A Proxy-Based Communication Scheme for
Mobile Agents

by

Xiao Yan Zhou

A Thesis
Submitted to the Faculty of Graduate Studies
in Partial Fulfillment of the Requirements

for the Degree

Master of Science

Department of Computer Science
University of Manitoba
Winnipeg, Manitoba, Canada

Copyright (©) 2004 by Xiao Yan Zhou

THE UNIVERSITY OF MANITOBA
FACULTY OF GRADUATE STUDIES

Fhkkk

COPYRIGHT PERMISSION

A Proxy-Based Communication Scheme for
Mobile Agents

BY

Xiao Yan Zhou

A Thesis/Practicum submitted to the Faculty of Graduate Studies of The University of
Manitoba in partial fulfillment of the requirement of the degree
of

MASTER OF SCIENCE

Xiao Yan Zhou © 2004

Permission has been granted to the Library of the University of Manitoba to lend or sell copies of
this thesis/practicum, to the National Library of Canada to microfilm this thesis and to lend or sell
copies of the film, and to University Microfilms Inc. to publish an abstract of this thesis/practicam.

This reproduction or copy of this thesis has been made available by authority of the copyright
owner solely for the purpose of private study and research, and may only be reproduced and copied
as permitted by copyright laws or with express written authorization from the copyright owner.

Abstract

Although the mobile agent paradigm provides great potential advantages over tra-
ditional approaches in distributed computing applications, there are still several
issues to be addressed before the technology can be widely accepted. The perfor-
mance of the communication protocol is one of the critical issues in mobile agent
systems. A practical communication protocol for mobile agents must satisfy three
basic requirements: location transparency, reliability and efficiency. Although
many communication protocols have been proposed for mobile agent system and
most of them are location transparent, these protocols usually compromise some
aspects of reliability and efficiency.

The goal of this research is to develop a communication scheme for efficient
location tracking of agents and reliable message delivery in mobile agent systems.
In this thesis, a proxy-based communication protocol is developed to solve the
reliability and efficiency problems in current schemes. The purpose of the proposed
scheme is to provide reliable message delivery with minimum cost. The basic idea
of the scheme is that a proxy agent acts as the message service center for all the
other agents in the domain. The proxy agent can obtain location information
from incoming messages and share this information among a group of agents.
A simulation model is developed to estimate the performance of the proposed
protocol. The result shows that the proxy-based protocol not only can guarantee

reliable message delivery but also can decrease communication cost in most cases.

i

Acknowledgements

This thesis would have not been completed without the guidance and supports of
my two advisors: Dr. Sylvanus Ehikioya and Dr. Neil Arnason. I would like to
thank Dr. Ehikioya for motivating the initial ideas for this thesis and guiding me
through the whole research process. I would like to thank Dr. Arnason for his

financial assistance and his support on the simulation design.

I would also like to thank Dr. Peter Graham and Dr. Michel Toulouse for pro-

viding useful comments of the initial thesis proposal.

Finally, a special thanks to my mother and my husband for their constant support

and encouragement throughout the years.

iii

Contents

1 Introduction 1
1.1 Motivation and Problem Statement 2
1.2 Organization 4

2 Background 6
2.1 Mobile Agents and Agent Systems 6
2.2 Design Space 9

2.2.1 Location Transparency 9
222 EBfficiency, 10
2.2.3 Reliability 10
2.24 Scalability 11
225 Security 11
226 Asynchrony 12
2.3 Related Work 13
231 Home-Server. 13
232 EBEmail ... 15
2.3.3 Forwarding-Pointer 16
234 Mailbox 18
23,5 Broadcast 20
2.3.6 Blackboard 21

v

2.4 Design Methodologies

Proxy-based Protocol

3.1 System Architecture
3.2 System Operations
3.2.1 Agent Creation and Dispatch
3.2.2 Agent Registration and Deregistration
3.2.3 Agent Termination
3.24 Agent Migration
3.2.5 Message Delivery L.
3.26 Message
3.2.7 Information Table.
3.3 The Limited-Forwarding Scheme
3.4 Protocol Reliability,

Simulation Model

4.1 Introduction
4.2 The SSJ Framework
4.3 Simulation Model
4.3.1 The Performance Metrics.
4.3.2 The Control Parameters
4.3.3 Conceptual Model
4.3.4 Initialization of the Simulation
4.3.5 Generationof Events
4.4 Verification and Validation
4.5 Implementation

Data Analysis

5.1 Basic Proxy-Based Protocol

25
27
29
29
32
35
37
39
41
43
45
48

51
51
33
54
o4
%)
57
59
62
64
67

71

5.1.1 Experimental Design 71

5.1.2 Statistical Analysis 73

5.1.3 Sensitivity Analysis 75

5.2 The Limited-Forwarding Algorithm 81
5.2.1 Experimental Design 81

5.2.2 Simulation Results, . 82

5.2.3 Summary e 90

6 Conclusion 91
6.1 Summary and Contributions 91
6.2 Future Work L 92
References ‘ 95

vi

List of Tables

3.1
3.2
3.3
3.4
3.5
3.6

4.1
4.2

5.1
5.2
5.3
5.4

Message Description 42
Relationship between Agent and Message Type 43
Relationships between Lookup Table and Messages 44
Relationships between Child Agent Information Table and Messages 44
Relationships between Local Agent Table and Messages 44
Relationships between Remote Agent Table and Messages 45
Mean Message Delivery Cost for Simulations with Different Seeds . 66

Total Communication Cost for Simulations with Different Seeds . . 66
Distribution for Factors. 72
Factorsand Levels 72
Analysis of Variance (ANOVA) Results for Dy 76
Analysis of Variance (ANOVA) Results for Dy 76

vil

List of Figures

2.1 Home-Server Model 14
22 EmailModel 16
2.3 Forwarding-Pointer Model 17
2.4 Mailbox-Based Model 19
2.5 Broadcast Model 21
2.6 Blackboard Model 22
3.1 System Overview 27
3.2 Detailed System Model, 28
3.3 Lookup Table of the Home Server 30
3.4 Child Information Table of the Master Agent 30
3.5 Activity Diagram for Agent Creation and Dispatch 31
3.6 Activity Diagram for Agent Registration 32
3.7 Local Agent Table of the Proxy Agent 33
3.8 Activity Diagram for Agent Deregisteration 34
3.9 Remote Agent Table of the Proxy Agent 34
3.10 Agent Registration Algorithm 35
3.11 Activity Diagram for Agent Termination 36
3.12 Activity Diagram for Agent Migration 38
3.13 Activity Diagram for Message Delivery (from the same domain) . . 39

3.14 Activity Diagram for Message Delivery (from outside the domain) . 40

viii

3.15 Recalculation Algorithm

3.16 Activity Diagram for Message Delivery (from outside the domain) .

4.1 Class Diagram for Simulation Model
4.2 Simulation Control Flow
4.3 Algorithm for System Deployment
4.4 Algorithm for Message Delivery Event
4.5 Algorithm for Agent Migration Event
4.6 Trace FileSample
4.7 Simulation Input Window
4.8 Simulation Output Window
4.9 Simulation Input Quantile File.
410 Output File

5.1 The Difference of Average Delivery Time of Communication Mes-
sages between Two Protocols
5.2 The Difference of Total Cost between Two Protocols
5.3 Cost Difference between Two Protocols versus Number of Domains.
PSTAY =0.05
5.4 Cost Difference between Two Protocols versus Number of Domains.
PSTAY =095
5.5 Cost Difference between Two Protocols versus Forwarding Factor.
NUMDMN = High, INTMIG = Low, PSTAY = High
5.6 Cost Difference between Two Protocols versus Forwarding Factor.
NUMDMN = Low, INTMIG = Low, PSTAY = HIGH
5.7 Cost Difference between Two Protocols. NUMDMN = High, INT-
MIG = Low, PSTAY =Low

X

5.8 Cost Difference between Two Protocols. NUMDMN = Low, INT-

MIG = Low, PSTAY =Low 85
0.9 Cost Difference between Two Protocols. NUMDMN = High, INT-

MIG = High, PSTAY =High 86
9.10 Cost Difference between Two Protocols. NUMDMN = Low, INT-

MIG = High, PSTAY =High 87
5.11 Cost Difference between Two Protocols. NUMDMN = High, INT-

MIG = High, PSTAY =Low 88
5.12 Cost Difference between Two Protocols. NUMDMN = Low, INT-

MIG = High, PSTAY =TLow 89

Chapter 1

Introduction

The increase in size and performance of computer networks has led to the rise of
the decentralized architecture. As a result, the concept of distributed computing
has become increasingly important in the last decade. Although current commu-
nication hardware and the underlying protocols, such as OSI and TCP/IP, enable
some degree of distributed computing on the network, the performance of these
protocols on distributed computing is far from satisfactory, especially in large scale
distributed environments (e.g., the Internet). In the traditional client/server ar-
chitecture, the client needs to have a permanent connection to a server, even if the
connection is idle most of the time. Furthermore, the client process has to suspend
while waiting for a response from the server. Moreover, when the waiting time ex-
ceeds the expected time, the client has to terminate the process and fail the whole
task. As the size of the network increases rapidly, the inflexibility and inefficiency
of the client/server architecture raises problems of scalability, heterogeneity, and
efficiency.

Over the years, various innovative approaches [4] have been proposed for large-
scale distributed computing. A mobile agent approach is one of the most promis-

ing for creating distributed systems. The idea is that a computer program can

CHAPTER 1. INTRODUCTION 2

transport itself from host to host in a network, and act autonomously to fulfill
a user-assigned task. By moving the code to the data, mobile agent technology
offers a number of advantages. These include the reduction of network load and
network latency, increasing the overall performance, allowing the application to
process data in the presence of network disconnection, working autonomously and
asynchronously, and adapting to changing environments.

Since agents are mobile and must share information, a standard infrastructure
that provides tracking and support for effective communication between agents
must be provided. The need for this infrastructure is common among many multi-
agent systems. In a multi-agent system, a server program usually runs on each
node. The server program is responsible for hosting agents, allocating resources to
the agents to run, administering the migration and communication of agents, and
providing requested local services to the agents. In recent years, different agent
systems have been developed and used for for distributed information retrieval [13],
network management [10], data minding [6], distributed simulation [55], and elec-

tronic commerce [20].

1.1 Motivation and Problem Statement

Although the mobile agent paradigm provides great potential advantages over tra-
ditional approaches in distributed computing applications, there are still several
issues to be addressed before the technology can be widely accepted. The perfor-
mance of the communication protocol is one of the critical issues in mobile agent
systems. Coordination between agents and the resources on the hosting execution
environment is one of the fundamental activities. However, mobility has added
complexity to the design and implied different problems in wide area computing

environments. In general, a successful communication protocol should provide the

CHAPTER 1. INTRODUCTION 3

desired degree of location transparency, efficiency, reliability, scalability, security,
and asynchrony.

Early research attempts to solve these problems used agent remote procedure
call (ARPC) [43], which is analogous to the traditional RPC. With ARPC, pro-
grammers have to explicitly handle agent allocation and message delivery. Re-
cently, the focus of research has shifted towards supporting location-transparent
communication between agents, and a wide range of schemes, such as home-
server [2, 22, 36, 38, 47], email [37], forwarding-pointers [21, 39, 52], broadcast [35,
42, 46], mailbox-based [14], and blackboard [15], have been proposed. However,
each protocol has its drawbacks and limitations. As discussed more fully later,
the home-server and email protocols have the triangular routing, central server
constraints as well as the single-point failure problem; the forwarding-pointer pro-
tocol is vulnerable to host failures and the storage cost of forwarding information
becomes too high in widely-distributed and highly-dynamic agent systems; the
broadcast protocol can cause heavy network traffic when the number of agents in
the system is large; and so on.

This thesis focuses on the reliability and efficiency issues of the communica-
tion protocol for multi-agent systems and proposes a proxy-based communication
scheme to solve these problems in current schemes. The goal of the proposed
scheme is to provide reliable message delivery with minimum communication cost.

The problem addressed in this thesis is twofold:

1. How to minimize the communication cost, including both location update

and message delivery cost.

2. How to guarantee that a message is delivered reliably to its intended receiver,

especially during the receiver’s migration.

CHAPTER 1. INTRODUCTION 4
1.2 Organization

The remainder of this thesis is divided into five chapters that provide further details
on the problem area and related work. They describe the system architecture,
simulation design and data analysis in depth.

Chapter 2 presents the background information for this research. The chapter
begins with an overview of the mobile agent and agent systems. Furthermore, the
design space of the communication protocols for a multi-agent system is described
in detail as the foundation for the related work and motivation for the research.
Current research in communication protocols for multi-agent systems is presented.
This chapter concludes with a description of the design methodologies used in the
thesis.

In Chapter 3, the proxy-based protocol developed in this thesis is introduced
and described in detail. The system architecture and the functionality of the major
components are presented. The system’s operation and algorithms are discussed
in depth. A limited-forwarding algorithm is developed to further improve the
performance of the protocol. At the end of the chapter, a verification of the
reliability of the protocols is provided.

A simulation model that simulates a proxy-based protocol and a home-server
protocol is presented in Chapter 4. The purpose of the simulation is to compare the
difference between the communication cost of these two protocols. The reasons for
using simulation instead of a prototype are presented. The supported framework
and the concept of discrete-event stochastic simulation are introduced. After that,
different aspects of the simulation model, such as performance metrics, control
parameters, conceptual model, initialization, and event generation, are discussed
in detail. This chapter also provides a brief description of the verification and
validation of the simulation model. The implementation details of the simulation

model are presented in the last section.

CHAPTER 1. INTRODUCTION 5]

Chapter 5 presents the analysis of simulation results. The basic proxy-based
protocol and proxy-based protocol with limited-forwarding algorithm are analyzed
independently. A sensitivity analysis is performed for the basic proxy-based pro-
tocol.

Chapter 6 outlines the contributions of this thesis and future research direc-
tions. The chapter summarizes the research, lists the contributions, and provides

some suggestions for future research directions.

Chapter 2

Background

‘This chapter presents a broad overview of background material for mobile agent
communication protocols. The first section describes the state of the art in mobile
agent technologies and agent systems. The general concepts and design space for
the communication protocols in multi-agent systems are discussed in the second
section. The third section presents related work on communication protocols for
multi-agent systems. The design methods, object-oriented and UML, are intro-

duced in the last section.

2.1 Mobile Agents and Agent Systems

Mobile agents are a powerful programming paradigm that provides highly efficient
and scalable solutions in complex distributed applications. The benefits of mo-
bile agent technology include reducing network load, overcoming network latency,
encapsulating proprietary protocols, executing autonomously and asynchronously,
and adapting dynamically [31]. A mobile agent is an intelligent software entity that
can migrate across a heterogeneous network system and accomplish a specific task
on behalf of a user [16]. In various situations, agents at different locations must

collaborate with one another to accomplish a task. The communication scheme

CHAPTER 2. BACKGROUND 7

is respomnsible for ensuring effective interagent communication. To understand the
research problem, a thorough knowledge of the characteristics of mobile agents is
essential.

A key feature of a mobile agent is that its code is mobile [25]. In a classic
client/server architecture, both clients and servers are stationary. The client re-
quests some services offered by the server, and the server provides the services as
well as the necessary resources. Mobile agent technology enhances the traditional
client/server paradigm by exploiting locality in the access to distributed resources
and by performing distributed operations in an asynchronous way. Mobility per-
mits an agent to move to a destination where the required resources are available,
and then work locally at the site. Thus, a mobile agent is neither bound to the
originating host nor dependent on a continuous connection to the destination.

Agents are often described as intelligent and autonomous [44], which indicates
that the agent can act independently without intervention from any other agents or
users. After being dispatched by a user, a mobile agent can decide on its own where
to go and what to do based on a predefined schedule, the network load, a host’s
computational load, or requests from external sources. A mobile agent may also
spawn subagents and assign subtasks to the subagents to execute a distributed task
concurrently when multiple resources are available. The ability to autonomously
execute a task ensures that mobile agents react appropriately to unforseen events
and can easily adapt to a changing environment.

Autonomy, however, does not mean isolation nor complete freedom. The real
strength of agents is based on the large community of agents and the negotiation
mechanisms and coordination facilities [50]. In various situations, agents at differ-
ent hosts must cooperate with one another to accomplish complex tasks efficiently.
Collaborative interactions can prevent hostile competition for limited resources

between agents. Such interaction also allows agents to resolve conflicts and incon-

CHAPTER 2. BACKGROUND 8

sistencies in information, current tasks, and world models, thus improving their
decision-support capabilities in a dynamic environment. For example, in the Infor-
mation Gathering (IG) area, due to the amount of available information, a task is
usually decomposed into subtasks that entail sending agents to local data resources
for information retrieval. Detecting interactions between agents, exploiting rele-
vant information and resolving inconsistences in the acquired data are important
aspects of these systems [45].

An agent system is another fundamental component involved in the mobile
agents paradigm. An agent system is a distributed environment that supports
creation, execution, migration and termination of mobile agents [30]. Mobile agents
cannot exist outside an agent system. A multi-agent system offers flexibility to
the programmer by hiding the underlying network architecture. Therefore, agent
systems enable programmers to write distributed programs without knowing the
detail of network structure. A mobile agent system may also provide support
services to access other mobile agent systems, and provide open access to non-agent
based software environments. To this end, many mobile multi-agent systems, such
as Aglet [1, 30], Emerald [27], Voyager [5], JADE [9] and Concordia [58] have been
developed.

As multi-agent systems become more pervasive, the collaboration between
agents increases, which in turn raises the need for an efficient location-management
and communication mechanism for mobile agents. The next section explores the
common requirements of a communication protocol for multi-agent systems, which

provides a foundation for the related work in the third section.

CHAPTER 2. BACKGROUND 9
2.2 Design Space

A communication scheme for mobile agents is a mechanism that tracks the lo-
cations of mobile agents and facilitates interagent communication. A practical
scheme should support two fundamental operations: location update and message
delivery [57]. Location update is the action the scheme should take to maintain
up-to-date location information after an agent moves to a new network location.
Message delivery is the process of conveying a message from the sender to the
receiver.

In addition to these two operations, the design of communication protocols
for mobile agents is rather application-specific — different multi-agent systems im-
pose different requirements on communication protocols. Therefore, one feasible
solution for a particular system may not be applicable to another system with
different migration and communication patterns. A number of requirements, how-
ever, are essential to most multi-agent systems. These common requirements of a

communication protocol for multi-agent systems are summarized below.

2.2.1 Location Transparency

In a static network infrastructure, it is easy for a sender to know the address of a
receiver since the location never changes, and thus, a sender can deliver a message
straight to the intended receiver. However, in the mobile agent paradigm, message
delivery becomes more complicated because a receiver’s address can change fre-
quently. To use direct communication protocols, such as TCP/IP [23, 24], RPC [54]
and RMI [56], a programmer must explicitly handle agent migration and commu-
nication, which not only increases the development and maintenance cost but also
restricts the flexibility and extensibility of an application. Therefore, it is impor-

tant for a communication protocol to handle the location tracking of agents in

CHAPTER 2. BACKGROUND 10

multi-agent systems transparently. This means a sender should be able to deliver
a message to the receiver without knowing the receiver’s current location and the
process of locating the receiver should be completely hidden from the sender. By
doing this, the multi-agent system offers the programmer more flexibility while

making the underlying network architecture transparent.

2.2.2 Efficiency

The two tasks of minimizing the communication overhead for location update and
for message delivery often appear to be in conflict. Strategies for locating a mo-
bile agent in a distributed network range between two extremes: full-information
and no-information [7, 51]. With the full-information approach, every site in the
network has a database which maintains up-to-date information on the current
location of all agents. This method minimizes the message delivery cost while
location update cost is expensive. The full-information strategy is appropriate for
a relatively static environment, where agents communicate frequently but move
rarely. On the other hand, the no-information approach requires no updates for
migration, but a search over the whole network is necessary for every message
delivery. This method is appropriate for small-scale and highly-dynamic environ-
ments, where agents move frequently but communicate rarely. An efficient protocol
should strike a balance between these two extremes to meet the requirements of
some specific communication and migration patterns while minimizing the total

costs of location update and message delivery.

2.2.3 Reliability

The reliability of a communication protocol for multi-agent systems involves two

1ssues:

CHAPTER 2. BACKGROUND 11

1. The vulnerability of the protocol to the failures in the distributed environ-

ment
2. Message losses or chasing problems

The first issue, also referred as the fault-tolerance problem, reflects the level of
failure the communication protocol can accept. Some protocols are sensitive to
any kind of failure in the network; one component failure may crash the whole
communication system. Some protocols have higher tolerance and can continue to
operate properly even after a certain number of nodes and links fail. The second
problem can occur even in a fault-free network due to the asynchronous message
passing and agent migration model. A message can be lost if it is delivered during
the receiver’s migration or the message can chase the receiver forever if the target
agent moves frequently. A reliable communication protocol should address both
issues to guarantee that a message can be delivered successfully to the receiver in

any situation.

2.2.4 Scalability

Scalability is one of the key elements that measure the successfulness of a commu-
nication protocol for multi-agent systems. The scalability issue can be addressed
from four aspects: (1) the size of the network; (2) the total number of the mobile
agents; (3) the migration frequency of agents; (4) the size of the communication
data. A scalable communication protocol should be able to preserve the quality of

the services as size of any or all of the above parameters increase.

2.2.5 Security

In recent years, users’ demands have raised the priority of security issues for mobile

agent communication. In existing protocols, message passing between communi-

CHAPTER 2. BACKGROUND 12

cating partners generally involves using various sites to process the message. At
the same time, many agents operate autonomously which present a significant ob-
stacle to agent activity management. The network complexity and agent mobility
provide numerous opportunities for a malicious agent to intercept or overwrite the
message during the transmission process. A secure communication protocol should

be able to prevent an adversary compromising message exchange between partners.

2.2.6 Asynchrony

The decision of whether to use a synchronous or an asynchronous communication
approach is application-dependent. In synchronous protocols, such as TCP [24]
and RPC [54], the client and the server open a communication channel between
both ends. The client application maintains the entire communication process until
it receives the response message from the server. In asynchronous protocols, such
as messaging [19], once the client application composes and hands off a message
to the messaging system, the application continues execution.

Synchronous communication protocols have been standard networking proto-
cols for decades and have proven capable of providing reliable delivery of packets.
Unfortunately, synchronous communication requires that synchronization is estab-
lished for a long duration, which is contradictory to the dynamic nature of multi-
agent systems. In addition, disconnection usually is allowed in a mobile agent
system, which also makes synchronous communication an unsuitable approach.
On the other hand, although asynchronous communication supports agent mobil-
ity and disconnection, it cannot guarantee reliable message delivery. A designer
should weigh the benefits of both methods and the requirements of the application

before choosing the communication model that is best suited for the application.

CHAPTER 2. BACKGROUND 13
2.3 Related Work

In multi-agent systems, a critical performance issue is the agent communication
protocol. Much effort [2, 21, 37, 38, 42] has been devoted to ensure efficient location
tracking of agents and reliable message delivery in mobile agent systems. To be
able to send messages in a location-transparent fashion, researchers have proposed

two different approaches:

1. Direct agent-to-agent communication, such as home-server [2, 22, 36, 38,
47], email [37], forwarding-pointers [21, 39, 52], broadcast [35, 42, 46], and
mailbox-based [14].

2. Indirect interactions using shared places, such as blackboard [15].

The following sections presents the advantages and disadvantages of each kind
of protocol in terms of the design space discussed in the previous section, where it

is possible.

2.3.1 Home-Server

Many mobile agent platforms, for example Aglets [1, 30] and JADE [9] use the
home-server protocol proposed in Sprite [22], Mobile Internet Protocol [2], and
Mobile Agent System Interoperability Facility [38] to solve agent communication’s

problem. The home-server protocol works as follows:

e Fach mobile agent associates with a stationary agent, which is called the

mobile agent’s home agent.

e Each home agent has a database to store the addresses of all agents that use

this host as home agent.

e The sending agent knows the name of the receiving agent.

CHAPTER 2. BACKGROUND 14

e A central naming server, called home server, maintains a binding between

mobile agents’ names and their home agents’ addresses.

send

deliver

lookup

» Current Message Delivery
............................ P Past Message De“very

___________ » Agent Migration

Figure 2.1: Home-Server Model

In the home-server approach, shown in Figure 2.1, a mobile agent must inform
the home agent of its new location after each migration. To contact a mobile agent,
the sending agent first delivers the message to the home server. Second, the home
server routes the message to the receiving agent’s home agent. Third, the home
agent forwards the message to the receiving agent’s actual location.

A basic motivation for using the home-server protocol is to support mobile IP
addresses [2] while preserving compatibility with the current IP protocol, where
hosts are unaware of agent mobility. However, the home-server protocol raises
concerns for efficiency, reliability and scalability of the system even though the
model is simple to implement and works well for small-to-medium distributed
systems. Messages sent to a mobile agent always pass through the home server and

a home agent, which causes a triangular routing problem. Both location update

CHAPTER 2. BACKGROUND 15

and message delivery can incur a significant delay if the mobile agent is far from its
home agent. Various cache-based strategies [36, 47] have been proposed to avoid
the triangular routing problem. Nevertheless, these protocols cannot guarantee
reliable message delivery because a message would be lost if the delivery happens
during the receiver’s migration. Furthermore, the central naming server puts a
burden on the global infrastructure. The home server may become a performance
bottleneck and a single-point of failure in a large-scale network, and therefore,

prevents the scalability of this approach.

2.3.2 Email

The fiMain [37] system uses an email infrastructure for agent communication,
which is similar to the home-server protocol. The only difference, as shown in
Figure 2.2, is a home agent stores an incoming message in the receiver’s message
queue instead of forwarding it to the target agent. The mobile agent checks its
home agent periodically for incoming messages. If the the agent’s message queue
is not empty, it can either pull the messages from its home agent to its current
location or move back to its home and retrieve the messages locally.

Since it is the mobile agent that initiates the communication with its home
agent, the email protocol can guarantee reliable message delivery and reduce the
location update cost. However, this approach encounters the same problems as in
the home-server protocol, such as triangular routing, central server constraints as
well as the single-point-failure problem. Also, if home agents are not distributed
equally, one host could be overloaded with the vast storage demands. Furthermore,
the time intervals for a mobile agent to check its home place has a big impact on
the system performance. If the time interval is too large, an agent might not be
able to get its messages on time which would cause serious problems in systems

that require prompt response. On the other hand, if the agent checks its home

CHAPTER 2. BACKGROUND

Message Queues

Read/Write

lookup

~————P Message Delivery

- — — — P Agent Migration

Figure 2.2: Email Model

16

place frequently, a large number of query and response message will induce high

communication overhead. Therefore, the email protocol is only suitable for systems

in which agents do not require instant messages.

2.3.3 Forwarding-Pointer

Emerald [27] and Voyager [5] systems use the forwarding-pointer protocols [21, 39,

52] for interagent communication. These protocols work as follows:

e Fach mobile agent associates with a stationary agent, which is called the

mobile agent’s home agent.

e Fach home agent has a database to store the initial addresses of all agents

that use this host as home agent.

e Each host has a database to store the cached addresses of all agents that

CHAPTER 2. BACKGROUND 17

migrated from this host.

e The sending agent knows the name of the receiving agent.

e A central naming server, called home server, maintains a binding between

mobile agents’ names and their home agents’ addresses.

send

) update migréte
lookup deliver s b

deliver
» Current Message Delivery

............................ > Past Message Delivery

___________ ¥ Agent Migration

Figure 2.3: Forwarding-Pointer Model

In the forwarding-pointer approach, shown in Figure 2.3, after each movement,
a mobile agent must inform the last host it visited of its current location. Ac-
cordingly, every host on the agent’s migration path keeps a forwarding pointer to
the next host on the path. Similar to the home-server method, a message is first
delivered to the home server, then to the receiver’s home agent. After that, the
home agent sends the message to the last known location of the target agent. If
the receiver is not at the last known location, the messages would be forwarded

along the chain of pointers. Upon receiving a message, the target agent sends back

CHAPTER 2. BACKGROUND 18

an invalid-cache message to the original sending agent to update the outdated
address.

The dependency on the home agents and home server, as well as the location
update cost are reduced in the forwarding-pointer scheme. On the other hand,
the message delivery cost can be very high due to the redundant hosts on the
migration path. Some path compression algorithms, such as lazy updates and
back propagating information [39] along the chain, can be used to collapse the
chain [41]. A serious drawback of this approach is its vulnerability to the failures
of hosts, one failure on the migration path results in an unreachable target agent.
A solution is to update its N previously visited hosts after a mobile agent reaches
a new location, which can improve the system’s tolerance of a failure up to N [40].
However, the chasing problem remains unsolved in forwarding-pointer protocols,
that is, a message can follow an agent forever if the agent migrates frequently. In
addition, the forwarding-pointer scheme is not practical for widely-distributed and
highly-dynamic agent systems since the storage cost of forwarding information on

every host increases as the chain grows.

2.3.4 Mailbox

Cao et al. [14] propose a mailbox-based scheme, which is a three-dimensional model
for designing flexible and adaptive message delivery protocols in mobile agent sys-

tems. The protocol works as follows:

e Bach mobile agent owns a mailbox which buffers all the incoming messages

for its owner agent.

e Each mailbox associates with a stationary agent, which is called the mailbox’s

home agent.

e Each home agent has a database to store the initial addresses of all mailboxes

CHAPTER 2. BACKGROUND 19

that use this host as home agent.
e The sending agent knows the name of the receiving agent.

e A central naming server, called the home server, maintains a binding between

mailbox names and their home agents’ addresses.

send

Home Server

buffer

/ : /
update 7/ ;
migrate :
’ update

lookup

push/puli

B Current Message Delivery
............................ » Past Message Delivery

——————————— » Agent or Mailboxt Migration

Figure 2.4: Mailbox-Based Model

In the mailbox-based protocol [14], shown in Figure 2.4, a mailbox may be
detached from its owner agent and migrate to a different place. A mailbox must
inform its last visited host and its owner agent of its current location after each
migration. A mobile agent also has to report the new address to its mailbox after
the agent reaches a new location. Messages sent to an agent are all buffered to
its mailbox, and the agent later receives the messages by either a push or pull

operation.

CHAPTER 2. BACKGROUND 20

Users can customize the protocol to meet particular requirements by defining
three parameters: mailboz migration frequency, mailboz-to-agent message delivery,
and migration-delivery synchronization [14]. Mailbox migration frequency is the
number of mailbox migrations within its mobile agent’s migration interval. No
migration means the mailbox never moves and the protocol acts as a home-server
protocol. Full migration means the mailbox moves synchronously with its mobile
agent and the protocol acts as a forwarding-pointer protocol. Jump migration
means the mobile box can decide its mailbox migration frequency dynamically
based on the number of incoming messages. Mailboz-to-agent delivery defines how
a mobile agent receives messages from its mailbox. A user can decide whether
mailboxes push messages to mobile agents or mobile agents pull messages from
mailboxes. Migration-delivery synchronization defines different levels of reliability
in message delivery. A user can choose to synchronize the host’s message forward-
ing and the mailbox’s migration, or the mailbox’s message forwarding and the
mobile agent’s migration, or both of them.

By decoupling the mailbox from its owner agent, the mailbox-based model
separates the location tracking and message delivering, which introduces great
flexibility into the design space. The three-dimensional model provides users the
potential to develop a new protocol that is best suited to a specific agent migration
and communication pattern. However, mailbox’s mobility also increases system’s
complexity, which in turn lessens the fault-tolerance and raises the location update

cost of the system.

2.3.5 Broadcast

In the flooding broadcast approach [35, 46], shown in Figure 2.5, the sending agent
knows the name of the receiving agent but does not use a central naming server

to resolve the name. To send a message to a mobile agent, a source agent simply

CHAPTER 2. BACKGROUND 21

broadcasts location queries, location notifications or pending messages to all of its
neighbors. These neighbors in turn rebroadcast the message and this operation
continues until all the hosts have received the message. Only the corresponding

agent would process the receiving message.

broadcast

broadcast

broadcast

B Message Delivery

Figure 2.5: Broadcast Model

The broadcast protocol is simple to implement and has no location update cost.
However, the protocol does not handle message losses due to agent mobility. A
snapshot broadcast strategy [42] can guarantee message delivery to a specific agent
as well as for group communications. However, the network could be overwhelmed
by the enormous number of unnecessary messages when the number of agents in
the system is large. Therefore, the broadcast protocol is impractical in a wide-area

network and should only be used when all other methods fail.

2.3.6 Blackboard

The Ambit [15] system employs a blackboard protocol, in which the sender does
not know the name of the receiver. To send a message to other agents, as shown

in Figure 2.6, an agent simply writes the message to the local storage of the host

CHAPTER 2. BACKGROUND 22

at which it is currently residing. After the agent migrates to another location, it
may repeat the same action if necessary. For a receiving agent to read a message,

it must move to the related host and retrieve the message locally.

| Message Storage Message Storage

read write write write

migrate -

[Agent 1 I {geniz |

Hosf 1'

—— P Message Read/Write

— — — — P Agent Migration

Figure 2.6: Blackboard Model

The blackboard protocol is the simplest among all agent communication mod-
els; there is no central server, no home agents, and no location tracking and update.
Agents communicate with one another by simply writing and retrieving message
locally. However, the blackboard model requires every host to maintain a message
shared storage which agents can use to leave messages for others to read. Besides,
it becomes the responsibility of a developer to ensure the receiving agent goes to
the right locations to obtain the messages that are intended for the agent, which in
turn increases the development and maintenance costs of the application. In addi-
tion, the message removal strategy also needs to be considered, since the storage

capacity is finite, which puts additional complexity on the application.

CHAPTER 2. BACKGROUND 23
2.4 Design Methodologies

In this research, the object-oriented design (OOD) method is used for the de-
velopment of the simulation model. In contrast to the separation of data and
function in a procedural development, the object-oriented method integrates data
and functions into a whole [28]. In the object-oriented approach, a software sys-
tem is described as a collection of objects. An object is a software entity that can
perform a set of tasks. Each object is responsible for its own data and behavior,
and details of implementation are hidden from the rest of the system. System
functions are accomplished by object cooperation.

Object-oriented development methods have many advantages over structured
methods. The organization of an OO system is closer to that of human activities
and makes the system easier to understand. With proper design, the encapsulation
and inheritance mechanism can increase reusability significantly. Furthermore,
since all attributes and functions are encapsulated in objects, changes inside an
object will not affect other objects as long as the interaction interface remains the
same. The encapsulation allows programmers to work at a higher level and hide
implementation details behind a message-passing interface. As a result, the system
can be easily adapted to changing requirements and is easier to maintain.

Object-oriented modeling is a formal way of describing an existing domain
as an assembly of objects. The use of modeling is essential for the creation of
well-designed, robust and quality object-oriented software that meets the needs of
its users. Since late 1980s, numerous object-oriented modeling languages, such
as Booch [11], Coad-Yourdon [17], Fusion [18], OMT (Object Modeling Tech-
nique) [48], OOSE (Object-Oriented Software Engineering) [28] and Shlaer-Mellor [53],
have been proposed. In mid 1990s, Grady Booch, James Rumbaugh and Ivar Ja-
cobson created the Unified Modeling Language (UML) [12] based on the semantics

and notation from Booch, OMT, OOSE and other prominent methods. Since then,

CHAPTER 2. BACKGROUND 24

the UML has been widely adopted by many software development organizations
and the notation it uses is becoming a worldwide standard for object-oriented
modeling.

The UML is a graphical modeling langauge for visualizing, specifying, con-
structing and documenting software systems. It is process independent, and there-
fore can be used with most existing object-oriented development processes. The
UML notations include a large set of graphical symbols, which are supported by
well-defined semantics. From these symbols, various diagrams can be constructed
to capture the information about the static structure and dynamic behavior of a
system. These diagrams include use case diagrams, class diagrams, statechart dia-
grams, activity diagrams, sequence diagrams, collaboration diagrams, component
diagrams and deployment diagrams. Use case diagrams are used for requirements
analysis by modeling the interactions between actors and the system. Class dia-
grams are used to model the static aspects by showing a set of classes and their
relationships. Activity diagrams support the functional perspective by showing
control flow in business processes and internal operations. Sequence and collabo-
ration diagrams are used to display messages passing between objects and entities
within the system. Finally, component and deployment diagrams capture the
physical aspect by showing how components are packaged and deployed.

In this thesis, the activity diagrams are used to describe the control flow in
system operations and the class diagrams are used to present the conceptual model

of the simulation.

Chapter 3

Proxy-based Protocol

This chapter introduces a proxy-based communication protocol that is capable of
supporting efficient and reliable message delivery in mobile agent systems. The
goal of the proxy-based solution is to reduce the communication overhead and solve
the message loss problem in the home-server schemes.

To this end, the home-server schemes [2, 22, 36, 38, 47] are the most popular
communication protocols for multi-agent systems because they are compatible with
the current Internet Protocol. However, the triangular routing, central server
constraints as well as the message loss problems in the home-server protocol affect
the system performance.

The proxy-based scheme improves on the home-server schemes by incorporating
an additional type of agent, a proxy agent, in the system. In this thesis, a domain
is a group of connected computers that share a common central Directory Services
Database that contains user account and security information. In each domain,
at least one proxy agent is allocated to provide communication services to mobile
agents in the domain. Messages sent to mobile agents pass through these proxies
before they are dispatched over the network. The proxy agent decides where the

message should go based on the most recent knowledge of the receiver.

25

CHAPTER 3. PROXY-BASED PROTOCOL 26

There are several reasons to use a proxy agent as a message service center
for the mobile agents in the domain. First, the proxy agent can obtain location
information from incoming messages and share this information among a group
of agents. Second, message passing between a proxy agent and the mobile agents
within its control is fast because they are geographically close. Third, a proxy agent
can buffer the messages for a mobile agent during the mobile agent’s migration.

The proxy-based communication protocol is developed under the following as-

sumptions:

e An agent server must be running on all the nodes where data can potentially

reside.

e Every agent server has a unique address, which is accessible by all other

nodes in the network.

e All agents in the system are trustworthy and available (security and authen-

tication issues are not considered).

e All agents in the system are reliable (agent operation and migration failure

are not considered).
e There is no loss or corruption in message passing (reliable delivery network).

In this chapter, the first section presents the system architecture and the func-
tionality of the major components of the proposed protocol. The second section
describes the system operation and algorithms in details. On top of the basic
proxy-based protocol, a limited-forwarding algorithm is developed to further im-
prove the protocol’s performance. The last section verifies the reliability of the

protocol.

CHAPTER 3. PROXY-BASED PROTOCOL 27
3.1 System Architecture

Figure 3.1 provides a simple view of the system. All messages passing between two
domains are under the control of proxy agents. If Agent I in Domain 1 wants to
send a message to Agent 2 in Domain 2, it must first deliver the message to Prozy
1. Then Prozy 1 will forward the message to Prozy 2, and it is the responsibility
of Prozy 2 to send the message to the final receiver Agent 2. There is no direct

communication between sender Agent I and receiver Agent 2.

Message Message

Message Message

Figure 3.1: System Overview

The basic architecture of proxy-based system is shown in Figure 3.2. The sys-
tem consists of several components that communicate with one another to provide
location management and message delivery services. The roles and relationships

of these components are defined as follow:

e Master agent (MA) is a stationary agent. This agent is responsible for cre-
ating a number of child agents and dispatching them to the respective des-
tinations to perform some specific tasks. The master agent maintains the

current location information of each of its child agents. The master agent

CHAPTER 3. PROXY-BASED PROTOCOL 28

User

¢

Interact

Communicate Communicate

Figure 3.2: Detailed System Model

also provides mechanisms to interact with the user that issues the task re-

quest.

o Child agent (CA) is a mobile agent. This agent moves to the remote resource,
performs tasks on behalf of the user and returns the results to the master

agent. Each child agent has a unique ID to identify itself.

e Home server (HS) is a stationary agent. This agent provides the one-to-one
mapping information between master agents and child agents, and routes a

message to the corresponding master agent according to the child agent’s ID.

e Prozy agent (PA) is a stationary agent. This agent collects agent location

information from inbound messages, and builds up a local agent resource

CHAPTER 3. PROXY-BASED PROTOCOL 29

table and a remote agent resource table gradually. The local agent resource
table contains location information for all the mobile agents within the do-
main. The remote agent resource table includes some child agents’ IDs and
their corresponding proxy agent addresses. The proxy agent is responsible
for handling messages for master agents and child agents. There is at least

one proxy agent in each domain.

In the proxy-based communication protocol, every message contains the sender’s
ID, master agent’s address and proxy agent’s address. Except for these basic in-
formation fields, different types of messages contain different information fields.
The functionality and field details for different messages are discussed in the next

section.

3.2 System Operations

The following sections describe the processes of agent creation and dispatch, reg-

istration and deregistration, termination, migration, and message delivery.

3.2.1 Agent Creation and Dispatch

When a new child agent is created, it obtains a unique ID and the address of its
master agent. After the creation, the master agent must inform the home server
by sending a CREATION message to the home server. The CREATION message
contains the ID of the child agent and the address of the master agent. The home
server maintains a lookup table which records the mapping between child agents
and master agent. Figure 3.3 shows an example of the lookup table. Every time
the home server receives a CREATION message, it inserts a new entry in the

lookup table and sends an ACK_CREATION message back to the master agent.

CHAPTER 3. PROXY-BASED PROTOCOL 30

Childld | Master Addr
Child_01 128.1.2.10
Child_02 128.1.2.11
Child_03 128.1.2.12

Figure 3.3: Lookup Table of the Home Server

Upon receiving the ACK_.CREATION message from the home server, the mas-
ter agent prepares to dispatch the child agent by first assigning the destination
address to the child agent. The master agent then inserts a new entry into its
child agent information table and dispatches the child agent. Figure 3.9 shows an
example of the child information table of the master agent. When the status of
a child agent is set to INACTIVE, the master agent holds the messages for the
child agent until the status is changed to ACTIVE. The status of a child agent is
INACTIVE when the agent is first dispatched from its master agent. After the
child agent reaches its destination, the proxy agent in the destination domain sends
an UPDATE message to the master agent. The master agent then sets the child

agent’s status as ACTIVE in the child agent information table.

Childld | ProxyAddr Status
Child 01 | 216.239.36.27 ACTIVE
Child_02 | 216.109.118.40 | ACTIVE
Child 03 | 202.108.36.78 | INACTIVE

Figure 3.4: Child Information Table of the Master Agent

Figure 3.5 illustrates the whole process of agent creation and dispatch.

CHAPTER 3. PROXY-BASED PROTOCOL

Master Agent Home Server Child Agent Proxy Agent

Creat child agent
Send CREATION

Receive CREATION

Insert new entry

Send ACK

Recelve ACK

Assngn address to ch|l

Insert a new entry

Dispatch child agent
o

Register with prox:
Continue work (9 P y>\

Send UPDATE

Receive UPDATE

Update table

Figure 3.5: Activity Diagram for Agent Creation and Dispatch

CHAPTER 3. PROXY-BASED PROTOCOL 32

3.2.2 Agent Registration and Deregistration

Child Agent Proxy Agent Master Agent

Send REGISTRATION

@eceive REGISTRATION)
Wait for ACK

Update local table

Send ACK

Send UPDATE

B

i

Recieve ACK

Start work
Send ACK

Receive ACK

Figure 3.6: Activity Diagram for Agent Registration

Receive UPDATE

:
f

Continue work

Figure 3.6 illustrates the process of agent registration. Every time a child agent
enters a new domain, it must register with the local proxy agent. Every proxy agent

has a local agent table which records the location information of all the agents in

CHAPTER 3. PROXY-BASED PROTOCOL 33

the domain. Figure 3.9 shows an example of the local agent table. When a child
agent’s status is set to MIGRATING, the proxy agent holds the incoming messages

for the child agent until the status is set back to ACTIVE.

ChildId Addr Status
Child_01 | 216.239.36.27 ACTIVE
Child.11 | 216.239.36.28 ACTIVE
Child_21 | 216.239.36.29 | MIGRATING

Figure 3.7: Local Agent Table of the Proxy Agent

The child agent first sends a REGISTRATION message to the proxy agent.
The proxy agent inserts a new entry to its local agent table according to the mes-
sage and sets the child agent’s status to ACTIVE. The proxy agent then sends
back an ACK_REGISTRATION message to the child agent. The proxy agent
is also responsible for informing the child agent’s master agent of the new loca-
tion information by an UPDATE information. The master agent sends back an
ACK_UPDATE message to the proxy agent after updating its child agent infor-
mation table. The child agent then starts performing its tasks after receiving the
ACK_REGISTRATION message.

Figure 3.8 illustrates the process of agent deregistration. During the reg-
istration process, the proxy agent can obtain the child agent’s previous proxy
agent ID from the REGISTRATION message. The current proxy agent sends a
DEREGISTRATION message, which contains the child agent’s ID and current
proxy agent’s address, to the child agent’s previous proxy agent. The previous
proxy agent deletes the child agent’s record in its local agent table and inserts a
new entry in the remote agent table. Figure 3.9 shows an example of the remote
agent table. After updating both tables, the previous proxy agent sends back an
ACK_DEREGISTRATION message. All the incoming messages for the child agent

during its migration are also forwarded to its destination proxy agent.

CHAPTER 3. PROXY-BASED PROTOCOL 34

Current Proxy Previous Proxy

®

Receive REGISTRATK@

|

@btain previous proxy IIZD

|

@nd DEREGISTRATION)

Geceive DEREGISTRATION)
Continue work
Update tables

Send ACK
A/

Forward messages

Receive ACK

®

Figure 3.8: Activity Diagram for Agent Deregisteration

Childld | ProxyAddr
Child 01 | 216.239.36.27
Child.31 | 240.29.55.90
Child 45 | 202.239.21.29

Figure 3.9: Remote Agent Table of the Proxy Agent

From the above description, it is obvious that part of the deregistration process

is handled during agent registration. Figure 3.10 shows the registration algorithms

CHAPTER 3. PROXY-BASED PROTOCOL 35

for the proxy agents.

/* Variable
localAgentTable: The local agent information table
regMsg: The REGISTRATION message the proxy agent received

MSG_UPDATE: Constant for update message type
M5G_DEREGISTRATION: Constant for deregistration message type

uvpdateMsg: The UPDATE message
deMsg: The DEREGISTRATION message
*/
Registration() operation:
InsertNewRec(regMsg, localAgentTable);
updateMsg = creageMsg();
updateMsg.type = MSG_UPDATE;
updateMsg.endAgentId = regMsg.masterAgentld;
sendMsg(updateMsg,regMsg.masterAgentId)
IF regMsg.preProxyld Exists
deMsg = createMsg();
deMsg.type = MSG_DEREGISTRATION;
deMsg.endAgentId = regMsg.preProxyld;
sendMsg(deMsg, preProxyIld) ;
End IF
End Registration()

Figure 3.10: Agent Registration Algorithm

3.2.3 Agent Termination

Figure 3.11 illustrates the process of agent termination. The child agent must in-
form its proxy agent before its termination by sending a TERMINATION message.
The proxy agent forwards the TERMINATION message to the child agent’s mas-
ter agent and the home server. The home server deletes the child agent’s record
in the lookup table and sends an ACK_.TERMINATION message to the proxy
agent. The master agent deletes the child agent’s record in the child agent in-
formation table and sends an ACK_TERMINATION message to the proxy agent.

The proxy agent then deletes the child agent’s record in its local agent table and

CHAPTER 3. PROXY-BASED PROTOCOL

36

Child Agent

?

Send TERMINATION

Wait for ACK

Q—T_

ESend ACK

Proxy Agent

@eceive TERM!NATION)

|

Forward TERMINATIO@

Continue work

Receive ACKs

Delete child record

Master Agent

Home Server

Lﬁ.—ﬁ_

@eceive TERMINATIOI\D

(Receive TERMINATIOI\D

Delete child record

Send ACK

!

Delete child record

Send ACK

Figure 3.11: Activity Diagram for Agent Termination

sends an ACK_TERMINATION message to the child agents. On receiving the

ACK_TERMINATION message, the child can terminate all its processes.

CHAPTER 3. PROXY-BASED PROTOCOL 37

3.2.4 Agent Migration

Figure 3.12 illustrates the process of agent migration. The child agent must inform
its proxy agent before its migration by sending a MIGRATION message. The proxy
agent sets the child agent’s status to MIGRATING in its local agent table and sends
an ACK_MIGRATION message to the child agent. The child agent cannot start
the migration until it receives the ACK_.MIGRATION message. During the child
agent’s migration, the proxy agent puts all the child agent’s incoming messages in
a message queue.

If the child agent migrates within the same domain, it simply informs its
proxy agent of its current location by an UPDATE message and waits for the
ACK_UPDATE. The proxy agent updates the child agent’s address and sets the
status back to ACTIVE in its local agent table. The proxy agent then sends an
ACK_UPDATE message and forwards all the holding messages to the child agent’s
new location. If a child agent moves to another domain, it must perform the reg-

istration with the proxy agent in the destination domain.

CHAPTER 3. PROXY-BASED PROTOCOL

Proxy Agent Child Agent

Send MIGRATION

|
@eceive M!GRATION) (Continue wora

1
Update local table

Send ACK

Hold messages Receiv ACK

Migrate

[outside domain]
>@egister with new pro@

[within domain}

Send UPDATE

Continue work

Receive UPDATE
Update table

Send ACK
/
|

]

Receive ACK

®

Forward messages

Figure 3.12: Activity Diagram for Agent Migration

38

CHAPTER 3. PROXY-BASED PROTOCOL 39

3.2.5 Message Delivery

The basic idea of the proxy-based protocol is that all messages must be processed
by proxy agents. When a proxy agent receives a message, it processes the message
according to the message type. If the message is directed to another agent, the
proxy agent processes the message differently for the message originating within

or outside the domain.

Master Agent Home Server Proxy Agent

[from within domain]

Check local table

[in table]

|

migrating
[active] ’

Hold message
not in table i
Forward to home server] Forward to receiver
[in table]

Gorward to receiver's proxa

[not in table)

Check remote table

Receive message

Gorward to receiver's master
A

-
L

Receive message

Gon/vard to receiver's proxD

[>~

.

Figure 3.13: Activity Diagram for Message Delivery (from the same domain)

Figure 3.13 illustrates how a proxy agent processes a message coming from
an agent within the same domain. The proxy agent first checks the local agent

resource table. If the receiver is active in the domain, the proxy agent forwards

CHAPTER 3. PROXY-BASED PROTOCOL

40

the message directly to the receiver. The proxy agent holds the message for the

receiver when the receiver is migrating. If the receiver is not in the domain, the

proxy agent searches for the receiver’s ID in the remote agent resource table. The

message is routed to the receiver’s proxy agent if its information is in the table. If

the receiver’s ID is not in the remote agent resource table, the message is routed

to the home server. The home server forwards the message to the receiver’s master

agent. The master agent then delivers the message to the receiver’s current proxy

agent.

Receiver's Proxy Agent

[from outside domain]

Update remote table

Check local table

Hold {migrating] X 19X o, Send UNAVAILABLE
O message en
N \(AT

Home Server

Receiver's Master
Agent

Sender's Proxy Agent

[active]
Forward to home server
Forward to receiver

-

i

- Forward to master

= Forward to proxy

Receive UNAVAILABLE

Update remote table

.

Figure 3.14: Activity Diagram for Message Delivery (from outside the domain)

Figure 3.14 illustrates how a proxy agent processes a message from an agent

outside the domain. The proxy agent first adds/updates the sender’s proxy agent’s

address in the remote agent resource table. The proxy agent then checks the local

CHAPTER 3. PROXY-BASED PROTOCOL 41

agent resource table. If the receiver is active in the domain, the proxy agent
forwards the message directly to the receiver. The proxy agent holds the message
for the receiver when the receiver is migrating. If the receiver is not in the domain,
an UNAVAILABLE message is sent to the sender’s proxy agent. Upon receiving an
UNAVAILABLE message, the sender’s proxy agent deletes the outdated location
information in its remote agent table. At the same time, the message is delivered
to the home server. The home server forwards the message to the receiver’s master

agent and the master agent delivers the message to the receiver’s proxy agent.

3.2.6 Message

In the proxy-based protocol, for the communication purpose, agents provide spe-
cific services according to the messages they receive. This section summarizes the
description of different message types and their relation to the agents.

Table 3.1 outlines the functionality of different message types

CHAPTER 3. PROXY-BASED PROTOCOL 42

Message Type Description
COMMUNICATION Normal communication message from agent to
agent
CREATION A master agent informs the home server of the

creation of a new child

ACK_CREATION

The home server acknowledges the new child
agent’s creation.

REGISTRATION

A child agent registers with the local proxy agent
upon entering a new domain.

ACK_REGISTRATION

A proxy agent acknowledges the newly entered
child agent.

UPDATE

A child agent updates its location with the proxy
agent. Or a proxy agent updates its newly regis-
tered child agent’s location with the child agent’s
master agent.

ACK_UPDATE

A proxy agent or master agent acknowledges a
child agent’s location update.

DEREGISTRATION

A proxy agent deregisters its newly registered
child agent with the child agent’s previous proxy
agent.

ACK_DEREGISTRATION

A child agent’s previous proxy agent acknowledges
the child agent’s deregistration.

MIGRATION

A child agent notifies its proxy agent of an up-
coming migration.

ACK_MIGRATION

A proxy agent acknowledges a child agent’s mi-
gration.

TERMINATION

A child agent notifies its proxy agent, master
agent and the home server of the upcoming ter-
mination.

ACK_TERMINATION

A proxy agent, master agent or home server ac-
knowledges a child agent’s termination.

UNAVAILABLE

A proxy agent informs another proxy agent that
the intended receiver is no long within the domain.

Table 3.1: Message Description

CHAPTER 3. PROXY-BASED PROTOCOL

43

Table 3.2 shows the relationship between agents and different message types.

Message Type Sender Receiver
COMMUNICATION Agent Agent
CREATION Master Home Server
ACK_CREATION Home Server Master
REGISTRATION Child Proxy
ACK_REGISTRATION Proxy Child

UPDATE

Child or Proxy

Proxy or Master

ACK_UPDATE Proxy or Master Child or Proxy
DEREGISTRATION Proxy Proxy
ACK_DEREGISTRATION | Proxy Proxy

MIGRATION Child Proxy
ACK_MIGRATION Proxy Child
TERMINATION Child or Proxy Proxy or Master or

Home Server

ACK_.TERMINATION

Proxy or Master or
Home Server

Child or Proxy

UNAVAILABLE

Proxy

Proxy

Table 3.2: Relationship between Agent and Message Type

3.2.7 Information Table

In the proxy-based protocol, the stationary agents, such as the home server, master

agents and proxy agents, use different tables to record the location information of

other agents. Agents perform various actions on these information tables after

receiving different messages during system operations. This section summarizes

the relationships between information tables and messages.

Table 3.3 shows the relationships between the lookup table of the home server

and different messages.

CHAPTER 3. PROXY-BASED PROTOCOL

44

System Operation | Message Type Table Action

Agent Creation CREATION Insert (ID,ADDR)
Agent Termination | TERMINATION Delete (ID=ChildId)
Message Delivery COMMUNICATION | Search (ID=ReceiverID)

Table 3.3: Relationships between Lookup Table and Messages

Table 3.4 shows the relationships between the child agent information table of

the master agent and different messages.

System Operation

Message Type

Table Action

Agent Creation

ACK_CREATION

Insert
(ID,ADDR,STATUSzINACTIVE)

Agent Registration | UPDATE Update
(ADDR,STATUS=ACTIVE)

Agent Termination | TERMINATION Delete(ID=ChildId)

Message Delivery COMMUNICATION | Search(ID=ReceiverID)

Table 3.4: Relationships between Child Agent Information Table and Messages

Table 3.5 shows the relationships between the local agent table of the proxy

agent and different messages.

System Operation

Message Type

Table Action

Agent Registration REGISTRATION Insert
(ID,ADDR,STATUS=ACTIVE)
Agent Deregistration | DEREGISTRATION | Delete (ID=ChildId)
Agent Termination | ACK.TERMINATION | Delete (ID=ChildId)
Agent Migration MIGRATION Update
(STATUS=MIGRATING)
Agent Migration UPDATE Update
(ADDR, STATUS=ACTIVE)
Message Delivery COMMUNICATION | Search (ID=ReceiverID)

Table 3.5: Relationships between Local Agent Table and Messages

"Table 3.5 shows the relationships between the remote agent table of the proxy

agent and different messages.

CHAPTER 3. PROXY-BASED PROTOCOL 45

System Operation Message Type Table Action
Agent Deregistration DEREGISTRATION | Insert (ID,ADDR)
Message Delivery COMMUNICATION | Search

(ID=ReceiverID)
Message Delivery (from out- | COMMUNICATION | Insert (ID,ADDR) or
side the domain) Update(ADDR)
Message Delivery UNAVAILABLE Delete
(ID=Receiverld)

Table 3.6: Relationships between Remote Agent Table and Messages

3.3 The Limited-Forwarding Scheme

The efficiency of the proxy-based scheme depends on the message exchange rate
and the mobile agents’ migration frequency. The scheme may perform poorly in
a highly dynamic system with relative low frequency of interagent communication
because the cache information is likely to be obsolete when it is needed. To improve
the performance of the system, the forwarding-pointer strategy described in section
2.3.3 can be integrated with the proxy-based protocol.

In the basic proxy-based scheme, if a proxy agent receives a message from
outside the domain and the message is directed to a mobile agent that is no longer
in the domain, the proxy agent sends an UNAVAILABLE message to the sender’s
proxy agent and redirects the incoming message to the home server. According to
the home-server protocol discussed in section 2.3.1, the message has to be delivered
at least three times before it can reach the final proxy agent. In some cases, simply
forwarding a message is cheaper than using the home-server scheme.

However, as noted before, the forwarding-pointer strategy has one serious draw-
back: the chasing problem. A message can follow an agent forever if the agent
migrates frequently. In the proxy-based protocol, if a message is forwarded more
than three times, the communication cost is likely higher than the simple home-

server protocol since the home-server protocol delivers a message by forwarding

CHAPTER 3. PROXY-BASED PROTOCOL 46

the message three times in most cases. To solve this problem, an algorithm that
can guarantee that the cost of using forwarding-pointer will be lower than the
home-server protocol in most cases is developed.

The notion of limited-forwarding algorithm has been used for PCS (personal
communications services) [36]. The idea is when a cache miss occurs, the message
will be forwarded one step. If the cache miss occurs again, the 1S-41 (the equivalent
of home-server in PCS) protocol is used to deliver the message. The drawback of
the one-step forwarding algorithm is the location information in the proxy agent’s
remote agent source table may be obsolete due to the mobility of agents. If the
obsolete cache information is used to forward a message, the next proxy agent still
has to use the home-server scheme to deliver the message. In such a case, the
overhead of using one-step forwarding strategy to deliver the message is higher
than the home-server scheme. Therefore, it is desirable to use some strategies to
predict whether the cache is valid to improve the cache hit ratio.

The idea is, a mobile agent records its average inter-domain migration interval
M, and embeds this information into the outgoing message. The proxy agent at
the receiving end extracts the M from the incoming message. As a result, the
proxy agent can determine whether to forward the message to the cached location
or to the home server based on the receiver’s migration frequency. In order to
use the limited-forwarding scheme, a few extra bytes are needed in a message. In
addition, the record in the proxy agent’s remote agent resource table must include
two fields: F'T" the time the proxy agent receives the incoming message, and M
the average inter-domain migration interval of the sender. Figure 3.15 shows the
algorithm of the calculation of average inter-domain migration interval for a child
agent. The calculation occurs after the child agent moves to a new location.

To make the algorithm more flexible, a forwarding factor F'F is defined to

control the average maximum steps a message can be forwarded in the system.

CHAPTER 3. PROXY-BASED PROTOCOL 47

/* Variable
meanMoveTm(=}M) : Average cross-domain migration interval, it is assigned a
maximum value during agent creation.
interDomainMv: Number of inter domain migrations(base figure for M), initial value is O
curMoveTm: Current move time, initial value is 0
lastMoveTm: Last move time, initial value is 0

totalTm: The total time since the child agent left its master agent
*/

Recalculate() operation:

curMoveTn = Time();

IF (the agent moves to a new domain)
totalTm = interDomainMv*meanMoveTm+(curMoveTm - lastMoveTm) ;
meanMovelm = totalTm/(interDomainMv+1);

interDomainMv++;
lastMoveTm = curMoveTm;
Register();

End IF

End Recalculate()

Figure 3.15: Recalculation Algorithm

Generally, the forwarding factor should not be larger than 3 because the home-
server protocol can deliver a message by forwarding the message three times. Let
CT represent the current time and F'T represent the time the proxy agent receives
the incoming message, the proxy agent compares the (CT — FT) to FF M be-
fore it delivers the message. If (CT — FT) < FF % M, the cache information
is considered valid and the message is forwarded to the receiver’s proxy agent. If
(CT—FT) > FF*M, the cache information is considered obsolete. In such a case,
the message is directly delivered to the home server. Using this algorithm, most
of the message forwarding can be limited to within predefined steps, and there-
fore, prevents message chasing and long chain problems in the forwarding-pointer
algorithm [21, 39, 52]. Figure 3.16 illustrates the process of message delivery in

proxy-based protocol with the limited-forwarding algorithm.

CHAPTER 3. PROXY-BASED PROTOCOL 48

Receiver's Proxy Agent Home Server Receiver's Master | Sender's Proxy Agent

’ Agent

[from outside the domain)

Update remote table

Check local table

iqratin [not in table]
Hold message [\[mlgra: ol >| Check remote table

I
[in table]
{

[not in table]
|

[no]
[active]
[yes]

Send UNAVAILABLE
Forward to receiver's proxa 4
M v 2
Forward to home server Receive UNAVAILABLE
Y

Forward to master

T Forward to proxy

Update remote table

J

Forward to receiver

(.
-

Figure 3.16: Activity Diagram for Message Delivery (from outside the domain)

3.4 Protocol Reliability

One of the goals of this thesis is to develop a reliable protocol for mobile agent
communication. This section presents the mechanisms in the proxy-based protocol
that can guarantee reliable message delivery. As discussed in section 2.2.3 , the
reliability of a communication protocol for multi-agent systems involves two issues:

(1) the vulnerability of the protocol to the failures in the distributed environment;

CHAPTER 3. PROXY-BASED PROTOCOL 49

and (2) message losses or chasing problems. A reliable communication protocol
should address both issues to guarantee that a message can be delivered successfully
to the receiver in any situation.

For the first issue, the proxy-based protocol is a little more sensitive to the
failure in the network than the home-server protocol. In addition to home-server
and master agents, the failure of proxy agents also causes communication problems
in the system. However, since the number of proxy agents is much smaller than
the total number of network nodes, the problem can be solved by using replication
to backup information for the proxy agents.

For the second issue, the home-server protocol cannot guarantee the delivery
of messages to the receiving agent even in a fault-free network environment. If
a mobile agent migrates during message forwarding, the message would be lost
forever. The proxy-based protocol solves this problem by using synchronization
messages. Let’s consider the worst case: mobile agent A sends a message m to
mobile agent B, agent B migrates to another location during the message delivery.
However, before B’s migration, B must inform its current proxy agent PB of its
intended movement and waits for the ACK_MIGRATION message. Once the proxy
agent receives the MIGRATION message, it sets B’s status to MOVING and will
not forward any message to B. There are three possible situations for m when it
arrives at PB: (1) B is moving; (2) B has reached a new location and PB holds
valid address information for B’s new location; (3) B has reached a new location
and PB no long holds cache information for B. In the first case, PB holds m until
PB receives UPDATE or DEREGISTRATION message from B. Then PB can
forward m to B’s new location. In the second situation, PB simply forwards m
to B’s new location. If B is in a new domain, the new proxy agent processes m
based on the same principles. In the third situation, PB employs the home-server

protocol and directs m to the home server. Therefore, no matter which situation

CHAPTER 3. PROXY-BASED PROTOCOL 50

holds, the proxy-based protocol can deliver a message to its destination agent in a

bounded number of hops.

Chapter 4

Simulation Model

This chapter describes a simulation model that simulates a proxy-based protocol
and a home-server protocol. The purpose of the simulation is to compare the dif-
ference in communication costs of these two protocols. The first section explains
why simulations, instead of a prototype, were used to evaluate the performance of
the proposed protocol. The supported framework for the simulation model, SSJ,
and the concept of discrete-event stochastic simulation are also introduced. The
development of the simulation model is described in depth. After that, the verifi-
cation and validation of the simulation model are discussed. The implementation

details of the simulation model are presented in the last section.

4.1 Introduction

Many mobile agent platforms, such as Aglets [1, 30], ffMain [37], Emerald [27] and
Voyager [5], have been proposed in recent years. However, these agent platforms all
use one specific protocol for agent communication. This makes the implementation
of the proposed scheme infeasible on these agent platforms. The only way to
implement the proxy-based protocol is to modify one of the agent platforms or

create a new agent platform, both of which are very time-consuming. In addition,

o1

CHAPTER 4. SIMULATION MODEL 52

due to access limitations, the implementation can only take place in a LAN setting,
which makes the measurement of large scale wide-area network communication
impossible. As a consequence, the result of such an implementation would be
far from accurate. Furthermore, implementation cannot provide easy insight into
the effects of various parameters and their interactions. First, changing system
configuration for every alternative is costly in terms of time and effort. Second,
it is impossible to create identical events for every alternative in the real world.
Therefore, it is hard to tell whether a performance change is a result of some
random effects in the environment or due to the particular configuration.

On the other hand, simulation provides a more flexible and accurate technique
for analyzing the performance of the proxy-based communication protocol for mo-
bile agents. First of all, it takes less time and effort to construct a simulation model
than to implement the protocol on an agent platform. Second, a simulation model
allows the performance of the proposed protocol to be measured under a wider
variety of workloads, network diameters, and behavior patterns of mobile agents.
Third, simulation is preferred over implementation due to its ease of changing con-
figurations. Fourth, a simulation model using control variables can eliminate the
random effect in the environment in comparison between runs involving different
configurations.

Discrete-event stochastic simulation methods [8, 32] are used to developed the
simulation model for the proposed protocol because it is hard to obtain the real
trace of a multi-agent system. The Stochastic Simulation in Java (SSJ) [33] frame-

work is used to create a home-server and a proxy-based protocol simulation model.

CHAPTER 4. SIMULATION MODEL 53
4.2 The SSJ Framework

SS5J is a general-purpose framework for simulation programming. It is implemented
as a library of classes in the Java programming language. These classes provide
tools for generating random numbers, collecting statistics, managing a simulation
clock and event list, synchronizing concurrent processes, etc. SSJ is primarily
designed for discrete-event stochastic simulations, but it also supports continuous
simulation and arbitrary mixtures of these simulations.

For the discrete-event stochastic simulations, SSJ supports both event-oriented
and process-oriented programming. An event is an incident which occurs instan-
taneously at a point in time and changes the state of the system. A subclass of
class Bvent is defined for different types of events that can occur in the simulation,
e.g., message delivery and agent migration. Each event is created with a scheduled
time of occurrence and is inserted into the event list automatically. An event is
executed when the simulation clock reaches the event’s pre-schedule time. The
Sim class is responsible for maintaining the simulation clock and the event list.

Process-oriented programming provides higher-level tools for discrete-event stochas-
tic simulations than event-oriented programming. A process is an active object
that has methods describing the succession of states of an object and its effect
on the system state over a period of time. Processes are typically implemented
as threads that can be suspended and resumed to represent the stop-start nature
of the work of a process [32]. Processes are particularly suitable for describing
autonomous entities, such as agent or robots, within an environment. However,
event-oriented programming provides better performance because it avoids the

process-synchronization overhead.

CHAPTER 4. SIMULATION MODEL 54

4.3 Simulation Model

4.3.1 The Performance Metrics

"The goal of the simulation is to provide estimation for the efficiency of the proposed
protocol. Since the communication overhead in a multi-agent system includes both
location updates and message delivery, the simulation should provide performance
metrics for both. Interest is not in absolute performance value, but rather in
relative difference in performance of the proxy-based protocol and the home-server
protocol.

The performance metrics of the simulation model are defined as follow:

o Number of the Communication Messages: the total number of message
exchanges among mobile agents during the simulation time. This metric
is used to verify whether the home-server and proxy-based protocol model

generate the same number of communication message.

e Average Delivery Time of Communication Messages: the interval
between the time the sender sends a message and the time the receiver re-
ceives the message. The execution time of a message is ignored because the

execution time is negligible compare to the transit time.

e Number of the Update Messages: the total number of update messages.
The results from home-server and proxy-based protocol are expected to be

different due to their respective update policies.

e Average Delivery Time of Update Messages: the interval between the
time a sender sends out the message and the time the receiver receives the
message. The update message is always sent to a stationary agent, which
does not involve location tracking, therefore, the results from both protocols

are expected to be similar.

CHAPTER 4. SIMULATION MODEL 55

e Total Cost: the sum of communication cost and the update cost. Com-
munication cost is equal to the number of communication messages times
the average delivery time of communication messages while the the cost of
update is equal to the number of update messages times the average delivery

time of update messages.

4.3.2 The Control Parameters

The simulation parameters include the number of computers, the number of do-
mains, the number of master agents, the number of child agents, average time in-
terval between message delivery, average time interval between agent migrations,
probability of an agent move within the same domain, forwarding factors, and

simulation stop time.

e Number of Computers: The number of computers represents the total
number of computers that the child agents can visit in the network. In this

simulation, the value of this parameter ranges from 100 to 1,000, 000.

e Number of Domains: The number of domains represents the total number
of domains in the network. In this simulation, the value of this parameter

ranges from 2 to 1, 000.

e Number of Master Agents: The number of master agents represents the
total number of master agents in the network. In this simulation, the value

of this parameter ranges from 2 to 1, 000.

e Number of Child Agents: The number of child agents represents the
total number child agents in the network. In this simulation, the value of

this parameter ranges from 10 to 3, 000.

e Average Time Interval between Message Delivery: The average time

CHAPTER 4. SIMULATION MODEL 56

interval between message delivery represents the average message generation
rate of each child agent. In this simulation, the value of this parameter ranges

from 5ms to 3,600, 000ms (1 hour).

e Average Time Interval between Agent Migrations: The average time
interval between agent migrations represents the average migration rate of
each child agent. In this simulation, the value of this parameter ranges from

60,000ms (1 minute) to 21,600,600 (6 hours).

e Probability of an Agent Move within the Same Domain: The proba-
bility of an agent move within the same domain defines the average number
of the consecutive moves of an agent in the same domain before it moves to
another domain. Let p represent the probability, 1 — p can be viewed as the
parameter for a geometric distribution with state space {1,2,...}. Therefore,

the mean number of consecutive moves in the same domain for a child agent

is 1/(1 —p).

e Forwarding Factor: The forwarding factor is used in the limited-forwarding
algorithm to define the cache available time. In this simulation, the value of
this parameter ranges from 0 to 3. When the forwarding factor is 0, there is
no forwarding strategy in the system, therefore, the system is the proxy-based

protocol without the limited-forwarding algorithm.

e Simulation Stop Time: The simulation stop time represents the length of
time that the simulation runs. To get an accurate result, the value of this
parameter should be much larger than the interval time between message

exchange and agent migration.

CHAPTER 4. SIMULATION MODEL

4.3.3 Conceptual Model

57

SimCirl
I
1 1 1
ProxySim Agent HomeSim AgentSystem
~agentld ; String Message - +numOfNode : int
+systemDeploy() -agentAddr : int -mngype.m?) +systemDeploy() +numOfDomain : int
+stopSim() -proxyld : String -sEar!AgentIl: : gtr_lng +stopSim() +numOfMaster : int
proxyAddr : int [© startProxyld : String +numOfChild : int
1 roreateMsg) 1 + [endAgentld : String] +meanMsginterval : int
-rsgDeliveryTm : int +meanMigrate : int
+handleMsg()
sendMsg() +updateMsgTm() -agentRefMap
+getAgentRef()
+addAgentRef()
+getProxyid()
+getProxyAddr(}
+isInSameDomain()
ChildAgent ProxyAgent MasterAgent HomeServer HomeMaster HomeChild
-masterld : String -localAgentTable -childAgentTable -lookupTable -childAgentTable -masterld : String
-masterAddr : int -remoteAgentTable +update() +getMasterld() +update() -masterAddr : int
-prePoxyld : String -msgQueueTable +forwardMsg() +addMasterld() +forwardMsg() +migrate()
-preProxyAddr +qryLocalAgent() +forwardMsg()
+register() +qryRemoteAgent() 1 1
+migrate() +register() 1
+deregister()
+update()
+forwardMsg() " *
+holdMsg()
+invalidate() AgentRec

1

-agentld : String
-agentAddr : int
-proxyld : String | .
-proxyAddr : int
. [|-status :int

+getAddr()
+getProxyld()
-+getProxyAddr()
+getStatus()

Figure 4.1: Class Diagram for Simulation Model

Figure 4.1 represents the class model for the simulation. At the root is the

SimCtrl class where the user specifies the control parameters and receives the

result for the simulation run. For each simulation run, a home-server and a DProxy-

based protocol are simulated under the same control parameters. HomeSim and

ProzySim classes represent the simulation control for these two protocols, respec-

tively. The Agent class is the generic class for all different types of agents in the

system. Each agent has a unique identifier and current address. An agent can

CHAPTER 4. SIMULATION MODEL 58

create certain types of messages, send messages to other agents, and process mes-
sages from other agents. Although the interfaces are similar, the master agent and
child agents in home-server and proxy-based protocol have quite different actions.
Therefore, HomeMaster class and HomeChild class are used to described these
agents in the home-server protocol while MasterAgent and ChildAgent are used in
the proxy-based protocol. Since the home server performs the same tasks in both
protocols, the HomeServer class can be used in both simulations. The ProzxyAgent
can only be used in the proxy-based protocol. The main task of a proxy agent is to
maintain the local agent table, the remote agent table and hold message table, and
to process and forward messages according to the table information and message
type. The AgentRec class describes the structure of a record that can be used by
master and proxy agents.

Figure 4.2 shows the control flow of the simulation. After the user specifies
the parameters, the system initiates the proxy-based simulation. A multi-agent
system is constructed and the initial events are defined during the child agent’s
creation. When the simulation starts, more events are added to the event list.
The Sim class manages the event list and processes events when the simulation
clock reach the schedule time. The simulation stops when the clock reaches the
pre-defined stop time. The system records the result for the proxy-based protocol
simulation and initiates the home-server simulation. The simulation goes through
the same procedure and at the end displays the results of both protocols to the
user. The user can either change the parameters and start another simulation or

exit the system.

CHAPTER 4. SIMULATION MODEL 59

?

Set parameters

Init simulation

Deploy System

Handle events

—

[time < SimStopTime]
1

[time >= SimStopTime]

[proxy-based simulation] ———
Record results

[home-server simulation]

Display result

[continue

i

[exit]

®

Figure 4.2: Simulation Control Flow

4.3.4 Initialization of the Simulation

Since the goal the simulation is to measure the communication cost, some irrelevant
activities such as agent creation and termination are not simulated in the model.
To make sure the performance metrics are collected after the system reach a steady
state, one tenth of the total simulation time is defined as the run-up period of the

simulation. All agent objects are stored in a hash map agentRefMap, the key is

CHAPTER 4. SIMULATION MODEL 60

the agent’s ID. An agent object is added to the agentRefMap upon its creation.
The underlying network model is constructed according to the number of nodes
and the number of domains specified by the user. The nodes are evenly distributed
over the whole network. For example, if the total number of nodes is 100 and the
number of domains is 10, then node0 to node9 are in domain0, and nodel0 to
nodel9 are in domainl, etc.

For each system, node0 is the default residing node for the home server. The
number of proxy agents is equal to the number of domains, which means for every
domain there is exactly one proxy agent. The first node in the domain is the default
residing node for the proxy agent. The user can define the number of master agents
and child agents in the system. There is no limitation on which node a master
agent or a child agent can reside at. For the initial deployment, master agents and
child agents are randomly distributed across the network. The master agent for a
specific child agent is also randomly chosen. The child agent must register with
the assigned master agent and proxy agent upon its creation. Figure 4.3 shows the
algorithm for the system deployment of the proxy-based protocol.

In the simulation model, all messages are considered to have equal length;
thus, the speed of delivery is the same under the same network conditions. A
domain is viewed as a local area network. Generally, the end-to-end delay in a
local area network ranges from 1ms to 10ms. Here, the average value 5ms is used
as the intra-domain message delivery time. The inter-domain communication is
considered as network traffic in a wide area network. The inter-domain message
delivery time is defined as 150ms, which is the maximum one-way delay acceptable

for IP telephony applications [3].

CHAPTER 4. SIMULATION MODEL 61

/*

Variable

nun0fNode: The number of nodes in the network
num0fDomain: The number of domain in the network
numQfMaster: The number of master agents in the system
numDfChild: The number of child agents in the system

numPerDomain: The number of nodes in each domain
HomeServer: Home server for the system
Proxy_i: Proxy agent in domain i
Master_i: The #i master agent
Child_i: The #i child agent
NewRec: A new record in table
agentId, agentAddr: Attributes of Agents
*/
SystemDeploy() operationms:

nunPerDomain = ceil (num0fNode/numOfDomain);
HomeServer = NEW HomeServer();
HomeServer.agentId = "HOME";
Homeserver.agentAddr = 0;

FOR(i = 0;i < numOfDomain; i++)
Proxy i = NEW ProxyAgent();

Proxy_i.agentId = "Proxy"+i;
Proxy_i.agentAddr = i*numPerDomain+1;
END{FOR}

FOR(i = 0; i < numOfMaster; i++)
Master_i = NEW MasterAgent();

Master_i.agentId = "Master"+i;
Master_i.agentAddr = genUniformRan(1,numOfNode) ;
END{FOR}

FOR(i = 0; i <, numOfChild; i++
Child_i = NEW ChildAgent();
Child_i.agentId = "Child"+i;
Child_i.agentAddr = genUniformRan(1,num0fNode);
Child_i.proxyld = "Proxy"+getDomainNum(Child_i.agentAddr);
Child_i.proxyAddr = getDomainNum(Child_i.agentAddr) *numPerDomain+1;
Child_i.masterId = "Master'"+genUniformRan(0,num0fMaster) ;
Child_i.masterAddr = getAgentRef (Child_i.masterId).agentAddr;
HomeServer.addMasterId(Child_i.agentId, Child_i.masterId);
NewRec = NEW AgentRec();
NewRec.agentId = Child_i.agentId;
NewRec.agentAddr = Child_i.agentAddr;
NewRec.masterId = Child_i.masterId;
NewRec.Proxyld = Child_i.proxyId;
getAgentRef (Child_i.masterid) .addChildAgent (Child_i.agentId,NewRec);
getAgentRef (Child_i.proxyld) .addLocalAgent (Child_i.agentId,NewRec) ;
END{FOR}

END SystemDeploy()

Figure 4.3: Algorithm for System Deployment

CHAPTER 4. SIMULATION MODEL 62

4.3.5 Generation of Events

At first sight, process-oriented programming seems to be the natural way for con-
structing such a complex simulation model with a large number of autonomous
entities. However, the Process class in SSJ is implemented with the Java Thread
class. In the current Java environment, the time required for the creation of a new
thread is almost equivalent to that of creating 100 objects [33]. SSJ employs the
thread pool [26] technique to improve efficiency. When a process finishes all its
activities, its associated thread object is put on a stack of free threads. A new
process can reuse one of these free threads when the stack is not empty. However,
the simulation model for a communication protocol cannot gain any benefit from
this technique because an agent will not end its life until the simulation stops.
This means the thread pool is always empty and a new thread object has to be
created for every new agent object. For a system with a large number of agents,
the use of Process will cause a significant performance penalty.

On the other hand, only two types of events will change the state of the system.
The first is the message delivery and the second is agent migration. It is fairly easy
to construct MessageEvent and MigrationEvent classes for these two events by ex-
tending the Event class in SSJ. The random number streams genMsg and genlove
are the random number generators used to generate the times between successive
message delivery and agent migration, respectively. The average interval between 2
consecutive message deliveries originating from one agent and the average interval
between 2 consecutive migrations of a child agent are defined by the users. These
two random variables are considered exponentially distributed [32]. The first event
of each type is scheduled during agent creation. The action method in each event
schedules the next event. Figure 4.4 and Figure 4.5 show the algorithms for these

two events.

CHAPTER 4. SIMULATION MODEL

/* Variable
meanMsgTm: The average interval between 2 consecutive message delivery
MSG_COMMUNICATION: Constant for normal message type

nextDeliverTm: The time for next Message delivery
msg: Normal message;

type, endAgentId: Attributes of message

proxyId: Attributes of Agent

*/

MessageEvent() operation:

nextDeliverTm = genExponentialRan(meanMsgTm) ;
schedulNextMessage (nextDeliverTm) ;

msg = creageMsg();

msg.type = MSG_COMMUNICATION;

msg.endAgentId = "Child"+genNewId();

sendMsg (mgrMsg, proxyId)

End MessageEvent ()

Figure 4.4: Algorithm for Message Delivery Event

/* Variable
meanMigrateTm: The average interval between 2 consecutive migration
MSG_MIGRATION: Constant for migration message type

nextMigrateTm: The time for next migration
newAddr: The destination for migration
migMsg: Migration message;

type, endAgentId: Attributes of message
proxyld: Attributes of Agent

*/

MigrationEvent() operation:

nextMigrateTm = genExponentialRan(meanMigrateTm);
schedulNextMigrate (nextMigrateTn) ;

newAddr = genNewAddr();

migMsg = creageMsg();

migMsg.type = MSG_MIGRATION;

migMsg.endAgentId = proxyld;

sendMsg (mgrMsg, proxyIld)

move (newAddr) ;

End MigrationEvent()

Figure 4.5: Algorithm for Agent Migration Event

CHAPTER 4. SIMULATION MODEL 64
4.4 Verification and Validation

In this research, the major technique that is used to verify the simulation model
is a debug trace. For the two major events Message Delivery and Migration, the
state of the simulated system are printed out during debugging at each event
occurrence. For agent migration, the agent’s original address, new address, the
updates of remote agent and local agent tables of relative proxy agents and the
updates of the master agent are reported. For message delivery, the initial time,
the delivery path, and the updates of remote agent and local agent tables are
reported. Figure 4.6 shows part of a trace file. These traces indicate that the

program is operating as intended.

CHAPTER 4. SIMULATION MODEL 65

ID=HOME ADDR=0
ID=Proxy0 ADDR=1
ID=Proxyl ADDR=11

ID=Master0 ADDR=13
ID=Masterl ADDR=32

ID=Child0 ADDR=82 Proxyld=Proxy8 proxyAddr=81 masterId=Master(masterAddr=13
Schedule at0.0
ID=Childl ADDR=53 Proxyld=Proxy5 proxyAddr=51 masterId=Masterl masterAddr=32
Schedule at0.0

Send message from Child0 to Proxy8 end agent=Childi5 at time 0.0
Send message from Proxy8 to HOME end agent=Child15

Send message from HOME to Masterl end agent=Childis

Send message from Masterl to Proxy7 end agent=Childib

Proxy7 receive message from Child0

Send message from Proxy7 to Childl5 end agent=Child15

Child15 receive message distance= 460

Child28 migrate from 63 to 38 at 57.55108137305862
Child28 enters new domain Proxy3

Child28 send REGISTRATION Proxy3

Send message from Child28 to Proxy3 end agent=Proxy3
Proxy3 updates local table Child28:38

Proxy3 sends UPDATE to Masteril

Send message from Proxy3 to Masterl end agent=Masterl
Masterl updates child table Child28:Proxy3

Send message from Proxy3 to Proxy6 end agent=Proxy6
Proxy6 del local table Child28

Proxy6 add remote table Child28:Proxy3

Figure 4.6: Trace File Sample

Another issue in the simulation verification is to verify the seed independence.
Seed independence means the seed value used to initialize the random-number
generation should not affect the final results. Thus, the model should produce

similar results for different seed values [29]. To verify this, three simulation cases

CHAPTER 4. SIMULATION MODEL 66

are run with four different seed values. In the first case, the value of control
parameters are set to 5 percentile of the range. In the second case, the value of
control parameters are set to 50 percentile of the range. In the third case, the
value of control parameters are set to 95 percentile of the range.

Table 4.1 and Table 4.2 summaries the simulation results. The MazDiff row
represents the maximum difference between results of the same simulation case
with different seeds. Since all the maximum difference is less than 1%, we can
safely conclude that the selection of seeds does not affect the simulation result and

the difference between simulation runs is due to different configurations.

Case 1 Case 2 Case 2
Home | Proxy | Home | Proxy | Home [Proxy
Seed 1 | 446.99 | 454.86 | 449.80 | 454.64 | 449.88 | 456.03
Seed 2 | 446.58 | 456.07 | 449.84 | 454.85 | 449.83 | 456.27
Seed 3 | 447.35 | 455.85 | 449.92 | 454.13 | 449.94 | 456.33
Seed 4 | 446.92 | 456.57 | 449.45 | 454.38 | 449.78 | 455.88
MaxDiff | 0.17% | 0.38% | 0.1% | 0.16% | 0.04% | 0.01%

Table 4.1: Mean Message Delivery Cost for Simulations with Different Seeds

Case 1 Case 2 Case 2
Home | Proxy | Home | Proxy | Home | Proxy
Seed 1 1.62E7 | 1.72E7 | 1.54E7 | 1.56E7 | 1.53E7 | 1.48E7
Seed 2 | 1.62E7 | 1.72E7 | 1.55E7 | 1.57E7 | 1.54E7 | 1.49E7
Seed 3 | 1.62E7 | 1.72E7 | 1.55E7 | 1.56E7 | 1.54E7 | 1.49E7
Seed 4 | 1.61E7 | 1.71E7 | 1.54E7 | 1.56E7 | 1.53E7 | 1.48E7
MaxDiff | 0.62% | 0.58% | 0.64% | 0.64% | 0.66% | 0.46%

Table 4.2: Total Communication Cost for Simulations with Different Seeds

It is relatively easy to validate the home-server protocol. As discussed in Section
2.3.1, the maximum time for message delivery time will not exceed 3 * 150ms =
450ms because of the triangular delivery path. And in most cases, the delivery
time is close to 450ms because the home server, master agent and child agent

usually do not reside in the same domain. The simulation results confirm this

CHAPTER 4. SIMULATION MODEL 67

theory by showing that none of the simulation runs generates average delivery
time for communication messages that is greater than 450ms and in most of the
runs it is close to 450ms. Another result that confirms the validity of the model is
the average delivery time of the update message which is close to 150ms in most
of the cases.

On the other hand, there is no existing theory that can be used to validate
the proxy-based protocol. The only validation we can have from the simulation
results is that the number of communication messages is the same in both protocols
and the average delivery time of the update message is close to 150ms. Another
proof is that, unlike the home-server protocol, the average message delivery time
of communication messages of the proxy-based protocol is not stable. The value
of the delivery time varies in different settings. This result indicates the influence

of the proxy agents. Further data analysis is shown in Chapter 5.

4.5 Implementation

The simulation model is developed in Java 2 SDK and can be run on any Win-
dows platform with Java 2 Runtime Environment installed. Figure 4.7 shows the
graphic interface for the the simulation model. The interface allows users to define
the control parameters, such as number of computers, number of child agents, av-
erage time interval between messages delivery and simulation stop time, etc. After
defining all the parameters, the user can run the simulation by pressing the Run
Simulation button.

Figure 4.8 is the report windows of the simulation which shows five different

performance metrics for both protocols.

CHAPTER 4. SIMULATION MODEL

68

Figure 4.7: Simulation Input Window

Number of Message Delivery 266.0 266.0

Mean Message Deliver Time 96.84210526315789 379.68045112781954
Number of Update Messages 36.0 27.0

Mean Update:Message Deliver Time 125.83333333333333 85.55555555555556
Total cost _ [302d0.0 1033050 N

Figure 4.8: Simulation Output Window

CHAPTER 4. SIMULATION MODEL 69

A user can also use the batch function of the simulation model. When the
batch check box is selected, the user can only enter the input file name. Figure 4.9

shows the format of an input file for the simulation.

0.05 0.95 0.05 0.95 0.05 0.95 0 0.05
0.05 0.05 0.95 0.05 0.95 0.95 0 0.05
0.95 0.05 0.95 0.05 0.05 0.05 0 0.95
0.05 0.05 0.05 0.05 0.05 0.05 0 0.95
0.95 0.05 0.05 0.95 0.05 0.95 0 0.05

Figure 4.9: Simulation Input Quantile File

Each row in the file represents the parameters for one simulation run. The
simulation stops on reaching the end of the file. The order of the parameter is
the same as shown on the input screen, number of computers, number of domains,
number of master agents, number of child agents, average time interval between
messages delivery, average time interval between agent migrations, forwarding fac-
tors and probability of an agent move within the same domain. The number in the
input file represents the quantile of the parameter distribution. All these param-
eters are considered uniformly distributed between their minimum possible value
and maximum possible value. The simulation model translates the quantile to the
actual value. For example, the value of number of computers is between 100 and
1,000, 000. If the value in the input file is 0.05 for the parameter, then the actual

value is the 5 percentile of the range:
100 + (4nt)(0.05 * (1000000 — 100 + 1)) = 950005

For the batch function, the default simulation time is 43200000ms (12 hrs).

The output results are recorded in file homeSim.out and przoySim.out. Fig-
ure 4.10 shows the format of the prozySim.out file. The format of the homeSim.out
is similar except it does not include forwarding factor.

Each row represents the control parameters and five performance metrics for

the proxy-based protocol in one simulation run. Notice the value of a control

CHAPTER 4. SIMULATION MODEL 70

________ Control Parameters Performance Metrics________
950005 951 51 2851 180004 20523000 0 0.95 614342 412.76 552 150 2.54E+08
50095 51 51 2851 180004 20523000 0 0.95 614342 205.16 724 148.59 1.26E+08
950005 51 51 2851 3420001 1137000 O 0.05 32082 490.32 184674 148.56 4.32FE+07
950005 951 51 2851 180004 1137000 0 0.05 615128 476.66 185362 149.92 3.21FE+08

50095 951 51 159 180004 20523000 0 0.95 34422 302.85 38 150 1.04E+07

Figure 4.10: Output File

parameter in the output file is the actual value instead of the quantile value in
the input file. The batch function allows the model to run multiple simulations

automatically without user interference.

Chapter 5

Data Analysis

This chapter shows the analysis result of the output data from the simulation
model. The basic proxy-based protocol and proxy-based protocol with limited-
forwarding algorithm are analyzed independently. A sensitivity analysis is per-

formed for the basic proxy-based protocol.

5.1 Basic Proxy-Based Protocol

5.1.1 Experimental Design

Experimental design provides a useful technique for measuring the effect of different
factors on a system’s performance. A well-designed experiment can offer maximum
information with minimum cost. Also, experimental design helps in identifying
factors that have significant effect on performance [29]. In this study, a two level
full factorial design is used to determine the effect of 7 factors (forwarding factor
is set to 0), each of which has two alternative levels. Therefore, the number of
simulation runs is 128. This design can estimate not only additive effects for each
factor but also the effects of pair-wise interactions between factors.

Traditionally, the 2 level in the factorial design are labelled -1 and 1. The

71

CHAPTER 5.

DATA ANALYSIS

72

values of these two levels are decided by the parameter distribution. Table 5.1

summarizes the distribution information for the parameters.

Variable | Meaning Distribution | Min Max
NUMCMP | Number of computers Uniform 100 1,000, 000
NUMDMN | Number of domains Uniform 2 1,000
NUMMST | Number of master agents Uniform 2 1,000
NUMCHD | Number of child agents Uniform 10 3,000
INTMSG | Average time interval be- Uniform 5 ms 3,600,000 ms
tween messages delivery (=1 hr)
INTMIG | Average time interval be- Uniform 60,000 ms | 21,600,000
tween agent migrations (=1 min) ms (=6 hrs)
PSTAY | Probability of an agent Uniform 0 1
move within the same do-
main

Table 5.1: Distribution for Factors

The simplest way is to assign the minimum value to the -1 level and the maxi-

mum value to the 1 level. However, by doing this, we only simulate some extreme

cases that are very unlikely to happen in real world. For example, at the ex-

tremes for the PSTAY variable, we either have child agents that always move in

the same domain (PSTAY=1) or child agents that always move to another do-

main (PSTAY=0). To solve this problem, 0.05 and 0.95 quantile values in the

parameter distribution for the two levels are used. Table 5.2 shows the values of

different factors.

Factor Level -1 Level 1
NUMCMP (A) 50095 950005
NUMDMN (B) 51 951
NUMMST (C) 51 951
NUMCHD (D) 159 9851
INTMSG (E) 180004 ms (=~ 3 mins) | 3420001 ms (~ 57 mins)
INTMIG (F) | 1137000 ms (~ 19 mins) | 20523000 ms (~ 5.7 hrs)
PSTAY (Q) 0.05 0.95

Table 5.2: Factors and Levels

CHAPTER 5. DATA ANALYSIS 73

5.1.2 Statistical Analysis

To give a more intuitive view, I transform the output metric. Instead of using the
direct result of the average delivery time of a communication message, I calculate
the relative difference between the two protocols. Let C,(D) represents the average
delivery time of a communication message in the proxy-based protocol, and Cr(D)
represents the average delivery time of a communication message in the home-

server protocol. I define the difference of the delivery time as:

Cr(D) — Gy(D)
Cw(D)

Dy = * 100%

D, represents the relative difference between two protocol in each runs. Dy > 0

indicates that the proxy-based protocol performs better than home-server protocol.

Figure 5.1: The Difference of Average Delivery Time of Communication Messages

between Two Protocols

Figure 5.1 shows the statistical result of D, for a total of 128 runs. 52 out of 128

CHAPTER 5. DATA ANALYSIS 74

runs are between —10% and 0%, 38 out of 128 are between 0% and 10%, and 38
out of 128 are greater than 10%. Therefore, in about 60% of the simulation runs,
the proxy-based protocol decreases the message delivery time. On a closer look at
the data, the worst case is Dy = —9.71% and the best case is Dy = 55.32%. This
shows that, although the proxy-based protocol does not always guarantee better
performance for message delivery, it only slightly increases the cost in the worst
case. On the other hand, in about 30% of the simulation runs, the proxy-based
protocol significantly decreases the delivery cost (Dy > 10%).

In a similar manner, I use the relative difference of the total cost between two
protocols to report the result. Let C,(T) represent the total cost for the proxy-
based protocol, and C,(T') represent total cost for the home-server protocol. I

define the difference of the metric as:

Cr(T) — Cp(T)

D) * 100%

Dt:

Figure 5.2 shows the statistical result of D; for a total of 128 runs. 20 results are
between —50% and —30%, 26 are between —10% and 0%, 22 are between 0% and
10% , 16 are between 10% and 20%, and 44 are greater than 20%. Therefore, in
about 64% of the simulation runs, the proxy-based protocol decreases the total cost
for communication, which is almost the same as the result for the message delivery.
However, comparing Figure 5.2 with Figure 5.1, we can see the distribution has
changed. The difference in these two protocols has increased, both in a positive
and negative way. The worst case now is D; = —~51.06% and 16 out of 128 runs
are with D, < —30%. At the same time, 40 out of 128 runs are with D; > 30%.
The larger differences indicate that the update cost has a big impact on the total
communication cost. This also means we have to carefully choose the protocol to

use in different conditions because the proxy-based protocol can increase the total

communication cost significantly.

CHAPTER 5. DATA ANALYSIS 75

Figure 5.2: The Difference of Total Cost between Two Protocols

5.1.3 Sensitivity Analysis

To get further information on the protocol performance, I perform a sensitivity
analysis on the simulation results. The goal of sensitivity analysis is to estimate the
variation in the output of the simulation model with respect to different sources of
variation [49]. The sensitivity analysis performed here is based on the parameter
ranges defined in the previous section. If the ranges of the parameters change,
the result of the sensitivity analysis might change as well. However, since the
ranges of the simulation parameters are large enough to cover most situations in
the real world, this sensitivity analysis can still provide useful information of the
relationships between the input and output flow of the model.

A statistical procedure called Analysis of Variance (ANOVA) is used to mea-
sure the relative significance of various factors. The idea is to use variance as an

indicator of importance for input factors. Table 5.3 and 5.4 are the results of the

CHAPTER 5. DATA ANALYSIS

most important factors (contribution > 10%) for D, and D.

Factor Coefficient | Contribution (percent)
INTMSG (E) | -0.83597E-008 29.59
NUMDMN (B) | -2.84115E-004 13.96
INTMIG (F) | +6.95185E-009 13.38
PSTAY (G)) +0.14085 11.84

Table 5.3: Analysis of Variance (ANOVA) Results for D,

Factor Coefficient | Contribution (percent)
PSTAY (G)) +0.57063 40.90
INTMIG x PSTAY (FG) | -2.93131E-008 17.95
INTMSG (E) -1.09208E-007 10.50

Table 5.4: Analysis of Variance (ANOVA) Results for D,

The Cost of Message Delivery

From the analysis result of the Dy, we can see the most important factor for the
cost of message delivery is the the average time interval between message delivery.
About 30% of the output variation is due to this factor. The coefficient of the factor
shows that the smaller the value, the better the performance of the proxy-based
protocol over the home-server protocol in terms of the cost of message delivery.
This result agrees with the protocol design. Since the cache information is collected
from the incoming messages, the more frequent the message exchanges occur, the
more accurate the cache information is.

Variable NUMDMN, the number of domains, contributes about 14% in the
variation of the output. The coefficient of the factor shows the smaller the value,
the better the performance of the proxy-based protocol over the home-server pro-
tocol in terms of the cost of message delivery. This also agrees with the protocol
design; when the number of domains is lower, it is more likely that the receiver’s

information can be found in the cache information.

CHAPTER 5. DATA ANALYSIS 77

The average time interval between agent migrations has almost the same con-
tribution to the output variation as variable NUMDMN. The coefficient of the
factor shows the larger the value, the better the performance of the proxy-based
protocol over the home-server protocol. The result is reasonable because the cache
information is valid until the receiver moves to a new location. The longer an agent
stays in one location, the more efficient the cache information is.

Variable PSTAY, the probability of an agent move staying within the same
domain, contributes about 12% to the variation of the output. The coefficient of
the factor shows the larger the value, the better the performance of the proxy-based
protocol over the home-server protocol in terms of the cost of message delivery.
This result agrees with the protocol design because as long as an agent moves
within the same domain, its address remains the same to other agents outside
the domain which means other agents can still use the cache information to send

messages to it.

The Total Cost

From the analysis result of the D;, we can see the most important factor for the
total communication cost is the probability of an agent move staying within the
same domain. About 41% of the output uncertainty is due to this factor. The
coefficient of the factor shows that the larger the value, the better the performance
of the proxy-based protocol than the home-server protocol. This shows that the
update cost plays an important role in the total communication cost. In the proxy-
based protocol, a mobile agent need not send update messages to the master agent
and home server until it moves to a different domain. However, when the mobile
agent moves to a new domain, it also has to send an update message to its former
proxy agent. Therefore, if an agent keeps moving to different domains, it will

send more update messages in the proxy-based protocol than in the home-server

CHAPTER 5. DATA ANALYSIS 78

protocol. As a consequence, the proxy-based protocol can increase the update cost
significantly, which in turn affects the total communication cost.

The interaction of variables INTMIG and PSTAY, designated FG, is the second
most important factor. The interaction contributes about 18% to the output un-
certainty. The coefficient of the factor shows that the smaller the value, the better
the performance of the proxy-based protocol than the home-server protocol. This
result means that effect of FG is less than the sum of F and G (i.e. F and G are
not addition), which is probably due to the different update policy of these two
protocols. When the PSTAY value is large, the more frequent an agent moves, the
more efficient the proxy-based protocol than the home-server protocol in terms
of the update cost. On the contrary, when the PSTAY value is small, the more
frequent an agent moves, the higher the update cost of the proxy-based protocol
than the home-server protocol. This result also explains why in some cases D, is
much higher than Dy while in some cases D; is much lower than D,.

The variable INTMSG, contributes about 11% to the output variation. The
coefficient of the factor shows that the smaller the value, the better the performance
of the proxy based protocol than the home-server protocol. This result is consistent

with the analysis of D,.

Summary

The sensitivity analysis shows some surprising results. The number of the comput-
ers, master agents and child agents are not important factors in the performance
comparison between the two protocols. On the other hand, the communication
and migration pattern of agents, and the number of domains are more important
in the performance comparison. Both analyses show that the proxy-based proto-
col performs better than the home-server protocol in agent systems with frequent

message exchanges. This is a good sign because one of the research goals is to

CHAPTER 5. DATA ANALYSIS 79

develop a communication protocol for multi-agent systems with frequent message
exchanges.

The analysis of D, shows the proxy-based protocol is more suitable for highly-
dynamic agent systems as long as the value of PSTAY is high. This indicates
that we should consider both migration rate and migration patterns of agents
when deciding whether to use the proxy-based protocol. At first, it seems the high
PSTAY value limits the use of the proxy-based protocol in the real world. However,
in the simulation model, the movement of a child agent is totally random while
in the real world a mobile agent usually moves within certain areas. Therefore, a
high PSTAY value is not hard to achieved in a distributed application based on
mobile agent technology.

The analysis of Dy shows when the number of domains is high, the proxy-
based protocol might perform worse than the home-server protocol. This is a
bad sign because it may indicate the proxy-based cannot perform well in large-
scale network. To investigate the scalability of the protocol, a simulation was
conducted to evaluate the performance of the proxy-based protocol in different
network ranges. In this simulation, variables INTMIG and INTMSG are set to
the low (0.05 quantile) value to simulate a highly-dynamic agent systems with
frequent message exchanges. The unimportant factors are set to medium (0.5
quantile) values. The variable PSTAY is set to different values to simulate different
migration patterns.

Figure 5.3 shows the results of the simulation with PSTAY= 0.05 which means
that an agent almost always moves to a new domain. In this situation, no matter
how small the number of domains is, the proxy-based protocol always performs
worse than the home-server protocol. Surprisingly, the difference between the
two protocols does not simply become larger as the number of domains increases.

The worst performance happens when the domain number equals 251; the proxy-

CHAPTER 5. DATA ANALYSIS 80

Figure 5.3: Cost Difference between Two Protocols versus Number of Domains.

PSTAY = 0.05

based protocol increases total communication cost by about 15% over that of the
home-server protocol. When the domain number is larger than 251, the difference
between the two protocols becomes smaller.

Figure 5.4 shows the results of the simulation with PSTAY = 0.95 which means
the average consecutive moves of an agent with one domain is 20. In this situation,
all the cases show that performance of the proxy-based protocol is better than the
home-server protocol although the difference of the communication cost becomes
smaller as the number of domains increases. The result also matches the sensitivity
analysis; the migration patterns of the agent system have more important impact
than the network scale. The proxy-based protocol can perform well in large-scale
networks when the mobile agents satisfy certain migration patterns. On the other

hand, the home-server protocol is preferable even in small-scale networks where

CHAPTER 5. DATA ANALYSIS 81

Figure 5.4: Cost Difference between Two Protocols versus Number of Domains.

PSTAY = 0.95

the migration patterns are totally random.

5.2 The Limited-Forwarding Algorithm

5.2.1 Experimental Design

In this section, simulations are conducted to investigate the impact of the limited
forwarding algorithm on the proxy-based protocol. Here, unlike in the previous
section, the focus of the simulation is on the agent system with frequent message
changes which means the value of the time interval between message exchange is
set to low. The values of unimportant factors, such as the number of computers,
master agents and child agents, are set to 50 percentile of their ranges. The other

three important factors, NUMDMN, INTMIG and PSTAY, have two alternative

CHAPTER 5. DATA ANALYSIS 82

values: the 5 percentile and 95 percentile of their ranges. All combinations of
these three factors are simulated with different factors. Therefore, there is a total
of 8 sets of simulations, each set has 20 runs where each run simulates a different
forwarding factor. When the value of the forwarding factor is 0, the protocol is
equal to the basic proxy-based protocol. From the results of simulation, we can

see the impact of the limited forwarding algorithm in different situations.

5.2.2 Simulation Results

Figure 5.5: Cost Difference between Two Protocols versus Forwarding Factor.

NUMDMN = High, INTMIG = Low, PSTAY = High

Figure 5.5 shows the Dy and D of a highly-dynamic agent system with high
probability of an agent move within the same domain in a large-scale network. We
can see the proxy-based protocol becomes more efficient as the forwarding factor

increases. Both Dy and D; improve about 3% when the forwarding factor increases

CHAPTER 5. DATA ANALYSIS 83

from 0 to 3.

Figure 5.6: Cost Difference between Two Protocols versus Forwarding Factor.

NUMDMN = Low, INTMIG = Low, PSTAY = HIGH

Figure 5.6 shows the Dy and D; of a highly-dynamic agent system with high
probability of an agent move within the same domain in a small-scale network.
We can see the impact of the limited forwarding algorithm is more obvious in this
scenario than the previous scenario. Both Dy and D; improve about 12% when the
forwarding factor increases from 0 to 3 with most of the improvement occurring

by FF=1.5.

CHAPTER 5. DATA ANALYSIS 84

Figure 5.7: Cost Difference between Two Protocols. NUMDMN = High, INTMIG
= Low, PSTAY = Low

Figure 5.7 shows the Dy and D, of a highly-dynamic agent system with low
probability of an agent move within the same domain in a large-scale network. We
can see the limited forwarding algorithm does not have significant impact on the
proxy-based protocol. The Dy and D; values are almost the same with different

forwarding factor.

CHAPTER 5. DATA ANALYSIS 85

Figure 5.8: Cost Difference between Two Protocols. NUMDMN = Low, INTMIG
= Low, PSTAY = Low

Figure 5.8 shows the Dy and D, of a highly-dynamic agent system with low
probability of an agent move within the same domain in a small-scale network. We
can see the limited forwarding algorithm works very well in this scenario. Both
Dy and D; improve about 18% when the forwarding factor increases from 0 to 3.
The proxy-based protocol performs worse than the home-server protocol when the
forwarding factor is less than 1, but when the forwarding factor is larger than 1,
the performance of the proxy-based protocol becomes better than the home-server

protocol.

CHAPTER 5. DATA ANALYSIS 86

Figure 5.9: Cost Difference between Two Protocols. NUMDMN = High, INTMIG
= High, PSTAY = High

Figure 5.9 shows the Dy and D; of a relatively stable agent system with high
probability of an agent move within the same domain in a large-scale network. We
can see the limited forwarding algorithm only slightly improves the performance
of the proxy-based protocol. Both Dy and D, improve about 0.5% when the

forwarding factor increases from 0 to 3.

CHAPTER 5. DATA ANALYSIS 87

Figure 5.10: Cost Difference between Two Protocols. NUMDMN = Low, INTMIG
= High, PSTAY = High

Figure 5.10 shows the Dy and D; of a relatively stable agent system with high
probability of an agent move within the same domain in a small-scale network.
Same as the previous scenario, the limited forwarding algorithm only slightly im-
proves the performance of the proxy-based protocol. Both Dy and D, improve

about 1% when the forwarding factor increases from 0 to 3.

CHAPTER 5. DATA ANALYSIS 88

Figure 5.11: Cost Difference between Two Protocols. NUMDMN = High, INTMIG
= High, PSTAY = Low

Figure 5.11 shows the Dy and D, of a relatively stable agent system with low
probability of an agent move within the same domain in a large-scale network. The
limited forwarding algorithm helps to improve the performance of proxy-based pro-
tocol to a certain degree. Both D, and D, improve about 3% when the forwarding

factor increases from 0 to 3.

CHAPTER 5. DATA ANALYSIS 89

Figure 5.12: Cost Difference between Two Protocols. NUMDMN = Low, INTMIG
= High, PSTAY = Low

Figure 5.12 shows the Dy and D; of a relatively stable agent system with low
probability of an agent move within the same domain in a small-scale network. We
can see the limited forwarding algorithm works quite well in this scenario. Both

D4 and D, improve about 10% when the forwarding factor increases from 0 to 3.

CHAPTER 5. DATA ANALYSIS 90

5.2.3 Summary

Overall, the limited forwarding algorithm helps to improve the performance of
the proxy-based protocol. The worst we can get is no improvement at all but the
algorithm would not worsen the performance. In some cases, when the basic proxy-
based protocol is not suitable, the proxy-based with limited forwarding algorithm
performs better than the home-server protocol. In most cases, the performance
improves as the forwarding factor increases which means the proxy-based protocol
reaches best performance when the forwarding factor is 3. On the other hand, we
can see the performance become stable when the forwarding factor reaches about
2. Usually, there is no significant difference between the protocols with forwarding

factor 2 or 3. Therefore, the forwarding factor can use any value between 2 and 3.

Chapter 6

Conclusion

6.1 Summary and Contributions

The primary result of this research is a new communication protocol that supports
efficient location tracking and inter-agent communication in large-scale multi-agent
systems. Mobile agent systems present several challenges to distributed application
due to code mobility. Previous research have solved the location transparency
problem, but some problems, such as efficiency, reliability and scalability, etc.,
remained unsolved. The new proxy-based communication protocol described in
this thesis uses the concept of proxy agents to reduce communication cost and
guarantee reliable message delivery. The significant contributions of this thesis are
summarized below.

First, this thesis introduces a proxy-based communication protocol that is capa-
ble of supporting efficient and reliable message delivery in mobile agent systems.
The system architecture and functionality of its components are presented and
algorithms for system operations are discussed in detail.

Secondly, on top of the basic proxy-based protocol, a limited-forwarding algo-

rithm is developed to further improve the performance of the protocol. Using this

91

CHAPTER 6. CONCLUSION 92

algorithm, the proxy agent can determine whether to forward the message to the
cached location or to the home server based on the receiver’s migration frequency.
And by limiting the forwarding steps, the algorithm prevents message chasing and
long chain problems that arise in previous forwarding-pointer schemes.

Thirdly, a comprehensive simulation model is developed to simulated both
home-server and proxy-based protocol. The model can simulate these two proto-
cols under a wide variety of workloads, network diameters, and behavior patterns
of mobile agents; therefore, it provides a good insight into the performance of the
protocols in different environments. The simulation results can be sent not only
to a graphical user interface but also to an output file which provides a foundation
for further data analysis.

Finally, this research provides an in-depth data analysis for the simulation
results. For the basic proxy-based protocol, a statistical analysis is used to presents
the overall effectiveness of the the proxy-based protocol in terms of performance.
In addition, a sensitivity analysis is used to provide further insights for the proxy
performance. Important factors are identified and the interpretation of the impact
of these factor are given. For the proxy-based protocol with limited-forwarding
algorithm, different parameter sets are used to evaluate the performance of the
algorithm. The results prove that the limited-forwarding algorithm is able to

improve the performance of the proxy-based protocol in most cases.

6.2 Future Work

This section outlines the future research work on the communication protocol for
multi-agent systems as an extension of the research in this thesis. The following
content will address briefly some of the research problems that remain unsolved in

this research.

CHAPTER 6. CONCLUSION 93

e Mobile agent systems raise several security issues, such as the authentication
of the user, restriction of the user’s access and virus detection [16]. Secu-
rity is a significant concern in electronic commerce in which two parties can
conclude a trading contract without prior acknowledgement. The protocol
presented in this research uses proxy agents as agent registration and message
exchange centers, which provides certain degrees of security control. Based
on the proxy-based protocol, further work can be done to resolve the security

issues raised by mobile agents.

e In this research, the proxy-based protocol is assumed to be used in absolute
reliable networks and multi-agent systems. Since such assumptions are not
valid in the real World, future research should focus on improving the robust-
ness of the proxy-based protocol. Different algorithms should be developed

to deal with problems such as network failure, agent failure and message loss.

e The analysis results in Chapter 5 indicates that the update cost of the pro-
tocol changes more dramatically than the message delivery cost in different
environments, which in turn causes significant communication overhead in
some cases. 'The limited-forwarding algorithm only decreases the message
delivery cost and has no effect on the update cost. Therefore, more research
needs to be done to reduce the communication overhead caused by mobil-
ity management. The dU — SSM scheme, an optimal location update and
searching algorithm for tracking mobile agents [34], can be considered in the
proxy-based protocol to minimize the location update cost. However, to use
the algorithm, the architecture of the proposed protocol must be altered and

further simulation must be performed to prove the efficiency of the algorithm.

e The sensitivity analysis shows that the migration pattern of the mobile agents

is the most important factor for the effectiveness of the protocol. However,

CHAPTER 6. CONCLUSION 94

to simplify the simulation model, only one parameter, the probability of an
agent move within the same domain, is used to describe the migration pat-
tern. Therefore, the simulation model does not capture all the characteristics
of the migration patterns. To get more accurate evaluation, further research
can be done to perfect the simulation model by adding more migration pa-

rameters.

e In this research, the simulation model is temporal and spatial homogene-
ity (i.e. all agents have the same delivery and migration patterns). To get
more accurate results, agents with various delivery and migration patterns
can be used in future simulation model to simulate a more realistic multi-

agent system.

References

[1] IBM Official Aglets Homepage. http: //www.trl.ibm.com.jp/aglets.

[2] “IP Mobility Support”. Technical Report RFC2002, Network Working Group,
1996.

[3] ITU G.114: One-way Transmission Time. International Telecommunication

Union, February 1996. Geneva, Switzerland.

[4] Distributed Computing Overview. Technical Report, QUOIN Inc., 1208 Mas-

sachusetts Ave., Suit 3, Cambridge, Massachusetts, 1998.
[5] The ObjectSpace Voyager Universal ORB, 1999.

[6] E. Ariwa, M. Senousy, and M. M. Gaber. “Facilities Management and
E-business Model Application for Distributed Data Mining using Mobile
Agents”. The International Journal of Applied Marketing, 2(1), 2003.

[7] Baruch Awerbuch and David Peleg. “Online Tracking of Mobile Users”. Jour-
nal of the ACM, 42(5):1021-1058, September 1995.

[8] Jerry Banks, Barry Nelson, and John Carson. Discrete-Event System Simu-

lation. Prentice-Hall, Upper Saddle River, N.J.,, 2000. Third ed.

[9] F. Bellifemin, G. Caire, A. Poggi, and G. Rimassa. “JADE - A White Paper”.
EXP - in search of innovation, 3(3):6-19, September 2003.

95

REFERENCES 96

[10]

[11]

[12]

[13]

[14]

[17]

[18]

Andrzej Bieszczad, Bernard Pagurek, and Tony White. “Mobile Agents for

Network Management”. IEEE Communications Surveys, 1(1), 1998.

Grady Booch. Object-Oriented Design with Applications. The Ben-

jamin/Cummings Publishing Company, RedwoodCity, Ca., 2 edition, 1994.

Grady Booch, James Rumbaugh, and Ivar Jacobson. The Unified Modeling
Language User Guide. Addison-Wesley, 1999.

Brian Brewington, Robert Gray, Katsuhiro Moizumi, David Kotz, George
Cybenko, and Daniela Rus. “Mobile Agents in Distributed Information Re-
trieval”. In Intelligent Information Agents. Springer-Verlag: Heidelberg, Ger-

many, 1999.

Jiannong Cao, Xinyu Feng, Jian Lu, and Sajal K. Das. “Mailbox-Based
Scheme for Designing Mobile Agent Communication Protocols ”. IEEE Com.-
puter, 35(9):54-60, 2002.

Luca Cardelli and Andrew D. Gordon. “Mobile Ambients”. In Proceedings of
Foundations of Software Science and Computation Structures: First Interna-

tional Conference, FOSSACS ’98. Springer-Verlag, Berlin Germany, 1998.

David Chess, Colin Harrison, and Aaron Kershenbaum. “Mobile Agents: Are
They a Good Idea?”. Technical Report RC 1 9887, IBM Research Division, T.
J. Watson Research Center, Yorktown Heights, New York, March 1995.

Peter Coad and Edward Yourdon. Object-oriented Design. Prentice Hall,
1991.

D. Coleman, P. Arnold, S. Bodoff, C. Dollin, H. Gilchrist, F. Hayes, and
P. Jeremaes. Object-oriented Development: The Fusion Method. Prentice-

Hall, 1994.

REFERENCES 97

[19]

R.J. Cypser. Communication for Cooperating Systems. Addison Wesley, 1991.

[20] Prithviraj Dasgupta, Nitya Narasimhan, Louise E. Moser, and P.m. Melliar-

[21]

[22]

[25]

[26]

[27]

Smith. “MAgNET: Mobile Agents for Networked Electronic Trading”. IFFFE
Transactions on Knowledge and Data Engineering, 11(4):509-525, 1999.

Jocelyn Desbiens, Martin Lavoie, and Francis Renaud. “Communication and
Tracking Infrastructure of a Mobile Agent System”. In Proceedings of Thirty-
First Annual Hawaii International Conference on System Sciences, page 54,

Kohala Coast, Hawaii, USA, January 1998. IEEE Computer Society.

Fred Douglis and John K. Ousterhout. “Transparent Process Migration: De-
sign Alternatives and the Sprite Implementation”. Software - Practice and

FEzperience, 21(8):757-785, 1991.

Jon Postel (ed.). “User Datagram Protocol”. Technical Report RFC768, Net-

work Information Center, 1980.

Jon Postel (ed.). “Transmission Control Protocol - DARPA Internet Program
Protocol Specification”. Technical Report RFC793, Information Sciences In-

stitute University of Southern California, 1981.

Sylvanus A. Ehikioya and Quang Trinh. “Distributed Query Processing via
Mobile Agents”. In 2nd IEEE Electro/Information Technology Conference
(EIT-2001), Rochester, Michigan, 7-9 June 2001.

Allen Holub. Taming Java Threads. Apress, 2000.

Norman Hutchinson. Emerald: An Object-Based Language for Distributed

Programming. PhD Thesis, University of Washington, January 1987.

REFERENCES 98

[28] Ivar Jacobson, Magnus Christerson, Patrik Jonsson, and Gunnar Overgaard.
Object-Oriented Software Engineering: A Use Case Driven Approach. Read-
ing/Mass. Addison-Wesley, 1992.

[29] Raj Jain. The Art of Computer Systems Performance Analysis: Techniques
for Ezperimental Design, Measurement, Simulation, and Modeling. Wiley-

Interscience, New York, NY, April 1991.

[30] Danny Lange and Mitsuru Oshima. Programming and Deploying
Java™ Mobile Agents with Aglets™. Addison Wesley Professional, 1998.

[31] Danny B. Lange and Mitsuru Oshima. “Seven Good Reasons for Mobile
Agents”. Communications of the ACM, 42(3):88-89, March 1999.

[32] Averill M. Law and David W. Kelton. Simulation Modeling and Analysis.
McGraw-Hill, New York, 2000. Third ed.

[33] Pierre L’Ecuyer, Lakhdar Meliani, and Jean Vaucher. “SSJ: A Framework
For Stochastic Simulation in JAVA”. In 2002 Winter Simulation Conference,

pages 234-242, San Diego, California, December 2002.

[34] Tie-Yan Li and Kwok-Yan Lam. “An Optimal Location Update and Search-
ing Algorithm for Tracking Mobile Agent”. In The first International Joint

Conference on Autonomous Agents and Multiagent Systems, pages 639-646,
Bologna, Italy, 2002. ACM Press.

[35] Hyojun Lim and Chongkwon Kim. “Multicast Tree Construction and F looding
in Wireless Ad Hoc Networks”. In Proceedings of the 3rd ACM International
Workshop on Modeling, Analysis and Simulation of Wireless and Mobile Sys-

tems, pages 61-68, Boston, Massachusetts, United States, August 2000.

REFERENCES 99

[36]

[37]

[38]

[39]

[40]

[41]

[42]

Yi-Bing Lin. “Determining the User Locations for Personal Communications
Services Networks”. IEEE Transactions on Vehicular Technology, 43(3):466—
473, 8 1994.

Anselm Lingnau and Oswald Drobnik. “Agent-user Communications: Re-
quests, Results, Interaction”. In 2th International Workshop on Mobile Agents
(MAJ8), pages 209-221, Stuttgart, Germany, September 1998. Springer Ver-

lag.

Dejan Milojicic, Markus Breugst, Ingo Busse, John Campbell, Stefan Covaci,
Barry Friedman, Kazuya Kosaka, Danny Lange, Kouichi Ono, Mitsuru Os-
hima, Cynthia Tham, Sankar Virdhagriswaran, and Jim White. “ MASIF,
the OMG Mobile Agent System Interoperability Facility ”. In Proceedings of
2nd International Workshop Mobile Agents (MA98), pages 50-67, Stuttgart,

Germany, September 1998. Springer-Verlag.

Luc Moreau. “Distributed Directory Service and Message Routing for Mobile

Agents”. Science of Computer Programming, 39(2-3):249-272, 2001.

Luc Moreau. “A Fault-Tolerant Directory Service for Mobile Agents based on
Forwarding Pointers”. In Proceedings of the 17th symposium on Proceedings
of the 2002 ACM symposium on applied computing, Madrid, Spain, March
2002.

Luc Moreau and Daniel Ribbens. “Mobile Objects in Java”. Scientific Pro-
gramming, 10(1):91-100, November 2002. Special Issue of the International
Workshop on Performance-oriented Application Development for Distributed

Architectures (PADDA’2001).

Amy L. Murphy and Gian Pietro Picco. “Reliable Communication for Highly

Mobile Agents”. In Proceedings of First International Symposium on Agent

REFERENCES 100

[43]

[46]

[47]

[48]

[49]

[50]

Systems and Applications (ASA’99)/Third International Symposium on Mo-
bile Agents (MA’99), pages 141-150, Palm Springs, CA, USA, October 1999.

Saurab Nog, Sumit Chawla, and David Kotz. “An RPC Mechanism for Trans-
portable Agents”. Technical Report PRC-TR96-280, Department of Computer

Science, Dartmouth College, 1996.

Hyacinth S. Nwana. “Software Agents: An Overview”. Knowledge Engineer-

ing Review, 11(2):205-244, 1995.

Tim Oates, M. V. Nagendra Prasad, and Victor R. Lesser. Cooperative In-
formation Gathering: A Distributed Problem Solving Approach. Technical
Report 94-66, Department of Computer Science,University of Massachusetts,

Ambherst, 1994.

Katia Obraczka, Kumar Viswanath, and Gene Tsudik. “Flooding for Reliable
Multicast in Multi-hop Ad Hoc Networks”. Wireless Networks, 7(6):627-634,
2001.

Charles Perkins, Andrew Myles, and David B. Johnson. “IMHP: A Mobile
Host Protocol for the Internet”. Computer Networks and ISDN Systems,

27(3):479-491, 1994.

J. Rumbaugh, M. Blaha, W. Premerlani, F. Eddy, and W. Lorensen. Object-
oriented Modelling and Design. Prentice-Hall, 1991.

Andrea Saltelli, K. Chan, and E. M. Scott. Sensitivity Analysis. Wiley Series
in Probability and Statistics. John Wiley & Sons, October 2000.

H. Sanneck, M. Berger, and B. Bauer. “Application of Agent Technology to
Next Generation Wireless / Mobile Networks”. In Second World Wireless

Research Forum, Helsinki, Finland, May 2001.

REFERENCES 101

[51]

[52]

[55]

Paul M. B. Vitdnyi Sape J. Mullender. Distributed matchmaking. Algorith-
mica, 3:367-391, 1988.

Marc Shapiro, Peter Dickman, and David Plainfossé. “SSP Chains: Robust,
Distributed References Supporting Acyclic Garbage Collection”. Technical

Report 1799, Rocquencourt, France, November 1992.

Sally Shlaer and Stephen J. Mellor. Object Lifecycles: Modeling the World in
States. Prentice-Hall, 1992.

Raj Srinivasan. “RPC: Remote Procedure Call Protocol Specification Version
2. Techmical Report RFC1831, Network Working Group, Sun Microsystems

Corporation, 1995.

Steve Stone, Mike Zyda, Don Brutzman, and John Falby. “ Mobile Agents and
Smart Networks for Distributed Simulation”. In 14th Distributed Simulations

Conference, Orlando, Fl, USA, March 1996.

Sun Microsystems Corporation. “Java Remote Method Invocation Specifica-

tion”, 1.7 edition, 1999.

Pawel T. Wojciechowski. Algorithms for Location-Independent Communi-
cation between Mobile Agents. Technical Report, School of Computer and

Communication Sciences, Swiss Federal Institute of Technology.

David Wong, Noemi Paciorek, Tom Walsh, Joe DiCelie, Mike Young, and Bill
Peet. “Concordia: An Infrastructure for Collaborating Mobile Agents”. In
First International Workshop on Mobile Agents 97 (MA’97), Berlin, Germany,

1997. Springer-Verlag.

