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ABST'R,ACT

This thesis presents a complete solution package for the analysis of elasto-

static and elastod.ynamic bound.ary-value problems related to linear elastic multi-

layered transversely isotropic materials. Equations governing static and dynamic

(time-harmonic and transient) deformations of a transversely isotropic medium

are solved by using appropriate integral transform techniques' A set of analyt-

ical general solutions for displacements and stresses corresponding to 2-D and

3-D probiems are presented explicitly for static and dynamic loading problems'

Thereafter, 2-D and 3-D fundamental solutions (Green's functions) corresponding

to buried. static and dynamic ioadings acting inside a homogeneous transversely

isotropic half space are derived explicitly. Analytical solutions are also present-

ed for a transient displacement jump located inside a homogeneous transversely

isotropic half space. It is noted. that by taking appropriate limits fundamental

solutions for a transversely isotropic elastic full space can be easiiy derived from

the half space solutions. An exact stiffness matrix method based on analytical

general solutions are presented to compute fundamental solutions corlesponding

to a multi-layered transversely isotropic elastic half space. The stiffness matrix

method involves only negative exponentiai of integral transform parameter and

it is found to be free from the numerical deficiencies associated with algorithms

reported in the literature. some characteristics of the fundamentai solutions are

investigated and the numerical evaluations of the fundamental solutions is also

discussed. Selected numerical results for displacements and stresses correspond-

ing to buried loadings are presented to portray the influence of the degree of

materiai anisotropy, configuration of layering and other governing parameters on

the response.

A versatile boundary element cod.e based on the Greents functions derived in

this study are presented to analyse displacement, traction and mixed boundary-

value problems related. to homogeneous and multi-layered transversely isotropic

¡ iw $ $wiwwl



media. Several boundary-value problems (e9. statics and dynamics of rigid inclu-

sions, pressurised cavities, non-linear interface problem, load transfer problems

etc.) are solved to demonstrate the applicability and accuracy of the bound-

ary element code. selected numerical results for quantities such as stiffness and

impedances of embed,ded inclusions and load transfer profiles along the length

of an embedded elastic bar are presented to portray the influence of material

anisotropy and other governing parameters on the response of complicated inter-

action problems.
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Chapter 1-

INTRODUCTION

1.1 GENERAL

In recent years, there has been a considerable growth in the use of anisotrop-

ic materials for a wide range of ad.vanced engineering applications' Anisotropic

materials encountered in engineering applications are either fabricated materi-

als such as fibre-reinforced. plastics, Aluminum alloys eÚc. or natural materials

such as geomaterials, precious metals eúc.. Stress analysis problems related to

anisotropic materials are encountered in a number of fields ranging from modern

technologies such as electronic packaging to traditionai flelds such as geophysics

and engineering seismoiogy. The fundamental characteristic of an anisotropic ma-

terial is the directional depend.ence of its material properties' On the other hand,

mechanical properties of an isotropic material are directionally independent' The

directional dependence of mechanical properties of anisotropic material can be

efiectively used to achieve an efÊcient engineering design.

It is noted from a linear stress-strain relationship that an anisotropic mate-

rial in its most general form has twenty-one ind.ependent elastic constants (Gould

1933). However, such a general form of anisotropy has very iimited scope in en-

gineering analysis due to the large number of elastic constants required to de ne

the material. On the other hand, most anisotropic materials (fabricated and nat-

ural) possess planes and. axes of material symmetry which reduces the number

of independent elastic constants appearing in the stress-strain relationship' For

example, the presence of a single plane of symmetry reduces the number of inde-

pendent elastic constants to thirteen and the resulting material is identical as an

monoclinic material. The presence of two planes of symmetry reduces the number

of independent elastic constants to nine and the resulting materiai is known as an

orthotropic material. A material which possesses an axis of symmetry is called a
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transversely isotropic material. The number of independent materiai coefficients

in this case is reduced to frve. The introduction of a rotational symmetry with

respect to two perpendicular axes results in directional independence of material

constants and the resulting material is isotropic and has only two independent

material constants.

Since the pioneering work of Boussinesq (1895), Lamb (1904) and Mindlin

(1936) several researchers have developed analyticai and computational methods

for linear and non-linear stress analysis of isotropic materials. To provide the im-

proved science base needed for the development of a wide range of applications of

anisotropic materials attention has been focused recently on the development of

advanced theories and solution algorithms for stress analysis of anisotropic mate-

rials under static and dynamic loadings. Among the different types of anisotropic

constitutive relations, the transversely isotropic model has received wide attention

due to its simplicity and also its ability to model the response of fi.bre reinforced

composites, crystals, metals and geomaterials (material constants for a number

of typical transversely isotropic materials are listed in Table 1.1). This thesis

is concerned with the static and dynamic stress analysis of homogeneous and

multi-layered transversely isotropic materials. In the ensuing sections, a concise

review of literature related to stress analysis of transversely isotropic materials is

presented in order to define the objectives and the scope of the present thesis.

1.2 LITERATURE REVIEW

1.2.1 Fundamental Solutions for llomogeneous Transversely Isotropic

Materials

Elliott (1948), Hu (195a), Eubanks and Sternberg (1954), Lekhnitskii (1963)

and Green and Zerna (1968) presented the early studies on elastostatics of a

transversely isotropic medium. These authors presented potential function repre-

sentations to derive general solutions for classical elastostatics and also considered
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some basic stress analysis problems. Later, Chen (1966) and Pan and Chou (7976,

tg7g) presented solutions for point forces acting inside a transversely isotropic full

space and on the surface of a transversely isotropic half space.

The elastodynamic response of a homogeneous transversely isotropic medium

has also received attention. Stoneley (1949) investigated the types of elastic v/aves

propagating in a transversely isotropic medium. Later, Synge (1956) studied the

propagation of Rayleigh type surface waves in a transversely isotropic medium

and proved that the Rayleigh waves exists only if the free-plane surface of the

material is parallel or perpendicular to the material axis of symmetry. Buchwald

(1961) derived the displacements in terms of double-Fourier integrals due to sur-

face waves radiating from a given harmonic source on the surface. Asymptotic

solutions were also presented by considering the contribution from poles of the

integrand of Fourier integrals. Kraut (1962) solved the case of a transversely

isotropic elastic half plane subjected to a suddenly applied line load, and studied

in details the response of beryl crystals. A book by Payton (1983) refers to the

majority of the existing studies related to transversely isotropic media; it also

presents an elegant mathematical treatment of transient response due to impul-

sive point forces applied on the surface of an elastic half plane or inside an elastic

full space. In addition to above studies, Barnett and Lothe (1974) and Chadwick

and Smith (1977) presented thorough investigation on the nature of governing

equation and existence of surface waves in anisotropic materials including the

special case of transverse isotropy.

1.2.2 Fundarnental solutions for Layered Tlansversely Isotropic Systems

The study of static and dynamic response of multi-layered transversely

isotropic media is very useful to several disciplines such as geomechanics, com-

posites, non-destructive testing etc.. The consideration of different materials and

Iayers of different thickness in a multi-layered domain results in formidable diffi-

culties in obtaining an explicit anaiytical solution. A number of semi-analytical

ilL*,o,,on.*"r*n,*,*rræsær¡çw¡rsF$Es¡!



and numerical methods have been developed over the last 40 years to evaluate

the response of isotropic multi-layered media. It should be mentioned here that

the majority of existing work dealing with mulii-layered media are concerned

with dynamic problems due to extensive applications found in geophysics and

theoretical modelling of non-destructive testing methods. Dynamic problems a1-

so involves more complications in the numerical evaluation of the response and

the concepts developed for dynamic analysis can be readily extended to static

problems. The earliest approach to study dynamics of layered isotropic media

is the transfer matrix method developed by Thomson (1950) and Haskell (1953,

1960, 1962). A procedure similar to the transfer matrix method was also reported

independently by Pestel and Leckie (1963). The Thomson-Haskell technique has

significant drawbacks in the numerical implementation due to the presence of cer-

tain exponential terms. Improved formulations were developed later by Knopoff

(1964), Gilbert and Backus (1966), Watson (1970) and Schwab (1970). A finite

element type approximation has been proposed by Wass (7972,1980) and Kausel

and Peek (1982) to determine the response of an isotropic multi-layered medi-

um. In this approach the medium is divided into a number of thin layers within

which the displacements are assumed to vary linearly. In addition the impedance

of the underlying half space region is computed by using further approximation-

s. A comprehensive and rigorous treatment of Green's functions of an isotropic

layered medium has been presented by Luco and Apsel (i983) and Apsei and

Luco (1983). Applicabiliiy and accuracy of these Green's functions in boundary

element analysis has also been reported in the literature (Apsel and Luco 19S7).

It is noted that studies related to the statics and dynamics of multi-layered

anisotropic media are very limited. Gerrard and Harrison (1971) used a direc-

t numerical procedure based on analytical general solutions to compute static

response of layered transversely isotropic media. Only Seale and Kausel (1939)

presented an extension of the thin layer method (Waas 7972,, 1980 and Kausel
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and Peek 1982) to study the dynamics of a multi-layered transversely isotropic

elastic half sPace.

1.2.3 Boundary-Value Problems

The majority of problems encountered in engineering applications of trans-

versely isotropic materials involve complicated boundary and loading conditions

such as the cases of rigid inclusions embedded in anisotropic materials, cavi-

ties under arbitrary loading, dynamics of foundations and piles in anisotropic

soils and theoretical model used to simulate problems in geophysics and non-

destructive testing of materials etc. The review of existing literature indicates

that only problems involving highly idealised conditions have been treated in

the past. For example, Freedman and Keer (1972) extended the dual integral

equation formulations presented by Karasudhi et aI (7968) to study the time-

harmonic response of a rigid strip on an orthotropic half plane. Gazetas (1981)

analysed the same problems by using a semi-analytical method. Selvadurai (1979,

1980, 1982) has investigated by analytical means a series of problems related to

interaction between a statically loaded penny-shaped rigid disc and a transverse-

ly isotropic medium. Selvadurai (1984), Tsai (1984) and Saxena and Dhaliwal

(1990) considered crack problems related to a transversely isotropic material by

using analytical procedures. Zureick and Eubanks (1988), Zureick (1989) and

Heinrich (1991) considered problems related to spheroidal inclusions/cavities in

a transversely isotropic medium.

As mentioned earlier, above studies are based on analytical techniques that

need to be developed separately for each type of problem. Analytical procedures

are elegant and insightful when compared to numerical procedures such as the

finite element method. In special cases such as rÃ¡ave propagation problems, the

finite element solutions are found to be inaccurate and inefficient when compared

to analytical solutions (Luco 1982). Analytical techniques, on the other hand, has

the disadvantage that the solutions can be developed only under idealised geomet-



ric configuration and boundary and loading conditions which are not very useful

in practical situations. The boundary element method (Ptizzo 1967; Banerjee and

Butterfield 1981; Brebbia et aI. tg84; Kobayashi 1984; Beskos 1987) can be con-

sidered as a good compromise between analytical methods and the finite element

technique to speciai conditions such as radiation conditions for wave propagation

problems and singularities in stress fields of fracture mechanics problems. These

problems can be treated rigorously in the boundary element method by using

appropriate Green's functions. In problems related to layered elastic half spaces

the boundary element method is also found to be computationally efficient than

the finite element method. Although the boundary element method has been

applied very successfully to problems related to isotropic elasticity, heat transfer,

fl.uid flow etc., it has been rarely used to analyse problems in anisotropic elas-

ticity. According to author's knowledge, only two existing studies (Kobayashi eú

aI 1986,, Vable and Sikarskie 1988) are concerned with boundary element tech-

nique for anisotropic materials. Kobayashi et al (7986) studied the response of a

transversely isotropic elastic half space subjected to transient surface loading by

using the full space Green's function given by Payton (1982). Vable and Sikarskie

(1988) considered elastostatic stress analysis of orthotropic plane problems by

using the boundary element method. In author's opinion, the main reason for

the lack of progress in the development of advanced boundary element codes for

the analysis of a wide variety of practically useful boundary-value problems is

the unavailability of a comprehensive set of Green's functions for transversely

isotropic materials.

1.3 OBJECT]VES OF THE PRESENT STUDY

Based on the above literature review it is evident that a comprehensive treat-

ment of static and dynamic Green's functions of homogeneous and multi-layered

transversely isotropic media has not been reported in the literature. In addition,
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the development of comprehensive boundary element computer codes capable of

solving a variety of boundary-value problems related to homogeneous and multi-

layered transversely isotropic media has also not been reported in the literature.

Only idealised boundary-value problems such as the interaction between rigid

disc and homogeneous transversely isotropic media have been considered in the

past. In view of these observations the present thesis is directed towards the de-

velopment of a complete solution package for Green's functions of homogeneous

and multi-layered transversely isotropic media and the development of computer

codes based on the boundary integral equation method for anaiysis of a wide

variety of boundary-value problems. In order to achieve this goal, the following

objectives are defined:

1. Derivation of explicit analytical solution for three-dimensional elastostatic

Green's functions of a homogeneous transversely isotropic elastic half space.

Implementation of the Green's functions in a computer code based on the

indirect boundary element method for analysis of displacement, traction and

mixed boundary-value problems.

2. Derivation of explicit analytical solutions for two-dimensional and three-

dimensional dynamic (time-harmonic and transient) Green's functions of a

homogeneous transversely isotropic elastic half space. Development of accu-

rate numerical procedures for evaluation of Green's functions and the imple-

mentation of Green's functions in the boundary element code.

3. Development of a computationally efficient and numerically stable exact s-

tiffness matrix procedure to numerically evaluate two- and three-dimensional

Green's functions of multi-layered transversely isotropic half spaces.

4. Solutions of transversely isotropic elastic half spaces under selected internal

loadings and the soiution of selected boundary-value problems to investigate

the influence of degree of anisotropy and other parameters on the response.
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Tablel.1 : Material constants (rr¡ : c¿¡lcsq)

ctl, ctz Cn czz caa(l}a M N lmz
Silty clay 2.t7 0.43 0.47 2.58 2.70

Beryl rock 4.r3 t.47 1.01 3.62 1.00

L/S layered soil 4.46 1.56 1.24 3.26 1.40

Clay I 4.70 1.70 1.20 3.30 0.01

Clay II 4.60 1.60 0.90 2.60 0.0i
Isotropicl 3.00 1.00 1.00 3.00 0.99997

Apatite ôroL.¿L 0.20 1.00 2.II 6.63

Beryllium i.80 0.16 0.09 2.07 16.20

Beryl 4.22 1.49 t.04 3.77 6.68

Cadmium 7.05 2.59 2.46 3.01 1.56

Cobalt 4.07 2.t9 r.36 4.74 7.55

Ice(257K) 4.22 2.03 r.62 4.53 0.32

Hafnium 3.25 1.38 1.18 3.54 5.57
Vlagnesium 3.6i r.57 1.30 :1.74 1.64

Rhenium 3.78 r.67 t.27 +.22 16.20

Titanium 3.47 r.97 1.48 3.88 4.67

Thallium 5.59 4.85 3.97 7.23 0.73

Yttrium 3.21 r.20 0.82 3.16 2.43

Zinc 4.t7 0.78 r.26 1.57 3.96

E compositez ,1n
t),l ¡ 1.40 1.11 10.04 0.47

G composites 2.02 0.68 0.07 27.r7 0.41

Composite 1 1.99 0.99 0.44 11.15 7.80

Composite 2 2.00 1.00 0.86 23.00 0.07
A12o3 6.76 2.86 2.86 4.90 5.0
SiC 2.97 0.56 0.33 ù.J¿T 16.9

nylon 2.52 0.90 1.56 7.69 0.0666

1:

2:

3:

u:0.25, þ:I.0
E glass/epoxy composite
Graphite/epoxy composite
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Chapt er 2

ELASTOSTATIC GREEN'S FUNCTIONS

2.1 GENERAL

The derivation of displacement and stress Green's functions corresponding

to statically applied circular ring loads acting in the interior of a transversely

isotropic elastic half space is considered in ihis Chapter. Initially, a set of gen-

eral solutions are derived for equations governing elastostatic deformations of a

transversely isotropic elastic medium by using Fourier expansion and Hankel inte-

gral transform with respect to circumferential and radial coordinates, respectively.

These general solutions are used in the solution of boundary-value problems relat-

ed to Green's functions. In the derivation of Green's functions, ring loads acting

in radial, circumferential and vertical directions are considered. The circumfer-

ential distribution of the radial and vertical ring loads is of the form cos m0 and

that of the circumferential load is sinml. Green's function solutions presented

in this Chapter appear in terms of Lipschitz-Hankel integrals involving products

of Bessel functions of the first kind. These Green's functions will be used as

the kernel functions of the boundary integral equation formulation presented in

Chapter 3.

2.2 CONSTTTUTIVE EQUATION

Consid.er a transversely isotropic elastic medium, with a Cartesian coordinate

system (r, A, ") 
and a cylindrical polar coordinate system (r,0, z) chosen such that

the z-axis is parallel to the material axis of symmetry and normal to the stress

free-surface as shown in Figure 2.1. The mechanical response of a transversely

isotropic elastic medium is governed by five elastic constants cr1,tct2tc13,ca3 and

:a::

itl

j.:

t:.

-:ì.ìlriI
;':t::

';E--



c¿¿ which relate stresses and strains referred to a rectangular Cartesian coordinate

system in the following manner (Lekhnitskii 1963):

Ozr:Cl|ÉarlCtZ€yy

OgA:CI2€xxlCneyy

Ozz:ClT€xx,*Cßegg

ars ("tt - cn)e,u

oy, :2c44es"

axz :2c44e*

Alternatively, the stresses and strains referred

system are related in the following manner:

I ctg€zz

I cts€",

* czs€r"

(2.1a)

(2.1b)

(2.7c)

(2.1d)

(2.re)

(2.1f)

Arr : Cty€.rr * 4Zee0 I CtS€",

o00 : c!2err + qTeee I ctzez,

ozz : cLg€rr + cßeee I cgg€r"

oro:("rr-ctz)ere

oez :2c44e6,

trz :2c44er"

to a cylindrical polar coordinate

(2.2a)

(2.2b)

(2.2c)

(2.2d)

(2.2e)

(2.2Í)

In geotechnical engineering practice Young's moduli Eo and.E¿, Poisson's

ratios r'/hh,tt/ho arrd uo¡ and the shear modulus Gr¡, are often used (Desai and

Christian 1977) in place of the elastic moduli c¿¡ in eqn (2.1) or (2.2). Here,

-Ð¿ and Eu are Young's moduli with respect to directions lying in the plane of

isotropy (zy-plane) and perpendicular to it (e-axis); u¡¡, is the Poisson's ratio that

characterizes the transverse reduction in the plane of isotropy for the tension

in the same plane; u6, is the Poisson's ratio that characterizes the transverse

reduction in the plane of isotropy for the tension in a direction normal to it; and

10
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G,n is the shear modulus for the plane normal to the plane of isotropy. The

five elastic constants EhrErruhhruho arrd Go¡" are related to c¿¡ in the following

manner:

(.rt - c12)(c.¡_css * ctzcss - 2"?t)
E¡

E,

crrcsg - "?s
_ cttcss * cncss - 2c?s

ctt i ctz

_ ctzcss - c?z
t

c11css - cfs

_ "ttct * ctz

- 
1-44

(2.3a)

(2.3b)

(2.3c)

(2.3d)

(2.3e)

uhh

uhu

Gon

and

uonl En : uhr l Eu (2.3f)

The positive definiteness of strain energy requires the following constraints

(Payton, 1983) on material constants c¿¡:

c11 ) lc12l, ("rr + ctz)cß ) 2"?r,, caa ) 0. (2.4)

A set of nondimensional material parameters d,0, /c)7 and ç are introduced

as defined below to simplify subsequent algebraic manipulations:

cge n cll(t:-, P:-, ñ:
(cß * c+E)

c¿a ca¿

1:1*aþ-K2, ' 2caa

2.3 GOVERNING EQUATIONS AND GENERAL SOLUT]ONS

It can be shown that (Green and Zerna,1968), in the absence of body forces,

the displacement and stress fields in a transversely isotropic linear elastic medium

)
ca+

/\
\ctt - ctz)

(2.5a)

(2.5b)

11



subjected to a state of asymmetric deformations about the axis of elastic sym-

metry can be expressed in terms of three potential functions ó;(r,0.,2),i:7,2,3
which are solutions of

[v'+ *lóo(r,o,z) - o, ,i: L,,2,3
uzi

where V2 is a linear differential operator defined as,

-n a2 ra r a2\tL _ I r" -ar2-;ar-rrao,
and

z¿:zlt/u¿, i:!,2,3

In eqn (2.8), uy and u2 ãlê the roots of the following equation

þr'-1u{a:o

or

(2.6)

(2.8)

u7- 1+JV-4'P
2p

'v-JV-4dP
(2.eb)

and

us : 1lç (2.10)

The roots u1 aud u2 rlay be real or complex conjugates depending on the values

of the elastic constants ctr¡c73,ca3 and caa. Since the displacements and stresses

must be real, the potential functions /1 and þ2 arc complex conjugates when z1

and u2 are complex and in addition it is necessary to specify lhat ,/a and 1/uz

always have positive real parts.

The displacement and stress components referred to a cylindrical polar co-

ordinate system can be given by:

u,: fi{ót i óz) -+#
u,:l#ø,+óz)-#
u,: fr{rtót r kzó")

(2.7)

(2.ea)

UZ:
20

(2.77a)

(2.11b)

(2.17c)



0rr
c4+

ooe

c44

ozz

c44

or0

c44

doz

: -[Àr # . 
^,W, - luo, - ffilø, + óz) - *}ffn

: -rÀr W.^,Wr- ir#rû+öz). *}ffl
: ÀtutÏ* * srr.tÞozí '4

2,ra2 ra_., r.2a 2a2 ð2: 
^\; ArAg - ,, A0)(Ør 

* Qz) -f 

^l; U + * a,r, 
+ 57)ós

7 õ ,, 
-õót \ ,-ðör, 1 0'ót

; A.Qrr/"t A; I Àzt/uz 
Ð - ,/^6A^

*r^,J^y * ^,J-y)* #+#h

. 7-tk¿
) /\z - 

-)

uà

(2.72a)

(2.72b)

(2.72c)

(2.12d)

(2.72e)

(2.r2r)

(2.13)

ö;(r,0, z),

Q.taa)

ca+

or"

-:ca4

where

þu¿-7k¿: i :7,2

In order to determine general solutions for potential functions

i :7,2,3 governed by eqn(2.6) the following representation is used:

ór(r,0,ò : îrlø;*(r,z)cosm0 r öi*?,2)silLm[l, i: r,2

ós(r,O,r) : Ë lót*(r3) sin rn| - óä,-(r, z) cos m0]
m:0

(2.74b)

':ìr:

i:.:

:r:;

:ì.i

t:'

::ì:

where ó;r.(i : !,2.,3) yield deformations which are symmetric with respect to

0 :0 and while ói,-U : I,2,3) correspond to antisymmetric deformations for

the znth harmonic. In the subsequent analysis only the symmetric components

Ó;*(i : !,2,3) are considered without loss of generality. It is noted. that the

solutions corresponding to ói*(i : 7,2,3) can be obtained by making the substi-

tutions ö¿,n - ói,-U : I,2,3), cos m0 --+ sinm1 and sin rnï --+ - cos rnd, respec-

tively.

:;i'L-

13



Since the problems under consideration involve domains that extend to in-

finiiy in the radial direction, it is natural to introduce Hankel integral transform

(Sneddon 1951) with respect to the radial coordinate as,

õ¿*(À, r) -- I, ó;,n(r, z)J*(Àr)rd,r

ó*n(r,, ") 
: 

Io ö;*(À, z)J*(Àr)ÀdÀ i : r,2,J

(2.15a)

(2.15b)

In eqn (2.15), -I- denotes the Bessel function of the first kind of order rn; À is

the Hankel transform parameter.

Substitution of eqn (2.14) and eqn (2.1b) to eqn (2.6) together with the

orthogonality of trigonometric function result in ihe following general solutions

for the mth Fourier harmonic of the three potential functions:

/co
ón(r,") : I lA¿*(À)e^" + Bi*(^¡e-^"'lÀJ*(Àr)dÀ, i : r,2,8. (2.16)

Jo

where A¿,-(À) and B¿-(À) are arbitrary functions to be determined by using given

boundary conditions.

Equations (2.11) and (2.L2) together with eqns (2.14) and (2.16) represent the

complete general solutions of displacements and stresses for arbitrary asymmetric

deformations of a transversely isotropic elastic medium.

2.4 BOUNDARY-VALUE PROBLEMS

In the derivation of Green's functions, a set of ring loads with radius 's' act-

ing in radial, circumferential and vertical directions are considered. as shown in
Figure 2.2. The circumferential distribution of the radial and vertical ring loads

is given by cosm0 and that of the circumferential load is sir-ml. The explicit

solution for the Green's functions can be derived by defining a fictitious plane

at the level of loading (z : z') as shown in Fig 2.1 and treating the internally

t4



loaded half space as a two-domain problem (Chan et al. 7974 and Selvadurai

and Rajapakse 1985). In view of the prescribed circumferential distribution of

the three ring loads only the term corresponding to the rnth Fourier harmonic

in eqn (2.74) needs to be considered. The general solutions corresponding to

each domain are given by eqns (2.11) and (2.72) together with eqn (2.16). The

Fourier harmonic of the displacements and stresses in each domain is denoted by

u¿rn\L :lIU: r,0,z1i :: !,2) ""a "l¡!ç1.,1 
: ,,0, 

"; i : !,2),respectiively. The super-

script j denotes the domain number where domain 'f is bounded by 01 z 1 zt

and domain'2' by z' 1 z ( oo.

The boundary and continuity conditions corresponding to the three boundary

value problems involving the internally-loaded half space can be expressed as,

"Íl),.(r,o) -- 
o, i: r,o,z

"12U, 
¿) - "l\fr, z') : s, i : r,o, z

"ll),.(r, " ) - "::)*(r, "') - Fi, i : r,o, z.

For the radial loading case,

Fr:F"-Q

FB:ó(r-s)

For the vertical loading,

Fr:Pg-Q

F":6(r-s)

15

(2.17)

(2.18)

(2.1e)

F" : á(r - s) (2.20a)

Fs:f"-Q (2.20b)

where ihe á denotes Dirac's delta function. For the circumferential loading,

(2.27a)

(2.27b)

(2.22a)

(2.22b)



I

Substitution of general solutions for displacements and stresses given by eqns

(2.77), (2.12) and (2.16) together with eqns (2.17)-(2.22) yields a set of linear

simultaneous algebraic equations to determine the arbitrary functio"r alf 1.1¡

""a 
n[1)çl) (i : 7,2,3;i : r,,2) correspondingto the two domains. Note that

,ql}f¡¡: 0 to ensure the regularity of displacements and stresses for domain '2'

when z --+ æ.

2.5 D]SPLACEMENT GREEN'S FUNCTIONS

The explicit solutions for displacement Green's function Gff(r, z; s, z') denot-

ing the rnth Fourier harmonic of the displacement in the i-direction (i : r, g, z)

at the point (r,z) due to a ring load in the j-direction (j :r,0,2) through the

point (t, "') with circumferential variation cos rn? for j : r, z arrd sinrn? for j : Q

can be expressed in the foliowing form:

6

GT,?, z; s, z') : prÐ d,s¡lI¡(m - t,n + 1; 0) - I¡(* I I,m + 1; 0)
j:t

- I¡(* - 7,m - 1;0) * I¡(m 17,,m - i;0)]
8

+ uzl 4m2 d,s ¡ Ii (m, ffii -z) I ,
j:7 

6

Gi,?,z1s,z'): _ ptlz,rr,ar¡lIî(*,m*r;-1) - IiQn,nz - i;-1)l
j:l

8

- PrÐ2rnd,s¡fl¡(m * 7,m;-1) - I¡(* - 1, nz; -1)l
j:7 

6

GT,U, z; s, z') : 2pútkrÐd'2¡lI¡(rn,m Í r;0) - I¡(m,rn - 1; 0)]
j:7

6

GTe?, z1s, z') : pt\Z*ar¡¡I¡(* - I,m; _I) - I¡(* f 1, rn; -1)]
j:7

8

+ f"zlzrnd,s¡fIi(TTL,TTL + 1;-i) - Iiþn,nz - 1;-1)]
l=t

(2.23a)

(2.23b)

(2.23c)

16
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GTe?, z1 s, z' ) : - ptl +r", a, ¡ I| (rn, m; -2) I s - ørlI i (* * 1, rn f 1 ; 0)
j:7 j:7

- I¡(*-7.,m + 1;0) 
;tt(-*7,m - i;0) t I¡(m-I,m - t;0)l (z.zLb)

GTe\, z1s, z') : 2trtktkrD2md,2¡I¡(rn,rn; _I) (2.2ac)

u 
t=t

GT"î, z1s, z') : 2paÐ dr¡ll¡(m - I,rn;O) - I¡(m t I,m;0)
,: tu

Gi"?, z; s, z') : -2l.rt\zrnat¡4(m,m; -7)

::'
GL?, z1s, z') : 4trrlu¡da¡t¡(rn,m;0)

j:7

where

\/", - ^/"t'

- sJus
lt2: gr*¡ lJt

l-ts : 1/u1+ Jrr,

l-tt:

112:

(2.25a)

(2.25b)

(2.25c)

(2.26)

(2.27a)

(2.27b)

(2.28a)

(2.2sb)

(2.2ea)

(2.zeb)

(2.2ec)

(2.30a)

(2.30ó)

(2.3i)

(2.32a)

.:ì,1

ll;
ll:'
.:s
a

'il
.t---ì.,::

t::rÈ-.

Scaa(fu - kr)'
1

k1

P4:

-k2
I*kt
1+h

dtt : dzt : -dtz : -dzz : ,""- "
þ'-tl

dß : dt+: -dze : -dz+: l.tzl-ts

drc: -d2sk2f h: -2112\/ lp4

drc : -dzalct I k, : -2pzp+r/rz

dst : kzr/rt, dsz : -krJrr, dæ : pzp*zJut

ds+: Ltzpsh\/u2, dss : -2pzJutuzlp,+

dse : -2ttzp+kzJurrz, dy : dsa : 1

d+t : -d+z :7, dEs : d++: -l-tzl-tt

d+s : 2pzt/rtl t"+, d+a : 2pzp+r/rz

-k1k,u¡: ,_: J:1,3,5; ù¡:]: j:2,4,6
t/ut t/rz

Ii (m, n; I) : I ¡(*, n; I) I r

17



1¡(-,n;l) : I¡(*,n;t)f s, j :7,2,...,8 (2.32b)

and I¡ are in the form of Lipschitz-Hankel integrals involving the product of Bessel

functions of the first kind and can be expressed as!li:

.ì
it:i

lìf

llì::
'Nt

,Èa

ttì

$l!.
si
,*
*,
:li:.i

..i..li.:

È
,ti:
..ii.ìl

ììì:i

ilìtn

!l
.s,

ìt.r:

l¡ì
:l:l

È::

{r.l

.¡ri'

rà

li.

. !::,

.ia

i::
.,:a

. ìil
:Ìì:
-:,ì

ì:¡
. '¡r.:

...:1

ìrì:i]

. :ì:ìr.:;
']¡i:'

T

-,L!)

.,rr::ì

,:::::
.,'..1.r

I, (*, n; p) : I o*, *{^r) J, (À s) )e e- ),1 z r - z',1 
¿ s

Iz(*, n; p) : f o*, *{^r) -/, (Às)Àe 
"- 

xl zz - z'"1 ¿s

Ir(*, n; p) : 
fo* 

r*{^r)./,(Às)le e-^G,* "') d^

I+(*, n; p) : 
lo* 

t*{^r).r,(Às)Àe e-\G,* "L) d^

Is(*, n; p) : 
lo*, *l^r) J.(Às)Àe e- x("# 

"L) d,À

Ia(*, n; p) : 
lo* 

r*{^r).r,(Às)Àee -Àþ',+zz) ¿¡

I, (*, n; p) : I o*, *{^r).r, (Às))e e - ),lzs - z'"1 ¿s

Iu(*, n; p) : 
fo* 

r,-{^r)/,(Às)Àe e-^Q"*"1) d^

(2.33ø)

(2.33ô)

(2.33c)

(2.33d)

(2.33e)

(2.33Í)

(2.33s)

(2.33h)

For the case where deformations are also axisymmetric (nz:0), ring loads are

considered only in the r- and z-directions and the displacement in the d-direction

is equal to zero. The relevant displacement Green's functions are given by eqns

(2.23) and (2.25) with rn:O and. Ge, : Ge, = 0.

2.6 STRESS GREEN'S FUNCTIONS

Let offt(r,z;s,z') denotes the rnth Fourier harmonic of the stress compo-

nent ø¿¡(i, l:r,0,,2) at the point (r,z) due to a ring load in the j-direction

(i : r,0,2) through the point (","').The circumferential variations of the load.s

are prescribed as in Fig 2.2. The explicit solutions f.or offr(r,z;s,2,) are given

18



o\rr(', z; s1 z

6

f d'¡{rr(1 + m)[4 (* + 7,m * 1;o)-
j:l

1;0)l + Àt(1 - m)lIiQn - 7,m - 1;0) - Iî(rn - I,m+ 1;0)lIi(m * 7,m -
+ 2À¡[I¡(*,m - 7;I) - I¡(m,m I 1;1)]]-

8

t'rÐ2mÀrl(r + rn)I;(* * I,m;_t) + (1 - rn)Ii@ - r,mj-t)ll" esaa)
j:7

t)

: t tÐd3j{À1(i + m)lIi@ t 7,m - 1;0) - Iî(* t 7,,m+ 1;0)l
j:l

+ À1(i - m)fli(m - 7,m + 1;0) - Ii@ - !,m - 1;0)

+ 2(À1 - À¡)[Ii@,m * 1; 1) - Ij (m,m - 7; t)]]+
8

prD2m\tf(t + m)ti (* * r,m; _r) + (1 - m)ri Qn - r,mì -t)ll " e.s4t))
j:7

oT",(r, z; s, z' ) : 2 t"ti, t *, ¡)ds ¡lI ¡ (*, rn * I; I) - I ¡(m,rn - 1 ; 1)]

tu:t

oTe,(r, z1 s, z') : p, I d3j{À1(i + m)fI} (rn I r,m+ 1; 0)
j:L

- I|(m * r,m - 1;0)l + 11(1 - m)ll|(m - r,m * 1;0)
8

- I|(m - 7,m - t;o)lÌ - t"rÐ2md,s¡l\1i¡(m,n'L;0)
j=7

+ 11(1 + m)I](m t 7,rn;-1) - Àt(1 - m)Iiþn - r,mt-t)l/"
6

') :2gÐ*dt¡þ¡llj(rn,rn - 7;O) - tiþn, zn * 1;0)l
j:7

8

+ Ft Ð 2md6¡[Ì¡(* t r,m;O) - I¡(m - I,mi})]l t',
j=7 

6

o*,(r, z; s,z') : p, D ds¡0¡II¡(* - r,m+ 1; 1) - I¡(* i !,m+ 1; 1)
j:7

- I¡(* - 7,m - 1; 1)] i I¡(rn I !,m - 1; 1)+

):pl

ofte,(r, z; s, z')

lìi:

$

$-r.l

.Èl:

.{jt:

t$ì.

ll

txä
l-!.,1

È.

È

}:iì,

'!-!i
' lÌ':a
':.\'
r'ii.
. (;-

Qsac)

(2.34d)

o\"r(r, z; s) z

Qsae)



8

ptÐ +m2 ds ¡ Ii (m, ffii -1) I 
" 
t",

j=7
6

o#a?,2;s,z') : t"rÐ2rnd+¡l\1(f + nz)fj(rr¿ l7,,rn; -7)ls
j:7

- Àt (1 - rn)Ii (rn - 7,m,-7) I " - zÀ¡i¡(m, m; 0)]
8

+ Fzl2m)t{(1 + rr-)lI;þn * !,m - 1;0) - 4Q- t r,m+ 1;0)l
j=7

+ (1 - m)lli(m - 7,m - 1;0) - Ii(m - !,n + t;0)l)
6

oryee(r, z1s, z') : tttÐ2md4¡lÀ1(t - rn)ti(m - I,m; _I)ls
j=l

- )t (1 + m)Ij (m + r,m; -t) I " + 2(À1 - À¡)i¡(m, m; 0)l
I

+ urlÀ'{(1 +m)lli@+l,rn+ 1;0) - \Qnt7,m- r;0)l
j:7

+ (1 - m)fl|(m -^1,m t 1;0) - Ii(* - !,m - t;o)lÌ
Cl

o\"e(r, z; s, z') : 24lZ*çt -l a¡)d,s¡I¡(m,m;0)
tu:t

oTee(r, z1s, z') : prÐZmdt¡lÀ1(t + m)ti(m * r,m; -r)ls + Àr1t - m)
j:l

8

Ii@-!,mi-i)/rl + uzldr¡¡\rll¡(*,mt7;7) - I¡(m,nz- 1;1)l
j:7

+À1(1 +rn)lIi@*r,m- 1;0) - ri@Ir,m+ 1;0)l

+ I1(1 - m)fri@ - 7,m + 1;0) - ri@ - \,m - r;o)l] (2.35d)
6B

oi"e?,z1s,z') : -ptl+*'ar¡À¡Ii(m,m;-!)ls + ¡r, I d,s¡[I¡(m l r,n+ 1;1)
j:r j:7

* I¡(m-7,m --1;1) - I¡(*t7,,m - 1;1) - I¡(* -7,m+I;t)ll¡t, (2.35e)
fl

o\e(r, z1s, z'): p, Ð 2md,5¡À¡lÍ¡(* - !,m,0) - I¡(m * 1, nz;0)]
j:7

8

+ pt D Zmd,s¡fIiþn,m t I;0) - Ii@,ffi - 7;0)llt',
'7= I

Q34r)

(2.35a)

(2.35b)

(2.35c)
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6

oT,"(r, z; s, z') : 2¿ttDott¡It(r + m)Ii @* 1, rn; 0)
j:7

- Àt (1 - m)Ii @ - I,mt}) - 2^ jI j(m,m;7)l
6

o\e"(r, z; s,, z') :24ÐOrt[2(It - À¡)I¡(m,rn;I)
j:I

- Àt (1 + m)I| (m j t.,*,0) + )1 (t - m)ti (m - r,rn; 0)l
t¡

oT""(r, z1s, z') : 4trt D dt, (f -l u¡)I¡(m,rn;I)
j:7

6

o?e,(r, z; s, z') :2ptÐOrt[I1(1 + m)I](m * 1, zn;0)
j:1

+ À1(1 - rn)Ii@ -^7.,rn;0)l
b

o\""(r, z1s, z') : - trtD^dn¡þ¡Ii(m,rn;0)

o?,,(r, z; s) z

where

dst

ds+

dse

À,

À4

À¡

Àj

The expressions

deformations can

olri:o\"i:o

: kzat/ut, d52 :

: -pzpsh^/rz,
: 2pzp¿kzr/rtrr.,

crt - ctz î. /\'¿ -c44

7*kt
\ø'

- Àr, aj:

: Àr, aj:

-fua1/u2, dsz : -l-rzltskrr/r,

dss :2pzktr/ur"zl U+
zl 

-tdsz::', dsa - -1lz' - zl

rlkr ¡ l*kz

-t 

..O: 

-

u1 u2

(2.36ø)

(2.36b)

(2.36c)

(2.36d)

(2.36e)

(2.36f)

(2.37a)

(2.37b)

(2.37c)

(2.38ø)

(2.38ó)

(2.3ea)

(2.3eb)

to axisymmetric

with rn :0 and

j:7
6

Ðdn¡P¡[I¡(* - !.,mtl) - I¡(m * 1, rn;1)]
J:1

for stress Green's

be obtained from

(j : r,").

7*kz

:1,3,b

:21416

functions corresponding

eqns (2.34) and (2.36)

\_/\5 -

kt, þ¡

lcz, þ ¡

J

j

,/",
:À¿:

:Às:



Note that the displacement and stress Green's functions corresponding to a

transversely isotropic full space can be directly obtained from eqns (2.23)-(2.25)

and (234)-(2.36) through an appropriate limit procedure. It is noted that the

displacement and stress Green's functions appear in terms of Lipschitz-Hankel

type integrals and can be expressed in terms of elliptic integrals (Easton eú ø/.

1955) and subsequently evaluated by using special mathmatical software. This

procedure greatly enhances the numerical accuracy and efficiency when compared

to direct numerical integration of infinite integrals.

2.7 GENERAL SOLUTIONS FOR A DEGENERATE CASE

A degenerate case occurs in the elastostatic solutions oftransversely isotropic

media when the material constants c¿, obey the following relationship:

t/-p-K-1 :0 (2.40)

resulting in

7./7 : Lt2 (2.41)

It is noted that solutions given by eqns (2.2J)-(2.2b) and (2.J4)-(2.86) under this

degenerate condition would be singular.

In order to derive proper general solutions for a transversely isotropic medi-

um whose elastic constants obey the relation given by eqn (2.40), the following

potential function representations are introduced:

0û 0ró, 7 ôós
*r : -;- -T-;---;-or oroz'rôg

7ðó, , 7õrö, 0ó,
at^: 

- 

- 

I" r 00 rô0ôz ôr
Aó'' ^ ã2 r/r,

1tr2 : arË + azY" öz + 08â;

(2.a2a)

(2.42b)

Q.azc)



where the coeffi.cients ø1 , a2 and cls ãra defined as

þq-I
(2.43)AI: &2: ag: -crI7 ) d+7' d+7

and u1 is the root of eqn (2.9ø); a and B are nondimensional material païame-

ters defined in eqn (2.5) and the differential operator V2 is defined in eqn (2.7).

Substitution of eqn (2.42) into the governing equations (2.6) together with the

applications of Fourier expansion as defined by eqn (2.14) and Hankel integral

transform as defined by eqn (2.i5) result in the following general solutions for the

rnth Fourier harmonic of the potential functions,

ó¿,-(r'' r) [A¿^(À)e^"t + Bi,-(^¡e-^";7ÀJ,(Àr)dÀ i :r,g (2.44)

óz,n(r, z)

(2.+5)

where z¿ is defined in eqn (2.8) and z3 is given by eqn (2.10). Ai,.(^), B¿*(À)(i :
7,2,3),Cr*(\) and D2*(À) denote the arbitrary functions.

The general solutions of displacement and stress components can be obtained

by substituting eqns (2.44) and (2.45) into the eqns (2.42) and (2.2). Thereafter

the Green's functions of displacement and stress can be derived by using a pro-

cedure identical to that described in Sections 2.4-2.6.

: 
lo*

roo: 
Jo {lAr*(^)t 4c2*())1"^"' +lBz,-(À)+

z 1 D 2 * (\)le- À ", ) À /" ( )r) dÀ
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Chapter 3

ELASTOSTATIC B OUNDARY-VALUE PRO BLEMS

3.1 GENERAL

The development of an indirect boundary integral equation method based on

Green's functions derived in Chapter 2 is considered in this Chapter for analysis

of a variety of three-dimensional elastostatic boundary-value problems related to

a homogeneous transversely isotropic elastic half space. Consider a transversely

isotropic elastic half space where a volume I/ bounded by an axisymmetric surface

,S is defined as shown in Fig 3.1. A cylindrical polar coordinate system (r,0,2)

is defined at the free surface level such that the z-axis coincides with the axis of

symmetry of. V. If I/ is a rigid inclusion then displacements on ,S are prescribed

and a displacement boundary-value problem can be defined for the semi-infinite

transversely isotropic domain I/" exterior to V. If I/ is a cavity subjected to

pressure then a traction boundary-value probiem can be defined for the domain

V". A more general situation exists when displacements are specified over a

part of ,9 denoted by ,9t and tractions are specified over the remainder of S
denoted by S, (Fig 3.1). In this case a mixed boundary-value problem can be

defined for domaiî V". Examples of the mixed problem are situations where

loss of contact exists over a portion of the contact surface of an inclusion in an

elastic medium or the case of an inclusion where yielding occurs along the contact

surface when tractions exceed prescribed limiting values. These boundary-value

problems can be formulated in terms of a system of non-singular integral equations

by generalizing the indirect boundary integral equation approach proposed by

Ohsaki (1973) to study the response of a rigid body embedded in an isotropic

elastic medium. The kernel functions of integral equations are displacement and

traction Green's functions presented in Chapter 2. A more complicated situation

arises when I/ consists of a different elastic material. For example, the case
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of load diffusion from an elastic bar into a transversely isotropic elastic half-

space. A solution to this problem is presented by developing a coupled variational-

boundary integral equation formulation.

3.2 TRACTION BOUNDARY-VALUE PROBLEI\4S

3.2.1 Formulation

In the ensuing analysis a detailed solution procedure for a traction boundary-

value problem is presented. Consider a situation where tractions are prescribed

on a surface ,S as given below:

T¿(r,0, r) : T¿*(r, òf i*(0), (r,0, z) e S (3.1)

In eqn (3.1), i: r¡0,2 together u/ith f",-çe¡: f "^(0): cos rn? arrd f e*@):
sinm?; T¡*(r,z) denotes the prescribed value of traction on the generating curve

of ,S.

An exact solution of domain V" subjected to the above boundary condition

on an arbitrary axisymmetric surface ,9 is mathematically intractable. Alterna-

tively, an indirect approach which exactly satisfies the governing equations of

I/" and boundary conditions on ,9 can be developed by considering a uniform

(undisturbed) transversely isotropic elastic half space V* as shown in Fig 3.2. An

axisymmetric surface 5 which is identical to S in Fig 3.1 is defined in I/*. Interior

to ^S, another axisymmetric surface ,9' is defined. A set of forces with intensity

B¿(r,z)f¿,-(á) is applied on,5/ such that tractions on,S are given by eqn (3.1).

Under these conditions the solution of domain V* exterior to ^9 is identical to

that of V, of. the original problem. The force intensities B¿(r,z) are governed by

the following Fredholm integral equations of the first kind:

f
I Hi](r, z;r' , z')B¡(r' , z')r' dS' : T¿,n(r, z), (r, z) e S, (r' , z') e S' (8.2)

JSI

whereindices i,j:r,0,2 andsummationisimpliedonj. Inaddition, H!](r,z;r',
z') denotes the traction Green's function which can be expressed in terms of stress

26



Green's functions given by eqns (2.34)-(2.36) and unit normals of ,9. Note that

in eqn (3.2) S' refers to the generating curve of the surface 
^9'.

The unknown Fourier component of displacement on ,9, denoted by u¿,n(r, z),,

be expressed as:

lr,riU, zlr' , zt)B¡(r' , z')r'd,s' : u¿,n(r,, z). (3.3)

In view of the complexity of the Green's functions Hi],, eens (3.2) are solved

numerically. A discrete version of eqn (3.2) with respect to M and Mt nodal

points on ^9 and S', respectively, can be expressed as:

QB:R (3.4)î
I
,.j..:.

ì-ìi

'.f
t-::
:l:

!
¡:

I
ììì
È.1
iÈ

I

where

;:)
"" ) ,*,r*
xM',¡ Pr8 : rr0, z

E;"(r' ,, "') )T

/É,,H: I He,
\ H".

Êoc : fHfi(r, z;r' , z

B :( B,(r',2')

Q:H
IJre I{
FIt, H
H"e Il

')r'AS'l¡,7

B s(r' ,, z')

(3.5)

(3.6ø)

(3.6 b)

(3.7ø)

(3.7b)R:( T,,nçr',r'¡ Ts^(r',2') T"*(r',r') )T

In eqn (3.6b), Hoo is a matrix whose elements are tractions in the p-direction of

the nodes on ^9 due to ring loads in the q-direction through node points on S/;

AS' is the tributary length corresponding to a node point on ^g'; B¿(r, , z') ts a

row vector whose elements are intensities of forces in the i-direction of the node

point on S' and the superscript ? denotes the transpose of a matrix.

A least-squares solution of eqn (3.4) yields

B: lQrQl-tetR

27
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Once B is determined from eqn (3.8), the Fourier harmonic of displacements

on S (which are identical to displacements of ,9 of the original problem) can be

computed by numerical integration of eqn (3.3).

3.2.2 Numerical Example

The numerical convergence, stability and accuracy of the solution scheme

have been investigated with respect to a bench-mark problem for which soiutions

have been reported in the literature. The problem under consideration corre-

sponds to a spherical cavity of radius '¿' in an isotropic infinite space which is sub-

jected to a uniform radial pressurepo. An exact analytical solution for this prob-

lem is available (Saada 7974). The material isotropy is simulated by setting ma-

terial constants crr:3.0rce - 1.0,ca3 :3.0,c13 :1.0 and caa :0.99997. This

corresponds to an isotropic material with shear modulus and Poisson's ratio equal

to 1.0 and 0.25, respectively. Table 3.1 presents a comparison of nondimensional

displacement normal to the cavity wall denoted by 6s, for different locations of

inner surfaces ,9' measured by the distance 'c' (Fig 3.2) and for different number

of node points M and M' . The solutions obtained from the present scheme show

good convergence and stable behaviour with increasing M ar'd Mt . In addition,

present solutions are in very close agreement with the analytical solution.

Next a traction boundary-value problem corresponding to a hemispherical

cavity of radius 'a' at the surface level of an elastic half space is considered.

The cavity is subjected to uniformly distributed normal pressure g6. The mate-

rial types considered here are ice, an isotropic material, clay I, magnesium and

cadmium and the material constants are given in Table 1.1. The numerical so-

lutions for nondimensional radial displacement u, and vertical displacement z,
(un: u¿qsf acaa) are presented in Fig 3.3. A surface ,9' of radius 0.85ø together

with ten and twenty node points on ^9/ and ,9, respectively are used in the analysis.

It is observed from Fig 3.3 that the material anisotropy has significant influence

on the displacement profiles. In the case of u., the strongest influence of material

28
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anisotropy is noted in the solution for cadmium followed by clay. The nondimen-

sional radial displacement solutions for magnesium and ice are found to be almost

equal to that of the isotropic material. However, a completely different trend is

noted for the nondimensional vertical displacemenl uz. The highest influence of

material anisotropy is observed in the profiles for ice and cadmium followed by

magnesium. The vertical displacement profiles for isotropic material and clay are

found to be nearly identical and fall between the vertical displacement profiles

for cadmium and magnesium. Comparison of displacement solutions presented

in Fig 3.3 with the values of material constants given in Table 1.1 indicates that

the normalised constant ð11 dominates the influence of material anisotropy in

the case of displacement z," while in the case of u" the influence of anisotropy is

mainly governed by cis. It is also observed that the general shape of displacement

profiles along the cavity wall is roughly the same for all five materials although

the actual magnitudes are considerably different. In addiiion, the largest radial

displacement is found at a point which is below the free surface of the half s-

pace for all materials. Ii should be mentioned here that the present scheme can

be directly applied to analyze a cavity of any arbitrary axisymmetric geometry

subjected to an arbitrary variation of pressure over the cavity surface.

3.3 DISPLACEMENT BOUNDARY-VALUE PROBLEMS

3.3.1 Formulation

In the case of a displacement boundary-value problem, Fourier harmonic

components of displacements on ,9(5) are prescribed. The force intensities B¿(r, z)

are governed by the following Fredholm integral equation of the first kind:

(3.e)

where u¿rn(r,z) denotes a prescribed displacement on the generating curve of ,9.

A soiution for B is given by (3.8) with

l r,ri?, zlr', z')B ¡(r', z')r' d,s' : u¿,n(r, z)

G
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/ G,, G,e G,^, \G: I Gd. G* cr" I

\ G,. G"a G"" f sMxsMt

: fGfo?, z;r', z')r' LS'lnr*ta,, p,g

(3.11ø)

(3.11ó)Gro : rr0, z

R :( ir*(r' rz') u6*(r',2'),

The solution for traction components T¿*(r, z)

equation:

u"^(r' , "') )T (3.12)

is given by the following integral

Hff (r, zlr' , z')B ¡(r' , z')r' dS' (3.13)

3.3.2 Numerical Examples

The example problem used to verify the solution scheme corresponds to an

asymmetric displacement boundary-value problem related to a rigid cylinder of

radius '¿' and heighi 'å.' partially embedded in an isotropic elastic half space (Fig

3.4). The force-displacement relationship of the cylinder can be expressed in the

form:

T¿rn(r,, z) : t
JS,

(,,iJ") : "nno(i:^ i¿Ð (î;,) (3.14)

In eqn (3.14), Kn, Krn and K¡rrn(: K*n) denote the non-dimensional horizontal,

rocking and coupled stiffnesses of the rigid cylinder; A, and /, denote the hori-

zontal displacement (z-direction) of the bottom and rotation about the y-axis of

the cylinder, respectively; .Fo ar.d M6 denote the resultant force in the u-direction

and bending moment about the y-axis with respect to the point A shown in Fig

3.4 respectively.

Apsel and Luco (1987) presented solutions of stiffnesses for rigid cylinders

with various hf a ratios embedded in an isotropic elastic half space (Poisson's

ratio equal to 0.25) by numerically solving a formulation based on the integral

representation theorems (Eringen and Suhubi, 1975). Table 3.2 presents solutions

for K¡r,K^ and I{¡o, of. a rigid cylinder with hf a:1 for two location of surface



^9/ fconsidered as a cylinder of radius (" - ") and height (h - c)] and for four

different discretizations of ,9 and ^S'. The convergence and the stability of the

present solutions are clearly evident. Table 3.2 also presents a comparison with

the solution presented by Apsel and Luco (1937). The above comparison confirms

the accuracy, convergence and stability of numerical solutions obtained from the

present analysis.

Next, the asymmetric displacement boundary-value problem related to a
rigicl cylinder bonded to a transversely isotropic elastic half space is considered

(Fig 3.a). The problem under consideration has useful applications in geome-

chanics and in the analysis and design of composite mechanical components. The

quantity of primary interest is the global stiffness of the cylinder-half-space sys-

tem. Tables 3.3 and 3.4 present non-dimensional axiat (K,), horizontal (K¡),
rocking (K*) and couple d (K,-n - Kn*) stiffnesses of a rigid cylinder bonded to

ice, two types of clay and an isotropic medium. Note that Ko: psf (caaa\"),
where A, is the displacement of the cylinder in the z-direction and Po is the

axial force. The stiffness Kh,K*,K¡,,n ate defined by eqn (8.14). Solutions are

presented for rigid cylinders with hla:0.5,1.0,2.0 and 4.0. As expecied, all

stiffness parameters increase considerably with increasing values of the l:;tio hf a

for alltypes of materials. The values of. K¡r,K^ and. K¡r* corcespondingto the

two clays are quite close to each other which indicates that the differences in õ13

and ca3 observed in Table 1.1 for the two types of clays do not have a significant

influence on the stiffness parameters. Further comparisons of the values of ma-

terial constants c¿¡ in Table 1.1 with the values of stiffness parameters in Tables

3.3 and 3.4 indicate that the order of. Ko for different materials is identical to
that of ca3 and the order of. K¡ and K,,, is identical to that of õ11. However the

influence of anisotropy on stiffness K¡* is appeared to be governed by more than
one value of. c¿¡.



3.4 A MIXED BOUNDARY-VALUE PROBLEM

3.4.1 Formulation

In the case of mixed boundary-value probiems tractions are prescribed over

the part Sr of .9 (Fig 3.1) and displacements are prescribed over the remaining

part 52. Considering the system shown in Fig 3.2, the force intensities B¿(rt,zt)

on ,9' are governed by the following dual integral equation system:

f
I niO,zlr' ,z')B¡(r' ,z')r'ds' : T¿*(r,"), (r,z) e 31 (8.15ø)

JS,

f
I Gi(r, z;r' , z')B¡(r' , zt)r' dst : u¿,n(r, z), (r, z) e 32 (8.15ô)

JS,

A solution of eqn (3.15) to determine B can be expressed in the form of eqn

(3.8) by discretizing ,91 and Sz Iry using M1 and M2 node points, respectively.

The matrix Q in eqn (3.8) corresponding to the present case can be expressed as:

n: (ä) (3.16)

where H and G are the traction and displacement Green's function matrices

defined by eqns (3.6) and (3.11), respectively. Note that the orders of H and G

arc 3M1 x TMt and 3M2 x 3Mt ,, respectively. Once B is known, the unknown

displacement on 51 and the unknown tractions on 52 can be determined from the

eqns (3.3) and (3.i3), respectively.

3.4.2 Example

The non-linear mixed boundary-value problem related to a rigid hemisphere

of radius 'ø' embedded in a transversely isotropic elastic half space with an elastic-

perfectly plastic interface is considered. In the absence of relevant experimental

data the axisymmetric twisting problem has been simulated where yielding (slip-

ping) occurs only in the 9-direction when contact traction reaches a limiting value.

The limiting traction value in the á-direction, denoted by rey,, is set to 0.01caa.



In reality the critical value of traction beyond which slipping occurs along the

surface should be determined experimentally and depends on several factors such

as the surface texture of the interface, the type of bonding, the deformability

characteristics of the materials in contact, etc.. The torque (70) 
"n¿ 

twist angle

(ø6) relationship is linear until the contact traction in the d-direction at a point at

the interface reaches the limiting value. A displacement boundary-value problem

can be defined for domain % (FiS 3.5) during the linear region. Lel an denote the

twist angle (in radians) at the initiation of yielding. For any as ) ayt a mixed

boundary-value problem can be defined f.or V"; the traction specified over the part

where the critical value has been reached and the displacement specified over the

remainder. Note that slipping will occur along the portion of the interface where

the limiting traction has reached. It can be shown that the torque Z, correspond.-

ing to a completely yielded interface is equal to 0.00bn"2 c44a3 for rls 0.01caa.

The response of the hemisphere for a,,¡ ) a, can be studied by an incremental

analysis. In the present study the surface ,9' was taken as a hemisphere of radius

0.8ø and M:20 and Mt:70. The incremental analysis was performed by using

increments of rotation equal to 0.05ø, for a.r¡ ) uy.

Figure 3.5 shows the torque-twist relationship after the initiation of interface

yielding for a rigid hemisphere embedded in an isotropic material, ice, clay and

cadmium (Table 1.1). The point of intersection of the torque-twist curve with

the horizontal axis corresponds to the twist angle.,.n at the initiation of interface

yielding. The normalized torque T*:TofTa, where ?¡ is the torque acting on

the hemisphere and øfr:a0c44frea. The non-linear behaviour of the torque-

twist relationship is evident from Fig 3.5. The present analysis can also be used

to compute the amount of slip between the rigid hemisphere and surrounding

half-space at points along the interface which have reached the limiting traction.

The non-dimensional slip at a point (r,z) on the interface is denoted by A* and

defined by a*(r, z) : lrus - r(r,z)lcaal@ráy): rvhere u(r,z) is the displacement

.t.t
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in the d-direction of the half-space. Note that for a6 luyt no slip takes place

at the interface and A* : 0 for all points on the interface. Figure 3.6 shows

the variation of A* with angle d (Fig 3.5) for normalized rotation a.s:usf uE.

Yielding is iniiiated at the free surface level (þ : rr 12) and gradually progresses

downward âs kr6 is increased. Nearly one-half of the interface yields at a.s: 1.30

for all types of materials. Note that in the present probiem, the analytical solution

results in zero traction in the 9-direction when ó - 0. This implies, theoretically,

the yielding of the bottom (d : 0) occurs when cd6 --+ oo. This behaviour is

refl.ected in both Figs 3.5 and 3.6. This example demonstrates the effectiveness

of the present scheme in analysing a mixed boundary-value problem related to a

rigid inclusion. The analysis can be modified without any fundamental difficulty

to simulate an interface with Coulomb friction.

3.5 LOAD TRANSFER PROBLE]\,{

3.5.1 General

The study of ioad transfer from a partially embedded cylindrical elastic bar of

finite length into an elastic medium has useful applications in several engineering

problems. In applications related to composite materials and geomechanics, the

Ioad is transfered to a medium which is essentially anisotropic. In this section the

general elastostatic load transfer from a cylindrical elastic bar which is partially

embedded in a transversely isotropic elastic half space is investigated. A coupled

variational-boundary integral equation method scheme is used in the analysis by

generalising the formulations presented previously by Selvadurai and Rajapakse

(1987) and Rajapakse (1988).

3.5.2 Deformation of Elastic Bar

Consider a cylindrical elastic bar of radius '¿' and length (hla >> 1)

partially embedded in a transversely isotropic elastic half space as shown in Fig

3.7. A Cartesian coordinate system (*,a,r) and a cylindrical coordinate system
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(r,0,2) are defined such that z-axis coincides with the centroidal axis of the bar

and perpendicular to the stress free surface of the surrounding half space. The

Young's modulus of the bar is denoted by Eu (shear modulus ¡;6). The bar may

be subjected to a torque 76 about z-a.xis) an axial force Ps, a horizontal force

,F/6 along the ø-axis (9:0) or a bending momenl Ms abort the g-axis (9: 
"12).

In view of the assumption that hl o >> 1, the deformation of the bar is assumed

to be governed by an appropriate one-dimensional theory. Let w¿(r,0,2) denote

the displacement of the bar in the i-direction (i : r,0, z). It is assumed that the

displacement of the bar can be represented by an admissible function indetermi-

nate with respect to a set of generalized coordinates. In the case where the bar

is subjected to an axisymmetric torque, the following representation is used:

N
we(r,0,2) :\a.rþ,(z)

n:7
w,(r, 0, z) : w "(r, 0, z) : g

where, dr,d2...¡aN are generalized coordinates to be determined and ö"(r)
(n : 1,2,...,N) is a set of smooth and continuous functions of ,(0 < " < h).

For the axial load transfer problem,

N

wr(r,0,,2) :D"rór(r)
n:7

wr(r,0,2): ue(r,0,2) : g

In eqn (3.18b), consistent with the assumed one-dimensionalbehaviour, any radial

displacement of the bar due to longitudinal straning has been neglected.

For the transverse load (shear force 8o ot moment M¡) transfer problem,

N
u,(r,0,2) :Ð",ó,(")

n:1,

.y(r,0,2): g

N

w"(rrï,z): -cos 0l ra,

(3.17a)

(3.17ó)

(3.18ø)

(3.18ó)

(3.1eø)

(3.1eó)

(3.1ec)
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Note that eqns (3.1ea) and (3.1eb)

tor(rr0rz)

yield,

N
: cos 0lC,.$-(z)

n:7

N
w a(r, 0, z) : * sin 0 Ð o,ó.(")

n:7

(3.20a)

(3.20b)

(3.22)

(3.23a)

(3.23b)

nlmlS
nlm:5

(3.23c)

A variety of admissible functions can be selected for $.(z). It is important

that the selected function set includes the appropriate rigid body displacement

mode of the bar for the load type under consideration. In the present analysis

the following choice is made f.or $.(z):

ó"("): (zf h)"-\ (3.2i)

3.5.3 Coupled Variational-Boundary Integral Equation Formulation

Using the displacement representations given by eqns (3.i7)-(3.20), the strain

energy Uu of. the elastic bar can be expressed as

N¡¡
[Iu: Ð | ana^Dn*

n:7 m:7

For the torsion load transfer problem,

(
Dn^: lrp'6aa(n - 1X- -t)ll+h(n+rn-3)l nlmt'3

[U n*m:3

For the axial load transfer problem,

Dn,n: {TEu"'(n- L)(rn_ 1)llzh(n+nz- 3)l nim l3
[U nlrn:3

For the transverse load transfer problem,

D__ - [ rE6aa(n- 1X" - 2)(*- 1X- - 2)ll8hs(n * m - 5)]"r"--\0



The displacement compatibility between the bar and the half space along the

contact surface ,9 can be expressed as,

ro¿(r,0rz): u¿(rr?,z), i: r,0,21 (rr0rz) e S G.24)

where u¿(r,0,e) denotes the displacement in the i-direction of the elastic half

space.

The strain energy of the surrounding half space region denoted by tln can be

expressed as

(3.25)

In eqn (3.25), T¿(r,0,e) denote the traction in the i-direction (i:r,0,2) at a
point on the contact surface ,9 and summation is implied over the legal range of

i corresponding to each load transfer problem.

In view of eqn (3.24), a displacement component u¿(r, 0, z) ar a point (r,9, z)

on the contact surface S can be expressed as

N

,o : 
T l,rouoot

u¿(r,0, 
") 

: D anu¿,(r, 
")f ¿@)

n:l

The explicit form or u¿n(r,e) appearing in eqn (3.26) can be obtained from eqn

(3.24) together with eqns (3.17)-(3.21) for different loading cases.

Lel T¿n(r,")f¿(0) denote components of traction at a point (r,0,2) on the

contact surface due to a displacement fr,eld u¿n(r,")f¿(0) imposed on ,9. Then

traction fr due to displacement field u¿ can be expressed as,

N
T¡(r, 0, ò : Ð anT¿n(r, 

") f ¿(0)
n=7

In view of eqns (3.21), (3.22) and (3.25)-(3.27), a constraint energy functional

(Washizu 1982) of the bar-half space system which takes into consideration the

bar top boundary conditions can be expressed as

NN
-:DÐo,t*[D,^tF,*]-W

n=l m:\

(3.26)

(3.27)
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where,

E1 - 
rt [,Fn* : i Jrfo"{r,z)u¿,n(r,z)rdS

For the torsion transfer problem

W:Toat+sr(fi*r-To)

for the axial load transfer problem

w:po.,t+^re+rz-po)

for the transverse load transfer problem

(3.2e)

(3.30ø)

(3.30ó)

,:*oT t Qo..t + 
^r(#as - 

Mo) + 
^r(To+ 

i Qo)

( 2r torsionn:\' I zr axial and transverse

(3.30c)

and

Note that summation is implied over the index i(i : r,0, z) in eqn (3.2g) and

the integration is taken over the generating cuïve of ,S. In eqns (3.30), á, / and

..I denote cross-sectional area, moment of inertia and polar moment of inertia of

the elastic bar respectively, and À¿(i : r,2) denotes a Lagrange multiplier.

At equilibrium, the generalized principle of minimum potential energy states

that n' is stationary. The relevant stationary conditions yield a set of linear

simultaneous equations to determine a¿(i: !,,2,...,N). For example, the set of

equations corresponding to the transverse loading problem can be expressed as,

TN:

6EIa+

1,2, '.., ¡y'

: -Qo

(3.31)

(3.32)

(3.33)

N

I a,l2D,^
n:1

* F,* * F*nl + ¡rPlP + SrE4#
ho h,Ð

-zrç ,MO,
- ttQUlTn -f 

n 
ozm

2EIa," - ^/Í
-- - 

JUtj)

38

h3



where ó-,, denotes Kronecker's delta function.

The numerical solution of linear equation systems yields the solutions for gen-

eralized coordinates a¿(i : 7,2,..., ¡f ) corresponding to the three different types of

load transfer problems. The solutions for bar displacements and stress resultants

can be determined by using one of the eqns (3.17)-(3.21) and an appropriate one-

dimensional continuum theory. It is noted from eqns (3.32) that the coefficients of

the linear simultaneous equation system involve the the terun Fn* defined by eqn

(3.29). The evaluation of. Fn,n corresponding to different types of load transfer

problems is discussed in the following section.

3.5.4 Evaluation of Term .t'-,,

The evaiuation of Fn* givenby eqn (3.29) reduces mainly to the computation

of traction componenls T¿n(r,z) orr,5 since uàn(r)z) can be obtained from eqns

(3.24) and (3.17)-(3.21). Note fr,(r, z) denotes traction components on the cavity

surface of an elastic half space with a cavity identical to the bar when the cavity

surface is subjected to a displacement field with components u¿n(r, z). If is evident

that an analytical solution for T¿r(r,z) cannot be derived. However, a numerical

solution f.or T¿n(r,e) which satisfies all the governing equations of the half space

region can be derived by using an indirect boundary integral equation scheme

given in section 3.3.

Consider an uniform half-space region without a cavity. A fictitious surface

5 identical to the bar-half-space contact surface .9 is defined. A set of forces

with components B¿n(r',r')f¿@) are applied on a cylindrical surface ,9', interior

to S such that displacements on,S are equal Lo u¿n(r,")f¿(0). The force com-

ponents B¿n(r,z) are governed by the nonsingular integral equation (3.9). Note

in eqn (3.9), indices i and 7 take the range of values defined previously for dif-

ferent load-transfer problems, and summation is implied on index /. In addtion,

Gff(r, zlr' ,, z') corresponding to each load-transfer problem is presented in Chap-



ter 2. The traction components on.9 that are equal toT¿n(r,z) canbe expressed.

as in eqn (3.13). The explicit solutionsfor Hi](r, zjr' ,z') corresponding to various

types of load-transfer problems can be derived by using the solutions presented in

Chapter 2. A solution for T¿n(r,z) can be obtained by discretizing ,S' and ,9 with

a set of node points and soiving eqns (3.9) and (3.13) numerically. Details of the

numerical solution procedure is presented in Sections 3.2 and 3.3. Alternatively,

a numerical solution f.or T¿n(r,z) can be obtained from direct boundary integral

equation method (Apsel and Luco 1987).

3.5.5 Numerical Solutions

3.5.5. 1 Numerical Scheme

In the numerical study, the response of elastic bars subjected to differen-

t types of loading is investigated. The values of normalized material constants

¿¿j(: c¿¡ lc¿+) of ice, cadimium, magnesium, a clay soil and an isotropic medium

are given in Table 1.1. The selection of the above set of anisotropic materials

among several others is based on their relevance to applications related to com-

posite materials (magnesium, cadmium and isotropic) and geomechanics (clay, ice

and isotropic). The convergence and numerical stability of the solution scheme

with respect to the number of terms ly' in eqns (3.17)-(3.i9) and number of node

points -ly'' and N on generating curves S' and 5, respectively, have been investi-

gated. It is found that the solution of elastic bar converges for ¡/ > 8 and F : 30

and 40 are sufficient for bars with hf a:5 and 10.

3.5.5.2 Bar Stiffness

The stiffness of the bar is expressed in terms of a set of nondimensional

stiffness parameters as defined below

ru Qol\¡¡: ---- ^ i
c44a,/)aqc44o,A2'

Ms

cE+a3 Ó "'
Qo

c¿¿a2 óye'

40

ToP6I{v : I{r :

KHM :

(3.3aø)

(3.34b)
MoKn't :

c++as ÓsM'
KMH :

c44a2 La¡4



where I{v,Kr,Kn,Ku and Kys(: Kau) denote axial, torsional, horizontal,

rotational and coupled stiffnesses of the bar, respectively. In additiop Ar, ó,, A,
and $n denote the vertical displacement, twist angle, lateral displacement and ro-

tation of the top end of the bar, respectively. A"q and A,¡4 denote the horizontal

displacements due to Qo and Ms applied at the top end of the bar, respectively;

þrq anð. óau denote the rotation due to Qs and M6, respectively.

Figures 3.8 and 3.9 show the variation of stiffness parameters with moduli

ratio E6(: Eul"n+) for bars with hla: 5 and 10, respectively. Note that for bars

subjected to torsion the moduli ratio ttt: l.ruf c¿a is used. All stiffness parameters

increase rapidly with E¿ and approaches a limiting value beyond which the bar

exhibits characteristics of a rigid bar. The value of. Er beyond which the bar

behaves perfectly rigid depends on the degree of anisotropy of the surrounding

material, type of loading and the bar length-radius ratio.

It is noted from Figs 3.8 and 3.9 that the torsional, horizontal, rotational

and coupled stiffnesses of bars embedded in an isotropic medium and magne-

sium are nearly equal and solutions corresponding to bars embedded in ice are

slightly higher. Therefore, magnesium and ice can be considered isotropic and

slightly anisotropic, respectively, for transverse load and torque transfer prob-

lems. The solutions for transverse (Ku,,Ku,Kua) and torsional stiffnesses of

bars embedded in clay and cadmium show a considerable influence of the mate-

rial anisotropy. It is also noted that the influence of material anisotropy, if any,

is more pronounced for stiffer bars when compared to very flexible bars (lower

values of E6). Based on the solutions presented in Figs 3.8 and 3.9 for trans-

verse and torsional stiffnesses, cadmium is found to possess the highest degree of

anisotropy followed in the order of decreasing degree of anisotropy by clay, ice

and magnesium.

It is useful to relate the influence of the material anisotropy observed in

the numerical study for transverse and torsional stiffnesses to the magnitudes
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of normalized material constant c¿¡ in Table 1.1. Comparison of the values in

Table 1.1 indicates that magnesium and isotropic material have relatively closer

c¿¡ values and this is consistent with the close agreement of stiffness parameters

observed in Figs 3.8 and 3.9. The c¿¡ values of of clay are also closer to isotropic

values except in the case of c11. In addition, õ¿¡ values of ice are greater than clay

except in the case of c11. However, in Figs 3.8 and 3.9, transverse and torsionai

stiffnesses of bars embedded in clay are greater than the corresponding solutions

for ice. In addition, cadmium, which shows the highest influence of anisotropy

in Figs 3.8 and 3.9 also has the highest values of. c11,c12 and c13 when compared

to other materials. These comparisons indicate that the transverse stiffness is

governed mainly by ihe value of c11 and to a lesser degree tty ctz and c13. In the

case of torsionai load transfer, the torsional response equation indicates that the

dependence of material anisotropy can be related only to the value of (õ11 - ctz).

A comparison of (õtt - c12) values from Table 1.1 is in agreement with the order

of the influence of material anisotropy observed in Figs 3.8 and 3.9 for Ifu.

The solutions for axial stiffness -I{y presented in Figs 3.8 and 3.9 indicate that

the influence of material anisotropy is relatively lesser when compared to trans-

verse and torsional stiffnesses. The axial stiffness of bars embedded in cadmium

and the isotropic medium is nearly identical. In addition, bars embedded in ice

have the largest axial stiffness. Solutions corresponding to clay and magnesium

are nearly identical and are in between solutions for ice and the isotropic mate-

rial. Comparison of. c¿¡ values in Table 1.1 and the numerical soiutions in Figs

3.8 and 3.9 indicate that in the case of axial stiffness the influece of anisotropy is

primarily governed by ihe value of ca3. It is noted that the magnitude of Ky in
Figs 3.8 and 3.9 for different materials is in the same order as the magnitude of

õ33 in Table 1.1.

3.5.5.3 Load Transfer Curves

Fig 3.10 shows the axial load transfer curves of an elastic bar (hla:10)
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with moduli ratio Eu :50 and 100 embedded in cadmium and an isotropic sol-

id. The numerical results for other materials fall within the two load transfer

curves shown in Fig 3.10. These solutions indicate that the influence of material

anisotropy on axial load transfer along the bar is negligible. Comparison .were

also made for nearly rigid bars and found that the axial load. transfer curves are

not significantly influenced by the degree of anisotropy of the half space mate-

rials' Additional numerical solutions indicate that the moduli ratio E6 and the

length-radius ratio significantly influence the load transfer profiles. For a bar of
given length-radius ratio, the load diffuses rapidly with increasing bar flexibility
(i.e., decteasing values of E6). Fig 3.11 shows the torque transfer curves of an

elastic bar (bla - 10, ltt:50 and 100). The influence of material anisotropy is
clearly visible in these curves when compared to axial load transfer curves shown

in Fig 3.10. The torque transfer curves for elastic bars embedded in clay and

cadmium indicate a higher rate of diffusion of bar torque with depth when com-

pared to an isotropic medium. Additional numerical solutions indicate that as

pa increases, the influence of material anisotropy on bar torque profiles d.ecrease

and in the case of rigid bars the torque profiles are nearly independent of the

degree of anisotropy of the half space. In general, the torque transfer along the

bar lengih is more rapid when compared to axial load transfer and the rate of
torque diffusion increase with decreasing values of moduli ratio p6.

Fig 3.12 shows the shearforce profiles of abar (hla:I0,86: b0 and 100)

subjected to a horizontal force Qo at the top end. The solutions are found to be

negligibly influenced by the degree of anisotropy of the surrounding half space.

Similar behaviour is also observed for rigid bars. It is also noted that shear force

diffuses rapidly and shows a reversal in sign within the top portion of the bar. In
addition, some minor osciliations within the lower portion of the bar are noticed

for very flexible bars. This behaviour is different to that observed previously for
the axial load and torque. It should be mentioned here that a long flexible beam
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on a Winkler medium and subjected to a concentrated load at one end shows

qualitatively similar shear force profiles. As the bar becomes rigid (86 -- oo), the

oscillation vanishes and the shear force reduces gradually wiih a change in sign

within the top portion and thereafter increases linearly in the bottom portion.

Fig 3.13 shows the bending moment profiles of elastic bars (86 : b0 and

100) subjected to a horizontal force Qo at the top end. These profiles show

an influence of anisotropy which is similar to that observed previously for torque

transfer profiles. It is also observed thai for a bar of given length-radius ratio, the

shape of the bending moment profiles is significantly influenced by the bar moduli

tatio F,6. For low values of. 86, the magnitude of maximum bending moment is

smaller and the bending moment decreases rapidly along the bar. As the bar

becomes more stiffer, the magnitude of maximum bending moment increases and

the profiles show more gradual decreases of bending moment along the lower

portion of the bar. Some oscillations in the profiles are observed within the lower

portion of the bar for very flexible bars.

Fig 3.14 shows the bending moment profiles of bars of three different length-

radius ratios (hlø:5,10,20) embedded in ice and subjected to a bending mo-

ment Ms at the top end. solutions are presented for a bar with -Ea : 100 and a

rigid bar Eu - oo. These profiles clearly indicate the influence of bar length on

the relative flexibility of the bar-elastic medium system. For a short bar (hla : 5)

the profiles corresponding to E6: 100 and oo are quite close indicating that even

at low values of 86, short bars behave nearly rigid. For longer bars (hf a:r0
and 20) the profiles for E6 : 100 and oo show considerable differences both in
magnitude and in shape. Changes in sign and oscillations are observed in bending

moment profiles of flexible bars (86:100) for hf a:10 and 20. These features

do not appear in bending moment profiles of rigid bars of same length-rad.ius

ratio. The oscillations observed in bending moment profiles are found to be

so influenced by the length-radius ratio and the moduli ratio of the bar. It
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interesting to note here that a long elastic beam on a Winkler medium and sub-

jected to a bending moment at one end shows bending moment profiles which are

qualitativeiy similar to that observed in Fig 3.14 for flexible bars.

3.6 CONCLUSIONS

It can be concluded at this stage that an accurate boundary integral formu-

lation has been presented to analyze a general (displacement, traction and mixed)

boundary-value problem related to a transversely isotropic elastic medium. The

kernels are the Green's functions derived explicitly in Chapter 2. The numerical

examples have demonstrated the accuracy, flexibility and versatility of the solu-

tion scheme in analyzing a variety of problems. The boundary integral scheme

of domain V" can be coupled to a finite element representation of the near field

domain I/ to develop a hybrid scheme (Zienkiewi cz et ø1. 7977) which can be

used to model a variety of linear and nonlinear problems related to transversely

isotropic elastic media. The present methodology can be used to solve general

boundary-value problems related to a multilayered transversely isotropic elastic

medium without any fundamental difficulty. In the case of layered media, howev-

er, the Green's functions can not be derived explicitly and have to be constructed

by using accurate numerical techniques. The development of an exact stiffness

matrix method for computation of Green's functions of layered media is presented

in Chapter 7. It should be mentioned here that the above boundary-value prob-

lems can also be analyzed by using the integral representation theorems (Rizzo

7967, Eringen and Suhubi 1975). The kernel functions of the resulting integral

equations are again the dispiacement and traction Green's functions, given by

eqns (2.23)-(2.25) and (2.34)-(2.36), respectively.

A coupled variational-boundary integral equation scheme is introduced to

analyze the load transfer from a cylindrical elastic bar to a transversely isotropic

elastic half space. The displacement compatibility between the bar and the half
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space is satisfied at nodal locations defined along the real contact surface. In

all cases, as the bar becomes rigid, the method yields a solution for the exact

boundary value problem corresponding to the surrounding half space. To the

writer's knowledge, the present solution is ihe first treatment of the transverse

load-transfer problem with full displacement compatibitity on real bar-half space

interface. The boundary integral scheme adopted for the surrounding half space

is rigorous and satisfies all governing equations and boundary value conditions.

The solutions for axial, torsional, horizontal, rotational, and coupled stiffnesses

indicate that the degree of anisotropy of the medium has a significant influence on

the stiffness parameters. It is found that normalized axial stiffness is influenced

mainly by ihe material constants ca3. Transverse stiffnesses are influenced pri-

marily by õrr, and to a lesser degree by ctz and ð13, and the normalized torsional

stiffness depends on the value of (a11 - ¿;¡-). In addition, the length-radius ratio

and the bar moduli ratio -86 significantly influence the stiffness parameters and

the load transfer profiles. The influence of material anisotropy is found to be

negligible for axial and shear force profiles of both elastic and rigid bars. How-

ever, torque and bending moment profiles show a dependence on the degree of

anisotropy of the surrounding medium for low values of. Et. The shear force and

bending moment profiles of flexible bars display changes in sign and oscillations.

This is qualitatively similar to that observed in the analytical solutions for semi-

infinite elastic beams on a Winkler medium subjected to a concentrated load or

moment at the origin. It is also noted that the relative flexibility of the bar-half

space system is governed by both the length-radius ratio and moduli ratio of the

bar.
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Table 3'1 Variation of normal displacement of cavity wall for clifferent locations
of ,S/ and discretization of ,S and .g,

(M" M) c:0.25 c:0.15
(5, 10) 0.2120 0.1441
(6, 12) 0.2287 0.1718
(8, r2) 0.2438 0.2184
(8, 16) 0.2455 0.224r
(8, 18) 0.2459 0.2293
10, 20) 0.2490 0.2319

(15, 30) 0.2499 0.2482
(20, 40) 0.2500 0.2497

Analytical 0.2500

Table 3.2 Convergence of cylinder stiffnesses

tions of surface ,S/

for various discretizations and loca_

1: Apsel and Luco

c=0.1 c:0.15(M,,lvI') Kn K*n - Kn^ K, I\¡ K^h : Kh* K^(16, 8) 9.46 -2.87 13.48 9.49 -2.83 13.59

13J5
(24, L2) 9.51 -2.79 13.80 9.48 -2.81(29,14) 9.52 -2.78 13.88 9.51 -2.77 13.85(32,20) 9.52 -¿.tõ 13.93

13sa
9.51 -2.77 13.92Case 1 9.52 -¿,tÐ

(1e87)



Table 3.3: Axial and horizontal stiffness of a rigid cylinder embedded in trans-
versely isotropic elastic half space

Table 3.4: Rocking and coupled stiffness of a rigid cylinder embedded in trans-
versely isotropic elastic half space

Ku I{n
hl" lce Clay I Clay II Isotropic Ice Clay I Cìay II Isotropic
0.5 9.30 7.74 6.77 7.10 8.59 10.00 10.32 7.50

1.0 r0.27 9.03 8.06 8.35 10.93 12.90 12.90 9.52
2.0 12.28 10.97 10.00 r0.32 14.80 18.06 18.06 12.87
4.0 16.16 14.84 i3.87 13.92 27.20 22.58 22.90 17.50

I{* Kn*
hl" Ice Clay I Clay II Isotropic Ice CIay I Clay II Isotropic
0.5 9.37 8.06 7.74 7.56 0.93 r.29 0.97 0.73
1.0 16.40 16.45 15.81 13.93 3.31 3.87 3.87 2.75
2.0 42.08 46.77 46.13 36.37 10.59 12.58 12.58 9.06
4.0 160.28 178.39 179.35 i 31 .04 33.65 44.79 44.r9 25.76
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Figure 3.1 Domains and surfaces related to boundary value problems

Figure 3.2 Equivalent domain considered in the indirect boundary integral method
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Chapt er 4

2-D ELASTODYNAMIC GREEN'S FUNCTIONS

4.1. GENERAL

In this chapter, explicit analytical solutions for displacement and stress

Green's functions of a homogeneous orthotropic elastic half-plane are present-

ed. Fourier integral transforms and Laplace transforms are employed to solve

the governing equations corresponding to time-harmonic and transient problems.

General solutions for displacements and stresses are presented. Thereafter so-

lutions for displacement and stress Green's functions corresponding to a set of

time-harmonic and transient internal vertical and horizontal loadings and tran-

sient displacement discontinuities are derived explicitly. Selected numerical re-

sults for displacements and stresses are also presented to portray the influence

of various parameters on the response. The availability of an exact analytical

solution for elastodynamic Green's functions and an accurate numerical proce-

dure for its evaluation enables the solution of more complicated problems related

to dynamic soil-structure interaction, elastic wave scattering, fracture mechanics

etc. by using the boundary integral equation method and other techniques as

demonstrated in Chapter 6.

4.2 GOVERNTNG EQUATTONS

Consider a homogeneous orthotropic elastic medium with Cartesian coordi-

nate system (z,y,z) defrned as shown in Fig 4.1. The stress-strain relationship

of a homogeneous orthotropic elastic material can be expressed as (Lekhnitskii

1e63)

Cra : CII€", i ctZegy * ctS€r,
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6gg : CIz€ra I cZZegE I C2J€zz

ozz : ctT€xx I czsess i cSS€r,

axg 2cg5€",

atz :2c44€a2

og" :2c66€Ez

(4.1ó)

(a.7c)

(4.rd)

@.7e)

(4lf)

where cty¡c72¡ctytc22tc2s¡cgyrc44,,cs1 and c66 are material constants. It is as-

sumed that the deformations are plane strain in the rz plane. Therefore

€yg: €g": eøy:0 and c72¡c22¡c2s¡cs5 and c66 do not appear in subsequent

manipulations. It is noted that constitutive equations for plane strain problems

corresponding to orthotropic materials are identical to those corresponding to a

transversely isotropic material with ry plane as the plane of isotropy feqn (2.1)].

The equations of motion in the absence of body forces can be expressed in

terms of displacements ur(r,,z,t) and u"(r,z,t) as

^k + c44#* (",, + "44)k : o#
,^k + "ß#* (",, + "44)k : p#

where p is the mass density of the orhtotropic medium.

4.3 TIME-HARMONIC GENERAL SOLUTIONS

@.2a)

(4.2b)

It is assumed that the motion is time-harmonic of the form ei-t, where

i: J4 and ø is the circular frequency. An uncoupled version of eqns @.2ø)

and @.2b) can be written as

Lur(r, z) :0, Lu"(r, z) :0 (4.3)

where L is a linear differential operator defined by

t : p# * "# + 1#a",+ (1 + p)6'#+ (1 + o)d'S + 6n (4.4)
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In two-dimensional elastodynamic problems related to unbounded domains

it is natural to introduce Fourier integral transforms (Sneddon 1951) with respect

to the u-coordinate defined as

:.. 1 ro
f (À,,) : È J_*r@,2)e-i^, 

dr @.6a)

and the inverse formula is defined by

where a,, þ and 1 are defined in eqn (2.5) and

6, : pt_
ca¿

-L* I:ít¡ei6e,d,ç;

+- l:õ¡¡ei6c'd'ç;

(4.5)

(+.6b)

@.ea)

The application of Fourier integral transforms to eqn (4.3) results in

La,çÀ, z) : o, La,çÀ, z) : o (4.7)

where ú, and ú", denole Fourier transforms of u" and u, and

L: þÀn *'# --y^2# - G+ p)^26,+(r -ta)62#*n (4.8)

The ordinary differential equations for ir,, andú,, given by eqn (4.7) can be

solved analytically and the following general solutions are obtained for displace-

ments and stresses

ul:

otj :

I:r.¡z
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where õrr, ãr" and õ zz are the Fourier transforms of. orr) orz arrd o zz tespectively,

and

í1,

ú.,

õ,,

õr"

õt"

: øtAe-6Êtz - æ18¿6tr" ¡ ø2Ce-6€r' - ø2De!Êz'

- Ae-6Ër" + B"urt" + C"-aezz ¡ ps6Ëzz

(a.10ø)

(4.10b)

(4.11¿,)

@.71c)

(4.71d)

@.13a)

(4.13b)

: c¿+6(TtAe-6€'" - rrB"ur'" + nz}e-6Êr" - TzDe6Êr"¡ (4.10c)

: cq+6(r,lsAe-6Êt z I ryBeïÊr" I rl+C e-6c22 + \+De6€r"¡ (4.10d)

: c446(rl5Ae-6Êr" - \sBe6Ê', + rlaC"-6ëz' - TaDe6Er"¡ (a.10e)

where AG), B((),C(O and D(() are arbitrary functions and a normalised Fourier

transform parameter ( defined by ( : )/ô is used in eqns (4.9)-(4.10) instead of

À. In addition,

1 _. .ô.r 7 ..,r: à[(r-r +")t?+P(t-(')]; n2: à[(z-t +")€3+PG-(')] (a.11ø)

,r: frt('€? 
+1)+(rc- 1X'l i rt+: 

frl@€|+1)+(rc- 
1X'l

1

ns : Ì;[(rc - r)(r - .^r) - ,t?h Tan(r

@7:a(?+t-e2
ioûC

In eqns (4.10) and (4.11), {f

1: 
à[(rc - t)(t - e') - "€3]

a€3+t-e2
i"(zC

-wt-

and {f are

t-a)(2+

the roots of the following equation

o't4 - 6e', - lP(-(t+P)e'zr1l:6 (4.12)

0(-7-r,+,/a)+
Therefore,

€,(O:

€r(O :
,/2"

jer-r-a-^/Ð+

- ,)' - a"(þ(n
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a(():0e'-t - Pe'- ('+ t¡ (4.14)



The radicals (1 and (2 are selected such that R"(€r,,€z)>_ 0. With this def-

inition the radiation condition at infinity is satisfied and B(() : ,(() : 0 for a

domain where z --+ æ. It can be shown that in the case of an isotropic materi-

al, a: 0:l12: (I+ 2þòlp, where À and p are Lame constants, and the eqn

(4.13) reduces to (1 : G" - o-t)å and (2 : (( - 1)å, respectively.

4.4 TRANS]ENT GENERAL SOLUTIONS

In the case of an orthotropic elastic medium subjected to transient dynam-

ic loadings, it is convenient to employ Laplace transform to obtain the general

solutions. Laplace transform of function F(ú) is defined by (Sneddon 1951)

F(p): 
lo* 

,{r)"-ptdt

and the inverse formula is defined by

¿ ^d4iæF(t): + Jr_,* 
F(p)eetdp

where p is the transform parameter defined as

(a.15a)

(4.15b)

p:d+ig (4.16)

and the line p : d is to the right of ali singularities of -¡;'(e).

The application of Laplace transforms to the equations of motion correspond-

ing to a medium which is at rest for ú ( 0 and subsequent manipulations result

in the following uncoupled form of the eqn (4.2).

L"ur(r, z,p) : 0, L"u"(r,, z,p) : 0 (4.17)

where u, arrdu, are the Laplace transforms of horizontal and vertical displace-

ments and .L* is a linear differential operator defined by

t.:p#*"#+1#;",-(1 + ø)u,fi-(1 + o)t,#+tn (4.18)



t

p' : pl: p, 1,9,

The application of Fourier integral transforms to eqn (4.rT) results in

La,(À, z,lr) :0, La"çÀ, z, p) :0 (4.20)

where ü" and tr" are the Fourier transforms of u" and z, and

L: BÀ4 *"# -^t^2# -e+ 0)À2u, - G, o)t"r# * r^ (4.2r)

(4.1e)

The ordinary differential equations for ú,, and. ú" given by eqn (4.20) can be

solved analytically and the following general solutions are obtained for displace-

ments and stresses

u,: + [o*o* [* r,"o^,+,ettd,^d,p; I: x¡zt/8rs J¿-¿* J--

ori # l,'_:: ¡l*a,i",^,+,et"td,Àd,tt; 
r,i : r¡z

@.22a)

(4.22b)

(4.23b)

(a.23c)

(4.24)

where ã"rrõrrandõ", aretheLaplace-Fouriertransformsofstresses orr,ar"a1d,
ozz respectively, and the expressions for û¿ and ã¿¡(i,j : *,2) arc identical to
those given by eqn (4.10) for the time-harmonic case with the following definition
of parameters 4¿(i : I,2,...,6), @r¡@4 {1 and {2.

7 ,, r-e ^, n .r.. 1n': à[(z-t +")€?-þ0"+À')]; nr: àl(r-r +")ü-þ0,,r+Àr)l (4.2sa)

,, : *¡çaEl+ u\+(o-1)À'l;
_1

,tu : 
;rl{.'" - 

7)(p'+ )') + rt?l;

ot?-p'-À'

,n : *¡ç.,¿l + u'z)+ (rc - 1)À21

_1
,Ìu: 

ål("-r)(p, +Àr) +"€31

"€3-p2-^'' irc(2À
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In addition, (f and (l are the roots of the following equation

dË4 - (zÀ'+ t' + op')€2 +lTs4 t (p' + þp\\' * t"nl:0

in which

0\2 ¡ lr'Itp'+Jo¡i

(4.25)

$.26a)

(4.26b)

€r(À):

(z(.r¡ :
t/2"

0\' + 1"2 l ot2 - JÐt
v¿a

and

Õ(O : (zÀ' + tt' + op')2 - +oçBsn + þ\' tt' + À' p' + t 
n) (4.27)

The radicals (1 and (2 are selected such that R"(tt, €r) > 0. Again with this

definition the radiation condition at infinity is satisfied, and B(À) : D(À) : 0 for

a domain where z --+ æ. It can be shown that in the case of an isotropic material

eqn (4.26) reduces io (t - (À'+ p'1") and (2: (À'+ p2) where a:2(l-")l
(7 - 2u) and u is the Poisson's ratio.

4.5 T]ME-HARMONIC GREEN'S FUNCTIONS

Consider an orthotropic elastic half plane region subjected to buried time-

harmonic loadings in the vertical z- andhorizontal z-directions as shown in Figure

4.1. The loading is assumed to be distributed over a strip of width 2ø located at a

depth z' below the free surface. The loading is uniform in the y-direction so that

the resulting deformations are of plane strain type. The boundary-value problem

associated with the internally loaded half plane can be solved by defining a fic-

titious horizontal plane at z : zt arrd considering a two-domain boundary-value

problem (Fig  .i). The domain 'f is defined bV l"l ( oo,0 1 z 1 zt and for the

domain '2',1*l ( oo, and z' 1 z { oo. The general solution for displacements and
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stresses of each domain is given by eqn (4.9) together with (4.10) with each arbi-

trary function incorporated with a subscripL' j',, (j : !,2) to denote the domain

number. It is evident that Br(e) -- Dr(Ò: 0 to satisfy radiation condition at

infinity. The boundary-value problem corresponding to the loaded half plane can

be described by

In eqn (4.28), H(") denotes the unit step function. The intensity of distributed

load acting in the i-direction over a strip of width 2ø is denoted by Pt(i: t,z).

The solution of eqn (4.28) with the aid of general solutions given by eqns (4.9)

and (4.10) results in the solutions for arbitrary coefficients corresponding to the

two domains.

It is convenient to present solutions corresponding to horizontal and vertical

loadings separately. Let G¿¡(r,210,2') denote the displacement in the i-direction

(i: r,z) at the point (r,") due to a symmetrically distribuied load p¡ acting in

ihe j-direction (j : r,z) over a strip of width 2a Located at the depth z' (Fig

4.1) and oaj(r,z;0,2t) denote the stress component o¿ (i,l: r,z) al the point

(r,,") due to the same loading configuration. The following analytical solutions

are obtained for G¿j(*,2;0,2') and o¡¡(r,210,2') from the analysis.

oLt) @,0) : o, i : r¡ z

ult) @, r') - "l') (r, z') - o1 i : r¡ z

"Ll)@,"') - oL')(r,z') - p¿(r)l[(æ * ") - H(r - a)1, i: r¡Z

G¿i(*, z;0, z') : * lo* "r,or, 
i, i

o¿ti(r, z;0,, z') : + lr* oît¡d], i,l, i

@.28a)

(4.28b)

@.28c)

@.2ea)

: t¡ z (+.29b)

where

_ã,
Gi,: ffi{ntet I gtez I gzes - !ze+ - gtes - gzea) cos(ó(r)

oÐ

(4.30ø)



GI,:

o"rr:

arr, :

u zzz -

vzz-

- TÍZ

ff:

*î:

in which

and

ñ,,
ffi(-"t I Ie2 - ês - I"n + e5 + e6) sin(á(z)

-ñ, ,

ffi(nret I Ttez * nz7 - \ze+ - \tes - Tzea) sin(ó(z)

ñ,,
ffi?ntet i ljsez - T+es - Inn"n * Tses I|+ea) cos(ó(z)

(4.30ó)

(a.31ø)

(4.31ó)

-Pr,
ffi(nr"t I nsez i naes - \ae+ - \ses - Taea) sin(6(z) (a.31c)

ñ",
f¿ktøret I Igtszez i stgzes - IgrszeE - g?es - g|"e)sin(á(r) (+.32a)

D.

f¿@r"t - gzez I gtes * gte+ - gtes - gzee) cos(á(z) (4.32b)

hrrret I Iftez * fzes - Ifze¿ - Ttgtes - Tzsze6)cos(6(z) (a.33ø)

fufnu - fsez I f+es * f¿e+ - Tsgtes - T+ryzee)sin(á(z) (4.33b)

ffi{fr"r I Ifuez * faes - Ifae+ - Tsgtes - nlszeo)cos(á(z) (a.33c)

, ("' -')t --' l-t -llz - .l

l2(1- ")<' - t( + ol(1 - ."') - aû€z
I{(€z - ã)

rce ã(z

"(€?-ËÐ(Ë,-6')
"'e'€t€, 

;

o'(€?-tÐGr-€')

(4.34)

K-

Q:

E_ G-

(4.35)

@.36a)

(4.36ó)

(a37a)

(4.37b)

@37c)

(a.38ø)

(a.38c)

,r2e2(7 - p(')
4s : ins; n+: in+; ft : Ttgz, Íz : nzgt; fs :1sgz

Í+ : T+gt; fs : rysg2; fa : Tagti 9t : iøti 9z - i-z

ht : nsna I \Ensi hz :2\sTs; hs :2ll+rla

et: ht"-6$(z'¡z)i ez: Qs-6ëtl"'-'1 1 es: ht"-6(2(z'¡z)

ea : Qe-6€zlz'-zli es - hse-6(€,rz*Êzz') i ea - h2e,-6(e,t"'+Ê2")

In eqns (4.30)-(4.33), F" ar'd þ, are related to the Fourier integral transform
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of the applied loading.

In the case

point (0,,"'), ñ¿

It is noted that if p¿(r)

- ,,\ sin(á(a)
Pt((/: * øo;

: Qo, (i.e., uniform

;_^ -L 
- 

J,) þ

load) then,

P¡ acting through the

p¿(o 1,: r)z (4.40)

Note that the solutions corresponding to nonuniformly distributed loading can be

derived through the integration of point load solutions.

of a concentrated line load of magnitude

is given by

(4.3e)

(4.43)

P6

2'

The solution corresponding to a load acting inside an elastic full plane can be

derived from eqns (4.29) together with (4.30)-(4.33) through a limit procedure.

For example, the solutions for an orthotropic elastic full plane subjected to a

concentrated line load Po in the z-direction and applied at the coordinate origin

can be expressed as in eqn (4.29) with the following solutions for Gi¡ and ol,r.

Gi",(*, z;0,0) : #lgr"I'6¡.," - gr"'' u¡."\cos(6(r)d( 
@.ara)

Gî,(r,z;0,,0) : #leI'6/.,2 - "I'6(zzlsin(ó(r)d( (4.41b)

oî,,(r, z;0,0) : -#lnr"I'6c" - ,lr"'' oc,'] sin(6(r)d( @.a2ø)

oî""(*, z;0,0) : #lir"I' 
,,c,,' - nn"'' 

uc,lcos(6(r)d( (4.42b)

oî",(r, z; 0,0) : -#lrÌr"I' /,¡.,' - rlu"'' u¡.,'l sin(6(r)d.( @.azc)

where gt¡gz,\t,\z,ns,n+,rj5 and Ta are given in eqns (4.37) and (4.23) and

Ttþ'-vl
TT 'G? 

_ €,,)
Þ

fí (5

67
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4.6 TRANSIENT GREEN'S FUNCTIONS

Let G¿¡(r,2,t10,2/) denote the displacement in the i-direction (i: r,z) at,

the point (r,r) at the iime instant't'due to a symmetrically distributed load

p¡ wiih a time history -F(l) acting in the j-direction (j: *,2) over a strip of

widih 2ø located at a depth z'(Fig 4.1) and oaj(r,z,t;0,,2') denote the stress

componenl o¿ (l : r, z) at the point (*, ,) at the time instant 'ú' due to the same

loading configuration. The analytical solutions are obtained for G¿j(r,,z,t;0,2t)

arnd o¡¡(r,2,t10.,2/) following procedures similar to that used in Section 4.5 for

time-harmonic problems.

G¿¡(,,2,t;0,,,) : #^ lr'_:: F l,* Gi,etutdÀd¡.t i,i : r,z

o¿ti(r,2,t10,r,): # lr'_:: F 
lr* 

of,,etutd.),d.¡t i,t,i : r,z

o2 À2 €t€z
d€?-^2-þ¿2

oÀ€t

,l/1_
l 9-

@.a5a)

(4.45b)

(4.46)

@.aTa)

(4.47b)

(4.4s)

as given in

The solutions for Gi¡ and o!r, are identical to Gi¡ and ol4 given by eqns (4.30)-

(4.33) with the replacement of parameter ó( bV ), á€o bV (¿(i :7,2) which is

defined by eqn (4.26) and the following definitions of parameters -I{, Q,E,G,,gt
and 92 appearing in eqns (4.30)-(4.33).

K : [2(rc - 1)À' * tÀ' + op'10"'+ À') i a*Ëzt
n - 

K(€'- €')
Y - rcÀãtz

"(€?-€Ð((,-(') o'((? - €Ð(€, - (' )E-

97:

orÀr0r, _ p^r)
.,€3-^2-p2

Ot:
*À(z

In addition, the other related parameters rlt,\z,Tst,rl+¡\s

eqns (4.23). The Laplace transform F of F(t) is given by

F :7; for an impulse load

P :|lu for a step load
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@.aea)
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The solutions given by eqns (4.45) are the required kernei functions in the

development of boundary element methods for transient problems involving an

orthotropic elastic half-plane. The transient Green's functions of an orthotropic

fuil plane can be obtained from the time-harmonic full space Green's functions

[ie., eqns (4.29), (4.47) ar'd @.a2)l with appropriate replacements of parameters

as in the case of half plane Green's functions.

4.7 FUNDAMENTAL SOLUTIONS FOR TRANSIENT DISPLACEMENT

JUI\4PS

The boundary-value problems involving transient displacement discontinu-

ities (jumps) inside an orthotropic half plane are investigated. Crouch and S-

tarfield (1983) have shown that fundamental solutions for displacement jumps

can be used to develop boundary element methods to analyse crack problems.

Consider a half space I/ and an internal surface ^9 defined as in Fig 4.2 across

which a displacement discontinuity may exists. Let ,9+ and ,9- are opposite faces

of the fault. A boundary-value problem similar to the applied internal loading

problem considered in Sections 4.5 and 4.6 can be formulated for the displace-

ment discontinuity problem by realizing the fact that the displacement is now

discontinuious whereas the traction is continuious over the fictitious interface at

z : z' . In this study the displacement jumps are assumed to be located at a

depth z' below the free surface and over a strip of width 2a. The boundary-value

problem corresponding to an internal displacement jump (discontinuity) can be

expressed as

"Ll) @,0, f) : o, i : r¡ z (4.50ø)

ult)@,2',t) - ul')@,2',t): ul(r)[H(n + o) - H(* - ø)]F(t); i: r,z @.50b)

"Ll) @, z' ,t) - "L1) @, z' ,t) : g, i : r¡ z (4.50c)



where u0, ar,d u,0" are the absolute values of the displacement jump in ¿- and

z-directions, respectively. In addition, .I/(r) denotes the unit step function and

F(l) is the time history of the displacement jumps which can be usually treated

as a step function H(t) to depict the spontaneous behaviour of a displacement

discontinuty such as the slip across a rupturing fauit surface. The soiutions to the

boundary-value problems can be obtained by applying Laplace-Fourier transform

in eqn (4.50) and substituting the two-dimensional transient general solutions

given by eqn (4.22) into (4.50).

Let, G¿¡(r,2,t10,e') denote the displacement in the i-direction (i: r,z) at

the point (*, 
") 

at the time instant 'ú' due to a symmetrically distributed displace-

ment j.t*p in the j-direction (j : ,,2) over a strip of width 2a (Fig 4.1) located

at a depth z' and o¿tj(x,2,t10,2') denotes the stress component o¿¡ (l: r,z) at

the point (*,") at the time instant'f'due to the same dynamic excitation. The

analytical solutions for displacements G¿j(*,2,\ 0,2') and stresses o¿¡¡(r,z,t;

0,2') can be expressed in the forms of eqns (4.45), respectiveiy with Gi¡ and oi,t

defined by

;0
GL : 

ffiQtTaet 
I Igtna", r gznsq - Igznr"n - gúlses - gz\aea) cos(Àr{4.514)

-;0GL : ffi(ru", - Ilaez I nses I rtse+ - \ses - naee)sin(Àz) (4.51b)

* -cE+úot ,õ' - 

-11t1êy 

¡ lytez l''/nes - Iltze+- Tt\ses -\z7aea)sin(Àu) @.52a)"îrr gH \/r

* c44ú0, ,oI", : 
öijrrer -'lzrez *'Yzzes I'Yzze+ - Ts1ses - \+\aea)cos(Àz) (4.52b)

* -c++ú0, ,oL, : tffi(rte1 | I1se2 * ''/ses - Iit"n - \s\ses - TaTaea) sin(Àz) (a.52c)

;0
GI" : 

ffiGrnn"r 
i gfl+ez I gznses - gzrtse+ - 7t\ses - gzj+ea)sin(Àø) (a.53ø)

;0
GL : 

ffi(nn", - 
14n", I ises * Ir¡aes - rßes - n¿ea) cos(Àr) (4.53b)

* c44ú0' ' tt *.y+tez l.y+zes TzT+ea) cos(Àz) @.?aa)oi,,, : 
6l'Ynet 

* ''l+tez l'Y+zes - ''/+zeE - ryTses -
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orr":
-oc¿+u,

ffi(ru"t - 11r", l'yses * I.,/se+ - TsTses - T+T+ee) sin(Àz)

- :-.o

'Ytt : TtTa¡ 7r2 : n2T5; 'lzt : Ts\ai 'Yzz : Ta\s

^ß : n5n6i ''/+t : \tT+t 'l+z : \z\si 'ls : ns\+

(4.54b)

@.1ac)1,, : *Orrq l 'tzzez * 'yzt es -'Yzte+ - TsTses - nan+ea) cos(Àz)fr-
" zzz gE

where zl and tf" are the Fourier transforms of zl(z)[H(r t a) - H(r - a)] and

uj"(n)lU(r + ¿) - H(" - ø)], respectively. Note that 9t¡92¡Tt¡Tz¡r'ls,n+,Ts¡\e ¡

êtt€zt €st€4¡a5¡€6¡I,Q and,t' are defined by eqns (4.45), (4.23), (4.38), (4.34),

(a.a7a) and (4.49) together with the replacement of 6€i(i:1,2) by (¿ which is

defined in eqn (4.26). In addition,

H:grrlu-gz\sl E:rtz-4+ (4.55)

(a.56ø)

(4.56b)

Note that a solution corresponding to an arbitrary distribution of 
"0"(r) 

and u!(r)

can be obtained by the superposition of the solutions given above and shifting of

the origin of r-axis.

4.8 NUMERICAL SOLUTIONS FOR TIME_HARN4ONIC PROBLEMS

4.8.1 Numerical Scheme

The solutions for displacements and stresses given by eqn (4.29) appear in

terms of infinite integrals with a complex-valued integrand. As in the case of an

isotropic medium, these integrals cannot be evaluated analytically for both sur-

face and interior loadings. However, in the case of a surface loading the solutions

may be reduced to a form containing a set of finite integrals by performing an inte-

gration along a closed contour in the complex-plane similar to that used by Lamb

(1904). Since our objective is to apply these Green's functions to solve complex

problems related to anisotropic media through a numerical solution based on the
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boundary integral equation method, it is natural to develop accurate numerical

integration schemes to evaiuate both time-harmonic and transient Green's func-

tions. The numerical evaluation of eqn (4.29) requires careful consideration due

to the presence of singularities within the range of integration and the oscillatory

nature of the integrand due to the trigonometric terms. The oscillatory nature

of the integrand can be accounted by using Filon's integration scheme (Tranter

1956). The singularities of the integrals of eqn (4.29) also need to be examined

prior to the establishment of a numerical integration procedure.

An understanding of the singularities of the integrands of eqn (4.29) together

with (4.30)-(4.33) can be obtained by treating ( as a complex-variable. It is noted

that due to the presence of radicals (1 and 6z the Riemann surface of the integrand

of each integral has four sheets. However, the condition Ãe((1,6r) 2 0 which is

required to satisfy regularity conditions at infinity implies that only the sheet

in which radicals {1 and (2 have positive real parts everywhere is relevant. The

important singularities of the integrand are the branch points of the radicals (1

and (2 as defined by eqn (4.13) and poies of the function I( defined by eqn (4.35).

The branch points of (1 and (2 are given by

€r :0, {z :0 (4.57)

The substitution of eqns (4.57) in eqn (4.13) leads to the following branch points.

ep:L7lJþ, (":f1 (4.58)

For an isotropic solid, the eqn (4.5S) red.uces to (" - t1 and eo : LJ-rtl()ç--Zp).

It can be shown (Stoneley 1949) that in a two-dimensional orthotropic material

there are two kinds of waves. The wave numbers of these rvaves are equal to 6 lt/p
and ô. The motion associated with these'waves is neither purely dilatational nor

purely distortional. However, noting that branch points (o and (" in an isotropic

case correspond to purely dilatational and distortional waves (Lamb 1904), the
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waves corresponding to these branch points in an anisotropic case are called quasi-

dilatational and quasi-distortional.

The denominator of the integrand of the integrals given by eqns (4.29)-(4.33)

yields poles and their locations are given by K in eqn (4.35). The eqn (4.8b)

reduces to the classical Rayleigh equation (Lamb 1904) in the case of an isotropic

solid. It is also noted that through appropriate manipulation the eqn (4.35) can be

transformed into a form identical to the eqn (30) of the paper by Stoneley (19a9)

where it is shown that the eqn (4.35) has only two roots f(¿ along the real axis.

These roots cannot be determined explicitly due to the complex nature of eqn

(4.35) and an appropriate numerical procedure is required. In the present stud.y,

four different materials, namely, an isotropic material, cadmium, ice, and a layered

soil are considered. The choice of the above set of anisotropic materials among

several others is based on their relevance to applications related to earthquake

engineering, dynamics of foundation and composite materials. Table 1.1 presents

the values of material constants cn,, ctz,cts, ðss and caa where c¿¡ : c¿¡ f caa. Table

4.1 presents the values of (¡¡ and branch points (", (, for each of the four materials.

Note that the location of singularities is independent of the frequency of excitation

¿¿ since the Fourier transform parameter ( is normalised with respect to ó.

The integrals in eqns (4.29)-(4.33) can be evaluated accurately by using a

direct numerical integration technique provided the positive real axis is free from

any singularities . It is noted from Table 4.1 that this is not the case for the

four materials under consideration when there is no attenuation in materials.

However the introduction of a small attenuation (i,e., c44 :1 + 0.01i) resuits in

complex values for a, B and 7 and singularities are shifted arvay from the real axis.

This technique which is consistent with the reality that all physical materials

display some amount of attenuation (damping) has been used successfully to

numerically evaluate infinite integrals related to Green's functions of a layered

isotropic medium (Apsel and Luco 1983). Alternatively, it is possible to deviate
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the integration contour initially into the first quadrant of the complex plane

to avoid the singularities on the real axis and then fall back to an integration

along the real axis. The deviated portion of the contour should be selected in

light of the location of singularities of the integrand as given in Table 4.1. In

the present study, both procedures mentioned above are used to evaluate eqn

(4.29) and obtained numerical solutions agree with each other very closely. All

numerical results presented in the ensuing section is based on the technique where

the material is assumed to possess negligible attenuation.

4.8.2 Numerical Solutions

The dynamic response of elastic half plane regions of different materials is

considered in this section. The loading is assumed to be uniformly distributed

over a width of dimension'2a' with intensity qs, and acting at a depth zt f a : t.0.

The numerical results are presented in terms of normalised displacement and

stress Green's functions G¿j: G¿¡caaf (aqo) and o¿jt : oijklqo respectively. In

addition, a nondimensional frequency ø¡ defined â,s os :cr6:au(pf ca)112 ig

used in the present study.

Figure 4.3 shows the variation of G"" and G "" along the z axis for the four

different materials at frequency øo:1.0. The real part of G* and G"" show a

kink at z'f a:1.0 which is consistent with the fact that the loading is applied

at this level. The influence of material anisotropy is clearly noted in the case

of imaginary part of. G", and for both real and imaginary part of. G,". Figure

4.4 shows the variation of G,, and G", at the surface level (z:0) with the

horizontal distance r. It is noted that G* shows strong dependence on the degree

of anisotropy at the surface level when compared to its behaviour along the z-axis.

In the case of G ", Lhe influence of the anisotropy is found to be comparatively

lesser. This is in contrast to the strong influence observed in Fig 4.3 for G * along

the z-axis. It is useful to relate the influence of material anisotropy observed in
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Figs 4.3 alnd 4.4 to the values of. c¿¡ given in Table 1.1. The solutionsfor G",

indicate that the highest influence of anisotropy is observed in solutions for ice

and followed by layered soil, the isotropy and cadmium. Comparison of values

of. c¿¡ in Table 1.1 in light of the solutions in Figs 4.3 and 4.4 indicates that in

the case of. G * the influence of material anisotropy is mainly governed by the

value of õss. Solutions for G,, in Figs 4.3 and 4.4 show an influence which is

different to that observed for G"". For example, solutions for cadmium show

the highest influence of anisotropy and G* of layered soil and ice are nearly

equal. Comparison of the above features of the solution and c¿¡ values in Table

1.1 indicate that the influence of anisotropy on G,, is mainly controlled by the

value of õ11.

Figure 4.5 shows the variation of normalised stress Green's functions ø"r,

and orr" along the z-axis at ø6 : 1.0. The real part of. or", profile shows a neg-

ligible influence of material anisotropy and a discontinuity equal to a unit value

at z'f a:1.0 due to the applied loading. The influence of material anisotropy

is clearly noted in the solutions for both real and imaginary paú, of. or"r. In

the case of. or,r, the solutions for cadmium and ice show the highest influence

of anisotropy. The general shape of stress profrles is somewhat similar for all

four materials. Figures 4.6 and 4.7 show the influence of normalised frequency

ao (ao: 0.5 and 3.0) on displacement and stress profiles along the z-axis respec-

tively. The materials considered are isotropic, Iayered soil and cadmium. These

solutions together with that given in Figs 4'3-4'5 for ø6:l'Q, indicate a complicat-

ed dependence of response on the frequency. At low frequencies (øo - 0.5,1.0),

both disptacement and stress profiles show a gradual variation with the depth.

However at the high frequency (ø¡:3.0), the solutions for Gr,or* and or*

show considerable waviness with the depth. In general the real part of the dis-

piacement is found to decrease with increasing frequency whereas the imaginary

part shows an increase in magnitude with increasing ø¡. It is also noted that the
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general trend of the variation of solutions with the frequency is somewhat similar

for all three materials within the frequency range øo : 0.0 - 3.0.

4.9 NUMERICAL SOLUTIONS FOR TRANSIENT PROBLEMS

4.9.1 Numerical Scheme

The evaluation of explicit analytical solutions for transient displacements

and stresses presented in Sections 4.6 and 4.7 is considered here. It is noted that

all solutions appear in terms of an infinite integral with respect to the Laplace

transform parameter 'p' lor p, see eqn (4.19)] and a semi-infinite integral with

respect to the Fourier integral transfer parameter À. Due to the presence of double

integrals involving highly complex integrands the evaluation of displacements and

stresses requires special consideration. One of the standard methods of dealing

with the infinite integrals encountered in transient wave propagation problems

is to apply the method proposed by Cagniard (1962). This method involves a

complicated transformation of the variables of integration. Mitra (1963) applied

Cagniard's technique to obtain the transient response due to an impulsive disc of

pressure applied to the surface of an isotropic elastic half space. Another method

(Eason 1966) to evaluate the Laplace inversion integral is to take the integral

around a suitable contour in the complex-p plane and to apply the residue theorem

with due consideration given to branch points and poles of the integrand. The

review of existing literature reveals that Cagniard's method has been applied to

evaluate the response due to an impulsive surface load on a transversely isotropic

elastic half plane (Kraut 1962, Payton 1983) whereas a direct contour integration

method similar to that used by Eason (1966) has not been applied to evaluate the

transient response of transversely isotropic materials. As stated by Payton (1983)

the application of analytical procedures to evaluate the integrals corresponding to

the response at an arbitrary point is very complicated even in the case of surface

loading.
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The application of analytical procedures become almost impossible when the

excitation is also inside the medium as in the case of the solutions derived in Sec-

tions 4.6 ar'd 4.7. In addition the analytical inversion requires certain restrictions

on parameters a, B and 7. It is noted from the transient solutions presented by

Eason (1966) for an isotropic medium that even after the anaiytical inversion of

Laplace transform, the solution still invoives semi-infinite integrals with respect

to Fourier transform and Hankel transform parameters for 2-D and 3-D problems,

respectively. These semi-infinite integrals are somewhat similar to the integrals

associated with solutions corresponding to time-harmonic vibration of an elastic

half-plane and cannot be evaluated analytically to determine the response at an

arbitrary point due to an internal loading. However, asymptotic solutions valid

for far-field observation points can be obtained in some cases. In the application

of the boundary integral equation method to analyse complicated transient wave

propagation problems it is required to compute displacements and stresses at all

boundary node points due to transient dynamic excitations applied at each and

every boundary node point. Therefore a substantial amount of response calcula-

tion are required at near-field points. In view of the complexity of the integrands

of the integrals associated with the solutions presented in Sections 4.6 and 4.7

and the formidable difficulties involved in the application of analytical procedures

to evaluate these integrals it is author's opinion that the use of an accurate nu-

merical quadrature technique would be the most efficient way to compute the

transient solutions. This is further validated by the fact that the final solution to

boundary integral equation also has to be obtained numerically.

In the development of a numerical quadrature method to evaluate the tran-

sient response it is necessary to consider integrals of the following form for 2-D

problems

l,'_:: l,-I(x, z,t) : X(2, À, p)"'r' {cos(Àz)or sin(Àz)}dÀd¡r (4.5e)



The review of literature indicates that several methods are currently avail-

able for numerical inversion of Laplace transform. Piessens (1975) and Davies

and Martin (1979) presented a review of numerical Laplace inversion techniques.

It should be noted that numerical inversion of Laplace transform solutions related

to transient wave propagation problems requires special attention when compared

to the numerical Laplace inversion of solutions encountered in heat transfer, d-

iffusion and consolidation problems. Based on a study of different numerical

algorithms available in the literature it is found that the numerical algorithm

presented by Hosono (1979) provides accurate numerical solutions for transient

v/ave propagation problems.

The numerical algorithm proposed by Hosono (1g7g) is based on an approx-

imation of the exponential function and Euler transformation. It determines the

transient solution /(t) in terms of (l/ + M) values of the Laplace transform f(¡;)
sampled at (,n/ + M) complex values of ¡-r. The inversion formula is given by

r(t):#'Ï r.or)+#rl
n:7

AM,M :7, AM,*-, : AM,r, I

Mt
m:o

Aru,*f w+r-0")l

(M + 7)l

M!(M -m*t)l

(4.60)

where

r.:lfa-ti(n-*12)]

f "0ò 
: (-I)" Irn[f (pò]

(a.67a)

(4.61ó)

(a.61c)

In addition, the values of .ly', M and ø in eqns (4.60) and (4.61ó) are determined

on the basis of a convergence study.

The application of eqn (4.60) to evaluate the integrals given by eqn (4.59)

involves the numerical evaluation of semi-infinite integrais with respect to À for

(¡/ + M) complex values of ¡r. Since ¡; is complex in eqn (4.59) it is noted that

integrand x(2,À,,p) for 2-D does not have any branch points or poles along the
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real À-axis. Therefore the semi-infinite integral with respect to À can be evaluated

accurately by applying a direct numerical quadrature scheme. Since trigonometric

functions in eqn (4.59) are oscillatory it is necessary to select a sufficiently small

value for the integration interval AÀ. It is found that AÀ : 0.1 is accurate enough

in the present case. In addtion, l/:15 and M:5 in eqn (4.60) are found to yield

converged numerical solutions.

4.9.2 Numerical Results

The accuracy of the numerical algorithm used in the present study to evaluate

transient solutions presented in Sections 4.6 and 4.7 is first investigated in this

section. As mentioned earlier, Mansur (1983) presented transient solutions for

an elastic half plane subjected to a uniform step load of intensity q6 applied over

a surface strip of width 2ø. The loading is uniform in the y-direction resulting

in plane strain deformations. Figure 4.8 presents a comparison of numerical

solutions for normalised vertical displacement G:"(G:,: -#, 
where p is the

shear modulus of the half space) at three points on the z-axis obtained from

the present numerical integration scheme with the results presented by Mansur

(i983). Note that a nondimensional time r defined by, - *{5¡tt, is used in the

numerical study. It is evident from Fig 4.8 that the numerical algorithm used in

the present study results in very accurate numerical solutions.

Isotropic, layered soil, glass/epoxy composite and graphite/epoxy composite

half planes are considered in the numerical study. The related material constants

are given in Table 1.1. Figures 4.10ø and 4.10b show the normalised displacement

Gi,(: ,f;', where 2ø is the width of the load and p6 is the intensity of ihe

load) at three points (r f a :0, 1, 5) on the surface of the half plane due to vertical

loading histories shown in Figs 4.9ø and 4.9b. These loadings are applied at a
depth z'f a:1.0 below the surface of the half plane. It can be seen from the

Fig 4.10 that the degree of anisotropy of the material and the time historv of the
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excitation have a significant influence on the ïesponse. Composite material shows

the lowest displacements whereas the layered soil has the highest displacements.

Displacements increase more rapidly at near-fi.eld points under the rectangular

pulse excitation when compared to displacements due to the triangle pulse. The

peak dispiacements are also higher in the case of the rectangular pulse. The

ascending parts of the response curves indicate the presence of a constant velocity

period at early time where as velocity decreases rapidly over the descending part

of the response.

Figure 4.11 shows the vertical displacement G""(: #) ¿"" to a d.isplace-

ment jrr*p in the vertical direction over a strip of width 2a located at a depth

z' f a : 1.0 below the surface of the half plane. The time history of the displace-

ment jlt-p is shown in Fig 4.9c and the displacement jn-p has the distribution

w(r): w6cos(trrf 2a). The response at near-field indicates the presence of an

initial constant velocity period for all three materials followed by transition to

the static displacements. Both composites are more stiffer than the isotropic ma-

terial. Response at far-field shows the presence of negative displacements at early

time of response histories and rapidly varying velocities. In addition the response

decays rapidly wiih ihe distance.

4.10 CONCLUSIONS

A solution scheme to derive Green's functions for an orthotropic elastic half

plane subjected to buried dynamic loadings is presented. The governing equa-

tions are solved by applying Fourier and Laplace-Fourier integral transforms for

time-harmonic and transient problems, respectively. The analytical general so-

lutions for displacement and stress are then used to solve the boundary-value

problems corresponding to buried time-harmonic loads, buried transient loads

and displacement jumps. The explicit analytical solutions for dynamic Green's

functions of displacement and stress are presented. It is found that Green's func-
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tions appear in terms of complex-valued infinite integrals. Numerical solutions

for displacements and stresses corresponding to time-harmonic excitations are

computed by direct numerical integration of the infinite integrals by introducing

negligible material attenuation. In the case of transient problems, the response

is again evaluated by using an approximate Laplace inversion technique togeth-

er with direct numerical integration of semi-infinite integrals. Comparison with

existing solutions for isotropic materials confirms the accuracy of the numerical

scheme. As in the case of static problems, solutions for displacements and stresses

indicate that the degree of anisotropy of the material significantly influences the

dynamic response. It is found that in the case of displacement Green's functions

G* and G"" lhe influence of material anisotropy is mainly reflected by the val-

ue of c11 and ð33 respectively. The solutions for displacements and stresses also

show a strong dependence on the frequency and time history of the excitations.

The availability of an exact analytical soiution for Green's functions and an accu-

rate numerical procedure for evaluation enabies the soiution for more complicated

problems related to dynamic soil-structure interaction, seismic wave scattering,

composite materials, eúc. by using the boundary integral equation method and

other techniques. The present soiutions can also serve as the basis for estimating

the accuracy of approximate numerical algorithms that could be used to evaluate

the dynamic response of an anisotropic medium. The present solution scheme is

extended to derive Green's functions for three-dimensional elastodynamic prob-

lems in Chapter 5. In addition, the general solutions expressed in eqns (4.9)

and (4.10) are used in Chapter 7 to develop an exact stiffness matrix method to

compute Green's functions of multi-layered orthotropic half spaces.



Table 4.1: Location of Singularities on real (-axis

Ca C, G
Isotropic 1.088 0.577 i.0

Ice 1.043 0.485 1.0

Layered soil 1.051 0.473 1.0

Cadmium 1.052 0.377 1.0
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Figure 4.2 Geometry of considered displacement discontinuity problern
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Chapter 5

3.D ELASTODYNAMIC GREEN'S FUNCTIONS

5.1 GENERAL

This Chapter is concerned with the derivation of three-dimensional dynam-

ic Green's functions of a homogeneous transversely isotropic elastic half space.

Governing equations corresponding to three-dimensional time-harmonic and tran-

sient wave propagation problems are solved by using integral transform tech-

niques. Explicii general solutions for displacements and stresses corresponding to

time-harmonic and transient problems are presented. Thereafter boundary-value

problems corresponding to internal time-harmonic and transient loadings and

transient displacement discontinuities are solved. Explicit analytical solutions for

dynamic Green's functions corresponding to internal loadings and displacement

discontinuities are presented. Numerical evaluation of the Green's functions ex-

pressed in terms of infinite and semi-infinite integrals is also discussed. Selected

numerical results for displacements and stresses due to a buried circular patch

load are presented to portray the effects of anisotropy on the response of the

medium. The fundamental solutions (Green's functions) presented in ihis Chap-

ter can be used to develop solution algorithms based on the boundary integral

equation method for the analysis of a variety of 3-D q/ave propagation problems

involving transversely isotropic materials.

5.2 GOVERNTNG EQUATTONS

In many engineering and geophysical applications involving three-dimensio-

nal domains and loadings it is convenient to adopt a cylindrical coordinate sys-

tem in the analysis. Consider a transversely isotropic elastic half space with a

cylindrical coordinate system (r,0,2) chosen such that the z-axis is parallel to

9i



the material axis of symmetry and normal to the stress free-surface of the half

space as shown in Fig 2.1. Let u,(r,0,2,t),us(r,0,2',t) and u"(r,0,2,t) denote

the displacements in the r-, 0- and z- directions respectively. The equations of

motion of a transversely isotropic elastic half space in the absence of body forces

can be expressed in terms of displacements as

,ô2u, 7 0u,

'-l arz +; u
ur, ctt - c12 7 õ2u, ð2u,
,r)+ Z ,, A0, +ca+ 

Azz

. crr -| c12,7 02u6 7 }ue, ^ ! ôus . , ',0'u, 0'u, t*=Tçffi* *ä)-Zu7ä r("" +c44);#:pil (5'1ø)

cr7-c12,õ2ug \Ôug uot , I ô2ue , õ2ue

2 \ Ar2 
-r; 

A, -71*crtr2 A0, 
-'c++ 

6¿

, crr* "rrr7ô2u, _ 1ôz'r -L)n--_I 
õu, ., \7ô2u" - ^õ'ue_L_t _ 

-

, 2 ,r 0100 r2 ô0 ) , Þv,'Fä *(ttt *,,nn)iffi: offi (5'1ó)

,ð2u" ! 0u" ! ô2ur, õ'r"
c44\ 

ar2 +; u * r, æ, )+ca, azz

.02u. 70u. 7ô2ue, Ô'u,
*("re ¡ "++)l6rA"+ ; U + ; An") 

: n 6rz

Equation (5.1) can be solved (Buchwald 1961) by introducing three potential

functions $,$ and ¡ which are related to the displacements u?^,ze and urbV

(5.1c)

(5.2a)

(5.2b)

(5.2c)

1)r :

'ðz

5.3 TIME-HARMON]C GENERAL SOLUTIONS

Substitution of eqn (5.2) into eqn (5.1) together with the assumption that

motion is time-harmonic with circular frequency ø indicates that the equations

ot

u0:

aó ,74,þ
a, -; a0
7 Aó A1þ

;ao- a,
0y



of motion are satisfied if the potential functions tþ, þ and X are governed by the

follwing differential equations.

where V2 is a differential operator defined in eqn (2.7) and the dimensionless

parameters d, þ, rc,1 and ç are defined as in eqn (2.5). In addition, the parameter

á in eqn (5.3) is defined in eqn (4.5).

Application of the Fourier expansion defined in eqn (2.14) to the potential

functions $,tþ and X and Hankel integral transform in the radial direction as

defined in eqn (2.15) results in the following governing equations

,v'#+@v'.#+62)v2ó:o
.v'#+ (v' * "# + d\þ : o

(sv2+ #.62¡v24::s

tnv 'cY

oo'rxî + 
o"rQî 

- (p^' - 6\õ* : oo,z" d,z'

-o^, õ* + ,# - (À, - 6r)X^ : o

d',tr,- , \' ^e, v

-(çÀ'-6")1þ,":0o,z"

(5.3ø)

(5.3 ó)

(5.3c)

(5.aa)

(5.4b)

(5.ac)

where ,þ*,ó* and !- are the rn-th order Hankel integral transform of the ræth

symmetric Fourier components ,þrnrþ,n and Xrn of. the three potential functions

and À is the Hankel transform parameter. It is noted from the above equations

that rj:* is independent of other two potential functions, whilsL $* and, f* stilt

are coupled in (5.aø) and (5.aå).

The coupled partial differential equations (5.4ø) and (5.4å) can be solved by

assuming

ö* : Pe6€", X,n: Q"uÊ" (5.5)

Substitution of the above expressions into eqns (5.4ø) and (5.4b) yields the follow-

ing coupled homogeneous algebraic equation system to determine the coefficients



P and Q,

where

({'- þe'+1)P+ o€'Q:o

-o(P*(ot'-C'+1)8:o

1-
(Ó*,,,þ*,X*) : I (ó,.,rþ,.,X,.)J,-(6(r)62 (d(

Jo

ö*: QtA*e-6ët' + ØB*eaüz I QzC*e-6Êr' + prD*"6cr'

ú^: E*s-6ê"" * F*¿6Ë""

X* : Arn¿-6Ër" + B^"aet" + C*e-aÊ2" * Drns6€r"

"€?-c'+t dË3 - C'+t

(5.6ø)

(5.6 ó)

where the parameter ( : À16. For a non-trivial solution of P and Q the parameter

( in eqn (5.6) should satisfy the equation (4.72). Therefore the roots (1 and (2

of eqn (5.6) resulting in non-trivial solutions for P and Q can be given by eqns

(4.13a) and (4.13b), respectiveiy.

In view of eqn (5.4c), the solution of. $,- can be expressed as

ú'n : C e6€"

where ( is the root of the following equation

(5.7)

t' - (cC'- 1) : o (5.8)

and this root can be given as

6s:* (5.e)

In view of eqns (5.5)-(5.9) the general solutions for the rnth Fourier harmonic

of the potential functions S,tþ and X can be expressed as

(5.10)

(5.1iø)

(5.11ó)

(5.11c)

KC2

in which

Qt: t Q2:
Ke2

(5.12)



arrd Am,B*,C*,D*,,8*,Frn are arbitrary functions to be determined by suii-

able boundary and continuity conditions. Radicals €;(i : 7,2,3) are selected such

that Ae((¿) > 0. \ /ith this definition the radiation condition at infinity is satisfied

and Brn - D*: Frn:0 for a domain where z --+ æ.

In view of eqns (5.10), (5.11) and (5.2), the general solution for rnth sym-

metric Fourier component of displacements and stresses can be expressed as

rlim: n l, ui,-ed.(,

oii* : n l, oî¡,-Cde ,

i : r,¡0¡ z

i,j : rr0,z

(5.13ø)

(5.13ó)

(5.16ø)

(5.16ô)

Note that u¿^ arrd o¿¡rn in eqn (5.13) denote the rnth symmetric components of

u¿ and ø¿¡ expanded in the form of eqn (2.14). The soiutions for ul* ar'd of¡,n

can be expressed as

uI* : (orA* * a1B* I azC,n I azD* I asE* + (qF*) (5.Laa)

uä,n: -(onÃ* I a+B^ I asC* I asD,n i a6Ú,n + a6fl,n) (b.14¡r)

uI*: -(orÃ,. - atB* i aae * - aeD^) (5.7ac)

oL* : c++(btrÃ* + lrrrB^ * bnC* * fu2D* * brcE* -f bnil*) (5.1bø)

oäe* : c++(batÃ,. + burB* I bazC,- * bazD* - brrù* - brtF*) (5.15b)

a|,n : c++(bztÃ* + bzrB,n I ltzzC* -f bzzÙ,,) (5.15c)

o\e* : c++(bstÃ,- + brrB* I bszC,- I bszD* I bssE* t bl¡"fl*) (5.15d)

oä",n : cq+(b+tÃ* - bu B* * b+zC* - bnrD* i b¿zù* - bnr4*) (b.1be)

oL^ : -c++(bstÃ* - brrB* * bszC,, - brrÚ* * bssE* - brsil*) (5.15/)

where

Ãrn : Arne-6tr', Brn : B*e6Êr', Crn : Crn¿-6€""

Drn: Drne6Ê"", E^ : E*e-6ë"",, Frn : F*¿6t"'
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and, for i :7r2,

bt¿

órs

ç

bsz

á6s

b+z:-:
6(t

a4 a'5

-:-QT Qz

a1 a2

-:-QT Qz

: #[@ - r)J,.-r (6(') - (^-r t)J^+r(¿(')]

- þ'e'þ P¿ - (rc - 1)6'Ë?)J,"(6(r)
2bs¿ 2bsz

aiç6( [7 + (62(212 l2m)]s6(
: l(* - I)J,.-r (6(") - (* * 7)J,-+t(6(")l

, ç Q¿6e ,,
b6¿ : -Çl(^ - 7)J*-r(á(') - (* * I)J,"+t(¿(")l

- 16'('0 p¿ - (rc - Ð62 t?lJ^(6er)

(5.17ø)

(5.17ó)

(5.17c)

(5.77d)

(5.17e)

(5.17/)

b2¿ : la62 (? - (" - t)6'e' p)J*(6(r),

bE¿

C+p ó€,

bs¿

(1 + p;)á€,;

5.4 TRANSIENT GENERAL SOLUTIONS

For a transversely isotropic elastic medium subjected to transient excitation-

s, the governing equations in eqn (5.1) can be solved by employing the potential

functions defined in eqn (5.2) and applying Laplace transform, Hankel transform

and Fourier expansion with respect to time, radial and circumferential coordi-

nates, respectively. The governing equations are found to be

lDv rcY

oo'rxî + 
o",a? 

- (ps' * p')õ,- : o
dz' dz"

-o^rõ* + r# - (À, * pr)X.*: o

d"1þ- ¡ ,n L v+-(çÀ' I p")rþ*
CLZ'

where ó*,rþ* and f- are the Laplace-Hankel integral transforms of the rnth

symmetric components of the Fourier expansion of ór1þ and ¡, respectively. In

addition À is the Hankel transform parameter and ¡-r is defined by eqn (4.19).

AB:

d6:

az l6ã : aa l6€z : J,-(6(r)

6 (lJ *-{6 (.r) + J,.+tG er)l
2

6(lJ,--{6Cr) - J¡n*r (á(")l

(5.18ø)

(5.18ó)

(5.18c)
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Following a solution procedure identical to that presented in Section 5.3 for

time-harmonic excitations, the general solutions for the rnth symmetric Fourier

component of the potential functions for transient excitations can be expressed

âS,

(ó^,,þ*,,X*): (õ,.,ú,,,X,)J*(Àr)eltt^d'^d'p (5.19)

where t9 is defined in eqn (4.19) and

* l,'_:: I,-

ó,.
i

lPrn

x,-

- plArne-€'" + QtB*e€'" + QzCrne-€zz I QzDrnel"'

- E*¿-ê"" + F*"c""

- A*¿-€t' + B*"ct" + C,n"-ezz ¡ þ*¿€zz

dt?-^2-p2 r,Ëzr-^2-Lt2
Qr:

nÀ2
Q2:

nÀ2

(5.20a)

(5.20b)

(5.20c)

(5.2i)

(5.23ø)

(5.23ó)

in which

{1 and (2 arc given in eqn (4.26),

Er:(sÀ2 +p\+ (5.22)

and A^rB*rC*rD*,,8* and .t.,,, are arbitrary functions to be determined by

suitable boundary and continuity conditions. The radicals (¿(i : !,2,3) are s-

elected such that fte({¿) > 0. With this definition the radiation condition at

infinity is satisfied and Bn - D,n: F,n:0 for a domain where z --+ æ.

In view of eqn (5.2), (5.19) and eqn (5.20), the general solutions for rnth sym-

metric Fourier component of displacements and stresses for a three-dimensional

transient problem can be expressed as

. ô "d|àcn ^ôo: # J o-n* J, ul"eû ut )'d'Àd'P' i : r' g 

' 
z

.n rd*iæ
aii,n: # lr"_: lo* 

oî,,-"opt^d,),d,Lt,
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The expressions f.or u!,n and ol¡* are identical to that of uf* and oi¡,_ of

time-harmonic response in eqns (5.14) and (5.15), respectively. However, the

replacement of á{¿(i : 1,2,3) by €¿ which are defined by eqns (4.26) and

(5.22) and 6( by À should be made for the coefficients a¿(i:7,2,...,8) and

b¿¡(i :7,2,...,6; j : r,2,3). The parameters p¿(i : 7,2) corresponding to tran-

sient excitations are defrned in (5.21).

5.5 TTME-HARMONIC GREEN'S FUNCTIONS

5.5.1 Boundary-Value Problem

Boundary-value problems related to time harmonic loadings applied in the

interior of a transversely isotropic elastic half space are considered in this Section.

The dynamic excitations are applied at a depth zt below the free surface of the

half space and over a ciruclar ring of radius 's' as shown in Fig 2.2. Again as in the

elastostatic problem of a transversely isotropic half space, the intensities of applied

loadings vary in the d-direction according to cosm0 for ring loadings in the radial

and vertical directions and sinrn? for a ring load in the circumferential direction,

respectively. Once the solutions for excitations of the above types are derived,

solutions corresponding to excitations applied over an axisymmetric domain with

arbitrary intensities can be obtained through appropriate integrations and Fourier

expansion with respect to the circumferential coordinate.

A solution to the boundary-value problem can be derived by defining a ficti-

tious plane at z : z' aîd considering the problem as a two-domain problem as in

Chapter 2 for a three-dimensional elastostatic problem. The boundary conditions

for a transversely isotropic half space subjected to buried time-harmonic loadings

can be expressed as

"[)),*çr,o¡(r\, ,\ui;V) z )

"l)),"(r, "')

i: rr0rz (5.zaa)

(5.24b)

(5.zac)

- "12?, "') 
:0, i : r,o, z

- "f"),-(r, r') : po6(, -
98

i: rr0rz



where ps are the specified loading densities, ó is the Dirac's delta function and

the superscript '1' and '2' are used to denote the domain numbers (Fig 2.1). The

existance of regularity conditions for domain '2' implies thal Bz - D2 : Fz : 0.

The substitution of general solutions for displacements and stresses given by eqns

(5.i3)-(5.15) in eqn (5.24) results in solutions for arbitrary coefficients of the two

domains.

5.5.2 Greents Functions

Let the displacement Green's function Gff(r,0,2;s,z') denote the displace-

ment component in the i-direction (i : r,0 , z) at the point (r,0,, z) due to a time-

harmonic circular ring load in the j-direction (j : ,,0 , z) through the point (t, "')
with a circumferential dependence as prescribed earlier and the stress Green's

function oä¡(r,0,21s,2/) denote the stress component, o¿¡ (l: r,0,2) at the point

(r,0,2) due to the same excitation. The solutions for Gff and off, can be ex-

pressed as

Gff(r,0,21s,"'):

oä¡(r,0,z;s,r'):

i,j : rr0,z

i,l, j - r,0,2

* l,* cryeae

n l, ãä¡ede

(5.25a)

(5.25b)

(5.26ø)

(5.26b)

where

cn:"o"*0ffi(orpr", * IalQzez r üzQtes - Ia2plea

- atQtes - azpzea)

C7: - sin *effi@nQzet - Iaap2e2 * asgtes ! Iøspyea

- a+Qtes - aspzea)

CT" : "o"*Tffi(az Qz"t - az Qzez * aaptes I asplea

- az Qtes - aepzea)

cn : 
"o" 

*e[@ffÐ (ot(r¿, - attzez * øzËtes I a2(1ea

(5.26c)



-at€tes- 
¡-\ (pz-psì}

azËzea ) - --6-- aslez * es )l

Ci, :- sin *Effi(onËr¿, - a+€zez* øs{r es I a5(1ea

- a+Ëtes - 
¡ - \ (P' - Pùou(ez 

+es)]asËzea ) - 
€,

cTr:"o"*e@ffù(o',€r¿, - Ia7(2e2* øs(r as ¡ las(1e4

- az€te5 - as(2e6)

c7 :- cos *Effi(ortr¿, - atËzez r azttës I a2(1ea

- ør€r e5 - a2(2er, * @*d as(et + ¿a)l

CT,:siînl0lffi(ontr¿, - a+€zëz+ ¿5(r es I as(1ea

f _ ¡ _ \ . (pr+ps)aa(¿r+ee)]
- a+lte5 - asÇ2eul + 

€,

cT,:_coS*'w(o,(,¿,-Ia7(2e2+ø861es*Ias€le+

- az€te5 - as(2e6)

ãT,, : "o,*0ffi(bngrë, + Ibr' Qzez i brzpt et - Ibpplea

- bngtes - hzpzêe)

ãTe, : 
"o, 

*0 ffi(bat pzet I lbat Qzez I baz Qßs - Ib62 plea

- öor pr é5 - b62p2e6)

ãT,, : "o"*0*(bzt pzet + Ib2t Qzez * bzzØes - Ib22p1ea¿¿z RV'
- bztQtes - b22p2e6)

ãTe, : - sin *effi{Urt Qzet + IhrQzez *bszQtes - Ibs2plea

- bnQte5 - bs2p2e6)

ûT," :sinmlffi(b.r'gzet - batgzez i b+zQtes * b+zQre+

- bnptes - ba2p2e6)

ã1"" : - cos *effi{Urt Qzet - bst Qzez I bszQtes * l)szQte+

(5.27a)

(5.27b)

(5.27c)

(5.28a)

(5.28b)

(5.28c)

(5.2ea)

(5.zeb)

(5.2ec)

(5.zed)
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ã7,e : 
"o" 

*el@jp (bn b"t - bu. €z ez I btz (t es I bn €t e+

- órr(r e5 - br2€zer) - %iÐ brcþt+ ¿a)l (b.30ø)

ãTee : "orrlzi/lJf,p(baÅzet - bar€zez * baz€t es + b6z€re4

- óor€r e5 - b62€2er, * (t?r¿ 
t n("t + ¿a)l (b.30ó)

ãT,e : 
"o, 

*e@ffÐ(bn€zet - bzttzez * bzz(tes * bzztte+

- bnQtes - b52p2e6)

- bztttes - b22(2au)

(5.2ef)

(5.30c)

bez€tes I bezãe+

+ ¿s)l (5.31ó)

I bzz€teE

(5.31c)

beztte+

ãTaa :- sin *E@;P(bn(2", - bnËzez * hz€res * bszttea,

- óer(r ës - bszËz¿e ) - @3,.rsa(az a ¿r¡1 (5.30d)

ãT" e : "in 
*e[@zp (bn, (z 

", - I b4t €ze2 * b+zËßs + I b42 €G4

- b+t€re. - b4z€2er, - @uP b+s("t - /¿a)l (b.Boe)

ãT,e :- cos *E@+P(b51€z"t - Ibsl(2e2 I bsz€tes ! Ib52(1ea

- ósr6r e5 - b5zt2ë.) - @# bss("2 - lea)l (b.30/)

ãT,, :- cos *E@ 
OP(btt€zet - bnËzez I bn€tes ! b12(1ea

- órr(r es - bn€z"o) + @Prra(az a ¿r;1 (b.31ø)

ãTe,:- cos ^E@;P(bat€2", - bat€zez *

- bor(r e5 - b62(2e., - (%td 
brr(",

ã2, :- cos *t@;P(bzt€zet - bzttzez * bzz€tes

- bzt€tes - bzzb"a)

õïb,:"in*el@ffù(b,.$", - b,'tzez* óaz€res *

- brr€r e5 - bsz';zer, * @*UÐ bss("r+ ¿s)l
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^m60r, :_sin*Eæ(b+ttzet_Ib¿t(zezIb¿z€tes+Ib42€G4

- b+t€tes - b+z€zea)- @+ud b¿s("2 - /ee)l (5.ere)

: cos m0l@Z--?ù(bsi€zer - Ibst€zez * bsz(tes I lbsz€te+' -RS

- ösr(r es - b52(2ërr* @*tÐ bss(", - I¿a)l

p- K(l:-€')
KÒ. ç"

v : a(t? - ËÐ((' -t r)1rc(z, s : a62€t€r(€? - t')l"e'

ãi,

(5.3U)

where

pssJ, (6(s) posJ¡n-t(ó(") posJm+t(6(")

(5.32)

(5.33)

(5.34)

(5.35)

(5.36)

(5.37)

(5.38ø)

(5.38ó)

(5.38c)

Pt

ft

r,

fs

e1

ea

e7

, P2: Ps:
: ('(1 + pr)[a(? - (rc - 1)('p']

: €r(7 + sz)lo€| - (rc - 7)('prl

: €r(1 + ez)lo€?- (rc - 1)á'p,l + (r(1 + pòlo(|- (rc - r)6' prl

: f3¿-6€r('' +") , ez : Re-64r1,'-,1 ; es : fse-6€,r(,'*")

: Re-6€,1'' -'l; es :2ft"-6($zl(22'). ee :2fze-6($zt¡(22)

_ --€s("'+"). - _ --Ë"1"'-"1) uð-L

and 1, K,a¿ andb¿¡ are defined in eqns (4.34), (4.35) and (5.17), respectively.

The displacements and stresses of a transverseiy isotropic full space subject-

ed to time-harmonic ring loads can be obtained by taking the limit z' -. æ, and

l"' - "l 
: 7* , where z* is the vertical distance between the load and the observa-

tion point.

5.6 TRANSIENT GREEN'S FUNCTIONS

The boundary-value problem corresponding to a transversely isotropic elastic

half space subjected to buried transient loadings located at a depth z/ below the
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free surface can be described by a set of equations similar to eqn (5.24). A function

f(ú) is used to describe the time history of the applied transient loadings. The

substitution of general solutions in the corresponding boundary and continuity

conditions results in a system of linear algebraic equations for the solutions of

arbitrary functions associated wiih the two domains. Thereafter, the analytical

solutions of transient Green's functions of displacement and stress can be derived

explicitly.

Let Gff(r,0,z,t:s,z') denote the displacement in the i-direction (i : r,0,2)

at the point (r,0,2) and at the time instant'ú'due to a transient ring load of

intensity po per unit arc length and time history -t'(f) acting in the j-direction

(j : r,0,2) throttgh the point (t,"'),andoffr(r,0,2,t|s, z') denote the stress com-

ponent o¡ (l: r,,0,2) at the point (r,0,2) due to the same loading configuration.

The following analytical solutions are obtained for GS arLd offt

Gff(r,0, z,t, s, z') - # lr'_iJ 
U l,

oîi¡Q,,o, z,t; s, z' ) - * l r'_: 
F 

lr*

Gry),"t"dÀd¡t i, i : r,0, z (5.39ø)

ãffrÀetut d),d¡t i,l, i : r,0, z (5.39¡r)

where the expressions of Gff anð, ãff¡ arc identical to that of Gff and ãff, given in

eqns (5.26)-(5.31) for a time-harmonic resporlse with the replacement of á( --+ À

and ó(¿ - €¿. The corresponding parametert (¿(i :7,,2),{3 and O;(i :7,2) ate

given by @.26), (5.22) and (5.21), respectiveiy. In addition, F is the Laplace

transform of .F(ú).

5.7 GREEN'S FUNCTIONS FOR DISPLACEMENT JUMPS

The boundary-value problems corresponding to transient displacement dis-

continuities (jumps) inside a transversely isotropic half space are considered. The

displacement jumps are assumed to occur at a depih z' below the free surface and
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over a circular disk of radius s. The intensities of the radial and vertical displace-

ment discontinuities vary in the 0-direction according to cosm0. The intensity

of the displacement discontinuity in the circumferential direction varies with d

according to sin m0. The time history of the excitation is denoted by f-(l). The

boundary-value problems corresponding to internal displacement discontinuities

can be expressed as

tLl)*0,0,ú) : g. i: r,o,z (5.a0ø)

"ll)þ, "' ,t) - "Í2e, z' ,t) : ul*e)nþ - r)F(t); i : r,0, z (b.40ó)

"Ll),.(r, 
z' ,,t) - "L?),.(r, 

zt ,t) - g. i : r,,0, z (b.aOc)

where the superscripts'1' and'2'denote the domain numbers andul*(r) denotes

the radial variation of the absolute value of the dispiacement jump at z: zl

in the i- direction (i: r,0,2). The application of Laplace-Hankel transform in

eqn (5.40) together with the substitution of transient general solutions results

in a system of linear algebraic equations to determine the arbitrary functions

associated with the two domains.

Let GS(r,0,2,t,;s, e') denote the displacement in the i-direciion (i : r,0,2)

at the point (r , 0 , z) and at the time instant 'f ' due to a transient displacement dis-

continuityinthe j-direction(j:r,0,2)over adiskof radius's'located atz:z',
and oär(r,0,z,t1s,z') denote the stress componenf o¿ (l:r,0,2) at the point

(r,0, z) due to the same excitation. The fundamental solutions GS@,0,, z,tls,zt)
and offr(r,0, z,t;s, z/) corresponding to transient displacement jumps can be ex-

pressed in the forms of eqns (5.39a) and (5.39b), respectively, with Gff aú. ãff,

defined by

G: : ,o" *e !2
Rs@ru+et - t\w4e2l azwses I a2wsea

- o.ywse5 - a2wae6)

âm ^ú2,GT": - sin *?ffi(aawael - a4w4e2 | ø5wses I aswsea

r04

(5.ata)



- O,4Ugeg - Agutae6)

^ lt.o
GT": - cos m?ffi(azw+et - Iø7uaë2 | aswses * Iaewse+

- o,7u3e5 - o,swae6)

cn:ro"*el@ffÐ(a1w2e1 -
- a7ute5 - {t2w2ea) - as(uÙt,

cTr:- sin ,-rlW(aaw2e1

- a4u1ës - o.s,U,2ea) - a6(Aot,

cT, :- cos *t@#Ð (a7ru2e1

- azuTes - a6w2e6)

cn:- cos *rg#(a1w2e1
- at1xte5 - o,2u2eo) + ø3(Z!,

cT, : ri,' *,/l@ÇfÐ (aaw 2 e1 -
- cr+u7e5 - 0.5u2eo) + ø6(a!t

cx: "o"*e@frÐ(a7w2e1 ¡

Ia1w2e2 * azutes t lazute+

- aï)G, + 1e8)l

- Iaaw2e2l aswtes i Iaswte+

- úorr)(¿, + /¿8)]

* atwzez I aawtes - o,su1e4

- Ia1w2e2 i azwtes * Iazrl)ß¿

+ u?)(¿? + /e8)l

I aaw2e2 I øswtes I Ia5ulea

+ uoàG? + /es)l

a.7u2e2 I aawteg - Q,gw1ea

(5.41b)

(5.a1c)

@.aza)

(5.42b)

(5.a2c)

- dzutes - asw2e6)

ãT," :.o"*effi(b¡wae1 - bnw+ez i b¡2wses { bpwsea

- b11w3e5 - bpwaê6)

ãTe, : "o"*effi(b61wae7 - b61u;ae2 -f bazwses I bazwte+

- batwses - b62wae6)

ãT,, : ro" *effi(b21wae1 - b21wae2 r bzzwtes I bzzwze+

- bztwses - b22wae6)

õTe 
" 
: 

"in 
*0 ffi (b31 w ae1 - bs1 w ae2 I bszw s es I bszw * +

- bsluse5 - bs2wae6)

ãT", : 
"in 

*Offi (ba1u aev - I balw aez * bEzw s es I Ib+zw *+

(5.a3ø)

(5.43ó)

(5.43c)

$.aaa)

(5.44b)

(5.aac)
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- balwse5 - ba2wae6) $.aae)

ãT", :- cos *effifUstu+et - Ibslwae2 | b52wsës I lbs2wsea

- b57wse5 - b52wae6)

^ ,u?r*ùÙ,),,, _ 11 _ .1ãT,e :cosrn0[i!!\:ft0-ttt(b11u:2e1 - Ibnuzez I b12u1e3

- buwte5 - bpw2¿e) - brr("?, - úo,r)(¿, + /¿8 )]
^ ,u?r l u?r) ,, _ t7ãTee :cosmelllll:ftr-::zt(b61u2e1 - Ibetuzez * b62w1es

- betwt es - b62w2ro ) + brr(r0,, - ù7)G, + /eB )]

ã2e : 
"o" 

*r%%Ð(b21w2e1 - Ib21w2e2 | b22w1es

- bztwtes - b22w2e6)

ãie e : siîr rn¡l?&)i-u,eù (b s1u 2 e1 - I bs ¡o 2 e2

- bstwtes - bs2u2aa) - brr(uoe, - úorr)(¿, + /¿8)] (b.4bd)

ãT, e : "rn 
r.t(!!@#4ù (ba1w 2e1 | balw 2é2 * b+zu r es - ba2to 1ëa

* bqwte5 - ba2w2¿a) - bnt(uoe, - úorr)(", - eu )l (5.a5e)

ã?"e :- cos -rtfn%@(bs1w2e1! bs1w2e2 t bszutes - b52u1ea

- b51w1es - bs2w2e6) - but(roe, - úorr)(¿, - ee )]

(5.44f)

I lbtzwß+

(5.a5ø)

{ 1062w1ea

(5.45ó)

I lb22w1ea

(5.a5c)

ãT,,:

^mu00r -

^rnu""r:

- cos *g¡"nn(úorl-- 
ao") 

(b11w2e1 - Ib11w2ez I btzwtes I lb12w1ea,RV

- bnwtes - b12w2eo) + brr(u?, + u0àþ? + Ies)] (5.a6ø)

_coS*'Pw(b61w2ë1-Ib61w2ezlbazwteg|Ib62w1ea

- batwte5 - b62w2¿o) - brr("l, + u0àþ? + /a8)] (b.46ó)

- cos *etnn(ùo'*o; 
ú?') 

(b21w2e1 - Ib21w2e2
RV

- bztwtes - b22w2e6)

I bs2w1ez, * Ibszute+

I bzzwt es { Ib22w1ea

(5.45/)

(5.46c)

I lbszwte+

(5.46d)

ãTe, :- sin *rP@#(61w2e1 - Ibstwzez * bs2wles

- bstwtes - bs2w2ao) * brr("o,, + uÙàG? + /e8)]

ãT,, :- sin *rP+P(ba1w2e1 { ba1w2e2 | ba2u1e3
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ãTr, : cosrn?l

in which

-0u-ot:

-0uít:

- b5¡otës - bszuz¿o) * but(uj,,

uo"*(r)J,n(Àr)rdr

+ uoòG? - as)l

{ bs1w2e2 I bszwtes

+ uo,)k? - as )]

I o" 
uI *O) J,.¡ 1 (Àr)r d,r

I o" 
ul,-(r) J *¡ 1 (Àr)r d,r

: (I * oz)€z

$.a6e)

- b52w1ea

(5.46/)

(5.a7a)

(5.47b)

(5.a7c)

(5.48o)

(5.48ó)

- bnutes - ba2u2ão) + bnt("?,
c++(u?t - ù?r) ,,,

RV \o51u2e1

o'" :;, l,
_o1uor: 

4

_n1uiz: ;+
W2

I l,'

11,"

uor,.(r¡ J*-t(\r)rdr;

uo,*(r) J ,--r (\r)r dr;

?D7: (1 + p1)€1;

ws: a€? - (rc - 1)À'pt; lr4:d€3-@-I)À2s2

anå a!*(i : r, 0,,2) denote the rnth order Hankel transform of ul^H (s - r). The

other parameters R,V,S,e¿.,a¿,b¿¡ are defined by eqns (5.32), (5.33), (5.38) and

(5.17) together with the replacement of á€¿ by €¿ of eqns (4.26) and (5.22)

and ó( by À. The solution corresponding to a displacement discontinuity over

an annular region can be obtained by replacing uji*H(s - r) in eqn (5.a0) by

ujo,.lï(s1 _ r)- H("r- r)] where s1 and s2 ãîe outer and innerradii of the an-

nular region, respectively.

5.8 NUMERICAL SOLUTIONS FOR TIME-HARMONTC PROBLEMS

5.8.1 Numerical Scheme

The solutions for displacements and stresses given by eqns (5.25)-(5.31) .p-

pear in terms of semi-infinite integrals with a complex-valued integrand. As in

the case of an isotropic medium and 2-D orthotropic half-plane solutions, these

integrals cannot be evaluated analytically for both surface and interior loadings.

In view of the complexity of the integrands, it is naturai to employ a suitable
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numericai quadrature scheme to evaluate the Green's functions. The numerical

evaluation of solutions given by eqns (5.25)-(5.31) requires careful consideration

due to the presence of singularities within the range of integration and the os-

cillatory nature of the integrands involving product of Bessel functions. The

singularities of the integrands of eqns (5.25)-(5.31) also need to be examined pri-

or to the establishment of a numerical integration procedure. An understanding

of the singularities of the integrands of eqns (5.25)-(5.31) can be obtained by

treating ( as a complex variable similar to the case of 2-D problems considered

in subsection 4.8.1. It is noted that due to the presence of radicals (¿(i : 1,2,3)

the Riemann surface of the integrand of each integrals has eight sheets. Howev-

er, the condition R"(€n) I 0, which is required to satisfy regularity conditions at

infinity, implies that only the sheet in which radicals (;(; :7,,2,3) have positive

real parts everywhere is relevani. The important singularities of the integrands

are the branch points of the radicals €;(l : 7,2,3) and poles of the function .I(.

The branch points of (¿(i : I,2,3) are given by

€¿ :0, i :712,3 (5.4e)

and the eqn (5.49) results in,

t - -L 1
,, _ _ 

,,[F

1r - r_
\J'

vs

(5.50ø)

(5.50ó)(", : *1;

For an isotropic solid, the eqns (5.50) reduce to (o : +J-pß + 2-lt) and (", : e""

: *1. It can be shown (Buchwald 1961) that in a three-dimensional orthotropic

material there are three kinds of body waves. The wave numbers of these rvaves

are equal to 6 I lp, á and 6 Lß . The motion associated with these ',¡/aves is neither

purely dilatational nor purely distortional. However, at the iimit of isotropy,

the above three r,¡/aves correspond to P, ,9I/ and ,9fI waves associated with an

isotropic medium. It is noted that in plane strain problems considered in Chapter
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4 the integrands of the integrals appearing in the Green's function solutions have

only two branch points. These are (o and (", and the solutions are independ.ent

of the material constant c12 lie the nondimensional constant ç]. The poles of the

factor 1{ in the denominator of ihe integrand of 3-D problems are identical to

those of a two-dimensional time-harmonic problem. The numerical evaluation of

the integrals encountered in 3-D time-harmonic problems are carried out by using

a direct numerical quadrature scheme similar to that used in Section 4.8 for 2-D

problems. Negligible material attenuation is considered to shift atl singularities

of the integrands from the real (-axis.

5.8.2 Numerical Solutions

In the numerical study the response of five different transversely isotropic

materials, namely, an isotropic material, layered soil, beryl rock, E composite and

G composite are considered and the values of material constants of these materials

are given in Table 1.1. The loading is assumed to be uniformly distributed over a

circular area of radius ø with intensity Ç6 and acting at a depth ø as shown in Fig

5.1. The numerical solutions are presented in terms of normalised displacement

and stress Green's functions ç4 : G¿¡caaf aqs and o¿¡¡: oijklqo. In additiol, a

nondimensionalfrequency ø¡ defined as ø0 : 0,6: au(pf caa)l/2 is used.

Figure 5.2 shows the variation of normalised displacement Green's function

G r" alongthe z-axis of the half space for the five different materials. Solutions are

presented for three different frequencie. (oo - 0.5,1.0 and 3.0) and the loading

configuation is shown in Fig 5.1(ø). Comparison of solutions presented in Fig

5.2(a) indicates that the degree of anisotropy of the materials has a significant

influence on both real and imaginary parts of the displacements. The variation

of the displacements along the z-axis is more gradual for E composite and G

composite when compared to isotropic material, layered soil and beryl rock. The

real parts of the displacements have a kink at z f a : 1.0 which is consistent with
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the discontinuity of stress at this level due to the applied loading. Note that the

kink at z : o. is not much visible in the case of the two composite materials since

these materials are much stiffer than the other three materials. Imaginary parts

of the displacements are smooth along the z-axis. In all cases) the displacement

profiles, except that for G composite, show changes in sign with increasing depth.

Comparison of Figs 5.2(a) and 5.2(b) indicates that the influence of frequency on

G"" i" also very significant. It is noted that Re(G,,) generally decreases with

ø¡ whereas the variation of Im(G,,) with ø6 is more complicated. As frequency

increases (eg. a6:3.0), boih real and imaginary parts show oscillatory variation

with the depih. At low frequencies (ø6 ( 1.0) the highest magnitude of Re(G"")

is noted at the level of loading. However at high frequencies, maximum values

are noted at other depths.

Figure 5.3 shows the variation of Gr" at the free surface. These solutions also

confirm the significant dependence of the response on the degree of anisotropy

of the material and the frequency of excitation. Displacements are generally

more smoother at the surface level when compared to those along the z-axis. In

addition, both real and imaginary parts of the displacements decay quite rapidly

with ihe radial distance and the largest magnitude is noted at r : 0 for most

cases. Comparison of displacement profiles in Figs 5.2 and 5.3 indicates that the

highest influence of anisotropy is noted in the case of G composite foliowed by

E composite and beryl rock. It is found that the solutions for layered soil are

generally closer to isotropic solutions within the frequency range 0 ( a¡ < 2.0.

Comparison of the solutions for G * with the coefficients ð¿¡ indicates that the

behaviour of solutions noted in Figs 5.2 and 5.3 at low frequencies (ø¡ < 1.5) can

be related to the order of the magnitude of õ33 and the influence of other values

of. c¿¡ on G ", is relatively small. Note that ca3 corresponds to a Young's modulus

in the vertical direction and in the present case the loading is also applied in the

same direction.
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Figure 5.4 shows the normalised stress Green's function o"", along Lhe z-

axis. The influence of the degree of material anisotropy as weil as the frequency of

excitation is clearly evident on these solutions. Re(o"",) decays rapidiy with z for

zla > 1.0 whereas at high frequencies a gradually decaying oscillatory variation

is noted. The variation of lrn(o """) with z is smooth except at higher frequencies

("g. oo:3.0). Re(a""") shows a discontinuityequal to unity al' zf a: 1'0 due to

the applied loading but no discontinuity exists in Im(o",,) profiles. Comparison

of stress profiles corresponding to different materials indicates that the infl.uence of

material anisotropy is similar to that observed eariier for displacements. Stresses

coressponding to G composite shows the highest influence of material anisotropy

followed by E composite, beryl rock and layered soil. It was observed in Section

4.8 that the influence of material anisotropy on o"" is relatively less in the case

of 2-D problems.

Figure 5.5 shows the normalised displacement G"" along the z-axis for dif-

ferent materials. The loading configuration is shown in Fig 5.1ó and the solutions

are presented for three frequencies. It is noted that the influence of material

anisotropy is much less than that observed earlier for G"" due to a vertical load-

ing. Generally the imaginary part of the soiution shows more dependence on

material anisotropy when compared to the real part of the solution. The influ-

ence of frequency of excitation on the profiles are quite similar to those observed

earlier in Fig 5.2 except that at higher frequency (oo : 3.0) more prominent os-

cillatory variations are observed with depth. The kink at, zf a: 1.0 in,Re(G"") is

much sharper than that of. G"" and it is due to the loading applied at this level.

Im(G,,) is smooth at this point. Fig 5.6 shows the variation of normalised dis-

placement Green's function G * at the surface level with the horizontal distance

for different materials. The infl.uence of degree of anisotropy on these solutions

is more prominent when compared to the solutions along the z-axis. In addition,

the dependence of these profiles oÍr. os is quite simiiar to that observed earlier for
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Gr, \nFig 5.3. It is useful to relate the behaviour of displacements observed in

Figs 5.5 and 5.6 to the material constants presented in Table 1'1' It is noted that

the normalised in-plane Young's modulus õ11 for all five materials are relatively

closer to each other when compared to css. Note that both the direction of the

loading and the dispiacement are in-plane and it is reasonabie to expect that at

least within the low frequency range (oo < 1'5) the main influence of anisotropy

would arise from ð11. Since cs fot these frve materials are quite closer to each

other the influence of anisotropy on G", is relatively less. The difference observed

in surface displacements may be due to the fact that at surface level both surface

and body waves contribute to the displacements and interaction between the two

systems of waves are more complicated. In fact, in all cases it is observed that

at high frequencie " 
("g' øo : 3'0) the influence of anisotropy cannot be related

to a single material constant.

Greents function o"r" along

Figure 5.7 shows the variation of normalised stress

the z-axis for different materials' The influence of

dent on the material anisotropy especially at high frequencies' At low frequencies,

maximum Re(o",r) is observed. at the level of loading arld Re(a""r) decays rapid-

ly with the d,epth. on the other hand, at high frequencies, maximu]¡r- Re(o",,) is

not at the level of loading and slowly decaying oscillatory variations are observed'

Im(a,,,) also shows oscillatory variations with the depth at high frequencies'

5.9 NUMERICAL SOLUTIONS FOR TRANSIENT PROBLEMS

5.9.1 Numerical Scheme

The numericai algorithm used in Section 4'9 to evaluate the transient re-

sponse of a half-plane is also employed here to obtain numerical solutions for the

transient response of a transversely isotropic elastic half space' The accuracy of

the numerical algorithm for 3-D problems is frrst investigated by considering an

material anisotropy is negligible on -Re(ør'r). Ho*evet, Im(o"rr) is mole depen-
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isotropic half space subjected to a surface step loading. As mentioned earlier,

Eason (1966) presented numerical solutions for transient response of an isotropic

elastic half space subjected to a vertical step load of intensity gs applied uniformly

over a circular disk of radius'ø'located at the surface. Eason (1966) used contour

integration to invert Laplace transform and thereafter reduced the semi-infinite

integral with respect to Hankel transform parameter to a set of finite integrals and

expressions in terms of complete elliptic integrals. Fig 5.8 presents a comparison

of numerical solutions for normalised vertical displacement G!, (Gi¡ is defined in

Section 4.9) ai five points along the z-axis obtained from the present numerical

integration scheme with the results reported by Eason (1966). It is evident from

Fig 5.8 that the numerical algorithm used in the present study also results in very

accurate numerical solutions for 3-D problems.

5.9.2 Numerical Solutions

At this stage attention is focused to Fig 5.9 where normalised vertical dis-

placement Gi"(r,O) at three surface points (r f a:0,1,5) is plotted with the nondi-

mensional time z (z is defined in Section 4.9). These displacements correspond

to layered soil, isotropic and beryl rock half spaces subjected to a rectangular

pulse load (see Fig 5.9) in the vertical direction acting uniformly over a circular

area of radius ¿ located at depth z' f a :1.0. Comparison of solutions for layered

soil and beryl rock with the isotropic material solution indicates that the degree

of anisotropy of the material has a visible influence on the transient response.

Since the normalised material coefficients and normalised displacements are used

in the analysis any difference in the solutions for different materials indicates the

influence of material anisotropy. Solutions at rf a:0 and 1.0 indicate the ex-

istence of an approximately constant velocity period during 0.5 < z < 1.5. This

velocity is nearly identical for the isotropic material and beryl rock but it is s-

maller than that corresponding to a layered soil. In general, Iayered soil has the

largest surface displacements followed by the isotropic material and beryl rock. It
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is also noted that transient waves arrive at the observation point slightly later in

the case of layered soil half space. Displacements continue to increase at r f a : 0

and 1.0 after the removal of the load (i. e. r ) 1) and reach its peak value near

r : 7.5 for both points and for ali three materials. The retarding velocities are

found to decrease rapidly with increasing rf ø. At far fleId,, i,.e. rla - 5.0, a

minor negative displacement is initially observed and the excitation is observed

during the interval 4.5 < r < 9.0. Far-field displacements also show the influence

of anisotropy of the medium.

Selected numerical solutions for stresses are presented next. Figure 5.10

presents a comparison of solution for of,",(: ?f) "t two interior points on the

z-axís due to a uniform disc pressure of radius 'ø' applied at the surface (Laturelle

i990). The time dependence of the loading is denoted by ff(t). It is evident from

Fig 5.10 that the present numerical solutions agree closely with those reported in

literature for stresses as well. Figure 5.11 presents numerical solutions f.or o!""

due to a uniform disc pressure of radius 'ø' applied at z'f ø:1.0. It is noted

that the numerical solutions for stresses due to internal loadings have not been

reported in literature even for an isotropic half space. Comparison of solutions in

Fig 5.11 indicates that the stresses at internal points due to buried loadings show

characteristics which are quite different from surface loadings. It is also noted that

beryl rock experiences high peak stresses when compared to isotropic material.

However, the general trend of the variation of transient stress solutions for both

materials are similar. The iniiial transient disturbances arrive observation points

at nearly identical nondimentional time instants for both materials. Static stresses

(long term solutions) are also found to be nearly identical for both materials. It

is very important to note that the peak transient stresses at both observation

points are nearly twice of the corresponding static solutions. As in the case of

elastostatic solutions presented in Chapter 3 the influence of material anisotropy

is more prominent in displacements when compared to stresses.
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5.10 CONCLUSIONS

The three-dimensional dynamic response of a transversely isotropic elastic

half space is studied. Analytical general solutions for displacements and stresses

are obtained by applying Fourier expansion together with Hankel integral trans-

form for time-harmonic three-dimensional problems and Laplace-Hankel integral

transform for transient three-dimensional problems. These general solutions are

then used to solve the boundary-value problems corresponding to internal time-

harmonic and transient loads and displacement discontinuities in a transversely

isotropic elastic half space. Analytical solutions for displacements and stress-

es corresponding to the above boundary-value problems are presented explicitly.

It is noted that solutions corresponding to arbitrary loadings and displacemen-

t discontinuities can be derived through the appiication of superposition and

standard analytical procedures to the fundamental soiutions presented in this

Chapter. Numerical quadrature schemes are used to obtain numerical solutions

for displacements and stresses. The accuracy of the numerical schemes employed

in this study is confirmed by comparison with existing solutions for isotropic ma-

terials. Selected numerical solutions for displacements and stresses corresponding

to buried patch loads are presented to illustrate influence of material anisotropy.

Numerical solutions for displacements and stresses show signifrcant dependence

on the degree of anisotropy of the materials in both time-harmonic and transient

responses. It is found that in the case of dynamic Green's functions G "", Gl" and

G* th. influence of the material anisotropy is mainly reflected by ihe values of ca3

and ð11, respectively. In addition, the availability of explicit analytical solutions

for different transient source configurations (Sections 5.6 and 5.7) would enable

a rigorous interpretation of the various characteristics of transient solutions and

their relationship to the interpretation of geophysical observations. This lengthy

and tedious exercise is not attempted here.
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(a) Vertical patch loaci (ö) Horizontal patch lcircl

Figure 5.1 Loading configurations considered in numerical study
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Chapter 6

ELASTODYNAMIC BOUNDARY-VALUE PROBLEMS

6.1- GENERAL

The primary objective of this Chapter is to demonstrate the application of

elastodynamic Green's functions derived in Chapters 4 and 5 in the analysis of

some useful dynamic boundary-value problems. Attention is particularly focused

on elastodynamic boundary-value problems related to embedded rigid inclusions

due to the relationship of these problems to the analysis of foundation structures

in civil engineering projects. First, the dynamic response of rigid strip foundations

embedded in orthotropic elastic materials is investigated. The indirect boundary

integrai equation method based on elastodynamic Green's functions presented

in Chapter 4 is used for the analysis of this dynamic boundary-value problem.

Numerical solutions for vertical, horizontal, rocking and coupled impedances of

embedded strip foundations with rectangular and semi-circular cross-sections are

presented. The versatitity of the analysis is demonstrated by considering the

ihrough soil interaction between two foundations. The other problem considered

in this Chapter corresponds to the three-dimensional dynamic response of a rigid

cylindrical foundation embedded in a transversely isotropic soil half space. How-

ever, the direct boundary integral equation method is used to solve this boundary-

value probiem. The kernei functions of the boundary integral equations are the

3-D elastodynamic Green's functions derived in Chapter 5. Numerical conver-

gence and accuracy of the solution scheme are investigated by considering rigid

cylinders with different length/radius ratio embedded in an isotropic elastic half

space. Numerical solutions are presented to portray the influence of materiai

anisotropy, frequency of excitation and length/radius ratio on the vertical, hori-

zontal, rocking and coupled impedances of rigid cylinders embedded in selected
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transversely isotropic materials. Given the fact that almost every soil exhibits a

certain degree of anisotropic behaviour the present solutions can be considered as

a more realistic simulation of a fundamental soil-structure interaction problem.

The concepts developed in this Chapter can be extended to study dynamics of

single piles and pile groups, transient soil-structure interaction problems as well

as problems involving layered media by using appropriate Green's functions.

6.2 DYNAMIC ANALYS]S OF EMBEDDED RIGID STRIP FOUNDATIONS

Fig 6.1 shows a massless rigid strip foundation, occupying a region I/ bound-

ed by the surface ,S embedded in an orthotropic elastic medium. Ii is assumed

that the rigid foundation is perfectly bonded to the surrounding material along

the contact surface ,9. The foundation is subjected to time harmonic vertical,

horizontal and moment loadings F"ei'trFrei-t and Mrei", per unit length re-

spectiveiy. The displacements of the foundation, under the applied loadings, can

be expressed in terms of vertical displacemenl Ayei'¿, horizontal displacement

AHei" and rotation Srei't about the y-axis of a point,4 wiih coordinate (*,2)

as shown in Fig 6.1.

The displacement at a point (r,") on the contact surface can be expressed

in terms of Ay, A¡¡ and ós u"

u,(r,z):An*(Z-z)$,
u"(r,, z) : Lv + (r - r)5, r, z € S

(o.iø)

(6.1ó)

The resultant forces and moment acting on the massless foundation can be

expressed in terms of traction componen ls T¿(r, z) as

'": lrT"ds
(6.2)

(6.3)

(6.4)

'": lrr,d's
My : 

lrr,@ - r)ds * lrr"(, - z)d,s

127



The indirect boundary integral equation approach used in chapter 3 to an-

alyze the elastostatic boundary-value problems is extended here to analyse the

dynamic response of the embedded rigid strip foundation. In the analysis, an

undisturbed orthotropic elastic half plane Vt wilh a surface .S in it (which is i-

dentical to,9) is considered. A set of forces with intensity f¿(r,z) is applied on a

surface S/ interior to ^S such that the displacements on S are equal to that given

by eqn (6.1) and the traction resultants on 5 satisfy eqns (6.2)-(6.4). The force

intensities f¿@,r) are governed by the following Fredholm integral equations of

the first kind.

G¿¡(r, z; r' , z')f ¡(r' , z')dS' : u¿(r, z) (x,z) e S, (r' ,z') € S' (6.5)

where indices i, j : r,z and summation is implied on j; G¿¡(*,2;r',2') denotes

the displacement Green's function defined by eqns (4.29), (4.30) and (4.32) for

an orthotropic elastic half plane subjected to buried time-harmonic loadings. In

addition, u¿(r, z) denotes the displacement component in the i direction (i : r, z)

on the surface S as given by eqn (6.1).

The components of traction on ^9, denoted by T¡(u,z), can be expressed as

T¿(n, z)

where

H¿j(r, z; r' , z')f ¡(x' , z')dS' (r,z) e S, (r',2') € S' (6.6)

H¿¡(*, zl r' , z') - oir j(r, zl r' , z')n¡(r,, z) (6.7)

and o¿¡(r,z)rt,z/) denotes the stress Green's function defined in eqns (4.29),

(4.31) and (4.33). In addition, n¡(l: r,z) denotes the components of the unit

outward normal vector to the surface ,S.

A discrete version of eqns (6.5) and (6.6) can be obtained by discretizing S

and ,S' using M and M' r'odal points, respectively as illustrated in Chapter 3.

A solution for force intensities at nodal locations on ,9' can be obtained in terms

t,

: 
lr,
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of. Ly,A¡7 and önby a least square solution of eqn (6.5) as shown in eqn (3.8).

Thereafter solutions for nodal tractions are expressed in terms of Ay, A¡¡ and

þo frorn eqn (6.6). Substitution of the solutions for nodal tractions in a discrete

version of eqns (6.2)-(6.4) written with respect to nodal points on ^9 yields a

relationship between applied forces and displacements Lv,Ln and þ0.

following nondimensional impedance matrix

(6.8)

where Kv,Kn,Kua(: Knu) and K¡a are the vertical, horizontal, coupled and

rocking impedances; and ó is the half width of the strip foundation at the surface

level.

In the case of a system of l/ foundations, the above procedure can be ex-

tended by considering several fictitious surfaces S¿, S'¿ (i :7,,..., ¡f) and applying

forces on ^9j to satisfy appropriate rigid body deformations and equilibrium con-

ditions of each foundation. In this study only two rigid strip foundations are

investigated to show some factors of through soii interaction between a multi-

strip foundation system. In this case owing to the symmetry of the foundations

arrangement, a total of twelve components of impedances are necessary to define

the complete dynamic response of the two foundation system. Impedance matrix

corresponding to the present case can be defined as

(#,) - rc44(î i;. +r)(äî)

F:
F:
Ml
F:
F:
Mru

In eqn (6.9), superscripts

body displacements of the

Kn Ktz Kts Ku Krc
Kzz Kzs -Krc Kzs

Kss -Krc Kza
Kn -Kn

sArnn'L Kzz

^i
^1UH
bói

^i
^2UH
bó,,

to denote the forces and

foundations, respectively.

):"".I A,)
(6.e)

rigid

It is

'1t and t2t are used

first and the second
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important to note that each column of the impedance matrix d.efined by eqn

(6.9) corresponds to forces acting on the foundations when the corresponding

element of the degree of freedom vector in eqn (6.g) is equal to unity and the
remaining five elements of the degree of freedom vector are set to zero.

6.3 IMPEDANCES OF EMBEDDED RIGID STRIP FOUNDAT]ONS

Table 6.1 presents a convergence study of numerical solutions for vertical,

horizontal and rocking impedances of a strip foundation of rectangular cross-

section (widih 2b and depih å) embedded in an isotropic medium. The parame-

ters tested for convergence in Table 6.1 are the impedances of the foundation with
respect to the number of nodal points M and Mt rsed to discretise surfaces ,S

and S', respectively. Table 6.2 presents a convergence study of impedances with
respect to the location of the source contour St (i.e. distance c shown in Fig 8.2)

for a foundation with hlb:1.0 and M:82 and Mt :16. Table 6.8 presents a

comparison of impedances of a rigid strip foundation (hlb:0.5) in the presence

of another identical unloaded foundation with the results reported earlier by Ra-
japakse and Shah (1988). The impedances of the loaded foundation presented

in Tabie 6.3 are obtained by a relaiion id.entical to eqn (6.3) and the unioad.ed

foundation is not restrained. It is evident from numerical results presented in
Tables 6.1-6.3 that the present solution scheme is stable and. converges closely to
numerical results for impedances reported elsewhere (Rajapakse and Shah 1g8S)

by using a different solution scheme for strip foundations embedded. in isotropic

soils.

6.3.1 Single Rigid Strip Foundation

The range of the non-dimensional frequency 0.0 < as 12.0 is considered in
the numerical study since most forced vibrations of machine foundations are with-
in this range (Gazetas 1983). An isotropic soil and three transversely isotropic
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soils, namely, clay I, silty clay and a beryl rock are considered in the numerical

study. The material constants for these soils are listed in Table 1.1.

Figures 6.2-6.4 show the impedances Kv, Kn, K¡ø and K¡¡¡¡ of a single rigid

massless rectanguiar strip foundation of width 2b and height h,. Solutions are p-

resented f.or hf b:0.25, 0.5 and 1.0. It is observed that the real part of the vertical

impedance shows minor dependence on the h f b ralio of a rectangular foundation.

For all values of hlb considered in this study, the real part of Ky increases rapid-

ly with frequency in the range 0 ( ¿o < 0.6 and thereafter decreases gradually

with increasing ø6. This behaviour is observed for all types of soils. Compari-

son of Re(Ky) for different types of soils indicates that the influence of degree of

anisotropy of soil is signifi.cant. Within the frequency range 0 ( øo ( 1.8, it is not-

ed that the highest magnitude of ,Re(Kv) cotresponds to foundations embedded

in beryl rock and followed in the order of magnitude by foundations embedded

in clay I, isotropic soil and silty clay. Comparison of vaiues of c¿¡ in Table 1.1

and the order of magnitudes of solutions for Re(I{y) indicate that the influence

of anisotropy is mainly governed by the value of ca3. The influence of other ð¿¡

is found to be negligible. Solutions in Figs 6.2-6.4 also show a tendency thai

for ø6 > 1.8 the value of Re(Ky) of a foundation embedded in silty clay may be

greater than that corresponding to an isotropic soil. This indicates that at high

frequencies impedances may show a more complicated dependence on the degree

of anisotropy. Comparison of solutions for imaginary part of .Ily indicates that

its dependence on øs is nearly linear for all hf b ratios and for different types

soils. The magnitude of Im(Ky) is found to increase gradually with increasing

hf b nlios. The influence of soil anisotropy follows the same trend as in the case

of Re(Ky) and governed mainly by the value of ca3. However, the influence of

degree of anisotropy of embedding medium on Im(Ky) is found to be significant

only at higher frequencies (as > 1.0).

Comparison of solution for the real part of horizontal impedance K a in-
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dicates that Re(Ka) increases rapidly with ø6 in the range 0 < ¿o < 0.75 and

shows a tendency to gradually increase or decrease beyond ¿o : 0.75 depending

on the type of soil and the hlb ratio. The magnitude of Re(Kp) is found to be

in the same range for all hf b ntios. The influence of the degree of anisotropy of

the soil on Re(K¡7) is significant as in the case of Re(I{y) except that the values

corresponding to clay I is higher than those for beryl rock. Comparison of the

order of magnitude of Re(I{¡¡) wiih the values of. c¿¡ in Table 1.1 indicates that

the influence of the degree of anisotropy of the surrounding medium is governed

mainly by õrr in the case of Re(K¡1). It is noted that Irn(Ka) varies linearly

with ø6 for all hf b rulios and soil types. This behaviour is similar to that observed

previously for Im(I{y). The magnitude of Im(Ks) is also found to increase with

hlb and the influence of degree of anisotropy of soil is more visible with increas-

inghlb ratio especially ai high frequencies (ø6 > 1.0). The order of magnitude

of Im(K¡7) for different soils is identical to that observed earlier for Re(K¡7).

The real part of rocking impedance I{¡¡ is found to decrease gradually with

the frequenc/ 46. The magnitude of Re(K¡a) increases with increasing hf b ratios

for all types of soils. The influence of soil anisotropy on Re(I{¡y¡) is found to be

similar to that observed earlier for Re(Ky). The imaginary part of. K¡ry varies

linearly with ø6 except for ø6 < 0.3 and its magnitude increases with increasing

h f b ratio. The influence of the degree of anisotropy of the soil on Im(K¡a) is found

to be comparatively lesser when compared to the case of Re(K¡a) and similar to

that observed earlier for Im(Kv). The real part of coupled impedance K¡1¡1 is

found to decrease with increasing hfbral,io. For lower ratios of hlb (hlb <0.5),

Re(K¡y¡a) initially increases with ø6 for low frequencies and thereafter decreases

gradually with increasing ø6. For hf b:7.0, Re(Ksra) shows more complicated

variation with ø6. The influence of degree of anisotropy of soil on Re(I{¡1¡a) is

also found to be rather complicated. For example in the case of a foundation

wit'h hlb:0.5, the Re(K¡¡¡a) for the isotropic soii is always greater than that
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for clay I. However, for hf b:7.0, Re(Ky¡¡a) for clay I is higher than the values

corresponding to the isotropic soil within the range 1.6 < as 12.0. Therefore it
is diffi.cult to directly relate the influence of soil anisotropy on Re(K¡1,ra) to any

specific c¿¡ Lerm. The variation of imaginary part of Kam with frequency ¿0 is

found to be nearly linear for all hf b nlios and for the different types of soils. The

values of Im(Ksu) decrease with increasing hf b ralios. In addition the solution

for silty clay is always the largest and followed by the isotropic soil, beryl rock

and clay I.

Figure 6.5 shows the impedances of a single rigid massless strip footing with a

semi-circular cross section of radius ó. Ii is noted that within the frequency range

0 ( øo 12.0, both Ãe(/{v) and Re(K¡¡) increase with ø6. This behaviour is d-

ifferent to that observed earlier for a rectangular foundation with hf b:1.0. The

values of Re(Ky) and Re(Ka) of a semi-circular foundation at low frequencies

(oo < 0.25) are lower than the corresponding solutions for a rectangular foun-

dation with hlb:1.0. The solution for Re(K¡a) of a semi-circular foundation

decreases with øs showing a behaviour similar to that observed earlier for rect-

angular foundations. The imaginary parts of. Ky,K¡y arrð, K¡a of a semi-circular

foundation show a linear variation with a¡ and the values are always less than the

corresponding values for a rectangular foundation wilh hf b:1.0. The influence of

the degree of anisotropy of soil on impedances Kv,1{¡¡ and K ¡a is similar to that

observed earlier for rectangular foundations. The solutions for Re(I{¡7v) show a

decrease in value with increasing a6 and this is contrast to the behaviour observed

earlier for a rectangular foundation with h lb : 1.0. The magnitude for Re(K ¡1 y)
is also found to be lower than the corresponding solution for a rectangular foun-

dation with hlb: 1.0. The solutions for Im(K¡7¡a) show a linear variation with

c6 and the values are quite close to the corresponding solutions for a rectangular

foundation with hlb: 1.0. The appreciable differences noted in the solutions for

a rectangular foundation with hlb :1.0 and a semi-circular foundation indicate
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that eventhough the depth of embedment is same in both cases the solution for

impedances are quite different indicating that the exact geometry of the footing

also has a significant influence on the response.

6.3.2 Two Semi-circular Rigid Strip Foundations

The dynamic interaction between two embedded rigid massless strip founda-

tions with identical semi-circular cross-sections (radius:b) is considered in this

section. The distance between the centres of the foundations is denoted by d
(¿: dlb). In the present study, only the diagonal impedances .I{11 ,,K22 and, Kss

and the coupling impedances Kt+, Kzs and 1{36 defined in eqn (6.g) are presented

for brevity. These components could demonstrate some features of the dynamic

interaction between foundations embedded in anisotropic soils.

Figure 6.6 presents ihe solutions for diagonal impedances .I{11 , K22 and K33

of the two foundations system for d:3.0. It is noted that at small frequencies

(oo < 0.2) and d:3.0, the real parts of -I(11 and. K22 are much larger (nearly

twice) than the corresponding values for a single foundation. However âs os

increases both Ee(/(rr) and Re(K22) decrease, showing a behaviour which is in

contrast to the behaviour observed earlier for a single footing. The values of

Re(I{ss) are somewhat closer to the solutions corresponding to a single footing.

The solution for imaginary parts of Ky, K22 and I(33 are relatively closer both

in shape and magnitude to the corresponding diagonal impedances of a single

foundation. It is also noted that the influence of anisotropy of soil on the response

of the active foundation follows a trend similar to that of a single foundation. The

distance d has a very signifrcant influence on the response and the dependence

of impedances on d is quite complicated as in the case of rectangular three-

dimensional foundations (Apsel and Luco 1987).

Figure 6.7 shows the coupling impedances K14,,K25 and K36. It is noted

that these impedances depend significantly on the frequency. At low frequencies
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(oo < 1.0) the influence of anisotropy of soil on coupling impedances are found

to be negligible except for real parts of. K2a and K36. However as ø0 increases

(oo > 1.0) the influence of soil anisotropy becomes more significant but the order

of the influence of the degree of anisotropy of soil on these coupling impedances is

found to be in contrast to that observed earlier for the diagonal impedances and

also for impedances of a single foundation. Both the real and imaginary parts

of the coupling impedances show notable differences in magnitude and shape to

that observed earlier for the diagonal impedances. The solutions for coupling

impedances are generally smaller than the diagonal impedances or impedances

of a single foundation and show changes in sign within the frequency range un-

der consideration. Given the fact that in most practical situations, the study of

dynamic response of structures involves more than a single foundation the above

results confirm the complex nature of the through soil interaction between foun-

dations reported earlier (Warburion et 0,17977, Wong and Luco 1986, Rajapakse

and Shah 1988, \Mang et aI tggt). In addiiion, these results also highlight the

importance of soil anisotropy in the analysis of dynamic response of foundations.

6.4 DYNAMIC ANALYSIS OF EMBEDDED RIGID CYL]NDR]CAL FOUN_

DATTONS

This Section is concerned with the dynamic response of a massless rigid cylin-

drical foundation embedded in a transversely isotropic elastic half space as shown

in Fig 6.8. The foundation is subjected to time-harmonic verticai, horizontal and

moment loadings Frei",Frei" and Mrei'¿, at the point O as shown in Fig 6.8.

\Mith the assumption that the rigid foundation is perfectly bonded to the sur-

rounding material along the contact surface S the problem under consideration

can be described as a displacement boundary-value problem. Therefore the dis-

placement at the contact surface 
^9 

can be expressed in terms of the displacements

at the point O. For example in the case of a transversely loaded rigid cylinder, the
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displacements at an arbitrary point on the generating curve of ,9 can be expressed

AS

r',2 € S (6.1 0)

where A¡¡ and þn arc the horizontal (z-direction) displacement and rotation

about the y-axis of the point O respectively.

The dynamic response of a rigid cylindrical foundation embedded in a

transversely isotropic elastic half space can be expressed by the nondimensional

impedance matrix defined below.

u,(r,z)-Aa-zóy

u6(r,z) - -A¡7 * zóy)

u"(r, z) : róy

(6.11)

where Kv,I(u,,Kua(: Kunt) and K¡a are the vertical, horizontal, coupled and

rocking impedances respectively. This displacement boundary-value problem can

be readily solved by using the indirect boundary integral equation method pre-

sented in Section 3.3. The kernel corresponding to the present problem are the

3-D dynamic Green's functions presented in Section 5.5. However, in this Section

the application of direct boundary integral equation method is illustrated as an

alternative to the indirect method to compute the impedances of rigid cylindrical

inclusions.

In the direct boundary integral equation approach, an elastic half space with

a cavity which is identical to the embedded inclusion is considered as shown in Fig

6.8. A displacement field with components u¿(r,z) as given by eqn (6.10) is im-

posed on the generating curve of ^9. The direct boundary (integral representation

theorem) of domain V can be expressed as (Eringen and Suhubi lgzb)

fr
c¿¡(x)u¡(x) + I H¿j(*,x)u¡(x)d.9 : I Go¡(*,x)t¡(u)d.g (i, j,: r,0,, z) (6.12)Js Js

136

(#,) - ac+a(î Ì;. .;#)(âî)



where x and x denote position vectors and x e ^9. In addition S denotes the

generating curve of the contact surface S. The coefficients c¿¡(x) can be given as

(6.13)

In the present problem we select x such that x e S, ie., x is located on the

generating curve S, and c¿¡ is equaIf,otl2. Note that G¿¡ ar'd H¿¡ in eqn (6.12)

are the Fourier harmonic of the displacement and traction Green's functions of an

undisturbed transversely isotropic elastic haif space as expressed by eqns (5.25)-

(5.3i) when rn : I; u¿ is the specified Fourier harmonic of displacements on

the curve ^9 as given by eqn (6.10) and l; denotes the Fourier harmonic of the

corresponding tractions.

To compute l¿ corresponding to displacements u¿ from the boundary integral

equation (6.72), the curve,9 is discretized into M eqtal intervals. It is assumed

that the displacements and tractions are constant within a discretized segment.

In view of the above assumption, the integrals involving the Green's functions

in eqn (6.12) can be integrated analytically wiih respect to x over a discretized

interval of ^9. Then, the equaion (6.72) can be expressed in the following matrix

form

jr"+Hu:GT

( 7, x inside I/
crj(x):Itlr, xonS

\0 xoutsidel/

-1T:G-t(=I+H)u'2 ' /

737

(6.14)

where I is a unit matrix; u denotes the displacement vector with its elements

being the displacements at, M node points on ,9 as specifi.ed in eqn (6.10). In ad-

dition, T denotes the nodal traction vector corresponding to the specified nodal

displacement vector. The elements of the matrix H and G are obtained by inte-

grating the traction and displacement Green's functions over discretized intervals

of S. The size of H and G matrices is 3M x 3M for the transverse problem. A

solution for T can be obtained from eqn (6.14) as

(6.15)



It is noted that the displacement vector u in above equation can be easily ex-

pressed in terms of the displacement A¡¡ and rotati on ós of the point o. once

the traction vector T is obtained from eqn (6.1b) in terms of A¡¡ and /r, the

impedances of a rigid cylindrical inclusion can be calculated by using appropri-

ate equilibrium equations similar to those given by eqns (6.2)-(6.4) for the 2-D

problems.

6.5 IMPEDANCES OF RIGID CYLINDRICAL FOUNDATIONS

First, the numerical stability and accuracy of the direct boundary integral

equation method are studied by varing the number of nodal points M on the
generating surface S. The evaluation of elements of Green's function matrices II
and G appearing in the eqn (6.15) follows procedures identical to that presented

in Section 5.8. Table 6.4 presents a convergence study of numerical solutions for

impedances Kv,/{¡¡ and K u of. a rigid cylindrical foundation with respect io the

number of node points M. A cylindrical foundation with a length-radius ratio

hf a : 1.0 embedded in an isotropic half space is considered. The convergence test

is conducted at normalisedfrequency øo:1.0. Table 6.4 also presents the solutions

of impedances reported previously by Apsel and Luco (1gg7) by solving eqn (6.12)

with x selected on a contour s' which is outside Iz (Fig 6.s). It is evident

that the results obtained by the present solution scheme are numerically very

stable and are in close agreement with those reported by Apsel and Luco (1982).

Next, the accuracy of the present numerical solutions for impedances Kv,Ku
and Km is investigated by considering different hf a ntios and ø6 values. For

example, Table 6.5 presents numerical solutions for impedances of a cylinder with
hf a :1.0 at frequenc! a6-0.2b,0.2b,1.b,2.0 and corresponding solutions given by

Apsel and Luco (1987). Table 6.6 presents the impedances of rigid cylinders with
hf a:0.25,0.5 and 2.0 at frequency ¿o:1.0 and. corresponding solutions given by

Apsel and Luco (1987). Comparison of the numerical results presented in Tables
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6.5 and 6.6 further confirms the numerical accuracy, stability and reliability of

the present boundary element scheme in the analysis of soil-structure interaction

problems.

Numerical solutions for impedances of rigid cylindrical foundations embedded

in selected anisotropic elastic soils are presented in Figs 6.9-6.12. The materials

considered in this study are silty clay, beryl rock, ciay I and an isotropy. The

relevant material constants are given in Tabie 1.1.

It is noted that the real part of vertical impedance, ie. Re(Ky), decreases

smoothly as the frequency ø6 increases (0 < as < 2.0) for rigid cylinders with

hf a:0.25,0.5 and 1.0. However, for the cylinder with hf a:2.0,, Re(Ky) decreases

in the range 0 I øo < 0.8 and thereafter increases with increasing frequency. The

general trend of variation of Re(Krz) wiih ø6 is found to be similar for all four

materials although the actuai magnitudes of Re(Kv) are considerably different

for different types of soils. The influence of the degree of material anisotropy

is also clearly evident on the profiles of Re(Ky). The largest Re(Ky) is found

for a cylinder embedded in beryl rock followed by cylinders embedded in clay,

isotropic material and silty clay. The profiles of imaginary part of Ky show a

linear variation with øs within the range 0.0 < as 1 2.0. The influence of the

material anisotropy on Im(Ky) is found to be relatively smaller but has the same

order as Re(I{y). In fact the influence of material anisotropy on Im(Ky) can

be ignored if hlø > 1.0. A comparison of the order of magnitudes of .I{y with

the values of material constants given in Table 1.1 indicates that the influence of

material anisotropy is mainly reflected by the value of the normalised material

constant ca3.

The real part of horizontal impedance Ka is found to be almost independent

of ø¡ in the case of rigid cylinders with hla < 0.5 embedded in the four types

of materials. However in the case of rigid cylinders with hl" 21.0, Re(Ks)

gradually decreases with ø6 in the range 0.0 < as 1 2.0. The imaginary part
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of. Ka shows a near linear variation with øo within the frequency range under

consideration. This behaviour is similar to that observed earlier for Im(Kv).

The influence of material anisotropy is clearly noted in both real and imaginary

parts of. Kn. The largest influence of anisotropy is found on Re(K¡1) of a cylinder

embedded in silty clay followed by Re(K¡¡) corresponding to cylinders embed-

d.ed in clay, isotropic material and beryl rock. However, Im(K¡1) shows lesser

dependence on the degree of material anisotropy than Re(Ks) eventhough the

influence of material anisotropy on Im(I{a) follows the same order as that for

Re(K¡1). It is found from a comparison of the order of the profiles of -I{¡¡ and

the values of normalised, material constants in Table 1.1 that the nondimensional

material constants c11 controls the influence of material anisotropy on K¡7.

It is noted from Figs 6.9-6.12 that the Re(K¡a) decreases gradually with

øs within the range 0.0 < ao 12.0 for rigid cylinders with hla < 2.0. The

shape of the profiles of Re(K¡a) are almost identical for the four materials' The

influence of material anisotropy is clearly noted on the profiles of Re(K¡a) and

shows a behaviour similar to that of Re(Ky) for shorter cyiinders (hla ll0.5).

For hf a > 1.0, fhe Re(KM) of a cylinder embeddedin silty clay shows atrend

which would result in a value larger than the corresponding value for a cylinder

embed.ded in beryi rock. Therefore it is noted thai for hlo> 1.0, the influence

of material anisotropy on Re(Kø) cannot be related to a particular value of. c¿¡'

A linear variation with the frequency is observed for the profiles of Im(K¡a) for

¿o ) 0.6. Im(K¡a) shows a non-linear variation with øo if ¿o < 0.6. It is also

observed fhat Im(KM) of short cylinders (hl" < 1.0) shows lesser dependence on

the degree of material anisotropy. Generally the order of magnitudes of Im(K¡v¡)

profrles is found. to be similar to that for Re(K¡a)'

It is noted that in the case of shorter cylinders (hl" < 0.5), Re(K¡1¡a)

initially increase with øs in the range of 0 ( øo I 1.0 and then decreases with

increasing øs. However for h:"2.!.0, Re(Kaø) is found to gradually increase
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with ø6 within the frequency Iange und'er consideration' Re(Ks7'7) also shows

a strong d,epend,ence on the degree of material anisotropy' The highest influence

of material anisotropy on Re(K¡¡M) i, noted for a cylinder embedded in silty

clay and followed by cylinders embedded in an isotropic material' beryl rock and

ciay. The same ord.er of influence of the material anisotropy is also observed on

the profile s of Im(K¡1¡a) evenlhough the influence is much less visible in this

case.Inad'd'itionlm(I{¡1¡y1)decreaseslinearlywitha¡infrequencyrangeunder

consideration. Comparison of the order of magnitude of the profi'les of KnU

and the normalised material values in Table 1'1 indicates that the influence of

material anisotropy on Knut is governed by the ratio 1/(õ1t - ctz)'

6.6 CONCLUSIONS

A solution scheme is presented. for the analysis of dynamic response of rigid

strip foundations and rigid cylindrical found'ations embedded in anisotropic e-

lastic soils. The indirect bound.ary integral equation method based on exact

elastodynamic Green's functions of an und,isturbed orthotropic soil is used in

the analysis of rigid strip foundations. However, the direct boundary integral

equation method is used in the case of rigid cylindrical foundations to demon-

strate the applicability of the direct method" Numerical solutions for verticai'

horizontal, rocking and coupled. impedances of embedded strip foundations with

rectangular and semi-circular cross-sections and rigid cylindrical foundations are

presented. These solutions indicate that the impedances significantly depend on

the frequency of excitation, degree of anisotropy of soil and' the geometry of the

foundation. The variation of real part of impedance with the frequency is gradual

and non-oscillatory whereas the imaginary part shows near linear variation with

the frequency for all types of soils. Naturaily the magnitudes of real and imagi-

nary parts of imped.ances of the foundations are found to increase with increasing

depih of embedment. Within the frequency range 0.0 < as 12.0, the influence of
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degree of anisotropy of soil on the vertical and rocking impedances is found to be

controlled mainly by the normalised elastic modulus ca3. In the case of horizon-

tal impedance the influence of soil anisotropy is governed mainly by õlr. It can

be also concluded that the degree of material anisotropy has lesser influence on

the imaginary parts of impedances when compared to the real parts. Solutions

for impedances also indicate that at high frequencies the influence of anisotrpy

on impedances could not be related to a single elastic modulus. Impedances

of the active foundation of two semi-circular strip foundation system show that

the presence of an adjacent foundation significantly changes the response. These

solutions indicate significant differences in magnitude and shape of impedance

profiles when compared to single foundation solutions. It is also noted that the

influence of soil anisotropy on impedances is very complicated in this case and

cannot be related to a single elastic modulus.

The solutions presented in this study clearly indicate the importance of the

consideration of soil anisotropy in the analysis of dynamic response of found.ations.

The methodologies used in this study can be extended to study the dynamic

response of rigid foundations embedded in layered anisotropic media without any

fundamental difficulty.

742



Table 6.1 Convergence of irnpedance of a rigid strip with number of node points

(hlb : t.0,,cfb- 0.1,øo : 1.5, z : 0.3)

(M', M) Kv I{a I{u
16, 24) (0.45, 2.59) (0.64, 2.54) ( 1.49, 1.58)

(16, 32) (0.45, 2.59) (0.64, 2.53) (1.48, 1 .58)
(20, 40) (0.46, 2.60) (0.63, 2.52) (r.47, 1.58)

case .I (0.47, 2.60) (0.66, 2.41) (r.44, 1.51)

case 1: Apsel and Luco (1gg7)

Table 6.2 Convergence of impedance of a rigid strip foundation with the location

of source contour S' (hlb - 1.0, ao : 1.5,u -- 0.3, M' : 76, M :32)
(c: clb) I{v I{n I{¡ø

0.075 (0.42, 2.52) (0.59, 2.43) (1.37, 1.51

0.10 (0.45, 2.59) (0.64, 2.53) (1.48, 1.58)

0.r25 (0.45, 2.62) (0.62, 2.54) ( 1.45, 1 .59 )

0.1 50 (0.45, 2.62) (0.62, 2.55) r.45, 1.57)

Table 6.3 Comparison of impedance of a rigid

of another identical unloaded foundation

u :0.3, M' :16,lvI : 32)

strip foundation in the presence

(hlb:0.5,d - 6.0, cf b:0.7,

øo : 0.1 øo : 0.1 ao : 1.0 øo : 1.0 ¿o : 1'5 ¿o : 1.5

case I case I I case I case I I case 1 case 11

I{v (0.41,0.31) (0.41, 0.29) (0.60, r.42) (0.55, 1.37) (0.34,2.28) (0.37,2.23)
I{s (0.43, 0.29) (0.42,0.27) (0.62, 1.25) (0.66, 1.2r) (0.68, 1.79) (0.65, 1.71

I{ pt (1.15,0.01) (1.11,0.01) (0.98, 0.58) (0.99, 0.54) (0.8i, 0.86) (0.79, 0.80)

case ,I: present study
case 11: Rajapakse and Shah (1988)
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Table 6'4 Convergence and comparison of impedances of a rigicl cylincie¡ rvith
nurnber of node points (hla :1.0, as - 1.0, u :0.25)

(M) I{v l{a I{v
r0 (7 .52, 1 0. 61 ) (9.28, 11.01) (1 1.37, 5.16)
13 (7.34, 10.45) (9.31, 11.01) (11.37, 5.i5)
15 (7.29, 10.40) (9.29, 10.99) 11.26, 5.16)
T7 (7.25, 10.38) (9.26, 10.96) (rr.25, 5.16)
20 (7.24, 10.37) (9.24, 10.94) (Ir.25, 5.16)

Apsel & Luco (7 .57, 10.79) (9.30, 11. i 3) (11.3i, 5.32)

Table 6'5 Comparison of impedances of a rigid cylinder with diffe¡ent frequen-
cies (hla - 1.0, u:0.25,M : l5)

A6 0.25 0.75 r.50 2.0
I{v case I 8.44,2.68) (7.82,7.96) (7.11,16.07) (6.76,22.0r)

case ll 8.25.,2.73) (7.86,8.02) 6.94,16.57) (6.44,22.70)
I{a case I (9.73,2.90) (9.46,8.30) (8.82,16.49) (8.39,22.18)

case II (9.57,2.96) (9.46,8.39) (8.90,16.57) (8.49,22.70)
I{u case I (13.58,0.58) (11.93,3.35) (10.57,8.84) (9.98,12.46)

case II (i3.44,0.75) (11.85,3.51) (10.60,9.03) (10.1 1 ,r2.76)

case I: present study; case II: Apsel and Luco (1987).

Table 6.6 Comparison of irnpedances of a rigid cylinder rviih varied hf a
(oo:1.0,y:0.25)

h I a(M) 0.25(10) 0.50(12) 2.0(17)
I{v case I /- -^ - a-\(o.fz,ð.òrj (6.34.7.36) (9.63,17.70)

case II (5.99,6.10) (6.59,7.55) (9.70, 17 .92)
Iia case I (6. 16,5.0 i ) (7.48,7.02) (12.37,19.96)

case II (6.27,5.14) (7.47 ,7.09) (12.45,20.06)
I( ¡rr case I (4.46,1.02) (6. r 7,1.88) (28.68,24.22)

case II (4.52,1.09) (6.20,1.96) (28.69,24.67)

Apsel and Luco (1987).case present siudy; case
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Figure 6.1 Geometry of an arbitrary shaped rigid strip fundation
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cylinclrical cavity

Figure 6.8 Elastic half space with a cylindrical cavity
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Chapt er 7

AN EXACT STIFFNESS MATRIX METHOD FOR

MULTI-LAYERED MEDIA

7.1 GENERAL

An exact stiffness matrix method is presented in this Chapter to compute

displacements and stresses of a multi-layered transversely isotropic elastic medi-
um. It is noted that once the displacements and stresses corresponding to a buried
point load are computed then different types of boundary-value problems related
to layered domain can be solved by using the boundary integral equation method
as illustrated in Chapters 3 and 6. The analytical general solutions derived in
Chapter 2 for 3-D static problems and in Chapters 4 and b for elastodynamic

problems can be used to construct exact stiffness matrices for a layer and an

underlying half space.

In the classical matrix approach used to compute the response of layered

systems the general solutions derived in Chapters 2, 4 and 5 are used. for each

layer and a set of linear simultaneous equations based on the boundary conditions

at the top surface and continuity conditions at layer interfaces are established to
determine arbitrary coefficients corresponding to each layer in the layered system

shown in Fig 7.1. It is noted that for a2-D problem, the general solution involves

four coefficients for a layer and two coefficients for the underlying half plane re-

sulting in a total of 4I/ t 2 arbitrary coefficients. Similarly for a 3-D problem six

coefrcients are encountered for each layer and three coefficients for the underlying
half space resulting in a totai of 6,n/ * B arbitrary coefrcients. If the multi_layered

domain has two or more different materials and the loading is applied internal-
ly then the algebraic equation system can not be solved analytically. However,

the simultaneous equation system can be solved numerically for discrete values
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of Fourier transform parameter for 2-D problems or Hankel transform parame-

ter for 3-D problems. Thereafter the general solutions can be used to compute

displacements and stresses by using numerical integration procedures. Thomson

(1950) presented a matrix decomposition of the simultaneous equation system by

taking into consideration the block diagonal form of the system. A systematic

numerical implementation of Thomson's procedure for layered media was given

by Haskell (1953, 1960). The Thomson-Haskell algorithm becomes numerically

unstable due to the presence of certain exponential terms.

As an alternative to the classical approaches based on the determination of

layer arbitrary coefficients, a numerically stable exact stiffness matrix approach

is presented in the ensuing sections to evaluate the static and dynamic response

of a multi-layered transversely isotropic elastic haif plane/space. In the present

method the exact general solutions of a homogeneous transversely isotropic elastic

rnedium are used to explicitly construct layer and half space stiffness matrices

which describe the relationship between the integral transforms of displacements

and stresses at the surfaces.

Without loss of generality, the ensuing sections concentrate on the devel-

opment of the exact stiffness matrix method for time-harmonic response of a

multi-layered orthotropic half plane and a multi-layered transversely isotropic

half space subjected to axisymmetric excitations. Selected numerical results for

displacements and stresses of mulii-layered half planes as well as half spaces are

presented in this study to portray the influence of layering, degree of material

anisotropy and the frequency of excitation on the response. The stiffness matrix

formulations can be readily extended to study three-dimensional static, time-

harmonic and transient responses of layered media by using the general solution

presented in Chapters 2 and 5.



7.2 2-D TIME-HARMONIC STIFFNESS MATRICES

Consider a multi-layered transversely isotropic elastic half space with a total

of l/ layers of finite thickness. The layers and interfaces of the multi-layered

region are labelled as shown in Fig 7.1. The material constants, mass density

and thickness of the nth layer are denoted AV 
"Íî), 

p@) and. å,,, respectively. Let

û[") denotes the Fourier transform of displacements of the nth interfa"" .rd o¿(iì

""d ãg) denote the Fourier transform of stress components o¿¡ at the top and.

bottom surface of the nth layer, respectively. Then, the following relationships

can be established for the nth layer of the system shown in Fig 7.7 by using the

general solution presented in Section 4.3.

¡(n) - 6(').(n)

6@) : p(z).(')

(7.1)

(7.2)

(7.3)

(7.4)

(7.5)

where

irØ) :q ¡r@) "y) tl@+l) tr@+r) ,r

a@ :< aLT"\ õt:), ôt""\ aLT) ,"
u@) :q ¡@) g(n) g(") p(n) ur

/ -t"t,ln -@lêt,n -r"|,'n -@2ê2,n \
] "r,t" €r,, ";,:, €2,, 

I

| -t"r,'r*, -Øt€t,n+7 @zel,1r+t -@2€2,n+7 I
\ "t,lr+t et,n+t el,7r+t €2,n+r /

G(') :

F(') : ca¿

-1T4€2,n
_1

Taez,n
_1

-TEez,i+t
_1

-\aez,n+t
r:ï*,)

_1

/ nset,i -\z€r,n
I nu";,1 \5€7'n

| -nt"¡,t *1 \3€r,n¡t
I -r\ -?s er,rr+ t -Tet,n+t

(7.6)

(7.7)

i:7,2; i:7,2r...,N+I
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In eqn (7.5), A@),8@),C(") and D(") denote the arbitrary coefficients corre-

sponding to the nth layer where zn-t 1 z S zn. In addition coefficients ø¿,(¿(i:
1,2) and n;(i : 7,2,...,6) appearing in eqns (7.6), (7.7) and (7.8) are defined by

eqns (4.24), (4.26) and (4.23), respectively.

In view of eqns (7.1), (7.2), (7.6) and (7.7), the layer stiffness matrix K(')
which describes the relationship between the ú(") and õ(') corresponding to the

nth layer can be expressed as

6.@) - 1ç(z)¡(,) (7.e)

where

K(') : symm.llc¿¡1, i,i : I,2,3,4 (7.10)

(7.71a)

(7.71b)

(7.Ltc)

(7.17d)

(7.tza)

(7.72b)

-6c44 ,,ø: ffl(-' + -ùQ3. - 1) - 2@2(^1.^2, - 1)l

6c¿+,,
nz: ffl(-t + ø2)ø2(À1, - 1) -2ø2ø1(À1,À2, - 1)]

6c++ ,,ns: ffl(-t + ø2)À1"(À], - 1) -2ø2À2n(À1,À2, - 1)l

-6c44 ,,p4 : 
Ë[(-t + ø2)ø2À1n(^3" - 7) - 2ø1ø2À2n(À1nÀzn -

-6cnn,,or : ff[(-, + -r)(À?.- 1) - 2ø1()1-À2, - 1)]

(7.13ø)

(7.13ó)

(7.13c)

i)l (7.13d)

Q.laa)

ktj : t¡lnt(p¡ I q¡À:-") + \4(sj + d¡À2")1,

kzj : l¡lrtu(p¡ - q¡Àn) * na(g¡ - d¡Àt.)],

kss : kr.,, ksE: -ktz
1^ _1^rú44 

- 
N22

J

j

: tr2r3r4

:2rSr4

Ài'-:e-6Ê;l'n, i:Ir2

lj :7, j :2,4; Lj : -7, j : L,3

and the parameters pi, gi,t g¿, d¿(i : I,2,3, 4) are defined as
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9z

9t

9+

Qt

Çz

8s

Q+

d,1

d2

d"s

d4

in which

6coo -.: l[(-r + øz)øt(^?" - 7) -2ø2ør()r,À2" - 1)]

6c¿¿ ,,: ;[(-t + ø2)À2"(\1, - 1) - 2øtÀ1,,(À1,,)2" - 1)]

-6c¿a ,,: Ë[(-t + øz)øtÀr,(À?, - 1) - 2ø1ø2)qn(À1,À2, - 1)]

-6c¿¿: 
--il l@, + øz)Àt,.pt * 2øz),znct - 1]
@t-@z

6c¿¿: * [(-t + øz)Àtnpz l2øz)'zncz - øz]
@t-@z

-6caa: 
- Ël@t + øz)Àtnps { 2ø2À2ncsl
@t-@z

6c¿n: *l@, + øz)\tnp+ * 2ø2À2ncaf'w7 - u)2
ç^

: #12ø1À1ny * (-,, | ø2)À2nc, - 1]@r-@2

-6coo: 
--*12ø1À1np2 

t (-, | ø2)À2ncz - øtl@t-Ø2
6coo: :Ë [2ø1À1nps * (-, | ø2)À2ncs)ør-@2

: -jÍ!-[2ø1À1npa * (-, f ø2)À2.ca]
@t-@z

F : 4øtøz(À1n\2n - r)' - (-t + -r)'(^?" - iXÀ;" - i)

(7.14b)

(7.Lac)

(7.74d)

(7.15ø)

(7.15ó)

(7.75c)

(7.r1d)

(7.i6ø)

(7.16ó)

(7.76c)

(7.16d)

(7.17)

At this stage it is important to note that the layer stiffness matrix K(")

is a function of only the layer thickness, layer material properties, frequency of

excitation and the Fourier transform parameter (. The elements k¿¡ are functions

of. ø1,@2,,TÌi(i:7,2,...,6) and ),¿n(i:1,2). All these functions are nu.merically

very stable and K(') is found to be a well-conditioned matrix for all values of (
and h.,r. Unlike Thomson-Haskell technique there are no squared large exponential

terms that must vanish identically in the numerical evaluation. Only negative

exponentials that decrease rapidly with increasing ( or hn are involved in k¿¡.

For the underlying half plane, the general solutions involve only two coeffi-

cients 4(N+t¡ and C(N+l) due to the regularity condition for displacements and
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stresses at z -+ oo (physically it is equivalent to the condition that rigid body

displacements are removed). The stiffness matrix of the bottom half plane can

be expressed as

;(N+r¡ :1ç(N+r¡O(N+1) (7.18)

where

;(n+t¡ :. aL!r*r) 6@r+t) ur

¡(N+t¡ :a tt**t) ¿(N+t) u'r

1ç(N+t) - -, (7.2r)

and
6caa ttç2-ql (7.22)

the expression of

frequency of ex-

9t: (-t - -r)'
Ot:

rcã€z

7.3 GLOBAL STIFFNESS JVIATRIX

The global stiffness matrix of the multi-layered half plane is assembled by

using the layer stiffness matrices and continuity condition of stresses o* artd

o* at layer interfaces. For example, the stress continuity conditions at the nth

interface can be expressed as,

< tõt:;') + õL',)rl lõt:;') + ãt:ll >r:< ñ?) ñ?) ,, e.2s)

where p:") i" the Fourier transform of the externally applied traction in the i-

direction (i: n,z) at the nth interface.

(7.1e)

(7.20)

( Oß - nn) sr[(" - 1X1 - (') + o€r€z]\
\ "yrnrn. (-rnu - @2T15) )

It is noted that exponential terms are not involved in

1ç(lr+l¡ and its elements depend on the material properties,

citation and the parameter (.
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The consideration of eqn (7.23) at each layer interface together with eqns

(7.i0) and (7.21) results in the foliowing global equation system.

r-----lI K(r)_ j___.l
L - -r- -y(z) 

I

L___ J

-(1)uà'
- (1)
u>'

ñf)
þt')

ø!N+1)
-(N+1)p,

(7.24)

i- 
"-,gi-lL - i¡!'1*"

The global stiffness matrix of eqn (7.24) is a well-conditioned symmetric

matrix and has a fixed band width equal to 4. It is naturally constrained against

rigid body displacements due to the presence of K(¡¡+t). If a half plane is-aot

present at the bottom then the bottom plane at z : e¡¡ has to be restrained

to eliminate the rigid body displacements. In the numerical evaLuation of the

response of a multi-layered half piane the eqn (7.24) is solved repetitively for

discrete values of Fourier transform parameter ( and the response is calculated

by numerically evaluating Fourier integrals given by eqn (4.6b). Stresses at the

top and bottom interfaces of a layer can be obtained by using eqns (7.9) and

the corresponding general solutions. If displacements within points in a layer is

required then it is convenient to define a set of fictitious planes through these

points and to consider these as additional layers. Alternatively eqn (7.1) can

be used to comput" a(") for a layer and therea,fter compute displacements using

the corresponding general solutions. This, however, may involve numerically i11-

conditioned matrices such as G(') for large values of (. If loads are applied within

a layer then fictitious interfaces are considered at the loading levels. It is also

noted that the eigenvalues of the stiffness matrix in eqn (7.24) correspond directly

to the lvave numbers (or velocities) of the surface v/aves of the layered system

and the eigenvectors are the corresponding displacements at iayer interfaces. In

addition the size of the final equation system [ie. eqn (7 .24)] is equal to 2(N * 1)
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which is nearly one-half of that corresponding to the classical approach based

on the solution of layer arbitrary coefficients ¡@),9("),C@) and E@). This

reduction of the size of final equation system together with the symmetry of the

system and the fact that the displacements are directly determined as the basic

unknowns further add to the computational efficiency of the formulation.

7.4 AXISYMMETRIC TIME-HARMON]C ST]FFNESS X4ATR]CES

This Section presents the derivation of stiffness matrices of a multi-layered

transversely isotropic half space (Fig 7.1) subjected to axisymmetric time-harmo-

nic excitations. The general solution for axisymmetric displacements and stresses

of a homogeneous transversely isotropic medium can be obtained from the general

solutions given in eqns (5.13)-(5.17) for a 3-D time-harmonic problem. It is noted

that in the axisymmetric case r¿:0 and .E : F :0 in the solutions given by eqns

(5.13)-(5.17). fet nl")(;: r,z) denote the Hankel transform of displacement

component" ul") ""d än?ì ""a {;)ç;,j:r,z) denote the Hankel transform of

stress components o¿¡ at the top and bottom surface of the nth layer, respectively.

A set of equations similar to eqns (7.1) and (7.2) can be established for the

axisymmetric problem by introd.ucing the following equations of ü('),;(''), ç(')
and F(').

¡(,z) :q ¿(n)

ö(") :< öl
_1

/ atet.i
I '-t

- I -a7 ê7,n

- | -lI atet,r+t
\ -1\ -øz er,n+I

ir?) ¿(n+t¡ ¿("+t) ,r

:l üt:), üt:) ;lTl ,'
(Lret,n 

"r";::, 
a2€z,n

A7 €l ,n -AAeZ,n Ctr8€2,n

-1úl9l,n+I A2A2,n+l AZe2,n*

a7 a!,n+r -aael,lr+t cL8€2,n¡

bst€7,, -bsze|,l-
b2t€\,n bzzel,l,

-bstet,n+t bszel,l,-+t

-bz1€t,n+t -bzz"l,I,.+t rï,:r,)

(7.25)

(7.26)

(7.27)ç(")

r 
-l/ -onet.i

I b,,",,',

I uut 
"r,1^+,

\ -bn et,7,+t

L64

FØ) : c++ (7.28)



The coefficients ø1 ,a2,a7,aBrbz7,,b22rbs1ald ó52 appearing in above equations are

defined in eqn (5.17); e14 and ê2n a.te defined eqn (7.8), respectively.

The relationship between ü(') and ö(') corresponding to the nth layer can

be expressed by eqn (7.9). The elements k¿¡ of the layer stiffness matrix for the

axisymmetric time-harmonic problems are given by

ktj : lbut(q¡\r- - pj) * b52(d.¡À2. - 9¡)1, j : !,2.,3,4

kzj : lbrr(p¡ * q¡À:-) + bzz(g¡ + d¡\2.)], i : 2,3.,4

ksj : lbut(p¡Àr" - qj) + bur(g jÀr. - d¡)], j :3,4

k++: -lbrt(pnÀtn + q4) * b22(gaÀ2. + d4)]

(7.zea)

(7.zeb)

(7.2ec)

(7.zsd)

where )1r, and À2n are as defined in eqn (7.tZa) and the parameters pi¡gi.¡di¡gi

(i:1,2,,3,,4) are defined as

Pt:

nt:

Ps:

P+:

9r:

9z:

9s:

94:

8t:

6c¿+ ,,
ffl@r", * atas)(Àt,Àr, - 1)or - 2a2as(À2, - t)"rl (7.30ø)

6c¿+ ,,
ffl@r", I atae)(Àt"Àr, - !)o, - 2a2as(\7. - t)"tl (7.30b)

6cnn ,,

ffl@r", I atat)(Àt,Àr, - 7)asÀ2n - 2a2as(^'r- - 7)a7 À1.](7.30c)

6c¿a ,,
f [("r", * ø1as)(À1 ,,Àz," - 7)a2À2n - 2a2as(^7" - 1)ø1À1"](7.30d)

6coo -.

ff[("r", * ø1øs)(À1,-Àz,- - 7)o, - 2qø7(À2r, - 1)or] (7.37a)

6c¿¿ ,,
ffl@r", I atae)(Àt,Àr, - \)ot - 2ap7(À?, - t)"rl (7.31¿r)

6cnn ,,
ffl("r", * atas)(Àt,Àr, - 7)a7 À1,' - 2ap7 (À?, - t)otÀ2,] (7.31c)

6c+¿ ,,
ffl@r", f ø1øs)(À1 ,,Àz,- - 1)ø1À1,, - 2ap7(\1. - t)a2À2.)(7.3Id)

^^7 ^^l-(oror*ae(rt)Àr",p, -2a6a2À2ng1] (7.32a)
4,10,9 - A2A7

1

_ l-(oro, * aea1,)Àr-p, - 2asa2À2,g2] (7.32b)
øtAA - AZÛZ'

1

las - (a7az I aaat)Àt,pr - 2asa2),2ngs] (7.22c)
ATCIA - AZAZ -

8z:

Çß:
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8+:

dt:

dz:

dt:

d+:

1 
la2 - (a7a2 + d'8at)^7î¿p4 - 2asa2À2nga)

dlClg - A2A'7

1 
l2a7a1Àt.,,pt I (a7a2 I aeat)\r.gr]

AICIy - A2O'7

1 
l2a7a1\tnpz * (a7ø21 aea1.)Àr,gr]

alÛg - 0'247

1 
l2a7a1)'1nps i (a7a2 i aaat)\r..,g, - or)

alClg - A2A7

l2a7 a1\tnp+ I (a7 a2 i aaat)Àr-gn - otl
A7A6 - A2a7

6(N+r) : r, ( ,'::r;#., s,l@ - 1)(1 -_r",)u|i''*,)

gr: , !-, 9z- {z - €t

(o, - oz)' nã€z

(7.32d)

(7.33ø)

(7.33ó)

(7.33c)

(7.33d)

in which

f : l(a2az I atøs)(À1,À2,, - 1)]' - 4a1a2a7os(À?' - 1XÀ?" - 1) (7'34)

For the underlying half space, the relationship between displacements and

stresses at the interface can be expressed by eqn (7.1S)' The relevant displacement

and stress vectors and the stiffness matrix are given by

;(N+r) :< öl!r*t) 6@r+t) ur

ü(N+1) :< ü!n+t) ¿(u+r) ,r

(7.35)

(7.36)

(7.37)

where
(7.38)

The global stiffness matrix of the multi-layered axisymmetric problem can be

obtained by considering the boundary and continuity conditions of o,, aÍtd o'"

at layer interfaces and foilowing the same solution procedure as that presented in

section 7.3 for a layered plane system. The global solution equation system for

this axisymmetric problem can be expressed in eqn (7.24) with the displacement

vector and the external ioad vector being defined as
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and

(7.40)

respectivetv. þÍ") is the Hankel transform of the externally applied traction in the

i-direction (i: r,z) at lhe nth interface. Once again the axisymmetric global

stiffness matrix, as that for a 2-D problem, is a well-conditioned symmetric matrix

with a band width equal to 4.

The layer stiffness matrix of a layer and an underlying haif space can be de-

rived under three-dimensional excitations. The relevant three-dimensional generai

solutions for displacement and stress for a transversely isotropic medium subject-

ed to static and dynamic loads are given in Chapters 2 and 5, respectively. Explicit

derivation of stiffness matrices for 3-D problems are not attempted here since the

concepts are identical to those encountered in 2-D problems. However, in 3-D

problems the layer and half space stiffness matrices are of the size 6x6 and 3x3

respectively and consequently the elements of matrices become algebraically more

complicated. However, all algebraic manipulations can be effectively handled by

a suitable computer algebra code.

7.5 NUMERICAL SOLUT]ONS

7.5.1 Numerical Scheme

Computer codes based on the preceeding analysis have been developed to

evaluate the dynamic response of multi-layered transversely isotropic elastic half

planes and half spaces. The tasks performed by the computer codes can be

described as ø) the computation and assembly of stiffness matrices corresponding

to each layer and the underlying half plane/space of the multi-layered system

to establish eqn (7.24) for a specified value of the integral transform parameter

(; ó) the solution of eqn (7.24) to obtain the interlayer displacement vector in

the integral transform domain and c) the evaluation of the Fourier and Hankel

167



integral transforms integrals by using an adaptive version of Filon's numerical

integration scheme (Tranter 1956). Note that once the values of û¿ (or ü¿) and

ã¿¡ (or ä¿¡) corresponding to a certain elevation (ie. z-coordinate) are computed,

thereafter the displacements and stresses at any arbitrary epicentral distance (ie.

r-coordinate for a 2-D problem and r-coordinate for a axisymmetric problem)

at that elevation can be computed simply by using the relevant inverse integral

transform formulae.

In accordance with reality, materials are assumed to be attenuating [ie. com-

plex c¿¡ or a, B and rc which may be frequency dependent] as in Chapters 4 and 5.

This also results in the path of integration (ie. real (-axis) free of any singulari-

ties. This technique with one percent complex part has been used in the present

study to evaluate all integrals.

The numerical stability and the accuracy of the present stiffness matrix tech-

nique have been verifled through the comparison with the explicit analytical so-

lutions for a homogeneous orthotropic half plane and a transversely isotropic half

space presented in Sections 4.8 and 5.8. A homogeneous half plane consisting

of beryl rock under a uniformly distributed load of intensity Çs and width '2ø'

applied at a depth 'ø' below the free surface and a homogeneous beryl rock half

space under a patch load of radius ø applied vertically with a depth ø below the

free surface are considered for this purpose. The half plane/space a e discretized

by using two models; the first model has 10 layers (uniform thickness hla:0.5)

with an underlying half plane and the second model has 25 layers (hla:Q.l) .vr¡i¡¡

a bottom half plane/space. Comparison of numerical results corresponding io the

two multi-layered models with those explicit solution presented in Sections 4.8

and 5.8 shows less than one percent difference.

7.5.2 Numerical solutions for multi-layered plane problems

In this study, selected numerical results corresponding to five layered sys-

tems are presented. The properties of different materials considered in the nu-
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merical study are given in Table 1.1. The thickness distribution of the first set

of layered systems considered in the numerical study is given in Table 7.1. The

three layered systems defined in Table 7.1 arc subjected to vertical and hori-

zontal uniform strip loads of intensity 96 and width '2o.'. This problem can be

considered as an approximation of the response of a flexible strip footing on lay-

ered anisotropic soils and pavement systems subjected to dynamic loadings. The

numerical results are presenied in terms of nondimensional displacements (com-

pliances) uî¡(*, z) : u¿¡(r, 
")rLtì l@qo),where u¿¡ denotes the displacement in the

i-direction (i: x,z) due to an applied load acting in the j-direction (j: t,r)

""d "!tn) 
is the moduli caa of the top layer (Fig 7.1). A nondimensional frequency

ø6 defined âs û,6 : o,ulp\ lct')lt lt *h"re pG) is the mass density of the top layer

is also used.

Figures 7.2 and 7.3 show the influence of frequency of excitation over the

range 0.5 < ø6 ( 3.0 on displacements uf,, and ul" at the centre point of a u-

niform strip loading applied at the surface (" :0) and at a depth 0.5ø below

the surface, respectively. The frequency range 0.5 ( ø6 ( 3.0 is selected since

most machine foundation vibrations are in this range (Gazetas 1983). The strong

influence of layering on the response is clearly noted in Figures 7.2 and 7.3. Com-

parison of displacements corresponding to the three soil systems indicates that

it is very difficult to relate the influence of degree of anisotropy of materials in

a Ìayered system to the features of the response. System 1 is a homogeneous

orthotropic medium and the real and imaginary parts of displacements ul, and.

u!" vaty smoothly with the frequency. In the case of the two layered systems

the variation of displacements with the frequency shows considerable oscillations

especially for the imaginary parts. The real parts of the displacements generally

decrease with the frequency for all three systems under both vertical and horizon-

tal loadings. Imaginary parts of the displacements increase with the frequency for

the homogeneous soil (system 1) but do not follow a definite trend for the other



two systems due to oscillatory variations. Comparison of Figures 7.2 and 7.3

indicates that the real parts of displacements for all three systems are higher for

surface loading when compared to buried loading. On the other hand, imaginary

parts of displacements are higher for the buried loading case when compared to

the surface loading indicating more geometric dissipation under buried ioading.

However, the general features of compliance profiles shown in Figs 7.2 and 7.3 are

quite similar.

The next set of solutions corresponds to two layered systems encountered in

computing and electronic devices. The response of a SiC substrate with a AlzOs

layer and an aluminum substrate with a nylon layer under a time-harmonic ver-

tical concentrated load applied at coordinate origin (Fig 7.1) is studied. Figure

7.4 shows the variation of nondimensional displacement uf,,(: O+t, where

Po is the magnitude of the concentrated load and lzlis the thickness of the lay-

er) with the horizontal distance at the surface (z:0) and at the material in-

terface. Solutions are presented for three values of nondimensional frequency ø¡

l: hp(p(\) ¡"\1)ytz1. As can be seen from Fig 7.a@) Relui"(O,0)l is singular near

the origin of the coordinate system for all frequencies due to the fact that load-

ing is applied at the coordinate origin. Surface and interface displacements show

relatively smooth variation with the horizontal distance for both layered systems.

In the case of Al2Os/SiC system normalised displacements are higher than that

corresponding to nylon/aluminum system. Comparison of material properties

given in Table 1.1 indicates that the nylon/aluminum system can be considered

as a fl.exible fiIm on a rigid substrate due to the large difference between material

moduli of the two materials. In fact, it can be seen from FigT.ab that the interface

displacements of nylon/aluminum system is very close to zero for all three values

of frequency. In addition, the surface displacements of nylon/aluminum system

is significant only near the loading region l*lhl< 1.0 indicating the presence of

more or less a conically deformed region which is characteristic to a point loaded

,tÌr:

tì':

770



very flexible layer on a rigid substrate. On the other hand, AI2OB/SiC system

shows more gradual distribution of the displacements with the horizontal distance

and the presence of significant interface displacements.

Figure 7.5 shows the shear and normal stresses along the material interface

of AIzOg/SiC and nylon/aluminum system under a vertical concentrated load

of magnitude Po applied at the origin. It is noted from Fig 7.5 that the shear

stress along the interface is negligible for nylon/aluminum system for all three

frequencies. Significant shear stresses are noted along the interface of 41203/SiC

system. The real part of normal stress along the interface of nylon/aluminum

system is generally larger than that of 41203/SiC. It is also noted that imaginary

part of the normal stress is nearly zero for nylon/aluminum system indicating

that the loading and the normal stress along the interface are nearly in-phase. A

significant imaginary component is noted for normal stress along the interface of

Al2Os/SiC system. In general the amplitude of interface vertical stress is higher

for the nylon/aiuminum system when compared to Ai203/SiC system since the

former behaves as a flexible layer on a rigid substrate. On the other hand, more

shear stress are generated in the 412O3/SiC system due to the higher vertical

displacement gradients (in z-direction) that exist along the material interface.

The variation of interface stress with the frequency is quite smoother in the

case of nylon/aluminum system but shows complicated oscillatory behaviour for

.{1203/SiC system. Generally the magnitudes of both real and imaginary parts of

stress increase with increasing frequency in the case of nylon/aluminum system.

The solution presented in Figs 7.4 and 7.5 are useful in the study of flaws and

characteristics of material interfaces by using non-destructive testing methods.

7.5.3 Numerical solutions for multi-layered axisymmetric problems

Next, a homogeneous and two multi-layered transversely isotropic half spaces

defined in Table 7.! are considered under time-harmonic axisymmetric loadings.
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The applied loading is assumed to act vertically and uniformly distributed over

a circular area of radius of ø with intensity qs. In practice, this problem can

be considered as the simulation of a flexibie footing on a layered elastic soil.

A nondimensional displacemenl ul,(r,z) and a nondimensional frequency ds âs

defined in Section 7 .5.2 arc used.

Figure 7.6 shows the influence of frequency of excitation over the range

0.5 < øo ( 3.0 on displacement u), at the centre point (r :0) of an uniform

patch loading applied at the surface (z :0) and at a depth 0.5¿ below the sur-

face, respectively. The strong influence of layering on the response is clearly noted

in Figure 7.6. Comparison of displacements corresponding to the three soil sys-

tems indicates that it is very difñcult to relate the influence of degree of anisotropy

of materials in a layered system to the features of the response. System 1 is a

homogeneous transversely isotropic medium and the real and imaginary parts of

displacemenlsuf,, vary smooihly with the frequency. In the case of the two lay-

ered systems the variation of displacements with the frequency show oscillations

especially for the imaginary parts. The real parts of the displacements generally

decrease with the frequency for all three systems. Comparison of the present re-

sults indicates that the real part of displacements for all three systems are slightly

higher for surface loading when compared to the buried loading.

7.6 CONCLUSIONS

A stiffness matrix method based on exact analytical general solutions for elas-

todynamics of layered transversely isotropic system is presented to compute dis-

placements and stresses of a multi-layered orthotropic elastic half plane subject-

ed to arbitrary time-harmonic loadings and a multi-layered transversely isotropic

half space subjected to axisymmetric time-harmonic loadings. The Fourier and

Hankel transform of displacements at layer interfaces are considered as the basic
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unkno\Mns in the analysis for plane and axisymmetric problems respectively. Ex-

plicit solutions for stiffness matrices of a layer with a finite thickness and a half

plane/space are presented. An adaptive version of Filon's numerical integration

is used to numerically integrate the Fourier and Hankel integrals encountered in

the analysis. The present method has the advantage that the stiffness matrices

involve only negative exponentials and other numerically stable terms. In addi-

tion the size of the final equation system is nearly one-half of that corresponding

to the conventional matrix approach based on layer arbitrary coefficients and has

a band width equal to four. Selected numerical results presented in this study for

five different layered systems indicate that the response of a layered anisotropic

medium depend significantly on the frequency of excitation, degree of anisotropy

of materials, thickness of layers and the configuration of layering. The response is

governed by a complex combination of above parameters and it is difficult to filter

the influence of each parameter on the response. The present method can be ef-

fectively used to compute the kernel functions (Green's functions) required in the

application of boundary integral equation method for layered anisotropic media.

It can be also used to verify the accuracy of approximate stiffness methods such

as those proposed by Waas (1980), Kausel and Peek (1932) and other numerical

techniques. With the aid of computer algebra codes the present methodology

can be extended to develop a highly stable and computationally effi.cient stiffness

matrix approach for evaluation of static, time-harmonic and transient responses

of layered isotropic and anisotropic half-spaces under three-dimensional loadings.
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Table 7.1: Thickness distributions of multi-layered systems

Layer thickness
system No hr hz h3

1

(hl")
oo

(layered soil)
,

(hl")
0.3

(layered soil)
0.7

(beryl rock)
oo

(isotropic)
D
t)

(hlo)
1.0

(layered soil)
1.0

(beryl rock)
oo

(isotropic)
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Chapter I
CONCLUDTNG R,EMAR,KS

8"1- CONCI,USIONS

In this final Chapter, the major conclusions of the present study are sum-

marised. It should be mentioned here that separate conclusions are presented at

the end of Chapters 3-7 based on the analysis and numerical solutions presented

in those Chapters. The following are the major findings and conclusions of the

present study.

1) Equations governing static and dynamic (time-harmonic and transient) de-

formations of a homogeneous transversely isotropic medium can be solved

by using appropriate integral transform techniques. Fundamental solution-

s corresponding to buried loadings and displacement jumps can be derived

explicitly for a homogeneous transversely isotropic elastic half space. These

solutions are expressed in terms of semi-infinite integrals with oscillatory in-

tegrands which are singular at certain points within the range of integration.

2) It is found that the integrands of the semi-infinite integrals encountered in

the fundamental solutions corresponding to internal loadings are very com-

plicated and these integrals cannot be evaluated by analytical means in most

cases. It is also found that the semi-infinite integrals encountered in 2-D

and 3-D problems can be evaluated accurately by using Filon's integration

scheme and the extended trapezoidal rule respectively. Negligible material

attenuation is used in all numerical calulation to facilitate numerical integra-

tion along the real axis of the integral transform parameter. The numerical

inversion scheme proposed by Hosono is found to yield accurate solutions for

transient problems.

3) The exact stiffness matrix method developed in this study results in an accu-

rate and numerically stabie algorithm to compute fundamental solutions for
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multi-layered media. Unlike the conventional algorithm based on the deter-

mination of layer arbitrary coefficients, the present method involves matrices

which contain only negative exponential of the transform parameter and re-

quires lesser computational effort due to the presence of a banded symmetric

matrix which is nearly half the size of that encountered in the conventional

algorithms.

4) Numerical solutions presented in this study for homogeneous transversely

isotropic media indicates that in the case of static and low frequency dynam-

ic loadingr (oo < 2.0) the influence of material anisotropy on vertical and

horizontal displacements (or stiffnesses) are governed mainly by nondimen-

sional material constants õ33 and õ11" Numerical solutions corresponding to

dynamic problems indicates that at high frequencies the response is governed

by a complex combination of the degree of anisotropy and the frequency of

excitation. Material anisotropy has a relatively lesser influence on stresses

when compared to displacements. In the case of layered transversely isotropic

media the influence of material anisotropy on the response cannot be related

to a single material coefficient.

8.2 SUGGESTIONS FOR FUTURE WORK

The comprehensive set of Green's functions together with the boundary ele-

ment code presented in this thesis can be applied to analyse a variety of interesting

problems. However, only a few such problems were considered here due to obvi-

ous reasons. It is suggested that problems related to a single piie, pile groups)

transient response of rigid footings, wave scattering by cavities and cracks in

anisotropic media, interface fracture problems etc. be analysed by using the tools

developed in this thesis. In addition, transient fundamentai solutions presented

in Chapters 4 and 5 for homogeneous media should be further investigated by

using analytical techniques to obtain time-domain solutions. Such solutions a¡e
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very useful in the interpretation of seismic data and signal profiles in NDE meth-

ods. Finally, the exact stiffness matrix method presented in Chapter 7 should

be extended to compute 3-D fundamental solutions for multi-layered transversely

isotropic half spaces.
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