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Abstract 

 

This thesis outlines a novel approach to make ill-posed inverse source problem well-

posed exploiting inhomogeneous media. More precisely, we use Maxwell fish-eye lens to 

make scattered field emanating from distinct regions of an object of interest more di-

rective and concentrated onto distinct regions of observation. The object of interest in this 

thesis is a thin slab placed conformally to the Maxwell fish-eye lens. Focused Green’s 

function of the background medium results in diagonal dominance of the matrix to be in-

verted for inverse problem solution. Hence, the problem becomes well-posed. We have 

studied one-dimensional variation of a very thin dielectric slab of interest having confor-

mal shape to the lens. This method has been tested solving the forward problem using 

both Mie series and using COMSOL. 

 

Most common techniques for solving inverse problem are full non-linear inversion 

techniques, such as: distorted Born iterative method (DBIM) and contrast source inver-

sion (CSI). DBIM needs to be regularized at every iteration. In some cases, it converges 

to a solution, and, in some cases, it does not. Diffraction tomography does not utilize reg-

ularization. It is a technique under Born approximation. It eliminates ill-posedness, but it 

works only for small contrast. Our proposed method works for high contrast and also 

provides well-posedness. 
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In this thesis, our objective is to demonstrate inverse source problem and inverse scat-

tering problem are not inherently ill-posed. They are ill-posed because conventional tech-

niques usually use homogeneous or non-focusing background medium. These mediums 

do not support separation of scattered field. Utilization of background medium for scat-

tered field separation casts the inverse problem in well-posed form.  
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Chapter 1 

Introduction 

Objective of this thesis is to obtain well-posed inverse problem solution using focused 

background medium. When time-harmonic field is incident on an object of interest, in-

verse problem solution provides permittivity variation within the object. This reconstruc-

tion of material properties is based on the information about the scattered field collected 

at certain observation locations. The problem of object reconstruction from its scattering 

characteristics has important applications in geoscience, medicine, security, and many 

other areas [1]. This process has different names in different disciplines. As such, it is 

commonly referred to in medicine as “non-invasive technique”, in manufacturing and 

materials science as “non-destructive testing and evaluation” and in earth science as “ge-

ophysical exploration” or “remote sensing” [4]. 

 

Inverse problem is typically cast in the form of Fredholm first kind integral equation 

[1]. In this equation, the domain and range of integral operator do not coincide. In other 

words the locations where the scattered field is observed are not allowed to be inside the 
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imaged object. In the cases when the imaging experiment is staged in a homogeneous 

medium the pertinent first kind integral equation constitutes ill-posedness in the sense of 

Hadamard [13] due to violation of the stability condition. That is, the small errors in data 

may result in greatly increased error in the solution. The ill-posedness is commonly treat-

ed through regularization [8]. In regularization, typically a constant term is added to the 

integral operator. The resulting regularized second kind integral equation becomes well-

posed, but looses its equivalence to the Maxwell’s equations because of the artificial ad-

dition of the regularizing constant term. With a judicious choice of the regularization pa-

rameter the errors in the solution due to numerical instability and lack of equivalence to 

Maxwell Equations can be balanced. This error balancing technique is foundational in 

most schemes for solution of the inverse problem including the regularized least squares 

method and distorted Born iterative method (aka Gauss-Newton inversion method) [8].  

 

In what follows we overview some of the most common techniques which can be 

used for numerical solution of the inverse problem and put the technique developed in 

this thesis in the context of prior art.  

 

We start our overview from the Minimum Norm solution (MNS). The MNS con-

structs the sought image in terms of such functions that are guaranteed not to include any 

contribution from the null-space of the pertinent integral operator in the formulation of 

the inverse problem [16]. Since the MNS by definition does not allow for the null space 

contributions to be present it spares the solution from having unphysical contributions 

with unconstrained magnitudes. However, when the MNS method forms a system of lin-
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ear algebraic equations with respect to the coefficients of the functions expanding the so-

lution the resultant matrix equation is often in itself is ill-posed due to ill-conditioning of 

its matrix. As a result, the coefficients of expansion of the sought solution may acquire 

contributions from the matrix operator null-space. Thus, MNS representation of the solu-

tion in terms of functions orthogonal to the null-space of the continuous operator of the 

integral equation does not guarantee an accurate solution. In practice the MNS method 

results in reconstruction of contrast sources with relatively poor quality. 

 

Another technique allowing for numerical solution of the inverse problem is the Reg-

ularized Least Squares (RLS) method. This method introduces a regularization term that 

adds diagonal component to the originally ill-conditioned matrix resulting from discreti-

zation of the pertinent ill-posed integral equation. The size of the added diagonal term is 

chosen through the balancing of the error resulting from the ill-conditioning and the error 

caused by deviation of the solution from the solution of Maxwell Equations. The balance 

is achieved by plotting the errors due to both of the above mechanisms as functions of the 

regularization parameter (weight of the added diagonal term) and finding its optimal val-

ue balancing the two errors. The method is commonly called ‘L-curve’ due to the shape 

of the dependence in the two error terms as a function of regularization parameter. The 

solution resulting from the balancing of the errors is termed as the regularized least-

squares solution [4], [17]. In practice, regularized least squares solution is close to mini-

mum norm solution and has a similar quality. Permittivity reconstructed using the MNS 

and RLS methods is typically not as accurate as the one obtained by full non-linear inver-
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sion methods such as the Distorted Born Iterative Method (DBIM) and Contrast Source 

Inversion (CSI) method. 

 

Alternative technique to the solution of the inverse problem is the Diffraction Tomog-

raphy method. The method relies on the Born approximation and can cast the inverse 

problem into the form of a perfectly well-conditioned matrix equation with diagonal ma-

trix. The problem with this method is it works only for lower contrasts between the object 

of interest and the background medium required by the Born approximation. The descrip-

tion of the method can be found in [18] and [19]. It’s important to note here that when the 

field within the object of interest is similar to incident field, and the Born approximation 

applies, this method is the method of choice for the solution of the inverse problem. The 

reason is that this method reconstructs the object with controlled precision limited only 

by the frequency at which the imaging experiment is conducted. This allows obtaining 

high-quality image reconstruction by simply increasing the frequency to the level that the 

level of desired imaged details is comparable to the wavelength of the interrogating field.  

 

When the Born approximation does not hold and the field inside the object is not 

close to the interrogating field the reconstruction of the object property can be done using 

Extended Born approximation approach. The method makes an additional modification to 

the field inside the object by projecting the incident field onto a scattering function. This 

scattering function is constructed under assumption that the total field within the object of 

interest varies smoothly. If this is indeed the case, this method allows us to get one step 

beyond Born approximation in quality of object reconstruction. The requirement of 
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smooth variation of total field in the object though is typically violated in the practical 

imaging problems. For example, if the object features a large permittivity discontinuity a 

rapid field variation may be observed near the material interface. This is demonstrated in 

various numerical experiments [20]. There are some new approaches where extended 

Born approximation can be derived without requirement of field smoothness. In the re-

cent work by Prof. Vechi’s group at the University of Torino the contrast source inver-

sion (CSI) method is generalized to work under the extended Born approximation without 

assumption of the field smoothness inside the object. Such method has been shown to  

present some advantages compared to the standard contrast source inversion (CSI) ap-

proach. 

 

Often times the rapid variation of the field inside an object violating requirements of 

extended Born approximation arises due to proximity of the object to the sources of the 

interrogating field. To mitigate the effect of the non-smoothness of the field in the object 

due to closeness of the interrogating sources the modified extended Born approximation 

method can be used. By an approximation to the Green’s function analogous to the ex-

tended Born approximation the method allows to negate the effect of rapid variation of 

field due to close proximity of the interrogating sources.  

 

In the class of imaging techniques reliant on the full non-linear inversion the most 

popular approaches are the Distorted Born Iterative Method (DBIM) and the Contrast 

Source Inversion (CSI) method discussed below. 
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The DBIM technique was first proposed in [21]. It can reconstruct object properties 

with substantial contrasts to the background medium. The method is iterative in nature 

and can be shown to be exactly equivalent to the Gauss-Newton optimization technique. 

The main idea of the DBIM is to attribute prior information about the object to the back-

ground and use the corresponding Green’s function of that background in the solution of 

the inverse problem under Born approximation to get un update to the object permittivity. 

As such the method requires the solution of both the forward scattering problem and the 

inverse problem at each iteration. The inverse problem of finding an update to the back-

ground requires regularization due to its inherent ill-posedness. The inverse problem for-

mulation within this method turns out to be no less ill-posed at each iteration as the ini-

tially stated inverse problem. The solution of the ill-posed inverse problem at each itera-

tion is typically found using L-curve approach and Regularized Least Squares method 

discussed earlier.  

 

Contrast source inversion (CSI) method is getting increasingly popular compared to 

the DBIM. This is mainly because CSI unlike the DBIM does not require solution of the 

forward scattering problem at each iteration. In CSI field translations from the object of 

interest in imaging domain to observation region is calculated at every iteration instead. 

So, the field translations are found from the sources that we assume to be the right 

sources at a given iteration. From the difference, we come up with an update to the con-

trast sources, but we never find total field inside the object based on a given distribution 

of permittivity that would require solution of the forward scattering problem. The numer-

ical experiments show however that the DBIM converges substantially faster than CSI 
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and the overall time required for the solution of the inverse problem is comparable in the 

two methods. The explanation for this fact is that if we were to solve the forward problem 

in DBIM iteratively the overall number of field translations would be comparable to the 

number of field translations featured in the CSI method for the solution of the same prob-

lem. 

 

In the method proposed in this thesis the inherent ill-posedness of inverse source 

problem is eliminated without addition of regularizing constant. This is achieved by stag-

ing imaging experiment in a media with focusing properties. It concentrates scattered 

field from distinct regions of the object of interest (pixels) onto different observation lo-

cations thus leading to a well-posed formulation of the inverse problem. The required 

medium is realized by the well-known Maxwell Fish Eye lens. By placing the object in a 

conformal manner to the lens its scattered field is concentrated at the observation location 

diametrically opposite to the location of the contrast source of the object. So, upon dis-

cretization of the object each of the observation locations has a major contribution from 

the diametrically opposite pixel of the discretized object. This eliminates ill-posedness of 

inverse source problem leading to well-conditioned matrix form. Direct inversion pro-

vides contrast source values within object of interest. The contrast source values are used 

to find total field at discretized pixel centers and are subsequently used to determine con-

trast within the object of interest. 

 

In this thesis, Chapter 2 is composed of mathematical formulation. We start with 

time-domain Maxwell’s equations and obtain frequency-domain Maxwell’s equations. It 
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is followed by Helmholtz equation derivation and its commonly used solution in cylindri-

cal co-ordinate system. In addition, Green’s function is introduced. Commonly used solu-

tion to Green’s function for a filament current in homogeneous background medium is 

discussed. Also, integral equation, used in method of moment calculation, has been de-

rived. 

 

Chapter 3 describes imaging experiment setup followed by forward problem solving 

techniques. It also discusses Mie series solution of multi-layered Maxwell fish-eye lens 

used for finding incident field and total field. 

 

Chapter 4 introduces inverse source problem and contrast source calculation. Volu-

metric equivalence principle is discussed. This chapter compares conventional imaging to 

focusing media imaging. The comparison also illustrates diagonal dominance of matrix to 

be inverted leading to well-conditioned formulation. Also, the focal width of the field in 

the focusing media is obtained. 

 

Chapter 5 discusses numerical results from inverse problem solution. Studies are con-

ducted by varying lens background, frequency of interrogating time-harmonic field, and 

number of interrogating sources. Also, numerical results illustrate imaging experiment 

conducted at higher resolution. In a section of this chapter, we have used COMSOL to 

verify some of our results validating forward problem solution using Mie series and 

method of moment. 
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Chapter 6 concludes our contributions and provides an outline for future work. 
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Chapter 2 

Mathematical Formulation 

   

 

2.1 Maxwell’s Equations 

When linear dimensions are assumed to be larger than atomic dimensions and charge 

magnitudes are assumed to be larger than atomic charges, we view electromagnetic phe-

nomena from the “macroscopic” standpoint [2]. Upon foretold assumptions, Maxwell’s 

equations have strong predictive power of electromagnetic phenomena. In differential 

form, Maxwell’s equations are as follows: 

   (   )   
  (   )

  
                                             (2.1.1) 

   (   )  
  (   )

  
  (   )                                      (2.1.2) 

   (   )                                                      (2.1.3) 

   (   )    (   )                                              (2.1.4) 
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where, E(r, t) is electric field intensity (volts per meter), H(r, t) is magnetic field intensity 

(amperes per meter), D(r, t) is electric flux density (coulombs per square meter), B(r, t) is 

magnetic flux density (webers per square meter), J(r, t) is electric current density (am-

peres per square meter), qv(r, t) is electric charge density (coulombs per cubic meter). The 

position vector in (x, y, z) spatial axes is defined as r. “  ” represents curl operation. 

“  ” represents divergence operation.  (   ) represents summation of the conduction 

current   (   ) and impressed current   (   ). 

 

Only two of the four Maxwell’s equations are independent in electrodynamics [3]. 

Thus, we only require the equations (2.1) and (2.2). We have two equations with four un-

knowns E, H, B and D. Sufficient number of equations can be achieved using following 

constitutive relationships: 

 (   )      ( ) (   )                                         (2.1.5) 

 (   )       ( ) (   )                                        (2.1.6) 

where,   is permittivity of free space  8.854 10
-12

 farads per meter,   is permeability of 

free space  4   10
-7

 henry per meter,    is relative permeability,   ( ) is relative per-

mittivity for isotropic media [3]. There is also a constitutive relationship for a conductor 

as follows: 

  (   )    ( ) (   )                                             (     ) 

The Maxwell’s equations assume      time-harmonic dependence, where   √   and  

is the angular frequency (radians per second) given by following expression: 
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where, f is frequency (Hertz). Therefore, in frequency domain, Maxwell’s equations be-

come: 

   ( )      ( )                                           (2.1.8) 

   ( )     ( )   ( )                                       (2.1.9) 

   ( )                                                    (2.1.10) 

   ( )    ( )                                             (2.1.11) 

where,  (   )  √      ( )       

Here, √  may be omitted and is a matter of convention [2]. 

 

2.2 Helmholtz equation 

The term wave is commonly used to denote solution of wave equation [2]. Electro-

magnetic waves can be described by the scalar wave equation or Helmholtz equation [2]. 

The Helmholtz equation can be derived taking curl of equation (2.1.8) and substituting it 

in equation (2.1.9) for    : 

     ( )       ( )                                           (     ) 

This is frequency domain form of the vector wave equation for a source-free homogene-

ous isotropic medium. Using following identity: 

        (   )                                             (     ) 

where,       for a homogeneous source-free medium. Equation (2.2.1) becomes vec-

tor Helmholtz equation [2]: 

   ( )     ( )                                                (     ) 
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where,        . In a source free, lossless homogeneous medium, rectangular compo-

nents of E, that is, Ex, Ey, Ez, satisfy following complex scalar Helmholtz equation [7]: 

(     ) ( )                                                (     ) 

In cylindrical coordinates, the Helmholtz equation is as follows: 

(
 

 

 

  
 

 

  
 

 

  

  

   
 

 

   
   ) ( )                       (     ) 

One of the solutions of Helmholtz equation is of following form [3]: 

 ( )    ( )                                                   (     ) 

where, n is an integer showing the field is 2 periodic in . Substituting equation (2.2.6) 

into (2.2.5) results in the expression: 

(
 

 

 

  
 

 

  
 

  

  
   

 )  ( )                                    (     ) 

where,   
       

 . Commonly used solution of (2.2.7) is superposition of any two of 

four special functions. The four special functions are: 

a. the Bessel function:   (   ), 

b. the Neumann function:   (   ), 

c. the Hankel function of the first kind:   
( )(   ), 

d. the Hankel function of the second kind:   
( )(   ). 

Only two of the four special functions are independent. They are related to each other in 

following manner: 

  (   )  
 

 
   

( )
(   )    

( )
(   )                            (2.2.8a) 

  (   )  
 

  
   

( )
(   )    

( )
(   )                           (2.2.8b) 

or 
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( )

(   )    (   )      (   )                             (2.2.8c) 

  
( )

(   )    (   )      (   )                             (2.2.8d) 

 

 

2.3 Green’s function 

Solution of Helmholtz equation for a point source is known as the Green’s function 

[3]. Using principle of superposition, solution due to a general source can be obtained. A 

general source can be represented by a superposition of point sources. To obtain solution 

of following scalar wave equation: 

(     ) ( )   ( )                                           (2.3.1) 

at first, we seek the Green’s function by finding solution of the following equation: 

(     ) (    )   (    )                                   (2.3.2) 

When equation (2.3.2) is solved, we have  (    ) [3].   ( ) can be found easily from the 

principle of superposition. Since principle of superposition for source  ( ) states: 

 ( )  ∫  (  )  (    )   
 

                                      (2.3.3) 

 ( ) can be expressed by the following expression: 

 ( )  ∫  (    )  (  )    
 

                                     (2.3.4) 

To obtain Green’s function of a line source located at the origin, let us consider following 

scalar wave equation: 

(
  

    
  

      ) (   )   ( ) ( )                              (2.3.5) 
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Using cylindrical symmetry of the problem, i.e. n = 0 in equation 2.2.7, we can rewrite 

equation (2.3.5) in cylindrical coordinates as follows: 

[
  

   
 

 

 

 

  
   ]  ( )   ( )                                      (     ) 

where,  ( )   ( ) ( ). With      time dependence and satisfying radiation condition, 

one of the solutions of an outgoing wave is Hankel function of the second kind [7]. 

Therefore, one of the solutions can be written as follows: 

 ( )     
( )(  ) 

Value of constant C can be found by matching singularity of Hankel function at     

[3]. Hence the solution is the following expression: 

 ( )   
 

  
  

( )(  )                                                 (     ) 

Considering translational invariance of the Green’s function the above solution can be 

rewritten for arbitrary location of the source point    and observation point   as follows: 

 (    )   
 

  
  

( )(       )                                      (     ) 

 

2.4 Integral equation 

Scattering solution of an inhomogeneous object can be obtained using volume inte-

gral equation [3]. The unknowns are expressed in terms of volume polarization current 

flowing in the inhomogeneous medium. The volume current is summation of conduction 

current and the displacement current induced by total electric field [3]. An integral equa-
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tion is formulated as outlined below. Taking curl of equation (2.1.8) results in the equa-

tion below: 

                                                            (     ) 

Substituting equation (2.1.9) in equation (2.4.1) results in following expression: 

                   

Using the vector calculus identity written below: 

            (   ) 

the equation results in the following equation: 

      (   )                                                (     ) 

where,        . From continuity equation [7], we have the following expression: 

          

      
 

 
(   )                                                    (     ) 

From equation (2.1.11) we know the relationship shown below: 

   ( )    ( ) 

Substituting equation (2.4.3) gives rise to: 

     
 

 
(   )  

 

 
(  (     )) 

where,    is conduction current and    is impressed current. So, the equation becomes: 

     
 

 
(    )  

 

 
(    ) 

     (      )       

      ( ̂ )       

where,  ̂         
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      ̂(   )    (  ̂)       

          
  ̂

 ̂
 

 

 ̂
                                            (     ) 

Substituting value from equation (2.4.4) in equation (2.4.2) results in following equation: 

     (
  ̂

 ̂
  )              (

 

 ̂
    ) 

For homogeneous lossless medium, the expression simplifies to: 

                                                             (     ) 

With no variation in z axis, that is, 
 

  
  , for transverse magnetic (TM) scattering prob-

lem, equation (2.4.5) can be written down as following three complex scalar equations:  

                                                        (2.4.6a) 

                                                        (2.4.6b) 

                
                                          (2.4.6c) 

In case of 2D point source excitation equation (2.4.6c) becomes: 

                
  (    )                                  (2.4.6d) 

As we have already discussed in section 2.3, the solution of the equation below: 

(     
 ) (    )   (    )                                    (2.4.7) 

is given by following expression [7]: 

 (    )   
 

  
  

( )(       )                                     (2.4.8) 

Rewriting (2.4.6c) in the form matching in its left hand side the operators of equation 

(2.4.7) as given below: 

       
          

  (    )  (  
    )                        (2.4.9) 
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We can use the principle of superposition to obtain solution of equation (2.4.6c) as fol-

lows: 

  ( )  ∫  (    )(      
 )   

  
 ∫  (    )(     

 )  (  )   
 

    (2.4.10) 

In equation (2.4.10),    signifies source region outside domain S. The equation becomes: 

                                                         (2.4.11) 

where,    is total field,    is incident field, and    is scattered field. The incident field 

and scattered field are given by following expressions: 

  ( )  ∫  (    )(      
 )   

  
                                (2.4.12) 

  ( )  ∫  (    )(     
 )  (  )   

 
                          (2.4.13) 

It can be further simplified to the equation below: 

 ( )    ( )  ∫  (    ) (  )  (  )   
 

                  (2.4.14) 

where,  (  )        (  )        (  )    
  

 

 In this chapter, we have presented Maxwell’s equations and constitutive relationships. 

From these equations, we derive Helmholtz equation. We have presented common solu-

tions of the Helmholtz equation in cylindrical coordinates. In addition, we introduced 

Green’s function. We have also derived the integral equation used to find total field with-

in the object of interest using method of moment, i.e. equation (2.4.14).  
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Chapter 3 

Forward problem 

.   

 

3.1 Imaging setup 

In this thesis, we have chosen a very thin slab of dielectric material as an object of in-

terest. Our goal is to reconstruct permittivity variation within the object of interest along 

its length. Maxwell fish-eye lens is utilized as a background medium to cast the pertinent 

inverse problem into well-posed form. Object of interest is a thin slab conformal to lens 

shape as shown in Figure 3.1. To achieve better illustration, the figure shows thicker slab 

than that used in the numerical experiments. In all our experiments, we use 11-layer real-

ization of the Maxwell fish-eye lens unless otherwise mentioned. 
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3.2 Technique 

Numerical experiment setup has been discussed in section 3.1. In the provided exper-

imental setup, we need to know field values at certain observation locations. Forward 

problem solution provides us field values at observation locations.  

 

Figure 3.1: Imaging setup: thin slab conformal to 11-layered Maxwell fish-eye lens.  

 

Forward scattering problem solution can be obtained in both time-domain and fre-

quency-domain. Our forward problem solution is calculated in frequency-domain. There 

are many numerical techniques to solve the forward problem, for example: method of 

moments, finite element method, finite difference method and others. We use method of 
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moment [5] for its simplicity of implementation. In this method, we require Green’s func-

tion computation for Maxwell fish-eye lens. The Mie series solution for the fields in cy-

lindrical layered medium is utilized to obtain the Maxwell fish-eye lens Green’s function 

as explained in section 3.3 below. 

 

3.3 Green’s function calculation using Mie series  

Maxwell fish-eye lens’ Green’s function is calculated using Mie series. In our numer-

ical experiment, we model the lens with 11 layers of permittivity defined by [6]: 

 ( )     (  (   ) )                                             (3.3.1) 

where, a is lens radius,    is background dielectric, and   is distance from lens center. So-

lution is sought for a 1 Ampere filament current positioned parallel to z-axis at a distance 

half of slab thickness away from lens circumference. The value of Ez is found from: 

                                                          (3.3.1a) 

where,  

   
  
  

 ∑     (    )  ( )  {  
( )(   )       

           

 

    

 

a is lens radius;   is observation location distance from lens center;   is observation 

point angle;    is source point angle;    is wavenumber in homogeneous part of back-

ground; and   
( )

 is Hankel function of the second kind of order zero as discussed in sec-

tion 2.2. We present here Mie series solution of 4-layered Maxwell fish-eye lens solution 

to conserve space. The lens we demonstrate solution for is illustrated in Figure 3.2. 
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Figure 3.2: Maxwell fish-eye lens discretized with 4 layers of permittivity. 

 

Here,  

  ( )  

{
  
 

  
 

     (   )          

     
( )(   )       

( )(   )           

     
( )(   )       

( )(   )           

     
( )(   )       

( )(   )          

    
( )(   )       

 

where, 

  ,    ,        ,    ,    ,     and    refer to appropriate coefficients for following 

boundary conditions at every interface,   ,   ,   , and  : 
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Normalized Green’s function calculated using Mie series for discretized Maxwell 

fish-eye lens is compared to analytic Green’s function for continuous permittivity distri-

bution [6] is illustrated in Figure 3.3. COMSOL simulation of this setting is illustrated in 

Figure 3.4. This figure shows logarithmic electric field variation in x-y plane. 

 

 

Figure 3.3: Normalized analytic solution of Green’s function with continuous variation of 

lens’ permittivity from [6] compared to Mie series solution with discretized Maxwell 

fish-eye lens using equation (3.3.1a). 

 

 

3.4 Incident field calculation  

In electromagnetic scattering, incident field refers to field in absence of object of in-

terest [2]. Forward problem is solved for two different situations: in absence of object of 
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interest and in presence of object of interest. These values are used to calculate scattered 

field as shown below: 

         

where,    is scattered electric field,    is total electric field, and    is incident field. 

 

Figure 3.4: Logarithmic electric field magnitude distribution when a filament current of 1 

ampere radiates at 2.5 mm away from the circumference of the 11-layered Maxwell fish-

eye lens. 

 



 

 

 25 

A lens radius of 2 meters and slab thickness of 0.005 meters is used. We have placed 

400 filament current sources parallel to z axis at a distance of 0.5 meters away from the 

circumference of the lens evenly on an arc extending from   to   as shown in Figure 3.5. 

 

 

Figure 3.5: Position of Maxwell fish-eye lens and 400 filament sources in x-y plane. 

 

At first, we calculate electric field in absence of object of interest. Observation points 

are located diametrically opposite to pixel locations. We use Mie series to find field value 

at observation locations when the sources are positioned 0.5 meters away from lens sur-
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face. This value of electric field is denoted as “incident field”,   . Figure 3.6 shows 

COMSOL simulation result demonstrating incident field distribution in x-y plane. 

 

 

Figure 3.6: COMSOL simulation result of electric field norm distribution is illustrated, in 

logarithmic scale, in absence of object of interest when 400 filament sources are evenly 

placed from   to  . 
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3.5 Total field calculation 

 

We use method of moment to find total field. At first, we discretize object of interest 

into P pixels. Each pixel has a length of  
  

 
; where,    is wavelength in homogeneous 

part of background. As described by Richmond in [5], integral equation (2.4.11) can be 

discretized to form a system of linear algebraic equations in the form: 

∑    

 

   

      
             

Cmn is a P by P matrix of known values, En is a P by 1 vector of unknown total field val-

ues, and E
i
 is also a P by 1 vector of known coefficients containing incident field. Figure 

3.7 shows COMSOL simulation of total field norm variation, in logarithmic scale. 
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Figure 3.7: Logarithmic total electric field norm when 400 filament sources located uni-

formly on an arc spaced from   to   are used for interrogation. 

 

In this chapter, we have discussed imaging setup for our proposed method. We have 

also discussed method of moment technique to solve forward problem. Green's function 

calculation using Mie series for cylindrically symmetric Maxwell fish-eye lens has been 

explained in detail. The incident field and total field calculation has been also discussed. 

This chapter has detailed on forward problem solutions. We use these solutions to solve 

for inverse problem as discussed in Chapter 4. 
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Chapter 4 

Inverse problem 

   

 

4.1 Introduction 

Inverse problem solution predicts internal construction of an object of interest. In 

conventional imaging method, inverse problem is ill-posed. Conventional experiment 

setup for solving inverse problem is shown in Figure 4.1. Our proposed method of in-

verse problem solution casts it into a well-posed form. In our method, Maxwell fish-eye 

lens provides focused Green’s function necessary for elimination of inverse problem ill-

posedness. This setup is shown in Figure 4.2. The object of interest is the thin slab placed 

conformal to the lens. 

 

As Figure 4.2 illustrates, filament sources I1, I2, …, I21 produce excitation. When the 

slab is absent, field collected at distinct observation locations is known as incident field. 
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The figure illustrates 21 sources for presentation clarity. Numerical results, presented in 

Chapter 5, have 400 filament sources unless mentioned otherwise. The filament sources 

are 0.5 meters away from lens circumference. We collect total field in presence of object 

of interest. It should be noted that Figure 4.2 shows a thicker slab compared to numerical 

experiment slab thickness. This is done for presentation clarity. Subsequently, scattered 

field is calculated from equation (2.4.11): 

         

where,    is incident field with object of interest absent,    is total field when object of 

interest is present, and    is scattered field. 

 

Figure 4.1: Conventional setup to excite object of interest. Field values are recorded at 

positions marked r1, r2, …, rN. 
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As derived in Chapter 2 in equation (2.4.14), scattered field produced by contrast 

sources W is calculated as shown below: 

     
 ∫  (    ) (  )   

 
                                     (4.1.1) 

where,  (    ) is Green’s function of background medium, and  (  ) is contrast source 

given by the following expression: 

 (  )    (  )      (  )                                       (4.1.2) 

Our primary goal is to find W. Details of the procedure is discussed in section 4.2. 

 

Figure 4.2: Maxwell fish-eye lens is used in our proposed method of imaging. The lens is 

modeled using 11 layers of dielectric. The imaging domain S contains object of interest, 

the thin slab, placed conformal to the lens. r1, r2, …, rN signifies the observation loca-

tions. 
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4.2 Contrast source calculation 

We discretize W(  ) on the interval      
 

 
    

 

 
     with P piece-wise basis 

functions bp(  ). Angular width of each basis function is    
   

 
 centered at angular 

locations    
 

 
       (  

 

 
). Contrast source W with P piece-wise basis func-

tions can be written in discretized form as follows: 

 (  )   (  ) (  )  ∑       ( 
 ) 

    ∑     ( 
 ) 

            (4.2.1) 

where,   (  ) is 1, when        
  

 
    

  

 
  and is 0 otherwise. Contrast,  

 (  )   (  )    , is the function to be found. Substituting equation (4.2.1) into equa-

tion (4.1.1), we get a set of linear algebraic equations in matrix form as follows: 

                                                          (4.2.3) 

where, E is a P by 1 vector of scattered field, W is a P by 1 vector of unknown contrast 

source values, and G is a P by P matrix defined by: 

       
 ∫  (     )   

    
  

 

    
  

 

                                (4.2.4) 

Integral in equation (4.2.4) contains singularity. To evaluate it numerically, the singulari-

ty is extracted. Extracted singularity is evaluated analytically according to technique de-

scribed in [14]. The residual non-singular part is evaluated using Gauss-Legendre quadra-

ture rule. 

 

From direct inversion of  , contrast source samples W can be found at P discrete lo-

cations. In order to find W, system of equations needs to be invertible [13]. Typically, G 



 

 

 33 

is ill-conditioned, however in such scenarios, regularization must be applied in order to 

invert G [8]. In section 4.4 of this Chapter, we show how to make the system of equations 

well-conditioned without resorting to regularization. When G is well-conditioned, W can 

be found via direct inversion of G. Using volumetric equivalence principle, we can sub-

sequently find contrast   if W has been found as described in the following section. 

 

 

4.3 Volumetric equivalence principle 

When contrast sources, W, are known, volumetric equivalence principle can be ap-

plied to relate contrast source to total field within object of interest. This can be expressed 

as: 

  ( )    ( )    
 ∫  (  ) (    )   

 
                       (4.3.1) 

where,    is incident field,    is total field, and   signifies imaging domain. As shown in 

Figure 4.2, the thin slab is the imaging domain in our case. When W is known, we can 

find electric field samples at centroids of basis function elements. The discretized con-

trast,  , is obtained from the following relation: 

 (  )  
 (  )

 (  )
       

To find total field Ep at each pixel center, the contrast source coefficients of equation 

(4.2.1) are substituted in equation (4.3.1) as given below: 

    (  )    (  )    
 ∑    ∫  (     )   

  
    

  
    

 
                   (4.3.2) 
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Dividing contrast source values Wp with respective values of Ep gives us: 

   
  

  
           

We can obtain dielectric distribution,    by: 

                   

where,    is homogeneous part of background permittivity.  

 

 

4.4 Inverse Problem Ill-posedness: Imaging in 

Non-focusing vs. Focusing media 

In conventional inverse problems, Green’s function is non-directional. This leads to 

ill-conditioning of matrix G defined in equation (4.2.4). Ill-conditioned matrix G produc-

es non-unique solution of matrix equation (4.2.3), and, as a result, non-unique solution of 

inverse problem is obtained as well. Conventional method of eliminating ill-conditioning 

in inverse problem is through regularization [8]. One of the methods is to artificially add 

a diagonal matrix to G before inversion as shown below: 

(    )                                                (4.4.1) 

where, I is an identity matrix. Regularization parameter   makes G diagonally dominant. 

Hence, (    ) can be made well-conditioned by taking a sufficiently large parameter 

 . The larger is regularization parameter  , however, the further is our solution from true 
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solution dictated by Maxwell’s equations. In [1], a different approach is presented to ob-

tain well-conditioned G when scattered field from object’s different pixels is concentrat-

ed at distinct locations. Our approach also concentrates scattered field from separate pix-

els onto diametrically opposite side of lens as illustrated by Figure 4.3. This increases di-

agonal component of G significantly and without artificial addition of the regularization 

term. Hence, G becomes well conditioned. 

 

Figure 4.3: Scattered field from different pixels are concentrated over to diametrically 

opposite side of lens. 

 

 



 

 

 36 

4.5 Comparison of G matrix 

In conventional imaging method, homogeneous background is used. Figure 4.4 illus-

trates matrix G formed using equation (4.2.4) for conventional imaging method. On the 

other hand, our proposed method utilizes Maxwell fish-eye lens as the background medi-

um forming desired focused Green’s function. The G matrix shown in Figure 4.5 is creat-

ed from our proposed method of imaging in the presence of Maxwell fish-eye lens. In 

both cases, homogeneous part of background has relative permittivity 9. Figure 4.5 shows 

diagonally dominant matrix G. It is a 75 by 75 matrix with condition number 8.01. If this 

experiment is conducted in a homogeneous background, in absence of lens, condition 

number of matrix G is 5.4 10
15

, making matrix inversion impossible. Hence, if imaging 

experiment is conducted in homogeneous background, non-unique solution is obtained. 

 

Figure 4.4: The matrix G element magnitudes corresponding to the imaging experiment 

with conventional homogeneous background (condition number 5.4 10
15

). 
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Figure 4.5: The matrix G element magnitudes corresponding to the imaging experiment 

with proposed Maxwell fish-eye lens background (condition number 8.01). 

4.6 Focal width 

From [6], we know that analytic expression of Maxwell fish-eye lens with continuous 

variation of permittivity is as follows: 

 (    )  
 

    (  )
  (   

   (    ) 

(     )(      )
)                        (4.6.1) 

where, r is observation location, r' is source location,    is Legendre polynomial, and   is 

given by following expression [6]: 

  
   √     

   

 
                                         (     ) 
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   is wave number in homogeneous part of background and is given by: 

     √   

where,    is free space wave number. Let us consider an inverse scattering problem with 

a very thin slab of length 2a0 placed conformally to the lens; where a is lens radius. 

Classical Lipman-Schwinger integral equation can be written as: 

∫  (    ) (  )   
 

 
   

 

 
   

   ( )                         (4.6.3) 

where, contrast source is given by following expression: 

 (  )   (  )  (  )      

In our proposed method, the object of interest is very thin and located conformal to the 

Maxwell fish-eye lens and the observation locations are located at the same radial dis-

tance diametrically opposite to the lens. In such a case, (    )  can be written as given 

below: 

(    )  (                                     )
 
 

where,    is unit vector in x direction, and    is unit vector in y direction. It can be sim-

plified to following expression: 

(    )    (          )    (          )  

Few algebraic manipulations reduce this expression down to the equation given below: 

(    )           (    )                                (4.6.3a) 

Using this expression, argument of Legendre polynomial,   , can be simplified further. 

Argument of Legendre polynomial is shown below: 
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   (    ) 

(     )(      )
 

Location of object of interest and observation locations allows us to have approximations: 

     , and       . The approximations results in simplification of the argument of 

Legendre polynomial as follows: 

   
(    ) 

   
 

Using value of (    )  from equation (4.6.3a), this expression further reduces to: 

    (    )     (   ) 

where,   is the angle between contrast source location and observation location and is 

given by: 

       

Hence, the Green’s function reduces down to following expression: 

 ( )  
  (   (   ))

    (  )
                                            (4.6.4) 

Legendre polynomial can be expressed by the expression [15] given below: 

  ( )              
 

 
(   )                                (4.6.4a) 

where,     is hypergeometric function. It can be expressed [15] by the following expres-

sion: 

   (       )  ∑
( ) ( ) 

( ) 

  

  
 
                                    (4.6.4b) 

( )  is the pochhammer symbol. It is given by [15] the equation given below: 

( )  
 (   )

 ( )
                                               (4.6.4c) 



 

 

 40 

Using definitions in equation (4.6.4a), we write Legendre polynomial in terms of hyper-

geometric function. Subsequently, we express the Legendre polynomial as a summation 

over the terms in equation (4.6.4b). Since near the focal region, (      (   ))  is 

very small for          . We can approximate the summation series using summa-

tion for values     and    . Hence, using equation (4.6.4c), Legendre polynomial 

can be simplified to the following expression around the focal region: 

  ( )  [   (   )    (
   

 
)]                                   (4.6.4d) 

In equation (4.6.3),   ( ) is scattered field collected at observation location. When ob-

servation location is restricted in interval  
  

 
    

  

 
    , inverse source problem be-

comes well posed. The observation location      
  

 
    

  

 
     corresponds to source 

location       
 

 
    

 

 
      Using equation (4.6.4d), Green’s function (4.6.1) can be 

written as: 

 ( )  
 

     (  )
    (   )    (

   

 
)                        (4.6.5) 

We approximate  (   )      By equating  (    ) to zero, we get following ex-

pression: 

    (
   

 
)  

 

 (   )
 

 

  
                                            (4.6.5a) 

Since near the focal point   tends to  , this expression further reduces to equation given 

below: 

   

 
 

 

 
                                                            (4.6.5b) 

Since   is directly proportional to    and  , we find focusing width    as follows: 
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                                            (4.6.6) 

Note, that    tends to 0 (infinitely strong focusing) when background medium becomes 

infinitely dense (     ). 

 

 

Figure 4.6: Focusing width gets narrower with higher    . 

 

 Figure 4.6 illustrates narrowing down of focal width as value of     increases. The 

widest focal width is shown for    . The narrower focal width is exhibited by     . As 

we transitioned to      and      values, focal width becomes narrower. We approach 

infinitely strong focusing as illustrated in Figure 4.6 by the narrowest focus width at 

    when the background and the radius is set to       . 

 

In the limit of an infinitely strong focusing, Green’s function can be written as follows: 

 ( )   (   )   ( )                                  (4.6.7) 
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where,  ( ) is a smooth function. Substituting equation (4.6.7) in equation (4.6.3), we 

cast the classical integral equation of the inverse source problem into a well-posed form 

of the following second-kind integral equation as shown below: 

 (   )  ∫  (    ) (  )   
 

 
   

 

 
   

   ( )     
  

 
    

  

 
       (4.6.8) 

Note that attaining infinite focusing properties of the medium is not necessary for obtain-

ing well-posedness of the inverse problem formulation. For well-posedness, it is suffi-

cient to make the focusing background dense enough that matrix G in its discretized form 

(4.2.3) attains the full rank. 
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Chapter 5 

Numerical Results for the Inverse 

Problem 

  

This chapter summarizes numerical results obtained from direct inverse problem solu-

tion described in Chapter 4. We conduct imaging experiments according to setup shown 

in Figure 5.1. The imaging domain, S, is the domain of the region fairly thin and confor-

mal to the lens. In the figure, source points are marked I1 to I21. The figure shows 21 

source positions for presentation clarity. In the illustrated results, we use 400 point 

sources of interrogating field unless otherwise mentioned. In all cases, sources are located 

at    = 2.5 meters away from lens center evenly spaced on an arc ranging from   to  . 

Each of the filament sources’ current is set to 1 Ampere. Also, the figure illustrates ob-

servation locations r1 to r10. Number of observation locations depends on the number of 

pixels reconstructed. When air is the homogeneous part of background, 25 pixels are re-

constructed. When homogeneous part of background’s relative permittivity is selected to 

be 2, 4, 9 and 16, the number of reconstructed pixels is selected to be 35, 49, 75, and 99 

respectively. The figure shows 10 of them for presentation clarity. Lens used for image 
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reconstruction has 2 meters radius. Frequency of excitation is 600 MHz unless otherwise 

mentioned. Also, we use 5 millimeters thick slab unless otherwise mentioned. 

 

 

Figure 5.1: Thin slab conforming to Maxwell fish-eye lens is excited with incident wave 

in imaging domain S. 

 

In particular, we are conducting the studies by varying the background of the lens, 

frequency of interrogating time-harmonic field, and number of interrogating sources. We 

also study possibilities for increasing the resolution. Results are obtained in custom writ-
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ten method of moments code utilizing Mie series representation of the lens’ Green’s 

function [3]. We verify our numerical results by solving the forward problems in COM-

SOL [12]. 

5.1 Background variation 

As seen from equation (4.6.6), increasing the background permittivity makes the focal 

width narrower. This allows for reconstruction of object permittivity with higher pixels in 

its discretization, provided other parameters of imaging experiment remain the same. We 

have varied the homogeneous part of the background’s relative permittivity through val-

ues 1, 2, 4, 9, and 16. So, we have also varied dielectric values of each layer of the Max-

well fish-eye lens according to equation (3.3.1). The relative dielectric permittivity at the 

center of the lens goes over values 4, 8, 16, 36, and 64 in each of those cases respectively. 

Varying background, we observe that the smallest error of contrast source reconstruction 

occurs when the contrast, ( ( )    )  is the lowest. This is illustrated in Figures 5.2, 5.4, 

5.6, 5.8, and 5.10. Imaginary part of reconstructed permittivity exhibiting same character-

istic is shown in Figures 5.12, 5.14, 5.16, 5.18, and 5.20. It is also shown that when the 

experiment is conducted in absence of the lens, the image of the object of interest is im-

properly reconstructed. Real part of reconstructed permittivity is shown in Figures 5.3, 

5.5, 5.7, 5.9, and 5.11; and the imaginary reconstructed permittivity are illustrated in Fig-

ures 5.13, 5.15, 5.17, 5.19, and 5.21. Reconstructed values have a resolution of 
  

 
; where, 

   is the wavelength in the homogeneous part of background.  
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Figure 5.2 and Figure 5.3 compares image reconstruction when lens is present and 

when lens is absent, respectively. It is visually evident that lens presence provides better 

image reconstruction. Numerical results show erroneous reconstruction when lens is ab-

sent. This is due to high condition number of the G matrix. High condition number pro-

duces an erroneous solution as shown in Figure 5.3. The background has a relative per-

mittivity 1. 

 

Figure 5.2: Real part of object’s relative permittivity and its reconstructed values are il-

lustrated with air in homogeneous part of background. Values shown are reconstructed in 

presence of lens.  

 

Figure 5.2 shows image reconstruction results in presence of Maxwell fish-eye lens. 

On the other hand, Figure 5.3 shows reconstructed image when imaging experiment is 

conducted in absence of lens. It is visually evident that lens presence helps more accurate 

image reconstruction. This is due to well-posed formulation of the inverse problem. 
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Figure 5.3: In absence of lens, real part of reconstructed relative permittivity is compared 

to object’s relative permittivity when air is the homogeneous background. 

 

Figure 5.4: Real part of object’s relative permittivity and its reconstructed values are il-

lustrated with relative permittivity 2 in homogeneous part of background. Values shown 

are reconstructed in presence of lens. 
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 When the imaging experiment is conducted with homogeneous part of background 

permittivity 2, the inverse problem solution in presence and in absence of lens is illustrat-

ed in Figure 5.4 and 5.5 respectively. Also in this case, it is visually evident that presence 

of lens allows for better image reconstruction. Lens presence ensures well-posedness of 

the inverse problem.  

 

 

Figure 5.5: When imaging experiment is conducted in absence of lens, real part of ob-

ject’s relative permittivity and its reconstructed values are illustrated, provided relative 

permittivity of homogeneous background is 2. 
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Figure 5.6: Real part of object’s relative permittivity and its reconstructed values are il-

lustrated when homogeneous part of background has relative permittivity 4. Values 

shown are reconstructed in presence of lens. 

 

 Figure 5.6 and Figure 5.7 shows image reconstruction with lens present and with lens 

absent, respectively. Since the contrast of the object with respect to the background is ze-

ro, more accurate reconstruction is obtained when lens is present. When lens is absent, 

we have high inaccuracy in the results as shown in Figure 5.7. 
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Figure 5.7: When imaging experiment is conducted in absence of lens, real part of ob-

ject’s relative permittivity and its reconstructed values are illustrated, provided relative 

permittivity of homogeneous background is 4. 

 

Figure 5.8: Real part of object’s relative permittivity and its reconstructed values are il-

lustrated with relative permittivity 9 in homogeneous part of background. Values shown 

are reconstructed in presence of lens. 

0 0.2 0.4 0.6 0.8 1

1

2

3

4

5

6

7

8

9

f/p

R
e

[e
(f

)]

 

 

Actual

Imaged

0 0.2 0.4 0.6 0.8 1
2

2.5

3

3.5

4

4.5

f/p

R
e

[e
(f

)]

 

 

Actual

Imaged



 

 

 51 

Figure 5.8 shows image reconstruction in presence of lens. We can note that higher 

contrast shows higher Gibbsian oscillations in image reconstruction in presence of lens. 

Image reconstruction using the same object of interest in absence of lens results in high 

inaccuracy in reconstructed image as shown in Figure 5.9. 

 

 

Figure 5.9: When imaging experiment is conducted in absence of lens, real part of ob-

ject’s relative permittivity and its reconstructed values are illustrated, provided relative 

permittivity of homogeneous background is 9. 
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Figure 5.10: Real part of object’s relative permittivity and its reconstructed values are il-

lustrated with relative permittivity 16 in homogeneous part of background. Values shown 

are reconstructed in presence of lens. 

 

Figure 5.10 shows image reconstruction results when numerical experiment is con-

ducted in presence of lens. On the other hand, Figure 5.11 shows reconstructed image 

when numerical experiment was conducted in absence of the lens. It is visually evident 

that more accurate image reconstruction is obtained when inverse problem is solved upon 

scattered field collection through the use of lens. 
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Figure 5.11: When imaging experiment is conducted in absence of lens, real part of ob-

ject’s relative permittivity and its reconstructed values are illustrated, provided relative 

permittivity of homogeneous background is 16. 

 

Figure 5.12: Imaginary part of object’s relative permittivity and its reconstructed values 

are illustrated with air in homogeneous part of background. Values shown are recon-

structed in presence of lens. 
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The inverse problem is solved in presence and in absence of the Maxwell fish-eye 

lens for the same object of interest. Figure 5.12 and Figure 5.13 shows reconstructed 

image in presence and in absence of lens, respectively. More accuracy in image 

reconstruction is obtained with lens present in numerical experiment. When lens is 

absent, reconstructed imaginary part of permittivity shows high inaccuracy in its result as 

illustrated in Figure 5.13. 

 

 

Figure 5.13: When imaging experiment is conducted in absence of lens, imaginary part of 

object’s relative permittivity and its reconstructed values are illustrated, provided air is 

the homogeneous background. 
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Figure 5.14: Imaginary part of object’s relative permittivity and its reconstructed values 

are illustrated with relative permittivity 2 in homogeneous part of background. Values 

shown are reconstructed in presence of lens. 

 

 Imaginary part of permittivity reconstruction in presence and in absence of lens is 

illustrated in Figure 5.14 and Figure 5.15 respectively. In the conducted numerical 

experiments, lens presence shows more accurate image reconstruction. When numerical 

experiment is conducted in absence of lens, image is reconstructed with high inaccuracy 

as shown below in Figure 5.15.  
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Figure 5.15: When imaging experiment is conducted in absence of lens, real part of ob-

ject’s relative permittivity and its reconstructed values are illustrated, provided relative 

permittivity of homogeneous background is 2. 

 

Figure 5.16: Imaginary part of object’s relative permittivity and its reconstructed values 

are illustrated with relative permittivity 4 in homogeneous part of background. Values 

shown are reconstructed in presence of lens. 
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When numerical experiment is conducted in presence of lens, we get an accurate 

reconstruction of permittivity variation within the object of interest. This is illustrated in 

Figure 5.16. When the same object of interest is reconstructed in absence of the lens, we 

find high inaccuracy in image reconstruction results. This is illustrated in Figure 5.17. 

Presence of lens makes invertible matrix well-posed as discussed in Section 4.5 and 

hence image reconstruction results become more accurate. 

 

 

Figure 5.17: When imaging experiment is conducted in absence of lens, real part of ob-

ject’s relative permittivity and its reconstructed values are illustrated, provided relative 

permittivity of homogeneous background is 4. 
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Figure 5.18: Imaginary part of object’s relative permittivity and its reconstructed values 

are illustrated with relative permittivity 9 in homogeneous part of background. Values 

shown are reconstructed in presence of lens. 

 

 Image reconstruction results through inverse problem solution in presence and in 

absence of Maxwell fish-eye lens is shown in Figure 5.18 and Figure 5.19, respectively. 

It is visually evident that reconstructed image is found to be more accurate when 

numerical experiment is conducted in presence of the lens. Lens presence concentrates 

scattered field from distinct regions of the object of interst to distinct observation 

locations to cast the inverse problem in well-posed form as discussed in Section 4.4. This 

results in more accurate results when the numerical experiment is conducted in presence 

of the lens. 
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Figure 5.19: When imaging experiment is conducted in absence of lens, real part of ob-

ject’s relative permittivity and its reconstructed values are illustrated, provided relative 

permittivity of homogeneous background is 9. 

 

Figure 5.20: Imaginary part of object’s relative permittivity and its reconstructed values 

are illustrated with relative permittivity 16 in homogeneous part of background. Values 

shown are reconstructed in presence of lens. 
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 Figure 5.20 and Figure 5.21 shows reconstructed image in presence and in absence of 

lens, respectively. Image reonstruction with lens present shows very high accuracy when 

compared to image reconstruction in absence of lens. Since presence of lens casts the 

inverse problem in a well-posed form, more accuracy is obtained. 

 

 

Figure 5.21: When imaging experiment is conducted in absence of lens, real part of ob-

ject’s relative permittivity and its reconstructed values are illustrated, provided relative 

permittivity of homogeneous background is 16. 

 

We believe surface wave plays an important role in creating higher Gibbsian ringing 

as the contrast is increased. When the object of interest has less oscillations, we get good 

accuracy. As the contrast increases, the oscillation within the object of interest also 

increases. Figures 5.22 to 5.26 shows total electric field variation within object of 

interest. 
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Figure 5.22: Norm of total electric field variation in the object of interest and reconstruct-

ed electric field from inverse problem solution in presence of lens when homogeneous 

part of background permittivity is 1. 

 

Figure 5.23: Norm of total electric field variation in the object of interest and reconstruct-

ed electric field from inverse problem solution when homogeneous part of background 

permittivity is 2. 
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 Figure 5.22, Figure 5.23 and Figure 5.24 shows total electric field variation within 

object of interest for homogeneous part of permittivity equal to 1, 2 and 4 respectively. It 

can be noted that electric field norm oscillations with respect to spatial angle increases 

with increase in homogeneous part of background permittivity from 1 to 4. 

 

 

Figure 5.24: Norm of total electric field variation in the object of interest and reconstruct-

ed electric field from inverse problem solution when homogeneous part of background 

permittivity is 4. 
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Figure 5.25: Norm of total electric field variation in the object of interest and reconstruct-

ed electric field from inverse problem solution when homogeneous part of background 

permittivity is 9. 

 

 Figure 5.25 and Figure 5.26 illustrates total field within object of interest when ho-

mogeneous part of background permittivity is 9 and 16, respectively. We can see more 

electric field norm oscillations with respect to spatial angle increase with increasing 

background permittivity.  
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Figure 5.26: Norm of total electric field variation in the object of interest and reconstruct-

ed electric field from inverse problem solution when homogeneous part of background 

permittivity is 16. 

 

Figure 5.27: Illustration of error norm per pixel variation in presence of lens when back-

ground is varied. 
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 Figure 5.27 shows error norm per pixel when object of interest is reconstructed in 

presence of Maxwell fish-eye lens. Reconstruction in absence of lens yields high inaccu-

racy as shown in Figure 5.28. The background permittivity is varied to obtain the illus-

trated behavior. 

 

 

Figure 5.28: Illustration of error norm per pixel variation in absence of lens when back-

ground is varied. 

 

 In this section, we have observed the following observations: 

 Lens presence provides accurate permittivity reconstruction through casting 

the inverse problem in well-posed form. 

 Lower contrast produces lower Gibbsian ringing. 

 Higher background contrast produces more oscillations in object of interest. 

2 4 6 8 10 12 14 16

2

4

6

8

10

e
b

E
rr

o
r 

n
o
rm

 p
e
r 

p
ix

e
l



 

 

 66 

5.2 Thickness variation 

Energy of guided waves is usually confined to a localized region of the waveguide 

structure and travels in a specific direction. Various types of transmission lines are used 

to serve this purpose. Dielectric slabs are known to guide waves and hence can serve as 

transmission lines. Such structures are usually known as dielectric waveguides. Upon 

electromagnetic wave illumination, surface waves are excited at the discontinuities in the 

dielectric waveguide. 

 

Upon illumination of an infinitely long slab by a plane wave, no surface wave is pro-

duced. The incident plane wave simply refracts at the surface boundaries and passes 

through the slab material. A surface wave is created within the slab when at least one of 

the ends of the slab is finite. The surface wave is excited at the finite end and travels 

along the slab. The magnitude of the surface wave depends on the thickness. Based on 

conducted experiments, it appears that the thicker is the slab, the higher is the magnitude 

of the excited surface wave. Figures 5.29 to 5.32 shows the trend with background 9. It 

should also be noted that the total field obtained from solving the inverse problem gets 

worse with increase in thickness. 
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Figure 5.29: Norm of total electric field variation in the slab when thickness is 0.005 me-

ters. 

 

 

Figure 5.30: Norm of total electric field variation in the slab when thickness is 0.025 me-

ters. 
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Figure 5.31: Norm of total electric field variation in the slab when thickness is 0.05 me-

ters. 

 

Figure 5.32: Norm of total electric field variation in the slab when thickness is 0.1 meters. 
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It is also observed that the surface wave excited in the object of interest may have a 

strong impact on the quality of image reconstruction. The reason is that small magnitude 

of surface wave produces only insignificant interference with the incident field of the in-

terrogating sources. A surface wave with a large magnitude, on the other hand, will sig-

nificantly interfere with the incident field. The increased interference between the inci-

dent wave and the surface wave excited in the slab results in high variation of field within 

the slab forming the imaged object. This high variation causes under-sampling of the total 

field featuring the interference pattern. This leads to increased erroneous Gibbsian oscil-

lations in the reconstructed object profile. A thinner slab produces a better quality of re-

construction due to a weaker presence of the surface waves. This behavior is illustrated in 

figures 5.33 to 5.40.  

 

 

Figure 5.33: When slab thickness is 0.005 meters, real part of reconstructed relative per-

mittivity is compared with the exact relative permittivity in presence of the lens. 
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Figure 5.34: When slab thickness is 0.025 meters, real part of reconstructed relative per-

mittivity is compared with the exact relative permittivity in presence of the lens. 

 

Figure 5.33, Figure 5.34 and Figure 5.35 shows real part of reconstructed permittivity 

for 0.005 meters, 0.025 meters, and 0.05 meters, respectively. We note erroneous Gibbs-

ian oscillations increase with increase in slab thickness. We believe this may be a conse-

quence of surface wave interference with incident field.  
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Figure 5.35: When slab thickness is 0.05 meters, real part of reconstructed relative per-

mittivity is compared with the exact relative permittivity in presence of the lens. 

 

 

Figure 5.36: When slab thickness is 0.1 meters, real part of reconstructed relative permit-

tivity is compared with the exact relative permittivity in presence of the lens. 
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Figure 5.37: When slab thickness is 0.005 meters, imaginary part of reconstructed rela-

tive permittivity is compared with the exact relative permittivity in presence of the lens. 

 

Figure 5.38: When slab thickness is 0.025 meters, imaginary part of reconstructed rela-

tive permittivity is compared with the exact relative permittivity in presence of the lens. 
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 Similarly, increased Gibbsian oscillations are also observed in imaginary part of per-

mittivity reconstruction with increase in slab thickness. This is illustrated in Figure 5.37, 

Figure 5.38, and Figure 5.39 for 0.005 meters, 0.025 meters, and 0.05 meters, respective-

ly. The increased Gibbsian oscillations are believed to be a consequence of increased os-

cillations within the object of interest. Increased oscillations may be caused by interfer-

ence of incident field with surface wave excited at the slab ends. 

 

 

Figure 5.39: When slab thickness is 0.05 meters, imaginary part of reconstructed relative 

permittivity is compared with the exact relative permittivity in presence of the lens. 
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Figure 5.40: When slab thickness is 0.1 meters, imaginary part of reconstructed relative 

permittivity is compared with the exact relative permittivity in presence of the lens. 

 

The reason we believe is due to a weaker interference caused by surface wave excited 

in the slab with the incident field. Magnitude of the spatial oscillations becomes low. 

With the same resolution established by the lens, we can get better capturing of the die-

lectric distribution over the slab of the imaged object. The effect of surface wave excita-

tion at the edge of a truncated dielectric slab can be found in [9], [10], and [11]. 
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Figure 5.41: Illustration of error norm per pixel variation in presence of lens when thick-

ness is the varied parameter. 

 

 In this section, observations listed below are noted: 

 Thinner object of interest produces better image reconstruction as shown in 

Figure 5.41. We believe this is due to surface wave excited at discontinuous 

ends of the object of interest. 

 With increase in thickness of the object of interest, electric field norm within 

it increases.  

5.3 Effect of number of excitation sources 

When a single filament source is used for excitation, the result contains very high er-
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from   to   and investigate its effect on the accuracy of reconstruction. We find that with 

more sources, results are more accurate. We believe, due to fewer oscillations of incident 

field, fewer electric field oscillations occur in the object of interest. This results in better 

reconstruction of the permittivity reconstruction. This is illustrated in Figures 5.42 to 

5.49. 

 

 

Figure 5.42: Single filament source is used for excitation of the object of interest. The re-

al part of reconstructed relative permittivity is compared to exact relative permittivity. 
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Figure 5.43: 10 filament sources are used for excitation of the object of interest. The real 

part of reconstructed relative permittivity is compared to exact relative permittivity. 

 

Figure 5.44: 50 filament sources are used for excitation of the object of interest. The real 

part of reconstructed relative permittivity is compared to exact relative permittivity. 
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 Figures 5.42 to 5.44 shows image reconstruction results with 1 source, 10 sources, 

and 50 sources interrogating the object of interest, respectively. It can be noted that the 

image reconstruction accuracy increases with more number of sources placed evenly on 

the arc ranging from 0 to  . 

 

Figure 5.45: 100 filament sources are used for excitation of the object of interest. The real 

part of reconstructed relative permittivity is compared to exact relative permittivity. 

 

 Figure 5.45 and Figure 5.46 shows image reconstruction results when 100 sources 

and 400 sources are used to excite the object of interest, respectively. Results show more 

accurate image reconstruction accuracy with respect to the situation when smaller num-

bers of sources are used for object of interest excitation. 
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Figure 5.46: 400 filament sources are used for excitation of the object of interest. The real 

part of reconstructed relative permittivity is compared to exact relative permittivity. 

 

Figure 5.47: Single filament source is used for excitation of the object of interest. The 

imaginary part of reconstructed relative permittivity is compared to exact relative permit-

tivity. 

0 0.2 0.4 0.6 0.8 1
2

2.5

3

3.5

4

4.5

f/p

R
e

[e
(f

)]

 

 

Actual

Imaged



 

 

 80 

 

Figure 5.48: 10 filament sources are used for excitation of the object of interest. The im-

aginary part of reconstructed relative permittivity is compared to exact relative permit-

tivity. 

 

 Figure 5.47, Figure 5.48 and Figure 5.49 shows rapid increase in image reconstruc-

tion accuracy for 1 source, 10 sources, and 50 sources, respectively. We believe this is 

due to fewer oscillations in incident field.  
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Figure 5.49: 50 filament sources are used for excitation of the object of interest. The im-

aginary part of reconstructed relative permittivity is compared to exact relative permit-

tivity. 

 

Figure 5.50: 100 filament sources are used for excitation of the object of interest. The im-

aginary part of reconstructed relative permittivity is compared to exact relative permit-

tivity. 
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Figure 5.51: 400 filament sources are used for excitation of the object of interest. The im-

aginary part of reconstructed relative permittivity is compared to exact relative permit-

tivity. 

 

Figure 5.52: Error norm per pixel variation is illustrated when the number of sources is 

varied. 
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 We have observed incident field has an impact on permittivity reconstruction as illus-

trated in Figure 5.52. When incident field has less variation on the object of interest, bet-

ter permittivity reconstruction is observed. 

 

5.4 Effect of frequency variation 

In this section, we vary frequency to observe effect on reconstructed image. We take 

300 MHz, 450 MHz, and 600 MHz frequency values. When the homogeneous part of 

background is air, the resolution is 0.25 meters. For homogeneous part of background’s 

relative permittivity 2, 4, 9, and 16, the resolution is 0.1768 meters, 0.1250 meters, 

0.0833 meters, and 0.0625 meters, respectively. Results show best reconstruction at high 

frequency. This is because focal width is narrower at high frequency, as discussed in sec-

tion 4.6. Focal width is given by equation (4.6.6) as: 

   
 

   
 

where,   is lens radius, and    is wave number in homogeneous part of background. High 

frequency produces narrow focal width. This produces better reconstruction. Numerical 

results are illustrated in Figures 5.53 to 5.58. 
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Figure 5.53: When 300 MHz time-harmonic field is used to interrogate object of interest, 

reconstructed real part of relative permittivity is compared to exact relative permittivity. 

 

 

Figure 5.54: When 450 MHz time-harmonic field is used to interrogate object of interest, 

reconstructed real part of relative permittivity is compared to exact relative permittivity. 
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Figure 5.55: When 600 MHz time-harmonic field is used to interrogate object of interest, 

reconstructed real part of relative permittivity is compared to exact relative permittivity. 

 

Figure 5.56: When 300 MHz time-harmonic field is used to interrogate object of interest, 

reconstructed imaginary part of relative permittivity is compared to exact relative permit-

tivity. 
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Figure 5.57: When 450 MHz time-harmonic field is used to interrogate object of interest, 

reconstructed imaginary part of relative permittivity is compared to exact relative permit-

tivity. 

 

Figure 5.58: When 600 MHz time-harmonic field is used to interrogate object of interest, 

reconstructed imaginary part of relative permittivity is compared to exact relative permit-

tivity. 
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Figure 5.59: Illustration of error norm per pixel variation when different frequencies are 

employed to reconstruct the object of interest. 

 

 

 We note better permittivity reconstruction at high frequencies. This is illustrated in 

Figure 5.59. Higher frequency increases electrical size of the Maxwell fish-eye lens used. 

Hence, focal width is also reduced in high frequency cases as discussed in Section 4.6. 

This results in better permittivity reconstruction. 

 

5.5 Higher resolution 

From section 5.1, we observed acceptable accuracy with 
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norm when resolution is 
  

 
. The figure shows focal beams well separated at this resolu-

tion. Higher resolution will bring the focal beams closer overlapping each other. This will 

increase higher contribution from adjacent pixels at the observation location.  This will 

decrease achieved well-posedness and hence, result in poor image reconstruction. In this 

section, we set our resolution to 
  

 
 and keep the other parameters same. From numerical 

results, we observe reconstructed image loses accuracy as shown in Figures 5.61 to 5.70. 

 

 

Figure 5.60: Norm of Green’s function over angular distribution when the resolution is 

  

 
; where,    is wavelength in homogeneous part of background. 
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Figure 5.61: When air is in homogeneous part of background, real part of relative permit-

tivity reconstruction is compared to exact relative permittivity. 

 

Figure 5.62: Real part of relative permittivity reconstruction is compared to exact relative 

permittivity when homogeneous part of background has relative permittivity 2. 
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Figure 5.63: Real part of relative permittivity reconstruction is compared to exact relative 

permittivity when homogeneous part of background has relative permittivity 4. 

 

 We note that low contrast produces better image reconstruction. Also, we note that 

results lose accuracy when contrast is increased. More image reconstruction accuracy was 

obtained with 
  

 
 resolution with higher contrast. 
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Figure 5.64: Real part of relative permittivity reconstruction is compared to exact relative 

permittivity when homogeneous part of background has relative permittivity 9. 

 

Figure 5.65: Real part of relative permittivity reconstruction is compared to exact relative 

permittivity when homogeneous part of background has relative permittivity 16. 
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Figure 5.66: When air is in homogeneous part of background, imaginary part of relative 

permittivity reconstruction is compared to exact relative permittivity. 

 

Figure 5.67: Imaginary part of relative permittivity reconstruction is compared to exact 

relative permittivity when homogeneous part of background has relative permittivity 2. 
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Figure 5.68: Imaginary part of relative permittivity reconstruction is compared to exact 

relative permittivity when homogeneous part of background has relative permittivity 4. 

 

 Imaginary part of permittivity reconstruction exhibits the same characteristics as of 

real part of permittivity reconstruction. Gibbsian oscillations increase with higher con-

trast. Low contrast gives more accurate results. With 
  

 
 resolution, we can reconstruct 

higher contrast with low inaccuracy in result compared to 
  

 
 resolution. 
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Figure 5.69: Imaginary part of relative permittivity reconstruction is compared to exact 

relative permittivity when homogeneous part of background has relative permittivity 9. 

 

 

Figure 5.70: Imaginary part of relative permittivity reconstruction is compared to exact 

relative permittivity when homogeneous part of background has relative permittivity 16. 
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Figure 5.71: When we attempt to reconstruct permittivity at higher resolution, error norm 

per pixel variation is illustrated. 

 

 In the attempts to obtain higher resolution permittivity reconstruction, we have ob-

served the following: 

 When we attempt permittivity reconstruction at higher resolution, Gibbsian ring-

ing increases. We believe this is due to loss of well-posedness when resolution is 

increased. 

 Lower contrast exhibits lower Gibbsian ringing. 

5.6 COMSOL Verification 

We have used custom written method of moment code using Mie series to obtain 

Green’s function for 11-layer Maxwell fish-eye lens to solve forward problem. To verify 
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the results, we solved the same problem using commercial off-the-shelf software: COM-

SOL [12]. 

 

We used COMSOL to solve forward problems. We use field values from COMSOL 

to solve inverse source problem. Subsequently, we apply volumetric equivalence princi-

ple to obtain contrast, ( ( )    ), within the body of interest; where,    is homogeneous 

part of background’s relative permittivity. These results further verify our proposed tech-

nique of posing inverse problem in well-posed form through appropriate background 

choice. Following figures illustrate relative permittivity reconstruction. The figures show 

higher ringing in case of higher contrast. We believe this is due to COMSOL’s numerical 

error in forward problem solution. 

 

 

Figure 5.72: Real part of reconstructed relative permittivity is compared to exact relative 

permittivity distribution when homogeneous part of background is air. 
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Figure 5.73: Real part of reconstructed relative permittivity is compared to exact relative 

permittivity distribution when homogeneous part of background is 2. 

 

 

Figure 5.74: Real part of reconstructed relative permittivity is compared to exact relative 

permittivity distribution when homogeneous part of background is 4. 
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 Gibbsian oscillations are found to decrease with low contrast reconstruction. Figure 

5.74 is with the lowest contrast and is found to reconstruct image with lowest Gibbsian 

oscillations. Figure 5.76 is image reconstructed with relative permittivity 16 in homoge-

neous part of background. It shows highest Gibbsian oscillations in the image. 

 

 

Figure 5.75: Real part of reconstructed relative permittivity is compared to exact relative 

permittivity distribution when homogeneous part of background is 9. 
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Figure 5.76: Real part of reconstructed relative permittivity is compared to exact relative 

permittivity distribution when homogeneous part of background is 16. 

 

 

Figure 5.77: Imaginary part of reconstructed relative permittivity is compared to exact 

relative permittivity distribution when homogeneous part of background is air. 
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Figure 5.78: Imaginary part of reconstructed relative permittivity is compared to exact 

relative permittivity distribution when homogeneous part of background is 2. 

 

Figure 5.79: Imaginary part of reconstructed relative permittivity is compared to exact 

relative permittivity distribution when homogeneous part of background is 4. 
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 Imaginary part and real part of permittivity reconstruction show similar characteris-

tics. Low contrast produces more accurate image. Figure 5.79 is reconstructed permittivi-

ty with lowest contrast; whereas, Figure 5.81 is with highest contrast. More inaccuracy is 

obtained due to more Gibbsian oscillations in high contrast permittivity reconstruction. 

 

 

Figure 5.80: Imaginary part of reconstructed relative permittivity is compared to exact 

relative permittivity distribution when homogeneous part of background is 9. 
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Figure 5.81: Imaginary part of reconstructed relative permittivity is compared to exact 

relative permittivity distribution when homogeneous part of background is 16. 

 

Figure 5.82: Error norm per pixel variation is illustrated when we confirm our proposed 

technique using COMSOL. 
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We observed following observations in this section: 

 We have been able to confirm validity of our proposed technique using forward 

problem solutions from a different solver. 

 Also, these results confirm that we have not committed inverse crime.  

 

5.7 Noisy data 

In this section, we test our method with various signal-to-noise ratio (SNR). These 

results show robustness of solution using the proposed method. When less noise is intro-

duced, we observe better permittivity reconstruction. Also, we observe that low signal-to-

noise ratio (SNR), i.e. high noise, give us low permittivity reconstruction error.  This 

shows robustness of our method. Also, it confirms that inverse crime is not performed. 
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Figure 5.83: With no noise added, real part of reconstructed relative permittivity is illus-

trated. 

 

 Figure 5.83 and Figure 5.84 show real part of relative permittivity reconstruction. We 

present permittivity reconstruction without added noise in Figure 5.83. With signal-to-

noise ratio (SNR) 20, as shown in Figure 5.84, permittivity reconstruction shows small 

increase in reconstruction error. 
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Figure 5.84: When signal-to-noise ratio (SNR) is 20, real part of reconstructed permittivi-

ty distribution is compared to true permittivity distribution. 

 

Figure 5.85: Real part of reconstructed permittivity distribution compared to true permit-

tivity distribution when signal-to-noise ratio (SNR) is 10. 
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 When the signal-to-noise ratio (SNR) is decreased to 10, error in inverse problem so-

lution increased as shown in Figure 5.85. Figure 5.86 shows real permittivity reconstruc-

tion with signal-to-noise ratio (SNR) 5. Error in inverse problem solution is found to be 

less sensitive with lower signal-to-noise ratios (SNR), i.e. higher noise.  

 

 

Figure 5.86: With signal-to-noise ratio (SNR) set to 5, real part of reconstructed permit-

tivity distribution is illustrated. 
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Figure 5.87: With no noise added, imaginary part of reconstructed relative permittivity is 

illustrated. 

 

 Imaginary part of permittivity reconstruction without any noise added is shown in 

Figure 5.87. When noise is added, imaginary permittivity reconstruction is shown in Fig-

ure 5.88 with signal-to-noise ratio (SNR) 20. It is noted that inverse problem solution 

without noise provides better permittivity reconstruction.  
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Figure 5.88: When signal-to-noise ratio (SNR) is 20, imaginary part of reconstructed 

permittivity distribution is compared to true permittivity distribution. 

 

Figure 5.89: Imaginary part of reconstructed permittivity distribution compared to true 

permittivity distribution when signal-to-noise ratio (SNR) is 10. 
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 Figure 5.89 shows permittivity reconstruction with signal-to-noise ratio (SNR) set at 

10. Also, when signal-to-noise ratio is set to 5, imaginary part of reconstructed permittivi-

ty is illustrated in Figure 5.90. We note that introduction of noise produces more errone-

ous permittivity reconstruction. The solution does not change rapidly with high noise in-

troduction. This shows robustness of inverse problem solution obtained through our pro-

posed method. 

 

 

Figure 5.90: With signal-to-noise ratio (SNR) set to 5, imaginary part of reconstructed 

permittivity distribution is illustrated. 
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Figure 5.91: Effect of noise on error norm per pixel is illustrated. 

  

 

This section has presented effect of noisy data. All the observations are listed as follows: 

 Low signal-to-noise ratio (SNR), i.e. high noise, has been introduced to show 

robustness of our solution. Our solution is stable and hence introduces low er-

ror with noisy data. 

 Robustness of inverse problem solution using proposed technique proves that 

we have not committed inverse crime. 
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Chapter 6 

Conclusion and Future work 

  

 

6.1 Conclusion 

We have presented well-posed inverse problem solution utilizing Maxwell fish-eye 

lens. The results suggest inverse problem can be made well-posed through appropriate 

background medium choice. For the demonstrated cases, elimination of ill-posedness 

shows proper permittivity reconstruction for high enough contrast. We are not introduc-

ing resolution improvement. Other conventional techniques exhibit same resolution, such 

as diffraction tomography, but they work for low contrast. Our proposed technique shows 

proper reconstruction for high enough contrast and, at the same time, improvises well-

posedness despite noisy data. So, pursuing solution to inverse problem using proposed 

method will not only pose inverse problem in well-posed form, but also will increase ro-

bustness of the solution against noisy data. The main value of this work is not the practi-

cality of the problem we have considered, but rather the demonstration that inverse prob-

lem can be cast in well-posed form. Our objective was to demonstrate that inverse source 
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problem and inverse scattering problem are not inherently ill-posed. They are ill-posed 

because typically experiments are staged in free space or in medium which does not sup-

port separation of scattered fields onto distinct observation locations. We have numerical-

ly presented this concept to reconstruct permittivity accurately and its robustness to noisy 

data. Extensions are required to make this method more practical. This work is a first step 

to a path where we seek proper background medium to cast two-dimensional or three-

dimensional inverse problem in well-posed form. The numerical experiments were done 

in absence of inverse crime, i.e., the forward problem was solved with higher discretiza-

tion. In addition, when the inverse problem was solved using noisy data, the proposed 

method remains stable. Thus, validating the robustness of the method. 

 

 

6.2 Future work 

The presented technique casts inverse problem in well-posed form for an object of in-

terest with one dimensional permittivity variation. The challenge that follows is to gener-

alize the concept to two dimensions and subsequently to three dimensions. Further re-

search needs to be made to formulate methods for two dimensional permittivity recon-

struction. The goal is to concentrate scattered field emanating from different regions to be 

focused onto different observation locations. To concentrate scattered field, microwave 

lenses may be utilized. In addition, holograms may be used to form image of two dimen-

sional permittivity variations. 
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