
 

 

SCHEDULING OPTIMIZATION OF MANUFACTURING SYSTEMS WITH NO-WAIT 
CONSTRAINTS 

 
 
 
 

BY 
 

HAMED SAMARGHANDI 
 

 

 

 

 

 

A thesis submitted to the Faculty of Graduate Studies of 
 

The University of Manitoba 
 

in partial fulfillment of the requirements of the degree of 
 

 

 

 

 

DOCTOR OF PHILOSOPHY 
 
 
 
 
 
 
 

Department of Mechanical and Manufacturing Engineering 
 

University of Manitoba 
 

Winnipeg 
 
 
 
 
 

Copyright © 2013 by Hamed Samarghandi 



 

 

Abstract 

No-wait scheduling problem refers to the set of problems in which a number of jobs are 

available for processing on a number of machines with the added constraint that there should be 

no waiting time between consecutive operations of the jobs. It is well-known that most of the no-

wait scheduling problems are strongly NP-hard. Moreover, no-wait scheduling problems have 

numerous real-life applications. This thesis studies a wide range of no-wait scheduling problems, 

along with side constraints that make such problems more applicable. First, 2-machine no-wait 

flow shop problem is studied. Afterwards, setup times and single server constraints are added to 

this problem in order to make it more applicable. Then, job shop version of this problem is 

further researched. Analytical results for both of these problems are presented; moreover, 

efficient algorithms are developed and applied to large instances of these problems. 

Afterward, general no-wait flow shop problem (NWFS) is the focus of the thesis. First, 

the NWFS is studied; mathematical models as well as metaheuristics are developed for NWFS. 

Then, setup times are added to NWFS in order to make the problem more applicable. Finally, the 

case of sequence dependent setup times is further researched. Efficient algorithms are developed 

for both problems. 

Finally, no-wait job shop (NWJS) problem is studied. Literature has proposed different 

methods to solve NWJS; the most successful approaches decompose the problem into a 

timetabling sub-problem and a sequencing sub-problem. Different sequencing and timetabling 

algorithms are developed to solve NWJS.  

This thesis provides insight to several no-wait scheduling problems. A number of 

theorems are discussed and proved in order to find the optimum solution of no-wait problems 

with special characteristics. For the problems without such characteristics, mathematical models 

are developed. Metaheuristics are utilized to deal with large-instances of NP-hard problems. 

Computational results show that the developed methods in this thesis are very effective and 

efficient compared to the competitive methods available in the literature.  



 

 

Acknowledgement 

Foremost, I would like to express my sincere gratitude to my advisor Dr. Tarek 

ElMekkawy for the continuous support of my PhD study and research, for his patience, 

motivation, enthusiasm, and immense knowledge. His guidance helped me in all the 

time of research and writing of this thesis. I could not have imagined having a better 

advisor and mentor for my PhD study.  

Besides my advisor, I would like to thank the rest of my thesis committee: Dr. 

Yunhua Luo, and Dr. Shaahin Filizadeh for their encouragement, insightful comments, 

and hard questions.  

My sincere thanks also goes to University of Manitoba, Natural Sciences and 

Engineering Research Council of Canada (NSERC), and CancerCare Manitoba 

(CCMB), for providing me with financial support opportunities and leading me to 

working on diverse exciting projects.  

I would like to take this opportunity to thank Ms. Sue Bates of CancerCare 

Manitoba for enlightening me with various great ideas. She has been the utmost director 

and leader. 

Last but not the least, I would like to thank my family: my parents, Mohammad 

Samarghandi and Masoumeh Mahmoudi, for giving birth to me at the first place and 

supporting me spiritually throughout my life; and my beloved wife, Azin Rahimi, for her 

continuous sympathy and zealous support. 

 



 

 

Dedication 

This thesis is dedicated to my father, who taught me that 
brilliant result is earned by meticulous work. 

It is also dedicated to my mother, who offered me 
unconditional love and support from the day I was born. 

I dedicate this thesis to my wife, who made significant 
sacrifices throughout the course of this thesis. 

I, furthermore, dedicate this thesis to my brother and my 
in-laws, who have presented encouragement that was 
necessary to have this research done. 

 

Live long, happy, healthy and prosperous. May God be with you. 

 

 

 

 



v 
 

Table of Contents 
 

 
1 Introduction ....................................................................................................... 1 

1.1 Background ........................................................................................................ 1 

1.2 Problem Statement.............................................................................................. 4 

1.3 Research Motivation ........................................................................................... 7 

1.4 Research objectives ............................................................................................ 8 

1.5 Thesis Outline ..................................................................................................... 9 

2 Literature Review .......................................................................................... 12 
2.1 Background ...................................................................................................... 12 

2.2 No-Wait Flow Shop Problem ........................................................................... 12 

2.3 No-Wait Job Shop Problem .............................................................................. 17 

3 2-Machine No-Wait Flow Shop ................................................................... 22 
3.1 Background ...................................................................................................... 22 

3.2 Notations .......................................................................................................... 24 

3.3 Problem Description ......................................................................................... 25 

3.4 The Proposed Algorithm .................................................................................. 29 

3.4.1 Final Intensification ..................................................................................... 32 

3.4.2 Stepwise Procedure ..................................................................................... 33 

3.5 Computational Results ...................................................................................... 34 

3.6 Conclusion ........................................................................................................ 45 

4 The General No-Wait Flow Shop Problem (NWFS) ............................. 46 
4.1 Background ...................................................................................................... 46 

4.2 Notations .......................................................................................................... 50 

4.3 Mathematical Model ......................................................................................... 51 

4.4 No-Wait Flow Shop Problem ........................................................................... 52 

4.4.1 Problem Description .................................................................................... 52 

4.4.2 The Proposed Algorithm ............................................................................. 54 

4.4.2.1 Adaptive Memory, Diversification and Intensification ........................ 55 

4.4.2.2 Tabu List .............................................................................................. 55 

4.4.2.3 Factoradic base ..................................................................................... 56 

4.4.2.4 Relation between factoradic base and permutations ............................. 57 

4.4.2.5 The Proposed PSO ................................................................................ 59 

4.4.2.5.1 Initial Solution ............................................................................... 59 

4.4.2.5.2 Particle velocity, neighborhood structure, and stopping criterion . 59 

4.4.3 Computational Results ................................................................................ 61 



vi 
 

4.5 No-Wait Flow Shop Problem with Setup Time ................................................ 70 

4.5.1 Problem Description .................................................................................... 70 

4.5.2 Computational Results ................................................................................ 72 

4.5.2.1 Computational Results for the Problems without Setup Times ............ 73 

4.5.2.2 Computational Results for the Problems with Setup Times ................. 79 

4.6 No-Wait Flow Shop Problem with Separable Sequence Dependent Setup Time

 80 

4.6.1 Problem Description .................................................................................... 80 

4.6.2 The Proposed PSO ....................................................................................... 85 

4.6.2.1 Initial Solutions and Matrix Coding ..................................................... 85 

4.6.2.2 Velocity Vectors and Neighborhood Structure .................................... 87 

4.6.2.3 Illustrative Example ............................................................................. 88 

4.6.3 Computational Results ................................................................................ 89 

4.6.3.1 Computational Results for max| |F no wait C  Test Problems ........ 89 

4.6.3.2 Computational Results for max| , |F no wait setup C  Test Problems

 90 

4.6.3.3 Computational Results for max| , |sdF no wait S C  Test Problems . 97 

4.1 Conclusion ...................................................................................................... 101 

5 2-Machine No-Wait Job Shop Problem ................................................. 103 
5.1 Background .................................................................................................... 103 

5.2 Problem Description ....................................................................................... 103 

5.3 The Proposed Algorithm ................................................................................ 111 

5.3.1 Chromosome Structure and GA Operations .............................................. 111 

5.3.2 Crossover ................................................................................................... 113 

5.3.3 Mutation .................................................................................................... 114 

5.3.4 Local Search .............................................................................................. 114 

5.4 Computational Results .................................................................................... 114 

5.5 Conclusion ...................................................................................................... 124 

6 General No-Wait Job Shop Problem (NWJS) ....................................... 125 
6.1 Background .................................................................................................... 125 

6.2 Notation .......................................................................................................... 126 

6.3 Problem Description ....................................................................................... 127 

6.4 The Proposed Algorithms ............................................................................... 132 

6.4.1 Right Shift + Reverse (RSR) Algorithm ................................................... 132 

6.4.1.1 Non-delay schedule ............................................................................ 133 

6.4.1.2 Reverse schedule ................................................................................ 133 



vii 
 

6.4.1.3 Right Shift Schedule ........................................................................... 133 

6.4.1.4 Reverse Right Shift Schedule ............................................................. 134 

6.4.1.5 Left Shifting the Schedules ................................................................ 135 

6.4.2 Sequencing Algorithms ............................................................................. 136 

6.5 Computational Results and Analysis .............................................................. 136 

6.5.1 Statistical Analysis Using Design of Experiments .................................... 146 

6.6 Conclusion ...................................................................................................... 152 

7 Conclusion and Future Research ........................................................... 154 
7.1 Background .................................................................................................... 154 

7.2 Research Contributions .................................................................................. 154 

7.2.1 2-machine No-Wait Flow Shop Problem with Setup Times and Single 

Server Constraints .............................................................................................................. 154 

7.2.2 General No-Wait Flow Shop Problems ..................................................... 155 

7.2.3 2-machine No-Wait Job Shop Problem with Setup Times and Single Server 

Constraints 156 

7.2.4 General No-Wait Job Shop Problem ......................................................... 156 

7.3 Recommendations for Future Research .......................................................... 157 

8 References ..................................................................................................... 160 

9 Appendix 1 – Tuning Algorithm Parameters ..................................... 170 
 

 



viii 
 

List of Tables 

 

Table ‎3-1 Problem Data ............................................................................................................... 26 

Table ‎3-2 Optimal Solutions of Problems with Small Instances .................................................. 37 

Table ‎3-3 Problem Data Categories ............................................................................................. 37 

Table ‎3-4 Computational Results for the Problems with 20 and 50 Jobs ..................................... 40 

Table ‎3-5 Computational Results for the Problems with 100 and 200 Jobs ................................. 41 

Table ‎3-6 Computational Results for the Problems with 500 and 1000 Jobs ............................... 42 

Table ‎3-7 Summary of the Computational Results for Large Instance Problems ........................ 43 

Table ‎4-1 Natural mapping between factoradic numbers and permutations when n=3 ............... 57 

Table ‎4-2 Mapping 2 1 0(1 10 ) (2 3 1)     based on algorithm 1 ............................................... 58 

Table ‎4-3 Mapping 2 1 0(2 3 1) (1 10 )     based on algorithm 1 ............................................... 59 

Table ‎4-4 Comparison of the Results of the Proposed algorithm with [33] and [104] for the 

Problems with Optimal Solution .................................................................................................. 65 

Table ‎4-5 Comparison of the Results of the Proposed algorithm with [30] and [72] for the 

Problems with Optimal Solution .................................................................................................. 66 

Table ‎4-6 Comparison of the Results of the Proposed algorithm with [33] for the Problems 

without Optimal Solution ............................................................................................................. 67 

Table ‎4-7 Comparison of the Results of the Proposed algorithm with [30] and [72] for the 

Problems without Optimal Solution ............................................................................................. 68 

Table ‎4-8 Detailed Results of the Proposed Algorithm ................................................................ 69 

Table ‎4-9 Comparison of the Results of the Proposed algorithm with [33] and [104] for the 

Problems with Optimal Solution .................................................................................................. 75 

Table ‎4-10 Comparison of the Results of the Proposed algorithm with [30] and [72] for the 

Problems with Optimal Solution .................................................................................................. 75 

Table ‎4-11 Comparison of the Results of the Proposed algorithm with [33] for the Problems with 

unknown Optimal Solution .......................................................................................................... 76 



ix 
 

Table ‎4-12 Comparison of the Results of the Proposed algorithm with [30] and [72] for the 

Problems with unknown Optimal Solution .................................................................................. 78 

Table ‎4-13 Computational Results of the Problems Car1+S through Car8+S ............................. 82 

Table ‎4-14 Computational Results of the Problems Rec01+S through Rec41+S ........................ 83 

Table ‎4-15 Comparison of the Results of the Proposed PSO with [33] for the Test Problems 

without Setup Times ..................................................................................................................... 91 

Table ‎4-16 Computational Results of the Problems Car1+S through Car8+S ............................. 92 

Table ‎4-17 Computational Results of the Problems Rec01+S through Rec41+S ........................ 94 

Table ‎4-18 Computational Results of the Problems car1+SD through car8+SD ......................... 98 

Table ‎4-19 Computational Results of the Problems Rec01+SD through Rec41+SD .................. 99 

Table ‎5-1 Solutions of Problems with Small Instances .............................................................. 118 

Table ‎5-2 Problem Data Categories ........................................................................................... 118 

Table ‎5-3 Computational Results for the Problems with 20 and 50 Jobs ................................... 120 

Table ‎5-4 Computational Results for the Problems with 100 and 200 Jobs ............................... 121 

Table ‎5-5 Computational Results for the Problems with 500 and 1000 Jobs ............................. 122 

Table ‎5-6 Summary of the Computational Results for Large Instance Problems ...................... 123 

Table ‎6-1 One Instance of NWJS ............................................................................................... 128 

Table ‎6-2 Computational Results of TS with Different Timetabling Algorithms ...................... 140 

Table ‎6-3 Computational Results of TSVNS with Different Timetabling Algorithms .............. 142 

Table ‎6-4 Computational Results of TSPSO with Different Timetabling Algorithms .............. 144 

Table ‎6-5 Analysis of Variance for PRD, using Adjusted SS for Tests ..................................... 148 

Table ‎9-1 Analysis of Variance for Makespan ........................................................................... 171 

 



x 
 

List of Figures 

 

 

Figure ‎1-1 Classes of non-preemptive schedules for job shop problems ....................................... 4 

Figure ‎1-2 Example of a No-Wait Flow Shop ................................................................................ 5 

Figure ‎1-3 Example of a No-Wait Job Shop .................................................................................. 6 

Figure ‎1-4 Decision Making Problems and Complexity ................................................................ 7 

Figure ‎1-5 Thesis Outline ............................................................................................................. 11 

Figure ‎3-1 Gantt chart: (a) without single server, (b) with single server ..................................... 26 

Figure ‎3-2 Average Percentage Added to the Makespan When Single Server is Considered 

(black bars) and Average Deviation between the Problem with Single Server Constraints and LB 

(grey bars) .................................................................................................................................... 44 

Figure ‎5-1 Four possible conditions of the consecutive jobs ..................................................... 104 

Figure ‎5-2 One-point crossover operation .................................................................................. 114 

Figure ‎5-3 Mutation operation when  n=9, r1=3, and r2=7 ......................................................... 114 

Figure ‎6-1 Non-Oriented Disjunctive Graph .............................................................................. 129 

Figure ‎6-2 Oriented Disjunctive Graph ...................................................................................... 129 

Figure ‎6-3 Labeled Oriented Disjunctive Graph ........................................................................ 130 

Figure ‎6-4 Reverse Schedule ...................................................................................................... 133 

Figure ‎6-5 Right Shift Schedule ................................................................................................. 134 

Figure ‎6-6 Reverse Right Shift Schedule ................................................................................... 134 

Figure ‎6-7 Left Shifting Algorithm ............................................................................................ 135 

Figure ‎6-8 Normal Probability Plot of Residuals ....................................................................... 146 

Figure ‎6-9 Tukey 95.0% Simultaneous Confidence Intervals; Response Variable PRD; All 

Pairwise Comparisons among Levels of Sequencing ................................................................. 148 

file:///C:/Users/Hamed/Desktop/Thesis%20-%20Draft%208.docx%23_Toc348115855
file:///C:/Users/Hamed/Desktop/Thesis%20-%20Draft%208.docx%23_Toc348115856
file:///C:/Users/Hamed/Desktop/Thesis%20-%20Draft%208.docx%23_Toc348115857
file:///C:/Users/Hamed/Desktop/Thesis%20-%20Draft%208.docx%23_Toc348115858
file:///C:/Users/Hamed/Desktop/Thesis%20-%20Draft%208.docx%23_Toc348115860
file:///C:/Users/Hamed/Desktop/Thesis%20-%20Draft%208.docx%23_Toc348115861
file:///C:/Users/Hamed/Desktop/Thesis%20-%20Draft%208.docx%23_Toc348115861
file:///C:/Users/Hamed/Desktop/Thesis%20-%20Draft%208.docx%23_Toc348115861
file:///C:/Users/Hamed/Desktop/Thesis%20-%20Draft%208.docx%23_Toc348115862
file:///C:/Users/Hamed/Desktop/Thesis%20-%20Draft%208.docx%23_Toc348115863
file:///C:/Users/Hamed/Desktop/Thesis%20-%20Draft%208.docx%23_Toc348115864
file:///C:/Users/Hamed/Desktop/Thesis%20-%20Draft%208.docx%23_Toc348115865
file:///C:/Users/Hamed/Desktop/Thesis%20-%20Draft%208.docx%23_Toc348115866
file:///C:/Users/Hamed/Desktop/Thesis%20-%20Draft%208.docx%23_Toc348115867
file:///C:/Users/Hamed/Desktop/Thesis%20-%20Draft%208.docx%23_Toc348115868
file:///C:/Users/Hamed/Desktop/Thesis%20-%20Draft%208.docx%23_Toc348115869
file:///C:/Users/Hamed/Desktop/Thesis%20-%20Draft%208.docx%23_Toc348115870
file:///C:/Users/Hamed/Desktop/Thesis%20-%20Draft%208.docx%23_Toc348115871
file:///C:/Users/Hamed/Desktop/Thesis%20-%20Draft%208.docx%23_Toc348115872
file:///C:/Users/Hamed/Desktop/Thesis%20-%20Draft%208.docx%23_Toc348115873
file:///C:/Users/Hamed/Desktop/Thesis%20-%20Draft%208.docx%23_Toc348115873


xi 
 

Figure ‎6-10 Tukey 95.0% Simultaneous Confidence Intervals; Response Variable PRD; All 

Pairwise Comparisons among Levels of Timetabling ................................................................ 149 

Figure ‎6-11 Main Effects Plot for PRD ...................................................................................... 150 

Figure ‎6-12 Interaction Plot for PRD Values ............................................................................. 151 

Figure ‎6-13 Average PRD values for problems without known optimal solution ..................... 153 

Figure ‎7-1 Sequence Dependent Setup and NWJS .................................................................... 159 

Figure ‎9-1 Normal Probability Plot of the Residuals ................................................................. 171 

Figure ‎9-2 Main Effects Plot ...................................................................................................... 172 

 

 

file:///C:/Users/Hamed/Desktop/Thesis%20-%20Draft%208.docx%23_Toc348115874
file:///C:/Users/Hamed/Desktop/Thesis%20-%20Draft%208.docx%23_Toc348115874
file:///C:/Users/Hamed/Desktop/Thesis%20-%20Draft%208.docx%23_Toc348115875
file:///C:/Users/Hamed/Desktop/Thesis%20-%20Draft%208.docx%23_Toc348115876
file:///C:/Users/Hamed/Desktop/Thesis%20-%20Draft%208.docx%23_Toc348115877
file:///C:/Users/Hamed/Desktop/Thesis%20-%20Draft%208.docx%23_Toc348115878


xii 
 

Nomenclature 

 

 

n  Number of jobs 

m
 

Number of machines 

iJ  Job i  

,i is t  Setup time of iJ  on the first and second machine respectively 

,i ia b  Processing time of iJ  on the first and second machine respectively 

is
ST ,

 it
ST

 Starting time of is and it  

ijST
 Starting time of j th operation of the i th job 


 

Set of all permutations of n  jobs 

  A permutation in   

maxC  Makespan 

ijO  j th operation of the i th job 

ijp  
Processing time of the j th operation of the job 

1

m

i i ij

j

C S p


   on its 

respective machine 

iS
 

Starting time of the iJ  

ijoS
 Starting time of ijo  

iC  Completion time of iJ  

ijkST  Setup time of ijo  if scheduled after kjo  



xiii 
 

0ijST
 

Setup time of ijo  if iJ  is the first job to be scheduled 

S  Source of the graph 

T  Final node in the graph 

u  An arc 

( )b u  Beginning node of u  

( )e u  End node of u  

( )w u  Label of u  

( )s i  Successor of node i  according to the sequence of operations 

( )r i  Predecessor of node i  according to the sequence of operations 

( )d i  Successor of node i  according to disjunction 

( )v i  Predecessor of node i  according to disjunction 

 



xiv 
 

Table of Abbreviations 

 

ACO Ant Colony Optimization 

AD (SS, 2-Opt) Average Deviation between the objective function of the solutions 

proposed by the 2-opt algorithm and the proposed algorithm when 

Single Server constraints are considered 

AD (SS, LB) Average Deviation between the problem with Single Server constraints 

and LB 

AICA Adapted Imperialist Competitive Algorithm 

AM Adaptive Memory 

ANOVA Analysis Of Variance 

APAM+SS Average Percentage of the time Added to the Makespan of the problem 

with setup times when Single Server constraints are considered 

ARE Average Relative Error 

ATSP Asymmetrical Traveling Salesman Problem 

Av Average 

BRE Best Relative Error 

CPM Critical Path Method 

DHS Discrete Harmony Search 

DOE Design Of Experiments 

GA Genetic Algorithm 

GASA Genetic Algorithm and Simulated Annealing 

GHz Giga Hertz 

LB Lower Bound 

MC Matrix Coding 

MCA Makespan Calculation Algorithm 

ND Non-Delay algorithm 

NLA Node Labeling Algorithm 

NP Non-deterministic Polynomial time 

NWFS No-Wait Flow Shop 

NWJS No-Wait Job Shop 

OFV Objective Function Value 

Oper. Time Operating Time 

OR Operations Research 

P Polynomial time 

PBSA Population Based Simulated Annealing 

PRD Percentage Relative Deviation 

PSO Particle Swarm Optimization 

RAM Random Access Memory 

RS Right Shift algorithm 

RSR Right Shift + Reverse algorithm 

SA Simulated Annealing 

SD Sequence Dependent 

Seq Sequencing 

STD Standard Deviation 

STM Short Term Memory 

TS Tabu Search 



xv 
 

TSP Travelling Salesperson Problem 

TT Time Tabling 

VNS Variable Neighborhood Search 

WRE Worst Relative Error 

 

 

 



xvi 
 

Copyright Notices 

 

 

1. With kind permission from Inderscience Publishers: 

- Samarghandi, H. and ElMekkawy, T.Y. (2011) An efficient hybrid algorithm 

for the two-machine no-wait flow shop problem with separable setup times 

and single server. European Journal of Industrial Engineering, 5(2): p. 111-

131. 

 

2. With kind permission from Taylor & Francis Group: 

- Samarghandi, H. and ElMekkawy, T.Y. A meta-heuristic approach for 

solving the no-wait flow shop problem. International Journal of Production 

Research. DOI: 10.1080/00207543.2011.648277 

 

3. With kind permission from Springer Science + Business Media: 

- Samarghandi, H. and ElMekkawy, T.Y. (2012) A genetic algorithm and 

particle swarm optimization for no-wait flow shop problem with separable 

setup times and makespan criterion The International Journal of Advanced 

Manufacturing Technology, 61: p. 1101 - 1114 

 

- Samarghandi, H. and ElMekkawy, T.Y. On the two-machine no-wait job 

shop problem with separable setup times and single server constraints. 

International Journal of Advanced Manufacturing Technology. DOI: 

10.1007/s00170-012-4169-1 



1 

 

Chapter 1  

Introduction 

1 Introduction 
 

1.1 Background 

In‎today’s‎competitive‎business‎environment,‎sequencing‎and‎scheduling‎play‎an‎

imperative role in both manufacturing and service industries; organizations must meet 

certain due date commitments to their customers since failure to meet such deadlines 

will cause them lose revenue or heavy penalties; in addition, companies need to schedule 

their resources efficiently to remain viable relative to their competitors [1]. Different 

organizations consider different articles as resources. For instance, in a manufacturing 

environment, machines or personnel are considered as resources; for airlines, runways 

are considered as resources; physicians or beds are important resources in healthcare 

context. 

Although many different objectives can be defined for scheduling, in general, the 

most desired optimization criterion is to minimize the cost of production or to maximize 

the efficiency and revenue [1]. Scheduling can have a major impact on the productivity. 

As a matter of fact, scheduling process defines who should perform what activities at 

what time. In other words, scheduling is the process of performing the right tasks at the 

right time by the right people. An effective scheduling scheme brings competitive 

advantages to organizations, including: 

 Efficient inventory control; 

 Increased productivity; 

 Accurate delivery dates; 

 Minimization of the change in processes; 



2 

 

 Balance in necessary labor loads. 

Although scheduling techniques can be applied to continuous processes such as 

those in refineries, in this research, the main focus is on discrete scheduling in which the 

units of production are distinguishable and distinct from each other. In such systems, the 

following machine environments are amongst the most famous: 

 Single machine: which is the simplest known environment; and a special 

case of all the other environments. 

 Identical parallel machines: in this environment, several identical 

machines exist. A job needs one of these several machines for processing. 

Different assumptions can cause more complicated parallel machine 

environments such as different speed parallel machines or unrelated 

parallel machines. In these environments, some of the parallel machines 

have different specifications. 

 Flow shop: there are m  machines in the system. All jobs need to be 

processed by all machines and they follow the same order. Several flow 

shop environments exist based on the assumption. For instance, in a 

flexible flow shop, identical (or non-identical) parallel machines exist in 

at least one of the processing stages. 

 Job shop: is a generalization of flow shop. In fact, job shop environment 

is a flow shop in which the assumption that all the jobs have to follow the 

same route is relaxed. Similar to flow shop, different job shop 

environments such as flexible job shops can be defined. 

 Open shop: an open shop has m  machines to process the jobs. However, 

there is no restriction about the order of sending the jobs to different 

machines. 



3 

 

This research is mainly focused on flow shop and job shop machine 

environments. Moreover, at this point it is beneficial to review different classes of 

schedules. The following definitions are from [1]. 

 Non-delay schedule: is a feasible schedule in which no machine is kept 

idle while an operation is waiting for processing. 

 Non-preemptive schedule: are schedules in which all the operations 

should finish completely once their processing is started. In other words, 

preemption of the operations is not allowed. 

 Active schedule: “a feasible non-preemptive schedule is called active if it 

is not possible to construct another schedule, by changing the order of 

processing on the machines, with at least one operation finishing earlier 

and no operation finishing later.”  

 Semi-active‎ schedule:‎ “a‎ feasible‎ non-preemptive schedule is called 

semi-active if no operation can be completed earlier without changing the 

order of processing on any‎one‎of‎the‎machines.” 

Figure ‎1-1 demonstrates the relation between the above classes of the schedules 

and the optimum solution.  



4 

 

 

 

Different performance criteria can be defined. The most famous and applicable 

performance measures are makespan and total flow time. Makespan is defined as the 

maximum completion time of the scheduled jobs. Total flow time is the summation of 

the time that each job spends in the system. 

1.2 Problem Statement 

No-wait scheduling problems consist of the set of the problems, in which a 

number of jobs are given for scheduling on a number of machines with the added 

constraint that there should be no waiting time between successive operations of the 

same job. Accordingly, once processing of a job is started, no interruption is permitted 

between the operations of that job. No-wait scheduling problems include problems in 

different context such as open shop, flow shop, job shop, flexible shops, etc. In this 

thesis, the main focus is on the no-wait flow shop and job shop problems.  

All Schedules   Optimal Solution 

Semi-Active 

     
Active 

 

  

Non-Delay 

Figure 1-1 Classes of non-preemptive schedules for job shop 

problems 



5 

 

No-wait flow shop problem is a special case of the classic flow shop problem, in 

which there should be no waiting time between successive operations of the same job. In 

flow shop context, all the jobs follow the same order in the system. Figure ‎1-2 

demonstrates a sample no-wait flow shop. In the job shop context, each job is allowed to 

have its own specific route in the system. Figure ‎1-3 demonstrates a no-wait job shop 

system. The considered performance measure throughout this thesis is makespan which 

is denoted as maxC . 

 

 

J1

J1

J1

J2

J2

J2

Machine 1

Machine 3

Machine 2

Makespan

Time

Machines

 

 

Figure ‎1-2 Example of a No-Wait Flow Shop 



6 

 

J1

J1

J1

J2

J2

J2

Machine 1

Machine 3

Machine 2

Makespan
 

 

This research considers a variety of applicable side constraints and assumptions 

in addition to the generic no-wait flow shop and job shop problems. For instance, 

chapters ‎3 and ‎5 consider the situation in which separable setup times are combined with 

no-wait flow shop and job shop problems. In these chapters, a separable setup time on 

the machine is considered necessary in order to prepare the machine to process an 

operation. Separable setup time is a special case of setup time that allows the operators 

to perform the setup on the machine before the operation is ready to be processed. 

Chapter ‎3 and ‎5 also consider the case of sequence dependent setup times. In 

such systems, setup times not only depend on the operations to which the setup belongs, 

but also on the preceding operation scheduled on the machine. All of the mentioned 

problems are NP-hard to the strong sense. This concept is discussed further in the 

following section. 

Figure ‎1-3 Example of a No-Wait Job Shop 



7 

 

1.3 Research Motivation 

No-wait scheduling problems are categorized as combinatorial optimization 

problems. Combinatorial optimization problems are the problems whose feasible region 

is countable [2]. As it will be discussed in the following sections, all the studied 

problems in this research are NP-Hard. Moreover, no-wait flow shop problems are 

transformable to Travelling Salesperson Problem (TSP) [3], which is one of the most 

famous NP-Hard problems. No-wait job shop problems are a generalization of their flow 

shop versions and therefore, are NP-Hard as well. As a result of NP-Hardness, finding 

optimal solutions of large instances of these problems is not possible in a reasonable 

time. Figure ‎1-4 depicts the complexity of different classes of problems in combinatorial 

optimization [2]. As a result, the problem is interesting for further research in order to 

develop efficient algorithms that generate good-quality solutions (compared to the best 

solution) in a reasonable time.  

 

 

Complexity 

P 

NP 

NP-Hard 

NP-Complete 

Figure 1-4 Decision Making Problems and Complexity 



8 

 

In addition, no-wait scheduling problems have a large number of real-world 

applications. As a general rule, whenever the next operation of a job is required to be 

scheduled within a determined time frame after the previous operations, a no-wait 

scheduling problem occurs. For example, one can name chemical industries [4], food 

industries [5], steel production [6], pharmaceutical industries [7], and production of 

concrete products [8]. For a more comprehensive review of the applications of the 

problem, the reader is referred to [5]. In other words, no-wait scheduling problems are 

also interesting for researchers because of their numerous industrial applications.  

On the other hand, literature review shows that the number of researches on no-

wait scheduling problems is not comparable to the general scheduling problems. There 

are not enough algorithms developed to deal with no-wait scheduling problems. Also, 

available algorithms do not deal with many of the applicable assumptions and 

constraints; examples of such applicable problems include no-wait scheduling problems 

with sequence independent or dependent setup times. Current thesis studies a number of 

these situations. Many more will be introduced in chapter ‎7 as promising research 

directions for future works. 

1.4 Research objectives 

Section ‎1.3 discussed the importance of conducting further research on no-wait 

scheduling problems from both practical and theoretical aspects. No-wait scheduling 

problems have numerous practical applications with less literature compared to other 

scheduling problems. Moreover, most of the no-wait scheduling problems are NP-Hard. 

Therefore, solving practical large instances of these problems to optimality is not 

reasonable by means of the current computational technology. Sections ‎3.5 and ‎5.4 

discuss that solving 2-machine no-wait flow shop and job shop problems with more than 

14 and 12 jobs would take more than 3 hours respectively on a modern computer.  



9 

 

Consequently, developing algorithms that generate good-quality (as opposed to 

the best) solutions to large-scale no-wait scheduling problems in reasonable time is 

necessary. This research first discusses various no-wait scheduling problems from an 

analytical point of view. After developing a deep analytical knowledge on each problem, 

further applicable constraints and assumptions are discussed. Subsequently, efficient and 

effective metaheuristic algorithms are proposed to deal with the discussed practical 

problems. Efficiency and effectiveness of the proposed algorithms are verified by 

applying them to a large number of test problems from the literature. The proposed 

algorithms prove to be competitive compared to the available methods in the literature. 

The developed algorithms find several new best-known solutions for the problems listed 

in the literature. 

1.5 Thesis Outline 

The rest of the thesis is organized as shown in Figure 1-5. Chapter ‎2 reviews the 

available literature on the relevant no-wait scheduling problems. This chapter also lists 

the points of strength and weaknesses of each method available in the literature. 

Chapter ‎3 is devoted to 2-machine no-wait flow shop problem. Efficient algorithms for 

this problem are proposed after discussing some analytical findings on these problems. 

Chapter ‎4 discusses the findings of solving the general no-wait flow shop 

problem. This chapter first formulates this problem as a permutation. Afterwards, 

metaheuristics are developed to deal with this problem. Chapter ‎4 also studies the 

general no-wait flow shop problem with separable setup times. After developing a good 

knowledge on the setup times, this chapter introduces the case of sequence dependent 

setup times.  

Chapter ‎5 performs a study on 2-machine job shop problem with setup times and 

single server constraints. Chapter ‎6 present the findings of this research on the general 



10 

 

no-wait job shop problem. This chapter decomposes the no-wait job shop problem into 

sequencing and timetabling problems. Then several combinations of different 

timetabling and sequencing algorithms are tested on a large number of test problems 

from the literature. Finally, the best combination of the algorithms to solve the no-wait 

job shop problem is found by following a design of experiments approach. Chapter ‎7 

presents the conclusions and directions for future research efforts.  

 



11 

 

 

Figure ‎1-5 Thesis Outline 

Scheduling Manufactruing 

Systems with No-Wait 

Constraints 

Chapter 1 - 

Introduction 

Chapter 2 - 

Literature 

Review 

Chapter 3 -  

2-Machine No-

Wait Flow Shop 

Problem with 

Setup Times and 

Sequence 

Dependent 

Constraints 

Chapter 4 - 

General No-Wait 

Flow Shop 

Problem 

(NWFS) 

Section 4.1- 

NWFS 

Section 4.2 - 

NWFS with 

Setup Times 

Section 4.3 - 

NWFS with 

Sequence 

Dependent Setup 

Times 

Chapter 5 -  

2-Machine No-

Wait Job Shop 

Problem with 

Setup Times and 

Sequence 

Dependent 

Constraints 

Chapter 6 - 

General No-Wait 

Job Shop 

Problem 

Comparison 

Between 

Sequencing 

and 

Timetabling 

Algorithms 

Conclusions and 

Directions for 

Future Research 



12 

 

Chapter 2 

Literature Review 

2 Literature Review 
Equation Chapter (Next) Section 1 

2.1 Background  

While there are several studies available in the literature that consider the general 

no-wait flow shop problem, there are few researches that considered the no-wait 

problems with setup times. To the best of the‎author’s knowledge, the first researches 

about no-wait scheduling should be credited to Reddi and Ramamoorthy [9], Wismer 

[6], Grabowski and Syslo [10], Bonney and Gundry [11], King and Spachis [12], 

Gangadharan and Rajendran [13], Rajendran [4], Glass et al. [14], Sidney et al. [15], and 

Sviridenko [16]. More recent researches in this field will be reviewed in the following 

sections. 

2.2 No-Wait Flow Shop Problem 

Gupta et al. [3] studied the two-machine flow shop problem with setup and 

removal times and reduced the problem to the famous Travelling Salesperson Problem 

(TSP). Aldowaisan and Allahverdi [17] considered 2 | , | iF no wait setup C  . They 

developed an elimination criterion to obtain optimal solutions for two special cases and a 

heuristic algorithm for the generic case. Aldowaisan [18] studied this problem further 

and proposed a local and a global dominance relationship and thereby developed a new 

heuristic and a branch and bound algorithm. 

Macchiaroli et al. [19] discussed the industrial applications of the scheduling 

problems with no-wait constraints. Their work, however, does not address any method 

for solving such problems. Cheng et al. [20] studied the two-machine flow shop problem 



13 

 

with separable setup times and single server constraints ( max2, 1| |F S setup C ) and 

proposed some heuristics for the problem.  

Bianco et al. [21] proposed two heuristics for the no-wait flow shop problem 

with release dates and sequence dependent setup times, and makespan criterion. Sidney 

et al. [15] considered the two-machine no-wait flow shop problem with anticipatory 

setup times and makespan; they proposed a heuristic to deal with this problem. 

Bertolissi [22] developed a heuristic algorithm for | | iF no wait C  . The 

results of this algorithm was compared to the results of [23], [11], and [24]. Cheng et al. 

[25] provided a review of flow shop scheduling research involving setup times. 

Shyu et al. [26] developed an Ant Colony Optimization (ACO) to deal with no-

wait flow shop scheduling, when minimizing the total completion time is the objective 

function. Computational results of this algorithm is compared to the results of [17] and 

[18]. 

Pranzo [27] considered the two-machine batch scheduling flow shop problem 

with sequence independent setup times and removal times. This research studied a 

number of special cases of the problem and reduced these special cases to TSP. 

Aldowaisan and Allahverdi [28] proposed six heuristics for max| |F no wait C  

and compared them with the heuristics of [24, 29]. Furthermore, they considered the 

separable setup time in the problem of  | | iF no wait C  ; an elimination criterion was 

also developed to obtain optimal solutions for two special cases and a heuristic 

algorithm for the generic case. 



14 

 

Grabowski and Pempera [30] proposed 6 new meta-heuristics for 

max| |F no wait C  and compared them with the algorithm of [4]. Results of the 

proposed algorithms of this research are compared to the results of this research. 

Guirchoun et al. [31] studied a two-stage hybrid flow shop with no-wait constraint 

between the two stages and proposed a heuristic to solve this problem optimally. A 

hybrid genetic algorithm developed in Franc et al. [32] to solve the no-wait flow shop 

problem with sequence dependent setup times and ready times.  

Liu et al. [33] proposed a particle swarm optimization with several local searches 

for max| |F no wait C and compared their results with [4]. Su and Lee [34] considered 

the problem of two-machine no-wait flow shop with separable setup times and single 

server ( 2 | , | iF no wait setup C  ). They developed a heuristic and a branch-and-bound 

algorithm to solve the problem. They tested their algorithm on a number of randomly 

generated test problems. Li et al. [35] considered the no-wait flow shop problem with 

makespan criterion and developed a genetic algorithm to find good-quality solutions for 

the problems they had generated. 

Pan et al. [36] developed a discrete Particle Swarm Optimization (PSO) for the 

no-wait flow shop problem with both makespan and total flow time criteria. This study 

further hybridizes the PSO with variable neighborhood descent algorithm. The 

neighborhood structures in the algorithms of this study are exchange and insert. Pan et 

al. [37] develops a hybrid discrete PSO to solve no-wait flow shop problem with 

makespan criterion. Pan et al. [38] develops an iterated greedy heuristic for no-wait flow 

shop problem with makespan criterion. Pan et al. [39] developed a discrete differential 

evolution algorithm for the problem of no-wait flow shop with makespan and maximum 

tardiness criteria. This algorithm follows the same computational approach of [36]. 



15 

 

Tavakkoli-Moghaddam et al. [40] developed an immune algorithm for the no-

wait flow shop problem with both weighted mean completion time and weighted mean 

tardiness objectives. Laha and Chakraborty [41] proposed a constructive algorithm for 

max| |F no wait C . Huang et al. [42] studied a no-wait two-stage multiprocessor flow 

shop with setup times and total completion time as the performance measure; they 

proposed an Ant Colony Optimization for the problem. 

Ruiz and Allahverdi [43] developed a number of heuristics to deal with the no-

wait flow shop problem when a linear combination of makespan and maximum lateness 

is considered as the objective function. Huang et al. [44] develop an orthogonal ACO for 

no-wait flow shop problem. Framinan et al. [45] considers the no-wait flow shop 

problem with the objective of minimizing the total completion time. This study proposes 

several heuristics, aimed to generate solutions in short time.  

Jarboui et al. [46] develop a hybrid genetic algorithm to minimize the makespan 

and the total flow time in the no-wait flow shop scheduling problem. The proposed GA 

is further hybridized with VNS algorithm to improve the solution quality.  

Gao et al. [47] develop a discrete harmony search algorithm (DHS) for solving 

the no-wait flow shop scheduling problem with the objective to minimize total flow 

time. Gao et al. [48] presents a discrete harmony search (DHS) algorithm for solving no-

wait flow shop scheduling problems with makespan criterion. 

Engin and Gunaydin [49] developed an adaptive learning approach for 

max| |F no wait C . Qian et al. [50] proposes a hybrid algorithm based on differential 

evolution to minimize the total completion time of the no-wait flow shop scheduling 

problem with sequence-dependent setup times and release dates. 



16 

 

Ying et al. [51] examines the no-wait flow shop manufacturing cell scheduling 

problem with sequence dependent family setup times. The study proposes three 

metaheuristics and applies them to a set of randomly generated problems. 

Hohn et al. [52] consider a variant of no-wait flow shop scheduling that is 

motivated by continuous casting in the multistage production process in steel 

manufacturing. This research focuses on complexity results and proposes an intuitive 

optimal algorithm for scheduling on two processing stages with one machine in the first 

stage.  

Jolai et al. [53] consider the no-wait flexible flow shop problem with sequence 

dependent setup times with maximum completion time minimization objective. This 

study proposes a population based simulated annealing (PBSA), adapted imperialist 

competitive algorithm (AICA) and hybridization of adapted imperialist competitive 

algorithm and population based simulated annealing (AICA+PBSA) to deal with the 

problem. These algorithms are tested on a set of randomly generated problems.  

Naderi et al. [54] consider the no-wait flow shop problem with total tardiness and 

makespan criteria. This study develops mathematical models for this problem. Also, 

heuristics are developed to find good-quality solutions for the problem. [55] performs a 

literature review on the no-wait scheduling problems. 

A review of the literature for no-wait flow shop scheduling problems reveals 

that: 

1. Although the no-wait flow shop problems have a number of practical 

applications, the literature related to them is limited [5, 56]. 



17 

 

2. Because of the computational constraints, almost all the heuristics and 

metaheuristics before 2004 are considered obsolete. 

3. Previous algorithms are tested on a limited number of test problems [15, 28, 30, 

32, 34, 41, 57]. 

Chapters ‎3 and ‎4 aim to study practical situations. Solutions generated by the 

proposed algorithms of this research are compared with the solutions of the best 

available algorithms in the literature. The proposed algorithms prove to be competitive 

in terms of both quality of the developed solutions and CPU time. Section ‎2.3 performs a 

literature review on the no-wait job shop scheduling problems. 

2.3 No-Wait Job Shop Problem 

As mentioned earlier, the literature on No-Wait Job Shop (NWJS) is very limited 

compared to the flow shop version or the classical job shop problem. Moreover, most of 

the early efforts are devoted to complexity results [5, 56, 58-60]. Hall and 

Sriskandarajah [5] review the efforts that had been performed to solve NWJS problem 

by then. 

Sriskandarajah and Ladet [60] as well as Kubiak [61] proposed pseudo-

polynomial time algorithms for two-machine no-wait job shop problems with the added 

constraint of the unit processing time. Reddi and Ramamoorthy [9] derived a lower 

bound for the special case of NWJS in which there exists no subsuming jobs in the job 

set.  

Goyal [62] proved that solving NWJS is equal to solving a set of asymmetrical 

traveling salesman problem (ATSP). Woeginger [63] proved that NWJS problem with 

makespan criteria is APN-hard for the case of two machines with at most five operations 

per job and for the case of three machines with at most three operations per job. These 



18 

 

results prove that these problems do not possess a polynomial time approximation 

scheme, unless P=NP.  

Krachenko [64] developed a polynomial algorithm for NWJS problem with 2 

machines. Krachenko developed a 
6( )O n  algorithm to minimize the mean flow time 

when zero processing time operations are not allowed. 

Mascis and Pacciarelli [65, 66] developed a branch and bound algorithm for 

NWJS. In this research, the idea of disjunctive graphs is extended to alternative graphs; 

this transforms the NWJS problem with makespan minimization criteria into minimizing 

the longest path of the alternative graph with no cycles occurred. This algorithm is able 

to solve instances as large as 15 jobs and 5 machines or 10 jobs and 10 machines in a 

reasonable time. However, this method does not solve larger instances in a reasonable 

time. For the job shop scheduling problem with blocking or no-wait constraints, Meloni 

et al. [67] proposed a rollout method in terms of a general alternative graph model based 

on a look-ahead strategy.  

Moreover, a tabu search method [19], a simulated annealing [7], and a rolling 

horizon method [68] have been developed for specific production systems, such as 

galvanic industry, production of pharmaceutics and semiconductor testing facilities. As a 

result, these papers do not provide computational results on known benchmark instances. 

Simulated annealing of Raaymakers and Hoogeveen [7] was able to improve the best 

initial solutions by 10% in average. The two phase tabu search of Macchiaroli et al. [69] 

was able to improve the solutions of the dispatching rules by an average of 9%. 

Afterward, Brizuela et al. [70] proposed a genetic algorithm that used to solve classical 

job shop problems with no-wait constraints imposed to them. Gui-Juan Chang [71] 

studied a real-time algorithm that implemented NWJS concept in a metal supply chain. 



19 

 

Schuster and Framinan [72] developed a timetabling algorithm that could 

construct a non-delay timetable for a given sequence. This research combined this 

approach to a variable neighborhood search and a hybrid of genetic algorithm and 

simulated annealing (GASA). Additionally, the algorithms were tested on a set of well-

known benchmark instances, and provide solutions of a big improvement relative to the 

reference solutions. Framinan and Schuster [73] enhanced the idea of non-delay 

timetabling algorithm of [72], developing a new timetabling algorithm that generated 

non-delay as well as delay timetables out of a given sequence. Schuster [74] developed a 

tabu search to further improve the results of [72];  Schuster [74] also studied a few 

complexity problems. 

Pan and Huang [75] proposed a hybrid genetic algorithm for NWJS problem. 

Bozejko and Makuchowski [76] proposed a tabu search method and compared their 

results with that of [72] and [73].  

Zhu et al. [77] proposed a new timetabling method by introducing the concept of 

right shifting. Right shifting approach makes possible to check more timetables than the 

reverse timetabling of [73] for a given sequence. Grimes and Hebrard [78] proposed a 

constraint programming approach to deal with NWJS. It should be noted that although 

most of best-known solutions to the problems are from these two studies, computational 

efforts to obtain such solutions in both of the studies is not reasonable. For example, [77] 

is not very successful when its computational time is limited; good solutions appear only 

when the algorithm is allowed to iterate without limitation.  

Liu and Kozan [79] studied the case of no-wait parallel machine job shop 

problem. They further used their model to schedule trains with different priorities in a 

single-line rail network.  



20 

 

Mokhtari et al. [80] studied a NWJS environment in which processing time is 

variable based on the amount of resources allocated to it. As a result, [80] added the 

crashing sub-problem into the traditional timetabling and sequencing sub-problems to 

which NWJS is decomposed. In order to deal with the crashing sub-problem, timetabling 

algorithm of [72] is enhanced. 

Zhu et al. [81] developed a greedy divide and conquer search for a NWJS 

problem with two machines. According to this method, the 2-machine NWJS is 

decomposed to several 2-machine no-wait flow shop problems. Bozejko and 

Makuchowski [82] developed a genetic algorithm for NWJS. This genetic algorithm was 

able to automatically tune its parameters based on the test case. Although this algorithm 

does not need tuning and thus is easier to work with, it is not very competitive in terms 

of solution quality. 

Santosa et al. [83] develops a hybrid of cross entropy metaheuristic and genetic 

algorithm to deal with NWJS. Results of the developed algorithm is compared with [72] 

and [73]. Finally, Burgy and Groflin [84] studied a NWJS environment, in which 

sequence dependent setup times are allowed. This study develops a polynomial 

algorithm for optimal job insertion problem in such environment. 

A review of the literature on max| |J no wait C  shows that the problem has a 

number of practical applications; however, the number of researches that have been 

conducted to deal with this problem are very limited and the need to develop novel and 

efficient methods to cope with NWJS is strongly felt [5, 56, 77]. As section ‎6.5 reveals, 

any study that develops heuristics or metaheuristics before 2003 is considered obsolete 

due to computational restrictions. Moreover, research on more realistic environments in 

which NWJS occurs is being paid attention to just recently. The current research studies 



21 

 

the max| |J no wait C  and the timetabling algorithms that have been developed for this 

problem. A design of experiments method is developed to study the relation between the 

timetabling algorithm and sequencing algorithms. This sheds light on more effective 

ways to conduct researches in the future. 

 



22 

 

Chapter 3 

2-Machine No-Wait Flow Shop Problem 

Equation Chapter (Next) Section 1 

3 2-Machine No-Wait Flow Shop  
Equation Chapter (Next) Section 1 

3.1 Background 

No-wait flow shop scheduling problem refers to the set of problems in which a 

number of jobs are available for processing on a number of machines in a flow shop 

context with the added constraint that there should be no waiting time between 

consecutive operations of the jobs. A special case of the no-wait flow shop problem is 

considered in which all the jobs have two operations to be processed and there are two 

machines to process all the jobs. When the problem is in a flow shop context, the order 

of operations for all the jobs is the same. Moreover, each operation demands a setup on 

its respective machine. Setup times are assumed to be separable. Separable setup means 

that the setup times are separable from the jobs in the schedule. In other words, 

machines can be set up for a specific operation, and then remain idle until the operation 

is ready to be loaded on the machine. The importance of considering setup times in flow 

shop contexts is highlighted in [18]. Afterwards, it is assumed that there is only one 

server to perform the setup operations. In other words, setup operations cannot be 

performed at the same time. No-wait constraints denote that operations of a job have to 

be processed without waiting at consecutive machines. The considered performance 

measure of the obtained solutions is the makespan. Following the three-field notation of 

scheduling problems, the problems can be designated as max2 | , |F no wait setup C  and 

max2, 1| , |F S no wait setup C  [85]. 



23 

 

Classical flow shop problem max||F C  is proven to be NP-hard [86]. Classical 

flow shop problem has been widely studied in the literature. Reader is refered to [87], 

[88], and [89] for the proposed optimal methods of solving this problem. [90] proved 

that the problem of max| |F no wait C is NP-Hard. Moreover, [91] proved that the 

problem of max2 | |F no wait C  is strongly NP-Hard. [92] and [93] analyzed the 

complexity of the problems with single server. [92] showed that 

max2, 1| , |F S no wait setup C  is strongly NP-hard or polynomially solvable depending 

on the interpretation of zero processing or setup times. [93] strengthened some results of 

[92] and present some new complexity results. Since job shop problem is a 

generalization of flow shop problem, it is inferred that the job shop version is also 

strongly NP-hard. Therefore, all of the problems considered in this chapter are strongly 

NP-hard. 

[5] reviewed the literature and the numerous applications of this problem in their 

survey paper. Scheduling problems with no-wait constraints occur in many industries. 

For example, in hot metal rolling industries, the heated metal has to undergo a series of 

operations continuously at high temperatures before it is cooled to prevent defects [57]. 

Similarly, in the plastic molding and silverware production industries, a series of 

operations must be performed, each immediately after the others to prevent degradation 

[57]. Other examples include chemical and pharmaceutical industries [24], food 

processing industries [5], and semiconductor testing facilities [68]. A thorough literature 

survey about scheduling problems with setup times is available at [94] and [95]. To the 

best of the‎ author’s knowledge, there is very limited literature available about 

max2 | , |F no wait setup C  and max2, 1| , |F S no wait setup C   or their job shop versions. 



24 

 

3.2 Notations 

The notations used in this chapter are listed below: 

n  Number of jobs 

iJ  Job i  

,i is t  Setup time of iJ  on the first and second machine respectively 

,i ia b  Processing time of iJ  on the first and second machine respectively 

is
ST ,

 it
ST

 Starting time of is and it  

ijST
 Starting time of the operation j  of the job i  on its respective machine 


 

Set of all permutations of n  jobs 

  A permutation in   

maxC  Makespan 

Brackets are used to indicate consecutive jobs. For example, 
[ ]ia  refers to the 

processing time of the job planned to operate after i th job in a given sequence on the 

first machine. 

This chapter considers the two-machine no-wait flow shop problem with 

separable setup times and single server side constraints, and makespan as the 

performance measure. A mathematical model of the problem is developed and a number 

of propositions are proven for the special cases. Furthermore, a hybrid algorithm of 

Variable Neighborhood Search (VNS) and Tabu Search (TS) is proposed for the generic 

case. For evaluation, a number of test problems with small instances are generated and 

solved to optimality. Computational results show that the proposed algorithm is able to 

reproduce the optimal solutions of all of the small-instance test problems. For larger 

instances, proposed solutions are compared with the results of the famous 2-Opt 

algorithm as well as a lower bound. This comparison demonstrates the efficiency of the 

algorithm to find good-quality solutions. 



25 

 

3.3 Problem Description 

Mathematical model of the problem is as follows: 

maxminC   (3-1) 

max 1 ; 1,2,...,i i iC ST a b i n      (3-2) 

[ ][ ]1 1 [ ]; 1,2,..., 1
ii si i iST ST a ST s i n       (3-3) 

[ ][ ]2 2 [ ]; 1,2,..., 1
ii ti i iST ST b ST t i n       (3-4) 

2 1 ; 1,2,...,i i iST ST a i n     (3-5) 

; 1,2,...,
i is t i iST ST t Mz i n      (3-6) 

( )1 ; 1,2,...,
i it s i iST ST s M z i n      (3-7) 

0; {0,1}; 1,2,..., ; 1,2ij iST z i n j      (3-8) 

In this model, (3-3) and (3-4) initiate the setup times, and (3-5) denotes the no-

wait constraints. (3-6) and (3-7) designate the single server constraints. Therefore, 

removing (3-6) and (3-7) will remove the single server constraints from the model. In 

the above model, M  is a sufficiently large number. From a different point of view, if   

is considered as the set of all permutations   of {1,2,..., }N n , the two-machine no-

wait flow shop problem can be formulated as follows: 

 maxmin | ,ProblemconstraintsappliesC                      (3-9) 

New modeling of the problem in (3-9) implies that it is intended to find a 

permutation   of 1,2,...,n  that minimizes the makespan based on the problem instance. 

Consider the example of Table ‎3-1 in which 3n  : 

 



26 

 

Table ‎3-1 Problem Data 

i  1 2 3 

,i ia b  3,5 2,4 1,2 

,i is t  2,3 1,1 1,1 

 

Obviously, a possible permutation for this problem is (1,2,3)  . Figure ‎3-1 

illustrates the Gantt chart of this solution with no-wait, and with single server 

constraints. Gantt chart of Figure ‎3-1 depicts the effect of the no-wait and single server 

constraints on the scheduling of the consecutive operations of a job.  

t1 t2b1 b2Machine 2

Machine 1

t3 b3

s1 s2a1 a2 s3 a3

(b)

t1 t2b1 b2Machine 2

Machine 1

t3 b3

s1 s2a1 a2 s3 a3

(a)

 

Figure ‎3-1 Gantt chart: (a) without single server, (b) with single server 



27 

 

The following algorithm calculates the makespan of a given permutation with 

single server constraints: 

1. Set 1i  , 
1

0sST  , and 
1 1t sST  .  

2. Set 
1

1 1 1

11

1 1 1 1

if

ift

s t a
ST

ST t a t a


 

  
 

3. Set 12 11 1ST ST a  . And set 1i i  . 

4. Suppose that ;1i u u n   , then 
( 1)1 1u u us ST aST    , and 

u u ut s sST ST  . 

5. 1

if

if

u

u

s u u u

u

t u u u u

ST s t a
ST

ST t a t a

 
 

  

 

6. 2 1u u uST ST a   

7. If i n , set 1i i   and go back to step 4. Otherwise, max 2 2nC ST b  . 

This algorithm is proved to be very efficient [34, 92]. The above algorithm can 

easily be modified for the problem without single server constraints. The only change 

would be modifying step 1 and 4 to 1  and 4  as follows: 

1 .  Set 1i  , 
1

0sST  , and 
1

0tST  .  

4 .  Suppose that ;1i u u n   , then 
( 1)1 1u u us ST aST    , and 

( 1)2 1u u ut ST bST    . 

Computational complexity of this simple yet effective algorithm is ( )O n  which 

makes it possible to search vast areas of the solution space very fast. Moreover, this 

algorithm shows that max2 | |F no wait c  can be formulated as follows: 

   
1 1

1 [ ] 1 [ ]

1 1 1 1

0, 0,
n n

n n n n

i i i i i i

i i i is S s S

a Max a b b a Max a b bMin Min
 

    

   
         

   
     (3-10) 



28 

 

In addition, max2 | , |F no wait setup c  can be formulated as follows: 

     

   

1

1 1 1 [ ] [ ] [ ] 1

1 2

1

1 1 1 [ ] [ ] [ ]

1 1 2

, 0,

, 0,

n

n

n n

i i i i i i

i i

n n n

i i i i i i

i i i

s S

s S

Max s a t Max s a b t b t b

Max s a t Max s a b t b t

Min

Min



 



  





 
         

 

 
       

 

 

  

 (3-11) 

 Therefore, the following propositions hold: 

Proposition 1, max2 | |F no wait c : if ls S  is such that 
[ ] ; 1,2,..., 1i ia b i n    

and  1 mini ia a , then ls  is an optimal solution of its instance.  

Proof: assume that ls  is not an optimal solution of its respective problem 

instance. Exchanging the jobs i  and [ ]j  ( ,[ ] 1i j  ) results in another permutation ls . The 

difference between the makespan of ls  and ls  belongs to the mentioned exchange. Based 

on‎the‎proposition’s‎assumptions,‎
[ ] 0i ia b   in ls . In ls , if 

[ ] 0i ja b   and 
[ ] 0j ia b  , 

then the objective function value is as good as ls . Otherwise, the makespan of ls  is 

greater than the makespan of ls . On the other hand, assume that ls  is generated from ls  

by exchanging the jobs  1i   and j . Since  1 mini ia a , using (3-10) shows that the 

makespan will increase; and the proposition follows. 

Proposition 2, max2 | , |F no wait setup c : if ls S  is such that 

[ ] [ ] [ ]; 1,2,..., 1i i i ia s b t i n      and  1 1 mini i ia s a s   , then ls  is an optimal solution 

of its instance.  

Proof: follows the same steps of the proof of the proposition 1 and using (3-11) 

instead of (3-10). 



29 

 

Proposition 3, max2 | |F no wait c : if ls S  is such that ; ,i j la b i j s   , then ls  

is an optimal solution of its instance if  minn i ib b .  

Proof: according to (3-10): 

 
1

max 1 [ ]

1 1

0,l

n n
s

i i i

i i

c a Max a b b


 

 
    
 

    (3-12) 

Based‎on‎the‎proposition’s‎assumptions: 

 
1 1

max 1 [ ]

1 1 1 1 1 1

l

n n n n n n
s

i i i i i i i n

i i i i i i

c a a b b a b b a b
 

     

 
         
 

       (3-13) 

And the proof follows. 

Proposition 4, max2 | , |F no wait setup c : if ls S  is such that 1 1 1t s a  , and 

[ ] [ ] [ ]; 1,2,..., 1i i i ib a s t i n     , and  minn i ib b , then ls  is an optimal solution of its 

instance.  

Proof: follows the same steps of the proof of the proposition 3 and using (3-11) 

instead of (3-10). 

Proposition 5, max2, 1| , |F S no wait setup c : if ls S  is such that ;i ia t i  , and 

[ ] [ ] [ ];i i i ib s a t i n     , and  1 1 mini i is a s a   , and  minn i ib b , then ls  is an 

optimal solution of its instance.  

Proof: follows the same steps of the proof of the proposition 4 and using (3-11) 

instead of (3-10). 

3.4 The Proposed Algorithm 

The proposed algorithm is a hybrid of Variable Neighborhood Search (VNS) and 

TS. VNS, a meta-heuristic proposed in [96, 97], is based upon a simple principle: 



30 

 

systematic change of the neighborhood within the search. VNS searches in the 

neighborhood of the current solution in order to move to a better feasible solution. After 

a number of futile searches, the algorithm chooses another neighborhood structure and 

the search continues. 

The proposed algorithm uses two widely used neighborhood structures: exchange 

and insert. Consider a current permutation (1,2,..., 1, , 1,..., 1, , 1,..., )i i i j j j n      . 

The exchange neighborhood randomly chooses two jobs in permutation   ( i  and j  for 

example) and exchanges the place of these two jobs in the sequence with each other, 

generating the new permutation (1,2,..., 1, , 1,... 1, , 1,..., )i j i j i j n      . On the other 

hand, the insert neighborhood randomly chooses an operation ( i  for example) and a 

place ( j  for example) in the sequence and inserts the operation in the chosen place, 

shifting all the operations between i  and j  (including j ) one level back in the 

sequence. Thus, the permutation (1,2,..., 1, 1,... 1, , , 1,..., )i i j j i j n       will be 

generated. 

TS is a meta-heuristic approach developed by Glover [98]. At each iteration, TS 

moves from a current solution in the feasible space to the best solution in its 

neighborhood. TS uses a tabu mechanism to prevent repetition of the same solutions. For 

example, a tabu list or a Short Term Memory (STM) can be used to prevent the 

existence of some specifications of the old solutions in the newly produced solutions for 

the next   iterations. Other familiar routines used by TS are aspiration criterion, 

diversification, and intensification. For more details, the reader is referred to [98]. In the 

following, the elements of the proposed algorithm are described. 

In order to diversify the search, L  initial solutions (or permutations) will be 

generated randomly to initiate the search. L  is a control parameter set by the user. The 



31 

 

algorithm calculates the objective function value of each of the generated solutions and 

sorts them in an ascending order based on their objective function values. Therefore, the 

best solution with the least makespan stays at the top of the list while the worst solution 

remains at the bottom of the list.  

The process of selecting a solution to be stored in the list, and searching for a 

better solution in its neighborhood fulfills diversification as well as intensification. The 

selection process is done through a probabilistic rule in which better solutions stored in 

the list are more probable to be selected. This means that less competitive solutions 

stored in the list can also be selected for further search in their neighborhood. In other 

words, the diversification procedure is performed by the selection of less competitive 

solutions, while selecting good solutions carries out intensification. As iterations 

continue, the algorithm fills the list with better solutions and removes uncompetitive 

schedules from the list. This gradually reduces the significance of diversification while 

increases the importance of intensification. It can be inferred from the above 

explanations that the procedure is sensitive to the probability function applied to the 

selection procedure. The proposed algorithm employs the probability function 

introduced in [99]. This probability assigns the selection probability
2

1

i

L L 
to the i th 

worst solution stored in the list.  

Afterwards, the VNS algorithm uses the exchange sub-algorithm in order to find 

a better solution in the neighborhood of the selected solution. Exchange sub-algorithm 

stops after R  futile searches and the algorithm activates the insert sub-algorithm for the 

same solution. Insert sub-algorithm is performed for a maximum of R  times. Then, if 

the exchange or insert cannot find a better solution, the algorithm selects another 



32 

 

solution from the list and starts searching in the neighborhood of the newly selected 

solution. 

The exchange or insert sub-algorithms stop at any point a better solution is found 

in the neighborhood of the current solution. Consequently, the improved solution will be 

added to the list, and the list will be updated. Then, the algorithm removes the worst 

solution from the list in order to preserve the length of the list. Furthermore, if the 

exchange or insert improves the selected schedule by exchanging the jobs i  and j , 

( , )i j  will be added to the tabu list for the next   iterations of the algorithm. Therefore, 

this movement will be forbidden during the next   iterations of the algorithm unless 

this is the only exchange that improves the objective function of the current solution or if 

this exchange leads to a solution that improves the best objective function value found 

so far. The algorithm stops after T  iterations and passes the best found solution to the 

final intensification sub-algorithm. 

3.4.1 Final Intensification 

The proposed algorithm uses a straightforward procedure as its intensification 

sub-algorithm. The final intensification sub-algorithm is performed on the best solution 

found. This sub-algorithm exchanges the location of the first two adjacent jobs in the 

sequence and evaluates the objective function value of the new permutation. If the 

objective function of the new permutation is improved by the exchange, the algorithm 

accepts this exchange and restarts the whole procedure from the beginning. 

Nevertheless, if this exchange does not improve the objective function value of the 

solution, the exchanged jobs will move back to their original locations and the algorithm 

will be applied to the next two adjacent jobs. 



33 

 

3.4.2 Stepwise Procedure 

Step 0: Set the values of the control parameters: L  (number of initial solutions), 

R  (number of times that exchange procedure is performed), R  (number of times that 

insert procedure is performed),   (length of the tabu list), and T  (total number of the 

iterations of the algorithm). 

Step 1: Randomly generate L  initial solutions, calculate the objective function 

of each solution, store them in a list, and sort them in an ascending order. Set 1j  . 

Step 2: If j T , choose a solution from the list based on the probability 

function introduced. Set: 1i  . If j T , go to step 8. 

Step 3: If i R , set 1i   and go to step 4. If i R , perform the exchange sub-

algorithm. If the objective function of the new solution is improved by the exchange, go 

to step 6. Otherwise, set 1i i   and repeat this step. 

Step 4: If i R , go to step 5. If i R , perform the insert sub-algorithm. If the 

objective function of the new solution is improved by the insert, go to step 6. Otherwise, 

set 1i i   and repeat this step. 

Step 5: Set 1j j  . Go to step 2. 

Step 6: Check if the exchange or insert characteristics are not included in the 

tabu list. If the characteristics are included, go to step 7. Otherwise, add the exchange or 

insert characteristics to the tabu list. Add the new solution to the list and remove the 

worst solution from the list. Set: 1j j  . Go to step 2. 

Step 7: Check the described aspiration criterion. If the aspiration criterion is 

satisfied, add the exchange or insert characteristics to the tabu list. Add the new solution 



34 

 

to the list and remove the worst solution from the list. Set: 1j j  . Go to step 2. 

Otherwise, Set: 1j j  . Go to step 2. 

Step 8: Perform the final intensification procedure on the best solution found. 

Return the final solution of this step as the final solution of the algorithm. 

3.5 Computational Results 

As seen in step 1 of the stepwise algorithm, five control parameters should be set 

for the proposed algorithm to start the search. Values of these parameters affect the 

algorithm’s‎ performance.‎ Extensive sensitivity analysis is performed on these 

parameters to determine the effect of different values of the parameters on the 

performance of the algorithm. For the sensitivity analysis, the approach introduced in 

[100] is used. Based on this approach, one problem from each considered set of large 

instances is chosen. Then, the problems were solved with different combinations of 

parameter values until the best combination is observed. Based on these observations, 

the following values are proposed: 

max{5, /100}

min{200,2 }

min{200,2 }

3

L n

R n

R n

n

T n





 

  



 

  (3-14) 

Furthermore, in order to examine the efficiency of the algorithm, a lower bound 

is considered for each test problem. The lower bound can be obtained by (3-15) for a 

given problem instance: 

1 1

max{ ( ), ( )}
n n

i i i i

i i

LB s a t b
 

   
 

 (3-15) 

Clearly, smaller gaps between LB  and the objective function of the final 

solution demonstrates the efficiency of the proposed algorithm. For a specific problem, a 



35 

 

small gap means that the algorithm is able to find solutions in which the operating time 

of the jobs on one of the machines is scheduled parallel to the operating time of the jobs 

on the other machine. Moreover, the same test problems but without single server 

constraints are considered and the proposed algorithm is applied to them. Smaller gaps 

between the objective function values of the same problem without and with single 

server constraints demonstrate that the proposed algorithm is able to generate schedules 

that are close to the problem without single server constraints.  

The proposed algorithm is coded in C++ and run on a PC equipped with a 3GHz 

Intel Pentium IV CPU and 2 GB of RAM. To verify the performance of the algorithm, 

five problems with ten jobs, five problems with twelve jobs, and five problems with 

fourteen jobs were randomly generated. These test problems have been generated 

randomly, and based on a uniform probability distribution function with ia  and ib

integer numbers between 0 and 100, is  an integer number between 0 and ia , and it  an 

integer number between 0 and ib . The uniform distribution is chosen to generate test 

problems since it is evident that it results in difficult problems to solve [101, 102]. 

This set of the test problems with smaller instances is solved to optimality using 

the mathematical model presented. Moreover, the proposed algorithm is applied to the 

same set of problems. Computational results of these problems are presented in Table 3-

2. Table 3-2 indicates that the proposed algorithm was able to find the optimal solution 

of all of instances. It should be noted that solving test problems with more than 14 jobs 

to optimality takes more than 3 hours. In Table 3-2, the first column indicates the 

problem number. Second column represents the number of jobs in the instance. Rest of 

the columns represent the objective function value and CPU time of the problems 

without setup, with setup, and with setup and single server, when the respective test 



36 

 

problem is solved by the mathematical model and by the proposed algorithm. Table 3-2 

demonstrates that the gap between the optimal solution and the solution found by the 

proposed algorithm is 0 in all cases. 

In addition, the proposed algorithm was applied to a large number of test 

problems. In order to examine the performance of the algorithm thoroughly, data for the 

test problems are generated from different intervals. The operation times were generated 

from [1,10]  and [1,100]  intervals. Setup times were generated from the intervals [1,10 ]  

and [1,100 ]   where   can be 0.25, 0.5, 0.75, and 1. Problems with 20, 50, 100, 200, 

500, and 1000 jobs were considered in order to test the algorithm on a variety of 

problems with different sizes. For each problem size, 12 different combinations of 

operation time, setup time, and   were considered. Additionally, for each specific 

combination of operation time, setup time, and  , 20 random test problems were 

generated; this sums up to 1440 test problems of different sizes, and 14400 independent 

runs of the proposed algorithm as each problem was solved 10 times. Table 3-3 shows 

the‎used‎categories‎to‎generate‎problems’‎data. In Table ‎3-4 to Table ‎3-7, first column 

gives the problem number. Second column represents the number of jobs of the problem. 

Columns 3, 4 and 5 are assigned to the interval in which the operation times and setup 

times are generated as well as the value of  . Next 6 columns summarize the 

computational results for the problems without setup time, with setup time, and with 

setup time and single server constraints. As mentioned before, 20 problems were 

generated for each combination of operation time, setup time, and alpha, given in the 

tables. Moreover, each generated problem is independently solved 10 times. First, the 

standard deviation (STD) of these 10 objective functions was calculated. Afterwards, the 

average of these standard deviations is presented in the Average STD columns. 



37 

 

Table ‎3-2 Optimal Solutions of Problems with Small Instances 

Prob. 

No. 

No. 

of 

Jobs 

Without Setup Time 
Without Single Server 

Constraints  

With Single Server 

Constraints 

Optimal 

Solution 

Proposed 

Algorithm 

Optimal 

Solution 

Proposed 

Algorithm 

Optimal 

Solution 

Proposed 

Algorithm 

OFV Time OFV Time OFV Time OFV Time OFV Time OFV Time 

1 10 586 0.92 586 0.95 924 1.11 924 2.84 927 1.33 927 2.98 

2 10 650 1 650 0.88 1,037 1.20 1,037 2.65 1,041 1.44 1,041 2.78 

3 10 644 1.18 644 0.90 1,035 1.42 1,035 2.70 1,037 1.70 1,037 2.83 

4 10 412 0.93 412 0.92 747 1.11 747 2.77 747 1.33 747 2.91 

5 10 526 1 526 1 791 1.20 791 3.01 791 1.44 791 3.16 

6 12 715 120.32 715 0.94 1,110 144.39 1,110 2.83 1,113 173.27 1,113 2.97 

7 12 779 119.98 779 0.93 1,233 143.97 1,233 2.78 1,237 172.77 1,237 2.92 

8 12 710 121.89 710 1.04 1,169 146.26 1,169 3.13 1,173 175.52 1,173 3.29 

9 12 528 120.34 528 1.11 1,019 144.41 1,019 3.34 1,019 173.29 1,019 3.50 

10 12 637 125.52 637 0.98 966 150.62 966 2.93 966 180.74 966 3.08 

11 14 816 3,800.12 816 1.21 1,261 4,560.15 1,261 3.63 1,264 5,472.18 1,264 3.81 

12 14 878 3,912.54 878 1.30 1,345 4,695.04 1,345 3.90 1,349 5,634.05 1,349 4.10 

13 14 808 4,017.65 808 1.19 1,299 4,821.18 1,299 3.58 1,300 5,785.42 1,300 3.75 

14 14 639 3,909 639 1.30 1,251 4,690.80 1,251 3.90 1,251 5,628.96 1,251 4.09 

15 14 738 4,143.30 738 1.24 1,104 4,971.96 1,104 3.71 1,104 5,966.35 1,104 3.90 

*Time is in seconds 

 

 

 

Table ‎3-3 Problem Data Categories 
Category 

Number 

Operation 

Time 

Setup 

Time 
  

Category 

Number 

Operation 

Time 

Setup 

Time 
  

1 [1,10] [1,10] 0.25 2 [1,10] [1,10] 0.5 

3 [1,10] [1,10] 0.75 4 [1,10] [1,10] 1 

5 [1,100] [1,10] 0.25 6 [1,100] [1,10] 0.5 

7 [1,100] [1,10] 0.75 8 [1,100] [1,10] 1 

9 [1,100] [1,100] 0.25 10 [1,100] [1,100] 0.5 

11 [1,100] [1,100] 0.75 12 [1,100] [1,100] 1 

 

The lower the values of the average STD, the more consistently the algorithm is 

able to solve the problems. In addition, in the following table, Average Time is the 

average CPU time in milliseconds. Column 12, APAM+SS, calculates the percentage of 

the time added to the makespan of the problem with setup times when single server 

constraints are added to the problem. AD (SS, LB ) column evaluates the average 

deviation between the problem with single server constraints and LB . Moreover, the 



38 

 

same problems with single server constraints were solved by the famous 2-opt algorithm 

for comparison purposes. For a permutation problem, 2-opt algorithm arbitrarily chooses 

two elements of the permutation and exchanges the two elements; objective function 

will be calculated and the exchange will be accepted if an improvement is noticed. The 

algorithm continues until no such improvement can be made [103]. In this chapter, each 

problem is solved by the 2-opt algorithm. Then, the average deviation between the 

objective function of the solutions proposed by the 2-opt algorithm and the proposed 

algorithm is presented in the AD (SS, 2-Opt) column. This column shows that the 

solutions obtained by the proposed algorithm have always been superior to the 2-Opt 

algorithm. Table ‎3-4 to Table ‎3-7 are abridged for presentation purposes. 

Table ‎3-7 shows that the average CPU time for finding a near-optimal solution 

for test problems with 1000 jobs is less than 60 seconds which indicates the efficiency of 

the algorithm. Moreover, the small difference between LB  and the objective function of 

the final solutions with setup time and single server constraints is an index of the quality 

of the proposed solutions. The lowest average deviation between the objective function 

of the problem with single server and LB  is 1.34%. This means that the optimal solution 

of this problem is at most 1.34% less than the objective function proposed by the 

introduced framework. It should be noted that the highest average deviation between the 

objective function of the problem with single server and LB  is 16.80 and belongs to the 

problems with 1000 jobs. Furthermore, Table ‎3-7 demonstrates that the average 

deviation between the problem with single server constraints and LB  is 6.45%. 

According to the problem size, this is a good deviation. It should be noted that the 

standard deviations in all cases are low. This indicates the consistency of the proposed 

algorithm in obtaining good-quality solutions. The small deviation between the 

makespan when single server constraints are added to the problem with setup times 



39 

 

confirms that the proposed algorithm is able to find solutions that single server 

constraints have slight adversity on their quality. In addition, the deviation between the 

objective function of the 2-opt algorithm and the proposed algorithm for the problem 

with single server is another indication of the efficiency of the algorithm. 



40 

 

Table ‎3-4 Computational Results for the Problems with 20 and 50 Jobs 

Prob. 

Num. 

No. 

of 

Jobs 

Oper. 

Time 

Setup 

Time 
  

Without Setup With Setup 
With Single 

Server Setup APAM

+SS 

AD(SS, 
LB ) 

AD(SS, 

2-Opt) Av. 

STD 

Av. 

Time 

Av. 

STD 

Av. 

Time 

Av. 

STD 

Av. 

Time 

1 20 [1,10] [1,10] 0.25 0.40 87.84 0.55 87.17 0.43 102.47 0.55 4.06 10.24 

2 20 [1,10] [1,10] 0.5 0.56 86.14 0.51 86.73 0.44 102.90 2.10 5.56 8.89 

3 20 [1,10] [1,10] 0.75 0.57 86.34 0.52 87.33 0.50 103.94 4.04 7.94 8.00 

4 20 [1,10] [1,10] 1 0.53 86.85 0.38 87.38 0.43 106.14 5.44 10.63 6.41 

5 20 [1,100] [1,10] 0.25 2.73 90.10 3.21 89.57 3.06 98.05 0.03 3.13 12.92 

6 20 [1,100] [1,10] 0.5 3.39 89.94 3.67 89.26 3.46 99.22 0.01 2.83 13.87 

7 20 [1,100] [1,10] 0.75 3.32 89.94 3.22 89.38 3.49 98.28 0.06 2.93 14.47 

8 20 [1,100] [1,10] 1 4.06 90.55 4.50 89.73 4.16 99.76 0.10 3.36 13.65 

9 20 [1,100] [1,100] 0.25 3.81 90.17 3.97 89.94 3.79 100.87 0.49 3.33 11.24 

10 20 [1,100] [1,100] 0.5 3.14 90.16 3.06 90.79 3.29 103.32 1.56 4.98 10.66 

11 20 [1,100] [1,100] 0.75 3.51 89.68 2.82 90.30 2.90 106.10 4.02 8.15 8.58 

12 20 [1,100] [1,100] 1 3.33 90.94 1.68 90.54 2.11 110.48 7.02 15.41 8.46 

13 50 [1,10] [1,10] 0.25 0.75 242.88 0.64 242.17 0.73 294.75 0.65 2.13 11.63 

14 50 [1,10] [1,10] 0.5 0.83 243.56 0.62 243.33 0.74 299.75 1.62 4.62 10.36 

15 50 [1,10] [1,10] 0.75 0.66 243.51 0.60 244.95 0.53 304.70 3.20 6.67 8.52 

16 50 [1,10] [1,10] 1 0.57 243.24 0.50 247.30 0.34 311.86 6.17 11.30 6.97 

17 50 [1,100] [1,10] 0.25 3.71 253.57 4.02 253.21 3.62 295.15 0.02 2.35 15.41 

18 50 [1,100] [1,10] 0.5 3.63 252.65 3.65 252.28 3.97 294.20 0.05 1.62 14.59 

19 50 [1,100] [1,10] 0.75 4.11 254.88 3.97 253.96 4.31 296.36 0.07 2.36 15.20 

20 50 [1,100] [1,10] 1 4.14 254.72 5.14 253.74 4.78 297.46 0.15 2.53 15.45 

21 50 [1,100] [1,100] 0.25 4.36 255.39 5.29 254.38 4.53 302.27 0.63 3.10 13.17 

22 50 [1,100] [1,100] 0.5 4.45 253.90 3.70 254.28 4.20 307.91 1.92 4.62 10.95 

23 50 [1,100] [1,100] 0.75 3.83 252.53 3.09 255.15 2.96 316.24 4.21 8.36 8.75 

24 50 [1,100] [1,100] 1 4.86 254.39 2.18 255.74 1.93 323.93 6.62 13.25 8.64 

* Time in milliseconds 



41 

 

Table ‎3-5 Computational Results for the Problems with 100 and 200 Jobs 

Prob. 

Num. 

No. 

of 

Jobs 

Oper. 

Time 

Setup 

Time 
  

Without Setup With Setup 
With Single Server 

Setup APAM

+SS 

AD(SS, 
LB ) 

AD(SS, 

2-Opt) Av. 

STD 
Av. Time 

Av. 

STD 
Av. Time 

Av. 

STD 
Av. Time 

1 100 [1,10] [1,10] 0.25 0.94 585.92 0.98 586.92 0.84 716.57 0.74 2.43 10.45 

2 100 [1,10] [1,10] 0.5 0.94 585.41 0.74 595.61 0.70 733.41 2.07 4.73 8.45 

3 100 [1,10] [1,10] 0.75 0.92 588.47 0.69 600.82 0.62 743.34 3.45 7.37 7.33 

4 100 [1,10] [1,10] 1 0.96 586.64 0.46 606.85 0.24 754.88 6.34 12.86 7.45 

5 100 [1,100] [1,10] 0.25 5.75 645.77 4.70 639.56 5.18 735.70 0.00 1.42 15.35 

6 100 [1,100] [1,10] 0.5 5.15 643.56 4.92 637.10 5.35 734.63 0.05 1.34 14.00 

7 100 [1,100] [1,10] 0.75 5.20 648.23 5.82 642.20 5.12 740.25 0.07 1.87 14.86 

8 100 [1,100] [1,10] 1 5.11 650.98 5.39 645.56 5.47 744.24 0.09 1.83 14.27 

9 100 [1,100] [1,100] 0.25 4.56 641.49 4.12 637.65 4.49 740.84 0.55 2.15 11.30 

10 100 [1,100] [1,100] 0.5 5.19 646.21 4.04 639.10 4.32 761.82 1.86 4.56 9.27 

11 100 [1,100] [1,100] 0.75 5.20 638.49 3.44 641.30 2.56 786.52 4.51 8.75 7.79 

12 100 [1,100] [1,100] 1 5.17 645.80 2.34 645.64 1.39 800.84 7.81 14.86 8.88 

13 200 [1,10] [1,10] 0.25 1.53 1,573.16 1.67 1,584.81 1.62 1,861.96 0.53 2.33 11.00 

14 200 [1,10] [1,10] 0.5 1.51 1,574.39 1.41 1,600.13 1.34 1,909.22 1.99 4.76 8.70 

15 200 [1,10] [1,10] 0.75 1.70 1,569.90 1.24 1,610.38 0.77 1,929.37 3.78 7.89 6.89 

16 200 [1,10] [1,10] 1 1.63 1,575.31 0.89 1,622.54 0.24 1,942.35 7.02 13.63 5.03 

17 200 [1,100] [1,10] 0.25 9.78 1,844.84 9.49 1,821.93 10.29 2,054.75 0.01 1.94 14.99 

18 200 [1,100] [1,10] 0.5 10.27 1,845.92 10.77 1,819.65 10.26 2,049.73 0.02 1.96 15.40 

19 200 [1,100] [1,10] 0.75 10.62 1,849.57 10.78 1,824.93 11.31 2,068.13 0.05 2.10 14.72 

20 200 [1,100] [1,10] 1 11.16 1,852.31 10.58 1,827.97 9.97 2,062.67 0.12 2.17 14.66 

21 200 [1,100] [1,100] 0.25 9.43 1,836.96 9.12 1,817.40 9.91 2,073.81 0.53 2.31 12.65 

22 200 [1,100] [1,100] 0.5 10.77 1,849.06 10.58 1,831.90 9.28 2,124.00 2.08 5.57 9.91 

23 200 [1,100] [1,100] 0.75 9.53 1,835.59 8.45 1,819.91 6.59 2,163.88 4.25 8.58 7.83 

24 200 [1,100] [1,100] 1 10.50 1,852.00 5.11 1,803.29 2.21 2,137.60 7.18 14.57 5.12 

* Time in milliseconds 



42 

 

Table ‎3-6 Computational Results for the Problems with 500 and 1000 Jobs 

Prob. 

Num. 

No. 

of 

Jobs 

Oper. 

Time 

Setup 

Time 
  

Without Setup With Setup 
With Single Server 

Setup APAM

+SS 

AD(SS, 
LB ) 

AD(SS, 

2-Opt) Av. 

STD 
Av. Time 

Av. 

STD 
Av. Time 

Av. 

STD 
Av. Time 

1 500 [1,10] [1,10] 0.25 4.47 10,426.91 4.12 10,607.52 4.21 12,142.86 0.47 3.24 10.52 

2 500 [1,10] [1,10] 0.5 4.67 10,452.75 4.34 10,672.99 3.73 12,279.72 2.19 5.80 8.35 

3 500 [1,10] [1,10] 0.75 4.74 10,452.71 3.78 10,709.85 2.72 12,325.32 3.78 8.78 6.86 

4 500 [1,10] [1,10] 1 4.00 10,398.84 3.34 10,846.57 0.84 12,063.47 7.05 13.98 4.67 

5 500 [1,100] [1,10] 0.25 34.35 14,094.78 31.89 14,317.53 34.99 15,689.96 0.00 3.29 14.54 

6 500 [1,100] [1,10] 0.5 34.14 14,022.12 33.45 14,274.57 34.92 15,636.23 0.04 3.31 14.23 

7 500 [1,100] [1,10] 0.75 34.63 14,127.98 36.14 14,178.18 31.98 15,631.12 0.06 3.05 14.11 

8 500 [1,100] [1,10] 1 35.39 14,156.32 32.15 14,290.73 34.70 15,705.52 0.09 3.17 13.50 

9 500 [1,100] [1,100] 0.25 32.61 14,130.70 33.72 14,356.85 30.18 15,925.97 0.57 3.86 12.03 

10 500 [1,100] [1,100] 0.5 32.55 14,047.28 32.18 14,186.13 27.80 16,022.19 2.15 6.12 9.62 

11 500 [1,100] [1,100] 0.75 35.07 14,041.43 27.60 14,090.34 19.20 15,921.43 4.31 10.22 7.17 

12 500 [1,100] [1,100] 1 30.77 14,098.69 21.00 13,616.13 6.40 15,093.33 7.60 15.68 6.76 

13 1000 [1,10] [1,10] 0.25 14.27 26,172.30 14.39 25,569.55 14.77 29,273.00 0.36 6.20 7.73 

14 1000 [1,10] [1,10] 0.5 15.63 26,125.25 15.65 25,678.25 13.74 30,190.80 1.85 8.33 6.21 

15 1000 [1,10] [1,10] 0.75 13.93 26,120.70 15.00 25,750.60 12.36 30,819.80 3.11 10.57 6.48 

16 1000 [1,10] [1,10] 1 14.55 26,119.90 13.41 25,856.45 7.55 32,123.70 6.15 15.11 8.82 

17 1000 [1,100] [1,10] 0.25 125.81 54,612.00 116.18 52,476.40 126.92 57,481.70 0.02 7.73 10.24 

18 1000 [1,100] [1,10] 0.5 111.36 54,596.80 134.49 52,457.60 132.84 57,641.30 0.12 7.65 9.78 

19 1000 [1,100] [1,10] 0.75 125.97 54,529.30 136.37 52,396.70 129.70 57,665.70 0.04 7.72 9.71 

20 1000 [1,100] [1,10] 1 125.44 54,512.60 127.29 52,376.20 118.68 57,866.70 0.09 7.42 9.56 

21 1000 [1,100] [1,100] 0.25 141.26 54,524.70 133.40 52,370.10 123.72 58,920.80 0.44 7.68 8.37 

22 1000 [1,100] [1,100] 0.5 123.27 54,515.00 123.14 52,382.80 115.03 60,897.30 1.75 9.16 6.68 

23 1000 [1,100] [1,100] 0.75 127.56 54,527.00 125.35 52,400.20 116.32 63,107.20 3.65 12.15 5.56 

24 1000 [1,100] [1,100] 1 124.88 54,523.80 127.44 52,378.40 72.64 65,462.30 6.71 16.80 7.04 

* Time in milliseconds 



43 
 

Table ‎3-7 Summary of the Computational Results for Large Instance Problems 

Num. 

No. 

of 

Jobs 

Without Setup With Setup 
With Single Server 

Setup APAM

+SS 

AD(SS, 
LB ) 

AD(SS, 

2-Opt) Av. 

STD 
Av. Time 

Av. 

STD 
Av. Time 

Av. 

STD 
Av. Time 

1 20 2.45 89.05 2.34 89.01 2.34 102.63 2.11 6.02 10.62 

2 50 2.99 250.43 2.78 250.87 2.72 303.71 2.11 5.24 11.64 

3 100 3.76 625.58 3.14 626.52 3.02 749.42 2.30 5.35 10.78 

4 200 7.37 1,754.91 6.67 1,748.73 6.15 2,031.45 2.30 5.65 10.58 

5 500 23.95 12,870.87 21.98 13,012.28 19.30 14,536.43 2.36 6.71 10.20 

6 1000 88.66 54,542.65 90.18 52,404.80 82.02 59,880.38 2.01 9.71 8.02 

Average 21.53 11,688.92 21.18 11,355.37 19.26 12,934.00 2.20 6.45 10.31 

* Time in milliseconds 



44 
 

Figure ‎3-2 depicts the average percentage added to the makespan when single 

server is considered (black bars) and average deviation between the problem with single 

server constraints and LB (grey bars) for each of the mentioned categories of Table 3-3. 

This figure disregards the problem size and uses the averages obtained from different 

problem sizes from each category. Figure ‎3-2 illustrates that both of the above measures 

increase as the operation time increases and setup time becomes closer to the operation 

time.  

 

 

  

0
.5

5
 

1
.9

7
 3
.5

6
 

6
.3

6
 

0
.0

1
 

0
.0

5
 

0
.0

6
 

0
.1

1
 

0
.5

4
 

1
.8

9
 4

.1
6

 

7
.1

6
 

3
.4

0
 5

.6
3

 

8
.2

0
 

1
2

.9
2

 

3
.3

1
 

3
.1

2
 

3
.3

4
 

3
.4

1
 

3
.7

4
 5

.8
4

 

9
.3

7
 

1
5

.1
0

 

0.00

2.00

4.00

6.00

8.00

10.00

12.00

14.00

16.00

1 2 3 4 5 6 7 8 9 10 11 12

P
er

ce
n

ta
g
e 

Problem Category 

Figure ‎3-2 Average Percentage Added to the Makespan When Single Server is Considered (black 

bars) and Average Deviation between the Problem with Single Server Constraints and LB (grey 

bars) 



45 
 

3.6 Conclusion 

In this chapter, two-machine, no-wait flow shop problem with separable setup 

times is consiered. Moreover, single server side constraints were added to the problem. 

It is proven that the problems are strongly NP-Hard. As a result, it is not possible to find 

optimal solutions of large and practical instances of these problems in a reasonable time. 

A mathematical model of the problem as well as an effective method for calculating the 

objective function of a given permutation were developed.  

A TSVNS was developed and applied to numerous instances of the problems. 

This algorithm is able to search vast areas of the feasible space employing the 

reasonable time complexity of the method for calculating the objective function. 

Computational results of the TSVNS show the efficiency of this algorithm in finding 

optimal and near optimal solutions for the problems in reasonable time. 

 

 



46 
 

Chapter 4 

The General No-Wait Flow Shop Problem (NWFS) 

 

4 The General No-Wait Flow Shop Problem (NWFS) 

Equation Chapter (Next) Section 1 

4.1 Background 

No-wait flow shop scheduling problems refer to the set of problems, in which a 

number of jobs are available for processing on a number of machines in a flow shop 

context with the added constraint that there should be no waiting time between 

consecutive operations of the jobs. Since the problem is in a flow shop context, all the 

jobs follow the same order in the shop. No-wait constraints denote that operations of a 

job have to be processed without interruption on consecutive machines. The considered 

performance measure of the obtained solutions is makespan. Following the three-field 

notation of the scheduling problems, the mentioned problem can be designated as 

max| |F no wait C [85]. In other words, the problem that is studied in this chapter is a 

generalization of the problem that was previously studied in chapter ‎3. 

Afterward, NWFS with separable setup times is considered. Separable setup time 

means that one can set up a machine for a specific job, and then the machine can be left 

idle until the job becomes ready for processing. Following the three-field notation of the 

scheduling problems, this problem can be designated as max| , |F no wait setup C . 

Finally, NWFS problem is considered with separable sequence dependent setup 

times. Sequence dependent setup times are considered for each operation. This means 

that the setup time of an operation on a machine is dependent on the previous operation 

on the same machine. Following the three-field notation of the scheduling problems, the 

mentioned problem can be designated as max| , |sdF no wait S C . 



47 
 

max||F C
 
or the classical flow shop problem is NP-Hard [86] and it has been 

widely studied in the literature. For a review on the exact methods to solve max||F C  

refer to [87], [88], and [89]. [12] proved that the no-wait flow shop problem with 

makespan performance measure ( max| |F no wait C ) can be transformed to Asymmetric 

Travelling Salesperson Problem (ATSP). [90] proved that ( max| |F no wait C ) is NP-

Hard. [18] transformed the no-wait flow shop problem with separable setup times and 

makespan criterion ( max| , |F no wait setup C ) to ATSP. Since max| , |sdF no wait S C  is 

a generalization of max| |F no wait C  and max| , |F no wait setup C , it can be inferred 

that max| , |sdF no wait S C  is also strongly NP-Hard.  

NWFS problem has a number of industrial applications; chemical industries [4], 

food industries [5], still production [6], pharmaceutical industries [7], and production of 

concrete products [8], to name a few. For a more comprehensive review of the 

applications of the problem, the reader is referred to [5]. 

Although setup times make the problem more applicable and realistic, there are 

only few researches available in the literature that considers the setup times in the 

NWFS. Sequence independent and dependent setup times occur in numerous practical 

practices of no-wait scheduling. Examples of such circumstances include: 

 Adjusting jigs and fixtures for processing different products. 

 Re-tooling of multi-tool machines. 

 Cleaning the machines in order to make them ready for the next operations. 

Cleaning is an essential part of the manufacturing processes in industries 

such as textile, plastic, chemical, semi-conductor, pharmaceutical, and food 

industries.  



48 
 

Industrial applications mentioned in the literature for max| , |sdF no wait S C  

include chemical industries [4], food industries [5], steel production [6], pharmaceutical 

industries [7], and production of concrete products [8]. [5] provide a comprehensive 

review of the applications of the problem. [94] and [18] explain why considering setup 

times in no-wait scheduling problems is essential. 

In order to explore the feasible region of the NWFS problem, tabu search of the 

chapter ‎3 is hybridized with a Particle Swarm Optimization (PSO). In the proposed 

approach, PSO algorithm is used in order to move from one solution to a neighborhood 

solution. A new coding and decoding technique is employed to efficiently map the 

discrete feasible space to the set of integer numbers. The proposed PSO will further use 

this coding technique to explore the solution space and move from one solution to a 

neighborhood solution. Afterwards, the algorithm decodes the solutions to its respective 

feasible solution in the discrete feasible space and returns the new solutions to the TS. 

The algorithm is tested by solving a large number of problems available in the literature. 

Computational results show that the proposed algorithm is able to outperform 

competitive methods; and improve many of the best-known solutions of the test 

problems. 

To deal with max| , |F no wait setup C , same PSO algorithm is combined with the 

GA of section ‎5.3. In this chapter, a Genetic Algorithm (GA) combined with a Particle 

Swarm Optimization (PSO) is proposed to solve the problem efficiently. Computational 

results show that the proposed framework outperforms the previous methods developed 

for max| |F no wait C  and improves many of the best-known solutions of the test 

problems available in the literature. Furthermore, a number of problems with setup times 

are generated and the proposed algorithms are applied to them. To verify the efficiency 



49 
 

of the proposed algorithms, the results of the proposed algorithms with the results of the 

famous 2-Opt algorithm are compared [103]; although the 2-Opt algorithm is used to 

solve the TSP problem in [103], it can easily be modified to be applied to the under-

study problems. In the modified version of 2-Opt, the search method in the feasible 

space remains the same. However, 2-Opt is modified so that it calculates the makespan 

of the no-wait flow shop with setup. This is possible because the problem is modeled as 

a permutation problem. The comparison between the results of the 2-Opt algorithm and 

the developed algorithms for the problems with setup time shows that the proposed 

algorithms are able to find good-quality solutions for the test problems; and outperform 

the competitive methods. 

Finally, in order to find good-quality solutions for max| , |sdF no wait S C , a PSO 

algorithm is proposed. The proposed PSO uses a specific coding/encoding framework in 

order to map the feasible region of max| , |sdF no wait S C  to a form, through which the 

developed PSO is able to explore the feasible region of the problem. The coding 

framework is called Matrix Coding (MC).  

The proposed PSO, when applied to max| |F no wait C  and 

max| , |F no wait setup C , outperforms the competitive algorithms from the literature by 

improving many of the best-known solutions of the available test problems; for instance, 

refer to [33]; [104]; [30]; and [72]. Although max| , |sdF no wait S C  has numerous 

practical applications, it has received little attention in the literature. Consequently, in 

order to study the performance of the proposed PSO when applied to 

max| , |sdF no wait S C , sequence dependent setup times are incorporated in the 

algorithm aimed to deal with max| , |F no wait setup C . Afterwards, the developed PSO, 



50 
 

the modified algorithm of max| , |F no wait setup C , and the modified 2-Opt algorithm of 

[103] are applied to a number of randomly generated test problems. Computational 

results show that the proposed PSO is able to find good-quality solutions for the test 

problems and outperform the competitive methods. In addition, the proposed PSO is 

significantly faster than the competitive methods. It is hoped that the presented results 

will be used as benchmark by other researchers interested in solving this scheduling 

problem in the future. 

4.2 Notations 

The notation that is used throughout this chapter is listed as follows: 

n  Number of jobs 

m
 

Number of machines 

iJ  Job i  

ijo  j th operation of iJ  

ijp
 

Processing time of the j th operation of iJ  on its respective machine 

iS
 

Starting time of the iJ  

ijoS
 

Starting time of ijo  

ijST  Setup time of the j th operation of the job iJ  on its respective machine when setup times 

are not sequence dependent 

 

ijkST  Setup time of ijo  if scheduled after kjo  when setup times are sequence dependent 

0ijST
 

Setup time of ijo  if iJ  is the first job to be scheduled when setup times are sequence 

dependent 

l  
Sequence l  

maxC  Makespan  

  

Brackets are used to indicate consecutive jobs, i.e., [ ]iS  refers to the starting time 

of the job planned to operate after the i th job in a given sequence.  



51 
 

4.3 Mathematical Model 

Based on the defined notations, different mathematical models of 

max| |F no wait C  are presented in [30, 33]. A mathematical model for 

max| , |F no wait setup C  is as follows: 

maxMin C   (4-1) 

max ; 1,2,...,
imo imC S p i n     (4-2) 

[ ] [ ] ; 1,2,..., 1 1,2,...,
i j ijo o ij i jS S p ST i n j n       (4-3) 

( 1)
; 1,2,..., 1,2,..., 1

i j ijo o ijS S p i n j m

      (4-4) 

0; 1,2,..., 1,2,...,
ijoS i n j m     (4-5) 

In this model, the objective function is to minimize the makespan. (4-2) relates 

the makespan of the objective function to the decision variables. (4-3) calculates the 

starting time of the operations as well as the starting time of the setup times. (4-4) 

imposes the no-wait constraints. 

Moreover, a mathematical model for max| , |sdF no wait S C  is as follows: 

maxMin C   (4-6) 

max ; 1,2,...,
imo imC S p i n     (4-7) 

[ ] [ ] ; 1,2,..., 1 1,2,...,
i j ijo o ij i jiS S p ST i n j m       (4-8) 

[ ]
; 1,2,..., 1,2,..., 1

i j ijo o ijS S p i n j m      (4-9) 

0; 1,2,..., 1,2,...,
ijoS i n j m    (4-10) 

In this model, the objective function is to minimize the makespan. (4-2) initiates 

the makespan in the model as the objective function by relating it to the decision 

variables. (4-3) indicates that the starting time of the j th operation of [ ]i  (or the job 

scheduled after i ) should not be sooner than the starting time of the j th operation of i  

plus its processing time plus the setup time of [ ]i jo  when its previous operation ( i  in this 



52 
 

case) is taken into consideration. (4-4) imposes the no-wait constraints; finally, (4-10) 

sets the non-negativity constraints. In other words, mathematical models of 

max| , |F no wait setup C  and max| , |sdF no wait S C  are almost alike except for 

replacing the separable setups with sequence dependent setup times.  

4.4 No-Wait Flow Shop Problem  

4.4.1 Problem Description 

Based on the defined notations, different mathematical models of the problem 

are presented in [30, 33]. However, from a different point of view, if n  is considered 

as the set of all permutations   of {1,2,..., }N n  jobs, the no-wait flow shop problem 

can be formulated as follows: 

maxmin

. :

No-wait constraintsapply

n

C

s t

 
                    (4-11) 

Permutation   represent the order of the priority for allocating the jobs to the 

Gantt chart. Because of the no-wait constraints, once processing a specific job is started, 

the job should be processed by the successive machines with no interruption between the 

consecutive operations. Therefore, the total flow time of iJ  can be calculated as follows: 

1

m

i i ij

j

C S p


    (4-12) 

Consequently, the modeling of the problem in (4-11) holds; and the problem can 

be reduced to a permutation problem (which is still strongly NP-hard) and a timetabling 

problem (that in no-wait flow shop problem belongs to P ) provided that the no-wait 

constraints are applied to a specific permutation when the Gantt chart is in preparation, 

or when the objective function is calculated. In other words, (4-11) implies that a 

successful search method should explore the feasible region of the problem in order to 



53 
 

find the permutation that minimizes the makespan. Moreover, (4-11) also implies that 

increasing the number of machines in an instance of the problem can barely make the 

problem more difficult, while increasing the number of jobs makes a specific instance of 

the problem more complicated.  

The idea behind the proposed TS and PSO is to initiate the search by a number of 

random solutions. The search will be initiated by the TS of section ‎3.4. In order to move 

from one solution to a neighborhood solution, TS will pass a sub-section of the current 

permutation to the PSO. Then PSO, using a one-to-one mapping, will map this smaller 

permutation into a set of factoradic base numbers and efficiently explore this newly 

generated set to find a better sub-permutation. The factoradic base is explained in details 

in section ‎4.4.2.3. Then the algorithm uses the inverse mapping to map the factoradic 

number to a unique member of the set of sub-permutations. Afterwards, this sub-

permutation will be returned to the TS, proposing a completely new permutation; 

makespan of the new permutation will be evaluated by the following timetabling 

algorithm: 

1. Set 
11

0oS  , 1i  .  

2. Set 
1 1( 1) 1( 1); 2,3,...,

j jo o jS S p j m
    . 

3. Set 1i i  , and 2j  . Then: 

a. 
1 ( 1)1 ( 1)1i iO o iS S p

    

b. If 
( 1) ( 1)( 1) ( 1)i j i jo i j O i jS p S p
     , then 

( 1) ( 1)ij i jo o i jS S p
   . 

c. If 
( 1) ( 1)( 1) ( 1)i j i jo i j o i jS p S p
     , then 

( 1) ( 1)ij i jo o i jS S p
   ; set 1k j  , and: 

i. Set     ( 1) ( 1)( 1) ( 1)ik ik i j i jo o o i j o i jS S S p S p
        

ii. If 1k  , set 1k k  , and go back to 3.3.1. Otherwise, proceed to 3.4. 



54 
 

d. If j m , proceed to 4. Otherwise, set 1j j  , and go back to 3.2. 

4. If i n , stop. 
max nmo nmC S p  . Otherwise, go back to 3. 

Computational complexity of this simple yet effective algorithm is ( )O mn . 

Once the objective function of a proposed permutation is calculated, in case a change is 

imposed to the permutation, the above algorithm can be applied only to the modified 

section of the permutation to calculate the new objective function. Developed algorithm 

of section ‎4.4.2 exploits this fact in order to reduce the computational time and calculate 

the objective function of the neighborhood solutions efficiently. 

4.4.2 The Proposed Algorithm 

The proposed algorithm is a hybrid of the TS of the section ‎3.4 and PSO. 

Literature is rich with successful implementations of TS on different problems [105], 

[106], [107], [108], [109]. In the following subsections, the elements of the proposed 

algorithm are described. 

PSO algorithm has been widely used by researchers to solve combinatorial 

optimization problems since its introduction in [110, 111]. In PSO a number of particles 

are moved in search space through a systematic approach. In PSO, at time t , each 

particle i  has a position, ( )ix t , and a velocity, ( )iv t . Current positions of the particles as 

well as their best-ever positions are stored in a memory. Velocity of the particles will be 

changed based on the historical information stored in the memory and also random 

information. The new velocities will be used to update the current position of the 

particles, where their new objective function will be evaluated. Since historical data is 

used in updating the particle velocity, particles tend to return to their historical best 

position which results in early convergence. To overcome this unwanted phenomena, 

different velocity update techniques have been developed. The proposed PSO uses one 



55 
 

of the most successful functions available to update the particle velocity. First TS is 

described, and then the coding approach, which ultimately leads to the proposed PSO, is 

explained. 

4.4.2.1 Adaptive Memory, Diversification and Intensification 

As mentioned before, the proposed algorithm uses all the building blocks of the 

developed TS of the section ‎3.4. Adaptive memory, diversification, and intensification 

procedures are described in section ‎3.4. In short, TS generates a number of initial 

solutions and stores them in the Adaptive Memory (AM). According to a probabilistic 

approach, a solution will be selected from the AM for further exploration. This further 

exploration is performed using the developed PSO.  

4.4.2.2 Tabu List 

After selecting a solution from the AM, TS will randomly select two jobs ( i  and 

j  for example) from the permutation. This permutation is called 1 . Suppose that i  and 

j  are chosen such that there are at most 2x  jobs between them ( x  is a parameter, set 

by the user). Therefore, a new permutation is generated with x  jobs ( 2 ). Although the 

indices of the jobs in 2  is not from 1 to x , one can easily map these indices into 

{1,2,..., }x . Then TS passes 2  to the PSO. PSO will code this permutation into the set 

of factoradic numbers. Then PSO will search the factoradic set for a better permutation 

in the neighborhood of 2 . The result of the PSO is another number in the same 

factoradic base. Then another algorithm will use an inversion technique in order to map 

this factoradic number to a new permutation, which is called 3 . 3  will substitute 2  

in 1  which results in a new permutation that includes all the jobs ( 4 ). This procedure 

will be followed for at most R  times or until a better sequence is found. If using the 

procedure is not successful, the algorithm selects another solution from the AM. 



56 
 

However, if a better sequence is found during the search, the improved solution will be 

added to the AM, and the list will be updated. At this point, the worst solution stored in 

the AM is removed to preserve the initial length of the list. This also establishes a 

gradual shift from diversification to intensification. This procedure exploits the effective 

characteristics of the TS algorithm by employing a tabu list.  

If the exchange or insert improves the selected schedule, 
( , )i j , the indices of the 

selected jobs, is added to the tabu list for the next   iterations of the algorithm, 

forbidding selection of the same jobs at the same time during the next   iterations of the 

algorithm. However, this selection is allowed if this is the only choice that improves the 

makespan of the current solution, or this selection results in a solution with the best 

found makespan so far. The algorithm stops after T  iterations and sends the best-found 

solution to the final intensification sub-algorithm of the section ‎3.4.1. At this point, all 

the building blocks of the TS are introduces. In the sequel, the coding technique and the 

PSO algorithm are explained. 

4.4.2.3 Factoradic base 

Factoradic is a specially constructed number system. Factoradics provide 

a lexicographical index for permutations [112]. The idea of the factoradic is closely 

linked to that of the Lehmer code [112]. Factoradic is a factorial-based mixed 

radix numeral system: the i th digit from right side is to be multiplied by !i . In this 

numbering system, the rightmost digit is always 0, the second 0, or 1, the third 0, 1 or 2 

and so on [112]. For instance, 38 in decimal base can be shown as 4 3 2 1 0(1 2 1 0 0 )  in 

factoradic base. 

4 3 2 1 0 10(1 2 1 0 0 ) 1 4! 2 3! 1 2! 38         (4-13) 



57 
 

The factoradic numbering system is unambiguous. No number can be 

represented in more than one way because the sum of consecutive factorials multiplied 

by their index is always the next factorial minus one [112]: 

0

! ( 1)! 1
n

i

i i n


      (4-14) 

More detailed information about factoradic base and factoradic numbering 

system can be found in [100, 112-114]. 

4.4.2.4  Relation between factoradic base and permutations 

There is a natural mapping between the integers 0,1,..., ! 1n   (or equivalently the 

factoradic numbers with n  digits) and the permutations of n  elements 

in lexicographical order, when the integers are expressed in factoradic form. This 

mapping has been termed the Lehmer code. For example, with 3n  , this mapping is 

shown in Table 4-1. 

 

Table ‎4-1 Natural mapping between factoradic numbers and permutations when n=3 

Decimal Factoradic Permutation 

100  2 1 00 0 0  1,2,3  

101  2 1 00 1 0  1,3,2  

102  2 1 01 0 0  2,1,3  

103  2 1 01 1 0  2,3,1 

104  2 1 02 0 0  3,1,2  

105  2 1 02 1 0  3,2,1 
  

 

For mapping factoradic numbers into permutations and vice versa, two 

straightforward algorithms are presented in [114]. Computational complexity of these 

algorithms are ( )O n  which makes the algorithms able to efficiently map the 

permutations to factoradic numbers, factoradic numbers to decimal numbers and vice 



58 
 

versa. These two algorithms are presented as algorithm 1 and algorithm 2. Table 4-2 

demonstrates the mapping of 2 1 0(1 1 0 ) (2 3 1)    based on algorithm 1. 

Algorithm 1- mapping factoradic to permutation 

Step 1- consider a list of possible digits of factoradic base in ascending order 

{0,1,..., 1}f n  ,  as well as a list of possible numbers in permutation {1,2,..., }p n . 

Step 2- for 1,2,...,k n : choose the k th
 digit in factoradic representation, and find this 

digit in f . Suppose that this digit is the i
th

 digit in f . Choose the i
th

 element of p , set 

this element as the k th
 element of permutation, and remove this element from p . 

 

 

Table ‎4-2 Mapping 2 1 0(1 10 ) (2 3 1)     based on algorithm 1 

Iteration 1k   2k   3k   

Factoradic 1 1 0 

F {0,1,2} {0,1,2} {0,1,2} 

P {1,2,3}  {1,3} {1}  

Permutation 2 3 1 

 

Note that not only the described procedure is useful in the proposed PSO, but 

also defines a useful framework for mapping a discrete feasible space to an integer 

number set by a one-to-one mapping. 

 

Algorithm 2- mapping permutation to factoradic 

Step 1- consider a list of possible digits of factoradic base in ascending order 

{0,1,..., 1}f n  ,  as well as a list of possible numbers in permutation {1,2,..., }p n . 

Step 2- for 1,2,...,k n , choose the k th
 digit in permutation, and find this digit in p . 

Suppose that this digit is the i
th

 digit in p . Choose the i
th

 element of f , set this 

element as the k th
 element of factoradic, and remove this element from p . 

 

 

Table ‎4-3 demonstrates the mapping of 2 1 0(2 3 1) (1 10 )    based on algorithm 

2. 



59 
 

Table ‎4-3 Mapping 2 1 0(2 3 1) (1 10 )     based on algorithm 1 

Iteration 1k   2k   3k   

Permutation 2 3 1 

P {1,2,3}  {1,3} {1}  

F {0,1,2} {0,1,2} {0,1,2} 

Factoradic 1 1 0 

 

Now that the coding approach is introduced, the PSO algorithm will be explained 

in the following section. 

4.4.2.5 The Proposed PSO 

4.4.2.5.1 Initial Solution 

The proposed PSO needs an initial solution to initiate solution space exploration. 

This initial solution is basically the particle used during the search. Since no particle is 

born‎or‎destroyed‎during‎the‎search,‎the‎PSO’s‎input‎is‎one‎permutation,‎and‎its output is 

also one permutation. When this permutation is provided by the TS, algorithm 2 will be 

used in order to code it to an integer number. Note that based on the one-to-one mapping 

described in section ‎4.4.2.4, a random integer number in [0, ! 1]x   is identical to a 

random permutation of x  jobs. Therefore, these two words can be used interchangeably 

during the rest of the thesis.  

4.4.2.5.2  Particle velocity, neighborhood structure, and stopping criterion 

Since the proposed PSO algorithm uses 1 particle to explore the feasible space, 1 

particle‎velocity‎is‎also‎needed‎to‎update‎the‎particle’s‎position‎during‎iterations‎of‎the‎

algorithm. The PSO algorithm initially generates a random integer numbers as particle 

velocity‎ in‎ order‎ to‎ update‎ the‎ particle’s‎ position.‎ Note‎ that‎ velocities‎ must‎ be‎ in‎ an‎

appropriate interval so that the particle remains in feasible space after being updated. 

Since the feasible solution interval is [0, ! 1]x  , the appropriate velocity interval which 

guarantees feasibility of the particle after update in k th iteration is [ ,( ! 1) ]k kv x v   .  



60 
 

In which v  is the velocity vector. Algorithm must also modify particle velocity 

during the search to guide the particle through the more desirable areas of the feasible 

region. Originally, PSO algorithm uses equation (4-15) to update velocities [110, 111]: 

1 ( )k k kv v cr p h                                                                        (4-15) 

Where c  is the velocity constant, r  is a random number in the interval [0,1] , 
kh  

is the current position of the particle in iteration k , and p  is‎the‎particle’s‎best‎position‎

so far. However, the proposed PSO employs a development of the original velocity 

update formula: 

 1 ( )k k kv wv cr p h                                            (4-16) 

In which w  and  , inertia weight and constriction coefficient, are calculated as 

follows: 

max min
max

2

2
; 4

2 4

w w
w w k

b

c
c c c




  

 
  

                                                (4-17) 

maxw  and minw  are two parameters set by the user, b is the total number of 

iterations, and k  is the number of current iteration. Unfortunately, equation (4-16) does 

not guarantee that the particle remains in the feasible space after update. Therefore, the 

following conditions are considered: 

1 ( )

( ! 1 ) ! 1

k k k

k

k k k

r h if v h
v

r x h if v x h


    


     

   (4-18) 

where r  is a random number in the interval [0,1] . Particle position is updated by  

(4-19): 

1k k kh h v                                      (4-19) 



61 
 

Equation (4-19) will transfer the particle to its neighborhood. After updating the 

particle position, the algorithm first maps the number to its unique respective 

permutation and then evaluates the makespan of this new permutation. At this point, the 

variable p  will be updated if necessary. The algorithm will stop and return p  to the TS 

as the final solution after b  iterations. b  is a parameter set by the user. 

4.4.3 Computational Results 

As seen in section ‎4.4.2, seven control parameters should be tuned for the 

proposed algorithm to initiate the search. Values of these parameters affect the 

algorithm’s‎ performance.‎ The approach of Appendix 1 is employed for tuning the 

parameters. Based on these observations, the following experimentally derived values 

are proposed for the parameters: 

max

min

3

500

4 for problems with optimalsolution

12 for problems without optimalsolution

1

0.5

4.1

10

L n

n

T n

x

w

w

c

b x





 
  
 

 


 










 (4-20) 

The proposed algorithm was coded with Microsoft Visual C++ 2008 and run on 

a PC with 3GHz Intel Pentium IV CPU and 2 GB of RAM. To test the efficiency of the 

proposed algorithm, a set of 29 well studied problems were chosen from the literature. 

All the test problems are available at OR-Library [115]. Test problems can be divided 

into two sets. Problems in the first set are called car1 through car8, introduced by [116]. 

The optimal solution for the no-wait version of this set is known. The second set consists 

of 21 problems that are called rec01, rec03, through rec41, introduced by [117]. [117] 

found this set of problems difficult to solve. Moreover, the optimal solution for the no-



62 
 

wait version of this set is unknown. These two sets of problems have been widely used 

in the literature especially by [4], [30], [33], and many others. This is important because 

this provides an opportunity to compare the proposed algorithm with many other 

methods. 

In the literature considered in the following tables for comparison, each problem 

is solved 20 times, and the best obtained objective function value along with the average 

and worst objective function values are reported. The same approach is used in this 

research in order to maintain integrity with literature. In addition, the average CPU times 

as well as the standard deviation of the obtained makespans are reported. In the 

following tables, the best, average, and worst relative errors from the solutions found by 

[4] are reported. These values are presented as Best Relative Error (BRE), Average 

Relative Error (ARE), and Worst Relative Error (WRE) in each table respectively. These 

values are calculated as follows: 

*

max max

*1,...,20
max

max 100
i

i

c c
BRE

c

  
  

  
  (4-21) 

*20

max max

*
1 max

100

20

i

i

c c

c
ARE









  (4-22) 

*

max max

*1,...,20
max

min 100
i

i

c c
WRE

c

  
  

  
  (4-23) 

Table ‎4-4 compares the computational results of the proposed algorithm with the 

particle swarm optimizations proposed by [33] and [104]. In this table, HPSO, 

HPSO_NONEH, and HPSO_NOSA are proposed by [33], and PSOVNS is proposed by 

[104]. The problems in this table are from the set of problems with known optimum 

solutions. In Table 4, the first two columns present the problem name and size. The third 

column is the optimal solution. The next 4 columns give the BRE, ARE, WRE, and 



63 
 

average CPU time of the proposed algorithm. The same information about HPSO, 

HPSO_NONEH, HPSO_NOSA, and PSOVNS are presented afterwards. Table 4-5  

compares the computational results of the proposed algorithm with the heuristics 

proposed by [30] and [72]. Since only the BRE is reported in [30], the BRE of the 

proposed algorithm is shown in this table. It should be noted that in this table, VNS and 

GASA are proposed by [72] and the rest of the heuristics are presented by [30]. When 

these results are compared, it can be deduced that the proposed algorithm shows a very 

good consistency in finding good-quality solutions for small-size instances. 

Table ‎4-6 contrasts the computational results of the proposed algorithm with 

those of [33] and [4]. It should be noted that Table ‎4-6 only compares the results of the 

proposed algorithm with HPSO since the superiority of the HPSO over HPSO_NONEH, 

HPSO_NOSA, and PSOVNS is evident in [33]. Test problems of Table ‎4-6 are amongst 

the second set of the problems. Therefore, the optimal solutions of these problems are 

unknown. Table ‎4-6 demonstrates that the proposed algorithm is able to improve the 

solutions of  [33] in 14 out of 21 test problems (66.67%); and for the rest of the test 

problems, the solutions of the proposed algorithm is as good as those of  [33]. 

Moreover, in terms of the ARE and WRE, the average performance of the 

proposed algorithm is better than the HPSO of [33] in all of the test problems. Table ‎4-7 

is the comparison of the results of the proposed algorithm with [30] and [72] for the 

problems without optimal solution. Again, the superiority of the proposed framework 

over the competitors is clear since the proposed method is able to improve the best-

known solutions of 6 out of 21 test cases (28.57%); and for the rest of the test problems, 

the generated solution of the proposed algorithm is as good as the solutions of the 

several competitors in the literature. A detailed computational result of the proposed 



64 
 

TS/PSO comes in Table ‎4-8. Table ‎4-8 demonstrates that the proposed algorithm 

improves all the solutions proposed by [4], up to 13 percent in some cases. 



65 
 

Table ‎4-4 Comparison of the Results of the Proposed algorithm with [33] and [104] for the Problems with Optimal Solution 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 4-4 (Continued)

 n, m 
Optimal 

Solution 

Proposed Algorithm HPSO HPSO NONEH 

 
BRE ARE WRE Time BRE ARE WRE BRE ARE WRE 

car1 11,5 8,142 0.00 0.06 0.32 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

car2 13,4 8,242 0.00 0.05 0.17 0.00 0.00 0.18 0.61 0.00 0.37 0.62 

car3 12,5 8,866 0.00 0.00 0.00 0.00 0.00 0.06 0.24 0.00 0.11 0.27 

car4 14,4 9,195 0.00 0.24 1.21 0.00 0.00 1.85 4.29 0.70 1.96 3.46 

car5 10,6 9,159 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.41 3.68 

car6 8,9 9,690 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

car7 7,7 7,705 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.02 0.42 

car8 8,8 9,372 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

Average N/A 0.00 0.04 0.21 0.00 0.00 0.26 0.64 0.09 0.36 1.06 

 n, m 
HPSO NOSA PSOVNS 

 
BRE ARE WRE BRE ARE WRE 

car1 11,5 0.00 0.00 0.00 0.00 1.22 3.87 

car2 13,4 0.06 0.59 0.62 0.00 0.67 3.00 

car3 12,5 0.25 0.58 1.05 0.00 0.33 1.17 

car4 14,4 3.58 7.42 9.07 0.07 1.74 4.18 

car5 10,6 0.00 2.27 4.89 0.00 0.04 0.55 

car6 8,9 0.00 0.00 0.00 0.00 0.00 0.00 

car7 7,7 0.00 0.17 1.28 0.00 0.00 0.00 

car8 8,8 0.00 0.26 0.36 0.00 0.00 0.00 

Average 0.49 1.41 2.16 0.00 0.5 1.6 



66 
 

Table ‎4-5 Comparison of the Results of the Proposed algorithm with [30] and [72] for the Problems with Optimal Solution 

 

n, m 
Optimal 

Solution 

Proposed 

Algorithm 

(BRE) 

VNS GASA DS DS+M TS TS+M TS+MP 
 

car1 11,5 8,142 0.00 0.70 0.00 0.00 0.00 0.00 0.00 0.00 

car2 13,4 8,242 0.00 0.20 0.00 0.62 0.62 0.00 0.00 0.00 

car3 12,5 8,866 0.00 0.00 0.00 0.08 0.08 0.00 0.00 0.00 

car4 14,4 9,195 0.00 1.60 0.00 2.77 2.77 0.00 0.00 0.00 

car5 10,6 9,159 0.00 3.50 0.00 0.00 0.00 0.00 0.00 0.00 

car6 8,9 9,690 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

car7 7,7 7,705 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

car8 8,8 9,372 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

Average N/A N/A 0.00 0.75 0.00 0.43 0.43 0.00 0.00 0.00 

 



67 
 

Table ‎4-6 Comparison of the Results of the Proposed algorithm with [33] for the Problems without Optimal Solution 

Prob. 

Number 

Prob. 

Name 
n, m 

[4] 

Makespan 

Proposed Algorithm [33] 

Objective Function Value and The percentage of 

Improvement Over the Makespan of [4] 
Average  

CPU  

Time 

Objective Function 

Value 

Best Average Worst 
Standard 

Deviation 
Best Average Worst 

1 rec01 20,5 1590 1,395.00 12.26 1,511.00 4.97 1,520.00 4.40 69.72 0.34 3.77 3.39 2.96 

2 rec03 20,5 1457 1,361.00 6.59 1,361.00 6.59 1,361.00 6.59 0.00 0.31 6.59 6.15 3.36 

3 rec05 20,5 1637 1,511.00 7.70 1,517.30 7.31 1,520.00 7.15 4.62 0.28 7.39 7.15 6.66 

4 rec07 20,10 2119 2,042.00 3.63 2,046.00 3.45 2,048.00 3.35 3.06 0.38 3.63 3.11 2.31 

5 rec09 20,10 2141 2,027.00 5.32 2,033.21 5.03 2,042.00 4.62 7.54 0.40 4.58 4.26 3.60 

6 rec11 20,10 1946 1,881.00 3.34 1,885.00 3.13 1,892.00 2.77 5.57 0.39 3.34 2.30 1.28 

7 rec13 20,15 2709 2,545.00 6.05 2,547.70 5.95 2,552.00 5.80 3.53 0.42 6.05 5.47 4.80 

8 rec15 20,15 2691 2,529.00 6.02 2,533.40 5.86 2,538.00 5.69 4.50 0.40 6.02 5.69 4.91 

9 rec17 20,15 2740 2,587.00 5.58 2,588.00 5.55 2,589.00 5.51 1.00 0.44 5.58 5.42 5.07 

10 rec19 30,10 3157 2,861.00 9.38 2,870.42 9.08 2,876.00 8.90 7.58 0.51 9.15 8.50 6.46 

11 rec21 30,10 3015 2,822.00 6.40 2,825.77 6.28 2,830.00 6.14 4.00 0.49 5.70 5.33 4.74 

12 rec23 30,10 3030 2,700.00 10.89 2,701.85 10.83 2,702.00 10.83 1.11 0.53 10.80 9.72 8.65 

13 rec25 30,15 3835 3,593.00 6.31 3,611.65 5.82 3,658.00 4.62 33.47 0.55 5.71 5.17 4.25 

14 rec27 30,15 3655 3,431.00 6.13 3,437.32 5.96 3,441.00 5.85 5.06 0.58 6.13 5.04 4.13 

15 rec29 30,15 3583 3,291.00 8.15 3,300.50 7.88 3,303.00 7.81 6.33 0.61 7.81 6.93 5.69 

16 rec31 50,10 4631 4,336.00 6.37 4,354.40 5.97 4,398.00 5.03 31.84 1.29 5.92 5.20 4.51 

17 rec33 50,10 4770 4,466.00 6.37 4,471.50 6.26 4,482.00 6.04 8.13 1.91 5.51 4.08 3.17 

18 rec35 50,10 4718 4,417.00 6.38 4,424.88 6.21 4,428.00 6.15 5.67 1.85 6.02 5.13 3.98 

19 rec37 75,20 8979 8,081.00 10.00 8,111.21 9.66 8,145.00 9.29 32.02 3.42 8.89 8.20 7.40 

20 rec39 75,20 9158 8,517.00 7.00 8,539.01 6.76 8,558.00 6.55 20.52 3.51 6.79 5.67 4.26 

21 rec41 75,20 9344 8,520.00 8.82 8,570.50 8.28 8,583.00 8.14 33.36 3.50 7.94 6.77 5.91 

Average N/A N/A N/A N/A 7.08 N/A 6.52 N/A 6.25 13.74 1.05 6.35 5.65 4.67 

 Average CPU time of HPSO is 5 seconds; run on a 2.2 GHz Pentium processor.



68 
 

Table ‎4-7 Comparison of the Results of the Proposed algorithm with [30] and [72] for the Problems without Optimal Solution 

Prob. 

Number 

Prob. 

Name 
n, m 

[4] 

Makespan 

Proposed 

Algorithm 

(BRE) 

VNS GASA DS DS+M TS TS+M TS+MP 

1 rec01 20,5 1,590.00 12.26 2.77 3.96 3.71 3.58 4.03 3.96 3.96 

2 rec03 20,5 1,457.00 6.59 4.32 4.46 3.43 4.43 6.59 6.59 6.59 

3 rec05 20,5 1,637.00 7.70 7.03 6.90 5.62 5.62 7.39 7.64 7.70 

4 rec07 20,10 2,119.00 3.63 2.31 3.45 1.09 1.08 3.63 3.63 3.63 

5 rec09 20,10 2,141.00 5.32 2.38 4.48 3.60 3.60 4.62 4.58 4.58 

6 rec11 20,10 1,946.00 3.34 1.54 3.34 1.44 1.44 3.34 3.34 3.34 

7 rec13 20,15 2,709.00 6.05 5.76 5.65 3.43 4.43 6.05 6.05 6.05 

8 rec15 20,15 2,691.00 6.02 5.91 6.02 4.83 4.83 5.91 6.02 5.91 

9 rec17 20,15 2,740.00 5.58 5.15 5.47 5.51 5.51 5.58 5.58 5.58 

10 rec19 30,10 3,157.00 9.38 7.57 5.45 7.70 7.44 9.72 9.25 9.38 

11 rec21 30,10 3,015.00 6.40 4.21 2.22 3.68 4.68 6.37 6.30 6.17 

12 rec23 30,10 3,030.00 10.89 10.70 6.70 7.29 7.29 10.76 10.73 10.89 

13 rec25 30,15 3,835.00 6.31 5.45 2.69 3.08 3.08 5.97 6.31 6.21 

14 rec27 30,15 3,655.00 6.13 5.83 2.60 3.64 3.64 5.64 6.10 5.83 

15 rec29 30,15 3,583.00 8.15 7.23 3.99 7.23 7.36 7.94 8.15 7.94 

16 rec31 50,10 4,631.00 6.37 4.71 -2.72 3.76 3.78 5.90 6.13 6.22 

17 rec33 50,10 4,770.00 6.37 5.35 -4.78 1.97 2.01 5.51 6.31 6.37 

18 rec35 50,10 4,718.00 6.38 5.51 -3.67 4.94 4.94 6.08 6.17 5.91 

19 rec37 75,20 8,979.00 10.00 10.00 -5.89 7.80 7.92 9.41 9.49 9.36 

20 rec39 75,20 9,158.00 7.00 5.32 -8.80 4.97 5.12 7.00 6.99 6.91 

21 rec41 75,20 9,344.00 8.82 7.41 -6.79 6.08 6.08 8.78 8.57 8.82 

Average N/A N/A N/A 7.08 5.55 1.65 4.51 4.66 6.49 6.57 6.54 

 Average CPU time of DS and DS+M is 0 second; run on a 1000 MHz Pentium processor. 

 Average CPU time of TS, TS+M, and TS+MP is 0.5 seconds; run on a 1000 MHz Pentium processor. 

 Average CPU time of GASA and VNS are 50 and 210 seconds; run on a 1400 MHz Athlon processor.



69 
 

Table ‎4-8 Detailed Results of the Proposed Algorithm 

Problem 

Number 

Problem 

Name 
n, m 

[4] 

Makespan 

Minimum  

Deviation 

Average  

Deviation 

Maximum  

Deviation Standard  

Deviation 

Average 

CPU 

Time 
Best Found 

OFV 
BRE 

Average  

OFV 
ARE 

Worst   

OFV 
WRE 

1 rec01 20,5 1,590 1,395.00 12.26 1,511.00 4.97 1,520.00 4.40 69.72 0.34 

2 rec03 20,5 1,457 1,361.00 6.59 1,361.00 6.59 1,361.00 6.59 0.00 0.31 

3 rec05 20,5 1,637 1,511.00 7.70 1,517.30 7.31 1,520.00 7.15 4.62 0.28 

4 rec07 20,10 2,119 2,042.00 3.63 2,046.00 3.45 2,048.00 3.35 3.06 0.38 

5 rec09 20,10 2,141 2,027.00 5.32 2,033.21 5.03 2,042.00 4.62 7.54 0.40 

6 rec11 20,10 1,946 1,881.00 3.34 1,885.00 3.13 1,892.00 2.77 5.57 0.39 

7 rec13 20,15 2,709 2,545.00 6.05 2,547.70 5.95 2,552.00 5.80 3.53 0.42 

8 rec15 20,15 2,691 2,529.00 6.02 2,533.40 5.86 2,538.00 5.69 4.50 0.40 

9 rec17 20,15 2,740 2,587.00 5.58 2,588.00 5.55 2,589.00 5.51 1.00 0.44 

10 rec19 30,10 3,157 2,861.00 9.38 2,870.42 9.08 2,876.00 8.90 7.58 0.51 

11 rec21 30,10 3,015 2,822.00 6.40 2,825.77 6.28 2,830.00 6.14 4.00 0.49 

12 rec23 30,10 3,030 2,700.00 10.89 2,701.85 10.83 2,702.00 10.83 1.11 0.53 

13 rec25 30,15 3,835 3,593.00 6.31 3,611.65 5.82 3,658.00 4.62 33.47 0.55 

14 rec27 30,15 3,655 3,431.00 6.13 3,437.32 5.96 3,441.00 5.85 5.06 0.58 

15 rec29 30,15 3,583 3,291.00 8.15 3,300.50 7.88 3,303.00 7.81 6.33 0.61 

16 rec31 50,10 4,631 4,336.00 6.37 4,354.40 5.97 4,398.00 5.03 31.84 1.29 

17 rec33 50,10 4,770 4,466.00 6.37 4,471.50 6.26 4,482.00 6.04 8.13 1.91 

18 rec35 50,10 4,718 4,417.00 6.38 4,424.88 6.21 4,428.00 6.15 5.67 1.85 

19 rec37 75,20 8,979 8,081.00 10.00 8,111.21 9.66 8,145.00 9.29 32.02 3.42 

20 rec39 75,20 9,158 8,517.00 7.00 8,539.01 6.76 8,558.00 6.55 20.52 3.51 

21 rec41 75,20 9,344 8,520.00 8.82 8,570.50 8.28 8,583.00 8.14 33.36 3.50 

Average N/A N/A N/A N/A 7.08 N/A 6.52 N/A 6.25 13.74 1.05 

 



70 
 

4.5 No-Wait Flow Shop Problem with Setup Time 

4.5.1 Problem Description 

Because of the no-wait constraints, when the starting time of the first operation 

of a specific job is determined, starting time of the rest of the operations of that job can 

be calculated using (4-4). Therefore, in order to calculate the makespan of a solution of 

max| , |F no wait setup C , one should determine the starting time of the first operation of 

each job, and then calculate the starting time of the rest of the operations based on (4-4). 

This means that the solutions of the problem can be considered as permutations of the 

jobs. A permutation list will indicate the priority of scheduling the jobs. Once a 

permutation list is available, first operations of each job should be scheduled as soon as 

possible; starting time of the rest of the operations can be calculated by (4-4). In other 

words, if n  is considered as the set of all permutations   of {1,2,..., }N n  jobs, the 

no-wait flow shop problem with setup can be formulated as follows: 

maxmin

. :

No-wait constraintsapply

n

C

s t

 
                    (4-24) 

Because of the no-wait constraints, once processing a specific job is started, the 

job should be processed by the successive machines with no interruption between the 

consecutive operations. Therefore, the total flow time of iJ  can be calculated as follows: 

1

m

i i ij

j

C S p


    (4-25) 

Consequently, the modeling of the problem in (4-24) holds; and the problem can 

be reduced to a permutation problem. These results are in accordance with the findings 

of [3], who proposed that the problem can be transformed to TSP. Herein, the algorithm 

that calculates the makespan of a given permutation is presented as follows: 



71 
 

1. 
11 11oS ST . 

2. For 2k   to m , 
1 1( 1)1 1( 1)max{ , }

k kO k O kS ST S p
   . If 

1( 1)1 1( 1)kk O kST S p
   , set 

1( 1)1 1( 1)( )
kk O kd ST S p
    , and for 1,2,..., 1h k  , set 

1 1h hO OS S d  . 

3. Set 2; 1i j  . 

4. 
( 1) ( 1)ij i jo o iji jS S p ST
    . 

5. 1j j  . 

6. 
( 1) ( 1)( 1) ( 1)max{ , }

ij i j i jO o i j ij O i jS S p ST S p
      . If 

( 1) ( 1)( 1) ( 1)i j i jo i j ij O i jS p ST S p
      , set 

( 1) ( 1)( 1) ( 1)( )
i j i jo i j ij O i jd S p ST S p
      

, and for 1,2,..., 1h j  , set 
ih ihO OS S d  . 

7. If i n , stop. max nmo nmC S p  . Otherwise, set 1i i   and 1j  . Go back to 

step 4. 

This algorithm starts with a priority list or equivalently, a permutation. It 

determines the starting time of the first operation of the first priority in the permutation. 

Then the algorithm calculates the starting time of the rest of the operations of that job, 

while imposing the no-wait constraints. When scheduling the first job in the priority list 

is finished, using the same method, the algorithm schedules the next priority in the list, 

and goes to the next job until the scheduling is finished. Computational complexity of 

this algorithm is ( )O mn .  

This problem is solved using the GA that will be explained in details in 

section ‎5.3 as well as the hybrid of the GA of section ‎5.3 and PSO of section ‎4.4.2.5. 

The hybrid algorithm is called GA+PSO. As it will be mentioned in section ‎5.3, the local 

search in the proposed GA is a simple procedure that includes exchanging the priorities 

in the permutation list. GA+PSO modifies the local search of this GA algorithm. In 



72 
 

GA+PSO, the described PSO of section 4.2.3.5 is used in order to perform the local 

search. 

4.5.2 Computational Results 

As seen in section ‎4.5.1, the developed GA has four control parameters and 

GA+PSO has 9 parameters. The parameters must be tuned to obtain the best 

performance of the developed algorithms. The following experimentally derived values 

are proposed for the GA parameters: 

iseven
2

1 isodd
2

0.5

0.5

0.2

c

m

l

n
n

Pop
n

n

P

P

P

 
 
 

 
    







  (4-26) 

The proposed values of parameters for GA+PSO are as follows: 

max

min

iseven
2

1 isodd
2

0.5

0.5

0.2

4 for problems with optimalsolution

10 for problems without optimalsolution

1

0.5

4.1

10

c

m

l

n
n

Pop
n

n

P

P

P

x

w

w

c

b x

 
 
 

 
    








 










 (4-27) 

The programming language chosen to code the algorithms is Microsoft Visual 

C++ 2008; all the test problem instances are solved on a PC equipped with a 3GHz Intel 

Pentium IV CPU and 2 GB of RAM. To test the efficiency of the proposed GA and 



73 
 

GA+PSO, the same set of 29 problems of section ‎4.4.3 were chosen. First these 

problems (with setup times equal to zero) were solved and the results were compared 

with the most recent (and the best-known) algorithms in the literature. Afterwards, 

random setup times for each operation were generated based on the following rule: 

0 ; 1,2,..., 1,2,..., is integerij ij ijST p i n j m ST     (4-28) 

Then the algorithm results were compared with the results of the 2-Opt 

algorithm. 

4.5.2.1 Computational Results for the Problems without Setup Times 

For this set of problems, the result reporting scheme is the same as the approach 

of section ‎4.4.3. That is, solving each problem 20 times and reporting the best obtained 

objective function value along with the average, and worst objective function values as 

well as the average CPU time and the standard deviation of the obtained makespans. 

Table ‎4-11 demonstrates that the proposed GA is able to improve the best-known 

solutions of 16 out of 21 test problems (76%); GA+PSO improves the best-known 

solution of 20 out of 21 test problems (95.2%). 

Moreover, in terms of the averages, the average performance of the proposed GA 

is better than the HPSO of [33] in 12 out of 21 problems (57%); in terms of the ARE and 

WRE, the average performance of the proposed GA+PSO is better than the HPSO of 

[33] in all of the test problems. Table ‎4-12 is the comparison of the results of the 

proposed algorithm with [30] and [72] for the problems with unknown optimal solution. 

It should be noted that the proposed GA improves all the solutions proposed by [4], up 

to 11.93 percent in some cases. Again, the superiority of the GA+PSO over the 

competitors is clear since the proposed method is able to outperform other algorithms in 

19 out of 21 test cases (90.5%). GA+PSO algorithm improves all the solutions proposed 

by [4], up to 13 percent in some cases. Moreover, the proposed GA takes very short time 



74 
 

to solve large test cases. For example, for problems with 75 jobs and 20 machines, the 

algorithm uses slightly more than 1 minute of the CPU time to improve the best 

solutions found by [4], [30], [72], and [33]. A comparison between Table ‎4-8 and 

Table ‎4-12 reveals that GA+PSO is more successful than TS+PSO for the studied 

NWFS test problems. 



75 
 

 

 Table ‎4-9 Comparison of the Results of the Proposed algorithm with [33] and [104] for the Problems with Optimal Solution 

 

 

 

 

 

 

 

 

 

 

 
 

 

Table ‎4-10 Comparison of the Results of the Proposed algorithm with [30] and [72] for the Problems with Optimal Solution 
 

 
n, m 

Optimal 

Solution 

Proposed 

GA 

(BRE) 

Proposed 

GA+PSO 

(BRE) 

VNS GASA DS DS+M TS TS+M TS+MP 
 

car1 11,5 8,142 0.00 0.00 0.70 0.00 0.00 0.00 0.00 0.00 0.00 

car2 13,4 8,242 0.00 0.00 0.20 0.00 0.62 0.62 0.00 0.00 0.00 

car3 12,5 8,866 0.00 0.00 0.00 0.00 0.08 0.08 0.00 0.00 0.00 

car4 14,4 9,195 0.00 0.00 1.60 0.00 2.77 2.77 0.00 0.00 0.00 

car5 10,6 9,159 0.00 0.00 3.50 0.00 0.00 0.00 0.00 0.00 0.00 

car6 8,9 9,690 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

car7 7,7 7,705 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

car8 8,8 9,372 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

Average N/A N/A 0.00 0.00 0.75 0.00 0.43 0.43 0.00 0.00 0.00 

 

 

 

 

 

 n, m 
Optimal 

Solution 

Proposed GA Proposed GA+PSO HPSO HPSO NONEH HPSO NOSA PSOVNS 

 BRE ARE WRE T BRE ARE WRE T BRE ARE WRE BRE ARE WRE BRE ARE WRE BRE ARE WRE 

car1 11,5 8,142 0.00 0.06 0.3 0.45 0.00 0.03 0.22 0.48 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.22 3.87 

car2 13,4 8,242 0.00 0.06 0.16 0.4 0.00 0.02 0.1 0.54 0.00 0.18 0.61 0.00 0.37 0.62 0.06 0.59 0.62 0.00 0.67 3.00 

car3 12,5 8,866 0.00 0.00 0.00 0.42 0.00 0.00 0.00 0.53 0.00 0.06 0.24 0.00 0.11 0.27 0.25 0.58 1.05 0.00 0.33 1.17 

car4 14,4 9,195 0.00 0.22 1.23 0.41 0.00 0.2 1.21 0.56 0.00 1.85 4.29 0.70 1.96 3.46 3.58 7.42 9.07 0.07 1.74 4.18 

car5 10,6 9,159 0.00 0.00 0.00 0.41 0.00 0.00 0.00 0.45 0.00 0.00 0.00 0.00 0.41 3.68 0.00 2.27 4.89 0.00 0.04 0.55 

car6 8,9 9,690 0.00 0.00 0.00 0.45 0.00 0.00 0.00 0.39 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

car7 7,7 7,705 0.00 0.00 0.00 0.33 0.00 0.00 0.00 0.36 0.00 0.00 0.00 0.00 0.02 0.42 0.00 0.17 1.28 0.00 0.00 0.00 

car8 8,8 9,372 0.00 0.00 0.00 0.46 0.00 0.00 0.00 0.39 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.26 0.36 0.00 0.00 0.00 

Average N/A 0.00 0.04 0.21 0.42 0.00 0.03 0.19 0.46 0.00 0.26 0.64 0.09 0.36 1.06 0.49 1.41 2.16 0.00 0.5 1.6 



76 
 

 

Table ‎4-11 Comparison of the Results of the Proposed algorithm with [33] for the Problems with unknown Optimal Solution 

Problem 

Number 

Problem 

Name 
n, m 

[4] 

Makespan 

Proposed GA 

Objective Function Value and The percentage of 

Improvement Over the Makespan of [4] 
Average  

CPU  

Time BRE ARE WRE 
Standard 

Deviation 

1 rec01 20,5 1590 1,526.00 4.19 1,530.60 3.88 1,550.00 2.58 41.57 2.91 

2 rec03 20,5 1457 1,385.00 5.20 1,395.10 4.44 1,423.00 2.39 63.65 2.94 

3 rec05 20,5 1637 1,519.00 7.77 1,527.55 7.17 1,546.00 5.89 4.87 2.74 

4 rec07 20,10 2119 2,042.00 3.77 2,058.90 2.92 2,078.00 1.97 3.00 4.96 

5 rec09 20,10 2141 2,043.00 4.80 2,055.65 4.15 2,088.00 2.54 14.89 4.64 

6 rec11 20,10 1946 1,890.00 2.96 1,916.30 1.55 1,956.00 -0.51 12.00 4.40 

7 rec13 20,15 2709 2,545.00 6.44 2,575.85 5.17 2,640.00 2.61 9.23 6.19 

8 rec15 20,15 2691 2,529.00 6.41 2,542.50 5.84 2,583.00 4.18 26.57 6.09 

9 rec17 20,15 2740 2,587.00 5.91 2,606.10 5.14 2,635.00 3.98 10.58 6.37 

10 rec19 30,10 3157 2,891.00 9.20 2,926.80 7.87 2,964.00 6.51 24.39 5.73 

11 rec21 30,10 3015 2,843.00 6.05 2,849.70 5.80 2,874.00 4.91 12.93 6.71 

12 rec23 30,10 3030 2,707.00 11.93 2,738.50 10.64 2,762.00 9.70 7.85 6.85 

13 rec25 30,15 3835 3,625.00 5.79 3,642.90 5.27 3,677.00 4.30 20.11 9.47 

14 rec27 30,15 3655 3,457.00 5.73 3,474.85 5.18 3,514.00 4.01 35.82 9.31 

15 rec29 30,15 3583 3,301.00 8.54 3,366.25 6.44 3,408.00 5.13 42.68 9.11 

16 rec31 50,10 4631 4,336.00 6.80 4,354.40 6.35 4,398.00 5.30 23.01 10.79 

17 rec33 50,10 4770 4,509.00 5.79 4,593.00 3.85 4,678.00 1.97 33.90 10.84 

18 rec35 50,10 4718 4,469.00 5.57 4,486.55 5.16 4,512.00 4.57 8.72 10.67 

19 rec37 75,20 8979 8,170.00 9.90 8,199.95 9.50 8,304.00 8.13 17.18 61.70 

20 rec39 75,20 9158 8,593.00 6.58 8,686.35 5.43 8,786.00 4.23 56.39 61.16 

21 rec41 75,20 9344 8,627.00 8.31 8,695.05 7.46 8,849.00 5.59 25.69 63.60 

Average N/A N/A N/A N/A 6.55 N/A 5.68 N/A 4.29 23.57 14.63 

 



77 
 

Table 4-11 (Continued) 

Problem 

Number 

Problem 

Name 
n, m 

Proposed GA+PSO [33] 

Objective Function Value and The percentage of 

Improvement Over the Makespan of [4] 
Average  

CPU  

Time 

Objective 

Function Value 

BRE ARE 
WRE Standard 

Deviation 
BRE ARE WRE 

1 rec01 20,5 1,395.00 13.98 1,512.00 5.16 1,527.00 4.13 40.74 3.69 3.77 3.39 2.96 

2 rec03 20,5 1,361.00 7.05 1,361.00 7.05 1,361.00 7.05 0.00 3.72 6.59 6.15 3.36 

3 rec05 20,5 1,514.00 8.12 1,517.00 7.91 1,519.00 7.77 4.77 3.47 7.39 7.15 6.66 

4 rec07 20,10 2,042.00 3.77 2,047.00 3.52 2,052.00 3.27 1.11 6.27 3.63 3.11 2.31 

5 rec09 20,10 2,042.00 4.85 2,045.00 4.69 2,048.00 4.54 2.01 5.87 4.58 4.26 3.60 

6 rec11 20,10 1,881.00 3.46 1,882.50 3.37 1,894.00 2.75 0.53 5.57 3.34 2.30 1.28 

7 rec13 20,15 2,545.00 6.44 2,548.50 6.30 2,552.00 6.15 3.05 7.83 6.05 5.47 4.80 

8 rec15 20,15 2,529.00 6.41 2,529.06 6.40 2,530.00 6.36 0.04 7.70 6.02 5.69 4.91 

9 rec17 20,15 2,587.00 5.91 2,588.00 5.87 2,588.00 5.87 0.08 8.06 5.58 5.42 5.07 

10 rec19 30,10 2,874.00 9.85 2,884.50 9.45 2,895.00 9.05 3.50 7.25 9.15 8.50 6.46 

11 rec21 30,10 2,827.00 6.65 2,827.72 6.62 2,828.00 6.61 0.06 8.49 5.70 5.33 4.74 

12 rec23 30,10 2,707.00 11.93 2,723.50 11.25 2,740.00 10.58 7.64 8.67 10.80 9.72 8.65 

13 rec25 30,15 3,593.00 6.74 3,595.00 6.68 3,597.00 6.62 1.26 11.98 5.71 5.17 4.25 

14 rec27 30,15 3,434.00 6.44 3,447.00 6.03 3,460.00 5.64 12.35 11.78 6.13 5.04 4.13 

15 rec29 30,15 3,291.00 8.87 3,296.00 8.71 3,301.00 8.54 7.55 11.53 7.81 6.93 5.69 

16 rec31 50,10 4,336.00 6.80 4,342.50 6.64 4,349.00 6.48 6.59 13.65 5.92 5.20 4.51 

17 rec33 50,10 4,484.00 6.38 4,491.00 6.21 4,498.00 6.05 23.45 13.72 5.51 4.08 3.17 

18 rec35 50,10 4,441.00 6.24 4,454.50 5.92 4,468.00 5.60 8.45 13.50 6.02 5.13 3.98 

19 rec37 75,20 8,163.00 10.00 8,194.50 9.57 8,226.00 9.15 14.48 78.06 8.89 8.20 7.40 

20 rec39 75,20 8,593.00 6.58 8,618.00 6.27 8,643.00 5.96 25.86 77.36 6.79 5.67 4.26 

21 rec41 75,20 8,627.00 8.31 8,642.50 8.12 8,658.00 7.92 16.31 80.45 7.94 6.77 5.91 

Average N/A N/A N/A 7.37 N/A 6.75 N/A 6.48 8.56 18.50 6.35 5.65 4.67 



78 
 

Table ‎4-12 Comparison of the Results of the Proposed algorithm with [30] and [72] for the Problems with unknown Optimal Solution 

Problem 

Number 

Problem 

Name 
n, m 

[4] 

Makespan 

Proposed 

GA (BRE) 

Proposed 

GA+PSO 

(BRE) 

VNS GASA DS DS+M TS TS+M TS+MP 

1 rec01 20,5 1,590.00 3.88 13.98 2.77 3.96 3.71 3.58 4.03 3.96 3.96 

2 rec03 20,5 1,457.00 4.44 7.05 4.32 4.46 3.43 4.43 6.59 6.59 6.59 

3 rec05 20,5 1,637.00 7.17 8.12 7.03 6.90 5.62 5.62 7.39 7.64 7.70 

4 rec07 20,10 2,119.00 2.92 3.77 2.31 3.45 1.09 1.08 3.63 3.63 3.63 

5 rec09 20,10 2,141.00 4.15 4.85 2.38 4.48 3.60 3.60 4.62 4.58 4.58 

6 rec11 20,10 1,946.00 1.55 3.46 1.54 3.34 1.44 1.44 3.34 3.34 3.34 

7 rec13 20,15 2,709.00 5.17 6.44 5.76 5.65 3.43 4.43 6.05 6.05 6.05 

8 rec15 20,15 2,691.00 5.84 6.41 5.91 6.02 4.83 4.83 5.91 6.02 5.91 

9 rec17 20,15 2,740.00 5.14 5.91 5.15 5.47 5.51 5.51 5.58 5.58 5.58 

10 rec19 30,10 3,157.00 7.87 9.85 7.57 5.45 7.70 7.44 9.72 9.25 9.38 

11 rec21 30,10 3,015.00 5.80 6.65 4.21 2.22 3.68 4.68 6.37 6.30 6.17 

12 rec23 30,10 3,030.00 10.64 11.93 10.70 6.70 7.29 7.29 10.76 10.73 10.89 

13 rec25 30,15 3,835.00 5.27 6.74 5.45 2.69 3.08 3.08 5.97 6.31 6.21 

14 rec27 30,15 3,655.00 5.18 6.44 5.83 2.60 3.64 3.64 5.64 6.10 5.83 

15 rec29 30,15 3,583.00 6.44 8.87 7.23 3.99 7.23 7.36 7.94 8.28 7.94 

16 rec31 50,10 4,631.00 6.35 6.80 4.71 -2.72 3.76 3.78 5.90 6.13 6.22 

17 rec33 50,10 4,770.00 3.85 6.38 5.35 -4.78 1.97 2.01 5.51 6.31 6.37 

18 rec35 50,10 4,718.00 5.16 6.24 5.51 -3.67 4.94 4.94 6.08 6.17 5.91 

19 rec37 75,20 8,979.00 9.50 10.00 10.00 -5.89 7.80 7.92 9.41 9.49 9.36 

20 rec39 75,20 9,158.00 5.43 6.58 5.32 -8.80 4.97 5.12 7.00 6.99 6.91 

21 rec41 75,20 9,344.00 7.46 8.31 7.41 -6.79 6.08 6.08 8.78 8.57 8.82 

Average N/A N/A N/A 5.68 7.37 5.55 1.65 4.51 4.66 6.49 6.57 6.54 



79 
 

4.5.2.2 Computational Results for the Problems with Setup Times 

The sets of problems with and without known optimal solutions are considered 

since the problem sizes in the two sets differ significantly. Setup time for each operation 

is generated based on (4-28). For clarification purposes, the new problems are called 

Car1+S through Car8+S, and Rec01+S through Rec41+S. Since these problems are 

generated in this thesis and being solved for the first time, the results of the proposed 

GA and GA+PSO are compared with the results of the 2-Opt algorithm. For a 

permutation problem, 2-opt algorithm arbitrarily chooses two elements of the 

permutation and exchanges these two elements; objective function will be calculated and 

the exchange will be accepted if an improvement is noticed. The algorithm continues 

until no such improvement can be made. 

Table ‎4-13 gives the computational results of the Car1+s through Car8+s 

problems; this table highlights the performance of the proposed algorithms compared to 

the 2-Opt algorithm. 

Table ‎4-14 presents the computational results of the proposed GA for the 

Rec01+S through Rec41+S. The average row reveals that the difference between BRE, 

ARE, and WRE gaps is small. This shows that the proposed GA and GA+PSO are able 

to suggest consistent results. In addition, the average standard deviation, reflected in the 

STD column is another indicator of the consistency of the proposed methods. Moreover, 

comparing the 2-Opt algorithm‎results‎and‎the‎proposed‎algorithms’‎solutions‎concludes‎

the effectiveness of the algorithm. Once again, the results of the GA+PSO outperform 

the results of the proposed GA. 



80 
 

4.6 No-Wait Flow Shop Problem with Separable Sequence Dependent 

Setup Time 

4.6.1 Problem Description 

(4-4) implies that once the starting time of 1io  is known, it is possible to calculate 

the starting time of ; 2,3,...,ijo j m . Accordingly, it is possible to reduce the problem to 

finding the best time to start 1; 1,2,...,io i n . In other words, max| , |sdF no wait S C  can 

be reduced to a permutation problem. In other words, it is possible to reduce 

max| , |sdF no wait S C  to ATSP. 

The proposed PSO exploits the above fact and searches the set of permutations of 

a problem instance in order to find the permutation that minimizes the makespan of that 

instance. Herein, the Makespan Calculation Algorithm (MCA) that calculates the 

makespan of a given permutation is presented as follows: 

1. 
11 110oS ST . 

2. For 2k   to m , 
1[ ] 11[ ]0 1max{ , }

k kO k O kS ST S p  . If 
11[ ]0 1kk O kST S p  , set 

11[ ]0 1( )
kk O kd ST S p   , and for 1,2,..., 1h k  , set 

1 1h hO OS S d  . 

3. Set 1; 1i j  . 

4. 
[ ] [ ]iji jo o ij i jiS S p ST   . 

5. 1j j  . 

6. 
[ ] [ ],( 1)[ ] [ ],( 1)max{ , }
i j ij i jO o ij i ji O i jS S p ST S p

     . If 

[ ],( 1)[ ] [ ],( 1)ij i jo ij i ji O i jS p ST S p
     , set 

[ ],( 1)[ ] [ ],( 1)( )
ij i jo ij i ji O i jd S p ST S p

      , 

and for 1,2,..., 1h j  , set 
[ ] [ ]i h i hO OS S d  . 

7. If i n , stop. max nmo nmC S p  . Otherwise, set 1i i   and 1j  . Go back to 

step 4. 



81 
 

The algorithm starts with a sequence of jobs or equivalently, a permutation. It 

determines the starting time of the first operation of the first job in the given 

permutation. Then the algorithm considers the sequence dependent setup times and 

imposes the no-wait constraints, while calculating the starting time of the rest of the 

operations of that job. When scheduling the first job in the sequence is finished, using 

the same method, the algorithm schedules the next job in the sequence, and continues 

until the scheduling is finished. Computational complexity of this algorithm is ( )O mn .  

 



82 
 

 

Table ‎4-13 Computational Results of the Problems Car1+S through Car8+S 

 Proposed GA 

Prob. 

No. 
n, m 

2-Opt 

OFV* 

Best Makespan 
Average 

Makespan 
Worst Makespan Average 

CPU 

Time OFV
*
 

Gap
**

 

(%) 
OFV

*
 

Gap
**

 

(%) 
OFV

*
 

Gap
**

 

(%) 

car1+S 11,5 14,423.00 12,313.00 17.14 12,320.50 17.07 12,343.00 16.85 1.76 

car2+S 13,4 16,917.00 12,786.00 32.31 12,831.80 31.84 13,073.00 29.40 1.82 

car3+S 12,5 16,453.00 12,443.00 32.23 12,468.95 31.95 12,616.00 30.41 1.79 

car4+S 14,4 17,461.00 13,637.00 28.04 13,637.75 28.03 13,647.00 27.95 1.89 

car5+S 10,6 18,014.00 13,128.00 37.22 13,219.40 36.27 13,650.00 31.97 1.68 

car6+S 8,9 15,531.00 13,233.00 17.37 13,315.50 16.64 13,896.00 11.77 1.32 

car7+S 7,7 11,765.00 11,249.00 4.59 11,275.60 4.34 11,330.00 3.84 1.30 

car8+S 8,8 13,776.00 11,902.00 15.75 11,912.80 15.64 11,938.00 15.40 1.45 

Average N/A N/A 23.08 N/A 22.72 N/A 20.95 1.63 

 

 

Table 4-13 (Continued) 

 Proposed GA+PSO 

Prob. 

No. 
n, m 

2-Opt 

OFV* 

Best Makespan Average Makespan Worst Makespan Average 

CPU 

Time 
OFV

*
 

Gap
**

 

(%) 
OFV

*
 

Gap
**

 

(%) 
OFV

*
 

Gap
**

 

(%) 

car1+S 11,5 14,423.00 11,784.00 22.39 11,808.65 22.14 11,947.00 20.72 2.46 

car2+S 13,4 16,917.00 11,786.00 43.53 11,795.90 43.41 11,826.00 43.05 2.55 

car3+S 12,5 16,453.00 12,443.00 32.23 12,494.95 31.68 12,617.00 30.40 2.51 

car4+S 14,4 17,461.00 13,535.00 29.01 13,648.30 27.94 13,838.00 26.18 2.65 

car5+S 10,6 18,014.00 13,128.00 37.22 13,128.00 37.22 13,128.00 37.22 2.35 

car6+S 8,9 15,531.00 13,233.00 17.37 13,233.00 17.37 13,233.00 17.37 1.85 

car7+S 7,7 11,765.00 10,290.00 14.33 10,290.00 14.33 10,290.00 14.33 1.82 

car8+S 8,8 13,776.00 11,902.00 15.75 11,902.00 15.75 11,902.00 15.75 2.03 

Average N/A N/A 26.48 N/A 26.23 N/A 25.63 2.28 
* Objective Function Value 

**Gap is between the algorithm’s‎OFV and 2-Opt algorithm 

 



83 
 

Table ‎4-14 Computational Results of the Problems Rec01+S through Rec41+S 

 Proposed GA 

Prob. 

No. 

Prob. 

Name 
n, m 

2-Opt 

OFV* 

OFV* Average 

CPU 

Time 
Best 

Makespan 

 Gap** 

(%)  

Average 

Makespan 

 Gap** 

(%)  

Worst 

Makespan 

 Gap** 

(%) 
STD 

1 rec01+S 20,5 2,721.00 2,166.00 25.62 2,175.95 25.05 2,222.00 22.46 3.99 20.57 

2 rec03+S 20,5 2,625.00 2,033.00 29.12 2,041.40 28.59 2,070.00 26.81 5.45 20.59 

3 rec05+S 20,5 2,706.00 2,136.00 26.69 2,146.60 26.06 2,159.00 25.34 8.53 20.51 

4 rec07+S 20,10 3,729.00 2,795.00 33.42 2,801.10 33.13 2,836.00 31.49 12.29 21.34 

5 rec09+S 20,10 3,423.00 2,941.00 16.39 2,946.95 16.15 2,985.00 14.67 7.61 21.35 

6 rec11+S 20,10 3,599.00 2,553.00 40.97 2,574.40 39.80 2,605.00 38.16 5.59 21.21 

7 rec13+S 20,15 4,431.00 3,418.00 29.64 3,435.05 28.99 3,476.00 27.47 20.54 22.26 

8 rec15+S 20,15 4,193.00 3,358.00 24.87 3,371.05 24.38 3,438.00 21.96 24.77 22.04 

9 rec17+S 20,15 4,435.00 3,372.00 31.52 3,389.95 30.83 3,424.00 29.53 7.60 22.26 

10 rec19+S 30,10 5,665.00 4,247.00 33.39 4,276.40 32.47 4,352.00 30.17 12.36 25.43 

11 rec21+S 30,10 5,171.00 3,964.00 30.45 3,986.75 29.70 4,026.00 28.44 14.82 25.58 

12 rec23+S 30,10 5,224.00 3,886.00 34.43 3,907.40 33.70 3,931.00 32.89 10.01 25.43 

13 rec25+S 30,15 6,387.00 4,799.00 33.09 4,825.10 32.37 4,863.00 31.34 6.80 26.81 

14 rec27+S 30,15 6,401.00 4,611.00 38.82 4,634.25 38.12 4,704.00 36.08 32.62 26.95 

15 rec29+S 30,15 6,681.00 4,624.00 44.49 4,647.30 43.76 4,697.00 42.24 39.86 26.78 

16 rec31+S 50,10 8,494.00 6,176.00 37.53 6,204.30 36.91 6,210.00 36.78 29.30 37.57 

17 rec33+S 50,10 9,278.00 6,467.00 43.47 6,503.80 42.66 6,662.00 39.27 62.86 37.61 

18 rec35+S 50,10 8,969.00 6,617.00 35.54 6,638.70 35.10 6,602.00 35.85 26.94 37.62 

19 rec37+S 75,20 16,227.00 11,420.00 42.09 11,493.80 41.18 11,516.00 40.91 33.80 87.64 

20 rec39+S 75,20 16,896.00 11,741.00 43.91 11,792.90 43.27 11,909.00 41.88 98.37 88.10 

21 rec41+S 75,20 16,749.00 11,636.00 43.94 11,668.55 43.54 11,768.00 42.33 63.71 88.42 

Average N/A N/A N/A 34.26 N/A 33.61 N/A 32.19 25.14 34.57 

 



84 
 

Table 4-14 (Continued) 

 Proposed GA+PSO 

Prob. 

No. 

Prob. 

Name 
n, m 

2-Opt 

OFV* 

OFV* Average 

CPU 

Time 
Best 

Makespan 

 Gap** 

(%)  

Average 

Makespan 

 Gap** 

(%)  

Worst 

Makespan 

 Gap** 

(%) 
STD 

1 rec01+S 20,5 2,721.00 2,161.00 25.91 2,167.85 25.52 2,177.00 24.99 13.81 28.80 

2 rec03+S 20,5 2,625.00 2,020.00 29.95 2,034.00 29.06 2,056.00 27.68 13.59 28.83 

3 rec05+S 20,5 2,706.00 2,133.00 26.86 2,143.25 26.26 2,151.00 25.80 3.35 28.71 

4 rec07+S 20,10 3,729.00 2,789.00 33.70 2,796.85 33.33 2,832.00 31.67 8.27 29.87 

5 rec09+S 20,10 3,423.00 2,922.00 17.15 2,931.15 16.78 2,961.00 15.60 14.02 29.88 

6 rec11+S 20,10 3,599.00 2,552.00 41.03 2,567.50 40.18 2,585.00 39.23 17.78 29.69 

7 rec13+S 20,15 4,431.00 3,417.00 29.68 3,432.20 29.10 3,452.00 28.36 11.87 31.16 

8 rec15+S 20,15 4,193.00 3,337.00 25.65 3,356.10 24.94 3,377.00 24.16 13.20 30.86 

9 rec17+S 20,15 4,435.00 3,372.00 31.52 3,385.65 30.99 3,402.00 30.36 13.25 31.16 

10 rec19+S 30,10 5,665.00 4,222.00 34.18 4,261.00 32.95 4,295.00 31.90 31.99 35.60 

11 rec21+S 30,10 5,171.00 3,939.00 31.28 3,986.60 29.71 4,014.00 28.82 34.00 35.81 

12 rec23+S 30,10 5,224.00 3,838.00 36.11 3,850.00 35.69 3,869.00 35.02 12.79 35.60 

13 rec25+S 30,15 6,387.00 4,774.00 33.79 4,781.45 33.58 4,792.00 33.28 16.63 37.53 

14 rec27+S 30,15 6,401.00 4,580.00 39.76 4,622.30 38.48 4,681.00 36.74 20.03 37.73 

15 rec29+S 30,15 6,681.00 4,562.00 46.45 4,592.35 45.48 4,680.00 42.76 20.21 37.49 

16 rec31+S 50,10 8,494.00 6,115.00 38.90 6,156.15 37.98 6,273.00 35.41 28.92 52.60 

17 rec33+S 50,10 9,278.00 6,418.00 44.56 6,460.80 43.60 6,581.00 40.98 32.60 52.65 

18 rec35+S 50,10 8,969.00 6,507.00 37.84 6,526.85 37.42 6,652.00 34.83 12.53 52.67 

19 rec37+S 75,20 16,227.00 11,391.00 42.45 11,440.70 41.84 11,598.00 39.91 48.55 122.70 

20 rec39+S 75,20 16,896.00 11,581.00 45.89 11,674.60 44.72 11,859.00 42.47 29.71 123.34 

21 rec41+S 75,20 16,749.00 11,537.00 45.18 11,620.10 44.14 11,789.00 42.07 33.98 123.79 

Average N/A N/A N/A 35.14 N/A 34.37 N/A 32.96 20.53 48.40 

*Objective Function Value 

**Gap is between the algorithm’s‎OFV and 2-Opt algorithm 



85 
 

4.6.2 The Proposed PSO 

PSO algorithm has been a widely used metaheuristic since its introduction in 

[110, 111]. In PSO, at time t , each particle i  has a position, ( )ix t , and a velocity, ( )iv t . 

PSO stores the current position of the particles as well as the best ever position; 

historical and random information are used in order to update velocities during the 

algorithm’s‎ iterations;‎ using‎ the‎ modified‎ velocities,‎ particles’‎ positions‎ are‎ updated. 

The proposed PSO uses a specific coding system to map permutations of jobs into 

representations that PSO is able to work with. In this research, this coding scheme is 

referred to as Matrix Coding (MC). MC is previously introduced and applied to a layout 

problem in [118].  

After generating a number of initial solutions, the proposed PSO stores the local 

and global best positions; afterwards, PSO generates the velocity vectors. At this point, 

job permutations are transformed into MCs. Each MC represents a particle. PSO moves 

the particles based on the generated velocity vectors; such transfers are carried out 

according to a probabilistic approach. Once all the transfers are completed, PSO 

transforms the new MCs into their respective permutations and the objective function of 

the new permutations is calculated. The algorithm then updates the values of the local 

and global bests and proceeds with next iterations. The proposed PSO uses the MCA 

algorithm of section ‎4.6.1 to calculate the objective function values of the generated 

permutations. 

4.6.2.1 Initial Solutions and Matrix Coding 

Generating P  initial solutions or equivalently particles initiates the algorithm. P  

is a parameter of the algorithm, which is set by the user. Once the particles are 

generated, PSO calculates their objective function values (makespans) using the MCA 

algorithm of section ‎4.6.1. The best objective function value along with the 



86 
 

corresponding permutation will be assigned to the global best variable or g . Since the 

particles have not moved in the feasible region yet, every particle is considered to be at 

its local best position or b .  

Then, each permutation is transformed into its corresponding MC. MCs are the 

appropriate representation of permutations, with which PSO is able to function. Suppose 

that at iteration k , permutation (1,2,3,..., )N  represents particle l . MC representation of 

this permutation is the orthogonal N N  matrix (4-29). 

1 0 0 0

0 1 0 0 0

0 0 1 0 0

0 0 0 1 0

0 0 0 0 1

 
 
 
 
 
 
 
 
 

  (4-29) 

Every element of this matrix is represented by klijx , in which k  is the iteration 

number, l  is the particle number, i  is the column number, and j  is the row number. MC 

is such that: 

1

1

1;

1;

n

klij

i

n

klij

j

x j

x i





 

 




  (4-30) 

In addition, 1klijx   means that in iteration k , job i  is placed in the j th position 

of the permutation l . For instance, the MC of the permutation (2,1,3)  is as follows: 

0 1 0

1 0 0

0 0 1

 
 
 
  

  (4-31) 



87 
 

Once the algorithm codes the initial solutions using the MCs, velocity vectors are 

generated in order to update the position of the particles and transfer them to the 

neighborhood solutions. 

4.6.2.2 Velocity Vectors and Neighborhood Structure 

Suppose that the algorithm is in its k th iteration. For each particle 1,2,...,l P , 

velocity vectors, represented by klv , are updated using (4-32). 

   ( 1) 1 2(0, ) (0, )kl k l l kl klv v U b x U g x       (4-32) 

In which, (0, ); 1,2iU i   is uniform probability distribution with parameters 0  

and 
i . ; 1,2i i   is a parameter, set by the user. lb  is the MC of the local best position 

of the particle l . g  represents the MC of the global best position. klx  is the MC of the 

particle l  in iteration k . In order to limit the values of velocity vectors, and encourage 

the PSO to search the promising areas more thoroughly, the following checks will be 

done: 

min{ ,15}

max{ , 15}

kl kl

kl kl

v v

v v



 
  (4-33) 

It should be noted that 
1 1;lv l  . Once the velocity vectors are updated, the 

algorithm is ready to move the particles to their new positions. First the algorithm 

considers the set of all available places in the iteration as  1,2,...,A N  and sets 

0; ,klijx i j  . PSO uses (4-34) in order to calculate the probability of setting 

1; 1klijx j  . 

1

1

(1 )
;

(1 )

klij

klij

v

klij v

i A

e
E i

e

 

 




 


  (4-34) 



88 
 

If the algorithm chooses that 1; 1klijx j  , the set of available places will be 

updated as    1,2,...,A N i  ; the same procedure will be repeated for 2,3,...,j N , 

until the position of particle l  is updated. At this point, PSO calculates the objective 

function values of the new particles and updates the values of g  and 
lb  if necessary; 

and the search will continue.  

4.6.2.3 Illustrative Example 

As an illustrative example, suppose that the matrix of klijv  is given as follows: 

1 2 1

1 3 3

1 5 12

 
 


 
  

  (4-35) 

Using (4-34) to calculate the values of ; 1klijE j   will result in: 

(0.31,0.37,0.31)   (4-36) 

Suppose that the algorithm chooses to set 
21 1klx  . The partial MC would be: 

0 1 0

0

0

 
 
 
  

  (4-37) 

And the list of available places should be updated to  1,3A  . The algorithm 

sets 2j  , and the values of ; 2klijE j   will be (0.94,0.06 ). Suppose that the 

algorithm sets 
12 1klx  . The partial MC is as follows: 

0 1 0

1 0 0

0 0

 
 
 
  

  (4-38) 

Since there is only one place left in MC, the complete MC would be: 



89 
 

0 1 0

1 0 0

0 0 1

 
 
 
  

  (4-39) 

Which is equal to permutation (2,1,3) . The proposed PSO stops after I  

iterations. I  is a parameter, set by the user. Next section presents the computational 

results. 

4.6.3 Computational Results 

As seen in section ‎4.6.2, the developed PSO has 4 parameters that must be tuned 

to obtain the best performance from the algorithm. The following experimentally 

derived values are proposed for the PSO parameters: 

1; 1,2

100.

i

P n

i

I n





 



 

 (4-40) 

The developed PSO is coded using Microsoft Visual C++ 2008; all the test 

problem instances are solved on a PC equipped with a 3 GHz Intel Pentium IV CPU and 

2 GB of RAM. As mentioned before, the proposed PSO is applied to test problems of 

max| |F no wait C , max| , |F no wait setup C , and max| , |sdF no wait S C . 

4.6.3.1 Computational Results for max| |F no wait C  Test Problems 

The same set of test problems of sections ‎4.4.3 and ‎4.5.2.1 are chosen to test the 

efficiency of the proposed PSO compared to the previous algorithms developed for 

max| |F no wait C . Table ‎4-15 compares the computational results of the proposed 

algorithms with those of [33] and [4]. 

Table ‎4-15 demonstrates that the proposed PSO improves the best-known 

solution of 14 out of 21 test problems (66.67%), and for the rest of the problems, the 

proposed solutions of the developed PSO are never inferior to the solutions of [33]. 

Moreover, in terms of ARE and WRE, the average performance of the proposed PSO is 



90 
 

better than the HPSO of [33] in 20 and 19 cases respectively. It should be noted that the 

proposed PSO improves all the solutions proposed by [4], up to 12.26 percent in some 

cases. The proposed PSO takes very short time to solve large test cases. For example, for 

problems with 75 jobs and 20 machines, the algorithm uses slightly more than 1 second 

from the CPU time, which is a considerable improvement from the algorithms of the 

section ‎4.4.2 and ‎4.5.2. Small standard deviation (STD) values are a sign of the 

consistency of the proposed algorithm. One can verify that the proposed algorithm is 

able to re-generate all the ARE values of section ‎4.5.2.1. 

4.6.3.2 Computational Results for max| , |F no wait setup C  Test Problems 

29 test cases of max| , |F no wait setup C  were generated in section ‎4.5.2.2: car1+S 

through car8+S and rec01+S through rec41+S. Since max| , |F no wait setup C  is a 

special case of max| , |sdF no wait S C , the proposed PSO can be applied to these test 

cases. In section ‎4.5.2.2, these problems were solved using 2-Opt algorithm as well as 

GA and GA+PSO. Table ‎4-16 and Table ‎4-17 compare the results of section ‎4.5.2.2 with 

the solutions proposed by the developed PSO for car1+S through car8+S and rec01+S 

through rec41+S respectively. For the case of rec+S problems, the developed PSO 

improves all the solutions proposed by GA and 14 out of 21 solutions proposed by 

GA+PSO. Since both algorithms use the same platform to conduct the computational 

results, it is possible to compare the CPU times of the proposed PSO with GA and 

GA+PSO. While average CPU time of the developed algorithm for rec+S problems is 

0.58 seconds, the average CPU times of GA and GA+PSO are 34.57 and 48.40 seconds 

respectively. In addition, the average standard deviation, reflected in the STD column is 

another indicator of the consistency of the proposed PSO. In other words, the proposed 

PSO outperforms the competitive methods. 



91 
 

Table ‎4-15 Comparison of the Results of the Proposed PSO with [33] for the Test Problems without Setup Times 

Prob. 

Number 

Prob. 

Name 
n, m 

[4] 

Makespan 

Proposed PSO [33] 

Objective Function Value and The 

percentage of Improvement Over the 

Makespan of [4] 

Average 

CPU 

Time 

(Second) 

Objective 

Function Value 

BRE ARE WRE STD BRE ARE WRE 

1 rec01 20,5 1590 1,395.00 12.26 1,512.00 4.91 1,534.00 3.52 105.64 0.19 3.77 3.39 2.96 

2 rec03 20,5 1457 1,361.00 6.59 1,361.00 6.59 1,361.00 6.59 0.00 0.18 6.59 6.15 3.36 

3 rec05 20,5 1637 1,511.00 7.70 1,519.30 7.19 1,533.00 6.35 9.12 0.23 7.39 7.15 6.66 

4 rec07 20,10 2119 2,042.00 3.63 2,054.00 3.07 2,066.00 2.50 9.46 0.27 3.63 3.11 2.31 

5 rec09 20,10 2141 2,027.00 5.32 2,034.50 4.97 2,042.00 4.62 11.09 0.09 4.58 4.26 3.60 

6 rec11 20,10 1946 1,881.00 3.34 1,884.54 3.16 1,894.00 2.67 5.50 0.26 3.34 2.30 1.28 

7 rec13 20,15 2709 2,545.00 6.05 2,558.70 5.55 2,578.00 4.84 28.18 0.36 6.05 5.47 4.80 

8 rec15 20,15 2691 2,529.00 6.02 2,529.00 6.02 2,529.00 6.02 0.00 0.34 6.02 5.69 4.91 

9 rec17 20,15 2740 2,587.00 5.58 2,587.95 5.55 2,588.00 5.55 0.22 0.37 5.58 5.42 5.07 

10 rec19 30,10 3157 2,861.00 9.38 2,867.50 9.17 2,874.00 8.96 6.67 0.40 9.15 8.50 6.46 

11 rec21 30,10 3015 2,822.00 6.40 2,825.00 6.30 2,828.00 6.20 3.08 0.40 5.70 5.33 4.74 

12 rec23 30,10 3030 2,700.00 10.89 2,735.75 9.71 2,751.00 9.21 28.74 0.26 10.80 9.72 8.65 

13 rec25 30,15 3835 3,593.00 6.31 3,593.00 6.31 3,593.00 6.31 0.00 0.35 5.71 5.17 4.25 

14 rec27 30,15 3655 3,431.00 6.13 3,464.65 5.21 3,504.00 4.13 34.16 0.35 6.13 5.04 4.13 

15 rec29 30,15 3583 3,291.00 8.15 3,306.50 7.72 3,312.00 7.56 8.73 0.52 7.81 6.93 5.69 

16 rec31 50,10 4631 4,336.00 6.37 4,343.80 6.20 4,349.00 6.09 6.53 0.60 5.92 5.20 4.51 

17 rec33 50,10 4770 4,466.00 6.37 4,510.00 5.45 4,522.00 5.20 45.04 0.62 5.51 4.08 3.17 

18 rec35 50,10 4718 4,417.00 6.38 4,455.00 5.57 4,468.00 5.30 18.45 0.61 6.02 5.13 3.98 

19 rec37 75,20 8979 8,081.00 10.00 8,180.50 8.89 8,280.00 7.78 61.70 2.08 8.89 8.20 7.40 

20 rec39 75,20 9158 8,517.00 7.00 8,555.00 6.58 8,593.00 6.17 80.37 1.49 6.79 5.67 4.26 

21 rec41 75,20 9344 8,520.00 8.82 8,573.50 8.25 8,627.00 7.67 100.32 1.54 7.94 6.77 5.91 

Average N/A N/A N/A N/A 7.08 N/A 6.30 N/A 5.87 26.81 0.55 6.35 5.65 4.67 



92 
 

Table ‎4-16 Computational Results of the Problems Car1+S through Car8+S 

 GA 

 n, m 
2-Opt 

OFV* 

OFV* CPU 

Time 

(second) 

Best 

Makespan 

Gap
**

 

(%) 

Average 

Makespan 

Gap
**

 

(%) 

Worst 

Makespan 

Gap
**

 

(%) 

car1+S 11,5 14,423.00 12,313.00 14.63 12,320.50 14.58 12,343.00 14.42 1.76 

car2+S 13,4 16,917.00 12,786.00 24.42 12,831.80 24.15 13,073.00 22.72 1.82 

car3+S 12,5 16,453.00 12,443.00 24.37 12,468.95 24.21 12,616.00 23.32 1.79 

car4+S 14,4 17,461.00 13,637.00 21.90 13,637.75 21.90 13,647.00 21.84 1.89 

car5+S 10,6 18,014.00 13,128.00 27.12 13,219.40 26.62 13,650.00 24.23 1.68 

car6+S 8,9 15,531.00 13,233.00 14.80 13,315.50 14.27 13,896.00 10.53 1.32 

car7+S 7,7 11,765.00 11,249.00 4.39 11,275.60 4.16 11,330.00 3.70 1.30 

car8+S 8,8 13,776.00 11,902.00 13.60 11,912.80 13.52 11,938.00 13.34 1.45 

Average --- ---  --- 17.93 --- 16.76 1.63 
 

 

 

Table 4-16 (Continued) 

 GA+PSO 

 n, m 
2-Opt 

OFV* 

OFV* CPU 

Time 

(second) 

Best 

Makespan 

Gap
**

 

(%) 

Average 

Makespan 

Gap
**

 

(%) 

Worst 

Makespan 

Gap
**

 

(%) 

car1+S 11,5 14,423.00 11,784.00 18.30 11,808.65 18.13 11,947.00 17.17 2.46 

car2+S 13,4 16,917.00 11,786.00 30.33 11,795.90 30.27 11,826.00 30.09 2.55 

car3+S 12,5 16,453.00 12,443.00 24.37 12,494.95 24.06 12,617.00 23.31 2.51 

car4+S 14,4 17,461.00 13,535.00 22.48 13,648.30 21.84 13,838.00 20.75 2.65 

car5+S 10,6 18,014.00 13,128.00 27.12 13,128.00 27.12 13,128.00 27.12 2.35 

car6+S 8,9 15,531.00 13,233.00 14.80 13,233.00 14.80 13,233.00 14.80 1.85 

car7+S 7,7 11,765.00 10,290.00 12.54 10,290.00 12.54 10,290.00 12.54 1.82 

car8+S 8,8 13,776.00 11,902.00 13.60 11,902.00 13.60 11,902.00 13.60 2.03 

Average --- --- 20.44 --- 20.30 --- 19.92 2.27 

 

 



93 
 

Table 4-16 (Continued) 

 Proposed PSO 

 n, m 
2-Opt 

OFV* 

OFV* CPU 

Time 

(second) 

Best 

Makespan 

Gap
**

 

(%) 

Average 

Makespan 

Gap
**

 

(%) 

Worst 

Makespan 

Gap
**

 

(%) 

car1+S 11,5 14,423.00 11,784.00 18.30 11,920.85 17.35 12,434.00 13.79 0.33 

car2+S 13,4 16,917.00 11,786.00 30.33 11,793.20 30.29 11,814.00 30.16 0.16 

car3+S 12,5 16,453.00 12,443.00 24.37 12,443.60 24.37 12,455.00 24.30 0.13 

car4+S 14,4 17,461.00 13,535.00 22.48 13,600.50 22.11 13,692.00 21.59 0.14 

car5+S 10,6 18,014.00 13,128.00 27.12 13,142.20 27.04 13,199.00 26.73 0.15 

car6+S 8,9 15,531.00 13,233.00 14.80 13,463.75 13.31 13,941.00 10.24 0.21 

car7+S 7,7 11,765.00 10,249.00 12.89 10,279.75 12.62 10,290.00 12.54 0.15 

car8+S 8,8 13,776.00 11,902.00 13.60 11,902.00 13.60 11,902.00 13.60 0.19 

Average --- --- 20.49 --- 20.09 --- 19.12 0.18 
* Objective Function Value 

**Gap is between the algorithms’‎OFV and 2-Opt‎algorithm’s‎OFV 

 

 



94 
 

Table ‎4-17 Computational Results of the Problems Rec01+S through Rec41+S 

   GA 

 n, m 
2-Opt 

OFV* 

OFV* CPU 

Time 

(second) 
Best 

Makespan 

 Gap** 

(%)  

Average 

Makespan 

 Gap** 

(%)  

Worst 

Makespan 

 Gap** 

(%) 
STD 

rec01+S 20,5 2,721.00 2,166.00 20.40 2,175.95 20.03 2,222.00 18.34 3.99 20.57 

rec03+S 20,5 2,625.00 2,033.00 22.55 2,041.40 22.23 2,070.00 21.14 5.45 20.59 

rec05+S 20,5 2,706.00 2,136.00 21.06 2,146.60 20.67 2,159.00 20.21 8.53 20.51 

rec07+S 20,10 3,729.00 2,795.00 25.05 2,801.10 24.88 2,836.00 23.95 12.29 21.34 

rec09+S 20,10 3,423.00 2,941.00 14.08 2,946.95 13.91 2,985.00 12.80 7.61 21.35 

rec11+S 20,10 3,599.00 2,553.00 29.06 2,574.40 28.47 2,605.00 27.62 5.59 21.21 

rec13+S 20,15 4,431.00 3,418.00 22.86 3,435.05 22.48 3,476.00 21.55 20.54 22.26 

rec15+S 20,15 4,193.00 3,358.00 19.91 3,371.05 19.60 3,438.00 18.01 24.77 22.04 

rec17+S 20,15 4,435.00 3,372.00 23.97 3,389.95 23.56 3,424.00 22.80 7.60 22.26 

rec19+S 30,10 5,665.00 4,247.00 25.03 4,276.40 24.51 4,352.00 23.18 12.36 25.43 

rec21+S 30,10 5,171.00 3,964.00 23.34 3,986.75 22.90 4,026.00 22.14 14.82 25.58 

rec23+S 30,10 5,224.00 3,886.00 25.61 3,907.40 25.20 3,931.00 24.75 10.01 25.43 

rec25+S 30,15 6,387.00 4,799.00 24.86 4,825.10 24.45 4,863.00 23.86 6.80 26.81 

rec27+S 30,15 6,401.00 4,611.00 27.96 4,634.25 27.60 4,704.00 26.51 32.62 26.95 

rec29+S 30,15 6,681.00 4,624.00 30.79 4,647.30 30.44 4,697.00 29.70 39.86 26.78 

rec31+S 50,10 8,494.00 6,176.00 27.29 6,204.30 26.96 6,210.00 26.89 29.30 37.57 

rec33+S 50,10 9,278.00 6,467.00 30.30 6,503.80 29.90 6,662.00 28.20 62.86 37.61 

rec35+S 50,10 8,969.00 6,617.00 26.22 6,638.70 25.98 6,602.00 26.39 26.94 37.62 

rec37+S 75,20 16,227.00 11,420.00 29.62 11,493.80 29.17 11,516.00 29.03 33.80 87.64 

rec39+S 75,20 16,896.00 11,741.00 30.51 11,792.90 30.20 11,909.00 29.52 98.37 88.10 

rec41+S 75,20 16,749.00 11,636.00 30.53 11,668.55 30.33 11,768.00 29.74 63.71 88.42 

Average --- --- --- 25.29 --- 24.93 --- 24.11 25.14 34.57 

 

 

 

 

 

 

 

 



95 
 

Table 4-17 (Continued) 
   GA+PSO 

 n, m 
2-Opt 

OFV* 

OFV* CPU 

Time 

(second) 
Best 

Makespan 

 Gap** 

(%)  

Average 

Makespan 

 Gap** 

(%)  

Worst 

Makespan 

 Gap** 

(%) 
STD 

rec01+S 20,5 2,721.00 2,161.00 20.58 2,167.85 20.33 2,177.00 19.99 10.77 28.80 

rec03+S 20,5 2,625.00 2,020.00 23.05 2,034.00 22.51 2,056.00 21.68 14.72 28.83 

rec05+S 20,5 2,706.00 2,133.00 21.18 2,143.25 20.80 2,151.00 20.51 23.04 28.71 

rec07+S 20,10 3,729.00 2,789.00 25.21 2,796.85 25.00 2,832.00 24.05 33.18 29.87 

rec09+S 20,10 3,423.00 2,922.00 14.64 2,931.15 14.37 2,961.00 13.50 20.53 29.88 

rec11+S 20,10 3,599.00 2,552.00 29.09 2,567.50 28.66 2,585.00 28.17 15.08 29.69 

rec13+S 20,15 4,431.00 3,417.00 22.88 3,432.20 22.54 3,452.00 22.09 55.47 31.16 

rec15+S 20,15 4,193.00 3,337.00 20.41 3,356.10 19.96 3,377.00 19.46 66.88 30.86 

rec17+S 20,15 4,435.00 3,372.00 23.97 3,385.65 23.66 3,402.00 23.29 20.53 31.16 

rec19+S 30,10 5,665.00 4,222.00 25.47 4,261.00 24.78 4,295.00 24.18 33.37 35.60 

rec21+S 30,10 5,171.00 3,939.00 23.83 3,986.60 22.90 4,014.00 22.37 40.02 35.81 

rec23+S 30,10 5,224.00 3,838.00 26.53 3,850.00 26.30 3,869.00 25.94 27.03 35.60 

rec25+S 30,15 6,387.00 4,774.00 25.25 4,781.45 25.14 4,792.00 24.97 18.36 37.53 

rec27+S 30,15 6,401.00 4,580.00 28.45 4,622.30 27.79 4,681.00 26.87 88.08 37.73 

rec29+S 30,15 6,681.00 4,562.00 31.72 4,592.35 31.26 4,680.00 29.95 107.62 37.49 

rec31+S 50,10 8,494.00 6,115.00 28.01 6,156.15 27.52 6,273.00 26.15 79.10 52.60 

rec33+S 50,10 9,278.00 6,418.00 30.83 6,460.80 30.36 6,581.00 29.07 169.73 52.65 

rec35+S 50,10 8,969.00 6,507.00 27.45 6,526.85 27.23 6,652.00 25.83 72.74 52.67 

rec37+S 75,20 16,227.00 11,391.00 29.80 11,440.70 29.50 11,598.00 28.53 91.26 122.70 

rec39+S 75,20 16,896.00 11,581.00 31.46 11,674.60 30.90 11,859.00 29.81 265.61 123.34 

rec41+S 75,20 16,749.00 11,537.00 31.12 11,620.10 30.62 11,789.00 29.61 172.01 123.79 

Average --- --- --- 25.76 --- 25.34 --- 24.57 67.86 48.40 

 

 

 

 

 

 

 



96 
 

Table 4-17 Continued 

   Proposed PSO 

 n, m 
2-Opt 

OFV* 

OFV* CPU 

Time 

(second) 
Best 

Makespan 

 Gap** 

(%)  

Average 

Makespan 

 Gap** 

(%)  

Worst 

Makespan 

 Gap** 

(%) 
STD 

rec01+S 20,5 2,721.00 2,147.00 21.10 2,149.35 21.01 2,165.00 20.43 17.25 0.20 

rec03+S 20,5 2,625.00 2,017.00 23.16 2,029.75 22.68 2,037.00 22.40 15.98 0.19 

rec05+S 20,5 2,706.00 2,129.00 21.32 2,150.27 20.54 2,157.00 20.29 13.70 0.24 

rec07+S 20,10 3,729.00 2,789.00 25.21 2,795.65 25.03 2,838.00 23.89 11.75 0.29 

rec09+S 20,10 3,423.00 2,922.00 14.64 2,930.30 14.39 2,968.00 13.29 10.71 0.10 

rec11+S 20,10 3,599.00 2,552.00 29.09 2,552.35 29.08 2,553.00 29.06 0.49 0.28 

rec13+S 20,15 4,431.00 3,390.00 23.49 3,429.55 22.60 3,480.00 21.46 24.46 0.38 

rec15+S 20,15 4,193.00 3,331.00 20.56 3,336.00 20.44 3,345.00 20.22 4.52 0.36 

rec17+S 20,15 4,435.00 3,369.00 24.04 3,384.67 23.68 3,393.00 23.49 10.14 0.39 

rec19+S 30,10 5,665.00 4,216.00 25.58 4,255.80 24.88 4,314.00 23.85 28.74 0.42 

rec21+S 30,10 5,171.00 3,930.00 24.00 3,970.80 23.21 4,002.00 22.61 20.86 0.42 

rec23+S 30,10 5,224.00 3,825.00 26.78 3,842.58 26.44 3,870.00 25.92 41.64 0.27 

rec25+S 30,15 6,387.00 4,774.00 25.25 4,784.00 25.10 4,788.00 25.04 32.09 0.37 

rec27+S 30,15 6,401.00 4,573.00 28.56 4,597.85 28.17 4,682.00 26.86 23.94 0.37 

rec29+S 30,15 6,681.00 4,562.00 31.72 4,588.82 31.32 4,603.00 31.10 25.91 0.55 

rec31+S 50,10 8,494.00 6,106.00 28.11 6,152.90 27.56 6,276.00 26.11 51.03 0.63 

rec33+S 50,10 9,278.00 6,411.00 30.90 6,429.70 30.70 6,468.00 30.29 14.07 0.65 

rec35+S 50,10 8,969.00 6,504.00 27.48 6,531.85 27.17 6,584.00 26.59 19.02 0.64 

rec37+S 75,20 16,227.00 11,388.00 29.82 11,442.90 29.48 11,585.00 28.61 66.78 2.19 

rec39+S 75,20 16,896.00 11,581.00 31.46 11,613.38 31.27 11,630.00 31.17 12.97 1.57 

rec41+S 75,20 16,749.00 11,497.00 31.36 11,530.25 31.16 11,574.00 30.90 104.55 1.62 

Average --- --- --- 25.89 --- 25.52 --- 24.93 26.22 0.58 

*Objective Function Value 

**Gap is between the algorithms’‎OFV and 2-Opt‎algorithm’s‎OFV 



97 
 

4.6.3.3 Computational Results for max| , |sdF no wait S C  Test Problems 

In order to validate the performance of the proposed PSO when dealing with 

max| , |sdF no wait S C  problems, 29 random test problems based on the test problems of 

[116] (car1+SD through car8+SD) and [117] (rec01+SD through rec41+SD) are 

generated. Random sequence dependent setup times are generated based on the 

following rule: 

[ ] [ ]0 ; 1,2,..., 1 1,2,..., is integeri ji i j ijST p i n j m ST      (4-41) 

These test problems are solved by the proposed PSO as well as 2-Opt algorithm 

and GA+PSO of section ‎4.5 after incorporating sequence dependent setup times in 

GA+PSO. For such comparison, only GA+PSO of section ‎4.5 is considered since 

superiority of GA+PSO over PSO  of section ‎4.5 is evident from. Table ‎4-18 and 

Table ‎4-19 present the computational results of max| , |sdF no wait S C  problems. For the 

case of car+SD problems, the proposed PSO is never inferior to GA+PSO. And 

generates better solutions for 3 test cases; this number elevates to 15 for rec+SD test 

problems. In addition, average CPU time of the proposed PSO is 1.12 seconds, while the 

average CPU time of GA+PSO is 58.08 seconds on the same machine. Obviously, the 

proposed PSO outperforms the GA+PSO of section 4.3. 

 



98 
 

Table ‎4-18 Computational Results of the Problems car1+SD through car8+SD 

 GA+PSO 

 n, m 
2-Opt 

OFV* 

OFV* CPU 

Time 

(second) 

Best 

Makespan 

Gap
**

 

(%) 

Average 

Makespan 

Gap
**

 

(%) 

Worst 

Makespan 

Gap
**

 

(%) 

car1+SD 11,5 12,813.00 10,379.00 19.00 10,710.35 16.41 11,100.00 13.37 2.95 

car2+SD 13,4 13,835.00 11,308.00 18.27 11,422.25 17.44 11,615.00 16.05 3.06 

car3+SD 12,5 16,940.00 12,024.00 29.02 12,202.90 27.96 12,389.00 26.87 3.01 

car4+SD 14,4 16,559.00 12,443.00 24.86 12,668.70 23.49 13,065.00 21.10 3.18 

car5+SD 10,6 14,993.00 11,945.00 20.33 12,198.65 18.64 12,394.00 17.33 2.82 

car6+SD 8,9 15,254.00 12,015.00 21.23 12,326.40 19.19 12,396.00 18.74 2.22 

car7+SD 7,7 11,741.00 9,795.00 16.57 9,796.70 16.56 9,797.00 16.56 2.18 

car8+SD 8,8 13,291.00 11,525.00 13.29 11,611.35 12.64 11,698.00 11.99 2.44 

Average N/A --- 20.32 --- 19.04 --- 17.75 2.73 

 

 

Table 4-18 (Continued) 

 Proposed PSO 

 n, m 
2-Opt 

OFV* 

OFV* CPU 

Time 

(second) 

Best 

Makespan 

Gap
**

 

(%) 

Average 

Makespan 

Gap
**

 

(%) 

Worst 

Makespan 

Gap
**

 

(%) 

car1+SD 11,5 12,813.00 10,379.00 19.00 10,389.30 18.92 10,402.00 18.82 0.11 

car2+SD 13,4 13,835.00 11,231.00 18.82 11,275.00 18.50 11,415.00 17.49 0.11 

car3+SD 12,5 16,940.00 11,877.00 29.89 11,983.60 29.26 12,109.00 28.52 0.11 

car4+SD 14,4 16,559.00 12,420.00 25.00 12,481.60 24.62 12,599.00 23.91 0.10 

car5+SD 10,6 14,993.00 11,945.00 20.33 12,013.80 19.87 12,289.00 18.04 0.10 

car6+SD 8,9 15,254.00 12,015.00 21.23 12,015.00 21.23 12,015.00 21.23 0.11 

car7+SD 7,7 11,741.00 9,795.00 16.57 9,796.00 16.57 9,797.00 16.56 0.10 

car8+SD 8,8 13,291.00 11,525.00 13.29 11,564.25 12.99 11,698.00 11.99 0.10 

Average N/A N/A 20.52 --- 20.25 --- 19.57 0.11 

*Objective Function Value 

**Gap is between the algorithms’‎OFV and 2-Opt‎algorithm’s‎OFV 

 

 



99 
 

Table ‎4-19 Computational Results of the Problems Rec01+SD through Rec41+SD 

   GA 

 n, m 
2-Opt 

OFV* 

OFV* CPU 

Time 

(second) 
Best 

Makespan 

Gap** 

(%) 

Average 

Makespan 

Gap** 

(%) 

Worst 

Makespan 

Gap** 

(%) 
STD 

rec01+SD 20,5 2,610.00 2,145.00 17.82 2,175.40 16.65 2,194.00 15.94 8.33 34.56 

rec03+SD 20,5 2,436.00 1,925.00 20.98 1,950.20 19.94 1,995.00 18.10 19.08 34.60 

rec05+SD 20,5 2,677.00 2,046.00 23.57 2,087.20 22.03 2,121.00 20.77 17.82 34.45 

rec07+SD 20,10 3,539.00 2,661.00 24.81 2,706.10 23.53 2,758.00 22.07 37.93 35.84 

rec09+SD 20,10 3,527.00 2,679.00 24.04 2,702.20 23.39 2,751.00 22.00 22.85 35.86 

rec11+SD 20,10 3,354.00 2,586.00 22.90 2,603.50 22.38 2,633.00 21.50 19.72 35.63 

rec13+SD 20,15 4,203.00 3,354.00 20.20 3,385.35 19.45 3,414.00 18.77 15.53 37.39 

rec15+SD 20,15 4,312.00 3,287.00 23.77 3,298.25 23.51 3,312.00 23.19 8.87 37.03 

rec17+SD 20,15 4,203.00 3,298.00 21.53 3,315.20 21.12 3,368.00 19.87 35.52 37.39 

rec19+SD 30,10 5,300.00 3,858.00 27.21 3,910.30 26.22 4,056.00 23.47 40.81 42.72 

rec21+SD 30,10 5,076.00 3,779.00 25.55 3,820.30 24.74 3,889.00 23.38 35.83 42.97 

rec23+SD 30,10 5,048.00 3,650.00 27.69 3,686.25 26.98 3,739.00 25.93 28.24 42.72 

rec25+SD 30,15 6,352.00 4,654.00 26.73 4,748.60 25.24 4,902.00 22.83 73.70 45.04 

rec27+SD 30,15 6,101.00 4,604.00 24.54 4,638.30 23.97 4,696.00 23.03 29.57 45.28 

rec29+SD 30,15 6,344.00 4,428.00 30.20 4,484.35 29.31 4,557.00 28.17 27.86 44.99 

rec31+SD 50,10 8,068.00 6,020.00 25.38 6,082.00 24.62 6,154.00 23.72 44.76 63.12 

rec33+SD 50,10 8,645.00 6,204.00 28.24 6,269.10 27.48 6,403.00 25.93 45.19 63.18 

rec35+SD 50,10 8,741.00 6,197.00 29.10 6,260.60 28.38 6,369.00 27.14 50.70 63.20 

rec37+SD 75,20 15,379.00 10,931.00 28.92 11,038.45 28.22 11,147.00 27.52 61.00 147.24 

rec39+SD 75,20 16,575.00 11,317.00 31.72 11,411.85 31.15 11,529.00 30.44 56.07 148.01 

rec41+SD 75,20 16,470.00 11,364.00 31.00 11,528.50 30.00 11,716.00 28.86 95.70 148.55 

Average --- --- --- 25.52 --- 24.68 --- 23.46 36.91 58.08 

 

 

 



100 
 

Table 4-19 (Continued) 
   GA+PSO 

 n, m 
2-Opt 

OFV* 

OFV* CPU 

Time 

(second) 
Best 

Makespan 

Gap** 

(%) 

Average 

Makespan 

Gap** 

(%) 

Worst 

Makespan 

Gap** 

(%) 
STD 

rec01+SD 20,5 2,610.00 2,139.00 18.05 2,163.85 17.09 2,174.00 16.70 14.25 0.16 

rec03+SD 20,5 2,436.00 1,902.00 21.92 1,956.80 19.67 2,007.00 17.61 44.51 0.16 

rec05+SD 20,5 2,677.00 2,028.00 24.24 2,055.90 23.20 2,090.00 21.93 25.70 0.16 

rec07+SD 20,10 3,539.00 2,652.00 25.06 2,696.65 23.80 2,734.00 22.75 21.56 0.24 

rec09+SD 20,10 3,527.00 2,657.00 24.67 2,696.95 23.53 2,710.00 23.16 9.70 0.23 

rec11+SD 20,10 3,354.00 2,558.00 23.73 2,587.60 22.85 2,616.00 22.00 20.59 0.23 

rec13+SD 20,15 4,203.00 3,309.00 21.27 3,349.00 20.32 3,398.00 19.15 31.31 0.31 

rec15+SD 20,15 4,312.00 3,222.00 25.28 3,292.40 23.65 3,341.00 22.52 37.58 0.32 

rec17+SD 20,15 4,203.00 3,271.00 22.17 3,315.30 21.12 3,359.00 20.08 18.13 0.33 

rec19+SD 30,10 5,300.00 3,848.00 27.40 3,932.40 25.80 4,012.00 24.30 32.31 0.39 

rec21+SD 30,10 5,076.00 3,756.00 26.00 3,820.95 24.73 3,855.00 24.05 27.36 0.39 

rec23+SD 30,10 5,048.00 3,628.00 28.13 3,680.60 27.09 3,746.00 25.79 31.94 0.38 

rec25+SD 30,15 6,352.00 4,655.00 26.72 4,712.95 25.80 4,819.00 24.13 43.13 0.53 

rec27+SD 30,15 6,101.00 4,565.00 25.18 4,639.65 23.95 4,701.00 22.95 37.95 0.51 

rec29+SD 30,15 6,344.00 4,422.00 30.30 4,481.45 29.36 4,528.00 28.63 33.62 0.51 

rec31+SD 50,10 8,068.00 5,966.00 26.05 6,042.60 25.10 6,125.00 24.08 57.79 0.96 

rec33+SD 50,10 8,645.00 6,186.00 28.44 6,266.00 27.52 6,354.00 26.50 50.04 1.03 

rec35+SD 50,10 8,741.00 6,169.00 29.42 6,279.60 28.16 6,374.00 27.08 54.74 0.98 

rec37+SD 75,20 15,379.00 10,782.00 29.89 10,988.15 28.55 11,188.00 27.25 108.80 5.24 

rec39+SD 75,20 16,575.00 11,189.00 32.49 11,334.85 31.61 11,594.00 30.05 89.31 5.16 

rec41+SD 75,20 16,470.00 11,324.00 31.24 11,479.30 30.30 11,667.00 29.16 111.46 5.23 

Average --- --- --- 26.08 --- 24.92 --- 23.80 42.94 1.12 

*Objective Function Value 

**Gap is between the algorithms’‎OFV and 2-Opt‎algorithm’s‎OFV 

 



101 
 

4.1 Conclusion 

This chapter considered the scheduling problems of max| |F no wait C , 

max| , |F no wait setup C , and max| , |sdF no wait S C . All of the mentioned problems are 

strongly NP-Hard. Mathematical models were developed for the problems; and all the 

problems were reduced to permutation problems. An algorithm for calculating the 

makespan of a given permutation of jobs was developed for each problem. Three 

algorithms were proposed to deal with the sequencing part: a hybrid of TS and a PSO 

based on factoradic coding, a GA and its hybrid with factoradic coding PSO, and a PSO 

based on MC coding. Both factoradic coding and MC are methods that transform the 

permutations of jobs into a form that PSO is able to efficiently operate with.  

Experimentally inferred rules were used for tuning the parameters of the 

developed algorithms. Computational results on the available test problems in the 

literature with small and large instances revealed the efficiency of the proposed methods 

in finding good-quality solutions for the test problems in a very short time, compared to 

the other methods. The proposed algorithms improved many of the best-known solutions 

in the literature. 

Computational results from GA and TS, when compared to the hybridized 

versions of these algorithms, prove the effectiveness of hybridization for the problems 

studied in this chapter. As it was mentioned in this chapter, when hybridized, the 

exchange local search procedure of GA and TS were replaced with a PSO algorithm. 

Potentially, PSO is able to explore through a wider selection of solutions compared to 

exchange. In fact, once the input string of length n   is‎fed‎to‎exchange,‎this‎algorithm’s‎



102 
 

feasible region includes 
( 1)

2 2

n n n  
 

 
  solutions‎while‎PSO’s‎feasible‎region‎includes‎‎

!n   solutions.  

 

 

 



103 
 

Chapter 5 

2-Machine No-Wait Job Shop Problem 

5 2-Machine No-Wait Job Shop Problem 
Equation Chapter (Next) Section 1 

5.1 Background  

This chapter mainly generalizes the results of chapter ‎3 for the case of 2-machine 

flow shop problem with setup times and single server constraints. Accordingly, the 

problems studied in this chapter include max2 | |J no wait C , max2 | , |J no wait setup C  

and max2, 1| , |J S no wait setup C . All of the problems that are studied in this chapter are 

strongly NP-Hard as they are a generalization of their flow shop versions, and since the 

flow shop versions are NP-Hard, NP-Hardness of job shop versions are intuitive.  

In this chapter, the same notation of chapter ‎3 is used. Moreover, some of the 

theorems of chapter ‎3 are generalized for the job shop problems studied in this chapter. 

A method to calculate the makespan of a given permutation is developed. An efficient 

GA is proposed to deal with the problems. Computational results show that the proposed 

GA is very competitive when applied to small and large instance problems. 

5.2 Problem Description 

Figure 5-1 depicts the four possible conditions of the consecutive jobs based on 

the  different processing routes they might have on the two machines when a sequence 

  of max2 | , |J no wait setup C  is considered. 



104 
 

 
 

This figure shows that max2 | , |J no wait setup C
 

can be formulated as a 

permutation problem if all the setup times are non-zero; non-zero setup times is one of 

the assumptions in this research. In other words, in none of the 4 cases only one of the 

operations 
[ ]ia  or 

[ ]ib  can be exchanged with ia  or ib  with the aim of reducing the 

makespan without violating the no-wait constraints. The same applies to 

max2, 1| , |J S no wait setup C . It should be noted that in either case, whether zero setup 

times permitted or not, both of the problems are NP-hard and algorithms with 

polynomially bounded computational complexity cannot be developed to solve the 

 

 

 

 

  

  

(a) 

 

 

 

 

  

  

(b) 

 

 

 

 

  

  

(c) 

 

 

 

 

  

 

 (d) 

 

 

Figure 5-1 Four possible conditions of the consecutive jobs 



105 
 

problems unless P NP .  If zero setup times are permitted, then the problems are 

categorized under no-wait job shop problem, which is NP-hard [72]. When zero setup 

times are not permitted, the problem can be reduced to TSP [34]. Based on the above 

notations and explanations, a mathematical model of max2, 1| , |J S no wait setup C can be 

developed as follows: 

maxminC   (5-1) 

max 1 ; 1,2,...,i iC ST a i n     (5-2) 

max 2 ; 1,2,...,i iC ST b i n     (5-3) 

1 ; 1,2,..., 1
ii isST s i nST      (5-4) 

2 ; 1,2,..., 1
ii itST t i nST      (5-5) 

[ ] 1 ; 1,2,..., 1
is i iST ST a i n      (5-6) 

[ ] 2 ; 1,2,..., 1
it i iST ST b i n      (5-7) 

2 1 ; 1,2,...,i i i iST ST a Mz i n      (5-8) 

2 1 ; 1,2,...,i i i iST ST a Mz i n      (5-9) 

1 2 (1 ); 1,2,...,i i i iST ST b M z i n       (5-10) 

1 2 (1 ); 1,2,...,i i i iST ST b M z i n       (5-11) 

; 1,2,...,
i is t i iST ST t My i n      (5-12) 

( )1 ; 1,2,...,
i it s i iST ST s M y i n      (5-13) 

0; 0; 0; {0,1}

1,2,...,

1,2

i iij s t iST ST ST y

i n

j

   



   

(5-14) 

In this model, (5-1) is the objective function that minimizes the makespan. (5-2) 

and (5-3) relate the makespan to the completion time of the last operation of the last job. 



106 
 

(5-4) and (5-5) initiate the setup times; in other words, a certain operation could be 

started only after its setup time is completed. M  is a sufficiently large positive number. 

0iz   means that job iJ  is first processed by machine 1 and then processed by machine 

2; 1iz   otherwise. (5-6) and (5-7) guarantee that the setup times and operating times do 

not overlap. 

 (5-8), (5-9), (5-10), and (5-11) are the no-wait constraints; if 0iz  , (5-8) and 

(5-9) are active while (5-10) and (5-11) remain inactive. In this case, second operation of 

iJ  will start on machine 2 when the first operation of the same job on machine 1 is 

completed. If 1iz  , the second operation of iJ  on the first machine cannot be 

processed unless the first operation on machine 2 is processed; this means that (5-8) and 

(5-9) are inactive when (5-10) and (5-11) are active.  Finally, (5-12) and (5-13) are 

single server constraints. iy  is one of the variables of the model. This variable along 

with (5-12) and (5-13) guarantees that setup operations of iJ  should not overlap each 

other.  

As mentioned earlier, max2 | , |J no wait setup C  and 

max2, 1| , |J S no wait setup C  are permutation problems when all the setup times are 

absolutely positive. Therefore, it can be inferred that in order to solve these problems, 

one can search the set of all permutations of numbers 1,2,...,n  to find the permutation 

that minimizes the makespan of the problem. Consider 
1 2( , ,..., ,..., )n j nJ J J J   is a 

permutation of n  jobs. Accordingly, disjoint sets , 1kL k   that partition n  can be 

defined as follows: 

 1 1| is the smallest index wherej n j jL J j z z     (5-15) 

  2 1 1| is the smallest index wherej n n j jL J j L j z z         (5-16) 



107 
 

  1 2 1 1| ... is the smallest index wherek j n n k j jL J j L L L j z z           
 

(5-17) 

Once the above sets are formed, each set represents a max2 | , |F no wait setup C  

sub-problem (for max2 | , |F no wait setup C , 1k  ); together these sub-problems 

establish the max2 | , |J no wait setup C  with non-zero setup times. Thus, the problem of 

max2 | |J no wait C  can be formulated as (5-18). it should be noted that (5-18) is a 

generalization of the formula proved for max2 | |F no wait C  in [119]. 

 

 

(max ) 1 max

min [ ]

min min
2 1; 0,1,...

(max ) 1 max

min [ ]

min min
2 ; 0,1,...

max 0,

max 0,

i i

i

i i i

i i

i

i i i

j L j L

j L w w w

L w j L w j L
i p p

j L j L

j L w w w

L w j L w j L
i p p

a a b b

b b a a

Min


  



   
  

  




   
 

  
    

  
 
 

  
     

   

  

  

 (5-18) 

Moreover, a generalization to max2 | , |J no wait setup c  from the formula given 

in [119] for max2 | , |F no wait setup c is as follows. 

  

 
 

  

min min min

2 1; 0,1,...

(max ) 1 max max

[ ] [ ]

min min min 1

min min min

2 ; 0,1,...

[ ]

max ,

max 0,

max ,

max 0,

i i i

i

i i i

i i i

i i i

i

j L j L j L

L
i p p

j L j L j L

w w w w w w

w j L w j L w j L

j L j L j L

L
i p p

w w

s a t

s a b t b t

t b s

t b a

Min


  

  

   

      



  

 



     

 

  



  



 
 

(max ) 1 max max

[ ]

min min min 1

i i i

i i i

j L j L j L

w w w w

w j L w j L w j L

s a s
   

      

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
   
  

  

 (5-19) 

According to (5-19), the objective function of a feasible solution   of the 

problem max2, 1| , |J S no wait setup C  can be calculated by the following algorithm. 

1. Set 1i   



108 
 

2. If 0iz  : 

2.1. 
1 1 10;s tST ST s   

2.2. 
1

1 1 1

11

1 1

if

Otherwiset

s t a
ST

ST t a

 
 

 
 

2.3. 12 11 1ST ST a   

2.4. Set 1i i   

3. If 1iz   

3.1. 
1 1 10;t sST ST t   

3.2. 
1

1 1 1

12

1 1

if

Otherwises

t s b
ST

ST s b

 
 

 
 

3.3. 11 12 1ST ST b   

3.4. Set 1i i   

4. Suppose that ;1 , 0ii u u n z    . Then: 

4.1. If 1 0iz   , then: 

4.1.1. 
( 1)1 ( 1)is i iST ST a    

4.1.2. 
( 1)

( 1)2 ( 1)

if

Otherwise

i

i

s i i i

t

i i

ST s s b
ST

ST b



 

 
 



 

4.1.3. 
1

1

if

Otherwise

i

i

s i i i i i

i

t i i

ST s t b s a
ST

ST t a

   
 

 

 

4.1.4. 2 1i i iST ST a   

4.2. If 1 1iz   , then: 

4.2.1. 
( 1)2 ( 1)it i iST ST b    

4.2.2. 
( 1)

( 1)1 ( 1)

if

Otherwise

i

i

t i i i

s

i i

ST t t a
ST

ST a



 

 
 



 



109 
 

4.2.3. 
1 ii s iST ST s   

4.2.4. 2 1i i iST ST a   

5. Suppose that ;1 , 1ii u u n z    . Then: 

5.1. If 1 0iz   , then: 

5.1.1. 
( 1)1 ( 1)is i iST ST a    

5.1.2. 
( 1)

( 1)2 ( 1)

if

Otherwise

i

i

s i i i

t

i i

ST s s b
ST

ST b



 

 
 



 

5.1.3. 
2 ii t iST ST t   

5.1.4. 1 2i i iST ST b   

5.2. If 1 1iz   , then: 

5.2.1. 
( 1)2 ( 1)it i iST ST b    

5.2.2. 
( 1)

( 1)1 ( 1)

if

Otherwise

i

i

t i i i

s

i i

ST t t a
ST

ST a



 

 
 



 

5.2.3. 2

if ( ) ( )

Otherwise

i i i

i

t i i s i t i

i

s i i

ST t b ST s ST t
ST

ST s b

    
 

 

 

5.2.4. 1 2i i iST ST b   

6. If i n , set 1i i   and go back to step 4. Otherwise, 

 max 1 2max ,n n n nC ST a ST b   . 

A simpler version of this algorithm is proved to be very efficient [34, 92]. The 

above algorithm can easily be modified for the problem without single server constraints 

as follows: 

1. Set 1i   

2. If 0iz  : 



110 
 

2.1. 
1 1

0; 0s tST ST   

2.2. 
1

1 1 1 1

11

1 1

if

Otherwiset

s t a s
ST

ST t a

  
 

 
 

2.3. 12 11 1ST ST a   

2.4. Set 1i i   

3. If 1iz   

3.1. 
1 1

0; 0t sST ST   

3.2. 
1

1 1 1 1

12

1 1

if

Otherwises

t s t b
ST

ST s b

  
 

 
 

3.3. 11 12 1ST ST b   

3.4. Set 1i i   

4. Suppose that ;1 , 0ii u u n z    . Then: 

4.1. If 1 0iz   , then: 

4.1.1. 
( 1)1 ( 1) ( 1)2 ( 1);

i is i i t i iST ST a ST ST b        

4.1.2. 
1

1

if

Otherwise

i

i

s i i i i i

i

t i i

ST s t b s a
ST

ST t a

   
 

 

 

4.1.3. 2 1i i iST ST a   

4.2. If 1 1iz   , then: 

4.2.1. 
( 1)1 ( 1) ( 1)2 ( 1);

i is i i t i iST ST a ST ST b        

4.2.2. 1

if ( ) ( )

otherwise

i i i

i

s i i t i s i

i

t i i

ST s a ST t ST s
ST

ST t a

    
 

 

 

4.2.3. 2 1i i iST ST a   

5. Suppose that ;1 , 1ii u u n z    . Then: 



111 
 

5.1. If 1 0iz   , then: 

5.1.1. 
( 1)1 ( 1) ( 1)2 ( 1);

i is i i t i iST ST a ST ST b        

5.1.2. 2

if ( ) ( )

Otherwise

i i i

i

t i i s i t i

i

s i i

ST t b ST s ST t
ST

ST s b

    
 

 

 

5.1.3. 1 2i i iST ST b   

5.2. If 1 1iz   , then: 

5.2.1. 
( 1)1 ( 1) ( 1)2 ( 1);

i is i i t i iST ST a ST ST b        

5.2.2. 2

if ( ) ( )

Otherwise

i i i

i

t i i s i t i

i

s i i

ST t b ST s ST t
ST

ST s b

    
 

 

 

5.2.3. 1 2i i iST ST b   

6. If i n , set 1i i   and go back to step 4. Otherwise, 

 max 1 2max ,n n n nC ST a ST b   . 

The correctness of the above algorithms can be verified by using mathematical 

induction and considering all of the different possible conditions in the Gantt chart. 

Computational complexity of this simple yet effective algorithm is ( )O n . 

5.3 The Proposed Algorithm 

Genetic algorithm (GA) is a search technique that is used to find near-optimal 

solutions for optimization problems. Genetic algorithms are a particular class of 

evolutionary algorithms (EA) that use techniques inspired by evolutionary biology such 

as inheritance, mutation, selection, and crossover. GA also uses chromosomes to code 

the feasible solutions of the problem. 

5.3.1 Chromosome Structure and GA Operations 

Chromosome structure (Genotype) is one of the most important aspects of the 

genetic algorithm. In the proposed GA, each permutation in   is a chromosome. 



112 
 

Moreover, each permutation   in   can be a feasible solution of the problem if the 

described algorithm of chapter 3 is used to schedule the jobs. This also defines the 

extraction of solutions from chromosomes (Phenotype). It is worthwhile to mention that 

the proposed GA uses the operations, defined by [120]. 

The proposed GA generates Pop  random permutations for its first generation. 

Then, the algorithm calculates the makespan of each of the permutations which will be 

used as the fitness label of that permutation. Size of the population, Pop , which is an 

even number and a parameter of the algorithm, remains constant for all generations. 

New generations are made from the existing generation, using four operations: 

crossover, mutation, immigration, and local search. 

In crossover operation the existing generation is randomly partitioned into 2
Pop  

pairs of parents, and crossover operation is performed on each pair with probability cP . 

If a pair is not selected for crossover, each individual of the pair is considered for 

mutation operation with probability mP  and then for local search with probability lP . 

Crossover, mutation, and local search will be described in this section. 

Crossover operation on a pair of parents, 1P  and 2P , produces two children, 1C  

and 2C . Let ( )f I  be the makespan of schedule I . If .( ( ) ( )) ( )i i i ir f P f C f P  then iC  

will be selected for local search with probability lP  and then goes to new generation and 

iP  dies out ( 1,2i  ). ir  is a random number generated from the interval [0,1]  for each i

. Otherwise iC  dies out and iP  is considered for mutation with probability mP  and then 

for local search with probability lP . It should be noted that .( ( ) ( )) ( )i i i ir f P f C f P   

determines how much advancement in the quality of genes should be expected in 

consecutive generations. However, since ir  is a random number, the amount of gene 

progress differs in each iteration. Afterwards, immigration operation is also performed 



113 
 

before finalizing the cycle of producing a new generation. Immigration operation feeds 

the gene pool with randomly generated genes, helps maintaining the gene diversity, and 

prevents immature convergence. 

For immigration operation, a chromosome will be randomly generated and is 

called NEW . An individual I , is selected randomly from the current population. Let the 

probability of leaving I  be 
( )

( , )
( ) ( )

Leave

f I
P I NEW

f I f NEW



. A random number is 

generated from the interval [0,1] . If this random number is less than ( , )LeaveP I NEW , 

NEW  replaces I , otherwise NEW  is discarded. The immigration operation provides 

the new generation with the chance of bringing new desirable characteristics to it. 

Chromosome with least makespan value in the final generation is the result given by the 

algorithm. Pop , sP , mP  and lP  are adjustable parameters of the algorithm. 

5.3.2 Crossover 

The proposed GA uses a one-point crossover. Suppose that 1 1 1

1 1 2( , ,..., )nP J J J  

and 2 2 2

2 1 2( , ,..., )nP J J J  are the two individuals that are selected for crossover. The one-

point crossover selects an integer number [1, ]r n . Then, crossover operation is 

performed and the result is 1C  and 2C  whose chromosomes are defined as 

1 1 1 1

1 1( ,..., , ,..., )
c c c c

r r nJ J J J
 and 2 2 2 2

1 1( ,..., , ,..., )
c c c c

r r nJ J J J
. 1 1 1 1

1 1( ,..., ) ( ,..., )
c c

r rJ J J J  and 

1 2; 1,...,
c

a bJ J a r n    where b  is the lowest index such that  1 12

1 1,...,
c c

b aJ J J  . And 

2 2 2 2

1 1( ,..., ) ( ,..., )
c c

r rJ J J J  and 2 1; 1,...,
c

a bJ J a r n    where b  is the lowest index such 

that  2 22

1 1,...,
c c

b aJ J J  . Figure ‎5-2 demonstrates the one-point crossover operation. 



114 
 

 

5.3.3 Mutation 

Let 1 2( , ,..., )nP J J J  be the selected chromosome for mutation. Then, the 

algorithm generates two integer numbers 1 2, [1, 1]r r n   and an integer number [0,1]a

. If 0.5a  , then the new chromosome will be 
1 2 1 21 1 1( ,..., , ,..., , ,..., )new r r n r rP J J J J J J  , 

while if 0.5a  , the new chromosome will be 
1 2 1 21 1 1( ,..., ,..., , ,..., )new r r r r nP J J J J J J  . 

Figure ‎5-3 demonstrates the mutation operation. 

 

5.3.4 Local Search 

This sub-algorithm exchanges the location of the first two adjacent genes in the 

chromosome and evaluates the fitness function of the new chromosome. If the fitness 

function of the new chromosome has improved by the exchange, algorithm accepts this 

exchange and restarts the exchange sub-procedure. Nevertheless, if this exchange does 

not improve the fitness function of the chromosome, the two genes will move back to 

their original locations and exchange will be applied to the next two adjacent genes. 

5.4 Computational Results 

As seen in section ‎5.3, 4 control parameters should be set for the proposed GA to 

start‎the‎search.‎Values‎of‎these‎parameters‎affect‎the‎algorithm’s‎performance.‎In‎order‎

2 3 4 6 5 1      2 3 4 1 6 5 

3 4 1 6 2 5      3 4 1 2 6 5 

 

Figure 5-2 One-point crossover operation 

           : 1 2 3 4 5 6 7 8 9      1 2 3 7 8 9 4 5 6 

            1 2 3 4 5 6 7 8 9      4 5 6 7 1 2 3 8 9 

 

Figure 5-3 Mutation operation when  n=9, r1=3, and r2=7 



115 
 

to tune the algorithm parameters, approach of section ‎3.5 is utilized. Based on these 

observations, the following values are proposed: 

0.5
5

0.5 0.2

c

m l

n
Pop P

P P

 

 

      (5-20) 

Furthermore, in order to examine the efficiency of the algorithm, a lower bound 

for each test problem is considered. This lower bound can be obtained by (5-21) for each 

job i : 

1 1

max{ ( ), ( )}
n n

i i i i

i i

LB s a t b
 

      (5-21) 

Clearly, smaller gaps between LB  and the objective function of the final solution 

demonstrates the efficiency of the proposed algorithm. For a specific problem, a small 

gap means that the algorithm is able to find solutions in which the operating time of the 

jobs on one of the machines is scheduled parallel to the operating time of the jobs on the 

other machine. Moreover, the same test problems without single server constraints were 

considered and the proposed algorithm was applied to them. Smaller gaps between the 

objective function values of the same problem without and with single server constraints 

demonstrate that the proposed algorithm is able to generate schedules that are close to 

the problem without single server constraints.  

The proposed algorithm was coded in C++ and run on a PC equipped with a 

3GHz Intel Pentium IV CPU and 2 GB of RAM. To verify the performance of the 

algorithm, 5 problems with 10, 11, and 12 jobs each were randomly generated and 

solved to optimality using the mathematical model of chapter 3. These test problems 

have been generated based on a uniform probability distribution function with ia  and ib  

integer numbers between 0 and 100, is  an integer number between 0 and ia , and it  an 

integer number between 0 and ib . The uniform distribution is chosen to generate test 



116 
 

problems since it is evident that it results in difficult problems [101, 102]. Afterwards, 

the proposed algorithm was applied to the same set of problems. Computational results 

of these problems are presented in Table 5-1. Table 5-1 indicates that the proposed 

algorithm is able to find the optimal solution of all of the instances in this set. It should 

be noted that solving test problems with more than 12 jobs to optimality takes more than 

3 hours. In Table 5-1, the first column indicates the problem number. Second column 

represents the number of jobs in the instance. Rest of the columns represent the objective 

function value and CPU time of the problems without setup, with setup, and with setup 

and single server, when the respective test problem is solved by the mathematical model 

and by the proposed algorithm. Last two column of this table represent the lower bounds 

calculated by (5-21), and the gap between the lower bound and the optimal solution. 

Table 5-1 demonstrates that the gap between the optimal solution and the solution found 

by the proposed algorithm is 0 in all cases. 

In order to examine the performance of the algorithm on larger test problems, 

another set of test problems was generated. The operating times were generated from 

[1,10]  and [1,100]  intervals. Setup times were generated from the intervals [1,10 ]  and 

[1,100 ]   where   can be 0.25, 0.5, 0.75, and 1. Problems with 20, 50, 100, 200, 500, 

and 1000 jobs were considered in order to test the algorithm on a variety of problems 

with different sizes. For each problem size, 12 different combinations of operating time, 

setup time, and   were considered. Additionally, for each specific combination of 

operation time, setup time, and  , 20 random test problems were generated, which 

sums up to 1440 test problems of different sizes, and 14400 independent runs of the 

proposed algorithm as each problem is solved 10 times. Table ‎5-2 shows the categories 

to‎generate‎problems’‎data. 



117 
 

In Table ‎5-3 to Table ‎5-5, first column gives the problem number. Second 

column represents the number of jobs. Columns 3, 4 and 5 are assigned to the interval in 

which the operating times and setup times are generated as well as the value of  . Next 

6 columns summarize the computational results for the problems without setup time, 

with setup time, and with setup time and single server constraints. First, the standard 

deviation (STD) of the 10 objective functions generated from applying the GA to each 

test problem was calculated. The average of these standard deviations is presented in the 

Average STD columns. The lower the values of the Average STD, the more consistent 

the algorithm is when applied to different problems. Note that in the following tables, 

Average Time is the average CPU time in milliseconds. Column 12, APAM+SS, 

calculates the percentage added to the makespan of the problem with setup times when 

single server constraints are also considered. 

( , )AD SS LB  column evaluates the average deviation between the problem with 

single server constraints and LB . The same problems with single server constraints 

were also solved by the famous 2-opt algorithm for comparison purposes. For a 

permutation problem, 2-opt algorithm arbitrarily chooses two jobs in the permutation 

and exchanges the places of these jobs; objective function will be calculated and the 

exchange will be accepted if an improvement is noticed. The algorithm continues until 

no such improvement can be made [103]. After applying the 2-opt algorithm to the 

problems, the average deviation between the objective function of the solutions 

proposed by the 2-opt algorithm and the proposed GA is presented in the ( ,2 )AD SS opt  

column. This column shows that the solutions obtained by the GA are always superior to 

the 2-opt algorithm. 

 



118 
 

Table ‎5-1 Solutions of Problems with Small Instances 

Prob. 

No. 

No. of 

Jobs 

Without Setup Time Without Single Server Constraints With Single Server Constraints 

Optimal 

Solution 

Proposed 

Algorithm 
Optimal Solution 

Proposed 

Algorithm 
Optimal Solution 

Proposed 

Algorithm 

OFV* Time OFV* Time OFV* Time OFV* Time OFV* Time OFV* Time 

1 10 685.00 1.02 685.00 2.065 1,024.00 1.624 1,024.00 2.189 1,086.00 1.949 1,086.00 2.298 

2 10 672.00 1.10 672.00 1.964 1,011.00 1.764 1,011.00 2.082 1,051.00 2.116 1,051.00 2.186 

3 10 424.00 1.30 424.00 2.746 749.00 2.080 749.00 2.911 770.00 2.496 770.00 3.056 

4 10 553.00 1.02 553.00 2.642 832.00 1.630 832.00 2.801 860.00 1.956 860.00 2.941 

5 10 637.00 1.10 637.00 2.862 887.00 1.755 887.00 3.034 905.00 2.106 905.00 3.185 

6 11 744.00 132.36 744.00 2.938 1,123.00 17.762 1,123.00 3.114 1,185.00 19.999 1,185.00 3.270 

7 11 685.00 131.98 685.00 3.003 1,031.00 17.547 1,031.00 3.183 1,071.00 19.283 1,071.00 3.342 

8 11 487.00 134.07 487.00 3.023 815.00 17.534 815.00 3.204 887.00 20.129 887.00 3.365 

9 11 604.00 132.38 604.00 2.996 913.00 17.892 913.00 3.176 941.00 20.827 941.00 3.335 

10 11 675.00 138.07 675.00 3.089 973.00 16.972 973.00 3.274 991.00 21.003 991.00 3.438 

11 12 825.00 4,180.14 825.00 3.231 1,224.00 6,688.218 1,224.00 3.425 1,286.00 8,025.862 1,286.00 3.596 

12 12 749.00 4,303.79 749.00 3.193 1,165.00 6,886.063 1,165.00 3.385 1,232.00 8,263.276 1,232.00 3.554 

13 12 537.00 4,419.42 537.00 3.173 912.00 7,071.068 912.00 3.363 1,007.00 8,485.281 1,007.00 3.532 

14 12 652.00 4,299.90 652.00 3.217 998.00 6,879.845 998.00 3.410 1,026.00 8,255.814 1,026.00 3.581 

15 12 746.00 4,557.63 746.00 3.275 1,065.00 221.626 1,065.00 3.472 1,083.00 8,750.645 1,083.00 3.645 

* Objective Function Value 

 

Table ‎5-2 Problem Data Categories 

Category 

Number 

Operation 

Time 

Setup 

Time 
  

Category 

Number 

Operation 

Time 

Setup 

Time 
  

1 [1,10] [1,10] 0.25 2 [1,10] [1,10] 0.5 

3 [1,10] [1,10] 0.75 4 [1,10] [1,10] 1 

5 [1,100] [1,10] 0.25 6 [1,100] [1,10] 0.5 

7 [1,100] [1,10] 0.75 8 [1,100] [1,10] 1 

9 [1,100] [1,100] 0.25 10 [1,100] [1,100] 0.5 

11 [1,100] [1,100] 0.75 12 [1,100] [1,100] 1 



119 
 

Table ‎5-6 shows that the average CPU time of finding a near-optimal solution for 

test problems with 1000 jobs is less than 9 seconds which indicates the efficiency of the 

algorithm. Moreover, the small difference between LB  and the objective function of the 

final solutions with setup time and single server constraints demonstrates the ability of 

the proposed GA in finding good-quality solutions. The lowest average deviation 

between the objective function of the problem with single server and LB  is 5.55%. This 

means that the optimal solution of this problem is at most 5.55% less than the objective 

function proposed by the introduced framework. It should be noted that the highest 

average deviation between the objective functions of the problem with single server and 

LB  is 21.59% and belongs to the problems with 1000 jobs. Furthermore, Table ‎5-6 

demonstrates that the average deviation between the problem with single server 

constraints and LB  is 11.55%. It should be noted that the standard deviations in all cases 

are low. This indicates the consistency of the proposed GA in obtaining good-quality 

solutions. The small deviation between the makespan when single server constraints are 

added to the problem with setup times confirms that the proposed GA is able to find 

solutions that single server constraints have slight adversity on their quality. In addition, 

the deviation between the objective function of the 2-opt algorithm and the proposed GA 

for the problems with single server constraints is another indication of the efficiency of 

the algorithm. 

 



120 
 

Table ‎5-3 Computational Results for the Problems with 20 and 50 Jobs 

Prob.

Num. 

No. 

of 

Jobs 

Oper. 

Time 

Setup 

Time 
  

Without Setup With Setup 
With Single 

Server Setup 
APAM+SS AD(SS,LB) 

AD(SS, 

2-opt) Av. 

STD 

Av. 

Time 

Av. 

STD 

Av. 

Time 

Av. 

STD 

Av. 

Time 

1 20 [1,10] [1,10] 0.25 0.50 36.41 0.64 40.06 0.58 48.07 0.96 7.42 19.70 

2 20 [1,10] [1,10] 0.5 1.82 42.46 1.71 46.71 2.00 56.05 2.86 11.65 16.15 

3 20 [1,10] [1,10] 0.75 1.81 42.07 1.69 46.28 1.97 55.54 4.45 10.12 15.25 

4 20 [1,10] [1,10] 1 1.91 42.20 1.52 46.42 2.08 55.71 8.63 15.72 11.08 

5 20 [1,100] [1,10] 0.25 14.03 42.64 14.23 46.91 13.04 56.29 0.17 8.75 24.15 

6 20 [1,100] [1,10] 0.5 13.33 42.48 12.67 46.73 12.95 56.07 0.08 8.50 23.60 

7 20 [1,100] [1,10] 0.75 12.36 42.69 12.90 46.97 12.21 56.36 0.21 11.15 21.70 

8 20 [1,100] [1,10] 1 14.93 42.76 14.06 47.04 12.68 56.45 0.10 9.72 22.06 

9 20 [1,100] [1,100] 0.25 12.92 42.62 13.50 46.89 12.13 56.26 0.78 8.70 18.32 

10 20 [1,100] [1,100] 0.5 13.21 43.22 14.76 47.55 15.19 57.06 3.25 10.44 16.48 

11 20 [1,100] [1,100] 0.75 15.00 42.79 11.02 47.07 14.75 56.49 4.42 11.34 12.39 

12 20 [1,100] [1,100] 1 13.31 42.41 10.20 46.66 13.78 55.99 7.30 13.69 11.43 

13 50 [1,10] [1,10] 0.25 1.83 119.29 1.83 131.22 2.05 157.47 0.90 5.55 22.10 

14 50 [1,10] [1,10] 0.5 2.99 120.44 2.65 132.49 3.17 158.99 3.30 7.95 17.34 

15 50 [1,10] [1,10] 0.75 2.79 120.58 2.66 132.64 3.12 159.17 4.74 9.25 15.90 

16 50 [1,10] [1,10] 1 2.82 120.69 1.89 132.77 3.14 159.32 9.05 14.03 12.58 

17 50 [1,100] [1,10] 0.25 18.05 125.51 18.76 138.07 18.00 165.68 0.06 6.28 27.99 

18 50 [1,100] [1,10] 0.5 19.05 125.4 17.22 138.01 17.30 165.61 0.18 6.78 24.11 

19 50 [1,100] [1,10] 0.75 19.13 125.79 18.42 138.37 20.09 166.05 0.14 6.05 26.84 

20 50 [1,100] [1,10] 1 18.10 125.36 19.33 137.90 19.20 165.48 0.24 6.53 24.85 

21 50 [1,100] [1,100] 0.25 19.02 125.37 17.05 137.92 17.76 165.50 1.03 7.33 22.80 

22 50 [1,100] [1,100] 0.5 18.94 125.35 15.83 137.89 21.42 165.46 2.93 7.56 18.80 

23 50 [1,100] [1,100] 0.75 18.25 125.35 13.01 137.89 18.42 165.46 6.25 11.21 15.16 

24 50 [1,100] [1,100] 1 18.35 125.34 12.22 137.88 21.09 165.45 9.14 15.27 13.75 



121 
 

Table ‎5-4 Computational Results for the Problems with 100 and 200 Jobs 

Prob. 

Num. 

No. 

of 

Jobs 

Oper. 

Time 

Setup 

Time 
  

Without Setup With Setup 
With Single 

Server Setup 
APAM+SS AD(SS,LB) 

AD(SS, 

2-opt) Av. 

STD 

Av. 

Time 

Av. 

STD 

Av. 

Time 

Av. 

STD 

Av. 

Time 

1 100 [1,10] [1,10] 0.25 3.62 230.77 3.20 253.85 3.59 304.62 1.13 6.09 21.66 

2 100 [1,10] [1,10] 0.5 4.31 243.42 3.82 267.76 4.63 321.31 3.57 8.48 18.81 

3 100 [1,10] [1,10] 0.75 4.49 243.34 3.94 267.67 4.75 321.21 5.04 10.14 16.07 

4 100 [1,10] [1,10] 1 4.18 243.39 2.98 267.73 4.48 321.27 9.67 14.70 12.93 

5 100 [1,100] [1,10] 0.25 29.44 253.18 28.56 278.50 30.32 334.20 0.10 6.31 28.48 

6 100 [1,100] [1,10] 0.5 26.54 253.27 28.68 278.60 30.57 334.32 0.12 7.01 27.45 

7 100 [1,100] [1,10] 0.75 30.19 252.83 29.57 278.11 28.87 333.74 0.13 5.97 27.36 

8 100 [1,100] [1,10] 1 29.35 253.46 27.19 278.81 28.72 334.57 0.24 6.16 26.73 

9 100 [1,100] [1,100] 0.25 27.14 253.00 28.97 278.30 27.54 333.96 1.12 6.01 22.91 

10 100 [1,100] [1,100] 0.5 29.31 253.66 24.91 279.03 32.13 334.83 3.10 8.16 19.92 

11 100 [1,100] [1,100] 0.75 28.46 253.30 21.65 278.63 27.13 334.36 6.02 11.02 16.51 

12 100 [1,100] [1,100] 1 29.00 253.51 18.92 278.86 29.65 334.63 10.17 16.09 13.34 

13 200 [1,10] [1,10] 0.25 6.84 430.39 6.41 473.43 7.13 568.11 1.00 8.02 20.94 

14 200 [1,10] [1,10] 0.5 7.93 476.20 6.82 523.82 7.33 628.58 3.16 8.99 18.11 

15 200 [1,10] [1,10] 0.75 7.31 476.00 6.73 523.60 7.41 628.32 5.41 11.36 15.60 

16 200 [1,10] [1,10] 1 7.19 476.10 5.74 523.71 7.39 628.45 9.26 15.75 12.95 

17 200 [1,100] [1,10] 0.25 49.39 493.40 53.93 542.74 52.80 651.29 0.06 8.06 26.63 

18 200 [1,100] [1,10] 0.5 51.19 492.93 47.99 542.22 53.53 650.67 0.09 7.63 26.82 

19 200 [1,100] [1,10] 0.75 54.88 493.61 53.22 542.97 49.85 651.57 0.17 7.80 26.01 

20 200 [1,100] [1,10] 1 51.42 493.73 44.85 543.10 47.85 651.72 0.20 7.13 25.23 

21 200 [1,100] [1,100] 0.25 56.42 493.12 51.07 542.43 50.59 650.92 1.00 7.47 22.41 

22 200 [1,100] [1,100] 0.5 49.33 493.45 47.62 542.80 51.94 651.35 3.24 9.15 19.09 

23 200 [1,100] [1,100] 0.75 50.34 494.27 47.28 543.70 53.29 652.44 5.93 12.18 15.74 

24 200 [1,100] [1,100] 1 52.53 494.22 40.53 543.64 48.61 652.37 10.16 16.63 12.91 



122 
 

Table ‎5-5 Computational Results for the Problems with 500 and 1000 Jobs 

Prob. 

Num. 

No. 

of 

Jobs 

Oper. 

Time 

Setup 

Time 
  

Without Setup With Setup 
With Single Server 

Setup 
APAM+SS AD(SS,LB) 

AD(SS, 

2-opt) Av. 

STD 
Av. Time 

Av. 

STD 

Av. 

Time 

Av. 

STD 

Av. 

Time 

1 500 [1,10] [1,10] 0.25 13.57 3,563.02 15.78 3,919.32 14.07 4,703.19 0.95 11.12 17.83 

2 500 [1,10] [1,10] 0.5 15.37 2,513.92 14.51 2,765.31 14.46 3,318.37 3.11 12.15 15.29 

3 500 [1,10] [1,10] 0.75 15.54 2,512.02 15.51 2,763.22 15.34 3,315.87 5.12 14.04 13.40 

4 500 [1,10] [1,10] 1 18.79 2,511.90 14.82 2,763.09 13.54 3,315.71 9.16 18.56 11.01 

5 500 [1,100] [1,10] 0.25 137.44 2,578.82 133.69 2,836.70 121.86 3,404.04 0.04 12.63 22.54 

6 500 [1,100] [1,10] 0.5 124.41 2,578.84 136.59 2,836.72 121.36 3,404.07 0.06 12.66 22.24 

7 500 [1,100] [1,10] 0.75 118.20 2,579.32 135.06 2,837.25 123.24 3,404.70 0.11 11.68 22.23 

8 500 [1,100] [1,10] 1 136.56 2,577.08 125.22 2,834.79 126.90 3,401.75 0.24 11.83 21.22 

9 500 [1,100] [1,100] 0.25 130.68 2,579.16 130.97 2,837.08 131.41 3,404.49 0.93 11.70 18.94 

10 500 [1,100] [1,100] 0.5 127.30 2,574.92 123.29 2,832.41 127.75 3,398.89 3.00 12.67 15.91 

11 500 [1,100] [1,100] 0.75 134.38 2,571.56 119.26 2,828.72 127.43 3,394.46 5.84 15.25 13.49 

12 500 [1,100] [1,100] 1 117.41 2,570.58 117.71 2,827.64 127.15 3,393.17 9.56 19.14 11.28 

13 1000 [1,10] [1,10] 0.25 30.44 6,744.28 30.90 7,418.70 32.74 8,902.44 0.76 14.96 14.17 

14 1000 [1,10] [1,10] 0.5 31.70 6,729.28 33.27 7,402.20 34.05 8,882.64 2.95 15.73 12.23 

15 1000 [1,10] [1,10] 0.75 33.12 6,724.85 30.22 7,397.34 32.14 8,876.80 4.68 16.93 11.17 

16 1000 [1,10] [1,10] 1 29.40 6,708.53 34.97 7,379.38 28.43 8,855.25 8.39 20.86 19.17 

17 1000 [1,100] [1,10] 0.25 259.04 6,812.58 262.72 7,493.83 253.02 8,992.60 0.04 18.20 17.35 

18 1000 [1,100] [1,10] 0.5 286.12 6,813.28 258.92 7,494.60 276.26 8,993.52 0.05 17.48 17.46 

19 1000 [1,100] [1,10] 0.75 251.65 6,798.68 255.39 7,478.54 278.01 8,974.25 0.08 17.29 17.43 

20 1000 [1,100] [1,10] 1 276.91 6,807.93 286.79 7,488.72 268.47 8,986.46 0.22 16.98 16.92 

21 1000 [1,100] [1,100] 0.25 269.30 6,797.40 291.87 7,477.14 254.76 8,972.57 0.89 15.77 14.90 

22 1000 [1,100] [1,100] 0.5 262.95 6,792.03 259.28 7,471.23 258.42 8,965.47 2.76 16.19 12.69 

23 1000 [1,100] [1,100] 0.75 296.92 6,789.50 263.73 7,468.45 261.11 8,962.14 5.52 18.58 10.76 

24 1000 [1,100] [1,100] 1 293.54 6,792.33 272.57 7,471.56 285.16 8,965.87 8.82 21.59 19.28 



123 
 

Table ‎5-6 Summary of the Computational Results for Large Instance Problems 

Num. 

No. 

of 

Jobs 

Without Setup With Setup 
With Single Server 

Setup APAM

+SS 

AD(SS, 

LB ) 

AD(SS, 

2-Opt) Av. 

STD 

Av. 

Time 

Av. 

STD 

Av. 

Time 

Av. 

STD 

Av. 

Time 

1 20 9.59 42.07 9.08 46.27 9.45 55.53 2.77 10.60 17.69 

2 50 13.28 123.72 11.74 136.09 13.73 163.30 3.16 8.65 20.19 

3 100 20.50 248.93 18.53 273.82 21.03 328.58 3.37 8.85 21.01 

4 200 37.06 483.95 34.35 532.35 36.48 638.82 3.31 10.01 20.20 

5 500 90.80 2,642.60 90.20 2,906.85 88.71 3,488.25 3.18 13.62 17.12 

6 1000 193.42 6,775.89 190.05 7,453.47 188.55 8,944.17 2.93 17.55 15.29 

Average 60.78 1,719.53 58.99 1,891.48 59.66 2,269.78 3.12 11.55 18.58 

 



124 
 

5.5 Conclusion 

In this chapter, two-machine, no-wait job shop problem with separable setup 

times was studied. Further, the single server side constraints were considered. The 

problem is proven to be strongly NP-hard. Therefore, finding optimal solutions of large 

instances of the problem is not possible in a reasonable time. Mathematical model of the 

problem was developed and an effective method for calculating the objective function 

and assigning the jobs to the machines was introduced.  

A metaheuristic algorithm was proposed to deal with the problem. This 

algorithm is able to search vast areas of the feasible space employing the reasonable 

time complexity of the method for assigning jobs to machines and calculating the 

objective function. Computational results on the randomly generated test problems with 

small and large instances show the efficiency of the proposed algorithm in finding 

optimal and near optimal solutions for the problems in a very short time. 

 

 

 



125 
 

Chapter 6 

General No-Wait Job Shop Problem (NWJS) 

 

6 General No-Wait Job Shop Problem (NWJS) 

6.1 Background 

No-Wait Job Shop (NWJS) scheduling problems refer to the set of problems in 

which a number of jobs are available for processing on a number of machines in a job 

shop context with the added constraint that there should be no waiting time between 

consecutive operations of the jobs. Since the problem is in a job shop context, the order 

of operations to be processed is not necessarily identical for different jobs. No-wait 

constraints denote that operations of a job have to be processed without interruption on 

consecutive machines. The considered performance measure is makespan. Following the 

three-field notation of the scheduling problems, the mentioned problem can be 

designated as max| |J no wait C [85]. 

[5] showed that NWJS problems, especially large-instance NWJS problems, are 

difficult to solve. [58] proved that NWJS is NP-hard in the strong sense even for the 

problems with two machines. On the other hand, NWJS problem has numerous real-

world industrial applications. For example one can name chemical industries [4], food 

industries [5], steel production [6], pharmaceutical industries [7], and production of 

concrete products [8]. For a more comprehensive review of the applications of the 

problem, the reader is referred to [5]. This implies that max| |J no wait C  is interesting 

for the researchers because of its significance in theory and applications in real-world 

environments.  



126 
 

As a result, NWJS has been studied by many researchers in the past few years. In 

almost all the studies, NWJS is decomposed into two sub-problems: timetabling and 

sequencing. The sequencing sub-problem is the problem of searching for a sequence of 

jobs that provide a better opportunity to find a good-quality solution. This sequence 

represents the priority of the jobs when they are assigned to a schedule. 

Timetabling, an NP-hard problem in NWJS context [77], denotes the problem of 

developing a feasible schedule from the provided priority list or sequence of the jobs. 

There exist many algorithms in NWJS literature for timetabling. In this chapter, this 

important question is aimed to be answered: is the timetabling or the sequencing 

algorithm more important to the effectiveness of the developed algorithm? To answer 

this question, different algorithms are developed and combined. The result is a strong 

algorithm that is able to reproduce the best-known solutions in the literature in a very 

short time when compared to the competitors in the literature. 

The approach is to investigate 3 different sequencing methods: Tabu Search (TS) 

of section ‎3.4, a hybrid of Tabu Search with Variable Neighborhood Search (TSVNS) of 

section ‎3.4, and a hybrid of Tabu Search with Particle Swarm Optimization (TSPSO) of 

section ‎4.4.2. These sequencing algorithms are combined with the most successful 

timetabling algorithms from the literature; namely, non-delay timetabling of [72], 

reverse timetabling of [73], shift timetabling of [77], and a new reverse right shift 

timetabling that is developed in this chapter. Afterwards, these different approaches are 

applied to a vast number of test problems from the literature. The answer to the above 

question will be justified using the computational results and statistical analysis.  

6.2 Notation 

The notations used throughout this chapter is as follows: 



127 
 

S  Source of the graph 

T  Final node in the graph 

u  An arc 

( )b u  Beginning node of u  

( )e u  End node of u  

( )w u  Label of u  

( )s i  Successor of node i  according to the sequence of operations 

( )r i  Predecessor of node i  according to the sequence of operations 

( )d i  Successor of node i  according to disjunction 

( )v i  Predecessor of node i  according to disjunction 

( )l i  Label of node i  

6.3 Problem Description 

A typical NWJS instance includes a set of m  machines and n  jobs. Every job 

has its own specific route throughout its processing. Additionally, each job is composed 

of a series of operations to be performed by different machines. It is assumed that each 

job should go to each machine exactly once. Processing sequence is a permutation   of 

the set of jobs, meaning that jobs should be arranged orderly by their index in  . A 

processing sequence is denoted as a vector 
[1] [2] [ ]( , ,..., )n    . 

[ ]i  denoted the job 

that is placed in the i th position of the sequence and is not necessarily equal to i . A 

feasible schedule should also satisfy the following constraints: 1) sequence: each job 

must be processed according to its predefined order of operations; no 

interruption/preemption is allowed. 2) synchronicity: no job can be processed by more 

than one machine at the same time; no machine can process more than one operation at 

the same time. 3) no-wait: there should be no waiting time between consecutive 

operations of a job.  



128 
 

Effective algorithms usually decompose NWJS into two sub-problems: 

timetabling and sequencing. Sequencing sub-problem consists of finding a processing 

sequence of the optimal schedule. Timetabling sub-problem consists of determining a 

feasible schedule of the sequence, obtained from sequencing level. As mentioned before, 

both sub-problems are proved to be NP-hard in the strong sense [60]. NWJS is modeled 

by means of disjunctive graphs, which is a di-graph. A di-graph consists of a set of 

nodes V  and arcs A . Consider the NWJS instance given in Table ‎6-1. 

Table ‎6-1 One Instance of NWJS 

Jobs Sequence Processing Time 

Machine 1 Machine 2 Machine 3 

1 1 2 3 10 5 8 

2 1 3 2 5 3 15 

3 2 1 3 8 10 8 

 

Figure ‎6-1 illustrates the non-oriented disjunctive graph of the problem instance 

given in Table ‎6-1. In this graph, S  and T  are dummy nodes that correspond to the start 

and finish of the whole process. Each row belongs to a specific job. For example, row 1 

includes operations 1, 2 and 3, which belong to job 1; row 2 includes operations 4, 5 and 

6, which belong to the operations of job 2, and so on. Non-oriented disjunctive arcs are 

in different textures to demonstrate that their corresponding operations should be 

processed by a specific machine. In the examples, dashed line demonstrates that the 

process should be performed by machine 1, dotted line corresponds to machine 2, and 

dash-dot corresponds to machine 3. Labels on the arcs specify the operating times; for 

instance label 10 of the arc between nodes 1 and 2 demonstrates the operating time of 

operation 1 of job 1. Suppose the sequence (1,2,3)   of the above instance. One of the 

possible orientations of the non-oriented graph of Figure ‎6-1 comes in Figure ‎6-2. In the 

oriented disjunctive graph, each disjunctive arc will have a label as well, which 



129 
 

demonstrates the operating time of the node it is started from. Moreover, according to 

the orientation given in Figure ‎6-2, it is possible to label the nodes as well. 

The labeled oriented graph is depicted in Figure ‎6-3. Figure ‎6-3 represents the 

starting time of each operation, and since it satisfies all the mentioned constraints, it is 

thus a feasible schedule with makespan equal to 67.  

The Node Labeling Algorithm (NLA) is as follows: 

1. Set ( ) 0l S  , ( ) 0l T  , and 1k  . 

2. Suppose that 
[ ]i  is the set of operations of 

[ ]i ; suppose 
[1]{ | }J i V i    . Set 

( ) ( ( )) ( , ( ));l j l s j w j s j j J    . 

3 15 
5

5 

10

10 

5

5 
8

8 

1

1 

2

2 

3

3 

4

4 

5

5 

6

6 

7

7 

8

8 

9

9 

S

S 

T

T 

10 5 

5 3 

8

8 

10

10 

8 

15 

8

8 

 Figure 6-2 Oriented Disjunctive Graph 

1 2 3 

4 5 6 

7 8 9 

S T 

10 5 

5 3 

8 10 

8 

15 

8 

Figure 6-1 Non-Oriented Disjunctive Graph 

 



130 
 

3. Set 1k k  . 

3.1. Suppose
[ ]{ | }kJ i V i    ;  

3.2. min{ }j a J   

3.3. Calculate: 

1 ( ( )) ( , ( ))K l s j w j s j    

2 ( ( )) ( , ( ))K l d j w j s j   

 1 2( ) max ,l j K K .  

If 2 1K K  and |k J k j    then: 

3.3.1. p j  

3.3.2. 1 max{ | }p a J a p    

3.3.3. 1 1 1 1( ) ( ( )) ( , ( ))l p l r p w p r p   

3.3.4. 1 1 1p p  . If 1p J , go to step 3.3.3. 

3.4. Set 1j j  .  

If max{ }j a J  , go back to step 3.3; otherwise, 

67 

59 
49 41 

26 23 18 

3 
15 

5 

10 

5 
8 

1 2 3 

4 5 6 

7 8 9 

S T 

10 5 

5 3 

8 10 

8 

15 

8 

 

0 

0 10 15 

Figure 6-3 Labeled Oriented Disjunctive Graph 

 



131 
 

( ) max{ ( ), ( ) ( , )}l T l T l j w j T  . 

4. If k n  go back to step 3. Otherwise, stop. max ( )C l T . 

The reader can easily verify the correctness of the labeling of Figure ‎6-3 by 

calculating the labels according to the above algorithm. One can deduce from the above 

argument that the most important aspect of a timetabling algorithm is an efficient graph 

orientation based on a given sequence. [72] defined a non-delay schedule for a NWJS 

instance. According to this definition, a non-delay schedule can be generated out of a 

given sequence, if the starting time of each operation is set as early as possible without 

violating any of the NWJS constraints. [73] enhanced the idea of non-delay timetabling 

by developing the reverse timetabling algorithm. Reverse timetabling allows the 

generation of delay timetables; thus explores the solution space of a given schedule more 

comprehensively. Basic idea behind reverse timetabling is to calculate the non-delay 

timetabling of the [72] as well as the reverse timetable, and to choose the minimum of 

the two as the best possible schedule for a given sequence. A reverse timetable can be 

generated by reversing the sequence as well as reversing the processing route of all the 

jobs. For example, reverse of the sequence (1,2,3)  is (3,2,1) ; and the reverse of the 

process route of the instance given in table 1 is (3,2,1;2,3,1;3,1,2) . It is proved in [73] 

that the reverse timetable is a feasible schedule for NWJS; however, generating this 

schedule from any given sequence might not be possible, when the non-delay 

timetabling algorithm of [72] is used. 

[77] introduced a different timetabling procedure: shift timetabling. Shift 

timetabling has the freedom of right shifting some of the jobs in the Gantt chart, and 

then left shifting the rest of the jobs as much as possible in order to generate a new non-

delay schedule. Basically, shifting timetabling as introduces by [77] is exchanging the 



132 
 

places of a limited number of jobs in a Gantt chart with the hope that a better non-delay 

schedule can be obtained. However, this new non-delay schedule might be such that no 

other sequence is associated with it. Although generating such schedules means missing 

all delay schedules and limiting the algorithm to the set of non-delay schedules, applying 

right shift approach might be still beneficial.  

In order to exploit the strength of the right shift timetabling, yet benefiting from a 

search in the set of non-delay as well as delay schedules, Right Shift + Reverse (RSR) 

timetabling approach is employed. RSR timetabling is a combination of the explained 

methods. RSR first generates a non-delay schedule based on the definition of [72]. 

Afterward, a reverse schedule will be generated according to the reverse timetabling of 

[73]. Then a right shift will be applied to the above two schedules; this will provide four 

different schedules. Lastly, the algorithm performs a left shift on all four schedules; and 

the best of the four schedules will be chosen as the schedule that associates the given 

sequence. In the next section, this approach is described in detail. 

6.4 The Proposed Algorithms 

Section ‎6.4.1 describes the proposed timetabling algorithm. The developed 

algorithms for sequencing come in section ‎6.4.2. 

6.4.1 Right Shift + Reverse (RSR) Algorithm 

RSR algorithm, first, generates 4 different timetables: non-delay, reverse, right 

shift, reverse right shift. Then, a left shifting will be applied to all schedules, and the best 

would be chosen to associate with the given sequence. The four timetabling algorithms 

are explained based on the graph modeling. Usage of this modeling significantly 

simplifies the descriptions. 



133 
 

6.4.1.1 Non-delay schedule 

Given a sequence, non-delay schedule means that all the disjunctive arcs will 

start from the operations of the first job in the sequence, and end at the operations of the 

second job in the sequence. Then, they will start from the operations of the second job 

and end at the operations of the third job, and so on. Figure ‎6-3 depicts the non-delay 

schedule for the sequence (1,2,3) . 

6.4.1.2 Reverse schedule 

First the sequence should be reversed. Afterward, the routing of operations of 

each job in the graph will be reversed; and the labels of the operations will be modified 

based on the problem information. Then, a non-delay schedule will be performed to this 

new graph. Figure ‎6-4 gives the reverse schedule for sequence (1,2,3) . 

6.4.1.3 Right Shift Schedule 

To perform a right shift schedule, scheduling starts with a usual non-delay 

schedule. However, after scheduling L  jobs, job 1L  will not be scheduled. Instead, 

job 2L  is scheduled. After scheduling job 2L , job 1L  will be scheduled and the 

scheduling continues until the algorithm reaches the job 2 1L . The rest of the 

operations do not differ from a non-delay schedule. L  is a parameter set by the user. 

67 

16 
8 0 

44 29 26 

8 10 8 

5 
15 

3 

1 2 3 

4 5 6 

7 8 9 

S T 

8 5 

3 15 

8 8 

10 

5 

10 

 

0 

44 52 57 

Figure 6-4 Reverse Schedule 

 



134 
 

In the graph modeling, the only difference with a non-delay schedule is when the 

algorithm reaches the job 1L . At this point, disjunctive arcs will first enter to the nodes 

of job 2L , and then to the nodes of job 1L . Figure ‎6-5 performs right shift 

timetabling on sequence (1,2,3) , where 1L  . 

6.4.1.4 Reverse Right Shift Schedule 

First the reverse timetabling will be applied. Then the right shift timetabling 

algorithm will be applied to the result of the reverse timetabling. Figure ‎6-6 performs 

right shift timetabling on sequence (1,2,3) , where 1L  . As one can verify, these four 

59 

33 
23 15 

44 41 36 

8 
8 

10 

10 8 5 

1 2 3 

4 5 6 

7 8 9 

S T 

10 5 

5 3 

8 10 

8 

15 

8 

 

0 

0 10 15 

Figure 6-5 Right Shift Schedule 

 

 

49 

18 
8 0 

44 41 26 

8 

8 10 8 

5 
10 

3 2 2 

6 5 4 

9 8 7 

S T 

8 5 

15 3 

8 10 

10 

5 

8 

 

0 

18 26 31 

Figure 6-6 Reverse Right Shift Schedule 



135 
 

different methods have so far achieved four different schedules. And if one wants to 

choose one of them, the makespan of Figure ‎6-6 is the best of the four. Section ‎6.4.1.5 

explains the last step of the timetabling approaches, which is left shifting. 

 

6.4.1.5 Left Shifting the Schedules 

At this point, left shifting sub-algorithm will be applied to all obtained schedules. 

Left shifting is a procedure that makes sure that all the operations of all the jobs start as 

soon as possible without violating the schedule feasibility. According to the graph 

model, left shifting algorithm can be summarized as follows. First, the longest path in 

the disjunctive graph is found. Critical Path Method (CPM) or Dijkstra algorithm can be 

used in order to find this path. In this research Dijkstra algorithm is used [121, 122]. 

After finding the longest path, a disjunctive arc on this path is chosen randomly and its 

direction will be changed. The Node Labeling Algorithm (NLA) is performed to the new 

graph in order to check whether the new graph has a smaller makespan. If the makespan 

is not shorter, the direction of the arc is changed back to its original direction and 

another disjunctive arc will be chosen until the makespan improves. This process will 

41 

33 
23 15 

26 23 18 

3 
8 

5 

10 5 
8 

1 2 3 

4 5 6 

7 8 9 

S T 

10 5 

5 3 

8 10 

8 

15 

8 

 

0 

0 10 15 

Figure 6-7 Left Shifting Algorithm 

 



136 
 

continue until no better disjunctive graph is obtained. Figure ‎6-7  gives the result of 

applying left shifting algorithm on the graph of Figure ‎6-3. 

6.4.2 Sequencing Algorithms 

So far, four different timetabling algorithms are explained that need to be fed by 

a sequence. In this research TS of section 3.3.2, hybrid of TS and VNS of section 3.3.2 

(or TSVNS), and hybrid of TS and PSO of section 4.2.3 (or TSPSO) are employed to 

provide such sequences.  

6.5 Computational Results and Analysis 

Four control parameters should be tuned for the proposed TS to initiate the 

search; the number of control parameters is 5 for TSVNS. For TSPSO, values of 7 

control parameters should be set. The following experimentally derived values are 

proposed for the TS parameters: 

2

4

100

Y n

n

L

R n

I n





 
  
 







  (6-1) 

For TSVNS, the values are as follows: 

2

4

3

100

Y n

n

L

R n

r

I n





 
  
 









  (6-2) 

The values of TSPSO parameters are as follows: 



137 
 

max

min

2

3

100

4

4 for problems with known optimalsolution

10 for problems without known optimalsolution

1

0.5

4.1

10

n
Y

n

I n

L

x

w

w

c

b x



 
  
 

 
  
 

 




 










 (6-3) 

In (6-1) and (6-2), n  is the number of jobs, Y  is the length of the adaptive 

memory or equally the number of initial solutions,   is the length of the tabu list, L  is 

the right shifting parameter, R  is the number of iterations before changing to the next 

neighborhood structure, r  is the parameter of exchange-r neighborhood, and I  is the 

total‎ number‎ of‎ algorithm’s‎ iterations.‎ In‎ (6-3), x  is the number of jobs that PSO 

algorithm initiates its search on them, minw  and maxw  are used to calculate the inertia 

weight, c  is velocity constant and b  is the number of iterations of the PSO algorithm. 

The coding interface of the proposed algorithm is Microsoft Visual C++ 2008; and the 

computational experiments were performed on a PC equipped with a 3GHz Intel CPU 

and 1 GB of RAM.  

Test problems can be categorized into two major subsets. First category contains 

29 small-instance problems with a known optimal solution. The optimal solution of 

these problems are known from [65]. Second category contains rather larger-instance 

problems with unknown optimal solution. All the test problems are accessible from OR-

Library [115].  



138 
 

In the problems set, la01 through la40 are from [123], orb01 to orb05 are from 

[124], and swv01 to swv10 are from [125]. First, the generated solutions from different 

timetabling and sequencing algorithms are compared with the most competitive 

approaches in the literature: genetic algorithm of [19] which is referred to as GA, tabu 

search of [72] which is abbreviated as TS, genetic algorithm and variable neighborhood 

search of [73] which they tend to call GASA, hybrid tabu search of [76], abbreviated as 

HTS, and heuristics of [78] which they tend to call tdom.  

It should be noted that [76] report two sets of solutions. In the first set, they run 

their algorithm until they reach to the CPU time of [72]. In the second set, there is no 

limitation considered on CPU time. Clearly, the results reported to the second set surpass 

those of the first set. The CPU time is not reported for the second set. The proposed 

algorithms plus the rest of the algorithms from literature had been limited based on CPU 

time or the number of iterations. Nevertheless, these solutions, mainly because of their 

competitive makespans, provide a good base for the comparison purposes of this 

research. Therefore, these results are used as a reference to compare the generated 

solutions.  

Since the proposed algorithms contain a number of probabilistic elements, each 

problem is solved 10 times; this will also provide enough replications for statistical 

analysis that comes later in this section. The minimum makespan obtained for each test 

problem through these 10 efforts (Min) is reported with its associated CPU time in 

seconds (Time) as well as Percentage Relative Deviation (PRD). PRD is calculated 

according to (6-4). 

 

Algorithm Refernece
Algorithm max max

Algorithm Refernece

max max

100
min ,

C C
PRD

C C


       (6-4) 



139 
 

In (6-4), Algorithm

maxC  is the minimum proposed makespan of each algorithm, and 

Refernece

maxC  is the same value, extracted from [19]. Table ‎6-2, Table ‎6-3 and Table ‎6-4 

respectively compare the computational results of the developed TS, TSVNS, and 

TSPSO along with the 4 different timetabling problems. The best makespan from the 

literature along with the paper that report this result also comes in these tables. In terms 

of CPU time, as one can expect, TS takes the least time and after that it comes TSVNS 

and then TSPSO. In addition, non-delay timetabling is the least time-consuming 

algorithm followed by reverse, right shift, and finally reverse right shift. A check on the 

last rows of these tables suggests that TS algorithm, when combined with reverse 

timetabling, generates the best makespans. This claim is proved using Design of 

Experiments (DOE) study which is discussed in details in the next section. 

 



140 
 

Table ‎6-2 Computational Results of TS with Different Timetabling Algorithms 

    
The Proposed TS 

    
Non-Delay Reverse Right Shift Reverse Right Shift 

Prob. Size Source Ref. Makespan Time PRD Makespan Time PRD Makespan Time PRD Makespan Time PRD 

la01 10*5 GA 971.00 971.00 0.87 0.00 971.00 1.38 0.00 1,028.00 1.66 5.87 975.00 4.30 0.41 

la02 10*5 GA 937.00 990.00 0.83 5.66 937.00 1.35 0.00 937.00 1.53 0.00 961.00 3.84 2.56 

la03 10*5 GA 820.00 862.00 0.76 5.12 820.00 1.29 0.00 869.00 1.52 5.98 820.00 3.48 0.00 

la04 10*5 GA 887.00 911.00 0.92 2.71 887.00 1.32 0.00 887.00 1.59 0.00 887.00 3.76 0.00 

la05 10*5 GA 777.00 777.00 0.78 0.00 777.00 1.31 0.00 787.00 1.54 1.29 777.00 3.14 0.00 

la06 15*5 GA 1,248.00 1,364.00 1.69 9.29 1,248.00 2.83 0.00 1,337.00 3.40 7.13 1,355.00 7.25 8.57 

la07 15*5 GA 1,172.00 1,358.00 1.55 15.87 1,172.00 2.84 0.00 1,246.00 3.15 6.31 1,257.00 7.41 7.25 

la08 15*5 GA 1,244.00 1,304.00 1.82 4.82 1,244.00 3.34 0.00 1,320.00 3.75 6.11 1,354.00 8.49 8.84 

la09 15*5 GA 1,358.00 1,434.00 1.88 5.60 1,449.00 3.28 6.70 1,456.00 3.84 7.22 1,448.00 8.47 6.63 

la10 15*5 GA 1,287.00 1,287.00 1.79 0.00 1,287.00 3.25 0.00 1,381.00 3.76 7.30 1,355.00 8.49 5.28 

la16 10*10 GA 1,575.00 1,575.00 2.41 0.00 1,621.00 3.62 2.92 1,575.00 4.63 0.00 1,575.00 13.02 0.00 

la17 10*10 GA 1,371.00 1,371.00 2.17 0.00 1,384.00 3.50 0.95 1,371.00 4.56 0.00 1,389.00 12.55 1.31 

la18 10*10 GA 1,417.00 1,511.00 2.10 6.63 1,417.00 3.47 0.00 1,507.00 4.40 6.35 1,507.00 13.01 6.35 

la19 10*10 GA 1,482.00 1,548.00 2.40 4.45 1,482.00 3.97 0.00 1,586.00 4.94 7.02 1,491.00 13.62 0.61 

la20 10*10 GA 1,526.00 1,614.00 2.33 5.77 1,526.00 3.82 0.00 1,526.00 4.63 0.00 1,614.00 14.40 5.77 

orb01 10*10 GA 1,615.00 1,615.00 2.26 0.00 1,626.00 3.45 0.68 1,615.00 4.44 0.00 1,615.00 13.67 0.00 

orb02 10*10 GA 1,485.00 1,518.00 2.45 2.22 1,518.00 3.78 2.22 1,518.00 5.01 2.22 1,518.00 13.53 2.22 

orb03 10*10 GA 1,599.00 1,621.00 2.09 1.38 1,599.00 3.68 0.00 1,603.00 4.28 0.25 1,599.00 13.50 0.00 

orb04 10*10 GA 1,653.00 1,699.00 2.50 2.78 1,653.00 4.26 0.00 1,748.00 5.31 5.75 1,684.00 15.38 1.88 

orb05 10*10 GA 1,365.00 1,409.00 2.60 3.22 1,367.00 3.82 0.15 1,409.00 5.25 3.22 1,385.00 13.66 1.47 

la11 20*5 tdom 1,619.00 1,760.00 2.75 8.71 1,619.00 3.29 0.00 1,683.00 5.71 3.95 1,747.00 15.28 7.91 

la12 20*5 tdom 1,414.00 1,541.00 2.78 8.98 1,535.00 5.48 8.56 1,558.00 6.00 10.18 1,558.00 17.33 10.18 

la13 20*5 HTS 1,580.00 1,691.00 2.94 7.03 1,580.00 6.29 0.00 1,683.00 6.00 6.52 1,693.00 16.91 7.15 

la14 20*5 tdom 1,578.00 1,761.00 4.11 11.60 1,722.00 6.89 9.13 1,758.00 6.91 11.41 1,766.00 18.53 11.91 

la15 20*5 tdom 1,679.00 1,813.00 2.85 7.98 1,747.00 5.20 4.05 1,797.00 5.89 7.03 1,795.00 17.02 6.91 

la21 15*10 tdom 2,030.00 2,185.00 5.35 7.64 2,030.00 11.60 0.00 2,198.00 11.34 8.28 2,244.00 34.67 10.54 

la22 15*10 tdom 1,852.00 2,042.00 5.30 10.26 1,964.00 9.32 6.05 1,942.00 11.07 4.86 1,960.00 27.56 5.83 

la23 15*10 tdom 2,021.00 2,275.00 5.35 12.57 2,073.00 8.73 2.57 2,073.00 10.94 2.57 2,144.00 24.81 6.09 

la24 15*10 tdom 1,972.00 2,169.00 5.19 9.99 1,972.00 8.57 0.00 2,097.00 10.85 6.34 2,171.00 25.54 10.09 

la25 15*10 tdom 1,906.00 2,068.00 5.12 8.50 1,954.00 8.46 2.52 2,068.00 10.42 8.50 2,034.00 28.35 6.72 



141 
 

Table 6-2 Continued  

    
The Proposed TS 

    
Non-Delay Reverse Right Shift Reverse Right Shift 

Prob. Size Source Ref. Makespan Time PRD Makespan Time PRD Makespan Time PRD Makespan Time PRD 

la26 20*10 HTS 2,506.00 2,784.00 9.41 11.09 2,506.00 17.30 0.00 2,775.00 20.26 10.73 2,774.00 64.90 10.69 

la27 20*10 tdom 2,671.00 2,958.00 9.81 10.75 2,821.00 16.80 5.62 2,940.00 20.09 10.07 2,951.00 74.24 10.48 

la28 20*10 HTS 2,552.00 2,552.00 9.39 0.00 2,552.00 16.42 0.00 2,930.00 22.51 14.81 2,909.00 43.80 13.99 

la29 20*10 HTS 2,300.00 2,587.00 9.79 12.48 2,300.00 17.01 0.00 2,626.00 24.34 14.17 2,641.00 65.83 14.83 

la30 20*10 HTS 2,452.00 2,781.00 8.56 13.42 2,452.00 14.84 0.00 2,691.00 19.34 9.75 2,821.00 58.59 15.05 

la31 30*10 HTS 3,498.00 3,953.00 24.29 13.01 3,713.00 38.01 6.15 3,987.00 53.58 13.98 3,869.00 133.41 10.61 

la32 30*10 HTS 3,882.00 4,411.00 23.66 13.63 4,193.00 46.98 8.01 4,304.00 55.75 10.87 4,223.00 119.85 8.78 

la33 30*10 HTS 3,454.00 3,733.00 28.49 8.08 3,454.00 49.08 0.00 3,945.00 55.86 14.22 3,877.00 118.59 12.25 

la34 30*10 HTS 3,659.00 3,924.00 25.33 7.24 3,879.00 44.16 6.01 3,879.00 51.35 6.01 3,659.00 120.85 0.00 

la35 30*10 HTS 3,552.00 4,031.00 22.31 13.49 3,896.00 40.95 9.68 4,059.00 47.34 14.27 4,011.00 106.70 12.92 

la36 15*15 tdom 2,685.00 2,990.00 10.11 11.36 2,815.00 19.14 4.84 2,900.00 21.13 8.01 2,990.00 47.26 11.36 

la37 15*15 tdom 2,831.00 3,245.00 11.21 14.62 2,831.00 21.18 0.00 3,202.00 26.99 13.10 3,212.00 50.72 13.46 

la38 15*15 tdom 2,525.00 2,784.00 10.22 10.26 2,706.00 18.21 7.17 2,734.00 27.74 8.28 2,717.00 52.86 7.60 

la39 15*15 tdom 2,660.00 2,876.00 10.99 8.12 2,725.00 16.77 2.44 2,943.00 30.83 10.64 2,842.00 52.43 6.84 

la40 15*15 tdom 2,564.00 2,903.00 10.93 13.22 2,845.00 17.94 10.96 2,854.00 33.33 11.31 2,943.00 49.94 14.78 

swv01 20*10 HTS 2,318.00 2,429.00 8.97 4.79 2,328.00 14.03 0.43 2,465.00 30.42 6.34 2,441.00 48.67 5.31 

swv02 20*10 HTS 2,417.00 2,491.00 7.49 3.06 2,484.00 14.16 2.77 2,533.00 22.95 4.80 2,517.00 46.31 4.14 

swv03 20*10 HTS 2,381.00 2,515.00 8.67 5.63 2,381.00 14.59 0.00 2,490.00 19.30 4.58 2,381.00 70.82 0.00 

swv04 20*10 HTS 2,462.00 2,607.00 7.99 5.89 2,520.00 14.98 2.36 2,623.00 19.38 6.54 2,581.00 60.00 4.83 

swv05 20*10 HTS 2,333.00 2,529.00 7.94 8.40 2,333.00 14.90 0.00 2,333.00 19.00 0.00 2,333.00 59.03 0.00 

swv06 20*15 HTS 3,290.00 3,564.00 15.12 8.33 3,290.00 29.33 0.00 3,474.00 33.72 5.59 3,600.00 97.35 9.42 

swv07 20*15 HTS 3,188.00 3,453.00 16.67 8.31 3,188.00 32.68 0.00 3,441.00 34.65 7.94 3,448.00 115.47 8.16 

swv08 20*15 HTS 3,423.00 3,712.00 18.71 8.44 3,423.00 34.08 0.00 3,423.00 35.26 0.00 3,579.00 108.26 4.56 

swv09 20*15 HTS 3,270.00 3,515.00 16.56 7.49 3,270.00 29.01 0.00 3,423.00 33.03 4.68 3,454.00 88.04 5.63 

swv10 20*15 HTS 3,462.00 3,622.00 15.25 4.62 3,462.00 25.84 0.00 3,462.00 35.02 0.00 3,600.00 85.41 3.99 

Average N/A 7.74 7.17 N/A 13.67 2.05 N/A 17.30 6.41 N/A 42.91 6.40 

Percentage of the Times with 

Best Solution* 
12.73 56.36 16.36 16.36 

*Since best solution can occur with more than one algorithm, summation of percentages might be more than 100%. 

 

 

 

 



142 
 

Table ‎6-3 Computational Results of TSVNS with Different Timetabling Algorithms 

    
The Proposed TSVNS 

    
Non-Delay Reverse Right Shift Reverse Right Shift 

Prob. Size Source Ref. Makespan Time PRD Makespan Time PRD Makespan Time PRD Makespan Time PRD 

la01 10*5 GA 971.00 971.00 1.33 0.00 975.00 3.77 0.41 971.00 2.53 0.00 975.00 6.02 0.41 

la02 10*5 GA 937.00 937.00 1.34 0.00 937.00 2.21 0.00 937.00 2.73 0.00 974.00 5.72 3.95 

la03 10*5 GA 820.00 854.00 1.69 4.15 820.00 2.40 0.00 862.00 2.74 5.12 820.00 5.31 0.00 

la04 10*5 GA 887.00 887.00 1.61 0.00 887.00 2.78 0.00 887.00 2.72 0.00 888.00 5.59 0.11 

la05 10*5 GA 777.00 793.00 1.41 2.06 781.00 2.34 0.51 781.00 2.39 0.51 781.00 5.18 0.51 

la06 15*5 GA 1,248.00 1,301.00 3.39 4.25 1,346.00 6.32 7.85 1,346.00 7.43 7.85 1,322.00 14.55 5.93 

la07 15*5 GA 1,172.00 1,172.00 2.66 0.00 1,246.00 6.13 6.31 1,232.00 8.20 5.12 1,234.00 12.09 5.29 

la08 15*5 GA 1,244.00 1,323.00 3.68 6.35 1,283.00 7.42 3.14 1,326.00 10.55 6.59 1,291.00 14.88 3.78 

la09 15*5 GA 1,358.00 1,480.00 2.96 8.98 1,365.00 7.36 0.52 1,461.00 7.16 7.58 1,452.00 15.85 6.92 

la10 15*5 GA 1,287.00 1,410.00 2.85 9.56 1,386.00 7.97 7.69 1,328.00 8.79 3.19 1,363.00 15.66 5.91 

la16 10*10 GA 1,575.00 1,635.00 3.98 3.81 1,575.00 8.46 0.00 1,575.00 7.56 0.00 1,575.00 18.92 0.00 

la17 10*10 GA 1,371.00 1,398.00 3.98 1.97 1,371.00 7.57 0.00 1,398.00 7.76 1.97 1,371.00 23.29 0.00 

la18 10*10 GA 1,417.00 1,417.00 3.83 0.00 1,507.00 7.54 6.35 1,507.00 7.02 6.35 1,507.00 21.36 6.35 

la19 10*10 GA 1,482.00 1,553.00 4.01 4.79 1,491.00 8.48 0.61 1,580.00 10.61 6.61 1,491.00 22.74 0.61 

la20 10*10 GA 1,526.00 1,678.00 3.90 9.96 1,526.00 7.80 0.00 1,614.00 8.08 5.77 1,526.00 24.47 0.00 

orb01 10*10 GA 1,615.00 1,637.00 3.29 1.36 1,638.00 5.84 1.42 1,648.00 7.07 2.04 1,626.00 27.42 0.68 

orb02 10*10 GA 1,485.00 1,518.00 3.97 2.22 1,518.00 6.13 2.22 1,518.00 8.11 2.22 1,518.00 35.04 2.22 

orb03 10*10 GA 1,599.00 1,617.00 3.58 1.13 1,599.00 3.58 0.00 1,603.00 7.64 0.25 1,599.00 28.57 0.00 

orb04 10*10 GA 1,653.00 1,738.00 5.14 5.14 1,712.00 6.16 3.57 1,653.00 8.94 0.00 1,699.00 38.72 2.78 

orb05 10*10 GA 1,365.00 1,409.00 5.22 3.22 1,367.00 6.20 0.15 1,438.00 8.88 5.35 1,367.00 24.34 0.15 

la11 20*5 tdom 1,619.00 1,619.00 4.33 0.00 1,768.00 11.66 9.20 1,619.00 9.92 0.00 1,732.00 26.11 6.98 

la12 20*5 tdom 1,414.00 1,539.00 4.78 8.84 1,578.00 11.18 11.60 1,545.00 10.18 9.26 1,609.00 25.46 13.79 

la13 20*5 HTS 1,580.00 1,743.00 5.21 10.32 1,696.00 10.80 7.34 1,580.00 10.33 0.00 1,713.00 24.95 8.42 

la14 20*5 tdom 1,578.00 1,766.00 5.59 11.91 1,711.00 13.31 8.43 1,578.00 11.10 0.00 1,578.00 22.29 0.00 

la15 20*5 tdom 1,679.00 1,834.00 5.04 9.23 1,816.00 9.27 8.16 1,811.00 10.10 7.86 1,828.00 25.79 8.87 

la21 15*10 tdom 2,030.00 2,138.00 9.23 5.32 2,265.00 17.65 11.58 2,242.00 17.57 10.44 2,177.00 48.57 7.24 

la22 15*10 tdom 1,852.00 1,943.00 9.25 4.91 1,972.00 14.21 6.48 1,981.00 17.11 6.97 1,852.00 76.30 0.00 

la23 15*10 tdom 2,021.00 2,231.00 10.50 10.39 2,139.00 17.41 5.84 2,187.00 16.97 8.21 2,202.00 72.00 8.96 

la24 15*10 tdom 1,972.00 2,180.00 9.50 10.55 2,214.00 14.20 12.27 2,092.00 16.35 6.09 2,097.00 65.96 6.34 

la25 15*10 tdom 1,906.00 2,041.00 8.56 7.08 2,082.00 13.05 9.23 2,070.00 16.04 8.60 1,906.00 48.91 0.00 

 

 



143 
 

Table 6-3 Continued 

    
The Proposed TSVNS 

    
Non-Delay Reverse Right Shift Reverse Right Shift 

Prob. Size Source Ref. Makespan Time PRD Makespan Time PRD Makespan Time PRD Makespan Time PRD 

la26 20*10 HTS 2,506.00 2,706.00 16.90 7.98 2,634.00 25.16 5.11 2,738.00 30.48 9.26 2,757.00 82.60 10.02 

la27 20*10 tdom 2,671.00 2,963.00 17.09 10.93 2,967.00 27.27 11.08 2,889.00 29.86 8.16 2,986.00 84.28 11.79 

la28 20*10 HTS 2,552.00 2,807.00 16.98 9.99 2,552.00 30.17 0.00 2,847.00 35.92 11.56 2,831.00 91.99 10.93 

la29 20*10 HTS 2,300.00 2,654.00 18.44 15.39 2,628.00 32.56 14.26 2,632.00 35.59 14.43 2,619.00 87.53 13.87 

la30 20*10 HTS 2,452.00 2,768.00 15.42 12.89 2,452.00 29.41 0.00 2,862.00 34.15 16.72 2,837.00 90.07 15.70 

la31 30*10 HTS 3,498.00 4,022.00 51.05 14.98 3,923.00 66.12 12.15 3,833.00 74.76 9.58 3,855.00 185.78 10.21 

la32 30*10 HTS 3,882.00 4,128.00 65.99 6.34 4,202.00 71.33 8.24 4,313.00 105.09 11.10 4,325.00 195.38 11.41 

la33 30*10 HTS 3,454.00 3,824.00 70.49 10.71 3,868.00 78.45 11.99 3,842.00 101.18 11.23 3,826.00 200.43 10.77 

la34 30*10 HTS 3,659.00 3,877.00 75.55 5.96 3,930.00 73.15 7.41 4,033.00 85.21 10.22 4,063.00 182.01 11.04 

la35 30*10 HTS 3,552.00 4,028.00 49.36 13.40 3,552.00 69.76 0.00 3,988.00 75.43 12.27 3,552.00 273.01 0.00 

la36 15*15 tdom 2,685.00 2,963.00 22.70 10.35 2,685.00 30.06 0.00 2,967.00 33.87 10.50 2,984.00 109.28 11.14 

la37 15*15 tdom 2,831.00 3,244.00 22.88 14.59 2,831.00 31.16 0.00 3,096.00 36.46 9.36 3,236.00 91.77 14.31 

la38 15*15 tdom 2,525.00 2,842.00 18.57 12.55 2,734.00 31.80 8.28 2,687.00 35.14 6.42 2,851.00 105.42 12.91 

la39 15*15 tdom 2,660.00 2,969.00 18.26 11.62 2,866.00 29.60 7.74 2,965.00 38.34 11.47 2,866.00 113.03 7.74 

la40 15*15 tdom 2,564.00 2,952.00 19.16 15.13 2,716.00 35.64 5.93 2,594.00 38.68 1.17 2,848.00 136.10 11.08 

swv01 20*10 HTS 2,318.00 2,504.00 17.80 8.02 2,443.00 22.35 5.39 2,432.00 28.93 4.92 2,422.00 95.07 4.49 

swv02 20*10 HTS 2,417.00 2,540.00 16.04 5.09 2,593.00 22.29 7.28 2,532.00 27.51 4.76 2,524.00 87.38 4.43 

swv03 20*10 HTS 2,381.00 2,543.00 12.75 6.80 2,521.00 23.67 5.88 2,556.00 29.67 7.35 2,534.00 96.87 6.43 

swv04 20*10 HTS 2,462.00 2,551.00 15.30 3.61 2,638.00 23.27 7.15 2,549.00 29.86 3.53 2,574.00 82.78 4.55 

swv05 20*10 HTS 2,333.00 2,487.00 13.62 6.60 2,493.00 25.14 6.86 2,589.00 28.73 10.97 2,530.00 67.24 8.44 

swv06 20*15 HTS 3,290.00 3,458.00 25.53 5.11 3,290.00 29.33 0.00 3,596.00 60.93 9.30 3,537.00 140.05 7.51 

swv07 20*15 HTS 3,188.00 3,439.00 29.37 7.87 3,339.00 32.68 4.74 3,459.00 69.91 8.50 3,338.00 178.54 4.71 

swv08 20*15 HTS 3,423.00 3,710.00 30.95 8.38 3,423.00 34.08 0.00 3,699.00 81.75 8.06 3,423.00 231.22 0.00 

swv09 20*15 HTS 3,270.00 3,391.00 30.35 3.70 3,270.00 29.01 0.00 3,444.00 74.20 5.32 3,376.00 184.19 3.24 

swv10 20*15 HTS 3,462.00 3,604.00 28.06 4.10 3,462.00 25.84 0.00 3,761.00 52.56 8.64 3,717.00 180.94 7.37 

Average N/A 15.53 6.90 N/A 21.43 4.73 N/A 28.12 6.34 N/A 75.91 5.82 

Percentage of the Times with Best 

Solution* 
10.91 29.09 14.55 18.18 

*Since best solution can occur with more than one algorithm, summation of percentages might be more than 100%. 

 



144 
 

Table ‎6-4 Computational Results of TSPSO with Different Timetabling Algorithms 

    
The Proposed TSPSO 

    
Non-Delay Reverse Right Shift Reverse Right Shift 

Prob. Size Source Ref. Makespan Time PRD Makespan Time PRD Makespan Time PRD Makespan Time PRD 

la01 10*5 GA 971.00 975 0.86 0.41 971 1.47 0.00 1,031.00 0.87 6.18 1,016.00 3.89 4.63 

la02 10*5 GA 937.00 966 0.82 3.09 937 2.06 0.00 961 1.08 2.56 988 4.1 5.44 

la03 10*5 GA 820.00 854 0.79 4.15 829 1.3 1.10 862 1 5.12 843 4.58 2.80 

la04 10*5 GA 887.00 887 0.87 0.00 887 1.79 0.00 887 1.24 0.00 888 3.93 0.11 

la05 10*5 GA 777.00 781 0.86 0.51 777 2.01 0.00 784 1.16 0.90 777 3.58 0.00 

la06 15*5 GA 1,248.00 1,353.00 1.67 8.41 1,348.00 3.66 8.01 1,248.00 2.46 0.00 1,362.00 8.48 9.13 

la07 15*5 GA 1,172.00 1,252.00 1.65 6.83 1,280.00 3.92 9.22 1,276.00 3 8.87 1,251.00 10.2 6.74 

la08 15*5 GA 1,244.00 1,318.00 1.9 5.95 1,334.00 4.01 7.23 1,314.00 2.98 5.63 1,289.00 11.5 3.62 

la09 15*5 GA 1,358.00 1,425.00 1.85 4.93 1,442.00 4.21 6.19 1,447.00 2.59 6.55 1,429.00 11.65 5.23 

la10 15*5 GA 1,287.00 1,314.00 1.93 2.10 1,363.00 4.85 5.91 1,371.00 2.24 6.53 1,327.00 15.05 3.11 

la16 10*10 GA 1,575.00 1,635.00 3.82 3.81 1,575.00 3.76 0.00 1,665.00 2.63 5.71 1,575.00 11.31 0.00 

la17 10*10 GA 1,371.00 1,459.00 2.82 6.42 1,398.00 3.92 1.97 1,430.00 3.14 4.30 1,436.00 11.83 4.74 

la18 10*10 GA 1,417.00 1,417.00 2.56 0.00 1,507.00 3.62 6.35 1,417.00 3.55 0.00 1,417.00 11.89 0.00 

la19 10*10 GA 1,482.00 1,581.00 2.72 6.68 1,497.00 4.37 1.01 1,569.00 3.01 5.87 1,512.00 11.19 2.02 

la20 10*10 GA 1,526.00 1,526.00 2.7 0.00 1,608.00 3.91 5.37 1,526.00 2.98 0.00 1,526.00 11.37 0.00 

orb01 10*10 GA 1,615.00 1,615.00 2.3 0.00 1,626.00 4.59 0.68 1,637.00 2.66 1.36 1,615.00 11.55 0.00 

orb02 10*10 GA 1,485.00 1,485.00 2.7 0.00 1,518.00 4.74 2.22 1,518.00 3.5 2.22 1,518.00 12.73 2.22 

orb03 10*10 GA 1,599.00 1,599.00 2.32 0.00 1,599.00 4.19 0.00 1,599.00 2.41 0.00 1,599.00 14.11 0.00 

orb04 10*10 GA 1,653.00 1,738.00 2.45 5.14 1,712.00 4.69 3.57 1,684.00 3.53 1.88 1,653.00 14.55 0.00 

orb05 10*10 GA 1,365.00 1,415.00 2.76 3.66 1,367.00 4.64 0.15 1,365.00 3.83 0.00 1,365.00 13.89 0.00 

la11 20*5 tdom 1,619.00 1,784.00 2.83 10.19 1,760.00 7.36 8.71 1,782.00 3.56 10.07 1,686.00 23.22 4.14 

la12 20*5 tdom 1,414.00 1,545.00 3.61 9.26 1,414.00 6.26 0.00 1,566.00 3.5 10.75 1,569.00 22.91 10.96 

la13 20*5 HTS 1,580.00 1,670.00 3.82 5.70 1,744.00 5.87 10.38 1,725.00 3.81 9.18 1,717.00 23.62 8.67 

la14 20*5 tdom 1,578.00 1,815.00 4.64 15.02 1,578.00 6.6 0.00 1,776.00 3.85 12.55 1,799.00 25.8 14.01 

la15 20*5 tdom 1,679.00 1,772.00 4.12 5.54 1,780.00 6.93 6.02 1,752.00 3.27 4.35 1,781.00 15.46 6.08 

la21 15*10 tdom 2,030.00 2,163.00 8.06 6.55 2,101.00 10.87 3.50 2,151.00 6.44 5.96 2,251.00 26.61 10.89 

la22 15*10 tdom 1,852.00 2,007.00 8.01 8.37 1,983.00 10.53 7.07 2,019.00 6.9 9.02 1,852.00 27.16 0.00 

la23 15*10 tdom 2,021.00 2,159.00 8.38 6.83 2,157.00 10.57 6.73 2,154.00 7.7 6.58 2,175.00 27.24 7.62 

la24 15*10 tdom 1,972.00 2,074.00 8.89 5.17 2,148.00 9.71 8.92 2,108.00 6.03 6.90 2,056.00 27.11 4.26 

la25 15*10 tdom 1,906.00 2,034.00 6.87 6.72 2,123.00 9.26 11.39 2,029.00 5.79 6.45 2,021.00 24.88 6.03 

 



145 
 

Table 6-4 Continued 

    
The Proposed TSPSO 

    
Non-Delay Reverse Right Shift Reverse Right Shift 

Prob. Size Source Ref. Makespan Time PRD Makespan Time PRD Makespan Time PRD Makespan Time PRD 

la26 20*10 HTS 2,506.00 2,828.00 11.75 12.85 2,773.00 17.61 10.65 2,765.00 10.73 10.34 2,709.00 56.76 8.10 

la27 20*10 tdom 2,671.00 2,975.00 11.14 11.38 3,074.00 20.59 15.09 2,972.00 12.83 11.27 2,955.00 52.92 10.63 

la28 20*10 HTS 2,552.00 2,837.00 11.67 11.17 2,715.00 20.52 6.39 2,926.00 14 14.66 2,552.00 46.68 0.00 

la29 20*10 HTS 2,300.00 2,645.00 11.13 15.00 2,300.00 25.76 0.00 2,640.00 10.52 14.78 2,620.00 52.24 13.91 

la30 20*10 HTS 2,452.00 2,808.00 10.22 14.52 2,452.00 25.05 0.00 2,812.00 10.8 14.68 2,845.00 46.36 16.03 

la31 30*10 HTS 3,498.00 3,900.00 26.85 11.49 3,498.00 79.68 0.00 4,017.00 26.11 14.84 3,866.00 123.5 10.52 

la32 30*10 HTS 3,882.00 4,334.00 38.91 11.64 3,882.00 67.7 0.00 3,882.00 28.62 0.00 4,289.00 131.92 10.48 

la33 30*10 HTS 3,454.00 3,840.00 32.06 11.18 3,454.00 50.94 0.00 3,835.00 26.75 11.03 3,883.00 170.48 12.42 

la34 30*10 HTS 3,659.00 3,878.00 31.87 5.99 3,820.00 47.05 4.40 3,928.00 28.75 7.35 3,949.00 115.54 7.93 

la35 30*10 HTS 3,552.00 4,120.00 29.17 15.99 3,552.00 43.17 0.00 3,951.00 25.28 11.23 3,880.00 112.29 9.23 

la36 15*15 tdom 2,685.00 2,902.00 10.73 8.08 2,885.00 17.14 7.45 2,857.00 10.67 6.41 2,884.00 52.81 7.41 

la37 15*15 tdom 2,831.00 3,129.00 11.91 10.53 2,831.00 18.83 0.00 3,189.00 11.64 12.65 3,190.00 62.56 12.68 

la38 15*15 tdom 2,525.00 2,785.00 11.36 10.30 2,757.00 17.85 9.19 2,525.00 12.5 0.00 2,748.00 66.04 8.83 

la39 15*15 tdom 2,660.00 2,898.00 10.9 8.95 2,874.00 17.46 8.05 2,942.00 12.58 10.60 2,884.00 73.33 8.42 

la40 15*15 tdom 2,564.00 2,866.00 13.43 11.78 2,564.00 19.26 0.00 2,716.00 13.32 5.93 2,917.00 63.04 13.77 

swv01 20*10 HTS 2,318.00 2,437.00 8.2 5.13 2,423.00 15.23 4.53 2,491.00 9.46 7.46 2,493.00 46.58 7.55 

swv02 20*10 HTS 2,417.00 2,514.00 9.37 4.01 2,482.00 14.48 2.69 2,519.00 8.66 4.22 2,533.00 46.57 4.80 

swv03 20*10 HTS 2,381.00 2,549.00 8.78 7.06 2,472.00 17.25 3.82 2,532.00 9.72 6.34 2,457.00 49.53 3.19 

swv04 20*10 HTS 2,462.00 2,637.00 9.55 7.11 2,560.00 16.7 3.98 2,582.00 10.08 4.87 2,600.00 51.45 5.61 

swv05 20*10 HTS 2,333.00 2,509.00 9.16 7.54 2,500.00 16.54 7.16 2,535.00 9.96 8.66 2,538.00 45.56 8.79 

swv06 20*15 HTS 3,290.00 3,589.00 18.3 9.09 3,448.00 28.28 4.80 3,606.00 20.45 9.60 3,321.00 95.61 0.94 

swv07 20*15 HTS 3,188.00 3,407.00 18.38 6.87 3,464.00 31.88 8.66 3,440.00 20.86 7.90 3,389.00 103 6.30 

swv08 20*15 HTS 3,423.00 3,701.00 20.26 8.12 3,680.00 40.43 7.51 3,543.00 20.49 3.51 3,830.00 120.38 11.89 

swv09 20*15 HTS 3,270.00 3,440.00 20.5 5.20 3,391.00 33.17 3.70 3,510.00 18.84 7.34 3,524.00 91.25 7.77 

swv10 20*15 HTS 3,462.00 3,611.00 16.51 4.30 3,667.00 33.1 5.92 3,724.00 18.03 7.57 3,712.00 90.63 7.22 

Average N/A 9.30 6.85 N/A 16.21 4.28 N/A 9.13 6.52 N/A 43.86 6.13 

Percentage of the Times with 

Best Solution* 
10.91 29.09 14.55 18.18 

*Since best solution can occur with more than one algorithm, summation of percentages might be more than 100%. 

 



146 
 

6.5.1 Statistical Analysis Using Design of Experiments 

Design of Experiments (DOE) is a statistical method that is used to analyze the 

effect of some variables (or factors) on a process performance (response). The most 

important feature of using DOE is its ability to study the interaction effects between the 

considered factors. This study tends to analyze the effect of applying different 

sequencing and timetabling algorithms on the quality of the obtained solutions of NWJS 

problems. The quality of the obtained solutions can be measured either using makespan 

or equivalently, PRD of NWJS problems.  

This research also wants to determine the best combination of sequencing and 

timetabling algorithms when a NWJS problem is solved. In order to perform such 

analysis,‎ one‎ should‎ identify‎ the‎ potential‎ factors‎ that‎ may‎ impact‎ the‎ algorithms’‎

performance. Therefore, the following factors are considered 1) test problem, 2) 

sequencing‎algorithm,‎ and‎3)‎ timetabling‎ algorithm.‎The‎PRD‎ is‎ used‎ as‎ the‎ system’s‎

response. The analysis is done in order to verify the effect of each factor as well as their 

interactions on the resulted PRD values of the obtained solutions. Since each test 

Figure ‎6-8 Normal Probability Plot of Residuals 



147 
 

problem is solved 10 times independently, 10 replications are considered for each 

combination of the above factors. The first factor is the test problem. This factor has 55 

levels, which is equal to the number of test problems considered. Second factor, 

sequencing algorithm, has 3 levels (TS, TSVNS, TSPSO). Third factor, timetabling 

algorithm, has 4 levels (non-delay, reverse, right shift, reverse right shift). Hence, the 

total number of runs is 6600 (55x3x4x10). The analysis is performed at 5% significance 

level using the Minitab software.  

In order for variance analysis to be valid, residuals should follow a normal 

distribution. Figure 8 illustrates the normal probability plot of residuals. Residual values 

should be close to the normal probability line in order to deduce that the residuals show 

normal distribution characteristics. Figure 8 confirms that the residuals are very close to 

the normal line.  

All in all, Figure ‎6-8 verifies the normality assumption as well as the validity of 

the variance analyses tests. Accordingly, null hypothesis of the designed ANOVA is 

that: 1) there is no meaningful and significant difference between the proposed 

sequencing and timetabling algorithms or studied problems, and differences in generated 

makespan values are as a result of chance; 2) there is no two-way interaction between 

sequencing and timetabling, sequencing and problems, or timetabling and problems; 3) 

there is no three-way interaction between sequencing, timetabling, and problems.  

Alternative hypothesis is: null hypothesis is not true. Table ‎6-5 summarizes the 

ANOVA results for the described model.  

 

 

 

 



148 
 

Table ‎6-5 Analysis of Variance for PRD, using Adjusted SS for Tests 

 

 

P-values of Table ‎6-5 indicate that all the sources of variation along with their 

interactions have a significant effect on the PRDs. This means that not only developing 

progressive sequencing and timetabling algorithms is important, but also one should pay 

attention to their interaction with each other and their interaction with the solved 

problems. In other words, when the right timetabling and sequencing algorithms are 

combined to solve certain problems, there will be 3 effective factors contributing to the 

quality of the solutions: the sequencing algorithm, the timetabling algorithm, and the 

Source 
Degree of 

Freedom 

Sequential 

Sums of 

Squares 

Adjusted 

Sums of 

Squares 

Adjusted 

Mean 

Square 

Value 

F-

Value 

P-

Value 

Problem 54 108746.7     108746.7 2013.8   204.42   0.000 

Sequencing 2 94.7 94.7 47.3 4.8 0.008 

Timetabling 3 2248.9 2248.9 749.6 76.09 0 

Problem * Sequencing 108 1752 1752 16.2 1.65 0 

Problem * Timetabling 162 3380.1 3380.1 20.9 2.12 0 

Sequencing * 

Timetabling 
6 1556.2 1556.2 259.4 26.33 0 

Problem * Sequencing * 

Timetabling 
324 5016.2 5016.2 15.5 1.57 0 

Error 5940 58517.7 58517.7 9.9 

 
Total 6599 181312.4  

 2 67.73%R   
2 64.14%adjR   

 Figure 6-9 Tukey 95.0% Simultaneous Confidence Intervals; Response Variable PRD; 

All Pairwise Comparisons among Levels of Sequencing 



149 
 

positive interaction that such combination creates. On the other hand, if either the 

sequencing or the timetabling algorithms are not carefully selected, the quality of the 

solutions will be affected not only because of the inappropriate choice, but also by the 

negative interaction that exists between the two. The values of 
2R  and 

2

adjR  are both 

more than 64%. This means that the used DOE model is able to address more than 64% 

of the variations between the different PRD values, which is a high value for practical 

purposes; and indicates the adequacy of model in describing the reality. 

In order to determine the superior sequencing and timetabling algorithms, 

Tukey’s‎ simultaneous‎ test‎with‎ 95%‎ confidence‎ level‎ is‎ performed.‎The‎ simultaneous‎

confidence intervals are depicted in Figure ‎6-9. It should be noted that in sequencing, 

Figure 6-10 Tukey 95.0% Simultaneous Confidence Intervals; Response Variable PRD; 

All Pairwise Comparisons among Levels of Timetabling 

 



150 
 

code 1 stands for TS, 2 denotes TSVNS, and 3 represents TSPSO; in timetabling code 1 

to 4 indicate non-delay, reverse, right shift, and reverse right shift, respectively. Figure 

‎6-9 depicts that while there is no significant difference between TSVNS and TSPSO, a 

significant difference between TS algorithm and TSVNS and TSPSO exists; TS is 

superior to the other sequencing algorithms.  

Figure ‎6-10 illustrates‎ the‎ results‎ of‎ Tukey’s‎ simultaneous‎ test‎ with‎ 95%‎

confidence levels on timetabling algorithms. Using this figure, one can deduce the order 

of superiority of timetabling algorithms as reverse, reverse right shift, and indifferent 

between non-delay and right shift, which is very different from the intuitive deductions. 

This means that although right shift algorithm seems to explore areas of the feasible 

region that the rest of the algorithms do not explore, statistically, there is no significant 

difference between PRD values of this algorithm and non-delay algorithm, which seems 

Figure ‎6-11 Main Effects Plot for PRD 



151 
 

to be the simplest timetabling procedure. Main effects plot of Figure ‎6-11 further 

demonstrates the correctness of the above argument. 

Last but not least is the interaction between different factors. As Table ‎6-5 

indicates, there is a significant interaction between the 3 mentioned factors. Analysis of 

interaction in Figure ‎6-12 reveals that PRD values of the problems under-the-study show 

a considerable improvement when sequencing algorithms are combined with reverse 

timetabling algorithm. The best PRD values for the problems under-the-study can be 

obtained by combining TS with reverse algorithm. When non-delay algorithm is used for 

timetabling, TSPSO is the best sequencing method. TSPSO is the most successful 

sequencing algorithm when reverse right shift timetabling is used. For the case of right 

Figure ‎6-12 Interaction Plot for PRD Values 

 



152 
 

shift timetabling, TSVNS gives the best results. 

Figure ‎6-13 illustrates more insight about the efficiency of different timetabling 

and sequencing algorithms when the problems without known optimal solutions are 

categorized into different groups. In this figure, problems with 20 jobs or less and 10 

machines or less are considered as category 1 and the rest of the problems are classified 

under category 2. Average PRD from different combinations of sequencing and 

timetabling algorithms are demonstrated in this figure. As expected, while combination 

of TS with timetabling algorithms seems promising, especially for category 1, 

combination of TS with reverse timetabling is superior all the times. In this figure, ND 

denotes non-delay timetabling, R represents reverse, RS stands for right shift and RRS 

indicates reverse right shift.  

6.6 Conclusion 

This chapter considered the scheduling problem when a set of jobs are available 

for processing in a no-wait job shop context. This problem is proven to be strongly NP-

hard. In other words, finding optimal solutions of large instances of this problem is not 

possible in a reasonable time. Therefore, the problem is decomposed into two other NP-

hard problems: sequencing and timetabling. In order to deal with the timetabling 

problem, first the problem is modeled using the disjunctive graph. Then three famous 

timetabling algorithms were considered from the literature; a new timetabling algorithm 

was introduced by combining the previous three algorithms from the literature. 

Moreover, three different sequencing algorithms were developed: a tabu search, a hybrid 

of tabu search and variable neighborhood search, a hybrid of tabu search and particle 

swarm optimization.  

Different combinations of the mentioned timetabling and sequencing algorithms 

were applied to a large set of test problems available in the literature. A Design of 



153 
 

0.00

2.00

4.00

6.00

8.00

10.00

12.00

1

2

Experiment (DOE) model was developed in order to determine the best combination of 

the sequencing and timetabling methods. Analysis of the DOE model provides a deep 

insight‎into‎the‎effective‎factors‎as‎well‎as‎ their‎ interactions‎on‎the‎obtained‎solutions’‎

makespan. Moreover, DOE analysis proves that the most complicated algorithms do not 

necessarily obtain the best solutions.  

 

 

Figure ‎6-13 Average PRD values for problems without known optimal solution 

 



154 
 

Chapter 7 

Conclusion and Future Research 

7 Conclusion and Future Research 

 

7.1 Background 

As mentioned in previous chapters, no-wait scheduling problems have numerous 

industrial and real-world applications. In this research, a number of no-wait scheduling 

problems were studied: 2-machine no-wait flow shop/job shop problem with setup time 

and single server constraints; general no-wait flow shop problem; no-wait flow shop 

problem with separable setup times; no-wait flow shop problem with sequence 

dependent setup times; and no-wait job shop problem. Section ‎7.2 summarizes the 

contributions of this thesis. Section ‎7.3 lists some recommendations for future researches 

in this direction. 

7.2 Research Contributions 

7.2.1 2-machine No-Wait Flow Shop Problem with Setup Times and 

Single Server Constraints 

 Chapter 3 proves a number of theorems for special cases of 2-machine 

no-wait flow shop problem with and without setup times and single 

server constraints.  

 A mathematical model is developed for the problems. A number of small 

instance problems are solved to optimality using the mathematical 

models. 

 An efficient algorithm that calculates the makespan of a given 

permutation is introduced.  

 A metaheuristic, namely a TSVNS is developed to solve the problem.  



155 
 

 The algorithm proves to be very effective in dealing with small and large 

instance test problems. The proposed algorithm is able to produce the 

exact solutions for all the small instance problems. 

This work has been published in a journal paper [119].  

7.2.2 General No-Wait Flow Shop Problems 

 Chapter 4 first studied the general NWFS. NWFS is reduced to a 

permutation problem. An algorithm to calculate the makespan of a given 

permutation is developed. 

 A novel PSO is proposed that transforms the feasible region of the NWFS 

(permutation of jobs) to a subset of integer numbers according to a one-

to-one mapping. 

 The proposed PSO is applied to a large number of test problems from the 

literature. Computational results section lists a number of new best-

known solutions for the problems available in the literature. 

 A GA and GAPSO are proposed to solve NWFS with separable setup 

times. Both algorithms prove to be very competitive when applied to 

randomly generated problems. 

 Lastly, the problem of NWFS when separable sequence dependent setup 

times are in effect is introduced.  

 A new PSO algorithm is developed. The PSO algorithm employs the 

concept of Matrix Coding (MC) to map the feasible region of the problem 

to specifically coded matrices. The developed PSO is able to utilize the 

MCs in a very efficient way. The new coding system reduces the 

computational time of the algorithm compared to the PSO proposed for 

NWFS with separable setup times. 



156 
 

The results of this research are published in two journal papers [126, 127],  

two conference papers [128, 129], and a third journal paper under review 

[130]. 

7.2.3 2-machine No-Wait Job Shop Problem with Setup Times and Single 

Server Constraints 

 Chapter ‎5 generalizes the theorems of chapter ‎3  

( max2 | , |F no wait setup C ) for the case of 2-machine job shop problem. 

 A mathematical model for the max2, 1| , |J S no wait setup C  is developed. 

 A method to calculate the makespan of a given permutation is introduced. 

 An efficient GA is developed to deal with the problem. 

 The proposed GA is applied to a number of small and large case 

instances; the developed GA proves to be very effective both for small 

and large instances. 

This work is published in a journal paper [131], and a conference paper 

[132]. 

7.2.4 General No-Wait Job Shop Problem 

 NWJS is a generalization of max2 | |J no wait C , studied in chapter ‎5.  

 NWJS is decomposed into two NP-hard sub-problems: sequencing and 

timetabling. 

 The algorithms of chapters ‎3, ‎4, and ‎5 are generalized to deal with the 

sequencing sub-problem. 

 Consequently, different timetabling methods is identified in the literature. 

A new timetabling algorithm is developed by combining the timetabling 

algorithms from the literature. 



157 
 

 Important questions arise at this point. Namely: which sequencing and 

which timetabling algorithm is the most successful? Is there an 

interaction between the sequencing and timetabling algorithms?  

 A method based on design of experiments (DOE) is implemented to 

determine the importance of timetabling algorithm against sequencing 

algorithm when combined together to be applied to NWJS.  

 Accordingly, 3 different sequencing algorithms are combined with 4 

distinct timetabling methods.  

 Design of experiments reveals that not only both the timetabling and 

sequencing algorithms are important, but also there is a significant 

interaction between the two algorithms. In other words, a good 

combination of the two algorithms generates solutions that are superior to 

poor combinations. 

The results of the research performed in this chapter are presented as a 

conference paper [133]  and under review as a journal paper [134]. 

7.3 Recommendations for Future Research 

The opportunities for the future research are countless, especially when other 

applicable situations are taken into consideration. An abridged list of recommendations 

follows: 

 Considering the following conditions: 

 Ready time 

 Due date 

 Weighted importance of the jobs 

 Uncertainty in the operating time 

 Sequence dependent setup times for NWJS 



158 
 

 Considering batch processing of the jobs: 

 Prioritizing batches of jobs once batches are formed 

 Partial batch processing 

 Batch size determination 

 Generalizing no-wait constraints into time-lag constraints, and the 

applications of the problems in industry and service sector. 

 Considering uncertainty: 

 Machine breakdown 

 Job cancellation 

 Variation of processing time 

 Other uncertainties. 

 Considering other objective functions instead of makespan 

 Multi-objective optimization 

 Developing exact methods that are able to generate the best solution for 

small instances of the above problems in a reasonable time. 

 Considering different new applications of the no-wait scheduling 

problems; for instance in service sector. 

 Developing algorithms to generate semi-active or active schedules for 

NWJS 

It is beneficial to elaborate on some of the complexities that arise when more 

applicable conditions are considered. For instance, Figure ‎7-1 demonstrates the case 

when sequence dependent setup times are considered for NWJS. This figure shows an 

exemplary partial timetable from permutation (1,2,3) , where jobs 1 and 2 are already 

scheduled and the algorithm is about to schedule job 3. If the algorithm decides to check 



159 
 

the possibility of placing job 3 in the illustrated time slot, not only the setup time of that 

operation of job 3 should be considered, but also the change in the setup time of the 

respective operation of job 1 should be paid attention to as this setup time might also 

need to be updated due to the change in its previous operation. 

 

 

 

S1

S1

S1

J1

J1

J1

Machine 1

Machine 3

Machine 2

Makespan

S2 J2

S2 J2

S2 J2

J3

 

 

 

 

 

Figure ‎7-1 Sequence Dependent Setup and NWJS 



160 
 

References 

8 References 

1. Pinedo, M., Scheduling, Theory, Algorithms, and Systems. 2 ed. 2002, London, 

Sydney, Toronto, Mexico, New Delhi, Tokyo, Singapore, Rio de Janeiro: 

Prentice Hall Inc. 

2. Garey, M.R. and D.S. Johnson, Computers and intractability: a guide to the 

theory of NP-completeness. 2002, New York: Freeman. 

3. Gupta, J.N.D., V.A. Strusevich, and C.M. Zwaneveld, Two-stage no-wait 

scheduling models with setup and removal times separated. Computers & 

Operations Research, 1997. 24(1): p. 1025-1031. 

4. Rajendran, C., A no-wait flowshop scheduling heuristic to minimize makespan. 

Journal of the Operational Research Society, 1994. 45: p. 472-478. 

5. Hall, N. and C. Sriskandarajah, A survey of machine scheduling problems with 

blocking and no-wait in process. Operations Research, 1996. 44: p. 510-525. 

6. Wismer, D., Solution of the flowshop-scheduling with no intermediate queues. 

Operations Research, 1972. 20: p. 689-697. 

7. Raaymakers, W. and J. Hoogeveen, Scheduling multipurpose batch process 

industries with no-wait restrictions by simulated annealing. European Journal of 

Operational Research, 2000. 126: p. 131-151. 

8. Grabowski, J. and J. Pempera, Sequencing of jobs in some production system. 

European Journal of Operational Research, 2000. 125: p. 535-550. 

9. Reddi, S. and C. Ramamoorthy, On the flowshop sequencing problem with no-

wait in process. Operational Research Quarterly, 1972. 23: p. 323-331. 

10. Grabowski, J. and M. Syslo, On some machine Sequencing problems (I). 

Applications of Mathematicae, 1973. 13: p. 340-345. 

11. Bonney, M. and S. Gundry, Solutions to the constrained flowshop sequencing 

problem. Operational Research Quarterly, 1976. 24: p. 869-883. 

12. King, J. and A. Spachis, Heuristics for flowshop scheduling. International 

Journal of Production Research, 1980. 18: p. 343-357. 

13. Gangadharan, R. and C. Rajendran, Heuristic algorithms for scheduling in no-

wait flowshop. International Journal of Production Economics, 1993. 32: p. 285-

290. 

14. Glass, C.A., J. Gupta, and C. Potts, Two-machine no-wait flow shop scheduling 

with missing operations. Mathematics of Operations Research, 1999. 24(4): p. 

911-924. 



161 
 

15. Sidney, J., C. Potts, and C. Sriskandarayah, Heuristic for scheduling two-

machine no-wait flow shops with anticipatory setups. Operations Research 

Letters, 2000. 26(4): p. 165-173. 

16. Sviridenko, M., Makespan minimization in no-wait flow shops: A polynomial 

time approximation scheme. SIAM Journal on Discrete Mathematics, 2003. 

16(2): p. 313-322. 

17. Aldowaisan, T. and A. Allahverdi, Total flowtime in no-wait flowshops with 

separated setup times. Computers & Operations Research 1998. 25: p. 757-765. 

18. Aldowaisan, T., A new heuristic and dominance relations for no-wait flowshops 

with setups. Computers & Operations Research, 2001. 28: p. 563-584. 

19. Macchiaroli, R., S. Molè, and S. Riemma, Modelling and optimization of 

industrial manufacturing processes subject to no-wait constraints. International 

Journal of Production Research, 1999. 37(11): p. 2585 - 2607. 

20. Cheng, T.C.E., G. Wang, and C. Sriskandarajah, One-operator two-machine 

flowshop scheduling with setup and dismounting times. Computers and 

Operations Research, 1999. 26: p. 715-730. 

21. Bianco, L., P. Dell'Olmo, and S. Giordani, Flow shop no-wait scheduling with 

sequence dependent setup times and release dates. INFOR, 1999. 37(1): p. 3-20. 

22. Bertolissi, E., Heuristic algorithm for scheduling in the no-wait flow-shop. 

Journal of Materials Processing Technology, 2000. 107(1 - 3): p. 459 - 465. 

23. Bertolissi, E. A simple no-wait flow-shop scheduling heuristic for the no-wait 

flowshop problem. in 15th International Conference on Computer-Aided 

Production‎Engineering,‎CAPE’99. 1999. Durham, UK. 

24. Rajendran, C. and D. Chaudhuri, Heuristic algorithms for continuous flow-shop 

problem. Naval Research Logistics, 1990. 37: p. 695-705. 

25. Cheng, T., J. Gupta, and G. Wang, A review of flowshop scheduling research 

with setup times. Production and Operations Management, 2002. 9: p. 262-282. 

26. Shyu, S.J., B.M.T. Lin, and P.Y. Yin, Application of ant colony optimization for 

no-wait flowshop scheduling problem to minimize the total completion time. 

Computers & Industrial Engineering, 2004. 47(2 - 3): p. 181 - 193. 

27. Pranzo, M., Batch scheduling in a two-machine flow shop with limited buffer and 

sequence independent setup times and removal times European Journal of 

Operational Research, 2004. 153(3): p. 581-592  

28. Aldowaisan, T. and A. Allahverdi, New heuristics for m-machine no-wait 

flowshop to minimize total completion time. Omega, 2004: p. 345-352. 

29. Chen, C., R. Neppalli, and N. Ajaber, Genetic algorithms applied to the 

continuous flow shop problem. Computers & Industrial Engineering, 1996. 30: p. 

919-929. 



162 
 

30. Grabowski, J. and J. Pempera, Some local search algorithms for no-wait flow-

shop problem with makespan criterion. Computers & Operations Research, 

2005. 32: p. 2197–2212. 

31. Guirchoun, S., P. Martineau, and J.C. Billaut, Total completion time 

minimization in a computer system with a server and two parallel processors. 

Computers & Operations Research 2005. 32: p. 599-611. 

32. Franc, P.M., A.G. Tin, and L.S. Buriol, Genetic algorithms for the no-wait 

flowshop sequencing problem with time restrictions. International Journal of 

Production Research, 2006. 44(5): p. 939 - 957. 

33. Liu, B., L. Wang, and Y.-H. Jin, An effective hybrid particle swarm optimization 

for no-wait flow shop scheduling. International Journal of Advanced 

Manufacturing Technology, 2007. 31: p. 1001-1011. 

34. Su, L.H. and Y.Y. Lee, The two-machine flowshop no-wait scheduling problem 

with a single server to minimize the total completion time. Computers & 

Operations Research, 2008. 35: p. 2952-2963. 

35. Li, X., Q. Wang, and C. Wu, Heuristic for no-wait flow shops with makespan 

minimization. International Journal of Production Research, 2008. 46(9): p. 2519 

- 2530. 

36. Pan, Q.-K., M.F. Tasgetiren, and Y.-C. Liang, A discrete particle swarm 

optimization algorithm for the no-wait flowshop scheduling problem. Computers 

& Operations Research, 2008. 35(9): p. 2807 - 2839. 

37. Pan, Q.-K., L. Wang, MF Tasgetiren, B.-H Zhao, A hybrid discrete particle 

swarm optimization algorithm for the no-wait flow shop scheduling problem with 

makespan criterion The International Journal of Advanced Manufacturing 

Technology, 2008. 38(3 - 4): p. 337 - 347. 

38. Pan, Q.-K., L. Wang, and B.-H. Zhao, An improved iterated greedy algorithm for 

the no-wait flow shop scheduling problem with makespan criterion The 

International Journal of Advanced Manufacturing Technology, 2008. 38(7 - 8): 

p. 778 - 786. 

39. Pan, Q.-K., L. Wang, and B. Qian, A novel differential evolution algorithm for 

bi-criteria no-wait flowshop scheduling problems. Computers & Operations 

Research, 2009. 36(8): p. 2498 - 2511. 

40. Tavakkoli-Moghaddam, R., A.R. Rahimi-Vahed, and A.H. Mirzaei, Solving a 

multi-objective no-wait flow shop scheduling problem with an immune algorithm 

The International Journal of Advanced Manufacturing Technology, 2008. 36(9 - 

10): p. 969 - 981. 

41. Laha, D. and U.K. Chakraborty, A constructive heuristic for minimizing 

makespan in no-wait flow shop scheduling. International Journal of Advanced 

Manufacturing Technology, 2009. 41: p. 97-109. 



163 
 

42. Huang, R.H., C.-L. Yang, and Y.-C. Huang, No-wait two-stage multiprocessor 

flow shop scheduling with unit setup The International Journal of Advanced 

Manufacturing Technology, 2009. 44: p. 921-927. 

43. Ruiz, R. and A. Allahverdi, New heuristics for no-wait flow shops with a linear 

combination of makespan and maximum lateness. International Journal of 

Production Research, 2009. 47(20): p. 5717 - 5738. 

44. Huang, Q., J. Xiao, and J. Zhang, Orthogonal ant colony system for no-wait 

flow-shop scheduling Computer Engineering and Design, 2010. 31(6): p. 1274 - 

1278. 

45. Framinan, J.M., M.S. Nagano, and J.V. Moccellin, An efficient heuristic for total 

flowtime minimisation in no-wait flowshops The International Journal of 

Advanced Manufacturing Technology, 2010. 46(9 - 12): p. 1049 - 1057. 

46. Jarboui, B., M. Eddaly, and P. Siarry, A hybrid genetic algorithm for solving no-

wait flowshop scheduling problems The International Journal of Advanced 

Manufacturing Technology, 2011. 54(9 - 12): p. 1129 - 1143. 

47. Gao, K.-Z., Q.-K. Pan, and J.-Q. Li, Discrete harmony search algorithm for the 

no-wait flow shop scheduling problem with total flow time criterion International 

Journal of Advanced Manufacturing Technology, 2011. 56(5 - 8): p. 683 - 692. 

48. Gao, K.-Z., S. Xie, H. Jiang, J-K. Li, Discrete harmony search algorithm for the 

no wait flow shop scheduling problem with makespan criterion Advanced 

Intelligent Computing, 2012. 6838: p. 592 - 599. 

49. Engin, O. and C. Günaydin, An adaptive learning approach for no-wait flowshop 

scheduling problems to minimize makespan. International Journal of 

Computational Intelligence Systems 2011. 4(4): p. 521 - 529. 

50. Qian, B., H-B. Zhou, R. Hu, F-H. Xiang, Hybrid differential evolution 

optimization for no-wait flow-shop scheduling with sequence-dependent setup 

times and release dates Advanced Intelligent Computing, 2012. 6838: p. 600 - 

611. 

51. Ying, K.-C., Z-J. Lee, C-C. Lu, S-W. Lin, Metaheuristics for scheduling a no-

wait flowshop manufacturing cell with sequence-dependent family setups The 

International Journal of Advanced Manufacturing Technology, 2012. 58(5 - 8): 

p. 671 - 682. 

52. Höhn, W., T. Jacobs, and N. Megow, On Eulerian extensions and their 

application to no-wait flowshop scheduling Journal of Scheduling, Article In 

Press. 

53. Jolai, F., M. Rabiee, and H. Asefi, A novel hybrid meta-heuristic algorithm for a 

no-wait flexible flow shop scheduling problem with sequence dependent setup 

times. International Journal of Production Research, Article in Press. 



164 
 

54. Naderi, B., M. Aminnayeri, M. Piri, M.H.H. Yazdi, Multi-objective no-wait 

flowshop scheduling problems: models and algorithms. International Journal of 

Production Research, Article In Press. 

55. Sapkal, S.U., D. Laha, and D.K. Behera, Optimization techniques for no-wait 

manufacturing scheduling: a review. Advanced Materials Research, 2012. 488 - 

489: p. 1114 - 1118. 

56. Goyal, S.K. and C. Sriskandarajah, No-wait shop scheduling: computational 

complexity and approximate algorithms. Opsearch, 1988. 25: p. 220-244. 

57. Liaw, C.F., An efficient simple metaheuristic for minimizing the makespan in 

two-machine no-wait job shops. Computers and Operations Research, 2008. 35: 

p. 3276-3283. 

58. Sahni, S. and Y. Cho, Complexity of scheduling shops with no wait in process. 

Mathematics of Operations Research, 1979. 448: p. 448-457. 

59. Kamoun, H. and C. Sriskandarajah, The complexity of scheduling jobs in 

repetitive manufacturing systems. European Journal of Operational Research, 

1993. 70: p. 350 - 364. 

60. Sriskandarajah, C. and P. Ladet, Some no-wait shops scheduling problems: 

Complexity aspects. European Journal of Operational Research, 1986. 24: p. 424 

- 438. 

61. Kubiak, W., A pseudo-polynomial algorithm for a two-machine no-wait jobshop 

scheduling problem. European Journal of Operational Research, 1989. 43: p. 267 

- 270. 

62. Goyal, S.K., Job-Shop sequencing problem with no wait in process. International 

Journal of Production Research, 1975. 13(2): p. 197 - 206. 

63. Woeginger, G.J., Inapproximability results for no-wait job shop scheduling. 

Operations Research Letters, 2004. 32: p. 320 - 325. 

64. Kravchenko, S.A., A polynomial algorithm for a two-machine no-wait job-shop 

scheduling problem. European Journal of Operational Research, 1998. 106: p. 

101 - 107. 

65. Mascis, A. and D. Pacciarelli, Job-shop scheduling with blocking and no-wait 

constraints. European Journal of Operational Research, 2002. 143: p. 498-517. 

66. Mascis, A. and D. Pacciarelli, Machine scheduling via alternative graphs. 2000, 

Report DIA 46-2000, Dipartimento di Informatica e Automazione, Università 

Roma Tre: Rome. 

67. Meloni, C., D. Pacciarelli, and M. Pranzo, A rollout metaheuristic for job shop 

scheduling problems. Annals of Operations Research, 2004. 131: p. 215 - 235. 

68. Ovacik, I. and R. Uzsoy, Decomposition method for complex factory scheduling 

problems. 1997: Dordrecht: Kluwer Academic Publishing. 



165 
 

69. Macchiaroli, R., S. Mole, S. Riemma, L. Trifiletti, Design and implementation of 

a tabu search algorithm to solve the no-wait job-shop scheduling problem, in In 

Proceeding of the CESA1996, Lille. 1996. p. 467 - 472. 

70. Brizuela, C.A., Y. Zhao, and N. Sannomiya, No-wait and blocking job-shops: 

Challenging‎problems‎for‎GA’s, in In IEEE international conference on systems, 

man, and cybernetics. 2001: Tucson, Arizona, USA. p. 2349 - 2354. 

71. Chang, G.-J., J.-Q. Xu, and J.-H. Zhang, On-line no-wait job shop scheduling in 

supply chain, in Chinese Control and Decision Conference. 2008: Yantai, 

Shandong. p. 176 - 180. 

72. Schuster, C. and J. Framinan, Approximative procedures for no-wait job shop 

scheduling. Operations Research Letters, 2003. 31: p. 308-318. 

73. Framinan, J.M. and C. Schuster, An enhanced timetabling procedure for the no-

wait job shop problem: a complete local search approach. Computers & 

Operations Research, 2006. 331: p. 1200 - 1213. 

74. Schuster, C., No-wait job shop scheduling: tabu search and complexity of 

subproblems. Mathematical Methods of Operations Research, 2006. 63: p. 473 - 

491. 

75. Pan, J.C.-H. and H.-C. Huang, A hybrid genetic algorithm for no-wait job shop 

scheduling problems. Expert Systems with Applications, 2009. 36: p. 5800 - 

5806. 

76. Bozejko, W. and M. Makuchowski, A fast hybrid tabu search algorithm for the 

no-wait job shop problem. Computers & Industrial Engineering, 2009. 56: p. 

1502 - 1509. 

77. Zhu, J., X. Li, and Q. Wang, Complete local search with limited memory 

algorithm for no-wait job shops to minimize makespan. European Journal of 

Operational Research, 2009. 198: p. 378 - 386. 

78. Grimes, D. and E. Hebrard, Job shop scheduling with setup times and maximal 

time-lags: a simple constraint programming approach. Lecture Notes in 

Computer Science, 2010. 6140: p. 147 - 161. 

79. Liu, S.Q. and E. Kozan, Scheduling trains with priorities: a no-wait blocking 

parallel-machine job-shop scheduling model. Transportation Science, 2011. 

45(2): p. 175 - 198. 

80. Mokhtari, H., I.N.K. Abadi, and S.H. Zegordi, Production capacity planning and 

scheduling in a no-wait environment with controllable processing times: An 

integrated modeling approach. Expert Systems with Applications, 2011. 38: p. 

12630 - 12642. 

81. Zhu, J., X. Li, and W. Shen, A divide and conquer-based greedy search for two-

machine no-wait job shop problems with makespan minimisation. International 

Journal of Production Research, 2011. 



166 
 

82. Bozejko, W. and M. Makuchowski, Solving the no-wait job-shop problem by 

using genetic algorithm with automatic adjustment. International Journal of 

Advanced Manufacturing Technology, 2011. 57: p. 735 - 752. 

83. Santosa, B., M.A. Budiman, and S.E. Wiratno, A cross entropy-genetic algorithm 

for m-machines no-wait job-shop scheduling problem. Journal of Intelligent 

Learning Systems and Applications, 2011. 3: p. 171 - 180. 

84. Burgy, R. and H. Groflin, Optimal job insertion in the no-wait job shop. Journal 

of Combinatorial Optimization. 

85. Lawler, E.L., J.K. Lenstra, A.H.G.R. Kan, D.B. Shmoys, Sequencing and 

scheduling: algorithms and complexity, in Handbooks in operations research 

and management science, S.C. Graves, A.H.G.R. Kan, and P. Zipkin, Editors. 

1993, North-Holland. 

86. Garey, M.R., D.S. Johnson, and R. Sethi, The complexity of flowshop and 

jobshop scheduling. Mathematics of Operations Research, 1976. 1: p. 117-129. 

87. Cadambi, B. and Y. Sathe, Two-machine flowshop scheduling to minimize mean 

flow time. Operational Research Society of India, 1993. 30: p. 35-41. 

88. DellaCroce, F., M. Ghirardi, and R. Tadei, An improved branch-and-bound 

algorithm for the two machine total completion time flow shop problem. 

European Journal of Operational Research, 2002. 139: p. 293-301. 

89. Akkan, C. and S. Karabati, The two-machine flowshop total completion time 

problem: improved lower bounds and a branch-and-bound algorithm. European 

Journal of Operational Research, 2004. 159: p. 420-429. 

90. Röck, H., Some new results in flow shop scheduling. Zeitschrift für Operations 

Research, 1984. 28: p. 1-16. 

91. Papadimitriou, C.H. and P.C. Kanellakis, Flowshop scheduling with limited 

temporary storage. Journal of the Associated Computer Machinery, 1980. 20: p. 

533-549. 

92. Glass, C.A., Y.M. Shafransky, and V.A. Strusevich, Scheduling for parallel 

dedicated machines with a single server. Naval Research Logistics, 2000. 47(4): 

p. 304-328. 

93. Brucker, P., S. Knust, and G. Wang, Complexity results for flow-shop problems 

with a single server. European Journal of Operational Research, 2005. 165: p. 

398-407. 

94. Allahverdi, A., J. Gupta, and T. Aldowaisan, A review of scheduling research 

involving setup considerations. Omega, 1999. 27: p. 219-239. 

95. Allahverdi, A., C.T. Ng, T.C.E. Cheng, M.Y. Kovalyov, A survey of scheduling 

problems with setup times or costs. European Journal of Operational Research 

2008. 187: p. 985-1032. 



167 
 

96. Mladenovic, N., A variable neighborhood algorithm - a new metaheuristic for 

combinatorial optimization, in Optimization Days. 1995: Montreal. p. 112. 

97. Mladenovic, N. and P. Hansen, Variable neighborhood search. Computers & 

Operations Research, 1997. 24: p. 1097-1100. 

98. Glover, F., Future paths for integer programming and links to artificial 

intelligence. Computers & Operations Research, 1986. 13: p. 533-549. 

99. Rochat, Y. and E. Taillard, Probabilistic diversification and intensification in 

local search for vehicle routing. Journal of Heuristics, 1995. 1: p. 147 - 167. 

100. Behroozi, M., A meta-heuristic approach for a special class of job shop 

scheduling problem, in Faculty of Industrial Engineering. 2009, Sharif 

University of Technology: Tehran, Iran. 

101. Campbell, H., R. Dudek, and M. Smith, A heuristic algorithm for the n-job, m-

machine sequencing problem. Management Science, 1970. 16: p. 630-637. 

102. Dannenbring, D., An evaluation of flowshop sequencing heuristics. Management 

Science, 1977. 23: p. 1174-1182. 

103. Engels, C. and B. Manthey, Average-case approximation ratio of the 2-opt 

algorithm for the TSP. Operations Research Letters, 2009. 37: p. 83-84. 

104. Tasgetiren, M., M. Sevkli, YC. Liang, G. Gencyilmaz, Particle swarm 

optimization algorithm for permutation flowshop sequencing problem. Lecture 

Notes on Computer Science, 2004. 3172: p. 382-389. 

105. Zhu, W., J. Curry, and A. Marquez, SIMD tabu search for the quadratic 

assignment problem with graphics hardware acceleration. International Journal 

of Production Research, 2010. 48(4): p. 1035 - 1047. 

106. Lina, S.W. and K.C. Ying, Applying a hybrid simulated annealing and tabu 

search approach to non-permutation flowshop scheduling problems. 

International Journal of Production Research, 2009. 47(5): p. 1411 - 1424. 

107. Pitts, R.A. and J.A. Ventura, Scheduling flexible manufacturing cells using Tabu 

Search. International Journal of Production Research, 2009. 47(24): p. 6907 - 

6928. 

108. Sahin, R. and O. Turkbey, A new hybrid tabu-simulated annealing heuristic for 

the dynamic facility layout problem. International Journal of Production 

Research, 2009. 4(24): p. 6855 - 6873. 

109. Finke, D.A., D.J. Medeiros, and M.T. Traband, Multiple machine JIT 

scheduling: a tabu search approach. International Journal of Production 

Research, 2007. 45(21): p. 4899 - 4915. 

110. Eberhart, R.C. and J. Kennedy. A new optimizer using particle swarm theory. in 

Sixth international symposium on micro machine and human science. 1995. 

Nagoya, Japan. 



168 
 

111. Kennedy, J. and R.C. Eberhart. A discrete binary version of the particle swarm 

algorithm. in IEEE International Conference on Systems, Man, and Cybernetics. 

1997. 

112. Knuth, D., Seminumerical Algorithms. Third ed. The Art of Computer 

Programming. Vol. 2. 1997, Boston, MA, USA: Addison-Wesley Longman 

Publishing Co., Inc. 

113. Doliskani, J.N., E. Malekian, and A. Zakerolhosseini, A cryptosystem based on 

the symmetric group Sn. International Journal of Computer Science and Network 

Security, 2008. 8(2): p. 226-234. 

114. McCaffrey, J. Using permutations in .net for improved systems security.  2003; 

Available from: http://msdn.microsoft.com/en-us/library/aa302371.aspx. 

115. Beasley, J.E. OR-Library: distributing test problems by electronic mail.  July 

2009; Available from: http://people.brunel.ac.uk/~mastjjb/jeb/info.html. 

116. Carlier, J., Ordonnancements a contraintes disjonctives. RAIRO Recherche 

Operationnelle, 1978. 12: p. 333-351. 

117. Reeves, C., A genetic algorithm for flowshop sequencing. Computers and 

Operations Research, 1995. 22: p. 5-13. 

118. Kulturel-Konak, S. and A. Konak, A new relaxed flexible bay structure 

representation and particle swarm optimization for the unequal area facility 

layout problem. Engineering Optimization 2011. 43(12): p. 1263 - 1287. 

119. Samarghandi, H. and T.Y. ElMekkawy, An efficient hybrid algorithm for the 

two-machine no-wait flow shop problem with separable setup times and single 

server. European Journal of Industrial Engineering, 2011. 5(2): p. 111-131. 

120. Shadrokh, S. and F. Kianfar, A genetic algorithm for resource investment project 

scheduling problem, tardiness permitted with penalty. European Journal of 

Operational Research, 2007. 181: p. 86-101. 

121. Dijkstra, E.W., A note on two problems in connexion with graphs. Numerische 

Mathematik, 1959. 1: p. 269 - 271. 

122. Cormen, T.H., et al., Dijkstra's algorithm, in Introduction to Algorithms. 2001, 

MIT Press and McGraw-Hill. p. 595 - 601. 

123. Lawrence, S., Resource constrained project scheduling: an experimental 

investigation of heuristic scheduling techniques (Supplement). 1984, Pittsburgh, 

Pennsylvania: Graduate School of Industrial Administration, Carnegie-Mellon 

University. 

124. Applegate, D. and W. Cook, A computational study of the job-shop scheduling 

instance. ORSA Journal on Computing, 1991. 3: p. 149 - 156. 

http://msdn.microsoft.com/en-us/library/aa302371.aspx
http://people.brunel.ac.uk/~mastjjb/jeb/info.html


169 
 

125. Storer, R.H., S.D. Wu, and R. Vaccari, New search spaces for sequencing 

instances with application to job shop scheduling. Management Science, 1992. 

38: p. 1495 - 1509. 

126. Samarghandi, H. and T.Y. ElMekkawy, A genetic algorithm and particle swarm 

optimization for no-wait flow shop problem with separable setup times and 

makespan criterion International Journal of Advanced Manufacturing 

Technology, Article in Press. 

127. Samarghandi, H. and T.Y. ElMekkawy, A meta-heuristic approach for solving 

the no-wait flow shop problem. International Journal of Production Research, 

Article in Press. 

128. Samarghandi, H. and T.Y. ElMekkawy, A genetic algorithm for the no-wait flow 

shop problem with separable setup times, in Canadian Operational Research 

Society (CORS) Annual Meeting. 2011: St. John's, NL, Canada. 

129. Samarghandi, H. and T.Y. ElMekkawy, Solving no-wait flow shop problem with 

sequence dependent setup times, in Proceedings of The Canadian Society for 

Mechanical Engineering International Congress (CSME). 2012: Winnipeg, MB, 

Canada. 

130. Samarghandi, H. and T.Y. ElMekkawy, Using particle swarm optimization to 

solve the no-wait flow shop problem with sequence dependent setup times. 

International Journal of Computer Integrated Manufacturing, Under Review. 

131. Samarghandi, H. and T.Y. ElMekkawy, On the two-machine no-wait job shop 

problem with separable setup times and single server constraints. International 

Journal of Advanced Manufacturing Technology, Article in Press. 

132. Samarghandi, H. and T.Y. ElMekkawy, On the two-machine no-wait job shop 

problem with separable setup times and single server constraints, in Proceedings 

of The Canadian Society for Mechanical Engineering International Congress 

(CSME). 2012: Winnipeg, MB, Canada. 

133. Samarghandi, H. and T.Y. ElMekkawy, A comparison of different timetabling 

and sequencing algorithms in the no-wait job shop problem, a design of 

experiments approach, in Canadian Operational Research Society (CORS) 

Annual Meeting. 2012: Niagara Falls, ON, Canada. 

134. Samarghandi, H., T.Y. ElMekkawy, and A.-M. Ibrahem, A comparison of 

different timetabling and sequencing algorithms in the no-wait jobshop problem, 

a design of experiments approach. International Journal of Production Research, 

Article in Press. 

 



170 
 

Appendix 1 

Tuning Algorithm Parameters 

9 Appendix 1 – Tuning Algorithm Parameters 

This appendix describes the procedure through which parameters of the PSO 

developed for x are tuned. As seen in section ‎4.6.3, the developed PSO has 4 parameters that 

must be tuned to obtain the best performance from the algorithm. Sensitivity analysis has been 

performed to determine the effect of the different values of the parameters on the performance of 

the algorithm. Accordingly, three different problems from the set of the test problems were 

chosen: car7+SD, car19+SD and car31+SD. section ‎4.6.3.3 gives more information on how 

these test problems are generated. Then each problem was solved 5 times with different 

combinations of parameter values as follows: 

2

1 2; 1, 2

200

i

P n

i

I n



 
 

   
  

   (9-1) 

 

2 1; 1, 2

100

i

P n

i

I n



 
 

   
  

   (9-2) 

 

2

3 0.85; 1, 2

80

i

n
P

i

I n



 
 

 
   

 
 
 

   (9-3) 

 

3

4 0,5; 1, 2

50

i

n
P

i

I n



 
 

 
   

 
 
 

   (9-4) 



171 
 

Table ‎9-1 gives the results of the analysis of variance (ANOVA) on the obtained results. 

The considered factors are the combination of algorithm parameters as defined in (9-1) through 

(9-4), and the test problems: rec7+SD, rec19+SD and rec31+SD.  

 

Table ‎9-1 Analysis of Variance for Makespan 

 

In order to confirm that the above ANOVA table is valid, residuals should follow a 

normal distribution. Figure 4 illustrates the normal probability plot of residuals. Residual values 

should be close to the normal probability line in order to deduce that the residuals show normal 

distribution characteristics.  

Figure ‎9-1 confirms that the residuals are very close to the normal line.  

 
 

Figure ‎9-1 Normal Probability Plot of the Residuals 

 

 

Source 
Degree of 

Freedom 

Sequential 

Sums of 

Squares 

Adjusted 

Sums of 

Squares 

Adjusted 

Mean 

Square 

Value 

F-Value P-Value 

Problem 2 114502690 114502690 57251345 63795.72 0 

Combination 3 12167 12167 4056 4.52 0.007 

Problem * Combination 6 36889 36889 6148 6.85 0 

Error 48 43076 43076 897 

 
Total 59 114594822  

 2 99.96%R   
2 99.95%adjR   



172 
 

As Table ‎9-1 indicates, introduced combinations in (9-1) through (9-4) have an actual 

effect on the makespan of the studied test problems. In order to find the best combination 

amongst the four combinations, main effects plot proves useful. 

Figure ‎9-2 illustrates the main effects plot. 

 

 
 

Figure ‎9-2 Main Effects Plot 

 

 

Figure ‎9-2 demonstrates that combinations (9-1) and (9-2) are more desirable than 

combinations (9-3) and (9-4). Since the difference between combinations (9-1) and (9-2) is 

negligible, and combination (9-2) needs less iteration and particles to proceed, this combination 

is chosen to perform computational experiments in section ‎4.6.3. Similar method has been used 

throughout this‎thesis‎for‎tuning‎algorithms’‎parameters. 

 

 

 


