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ABSTRACT

The present work evaluates the turbulent and mean kinetic energy balance
for a diffuser flow. The diffuser under study had a total included
angle of 8 with an area ratio of 4:1 and was fed by fully developed
pipe flow. Measurements of mean and fluctuating velocity correlatiomns
were taken by Arora (1978) using Pitot-static tube and Hot-wire anemome~-
ter. His results are used, in the present study, to examine the energy

balance for diffuser flow.

Locally, in the mean energy budget, the source term [(ﬁ/Z)(BQZ/Bx)]
is of the same order as the pressure work term throughout the diffuser.
The major part of the mean energy is used to increase the pressure. The
remaining mean energy either produces turbulent kinetic energy or is
directly dissipated. This process of mean energy conservation, however,

is carried out by transport in mean and turbulent flow fields.

The general picture which emerges by integrating the turbulent energy
terms over the cross—-section area, reveals production and dissipation
are of the same order. Similarly, mean flow convection and total trans-
fer are of the same order. In the entry and intermediate regions
(roughly from the exit plane to 44 centimeters upstream from the exit
plane) the average turbulent kinetic energy is increasing, and mean flow
convection is balanced by convective diffusion due to pressure effects

together with the difference of the production and dissipation. How-
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ever, in the exit part of the diffuser, mean flow convection is balanced
by convective diffusion due to kinetic effects, and production balances

the dissipation.
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NOMENCLATURE

Constant in power series representation of (u”)
Constant in power series representation of )
Constant in power series representation of (w’)
Pipe diameter (10.16 centimeter)

Correction coefficient for Reynolds stress (u”)
Correction coefficient for Reynolds stress 6;_)
Correction coefficient for Reynolds stress (TV)
Correction coefficient for Reynolds stress (w)
Subscript, i =1, 2, 3

Subscript, j =1, 2, 3

Constant in hot-wire response equation (section 2.5)
Distance from the wall where‘ﬁﬁhax.or EE%X occur
Instantaneous static pressure, P = P + p’

Mean static pressure

Fluctuating component of the pressure field

Measured and normalized mean static pressure (Fig. 5)

Turbulent kinetic energy, q2 = u2 + v2 + w2

Mean kinetic energy, Q2 = U2 + V2

Pipe radius (5.08 centimeter)

Local diffuser or pipe radius

Reynolds number- Rl = UbR/V

Radial distance from center line of the diffuser

Small distance from the wall
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Time

Instantaneous axial velocity, U = U+ u’

Mean axial velocity

Mean center line velocity

Pipe bulk average velocity (18.32 ms—l)
Fluctuating velocity component in x-direction
Fluctuating velocity (i = 1, 2 or 3)

correlation of the fluctuating velocities
Instantaneous velocity in radial direction, % =V + v’
Mean radial velocity

Flucutating velocity component in r—direction
Instantaneous velocity in z-direction, W= W + w’
Mean circumferential velocity

Fluctuating velocity component in circumferential direction
Axial distance from the entry of the diffuser
Radial distance from the wall

Circumferential direction

Boundary layer thickness

Turbulent energy dissipation rate per unit mass
Kinematic viscosity of the air
Non-dimensionalised axial distance, = x/R
Non~-dimensionalised ra&ial distance, EZ = r/R
Non-dimensionalised radial distance, 53 = y/RO
Density of the air

Angle of the inclined hot-wire

Overbar: denotes time average
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Chapter I

INTRODUCTION

The main activity of science is observation,interpretation and predic-
tion. For a fluid mechanics modeler, prediction is of the utmost impor-
tance. But for others it may be one of the means by which the correct-
ness of the interpretation can be checked by comparision with further
observations. There is still no hope of fully predicting turbulent
energy phenomenon, numerically, by rigorous deductions from WNavier-
Stokes equation. Therefore a crucial part of prediction remains

unsolved, and experimental work remains a necessity.

The turbulent flow of real fluids is of a dissipative mnature.
Because of this dissipation of turbulent kinetic energy, a continuous
supply of energy is necessary to maintain the turbulence, for steady
flow. At the same time, owing to this turbulent motion, diffusion of
fluid particles together with their kinetic energy takes place. Thus an
average steady state can only exist, if there is equilibrium between the
energy supplied to the turbulent motion, the transport by the mean

motion, and the diffusion plus dissipation of turbulence energy.

A diffuser as a pressure recovery device, is an important tool which
may throw some light on the turbulence research study. A diffuser con-
verts kinetic energy into flow energy with a positive pressure gradient

which makes it different from pipe flow which has a negative pressure
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gradient. The flow field may be divided into two parts i.e. turbulent
flow field and mean flow field. The present work discusses the turbu-

lent and mean kinetic energy balance for a diffuser flow.

The diffuser flow is under investigation at the University of Mani-
toba for the last one decade. The diffuser under study has a total
included angle of 8° with an area ratio of 4:1 and was fed by fully dev-
loped pipe flow. Okwuobi (1972) studied turbulent kinetic energy
balancé for the diffuser flow at Reynolds numbers 152,000 and 293,000.
Okwuobi and Azad (1973) and Hummel (1978) have reported the existence of
Reynolds number similarity for turbulent quantities in a diffuser flow.
Based on this finding, Arora (1978) choose a single pipe Reynolds number
of 58,000. The present study investigate mean and turbulent kinetic

energy balance and uses measurements taken by Arora.

Ruetenik and Corrsin (1955) have investigated energy budget in a
fully developed, equilibrium plane diffuser flow with a total divergence
angle of 2° at Reynolds number of 12,200. Cockrell and King (1967);
Razinsky et al. (1967); Livesey and Turner (1964) and Robertson et al.

(1957) are few other researchers who have studied diffuser flow.

To study the adverse pressure gradient type of flow some researchers
[e-g. Bradshaw (1967), Shishov et al. (1978)] have examined two dimen-
sional boundary layer flow. Their studies are used in this text to com-
pare to the diffuser results. Similar studies has been made by other
researchers for different types of flows e.g., in a boundary layer with
zero longitudinal pressure by Townsend (1951): in a boundary layer by

Bradshaw, Ferriss and Atwell (1967); in a jet by Rodi and Spalding
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(1970); in a channel flow by Hanjalic and Launder (1972); in a wall jet
by Irwin (1973); in a fully developed pipe flow with wall suction by

Schildknecht, Miller and Meier (1979).

Velocity gradients were estimated by fitting polynomials (using least
square techniques) to the measured data. The degree of polynomial was
selected by considering regression coefficient (sun of the squares of
difference between measured and computed wvalue), and the behavior of
first and second derivatives. Further details are provided in section

2069




Chapter II

BASIC CONSIDERATIONS

2.1 MEAN KINETIC ENFRGY EQUATION

The mean energy equation for an axi-symmetry flow may be written as:
I 4ITI + TIII + IV + V + VI + VII = 0

where the different terms have the following meanings:

Mean energy source:

(1) = —[(6/2)3Q2/ax][R/qjlz ( 2.14)

Pressure work:

(11) = -[(0/p)aB/ax] R/T°]; ( 2.1B )

Mean energy advection:

(1I1) = —[(V/z)aqz/arltk/usl; ¢ 2.1C )

Transport by fluctuating velocities:
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(1v) = -BUu® + Vo) /x - 8lr(Tuv + vu?)1/ror] [R/Ug]; ( 2.1D )

Turbulent energy production-

(V) = [u80/ox + wdV/ x + uvdl/dr + v2av/ar + T(w’/r)1 [R/VL];

( 2.1E )

Viscous Diffusion:

(vi) = (/21 v+ v DR/ ( 2.1F )

Direct dissipation:
2 = 2 = 2 - 2
( VIT ) = =v([ (30/0x%)" + (0V/3x)" + (3U/3r)" + (av/dr)" +

Vel DR (2.8

2.2 TURBULENT KINETIC ENERGY EQUATION

The turbulent kinetic energy equation, which is obtained by combining
the Navier-Stokes equations and the continuity equation (detailed deri-
vation is given in Appendix A), for axi-symmetry flow may be written

as:

I + iT + IITI 4+ IV + V = 0



where the different terms have the following meanings:

Mean flow convection:

(1) = -1@/20ax + (WD /IR (2.28)

Convective diffusion due to kinetic and pressure effects:

( 1I1) = [—1/2]([8(11(12 + 2p°u/p)/ox]l + [Br(qu + Zﬁ/p)/rar])[R/Uz];
( 2.2B )
Production:
I et — 2. BN 2= 3,
(TIT ) = ~[uvdl/0r + uwvoV/0x + u"Wox + vOV/dr + w V/r][R/Ub],
( 2.2C )

Viscous work-*

(1) = (Vo) + v+ wz)][R/Uﬁ]; ( 2.2D )

Dissipation:

il

(V) - RE/Ug; ( 2.2E )



2.3  BOUNDARY CONDITIONS

One of the important task of any engineering problem is to define the
boundary conditions. A similar problem, was faced in the begining of
the present study, to describe the flow very close to the wall of the

diffuser and at the center-line of the diffuser.

Schildknecht, Miller and Meier (1979) studied a similar problem while
examining the influence of suction on the structure of turbulence in
fully developed pipe flow. Their pipe flow study was extended to dif-

fuser flow in order to define the following boundary conditions:

At the wall

At the center-line

30/3r = 0

<1
]

&
it

According to Schildknecht, Miller and Meier (1979) the components of
the fluctuating velocity may be represented by a power series in terms

of the distance from the wall

u = aa( %x,v,2Z )s 4+ ceoses
v 2

v/ = bb( X,v,2 )S + cecesa

w' = cc( X,¥,2 )8 4+ cessvoe
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Substituting these series representations into the turbulent kinetic
energy equation, Derksen and Azad (1980) showed that only viscous work
(gradient diffusion rate of the turbulent energy) and dissipation are
non-vanishing quantities at the wall. Non-vanishing components at the
center-line are mean flow convection, convective diffusion, dissipation
and production. In the mean energy budget, viscous work and direct dis-
sipation are zero at the wall, mean energy advection is zero at the cen-

ter-line.

2.4 FLOW SPECIFICATION

The present study deals with an adverse pressure gradient type of
flow in a diffuser. The physical quantities used in this study were
taken from Arora (1978). Briefly, fully developed pipe air flow enters
into a diffuser with 8° total included angle and area ratio 4:1. Mean
static pressure variation were measured at six different Reynolds number
(based on pipe bulk velocities) along the diffuser. The results are
shown in Figure 5. Mean and fluctuating quantities (up to fourth order)
were measured with standard DISA hot-wires, at twelve different axial

locations with the following distances from the exit in centimeters:

67 65 61 57 50 40 30 24 18 12 6 O

Henceforth, those axial locations will be known as axial stations,
according to their distance from the exit. For example, station 18
corresponds to the axial location which is 18 centimeters from the exit.

Since measurements very close to the wall were not done, all quantities
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in that region are extrapolations. Time derivatives of u2 measurements

were used to estimate dissipation, with the assumption that isotropy is

valid throughout the cross-section.

Okwuobi (1972) studied the same flow and his measurements were used

to estimate axial derivatives of the turbulent kinetic energy (qz) in

the mean flow convection term of the energy balance.

2.5 CORRECTIONS TO HOT-WIRE MEASUREMENTS

The possible sources of error in a hot-wire system may be:
1. Effect of high intensity turbulence

2. Effect of prong interference

3. Errors due to the wall effects

4. Longitudinal cooling of hot-wire

5. Using hot-wire in a different orientation as compared to the

orientation for which it is calibrated
6. Error due to non-linearity of the response equation

In addition, there may be some errors associated with electronic
instruments. Several analytical ﬁethods had been suggested, to correct
hot-wire response, by different experimentalist. Rose (1962) suggests
high intensity corrections to the linearized constant temprature res-
ponse but he limits the correction term up to third order correlations

2
e.g. uv . Heskestad (1965) corrects this by including fourth order cor-
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relations e.gs u4 , but the resulting correction to the Reynolds
stresses are not given. Sandborn (1967) discusses the problem of high
intensity and presents some experimental measurements that indicates
error of less than 2% in non-linear normal wire measurement of ;E.with
up to 50% turbulence intensity. But Sandborn does mnot discuss the
effect of a three-dimensional turbulent field on the normal wire res-
ponse. Wichner and Peebles (1963) suggest a method of determining the

Reynolds stresses which requires an accurate knowledge of the mean vel-

ocity.

Cuitton (1974) discusses some corrections which may be applied to
mean velocity and Reynolds stresses being measured in a two-dimensional
mean flow of high turbulence intensity by means of linearized constant
temperature hot-wire anemometer. The wire response is taken to fourth
order in the fluctuating velocity and includes corrections due to devia-
tion from normal cooling. Guitton conducted some experiments in high
intensity flows: two-dimensional plane and curved turbulent wall jets in
still surroundings. According to Guitton , in order to apply these cor-
rections, all that is required is to multiply the measured quantity by a

correcting coefficient in order to get the corrected quantity. Thus

::2;: Hluxzn
_\—7}_;= Hz"z{
wo= Hyuvy
;gz H4"—’Z
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Subscript m indicates measured quantities and subscript c¢ indicates

corrected quantities. Hl, HZ’ H3, and H4 are correcting coefficients

defined as:

Correction coefficient for u2 (Hl):

2 v2/u2 62 - 2 2, 27

2742 52 (v - B2y T u? (2.58)

+ uzv

Correction coefficient for v2 (Hz):

B = 1/[ 1 - 2k%/8in2 &] - uw® ( 1 + Cot 0V/U )/Cos’d v2 U

- ( H1 -1 )uz/Cotzd)v2 + vw2 G/Sin2¢ v2 62 + u2w2/Cosz¢v2 U

— . _
+ v2w2/Sin2¢ v2U2 - w4 - (w”)2 ]/Sin22¢‘v2U2; (2.5B)
Correction coefficient for E;‘(HB):
2 4m. 2 == 2 L 2 T
H = 1/ 1 = k%/Sin" ¢] = (1 4 Cotd V/U d)vw /2 Sin" ¢ U uv

23 + wv wo/sin®duv U2;  (2.50C)

+ vw? ¥/2 Sin’é uv U2

Correction coefficient for w2 (HA)'
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H, = 1/[1- 2k?/sin” ¢] + \72/s1n2¢62 - (B -1 yu2/Cot? ¢ w?

+ 52 ;E)Cosz¢ ﬁz ;E' - 62 ;E}Sin2¢ Cosz¢'l—12 ;—“ - v ;E}Sin2¢ Coszd)ﬁz:;?

- u;i/Coszqa U ;5 + 2V u_?v/Coszcb ﬁz_z? - 2V -\—rw_z/smzda 62? +

u2v2/Coszd>mﬁ2 ;E- + v2w2/81n2¢ 52_;5— - ;Z“— 6;532 1/4 Sin2¢ Coszd>ﬁ2 ;E
(2.5D)

where ¢ is the inclination angle of the wire (its value in the pre-
sent study being 45°) and k is taken as zero because of high intensity

turbulence effects.

The proposed correcting coefficients were evaluated for all available
measurements. The measured Reynolds stresses were multiplied by correc-
tion coefficient in order to get the corrected Reynolds stresses. Cor-
rected and uncorrected Reynolds stresses were plotted for all stations;
typical Reynolds stresses are shown in Figures 1 to 4 for three diffuser
stations. From their studies the following conclusions could be drawn

for the correcting coefficients.

1. Correction coefficients H2, H3 and H4 behave similar to one
another i.e. each of them increases in the downstream direc-

tion.
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2. Coefficient Hl’ correction coefficient for Reynolds stress

( uz), has its maximum value at the center-line (52 = 0.0)

and decreases towards the wall.

3. Radial direction Reynolds stress (v2) correction factor (Hz)

has its maximum value roughly at about €2=O°6 and decreases

towards the center line and the wall side.

4. H3, correction coefficient for fluctuating shear stress, has a

maximum value close to the wall and decreases toward the cen—

ter-line. However a different behavior was observed for sta-

tion 12 as shown in figure 3.

5. Z-direction Reynolds stress (Wz) correction coefficient (H

)
radially remains the same throughout a cross-—section except
for having a slightly higher value in the wall region. The
maximum observed wvalue of H4 was 1.173 at station 0 for
Ez':l .87.

All available measurements were multiplied by the correc-

tion coefficients. Corrected datas were employed to evaluate

mean and turbulent kinetic energy balances. RS

2.6  DATA ANALYSIS

Mean and turbulent kinetic energy balance equations imvolve radial
and axial derivatives of mean and fluctuating velocity correlations.

Therefore the correctness of energy balance depends upon the degree of

accuracy with which different derivatives are obtained.
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Three types of curve fitting (fourier series, cubic spline and
polynomial) were studied, during the course of the present study, before
selecting the polynomial curve fitting technique. The accuracy of four-
ier series curve fitting depends upon how many terms have been consid-
ered to fit the experimental measurements. By considering more terms,
however, one may expect improved curve fitting. But, the gradient of
the function will have more oscillations which may be far from the real
logical picture. A good fit can only be expected if the function is
periodic and continuous [Churchill (1963) and Oberhettinger (1973)1.
In the present study different mean and turbulent quantities are not
periodic, therefore fourier series technique can not be use to calculate

the derivatives.

From the cubic spline curve fitting one may expect an improved
regression coefficient (sum of the squares of difference between mea-
sured and computed value). A spline passes through all given points,
but its behavior between two given points is unpredictable [Spath
(1974)1. As a result fluctuations in the derivatives will be high,
therefore cubic spline curve fitting was discarded for the present

study.

Polynomial curve fitting was selected, which doesn’t have the demer-
its of fourier and cubic spline curve fitting. In general, the regres-
sion coefficient reduces with an increase in the degree of polynomial.
However the best degree of polynomial was selected by considering
regression coefficient and observing the behavior of the derivatives

logically. Sometime, to improve the accuracy in results, curves were
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splitted into two or more sections. For example, for axial plot of mean
velocity field seprate polynomials were fitted to the different (core
and wall regions) sections. Before finalising the degree of polynomial
it was ascertain that both had the same function value and derivative at

the joining point of the two sections.
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RESULTS AND DISCUSSION

3.1 MEAN STATIC PRESSURE

Figure 5 shows variation of mean static pressure along the diffuser
at _i1x different Reynolds numbers. These mean static pressures were
measured at the wall of the diffuser. In Figure 5, mean static pres-
sures are non-dimensionalised by dynamic pressure, and fall on the same
curve thereby showing the universality of the measurements. Also shown
in the same diagram is the average axial derivative of the mean static

pressures represented by a solid line.

The curve of dPm/d(x/D) show how does the pressure changes from a
fully developed pipe flow, to a higher pressure at the exit of the dif-
fuser. This phenomenon of pressure recovery is very important from the
turbulent energy point of view. Due to the pressure recovery process,
turbulent kinetic energy balance from a fully developed pipe flow (where
production is balanced by dissipation and mean flow convection is zero)
changes to diffuser flow thereby giving turbulent energy balance for
adverse pressure gradient type of flows. It is evident from the curve
of pressure gradient, that there is more pressure recovery in the entry
region (roughly 72-52 centimeters from the exit) and pressure gradient
curve is roughly linear. 1In the intermediate region (approximately a
region of 52-28 centimeters from the exit) there is less pressure recov-

ery as compared to entry region. Finally in the exit region (28-0 cen-

- 16 -
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timeters from the exit) pressure recovery is least and pressure gradient

curve is linear.

Turbulent kinetic energy balance as a function of pressure gradient

will be discussed later in this chapter.

3.2 MEAN ENERGY BALANCE

In the present study an evaluation of mean energy balance was carried
out, the regions of concentraion were the entry region (station 57) and
exit region (station 12). Section 2.1 describes the different terms

involved in the mean energy balance.

Due to mean velocity flow field (in x-direction) and mean energy (Q2)
derivative (in =x-direction), mean energy is produced. Therefore,
- 2
(U/2)3Q7/3%x is termed as a source of mean energy in equation (2.1A).

Because of diffuser flow and its high efficiency, most of the mean

energy produced is utilized in increasing the pressure directly.

A part of the remaining mean energy produces turbulent energy. The
rest of the energy is dissipated directly from the mean flow field in
the form of heat due to viscosity. However. this process of mean energy
conservation is carried out by three transport processes. One of them
is due to interaction of mean velocity field in radial direction with
radial derivatives of mean energy Egé) i.e. mean energy advectiom.
Therefore mean energy advection is responsible for transporting the mean
energy in radial direction due to mean flow field. The second transport
term is due to fluctuating velocities. This transport term has two com-

ponents one of which involves radial derivatives of r( Tuv + ﬁuz ) and
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another with axial derivative of ( ﬁ;E_+ Vﬂ;‘). In the core region
radial transport by fluctuating velocities is an order of magnitude
higher than the axial transport. However, in the wall region they are
of the same order of magnitudes. Sign-wise, total transport due to
fluctuating velocities takes out the mean energy (loss of mean energy)
in the core region and it supply the mean energy in the wall region.

The third transport term is transport of mean energy by viscous diffu-

sion which is significant only near the wall.

Figure 6 - 9 shows mean energy balance for two diffuser stations
under consideration. 1In these figures viscous diffusion and direct dis-
sipation are not shown because these two terms are very small in magni-
tude compared to the other terms except very near the wall. Figure 6
and 8 shows pressure work term and source term with other terms of the
mean energy balance for stations 12 and 57 respectively. It is evident
from these figures that other terms are small in magnitude as compared
to source and pressure work. Therefore a net value of source term and
pressure work was obtained and it is shown in figure 7 and 9 for sta-

tions 12 and 57 respectively with other terms.

Turbulent energy production approximately balances the mean energy
advection throughout the cross-section for station 12. However, this is
not true for station 57. For this station Béi/ar is relatively large.
Therefore mean energy advection is more compared to turbulent energy
production. The net term (pressure work + source) does not balances
transport term. By conservation law of energy all terms of mean energy

equation should balance. Taking this into consideration a difference
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term was estimated, which includes the viscous diffusion and direct dis-
sipation. 1If this difference term is added to the net term a mean
energy balance could be obtained. Since net term was obtained as a sum
of two major terms, a deviation of + 10 - 15 Z in each of these terms
could give a net term which is wrong enough to show inbalance in mean

energy budget.

3.3 PRODUCTION

Production represents the phenomenon of taking out energy from the
mean flow field and supplying it to the turbulent field. Production is
the product of each Reynolds stress with its corresponding mean rate of
strain and therefore it represents the rate at which the mean flow does

work on the turbulence.

Production = =[uvd(/dr + uvdV/dx + uzaﬁ/ax + VZBV/Br + w2 ¥/r]

Term UvoUP r denotes the work dome by Reynolds stress (uv) against
the mean strain (36/3r). The maximum wvalue for this term decreases
toward the exit of the diffuser. At station 67 its magnitude is four
times that of its magnitude at station 0 at.Ez = 1.0. The behavior of
wvdl/dr is very similar to that of total production. The radial posi-
tion (gz) at which uvol/0r is maximum is very close to the pipe radius
(Ei=1.0) for all stations. Roughly uv is also maximum at same value of

52 for all stations.
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Different components of production are given in the Table 1 for each

of the three regions. Figures 10~13 show the behavior of total produc~

tion at various stations located in three regions.

+ -— SO, —+
; TABLE 1 l
l l
| Production and its components (Re=58,000) !
l l
+ —+ S S — S RS SV WP RS
| Station | Radial distance | wol | W (v | w25u | V287 | uvov |
| | in em. from CL. | Br | Tl x | Tor | x|
! | l P l o | 2| |
l ] | mZS 3 l m28—3 ] mZS 3 ] mZS 3 I mzs"‘3 l
l | | l l l l l
| | l l l l | l
+ + + + S N N e —+
| [ 2.0 | 106.0 | =6.5 | 25.0 | =6.0 | 0.0 |
l | l | | I | !
| 12 ] 4.5 | 229.0 [-10.3 | 28.0 | =3.7 | 0.0 |
l l l l | | l I
| | 8.5 I 64.0 | =0.7 | -11.0 | 2.6 | -0.1 |
l | i | | l l l
+ + — _— + S S SR +
| ] 2.0 | 29.0 | =3.5 | 15.5 | =2.8 | 0.2 |
| l I l l | | l
| 40 | 5.5 | 271.0 | -8.9 | 36.0 | =4.0 | 1.6 |
| I l l l | l l
| | 6.5 | 140.0 | =4.1 | =57.0 | 16.0 | =0.6 |
l l l l | | | l
N = - e e 4 + —+ +
| | 2.0 | 25.0 |=12.3 | 49,0 | =9.5 1 2.44 |
I l l | l | | |
] 65 I 400 I 11000 l—21°6 l 10205 I "1402 l 1008 l
| | l I l l I |
| | 5.0 | 950.0 |-22.8 | -208.0 | 63.4 | 9.3 |
| | l l l ! I |
+ —t—- - ~+ -t -+ gatats -t +

‘uv dV/dx also represents work done by Reynolds stress against the mean

strain (3V/%x).

In the exit region, in the range 0.0 < 52 < 1.38,
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uvoV/dx is zero because d3V/9x is zero in that range. Whereas, uvoV/ox,
beyond EZ = 1.38 is roughly 0.0l times uvoU/dr for the same radial loca-
tions. But in the intermediate and entry regions, the magnitude of
‘uv dV/3x is higher than in the exit region, even though it is not compar-

able to uvdl/or.

uzaﬁlax is one of the non-vanishing term at the center-line of the
diffuser. Due to this term, the turbulent flow field accepts energy
from the mean flow field in the core region and supply to the mean flow
field in the wall region. In the exit region , this is the second
important term (first being uvol/dr) in the whole production. Whereas
in the intermediate region and roughly up to 61 cm. from the exit it is
approximately of the same order as uvol/or. However, in the 61-67 cen-
timeter range from the exit plane (region where pressure gradient curve
is very steep and linear) this term becomes more important than.G;éﬁ/Br

in the core region.

v28§/2k and WZ(G/r) are of same order of magnitude. Sign-wise,
v28§/ar contributes negatively to the production in the core region,

while in the wall region it contributes positively. But, gziV/r) con-

tributes negatively to the production throughout the cross-section.

3.4 MEAW FLOW CONVECTION

Mean flow convection is also known as advection [ Tennekes and Lumley
(1977) 1. It describe how the mean flow moves the turbulence energy in

the flow field.

-
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Mean flow convection = - [(U/2) 3 q /ox + (
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It will be shown later that Arora’s (1978) data is inaccurate to
estimate mean flow convection in the exit region. Therefore, to esti-
mate this important quantity in the energy balance equation, Okwuobi’s
(1972) study on a diffuser was used. It was particularly necessary to
use Okwuobi’s (1972) data to estimate axial derivatives of turbulent

energy (3q2/8x) in the exit region.

I+ was found that there exist a line [henceforth referred to as the

‘Energy peak line’ (Ep-line)] at about 2° angle to the diffuser axis

where turbulent shear stress (G;), turbulent kinetic energy (qz),and
radial derivative of mean velocity (8U/3r) all attain their same maximum

value. In addition mean velocity U is same .

ﬁaqz/ax has the major contribution to mean flow convection in the
core region but not in the wall layer. In the exit region from the cen-
ter-line to Ep-line this has a negative contribution (loss of turbulent
energy) and beyond that has a positive contribution (gain of turbulent

energy). However, in the intermediate and entry regions maximum of

ﬁaqz /9x occurs roughly at 52 = 0.89, and its behavior is similar to

that in the exit region as mentioned above.

%3q2/3r is a part of mean flow convection which dominates over

ﬁaqz/ax in the wall region. After Ep-line (toward the wall side)

§3q2/3r become negative with a very high value close to wall because
3q2/3r is large in that region. For any radial location, gz, its magni-

tude increases downstream and this phenomenon is also noticed for total

mean flow convection.
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3.5 CONVECTIVE DIFFUSION

This is also known as eddy transport ( Hinze (1975) ). 1In a real
turbulence the motion of the fluid particles are randomly distributed.
This random distribution is such that when two arbitrary fluid particles
move, statistically the distance between them increases with time. If
we consider a number of neighboring particles at one instant and if we
observe the position of wvarious particles at subsequent instants, we
observe . gradual spread throughout the space. This is the basic idea
of diffusion. Taylor (1921) extended the above consideration to the
diffusion in turbulent flows, taking into account continuous movement of
the fluid particles, by considering the path of a marked fluid particle

during its motion through the flow field.

In the turbulent kinetic energy balance this term is counter to mean
flow convection (which represents transport by mean flow field) and it

represents transport by turbulent flow field.

Convective diffusion due to kinetic and pressure effects:

2 —— 2 ——
[-1/2) ([ 3(uq” + 2p°u/p)/3x] + [dr(vq” + 2p°v/P)/rorl)
Convective diffusion may be divided into two parts.
1. Convective diffusion due to kinetic effects.

2. Convective diffusion due to pressure effects.
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In the present study convective diffusion due to kinetic effects is
estimated from measured triple velocity correlations. Convective diffu-
sion due to pressure effects, which is a result of pressure-velocity
correlation, was estimated as a closing term of the turbulent kinetic

energy balance equatiom.

Convective diffusion due to kinetic effects has two components one of

. . . . 2 :
which involves the radial derivatives of rvq , and a second part which
; . . . 2
is associated with axial derivatives of uq” . Most researchers, neglect
the axial derivative component of convective diffusion. It was found

during the present study that B(rqu)/ar is an order of magnitude
greater than NQ;§§/ax throughout the diffuser. Convective diffusion
due to kinetic effects given in this study consists of both radial and
axial components. In the core region B(régi)/rar and 8(#;7)/8x both
increases downstream for the same radial locations. Maximum value of
total convective diffusion due to kinetic effects, however, increases
upstream of the diffuser exit plane. At any cross~section. the integral
value of convective diffusion due to kinetic effects for exit region is

same, within the experimental errors. But in intermediate and entry

regions its value is negligible.

Total transfer term can be estimated, from the law of conservation of

energy, by the expression
Production + Mean Flow Convection + Dissipation + Total Transfer = 0

By subtracting convective diffusion due to kinetic effects from the

total transfer term, convective diffusion due to pressure effects term
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can be obtained, which will also include viscous work. However viscous
work is small throughout the cross-section except close to the wall.
Therefore this estimation will be alright except in the wall region. 1In
the exit region, convective diffusion due to pressure effects is almost
negligible Whereas in the entry region, because of high pressure gra-
dient, its magnitude is higher than the kinetic diffusion and it domi-

nates total transport term.

3.6 DISSIPATION

It can be interpreted as the mean rate at which the turbulence does
work against viscous stresses. If a body is placed in a turbulent boun-
dary layer, the work done by the friction drag of the body, is converted

into heat by wviscous dissipation.

For high Reynolds number, the small eddies are not correlated with
large ones which implies the motion of small eddies is isotropic. The
later means that the fine structure is invariant under rotation of the
axes of the reference. This was first suggested by Komogoroff (1962)
who introduced the concept of 1local isotropic turbulence. Prandtl
(1942), V. Weizsacker (1948) and Onsager (1945) came independently to
the same conclusion. When the motion of the part of the turbulence that
is responsible for the viscous dissipation is isotropic, the turbulent
energy dissipation can be simplified. Using the continﬁity equation and
the concept of isotropy the following relation could be obtained,

details of which are given by Hinze (1975).

e =15 ( u2/ x)2
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Hence, for a homogenous turbulence, viscous dissipation per unit of
mass 1is equal to the viscosity times the mean-square of the rate of

strain or to the viscosity times the mean square vorticity.

Similar to the pipe flow, dissipation is of the same order of magni-
tude as production in diffuser flow. This is one of the important term
of turbulent energy balance which is non-vanishing at the wall according
to the boundary conditions mentioned in chapter 2. TFor the present
study, dissipation has been calculated assuming isotropy is wvalid
throughout the cross-section. In the entry region dissipation become
very high near the wall. But in the intermediate region this is not
true, rather it is almost constant after attaining a maximum wvalue.
However, in the exit region, after achieving a maximum value, its magni-
tude starts decreasing even in the wall layer. Because of the diffuser
geometry wall layer expands in the downstream direction. As a result,
dissipation distributes more evenly at any cross-section in the exit
region after achieving a maximum value. TFigure 10-13 shows the behavior

of dissipation in three different regions of the diffuser.

In the core region, its wvalue increases from its center line dissipa-
tion value. But the peak value starts shifting away from the wall in

the downstream.

3.7 TURBULENT KINETIC ENERGY

Figure 14 shows distribution of cross-sectional average values of
turbulent kinetic energy in the pipe and diffuser. Pipe data was taken

from Laufer’s (1954) study on a fully developed pipe flow. Turbulent
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o ~72, . 2
kinetic energy (q”) was plotted against area (r~) for all twelve sta-
tions and for the pipe. After measuring the area under the curve, with

the help of a planimeter, net kinetic energy was divided by RZO and an

average balue was obtained. This average kinetic energy was non-dimen-

2
b

dent from this Figure, there is an dincrease in average turbulent

sionalised by U (18.32 ms_l) and plotted in figure 1l4. As it is evi-
kinetic energy from entry to up to roughly 28 centimeters from the exit
beyond which it attains a definite value asymptotically. Hence, there
is a correlation between the pressure recovery process and the kinetic
energy. When the air enters the diffuser it contains certain amount of
energy consisting of kinetic and pressure energy components. But due to
pressure recovery process, more and more kinetic energy is converted
into the pressure energy in diffuser’s entry and intermediate regions,
where pressure gradient curve (fig. 5) has a large slope. But in the
final region the process of pressure recovery relaxes and pressure gra-
dient curve is linear with a small slope. Although there is a rise in
the net value of kinetic energy in the exit region but because area of
the diffuser is also increasing in the downstream the average wvalue is

same within experimental errors.

3.8 CONSEQUENCES OF THE PRESENT STUDY

After careful review of turbulent energy balance, term by term, a
general picture to the turbulent energy balance can be given for a flow
subjected to adverse pressure gradient. In the present study, all
terms of the energy balance has been weighted by area at each station

and a mean value at each of these locations has been obtained. It is
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hoped, that it will clarify any doubts and will help readers to visual-

ize a more clear physical picture.

For the above mentioned reason, every term of the turbulent kinetic
energy balance was'plotted against square of radial distance. Such a
typical plot is shown in Figure 15 for station 12. After measuring
area, with the help of a planimeter, under each term of the turbulent
energy balance an average value of them was calculated by dividing total

area under the curve to the local area (square of local radius).

Figure 16 shows axial plot of average turbulent energy balance terms
for all twelve axial stations and pipe. From figure 16 it is evident
that in the diffuser, production is balanced by dissipation in the
region where average kinetic energy is the same (exit region). However
s in those regions where average turbulent kinetic energy is increasiﬁg
and pressure gradient curve have a large magnitude of slope (entry and
intermediate regions) average production is more than the average dissi-
pation. Similarly, average mean flow convection is more than the aver-
age total transfer in entry and intermediate regions; whereas average
mean flow convection balances the average total transfer in the exit

region.

In a fully developed pipe flow, mean flow convection is zero, produc-
tion balances dissipation , and total transfer term balances the viscous
gradient diffusion as shown in Figure 16 (corresponding to station 75).
Although diffuser’s length is 72 cms., a recent study has shown that at
station 72 mean radial velocity (V) exist. But, in a fully developed
pipe flow mean radial velocity (V) should be zero. Therefore station 75

was choosen to represent pipe flow conditions.
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In Figure 16 components of turbulent kinetic energy balance are shown

by their respective symbols for the diffuser flow and pipe. Since pres-
sure diffusion term is calculated as the closing term of the energy
equation, its unexpected value in the exit region of the diffuser may be
due to the experimental errors associated with other terms of the turbu-
lent kinetic energy balance. Figure 17 shows trend lines of the turbu-

lent kinetic energy budget terms in diffuser and pipe.

Locally in the intermediate and entry regions, roughly, production
balances the dissipation and mean flow convection balances the convec-
tive diffusion due to pressure kinetic effects in the core region. How-
ever, in the wall region, production does not balances the dissipation
exactly. Therefore the excess of turbulent energy drained is balanced
by the mean flow convection and convective diffusion due to pressure
effects. In the exit region production and dissipation have more dif-
fernce, locally, than other two regions. Mean flow convection is posi-
tive (gain of turbulent energy) wherever dissipation exceeds production
and negative (loss of turbulent energy) wherever production is more than

the dissipation except in the 0.0< gz < 0.2 range.

3.9 PREVIOUS DIFFUSER WORK AT U OF M VS. PRESENT STUDY

The present study is a re~evaluation of Arora‘s (1978) data. Arora
took measurements for mean static pressure, mean velocity, various
moments up to 4th order, and the first and second derivatives of u’ sig-
nal for pipe Reynolds number of 58,000 based on the pipe average veloc-
ity and the pipe radius. The conical diffuser was machined from cast

aluminum and air was blown through an 89:1 contraction cone and 74 diam-
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eters long steel pipe of 10.16 inside diameter before entering the
diffuser. His experimental measurement were corrected by applying Guit-
ton’s (1974) corrections to hot-wire measurements,. The turbulent and
mean energy balance were analysed based upon physical interpretation of
each and every term involved. There was good agreement with Arora’s
(1978) representation of production, dissipation and convective diffu-

sion due to kinetic effects in the turbulent kinetic energy balance.
But Arora’s (1978) work definitely had two defects:

1. Wrong estimation of mean flow convection in the exit region of

the diffuser

2. Sign-wise wrong presentation of the mean flow convection for
all diffuser stations. Arora plotted mean flow convection

with the wrong sign.

As mentioned in section 3.4 mean flow convection has two parts, and

one of them contains axial derivatives of turbulent velocity {;5). The
most delicate part of the exercise was to get consistent axial deriva-
tive. Arora’s turbulent kinetic energy (qz) profiles, while plotted
axially for different radial positions can be divided into three sec-
tions approximately corresponding to entry, intermediate and exit
regions. In the intermediate region turbulent kinetic energy {;5) pro-
files are not linear, and he had only two stations between 24 and 50
centimeters from the exit palne. Axial derivatives of kinetic energy,
in the exit region, does not match with other two regions. Therefore

author used Okwuobi’s (1972) data to estimate qu/Bx in the exit region

only.
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Sign-wise representation of mean flow convection was wrong in Arora’s
work. He plotted mean flow convection, for all diffuser statioms, in
opposite sign. The argument is convective diffusion due to pressure
effects, calculated as a closing term, comes to be very large even for
some stations it is more than production as given by Arora (1978). Phy-
sically convective diffusion due to pressure effects, in the region
where pressure gradient is not large in magnitude, should be very small
as compared to other terms and its integrated value should be zero.
But, in regions with large magnitude of pressure gradient, convective
diffusion due to pressure effects is an important quantity in turbulent

energy balance.

Figure 18 and Figure 19 shows how does wrong axial derivatives of
turbulent kinetic energy can change mean flow convection term in turbu-
lent energy balance. Mean flow convection as estimated from Arora’s
(1978) data, is shown in Figure 18 (for station 12) along with other
terms of turbulent energy balance. Assuming that, the convective diffu-
sion 1is only due to kinetic effects, author estimates (as a closing
term) dissipation term and is shown along with measured dissipation. A
large difference, between measured dissipation and dissipation by dif-
ference, indicates there is some error with energy balance terms.
Therefore, author re-estimated mean flow convection using Okwuobi’s
(1972) data. Taking axial mean velocity (ﬁ), radial mean velocity (V),

radial derivatives of turbulent kinetic energy G)qzﬁBr) from Arora’s
- 2
(1978) data and axial derivatives of turbulent kinetic energy (3q /0x)

from Okwuobi’s (1972) data, mean flow convection was re-estimated. It

is shown in Figure 19 (for station 12) along with other terms of turbu-
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lent energy balance (similar to Figure 18). Again under the same
assumptions, shown in Figure 19, dissipation from measurements and dis-
sipation as a difference term was estimated. From Figure 18 and Figure
19 it is evident that mean flow convection as given in Figure 19 is more
reliable than given in Figure 18 also it agrees with Bradshaw (1967) and

Shishov et al. (1978) representations, qualtatively.

Okwuobi (1972) also studied turbulent energy balance in a diffuser,
details of which are given in Okwuobi (1972). The following basic disa-
greement were found with Okwuobi and Azad (1973) regarding conclusions

about the turbulent energy balance.

1. They claimed in the regions 0.8 < Eﬁ < 1.0 that dissipation is
balanced by mean flow convection; but it has been proved by
the present study that there is no region in the diffuser
where dissipation is balanced by mean flow convection. The
possible source for this biased interpretation is wrong esti-
mation of mean flow convection. As pointed-out by Arora
(1978) they subtracted the two components of mean flow convec-—

tions i.e. 63q2/3x and Vaqz/ar instead of adding them.

2. Their conclusion, was that in the 0.2 < 52 < 0.8 region, pro-
duction of turbulent energy is balanced by the total convec-
tive diffusion Truly the picture which emerges, in 0.2 < gz
<0.8 range, is that production roughly balances the dissipa-
tion locally. However excess of production energy present in
that region is convected by mean flow convection and turbulent

diffusion. The possible cause of this wrong interpretation,
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could be their method of evaluating energy balance, where they
estimate convective diffusion term as a closing term of turbu-
lent energy balance. So any error in other energy term, as
they did in estimating mean flow convection, will give a wrong

convective diffusion (closing term).

3. Their interpretation that dissipation is negligible in dif-
fuser is far away from the actual physical picture. For any
shear flow, dissipation of turbulent kinetic energy is as
important as the production of turbulent kinetic energy. It

was also noticed by Arora (1978).

3.10 COMPARISION OF THE PRESENT STUDY WITH THE BOUNDARY LAYER RESULTS

After studying the turbulent energy balance in a diffuser it can be
concluded that diffuser flow is similar to other wall bounded flows
Azad and Hummel (1979). 1In a nutshell, a general picture of turbulent
energy balance emerges (on integral-area scheme) where production is
balanced by dissipation and mean flow convection is balanced by turbu-
lent transport term. The present work was compared with two other publ-
ished boundary layer works namely ‘Experimental investigation of the
turbulent kinetic energy balance in the retarded boundary layer’ by Shi-
shov et al.(1978) and ‘The turbulent structure of equilibrium boundary
layers” by Bradshaw (1967). 1In order to compare the present results
with the other two similar flows, the turbulent energy balance for sta-
tion 12 was non-dimensionalised by local radius at station 12 and mean
center-line velocity in order to put them (more or less) on the same

basis as the other two flows.




34

Figure 20 shows the results at Shishov et al.(1978) (retarded boun~
dary layer) and the diffuser results of station 12. Similarly, Brad-
shaw’s (1967) study of a turbulent boundary layer and the station 12
results are plotted in Figure 21. From these figures it is evident that
the non-dimensionalised turbulent energy balances for a two-dimensional
boundary layer with adverse pressure gradient and the axi-symmetric dif-
fuser flow do not show the same behavior. Therefore as a second excer-
cise, Shishov et al.(1978) and Bradshaw’s (1967) result of a turbulent
boundary layer were plotted on figure 22. Again different non-dimen-
sionalised turbulent energy terms are not identical although they are
related to the same type of flow. Therefore, it can be concluded from
this excercise that it is difficult to compare turbulent kinetic energy
balance, quantitatively, studied by different researchers. As a result
this section will deal only qualitative comparision of the turbulent
kinetic energy balance in the diffuser and boundary layer with an

adverse pressure gradient.

Shishov et al.(1978) studied a retarded equilibrium boundary layer at

one axial station. The mean velocity variation, within the boundary

layer, 1s govern by the law U0 ux_o 255, and the boundary layer thick-

.8
5ax0 51, where x is axial distance. Bradshaw did a

ness (§) varied as
more detailed study of the equilibrium turbulent boundary layer. In his
study, he consider three boundary layers; one with a constant free
stream velocity and two with power-law variation of free stream velocity
giving a ‘moderate’ and ‘strong’ adverse pressure gradients. Value of

constant “a’ in the expression Tox? , were 0.00, -0.15 and ~0.255 for

constant free stream velocity, moderate and strong adverse pressure gra-
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dients respectively. Similar, to Shishov et al.(1978) and Bradshaw
(1967), the author tried to find a relation between the mean velocity
and axial distance. The center-line mean velocity, UO’ was plotted on a
log~linear graph for 0,6,12,18 and 24 stations. The exponent constant

I'd 4

a® in the relation Ub<xxa is the gradient of this plot. The calcu-
lated constant found to be -0.33. Hence, UO ux_o 33, is the governing
law for mean velocity in the equilibrium region (0 to 24 centimeters
from exit plane). So, diffuser flow has more severe adverse pressure

gradient than Bradshaw’s (1967) flow (which has exponential constant ‘a

of =~0.255).

In the present study an equilibrium flow was observed in the exit
region of the diffuser, roughly 0-24 centimeters from the exit. This
was proved by observing behavior of turbulent quantities. Figure 23
shows fluctuating kinetic energy (;E_) divided by maximum value of fluc~
tuating kinetic energy, plotted against distance from the wall divided
by M, where M is the distance from the wall where ;Eiax occur. Figure 24
shows turbulent shear stress uv divided by (G;)max plotted against dis-
tance from the wall divided by M, where M is distance from the wall
where (G;)max take place. The collapsing of these two quantities on
the same curve at different stations indicates that there exist a simil-
iarity of the flow for those stations. The flow field is homogenous and
in equilibrium. Curves of G§7(E€%@x do not collapse exactly in the
center core, as shown in Figure 24, but this is thought due to experi=-
mental errors. If there this behavior were true, the author would
expect a similar character to be shown in other quantities as well. For

example, there is no such pecularity shown by turbulent energy (q2) in
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Figure 23. Because of this reason a mean turbulent kinetic energy
balance, as shown in Figure 20 and 21, at station 12 was taken as a

representative picture of equilibrium region.

3.10.1 Shishov et al.’s (1978) Study vs. Present Study

The turbulent energy balance is given by the expression from their
work as:

i qu/ax + T 3g%/or = -uv 30/3y - 9 [ 5\7/p+v~c;2]/8y + €

On the basis of above turbulent kinetic energy balance the following

points can be made.

1. They approximated total turbulent production by uwwoU/or,

neglecting the rest of the terms as given in equation (3.3A).

2. Convective diffusion, as given by equation (3.5A) , has been
approximated to o[ pv/p + qu 18y, which means they have

neglected axial-derivative component of convective diffusion

due to kinetic and pressure effects.

Figure 25 and 26 shows their approximations for turbulent energy (q2)

and triple velocity correlations

q2 = 3/2 ( u? + v2 ) and qu = 3/2 ( uzv + v3 )

respectively.
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For the present study, these two approximations are also valid not
only in the equilibrium flow region of the diffuser (as shown by station
12 in both Figures 25 and 26), but also near the entry region of the
diffuser as shown by station 57. The important implications of these

. . . ; 2 .
approximations are, in future experimental work, to estimate q“ approxi-

2 2 -
mately, only u” and v measurements are necessary. A similar approxima-

tion is true for triple velocity correlations (qu). Therefore only one

set-up is required to measure q2 and qu. In triple velocity correla-

tions the, sz term is very diffcult to measure.

From Figure 20, it can be concluded that different terms of turbu-
lent kinetic energy balance in a diffuser are similar, qualitatively, to
those of adverse pressure gradient boundary layer type of flow. How-
ever, Shishov et al. (1978) work does not agree very well with 0.75 < EB
< 1.0 region of diffuser. The possible reason for which could be the
flow studied by Shishov et al. (1978) may be of intermittent type. That
means flow is sometime turbulent and sometime it is non-turbulent.
Another region of disagreement, between the present study and Shishov et
al. (1978) result, was close to the wall where present data itself is
doubtful to make any firm decision about any quantity of turbulent

energy balance.

Shishov et al. (1978) have sho&n that production of turbulent energy
increases close to the wall. This interpretation may be based on their
supposition that just outside the sublayer production of turbulent
energy is high. However, radial locations where production is maximum,
take place roughly at the same place for both diffuser flow and boundary

layer flow. They approximate total mean flow convection by
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T3q%/8x + ¥8q?/or = 2 a*0/Uy ) dU/dx - [ dUg/Ujdx

+ 0.851/x ] dq2 [ Ofl Udy 1 /dy
and they claim that the above expression represents mean flow convection
more close to its experimental determination. But when the author tried
to calculate mean flow convection on the basis of above expression, mean
flow convection was completely in disagreement with the actual estimated
value of mean flow convection. It could have been better, if Shishov et
al. (1978) given some more explaination about their mean flow convec=—
tion expression. Mean flow convection as given in Figure 20, is in
agreement with mean flow convection of Shishov et al. (1978) boundary
layer flow. But the maximum of mean flow convection does not take place
at the same location for two flows. Both of them show mean flow trans-
port to the turbulent flow in wall region and mean flow transport from
the turbulent flow in the center core. Convective diffusion, for dif-
fuser flow and boundary flow with adverse pressure gradient, are roughly
in agreement, qualitatively, except when 0.85 < EB and in the region
very close to the wall. Shishov et al.”s (1978) convective diffusion
approach to a negligible value at the edge of the boundary layer. But
in the case of diffuser flow, there is a definite wvalue at the center
line of the diffuser with its magnitude equal to the sum of dissipation
and mean flow convection. Physically. that means total transport due to
mean and turbulent flow is equal to dissipation at the center-line of
the diffuser. Dissipation behavior for both flows is similar to each-
other, also the position of maximum dissipation is roughly at the same

radial locations for both the flows.
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Shishov et al. (1978) are well satisfied with the reliability of tur-
bulent energy balance 0.0 < g3 < 0.6 range. Beyond that, as they have
accepted, their results are doubtful and as a result they get a large
difference term in that region. The reason for large difference term
could be the flow is of intermittent type or it may be the result of

neglecting different components of turbulent energy balance terms.

3.10.2 Bradshaw’s (1967) Results vs. Present Study

Production and mean flow convection for two-dimensional boundary
layer flow and axi-symmetry diffuser flow are qualitatively similar to a
certain extent as shown in Figure 21. The maxima of production and mean
flow convection take place approximately at the same radial distance
from the wall. Bradshaw estimates the dissipation term of the turbulent
energy balance as a closing term. Therefore dissipation as given by
Bradshaw may have errors since possible errors can occur in any of the
other term of energy balance. Since Bradshaw claims, that for a boun-
dary layer flow, diffusion term should integrate to a zero value. But
his diffusion term doesn’t integrate to a zero value that implies his
diffusion term is not so accurate to estimate any other unmeasured quan-—
tity in turbulent energy balance by difference. Bradshaw calculate dif-

fusion term, by just taking into account radial derivative of vq2 and
neglecting axial derivative of uqze He may be right in doing so,
because axial derivative component does not play an important role in

total convective diffusion. Over all, sign-wise, convective diffusion

in a diffuser and boundary flow are in agreement.
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Unlike diffuser flow, in a boundary layer flow, dissipation is zero
wherever shear stress is zero and so the total production[ﬁ?aﬁ/ar, as
given by Bradshaw (1967)]. This happens at the edge of the boundary
layer. Therefore it results,at the edge of a boundary layer, mean flow
convection equal to convective diffusion. In a diffuser flow it is not
necessary that dissipation be zero if production is zero. Hence at the
center line of the diffuser mean flow convection is equal to the dissi-

pation plus convective diffusion.

3.11 COMPARISION OF THE PRESENT STUDY WITH RUETENIK ET AL.(1955)

RESULTS
Ruetenik and Corrsin (1955) were probably the first to measure turbu-
lence data for diffusers, and to report the turbulent kinetic energy
balance for a diffuser. They investigated turbulence intensities for

fully developed, plane diffuser flow at a divergence half-angle of 1°,

According to their study, in a plane diffuser mean flow convection is
almost constant with its contribution to the turbulent flow field (gain
of turbulent energy). However, according to the present study mean flow
convection does changes sign with its contribution to the turbulent flow
field (gain of turbulent energy) and the mean flow field (loss of turbu-
lent energy) in the wall and core regions respectively. Their conclu-
sion that production balances dissipation, integrally at a cross-section
area, was found to be valid for the present study of axi-symmetry dif-
fuser flow. They indicated dissipation and viscous work are zero at the
wall of the diffuser, was completely in disagreement to the present

results and the boundary condition discussed in section 2.3.



Chapter IV

CONCLUSION

After rigorous study of the turbulent and mean kinetic energy balance
for adverse pressure gradient type of flows the following conclusions

can be drawn for the energy balance in a diffuser.

l. Diffuser flow can be divided into three regions, axially, on

the basis of pressure gradient and kinetic energy.

a) An entry region roughly from 72 to 48 centimeters from the
exit, with turbulent energy terms having the same average
value (when integrated at a cross-sectional area). The
pressure gradient curve is approximately linear and has a
large slope, while the kinetic energy is increasing very

rapidly from its pipe average value.

b) Intermediate region roughly from 48 to 28 centimeters from
the exit. Pressure gradient curve in this region is not
linear and rate of average kinetic energy increase is less

as compared of its rate in the entry region.

¢) Third region, which is known as exit region, extends
roughly from 28 centimeters from exit to the exit plane.
Pressure gradient in this region is linear with compara-
tively very small slope than in the other two regions, and

the average kinetic energy is constant.
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Similarly, at any station, the diffuser can be divided into

two regions radially.

a) Core region, which can be considered to be equivalent to
the extension of pipe with expansion in the downstream

direction.

b) Wall layer, a region which lies close to the wall and
expands toward the diffuser exit; a very important and

challenging region to study turbulence.

There exist a line in the diffuser, at about 2° to the dif-
fuser axis where mean velocity (U) has the same value for all
stations, are turbulent shear stress (pﬁ§3 and turbulent

kinetic energy (q2) attains maximum and the same value.

We can pointout the difference in the final condition (given
by station 0) of turbulence and entry conditions (as given by
station 75) for a flow subjected to adverse pressure gradient.
Production and dissipation in both the cases balances each
other and are of same order of magnitudes. In negative pres-
sure gradient i.e. fully developed pipe flow gradient diffu-
sion balances total transfer. Whereas in adverse pressure
gradient flow i.e. in exit region of the diffuser the mean

flow convection is balanced by kinetic diffusion.

Due to the imbalance of the production and dissipation in the
entry and intermediate regions, as mentioned above, mean flow

convection should exceed total transfer in accordance with
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conservation law of energy and this is true for the present
study. But in the exit region mean flow convection exactly

balances total transfer.

Mean flow convection is the complement of the total transfer
term, which consists of convective diffusion due to kinetic
and pressure effects. But this comparision can be divided

into two parts.

a) In the entry and intermediate regions, convective diffusion
due to pressure effects is more important. Because the
fluid in the entry region undergoes a severe adverse pres-
sure gradient process, this results in convective diffusion
due to pressure effects being larger than the kinetic

effect part.

b) After the intermediate region, the flow becomes an equili-
brium and homogenous flow in the exit region. Here mean
flow convection is sizable and is balanced by the convec-

tive diffusion due to kinetic effects.
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Chapter V

RECOMMENDATIONS

With the conclusion of this study, now we understand physically the
meaning of turbulent kinetic energy balance and relation among all quan-
tities involved. This work in itself is complete to study turbulent
kinetic energy balance, qualatively, and to make any interpretation
based on that. However, the author feels it will be helpful to carry
out future work according to the following guidelines in order to under-

stand turbulent and mean kinetic energy mechanism quantitatively.

1. A thorough study is needed from Ep-line to the wall region.
Therefore more measurements, precisely done, are needed in

that region.

2. More axial stations should be examined in order to improve
axial gradients for the turbulent and mean kinetic energy

balance-

3. While taking measurements, the experimentalist should keep in
mind that it is necessary to obtain the correct axial and
radial derivatives from the data. Therefore measurements done
on different days should be repeated as required to provide

continuity of the data.

-4l -



Effort should be make to measure all the terms of the dissipa-

tion.

Turbulent kinetic energy (q2) should be measured in the wall
layer, and from this viscous work (involving double deriva-
tives of turbulent kinetic energy) should be estimated quanti-

tatively.
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Appendix A

ERERGY EQUATION DERIVATIOR e

Let U,V and W be the velocity components in the direction of the three cylindrical
co-ordinates x,r and z. The Navier-Stokes equation for constant properties £luid

flow in cylindrical polar co-ordinates is given by:

30 30 WU 30 e 3% 15 Fu 1w

T Vem b ek Uom = e e by [ 4 pes s+ =] (A0D)
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By defining V° as:
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9 x 9r T oz ror

substituting for Vz in the above three equations yields:
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For steady flow, all the time-derivative quantities in the above equations (A.5),
(A.6) and (A.7) will be zero i.e.

3u v 3w
- ® e = em = 0 (A.8)
ot at 2t

Substituting these values in the above equations (A.5), (A.6) and (A.7) the Navi-
er-Stokes equations, for a steady flow, become:
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The continuity equation in cylindrical co-ordinate is

0 vV Dw v
—t et = = 0 (A.12)
8 dr r= b o
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Multiplying equations (4.9), (A.10) and (A.11) by 20U, 2V and 2¥W respectively and
using continuity equation (4.12) gives-

awd  wPv vt o 2P 20?2 w? iw?
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Adding equations (A.13), (A.14) and (A.15) and introducing co-ordinates x=x, r=r
and rz=z, gives:

13 2 2P oP
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0z ax & 2z T r 2z 3z

Decomposing the instantaneous quantaties into mean and fluctuating parts.

U=0+u; Ve V4 v =W+ w;, P=P<+p (A.17)

The prime (°) over the fluctuating parts are not shown in the following text
(Appendix A). However prime was retained over the fluctuating pressure, p, in order
to avoid any confusion between P and p. Introducing (A.17) into equations (A.13),
(A.14) and (A.15); averaging and adding them. results in the total energy equation:
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Mean momentum equation for steady flow of an incompressible fluid without a body
force in cylindrical co-ordinate is given by

- - - - -
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Multiplying equations (A.19), (2.20) and (A.21) by 20U, 2V and 2V then using con-
tinuity equations, gives:
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By adding equations (A.19), (A.20) and (A.21) the following mean energy equation
is8 obtained:
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Subtracting equation (A.25) from the equation (A.18) the turbulent kinetic energy
equation results
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Re-arranging equation (A.26) and dividing both sides by 2, gives
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For axi-symmetry flow

From equation (A.25) the mean energy equation for a steady axi-symmetry
incompressible fluid flow without a body force is given by
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Using continuity equation, (A.12), equation (A.28) can be written as:
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From equation (A.27) the turbulent kinetic energy equation for a steady axi-symme-
try flov may be written as:

13 - 13 - 1

——[0 + v2 + uD)] + (EV(u® + v2 4 89)] + —[u(u> 4 v2 4 )] +
Bx 23T Dx
1,y W L, v AU w1 13
[tv(e™ + v 4+ & )] 4 0o ¢ v ¢ Wy (o= & ==) 4 Vo ¢ «[Ee(pu) + ——=(rpV)]
21 ox or dx ot T p 9x o1
du 2 8u du 2 v 2 v 2 3v o 2
-v2~(u + V240D FVI(=) + (=) 4 (=) & (=) & (=) + (=) + (=)
ox T 2z ox ar 3z ax
ow 2 2 v
(=) + (-) 1+ 'E(" tu?) - 6%w—) = 0 (A.30)
2T a3z ¥ 92

Oeing the continuity equation, (A.12), equatien (A-30) can be writtem as:

03 2 2 A7) 2 13 2
—ea(y” & v é@)q‘-—»(u ¢ v @w)‘@--—-[u(u + 5 éw)]«a—
2% 2 20x
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1 s "2 3 v v 3V U —v" 1 13
[ev(e? 4+ v& ¢ €9)] 4 u'mm 4 v == ¢ W(— ¢ =) % V== + =[E(pu) + —=(rpV)]
2z or 8= ar 9z 8r b4 pox 0T
2 2 2 2 2
3u gu 3V av av 3v

NP S au
- (0 v 4w ) +yl(==) ¢ (=) % (=) 4 (==) 4+ (=) & (==) + (--)
2 ax or oz ax or Sz ax

2 2 .
/v 3w v, 2 » v v
(=) + (=) ]+ 50" +¥) = bo(u-=) = O (A.3D)
or sz T ¥ 38z
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Figure 5: Mean static pressure and pressure gradient distribution
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Figure 12: Turbulent kinetic energy balance at station 50
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