A High Impedance Fault Detector

By
Dehua Zheng

A THESIS

Submitted to the Faculty of Graduate Studies

in partial fulfillment of the requirements for the degree of

Master of Science

Department of Electrical and Computer Engineering
The University of Manitoba
Winnipeg, Manitoba, Canada

© February 1995

e

el S

Acquisitions and

Bibliothéque nationale
du Canada

Direction des acquisitions et

Bibliographic Services Branch des services bibliographiques

395 Wellington Street
Ottawa, Ontario
K1A ON4 K1A ON4

The author has granted an
irrevocable non-exclusive licence
allowing the National Library of
Canada to reproduce, loan,
distribute or sell copies of
his/her thesis by any means and
in any form or format, making
this thesis available to interested
persons.

The author retains ownership of
the copyright in his/her thesis.
Neither the thesis nor substantial
extracts from it may be printed or
otherwise reproduced without
his/her permission.

395, rue Wellington
Ottawa (Ontario)

Your file Votre référence

Our file Notre référence

L’auteur a accordé une licence
irrévocable et non exclusive
permettant a la Bibliotheque
nationale du Canada de
reproduire, préter, distribuer ou
vendre des copies de sa thése
de quelque maniére et sous
quelque forme que ce soit pour
mettre des exemplaires de cette
these a la disposition des
personnes intéressées.

L’auteur conserve la propriété du
droit d’auteur qui protege sa
thése. Ni la these ni des extraits
substantiels de celle-ci ne
doivent étre imprimés ou
autrement reproduits sans so
autorisation. '

ISBN 0-612-13596-9

Canada

Name

Dissertation Abstracts Infernational is arranged by broad, general subject categories. Please select the one subject which most
nearly describes the content of your dissertation. Enter the corresponding four-digit code in the spaces provided.

Rlo e ¢ anch E‘:)(%'V’/\L e/l

o[5]4[+] UMTI

SUBJECT TERM
Subject Categories
THE HUMANITIES AND SOCIAL SCIENCES
ﬁOP}o]\MUNICATIONS AND THE A%T7529 gsycjmology 82%2 PHILOSOPHY, RELIGION AND
rehitecturecoveveececeecrenene eading
Art History ... 0377 Religiogs . ..0527 ;Eﬂigl(;OEY 0422
Cinema0%900 Sciences0714 Reli iorﬁ) Y e
gﬁ:‘-‘ﬁr};‘ gggg %eﬂdscc%nces gggi eneral s 0318
.Ijnformqﬁon Science .. (O)ggili gociqlc?gy of ... 821218 g'llzlr';;! Studies 83%
ournalism ial........... . LA S ”
Library Science . 70399 Teacher Training. 70530 History of ... - 9329
A . Philosophy of0322
Mass Communications0708 Technology0710 Theol 0469
Music ..o ...0413 Tests and Measurements ..0288 OGY sorvvvressrmnssssin s
? eafe}:‘ Communication 8222 Vocational s 0747 socl A" SCIENFES
' LANGUAGE, LITERATURE AND ﬁ;{‘g;;;gg,fgd'es ---------------------- 0323
EDUCATION LINGUISTICS Archaeglogy 0324
S —— ke oy
Adult and Continuing .. Ancient Business Administration
ﬁgrlculfurcl """"" Linguisfics . . Senercl 8%18
L B BV T 0 ccounting027
g|||r}gua| and Multicultural .. Literature Banking g 0770
C‘g;?r:zzntyCo"ege """"" glene_r(ﬂI AMAanfgemenl . 8§g181
ULy LOFEYe assical arketing
E”T'Cé#m}:’o’galn“wdm" e Comparative . .0295 Canadian Sh?dies 0385
Ef")’ fidhood........... Medieval0297 Economics
Fiementary ... Modern0298 Generalco..ooooeomeieee 0501
Guidance and Eounseling 11" African0316 Agricultural0503
Heal ﬁ;ri\g:con gggé gor:r:rézrce-Busmess 8ggg
NS AR CATas AsIAN L. . mnance
Hfgther o : Canadian {English) .. .0352 History0509
HIS ! E° """ : - Canadian {French) .. .0355 Labor0510
i e S - &
......... seeena . rmanic olklore 5
}a" uage and Literature .. : Latin American .. .0312 Geography0366
Mgsi:"ma"cs """"" 0599 Middle Eastern .. .0315 Gerontologycccoocvvrin. 0351
Philosophy of0998 H'S'OGZnerd 0578
Physical ...c.covveeerererininiieennns 0523 VU TR R EEERERee- MR R s
THE SCIENCES AND ENGINEERING
BIOLOGICAL SCIENCES] Geodesycvrrrrrrnrrrnierenaens 0370 Speech Pathology 0460
Agréulfure | 0473 %olohgy e . 83;% ; ngcology_0383
eneralooeveveeiricieeens ophysics . . lome Economics
AGronomycoveiecemins 0285 I'ydr’::':lc))’gy .0388
Ar;\ilmul Culture and 0475 N inerglogy . 851‘11; PHYSICAL SCIENCES
UIETHON Lo aleobotany -
Animal Pathology o 0475 Palecocology .. ‘04g6 ~Pure Sciences
v ogy 4 Chemist
Food Science and 0359 I;c eonto ?gy 83232 Gen;yrul 0485
0GY vvrerearererereinns aleozoology P At TR R
Forestry and Wildlife0478 Pa yr)ologz/g.?l.0427 ﬁﬁgﬁf’!ﬂd - 8‘7132
Plant Culture0479 Physical Geography0368+ Biochemisiry” 0487
g}onr I;ﬁrhc?lrlagy . 8181?(7) Physical Oceanography 0415 Inoraanic b4 0488
ant siology " :
Range Managemeni ..0777 HEALTH AND ENVIRONMENTAL Nuclear .. 0738
i ood Technology ... 0746 SCIENCES Phormaces 0491
10 %36)' ’ 0306 Environmental Sciences 0768 Physical0494
A nfrc 0287 Heohh Sciences Pol lymer ..0495
B.nato;.ng’. y 0308 Generdl 0566 Radiation ..0754
BK;S alistics . 0300 Audiology .. .0300 Mathematicscocoevvreenann. 0405
Col?ny """ 0379 Chemothera 0992 Physics
E € oo 0326 Dentistry . .0567 Generalccveeeevieiiinn 0605
EC? 097l 0353 Education .. .0350 ACOUSHES .vovvvereeriinieiiiinnnns 0986
G’;"""" gy - " 0360 Hospital Ma .0769 Astronomy and
Um':]i cc):s """ 0793 Human Development .0758 Astrophysics..........c.ce...... 0606
Microaig o 0410 Immunology0982 Atmospheric Science.... ..0608
Molecular 2 0307 Medicine and -0564 AOMIC v, ..0748
N° ecuiar -...... 0317 Mental Hedlth .0347 Electronics and Electricity 0607
oeurosclenci.. 0416 Nursing .. .0569 Elementary Particles ong
P cegrxlogrup Y 0433 NUHON L.vv e 0570 High Energyccccvuu..... 0798
R ﬁ%'ot.‘)gy 0821 Obstetrics ynecology ..0380 Fluid and Plasma . ..0759
V"r tahon S 0978 Occupational Health an Molecular0609
Ze (-,innary clence... 0475 Therapy ...ococovveevevrveeennes 0354 Nuclear 0610
Bi *f’°.°9>' """""""""""""""" Ophthalmology . .0381 Opics0752
'O%g;“::a’ 0786 Pathology0571 Radiation0756
Modieg] e 008 I;1orcho|ogy 8gl7g s Solid State 86;; .
""""""""""""""" harmacy FAHSHES oo rienrinereee e, 04
EARTH SCIENCES h fii§ﬂ1$g°PY 0382 poplied Scionces
Biogeochemistrycccccvivinnns 0425 Radiology 0574 Applied Mechanics 0346
Geochemistry ...cccvoovveesocri 0996 Recreationc..cccoverecreennes 0575 Computer Sciencecco... 0984

SUBJECT CODE

0
Asia, Australia and Oceania 0332
Canadianccccoevevnann, 0334

European......
Latin American ..

United States0337

History of Science .0585
AW eteierreieeereioncoiesuiesiesiensnans 0398
Political Science
Generaloooocveeeee 0615
International Law and
Relabionscoccecevnecean, 0616
Public Administration .0617
Recreation0814
Social Work ... 0452
Sociology
Generaloovvreviee 0626
Criminology and Penology ... 0627
Demographycccee.ee. 0938

Ethnic and l{ccicl Studies0631
Individual and Family

Studiescoverieieiiennn 0628
Industrial and Labor
Relationsc.co.oovunee. 0629

Public and Social Welfare ... 0630
Social Structure an

Development
Theory and Methods .
Transportation
Urban and Regional Planning 0999
Women's Studiesc.coeven.n. 0453
Engineerin,
General ..o 0537
Aerospace . .0538
Agricultural0539
Automotive0540
Biomedical . .054]
Chemical0542
Lo I 0543

Electronics and Electrical 0544
Heat and Thermodynamics ... 0348
Hydraulic
Industrial ...
Marine
Materials Science ..
Mechanicd!

Sanitary and Municipal

System Science
Geotechnology
Operations Research
Plastics Technology .

Textile Technologye.......
PSYCHOLOGY

General ..o 0621
Behavioral . 0384
Clinical 0622
Developmental . 0620
Experimental ... 0623
Industridl 0624
Personality ... 0625
Physiological0989
Psychobiology . ..0349
Psychometrics0632
Social v 0451

A HIGH TMPEDANCE FAULT DETECTOR

BY

DEHUA ZHENG

A Thesis submitted to the Faculty of Graduate Studies of the University of Manitoba
in partial fulfillment of the requirements of the degree of

MASTER OF SCIENCE

© 1995

Permission has been granted to the LIBRARY OF THE UNIVERSITY OF MANITOBA
to lend or sell copies of this thesis, to the NATIONAL LIBRARY OF CANADA to
microfilm this thesis and to lend or sell copies of the film, and LIBRARY
MICROFILMS to publish an abstract of this thesis.

The author reserves other publication rights, and neither the thesis nor extensive
extracts from it may be printed or other-wise reproduced without the author’s written

permission. :

ABSTRACT

In this thesis, a High Impedance Fault (HIF) Detector is built for detecting high im-
pedance faults in a power distribution system. The detector consists of an algorithm, a —data
acquisition board, and a Windows program incorporating the algorithm.

A HIF simulation circuit was set up in the laboratory at the University of Manitoba.
The simulated fault current proved to be a credible fault—current source for simulating HIF
in a power—distribution system. Four different kinds of waveforms were collected for faults
involving wet soils, dry soils, grassy wet soils and grassy dry soils, in a power—distribution
system.

The algorithm proposed in this paper for detecting HIF includes three parts: Flicker,
Asymmetry, and Quarter—-Cycle Asymmetry, all of which are used as indications of HIF.
The main part of this algorithm uses the half-cycle current rms value to detect Flicker and
Asymmetry when there is ahigh impedance fault. Since attimes there isno obvious Flicker
and Asymmetry when a fault happens on wet soil, this algorithm also uses the Quarter—
Cycle Asymmetry feature to detect the fault. These algorithms show good performance

-in identifying the characteristics of HIF waveforms. They have good dependability (ability

to trip when it should). In addition, for high impedance fault-like loads (for example a com-
puter current load), the algorithm also gives quite satisfactory results in terms of the sécurity
(ability to not trip when it should not).

With the Windows program, the detector can be operated in either the Intermittent
or the Continuous mode. It takes 20 seconds for the detector to carry out the whole detection

procedure, so the result meets the requirement of real-time detection. In addition, when the

iv

detector is running in the continuous mode, it sends out a 5V or OV output signal every 20
seconds corresponding to the fault or no—fault situation. This signal can be used for alarm

or trip purposes.

ACKNOWLEDGEMENTS

First of all I would like to express my sincere gratitude to Professor G. W. Swift, my
supervisor, for suggesting this topic, for his excellent advice, continuous encouragement and
helpful discussion throughout the course of this research , especially for providing the op-
portunity of pursing my degree in Canada.

I would like to thank Mr. Erwin Dirks, Mr. Roy Yang, Mr. Ming Zhéné,' Mr. Yiping
Zhuang, Mr. Xiao Jiang and all my colleagues for all the discussion and support they pro-
vided in numerous ways in carrying out this research.

Special thanks to my wife Ya—Hao, Son Alan and my parents, my brother and sisters
for their patience, constant encouragements and understanding.

Finally, I would like to acknowledge the financial assistance of Manitoba Hydro and

Mr. D.J. Fedirchuk who made this research possible.

vi

TABLE OF CONTENTS

Page
AB S T R ACT i e e e e e iv
ACKNOWLEDGEMENT ...ttt ittt i i ciiiiiennnns. vi
TABLE OF CONTENTS & 1.ttt i iiiiiiiieeeinannns vii
LISTOF FIGURES ..\ttt ittt ieeieiiieeannnes xi
CHAPTER 1 INTRODUCTIONciiiitiitnennrnennnenns 1
1.1 HighImpedance Fault, 1
1.1.1. Fault Problem Statement 1
1.1.2 Electrical Effects on the Human Body Due to Faults 2
1.1.3 VI Characteristics of HIF on Dry and Wet Soils 3
1.1.4 Difficulties for Detecting HIF 4
1.2 Previous Research Work for Detecting High Impedance Faults 4
L21 Carr oo e e e 4
1.2.2 Aucoinand Russell TR 5
1.23 Jeerings & Linderst 6
1.2.4 AF Sultanand GW. Swift 6

vii

CHAPTER 2 ALGORITHMDESIGNciiiiiennnnn.. .8
2.1 Using the R.M.S. Value of the Fault Current in the Algorithm 8
22 Algorithm 8
2.2.1 FLCKer ... 9
222 ASYMMELTY ...t 10
2.2.3 Quarter Cycle ASymmetryc.uuiininininenennn. 10
2.2.4 Interpolation for Finding ZeroPoint 12
2.2.5 Algorithm Realization 13
CHAPTER 3 TESTING ANDRESULTSciiivevnnnnn.. 16
3.1 Apparatus 16
301 CIrcuit SE—UDP « o v vv et e 16
3.1.2 Initialization of a High Impedance Fault 17
3.1.3 Signal Generation of Computer and Sinusoidal Loads 19
3.2 Waveforms ... e % 1
3.2.1 Current Waveform of Faulton Wet Soil 21
3.2.2 Current Waveform of Faulton Dry Soil 22
3.2.3 Current Waveform of Fault on Grassy Wet Soil 23
3.2.4 Current Waveform of Fault on Grassy Dry Soil 24
3.2.5 Sinusoidal Current Waveform 25
3.2.6 Computer Load Current Waveform 25

viii

3.3 Use of a C++ Program to Realize the Algorithm 26
3.3.1 C+4+ Program Based on the DOS Systems 27

3.3.2 Testing Results and Analysis for Different Waveforms 29

CHAPTER 4 WINDOWS DESIGN AND OPERATION FOR

REAL TIME DETECTIONccu.... 32

4.1 Windows Program Statement, 32
42 Main Windows Design i 33
4.1.1 Signal Acquisition Windows Design 33
4.1.2 High Impedance Fault Analysis Windows Design 35

4.3 Child Windows Designcouiiint it 38
4.3.1 Working Mode Windows Design 38
4.3.2 Alarm and Threshold Windows Design 38

4.4 Real Time Detection and Automatic Control 39

CHAPTER 5 RESULTS AND ANALYSIS FOR WINDOWS

OUTPUTS Ceeereeaans cheeeeen 41

5.1 Windows Outputs for Sinusoidal Waveforms with DC Offset 41
5.1.1 Windows Output for an Ideal Sinusoidal Waveform 41
5.1.2 Windows Output of Sinusoidal Waveform with DC Offset 43

5.2 Windows Output of a Typical Computer Current Load 44

5.3 Windows Outputs of Faultson WetSoil 45

ix

5.4 Windows Outputs of Faultson Dry Soil 47

5.5 Windows Outputs of Faults on Grassy WetSoil 49

5.6 Windows Outputs of Faults on Grassy Dry Soil 52

CHAPTER 6 CONCLUSIONS AND FUTURE WORK 54

6.1 Evaluation of the Algorithm and Program 54

6.2 Advantages of Using Windows Program 55

6.3 Future Work i 56

6.3.1 Security Check for Fluorescent Light Load — HIFLL 56

632 FieldTest ..ot e 56

BIBLIOGRAPHYciiiiiiiiiiiinnnnn. cetsecsecsnne Y
APPENDIX

A. Specifications of NI-DAQ AT-MIO-16Board 61

B. Data Acquisition and Files Translation 76

C. Listings of Source Programc.ovvuuuinnennnn.. 82

1 A Windows Program for Detecting High Impedance Fault . 83

2 A C++ Program for Detecting High Impedance Fault 107

3 A C++ Program of Files Translation 115

.10

.12

.13

.14

.15

.16

.17

.18

LIST OF FIGURES

Title Page

A Person Contacts the Downed Power Lines 2

V-I Characteristics of HIF on Dry and Wet Soils 3

Relation of HIF Current to Overcurrent Relay Setting 5

Fault Current of Showing Flicker and Asymmetry 9

Quarter Cycle Asymmetry for Detecting Fault on Wet Soil 11
Interpolation to Find the ZeroPoint 12
Outputs of Faults on Dry and Wet Soils 15
Outputs of Sinusoidal and Computer Loads 15
Schematic of Apparatus for Simulating HIF 16
Equivalent Circuit for Testing Security of Elements 17
Equivalent Circuit for Simulating HIF 19
Schematic of Apparatus for Checking Security 20
Current Waveforms of Faulton WetSoil 21
Current Waveforms of Faulton Dry Soil 22
Current Waveforms of Fault on Grassy Wet Soil 23
Current Waveforms of Fault on Grassy Dry Soil 24
Sinusoidal Current Waveform 25
Computer Load Current Waveforms 26

xi

.19

.20

.21a

.21b

.22

.23

.24

.25

.27

.28

.29

.30

.31

.32

.33

.34

.35

.36

.37

.38

.39

Flowchart of C++ Program for Detecting HIF Based on DOS 28

Outputs of Sinusoidal and Computer Loads 29
Outputs of Faults on Dry and Wet Soils 31
Outputs of Faults on Dry and Wet Grassy Soils 31
Signal Acquisition Windows Design 34
Algorithm Output Analysis Windows Design 35
Windows Outputs of HIF 36
Windows Outputs of HIFLLooennni. . 37
An Ideal Sinusoidal Waveformo.vueuenenenn.... 42
Windows Output of an Ideal Sinusoidal Waveform e 42
Sinusoidal Waveform with DC Offset 43
Windows Output of Sinusoidal Waveform with DC Offset 43
A Typical Computer Current Waveform 44
Windows Output for a Computer Current Waveform 44
Current Waveform of Faulton Wet Soil~1 45
Windows Output of Fault on Wet Soil-1 45
Current Waveform of Faulton Wet Soil-2 46
Windows Output of Fault on WetSoil-2 46
Current Waveform of Fault Dry Soil-1 47
Windows Output of Faulton Dry Soil-1 47
Current Waveform of Faulton Dry Soil-2 48
Windows Output of Faulton Dry Soil-2 48

xii

. 40

.41

.42

.43

44

.45

.46

.47

. 49

.50

Current Waveform of Fault on Grassy Wet Soil-1 50

Windows Output of Fault on Grassy Wet Soil-1 50
Current Waveform of Fault on Grassy Wet Soil-2 51
Windows Output of Fault on Grassy Wet Soil-2 51
Current Waveform of Fault on Grassy Dry Soil-1 52
Windows Output of Fault on Grassy Dry Soil-1 52
Current Waveform of Fault on Grassy Dry Soil-2 53
Windows Output of Fault on Grassy Soil-2 53
Lotus 1-2-3 Data Acquisition Worksheet 79
Flowchart of Program from DOS to EMTDC 80
Data Acquisition Software Block Diagram 81

xiii

CHAPTER 1 INTRODUCTION

1.1 High Impedance Fault

1.1.1 Fault Problem Statement

When a fallen distribution conductor in a power system is in contact with a high—
impedance surface of some material, such as asphalt, soil, sand or trees, the current of this
kind of fault is quite often below the trip level of a fault—clearing device and there is often
an arcing phenomenon at the point where the conductor touches the material. This kind of
fault is considered as a high impedance fault or an arcing high impedance fault [1][2].

A high impedance fault (HIF) frequently happens when a distribution line or a
conductor in a power system faults to the ground, or is contacted by a foreign object, or a
pole or pole hardware is broken. Since the power delivery exists, as long as there is a HIF
inapower system, the following results could be occurring: energy waste, fire hazard, power
- supply interruption and property damage. Especially, when a person contacts with an
energized conductor, as shown in Fig 1., itcould cause injury or death. Therefore, generally
speaking, a high impedance fault presents a source of threat to a utility’s customers and

personnel rather than to the integrity of the power system [3][4].

1.1.2 Electrical Effects on the Human Body Due to Faults

It is known that the heart of the human body is very vulnerable to electrical current.
When a current flows through the human body, it can result in muscle contraction, heart
stoppage and skin burns. The effects depend on the amount of current, the length of time,
the resistance value of the skin and the current path. Since the human body’s skin provides
aresistance from 1.5 k—ohm to 5.0 k—ohm, when a person touches an energized power line,

the extent of injury could be different in terms of the different skin resistance values [1].

S S S S S

Fig. 1 A Person Contacts the Downed Power Line

1.1.3 V=I Characteristics of HIF

When HIF happens , it can persist for a long period of time because of the lack of a
detecting strategy. HIF has a random arc behavior. Also, the V-I characteristic of an arc
is entirely different from that of a metal conductor. Generally speaking, the V-I
characteristic across a conductor is a linear relationship, that is, the voltage across the
conductor is proportional to the current flowing through the conductor. The arcing feature
associated with downed power lines deviates from that of conductor—to—conductor faults,
or across the circuit breaker poles. Arcing in high impedance faults appears as a largely

resistive and nonlinear V- I characteristics as shown in Fig. 2.

O Fault Cumrent on Dry Soil © Source Voltage

2.5

Arbitrary Unit
[}
/

- N\l N_ /]
/ AN NS

30 40
Time (s)

O Fault Current on Wet Soil © Source Voltage

= TN AN /N AN
= TVON] /TN TN N
N/ TN/ N \
N I N/ BN 72 B v/

60

Fig. 2 V-1 Characteristics of HIF on Dry and Wet Soil

1.1.4 Difficulties with Detecting HIF

The protection of a primary distribution system is mainly accomplished by
conventional overcurrent relays. Unfortunately, the fault current of HIF generally does not
show a large enough value to be detected by an overcurrent relay. Therefore, difficulties
appear when using this technique to detect HIF. While overcurrent relays interrupt fault
currents, they should not trip normal emergency loads like transient overcurrents caused
by inrush events or load surges. For this reason, the trip level must be set at a relatively high
current value to avoid tripping during the normal operations. From a practical point of view,
the trip level of an overcurrent relay is usually set toa value at 125-200% of maximum load
curtent [1].

Although the conventional overcurrent relays do detect a great number of faults in
the distribution lines, they still do not detect many faults with low fault currents in which
the magnitude of fault currents is in the range of (0 — 120) % of normal load current; this

is illustrated as shown in Fig. 3.

1.2 Previous Research Work in Detecting High Impedance Faults
With the great efforts done by electrical engineers for detecting HIF, many detection
schemes have been proposed in the past few years.

1.2.1 Carr

Carr did a theoretical analysis on a grounded — Y- connected systems. His scheme

Average Maximum Overcurrent
Load Current Load Current Setting

Current Level

RV

High Impedance Fault Currrent
(Region Unprotected By Overcurrent Relay)

Fig. 3 Relation of HIF Current to Overcurrent Relay Setting

[5] was based on (1) combining neutral and ground current measurements, a proportional
relaying method in which three—phase unbalanced currents are used for the detection of HIF,
(2) detecting power frequency harmonics, and (3) sensing sequence voltages at the load side
of the line. The negative sequence voltage is preferable to the zero sequence voltage, since
the former is less dependent on the zero sequence impedance which is closely related to the

grounding systems.

1.2.2 Aucoin and Russell

Aucoin and Russell have been playing a leading role in the detection of arcing high
impedance faults by using a harmonic components method. They proposed a HIF detection
method [6][7] [8] based on the increase in a high frequency (2-10 kHz) signal caused

by an arcing phenomenon. This high frequency component is due to continuous strikes in

the air gaps between the conductor and the surface of the material. Russell and others also
proposed a technique [9] in which burst noise signals near 60 Hz and low frequency
components caused by distorted fault currents were used for the detection of high impedance
faults. Russell also pointed out that even—order components could be useful for the detection

of arcing faults.

1.2.3 Jeerings and Linders

According to the results of their research, Jeerings and Linders[10 [11][12]
expressed the characteristics of HIF as being highly resistive and nonlinear ; as a result of
this, the currents of low—order harmonics of HIF will appear with current peaks coincident
with the voltage peaks. This characteristic is independent of any other single system
phenomenon. The third harmonic components of the fault current and voltage were
separated from the fundamental and other harmonics. The phasor ratio was defined by the
voltage change to the current change and referred to as the sink impedance. The HIF could
be detected by the sink impedance . The normal power system current may contain third
harmonic voltage and current as well, but the ratio of their changes is different from the one

for HIF.

1.2.4 Sultan and Swift

Sultan and Swift proposed an algorithm [13] in which they used Flicker and

Asymmetry to detect the arcing high impedance fault, since Flicker and Asymmetry are

obvious features of an arcing high impedance fault. The algorithm calculates one cycle of
normal load current rms value as reference L rr, and then compares the rms values of
the following cycles. If any new value is sufficiently different from the reference value,
Flicker and Asymmetry are calculated. If two continuous half cycle rms values of the
positive side or negative side are different and the differences are changing sign, “ Flicker
"’ is defined. In each cycle, if the positive side rms value is different from the negative side
rms value and the differences are changing sign comparing to next half cycle, “Asymmetry
”is defined. The algorithm showed quite satisfactory performance in identifying HIF as well
as discrimination against fault-like loads such as computer loads and some loads due to
abnormal events in power systems. One of the salient ideas [14] that they pointed out is
that the design of a reliable high impedance fault detector should include two aspects ; not
only dependability (ability to trip when it should) but also security (ability to not trip when
it should not), since most HIF detection schemes proposed so far have been tested for
dependability, but few have been tested for security.

They also proposed a HIF detection algorithm [15] which used an artificial neural
network, or simply a neural net (NN) [7] . In the algorithm, a feed—forward three layer
network was trained by high impedance fault loads, fault—like loads and normal load current
patterns, using the back propagation training method. The algorithm was tested by tracing
normal load current disturbed by HIF currents on wet and dry soils, an arc welder, computers
and fluorescent lights. The investigation outcomes of the algorithm on these loads was able

to reach general solutions to the problems.

CHAPTER 2 ALGORITHM DESIGN

2.1 Using the R.M.S. Value of the Fault Current In the Algorithm

Since the waveform identification method is going to be used to detect high
impedance faults, the best way is to use half cycle fault current rms values to express Flicker
and Asymmetry concepts. In data acquisition (discussed in Appendix B in detail), the
sampling rate is set at 32 sample-per—cycle, which is the rate applicable to many modern
practical microprocessor based relays. For the discrete sampling values, the half cycle fault

current rms value should be;

1 16
= [— X 2
Lims 16 lj Eq. 1

J=1

where i; is the jth sample of the current waveform.

2.2 Algorithm

In accordance with the characteristics of HIF waveforms obtained from the
experiments , it was found that there are three obvious features of the fault waveforms:

Flicker, Asymmetry and Quarter Cycle Asymmetry. The following is a detailed explanation

of the algorithm.

150

100

50

Current (A)
o

-50

-100

-150

HIF on Dry Grassy Soil
Flk, Asym, Quar_asymm

1

e

VY

in
vy

100

Fig. 4 Fault Current Showing Flicker and Asymmetry

150

2.2.1 Flicker

200

250

300
Time (s)

350

450

We define Flicker as the degree to which the signal amplitude various erratically

from one cycle to the next.

Mathematically, the positive and negative I values are compared in two

continuous cycles to determine Flicker. Here Iy is the half cycle fault current rms value

as shown in Eq. 1. In terms of Fig. 4 and Eq. 2, it can be seen that Iy pj means jth cycle

positive side half cycle current rms value and I means the same cycle but negative

value. On the positive waveform side:

ABS{ (Lymsiz))= (Limsigry) } >= CI*(Lsipr;) AND

ABS {(lrms1[3]) - (IrmsI[ZJ)} >= CI% Irms][Z])AND

(Lmsigz) = Lmsip2)) (hmsipz) — Lrmsiry) < 0

Eq. 2

where Cl1 is a constant which depends on experimental experience. Generally, C1 = (0.05
-0.1).
For the negative waveform side, the same feature is required. If Eq. 2 holds for both

the sides of the waveform, then itis said that there is Flicker. The third part of the conditions

in Eq.2 means that for each side of the waveform the differences in I}y are changing sign.

2.2.2 Asymmetry

The positive and negative I values are compared in each cycle. Itis said that there
is Asymmetry. if

ABS { (Lmsig1)) = (Lmszpry)} >= C2% (Lymgip1y) AND

ABSA{ (Lms21]) = (Lymsig21)} >= C2% (Lymsiy2;) AND

(Lims211] = Drmsipi] V2 lemsig2) — frmszp1y) < 0 Eq. 3

where C2 is also a constant which depends on experimental experience. Here, the principal

for choosing C2 is same as in Flicker.

2.2.3 Quarter Cycle Asymmetry

When HIF happ.ens onrelatively wetsoil, the waveform as shown in Fig. 5, is almost
sinusoidal . This kind of fault is very hard to identify if only Flicker and Asymmetry are
used as indications of the fault. However, if the waveform is studied carefully, it can be

realized that there is a quarter cycle asymmetry feature on the waveform. In fact, the quarter

10

HIF Current OnWet Soil (A)

Fault on Wet Soil Current Wave
Real Data Acquisition

N 77X /

Time (s) x10°

Fig. 5 Quarter Cycle Asymmetry For Decting Fault On Wet Soil

cycle asymmetry characteristic appears on all HIF waveforms obtained. Therefore, this

thesis proposes Quarter Cycle Asymmetry as one of the important parts of the algorithm.

As seen from Fig.5, in order to use the Quarter Cycle Asymmetry algorithm it needs to

compare two quarter cycle sampled values for each half cycle, so the following group of

variables are defined;

K1 =ABS (il —-i16) K2=ABS (i2-1il15)

K3 =ABS (i3-1i14) K4 =ABS (i4-113)

K7=ABS (i7-110) K8 =ABS (i8-19) Eq. 4
A second group of variables can be defined;

D1 =ABS (K1-K2) D2 =ABS (K3-K4)

D3 =ABS (K5-K6) D4 = ABS (K7-K8) Eq. 5

The two groups of variables will be used to calculate Quarter Cycle Asymmetry. It

11

is extremely important to find the zero crossing point at the beginning of each half cycle;

otherwise, the algorithm will become useless. During data acquisition, there are 16 samples

at each half cycle, but it is only a coincidence if the sampled data i1 and i16 are equal to

zero. For most cases, they are not zero, so interpolation has to be used to find the zero

crossing point in order to realize the algorithm properly.

2.2.3 Interpolation for Finding Zero Point

When data are read from the data file, if two adjacent data values are of opposite sign,

the actual zero crossing time can be calculated as follows:

it i(t
Al() ,:() JiCi-Ar)
: _A ‘
0 ' 0 1- At TO .
< > t
- ot ’\i(t)
At
Sampled Data Crossing Zero Point Enlarged Part
Fig. 6 Interpolation to Find the Zero Point
From Fig. 6, itis easy to derive that
0-i(t-At) :
=13 ;] X At Eq. 6
i(t)—i(t—-Ar)
From Eq. 6, TO, the new time start point can be found
0 =(t-At)+ 9, Eq.7

at t=TO, i (TO) = 0. Then from TO, the same time interval will still be used to get 15 more

12

sample values of the current in order to get the constants K1,K2,,D1,D2,D3,D4. The
same strategy is continuously used to deal with the all zero crossing points no matter whether
the curve is starting at the rising edge or the falling edge. Now it is further defined:

Jj=4

S =>D;
Jj=1
Eq.8

where Dj isdefined in Eq. 5. For a sinusoidal waveform, S is much smaller than for the
waveform of a fault on wet soil.

A sinusoidal waveform is symmetrical for each quarter cycle , so the sum S in Eq.8
for a fault on wet soil is obviously bigger than for the sinusoidal waveform. This
characteristic is used in the algorithm to check the dependability for a fault on wet soil, and
security for a sinusoidal waveform. As an indication of the Quarter Cycle Asymmetry, the

selection of sum S is 300% of that for sum S for a sinusoidal waveform.

2.2.4 Algorithm Realization

In the algorithm, 15000 samples are collected (it will be discussed in detail later in
 the data acquisition partin Appendix B) into a data file. Then, three cycles of data are read
from the data file each time. Score_Flk, Score_Asym, Score_Quart are calculated using
Eq.1 to Eq. 9 as indications of Flicker, Asymmetry, and Quarter Cycle Asymmetry
respectively. The sum of the scores are put into an integrator and when the output of the
integrator reaches a sufficient level, (set by experience), a trip signal is generated. The

integrator output is expressed as follows :

13

Output_new = Output_old + Score_FIk + Score_Asym + Score_Quart Eq.9

There are strategies for choosing the ratios of the Score_FIk, Score_Asym, and
Score_Quart as parts of the Output. However, the main aim is that the algorithm should
perform dependably (ability to trip when it should), and as well as be secure (ability to not
trip when it should not). Therefore, when all 15000 data points have been acquired , the
outputs should look like Fig. 7 and Fig. 8, in which the X-axis represents time in seconds,

the Y—axis is current, in arbitrary units.

14

e
There is a High Impedance Fault ,__,r'/

e
7~ Fault on
-~ Dry Soil

-
e

o~ —_

Trip Level - e

——— -
————T

Pl

7 — —~""""Fault On Wet Soil

0 1 2 3 4 5 6 7 8 9 10 11 12
Time (seconds)

Fig.7 Outputs of Faults on Dry and Wet Soils

There is No High Impedance Fault

Trip Level

Outputs of HIFLL

0 1 2 3 4 5 6 7 8 9 10 1 12
Time (seconds)

Fig.8 Outputs of Sinusoidal and Computer Loads

15

CHAPTER 3 TESTING AND RESULTS

3.1 Apparatus

3.1.1 Circuit Set-up

At the laboratory of the University of Manitoba, a circuit was set up as shown in
Fig. 9 to simulate a HIF in a power distribution system. The current is supplied by a 115V
singlg phase voltage source and an isolation transformer is used to get rid of DC offset

voltage from the source.

Isolation
Transformer RJ R2
o{ > Limiti — Conductor Soil
N imiting
Resistors
115V
<« Plate
é Linear
- Resistor
Trip or ' Channel
Alarm Scope Selector
A _
1 O © ' PC
-— —
€ —
* p—
P E—

Fig. 9 Schematic of Apparatus for Simulating HIF

16

Resistors R1 and R2 are used to limit the HIF current level in order to protect the
AT-MIO-16 data acquisition board [16] inserted into a PC computer (see detail in
Appendix A) and the computer itself. A copper conductor touches the ground, which
consists of various kinds of soils contained in a conducting plate. The fault current passes
through a linear shuntresistor to generate a voltage proportional to the fault current. Finally,
the voltage signal is taken to a scope, and the computer, to carry out data acquisition and

analysis.

3.1.2 [Initialization of A High Impedance Fault

Before initiating a HIF, it has to to be ensured that all elements can withstand the
maximum possible current. Therefore, the fault impedance was temporarily set to zero, to
get the worst case. The equivalent circuit for the experiment (with soil impedance equal to

zero) is represented in Fig. 10.

i(t) Xt RI R2

—_—
ALl MV AA]
\/‘\ ¢
115V :
Rl €—

M

Fig. 10 Egquivalent Circuit for Testing Security of Elements

The elements used in the circuit have the following parameters:

17

Isolation Transformer: its leakage reactance Xt% would be 2% — 2.5%;

115 X 11
X, =0023 x 2 X150 (ohm)
300

Limiting Resistors: they are two 660W, 115 V heaters, so it follows that

115 X 115

R1 = R2
660

= 20.0 (ohm)

Shunt Resistor: RL = 0.5 (Ohm), if only one heater is connected into the circuit, then

the impedance of the circuit Z= R + j Xt, here R =R1 +RL =20.5 (0hm).

However, we are only interested in the magnitude of Z, hence,
Zoin = R2+X} = 20.5 (ohm)

Thus, the maximum rms value of the current is:

1% 115
[y = - =561 (A
mE ez 205 (4)

Since the transformer’s normal working current is 300/110 about 2.73 A, care must be taken
to monitor the current, and only allow this 100% overload for a short time. Normally, the soil
resistance will keep the current well below the transformer rating. From Fig. 9, the signal
being taken into the scope (and the AT-MIO-16 board) is the voltage across the linear
resistor. Even under the extreme case, this voltage is only about 3 V, which is certainly

safe because the voltage range of the scope is +/~ 20V and the voltage range of the data

acquisition board is +/— 10 V.

18

This initialization of a HIF consists of the closing the switch ‘S’ in Fig. 9. The

equivalent circuit is shown in Fig. 10, except that there is a nonlinear resistor , Rs ,

representing the soil resistance as shown in Fig. 11.

i(r) __, Xt RI R2
T AM—— MW
— M F
115V
RL)
AN
D

Fig. 11 Egquivalent Circuit for Simulating HIF

3.1.3 Signal Generation of Computer and Sinusoidal Loads

As mentioned previously, any algorithm for detecting HIF should have two aspects:
dependability and security. In order to check the security of fault-like loads (e.g. a computer
load) and for normal sinusoidal loads, proper signals must be generated. It is very easy to
get a sinusoidal signal from a signal generator, but for the computer load, a shunt resistor,
RL should be connected in series with a computer. Here, the computer becomes Rs of Fig.
11. The voltage across the linear resistor is taken into the scope and the working computer
through coaxial cables. The experimental setup is as shown in Fig.12. The voltage across

RL can be adjusted by choosing RL with care, such that safe signals are taken into the data

19

acquisition equipment.

See Appendix B for details of the data acquisition procedure.

Channel

Generator Scope Selector

0 o _.,’.—,PC
—s N

Sinusoidal Load p—

[I|I

|
Computer Load) S

—
115V Normal Load
—> No Trip
Rs

Fig. 12 Schematic of Apparatus for Checking Security

20

3.2 Waveforms

Based on the circuits described, many waveforms were collected including faults

on wet soil, dry soil, grassy wet soil , and grassy dry soil for a dependability check of the

algorithm. As a security check,

acquired. These waveforms are illustrated below.

x

jary

[}
&

Current (A)

>

jay

o
&

Current (A)

3.2.1 Current Waveform of Fault on Wet Soil

®©
j=
o

400

o

A
S
S

-800

800

400

-400

-800

Waveform of HIF on Wet Soil (few cycles)

Quarter Cycle Asymmetry

sinusoidal and computer load waveforms were also

[\

\

/

/

\

/

_/

1

0 20

30
Time(s)

Waveform of HIF on Wet Soil(more cycles)

Quarter Cycle Asymmetry

40

50
x10°

[\

[\

[

|/

v,

2

/
J

0

60
Time(s)

Fig. 13 Current Waveforms of Fault on Wet Soil

21

80

100
x10®

From Fig. 13, for wet soil, it is obvious that only the Quarter Cycle Asymmetry part

of the algorithm explained in Chapter 2 will be effective.

Current (A)

Current (A)

-0.5

3.2.2 Current Waveform of Fault on Dry Soil

Waveform of HIF on Dry Soil(few cycles)
Flik.Asymm, Quar_asym

\

1.5

1/
0.5

D
/. \ \

‘ N L N

-1.5
0 10 20 30 40 50
Time (s) x10°
Waveform of HIF on Dry Soil(more cycles)
Flik, Asymm,Quar_asym
2
WA A /\ I n A A /

3N AN AN AN A A A N AN
|V AV AV AVRVAY.

Fig. 14 Current Waveforms of Fault on Dry Soil

In Fig. 14, for dry soil, Quarter Cycle Asymmetry is obviously present in the current

waveforms. Flicker and Asymmetry are not as obvious. However, if the waveforms could

be observed carefully and the effect of the current’s rms value be considered as well, there

22

could be some of all three: Flicker, Asymmetry, and Quarter Cycle Asymmetry.

>
Current (A) _O;

>

'y

(=]
&

Current (A)

3.2.3 Current Waveform of Fault on Grassy Wet Soil

150
100
50

-50

-100
-150

150

100

50

-50

-100
-150

Fig. 15 Current Waveforms of Fault on Grassy Wet Soil

Quarter Cycle Asymmetry

HIF on Wet Grassy Soil (few cycles)

T\

o

AN

~/ -4
10 20 30 40 50
Time (s) x10%
HIF on Wet Grasssy Soil (more cycles)
Quarter Cycle Asymmetry
7\ L\

A

7

[\

[\
\

\._/
_/
¥

\
/ _/
¥

20

40
Time (s)

60

100
x10®

The waveforms in Fig. 15, for grassy wet soil are similar but not identical to the

waveforms of faults on wet soil . The above waveforms of Fig.15 have more ripples than

those of faults on pure wet soil. However, Quarter Cycle Asymmetry is still a distinct

characteristic.

23

3.2.4 Current Waveform of Fault on Grassy Dry Soil

Figure 16 shows fault current waveforms for grassy dry soil. Itis quite obvious that

all parts of the algorithm will be relevant.

ot
=)
P

Current (A)

>

pary

(=1
[

Current (A)

-120

1 :Z /\ A FIk, Asym, Quir__‘:mym
A AN A S AN 2 S

AR R AR AR Va4
A ViRV

ol

240 270 300

180 210

Time (s) x10°

HIF on Dry Grassy Soil (more cycles)
Flk,Asym,Quar_asym

i I
TN T A A T A T
TN
b A IHCEM U

150 200 250 300 - (S) 350 400 450 . o\" 500

Fig. 16 Current Waveforms of Fault on Grassy Dry Soil

So far four different waveforms of HIF on different kinds of soil materials have been

shown. Many more waveforms were obtained than those shown here; however, Fig. 13 to

Fig. 16 are enough to illustrate the various types.

24

3.2.5 Sinusoidal Current Waveform

It is necessary for us to use a sinusoidal waveform in order to guarantee never to

trip under normal conditions. Figure 17 shows this case.

Current (A)

Current (A)

Waveftorm of Sinusoidal Load
No Flik, Asymm, Quar_asym

0 10 20 30 40 50

Time (s) x10°

Waveform of Sinusoidal Load

No Flik, Asymm, Quar_asym
2.5

1.25

~

A~

Fig. 17 Sinusoidal Current Waveform

3.2.6 Computer Load Current Waveform

AN VA

JooN N N N L NN
ol N NN/ [N)\
N A A A A A Y

Typical computer current waveforms are shown in Fig. 18. The algorithm must be

“secure” (not trip) for this kind of input. It can be easily seen that there are no Flicker and

Asymmetry. There are very slight Quarter Cycle Asymmetry characteristics appearing on

25

these waveforms; however, the S for calculating Quarter—Cycle Asymmetry in Eq.8 is

generally bigger than for this waveform.

x
=)
W

Current (A)

x
Q
b

Current (A)

3.3 Useof a C++ Program to Realize the Algorithm

«©
Q
o

£
o
o

o

-400

-800

Computer Load Current Waveform

No Flik,Asym,Quar_asym

J\

A
J\

W
%

20

Times (s)

30

Computer Load Current Waveform

No Flik,Asym Quar_asym

40

x107°

50

Fig. 18

Computer Load Current Waveforms

20

40

Time (s)

60

x10%

Currently, various program languages are being used in electrical engineering areas.

The question is which one is better to use to realize the algorithm. Due to the demands of

HIF detection, many ‘objects’ have to be dealt with, such as data acquisition, data

processing, real time display, calculation, detection and control. It has been concluded that

26

the C or C++ [21] [22] programming language is the best one to use.

3.3.1 C++ Program Based on the DOS System

Cand C++ are very similar languages in general use, but C++ is more powerful when
the program becomes large. C++ has two distinct functions C does not have,

1) Object oriented programming ability.

2) Very easy transfer to a Windows program, since all Windows programs coming
with the AT-MIO-16 data acquisition board are written in C++ .

This research project deals with several aspects, such as data acquisition, data
processing, data files translation from one environment to another environment, algorithm
realization, graphic display of the results on the screen, and so on. Therefore, C++ and a
Windows program will be the final goal.

The program has too many details and techniques to explain here. The flowchart is

shown in Fig. 19. For details of the program, see Appendix C.

27

¥

Input Data

Data Finished

Take Three Cycle Data

Is The Load Sinusoidal
or Computer Waveform

Flicker , Asymmetry
or Quarter Cycle Asymmtry

Y y

Output = Output Output = Output+ pt_flk

+pt_asy + pt_qut

Output > Threshold

A

Output = Output

Go Back
for Data N

Alarming and Showing Fault l
Data Finished No Fault .
Data Finished
Go Back For Data
v
END

Fig. 19 Flowchart of C++ Program for Detecting HIF Based on DOS

28

3.3.2 Testing Results and Analysis for Different Waveforms
A facsimile of a test result for a HIFLL waveform is shown in the Fig. 8. For the

computer load waveforms, the results always stay the same. Figure 20 illustrates these .

There is No High Impedance F ault

Outputs of HIFLL Waveforms
with or without DC Offset

L]

Trip Level .
~

ya

’/_/—’_.' 2 -
ol , ol
Outputs of Singoidalwaves with DC.offSet
/—/_- ’-'/’-—

g -
-_/__/_f'/ ,./-’/

0 1 2 3 4 5 6 7 8 9 10 11 12

Time (seconds)

Fig. 20 Outputs of Sinusoidal and Computer Loads

29

Generally speaking, the outputs of sinusoidal and computer load waveforms through
the algorithm should always appear as a flat straight line (see curves 3, 4 above) .

Incidentally, a dc offset in an otherwise sinusoidal input was a convenient check of
“Asymmetry”: curves 1 and 2 of Fig.20.

The computer load waveform, because it is symmetrical and periodic, will always
give excellent output results(i.e.“no trip”). Hence, the most important conclusion is that
the algorithm and program are secure for the HIFLL at least within the range considered.

Returning to the dependability of the algorithm and program for HIF: from Fig. 21,
1t can be seen that the algorithm and program work very well for detecting HIF on wet, dry,
grassy wet, and grassy dry soils. In Fig. 21, the four output results could vary slightly
depending on random voids within the soils and the extent of the moisture of the soils. Of
course, it is impossible to show all the results here, but the algorithm and program have
indeed worked well in detecting HIF cases for these kinds of soils. Therefore, the final
conclusion is that the algorithm and program have satisfied dependability for HIF cases and
security for HIFLL cases. o

Even though quite satisfactory results have been achieved , the research still needs
more improvements. During the data acquisition procedure, there were too many manual
operations required making the procedure unsuitable for automatic control and protection
in power systems. In addition, the outputs based on DOS systems can only be displayed on
one screen at a time. This is not convenient from the customer’s point of view. To solve this
problem, a Windows program is a good answer. Fortunately, the program developed was

written by C++ and could be easily transferred to Windows.

30

7
e

There is a High Impedance F aﬁgl/t’

e

/_,/ Fault on -
Trip Level / Dry Soil //"
- e
'/_._/’ o P
yd —_—

s __— —=" Fault On Wet Soil

0 1 2 3 4 5 6 7 8 9 10 11 12

Time (second)

Fig.21a Outputs of Faults on Dry and Wet Soils

s~
-’J-r-
. [/
There is a High Impedance’Fault
~
/ Fault on
/// Dry Grassy
Trip Level) Soil
ad —
./_*' /r
yd e
—~ ~ - ’JFPZI—;’I;/On Wet Grassy Soil
/ /,../--" - -

0 1 2 3 4 5 6 7 8 9 10 1 12
Time (second)

Fig.21b Outputs of Faults on Dry and Wet Grassy Soils

31

CHAPTER 4 WINDOWS DESIGN AND OPERATION FOR REAL

TIME PROTECTION

4.1 Windows Program Statement

Currently, with the development of computer technology, Windows programs are
becoming more and more popular. Itis known that a computer program based on either
DOS or UNIX systems can be reached by using a mouse to click the appropriate button in
a Windows display. However, the reason for using a true Windows program here to realize
HIF detection is not only because of its popularity, but also its ease of use. As mentioned
previously, the program written in C++ has already been developed. A program written in
C++ is easily transferred to a Windows program. C++ is also object oriented. Itis very
suitable for this research project because each problem in the research project can be
considered as an individual object model. The interfaces between them can be finished at
a later time. In terms of the Windows program, each object can be considered as a different
window or button. In addition, a Windows program is considerably more convenient than
one based on DOS. A program based on DOS has only one screen as an output device.
If different screens are required, different programs have to be run several times. Incontrast
to DOS, by clicking the buttons using the mouse, many windows can be opened at the same

time.

32

Another important reason for using the Windows program is the AT-MIO-16 board
requirements. Much of the software that comes with the board is written for MS—Windows
in C++, some of which can carry out data acquisition continuously. Connecting the C++
program based on DOS to the board software in order to realize the real time detection and
control is an easier way to do the project.

Since the Windows programming [14], [151, [16] took considerable time, it is
impractical to explain the details here . The Windows program is included in Appendix C.
Only the results of the Windows design which relate to the HIF and HIFLL analysis will be

shown in the following sections.

4.2 Main Windows Design

In a Windows program, there are two kinds of windows. One is called the parent
window or main window, and the other is called the child window. The parent window does
the main job and in the meantime, it can talk to its child windows, control them or be
controlled by them.

4.2.1 Signal Acquisition Window Design

In the Windows program, two main windows have been designed . One is a signal
acquisition window whose functions include data acquisition, data processing, and
displaying the real time signal on the window screen. This window should be used together
with an oscilloscope in order to make sure that the signal waveform is being captured
correctly. The acquisition window as shown in Fig. 22 has a child window called

“Acquisition”. As a matter of fact, the child window is only a button. If the signal being

33

shown on the scope is needed, it can be acquired using the mouse to click the “Acquisition”
button. The acquisition window program will start to work, performing data acquisition,
processing the data, and then displaying the waveform on the screen. In Fig. 22, on the top
bar of the window there is a title “HIF detector ” meaning the HIF analysis is in process.
The title will also appear on another main windows design called algorithm output analysis

window, which is to be discussed in the next topic. In Fig. 22, the X—axis represents time

in seconds, the Y—axis is current, in arbitrary units.

working mode
O continuous

® intermittent

Threshold Level

Alarm Status

150

Signal vs. Time Plot

Fig. 22 Signal Acquisition Window Design

On the windows screen, there are only two cycles shown. Many cycles may be

displayed if desired.

34

4.2.2 Algorithm Output Analysis Window Design

working mode Algorithm Qutput vs. Time Plot

O continuous

@ intermittent

Threshold Level
Alarm Status

Time (s)

Fig. 23 Algorithm Output Analysis Window Design

This window in Fig. 23 is the most important one among the designed windows, since
it covers data acquisition, data processing, algorithm realization, automatic control and
protection, dynamic output results displaying, etc. It includes five child windows to talk,

control or be controlled. If there is a HIF in the tested system, the dynamic output will

35

look like what Fig. 24 shows. Otherwise, for HIFLL, the results will appear as shown in

working mode

O continuous

® intermittent

Threshold Level 150
Alarm Status

Fig. 24 Window Outputs of HIF

Fig. 25, the only difference with Fig. 24 being the output curve and the Alarm Status, which

will be in an off state representing a zero—volt output.

36

working mode

O continuous

® intermittent

Threshold Level

Alarm Status

Algorithm Qutput vs. Time Plot

Fig. 25 Window Outputs of HIFLL

37

4.3 Child’s Window Design

4.3.1 Working Mode Windows Design

In Fig. 23, there is a child window called “Working Mode” window in which there
are two selections: Continuous and Intermittent.

In the intermittent mode, when the Execute button is selected, the program proceeds
with data processing, algorithm realization, and display of output results. The Windows
program is much more convienent than a DOS program. In the DOS system, too many
manual operations are required.

For a power systems field installation, the HIF detection must work continuously
and automatically. This is the continuous mode.

When the Continuous button is clicked, the Windows program will operate
continuously and repeat the whole procedure mentioned above every 20 seconds until the

button Esc is hit.

4.3.2 Threshold Level and Alarm Windows Design

Assuming itis in the continuous state, as in Fig. 23, there is a Threshold Level child
window and a vertical bar beside the window. In the bar, there is a button alongside anumber
which can be moved by the mouse. The setting is in the range of 0 — 400 (arbitrary units).
The Threshold Level is shown as 150. As previously explained , the setting of the

Threshold Level really depends on experience, but it is very important that the output of

38

HIF should always reach this level while the output of HIFLL should not.

The function of the Alarm Status child window is to transmit an external signal and
give a warning to operators when there is a HIF. The Alarm Status is in the off state before
the computer runs. When the dynamic output on the window screen reaches the Threshold
Level , the Alarm Status changes to the on state automatically. At the same time, the
sentence There is High Impedance Fault appears on the window as shown in Fig. 24. The
status will stay in the on state until the whole procedure finishes (about 7— 10 seconds).

When the next procedure starts, the Alarm Status will be reset to the off- state again
automatically and the sentence There is High Impedance Fault disappears. Then the whole
procedure will be repeated. Of course, if the output can not reach the Threshold Level ,
the Alarm Status will stay in the off state as shown in Fig. 25. The on or off state can also
be manually controlled by clicking the button Alarm in order to check the alarm output
function. Whenever Alarm Status is in the on state as shown on Fig. 24, a 5V signal is
sent through the output channel of the channel selector. Otherwise, the output is zero as
shown in Fig. 25. The signal could be used to trip a breaker, turn on a light, make a sound

through an alarm or whatever the engineer chooses.

4.4 Real Time Detection and Automatic Control

From a power systems perspective, it is acceptable for a high impedance fault to
persist for arelatively long time , possibly around halfan hour. Since it only takes 20 seconds

for the Windows program to carry out the whole detection procedure, the result meets the

39

requirement of real time detection. In addition, when the Windows program is running in
the continuous state, it sends a 5V or OV output signal every 20 seconds. This signal can

be used for various automatic control purposes depending on customers’ preference.

40

CHAPTER 5 RESULTS AND ANALYSIS FOR WINDOWS OUTPUTS

All the results that have been acquired from the Windows program are similar to
those shown in Fig. 24 and Fig. 25. For HIF, some results which are shown could be slightly
different from those in Fig. 24, depending on the soil features and random characteristics
in the HIF. However, the results almost always reach the threshold level as expected. For
HIFLL, some results occasionally go up a bit higher than the horizontal line as showp in
Fig. 24. This could be caused by fluctuation in the power supply, unstablé operation of the
signal generator(sinusoidal signal with dc offset) or some other magnetic field disturbances.
However, the outputs of the windows program for HIFLL almost never reach the threshold

level. This is the goal which is expected.

5.1 Windows Outputs for Sinusoidal Waveforms with Different DC Offsets
As mentioned previously, incidentally, a dc offset in an otherwise sinusoidal input

is a convenient check of “Asymmetry”. Such a waveform is shown as follows.
5.1.1 Windows Output for an Ideal Sinusoidal Waveform

For an ideal sinusoidal waveform as shown in Fig. 26, the windows output of the

algorithm is shown in Fig.27.

41

working mode
O continuous

® intermittent

Threshold Level [150

Alarm Status

Signal vs. Time Plot

Time (s)

Fig.26 An Ideal Sinusoidal Waveform

working mode ™
O continuous

@ intermittent

Threshold Level

Alarm Status

Algorithm OQutput vs. Time Plot

ime (s

Fig. 27 Windows Output of an Ideal Sinusoidal Waveform

42

5.1.2 Windows Output of Sinusoidal Waveform with DC Offset

From Fig. 28 and Fig. 29, the windows output goes up because of Asymmetry of the

waveform.

waorking mode

Signal vs. Time Plot

O continuous

@ intermittent

Threshold Level [0]

T Alarm Status

Time (s) ;

Fig. 28 Sinusoidal Waveform with DC offset

working mode Algorithm Output vs. Time Plot

O continuous

@ intermittent

Threshold Level

Alarm Status

Time (s)

Fig.29 Windows Output of Sinusoidal Waveform with DC Offset

43

5.2 Windows Output of a Typical Computer Current Load
Since there are no Flicker, Asymmetry, and Quarter Cycle features on the computer

waveform as shown in Fig. 30, the windows output is secure as shown in Fig. 31.

working mode

Signal vs. Time Piot

O continuous

@ intermittent

Threshold Level 150

Alarm Status

Time (s) ;
H

Fig. 30 A Typical Computer Current Waveform

working mode

Algorithm Output vs. Time Plot
O continuous

@ intermittent

Threshold Level

Alarm Status

Fig. 31 Windows Output for a Computer Current Waveform

44

5.3 Windows Outputs of Faults on Wet Soil
As explained previously, the Quarter—Cycle Asymmetry part of the algorithm will

be effective, the waveform and windows output are shown as in Fig. 32 and Fig. 33.

working mode~ . Signal vs. Time Plot
O continuous

@ intermittent

Threshold Level 150

Alarm Status off

Time {s) H

Fig. 32 Current Waveform of Fault on Wet Soil-1

working mode] Algorithm Qutput vs. Time Plot
O continuous

@ intermittent

Threshold Level
Alarm Status

Time (s)

Fig. 33 Windows Output of Fault on Wet Soil-1

45

Figure 34 and Figure 35 show a different case of fault on wet soil: fault current

waveform and windows output respectively. The result is similar to the previous one.

55 N T
2 i
‘J%& SN e N%msrss%'

working mode Signal vs. Time Plot

O continuous

@ intermittent

Threshold Level

Alarm Status on

Time (s) l

Fig. 34 Current Waveform of Fault on Wet soil-2

working mode Algorithm Output vs. Time Plot
O continuous

@ intermittent

Threshold Level

Alarm Status

Time (s) ‘

Fig. 35 Windows Output of Fault on Wet Soil-2

5.4 Windows Outputs of Faults on Dry Soil
As expected, these outputs reach the threshold level faster than those of faults on wet
soil, since three parts of the algorithm are effective. Figure 36 to Figure 39 show two

examples.

working mode — Signal vs. Time Plot
O continuous

@ intermittent

Threshold Level

Alarm Status off

683 0111 0138 8167 .0195 .0222 .0250

Time (s)

Fig.36 Current Waveform of Fault on Dry Soil-1

working mode Algorithm Output vs. Time Plot
O continuous

@ intermittent

Threshold Level

Alarm Status

Fig. 37 Windows Output of Fault on Dry Soil-1

47

working mode Signal vs. Time Plot

O continuous

@ intermittent

Threshold Level 150

Alarm Status

.0028 0056 .0083 .01i1 .013

Time (s)

Fig. 38 Current Waveform of Fault on Dry Soil-2

working mode Algorithm Qutput vs. Time Plot

O continuous g

@ intermittent

here is high im :

Threshold Level

Alarm Status

Time (s)

Fig.39 Windows Output of Fault on Dry Soil-2

48

5.5 Windows Outputs of Faults on Grassy Wet Soil

In general, current waveforms of faults on grassy wet soil have more ripples than

those on pure wet soil. Quarter Cycle Asymmetry is still an obvious characteristic of the
faults. Figures 40 to 43, which are in following two pages, show that the Windows program

works very well in identifying faults on grassy wet soil as well as on pure wet soil.

49

working mode
O continuous

@ intermittent

Threshold Level

Alarm Status

Signal vs. Time Plot

-0083

Time ()

Fig. 40 Current Waveform of Fault on Grassy Wet Soil-1

working mode
O continuous

@ intermittent

Threshold Level

Alarm Status

Algorithm Output vs. Time Plot

here Is high impedance fault

Fig. 41 Windows Output of Fault on Grassy Wet Soil-1

50

working mode i Signal vs. Time Plot

O continuous
@ intermittent

Threshold Level

Alarm Status on

Time (s}

Fig. 42 Current Waveform of Fault on Grassy Wet Soil-2

working mode
O continuous

® intermittent

Threshold Level 156

Alarm Status

Fig. 43 Windows Output of Fault on Grassy Wet Soil-2

51

5.6 Windows Outputs of Faults on Grassy Dry Soil
Finally, Figures 44 to 47 show the performances of the Windows program when

faults happen on grassy dry soil. Obviously, the results are satisfactory.

working mode Signal vs. Time Plot

O continuous

® intermittent’

Threshold Level

Alarm Status

Time (s)

Fig. 44 Current Waveform of Fault on Grassy Dry Soil-1

working mode
O continuous

@ intermittent

Threshold Level

Alarm Status

Fig. 45 Windows Output of Fault on Grassy Dry Soil-1

52

working mode——— , Signal vs. Time Plot
O continuous

@® intermittent

Threshold Level [0]

Alarm Status

7 Time (s)

Fig. 46 Current Waveform of Fault on Grassy Dry Soil-2

working mode =] Algorithm Cutput vs. Time Plot
O continuous ;

@ intermittent

Threshold Level

Alarm Status

me (s}

Fig. 47 Windows Output of Fault on Grassy Dry Soil-2

53

CHAPTER 6 CONCLUSIONS AND FUTURE WORK

6.1. Evaluation of the Circuit, Algorithm and Program

A HIF simulation circuit was set up in the laboratory at the University of Manitoba.
The fault current proved to be a credible fault current source for simulating HIF in a power
distribution system since the fault current waveforms showed largely resistive and nonlinear
V-I characteristics.

The algorithm proposed for detecting HIF includes three parts: Flicker, Asymmetry
and Quarter—Cycle Asymmetry as indications of fault current waveforms. This algorithm
performed well in identifying the characteristics of the HIF. It guaranteed dependability
(ability to trip when it should) when detecting high impedance faults. In addition, for loads
similar to high impedance faults (HIFLL), it also gave quite satisfactory results when
checking security (ability to not trip when it should not).

In terms of the circuit and the algorithm, a DOS based program was written using
C++ language to realize the algorithm. All the results showed good performance on both
'HIF and HIFLL, meaning the program matched the algorithm. Due to having too many
manual operations needed during the data acquisition procedure and the lack of automatic

control ability, the program needed to be improved.

54

6.2. Advantages of Using Windows Program

To overcome the disadvantages already mentioned, the program based on DOS was
developed into a Windows program.

The Windows program, the data acquisition board, and the software together make
up the High Impedance Fault Detector. Besides dependability and security, the Detector
has the following advantages over the program which was developed based o"r} DOS .

1. It can run intermittently and continuously. It is very convenient for customers to
use.

2. In the Intermittent working mode, it can send 15000 data points to the Windows
program which makes the final decision and sends a signal out to represent either trip or no
trip.

3. In the Continuous working mode, the detector can run continuously and
automatically. Every 20 seconds, it will repeat the whole procedure and send either a five—
volt or zero—volt signal out according to a fault or no fault situation. It will contir;uously run
forever until terminated by the operator.

With the development of computer technology, the detector could be improved
further totally depending on the customers’ requirements and how deeply the customers

want to investigate the area in detecting HIF.

55

6.3. Future Work

6.3.1. Security Check for Fluorescent Light Loads

Itis known, a fluorescent light load should be considered as a normal load. The
HIF detector should definitely not trip this kind of load . As explained by Sultan [1], a
fluorescent load has a nonlinear V- I characteristic. It will be necessary to check the

detector to guarantee security for this load in future.

6.3.2. Field Test

For various reasons, the detector has not been tested in the field. To work practically

as expected, it should be first installed onto a power distribution line system to field test.

56

BIBLIOGRAPHY

[1] Ahmad Fathi Sultan, “ High Impedance Arcing Faults Detection Using An Artificial
Neural Network ”, Thesis for Doctor of Philosophy, Department of Electrical
and Computer Engineering, the University of Manitoba, Winnipeg, Manitoba ,Can
ada, February, 1992. |

[2] G. W.Swift, “Power Systems Protection Based on Computer Relays”, Graduate
Course Notes, Department of Electrical and Computer Engineering , the University
of Manitoba, Winnipeg, Manitoba ,Canada,1992

[3] “Detection of Downed Conductors on Utility Distribution Systems . IEEE Tutorial
Course No. 90EH0310-3-PWR, IEEE/PES 1990 Summer Meeting, July
15-19,1990.

[4] B.M. Aucoin, B.D. Russell, C.L. Benner. “High Impedance Fault Detection for
Industrial Power Systems”. IEEE Industrial Application Society Conference, San
Diego, October,1989.

[5] J. Carr. “Detection of High Impedance Faults on Multi-Grounded Primary Distribution
System”. IEEE Transactions on Power Apparatus and Systems, Vol. PAS—IOO, No.
4, April 1981, pp. 2008-2016.

[6] B.M. Aucoin, B.D. Russell. “Distribution High Impedance Fault Detection Utilizing

High Frequency Current Components ”. IEEE Transactions on Power Apparatus

57

and Systems, Vol.PAS-101, No.6, June 1982, pp. 1596-1606.

[7] B.M. Aucoin, J.Zeigler, B.D. Russell. “ Feeder Protection and Monitoring System,
Part I: ““ Design, Implementation and Testing”. IEEE Transactions on PAS, Vol.
PAS—-104,No. 4, April 1985, pp. 873-880.

[8] B.M. Aucoin, J.Zeigler, B.D. Russell. “ Feeder Protection and Monitoring System, Part
II: “Staged Fault Test Demonstration”. IEEE Transactions on PAS,
Vol.PAS-104,No. 6, June 1985, pp. 1456-1462.

[9] B.M. Aucoin, B.D. Russell. “Detection of Distribution High Impedance Faults Using
Burt Noise Signals Near 60 Hz”. IEEE Transactions on Power Delivery, Vol.
PWRD-2, No. 2, April 1987, pp. 342-348.

[10] D.IJeerings, J.R. Linders. ““ Ground Resistance Revised ”. IEEE Transactions on
Power Delivery, Vol. PWRD-4, No. 2, April 1989, pp. 949-956.

[11] D.I Jeerings,J.R. Linders. “ Unique Aspects of Distribution System Harmonics Due
to High Impedance Ground Faults . IEEE Transactions on Power Delivery, Vol.
PWRD-5, No. 2, April 1990, pp. 1086-1094.

[12] D.I Jeerings, JR. Linders. ““ Discussion: IEEE Tutorial Course; Detection of
Downed Conductors on Utility Distribution Systems ”. IEEE/PES Winter Meeting,
Atlanta,GA, February . 8, 1990.

[13] A.F Sultan, G. W. Swift. Discussion: “ High Impedance Fault Detection Utilizing
Incremental Variance of Normalized Even Order Harmonic Power . IEEE
Transactions on Power Delivery, Vol. PWRD-6, No. 2, April 1991. pp. 564.

[14] A.F Sultan, G. W. Swift. “ Security Testing of High Impedance Fault Detectors .

58

IEEE/WESCANEX May 29 & 30 1991, Regina, Saskatchewan, CANADA.

[15] A.F Sultan, G. W. Swift, D. J. Fedirchuk. “ Detection of High Impedance Arcing
Faults Using a Multi-Layer Perception”. IEEE/PES Winter Meeting, New York, N.
Y., Jan. 1992.

[16] “AT-MIO-16 User Manual ” , NATIONAL INSTRUMENTS, October 1993 Edition,
Part Number 320476-01.

[17] “NI-DAQ Software Reference Manual for DOS”, NATIONAL INSTRUMENTS,
October 1993 Edition, Part Number 320498-01.

[18] “NI-DAQ Function Reference Manual for DOS”, NATIONAL INSTRUMENTS,
October 1993 Edition, Part Number 320499-01.

[19] “Measure for Lotus 1-2-3 , Data Acquisition Module Reference”, NATIONAL
INSTRUMENTS, August 1989 Edition, Part Number 320195-01.

[20] “EMTDC User’s Manual”, Version 3, Manitoba HVDC Research Center, Winnipeg,
Manitoba Canada,1988.

[21] “CPROGRAMMING”, Steven Holzner with The Peter Norton Computing Group,
1991.

[22] “C++ PROGRAMMING”, Steven Holzner with The Peter Norton Computing Group,
1992.

[23] “DEVELOPING WINDOWS APPLICATIONS WITH BORLAND C++ 3.1, Second
Edition”. James W. McCord, 11711 North College, Carmel, Indiana 46032 U.S.A.,
1992.

[24] “Windows 3.1 Programmer’s Reference”. James W. McCord, 11711 North College,

59

Carmel, Indiana 46032 U.S.A., 1992.

60

APPENDIX A

NI—DAQ AT-MI0O-16 Board and Its Specifications

This section describes the AT-MIO-16; lists the contents of the AT-MIO-16 kit;
describes the optional software and equipment, and explains how to unpack the
AT-MIO-16.
| 1. About the AT-MIO-16

The AT-MIO-16 is a high—performance, software~configurable 12-bit DAQ board
for laboratory, test and measurement, and data acquisition and control applications. The
board performs high—-accuracy measurements with high—speed settling to 12 bits, noise as
low as 0,1 LSBrms, and a typical DNL of +/-0,5 LSB. Because of its FIFOs and dual
—channel DMA, the AT-MIO-16 can achieve high performance. even when used in
environments that may have long interrupt latencies such as Windows.

A common problem with DAQ boards is that you can not easily synchronize several
measurement functions to a common trigger or timing event. The AT-MIO-16 has the Real
Time System Integration (RTSI) bus to solve this problem. The RTSI bus consists of our
custom RTSI bus interface chip and a ribbon cable to route timing and trigger signals
between several functions on one or DAQ boards in your PC.

The AT-MIO-16 can interface to the Signal Conditioning Extensions for

Instrumentation (SCXI) system so that you can acquire over 3000 analog signals from

61

thermocouples, RTDs, strain gauges, voltage sources, and current sources. You can also

acquire or generate digital signals for communication and control. SCXI is the
instrumentation front-end for plug—in DAQ boards.
2. What the Kit Should Contain

Two versions of the AT-MIO-16 are available —one version for each of two gain
ranges. The AT_MIO-16L (L stands for low-level signals). The AT-MIO-16H (H stands
for high—level signals) has software—programmable gain settings of 1, 2, 4, and 8 for
high—level analog input signals. The AT-MIO—16 (L/H) -9 contains an ADC with a 9
micro second conversion time. The AT-MIO-16 (L/H) -9 is capable of data acquisition
rates of up to 100 kHz.

Each version of the AT-MIO-16 board has a different part number and kit part

number, listed as follows.

Board
Kit KIt part Number | Kit Component Part
Name Number
AT-MIO-16L-9 77625-01 AT-MIO-16L-9 Board | 180705-01
AT-MIO-16H-9 77625-11 AT-MIO-16H-9 Board | 180705-11

The board part number is printed on your board along the top edge on the component
side. You can identify which version of the AT-MIO-16 board you have by looking up the
part number in the preceding table.

In addition to the board, each version of the AT-MIO-16 kit contains the following

components.

62

Kit Component Part Number

AT-MIO-16 User Manual 320476-01
NI-DAQ software For PC components, with manuals 776250-01
NI-DAQ Software User Manual for PC Compatibles 320498-01
NI-DAQ Function Reference Manual for PC Compatibles 320499-01

Detailed specifications of the At—-MIO-16 are listed in Specifications.
3. Software programming Choices

There are four options to choose from when programming your National Instruments
Plug—in data acquisition board and SXCI hardware.

4. LabVIEW and LabWindows Applications Software

LabVIEW and LabWindows are innovative program development software package
for data acquisition and control applications. LabVIEW uses graphical programming,
whereas LabWindows enhances traditional programming languages. Both packages include
extensive libraries for data acquisition, instrument control, data analysis, and graphical data
presentation.

LabVIEW currently runs on three different platforms—AT/MC/EISA computers
running Microsoft Windows, the Macintosh platform, and the Sun SPARC station platform.
LabVIEW features interactive graphics, a state—of—the—art user interface, and a powerful
graphical programming language. The LabVIEW Data Acquisition VI Library, a series of

VIs forusing LabVIEW with National Instruments boards, is included with LabVIEW. The

63

LabVIEW Data Acquisition VI Libraries are functionally equivalent to the NI-DAQ
software.

LabWindows has two versions—LabWindows for DOS is for use on PCs running
DOS, and LabWindows/CVl1 is for use on PCs running Windows and Sun SPARC stations.
LabWindows /CVI features interactive graphics, a state—of—the—art user interface, and uses
the ANSI standard C programming language. The LabWindows Data Acquisition Library,
a series of functions for using LabWindows for DOS and LabWindows with National
Instruments Boards, is included with LabWindows for DOS and LabWindéws /CVI. The
LabWindows Data Acquisition libraries are functionally equivalent to the NI-DAQ
software.

Using LabWindows or LabWindows software will greatly diminish the development
time for your data acquisition and control application. Part numbers for these software

products are as follows:

Software Part Number
LabVIEW for Windows 776670-01
LabVIEW for Macintosh 776141-01
LabVIEW for Sun 776680-01
LabWindows for DOS 776475-01
LabWindows/CVI for Windows 776800-01
LabWindows/CVI For Sun 776820-031

5. NI-DAQ Driver Software

64

The NI-DAQ Driver software has an extensive library of functions that you can call
from your application programming environment. These functions include routines for
analog input (A/D conversion), buffered data acquisition (high—speed A/D conversion),
analog output (D/A conversion), waveform generation, digital I/O, counter/timer
operations, SCXI, RTSI, selfcalibration, messaging, and acquiring data to extended
memory.

The NI-DAQ also internally addresses many of the complex issues between the
computer and the plug—in board such as programming interrupts and DMA controllers.
NI-DAQ maintains a consistent software interface among its different versions so that you
can change platforms with minimal modifications to your code. The following block
diagram illustrates the relationship between NI-DAQ and LabVIEW and LabWindows.
You can see that the data acquisition parts of LabVIEW and LabWindows are functionally

equivalent to the NI-DAQ software.

The National Instruments PC, AT, and MC Series data acquisition boards are
packaged with NI-DAQ software for PC compatibles. NI-DAQ software for PC
compatibles comes with language interfaces for Professional BASIC, Turbo Pascal, Turbo
C, Turbo C++, Borland C++, and Microsoft C for DOS; And Visual Basic, Turbo Pascal,
Microsoft C with SDK, and Borland C++ for Windows. You can use your AT-MIO-16,
together with other PC, AT, and MC Series data acquisition Boards and SCXIhardware, with

NI-DAQ software for PC compatibles.

65

Conventional
LabVIEW LabWindows
Programming (PC, Macintosh
Environmental or (PC or Sun
(PC, Macintosh or Sun SPARCstation SPARCstation)
Sun SPARCstation)
’ N— rd
NI-DAQ
Driver Soft-
ware
V4 A\
Data Acquisition Personal Com-
puter
Boards or or
SCXI Hardware Workstation

The National Instruments NB Series data Acquisition Boards are packaged with
NI-DAQ software for Macintosh. NI-DAQ software for Macintosh comers with language
interfaces for MPWC, THINK C, Pascal, and Microsoft QuickBASIC. Any Language that
uses Device Manager Toolbox calls can access NI-DAQ software for Macintosh. You can
use NB Series data acquisition Boards and SCXI hardware with NI-DAQ software for
Macintosh.

The National Instruments SB Series data acquisition Boards are packaged with
NI-DAQ software for Sun, which comes with a language interface for ANSIC.

6. Register—Level Programming

The final option for programming any National Instruments data acquisition

hardware is to write register—level software. Writing register—level programming software

can be very time consuming and inefficient, and is not recommended for most users. The

66

only users who should consider writing register—level software should meet at least one of
the following criteria:

* National Instruments does not support your operating system or programming
language.

* You are an experienced register—level programmer who is more comfortable
writing your own register—level software.

Even if you are an experienced register—level programmer, consider using NI-DAQ,
LAbVIEW, or LabWindows to program your National Instruments data acquisition
hardware. Using the NI-DAQ, LabVIEW, or LabWindows software is easier than, is as
flexible as, and can save weeks of development time over register-level programming.

The AT-MIO-16 User Manual contains complete instructions for programming
your data acquisition board with NI_DAQ, LabVIEW, or LabWindows. If you are using
NI-DAQ, LabVIEW, or LabWindows to control your board, you should not need the
register—level programmer manual. The AT-MIO-16 Register—Level Programmer Manual
contains programming details, such as register maps, bit descriptions, and register
programming hints that you will need only for register—level programming. Some hardware
user manuals include register map description s and register programming hints.

7. Unpacking

Your AT-MIO-16 boards is shipped in an antistatic package to prevent electrostatic
damage to the board. Electrostatic discharge can damage several components on the board.
To avoid such damage in handling the board, take the following precautions:

* Touch the antistatic package to a metal part of your computer chassis before

67

removing the board from the package.
* Remove the board from the package and inspect the board for loose components

or any other sign of damage. Notify National Instruments if the board appears damaged in
any way. Do not install a damaged board into your computer.
8. AT-MIO-16 Specifications

This part lists the specifications for the AT-MIO-16. These specifications are
typical at 25 degree C unless otherwise noted.

Analog Input
Input Characteristics
Number of channels 16 single-ended or 8 differential,

jumper—selectable

Type of ADC Sampling, successive approximation
Resolution 12 bits, 1 in 4096
Max sampling rate 100 KS/s

Input signal ranges

AT-MIO-16H and AT-MIO-16DH

AT-MIO-16L and AT-MIO-16DL

Input coupling DC

Max Working voltage (signal

+ common mode) Each input should remain within 12 V

of AIGND

68

. Board Range
Board G
oarc Gam (Jumper Selectable)
(Software
Selectable
) +/— IOV +/—'5V OtO 10 V
1 +H-10V +—-5V Otol0V
2 +/—5V +-2.5V Oto5V
4 +H-25V +-125V Oto25V
8 +—-125V +-0.63V 0to1.25V
. Board Range
Board G g
oard &ain (Jumper Selectable)
(Software
Selectable
) +/'— 10V +/—'5V OtO 10 V
1 +H-10V +/-5V Otol0V
10 +—-1V +-0.5V OtolV
100 +/-0.1V +—-0.05V 0to 001V
500 +-0.02V +—-0.01V 0t00.02V

Overvoltage protection

Inputs protected
FIFO buffer size
Data transfers
DMA modes

Transfer Characteristics

+/—35 V powered on, +/— 20 V powered
off

ACH<O0..15 >

16 samples

DMA, interrupts, programmed I/O

Demand

69

Relative accuracy

DNL

No missing codes

Offset error

Pregain error after calibration
Pregain error before calibration
Postgain error after calibration

Postgain error before calibration

+/-0.9 LSB typical, +/—1.5 LSB max
+/-0.50 LSB typical, +/-0.95 LSB max

12 bits, guaranteed

+/-2.44 Micro V (=L board)
+/-153 Micro V (—H board)
+/-1.22 mV max

+/—85 V max

Gain error (relative to calibration reference)

After calibration

Before calibration

Gain =! 1 with gain error adjusted to 0

at gain =1

Amplifier Characteristics
Input impedance
Input bias current
Input offset current
CMRR

Dynamic Characteristics
Bandwith
Small signal (-3 dB)

Settling time to full-scale step

0.0244% of reading (244 ppm) max

0.85% of reading (8500 ppm) max

0.02% of reading (200 ppm) max

1 G Ohm in parallel with 50 pF

+/—-25 nA

+/~15 nA

70

Gain CMRR
DC to 100Hz
1 75 dB
10 95 dB
100 105 dB
650 kHz @ gain =1
Gain Accuracy
+/- 0.024 % +/~ 0.012%
(+/~1LSB) (+/- 0.0LSB)
<= 10 10 Micro s 10 Micro s
100 14 Micro s 14 Micro s
500 47 Micro s 50 Micro s

System noise (including quantization error)

Gain 20 V Range 10 V Range
<=10 0.10 LSB rms 0.20 LSB rms
100 0.15 LSB rms 0.20 LSB rms
500 0.30 LSB rms 0.40 LSB rms
Slew rate 5.0 V/micro second
Stability
Recommended warm—up time 15 min

Offset temperature coefficient

71

Pregain
Postgain
Onboard calibration reference
Level
Temperature coefficient

Long—term stability

-Analog IOutput

Output Characteristics
Number of channels
Resolution
Max update rate
Type of DAC
Data transfers

Transfer Characteristics
Relative accuracy (INL)
Bipolar range
Unipolar range
DNL
Monotonicity
Offset error

After calibration

6 micro V/C degree

160 micro V/C degree

2.5V +/-10 mV
10 ppm/C degree max

20 ppm/1000 hr

2 voltage
12 bits, 1 in 4096
250 KS/s
Double-buffered, mulitiplying

Interrupts, programmed I/O

+/-0.25 LSB typical, +/-0.5 LSB max
+/-0.50 LSB typical, +/~1.0 LSB max
+/-0.2 LSB typical, +/—1.0 LSB max

12 bits guaranteed

488 micro V max

72

Before calibration

+/— 64 mV max

Gain error (relative to internal reference)

After calibration
Before calibration
Voltage Output
Ranges
Output coupling
Output impedance
Current drive
Protection
Power-on state
External reference input
Range
Overvoltage protection
Input impedance
Dynamic Characteristics
Settling time to 0.024% FSR
Slew rate

Noise
Digital 1/0

Number of channels

Compatibility

+/-0.017% of reading (170 ppm) max

+/-0.77% of reading (7700 ppm) max

+/-10V, 0-10V, jumper selectable
DC
<=0.2 Ohm
+/—2 mA max

Short—circuit protection

Undetermined

+/-10V

+/-25V powered on

11 KOhm

4 micro second for a 20 V step
30V/micro S

1 mV mas, DC to 1 MHz

8 /O

73

Digital logic Levels

Level Min Max
Input low voltage ov 08V
Input high voltage 2V 6V
Input low current i
(Vin =0.4V) —20 micro A
Input high current
(Vin=2.7V) 20 micro A
Output low voltage 05V
(Tout = 24 A)
Output high voltage
(Towt - —2.6 A) 24V

Power on state

Data transfers
Timing 1/0

Number of channels

Resolution

counter/timers

Frequency scalers

Compatibility

Base clocks available

Base clock accuracy

Max source frequency

Min source pulse duration

Configured as input

Programmed I/O

3 counters/timers, 1 frequency scalers

16 bits
4 bits

TTL, pulled high with 4.7 Ohm resistors
1MHz, 100kHz, 10 kHz, 1kHz, 100Hz
+/-0.01%
6.897 MHz

70 ns

74

Min date pulse duration 145 ns

Data transfers Programmed I/O
Triggers
Digital Trigger
Compatibility TTL
Response Falling edge
Pulse width 50 ns min
RTSI
Triggers 7
Bus Interface Slave

Power requirement

+5 VDC (+/-5%) 1.6 A
Physical
Dimensions 13.3 by 3.9 in. (33.782 by 9.906 cm)
I/O connector 50—pin male ribbon connector
Form factor AT
Environment
Operating temperature 0 to 70 C degree
Storage temperature =55 to 150 C degree
Relative humidity 5% to 90% noncondensing

75

Appendix B.

Data Acquisition and Files Translation
1 Data Acquisition

This section is an overview of the data acquisition procedure using the National
Instruments AT-MIO-16 board and the Lotus 1-2-3 data acquisition software package. For
detailed descriptions and procedures on using the menu items in the Data Acquisition
Module, consult Chapter 4 of ‘Data Acquisition Module Command Referenée’ [17].The
procedure for using the software package includes the following steps:

1) To Load the Data Acquisition Module

Before using the Data Acquisition Module, make sure 1-2-3 is loaded with the data
acquisition driver added to the current driver set. Follow the steps listed in Installing and
Starting the Data Acquisition Module ’[18]. Press [ALT]- F8 to display the Data
Acquisition main menu.

2) To Set up an Experiment

Begin setting up the experiment, by selecting ID Settings. Use the ID Settings menus
to specify where the data comes from(the input/output I/O channels), where to place orread
data in the 1-2-3 worksheet, and how to convert the data. Then, go to the Stage—Settings
menus to indicate the conditions under which data is to be collected or sent. It includes the

acquisition rate and how much data to acquire or send.

76

3) To Enter Data I/0 Information

An ID identifies the source of data I/O. To create an ID, select ID Settings followed
by ID. Enter an ID name. Enter the type of the ID(analog— in, digital — in, binary — in, counter,
analog — out, digital — out, binary — out), the board, and the channel to associate with. Use
the Range menu item to indicate where in the 1-2-3 worksheet to place or read data from
the ID. Use Formula to specify a conversion formula for the ID.

4) To Test Data Input

First, select Observe. On the observe screen, data values appear and‘-'c'ﬁ—ange as you
vary the input. You can compare the raw data values to a known input to determine a
conversion formula for each ID. If you associate a formula with an ID, the converted values
appear in the Observe screen.

5) To Set Stages

After you specify the active ID and the 1-2-3 worksheet range where to place or read
data, switch to the Stage—Settings Sheet. There are three different stages you can set for a
data acquisition session. Each stage has an individual set of data I/O, a sample rate, an
amount and a trigger. In each of the stages you want to use, select the IDs from‘which to
collect or send data. Then enter a sampling rate and the number of samples to acquire or send
during each stage. The Data Acquisition Module collects or sends samples from the
designated IDs at the specified rate until the correct number of samples is acquired or sent.
Use the Trigger menu item to enter a trigger to start each stage.

6) To Start the Data Acquisition

Select Go from the Data Acquisition Module main menu to start the data acquisition.

71

The data s placed in the 1-2-3 worksheet. Once data is collected, leave the Data Acquisition
Module by selecting Quit.

7) To Save Settings and Data

Save the settings by selecting Name from either the ID — Settings or Stage — Settings
menus, choose aname for the worksheet you want to save the data file in and then itis ready

tobe used later. Now, the data is on the worksheet. The data format must next be considered.

2. Translation of Worksheet Data File to DOS File

Suppose everybody already understands the lotus 1-2-3 worksheet. There have
been 15000 data items in the data acquisition worksheet as shown in Fig. 48, the worksheet
data file should be translated into a suitable DOS file with which it is possible for us to use
a C program for further analysis. It should be understood that the worksheet illustrated in
Fig. 48 is a special worksheet for data acquisition which uses the ‘National Instrument
Software Package’ Measure for lotus 1-2-3 [19]. If the worksheet could be changed into
a Lotus1-2-3 worksheet, it would be easily translated into a DOS file. It was found that
the following steps will do the translation of the file.

1) Quit Data Acquisition worksheet and enter the Lotus 1-2-3 maih menu.

2) Type Print , File. From the File list, select the name in which the data file was
saved. Type Replace. '

3) TypeRange, Input Range A1 ..E3000 (the range for 15000 data items obtained).

4) Type Go, Quit, Quit, Finally, type Yes.

78

AT — MIO Board Command Main Menu

Go Verify Observe ID-Setting Stage — Setting Quit
A: A B C D E F —_
1 _—
2 —_————
3
4 l
[l
: !
|
° |
7 |
g |
|
? |
1
10 |
11 |
12 ,
|
13 |
14 |
15 ————
———

Fig. 48 Lotus 1-2-3 Data Acquisition Worksheet

79

3. Translation of DOS File to EMTDC Multiplot File

Now there is a DOS data file with 5 columns and 3000 rows, the same format as
the worksheet. The file format should be changed into a 2 column and 15000 row format
file suitable for the EMTDC [20] multiplot software to print. A program (see Appendix

C) called TODOS was written to execute this step. Fig. 49 is the flowchart of the program.

| Raw Data |
v

Find Zero Point and Start
Program

v

Y
Data Finished

N
Get Rid off Bad Reading
Make EMTDC File
END

Fig. 49 Flowchart of Program from DOS to EMTDC

Finally, the format of the file is 2 columns, 15000 rows, which is easy for both
EMTDC and C program to use. The software procedures which have been finished so far

are illustrated in Fig. 50.

80

EMTDC
HIF AT-MIO-16| | LOTUS DOS
DATA BOARD 123 “| FILE

C++Program

Fig. 50 Data Acquisition Software Blockdiagram

81

Appendix C.

Listings of Source Program

1

2

3

A Windows Program for Detecting High Impedance Fault
A C++ Program for Detecting High Impedance Fault

A C++ Program of Files Translation

82

e s st o sf ol o R SRR SR SRS SR R R R R R SR Rl sk R R kR sl skt sk ok sk sk sl R R ok

/[INCLUDE FILES
#include <windows.h>
#include <stdlib.h>
#include <stdio.h>
#include <math.h>
#include "wdaq_bc.h”
#include "daghimpf.h”

Rtk kg k SRR siik SR ok Rk Rk kR ok ok

long FAR PASCAL _export WndProc(HWND hWnd, UINT iMessage, UINT wParam, LONG IParam);

// GLOBAL VARIABLES
JfEsRs Gesiesiestestesieste sk} seskstesienk

unsigned long numSamples;

unsigned long numResults; /* number of samples stored in buffer */
HANDLE hVoltBuffer =0; /* handle to a buffer of memory */
HANDLE hResultBuffer=0;
short currentmode=0;
short color;
short aquire_down=0;
short alarm_on=0;//
Vi
// CLASS DEFINITION
Main Program Class

class Main

{
public:
static HANDLE hlnstance;
static HANDLE hPrevInstance;
static int nCmdShow;
static int MessageLoop();
¥

83

// static field definitions

HANDLE Main::hInstance = 0;
HANDLE Main::hPrevInstance = 0;
int Main::nCmdShow = 0;int Main::Messagel.oop()
{
MSG msg;
while(GetMessage(&msg,NULL,0,0))
{

TranslateMessage(&msg);
DispatchMessage(&msg);

return msg.WParam;
Y/; s : e sfes e siesfesele et s et s st e e 23 stesestestesteste st

Y/ Base Window Class
Vi : e

st sk

class Window

{
protected:
HWND hWnd;
public:
HWND GetHandle(void) {return hWnd; }
BOOL Show(int nCmdShow) { return ShowWindow(hWnd, nCmdShow); }
void Update(void) {UpdateWindow(hWnd); }
virtual long WndProc(UINT iMessage, UINT wParam,LONG IParam) = 0;
¥
[A
/4 Derived Graph Window Class

class GraphWindow : public Window

{
public:
GraphWindow(HWND hWnd);
static void Register()

{
WNDCLASS wndclass; // Structure used to register Windows class.
wndclass.style = NULL;
wndclass.lpfaWndProc = ::WndProc;
wndclass.cbClsExtra =0;
wndclass.cbWndExtra = sizeof(GraphWindow *);
wndclass.hInstance = Main::hInstance;

84

wndclass.hlcon = Loadlcon(Main::hlnstance, IDI_ APPLICATION);

wndclass.hCursor = LoadCursor(NULL, IDC_ARROW);
wndclass.hbrBackground = GetStockObject(LTGRAY_BRUSH);

wndclass.lpszMenuName = NULL,;
wndclass.IpszClassName = "GraphWndClass”;
if (! RegisterClass(&wndclass))
exit(FALSE);
> void Paint();
long WndProc(UINT iMessage, UINT wParam,LONG IParam);
%

// class method definitions

GraphWindow::GraphWindow(HWND hParentWnd)

{
if ({(hWnd = CreateWindow(’GraphWndClass”,NULL,
WS_CHILD | WS_VISIBLE | WS_BORDER,300,100,520,360,
hParentWnd,PB_GRAPHWIN,Main::hlnstance,(LPSTR)this)))
exit(FALSE);
Show(Main;:nCmdShow);
Update();
b
void GraphWindow::Paint()
{
HDC hDC; // display context for graph window
PAINTSTRUCT ps; // paint structure
HPEN hNewPen,hOldPen;

HCURSOR hNewCur,hOldCur;
HBRUSH hBKBrush,hOldBrush;

HFONT hNewFont,hOldFont;

long int i,j; // loop variable

int ix; // loop variable

double xscale; // scale for x axis

float huge *ipVoltBuffer; // huge pointer to sample buffer

hDC = BeginPaint(thWnd,&ps);

hNewCur = LoadCursor(NULL,IDC_WAIT); // change cursor to hour glass
hOIdCur = SetCursor(hNewCur); SetMapMode(hDC,MM_ANISOTROPIC);

SetViewportOrg(hDC,0,360);
SetViewportExt(hDC,520,360);

// define logical coordinate system

SetWindowExt(hDC,XHI-XLO,YHI-YLO);

85

SetWindowOrg(hDC,0,1280);
// Draw graph
hNewPen = CreatePen(PS_SOLID, 1 ,RGB(128,128,128)); // draw hash marks

hOldPen = SelectObject(hDC,hNewPen);
for (i=XL.O; i<=XHI; i+=(XHI-XLO)YXNUMDIM)

{
MoveTo(hDC,i,YHI); // vertical hash
LineTo(hDC,i,YLO);

¥

for (i=YLO; i<=YHI; i+=(YHI-YLO)/ YNUMDIM)

{
MoveTo(hDC,XLO,i); // horizontal hash
LineTo(hDC,XHL,i);

¥

SelectObject(hDC,hOldPen);
DeleteObject(hNewPen);
if(aquire_down==0)
{
hNewFont = CreateFont(5,0,0,0,FW_BOLD,FALSE,FALSE,FALSE,ANSI_CHARSET,
OUT_DEFAULT_PRECIS,CLIP_DEFAULT_PRECIiS,DEFAULT_QUALITY,
VARIABLE PITCHIFF_ROMAN,”Tms Rmn”);
hOldFont = SelectObject(hDC,hNewFont);
hBKBrush=CreateSolidBrush(RGB(128,128,128));
hNewPen = CreatePen(PS_SOLID,1,RGB(200,200,200)); // draw axes
hOldPen = SelectObject(hDC,hNewPen);
hOldBrush=SelectObject(hDC,hBKBrush);
SetTextAlign(hDC,TA_LEFT);
TextOut(hDC,2,1160,” ”.9);
SetTextAlign(hDC,TA_CENTER);
TextOut(hDC,40,1160,”1.0”,3);
TextOut(hDC,60,1160,” ,7);
TextOut(hDC,80,1160,”2.0”,3);
TextOut(hDC,100,1160,” ,7);
TextOut(hDC,120,1160,73.0”,3);
TextOut(hDC,140,1160,” 7);
TextOut(hDC,160,1160,74.0”,3);
TextOut(hDC,180,1160,” ”,7);
TextOut(hDC,200,1160,75.0”,3);
TextOut(hDC,220,1160,” ,7);
TextOut(hDC,240,1160,”6.0”,3);
TextOut(hDC,260,1160,” ”,7);
TextOut(hDC,280,1160,”7.0”,3);
TextOut(hDC,300,1160,” ,7);
TextOut(hDC,320,1160,78.0”,3);

86

TextOut(hDC,340,1160,” ,7);
TextOut(hDC,360,1160,79.07,3);
TextOut(hDC,380,1160,” ”7);
TextOut(hDC,400,1160,10.0”,3);
TextOut(hDC,420,1160,” .7);
TextOut(hDC,440,1160,711.0”,3);
SetTextAlign(hDC,TA_RIGHT);
TextOut(hDC,479,1160,” ”.8);
SetTextAlign(hDC,TA_LEFT);
SelectObject(hDC,hOldPen);
DeleteObject(hNewPen);
SelectObject(hDC,hOldBrush);
DeleteObject(hBK Brush);
SelectObject(hDC,hOldFont);
DeleteObject(hNewFont);
hNewPen = CreatePen(PS_SOLID,,RGB(0,255,0)); // draw axes
hOldPen = SelectObject(hDC,hNewPen);
MoveTo(hDC,X1.0,1120); /] x—axis
LineTo(hDC,XHI, 1120);
SelectObject(hDC,hOldPen);
DeleteObject(hNewPen);
hNewPen = CreatePen(PS_SOLID,1,RGB(0,0,255));
// Draw axes

hOldPen = SelectObject(hDC,hNewPen);
MoveTo(hDC,XLO,(int)((float)color+3.2—160)); // threshold
LineTo(hDC,XHI,(int)((float)color*3.2—160));
SelectObject(hDC,hOldPen);
DeleteObject(hNewPen);
alarm_on=0;
AO_VWrite(1,1,0.0);
//himp_fault=1;
RECT rect;
{

rect.left=100; rect.top=240;

rect.right=210; rect.bottom=280;
h
InvalidateRect(GetParent(hWnd),&rect, FALSE);
UpdateWindow(GetParent(hWnd));

// Plot buffer if there are samples

numResults=117.0;
int himp_fault=0;
if (ipVoltBuffer = (float huge *)GlobalLock(hVoltBuffer)) // lock buffer

{
hNewPen = CreatePen(PS_SOLID,1,RGB(255,0,0));

87

hOldPen = SelectObject(hDC,hNewPen);
MoveTo(hDC,0,(int)(1120+ipVoltBuffer[0] * 3)); //was YSCALE
xscale = (double)numResults / (XHI-XLO);
i=0;
ix=0;
while (i < (numResults—1))
{

if((((int)((1280.0+ip VoltBuffer{i]*3.0)/3.2))<color)

&& himp_fault==0)

alarm_on=];
TextOut(hDC,100,40,”There is high impedance fault”,29);
himp_fault=1;
RECT rect;
{
rect.left=100;
rect.top=240;
rect.right=210;
rect.bottom=280;
b
InvalidateRect(GetParent(hWnd),&rect, FALSE);
UpdateWindow(GetParent(hWnd));
¥
LineTo(hDC.,ix,(int)(1120+ipVoltBuffer{i] *3)); //was YSCALE
for(j=0;j<90000; j++)
{
=k
=
=5
¥
if (xscale > 1.0) // if more samples than X—coord
{
++ix;
i=1ix * xscale;

else /1 if less samples than X—coord

++i;
ix=1i%*1/xscale

¥
SelectObject(hDC,hOldPen);

DeleteObject(hNewPen);
GlobalUnlock(hVoltBuffer); // unlock buffer

88

else

hNewFont = CreateFont(5,0,0,0,FW_BOLD,FALSE,FALSE,FALSE ANSI_CHARSET,

OUT_DEFAULT_PRECIS,CLIP_DEFAULT_PRECIS,DEFAULT_QUALITY,
VARIABLE PITCH | FF_ROMAN,”Tms Rmn”);

hOldFont = SelectObject(thDC,hNewFont);

hBKBrush=CreateSolidBrush(RGB(128,128,128));

hNewPen = CreatePen(PS_SOLID,1,RGB(200,200,200));

// Draw axes
hOldPen = SelectObject(hDC,hNewPen);
hOldBrush=SelectObject(hDC,hBKBrush);
SetTextAlign(hDC,TA_LEFT);
TextOut(hDC,2,1160,” ”.8);
SetTextAlign(hDC,TA_CENTER);
TextOut(hDC,40,1160,”.00287,5);
TextOut(hDC,60,1160,” ”,3);
TextOut(hDC,80,1160,”.0056”,5);
TextOut(hDC,100,1160,” ”,3);
TextOut(hDC,120,1160,”.0083”,5);
TextOut(hDC,140,1160,” ”,3);
TextOut(hDC,160,1160,”.0111”,5);
TextOut(hDC,180,1160,” ,3),
TextOut(hDC,200,1160,”.0138”,5);
TextOut(hDC,220,1160,” >,3),
TextOut(hDC,240,1160,”.0167,5);
TextOut(hDC,260,1160,” ”,3),
TextOut(hDC,280,1160,”.0195”,5);
TextOut(hDC,300,1160,” 7,3);
TextOut(hDC,320,1160,”.0222”,5);
TextOut(hDC,340,1160,” ”,3);
TextOut(hDC,360,1160,”.02507,5);
TextOut(hDC,380,1160,” ”,3);
TextOut(hDC,400,1160,”.0278”,5);
TextOut(hDC,420,1160,” >,3);
TextOut(hDC,440,1160,”.0306”,5);
SetTextAlign(hDC,TA_RIGHT);
TextOut(hDC,479,1160,” ,7);
SetTextAlign(hDC,TA_LEFT);
SelectObject(hDC,hOldPen);
DeleteObject(hNewPen);
SelectObject(hDC,hOldBrush);
DeleteObject(hBK Brush);
SelectObject(hDC,hOldFont);
DeleteObject(hNewFont); hNewPen = CreatePen(PS_SOLID,1,RGB(0,255,0));

89

// Draw axes
hOldPen = SelectObject(hDC,hNewPen);
MoveTo(hDC,X1L.0,480); /I x—axis
LineTo(hDC,XHI,480);
SelectObject(hDC,hOldPen);
DeleteObject(hNewPen); // Plot buffer if there are samples

numResults=68.0;
if (ipVoltBuffer = (float huge *)GlobalLock(hVoltBuffer)) // lock buffer

{
hNewPen = CreatePen(PS_SOLID,1,RGB(255,0,0));
hOldPen = SelectObject(hDC,hNewPen);
MoveTo(hDC,0,(int)(480+ip VoltBuffer[0] * 300)); //was YSCALE
xscale = (double)numResults / (XHI-XLO);
i=0;
ix=0;
while (i < (numResults—1))
{
LineTo(hDC,ix,(int)(480+ip VoltBuffer[i] *300)); //was YSCALE
for(j=0;j<90000; j++)
{
=5
=
=5
¥
if (xscale > 1.0y // if more samples than X—coord
{
++ix;
i=ix * xscale;
b
else /I if less samples than X—coord
{
++i;
ix =1*1/xscale;
b
¥
SelectObject(hDC,hOldPen);
DeleteObject(hNewPen);
GlobalUnlock(hVoltBuffer); /! unlock buffer
¥
aquire_down=0;
b
SetCursor(hOldCur); /Il change cursor back to previous value

EndPaint(hWnd,&ps); return;
Hong GraphWindow::WndProc(UINT iMessage, UINT wParam,LONG IParam)
{

90

switch (iMessage)

{
case WM_PAINT:
Paint();
break;
default:
return(DefWindowProc(hWnd,iMessage,wParam,lParam));
b
return TRUE;
b
Y . . . e s e e e
/ Derived Main Window Class

class MainWindow : public Window

{
private:

static char szCaption[29];

HWND hEbBoard, /* board number edit box */
hEbChannel, /* channel number edit box */
hEbGain, /* voltage gain edit box */
hEbCount, /* number of samples edit box */
hEbRate, /* sampling rate edit box */
hEbAlarm,
hEbErrCode, /* exror code output box */
hQuitButton, /* quit application button */
hWriteButton, /* output button*/
hAquireButton,
hGraphWnd; /* child window handle for graph */

public:
MainWindow();
static void Register()
{
WNDCLASS wndclass;
wndclass.style = CS_HREDRAW | CS_VREDRAW:;
wndclass.IpfaWndProc = ::WndProc;

wndclass.cbClsExtra =0;
wndclass.cbWndExtra = sizeof(MainWindow *);
wndclass.hlnstance = Main::hInstance;
wndclass.hIcon = LoadIcon(Main::hInstance, “dagroy”);
wndclass.hCursor = LoadCursor(NULL, IDC_ARROW);
wndclass.hbrBackground = GetStockObject(WHITE_BRUSH);
wndclass.JpszMenuName = NULL,;
wndclass.IpszClassName = "MainWndClass™;

if (! RegisterClass(&wndclass))

exit(FALSE);

91

} void MakeClient(HWND hClientWnd)

hGraphWnd = hClientWnd;
} void Paint();
void Execute DAQ_Op();
void Execute_ AO_VWrite();

long WndProc(UINT iMessage, UINT wParam,LONG IParam);
b

char MainWindow::szCaption[] = "high impedance fault”;
HWND hTemp;
MainWindow::MainWindow()

{
if (1(hWnd = CreateWindow("MainWndClass”,szCaption,
WS_OVERLAPPEDWINDOW,CW_USEDEFAULT,CW_USEDEFAULT,870,550,

NULL,NULL,Main::hInstance,(LPSTR)this)))
exit (FALSE);

if (1(hEbGain = CreateWindow(”’Button”,”intermittant”,WS_CHILD | WS_VISIBLE |
BS_AUTORADIOBUTTON,40,125,125,30,hWnd,PB_INTER,Main::hInstance,NULL)))

exit (FALSE);

if (1(hEbChannel = CreateWindow(”Button”,”continuous”,WS_CHILD | WS_VISIBLE |
BS_AUTORADIOBUTTON,40,90,125,30,hWnd,PB_CONTI,Main::hInstance, NULL)))

exit (FALSE);
CheckRadioButton(hWnd,PB_INTER,PB_CONTI,PB_INTER);

if ({(hEbBoard =CreateWindow(”Button”,”working mode”,WS_CHILD | WS_VISIBLE |
BS_GROUPBOX,30,60,180,100,hWnd,—1,Main::hInstance,NULL)))
exit (FALSE);

if ({(hWriteButton = CreateWindow(”Button”,”alarm”,BS_ DEFPUSHBUTTON | _
WS_CHILDIWS_VISIBLE,30,270,100,30,hWnd,PB_WRITE,Main::hInstance, NULL)))

exit (FALSE);

if ({(hAquireButton = CreateWindow(”Button”,” Acquisition”,BS_DEFPUSHBUTTON |
WS_CHILD I WS_VISIBLE,30,320,100,30,hWnd,PB_AQUIRE,Main::hIns-

tance,NULL)))
exit (FALSE),

if (I(hTemp = CreateWindow(”Button”,”Execute ”,BS_ PUSHBUTTON |
WS_CHILD | WS_VISIBLE,30,370,100,30,hWnd,PB_EXEC,Main::hInstance, NULL)))

exit (FALSE);

if ({(hEbAlarm = CreateWindow(”static”,”off”,SS_CENTER | WS_CHILD | WS_VISIBLE

92

IWS_BORDER, 180,240,30,20,hWnd,~1,Main::hInstance,NULL)))
exit (FALSE);
if (!(hQuitButton = CreateWindow(”Button”,”Quit”,BS_DEFPUSHBUTTON |
WS_CHILD | WS_VISIBLE,30,420,100,30,hWnd,PB_QUIT,Main::hInstance,NULL)))
exit (FALSE);
if ({(hEbCount = CreateWindow(”’scrollbar”’,NULL,WS_CHILD | WS_VISIBLE |
SBS_VERT,250,80,20,360,hWnd,99,Main::hInstance,NULL)))
exit (FALSE);

if ({(hEbRate = CreateWindow("’static”,”0”,SS_CENTERIWS_CHILDIWS_VISIBLE
IWS_BORDER,180,200,30,20,hWnd,~1,Main::hInstance,NULL)))
exit (FALSE);
SetScrollRange(hEbCount,SB_CTL,0,400,FALSE);
SetScrollPos(hEbCount,SB_CTL,0,FALSE);
numSamples = 0; Show(Main::nCmdShow):

Update();

¥

void MainWindow::Paint()

{
HDC hDC; /* handle to the display context */
PAINTSTRUCT ps; /* paint structure for HDC */
HBRUSH hOldBrush,hNewBrush;
HFONT hNewFont,hOldFont;

hDC = BeginPaint(hWnd,&ps);
TextOut(hDC,30,200,”Threshold Level”,15);
TextOut(hDC,30,240,” Alarm Status”,12);
if(aquire_down==0)

{
TextOut(hDC,535,475,”Time (s)”,9);
TextOut(hDC,470,70,”Result vs. Time Plot”,20);
/ITextOut(hDC,535,475,”Time (ms)”,9);
/IextOut(hDC,535,475,”Time (s) ,9);

¥

else

{
TextOut(hDC,535,495,”Time (ms)”,9);
TextOut(hDC,470,70,”Signal vs. Time Plot”,20);

¥

hNewFont = CreateFont(5,0,0,0,FW_BOLD,FALSE,FALSE,FALSE,ANSI_CHARSET,
OUT_DEFAULT_PRECIS,CLIP_DEFAULT_PRECIS,DEFAULT _QUALITY,
VARIABLE _PITCHI|FF_ROMAN,”Tms Rmn™);
hOldFont = SelectObject(hDC,hNewFont);
SetTextAlign(hDC,TA_RIGHT);
if(aquire_down==0)

{

93

TextOut(hDC,299,100, ”* 400”,4);
TextOut(hDC,299,140, ” 350”,4);
TextOut(hDC,299,180, ”” 300”,4);
TextOut(hDC,299,220, ” 250”,4);
TextOut(hDC,299,260, ”* 200”,4);
TextOut(hDC,299,300, ” 150”,4),
TextOut(hDC,299,340, ” 1007,4);
TextOut(hDC,299,380,” 507,4);
TextOut(hDC,299,420,” 07,4);

else

TextOut(hDC,299,100, 2.0 ”,4);
TextOut(hDC,299,140, 1.5”,4);
TextOut(hDC,299,180, 7 1.0”,4);
TextOut(hDC,299,220, 0.5”,4);
TextOut(hDC,299,260, 70 7,4);
TextOut(hDC,299,300, 7-0.5",4);
TextOut(hDC,299,340, 7-1.0",4);
TextOut(hDC,299,380, "-1.5",4);
TextOut(hDC,299,420, 2.0 ”,4);
y
SelectObject(hDC,hOldFont);
DeleteObject(hNewFont); /* shade the graph window */
hNewBrush = CreateSolidBrush(RGB(63,63,63));
hOldBrush = SelectObject(hDC,hNewBrush);
Rectangle(hDC,305,105,830,470);
SelectObject(hDC,hOldBrush);
DeleteObject(hNewBrush);
EndPaint(hWnd,&ps);
return;

void MainWindow::Execute_ DAQ_Op()

{

HCURSOR hNewCur,hOldCur;

int brd=1,
ch=2, // channel number
gain=1, // voltage gain
err,
output,temp,i,j,k,sp,flag,num_sec,offset,ii; // return error code
unsigned long count; // number of samples to capture
double rate,sum,suml,sum?2; // sampling rate
char sz[MAXSTRINGLENGTH]; // temporary string variable
HANDLE hSampleBuffer; // handle to sample buffer
HANDLE hWorkBuffer;

94

HANDLE hMesuBuffer;

double rmsp1{4],rmsp2[4],s1[16];

double delt=1.0/(60.0%32);

int huge *ipSampleBuffer;

int huge *ipResultBuffer; // huge pointer to sample buffer

double huge *ipMesuBuffer;

float huge *ipVoltBuffer; // huge pointer to voltage buffer
float huge *ipWorkBuffer;

BOOL bSuccessful; /I whether DAQ functions were successful

hNewCur = LoadCursor(NULL,IDC_WAIT);
hOIdCur = SetCursor(hNewCur);#ifdef
GetWindow Text(hEbBoard,sz, MAXSTRINGLENGTH); // read input
brd = atoi(sz);
GetWindowText(hEbChannel,sz, MAXSTRINGLENGTH);
ch = atoi(sz);
GetWindowText(hEbGain,sz, MAXSTRINGLENGTH);
gain = atoi(sz);
GetWindowText(hEbCount,sz, MAXSTRINGLENGTH);
count = (unsigned long)atol(sz);
GetWindowText(hEbRate,sz, MAXSTRINGLENGTH);
#endif rate = atof(sz);
count==15000; // was 64;
rate = 1920.0;
GlobalFree(hVoltBuffer); // free previous block of memory
hVoltBuffer = 0,

// Allocate and lock two buffers of memory to hold sample values,

bSuccessful = FALSE;
hSampleBuffer = (HANDLE)GlobalAlloc(GMEM_MOVEABLE,(DWORD)sizeof(int)*count);
hMesuBuffer =(HANDLE)GlobalAlloc(GMEM_MOVEABLE,(DWORD)sizeof(double)*count);
if (hSampleBuffer && hMesuBuffer)
{
ipSampleBuffer = (int huge *)GlobalLock(hSampleBuffer);
ipMesuBuffer = (double huge *)GlobalLock(hMesuBuffer);
if (ipSampleBuffer && ipMesuBuffer)
{ /* call NI-DAQ function */
err = DAQ_Op(brd,ch,gain,ipSampleBuffer,count,rate);
if (terr)
{
err = DAQ_VScale(brd,ch,gain, 1,0,count,ipSampleBuffer,ipMesuBuffer);
if (lerr)
bSuccessful = TRUE;

H
GlobalUnlock(hMesuBuffer); // unlock voltage sample buffer

95

GlobalUnlock(hSampleBuffer); // unlock binary sample buffer

¥
GlobalFree(hSampleBuffer); /I deallocate binary sample buffer
hSampleBuffer=0; hVoltBuffer = (HANDLE)GIlobalAlloc(GMEM_MOVE-

ABLE,(DWORD)sizeof(float)*count);
hResultBuffer = (HANDLE)GlobalAlloc(GMEM_MOVEABLE,(DWORD)sizeof(int)#118);
hWorkBuffer =(HANDLE)GlobalAlloc(GMEM_MOVEABLE,(DWORD)sizeof(float)*256);
ipMesuBuffer = (double huge *)GlobalLock(hMesuBuffer);
ipVoltBuffer = (float huge *)GlobalLock(hVoltBuffer);
for(i=0; i<count; i++)
{
ipVoltBuffer[i]=(float)ipMesuBuffer[il;
b
GlobalUnlock(hVoltBuffer);
GlobalFree(hMesuBuffer);
output=0;
if (bSuccessful&&(aquire_down==0))
{
numSamples = count; /I DAQ_Op successful
//start of algorithms
ipVoltBuffer = (float huge *)GlobalLock(hVoltBuffer);
ipResultBuffer=(int huge *)GlobalLock(hResultBuffer);

i=0;
while(ip VoltBuffer[i] *ip VoltBuffer[i+1]>0)
{

i+t
¥
sp=i; if(ip VoltBuffer[sp]>0.0)

flag=1;

else flag=0; ipWorkBuffer = (float huge *)GlobalLock(hWorkBuffer);

num_sec=(count—sp)/128;
offset=0; //zero crossing point offset
int countb=0;
int countc=0;
int pt_sinwv=0;
int slp_inc=0;
int pt_slpwv=0;
for(ii=0; ii<num_sec—1; ii++)
{
if(ip VoltBuffer[sp+offset-+ii*32*4]*ip VoltBuffer[sp+offset+1+ii*32*4]<0)
offset+=1;
for(i=0; i<32%4; i++)
{
ipWorkBuffer[i]=ip VoltBuffer[i+sp+offset+ii*32*

int pt_fk=0;

96

int pt_sym=0;

int pt_comput=0;

int pt_zero=0;

float Im1_0=0.0;

float Im1_n=0.0;

/float Im2_0=0.0;

//float Im2_n=0.0;

float min1=0.0;

float min2=0.0;

int minl_n,min2_n;

Hor (j=0;j<4;j++)

4
int zeros=0,
minl=fabs(ipWorkBuffer[0]);
for(i=1; i<15; i++)

{
Im|_o=ipWorkBuffer{i];
Im 1_n=fabs(Iml_o);
if((minl-Im1_n)>0.0001)
{
minl=Iml_n;
minl_n=i;
¥

b

min2=fabs(ipWorkBuffer[19]);
for (i=19;i<30;i++)
{
Im 1_o=ipWorkBuffer[i];
Im!_n=fabs(Iml_o);
if((min2-Im1_n)>0.0001)
{
min2=Im1_n;
min2_n=i;
b
b
if((min2_n<=28)&&(min2_n>=24)
&&(minl_n>=8)&&(minl_n<=12))
/& &(minl1<0.015)&&(min2<0.015))
{
pt_comput=1;
countb++;
¥

else

{

countc++;

97

if(countb>25)

{
pt_comput=1;
countc=0;

b

if(countc>25)

{
pt_comput=0;
countb=0;

¥

if ((pt_comput>0)&&(output>5))
output—=>5;
for(j=0; j<4; j++)

{
sum 1=0.0;
sum2=0.0;
for(i=0; i<16; i++)
{
sum l+=ipWorkBuffer[i+j*32]*ipWorkBuffer[i+j*32];
sum2+=ipWorkBuffer[i+16+j*32]*ipWork Buffer[i+16+j+32];
b
rmsp 1 {j]=sqrt(fabs(sum 1))/16.0;
rmsp2[jl=sqrt(fabs(sum2))/16.0;
b
for(i=0; i<4; i++)
{
if(rmsp1[i]<0.001) {pt_zero=1;}
else
pt_zero=0;
b
/I Check flickering of the rms value at either positive or negative waveform side

float rms_min=0.0;
rms_min=rmsp1[0];
for(i=1; i<4; i++)

{
if(rmsp1{i]<rms_min)
{
rms_min=rmsp[i];
¥
b

if (/%(((tmsp1[0}-rmsp1[1])*(rmsp1[2]-rmsp1[1]))>0.0)&&*/
(fabs(rmsp1[1]-rmsp1[0])>0.1*rms_min)

98

It (fabs(rmsp1[2]-rmsp1[1])>0.1*rms_min)
I (fabs(rmsp1[3]-rmsp1[2])>0. | *rms_min))
I *((msp2[0]—rmsp2[1])*(tmsp2[2]-rmsp2[11))>0.0)& & */
/I (fabs(rmsp2[0]-rmsp2[1])>0.1*rmsp2[1])
Il &&(fabs(rmsp2[2]-rmsp2[1])>0. [*rmsp2[1})))
pt_fk=2;

// Check for Asymmetry
[k e e e e e e
if((fabs(fabs(rmsp1[0])-fabs(rmsp2[0]))>0.1#*rmsp1[0])
&& (fabs(fabs(rmsp1[11)—fabs(rmsp2[1]))>0.1*rmspl1[0]))
pt_sym=1;

22 ofa ata a¥s %o ots ats sta ate ata als ats als als st ate ale afe afs afa ala ale afu als ale ala abs als ale
1o sfe sfesie sfestesiesteste e sfesfeste sfeste st sfesle s e e sfe sl stesfe st atentenks

for(j=0;j<8; j++)
{
int counter=0;
for(i=0; i<15; i++)
{
s1[i]=ipWorkBuffer[i-+j* 16+ 1]-ipWorkBuffer[i+j* 16];

if (((flag==1)&&(fabs(s1[i])<0.28*rmsp1[1])&&(s1[i]*s1[i-1]>0))
I((flag==0)&&(fabs(s1[i])<0.28*rmsp2[1)& &s 1 [i))& & (s 1[i] *s I [i—1]>

0))

counter+=1;
by
if ((counter>=3)) // 3 could be changed
pt_slp=1;//output—=3;
if(flag==1) flag=0;
if(flag==0) flag=1;
b

slp_inc++;

//Check for quater cycle symmetry, useful for fault on wet soil.
int gpt_sym=0;
int count_qpt=0;

for(j=0;j<8;j++)

{
sum=0.0;
for(i=0;i<7;i++)

{

sum-+=fabs(fabs(ipWorkBuffer[i+j*16]-ipWorkBufer[15-i+j*16])

—fabs(ipWorkBuffer[i+1+j*16]-ipWokBfer[15—i-1+j%16]));

99

by

if((sum>2*rmsp2[11)&&(pt_comput==0))
count_qpt+=1;

else if((sum>rmsp2[1)& &(pt_comput==0))
count_gpt=count_gqpt;

else if ((sum<rmsp2[1])&&(output>5)&&(pt_comput==0))
count_qpt=count_qpt;

else
count_qpt=0,

b
if(count_gpt>4)
qpt_sym=1;
else
gpt_sym=0;
b
if(pt_sym==0& &pt_fk==0&&(slp_inc<20))
{
gpt_sym=0;
pt_sinwv++;
¥

if((pt_slp==1)&&(slp_inc<20))
pt_slpwv-++;// Set the detection threshold and Output Detection
temp=pt_slp+(int)(gpt_sym)+pt_sym-+pt_fk;
if((pt_sinwv>15)&&(pt_slpwv<3)& &(pt_fk==0)) temp=0;
if(pt_zero==1) temp=0;
if(temp==0)
{
if(output>0)
output—=0; // was 1;

output+=temp;
¥
if (output<0)
output=0;
ipResultBuffer[ii}=output;
¥
for (ii=0;ii<num_sec; ii++)
{
ipVoltBuffer[ii]=—ipResultBuffer[ii];
b
GlobalUnlock(hResultBuffer);
GlobalUnlock(h VoltBuffer);
InvalidateRect(hGraphWnd,NULL,TRUE); // repaint graph window

100

else if (bSuccessful&&(aquire_down==1))

{
InvalidateRect(hGraphWnd, NULL,TRUE);

else

numSamples = 0; /I DAQ_Op unsuccessful
GlobalFree(hVoltBuffer); // deallocate voltage sample buffer
hVoltBuffer = 0;
h sprintf(sz,”%d” err); // display output
SetWindowText(hEbErrCode,sz);#ifdef
hVoltBuffer=(HANDLE)Global Alloc(GMEM_MOVEABLE,(DWORD)szeof(float)* 118);
ipVoltBuffer = (float huge *)GlobalL.ock(hVoitBuffer);
num_sec=117;
ipVoltBuffer[0]=0;
for (ii=1;ii<num_sec; ii++)
{
ip VoltBuffer[ii]=(float)-ii;
b
GlobalUnlock(hVoltBuffer); // deallocate voltage sample buffer
InvalidateRect(hGraphWnd,NULL,TRUE); // repaint graph window

// Change the cursor back to the previous value

SetCursor(hOldCur);
if(currentmode==1)
{

SendMessage(hTemp,BM_SETSTATE,1,0L);
SendMessage(hTemp,BM_SETSTATE,0,0L);

A

b
Yvoid MainWindow::Execute_ AQ_VWrite()
"HCURSOR hNewClur, /f new (hourglass) cursor
hOldCur; / old (arrow) cursor
int brd=l, // board number
' ch=1, // channel number
err; / return error code
double volt; // voltage

char sz[MAXSTRINGLENGTH]; // temporary string variable
if (alarm_on==0)

{
volt=5.0;
alarm_on=1;
¥
else

101

}

volt=0.0;
alarm_on=0;

¥/ change the cursor to the hourglass
hNewCur = LoadCursor(NULL,IDC_WAIT);
hOIdCur = SetCursor(hNewCur); // call DLL function
err = AOQ_VWrite(brd,ch,volt);

sprintf(sz,”%d” err);
SetCursor(hOldCur);

// MainWindow::WndProc(UINT, UINT,LONG)
// — specifies actions based on incoming messages

3

long MainWindow:: WndProc(UINT iMessage, UINT wParam,LONG IParam)

{

char szbuffer[10];
short i;
switch (iMessage)

{

case WM_CLOSE: /I executed upon closing of application
GlobalFree(hVoltBuffer); // free any allocated buffer
hVoltBuffer = 0;
return(DefWindowProc(hWnd,iMessage,wParam,|Param));
case WM_COMMAND:

switch(wParam)

{
case PB_EXEC: // call DAQ_Op() DLL function call
RECT rect;
{

rect.left=300; rect.top=10;
rect.right=820; rect.bottom=99;
s
InvalidateRect((hWnd),&rect,FALSE); // repaint graph window
{
rect.left=269; rect.top=99;
rect.right=301; rect.bottom=460;
¥
InvalidateRect((hWnd),&rect, FALSE); // repaint graph window
if(currentmode==0)
{
Execute_DAQ_Op();

else

GetAsyncKeyState(27);
while(!}(GetAsyncKeyState(27)& 1))

102

Execute_DAQ_Op();
rect.left=300; rect.top=99;
rect.right=820; rect.bottom=431;
InvalidateRect((hWnd),&rect, FALSE);
UpdateWindow(hWnd);

b
break;
case PB_AQUIRE:
{
aquire_down=1,
Execute_DAQ_Op();

rect.left=300; rect.top=10;
rect.right=820; rect.bottom=99;
¥
InvalidateRect((hWnd),&rect,FALSE); // repaint graph window
{
rect.left=269; rect.top=99;
rect.right=301; rect.bottom=440;
¥
InvalidateRect((hWnd),&rect, FALSE); // repaint graph window
break;
case PB_WRITE:
Execute AO_VWrite();
{
rect.left=100; rect.top=230;
rect.right=250; rect.bottom=290;
¥
InvalidateRect((hWnd),&rect, FALSE); // repaint graph window
break; case PB_QUIT: / quit the application
PostQuitMessage(0);
break;
case PB_INTER:
currentmode=0;
break;
case PB_CONTI:
currentmode=];
break;
defanlt:
return(DefWindowProc(hWnd,iMessage,wParam,IParam));
h
break;
case WM_CREATE:

103

break;
case WM_VSCROLL:
switch(wParam)
{
case SB_LINEDOWN:
if (color<400)
color++;
else
color=400;
break;
case SB_LINEUP:
if(color>0)
color—;
else
color=0;
break;
case SB_THUMBPOSITION:
case SB_THUMBTRACK:
color=LOWORD(IParam);
break;
default:
break;
H
SetScrollPos(hEbCount,SB_CTL,color, TRUE);
SetWindowText(hEbRate,itoa(400—color,szbuffer, 10));
RECT rect;
/if(direction==0)
{
rect.left=300; rect.top=99;//+(int)(4.0*(float)color/5.0);
rect.right=820; rect.bottom=43 1;//+(int)(4.0*(float)color/5.0);

by
InvalidateRect((hWnd),&rect,FALSE); // repaint graph window
break;
case WM_PAINT:
Paint();
if(alarm_on==1)
{
AQO_VWrite(1,1,5.0);
wsprintf((LPSTR)szbuffer,” on”),
b
else
wsprintf((LPSTR)szbuffer,”off);
SetWindowText(hEbAlarm,(LPSTR)szbuffer);
break;
case WM_DESTROY:
PostQuitMessage(0);

104

break;
default:
return(DefWindowProc(hWnd,iMessage,wParam,|Param));

¥
return TRUE;

b

/!
/4 WINDOWS PROCEDURES

#if defined(_ SMALL_) ll defined (_ MEDIUM_)
// data pointers are near pointers
inline Window *GetPointer (HWND hWnd)

{
return (Window *)GetWindow Word(hWnd, 0);
¥
inline void SetPointer(HWND hWnd, Window *pWindow)
{
SetWindow Word(hWnd,0,(WORD)pWindow);
b

#elif defined(__LARGE__) ll defined(_ COMPACT_)
/I else pointers are far
inline Window *GetPointer(HWND hWnd)

{
return (Window *)GetWindowLong(hWnd, 0);
'
inline void SetPointert HWND hWnd, Window *pWindow)
{
SetWindowLong(hWnd,0,(LONG)pWindow);
b
#else

#error Choose another memory model!
#endif// WndProc{HWND, UINT, UINT,LONG)

/I — is the callback function for Windows. First to trap incoming
/I Windows messages to application. Delegates most messages to
/" Window class WndProc defined earlier

long FAR PASCAL _export WndProc(HWND hWnd, UINT iMessage, UINT wParam,LONG IParam)
{
Window *pWindow = GetPointer(hWnd);
if (pWindow == Q)
{
if (iMessage == WM_CREATE)
{

105

LPCREATESTRUCT lpcs; Ipcs = (LPCREATESTRUCT)IParam;
pWindow = (Window *)Ipcs—>IpCreateParams;
SetPointer(hWnd,pWindow);
return(pWindow->WndProc(iMessage,wParam,!Param));

¥
else
return(DefWindowProc(hWnd,iMessage,wParam,|Param));
¥
else
return(pWindow—>WndProc(iMessage,wParam,|Param));
b
Jfsewsse jesfesiestesfefesiinsfesfesienkode e ek el e el e

// WinMain(HANDLE,HANDLE,LPSTR,int)
. // — Instantiates the application and initiates the message loop
Y/, : el

int PASCAL WinMain(HANDLE hlnstance, HANDLE hPrevInstance,LPSTR IpszCmdLine,
int nCmdShow)
{
Main::hlnstance = hinstance;
Main::hPrevInstance = hPrevInstance;
Main::nCmdShow = nCmdShow; if ({Main::hPrevInstance)

{

MainWindow::Register();

GraphWindow::Register();

} MainWindow MainWnd; // instantiate main window
GraphWindow GraphWnd(MainWnd.GetHandle()); // instantiate child window MainWnd.MakeCli-
ent(GraphWnd.GetHandle()); // make graph window a client return Main::MessageLoop();
b

106

#include <stdio.h>
#include <math.h>
#include <stdlib.h>
#include <alloc.h>
#include <conio.h>
#include <graphics.h>
#include <dos.h>

struct point

{

h>

main()

int x;

inty;

FILE *fp;

float huge *I;

float *Iw;

float ftr,sum,sum1,sum?2.t,p;
float rmsp1[4],msp2{4],s1[16}];

float Iml1_o,Jml_n,Jm2_o,lm2_n,delt;

107

int threshold,pt_fk,qpt_sym,pt_sym,pt_slp,pt_comput;
int temp,output,first_time,count,num_sec,sp,k.kk,i,ii,j;
int *ot;

int offset,xmax, ymax;

int gmode, gdriver;

int flag,size;

point st.ed;

/Mnitializition of values

pt_fk=0;

pt_sym=0;

pt_quat=0;

size=15000;

first_time=0;
delt=0.000521;

k=0;

// Now start reading from data file in which the first column
// is time , second column is high impedance fault current

output=0;
I=(float huge *) farcalloc(size,sizeof(float));
ot=(int *) calloc(128,sizeof(int));

// Here is finding zero point , from which we start to do S.SHOT

fp=fopen(’himp.dat”,”r”);
i=0;
t=1.0;
while (t<0)
{
fscanf(fp,” %f %1, &t, &p);
i++;
¥
sp=i; // sp represents starting point
fclose(fp);
fp=fopen("himp.dat”,”r”);
for(i=0; i<size; i++)
{
fscanf(fp,” %f %f’, &t, &I[i]);
h

if(I[sp]>0.0) flag=1;
else flag=0;

// should feed the next 32x3 samples into an working array

Iw = (float *) calloc(128, sizeof(float));
num_sec=(size—sp)/128;

108

//start graphics

printf("please input threshold\n”);
scanf(”%d”,&threshold); // can be changed

// now the grahpics portion

gdriver = VGA;
gmode=VGAHI;

/* initialize graphics and local variables */
initgraph(&gdriver, &gmode, “c:\borlandc\bgi”);
/* read result of initialization */

setcolor(getmaxcolor());
xmax = getmaxx();
ymax = getmaxy();

//draw a frame

setcolor(LIGHTGREEN);
setlinestyle(0,1,3);

line(1,1,xmax—1,1);
line(1,1,1,ymax—1);
line(xmax—1,1,xmax—1,ymax—1);
line(1,ymax—1,xmax—1,ymax—1);

// draw coordinate

setcolor(LIGHTMAGENTA);
line(3, (ymax—>5), xmax, (ymax—5));
line(10,1,10,ymax);

/ldraw threshold

ftr=0.5;

setcolor(LIGHTRED);
line((xmax—5),~threshold*ftr+(ymax—17),10,~threshold*ftr+(ymax—17));
setcolor{ WHITE);

moveto(20,~threshold*3/5+(ymax—2)-30);

outtext("Fault Trip Level”);

//draw the change in the output
setlinestyle(3,1,3);
setcolor(YELLOW);

st.x=10;
st.y=ymax-17;

//output must be replaced by ot[ii] if we have more points later
/* move the C.P. to the center of the screen */

109

offset=0;
for(ii=0; ii<num_sec—1; ii++)

{

if(I[sp+offset+ii*32%4]

offset+=1,

*I[sp+offset++ii*32%4]<0)

for(i=0; i<32*4; i++)

{

}

Iw[i]=I[i+sp+offset+ii*32+#4];

[s s e sieste sl she s she sk s s s s s e s s s e sfesfesfeshesiesiesfeste e st sfeshesfesfe sk sk e koo sk ok sk ok kokskok

Check for flickering of the rms value at either positive or negative

// waveform side

pt_fk=0;
pt_sym=0;
pt_quat=0;

for(j=0; j<4; j++)

{

}

sum 1=0.0;
sum?2=0.0;
for(i=0; i<16; i++)
{
sum [+=Iw[i+j*32]*Iw[i+j*32];
sum2+=Iw[i+16+j*32]*Iw[i+16+j*32];
)

rmsp1[jl=sqrt(sum1)/16.0;
rmsp2[jl=sqrt(sum2)/16.0;

if (((((mspl[0]-rmspl[1])*(rmsp1[2]-rmsp1{1]))>0.0)

&&(fabs(rmsp1[0]-rmsp1[1])>0.1*rmspl[1])
&&(fabs(rmsp1{2]-rmsp1[1])}>0.1*rmsp1[1]))

l((((rmsp2[0]—rmsp2[1])*(rmsp2[2]-rmsp2[1]))>0.0)

&&(fabs(rmsp2[0]-rmsp2[1])>0.1*rmsp2[1])
&&(fabs(rmsp2[2]-rmsp2[1])>0.1 *rmsp2[1])))

pt_tk=1;

110

*

%

if((fabs(fabs(rmsp 1 [0])—-fabs(rmsp2[0]))>0. 1 *rmsp1[0]) & &
(fabs(fabs(rmsp1[1])—fabs(rmsp2[1]))>0.1*rmsp1[0]))

pt_sym=[;
for(j=0;j<8; j++)
{
count=0;
for(i=0; i<15; i++)
{

s1[i]=Iw[i+j* 16+1]-Iwfi+j*16];
if (((flag==1)&&(fabs(s1[i])<0.25*rmsp1[1])&&(s 1[i]*s 1[i-1]>0))
i ((flag==0)& & (fabs(s1[i])<0.25*rmisp2[1) &&s1[i])
&&(s1[i]*s1[i-1]>0)) '

count+=1;

b
// printf("™\n %d”,count);

if ((count>=3)&&(output>3)) // 3 could be changed
output—=3;

if(flag==1) flag=0;
if(flag==0) flag=1,
break;

¥

Im1_0=0.0;
Im1_n=0.0;
Im2_0=0.0;
Im2_n=0.0;

for (j=0;j<8;j++)
{

Iml_o=Iml_n;
Im2_o=Im2_n;
for (i=0;i<15;i++)
{ if(fabs(Iw[i+1+j* 16])>=fabs(Iw[i+j*16]))
{

k=i+1+j*16;
b

¥
/1 printf(’™n %d %f\n” k Iw[k]);

111

if (((Aw[k]-Iw[k—1])/delt)>100.0)
&&((Iw[k]-Iw[k+1])y/delt)>100.0))

Im1_n=Iwlk];
{1 printf("™\n %d %d %f %f\n” k,pt_comput,Iw[k],Im1_n);

for (i=0;i<14;i++)

{ if((fabs(Iw[i+1+j*16])>=fabs(Iw[i+j* 16]))
&&((Iw[i+1+j*16])!=Im1_n)
& &((Iwli+1+j*16])!1=Iw[k-1])
& &((Iwi+1+j* 16])1=Iw[k-2])
&&((Tw[i+1+j*16])I=Iw[k+1])
& &((Iw[i+1+j* 16])1=Iw[k+2]))

{

kk=i+1+j*16;
1 printfCn %d %t\n” k,Iw[k]);
b

y

if (((Awlkk]-Iw[kk—17)/delt)>100.0)
&&(((Iw[kk]-Iw[kk+1])/delt)>100.0))
{
pt_comput+=1;

}

Im?2_n=Iw[kk];
/fprintf(’™n %d %d %f %f\n” kk,pt_comput,Iw[kk],Im2_n);

if((Im1_o==0.0)li(Im2_0==0.0))
continue;

if((fabs(fabs(Im1_n)-fabs(Im1_o))<=0.1*fabs(Im1_n))
&&(fabs(fabs(Im2_n)—fabs(Im2_o0))<=0.1*fabs(Im2_n)))

{

pt_comput+=1;

// printf("\n %d %f %f\n”,pt_comput, Im1_o,Jm1_n);
¥

if ((pt_comput>=0)&&(output>5))
output—=>5;

b

/ printf("™n %d\n”,pt_comput);
I printf(™n %g %g %g %g\”, kk,&Iw[kk],Jm1_n,Jm2_n);

112

@
o
(2]
w
&
]
=2
=
&
-
o
=~
(o]
-
(=)
e
o
&
72]
-«
E
o
-,
-
=
s
w
&
=
(=
=
H
&
=
=3
=
=
=
[¢°]
-
|72]
=]
e

qpt_sym=0;
for(j=0;j<8;j++)
{
sum=0.0;
for(i=0;i<7;i++)
{
sum+=fabs(fabs(Iw[i+j*16]-Iw[15-i+j*16])
" —fabs(Iw[i
+1+j*16]-Iw[15-i-1+j*16])); '
/! printf("™n
%g %g \n”,sum,rmsp2[1]);
b

if((sum>2*rmsp2[1])&&(count<3)&&(pt_comput<0))
output+=5;

else if ((sum<rmsp2[1])&&(count<3)& &(output>5))
output—=1;

else if((sum>rmsp2[1])&&(count<3)& & (pt_comput<=0))
output+=1.5;

else
output+=0;

¥
// Set the detection threshold and Output Filtering

temp=pt_slp+(int)(0.5*(float)qpt_sym)+pt_sym-+pt_fk;
//printf(”%d\n”, temp);
if(temp==0)
{

if(output>0)

output—=1;

b2
else

output+=temp;

ot[ii]=output;

ed.x=10+5%ii;
ed.y=ymax—17-ot[ii]*ftr;
line(st.x,st.y,ed.x,ed.y);
delay(200);

st.x=ed.x

113

st.y=ed.y;
if((output>threshold)& & (first_time==0))

{
sound(400);
delay(4000);
nosound();
first_time=1;
¥
¥
free(Iw);
farfree(I);

/I get a final output result before taking action —

setcolor{ WHITE);
settextstyle(1,0,2);
moveto(150,43);
if (output>=threshold)
{
outtext(”There Is A High Impedance Fault”);
b
else
outtext(”There Is No High Impedance Fault);
/* clean up */
getch();
closegraph();
return 0;

114

#include <stdio.h>
#include <stdlib.h>
#include <math.h>
#include <alloc.h>

int main()

{

int i,j,size,num_row,zero_time;
float t,interval,

float b,a0,al;

float huge *I;

FILE *fp, *fpl;

/fprintf(”The name of inputfile from lotus 123 \n™);
/Igets(fname);

/% printf("Input the number of rows \n”);

/1 to accept a 5 cols and 3000 rows data file form Lotus 1-2-3 print file

scanf(”%d”,&num_row);

printf(’\tInput number of cols \n”);
scanf(”%d”,&num_col);

printf(C\tInput the interval between two samples\n™);
scanf(”%f”,&interval); #/

num_row=3000; // needs to be changed to 3000
size=15000;

interval=0.000521;

fp=fopen("himp.prn”,”1”);

I=(float huge *) farcalloc(size, sizeof(float));

i=0;

fscanf(fp,” %f %t %t %f %f\n”,8a0,&b,&b,&b,&b);
al=a0,

while(al1%a0>0.0)

{
fscanf(fp,” %f %f %f %f %f\n”,&al,&b,&b,&b,&b);

115

i++;
¥
Zero_times=ji—;
fclose(fp);

27 9399

fp=fopen("himp.prn”,”r”);
fpl=fopen("himp.dat”,”w");

t=0.0-zero_time*interval;
for (i=0; i<num_row; i++)

{

fscanf(fp,” %f %f %t %f %f\n”,&I1[i],&I[i+3000],&I[i+6000],
&I[i+9000],&I[i+12000]);

)
fclose(fp);

for(j=0;j<size;j++)
{

t+=interval,
fprintf(fpl,”%12.8f % 12.8f\n” t,I{j]);
H

fclose(fpl);
farfree(I);
return O;

116

