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Abstract

Although the mobile agent paradigm provides great potential advantages over tra-

ditional approaches in distributed computing applications, there are still several

issues to be addressed before the technology can be widely accepted. The perfor-

mance of the communication protocol is one of the critical issues in mobile agent

systems. A practical communication protocol for mobile agents must satisfy three

basic requirements: location transparency, reliability and efficiency. Although

many communication protocols have been proposed for mobile agent system and

most of them are location transparent, these protocols usually compromise some

aspects of reliability and efficiency.

The goal of this research is to develop a communication scheme for efficient

location tracking of agents and reliable message delivery in mobile agent systems.

In this thesis, a proxy-based communication protocol is developed to solve the

reliability and efficiency problems in current schemes. The purpose of the proposed

scheme is to provide reliable message delivery with minimum cost. The basic idea

of the scheme is that a proxy agent acts as the message service center for all the

other agents in the domain. The proxy agent can obtain location information

from incoming messages and share this information among a group of agents.

A simulation model is developed to estimate the performance of the proposed

protocol. The result shows that the proxy-based protocol not only can guarantee

reliable message delivery but also can decrease communication cost in most cases.
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Chapter 1

fntroduction

The increase in size and performance of computer networks has led to the rise of

the decentralized architecture. As a result, the concept of distributed computing

has become increasingly important in the last decade. Although current commu-

nication hardware and the underlying protocols, such as oSI and TCP/IP, enable

some degree of distributed computing on the network, the performance of these

protocols on distributed computing is far from satisfactory, especially in large scale

distributed environments (e.g., the Internet). In the traditional client/server ar-

chitecture, the client needs to have a permanent connection to a server) even if the

connection is idle most of the time. Furthermore, the client process has to suspend

while waiting for a response from the server. Moreover, when the waiting time ex-

ceeds the expected time, the client has to terminate the process and fail the whole

task. As the size of the network increases rapidly, the inflexibility and inefficiency

of the ciient/server architecture raises problems of scalability, heterogeneity, and

efficiency.

Over the years, various innovative approaches [4] have been proposed for large-

scale distributed computing. A mobile agent approach is one of the most promis-

ing for creating distributed systems. The idea is that a computer program can
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transport itself from host to host in a network, and act autonomously to fulfill

a user-assigned task. By moving the code to the data, mobiie agent technology

offers a number of advantages. These incìude the reduction of network load and

network latency, increasing the overall performance, allowing the application to

process data in the presence of network disconnection, working autonomously and

asynchronously, and adapting to changing environments.

Since agents are mobile and must share information, a standard infrastructure

that provides tracking and support for effective communication between agents

must be provided. The need for this infrastructure is common among many multi-

agent systems. In a muÌti-agent system, a server program usually runs on each

node. The server program is responsible for hosting agents, aÌlocating resources to

the agents to tun, administering the migration and communication of agents, and

providing requested local services to the agents. In recent years, different agent

systems have been developed and used for for distributed information retrieval [13],

network management [10], data minding [6], distributed simulation [bb], and elec-

tronic commerce [20].

1.1 Motivation and Problem Statement

Aithough the mobile agent paradigm provides great potential advantages over tra-

ditional approaches in distributed computing applications, there are still several

issues to be addressed before the technology can be widely accepted. The perfor-

mance of the communication protocol is one of the criticai issues in mobile agent

systems. Coordination between agents and the resources on the hosting execution

environment is one of the fundamental activities. However, mobility has added

complexity to the design and implied different problems in wide area computing

environments. In generaÌ, a successful communication protocol should provide the
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desired degree of location transparency, efficiency, reliability, scalabilit¡ security,

and asynchrony.

Early research attempts to solve these problems used agent remote procedure

call (ARPC) [43], which is analogous to the traditional RpC. with ARpC, pro-

grammers have to explicitly handle agent alÌocation and message delivery. Re-

cently, the focus of research has shifted towards supporting location-transparent

communication between agents, and a wide range of schemes, such as home-

server 12,22,36,38,47], email l3Z], forwarding-pointers [21, 39, b2], broadcast [35,

42, 461, mailbox-based [14], and blackboard [1b], have been proposed.. However,

each protocol has its drawbacks and limitations. As discussed more fully later,

the home-server and email protocols have the triangular routing, central server

constraints as well as the single-point failure problem; the forwarding-pointer pro-

tocol is vulnerable to host failures and the storage cost of forwarding information

becomes too high in widely-distributed and highly-dynamic agent systems; the

broadcast protocol can cause heavy network traffic when the number of agents in

the system is large; and so on.

This thesis focuses on the reliability and efficiency issues of the communica-

tion protocol for multi-agent systems and proposes a proxy-based communication

scheme to solve these problems in current schemes. The goal of the proposed

scheme is to provide reliable message delivery with minimum communication cost.

The problem addressed in ihis thesis is twofoid:

1. How to minimize the communication cost, including both location update

and message delivery cost.

2. How to guarantee that a message is delivered reliably to its intended receiver,

especially during the receiver's migration.
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L.2 Organization

The remainder of this thesis is divided into five chapters that provide further details

on the problem area and related work. They describe the system architecture,

simulation design and data analysis in depth.

Chapter 2 presents the background information for this research. The chapter

begins with an overview of the mobile agent and agent systems. Furthermore, the

design space of the communication protocols for a multi-agent system is described

in detail as the foundation for the related work and motivation for the research.

Current research in communication protocols for multi-agent systems is presented.

This chapter concludes with a description of the design methodologies used in the

thesis.

In Chapter 3, the proxy-based protocol developed in this thesis is introduced

and described in detail. The system architecture and the functionality of the major

components are presented. The system's operation and algorithms are discussed

in depth. A limited-forwarding algorithm is developed to further improve the

performance of the protocol. At the end of the chapter, a verification of the

reliability of the protocols is provided.

A simulation model that simulates a proxy-based protocol and a home-server

protocol is presented in Chapter 4. The purpose of the simulation is to compare the

difference between the communication cost of these two protocols. The reasons for

using simulation instead of a prototype are presented. The supported framework

and the concept of discrete-event stochastic simulation are introduced. After that,

different aspects of the simulation model, such as performance metrics, control

parameters, conceptual model, initialization, and event generation, are discussed

in detail. This chapter also provides a brief description of the veriflcation and

validation of the simulation model. The implementation details of the simulation

model are presented in the last section.
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Chapter 5 presents the analysis of simulation results. The basic proxy-based

protocol and proxy-based protocoì with limited-forwarding aÌgorithm are analyzed

independently. A sensitivity analysis is performed for the basic proxy-based pro-

tocol.

Chapter 6 outlines the contributions of this thesis and future research direc-

tions. The chapter summarizes the research, lists the contributions, and provides

some suggestions for future research directions.



Chapter 2

Background

This chapter presents a broad overview of background material for mobile agent

communication protocols. The first section describes the state of the art in mobile

agent technologies and agent systems. The general concepts and design space for

the communication protocols in multi-agent systems are discussed in the second

section. The third section presents related work on communication protocols for

multi-agent systems. The design methods, object-oriented and UML, are intro-

duced in the last section.

2.L Mobile Agents and Agent Systems

Mobile agents are a powerful programming paradigm that provides highly efficient

and scalable solutions in complex distributed applications. The benefits of mo-

biie agent technology include reducing network load, overcoming network latency,

encapsulating proprietary protocols, executing autonomously and asynchronously,

and adapting dynamically [31]. A mobile agent is an intelligent software entity that

can migrate across a heterogeneous network system and accomplish a specific task

on behalf of a user [16]. In various situations, agents at different locations must

collaborate with one another to accomplish a task. The communication scheme
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is responsible for ensuring effective interagent communication.

research problem, a thorough knowiedge of the characteristics

essential.

T

To understand the

of mobile agents is

A key feature of a mobile agent is that its code is mobile [25]. In a classic

client/server architecture, both clients and servers are stationary. The client re-

quests some services offered by the server, and the server provides the services as

well as the necessary resources. Mobile agent technology enhances the traditional

client/server paradigm by exploiting locality in the access to distributed resources

and by performing distributed operations in an asynchronous way. Mobility per-

mits an agent to move to a destination where the required resources are available,

and then work locally at the site. Thus, a mobile agent is neither bound to the

originating host nor dependent on a continuous connection to the destination.

Agents are often described as intelligent and autonomous [44], which indicates

that the agent can act independently without intervention from any other agents or

users. After being dispatched by a user, a mobile agent can decide on its own where

to go and what to do based on a predefined schedule, the network load, a host's

computational load, or requests from external sources. A mobile agent may also

spawn subagents and assign subtasks to the subagents to execute a distributed task

concurrentiy when multiple resources are available. The ability to autonomously

execute a task ensures that mobile agents react appropriately to unforseen events

and can easily adapt to a changing environment.

Autonomy, however, does not mean isolation nor complete freedom. The real

strength of agents is based on the large community of agents and the negotiation

mechanisms and coordination facilities [50]. In various situations, agents at differ-

ent hosts must cooperate with one another to accomplish complex tasks efficiently.

Collaborative interactions can prevent hostiie competition for limited resources

between agents. Such interaction also aliows agents to resolve conflicts and incon-
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sistencies in information, current tasks, and world models, thus improving their

decision-support capabilities in a dynamic environment. For example, in the Infor-

mation Gathering (IG) area, due to the amount of available information, a task is

usually decomposed into subtasks that entail sending agents to local data resources

for information retrieval. Detecting interactions between agents, exploiting reìe-

vant information and resolving inconsistences in the acquired data are important

aspects of these systems [45].

An agent system is another fundamental component involved in the mobile

agents paradigm. An agent system is a distributed environment that supports

creation, execution, migration and termination of mobile agents [30]. Mobile agents

cannot exist outside an agent system. A multi-agent system offers flexibiiity to

the programmer by hiding the underlying network architecture. Therefore, agent

systems enable programmers to write distributed programs without knowing the

detail of network structure. A mobile agent system may also provide support

services to access other mobile agent systems, and provide open access to non-agent

based software environments. To this end, many mobile multi-agent systems, such

as Agiet [1, 30], Emerald [2Tl,Yoyager [5], JADE [9] and concordia [bB] have been

developed.

As multi-agent systems become more pervasive, the collaboration between

agents increases, which in turn raises the need for an efficient location-management

and communication mechanism for mobile agents. The next section explores the

common requirements of a communication protocol for multi-agent systems, which

provides a foundation for the related work in the third section.
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2.2 Design Space

A communication scheme for mobile agents is a mechanism that tracks the lo-

cations of mobile agents and facilitates interagent communication. A practical

scheme should support two fundamental operations: location update and message

delivery [57]. Location update is the action the scheme should take to maintain

up-to-date location information after an agent moves to a new network location.

Message delivery is the process of conveying a message from the sender to the

receiver.

In addition to these two operations, the design of communication protocols

for mobile agents is rather application-specific - difierent multi-agent systems im-

pose different requirements on communication protocols. Therefore, one feasible

solution for a particular system may not be applicable to another system with

different migration and communication patterns. A number of requirements, how-

ever, are essential to most multi-agent systems. These common requirements of a

communication protocol for multi-agent systems are summarized below.

2.2.L Location Tbansparency

In a static network infrastructure, it is easy for a sender to know the address of a

receiver since the location never changes, and thus, a sender can deliver a message

straight to the intended receiver. However, in the mobile agent paradigm, message

delivery becomes more complicated because a receiver's address can change fre-

quently. To use direct communication protocols, such as TCP/P [28,24), RpC [b4]

and RMI [56], a programmer must explicitly handle agent migration and commu-

nication, which not only increases the development and maintenance cost but also

restricts the flexibility and extensibility of an application. Therefore, it is impor-

tant for a communication protocol to handle the location tracking of agents in
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multi-agent systems transparently. This means a sender should be able to deliver

a message to the receiver without knowing the receiver's current location and the

process of locating the receiver should be completely hidden from the sender. By

doing this, the multi-agent system offers the programmer more flexibility while

making the underlying network architecture transparent.

2.2.2 Efficiency

The two tasks of minimizing the communication overhead for location update and

for message delivery often appear to be in conflict. Strategies for locating a mo-

bile agent in a distributed network range between two extrem es: full-information

and no-i'nformation 17,5I]. With the fuil-information approach, every site in the

network has a database which maintains up-to-date information on the current

location of all agents. This method minimizes the message delivery cost while

location update cost is expensive. The fuil-information strategy is appropriate for

a relatively static environment, where agents communicate frequentiy but move

rareiy. On the other hand, the no-information approach requires no updates for

migration, but a search over the whole network is necessary for every message

delivery. This method is appropriate for small-scale and highly-dynamic environ-

ments, where agents move frequently but communicate rarely. An efficient protocol

should strike a balance between these two extremes to meet the requirements of

some specific communication and migration patterns while minimizing the total

costs of location update and message delivery.

2.2.3 Reliability

The reliability of a communication protocol for multi-agent systems involves two

issues:

10
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1. The vulnerability of the protocol to the failures in the distributed environ-

ment

2. Message losses or chasing problems

The first issue, also referred as the fault-tolerance problem, refl.ects the level of

failure the communication protocol can accept. Some protocois are sensitive to

any kind of failure in the network; one component failure may crash the whole

communication system. Some protocols have higher tolerance and can continue to

operate properly even after a certain number of nodes and links fail. The second

problem can occur even in a fault-free network due to the asynchïonous message

passing and agent migration model. A message can be lost if it is delivered during

the receiver's migration or the message can chase the receiver forever if the target

agent moves frequently. A reliable communication protocol should address both

issues to guarantee that a message can be delivered successfully to the receiver in

any situation.

2.2.4 Scalability

Scalability is one of the key elements that measure the successfulness of a commu-

nication protocol for multi-agent systems. The scalability issue can be addressed

from four aspects: (1) the size of the network; (2) the total number of the mobile

agents; (3) the migration frequency of agents; (a) the size of the communication

data. A scalable communication protocol should be able to preserve the quality of

the services as size of any or all of the above parameters increase.

2.2.5 Security

In recent years, users' demands have raised the priority of security issues for mobile

agent communication. In existing protocols, message passing between communi-

11
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cating partners generally involves using various sites to process the message. At

the same time, many agents operate autonomously which present a significant ob-

stacle to agent activity management. The network complexity and agent mobility

provide numerous opportunities fo¡ a malicious agent to intercept or overwrite the

message during the transmission process. A secure communication protocol should

be able to prevent an adversary compromising message exchange between partners.

2.2.6 Asynchrony

The decision of whether to use a synchronous or an asynchronous communication

approach is application-dependent. In synchronous protocols, such as TCp [2a]

and RPC [54], the client and the server open a communication channel between

both ends. The client application maintains the entire communication process until

it receives the response message from the server. In asynchronous protocols, such

as messaging [19], once the client application composes and hands off a message

to the messaging system, the application continues execution.

Synchronous communication protocols have been standard networking proto-

cols for decades and have proven capable of providing reliable delivery of packets.

Unfortunately, synchronous communication requires that synchronization is estab-

lished for a long duration, which is contradictory to the dynamic nature of muiti-

agent systems. In addition, disconnection usually is allowed in a mobile agent

system, which also makes synchronous communication an unsuitable approach.

On the other hand, although asynchronous communication supports agent mobil-

ity and disconnection, it cannot guarantee reliable message delivery. A designer

should weigh the benefits of both methods and the requirements of the application

before choosing the communication model that is best suited for the application.

L2
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2.3 Related .Work

In multi-agent systems, a critical performance issue is the agent communication

protocol. Much effort [2, 27,37,38, 42] has been devoted to ensure efficient location

tracking of agents and reliabie message delivery in mobile agent systems. To be

able to send messages in a location-transparent fashion, researchers have proposed

two different approaches;

1. Direct agent-to-agent communication, such as home-server [2, 22, 36, Bg,

47], email [37], forwarding-pointers [21, 89,52], broadcast [95, 42,46], and

mailbox-based [1a].

2. Indirect interactions using shared places, such as blackboard [1b].

The following sections presents the advantages and disadvantages of each kind

of protocol in terms of the design space discussed in the previous section, where it

is possible.

2.3.L Home-Server

Many mobile agent platforms, for example Aglets [1, 30] and JADE [g] use the

home-server protocol proposed in Sprite [22], Mobile Internet protocol [2], and

Mobile Agent System Interoperability Facility [38] to solve agent communication's

problem. The home-server protocol works as follows:

o Each mobile agent associates with a stationary agent, which is called the

mobile agent's home agent.

o Each home agent has a database to store the addresses of all agents that use

this host as home agent.

o The sending agent knows the name of the receiving agent.

13
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o A central naming server, called home server, maintains

mobile agents' names and their home agents, addresses.

update

_---migrate--__

74

a binding between

T
lookup

Æ

Current Message Delivery

Past Message Delivery

Agent Migration

Figure 2.1: Home-Server Model

In the home-server approach, shown in Figure 2.r, a mobile agent must inform

the home agent of its new location after each migration. To contact a mobile agent,

the sending agent first delivers the message to the home server. Second, the home

server routes the message to the receiving agent's home agent. Third, the home

agent forwards the message to the receiving agent's actual location.

A basic motivation for using the home-server protocol is to support mobile IP

addresses [2] while preserving compatibility with the current IP protocol, where

hosts are unaware of agent mobility. However, the home-server protocol raises

concerns for efficiency, reliability and scalability of the system even though the

model is simple to implement and works well for small-to-medium distributed

systems. Messages sent to a mobile agent always pa.ss through the home server and

a home agent, which causes a triangular routing problem. Both location update
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and message delivery can incur a significant delay if the mobile agent is far from its

home agent. Various cache-based strategies [36,471have been proposed to avoid

the triangular routing problem. Nevertheless, these protocols cannot guarantee

reliable message delivery because a message would be lost if the delivery happens

during the receiver's migration. Furthermore, the central naming server puts a

burden on the global infrastructure. The home server may become a performance

bottleneck and a single-point of failure in a large-scale network, and therefore,

prevents the scalability of this approach.

2.3.2 Email

The ff\4ain [37] system uses an email infrastructure for agent communication,

which is similar to the home-server protocol. The only difference, as shown in

Figure 2.2, is a home agent stores an incoming message in the receiver's message

queue instead of forwarding it to the target agent. The mobile agent checks its

home agent periodically for incoming messages. If the the agent's message queue

is not empty, it can either puÌl the messages from its home agent to its current

location or move back to its home and retrieve the messages locally.

Since it is the mobile agent that initiates the communication with its home

agent, the email protocol can guarantee reliable message delivery and reduce the

location update cost. However, this approach encounters the same problems as in

the home-server protocol, such as triangular routing, central server constraints as

well as the single-point-failure problem. Also, if home agents are not distributed

equally, one host could be overloaded with the vast storage demands. F\rrthermore,

the time intervals for a mobile agent to check its home place has a big impact on

the system performance. If the time interval is too large, an agent might not be

able to get its messages on time which would cause serious problems in systems

that require prompt response. On the other hand, if the agent checks its home

15
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W 
Messase Queues

ReadÄ¡Vrite

--* 

Message Delivery

- - > AgentMigrat¡on

Figure 2.2: Email Model

place frequently, a large number of query and response message will induce high

communication overhead. Therefore, the email protocol is only suitable for systems

in which agents do not require instant messages.

2.3.3 Forwarding-Pointer

Emerald 127) and Voyager [5] systems use the forwarding-pointer protocols [21, 39,

52] for interagent communication. These protocols work as follows:

o Each mobile agent associates with a stationary agent, which is called the

mobile agent's home agent.

o Each home agent has a database to store the initial addresses of all agents

that use this host as home agent.

o Each host has a database to store the cached addresses of all agents that

16
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migrated from this host.

o The sending agent knows the name of the receiving agent.

o A central naming server) called home server, maintains a binding between

mobile agents' names and their home agents' addresses.

T
lookup

M
Figure 2.3: Forwarding-Pointer Model

in the forwarding-pointer approach, shown in Figure 23, after each movement,

a mobile agent must inform the last host it visited of its current Ìocation. Ac-

cordingly, every host on the agent's migration path keeps a forwarding pointer to

the next host on the path. Similar to the home-server method, a message is first

delivered to the home server, then to the receiver's home agent. After that, the

home agent sends the message to the last known location of the target agent. If
the receiver is not at the last known location, the messages would be forwarded

along the chain of pointers. Upon receiving a message, the target agent sends back

77
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an invalid-cache message to the original sending agent to update the outdated

address.

The dependency on the home agents and home server, as well as the location

update cost are reduced in the forwarding-pointer scheme. On the other hand,

the message delivery cost can be very high due to the redundant hosts on the

migration path. Some path compression algorithms, such as lazy updates and

back propagating information [39] along the chain, can be used to collapse the

chain [41]. A serious drawback of this approach is its vulnerabiiity to the failures

of hosts, one failure on the migration path results in an unreachable target agent.

A solution is to update its l/ previously visited hosts after a mobile agent reaches

a new location, which can improve the system's tolerance of a failure up io .n/ [40].

Howevet, the chasing problem remains unsolved in forwarding-pointer protocols,

that is, a message can follow an agent forever if the agent migrates frequently. In

addition, the forwarding-pointer scheme is not practical for widely-distributed and

highly-dynamic agent systems since the storage cost of forwarding information on

every host increases as the chain grows.

2.3.4 Mailbox

Cao et al. [14] propose a mailbox-based scheme, which is a three-dimensional model

for designing flexible and adaptive message delivery protocols in mobile agent sys-

tems. The protocol works as follows:

c Each mobile agent owns a mailbox which buffers all the incoming messages

for its owner agent.

o Each mailbox associates with a stationary agent, which is called the mailbox's

home agent.

o Each home agent has a database to store the initial addresses of all mailboxes

18
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that use this host as home agent.

o The sending agent knows the name of the receiving agent.

A central naming server, called the home server) maintains a binding between

mailbox names and their home agents' addresses.

migrate

Current Message Delivery

Past Message Delivery

Agent or Mailboxt Migration

Figure 2.4: Mailbox-Based Model

19

In the mailbox-based protocol [14], shown in Figure 2.4, a mailbox may be

detached from its owner agent and migrate to a different place. A maiÌbox must

inform its last visited host and its owner agent of its current location after each

migration. A mobile agent also has to report the new address to its mailbox after

the agent reaches a new location. Messages sent to an agent are all buffered to

its mailbox, and the agent later receives the messages by either a push or pull

operation.

i------
I
I

i Mailbox 2
I
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Users can customize the protocol to meet particular requirements by defining

three parameters: ma'ilbor mi,grat'ion frequency, mailbor-to-agent n-ì,essage d,eliuery,

and mi,gration-deliuery synchron'izati,on [74]. Mailbox migration frequency is the

number of mailbox migrations within its mobile agent's migration interval. No

migration means the mailbox never moves and the protocol acts as a home-server

protocol. FuIl mi'gration means the mailbox moves synchronously with its mobile

agent and the protocol acts as a forwarding-pointer protocol. Jump mi,gration

means the mobile box can decide its mailbox migration frequency dynamically

based on the number of incoming messages. Mazlbor-to-agent deli,uerg defines how

a mobile agent receives messages from its maiibox. A user can decide whethe¡

mailboxes pzså messages to mobile agents or mobile agents pzll messages from

mailboxes. Migrat'ion-delzuery synchronizati,on defrnes different levels of reliability

in message deÌivery. A user can choose to synchronizethe host's message forward-

ing and the mailbox's migration, or the mailbox's message forwarding and the

mobile agent's migration, or both of them.

By decoupling the mailbox from its owner agent, the mailbox-based model

separates the location tracking and message delivering, which introduces great

flexibiiity into the design space. The three-dimensional model provides users the

potential to develop a new protocol that is best suited to a specific agent migration

and communication pattern. However, mailbox's mobility also increases system's

complexity, which in turn lessens the fauÌt-tolerance and raises the location update

cost of the system.

2.3.5 Broadcast

In the flooding b¡oadcast approach [35, 46], shown in Figure 2.5, the sending agent

knows the name of the receiving agent but does not use a central naming server

to resoive the name. To send a message to a mobile agent, a source agent simply

20
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broadcasts location queries, iocation notifrcations or pending messages to all of its

neighbors. These neighbors in turn rebroadcast the message and this operation

continues until all the hosts have received the message. Only the corresponding

agent would process the receiving message.

broadcasÌ

Message Delivery

Figure 2.5: Broadcast Model

The broadcast protocol is simple to implement and has no location update cost.

However, the protocol does not handle message losses due to agent mobility. A

snapshot broadcast strategy l42l can guarantee message delivery to a specific agent

as well as for group communications. However, the network could be overwhelmed

by the enormous number of unnecessary messages when the number of agents in

the system is large. Therefore, the broadcast protocol is impractical in a wide-area

network and should only be used when all other methods fail.

2.3.6 Blackboard

The Ambit [15] system employs a blackboard protocol, in which the sender does

not know the name of the receiver. To send a message to other agents, as shown

in Figure 2.6, an agent simply writes the message to the local storage of the host

2I
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at which it is currently residing. After the agent migrates to another location, it

may repeat the same action if necessary. For a receiving agent to read a message,

it must move to the related host and retrieve the message locallv.

Message Storage Message Storage Message Storage

--ì 

Message ReadMrite

- - > AgentMigration

Figure 2.6: Blackboard Model

The blackboard protocol is the simplest among all agent communication mod-

els; there is no central setver, no home agents, and no location tracking and update.

Agents communicate with one another by simply writing and retrieving message

locally. However, the blackboard model requires every host to maintain a message

shared storage which agents can use to leave messages for others to read. Besides,

it becomes the responsibility of a developer to ensure the receiving agent goes to

the right locations to obtain the messages that are intended for the agent, which in

turn increases the deveÌopment and maintenance costs of the application. In addi-

tion, the message removal strategy also needs to be considered, since the storage

capacity is frnite, which puts additional complexity on the application.

a
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2.4 Design Methodologies

In this research, the object-oriented design (oOD) method is used for the de-

velopment of the simulation model. In contrast to the separation of data and

function in a procedural deveiopment, the object-oriented method integrates data

and functions into a whole [28]. In the object-oriented approach, a software sys-

tem is described as a collection of objects. An object is a software entity that can

perform a set of tasks. Each object is responsible for its own data and behavior,

and details of implementation are hidden from the rest of the system. System

functions are accomplished by object cooperation.

Object-oriented development methods have many advantages over structured

methods. The organization of an OO system is closer to that of human activities

and makes the system easier to understand. With proper design, the encapsulation

and inheritance mechanism can increase reusability significantly. Furthermore,

since all attributes and functions are encapsulated in objects, changes inside an

object will not affect other objects as long as the interaction interface remains the

same. The encapsulation allows programmers to work at a higher level and hide

implementation details behind a message-passing interface. As a result, the system

can be easily adapted to changing requirements and is easier to maintain.

Object-oriented modeling is a formal way of describing an existing domain

as an assembly of objects. The use of modeling is essential for the creation of

well-designed, robust and quality object-oriented software that meets the needs of

its users. Since late 1980s, numerous object-oriented modeling languages, such

as Booch [11], Coad-Yourdon [17], Fusion [18], OMT (Object Modeling Tech-

nique) [48], OOSE (Object-Oriented Software Engineering) [28] and Shlaer-Mellor [b3],

have been proposed. In mid 1990s, Grady Booch, James Rumbaugh and Ivar Ja-

cobson created the Unifred Modeling Language (UML) [12] based on the semantics

and notation from Booch, OMT, OOSE and other prominent methods. Since then,

23



CuaprpR 2. Becxcnoulo

the UML has been widely adopted by many software development organizations

and the notation it uses is becoming a worldwide standard for object-oriented

modeling.

The UML is a graphical modeling langauge for visualizing, specifying, con-

structing and documenting software systems. It is process independent, and there-

fore can be used with most existing object-oriented development processes. The

UML notations include a large set of graphical symbols, which are supported by

weÌl-defined semantics. From these symbols, various diagrams can be constructed

to capture the information about the static structure and dynamic behavior of a

system. These diagrams include use case diagrams, class diagrams, statechart dia-

grams, activity diagrams, sequence diagrams, collaboration diagrams, component

diagrams and deployment diagrams. Use case diagrams are used for requirements

analysis by modeling the interactions between actors and the system. Class dia-

grams are used to model the static aspects by showing a set of classes and their

relationships. Activity diagrams support the functional perspective by showing

control flow in business processes and internal operations. Sequence and collabo-

ration diagrams are used to display messages passing between objects and entities

within the system. Finally, component and deployment diagrams capture the

physical aspect by showing how components are packaged and deployed.

In this thesis, the activity diagrams are used to describe the control flow in

system operations and the class diagrams are used to present the conceptuaÌ modei

of the simuiation.
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Chapter 3

Proxy-based Protocol

This chapter introduces a proxy-based communication protocol that is capable of

supporting efficient and reliable message delivery in mobile agent systems. The

goal of the proxy-based solution is to reduce the communication overhead and solve

the message loss problem in the home-server schemes.

To this end, the home-server schemes 12,22,36,38, 4Tl are the most popular

communication protocols for multi-agent systems because they are compatible with

the current Internet Protocol. However, the triangular routing, central server

constraints as well as the message loss problems in the home-server protocol affect

the system performance.

The proxy-based scheme improves on the home-server schemes by incorporating

an additional type of agent, a proxy agent, in the system. In this thesis, a domain

is a group of connected computers that share a common central Directory Services

Database that contains user account and security information. In each domain,

at least one proxy agent is allocated to provide communication services to mobile

agents in the domain. Messages sent to mobiÌe agents pass through these proxies

before they are dispatched over the network. The proxy agent decides where the

message should go based on the most recent knowledge of the receiver.
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There are several reasons to use a proxy agent as a message service center

for the mobile agents in the domain. First, the proxy agent can obtain location

information from incoming messages and share this information among a group

of agents. Second, message passing between a proxy agent and the mobiÌe agents

within its control is fast because they are geographically cÌose. Third, a proxy agent

can buffer the messages for a mobile agent during the mobile agent's migration.

The proxy-based communication protocol is developed under the foilowing as-

sumptions:

o An agent server must be running on all the nodes where data can potentiaÌly

reside.

Every agent server has a unique address, which is accessible by aÌl other

nodes in the network.

AII agents in the system are trustworthy and available (security and authen-

tication issues are not considered).

o AÌl agents in the system are reliable (agent operation and migration failure

are not considered).

o There is no loss or corruption in message passing (reliable delivery network).

In this chapter, the first section presents the system architecture and the func-

tionality of the major components of the proposed protocol. The second section

describes the system operation and algorithms in details. On top of the basic

proxy-based protocol, a limited-forwarding algorithm is developed to further im-

prove the protocol's performance. The last section verifies the reliability of the

protocol.
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3.1 System Architecture

Figure 3.1 provides a simple view of the system. All messages passing between two

domains are under the control of proxy agents. If Agent 1 in Domain 1 wants to

send a message to Agent 2 in Domai,n 2,it must first deliver the messageto Prory

7. Then Prory 1 will forward the messageto Prory 2, and it is the responsibility

of Prory 2 to send the message to the final receiver Agent 2. There is no direct

communication between sender Agent 1 and receiver Agent 2.

Message Message

Figure 3.1; System Overview

The basic architecture of proxy-based system is shown in Figure 3.2. The sys-

tem consists of severaÌ components that communicate with one another to provide

location management and message delivery services. The roles and relationships

of these components are defined as follow:

o Master agent (MA) is a stationary agent. This agent is responsible for cre-

ating a number of child agents and dispatching them to the respective des-

tinations to perform some specific tasks. The master agent maintains the

current location information of each of its child agents. The master agent
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lnteract

Figure 3.2: Detailed System Model

aÌso provides mechanisms to interact with the user that issues the task re-

quest.

ChiLd agent (CA) is a mobile agent. This agent moves to the remote resource,

performs tasks on behalf of the user and returns the results to the master

agent. Each child agent has a unique iD to identify itself.

Home seruer (HS) is a stationary agent. This agent provides the one-to-one

mapping information between master agents and child agents, and routes a

message to the corresponding master agent according to the child agent's ID.

Prory agent (PA) is a stationary agent. This agent collects agent location

information from inbound messages, and builds up a local agent resource

28
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table and a remote agent resource table gradually. The local agent resource

table contains location information for all the mobile agents within the do-

main. The remote agent resource table includes some child agents' IDs and

their corresponding proxy agent addresses. The proxy agent is responsible

for handling messages for master agents and child agents. There is at least

one proxy agent in each domain.

In the proxy-based communication protocol, every message contains the sender's

ID, master agent's address and proxy agent's address. Except for these basic in-

formation fields, different types of messages contain different information fields.

The functionality and field details for different messages are discussed in the next

section.

3.2 System Operations

The following sections describe the processes of agent creation and dispatch, reg-

istration and deregistration, termination, migration, and message delivery.

3.2.I Agent Creation and Dispatch

When a new child agent is created, it obtains a unique ID and the address of its

master agent. After the creation, the master agent must inform the home server

by sending a CREATION message to the home server. The CREATION message

contains the ID of the child agent and the address of the master agent. The home

server maintains a lookup table which records the mapping between child agents

and master agent. Figure 3.3 shows an example of the lookup table. Every time

the home server receives a CREATiON message, it inserts a ne\¡/ entry in the

lookup table and sends an ACK-CREATION message back to the master agent.
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childld MasterAddr
child_01 728.t.2.r0
chitd 02 t28.1.2.rr
child_03 t28.7.2.r2

Figure 3.3: Lookup Table of the Home Server

Upon receiving the ACK-CREATION message from the home server, the mas-

ter agent prepares to dispatch the child agent by first assigning the destination

address to the child agent. The master agent then inserts a ne\M entry into its

child agent information table and dispatches the child agent. Figure 3.9 shows an

example of the child information table of the master agent. When the status of

a child agent is set to INACTIVE, the master agent holds the messages for the

child agent until the status is changed to ACTIVE. The status of a child agent is

INACTIVE when the agent is first dispatched from its master agent. After the

child agent reaches its destination, the proxy agent in the destination domain sends

an UPDATB message to the master agent. The master agent then sets the child

agent's status as ACTIVE in the child agent information table.

chitdld ProxyAddr Status
child_01 2t6.239.36.27 ACTIVE
child_02 216. i09.1 18.40 ACTIVE
chitd_03 202.108.36.78 INACTIVE

Figure 3.4: Child Information Tabie of the Master Agent

Figure 3.5 iliustrates the whole process of agent creation and dispatch.
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Figure 3.5: Activity Diagram for Agent Creation and Dispatch
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3.2.2 Agent Registration and Deregistration

Figure 3.6: Activity Diagram for Agent Registration

Figure 3.6 illustrates the process of agent registration. Every time a child agent

enters a new domain, it must register with the local proxy agent. Every proxy agent

has a local agent table which records the location information of all the agents in

90
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the domain. Figure 3.9 shows an example of the local agent table. When a child

agent's status is set to MIGRATING, the proxy agent holds the incoming messages

for the child agent until the status is set back to ACTIVE.

chitdrd Addr Status
child_01 2t6.239.36.27 ACTIVE
child_11 216.239.36.28 ACTIVE
child 21 216.239.36.29 MIGRATING

Figure 3.7: Local Agent Table of the Proxy Agent

The child agent first sends a REGISTRATIoN message to the proxy agent.

The proxy agent inserts a new entry to its local agent table according to the mes-

sage and sets the child agent's status to ACTIVE. The proxy agent then sends

back an ACK-REGISTRATION message to the child agent. The proxy agent

is also responsible for informing the child agent's master agent of the new loca-

tion information by an UPDATE information. The master agent sends back an

ACK-UPDATE message to the proxy agent after updating its child agent infor-

mation table. The child agent then starts performing its tasks after receiving the

ACK-RBGISTRATION message.

Figure 3.8 illustrates the process of agent deregistration. During the reg-

istration process, the proxy agent can obtain the child agent's previous proxy

agent ID from the REGISTRATION message. The current proxy agent sends a

DEREGISTRATiON message) which contains the child agent's ID and current

proxy agent's address, to the child agent's previous proxy agent. The previous

proxy agent deletes the child agent's reco¡d in its local agent table and inserts a

new entry in the remote agent tabÌe. Figure 3.9 shows an example of the remote

agent table. After updating both tabies, the previous proxy agent sends back an

ACK-DEREGISTRATION message. All the incoming messages for the child agent

during its migration are also forwarded to its destination proxy agent.

ô.-)
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Figure 3.8: Activity Diagram for Agent Deregisteration

childrd ProxyAddr
child_O1 276.239.36.27
child_31 240.29.55.90
child_45 202.239.2I.29

Figure 3.9: Remote Agent Table of the Proxy Agent

FÌom the above description, it is obvious that part of the deregistration process

is handled during agent registration. Figure 3.10 shows the registration algorithms

34



CueprBn 3. Pnoxy-eesno PRor:ocor,

for the proxy agents.

/ t, Variable
localAgentTable: The 1oca1 agent infornation table
regMsg: The REGISTRATI0N nessage the proxy agent received
MSG_IJPDATE: Constant for update nessage t)rpe
MSG_DEREGISTRATI0N: Constant for deregistration message t5rpe

updateMsg: The IIPDATE nessage
deMsg: The DEREGISTRATI0N message

RegistrationO operation :

InsertNer"rRec (regMsg, localAgentTable) ;
updateMsg = creageMsgO ;

updateMsg.type = MSG_IIPDATE;

updateMsg. endAgentld = regMsg.nasterAgentld;
sendMsg (updateMsg, regMsg. nasterAgentld)

IF regMsg.preProxyld Exists
deMsg = createMsgO;
deMsg.type = MSG_DEREGISTRATION;
deMsg. endAgentld = regMsg.preProxyld;
sendMsg (deMsg, preProxyld) ;

End IF

End Registrationo

Figure 3.10: Agent Registration Algorithm

3.2.3 Agent Termination

Figure 3.11 illustrates the process of agent termination. The child agent must in-

form its proxy agent before its termination by sending a TBRMINATION message.

The proxy agent forwards the TERMINATION message to the child agent's mas-

ter agent and the home server. The home server deletes the child agent')s record

in the lookup table and sends an ACK-TERMINATION message to the proxy

agent. The master agent deletes the child agent's record in the child agent in-

formation table and sends an ACK-TERMINATION message to the proxy agent.

The proxy agent then deletes the child agent's record in its local agent table and

DI
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Figure 3.11: Activity Diagram for Agent Termination

sends an ACK-TERMINATION message to the child agents. On receiving the

ACK-TERMINATION message) the child can terminate all its processes.
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3.2.4 Agent Migration

Figure 3.12 illustrates the process of agent migration. The child agent must inform

its proxy agent before its migration by sending a MIGRATIoN message. The proxy

agent sets the child agent's status to MIGRATING in its local agent table and sends

an ACK-N4IGRATION message to the child agent. The child agent cannot start

the migration until it receives the ACK-MIGRATION messâge. During the child

agent's migration, the proxy agent puts all the child agent's incoming messages in

a message queue.

If the child agent migrates within the same domain, it simpty informs its

proxy agent of its current location by an UPDATE message and waits for the

ACK-UPDATE. The proxy agent updates the child agent's address and sets the

status back to ACTIVE in its local agent table. The proxy agent then sends an

ACK-UPDATE message and forwards all the holding messages to the child agent's

new location. If a child agent moves to another domain, it must perform the reg-

istration with the proxy agent in the destination domain.

.f/
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Figure 3.12: Activity Diagram for Agent Migration
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3.2.5 Message Delivery

The basic idea of the proxy-based protocol is that all messages must be processed

by proxy agents. When a proxy agent receives a message, it processes the message

according to the message type. If the message is directed to another agent, the

proxy agent processes the message differently for the message originating within

or outside the domain.

Figure 3.13: Activity Diagram for Message Delivery (from the same domain)

Figure 3.13 illustrates how a proxy agent processes a message coming from

an agent within the same domain. The proxy agent first checks the local agent

resource table. If the receiver is active in the domain, the proxy agent forwards
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the message directly to the receiver. The proxy agent holds the message for the

receiver when the receiver is migrating. If the receiver is not in the domain, the

proxy agent searches for the receiver's ID in the remote agent resource table. The

message is routed to the receive¡'s proxy agent if its information is in the table. If

the receiver's ID is not in the remote agent resource table, the message is routed

to the home server. The home server forwards the message to the receiver's master

agent. The master agent then delivers the message to the receiver's current proxy

agent.

Figure 3.14: Activity Diagram for Message Delivery (from outside the domain)

Figure 3.14 illustrates how a proxy agent processes a message from an agent

outside the domain. The proxy agent first adds/updates the sender's proxy agent's

address in the remote agent resource table. The proxy agent then checks the local
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agent resource table. If the receiver is active in the domain, the proxy agent

forwards the message directly to the receiver. The proxy agent holds the message

for the ¡eceiver when the receiver is migrating. If the receiver is not in the domain,

an UNAVAILABLE message is sent to the sender's proxy agent. Upon receiving an

UNAVAILABLB message, the sender's proxy agent deletes the outdated location

information in its remote agent table. At the same time, the message is delivered

to the home server. The home server forwards the message to the receiver's master

agent and the master agent delivers the message to the receiver's proxy agent.

3.2.6 Message

In the proxy-based protocol, for the communication purpose, agents provide spe-

cific services according to the messages they receive. This section summarizes the

description of different message types and their relation to the agents.

Table 3.1 outlines the functionality of different message types

4L
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Table 3.1: Message Description

42

Message Type Description
COMMUNICATION Normal communication message from agent to

agent
CREATION A master agent informs the home se¡ver of the

creation of a new child
ACK_CREATION The home server acknowledges the new child

agent's creation.
REGISTRATION A child agent registers with the local proxy agenf

upon entering a new domain.
ACK_REGISTRATION A proxy agent acknowledges the newþ elrt,ered

child agent.
UPDATE A child agent updates its location with the proxy

agent. Or a proxy agent updates its newly regis-
tered child agent's location with the child agent's
master agent.

ACK-UPDATE A proxy agent or master agent acknowledges a
chiid agent's location update.

DEREGISTRATION A proxy agent deregisters its newly registered
child agent with the child agent's previous proxy
agent.

ACK-DEREGISTRATION A child agent's previous proxy agent acknowledges
the child agent's deregistration.

MIGRATION A child agent notifies its proxy agent of an up-
coming migration.

ACK-MIGRATION A proxy agent acknowledges a child agent's mi-
gration.

I'!]RMINATION A child agent notifies its proxy agent, master
agent and the home server of the upcoming ter-
mination.

ACK-TERMINATION A proxy agent, master agent or home ierver ac-
knowledges a child agent's termination.

UNAVAILABLE A proxy agent informs another proxy agent thaf
bhe intended receiver is no long within the domain.
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Table 3.2 shows the relationship between agents and different message types.

3.2.7 fnformation Table

In the proxy-based protocol, the stationary agents, such as the home server, master

agents and proxy agents, use different tables to record the location information of

other agents. Agents perform various actions on these information tables after

receiving different messages during system operations. This section summarizes

the relationships between information tables and messages.

TabÌe 3.3 shows the relationships between the lookup table of the home server

and different messages.

A'.tù

Message Type Sender Receiver
COMMUNICATION Agent Agent
CRBATION Master Home Server
ACK-CREATION Home Server Master
REGISTRATION chitd Proxy
ACK_REGISTRATION Proxy child
UPDATE Child or Proxy Proxy or Master
ACK-UPDATE Proxy or Master Child or Proxy
DEREGISTRATION Proxy Proxv
ACK-DtrREGISTRATION Proxy Proxy
MIGRATION chitd Proxv
ACK-MIGRATION Proxy child
.I',URMINATION Child or Proxy Proxy or Master or

Home Server
ACK-TERMINATION Proxy or Master or

Home Server
Child or Proxy

UNAVAiLABLE Proxy Proxy

Table 3.2: Relationship between Agent and Message Type
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System Operation Message Type Table Action
Agent Creation CREATION Insert (ID,ADDR)
Agent Termination TERMINATION Delete (iD:ChildId)
Message Delivery COMMUNICATION Search (ID:ReceiverID)

Table 3.3: Relationships between Lookup Table and Messages

Table 3.4 shows the relationships between the child agent information table of

the master agent and different messages.

Table 3.5 shows the relationships between the local agent table of the proxy

agent and different messages.

Table 3.5 shows the relationships between the remote agent table of the proxy

agent and different messages.
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System Operation Message Type Table Action
Agent Creation ACK-CREATION Insert

(ID,ADDR,STATUS:INACTiVE)
Agent Registration UPDATE Update

(ADDR,STATUS:ACTIVE)
Agent Termination TBRMINATiON Delete(ID:ChildId)
Message Delivery CONiIMUNICATION Search (ID :ReceiverID )

Table 3.4: Relationships between Child Agent Information Table and Messages

System Operation Message Type Table Action
Agent Registration REGISTRATION Insert

(ID,ADDR,STATUS:ACTIVE
Agent Deregistration DEREGISTRATION Delete (ID:Childld)
Agent Termination ACK_TERMINATION Delete (ID:ChildId)
Agent Migration MIGRATION Update

(STATUS:MIGRATING)
Agent Migration UPDATE Update

(ADDR, STATUS:ACTIVE)
Message Delivery COMMUNICATION Search (ID:ReceiverlD)

Table 3.5: Relationships between Local Agent Table and N4essages
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3.3 The Limited-Forwarding Scheme

The efficiency of the proxy-based scheme depends on the message exchange rate

and the mobile agents' migration frequency. The scheme may perform poorly in

a highly dynamic system with relative low frequency of interagent communication

because the cache information is likely to be obsolete when it is needed. To improve

the performance of the system, the forwarding-pointer strategy described in section

2.3.3 can be integrated with the proxy-based protocol.

In the basic proxy-based scheme, if a proxy agent receives a message from

outside the domain and the message is directed to a mobile agent that is no longer

in the domain, the proxy agent sends an UNAVAILABLE message to the sender's

proxy agent and redirects the incoming message to the home server. According to

the home-server protocol discussed in section 2.3.1, the message has to be delivered

at ieast three times before it can reach the final proxy agent. In some cases, simply

forwarding a message is cheaper than using the home-server scheme.

However, as noted before, the forwarding-pointer strategy has one serious draw-

back: the chasing problem. A message can follow an agent forever if the agent

migrates frequently. In the proxy-based protocol, if a message is forwarded. more

than three times, the communication cost is likety higher than the simple home-

server protocol since the home-server protocol delivers a message by forwarding
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System Operation Message Type Table Action
Agent Deregistration DEREGISTRATION Insert (ID,ADDR)
Message Delivery COMMUNICATION Search

(ID:ReceiverID)
Message Delivery (from out-
side the domain)

COMMUNICATION Insert (ID,ADDR) or
Update(ADDR)

Message Delivery UNAVAILABLE Delete
(ID:Receiverld)

Table 3.6: Relationships between Remote Agent Table and Messages
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the message three times in most cases. To solve this problem, an algorithm that

can guarantee that the cost of using forwarding-pointer will be lower than the

home-server protocoÌ in most cases is deveÌoped.

The notion of limited-forwarding algorithm has been used for PCS (personal

communications services) [30]. The idea is when a cache miss occurs, the message

will be forwarded one step. if the cache miss occurs again, the IS-41 (the equivalent

of home-server in PCS) protocol is used to deliver the message. The drawback of

the one-step forwarding algorithm is the location information in the proxy agent's

remote agent source table may be obsolete due to the mobility of agents. If the

obsolete cache information is used to forward a message, the next proxy agent still

has to use the home-server scheme to deliver the message. In such a case, the

overhead of using one-step forwarding strategy to deliver the message is higher

than the home-server scheme. Therefore, it is desirable to use some strategies to

predict whether the cache is valid to improve the cache hit ratio.

The idea is, a mobile agent records its average inter-domain migration interval

M , and embeds this information into the outgoing message. The proxy agent at

the receiving end extracts the M from the incoming message. As a result, the

proxy agent can determine whether to forward the message to the cached location

or to the home server based on the receiver's migration frequency. In order to

use the limited-forwarding scheme, a few extra bytes are needed in a message. In

addition' the record in the proxy agent's remote agent resource table must include

two fields: FT the time the proxy agent receives the incoming message, and M
the average inter-domain migration interval of the sender. Figure 3.1b shows the

algorithm of the calculation of average inter-domain migration intervaÌ for a child

agent. The calculation occurs after the child agent moves to a new location.

To make the algorithm more flexible, a forwarding factor FF is defined to

controì the average maximum steps a message can be forwarded in the system.
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/* Variable
nealMoveTro(=M) : Average cross-donain nigration interval, it
roaxinun value during agent creation.
interDonain_l',lv: Number of ínter donain nigrations(base figure
curMoveTn: Current move tine, initial_ val_ue is 0
lastMoveTn: Last roove tine, initial value is 0
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is assigned a

for M), initial value is0

total-Trn: The total tine sínce the child agent left its naster agent

Recalcul-ate O operation :

curMoveTn = TineO;
IF (the agent rûoves to a ne¡r dornain)

tota1T¡n = interDomainMvxroeanHoveTrn+(curMoveTm _ lastMoveTn) ;
rnea_nMoveT¡n = totalTn/ (interDomainMv+1) ;
interDoroainlfv++ ;

lastMoveTm = curMoveÏm;
RegisterO;

End IF
Ênd Recalculateo

Figure 3.15: Recalculation Algorithm

Generally, the forwarding factor should not be larger than 3 because the home-

server protocol can deliver a message by forwarding the message three times. Let

CT represent the current time and F? represent the time the proxy agent receives

the incoming message, the proxy agent compares the er - FT) to F F * M be-

fore it delivers the message. If @r - FD < FF * M, the cache information

is considered valid and the message is forwarded to the receiver's proxy agent. If

Qf -Ff) > FF*M, the cache information is considered obsolete. In such a case)

the message is directly delivered to the home server. Using this algorithm, most

of the message forwarding can be limited to within predefined steps, and there-

fore, prevents message chasing and long chain problems in the forwarding-pointer

algorithm [2I, 39, 52]. Figure 3.16 illustrates the process of message delivery in

proxy-based protocol with the limited-forwarding algorithm.
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Figure 3.16: Activity Diagram for Message Delivery (from outside the domain)

3.4 Protocol Reliability

One of the goals of this thesis is to develop a reliable protocol for mobile agent

communication. This section presents the mechanisms in the proxy-based protocol

that can guarantee reliable message delivery. As discussed in section 2.2.3 , the

reliability of a communication protocol for multi-agent systems involves two issues:

(1) the vulnerability of the protocoi to the failures in the distributed environment;
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and (2) message losses or chasing problems. A reliable communication protocol

should address both issues to guarantee that a message can be delivered successfully

to the receiver in any situation.

For the first issue, the proxy-based protocol is a little more sensitive to the

failure in the network than the home-server protocol. In addition to home-server

and master agents, the failure of proxy agents also causes communication problems

in the system. However, since the number of proxy agents is much smaller than

the total number of network nodes, the problem can be solved by using replication

to backup information for the proxy agents.

For the second issue, the home-server protocol cannot guarantee the delivery

of messages to the receiving agent even in a fault-free network environment. If

a mobile agent migrates during message forwarding, the message would be lost

forever. The proxy-based protocol solves this problem by using synchronization

messages. Let's consider the worst case: mobile agent ,4 sends a message rn to

mobile agent B, agent B migrates to another location during the message delivery.

However, before B's migration, B must inform its current proxy agent pB of its

intended movement and waits for the ACK-MIGRATION message. Once the proxy

agent receives the MIGRATION message, it sets B's status to MOVING and wiil

not forward any message to B. There are three possible situations for m when it

arrives atr PB: (1) B is moving; (2) B has reached a nerÃ/ location and pB holds

valid address information for B's new location; (3) B has reached a nerv location

and PB no long holds cache information for B. In the first case, PB holds nz until

PB receives UPDATE or DEREGISTRATION message from B. Then pB can

forward rn to B's new location. In the second situation, PB simply forwards rn

to B's new location. If B is in a new domain, the ner¡/ proxy agent processes ?n

based on the same principles. In the third situation, PB empioys the home-server

protocol and directs m to the home server. Therefore, no matter which situation
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holds, the proxy-based protocol can deliver a message to its destination agent in a

bounded number of hops.



Chapter 4

Simulation Model

This chapter describes a simulation model that simulates a proxy-based protocol

and a home-server protocol. The purpose of the simulation is to compa¡e the dif-

ference in communication costs of these two protocols. The first section explains

why simulations, instead of a prototype, were used to evaluate the performance of

the proposed protocol. The supported framework for the simulation model, SSJ,

and the concept of discrete-event stochastic simulation are also introduced. The

development of the simulation model is described in depth. After that, the verifl-

cation and validation of the simulation model are discussed. The implementation

details of the simulation model are presented in the last section.

4.L fntroduction

Many mobile agent platforms, such as Aglets [1, 30], ffMain [32], Emerald [27] and

Voyager [5], have been proposed in recent years. However, these agent platforms all

use one specific protocol for agent communication. This makes the implementation

of the proposed scheme infeasible on these agent platforms. The only way to

implement the proxy-based protocol is to modify one of the agent platforms or

create a new agent platform, both of which are very time-consuming. In addition,
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due to access limitations, the implementation can only take place in a LAN setting,

which makes the measurement of large scale wide-area network communication

impossible. As a consequence, the result of such an implementation would be

far from accurate. Furthermore, implementation cannot provide easy insight into

the effects of various parameters and their interactions. First, changing system

configuration for every alternative is costly in terms of time and effort. Second,

it is impossible to create identical events for every aiternative in the real world.

Therefore, it is hard to tell whether a performance change is a result of some

random effects in the environment or due to the particular configuration.

On the other hand, simulation provides a more flexible and accurate technique

for analyzing the performance of the proxy-based communication protocol for mo-

bile agents. First of all, it takes less time and effort to construct a simulation model

than to implement the protocol on an agent platform. Second., a simulation model

allows the performance of the proposed protocol to be measured. under a wider

variety of workloads, network diameters, and behavior patterns of mobile agents.

Third, simulation is preferred over implementation due to its ease of changing con-

figurations. Fourth, a simulation model using control variables can eliminate the

random effect in the environment in comparison between runs involving different

confrgurations.

Discrete-event stochastic simulation methods [8, 32] are used to developed the

simulation model for the proposed protocol because it is hard to obtain the real

trace of a multi-agent system. The Stochastic Simulation in Java (SSJ) [S3] frame-

work is used to create a home-server and a proxy-based protocol simulation model.

rô
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4.2 The SSJ Fþamework

SSJ is a general-purpose framework for simulation programming. It is implemented

as a library of classes in the Java programming language. These classes provide

tools for generating random numbers, collecting statistics, managing a simulation

clock and event list, synchronizing concurrent processes, etc. SSJ is primarily

designed for discrete-event stochastic simulations, but it also supports continuous

simulation and arbitrary mixtures of these simulations.

For the discrete-event stochastic simulations, SSJ supports both event-oriented

and process-oriented programming. An event is an incident which occurs instan-

taneously at a point in time and changes the state of the system. A subclass of

class Euent is defined for different types of events that can occur in the simulation,

e.9., message delivery and agent migration. Each event is created with a scheduled

time of occurrence and is inserted into the event list automaticaliy. An event is

executed when the simulation clock reaches the event's pre-schedule time. The

S'im class is responsible for maintaining the simulation ciock and the event list.

Process-oriented programming provides higher-level toois for discrete-event stochas-

tic simulations than event-oriented programming. A process is an active object

that has methods describing the succession of states of an object and its effect

on the system state over a period of time. Processes are typically implemented

as threads that can be suspended and resumed to represent the stop-start nature

of the work of a process [32]. Processes are particularly suitable for describing

autonomous entities, such as agent or robots, within an environment. However,

event-oriented programming provides better performance because it avoids the

pro cess-synchronization overhead.
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4.3 Simulation Model

4.3.L The Performance Metrics

The goal of the simulation is to provide estimation for the efficiency of the proposed

protocol. Since the communication overhead in a multi-agent system includes both

location updates and message delivery, the simulation should provide performance

metrics for both. Interest is not in absolute performance value, but rather in

relative difference in performance of the proxy-based protocol and the home-server

protocol.

The performance metrics of the simulation model are defined as foilow:

o Number of the Communication Messages: the total number of message

exchanges among mobile agents during the simulation time. This metric

is used to verify whether the home-server and proxy-based protocol model

generate the same number of communication message.

o Average Delivery Time of communication Messages: the interval

between the time the sender sends a message and the time the receiver re-

ceives the message. The execution time of a message is ignored because the

execution time is negligible compare to the transit time.

o Number of the update Messages: the total number of update messages.

The results from home-server and proxy-based protocol are expected to be

different due to their respective update policies.

o Average Delivery Time of update Messages: the interval between the

time a sender sends out the message and the time the receiver receives the

message. The update message is always sent to a stationary agent, which

does not involve location tracking, therefore, the results from both protocols

are expected to be similar.
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o Total cost: the sum of communication cost and the update cost. Com-

munication cost is equai to the number of communication messages times

the average delivery time of communication messages while the the cost of

update is equaÌ to the number of update messages times the average delivery

time of update messages.

4.3.2 The Control Parameters

The simulation parameters include the number of computers, the number of do-

mains, the number of master agents, the number of child agents, average time in-

terval between message delivery, average time interval between agent migrations,

probability of an agent move within the same domain, forwarding factors, and.

simulation stop time.

o Number of computers: The number of computers represents the total

number of computers that the child agents can visit in the network. In this

simulation, the value of this parameter ranges from 100 to 1,000,000.

Number of Domains: The number of domains represents the total number

of domains in the network. In this simulation, the value of this parameter

ranges from 2 to 1,000.

Number of Master Agents: The number of master agents represents the

total number of master agents in the network. In this simulation, the value

of this parameter ranges from 2 to 1,000.

Number of child Agents: The number of child agents represents the

total number chiÌd agents in the network. In this simulation, the value of

this parameter ranges from 10 to 3,000.
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interval between message delivery represents the average message generation

rate of each child agent. In this simulation, the value of this parameter ranges

from 5ms to 3,600,000ms (1 hour).

Average Time rnterval between Agent Migrations: The average time

interval between agent migrations represents the average migration rate of

each child agent. In this simulation, the value of this parameter ranges from

60,000ms (1 minute) to 2I,600,600 (6 hours).

Probability of an Agent Move within the same Domain: The proba-

bility of an agent move within the same domain defines the average number

of the consecutive moves of an agent in the same domain before it moves to

another domain. Let p represent the probability, r - p can be viewed as the

parameter for a geometric distribution with state space {r,2,.. .}. Therefore,

the mean number of consecutive moves in the same domain for a child agent

is IIQ - fl.

Forwarding Factor: The forwarding factor is used in the limited-forwarding

algorithm to define the cache available time. In this simulation, the value of

this parameter ranges from 0 to 3. when the forwarding factor is 0, there is

no forwarding strategy in the system, therefore, the system is the proxy-based

protocol without the limited-forwarding aÌgorithm.

Simulation stop Time: The simulation stop time represents the length of

time that the simulation runs. To get an accurate result, the value of this

parameter should be much larger than the interval time between message

exchange and agent migration.
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4.3.3 Conceptual Model

Figure 4.1: Class Diagram for Simulation Modei

Figure 4.1 represents the class model for the simulation. At the root is the

Si'mCtrl class where the user specifies the control parameters and receives the

result for the simulation run. For each simulation run, a home-se¡ver and a proxy-

based protocol are simulated under the same control parameters. HomeSim and,

ProrySim classes represent the simulation control for these two protocols, respec-

tively. The Agent class is the generic class for all different types of agents in the

system' Each agent has a unique identifier and current address. An agent can
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create certain types of messages, send messages to other agents, and process mes-

sages from other agents. Although the interfaces are similar, the master agent and

child agents in home-server and proxy-based protocol have quite different actions.

Therefore, HomeMaster class and HomeCltild, class are used to described these

agents in the home-server protocol whtle MasterAgent and Chi,Id,Agent a¡e used in

the proxy-based protocol. Since the home server performs the same tasks in both

protocols, the HorneSeruer class can be used in both simulations. The ProryAgent

can only be used in the proxy-based protocol. The main task of a proxy agent is to

maintain the local agent table, the remote agent table and hold message table, and

to process and forward messages according to the table information and message

type. The AgentRec class describes the structure of a record that can be used by

master and proxy agents.

Figure 4.2 shows the control flow of the simulation. Afte¡ the user specifies

the parameters, the system initiates the proxy-based simulation. A multi-agent

system is constructed and the initial events are defined during the child agent's

creation. When the simulation starts, more events are added to the event list.

The Sim class manages the event list and processes events when the simulation

clock reach the schedule time. The simulation stops when the clock reaches the

pre-defined stop time. The system records the result for the proxy-based protocol

simulation and initiates the home-server simulation. The simulation goes through

the same procedure and at the end displays the results of both protocols to the

user. The user can either change the parameters and start another simulation or

exit the system.
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Figure 4.2: Simulation Control Flow

4.3.4 Initialization of the Simulation

Since the goal the simuÌation is to measure the communication cost, some irrelevant

activities such as agent creation and termination are not simulated in the model.

To make sure the performance metrics are collected after the system reach a steady

state, one tenth of the total simuÌation time is defined as the run-up period of the

simulation. All agent objects are stored in a hash map agentRefMap, the key is
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the agent's ID. An agent object is added to the agentfuefMap upon its creation.

The underlying network model is constructed according to the number of nodes

and the number of domains specified by the user. The nodes are evenly distributed

over the whole network. For example, if the total number of nodes is 100 and the

number of domains is 10, then node0 to nodeg are in domainO, and nodel0 to

node19 are in domainl, etc.

For each system, node0 is the default residing node for the home serve¡. The

number of proxy agents is equai to the number of domains, which means for every

domain there is exactly one proxy agent. The first node in the domain is the default

residing node for the proxy agent. The user can define the number of master agents

and child agents in the system. There is no limitation on which node a master

agent or a child agent can reside at. For the initial deployment, master agents and

child agents are randomly distributed across the network. The master agent for a

specific child agent is also randomly chosen. The chitd agent must register with

the assigned master agent and proxy agent upon its creation. Figure 4.3 shows the

algorithm for the system deployment of the proxy-based protocol.

In the simulation modeÌ, all messages are considered to have equal length;

thus, the speed of delivery is the same under the same network conditions. A

domain is viewed as a local area network. Generally, the end-to-end delay in a

local area network ranges from lrns to 10r¿s. Here, the average value Srns is used

as the intra-domain message delivery time. The inter-domain communication is

considered as network traffic in a wide area network. The inter-domain message

delivery time is defined as 150rns, which is the maximum one-way delay acceptabie

for IP telephony applications [3].
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/tr Va¡iable
nuro0fNode: The number of nodes in the netsork
num0fDornain: The number of dornain in the tretwork
num0fMaster: The number of naster agents in the systen
nun0fChil-d: The mrmber of child agents in the systen

nuroPerDomain: The number of nodes in each doroain
HoneServer: Horoe server for the system
Proxy_i: Proxy agent in dornain i
Master_i: The #i naster agent
Child_i: The #i child agent
Ner.¡Rec: A new record 1n table
agentïd, agentAddr: Attributes of Agents

SystenDeployO operations :
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numPerDonain = ce i I (nurnOf Node/nun0f Donain) ;
HoneServer = NEW HoneServerO;
HorneServer. agentf d = ,'H0ME', 

;
Horoeserver.agentAddr = 0;

FOR(i = 0;i < nun0fDomain; i++)
Proxy_i = NEW ProxyAgentO;
Proxy_i. agentld = "Proxy"+i ;
Proxy_i. agentAddr = ixnumPerDonain+1 ;

END{FOR}

F0R(j. = 0; i < num0fMaster; i++)
Master_i = NEW Master,AgentO;
Master_i.agentld = "Master,'*i;
Master_i. agentAddr = genUniforrnRa¡(1,nun0fNode) ;

END{FOR}

F0R(i = 0; i (, num0fChild; i++
Child_i = NEW ChildAgentO;
Chil-d_i. agentld = I'Chil_d"+i;
Child_i. agentAddr = genUnifornRar(1,nunOfNode) ;
Chil-d_i . proxyld = ',Proxy" +getDornainNum (Chi1d_i . agentAddr) ;
child-i . proxyAddr = getDonainNun (child_i . agentAddr) *numperDonain+1 ;
Child_i..nasterfd = "Master"+genUniformRan(0,num0fMaster) ;
Child_i . masterAddr = getAgentRef (Child_i . nasterld) . agentAddr;
HoneServer. addMasterld(Child_i. agentld, Child_i.masterld) ;

NevRec = NEIJ AgentRecO;
NeuRec. agentfd = Child_i. agentld;
NewRec. agentAddr = Child_i.agentAddr;
Nel¡Rec.masterfd = Child_i .roasterld;
Ner¡Rec.ProxyId = Child_i.proxyfd;
getAgentRef (chil-d-i . masterid) . addchj.rdAgent (chird_i . agentrd , NewRec) ;
getAgentRef (chird-i . proxyrd) . addlocalAgent (child_i . agentrd., NewRec) ;

END{FOR}

END SystenDeployo

Figure 4.3: Algorithm for System Deployment
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4.3.5 Generation of Events

At first sight, process-oriented programming seems to be the natural way for con-

structing such a complex simulation model with a large number of autonomous

entities. However, the Process ciass in SSJ is implemented with the Java Thread,

class. In the current Java environment, the time required for the creation of a new

thread is almost equivalent to that of creating 100 objects [33]. SSJ employs the

thread pool [26] technique to improve efficiency. When a process finishes all its

activities, its associated thread object is put on a stack of free threads. A new

process can reuse one of these free threads when the stack is not empty. However,

the simulation model for a communication protocol cannot gain any benefit from

this technique because an agent will not end its life until the simulation stops.

This means the thread pool is always empty and a new thread object has to be

created for every new agent object. For a system with a large number of agents,

the use of Process will cause a significant performance penalty.

On the other hand, only two types of events will change the state of the system.

The first is the message delivery and the second is agent migration. It is fairly easy

to construct MessageÐuent and Mzgrat'ionEuenú classes for these two events by ex-

tending the Euent class in SSJ. The random number streams genMsg and. genMoue

are the random number generators used to generate the times between successive

message delivery and agent migration, respectively. The average interval between 2

consecutive message deliveries originating from one agent and the average interval

between 2 consecutive migrations of a child agent are defined by the users. These

two random variables are considered exponentially distributed [32]. The frrst event

of each type is scheduled during agent creation. The action method in each event

schedules the next event. Figure 4.4 and Figure 4.5 show the algorithms for these

two events.
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/ 'r Va¡iable
roealnMsgTn: The average j.ntervar between 2 consecutive nessage deJ_ivery
MSG_C0MMUNICATION: Constant for nor¡nal Eessage type

nextDeliverTn: The tirne for next Message delivery
nsg: Norrnal nessage;
type, endAgentld: Attributes of message
proxyfd: Attributes of Agent

MessageEvent O operation :

nextDel iverTn = genExponent ial-Ra¡ (neaaMsgTm) ;
schedulNextMessage (nextDeliverTn) ;
nsg = creageMsgO;
msg.type = MSG_C0MMUNICATI0N;
rnsg. endAgentfd = rrChild"+genNewTdO 

;
send-l',f s g (ngrMs g, proxyld)

End MessageEvento

Figure 4.4; Algorithm for Message Delivery Event

/x Variable
neaa.l"ligrateTro: The average interval- between 2 consecutive roigration
MSG_MIGRATI0N: Consta:rt for migration roessage type

nextMigrateTn: The tiroe for next nigration
ner,¡Addr: The destination for nigration
nigMsg: Mì-gration nessage;
type, endAgentld: Attributes of roessage
proxyld: Attributes of Agent

MigrationEvent O operation :

nextMi grat eTm = genExponent i a1Ra¡r (meaaMi grat eTn) ;
schedulNextMigrate (nextMigrateTn) ;
newAddr = genNewAddrO;
nigMsg = creageMsgO;
roigMsg.type = MSG_MIGRATION;
migMsg. endÁgentld = proxyld;
sendMsg (ngrMsg, proxyld)
nove (ner¡Addr) ;

End MigrationEvento

Figure 4.5: Algorithm for Agent Migration Event
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4.4 Verification and Validation

in this research, the major technique that is used to verify the simulation model

is a debug trace. For the two major events Message Deli,uery and M'igration, Lhe

state of the simulated system are printed out during debugging at each event

occurrence. For agent migration, the agent's original address, new address, the

updates of remote agent and local agent tables of relative proxy agents and the

updates of the master agent are reported. For message delivery, the initial time,

the delivery path, and the updates of remote agent and local agent tables are

reported. Figure 4.6 shows part of a trace file. These traces indicate that the

program is operating as intended.

64



CseprBn 4. Srrvlule:uoiv Monpl

ÏD=H0ME ADDR=O

ID=ProxyO ADDR=I

ID=Proxyl ADDR=11

fD=MasterO ADDR=13

ID=Masterl ADDR=32

fO=Cnif¿O ADDR=82 ProxyId.=Proxy8 proxyAddr=81 nasterld=MasterO roasterAd.dr=13
Schedule atO.0
ID=Child1 ADDR=S3 Proxyld=Proxy5 proxyAddr=S1 masterld=Masterl masterAd.dr=32
Schedule atO.0

Send message fron Chj-IdO to ProxyS end agent=Childl5 at tine 0.0
Send nessage from Proxy8 to H0ME end agent=Childl5
Send nessage from H0ME to Masterl end agent=Childl5
Send nessage fron Masterl to ProxyT end agent=Childl5
ProxyT recej.ve message fron ChildO
Send message from ProxyT to Chi1d15 end agent=Chi1d15
Chi1d15 receive message dista¡ce= 460

Child28 migrate fron 63 to 38 at SZ.SS108137305862
Chi1d28 enters neu dornain Proxy3
Child28 send REGISTRATI0N Proxy3
Send message from Chi1d28 to Proxy3 end agent=proxy3
Proxy3 updates l-ocal table Chi1d28:38
Proxy3 sends UPDATE to Masterl
Send nessage frorn Proxy3 to Masterl end agent=Masterl
Masterl updates child table Chi1d28:Proxy3
Send nessage from Proxy3 to Proxy6 end agent=proxy6
Proxy6 del local table Child28
tt"*l6 add remote table Child28:Proxy3

Figure 4.6: Ttace File Sample

Another issue in the simulation verification is to verify the seed independence.

Seed independence means the seed value used to initialize the random-number

generation should not affect the final results. Thus, the model should produce

similar results for different seed values [29]. To verify this, three simulation cases

65



Cseprpn 4. Srrr¿ularroN Moopl

are run with four different seed values. In the first case, the value of control

parameters are set to 5 percentile of the range. In the second case, the value of

control parameters are set to 50 percentile of the range. In the third case, the

value of control parameters are set to g5 percentile of the range.

Tabìe 4.1 and Table 4.2 summaries the simulation results. The MarDiff row

represents the maximum difference between results of the same simulation case

with different seeds. Since all the maximum difference is less than IVo, we can

safely conclude that the selection of seeds does not affect the simulation result and

the difference between simulation runs is due to different configurations.

Case 1 Case 2 Case 2
Home Proxy Home Proxy Home Proxy

Seed 1 446.99 454.86 449.80 454.64 449.88 456.03
Seed 2 446.58 456.07 449.84 454.85 449.83 456.27
Seed 3 447.35 455.85 449.92 454.73 449.94 456.33
Seed 4 446.92 456.57 449.45 454.38 449.78 455.88
MaxDiff 0.77% 0.387 0.7Y0 0.76% 0.04% 0.07%

Table 4.1: Mean Message Delivery Cost for Simulations with Different Seeds

Case 1 Case 2 Case 2
Home Proxy Home Proxy Home t'roxy

Seed 1 7.6287 t.7287 r.5487 1.5687 1.53E7 r.4887
Seed 2 7.6287 r.7287 1.55E7 r.5787 t.5487 r.4987
Seed 3 7.6287 t.7287 1.55E7 i.56E7 7.5487 1.4987
Seed 4 1.61E7 7.7187 r.5487 1.56E7 1.53E7 7.4887
MaxDiff 0.62% 0.58% 0.647 0.64% 0.66% 0.46Y0

Table 4.2: TotaI Communication Cost for Simulations with Different Seeds

It is relatively easy to validate the home-server protocol. As discussed in Section

2.3.1, the maximum time for message deiivery time will not exceed 3 x 150r¿s :
450ms because of the triangular delivery path. And in most cases, the delivery

time is close to 450ms because the home server) master agent and child agent

usually do not reside in the same domain. The simulation results conflrm this
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theory by showing that none of the simulation runs generates average delivery

time for communication messages that is greater than 450m.s and in most of the

runs it is close to 450ms. Another resuÌt that confirms the validity of the model is

the average delivery time of the update message which is close to 150r'¿s in most

of the cases.

On the other hand, there is no existing theory that can be used to validate

the proxy-based protocol. The only validation we can have from the simulation

results is that the number of communication messages is the same in both protocols

and the average delivery time of the update message is close to 150rns. Another

proof is that, unlike the home-server protocol, the average message delivery time

of communication messages of the proxy-based protocol is not stable. The value

of the delivery time varies in different settings. This result indicates the influence

of the proxy agents. Further data analysis is shown in Chapter 5.

4.5 Implementation

The simulation model is developed in Java 2 SDK and can be run on any win-

dows platform with Java 2 Runtime Environment installed. Figure 4.7 shows the

graphic interface for the the simulation model. The interface allows users to define

the control parameters, such as number of computers, number of child agents, av-

erage time interval between messages delivery and simulation stop time, etc. After

defining all the parameters, the user can run the simulation by pressing the Run

Si,mulation button.

Figure 4.8 is the report windows of the simulation which shows five different

performance metrics for both protocols.
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Figure 4.7: Simulation Input Window

Figure 4.8: Simulation Output Window
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A user can also use the batch function of the simulation model. When the

batch check box is selected, the user can only enter the input file name. Figure 4.9

shows the format of an input file for the simulation.

0.05 0.95 0.05 0.95 0.05 0.95 0 0.05
0.05 0.05 0.95 0.05 0.95 0.95 0 0.05
0.95 0.05 0.95 0.05 0.05 0.05 0 0.95
0.05 0.05 0.05 0.05 0.05 0.05 0 0.95
0.95 0.0s 0.05 0.95 0.05 0.95 0 0.05

Figure 4.9: Simulation Input Quantile File

Each row in the file represents the parameters for one simulation run. The

simulation stops on reaching the end of the file. The order of the parameter is

the same as shown on the input screen, number of computers, number of d,ornains,

nurnber of master agents, number of chi,td agents, auerage time interual between

messages del'iuery, auerage time'interual between agent rnigrat'ions, forwardi,ng fac-

tors and probabi,li,ty of an agent moue with'in the same domai,n. The number in the

input file represents the quantile of the parameter distribution. All these param-

eters are considered uniformly distributed between their minimum possible value

and maximum possible value. The simulation model translates the quantile to the

actual value. For example, the vaÌue of number of computers is between 100 and

1,000,000. If the value in the input file is 0.05 for the parameter, then the actual

value is the 5 percentile of the range:

100 + (inú)(0.05 * (1000000 - 100 + 1)) : 95000b

For the batch function, the default simulation time is 4ï200000ms (12 hrs).

The output results are recorded in file homeSi,m.out and prrogsim.out. Fig-

ure 4.10 shows the format of the prorySim.out fr\e. The format of the homeSim.out

is similar except it does not include forwarding factor.

Each row represents the control parameters and five performance metrics for

the proxy-based protocol in one simulation run. Notice the value of a control
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Control- Pa¡ameters
950005 951 51 2851 180004 20523000 O 0.95
50095 51 51 2851 180004 20523000 0 0.95
950005 51 51 2851 3420001 1137000 O 0.05
950005 951 51 2851 180004 1137000 o o.o5
50095 951 51 159 180004 20523000 o 0.95

________Perf orroa¡ce Metrics
674342 412.76 552 150
614342 205.16 724 148.59
32082 490.32 L84674 148.56
615128 476.66 185362 749.92
34422 302.85 38 150
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2.548+08
1 .26E+08
4.328+07
3.21E+08
1 .04E+07

Figure 4.10: Output File

parameter in the output file is the actual value instead of the quantile value in

the input file. The batch function allows the model to run multiple simulations

automatically without user interference.



Chapter 5

Data Analysis

This chapter shows the analysis result of the output data from the simulation

model. The basic proxy-based protocol and proxy-based protocol with Ìimited-

forwarding algorithm are analyzed independently. A sensitivity analysis is per-

formed for the basic proxy-based protocol.

5.1 Basic Proxy-Based Protocol

5.1.1 Experimental Design

Experimental design provides a useful technique for measuring the effect of different

factors on a system's performance. A well-designed experiment can offer maximum

information with minimum cost. Also, experimental design helps in identifying

factors that have significant effect on performance [29]. In this study, a two level

full factorial design is used to determine the effect of 7 factors (forwarding factor

is set to 0), each of which has two alternative ievels. Therefore, the number of

simulation runs is 128. This design can estimate not only additive effects for each

factor but also the effects of pair-wise interactions between factors.

Tfaditionally, the 2 level in the factorial design are labelled -1 and 1. The
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values of these two levels are decided by the parameter distribution. Table 5.1

summarizes the distribution information for the parameters.

Table 5.1: Distribution for Factors

The simplest way is to assign the minimum value to the -1 level and the maxi-

mum value to the 1 level. However, by doing this, we only simulate some extreme

cases that are very unlikely to happen in real world. For example, at the ex-

tremes for the PSTAY variable, we either have child agents that always move in

the same domain (PSTAY:1) or child agents that always move to another do-

main (PSTAY:0). To solve this problem, 0.05 and 0.g5 quantile values in the

parameter distribution for the two levels are used. Table 5.2 shows the values of

different factors.

Factor Level -1 Level 1

I\UMCMP (A) 50095 950005
NUMDMN (B) 51 951
NUMMST (C) 51 951
NUMCHD (D) 159 285r
INTMSG (E) 180004 ms (= 3 mins 3420001 ms (= 57 mins)
rNTMrc (F) 1137000 ms (= 19 mins) 20523000 ms (= 5.7 hrs)
PSrAY (c) 0.05 0.95

Variable Meaning Distribution Min Max
NUMCMP Number of computers Un form 100 1,000,000
NUMDMN Number of domains Un form 2 1,000
NUMMST Number of master agents Un form 2 1,000
NUMCHD Number of ch Id agents Un form 10 3,000
INTMSG Average time interval be-

tween messages delivery
Uniform 5ms 3,600,000 ms

(:1 hr)
INTMIG Average time interval be-

tween agent migrations
Uniform 60,000 ms

(:1 min)
21, 600, 000
ms (:6 ¡tr¡

PSTAY Probability of an agent
move within the same do-
main

Uniform 0 I

Table 5.2: Factors and Levels
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5.I.2 Statistical Analysis

To give a more intuitive view, I transform the output metric. Instead of using the

direct result of the average delivery time of a communication message, I calculate

the relative difference between the two protocols. Let Cr(D) represents the average

delivery time of a communication message in the proxy-based protocol, and C¡(D)

represents the average delivery time of a communication message in the home-

server protocol. I define the difference of the deìivery time as:

Cì,(D) - C"(D\/r,_ .-\ / __1\ / *700%ud - cn(D) 
t Lvv /v

D¿ represents the relative difference between two protocol in each runs. D¿ ) 0

indicates that the proxy-based protocol performs better than home-server protocol.

ft)

Figure 5.1: The Difference of Average Delivery Time of Communication Messages

between Two Protocols

Figure 5.1 shows the statistical result of. D¿1or a total of 128 runs. 52 out of 128
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runs are between -10% and 07o,38 out of 128 are between 0% and 10%, and 38

out of 728 are greater than70To. Therefore, in about 60% of the simulation runs,

the proxy-based protocol decreases the message delivery time. On a closer look at

the data, the worst case is D¿: *9.77Vo and the best case is Da:55.32%. This

shows that, although the proxy-based protocol does not always guarantee better

performance for message delivery, it only slightly increases the cost in the worst

case. On the other hand, in about 30% of the simuiation runs, the proxy-based

protocol significantly decreases the deiivery cost (D¿ > I0%).

In a similar manner, I use the relative difference of the total cost between two

protocols to report the result. Let Co(T) represent the total cost for the proxy-

based protocol, and C¡(T) represent total cost for the home-server protocol. I

define the difference of the metric as;

ch(r) _:Ðx 
loo%ur: _cnç,r,¡

Figure 5.2 shows the statistical result of D¿ for a total of 128 runs. 20 results are

between -50% and -30T0,26 are between -r0% and 07o,22 are between TVo and.

70To ,16 are between 10% and 20To, and 44 are greater than20To. Therefore, in

about 64% of the simulation runs, the proxy-based protocol decreases the total cost

for communication, which is almost the same as the result for the message delivery.

However, comparing Figure 5.2 with Figure 5.1, we can see the distribution has

changed. The difference in these two protocols has increased, both in a positive

and negative way. The worst case now is D, : -5L06% and 16 out of 128 runs

are with 4 < -30To. At the same time, 40 out of 128 runs are with D¿ > J0%.

The larger differences indicate that the update cost has a big impact on the total

communication cost. This also means we have to carefully choose the protocol to

use in different conditions because the proxy-based protocol can increase the total

communication cost significantly.
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Figure 5.2: The Difference of Total cost between Two protocors

5.1-.3 Sensitivity Analysis

To get further information on the protocol performance, I perform a sensitivity

analysis on the simulation results. The goal of sensitivity analysis is to estimate the

variation in the output of the simulation model with respect to different sources of

variation [a9]. The sensitivity analysis performed here is based on the parameter

ranges defined in the previous section. If the ranges of the parameters change,

the result of the sensitivity analysis might change as well. However, since the

ranges of the simulation parameters are large enough to cover most situations in

the real world, this sensitivity analysis can still provide useful information of the

relationships between the input and output flow of the model.

A statistical procedure called Analysis of Variance (ANOVA) is used to mea-

sure the relative significance of various factors. The idea is to use variance as arr

indicator of importance for input factors. Table 5.3 and 5.4 are the results of the



Factor Coefficient Contribution (percent
TNTMSG (E) -9.83597E-008 29.59

NUMDMN (B) -2.841158-004 r3.96
TNTMTG (F) +6.95185E-009 13.38
PSrAY (c)) +0.14085 1i.84

CseprBR 5. Dere ANnlysrs

most important factors (contribution > 10%) for D¿ and D¿.

Table 5.3: Analysis of Variance (ANOVA) Results for D¿

Table 5.4: Analysis of Variance (ANOVA) Results for D¿

The Cost of Message Delivery

From the anaiysis result of the D¿, wê can see the most important factor for the

cost of message delivery is the the average time interval between message delivery.

About 30% of the output variation is due to this factor. The coefficient of the factor

shows that the smaller the value, the better the performance of the proxy-based

protocol over the home-server protocol in terms of the cost of message delivery.

This result agrees with the protocol design. Since the cache information is collected

from the incoming messages, the more frequent the message exchanges occur, the

more accurate the cache information is.

Variable NUMDMN, the number of domains, contributes about I4To in the

variation of the output. The coefficient of the factor shows the smaller the value,

the better the performance of the proxy-based protocol over the home-server pro-

tocol in terms of the cost of message delivery. This aiso agrees with the protocol

design; when the number of domains is lower, it is more likely that the receiver's

information can be found in the cache information.
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Factor Coefficient Contribution (percent)
PSrAY (c)) +0.57063 40.90

INTMIG x PSTAY (FG) -2.93131tr-008 17.95
TNTMSG (E) -1.09208E-007 10.50
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The average time interval between agent migrations has almost the same con-

tribution to the output variation as variable NUMDMN. The coefficient of the

factor shows the larger the value, the better the performance of the proxy-based

protocol over the home-server protocol. The result is reasonable because the cache

information is valid until the receiver moves to a new location. The longer an agent

stays in one location, the more efficient the cache information is.

Variable PSTAY, the probability of an agent move staying within the same

domain, contributes about 12% to the variation of the output. The coefficient of

the factor shows the larger the value, the better the performance of the proxy-based

protocol over the home-server protocol in terms of the cost of message delivery.

This result agrees with the protocol design because as long as an agent moves

within the same domain, its address remains the same to other agents outside

the domain which means other agents can still use the cache information to send

messages to it.

The Total Cost

Flom the analysis result of the D¿, wc can see the most important factor for the

total communication cost is the probability of an agent move staying within the

same domain. About 4I% of the output uncertainty is due to this factor. The

coefficient of the factor shows that the larger the value, the better the performance

of the proxy-based protocol than the home-server protocol. This shows that the

update cost plays an important role in the total communication cost. In the proxy-

based protocol, a mobiÌe agent need not send update messages to the master agent

and home server until it moves to a different domain. However, when the mobile

agent moves to a new domain, it also has to send an update message to its former

proxy agent. Therefore, if an agent keeps moving to different domains, it will

send more update messages in the proxy-based protocol than in the home-server

,7 17
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protocol. As a consequence) the proxy-based protocol can increase the update cost

significantly, which in turn affects the total communication cost.

The interaction of variables INTMiG and PSTAY, designated FG, is the second

most important factor. The interaction contributes about 78% to the output un-

certainty. The coefficient of the factor shows that the smaller the value, the better

the performance of the proxy-based protocol than the home-server protocol. This

result means that effect of FG is less than the sum of F and G (i.e. F and G are

not addition), which is probably due to the different update policy of these two

protocols. When the PSTAY value is large, the more frequent an agent moves, the

more efficient the proxy-based protocol than the home-server protocol in terms

of the update cost. on the contrary, when the PSTAY value is small, the more

frequent an agent moves, the higher the update cost of the proxy-based protocol

than the home-server protocol. This result also explains why in some cases D¿ is

much higher than D¿ while in some cases D¿ is much Ìower than D¿.

The variable INTMSG, contributes about 7t% to the output variation. The

coefficient of the factor shows that the smaller the vaÌue, the better the performance

of the proxy based protocol than the home-server protocol. This result is consistent

with the analysis of D¿.

Summary

The sensitivity analysis shows some surprising results. The number of the comput-

ers, master agents and child agents are not important factors in the performance

comparison between the two protocols. On the other hand, the communication

and migration pattern of agents, and the number of domains are more important

in the performance comparison. Both analyses show that the proxy-based proto-

col performs better than the home-server protocol in agent systems with frequent

message exchanges. This is a good sign because one of the research goals is to

7B



CHeprpR 5. Dere Axelysrs

develop a communication protocol for multi-agent systems with frequent mess¿ge

exchanges.

The analysis of D¿ shows the proxy-based protocol is more suitable for highly-

dynamic agent systems as long as the value of PSTAY is high. This indicates

that we should consider both migration rate and migration patterns of agents

when deciding whether to use the proxy-based protocol. At first, it seems the high

PSTAY value limits the use of the proxy-based protocol in the real world. However,

in the simulation model, the movement of a child agent is totally random while

in the real world a mobile agent usually moves within certain areas. Therefore, a

high PSTAY value is not hard to achieved in a distributed application based on

mobile agent technology.

The analysis of D¿ shows when the number of domains is high, the proxy-

based protocol might perform v/orse than the home-server protocoi. This is a

bad sign because it may indicate the proxy-based cannot perform weÌl in large-

scale network. To investigate the scalability of the protocol, a simulation was

conducted to evaluate the performance of the proxy-based protocoi in different

network ranges. In this simulation, variables iNTMIG and INTMSG are set to

the low (0.05 quantile) value to simulate a highty-dynamic agent systems with

frequent message exchanges. The unimportant factors are set to medium (0.b

quantile) values. The variable PSTAY is set to different values to simulate different

migration patterns.

Figure 5.3 shows the results of the simulation with PSTAY: 0.05 which means

that an agent almost always moves to a new domain. In this situation, no matter

how small the number of domains is, the proxy-based protocol always performs

worse than the home-server protocol. Surprisingly, the difference between the

two protocols does not simply become larger as the number of domains increases.

The worst performance happens when the domain number equals 251; the proxy-
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Figure 5'3: Cost Difference between Two Protocols versus Number of Domairrs.

PSTAY: 0.05

based protocol increases total communication cost by about I5%o over that of the

home-server protocol. When the domain number is larger than 251, the difference

between the two protocoÌs becomes smaller.

Figure 5.4 shows the results of the simulation with PSTAY: 0.95 which means

the average consecutive moves of an agent with one domain is 20. In this situation,

all the cases show that performance of the proxy-based protocol is better than the

home-server protocol although the difference of the communication cost becomes

smaller as the number of domains increases. The result also matches the sensitivity

analysis; the migration patterns of the agent system have more important impact

than the network scale. The proxy-based protocol can perform well in large-scale

networks when the mobile agents satisfy certain migration patterns. On the other

hand, the home-server protocol is preferable even in small-scale networks where
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Figure 5.4: Cost Difference between Two Protocols versus Number of Domains.

PSTAY: 0.95

the migration patterns are totally random.

5.2 The Limited-Forwarding Algorithm

5.2.L Experimental Design

In this section, simulations are conducted to investigate the impact of the limited

forwarding algorithm on the proxy-based protocol. Here, unlike in the previous

section, the focus of the simulation is on the agent system with frequent message

changes which means the value of the time interval between message exchange is

set to low. The values of unimportant factors, such as the number of computers,

master agents and child agents, are set to 50 percentile of their ranges. The other

three important factors, NUMDMN, INTMIG and pSTAy, have two alternative
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values: the 5 percentile and 95 percentile of their ranges. All combinations of

these three factors are simulated with different factors. Therefore, there is a totai

of 8 sets of simulations, each set has 20 runs where each run simuìates a different

forwarding factor. When the value of the forwarding factor is 0, the protocol is

equal to the basic proxy-based protocol. From the results of simulation, we can

see the impact of the limited forwarding algorithm in different situations.

5.2.2 Simulation Results
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Figure 5.5: Cost Difference between Two Protocois versus Forwarding Factor.

NUMDMN : High, INTMIG : Low, PSTAY: High

Figure 5.5 shows the D¿ and D¿ of a highly-dynamic agent system with high

probability of an agent move within the same domain in a large-scale network. We

can see the proxy-based protocol becomes more efficient as the forwarding factor

increases. Both D¿ and D¡ improve about 3% when the forwarding factor increases
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from 0 to 3.
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Figure 5.6: Cost Difference between Two Protocols versus Forwarding Factor.

NUMDMN - Low, INTMIG : Low, PSTAY: HIGH

Figure 5.6 shows rhe D¿ and D¡ of a highly-dynamic agent system with high

probability of an agent move within the same domain in a small-scale network.

We can see the impact of the limited forwarding algorithm is more obvious in this

scenario than the previous scenario. Both D¿ and D¿ improve about I2%o when the

forwarding factor increases from 0 to 3 with most of the improvement occurring

by FF:1.5.
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Figure 5.7: cost Difference between Two Protocols. NUMDMN : High, INTMIG

- Low, PSTAY: Low

Figure 5.7 shows rhe D¿ and D¿ of a highly-dynamic agent system with low

probability of an agent move within the same domain in a large-scale network. We

can see the Ìimited forwarding algorithm does not have significant impact on the

proxy-based protocol. The D¿ and D¿ values are almost the same with different

forwarding factor.
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Figure 5.8; Cost Difference between Two Protocols. NUMDMN : LorÃ¡, INTMiG

: Low, PSTAY: Low

Figure 5.8 shows the D¿ and D¿ of a highly-dynamic agent system with low

probability of an agent move within the same domain in a small-scale network. We

can see the limited forwarding algorithm works very well in this scenario. Both

D¿ and D¿ improve about 18% when the forwarding factor increases from 0 to 3.

The proxy-based protocol performs \Morse than the home-server protocol when the

forwarding factor is less than 1, but when the forwarding factor is larger than 1,

the performance of the proxy-based protocol becomes better than the home-server

protocol.
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Figure 5.9: Cost Difference between Two Protocols. NUMDMN : High, INTMiG

: High, PSTAY: High

Figure 5.9 shows the D¿ and D¿ of a relatively stable agent system with high

probability of an agent move within the same domain in a large-scale network. We

can see the limited forwarding algorithm only slightty improves the performance

of the proxy-based protocol. Both D¿ and D¿ improve about 0.b% when the

forwarding factor increases from 0 to 3.
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Figure 5.10: Cost Difference between Two Protocols. NUMDMN : Low, INTMIG

: High, PSTAY: High

Figure 5.10 shows the D¿ and D¿ of a relatively stable agent system with high

probability of an agent move within the same domain in a small-scale network.

Same as the previous scenario, the limited forwarding algorithm only slightly im-

proves the performance of the proxy-based protocol. Both D¿ and D¿ improve

about 1% when the forwarding factor increases from 0 to 3.
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Figure 5.11: Cost Difference between Two Protocols. NUMDMN: High, INTMIG

: High, PSTAY: Low

Figure 5.11 shows the D¿ and D¿ of a relatively stable agent system with low

probability of an agent move within the same domain in a large-scale network. The

limited forwarding aÌgorithm helps to improve the performance of proxy-based pro-

tocol to a certain degree. Both D¿ and D¿ improve about 3% when the forwarding

factor increases from 0 to 3.
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Figure 5.12: Cost Difference between Two Protocols. NUMDMN : Low, INTMIG

: High, PSTAY: Low

Figure 5.12 shows the D¿ and D¿ of a relatively stable agent system with low

probability of an agent move within the same domain in a smaÌl-scale network. We

can see the limited forwarding algorithm works quite well in this scenario. Both

D¿ and D¿ improve about 10% when the forwarding factor increases from 0 to 3.
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5.2.3 Summary

Overall, the limited forwarding algorithm helps to improve the performance of

the proxy-based protocol. The worst we can get is no improvement at all but the

algorithm would not worsen the performance. In some cases, when the basic proxy-

based protocol is not suitable, the proxy-based with limited forwarding algorithm

performs better than the home-server protocol. In most cases) the performance

improves as the forwarding factor increases which means the proxy-based protocol

reaches best performance when the forwarding factor is 3. On the other hand, we

can see the performance become stable when the forwarding factor reaches about

2. Usuall¡ there is no significant difference between the protocols with forwarding

factor 2 or 3. Therefore, the forwarding factor can use any value between 2 and, B.

90



Chapter 6

Conclusion

6.1 Summary and Contributions

The primary result of this research is a new communication protocol that supports

efficient location tracking and inter-agent communication in large-scale multi-agent

systems. Mobile agent systems present several challenges to distributed application

due to code mobility. Previous research have solved the location transparency

problem, but some problems, such as efficiency, reliability and scalability, etc.,

remained unsolved. The new proxy-based communication protocol described in

this thesis uses the concept of proxy agents to reduce communication cost and

guarantee reliable message delivery. The significant contributions of this thesis are

summarized beiow.

First, this thesis introduces a proxy-based communication protocol that is capa-

ble of supporting efficient and reliable message delivery in mobile agent systems.

The system architecture and functionality of its components are presented and

algorithms for system operations are discussed in detail.

Secondly, on top of the basic proxy-based protocol, a limited-forwarding aÌgo-

rithm is developed to further improve the performance of the protocol. Using this
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algorithm, the proxy agent can determine whether to forward the message to the

cached location or to the home server based on the receiver's migration frequency.

And by limiting the forwarding steps, the algorithm prevents message chasing and

long chain problems that arise in previous forwarding-pointer schemes.

Thirdly, a comprehensive simulation model is developed to simulated both

home-server and proxy-based protocol. The model can simulate these two proto-

cols under a wide variety of workloads, network diameters, and behavior patterns

of mobile agents; therefore, it provides a good insight into the performance of the

protocols in different environments. The simulation results can be sent not only

to a graphical user interface but also to an output file which provides a foundation

for further data analysis.

Finally, this research provides an in-depth data analysis for the simulation

results. For the basic proxy-based protocol, a statistical analysis is used to presents

the overall effectiveness of the the proxy-based protocol in terms of performance.

In addition, a sensitivity analysis is used to provide further insights for the proxy

performance. Important factors are identified and the interpretation of the impact

of these factor are given. For the proxy-based protocol with limited-forwarding

algorithm, different parameter sets are used to evaluate the performance of the

aigorithm. The results prove that the limited-forwarding algorithm is able to

improve the performance of the proxy-based protocor in most cases.

6.2 Fhture Work

This section outlines the future research work on the communication protocol for

multi-agent systems as an extension of the research in this thesis. The following

content will address briefly some of the research problems that remain unsolved in

this research.
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Mobile agent systems raise several security issues, such as the authentication

of the user, restriction of the user's access and virus detection [16]. secu-

rity is a significant concern in electronic commerce in which two parties can

conclude a trading contract without prior acknowledgement. The protocol

presented in this research uses proxy agents as agent registration and message

exchange centers, which provides certain degrees of security control. Based

on the proxy-based protocol, further work can be done to resolve the security

issues raised by mobile agents.

In this research, the proxy-based protocol is assumed to be used in absolute

reliable networks and multi-agent systems. Since such assumptions are not

valid in the real world, future research should focus on improving the robust-

ness of the proxy-based protocol. Different algorithms should be developed

to deal with problems such as network failure, agent failure and message loss.

r The analysis results in Chapter b indicates that the update cost of the pro-

tocol changes more dramatically than the message delivery cost in different

environments, which in turn causes significant communication overhead in

some cases. The limited-forwarding algorithm only decreases the message

delivery cost and has no effect on the update cost. Therefore, more research

needs to be done to reduce the communication overhead caused by mobil-

ity management. The du - ssM scheme, an optimal location update and

searching algorithm for tracking mobile agents [34], can be considered in the

proxy-based protocol to minimize the location update cost. However, to use

the algorithm, the architecture of the proposed protocol must be altered and

further simulation must be performed to prove the efficiency of the algorithm.

o The sensitivity analysis shows that the migration pattern of the mobile agents

is the most important factor for the effectiveness of the protocol. However,
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to simplify the simulation model, only one parameter, the probability of an

agent move within the same domain, is used to describe the migration pat-

tern. Therefore, the simulation model does not capture all the characteristics

of the migration patterns. To get more accurate evaluation, further research

can be done to perfect the simulation model by adding more migration pa-

rameters.

In this research, the simulation model is temporal and spatial homogene-

ity (i.e. all agents have the same delivery and migration patterns). To get

more accurate results, agents with various delivery and migration patterns

can be used in future simulation model to simulate â more realistic multi-

agent system.
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