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Abstract

This thesis reports the development of algorithms required to implement an automated fault

detection system for stluctural health rnonitoring (SHM) applications for slab-on-girder

bridges. The system is designed to detect girder cracking failures by modeling damage as

a reduction in moment of inertia. To properly impiement fault detection, three algorithms

needed to be designed.

This ihesis demonstlates how rrnrvanted effects cornrpt meâ^snrement data, which compli-

cates extlacting useful information. A preprocessing algorithm is proposed that is shown

to rernove two explicitly defined negative effects, while keeping the useful information un-

touched. Once these effects are removed, the measurement data is processed to extract

vehicle events. Special care is taken to implement cascading of input data, to allow a

system to process the large amount of data generated by an SHM system.

To determine structure failure, a classification algorithm was developed which was shown,

through sirnulation, to be able to detect girder cracking failures based on features extracted

from the event infbrmation. The classification algorithm is based on anornaly detection and

uses an error count to guarantee a repolted failure is a persistent failure.
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Chapter 1

trntroduction

Structural health monitoring (SHM) is a developing fleld based on the idea of autonomously

monitoring the health and stability of structures for the purposes of identifying the state

of the structure. One use for this monitoring is failure detection and prevention. This
project expands a pre-existing SHM system, composed only of a monitoring station, with
the goal of developing algorithms for continuous monitoring and automated fauit detection

that can eventually be employed on-site to provide continuous, autonomous monitoring of
the structure.

1.1 Motivation

The over'-iding rnotivation fol this project is that there a.r'e no systems commercially avail-

able that can automatically and reliably interpret measurements from an existing SHM

system to determine the heaith of a bridge. The current system for fault detection of a

bridge involves sending an inspection team to inspect the bridge visualiy. This inspec-

tion typically occurs every two years. As a result, any faults that can grow frorn visually

urnoticeable to complete failure within a two year period may be missed by the current

inspection plocess.

Because of these shortcomings, having a system that can continuously monitor a bridge and

deterrnine the state without requiring human input is a vast improvement over standard

rnethods. However, an automatic SHNI system does not necessarily need to remove all
hurnan fâctors fïorn monitoring and prevention to be considered a success. With a¡tificial
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intelligence (AI) at the level it is today, humans are still much more adept at recognizing

where failures are in a bridge and how to repair them. If a monitoring system can simply

aiert a monitoring station that something is not right with the bridge, an expert can be

sent to inspect the bridge to determine what caused the system to conclude there was a

fault.

Another benefit of having an automated SHM system exists for bridges located in remote,

rural areas. These areas can be extremely far from an urban centre, yet the highways

stili require bridges. As a result, it can be expensive to deploy an inspection team on a

regular basis when the bridge is functioning properly. By installing an automated system,

it can remotely monitor the bridge and report the status to a facility in an urban centre,

preventing expensive deployment unless a problem is detected.

To provide further motivation for this project, there was very little research found that
v/as concerned with modelling structure fãilure and implementing a classification method

for determining if the modelled failule is occurring. This thesis can be used as a basis for

methods on modelling structure failure as well as classifying this failure.

L.2 Scope

The scope of the project is to develop mea.surement processing aigorithrns that can be

impiemented in an SHM instrument. Horvever, implementing a physical instrument that
can be deployed is not part of the project. While thele rnay be a number of potential failure

modes for a structure, this project focuses only on identifying and determining failules that
are detectable through the bridge girders. As well, the algorithrn developed for the project

should ideally differentiate between measurement system failure and structure failure to

ensure robustness to irnperfections in the existing system. The project should also be able

to get infbrmation about different components of the system.

The entirety of the project is designed using the Red River-North Perimeter Bridge, dis-

cussedinSection2.l. Thisbridgeisusedforallaspectsoftheprojectthatrequireaphysical
stlucture. Empirical data is taken frorn the measurements gathered from the system. in-

stalled on this bridge and sirnulations are done using computational rnodels of this bridge.

As a result, processing is designed to accommodate application-speciflc issues that alise

from the bridge, and may not apply generally to all solutions. Ensuring that the solution

is general and can apply to every bridge was not a priority; however, by examining the
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base concepts and methods it is very possible that the solution can indeed be applied to a
general structure rvith certain application-specific modifications.

1.3 Proposed Solution

The proposed solution to the problem is to develop an intelligent monitoring system that
can continuously monitor a structure with the goal of identifying problems as they occur,

rather than periodically monitoring the structure at fixed intervals. The system is composed

of algorithms that monitor the strain channels supplied by the existing measurement system

for anomaiies. For the purposes of monitoring, the response to vehicle Ìoading events was

chosen as the main feature that would provide the required information about the state

of the bridge. In order to use the events, they must first be identifled and extracted,

and then classified. Unfortunately, when observing the strain channels directly fiom the

Ineasllrernent systern, sorne problerns were discovered that ruade it diflicult tr.¡ extract events.

These problems lequire using preliminary processing to clean the signal. As a result, there

are three subsystems that make up the system: the preliminary processing subsystem, the

event detection subsystem, and the event classification subsystem.

The preliminary processing subsystem is char-ged with removing unwanted and negative

effects fiom the signal to facilitate event detection and classification. To do this, the un-

wanted effects must first be identifled so that a method can be im.plemented to remove

them. Chapter 3 provides an in-depth discussion of the algorithms and theory necessary to
undelstand this subsystem.

The goal of the event detection algorithm is to separate the events from the rest of the signal

so that they can be properly analyzed. For this to be possible, the algorithm must be able

to identifii automatically both where events are located in the channel, and which channeis

contain the same event for comparison purposes. Chapter 4 covers the event detection

algorithm.

The final subsystem, the event cÌassification system, is the rnain component of the project.

The cl¿rssifier is bascd clrt mrornaly detcction: that is, if scluiethiug is f'ouud tllat docs not

fit a given model, it is considered anomalous, or failed. To properly dcsign a classification

system, it is first required to select descriptive features, and then select a failure model.

Once the model is selected, simulations are required to determine how the model will show
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a fãilure. It is only afTer this is done that a cìassifier can be

The classification subsystem is discussed in Chapter 5.

Figure 1.1 shows a block diagram of the proposed system.

Sampled analog
input from structure

developed and implemented.

Raw Strain
Data

Cleaned
Strain Data

Event Data

Output: System either Failing
or Not Failing

Figure 1.1: Block Diagr-am of Proposed System.

Acquire measurements from
current measurement system

lsolate events and determine
event parameters

Process measurements to
remove unwanted effects

Classify events as either
expected or anomalous
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L.4 System Requirements

For the system to be completely successful, several requirements have to be satisfied. These

are listed below in no particular order.

1. The system must be able to process r seconds of data in less than r seconds.

2. The system must be automated and reliable.

3. The system must not cause an alarm from sensor faults.

4. The system must not identify false positives or false negatives.

5. The system must have a r¡/ây to isolate an evaluation component.

6. The system must be robust torvards non-structural induced fluctuations.

Of these requirements, alì were successfully implemented with the exception of Requirement

3. Development of the project revealed that the existing SHM measurement system provides

no ledundancy for individual sensors. Because of tllis, fatal sensor errors, where the sensor

ceases to function and is unrecoverable, are unable to be separated fi'om structure failures.

The system does not, however, raise an aiarm for non-fatal sensor failures provided the

sensor recovers within a reasonable amount of tirne and begins to operate properly once

again.



Chapter 2

Existitrg System

In order to completely understand the project and this report, some background information

on the existing system that was the source for the project is required. The existing system is

composed of three different components: the bridge, the meastirement system, and the data

acquisition unit. The required information will be provided for each of these cornponents

throughout this chapter.

2.L The Bridge

The bridge used for this project, whenever a physical representation was requiled, is the

Red River-North Perimeter Bridge. This bridge spans the Red River north of Winnipeg,

Manitoba, Canada on Provincial Tluck Highway 101 (PTH 101). A sensing system is

installed on the portion of the bridge next to the abutment on the eastbound side, having a

span of 25m and an average width of 12m. The bridge consists of a concrete deck supported

by five steel girders with metal straps connecting them.

Figure 2.1 shows a basic drawing of a cross-section of the bridge that is being monitored,

showing the girders and their positions relative to each other. It also plovides numbering

for the girdels and indicates from which direction the bridge is being viewed. Since the left

edge of the image is the edge that faces the centre of the bridge, this is the side closest to the

westbound side of the bridge. This means that, viewing this cross-section, the direction of

traffic is into the page. This girder numbering is very important, as all f'utr.rre refêrences to

girders are done using these numbers. As an exarnple, the girder closest to the westbound
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To Centre
of Bridge

Girder # 4 Au"r.g" 5

2.126m

Figure 2.1: Cross Section of Red River-North Perimeter Bridge"
Showing Girder Information [1].

(Not To Scale)

side of the bridge is named Girder 1. The distance between Girders 4 and 5 is shown as

being variable; this is because Girder 5 is angled. For the pulposes of the project, the girder

is assumed to be pa.r'allel to Girder 4 with a separation equivalent to the average separation

given in Figure 2.1.

In addition to knowing the naming convention and the locations of the girders, knowiedge

of the location of the traffic lanes is also irnportant. Figure 2.2 shows a cross-section of

the bridge with the position of the three lanes marked relative to the edge of the bridge,

and provides key distances flom the girders to the lanes. Throughout this report, the three

lanes are referred to as the Pass'ing Lane, the Norn¿al Lane, andÍ,he Mergzng Lane, naming

conventions taken from highway dr-iving conventions. It can be seen that the Passing Lane

sits on Gilders 1 and 2, the Normal Lane sits mainly on Gir-der 3, and the Merging Lane

sits on Girder 4.

To Centre

Merging
Lane

Varies

of Bridge

Girder #

Figure 2.2: Cross Section of Red River-North Perimeter Bridge
Showing Lane Information [1].

(Not To Scale)

2.743m | 2.743m

7.320m
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2.2 Measurement System

The measurement system installed on the bridge is a combination of strain gauges and ther-

mocouples. The strain gauges used a¡e metal foil strain gauges (Vishay CEA-06-W2504-

3b0) [2][3], and are sampled electrically by the data acquisition unit. Metal foiì gauges have

a va¡iable resistance that is dependent on the area of the gauge. If a surface to which the

gauge is attached bends, this area will stretch, which will then change the resistance. This

change in area can be then converted into a strain value by using an appropriate factor,

specific to the device.

There are thirty-six metal foil strain gauges installed on the Red River-North Perimeter

Bridge. Of these, twenty are on the connecting straps between girders, denoted as ,9rr, and

sixteen are on the girders, denoted as Grr. The locations of these sensors are shown in Figure

2.3. Girder gauges marked with an asterisk are mounted at the top of the girder.

PG1

*G2

,l
0slr Il,L*

.....+G6',G7 
i

LTHL ,G8', 09

t;
IISB

ir
,, T* T* I'o

-+G10 
tì0

çG3 ir

T'iEþlr'-i','
qG4

f,;.
,l

-r

T\l -l
srz tsle tsrs Êszo

---']-cr¿.'crs I

Figure 2.3: Location of Sensors on Red River-North Perirneter Bridge.
(Image Credit: Dean K. McNeilL)

According to Figure 2.3, Girder l contains Sensors G1, G6 and G7, Girder 2 contains

Sensors G2, G8 and G9, Girder 3 contains Sensors G3, G10 and G11, Girder 4 contains

Sensors G4, G12 and G13, and finally Girder 5 contains Sensors G5, G14 and G15. Sensor

G0 is a r-eference (also called a dummy) gauge; this means that is it theoretically unloaded
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and was installed to provide a reference for interpreting the loaded sensor values. For this

project, the sensols on the straps are ignored, and will not be discussed here. There are also

sensols installed within the deck itself, however, Ìike the sensors on the straps, these sensors

are not used in the project. Each sensol generates its own data stream; this is referred to

as the data channel for the sensor. This is used in the report to refer to the data stream the

sensor generates, rather than the sensor itself. As an example, Channel 1 is the data stream

generated by Sensor G1. Figure 2.4 shows a cross section of a girder at the abutment and

the midspan, with the sensor ìocations shown for each location.

1260mm

100mm

(a) Abutment Girder

300mm

1260mm

100mm

(b) Niidspan Girder.

Figure 2.4: Cross Section of Girders, Showing Sensor Locations.
(Not to Scale)

In addition to the sensors, there are a number of thermocouples (Ornega 5TC-TT-20-36) in-

stalled on the bridge to measure ambient temperature [2]. To work properly, thermocouples

require a reference junction that is kept at a constant temperature. For this installation,

the reference is kept with the data acquisition unit.
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Figure 2.5 shows some of the sensors installed on the bridge; specifically four strap sensors

(circled in red) and one girder sensor (circled in green).

Figure 2.5: Installed Sensors on Red River-North Perimeter Bridge.
(Irnage Credi,t: Dean K. McNeilQ

10
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2.3 Data Acquisition Unit

The data acquisition system is that which interfaces between the measulement system and

the outside world. In order to poii the measurement system, the data acquisition unit (DAQ)

implements a Wheatstone Bridge in the quarter-bridge setup [ ]. This resistor bridge uses

matched resistors and determines the change in resistance of one resistor as a function of

the output v-oltage [4]. Figure 2.6 sìrows a traditional Wheatstone Bridge. In this figure,

-Rç is the gauge resistance, modeled as a matched resistor with an error term AÃ.

R6=ft+¡P

Figure 2.6: Wheatstone Bridge [4].

The output voltage is given in Equation 2.I [4).

Í/ _ ( R+ LR
"o- \24+aË n: (ffio^)r' eI)

(2.2)

2R+2LR- (2R+ AÃ)-å) n:( 4R + 2ô'R

The change irr resistance, A-R, is expressed as a function of the output voltage in Equation

2.2.

4RV"A.R:
v" - 2vo

11
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Using the Wheatstone Bridge, the strain gauges are sampled at a rate of 100H2. The DAQ

outputs a measurement file every 30 seconds, which consists of the prior 3000 samples of

data. This frle is then transferred as a binary ûle via an Ethernet connection to a computer

hosting a database server. Once the measurement flle is on the database server, it is

converted to the database format and stored in the database in an easily accessible form.

Figure 2.7 shows one of the nodes of the DAQ, responsible for monitoring a subset of the

gauges.

Figure 2.7: Sensor Node for Red River-North Perimeter Bridge.
(Image Credit: Dean K. McNei,ll)

The data acquisition system is located in a cabinet under the bridge, attached to the

abutment. This cabinet contains all the computing instruments needed to monitor the Red

River-Nolth Perimeter Bridge. Some of these instruments cannot be exposed to fi'eezing

tempelatures. As a result, a thermostatically controlled heater is installed in the cabinet,

with the purpose of keeping the temperature above 0oC.

t2
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2.4 Problems \Mith the System

All realized systerns operate in a way that is different from the optimal, laboratory-based

predictions. The existing system is no exception to this and some problems exist with the

measurement system and the DAQ. These are that the sampling rate can cause problems,

the thermocouple reference is not held at a constant temperature, and the strain output is

extremely influenced by temperature.

The sampling rate causes problems because it may be under-sampling the strain signature

generated as a vehicle traverses the bridge. This is described in detail in [5]. In short, by

sampling at only 100H2, it is possibie to miss the true peak of the strain signature, giving a

poor digital representation of the curve and potentially leading to false conclusions. This is

in reality the only problem with the sampling rate. In this particular case, aliasing is not a

concern since the sampling rate is high enough to avoid aliasing all but the peak component

of an event, which allows for a good representation of the event shape.

A more serious problem is that the thermocouple reference is not held at a constant temper-

ature. As a result, the measured temperature from the thermocouples is dif-ferent from the

true ambient temperature: it is affected by both changes in the cabinet ternperature, as well

as changes in th.e ambient temperature. This leads to serious oscillatory problems in the

thermocouple output when the heater activates during the colder periods of the year.

The most serious problen with the current system is in the impiernentation of the Wheat-

stone Bridge. By using a quarter bridge, the only part of the resistor bridge that is exposed

to the environment is the strain gauge. Since the lVheatstone Bridge attempts to use three

matched, high precision resistors to determine the variation in gauge resistance, having only

the gauge resistor exposed to the ambient temperature leads to temperature induced fluc-

tuations in the strain sirnila¡ to that described in [0][Z][B]. While this may not be a serious

concern, it is compounded by the presence of the heater. In the winter months, the heater

causes the cabinet temperature to oscillate, resulting in a severe temper-ature mismatch in

the Wheatstone Bridge. These rapicl fluctuations pose a serious problem to any attempted

investigation of the signals. Figures 2.8 and 2.9 demonstrate the affect the Ìreater has on

recorded strains. Figure 2.8 is a plot of 24 hours of data taken from the Red River-North

Perimeter- Bridge on July 4tt', 2007 (the summer). Figure 2.9 is a simiÌar plot of data taken

from the same bridge on January 4th, 2008 (the winter). Both Figures 2.8 and 2.9 show the

unloaded dummy channel and how it compares to the temperatule.

13
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In the summer, the strain data tends to track the temperature in a slow, almost linear

fashion. However, in the winter, the strain varies wildly due to the temperature oscillations

caused by the heater turning on and off. The variations in the winter are so severe that

they can be noticed even on a small time scale. This causes issues, described in more detail

in Section 3.2, when attempting to examine events.

3456
Seconds alter 12:004M x 10'

Figure 2.8: Strain and Temperature Comparison, July 4th,2007.
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Secoñds alter 12:00AM

x 10"

Figure 2.9: Strain and Temperature Comparison, January 4th, 2008.
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Chapter 3

Data Collection And
Preprocessing

For a measurement system to be useful, there needs to be a way to remove data frorn the

system. This data must be rernoved flom the system in a suitable form. For the purposes

of structural health monitoring, data is generated in a stream. Therefore, the system must

have a way to process and handle the continuous data without unnecessarily losìng samples

or destroying useful information.

When the physical data is flrst removed from the measulement system, it is not in an

acceptable form to be used with any other portions of the project. There is the potential

fbr unwanted effects to be present in the recorded signals. Two effects considered are

environrnental effects, related mainly to temperature variations, and a zero-offset error,

lelated to the measurement system not being properly initialized at installation.

Both of these effects must be removed before the data can proceed to the event detection

aigorithm. However, removing them was a non-trivial task and many methods failed before

a suitable rnethod rvas found.

3.1 Data Collection

Speciaì consideration is necessary when dealing with lalge amounts of data. Large amounts

of data must be processed in pieces, because of physical limitations imposed on computing
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systems such as available RAM and hat'd disk space. Since structural health monitoring

generates huge amounts of data, and is continuously generating more data, there is no way

to examine the entirety of the data in one block. As a result, some way to cascade sensor

data must be implemented. For the purposes of this project, data was read directly from

an online database. There was no interaction done with the measurement systemT as an

interface is already in place that takes the physical measurements and places them in the

database.

3.1.1 Data Storage

The database stores its data on a sample-by-sample basis. Each sample has a corresponding

timestamp with a resolution of one second, and a sample index which ranges from 1 to 100.

As weil, each sample has data stored channel-by-channel; for this project, the only data

elements of interest were the girder strain measulements and the external thermocouple

output. The data in each sarnple is composed of fifteen loaded strain channels and one

unloaded strain channel, as weil as the average of seven thermocouples.

3.I.2 Reading Data into the System

Since the data is located on a MySQL database server) it can be extracted in arbitrarily

sized bÌocks. Each block is then processed in arbitrarily sized windows. For this project,

th.e window size used is 15,000 samples, tlanslating to 2.5 minutes of readings, assuming

no samples are missing. This assumption is not always accurate, as there a-r*e many gaps

in the recorded measurements. However, there is nothing that can be done about these

gaps, since they result fi'om issues with a cornmunication link, with the corresponding data

being irrecoverabÌe. By using windows that are based on the amount of samples and not on

timestamps, these gaps can be ignored fol the pulpose of inputting data into the system.

While an event rnay become corrupted by these gaps, only one event can be corrupted per

gap, and the gaps ale not vely common.

To ensure continuity of the data, the input rvindo\¡/s ale cascaded during processing. Once

half the window, or 7,500 samples, has been examined, the first 7,500 samples are removed

and the next 7,500 a¡'e then read. This requir-es only the current 15,000 samples to be stored

in the working memory of the plocessing program. It should be noted that the 7,500 sample

cutoff is a loose limit; the event detectoÌ mây require reading more than 7,500 samples to
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extract an entire event, this is allowed by the system and will be discussed further in Section

4.2. If the algorithm detects that the current rvindow is the final window (that is, there is no

more data to read), then the entire 15,000 samples are examined without cascading.

Blocks of data can be taken off the database server in almost any length. If the data is

stored on a hard disk, more data can be taken in one piece than if the data was stored only

in the RAM allocated to the softwa¡e. A minimum length of 15,000 samples is required to

satisfy the requirements of the window, and the maximum length depends on the storage

of the machine. For perspective on the typical file size that can bc expected, a file with two

full days of data, or 17,280,000 data points x 17 data channels, has an averâge size of 3GB.

Input file cascading can be done if required, however, if frles are not cascaded, the loss of

infbrmation at the boundary between files will be minimal and not a serious concern due to

the sheer amount of information available to be processed. Depending on concerns about

the speed of degradation of the structure, the block size can I'ange flom being long enough

for bulk processing (for example, processing the data from the previous day at 12:004M

each day), or smaller for a more real time approach (for example, processing the data in 20

minute pieces).

3.2 Data Preprocessing

The main goal of processing the strain data is to isolate vehicie events, since these events

contain the information required to draw conclusions about the state of the structure. Before

the events can be extracted from the rneâsurerrrents, however, several problems exist with

the raw data.

Two unwanted effects are present and easily visible rvhen examining the raw strain data

from the gauges on the bridge: environmental fluctuations and a zero-offset value. The

main cause of the environmental fluctuations is temperature, and as a result, temperature

effects arrd errviro¡rrnental effects are used interchaugeably. Because of the two problernatic

cffccts, processiug rnust bc perf'orrned on the cl¿l,t¿r, bcf'ore the evettt <Ietectiorr algorithn catt

be applied. This is considered the preprocessing step, since it is done to prepare the data

so that it can be processed by the event detection algorithm.

For the purpose of this discussion, the signal is assurned to be noiseÌess. Wrile in reality

the signal is fairly noisy the preprocessing does not try to remove the noise and, as a result,
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providing consideration for the noise has no impact on the process. It is therefore left out

to avoid unnecessa¡'y complications to formulas by introducing noise-based terms.

3.2.I Temperature Effect

The raw data obtained directly fiom the measurement system may contain fluctuations

due to temperature, even when considering the relatively small size of the data window

cornpared to ternperature cycles t6]17][8][9]. T]ris tcrnperature effect must be rernoved;

ignoring it creates inconsistencies in measuring events and complicates any event detection

algorithm that is implemented. The temperature effect can be modeled as an additive effect,

added to the original signal such that Equation 3.1 represents the strain output with the

temperature effect included.

S,(¿) :S"(ú)+ f(r(t)) (3 1)

Where S"(t) is the output strain from the system at time ¿, S"(¿) is the strain from the

structure at time t, T(t) is the ternperatule at time ú and /(7) is an unknown transformative

function that is applied to the temperature.

Some difficulties arise in trying to remove the temperature effect shown in Equation 3.1.

First is til¿rt it cannot be assurned tirat the effect is significunt in every data window. In

othcr words, the portion of a temperaturc effcct present may not necessarily impact the

ontput of the system in any way. In fact, in most data windows, the temperature effect is

not signiflcant. Another issue is that, even if a temperature effect is found to be significant

during a rvindor¡', it may not be significant on all channels in that same window. Fol the

effect to be considered present and significant, it is required that /(7) + C, C constant,

for the duration of the u'indoq'. To compound the difficulty in finding an algorithm to

remove temperature fluctuations , f (f) is not identical for all channels, Ieading to individual

channels showing different variations for the same temperature. Since the effect may not

be present in all channels, the algorithm should be designed to preserve channels that do

uot Ìrave a tetnperatulc fluctu¿rtiort plcscnt, so that it c¿ru be a,ppliecl irrcliscrirnirrately to all

channels for all v¡indows.
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3.2.2 Zero-Offset

The other unwanted effect is that the zero-offset value of the signal is not constant across all

channels. For this project, the zero-offset is defined as the strain value found in the channel

when there is no vehicle on the bridge. That is, it is the offset f'ound when the strain value

should be zero; in the ideal case, this would obviously be zero. Having an offset that is not

zero causes ploblems similar to the temperature effect; it makes both event detection and

event comparison difficult.

3.2.3 Combining Both Effects

Unfortunately, neither the zero-offset nor the temperature effect exists individually and

both must be dealt with at the sarnc time. An exarnple of both of these efl'ects c¿ln be seelr

in Figure 3.1. The strain curve shown in Figure 3.1 is from Channel 2; the strain value

.ç

_d

Ø

15000
Sample

Figure 3.1: Strain Curve of a Single Window Shorving Undesirable Effects.

here should be zero, with noise, except during events. This is clearÌy not the case; there

is a noticable linear decr-ease, the ze¡o-offset value is ambiguous but is likely --)22, and

the events (larger peaks) seen frorn sample numbel 9,000 onwards are barely visible. FI'om

this example, it should be clear as to why pleprocessing is required: the events are hidden

in the trend, and no baseline strain value exists that allows accurate peak measurements.
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As a general model, the strain output with both a temperature effect and non-zero offset is

shown in Equation 3.2.

^9,(¿) 
: S"(¿) + f g(tD + ZO

Where S,(¿), S"(¿), ?(ú) and f (T) a'-e identical to Equation 3.1 and ZO is the zer<¡-offset

value. The parameters ,9"(ú), /(") and ZO arc unique to individual channels. Several

strategies were attempted before a suitable method for correction was found.

3.2.4 IJnsuccessful Strategies

Several unsuccessful strategies were employed at correcting both of these problems. The

first attempt rvas to try temperature compensation using the unloaded dummy gauge [6] [10].

The concept behind this idea was simple; if the dummy gauge has no structurally introduced

strain, then any variations in its value should be caused by temperature effects. As well,

since all sensors are in the same environment, it was assumed that all sensors would show

the satne effect fïorn the ternperature. Illitial eltternpts involved sirrrpìy subtrzrctilg the

dummy channel from the other channels. This did not work, since it appeared that the

temperature effect was time-shifted in different channels.

As a result, the next attempt wa^s to find an approximation of /(7) using the dummy

channel and the temperature [6][i1]. The concept was that once /(7) v/as found, it could

be used to subtract the effect from any channel. This also did not rvork, and is what led to

the conclusions that the temperature effect is different for all channeis and that it needed

to be dealt with on a case by case basis.

The next method was an envelope detection algorithm typically used in amplitude mod-

ulation problems [12]. While this method showed initial success at removing the minor

temperature fluctuations that were seen, it also had a tendency to destroy the event infor'-

mation. As well, in cases where envelope detection did work, it proved to be very slow,

taking approximately 30 seconds per channel to clean a 2.5 minute window.

The most successful of the fäiled attempts was highpass frequency domain filtering [9].

This technique provided excellent results; it succeeded in removing both the lorv frequency

tetuperature effects as well as rerrroving the zer<-¡-offset value. The problern with filtcrirrg

arose when trying to find a crrt-off freqrrency that kept all events intact rvhile removing

the unwanted effects. This frequency seemed to be slightly different fbr each window that

(3.2)
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was filtered. As well, filtering was slow, though not nearly as slow as envelope detection,

because of the need to perform the Fourier transform, apply a fllter and then perform the

inverse Fourier transform.

3.2.5 Method Used

The selected method is a modifred envelope detection algorithm. It is a two-step process

that fìrst rernoves events, Ieaving the background trending of data. It then rernoves the

trend that is left over from the original signal, leaving the events. The concept for this

method was found in Usi,ng Morphologi,cal Fi.lters to Ertract Spi,ky Ttans'ients'in EEG U3|
This thesis presents a method which removes spiky transients from an EEG heart signal,

leaving behind the background information which represents what is important in an EEG.

For the purpose of this project, the algorithm is backwards; the spiky transients can be

considered the events, and the background information is the undesirable effect. However,

since the method presented in [13] results in the background information with the events

removed, this result can simply be subtracted from the original signal to obtain only the

events. The algorithm erlploys mathematical morphology to extract geometric properties

from the signal. Two specific geometric shapes of interest exist in the signal. The events,

which h¿ve a short profile corrsisting of a deflned strrrt, defined end and high amplitude

peak, and the backgrorrnd flrrctrrations, which typically do not have an easilv defined end,

are small in amplitude and have long profiles.

3.2.6 Mathematical Morphology

Mathematical morphology is a technique that is commonly applied to image processing,

and because of this, it was initially difficult to predict how the techniques rvould apply to a
one-dimensional strain signal. In the most basic form, morphological operations are defined

for binary images, are based on set theory and consist of taking a geometric shape (the

structuring elernent) and performing a set operation, such as the union, of the structuring

element with the data in an attempt to extract geometric artifacts that are present [14]. By

expanding how morphology works with binary images, it can also be applied to non-binary

images, and as a result, non-binary signals as well.

For the purposes of the project, trvo morphological operations were chosen: opening and

closing. From an image processing perspective, opening can be seen as a technique that
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smoothes the contour by breaking small connections and erasing small spikes [i4]. Opening

can be used to identify geometric areas rvhich can frt the entirety of the structuring element.

In a complementary fashion, closing can be seen as a technique that eliminates gaps smaller

than the structuring element [14]. While these concepts are more easily visuaiized with
binary images, a description of how they apply to one-dimension signals is given Ìater in

this section. Opening and closing both rely on two fundamental morphological operations,

dilation and erosion. In brief terms, dilation runs along the border of an image and increases

it, while erosion runs along the bordel and reduces it [14]. Equations 3.3 to 3.6 show

the general formulas for erosion, dilation, opening and closing, of two sets, ,4 and B, in
Euclidean space Z, expressed in terms of set operations [14]. In the equations, B, indicates

set B centered at point z.

Erosion: Ae B: {zl(8, ç,4)}

Ditarion: A a B : {zl(8, n A + Ø)}

Opening: Ao B: (Ae B) e B

Closing: AcB:(AA>B)OB

(/o a; (r) :,rla* (Í(r + n) +b(n)) n : -4....2 1"'

(3 3)

(3.4)

(3.5)

(3.6)

Figure 3.2 shows an example of the diiation, erosion, opening and closing operations applied

to an irnage, with a disk as the structuring elernent. These concepts are easily visualized

when applied to binaly two-dimensional images, but the concepts apply in a similar fashion

to one-dimensional signals as well. Equations 3.7 and 3.8 show a specific fbrm of erosion

and dilation used for one-dimensional signals [13][15], in which / is the function to be

eroded/dilated, with length N, and ö is the structuring element, with ìength ,4u1.

(f e t7 (z) : min (Í(r + n) - b(n)) rt : ,0<r*n<N (3.7)
M
T

A,T

T ,0(r*n(N (38)

For cases where the structuring element is equal at all indices (b(n) : Õ , C constant), the

b(n) term can be ignored from both Equations 3.7 and 3.8. Fol the purposes of this project,

a constant vector is used as the str-uctuling element.
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(a) Original Image.

(b) Dilation, Stracturing Element: Di,sk r -- 3 (c) Erosion, Stracturing Elem.ent: Dislc r : 3.

(d) Opening, Structuring Element: Disk r :3. (e) Closing. Stntcturing Element: Dislc r -- 70

Figure 3.2: Examples of Morphological Operations.
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By looking at Equations 3.7 and 3.8, the effects of dilation and erosion of a one-dimensional

signal can be predicted. Using one of these techniques behaves like convolution. For each

point in the signal, dilation will replace the point being examined with the maximum value

found wìthin the range of the structuring element, centered on the point being examined.

The structuring element is then moved to the next point and truncated if it exceeds the

boundaries of the signal. Erosion is similar, taking the minimum value instead of the

maximum.

As an example, assuming a stlucturing element of size 3, and a signal consisting of 17 2

7 3 4 41] the result of dilation will be [max(l, 2) max(l, 2, 7) max(\ 1, 3) max(1, 3, 4)

max(3, 4,4) max( ,4,7) max (4, 1)] or [2 2 3 4 4 4 4]. This creates a very rough upper

envelope, with plateaus potentially the length of the structuring eÌement. Using elosion

creates a lower envelope, with a similar process to dilation. The result of the erosion of the

example signal would be the mínimum of each data set, or [t t 1 1 3 1 1]. As shown by

these examples, dilation and erosion are useful for quickly extracting information about the

upper and lowel bounds of one-dimensional signals. When opening and closing combine

erosion and dilation, a mole favourable result is created than when just one of the two is

used. Both opening and closing tighten the envelope created, allowing for better removal

of the events and representation of the shape of the background curve.

3.2.7 Preprocessing Algorithm

The goal of the preprocessing algorithm is to remove the unwanted effects, and keep the

events. By consìdering the results of the morphological operations from the example above,

ít is possible to predict how these opelations will interact with a strain signal. Closing,

by dilaiing then eroding, rvill provide a lower envelope of the upper envelope; opening

similarly provides the upper envelope of the lower envelope. These envelopes will include

events unless the structuring element is too wide to fit inside the event. Therefore, the

structuring elernent should be wider than the widest event expected, or it will be removed

along rvith the unwanted effect. To guarantee removal of unwanted effects, the structuring
elerrretrt lnust be thirurer than the tltirincst fluctu¿rtion in the cffect. Despite these securingly

simple restrictions, rneeting thern may not be possible. Slow moving vehicles can generate

Iarge events, on the ordel of thousands of samples, requiring an extremely long structuring

element. Conversely, the smaller environmental effects have a typical duration of 100 to 500

samples; using a structuring element larger than this will not remove any of them. A
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compromise must then be rnade, with the emphasis on keeping the events. The majority of

event spikes are at most 300 samples long, and so this value was chosen to be the size of

the structuring element.

The actual preprocessing algorÍthm involves performing both opening and closing on the

signal. The two operations are done in pairs, once with closing the original signal first,

then opening the result, then by opening the original signal, following by closing the result.

This technique of doing closing-opening and opening-closing was based on [13][16]. The two

operations are shown in Equations 3.9 and 3.10

Co(t): (S,(t) o b) ob (3.9)

Oc(t):(S,(ú)ob).b (3.10)

lMhere Co(t) is the closed-opened signal, Oc(t) is the opened-closed signal, .9,(ú) is the

output from the measurement system and ð is the structuring element.

It is requiled to perform both operations: closing followed by opening. Simply performing

closing will remove events by tracing the top of the event; it is only by performing opening

on the result that the events can be skipped. To illustlate this point, Figure 3.3 shows the

results of closing the original signal, then opening the closed signal. Figure 3.3c shows that

closing-opening yields an approxirnation of the upper envelope for the base trend in the

data.

Since there ale no events on the bottorn of the signal, performing closing following opening

is not a neccessity. The closing pass is useful because of the presence of noise, and by

closing the result of opening, it is possible to smooth out some of the variations that

noise spikes place in the envelope. Performing opening-closing yields a lowel envelope

approximation.

The process of closing-opening and opening-closing is performed on a channel by channel

basis; once both are done, they are averäged point-by-point and the result is said to be the

collection of un¡n'anted effects. This is shown in Equation 3.11.

Co(t) + Oc(t) : Íg(t)) + zo (3.11)

Wrere Co(ú) is the closed-opened signal, and Oc(ú) is the opened-closed signal.
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(a) Original Signal.
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(b) Closed.

Figure 3.3:

(c) Cìosed Then Opened.

Example of Closing-Opening a Signal.
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A, cleaned signal, a signal that has the unwanted effects removed (but is still noisy), is

therefore the original output signal minus this result, as shown in Equation 3.12.

S"(t) : S,(ú) -

With Sc(ú) being the cleaned signal.

An additional step is perf'ormed to guarantee

is to subtract the median of S"(t) from ,9"(ú).

of the preprocessing algorithm.

Co(t) + Oc(t)
(3. i2)

s"(¿) : s"(¿)- med(S"(t)) (3.13)

Figure 3.4 shows the data from Figure 3.1 after it has been cleaned by the preprocessing

algorithm. Notice that the algorithm has succeeded in removing the linear effect and then

resolving the zero-offset ambiguity and removing it. As well, it has enhanced the five events

present near the end of the signal. In other words, the strain values for the start and end

points of each event are almost identical, which ailows for more useful interpretations to be

made.

the removal of the zero-offset value, and that
Equation 3.13 therefore gives the final result

6
c'ñ
5

c

Ø
2

Figure

Sample

3.4: Cleaned Strain Channel.
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The preprocessing algorithm is of fundamental importance to the project. Even though

the temperature effects are rarely present, and may be missing fbr months at a time, when

they are present it could prove disastrous f'or detection and classification. Through sparse

observations, since it is infeasible to examine every segment of an entire year of data, the

effects are rarely present in the summer months, and much more likely to be present in

the winter months. This could be explained by the much larger and faster temperature

fluctuations seen in the winter, as shown in Section 2.4.
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Chapt er 4

Event Detection

The events caused by vehicles traversing a bridge contain valuable information that can be

used to determine if a bridge is working properiy. Unfortunately, the events are entrenched

in the data streams, essentially hidden in a vast sea of noise. Without some method for

detecting when events are occurring, it is impossible to extract the necessary information

to make automated decisions about the health of a bridge.

Event detection is a three-step process. When the algorithm is started, no events are known.

In step one, on a channel-by-channel basis, the next event in a channel is found. In step

two, the locations of the events in the individual channeÌs are compared against each other

to determine if the identified events are the s¿rrne. In step three, zr single wiudoq' iu tirue is

selected to represent the event. Once all three steps are done, the process is repeated until
all the data has been processed.

For the purposes of determining the health of a bridge, only one value is needed per event;

this is the maximum, or peak, value of individual strain channels during the event. The

location of the event peak is required for the event detector to operate; the starting location

and the end of the event are required to extract peak values frorn channels that were rnissed

by the detector. In all, this requiles four measurernents to be extracted for each event.
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4.L Preliminary Values and Algorithms to Aid Detection

Before the event detection algorithm can begin, three values must be determined and a
separate pre-processing algorithm must prepare the data. The required values are two

threshold values used to isolate events, as weli as an estimate for the amount of noise in
the systern. The preprocessing algorithm that is applied is a smoothing algorithm, with the

goal of making the signal more amenable to the requirements of automatic event.detection

and, eventuall¡ classification.

4.I.L Threshold Values

The flrst values to determine are two threshold values. The frrst of the thresholds, referled

lo as Threshold A, is used to determine that an event is occurring; that is, when a value

is above Threshold A, it indicates that the value is part of an event, and not just pa.rt

of the background noise. This does not mean that this point is the sta¡t of an event; it
simply means that it is definitely in an event. The othe¡ threshold, Threshold B, is used to
determine when the signal has decayed back into noise levels, which indicates the sta.r't and

the end point of an event. Since these thresholds are used to sepa.r'ate events fi'om noise,

they must be able to do this independently of the noise leveÌ. Since the noise levei is not

constant throughout the course of a year, the thresholds must be determined dynamically
based on the noise level in the data currently being exarnined.

4.L.L.7 Estimating System Noise

To base the th.reshold values on noise levels in the system, a method must be developeà

tha,t allows for estimation of the systern noise into a quantifiable value. This noise level is

obtained by exarnining the dummy signal taken from the preprocessing stage described in
Section 3.2 and further processing it in order to remove large noise spikes. The reasoning

behind the need to remove the lalge noise spikes and not simply using the cieaned dummy

signal to replesent the background noise is that, despite being theoretically unloaded, the

dummy signal recolds some altifacts of the events on the bridge. The method used to
remove noise spikes is a multi-step process.

The first step is to identify the samples in the original signal that are above the upper

enveiope and below the lower envelope. These envelopes are the same that were found
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during the preprocessing stage by using the opening-closing and closing-opening techniques

described in Section 3.2.7. Recall that the envelopes skip over the larger fluctuations in a
signal; identifying the points above the envelopes therefore identifies the points that would

be considered as large noise spikes.

The next step is to replace the identified points with the equivalently indexed sample from

the proper envelopes. That is, a point above the upper envelope is replaced by its time-

domain equivalent point from the upper envelope and similar for points below the lower

envelope. Points within the envelopes are not changed. Following this step, it is a simple

matter to subtract the resulting signaì from the original signal to obtain a vector that

contains only the noise spikes. After this, this new result is subtracted from the cleaned

signal, that is, the result of the preprocessing step. Figure 4.1 shows an exarnple of a cleaned

signaÌ compared to the signal used to represent the noise level.
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Figure 4.1: Comparison of Noise Estimate to Cleaned Signal.

The resulting vector is deemed to consist only of background noise. Based on this vector,

the noise is then estimated to be zero mean, Gaussian noise with a standard deviation equal

to the standard deviation of the vector. This standard deviation is representative of the

noise level, and is referred to as ør.

0
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4.t.L.2 Threshold A

Once this approximation of the background noise is obtained, Threshold A can be deter-

mined based on on. The value of Threshold .L is 4or; the factor of four is used because,

with zero-mean noise, the probability that a value is within four standard deviations is

P(lXl 1 4o) : 0.9999. That is, 99.99% of values in a normal distribution fall within
four standard deviations of the mean. Therefore, if a strain value is found to be outside

of this range, it can be concluded with large certainty that it does not belong to the noise

distribution, and is therefore pa,rt of an event.

4.L.1.3 Threshold B

Threshold B is determined in a similar method to that of Threshold A. Threshold B is

equal to one quarter of Threshold A, ol simply o,. This value was chosen to indicate that
the rneasured strain value is in fact back in the noise distribution. The reasoning behind
using a spread between thresholds is to add a hysteresis effect to the systern, preventing

the system from oscillating between the finciing an event and claiming the event has ended.

This wouid lead to an unreasonably large amount of faÌse events, as weii as compromising

the integrity of the legitimate events, making classification virtually impossible.

4.L.2 Signal Preparation

Once both threshoids have been determined, the strain curves need to be further processed

to increase the visibility of events to an automated detection algorithm. In order to do

this, a Gaussian smoothing aigorithm is applied to all channeÌs [fa]. Gaussian smoothing
is an algorithm typically appÌied to blur images, but the concepts apply equally to a one-

dimensional signal. The algorithm eliminates a significant amount of high fiequency noise.

Removing this noise helps in eliminating pathological cases in determining the stalt and

end of the event. One such case is where a random noise spike exceeds Threshold A and

then ahnost immediately drops below Threshold B. The other advantage of the smoothing
algorithm is that it removes noise that corrupts peak values and leaves a srlooth event. An
example of a smoothed event velsus an unsmoothed event is given in Figure 4.2.
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Figure 4.2: Ðfrect of Smoothing on an Event.

4.L.2.T Gaussian Smoothing

A Gaussian smoothing filter is similar to a windowed averaging filter, except that it com-

putes a weighted average for a data point based on the values of a Gaussian distribution

(these values âre refelred to as the coeffic'ient 'uector'). A new signal is then constructed

by piecing together the results of the weighted averages. A Gaussian smoothing window

is centered on the data point being examined; this is done to give it the largest weighting.

Using non-uniform coefficients instead of a standard uniform window average better pre-

set'ves the shape of the original signal. The following approach for one-dimensional Gaussian

smoothing is based on the smoothing filter discussed in 114].

Three parametels are required f'or Gaussian smoothing to generate an appropriate coefficient

vector. These ar-e the length of the windorv, M, the value for the standard deviation, o,

and how far into the tails of the distribution the end points will be, R. The mean should

be set to 0 since the disiribution is only being used to generate coefficients. Also, &/ should

be made odd to balance the number of terms on each side of the centre point.

As an example, specifying IVI:5, A:3 and o:2 would make awindow of size 5, with

the coefficients f'or the weiglrted average equal to [0.0648,0.1506,0.1995,0.1506,0.0648].
These vaiues are directly from the probability density function of the Gaussian distribution

since, for exarnple, 0.0648 : (ZJn)-t 
"3'/8 

. This allows for averaging to take into account
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the vaìues around the data point, but gives them less emphasìs than the data point being

examined. The values around the centre point are refelred to as the si,gnal wi.ndow.

Since the sum of the coefficient vector is not equal to 1, a normalizing factor is intloduced.

This factor, which is the total of the coefficient vector, is divided fiom the weighted average;

the reasoning for this is similar to why the calculation for the arithmetic mean is divided

by the number of elements (windowed averaging, which uses the arithmetic mean, can be

viewed as Gaussian slnoothirtg with a coefficieut vector of 1s). Iu the example above, this

factor would be 2(0.0648 + 0.1506) + 0.i995 : 0.6303. By dividing by this, it gualantees

that the result of the smoothing filter will always be equal to or less than the maximum

value in the signal window without grossly attenuating the signal.

The general equation for a Gaussian smoothing flltel is specified in Equation 4.1. Two

special cases are Equation 4.2, used when n < l+l (the start of the filter is befbre the

signal) , and Equation 4.3, used when N - " < Ly ) (the end of the frlter is after the signal) ,

where N is the length of the signal. These two equations are used so that zero padding

is not required. For the equations, fo(r) is the output of the smoothing, while /(ø) is the

inputandl<nSN.

Let g[t) be the coefficient vector, with ú valid florn -lY t" lYJ, assuming M is odd.

L2J

fo(r,): t l@^+ùslil
i:-t y 

J

rl{r
L2J

ro("n): \ f (".+.)slt')
i:l-n

.À/-n

fo(rn): t f @,+¿)gÍil
;- tMt
"-lol

(4 1)

(4.2)

(4.3)

The smoothing process tends to reduce peak values; however, through observation it was

found that this reduction is percentage based, with a similar factol applying to all events. As

a result, the attenuation is not a significant issue and the smoothed signal is used for all sub-

sequent aspects of the ploject: determining event cornponents and event analysis.
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4.2 Event Detection Algorithm

Once ali channels have been smoothed, there are two ways to go about detecting events. All
events can be found for one channel, then another channel, repeated sequentially throughout

all channels. After this, the channels can be compared to determine which events are from

the sar¡re global everrt, and a series of ¿ll eveuts constructcd. The other method is to find

events one by one through all channels, determine which of the individual channei events

are from the same global event, and then after an event is processed, determine the next

one.

The second method was chosen to be implemented, since it allowed for easier testing and

seemed more straightforwald for termination conditions. In hindsight, both methods are

equally suited to solving the detection problem and could be implemented with a similar

amount of work.

Recall that event detection is a three step process. Filst, the next event in a channei is

found. Next, it is determined which channel events ale part of the same global event.

Finall¡ a window is selected to represent the event.

For the algorithm, three states must be defined. The first is that an event has been found

on a channel (Euent Found), the second is that there are no more events left on the channel

(No Euents), and the flnal state is when an event has yet to be found, but it has not been

proven that there ale no more events (Searchi,ng for Euents).

4.2.L Finding the Next Event

Tlris step is executed when a channel is in the state Searchi,ng for Euents. Rather than

monitoring all fifteen channels, the oniy channels that are monitored for events are Channels

1 through 5. Recall that these channels obtain measurements fiom each of the five girders

near the abutment; if any events are going to occur on the bridge, they will need to occur

here befble they occur at the rniddle of the span. A channel is flagged as containing an

event the first time a value that exceeds Threshold A is encountered. Once this happens,

the channel is monitored for two values.

The maximum value is tracked so that the location and value of the peak can be stored.

While this tlacking is being done, the strain values are monitored to see if they drop

below Threshold B, which would indicate the end of the event. Once the end of the event
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is determined, it is possible to move backwards through the event, monitoring for a drop

below Threshold B to determine the start. The start must be determined in reverse because

Threshold B, which identifies the end points, is smaller than Threshold A, rvhich identifies

when to start looking at an event. It is determined Ìast because it simplifies the caÌculations,

allowing linear progression thlough an event until the end is detected. Once both end points

have beerr identified, the ch¿rrruel is switched into the stale Eaent Found.

It is possible that no data point is found that exceeds Threshold A. In this case, it can be

concluded that there are no more detectable events left on the channei, and the channel is

placed in the state /y'o Euents. If a channel is put in No Euents, its data is set to nonsense

and ignoled for the remainder of the algorithm.

4.2.2 Determining Global Events

In order for the event detection algorithrn to be useful for the purposes of this project,

events found on different channels need to be labelled as part of the same global event, so

that the characteristics between channeÌs can be observed properly. Once alÌ channels are in

the states of either Euent Found or No Euenris, and at least one channel is in Euent Found,

then a process begins to identify which channeÌs have found the same global event. This is

done by comparing the peak locations f'ound by the different channels.

If any peaks are within a certain distance from each other in the time domain, then all

peaks ale said to belong to the same event. The distance used is 200 samples, centered

ort the first exatnitred peak, or orle second irr l¡oth positive aud negative directions. This

was chosen because it is unlikely that two separate events will occur within a one second

window and it is equally unlikely that the propagation of the load across the girders will
take longer than one second. To make computations easier, all peaks are compaled to the

earliest peak found in the data (the reference peøk).

For example, if Channel 1 has a peak at sarnple 1150, Channel2 al, 1152, Channel 3 at 1145,

Channel 4 aL 1562 and Channel 5 is in No Euents, the reference peak will be 1145, from

Clrannel 3. The algoritlim will conclude that Channels 1 (reference+5),2 (reference*7) and

3 (reference*0) contain the event, while in Channels 4 (reference+4I7) and 5 (t/o Euents)

the event is missing, likely masked by noise.

Using the mean of the peaks of any channels that match the reference peak TVas considered,

but the advantages wele not thele to justify changing the algorithm. The stalting and
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ending points from each of the channels determined to be part of the event are stored,

and then the channels are put into Search'ing for Euents. The process is repeated until all

channeis are in the No Euents state.

4.2.3 Determining a Bounding Window for an Event

Once an event has been detected, a suitable window needs to be selected to represent the

event in its entirety. This window is selected from the starting and ending points of each

channel found to contain the event, and in order to accommodate the entire event, the largest

window, within reason, is chosen. This means that a small test is put in place to attempt

to remove outliers and nonsensical values. This happens when one channe] is exceedingly

noisy when compaled to the others; its noise level is much higher than the predicted value

and as a result, the event may appear to start early and end late in this channel. These

values, however, should not impact how the window of the event is determined.

Because the data set is small, containing anywhere from one to five elements, using tradi-

tional measures such as the deviation flom the mean will not provide a robust identification

of an outlier as both the mean and standa,rd deviation are easily skewed by an outlier in

small data sets. The measule chosen instead is the Medi,an Absolute Deu'iat'ion (MAD) ll7l.
The formula for the MAD is given in Equation 4.4.

MAD:median(lz-r*l) (4.4)

Whele ø- is the median of the data set r.

Any value that is found to be greater than 3.5 times the MAD is rernoved from consideration.

After this check is performed on both the set of starting values and the set of ending values,

the event window is constructed by taking the minimum of the remaining starting values

and the maximum of the remaining ending values.

When the systen was implemented, the choice was rnade to calculate all windows after all

events were found. This choice was made to facilitate debugging, to allow all the windows

to be calculated at once, so that they could rnore easily be plotted and compar:ed to the

originaÌ signal to determine the accuracy of the detector.

Once this process is complete, it can be concluded that ali the events are found and classi-

fìc¿rtion can begin ou the events.
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4.2.4 Cascading the Detector

Recall from Section 3.1 that the data collection needs to be cascaded so that the entirety

of the data can be read. This poses difficulties to the event detection algorithm, as the

preliminary algorithm relies on having the entire signal present. Some minor changes to
the algorithm â.re lequired to accomodate this. The noise estimate and thresholds must

be recomputed for each window. The condition for the transition to /y'o Euents changes

flom no event being detected in the channel, to no more events being detected before the

midpoint of the window. While this midpoint seems like the new end of the channel, an

event already detected is allowed to cross the midpoint boundary to keep continuity.

When ail channels are piaced in No Euenús, the detector is cascaded by moving back the

tracking value the aÌgorithm uses, the end of the last event found in a given channel. This
is done to ensure that the same event is not detected twice when it occurs at the edge of a

window. The vahte is lowered by 7,500 each time the reset happens, wiih a floor value of
1, and all channels are placed back into Searching For Euents. If the data collection system

determines that the end of the data set has been reached, the aigorithm behaves as it would

without cascading. Figure 4.3 shows a flowchart of the algorithm.

4.3 Determining Effectiveness of the Detector

In order to test how well the detector isolates events, data fiom Model-Free Bridge-Bøsed

Vehi,cle Clas.si,ficati,on [9] was used. The author, Grant Rutherford, manually counted vehi-

cles on August 22"d,2007. The results of this count were that 582 large vehicles traversed

the bridge. In comparison, the event detection algorithm described above determined 1,576

events for the sâme time period.

While it is more promising that more events were detected, rather than less being detected,

it still causes concern. One possible explanation for this large discrepancy is the type of
events detected. While only large vehicles were counted during the experiment, the event

detector may be capable of detecting smaller events. Testing this theory the event detector

determined there was 582 events above â threshold of 15.2 microstrain.
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Figure 4.3: Flowchart of the Event Detection Algorithm.
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Chapter 5

Event Classificatron

Event classification proved to be a difficult problem to generalize for every potential load

case that can appear in the sensor measurements. It is based on anomaly detection; that
is, events are classified as either an expected or an unexpected event. Because no general

form was found, the classification problem has been broken up into several sub-problems.

Each sub-problem represents a different classification case; these are split up by traffrc

lane and by weight class. In order to understand and test the classification algorithm, a

simulation needed to be used to generate controllable failure conditions. Data produced

by this simrtlation led to the development of a theory for the classificr; this theory can

eventually be applied to a physical system.

5.1 Usable Data for Classification

Recall fr-om Section 2.2 that the measurement system for the Red River-North Perimeter

Bridge consists of fifteen active, Ioaded strain gauges for monitoring. However, not all of
the data channels are usable fol analyzing the behaviour of the bridge. There a¡e thlee

sensor-s per girder: one at the abutment and two at the midspan, where one is at the

top of the girder and another at the bottom. Of tìrese sensors, the strain readings from

sensors at the top of the girders have small event amplitudes and, as a result, events are

indecipherable from background noise. Figure 5.1 shows two vehicle events as lecorded by

both the bottom midspan sensor and the top midspan sensor. Exarnining this piot cleariy

shows horv the top miclspan channel contains little useable information. This eliminates fi.ve
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Figure 5.1: Usefulness of Bottom lVlidspan Sensor vs Top Midspan Sensor.
( O ff s ets M orli,fi,ed .f or Vi,si,bi,Ii,ty )

sensors fi'om the system, Ìeaving only the abutment sensors and the sensors at the bottom

of tlre midspan (future references to m'i,dspan sensors mean the sensors at the bottom of

the midspan).

In addition to removing an entire gloup of sensors from consideration because their signal

is too weak to be useful, the same problem applies to an entire girder, Girder 5. Girder'5 is

the girder that is at the edge of the rnerging lane; it gets very little traffic and carries very

little load. As a result, measurements from this girder contain no useful information about

how the bridge is behaving. It is also unlikely to fail due to the much smaller loads it carries

when compared to the other girders. Because of these characteristics, mea.surernents from

Girder 5 are ignored f'or the purposes of event classifi.cation. This leaves the system rvith

eight possible sensor locations from which to measure. These are the sensols on Girders 1

through 4, Iocated at the abutment and at the bottom of the midspan.

Of the remaining eight sensors, either set (abutment or midspan) can be used for classi-

fication, but difl'ercrrt sets should rrot bc mixed duc to the fact that thc strairr signature

is slightlv clifferent at the midspan and the abutment and the two cannot be compared

directly. The midspan sensors typically record higher strain values, and if sensor groups

were to be mixed, a scaling factor can be employed to try and fix this problem. Figure 5.2
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Figure 5.2: Amplitude Difference betrveen lVlidspan and Abutment Sensors.

shows a close-up view of the second event in Figure 5.1, for the purpose of comparing the

readings of an abutment sensor and a bottom midspan sensor'. As indicated by the over-

laying curves in Figure 5.2, the event amplitudes are different for the two sensor locations.

As a result of this amplitude discrepancy, for this project, event classification is done using

only the abutment channels. Despite this choice, the process outlined in this chapter will
apply to midspan sensors as well, and can be employed to monitor- both groups of sensors

simultaneously if additional coverage is deemed necessary.

5.2 Event Features

The initial data extracted to describe an event is the peak strain value from the different

channels being monitored. The four channeÌs monitored for this project are from sensors

located on Gilders 1 througir 4, at the abutment (G1, G2, G3 and G4 from Figure 2.3)

and are leferred to respectively as Channels 1 through 4. Therefore, each event is initially
described by a 4 eiement vector, y", : [max(C1)max(C2)max(C3)max(Ca)], consisting of

tlre peaks of each of the four channels. Unfortunately, issues arise when trying to use V* for

classific¿rtiou, dne to the large v¿rriation irt peak str-¿rins lecorded f'ol clifferent vehicles; thesc

are discussed in Section 5.2.2. These issues càvse Vrn to not be very useful for extracting
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quality information about the response of the bridge to the event. To solve this problem,

some tlansformations are performed on the four quantities to establish new features: the

soulce lane of the event, the girder ratios, and the weight class of the event.

5.2.I Source Lane

One feature that can be derived ftom V^ is the source lane of the event. Determining the

soulce lane ís fairly simple; it is found based on the channel with the largest strain peak

and is identically the index of the maximum vaiue in V,". I1 an event originates from the

Normal Lane, then Girder 3, the Main Girder for the event, will show the most strain.

Similarl¡ if an event originates in the Passing Lane, then Girder 1 will be the main girder.

One more case is defined, Unknown Lane, when the peak strain channel is either Channel

2 or Channel 4. The source channel is an important feature since the distribution of load

is different based on which channel is the source channel Figures 5.3 and 5.4 show curves

generated by the sensing system, with Figure 5.3 indicating the vehicle crossing in the

Passing Lane and Figure 5.4 showing the same vehicle crossing in the Normal Lane. By

examining Figure 5.3 it can be seen that the strongest response is in Channel 1, followed by

Channel 2, then 3 and finally a weak response in Channel 4. In contrast to this, Figure 5.4

Figure 5.3: Sensor Curves of an Event in the Passing Lane.
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Figure 5.4: Sensor Curves of an Event in the Normal Lane.

shows a different response, with the strongest channel being Channel 3, fbllowed by Channel

2, then 4 and 1. There is no excessively weak signal in this case.

Events labelled as originating in an Unknown Lane are thrown out, since they are unpre-

dictable in their lesponse, unlike Normal Lane or Passing Lane events, and a.re a small

flaction of the events recorded. Equation 5.1 provides a formal definition of the source

lane.

(5. 1)

Where max¿(I/p) indicates the index of the maximum value of I/-, starting from 1.

5.2.2 Girder Ratios

The peak values located in V,n, while quite telling about how a bridge is operating, do not

lead to the formulation of a genelal model that can apply to an unknown case. This is

because the values in I/- have a large potential range based on the type and size of the
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vehicle that is causing an event. This means that a general model would need to incorporate
this large range of acceptable values, and that anomaly detection would in reality only be

possible at the two extremes, when values are higher than expected for the largest event,

or lower than expected fol the smallest event. For an idea of how large this range is, data
from the Red River-North Perimeter Bridge for August 22'd was passed through the Event

Detection algorithm. For events deemed to be originating in the Normai Lane, the minimum
peak in Channel 3 was 2.4 rnicrostrain, while the maximum was 49.5 microstrain. For the
Passing Lane, Channel 1 had a minimum peak of 2.4 microstrain, while the maximum v/as

71.6 microstrain. If a vehicle has an expected lesponse of 20 microstrain, and failure in
the bridge causes a reading of 30 microstrain, there would be no way to determine that
the event should have given a reading of 20 microstrain, and thus no way to quaìify it as a

failure case.

The next set of features that are derived fromV* is the set of girder strain ratios. The ratios
are more useful than the raw strain values found in I/- because they behave consistently

no matter what the actual values ín V* a'-e. This solves the problem described above

where peak amplitudes can fluctuate over a wide range; the ratios between the girders can

be shown to be constant over all arnplitude ranges, provided noise is absent. This was

demonstrated through simulation, and is discussed in Section 5.4.5. Using these relative
measurements to compare how thc strain is split bctween the different girclers in the bridge
is a meaningful description of the operating conditions of the bridge; this description of
how strain is distributed across the bridge is referred to in this document as Load Sharing.

Recall Figules 5.3 and 5.4; ít can be seen that the value of these ratios will depend on the
source girder. Since Girder 1 is the main girder when an event is from the Passing Lane,

the latios taken for a vehicle in the Passing Lane should all be taken with respect to Girder
1. When an event is from the Normal Lane, the latios should be taken with respect to
Girder 3. Additional ratios can be taken provided they are taken in a decreasing direction
of amplitude; that is, all ratios taken should be greater than 1. The ratios that were selected

to be examined for this ploject are summarized in Table 5.1.

Table 5.1 shows four latios that can be used for each lane case. Each one contains an

additional entry that does not depend on the main gilder. This additional ratio can provide
further information to supplement the ratios dependant on the main girder, to hopefully
plovide an expanded view on the state of the structure and the sensing system.
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Table 5.1: Girder Ratios to be Used f'or Cl¿ssific¿tion.

Passing Lane

Mai,n Girder: Girder 1

Normal Lane

Main Girder: Girder 3

G1.
G',

G3
GT

G1 G3
G2

GI
G4

G3
e4

G2
G3

G2
GI

5.2.3 Vehicle Weight Classes

In addition to identifying the source lane and girder ratios, each event is assigned into
a different weight class. The need for different weight classes is due to the presence of
(additive) noise corrupting a measured strain channel. Recall that the ratios clefined in the
previous section are independent of the absolute arnplitudes of the different peaks, but only
in the absence of noise. Additive noise introduces into these ratios a dependency on the
absolute amplitudes. This dependency is introduced because adding a value on both parts
of a ratio has a different influence on the result of the ratio depending on what the initial
values are. This is explained in Equation 5.2.

A+N
,* approaches the ideal
J) -r lv

A
E

as A and B get larger than N. (5.2)

Equation 5.2 also applies in the inverse situation. lf ,4 and B get srnaller, the ratio drifts
away from the ideal value of f . It,ntr is the noise level, Equation 5.2 means that the average

ratio will drift depending on horv ,4 and B relate to the level of noise.

Due to the noise level being directly responsible for the rnagnitude of the disparity between

the base ratio and the calculated ratio, the different weight classes are defined based on

the rnagnitude of the peak in the main girder with respect to the noise level, ly'. For

the actuai system, three weight classes are used; the boundaries of these classes are based

o¡l the amou¡rt of noise. The boundaries are also dependent on the frequeucy of different
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event amplitudes; this helps in preventing all events from being put in the same weight

class.

5.3 Classification Implementation

Event classification is perf'ormed here using a single distribution. Events are classified as

either being a member of the distribution or not, and this is done by compaling events

against a decision boundary. This boundary is a threshold value, which divides the problem
into members and non-members; that is, the probabitity of an event being a member of the
class would be compared to this threshold and either inciuded or excluded.

A single decision boundary that is usable in all cases is impractical to consider; it cannot

be expected that the bridge will respond identically to all potential stimuli. This is where

the different features described in Section 5.2 factor in. The problem is split into rnany

sult-problerns, with eerclt sub-problem perforrning its owrr cl¿tssification of eveuts. These

srtb-problems are defrned by three parameters: the vehicle weight class, the source lane,

and the ratio used. Events can then be classified based on the probability that a calculated

ratio is above the chosen threshold. Classification dealing only with individual events poses

a probiem, however. Due to the presence of noise and other potential measuïement errors,

simply detecting a single value outside of the selected range and using it to conclude that
the bridge has failed is not a robust system and wiÌl generate far too many faise positives

to be useful. As a result, adding memory to the system will allow it to detect and monitor
trends and consistencies in the data. This leads to a concept of bi,nni,ng.

5.3.1 Grouping Events

In order to solve the memory problem, each sub-problem is given a bin, and an associated

event error counter. The reasoning for using an error count is similar to wþ the CAN bus

protocol [18] uses an error count. That is, simply because an anornaly is seen does not
necessarily mean something has failed; it is only after a number of anomaiies are detected

in a given interval that a conclusion can accurateÌy be made about the state of failure.
This introduces the idea for an error count. In the CAN plotocol [18] a device can be in
three states based on its error count, where each determines a different level of failure. A
similar case can be made for classifying events. An isoÌated anomaly will likely be a sensor

malfunction, a Ìarge noise spike, or some other one-time ploblem with the measurement
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system. These isolated anomalies shouìd be ignored, since they do not indicate anything
about the state of the structure. Similarly, assuming a structule is failing, an isolated

proper euent (an event that fits within the expected error variation) should not remove an

alert that the structure is failing. An error count allows tracking of the number of anomalies

compared to the number of proper events, provided the count is increased when an anomaly

is detected and decreased if an event is proper.

In the general case, the error count does not need to change in the same way in every

situation. For example, anomalies could increase the error count proportionally to how far
they a.r'e from the threshold. Despite providing additional freedom, in reality this is not
especially useful. AÌl anomalies should be considered equally serious, and should be valued

equally. The choice was made for each anomaly to increase the error count by 1, with no

ceiling on the maximum count, while each proper event decremented the error count by 1,

with a floor value of zero. If these conditions are in place, then an error count which is
steadily increasing will indicate a failure, while an error count that remains a¡ound zero

will indicate that no failure has happened.

Because the Red River-North Perimeter Bridge has yet to fail, there is no real data available

to indicate a failed structure. This led to the need to perform simulations in order to
understand what happens to strain values with different amounts of noise, different vehicle

weighting, and differettt fãilurc cases. Knowledgc of the simulation is required to discuss

specifics on how the classifier is implemented and how decision making is performed. As a
result, these specifics will be discussed in both Sections 5.4.9 and 5.5.

5.4 Classification Simulation

For the purposes of modelling failure, sirnulations needed to be run to extract information
about how the bridge behaves under different conditions. These simulations were run nsing

a program supplied by Dr. A. Mufti, SECAN4 (referred to sìmply as SECAN) [19]. This
pl'ogram allows for compÌete pararneterization of a bridge structure as well as a load vehicle.

Using this information, it performs a static loading calculation based on load position. The
simulation allows the load to be positioned at any point across the surface of the bridge.

Combining the results of severaÌ simulations allows for the generation of a curve similar to
what is captutled by the physical system when a vehicle traverses the bridge. The material
constants required for the simulation were provided by Dr. D. Sidliu [20] and are included
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in Appendix A. To ensure the accuracy of the simulation, several important elements first
needed to be examined.

5.4.1 Vehicles

For the símttlation, two different trucks were simulated to represent real vehicles. These

trucks, named Tluck A and T\uck B, are representative of trucks loaded to the maximum

legal axle weight for the Province of Manitoba; the difference between the two is the number

of axles on the trucks (62,500kg [9]). See Figure 5.5 for images of the two trucks that were

the basis for the simulation. Figure 5.6 shows these two trucks converted into a sequence

of point loads [21]. This conversion is necessary so that the trucks could be used by the

SECAN simulation.

(b) Truck B.

Figure 5.5: Images of Real Tlucks used in SECAN Simulation.
(Image Cred,it: Dean K. McNeiIl)

(a) Truck A.
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'i?0.rJ0 kN 17C.20 kN 55.40 kr.J

-T-
2.0m

J

'i70.10 kN

'ïOl'Ai- VVËlGHl OÍ: l fìUCl< = 395.60 kN

(a) Truck A.

230.30 kN 17C1.10 kN 55 kN

I-OTAL vVEÍGH-r oF ïRUCK = ô25.5o kN

(b) Truck B.

Figure 5.6: Trucks as Point Loads for use in SECAN Simulation [21].

il ilr il 1
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In order to simulate the physical system as closely as possible, the trucks were moved in a
fashion similar to how they would be expected to traverse the bridge. The actual sensing

system samples the sensors at 100H2; for a vehicle moving at 100km/h, which is standard

highway speed, Equation 5.3 shows the distance travelled per sample.

u eloci.ty : 700trm l h .'o.oro: l IT : 27m / s :
3600s / h

0.27m 27cm

0.01s sample
(5.3)

This result shows that a truck travelling at 100km/h will move 27cm between each sam-

ple.

5.4.2 Lanes

The source lane of the vehicle is controlled by a parameter in SECAN. In order to properly

simulate all cases of the bridge, both lanes needed to be simulated. The lanes are defined as

horizontal position from the left-most girder. Fol this bridge, the left-most girder is in fact

Girder 5; the girder under the merging lane. Figure 5.7 shows the locations of the lanes,

fi'om Figure 2.2, re-labelled f'or how the lanes were defined fol SECAN. The vehicles were

centered in the lane, with axles placed lm on each side, at 4.5m and 6.5m (Normal Lane)

and 8.2m and 10.2m (Passing Lane).

To Centre
of Bridge

Girder# s 4 3 z 1

Figure 5.7: Lane Positions and Girder Numbering, Redefined fbr SECAN [1].
(Not to Scale)

5.4.3 Sensor Locations

Different rneasuÌernent locations c¿ru be defiued ill the input for SECAN, which ¿llows for

multiple sensing locations to be defined. The locations of the scnsors are dcfined only as

a distance from the abutment; no positioning on the girder is able to be defined. For
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robustness of the simulation, rneasurements are taken from both near the abutment and

at the midspan, although the values from the midspan are not used in any lvay for this
project.

5.4.4 SECAN Output

The output provided by SECAN, unlike the measurement system, is not strain values.

SECAN outputs the moment about the geometric centroid. This value can be converted

directly into a strain value by using Equation 5.4 [19].

IVIU.ttuir: JÉ (5.4)

Where M is the moment described above, y is the distance of the sensol to the centroid,

1 is the moment of inertia about the neutral axis and E is the modulus of elasticity of the

girder- material.

This moment is output for each girder in the simulation at each measulement location;

in this case, two values for each of girders 1 through 5. The output is given in reverse

order; that is, Girder 5 is labelled as Girder 1, Girder 2 as Girder 4, and vice-versa. lVhile
Equation 5.4 is convenient for converting the output of SECAN into strain to match it up

with the output of the real system, in reality it is unnecessary. Calculating y accurately

is a difficult endeavour, since the physical dimensions of the girders are hard to determine

based on available documentation. However, it can be assumed that y will be identical

for all girders, and will cancel when the ratios are taken; the same can be assumed for -8.

This leads to Equation 5.5, a more simplified form of the strain equation given earlier. The

concept is labelled as the M/I ratio, since it is not a strain value, but can be used as one

for the purposes of classifying events based on girder ratios. Tlie M/I ratio rvill be tr-eated

as unit-less when used in discussions to match the unit-iess strain measurements from the

physical system.

M/I Ratio: (5.5)
]VI

7
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5.4.5 Weight Simulation

SECAN was used to simulate the concept of different vehicle weight classes. This was done

by providing a scalar multiplier on all components of the vehicle weights. The multipliers
used were 1.0, 0.75, 0.50 and 0.25. The purpose of the weight simulation was to determine

how the moment varies with respect to weight. Figure 5.8 shows the values of the M/I ratio
fol Sensor 1 for a vehicle in the passing lane in a case with no noise, for all four of the

different rveight levels.

€ aooo
E

6000

Sample

Figure 5.8: Weight Comparison for Tluck A, Passing Lane.

Investigating these culves shows that the shape remains the same, independent of the weight

class. This leads to the conclusion that the same type of vehicle will generate the same event

curve independent of the weight, simply scaled by some factor. NurnericaÌly comparing the
curves in Figure 5.8 shows that this is indeed the case, and that the scale factor is identicaily

the rnultiplier used on the weight. It follows directly from this result that girder r-atios will
be identical for different weights of the sarne type of vehicle, since the multiplying constants

will apply equally to the terms on both the top and bottom of the ratio.
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5.4.6 Determining Noise Level

Once the idealized output was generated, it became apparent that to properly simulate a

real system, noise would need to be added. Recall that the noise model used is that of
zeto-meaî Gaussian noise. The variance of the noise was determined directly from data

taken from the Red River-North Perimeter Bridge. On July l2th,2007, ten tests were run
on the Red River-North Perimeter Bridge. These tests were controlled for different trucks,

speeds and source lanes and are summarized in Table 5.2. In Tests 1 through 8, Tluck A
traversed the bridge fi.rst, f'ollowed by Tluck B. In Test 9, only Tluck B traversed the bridge,

and in Test 10, the two trucks travelled side-by-side.

These tests were convenient for the pulposes of noise simulation since they provided a direct

compa.rison between the resuits of the physical system and the results of SECAN. Since the

two trucks used in the controlled tests are the same as the two trucks shown in Figures 5.5

and 5.6, the controlled tests can be used to determine a proportional constant that relates

the noise level to the amplitude of the event response.

Table 5.2: Controlled Tests.

Test Speed Lane

1 25km/h Normal

2 5Okm/h Normal

J 75km/h Normal

4 100km/h Normal

5 10Okm/h Passing

o 10Okm/h Normal

7 100km/h Passing

8 100km/h Passing

o 100km/h Passing

10 10Okm/h Both
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To determine this proportional constant, the event detection algorithm was run on Con-

trolled Test 4. Recalling Section 4.I.2, one result of this detection is the standard deviation

of the noise. This result was compared to the unsmoothed peak value for Channel 3 of the
event and used to determine a ratio for the amount of noise in the measurement system that
can be applied directly to the SECAN results. The result of this test was that the standard

deviation of the noise was 1.17 microstrain while the peak had a value of 50 microstrain.

This leads to the ratio expressed in Equation 5.6, with a,, being the standa¡d deviation of
the noise.

7.17

50

An

-*(C3)
1

42J3
(5.6)

(5.7)

Or, expressed in a more useful form,

_ max(Cs)
vrr - 42.Ts

The peak value of the M/I ratio provided by SECAN for a similar test, that is, Tluck A in
tlre Normaì Lane, was 9264. By using Equation 5.7, this leads to a noise standard deviation
of 216.80. This value is used for ali simulations that include noise, independent of factors

such as the size and weight of the vehicle, the source lane, or any smoothing performed on

SECAN curves.

5.4.7 Failure Model

The rnodel for stlucture failure used in this project is a decrease in the rnoment of inertia
of a specific girder 122]. Modifying the moment of inertia of a girder has two effects on the
IVI/I ratio for that girder. The first is that the calculated rnornent, 1ì21, decreases because

the girder wili take less load. The second is, of course, that 1 itself decreases. This leads

to a potentially ambiguous state, where a decrease in I may result in either an increase in
the M/I latio, or a decrease in the M/I ratio, depending on which quantity has more of a
change. In a simpler case, for the girders that are not failing, M will increase due to these

girders needing to support a lar-ger portion of the vehicle load. This increasein M, coupled

with the knowledge that 1 is unchanged, leads to an obvious increase in the M/I ratio and

consequently the strain.
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In order to determine how the M/I ratio for the failing girder changes as .I is changed,

SECAN was run with different 1 values. Figures 5.9 and 5.10 show two different cases:

when the faiiing girder is the main girder and when it is not. Both cases are with Girder

3 failing, and show curves of Girder 3; Figure 5.9 with the vehicle in the Normal Lane and

Figure 5.10 with the vehicle in the Passing Lane. Examining both these figures shows a

120 140

Sample

Figure 5.9: Curves showing M/I ratio when Main Girder is Failing.

distinct trend in the M/I ratio; as a girder fails, the M/I ratio will increase. Since, for the

purposes of classifrcation using girder ratios, the lvI/I ratio is directly comparable to the

strain values from the tneasurement system, the strain values recorded by a sensor on a

girder will increase as the girdel fails.

Despite this promising result, recall from Section 5.2.2 that the absolute value is useless for

classifi.cation and these findings cannot be used directly since the expected respotlse for an

unknown vehicle is itself unknown. In othel words, if the baseline value is not known, a

deviation from the baselinc cannot be measnred. However, these findings can be applied to

the girder ratio measurements, since a baseline for the ratios does exist that can be applied

to any unknown vehicle. Figure 5.11 shows the girder ratios presented in Table 5.1 for a

truck in the Normai Lane, failing Girder 3; this plot is of C¿ vs Girder Ratio, where C¿ is

used according to Equation 5.8. These r-atios ale calculated without noise and can therefore

be considered an ideal situation and impractical, but they represent the idea of a baseline
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.9
dE

Sample

Figure 5.10: Culves showing M/I ratio when Other Girder is Failing.

rreasurement that can be applied to any and all events.

In.- : C¿IorC¿ : 1,0.9,0.8,. .., 0.1 (5.8)

Figure 5.11 shows that there is a considerable change in the ratios for large changes in 1. An
equation exists which relates changes in I to a cracking failure. This is given in Equation

5.9 [23], which shows the percentage of change in f to a given percentage of the girder that
is cracked.

I"x (5.e)

Where 1" is the 1 for a cracked girder, #ffi r'epresents the percentage of the girder

that the clack occupies, and .Io is the moment of inertia for the uncracked girder. Using

Equation 5.9 shows that a 2To crack causes a 5% decrease in I, while a \Vo c'-ack will cause

a 75To decrease in -I.

('-
crackheight\3,
gitd"rìr"ight / "
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Figure 5.11: Girder Ratios fol Varying Degrees of Failure.
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5.4.8 Failure Simulation

Since it has been shown that modeling failure using a decrease in 1 is reasonable, and that
small cracks will result in larger variations in 1, the next step in the project is to simulate

realistic failure to try and generate a classification approach. Simulating realistic failure
involves adding noise to the SECAN results, and then performing the same processing as

described in Section 4.I.2, mainly by smoothing the signal.

5.4.8.1 Failure Simulation with Noise

Noise is simulated into the system by using the Nlatlab 7.7 random number generator to
generate a vector of Gaussian Noise, distributed ¡/(0,216.80). This vector is then added to
the SECAN results to create a noisy event curve. This adds noise to one curve; in order

to generate a variety of cases, this process is done 10,000 times. The same SECAN vector

is used in each case, with a diflerent noise vector being used. The resultant vector is then
smoothed using the Gaussian Smoothing algorithm described in Section 4.7.2.I. The ratios
described in Table 5.1 are then computed for all 10,000 cases and then stored. This process

was repeated f'or different levels of failure and fbr all f'our possible girder failures. The results

were piotted in histograms; an example of these histograms is shown in Figure 5.12.

Figure 5.12 shows histograrns for three failure cases for the four ratios when a truck is in
the Passing Lane and Girder 1 is failing. These three failure cases are with t healthy, with
C¿:0.9 and with C¿: 0.8. The SECAN data for Figure 5.12 was generated with Truck
A at full weight. To show the impact of weight classes when noise is involved, Figure 5.13

shows the same case, but with Truck A at 50% weight. By using the arnount of visual

separability as a measure of ease of classifrcation, it appears more difficult to classify the
50% case over the 100% case. Extrapolating on this idea, the amount of visual sepalability
carr be urcasurcd to dcteruriue the cxpectecl ability of a r¿tio to perfbrrn as ¿t classifìer.

This was done srtb.iectivcly using a simple ranking systcm of 5 (very accrrratc classification)

down to 1 (impossible to classify). Ratios that are ranked a 3 or higher wele deemed usable

to classify. Figule 5.14 shows an exarnple of the 5 rankings. Non-integer lankings were

assigned for some cases (for example 3.5), indicating that they are slightly more visible
than one ranking, but not enough to quaiify for the next ranking.
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Many simulations were used to generate the separability rankings. Three different rveight

classes were used, 700%, 75To and 50%, with all four girders failing, and with vehicles in
both lanes. This resulted in 3 x 4 x 2 : 24 different cases, each rvith f'our ratios. The
complete set of rankings are provided in Tables 5.3 and 5.4.

Table 5.3: Separability of Passing Lane Girder R¿tios.

Weight Failed Girder GT
G2

G7
G3

G7
G4

G2

100 1 5,, 4 .1

75 1 t..,,5 4

50 I
' .:.a '

::4, .1

100 2 5 3.5

75 2 t)

50 2 l,:.4'

100 q
J g,5,,,

75 q Ð

50 ,)

100 4

75 4

50 4
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Table 5.4: Separability of Normal Lane Girder Ratios.

Weight Failed Girder GÍ
G3
GZ

G3
G4

ND
GT

100 1 5;,'l

75 1 :,$',,, 4.5

50 1 .f

100 2 4

75 2 D
J

50 2 ù

100 .-) ô

75 tl .).

50 J

100 4

75 4

50 4

In Tables 5.3 and 5.4, the cells highlighted in green show the best channel for each set

of ratios, provided that the channel is rated 3 or higher. A.ty cell in blue is unusable

fbr classification. Cells in white ale usable for classification but do not provide the best

discrimination. Examining the colouring of columns allows the removai of certain ratios. In
Table 5.3, it can be seen that neither the ffi ratio nor the ffi ratio can detect any failules.

As a lesult, there is no need to rnonitor these two ratios. In Table 5.4, there is no ratio

that is not used, so all four ratios must be monitoled. The results of Tables 5.3 and 5.4 are

promising, as it shows that there is at least one ratio that allows for failure detection for

any failing girder. These ratios a¡e given in Table 5.5.
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Table 5.5: Girder Ratios which are able to Classify.

Failing Girder Ratio(s) to Use, Passing Lane Ratio(s) to Use, Normal Lane

1
GI G7
G2, G3

G3 G2
Gt, GI

2 GI G7
G2, G3

G3 G3
GÍ, G2

3 GT G3
G2

4 N/A G3
G4

5.4.9 Classifier Creation

Once the ratios have been identified in terrns of separability the next tasì< is to determine

how exactly to use these results in a classifi.er. The histograms in Figure 5.15 show over-

lapping Gaussian distributions; this is in essence a textbook problem which would typically

be used to cleuronstrtrte Bayesiau classification [24] . This would work by deterrnining the

probability that a given ratio falls in any of the distributions and classifying the ratio ac-

cording to the distribution from which it is rnost likely to have come. The problem with this

4.2 4.4
Peak to Peâk Râtio

o

Figulc 5.15: Histograrns for Classification.
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approach is that girder failure is not divided into a set of discrete distributions. The fail-

ure spectrum is continuous and to classify using a distribution generated from 90% heaìthy

does not make for a realizable solution. The main reason this solution is unrealizabie is that

most bridges that are newly built do not have tìre data necessary to generate the failure

distribution.

A different solution to the classiflcation problem is simply to use the healthy distribution,

represented by blue in Figure 5.15. Since the histogram is shaped like a normal distribution,

it is possible to modei the probability that a ratio belongs to the healthy distribution. The

proprieties of the standard deviation say that 95% of the values of a normal distribution lie

within two standard deviations of the mean (that is, P(lX - pl < 2o): 0.95). Since both

the mean and standard deviation of the healthy distribution can be obtained flom a physicaÌ

system through data mining and training algorithms, this method is easily reaìizable.

The classification system is implemented by dividing the problem into 18 sub-problems.

These a¡e the following ratios: #, æ, æ,æ,$l and ffi, each with three weight classes.

The weight classes are defined by the relative amplitude of the peak in the main girder to

the noise level in the system, ly', and a.re shown in Table 5.6. The class boundaries were

found experimentally; any peak that is below the left boundary for Class 3 is considered as

as having an insignificant amplitude with respect to noise, and is thrown out.

Table 5.6: Weight Class Boundaries.

Lane Class Identifier Left Boundary Right Boundary

Passing J 10N 30¡/
Passing 2 30N 50¡/
Passing I 50N oo

Normal .) 10¡,/ 28N

Normal 2 28¡ú 3B¡\r

Nolmal 1 38¡ú oo

Each of the 18 sub-problems contains its own mean and standard deviation to represent a

healthy distribution.
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Equation 5.10 shows the f'ormula for updating an individual bin count in the classification

aigorithm, where ¡;6 is the mean of the bin, ø6 is the standard deviation of the bin, and rat¿

is the ratio currently being examined.

(5.10)

For events in the Passing Lane, each event updates two bins; for events in the Normal Lane,

each event updates fbur bins. Events that are classifled as an Unl<nown Lane do not update

anything. The classification parameters found are listed in Table 5.7, and wele obtained

f:'om analyzing the tests done in Section 5.4.8.1.

Table 5.7: Classifi.catiorr Pararneters.

Failing Girder Weight Class p o
GI i t.4796 0.0L27

GI
G' 2 t.4799 0.0169

G7
G' 1.4800 o.0257

G1 3.9829 0.0772

G3 2 3.9760 0.1005

GL J 3.9564 0.1458

t 3.3392 0.0752

2 J.,J¿ I O 0.0971

G3 3.3031 0. i394

G3
G2 I I.2979 0.0143

G3 2 t.2978 0.0189

G2 J I.2977 0.0286

1 2.0695 0.0318

G3
G4 2 2.0671 0.0420

J 2.0620 0.0616

I 2.5730 0.0599

GI 2 2.5642 0.0770

G2
G1

t 2.5462 0.1 I 12

fcount(b)+ 1 lrat¿- t-rul>2oacount(o): (

Imax(O, count(å) - 1) otherwise
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5.4.1O Classifier Testing

In order to determine how well the classifier presented above works, some testing needed

to be done. To test the classifier, SECAN data was used once again in place of ¡eal event

data. However, to ensule realism, data was taken from the physical system to help steer

the generated events in the right direction.

5.4.10.1 Generating Realistic Events

In order to generate realistic events, distribution parameters needed to be extracted from

the physical system. The parameters that were needed are the percentage of events that

are in the passing lane and the normal lane, as well as the distribution of event amplitudes.

For simplicity it is assumed that each event has a peak proportional to how much it weighs

with respect to Tl'uck A. Since Section 5.4.5 showed that, without noise, event curves can be

directly scaled by a rnultiplying constaut f'or differently weightecì vehicles, the peak values

found foom the physical system can be normalized with respect to the peak of the controlled

tests using Tluck A to generate an amplitude distribution. To supply actual data for this,

data was taken from the North Perimeter Bridge on August 22"d, 2007. Two SECAN

vectors are used, one for Tluck A in the Passing Lane, and another with Tiuck A in the

Normal Lane.

Since Truck A generates different event signatures depending on the source lane, the source

lane of each of the physical events are first fbturd. For events originating in the Passing Lane,

the amplitude is divided by 60 microstrain, the smoothed peak value for Controlled Test 5;

for events originating in the Normal Lane, the amplitude is divìded by 37 microstrain, the

smoothed peak value for Controlled Test 4. Since the event detector found 1,509 events on

August 22"d,2007, a random number is generated between 1 and 1,509. This number is

then used to select an event, giving an amplitude rnuìtiplier to use and a source lane.

5.4.LO.2 Results

The simulation described above was run many times to test different error cases. Tables

5.8 and 5.9 show the results of classifying simulation data. For these tables, the category

C¿ indicates the percentage of 1 used, Count is the bin count at the end of the simulation,
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and Mar Count is the peak value that the bin count reached throughout the simulation.
For each of these simulations, the number of events generated is 10,000.

Table 5.8: Baseline Simulation Classification, all Girders Healthy

Bin Bin Name Count Max Count

1 G12W1 0 2

2 G72W2 0 2

.) G12W3 1 B

4 G13W1 0 ,)

5 G13W2 0 2

6 G13W3 2 8

7 G31W1 1 ,1

8 G31W2 i 2

I G31W3 0 o

10 G32W1 0 2

11 G32W2 0 .)

12 G32W3 0 5

13 G34W1 0 J

I4 Gs4W2 0 2

15 G34W3 1 6

16 G21Wl i 2

T7 G27W2 I ð

18 G21W3 0 7
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Table 5.9: Error Siurulation Classification ResuÌts.

Bin Bin Namc çí Count lr4ax Count C; Cou nt N{ax Count C; Count Mâx Count

Failing Girder I

G 21Jr'L 95 90 601 601 85 619 619

G 2W2 95 39 39 90 249 289 85 304 304

3 GI2\^/3 95 o t3 90 679 679 85 11.90 1 190

4 G 3w'1 95 7 30 90 447 a5 615 615

Gr3W2 95 I 5 90 154 155 85 263 263

6 G13\¡r'3 95 0 7 90 I 2L 85 446 447

7 G31W1 95 8 90 435 435 85 469 469

8 G31W2 95 I 6 90 286 246 85 393 393

9 G31.w3 95 4 t0 90 72s 85 1948 1948

o G32W1 95 0 4 90 0 3 85 I I

G32W2 95 I 3 90 0 4 a5 o 4

G32W3 95 0 5 90 o 7 85 o 8

3 G34]À/1 95 0 4 90 0 85 o 3

4 G34W2 95 0 90 0 85 o 2

5 G34W3 95 0 I 90 o 5 85 o t1

6 G2rW1 95 2 1t 90 85 469 469

7 G2tl¡J2 95 0 5 90 206 206 85 381 341

8 G21W3 95 to 90 228 a5 ú42 r482

Failins Gü.er 2

G12W1 95 7ß 76 90 465 465 85 514 5t4
2 GI2W2 95 lo 90 85 294 294

3 G12W3 95 0 t6 90 422 425 85 lo20
4 G13W1 95 o 6 90 164 r65 85 464 464

(;13W2 95 0 6 90 15 18 85 L64 164

G13W3 8 t7 90 2 22 a5 445 444

7 G31lM1 95 o 6 90 225 225 85 474 474

a G3IW2 95 I 4 90 2? 85 232

I G31W3 95 I o 90 7 14 85 522 524

0 G32l'l/1 95 o 90 376 376 85 514 514

95 0 4 90 158 t58 85 336

2 G32W3 95 0 I 90 2 40 85 t025 1028

3 G34v/l 95 o 3 90 0 85 0

4 G34W2 95 0 2 90 0 2 85 1

G34W3 95 I 7 90 2 5 a5 I I
6 G21W1 95 o 4 90 o 3 85 0 4

? G2TW2 95 I 90 o 3 85 1

8 G21w'3 95 I 7 90 0 6 85 o 7

Failino Gir¡ler 3

G12W1 95 o 3 90 o 4 85 0

2 G12l¿/2 95 0 4 90 4 85 0 4

GI2W3 95 I 8 90 to 85 2 ll
4 Gr3Wl 95 0 4 90 92 93 85 366 366

G13W2 95 0 3 90 13 19 85 r89 189

6 G13W3 95 I L4 90 0 l3 85 204 206

G31Wr 95 0 90 a 18 85 307

a G31W2 95 0 3 90 8 85 34 34

I G31t ¡3 95 I 7 90 0 6 85 4 1l

0 G32Wr 95 0 g0 258 254 85 502 502
G:12r¡./2 95 o 90 85 247

G32\v3 I 6 90 0 21 85 149 159

3 G34W1 0 2 90 7 85 0 4

4 G34W2 o 90 0 4 85 2 4

5 G34\v3 95 0 7 90 0 7 85 1 7

6 G21W1 95 0 2 90 o 4 85 o 3

? G21W2 95 o 2 90 0 2 85 o 4

I G21lÀ¡3 95 o 6 90 t 6 85 o 7

ConLiTLrLcd. on nctL pagc. . .
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Tablc 5.9: ConLinued Irom prcoiots pagc

Bin Bin Namc C; Coun¿ lvlax Count c Count Max Count c Count lvfax Count

Failing Girder I

G12WI 95 0 4 90 o 3 85 t 4

2 Gt2W2 95 2 4 90 0 3 85 0

3 G12W3 0 11 90 0 t0 85 0

4 G13W1 95 o 4 90 0 2 85 o J

G13W2 0 2 90 0 3 85 o 3

6 G13\À/3 95 0 I 90 0 7 85 t 1t
7 G31W1 95 o 2 90 I 3 85 I 5

I G3rW2 95 o 2 90 o 3 a5 I
G31W3 95 o 90 0 6 85 t 5

10 G32\v1 95 I 90 0 4 85 2 5

11 G32!'¡r'2 95 0 3 90 o 3 85 o 3

12 G32W3 95 4 8 90 4 9 85 0 8

G34\À/l 95 o 7 90 t52 152 85 373

t4 G34W2 95 o 2 90 0 8 a5 166 t67
15 G34W3 95 5 so o L2 85 9l 93

16 G21\À/ I 95 o 90 0 4 85 I 4

t7 G2L!ør'2 95 0 t 90 0 4 85 0 2

t8 G2IW3 95 0 90 o 6 85 I 5

Tables 5.8 and 5.9 show the results of 13 simulations. The baseline simulation, 100% Healthy

where C¿: \00, is shown in Table 5.8 and can be used to show what type of counts can be

expected from standard operation. The other simulations in Table 5.9 show varying degrees

of failure and what tlpe of bin counts can be expected for these failures. The resuìts here

are very useful; they agree with the results found in Tables 5.3 and 5.4 and show that

for each girder failing, there are bins that will show the failure. By comparing bin counts

to the maximum they attained in Table 5.9, it follows that for cases that can detect an

error, the erlot- count rvill steadily increase as mole and mole everlts are entered into the

classifrer.

5.4.10.3 Error Count Threshold

In order to make a decision on whether ol not a failure is happening, some threshold must

be placed on the errol counts. This threshold should be high enough that it is irnpossible to

reach under normal opeÌating conditions, but not so high that it would take several months

to identify a fault. Judging from the error counts in Table 5.8, the bin count in the fault

free situation never exceeds a value of 10. In reality, this value might be a little tight,

and a value between 30 and 50 may be rnore ideal. Once an erlor count has exceeded the

pre-determined threshold, an alert can be r-aised that there is a problem with the bridge and

that it should be examined. To summarize how the simulations and classifications work,

Figure 5.16 consists of a florvchart of the algorithms used.
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Figure 5.16: Flowchart of Simulation and Ciassification Algorithm.
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5.5 Finalized Classifier

With the simulations complete and a theoretical classification system tested to be function-

ing, the classification system developed can be applied to the physical system from the Red

River-North Perimeter Bridge to see how well it functions outside of the idealized simulation

enviloment used for development.

5.5.1 Classifying Real Data with Simulation Parameters

The first attempt at classifying real data was to classify the data previously taken from

the Red River-North Perimeter Bridge for August 22"d, 2007 rvith the classifier using the

weight classes from Table 5.6 and the parameters given in Table 5.7. This proved to be a
disastrous approach; the results are summârized in Table 5.10.

Table 5.10: Real Data Classification, Simulation Parameters.

Bin Bin Name Count \¡Iax Count

I G12W1 52 52

2 Gr2W2 22 23

ú G12W3 111 rt2
4 G13W1 80 80
tr G13\,V2 40 4t
n G13W3 165 t67

7 G31W1 74 74

8 G31\À/2 48 48

I G31W3 ÐKO DÉD

10 G32W1 38 39

11 G32W2 24 24

t2 G32W3 r52 L52

13 G34W1 62 62

14 G34W2 34 ttr

15 G34W3 208 208

16 G2lW1 76 76

T7 GzrW2 50 50

18 G21\M3 394 394
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Table 5.10 makes the claim that all four girders are failing all at the same time; this is
cleariy not the case as the Red River-North Perimeter Bridge has not failed.

5.5.2 Classi ing Real Data with ReaI Parameters

Upon investigation of the poor results of the prior cìassification, the cause of the problem was

quickly identified. The simulation parameters, while comparable to parameters obtained by

analyzing the real data, rvere different cnough that ahnost all eveuts were flagged as errors.

As a result, new parameters and weight classes were selected based on the August 22"d,

2007 data; these are summarized in Tables 5.11 and 5.12.

Table 5.11: Weight Class Boundaries, Real Data.

Lane Class Identifier Left Boundary Right Boundary

Passing J 10¡/ 25N

Passing 2 25N 40N

Passing I 40¡/ co

Normal ö 10N 20N

Normal 2 20N 301/

Normal I 30N oo

The most notable difference between these parameters and the simulation parameters in
Table 5.10 is that ø is almost a full order of magnitude larger in most cases. This can be

attributed to the differences between the real data and the simulation data. The simulation

assulnes a cortstant level of rroise, that physical efl'ects are rrot plesent, arrd that each vehicle

has the same shape of signature. Wren these assurnptions are relaxed, tlte potential for
greater variance between events exists. In order to test the new parameters, data was taken

from the Red River-North Perimeter Bridge for August 23"t,2007. The results of classifying

these new events with the parameters in Table 5.12 are presented in Table 5.13, showing

data that is consistent with the results lecorded in Tabie 5.8 and lead to the same threshold

that was discussed earlier in Section 5.4.10.3; that is. one between 30 and 50.
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Table 5.12: Classification Parameters, Real Data.

Failing Girder Weight Class. p o

GJ,
e2 1 r.4747 0.0937

GT
G2 2 7.4295 0.1499

GI
æ .) r.4970 0.2320

GT
G3 I 3.3110 0.6850

GT
G5 2 3.3528 0.9768

G1
rc- Ð

J 3.5777 t.2767

G3
GT I 2.3476 0.3840

G3
õT 2

q q10-
Z.¿I¿ I 0.6699

G3
GT ,f 2.401.5 0.7678

G3
G' 1 1.3824 0.1055

G3
G2 2 i.3540 0.1562

G3
c2 .-l 1.3886 0.2163

G3
G4 1 1.8730 0.1954

G3
G4 2 1.8545 0.18i6

G3
G4 .f 1.8675 0.2297

G2
GI 1 1.6972 0.1896

n,
GI 2 1.6863 0.2726

G2
GT J 1.7069 0.2977
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Tal¡le 5.13: Real Data Classifrcatiou, Real Dat¿r Pararneters.

Bin uln 1\ame Count Max Count
2WL 0 J

2 G 2W2 0 ,
ó G 2W3 0

4 G 3Wl 0 2

5 G 3W2 0 2

6 G 3W3 0 2

7 G3lWl 0 5

8 G31W2 0

I G31\M3 0 2

10 G32Wl 0 t)

I1 G32W2 0 6

12 G32W3 0 4

1.3 G34W1 0 5

1.4 G34W2 2 8

15 G34W3 I 4

i6 G21\M1 0 4

77 G21W2 0 J

I8 G21W3 0 2

5.5.3 Sensor Failures vs Structure Failures

The entirety of the discussion up to this point has stressed detecting stlucture failures.

Howevet, in a realistic implementation, the stlucture is not the only point of failure in the
system. The measurement system can also fail, and a failure of the meâsurement system

should not conclude that a structure failure has occurred.

There are two types of potcntial sensor faihrres for the meâsurement system. The first type
of sensor failure is a non-fatal sensor failure. This type of failure is a short term anomaly,

one that the sensor will eventually correct. An example of this is a sudden jump in the
zero-offset, followed by a jump back down. For this category of sensor failure, the plocess

of keeping an et'ror count will succeed in preventing the system from concluding that a

structure failure has occurred.

The second type of sensor failure is a complete and persistent failure, where something

is physically wrong with the sensor'. Examples of complete failure are the strain gauge

becorning de-bonded flom the girder, wire colrosion) or a power supply issue. These issues

are impossible to differentiate from a structure failure without some form of redundancy

in the system. Despite having two usable sensols per girder-, a failure in the bridge is
only detectable in a girder hei.ght * girder height square located around a crack [fO]; an

76



EvpNr Clessrprc¡rrolr 5. 5 Finalized Classifi,er

I Cracf Detectable ffi Crack Not Detectable

Figure 5.17: Locations where a Cracking Fault is Detectable by Strain Sensors.

example is shown in Figure 5.17. Figure 5.77 shows a cracking fault in a girder, and the
area where a sensor would need to be located for this fault to appear in the strain values.
Any sensors located outside this area will not show any variations in strain values [1g]. This
is an unfortunate situation since it removes any redundancy between sensors. Theoretically,
a sensor failure could be detected provided the behaviour- is so anomalous that it cannot
possibly be caused by a slight crack in a girder. Examples of this would be strain readings
on the order of thousands of microstrain, or a large negative strain.

The system described in this report is not fully realized; as a result, a method to determine
fatal sensor failures was not implemented, but it would be a simple matter to place different
error cases in the cÌassification system, if it is required. In reality, however, a fatal sensor
failure will requir-e the sensor to be replaced; to replace a sensor, an individual must be
sent to the bridge. When a girder failure is seen, the system will conclude that the bridge
must be examined, thus having a fatal sensol failure also conclude that the bridge rnust be
examined may not be an unwanted consequence.

Numerous methods exist to automate the collection of palameters for the algorithm. These
are briefly discussed in Section 6.2.
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Chapter 6

Conclusions

6.1 Conclusions

The algorithms developed in this project show exciting opportunities for the field of struc-
tural health monitoring. All three of these algorithms solve important problems that may
prevcnt effective automated monitoring. The algorithms designed, while focused on solving
specific problems encountered with the measurement system installed on the Red River-
North Perimeter Bridge, should be capable of performing well on any general system, due

to the fundamentals of the algorithms being modeÌ independent.

The preprocessing algorithm attempts to remove environmental fluctuations in recorded

strain measurements in situations where a model for the fluctuations cannot be f'ound. The
algorithm shows ihat it is possible to remove unwanted effects without damaging the desired

infbrmation; ihis eliminates the need for prior knorvledge about when the effects are present

and horv they manifèst themselves. It can also eliminate unexpecüed effects that were not
predicted, provided they match the profiIe of slorv, general trending effects.

The event detection algorithm accurately removes events using dynamic thresholds based

on inforrnation present in the signal itself. This requires no pre-existing knowledge about
expected amplitudes of events or distributions of the background noise. The detection
algorithm succeeded in isolating events in the signal. While the detection rate is not 100%,

it is high enough that the missed events do not pose any problems with tìre remaiuder of
the project.
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The event classifi.cation algorithm successfully identified failure in the case where failure
was simulated by a decrease in the moment of inertia for a girder. A simulation was used to
show that a classifier based on a derivative of Bayesian classification is accurate and able to
detect when weakening occurs in the girders. While it is unrealistic to expect to have data
on how an arbitrary bridge responds when faiiing, it is possible to derive a set of expected

pararneters for good operation, aud uronitor for cleviations fro¡n these. The classifìcatiou

algorithm uses ân error count to ensure that isolated or short term anomalies in the sensing

network, or periods of iarger than expected noise, do not cause an error on the structure
to be reported. Using an error count can be interpreted as waiting for a persistent error
condition to surface before reporting any problems.

The work presented in this project showed that, while using absolute peak values of the
strain measurements was not a good feature for classiflcation, several features that were

immediately derivable from the peak values, the girder ratios, the weight class, and the
source lane, were capable of perf'orming the task of classiflcation.

In conclusion, the project shows that it is possible to take imperfect measurement data,

remove the unwanted effects and extract a classiflcation fèature, in this case, the event; both
of these are shown to work on ¡eal-world data. In addition, the project, shows that a classifier

based on detecting anomaious behaviour can identify failure. This was demonstrated using

simulation, but could not be tested using real-world measurements as there was no data
available for the bridge in this study which represented a failure state.

6.2 F\rture Work

Despite the promise shown by this report, there is room to implove on the ploject. First
and foremost, a learning algorithm can be designed and implemented to allow the system

to determine automatically the proper parameters that it needs for classification, those

being the means and standard deviations for each girder ratio for a healtþ structure. As

wcll, diffèrent cl¿rssification scherncs could be dcvcloped to try zrrrd conrplerneut the sclle¡ne

presentecl, with a goal of improving thc classification rate. An example of this would be to
tr-y and solt the events by vehicle type as welÌ as weight. Work can also be undertaken in
an attempt at lowering the standard deviation measured for a healthy structure.

Because of the potential fol seasonal drifting, it would be a worthy exercise to determine

the quality of the classifier rvhen applied to a season that is not the training season, for
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example, classify winter data using a summer training set. If the results are unusable, a
possible solution would be to have two models for expected behaviour. One would cover
the summer data, and another could cover winter data, with the proper model being used
at specific times of the year.

In expanding on the knowledge of how the different girder ratios are expected to react,
discussed in Section 5.4.8.1, it may be possible to implement an algorithm that can interpret
error counts to determine the location of the failure. Using this information, it may also be
worth trying to find redundancy that allows for fatal sensor errors to be determined.

In addition to expanding the concepts developed in this project, the problems discussed
reveal ways that may improve the physical implementation of the system. A suggestion is

to move the entire measurement resistor bridge to the same environment, so that ali four of
its components fluctuate identically with temperature. At the very least, the measurement
node should be taken out of the cabinet where the heater resides.

Another potential application of this project to the physical implementation is in decimating
data for storage. The event detector results in a bounding window for each event; it can be
assumed that any data that is not part of a window is therefore sirnply background noise
and contains no information worth storing. As a result, the amount of stored data could be
reduced by a considerable amount if the only samples stored are those that fall in an event
window.

The project also leads to a recommendation for proper rnonitoring of an entire structure.
Because a fault is detectable only if a sensor falls within a portion of the girder surrounding
the fault, a compiete sensor network would need to have, at the very least, sensors placed
at appropriate separations across entire girders; recall that this separation would be the
girder height. It would also be beneficial to implement some sensor redundanc¡ which
wouid require this distance to be smaller; this spacing should be at most half of the girder
height.

80



References

[1i Manitoba Infrastructure and T]ansportation, Construction Draw,ings of Red. Ri,uer

Brr,dge on PTH-101, Correspondence, 200g.

[2] J. s. wilson, ed., sensor Technologg Handboolc. Massachusetts: Newnes,2005.

[3] J. Pople, "Eïlols and uncertainties in strain measurements employing metal foil
gauges," (Tavistock, Devon, UK), pp. 532 - 74, IgB4.

[4] C. Tanaphatsiri, W. Jaikla, and M. Siripruchyanur, "A cu¡rent-mode wheatstone
bridge employing only single do-cdta," in Circuits and Systems, 2008. APCCAS 2008.
IEEE Asi.a Paci,fic Conference on, pp. 7494-7497,30 2008-Dec. B 2008.

[5] "Introduction to digital signal processing," Tech. Rep. TN-b12, Vishay Micro-
Measurements, Aug 2007.

[6] "Strain gage thermal output and gage factor variation with temperature," Tech. Rep.
TN-504-1, Vishay Micro-Measurements, Aug 2007.

[7] M. Brauwers and F. Brotrers, "Temperature and strain effect on electricaÌ resistivity
of transition rnetal alloys: application to strain gauges," Jour-nal of Physi,cs F: Metal
Phys'ics, vol. 6, no. 7, pp. 1331-1339, 1976.

[8] B. studyvin, R. Doty, and R. Repplinger, "Temperature efiects on strain gages used
on aerospace nickel hydrogen batteries," in Battery Conference on Applicat'ions and
Aduances, 1999. The Fourteenth Annual, pp. 32b-328, 1ggg.

[9] G. Rutherford, "Model-fïee bridge-based vehicle classifi.cation," Master's thesis, Uni-
versity of Manitoba, lVinnipeg, N4anitoba, Aug 2008.

B1



References

[10] V. FiÌ'chikov, V, "Normalizing transducers of strain-gauge sensors with correction of
temperature sensors," Telecorrurnunications and Radio Eng,ineering, vol. 49, no. 11,

pp.92-97, 1995.

[11] J. Huang, "System engineering and data m anagement for structural health monitor-
ing," Master's thesis, Dalhousie University, Halifax, Nova Scotia, June 2007.

[12] S. Haykin and M. Moher, Introduct'ion to Analog and Digi,tat Cornmunicaúions. New

York: John Wiley & Sons, second ed., 2007.

[13] X. Luo, C. Peng, and X. Guo, "Using morphological filters to extract spiky transients
in eeg," in Neural Interface and Control, 2005. Proceedi,ngs. 2005 First Inter-national
Conference on, pp. 72-74, May 2005.

[14] R. C. Gonzalez and R. E. Woods, Di,gi,tal Image Processing. New Jersey: Prentice Hall,
second ed.,2002.

[15] P. Tadejko and W. Rakowski, "Mathematical morphology based ecg feature extraction
for the purpose of heartbeat classification," in Cornputer Information Sgstems and

Ind'ustrial Management Appli,cati.ons, 2007. CISIM '07. 6th International Conference

on, pp. 322-327, June 2007.

[16] M. Sedaaghi, "Direct implementation of open-closing in morphological filterin g," EIec-

tron'ics Letters, vol. 33, pp. 198-199, Jan 1997.

[17] P. Kersten, "Ftzzy order statistics and their application to fuzzy clustering," Fuzzy

Systerns, IEEE Transactions on, vol. 7, pp. 708*712, Dec 1999.

[18] Robert Bosch GmbH, CAN Specification, Vers'ion 2.0, Sept I99I.

[19] Dr. A. Mufti, Correspondence, 2009.

[20] Dr. D. Sidhu, Correspondence, 2009.

[21] A. Mufti et. al., "Load tests on north perirneter red liver bridge." First Draft, 2008.

122) X. Jin, Q.-p. Zhong, and G.-s. Yang, "stress damage failure analysis and plediction of
beams under pure bending loads," Gong Cheng Li, Xue/Eng'ineering Mechan'ics, vol. 16,

no. 1, pp. 723 - 727,1999. [Abstract].

[23] Dr. E. El-Salakawy, Correspondence, 2009.

82



Re.ferences

l24l R. O. Duda, P. E. Hart, and D. G. Stork, Pattern Classi.fication. New York: John

lViley & Sons, second ed., 2001.

83



Appendix A

SECAN Parameters

This appendix contains a list of structural parameters to be used for modeling the Red

River-North Perimeter Bridge in SECAN, as supplied by Dr. D. Sidhu [20]. All distances

are in rneters.
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SECAN PeRRn¡BrBRs

. No. of Har-monics: 40

. No. of Girders: 5

o Span Length: 24

¡ E of Girder Material: 2eB

. G of girder Material: Be7

o No. of Diaphragms: 4

o No. of intermediate supports: 0

r Girder Spacings, starting from left:

- 2.726

- 2.743

- 2.743

- 2.743

o Moment of inertia of girders, starting from left:

- 0.03767352

- 0.03387336

- 0.03387336

- 0.03387336

- 0.03456791

¡ Torsional inertia of girders, stalting from ieft:

- 0.2099809e-4

- 0.i358832e-4

- 0.1358832e-4

- 0.1358832e-4

- 0.7362877e-4

" Slab Thickness: 0.2

o E of Slab Material: 2.8eT

. G of Slab Material: I.2e7

o Equivalent Shear Area: 0

A2



SECAN P¡.Raupr¡ns

o E value of Diaphragms: 2eB

o Distance of Diaphragms from left abutment:

- 4.087

- 8.931

- 14.985

- 19.828

. I value of Diaphragms:

- 0.109881e-2

- 0.109881e-2

- 0.109881e-2

- 0.109881e-2
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Appendix B

Matlab Code

The following appendix contains the Matlab source files for the algorithms.

8.1 Event Detection (Shell)

82 Preprocessing Algorithm

8.3 Event Detection

8.4 Event Parameter Detection

8.5 Event Classification (Simulation)

B2

B4

B5

B7

B9
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MRrLae Core 8.1 Euent Detection (SheII)

8.1 Event Detection (Shell)

f unction EventDetect ion (input_f i1e, output_f ile )

outfile = char(output-file) ;

STDEV-C0EFF = 0.6745;
PEAK-DISTANCE-THRESH0LD = 100;

FIRST_TO_READ = 1; CIIRRENT_0FFSET = 0; READING_AMOUNT = 15000;

done = false;

dataFornat = "Af , "/"f , "/"f., "/,f ,If , "Af , "/,f , "Af , "/"f , y"f ,
y"f , "/"f , "/"f , "/"f ,'/"f , y"f , "af , "/"f,;

FI = fopen(char(input_fi1e) ,'r, ) ;

incData = zeros(18,READING_AMOUNT) ;

peaks = ones(15,250000) .* Inf;
al-lData = ones(250000,3) .x fnf;

totalEvents = 0;

while (-done)
if (FIRST-T0-READ == 1)

READING-AMOUNT = READING_AM0IJNT * 2;
el-se

incData(:,1:READING_AM0UNT/2) = incData(:,READING_AM0UNT/2+
1:READING_AMOUNT) ;

CURRENT_oFFSET = CIIRRENT_OFFSET + READTNG_AMoUNT/2;
end

for 3 = FIRST_To_READ: (FIRST_T0_READ-1) + READING_AMoUNT/2
teropData = fgets(FI);
ternpData = tempData (f ind (tempData==,,,, 1) +2: length (tempData) ) ;

tenpData = ssca¡f (tenpData, dataFormat) ;
incData( :,j) = tempData;
i.f (f eof (FI) )

done = true;
break;

end
end
incData = incData(:,1:j) ;

if (FIRST-T0-READ == 1)
READING_AMOUNT = READING_AM0UNT/2 ;
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Metl,ae Coop 8.1 Euent Detection (Shell)

FÏRST-TO-READ = FIRST-TO-READ + READING_AMOUNT/2;
currentPeal< = zeros (1, S) ;
currentEnd = zeros(1,5) ;

currentStart = zeros(1,5) ;

end

[temp m:nElenents] = size(incData);
c1-ear temp;

[allMod,allsnoothed,dunmyNoiseJ = Preprocessing(incData,numElernents);

[t ot alEvent s, peaks, allData, currentSta¡t, currentEnd, currentpe ak] =
EventDetector (CURRENT-0FFSET, srDEv-COEFF, PEAK-DrSTANCE_THRESHOLD,
READTNG-AM0IJNT, done, durnnyNoise, allsmoothed, allsnoothed, currentstart,
currentEn d, currentPe ak, t ot alEvent s, peaì<s, a11Dat a) ;

T"Resets to help cascading
currentstart = currentStart - READING_AMOUNT/2;
currentStart (isiaf (currentStart) ) = Q'
currentstart (isna:r(currentStart) ) = 0 ;

currentEnd = currentEnd - READING_AM0IINT/2;

currentPeah = max(currentPea_k - READING_AMOUNT/2,0) ;
currentPea-k(isinf (currentPeak) ) = 0;
currentPeah(isna¡.(currentPeak) ) = 0;

end

save (outfile)
fclose (Ff) ;
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Merl¡e Coop B. 2 Preprocess,ing Algorithrn

8.2 Preprocessing Algorithm

fu¡ction lallCfea¡ed,allsnoothed,dunmyNoise] = Preprocessing(incData,numElements)
T"Performs the required preprocessing algorithms.

a110rig = zeros(15,mrnElements) ;

s¡oallScaleFixed = zeros (15,numElenents) ;

for n = 1:16
cha¡¡el = incData(n+1, :) ;

a110rig(n, ¡) = çþ¡nns];

y = ones(1,300);
cl-osed = inclose(channsl,y) ;
closed = inopen(closed,y) ;

opened = imopen(channsl,y) '

opened = imcl-ose(opened,y) ;

snallScaleFixed(n, :) = (closed+opened)/2;

if (n == 16)
events = cha¡¡re]- x (cha¡¡e1 > opened);
events (-events) = opened(-events) ;

events = events .* (events < closed);
events(-events) = closed(-events) ;

events = cha¡inel- - events;
end

end

allCleaned = a110rig - snallScaleFixed -
repmat (¡nedlan ( al10rig- snallScaleFixed, 2), 1, numElenent s) ;

allSmoothed = zeros (15,m:nElenents) ;

dumrnyNoise = allCleaned(16, :) - events;

for k = 1:16
al-l-Snoothed (k, : ) = GaussianSrnooth(allCleaned (k, : ),5,2I,2) ;

end
end
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Merr.Rs Cooe 8.3 Euent Detecti,on

8.3 Event Detection

fr:::.ction [totalEveats,peaks,al-lData,currentstart,currentEnd,currentpeak] =
EventDetector (CURRENT_OFFSET, STDEV_COEFF, PEAK_DISTANCE_THRESH0LD,
READING-AM0UNT, done , dummyNoise , scenn ingSignal- , peakValueSig:lal , currentstart ,
currentEnd, currentPeak, totalEvents,peaks, allData)

allEnds = ones(100,5) .* Inf;
allStarts = ones(100,5) .* Inf;
allMaxes = ones(100,5) .* Inf;
allCurrMax = ones(100,5) .* Inf;
numEvents = 0;
currentMax = zeros(1,5) ;

THRESHOLD = 4 x STDEV_C0EFF * std(duilnyNoise);

eventDetected = 1;

r¡hi1e (eventDetected > 0 && (done I I rnin(currentStart) <= READING_AM0UNT/2))
eventDetected = 0;
for cha:me1 = 1:5

channelFou¡rdEvent = 0;
chan = scarningSignal(ch:nnel, :) ;

currMax = 0;

if (currentPea-k(channel) == 0)
for 3 = rnax(currentEnd(cha¡¡el)+1, 1) :length(chaa)

if (char(j) >= THRESH0LD && (currMax == 0 I I chan(j)
> cha-n ( currMax) ) )
currMax = j;

end

if (currMax > 0 && chal(j) < STDEV_C0EFF*sId(dr:nnyNoise))
currentEnd(channsf) = 3 '

currentPeak(cha¡nel) = currMax;
currentMax(cha¡¡eI) = cha¡.(currMax) ;

eventDetected = 1;
chennelFou¡tdEvent = 1;

for k = currMax:-l:1
if (cha¡r(k) < STDEV_C0EFF*s¡¿ç¿,tmyNoise))

currentstart (cha¡r¡el) = k;
breaì<;

end
end
break;

end
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IVIerLee Coon 8.3 Euent Detection

end
else

if (currentPeah(channsl) < Inf)
eventDetected = 1;
channelFor¡¡dfivent = 1;

end
end
if (channelFormdflvent == 0)

currentPeak(channel) = fnf;
currentStart (cha¡¡el) = fíf;

end
end

newPea-k = min(currentPeal<) ;

if ((done I I nin(currentStart) <= REA-DING-AM0UNT/2) &.&,

length(find(isinf (currentPeaÌ)==1)) < 5)
numEvents = numEvents + 1;
for channel = 1'5

if (abs(currentPeak(channsf) - ner.¡Peak) < PEAK_DISTANCE_THRESH0LD)
allEnds (numEvents, channel) = currentEnd (cha¡ne1) ;

allStarts (numEvents, ch¡nnsl) = currentstart (channel) ;
allMaxes (munEvents, cha¡nel) = currentMax(cha¡¡el) ;

allCurrMax (numEvents, chennsl) = currentPeak (channel) ;

currentPea-k(ç[a¡ns]) = I'
else

allEnds (nìlaEvents, cþanngl) = -Inf ;

all-Starts (nurEvents, channel) = fnf ;

all-Maxes (n¡mÊvents, cha¡nel) = -fnf ;
allCurrMax(numEvents, cha¡ne1) = -fnf ;

end
end

end
end
[temp nr:nElenents] = size(pea]ValueSignal) ;

clear terûp;

[totalEvents,pea-ks,allData] = EventParameterDetection(
CIIRRENT_0FFSET, nr:mEleroent s, numEvent s, peakValues i gnal, a1 lMaxe s,
al1Ends, allStarts, totalEvents, peal<s, al_lData) ;

end
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8.4 Event Parameter Detection

fu¡ction [totalEvents,peaJrs,allData] = EventPara¡eterDetection(CURBENT_0FFSET,
mrmElement s, mrmEvent s, s i gnal, allMaxe s, allEnds, al 1St art s,
totalEvent s, peal<s, allData)

T"Determines ¡,rindor¿ and peak values

i = 1:nunElements;

r.¡ind = ones (numEvents,numElements) ;
for eventNumber = 1:numEvents;

naxes = al-lMaxes(eventNunber, :) ;
ends = all-Ends(eventNumber, : ) ;

sta-rts = al_IStarts(eventNunber, : ) ;

peakChaa = f ind(maxes==nax(maxes) ) ;

sta-rt s - starts (max ( 1, peakChar.-2) : nin (S, peaì<Chan+2) ) ;
ends = ends(rnax(l,pealChan-2) :nin(S,peakCha¡+2)) ;

starts = starts (-isnan(sta¡ts) ) ;
starts = starts(-isinf(starts)) ;
ends = ends(-isnan(ends)) ;

ends = ends(-isinf (ends)) ;

MADsta¡t = nedian(abs(starts - median(starts))) ;
MADend = media¡.(abs(ends - media¡r(enas))) ;

startDevs = (starts-raedia:r(sta¡ts) ),/MADstart ;
endDevs = (ends-median(ends) ) /MADend;

for j = 1:length(starts)
if (abs(startDevs(j)) > 3.5)

starts(j) = inf;
end
if (abs(endDevs(j)) > 3.5)

ends(j) = -inf;
end

end

thestart = nin(starts) ;

theEnd = max(ends);

r,¡ind(eventNumber,:) = ones(1,m:nElements) .* (i>=thestart) .* (i<=theEnd);
end
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MATr,ee Cooe B.l Euent Parameter Detection

b = totalEvents;
for ¡=1 ' 15 '

for k = b+1:b+numEvents
peaJ<s(j,k) = max(signal(j, :).*wind(k-¡, :)) ;
allData(k, : ) = ICURRENT_OFFSET find(r,¡ind(k-b, : )==1,1)

find(wind(k-b, :)==1, 1,,last,)J ;
end

end

totalEvents = totalEvents + nunEvents;

end
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Nfert,ee Coop B. 5 Euent Cløssifi.cati.on (Si,mulation)

8.5 Event Classification (Simulation)

clear; close all;

fail = 0;
STD_COEFF = 2;
T"define error bins
G12l.I = lI 2 3f t

G13l,j = [4 5 6] ;

G31W = [7 I 9];
G32W = b0 1.t I2l;
G341,/ = h3 14 151 ;

G21lJ = [16 17 18];

bins = zeros (1, 18) ;

bin-l'{axes = zeros(1,18) ;

rneaiìs = zeros(1,18); stdevs = zeros(1,18);

7.Def ine classif ier pa:ra-meters
nea¡s(G12!J(1)) = 1 .4796; stdevs(G12ti(1))
nea¡rs (G12W(2)) = I.4799; stdevs (c12i,I(2) )
mea¡.s(G12il(3)) = 1.4800; stdevs(G12tt(3))
nea¡s(G13W(1)) = 3.9829; stdevs(G13i,l(1))
mea:rs (G13li (2) ) = 3 . 9760 ; stdevs (c13l.t (2) )
ioea¡s(G13W(3)) = 3.9564; srdevs(c13i/(3))

stdevs (c31li(1) )
stdevs (c3lW(2) )
srdevs (c31l.i(3) )
stdevs (G32W(1) )
stdevs (c32l.I(2) )
stdevs (G32itr(3) )
stdevs (c341,¡(1) )
stdevs (G34ti(2) )
stdevs (c34W(3) )
stdevs(c21W(1))
stdevs (G21!ü (2) )
stdevs (G2lW(3) )

= 0.0127;
= 0.0169;
= 0.O257;
= 0.0772;
= 0. 1005;
= 0.1458;

= O.0752;
= 0.0971;
= 0.1394;
= 0.0143;
= 0.0189;
= 0.0286;
= 0.0318;
= O.O42O;

= 0.0616;
= 0.0599;
= O.O77o;
= Q.LII2;

mea¡s(G31W(1)) = 3.3392;
neans(G31W(2)) = B.32Zs;
means (G31i{ (3) ) = 3 .3031 ;
roea¡s(G32W(1)) = 1 .2979;
roea¡s(G32!'l(2)) = t.2978 ;
rnea¡rs(G32W(3)) = 1 .2977 ;

mea:rs(G341^/(1)) = 2. 0695;
neans (G34lrr(2)) = 2.067 I ;

mea:rs(G34W(3)) = 2.0620 ;
mea¡s(G21lf(I)) = 2.5730;
nea¡s (G21W(2)) = 2.56a2;
mea¡s(G21W(3)) = 2.5462;

T.Generate Events
numEvents = 5000;
noi.se = 2L6.8;

Plcor:nt = zeros(1,3);
Nlcormt = zeros (1,3) ;
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events = EventGenerator(mrmEvents,3, 100) ;

events = Gaussia¡Snooth (event s,5,2I,2) ;

for i=1:numEvents
peals = squeeze (nax(events (1 :5, :, Í), lf ,2)) ; peaks (5 : -1 : 1) = peals (1 : S) ;
peaks = peaks' ;

lane = find(peaì<s==max(peals)); la¡e = (lane-1)/2 + I;
maxPea-k = nax(peaks) ;

if (Ia¡e == 1)

T"Determine vej-ght class 1 , 2 or 3
if (naxPeak > 1O*noise && maxPeal< <= 3O*noise)

.- - c.w - or

elseif (maxPea-k ) 30*noise && naxPeak <= SO*noise)
.- - ô.|\ ' Z¡

elseif (maxPea-k > SOxnoise)
t¡ = 1;

else
r¡ = -1;

end

if (w>0)

GIG2 = pea-ks(1)/peal<s(2) ;

G1G3 = peaks (1)/peaf<s(3) ;

Plcorlnt (r¡) = Plcount (r¡) +1 ;

if (abs(G1G2 - mea¡rs(G12W(r¿))) > STD_COEFF*stdevs(G12W(w)))
bins(G12ll(r¡)) = bins(c12tl(r¡) )+t;
binMaxe s (G1 2l"i (r^r) ) = ¡nax (bin-l4axe s (G1 21,.t (r¿) ), bins (c12til (w) ) ) ;

else
bins(G12W(r¡)) = max(0,bins(G12w(w) )-1) ;

end
if (abs(c1c3 - nea¡s(G13W(r¿))) > STD_coEFFxstdevs(c13IlI(w)))

bins(G13W(r¡)) = bins(G13W(r¿))+1;
bin_Ì4axes (G13W (r,¡) ) = max (binMaxes (G13W (r¿) ), bins (c13W (w) ) ) ;

else
bins(G13t/(w)) = max(0,bins(c13w(w))-1) ;

end
el-se

fail = fa11+1;
end

el-seif (lane == 2)
T.Deternine weight class 1 , 2 ot 3
if (maxPeak > lO+noise && naxPea-k <= 28*noise)

ir = 3;
elseif (naxPeak > 28*noise && naxPeak <= 38*noise)
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M,q'rl,ee Coon B. 5 Euent Classificati.on (Simulati,on)

u=2;
elseif (naxPeak > 38*noise)

r¿ = 1;
el-se

w=-1;
end

if (w>0)

Nlcoú¡t (r"r) - Nlcou:rt (r¡) +1 ;

G3G1 = peal<s(3),/peal<s (1) ;

G3G2 = peaks(3)/pea-l<s(2) ;

G3G4 = peaks (3),/pealcs (4) ;

G2GI = peaks(2),/peaks(1) ;

if (abs (G3G1 - nea¡s (G311/(r.¡) ) ) > STD_COEFF*st¿syr ¡c3lW(r.¡) ) )
bins(G3lW(w)) = bins(G3lW(r))+1;
bin-l'{axes (c31W (r,r) ) = max (binMaxes (G31W (w) ), bins (G31W (r¡) ) ) ;

else
bins(G31!ù(r¡)) = nax(0,bins(G31W(r¡))-1) ;

end
if (abs(c3c2 - means(G32W(!r))) > STD_COEFF*stdevs(G32W(r¡)))

bins(G32W(r¿)) = bins(G32W(w))+1;
binMaxes (G32W (w) ) = nax (bin-t'laxes (G32!J (w) ) , blns (c32W (w) ) ) ;

else
bins(G32W(v)) = max(0,bins(G32W(w))-1) ;

end
if (abs(G3G4 - mea¡s(G34!l(r¡))) > STD_C0EFFxsrdevs(c3aW(w)))

bins(G34W(r¡) ) = bins(c34t/(r¡) )+1 ;
bin-¡4axes (c34W (r¡) ) = nax (bin-t',laxes (G34W (r¡) ) , bins (G34t/ (w) ) ) ;

el-se
bins(G34W(r,¡) ) = nax(0,bins(G341^f(w) )-1) ;

end
if (abs(G2G1 - nea¡s(G2lVJ(w))) > STD_C0EFF*stdevs(c21l,l(r,¡)))

birs(c21t'j(w)) = bins(c21W(w) )+1;
bin-l,laxes (G21il (w) ) = max (binMaxes (G2li,I (w) ), bins (G21!rr (¡¿) ) ) ;

else
bins(G21lJ(w) ) = nax(0,bins(G21lf (r¡) )-1) ;

end

fail = fail+1;

else
display( ['Error. r,rith la¡e = ' m:m2str(la¡e)] ) ;

end

else

end

end
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