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ABSTRACT

This thesis presents a complete solution package for the analysis of elasto-
static and elastodynamic boundary-value problems related to linear elastic multi-
layered transversely isotropic materials. Equations governing static and dynamic
(time-harmonic and transient) deformations of a transversely isotropic medium
are solved by using appropriate integral transform techniques. A set of analyt-
ical general solutions for displacements and stresses corresponding to 2-D and
3-D problems are presented explicitly for static and dynamic loading problems.
Thereafter, 2-D and 3-D fundamental solutions (Green’s functions) corresponding
to buried static and dynamic loadings acting inside a homogeneous transversely
isotropic half space are derived explicitly. Analytical solutions are also present-
ed for a transient displacement jump located inside a homogeneous transversely
isotropic half space. It is noted that by taking appropriate limits fundamental
solutions for a transversely isotropic elastic full space can be easily derived from
the half space solutions. An exact stiffness matrix method based on analytical
general‘ solutions are presented to compute fundamental solutions corresponding
to a multi-layered transversely isotropic elastic half space. The stiffness matrix
method involves only negative exponential of integral transform parameter and
it is found to be free from the numerical deficiencies associated with algorithms
reported in the literature. Some characteristics of the fundamental solutions are
investigated and the numerical evaluations of the fundamental solutions is also
discussed. Selected numerical results for displacements and stresses correspond-
ing to buried loadings are presented to portray the influence of the degree of
material anisotropy, configuration of layering and other governing parameters on

the response.

A versatile boundary element code based on the Green’s functions derived in
this study are presented to analyse displacement, traction and mixed boundary-

value problems related to homogeneous and multi-layered transversely isotropic

i




media. Several boundary-value problems (eg. statics and dynamics of rigid inclu-
sions, pressurised cavities, non-linear interface problem, load transfer problems
etc.) are solved to demonstrate the applicability and accuracy of the bound-
ary element code. Selected numerical results for quantities such as stiffness and
impedances of embedded inclusions and load transfer profiles along the length
of an embedded elastic bar are presented to portray the influence of material
anisotropy and other governing parameters on the response of complicated inter-

action problems.
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Chapter 1

INTRODUCTION

1.1 GENERAL

In recent years, there has been a considerable growth in the use of anisotrop-
ic materials for a wide range of advanced engineering applications. Anisotropic
materials encountered in engineering applications are either fabricated materi-
als such as fibre-reinforced plastics, Aluminum alloys etc. or natural materials
such as geomaterials, precious metals etc.. Stress analysis problems related to
anisotropic materials are encountered in a number of fields ranging from modern
technologies such as electronic packaging to traditional fields such as geophysics
and engineering seismology. The fundamental characteristic of an anisotropic ma-
terial is the directional dependence of its material properties. On the other hand,
mechanical properties of an isotropic material are directionally independent. The
directional dependence of mechanical properties of anisotropic material can be

effectively used to achieve an efficient engineering design.

It is noted from a linear stress-strain relationship that an anisotropic mate-
rial in its most general form has twenty-one independent elastic constants (Gould
1983). However, such a general form of anisotropy has very limited scope in en-
gineering analysis due to the large number of elastic constants required to define
the material. On the other hand, most anisotropic materials (fabricated and nat-
ural) possess planes and axes of material symmetry which reduces the number
of independent elastic constants appearing in the stress-strain relationship. For
example, the presence of a single plane of symmetry reduces the number of inde-
pendent elastic constants to thirteen and the resulting material is identical as an
monoclinic material. The presence of two planes of symmetry reduces the number
of independent elastic constants to nine and the resulting material is known as an

orthotropic material. A material which possesses an axis of symmetry is called a
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transversely isotropic material. The number of independent material coefficients
in this case is reduced to five. The introduction of a rotational symmetry with
respect to two perpendicular axes results in directional independence of material
constants and the resulting material is isotropic and has only two independent

material constants.

Since the pioneering work of Boussinesq (1895), Lamb (1904) and Mindlin
(1936) several researchers have developed analytical and computational methods
for linear and non-linear stress analysis of isotropic materials. To provide the im-
proved science base needed for the development of a wide range of applications of
anisotropic materials attention has been focused recently on the development of
advanced theories and solution algorithms for stress analysis of anisotropic mate-
rials under static and dynamic loadings. Among the different types of anisotropic
constitutive relations, the transversely isotropic model has received wide attention
due to its simplicity and also its ability to model the response of fibre reinforced
composites, crystals, metals and geomaterials (material constants for a number
of typical transversely isotropic materials are listed in Table 1.1). This thesis
is concerned with the static and dynamic stress analysis of homogeneous and
multi-layered transversely isotropic materials. In the ensuing sections, a concise
review of literature related to stress analysis of transversely isotropic materials is

presented in order to define the objectives and the scope of the present thesis.

1.2 LITERATURE REVIEW

1.2.1 Fundamental Solutions for Homogeneous Transversely Isotropic

Materials

Elliott (1948), Hu (1954), Eubanks and Sternberg (1954), Lekhnitskii (1963)
and Green and Zerna (1968) presented the early studies on elastostatics of a
transversely isotropic medium. These authors presented potential function repre-

sentations to derive general solutions for classical elastostatics and also considered
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some basic stress analysis problems. Later, Chen (1966) and Pan and Chou (1976,
1979) presented solutions for point forces acting inside a transversely isotropic full

space and on the surface of a transversely isotropic half space.

The elastodynamic response of a homogeneous transversely isotropic medium
has also received attention. Stoneley (1949) investigated the types of elastic waves
propagating in a transversely isotropic medium. Later, Synge (1956) studied the
propagation of Rayleigh type surface waves in a transversely isotropic medium
and proved that the Rayleigh waves exists only if the free-plane surface of the
material is parallel or perpendicular to the material axis of symmetry. Buchwald
(1961) derived the displacements in terms of double-Fourier integrals due to sur-
face waves radiating from a given harmonic source on the surface. Asymptotic
solutions were also presented by considering the contribution from poles of the
integrand of Fourier integrals. Kraut (1962) solved the case of a transversely
isotropic elastic half plane subjected to a suddenly applied line load, and studied
in details the response of beryl crystals. A book by Payton (1983) refers to the
majority of the existing studies related to transversely isotropic media; it also
presents an elegant mathematical treatment of transient response due to impul-
sive point forces applied on the surface of an elastic half plane or inside an elastic
full space. In addition to above studies, Barnett and Lothe (1974) and Chadwick
and Smith (1977) presented thorough investigation on the nature of governing
equation and existence of surface waves in anisotropic materials including the

special case of transverse isotropy.
1.2.2 Fundamental solutions for Layered Transversely Isotropic Systems

The study of static and dynamic response of multi-layered transversely
isotropic media is very useful to several disciplines such as geomechanics, com-
posites, non-destructive testing etc.. The consideration of different materials and
layers of different thickness in a multi-layered domain results in formidable diffi-

culties in obtaining an explicit analytical solution. A number of semi-analytical
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and numerical methods have been developed over the last 40 years to evaluate
the response of isotropic multi-layered media. It should be mentioned here that
the majority of existing work dealing with multi-layered media are concerned
with dynamic problems due to extensive applications found in geophysics and
theoretical modelling of non-destructive testing methods. Dynamic problems al-
so involves more complications in the numerical evaluation of the response and
the concepts developed for dynamic analysis can be readily extended to static
problems. The earliest approach to study dynamics of layered isotropic media
is the transfer matrix method developed by Thomson (1950) and Haskell (1953,
1960, 1962). A procedure similar to the transfer matrix method was also reported
independently by Pestel and Leckie (1963). The Thomson-Haskell technique has
significant drawbacks in the numerical implementation due to the presence of cer-
tain exponential terms. Improved formulations were developed later by Knopoff
(1964), Gilbert and Backus (1966), Watson (1970) and Schwab (1970). A finite
element type approximation has been proposed by Wass (1972, 1980) and Kausel
and Peek (1982) to determine the response of an isotropic multi-layered medi-
um. In this approach the medium is divided into a number of thin layers within
which the displacements are assumed to vary linearly. In addition the impedance
of the underlying half space region is computed by using further approximation-
s. A comprehensive and rigorous treatment of Green’s functions of an isotropic
layered medium has been presented by Luco and Apsel (1983) and Apsel and
Luco (1983). Applicability and accuracy of these Green’s functions in boundary

element analysis has also been reported in the literature (Apsel and Luco 1987).

It is noted that studies related to the statics and dynamics of multi-layered
anisotropic media are very limited. Gerrard and Harrison (1971) used a direc-
t numerical procedure based on analytical general solutions to compute static
response of layered transversely isotropic media. Only Seale and Kausel (1989)

presented an extension of the thin layer method (Waas 1972, 1980 and Kausel
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and Peek 1982) to study the dynamics of a multi-layered transversely isotropic

elastic half space.

1.2.3 Boundary-Value Problems

The majority of problems encountered in engineering applications of trans-
versely isotropic materials involve complicated boundary and loading conditions
such as the cases of rigid inclusions embedded in anisotropic materials, cavi-
ties under arbitrary loading, dynamics of foundations and piles in anisotropic
soils and theoretical model used to simulate problems in geophysics and non-
destructive testing of materials etc. The review of existing literature indicates
that only problems involving highly idealised conditions have been treated in
the past. For example, Freedman and Keer (1972) extended the dual integral
equation formulations presented by Karasudhi et al (1968) to study the time-
harmonic response of a rigid strip on an orthotropic half plane. Gazetas (1981)
analysed the same problems by using a semi-analytical method. Selvadurai (1979,
1980, 1982) has investigated by analytical means a series of problems related to
interaction between a statically loaded penny-shaped rigid disc and a transverse-
ly isotropic medium. Selvadurai (1984), Tsai (1984) and Saxena and Dhaliwal
(1990) considered crack problems related to a transversely isotropic material by
using analytical procedures. Zureick and Eubanks (1988), Zureick (1989) and
Heinrich (1991) considered problems related to spheroidal inclusions/cavities in

a transversely isotropic medium.

As mentioned earlier, above studies are based on analytical techniques that
need to be developed separately for each type of problem. Analytical procedures
are elegant and insightful when compared to numerical procedures such as the
finite element method. In special cases such as wave propagation problems, the
finite element solutions are found to be inaccurate and inefficient when compared

to analytical solutions (Luco 1982). Analytical techniques, on the other hand, has

the disadvantage that the solutions can be developed only under idealised geomet-
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ric configuration and boundary and loading conditions which are not very useful
in practical situations. The boundary element method (Rizzo 1967; Banerjee and
Butterfield 1981; Brebbia et al. 1984; Kobayashi 1984; Beskos 1987) can be con-
sidered as a good compromise between analytical methods and the finite element
technique to special conditions such as radiation conditions for wave propagation
problems and singularities in stress fields of fracture mechanics problems. These
problems can be treated rigorously in the boundary element method by using
appropriate Green’s functions. In problems related. to layered elastic half spaces
the boundary element method is also found to be computationally efficient than
the finite element method. Although the boundary element method has been
applied very successfully to problems related to isotropic elasticity, heat transfer,
fluid flow etc., it has been rarely used to analyse problems in anisotropic elas-
ticity. According to author’s knowledge, only two existing studies (Kobayashi et
al 1986, Vable and Sikarskie 1988) are concerned with boundary element tech-
nique for anisotropic materials. Kobayashi et al (1986) studied the response of a
transversely isotropic elastic half space subjected to transient surface loading by
using the full space Green’s function given by Payton (1982). Vable and Sikarskie
(1988) considered elastostatic stress analysis of orthotropic plane problems by
using the boundary element method. In author’s opinion, the main reason for
the lack of progress in the development of advanced boundary element codes for
the analysis of a wide variety of practically useful boundary-value problems is
the unavailability of a comprehensive set of Green’s functions for transversely

isotropic materials.

1.3 OBJECTIVES OF THE PRESENT STUDY

Based on the above literature review it is evident that a comprehensive treat-
ment of static and dynamic Green’s functions of homogeneous and multi-layered

transversely isotropic media has not been reported in the literature. In addition,
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the development of comprehensive boundary element computer codes capable of
solving a variety of boundary-value problems related to homogeneous and multi-
layered transversely isotropic media has also not been reported in the literature.
Only idealised boundary-value problems such as the interaction between rigid
disc and homogeneous transversely isotropic media have been considered in the
past. In view of these observations the present thesis is directed towards the de-
velopment of a complete solution package for Green’s functions of homogeneous
and multi-layered transversely isotropic media and the development of computer
codes based on the boundary integral equation method for analysis of a wide
variety of boundary-value problems. In order to achieve this goal, the following
objectives are defined:

1. Derivation of explicit analytical solution for three-dimensional elastostatic
Green’s functions of a homogeneous transversely isotropic elastic half space.
Implementation of the Green’s functions in a computer code based on the
indirect boundary element method for analysis of displacement, traction and
mixed boundary-value problems.

2. Derivation of explicit analytical solutions for two-dimensional and three-

dimensional dynamic (time-harmonic and transient) Green’s functions of a

homogeneous transversely isotropic elastic half space. Development of accu-
rate numerical procedures for evaluation of Green’s functions and the imple-
mentation of Green’s functions in the boundary element code.

3. Development of a computationally efficient and numerically stable exact s-
tiffness matrix procedure to numerically evaluate two- and three-dimensional
Green’s functions of multi-layered transversely isotropic half spaces.

4. Solutions of transversely isotropic elastic half spaces under selected internal

loadings and the solution of selected boundary-value problems to investigate

the influence of degree of anisotropy and other parameters on the response.




Tablel.1: Material constants (&; = ¢;j/caa)

511 512 C13 Cs3 C44(104MN/TTZ2)

Silty clay 2.11 0.43 0.47 2.58 2.70
Beryl rock 4.13 1.47 1.01 3.62 1.00
L/S layered soil 4.46 1.56 1.24 3.26 1.40
Clay I 4.70 1.70 1.20 3.30 0.01
Clay II 4.60 1.60 0.90 2.60 0.01

Isotropict 3.00 1.00 1.00 3.00 0.99997

Apatite 2.52 0.20 1.00 2.11 6.63
Beryllium 1.80 0.16 0.09 2.07 16.20
Beryl 4.22 1.49 1.04 3.71 6.68
Cadmium 7.05 2.59 2.46 3.01 1.56
Cobalt 4.07 2.19 1.36 4.74 7.55
Ice(257K) 4.22 2.03 1.62 4.53 0.32
Hafnium 3.25 1.38 1.18 3.54 5.57
Magnesium 3.61 1.57 1.30 3.74 1.64
Rhenium 3.78 1.67 1.27 4.22 16.20
Titanium 3.47 1.97 1.48 3.88 4.67
Thallium 5.59 4.85 3.97 7.23 0.73
Yttrium 3.21 1.20 0.82 3.16 2.43
Zinc 4.17 0.78 1.26 1.57 3.96

E composite? 3.17 1.40 1.11 10.04 0.47
G composite? 2.02 0.68 0.07 21.17 0.41
Composite 1 1.99 0.99 0.44 11.15 7.80
Composite 2 2.00 1.00 0.86 23.00 0.07
AL O; 6.76 2.86 2.86 4.90 5.0
SiC 2.97 0.56 0.33 3.34 16.9

nylon 2.52 0.90 1.56 7.69 0.0666

1: v=0.25, u=1.0
2: E glass/epoxy composite
3: Graphite/epoxy composite




Chapter 2

ELASTOSTATIC GREEN’S FUNCTIONS

2.1 GENERAL

The derivation of displacement and stress Green’s functions corresponding
to statically applied circular ring loads acting in the interior of a transversely
isotropic elastic half space is considered in this Chapter. Initially, a set of gen-
eral solutions are derived for equations governing elastostatic deformations of a
transversely isotropic elastic medium by using Fourier expansion and Hankel inte-
gral transform with respect to circumferential and radial coordinates, respectively.
These general solutions are used in the solution of boundary-value problems relat-
ed to Green’s functions. In the derivation of Green’s functions, ring loads acting
in radial, circumferential and vertical directions are considered. The circumfer-
ential distribution of the radial and vertical ring loads is of the form cosm# and
that of the circumferential load is sinmf. Green’s function solutions presented
in this Chapter appear in terms of Lipschitz-Hankel integrals involving products
of Bessel functions of the first kind. These Green’s functions will be used as

the kernel functions of the boundary integral equation formulation presented in

Chapter 3.

2.2 CONSTITUTIVE EQUATION

Consider a transversely isotropic elastic medium, with a Cartesian coordinate
system (z,v, z) and a cylindrical polar coordinate system (r, 8, z) chosen such that
the z-axis is parallel to the material axis of symmetry and normal to the stress
free-surface as shown in Figure 2.1. The mechanical response of a transversely

isotropic elastic medium is governed by five elastic constants c11, ¢12, c13, ¢33 and
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cas which relate stresses and strains referred to a rectangular Cartesian coordinate

system in the following manner (Lekhnitskii 1963):

Ozz = Cl1€zz + C12€yy + C13€5, (2.1a)
Oyy = Cl2€zz + C11€yy + C13€,; (2.10)
Ozz = C13€z5 + C13€yy + Caz€ss (2.1¢)
Ozy = (€11 — C12)€sy (2.1d)
Oyz = 2C44€y; (2.1€)
Ozz = 2C44€z (2.1f)

Alternatively, the stresses and strains referred to a cylindrical polar coordinate

system are related in the following manner:

Orr = C11€rr + C12€00 + C13€5; (2.2a)
099 = C12€rr + C11€09 + C13€22 (2.2b)
2z = C13€rr + C13€00 + Cazess (2.2¢)
ore = (€11 — c12)€rp (2.2d)
06; = 2C44€0; (2.2¢)
Ory = 2C44€r;, (2.2f)

In geotechnical engineering practice Young’s moduli E, and Ej, Poisson’s
ratios vph,vhy and v, and the shear modulus G, are often used (Desai and
Christian 1977) in place of the elastic moduli ¢;; in eqn (2.1) or (2.2). Here,
Ey and E, are Young’s moduli with respect to directions lying in the plane of
isotropy (zy-plane) and perpendicular to it (z-axis); vpp is the Poisson’s ratio that
characterizes the transverse reduction in the plane of isotropy for the tension
in the same plane; v, is the Poisson’s ratio that characterizes the transverse

reduction in the plane of isotropy for the tension in a direction normal to it; and
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G.h is the shear modulus for the plane normal to the plane of isotropy. The

five elastic constants Ej, Ey, Vs, Vhy and Gyp are related to ¢;; in the following

manner:

_ (c11 — c12)(ci1e33 + cr2e33 — 2¢%;)

2
C11€33 — €3

Ey

(2.3q)

2
c11€33 + C12€33 — 2¢i3
c11 + C12

2
C12€33 — Cy3

E, = (2.3b)

(2.3¢)

2
C11€33 — €3
Cis3

= —————— 2.3d
vh c11 + €12 ( )

th = C44 (236)

Vo[ En = Vhy [ Ey (2.3f)

The positive definiteness of strain energy requires the following constraints

(Payton, 1983) on material constants c;;:

c11 > |612[> (611 -+ 012)033 > 2633, cqq > 0. (24)

A set of nondimensional material parameters «, 3, k,y and ¢ are introduced

as defined below to simplify subsequent algebraic manipulations:

o = (c13 + 644),
Ca4

(2.5a)

. (011 - C12)

7= 1+O[,3—l€2,
2¢44

(2.5b)

2.3 GOVERNING EQUATIONS AND GENERAL SOLUTIONS

It can be shown that (Green and Zerna, 1968), in the absence of body forces,

the displacement and stress fields in a transversely isotropic linear elastic medium
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subjected to a state of asymmetric deformations about the axis of elastic sym-
metry can be expressed in terms of three potential functions ¢;(r,6,2),7 = 1,2,3

which are solutions of

2
V24 il 6,) =0, i=1,2,3 (2.6)

where V? is a linear differential operator defined as,

% 10 1 62

2_————- —— — —
Vi= or? +r6r +7‘2892

(2.7)

zi =z[\/vi, 1=1,2,3 (2.8)

In eqn (2.8), ¥4 and vy are the roots of the following equation

B —yv+a=0 (2.9a)

_ 1tV —daf - \/y?—4ap (2.95)
- 28 ’ 2 28 '

Vi

vs=1/¢ (2.10)

The roots v; and v, may be real or complex conjugates depending on the values
of the elastic constants ¢y1, ¢13, cas and cqq. Since the displacements and stresses
must be real, the potential functions ¢; and ¢, are complex conjugates when 14
and v, are complex and in addition it is necessary to specify that V1 and /vy

always have positive real parts.

The displacement and stress components referred to a cylindrical polar co-
ordinate system can be given by:

1 0¢3

r 06

04
or

Uy = —aa—z(kﬂﬁl + ka2¢2) (2.11¢)

uo= T2 (§1+ 1) - (2119)
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8 2
o? 32 2 8?

Y 6? o aj;]~ [52(¢1+¢2)+—(

9% 0% ¢y
= Mvi—F— 822 5 + Aavg——- 82%

216’2 10 128 2 9° H*
:ZF&M“T%X o)t Gt e )t

()\1\/_(%1 +/\2\/—5¢2 1 3 b3

Z9 ) \/% 37‘323
_ 941 Do
= E(Al\/ﬁazl + /\2\/_

5(;32 0 15¢3

2= 207 = D+ ) - 200
1 3¢3

SR LW | (2120)

—) (2.125)
(2.12¢)

(2.12d)

(2.12¢)

11 0%
\/V3 T 000z3

) + (2.12f)

i — 1 1+k; .
L RV Y i=1,2 (2.13)
K V;

In order to determine general solutions for potential functions ¢;(r,6,2),

» = 1,2,3 governed by eqn(2.6) the following representation is used:

pi(r,0,z) = Z [$im(r, z) cosmb + ¢F, (r,z)sinmb], i=1,2 (2.14a)
m=0

¢3(r,8,2) = Z [¢3m(r, z) sinmb — ¢35, (7, z) cos mb)] (2.14b)

m=0
where ¢;m (i = 1,2,3) yield deformations which are symmetric with respect to
6 =0 and while ¢¥,(: =1,2,3) correspond to antisymmetric deformations for
the mth harmonic. In the subsequent analysis only the symmetric components
$im (i = 1,2,3) are considered without loss of generality. It is noted that the
solutions corresponding to ¢, (¢ = 1,2,3) can be obtained by making the substi-

tutions @im — ¢7,,(i = 1,2,3),cosmf — sinmé and sinmb — — cosm#, respec-

tively.




Since the problems under consideration involve domains that extend to in-
finity in the radial direction, it is natural to introduce Hankel integral transform

(Sneddon 1951) with respect to the radial coordinate as,

bim(X, 2) =/ Gim(ry 2)Jm (Ar)rdr (2.15a)
0
Bim (r, 2) = / $im(A, 2)Tm(Ar)AIN  i=1,2,3 (2.15b)
0
In eqn (2.15), Jmn denotes the Bessel function of the first kind of order m; \ is
the Hankel transform parameter.

Substitution of eqn (2.14) and eqn (2.15) to eqn (2.6) together with the
orthogonality of trigonometric function result in the following general solutions

for the mth Fourier harmonic of the three potential functions:

bim(r,2) = /0 Oo[Aim(/\)e’\z‘+Bim(/\)e‘)‘z"])\,]m()\r)d)\, i=1,2,3. (2.16)

where A;, () and Bim()) are arbitrary functions to be determined by using given

boundary conditions.

Equations (2.11) and (2.12) together with eqns (2.14) and (2.16) represent the
complete general solutions of displacements and stresses for arbitrary asymmetric

deformations of a transversely isotropic elastic medium.

2.4 BOUNDARY-VALUE PROBLEMS

In the derivation of Green’s functions, a set of ring loads with radius ‘s’ act-
ing in radial, circumferential and vertical directions are considered as shown in
Figure 2.2. The circumferential distribution of the radial and vertical ring loads
is given by cosmf and that of the circumferential load is sinmf. The explicit
solution for the Green’s functions can be derived by defining a fictitious plane

at the level of loading (z = 2') as shown in Fig 2.1 and treating the internally
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loaded half space as a two-domain problem (Chan et al. 1974 and Selvadurai
and Rajapakse 1985). In view of the prescribed circumferential distribution of
the three ring loads only the term corresponding to the mth Fourier harmonic
in eqn (2.14) needs to be considered. The general solutions corresponding to
each domain are given by eqns (2.11) and (2.12) together with eqn (2.16). The

Fourier harmonic of the displacements and stresses in each domain is denoted by

(J)(z =r0,2;7 =1,2) and a(]) (6,1l =r,0,z;7 = 1,2), respectively. The super-
script j denotes the domain number where domain ‘1’ is bounded by 0 < z < 2/

and domain ‘2’ by 2’ < z < co.

The boundary and continuity conditions corresponding to the three boundary

value problems involving the internally-loaded half space can be expressed as,

Z(;,)n(r 0)=0, i=rb,z (2.17)
(rz) (rz)-() i=r,0,z (2.18)
Z(;)n(r 2"y — z(zzn(r ZY=F;, i=r0,z. (2.19)

For the radial loading case,

Fr.=6(r —s) (2.20a)
Fp=F,=0 (2.200)

where the ¢ denotes Dirac’s delta function. For the circumferential loading,

F,=F,=0 (2.21a)

Fop = 6(r — s) (2.21b)
For the vertical loading,

F,=Fy=0 (2.22qa)

F, = §(r —s) (2.22b)




Substitution of general solutions for displacements and stresses given by eqns
(2.11), (2.12) and (2.16) together with eqns (2.17)-(2.22) yields a set of linear
simultaneous algebraic equations to determine the arbitrary functions A(] )(/\)
and Bz(fn)()\) (: =1,2,3;7 = 1,2) corresponding to the two domains. Note that
Agfrz()\) = 0 to ensure the regularity of displacements and stresses for domain ‘2’

when z — oo.

2.5 DISPLACEMENT GREEN’S FUNCTIONS

The explicit solutions for displacement Green’s function G7%(r, z; s, 2') denot-
ing the mth Fourier harmonic of the displacement in the i-direction (i = r, 6, 2)
at the point (r,z) due to a ring load in the j-direction (j = r,0,2) through the
point (s, 2") with circumferential variation cosm#8 for j = r, z and sinm#é for j =

can be expressed in the following form:

Tr(rzsz)—plzdgjl(m 1,m+1;0)—Ii(m+1,m+1;0)
J=1
—Ii(m —1,m —1;0) + Ij(m + 1,m — 1;0)]

8
+ iz Z 4m2d3jf;-‘(m, m;—2)/s
=

6
Gou(r,z;8,2') = — iy Zdegj[I;(m,m +1;-1) = I} (m,m — 1;-1)]
=1

8
— iz Y 2mds;[Ij(m + 1,m; —1) — I;(m — 1,m; —1)] (2.23b)
§=1

6
Gh(r,z;8,2') = 2[i1 k1 ks Zdzj[fj(m,m +1;0) — Ij(m,m — 1;0)] (2.23¢)
=1

Gro(r, z;8,2") ,ulZZmdgj m—1,m;—=1) — I;(m + 1,m; —1)]
+ fi Z 2mds;[I7 (m,m + 1; 1) — If(m,m — 1; —1)]
J=7
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6 8
Go(r,z;8,2') = —jiy Z4m2d3jf;‘(m,m; —2)/s — o Z[Ij(m +1,m + 1;0)

i=1 =1

= Ii(m —=1,m+1;0) = [j(m 4+ 1,m — 1;0) + I;(m — 1,m — 1;0)] (2.24b)

6
m(r,z;8,2') = 2[i1 k1 ko Z 2mdo; I;(m, m; —1)

=1

6
Gl (r, z;8,2') = 2/ zdlj[Ij(m —1,m;0) — I;(m + 1,m;0)
i=1

6
Go (r,z;8,2') = =21 Z2md1j]';‘(m,m; ~1)
=1
6
Gl (r, z;8,2') = 4jiy Z vida;I;(m,m;0)

J=1
where

S S+/V3 1
M1

N 8caa(ky — k2)’ M= 8o 117 k1 — k2

1 14k

/'L2:\/V—2_\/ﬁ7 N3:\/V_1+\/£7 /‘L4zl+k2

/ —
di = dyy = —dyy = —dpy = ——
]
diz = dig = —dp3 = ~dgy = H2 3
dis = —dasky [ k1 = —2p0/v1 /s
die = —dask1/ky = —2puop4/v2
d3; = kz\/ﬁ, dspy = —k1\/1/—2, d33 = M2#3k2\/77?
d3s = papski/va, dss = —2us\/v1v2/ s
dse = —2puapakor/v1vy, dsr =dss =1
din = —dyo =1, das =dsa = —popus
das = 2pa/V1/pa,  dag = 2uapa\/v2
Fa
I (m,n; 1) = Ij(m,n; 1) /7

vy = 7 =13,5; v; =

B
vZu
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(2.24¢)

(2.25a)

(2.25b)

(2.25¢)

(2.27q)
(2.270)
(2.28q)
(2.285)
(2.29q)
(2.290)
(2.29¢)
(2.30a)
(2.300)

(2.31)

(2.32a)




Li(m,m; 1) = Ij(m,n;1)/s, j= 1,2,...,8 ' (2.32b)

and I; are in the form of Lipschitz-Hankel integrals involving the product of Bessel

functions of the first kind and can be expressed as

Ii(m,n;p) = /0 ” T (AF) T (As)AP e~ Az1=71 g\ (2.33a)
Li(m,n;p) = /0 B Tm(Ar)Jn (As)APe~Az2 =22l g\ (2.33b)
I3(m,n;p) = /000 T (Ar) T (As)APe~AZ1H21) g ) (2.33¢)
Li(m,n;p) = /0 B Tin(Ar)Jn(As)APe~A(z2+22) g ) (2.33d)

Ts(m, s p) = / Ton(AP) T (As)APe=A(1H25) 1 (2.33¢)
0

Ts(m, n; p) = / Tm(Ar) T (As) AP M +22) gy (2.33f)
0

To(m, s p) = / Ton(Ar) Tu(As)APe=M25= 1 g (2.33¢)
0

To(m, m;p) = / T (AP T (As)APe=Mz+25) gy (2.33h)
0

For the case where deformations are also axisymmetric (m=0), ring loads are
considered only in the r- and z-directions and the displacement in the §-direction

is equal to zero. The relevant displacement Green’s functions are given by eqns

(2.23) and (2.25) with m=0 and Gy, = G4, = 0.

2.6 STRESS GREEN’S FUNCTIONS

Let Ji’?j(r,z;s,z' ) denotes the mth Fourier harmonic of the stress compo-
nent oji(s,{ =r,6,2) at the point (r,z) due to a ring load in the j-direction
(j =r,0,2) through the point (s,2"). The circumferential variations of the loads

are prescribed as in Fig 2.2. The explicit solutions for ofti(r,2;5,2') are given

18




below:

6
o (roz;8,2) = 1 Y da{ (1 +m)[IH(m+1,m + 1;0)—

=1
IH(m+1,m = 10)] 4+ (1 —m)[[(m—1,m —1;0) — I}(m — 1,m + 1;0)]
+2X5Li(m,m — 151) — Ij(m,m + 1;1)]}—

8
fio Z2m;\1[(1 +m)I;(m+1,m;—1) 4+ (1 = m)I[;(m — 1,m;—1)]/s (2.34a)

§=T

6
ol (r,2;8,2') = [ia ngj{,‘\lu + m)[IF(m+1,m — 1;0) — I}(m + 1,m + 1;0)]
J=1

+/_\1(1—m)[[f(m—l,m—}—1;0)—Ij(m—1,m—1;0)
20 = A m,m + 1) — Ti(mym — L1} +

fz > 2mAi[(1 4+ m)IF(m + 1,m; —1) + (1 — m)IH(m — 1,m; —1)] /s (2.34b)

§=T

6
om . (r,z;8,2") =2/, Z(l + w;)ds;[I;(m,m + 1;1) — I;(m,m — 1;1)] (2.34c¢)

j=1

6
U%T(T,Z; Sazl) = i1 Zd3j{/_\1(1 + m)[I]*(m +1,m+1; 0)

Jj=1

— I (m+1,m —1;0)] + M\ (1 — m)[I}(m — 1,m + 1;0)

8
- Iy*(m - 17m - 1,0)]} - /_Lz Zdegj[j\lfj(m,m;O)
J=1

+ M +m)F(m41,m;—1) — A (1 = m)If(m — 1,m; —1)]/s

6
brr(r,258,2") = 2 Y mds;B5[I3(m,m — 1;0) — I} (m,m + 1;0)]

j=1

8
+ [y ZZmd5j[fj(m +1,m;0) — I;(m — 1,m;0)]/ 11
=

6
O (T2, 8,2') = [y Zd5j5j[fj(m —1I,m+151)-L(im+1,m+1;1)
j=1

—Li(m—=1m—-11]+L(m+1,m-1;1)+
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8
i1 Z4m2d5]~1—;(m,m;—1)/3u1 (2.341)

=

6
aﬂe(r,z;s,z') = [ szdsj[;\l(l +m)IF(m+1,m;—1)/s
=1

— M1 =m)I(m —1,m;—1)/s — 2X;I;(m, m;0)]

8
+ oz Y 2mM{(1+ m)[[}(m+1,m —1;0) — [}(m + 1,m + 1;0)]

=T
+ (1 =m)[I;(m—1,m—1,0) - I}(m - 1,m + 1;0)]} (2.350a)
6 —
opee(r,z;8,2') = iy Z2md3j[/\1(1 —m)I;(m —1,m;—1)/s
J=1

— M1 +m)IE(m +1,m;—1)/s + 2(A — X)) I;(m, m;0)]

8
+ B2 ) MA(L+m)I(m + 1,m + 1;0) — IF(m + 1,m — 1;0)]

=7
+ (1 =m)[[(m—-1,m+1;0) = I}(m —1,m — 1;0)]} (2.350)
6
ol o(ryz;8,2") = 2/ Z 2m(1 + w;)ds; I;(m,m;0) (2.35¢)
=1
6 —
ome(r,z;8,2') = iy ZZmdgj[)\l(l +m)IF(m+1,m;—1)/s + A (1 —m)
=1

8
IF(m —1,m; —1)/s] + s ngj{j\l[fj(m,m +1;1) — Ij(m,m — 1;1)]

i=T

+/_\1(1—|—m)[IJ’9‘(m+1,m—1;0)—1—;‘(m+1,m+1;0)]

+ M1 =m)[IF(m = 1,m + 1;0) — I} (m — 1,m — 1;0)]} (2.35d)

6 8
0ore(r,2;8,2') = — iy Z4m2d5]’/\j1—;‘(m,m; —1)/s + @ Zd5j[fj(m +1,m+1;1)
Jj=1 j=7
+Ii(m—1,m~-11)-Li(m+1,m—1;1)— I;(m — 1,m +1;1)] /1 (2.35¢)

6
05o(r,238,2") = i1 Y 2mds; Aj[Ti(m — 1,m;0) — Li(m + 1,m; 0)]
=1

8
+ 1Y 2mds;[I(m, m + 1;0) — If(m,m — 150)]/u1 (2.351)

§=7




6
o (r,28,2") = 21 Y di;[M(1 +m)IH(m + 1,m;0)

i=1

~ (1 —m)I;(m —1,m;0) — 2X;I;(m, m; 1)]

6
om(r,78,2') =21 Y dij[2(0 — A\j)I(m, m; 1)
j=1

— M1 +m)IF(m+1,m;0) + X (1 - m)I7(m —1,m;0)]

6
om(r,78,2') = 41 Y dij(1+ w;)Ii(m,m; 1)

=1

6
o7 (r,78,2') =2 Y dy; (1 +m)If(m + 1,m; 0)
7=1

+ (1= m)If(m — 1,m;0)] (2.36d)

6
0’3?_,2(7', Z;Sazl) = _4ﬁ1 Zmd‘ijﬂjl—;(mam;o) (2366)
=1

6
ol (r,z;8,2") = 2jiy Zd4jﬁj[fj(m ~1,m;1) — Ij(m+1,m;1)] (2.361)

j=1

where

ds1 = kaan/v1, dsy = —kian/va, dsz = —popsker/v1 (2.37a)

dsa = —papski/va, dss = 2pzk1/v1v2/ pa (2.370)
, —_—

dse = 2 pako~/v1v4, ds7 = S

L
- 1+ k&
3 /\3 = 2

d58 = -1 (2376)

)\1:011—612’ /—\2:14—7@1
Ca4 Vi V2
1+ & - 1+ ks
, As = .
o = (2.385)

wj =k, Bi=MN: 7=13,5 (2.39a)

(2.384)

wj=ka, Bj=NXs: j =246 (2.390)

The expressions for stress Green’s functions corresponding to axisymmetric
deformations can be obtained from eqns (2.34) and (2.36) with m =0 and

U(r)ej = C’gzj =0 (J=nr2).




Note that the displacement and stress Green’s functions corresponding to a
transversely isotropic full space can be directly obtained from eqns (2.23)-(2.25)
and (2.34)-(2.36) through an appropriate limit procedure. It is noted that the
displacement and stress Green’s functions appear in terms of Lipschitz-Hankel
type integrals and can be expressed in terms of elliptic integrals (Easton et al.
1955) and subsequently evaluated by using special mathmatical software. This
procedure greatly enhances the numerical accuracy and efficiency when compared

to direct numerical integration of infinite integrals.

2.7 GENERAL SOLUTIONS FOR A DEGENERATE CASE

A degenerate case occurs in the elastostatic solutions of transversely isotropic

media when the material constants ¢;; obey the following relationship:

Vaf—rk—1=0 (2.40)

resulting in

Vi = Uy (241)

It is noted that solutions given by eqns (2.23)-(2.25) and (2.34)-(2.36) under this

degenerate condition would be singular.

In order to derive proper general solutions for a transversely isotropic medi-
um whose elastic constants obey the relation given by eqn (2.40), the following

potential function representations are introduced:

01 + ? Py }3¢3

or ordz r 06

_10¢1 | 10%°¢; O3

=770 Tre00: ar (2.42)
0 0?

Uy = al—(;% +a: V24 + a3 3;’523 (2.42¢)

Up =

(2.42qa)

Ug
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where the coefficients ay, a; and as are defined as

vy —1 1
:ﬂalﬂ, ag = — h , a3 = — (2.43)

ai

and v1 is the root of eqn (2.9a); @ and f are nondimensional material parame-
ters defined in eqn (2.5) and the differential operator V? is defined in eqn (2.7).
Substitution of eqn (2.42) into the governing equations (2.6) together with the
applications of Fourier expansion as defined by eqn (2.14) and Hankel integral
transform as defined by eqn (2.15) result in the following general solutions for the

mth Fourier harmonic of the potential functions,

Gim(r,2) = /Ooo[Aim(/\)eAzi + Bim(Ne M A\, (Ar)d) i =1,3 (2.44)

bam(r,) = [ Tl Asm(Y) + 51Cm(V]M + [Bam(A)+
21Dgm(N)]e™ 1IN T (Ar)dA (2.45)

where z; is defined in eqn (2.8) and v3 is given by eqn (2.10). A (), Bim(A)(@ =
1,2,3),Com(A) and Dap(A) denote the arbitrary functions.

The general solutions of displacement and stress components can be obtained
by substituting eqns (2.44) and (2.45) into the eqns (2.42) and (2.2). Thereafter
the Green’s functions of displacement and stress can be derived by using a pro-

cedure identical to that described in Sections 2.4-2.6.
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Figure 2.1 Definition of coordinate systems and domains
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Figure 2.2 Internal loading configuration considered in the derivation of 3-D Green’s

functions
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Chapter 3
ELASTOSTATIC BOUNDARY-VALUE PROBLEMS
3.1 GENERAL

The development of an indirect boundary integral equation method based on
Green’s functions derived in Chapter 2 is considered in this Chapter for analysis
of a variety of three-dimensional elastostatic boundary-value problems related to
a homogeneous transversely isotropic elastic half space. Consider a transversely
isotropic elastic half space where a volume V bounded by an axisymmetric surface
S is defined as shown in Fig 3.1. A cylindrical polar coordinate system (r, 6, z)
is defined at the free surface level such that the z-axis coincides with the axis of
symmetry of V. If V is a rigid inclusion then displacements on S are prescribed
and a displacement boundary-value problem can be defined for the semi-infinite
transversely isotropic domain V. exterior to V. If V is a cavity subjected to
pressure then a traction boundary-value problem can be defined for the domain
Ve. A more general situation exists when displacements are specified over a
part of S denoted by S; and tractions are specified over the remainder of S
denoted by S; (Fig 3.1). In this case a mixed boundary-value problem can be
defined for domain V.. Examples of the mixed problem are situations where
loss of contact exists over a portion of the contact surface of an inclusion in an
elastic medium or the case of an inclusion where yielding occurs along the contact
surface when tractions exceed prescribed limiting values. These boundary-value
problems can be formulated in terms of a system of non-singular integral equations
by generalizing the indirect boundary integral equation approach proposed by
Ohsaki (1973) to study the response of a rigid body embedded in an isotropic
elastic medium. The kernel functions of integral equations are displacement and
traction Green’s functions presented in Chapter 2. A more complicated situation

arises when V consists of a different elastic material. For example, the case
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of load diffusion from an elastic bar into a transversely isotropic elastic half-
space. A solution to this problem is presented by developing a coupled variational-

boundary integral equation formulation.

3.2 TRACTION BOUNDARY-VALUE PROBLEMS
3.2.1 Formulation

In the ensuing analysis a detailed solution procedure for a traction boundary-
value problem is presented. Consider a situation where tractions are prescribed

on a surface S as given below:

Ti(r, 0, 2) = Tim(r, 2) fim (6), (r,0,z) € S (3.1)

In eqn (3.1), i =r,0,z together with frn(0) = fom(6) = cosmb and fo,,(6) =
sinm#@; Ty (r, z) denotes the prescribed value of traction on the generating curve

of S.

An exact solution of domain V, subjected to the above boundary condition
on an arbitrary axisymmetric surface S is mathematically intractable. Alterna-
tively, an indirect approach which exactly satisfies the governing equations of
Ve and boundary conditions on S can be developed by considering a uniform
(undisturbed) transversely isotropic elastic half space V* as shown in Fig 3.2. An
axisymmetric surface S which is identical to S in Fig 3.1 is defined in V*. Interior
to S, another axisymmetric surface S’ is defined. A set of forces with intensity
Bi(r,2) fim(0) is applied on S’ such that tractions on S are given by eqn (3.1).
Under these conditions the solution of domain V* exterior to S is identical to
that of V. of the original problem. The force intensities B;(r, z) are governed by
the following Fredholm integral equations of the first kind:

/&Hﬁ(r,z;r',z'>Bj<r',z'>r'dS'=Tim<r,z>, (rn2)€s, (',7)es (32)

where indices 7,5 = r, 6, z and summation is implied on j. In addition, H(r, 27,

z') denotes the traction Green’s function which can be expressed in terms of stress
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Green’s functions given by eqns (2.34)-(2.36) and unit normals of S. Note that

in eqn (3.2) S’ refers to the generating curve of the surface S".

The unknown Fourier component of displacement on S, denoted by Uim (T, 2),

can be expressed as:
/S GZ;(T, Z; 7'" z/)B]‘(r’, z,)T’,dS, = uim(r, Z) (33)

In view of the complexity of the Green’s functions H™

7, eqns (3.2) are solved

numerically. A discrete version of eqn (3.2) with respect to M and M’ nodal

points on S and S’, respectively, can be expressed as:

QB =R (3.4)
where
Q=H (3.5)
IEIrr I_:_Ire I_'__Irz

H=| Hyy Hgpo Hy. (3.6a)

Hzr Hz() sz 3SM x3M’
H,, = [Hyo(r, 20" 2 DS s, pyg=r,0,2 (3.60)
B =<B.(r',2') Bg(r',7) B,(r',z")>T (3.7a)
R =< T‘Tm(r’,z') Tom(r', 2") Tom(r', 2" >T (3.7b)

In eqn (3.6b), H,, is a matrix whose elements are tractions in the p-direction of
the nodes on S due to ring loads in the g¢-direction through node points on S';
AS' is the tributary length corresponding to a node point on S'; B;(r',2') is a
row vector whose elements are intensities of forces in the i-direction of the node

point on S’ and the superscript T' denotes the transpose of a matrix.

A least-squares solution of eqn (3.4) yields

B=[Q"Q]'Q"R (3.8)
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Once B is determined from eqn (3.8), the Fourier harmonic of displacements
on S (which are identical to displacements of S of the original problem) can be

computed by numerical integration of eqn (3.3).
3.2.2 Numerical Example

The numerical convergence, stability and accuracy of the solution scheme
have been investigated with respect to a bench-mark problem for which solutions
have been reported in the literature. The problem under consideration corre-
sponds to a spherical cavity of radius ‘@’ in an isotropic infinite space which is sub-
jected to a uniform radial pressure py. An exact analytical solution for this prob-
lem is available (Saada 1974). The material isotropy is simulated by setting ma-
terial constants c¢13 = 3.0,¢12 = 1.0, ¢33 = 3.0,¢13 = 1.0 and cq4 = 0.99997. This
corresponds to an isotropic material with shear modulus and Poisson’s ratio equal
to 1.0 and 0.25, respectively. Table 3.1 presents a comparison of nondimensional
displacement normal to the cavity wall denoted by &y, for different locations of
inner surfaces S’ measured by the distance ‘c’ (Fig 3.2) and for different number
of node points M and M’'. The solutions obtained from the present scheme show
good convergence and stable behaviour with increasing M and M'. In addition,

present solutions are in very close agreement with the analytical solution.

Next a traction boundary-value problem corresponding to a hemispherical
cavity of radius ‘a’ at the surface level of an elastic half space is considered.
The cavity is subjected to uniformly distributed normal pressure ¢o. The mate-
rial types considered here are ice, an isotropic material, clay I, magnesium and
cadmium and the material constants are given in Table 1.1. The numerical so-
lutions for nondimensional radial displacement @, and vertical displacement .
(@; = u;qo/acas) are presented in Fig 3.3. A surface S’ of radius 0.85a together
with ten and twenty node points on S’ and S, respectively are used in the analysis.
It is observed from Fig 3.3 that the material anisotropy has significant influence

on the displacement profiles. In the case of 4, the strongest influence of material
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anisotropy is noted in the solution for cadmium followed by clay. The nondimen-
sional radial displacement solutions for magnesium and ice are found to be almost
equal to that of the isotropic material. However, a completely different trend is
noted for the nondimensional vertical displacement %,. The highest influence of
material anisotropy is observed in the profiles for ice and cadmium followed by
magnesium. The vertical displacement profiles for isotropic material and clay are
found to be nearly identical and fall between the vertical displacement profiles
for cadmium and magnesium. Comparison of displacement solutions presented
in Fig 3.3 with the values of material constants given in Table 1.1 indicates that
the normalised constant ¢;; dominates the influence of material anisotropy in
the case of displacement %, while in the case of %, the influence of anisotropy is
mainly governed by cs3. It is also observed that the general shape of displacement
profiles along the cavity wall is roughly the same for all five materials although
the actual magnitudes are considerably different. In addition, the largest radial
displacement is found at a point which is below the free surface of the half s-
pace for all materials. It should be mentioned here that the present scheme can
be directly applied to analyze a cavity of any arbitrary axisymmetric geometry

subjected to an arbitrary variation of pressure over the cavity surface.

3.3 DISPLACEMENT BOUNDARY-VALUE PROBLEMS
3.3.1 Formulation

In the case of a displacement boundary-value problem, Fourier harmonic
components of displacements on (S5 are prescribed. The force intensities B;(r, z)

are governed by the following Fredholm integral equation of the first kind:
/S/ G (r,z;r', 2 )Bi(r', 2 )r' dS" = @im(r, 2) (3.9)

where #;,(r, z) denotes a prescribed displacement on the generating curve of S.

A solution for B is given by (3.8) with
Q=G (3.10)
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_ G Gry Gy,
G=1{Go Go Go: (3.11a)
Grr Gro Gor) ourn
qu = [G;"q(r, zr YW A sy, pg=r,0,z2 (3.11b)
and
R =< Urpn(r',2') tgm(r',2"), ﬁzm(r',z')>T (3.12)

The solution for traction components T;,(r, 2) is given by the following integral

equation:

Tim(r,z) = /51 H(r,z;7', 2 )By(r', 2")r' dS' (3.13)

3.3.2 Numerical Examples

The example problem used to verify the solution scheme corresponds to an
asymmetric displacement boundary-value problem related to a rigid cylinder of
radius ‘e’ and height ‘A’ partially embedded in an isotropic elastic half space (Fig

3.4). The force-displacement relationship of the cylinder can be expressed in the

Fo . I{h Khm Az
(Mo/a> = Caed <Kmh Knm ) (a¢y> (3.14)

In eqn (3.14), Ky, Ky, and Kppm(= Kypp) denote the non-dimensional horizontal,

form:

rocking and coupled stiffnesses of the rigid cylinder; A, and ¢, denote the hori-
zontal displacement (z-direction) of the bottom and rotation about the y-axis of
the cylinder, respectively; Fy and My denote the resultant force in the z-direction
and bending moment about the y-axis with respect to the point A shown in Fig

3.4 respectively.

Apsel and Luco (1987) presented solutions of stiffnesses for rigid cylinders
with various h/a ratios embedded in an isotropic elastic half space (Poisson’s
ratio equal to 0.25) by numerically solving a formulation based on the integral
representation theorems (Eringen and Suhubi, 1975). Table 3.2 presents solutions

for Ky, K and Ky, of a rigid cylinder with h/a=1 for two location of surface
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S' [considered as a cylinder of radius (a — ¢) and height (A — ¢)] and for four
different discretizations of S and S'. The convergence and the stability of the
present solutions are clearly evident. Table 3.2 also presents a comparison with
the solution presented by Apsel and Luco (1987). The above comparison confirms
the accuracy, convergence and stability of numerical solutions obtained from the

present analysis.

Next, the asymmetric displacement boundary-value problem related to a
rigid cylinder bonded to a transversely isotropic elastic half space is considered
(Fig 3.4). The problem under consideration has useful applications in geome-
chanics and in the analysis and design of composite mechanical components. The
quantity of primary interest is the global stiffness of the cylinder-half-space Sys-
tem. Tables 3.3 and 3.4 present non-dimensional axial (X, ), horizontal (K}),
rocking (Kr,) and coupled (Kpp = Kpnm ) stiffnesses of a rigid cylinder bonded to
ice, two types of clay and an isotropic medium. Note that K, = Py/(cqaal),),
where A, is the displacement of the cylinder in the z-direction and Py is the
axial force. The stiffness Kp, K, Ky are defined by eqn (3.14). Solutions are
presented for rigid cylinders with h/a = 0.5,1.0,2.0 and 4.0. As expected, all
stiffness parameters increase considerably with increasing values of the ratio A /a
for all types of materials. The values of K}, K, and Kppm, corresponding to the
two clays are quite close to each other which indicates that the differences in ;3
and ¢33 observed in Table 1.1 for the two types of clays do not have a significant
influence on the stiffness parameters. Further comparisons of the values of ma-
terial constants ¢;; in Table 1.1 with the values of stiffness parameters in Tables
3.3 and 3.4 indicate that the order of K, for different materials is identical to
that of ¢33 and the order of K} and K,, is identical to that of ¢11. However the
influence of anisotropy on stiffness K3, is appeared to be governed by more than

one value of ¢;;.
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3.4 A MIXED BOUNDARY-VALUE PROBLEM

3.4.1 Formulation

In the case of mixed boundary-value problems tractions are prescribed over
the part 57 of S (Fig 3.1) and displacements are prescribed over the remaining
part S2. Considering the system shown in Fig 3.2, the force intensities B;(r', 2")

on S’ are governed by the following dual integral equation system:

/ H{?(T,Z;r"z’)Bj(r”z’)r’dS’ — Tim(ra Z), (7‘, Z) - 5’1 (315@)

/ G?;(T‘,Z;r',z’)Bj(r”z')r’dS’ — ﬂim(r, Z), (T’, Z) c 5'2 (315b)
SI

A solution of eqn (3.15) to determine B can be expressed in the form of eqn
(3.8) by discretizing S; and Sz by using M; and M; node points, respectively.

The matrix Q in eqn (3.8) corresponding to the present case can be expressed as:

H
a- (8) -
where H and G are the traction and displacement Green’s function matrices
defined by eqns (3.6) and (3.11), respectively. Note that the orders of H and G
are 3M; x 3M' and 3My x 3M', respectively. Once B is known, the unknown

displacement on S; and the unknown tractions on S, can be determined from the

eqns (3.3) and (8.13), respectively.

3.4.2 Example

The non-linear mixed boundary-value problem related to a rigid hemisphere
of radius ‘a’ embedded in a transversely isotropic elastic half space with an elastic-
perfectly plastic interface is considered. In the absence of relevant experimental
data the axisymmetric twisting problem has been simulated where yielding (slip-
ping) occurs only in the #-direction when contact traction reaches a limiting value.

The limiting traction value in the §-direction, denoted by 7gy, is set to 0.01css.
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In reality the critical value of traction beyond which slipping occurs along the
surface should be determined experimentally and depends on several factors such
as the surface texture of the interface, the type of bonding, the deformability
characteristics of the materials in contact, etc.. The torque (Tp) and twist angle
(wo) relationship is linear until the contact traction in the f-direction at a point at
the interface reaches the limiting value. A displacement boundary-value problem
can be defined for domain V, (Fig 3.5) during the linear region. Let w, denote the
twist angle (in radians) at the initiation of yielding. For any wg > wy, & mixed
boundary-value problem can be defined for V; the traction specified over the part
where the critical value has been reached and the displacement specified over the
remainder. Note that slipping will occur along the portion of the interface where
the limiting traction has reached. It can be shown that the torque T, correspond-
ing to a completely yielded interface is equal to 0.00572c44a® for Toy = 0.01caq.
The response of the hemisphere for wy > w, can be studied by an incremental
analysis. In the present study the surface S’ was taken as a hemisphere of radius
0.8a and M=20 and M'=10. The incremental analysis was performed by using

increments of rotation equal to 0.05w, for we > w,.

Figure 3.5 shows the torque-twist relationship after the initiation of interface
yielding for a rigid hemisphere embedded in an isotropic material, ice, clay and
cadmium (Table 1.1). The point of intersection of the torque-twist curve with
the horizontal axis corresponds to the twist angle w, at the initiation of interface
yvielding. The normalized torque T™* = Ty /Ty, where Ty is the torque acting on
the hemisphere and w§ = wocqq/ Tey. The non-linear behaviour of the torque-
twist relationship is evident from Fig 3.5. The present analysis can also be used
to compute the amount of slip between the rigid hemisphere and surrounding
half-space at points along the interface which have reached the limiting traction.
The non-dimensional slip at a point (r,z) on the interface is denoted by A* and

defined by A*(r, z) = [rwo — v(r, z)]csa/(aTgyy, where v(r, 2) is the displacement
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in the f-direction of the half-space. Note that for wy < wy, no slip takes place
at the interface and A* =0 for all points on the interface. Figure 3.6 shows
the variation of A* with angle ¢ (Fig 3.5) for normalized rotation @y = wg/w,.
Yielding is initiated at the free surface level (¢ = 7/2) and gradually progresses
downward as wy is increased. Nearly one-half of the interface yields at ©g = 1.30
for all types of materials. Note that in the present problem, the analytical solution
results in zero traction in the §-direction when ¢ — 0. This implies, theoretically,
the yielding of the bottom (¢ = 0) occurs when &y — co. This behaviour is
reflected in both Figs 3.5 and 3.6. This example demonstrates the effectiveness
of the present scheme in analysing a mixed boundary-value problem related to a
rigid inclusion. The analysis can be modified without any fundamental difficulty

to simulate an interface with Coulomb friction.

3.5 LOAD TRANSFER PROBLEM

3.5.1 General

The study of load transfer from a partially embedded cylindrical elastic bar of
finite length into an elastic medium has useful applications in several engineering
problems. In applications related to composite materials and geomechanics, the
load is transfered to a medium which is essentially anisotropic. In this section the
general elastostatic load transfer from a cylindrical elastic bar which is partially
embedded in a transversely isotropic elastic half space is investigated. A coupled
variational-boundary integral equation method scheme is used in the analysis by

generalising the formulations presented previously by Selvadurai and Rajapakse

(1987) and Rajapakse (1988).

3.5.2 Deformation of Elastic Bar

Consider a cylindrical elastic bar of radius ‘a’ and length ‘A’ (h/a >> 1)
partially embedded in a transversely isotropic elastic half space as shown in Fig

3.7. A Cartesian coordinate system (z,y,z) and a cylindrical coordinate system
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(r,0,z) are defined such that z-axis coincides with the centroidal axis of the bar
and perpendicular to the stress free surface of the surrounding half space. The
Young’s modulus of the bar is denoted by Ej (shear modulus up). The bar may
be subjected to a torque Ty about z-axis, an axial force Py, a horizontal force
H, along the z-axis (§=0) or a bending moment M, about the y-axis (6 = 7/2).
In view of the assumption that h/a >> 1, the deformation of the bar is assumed
to be governed by an appropriate one-dimensional theory. Let w;(r,6,z) denote
the displacement of the bar in the ¢-direction (¢ =r,6,2). It is assumed that the
displacement of the bar can be represented by an admissible function indetermi-
nate with respect to a set of generalized coordinates. In the case where the bar

is subjected to an axisymmetric torque, the following representation is used:

N
wep(r, 0,z) = Z anrdn(z) (3.17a)
wr(r,0,2) = w,(r,0,2) =0 (3.17b)

where, aj,as...,an are generalized coordinates to be determined and dn(2)

(n=1,2,..,N) is a set of smooth and continuous functions of z(0 < z < k).

For the axial load transfer problem,

N
wy(r,0,z) = Z andn(2) (3.18a)
n=1
wy(r,0,2) = we(r,0,z) =0 (3.18b)
In eqn (3.18b), consistent with the assumed one-dimensional behaviour, any radial

displacement of the bar due to longitudinal straning has been neglected.

For the transverse load (shear force @y or moment M) transfer problem,

N
wz(T‘,e,Z) = ZanQSn(z) (319a)
wy(r,0,2) = 0— (3.190)

dgn

- (3.19¢)

N
w,(r,0,2z) = —cos b Z Ty
n=1
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Note that eqns (3.19a) and (3.19b) yield,

N
wy(r,8,2) = cosf Z andn(z) (3.20a)
n=1
and
N
wg(r,0,z) = —sinf Z an@n(2) (3.200)
n=1

A variety of admissible functions can be selected for ¢,(2). It is important
that the selected function set includes the appropriate rigid body displacement
mode of the bar for the load type under consideration. In the present analysis

the following choice is made for ¢,(z):
$n(z) = (z/R)"* (3.21)

3.5.3 Coupled Variational-Boundary Integral Equation Formulation

Using the displacement representations given by eqns (3.17)-(3.20), the strain

energy Uy of the elastic bar can be expressed as

N N
Up=Y_ > anamDum (3.22)

n=1m=1
For the torsion load transfer problem,

D, — {guba“(n = 1)(m — 1)/[4h(n +m — 3)] " i m 7 2 (3.23a)

For the axial load transfer problem,

D, = { gEbaz(n — 1)(m — 1)/[2]1(71 +m — 3)] Zi Z 7:£ g (323[))

For the transverse load transfer problem,

D, — { OwEba4(n —D)(n—2)(m = 1)(m —2)/[8h*(n+m —5)] n+m g
n-+m=
(3.23¢)
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The displacement compatibility between the bar and the half space along the

contact surface S can be expressed as,
wi(r,8,2) = ui(r,0,2), i=r,2 (r,82)cS (3.24)

where u;(r,6,2) denotes the displacement in the i-direction of the elastic half

space.

The strain energy of the surrounding half space region denoted by Uj, can be

expressed as

1
Uy, = —/TiuidS (3.25)
2Js
In eqn (3.25), Ti(r,0,2) denote the traction in the i-direction (i =r,6,z) at a
point on the contact surface S and summation is implied over the legal range of

¢ corresponding to each load transfer problem.

In view of eqn (3.24), a displacement component u;(r, 8, z) at a point (r, 6, z)

on the contact surface S can be expressed as

N
ui(r,6,2) = Y antiin(r, 2)fi(6) (3.26)

The explicit form of u;,(r, z) appearing in eqn (3.26) can be obtained from eqn

(3.24) together with eqns (3.17)-(3.21) for different loading cases.

Let Tin(r,2)fi(6) denote components of traction at a point (r,6,z) on the
contact surface due to a displacement field w;,(r, z)fi(§) imposed on S. Then

traction T; due to displacement field u; can be expressed as,
N
Ti(r,0,2) = Z anTin(r, z) fi(6) (3.27)
n=]

In view of eqns (3.21), (3.22) and (3.25)-(3.27), a constraint energy functional
(Washizu 1982) of the bar-half space system which takes into consideration the
bar top boundary conditions can be expressed as

N N
=Y tntm[Dum + Fam] — W (3.28)

n=1 m=x1
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where,

Fum =1 / Tin(r, 2 )i (1, 2)rdS (3.29)
S

For the torsion transfer problem
Jp
W = T0a1 -+ )\1(?271’—0(2 — To) (330&)

for the axial load transfer problem

EA

W:P0a1 +/\1('—h—012 -—Po) (3306)
for the transverse load transfer problem
oY 2ET 6ET
W:MO%—]—Q()OQ -|-/\1( h2 3 _MO)+/\2(FQ4+QO) (3306)

and

(3.31)

_ { 2w torsion
7  axial and transverse

Note that summation is implied over the index i(z = r,0, z) in eqn (3.29) and
the integration is taken over the generating curve of S. In eqns (3.30), 4, I and
J denote cross-sectional area, moment of inertia and polar moment of inertia of

the elastic bar respectively, and A;(z = 1,2) denotes a Lagrange multiplier.

At equilibrium, the generalized principle of minimum potential energy states
that 7 is stationary. The relevant stationary conditions yield a set of linear
simultaneous equations to determine a;(z = 1,2, ..., N). For example, the set of

equations corresponding to the transverse loading problem can be expressed as,

N

EIé, EIé,
Zan[2Dnm+an+an]+/\1 h2 3+/\2 h3 4
n=1
M,
= HoS1m + 7052’“ m=12,...N (3.32)
2F Tos 6E Ty
5 =My, —— = Qo (3.33)
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where §,,, denotes Kronecker’s delta function.

The numerical solution of linear equation systems yields the solutions for gen-
eralized coordinates a;(z = 1,2, ..., N) corresponding to the three different types of
load transfer problems. The solutions for bar displacements and stress resultants
can be determined by using one of the eqns (3.17)-(3.21) and an appropriate one-
dimensional continuum theory. It is noted from eqns (3.32) that the coefficients of
the linear simultaneous equation system involve the the term F,,, defined by eqn
(3.29). The evaluation of F,,, corresponding to different types of load transfer

problems is discussed in the following section.
3.5.4 Evaluation of Term F,,,

The evaluation of F,,, given by eqn (3.29) reduces mainly to the computation
of traction components T;,(r, z) on S since u;n(r,2) can be obtained from eqns
(3.24) and (3.17)-(3.21). Note T;,(r, ) denotes traction components on the cavity
surface of an elastic half space with a cavity identical to the bar when the cavity
surface is subjected to a displacement field with components u;,(r, 2). It is evident
that an analytical solution for T;,(r, z) cannot be derived. However, a numerical
solution for Ti,(r,z) which satisfies all the governing equations of the half space
region can be derived by using an indirect boundary integral equation scheme

given in section 3.3.

Consider an uniform half-space region without a cavity. A fictitious surface
S identical to the bar-half-space contact surface S is defined. A set of forces
with components B;,(r', 2') f;(0) are applied on a cylindrical surface S’, interior
to S such that displacements on S are equal to uin(r, 2)fi(0). The force com-
ponents B;,(r, z) are governed by the nonsingular integral equation (3.9). Note
in eqn (3.9), indices ¢ and j take the range of values defined previously for dif-
ferent load-transfer problems, and summation is implied on index j. In addtion,

G7i(r,z;r', 2') corresponding to each load-transfer problem is presented in Chap-
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ter 2. The traction components on S that are equal to T;,(r, z) can be expressed
asin eqn (3.13). The explicit solutions for H (r,z;7', ") corresponding to various
types of load-transfer problems can be derived by using the solutions presented in
Chapter 2. A solution for T;,(r, z) can be obtained by discretizing S’ and S with
a set of node points and solving eqns (3.9) and (3.13) numerically. Details of the
numerical solution procedure is presented in Sections 3.2 and 3.3. Alternatively,
a numerical solution for T;,(r,z) can be obtained from direct boundary integral

equation method (Apsel and Luco 1987).
3.5.5 Numerical Solutions

3.5.5.1 Numerical Scheme

In the numerical study, the response of elastic bars subjected to differen-
t types of loading is investigated. The values of normalized material constants
Cij(= cij/caa) of ice, cadimium, magnesium, a clay soil and an isotropic medium
are given in Table 1.1. The selection of the above set of anisotropic materials
among several others is based on their relevance to applications related to com-
posite materials (magnesium, cadmium and isotropic) and geomechanics (clay, ice
and isotropic). The convergence and numerical stability of the solution scheme
with respect to the number of terms N in eqns (3.17)-(3.19) and number of node
points N' and N on generating curves S’ and S, respectively, have been investi-
gated. It is found that the solution of elastic bar converges for N > 8 and N = 30
and 40 are sufficient for bars with 2/a = 5 and 10.

3.5.5.2 Bar Stiffness

The stiffness of the bar is expressed in terms of a set of nondimensional

stiffness parameters as defined below

P() TO QO
Ky = ; Kr=——; Ky=—-—: 3.34
v C44aAz, T C44a3¢z’ " C44GAzQ’ ( a)
M, Qo M,
Ky=—75— Kguy=—3—; Kyg=—r— .34b
M C44a3¢yM’ M 04402%@, M TV VAN Vi (3 3 )
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where Ky, K7, Ky, Ky and Ky p(= Kgu) denote axial, torsional, horizontal,
rotational and coupled stiffnesses of the bar, respectively. In addition A,, ¢,, A,
and ¢, denote the vertical displacement, twist angle, lateral displacement and ro-
tation of the top end of the bar, respectively. A;q and A, denote the horizontal
displacements due to ¢y and M, applied at the top end of the bar, respectively;
$yq and ¢ypr denote the rotation due to Qo and My, respectively.

Figures 3.8 and 3.9 show the variation of stiffness parameters with moduli
ratio Ey(= Fp/caq) for bars with h/a = 5 and 10, respectively. Note that for bars
subjected to torsion the moduli ratio iy = pp/caq is used. All stiffness parameters
increase rapidly with E, and approaches a limiting value beyond which the bar
exhibits characteristics of a rigid bar. The value of Ey beyond which the bar
behaves perfectly rigid depends on the degree of anisotropy of the surrounding

material, type of loading and the bar length-radius ratio.

It is noted from Figs 3.8 and 3.9 that the torsional, horizontal, rotational
and coupled stiffnesses of bars embedded in an isotropic medium and magne-
sium are nearly equal and solutions corresponding to bars embedded in ice are
slightly higher. Therefore, magnesium and ice can be considered isotropic and
slightly anisotropic, respectively, for transverse load and torque transfer prob-
lems. The solutions for transverse (Kp, Ky, Kprgr) and torsional stiffnesses of
bars embedded in clay and cadmium show a considerable influence of the mate-
rial anisotropy. It is also noted that the influence of material anisotropy, if any,
is more pronounced for stiffer bars when compared to very flexible bars (lower
values of E;). Based on the solutions presented in Figs 3.8 and 3.9 for trans-
verse and torsional stiffnesses, cadmium is found to possess the highest degree of
anisotropy followed in the order of decreasing degree of anisotropy by clay, ice

and magnesium.

It is useful to relate the influence of the material anisotropy observed in

the numerical study for transverse and torsional stiffnesses to the magnitudes
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of normalized material constant ¢;; in Table 1.1. Comparison of the values in
Table 1.1 indicates that magnesium and isotropic material have relatively closer
¢;; values and this is consistent with the close agreement of stiffness parameters
observed in Figs 3.8 and 3.9. The ¢;; values of of clay are also closer to isotropic
values except in the case of ¢11. In addition, &;; values of ice are greater than clay
except in the case of ¢;;. However, in Figs 3.8 and 3.9, transverse and torsional
stiffnesses of bars embedded in clay are greater than the corresponding solutions
for ice. In addition, cadmium, which shows the highest influence of anisotropy
in Figs 3.8 and 3.9 also has the highest values of ¢;1, €12 and ¢;3 when compared
to other materials. These comparisons indicate that the transverse stiffness is
governed mainly by the value of ¢1; and to a lesser degree by ¢;2 and €;3. In the
case of torsional load transfer, the torsional response equation indicates that the
dependence of material anisotropy can be related only to the value of (¢11 — ¢12).
A comparison of (¢11 — ¢12) values from Table 1.1 is in agreement with the order

of the influence of material anisotropy observed in Figs 3.8 and 3.9 for K.

The solutions for axial stiffness Ky presented in Figs 3.8 and 3.9 indicate that
the influence of material anisotropy is relatively lesser when compared to trans-
verse and torsional stiffnesses. The axial stiffness of bars embedded in cadmium
and the isotropic medium is nearly identical. In addition, bars embedded in ice
have the largest axial stiffness. Solutions corresponding to clay and magnesium
are nearly identical and are in between solutions for ice and the isotropic mate-
rial. Comparison of ¢;; values in Table 1.1 and the numerical solutions in Figs
3.8 and 3.9 indicate that in the case of axial stiffness the influece of anisotropy is
primarily governed by the value of ¢33. It is noted that the magnitude of Ky in
Figs 3.8 and 3.9 for different materials is in the same order as the magnitude of

533 in Table 1.1.

3.5.5.3 Load Transfer Curves

Fig 3.10 shows the axial load transfer curves of an elastic bar (h/a = 10)
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with moduli ratio By = 50 and 100 embedded in cadmium and an isotropic sol-
id. The numerical results for other materials fall within the two load transfer
curves shown in Fig 3.10. These solutions indicate that the influence of material
anisotropy on axial load transfer along the bar is negligible. Comparison were
also made for nearly rigid bars and found that the axial load transfer curves are
not significantly influenced by the degree of anisotropy of the half space mate-
rials. Additional numerical solutions indicate that the moduli ratio Ey and the
length-radius ratio significantly influence the load transfer profiles. For a bar of
given length-radius ratio, the load diffuses rapidly with increasing bar flexibility
(1.e., decreasing values of E;). Fig 3.11 shows the torque transfer curves of an
elastic bar (b/a = 10, iy = 50 and 100). The influence of material anisotropy is
clearly visible in these curves when compared to axial load transfer curves shown
in Fig 3.10. The torque transfer curves for elastic bars embedded in clay and
cadmium indicate a higher rate of diffusion of bar torque with depth when com-
pared to an isotropic medium. Additional numerical solutions indicate that as
[ty increases, the influence of material anisotropy on bar torque profiles decrease
and in the case of rigid bars the torque profiles are nearly independent of the
degree of anisotropy of the half space. In general, the torque transfer along the
bar length is more rapid when compared to axial load transfer and the rate of

torque diffusion increase with decreasing values of moduli ratio fb-

Fig 3.12 shows the shear force profiles of a bar (h/a = 10, £} = 50 and 100)
subjected to a horizontal force Qg at the top end. The solutions are found to be
negligibly influenced by the degree of anisotropy of the surrounding half space.
Similar behaviour is also observed for rigid bars. It is also noted that shear force
diffuses rapidly and shows a reversal in sign within the top portion of the bar. In
addition, some minor oscillations within the lower portion of the bar are noticed
for very flexible bars. This behaviour is different to that observed previously for

the axial load and torque. It should be mentioned here that a long flexible beam
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on a Winkler medium and subjected to a concentrated load at one end shows
qualitatively similar shear force profiles. As the bar becomes rigid (By — 00), the
oscillation vanishes and the shear force reduces gradually with a change in sign

within the top portion and thereafter increases linearly in the bottom portion.

Fig 3.13 shows the bending moment profiles of elastic bars (Ey = 50 and
100) subjected to a horizontal force Qo at the top end. These profiles show
an influence of anisotropy which is similar to that observed previously for torque
transfer profiles. It is also observed that for a bar of given length-radius ratio, the
shape of the bending moment profiles is significantly influenced by the bar moduli
ratio Ey. For low values of Ey, the magnitude of maximum bending moment is
smaller and the bending moment decreases rapidly along the bar. As the bar
becomes more stiffer, the magnitude of maximum bending moment increases and
the profiles show more gradual decreases of bending moment along the lower
portion of the bar. Some oscillations in the profiles are observed within the lower

portion of the bar for very flexible bars.

Fig 3.14 shows the bending moment profiles of bars of three different length-
radius ratios (h/a = 5,10,20) embedded in ice and subjected to a bending mo-
ment Mo at the top end. Solutions are presented for a bar with E; = 100 and a
rigid bar Ej — co. These profiles clearly indicate the influence of bar length on
the relative flexibility of the bar-elastic medium system. For a short bar (h/a =5)
the profiles corresponding to Ey = 100 and co are quite close indicating that even
at low values of Ej, short bars behave nearly rigid. For longer bars (h/a = 10
and 20) the profiles for Fj = 100 and oo show considerable differences both in
magnitude and in shape. Changes in sign and oscillations are observed in bending
moment profiles of flexible bars (£, = 100) for k/a = 10 and 20. These features
do not appear in bending moment profiles of rigid bars of same length-radius
ratio. The oscillations observed in bending moment profiles are found to be al-

so influenced by the length-radius ratio and the moduli ratio of the bar. It is
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interesting to note here that a long elastic beam on a Winkler medium and sub-
jected to a bending moment at one end shows bending moment profiles which are

qualitatively similar to that observed in Fig 3.14 for flexible bars.

3.6 CONCLUSIONS

It can be concluded at this stage that an accurate boundary integral formu-
lation has been presented to analyze a general (displacement, traction and mixed)
boundary-value problem related to a transversely isotropic elastic medium. The
kernels are the Green’s functions derived explicitly in Chapter 2. The numerical
examples have demonstrated the accuracy, flexibility and versatility of the solu-
tion scheme in analyzing a variety of problems. The boundary integral scheme
of domain V, can be coupled to a finite element representation of the near field
domain V' to develop a hybrid scheme (Zienkiewicz et al. 1977) which can be
used to model a variety of linear and nonlinear problems related to transversely
isotropic elastic media. The present methodology can be used to solve general
boundary-value problems related to a multilayered transversely isotropic elastic
medium without any fundamental difficulty. In the case of layered media, howev-
er, the Green’s functions can not be derived explicitly and have to be constructed
by using accurate numerical techniques. The development of an exact stiffness
matrix method for computation of Green’s functions of layered media is presented
in Chapter 7. It should be mentioned here that the above boundary-value prob-
lems can also be analyzed by using the integral representation theorems (Rizzo
1967, Eringen and Suhubi 1975). The kernel functions of the resulting integral
equations are again the displacement and traction Green’s functions, given by

eqns (2.23)-(2.25) and (2.34)-(2.36), respectively.

A coupled variational-boundary integral equation scheme is introduced to
analyze the load transfer from a cylindrical elastic bar to a transversely isotropic

elastic half space. The displacement compatibility between the bar and the half
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space is satisfied at nodal locations defined along the real contact surface. In
all cases, as the bar becomes rigid, the method yields a solution for the exact
boundary value problem corresponding to the surrounding half space. To the
writer’s knowledge, the present solution is the first treatment of the transverse
load-transfer problem with full displacement compatibility on real bar-half space
interface. The boundary integral scheme adopted for the surrounding half space
is rigorous and satisfies all governing equations and boundary value conditions.
The solutions for axial, torsional, horizontal, rotational, and coupled stiffnesses
indicate that the degree of anisotropy of the medium has a significant influence on
the stiffness parameters. It is found that normalized axial stiffness is influenced
mainly by the material constants ¢33. Transverse stiffnesses are influenced pri-
marily by €11, and to a lesser degree by ¢, and &;3, and the normalized torsional
stiffness depends on the value of (€17 — ¢12). In addition, the length-radius ratio
and the bar moduli ratio Ej significantly influence the stiffness parameters and
the load transfer profiles. The influence of material anisotropy is found to be
negligible for axial and shear force profiles of both elastic and rigid bars. How-
ever, torque and bending moment profiles show a dependence on the degree of
anisotropy of the surrounding medium for low values of E;. The shear force and
bending moment profiles of flexible bars display changes in sign and oscillations.
This is qualitatively similar to that observed in the analytical solutions for semi-
infinite elastic beams on a Winkler medium subjected to a concentrated load or
moment at the origin. It is also noted that the relative flexibility of the bar-half
space system is governed by both the length-radius ratio and moduli ratio of the

bar.
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Table 3.1 Variation of normal displacement of cavity wall for different locations

of S! and discretization of S and S’

Table 3.2 Convergence of cylinder stiffnesses for various discretizations and loca-

(M, M) c=0.25 c=0.15
(5, 10) 0.2120 0.1441
(6, 12) 0.2287 0.1718
(8, 12) 0.2438 0.2184
(8, 16) 0.2455 0.2241
(8, 18) 0.2459 0.2293
(10, 20) 0.2490 0.2319
(15, 30) 0.2499 0.2482
(20, 40) 0.2500 0.2497

Analytical 0.2500

tions of surface S’

c=0.1 c=0.15
(M; A/I,) Kh Kmh = Khm Km Kh Kmh = Khm Km
(18, 8) 9.46 -2.87 13.48 9.49 -2.83 13.59
(24, 12) 9.51 -2.79 13.80 9.48 -2.81 13.75
(28, 14) 9.52 -2.78 13.88 9.51 -2.77 13.85
(32, 20) 9.52 -2.75 13.93 9.51 -2.77 13.92
Case 1 9.52 -2.75 13.94

Case 1: Apsel and Luco (1987)
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Table 3.3: Axial and horizontal stiffness of a rigid cylinder embedded in trans-
versely isotropic elastic half space

K, Ky
hj/a | Ice | ClayI | Clay II | Isotropic || Ice | Clay I | Clay II | Isotropic
0.5 | 9.30 7.74 6.77 7.10 8.59 | 10.00 | 10.32 7.50
1.0 | 10.27 | 9.03 8.06 8.35 10.93 | 12.90 | 12.90 9.52
2.0 | 12.28 | 10.97 10.00 10.32 14.80 | 18.06 18.06 12.87
4.0 | 16.16 | 14.84 13.87 13.92 21.20 | 22.58 | 22.90 17.50

Table 3.4: Rocking and coupled stiffness of a rigid cylinder embedded in trans-
versely isotropic elastic half space

K Khm
hfa| Ice | Clay 1| Clay II | Isotropic | Ice | Clay I | Clay II | Isotropic
0.5 | 9.37 8.06 7.74 7.56 093 | 1.29 0.97 0.73
1.0 | 16.40 | 16.45 15.81 13.93 3.31 3.87 3.87 2.75
2.0 | 42.08 | 46.77 | 46.13 36.37 10.59 | 12.58 | 12.58 9.06
4.0 | 160.28 | 178.39 | 179.35 | 131.04 | 33.65 | 44.19 | 44.19 25.76
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Figure 3.1 Domains and surfaces related to boundary value problems

Y

Figure 3.2 Equivalent domain considered in the indirect boundary integral method
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Chapter 4

2-D ELASTODYNAMIC GREEN’S FUNCTIONS

4.1 GENERAL

In this chapter, explicit analytical solutions for displacement and stress
Green’s functions of a homogeneous orthotropic elastic half-plane are present-
ed. Fourier integral transforms and Laplace transforms are employed to solve
the governing equations corresponding to time-harmonic and transient problems.
General solutions for displacements and stresses are presented. Thereafter so-
lutions for displacement and stress Green’s functions corresponding to a set of
time-harmonic and transient internal vertical and horizontal loadings and tran-
sient displacement discontinuities are derived explicitly. Selected numerical re-
sults for displacements and stresses are also presented to portray the influence
of various parameters on the response. The availability of an exact analytical
solution for elastodynamic Green’s functions and an accurate numerical proce-
dure for its evaluation enables the solution of more complicated problems related
to dynamic soil-structure interaction, elastic wave scattering, fracture mechanics
etc. by using the boundary integral equation method and other techniques as

demonstrated in Chapter 6.

4.2 GOVERNING EQUATIONS

Consider a homogeneous orthotropic elastic medium with Cartesian coordi-
nate system (z,y,z) defined as shown in Fig 4.1. The stress-strain relationship

of a homogeneous orthotropic elastic material can be expressed as (Lekhnitskii

1963)

Ogzg = C11€xx T C12Eyy + C13E2, (4:10,)
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Oyy = C12€zz + C22Eyy + C23E,; (416)

U2z = C13Egs + C23Eyy + C33€22 (4.1c)
Ozy = 2C55E5y (4.1d)
Ozz = 2C44€4; (4.1e)
Oyz = 2C66Ey (4.11)

where ci11, 12, C13, C22, C23, C33, C44, Cs5 and cgg are material constants. It is as-
sumed that the deformations are plane strain in the zz plane. Therefore
Eyy = Eyz = Ezy = 0 and cy2, 22, ¢23,¢55 and cge do not appear in subsequent
manipulations. It is noted that constitutive equations for plane strain problems
corresponding to orthotropic materials are identical to those corresponding to a

transversely isotropic material with zy plane as the plane of isotropy [eqn (2.1)].

The equations of motion in the absence of body forces can be expressed in
terms of displacements u,(z,z,t) and u,(z,z2,t) as

%u, O%u, 0?

Uy 8%u,
“lnga + Caas 55 + (13 + C44)8m5z =P (4-2a)
0%u, 0%u, 8%u, 0%u,
gz T g tlen gt = r7gn (4.25)

where p is the mass density of the orhtotropic medium.

4.3 TIME-HARMONIC GENERAL SOLUTIONS

It is assumed that the motion is time-harmonic of the form e™?! where
t =+/—1 and w is the circular frequency. An uncoupled version of eqns (4.2a)

and (4.2b) can be written as
Lu,(z,2) =0, Lu,(z,z) =0 (4.3)

where L is a linear differential operator defined by

84 64 4 ) 32 ) 52 4
Ozt +aaz4 +75:c25z2 +(1+5)8 8_+(1+a)5 822 o (44)

2

L=8
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where a, # and v are defined in eqn (2.5) and

82 = p— (4.5)

In two-dimensional elastodynamic problems related to unbounded domains
it is natural to introduce Fourier integral transforms (Sneddon 1951) with respect

to the z-coordinate defined as

f\2) = \/_12:7 /_00 f(z,2)e”*de (4.6a)

and the inverse formula is defined by
f(z,2) = \/—% /_ Fu e (4.60)

The application of Fourier integral transforms to eqn (4.3) results in
L, (A 2) =0, Li,(\,2z) =0 (4.7

where 4, and 4, denote Fourier transforms of v, and u, and

4 d2 2

_ d d
L:ﬂ/\4+ad—25 —VAZE; —(1+ﬁ)/\252+(1+a)62—d;2- + &* (4.8)

The ordinary differential equations for @, and @, given by eqn (4.7) can be
solved analytically and the following general solutions are obtained for displace-

ments and stresses

) < ¢
= — ST AL, =z, 4.9
“ m/_ e “? (4-90)
o = o / F1,e¥0%d¢; lLLj=z,z (4.9b)
! V2T J o 7 ' ’ ’
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where g3, 02, and &,, are the Fourier transforms of 045, 0., and 0., respectively,

and

iy = wy Ae %1% — @ Beb17 w,Ce 2% — m, Deb62” (4.10a)

i, = Ae %1% L Bef61% 4 O %27 4 Deb%2? (4.100)
Gz = caa6(m Ae~ %1% _ mBe‘Sflz + 17206_‘5522 — 772D6652z) (4.10c¢)
Ogz = 0445(773146_5512 + ngBef6r® 4 77406_55” + 774De‘55”) (4.10d)

Gox = Caab(ns Ae ™07 — s BeP61% 4 pgCe™%2% — ngDeb2%)  (4.10¢)

where A((), B(¢),C(¢) and D({) are arbitrary functions and a normalised Fourier
transform parameter ( defined by ¢ = A\/§ is used in eqns (4.9)-(4.10) instead of
A. In addition,

m = ;15—1[(7—1+m)§%+ﬁ(1—c2>]; N2 = Ki&[(v—lw)ﬁ%ﬂ(l—cz)l (4.11a)

N3 = &LC[(OZE? +D+(E=1C m= %C[(aé% +1)+ (k= 1)¢7] (4.110)

-1 -alll me= gl -DI- ) -]l (@119

M5 =
_ebi+1-C _ofr1-C
wi = —l—i—;:‘ng'—, Ty — Ziﬂézc (411d)
In eqns (4.10) and (4.11), % and & are the roots of the following equation
abt = (v —1—a) + [t = (1+ )7 +1] =0 (4.12)
Therefore,
_ (P —1-a+ Ve .
&(¢) = e (4.13a)
_ (P -1-a—V¥)?
R (4130
and
®(() = (1¢* —1—a)’ —4a(f¢* = B -+ 1) (4.14)
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The radicals §; and £, are selected such that Re(£1,£2) > 0. With this def-
inition the radiation condition at infinity is satisfied and B(¢) = D(¢) = 0 for a
domain where z — oco. It can be shown that in the case of an isotropic materi-
al, @ = B =v/2=(\+20)/fi, where ) and i are Lame constants, and the eqn
(4.13) reduces to & = (¢% — a_l)% and ¢ = ((? — 1)%, respectively.

4.4 TRANSIENT GENERAL SOLUTIONS

In the case of an orthotropic elastic medium subjected to transient dynam-
ic loadings, it is convenient to employ Laplace transform to obtain the general

solutions. Laplace transform of function F(¢) is defined by (Sneddon 1951)

F(p) = / F(t)etdt (4.150)
0
and the inverse formula is defined by
2' d+ico _
Flt) = - / F(p)ertdp (4.15)
27 Jg—ico

where p is the transform parameter defined as
p=d+ip (4.16)

and the line p = d is to the right of all singularities of F(p).

The application of Laplace transforms to the equations of motion correspond-
ing to a medium which is at rest for ¢ < 0 and subsequent manipulations result

in the following uncoupled form of the eqn (4.2).
L*ﬁx(zL‘, z,p) =0, L*ﬂ,z(x, z,p) =0 (4.17)

where %, and %, are the Laplace transforms of horizontal and vertical displace-

ments and L* is a linear differential operator defined by

* = o ot ot 282 232 4
L _ﬁ3$4+a6z4+78m28z2_<1+ﬂ)’u 536—2—(1+04)u az—z—-i—,u (4.18)
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and
2

ut = pP = p? /9 (4.19)
Cq4

The application of Fourier integral transforms to eqn (4.17) results in
Liiz(\ 2,1) =0,  Lii(\,z,0) =0 (4.20)

where 4, and %, are the Fourier transforms of 4, and %, and

4 d* 2 & 2,2 d? 4
L=pA +ta——g —’y)\dz—}—(l—i—ﬁ))\y —(1—!—04),ud2+u (4.21)

The ordinary differential equations for @, and i, given by eqn (4.20) can be
solved analytically and the following general solutions are obtained for displace-

ments and stresses

d4100 ]
e A=t d s l=12z,2 (4.22a)
d—
d+ico Aotd
. el z+dput M
o1 = dMdp, lLj==z,z (4.22b
7= V'8 d—ico / )

where 6,4, 04, and §,, are the Laplace-Fourier transforms of stresses Ozz, 0z, and
02, respectively, and the expressions for i; and G:;(1,7 = z,z) are identical to
those given by eqn (4.10) for the time-harmonic case with the following definition

of parameters 7;(i = 1,2, ...,6), @y, @y, & and &,.

m= g =T =B N e = (L4 —BE Y] (4250

t= Sl ) (DN = (@)1 (4230

ns = —;’6—11[(&—1)(#2 +A)+all;  me= ;—;[(n——l)(uerV)Jra&%] (4.23¢)
_aé-Z_IMZ_)\Z‘ _a§2_#2_/\2
w1 = ikEx @3 = ) (4:24)
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In addition, €2 and ¢2 are the roots of the following equation
ab® — (YN? + p? + ap®)E + (A + (47 + Bu)A? + pf] =0 (4.25)

in which ,
(YA° + 4% + ap® +V@)3
V2«
(Pt ap? —VB)

£&2(0\) = Ners (4.26b)

&1(A) = (4.260)

and

() = (7N + 1% + ap®)? — 4a(BN* + BATE + N2 4 i) (4.27)

The radicals £; and £, are selected such that Re(é1,€2) > 0. Again with this
definition the radiation condition at infinity is satisfied, and B(A) = D(A) = 0 for
a domain where z — oco. It can be shown that in the case of an isotropic material
eqn (4.26) reduces to & = (A2 + p?/a) and & = (A2 + p?) where o = 2(1 —v)/

(1 — 2v) and v is the Poisson’s ratio.

4.5 TIME-HARMONIC GREEN’S FUNCTIONS

Consider an orthotropic elastic half plane region subjected to buried time-
harmonic loadings in the vertical z- and horizontal z-directions as shown in Figure
4.1. The loading is assumed to be distributed over a strip of width 2a located at a
depth 2’ below the free surface. The loading is uniform in the y-direction so that
the resulting deformations are of plane strain type. The boundary-value problem
associated with the internally loaded half plane can be solved by defining a fic-
titious horizontal plane at z = 2z’ and considering a two-domain boundary-value
problem (Fig 4.1). The domain ‘1’ is defined by |z| < 00,0 < z < 2’ and for the

domain ‘2, |z| < o0, and 2z’ < z < co. The general solution for displacements and
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stresses of each domain is given by eqn (4.9) together with (4.10) with each arbi-
trary function incorporated with a subscript ‘j°, (j = 1,2) to denote the domain
number. It is evident that By(¢) = D2(¢) = 0 to satisfy radiation condition at
infinity. The boundary-value problem corresponding to the loaded half plane can
be described by

o (z,0) =0, i=x,z (4.28a)
u(l)(z,z') - u( )(x,z') =0; t1=uz,2 (4.28b)

(1)(30 7)) — (2)(30 Z)=pi2)[H(z +a)— H(z —a)], i=z,2 (428¢)

In eqn (4.28), H(z) denotes the unit step function. The intensity of distributed
load acting in the i-direction over a strip of width 2a is denoted by p;(i = =, 2).
The solution of eqn (4.28) with the aid of general solutions given by eqns (4.9)
and (4.10) results in the solutions for arbitrary coefficients corresponding to the

two domains.

It is convenient to present solutions corresponding to horizontal and vertical
loadings separately. Let Gi;(z,;0,2"') denote the displacement in the ¢-direction
(i = x,z) at the point (z,z) due to a symmetrically distributed load p; acting in
the j-direction (j = z,2) over a strip of width 2a located at the depth 2’ (Fig
4.1) and o;;5(, 2; 0, 2") denote the stress component oy (i,! = @,2) at the point
(z,7) due to the same loading configuration. The following analytical solutions

are obtained for G;j(z,2;0,2') and 04;(z,2;0,2") from the analysis.

Gij(z,20,2") = ! / G7;d¢, 1, =T,z (4.29a)
N R o
O'ilj(IB,Z;O,Z ) = ; Uilij7 Z7la] =T,z (429b)
0
where
Gie = KE (9161 + g1e2 + gaes — gaes — g1€5 — g2€6) cos(6(x) (4.30a)
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G, = e (—e1 4+ Tea — e — Teq + e5 + eg) sin(6¢z) (4.300)

KE
Orog = -—I:(%(mel + n1e2 + M2e3 — 2e4 — N1€5 — N26e6) sin(6(x) (4.31a)
Opeg = If—_}(—ﬁsel + Inzey — faes — Ifjaeq + fzes + faeg) cos(6(x) (4.31b)
Orre = ‘Ij(%(ﬂsel + 75€2 + nses — Mees — Nses — Nees) sin(6(x) (4.31c)
Gz, = If——zG(glgzel + Ig1g2e2 + g192e3 — Ig192e4 — gies — gaes)sin(8¢) (4.32a)
G = %(9261 — g2¢e2 + g1e3 + g1e4 — g1e5 — gaeg ) cos(6(z) (4.32b)
Opzz = If'zc_;_{(flel +Ifies + foes — Ifaeq — n1g1es — n2g2e6) cos(6(z) (4.33a)
Ogrz = %(fsel — faea + faes + faes — fsgres — fagaes)sin(6¢z) (4.33b)
Oroy = If,—ZG(fsel + Ifses + foes — Ifees — nsg1es — nggzes) cos(6(x) (4.33¢)
in which
(= = 2)
= 4.34
I |zl _ z[ ( )
and
K =[201-r)* =9+ a)(1-¢?) — abiby (4.35)
K& — &)
¢ k(182 ( )
2 _ g2 _ 2062 _ ¢2 _
E = o€y 2522)(52 fl); =2 (5; _ £2)(& _ £1) (4.365)
k2(% 6182 k2¢2(1 — B¢?)
M3 =1M3; Ta=1Ns; J1=mg2; fa=mn291; f3="1302 (4.37a)

fa=Tag1; fs =mns92; fo =meg1; g1 =iw1; g2 =iy (4.37b)
hi =13ne + Mans;  ho = 27ans; ks = 27476 (4.37¢)
e = hle—éél(zl_}_z); eg = Q6—651|z'-z|; e3 = h18_6€2(z’+z) (4.38a)

eq4 = Qe—észlzl_zi; ey = h3e_6(§lz+52zl); eg = hoe 0617 +622) (4.38c¢)

In eqns (4.30)-(4.33), P and p, are related to the Fourier integral transform
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of the applied loading. It is noted that if p;(z) = g, (i.€., uniform load) then,

L sin(6Ca) ' .
pi(¢) = —s¢ i 1= (4.39)

In the case of a concentrated line load of magnitude P, acting through the

point (0, 2'), p; is given by
P :
5:(¢) = 70; 1 =x,2 (4.40)

Note that the solutions corresponding to nonuniformly distributed loading can be

derived through the integration of point load solutions.

The solution corresponding to a load acting inside an elastic full plane can be
derived from eqns (4.29) together with (4.30)-(4.33) through a limit procedure.
For example, the solutions for an orthotropic elastic full plane subjected to a
concentrated line load F; in the z-direction and applied at the coordinate origin

can be expressed as in eqn (4.29) with the following solutions for G}; and o i

G .(z,20,0) = %[glell‘sslz - gge‘m@z] cos(6Cz)d( (4.41a)
Gt (z,20,0) = %[61’5&2 — e!'%#]sin(6¢z)d¢ (4.41b)
0322(,2;0,0) = ;—f;’[mef"sf” — nael %% sin(8¢z)d( (4.42a)
03:2(2,20,0) = Z;" [Fael 617 — 4! %€2%] cos(6¢z)d( (4.420)
03:2(2,20,0) = %*11;9[77561165” - 7766]’662‘2] sin(6¢z)d(¢ (4.42¢)

where g1, 92,71, 72,73, 74, 75 and ng are given in eqns (4.37) and (4.23) and

I'= —E[- (4.43)
a(&f — &)
K¢
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4.6 TRANSIENT GREEN’S FUNCTIONS

Let Gij(z,2,t;0,2') denote the displacement in the i-direction (i = z,2) at
the point (z,z) at the time instant ‘4’ due to a symmetrically distributed load
p; with a time history F(t) acting in the j-direction (j = z,2) over a strip of
width 2a located at a depth 2' (Fig 4.1) and oy1;(z, 2,t;0,2') denote the stress
component o (I = z,z) at the point (2, z) at the time instant ‘4’ due to the same
loading configuration. The analytical solutions are obtained for G;;(z, z,t;0, 2')
and o1;(z, 2,1;0, 2') following procedures similar to that used in Section 4.5 for
time-harmonic problems.
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27('2 C44

d+ico o
Gij(2,2,1;0,2') = / F / GeMdNdp i,j=¢,z  (4.45q)
d 0

—i00

i d+100 B co 9 ' '
oij(z,2,t0,2") = ﬁ/ F/ ojje “dXdy il =,z (4.45b)
d 0

—100

The solutions for G7; and o} ; are identical to G}; and 0}y; given by eqns (4.30)-
(4.33) with the replacement of parameter §¢ by A, §&; by &(i = 1,2) which is
defined by eqn (4.26) and the following definitions of parameters K, Q, E, G, ¢1

and gz appearing in eqns (4.30)-(4.33).

K =[2(k — DA? + 927 4+ ap®](p? + 2\2) + b1 6,4 (4.46)
K& —
Q= —Sjﬁ (4.47a)
2 ¢2 _ 20¢2 _ £2 _
B = Ol(§1 n2é/'\22)é1§§2 61)’ G = 184 Iigl)\Z(/f; )—(-62)\2)61) (447[))
b2 — )2 _ 2 2 2,2
g1 = 3 K;\& a ) g2 = o :‘i)/\\fz = (4.48)

In addition, the other related parameters n1,n2,7s,74,75 and ne are as given in

eqns (4.23). The Laplace transform F of F(t) is given by
F=1, for an impulse load (4.49a)

F=1/p; for a step load (4.49b)
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The solutions given by eqns (4.45) are the required kernel functions in the
development of boundary element methods for transient problems involving an
orthotropic elastic half-plane. The transient Green’s functions of an orthotropic
full plane can be obtained from the time-harmonic full space Green’s functions
[ze., eqns (4.29), (4.41) and (4.42)] with appropriate replacements of parameters

as in the case of half plane Green’s functions.

4.7 FUNDAMENTAL SOLUTIONS FOR TRANSIENT DISPLACEMENT
JUMPS

The boundary-value problems involving transient displacement discontinu-
ities (jumps) inside an orthotropic half plane are investigated. Crouch and S-
tarfield (1983) have shown that fundamental solutions for displacement jumps
can be used to develop boundary element methods to analyse crack problems.
Consider a half space V' and an internal surface S defined as in Fig 4.2 across
which a displacement discontinuity may exists. Let S* and S~ are opposite faces
of the fault. A boundary-value problem similar to the applied internal loading
problem considered in Sections 4.5 and 4.6 can be formulated for the displace-
ment discontinuity problem by realizing the fact that the displacement is now
discontinuious whereas the traction is continuious over the fictitious interface at
z = z'. In this study the displacement jumps are assumed to be located at a
depth 2’ below the free surface and over a strip of width 2a. The boundary-value
problem corresponding to an internal displacement jump (discontinuity) can be

expressed as

o (z,0,1) =0, i=x,z (4.50a)
u(z,2,t) —uP(e,2',t) = wl(@)[H(z + a) — H(z — a)|F(t); i=ux2 (4.500)
(1)(33 2',t) — g (z,2',t) =0, i==z,2 (4.50¢)
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where 4% and u? are the absolute values of the displacement jump in z- and
z-directions, respectively. In addition, H(z) denotes the unit step function and
F(¢) is the time history of the displacement jumps which can be usually treated
as a step function H(t) to depict the spontaneous behaviour of a displacement
discontinuty such as the slip across a rupturing fault surface. The solutions to the
boundary-value problems can be obtained by applying Laplace-Fourier transform
in eqn (4.50) and substituting the two-dimensional transient general solutions

given by eqn (4.22) into (4.50).

Let Gij(z,2,t;0,2") denote the displacement in the ¢-direction (¢ = z,2) at
the point (z, z) at the time instant ‘¢’ due to a symmetrically distributed displace-
ment jump in the j-direction (j = z,z) over a strip of width 2a (Fig 4.1) located
at a depth z' and 0y;(2, #,¢;0,2') denotes the stress component o;; (I = z,2) at
the point (z,z) at the time instant ‘¢’ due to the same dynamic excitation. The
analytical solutions for displacements G;;(z,z,t; 0,2') and stresses oy1;(z, 2, t;
0,2') can be expressed in the forms of eqns (4.45), respectively with G}; and o}};

defined by

0

Gre = QH —Z(g1mee1 + Iginees + ganses — Iganses — ginses — ganees ) cos(Az X4.51a)
70

G, = QH —2(nee1 — nee2 + Nses + Ns€s — Ns€5 — Neeg) sin(Az) (4.51b)

Oroe = _QH (711€1 + Ii1e2 + 112e3 — Iy12es — minses — nanecs) sin(Az) (4.52a)
® (:44u . _

Tgzz = QH 2 (v21€1 — Y2162 + Y2283 + Y2284 — 73755 — NaNees ) cos(Az) (4.52b)

U:zz = QH :1: (”)/361 —+ I")/362 + Y3€3 — I")/364 — N5T5€5 — 77677666) Sll’l()\SC) (4:526)
Gi. = QE (9177461 + g17ja€2 + g2Tzes — g2fjses — g17jzes — gaflaes) sin(Az) (4.53a)

o)

Gy, = OF —Z (fge1 — Ifaes + Tses + Ifjaes — fzes — faes) cos(Az) (4.53b)
% C44U2 _ _

Orgz =™ OF (ya1€1 + Yya1€2 + Yaoe3 — Yazes — MiNzes — 77277466) COS(/\CE) (4'54‘1)

70




~0
644’11,2

J:zz = QE (’)’561 — I")/562 —+ Ys€3 -+ I’Y584 —_ 7_737_]385 — 7747_]466) SlIl(/\JZ) (454[))
Ccaatl) _ _
Oruy = OF (v22€1 + Y2262 + Y2163 — Y2164 — 5735 — N6Taee ) cOS(AT) (4.54c)

where @ and @9 are the Fourier transforms of u(z)[H(z + a) — H(z — a)] and
uY(z)[H(z 4+ a) — H(z — a)], respectively. Note that g¢1,92,71,72,73, 74,75, 76,
e1, €2, €3,¢4,6€5,¢6,1,Q and F are defined by eqns (4.48), (4.23), (4.38), (4.34),
(4.47a) and (4.49) together with the replacement of 6£;(¢ = 1,2) by ¢; which is
defined in eqn (4.26). In addition,

H = g1m6 — g275; E =13 — 74 (4.55)
Y11 = Mne; Y1z = N27s;  Ye1 = 73Me; Yoz = N47s (4.56a)
Y3 =MsNe; Y41 = M4 Ya2 = N273; Vs = N304 (4.56b)

Note that a solution corresponding to an arbitrary distribution of u(z) and u%(z)
can be obtained by the superposition of the solutions given above and shifting of

the origin of z-axis.

4.8 NUMERICAL SOLUTIONS FOR TIME-HARMONIC PROBLEMS

4.8.1 Numerical Scheme

The solutions for displacements and stresses given by eqn (4.29) appear in
terms of infinite integrals with a complex-valued integrand. As in the case of an
isotropic medium, these integrals cannot be evaluated analytically for both sur-
face and interior loadings. However, in the case of a surface loading the solutions
may be reduced to a form containing a set of finite integrals by performing an inte-
gration along a closed contour in the complex-plane similar to that used by Lamb
(1904). Since our objective is to apply these Green’s functions to solve complex

problems related to anisotropic media through a numerical solution based on the
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boundary integral equation method, it is natural to develop accurate numerical
integration schemes to evaluate both time-harmonic and transient Green’s func-
tions. The numerical evaluation of eqn (4.29) requires careful consideration due
to the presence of singularities within the range of integration and the oscillatory
nature of the integrand due to the trigonometric terms. The oscillatory nature
of the integrand can be accounted by using Filon’s integration scheme (Tranter
1956). The singularities of the integrals of eqn (4.29) also need to be examined

prior to the establishment of a numerical integration procedure.

An understanding of the singularities of the integrands of eqn (4.29) together
with (4.30)-(4.33) can be obtained by treating ( as a complex-variable. It is noted
that due to the presence of radicals ¢; and &; the Riemann surface of the integrand
of each integral has four sheets. However, the condition Re(é1,£2) > 0 which is
required to satisfy regularity conditions at infinity implies that only the sheet
in which radicals &; and &; have positive real parts everywhere is relevant. The
important singularities of the integrand are the branch points of the radicals ¢;
and &, as defined by eqn (4.13) and poles of the function K defined by eqn (4.35).
The branch points of ¢; and £, are given by

£1=0, & =0 (4.57)
The substitution of eqns (4.57) in eqn (4.13) leads to the following branch points.

p=%1//B, (=41 (4.58)

For an isotropic solid, the eqn (4.58) reduces to ¢, = £1 and ¢, = £+//(X + 22).
It can be shown (Stoneley 1949) that in a two-dimensional orthotropic material
there are two kinds of waves. The wave numbers of these waves are equal to §/1/8
and 6. The motion associated with these waves is neither purely dilatational nor
purely distortional. However, noting that branch points (, and (, in an isotropic

case correspond to purely dilatational and distortional waves (Lamb 1904), the
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waves corresponding to these branch points in an anisotropic case are called quasi-

dilatational and quasi-distortional.

The denominator of the integrand of the integrals given by eqns (4.29)-(4.33)
yields poles and their locations are given by K in eqn (4.35). The eqn (4.35)
reduces to the classical Rayleigh equation (Lamb 1904) in the case of an isotropic
solid. It is also noted that through appropriate manipulation the eqn (4.35) can be
transformed into a form identical to the eqn (30) of the paper by Stoneley (1949)
where it is shown that the eqn (4.35) has only two roots +-(g along the real axis.
These roots cannot be determined explicitly due to the complex nature of eqn
(4.35) and an appropriate numerical procedure is required. In the present study,
four different materials, namely, an isotropic material, cadmium, ice, and a layered
soil are considered. The choice of the above set of anisotropic materials among
several others is based on their relevance to applications related to earthquake
engineering, dynamics of foundation and composite materials. Table 1.1 presents
the values of material constants €11, €12, €13, €33 and c44 Where &; j = €ij/caa. Table
4.1 presents the values of (g and branch points (5, {, for each of the four materials.
Note that the location of singularities is independent of the frequency of excitation

w since the Fourier transform parameter ¢ is normalised with respect to 6.

The integrals in eqns (4.29)-(4.33) can be evaluated accurately by using a.
direct numerical integration technique provided the positive real axis is free from
any singularities . It is noted from Table 4.1 that this is not the case for the
four materials under consideration when there is no attenuation in materials.
However the introduction of a small attenuation (ze., ¢aa = 1 + 0.014) results in
complex values for a, § and v and singularities are shifted away from the real axis.
This technique which is consistent with the reality that all physical materials
display some amount of attenuation (damping) has been used successfully to
numerically evaluate infinite integrals related to Green’s functions of a layered

isotropic medium (Apsel and Luco 1983). Alternatively, it is possible to deviate
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the integration contour initially into the first quadrant of the complex plane
to avoid the singularities on the real axis and then fall back to an integration
along the real axis. The deviated portion of the contour should be selected in
light of the location of singularities of the integrand as given in Table 4.1. In
the present study, both procedures mentioned above are used to evaluate eqn
(4.29) and obtained numerical solutions agree with each other very closely. All
numerical results presented in the ensuing section is based on the technique where

the material is assumed to possess negligible attenuation.
4.8.2 Numerical Solutions

The dynamic response of elastic half plane regions of different materials is
considered in this section. The loading is assumed to be uniformly distributed
over a width of dimension ‘2a’ with intensity go, and acting at a depth z'/a = 1.0.
The numerical results are presented in terms of normalised displacement and
stress Green’s functions éi]’ = Gjcaa/(ago) and &1 = 04jk/qo respectively. In
addition, a nondimensional frequency ao defined as ay = aé = aw(p/ C44)1/ 2 is

used in the present study.

Figure 4.3 shows the variation of G.. and G, along the z axis for the four
different materials at frequency ag = 1.0. The real part of G4, and G, show a
kink at z'/a = 1.0 which is consistent with the fact that the loading is applied
at this level. The influence of material anisotropy is clearly noted in the case
of imaginary part of G, and for both real and imaginary part of G,,. Figure
4.4 shows the variation of G,, and G,, at the surface level (z =0) with the
horizontal distance z. It is noted that G, shows strong dependence on the degree
of anisotropy at the surface level when compared to its behaviour along the z-axis.
In the case of G,, the influence of the anisotropy is found to be comparatively
lesser. This is in contrast to the strong influence observed in Fig 4.3 for G ,, along

the z-axis. It is useful to relate the influence of material anisotropy observed in
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Figs 4.3 and 4.4 to the values of ¢;; given in Table 1.1. The solutions for G,
indicate that the highest influence of anisotropy is observed in solutions for ice
and followed by layered soil, the isotropy and cadmium. Comparison of values
of ¢;; in Table 1.1 in light of the solutions in Figs 4.3 and 4.4 indicates that in
the case of G, the influence of material anisotropy is mainly governed by the
value of &33. Solutions for Gz in Figs 4.3 and 4.4 show an influence which is
different to that observed for G,,. For example, solutions for cadmium show
the highest influence of anisotropy and G.. of layered soil and ice are nearly
equal. Comparison of the above features of the solution and ¢;; values in Table
1.1 indicate that the influence of anisotropy on G, is mainly controlled by the

value of ¢y1.

Figure 4.5 shows the variation of normalised stress Green’s functions 74,4
and &,,, along the z-axis at ap = 1.0. The real part of 7., profile shows a neg-
ligible influence of material anisotropy and a discontinuity equal to a unit value
at z'/a = 1.0 due to the applied loading. The influence of material anisotropy
is clearly noted in the solutions for both real and imaginary part of G,.,. In
the case of @,,,, the solutions for cadmium and ice show the highest influence
of anisotropy. The general shape of stress profiles is somewhat similar for all
four materials. Figures 4.6 and 4.7 show the influence of normalised frequency
ag (aop = 0.5 and 3.0) on displacement and stress profiles along the z-axis respec-
tively. The materials considered are isotropic, layered soil and cadmium. These
solutions together with that given in Figs 4.3-4.5 for ag=1.0, indicate a complicat-
ed dependence of response on the frequency. At low frequencies (ao = 0.5,1.0),
both displacement and stress profiles show a gradual variation with the depth.
However at the high frequency (ao = 3.0), the solutions for Gz, Fzzz annd F,zs
show considerable waviness with the depth. In general the real part of the dis-
placement is found to decrease with increasing frequency whereas the imaginary

part shows an increase in magnitude with increasing ag. It is also noted that the
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general trend of the variation of solutions with the frequency is somewhat similar

for all three materials within the frequency range ay = 0.0 — 3.0.

4.9 NUMERICAL SOLUTIONS FOR TRANSIENT PROBLEMS

4.9.1 Numerical Scheme

The evaluation of explicit analytical solutions for transient displacements
and stresses presented in Sections 4.6 and 4.7 is considered here. It is noted that
all solutions appear in terms of an infinite integral with respect to the Laplace
transform parameter ‘p’ [or p, see eqn (4.19)] and a semi-infinite integral with
respect to the Fourier integral transfer parameter A. Due to the presence of double
integrals involving highly complex integrands the evaluation of displacements and
stresses requires special consideration. One of the standard methods of dealing
with the infinite integrals encountered in transient wave propagation problems
is to apply the method proposed by Cagniard (1962). This method involves a
complicated transformation of the variables of integration. Mitra (1963) applied
Cagniard’s technique to obtain the transient response due to an impulsive disc of
pressure applied to the surface of an isotropic elastic half space. Another method
(Eason 1966) to evaluate the Laplace inversion integral is to take the integral
around a suitable contour in the complex-p plane and to apply the residue theorem
with due consideration given to branch points and poles of the integrand. The
review of existing literature reveals that Cagniard’s method has been applied to
evaluate the response due to an impulsive surface load on a transversely isotropic
elastic half plane (Kraut 1962, Payton 1983) whereas a direct contour integration
method similar to that used by Eason (1966) has not been applied to evaluate the
transient response of transversely isotropic materials. As stated by Payton (1983)
the application of analytical procedures to evaluate the integrals corresponding to
the response at an arbitrary point is very complicated even in the case of surface

loading.

76



The application of analytical procedures become almost impossible when the
excitation is also inside the medium as in the case of the solutions derived in Sec-
tions 4.6 and 4.7. In addition the analytical inversion requires certain restrictions
on parameters o, and 7. It is noted from the transient solutions presented by
Eason (1966) for an isotropic medium that even after the analytical inversion of
Laplace transform, the solution still involves semi-infinite integrals with respect
to Fourier transform and Hankel transform parameters for 2-D and 3-D problems,
respectively. These semi-infinite integrals are somewhat similar to the integrals
associated with solutions corresponding to time-harmonic vibration of an elastic
half-plane and cannot be evaluated analytically to determine the response at an
arbitrary point due to an internal loading. However, asymptotic solutions valid
for far-field observation points can be obtained in some cases. In the application
of the boundary integral equation method to analyse complicated transient wave
propagation problems it is required to compute displacements and stresses at all
boundary node points due to transient dynamic excitations applied at each and
every boundary node point. Therefore a substantial amount of response calcula-
tion are required at near-field points. In view of the complexity of the integrands
of the integrals associated with the solutions presented in Sections 4.6 and 4.7
and the formidable difficulties involved in the application of analytical procedures
to evaluate these integrals it is author’s opinion that the use of an accurate nu-
merical quadrature technique would be the most efficient way to compute the
transient solutions. This is further validated by the fact that the final solution to

boundary integral equation also has to be obtained numerically.

In the development of a numerical quadrature method to evaluate the tran-
sient response it is necessary to consider integrals of the following form for 2-D

problems

d+ico [e%e} )
I(z,z,t) = / / x(z, A, p)e**{cos(A\z)or sin(Az)}dAdu (4.59)
d 0

—100
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The review of literature indicates that several methods are currently avail-
able for numerical inversion of Laplace transform. Piessens (1975) and Davies
and Martin (1979) presented a review of numerical Laplace inversion techniques.
It should be noted that numerical inversion of Laplace transform solutions related
to transient wave propagation problems requires special attention when compared
to the numerical Laplace inversion of solutions encountered in heat transfer, d-
iffusion and consolidation problems. Based on a study of different numerical
algorithms available in the literature it is found that the numerical algorithm
presented by Hosono (1979) provides accurate numerical solutions for transient

wave propagation problems.

The numerical algorithm proposed by Hosono (1979) is based on an approx-
imation of the exponential function and Euler transformation. It determines the
transient solution f(?¢) in terms of (V 4 M) values of the Laplace transform f(u)

sampled at (N + M) complex values of . The inversion formula is given by

(1) = T[NZ Ful) + ot ﬁ Aumfuen()] (460
where
Avar =1, Apmer = Ayim + M!(.(7\]/.\fl—+n?—!}— A (4.61a)
i = %[a +i(n—7/2)] (4.610)
Fo(w) = (=1)"Im[f(pn)] (4.61c)

In addition, the values of N, M and a in eqns (4.60) and (4.61b) are determined

on the basis of a convergence study.

The application of eqn (4.60) to evaluate the integrals given by eqn (4.59)
involves the numerical evaluation of semi-infinite integrals with respect to \ for
(N + M) complex values of . Since y is complex in eqn (4.59) it is noted that
integrand x(z, A, u) for 2-D does not have any branch points or poles along the
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real A-axis. Therefore the semi-infinite integral with respect to A can be evaluated
accurately by applying a direct numerical quadrature scheme. Since trigonometric
functions in eqn (4.59) are oscillatory it is necessary to select a sufficiently small
value for the integration interval A). It is found that A\ = 0.1 is accurate enough
in the present case. In addtion, N=15 and M=5 in eqn (4.60) are found to yield

converged numerical solutions.

4.9.2 Numerical Results

The accuracy of the numerical algorithm used in the present study to evaluate
transient solutions presented in Sections 4.6 and 4.7 is first investigated in this
section. As mentioned earlier, Mansur (1983) presented transient solutions for
an elastic half plane subjected to a uniform step load of intensity ¢y applied over
a surface strip of width 2a. The loading is uniform in the y-direction resulting
in plane strain deformations. Figure 4.8 presents a comparison of numerical

solutions for normalised vertical displacement G*,(G*, = 292z where [ is the
zz -4 goa 'LL

shear modulus of the half space) at three points on the z-axis obtained from
the present numerical integration scheme with the results presented by Mansur
(1983). Note that a nondimensional time 7 defined by 7 = %(%)1/2 is used in the
numerical study. It is evident from Fig 4.8 that the numerical algorithm used in

the present study results in very accurate numerical solutions.

Isotropic, layered soil, glass/epoxy composite and graphite/epoxy composite
half planes are considered in the numerical study. The related material constants
are given in Table 1.1. Figures 4.10a and 4.100 show the normalised displacement
G:.(= 3‘;}%, where 2a is the width of the load and p, is the intensity of the
load) at three points (z/a = 0,1,5) on the surface of the half plane due to vertical
loading histories shown in Figs 4.9a and 4.9b. These loadings are applied at a
depth z'/a = 1.0 below the surface of the half plane. It can be seen from the

Fig 4.10 that the degree of anisotropy of the material and the time history of the

79



.
.
§
1%
.
|
L

excitation have a significant influence on the response. Composite material shows
the lowest displacements whereas the layered soil has the highest displacements.
Displacements increase more rapidly at near-field points under the rectangular
pulse excitation when compared to displacements due to the triangle pulse. The
peak displacements are also higher in the case of the rectangular pulse. The
ascending parts of the response curves indicate the presence of a constant velocity
period at early time where as velocity decreases rapidly over the descending part

of the response.

Figure 4.11 shows the vertical displacement G,.(= G”) due to a displace-

Wo

ment jump in the vertical direction over a strip of width 2a located at a depth
z'[a = 1.0 below the surface of the half plane. The time history of the displace-
ment jump is shown in Fig 4.9¢ and the displacement jump has the distribution
w(z) = wo cos(rz/2a). The response at near-field indicates the presence of an
initial constant velocity period for all three materials followed by transition to
the static displacements. Both composites are more stiffer than the isotropic ma-
terial. Response at far-field shows the presence of negative displacements at early
time of response histories and rapidly varying velocities. In addition the response

decays rapidly with the distance.

4.10 CONCLUSIONS

A solution scheme to derive Green’s functions for an orthotropic elastic half
plane subjected to buried dynamic loadings is presented. The governing equa-
tions are solved by applying Fourier and Laplace-Fourier integral transforms for
time-harmonic and transient problems, respectively. The analytical general so-
lutions for displacement and stress are then used to solve the boundary-value
problems corresponding to buried time-harmonic loads, buried transient loads
and displacement jumps. The explicit analytical solutions for dynamic Green’s

functions of displacement and stress are presented. It is found that Green’s func-

80



tions appear in terms of complex-valued infinite integrals. Numerical solutions

for displacements and stresses corresponding to time-harmonic excitations are
computed by direct numerical integration of the infinite integrals by introducing
negligible material attenuation. In the case of transient problems, the response
is again evaluated by using an approximate Laplace inversion technique togeth-
er with direct numerical integration of semi-infinite integrals. Comparison with
existing solutions for isotropic materials confirms the accuracy of the numerical
scheme. As in the case of static problems, solutions for displacements and stresses
indicate that the degree of anisotropy of the material significantly influences the
dynamic response. It is found that in the case of displacement Green’s functions
G:: and G, the influence of material anisotropy is mainly reflected by the val-
ue of ¢1; and E33 respectively. The solutions for displacements and stresses also
show a strong dependence on the frequency and time history of the excitations.
The availability of an exact analytical solution for Green’s functions and an accu-
rate numerical procedure for evaluation enables the solution for more complicated
problems related to dynamic soil-structure interaction, seismic wave scattering,
composite materials, etc. by using the boundary integral equation method and
other techniques. The present solutions can also serve as the basis for estimating
the accuracy of approximate numerical algorithms that could be used to evaluate
the dynamic response of an anisotropic medium. The present solution scheme is
extended to derive Green’s functions for three-dimensional elastodynamic prob-
lems in Chapter 5. In addition, the general solutions expressed in eqns (4.9)
and (4.10) are used in Chapter 7 to develop an exact stiffness matrix method to

compute Green’s functions of multi-layered orthotropic half spaces.
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Table 4.1: Location of Singularities on real (-axis

CR CP Cs
Isotropic 1.088 | 0.577 1.0
Ice 1.043 | 0.485 1.0

Layered soil | 1.051 0.473 1.0
Cadmium 1.052 | 0.377 1.0
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Figure 4.2 Geometry of considered displacement discontinuity problem
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Figure 4.3 Normalized displacement Green’s function G;, and G,, along z-axis for

different orthotropic materials
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along z-axis for different orthotropic materials (2'/a = 1.0)
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Figure 4.9 Time history of applied excitations
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Chapter 5

3-D ELASTODYNAMIC GREEN’S FUNCTIONS

5.1 GENERAL

This Chapter is concerned with the derivation of three-dimensional dynam-
ic Green’s functions of a homogeneous transversely isotropic elastic half space.
Governing equations corresponding to three-dimensional time-harmonic and tran-
sient wave propagation problems are solved by using integral transform tech-
niques. Explicit general solutions for displacements and stresses corresponding to
time-harmonic and transient problems are presented. Thereafter boundary-value
problems corresponding to internal time-harmonic and transient loadings and
transient displacement discontinuities are solved. Explicit analytical solutions for
dynamic Green'’s functions corresponding to internal loadings and displacement
discontinuities are presented. Numerical evaluation of the Green’s functions ex-
pressed in terms of infinite and semi-infinite integrals is also discussed. Selected
numerical results for displacements and stresses due to a buried circular patch
load are presented to portray the effects of anisotropy on the response of the
medium. The fundamental solutions (Green’s functions) presented in this Chap-
ter can be used to develop solution algorithms based on the boundary integral
equation method for the analysis of a variety of 3-D wave propagation problems

involving transversely isotropic materials.

5.2 GOVERNING EQUATIONS

In many engineering and geophysical applications involving three-dimensio-
nal domains and loadings it is convenient to adopt a cylindrical coordinate sys-
tem in the analysis. Consider a transversely isotropic elastic half space with a

cylindrical coordinate system (r,6,2) chosen such that the z-axis is parallel to
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the material axis of symmetry and normal to the stress free-surface of the half
space as shown in Fig 2.1. Let u,(r,0,z2,t),ug(r,0,2,t) and u.(r,8,2,t) denote
the displacements in the r-, #- and z- directions respectively. The equations of
motion of a transversely isotropic elastic half space in the absence of body forces

can be expressed in terms of displacements as

e (LY ur 1 a_u,: Ur c11 — C12 iazur + 8%u,
152 r Or r2 2 r2 002 cas 022
+ 182 10 1 Ou %u,
ar C12(— o + = ug) 2c11— 2 il +(C13+C44) =p t; (5.1a)
2 rorod = r?2 00 09 ot
c11 —c12,0%us  10up ug 1 0%ug O%uyg
7 o Trar ) TEae T
c11+c12,1 0%, 1 Ou, 1 Ou, 1 8%u, 0%ug
s Gaas e T2 g Tt ) gas, = g (5:10)
2u, 10u, 1 0%u, *u,
644(32 o T ) T
ur 10u, |1 8 ug *u,
HestenlGa, 75 T rae:) = P (5-1¢)

Equation (5.1) can be solved (Buchwald 1961) by introducing three potential

functions ¢, and x which are related to the displacements u,,ug and u, by

o 109

Up = 3 + = ~ 20 (5.2a)
104 OY
_ 9

us = 5= (5.2¢)

5.3 TIME-HARMONIC GENERAL SOLUTIONS

Substitution of eqn (5.2) into eqn (5.1) together with the assumption that

motion is time-harmonic with circular frequency w indicates that the equations
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of motion are satisfied if the potential functions 1, ¢ and x are governed by the

follwing differential equations.

282X 2 o? 2\v72
62 62 32
AV o+ (Vi ag s + 6 @é =0 (5.3b)
2
(V2 + %5 + 62V =0 (5.3¢)

where V2 is a differential operator defined in eqn (2.7) and the dimensionless
parameters «, 3, £,y and ¢ are defined as in eqn (2.5). In addition, the parameter

6 in eqn (5.3) is defined in eqn (4.5).

Application of the Fourier expansion defined in eqn (2.14) to the potential
functions ¢,7% and x and Hankel integral transform in the radial direction as

defined in eqn (2.15) results in the following governing equations

w

d2 Vm d2¢m ) .
3 + T (BA* = 6°)pm =0 (5.4a)
—kX G + adz%m — (A% = 6Xm =0 (5.4b)
dz?
d2 um b
di —(A% — 6% )p, = 0 (5.4c)

where I/U)m, <Zm and Y, are the m-th order Hankel integral transform of the mth
symmetric Fourier components ¥,,, ¢,, and x., of the three potential functions
and A is the Hankel transform parameter. It is noted from the above equations
that 1/\;,,1 is independent of other two potential functions, whilst ém and X still
are coupled in (5.4a) and (5.4b).

The coupled partial differential equations (5.4a) and (5.4b) can be solved by

assuming

v

bm = Pe’é? Ym = Qed%. (5.5)

Substitution of the above expressions into eqns (5.4a) and (5.4b) yields the follow-

ing coupled homogeneous algebraic equation system to determine the coefficients
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P and Q,
(& =B+ 1P +rE*Q =0 (5.6a)

—6CP+(at? =P +1)Q =0 (5.60)

where the parameter ( = \/é. For a non-trivial solution of P and @ the parameter
¢ in eqn (5.6) should satisfy the equation (4.12). Therefore the roots ¢; and &,
of eqn (5.6) resulting in non-trivial solutions for P and @ can be given by eqns

(4.13a) and (4.13Db), respectively.

In view of eqn (5.4¢), the solution of z/jm can be expressed as
P = Cebé? (5.7)
where € is the root of the following equation
& —(¢*-1)=0 (5.8)

and this root can be given as
{3 = F/c(2—1 (5.9)

In view of eqns (5.5)-(5.9) the general solutions for the mth Fourier harmonic

of the potential functions ¢, and x can be expressed as

(s b ) = [ o o) T (5C7)5% G (5.10)
0
where

$m = 01Ame %% 4 01 Bre®1% 4 0,Crpe 527 4 py Dy ef2* (5.11a)
Ym = Eme ™87 4 F, 602 (5.115)
Ym = Ame %17 4+ B €817 4 0, e %27 4 D, b2 (5.11c)

in which

afZ—C2+1 a‘fz_cz_i_l

— _I—K,CZ—_’ g = _LECZ— (5.12)
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and An, Bm,Cm, Dm, Em, Fim are arbitrary functions to be determined by suit-
able boundary and continuity conditions. Radicals £;(1 = 1,2, 3) are selected such
that Re({;) > 0. With this definition the radiation condition at infinity is satisfied

and B, = D,,= F,, = 0 for a domain where z — oo.

In view of eqns (5.10), (5.11) and (5.2), the general solution for mth sym-

metric Fourier component of displacements and stresses can be expressed as

Ui = 52/ ul CdC, i=r,0,z (5.13a)
0

Tim =8 [ ohaldl,  ii=r0,s (5.135)
0

Note that u;m and 04jm in eqn (5.13) denote the mth symmetric components of

*

u; and oy expanded in the form of eqn (2.14). The solutions for u},, and o};,,

can be expressed as

U = (@14m + 01Bm 4+ a2Cm + 2D + as B + a3 Fiy,) (5.14a)
Upm = —(a4dm + asBp + a5Cm + asDim + a6 B + as ) (5.14b)
u:m = —(a7Am - a7Bm + a/SC_'m - a8Dm) (5146)

0k m = caa(b11Am + 011 By, + 012Cr, + b1 Dy + b13 By 4 013 F)  (5.154)
Tpom = aa(be1Am + b61Bm + b62Crm + bea D — bi3 B, — b1 Fr)  (5.15b)
03 m = Caa(b21Am + b21 B + b22C + b22Dim) (5.15¢)
Orom = Caa(bs1Am + b31Bm + b32Cr + b33 Do + b33 B + b33 ) (5.154)
Tpom = Caa(ba1 Am — ba1 B + ba2Crm — bso Do + baz B — by Frn)  (5.15¢)
0t m = —Caa(bs1Am — bs1 B + b53Crn — bsa D + bs3 By — bss Fry)  (5.15f)

where
Apm =Ane %7 B =B,ef% O, = Cphe %7 (5.16a)

Dy, = Dpe’2*  E,, = Ene %%  F. = F,e%* (5.160)
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and, for z = 1, 2,

bri = SB[ — 1) (607) = (m -+ DFong (5]
— [6%¢C?Boi — (rk — 1)82€2] T m (8CT) (5.17a)
biz _ 2bg 2bss3
s 0is8¢ L4 (62¢2r2/2m)]c6¢
= [(m — DI (8C7) = (m + 1) Jon (67)] (5.175)
boi = — 8 [(m — 1) 2 (8C7) — (m -+ 1) (67
— [62¢%B0; — (5 — 1)82€2)Jm(8CT) (5.17¢)

b = [6%€F — (k= 1)8C20i] Tu(6Cr),  ar/861 = as /8¢ = Tm(5¢r)  (5.17d)

_Ga _as by bss 6¢[Tm—1(8Cr) + Jmi1(6CT)] .
= o1 o2 (14 0:)8& 66 2 (5.17e)
_a gy bsi  bas 6C[Tm—1(8Cr) — Jm41(6CT)]
o= o1 o2 (14 0:)8¢ 686 2 (5-17F)

5.4 TRANSIENT GENERAL SOLUTIONS

For a transversely isotropic elastic medium subjected to transient excitation-
s, the governing equations in eqn (5.1) can be solved by employing the potential
functions defined in eqn (5.2) and applying Laplace transform, Hankel transform
and Fourier expansion with respect to time, radial and circumferential coordi-

nates, respectively. The governing equations are found to be

dz Vm d2 Vm Y
Ky dfz — (BN + 1) dm =0 (5.18a)
Y d2 Um v
=M + o= — (M 4 ) Xm = 0 (5.18b)
ehrm v
d;/)z —(A2 4+ 1y, =0 (5.18¢)

where qim,;Zm and Y, are the Laplace-Hankel integral transforms of the mth
symmetric components of the Fourier expansion of ¢,v% and x, respectively. In

addition A is the Hankel transform parameter and p is defined by eqn (4.19).
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Following a solution procedure identical to that presented in Section 5.3 for
time-harmonic excitations, the general solutions for the mth symmetric Fourier
component of the potential functions for transient excitations can be expressed

as,

9 d+100
(b P Xm) = /d / (Grm» By Xm ) Jm(Ar)eF Pt AdAdp (5.19)

where ¥ is defined in eqn (4.19) and

$m = 014me " + 01 Bne®” + 030me ™% + 0y Dppe2® (5.20a)

Pm = e 4 Fefo® (5.200)
Xm = Ame %% + Bpe®? + Ce %27 4 D eb2? (5.20¢)
in which
I T R
Ql - K}\z b 92 - fi)\z (5'21)

¢1 and £ are given in eqn (4.26),
= (cA2 + )7 (5.22)

and An, Bm,Cm,Dm, Em and F,, are arbitrary functions to be determined by
suitable boundary and continuity conditions. The radicals £;(z = 1,2,3) are s-
elected such that Re(§;) > 0. With this definition the radiation condition at

infinity is satisfied and B,, = D.,, = F,, = 0 for a domain where z — co.

In view of eqn (5.2), (5.19) and eqn (5.20), the general solutions for mth sym-
metric Fourier component of displacements and stresses for a three-dimensional
transient problem can be expressed as

d+ioco

Uim = / wl e’ d\dy i =r,0,z (5.23a)

d—ico

d+ico
Tijm = 5— /d / oime P AdNdp 1,5 =1,0,z. (5.23b)
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The expressions for uj,, and o};,, are identical to that of u}, and ofim of
time-harmonic response in eqns (5.14) and (5.15), respectively. However, the
replacement of 6{;(: = 1,2,3) by ¢ which are defined by eqns (4.26) and
(5.22) and 6¢ by A should be made for the coefficients a;(i = 1,2,...,8) and
bij(1=1,2,...,6;5 = 1,2,3). The parameters p;(s = 1,2) corresponding to tran-

sient excitations are defined in (5.21).

5.5 TIME-HARMONIC GREEN’S FUNCTIONS
5.5.1 Boundary-Value Problem

Boundary-value problems related to time harmonic loadings applied in the
interior of a transversely isotropic elastic half space are considered in this Section.
The dynamic excitations are applied at a depth 2’ below the free surface of the
half space and over a ciruclar ring of radius ‘s’ as shown in Fig 2.2. Again as in the
elastostatic problem of a transversely isotropic half space, the intensities of applied
loadings vary in the #-direction according to cos m#@ for ring loadings in the radial
and vertical directions and sin m# for a ring load in the circumferential direction,
respectively. Once the solutions for excitations of the above types are derived,
solutions corresponding to excitations applied over an axisymmetric domain with
arbitrary intensities can be obtained through appropriate integrations and Fourier

expansion with respect to the circumferential coordinate.

A solution to the boundary-value problem can be derived by defining a ficti-
tious plane at z = 2’ and considering the problem as a two-domain problem as in
Chapter 2 for a three-dimensional elastostatic problem. The boundary conditions
for a transversely isotropic half space subjected to buried time-harmonic loadings

can be expressed as

o (0 =0; i=r62 (5.240)
u ) (r,2) —ul(r,2) =0,  i=r6,2 (5.24b)
n(r,2) =02 (r,2') = pod(r — ), i=r,6,z (5.240)
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where po are the specified loading densities, é is the Dirac’s delta function and
the superscript ‘1’ and ‘2’ are used to denote the domain numbers (Fig 2.1). The
existance of regularity conditions for domain ‘2’ implies that By = Dy = F, = (.
The substitution of general solutions for displacements and stresses given by eqns
(5.13)-(5.15) in eqn (5.24) results in solutions for arbitrary coefficients of the two

domains.

5.5.2 Green’s Functions

Let the displacement Green’s function G}(r,8,2;s,2') denote the displace-
ment component in the ¢-direction (1 = r, 6, z) at the point (r,0, z) due to a time-
harmonic circular ring load in the j-direction (5 = r, 0, z) through the point (s, 2')
with a circumferential dependence as prescribed earlier and the stress Green’s

function o[};(r, 0, 2; s, 2') denote the stress component ¢;; (I = r,6, z) at the point

(r,0,z) due to the same excitation. The solutions for G} and ojj; can be ex-
pressed as
82 [* .
G (r,0,2;5,2') = 074/0 Gi¢d¢ 1,5 =10,z (5.25a)
ofti(r,0,2;8,2') = 82 /00 6i;¢d¢ 4,0, =1,0,2 (5.250)
0
where
GT =cos mG%(alggél + Iay 0282 + asp1€3 — Tagp1éy
— a10185 — a2028) (5.26a)
= sinm&-}‘glv(%@a — Tasp083 + asp1€3 + Taspi€s
— 40185 — a5028) (5.260)
é’; = cos mG%(an)gél — a7p282 + agp1€3 + agpiéy
— 70185 — ag028) (5.26¢)

A (p2 + ps)

g =cosmb] 7S (a1€281 — a16282 + axé183 + azéiéy
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—a161e5 — axézeg) — M

€3
m . + ~ — _ _
oo = — Slnm@[(ﬁ%‘RSL?’)(a4€261 — asl28 + asére3 + asbiey

(Pz - P3)

az(€r + €s)] (5.27a)

—asl1€5 — aséa8) — ¢ ag(&r + €s)) (5.27b)
3
Am + _ _ —
26 — COS mH (p2 p3)( 75261 Ia7£262 + agfleg + I(ng1 €4
—ar€1€5 — 085266) (5.27¢)
Gm____ H(Pz—Ps) _ _ _ —
rr — T COSTM [_RS (a16281 — a1282 + azé185 + axiés
- (7,161 es — aggzég) + gpzé—ﬂzag(€7 -+ ég)] (5280,)
3
Am _ (pz — ps) _ _ _ _
91" SlIl mG[T(CMSzCl —_ a4£262 -|- a5§1 €3 -|- a5§164
_ _ +
—aséi8s — aséas) + (p—zgf—%zas(é’/ + és)) (5.28b)
3
GZ = — cosm@-(%i)-(aﬁgél — Ia7§262 —+ a,gflég -+ Iag§1€4

— aré1es5 — aglaes) (5.28¢)
G ppz =COS m9—(b11 0281 + Ib110282 + b120183 — Ibi2 0184

— b110185 — D12028) (5.29a)
Gpg. = cOS me%(bm 0281 + Ibg1 028 + be201€83 — [bg20184

— be10185 — b620285) (5.29b)

A b1 _ - — _
O'Z;z = COSs ng—V(bglggel +Ib21@262 —l— b2291€3 — I622Q164

— bo101€5 — b22028) (5.29¢)
67, = — Sinme‘%}(l’:ﬂ@zél + Ib310282 + b320183 — I3z 0184

— b3101€5 — b32028) (5.29d)
Gy, =sinmb RV(b41 0281 — by102€s + by 0183 + byz 0124

— b410185 — bg2028) (5.29¢)
Oryz = — €OS me%(bm 0281 — b510282 + bs20183 + bsz 0184
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— bs10185 — bs202€) (5.291)

e + _ _ _
Orrg = COS me[@2_RS£3—)(511§261 —bi1&zez + brabi8s + biaéies
— b116185 — b12€266) — (p—Qf:—-ps—)blg(é} + és)] (5.30a)
3
~mn + _ - - -
Gggg = COS me[(p—2ésp—3)(b61§2€1 — be1€282 + be2€1€3 + bga1€a
— be18185 — beab2Es) + (p—zg—z-js—)blg(& + es)] (5.300)
3
e + _ _ _
0,29 = COS megg%(bmﬁzﬁ — ba1&2ep + bagéiés + bogéi ey
— ba1&185 — b22628) (5.30c¢)
. ) + _ _ _
Orgp = — SID me[(ﬁz“lwps)(bslﬁzﬁ — b31€a8y + b3aér€3 + b3abiea
— b31€1e5 — b3z€as) — (Pigﬂbm(% + €s)] (5.30d)
3
. ) + _ _ - _
09,9 = SIN me[%‘spi)(bufzﬁ — Tbs1&oey + banbr€5 + Ibsoéiey
— b41§165 - b42£2§6) — %—gl)§-2b43(€7 — Iég)] (5306)
3
e + _ _ _ _
Orzp = — COS me[@zﬁmz(bslﬁzel — Ibs1€a82 + bsaéies + Ibsaéqey
— bs1£185 — bsaéaes) — @—5_23—)553(67 — Ieg)] (5.301)
3
Grrr = — COS me[(—%igpi)(b11§2€1 — b116282 + b12&1€s + bi2bi€y
- _ +
— 6116185 — b12£266) + (1192—5?13“)‘()13(57 ‘|’ ég)] (531(1)
3
Gggr = — COS me[(_p?];Tm)(bslﬁzél — be1&282 + bealies + beafr€s
_ _ +
— be1€185 — bgaba8s) — (p%p—s)bls(é% + &) (5.31b)
3
Gy = — COS mGQ)QR;—;)a)(521§251 — 0216282 + bagres + boabrey
—ba161es — b22£286) (5.31c)
Am __ ] (p2 _P3) = = = =
Gror =sinmO[~————"%(b31£281 — b31£283 + b3o €183 + byy€r8s

RS

_ _ +
— b31&185 — b3aba8s) + (P2 + p3)

{3
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bsz(e7 + €s)] (5.31d)



-
s

G har = — Sinm9[£pz—_p—3)(b41€2€1 — Ibs1€282 + bagi83 + Thanéqe

zr RS
— baréres — bagéaeg) + (.2.92_;193_)_1743(57 — Teg)] (5.31¢)
G, =COS m&[%;sm)(bmgzél — Ibs1€2€p + bsaéres + IbsafrEy
— bs1€185 — bsabaés) + Q%@bsg(é7 — Igsg)] (5.31f)
where
R = % (5.32)

V=0o(l - &) +1)/6%, S =ab’t6(E —6)/r( (5.33)

p1 = pOSJm(5C3)’ Dy = post—1(5Cs) ps = pgSJm+1(5CS)

5 o 1 , 3 1 (5.34)
fi =601+ o1)[aé] — (k= 1)(%p4] (5.35)
fo = E(1 + 02)[al] — (8 — 1)(%p0) (5.36)
fo = E&(1+ 02)[et] — (k= 1)6%01] + E1(1 + o1)[als — (5 — 1)6%05) (5.37)
& = f36—551(2’+2); &y = R6~5€1|Z'—Z|; &3 = fre 62542 (5.38a)

4 = Re—552121—2|; s = 2f16—5(flz+522'); e = 2f26"5(513'+622) (5.381))

€7 = 6_53(ZI+Z); gg = e Sl (5.38¢)

and I, K, a; and b;; are defined in eqns (4.34), (4.35) and (5.17), respectively.

The displacements and stresses of a transversely isotropic full space subject-
ed to time-harmonic ring loads can be obtained by taking the limit 2z’ — oo, and
|z' — z| = 2*, where z* is the vertical distance between the load and the observa-

tion point.

5.6 TRANSIENT GREEN’S FUNCTIONS

The boundary-value problem corresponding to a transversely isotropic elastic

half space subjected to buried transient loadings located at a depth z' below the
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free surface can be described by a set of equations similar to eqn (5.24). A function
F(t) is used to describe the time history of the applied transient loadings. The
substitution of general solutions in the corresponding boundary and continuity
conditions results in a system of linear algebraic equations for the solutions of
arbitrary functions associated with the two domains. Thereafter, the analytical

solutions of transient Green’s functions of displacement and stress can be derived

explicitly.

Let G73(r,8,2,t;s,2') denote the displacement in the ¢-direction (1=r0,2)
at the point (r,0,2) and at the time instant ‘¢’ due to a transient ring load of
intensity po per unit arc length and time history F(t) acting in the j-direction
(j =r,0,2) through the point (s, '), and o(7;(r, 6, 2, %; s, z') denote the stress com-
ponent oy (I = r, 0, z) at the point (r, 8, z) due to the same loading configuration.

The following analytical solutions are obtained for G7} and o7

. d+ioco o)
G;’;(T’ 9,z,t;$,z') = W / F’/ G?})\eﬂ”td/\dp i,j =r,0,z (5.39a)
d 0

TCq4 —ico
“9 d4100 3 %)
o (r 6,z,t;8,2' )y = — F/ &;?j/\e”"td/\dp i,l,j=r0,z (5.39b)
27 Jg—ico 0
where the expressions of G’Z‘ and G77; are identical to that of @Z‘ and 677; given in
eqns (5.26)-(5.31) for a time-harmonic response with the replacement of 6¢ — A
and 6¢; — &;. The corresponding parameters &;(: = 1,2), €3 and g;(1 = 1,2) are

given by (4.26), (5.22) and (5.21), respectively. In addition, F' is the Laplace
transform of F(t).

5.7 GREEN’S FUNCTIONS FOR DISPLACEMENT JUMPS

The boundary-value problems corresponding to transient displacement dis-
continuities (jumps) inside a transversely isotropic half space are considered. The

displacement jumps are assumed to occur at a depth z' below the free surface and
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over a circular disk of radius s. The intensities of the radial and vertical displace-
ment discontinuities vary in the #-direction according to cosmf. The intensity
of the displacement discontinuity in the circumferential direction varies with 6
according to sinm#@. The time history of the excitation is denoted by F(¢). The
boundary-value problems corresponding to internal displacement discontinuities

can be expressed as

oD (r,0,6)=0; i=r6,2 (5.40a)
u (1) (r, 2't) — (2)(r 2 t) =ud () H(s — r)F(t); 1=r,0,z (5.400)

i (r 2 ) =) (r, ) = 0, i=r,0,z (5.40¢)

where the superscripts ‘1’ and ‘2’ denote the domain numbers and uJ,_(r) denotes
the radial variation of the absolute value of the displacement jump at z = 2’
in the ¢- direction (¢ =r,0,z). The application of Laplace-Hankel transform in
eqn (5.40) together with the substitution of transient general solutions results
in a system of linear algebraic equations to determine the arbitrary functions

associated with the two domains.

Let G73(r, 0, 2,;8,2') denote the displacement in the :-direction (z = r, 6, 2)
at the point (r, 0, z) and at the time instant ‘¢’ due to a transient displacement dis-
continuity in the j-direction (j = r, 8, z) over a disk of radius ‘s’ located at z = 2,

m
and ol

(r,0,2,t;5,2") denote the stress component o;; (I =r,0,2) at the point
(r,0,z) due to the same excitation. The fundamental solutions GT¢ 1(z,0,2,t5,2")
and ai,j(r, 8,2,t;s,2') corresponding to transient displacement jumps can be ex-
pressed in the forms of eqns (5.39a) and (5.39b), respectively, with G’ZL and G}
defined by

A P 'L—[,o
Gy, =cosm

RS

- q1Wses — a2w4€6) (541&)

2 (a1 w481 — a1 wa€y + a2 w33 + azw3éy

57 0

N U
mo_ §—=
Ga, sinm RS

(a4ws€1 — aawas + asw3és + aswséy
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— a4w365 et (1.5’11)456) (54:1b)

é’;’: = — cosmb g(a7w4él — Tarwa€y + agwszes + Tagwsey
— A7W3€5 — AgW4Ee) (5.41c)
“;’g = cos me[wwlwzél — Tajwe8q + aswie3 + Tagwiéy
— a w185 — azwoEs) — az(dy, — Ugy)(Er + IEs)] (5.42a)
A% =— sinm@[@lﬁ%%(mwgél — Tagwqey + aswi€s + Taswies
— agw18s — aswees) — ag(Uy, — Ugy)(&7 + Ies)] (5.42b)
G’Z}, = — Ccos mé?@"l];/———rig:z—)(a—/wﬁl + arwq €y + agwi€3 — agwi ey
— a7w1€5 — AgWo€g) (5.42¢)
G’Zﬁ — cos m9[(ﬁ21R_Vﬁr2) (a1we81 — Taywaéy + agwiés + Tagwi ey
— a w185 — agwas) + az(udy + 1y ) (&7 + Ies)] (5.43a)
é’gﬁ, =sin m¢9[(u’"1 irs) (agwz1 — Iagwees + aswiés + Taswiéy
— agw &5 — a5w266) + as(Tly + %) (&7 + I&s)] (5.43b)
CA?Z = cos mG@%ﬂ’QZ)(mwzél + arwoey + agwi€s — agwiéy
— arwi€s — agwses) (5.43¢)
571” == CO8 m9044u (buw461 — biywa€y + bigwses + bowsey
— by1wsés — bigwaés) (5.44a)

C44’LI,

Ggp, = cosmb (561w461 — be1waés + beawses + beawsy

|
%
2
.

— be1wzes — be2w48s) (5.440)
6., =cosmb ];S (ba1wa€1 — ba1wals + bagwses + baowsey

— ba1w3es — baowaés) (5.44c)
Grp, =sin m9644u (b31w4a€1 — b3ywaEs + bzawses + bzgwsey

— b31wzes — bzawaég) (5.44d)
~m . C44lUy _ _ _
Gy, =sinmé (541 w41 — Tbyywyes + bygwses + Ibyrwsey
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— baws€s — baawyes) (5.44¢)

5’,7;2 = — COS m964£:l;z (b51w461 - Ib51w462 + b52w363 + I652w364
— bsywzes — bsawals) (5.441)
, caa(U2y + w2
G rrg = cosmb] aal ]11’,V - 2)(51110251 — Ibjywaes + bigwiéz + Ibjpwiey
- b11w165 — blzwzéﬁ) — b13(’l7,21 — 17,22)(57 + Iég)] (5450,)
. caa(l; +u°
O'gneg = COS m6[ 44( }%V 2)(661’11)251 —_ Ib@lwzéz —Jr bﬁz’wlég + Ib62w154
— 661 w1 55 — bsgwgés) + b13(’17,21 - ’[ng)(é7 + Iég)] (545[))
—0 =0
&;nze = COS m€c44(u2‘j— ur2) (bglwzél — I621w2€2 + ngwl 53 + Ib22w1 54
— bo1w1€5 — byow2&s) (5.45¢)
—0 —0
5’%0 = sin m9[644(u%;— u92)(631w261 — Ibgl’wzéz + 1)32’1.0153 + I632w154
- b31w1 55 - bgzwzés) — 633 ('L_Lgl et ’(7,32)(6_37 + Iég)] (545d)
. : caa(Uy, + Y
O';nze :smmH[ 44( %V ug2)(b41ﬂ)2€1 + b41w2€2 -[— b42w1€3 —_ b42w1€4
- b41w1 55 - b42w2€6) - 1)43(1-[,81 — 17,22)(57 - 58)] (54:56)
=0 ~0
Gryp = — COS m9[044(u§;— Zg2) (bs1wo€1 + bsywo€s + bsawi€s — bsawiey
- b51wlé5 - b52w266) fat 1)53(1,_531 — ’L—ng)(é7 — ég)] (545f)
o m cas(tyy — 0),) _ _ _ _
e = — cosmb] RV (br1w2e1 — Ibjywaey + bigwies + Ibiawiés
- b11w1 55 — blz’LUzés) -+ blg(ﬂgl + aﬂz)(é—, + Iég)] (546&)
o m Caa(lipy — TUyy) . _ _ _
G- = — cosml| RV (be1w281 — Ibg1wzEs + beowi€s + Ibgawy ey
— b61w1 65 — bez'wzéﬁ) — blg(ﬁgl -+ 17,?.2)(67 + Iég)] (5461))
am caa(TYy — UYy) _ _ _ _
O, — — COS mb RV (621’1,0261 - Ibzl’wzez + bzzwles -+ Ib22w1 €4
— ba1wies — baawoEs) (5.46¢)
=0 _ =0
OA'%T = —sin m9[044(u7‘év urz)(bgl'wzél — Ibg1’w252 -+ b32w153 + I632w1 €4
— bgl’wl 65 - bgz’wzés) -+ bgg(ﬁ?.l + ?,_6?.2)(57 -+ Iég)] (54:6d)
. . caq(ud — @l
Ggzr = — sinmd| s ]:1£V T2)(b41w251 + byywo€z + bazwi€3 — bagwiéy

106



— b41 w1 55 — b42w2€6) -+ 643(’&21 -+ ’L_LS,Z)(E';' - Eg)] (5466)

=0 _ =0
5’:;7, == COS m9[644(u§V urZ)(bsl'wgél -+ b51w2€2 + b52w1€3 - b52wlé4
— b51 w1 55 el b52'w2€6) + b53(1—L21 + 17,(7).2)(57 —_ ég)] (546f)
in which
u) = %/ ud  (r)Im (Ar)rdr (5.47a)
0
0 1A 0 1 [
g = i Ugr (M) Tm—1(Ar)rdr; gy = 1/, g (T)Imt1(Ar)rdr  (5.47)
1 [° 1 /[°
Upy = Z/ ul (M Tmo1(Mr)rdr; @l = A_L/ ul o (M Tme1(Ar)rdr  (5.47¢)
0 0
wy = (14 01)1; wy = (14 02)€2 (5.48a)
ws = af? — (k — 1)A%pq; wy = abs — (k — 1)\%09 (5.48b)

and @},,(¢ = r,0,z) denote the mth order Hankel transform of vl H(s —r). The
other parameters R,V, S, &;, a;, b;; are defined by eqns (5.32), (5.33), (5.38) and
(5.17) together with the replacement of 6¢; by ¢; of eqns (4.26) and (5.22)
and 6¢ by A. The solution corresponding to a displacement discontinuity over
an annular region can be obtained by replacing v, H(s —r) in eqn (5.40) by
ul [H(sy —r)— H(sy — )] where s; and sy are outer and inner radii of the an-

nular region, respectively.

5.8 NUMERICAL SOLUTIONS FOR TIME-HARMONIC PROBLEMS

5.8.1 Numerical Scheme

The solutions for displacements and stresses given by eqns (5.25)-(5.31) ap-
pear in terms of semi-infinite integrals with a complex-valued integrand. As in
the case of an isotropic medium and 2-D orthotropic half-plane solutions, these
integrals cannot be evaluated analytically for both surface and interior loadings.

In view of the complexity of the integrands, it is natural to employ a suitable
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numerical quadrature scheme to evaluate the Green’s functions. The numerical
evaluation of solutions given by eqns (5.25)-(5.31) requires careful consideration
due to the presence of singularities within the range of integration and the os-
cillatory nature of the integrands involving product of Bessel functions. The
singularities of the integrands of eqns (5.25)-(5.31) also need to be examined pri-
or to the establishment of a numerical integration procedure. An understanding
of the singularities of the integrands of eqns (5.25)-(5.31) can be obtained by
treating ¢ as a complex variable similar to the case of 2-D problems considered
in subsection 4.8.1. It is noted that due to the presence of radicals §;(s = 1,2, 3)
the Riemann surface of the integrand of each integrals has eight sheets. Howev-
er, the condition Re(§;) > 0, which is required to satisfy regularity conditions at
infinity, implies that only the sheet in which radicals ¢;(¢ = 1,2, 3) have positive
real parts everywhere is relevant. The important singularities of the integrands
are the branch points of the radicals £;( = 1,2,3) and poles of the function K.
The branch points of §;(¢ = 1,2,3) are given by

£ =0, 1 =1,2,3 (5.49)

and the eqn (5.49) results in,

== (5.50a)

sl

(o =215 (= i\iﬁ (5.500)

For an isotropic solid, the eqns (5.50) reduce to ¢, = £+/i/(X + 2) and (s, = (s,
= +1. It can be shown (Buchwald 1961) that in a three-dimensional orthotropic
material there are three kinds of body waves. The wave numbers of these waves
are equal to §/+/fB, § and §/,/s. The motion associated with these waves is neither
purely dilatational nor purely distortional. However, at the limit of isotropy,
the above three waves correspond to P, SV and SH waves associated with an

isotropic medium. It is noted that in plane strain problems considered in Chapter

108



R

4 the integrands of the integrals appearing in the Green’s function solutions have
only two branch points. These are {, and (s, and the solutions are independent
of the material constant c;5 [ie the nondimensional constant s]. The poles of the
factor K in the denominator of the integrand of 3-D problems are identical to
those of a two-dimensional time-harmonic problem. The numerical evaluation of
the integrals encountered in 3-D time-harmonic problems are carried out by using
a direct numerical quadrature scheme similar to that used in Section 4.8 for 2-D

problems. Negligible material attenuation is considered to shift all singularities

of the integrands from the real (-axis.

5.8.2 Numerical Solutions

In the numerical study the response of five different transversely isotropic
materials, namely, an isotropic material, layered soil, beryl rock, E composite and
G composite are considered and the values of material constants of these materials
are given in Table 1.1. The loading is assumed to be uniformly distributed over a
circular area of radius a with intensity ¢y and acting at a depth a as shown in Fig
5.1. The numerical solutions are presented in terms of normalised displacement
and stress Green’s functions C_Jij = Gijcaa/aqo and 755 = 0458 /qo. In addition, a

nondimensional frequency ao defined as ap = ad = aw(p/ceq)'/? is used.

Figure 5.2 shows the variation of normalised displacement Green’s function
G, along the z-axis of the half space for the five different materials. Solutions are
presented for three different frequencies (ag = 0.5,1.0 and 3.0) and the loading
configuation is shown in Fig 5.1(a). Comparison of solutions presented in Fig
5.2(a) indicates that the degree of anisotropy of the materials has a significant
influence on both real and imaginary parts of the displacements. The variation
of the displacements along the z-axis is more gradual for E composite and G

composite when compared to isotropic material, layered soil and beryl rock. The

real parts of the displacements have a kink at z/a = 1.0 which is consistent with
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the discontinuity of stress at this level due to the applied loading. Note that the
kink at z = a is not much visible in the case of the two composite materials since
these materials are much stiffer than the other three materials. Imaginary parts
of the displacements are smooth along the z-axis. In all cases, the displacement
profiles, except that for G composite, show changes in sign with increasing depth.
Comparison of Figs 5.2(a) and 5.2(b) indicates that the influence of frequency on
G, is also very significant. It is noted that Re(ézz) generally decreases with
ag whereas the variation of I m(C_T’ZZ) with ao is more complicated. As frequency
increases (eg. ap=3.0), both real and imaginary parts show oscillatory variation
with the depth. At low frequencies (ap < 1.0) the highest magnitude of Re(G..)

is noted at the level of loading. However at high frequencies, maximum values

are noted at other depths.

Figure 5.3 shows the variation of G, at the free surface. These solutions also
confirm the significant dependence of the response on the degree of anisotropy
of the material and the frequency of excitation. Displacements are generally
more smoother at the surface level when compared to those along the z-axis. In
addition, both real and imaginary parts of the displacements decay quite rapidly
with the radial distance and the largest magnitude is noted at r = 0 for most
cases. Comparison of displacement profiles in Figs 5.2 and 5.3 indicates that the
highest influence of anisotropy is noted in the case of G composite followed by
E composite and beryl rock. It is found that the solutions for layered soil are
generally closer to isotropic solutions within the frequency range 0 < gy < 2.0.
Comparison of the solutions for G,, with the coefficients ¢;j indicates that the
behaviour of solutions noted in Figs 5.2 and 5.3 at low frequencies (ap < 1.5) can
be related to the order of the magnitude of ¢33 and the influence of other values
of &;; on G, is relatively small. Note that cgs corresponds to a Young’s modulus
in the vertical direction and in the present case the loading is also applied in the

same direction.
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Figure 5.4 shows the normalised stress Green’s function 7., along the z-
axis. The influence of the degree of material anisotropy as well as the frequency of
excitation is clearly evident on these solutions. Re(7 ., ) decays rapidly with z for
z/a > 1.0 whereas at high frequencies a gradually decaying oscillatory variation
is noted. The variation of Im(&,.,) with z is smooth except at higher frequencies
(eg. ap = 3.0). Re(G:2-) shows a discontinuity equal to unity at z/a = 1.0 due to
the applied loading but no discontinuity exists in Im(&,.,) profiles. Comparison
of stress profiles corresponding to different materials indicates that the influence of
material anisotropy is similar to that observed earlier for displacements. Stresses
coressponding to G composite shows the highest influence of material anisotropy
followed by E composite, beryl rock and layered soil. It was observed in Section
4.8 that the influence of material anisotropy on o, is relatively less in the case

of 2-D problems.

Figure 5.5 shows the normalised displacement G, along the z-axis for dif-
ferent materials. The loading configuration is shown in Fig 5.16 and the solutions
are presented for three frequencies. It is noted that the influence of material
anisotropy is much less than that observed earlier for G, due to a vertical load-
ing. Generally the imaginary part of the solution shows more dependence on
material anisotropy when compared to the real part of the solution. The influ-
ence of frequency of excitation on the profiles are quite similar to those observed
earlier in Fig 5.2 except that at higher frequency (ao = 3.0) more prominent os-
cillatory variations are observed with depth. The kink at z/a = 1.0 in Re(Gyz) is
much sharper than that of G, and it is due to the loading applied at this level.
Im(Gyy) is smooth at this point. Fig 5.6 shows the variation of normalised dis-
placement Green’s function G, at the surface level with the horizontal distance
for different materials. The influence of degree of anisotropy on these solutions
is more prominent when compared to the solutions along the z-axis. In addition,

the dependence of these profiles on ay is quite similar to that observed earlier for
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(.. in Fig 5.3. It is useful to relate the behaviour of displacements observed in
Figs 5.5 and 5.6 to the material constants presented in Table 1.1. It is noted that
the normalised in-plane Young’s modulus &; for all five materials are relatively
closer to each other when compared to ¢33. Note that both the direction of the
loading and the displacement are in-plane and it is reasonable to expect that at
least within the low frequency range (ao < 1.5) the main influence of anisotropy
would arise from 1. Since 11 for these five materials are quite closer to each
other the influence of anisotropy on G . is relatively less. The difference observed
in surface displacements may be due to the fact that at surface level both surface
and body waves contribute to the displacements and interaction between the two
systems of waves are more complicated. In fact, in all cases it is observed that
at high frequencies (eg. ao = 3.0) the influence of anisotropy cannot be related
to a single material constant. Figure 5.7 shows the variation of normalised stress
Green’s function &4, along the z-axis for different materials. The influence of
material anisotropy is negligible on Re(5 .4z ). However, I m(G 4z ) is more depen-
dent on the material anisotropy especially at high frequencies. At low frequencies,
maximum Re(7 4, ) is observed at the level of loading and Re(5 ;4. ) decays rapid-
ly with the depth. On the other hand, at high frequencies, maximum Re(Ga5z) 18
not at the level of loading and slowly decaying oscillatory variations are observed.

Im(& 44 ) also shows oscillatory variations with the depth at high frequencies.

5.9 NUMERICAL SOLUTIONS FOR TRANSIENT PROBLEMS

5.9.1 Numerical Scheme

The numerical algorithm used in Section 4.9 to evaluate the transient re-
sponse of a half-plane is also employed here to obtain numerical solutions for the
transient response of a transversely isotropic elastic half space. The accuracy of

the numerical algorithm for 3-D problems is first investigated by considering an
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isotropic half space subjected to a surface step loading. As mentioned earlier,
Eason (1966) presented numerical solutions for transient response of an isotropic
elastic half space subjected to a vertical step load of intensity o applied uniformly
over a circular disk of radius ‘a’ located at the surface. Eason (1966) used contour
integration to invert Laplace transform and thereafter reduced the semi-infinite
integral with respect to Hankel transform parameter to a set of finite integrals and
expressions in terms of complete elliptic integrals. Fig 5.8 presents a comparison
of numerical solutions for normalised vertical displacement G%, (G¥; is defined in
Section 4.9) at five points along the z-axis obtained from the present numerical
integration scheme with the results reported by Eason (1966). It is evident from
Fig 5.8 that the numerical algorithm used in the present study also results in very

accurate numerical solutions for 3-D problems.

5.9.2 Numerical Solutions

At this stage attention is focused to Fig 5.9 where normalised vertical dis-
placement G7,(r,0) at three surface points (r/a= 0,1,5) is plotted with the nondi-
mensional time 7 (7 is defined in Section 4.9). These displacements correspond
to layered soil, isotropic and beryl rock half spaces subjected to a rectangular
pulse load (see Fig 5.9) in the vertical direction acting uniformly over a circular
area of radius a located at depth z’'/a = 1.0. Comparison of solutions for layered
soil and beryl rock with the isotropic material solution indicates that the degree
of anisotropy of the material has a visible influence on the transient response.
Since the normalised material coeflicients and normalised displacements are used
in the analysis any difference in the solutions for different materials indicates the
influence of material anisotropy. Solutions at r/a = 0 and 1.0 indicate the ex-
istence of an approximately constant velocity period during 0.5 < 7 < 1.5. This
velocity is nearly identical for the isotropic material and beryl rock but it is s-
maller than that corresponding to a layered soil. In general, layered soil has the

largest surface displacements followed by the isotropic material and beryl rock. It
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is also noted that transient waves arrive at the observation point slightly later in
the case of layered soil half space. Displacements continue to increase at r/a =0
and 1.0 after the removal of the load (i.e. 7 > 1) and reach its peak value near
7 = 1.5 for both points and for all three materials. The retarding velocities are
found to decrease rapidly with increasing r/a. At far field, i.e. r/a = 5.0, a
minor negative displacement is initially observed and the excitation is observed
during the interval 4.5 < 7 < 9.0. Far-field displacements also show the influence

of anisotropy of the medium.

Selected numerical solutions for stresses are presented next. Figure 5.10

¥

presents a comparison of solution for o%,,(

= Zik) at two interior points on the
0

z-axis due to a uniform disc pressure of radius ‘a’ applied at the surface (Laturelle

1990). The time dependence of the loading is denoted by H(¢). It is evident from

Fig 5.10 that the present numerical solutions agree closely with those reported in

*

literature for stresses as well. Figure 5.11 presents numerical solutions for o%,,

due to a uniform disc pressure of radius ‘a’ applied at z'/a = 1.0. It is noted
that the numerical solutions for stresses due to internal loadings have not been
reported in literature even for an isotropic half space. Comparison of solutions in
Fig 5.11 indicates that the stresses at internal points due to buried loadings show
characteristics which are quite different from surface loadings. It is also noted that
beryl rock experiences high peak stresses when compared to isotropic material.
However, the general trend of the variation of transient stress solutions for both
materials are similar. The initial transient disturbances arrive observation points
at nearly identical nondimentional time instants for both materials. Static stresses
(long term solutions) are also found to be nearly identical for both materials. It
i1s very important to note that the peak transient stresses at both observation
points are nearly twice of the corresponding static solutions. As in the case of
elastostatic solutions presented in Chapter 3 the influence of material anisotropy

is more prominent in displacements when compared to stresses.
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5.10 CONCLUSIONS

The three-dimensional dynamic response of a transversely isotropic elastic
half space is studied. Analytical general solutions for displacements and stresses
are obtained by applying Fourier expansion together with Hankel integral trans-
form for time-harmonic three-dimensional problems and Laplace-Hankel integral
transform for transient three-dimensional problems. These general solutions are
then used to solve the boundary-value problems corresponding to internal time-
harmonic and transient loads and displacement discontinuities in a transversely
isotropic elastic half space. Analytical solutions for displacements and stress-
es corresponding to the above boundary-value problems are presented explicitly.
It is noted that solutions corresponding to arbitrary loadings and displacemen-
t discontinuities can be derived through the application of superposition and
standard analytical procedures to the fundamental solutions presented in this
Chapter. Numerical quadrature schemes are used to obtain numerical solutions
for displacements and stresses. The accuracy of the numerical schemes employed
in this study is confirmed by comparison with existing solutions for isotropic ma-
terials. Selected numerical solutions for displacements and stresses corresponding
to buried patch loads are presented to illustrate influence of material anisotropy.
Numerical solutions for displacements and stresses show significant dependence
on the degree of anisotropy of the materials in both time-harmonic and transient
responses. 1t is found that in the case of dynamic Green’s functions G, G*, and
G, the influence of the material anisotropy is mainly reflected by the values of ¢33
and €11, respectively. In addition, the availability of explicit analytical solutions
for different transient source configurations (Sections 5.6 and 5.7) would enable
a rigorous interpretation of the various characteristics of transient solutions and
their relationship to the interpretation of geophysical observations. This lengthy

and tedious exercise is not attempted here.
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Figure 5.1 Loading configurations considered in numerical study
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Figure 5.7 Normalised stress Green’s function ., along the z-axis for different

materials and frequencies (loading case shown in Fig 5.1b)
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Chapter 6

ELASTODYNAMIC BOUNDARY-VALUE PROBLEMS

6.1 GENERAL

The primary objective of this Chapter is to demonstrate the application of
elastodynamic Green’s functions derived in Chapters 4 and 5 in the analysis of
some useful dynamic boundary-value problems. Attention is particularly focused
on elastodynamic boundary-value problems related to embedded rigid inclusions
due to the relationship of these problems to the analysis of foundation structures
in civil engineering projects. First, the dynamic response of rigid strip foundations
embedded in orthotropic elastic materials is investigated. The indirect boundary
integral equation method based on elastodynamic Green’s functions presented
in Chapter 4 is used for the analysis of this dynamic boundary-value problem.
Numerical solutions for vertical, horizontal, rocking and coupled impedances of
embedded strip foundations with rectangular and semi-circular cross-sections are
presented. The versatility of the analysis is demonstrated by considering the
through soil interaction between two foundations. The other problem considered
in this Chapter corresponds to the three-dimensional dynamic response of a rigid
cylindrical foundation embedded in a transversely isotropic soil half space. How-
ever, the direct boundary integral equation method is used to solve this boundary-
value problem. The kernel functions of the boundary integral equations are the
3-D elastodynamic Green’s functions derived in Chapter 5. Numerical conver-
gence and accuracy of the solution scheme are investigated by considering rigid
cylinders with different length/radius ratio embedded in an isotropic elastic half
space. Numerical solutions are presented to portray the influence of material
anisotropy, frequency of excitation and length/radius ratio on the vertical, hori-

zontal, rocking and coupled impedances of rigid cylinders embedded in selected

126



transversely isotropic materials. Given the fact that almost every soil exhibits a
certain degree of anisotropic behaviour the present solutions can be considered as
a more realistic simulation of a fundamental soil-structure interaction problem.
The concepts developed in this Chapter can be extended to study dynamics of
single piles and pile groups, transient soil-structure interaction problems as well

as problems involving layered media by using appropriate Green’s functions.

6.2 DYNAMIC ANALYSIS OF EMBEDDED RIGID STRIP FOUNDATIONS

Fig 6.1 shows a massless rigid strip foundation, occupying a region V bound-
ed by the surface S embedded in an orthotropic elastic medium. It is assumed
that the rigid foundation is perfectly bonded to the surrounding material along
the contact surface S. The foundation is subjected to time harmonic vertical,

* and Mye'!, per unit length re-

horizontal and moment loadings F,e*?, F e
spectively. The displacements of the foundation, under the applied loadings, can
be expressed in terms of vertical displacement Aye*?, horizontal displacement
Ape™! and rotation ¢,e'! about the y-axis of a point A with coordinate (Z, 2)

as shown in Fig 6.1.

The displacement at a point (z,2) on the contact surface can be expressed

in terms of Ay, Ag and ¢, as
ug(z,2) = A + (2 — 2)¢y (6.1a)
uz,2) =QAv +(z— )¢y z,2z€S (6.10)

The resultant forces and moment acting on the massless foundation can be

expressed in terms of traction components T;(z, z) as

F, = / T,dS (6.2)
S

n:/nw (6.3)
S

M, = /STz(a: —z)dS + /;Tx(i —z)dS (6.4)
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The indirect boundary integral equation approach used in chapter 3 to an-
alyze the elastostatic boundary-value problems is extended here to analyse the
dynamic response of the embedded rigid strip foundation. In the analysis, an
undisturbed orthotropic elastic half plane V' with a surface S in it (which is i-
dentical to S) is considered. A set of forces with intensity fi(z,z) is applied on a
surface S’ interior to S such that the displacements on S are equal to that given
by eqn (6.1) and the traction resultants on S satisfy eqns (6.2)-(6.4). The force
intensities f;(z,z) are governed by the following Fredholm integral equations of

the first kind.
/ Gij(z,z;2',2') fi(a',2')dS" = u;(z, 2) (z,2) € S, (z',2') e S" (6.5)
SI

where indices 1,7 = ,z and summation is implied on j; G;j(z,z;2',2') denotes
the displacement Green’s function defined by eqns (4.29), (4.30) and (4.32) for
an orthotropic elastic half plane subjected to buried time-harmonic loadings. In
addition, %;(z, z) denotes the displacement component in the ¢ direction (z = z, 2)

on the surface S as given by eqn (6.1).

The components of traction on S, denoted by T;(z, ), can be expressed as
Ti(z,2) = / Hij(z,z;2',2') fi(2',2")dS"  (z,2) €S, (2',2)e S (6.6)
SI

where

Hij(z,z;2',2") = 04;(z, 2;2', 2" )ni(z, 2) (6.7)

and o;1;(z,2;2',2') denotes the stress Green’s function defined in eqns (4.29),
(4.31) and (4.33). In addition, n;({ =z, z) denotes the components of the unit

outward normal vector to the surface S.

A discrete version of eqns (6.5) and (6.6) can be obtained by discretizing S
and S’ using M and M’ nodal points, respectively as illustrated in Chapter 3.

A solution for force intensities at nodal locations on S’ can be obtained in terms
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of Ay, Ag and ¢, by a least square solution of eqn (6.5) as shown in eqn (3.8).
Thereafter solutions for nodal tractions are expressed in terms of Ay, Ay and
¢y from eqn (6.6). Substitution of the solutions for nodal tractions in a discrete
version of eqns (6.2)-(6.4) written with respect to nodal points on S yields a

relationship between applied forces and displacements Ay, Ay and ¢,.

The response of an embedded rigid strip foundation is characterized by the

following nondimensional impedance matrix

F, Ky 0 0 Ay
F, | =meyq 0 Ky Kgum Ay (6.8)
M, 0 Kyg Ky by

where Ky, Krr, Ky (= Kpuy) and Kpy are the vertical, horizontal, coupled and
rocking impedances; and b is the half width of the strip foundation at the surface

level.

In the case of a system of N foundations, the above procedure can be ex-
tended by considering several fictitious surfaces S;, S! (i = 1, ..., N) and applying
forces on S} to satisfy appropriate rigid body deformations and equilibrium con-
ditions of each foundation. In this study only two rigid strip foundations are
investigated to show some factors of through soil interaction between a multi-
strip foundation system. In this case owing to the symmetry of the foundations
arrangement, a total of twelve components of impedances are necessary to define
the complete dynamic response of the two foundation system. Impedance matrix

corresponding to the present case can be defined as

F} Kll K12 K13 1{14 Kls Klﬁ A%/
7 K2z Kuw —Kis IKos Ki | [ AL
M| Kss —Kis Ko Ko | | b6
Fio| T e Kn —Ki —Ku || 02| 69
Fg symin K22 1{23 A%—I
M Kos / \bgs

In eqn (6.9), superscripts ‘1’ and ‘2’ are used to denote the forces and rigid

body displacements of the first and the second foundations, respectively. It is
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important to note that each column of the impedance matrix defined by eqn
(6.9) corresponds to forces acting on the foundations when the corresponding
element of the degree of freedom vector in eqn (6.9) is equal to unity and the

remaining five elements of the degree of freedom vector are set to zero.

6.3 IMPEDANCES OF EMBEDDED RIGID STRIP FOUNDATIONS

Table 6.1 presents a convergence study of numerical solutions for vertical,
horizontal and rocking impedances of a strip foundation of rectangular cross-
section (width 2b and depth h) embedded in an isotropic medium. The parame-
ters tested for convergence in Table 6.1 are the impedances of the foundation with
respect to the number of nodal points M and M’ used to discretise surfaces S
and S’, respectively. Table 6.2 presents a convergence study of impedances with
respect to the location of the source contour S’ (i.e. distance ¢ shown in Fig 3.2)
for a foundation with A/b = 1.0 and M = 32 and M’ = 16. Table 6.3 presents a
comparison of impedances of a rigid strip foundation (h/b = 0.5) in the presence
of another identical unloaded foundation with the results reported earlier by Ra-
japakse and Shah (1988). The impedances of the loaded foundation presented
in Table 6.3 are obtained by a relation identical to eqn (6.8) and the unloaded
foundation is not restrained. It is evident from numerical results presented in
Tables 6.1-6.3 that the present solution scheme is stable and converges closely to
numerical results for impedances reported elsewhere (Rajapakse and Shah 1988)
by using a different solution scheme for strip foundations embedded in isotropic

soils.

6.3.1 Single Rigid Strip Foundation

The range of the non-dimensional frequency 0.0 < ay < 2.0 is considered in
the numerical study since most forced vibrations of machine foundations are with-

in this range (Gazetas 1983). An isotropic soil and three transversely isotropic
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soils, namely, clay I, silty clay and a beryl rock are considered in the numerical

study. The material constants for these soils are listed in Table 1.1.

Figures 6.2-6.4 show the impedances Ky, Ky, Kp and Kgas of a single rigid
massless rectangular strip foundation of width 2b and height k. Solutions are p-
resented for 2/b=0.25, 0.5 and 1.0. It is observed that the real part of the vertical
impedance shows minor dependence on the /b ratio of a rectangular foundation.
For all values of h/b considered in this study, the real part of Ky increases rapid-
ly with frequency in the range 0 < ap < 0.6 and thereafter decreases gradually
with increasing ag. This behaviour is observed for all types of soils. Compari-
son of Re(Kv ) for different types of soils indicates that the influence of degree of
anisotropy of soil is significant. Within the frequency range 0 < ay < 1.8, it is not-
ed that the highest magnitude of Re(Ky ) corresponds to foundations embedded
in beryl rock and followed in the order of magnitude by foundations embedded
in clay I, isotropic soil and silty clay. Comparison of values of ¢;; in Table 1.1
and the order of magnitudes of solutions for Re(Ky ) indicate that the influence
of anisotropy is mainly governed by the value of €33. The influence of other Cij
is found to be negligible. Solutions in Figs 6.2-6.4 also show a tendency that
for ap > 1.8 the value of Re(Ky) of a foundation embedded in silty clay may be
greater than that corresponding to an isotropic soil. This indicates that at high
frequencies impedances may show a more complicated dependence on the degree
of anisotropy. Comparison of solutions for imaginary part of Ky indicates that
its dependence on ag is nearly linear for all h/b ratios and for different types
soils. The magnitude of Im(Ky) is found to increase gradually with increasing
h/b ratios. The influence of soil anisotropy follows the same trend as in the case
of Re(Ky) and governed mainly by the value of ¢33. However, the influence of
degree of anisotropy of embedding medium on Im(Ky ) is found to be significant

only at higher frequencies (ap > 1.0).

Comparison of solution for the real part of horizontal impedance Ky in-

131




Y

dicates that Re(Kpy) increases rapidly with ap in the range 0 < ag < 0.75 and
shows a tendency to gradually increase or decrease beyond ay = 0.75 depending
on the type of soil and the A/b ratio. The magnitude of Re(Kpy) is found to be
in the same range for all h/b ratios. The influence of the degree of anisotropy of
the soil on Re(Kp ) is significant as in the case of Re(Ky ) except that the values
corresponding to clay I is higher than those for beryl rock. Comparison of the
order of magnitude of Re(Ky) with the values of ¢;; in Table 1.1 indicates that
the influence of the degree of anisotropy of the surrounding medium is governed
mainly by €11 in the case of Re(Kpy). It is noted that Im(Kpy) varies linearly
with ag for all A/bratios and soil types. This behaviour is similar to that observed
previously for Im(Ky). The magnitude of Im(Kg) is also found to increase with
h/b and the influence of degree of anisotropy of soil is more visible with increas-
ing h/b ratio especially at high frequencies (ag > 1.0). The order of magnitude
of Im(Kp) for different soils is identical to that observed earlier for Re(Kpg).

The real part of rocking impedance Ky is found to decrease gradually with
the frequency ao. The magnitude of Re(K ) increases with increasing h /b ratios
for all types of soils. The influence of soil anisotropy on Re(K ) is found to be
similar to that observed earlier for Re(Ky). The imaginary part of Kps varies
linearly with ag except for ap < 0.3 and its magnitude increases with increasing
h/bratio. The influence of the degree of anisotropy of the soil on Im(Kyy) is found
to be comparatively lesser when compared to the case of Re(Kjs) and similar to
that observed earlier for I'm(Ky ). The real part of coupled impedance Kgjps is
found to decrease with increasing h/b ratio. For lower ratios of /b (h/b < 0.5),
Re(Kpr) initially increases with ag for low frequencies and thereafter decreases
gradually with increasing ag. For h/b=1.0, Re(K ) shows more complicated
variation with ag. The influence of degree of anisotropy of soil on Re(Kgyy) is
also found to be rather complicated. For example in the case of a foundation

with h/b=0.5, the Re(Kpp) for the isotropic soil is always greater than that
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for clay I. However, for h/b=1.0, Re(Kpyns) for clay I is higher than the values
corresponding to the isotropic soil within the range 1.6 < ag < 2.0. Therefore it
is difficult to directly relate the influence of soil anisotropy on Re(Kpps) to any
specific ¢;; term. The variation of imaginary part of Ky with frequency aq is
found to be nearly linear for all h/b ratios and for the different types of soils. The
values of Im(Kgar) decrease with increasing h/b ratios. In addition the solution
for silty clay is always the largest and followed by the isotropic soil, beryl rock
and clay L

Figure 6.5 shows the impedances of a single rigid massless strip footing with a
semi-circular cross section of radius b. It is noted that within the frequency range
0 < ap < 2.0, both Re(Ky) and Re(Kpy) increase with ag. This behaviour is d-
ifferent to that observed earlier for a rectangular foundation with A/b=1.0. The
values of Re(Ky ) and Re(Kp) of a semi-circular foundation at low frequencies
(ap < 0.25) are lower than the corresponding solutions for a rectangular foun-
dation with h/b = 1.0. The solution for Re(Kys) of a semi-circular foundation
decreases with ag showing a behaviour similar to that observed earlier for rect-
angular foundations. The imaginary parts of Ky, Ky and Kz of a semi-circular
foundation show a linear variation with ag and the values are always less than the
corresponding values for a rectangular foundation with A/b=1.0. The influence of
the degree of anisotropy of soil on impedances Ky, Ky and Ky is similar to that
observed earlier for rectangular foundations. The solutions for Re(K ) show a
decrease in value with increasing ag and this is contrast to the behaviour observed
earlier for a rectangular foundation with A /b = 1.0. The magnitude for Re(K )
is also found to be lower than the corresponding solution for a rectangular foun-
dation with h/b = 1.0. The solutions for Im(Kgps) show a linear variation with
ap and the values are quite close to the corresponding solutions for a rectangular
foundation with /b = 1.0. The appreciable differences noted in the solutions for

a rectangular foundation with »/b = 1.0 and a semi-circular foundation indicate
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that eventhough the depth of embedment is same in both cases the solution for
impedances are quite different indicating that the exact geometry of the footing

also has a significant influence on the response.
6.3.2 Two Semi-circular Rigid Strip Foundations

The dynamic interaction between two embedded rigid massless strip founda-
tions with identical semi-circular cross-sections (radius=b) is considered in this
section. The distance between the centres of the foundations is denoted by d
(d = d/b). In the present study, only the diagonal impedances K 11, K22 and K33
and the coupling impedances K14, Ko5 and K3g defined in eqn (6.9) are presented
for brevity. These components could demonstrate some features of the dynamic

interaction between foundations embedded in anisotropic soils.

Figure 6.6 presents the solutions for diagonal impedances K11, Ky, and K3
of the two foundations system for d=3.0. It is noted that at small frequencies
(ap < 0.2) and d=3.0, the real parts of K;; and Kyy are much larger (nearly
twice) than the corresponding values for a single foundation. However as aq
increases both Re(K11) and Re(K3;) decrease, showing a behaviour which is in
contrast to the behaviour observed earlier for a single footing. The values of
Re(K33) are somewhat closer to the solutions corresponding to a single footing.
The solution for imaginary parts of Ki1, Kos and K33 are relatively closer both
in shape and magnitude to the corresponding diagonal impedances of a single
foundation. It is also noted that the influence of anisotropy of soil on the response
of the active foundation follows a trend similar to that of a single foundation. The
distance d has a very significant influence on the response and the dependence
of impedances on d is quite complicated as in the case of rectangular three-

dimensional foundations (Apsel and Luco 1987).

Figure 6.7 shows the coupling impedances K14, K5 and Ks¢. It is noted

that these impedances depend significantly on the frequency. At low frequencies
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(ap < 1.0) the influence of anisotropy of soil on coupling impedances are found
to be negligible except for real parts of K54 and K3¢. However as ag increases
(ag > 1.0) the influence of soil anisotropy becomes more significant but the order
of the influence of the degree of anisotropy of soil on these coupling impedances is
found to be in contrast to that observed earlier for the diagonal impedances and
also for impedances of a single foundation. Both the real and imaginary parts
of the coupling impedances show notable differences in magnitude and shape to
that observed earlier for the diagonal impedances. The solutions for coupling
impedances are generally smaller than the diagonal impedances or impedances
of a single foundation and show changes in sign within the frequency range un-
der consideration. Given the fact that in most practical situations, the study of
dynamic response of structures involves more than a single foundation the above
results confirm the complex nature of the through soil interaction between foun-
dations reported earlier (Warburton et al 1971, Wong and Luco 1986, Rajapakse
and Shah 1988, Wang et ol 1991). In addition, these results also highlight the

importance of soil anisotropy in the analysis of dynamic response of foundations.

6.4 DYNAMIC ANALYSIS OF EMBEDDED RIGID CYLINDRICAL FOUN-
DATIONS

This Section is concerned with the dynamic response of a massless rigid cylin-
drical foundation embedded in a transversely isotropic elastic half space as shown
in Fig 6.8. The foundation is subjected to time-harmonic vertical, horizontal and
moment loadings F,e*?, Fye! and M,e'?, at the point O as shown in Fig 6.8.
With the assumption that the rigid foundation is perfectly bonded to the sur-
rounding material along the contact surface S the problem under consideration
can be described as a displacement boundary-value problem. Therefore the dis-
placement at the contact surface S can be expressed in terms of the displacements

at the point O. For example in the case of a transversely loaded rigid cylinder, the
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displacements at an arbitrary point on the generating curve of S can be expressed

as
ur(r,z) = Ag — z¢y
ug(r, z) = —Apg + 2¢y; r,z €S (6.10)
uz(r,z) =rd,

where Ay and ¢, are the horizontal (z-direction) displacement and rotation

about the y-axis of the point O respectively.

The dynamic response of a rigid cylindrical foundation embedded in a
transversely isotropic elastic half space can be expressed by the nondimensional

impedance matrix defined below.

Fz I{V 0 0 AV
F, | =acu 0 Ky Kgu VAN 7 (6.11)
M, 0 EKwng Ku ) \ad,

where Ky, Kg, Kpya(= Kuy) and Kjy are the vertical, horizontal, coupled and
rocking impedances respectively. This displacement boundary-value problem can
be readily solved by using the indirect boundary integral equation method pre-
sented in Section 3.3. The kernel corresponding to the present problem are the
3-D dynamic Green’s functions presented in Section 5.5. However, in this Section
the application of direct boundary integral equation method is illustrated as an
alternative to the indirect method to compute the impedances of rigid cylindrical

mnclusions.

In the direct boundary integral equation approach, an elastic half space with
a cavity which is identical to the embedded inclusion is considered as shown in Fig
6.8. A displacement field with components u;(r, z) as given by eqn (6.10) is im-
posed on the generating curve of S. The direct boundary (integral representation

theorem) of domain V' can be expressed as (Eringen and Suhubi 1975)

Cij(X)uJ'(X)—l—/SHij(X,)_()u]'(}—()dS:/SGZ']'(X,)—{)t]‘(u)dS (i,j,:T,a,Z) (6.12)
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where x and X denote position vectors and X € S. In addition S denotes the

generating curve of the contact surface S. The coefficients ¢;;(x) can be given as

1, X inside V'
cij(x) = { 1/2, xon S (6.13)
0 x outside V'

In the present problem we select x such that x € S, e., x is located on the
generating curve 5, and ¢;; is equal to 1/2. Note that G;; and H;; in eqn (6.12)
are the Fourier harmonic of the displacement and traction Green’s functions of an
undisturbed transversely isotropic elastic half space as expressed by eqns (5.25)-
(5.31) when m = 1; u; is the specified Fourier harmonic of displacements on
the curve S as given by eqn (6.10) and ¢; denotes the Fourier harmonic of the

corresponding tractions.

'To compute ¢; corresponding to displacements u; from the boundary integral
equation (6.12), the curve S is discretized into M equal intervals. It is assumed
that the displacements and tractions are constant within a discretized segment.
In view of the above assumption, the integrals involving the Green’s functions
in eqn (6.12) can be integrated analytically with respect to x over a discretized
interval of S. Then, the equaion (6.12) can be expressed in the following matrix

form

%Iu +Hu=GT (6.14)

where I is a unit matrix; u denotes the displacement vector with its elements
being the displacements at M node points on S as specified in eqn (6.10). In ad-
dition, T denotes the nodal traction vector corresponding to the specified nodal
displacement vector. The elements of the matrix H and G are obtained by inte-
grating the traction and displacement Green’s functions over discretized intervals
of S. The size of H and G matrices is 3M x 3M for the transverse problem. A

solution for T can be obtained from eqn (6.14) as

1
T=G"(;1+H)u (6.15)
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It is noted that the displacement vector u in above equation can be easily ex-
pressed in terms of the displacement Ay and rotation ¢y of the point O. Once
the traction vector T is obtained from eqn (6.15) in terms of Ay and by, the
impedances of a rigid cylindrical inclusion can be calculated by using appropri-
ate equilibrium equations similar to those given by eqns (6.2)-(6.4) for the 2-D

problems.

6.5 IMPEDANCES OF RIGID CYLINDRICAL FOUNDATIONS

First, the numerical stability and accuracy of the direct boundary integral
equation method are studied by varing the number of nodal points M on the
generating surface S. The evaluation of elements of Green’s function matrices H
and G appearing in the eqn (6.15) follows procedures identical to that presented
in Section 5.8. Table 6.4 presents a convergence study of numerical solutions for
impedances Kv, Ky and Kz of a rigid cylindrical foundation with respect to the
number of node points M. A cylindrical foundation with a length-radius ratio
h/a = 1.0 embedded in an isotropic half space is considered. The convergence test
is conducted at normalised frequency ap=1.0. Table 6.4 also presents the solutions
of impedances reported previously by Apsel and Luco (1987) by solving eqn (6.12)
with X selected on a contour S’ which is outside V (Fig 6.8). It is evident
that the results obtained by the present solution scheme are numerically very
stable and are in close agreement with those reported by Apsel and Luco ( 1987).
Next, the accuracy of the present numerical solutions for impedances Ky, Ky
and Ky is investigated by considering different h/a ratios and ag values. For
example, Table 6.5 presents numerical solutions for impedances of a cylinder with
h/a =1.0 at frequency ap=0.25,0.75,1.5,2.0 and corresponding solutions given by
Apsel and Luco (1987). Table 6.6 presents the impedances of rigid cylinders with
h/a=0.25,0.5 and 2.0 at frequency ay=1.0 and corresponding solutions given by

Apsel and Luco (1987). Comparison of the numerical results presented in Tables
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6.5 and 6.6 further confirms the numerical accuracy, stability and reliability of
the present boundary element scheme in the analysis of soil-structure interaction

problems.

Numerical solutions for impedances of rigid cylindrical foundations embedded
in selected anisotropic elastic soils are presented in Figs 6.9-6.12. The materials
considered in this study are silty clay, beryl rock, clay I and an isotropy. The

relevant material constants are given in Table 1.1.

It is noted that the real part of vertical impedance, te. Re(Ky ), decreases
smoothly as the frequency ag increases (0 < ap < 2.0) for rigid cylinders with
h/a=0.25, 0.5 and 1.0. However, for the cylinder with h/a=2.0, Re(Ky ) decreases
in the range 0 < ap < 0.8 and thereafter increases with increasing frequency. The
general trend of variation of Re(Ky) with ao is found to be similar for all four
materials although the actual magnitudes of Re(Ky ) are considerably different
for different types of soils. The influence of the degree of material anisotropy
is also clearly evident on the profiles of Re(Ky ). The largest Re(Ky) is found
for a cylinder embedded in beryl rock followed by cylinders embedded in clay,
isotropic material and silty clay. The profiles of imaginary part of Ky show a
linear variation with ao within the range 0.0 < ag < 2.0. The influence of the
material anisotropy on Im(Ky ) is found to be relatively smaller but has the same
order as Re(Ky). In fact the influence of material anisotropy on Im(Ky) can
be ignored if h/a > 1.0. A comparison of the order of magnitudes of Ky with
the values of material constants given in Table 1.1 indicates that the influence of
material anisotropy is mainly reflected by the value of the normalised material

constant cs3s.

The real part of horizontal impedance K is found to be almost independent
of ag in the case of rigid cylinders with A/a < 0.5 embedded in the four types
of materials. However in the case of rigid cylinders with A/a > 1.0, Re(Kpg)

gradually decreases with agp in the range 0.0 < gy < 2.0. The imaginary part
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of Kz shows a near linear variation with ap within the frequency range under
consideration. This behaviour is similar to that observed earlier for Im(Kv).
The influence of material anisotropy is clearly noted in both real and imaginary
parts of Kg. The largest influence of anisotropy is found on Re(K g ) of a cylinder
embedded in silty clay followed by Re(Kp) corresponding to cylinders embed-
ded in clay, isotropic material and beryl rock. However, Im(Kpg) shows lesser
dependence on the degree of material anisotropy than Re(Kp) eventhough the
influence of material anisotropy on Im(Kg) follows the same order as that for
Re(Kp). It is found from a comparison of the order of the profiles of Ky and
the values of normalised material constants in Table 1.1 that the nondimensional

material constants ¢y; controls the influence of material anisotropy on Ky.

Tt is noted from Figs 6.9-6.12 that the Re(K ) decreases gradually with
ap within the range 0.0 < ao < 2.0 for rigid cylinders with h/a < 2.0. The
shape of the profiles of Re(Ky) are almost identical for the four materials. The
influence of material anisotropy is clearly noted on the profiles of Re(Kpr) and
shows a behaviour similar to that of Re(Ky) for shorter cylinders (h/a < 0.5).
For h/a > 1.0, the Re(Kpr) of a cylinder embedded in silty clay shows a trend
which would result in a value larger than the corresponding value for a cylinder
embedded in beryl rock. Therefore it is noted that for h/a > 1.0, the influence
of material anisotropy on Re(K ) cannot be related to a particular value of ¢;;.
A linear variation with the frequency is observed for the profiles of Im(Kp ) for
ap > 0.6. Im(Kp) shows a non-linear variation with ag if ap < 0.6. It is also
observed that Im(K ) of short cylinders (h/a < 1.0) shows lesser dependence on
the degree of material anisotropy. Generally the order of magnitudes of Im(K )
profiles is found to be similar to that for Re(K M)-

Tt is noted that in the case of shorter cylinders (h/a < 0.5), Re(Knm)
initially increase with ao in the range of 0 < ag < 1.0 and then decreases with

increasing ao. However for h/a > 1.0, Re(Kpu) is found to gradually increase
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with ao within the frequency range under consideration. Re(Kg m) also shows
a strong dependence on the degree of material anisotropy. The highest influence
of material anisotropy on Re(Kx M) is noted for a cylinder embedded in silty
clay and followed by cylinders embedded in an isotropic material, beryl rock and
clay. The same order of influence of the material anisotropy is also observed on
the profiles of I m(Kn M) eventhough the influence is much less visible in this
case. In addition Im(Kguy) decreases linearly with ao in frequency range under
consideration. Comparison of the order of magnitude of the profiles of KM
and the normalised material values in Table 1.1 indicates that the influence of

material anisotropy on Kgum 1s governed by the ratio 1/(¢11 — C12)-

6.6 CONCLUSIONS

A solution scheme is presented for the analysis of dynamic response of rigid
strip foundations and rigid cylindrical foundations embedded in anisotropic e-
lastic soils. The indirect boundary integral equation method based on exact
elastodynamic Green’s functions of an undisturbed orthotropic soil is used 1in
the analysis of rigid strip foundations. However, the direct boundary integral
equation method is used in the case of rigid cylindrical foundations to demon-
strate the applicability of the direct method. Numerical solutions for vertical,
horizontal, rocking and coupled impedances of embedded strip foundations with
rectangular and semi-circular cross-sections and rigid cylindrical foundations are
presented. These solutions indicate that the impedances significantly depend on
the frequency of excitation, degree of anisotropy of soil and the geometry of the
foundation. The variation of real part of impedance with the frequency is gradual
and non-oscillatory whereas the imaginary part shows near linear variation with
the frequency for all types of soils. Naturally the magnitudes of real and imagi-
nary parts of impedances of the foundations are found to increase with increasing

depth of embedment. Within the frequency range 0.0 < ap < 2.0, the influence of
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degree of anisotropy of soil on the vertical and rocking impedances is found to be
controlled mainly by the normalised elastic modulus ¢33. In the case of horizon-
tal impedance the influence of soil anisotropy is governed mainly by &;;. It can
be also concluded that the degree of material anisotropy has lesser influence on
the imaginary parts of impedances when compared to the real parts. Solutions
for impedances also indicate that at high frequencies the influence of anisotrpy
on impedances could not be related to a single elastic modulus. Impedances
of the active foundation of two semi-circular strip foundation system show that
the presence of an adjacent foundation significantly changes the response. These
solutions indicate significant differences in magnitude and shape of impedance
profiles when compared to single foundation solutions. It is also noted that the
influence of soil anisotropy on impedances is very complicated in this case and

cannot be related to a single elastic modulus.

The solutions presented in this study clearly indicate the importance of the
consideration of soil anisotropy in the analysis of dynamic response of foundations.
The methodologies used in this study can be extended to study the dynamic
response of rigid foundations embedded in layered anisotropic media without any

fundamental difficulty.
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Table 6.1 Convergence of impedance of a rigid strip with number of node points

(h/b=1.0,c/b=0.1,a0 = 1.5,v = 0.3)

(M7, M) Ky, Kn K

(16, 24) | (0.45, 2.59) | (0.64, 2.54) | (1.49, 1.58)
(16, 32) | (0.45, 2.59) | (0.64, 2.53)| (1.48, 1.58)
(20, 40) | (0.46, 2.60) | (0.63, 2.52) | (1.47, 1.58)
case I | (0.47, 2.60) | (0.66, 2.41) | (L.44, 1.51)

case I: Apsel and Luco (1987)

Table 6.2 Convergence of impedance of a rigid strip foundation with the location

of source contour S’ (k/b=1.0,a0 = 1.5,» = 0.3, M' =16, M = 32)

(5 = c/b) Ky Ky Kup
0.075 (0.42, 2.52) (0.59, 2.43) (1.37, 1.51)
0.10 | (0.45, 2.50) | (0.64, 2.53) | (1.48, 1.58)
0.125 | (0.45, 2.62) | (0.62, 2.54) | (1.45, 1.59)
0.150 | (0.45, 2.62) | (0.62, 2.55) | (1.45, 1.57)

Table 6.3 Comparison of impedance of a rigid strip foundation in the presence

of another identical unloaded foundation (h/b=0.5,d = 6.0,¢/b= 0.1,

v =0.3, M' =16, M = 32)

ag =0.1

ag = 0.1

ag = 1.0

ag = 1.0

ag = 1.5

ag = 1.5

case I

case []

case [

case I

case |

case ]

Ky

(0.41, 0.31)

(0.41, 0.29)

(0.60, 1.42)

(0.55, 1.37)

(0.34, 2.28)

(0.37, 2.23)

Ky

(0.43, 0.29)

(0.42,0.27)

(0.62, 1.25)

(0.66, 1.21)

(0.68, 1.79)

(0.65, 1.71)

K

(1.15,0.01)

(1.1, 0.01)

(0.98, 0.58)

(0.99, 0.54)

(0.81, 0.86)

(0.79, 0.80)

case I: present study
case II: Rajapakse and Shah (1988)
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Table 6.4 Convergence and comparison of impedances of a rigid cylinder with
number of node points (k/a = 1.0,a = 1.0, v = 0.25)

(1) Ky Kx Kt

10 (7.52, 10.61) | (9.28, 11.01) | (11.37, 5.16)

13 (7.34, 10.45) | (9.31, 11.01) | (11.37, 5.15)

15 (7.29, 10.40) | (929, 10.99) | (11.26, 5.16)

17 (7.25, 10.38) | (9.26, 10.96) | (11.95, 5.16)

20 (7.24, 10.37) [ (924, 10.94) | (11.25, 5.16)
Apsel & Luco | (7.57, 10.79) | (9.30, 11.13) | (11.31, 5.32)

Table 6.5 Comparison of impedances of a rigid cylinder with different frequen-
cies (h/a =1.0,v = 0.25, M = 15)

:
|
|
|
|

a0 0.25 0.75 1.50 2.0
Ky | casel | (8.44,2.68) | (7.82,7.96) | (7.11,16.07) | (6.76,22.01)
% case I1 | (8.25,2.73) | (7.86,3.02) | ((6.94,16.57) | (6.44,22.70)
Ky | case 1| (9.73,2.90) | (9.46,8.30) | (8.82,16.49) | (8.39,22.18)
case I1 | (9.57,2.96) | (9.46,8.39) | (3.90,16.57) | (8.49,22.70)
K | case 1 | (13.58,0.58) | (11.93,3.35) | (10.57,8.84) | (9.98,12.46)
case 11 | (13.44,0.75) | (11.85,3.51) | (10.60,9.03) | (10.11,12.76)

case I: present study; case II: Apsel and Luco (1987).

Table 6.6 Comparison of impedances of a rigid cylinder with varied %/a
(a0 = 1.0, = 0.25)

h/a(M) 0.25(10) | 0.50(12) 2.0(17)
Ky | case I | (5.72,5.87) | (6.34,7.36)-| (9.63,17.70)
case 11 | (5.99,6.10) | (6.59,7.55) | (9.70,17.92)
Ky | casel | (6.16,5.01) | (7.48,7.02) | (12.37,19.96)
case 11 | (6.27,5.14) | (7.47,7.09) | (12.45,20.06)
Ky | case I | (4.46,1.02) | (6.17,1.88) | (28.68,24.22)
case 11 | (4.52,1.09) | (6.20,1.96) | (28.69,24.67)

case [: present study; case II: Apsel and Luco (1987).
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Figure 6.2 Impedances of a rigid strip foundation with rectangular cross-section
(R/b=0.25,0' =12, M = 28,5 = 0.1)
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Figure 6.10 Impedances of a rigid cylindrical foundation (h/a = 0.50, M = 12)
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Chapter 7

AN EXACT STIFFNESS MATRIX METHOD FOR
MULTI-LAYERED MEDIA

7.1 GENERAL

An exact stiffness matrix method is presented in this Chapter to compute
displacements and stresses of a multi-layered transversely isotropic elastic medi-
um. It is noted that once the displacements and stresses corresponding to a buried
point load are computed then different types of boundary-value problems related
to layered domain can be solved by using the boundary integral equation method
as illustrated in Chapters 3 and 6. The analytical general solutions derived in
Chapter 2 for 3-D static problems and in Chapters 4 and 5 for elastodynamic
problems can be used to construct exact stiffness matrices for a layer and an

underlying half space.

In the classical matrix approach used to compute the response of layered
systems the general solutions derived in Chapters 2, 4 and 5 are used for each
layer and a set of linear simultaneous equations based on the boundary conditions
at the top surface and continuity conditions at layer interfaces are established to
determine arbitrary coefficients corresponding to each layer in the layered system
shown in Fig 7.1. It is noted that for a 2-D problem, the general solution involves
four coefficients for a layer and two coefficients for the underlying half plane re-
sulting in a total of 4V + 2 arbitrary coefficients. Similarly for a 3-D problem six
coefficients are encountered for each layer and three coefficients for the underlying
half space resulting in a total of 6V 4+ 3 arbitrary coefficients. If the multi-layered
domain has two or more different materials and the loading is applied internal-
ly then the algebraic equation system can not be solved analytically. However,

the simultaneous equation system can be solved numerically for discrete values
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of Fourier transform parameter for 2-D problems or Hankel transform parame-
ter for 3-D problems. Thereafter the general solutions can be used to compute
displacements and stresses by using numerical integration procedures. Thomson
(1950) presented a matrix decomposition of the simultaneous equation system by
taking into consideration the block diagonal form of the system. A systematic
numerical implementation of Thomson’s procedure for layered media was given
by Haskell (1953, 1960). The Thomson-Haskell algorithm becomes numerically

unstable due to the presence of certain exponential terms.

As an alternative to the classical approaches based on the determination of
layer arbitrary coefficients, a numerically stable exact stiffness matrix approach
is presented in the ensuing sections to evaluate the static and dynamic response
of a multi-layered transversely isotropic elastic half plane/space. In the present
method the exact general solutions of a homogeneous transversely isotropic elastic
medium are used to explicitly construct layer and half space stiffness matrices
which describe the relationship between the integral transforms of displacements

and stresses at the surfaces.

Without loss of generality, the ensuing sections concentrate on the devel-
opment of the exact stiffness matrix method for time-harmonic response of a
multi-layered orthotropic half plane and a multi-layered transversely isotropic
half space subjected to axisymmetric excitations. Selected numerical results for
displacements and stresses of multi-layered half planes as well as half spaces are
presented in this study to portray the influence of layering, degree of material
anisotropy and the frequency of excitation on the response. The stiffness matrix
formulations can be readily extended to study three-dimensional static, time-

harmonic and transient responses of layered media by using the general solution

presented in Chapters 2 and 5.
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7.2 2-D TIME-HARMONIC STIFFNESS MATRICES

Consider a multi-layered transversely isotropic elastic half space with a total
of N layers of finite thickness. The layers and interfaces of the multi-layered
region are labelled as shown in Fig 7.1. The material constants, mass density
and thickness of the nth layer are denoted by c . ,p(n) and h,, respectively. Let

( ) denotes the Fourier transform of displacements of the nth interface and &, ]1)
and & (7”2 denote the Fourier transform of stress components o;; at the top and
bottom surface of the nth layer, respectively. Then, the following relationships

can be established for the nth layer of the system shown in Fig 7.1 by using the

general solution presented in Section 4.3.

(™ = g g™ (7.1)
g™ = (™) (7.2)
where
i =<a™ al® alth gD ST (7.3)
M =<5 & sl s ST (7.4)
al® =< A(m) B®) o) pr) T (7.5)
wlel_,iz —Wi€i,n WZC;,; —W2€2,n
€ €1, € €2,
G(n) — 1_)71" n 2 n n (76)
W11 nt1 —Wi€l,nt1 W2y n+1 —W€2, nt1
—1 _1
€1,n+1 €1,n+1 €2,n+1 €2,n+1
M3€1,n —73€l,n N4€s n —N4€2,n
-1 4
€ e e €2 n
F(n) = C44 s i>177/ s 1,n 6 z,in, e 2, (77)
TM3e1,nt1 MCLn4l  TT4Cy py1 N4€2,n41
—77561_,$z+1 €141 _7766;,}1—1-1 —N6€2,n+1
where

e;; = e’6i% i=1,2;, j=1,2,.,.N+1 (7.8)




In eqn (7.5), A®™ B C() and D™ denote the arbitrary coefficients corre-
sponding to the nth layer where z,_; < z < z,. In addition coefficients w;, &;(z =
1,2) and n;(z = 1,2, ...,6) appearing in eqns (7.6), (7.7) and (7.8) are defined by
eqns (4.24), (4.26) and (4.23), respectively.

In view of eqns (7.1), (7.2), (7.6) and (7.7), the layer stiffness matrix K™
which describes the relationship between the @(™ and &™) corresponding to the

nth layer can be expressed as
&) = g ) (7.9)

where

g K™ = symm.[ki;], i,7=1,2,3,4 (7.10)

]{,‘1]' = 6j[ﬂ3(pj + q]'/\m) + 774(gj + dj/\2n)]7 .7 =1,2,3,4 (711(1)

k2j = £5[ns(p; — gi\n) +716(95 — didan)], 5 =2,3,4 (7.110)
kss = k11, kss = —Fk1g (7.11¢)
| has = Eao (7.11d)
Ain = €706k i =12 (7.12a)
4=1, j=24 f;=-1, j=1,3 (7.12b)

and the parameters p;, ¢;, g;,di(¢ = 1,2, 3,4) are defined as

,, p1 = Z 2w + @2)(¥, — 1) — 292(hanhan — 1) (7.130)
p = "2+ w)m (0, ~ 1) —2mmOandn 1] (7130)
% ps = 60—;,4[(w1 + @) A1n(A2, — 1) — 23 an(Mndzn — 1] (7.13¢)
ps = —3344 (@1 + 2)@2A1n(Ne, — 1) — 201%2 M an(AinAza — 1] (7.13)
g1 = _‘;f‘“ (w1 + @2)( M), — 1) = 2m1(A1nd2n — 1)] (7.14a)
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92 =
g3 =
g4 =
1 =
q2 =
q3 =
g4 =
dy =
dy =
ds =
dy =
in which

F=

6C 2 l _ 2 1 1
44 [(w wz)A2 ()\ — ) W1 Aln(>‘ n)\2n )]

—bcyy
F

—6644

——— (@1 + @w2)Mnp1 + 2w2A2nc1 — 1]
w1 — Wy

6044
—— (@1 + @2)A1np2 + 22 2nc2 — w2 ]
w1 — we

~—5C44
—————[(@1 + @2)A1aps + 2wa A2pcs]
Wy — W2e

0caq
—“'—[(wl + wz)/\lnm + 2w Agncal
w1 — W2

(5644
—————[2w1 A1np1 + (@1 + @2)A2ner — 1]
w1 — Wy

—6c4a
2001 M1np2 + (w1 + @2)Aanco — 1]
w1 — Wy

0cay

[2w1Anps + (w1 + @2)Azncs]
wy — Wy

5 Cq4

[2”601/\1np4 + (wl + w2)/\2nc4]
wy — W2

dwywy(Mnden — 1) — (w1 + @9)2(A\2, — 1)(A2, — 1)

(w1 + @2)w1A2n (A2, — 1) = 2w 1w A 1n(A1n An —

(7.14b)
(7.14¢)
1)] (7.144)

(7.15a)
(7.15b)
(7.15¢)
(7.15d)
(7.16a)
(7.16b)
(7.16¢)

(7.16d)

(7.17)

At this stage it is important to note that the layer stiffness matrix K

is a function of only the layer thickness, layer material properties, frequency of

excitation and the Fourier transform parameter (. The elements k;; are functions

of wy,w2,ni(2 =1,2,...,6) and A\in(z = 1,2). All these functions are numerically

very stable and K(™ is found to be a well-conditioned matrix for all values of ¢

and h,. Unlike Thomson-Haskell technique there are no squared large exponential

terms that must vanish identically in the numerical evaluation. Only negative

exponentials that decrease rapidly with increasing ¢ or h, are involved in k;;.

For the underlying half plane, the general solutions involve only two coeffi-

cients AN+ and C(V+1) due to the regularity condition for displacements and
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stresses at z — oo (physically it is equivalent to the condition that rigid body
displacements are removed). The stiffness matrix of the bottom half plane can

be expressed as

G (N+1) _ g (N+1) (N+1) (7.18)
where
&(N—}-l) =< 5':(171;]1+1) 5-5:12\{1-*_1) >T (719)
N+ —¢ (VD) (V4D T (7.20)
_ _ _ 2
KN+ a1 (ms —=ma)  Gol(re — 1)(1 = ¢%) + abi&a] (7.21)
symm. (wine — @ans)
and

5044 _ 52 51

(@1 —@2) 7 waly (722)

91 =
It is noted that exponential terms are not involved in the expression of
K®+Y and its elements depend on the material properties, frequency of ex-

citation and the parameter (.

7.3 GLOBAL STIFFNESS MATRIX

The global stiffness matrix of the multi-layered half plane is assembled by
using the layer stiffness matrices and continuity condition of stresses o,, and
0., at layer interfaces. For example, the stress continuity conditions at the nth

interface can be expressed as,

<[V 46 BV 46 ST=< g pm ST (7.23)

~(n) .

where p; ' is the Fourier transform of the externally applied traction in the i-

direction (z = z,z) at the nth interface.
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The consideration of eqn (7.23) at each layer interface together with eqns
(7.10) and (7.21) results in the following global equation system.

r=== [ o 5
kol o) [
Sy
L] - (7.24)
KO
K\, | ~(N+1) ~(N+1)
- " Py
L_ J'_K_(zﬂ) {LEN‘H) ﬁEzN+1)

The global stiffness matrix of eqn (7.24) is a well-conditioned symmetric
matrix and has a fixed band width equal to 4. It is naturally constrained against
rigid body displacements due to the presence of K(¥+1  If a half plane is-not
present at the bottom then the bottom plane at z = zx has to be restrained
to eliminate the rigid body displacements. In the numerical evaluation of the
response of a multi-layered half plane the eqn (7.24) is solved repetitively for
discrete values of Fourier transform parameter ( and the response is calculated
by numerically evaluating Fourier integrals given by eqn (4.6b). Stresses at the
top and bottom interfaces of a layer can be obtained by using eqns (7.9)‘ and
the corresponding general solutions. If displacements within points in a layer is
required then it is convenient to define a set of fictitious planes through these
points and to consider these as additional layers. Alternatively eqn (7.1) can
be used to compute al® for a layer and thereafter compute displacements using
the corresponding general solutions. This, however, may involve numerically ill-
conditioned matrices such as G(®) for large values of (. If loads are applied within
a layer then fictitious interfaces are considered at the loading levels. It is also
noted that the eigenvalues of the stiffness matrix in eqn (7.24) correspond directly
to the wave numbers (or velocities) of the surface waves of the layered system
and the eigenvectors are the corresponding displacements at layer interfaces. In

addition the size of the final equation system [ie. eqn (7.24)] is equal to 2(V + 1)
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which is nearly one-half of that corresponding to the classical approach based
on the solution of layer arbitrary coefficients A, B(") C(™ and E(™_ This
reduction of the size of final equation system together with the symmetry of the
system and the fact that the displacements are directly determined as the basic

unknowns further add to the computational efficiency of the formulation.

7.4 AXISYMMETRIC TIME-HARMONIC STIFFNESS MATRICES

This Section presents the derivation of stiffness matrices of a multi-layered
transversely isotropic half space (Fig 7.1) subjected to axisymmetric time-harmo-
nic excitations. The general solution for axisymmetric displacements and stresses
of a homogeneous transversely isotropic medium can be obtained from the general
solutions given in eqns (5.13)-(5.17) for a 3-D time-harmonic problem. It is noted
that in the axisymmetric case m=0 and E = F' = 0 in the solutions given by eqns
(5.13)-(5.17). Let ﬁgn)(i =r,z) denote the Hankel transform of displacement
(n) s (n) s (n)

. and it and Gijo

components u (1,7 =r,z) denote the Hankel transform of
stress components o;; at the top and bottom surface of the nth layer, respectively.
A set of equations similar to eqns (7.1) and (7.2) can be established for the
axisymmetric problem by introducing the following equations of w™, g™ G

and F(™),

w(n) — o »(n)  y(n) &(nt+l)  ~(ntl) ST
a' =< aM a4 u) us > (7.25)
v(n) __ =(n) o(n) o(n) o(n) T
o =< Ozl T,21 N ) > (726)
—1 -1
a161,n aiein 265 5 azez n
. | 1
- — ase
(n) _ areéy ar€in agey 8€2,n
G = -1’ -1 (7.27)
1€ p+1 @€1,n41 265 ppg (262,041
-1 1
—a7€y pt1 AT€Lmt1 TO8€g pyy A8€2,n+1
51€1 n 51€1,n 52€9 n 52€2,n
—1 -1
P — ¢, barey p ba1€1,n bazes bazea n (7.28)
- -1 -1 .
b5161,n1+1 —b5161,n+1 bszez,nlﬂ —b5262’n+1
—bay €1 n+1 —b2161,n+1 —bzzez,n_H _b2262,n+1
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The coeflicients a1, a2, ar, ag, be1, baa, bs1and bsz appearing in above equations are

defined in eqn (5.17); e1,, and eq, are defined eqn (7.8), respectively.

The relationship between (™ and &(®) corresponding to the nth layer can
be expressed by eqn (7.9). The elements k;; of the layer stiffness matrix for the

axisymmetric time-harmonic problems are given by

klj = [b51((]j)\1n —pj) + 652(dj)‘2n - gj)]’ 7J=12,3,4 (729&)

k2j = [b21(pj + gjAin) + baa(g; + djA2a)], 7 =2,8,4 (7.298)
kyj = [551(pj)\1n —q;)+ bs2(gjA2n — dj)l, j=3,4 (7.29¢)
kss = —[b21(padin + q4) + b22(gadan + dy)] (7.294)

where A1, and Ay, are as defined in eqn (7.12a) and the parameters p;, ¢;, d;, ¢;
(1=1,2,3,4) are defined as

)

p1 = %[(azm + a1a8)(MnAzn — 1)ag — 2a2as(A3, — 1)ar] (7.30a)
)

b2 = %ﬁ[(azcw + a1ag)(MnA2n — 1)ag — 2a2a8()\§n — 1)a] (7.300)
)

bs = —?};—4[(a2a7 + a1a3)()\1n/\2n - 1)08>\2n - 20'2@8(/\%11 - 1)0'7)‘171](7‘306)
6caq 2

Py = ?[(aza’r + a1as)(AinA2n — 1)agAon — 2aza5(A3,, — 1)a1 A1,](7.30d)
]

9= ”%&[(aztw + arag)(Madzn — 1)ar — 2a107(A3,, — 1)as] (7.31q)
bcaq 2

92 = @207 + @185)(Mindan — Doz — 2a1a7(M], — 1)ar] (7.310)
0c4a

g3 = T[(a2a7 + a1ag)(Madzn — Darhin — 2a1a7(A, — 1)agren](7.31c)

0caq

( g4 = 7 [(a2a7 -+ alag)()\ln/\zn — 1)a1)\1n — 2a1a7()\fn - 1)a2)\2n](731d)
| 1

§ g1 = ——[—(cwaz + agal)/\lnpl — 2a8a2)\2ng1] (732(1)
ajag — agQr

. gy = ————[—(a7a2 -+ agal))\lnpz - 2a8a2/\2ng2] (732b)
. ayag — asay

. g3 = ————[as — (araz + aza1 ) A1nps — 2a3az A2, 93] (7.32¢)

aijag — azar
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R R

1

g4 = —————/[az — (a7az + agar)Minps — 2082 X35 94] (7.32d)
ajag — doaxy
1
dy = ——————[2ara1Minp1 + (a702 + a361)A2ng1] (7.33a)
aijag — aa0a7
1
dy = ——————[2a7a1A1np2 + (a7a2 + agai)A2nga] (7.33b)
aijag — adqoay
1
ds = ——————[2a7a1 M 1nps + (a7az + asa1)Aangs — a7] (7.33¢)
aiag — azav
1
d4 = _————[2a'7a'1>‘1np4 + (a7a2 + a8a1)/\2n94 — al] (733d)

aiag — agar

in which
F= [(a2a7 + alag)()\ln/\zn - 1)]2 — 4:(1,10,261,70,8(/\%“’ - 1)()‘311 - 1) (734)
For the underlying half space, the relationship between displacements and

stresses at the interface can be expressed by eqn (7.18). The relevant displacement

and stress vectors and the stiffness matrix are given by

FVHD — o p(NHD - V) ST (7.35)
N+ g gNHD (N ST (7.36)

KO _ g, ((631 —bsz) gol(k—1)(1 -+ O‘&l&]) (7.37)

symm. (a1bag — agbo1)

where

_ 6 L&
91—————(a1_a2), gz = /€§1§2

(7.38)

The global stiffness matrix of the multi-layered axisymmetric problem can be
obtained by considering the boundary and continuity conditions of o, and o,
at layer interfaces and following the same solution procedure as that presented in
section 7.3 for a layered plane system. The global solution equation system for
this axisymmetric problem can be expressed in eqn (7.24) with the displacement

vector and the external load vector being defined as

<a® g gD gD ST (7.39)
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and
<p M L pED . gD ST (7.40)

respectively. f)gn) is the Hankel transform of the externally applied traction in the
i-direction (¢ = r,2) at the nth interface. Once again the axisymmetric global
stiffness matrix, as that for a 2-D problem, is a well-conditioned symmetric matrix

with a band width equal to 4.

The layer stiffness matrix of a layer and an underlying half space can be de-
rived under three-dimensional excitations. The relevant three-dimensional general
solutions for displacement and stress for a transversely isotropic medium subject-
ed to static and dynamic loads are given in Chapters 2 and 5, respectively. Explicit
derivation of stiffness matrices for 3-D problems are not attempted here since the
concepts are identical to those encountered in 2-D problems. However, in 3-D
problems the layer and half space stiffness matrices are of the size 6x6 and 3x3
respectively and consequently the elements of matrices become algebraically more
complicated. However, all algebraic manipulations can be effectively handled by

a suitable computer algebra code.

7.5 NUMERICAL SOLUTIONS
7.5.1 Numerical Scheme

Computer codes based on the preceeding analysis have been developed to
evaluate the dynamic response of multi-layered transversely isotropic elastic half
planes and half spaces. The tasks performed by the computer codes can be
described as a) the computation and assembly of stiffness matrices corresponding
to each layer and the underlying half plane/space of the multi-layered system
to establish eqn (7.24) for a specified value of the integral transform parameter
(; b) the solution of eqn (7.24) to obtain the interlayer displacement vector in

the integral transform domain and ¢) the evaluation of the Fourier and Hankel
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integral transforms integrals by using an adaptive version of Filon’s numerical
integration scheme (Tranter 1956). Note that once the values of %; (or ;) and
G;; (or &;;) corresponding to a certain elevation (ie. z-coordinate) are computed,
thereafter the displacements and stresses at any arbitrary epicentral distance (se.
z-coordinate for a 2-D problem and r-coordinate for a axisymmetric problem)
at that elevation can be computed simply by using the relevant inverse integral

transform formulae.

In accordance with reality, materials are assumed to be attenuating [ie. com-
plex ¢;; or a, f and k which may be frequency dependent| as in Chapters 4 and 5.
This also results in the path of integration (ze. real {-axis) free of any singulari-
ties. This technique with one percent complex part has been used in the present

study to evaluate all integrals.

The numerical stability and the accuracy of the present stiffness matrix tech-
nique have been verified through the comparison with the explicit analytical so-
lutions for a homogeneous orthotropic half plane and a transversely isotropic half
space presented in Sections 4.8 and 5.8. A homogeneous half plane consisting
of beryl rock under a uniformly distributed load of intensity ¢y and width ‘2a’
applied at a depth ‘a’ below the free surface and a homogeneous beryl rock half
space under a patch load of radius a applied vertically with a depth a below the
free surface are considered for this purpose. The half plane/space are discretized
by using two models; the first model has 10 layers (uniform thickness h/a=0.5)
with an underlying half plane and the second model has 25 layers (h/a=0.2) with
a bottom half plane/space. Comparison of numerical results corresponding to the
two multi-layered models with those explicit solution presented in Sections 4.8

and 5.8 shows less than one percent difference.

7.5.2 Numerical solutions for multi-layered plane problems

In this study, selected numerical results corresponding to five layered sys-

tems are presented. The properties of different materials considered in the nu-
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merical study are given in Table 1.1. The thickness distribution of the first set
of layered systems considered in the numerical study is given in Table 7.1. The
three layered systems defined in Table 7.1 are subjected to vertical and hori-
zontal uniform strip loads of intensity go and width ‘2a’. This problem can be
considered as an approximation of the response of a flexible strip footing on lay-
ered anisotropic soils and pavement systems subjected to dynamic loadings. The
numerical results are presented in terms of nondimensional displacements (com-
pliances) uf;(z, z) = u;;(z, z)c&)/(aqo), where u;; denotes the displacement in the
i-direction (¢ = z,2) due to an applied load acting in the j-direction (j = z, 2)
and c&) is the moduli c44 of the top layer (Fig 7.1). A nondimensional frequency
ag defined as ap = aw [p(l)/c,(;i)]l/2 where p(!) is the mass density of the top layer

is also used.

Figures 7.2 and 7.3 show the influence of frequency of excitation over the
range 0.5 < ap < 3.0 on displacements u}, and u¥, at the centre point of a u-
niform strip loading applied at the surface (z =0) and at a depth 0.5a below
the surface, respectively. The frequency range 0.5 < ap < 3.0 is selected since
most machine foundation vibrations are in this range (Gazetas 1983). The strong
influence of layering on the response is clearly noted in Figures 7.2 and 7.3. Com-
parison of displacements corresponding to the three soil systems indicates that
it is very difficult to relate the influence of degree of anisotropy of materials in
a layered system to the features of the response. System 1 is a homogeneous
orthotropic medium and the real and imaginary parts of displacements u}, and

;- vary smoothly with the frequency. In the case of the two layered systems

u
the variation of displacements with the frequency shows considerable oscillations
especially for the imaginary parts. The real parts of the displacements generally
decrease with the frequency for all three systems under both vertical and horizon-

tal loadings. Imaginary parts of the displacements increase with the frequency for

the homogeneous soil (system 1) but do not follow a definite trend for the other

169




two systems due to oscillatory variations. Comparison of Figures 7.2 and 7.3
indicates that the real parts of displacements for all three systems are higher for
surface loading when compared to buried loading. On the other hand, imaginary
parts of displacements are higher for the buried loading case when compared to
the surface loading indicating more geometric dissipation under buried loading.
However, the general features of compliance profiles shown in Figs 7.2 and 7.3 are

quite similar.

The next set of solutions corresponds to two layered systems encountered in
computing and electronic devices. The response of a SiC substrate with a Al;O3
layer and an aluminum substrate with a nylon layer under a time-harmonic ver-
tical concentrated load applied at coordinate origin (Fig 7.1) is studied. Figure
7.4 shows the variation of nondimensional displacement u%,(= %ﬁi“)hl, where
Py is the magnitude of the concentrated load and h;is the thickness of the lay-
er) with the horizontal distance at the surface (2=0) and at the material in-
terface. Solutions are presented for three values of nondimensional frequency ag
[= hlw(p(l)/cii))lﬂ]. As can be seen from Fig 7.4(a) Re[u?,(0,0)] is singular near
the origin of the coordinate system for all frequencies due to the fact that load-
ing is applied at the coordinate origin. Surface and interface displacements show
relatively smooth variation with the horizontal distance for both layered systems.
In the case of Al;O3/SiC system normalised displacements are higher than that
corresponding to nylon/aluminum system. Comparison of material properties
given in Table 1.1 indicates that the nylon/aluminum system can be considered
as a flexible film on a rigid substrate due to the large difference between material
moduli of the two materials. In fact, it can be seen from Fig 7.4b that the interface
displacements of nylon/aluminum system is very close to zero for all three values
of frequency. In addition, the surface displacements of nylon/aluminum system
is significant only near the loading region |z/h| < 1.0 indicating the presence of

more or less a conically deformed region which is characteristic to a point loaded
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very flexible layer on a rigid substrate. On the other hand, Al;O3/SiC system
shows more gradual distribution of the displacements with the horizontal distance

and the presence of significant interface displacements.

Figure 7.5 shows the shear and normal stresses along the material interface
of Al;03/SiC and nylon/aluminum system under a vertical concentrated load
of magnitude P, applied at the origin. It is noted from Fig 7.5 that the shear
stress along the interface is negligible for nylon/aluminum system for all three
frequencies. Significant shear stresses are noted along the interface of Al;O3/SiC
system. The real part of normal stress along the interface of nylon/aluminum
system is generally larger than that of Al;O3/SiC. It is also noted that imaginary
part of the normal stress is nearly zero for nylon/aluminum system indicating
that the loading and the normal stress along the interface are nearly in-phase. A
significant imaginary component is noted for normal stress along the interface of
Al;03/SiC system. In general the amplitude of interface vertical stress is higher
for the nylon/aluminum system when compared to Al;O3/SiC system since the
former behaves as a flexible layer on a rigid substrate. On the other hand, more
shear stress are generated in the Al,O3/SiC system due to the higher vertical
displacement gradients (in z-direction) that exist along the material interface.
The variation of interface stress with the frequency is quite smoother in the
case of nylon/aluminum system but shows complicated oscillatory behaviour for
Al,03/SiC system. Generally the magnitudes of both real and imaginary parts of
stress increase with increasing frequency in the case of nylon/aluminum system.
The solution presented in Figs 7.4 and 7.5 are useful in the study of flaws and

characteristics of material interfaces by using non-destructive testing methods.

7.5.3 Numerical solutions for multi-layered axisymmetric problems

Next, a homogeneous and two multi-layered transversely isotropic half spaces

defined in Table 7.1 are considered under time-harmonic axisymmetric loadings.
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The applied loading is assumed to act vertically and uniformly distributed over
a circular area of radius of @ with intensity go. In practice, this problem can
be considered as the simulation of a flexible footing on a layered elastic soil.
A nondimensional displacement u*,(r,z) and a nondimensional frequency ao as

defined in Section 7.5.2 are used.

Figure 7.6 shows the influence of frequency of excitation over the range
0.5 < ap < 3.0 on displacement u?*, at the centre point (r =0) of an uniform
patch loading applied at the surface (z = 0) and at a depth 0.5a below the sur-
face, respectively. The strong influence of layering on the response is clearly noted
in Figure 7.6. Comparison of displacements corresponding to the three soil sys-
tems indicates that it is very difficult to relate the influence of degree of anisotropy
of materials in a layered system to the features of the response. System 1 is a
homogeneous transversely isotropic medium and the real and imaginary parts of
displacements u?, vary smoothly with the frequency. In the case of the two lay-
ered systems the variation of displacements with the frequency show oscillations
especially for the imaginary parts. The real parts of the displacements generally
decrease with the frequency for all three systems. Comparison of the present re-
sults indicates that the real part of displacements for all three systems are slightly

higher for surface loading when compared to the buried loading.

7.6 CONCLUSIONS

A stiffness matrix method based on exact analytical general solutions for elas-
todynamics of layered transversely isotropic system is presented to compute dis-
placements and stresses of a multi-layered orthotropic elastic half plane subject-
ed to arbitrary time-harmonic loadings and a multi-layered transversely isotropic
half space subjected to axisymmetric time-harmonic loadings. The Fourier and

Hankel transform of displacements at layer interfaces are considered as the basic
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unknowns in the analysis for plane and axisymmetric problems respectively. Ex-
plicit solutions for stiffness matrices of a layer with a finite thickness and a half
plane/space are presented. An adaptive version of Filon’s numerical integration
is used to numerically integrate the Fourier and Hankel integrals encountered in
the analysis. The present method has the advantage that the stiffness matrices
involve only negative exponentials and other numerically stable terms. In addi-
tion the size of the final equation system is nearly one-half of that corresponding
to the conventional matrix approach based on layer arbitrary coefficients and has
a band width equal to four. Selected numerical results presented in this study for
five different layered systems indicate that the response of a layered anisotropic
medium depend significantly on the frequency of excitation, degree of anisotropy
of materials, thickness of layers and the configuration of layering. The response is
governed by a complex combination of above parameters and it is difficult to filter
the influence of each parameter on the response. The present method can be ef-
fectively used to compute the kernel functions (Green’s functions) required in the
application of boundary integral equation method for layered anisotropic media.
It can be also used to verify the accuracy of approximate stiffness methods such
as those proposed by Waas (1980), Kausel and Peek (1982) and other numerical
techniques. With the aid of computer algebra codes the present methodology
can be extended to develop a highly stable and computationally efficient stiffness
matrix approach for evaluation of static, time-harmonic and transient responses

of layered isotropic and anisotropic half-spaces under three-dimensional loadings.
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Table 7.1: Thickness distributions of multi-layered systems

~ Layer thickness
system No hq hy hs
1 )
(h/a) (layered soil) - -
2 0.3 0.7 00
(h/a) (layered soil) | (beryl rock) | (isotropic)
3 1.0 1.0 0o
(h/a) (layered soil) | (beryl rock) | (isotropic)
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nth interface
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Figure 7.1 Geometry of multi-layered system
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Figure 7.2 Normalized displacements u}, and u}, due to strip loads at z/a = 0.
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Chapter 8

CONCLUDING REMARKS

8.1 CONCLUSIONS

In this final Chapter, the major conclusions of the present study are sum-

marised. It should be mentioned here that separate conclusions are presented at

the end of Chapters 3-7 based on the analysis and numerical solutions presented

in those Chapters. The following are the major findings and conclusions of the

present study.

1)

2)

3)

Equations governing static and dynamic (time-harmonic and transient) de-
formations of a homogeneous transversely isotropic medium can be solved
by using appropriate integral transform techniques. Fundamental solution-
s corresponding to buried loadings and displacement jumps can be derived
explicitly for a homogeneous transversely isotropic elastic half space. These
solutions are expressed in terms of semi-infinite integrals with oscillatory in-
tegrands which are singular at certain points within the range of integration.
It is found that the integrands of the semi-infinite integrals encountered in
the fundamental solutions corresponding to internal loadings are very com-
plicated and these integrals cannot be evaluated by analytical means in most
cases. It is also found that the semi-infinite integrals encountered in 2-D
and 3-D problems can be evaluated accurately by using Filon’s integration
scheme and the extended trapezoidal rule respectively. Negligible material
attenuation is used in all numerical calulation to facilitate numerical integra-
tion along the real axis of the integral transform parameter. The numerical
inversion scheme proposed by Hosono is found to yield accurate solutions for
transient problems.

The exact stiffness matrix method developed in this study results in an accu-

rate and numerically stable algorithm to compute fundamental solutions for

181




multi-layered media. Unlike the conventional algorithm based on the deter-
mination of layer arbitrary coefficients, the present method involves matrices
which contain only negative exponential of the transform parameter and re-
quires lesser computational effort due to the presence of a banded symmetric
matrix which is nearly half the size of that encountered in the conventional

algorithms.

4) Numerical solutions presented in this study for homogeneous transversely
isotropic media indicates that in the case of static and low frequency dynam-
ic loadings (ap < 2.0) the influence of material anisotropy on vertical and
horizontal displacements (or stiffnesses) are governed mainly by nondimen-
sional material constants 33 and &;;. Numerical solutions corresponding to
dynamic problems indicates that at high frequencies the response is governed
by a complex combination of the degree of anisotropy and the frequency of
excitation. Material anisotropy has a relatively lesser influence on stresses
when compared to displacements. In the case of layered transversely isotropic
media the influence of material anisotropy on the response cannot be related

to a single material coefficient.

8.2 SUGGESTIONS FOR FUTURE WORK

The comprehensive set of Green’s functions together with the boundary ele-
ment code presented in this thesis can be applied to analyse a variety of interesting
problems. However, only a few such problems were considered here due to obvi-
ous reasons. It is suggested that problems related to a single pile, pile groups,
transient response of rigid footings, wave scattering by cavities and cracks in
anisotropic media, interface fracture problems etc. be analysed by using the tools

developed in this thesis. In addition, transient fundamental solutions presented

in Chapters 4 and 5 for homogeneous media should be further investigated by

using analytical techniques to obtain time-domain solutions. Such solutions are
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very useful in the interpretation of seismic data and signal profiles in NDE meth-
ods. Finally, the exact stiffness matrix method presented in Chapter 7 should
be extended to compute 3-D fundamental solutions for multi-layered transversely

isotropic half spaces.
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