EXTT
C
c FuRTIiEsr BACI( KNowLBDcE srnP Jl'13 LOADED rNTo R(ro1)so ro sTA,p.TC TN RUNGE-KT]TTA.
c

IF (JN2.EQ"1) GO TO 50
CALL t,fovEc (Rx(1, 1 ) rNLEl.jGrru(( l rJN2) )c;\tl ¡4OVEC (ny( t, 1 ) rNLUNGrRy ( 1,,r¡lZ) )



CALL ÌIOVtrC (RZ ( 1

CALL MOVEC(PX(1
c.r\LL r.Io\¡EC (PY ( 1

c/\LL ¡IOVBC (PZ (1
CALL MOVAC(U(1,
G() To 50

-I4J-

, 1 ) rl,lLENGrRz ( 1,JN2) )

o 1 ),NLEtdc rPX( 1 rJN2) )

,1) TNLENGTPY(1rJN2))
,1) ,l.lr,ENG rPz ( 1 ,,Tl,f2) )
1,1) ,27jtt ru (1r 1,JlJz) )

c
c CALCULATTON DONB TOO ACCURI\TIILY-TRUNCATTONAND ROTJ'T.TD OFF ERROR OF

SA¡..18 ORDER. LENGTHEItr TNTERVÀL LO7\D I,/\ST CALC" R(T,JN) ÏNTO R(T,
) AND RBSTART Ì¡üITI.I RUIJGE KUTTA."

30 DELTI\T=DELTÀT*2 
" D00

NORUN= ( NORUN+I,T OTll1Y ) / 2
4 O WRTTE ( TÌ{RITII , 1 60 ) DELTÀT ,I{OTR.Y, NOF.U}ü

NTEST=. F1\LSE.
rF' (¡m1 .80" 1) co ro 50
CALL Il,1C)VEC (ru( ( 1, 1 ) rlüLtrNrc,RX ( 1,Jt{1 ) )
CALL MO\¡EC(Ry( 1,1) ,NLHNG,Ry(1,Jlr1) )
cå.LL ¡fovEc (nz (t, 1 ) nNLENGTRU ( 1,Ji't1 ) )
CALL IviO\/EC (PX ( 1, 1 ) rtfj.Et,tcrP)i ( l rJt{l ) )
CALL }.1OVEC (py( 1, 1 ) rtq:,n¡¡crpy ( 1,JN1 ) )
C.ALL MOVEC(pZ ( i, 1 ),r{LEtTG,pn( 1,.TN1 ) )
c1\LL ¡.ÍOVEC (U (1 ,1 ,1) n27A4 oü (1 ,1 ,JtT1 ) )**+tÉ**>&*******:t*****ìk**********tÉ*****sF{.*:þ****ìt*****;1.******rf{:*****:|cìtqk*

tf¡F:|(*****:s**'t*******+tF***¡&)¡c*{i***}þ*****:F*e¡******}þ*****rl*}k*{<:F*r¡***tkd<***

RUt\fGE-KUTTA BLOCK "

50 Jltr2=1
JN1=JI{2
.TN=2
cAtL MOVEC(UCOpy( 1, 1 ),27A4,U (1,1,Jtr2) )co To 70

60 EPRBV=E
rtr (NOTRy"EO" 0) GO ro 67

65 Ì,IOTRY=IrIOTRY+1
JNl=2
JN=3
NTBST=. TRUE "co To 90

SET UP EI'IBRGY TBST TF NOTRY=O

67 TOOLRG=DÃßS ( TOOLRB*E)
TOoSl.i=DABS ( TooSB * E )
I\7RITE (IT^IRITE r170) E TTOOLRG,TOOS¡{.co To 65

FÏRST STITP ER]I"OR z\RF,ÀYS TN]TTALTZED TO zEIìo

C

c

C
c
C

C

C
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70 CALL EXCLOR(nirROnX ( 1 ),r{LE}tG,EIì]ìORX ( 1 )
CALL EXCLOR(ERRORY( 1 ),}JLEITG,BRÌìORY ( 1 )
cAr,L EXCLOR(ERRORZ ( 1 ) rl.iLnNGrERRORZ ( 1 )
CALL EXCLOTì(EP,PX ( 1 ),NLAiJc,BlRpX ( 1 ) )
CALL EXCLOR(ERPY ( 1 ),N].tir{c,ERpy ( 1 ) )
c1\LL EXCLOR(ERPZ (1) ,Nr,ltlJGrERPZ (1) )
CALL E){CLOR(ERRORU ( 1, 1 ),27 1Lt,ERFORU ( 1

IF (.NOT.T'JTEST) GO TO 9CI '1))
C
C
11

C POTNTERS ARE I.TOT^7 CTIÄNGED ]IOR POSTTIOI{S Otr ¡4O¡TEI{TA AND POSTTIOI'IS

B0 IIIOLD=JIT2
JN2=Jl.I1
Jbll =Jlf
Jli=IHOl,i)

90 CALL I,{OVEC (RX ( 1 ,JN) ,tüLBr.¡C,RX( 1 
"J},t1)CALL ¡.ÍO\¡EC (RY ( 1,JItr),NLENG,RY( 1 O.TNl )

cAr,L t.fovEc (Rz ( 1,"Tii),N],HNGrRz ( 1,JtT1 )
C¡\,LL ¡,IOVEC (PX (1,JN) olfT,ENcrPX ( 1 r.TN1 )
C¡\LL I'.'IOVEC (PY ( 1,Jtd) rNI,nIÌc rPy ( 1, JI't1 )
CALL t4OrrEC (pZ ( 1,Jld),I{LENG,pZ (1rJlrl )
F ïI{ST= " TF,ÌJE .

C NOI,f ACTUAL R. K" G. PROCEDURE
C

DO 140 KI(=1 r4
rF (xx. nç¡ " 2 . oF.. KK " EQ. ¿t.) Til¡E=TII.IE+. 5Ð00 +DI¡LTAT
X=RX ( 1 ,JtI)
F.=X
CALL OLJANTÌ\,Î(TT¡,IIE,R,UCOPY,USAVË,DET,PTE,I TRST,VT}.]TT',ALPIIAV,UtrT}T,

)( STATET )
DELPX(I) = -DEt'

c
C trÏ}¡AL RËSULT LO¡.DED T1{TO /{
C TIIE},] ENERGY CALCULÀTED AIÍD TESTED.
C

IF (.I\]OT.FIRST) GO TO 1'.|0
TK=O.D00
DO 100 I='l ¡irlOP¡1RT

100 TK=TK + pX(r,Jt,r1) rt*2/ (2.Ð00*Tt1Äss(T) )
E=PIII+TK
rF (.nor.¡trEsT) Go ro 110
cAr,L ¡,rovtrc (u ( 1 ,1 ,JlJ1) ,2704,ucot.-'y ( 1 ,1) )
ERIìOR=DABS (EPREV-E)
IF (ERROR.GT.TCOLRG) cO TO 2A
IF (ERROR"LT"TOOSITI"AND.DIiLî/\T"LT" 1 "9D00) GO rO 30
gPPll\/=B

C



c
C

c

c

C

-L47 -

NOT.I NIIT..T PCISTTTONS A}'ID T(O},M}iTA OF A P/\F.TTCULAR ITERÃTTON CALCULATE

1 10 ALP=I\LPHA (KK)
APP=3"D00*ALP
BET=BET^A. (KK)
ANUI.{=/\NU}TB (KK)
DO 120 I=1rI{OP/\RT
TIjASSI=T¡,!ASS ( I)
PXI=FX(IrL)
XK=PXTITI"1ÀSST
EIIROR=ERP.ORX (I)
RX ( I ¡L) =RX (I rL) +ALp* (XK-ANU¡,{*ERF.OR) *DELTAT
EF.RORX ( t) =trRnoR+ÄPP* (XK-Al.lU¡,{*nRRoiì) -BET*XIi
DELP=ÐELPX (I)
ERP=EÏìP){ ( I )
PX ( I r L) =PXI+ALPt (O¡f,p-awlJ¡,1*ERP) *DELTAT
ERPX ( l) =nnp+APP,r,, (DBLp-AÌ;IJ¡,1*ERP) -BET*DELp

120 cor.rTrNUE

NEÌ,I A CALCULATED TIÖR A PARTTCUL/I.]ì ITJ]R}"TTOI.]

DO i 30 T=1 tldDI¡J
DO 130 .f = 1 ,I{DII'î
Ttr r?.}4=ALp * ( USAVE ( r, J) -AltUt"i+ERRORU ( I, J) )
ucoPY ( I, J) =UCOPY (I r.l) +TEFjr4*DALTAT

1 30 ERRORU ( I , J) =ERF.ORU ( r ,;r¡ +3 " D00 *TERl,i-BETSUST\VE ( I ,,.1¡
FIIIST= 

" F.ALSE.
i 4O CONTINUE

rF (.T.IOT"NTEST) GO TO 60
NOÏ,'Í TÏME I¡iCREIVIÐNTED A}TI] ITERT\TTOT.T COUh]TERS AI{D TEST TO SEN TÏI
TIÏERE TS 'TO BE Ptr.ÏNTOÜT

I.IOTRY=NOTRY+1
NCOUI'lT=NCOUtIT+ 1

fF (I'¡COUIIT.LT.NI¡IRIT) cO TO B0
CALL VIRTTE(NorRY,Tr¡.{ErJAII ,DELTÀT,ErTKrprE,uFrÀt,srA.i.Errsr¡'TEr¡,810)
NCOUI,IT=0
GO TO BO

160 troR¡,IÀT (1H0, 'TI¡,18 II{TERVAL CijANGED T(]r,G15.go ' ÀT STEP',rB,I NU¡48
xR oF RUNS rS r,r10)

170 FO]ìT.{AT(1iI ,IT}ITTTAL EI{EPGY TS
xGzC,10rr AlfD LOI4TAR TOTERANCET

EÌ{I)
SUBROUT INE QUAIVTI{ ( T, R, U' DUT' l\RC, P IE' F I P.S?' VINIT, ÄLPHAV, UFIN,

X STÀTBI)
II4PLICIT CO¡IPLEX* 16 (A-H ,O-Z)
TNTIIGBR STATEI
RIIAL* B T, Iì, DEXP, AP,c, DSQRT, VIÌ'TIT ( 1 3, 1 3 ), F,LPH7\V, B ( 1 3 ), XR,

| ,Ð2C " 10, I tfITI-I UppÐR TOLEIìAI{CE ' ,
,cza " 10, t oN EI{trRcYu /)



c

(1
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xREALI,DSïN,DCOS
DATA ñDrrn/13/
coI'tpLEX* 1 6 T.I')AG/ ( 0 . D00, 1 . D00 ) /,u ( 1 3, 1 3 ), DLÏT ( 1 3, 1 3 ),V ( 1 3, 1 3 ),x pI{ÄsE,uFrlq(13),ucol,(13) rTEt,{p1 (13,73),TEtr{pz (13)
LOGTCÀ]]*4 FTRST
)iR = DEXP (-ALPH^V*P.)
Ill (Xn .LTn 1.D-20) ){R = 0.D00

BVALUATTON OF V }-{ATRTX AND E VNCTOF

DO 5 I = lrNDIl4
ucoI,(r) - u (r,sr.A.TEr)
IìEÀLï = I 1

E(I) =0.5D00+REA''I
DO 6 1= lrNÐI¡4
\¡(IrI) = VINIT(Irt¡ *;1p
DOTI=2rÌ{Df}{
F,EÀLï = I 1

PHASE = DCOS ( nr¡r,r*r) I¡,r¡-c*DSIN (RE¿\LI*T)
I¡IDIM=NDII'i-I+1
ÐO 7 .T = I ¡INDI¡,]
V (J, I+,ï-1 ) = VIì,TIT (J, I+J-1 ) *yp,*p¡1¡1c¡
V (I+J- 1 , J) = DCçNJG (V (,t , I+J- 1 ) )

C.ALCIJLA,TION OF TOTAL DEIì" O.f B Ttt"R.T. T

C/\.LL CDGITPD (V, U o ÐUT , LÍDII,T, NDI¡í ¡ NDII,I)
DO 11 I - l,tlDfl',3
DO 11 J - i,NDr¡,J
TIll4P1 (I,J) = DCOld,fG(DLIT(J,f) )
C.ALL CDG¡,ipD (TE¡.fp 1,ucol, TBIIP2, Ì,TIlIli, NDI¡.[, 1 )
CAI,L CDG¡ PD (UF'TN,TEI{P2,8]]I1RT, l,NDI¡.{, 1 )
EPERT = EPERT/UTTN (STATET)
DO 60 1=1 ,NDI¡,'|
DO 60 ,J = i ,NDI¡4
DUT(I,J) = -1F'1AG*DtlT(f ,J)
C.A.Ï,C " PTE

IF (.I'IOT. FTIìST) GO TO 75
DO 20 f = IINDI¡¿
DO 20 J = 1ri\rDÏ¡,1
TÐI(P1 (T,J) = E(J) *DC6IIJG(ti(J,I) )
c?\LL CDGI1PD (TEltfp l rucol, Ta¡.1p2 rl.lrìTl, rNDr¡:, 1 )
CALL CDGiqpD (Urrt¡rTE¡1p2 rpIE, 1,NDII,I, 1 )
PTE = PTEIUTTTT{ (STATEI)
PIE=PIE+BPEF,T
COI']TïNUE

PARTTAI, DEP.. OF E T,^T.R.T. R

5

C
I

C

7

11

60

)n

75

c

c

c
C
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C
l\RG = -ALPIIA\¡+EIIERT
F.ETT]RN
EI:.ID

SIJBROUTÏNE READ (DIILTÀT, i{OTRY, Tr}.48 , tdt^iIìrÏ, NTEST, J¡i2 , nO , T}tD, TOOLRG,
XTOOS14)

c
C Tiifs SIIBROUTÏ¡JE RE¡\DS TIIR INITIA.L Ðz1TÂ FF.(-ìl'i DISI( AND CAIÌDS
C TO START TIffr C¿\I,CUI,ATTOh].
î

II4IPLTCIT RE/TL*B (A-I{ ,O-Z)
cot{pLEX* 16 u,A ( 1 3,3 )
REAL*B ZrPl (19)
co¡.t¡4oÎ.T /ut,]ATRX/u ( 13,1 3,3)
D/\TA IRBAD, IT,fRITtr/5, 6 /,I,IDIÌ|/ 1 3 /
REAL*4 T¡ÍTR¡Î, TÌ,{J\CC¡í, TT.iITTiIT N TCPU
LOGTCAL*4 }TTEST, START/ " TRI]E. /
coJl.(¡4oN ,/coRDRP/R:t(1,3),RY(1,3)oRZ(1,3),pX(103),py(1,3),pu (103),

xr¡,{.Ass ( 1)
BQUIVAL}II'{CE (ZIpl (1 ),RX( 1, 1 ) )
colvl¡.{oN /Rw/NoRUi{ , T¡1I}IT , }1RnÃD, T}1îTlì,_¡1, T}'!ACC¡¡, TepÌj
IF (START) GO TO 20

1 0 IìEI\D (IREAD, 1 30 rEND=70) ¡¡OnUWrtdRTtÀD,lttÌtrF,IT,TI'JD
READ ( I{RE?\D) Jt{2 , }.TOTRY , NTS]ST, EO , TI}48 , DÐLTÃT , TOOLRG , TOOS¡,]
RE¡\D (}TREAD) ZTP 1

RNAD (NREAD) A
READ (¡lnnAn rEND=30 )
IfRITE ( Il^iRITE, 90 ) NREÀD
co To 70

)^ rì7\T.T. (rnt-Jffrll /rnr.ÞtT\þv vJ¡s! f ¿r\+¿:\Ávru/r

C
c $TRT¡4 STÀRTS THE CPU TI¡tER.
c

RIIAD ( ÏREÀ,D, B0 ) T¡{ÏNT, TI]{TR¡,1
TI,JACCI'1i=0 " 0
STÀRT=.I¡ÄLSE.
GO TO 10

30 IF (UOrny"Gn.NoRUiü) co To 10
RBT,TTND NREAD
,Tl'I=Jl.l2- 1

IF (JN2.EQ"1) .TÌ.t=3
Ir ( "t¡or"ÞtrTBsT) JN=Jbt2
T,VRTTE (TI'ÍRTTE 112Q) N¡T'TET, (T,PX(I,;TM) ,PY(T,JN) OPZ (T¡JI'I) OTIIIITSS (T) 

NxRX(r,Jt{) ,RY(I,Jtü) ,RZ (rrJN) ,r=1,1)wtìrrE (rTdRrrEr100) (roÀ(r,JIr),Í=1,I{Dr¡{)
RETURN

70 CA],L EXTT
RÏITURI'I

B0 FOzu,tAT ( 2c1 0.0 )
90 ]TOR¡4?\T (1N O'ON RITADI}TG DATA SAT-ENDFTLE },1IISSTI.JG¡,I5)



100 FORL{ÄT
1 i O I1ORMAT

-r50-

1H, ¡B ¡t¡.TRrX' / (r5,2G20"1 0) )
1H ,7A4 )

120 FOITI4J\T ( 1H1,28X, ISET.{TCLASSTCÀL SC.ATTERTNG CF PFOTOì.T-IIYDROGBI'] SYST
xr,,t/1H ,31Xr!TNITI.AL Tri,¡E TNTEFJ/A.L USED riv CALCULATTON ISr,D20"10
'if A.uo | ////1il ,53X, rrt'lrrrAÏ, PARTTCLE pApÀt'ETE|tSt ///1H , TPARTTCL

x*! r6x, rpxt r5xr t**, u6)i, rpJ¡t r5x, r**t r6xr tpzt ,5xr t**t r3x, rT¡-:A.ss, r5x,
X**f r6)(r tR)(r r5)(, r*+r,6Xr,Ry, r5Xo,**r r6)(, r1ìzr r5Xr t*t/(1Ít ,2XrT.5rzK
x7D15.B))

1 30 ¡'oRI\'rÃT (r10r2r5,D20. 1 0)
EhID
suBRourrl,iE wRrTE(NOTRYrTrl,lrrJI¡TDnLTATTETTKTpTETUFTI{TSTATET,STATEF'x *)
T¡.IIPLTCTT REAL*B (A-H ,O-Z)
rlirBGER STATEI,STATEF
REAL+B ZTPI (19)
cot''IÌ"îoN /coRDRp/Rx(1,3) rRY(1u3) ,RU (1,3) ,pX(1,3) ,py(1 o3) ,pZ (103),

xrt'{Ass ( 1 )
EQUIVÃÏ,ENCE (ZTP1 (1 ),RX(1,t ¡ ¡
LOGTCAL*4 I{TEST
coÌ,(p],E){* 1 6 U, prE, UCHITCK ( 1 3 , 1 3 ) , UDAG ( 1 3 , ',l 3 ) , TEST ( 1 3 , 1 3 ) , UrrN ( ',¡ 3 )
co¡rJ,{oN /utr,ArPx/u ( 13 n 13,3 )
RTÌ¡\L* 4 T}JTR¡,Î ¡ TI,ÍACC}4, TCPTJ , TI,TTT.]T , PTTASE
D.ATA IT,,IRITB/6/,NOPART /1/ ,NDI¡I/1 3/
co¡,.u'foN /RI^r/i\roRUI{, T}iINT , t{tfRg , TMTR}I, TIU/\CC}Í , TCPU

2 A TTÞ1I{=TIIIÍE-DELT7\T
wRrTB (rI,fiìrTEr70) NOTRYTTIÌ'1N, (rrPy(IrJlI) ,PY(TrJltr) ,PU (rrJN) ,RX(TrJ

x),RY(IrJt'T) ,RU (rr,TtI) ,r=1 ,I{OP¡\.RT)
R=RX ( 1 r.TN)
wRrTE(rwRITE,55) F.

DO 30 I=1 rNDIM
\¡À=CÐABS (U (T,STATET ¡JN) ) *+2

c
C VA IS THE SQUARE O]T TTìE T.,IODULUS OF T}TE COEFFTCT}INTS.
C

30 I{RrrE ( rwRrrE,60 ) r ru ( r, sT.ATnr ,J}I) ,v:1
I,7RITE (IWpITI]r90) pIErTKrIl
IF (mOrny.Lr"NoIr.uN) Go TO 40
WRITI¡ ( IÌ^IRITE r 50 )

50 FOrÐ,1AT ( lHt )
DO 52 f = 1,t'trDTM
I{RITE(IV'IRITEr51) (U (IrJrJItr) ,J = 1,t+ntl't¡

51 FORÌ'{AT (/ / // t1X,12D11 .LI , / ,1X,12D11 .4 ,/,1X,2D1 1 " 
¿r )

52 CONTTNUE
DO 56 f = 1rl"iDÏl.l
DO 56 J - 1,I,rDrl.{
UCHBCK(IrJ) = U(IrJr,TN)

56 UDÀG(J,T) = DCOI'IJG(IJCTItrCK(T,J) )

cÄLL CDG¡ÍPD (UOAC, UCltEeK, TEST, btDr¡t, NDr¡!, NDr¡-1i)
vrRrTtr (IrfRrTD,57)

57 troRr4ÄT ( 1H1 )
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DO 59 f = 1,IJDI¡:
UFIN(I) = U (STATEI¡' I'Jt'l)
I,,trRrrE (rlfRrrEr5B) (Tnsr(rr.T) rJ = l rt{Dr¡t)5B FOR¡,{AT (1X,12D11"4 r/,1:<,12D1 1" tt,/ u1Xr2D11"4,////)

59 COI.TTIIIUE
DO 100 r - 1,}¡Dr¡,,r
VÀ = CDABS (UFrlI ( I) ) **2
TEIvIPI = UFII{ (f )
TEI"ÍP2 = (0.D00,-1 .D00) *LTllIl'1(I)
PIIASE = 1 80. D00/3 " 14159D00 *DATAI{ ('IEI'ÍP2/TIil"{P 1 )
IF (TEl,iP 1 . LT. 0.D00 ) PHASÐ = ÞHÄSII + 1 80. 0
IF (PIIASE,LT" 0.0) PIIASIT = PHASE + 360"0
wRrrE (6,101) uFrlt (r) ,vA,PHÄ.SE101 troRltAT (/ ,1x,2D13.4,D20.4,F15 " 1 )

1OO COI']TINUE
RETURN 1

4 0 CONTIÌ.IUE
RETUR}I

55 FOzu.1lAT(1H ' 
!*** TIIE 1¡ITERNUCjLEF.R SEP.ARI\TIO$I R IS | 

'D20 "10/1H ,1X.,
xrST.I\TE * t ,16X, rB I,t1\T?Il(r,16X, | *,F , rtR ¡1ODULUS SOUARAD *¡ )

60 FOR¡,3ÄT (1¡:,15r3>i î2G2C" 10,4X eG20 "1A)70 FolìJ.l.AT (lHOrrRLTN l{U}tBÐRrrrl0r¡ AT T= , rDzA"13r' A.Uot/1H ,rOBJtrC
x *r,Bx, upx, nBxr t*t r1x, t*, ngxo opyt rBxu,*t olxr t*o rBxr,pzt rBx, r*, r1X
Xr'þrrB)írrR){rrBxrtrttrlXnr*rrBXrtRyrrB:{rt*trlXnt*¡r8}ïroR?or8)trt*r/(1
x ,2xrr2rzx,6(1xÐzCI.13) ) )

90 FOP'JIIAT ( 1g 
' 

10X o '*** TOT?\L QLIAI'¡TUI\'J ANEIF.GY I t2i)20 "1A/1H , I0X, n **
x KIiiEîrc EltERGy! ,D20 "10,2x, f TOTAL EÌ{EF.GYr ,D20.10)

E}JD
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and líke 1oíterers

on the fringes of a fair

we ogle the unobtaínable

imagíned mystery

Yet away around on the far side

like the stage door of a circus tent

is a wíde wíde vent in the battlements

where even elephant.s

waltz tlnru

- L. Ferlínghettí


