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"Though I cannot say clearly how I ride a bicycle nor how I recognize
my macintosh (for I don't know it clearly), yet this will not prevent me
from saying that T know how to ride a bicycle and how to recognize my
macintosh. For I know that I know perfectly well how to do such things,
though I know the particulars of what I know only in an instrumental manner
and am focally quite ignorant of them; so that I may say that I know these
matters even though I cannot tell clearly, or hardly at all, what it is

that I know."

~ M, Polanyi

TO MY LANDLORD
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ABSTRACT

The application of semiclassical theories to low energy atom-atom
and atom-diatom collisions is discussed. The theories are developed in
such a way that translational motion is treated classically while internal
degrees of freedom (electronic or vibrational) are treated quantum mech-
anically. The emphasis is on the development of an intuitively suggestive
"picture" of the collision process, occasionally at the expense of math-
ematical rigor. For the cases studied here, the translational and internal
degrees of freedom of the system are intimately coupled to each other
during the collision, and it is shown that some care must be taken in the
treatment of this coupling. Particular attention is given to the effect of
a change in the internal states of the system on the translational degree
of freedom,

A relatively simple version of semiclassical theory is applied to
low energy collisions between H and Bé++ in order to obtain some qualit-
ative information about the effect of translational motion on the elect-
ronic state of the system during a '"curve-crossing" event. A more
sophisticated semiclassical theory, based on Feymman's path—integral
formulation of quantum mechanics, is then developed and applied to
collisions between He+ and Ne. In this case the effect of the electronic
rearrangement on the translational motion is very important. It is found
that this effect can be taken account of in a variety of ways, and some
qualitative comparisons of different available methods are made. The

application of this type of theory to vibrationally inelastic collisions



)

between He and H2 is also discussed.

It is concluded that semiclassical theories are a useful tool in
the qualitative interpretation of experimental results, but that the
precise form of the appropriate theory can often be determined only by
trial and error. A purely mathematical comparison of different available

theories is not always sufficient to determine which one will be most

useful in practice,
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CHAPTER I. INTRODUCTION

The role of semiclassical theories in the study of atomic and
molecular collisions is a somewhat curious one, in the sense that the
practical usefulness of such theories is generally recognised while, at
the same time, it is almost impossible to give a precise a priori just-~
ification of such theories, at least for the examples to be discussed
in this thesis. In many cases the "justification" of the theories dis-
cussed here is one which has been developed after the fact on the basis
of intuitive, instead of mathematical, arguments. A mathematical der-
ivation of the theories used in this thesis will be given (or referred
to) whenever possible, but the final arguments in favor of (or against)
a particular theory will invariably be qualitative arguments which can
be developed only after the fact (and only after a rather detailed com-
parison of numerical results obtained in the different theories). It
does not seem very likely that this situation will change significantly
within the foreseeable future, for reasons which will be discussed below.

The interest in semiclassical collision theory has normally arisen
from two types of experimental situations:

1) Electronically inelastic atomic collisions (1,2).

2) Electronically adiabatic, but vibrationally and/or rotationally

inelastic, collisions between small molecules (3).
A certain amount of interest has also been generated by information ob-

tained from ion-molecule reactions (4), but these will not be discussed



in any detail. No attempt will be made to discuss either collisions
between large molecules or unimolecular rearrangement problems, since
the theories which are likely to be useful in these cases are rather
different from the theory used in this thesis. The following processes

will be considered:

1) A+ B +—A+ + B (electron transfer)
%
2) A4+ B> A+ B’ (electron excitation)
3) A+ BC > A+ BC (vibrational excitation)

where A and B are atoms, and the asterisk indicates either electronic
or vibrational excitation. These processes will be termed "inelastic',
while the process

A+ BC > AB + C
will be termed a "'rearrangement'. Rearrangement collisions are somewhat
more difficult to study than inelastic collisions, especially if omne
wishes to quantize the vibrational states of the diatom before and after
the collision, and will therefore be mentioned only briefly. For prac-

tical purposes, the only type of experiment to which the present discuss-—

ion is relevant is the "state-selected" experiment; i.e. one in which the

initial and final electronic and vibrational states are known for each
individual collision.
A semiclassical collision theory will be defined as one in which some
bbbbbb degrees of freedom of the system (such as relative translational motion)
are treated classically while other degrees of freedom (such as electronic

or vibrational motion) are treated quantum mechanically., It is perhaps

worthwhile noting that a quantum mechanical treatment implies that



not only the initial and final stationary states of a degree of freedom,
but also the evolution of this degree of freedom in time, are treated
quantum mechanically. In some theories (see Chapter IV) a distinction
between these two problems is made, but these theories will not be called
semiclassical, Whenever a classical degree of freedom is coupled to a
quantum mechanical degree of freedom the definition of "classical"
becomes a non-trivial problem. A general definition of "classical"
motion will be attempted only in Chapter III., For the moment, it is
sufficient to say that a classical degree of freedom behaves, at least
mathematically, like a point particle. The theory is therefore of the
following type: in an atomic collision the nuclei are treated as point
particles while electrons are treated quantum mechanically; in an atom~
diatom collision the vibrational motion is treated quantum mechanically
while translation 1is treated classically. If the quantum mechanical
state is a unique function of the classical state then the problem will
be termed "single-channel', and if not, then it will be called a multi-
channel problem. Single-channel theory is useful at very low energies
where the quantum mechanical state has time to respond uniquely (adiabat-
ically) to changes in the classical state. For curve-crossing problems
(see the discussion of Landau-Zener theory) there may also be a high
energy (diabatic) limit in which single-channel theory is useful. A
channel is specified in terms of initial and final quantum mechanical

states; i.e. the initial state, o, and the final state, B, collectively




define a particular channel. It will normally be taken for granted that
two different channels are experimentally distinguishable except when
degeneracies occur at large separations.

The motivation for using a semiclassical theory is two-fold: to
decrease computational labor, and to simplify the problem of interpret-
ing experimental information. For some low energy atomic collision
problems it is found that the experimentally observed differential
cross sections display a surprisingly complex behaviour as a function
of the scattering angle. This behaviour clearly reflects at least some
of the details of the interaction between the different electromic
states of the composite system formed during the collision, regardless
of whether or not the composite system is stable. In particular, if a
detailed interpretation of the differential cross section is made, it
should be possible to extract information about the nature of inter-
atomic (or intermolecular) forces at small, as well as large, separ-
ations., Semiclassical theories have long been used to perform this type
of interpretation for single-channel problems, but it is only recently
that extensions to multichannel situations have been attempted (5-9).

The most interesting atomic collision problem is that in which the
impact energy is sufficiently high that the electrons no longer behave
adiabatically, but still low enough so that the nuclei are significantly
perturbed by the electronic rearrangement which occurs. (A low energy
collision is defined as one in which the impact energy is of the same

order of magnitude as the energy spacing between the relevant quantum



mechanical states, whether they be electronic or vibrational.,) For this
type of problem a fully quantum mechanical treatment is often feasible
(10,11), but will not normally yield much insight into the nature of the
process. A semiclassical approach, on the other hand, can lead to a very
detailed understanding of the way in which the system evolves in time.
Unfortunately, it is exactly this type of process for which the semi-
classical theory is very difficult to justify, In the high energy limit,

in which the nuclei are not significantly affected by changes in the

electronic state, it is not too difficult to justify semiclassical
theories such as impact parameter, eikonal, and related approaches (1,2,
12). similarly, in the very low energy limit in which the process may
be reducible to a single~channel problem, it is again easy to justify
semiclassical approaches (13,14). For intermediate energies, however,
the process is neither a single-channel one, nor are the nuclear equat-
ions of motion easy to determine. Some controversy exists as to the

appropriate form of semiclassical equations in this case. Two basic

approaches suggest themselves: time~dependent and time-independent.

The most sophisticated time-dependent approach seems to be that of

Pechukas (15), while the time-independent theory has been brought to a
comparable level of sophistication by Eu (16-18) and by Eu and Tsien
(19-20). In the time-dependent approach one is concerned with the evolution
of a quantum state in time, under the influence of a perturbation due to
"classical” nuclear motion., This theory is the natural extension of impact
parameter theory to low energy collisions., The time-independent approach

is concerned with the



evaluation of matrix elements between stationary scattering states of
the system, where the nuclear contribution to the state of the entire
system is determined using a generalization of single-channel WKB theory
(21). Both theories use equations which can be regarded as truncated
asymptotic expansions (22,23) of the corresponding quantum mechanical
expressions, but the original expressions used in each case are diff-
erent and the resulting semiclassical theories are apparently not
equivalent. The time~dependent approach starts by defining the quantum
mechanical scattering amplitude in terms of a Feynman path integral (24)
and by developing a second-order asymptotic approximation to this
integral expression. The time-independent approach begins with the
multichannel Schroedinger equation appropriate to the problem and dev-
elopes a uniformly asymptotic approximation to the solution of this
equation. Although the original (quantum mechanical) definitions of the
scattering amplitude in each case are compatible (i.e. the Schroedinger
and Feynman formulations of quantum mechanics are equivalent), the
final semiclassical approximations obtained in the two cases are not.
At the present moment there does not seem to be any way of determining
a priori which procedure is better. This apparent ambiguity in the def-
inition of semiclassical theories for multichannel processes is part of
the reason why it was stated earlier that the semiclassical theories
used here can be justified only after the fact. Tn the discussion to
follow, only time-dependent theories will be used, largely because of

their close relationship to "impact parameter type" theories, which have
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already been studied extensively.

In the discussion of semiclassical theory it is instructive to
distinguish between those theories in which one can, at least in prin-
ciple, observe the classical nature of the nuclei during the collision
and those in which one cannot., For example, during an atomic collision,
if the nuclear trajectories for the o » o and o +~ B events are identical
then it is at least conceivable that one could observe the nuclei as
classical particles (or possibly wave packets) during the course of the
entire collision. This is not a sufficient condition for "observability"
but it is at least necessary. On the other hand, if the nuclear traject-
ories for these two events are different, then one cannot even conceive
of how the point particle nature of the nuclei can be experimentally
observed during the collision., The distinction between these two types
of theories has been discussed by Delos and Thorson (25,26). As far as
the present discussion is concerned, the main point is that the der-
ivation of the semiclassical equations used here will normally be
developed independently of whether or not the classical particles are
observable as such, It is possible to use semiclassical theory to inter-
pret experimental information even though the classical nature of the
particles cannot be observed during the colligsion, For example, it will
be shown below that the differential cross section for a multichannel
scattering process is uniquely defined by the classical trajectories
which the nuclei follow during the collision, and by the electronic

"interpreting' an exper-

response to this nuclear motion. The problem of
imentally observed differential cross section can therefore be broken

up into two smaller proplems if @ semiclassical theory is used. The



first problem is that of understanding how the nuclei behave during a
collision., It can be solved either by inspecting the classical nuclear
trajectories themselves, or by inspecting the potential energy surfaces
which determine these trajectories. The second problem is that of under-
standing how the electroms are perturbed by nuclear motion during the
collision. This problem can be solved by inspecting the behaviour of the
coefficients which define the electronic state within a particular basis
set, Once both of these individual problems are understood it is not

too difficult to interpret the differential cross section as well,
Although the nuclear trajectories which are used in this interpretation
are not necessarily observable they are still very useful, in the sense
that they help one to develop an intuitively suggestive picture of the
collision process.

The theories used here will be put into two categories, depending
on whether the nuclei obey initial-value or boundary-value equations of
motion in time., In the initial-value theories the nuclear trajectories
for the series of events a + a, o > B, & + vy will all be  the same and
one can therefore, in principle, visualize the nuclei as being wave-
packets which are observable under the right conditions at high impact
energies (27). The inadequacy of an initial-value theory for low energy
collisions will be discussed in Chapter II. In a boundary-value theory
the nuclear trajectories for the o >~ o and o -~ B events are different
and this type of semiclassical theory can therefore be derived only
using relatively sophisticated mathematical arguments. Two different
versions of the boundary-value theory will be discussed in Chapter III,

while vibrational excitation will be considered in Chapter IV,



CHAPTER 1I. ELECTRONIC EXCITATION: INITIAL-~VALUE THEORIES

In a time-dependent approach the theory of low energy atomic coll-
isions can be developed in two stages, the first of which deals with the
effect of the nuclear motion on the electronic state, while the second
deals with the reverse effect. Because of this partial separation of the
two problems it is also possible to develop an interpretation of exper-
imental results in two stages, by first comsidering the effect of simple
nuclear motion on the electronic state and then developing better nuclear
models., The first stage will be discussed in this chapter. The form of the
electronic equations of motion is independent of the way in which the
nuclear motion is determined and the same electronic equations can there-
fore be used in conjunction with progressively more sophisticated nuclear
models until acceptable results are obtained. The simplest nuclear model
which will be considered is one in which the nuclei move in response to
a stationary energy surface; i.e. an energy surface which is a unique
function of the internuclear distance. A more sophisticated theory is
obtained when an "average energy surface" is used: the energy surface
is defined as an average over the existing electronic state at any part-
icular time (28-30). The "appropriateness" of these two theories, for
low energy collision problems, will be mentioned at the end of this chapter
once the electronic equations of motion are known. Both of these theories

are called initial-value theories because the nuclear force law at a
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particular time recognizes only the present and past electronic states.
The solution of the equations of motion is therefore characterized com-

pletely by the specification of nuclear and electronic states long before

the collision., (In a boundary-value theory the nuclear force law at a
particular time recognizes future, as well as past and present, elect-
ronic states.)

The main emphasis in this thesis will be on problems in which the

electronic (or vibrational) rearrangement during the collision exerts a

significant effect on the nuclear motion. The type of problem to be
considered will therefore be one in which the effect of nuclear motion

on electronic (or vibrational) motion is relatively simple, so that more
attention can be given to the reverse effect (which is more difficult to
handle properly). All of the calculations reported in this thesis were
performed either by using very simple electronic basis sets or by using
"model" electronic interactions based on molecular-orbital calculations
performed by other research groups. The discussion of electronic equations
of motion which is given below will therefore not be utilized very fully
in the actual calculations reported here, but was undertaken in order to
show that it is possible to develop fairly general, internally consistent,

electronic equations if the need for them should arise. (Note that atomic

units (36) will be used throughout.)
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A, Electronic Equations of Motion

Consider a system consisting of two nuclei (masses mA and m_) and
an arbitrary number of electrons. The relative position of nucleus B
>
with respect to nucleus A is R. Within the centre-of-mass coordinate

R .
system the position of the ith electron is r . The distance between the

i
ith electron and nucleus B is
N -
r = r, = m, R R
iB i —A—
m.A + mB

(Note that the mass of the electrons has been ignored in the definition
of the centre~of-mass.) The full hamiltonian, H , can be written as

_ 2 el ~
Hop = -1 V5 + Hop(r,ﬁ)

+
where u = m, mp /(mA.+ mB) and r stands for the ensemble of electron
el » -
coordinates, The operator Hop(r,R) contains the electronic kinetic energy
operators as well as the electron-electron, electron-nuclear, and nuclear-
nuclear potential energies. If the nuclei are treated as classical part-
el > >
icles then Hop(r,R) can be regarded as a time-dependent hamiltonian which
determines the electronic response to a particular nuclear trajectory.
el 7 3y e . : . . .
Clearly, H®(r,R) has no-explicit time-dependence, but it has an implicit
op
+
dependence on time through R(t). In what follows, it will be assumed that
the function B(t) is known in some sense, without yet specifying how it
.+
is known; i.e. R(t) is determined by some external criterion which is of

no interest at the moment. (This procedure can be best understood within
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a path-integral notation (24, pages 68~71).) The electronic response to

the nuclear motion is given by the solution of Schroedinger's time-

dependent equation

1 - > >
O (T,R) v(r,R,t) =i _a__) ¥(%,R,t) (1)
°pP ot/>
T
+
where it must be remembered that R is not an independent variable;
for example:
-5
SR
ot/- at/> > dt r,t
r r,R
where the subscripts indicate which variables are held fixed. The
electronic state is re-expressed as
> > > >
¥(r,R,t) = ij(R,t) <I>j(r,R) . (3)
h|

The validity of Eq.(3) will be discussed in more detail below. The states

®j(¥,§).are chosen in such a way that they approximately represent the

possible electronic behaviour for all values of R.

tions of motion does not really depend on how this
> =

will not be assumed that the states ®j(r,R) form a
> -

basis set; in addition to this, the Qj(r,R) may be

molecular orbitals, and in a many-electron problem

Slater determinants (31) or linear combinations of

The form of the equa-
choice is made. It
complete, orthonormal,
atomic orbitals or
they may be single

many Slater determin-
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ants., Substitution of Eq.(3) into Eq.(l) yields

-
T b.(R,t) BSNE,R) o, (5,B) = 1
PN | op J j\dt

3 }j(dbj (R,t)) e, (7,R)

(4)

. > > >
+ i § bj(R,t) (VR®j(r,R)) . %% i

* > ->
After pre-multiplying by @,(r,ﬁ) and integrating over r one obtains the
i

matrix equation

.+
b dR (5)
dc dt

i

o
i
[
=
O
lon
+
[

v

+
where H, N, and P are the hamiltonian, overlap, and momentum matrices (32),

respectively:
x> > 1,77 - > -
B, o= f o, (T,R) Hsp(r,R) ®j(r,R) dr
& > > N
N, o= [o (R o (r,R) d&f (6)
By i 3
> % > > > > >
By - f ¢, (r,R) {VR@j(r,R)} dr .

(Note that N and H are hermitian (33, page 120) while ﬁ:is neither herm-
itian nor anti-hermitian in general.) The quantity b is a column vector
whose elements are the coefficients bj(R,t). Before proceeding further
it will be convenient to discuss Eq.(3) in more detail, It is important

to recognize that Eq.(3) incorporates the so~called "low-energy approx-
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imation'; i.e. the assumption that the electronic states depend only on
; and ﬁ. As an illustration of this approximation, consider the proton-
hydrogen scattering problem. The electronic behaviour for this problem
can be described fairly adequately (34,35) using three hydrogenic
orbitals (ls, 2s, 2p) centred on each nucleus. In atomic units (36)

the orbitals centred about nucleus A are given by

d(lsA) = w—% e A
8(2sh) = (321r)_1/2 (2 - x,) oTTA/2 (7)
5(2pA) = (32m)~% 2, o~TA/2

where the z axis is parallel to the relative nuclear velocity R at
> >
large R and T, = [r + R/ZI (see page 1l1). These three orbitals are

normalized eigenstates of the isolated hydrogen atoms; that is,

2

-3 v,

- l/rA) & = E @& .,

However, they do not satisfy the time-dependent Schroedinger equation

for finite nuclear velocities even at large R, This is due to the fact
that the operators in the Schroedinger equation (Eq.l) are defined within
a centre-of-mass coordinate system while the orbitals are defined rel-
ative to moving nuclei. For example, when the operator (3/9t), is applied,

T
> >
the nuclear position R is allowed to move (since R is dependent on t)
>
while r is fixed, which has the effect of changing the electron-nuclear

distance Ty As a result of this change it is found that
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Il
<]
(=]
~
[at
~
o
=

) o(ry) R°TA

QJIQ)
t

(

Because this term is not zero, the orbital @(rA) will not satisfy Eq.(l)
at large R. As R approaches infinity, the left hand side of Eq. (1) will
contain a term of the type E@(rA) which is easily cancelled on the right
hand side by the introduction of a phase factor e--iEt in the definition
of @(rA). The term due to the dependence of @(rA) on R, however, will

not cancel with any other term, even at large R. In general, therefore,
if a basis set of the type represented by Eq. (3) is substituted into the
time-dependent Schroedinger equation, Eq. (1), it will be found that the
Schroedinger equation will not be satisfied in the limit as R -+ o, even
if the states ®j(¥g§) are eigenstates of the individual atoms. The inad-
equacy of this type of basis set was initially recognized by Brinkman

and Kramers (37) but has occasionally led to difficulties in subsequent
treatments of the problem (38). For the purposes of the present discuss-
ion, the formal inadequacy of Eq. (3) is of no particular interest except
insofar as it may lead to practical difficulties when the solution of

the Schroedinger equation is attempted. The most obvious way in which
these difficulties may arise is through the presence of ”non—physical"
off-diagonal coupling terms which do not disappear as R » «, If a trans-
ition probability for a particular process is to be uniquely defined, it
is necessary that H, N, and E become diagonal as R + «, The basis set

used in Eq. (3) does not always satisfy this requirement. As an example,
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consider the following matrix element of.E s as it is defined for the
proton-hydrogen problem:
[ 8(2pa) g__@usA))d?
dZ
- 5 *
where R = (X,Y,Z) and R = (0,0,Z) at large R. This matrix element can
be evaluated to yield (-8/2/81). The‘E matrix is therefore not diagonal
as R + », even though the guandiﬂ matrices are. The coefficients bj(R,t)
will therefore not approach stationary values asymptotically., It is
important that this type of off-diagonal coupling be recognized as being
spurious, in the sense that it is due to improper definition of the elec-
tronic basis set at large R. A formal solution to this difficulty is
available and has been discussed by Bates and McCarrol (39,40) in conn-
ection with the perturbed-stationary-state theory (41), It consists of
multiplying the orbitals Qj(;’ﬁ) by a phase factor eivz , where v is
proportional to the relative nuclear velocity and z is an electronic
coordinate. (Strictly speaking, this phase factor is applied to indiv~
idual atomic orbitals, not molecular orbitals. A discussion of the
problem of developing a general, workable, prescription for choosing
these phase factors has been given by Riley and Green (42).) The effect
of the phase factor is to take account of the fact that the electrons
possess translational energy (by virtue of being bound to a moving nucleus)
in addition to orbital energy. The formal difficulties mentioned ahove
are removed when these phase factors are used, but are usually replaced

by practical problems. In practice, the main difficulty introduced by the
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vZ

factor e’ is that one can no longer evaluate matrix elements of N,

ivz | .
introduces a Bessel function

H, andlg analytically since the term e
into the integrand of a two-dimensional integral over the electronic
coordinate (43). From a qualitative point of view, ignoring the phase
factors mentioned above is tantamount to ignoring the translational
energy of the electron compared to its orbital energy. This approxim=
ation will always be used in the present discussion, since it is quite
reasonable for the processes considered here. (For example, for the
proton-hydrogen system the translational and orbital energies of the
electron become comparable only at an impact energy of 12 keV in the
centre-of-mass frame.)

An associated approximation, which will also be used in this dis-~
cussion, is that of ignoring rotational coupling between electronic
states, This coupling arises from the fact that the operators in the
Schroedinger equation are originally defined in an inertial, non-rot-—
ating, reference frame, while the electronic states are most naturally
defined within a non-inertial, rotating, frame. The importance of this
type of coupling in proton-hydrogen scattering has been discussed
previously (44,45) and some experimental evidence concerning its import-—
ance in other scattering problems is also available (46,47). A thorough
treatment of rotational coupling, as it applies to impact ionization
collisions, has been given by Thorson and co-workers (48, and references
cited therein). If rotational coupling is ignored, the operator VR in

>
the definition of P [Eq. (6)] can be replaced by 3/3R. The equations

of motion [Eq. (5)] therefore have the form
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Hb = iNdp + iPhaR (8)
dt dt
where
x> > > > >
By [ o.G,®) {8<I>j(r,R)/3R} ar . (9)

The procedure of ignoring the phase factors mentioned above can
have two serious consequences in practice, even though the approximation
may in fact be a valid one, in the sense that the translational kinetic
energy of the electron is much less than its orbital kinetic energy.
First of all, it can lead to spurious off-diagonal coupling between
states at large R. If it is clear that the low-energy approximation is
valid, then these coupling terms can simply be deleted from the P matrix,
The second problem which may be introduced by the low-energy approxim-—
ation concerns normalization conservation. Green (49) has shown that
this approximation may destroy both normalization conservation and
detailed balancing, particularly when it is made within a non-ortho-
gonal basis set. A brief discussion of both of these features of the
equations of motion will therefore be given, in order to show that the
equations can be developed in such a way that these two properties are not
destroyed,

If the basis set in Eq. (3) is regarded as a valid representation

-
of the electronic state at arbitrary R and t, then the equations of
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motion of the electronic state are given by Eq. (8), which can he re-

written as

@ - -iN'Eb - N'RDa&R (10)
at dt
The following property of N is of interest:
AN, = d [eED s GR d
dr dr J
% > >
= [ {39, (,R)/oR} o, (x,R) dr
* >
+ [ e[E,B (20, (£,R)/oR} dr
= .. + P.. .
1] —J1
Therefore
P+ - an (11)
R

where it must be remembered that §/9R operates with the electrons held
fixed within a centre-of-mass, Cartesian, coordinate system so that a@j/aR
is non-zero even though ®j may be an atomic orbital of the form ®j(rA)

or Qj(rB). The radial momentum matrix, P, is clearly anti-hermitian

if (and only if) the basis set is orthogonal. Fortunately, a proof of
normalization conservation does not require that P be anti-hermitian,
although the hermiticity of N and H is needed. The "normalization

constant'" is given by
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[ v &R0 vE,R,0) df = binp (12)

after using Egqs. (3) and (6). (Note that bﬁ, the hermitian conjugate of
b, is a row vector whose elements are complex conjugates of the corresp-
onding elements of b.) Normalization will be conserved if d(hfg_h)/dt = 0,

where

. (13)

Da'Da
ctlic*

S

a @' ( +)EJ?. + b.*(d_u
dt dR

(@*)_N__b_ - ip'Hp - pEH &

dt t

By =-iptEn - pEbR .
dt t

Therefore, after using Eq. (11), we find

e =0 . (14)
dt
Normalization is therefore conserved within the low-energy approximation
even if the basis set is not orthogonal. The only properties of the
matrices which have been used in this derivation are the hermiticity
of N and H, and the fact that P satisfies Eq. (1l1). The matrices N, H,
and P display these properties quite generally; i.e. they display them

independently of the nature of the basis set, whether it be orthogonal
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or non-orthogonal and whether it consist of atomic orbitals or molecular
orbitals. This conclusion is somewhat more optimistic than that reached
by Green (49, section 6) concerning normalization within the low-energy
approximation, apparently because the equations of motion used on page
1027 of Ref. 49 do not contain any equivalent of the P matrix. (Note
that it is not claimed that the present equations of motion constitute
an unambiguous formulation of the low-energy apprbximation, but simply

that they are intermally consistent. Furthermore, the problem of eval-

uating P in practice may well be non-trivial in some cases.)

Before discussing detailed-balancing (49~51) we will first show
that the equations of motion are invariant under a transformation of the
electronic basis set and will mention a few properties of the different
types of basis sets which are available. If the equations of motion are
invariant under transformation then it is possible to carry out formal
proofs of certain properties of the equations within special represent-—
ations of the electronic state instead of continuing to use the general

basis set described above., For example, it will be possible to show that

detailed~balancing is satisfied within the diabatic representation (32),
If an expression of detailed-balancing within a general basis set is req-
uired, it can be obtained simply by transformation of the diabatic express-—
ion of this property, assuming that the equations of motion are invariant
under transformation,
Consider a situation in which the original description of the elec-

. . ‘+ + 3 » . + —+

tronic wave-function Y(r,R,t) is given in terms of the basis set {éj(r,R)}

> >
as shown by Eq. (3). A new description of the same state, v¥(r,R,t), is
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+
desired, in terms of a new basis set {@3(?,?)} where the éj(r,ﬁ) are
> -
R-dependent linear combinations of the Qj(r,R) states. The new descrip-

> >
tion of vy(r,R,t) is given by

+
¥(r,R,0) = ] blR,t) @5(?,?) .
N

The relationship between the new and old basis sets is given by
- > >
8! (r,R) = ) W..(R) ¢,(%,R) (15)

where W(R) is an arbitrary square matrix. The transformation procedure
is to be developed in such a way that it does not change the "physical
content" of the equations; i.e. the state W(;,ﬁ,t) ig to be unaffected
by the transformation. The constraint that w(;,ﬁ,t) be unaffected by the
transformation defines a relationship between the.h(R,t) and bﬁ(R,t)

vectors:
b' = W b (16)

where b(R,t) contains the components of W(z,ﬁ,t), as it is projected
onto the old basis set, {@j(?,ﬁ)}, while b'(R,t) contains the components
of the same state w(;,ﬁ,t) in the new basis set. It is also possible to
relate the matrices defined wusing the old basis set to those defined
using the new basis set. The N, H, and P matrices transform according

to the following equations:
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N = WNu
T + 17
B WHW (17)
Po- wrw o+ WNa W

drR

where the primes indicate matrices defined using the basis set {@3(?,%)},
For problems in which there are no electronic degeneracies at large R
the transformation W(R) will be defined to approach the identity as

R + «, If Egs. (16) and (17) are used to derive new equations of motion
(for'h'(R,t) in terms of transformed matrices), then it is clear that
the observable results defined by the new equations of motion will be
the same as those defined by the original equations of motion in the
old basis set. What is not clear, however, is the form of the new equa~-
tions of motion. If the equations of motion for b'(R,t) possess a diff-
erent form than those for b(R,t) then, for practical purposes, it will
be very difficult to relate numerical results obtained using two diff-
erent types of basis sets even though the basis sets may be physically
equivalent in the sense implied by Eq. (15). To display invariance
under transformation it is necessary to derive equations of motion for
b', starting from Eq. (10) and using Eqs. (16) and (17). The following

identities are useful:

-1
NHEb = W Q@D H b
(18)

Npb o= W@ b “(& B
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Equations (10) and (18) imply

d @b = ~iW@EHTE' R - W@aHTR 'k
dt dt
+ &E)h‘i& :
dr de
Therefore
. -1 -1
@' = —anTe e - anTe y @ .
dt dt

The form of the electronic equations of motion is therefore invariant
under a transformation of the electronic basis set. (Note that this
invariance is not something that can be taken for granted; for example,
the equations of motion used in the average-energy-surface theory (28-30)
do not display it.) Because of the invariance of the form of the equat-
ions, it is possible to transform from non-orthogonal to orthogonal

basis sets quite easily, at least in principle. (The practical difficult-
ies associated with such transformations are discussed below.) For
example, within an adiabatic representation (32), where N = 1 and

H = ED (diagonal), the equations of motion can be written down by

inspection:

(19)

where P is an anti~hermitian matrix [see Eq. (11)] defined using
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adiabatic molecular orbitals. Similarly, in a diabatic representation

(32), where N = 1 and P = 0, the equations of motion are:

= -iHb (20)

where H is defined using diabatic states. The formal invariance of the
equations is of interest for the following reason: it is often conven—
ient to perform numerical calculations within a non-orthogonal atomic
orbital basis set while, at the same time, the interpretation of the
results may be simplest within an orthogonal, either diabatic or adiab-
atic, representation. The invariance of the equations of motion allows
one to transform at will between different basis sets whenever the need
arises. This procedure does not simplify the numerical problem in any
way, but it does allow for more flexibility in the interpretation of
results, If the original basis set consisted of non-orthogonal atomic
orbitals (AO's) and if expressions for N, H, and P in this basis set
are available, then there will not normally be any point in trying to
transform these matrices into an orthogonal basis set before the
equations of motion are solved. The best procedure will usually be to
solve the equations of motion within the original basis set and then

to transform the results into a different representation if desired.
However, some exceptions to the rule exist. For example, in resonant
charge exchange problems it may be possible to partially de~couple the
equations within an adiabatic representation using symmetry arguments.

In this case the advantages of de-coupling override the numerical diff-
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iculties associated with the tramsformation to an adiabatic basis set.
Similarly, in some cases it may be found that a transformation to a new
representation allows one to truncate the basis set even further than

originally supposed.

The difficulties associated with the transformation from an AO
to an adiabatic (or diabatic) basis set can be seen by inspecting Eq. (17).
In each case the transformation is uniquely defined by W(R). In the
transformation from an AO to an adiabatic basis set, W(R) must satisfy

[see Eq. (17)]

W+N W = 1
- "' (21)
+ .
WHW = —H-'D (diagonal)
where ED is the adiabatic hamiltonian. This can be rewritten as an
eigenvalue problem:
-1
NHW = WH (22)

J

The solution of this eigenvalue problem is not very much more difficult
than the diagonalization of a single hermitian matrix (52, page 188);
however, it would still be impractical to try to solve Eq. (22) at each
particular R value encountered in a collision calculation. The only prac—
tical way to perform this transformation would be to solve Eq. (22) at

a small number of discrete values of R and then obtain W(R) (and incid-

entally ED(R) and P(R)) by interpolation or curve-fitting. The resulting
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matrices allow one to solve the electronic equations within an adiahatic
representation,
The W(R) matrix which effects the transformation from an AO to a

diabatic basis set must satisfy the equations [see Eq. (17)]:

I=
1=
=
]
J—

(23)

Eﬁ

=
2w’
|=
-+

Wwo=0 (24)

|
I

Nd,
drR

where P and N are known within an AO basis set. It can be shown that a
simultaneous solution of Eqs. (23) and (24) is given by the solution of
the following equation:

W= -x'pu (25)

d_
dr
subject to the initial conditions thatlﬂ(w) be unitary (i.e. Eﬁﬂ -1
as R »«). If W(R) satisfies Eq. (25) then it will clearly satisfy
Eq. (24) as well. All that remains is to show that a solution of Eq. (25)
is also a sgolution of Eq. (23)., Comnsider
.{<

dwyNw = (dyf/dR) N W+ f(dg/dR) W+ f}\l (dW/dR) .

dR

If W(R) satisfies Eq. (25), then

_@_(W+N W) = W [-pl + (dN/dR) - PI1 W
dR T T T - 7 - -7 ?
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and Eq. (11) implies

wrw = 0 .

d WNW
dr
Therefore, if a solution of Eq. (25) satisfies Eq. (23) at a particular
value of R, then it will do so for all R; furthermore, the initial cond-
itions associated with Eq. (25) ensure that W(R) will satisfy Eq. (23) as
R - », since the basis set will invariably be defined in such a way that
N +~ 1 as R » «, The transformation matrix W(R) can therefore be obtained
by solving Eq. (25), which should not be too difficult in principle since
it is a linear, first-order, equation. It is therefore possible to rigor~
ously transform the N, H, and P matrices from a non-orthogonal A0 basis
set to a diabatic basis set, so that the equations can be solved within
this representation. In practice, of course, the only feasible approach
would be to calculate W(R) at discrete values of R and obtain intermediate
versions of W(R) [and the diabatic hamiltonian H'(R)] by interpolation.

The preceding discussion shows that, although it is possible to
transform rigorously from an AO basis set to a diabatic (or adiabatic)
basis set, this transformation procedure will not normally be of any
practical value, except in those cases where the basis set within the
new representation can be drastically truncated compared to the one used
in the AO representation. The main value of the transformation proced-
ure lies in the fact that it allows one to develop a set of alternative
viewpoints of the collision process, all of which are physically equiv-
alent but look quite different mathematically,

A serious problem encountered in ab initio discussions of elec-

tronic excitation is that of deciding what kind of basis set to use.
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Most molecular orbital (MO) calculations are performed using adiabatic
states, which may be very convenient in discussions of molecular spec-
troscopy, but are not nearly as useful in collision problems. In coll-
ision theory the diabatic representation would frequently be the most
convenient one to use (36,55), except for the fact that it is not easy
to develop a diabatic basis set rigorously in practice. A very promising
method of handling this problem has recently been discussed by Sidis
and Lefebvre-Brion (56). Their approach makes full use of existing MO
theory, while at the same time ensuring that the results of the MO
calculation will be of interest to the collision theorist. The choice
of basis set for the three physical systems considered in this thesis
was not very difficult. For the H—Be++ system an ab initio calculation
was performed (30) using an atomic orbital (non-orthogonal) basis set. The
interpretationnz was aided by transforming to an adiabatic basis set,
but this transformation was performed only after the original equations
had been solved. For the He+— Ne system (Ref. (53) and Chapter III) the
equations were solved within the diabatic representation. In this prob-
lem the diabatic hamiltonian was obtained semi-empirically (54); no
attempt was made to perform a rigorous transformation into the diabatic
representation. For the vibrational excitation problem (Chapter IV) it
was possible to define a diabatic basis set quite rigorously, because of
the simple form of the hamiltonian operator, and the equations were solved
within this basis set.

It is perhaps worthwhile noting that the problems associated with

the calculation of P will depend a lot on the nature of the basis set,
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For example, if an AO basis set (in which the orbitals are all of the
type @(rA) or @(rB)) is used, then only one type of contribution to P
will arise: that due to the dependence of T, and r, on R, when T is
fixed. In a molecular orbital basis set two quite different contribut-—
ions to P will arise since the molecular orbitals will be R~dependent
linear combinations of atomic orbitals: the molecular orbitals will
depend on R through r, and r, as mentioned above, but they will also
have an R-dependence due to the coefficients in the linear combination
of atomic orbitals. There ig, however, one feature of P which slightly
simplifies the problem. It can be shown that any square matrix such as P
(which is neither hermitian nor anti-hermitian) can be uniquely written

as a sum of hermitian and anti-hermitian matrices; i.e. P = A+ B, where

A = @+2hH/ (hermitian)

B ® - Eﬁ)/Z (anti-hermitian)

Equation (l1) now implies that A = % dﬁ/dR. Therefore P can always be
written in the form

P o= N + B (26)

14
2 dr
Where_g is anti-hermitian. The interesting feature of Eq. (26) is that
it may provide a worthwhile starting point for an approximate method of
evaluating P, for two reasons: 1) as long as B is anti-hermitian, norm-
alization of the wave-function will automatically be conserved; i.e. one

can evaluate B approximately without destroying normalization conservation.
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2) In an atomic orbital basis set B will probably not be very important
as a source of off-diagonal coupling (see proton-hydrogen example below).
If the basis set is strongly non-orthogonal, then the N, H, and dN/dR
matrices may well contain all of the interesting off-diagonal coupling
terms and it may be reasonable to evaluate B only approximately. (Note
that in the adiabatic representation the situation is quite different
since, in this case, B is the only source of off-diagonal coupling.)

An example of a case where P can be easily evaluated and where the
transformation theory developed above can be used to good advantage is
given by the proton~hydrogen system. Consider the basis set and coordin-
ate system of Ref. (28); it will be shown here that the P matrix for this
problem possesses a fairly simple structure and that the implications of
the present equations of motion [Eq. (10)] are rather different from
those used in Ref., (28). The P matrix consists of the following type of

matrix elements:

f@’z (2¢,/22) dr

where the Z axis is parallel to ﬁ, and where @i and @j are any members

of the set of orbitals {ls(A),Zs(A),sz(A),ls(B),ZS(B),ZpZ(B)}. An eval-
uvation of P shows that the major contributions are of the type represented
by 4 dN/dR in Eq. (26). (The matrix elements of N(R) have been tabulated
by Corrigall (57).) That is, P is almost entirely hermitian. This is due
largely to the fact that the centre—-of-mass of the system lies at the mid-
point of E. If P is expressed in the form of Eq. (26), then it can be

shown that B is given by
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where the ordering of the states is as shown above, o = 8/2/81 , and the
non-zero matrix elements are all of the type discussed on page 16. The

matrix B therefore consists entirely of spurious terms, due to the neglect

ivz

of the high~energy phase factor e . Lf these terms are ignored the

equations of motion for the proton-hydrogen system become [see Eqs. (10)

and (26)]
_I\_I_) b dR . (27)

From Ref., (28) it is known that N and H (and therefore dN/dR) have the

structure

=

]
)
W,

(28)
D C
where C and D are 3 x 3 hermitian matrices. This structure expresses the
fact that the charge-exchange process in the proton-hydrogen system is
resonant. Consider a change of basis set, defined by the transformation

matrix
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1 -1

W = (29)

1 1

where 1 is a 3 x 3 identity matrix, The states in the new basis set are

either gerade or ungerade linear combinations of atomic orbitals., The

transformed version of a matrix of the type shown in Eq. (28) is

@
>
o

M' = 2 . (30)
o &D

The transformed matrices (N', H', and dN'/dR) are therefore block
diagonal, After making use of Eqs. (16) and (17) it can be seen that

the equations of motion for the coefficients in the new basis set are
partially de-coupled., Instead of six coupled equations of motion for the
old coefficients one has two independent sets of three coupled equations
for the new coefficients, Furthermore, the three coefficients for the
gerade states (which may be labelled 1Sg’ ZSg, 2pg) obey a normalization
conservation law independently of the three coefficients for the ungerade
states, and vice-versa. If the expression for the average-energy-surface
(28), E(R,t) = Eﬁglhjis examined, it can be seen that E(R;t) is:a-sum of
two terms (within the new basis set), one of which comes from the three
gerade states while the other comes from the three ungerade states, An
inspection of the individual terms shows that the gerade contribution to
E(R,t) is necessarily greater than %V(ldg) where V(lag) is the energy of
the (adiabatic) ground state, while the ungerade contribution is necessar-
ily greater than %V(lgu), the energy of the first (adiabatic) excited
state. The present prediction of the absolute minimum of the average

energy surface is therefore greater than any of the dynamic energy sur-
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faces shown in Fig. (3) of Ref. (28). From a qualitative point of view
this conclusion is quite important; the calculation of Ref. (28) implies
that there is no low-energy "adiabatic'" limit even when the impact energy
is below thermal energies, while the equations discussed here [Eq. (27)]
imply that a low—energy limit can be defined, in which the energy surface
is simply an average of the two lowest adiabatic energy surfaces, V(log)
and V(lgu)° (Note that symmetry arguments of this type are very useful

in the general theory of resonant charge~exchange (58-~60). This point
will be re-examined in Chapter III.)

Given the fact that conclusions reached in one basis set can be
applied to other basis sets as well, by transformation of the appropriate
equations, the discussion of detailed-balancing can be carried out within
the diabatic representation., It is convenient to first convert the equat-
ions into an evolution matrix notation. Consider the column vector hi(R,t)
representing a state at time t which in the far past, at time t', was the
i th eigenstate of an unperturbed atom. If a second column vector EJ(R,t)

is defined as representing a state which initially was the j th eigenstate,

i .
then it is found that b (R,t) and P}(R,t) evolve independently in time.
In general, if the basis set consists of n states, one can visualize n
unique ways of preparing the column vector b(R,t) initially, each of which

leads to a unique final state., Consider a square '

'evolution matrix" U(t,t'),
i

defined such that the i th column of U(t,t') represents a state [b (R,t)]

which was initially the i th eigenstate of the system. The evolution

matrix contains all of the information needed to follow the evolution of

any state in time, regardless of how that state was prepared. Because the
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columns of U(t,t') evolve independently, Eq. (10) can be re-written as an

equation for the evolution matrix:

4 e,y = - NEUGEE) - KR UCEE) &L (3D

dt dt

Within the diabatic representation this becomes:

d Ule,t") = -i HQR) U(t,t") . (32)
dt

It can readily be shown that U(t,t') has the following properties within

the diabatic representation:

_U_(t"t') - —];
H(t",t') = _[_I_(t",t) U(t,t") (33)
_Q_l(t,t') = _If(t,t') = u(t',t)

Consider a problem in which the origin of the time axis is defined
such that t = 0 at the turning point of the nuclear motion. With this
restriction a scattering matrix § will defined such that

5 = lim U(r,-7) (34)

T

From Eq. (33), therefore:

S = lim y(r,0) U(0,-1)
T->co
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By comparing the equations of motion (and initial conditions) of U(r,0)

and U(0,-t) it can be shown that

U(t,0) = U (0,-1) (35)

if (and only if) the classical trajectories R(t) for the incoming and
outgoing portions of the collision are mirror images of each other; i.e.

if R(t) = R(-t). (See, for example, Eq. (26) of Ref. (61).) Therefore,

s = lim y(r,0) v°(1,0) . (36)
T->00

That is, the S matrix is symmetric as well as being unitary. Since S is
symmetric the transition probability for the a - B event will equal that
for the 8 -~ o event. For two-body scattering this symmetry is observed
only when the potential energy surfaces for the incoming and outgoing
portions of the collision are identical, Equation (36) is the desired
expression of detailed-balance. It is of some interest as a check on
computational precision (51) as well as being useful in formal manipul-
ations of the equations of motion. It must be noted that this expression
of detailed-balance has meaning only when the same nuclear trajectory is
used for all electronic events i ~ j, regardless of i and j. When a more
sophisticated nuclear model is developed (Chapter III) the definition of
detailed-balance must be appropriately revised.

In practice, the origin of the time axis will not be at the turning

point of the nuclear motion. Instead, time will be zero at some point RO
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long before the interaction region is reached. The effect of this change
in the time axis is simply to introduce additional phase factors into
U(t",t') without changing the magnitudes of any transition probabilities.
Before an attempt is made to solve Eq. (10) or Eq. (31) in practice,
it is convenient to introduce a modification in the definition of the
states éj(¥,§) of Eq. (3). Normally, as R = «, the N, H, and P matrices
will become the identity, diagonal, and zero, respectively. Because the
H matrix does not approach zero as R + ® the phase of the coefficients
Ej(R,t) for Eﬁi<t’t')] will not be stationary at large R, although their
magnitudes will be constant. For example, if

lim H(R) = E

R0

where E is diagonal, then at large R
~iE.:t
hj(R,t) = Lhi(w)l e —JJ (37)

where ij(w)l is constant. The time-dependence of the phase factor of
Ej(R,t) decreases the efficiency of the calculation and can be analytic-

ally removed by a transformation W(t) [Eq. (15)1, where
(t) = s, o £33t (38)

The introduction of this transformation is tantamount to using states of

—iE-jt

> >
the type Qj(r,R)e —J in Eq. (3). The transformed matrices and equations

of motion can be quickly derived, and it is seen that the phases of the
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new coefficients, _‘tij' (R,t), are stationary at large R, while their magnit-

udes are unaffected by W(t).



B. Stueckelberg-Landau-~Zener Theory

Since both of the electronic excitation calculations presented
here involve curve-crossing (1,2) of two electronic states it is conven-
ient to discuss a few of the ideas associated with the Stueckelberg-
Landau-Zener (SLZ) theory of curve-crossing. The simplest example of
this phenomenon is an atomic collision in which the electronic state can
be described as a linear combination of two atomic orbitals, which may
or may not be on the same atomic centre., If the energies of the two
orbitals are accidentally degenerate at a particular internuclear dist-
ance Rx and if the off-diagonal coupling in a neighbourhood of RX is a
non-zero, slowly varying, function of R, then it will be said that the
system displays a curve-crossing. In general, the two states which become
degenerate at R, do not have to be atomic orbitals: all that is required
is that they violate the "non-crossing rule" (62). For the purposes of
a qualitative discussion, states which violate the non-crossing rule will
be loosely termed "diabatic" (36,55), keeping in mind that it is possible
to define diabatic states quite precisely (32). It will normally be taken
for granted that the behaviour of the atomic orbital and diabatic hamil-
tonian matrices is qualitatively similar, as described above.

The curve-crossing problem is of fairly gemeral interest as an
efficient mechanism for electron transfer and/or excitation during atomic
and molecular collisions., It was originally discussed by Landau (63,64)
and Zener (65). Zener's treatment made use of the fact that the time-

dependent semiclassical equations of motion within a two-state diabatic
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representation can be reduced to the form of Weber's equation (66) if
the hamiltonian matrix elements are evaluated approximately., Both theories
assume that the difference between the two diagonal elements of the

diabatic hamiltonian, H

'"ll(R) —.§22(R), is a linear function of R (at

least within a small region around RX) and that the off-diagonal coupling
512 is constant. There is no need to assume that these restrictions are
satisfied at all R, but they must be satisfied within the neighbourhood
in which the "transition" occurs (see below). The probability of a non-
adiabatic transition during a single passage through the curve-crossing

region is then given by
2
P = EXP(—ZWYEIZ /Vld(ﬂll ~ Hyp)/dR]) (39)

where v is the radial velocity at R = R, and the matrix elements are
evaluated at RX. During a collision the nuclei will pass through the
curve—~crossing region twice., The Landau and Zener theories assume that
these two events are essentially independent; i.e. the probabilities for
the two events can be calculated separately and multiplied together to
obtain a final transition probability. (For example, the probability of
an inelastic event . would be 2P(1 - P).) A more sophisticated treatment of
the problem was developed by Stueckelberg (67) using "connection formulae"
to relate the solution valid for R > RX to that which is valid for R < RX“
This method is reminiscent of the procedure sometimes used in single~
channel WKB theory to relate the WKB solution valid in the classically

allowed region to that valid in the classically forbidden region (see the
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discussion on page 656 of Ref., (20)). Stueckelberg's procedure has been
discussed in detail by Delos and Thorson (61,68). It yields the following

expression for the final transition probability,(?, for an inelastic event:
, 2
@ = 4P(1 - P) sin" ¢ (40)

where P is given by the Landau-Zener formula [Eq. (39)] and ¢ introduces
the possibility of rapid oscillations in (P as a function of impact energy
or impact parameter. (These will be called Stueckelberg oscillations.)
The exact definition of ¢ depends to some extent on the nature of the
nuclear model and will be discussed in more detail below.

As mentioned above, the original version of SLZ theory made use
of the idea that the two passages of the nuclei through the curve-cross-
ing region could be regarded as independent events. This will be true if
the off-diagonal coupling (in the adiabatic representation) is sharply
peaked about RX and if the turning point of the nuclear motion, Ro’ is
sufficiently far away from RX that the off-diagonal cdupling at Ro is
negligible, More recent treatments of SLZ theory have somewhat relaxed
this restriction (69-71), but it remains an essential part of the SLZ
"picture" of the curve-crossing mechanism. The assumption that the matrix
elements of the diabatic hamiltonian are linear in R has also been mod-
ified to include the possibility that H may be an exponential function
of R (72-74). In addition, the SLZ theory of electronic motion has been
discussed in connection with nuclear models which are considerably more

sophisticated than those used in the original development of the theory
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(18,75,76) .

For the purposes of this discussion, two features of SLZ theory are
of special interest: 1) the concept of a fast transition, and 2) the behav-
iour of the phase ¢ in Eq. (40). It is clear that within the diabatic
representation the electronic transition will not appear to occur quickly,
because the off-diagonal coupling ElZ(R) is a non-zero (generally monotonic)
function which induces "transitions" over a broad range of R (see Section
C of this chapter). Within the adiabatic representation, however, the
electronic Fransition will appear to occur within a relatively localized
region around R,. (Note that the final, observable, transition probability
is the same in both cases.) This can be illustrated by considering a two-
state diabatic hamiltonian H(R), defined such that_gll(RX) = HQZ(RX).
Within the diabatic representation the off-diagonal coupling is given
by_ElZ(R) =‘§21(R). It can be shown (32) that the off-diagonal coupling
in the adiabatic basis set is peaked‘about.R =R . The transformation,

W(R), into the adiabatic basis set must satisfy [Eq. (17)1]:

- (41)

HW = H (diagonal)

where ED(R) is the adiabatic hamiltonian. The W(R) matrix is therefore
given by

(42)

cos o =-sin o
ww - | |

sin o cos o
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where

tan(2a) = 2 ElZ /(Ell - EQZ) . (43)
In the adiabatic basis set the off-diagonal coupling is given by 212,
where P satisfies [Eq. (17)1]:

2 = w'(aw/ar) (44)

( 0 -~da/dR

do/dR 0

If it is now assumed thatﬁ12 and d(Ell —‘Ezz)/dR are constant within a
neighbourhood of Rx, then it is easily shown that.Elz(R) has a Lorentzian
line-shape, centred about R = R,, with a full-width-at~half-maximum of

6RX units and a peak height of 1/6RX, where

SR, = laglz(RX)/[d(g_ll-};22>/dRJR=RXI . (45)
Therefore, as long as the linear approximation to the matrix elements of
H(R) is valid, the off-diagonal coupling within the adiabatic represent—
ation will be localized within the curve-crossing region, where the extent
of this region is given by GRX. (A more general discussion of the shape of
EiZ(R) in an adiabatic representation has been given by Oppenheimer (77).)

If one considers a collision in which the turning point of the nuclear
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motion, Ro’ is less than Rx - %SRX, then within the adiabatic represent-—
ation the electronic rearrangement will seem to occur in two well defined
stages, one for each passage through the crossing point, The quantity SRX
can be regarded as a definition of the width of the "transition zone"
about RX. (Note that at high impact energies this definition may fail
(73,78,79).) The collision process, as it is viewed within the adiabatic
representation, can therefore be broken up into segments. Beginning at
time t' in the far past, the system will evolve adiabatically until the
point RX + %SRX is reached (at time tl - €), at which time it will temp-

orarily evolve non-adiabatically until R = Rx - %5RX (at time t, + €).

1
It will then evolve adiabatically (if R < RX - %SRX) until the second
curve-crossing region is reached on the outgoing portion of the collision
(at time t2 - €) and will experience a second non-adiabatic perturbation

in the time-interval (t2 - €,t, + ), after which it leaves the interact-

2
ion region and concludes its journey adiabatically. The corresponding

evolution matrix can be written as

u(t",e") ='g(t"’t2+e)g(t2+e,t2-€)gﬂt2—e,t1+e)g(tl+e,t1—e)§(tl—e,t') (46)

Where‘g(t2+g,t2—e) and‘g(t1+€,tl—e) represent the evolution during non-
adiabatic portions of the motion, and are therefore non~diagonal in any
basis set. The other three evolution matrices in Eq. (46) represent adiab-
atic evolution and are diagonal within the adiabatic representation. If
the transitions at t; and t, occur sufficiently quickly, then Eq. (46)

can written as (74):
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t
U(e", e = A"ty T7ACt,,t) T A(t,,t") (47)

where the A and T matrices are defined within an adiabatic basis set, and
a typical A matrix is given by
t2

exp(-1 S'E; (R) de) (48)

_A_ij(t?_,tl) = §.. ‘)

ij
where Ejj(R) is an adiabatic energy surface. (The discrepancy between the
present definition of the A matrices and that of Ref. (74) will be disc-
ussed in Section C of Chapter III.,) The T matrix represents non-adiabatic
evolution and is determined entirely by the diabatic matrices E(RX) and
(dg/dR)R=Rx, and the nuclear velocity at R = RX. Equation (47) contains

the assumption that the nucleay ‘motion at time t_ is a mirror image of the

2
motion at time t;; i.e. ﬁ(tz) = —ﬁ(tl). This will not always be strictly
true (see Chapter III) but it is a good first approximation since the two
adiabatic surfaces,'gll(R) and_Ezz(R), will be quite close to each other
at R = RX and the ambiguity in ﬁ(RX) is therefore not very great, It is
interesting to note that Eq. (47) may be sensible even if SLZ theory is
not valid. The only major assumption incorporated in Eq. (47) is that the
transition occurs quickly, regardless of what the mechanism for the trans—
ition is. Since T is unitary it can be written as (74):

[ 1 .
(1-p)* et P/2 e18

=T —Pl/2 1B (l--P)l/2 e~ia 49
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where P is the probability of a non-adiabatic transition during a single
passage through the curve-crossing region, The phases o and g will be
called non-adiabatic phases. The final elastic and inelastic transition

amplitudes are therefore given by

/4

¢ o .
Uy, (", EY) = exp(-1 fB; (R)dr) [(1-p)eP¥M) 4 pem(26¥M) g
U . h
exp(-i fE  (R)AE)  (50)
t
+ " . -
U, (t",t") = PZ(1-p) % exp (-1 JE, ,(R)dt) ptlott-n) | ~iotging) g,
B tz %,
exp(~i {Ell(R)dt) (51)
t, £

where ng =éf'Eii(R) dt, i = 1,2, Equations (50) and (51) are useful in

the discussion of multi-trajectory curve-crossing theories (15,54) where

the phase Of-Ell(t"’t') and le(t",t') determines the nuclear trajectory.
The inelastic transition probability obtained from Eq. (51) can be

written as:
5, (e"e1% = 4p(L - P) sin’lo + 8 + (n,mn;)/2] (52)

which has the form of Eq. (40), with ¢ = o + 8 + (nz—nl)/Z.'It is now
possible to identify the source of Stueckelberg oscillations. The phase ¢,
which induces the oscillations, is composed of an adiabatic contribution
given by %.g?ill(R) —'EZZ(R))dt’ and a "non-adiabatic" phase shift rep-
resented byla + B. The adiabatic contribution to the Stueckelberg oscill-
ation allows one to relate the frequency of the oscillation to the split-

ting between adiabatic energy surfaces in a way which is strongly remin-

iscent of resonant charge-exchange theory [see Eq. (13) of Ref. (36)].
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(Note that the discussion presented here assumes that only one nuclear
trajectory is found within a particular channel. If more than one nuclear
trajectory is used within one channel then the interpretation of the
adiabatic contribution to the Stueckelberg phase changes somewhat (see
Ref. (54) and Section C of Chapter III).) The non-adiabatic phase shift
has been discussed by Child (73,80) and Kotova (8) and is of dinterest
whenever a direct comparison between SLZ theory and the exact result is
attempted (81,82). For the purposes of the present discussion it can be
taken to be ¥m (82).

Before concluding this section it is useful to discuss the behaviour
of the Landau-Zener result at very low and very high energies. At low
energies the probability P of a non-adiabatic transition during a single
passage through the curve-crossing approaches zero and therefore
U, (£"5eh) 12 5 0 in Eq. (52). This type of behaviour will be called the
adiabatic limit. At high energies, however, we again find that

U t”,t')l2 + 0 since P » 1 in this limit. The behaviour of the system

~21(
during a collision in which P ~ 1 will be called diabatic. In both the
adiabatic and diabatic limits the collision problem may be handled using
single-channel theory (keeping in mind that the behaviour at high energies
may be complicated by the presence of a manifold of highly excited states).
The theoretical interest in the diabatic representation (32,36,55) seems

to stem from the fact that some of the most interesting experimental
information produced for systems such as He-He+ and Ne—He+ has been

obtained in the high energy limit, The behaviour of the final transition

probability as a function of impact parameter is qualitatively different
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in the adiabatic and diabatic limitst At low energies the "envelope'",
4P(b) (1 - P(b)), under which the final transition probabilities lie, is
a monotonically decreasing function of the impact parameter b, while at
high energies this envelope displays a single peak near the threshold
region in which RO ~ RX. The H—Be++ calculation of Section C of this
chapter is an example of the adiabatic limit (P < %) while the He+—Ne
calculation exhibits diabatic behaviour (P > k).

Although the numerical results presented in this thesis do not
make explicit use of SLZ theory, the interpretation suggested by it
is quite useful. For example, the fact that the off-diagonal coupling
in the adiabatic representation is peaked about R = R, helps omne to
understand the behaviour of the coefficients in this representation
(see following Section). Similarly, the behaviour of the phases in Eqgs.
(50) and (51) allows one to qualitatively rationalize the success of

multi-trajectory curve-crossing theories (Ref, (54) and Chapter III).

+ The impact parameter, b, is that distance which would be the distance

of closest approach of the two atoms if they did not interact with each
other during the collision. It is related to the angular momentum, %, of
the system by the equation % = bp, where p is the initial relative

momentum,
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C. Collisions between H and Be

++
The H-Be system was studied (30) in order to obtain some qual-
itative understanding of the behaviour of the electrons during a curve-
crossing event. The process of interest is asymmetric charge-exchange

between two atoms:
H 4+ Be > H 4+ Be .

This process was previously investigated by Bates, Johnston, and Stewart
(83) using linear-trajectory (constant velocity) impact parameter theory.
The present calculation was performed using the average-energy-surface
theory of Corrigall, Kuppers, and Wallace (28). The nuclear trajectories
in this theory are obtained from a potential energy surface of the form
Pﬁﬁ.ﬁ’ which is an average of the hamiltonian matrix over the existing
electronic state at any time t., The trajectories therefore reflect at
least some of the details of the electronic behaviour during the coll-
ision, although it is not yet clear whether they do so "correctly". For
low-energy collisions of the type considered here this nuclear model is
ultimately unsatisfactory regardless of how accurately the electronic
motion is evaluated, but it represents a distinct improvement upon linear—
trajectory impact-parameter theory.

The electronic equations of motion used in this calculation have

the form (28):
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db = -iNHb - 45 (av/ar) bl b dR . (53)

dt dt

According to the derivation of Section A of this chapter, Eq. (53) is
not the correct electronic equation of motion. The results of this calec-
ulation are therefore not quantitatively reliable; however, they can be
expected to be qualitatively reasonable., For a curve-crossing problem

Hi is the most important term in the equation of motion

the quantity N~
since it contains the matrix elements Ell(R) and‘gzz(R) which become
degenerate at R = Rx‘ The main effect of the second term on the right
hand side of Eq. (53) is to ensure conservation of normalization, in the
sense that__f_‘h = 1. (Note that the equations used by Bates, Johnston,
and Stewart (Ref. (83), denoted BJS) are also not compatible with the
discussion of Section A of this chapter, since they use the "symmetriz—
ation procedure'" described by Green (49) in which the matrix §7¥E is
replaced by %ngl§.+ (§f¥§)+]. The BJS equations therefore yield a mod-
ified normalization conservation law: hﬁh = 1,) Because of the approx-
imate nature of the nuclear and electronic equations used here, no attempt = o
will be made to draw quantitative conclusions from the H—Bé++ results;
instead, attention will be focused on the qualitative behaviour of the
coefficients which describe the electronic state in different represent-
ations.
The electronic motion is described within the one-electron approx-—
imation (84,85), It is assumed that two of the electrons are "passive"

in the sense that they occupy the same atomic orbital, Be(ls), through-

out the entire collision, This orbital is given by
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_ 3 s -ZTrBe
@Be(ls) = (z7/m)7 e

where z = 3,6875. The third electron is "active" in the sense that it may
move from the H atom to the Be++ core. The active electron is assumed to
be distinguishable from the two passive electrons. The state of the active

electron is represented as
> >
¥(r,R,t) = b_l(R,t)Q)H(ls) + _@_z(R,t)CDBe(Zs) (54)

where @H(ls) is a hydrogenic orbital with an ionization energy of 13.60 eV.

The Be(2s) orbital is given by (84):
- - ~YTBe
@Be(Zs) N(1 che) e

where N is a normalization constant and c ensures orthogonality of @Be(ls)
and @Be(zs): c = (v + z)/3. The parameter Y is chosen to minimize the
energy of Be+. Using integrals tabulated by Moiseiwitsch (86) it can be
shown that the optimum value of Y is 1,329, which yields an ionization
energy of 17.90 eV for the Be(2s) orbital. The one-electron hamiltonian
operator is given by

H = -4 - 4 - 1 + + V(R) (55)

2
Be rH r12

where ¢ and Ty are electron-nuclear separations and r

Be is an inter-

12

electron separation between passive and active electrons. V(R) represents
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. . . . -+
the classical electrostatic interaction between H and Be++

. (At large R,
V(R) ~ 2/R, while at small R, V(R) ~ 4/R.) In the evaluation of the ham-
iltonian matrix, some two-electron (two-centre) integrals are encountered,
These can all be re-expressed in terms of ome-electron, two-centre, integ-
rals using a method outlined by Schiff (87, page 258). The remaining one-
electron integrals have been tabulated by Coulson (88). Appendix I of this
document contains the final expressions for the matrix elements used in
the calculation. The (AO) potential energy surfaces Hll(R) and H22(R)
cross at RX = 6,3 a.u., (3.3 &) and the separation of the two adiabatic
surfaces at this point is approximately 0.025 a.u, (0.7 eV)., The equations
of motion were integrated using the program discussed by Corrigall (see
Appendix TI of Ref. (57)), with appropriate modifications in the defin-
ition of N and H (Appendix I of this document).

Numerical calculations were performed in two rather distinct energy
ranges, One such set at high energy (relative kinetic energy: 56.2 eV;

2.75
total kinetic energy: 10

eV), was carried out largely for purposes of
comparigson with the calculation of Bates, Johnston, and Stewart (83). The
impact parameters for these calculations were so high that our nuclear
trajectories did not deviate very much from linearity and the electronic
motion was quite simple., The asymptotic transition probabilities, plotted
as a function of impact parameter, are shown in Fig. 1, along with the
corresponding results of Bates, Johnston, and Stewart (83). The two sets
of results are sufficiently similar that there is no point in attempting

to attribute any significance to the differences between them. The total

cross sections obtained from these probabilities are as follows:
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Figure 1,

Electron exchange probability as a function of impact parameter. Total

2.75

initial kinetic energy: 10 eV, Solid curve: present calculation.

Dashed curve: Bates, Johnston, and Stewart (Ref. 83).



(53)

7

; ,

5

6
IMPACT PARAMETER au,




54—

2 2
~ 16 ma, , ~ 25 ma_

o o
Bates this calc.

where a, is the Bohr radius. The main feature of interest in the present
results is the history of the collision process as the system evolves
towards its final state. This history allows us to interpret the final
transition probability in relatively physical terms. For example, if we
choose those impact parameters, p, for which the final exchange probab-
ility is a maximum and plot the exchange probability as a function of
time from the initial to the final state, the results are as shown in
Fig. 2. Considering that the initial state is H—Be++, one can see that
at p = 6.25 a.u. the active electron simply exchanges once and is cap-
tured by the Be++ ion. At p = 5.25 a.u. the electron is first "captured"
by Be++, then "re-captured" by H+, and finally exchanges once again. The
other graphs, at p = 4.5 a,u, and 4,0 a,u., can be interpreted in a
similar manner, One can therefore interpret the results by identifying
each exchange peak in Fig. 1 with a given number of multiple electron
exchanges, as shown in Fig., 2, This interpretation is a direct result
of the fact that an AO basis set has been used in the calculation, since
only in an AO basis set can we uniquely identify a coefficient such as
{EI(R,t)IZ with a charge density around a particular nucleus. In an adiab-
atic basis set the history of the collision process shows itself in quite
a different way, as seen below,

In order to demonstrate the flexibility of the present model (indep-
endently of its "wvalidity") we also performed some calculations for low-

energy head-on collisions. The exchange probabilities for these collisions
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Figure 2,

Electron exchange probability as a function of time through the inter-
action region. Relative kinetic energy: 56,2 eV. Dashed vertical lines
indicate times at which R = Ry« The interaction time is roughly equal

to the time spent between the dashed lines.
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are shown in Table I as a function of impact energy in the centre-of-
mass frame. The main feature which can be seen in Table I is a reasonably
well defined threshold energy for electron exchange at about 2 - 3 eV
relative kinetic energy. The history of the exchange probability through~-
out the collision is shown in Fig. 3 for various impact energies. The
low—-energy head-on collisions in Fig. 3 display roughly the same type

of multiple electron exchange as did the high energy collisions. One
interesting feature of Fig., 3 is that, during the collision, the AO
coefficients can undergo a significant amount of perturbation away from
their original values without necessarily yielding a large final trans-
ition probability. For example, during the 1 eV collision in Fig. 3,

the charge distribution experiences a major shift from the H atom to

the Be++ atom during the incoming portion of the collision, so that one
might expect a large final exchange probability; however, what actually
occurs is that this shift in charge distribution reverses itself almost
entirely during the outgoing portion of the collision, so that the final
transition probability is only 0.00l, One might say that the electronic
motion during the incoming portion of the collision was reversible, in
the sense that the final transition probability is very small. As the
impact energy is increased to 4 eV, however, we find that the electronic
motion during the outgoing portion of the collision bears less and less
resemblance to the behaviour during the incoming portion. In this case
the electronic behaviour during the first half of the collision is no
longer completely '"reversible" and we obtain a large final transition

probability. One can therefore decompose the behaviour of the A0 coeff-
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Table I

Asymptotic exchange probabilities P(«) as a function of energy for

zero-impact-parameter collisions.

Kinetic energy P(®)
(ev)
1.0 0.001
2.0 0.034
3.0 0.214
4,0 0.456
4,5 0.197
5.0 0.010
5.5 0.288
6.0 0.503
7.0 0.660
8.0 0.716
9.0 0.758
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Figure 3.
Electron exchange probability in terms of atomic states as a function

of internuclear distance for a variety of zero~impact-parameter collisions.

The dashed curves represent the square of the Be(2s) coefficient in the

upper adiabatic state.
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icients into two types of motion: that which is reversible (and which
leads to no net transition probability) and that which is irreversible,

in the sense that it does lead to a net transition probability. We
anticipate that the reversible component of the electronic motion is
related to the nature of the basis set (i.e. whether it be A0 or MO)

while the irreversible component is independent of the nature of the
basis set, To illustrate this we define the adiabatic MO's for this
problem and consider the contribution of @Be(Zs) to the upper molecular
orbital which leads to H + Be'' as R - @, We find that, as R decreases,
@Be(zs) makes an increasingly strong contribution to this MO, Therefore,
even if the system evolves adiabatically we will see a significant
(reversible) transfer of electron density from H(ls) to Be(2s) during

the first half of the collision. The extent of this reversible electron
transfer is given by the square of the Be(2s) coefficient in the upper
adiabatic state, and is shown as a dashed line in Fig. 3. The difference
between the solid and dashed lines of Fig. 3 is a rough measure of the
"irreversible' (in this case non-adiabatic) contribution to the electronic
motion. A more precise measure is given by transforming the coefficients
in the AO representation [Eq. (54)] to their counterparts in the adiabatic
representation, using the equations of Section A of this chapter. The
resulting transition probabilities are shown in Fig. 4. Figure 4 shows
that, if the electrons experience a non-adiabatic perturbation during the
first half of the collision, then it is unlikely that they will be able
to find their way back to the state in which they were originally located.

(Note that the final transition probabilities of Fig. 4 are identical to
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Figure 4,
Electron exchange probability in terms of adiabatic states as a function

of internuclear distance for the same collisions as shown in Fig. 3.
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those of Fig. 3, even though the electronic behaviour inside the inter-
action region (R < RX) is quite different.)

In the high energy limit the roles of the adiabatic and AO represent-
ations are, to some extent, interchanged., If the impact energy is suffic-
iently high, then the coefficients in the adiabatic representation will

"reversible'" motion during the collision, while

display a large amount of
the AO coefficients will not.

The main feature of interest in Fig. 4 is that the electronic trans-
itions appear to occur within two relatively localized regions of space
surrounding the point R = Rx' This is in keeping with the discussion of
the previous section. Within the AO basis set (Fig. 3) the electromns
undergo rearrangement throughout the entire course of the collision, not
just at R = Rx’ The two basis sets used here yield rather different pic-
tures of the electronic behaviour during the collision. These two pictures
must not be regarded as being mutually exclusive; they are, instead,
complementary views of the same process., Both pictures provide us with a

. . . . ++ .
description of the evolution of an electronic state ¥(r,R,t) in time,

> > .
where ¥Y(r,R,t) is initially the @H(ls) orbital., This electronic state is
the same regardless of which basis set is used to describe it (in fact,
the transformation procedure has explicitly been defined in such a way
- > .
that the state ¥(r,R,t) is unaffected by the transformation); however,
> >
the appearance of the state Y(r,R,t), as it is projected onto a parti-
cular basis set, changes whenever the basis set is changed. Neither of
the above two pictures can be regarded as a complete description. of the

electronic state, since a complete description would have to contain
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information about the phases of the bi(R,t) coefficients, as well as their
magnitudes. Because these two pictures describe the evolution of the same
state in time, and since neither picture is complete, we may say that

they enhance each other instead of conflicting with each other. It must

be remembered that the electronic state W(?,i,t) is not directly observ-—
able when the two atoms are interacting strongly with each other. (This

is due partly to the fact that W(;;i,t) is changing rapidly in time.)
There are only two pieces of information which are of direct interest

in the calculation of observable quantities: 1) the final value of the
bi(R,t) coefficients, and 2) the trajectory which the nuclei follow during
the collision. Neither of these two pieces of information are affected by
the change of basis set which is described above, and therefore the diff-
erences between the above two pictures of the collision process do not
affect the quantities which are actually observed in practice.

The potential energy surfaces for the low energy collisions are
shown in Fig. 5. The surfaces are given by Eﬁﬂ‘h, as previously discussed
(28). Figure 5(a) refers to collisions in which there is a high exchange
probability; Fig. 5(b) refers to collisions which have low exchange prob-
ability., In and of themselves, these surfaces are of no particular interest
since the present nuclear model is not very good at low energies, but they
show that the quantity hﬁg_h_is surprisingly well~behaved, considering the
complexity of the behaviour of the AO coefficients. The well-behaved, non-

oscillatory, nature of hﬁﬂ_ﬁ is a definite asset in the study of more
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Figure 5,

Dynamic potential energy surfaces for a variety of zero~impact—parameter
collisions. Dashed curves represent upper and lower adiabatic energy
levels. Figure 5(a) portrays collisions with high exchange probability.
Solid curves, fop to bottom: 4 eV and 9 eV, respectively., Figure 5(b)
portrays collisions with small exchange probability. Solid curves, top

to bottom: 2 eV, 5 eV, and 10 eV, respectively.
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sophisticated nuclear models since, even when a more sophisticated force-
law is developed (Chapter III), the quantity_hfﬂﬂg still represents an
important contribution to the energy surface.

The high and low energy collisions discussed above are examples of
two extreme types of nuclear motion during a collision: almost-linear
motion during high-impact-parameter (glancing) collisions, and linear
motion during zero-impact-parameter (head-on) collisions. The intermed-
iate type of nuclear motion was studied by performing collisions at a
relative kinetic energy of 4 eV with a wide range of impact parameters.
The results are shown in Fig. 6. The area under the curve in Fig. 6(a)
represents the total cross section for electron transfer at 4 eV, which
works out to be SWag. (It is encouraging to note that the shape of the
curve in Fig. 6(a) is similar to that which can be obtained from a fully
quantum mechanical calculation (10).) Figure 6(b) shows the scattering
angle in the centre-of-mass frame as a function of impact parameter. The
nuclear trajectories for these collisions show the intermediate type of
behaviour, between the "glancing" and "head-on" extremes.

The numerical results shown above make it clear that the present
model is capable of producing intelligible information about electronic
motion during a collision, What is not yet clear is the role of the
nuclei in low-~energy collisions. The question which must be answered is
whether a simple classical nuclear model such as that used above is
adequate for the description of low-energy inelastic processes, In single~-
channel scattering problems this question is not too difficult to answer

since, if the classical nuclear model is not good enough, then this inad-
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Figure 6,

(a) Electron exchange probability multiplied by the impact parameter as
a function of impact parameter. Relative kinetic energy 4 eV,

(b) Scattering angle of the nuclei in the centre-of-mass frame as a

function of impact parameter,
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equacy will often show itself quite dramatically as a singularity in the
classical prediction of the observable (see, for example, rainbow scatt-
ering, glory scattering, and metastable states (13,89-91)), In a multi-
channel scattering problem, however, a classical nuclear model may be
inadequate even though the observable calculated using this model is a
well-behaved quantity. A few of the features of a "good" nuclear model
for low-energy collisions will therefore be mentioned here, in an antic-
ipation of the results presented in the next two chapters:

1) It should be possible to show how the semiclassical equations
of motion are related to the corresponding quantum mechanical equations.,
In the impact-parameter, eikonal, and average-energy-surface theories it
is assumed that the nuclear trajectory for the o - o event is the same
as that for the o -~ B event (unless these two channels can be de-coupled
using symmetry arguments). The relationship between this type of semi-
classical theory and the fully quantal theory has been discussed by
Bates and Holt (92). They conclude that the relationship is a simple
one only if the impact energy is so high that the differences between
the various possible nuclear trajectories, corresponding to different
electronic eigenstates, can be ignored. For the processes considered here
this type of nuclear model will therefore be unintelligible in the sense
that the relationship between the semiclassical and quantal equations
cannot be clearly defined,

2) For the a > B event one would expect the nuclei to move along
the o th eigensurface before the collision takes place, and the B th

eigensurface after the collision is over. That is, if the electrons lose
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the energy_gBB - Eau during the collision, then the nuclei should gain
the same amount. In general, the nuclei will satisfy this condition only
if they obey boundary-value equations of some type, where the boundary
conditions are either spatial or temporal.

3) A good nuclear model should satisfy the detailed-balancing
requirement, However, since the nuclear motion for the o - 8 and 8 >
events will not normally be the same, it will be necessary to revise the
original definition [Eq. (36)] of detailed-balance. The revised definition
[for example, Eq. (3.11) of Ref. (15)] must include a statement about the
relationship between the nuclear trajectories (as well as the electronic
transition probabilities) for the o - B and B ~+ o events, This statement
imposes a rather stringent condition on any low-energy semiclassical
theory. It also provides us with a good test of the "usefulness" of a
particular theory, since there will not normally be any point in com-
paring the semiclassical and quantum mechanical predictions if it is
not satisfied.

4) At sufficiently low energies one would expect a good semi-
classical theory to recognize the existence of energetically forbidden
events (which will be called closed channels). There are situations in
which the presence of closed channels will affect the hehaviour of the
system in the open (energetically allowed) channels (93,94), If these
channels are included in the basis set of a multichannel semiclassical
collision theory (as they should be), and if the theory does not recog-
nize the existence of energetically forbidden events, then it will

predict non-zero transition probabilities for events which are known
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to be forbidden. More specifically, such a theory will not be able to
describe the threshold behaviour in a particular channel just after it
becomes energetically allowed.

The nuclear model used in this chapter does not satisfy these four
"requirements'. In Chapter III a more sophisticated model will therefore
be developed, and applied to a problem for which the average-energy-

surface theory is inadequate,
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CHAPTER TIIT. ELECTRONIC EXCITATION: BOUNDARY~VALUE THEORTIES
A, Derivation of nuclear model

In this section a familiarity with Ref, (15) and pages 68-71 of
Ref, (24) will be assumed, The nuclear model discussed here is designed
to overcome some of the shortcomings of impact-parameter and eikonal
theories (1,2,59), with regard to which the statement has been made (12):
"There remains a general collision problem which has not yet been satis-~
factorily solved by either treatment: the problem of how to carry out
calculations if the classical trajectories in the initial and final
states differ markedly." The qualitative discussion of the present
nuclear model will be postponed until later.

For the sake of simplicity, consider a one-dimensional scatt-—
ering problem in which the nuclei can initially and finally be regarded
as point particles, while the electrons (or the vibrational degree of
freedom) are treated quantum mechanically at all times. In time-depend-
ent quantum mechanics this problem is characterized by a reduced Feyn-
man propagator (15,24):

x"e"
Rg, ('E",x'e1) = _{_I_]_Ba(t",t') exp{is [x(£)1} Px(t) .  (56)
X't

The quantity Ksa(x"t",x't') is a quantum mechanical transition amplitude
that the state defined at t' (t' » -») will lead to the state defined at
t" (t" + «), The state at t' is given by the relative nuclear position xF
and the electronic state o. At t" it is defined analogously. A centre-of-

mass reference frame will be used throughout. (A general discussion of
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the reduced propagator, in the context of formal scattering theory, has
already been given (15).)

The path integral in Eq. (56) represents a summation over all con-
ceivable nuclear paths {x(t)} which have the end-points (x',t') and
(x",t"), with the evolution matrix U(t",t') being evaluated exactly for
every individual path, using the methods of Chapter IIL. The functional

S,Lx(t)] is given by
t .2
s [x(t)] = 'jl/zmx dt . (57)

Within the diabatic representation, U(t,t') satisfies Eq. (32). (The

géneralization to arbitrary basis sets is carried out most simply by deriv-

ing the properties of the nuclear model in the diabatic representation,
and then transforming the final results, if desired.) When evaluating
the response of U(t",t') to a change in the nuclear trajectory it will

be convenient to use the following representation of U(t",t'):

N
ule",t") = lim || [l - ieH(x,)] (58)
Moo §=0 J
where X, = x(ti), Ne = t" - t', and tO (tN) equals t' (t"). We re-express
Eq. (56) in the form
x"t"
KB@(X"t"’x't') = f LEBd(t",t')l exp (i¢) exp{iSo[x(t)]}Jax(t) (59)

x't!

where ¢ = Im 1n U, (t",t'). In a semiclassical theory we wish to make

B0,
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use of the fact that some paths {x(t)} may be more important than others.
The integrand of Eq. (59) is highly oscillatory, especially if we consider
the limit as h -+ 0, which is the usual way of approaching the classical
limit of quantum mechanics (see Section 2-3 of Ref. (24)). We therefore
anticipate that some nuclear paths will not be very important, in the
sense that they will be surrounded by neighbourhoods of destructive
interference between paths. The paths which are most important are those
which are surrounded by neighbourhoods of constructive interference, If
we can define a path (or a finite set of paths) whose phase, So[x(t)] +
¢, is stationary with respect to first-order variations in x(t), then it
is clear that this path (which will be called classical), together with
a small neighbourhood surrounding it, will represent an important con-
tribution to the path integral.

The semiclassical equations of motion will therefore be derived
using the method of stationary phase (22, page 27), which is a special
kind of (second-order) asympfotic expansion. Two distinct problems are
encountered: 1) determination of which trajectories are most important,
and 2) evaluation of the contributions of the neighbourhoods surrounding
each "important" trajectory. It will be assumed here that only one traj-
ectory is important within each channel, since the generalization to
many trajectories is not very difficult if they are "well separated".

We therefore consider a second-order Volterra expansion (95, pages 33-34)
of ¢ about the "classical" path given by {X(t)}, where the classical path
satisfies a stationary-phase constraint analogous to the Principle of

Least Action used in single~channel problems (96). The phase of the integ-
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where ¢ = Im 1n U, (t",t'). In a semiclassical theory we wish to make

B0,
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rand of Eq. (59) is given by SO[X(t)] +ImIn U a(t"’t')‘ If this phase

g
is extremized (96, page 32) with respect to first—order variations in

the nuclear path [using Eqs. (57) and (58)], the following equation of

motion is obtained after some manipulation:

m ¥(t) = -Re [y_(t",t)aﬂ(x) y_(t,t'):l
9% (t) Ba
Tg, (75"

(60)

with X(t') = x', ®(t") = x". This result is comparable to that obtained

by Pechukas [Eq. (3.3) of Ref. (15)], after allowing for differences in
notation. It is a force law governing (classical) nuclear motion for a
collision in which the electrons are prepared in state o and observed

in state B. (Note that the force law is non-causal in the sense that it
recognizes future electronic and nuclear states before they in fact occur,)
We now ignore variations in LHBa(t",t')[ as the path varies about the
classical path {X(t)}, and factor ngi(t",t')[ out of the path integral

in Eq. (59), where ngi(t",t')] is evaluated along the path {X(t)}. The
phase ¢ is approximated by:

Doyt + 6@ rycey3 (61)

~ cl/ o n oy
) Im In EBu(t L,ET) + ¢
where ¢(l)[y(t)] (and ¢(2)[y(t)]) are linear (and quadratic) in y(t) =
x(t) - X(t). From the definition of ®(t) in Eq. (60) we can easily show
that ¢(1)[y(t)] will cancel with a term linear in y(t) which comes from

Sofi(t) + y(t)]. The semiclassical approximation to the path integral in
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Eq. (59) is now given by

el won rp — el oo . - " v
Ksa(x t",x't") Hsu& ,t') exp{iS_[®(t)1} K(0t",0t") (62)

where K(0t",0t') is the "normalizing integral':

t" ) ) ] (2)
x(0t",0t") = f exp{i8 [y(£)] + i " [y(t) ]} Dyey . (63)
ot'

Equation (62) is a semiclassical transition amplitude [as opposed to

the quantum mechanical amplitude given in Eq. (56)] for an event in

which the initial and final nuclear and electronic states are known.

c

B

amplitude, evaluated using a classical nuclear trajectory; exp{iSOEE(t)]}

It is composed of three parts: U i(t",t') is the electronic tramsition
is the contribution due to the single classical nuclear trajectory, and
has a magnitude of one; K(0t",0t') contains the contributions of nuclear
paths within a small neighbourhood of the classical path. We note that
the semiclassical approximation, as defined here, consists of ignoring
all variations in the magnitude of the integrand of Eq. (59) (and taking
account of the phases only to second order) as the path varies about the
classical path. (It is perhaps worthwhile noting that K(0t",0t') is
actually a functional of X(t), although the notation does not show this
dependence (95, pages 33-34).)

The problem is now one of calculating K(0t",0t'). We assume that
the path {X(t)} is known and concentrate instead on the independent var-

(2)

iable y(t). ¢ [y(t)] is expressible as (95):



—73=

¢y = %) ] 3 3 [ImIny, (¢",eD]y, v, (64)
i=1 j=1 3%, o%. @ J
i ]
where the time interval (t" - t') has been broken up into N steps of

length e (with N arbitrarily large), and where U(t",t') is given by Eq.
(58). It is convenient to distinguish three cases in Eq. (64), namely
j<i, j=1, and j > i, in order to avoid confusion in the time~ordering

of operators. After some manipulation we obtain
(2) _ "ot
¢ Ly ()] g(ot",0t") (65)
where g(0t",0t"') is a special case of the functional

e EAe) yis)?
g(yt,0t') = -1 Re [ ds .
£ Egu(t”’t')

t s }_?_Ba(s,r) y(s) y(r)

t' ot y_gl(t",t')
* (66)

t t -E-Boz(r’s> y(s) y(x)

- % Im f ds f dr T
t' s s (", ")
~Ba
e ED v
+ % Im f ds °
t'

Egi(t"’t')

The notation g(yt,0t') implies that the path {y(s)} has endpoints y(t) = vy,

y(t') = 0. The F matrices are given by:
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_jﬁ‘_(l)(t) = _gCl(t",t)aﬂ(x)_qd(t,t')
% (t)

PP - o, 00’a@utl, e (67)
X (E)*

;fl(t",s)aﬂ(x)gfl(s,t)aﬂ(x)gCl(t,t') ., S>t.
9% (s) 9®(t)

F(s,t)

2
The definition of ¢( )[y(t)] in Eq. (65) is to be compared with Eq. (3.5)

of Ref. (15).

There are two distinct types of contributions to ¢(2>[y(t)]. The
first type is contained within a single integral in Eq. (66), and has been
taken account of in the previous normalization of this path integral (15).
This type of term has a fairly well defined single-channel analogue (14).
The second type is due to double integrals in Eq. (66), and has no single-
channel analogue. (We are not aware of any previous attempts to take exact
account of these double integral terms.) It represents coupling between
two first-order deviations from classical motion, occurring at different
times, and is a reflection of the non-causal nature of the theory. This
type of coupling is due to the fact that the potential energy which con-
trols the nuclear motion cannot be expressed in the form V(X,t), but must
be regarded as a functional of the entire path {X(s)}. The presence of
such coupling terms in a closely related problem has been noted by Feyn-
man, and the remarks made at the end of Section 3-10 of Ref. (24) apply
here. In particular, we note that it is not possible to define a WKB-

type wave function for the translational motion of the nuclei, and that
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we are therefore quite unable to observe the '"classical nature" of the
nuclei during the course of the collision. It should, however, be possible
to define this type of wave function long before, or long after, the
collision if the net effect of the non~causal terms is constant in these
regions.,

Desbite the conceptual difficulties associated with the double
integral contributions, it is possible to evaluate the normalizing integ-
ral exactly in practice. One possible approach would be to try to find
a change of variable from y(t) to z(t) such that the definition of
¢(2>[2(T)] in terms of z(t) would contain only single integrals. The
relationship between z(t) and y(t) would have to be of the type:

£

z(t) = [ A(t,t) y(t) dt

£t
In this way the non-causal contributions would be temporarily hidden
within the definition of z(t) and the treatment of them could be post—
poned until later in the derivation. An approach similar to this has
been used by Friedrichs and Shapiro (97, page I-18), and is probably
more amenable to rigor than our approach. We use a method similar to
that of Pechukas (Appendix of Ref. (14)).

Consider the quantity K(0t,0t'), satisfying the constraint that
K(0t,0t") » K(Ot",0t') as t - t". K(0t,0t") is not uniquely specified
by this constraint and we arbitrarily choose a definition which yields

the simplest possible dependence on t., Define K(0t,0t') as the limit
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as y > 0 of

t

y
R(yt,0t") = [ explis_(yt,0t") + ig(yt,0t")} Py(r) (68)
ot!

where g(yt,0t') is defined by Eq. (66), and where

5, (yt,0t") = {t% m §2 dt . (69)
t

We are interested in the time~dependence of K(0t,0t"), but it is conven—
ient to first consider the dependence of K(yt,0t') on y., To determine
this dependence we consider the particular path which makes the phase
of the integrand of Eq. (68) stationary with respect to first-order
variations in the path. This path (denoted by {J(s)}) will move between
the space-time points (0,t') and (y,t), and can be shown to satisfy the

integro-differential equation
my(s) = - fly(s)] , t' <s <t , (70)
where

72 (s) 2(s)
flz(s)] = Re|_—to

cl, u v
ysa& ,t")

s F_(s,r) z(r)
+ Im f dr Bi
£ S (", e )

—BOC

+ (continued on next page)
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t 'EBa(r’S) z(r)

+ Im { dr (71)
cl " ]
s .EBa(t ,t")
() (1
FY 7 (s) t F "/ (xr) z(r)
-~ Im -Bi dr _gi ¢
C 1" 4 1 1" []
-HBa(t ,t') ot 'gsa(t ,t")

Because K(yt,0t') has an "action" which is quadratic in y(s) we can
perform an exact quadratic expansion of K(yt,0t') about the path {F(s)}

in terms of the variable n(s) = v(s) - §¥(s) to obtain
K(yt,0t') = K(0t,0t') exp(if) (72)

where 0 = So(yt,Ot') + g(yt,0t'), and 6 is evaluated using the path {§(s)}
in Egs. (66) and (69). In Eq. (72), K(0t,0t') is defined using the variable
n(s), but is identical to K(0t,0t") defined as the limit of Eq. (68) as
y(t) = 0. Furthermore, K(Ot,0t') has no dependence on the path {J(s)},

Because 6 is evaluated along a path of stationary phase, we have
30/3y(t) = m F(t) . (73)
The quantity 826/3y2(t) 1s also of interest and can be re-expressed as
320/0y2(t) = m_@_gln u(t) (74)
d

where u(t) = [3?(t)/8§(t')]?(t,), and where u(t) is a solution of the
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m i(s) = - flu(s)] (75)

which is solved between the times t' and t, with £[u(s)] given by Eq. (71)
and with u(t') = 0, u(t') = 1, We note that u(t) does not depend on the
path {F(s)} and that 6 is therefore a quadratic function of the endpoint
y(t). We consider a Taylor Series expansion of 6 about the point y(t) = 0
and note that it can be truncated to second order without introducing any
error, In order to determine the zeroth-order and first-order coefficients
in the expansion it is necessary to find the path {§(s)} between the
points (0,t') and (0,t). A solution of the equation of motion for F(s),
subject to these endpoint constraints, is the path §(s) = 0 for t > s > t'.
The "action" developed along this path and the momentum my(t) are both
zero. Therefore the first two terms of the expansion do not contribute,

and we find

8 = L m {g_ln u(t)] y2 . (76)
dt

The dependence of K(yt,0t') on y is therefore known exactly,
Given this result, it is now possible to relate K(0,t+e;0t') and

K(0t;0t"):

zt

K(0,t+e30t") = [ dz [ exp[iS_(0,t+e;0t") + ig(0,t+e;0t") 1Dy (s) (77)

-~ A Ot!
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i
where A = (2mie/m)? [see Ref. (24)]. From Eq. (69) we find
SO(O,t+s;0t') = So(zt,Ot') + mzz/Ze . (78)

The relationship between g(0,t+e;0t') and g(zt,0t') is not as simple as
Eq. (78), because the difference of these two quantities is itself a
functional of the path {y(s)} between the points (0,t') and (z,t). How-

ever, it is possible to show that
g(0,t+e;0t") = g(zt,0t') + ezhly(s)] (79)

where hly(s)] is a linear functional of the path {y(s)}. Because the
second term in Eq. (79) is of order e, one might expect it to contribute
only negligibly. We substitute Egs. (78) and (79) into Eq. (77) and make
use of the definition of K(zt,0t') in Eq. (68), to obtain

K(0,t+e;0t') = f [(K(zt,0t") + ezﬁ(z,t)] exp(imzz/Zs) dz (80)

—co A

where g(z,t) is the leading term due to hly(s)] in Eq. (79). Using Eqgs.
(72) and (76) to specify the z-dependence of K(zt,Ot'), and integrating
over z, we obtain

=L a
K(0,t+e;0t") = K(Ot,Ot')[l + ed In u(t)] © 0(e /Z) . (81)
dt

In the 1imit as & - 0 this becomes
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d XK(0t,0t") = -3 K(0t,0t') d 1n u(t) (82)
dt dt

and integration yields

1

K(Ot,0t') = C u 2(t) (83)

where C is a constant. The expression obtained here for K(0t,0t') is
comparable to Eq. (A4) of Ref. (14), except that in our case u(t) is
determined by an integro-differential equation [Eq. (75)] instead of
an initial-value differential equation.

We now consider the limit as t - t'". In this limit we find that
K(0t",0t") is determined by [8?(t")/8§(t')]?(t,). Since this quantity
is known to be independent of the path {§j(t)}, we anticipate that it may
be uniquely determined by the path {X(t)}. In ﬁarticular, it can be

shown that

. (84)

(3ggt")) _ (aggt")
ax(t") 2(t") oy (")

)?(t')

The left hand side of Eq. (84) is obtained by differentiating Eq. (60)
with respect to é(t') and deriving an integro-differential equation of
motion for [ai(t)/aé(t')]i(t,), taking account of the fact that U(t",t),
u(t,t'), and U(t",t") [as well as 0H(x)/9%(t)] are all functions of é(t');

for example:
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t
W(t,t") = -i [ U(t,s)dH(x)U(s,t") [3%(s) ds . (85)
ax(t") t' 3% (s) (L)), .,
(L")
A comparison of the resulting equation for [8%(t')/sx(t')] with

x(e")
Eq. (75) will yield the equality in Eq. (84). We therefore find that

R(0t",0t") = [m/Zni[ai(t")/aé(t'>j_ . ] E (86)
Z(t")

where the proportionality constant is determined by the free-particle
limit, and where the phase may undergo discontinuous changes at turning
points of the nuclear motion (l4)., For a scattering problem this result

can be rewritten as (14)
R(0t",0t") = [m/zm(t"—tw[am"wasa(t'm ]/ 87
(")

where t" is a time just after the scattering has occurred, and t' is a
time in the far past. With t" and t' defined in this way it can be seen
that the partial derivative in Eq. (87) is given by the ratio of the
final momentum over the initial momentum.

A generalization to three dimensions is also possible (14), in
which case: the partial derivative in Eq. (87) becomes a Jacobian deter—
minant of a final position with respect to an initial position. The
expression for K(0t",0t') in a three dimensional problem will therefore
contain the quantity dQ/do, which yields the classical expression for

the differential cross section.



~82—

The form of the result obtained here for the normalization constant
[Eq. (87)1 is identical to that obtained in Eq. (3.9) of Ref. (15) in the
sense that both normalizations are determined by the response of the end-
point of a classical trajectory to a change in the initial position, but
the way in which this response is calculated in practice in the two cases
is quite different. To evaluate the normalization constant derived by
Pechukas (l5) one must perform a single trajectory calculation with a

particular set of initial conditions, parameterize the resulting energy

surface to have the form V(X,t), and subsequently constrain the energy
surface to retain this form as the response of the trajectory to a change
in the initial conditions is evaluated. To evaluate our result for the
normalization we would perform two entirely independent classical traj-
ectory calculations, with slightly different initial conditions, and the
partial derivative which is required would be evaluated numerically using
these two trajectories. In this case it is clear that no constraints are
being imposed on the "response' of the energy surface to a change in
initial conditions. The difference between these two methods of deter-

mining the normalization is due precisely to the presence of double

integrals in the expression for ¢(2)[y(t)] in Eq. (65). To some extent,
this result has been anticipated by Pechukas [see the paragraph follow-
ing Eq. (3.9) of Ref. (15)], but we are not aware of any previous der-
ivation of it,

It is of some interest to consider situations in which the two
definitions of the normalization yield different numerical results, To

do this, it is necessary to consider a three dimensional problem since
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the normalization for a one dimensional problem is determined entirely

by the long-range behaviour of the energy surface and will therefore be
the same regardless of which definition is used. In a three dimensional
calculation we find that K(0t",0t') is related to dQ/dc = sin® d6/b db.
The quantity gg/dp is of particular interest, since the two procedures
described above for the calculation of this type of derivative will

yield different answers. The actual energy surface for the collision

can be put into the form VBa(ﬁ,t,E,b), where E and b are the total impact
energy and impact parameter, respectively. If this energy surface is used
to evaluate the quantity d6/db, then we will not obtain the same result
as we would if the energy surface were constrained to have the form VBG(E,t)
while d6/db was evaluated, The difference between these two methods of
evaluating dQ/do will be due to the dependence of the energy surface on
the impact parameter b. (For an example of a situation in which this dep-
endence is rather pronounced, see Figure 8.)

The importance of the normalizing integral K(0t",0t') lies in the
fact that it contains the expression for the differential cross section
in a three dimensional scattering problem. Using the arguments of formal
scattering theory, and the value of K(0t",0t') given by Eq. (87), it can
be shown (15) that the differential cross section for the a - B event is
given by

b db IE (t"’t')lz

sin6 dé Ba

where b and 6 are the impact parameter and scattering angle, respectively,
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and where it must be remembered that no constraints are imposed on the
potential energy surface while d6/db is evaluated. The interpretation

of this expression has been given by Pechukas (15): "The cross section
for scattering in a given direction and with a given quantum transition
is simply the classical cross section for scattering of the atoms in
that direction times the probability for the quantum transition." This
completes the formal aspect of the boundary-value nuclear model. Applic-

ations will be discussed below.
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B. Collisions between He+ and Ne

The He+—Ne system is a good test of the usefulness of the boundary-
value theory described above since it displays new qualitative features
which are experimentally observable, and which cannot be understood in
terms of an initial-value nuclear model, Experimental information about
this system has been produced by Aberth and Lorents (98) and has been
given an extensive theoretical analysis (5-9). The present calculation
is an attempt to supplement the existing interpretation of some of thig
information. We present the results of elastic and inelastic scattering
of He+ off Ne, at an impact energy of 70,9 eV, using a two-state elec-
tronic basis set together with a classical nuclear model. The impact
energy is sufficiently low so that the exact nature of the nuclear model
is quite important for both elastic and inelastic processes, This there~
fore allows one to critically test the value of the nuclear model used
here even though the comparison with experimental results is only a qual-
itative one,

The main experimental feature in which we are interested is a pert-
urbation (99) in the elastic scattering differential cross section which
has been observed for He+—Ne, as well as for other systems. It has been
associated with the onset of inelastic processes due to a curve-crossing
of diabatic energy surfaces. A number of theoretical discussions of this
perturbation have already been given (54,81,100~102) . They have been
successful in qualitatively explaining the fact that the perturbation #

is localized in the threshold region where the classical turning point
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is close to the point at which the energy levels cross. However, they
suffer from the fact that the interpretation is based on a Stueckelberg-
Landau-Zener (SLZ) model of electronic behaviour. The present calculation
is an attempt to find out whether the same interpretation is obtained
when SLZ theory is not appealed to., In the course of the calculation it
was found that the precise nature of the nuclear model was crucial in
determining the form of this perturbation, and therefore the theory
presented here concentrates only on the nuclear motion, assuming that

the electronic interactions are known in some sense., The nuclear model
used here was developed by Pechukas (15) and has been discussed in the
previous section. The classical equations are retrieved by performing a
stationary-phase approximation to a reduced Feynman propagator [Eq. (56)7.
As a result, one obtains an interpretation of the electronic motion
which is qualitatively quite similar to the impact~parameter interpretation,
although the nuclear equations of motion are quite different. In the
present theory it is found that the nuclear trajectory can only be deter-
mined through the solution of a non-linear two-point boundary-value prob-
lem (103). The reason for this is that the force law governing nuclear
motion has a dependence on the future behaviour of the electrons, as well
as their past behaviour. In special cases it has been shown (15,104) that
this difficulty can be removed (or at least simplified) if one is willing
to make analytical approximations, such as SLZ, in the electronic equat-
ions of motion. In general, however, one is left with a boundary-value
problem whose numerical solution is non-trivial,

Before attempting a boundary-value calculation we might briefly
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consider two other "classical" nuclear models: stationary-energy-surface-
impact-parameter (SESIP) theory, and the corresponding average-energy-
surface theory. For the reasons discussed at the end of Chapter II, neither
of these theories yielded worthwhile information in the present case, but
both were helpful in the qualitative interpretation of the electronic
motion. The SESIP theory will also be used here as a first approximation

in an iterative procedure to be described below.

Two problems which must be dealt with before a numerical calculation
can be attempted are: how to interpret the force law of Eq. (60), and how
to numerically solve the boundary-value problem represented by Egqs. (32)
and (60). The numerical method will be discussed below., The discussion
of the force law centres around this question: How many trajectories con-
tribute to any particular event and how are they interrelated? We mention
here three ways in which multiple nuclear trajectories can occur in the
present model., The first way can be seen by noting that the trajectory
for the o » o (elastic) event’is in general not the same as that for the
o - B (inelastic) event, It is at this point that the present calculation
differs from both the stationary- and the average-energy-surface theories
since they do not make this distinction. An example of the second type of
multiplicity is the rainbow-scattering phenomenon, where two or more traj-
ectories with different impact parameters lead to the same scattering angle.
This type of multiplicity did not occur in the present calculation, alth-
ough it could have, if the matrix elements and impact energy had been

different., As a result, our interpretation of the perturbation in the
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elastic cross section states that it is not a rainbow-scattering effect,
in contrast to the interpretation given by other workers (54,102). In
order to understand the rainbow-scattering interpretation (54), one must
consider a third type of multiplicity of trajectories. This occurs when
the same impact parameter leads to two different scattering angles. For

a two-state curve-crossing problem, if SLZ theory is used, it occurs for
the following reason: It is assumed that the electronic transition occurs
instantaneously., Once this assumption is made it is natural to treat the
region inside the crossing point separately from the outside region. In
the inside region the nuclear motion is decomposed into two components,
each following a different diabatic energy surface. (This procedure will
be discussed in more detail in the following section.) These two compon-
ents are regarded as representing two distinct physical situations, whose
relative probability is given by SLZ theory., As a result of this decomp-
osition one finds a single impact parameter leading to two different
scattering angles. In special cases (54) this decomposition incidentally
leads one to conclude that rainbow-scattering will occur. (Note that the
numerical results obtained by Olson and Smith do not depend on this
assumption, although their interpretation does.) An interesting formal
motivation for this procedure has been given by Pechukas and Davis [see
the paragraph following Eq. (2.6) of Ref. (104) 1. However, we emphasize
that this procedure is reasonable only if one is willing to make the
assumption that the transition at the crossing point occurs essentially
instantaneously. In the present calculation we have not made this assump-

tion and therefore observe only one trajectory corresponding to any part—



~-89-

icular impact parameter,

Because of the fact that the equations of motion are non-linear
the present boundary-value problem must be solved iteratively; i.e. in
addition to the iterative procedure (Runge-Kutta-Gill) used to solve the
initial-value electronic equations of motion, a separate iterative proc—
edure is required before the nuclear force law can be satisfied exactly.
Quadratically convergent algorithms for the solution of non-linear
boundary-value problems are available (103), but were not thought to
be very useful in the present case; instead, an ad hoc algorithm was
developed, The rate of convergence of this algorithm is not known apriori
but it has the advantage of requiring very little modification in the
program used to solve the initial-value problem encountered in the average-
energy-surface theory (28,57). The algorithm proceeds by changing the
original boundary-value problem into a sequence of initial-value problems
which ultimately converge to a boundary-value solution. This is done by
isolating all of the dependence on the future within a single constant
matrix U(t",t'). Given Eq. (33), the force law [Eq. (60)] is rewritten as

o [E(t",t')_{f(t’t')VRﬂ(R)H(t,t')]BOL

>
mR = ~R& . (88)

—I—]-Ba(t"’t')

The form of this force law suggests the following procedure: Guess an
energy surface and perform a SESIP calculation, using it to obtain an
approximate estimate of U(t",t'). Given this estimate one can then calc-
ulate an improved force law using Eq. (88) and eventually an improved

value of U(t",t"'). In this way a sequence of initial-value problems is
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solved until two estimates of U(t",t') agree. The specific form of the

force law which was used was, therefore,

.
-

[Un-l(t",t')Un+(t,t')VRH(R)Un(t,t')]

= - - T - Ba

Re =1 . (89)
U (t",t')
"'BOL

=
PR g

Equation (32), which determines E?(t,t'), is solved simultaneously with

Eq. (89). The label n refers to the n th initial-value collision. The
force law for the n th collision recognizes the future electronic behav-
iour through the matrix Eé—l(t",t'), obtained from the previous collision.
The first question which must be answered is the following: Does the fact
that two successive estimates of U(t",t') agree necessarily imply that we
have converged to a true solution of the boundary-value problem represent-
ed by Egs. (32) and (60)? This can be quickly answered by setting n=n - 1
in Eq. (89). We might also ask whether this algorithm necessarily converges,
or how quickly it converges, or even whether it converges to a unique sol-
ution. None of these questions have been given a general answer here, but
they will be partially answered below.

It is of some interest to note the behaviour of the potential energy,
both exact and approximate, before and after the collision., First of all,
we note that if convergence has been obtained, then an energy conservation
law can be proven, in the sense that
. LuCe", e)HR)U(E,t") ]

Lm R + Re|— N Ba = constant, (90)

.[.].Bu(t"’t')

Second, it can be shown that even if convergence has not been obtained,
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one still has the identity

. ™t e, e e, eHE®DM ¢, £ ]

1 Ba —

LmR + Re 1 = constant, (91)
p—rsl; (t",t')

This last identity is very useful in practice since it provides one with
a sensible criterion with which to determine the time interval in the
Runge~-Kutta-Gill procedure used to solve the initial-value problem.
Equation (90) is of formal interest but is of no value in the actual
numerical calculation. Formally, Eq. (90) shows that at time t' the
potential energy is given by E&a(w> and at time t" it is given by‘EBS(m)’
as was anticipated on page 65. Equation (91), on the other hand, shows
that at time t' the potential energy is given by Euu(w)’ and at time t"
the potential energy could be anything, depending on how close one is to
convergence., When convergence is obtained Eq. (91) reduces to Eq. (90).
The program used to solve this problem is a modified version of
one developed for use with the average-energy-surface theory. (One
version of the boundary-value program is given in Appendix II.) The
main difference is the presence of a new force law [Eq. (89)]. In add-
ition, the original program was modified so that it automatically per-
formed a whole series of collisions with the same initial conditions
but with a revised estimate of U(t",t'). The calculation was initiall-
ized by choosing the diabatic energy surface Ell(R) and performing one
SESIP calculation. The succeeding collisions at that impact parameter
were then performed using Eq. (89) to generate the force law. The most

sensitive criterion for convergence was found to be the scattering angle.
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The iterative procedure was normally continued until two successive scatt-
ering angles differed by less than 0.001°. An additional convergence
criterion was the final value of the potential energy, since this value
is known for any particular electronic event.

The matrix H(R), which governs the electronic interaction between
He' and Ne, was identical to that already used by Olson and Smith (54),
and will not be repeated here. The impact energy was 70.9 eV, with an
excitation energy of 16.8 eV for the inelastic collisions. The pseudo-
crossing occurs at RX = 2,02 a,u., with Ell(Rx) = EQZ(RX) = 0.530 a.,u,
and EiZ(Rx) = 0,00819 a,u.

The elastic differential cross section was obtained by performing
collisionsg at fifty different impact parameters, with a constant spacing
of 0.02 a.u. between neighbouring impact parameters. At any given impact
parameter b, less than five initial-value collisions were required in
order to obtain convergence, (Fach initial-value collision took about
60 sec, computing time on an IBM 360-65 system.) The reason for this
was that the diabatic surface_ﬁll(R) provided a very good initial est-
imate of the true energy surface, at least for elastic scattering.
However, the deviations of the true energy surface from the diabatic
surface led to pronounced effects in the differential cross section.

Figure 7(b) shows the quantity P12 plotted as a function of angular
momentum. The angular momentum % is obtained from the relation & = bp
where p is the initial momentum (178,76 a.u.). It can be seen that P12

shows the usual oscillations associated with a curve-crossing. A rough

estimate of the threshold for these oscillations is given by QX = 322,
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Figure 7.

(a) o__/so as a function of angular momentum ¢ for elastic collisions.
BV’ "DIAB

(b) P12 as a function of & for the same collisions as in (a).



(93) o

.OI5 (a)

Osv/Ebing
o o o
S 3 5

0.990L
0.20r ,
(b)
0.15}
> o.1oF
0.05
| i .
200 250 300 350

¢

vy
ST S



—94—

If 2 > e s then the nuclei will not reach the crossing point at R = RX.

The results in Fig. 7(b), however, do not explicitly recognize this
threshold since SLZ theory is not being used. It is of some interest to
compare Fig. 7(b) with the distorted-wave (DW) result [Fig, &4 of Ref. (54)1.
Qualitatively, the two results are very similar, although there are quant-
itative differences. The present calculation displays a spacing of about

25% units between successive peaks, whereas the DW spacing is approxim—
ately 16% units. This discrepancy is presumably due to the fact that P12
in Fig. 7(b) has been calculated using an elastic trajectory., If P12 is
obtained using an inelastic scattering trajectory the comparison is much
more encouraging (see below)., Another feature of Fig. 7(b) is the fact
that the value of P,o was essentially the same regardless of whether the
diabatic surface or the final (dynamic) surface was used. That is, the
electronic behaviour for elastic scattering was quite insensitive to
changes in the nuclear model,

We now consider the effect of the electronic behaviour on the nuc-
lear motion., It is this effect which is particularly dramatic in the
present calculation, and in fact provides the only justification for
taking the trouble to solve the full boundary-value problem in the first
place. It can be seen by an inspection of the deflection function (scatt-—
ering angle 0 vs. impact parameter b). For elastic scattering, 0 was
invariably very close to the diabatic prediction, which excludes the
possibility of rainbow-scattering. The difference between the two angles
was never more than 0.5 . Instead of plotting 6 directly we have shown,

in Fig. 7(a), a plot of GBV/eDIAB vs. %. O, is obtained from the boundary-
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value calculation and eDIAB is the diabatic prediction. The most striking
and unexpected) feature of Fig. 7(a) is the fact that © ] is osc-
( P ) g. 7(a) Bv/ DIAR

illatory and can be correlated closely with the oscillations of P The

12°
only exception to the correlation is the shallow minimum at % = 334, This
minimum comes from a collision where the turning point is greater than
the crossing point and is therefore in the "subexcitation" region. It can
be qualitatively understood by noting that the nuclei display a tendency
to follow the bottom adiabatic, not the diabatic, surface in this region.
For collisions where & < 322 this initial tendency towards adiabatic
behaviour is quickly replaced by a tendency to follow the diabatic pred-
iction instead. The interpretation of the scattering angle can best be
done by an inspection of the energy surfaces for these collisions. Fig. 8
shows the energy surfaces for collisions at impact parameters 1,42, 1.50,
1.60, and 1.70 a.u. The quantity E(R,t) _-Ell(R) has been plotted vs. R,
where E(R,t) is the potential energy obtained in the boundary-value calc-
ulation. For comparison, the adiabatic surfaces, which display an avoided
crossing, have also been shown. The impact parameters 1.50 and 1.70 corr—
espond to the first two maxima in Fig. 7. The other two impact parameters
generate minima in Fig. 7. One can see that the energy surface for any
particular collision is very smobth (non-oscillatory), but that the sur-
face as a whole displays an oscillatory dependence on b. It is this dep~
endence on b which generates the oscillatory behaviour in the function

/

The fact that this oscillation is correlated with P12 can be

eBV eDIAB *

analytically understood by an inspection of Eq.(90). However, we have not

been able to analytically explain why the energy surfaces at b = 1,50 and
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Figure 8,

Difference between the dynamic energy surface E(R,t) obtained from the

boundary-value calculation and the diabatic surface_ﬂll(R), plotted as

a function of internuclear separation, for elastic collisions at impact
parameters 1,42, 1,50, 1.60, and 1.70 a.u. The dashed lines are the

corresponding adiabatic surfaces,
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1,70 a.,u. are above instead of below the other two surfaces; i.e. the
existence of the correlation is reasonable, but there is a plus or minus
ambiguity as to which way it should affect the energy surface. Another
feature seen in Fig. 8 is the fact that the energy surfaces corresponding
to a zero in P12 fall completely between the two adiabatic limits, whereas
those corresponding to P12 # 0 do not. This can be easily understood by
setting Py, = 0 in Eq. (90) and making use of the unitarity of U(t,t').

A final feature of Fig. 8 is the fact that the energy surface is a unique
function of Ry i.e, the incoming and outgoing surfaces are reflections

of each other. This reflection symmetry is presumably a consequence of
the fact that the formal theory satisfies the detailed-balancing require-
ment (15)., Computationally, it provides a non-trivial test of numerical
accuracy, since the symmetry exists only after good convergence to a
boundary~value soiution has been obtained.

As has already been pointed out (15,104), it is difficult to obtain
mathematical assurance that any particular solution at a given b is unique.
We have numerically searched for other possible solutions by using an
initial estimate different from that given above. The collisions at b =
1,16, 1,22, 1,60, 1.70, and 1.86 a.u. were re-calculated using the bottom
adiabatic, instead of the diabatic, surface as an initial estimate. In
every case it was found that the final solution obtained was the same as
the one shown above, even for those values of b where the adiabatic and
diabatic predictions of ¢ differ greatly. We therefore feel justified in

regarding the above solution as unique.
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Having rationalized the behaviour of 6 in terms of the energy
surfaces one can now consider the effect that this behaviour of 6 will
have on the cross section. The reduced (54) differential cross section
is given by the quantity be(db/de)plI . If this were calculated using
SESTP theory then the quantity b8(db/d6) would be a monotonic function

of © and the only source of oscillations would be the term P In the

11°
boundary-value calculation, however, both terms can now contribute osc-
illations since Fig. 7(a) implies that db/d6® is an oscillatory function

of 0. Figure 9 shows the results of a SESIP calculation of the cross
section, as well as the boundary-value result, Both are compared to the

DW result (54). The DW result shows two major features, an isolated peak

at 1450 eV-deg. and a smooth series of oscillations between 3000 and 5000
eV-deg. Essentially the same features are seen experimentally [Fig. 9(c)
and.Refs. (5)-(7)]. The SESIP result does not display any peaks in the
threshold region, although it does qualitatively reproduce the smooth
oscillations at large 6. The boundary-value calculation shows the same
oscillations at large 6, but they are strongly accentuated due to the

fact that db/d6 is also oscillatory. The main new feature of the boundary-
value result is that the peaks in the differential cross section rise

above the single-channel prediction. These peaks are predominantly due

to peaks in the function dK/d6® and can be easily understood if one con-
siders the behaviour of er in Fig. 7(a). It can be seen that the boundary-
value theory used here generates a perturbation in the elastic cross
section which looks quite different from the perturbation that one would

expect if the rainbow-scattering interpretation were used, In particular,
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Figure 9.

Comparison of three theoretical calculations of the reduced differential
cross section for elastic scattering at 70.9 eV. The long dashed lines
are the single-channel (diabatic) predictions. The theories used are:
(a) SESIP, (b) boundary-value, and (c) distorted-wave [Ref. (54)]. The
short dashed line in (c¢) is the experimental result at 83,5 eV, raised

by 0.2 units [Refs. (5)-(7) and (54)].
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the numerical results presented here are not compatible with those
obtained by Kotova and Ovchinnikova (102). On the basis of the comparison
with experimental results it would appear that their results (102) are
superior to ours, at least for elastic processes. This is presumably due
to the fact that the decomposition procedure, which leads to rainbow-
scattering, yields a more detailed picture of nuclear motion inside the
crossing region than our approach does. The relative merits of the two
interpretations for those systems where SLZ theory is not necessarily
reliable (10) remain to be seen.

The above comparisons lead us to the following conclusions:

1) SESIP theory, as expected, does not even begin to provide a
reasonable account of the perturbation in the elastic differential cross
section, since this perturbation is due to the effect of the electronic
rearrangement on the nuclear motion,

2) Boundary-value theory, in the form in which we have used it,
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takes account of the effect of the electrons on the nuclei and therefore
predicts a perturbation in the elastic results, but the form of the
perturbation is not correct,

3) The only three dimensional semiclassical theory which predicts
the correct perturbation is that of Olson and Smith (54) and Kotova and
Ovchinnikova (102)., (Note that it is relatively easy to obtain the correct
perturbation if a "one-dimensional" semiclassical theory is used (20,105),
but that the one-dimensional theories are not as easy to "interpret'. A
"one-dimensional" theory is one in which angular motion is treated quantum
mechanically and only radial motion is treated classically.)

The inelastic scattering calculation was performed using the same
set of impact parameters and initiallization procedure as for elastic
scattering. The only difference was that the force law was altered to
correspond to the 1 » 2 electronic event. From a qualitative point of
view the results are not particularly exciting since the behaviour of
the differential cross section is very similar to the DW prediction. The
main difference between the boundary-value and SESIP calculations for
inelastic scattering is that the angular threshold predicted by the bound-
ary-value calculation is considerably lower than the SESIP prediction
since the final energy surface is 16.8 eV higher than the initial energy
surface, From a numerical point of view some interesting problems were
encountered in the inelastic calculation. The main one was that of init-
iallizing the iterative procedure reasonably., The present calculation
used the elastic diabatic surface as an initial estimate, even though

this surface does not possess the correct long~range behaviour after the
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collision. For strongly inelastic collisions a more sophisticated proc-—
edure would probably be required (see page 121). Another difficulty was
encountered for those collisions which display a transition probability
Py which is close to zero. In this case the force law [Eq. (89)] consists
of a ratio of two arbitrarily small terms and the calculation is numer-
ically ill-conditioned. The main effect of these two problems was simply
to decrease the efficiency of the calculation. It was found that ten
iterations were normally required to obtain convergence to a boundary-
value solution.

We begin the discussion of the inelastic results by considering
P,y as a function of 2. As expected, the qualitative behaviour is the
same as for elastic scattering, although significant quantitative diff-
erences were observed since the trajectories are different. When P12
for inelastic scattering was compared to the DW prediction [Fig. 4 of
Ref, (54)], it was found that the agreement was so close that the diff-
erences could probably be attributed to plotting errors. This is quite
encouraging since it implies that a single-trajectory calculation may
be capable of providing a quantitatively, as well as qualitatively,
reasonable account of inelastic processes.

The next feature of the inelastic collisions is the behaviour of
the energy surface. Figure 10 presents energy surfaces for collisions
at b = 1,44 and 1.90 a.,u. The collision at b = 1.44 corresponds to the
top of the third excitation peak (P12 = 0.115). The one at b = 1.90
corresponds to a collision where the nuclei do not even reach the cross—

ing point (P12 = 0,005). The arrows indicate the direction in which the
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Figure 10,

Energy surfaces E(R,t) obtained from the boundary-value calculation, as
a function of internuclear separation, for inelastic collisions at
impact parameters 1.44 and 1.90 a.,u. The dashed lines are the adiabatic
surfaces. The arrows indicate the direction in which the nuclei move

along the surface,




E (a.u.)

1.8 20 2.2 24 26
R (a.u.)



-104~-

nuclei move along the surface since the energy is a two-valued function
of R. The adiabatic surfaces are shown for comparison. In both collisions
the nuclei originally follow the bottom and finally follow the top adiab-
atic (or diabatic) surface. In the intermediate region they follow a
surface which smoothly switches over from the bottom to the top eigen-
surface. It was found that the energy surfaces for the other collisions
had essentially the same shape as the ones shown here. In every case the
energy near the nuclear turning point was roughly the average value of
the two adiabatic surfaces., As already observed for elastic collisions,
the energy surface is not necessarily bounded by the two adiabatic
extremes, especially near the pseudocrossing.

A test of detailed-balancing was performed at b = 1.44 a.u., mostly
as a check on numerical accuracy. This was done by changing the force law
to correspond to the electronic event 2 + 1, as well as changing the
initial conditions on the nuclear motion to correspond to the final
behaviour observed for the 1 » 2 electronic event., It was found that
the transition probability and scattering angle for the two runs were
identical, In addition to this, the two events followed the same energy
surface, but in opposite directiomns.,

Figure 11 shows the reduced differential cross section for inel-

astic scattering, given by the quantity b6(db/de)P as well as the DW

12°
result (54). The overall shapes of the two results are quite similar.
The main difference is that the present calculation is shifted to the

right by about 200 eV-deg. compared to the DW result. This shift is not

enough to seriously affect the comparison with the experimental results.
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Figure 11,

Comparison of the boundary-value and the distorted-wave [Ref, (54)]
calculations of the reduced differential cross section for inelastic
scattering at 70.9 eV. The dashed line is the experimental result

[Refs. (5)-(7) and (54)17.
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A certain amount of ambiguity as to the exact behaviour of the differ-
ential cross section near the minima exists in the present calculation,
This is because of the zero-over-zero problem mentioned earlier., It is
possible that these minima may not rigorously approach zero although we
know them to be quite small. This ambiguity was not felt to be of any
great importance in the present calculation and was ignored,

The results obtained for inelastic scattering are much more encour-
aging than those obtained for elastic scattering. First of all, the func-
tion Plz(l), which displays Stueckelberg oscillations, agrees very well
with the DW prediction, and secondly, the inelastic differential cross
section (Fig. 11) is quite similar to the DW result. There are two main
features of the inelastic cross section which are of experimental interest:
the frequency of the Stueckelberg oscillations, and the angular threshold
at which the first inelastic peak (Fig. 11) appears. The present calc~
ulation implies that both of these features are adequately described by

a single-trajectory theory of the type used here.

The most obvious shortcoming of the present theory is that it does
not predict a localized perturbation (99) in the elastic differential
cross section close to the threshold angle, while the theory of Refs.
(54) and (102) does., It is therefore of interest to discuss the relat-~
ionship between the present theory, which will be called a single-
trajectory theory, and that of Olson and Smith (54), referred to as a

multi~-trajectory theory.
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C. Multi-trajectory Curve-crossing Theory

Briefly, a multi-trajectory curve-crossing theory (54,76,102) yields
the following picture of the collision process: The nuclei proceed along
the initial adiabatic energy surface until they reach a curve-crossing.,

At this point the nuclei are faced with two alternatives since there are
two diabatic surfaces which become degenerate at R = Rx' Both of these
alternatives are taken into account. That is, the nuclei may follow the
top or the bottom diabatic surface after going through a curve-crossing,
and the probability in each case is given by SLZ theory. When the second
curve-crossing is reached, on the outgoing portion of the collision, the
choice is again made, and the way in which this choice is made will deter-
mine whether the event is to be elastic or inelastic. In any particular
channel, whether it be elastic or inelastic, there will therefore be at
least two nuclear trajectories., (For the He+—Ne system there are three
trajectories in the elastic channel just above the threshold for inelastic
processes.) The different branches of the nuclear motion are regarded as
interfering alternatives [page 14 of Ref. (24)], not mutually exclusive
alternatives, since they are not experimentally distinguishable. (A good
qualitative discussion of this type of theory, as it applies to three-
body reactive collisions, has been given by Tully and Preston [Section

IV of Ref. (106)].)

In terms of a path-integral approach, a multi-trajectory theory can
be rationalized quite easily, provided that one is not concerned with

rigor. The problem is characterized by the path integral [Eq. (56)7:
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In a single-trajectory theory we develop a stationary-phase approximation

to Eq. (92) directly, without making use of the possibility thatlgsa(t",t')

may be expressible in a simpler form than that given by Eq. (58). For

curve-crossing problems, however, it is clear that this procedure is not

entirely satisfactory, for the following reason: the stationary-phase

method incorporates the assumption that Lgsa(t",t')f does not change O
very much as the path {x(t)} is varied. That is, we assume that the
variations in the integrand of Eq. (92) due to variations in the phase
are much more important than those due to variations in Lgsa(t",t')l.

If the magnitude of the integrand has a monotonic dependence on the path
then this assumption may be fairly reasonable, but for a curve-crossing
problem Lgsa(t",t')] behaves in a highly oscillatory fashion as the path
is varied. (See, for example, the behaviour of Plz(z) in Fig. 7(b).) The
validity of the stationary-phase method is therefore questionable if it
is applied directly to Eq. (92). As an alternative, we might consider re-
expressing Eq. (92) as a sum of (hopefully simpler) path integrals which
may be more amenable to approximation by the stationary-phase method.
That is, if Eq. (92) can be re-expressed as a sum of path integrals (K(l)
and K(z)) whose integrands have magnitudes which vary more slowly than
Lgsa(t",t')l as the path is varied, then it would clearly be desirable

to perform separate stationary-phase approximations to the individual
path integrals, K(l) and K<2), rather than performing a single stationary~

phase approximation to Eq. (92), For curve-crossing problems, SLZ theory
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allows us to carry out this procedure, (Note that a similar procedure

can be carried out quite rigorously for resonant charge~exchange (15,58).)
In Chapter II it was shown that U(t",t') can be re-expressed as a sum of
two terms if the transition occurs quickly. For example, for the 1 - 1

event we have [see Eq. (50)]:
-Hll(t"’t') = (1 -7Pp) e2iOc e-i(bl + P e--218 142 (93)

where P is the Landau-Zener transition probability given by Eq. (39) and
the non-adiabatic phase shifts o and B are essentially constant (74), The

phases ¢1 and ¢2 can be obtained from Eq. (50):

t t t"
= 1 2
9, = [ Ep®de + [ B (®R) dt + E L (R dt
t £, t,
(94)
tl t2 n
¢, = [ E, (R de + By, (R) dt + f E; (R dt
t t1 t2

where the Eii(R) are the adiabatic energy levels. We re-express ¢; and ¢2

as

t"
4 = [ v,® at
tl
(95)
t"
¢2 = f VZ(R) dt ’

t'

where Vl(R) = Ell(R) everywhere, VZ(R) = Ell(R) if R > Rx’ and V2(R) = E,__(R)

22
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if R < R _. If Eq. (93) is substituted into Eq. (92) we will have succeeded

in re-expressing the original path integral in terms of two simpler path

2)

integrals, K(l) and K( . The magnitudes of the integrands of these two

path integrals are given by P and (1 - P), It is clear that both P and

(1 = P) will vary much more slowly than does |U..(t",t')| as the path is

11(
varied, and that the stationary-phase approximation will therefore be more

(1) (2)

reliable if it is applied separately to K and X , instead of being

applied to the original path integral in Eq. (92). If we now ignore var—
iations in P as the path varies about the classical path, we obtain

a (1)

Kll(ﬁ"t",ﬁ't') - (1-7p) g o218 ¢ (2)

+ P (96)
where P, o, and B are evaluated using classical trajectories (which are
not yet known), and
E“t"
(i)

- -+
K =, exp{iS [R(t)] - 1¢.} Dr(t) i=1,2. (97)
R't!?

Equation (97) can be put into the form

>
. R"t" “ N
KD o T expli £ RR0) dar} DR (98)
R't' 'é’ i

> 3
where Li(R,R,t) has the form of a Lagrangian:

> > >
L.(R,R,t) = L4 mR - v.(R) . (99)
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A stationary-phase evaluation of K(i) therefore yields a classical traj-
ectory which follows the energy surface Vi(R) during the collision and
which, incidentally, determines the value of P, a, and 8 in Eq. (96).
The transition amplitude for the elastic event which is actually obser-
ved is therefore a sum of two terms., The first term has an (Landau-Zener)
amplitude of (1 - P) and corresponds to a trajectory which follows Ell(R)
everywhere., In this case the electrons have not experienced a non-
adiabatic transition during either passage through R = R.. The second
term has an (Landau-Zener) amplitude of P and corresponds to a trajectory
which follows the surface Ell(R) if R > Rx and the surface E22(R) if
R < Rx' In this case the electrons have experienced a non-adiabatic trans—
ition during both passages through R = RX. This interpretation is compat-
ible with that of Olson and Smith (54) and Kotova and Ovchinnikova (102).
The final expression which is obtained for the differential cross section
[see, for example, Eq. (32) of Ref. (54)] will therefore contain contrib-
utions from each individual term of Eq. (96), as well as containing an
oscillatory contribution due to interference between the terms of Eq. (96).

A multi-trajectory curve-crossing theory differs from a single-
trajectory theory both in its description of Stueckelberg oscillations
and in the description of the localized perturbation (99) observed in the
elastic scattering cross section for He+—Ne collisions. In a single~traj-
ectory theory Stueckelberg's oscillations can be regarded as a multiple
charge-exchange effect in the sense that the electrons seem to move back
and forth between atomic centres (or between two states on the same atomic

centre). The frequency of the Stueckelberg oscillation in this case is
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related to Ell(R) - E22<R) [see Eq. (52)]. In a multi-trajectory theory
the Stueckelberg oscillation arises as an interference pattern between
two "branches" of the combined nuclear-electronic motion. The phase of
the Stueckelberg oscillation in this case is closely related to the
difference in the phases of K(l) and ®(2) i Eq. (96). The phase of the
semiclassicil approximation to K(i) [Eq. (98)] is given by the classical

action, f{ Li(ﬁ,ﬁ,t) dt, evaluated along a classical path which follows
the energy surface Vi(R). The phase difference between K(l) and K(z) is
therefore a difference between two classical actions, evaluated using
Vl(R) and VZ(R>’ respectively. Both the single~trajectory and multi-
trajectory theories regard the Stueckelberg oscillation as an interfer-
ence pattern, but in the single-trajectory theory this interference
pattern is a purely electronic effect which can be understood quite
independently of the nuclear equations of motion, while in the multi-
trajectory theory the interference pattern contains some 'nuclear"
contributions (due to the kinetic energy term in Li(ﬁ,ﬁ,t)) and some
"electronic" contributions (due to the potential energy term in Li(ﬁ,ﬁ,t)).
From a qualitative point of view, the interpretation of the Stueckelberg
oscillation is therefore quite different in the two cases even though
both theories are closely related within a path-integral formalism.
Finally, the reason why the two theories differ in their descrip-
tion of the perturbation (99) in the elastic scattering pattern is that

the multi-trajectory theory may yield three 'branches" in the nuclear

motion (54,102), two of which coalesce and disappear near the inelastic
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threshold, thus leading to a "rainbow'" effect, while the single-trajectory
theory does not predict any such effect, at least not for the case studied
here.

In conclusion, it should be noted that multi-trajectory curve-
crossing theories can be used to describe three-body rearrangement coll-
isions without too much difficulty (76,106), where the rearrangement
occurg only after an electronic transition at a curve-crossing has taken
place. This type of theory has already been applied (106,107) to the

reaction

A multi-trajectory curve-crossing theory has also been used to discuss
the quenching of electronically excited atoms by diatoms (108,109), and
would probably be useful in the interpretation of certain ion-molecule

reactions, such as (110-112):
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CHAPTER IV, VIBRATIONAL EXCITATION

The boundary~value semiclassical theory of Chapter III was applied
to the problem of vibrational excitation during collinear atom-diatom
collisions, partly in order to show the flexibility of the model, and
partly to compare our results with the predictions of other semiclassical
theories. Since the three atoms of the system are constrained to lie on
a straight line, and since this constraint would not be present in an
actual collision, it will not be possible to compare the present theo-
retical results with any experimental work. The purpose of the calculation
is simply to determine the value of the present theory by comparing it
with other theories., If the present theory compares favorably with other
available theories, then there might be some point in trying to perform
calculations in the absence of the collinear constraint so that a com-
parison with experimental work could be made. There are currently two

"semiclassical" theory which have been applied to

types of time-dependent
the problem of wvibrational excitation during collinear atom-diatom
collisions., The first type has been developed recently by Miller (113-115)
and Marcus (116, and references cited therein) and will be called S Matrix
theory. In this theory the "dynamics" of both the vibrational and trans-
lational motion are treated classically during the collision itself,

while the initial and final stationary states are constrained to satisfy
quantum mechanical boundary conditions. In addition to this, a certain
amount of care is taken in the definition of the observable, especially

in those cases where two classical solutions coalesce or become complex,

This theory has been applied to a wide range of vibrationally inelastic
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events (114,115,117,118), and the results have been compared with exact
quantum mechanical calculations (94). The second type of theory, which
will be called semiclassical, treats the vibrational motion completely
quantum mechanically while translation is described classically, In
principle, a semiclassical description of vibrational excitation should
be superior to the S Matrix theory since the dynamics of the vibrational
motion during the collision is treated quantum mechanically., (Both
theories satisfy essentially the same boundary conditions, before and
after the collision, but the way in which they treat the motion of the

system during
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the collision is different,) Unfortunately, it is quite difficult to derive
general equations of motion for the semiclassical theory, and even more
difficult to solve them exactly in practice. The difficulty is due to the
fact that the "dynamics'" of the classical and quantum mechanical degrees

of freedom are coupled to each other, and that this coupling is non-causal.
As a result, only approximate semiclassical descriptions of vibrational
excitation have been given so far. One such description is the ITFITS
theory of Heidrich, Wilson, and Rapp (119). In that theory the vibrational
motion is treated within the Landau-Teller approximation (120) and the
translational motion is obtained using an energy surface which does not
respond to changes in the vibrational state during the collision. The
energy surface is an average of the surface which is initially appropriate
and that which is finally appropriate. The success of the ITFITS theory

is rather surprising, considering the approximations that are made, and
leads to the conjecture that it might be possible to produce nearly perfect
results if a more sophisticated semiclassical theory were used. We have
therefore performed calculations using the semiclassical theory of Pechukas
(15), as described in Chapter TII (Section A) of this document. The theory
is based upon the Feynman path-integral formulation of quantum mechanics
and is quite general in the sense that, in principle, it allows one to
develop semiclassical equations of motion for virtually any collision
problem in which some degrees of freedom are to be treated quantum mechan-
ically while others are treated classically. For the vibrational excit-
ation problem, the quantity of interest is a transition amplitude for an

event in which the translational coordinate moves from x' (at time t")
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to x" (at time t") while the (quantum mechanical) vibrational state
changes from a to B. If a completely quantum mechanical calculation of
this quantity were desired it would be necessary to consider all possible
translational trajectories between the points (x',t') and x",t"), and to
calculate the vibrational transition amplitude from state a to state B
along each trajectory. The vibrational transition amplitudes obtained
from the individual trajectories would then have to be added coherently
to produce the transition amplitude for the event which is actually
observed. In a semiclassical theory we are interested in selecting a
particular trajectory (one which extremizes the phase of the path integral)
and using it to evaluate the transition amplitude for this event approx-
imately, This trajectory is of particular interest because the paths which
lie within a small neighbourhood around it will interfere constructively
with each other. For low-energy collision problems it is sometimes quite
important that the translational trajectory be chosen as carefully as
possible and we anticipate that the trajectories used in our theory
should yield better results than those used in the ITFITS theory.

Another interesting possibility regarding the present calculation
is that one might expect it to yield worthwhile information on "strongly
forbidden" events (117,118) without having to resort to the use of complex
translational trajectories. This possibility has been discussed previously
(104) and is sufficiently intriguing to warrant an application of semi-
classical theory in its original form.

The physical system we are concerned with consists of an atom and a
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diatom constrained to lie on a straight line., We want to calculate a
transition probability from a vibrational state o to a state B of the
diatom during a collision with the atom. Within the coordinate system

of Secrest and Johnson (94), the full hamiltonian is given by:

H, = —_}__82/3}(2 - 1/282/8y2 + Ly? + A @(x-Y) (100)
2m

where y is the vibrational coordinate of a harmonic oscillator and x is
the translational coordinate between the atom and the diatom. The potential
Ae_u(x—Y> represents the interaction between the atom and the diatom. The
parameters m and o are chosen to correspond to a collision between He and
H2 (from Ref. (94), m = 2/3, o = 0.3). The value of the parameter A is
arbitrary in this calculation since A has no effect on transition prob-

abilities (94). In our calculation we used the value A = 30, In a semi-

classical theory the hamiltonian of interest is:

Bop = 92897 4 iyt 4 e @) (101)
where hop contains all of the dependence of HOp on y. If the translational
trajectory {x(t)} is known, then hOp can be regarded as a time-dependent
hamiltonian governing quantum mechanical evolution of the vibrational
state of the diatom. The vibrational state is expressed as a time-depend-
ent linear combination of the eigenstates of the unperturbed harmonic
oscillator, whose coefficients define an evolution matrixlg(t,t'). The

o th column of U(t,t') represents a state, at time t, which in the far
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past, at time t', was the o th eigenstate of the oscillator. The evolu~

tion matrix satisfies Eq. (32), with H(x) given by

C %
. = h v, d . 102
B30 = [y v d (102)
The wave function Wi(y) is the i th eigenstate of the unperturbed oscil-
lator. (We note that, because of the simple form of hop’ the basis set
for this problem is automatically a diabatic one.) The matrix elements

of H(x) can be re-expressed as

cox 02/4
B @ = ae Ty g (103)
~mn —mn ~mn
where En= (n + %)Gmn and the symmetric matrix V is given by (121)
Y n~m . n-m 2
\ = [m! o L (~a"/2) m < n. (104)
T n! V3 n

An important feature of the hamiltonian H(x) is that the depen-
-ox L
dence on x enters only as a scalar factor e . The only non-trivial
calculation which must be performed before H(x) is known is the evalua-

tion of V, which is expressed in terms of associated Laguerre polynom-

ials. In practice, we evaluated V using the recurrence relations

V. = @) X a//)"
(105)
(m + 1>?Ym+l,n+l (n + l)?zm,n + (a//Z)Xm,n+l , m < n,
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These relations eliminate the need to derive explicit analytical expres-
sions for the Laguerre polynomials. The hamiltonian H(x) can now be calc-
ulated readily for arbitrary x, and Eq. (32) can be solved for U(t,t")
if the translational trajectory is known.

The classical trajectory {x(t)} satisfies the equation of motion

[Eq. (60)]:

. [y(t",t) BE(X)H(t,t')]
m x(t) = =Re ox(t) 8a, ) (106)
Ega(t"’t')

and also obeys the energy conservation law [Eq. (90)1:

Ik’ (t) + Re [uCe", )E()UCE,t") ] } = E (107)
W1 Bo,
UBa(t ,t")

where E is measured in units of hw, twice the zero-point energy of the
oscillator. For the case studied here, fiw ~ 0.5 eV, To obtain a trans-
ition probability for the o > B event at a total energy E one must
simultaneously solve Egqs. (32) and (106). Equation (106) defines a class-
ical trajectory {x(t)} for a particular event while Eq. (32) defines the
response of the vibrational state to this time-dependent perturbation.
The energy conservation law, Eq. (107), states that the translational
motion initially (finally) recognizes a potential energy surface belong~
ing to the o th (B th) state of the oscillator, and that during the col-

lision the energy surface switches over smoothly from one to the other.
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The translational motion in this theory is clearly coupled to the vib-
rational motion and the coupling is such that the path which the system
follows is a path of least action,

The numerical solution of the semiclassical equations proceeds
by three steps. First of all, it is necessary to calculate U(t,t'),
which involves the solution of n sets of n coupled equations [Eq. (32)1,
where n is the number of vibrational states and where the translational
motion is assumed to be known, either exactly or approximately. This
solution is obtained using a fourth-order Runge-~Kutta-~Gill method
previously developed for use in electronic excitation problems (28),
with appropriate modifications in the definition of H(x). Secondly,
we must determine the translational motion in such a way that it satis—
fies Eq. (106). This is accomplished by the algorithm discussed in Chapter
IIT (Section B). Thirdly, we need to ensure that the vibrational basis
set is complete, The aim of this calculation is to produce a precise
semiclassical solution, and it is therefore necessary to increase the
number of vibrational states until further increases no longer affect
the transition probability. In practice, no more than 15 states were
ever required. (Note that in the quantum mechanical calculation a similar
problem is encountered (94,122).)

0f the three problems mentioned above, the most difficult one is
the determination of the translational motion. The algorithm used to
solve this problem proceeds as follows: one guesses an approximate energy
surface for a particular event and solves an initial-value problem for

U(t",t") using the trajectory determined by this energy surface., This
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value of U(t",t') is then used to determine an "improved" force law for
translational motion, which allows one to calculate an "improved" value
of U(t",t"), etc. Convergence to a boundary-value solution is obtained
when two successive estimates of U(t",t') agree, The number of iterations
required to produce good convergence varied considerably, depending on
the nature of the event, For low energy elastic collisions as few as five
iterations were often sufficient, while for other events convergence was
never obtained (i.e. no solution to the semiclassical equations was
found) . Although the final transition probability for an event does not
depend on the initial estimate of the energy surface, it is clear that
the rate of convergence will depend on this choice. For elastic (0 - 0)
events we normally used the diabatic surface_ﬁoo(x) to initiallize the
calculation. For those inelastic events which converged quickly we
continued to use EOO(X) to initiallize the calculation even though it
does not possess the correct long-range behaviour after the collision.
Whenever convergence difficulties were encountered in an inelastic event
we used a modified (velocity dependent) energy surface as an initial
estimate, The velocity dependence was introduced in such a way that'the
kinetic energy lost exactly one (or two) quanta of energy during the col-
lision. For these calculations the translational motion would behave as
though it was following an energy surface which was monotonically switching
over from the surface Eua(x) to the surface_EBB(x) during the collision.,
The only effect of this velocity dependence is to provide a more soph-

isticated initial estimate of_g(t",t') and thus increase the rate of

convergence of the algorithm. (A copy of the program used in this calc~
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ulation is given in Appendix II.)

We note, finally, that the converged boundary-value solution in
this theory obeys detailed-balancing (15), but that the transition
probabilities are not normalized in general,

Calculations were performed for the events 0 >~ 0, 0 -~ 1, and 0 > 2,
using parameters (m,a) which correspond to the system He + HZ. The trans-—
ition probabilities are shown in Table II. The results were obtained by
solving Egs. (32) and (106) exactly, using a complete basis set in each
case. They should therefore represent the best that can be obtained
within a time-dependent semiclassical theory, as we have defined it.
Figure 12 shows a comparison of our results and the exact calculation
of Secrest and Johnson (94) for the 0 + 0 and 0 -~ 1 events, For the 0 -~ 0
event we find that the semiclassical result (represented by dots) becomes
progressively worse as the total energy is increased. We also found it
increasingly difficult to obtain solutions to the semiclassical equations
at high energies. This was due partly to the large basis set which was
required and partly to the fact that the rate of convergence to a bound-
ary-value solution became poorer at high energies, At a total energy E = 10
we were unable to produce a solution. (The solution may in fact exist,
but we could not find it.) Preliminary calculations which we performed
at this energy indicated that at least 15 states would be required and
that convergence to a boundary-value solution could be obtained only if
extreme care was taken in the definition of the energy surface used to
initiallize the iterative procedure. The energy surface which the trans-

lational motion recognizes during these elastic events is consistently
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Table II.
Vibrational transition probabilities for the events 0 ~ 0, 0 ~ 1, and

0 ~ 2 as a function of total energy E.

E 0~-0 0~1 0~ 2
3.0 .941
4,0 .812
4,63 111
4,70 .132
5.0 .621 .192
6.0 416 .325
7.0 $242 .362 .100
8.0 122 .309 211
9.0 .054 .215 .265
10.0 « 240
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Figure 12.

Logarithm of the transistion probability as a function of total
energy E for the events: a) 0 + 0, b) 0 > 1, The solid line in
each case is the exact result of Secrest and Johnson (94). The dots
are the semiclassical result., The dashed line in a) is obtained

using the diabatic energy surface, as explained in the text.
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less repulsive than the diahatic surface O(x), and the atom therefore

EO
approaches the diatom more closely than one would expect (see Fig. 13).
This leads to an increasingly complex behaviour of the evolution matrix
U(t,t') during the collision, which in turn complicates the problem of
converging to a boundary-value solution. It is interesting to note that
the 0 » 0 event at E = 10 is classically forbidden (11l4) in the S Matrix
theory, and that our results become progressively worse as we approach
this region of forbiddenness., For the 0 - 0 event we have also performed
calculations using a simpler theory in which the translational motion
follows the diabatic energy surface EOO(X), while U(t",t') is calculated
as usual, using a complete basis set. These results will be termed
"diabatic", and are shown as a dashed line in Fig. 12(a). Surprisingly
enough, the diabatic prediction yields better results at high energies
than does the exact semiclassical theory, an indication that the semi-
classical theory in its present form may not be as good as one would
expect it to be, We also note that the present numerical results do
not represent an improvement over the predictions of the ITFITS theory.
(This applies to inelastic events as well as to the 0 -+ 0 event.)
Transition probabilities for the 0 ~ 1 event are shown in Fig. 12(b)
and a typical energy surface for this event is shown in Fig. 13. (The
energy surface for an inelastic event is a two-valued function of x,
as discussed in Chapter III.) We find that our transition probabilities
are best at energies between E = 5 and E = 8 and become progressively
worse at higher or lower energies, At a total energy E = 10 we were

unable to produce a solution (although it may exist) because of con-



~126-

Figure 13,

Potential energy V(x,t) as a function of the translational coordinate

x, where V(x,t) is given by Eq. (107). The three solid lines are for the
following three events at a total emergy E = 6: (1) 0 - 0, (2) 0~+1,
(3) 1 » 1, The dashed lines are the diabatic surfaceslgoo(x) and‘gll(x)'

The potential energy surfaces at other impact energies show a similar

behaviour.
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vergence difficulties and also because of the size of the basis set
which was required. In the low energy region of Fig., 12(b) a more thor—
ough study of the behaviour of the solution was possible since only a
small number of states were required. In this region we note that the
transition probability drops very rapidly (relative to the exact result)
as the energy is decreased below E = 5, Furthermore, we found that
E = 4,63 was the lowest energy at which a solution could be obtained for
this event. For energies below this value it was impossible to converge
to a boundary-value solution. The behaviour of the algorithm for energies
below 4.63 was the following: the sequence of successive approximations
to the solution would initially appear to converge to a well defined
result but would ultimately diverge away from this apparent solution,
That is, the first ten (or so) iterations would show a convergent pattern
while the next ten showed a divergent one. The behaviour was essentially
independent of the initial estimate of the energy surface. We have there-
fore concluded that there is in fact no solution to our equations for
energies below E = 4,63, To the best of our knowledge, this is not the
fault of our particular numerical method for finding the solution, but
is a case of complete disappearance of a solution regardless of which
algorithm were used. It is interesting to note that the energy E = 4,63
is verf close to the energy at which the 0 > 1 event becomes forbidden
within the S Matrix theory (see below).

An inspection of the transition probahbilities in Table II for the
0 » 2 event shows a behaviour which is very similar to that obtained for

the 0 » 1 event; that is, the accuracy of the transition probabilities
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deteriorates in both the high energy and low energy limits. In summary,
therefore, we find that for inelastic events there is an intermediate
energy range in which our transition probabilities are relatively good
(and in which we encounter no numerical difficulties), while at higher
or lower energies they become progressively worse (while, at the same
time, we encounter severe numerical difficulties); for elastic events
there is a low energy region in which we obtain relatively good results
and a high energy region in which our results again become worse. For
both types of events, the energy range in which the semiclassical sol-
ution is reasonably good happens to be a region of classically allowed
(114) events, with the result that whenever we attempt to approach a
forbidden (114) region we encounter difficulties, The difficulties are
partially numerieal, in the sense that the computing time increases,
and partially analytical, in the sense that the solution disappears
entirely for the 0 + 1 event at low energies. As a result, it is not
possible to use this type of semiclassical theory for strongly forbid-
den (117,118) events, as previously hoped.

The main conclusion reached during this calculation is that the
relationship between our theory and the real-trajectory version (114)

of the S Matrix theory is much closer than anticipated. Within the

(real-trajectory) S Matrix theory one can distinguish between classically

allowed and classically forbidden events, and our numerical results
imply that the semiclassical theory also recognizes this distinction,
for reasons which are not entirely clear., In an attempt to compare our

solutions more closely with the S Matrix solutions we have performed
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calculations using the equations which are appropriate to the real-traj-
ectory version of that theory. The hamiltonian is given by (114)

H = PXZ/Zm + Py2/2 + oyt 4 ae et (EY)

. (108)
Both x and y are treated as real classical variables and the classical
equations of motion are solved (using the coordinates x and y instead

of action-angle variables) with appropriate boundary conditions. For

the event o - 8 the vibrational degree of freedom is given o + % units
of energy initially, and the initial phase of the oscillator is chosen
in such a way that the final vibrational energy is B + % units. At any
particular total energy E either zero or two solutions are found, The
purpose of the calculation is two-fold: to find the exact energies at
which an event becomes forbidden and to compare the translational traj-
ectories obtained in the S Matrix theory and the semiclassical theory.,
We find that the energy at which the 0 - 0 event becomes forbidden is
between 8.0 and 8,05, The low energy limit of forbiddenness for the

0 - 1 event is between 4,80 and 4.85, while the high energy limit is
between 10.75 and 10.80. The high energy limits at which the S Matrix
solution becomes forbidden do not agree very closely with the energies
at which we encountered numerical difficulties in our theory, but this
may be partly due to the fact that the collision problem at high energies
is a strongly coupled one and we would expect differences between the
two theories to become more pronounced as the coﬁpling between vibration

and translation increases, At low energies our semiclassical solution
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for the 0 - 1 event disappears at E = 4,63 while the S Matrix solution
becomes forbidden at E = 4,80, The agreement between these energies is
sufficiently close to suggest that these two occurrences are related,

In order to compare the translational trajectories obtained in
the two theories we have calculated the distances of closest approach
in each case. These are the minimum values of x, at which the direc-
tion of translational motion is reversed. The S Matrix theory always
yields two (or none) values for any particular event while our theory
yields one (or none). Figure 14 shows these values of X in 28 @ funec-
tion of E for the 0 - 0 and 0 > 1 events. The bottom dashed line in
both Fig. 14(a) and Fig. 1l4(b) represents the absolute minimum distance
of closest approach in the S Matrix theory. This is obtained by set-—
ting the potential energy V equal to the total energy E (where V =
%yz + Ae-a(x—y))’ and by choosing y such that x ;o takes on the smal-
lest possible value. The actual turning points in the S Matrix theory
(solid lines in Fig. 14) are invariably greater than this minimum value.
The top dashed line in Fig. 14(a) and the middle dashed line in Fig.,
14(b) are the turning points which would be obtained if the translational

trajectory moved along the diabatic surface (x), which contains the

o0

zero-point energy of % unit. The top dashed line in Fig. l4(b) is the

(%) .

turning point obtained if the translational trajectory moves along_}};ll

For the 0 >~ 0 event we find that at low energies both the S Matrix theory
and the semiclassical theory yield values of X i which agree closely
with the diabatic prediction based OH‘EOO<X)' At high energies Xmin

takes on values which are progressively lower than the diabatic predict-
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Figure 14,

Turning points in the semiclassical and S Matrix theories as a function
of total energy E, for the events: a) 0 > 0, b) 0 - 1. Solid lines:

S Matrix theory. Dots: semiclassical theory., The dashed lines are

explained in the text.
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ion, indicating that the atom and diatom approach each other more
closely than one would expect on the basis of a weak—coupling theory,
The main feature of Fig, 14(a) is that the semiclassical and S Matrix
theories predict essentially the same trend in Xmin as a function of E,
and that the semiclassical turning point is always very close to being
an average value of the two S Matrix results whenever the event is
allowed.,

For the 0 +~ 1 event, shown in Fig. 14(b), the turning points in
the S Matrix theory form a closed contour within which almost all of
the semiclassical results lie., At low energies (E = 4,63) the turning
point in the semiclassical theory comes close to being an average value
of the two diabatic predictions, based on EOO(X) and_ﬂll(x), while at
high energies the turning points come close to the absolute minimum
prediction given by the bottom dashed line in Fig. 14(b). The overall
trend is essentially the same as for the 0 -+ 0 event, except that the
inelastic event is forbidden at both low and high energies. We find
that the semiclassical turning point again lies close to the average
value of the two S Matrix predictions, indicating that the relationship
between the translational trajectories obtained in the two theories is
quite close even though the vibrational motion is treated quite differ-
ently,

These comparisons serve to show that both the semiclassical theory
and the real-trajectory version of the S Matrix theory encounter numerical
and analytical difficulties at roughly the séme energies. Furthermore,

it is found that the translational trajectories in both cases show similar
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trends as a function of E. On the basis of these comparisons we have

come to the conclusion that it is not likely that the present theory
will ever yield better results than the real-trajectory version of the

S Matrix theory, quite apart from the fact that it is much more difficult
to work with in practice. This conclusion is somewhat more pessimistic
than that which was recently formed by Pechukas and Davis (104). Clearly,
one could improve the present theory by considering the possibility of
using complex translational trajectories and by taking account of var-

iations in the magnitude of a(t"’t') as the path varies about the

E%
classical path (15), but the improved theory would probably be too
difficult to work with in practice.

A comparison of the conclusions reached in this chapter with those
reached‘in Chapter III shows that both sets of conclusions are surpris-
ingly similar. In Chapter III it was found that a multi-trajectory theory
yielded better information (at least for elastic scattering) than did a
single-~trajectory theory, even though the single~trajectory theory treats
electronic motion precisely, instead of using SLZ theory. In this chapter
we have used a theory which treats vibrational motion completely quantum
mechanically and have found that it is not as useful as the S Matrix
theory which treats the dynamics of vibration classically. The multi-
trajectory curve-crossing theory and the S Matrix theory of vibrational
excitation have one feature in common: they both develop approximate
treatments of a quantum mechanical degree of freedom and as a result

they are both able to produce a more detailed picture of the classical

(translational) degree of freedom, in the sense that more than one solution



-134-

is found to correspond to the same observable event. From a formal point
of view both of these theories succeed in breaking the original path
integral [Eq. (56)] up into smaller, more manageable, pieces and this
seems to be the reason why they are so successful.

In conclusion, it should be noted that both the multi-trajectory
curve-crossing theory and the real-trajectory version of the S Matrix
theory can be regarded as special cases of the general theory discussed
in Ref., (15) and Chapter IIT (Section A) of this document. Since the
numerical results which we have produced using the general theory are
not as encouraging as anticipated, we conclude that the real value of
the general theory lies not so much in its ability to produce good
numbers as it does in its ability to serve as a starting point in the

development of more specialized approaches.
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Appendix T

MATRTX ELEMENTS FOR THE H-Be++ CALCULATION

(This subroutine replaces the QUANTM subroutine used by Corrigall

[Appendix II of Ref. (57)] for the proton~hydrogen calculation.)
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SUBROUTINE QUANTM(T,R,B,DBT,ARC,DRT,PIE,FIRST)

IMPLICIT COMPLEX*16 (A~H,0-3)

REAL*8 T,R,RINV,ANORM,XR1,XG1,XR2,XG2,X42,DEXP,DCOS,DSIN,DRT, TRM, 7
Xr€,G,2,T1,C1,CNORM,ICL1(2) ,JCL2(2) ,JCL3(2) ,DJICLT (2) ,DICL2(2) ,DICL
x(2),X,62,H11B,H11C,H11D,%1,H11A, TRM2, TRM3, CCLASS ,DSORT

DATA NDIM/2/

COMPLEX*16 IMAG/(O.DOO,1.DOO)/,N(2,2),RESULT(Z,Z),B(Z),DBT(Z),PDB?Q{

X(2),NINV(2,2),H(2,2),PDNR(2,2),NE(2,2),VECT(z),BT(z),PDBR(z),PDHR(
X2,2)

EQUIVALENCE (NE(1,1),NINV(1,1),PDNR(1,1))

LOGICAL*l4 FIRST

TWO PHASE FACTORS ARE NOW EVALUATED

PHPOS=DCOS(.15809D00*T) + IMAG*DSIN(.15809D00%*T)
PHNEG=DCCS (., 15809D00*T) - IMAG*DSIN(.15809D00*T)
RINV = 1.D00/R

XR1 = DEXP(~R)

IF (XR1 .LT. 1.D-20) XR1 = 0.D00

G 1.3290D00

Z 3.6875D00

T1 = G*G - G*Z + Z%3

Cl = (G + 2)/3.D00

CNORM = DSQRT(3.D00*G**5/T1)

XG1 = DEYP(~-G¥*R)

IF (XG1 LT, 1.D-20) XG1 = 0.D0O

XR2 = XR1*XR1

nou

IF (¥XR2 LT. 1.D-20) XP2 = 0.D0O0"
XG2 = XG1*XG1
IF (XG2 .LT. 1.D=-20) XG2 = 0.D00

XZ2 = DEXP(=2.D00*Z*R)
IF (XZ2 .LT. 1.D-20) XZ2 = 0.D00

CALC., OF .J INTEGCRALS AS PER COULSON 1941

X = 1.D00 - G*G
TRM = (R*X = UL,DO0*C)*XC1 + C* (R*Y + 4,D00)*XRT
JCL1(1) = 8.DOO*TRM/R/ (X*%3)

G2 = G + 2.D00*Z

X = 1.D00 - G2*G2

TRM = (R*X = 4,DO0*G2)*XZ2%XC1 + G2% (R*Y + 4.D00)*XR1
JCL1(2) = 8.DOO*TRM/R/ (X*%3)

X = G*G - 1,D00

TRM = (=R¥X*X + L.DOO*X*(1.D00 + R*C*C) = 20, DO0*G*C) *XR1

TRM = TRM + (X*X*R¥R + 4,DO0*X*(2.D00*G*R ~ 1,D00) + 24 . DOO*C*G) *
X  XG1

JCL2 (1) = 8.DOO*TRM/R/ (X*%1U)
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X = G2*G2 - 1.D00

TRM = (=R¥X*¥X + 4,DO0*X*(1.D00 + R¥C2%G2) - 24.D00*G2%C2) *XR1

TRM = TRM + (X*X*R¥R + U ,DO0*X*(2.DO0%C*R - 1.D00) + 24.DO0*G2%C2)
X ®YZ2%xC1 o
JCL2(2) = 8.DOO*TRM/R/ (X*%*l) S

X = 1,D00 -~ G*¢
TRM = 2,D00*XG1 -~ (2.D00 + R%YX)*XR1
JCL3(1) = 4.DO0*TRM/R/X/X

X = 1.D00 - G2*@2
TRM = 2.D00*X¥Z22%*¥G1 - (2.D00 + R¥*X) *XR1
JCL3(2) = 4.DOO*TRM/R/X/X

N MATRIX IS CALCULATED

N(1,1) 1.D00

N(2,2) = N(1,1)

TRM = CNORM* (JCL1(1) - C1*JCL2(1))
N(1,2) = TRM*PHNEG

N(2,1) = TRM*PHPOS

IF (.NOT. FIRST) GO TO 35

DO 20 I = 1,2

BT(I) = DCONJG(B(I))

CALL CDGMPD(N,B,VECT,NDIM,NDINM,1)
CALL CDGMPD (BT ,VECT,BNORM, 1,NDIM, 1)
ANORM = BNORM

ANORM = DSQORT (ANORM)

DO 30 I = 1,2

B(I) = B(I)/ANORM

I

EVALUATION OF H MATRIX (TOTAL)

H11

CONTINUE

H11B = G*(G*G - 2.D00*C*z + 3.D00*Z*2) /2.D00/T1
H11C = G*G* (z*2 - G*) /71

H11D = G**3/3.D00* (¢ + Z)®%2 /71

Z21 = (1.D00 + Z)*(1.D00 =- Z)

H11A = 1,D00 + 2,D00*XZ2 + XC2
H(1,1)=HT1A%RINV+ 2.D00%Z*%72 + XG2¥ (H11B + H11C*R + H11D*R*R)
H(1,1) = H(1,1) - .65809D00

Ha22

H(2,2)=4.DO0*RINV+ 2.D00% ((XZ2 - 1.D00)*RINV + 2%Xz2)
H(2,2) = H(2,2) + L.,DO0% ((XR2 ~- 1.D00) *RINV + XR2)
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TRM = (1.D00 = (1.D00 + Z*R)*XZ2)*RINV

TRMZ = - (X272 - XR2)*2,DO0¥Z¥RINV/Z1/21 + (XZ2 + Z*XR2) /21
TRM2 = TRM2%Z%2%7/21

TRM3 = =Z% (XZ2 - XR2)*RINV/Z1

TRM3 = Z#*Z%Z% (TRM3 + X%2) /21

TRM = TRM - TRM2 - TRM3
H(2,2) = H(2,2) + 2.DO0*TRM = .5D00

H12

CCLASS = 2.D00*(1.D00 + XZ2)*RINV + 2.D00%Z%X72
TRM = CNORM* (JCL1(1) = C1*JCL2(1))

TRM2 = CCLASS*TRM - 2,DO0*CNORM*(JCL3(1) - C1%JCL1(1)) FA
TRE2 = TRM2 + 2,DOO0*CNORM* (- (2Z = C1)*JCL1(2)=JCL3(2)+2%C1%ICL2(2))
TRM3 = =TRM/2,D00 + TRM2 .
H(1,2) = TRM3*PHNEG
H(2,1) = TRM3*PHPOS

CALC. NE MATRIX

DO 40 I=1,2
NE(I,1) = =N(I,1)%.65309D00
NE(I,2) = =N(I,2)%.5D00

CREATE N INVERSE

CALL MOVEC (NINV(1,1),64,N(1,1))
CALL CDMINV(NINV,NDIM,NDIM,DET)

NOW CALCULATION OF PARTIAL DER. OF B WeR.T. T

CALL CDGMPD (NINV,H,RESULT,NDIM,NDIM,NDIM)
RESULT(1,1) = RESULT(1,1) + .65809D00
RESULT (2,2) = RESULT(2,2) + .5D00

CALL CDGMPD (RESULT,B,PDBT,NDIM,NDIM, 1)

DO 60 I=1,2

PDBT(I) = -IMAG*PDBT(I)

CALC. PIE (REQUIRE BTILDA)

DO 70 I = 1,2

BT(I) = DCONJC(B(I))

IF (.NOT. FIRST) GO TO 75

CALL CDGMPD(H,B,VECT,NDIM,NDIM, 1)
CALL CDGMPD (BT,VECT,PIE,1,NDIM,1)

CALC. TOTAL DER. OF B W.R.,T. T
1. PARTIAL DER. OF N W.R.T. R

CALL EXCLOR(PDNR(1,1),64,PDNR(1,1))
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CALC. DER. OF J INTECGRALS

X = 1.D00 - Gc*¢
TRM= (~R¥R*X+4 ,DOO*C*R+4,D00) *XC 1= (R¥R*X+4 ,DOO*R+4.D00) #XR1
DICL1(1) = 8.DOO*G*TRM*RINV*RINV/ (X%*%3)

G2 = G + 2,D00%2Z

X = 1.D00 - G2*G2

TRM= (~R*R*X+U4 ,DOO*G2*R+4 ,D00 ) *XZ2%XC 1~ (R¥R¥*X+4 .DO0*R+4 ., D00 ) *XR1
DJCL1(2) = 8.DO0*G2*TRM*RINV*RINV/ (X**3)

X = G*¥¢ - 1.,D00

TRM= (R¥R*X*¥-4 . DO0*X* (G¥C*R¥R+R+1.D00) +24 . DOO*G*G* (R+1.D00) ) *XR1
TRM=TRM+ (R¥*R*X*X* (1,D00~CG*R) =l ,DOO*X* (2.D0O0*¥G*C*R¥R=G%*R=1.D00) -
X 2U.DO0*G*G* (G*R+1.D00) ) *XG1

DJCL2 (1) = 8.DOO*TRM*RINVH*RINV/ (N*%U4)

X = G2*G2 - 1.,D00

TRM=(R*R*X*X—4.DOO*X*(GZ*GZ*R*R+R+1,DOO)+24.D00*G2*G2*(R+1.DOO))*.
X XR1

TRM=TRM+(R*R*X*X*(1.DOO—GZ*R)—Q.DOO*X*(2.DOO*G2*GZ*R*R-G2*R—1.DOO}
X =24.D00*C2%*G2% (G2*P+1.D00) ) #XZ2%*NG1

DJICL2(2) = 8.DOO¥TRM*RINV*RINV/ (X*%l)

X = 1.D00 - C*G
TRM=-2.D00* (1.DO0+C*R) *XC1+(2.D00%* (1.,D00+R) +X*R*R) *XR1
DICL3(1) = U4,DOO0*TRM*RINV*RINV/X/X

X = 1,D00 - G2*G2
TRM==2,D00* (1.DO0+G2*R) *¥XZ2*XC1+(2.D00* (1.D00+R) +¥*R*R) *XR1
DICL3(2) = UL.DOO*TRM*RINV*RINV/X/X

TRM = CNORM* (DJCL1(1) - C1*DICL2(1))
PDNR(1,2) = TRM*PHNEG

PDNR(2,1) = TRM*PHPOS

CALL CDGMPD (PDNR,B,VECT,NDIM,NDIM,1)
CALL CDGMPD(BT,VECT,RES,1,NDIM,1)

DO 80 I = 1,2

PDBR(I) = -,5D00*RES*B(I)

DBT(I) = PDBR(I)*DRT + PDBT(I)

PARTIAL DER. OF E W.R.T. R

1. PARTIAL DER. OF H W.R.T. R
H11
TRM = =H1TA*RINV#RINV - (4.DO0*Z*¥XZ2+2,D00*CG*XG2) *PRINV
TRM = TRM=-U.DO0*Z¥Z2%X722~2,D00%C* (H11B+HT11C*R+HT1D*R*R) *XG2
TRM = TRM + (H11C + 2.D00*H11D*R) *XC2
PDHR(1,1) = TRM



~140-

H22

TRM = ~U4,DOO*RINV*RINV+2,D00% (~2,D00*Z*RINV*XZ2=RINV*¥RINV* (XZ2=1.]
X00) = 2.DO0*Z*2Z%*Xz2)

PDHR(2,2) = TRM+L . DO0* (-2.DO0*RINV*XR2-RINV*RINV* (XR2-1,D00) -2 .D0(
X *XR2)

TRM==RINV*RINV+RINV* (2.D00*Z% (1.D00+Z*%R) +RINV) X7 2

TRM2==2.D00*Z* (-RINV*RINV* (XZ2~XR2) +RINV* (=2 ,D00*Z%XZ2+2 . DO0*XR2) '

X /z21/21
TRM2 = TRM2 - 2.D00*Z*(X22 + XR2)/21
TRM2 = TRM2*Z%7%7/Z1

TRM3=—Z*(—RINV*RINV*(XZZ—XR2)+RINV*(—2.DOO*Z*XZ2+2.DOO*XR2))/Z1
TRM3 = Z¥Z2%Z%(TRM3 -~ 2.D00*2*XZ%2) /21

TRM = TRM - TRM2 - TRM3

PDHR(2,2) = PDHR(2,2) + 2.DO0*TRM

H12

TRM = CNORM#* (DJCL1(1)~-C1*DJICL2 (1)) * (-.5D00+CCLASS) :
CCLASS = =2,DO0*RINV*RINV* (1.D00+X%Z2) =4 .DO0*Z*RINV*XZ2=0U D00 *Z%7%;
XZ2

TRM = TRM + CCLASS*CNORM* (JCL1(1) - C1*JCL2(1))

TRM = TRM - 2,D00*CNORM¥ (DJCL3(1) - C1%DICL1(1))

TRM=TRM+2 . DO0*CNORM* (- (Z-C1) ¥DJICL1 (2) =DJICL3 (2) +Z*C1*DICL2 (2) )
PDHR (1,2) = TRM*PHNEC

PDHR(2,1) = TRM*PHPOS

CALL CDGMPD (H,PDBR,VECT,NDIM,NDIM,1)
CALL CDGMPD (BT,VECT,PDER,1,NDIM, 1)
CALL CDGMPD (PDHR,B,VECT,NDIM,NDIM,1)
CALL CDGMPD (BT,VECT,RES,1,NDIM,1)
PDER = RES + PDER + DCONJG (PDER)
ARG = PDER

RETURN

END
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Appendix II

COMPUTER PROGRAM FOR THE VIBRATTONAL EXCITATION CALCULATION
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THIS PROGRAM-COLTRANS~-VERSION 2 SIMULATES SEMI-CLASSICAL
SCATTERING OF AN ATCM OFF A VIBRATING DIATOMIC.,

THE SYMBOL SET IS CHOSEN TO BE AS CLOSE TO NORMAL NOTATION AS
POSSIBLE, SO
REFER TC VARIOUS DOCUMENTATION IN PROGRAM AND IN MY POSS-
ESSION,

IMPLICIT REAL*S (A-H,0-2)

****************************************%************************';,f
PROGRAMMER B.KUPPERS (A.P.PENNER) S
REAL*8 ERRORX(1) ,ERRORY (1) ,ERRORZ (1) ,ERPX (1) ,ERPY(1) ,ERPZ(1) ,DELP
X(1) ,DELPY (1) DELPZ(1),ALPHP(4)/ SDOO,.h9?89°218813N53D00 S
1. 707106781186)anoo,.16(6666(666r6667D00/ BETA (4) /.5D00,
X.292893218813453D00,1. 70710678118(5“7DOO,.SDOO/ ANUMB(4) /2. DOO,
X1.D00,2,D00/, VINIT(13 13)

REAL* ! TMINT, TCPU, TMTRM , TMACCM

INTEGER STATEI,STATEF

EQUIVALENCE (JN,L)

DATA TOOLRB,TOOSB/1.D=07,1.D=10/

DATA NLENG,NOPART/8,1/

DATA IWRITE/6/,NDIM/13/

COMPLEX*16 U,PIE,USAVE(13,13),UCOPY(13,13),ERRORU (13,13) ,TERY,
X UPIN(13)

LOGICAL*Y NTEST,FIRST

FOLLOWING COMMON BLOCKS STORE

THE POSITIONS AND MOMENTUM ARE STORED IN COMMON CORPRP.ALSO MASSE
COMMON /CORDRP/RX(1,3),RY(1,3),RZ(1,3),PX(1,3),PY(1,3),P2(1,3),
XTMASS (1)

COMMON /RW/NORUN, TMINT ,NOTHNG , TMTRM , TMACCM , TCDU

COMMON /UMATRY/U(13,13,3)

INITIAL INFORMATION READ BY READ ROUTINE
PARAMETERS

TOOLRG IS MAXINUM TOTAL ERROR FOR POSITIONS AND hOIENmA

NLENG LENGTH IN BYTES FOR ANY SET OF POSITIONS OR NOMENTA ALONG =

A GIVEN AXIS

CALCULATE VINIT MATRIX

READ (5,2) STATEI,STATEF



i

15

16

PRSP

21

11

12

10 CALL READ(DELTAT,NOTRY,TIME,NWRIT,NTEST

-143-

FORMAT (212)
WRITE(6,9) STATEI,STATER

FORMAT( ' INITIAL STATE = ',I2,'° FINAL STATE = ',I2)
READ (5,3) ALPHAV,CONST

FORMAT (2D20.10)

WRITE (6,4) ALPHAV,CONST

FORMAT (///,' ALPHA = ',D13.5,20%,' BO CONSTANT = ',D18.10)
DO 5 I = 1,NDIM

READ (5,15) UFIN(I)

FORMAT(2D10.4)

DO 5 J = 1,NDIM

VINIT(I,J) = 0.D0O

WRITE(6,16) (UFIN(I),I = 1,NDIM)

FORMAT (/,"' UFIN = ',/,1x,1zm11.a,/,1x,1zn11,4,/,1x,2D11.u)

GENERATE MATRIX ELEMENTS OF VINIT USING RECURRENCE RELATION,

ALPHA2 = ALPHAV/DSORT(2.D00)
VINIT(1,1) = 1.0D00

DO 21 I = 2,NDIM

REALT = I - 1

VINIT(1,I) = ALPHA2*VINIT(1,I-1)/DSORT (REALT)
DO 22 I = 2,NDIM

REALI = T - 1

REALI = DSQRT (REALI)

DO 22 J = I,NDIM

REALT = J - 1

REALJ = DSQRT (REALJ)

VINIT(I,J) = (REALJ*VINIT(I-1,J-1) + ALPHA2*VINIT(I-1,J))/REALI

DO 7 I = 1,NDIM
WRITE (6,6) (VINIT(I,J),J = 1,NDIM)
FORMAT (////////,6D20.10,/,4D20.10)

CONTINUE
DO 8 I = 1,NDIM
DO 8 J = 1,NDIM

VINIT(I,J) = VINIT(I,J)*CONST

CALL ERRSET (208,256,-1,1,0,0)
,JN2 , EPREV, TEND , TOOLRG,

XTOOSM)

NCOUNT=0

DO 11 I = 1,NDIM

DO 11 J = 1,NDIM

DO 11 K =1,3

U(1,J,K) = (0.,D00,0,D00)
DO 12 I = 1,NDIM

DO 12 T = 1,3

U(I,I,7) = (1.D00,0.D00)

TEST TO SEE IF PREVIOUSLY RUN. IF NOT GO TO STARTING BLOCK( LABE
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40) WHICH USES RUNGE =-KUTTA BLOCK IN A SPECIAL FASHION FOR
TWO ITERATIONS.

IF (NOT.NTEST) GO TO 50

JN1=TN2+1

IF (JN1.GT.3) JIN1=1

JN=IN1+1

IF (IN.GT.3) JIN=1

CALL MOVEC(UCOPY(1,1),2704,U(1,1,JN))

GO TO 70
*****************************************************************

$ NOTE $

20

MOVEC AND EXCLOR ARE IBM ASSEMBLER ROUTINES
MOVEC (INTO,NLEN,FROM)
MOVES NLENG BYTES FROM STARTING BYTE FROM INTO STARTING BYTE
INTO ,
THIS IS USED TO MOVE ARRAY CHUNKS.

EXCLOR (INTO, NLENG , FROM)

EXCLUSIVE OR'S FROM ONTO INTO FOR A STRINCG NLENGC BYTES LONG,
THIS IS USED TO ZERC OQUT MATRIX.

DERIVATIVES OF POSITIONS AND MONMENTA JN1,IN2, SAVED.
TEST TO SEE IF FIRST LOCP OF R.-K. AND APPROPRIATE POINT CALC,

*****************************************************************

TIME INTERVAL IS SHORTENED IF MOTION TOO LARCE-BACK STEP TO N=-3 }gvgff

STEP AND P.C.RESTARTED.
LOSE TWO ITERATIONS SINCE POINTERJIN3 HAS ALREADY BEEN SHIFTED,

TIME=TIME=-DELTAT
NOTRY=NOTRY=- 1

DELTAT=DELTAT*,5D00
NORUN=2*NORUN=NOTRY

WRITE (IWRITE,160) DELTAT,NOTRY,NORUN
NTEST=,FALSE,

IF (DELTAT .LT.1.D-07) CALL EXIT

FURTHEST BACK KNOWLEDCE STEP JN3 LOADED INTO R(I,1)S0 TO START
IN RUNGE-KUTTA.

IF (JN2.EQ.1) GO TC 50
CALL MOVEC(RX(1,1) ,NLENG,RX(1,TN2))
CALL MOVEC(RY(1,1),NLENG,RY(1,JN2))



QOO0

SRORP!

oReNe!

=145~

CALL MOVEC(RZ(1,1) ,NLENG,RZ(1,JIN2))
CALL MOVEC(PX(1,1),NLENG,PX(1,JIN2))
CALL MOVEC(PY(1,1) ,NLENG,PY(1,JIN2))
CALL MOVEC(PZ(1,1) ,NLENG,PZ(1,JTN2))
CALL MOVEC(U(1,1,1),2704,U(1,1,JIN2))
GO TO 50

CALCULATION DONE TOO ACCURATELY=-TRUNCATIONAND ROUND OFF ERROR OF
SAME ORDER. LENGTHEN INTERVAL LOAD LAST CALC. R(I,JN) INTO R(I,
) AND RESTART WITH RUNGE KUTTA.

30 DELTAT=DELTAT*2,D00
NORUN= (NORUN+NOTRY) /2

40 WRITE (IWRITE,160) DELTAT,NOTRY,NORUN
NTEST=.FALSE.
IF (JN1.EQ.1) GO TO 50
CALL MOVEC(RX(1,1) ,NLENG,RX(1,JIN1))
CALL MOVEC(RY(1,1) ,NLENG,RY(1,JN1))
CALL MOVEC(RZ(1,1) ,NLENG,RZ (1,TM1))
CALL MOVEC (PX(1,1),NLENG,PX(1,JN1))
CALL MOVEC(PY(1,1) ,NLENG,PY(1,JIN1))
CALL MOVEC(PZ(1,1) ,NLENG,PZ (1,JK1))

CALL MOVEC(U(1,1,1),2704,U(1,1,JN1))
*********************************************************************

st st sl e 3k ok o o sk o o ok o o she ok el o ok o ok s ol s ol ke e o o sl o s o st ol ok o ok o oo o s ol ol o o o ol sl e e ot ot ot o ok o o ok e ok

RUNGE=KUTTA BILOCK.

50 JN2=1
JIN1=JIN2
JN=2
CALL MOVEC(UCOPY (1,1),2704,U0(1,1,IN2))
GO TO 70
60 EPREV=E
IF (NOTRY.EQ.0) GO TO 67
65 NOTRY=NOTRY+1
JN1=2
JN=3
NTEST=,TRUE.
GO TC 90

SET UP ENERGY TEST IF NOTRY=0
67 TOOLRG=DABS (TOOLRB*EL)
TOOSM=DABS (TOOSB*E)
WRITE (IWRITE,170) E,TOOLRG,TO0OSM
GO TO 65

FIRST STEP ERROR ARRAYS INITIALIZED TO ZERC
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CALL EXCLOR(ERRORX (1) ,NLENC, P“ORA(1))
CALL EXCLOR(ERRORY (1) ,NLENG,ERRORY (1))
CALL EXCLOR(ERRORZ (1) NLFNG,ER?O (1))
CALL EXCLOR(ERPX(1),NLENG,ERPX(1))

CALL EXCLOR(ERPY(1),NLENG,ERPY(1))

CALL EXCLOR(ERPZ (1) ,NLENG,ERPZ (1))

CALL EXCLOR(ERRORU(1,1),2704,ERRORU(1,1))
IF (,NOT.NTEST) GO TO 90

POINTERS ARE NOW CHANCED FOR POSITIONS OF MOMENTA AND POSITIONS

IHOLD=JN2

JIN2=TN1

JN1=TIN

CALL MOVEC (RX(1,JN) ,NLENC,R¥(1,JN1))
CALL MOVEC (RY (1,JM) ,NLENG,RY(1,TN1))
CALL MOVEC(RZ(1,JdN) ,NLENG,RZ (1,TIN1))
CALL MOVEC (PX(1,JN) ,NLENG,PX(1,IN1))
CALL MOVEC(PY(1,JN) ,NLENG,PY(1,TIN1))
CALL MOVEC(PZ (1, JN),NLE“F PZ(1,IN1))
FIRST=,TRUE.

NOW ACTUAL R. K. G. PROCEDURE

DO 140 KR=1,4

IF (KK.EQ.2,0R.KK.EQ.%) TIME=TIME+,S5D0O0*DELTAT

X=RX(1,JTN)

R=X

CALL QUANTM(TIME,R,UCOPY,USAVE,DET,PIE,FPIRST,VINIT,ALPHAV,UFIN,
X STATEI)

DELPX (1) = -DET

FINAL RESULT LOADED INTO A
THEN ENERGY CALCULATED AND TESTED,

IF (.NOT.FIRST) GO TO 110

TK=0,D00

DO 100 I=1,NOPART

TK=TK + PX(I,JN1)%%2/(2,D00*TMASS(I))
E=PIL+TK

IF (.NOT.NTEST) GO TO 110

CALL MOVEC(U(1,1,JN1),2704,UCOPY(1,1))
ERROR=DABS (EPREV-E)

IF (ERROR.GT.TCOLRG) GO TO 20

IF (ERROR.LT.TOOSM.AND,DELTAT.LT.1.9D00) GO TO 30
EPREV=E
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NOW NEW POSITIONS AND MOMENTA OF A PARTICULAR ITERATION CALCULATE

ALP=ALPHA (KK)

APP=3.DO0*ALP

BET=BETA. (KK)

ANUM=ANUMB (KK)

DO 120 I=1,NOPART

TMASSI=TMASS (I)

PXI=PX(I,L)

XK=PXI/TMASSI

ERROR=ERRORX (I)

RX(I,L)=RX(I,L)+ALP* (XK~ANUM*ERROR) *DELTAT
ERRORX (I) =ERROR+APP#* (XK-ANUM#ERROPR) ~BET*XK
DELP=DELPX (I)

ERP=ERPX (I)

PX(I,L)=PYXI+ALP* (DELP~ANUM*ERP) *DELTAT
ERPX (I)=ERP+APP* (DELP-ANUM#*ERP) ~BET*DELP
CONTINUE

NEW A CALCULATED FOR A PARTICULAR ITERATION

DO 130 I=1,NDIM

DO 130 J = 1,NDIM

TERM=ALP* (USAVE(I,J)-ANUM*ERRORU(I,J))

UCOPY (I,J)=UCOPY (I,T)+TERM*DELTAT
ERRORU(I,J)=ERRORU(I,T)+3.D00*TERM~BET*USAVE (I, T)
FIRST=,FALSE.

CONTINUE

IF (.NOT.NTEST) GO TO 60
NOW TIME INCREMENTED AND ITERATION COUNTERS AND TEST TC SEE IT
THERE IS TO BE PRINTOUT

NOTRY=NOTRY+1

NCOUNT=NCOUNT+1

IF (NCOUNT.LT.NWRIT) GO TO 80

CALL WRITE(NOTRY,TIME,JN1,DELTAT,E,TK,PIE,UFIN,STATEI,STATEF,§10) "
NCOUNT=0

GO TO 80

FORMAT (1HO,'TIME INTERVAL CHANGED TO',G15.8,' AT STEP',I8,"' NUMB

XR OF RUNS IS ',I10)

FORMAT (1H ,'INITIAL ENERGY IS ',D20C.10,' WITH UPPER TOLERANCE ',

XG20.10,' AND LOWER TOLERANCE',CG20.10,' ON ENERGY'/)

END

SUBROUTINE QUANTM(T,R,U,DUT,ARC,PIE,FIRST,VINIT,ALPHAV,UFIN,
STATET)

IMPLICIT COMPLEX*16 (A-H,0-7)

INTEGER STATEI

REAL*8 T,R,DEXP,ARC,DSORT,VINIT(13,13),ALPHAV,E(13),XR,



-148-

XREALI,DSIN,DCOS

DATA NDIM/13/

COMPLEX*16 INAG/(O.DOO,T.DOO)/,U(13,73),DUT(13,13),V(13,13),
X PHASE,UFIN(13),UCOL(13),TEMP1(13,13),TEMP2 (13)

LOGICAL*4 FIRST

XR = DEXP (=ALPHAV*R)

IF (XR .LT, 1.D=20) XR = 0.D00

o
C EVALUATION OF V MATRIX AND E VECTOR
o
DO 5 I = 1,NDIM
UCOL(I) = U(I,STATET)
REALI = I =~ 1
5 E(I) = 0.5D00 + REALI
DO 6 I = 1,NDIM
6 V(I,I) = VINIT(I,I)*XR
DO 7 I = 2,NDIM
REALTI = I = 1
PHASE = DCOS(REALI*T) = IMAC*DSIN (REALI*T)
INDIM = NDIM - I + 1

DO 7 J = 1,INDINM
V(J,I+T-1) = VINIT(J,I+J-1)*XR*PHASE
7 V(I+J=1,J) = DCONJG(V(J,I+J-1))

CALCULATION OF TOTAL DER. OF B W.,R.T., T

00

CALL CDGMPD (V,U,DUT,NDIM,NDIM,NDIM)
DO 11 I = 1,NDIM
DO 11 J = 1,NDIM
11 TEMP1(I,J) = DCONJG(DUT(J,I))
CALL CDGMPD (TEMP1,UCOL,TEMP2,NDIM,NDIM,1)
CALL CDGMPD (UFIN,TEMP2,EPERT,1,NDIM,1)
EPERT = EPERT/UTFIN(STATET)
DO 60 I=1,NDIM
DO 60 J = 1,NDIM
60  DUT(I,T) = ~IMAG%DUT(I,J)

CALC. PIE

aan

IF (.NOT. FIRST) GO TO 75
DO 20 I = 1,NDIM
DO 20 J = 1,NDIM
20 TEMP1(I,J) = E(J)*DCONIG(U(T,I))
CALL CDGMPD (TEMP1,UCOL,TEMP2,NDIM,NDIN, 1)
CALL CDGMPD (UFIN,TEMP2,PIE,1,NDIM,1)
PIE = PIE/UFIN(STATEI)
PIE = PIE + EPERT
75  CONTINUE

C PARTIAL DER., OF E W.R.T. R
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ARG = =ALPHAV*EPERT

RETURN

END

SUBROUTINE READ(DELTAT,NOTRY,TIME,NWRIT,NTEST,JN2,EOQ,TND,TOOLRG,
XTOOSM)

THIS SUBROUTINE READS THE INITIAL DATA FROM DISK AND CARDS
TO START THE CALCULATION.

IMPLICIT REAL*8 (A-H,0~2)
COMPLEX*16 U,A(13,3)

REAL*8 ZIP1(19)

COMMON /UMATRX/U(13,13,3)

DATA IREAD,IWRITE/5,6/,NDIM/13/

REAL*Y4 TMTRM,TMACCM, TMINT,TCPU

LOGICAL*#4 NTEST,START/.TRUE./

COMMON /CORDRP/RX(1,3),RY(1,3),R%2(1,3),PX(1,3),P¥(1,3),P2(1,3),
XTMASS (1)

EQUIVALENCE (ZIP1(1),R¥(1,1))

COMMON /RW/NORUN , TMINT ,NREAD, TMTRM, TMACCM , TCPU

IF (START) GO TO 20

READ (IREAD,130,END=70) NORUN,NREAD,NWRIT,TND

READ (NREAD) JN2,NOTRY,NTEST,EO,TIME,DELTAT,TOOLRG, TOOSM
READ (NREAD) ZIP1

READ (NREAD) 2

READ (NREAD,END=30)

WRITE (IWRITE,90) NREAD

GO TO 70

CALL $TRTM(TCPU)

$TRTM STARTS THE CPU TIMER.

READ (IREAD,80) TMINT,TMTRM
TMACCHM=0,0

START=.FALSE.

GO TO 10

IF (NOTRY.GE.NORUN) GO TO 10
REWIND NREAD

TN=JN2~1

IF (JN2.EQ.1) JN=3

IF (.NOT.NTEST) JN=JN2 i
WRITE (IWRITE,120) DELTAT, (I,PX(I,JN),PY(I,JN),PZ(I,JN),TMASS(I),
XRX(I,JIN),RY(I,IN),RZ(I,TN),I=1,1)

WRITE (IWRITE,100) (I,A(T,JN),I=1,NDIM)

RETURN

CALL EXIT

RETURN

FORMAT (2G10,0)

FORMAT (1H ,'ON READING DATA SET-ENDFILE MISSING',IS5)
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100 FORMAT (1H  ,'B MATRIX'/(I5,2G20.10))

110 FORMAT (1H ,7Al4)

120 FORMAT (1H1,28X,'SEMICLASSICAL SCATTERING OF PROTON-HYDROGEN SYST
XM'/1H  , 31X, "INITIAL TIME INTERVAL USED IN CALCULATION IS',D20.10
X' A.U.'////1H  ,53%,'INITIAL PARTICLE PARAMETERS'///1H ,'PARTICL

X*',6X,'PX',5X, "*%Y 6X,'PV BX, Y% 6X,'PZ',5X, '¥* 3K, 'TMASS', 5%,
X#%1 6X,'RX',5X, %% ,6%, 'RY', 5%, "%%' 6X,'RZ',5X, "% /(1H ,2¥,I5,2%

X7D15.8))
130 FORMAT (I10,21I5,D20.10)

END

SUBROUTINE WRITE (NOTRY,TIME,JIN,DELTAT,E,TK,PIE,UFIN,STATEI,STATEF -
X *)

IMPLICIT REAL*8(A~H,0~Z)

INTEGER STATEI ,STATET

REAL*8 ZIP1(19)

COMMON /CORDRP/R¥(1,3),RY(1,3),R2(1,3),P%X(1,3),Pv(1,3),P%2(1,3),
XTMASS (1)

EQUIVALENCE (ZIP1(1),RX(1,1))

LOGICAL*4 NTEST

COMPLEX*16 U,PIE,UCHECK(13,13),UDAG(13,13),TEST(13,13),UrIN(13)
COMMON /UMATRX/U(13,13,3)

REAL*U4 TMTRM,TMACCH,TCPU,TMINT,PHASE

DATA IWRITE/6/,NOPART/1/,NDIM/13/

COMMON /RW/NORUN, TMINT,NWRT , TMTRM, TMACCM, TCPU

20 TIMN=TIME=-DELTAT

WRITE (IWRITE,70) NOTRY,TIMN, (I,P¥(I,IN),PY(I,JN),PZ2(I,JIN),RX(I,T
%) ,RY(I,IN),RZ(I,TN),I=1,NCPART)

R=RX (1,JN)

WRITE (IWRITE,55) R

DO 30 I=1,NDIM

VA=CDABS (U(I,STATEI,JN)) *#*2

VA IS THE SQUARE OF THE MODULUS OF THE COEFFICIENTS.

30 WRITE (IWRITE,60) I,U(I,STATEI,JN),VA
WRITE (IWRITE,%0) PIE,TK,E
IF (NOTRY.LT.NORUN) GO TOC 40
WRITE (IWRITE,50)
50 FORMAT (1H1)
DO 52 I = 1,NDIM
WRITE (IWRITE,51) (U(I,J,JN),JT = 1,NDIM)
51 FORMAT(////,1X,12D11.4,/,1X,12D11.4,/,1X,2D11.4)
52 CONTINUE
DO 56 I 1,NDIM
DO 56 J 1,NDIM
UCHECK(I,J) = U(I,J,TN)
56 UDAG(J,I) = DCONJIC (UCHECK(I,J))
CALL CDGMPD (UDAG,UCHECK,TEST,NDIM,NDIM,NDIM)
WRITE (IWRITE,57)
57 FORMAT (1H1)

I}
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DO 59 I = 1,NDIM
UFIN(I) =

= U(STATEF,I,JN)

WRITE (IWRITE,58) (TEST(I,J),J = 1,NDIM)
58 FORMAT (1X,12D11.4,/,1X,12D11.4,/,1X,2D11.8,////)

59 CONTINUE
DO 100 I = 1,NDIM

VA = CDABS(UFIN(I))**2

TEMP1
TEMP2
PHASE

UFIN(I)

(0.D0D,-1.D00) *UFIN(I)
180.D00/3.14159D00*DATAN (TEMP2/TEMP 1)

IF (TEMP1 .17, 0.D00) PHASE = PHASE + 180.0

IF (PHASE .,LT. 0.0)

PHASE = PHASE + 360.0

WRITE (6,101) UFIN(I),VA,PHASE
101 FORMAT(/,1X,2D13.4,D20.4,F15.1)

100 CONTINUE

RETURN 1

L0 CONTINUE
RETURN

55 FORMAT (1H ,'*#*% THE INTERNUCLEAR SEPARATICN R IS ',D20.10/1H ,1¥,
X'STATE * ',16X,'B MATRIX',16X,' *%* ', 'B MODULUS SQUARED %)

60 FORMAT (1H ,I5,3X,2G20.10,U4X,G20,10)

70 FORMAT (1HO,'RUN NUMBER',I10,' AT T= ',D20.13,' A.U.'/1H ,'OBJEC

X *',8X,'PX',8%,'*',1X,
X'#',8X,'RY',8X,"'*',1X,

'#1,8X,'PY',8X, "', 1K, %, 8%, P2, 8K, '*1,1X
'£1,8X,'RY',8X,"*',1X, " *',8%, 'RZ', 8K, '*' /(1

X ,2X%X,I2,2X,6(1%X,D20.13)))
90 FORMAT (1H ,10X,'*#®% TOTAL QUANTUM ENERCY ',2D20.10/1H ,10X,'#*%
X KINETIC ENERGY',D20.10,2X,"TOTAL ENERCY',D20.10)

END
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and like loiterers

on the fringes of a fair
we ogle the unobtainable
imagined mystery
Yet away around on the far side

like the stage door of a circus tent

is a wide wide vent in the battlements
where even elephants

waltz thru

- L. Ferlinghetti



