
BInn Cerr RpcocNITIoN WITH AnTTTTCIAL NpuRaI
NErwoRKS, Supponr Vncron MacHINES, AND

KpnivnT- DENsTry ESUMATIoNI.

by Derek J. Ross

A thesis submitted to the Faculty of Graduate Studies in partial fulfillment of the
requirements for the degree of

Master of Science

Department of Electrical and Computer Engineering
University of Manitoba

Winnipeg, Canada

@ Derek J. Ross 2006

THE T]NTVERSITY OF MANITOBA

FACULTY OF GRADUATE STUDIES

COPYRIGHT PERMISSION

Bird Call Recognition with Artificial Neural Networks, Support Vector Machines, and Kernel

Density Estimation

by

Derek J. Ross

A Thesis/Practicum submitted to the Faculty of Graduate Studies of The Universify of

Manitoba in partial fulfillment of the requirement of the degree

of

Master of Science

Derek J. Ross O 2006

Permission has been granted to the Library of the University of Manitoba to lend or sell copies of
this thesis/practicum, to the National Library of Canada to microfilm this thesis and to lend or sell
copies of the film, and to University Microfilms Inc. to publish an abstract of this thesis/practicum.

This reproduction or copy of this thesis has been made available by authority of the copyright
o\ilner solely for the purpose of private study and research, and may only be reproduced and copied

as permitted by copyright laws or with express wriften authorization from the copyright owner.

I hereby declare that I am the sole author of this thesis.

I authorize the University of Manitoba to lend this thesis to other institutions of individuals for
the purpose of scholarly research.

I also authorize the University of Manitoba to reproduce this thesis by photocopying or by other
means, in total or in part, at the request of other institutions or individuals for the purpose of
scholarly research.

Derek J. Ross 2006

Acknowledgments

First, I would like to thank my advisor Howard Card for skillfully elucidating the inner workings
of the concepts of pattern recognition. I would also like to thank my secondary adviser, Dean
McNeill, for carrying the torch after Howard went on sabbatical, and for providing valuable
advice that helped get this thesis over the finish line. Thank you also to thesis committee members
Dr. P. Yahampath and Dr. J. Anderson for their comments and suggestions.

I thank my wife Rowena and children Darwin and Felix, for their patience and support while I
spent seemingly countless hours working on this degree.

Thank you to Alex Mcllraith for his knowledge of pattern recognition, statistics, and biology, and
for practical advice on the art of thesis writing. Thanks go to Rob Berger for his expertise of all
things feathered, and a big thank you to both Rob and Alex for providing the audio data used in
this project, courtesy of their company, Myrica Systems. Thanks also to Brad Brown of Iders Inc.,
for giving me some time off to pursue this degree, and for useful advice regarding this work.

Finally, I'd like to thank many friends who have had an impact on this thesis. Gord McGonigal,
Cam Mayor, Christian Gan, Andrew McKay, steve Dueck, Shamir Mukhi, shelley Gagne, Tam

Lam, Richard Burchill, and Chuck Leibert, have all made special contributions.

iii

Abstract

This thesis evaluates artificial neural networks (ANNs), support vector machines (SVMs), and
kernel density estimation of probability (KDE) on the task of classifying ten species of birds from
audio recordings of their calls.

This project had two primary goals. The first goal was to determine if short-term tonal qualities
are adequate for distinguishing bird species. Past research into bird recognition has concentrated
on long-term or global characteristics of bird calls, as opposed to short-term qualities.

The second goal was to compare the performance of the three aforementioned pattern recognition
algorithms. ANNs have been used for bird recognition in past research, but SVMs and KDE have
not been studied in this context.

Recordings were first processed to extract short-term features based on spectral, cepstral, and
amplitude characterstics - global features were ignored. Consideration was given to features that
would be more resistant to environmental r"roise.

Three classifiers were trained to recognize a species based on audio recordings that had been

separated into frames of 572 samples each. With ANN and SVM, silence and noise frames were
rejected by setting a high discrimination threshold, which was determined by finding the optimal
point on the receiver operating characteristics (ROC) curve. A discrimination threshold proved
problematic with the KDE classifier and was not used.

Recordings from the cross-validation (CV) set were tested by classifying each of the frames as a

species, and then processing the collection of votes to determine the likely species of the
recording. Two postprocessing methods were used.

The first method, simple voting, counted the number of times each species was selected by a

classifier. The species which was most frequently selected was considered to be the winne¡, and
became the species estimate for the entire call. The second method used the chi-squared

goodness-of-fit test to match the "confusion row" for a recording to a row in the overall confusion
matrix. The row with the lowest ¡2 determined the species.

Both methods gave similar average accuracy results, but the chi-test raised the score of the worst

1V

performing species, in some cases, by significant amounts, and also reduced the variance of
accuracy across species. The best average accuracy on the CV set was exhibited by an ANN with
100 hidden neurons, with a score of 82"/" and an accuracy floor of 46%. A figure of merit consisting
of the geometric mean of the average CV accuracy and the CV accuracy floor was used to better
evaluate performance. Using this metric, one of the three SVM implementations was the best,

with an average CV accuracy of 79% and a floor of 63%. KDE performance was comparable to an
ANN with 20 hidden neurons.

Contents

Acknowledgments

Abstract

1 Introduction
1.1 PotentialApplications

i.1.1 The Air Industry
1.7.2 Electrical Distribution
1.1.3 Wind Türbines

1.7.4 Night-FlightMonitoring
f .i.5 Entertainment .

7.2 Other Recognition Efforts
1,.3 Musicallnstruments

1.3.1 Tonal Qualities
7.4 ANN, SVM and KDE

A Taxonomy of Noises

2.7 Low SNR

2.2 Non-StationaryNoise

2.3 High SNR

2.4 Echos and Reverberation

2.5 Environmentallnterference

2.6 Equipment Distortion

2.7 Underclassified Calls

2.8 Other Issues

Pitch Determination
3.1 Algorithm Choice

3.2 The Human Voice

3.3 The Cepstrum

3.4 Human versus Bird Sounds

3.5 Periodicity Determination

llI

lv

10

1i

12

72

72

74

74

t6

8

8

8

9

9

9

10

v1

CO¡JTENTS

Combining PDAs

Other Features Used

3.7.7 Derivatives

3.7.2 Amplitude Envelope Frequency

Linear Learning

4.7 What is Learning?

4.2 Determining the Optimization Problem

4.3 Quadratic Programming . .

4.3.7 Optimization Problem with Noise

Nonlinear Support Vector Machines

5.1 Common Kernels

5.2 Kernel Trick and LSVMs

5.3 Support Vectors and Classification

5.4 SVM Implementation

5.4.7 Naive Solution: Gradient Ascent

5.4.2 Chunking and Decomposition

5.4.3 SMO: Sequential Minimal Optimization .

Artificial Neural Networks
6.7 Biological Neurons

6.2 Artificial Neurons

6.3 Single Neuron Computation

6.4 Logistic Descrimination

6.5 Training a Neuron

6.6 Perceptrons

6.7 Steepest Descent and the LMS Algorithm .

6.7.7 Steepest Descent

6.7.2 The Least Mean Square Algorithm
Multilayer Perceptrons and Back Propagation

Characteristics of Multi-Layer Perceptrons

3.6

3.7

vii

76

18

18

20

23

¿:)

26

28

29

31

32

JJ

34

34

35

35

36

37

5/
38

47

47

42

42

43

43

45

46

46

47

48

49

51

51

52

53

53

53

54

6.8

6.9

6.1.0

6.77

6.72

6.1,3

6.74

6.75

6.76

6.17

Derivation of the Backpropagation Algorithm
The Mathematics of the Output Layer

Gradient Descent for Hidden Neurons
The Two Passes

Nonlinear Activation Function

The Learning Rate

Pattern and Batch Mode

Stopping Criteria

6.77.7 Gradient Convergence

6.17.2 Accuracy Convergence .

CO]VTENTS

6.77.3 Error Target

V11I

54

54

54

54

55

55

55

56

56

56

56

57

58

59

67

62

66

67

67

69

69

70

77

77

6.17.5 PeakGeneralization

6.77.4 Hybrid Criteria

6.17.7 Noise Issues

6.77.6 Constant Training Time

6.18

6.79

Initialization

6.19.5 Summary of Delta Rule Alternatives
6.20 Neurons in the Hidden Layer 57

Variations on the Delta Rule

6.19.1 Momentum

6.19.2 BoldDriver
6.19.3 Quickprop
6.79.4 Many q's .

Other Statistical Techniques

7.7 Kernel Density Estimation

7.2 Chi-Square Test

7.3 Receiver Operating Characteristics

7.4 The Confusion Matrix

Pattern Recognition Implementation
8.1 Bird Species

8.2 Preprocessing...
8.3 Data Sets

8.4 PatternRecognition

8.4.1 Artificial Neural Network
8.4.2 Support Vector Machines

8.4.3 Kernel Density Estimation 73

8.4.4 Bandwidth Selection Ts

8.4.5 Recognition 75

8.5 Postprocessing.. 76

8.5.1 Simple Voting 76

8.5.2 Confusion Matching 76

Results

9.7 Introduction
9.7.7 Numeric Results

9.7.2 Caveat on Interpreting Results

9.7.3 Absence of a Tþst Set

9.1,.4 Rejections and Accuracy . . .

9.1.5 Neural Network Training
9.2 Single-FrameAccuracy

79

79

79

85

85

85

85

87

CONTENTS

9.2.7 Frame Rejection

9.2.2 Frame Accuracy Floor

9.3 Call Accuracy

1X

88

88

88

90

92

94

97

98

98

9.3.7 Call Accuracy Compa

9.3.2 Call Accuracy Floor

Median Confusion Matrices

rlson

9.4

9.5

9.6

A Final Figure of Merit
Speed Issues

9.6.1, Training and Classification Speed

9.6.2 BackpropagationSpeed 98

10 Conclusion 99

10.1 Future Directions 100

10.1.1 More Species 100

10.1.2 DifferentFeatures. 101

10.1.3 Preprocessing Robustness 101

10.1.4 MusicallnstrumentsandBeyond i01
10.1.5 Continuous Processing 702
10.1.6 More KDE . 702

A Species Description

B ChoosingFeatures 107

8.1 Use Well-Known Pre-Processing Methods 707

8.2 Noise Rejection 707

8.3 Features Should be Reversible . 707

8.4 Dimensionality Reduction 108

8.5 Invariance to Amplitude Changes 108

8.6 Input/Ouþut Space Smoothness and Continuity . . . 108

8.7 Avoid Binning or Thresholds 709

8.8 Ease of Implementation 110

8.9 AvoidConceptualCross-Contamination 110

8.10 Confirm Assumptions with Experiment 110

8.11 Confidence Metric 111

8.12 Automated Feature Selection 112

1"03

Bibliography 11.3

List of Täbles

3.1 Features used for recognition

8.1 Bird species used for recognition.

Results for frame recognition.

Frame recognition accuracy for each species.

Frame rejection rate for each species

Results for call recognition.

Call recognition accuracy for each species.

22

9.7

9.2

9.3

9.4

9.5

68

80

81

82

83

84

List of Figures

Model of human vocal excitation.

Model of human vocal tract response.

Result of passing pulse-train through filter
3.4 Cepstrum pitch detection

3.5 Blackman-Tukeymethod

3.6 Signal type based on spectral and cepstral energy.

3.7 Amplitude FrequencyExtraction

4.7

4.2

4.3

4.4

4.5

4.6

6.7

6.2

6.3

6.4

6.5

6.6

6.7

7.7

7.2

/.J

8.1

8.2

8.3

8.4

8.5

Phases of Supervised Learning
Hyperplane Separating a Space

Hyperplane and Margins.

Determining margin implicitely.

Location of nearest points on opposite margins
Dataset that is not linearly separable.

Biological neuron

McCullogh-Pitts neuron

Unit step function

Ramp and step function

The logistic function y :
The hyperbolic tangent y

Linear separability

ROC curves

ROC for NN-100

ROC for Alder Flycatcher

Recognition process

Data set structure

Neural Network Organization
SVM grid search

3.1

3.2

.1.J

73

13

73

15

77

79

21

24

25

26

26

27

29

38

39

39

40

40

40

43

62

64

65

68

70

77

74

78

XI

Recognition process (detailed)

LIST OF FIGURES

Mean squared error during training.

Accuracy during training.

Single frame accuracy. .

Single frame accuracy vs. rejection.

Single frame accuracy floor.

Call accuracy with a voting posþrocessor.

Call accuracy with a chi-test posþrocessor.

Accuracy difference: voting vs chi-test

Call accuracy floors with voting
Call accuracy floors with chi-test.

Difference in accuracy floor, voting vs chi-test.

Variance of accuracy, voting vs chi-test

Median confusion matrix (frames)

Median confusion matrix (calls)

Figures of merit for classifiers.

Alder Flycatcher (ALFL) Picture and Spectrogram

American Crow (AMCR) Picture and Spectrogram .

American Goldfinch (AMGO) Picture and Spectrogram

American Redstart (AMRE) Picture and Spectrogram

American Robin (AMRO) PicLure and Spectrogram

Baltimore Oriole (BAOR) Picture and Spectrogram .

Black-Capped Chickadee (BCCH) Picture and Spectrogram

Black-Crested Titmouse (BCTI) Picture and Spectrogram

9.7

9.2

9.3

9.4

9.5

9.6

9.7

9.8

9.9

9.70

9.77

9.1.2

9.73

9.74

9.15

4.1

4,2
4.3
4,4
4.5
4.6
4,7
4.8
4.9
4.10

xii

86

87

88

89

89

97

97

92

93

93

94

95

95

96

97

103

704

704

704

105

105

105

706

Barred Owl (BDOW) Picture and Spectrogram 706

Blue Jay (BLIA) Picture and Spectrogram i06

8.1 Simple spectral feature extractor.

8.2 Simple spectral feature extractor

8.3 Simple cepstral feature extractor.

8.4 Effect of ambient noise on signal.

with ambrguorrr ."rrrlt
709

111

Chapter L

Introduction

Since prehistoric times, people have interacted with birds. They have long been utilised as a

source of food. After the invention of agriculture, they were often seen as pests competing for crop
resources. The relationship has continued to evolve ever since.

As humanity and technology spreads across the face of the Earth, interactions, both negative and
positive, between birds and people grow. In recent years, public sentiment towards birds has

changed from something to be killed for fun, food, or profit. Now birds are considered to be

deserving of protection.

Because birds come and go as they please, and carurot (generally) be kept out by fences, scientists
and engineers seek automated ways to determine their presence. Birds, by and large, are a

garrulous lot, so microphones and audio processing equipment could possibly provide this
capability. This thesis investigates that possibility.

1.1, Potential Applications

In this sectiot"t, various applications that would benefit from automated bird recognition
technology will be discussed.

'l.,.'l.,.'l., The Air Industry

Bird strikes with planes cause more than two billion dollars of damage per year in North America,
and sometimes result in accidents that lead to loss of life (Brud er et aL, 1998). Birds are a growing
problem at airports for several reasons. First, the migratory bird, and "resident" geese populations

CHAPTER 1. INTRODUCTIOAJ

have been increasing recently due to conservation efforts. Second, the total number of aircraft
flights has been increasing. Third, modern aircraft are being designed to use fewer engines with
larger inlets, leading to a more severe situation if one or more engines is lost due to a birdstrike
(Bruder et aL,7998).

1,.1.2 Electrical Distribution

Birds coming into contact with electrical lines and transformers can cause costly power outages,

and kill the birds. Some birds are protected by law, and deaths may result in fines that are

comparable to outage costs (Carlton and Harness, 2001). Birds may also nest on transformers, irr
towers, or in substations. Some species, such as woodpeckers, are capable of boring into wooden
utility poles, leading to premature rotting or structural failure (Dennis, 1964).

In fact, the author's indirect participation (graphic user interface development) with an electrical

company led to his involvement in bird recognition. In 2000, Manitoba Hydro funded a small
research project to develop sound recognition software, along with a unit for distinguishing
between background noise and vocalizations, for the purpose of inexpensively monitoring
wildlife, especially birds. The project had four goals (Bergeç 2005):

Monitor wildlife in potentially sensitive habitats that require a transmission or distribution
line route (i.e., assessment of an area before development);

Monitor wildlife in problem areas;

Provide a means for assessing transmission line security risks from potential bird-wire
electrocution or collisions;

¡ Enhance Manitoba Hydro's wildlife monitoring and protection program.

1.L.3 Wind Turbines

Bird collisions with fast-moving turbine blades have be getting a lot of press coverage recently.

Wind turbines are increasing in number, and are considered to be an ecologically friendly way to
generate Power. Perhaps due to this reason, and the fact that they are a "rrew" technology, more

attention is given to bird deaths that they cause. Bird interactions with towers has been

investigated by Evans (1998). It seems that birds collide with towers because inclement weather

conditions force them to fly low, or poor visibility causes disorientation, leading them to fly
towards illuminated objects. An automated detection system could react when birds approach, by
adjusting the lighting to make the tower less attractiv e, or by shutting down the turbines
altogether.

CHAPTER I. /NTRODUCTIOJV

l|1.4 Night-Flight Monitoring

Many species of birds give periodic calls when they are migrating at night. Studies with doppler
radar show that there exists a weak, but statistically significant, correlation between flight calls
and the actual quantity of birds (Farnsworth et al., 2004). Thus, flight calls can be used for
ornithological studies and conservation research (Farnsworth, 2005). Some automated recognition
in this area has already been implemented. Skyward-pointing microphones with sound-activated
recorders can capture the calls of passing birds. Some species classification is done manually by
volunteers, but some calls can be detected by heuristic-based processors that scan for short bursts
of acoustic energy in specific frequency ranges. Other heuristics are needed to trigger a shutdown
mode if continuous false detections are caused by raindrops, insects, frogs or mechanical noises.

This research is described in depth by Evans (2005).

L.1.5 Entertainment

Bird watching, or birdíng, is a popular recreational activity. A device that can assist birders with
indentifying species might be profitable.

1..2 Other Recognition Efforts

Bird call recognition is not a very active field. After a lengthy search, only about a dozen papers
on the topic were found. None of those used either support vector machines or kernel density
estimation for recognition. For brevity, here are descriptions of a few of the better ones.

As mentioned earlier, Evans (2005) developed a heuristic based system. It is designed to detect
specific frequency bursts that are indicative of broad categories of warblers, sparrows, thrushes,

and the Dickcissel. Finer classifications are made by manually inspecting calls with the help of
spectrogram software. This appears to be the only bird call recognition system that is being used
in a real world application.

Härmä and Somervuo (2004) describe a method of classifying the tonal quality of birds songs

based on the presence or absence of harmonics, and the position of the strongest harmonic.

Derégnaucort et nl.(2007) used artificial neural networks not for classification, but for
quantification. They trained a four-layer ANN to distinguish between two purebred subspecies of
quail. The feature vector was an entire 128 x 64 pixel spectrogram image. Once trained, they put
calls of various quail hybrids into the network, and used the "analog" values of the output
neurons to situate the calls on a two dimensional diagram. This permitted them to explain how a

hybrid's call is influenced by its progenitors.

CHAPTER 1. INTRODUCT/OAJ

Finally, a paper that was extremely influential in the development of this thesis, and in fact is an
often cited pioneering work, is by Mcllraith and Card (1997).In that paper, the authors describe
two methods of recognition. First, they used the Fourier transform and linear predictive coding to
extract features that were then passed to a backpropagation neural network. Second, they
segmented songs into periods of sound and silence, then used statistical discriptions of the
various elements as features for principal component and quadratic discriminant analysis.
Recognition rates were 82-93% correct.

CHAPTER 1. IAJTRODUCTIOAJ

1,.3 Musicallnstruments

This thesis takes a different approach to the recognition of audio signals. Many other researchers

look at a signal as a whole, then try to classify it based on many characteristics including global
ones. For the example of bird calls, some pertinent global parameters might be:

o Total call duration;

o Number of separate distinct vocalizations in the call;

o Lengths of each distinct vocalization;

. Global averages, such as average frequency or average energy in the signal.

A decision was made to take the opposite approach. Insteacl of taking a global view, the local view
would be taken, and instantaneous parameters utilized. One reason for this decision was the
personal observation that it is possible to broadly categorize bird calls by listening to brief
excerPts. For example, if given short fragments of a goose call, a crow's call, and that of a robin, it
is cìear which species is which. A robin's call is a fairly pure tone without harmonics, a crow's call
is harsh and noisy, and a goose has a familiar honking sound. The human ear can categorize these

calls based on the tonal qualities of the sound.

L.3.1 Tonal Qualities

The "quality" of a sound can be described with many adjectives. One could say that it is ptre, or
lnrsh, or dissonnnt, or has a particular tintbre.

Much research has been done on classifying sounds based on their tonal qualities, specifically in
the field of musical instruments. The goal of much of this research is to automate the transcription
of music.

A good introduction to this topic is Agostini et n1.,2001. The authors define six features that are

used to classify a recording of a musical instrument. They are:

1. The zero crossing rate, which is an indication of pitch;

2. The spectral centroid, or the center of gravity of the spectrum;

3. Bandwidth, or the sum of the absolute differences of the spectral amplitude from the

spectral centroid;

4. The harmonic energy percentage, or the percentage of spectral energy that is contained at

multiples of the fundamental frequency, fs;

CHAPTER 1. /AJTRODUCTIOIV

5. The inharmonicity, or the sum of the distances between the actual spectral peaks and the
expected harmonic (multiples of /s) peaks;

6. The harmonic energy skewness, which is an extension of the inharmonicity calculation in
which the distance is multiplied by the spectral energy.

Using the means and standard deviations of these signals, the authors were able to get excellent
recognition (97"/") amons 27 illstruments using Quadratic Discriminant Analysis, and good results
(= 78%) with Canonical Discriminant Analysis, k-Nearest Neighbor, and Support Vector
Machines.

Some other examples of instrument recognition techniques were demonstrated by Martin ef

nL(7998) who used 31 features including vibrato, tremolo, onset, decay and odd-even harmonic
characteristics, which were then classified using a hierarchical Gaussian model derived with
Fisher multiple discriminant analysis. The accuracy was comparable to human listeners; 99"/" for
instrumental families and70n/, for individual instruments, among 15.

Eronen (2001) used 20 features including the amplitude envelope, amplitude modulation
characteristics, and onset asynchrony (differences in energy development for different
frequencies) and cepstral coefficients, with linear prediction analysis for classification. The results
were mediocre'.77"/" for instrument families and 35% for individual instruments among 16.

Marques et aI.(7999) used linear prediction features, cepstral and mel-cepstral features, fed into
Caussian Mixture Models and Support Vector Machines, with a resulting 70"/o accuracy rate
overall for a dataset of 8 instruments.

Ideal Conditions

One important aspect of these papers is that the audio recordings used were very optimal. Eacl"r

recording contained only a single instrument and the signal to noise ratio was very high. The

sample databases were CD-quality studio recordings, and were either solo-instrumental
performances or, even simpler, a single tone played on the instrument. The inherent clarity and
noise-free aspect of these recordings permitted the utilization of features that would be useless in
a noisy environment. Two examples are the spectral centroid, which will be biased depending on
the "color" of the background noise (see Section B), and the zero crossing rate, which is sensitive
to Gaussian noise. As we will see later, the unavoidable noisiness of bird recordings limits the

choices for features to use in classification.

CHAPTER I. INTRODUCT/ON

1,.4 ANN, SVM and KDE

It was decided that this thesis should investigate three pattern recognition methods: artificial
neural networks (ANN), support vector machines (SVM), and kernel density estimation (KDE).

ANNs, being a mature field, were chosen to provide a baseline of sorts for comparison. Artificial
neural networks had been studied since the 1940s (Hertz et a\.,7997),but were revitalized in 1986

with the release of the work by Rumelhart and McClelland (1,986),which described the new
technique of backpropagation, a computationally efficient and powerful training algorithm.

SVMs are a more recent invention (Vapnik, 1998) which, in many cases, give better results than
neural networks (Müller et a\.,2001). SVMs were chosen to see how the relatively new field of
structural risk minimization (Vapnik, i998) compared with the more deeply investigated neural
networks. SVMs were introduced by Vapnik, (7995,7998) based on work starting in the late

seventies (Vapnik, 1979). Snce then, it has proven to be a powerful classifer and has been applied
to the problems of text categorization, bioinformatics, optical character recognition, time-series
prediction, density estimation, and many others (Mriller et n\.,2007; Campbell, 2002;Burges, 1998).

KDE, a non-parametric statistical technique with a long history (Scott, 7992),was chosen to see

how a simple algorithm compared with more modern classifiers. KDE is usually used to discover
non-obvious characteristics of data distributions. It is not generally applied to pattern recognition
problems, but its simplicity and clarity of concept make it appealing.

Chapter 2

A Taxonomy of Noises

The data set for this project consisted of some 900 bird sounds, categorized into ten species. The

recordings were provided by Alex Mcllraith and Rob Berger of Myrica Systems.

To human ears, the quality of the recordings were very good. However, for automated analysis,
signal quality has more stringent requirements to be useful in a pattern recognition system. Before

any sort of processing was done, the recordings were manually sorted through, and calls that were
non-optimal in some respect were discarded. What follows is a list of various elements that might
make a recording unsuitable for processing.

2.1 Low SNR

Probably the most common problem seen was a poor signal to noise ratio (SNR). This would be

expected when attemptir"rg to record a rare or solitary species of bird - it is difficult to get close to
the bird, so the call has to be recorded at a great distance, which results in a weak signal that is

overpowered by the background noise. Even a strong call can produce a low SNR if the
background noise is louder than usual due to conditions such as wind or rain. As an aside, the
low-SNR calls gave another example of the capablities of the human brain, as the calls could easily
be perceived when conventional pitch detection techniques fail to extract the signal.

2.2 Non-StationaryNoise

Generally, the background noise can be modeled as a white Gaussian noise source that is filtered
by characteristics of the environment and recording equipment. This filtered noise can be

CHAPTER 2. A TAXONOMY OF NOISES

described by referring to the noise rainbow and choosing a close match such as pink noise, red
noise, green noise/ etc. Once the noise spectrum is known, the signal can be cleaned up by
applying Weiner filtering (Proakis et a\.,7996) or spectral subtraction (P,o11,7979). These methods
require that the noise model not change over time, or is statíonary.

Some recordings exhibited non-stationary noise. Often, the noise spectrum of the birds calls has at
least one wide "hump." In most cases the hump stayed put and did not change its center
frequency from frame to frame. For the non-stationary signals, the hump was seen in the
spectrogram to move quickly (on the order of seconds) up and down the frequency spectrum as

time progressed. Physically this can be explained as an effect of the worker changing position
during recording. Objects near the microphone, such as the ground, a tree trunk, or the person
themself, produce a virtual cavity with its own filtering characteristics. As the person moves,
these properties will quickly change, Ieading to nonstationary background noise.

2.3 High SNR

This was not a problem in this thesis, but in preliminary experimentation, signals which were
loud, clear, and almost free of background noise, were categorized separately by a commercial
data-clustering tool when looking at spectral characteristics. This observation is being conveyed
because it was a counterintuitive result at the time. The "flawless" signal was, in fact, too perfect,
and was thus seen as an outlier (which, compared to the other signals, it was).

2.4 Echos and Reverberation

Generally, echos were not a problem. There were two main types: a strong single echo, which
created a double image in the spectrogram, and a multi-source echo (reverberation), which caused

a smearing out of clear chirps. In early experimentation at isolating individual chirps, it was
found that echos were usually interpreted as additional chirps. Reverberation had the effect of
blending together a sequence of closely-spaced chirps.

2.5 Environmental Interference

This refers to non-noise sounds that interfere with the bird calls. This was another common
problem with the audio samples, and reflected the fact that the birds are not being recorded in a

laboratory, but in the real world, where the researcher has little control over the surrounding
events at the time of the recording.

CHAPTER 2, A TAXONOMY OFNOISES

Since the recording equipment in this project was operated by people, it is not unexpected that
human-generated sounds were captured occasionally. Researchers could be heard discussing
birds (among other things), coughing, and changing their position, which resulted in the
microphone clunking against things. Movements generated crumpling or swishing sounds of
clothing being flexed.

The geographic location of the recording also affects the type of interference. In populated areas,

the sounds of machinery become common. Trains, planes, automobiles, Iawn mowers, and
construction equipment all generate strong signals that interfere with the bird being observed.

In both rural and urban areas you will find cross-species interference, in which the call of one bird
is punctuated by the chirps of another bird of a different species, or thebwzz or croak of an

amphibian or insect. Usually, the interfering call is more distant and weak, so it is obvious to a

human listener which call is which. However, an automated pattern recognition system might
"perceive" the combined sounds to be that of a single bird.

Finally, there is the issue of interference by birds of the same species, but that will be covered in
the section on underclassified calls.

2.6 EquipmentDistortion

Usually the recording equipment operated properly. Very few recordings were marred by
distortion. Of those that were, some were caused by the recording gain being set too high, causing
clipping distortion. This would manifest itself as second order harmonics, and the signal would
have a buzzing quality to it.

Some signals showed a strange characteristic of spectral mirroring. When viewed as a

spectrogram, a faint vertically mirrored image of the spectrum could be seen along the top,
upside-down with the zero-frequency component centered at the sample rate of 22.05klrirz. Tine

source of this unusual distortion has not been fully explained, but in a pure signal processing
sense, this effect would be seen if the original signal was being modulated by a weak 22.05klH2
"catrier" wave. Since the analog recording equipment used in the field would have no affinity to
that particular frequency, it is suspected that this distortion was introduced when the signal was
converted to a digital format. If the analog-to-digital hardware has a gain that was oscillating
slightly at22.05 kHz, then this spectral mirroring would appear.

2.7 UnderclassifiedCalls

Most birds have a cnll repertoire, a variety of distinct sounds that are used in differer,t situations.
For example, a bird might issue an nlnrm cnII if it noticed a predator approaching, which would

10

CHAPTER 2. A TAXONOMY OFNOISES

alert other birds nearby. Call repertoires are covered in detail by Marler and Slabbekoorn (2004),

who describe fifteen basic types of calls (not including variations thereof).

In the data set used, the calls were categorized only by species. Thus, any pattern recognition
scheme would have to deduce that each species could generate various styles of calls. In the case

of a neural network or SVM approach this adds an extra burden to the learni¡g process. Thus, to
simplify things, only one style of call was selected (territorial) and others were removed from the
data set. Territorial calls or songs are the most common in the dataset, and are usually the calls
that people associate with a species.

Earlier it was mentioned that birds of the same species sometimes interfered with each other. Such

sounds are not considered to be flawed and unsuitable for analysis. Some birds are naturally
sociable and prone to congregate in flocks. For these species, there is a good chance that a
recording will contain intra-species interference. Rather than discard these sounds, it was felt that
grouP calls are as legitimate as solitary calls, and should be separated into "flock" and "solitary"
categories.

In summary, the data samples for a species could be classified into the following subcategories in
order to simplify tl're pattern recognition task:

. Calls in repertoire (Marler and Slabbekoorn, 2004)

- Territorial call;

- Courtship call;

- Alarm call;

- etc.;

. Simultaneous calls of flock.

This is only a subset of sounds a bird may produce. Many species have their own vocabulary of
sounds for specific situations and events.

2.8 Other Issues

The data set used in this work had some instances where there were several recordings taken of a

specific bird only a few minutes apart, or an exceedingly long sample in which one bird repeated a

call several times. Since repeated calls by the same individual does not provide a data set that
could be generalized to the species as a whole, these extra calls were removed.

Finally, some recordings might not have a clear specific problem as described in the preceding
sections, but rather a combination of minor flaws that sum up to an unusable signal.

11

Chapter 3

Pitch Determination

With the results of the previous chapter in mind, the next step would be choosing which features
to use, and which algorithm shoulcl be used to to extract the features.

One popular feature is pitch, or fundnmentnl frequency (/s). The usefulness of the pitch component
is self-evident, especially for musical instrument detection. Pitch alone can be used to distinguish
between many instruments. To give an obvious example, the sounds of a tuba versus a piccolo can
be classified solely on pitch information.

3.L Algorithm Choice

Pitch determination, as simple as the procedure may sound, is actually an unsolved problem
(Hess, 1983). A search for "pitch detection" or "pitch determination" on an academic database

will reveal dozens if not hundreds of papers on the topic. Even in the last five years alone, several
dozen Papers have been written on novel pitch determination algorithms (PDAs). This topic is
alive and well, for PDAs are important in speech recognition research and human voice
bandwidth compression.

A foundational work on PD is (Hess i983). Although Hess'work may seem out of date, the two
main techniques described, autocorrelation PDA and cepstrum PDA, are still in use today, and
perform favorably with newer methods (Cheveigné et n\.,2007).

3.2 The Human Voice

Before continuing, it is appropriate to describe how pitch is related to human vocalizations, and
how they differ from bird sounds. As mentioned earlier, modern PDAs concentrate on human

72

CHAPTER 3. PITCH DETERMINAT/O¡J

sounds, so some changes are needed to accomodate bird calls.

In simplification, the human voice is modeled by an excitation signal (from the vocal cords) being
passed through a filter (the throat, nose and mouth). The excitation signal is generally seen as a

sequence of pulses, at some frequency /¡ (Figure 3.1).

I

1,1,,
^ f

tMl

13

t

Figure 3.1: Model of human vocal excitation.

The vocal tract response is generally seen as a multi-pole filter. (Figure 3.2)

MM
f

Figure 3.2: Model of human vocal tract response.

The resulting spectrum (Figure 3.3) is the well-known result of passing a pulse train through a

filter (Oppenheim et n|.,7983).

fo = 2n[f

Figure 3.3: Result of passing pulse-train through filter.

Hence, human vocalization has a power spectrum with a comblike structure. Ideally, the first
peak is the fundamental frequency. However, in many situations, the first peak is obscured by
noise, or attenuated by extraneous filtering effects. Thus, a simple algorithm that looks for the first
peak will often fail. A more robust method is the double trnnsþrm, also known as cepstral nnnlysis.

CHAPTER 3, PITCH DETERMINAT/ON

3.3 The Cepstrum

The cepstrum seems intuitive enough. When confronted by a power spectrum that has a repeated
periodic sequence of regular peaks, why not just apply the Fourier transform to it to find the
"periodicity" of peaks in the frequency domain? Surprisingly, this novel trick (which has no doubt
been rediscovered many times over) actually has a theoretical underpinning.

Cepstrum pitch detection was first studied in depth in (Noll, 7964). At the time it was the most
reliable PD algorithm, and for many years new PDAs were calibrated against it. Even today,
(Cheveigné et n\.,2007) show that cepstral methods are very competitive with newer techniques.

Usually, the cepstrum is defined as

Cepstrumlr(t)] : r-'lL.tslrfrltlrll (3.r¡, L ' ',IJ

Or: the cepstrum is the inverse Fourier transform of the log of the short-term power spectrum of
the signal. The /og operator has the effect of separating the voice source, which is a pulse train,
and the vocal tract filter function so that the pulse sequence appears as a peak at a quefrency (or
lag) n the cepstmm, revealing the period of the pulse train, T6.

In (Hess, 1983) there is much discussion as to whether log is the ideal transfer function before the

inverse Fourier transform is taken. Hess notes that the fourtl-r root, the square root, and an

unaltered magnitude seem to provide better resistance to noise. In this project it found that a

linear transfer function produced the best results during experimentation. Thus, the cepstrum
PDA used in this thesis is:

Cepsrrum/lr(r)] : r-' f lr¡'1r¡1 ll e.z)Lr "'rl
See Figure 3.4 for a flowchart.

3.4 Human versus Bird Sounds

The typical power spectrum of a non-pathological human speaker has two commonalities. First, it
is rich in harmonics due to the pulse like signal produced by the vocal cords. This allows cepstral
analysis to work effectively. Second, the fundamental frequency ranges from about 50 to 1800 Hz.
These two facts motivate much of the development for PDAs, which means that many robust
PDAs will degrade when confronted by a bird signal.

Compare to human sounds, bird sounds are unconstrained. the pileated woodpecker or the

chickadee produce harmonics-rich sounds. Songbirds produce spectrally pure sinusoids. The

great horned owl squawks at a pitch of 300 Hz, and the Blackpoll warbler sings at 10 kHz (Berger,

2005).

t4

CHAPTER 3. PITCH DETERMINAT/OAJ

PITCH PERIOD ESTIMATION

USING CEPSTRAL ANALYSIS

INPUT SIGNAL

44.1 kHz

16 BITS PER SAMPLE

PREPROCESSOR

CEPSTRUM

CALCULATION

POSTPROCESSING

AND

EXTRACTION

PITCH PERIOD

ESTIMATE

15

SEGMENT INTO

512-SAMPLE FRAMES

WEIGHT FRAME WITH

TRIANGULAR WINDOW

lx(m)l

DFT
lX(m)l -> x(q)

SMOOTH lx(q)l WITH

l1/+ Vz 1/+l KERNEL

PEAK DETECTION AND

SUB-INDEX INTERPOLATION

Figure 3.4: Flowchart of the cepstrum pitch detection method with pre- and post- processing.

CHAPTER 3. PITCH DETERMINATIO¡J

Thus, an additional PDA is needed, one that is suited to sinusoidal signals.

3.5 PeriodicityDetermination

Detection of simple periodicity has a long history in signal analysis. There are several common
algorithms, each with their own advantages and drawbacks. Some are described in (Proakis et al.,

1996) under the subject of por.uer spectrtmt estimntiott. The technique used in this thesis is the
Blackman-Tukey method. Discretely, it is defined as

M-1.plÏ r¡l:
,,,:_!*_,,

r,,(nt)u(n)s-i2nf n (3 3)

Where r" is autocorrelation, ¡u is the windowing function (usually a triangular Bartlett window),
and M is the number of samples. See Figure 3.5 for a flowchart.

Proakis et aL(7996) shows that the Blackman-Tukey method gives a higher quality of spectral
estimate than either the Bartlett or Welch method. Implementation-wise, the autocorrelation part
may be sped up through use of the Wiener-Khintchine theorem:

r"Q) J- S.r.,(zu) (3.4)

or

r.,.,(/) : r f lr¡,1r;1 I'l (3 s)
Ll L ',rl

I

Where r-r-. is again the autocorrelation and S.r-. is the energy spectral density. This allows the full
autocorrelation of the signal to be calculated more quickly with the help of two Fourier transforms.

3.6 Combining PDAs

Now, we have two pitch determination algoritms: the cepstral method, which handles signals rich
in harmonics, and the Blackman-Tukey method, for signals with few spectral peaks. Since bird
sounds could be either one of these types of signals (or somewhere in between), we need some

way to choose a method depending on the signal, or to combine the two methods together in a

logical and useful manner. For this work, very little additional pre-processing was chosen.

Instead, both the spectral and cepstral results were passed to the pattern recognition algorithm,
with the hope that it would find something useful in the information. Specificatly, the following
pitch-related parameters were used:

76

CHAPTER 3. PITCH DETERM/¡JATION 77

PITCH ESTIMATION USING THE

BLACKMAN.TUKEY METHOD

INPUT SIGNAL

44.1k{z
16 BITS PER SAMPLE

PREPROCESSOR

BLACKMAN-TUKEY

METHOD

\ PosrPRocESSrNG
/ AND

/
EXTRACTT.N

PITCH ESTIMATE

SEGMENT INTO

512-SAMPLE FRAMES

WEIGHT FRAME WITH

TRIANGULAR WINDOW

COMPUTE AUTOCORRELATION

FUNCTION r,_(l)

WEIGHT r,,(l) WITH

TRIANGULAR WINDOW

PEAK DETECTION AND

SUB-INDEX INTERPOLATION

Figure 3.5: Flowchart of the Blackman-Tukey method with pre- and post- processing.

CHAPTER 3. PITCH DETERMINATIOAJ

¡ Spectral characteristics;

- Total energy of the spectrum;

- Peak characteristics;

Frequency at the peak;

Energy in the peak (+/- one bin);

Normalized energy in peak (peak energy divided by total energy);

Cepstral characterstics;

- Energy of the cepstrum;

- Cepstral peak characteristics;

* Quefrency (lag) of the peak;

x Energy in the peak (+/- one bin);

* Normalized energy in peak (peak energy divided by total energy).

Normalization and Confidence

The normalized energy parameters are important because they provide a sort of "confidence"
metric to the spectral and cepstral peak estimates. In the best case, the peak would contain all the

energy, and the normalized energy would be 1. In the worst case, say, a signal of white noise, the

normalized peak energy would be close to zero,because most of the energy is spread elsewhere in
the spectrum of cepstrum. In fact, by limiting our observations only to the norm alized energies,

we can situate different types of signals in a two dimensional space based on tonal quality, as

shown in Figure 3.6. This parameter simultaneously informs us of the purity, harmonicity, and

noisiness of the signal, and thus may be useful. The tonal quality analysis was restricted to this
level of detail, because the signals available were far too noisy to apply some of the finer
techniques used for musical instrument recognition.

3.7 Other Features Used

3.7.1 Derivatives

All of the pitch-related features discussed previously are numerically differentiated, and these

derivatives are passed on to the pattern recognition algorithm. The motivation for this is based on
the fact that for some birds, the rate of variation of a parameter is important. For example, the
pitch of a warbler's sorrg is expected to increase and decrease rapidly.

1B

,!

CHAPTER 3. PITCH DETERMI¡,/ATION

SIGNAL TYPE BASED ON NORMALIZED SPECTRAL AND CEPSTRAL PEAK ENERGY
(Boxes show spectrum of signal)

NORMALIZED

CEPSTRAL

PEAK

ENERGY

1

NORMALIZED SPECTRAL PEAK ENERGY

Figure 3.6: Signal type based on spectral and cepstral energy.

19

I

0

Irrli

ßMiå
Noiseless

Harmonics

lÅirÅffi
Harmonics

+ Noise

ffi
All Noise,

No Periodicity

Not

Possible

Noiseless Peak

(Pure Sinusoid)

{
r¡*l ,

AÅß Ñß
Strong Peak

+ Side Harmonics

Å
fàre

Noise

+ Strong Peak

CHAPTER 3. PITCH DETERMINATION

3.7.2 Amplitude Envelope Frequency

Until now, all the features mentioned were instantaneous values which were extracted from small
fragments of the signal, on the order of 10ms in duration. There were no intra-frame features that
gave some information of the (relatively) long-term structure of the bird call. The amplitude
envelope frequency is one way to convert this long-term information into more digestible
single-valued parameters. Figure 3.7 explains the details of the algorithm.

This was motivated by the observation that some birds produce calls which are smooth in
loudness, whereas others are stocatto and repetitive. By looking at a 1.5 second interval of a call,
and determining the periodicity of amplitude variations within that range, we can extract useful
information about the overall structure of the call. Like the pitch detection algorithms, the
envelope frequency includes the normalized peak energy to give a confidence estimate of the

extracted frequency.

As far as the author knows, this feature and algorithm has not been used before in bird (or other
animal) recognition, and is a novel invention in this project.

20

CHAPTER 3. PITCH DETERM/AJATION

CALCULATION OF AMPLITUDE

ENVELOPE FREQUENCY

INPUT SIGNAL

44.1 kHz

16 BITS PER SAMPLE

PREPROCESSOR

COLLATION OF FRAME

ENERGIES

FIFO

ESTIMATE OF STRUCTURAL

(LONG TERM) AMPLTTUDE

PERIODICITY

Figure 3.7: Determination of envelope periodicity, also referred to as structural amplitude fre-
quency.

27

SEGMENT INTO

512-SAMPLE FRAMES

WEIGHT FRAME WITH

TRIANGULAR WINDOW

CALCULATE FRAME

ENERGY, r,*10l

PUSH ENERGY VALUE

INTO 128 ELEMENT

FIFO

SUBTRACT

MEAN

OF FIFO
ENERGY OF FRAME n

ENERGY OF FRAME n-1

WEIGHT FIFO WITH

TRIANGULAR WINDOWENERGY OF FRAME n-127

PITCH DETERMINATION

VIA BLACKMAN-TUKEY

METHOD

CHAPTER 3. PITCH DETERMINATION

FEerunps ExTRACTED FRoM Auoro SrcNal

. lf "\es", then an additional feature n'as created by taking the numerical derivative l¡etl'een f¡ames.
t The function argmax/(.t) returns -r that gives the maxinrum value of .f(.r).
f BT indicates the Blacknran-Tukey nethod of poH,er spectrum estimation.
$ Quefrency and gantttitud¿ are the cepstral analogues to freqrrency and magnitude.

Table 3.1: Features passed to the patter.n recogrìition system.

22

Description Formula
F re qu ency D omain P ar amet ers

Power in frequency peak plus two adjacent bins

Total power in frame

Normalized peak power

Frequency at peak

P,låo : ,!, r.PIøiå¡ + i) *

Ptotal : r'r'r(0)

PpBår/P,"or

s[u: arsrnaxP.PJ(/) *

Yes

Yes

Yes

Yes

Ccpst rn I Dott t n iu P nrn t t t ct ers9

Sum of gamnitude in peak and adjacent bins

Total gamnitude in cepstrum

Normalized peak gamnitude

Quefrency at peak

Quefrency at peak back-converted to frequency

+1
Gpeak: f G(qo"n¡*i)' i:- l

Gtotnr: tc(q)
tl

Gp"ok/Gtotuì

4peak : argmax(G(q))

/,i:nu: N/(2qp.ut)

Yes

Yes

Yes

Yes

Yes

M ttl t i-F rnttrc Atu ¡sl itu d e Errccl o¡t c P n ra t t et crs

Amplitude envelope frequency

Normalized envelope peak power

Æ,I,", : argm¿x P"uJ,"f)

nBT tnBTI envelpcak/ I envel,.,¡.¡

No

No

Chapter 4

Linear Learning

This section provides an introduction to learning systems through a discussion of linear learning
machines. Not only are these easy to understand, easy to train, and useful in their own right, but
they also lay a foundation for artificial neural networks and support vector machines. Linear
learning is well covered in (Cristianini et nL,2000) and (Bishop, 1995).

4.1 What is Learning?

There are two types of learning usually discussed in the field of pattern recognition: unsupervised
and supervised (Haykin, 1.994).

Unsupervised learning involves observation of a dataset and consequent extraction of groups (or
clusters) in that data, with no external input specifying the expected classification of any of the
elements of the dataset (Haykin, 1994). Unsupervised learning will not be investigated in this
thesis.

A supervised learning system takes a dataset of observation vectors, and finds a mapping, or
function, that will enable the deduction of some elements of the vectors based on the values of the
other elements. Usually a system is described as taking input, or training, vectors, and

corresponding ouþut, or target, vectors, as a training dataset. Once a system is trained it ideally
will possess the ability to process a new input vector (in the absence of a target vector), and

correctly predict the values of the target. See Figure 4.7 for a schematic representation (Haykin,
1,ee4).

A popular form of pattern recognition is simple binary, or yes/no classification of an input vector.
An input vector, x, might be classified as true if some real function V : f 6) gives a result) 0 ,

and fnlse otherwise. In the case where /(x) is linear, the classifier can be written as

23

CHAPTER 4. LINEAR LEAR¡JIAJG

TRAINING PHASE

Input Vecton

24

Tlaining Dataset

Target Vectors

DEDUCTION PHASE

Input Vector DeducÆd Target Vector

{ x.n yr v^

II _iTrained

Pattern

Recognition

System

Figure 4.1: Phases of Supervised Learning. This diagram shows N observations, rz elements in eacll
input vector, and nt elements in each output vector (Haykin,7994).

', f-T---T-J y1

Yx
N

Y"tt,

4 x
I Yr y^

I

L_D
I

<_JUntrained

Pattern

Recognition

System

CHAPTER 4. LINEAR LEARÀJING

Figure 4.2: A two-dimensional space separated by a one-dimensional hyperplane specified by
and b (Cristianini ¿ú a\.,2000).

x*b
70¡x¡ * b

(4.1)

Geometrically, this function cuts the ¡r-dimensional hyperspace along an (rz - 1) dimensional
hyperplane,where f (*):0. SeeFigure4.2for atwo-dimensionalexamplethatshowsa
hyperplane whose normal is defined by w, and which has an offset define dby b. Typically w and
b are known as the rueíght aector and bias (Haykin, 1994).

Rosenblatt showed in 1956 that such a hyperplane can always classify a linearly sepnrnble dataset.

(The definition of linearly separable being "that which can be separated by a hyperplane.") The
hyperplane can be discovered by the iterative Perceptron Algoritlrm (Haykin, 1994).

A parameter of interest related to the Perceptron Algorithm is the nnrghr of a point x with respect

to the hyperplane (w, b), and is defined as

t¡:(y¡)(x.w+b). (4.2)

Where "y¡ > 0 implies correct classification, andy¡is either *1 or -1 depending on the class to

which x belongs. The margin 7¡ is simply the distance from the point x to the hyperplane (w, b)

(Cristianini et al., 2000).

Tlre smallest margin between all points in a training set X and a hyperplane (w,b) is sometimes

referred to as the mnrgin of the lryperplmrc wilh respect to the training set (Burges, 1998).

The margin M of a training set X is the greatest possible margin over all hyperplanes (Burges,

1998). A hyperplane producing this maximum is the nlaxiffitil margin, or optinul hyperplane. Its
margin will be positive for a linearly separable training set (see Figure 4.3).

25

Hyperplane

separating 'x'

and'o' classes

The marsin of a ooint

@ìsuppoÍ vectol's

are circled

Margin of (w,å) w.r.t. X.

If y is maxirnal, then (w,D)

is the maxirnal margin

CHAPTER 4. LIA/EAR LEARNING

Figure 4.3: Hyperplane and Margins (Cristianini et a\.,2000).

Figure 4.4: Determining margin implicitely (Moore, 200i).

T}.re urpport aectors are the subset of the dataset which lie adjacent to the optimal hyperplane at a

distance of the margin (Burges, 1998).

(As an aside, a statistician might note that such an optimal hyperplane, as defined, depends solely

on outliers in the dataset.)

4.2 Determining the Optimization Problem

To continue with our analysis, we will need to know the margin width of a hyperplane (w, b). An
interesting fact is that the margin is implicitly defined by requiring that w . x + b returns either
greater than +1 or less than -1 depending on the class. This extends the concept of a hyperplane
dividing the two classes by adding a "built in" margin (Moore,2001).

LO

,/t ,. Y
('('
Minus Plane \

CHAPTER 4. LINEAR LEARAJING

Figure 4.5: Location of nearest points on opposite margins (Moore, 2001).

We would like to find M, the margin for (w, &), as shown in Figure 4.4.We know that

w.x**ü:*1

27

and

w.x *b: *7.

Assume that x+ is on the plus plane, and x* is on the minus plane. Then,

and x- to the hyperplane boundary are

?+:(+1)(x+.w+b)

?- : (-1)(x- .w * b)

together with Equation 4.3

to get

which reduces down to

I.x':x f Àw

w'x* Ib: *7

w.(x-*Àw) fb:*1

(4.3)

(4.4)

the distances from x+

(4 s)

(4.6)

(4.7)

(4 8)

(4e)

(4.10)

Assume also that x+ is the closest point on the plus plane to x- (see Figure 4.5). The line from x+
to x- is perpendicular to the dividing boundary (*,b), so to get from x- to x* we have to move
in the direction of w. Thus, x+ : x- * Àw for some value of À.

Now we can take the equation

CHAPTER 4. LINEAR LEARNIAJG

Now that we know À, we can find the actual margin M. From (4.7) we get

1+

^w:x'-x

M: l*+ - x-l : lÀwi

: Àl*l : LJw'w.

1-
minimize ,*'Q* - krw

subject to Xw (c

28

then

Replacing À with the result of (4.10) gives

M. zJw tr
(4.74)w.w

Thus, we can determine the margin width of this classifier solely with w. To find the optimal
hyperplane, we want to maximize M (or minimíze w .w) while making sure that all points in the
plus class are at or beyond the plus boundary, such that

xr.w+b>+1

and similarly, for points in the minus class,

(4.1s)

x .w+b<-7 (4.16)

4.3 QuadraticProgramming

The numeric technique known as quadratic (or nonlinear) programming (or optimization) is

normally used to find the minimum value of a second order polynomial which is constrained by
inequalities. QP, Iike its cousin, linear programming, has a long history, having been investigated

since the 1960s (Wright 2004). Many algorithms have been developed and much contemporary
research continues in this field.

One typical formulation of a QP problem is to satisfy the following constraints:

(4.11)

(4.12)

(4.13)

2

t/* .*

(4.17)

(4.18)

Where Q is a positive definite rz x rz matrix, k is an il-vector, c is an nr-vector, w is the unknown,
and X is an rz x rz matrix. The optimal hyperplane problem can be converted to a QP problem by

CHAPTER 4. LINEAR LEARAJ/NG

Points o and x are in thet2
wrong region of the

hvÞerspace. The ¿ and ¿ l

variables show the distance

to the proper region.

Figure 4.6: Dataset that is not linearly separable (Moore, 2001).

satisfying (Cristianini et nl., 2000):

minimize w'w - kTw

subject to (y¡)(* w * b) > 1

4.3J1, Optimization Problem with Noise

29

(4.1e)

(4.20)

QP will produce an answer for this objective function and constraints only if the dataset is fully
linearly separable. If some points are on the wrong side of the hyperplane (w, b), then additional
steps must be taken to make this QP problem work. Figure 4.6 shows a noisy training set with two
points in the wrong region of the hyperspace. The training set is not linearly separable.

Fortunately, there is a way around this. We can introduc e a cost parameter that is based on how far
the errant datapoints are from their proper margin. Figure 4.6 (Moore,2001) shows two datapoints
at distances €1 and e 2 (known as slack anrinbles) from the proper margin. These distances can be

multiplied by a cost parameter C, which produces a new objective function and constraints for the

QP problem:

.1 nl

minimize ;*.*+Cfe¡I i_7

subject to (y¡)(* w * b))> 1 - t.¡

and e¡) 0 for all i

(4.21)

(4.22)

(4.23)

CHAPTER 4. LINEAR LEARNI¡JG

However, this formulation is not the best for QP tools. The system can be optimized more quickly
if it is converted to the equivalentWolfe dunl problem (Burges 1998) which becomes:

maximize-- dunllngrnrrgintt
:

?"' ,iu'o'yiyixi'xi (4'24)

subjectto 0<a¡1C (4.25)

and Lo¡y¡ :0 (4.26)
i

Once all 41 and !i have been found, w and b can be found by

N5

w: t ai¡!/¡x¡
i -1.

(4.27)

and

b : yt(t - €r) - xr wr where I : ar1maxai,i @.28)

Where N5 is the number of support vectors.

In prediction phase, an input vector x can be classified by taking the sign of

N5

f(*):Lo,y,s¡x*ú (4.29)
i:1.

where st are the support vectors.

Thus, a linear learning machine is able to find an optimal hyperplane for a noisy training set that
is not strictly linearly separable. This is the technique used for linear support vector machines
(LSVMS).

Chapter 5

Nonlinear Srpport Vector Machines

Now that we have described LSVMs, the next question is, can LSVMs be augmented to handle
datasets where the optimal decision boundary is nonlinear? The answer is yes, and the simplicity
of the solution is striking. It relies on an old kernel equality commonly known as tine kenrcI trick
(Aizerman et nl., 7964).

Notice first how data is used in the LSVM problem. Individual values are never used - only the

dot products are taken. Now imagine a mapping from the d-dimensional data space to a higher
dimensional fentw'e space,11, of / dimensions where f > d. This mapping will be called Õ (Burges,

1998). Thus

é : lRd - ll, where 11 e [<f and f > rt (s.1)

If this mapping is applied to a pair of vectors w and x, then the dot product would be <Þ(w) Õ(*)

Direct calculation of O(w) . <Þ(x) may be intractible in a computational sense if Õ maps to an

extremely high dimensional space. This is alleviated because in some cases, @(w) . <Þ(x) may be

represented by a kernel K that is mathematically equivalent, yet requires only the dot product of
the vectors in the original d-dimensional space. Thus,

K(w, x) : <Þ(w) o(x) (5.2)

This kernel trick, in effect, eliminates the need to explicitely calculate a high-dimensional space

with Õ. In fact it allows mapping of the input space to an int'inite dintensional feature space.

For example , if d : 2 with the kernel

K(w, x) : (w ' x)2 (s.3)

it can be shown, by expanding the dot product above and solving for O('), to correspond to the

37

CHAPTER 5. AJONI/NEA R SUPPORT VECTOR MACHINES

3-dimensional mapping

Õ(x) : (r?,*3, Jix1x2). (5 4)

To demonstrate, evaluate

o(w) o(x) : (ul,wl, Jltu{uz) 6î,x1, Jluxz)
(5.5): xliu? + xlzul * 2x¡u1x2zu2

also evaluate
K(w, x) : (w . x)2

: (zu¡1 I zu2x2)2 (5.6)

: zu?rî l2tu1x1zu2xz + ulx].

This is equivalent to the earlier expansion, thus demonstrating the kernel trick.

To give an example of an infinite dimensional feature mapping, consider a 1-dimensional (for

simplicity) data vector x being mapped to an infinite dimensional space:

/tr2x3\
@(x) :(t,tr,ø.,ß,) (s.7)

Evaluating the dot product we get

/tutuz\/tx2\Õ(*) Õ(x) :(t,--:- " l.r1 " " I (5.8)\ /1!' Jv'') \" u'it' Jv'')

_ , -' ?0-r _. kux)z -' (zux)3 -:l*
1! * Z * 3! *... (5.9)

Inspection reveals that this mapping is equivalent to the kernel

K(w,x) : exp(w'x) : exp(¡ur) (5.10)

Thus the kernel trick can work for infinite dimensional feature spaces.

5.1 Common Kernels

The first kernels investigated with SVMs were the following (Burges, 1998):

Polynomial of degree p,

K(w,x) : (w.x+1)t?

Caussian radial basis function,

(s.11)

K(w,x):exP{ r%g} (s.i2)

CHAPTER 5. AJO¡JL/NEA R SUPPORT VECTOR MACHINES

and the hyperbolic tangent or sigmoid,

K(w, x) : tanh(rw '* - ô) (5.13)

The hyperbolic tangent is interesting in that it lets the SVM simulate a neural network. Plugging
the tanh kernel into the trained SVM classifer (Equation 5.21)we get

N5

f (*) : Lo,y, tanh(rs¡ .x - ô) + b (5.14)
i:1

where N5 is the number of support vectors and s¡ are the support vectors. This is the same as a

neural network with N5 hidden neurons, each of which has d weights where d is the

dimensionality of the dataset, passed to a linear output neuron with N5 weights.

Not every function can be used in an SVM in this manner. It must meet Mercer's condition
(Burges, 1998) to be a valid kernel. In particula¡, there exists a mapping and an expansion

K(w,x) :fo1w¡¡o1x;' (s.15)

if and only if, for any g(w) such that

(s.16)

then
f

.l *@,x)g(w)s(x) dwdx) 0. (s.17)

The hyperbolic tangent does not always satisfy Mercer's condition, but still may be used in an

SVM. If a given training set results in a kernel matrix tl'rat is positive semidefinite Hessian, then

the SVM will converge perfectly well.

5.2 Kernel Trick and LSVMs

The kernel trick lets the QP algorithm be modified so that, whenever a dot product is taken, it can

be replaced with the kernel. Thus, the QP problem becomes

.7111mrnimize -K(w,w)+Cfe¡ (5.18)2 ,:,
subject to (y¡)(K(*, x) + ü))> 7 - e¡ (5.19)

and e¡)Oforalli. (5.20)

Now, instead of finding the optimal hyperplane in the original data space (which might not be

linearly separable) an optimal hyperplane can be found in the higher dimensional space. The

I s@)za* is fi^ite

CHAPTER 5.]VONLINEAR SUPPORT VECTORMACHINES

kerr"rel trick keeps the QP computations tractible (Moore,2001).

5.3 Support Vectors and Classification

In an LSVM, the support vectors are the subset of the dataset which lie adjacent to the optimal
hyperplane at a distance of the margin , and, if slack variables are being used, those that lie in the

wrong section of the hyperspace. The support vectors alone are enough to define the hyperplane

and margin. (These vectors could be thought of as supporting the hyperplane.) Slack parameters

are needed because, otherwise, it might be impossible to find the optimal hyperplane in a high
dimensional feature space. We can use the same method to classify non-training data points as

was used earlier, but with kernels instead:

,r-,r -
tt

J \^) - Lo,y,K(s¡,x)+ b (5.21)
i:7

were N5 is the number of support vectors, and s¡ are the support vectors. Taking the sign of f (x)

gives the class (Burges, 1998).

5.4 SVM Implementation

The quadratic programming aspect of the SVM algorithm can be solved by straight-forward

application of many pre-existing QP packages that use Newton's method, conjugate gradient, or
primal dual methods. For small training sets, the QP problem can be solved analytically, which
has a worst case computational complexity of order À/! (inversion of the Hessian), where N5 is the

number of support vectors (Burges, 1998). For larger training sets, numeric methods must be

used. One problem with using conventional QP techniques is that the entire kernel matrix, which
grows quadratically with the number of training samples, must be stored in memory. For

example, the kernel matrix for the traìning data in this project would require over 120 MB of
memory using these methods.

As a result, novel SVM techniques have been created that reduce computational complexity. The

major ones will be describe here.

Recall that the optimization problem (Cristianini et nI., 2000) is:

34

maximize w(n):f .,-\ff.,^,!/iv¡K(xi,x¡) (s.22)
Lr:t I I

t:

subject to La¡y¡:0 (5.23)
i:1

CHAPTER 5. NONLIAJEAR SUPPORT VECTORMACHINES

and Q1a¡1C, i:7...(.

35

(5.24)

(s.2s)

Where y specifies the class and is either -1 or +1, x is an input vector, / is the size of the training
set, and C < oo for the l-norm soft margin case.

S.4JL Naive Solution: Gradient Ascent

Simple numerical gradient descent can be used to follow the parabolic surface towards the unique
global maximum (Cristianini et n\.,2000). A learning rate 17 is needed to update the vector ø for
each iteration, and must be properly sized to allow for timely convergence, yet prevent oscillatory
behavior. The step size for individual elements of ø is given by

Where f indicates the iteration, and the i subscript shows that the multi-dimensional problem is

reduced to a sequence of single-dimensional ones. This technique is not optimal with respect to

speed, but it works well for datasets up to a few thousand points. The linear constraint La¡y¡ : 0

causes a problem. At least two ø values must be changed simultaneously to keep the system from
leaving tlre feasible region. This is the basis of sequentinl núnintnl optintizatiott (SMO).

5.4.2 Chunking and Decomposition

The clnutking and decontpositiort techniques reduce memory requirements by breaking the problem
down into smaller sub-problems (Cristianini et n\.,2000).

Chunking

TIre simplest heuristic is known as "chunking." Here, a small subset, or "chunk," of the training
set is used to train an SVM. Once trained, the support vectors are kept, and the remainder of the

training data is tested with the SVM. The points that give the worst results are kept, then a new
SVM is trained using these points and the previous support vectors as the training set. The

process is repeated until some stopping criteria is reached.

Decomposition

Chunking might fail because the kernel matrix may grow too large. Decomposition is a more

sophisticated method inspired by chunking. This algorithm updates a fixed number of a¡ values

while the rest are kept constant. A small subset of training points are used as the nctiae set.

CHAPT ER 5. ¡,/ONLTNEAR SUPPORT V ECTOR MACHINES

Whenever a new training point is added to the active set, another one is removed. The goal is to
optimize the global problem by looking at only a subset of the training data at any time.

Chunkilrg and decomposition have not been theoretically proven to converge, but in practise, they
work well and permit training sets of tens of thousands of points.

5.4.3 SMO: Sequential Minimal Optimization

Sequential minimal optimization (SMO) is an extreme reduction of the decomposition method to a

minimal subset of only two points per iteration (Platt, 1998). The benefit of this is that this
minimal subset can be solved analytically without the need of a QP solver.

With each iteration, SMO uses a simple heuristic (based on constraint violation) to choose two
points, a.; and a¡, to optimize. AII other parameters are assumed to be fixed, and new optimal
values of a¡ and dl are determined analytically, after which ø is updated.

Compared to other methods, SMO needs more iterations to converge, but each iteration is so fast
that the algorithm shows a speedup of orders of magnitude. Other qualities of this method are

that it does not need a kernel matrix stored in memory, and also does not need any sort of QP
package included as part of the algorithm.

The LIBSVM software package used in this project is based on the SMO algorithm (Chang and
Lin,2005).

36

Chapter 6

Artificial Neural Networks

A great deal of the research into pattern recognition has been inspired by the workings of the

human brain. As such, there have been many attempts to artificially simulate the biological
processes that lead to intelligent behavior. At one end of the artificial intelligence spectrum is the

field of symbolic reasoning, which attempts to synthesize intelligence through manipulation of
high-level cognitive concepts. At the other end, you have the reductionists - those who believe
that intelligence can be created by emulating the brain at the level of the smallest building blocks:
namely, the neurons.

6.1 Biological Neurons

Neurons, the fundamental structure of the brain, were first described by Cajál in 1911 (Sdorow,

1990). Since then, scientists have discovered many different types of neurons, each of which has a

distinct purpose in the brain. In general, a neuron is composed of the following parts (Sdorow,

7990):

¡ The cell body (or soma), the structural and biochemical center of the neuron;

o The dendrites, branch like receptors on the cell body;

o The axon, an extremely long (relatively speaking) conduit for charureling signals;

o And, the synaptic terminals, a branchlike strucfure extruding from the end of the axon.

These terminals transmit messages to other neurons, muscles, etc. Figure 6.1 shows a

simplified diagram of a neuron.

J/

CHAPTER 6. ARTIFICIAL NEURAL NETI4/ORKS

Dendrites
/

Myelin

Nucleus

Axon

Soma (Cell Body)
Synaptic al Buttons

Figure 6.1: Simplified diagram of a biological neuron (Sdorow, 1990).

A ueuron acts as an integrator of its inputs. It receives multiple excitatory and inhibitory inputs at
the cell body and dendrites, the cell body applies some sort of transfer function to those combined
inputs, and sends the result down the axon to other neurons and muscles, in the form of a pulse.
This is a simplified explanation though. Ongoing research has shown that neurons are far from
simple and are also affected by non-synaptic influences such as biochemicals and drugs.

6.2 Artificial Neurons

A simplified neural model, one that was influential for decades to come, was proposed by
McCullogh and Pitts in7943.In this model, a neuron multiplies the inputs by weights, calculates
the sum, and applies a threshold. The result of this computation would then be transmitted to
subsequent neurons. The McCullogh-Pitts neuron has been generalized (Hertz et a\.,799I) to

(6.1)

where rk are inputs to the neuron i, zuik are weights attached to the inputs, lr¡ is a threshold, offset
or bias, /() it a transfer function and y¡ is the output of the neuron. Figure 6.2 shows a diagram of
a generalized McCullogh-Pitts neuron.

The transfer function /(') can be anything. It could be linear, i.e., y : r, in which case the neuron
simply takes a dot product x ' w. Several such neurons in a layer will calculate a matrix
multiplication. The function /(.) could be a non-smooth nonlinear furrction, such as a unit step
(Figure 6.3), which was the basis of the original McCullogh-Pitts neuron. This transfer function, as

38

\,
1

Termin

v¡: f (F,,-'* *,,,)

CHAPTER 6. ARTIFICIAL ¡JEURAL NETI¡/ORKS

X
1

X
2

Figure 6.2: Generalized McCullogh-Pitts neuron (Hertz et a\.,7997).

Figure 6.3: The Heaviside unit step function (Hertz et n\.,7997).

simple as it may be, gives these neurons the ability to emulate basic boolean functions such as

AND, OR, NAND, etc. The function /(.) could also be piecewise linear,like a unit step with a

ramP segment corutecting the 0 and 1 parts (Figure 6.4). The disadvantage of these functions is
that they are not differentiable, and thus not suited to automatic learning.

The most useful transfer functions for artificial neurons are nonlinear and differentiable. The
iconic example is the sigmoid or logistic function, y : 1/ (1+ exp(-x)) (see Figure 6.5). The

hyperbolic tangent, y : tanh(r) (Figure 6.6) is also commonly used, and in fact it is just a scaled

and shifted sigmoid function.

These functions can easily be used for training with error-backpropagation (Section 6.8) because

there is a derivative everywhere. The sigmoid curve also has a "squishing" effect, so that
extremely high or low input values have only a minor effect on the output, which is

asymptotically limited to the range (0,1).

39

CHAPTER 6. ARTIFICIAL NEURAL NETWORKS

Figure 6.4: A piecewise linear function combining a ramp with a unit step.

Figure 6.5: The logistic function ! :7/ (7 + exp(-x)).

40

CHAPTER 6. ARTIFICIAL AJEURAL NETI4/ORKS

6.3 Single Neuron Computation

What kinds of computation is a single artificial neuron capable of? (For the remainder of this
section, Attention will be given to neurons with a sigmoid activation function. A McCullogh-Pitts
neuron can be approximated as a sigmoidal neuron by multiplying the result of the summation by
a large number.)

Functionally, a neuron takes an n-dimensional input vector and maps it to a single real value.
Specificaìly

(6 2)

Provided that /(

f-'0) -wi.xl_1r¡. (6.3)

The geometrical consequence of this is that the input space is bisected by an (n - 1) dimensional
plane. See Section 4 for more information. When /() ir a sigmoid, the separating hyperplane is
commor"rly considered to be a plane along where !/ ¡ : 7 /2, which is the value of the sigmoid
function at the origin. In the earlier discussion, the hyperplane was seen as a strict delimiter of
membership. Points at opposite sides of the hyperplane are seen as occupying different classes.

The sigmoid function allows a more statistical type of classification, rather than a hard binary
"yes/no" or "true/false." Intuitively, this makes sense; on the boundary points of the hyperplane,
membership is 7/2, which implies that points in that area are equally likely to be a member of
either class. Near the boundary, the sigmoid function gives values near 7/2, indicating that the

point belongs in one of the classes - but the uncertainty is high. Finally, the farther you get from
the hyperplane, the closer the sigmoid function goes to either 0 or 1, indicating a high confidence.
This observation has a basis in statistics, and is known as logistic discrimination (Bishop, 1995).

6.4 LogisticDescrimination

Consider two classes tl'rat have multivariate Gaussian distributions, and identical covariance

matrices E. The probability that a point x is a member of class C¡ is

p¡lcr) : ø#*Þ""0 {lf. - t,t)rz*l(* - ¡,*)}

whe¡e d is the dimension of the data and ¡r¡ is the mean of the distribution.

We can apply Bayes' theorem to find the posterior probability x is a member of class C1 :

7:Qlc1)P(c1)

47

/_ \
v¡: f

lF,r*"0
*t,,) f tu¡' x+rr¡)

) has an inverse, we can rewrite that as

(6.4)

P(c1lx) :
p (xlc1) P (C1) + p (xlcù P (cz)

(6 s)

CHAPTER 6. ARTIFICIAL AJEURAL NETWORKS 42

(6.6)

(6.7)

where

1: l+exp[C

n:nlffi#81
This result justifies the behavior of a neuron with a sigmoid activation function. It shows that for a

common type of discrimination problem, a neuron can produce an output that is identical to the
posterior probability of an input vector belonging to a specific class (Bishop, r99S).

6.5 Training a Neuron

For simple problems, it is possible to scrutinize the data and manually determine which weights
are needed to give the desired behavior. For example, this process can be done to create boolean
logic functions with McCullogh-Pitts neurons. For more complicated neural processing problems,
the optimal weights are not obvious. An automatic proceclure is needed which will configure the
neuron based on a training dataset.

6.6 Perceptrons

A perceptron is the simplest fo¡m of artificial neural network capable of classifying linearly
separable patterns, and was first studied by Rosenblatt in 1958 and 1962. Rosenblatt's perceptron
was based on the McCullogh-Pitts neuron, in which a weighted sum of inputs is subjected to a

step function such as the unit step (Heaviside) or sign function. Rosenblatt developed an

automatic learning procedure known as the perceptron algorithm. This simple method can be

explained as follows (Haykin, 1994).

The Perceptron Algorithm

1. A training vector x is presented to the perceptron. One of the elements of x is always 1,

which acts as a bias or offset value.

The ouþut value of the neuron is evaluated.

If x is properly classified, then no changes are made to the weight vector w.

If x is misclassified, then w is updated using the rule:

wttcztt: wottt - tlxif w'x) 0 and x belongs to class C6;

v{ne¡u: wotd I r1xif w.x (0 and x belongs to class C1.

2.

J.

(a)

(b)

4.

CHAPTER 6. ARTIFICIAL ¡JEURAL ¡JETI4/ORKS

Where the classes Cs of Cl are indicated when the ouþut of the neuron is 0 or 1 respectively, when
using a step activation function. The value of r7 is the learning rate parameter. It is a small value
that controls the size of changes to the weight vectors during training.

Rosenblatt proved, inhis perceptron conaergence tlteorent, that the perceptron algorithm is
guaranteed to converge and find a solution - but only if the classes in the training set are linearly
separable. See Figure 6.7 for an example.

Figure 6.7: Linearly separable vs. non-linearly separable classes.

The perceptron created a stir in the field of machine learning in the 1960's. However, the inability
to classify patterns that are not linearly separable was its fatal flaw. Finally, in 7969, Minsky and
Papert elucidated the limitations of the perceptron in their book Perceptrons. They also conjectured
that multilayer perceptrons would be a "sterile" area of research. History has proven them wrong,
but their inJluential book set ANN research back by several years.

6.7 Steepest Descent and the LMS Algorithm

The least mean square (LMS) algorithm is a very simple technique for linear adaptive filters. It is
also known as tÌr.e deltn rtile or Widrou-Hoff rtile (Widrow and Hoff, 1960). The simplicity and
reliability of the LMS algorithm has made it the standard for comparing other adaptive filtering
algorithms. The well-developed field sets the stage for other training algorithms for nonlinear
ANNs, and is relevant to linear neurons, which are identical to linear filters.

6.7.1, SteepestDescent

The basic problem statement with linear filters is (Haykin, 1994):

Given a set of corresponding observations (y¡,x¡) where y; is a real value and x¡ is a
vector of reals, can we find an optimal weight vector w that will allow us to predict y¡

43

CHAPTER 6. ARTIFICIAL ¡JEURAL ¡JETI4/ORKS

with
yi:w'xi (68)

such that the error of the predicted y¡ is minimized?

If d¡ is the desired response, then the error is

e¡:d¡-ll¡ (6 e)

and an overall performance measure is the mean squared error (MSE), /,

t -
7 ,r^2tI : ¡¡e'1 (6.10)

where E is the statistical expectation operator, and the factor] is used for convenience. The

optimal w which minimizes / is known as aWeiner Jilter.

For certain types of systems, such as a spatial filter, the MSE / surface takes on a multidimensional
"bowl" shape with respect to the vector w. There is only one global (and no local) minima on this
surface, at which point w is optimal. This minima can be solved directly by means of the

Weiner-Hopf eqttntíorts (Haykin, 1994) which requires matrix inversion of autocorrelation values. It
can also be found by the iterative ntetlrcd of steepest descent, which involves traveling along the
error surface in the direction of the gradient

ç7 ,-:L, k:r,z,.-,þ (6.i1)v iok| - Aruk,
fr : Lt zr...,P

which is the differentiation of the cost function / w.r.t. w. Expanding the equation,

17 r-
P

v ¡rkr - -ra,(k) + luy',Ç,k) (6.12)
j:'t

where r¿.. is the autocorrelation and r., is the cross-correlation. Numerically, the weight vector ru
can be adjusted slightly by means of the rule

IUk,,r,,, : zu¡ I ôZU¡r, k : 7,2, ..., p (6.13)

where

ôiup: tlYruxl rcM)

where ri is a positive constant called the leanùng rate parameter. Since steepest descent requires
correlation values to be known, it is not suitable for some environments, such as those where data
samples are disordered. In these situations, we need to use estimates of r, and r¿.r. The least mean
square algorithm provides these.

44

CHAPTER 6. ARTIFICIAL AJEURAL NETI4/ORKS 45

6.7.2 The Least Mean Square Algorithm

The least mean square (LMS) algorithm uses instantaneous estimates for the autocorrelation r..-

and the cross-correlation r_r¿ (Haykin, 1994). The estimates are

1,(i, j): *j*o

1¿,(k) : ¡rfl
(6.15)

(6.76)

When these are plugged back into the the steepest clescent algorithm, the rule for updating w
becomes

ûku,,u:ûk+I[d-y)xr, k:7,2,...,p (6.12)

In effect, LMS minimizes the instantaneous squared error.

LMS is also known as tJne stoclustic grndient descent algorithm, because û, tine estimate of zu,

follows a random trajectory, unlike the steepest descent method which follows a smooth one.

An added benefit of LMS is that it does not rely on the signal being stationary. It can "track" a

signal whose statistics change over time, because it uses instantaneous estimates.

CHAPTER 6. ARTIFICIAT NEURAL AJETWORKS

6.8 Multilayer Perceptrons and Back Propagation

Multilayer perceptrons (MLPs) have been used successfully in a wide variety of applications.
They commonly use error bnck-propngatiott as the training algorithm, which is a many-layered
generalization of the ubiquitous LMS algorithm.

Backpropagation consis ts of a forward pnss and a backrunrd pnss.

In the forward pass, the input vector (training pattern) is presented to the hidden layer. The

ouþuts are calculated and passed on to the output Iayer which applies another activation function
to produce the final output vector. In the forward pass, no weights are changed (Haykin, 1994).

The next phase, the backward pass, is where training occurs and the weights are adjusted slightly.
In this phase, the outputs from the forward pass are subtracted from the desired or target values.
This error signal is passed back through the network, and the weights are adjusted incrementally
to reduce the error. This is called error bnck-propagatiort (Haykin, 1994).

6.9 Characteristics of Multi-Layer Perceptrons

MLPs have three distinguishing characteristics (Haykin, 1994).

1. The neural activation functions are nonlinesr and sntooth (differentiable everywhere). A
common function is the logistic curve y : I / (1+ exp (-r));

The network contains one or more hidden layers, that lie between the input and ouþut
layers of the network. These hidden layers allow the network to progressively extract more
meaningful features, thus permitting complex recognition tasks;

The neurons in the network are highly intercorurected, such that there are a large number of
weights relative to the number of neurons. Typically, every neuron in a layer is connected to
every neuron of the subsequent layer.

These three characteristics, plus the ability to learn, gives ANNs great power. The same

characteristics makes theoretical analysis difficult, because of the nonlinearity and the great
degree of interconnections. Hidden neurons also make the processes harder to observe and
visualize. Furthermore, ANNs do not have unlimited capabilities - the Curse of Dimensionality
requires that preprocessing be done to reduce the dimensionality of the input space (Bishop,7995).

Like some other important scientific discoveries, backpropagation was discovered independently
by several people. It was first mentionecl in Werbos' Ph. D. thesis in 7975, and rediscovered by
Rumelhard, Hinton and Williams in 1986. Similar generalizations were discovered separately by
both Parker and LeCun in 1985 (Haykin, 1994).

46

2.

J.

CHAPTER 6. ARTIFICIAL NEURAL NETI4/ORKS

Backpropagation was a landmark because it was computationally efficient. Alttrough it is not
guaranteed to find a solution to all solvable problems, it works well enough to show that Nimsky
and Papert's pessimistic prediction of multilayer perceptrons was wrong.

6.10 Derivation of the Backpropagation Algorithm

In backpropagation (Rumelhart et a\.,7986; Masters, 7993;Haykin,7994; Bishop, 1995), the error
signal of an output lleuron I at the ntL training pattern is defined as

e¡:d¡(n)-y¡(") (6.i8)

where d; is the desired value and y¡ is the actual output of the neuron. The instantaneous value for
the squared error of neuron i is |el (n).

The instantaneous value á(r) is the sum of the squared errors obtained by summing the squared
errors of the output layer:

s(u):ID,ît,¡ 6.1s)
^ j€c

where C is the set of all output neurons. The output neurons are the only neurons where errors
can be directly calculated.

If N is the total number of patterns (training examples) in the training set, the naernge sqtnred error

is obtained by summing á(n) over all ri and normalizing for l'/:

tu": * È ¿f ,,1 (6.20)
I Y lr:l

tn,, is a "cost function" for a given training set. The goal of training is to adjust the free parameters
of the network to minimize this cost function. This minimization can be done through a process

similar to the LMS algoritms. A common form of backpropagation is to update the weights after
each pattern is presented to the network. The adjustments are calculated according to the error for
a particular training pattern. The average of all these incremental changes is an estimate of the

true change that would occur if all weights were adjusted at once to minimize the cost function for
the entire training set.

47

CHAPTER 6. ARTIFICIAL ¡JEURAL NETI4/ORKS

6.11. The Mathematics of the Output Layer

Given a neuron i receiving inputs from the previous layer of neurons, i : 1 to P, the summation
value u; at the neuron (before nonlinearity) is

P

a¡(n) : lzu¡i(n)aiØ) (6.21)
t:i

(The threshold or bias input is assumed to be one of the elements of yi with a constant value.)

Thus the ouþut of neuron f at iteration rz is

V¡(rt) : Vi(a¡(n)), where g is a nonlinear function. (6.22)

If we apply the lessons learnt from the LMS algorithm, we can find an equation that gives an
incremental adjustment nu ¡i(n) for the weight zü;i, which is proportional to the instantaneous
gradient

at(n)
iúõ 623)

Using the chain rule, the derivation (Haykin,1994) follows:

At(n) _ òs(n) ðe¡(n) òv¡(n) ðui(rt)
tEfr¡: ðuñúft¡ñft ffi (624)

This gradient represents a sensitivity factor. It shows how influential a specific weight zu¡i is on the
error, and determines the direction of gradient traversal in weight space for ru;i (Haykin ,7994).

Differentiating 6.19 w.r.t. e ¡
(rt) we get

ðt(n) _ ^ ,..,ã;f,¡: c¡\rt) (6'2s)

Differentiating 6.18 w.r.t. y ¡(n) we get

ðe ¡(n)
úF¡ 6'26)

Differentiatng 6.22 w.r.t. a
¡
(rt) we get

òy ¡Qt) , .

,F¡
: E'@¡(n)) where E/ is the derivative of E. 6.27)

Finally, differentiate 6.27 w.r.t. to¡¡ to get

ða;(n\

ffi: !/¡(tt)' (6'28)

CHAPTER 6, ARTIFICIAL AJEURAL ¡JETIA/ORKS

Combining equations 6.25 to 6.28 tnto 6.24 gives

nu¡i(n) : ryô¡(n)yi(n)

where the local gradient 6¡(n) is defined as

49

.ut(l'). : -e j(tù ,t'¡@¡(n)) viØ)òu¡¡(tt)

The incremental correction Lu¡i(n) is defined by the deltarule (Rumelhart et n\.,7986)

n.u¡i(n):-r#ffi

(6.2e)

(6.30)

(6.31)

(6.33)

(6.34)

where 17 is the learning rnte parnmeter of the backpropagation algorithm. The minus sign indicates
that we want to descend the gradient in weight space, to move towards lower error. Furthermore,
ustng 6.29 in 6.30 gives

(6.32)

From 6.32 we see that the local gradient is the product of the error signal e¡(rt) and the derivative

,' (a ¡(rt)) of the associated activation function.

Hence, this is the core of the backpropagation algorithm for a single neuron. Application to output
layer neurons is straightforward since these neurons know what the expected value of V; (n) is ana
thus the error signal e7(n).

The problem becomes more difficult for hidden layer neurons, because the error signal is not
obvious.

6.12 Gradient Descent for Hidden Neurons

Because the error signal for a hidden neuron is not directly known, it must be deduced by
recursively scrutinizing all the neurons to which it is connected. As Haykin (1994) says, "this is
where the development of the back-propagation algorithm gets complicated."

Given Equation 6.32,we can redefine the local gradient õ¡(n) for hidden neuron f as

õ¡(rt): *,qq$#ßyß:e¡(tt) r' (u¡Qù)

. , \ ðt (n) ðY ¡(n)
u:ltLt

-

-

l\ / òy¡lrt)au¡(rt)

ðt(n\
- -=---:=-', ¡9" (l:'(ll\\

òY¡lu)tt\ i\ tr

CHAPTER 6. ARTIFICIAL NEURAL AJETI4/ORKS

Applying Equation 6.79 to find the instantaneous error for the hidden layer neurons, we get

€ :: l, el(rt) (6.3s)) l-¿ rx '
líeL

(This is after we have recalibrated our frame of reference so that hidden neurons are indicated by 7

and ouþut neurons by k.)

Differentiating 6.35 w.r.t. the function signal V ¡0t) we get

ðt(tt) _ \-,, âcl.(r¡)

úø: l'rrrla 636)

Apply the chain rule for the partial derivative #8 to get the equivalent form (Hayku.,I9g4)

#ffi:L*-)#t^#fi rcs7)

Since we are dealing with the hidden layers, the error

e¡,(n) : d¡,(n) - y¡(n) (6.38)

becomes

e¡,(n) : dp(") - E¡, (a¡r(rt)) where neuron k is an output node. (6.39)

Hence,
ðc¡. (ir \

#ìõ: -q' (a¡þt)) (6.40)

For neuron k, the summation of the inputs is

u¡,Q):frr¡,¡(u)y¡t (6.a1)
j-0

where 4 is the total number of inputs (excluding the threshold) applied to neurorr k. The weight
zu¡6 is equal to the threshold 0¡(n) applied to nelrron k, and the corresponding input l/o is fixed
at -1.

Differentiating Equation 6.41 gives
ðut'(n\
avõ

: tu¡'¡(tt)' (6'42)

Tlren, using Equations 6.40 and 6.37 we get the desired partial derivative:

ðt(n) _ _,ðy¡þt) L'o(")EL(a¡,(n))u¡,¡Qt) (6.43)

50

CHAPTER 6. ARTIFICIAL NEURALA/ETWORKS

-16¡,(n)u¡,¡(n) (6.44)
k

Finally, plugging Equation 6.44tnto 6.34,we get the local gradient ó¡(ir) for a hidden neuron 7

(Haykn,7994):

õj(n) : cn'¡(a¡(n))16¡,(n)w¡,¡(n). (6.4s)
k

6.13 The Two Passes

The feed-forward and back-propagation phases do not happen simultaneously. Training occurs in
two stages. For the forward pass, a training pattern is presented to the input layer, all the
activations of the neurons are calculated, and the final error at the ouþut layer is calculated. In the
back-propagation phase the errors are used to determine the adjustments to the weights in the
network, and the weights are changed. Back-propagation has a variety of parameters that can be
tweaked for different scenarios. In the following sections, a brief explanation is given on
fine-tr"rning backprop and its cousins.

6.14 Nonlinear Activation Function

The ability of a backpropagation network to be trained to emulate a nonlinear function relies on
the activation function of the neurons being nonlinear and differentiable. Linear functions would
be pointless - the network would simply become a sequence of matrix multiplications (which
could be boiled down to a single matrix). Differentiablity is required for the backpropagation
algorithm to succeed, which rules out the old-fashioned perceptron functions such as the unit step

or the clipped ramp.

The most popular activation function is the logistic function, y : EQ) :1/ (7 * exp(-x)) (see

Figure 6.6). This function also happens to have a numerically efficient calculation for the
derivative:

E'ß) :, l*o(
'')

,= : q(r)[r - Et-r)].
11+exp(-,r)l-

This would have helped increase the logistic function's popularity in the early days of
backpropagation research, when CPU cycles were much harder to come by.

The hyperbolic tangent (Figure 6.5) is another popular activation function:

(6.46)

51

a-
g(.r) :ntantr(üu) : t+åCbÐ-n (6.47)

As you can see, tanh is a scaled and shifted version of the logistic function. An ANN may learn
faster when using tanh, because odd functions, such that /(-r) : - f (x), can generate both

CHAPTER 6. ARTIFICIAL NEURAL NETWORKS

positive and negative values, unlike the logistic function, which gives only positive values.
Although, a logistic neuron can be made odd merely by setting its bias input to -], and the bias
weight to 1.

Theoretically, any nonlinear differentiable function could be used. A parabola, such that

EG) : ¡2 could be used in a backpropagation network. So coulcl the exponen tial E(x) : ex .

However, these would not be stable in a neural network, as tl-rey could generate numerically
enormous output values which would change by large amounts even if the preceding weights
were adjusted by a very small amount. Sigmoid functions prevent this instability because they
have a "squishing" characteristic. The point of greatest variability is were the derivative reached
its maximum, ãt x :0. As the input value increases or decreases to infinity the ouþut converges
to an asympotic maximum or minimum. According to Rumelhart ¿f al.(7986a), this feature
contributes to the stability of the algorithm.

6.15 The Learning Rate

Traversal of tl're error surface in backpropagation is implemented numerically. The parameter
Lzu¡¡(rt) provides an estimate of the gradient, which is multiplied by the learning rate parameter r/,

to give a discrete step with which to modify the weight z¿rtl. Decreasing this step size by reducing
1/ seems to be an obvious way to improve the smoothness and accuracy of the gradient descent.

However, one tradeoff is that training will take longer with smaller 17. This slowdown might be

acceptable in some applications, but for others, timely training might be r-reeded.

Increasing 17 will decrease the training time of the network, but if it is increased too much, the

weights will become unstable and never converge to a good solution. If you imagine that the
weights are attempting to reach a global minimum on the error surface, but the steps are too big,
the minimum will never be reached. The weight vector will overshoot it repeatedly. This is known
as oscillatory behavior (Haykin, 1994).

The learning rate could also be scheduled to change during the learning process. This would
allow a larger learning rate at the onset of training, which would speed the traversal of the weight
vector over the error surface. Then the learning rate could be reduced to prevent the weight vector
from overshooting the minimum on the error surface. The learning rate could be scheduled in any
manner. Distinct rralues could be used at different times, or the rate could be tied to a linear or
exponential curve. The point is to decrease the learning rate near the end of training to decrease

oscillations around whatever minima has been found by that time (Haykin,7994).

52

CHAPTER 6. ARTIFICIAL ¡JEURAL NETI//ORKS

6.16 Pattern and Batch Mode

In the pattern ntode of training, the weights of the network are updated each time a pattern is

presented. Processing all patterns in the training set is called an epoclt. Usually, a network is

trained over multiple epochs until a stopping criteria is reached. In pattern mode, it is desirable to
randomize the order of patterns between epochs to avoid the possibility of cycles in the evolution
of the weight vectors.

In bntclt tnode training, the weights are left untouched during an epoch, then updated all at once
between epochs. The weight deltas are determined by descending the gradient of the tu' average

error surface (as opposed to the i¡stantaneous error t(n) for pattern mode training).

The weight adjustment for batch mode is

53

'' J! . ðe ¡(n)Ltu¡i: -i L. c¡(rt) n*,)t-t
(6.48)

where N is the number of training patterns.

Each mode has its acìvantages and disadvantages. Pattern mode needs less storage for weight
values, is more stochastic and less prone to settling on a local minimum. Batch mode provides a

better estimate of the error gradient. In general, the effectiveness of each depends on the problem
at hand (Hertz et n\.,7997).

6.17 Stopping Criteria

In a theoretical sense, the back-propagation algorithm has not been shown to converge (Bishop,
1995). Nor does it converge numerically in practise. Because of the stochastic nature of training,
continued presentation of training patterns to a network will always result in changes to the

weights - waiting for the weights to stop changing would be an inadequate stopping criteria.
There are many types of stopping criteria; this section describes some common ones.

6.17.1, Gradient Convergence

One method, due to Kramer and Sangiovaruri-Vincentelli (1989), is to stop when the Euclidean
norm of the gradient vector reaches a small enough threshold value. The thinking behind this is,

as the weight vector approaches the minimum on the error surface, it gets nearer to the "flat" part
of the minimum. At the minimum of the surface, the derivative, and therefore the gradient, ought
to be zero. This criteria may require long training times, and it needs additional computation of
the gradient vector.

CHAPTER 6. ARTIFICIAL ¡JEURAL NETWORKS

6.17.2 Accuracy Convergence

Another criteria is based on accuracy convergence. Training continues until the absolute change in
the average erÍor, tuu, reaches a small enough value.

6.17.3 Error Tärget

A third criteria is to train until áo,' reached a target error rate z. This method might never halt if
the network is incapable of achieving tnu I r. On the other hand, if the network does reach

tor, 1 T, it could possibly be a suboptimal network that is capable of a much lower error rate if the
training were allowed to continue.

6.17.4 Hybrid Criteria

A hybrid criteria proposed by Kramer and Sangiovanni-Vincentelli (1989)combines Euclidean
norm of the gradient with the targeted tou both mentioned above. With this method, the training
stops if either one of these criteria are met. This allows training to end even if one of the indicators
is "stuck."

6.17.5 Peak Generalization

This criteria incorporates one of the most important properties of a pattern recognition machine -
the ability to generalize. After each training epoch, the network is tested with a cross-validation
(CV) data set. So long as the network is improving in its ger"reralization capability, the error rate of
the CV data set will continue to decrease. Once overtraining starts to take place, tqy-,, will reach a

minimum and then start increasing, at which time the training will be halted (Bishop, 1995).

6.17.6 Constant Tiaining Time

The simplest stopping criteria is to train the network for a fixed number of epochs, or for a certain
duration, then stop. Obviously, this method is guaranteed to halt. This criteria would be useful in
a real-time environment were network training is subject to strict time constraints. Overtraining
might be a problem with this method, but it can be alleviated by combining with the "peak
generalization" method above.

54

CHAPTER 6. ARTIFICIAL NEURAL NETI4/ORKS

6.T7.7 Noise Issues

In practise, the parameters mentioned above do not change smoothly from epoch to epoch. There
is usually an element of noise thrown in, so that, say, the áo' value, will not appear to be smoothly
decreasing over time, but will be somewhat jagged. Usually, simple filtering is applied to the
parameter, such as requirûrg the criteria to be "true" for a certain number of sequential epochs.

6.18 Initialization

ideally, we would like to start training a neural network with an initial set of weights that will
speed up and reduce the total training time. However, since the whole exercise of training is to
determine the weights, guessing them at the onset is unlikely. It might be possible to use prior
information to embed some preconceived notions into the weights, but that in itself is an unsolved
problem, plus you run the risk of initializing the network in a suboptimal way so that the global
error minimum is never reached.

For these reasons, neural networks are usually initialized with pseudo-random values (which in
itself is a pre-conceived notion.) These values are uniformly distributed within a small range. Care

must be taken here, because a poor initialization might lead to premntru'e snturntion (Lee et al.,

1991). This is a cor"rdition where too many neurons have an overly positive or negative sum of
inputs, and are giving outputs that are far into the "flat" regions of the sigmoid function where it
is approaching its asymptotic limits. Here, the derivative of the sigmoid curve is very low, and the

delta rule (which relies on the derivative to cletermine step size) will adjust the weight values by
an extremely small quantity. The symptom of this will be a time after the onset of training when
the error rate tul, changes exceedingly slowly. On the error surface, the weights are situated in a

nearly flat plateau area.

Lee et nl.(7991) and Russo (1997) give advice in reducing the probability of premature saturation.
For this thesis, the neural weights were initialized with random values from -7 /2 to -17 /2, which
gave good results.

6.19 Variations on the Delta Rule

Bishop (1995) notes that the old delta rule for backpropagation is not the most effective means of
gradier"rt descent. Many modifications have been proposed over the years. Most are ad hoc,but
some are theoretically well founded.

None of the alternative techniques was implemented in this thesis. The goal here was to compare
backpropagation to SVM and KDE, not to compare it to itself. Nevertheless, here are some

variations on the theme, briefly desc¡ibed.

55

CHAPTER 6. ARTIFICIAL NEURAL ÀJ¡'TI4/ORKS

6.19.'1, Momentum

The simple method adds "inertia" to the trajectories on the error surface, which has the effect of
increasing the learning rate along directions where the gradient is smooth and monotonic. This
keeps the weight vector from getting bogged down in a long narrow trough on the error surface.
The old delta rule will cause the weight vector to bounce from side to side in the "ditch," making
very slow Progress along the overall gradient. A momentum term, ¡r, helps by increasing 17 along
the length of the ditch (Plaut, et n1.7986).

6.19.2 Bold Driver

This dramatically named technique (Vogl et nl.I988) contûrually adjusts the learning rate
depending on the error performance of the network. If the error has increased after a step, then it
is assumed that the step overshot a minimum. The step is then undone, the learning rate r7 is

reduced by a factor u, artd training is continued. If a learning iteration reduces the error, then the
learning rate r7 is increased by a factor p.

6.19.3 Quickprop

This technique, due to Fahlmann (1988), uses two sequential error evaluations and a gradient
evaluation to interpolate and model the error surface as a hyper-parabola. Then, the weight vector
is adjusted to coincide with the minimum of the parabola. Bishop (1995) notes that several fixes
are needed to get quickprop to work in practise. It is not too difficult to imagine an error surface
that would confound an algorithm that expects a parabolic shape.

6.19.4 lÑl,any ry's

The "long narrow trough" (a.k.a. "ditch") mentioned earlier is such a common problem that much
work has been done to try to minimize the negative effects it has on gradient descent. Intuitively,
it might be a good idea to use a larger learning rate along the long sl,allow part of the valley, and a

smaller rate along the steep narrow part, to reduce oscillations. Jacobs (1988) investigated some
schemes in which each weight value in the network was given its own learning rate. In effect, this
gives each dimension of the error surface a different I, and thus, things like long narrow valleys
might benefit, because the axes of the valley might be oriented orthogonaìly. Jacobs redefined the

delta rule to handle multiple ry's, and also developed the delta-deltn and delto-bqr-delta methods,
which are attempts to incorporate heuristics into gradient descent and reduce oscillations in the
error surface. The delta-delta method does not work very well in practise, and the delta-bar-delta
(which is the delta-delta rule with some tweaks) works better, but has four parameters that the

56

CHAPTER 6. ARTIFICIAL NÃ'URAL NETWORKS

user has to supply. The method also assumes that the weights are independent, when in practise

some of them are strongly coupled.

6.19.5 Summary of Delta Rule Alternatives

The delta rule is still the simplest of the gradient descent algorithms, and works well for many
situations. The alternative rules are useful when confonted with a problem that converges

exceedingly slowly with the delta rule.

From a practical perspective, if you are doing research on a problem, and you are not sure about

how to set the free parameters (such as r7), you have to run trials with different parameter values

to see which works best. Say, for example that you want to try three values for the learning rale ry'.

low, medium and high. Then you have to run three trials. If you add a momentum term, and you
want to test three values for that, then you have 32 : 9 trials to run. If you are using the bold
driver technique, with four free parameters, and you wish to cover the parameter space with three

values for each parameter, then you will have to run 3a : 81 trials. The number of trials increases

exponentially with the number of parameters. The Curse of Dimensionality strikes in unexpected

places. (These examples ignore the fact that the user must choose the number of neurons in the

hidden layer, which creates yet another dimension on the parameter space.)

6.20 Neurons in the Hidden Layer

Changing the number of neurons in the hidden layer is a way to adjust the precision of tl-re
network with respect to the training set. At one extreme, you coulcl have a hidden layer of only a

single neuron, which would merely bisect the input space into two classes along a hyperplane
(with a smooth transition due to the sigmoid activation function) (Bishop, 1995). The other
extreme is a hidden layer that is so large that it actually emulates a look-up table of the training
set, with perfect accuracy (Haykin, 1994). Either extreme is useless for real applications, so the

number of hidden neurons must be determined by experimentation.

One strategy is to train a network with ever-increasing numbers of neurons, then testing the

performance on a cross-anlídatiott (CV) set, an additional data set that was not used in training
(Bishop, i995). The optimum is determined to be the maximum number of neurons that yields a

reduction in the CV error. When the CV error increases, this indicates that the network is behaving
like a lookup table of the training set and is not generalizing well to the CV set (Bishop, 1995).

Pragmatics must also be taken into account. Adding neurons to the hidden layer will increase the

computation time. This time increases as (?(rz) (Bishop, 1995). In other words, double the hidden
layer neurons and you double the training time. A complexity of O(tt) is ef.ficient, but increasing

the hidden layer still reduces the number of trials that an experimenter can run.

57

Chapter 7

Other Statistical Techniques

A variety of well-known statistical tecluiques are used for different parts of this project.

KDE, or kernel density estinntiott, is used as a classifier and compared to SVMs and ANNs.

The chi-square test ís usecl as a post-processing step for comparing classification results to rows in a

confusion matrix.

The ROC, or receiaer opernting clnrscteristic, is used to set the discrimination threshold that is used
to discard weakly classified results with the ANN and SVM.

The confttsion nutrix is used to describe multi-class performance, and, as mentioned above, is used
during post-processing.

In this chapter, each of these is described in more detail.

58

CHAPTER 7. OTHER STATISTICAL TECHNIQUES

7.1 Kernel Density Estimation

Kentel density estinntion, or KDE, is a simple method for estimating the probability density
function given a set of points sampled from an unknown distribution (Bishop, 1995).

KDE is an offshoot of the sliding histograru technique, in which a fine-grained estimate is found by
calculating a regular histogram repeatedly, but with the bin boundaries varying over the range of
a bin-width along an axis (Scott, 7992).It turns out that this is equivalent to convolving the data

witlr a cube-shaped kernel known as a Parzen uindozu (Scott, 1992).

The Parzen window gives the number of points in a cube-shaped region, and may be defined as

H(u\ : !r þ'¡l <T, i :7,...,dntu/:lo otherwise Q'1)

where d is the dimensionality of the data. This kernel corresponds to a hypercube of unit size

centered on the origin.

The total number of points falling inside the hypercube is

":,Ë," (#) vz)

where x is the point where the estimate is desired, x" are the datapoints, N is the number of
points, and /z is the "bandwidth" or smoothing parameter, which, for a cubical kernel, is the length
of each side.

The probability density can thus be estimated by

(7.3)

which is the count, K, normalized so that p(^) < t.

Since the boundaries of the cubical kernel are discontinuous steps, the resulting estimate will also

be discontinuous. This can be eliminated by using a kernel with smootlt boundaries, such as the

Gaussian kernel (Bishop, 1995)

59

t6):,+å;"(#)

(7.4)

The width parameter, /t, is a free variable that must be chosen by the user. If it is too large, then
detail will be lost. If it is too small, the estimate will be too rough with too much fine structure,
and will not generalize well. In the worst case, an estimate with an overly small width will behave
like a lookup table of the dataset.

CHAPTER 7. OTHER STATISTICAL TECHNIQUES

Even if a good width parameter is found, KDE has a fundamental"flaw." Rosenblatt (1956) has

shown that, for a finite dataset, there is no non-negative estimator which is unbiased for all
continuous density functions.

Nevertheless, KDE is a well-investigated (if lacking in consensus) field of endeavour. In statistical
research, density estimation is a powerful methodolo gy for gaining insight into data, for example,
revealing multimodal distributions (Jones et a\.,7996).

The primary problem in KDE research is to automatically determine the bandwidth value. A
multitude of techniques exist and are discussed in depth in (Scott, 7992). To summarize, these can

be separated into two classes: first generation, and second generation (Jones et n\.,1996).

The old "first generation", or classical, methods are:

¡ Visual inspection;

o Rules of thumb;

o Least squares cross validation;

o Biased cross validation.

The more modern "second generation" methods are:

. "Solve the equation" plug-in approach;

¡ Smoothed bootstrap.

Jones ef al.(7996) advise that the plug-in bandwidth selector is the best. Loader (1999) "challenges

the claimed superiority of the plug-in methods on several fronts." Bowman et nl.(7998) conclude
that the simple reference bandwidth is quite effective.

Because of tl'ris lack of consensus in the literature and also the fact that most density estimation is
usually applied to low dimensional (i.e. one dimensional) datasets, it was decided to use the

simple reference rule, which minimizes tlne asyntptotic mean integrnted sqnnred error (AMISË) for a

KDE. For a Caussian kerrral, the reference rule is

h,"Í : (q/Ð'/5 u N-1/s x 1.96V ¡¡-t/s (7 s)

Wirere o andõ are the population and sample standard deviations of the dataset.

Scant research has been done on KDE for high-dimensional data. Scott and Wand (7991) showed
that synthetic ten-dimensional data could be modeled reasonably well, and conclude that the

biggest problem with the curse of dimensionality was as much the lack of fult rank as the

sparseness of data.

60

CHAPTER 7. OTHER STATISTICAL TECHNIQUES

7.2 Chi-Square Test

Given two sets of data, statisticians (and other peopte) often want to know: are the sets drawn
from the same distribution function, or from different distribution functions?

Data can be either continuous or binned. A dataset can be compared to a known distribution, or
two equally unknown datasets can be tested to see if they are both from the same distribution. In
this project a confusion vector is compared to rows in a confusion matrix, hence, the data is binned
and equally unknown.

The accepted test for comparing binned distributions is the chi-squnre test. For binned, equally
unknown distributions, the chi-square statistic is

67

X, :L
i R¡ -l S¡

(7.6)

where

R : tR, and S : tS, e.7)
ii

and R¡ and S¡ are the number of events in bin i for data sets R and S (Press et nL,7992). A larger
value of ¡2 shows that it is unlikely that two distributions are drawn from the same population.
The 72 statistic can further be used with the chi-sqtnre probnbílity ftutctiott to determine a

confidence level of the two distributions being equivalent. That was not done here, as the goal
was to simply find the "nearest" row in the confusion matrix.

CHAPTER 7, OTHER STATISTICAL TECHNIQUES

Random Predictor

Typical ROC

P(True Positive)

Perfect Predictor

Optimal Threshold
o

P(False Positive)

Figure 7.1: Some examples of ROC curves.

7.3 Receiver Operating Characteristics

The concept oÍ the receiuer operating chnrncteristics (ROC) cur\¡e was developed in the 1940's to
study systems for detecting airplanes in radar signals. In the 1960's they were used in
psychophysics to assess subjective detection of weak signals (Egan, 1975). More recently, ROCs

have been used in pattern recognition systems for selection of optimal discrimilration thresholds.

TheROCisaplot of theprobabilityof fnlseposítiues, P(FP),versus theprobnbilítyof truepositiaes,

P(TP), for a binary classifier as the discrimination threshold is varied.

Figure 7.1 shows some common ROC curves. The random predictor is a diagonal line emanating
from the origin at a 45o angle. It shows that, regardless of the threshold, an equal number of false

and true positive are accepted.

The perfect predictor appears as a horizontal line at P(TP) : 1. It shows that classification is

error-free for any threshold value.

A typical ROC appears as a curve that is situated somewhere between the random predictor and

perfect predictor curves. In practise, the curve sometimes appears a little lumpier. It shows that, as

the discrimination threshold is changed, the ratio of false to true positives changes. In the case of
neural networks, for example, the threshold would be the cut-off value applied to the output
neurons, below which any results are discarded. In Figure 7.I, tine top-right point of the curve
shows classification with no thresholding applied, the bottom left, maximum thresholding. The

circle shows an "optimal" threshold that improves the ratio of true to false positives. The selection

of this point is not straightforward. In general, increasing the threshold (making it more

restrictive) improves the P(TP) /P(FP) ratio. The tradeoff is that more classifications are rejected

62

CHAPTER 7. OTHER STATISTICAL TECHNIQUES

as being too weak.

In this work, a simple heuristic was developed for automatic selection of a good tirreshold value.

1. Choose a minimum P(TP) value that would give an acceptable "reject" rate. A value of
Prp.,n : 0.25 :25"kwas chosen, which gives a rejection rate of about75"/" (not counting
false positives), which is still useful for the overall scheme used here.

2. Find the point on the RoC that is greater than P1pn..n, such that P(TP) > prpn,,^, which also
maximizes P(TP)/ [P(FP) * 1]. This is almost like a simple ratio, but the *1 prevents the
denominator from beingzero, as well as giving a higher value to higher P(TP)s, for equal
ratios of P(TP)/P(FP)

ln short, the rule to find the optimal threshold point in the ROC is

63

(7.8)

where the [' ' '] notation is an laerson brncket that evaluates to 1 or 0 if its contents are true or false,
respectively.

Figures 7.2 and 7.3 show the ROC curves for a NN-100 classifier trained on all species, and the

same classifier with only the alder flycatcher.

The first figure (7.2) is an example of a classic ROC curve. It shows that, with a low discrimination
threshold of 0.2, the accuracy is 71o/o, and no data is rejected. As the threshold is increased, so does
the ratio of true positives to false positives. The optimal threshold is determined to be 0.85, at
whiclr point the accuracy is98"/o,but the rejection rateisTSn/".

The ROC curve for the alder flycatcher (Figure 7.3) does not have the well-defined curvature of
the "all species" curve. It is somewhat closer to a straight line, which means that changing the
threshold will not have a significant effect on non-thresholded accuracy of 76%. Still, around the
optimal point of 0.65, the slope of the curve increases, giving an accuracy rate of 94"/o and a
rejection rate of 76ok.

maximize ("ffii) toltol) Pro^,"1

CHAPTER 7. OTHER STATISTICAL TECHNIQUES 64

NN-100 Training Set ROC

0'25 0'2
U..f .,*.._4.__o

f¡ ?q -,--.ë"'"--
n ¿. .. .'-'+--
.þ-.

0.5..
,þ'

0.s5,'
9'

0.6 /
Þ'

FP

Figure 7.2: The ROC curve for the NN-100 classifie¡. The values on the curve indicate the discrimi-
nation threshold. A threshold of 0.2 produced a 0"k rejection rate.

o-
t--

0

CHAPTER 7. OTHER STATISTICAL TECHNIQUES 65

400

350

300

250

200

150

100

0.2 5 0.2
U.j -.._._..ê.......-'--S

?.4--^---

o_
t---

0'5r/
..4'0.sr-

oy'
o.y1- oPÏMAL

NN-100 ROC for ALFL

0 35_. _ --
0.4

-...q"
--/'0.4\-../

ø'

t ?t
I

5

0 10 20 30 40 50 60 70 B0 90 100

FP

Figure 7.3: The ROC curve for the alder flycatcher with the NN-100 Classifier. The values on the
curye indicate the discrimination threshold. A threshold of 0.2 produ ced a 0"/o rejection rate.

CHAPTER 7. OTHER STATISTICAL TECHNIQUES

7.4 The Confusion Matrix

A cottfttsion matrix (CM) is a well-known construction in the field of pattern recognition and
statistics in general. It is a form of contingency tnble. It provides a simple and intuitive indication of
the accuracy of a multi-category classifier (Kohavi et n\.,7998).

Each row in a CM represents the nctual category to which an input vector belongs. Each column
represents the category which the classifier deduced to be the proper category. The contents of each
cell may be counted quantities, but percentages can be used to give a clearer understanding of
accuracy without the need to do mental arithmetic. An additional "unclassified" column may be
present for classifiers that have the option of deciding that an input vector does not fall under any
of the categories provided. Perfect, error-free classification would give a CM with positive values
only along the diagonal, with all other cells at zero.

Example of a Confusion Matrix

Here is a simple example to illustrate some of the salient features of a CM. Given a hypothetical
system that is designed to distinguish between ducks and crows when given some feature vector,
the following CM might be generated after several runs:

DEDUCED CATEGORY

crow duck Unclassified

ACTUAL
CATEGORY

crow 80% 75% 5%

duck 30% 50% 20%

This confusion matrix quickly tells us that:

o When the classifier is given an input from the crow category, it produces the correct result
80% of the time, it thinks the vector belongs to the duck category 75% of the time, and 5% of
the time, the classifier has decided that the input fits into none of the categories and is
unclassified.

o When an input from the duck category is given, the system is correct 50% of the time, thinks
it was a crow 30% of the time, and was unable to classify the input 20% of the time.

66

Chapter 8

Pattern Recognition Implementation

In this section an overview is given of the various stages of the pattern recognition process. The
transformation from a raw audio signal to a species estimate has many steps, and two of those,

classification and postprocessing, each have a few variations. Howevet at a higher level, the
procedure can be explained in simpler terms:

o An audio signal is converted to digital form;

r The digital signal is broken into smaller frames;

e Each frame is processed to extract a variety of features;

r The feature vector for each frame is passed to a classifier to obtain a species estimate;

o The collection of frames for a call is postprocessed to determine a species estimate for the

entire call.

Figure 8.1 gives a general flowchart of how the audio signal was converted to a result.

8.L Bird Species

TÞn species were analyzed. As can probably be guessed by looking at the names in Table 8.1, they
were chosen by taking the first ten species from a CD-ROM in alphabetical order. The following
table shows the class ID used internally in the software, the BBL (Bird Banding Lab) four-letter
codes, and the species name. Photographs and spectrograms of each species may be found in
Appendix A.

67

CHAPTER 8. PATTËRN RECOGNTTIO]V IMPLEMEN?IATION

Raw digital samples

PREPROCESSING Raw frames

Feature vectors

RECOGNITION

ID BBL Code Species Name
0 ALFL Alder Flycatcher
1 AMCR American Crow
2 AMG0 American Goldfinch
3 AMRE American Redstart
4 AMR0 American Robin
5 BA0R Baltimore Oriole
6 BCCH Black-Capped Chickadee
7 BCTI Black-Crested Titmouse
8 BDOhr Barred Owl
9 BLJA Blue ia

68

(

Species est¡mates for frames

POSTPROC ESSING /

Figure 8.1: Flowchart of the overall recognition process. Blocks represent algorithms, and words in
italic represent data passed to and from algorithms.

Recording and
digitization of bird call

Separation into frames
of 512 samples each

Extraction of spectral,
cepstral and other

other features

Classifier: one of
ANN, SVM or KDE

Combine estimates to
determine species

(either voting or chi-test)

Species estimate for call

Table 8.1: Bird species used for recognition.

CHAPTER 8. PATTERN RECOGAJITION IM PLEMEN]äTION

8.2 Preprocessing

The preprocessing stages were explained in detail in Section 3. In short, the following steps were
taken:

The audio recording was digitized at 44.7 kHz;

The digitized signal was segmented into frames oÍ STZsamples;

The frames were transformed into the frequency and quefrency (cepstral) domains;

TWenty features were extracted. Most were local to each frame, but two features involving
the relatively long-term (1.5 seconds) amplitude of multiple frames were also calculated.

Table 3.1 gives mathematical formulae for the features.

8.3 Data Sets

Three datasets were extracted from a body of 1,60772 frames of 572 audio samples each. The data

was divided into training and cross-validation parts.

The training atperset (which will be referred to as the "superset") is 110193 frames in size. This was
far too big for timely analysis with the various algorithms used in this project, so a much smaller
trnhúng set of 3887 frames was randomly sampled from the superset. The optimaÌ ROC based

output thresholds are found with the trainilg set. The confusion matrices, which are used later in
the chi-squared goodness of fit test, are determined with the superset. This is to give a larger
sample size for better confusion matrices.

Tlee cross-anlidntíon (or CV) set is 50524 frames in size.

Data Set

Training Superset

Training Set

Cross-validation Set

Frame Count

110193

3887

50524

Call Count

404

403

793

Per
ies: Ra

23-67

23-67

7012

40

40

79

Efforts were taken to ensure that each species represented had approximately the same number of
frames per data set. This would eliminate the need to handle differences in prior probabilities
between species. Frames were separated into training and CV data sets ín a per-cnll instead of a
per-frame basis to prevent the possibility that different data sets might contain different frames
from the same call. Unfortunately, frames ar-rd calls are different things, and calls can differ wildly
in duration. Even though the frame count was consistent per species, the per-species call count

69

CHAPTER 8. PATTERN RECOGN/TIO¡J IMPLEMENTäTIO¡./

Figure 8.2: Structure of the datasets used in this project. The training set has one fewer call than
the training superset because the random sampling coincidentally discarded all the frames of one
of the calls.

varied from 23 to 67 in the training set. See Figure 8.2 for a graphical portrayal of the datasets used
in this project.

Of the 900 calls available, 304 were discarded for being inadequate in some respect. Section 2 lists
the various reasons for removing a call from the dataset. It is important to note that these calls
were not individually removed because they were found to be misclassified in preliminary
experimentation. Rather, all calls were listened to, and a simple checklist system was used to
decide if a call should stay or go. The purpose of this was to ensure that the classifiers would learn
a specific call of a bird (see Section 2.7) instead of recognizing extraneous sounds. For example,
some species, such as the American robin, are common in urban areas. In many robin recordings,
mechanical sounds such as traffic and lawn-mowers can be heard in the background. In effect,
there is a correlation between these sounds and the robin. If recordings with background sounds
were not removed, there was the possibility that a classifier might learn to recognize a species

based partially on extraneous (if associated) sounds, rather than the bird's vocalization itself.

8.4 PatternRecognition

Three pattern recognition systems were tested: artificial neural uetworks, support vector
machines, and kernel density estimation.

70

CHAPTER 8. PATTERN RECOGN/TION IMPLEMEN]IA IIOAJ 77

Feature
Vector

8.4.2 Support Vector Machines

For the SVM, the freely available LIBSVM library

The LIBSVM trainilrg application svm-train has

Artificial Neural Network

lnput Layer Hidden Layer Output Layer
Neurons Logistic Neurons Linear Neurons

Species
Est¡mate

Figure 8.3: Organization of the neural rretwork used in tl"ris project.

8.4.1 Artificial Neural Network

The ANN software was hand coded in GNU C++ and ran on a Pentium 4,2.4 CHz computer.

The backpropagation algorithm was based on the explanation provided by Haykin (199a). The
only embellishment added to the delta rule was a variable learning rate 17 during training. The
user could specify an initial and final r7s, and the code would decrease it exponentially as the

epochs progressed.

The network is composed of three layers, with an input layer; hidden layer and output layer. Logis-
tic neurons were used in the hidden layer, and li-near neurons for the ouþut layer (Figure 8.3). As
is recommended by ANN practitioners, the training set was randomly scrambled after each epoch
(Haykir"r, 1994; Masters,7993). The number of hidden neurons, training epochs, and learning rates
varied. The following table encapsulates the various configurations of the neural network.

Hidden Neurons

20

100

500

Training Epochs

100000

100000

50000

Start r7 Stop r7 CPU Time

= t hour
r 5 hours

= 13 hours

0.0001 7 x 70-7

0.0001 7 x 10-7

0.0001 3 x 10-6

by Chang and Lin (2001) was used.

a multitude of options, with the following

CHAPTER 8. PATTER¡J RECOGNITION IMPLEMENThTION

combination being chosen:

The SVM type is C-SVC, or C-strpport aector clnssificntion;

The kernel is the radial basis function, exp [-f l" - "12];

Probability estimates, based on (Platt, 7999),werc enabled to give smooth membership
values to permit output threshold determination with ROC curve;

Internal cross-vaìidation was set to four-fold;

The termination threshold, €, was left at the default of 0.0001.

Tlre LIBSVM training algorithm is based on sequentiul tninimnl optirnizntiort (SMO).

SVM is a inherently a binary classifier. LIBSVM works around this by using what is called the
"one-against-one" approach. Here, k(k - 1) /Z classifiers are trained, one for each pair of classes.

During the prediction phase, each binary ciassifier "votes" for a class, and the wimer is taken as

the result. Chang and Lin (2005) chose this approach because it trains more quickly.

Grid Search

For this SVM setup, there are two free parameters that must be tweaked for an optimal model: 7
for the kernel, which is analogous to 7 / o2 in a normal distribution, and the C, or cost parameter, a

"penalty" value for misclassified points. A typical way of finding the best combination is to run a

two-dimensional grid search to find the (C, 7) coordinate the gives the best CV accuracy.

After some initial experimentation with a subsampled training set, an 11 x 11 grid was chosen,

using four-fold CV. SVM training at each cell of the grid was limited to 10 minutes, after which
time that training process was aborted, and tl"re search continued. The entire process took 12 CPU
hours. Figure 8.4 shows the result of a grid search. The top plot shows accuracy with black cells

indicating that training was aborted for taking too long. The bottom plot shows the time required.
The region in the lower-right of each plot is where the SVM did not converge quickly enough and
timed out. Perhaps not coincidentally, the highest accuracy is observed to be along the
non-convergence zone. An optimal (C,7) should maximize accuracy, but with better training
accuracy, you run the risk of overtraining. Using this reasoning, three (C,7) pairs were chosen,

centered along the visible ridge of accuracy, one adjacent to the dead-zone, and two a little farther
awayi

Distance to Dead-Zone C j
Far 26 :64 2-10 - 0.000977

Midrange 2e :5I2 2-11 :0.000488

Near 212 :4096 2-12 - 0.000244

72

CHAPTER 8. PATTERN RËCOGN/TION IMPLEMEN]äTION

These points are indicated by N, M, and F in Figure 8.4. Further investigation of the

non-convergence zone showed that, even if the timeout was inc¡eased, svm-train still would not
converge.

In theory, SVM with slack variables should always have a solution, except where numerical
roundoff error prevents it. In iterative algorithms such as SMO, a termination threshold, e, is

needed to determine when convergence has stopped. This value was set to 0.0001 for LIBSVM,
which may be too small for certain combinations of data and parameters (Lin, 2005).

Support Vectors

After training, the results were as follows.

LJlstance to
Dead-Zone c,7 Total SVs SVs per Class (Range) Average bVs per

Binarv Classifier

Near

Midrange

Far

¡72 ¡-12

29 7-71
.16 1-10

2770

2860

3020

793167

1.95-379

206404

62.6

63.6

67.1,

The Aaerage SVs column shows the result of dividing Totol SVs by the number of classifiers used in
the one-agaitlst-orLe method, whicl'r in this case is 45. The increase in the number of support vectors
might be due to the increase of 7, which would reduce the "width" of the radial basis functions in
the model, therefore allowing a more complicated separation between classes.

Prediction

Finally, the svm-predict application was used to classify the CV and test datasets using the model
created by svm-train.

8.4.3 Kernel Density Estimation

The KDE algorithm is,by far, the simplest algorithm of the three mentiorìed in this section. It can

be expressed as a single formula (Bishop, 1995):

/J

p(*):*,p,#"(#) (81)

where /(x) is the model density, lJ is the number of points in the training set, ft is a bandwidth
parameter, H is a kernel that acts on the difference between two points, x jt are the training points,

CHAPTER 8. PATTER¡J RECOGAJITIO¡J IMPLEMEN?äTION

s\/r'_tr-S€-t-- S lûOFç _r¡1, ¿xt (àccr rAC!¡ . llÉÊce¡t^L)

iâ{c)

51jtù -'rr _ret._.JLûQpö-u1. L):? (t l¡ië eÕ r!ft . 5ðùùi1cts l

74

5{i -- ---

3r:¡
v5-
'¿a

lù -..'.--..-.

l?{ *¿rìnìä)

t.]tñ

W

I €(8õ¡!fial

n
L, *J
l-ëÎÀ\SSK*S*ñ;,W
ffi
W

bo

4al

20

1ù

\i

6aJù

-

55C¡ --
5C¡O -------
!¡5,i ---- -

35r:.
3çfi

-
zÈ,tt

-
7A(t

-

5û

7ù{'

6¡1ii

5ùa)

14!)

¿ût

1úc

o

Figure 8.4: Grid search accuracy (top) and duration (bottom). Black cells in (top) indicate that the
SVM model did not converge and timed out. The N, M and F show (C,7) pairs that are near,
midrange, and far in relation to the non-cotlvergence zone.

CHAPTER 8. PATTERN RECOGNITION IMPLEMENThTION

and d is the dimension of each point. In this project, a multivariate normal kernel (RBF) is used for
H, which gives the formula:

75

(8 2)

where the C subscript indicates data specific to a particular class. The implementation of this was
hand-coded with GNU C++.

8.4.4 Bandwidth Selection

KDE does not have a separate training phase like ANNs and SVMs. Rather, the entirety of the
training data is accessed for each estimate produced. A process that might be similar to training is

bnnduidth selectiott, whereby a value of ft is determined that gives the best results. Bowman ef

nl.(7998) show that a simple reference bandwidth is effective when compared to more elaborate
methods of bandwidth selection.

In KDE terminology, the reference rule is a value of /z that will minimize the menn integrated squared

error (MISE) for a KDE, as lJ approaches infinity (Scott, 7992). For a Gaussian (normal) kernel the

reference rule is

I1,eÍ Ø/Ð1/5 o ¡¡-1/s = 7.06u N-1/5 (8 3)

Where o andl are the population and sample standard deviations of the data set, respectively.

The standard deviation of the training set was determined by calculating ø along each dimension,
then averaging them.

A covariance matrix was not used. For simplicity, a single ø value was used for all dimensions.

Other values of /2, both above and below href , were experimented with, but the reference rule gave
the best results.

8.4.5 Recognition

To calculate the output vector for an input x, /(x)¿ is calculate for each of the ten classes. The

same posþrocessing used with the ANN and SVM methods could then be applied. The ouþuts
of the KDE were lower than those of the ANN and SVM models, which are around the range of
0-1. They appeared to be exponentially distributed, from 0 to about 7 x 70-16, and increased by
about one decade for every tenth percentile of the distribution. The values were recalibrated by
taking the log and then scaling and shifting to bring the p(x) values closer to a uniformly
distribution from 0-1. This worked fine for the training set, but the thresholds proved to be too
high for the CV set: the majority of the samples were rejected, because of KDE being a biased

.',*) c :*r
Ë, fu"^e {

-';'#}

CHAPTER 8. PATTER¡J RECOGNITION IMPLEMENTäTION

estimator and inherently giving higher values to anything in the training set. In the end, the
thresholds were removed altogether for KDE.

These tiny values for p(x) are expected. Remember that the integral of a probability density
function will be only 1 (Gersho and Gray, 1992). Combined with the high dimer"rsionality of the

sPace, the density at any point is expected to be low. For example, consider a uniform probability
distribution contained in a d-dimensional cube with sides of length /2. The integral of the cube
with density p must equal to 1. For this simple cube-shaped distribution,T : phd, ot, p :7/hd.If
we consider the hypothetical scenario that the feature set for the bird data occupies a cube-shaped
space, a rough estimate of It :10 with d :20 gives p : 1 x 10-20.

8.5 Postprocessing

Finally, when an audio frame has been processed, the output must be interpreted to determine the
species. A simple solution is to take the classifier output with the highest value and make that the

winner. However, there are two flaws with this.

The first is that the many of the frames are recordings of the silence between bird chirps. It would
be nonsensical to try to classify silence as a species. This can be remedied by setting a high
threshold on the ouþut activations. Then, any frames that do not confidently belong to one

species will be rejected. The thresholds are selected to improve the ratio of true positives over false

positives as described in Section 7.3.

The second flaw is that we are actually trying to classify entire recordings, not just individual
frames. Thus, all the frames in the recording as a whole have to be combined, and a decision made
on the aggregate.

8.5.L Simple Voting

One solution to this is to employ a voting algorithm. The maximum element in the output vector
(if any) increments a counter for the corresponding species. When all frames in the call are

finished, the species with the most votes wins.

8.5.2 Confusion Matching

As with the voting method, the ouþut vector increments a counter for the corresponding species.

After the call has been processed, the vote tally forms what would be a single row from a

confusion matrix, or a confusion roru.

76

CHAPTER 8. PATTERN RECOGNITION IMPLEMENTäTIO¡J

What can be done with this confusion row? Inspection of the data has shown that the confusion
rows for the same species often appear similar. Perhaps a confusion row can be compared to rows
in the training confusion matrix, and the closest one can be found, which would imply the species.

Since the elements of the confusion row represent probabilities of a nutltinontinl distribtttiott, a

chi-squnred goodness-of-fit test canbe used to determine if two rows are drawn from the same

distribution. For binned data, the chi-squared statistic is:

77

X,:L
i R¡*S¡ (8.4)

(8.s)

where

R: tnr and S: tS'
ii

and R¡ and S¡ are the number of events in bin i for data sets R and S (Press et n1.,7992). Lower
values of ¡2 indicate a better goodness-of-fit. The chi-squared statistic of a confusion row is
calculated against all rows of a confusion matrix, and the winner is the row that gives the lowest
value.

Figure 8.5 shows a detailed flowchart of the overall recognition procedure.

CHAPTER 8. PATTERN RECOG¡JITIO¡J IMPLEMENThTIO¡J

OVERALL RECOGN¡TION PROCESS

Original audio
signal.

Separation into
frames, then

spectral and cepstral
transform.

Outputs are thresholded
to remove noise, silence,

or frames with low
confidence.

78

1-of-N output
scheme. ldeally,

only one should go
"hi" to indicate
deduced class.

Thresholds are found
using ROC curves. Each
output has a different
threshold.

Vote incrementers

Vote counting. Output
with highest value will
increment a bin. When
processing is complete,

voting or chi-test
determines winner.

Extraction of
inter-frame and

intraframe features.

Feature vector Pattern Recognition System
Frame energy One of:

. artificial neural nen¡yorks
. support vector machines
. kernel density estimation

Peak frequen

To next frame...

Figure 8.5: Detailed flowchart of the overall recognition process.

Chapter 9

Results

9.1. Introduction

In this chapter, the experimental results will be put forth and interpreted.

First, the numeric results of the trials will be presented with minimal interpretation.

Second, some high-level comments will be made reguarding accuracy rates, data sets, unclassified
data, and interpretation of results. Some issues that are unique to neural networks will also be

discussed.

Third, the results for both single-frame and entire-call data will be investigated in more depth.

Finally, a meta-analysis and comparison of the different classifiers will be attempted.

9.l.,Jl, Numeric Results

Täble 9.1 summarizes the results of single-frame recognition. Each row represents a classificatiolr

trial with a specific data set (as described in Section 8.3) and recognition system. The systems

NN-20, NN-100, and NN-500 indicate artificial neural networks with 20, 100, and 500 hidden
neurons. The SVM-FAR, SVM-MID, and SVM-NEA labels indicate support vector machines with
C (cost) and 7 parameters that are far, midrange, and near in relation to a non-convergence region
of a grid search (Section 8.4.2). The KDE label indicates a kemel density estimation classifier, with
the bandwidth set according to a reference rule (Section 8.4.4).

The "accuracy" column shows the average recognition accuracy over all species for a trial.
"Rejections" shows the percentage of frames that were not classified because none of the classifier

79

CHAPTER9. RESULTS

Data Set ty{u* Frame Accuracy (%) Rejections (%) Accuracy Floor (%)

Training
Superset

NN-20
NN-100
NN-s00
SVM-FAR
SVM-MID
SVM-NEA
KDE

67
87
85

82
83
78
40

53
63

62
64
68

57
0

36
6'1.

34
47
48
40
72

Training
Set

NN-20
NN-100
NN-s00
SVM-FAR
SVM-MID
SVM-NEA
KDE

66
93
98
89

93
89
74

46
65

58
67

66
57
0

35
/ó
91

58
64

52
63

UV Set NN-20
NN-i00
NN-500
SVM.FAR
SVM-MID
SVM-NEA
KDE

64 54 29
83 68 53
79 67 28
76 65 36
79 69 42
74 58 30
38

Table 9.1: Results for frame recognition. The best accuracy and accuracy floor values for a particular
data set and postprocessing method are shown in bold.

ouþuts met the discrimination thresholds that were derived from the ROC curve for each species

(Section 7.3). The "accuracy floor" column shows the lowest accuracy rate of the ten species for a

given trial. This metric was added as an indication of worst case performance. This was selected

as a performance measure, instead of median or maximum accuracy, because it is the type of
requirement that would be needed in an engineering specification.

Table9.2 shows the frame accuracies for each of the ten species. The lowest value in each row is
the "accuracy floor" that is given in Täble 9.1. Table 9.3 shows the rejection rates for all species in a

similar layout.

Table 9.4 summarizes the results of recognition for entire calls. It has one more column than the

"frames" table (9.1), that being "posþrocessing," which indicates whether the voting or the

chi-test posþrocessor (Section 8.5) was used to convert the multiple species estimates for a call
into a single estimate.

Table 9.5 shows the call accuracies for each of the ten species. The lowest value in each row is the

"accuracy floor" for a giver-r trial.

BO

CHAPTER9. RESULTS

Data Set
Frame Accuracy (%) for Each Species

ALFL AMCR AMGO AMRE AMRO BAOR BCCH BCTI BDOI,J BLJASystem

Training
Superset

NN-20 85 95 64 62 57 39 36 36 75 60
NN-i00 87 99 81 92 80 72 67 86 96 78
NN-500 86 99 83 90 79 73 34 81 95 74
svM-FAR 69 90 84 86 87 47 73 77 88 64
svM-MID 84 98 89 90 77 67 48 82 89 77

svM-NEA 77 97 70 81 83 40 45 77 88 s8
KDE 43 72 53 62 43 27 48 61. 46 31

Training
Set

NN-20 83 96 59 69 64 47 35 47 77 62
NN-100 96 99 86 98 92 88 73 94 100 90
NN-500 100 100 98 99 98 96 91. 100 100 95
svM-FAR 90 94 95 94 95 58 88 90 95 92
svM-MID 99 99 98 98 92 78 64 97 96 95
svM-NEA 96 99 95 94 97 52 67 95 98 87
KDE 65 64 81 82 82 63 73 87 71. 77

CV Set NN-20 76 97 72 61. 62 34 35 33 74 29
NN-100 66 98 83 89 78 67 62 88 94 53
NN-500 61 97 80 89 72 60 28 86 94 59
svM-FAR 38 77 81 86 84 36 63 85 83 66
svM-MrD 54 95 87 89 73 47 42 89 86 73
svM-NEA 49 95 67 78 85 30 42 75 85 42
KDE 3585160332348634926

5tats Minimum 35 I 51 60 33 23 28 33 46 26
Mean 73 86 79 83 77 54 55 77 85 65
Median 77 96 81 89 80 52 48 85 88 66
Maximum 100 100 98 99 98 96 97 100 100 95
Std. Dev. 20 27 74 13 77 20 18 20 15 27

Table 9.2: Frame recognition accuracy for each species. The species abbreviations are explained in
Table 8.1. The "Stats" section gives a variety of statistics for each column.

81

CHAPTER9. RESULTS

Table 9.3: Frame rejection rate for each species.
The "Stats" section gives a variety of statistics

The species abbreviations are explained in Table 8.1.
for each column.

82

Data Set
Frame Rejections (%) for Each Species

ALFL AMCR AMGO AMRE AMRO BAOR BCCH BCTI BDOI,J BLJASystem

Training
Superset

32 39 5i 76 62 69 29 70 70 48
81 42 77 47 79 82 76 81 54 77
73 49 77 42 78 77 84 82 48 78
77 56 70 44 67 69 54 77 77 69
80 49 67 42 79 75 73 81 75 80
66 40 69 38 53 62 67 73 63 72
0000000000

NN-20
NN-100
NN-500
SVM-FAR
SVM-MID
SVM-NEA
KDE

Training
Set

40 52 15 58 67 29 68 66 46
45 78 35 76 82 74 77 50 75
49 58 29 77 74 81 73 40 77

60 77 47 42 69 29 74 72 64
47 62 38 77 77 76 76 74 78

39 74 40 39 67 63 68 62 75

000000000

NN-20 29
NN-100 77
NN-500 67

SVM-FAR 73

SVM-MID 74
SVM-NEA 60
KDE O

CV Set 42 50 20 68 58 22 69 70 54
48 77 43 86 83 72 83 50 82
55 77 45 85 77 83 84 45 81

64 70 45 68 63 55 77 66 56
55 67 44 82 72 68 76 72 76

44 68 40 64 58 57 70 57 73

000000000

NN-20 37
NN-100 80
NN-500 74
SVM-FAR 79
SVM-MID 83

SVM-NEA 67
KDE O

Stats 0000000000
57 47 57 3i 58 67 52 64 53 60
73 45 68 40 68 69 67 73 62 72
83 64 78 45 86 83 84 84 75 82
29 79 25 76 28 26 29 27 24 27

Minimum
Mean
Median
Maximum
Std. Dev.

CHAPTER9. RESULTS

Data Set Postproc. System Call Accuracy (%) Rejections (%) Accuracy Floor (%)

Tiaining
Superset

Voting NN-20
NN-100
NN-500
SVM-FAR
SVM-MID
SVM-NEA
KDE

76
89
89
86
88
85

62

0

0

0

0

0

0
0

0
48
57
,5/

44
¿J

0
Chi-Tþst NN-20

NN-100
NN-500
SVM-FAR
SVM-MID
SVM-NEA
KDE

84
89
91.

87
88
89
85

0
0

0
0

0

0

0

62
70
79

76
70
63

70

Training
Set

Voting NN-20
NN-100
NN-500
SVM-FAR
SVM-MID
SVM-NEA
KDE

64
75

82
79
78
81

88

8

20
16

72

76

9

0

0

39
48
47
48
40
0

Lhr- lest NN-20
NN-100
NN-500
SVM-FAR
SVM-MID
SVM-NEA
KDE

77

77
84
83

78

83
93

44
44
48
60
52
48
83

CV 5et Voting NN-20
NN-100
NN-500
SVM-FAR
SVM-MID
SVM-NEA
KDE

69
82
81

77
81

79
59

0

2

2

0
0
0
0

0

27
27
7

40
73

0
Chi-Test NN-20

NN-100
NN-500
SVM-FAR
SVM-MID
SVM-NEA
KDE

76
82
79
79
81

78
72

0
0

0
0
0

0

0

36
46
53
63

56
56
36

Table 9.4: Results for call recognition. The best accuracy and accuracy floor values for a particular
data set and posþrocessing method are shown in bold.

83

CHAPTER9. RESULTS

Table 9.5: Call recognition accuracy
Table 8.1. The "Stats" section gives a

for each species. The species abbreviations are explained
variety of statistics for each column.

84

Data Set Posþroc
Call Accuracy (%) for Each Species

System ALFL AMCR AMG0 A¡,IRE AMRO BA0R BCCH BCTI BDOW BLJA

Training
Superset

Voting NN-20 0 99 60 85 92 37 93 3 96 52
NN-100 89 100 80 97 92 57 69 84 100 48
NN-500 80 100 90 96 96 67 69 74 100 57
svM-FAR 37 97 70 96 94 67 90 68 96 57
svM-MID 77 100 80 96 90 60 79 74 96 44
svM-NEA 54 97 80 97 98 23 72 48 96 39
KDE07306730061000

Chi-Test NN-20 74 97 73 96 79 83 62 74 96 7-O

NN-100 97 96 87 94 90 70 76 81 98 78
NN-500 86 97 90 96 92 80 79 84 100 96
svM-FAR 86 88 83 97 85 80 76 81 96 87
svM-MID 89 97 80 96 81 70 79 81 96 87
svM-NEA 97 93 87 96 90 63 83 84 96 87
KDE 86 88 70 96 79 77 76 90 96 70

Training
Set

Voting NN-20 0 89 53 84 71 47 86 29 68 30
NN-100 100 88 67 96 58 60 45 65 86 39
NN-500 100 86 90 99 71 73 55 77 89 48
svM-FAR 80 76 63 96 90 47 97 65 75 74
svM-MID 97 88 80 97 60 60 48 77 75 78
svM-NEA 91 91 80 93 92 40 45 68 84 65
KDE0800638367071 960

Chr-lêst NN-20 77 88 57 90 63 80 52 45 77 44
NN-100 91 97 67 94 58 63 52 65 86 44
NN-500 97 99 90 97 69 77 55 77 89 48
svM-FAR 9\ 76 83 96 85 60 93 71 77 87
svM-MID 97 86 77 97 56 63 52 81 75 78
svM-NEA 97 91 97 93 85 53 48 84 84 74
KDE 83 99 100 97 85 100 86 90 89 97

CV Set Voting NN-20 0 94 59 80 90 19 90 8 100 9

NN-100 73 97 86 90 90 50 70 75 100 27
NN-500 40 94 86 83 87 50 50 58 100 27
svM-FAR 7 88 68 87 87 38 80 67 100 36
svM-MrD 40 88 97 87 90 50 80 75 100 46
svM-NEA 27 94 86 87 93 13 60 50 100 18
KDE0s60747008930

Chi-Test NN-20 53 97 64 87 80 63 80 67 100 36
NN-100 93 88 91 83 83 69 70 75 100 46
NN-500 53 97 86 80 80 75 60 75 100 64
svM-FAR 87 75 77 90 80 63 70 67 93 73
svM-MID 60 84 86 87 77 56 80 75 100 100
svM-NEA 60 91 86 83 77 56 60 67 93 82
KDE 73 69 82 87 57 56 80 83 93 36

Stats Minimum
Mean
Median
Maximum
Std. Dev.

0560647003680
65 89 73 87 80 57 65 65 92 54
79 91 80 93 84 60 70 74 96 50
100 100 100 99 98 i00 97 90 100 100
349231913222323927

CHAPTER9. RESULTS

9.L.2 Caveat on Interpreting Results

One must be cautious of making absolute statements about relative performance based on the
data presented here. Many of the results for different systems are quite close: less than 5

Percentage points apart, in some cases. It is expected that if trials were re-run with slightly
different training and cross-validation sets, the trends would look similar, but the precise values
would be different. Also, in the cross-validation " calls" set, each species has, on average, only
793 /70 = 19 calls. Given this quantity, the misclassification of a single call can lead to an accuracy
variation of (100%) /79 x 5%. For these reasons, one can only comment on obvious trends rather
than marginal differences.

9.1.3 Absence of a Test Set

Originally, a separate "test" set was created, but then was merged witl-r the cross-validation (CV)

set to increase the CV set's size. In general, in some training scenarios, a test set is desired. This is

because, if a researcher runs many trials and tweaks parameters in an effort to maximize the CV
accuracy, he is indirectly incorporating the CV set into the training set. One way to see if this has

happened is to process, when all the training and testing with the CV set is done, an additional
test set. If overtraining on the CV set has occurred, then the test set will perform more poorly than
the CV set.

In this project, very little fine-tuning was done. Some preliminary experimentation was needed to

get some ballpark estimates of various parameters, then a few trials were run. No effort was made
to optimize the CV results. Thus, CV overtraining is not expected to be an issue with this project.

9."1..4 Rejections and Accuracy

Initially, it was not clear how best to interpret unclassified frames. Eventually it was decided that
accuracy should be tallied after ignoring rejected frames or calls, because silent segments in the

audio recordings are expected to create unclassified frames. Also, any bird recording could have a

potentially unlimited duration of silence preceding or following its call, which may or may not be

removed by the person editing and digitizing it. Thus, it would be best to ignore rejects altogether.

This is why the "accuracy" and "rejections" columns in Tables 9.1 and 9.4 usually add up to more

than 100%.

9.1,.5 Neural Network Training

One characteristic that distinguishes ANNs from SVMs and KDE is the transparency of the

training process. Back-propagation is an iterative procedure; during training, the accuracy and

85

CHAPTER 9. RESULTS

mean squared error may be easily inspected. This permits observation of the effect known as

overtraining.

Overtraining, a phenomenon in which a neural network acts like a lookup table for the training
data, was observed only in the NN-500 network (500 hidden units). Figure 9.1 shows the mean

squared error (the average of squared differences between the ouþuts and the targets) reaching a

minimum at about 5000 epochs, after which it slowly begins rising, finally leveling off at about
40000 epochs. This shows that generalization from the training set to the CV set is degrading. The

NN-20 (not plotted) and NN-100 networks show no overtraining - the MSE continues

decreasing, and finally levels off.

86

0,3

CI.25

tlla 0.2

0.15

0.1

0.05

0

Mean Squared Error During Training
t.4

0.3s NN-5OO CV M5E

NN-10ü CV t\,tSE

NN-100 Train MSE

NN-S00 Tr.rin MSE

50000 Epochs

Figure 9.1: Mean squared error during training for both the training and cross-validation sets.

Oddly enough, overtraining was not seen when looking at the accuracy rate (Figure 9.2). An
output vector is considered "accurate" if the maximum element matches the target. Another
interpretation is that the maximum element is set to 1, and all other elements are set to 0. (Note:

accuracy during training is calculated before optimal thresholds a¡e calculated as explained in
Section 7.3.) This would eliminate intermediate values that would contribute to the MSE.

The MSE evidence for overtraining agrees with the accuracy floor observations (Table 9.1;

Figure 9.5), which show that the NN-500 network has a stellar training set accuracy, but a poor CV
accuracy, when compared to the NN-100 results.

CHAPTER9. RESULTS

NN-500 Accuracy During Training
90

80

70

60

50

40

30

20

10

û

50000 Epochs

Figure 9.2: Accuracy during training.

9.2 Single-Frame Accuracy

As observed in Figure 9.3, the best performers for single-frame accuracy are NN-100, NN-500,

SVM-FAR, -MID and -NEA. They gave a training set accuracy of 89-98n/", and a CV accuracy of
74-83%.

The NN-500 system shows symptoms of overtraining. It has the best training set score, at99"/o,but
both the superset and CV scores are lower than those of the simpler NN-100 system.

All three SVM results are within Sn/o,but the highest score is for SVM-MID, which used cost and 7
parameters that were halfway between high and low scoring points in the grid search (Figure 8.4).

The NN-20 results are unique in that they are almost the same for all three datasets, varying by
only 3 percentage points, from 64o/o to 67'k. This appears to be, but is not an example of
generalization. Cood generaiization occlrrs when the bias and variance have reached an optimal
trade-off point. Here, ¡tnrinnce is low, as indicated by the similar error rates for the different data

sets. However, the lower scores indicate thatbiss is high, and the network function is, on average,

different from the unknown classification function (Bishop, 1995). A high bias shows that a
classifier has too little flexibility and is unable to fit well with the actual classification function
(Bishop 1995). This corresponds to the fact that NN-20 has only 20 hidden neurons. Si¡rce each

hidden neuron acts as a simple binary classifier that divides the feature space in two, 20 neurons

classifying a 20-dimensional feature space would not be capable of distinguishing fine-grained
detail.

TheKDEresultsreallyshowittobe abiasedestintntor. Thetrainingsetscore of 74%isnotbad,but

87

\Ó
9\

CHAPTER9. RESULTS

Frame Accuracy
100

90

BO

70

60

e\ 50

40

30

20

10

0

NN. SVM SVM
5OO -FAR -MID

Systenr

Figure 9.3: Single frame accuracy.

the superset and CV scores of 40% and 38% hardly come close to the training score.

9.2.1 Frame Rejection

Figure 9.4 shows that there is a weak correlation of 0.51 between rejected frames and accuracy.

KDE was not included because it was necessary to set the reiection threshold to zero.

9.2.2 Frame Accuracy Floor

The accuracy floors (lowest species score) for all classifiers are laid out in Figure 9.5. It has a

similar structure to Frame Accuracy (Figure 9.3), but with greater variation, which is expected

since the minimum accuracy is an outlier value. The NN-500 and KDE systems are notable for the

range in scores. The NN-500 has a difference of 63 percentage points between the training and CV
sets, and the KDE has a difference of 55 percentage points. The CV floor for the KDE is actually
less than chance. As with the frame accuracy chart, these observations hint at overtraining.

9.3 Call Accuracy

When analyzing entire calls, an extra bit of processing has to be done to determine the species

based on a collection of frames. As mentioned earlier, either a simple vote count, or a chi-squared

88

SVM KDE
-NEA

NN- NN.
20 100

illrr¡¡n z Accur.rõ

i
M suoerset z
i Ac(uracy

! cv lá Accuracy

CHAPTERq. RESULTS

L00

90

BO

70

60

50

40

30

20-

Frarne Accuracy vs Rejection

89

\oó\

o
\J
qj'õ
É

oe

guo
+ø

I

--r-----l*
40 50 60

Accuracy %o

Figure 9.4: Single frame accuracy vs. rejection.

Frames: Accuracy Floor

NN. NN. SVM- SVM- SVM- KDE
1OO 5OO FAR MID NEA

System

ll

)1
)

i

IO

0

100

90

80

70

60

50

40

30

20

10

0

90 100

NN.
20

Figure 9.5: Single frame accuracy floor.

CHAPTER9. RESULTS

goodness-of-fit test can be used to achieve this. In this section, analysis concentrates on comparing
performance between these two methods.

Figures 9.6 and 9.7 show recognition accuracy for both types of posþrocessing. In general, the

training set performs more poorly than the larger superset from which it was extracted. This
might appear paradoxical, but it is expected, for the calls in the training set do not have enough
frames (only 10, on average) to give a statistically good estimate of a confusion row which itself
has 10 columns.

Call Reiection

Frames have a higher rejection rate than calls. For a call to be unclassified, all frames composing it
also have to be unclassified. The rejection rate for frames will be approximately proportional to
the amount of silence or noise in the signal. Unless a call is completely filled with low-confidence
frames, it is unlikely to be rejected. Thus, rejection rates of calls are not plotted because they are

negligible. Superset and CV set rejection is, at most, 2"k. Trarning set rejection is higher, r-rp to 20%.

This is not surprising because the training set is a small subsampled fraction (about 4%) of the

superset. On average, each call in the training set is composed of 3887 / 403 = 10 frames, so there

is a significant probability that they might all be rejected.

Calls being postprocessed with the chi-test will have zero rejects - every call is guaranteed to be

classified, because the nearest matching row in the confusion matrix is used.

For clarity, reference will be made to the score of only the CV dataset, as that is the one that is most

indicative of generalization ability.

9.3J1, Call Accuracy Comparison

Figures 9.6 and 9.7 show accuracy with both postprocessors. With voting, the best performer is

NN-100 with a score of 82%. With the chi-test, the best is also NN-100, with a score of 827o.

With voting, accuracy is fairly even, except for the NN-20 and KDE classifiers, which give results

similar to those of single frame accuracy (Figure 9.3). The calls have less variation and higher
accuracy than frames, which is probably due to the averaging effect of voting, and the fact that
there are more datapoints with which the classifier can make its decision.

Figure 9.7 shows accuracy with a chi-test posþrocessor. The scores of all systems have become

more equalized. Even the two weaklings, NN-20 and KDE, now appear competitive with the best

NN and SVM classifiers. The chi-test seems to have improved accuracy. But, by how much?

Figure 9.8 shows the accuracy difference between the two postprocessors. For the best performers,
NN-200, NN-500, and all SVMs, the chi-test offers only a negligible improvement, and in some

90

CHAPTER9. RESULTS

100

90

80

70

60

50

40

30

20

10

0

91

Call Accuracy (Voting)

NN-
20

SVM- SVM-
MID NEA

NN-
100

NN. SVM-
5OO FAR

Systenr

KDE

Figure 9.6: CaII accuracy with a voting postprocessor.

Call Accuracy (Chi)
100

90

80

70

60

50

40

30

20

10

(,

SVM. SVM. SVM. KDT
FAR MID NEA

System

NN- NN. NN.
20 100 500

Figure 9.7: Call accuracy with a chi-test postprocessor.

CHAPTER9. RESULTS 92

Call Acc., (Chi Vote) Difference

l¡lr;, A..i¡fr
__-]

lÑ srpu,ror ncc. o¡rl It_l
lL,lcvAcc. D¡í

I

NN. SVM SVM SVM
5OO -FAR .MID .NEA

Systenr

Figure 9.8: The difference between call accuracy when using voting as opposed to chi-test.

cases, a minor reduction of up to 2 percentage points. It improves the CV scores of NN-20 and

KDE by 6 and 14 percentage points, a moderate improvement, but nothing spectacular.

For overall accuracy, the chi-test gives only a moderate improvement for weak classifiers.

9.3.2 Call Accuracy Floor

Figures 9.9 and 9.10 show the accuracy floor, which is the score of the single worst performing
species. The accuracy floor with a voting postprocessor is shown in Figure 9.9. The scores have

degraded significantly from the average accuracy (Figure 9.3). NN-20 and KDE show that one

species, ALFL, has a 0% accuracy rate for all three datasets (see also Table 9.5). SVM-FAR has a

score of 7"/" for ALFL - less than chance. Further inspection of Tables 9.5 and 9.3 shows that

ALFLs accuracy scores have a greater standard deviation that other species (Table 9.5), and it has a

slightly higher median rejection rate (Täble 9.3), but ALFL does not appear to be a species that is

inl"rerently difficult to classify.

The best scorers are NN-100 and NN-500 at27n/" each, still less than half their respective accuracies

of 82% and 81%.

The chi-test postprocessor improves the accuracy floor scores, as shown in Figure 9.10. Here, the

low scores are for NN-20 and KDE, both at 36%. The best is SVM-FAR, at a respectable 63%. The

chi-test postprocessor clearly raises the accuracy floor. Figure 9.11 shows the difference between

chi-test and voting postprocessing. The chi-test improves the floor by at least 16 percentage points

100

90

80

70

60

50
\oa\

40

30

20

10

0

-10

NN- NN-
20 100

CHAPTER9. RESULTS 93

Call Acc. Floor (Voting)
100

90

80

70

60

ñso
40

30

20

t0

0

NN- SVM SVM SVM I(DÊ
5OO -FAR -MID .NEA

System

Figure 9.9: CaIl accuracy floors when using a voting postprocessor.

Call Acc. Floor (Chi)
r00

90

80

70

60

ñso
40

30

20

10

0

NN- NN. NN. SVM SVM SVM KDE
20 1OO 5OO ,FAR .MID -NEA

System

Figure 9.10: Call accuracy floors when using chi-test posfprocessor.

I Train Acc. Floor

@ Superset Acc. Floor

I cV Acc. Floor

NN. NN-
20 100

ffi Superset Acc. Floor
(chi)

tr cv ncc. Floor (ch¡)

CHAPTERq. RESULTS

Call Acc. Floor, (Chi - Vote)
'':---

Diff.
100

90

BO

70

60

\o 50
o\

40

30

20

t-0

0

-10

NN. SVM SVM SVM KDE
5OO .FAR .MID

NEA

System

Figure 9.11: Difference in accuracy floor with voting as opposed to chi-test.

for SVM-MID, and up to 56 points for SVM-FAR. This chart has no negative values; on average,

the chi-test increases the floor by 33 points.

Accuracy Variance

You might have noticed that, although the accuracy floor has increased with the chi-test, the

average has changed very little (Figure 9.8). Does this say anything about how tJne maxinnutt

accuracy value is affected by the chi-test? After all, if the minimum increases, but the average

remains the same, then that implies that the maximum value would have to come down to keep

the average at the same spot. Figure 9.12 shows that this is indeed the case. The chart shows the

standard deviation of the CV accuracy scores for each classifier. With voting, the ø value averages

29.6;wifh the chi-test, it is reduced by half, to 15.4. Thus, the chi-test postprocessor decreases the

variance of classifier accuracy, making performance more predictable.

9.4 Median Confusion Matrices

The confusion matrices in Figures 9.13 and 9.14 show the medians of the CV frame and call

accuracies across all classifiers. As such, it gives a meta-analysis of classifier performance. The

cells are grayscale coded, so that higher values are lighter in color, which makes problem areas

more obvious.

After perusing the CMs, some problem species pop out:

94

I TrÀìn Acc. Floor Ditf

Ø Supe¡set Acc. Floor
Diff

! cv ncc. Floo¡ Difl

NN. NN-
20 100

CHAPTER9. RESULTS

45

40

?r

30

25

20

15

10

5

0

95

co.F
cú'5
oâ
E
.d
E

tn

CV Acc. Variation, Vote vs Chi

SVfuI. SVM. SVM. KDE
FAR MID NEA

System

Figure 9.\2: Variance of accuracy, voting vs chi-test

ALFL AÍ4CR AM6O AI,IRE AI4RO BAOR BCCH BCTT BDOW BLJA

NN. NN- NN.
20 100 500

Species

ALF L

AMCR

AMGO

AI.IRE

AMRO

BAOR

BCCH

BCTI

BDOW

BLJA

Figure 9.13: Median confusion matrix of all classifiers when recognizing frames.

CHAPTER9. RESULTS 96

5 pec j-es

ALF L

AMIR

At'tG0

AMRE

AI,IRO

BAOR

BCCH

BCTI

BDOt¡J

BLJA

Figure 9.14: Median confusion matrix of all classifiers when recognizing calls.

The BCCH (black capped chickadee) is often mistakerr for an ALFL (alder flycatcher)

The BAOR (Baltimore oriole) is often mistaken for an AMRO (American robin).

The BLJA (bluejay) is often mistaken for an AMRO (American robin).

Some of these errors can be explained by looking at the spectrograms and listening to the

recordings and observing that the calls are similar, such as with the BAOR and AMRO. With some

other errors, such as the BLJA being confused for an AMRO, it is not clear where the source of the

problem is. The calls do not seem all that similar. Maybe the frequency ranges are about the same,

and the overall phrasing is close, but it is still clear (to a person) that they are different.

Since this confusion is common across all recognition methods, it must show a deficiency with
something outside of the recognizers, in particular, with the preprocessing stage, which never

changes. Recall that, in a way, preprocessing "compresses" data and extracts a small set of

features, and necessarily discards data that is not deemed important. Recognizer errors will occur

if the ability to distinguish two species depends on some quality that was culled.

A solution to this would be to simply add more features, especially ones that are good at

distinguishing the BLJA from the AMRO. However, with adding features, you increase the

complexity of the problem, and come closer to colliding with the Curse of Dimensionality.

Another solution would be to train an auxiliary network that is been trained to only distinguish

robins and bluejays. This network would be called into action whenever one of these species is

encountered, to add an extra "opinion" to the system. Yet again, that adds complexity. Since this

thesis was intended to investigate, rather than solve, a problem, the BLJA and AMRO

inadequacies are left untouched, to serve as a datapoint to ponder.

ALFL AÎ']CR AI,IGO AI'IRE A}4RO BAOR BCCH BCTI BDOW ELJA

CHAPTER9. RESULTS 97

Figures of Merit
75
70
65

-bu
8ss
Es0':' 45
\J 4U
S¡s
ü¡o
äzs
v2o
ú15-10

5

0

5VM-
FAR

System

Figure 9.15: Figures of merit for classifiers.

9.5 A Final Figure of Merit

Given all these numbers, is there some way to combine a few of them to create an informative

figw'e of merlf (FOM)? A good FOM would probably ignore the scores of the training set and

superset - the CV set is the one that everyone is interested in. It would have to include both the

accuracy and accuracy floor. Adding them together would not be very useful; you would get the

same value for (100,0) and (50,50). A good FOM should penalize very low accuracy or floor

values. Multiplying the two gives a better result. Thus, the figure of merit used here is the

geometric mean, or

FOM: (e.1)

Figure 9.15 shows the CV FOMs of all classifiers for both voting and chi-test postprocessing. As

shown earlier, chi-test works better than voting. However, if you were forced to choose a classifier

that used voting, then SVM-MID is the best with a FOM of 57, and NN-100 is second with a score

of 47. tNith chi-test, the three SVM classifiers score better than the rest, with SVM-FAR having the

highest score at 70, which is the geometric mean of 79% for accuracy and 63"/. for the floor. This is

not the best accuracy of the lot (it comes third) but it is the highest floor.

In summary, NN-100, NN-500, and all three SVMs performed the best. NN-20 and KDE were

worse, yet far better than a random predictor, with average accuracies of seven times chance.

SVM- SVM. KDE
MID NEA

NN- NN. NN.
20 100 500

CHAPTER9. RESULTS

9.6 Speed Issues

The previous portion of this chapter ignored the practical matter of classifier speed. In this section,

computational requirements are briefly analyzed.

9.6.-1, Training and Classification Speed

Both the NN and SVM models required several hours of training to produce the best results. After
training, the classification time was longer with the SVM. The KDE model has no training phase

whatsoever, but, like the SVM, was also slow.

Using the parameters that gave the best results, an estimate can be made for classification times.

In the following table, ,4 is the time required for an addition operation, M is the time for a

multiplication, and E is the time for an exp(.). Experimentation showed that A, M and E
relatively took times of 1, 1 and 10 approximately.

System Complexity Values at Best Accuracy Total

NN-100

SVM-MID
KDE

(M + A) (n ¡,,,t(n i,ty * n,t,t))) + n t,¡,t rl

M(n5y(2i ni,,t,)) + A(2,. nsv) + nsvq)

tr t rn itrl) + A tt 1,,, ¡,, * (M + A) (n ¡,, ¡,, + n ¡,,,,)

2(100(20+10))+1000
3000(22)+6000+60000

39000 + 3900 + 2(3900 + 20)

7000

132000

50740

The neural network cìassifier is faster than an SVM or KDE, by far. This is just a crr.rde

approximation though. Optimizations, such as using a fast Gauss transþnn (Greengard and Strain,

1991) could speed up the KDE, as explained in (ElgammaI et n\.,2003), and possibly also the SVM.

9.6.2 Backpropagation Speed

The standard delta rule worked well for NNs. No embellishments were needed to speed up the

training. Perhaps speed tweaking of the delta rule is a relic of the early days of backpropagation,

because of the increasing power of computers. A quick calculation with Moore's law" shows that

the computers of today (2005) are = 6000 times more powerful than the computers when

Rumelhart and McClelland released Parallel Distributed Processirtg ir"r 1986. To put this in
perspective, a 1 CPU-hour trial today would have taken 8 CPU-months in 1986. Perhaps the days

of backpropagation tweaks are numbered, because hrcreasilg CPU speeds will make plain
backpropagation fast enough for most applications.

98

'A common interpretation of Moore's lan' is that CPU speeds double every 18 months,

Chapter 1.0

Conclusion

This thesis investigated the ability of pattern recognition tecluriques to make an automated

determination of bird species based on audio recordings of calls. Inspiration was drawn from

earlier research on musical instrument recognition.

In this project, short-term tonal characteristics alone were used as features, as opposed to global

qualities that have been commonly used in earlier research.

Each bird call was separated into frames of 512 samples. Well-known spectral and cepstral pitch

characteristics, as well as the short term amplitude envelope, were extracted a¡rd used as features.

These features were chosen in part because of their resistance to noise. Spectral and cepstral

analysis together allowed pitch determination of signals ranging from pure sinusoids to those rich

in harmonics. Global characteristics, such as the duration, structure, and order of sounds, were

ignored.

Three pattern classification techniques were evaluated: artificial neural networks (ANN) with
backpropagation; the more recently invented support vector machines (SVM); and kernel density

estimation (KDE), an old statistical technique.

Each of these recognizers were trained to convert a single frame into a species estimate. A high

discrimination threshold was selected by automatic inspection of the receiver operating

characteristic (ROC) curve which allowed the ANN and SVM to reject low-confidence frames.

Since an entire bird call is composed of dozens of frames, two postprocessing methods were used

to condense a groups of estimates into a single estimate for the complete call.

The first method was simple voting. Each frame, when processed, gave a "most likely" species.

When all frames of a call had been processed, the species with the most votes was selected as the

winner.

99

CHAPTERlO. CONCLUSTON 100

The second method relied on the chi-squared goodness-of-fit test. After the species votes were

tallied for all frames in a call, what remained was a multinomial distribution (or "confusion row")
that could be matched to a row in the confusion matrix of the t¡aining set. The row that gave the

lowest y2 value was the winner.

Both methods gave similar average accuracy scores, with the chi-test giving moderate

improvements for the weaker classifiers.

The beneficial effects of the chi-test was seen when examining the accuracy floor, which is the

accuracy of the worst-performing species for a classifier. The accuracy floor is an indication of
worst-case performance expectations. The chi-test raised the floor for all classifiers. For the

weaker classifiers, the increase was significant. The chi-test also reduced the variance of
per-species accuracy, making performance more predictable.

To evaluate overall performance, the geometric mean of average accuracy and accuracy floor was

used as a figure of merit. Based on this figure, the best classifiers were the support vector

machines (with SVM-FAR having a CV accura cy of 79"/" and a floor of 63%) followed by the neural

networks and kernel density estimation.

In summary, the three most interesting results of this thesis are:

r Short-term tonal qualities, which ignore global characteristics of a call, are adequate for
species recognition;

¡ Multiple species estimates from a call can be combined using a voting algorithm or

goodness-of-fit test to give a good accuracy score;

o The chi-square goodness-of-fit test can be used to improve the accuracy of weak classifiers,

and also reduces the variance of accuracy across classifiers.

L0.L Future Directions

During the development of this project, there were many occasions when variations could have

been applied to the tecluriques being evaluated. Unfortunately, due to time constraints, these

could not be investigated here - those journeys will have to wait for future research projects.

Following is a description of some of the potential areas of investigation.

L0.1.L More Species

Currently, this project investigates the classification of only ten species. What would happen if this

were increased to fifty (a number which was the original goal) or more? How will the current

CHAPTERlO. CONCLUSION

classifiers degrade with additional species? If they are made more powerful by adding neurons or
support vectors, how will performance change? What will happen if hundreds of species are

trained for? Will recognition be tenable, or will a hierarchical system be needed that does a crude

classification first, then one or more additional classifications to fine-tune the recognition?

10.1..2 Different Features

There is always an urge to use a large number of features for the classifiers, but restraint was

deliberately exercised here in an attempt to keep dimensionality under control. One particular
feature which came to light after the fact was a frequency modulation parameter. This would be

an analysis of the short-term pitch by taking the peak frequency and determining its periodicity.
This might be a useful feature for birds that emitted warbling sounds.

One of the goals of this work was to use only local or instantaneous features. An obvious question

is then, how would performance improve if global characteristics, such as syllable durations,
inter-syllable spacings, and total call duration, were used?

Finally, are any of the current features redundant or useless for recognition? Maybe pruning
algorithms can be used to determine which features are salient.

L0.1.3 Preprocessing Robustness

Good features are of utmost importance. ANNs and SVMs may be powerful, but they are not
telepathic; if given a feature that is no different from a random variable due to noise, there are

Iimits to what can be deduced from it.

Features were chosen based on many criteria, but one aspect was robustness against noise. Do

there exist other types of local or global features that are as robust (if not more) than the ones used

here?

10J1,.4 Musical Instruments and Beyond

The features used in this project were inspired by research into recognition of musical instruments.
How would the system developed here fare against other classifiers for musical instruments?

How would this system perform when recognizing other sounds altogether, such as non-bird
animals, insects, etc., or mechanical sounds?

101

CHAPTER 10. CONCLUSIO¡J

10.L.5 Continuous Processing

102

The current system classifies birds on a per-file basis. Could it be modified to operate continually,
as would be required in a real-world monitoring situation? Perhaps a several-second "sliding
window" would work.

10.1.6 More KDE

Although KDE was shown to be a poor performer, the sheer simplicity of the method is, i¡ itself,
appealing. Investigating the various bandwidth selection techniques could be an interesting
project unto itself.

Appendix A

Species Description

Tèn species of North American birds were used in this thesis. AII these species can be found in
Manitoba, with the exception of the black-crested titmouse, which is limited to Tþxas. This section

shows pictures of the birds, along with a spectrogram to give an impression of how they might
sound. Audio files of most of these calls can be found on the internet, at

}lttp: / /t¡t¡tt. antiquark. com,/birds. The images in this section were obtained from Wikipedia:
The Free Encyclopedia, at http : / /t¡ww .wlkipedia. org.

Figure 4.1: Alder Flycatcher (ALFL) Picture and Spectrogram

103

APPENDIX A. SPECIES DESCR/PTIOÀJ

Figure 4.2: American Crow (AMCR)Picture and Spectrogram

Figure 4.3: American Goldfinch (AMGO) Picture and Spectrogram

r04

1.! .'¡;;¡t,)l;{ì.i^.'r}l1ì¡I.i..:r,q,.iLÇ;:Ti!rll.:,;!¿iî.È':ú""À^i,;"'i+t .,3...,j1r'..¡.";-;::'.i

Figure 4.4: American Redstart (AMRE) Picture and Spectrogram

APPENDIX A. SPECIES DESCRIPTION

Figure 4.5: American Robin (AMRO) Pictu¡e and Spectrogram

Figure A'.6: Baltimore Oriole (BAOR) Picture and Spectrogram

105

APPENDA A, SPECIES DESCRIPTION

Figure 4.8: Black-Crested Titmouse (BCTI) PicLure and Spectrogram

Figure 4.9: Barred Owl (BDOW) Picture and Spectrogram

106

jF-a--l*4
--

-

;-'- r - ¿-sl
r--7*-::t1':.. .. r:.-l--.-.+¡*-"

ùrc ì0

Figure 4.10: Blue lay (BLIA) Picture and Spectrogram

Appendix B

Choosing Features

The background work for this thesis, involved experimentation with many preprocessing methods

to try to determine which ones were best suited for use in a pattern recognition context. Most of
the experiments failed, but in the process several rules of thumb were built up, to help qualify and

choose features. Here, for the reader's interest, is a list of these rules, in no particular order.

8.1 Use Well-Known Pre-Processing Methods

You should use tried-and-true techniques for preprocessing. It might be possible to invent a novel

and innovative feature, but if you do so, then it is necessary to analyze this new technique, prove
that it works, then implement it and show that the implementation works. Transferring your
creativity and inventiveness to the problem that comes after the pre-processing stage will simplify
the overall task (Chen,1973).

8.2 Noise Rejection

A feature should be immune (or at least resistant) to variations in background noise or other
extraneous forms of interference (Devijver and Kittler, 1982).

8.3 Features Should be Reversible

Given a set of features, you should be able to reconstruct (to some extent) the original signal

(Devijver and Kittler, 1982). This shows that the features you have chosen retain much of the key

r07

APPENDIXB. CHOOSING FEATURES 108

information of the original, just in a different format. A perfect example of this is the Fourier

transform, which can be inverted to produce the original signal.

8.4 Dimensionality Reduction

You should make efforts to reduce the number of dimensions of the input signal. This will help
the subsequent processing stages avoid the Curse of Dimensionality (Bishop, 1995). Some

literature indicates that about 10-20 dimensions is the maximum useful dimensionality for a

feature space (Scott,7992). An obvious solution would be to simply use fewer features. Another
workaround is to proiect a number of features onto a lower-dimensional space, a technique that
has its share of problems (Scott,7992).

8.5 Invariance to Amplitude Changes

A feature should be invariant to changes in amplitude Both weak and strong signals of the same

category should produce the same value for a given feature (Winston, 1984). (Although, in the

case of this thesis, the signals were largely normalized for amplitude because of auto-gain circuitry
in the recording devices, and manual gain control by the people operating the equipment.)

8.6 Input/Output Space Smoothness and Continuity

A transformation that converts a point in the input space to a feature should be smooth and

continuous. Similar points in the input space should produce features with similar values
(Devijver and Kittler, 7982).To further illustrate, here is an example.

Assume that your input space is a series of samples from an audio signal. If you were to apply the

Fourier transform as a means to find the peak frequency component, you might get a result as

shown in Figure 8.1. Here, similar input frequencies will produce similar value for the extracted

peak frequency.

Consider the case where you rlow have a more complicated signal with multiple peaks in the

frequency domain, as shown in Figure 8.2.

If the three peaks in the frequency domain are close in magnitude, then a simple peak detection

algorithm could produce one of several results, depending on small variations in the original
signal caused by noise. For example, if the peaks were 100 Hz apart, then the detected frequency

could be either 100,200 or 300 Hz.

APPENDA B. CHOOSNJG FEATURES 109

Ambiguous

Time Domain Frequency Domain Detected

Feature

Figure 8.2: Simple spectral feature extractor with ambiguous result.

Tlre solution to this particular problem is to add another transform and find tine cepstrtuu of the

signal (Section 3.3). The cepstrum will convert a comb-like structure in the frequency domain into
a single peak (Figure 8.3).

,Fourier,Apeak

^
JT^ rransrorm I /\ Detect

E E

I t^/

Time Domain Frequency Domain

Figure 8.1: Simple spectral feature extractor.

[ffih-Ëb4uÅ

þt+4fldË$=*iL
Time Domain Quefrency Domain

Figure 8.3: Simple cepstral feature extractor.

"1 00 Hz"

Detected

Feature

"100 Hz"

Detected

Fealure

This peak value, 700Fl,2, is much more resistant to noise. The magnitude of the peaks after the

ir-ritial Fourier transform can vary, but the cepstral estimate of the spacing between the peaks will
remain stable.

8.7 Avoid Binning or Thresholds

This is related to the previous item on smoothness and continuity (Devijver and Kittler, 7982).lt
might appear to be simplifying things if data is broken down into bins before being passed to a

APPENDIX B. CHOOSING FEATURES 110

classifier. For example, a signal level could be separated into "weak" and "strong" bins before

processing. Information is lost if this is done. A "strong" signal that is almost straddling the

boundary will be in the same bin as the strongest signal in the dataset. It is better to simply pass

the signal level to the classifier.

8.8 Ease of Implementation

A feature extractor is worthless if you cannot get it to operate properly. If you plan to code an

algorithm from scratch, it is a good idea to choose one that can be implemented and tested in a

timely manner, and with some confidence that it actually works (Chen, 1973).

8.9 Avoid Conceptual Cross-Contamination

If you plan to compare the performance of, say, neural networks to SVMs, then the preprocessor

should contain neither NNs nor SVMs. If it does, then it is more difficult to isolate performance
differences. This rule-of-thumb came to mind when investigating pitch detection methods for the

preprocessing stage, and it was discovered that neural networks have been used for that purpose.

8.10 Confirm Assumptions with Experiment

It is possible to propose features which, at first glance, and even after a longe¿ harder look, appear

ideal for extracting useful information. Only through subsequent testing on real data do the

limitations of the proposed method become apparent. One example of such a case is using the

standard deviation of the frequency spectrum. The standard deviation (or ø) should provide an

indication of the overall "shape" of the spectrum. A spectrum with a sharp, well-defined peak

would have a small ø, but a spectrum with a spread-out peak, or with multiple harmonics, would
give a larger ø. Intuitively, this appears to be a useful measure.

In reality however, the ø of the spectrum is useless for describing the shape of the peak. In a
laboratory environment, ø would indeed be useful, but in real-life signals with background noise,

ø turns out to be little better than a random variable.

In an outdoor enviroument, the background noise typically has more energy at lower frequencies,

and is similar to pink or green noise which has a 7 / f distribution. Figure 8.4 shows the type of
spectrum that might be found in a real signal.

As can be seen by inspecting tl-re resulting spectrum of Figure 8.4, the ø value will vary depending
on:

ldeal Sinusoid

Environmental Noise (1 /f)

APPENDIX B. CHOOSINC FEATURES

Figure B.4: Effect of ambient noise on signal.

The frequency of fo;

The amplitude of fo;

The amplitude of the background noise;

The harmonics of /o.

To belabour this point: one should not asstutrc that a feature is useful; one should shor.u that a

feature is useful.

8.1-1- ConfidenceMetric

Every good feature should have an extra value that gives an indication of how "reIiab\e" it is. For

example, if you have a frequency estimate of some signal, you would like to know if it is the result
of a strong component, or merely a random blip of noise. The magnitude of the component is a

good confidence metric, but that would fail if the signal is composed only of loud noise. A better
metric, one that is used in this thesis, is to normalize the peak energy by dividing it by the energy

of the frame. This indicates the magnitude of the peak relative to the rest of the signal, and will
produce a lower value if noise is present.

111

APPENDIX B. CHOOSING FEATURES

8.12 Automated Feature Selection

r1.2

There are many methods for automatically selecting a subset of features from a large features set.

An exhaustive search is impossible, as it increases as d! where d is the size of the feature set.

Heuristics have to be used instead. These methods were not utilized, as they require the

classifier(s) to be retrained dozens of times, which, for this project, would have taken months of
CPU time. A good comparison of feature selection algorithms is by Jain and Zongker (1997).

Bibliography

Agostini, G., Longari, M., and Pollastri, E. (2001a). Content-based classification of musical

instrument timbres. In Proc. of Content-Based Multitttedia Indexing, IEEE Multintedís Processirtg

TC,pp.759-766. Università degli Studi di Brescia, Brescia, Italy.

Agostini, G., Longari, M., and Pollastri, E. (2001b). Musical instrument timbres classification with
spectral features. In /EEE Fourth Workshop on Multimedia Signal Processirtg, pp.97-702. Cannes,

France.

Agresti, A. (1996). An Introduction to Categoricnl Dnta Analysis. Toronto: Wiley.

Aizerman, 4., Braverman, E. M., and Rozoner,L.I. (7964). Theoretical foundations of the

potential function method in pattern recognition learning. Autonmtion rutd Retnote Control 25,

827-837.

Berger, R. (2005). Personal communication.

Bishop, C. M. (1995) . NetLrnl Netzuorks for Pattern Recogttitiott. Oxford: Clarendon Press.

Boll, S. F. (1979). Suppression of acoustic noise in speech using spectral subtraction. IEEE Trans.

on Acottstics, Speech nnd Signnl Processirtg 27,713-720.

Bowman, 4., Hall, P., and Prvan, T. (1998). Bandwidth selection for the smoothing of distribution
functions. Biontetrika 85 (4), 799-808.

Bruder, J. 4., Cavo, V. N., and Wicks, M. C. (1998). Bird hazard detection with airport surveillance
radar. In Stlt Attrunl Meetíng, Bird Strike Connnittee, pp.760-763. Cleveland, Ohio: Internet
Center for Wildlife Damage Management.

Burges, C. I C. (1998). A tutorial on support vector machines for pattern recognition. Data Minittg
and Knouledge D iscoaery 2, 727-767 .

Campbell, C. (2002). Kernel methods: a survey of current techniques. Neurocontputirtg 48,63-84.

Chang, C.-C. and Lin, C.-J. (2005). LIBSVM: a library for support aector mnchines. Software available

at http : / /www. csie.ntu. edu.twl-cjlin,/lÍbsvmas of Jan. 2006.

Chen, C.-H. (1973). Statistical Pattern Recognitiott. Rochelle Park, New Jersey: Hayden Book

Company, Inc.

Chiu, S.-T. (7996). A comparative rer¡iew of bandwidth-selection for kernel density estimation.

Ststística Sinicn 6, 729-745.

Cristianini, N. and Shawe-Taylor, J. (2000). Att Introductiotr to Strpport Vector Mnchines and other

kernel based lenrning nrctlnds. Cambridge: Cambridge University Press.

113

BIBLIOCRAPHY 774

Cucker, F. and Smale, S. (2001). On the mathematical foundations of learning. Bulletin (New Series)

of the American Mathenntical Society 39 (7), 749 .

de Cheveigné, A. and Kawahara, H. (2001). Comparative evaluation of Fs estimation algorithms.

In Ewospeech 2001 - Scrntdinsaia.

Der¡rris, J.V. (1964). Woodpecker damage to utility poles: With special reference to the role of

territory and resonance. Bird-Brutdirtg: A Jownal of Ornitltologicnl Inoestigatíott 35 (4),225-253.

Derégnaucort, S., Cuyomarc'h,J.-C., and Richard, V. (2001). Classification of hybrid crows in
quail using artificial neural networks. Behnaioral Processes 56,703-712.

Devijver, P. A. and Kittler, I. Q982). Psttem Recogttitiott: A Statistical Approach. Englewood Cliffs,
New]ersey: Prentice/Hall International.

Devore, I . L. (1987). Probabilíty and Statistics for Engineering mñ tlrc Sciences. Monterey, California:

Brookes/Cole.

Dubnow, J. J., Schafer, R. W., and Rabiner, L. R. (7976). Real-time digital hardware pitch detector.

IEEE Trsns. on Acottstics, Speech nnd Signal Processittg 24 (7),2-8.

Egan, J. P. (1975). Signal Detection Tlrcory snd ROC Annlysis. New York: Academic Press.

Elgammal, 4., Duraiswami, R., and Davis, L. S. (2003). Efficient kernel density estimation using

the fast gauss transform with applications to color modeling and tracking. IËÊE Trons. ott

Pattern Analysis ad Mnchine húelligence 25 (77),7499-7504.

Eronen, A. (2001). Comparison of features for musical instrument recognition. In 2001 IEEE

Worksltop ort Applications of Signal Processirtg to AtLdio snd Acottstics, pp.79-22. New Paltz, New
York.

Evans, W. R. (1998). Applications of acoustic bird monitoring for the wind power industry. In
Nstionnl Aoinn - Wind Pozuer Plaruúng Meeting III, pp.741-752. San Diego, California: National

Wind Coordinating Committee.

Evans, W. R. (2005). Monitoring avian night flight calls-the new century ahead. The Pnssenger

Pigeon 67 (7),75-24.

Everitt, B. S. (7992). The Analysis of Conthryency Tnbles. New York: Chapman and Hall.

Fahlman, S. E. and Lebiere, C. (1990). The cascade-correlation learning architecture. In Touretzky,

D. S. (Ed.) , Adunnces in Netu'nl Inþrnntion Processittg Systenn 2, pp.52a-532. San Mateo, CA:

Morgan Kaufman.

Farnsworth, A. (2005). Flight calls and their value for future ornithological studies and

conservation research. TIrc Atk 122 (3),733-746.

Farnsworth, 4., Gauthreaux, S. 4., ar"rd van Blaricom , D. (2004). A comparison of nocturnal call

counts of migrating birds and reflectivity measurements on doppler radar. lotu'ttal of Auian

Biology 35,365-369.

Gerslro, A. and Gray, R. M. (7992). Vector Quantizntiott nnd Signnl Contpression Boston: Kluwer.

Greengard, L. and Strain, J. (1991). The fast gauss transf orrn. SIAM J Sci Stnt Conryut 12 (7),79-94.

Greenwood, P. E. and Nikulin, M. S. (1996) . A Guide to Chi-Squared Testirtg. Toronto: Wiley.

Härmä, A. and Somervuo, P. (2004). Classification of the harmonic structure in bird vocalization.

In ICASSP 2004, pp. 707-704. IEEE.

BIBLIOGRAPHY 115

Harness, R. and Carlton, R. (2001a). Automated systems for monitoring avian interactions with
utility structures and evaluating the effectiveness of mitigative measures. ln Pouer Engineering

Society Wínter Meetmg 2001,Yolurne 1,pp. 359-362. IEEE.

Harness, R. and Carlton, R. (2001b). New solutions for bird collision and electrocution outage

problems. In Pouer Engineering Society Winter Meeting 2001,Yolurne 1, pp. 341-354. IEEE.

Haykin, S. (\994). New'nl Netr.uorks: A Contprehensiue Foundnfion. New York: Macmillan College

Publishing Company.

Hearst, M. A. (1998). Support vector machines. IEEE Intelligent Systents pp. 18-28. julylAugust
7998.

Hertz, J., Krogh, 4., and Palmer, R. G. (1991). An Introduction to the Tlrcory of Neurnl Contputation.

Redwood City, CA:Addison Wesley.

Hess, W. (1983). Pitch Deternünntion of Speech Signals. New York: Springer-Verlag.

Hsu, C.-W. and Lin, C.-1. e002). A comparison of methods for multiclass support vector

machines. IEEE Ti'nns. on New'al Netzuorks 13 (2),475425.

Ivakhnenko, A. G. (1971). Polynomial theory of complex systems. IEEE Tt'ans. on Systems, Man,

and Cybernetics't (4), 364178.

Jacobs, R. A. (1988). Increased rates of convergence through learning rate adaptation. Neural

Netzuorks'l..,295107.

]ain, A. and Zongker, S. (7997). Feature selection: Evaluation, application and small sample

performance. IEEETrrms. on Pnttem Analysis nnd Machine Intelligence19 (2),153-158.

Jain, A. K., Duin, R. P. W., and Mao,] (2000). Statistical pattern recognition: A review. IEEË, Trnns.

on Pnttern Analysis rntd Mnclùne húelligence 22 (7),4-37.

Jardine, E. (7996). Bird Sottg Identificatiort Mnde Ensy. Toronto, Ontario: Natural Heritage / Natural
History Inc.

Jones, M. C., Marron, J. S., and Sheather, S. l. (1996). A brief survey of bandwidth selection for
density estimation. Jotu'nal of the Anrcrícsn Statisticsl Associntion 91 (433),407407.

Kanji, G. K. (1999). 100 StstisticalTests. London: SACE Publications.

Kecman, V. (2001). Learrúng and Soft Conrptttirtg: Sttpport Vector Machítrcs, Neural Netzuorks, nnd

FtLzzy Logic Models. Cambridge, Massachusetts: MIT Press.

Kemerait, R. C. and Childers, D. G. (7972). Signal detection and extraction by cepstrum

techniques. IËEE Trans. ort Inþrmntiort Tlrcory 18 (6),745-759.

Khazanie, R. (1986). Elenrcntary Stntistics In a World of Applicntions (Second ed.). USA: Scott,

Foresman and Company.

Kohavi, R. and Provost, F. (1998). Glossary of terms. Machine Intelligence 30 (2),277-274.

Kramer, A. H. and Sangiovalli-Vincentelli, A. (1989). Efficient parallel learning algorithms for
neural networks. In Touretzky, D. S. (Ed.) , Adaances in Neu'nl Inþrnntiott Processittg Systents,

Volume 7,pp.4048. San Mateo, CA: Morgan Kaufman.

Kulkarni, S. R., Lugosi, G., and Venkatesh, S. S. (1998). Learning pattern classification-a survey.

IEEE Trans. on Inþrnntion Tlrcory 44 (6), 2778-2206.

Kuo, F. Y. and Sloan, I. H. (2005). Lifting the curse of dimensionality. Notices of the AMS 52 (77),

1320-7328.

BIBLIOGRAPHY 776

Kwak, N. and Choi, C.-H. (2002). Input feature selection for classification problems. IEEE Trnns.

on Newnl Netzuorks 13 (1), 743-1.59.

Lee,Y., Oh, S., and Kim, M. (1991). The effect of initial weights on premature saturation in
back-propagation learning. ln Internationnl Joínt Conference on Neural Netuorks, Volume 1, pp.
765-770. Seattle, WA.

Lin, C.-J. (2005). Personal communication.

Loader, C. R. (1999). Bandwidth selection: classical or plug-in? Tlrc Annnls of Statistics 27 (2),

41,5438.

Marler, P. and Slabbekoorn , H. (2004). Nntw'e's Music: The Science of Birdsong. San Diego,

California: Elsevier Academic Press.

Marques, J. and Moreno, P. J. 0999). A study of musical instrument classification using gaussian

mixture models and support vector machines. Cambridge Research Laboratory, Technical

Report Series. CRL99 /4, June 1999.

Martin, K. D. (1998). Toward automatic sound recognition: Identifying musical instruments, pp.
1-6. Presented at the NATO Computational Hearing Advanced Study Institute. II Ciocco, Italy.

Martin, K. D. and Kim, Y. E. (i998). Musical instrument recognition: A pattern-recognition
approach, pp.7-72. Presented at the 136th meeting of the Acoustical Society of America.

Masters, T. (1993). Prncticnl neural network recipes in C++. San Diego, USA: Academic Press

Professional, Inc.

Mcllraith, A.L. (7996).Identification of birdsong using artificial neural computing. Master's
thesis, University of Manitoba.

Mcllraith, A. L. and Card, H. C. (7997). Birdsong recognition using backpropagation and

multivariate statistics. IEEE Trans. on Signal Processing 45 (11), 2740-2748.

Moore, A. W (2001). Support vector machines. URL is http : ,//wwr¡. cs . cmu. edu/-ar¿m as of Jan.
2006. Unpublished.

Müller, K.-R., Mika, S., Rätsch, G., Tsuda, K., and Schölkopf, B. (2001). An introduction to
kernel-based learning algorithms. IEEE Trans. on Neurnl Networks 12 (2),181-20i.

Noll, A. M. (1964). Short-time spectrum and 'cepstrum' techniqes for vocal-pitch detection.

lournal of the Acottsticnl Society of Anrcricn 36 (2),269-302.

Oppen-heim, A. V. and Schafer, R. W. (2004). From frequency to quefrency: A history of the

cepstrum. IEEE Signnl Processirtg Mngazine . 1ept.2004, pp. 95-106.

Oppenheim , A.Y., Willsky, A. S., and Young, L T. (1983). Signnls and Systents. New Jersey:
Prentice Hall.

Platt, i. C. (1998). Sequential minimal optimization: A fast algorithm for training support vector
machines. Technical report, Microsoft Research. MSR-TR-98-14.

Platt, J. C. (7999). Probabilistic ouþuts for support vector machines and comparisons to

regularized likelihood methods. In A. J. Smola, P. Bartlett, B. Schölkopf, D. Schuurmans (Eds.),

Adannces in Lnrge Margin Classifiers. MIT Press.

Poggio, T. and Smale, S. (2003). The mathematics of learning: Dealing with data. Notices of the

AMS so (5),s37-544.

BIBLIOGRAPHY r77

Press, W. H., Teukolsky,S. A., Vetterling, W. T., and Flarurery, B.P. (7992). Ntunericnl Recipes ín C:

The Art of Scientific Contputittg (Second ed.). New York: Cambridge University Press.

Proakis,]. G. and Manolakis, D. G. (1996). Digitnl Signal Processirtg: Principles,.Algorithms and

Applicatiorts (Third ed.). New Jersey: Prentice Hall.

Rabiner, L.R. (7977). On the use of autocorrelation analysis for pitch detection. IEEE Ti'ans. on

Acottstics, Speech nnd Signnl Processittg 25 (7),24-33.

Rabiner, L. R., Cheng,M.J., Rosenberg, A. E., and McGonegal, C. A. (7976). A comparative
performance study of several pitch detection algorithms. IEEE Trnns. ott Acottstics, Speech nnd

Signal Processirtg 24 (5),399478.

Rosenblatt, M. (1956). Remarks on some nonparametric estimates of a density function. Annnls of
Mathemstical Ststistics 27, 832-837 .

Ross, M. J., Shaffer, H. L., Cohen, 4., Freuclberg, R., and Manley, H.J. 0974). Average magnitude
difference function pitch extractor. IEEE Ti'nns. on Acottstics, Speech nnd Signal Processing 22 (5),

353-362.

Ruiz, A. and López-de-Teruel, P. E. (2001). Nonlinear kernel-based statistical pattern analysis.

IEEE Tt'nns. on New'al Netruorks 12 (I),16-32.
Rumelhart, D. E., Hinton, G. E., and Williams, R.J. (1986). Learning internal representations by

error propagation. In Rumelhart, D. E., McClelland, J. L., and the PDP Research Group (Eds.) ,

Parnllel Distributed Processirtg: Explorntions in tlrc Microstructu'e of Cognitiott, Volume 1:

Foundations, pp. 318-362. Cambridge, MA: MIT Press.

Rumelhart, D. E. and McClelland, J. L. (Eds.) (1986). Pnrnllel Distributed Processirtg: Explorations in

tlrc Microstrtrctw'e of Cognition, Volume 1. Cambridge, MA: MIT Press.

Russo, A. P. (1991). Neural networks for sonar signal processing, Tutorial No. 8. In lEEË

Conference on Newnl Netuorks for Ocean Engineering. Washington, DC.

Schölkopf, 8., Burges, C. I. C., and Smola, A. l. (Eds.) (1999). Adaances in Kernel Methods: StLpport

Vector Learning. Cambridge, Massachusetts: MIT Press.

Schölkopf, B. and Smola, A. l. (2002). Leanúng zuith Kernels: Strpport Vector Mnchines, Regularízntion,

Optimization, and Beyond. Cambridge, Massachusetts: MIT Press.

Scott, D. W. (7992). Mttltiaariate Density Estíntation: Theory, Practise, nnd Visunlizaúiorz. New York:

John Wiley and Sons.

Scott, D. W. and Wand, M. P. (1991). Feasibility of multivariate density estimates. BiontetriknTS (7),

797-205.

Sdorow, L. (1990). Psychology. Dubuque, Indiana: Wm. C. Brown Publishers.

Shilton,4., Palaniswami, M., Ralph, D., and Tsoi, A. C. (2005). Incremental training of support
vector machines. IEEE Trruts. on N eLff aI N etzoorks 1.6 (1), 1 14-131.

Sondhi, M. M. (1968). New methods of pitch extraction. IEEE Trnns. on Audio nnd Electroncoustics

1,6 (2),262-266.

Vapnik, V. (1979). Estinntiott of Dependences Bnsed on Empiricnl Dntn [In Russian] . Moscow: Nauka.
(English translation: Springer-Verlag, New York, 1982).

Vapnik, V. (1995). Tlrc Nstw'e of Stntisticnl Lennúng Tlrcory. New York: Springer-Verlag.

Vapnik, V. (1998). Stntistical Learning Tlrcory. New York: John Wiley and Sons.

BIBLIOGRAPHY 1i8

Vapnik, V. N. (1999). An overview of statistical learning theory. IEEE Tt'nns. on Netu'ril Netuorks 10

(5),988-999.

Widrow, B. and Hoff, M. E. (1960). Adaptive switching circuits. In IRË WESCON Cotrcention

Record, pp.96-704.

Winston, P. H. (1984). ArtiJicinl httelligence (Second ed.). Reading, Massachusetts: Addison Wesley.

Wright, M. H. (2004). The interior-point revolution in optimization: History, recent development,

and lasting consequences. Bulletin (New Series) of tlrc Antericat Mathentnticnl Society 42 (1),

39-56.

