Data Fusion for Detection of Faults in

Slab-on-Girder Bridges

by

Marc Andrew Soiferman

A Thesis submitted to the Faculty of Graduate Studies of
The University of Manitoba

in partial fulfilment of the requirements of the degree of

MASTER OF SCIENCE

Department of Electrical and Computer Engineering
University of Manitoba

Winnipeg

Copyright © 2009 by Marc Andrew Soiferman

THE UNIVERSITY OF MANITOBA
FACULTY OF GRADUATE STUDIES
E3 3 F T

COPYRIGHT PERMISSION

Data Fusion for Detection of Faults in
Slab-on-Girder Bridges

BY

Marc Andrew Soiferman

A Thesis/Practicum submitted to the Faculty of Graduate Studies of The University of
Manitoba in partial fulfillment of the requirement of the degree

Of
Master of Science

Marc Andrew Soiferman©2009

Permission has been granted to the University of Manitoba Libraries to lend a copy of this
thesis/practicum, to Library and Archives Canada (LAC) to lend a copy of this thesis/practicum,
and to LAC's agent (UMI/ProQuest) to microfilm, sell copies and to publish an abstract of this
thesis/practicum.

This reproduction or copy of this thesis has been made available by authority of the copyright
owner solely for the purpose of private study and research, and may only be reproduced and copied
as permitted by copyright laws or with express written authorization from the copyright owner.

Abstract

This thesis reports the development of algorithms required to implement an automated fault
detection system for structural health monitoring (SHM) applications for slab-on-girder
bridges. The system is designed to detect girder cracking failures by modeling damage as
a reduction in moment of inertia. To properly implement fault detection, three algorithms

needed to be designed.

This thesis demonstrates how unwanted effects corrupt measurement data, which compli-
cates extracting useful information. A preprocessing algorithm is proposed that is shown
to remove two explicitly defined negative effects, while keeping the useful information un-
touched. Once these effects are removed, the measurement data is processed to extract
vehicle events. Special care is taken to implement cascading of input data, to allow a

system to process the large amount of data generated by an SHM system.

To determine structure failure, a classification algorithm was developed which was shown,
through simulation, to be able to detect girder cracking failures based on features extracted
from the event information. The classification algorithm is based on anomaly detection and

uses an error count to guarantee a reported failure is a persistent failure.

ii

Acknowledgements

First and foremost I would like to thank my advisor, Dr. Dean McNeill, for his input and
dedication to this project. Without his direction and aid, this thesis would not have been
completed. I would also like to thank the examining committee, Dr. Ehab El-Salakawy and
Dr. Pradeepa Yahampath, for their time and contributions to this thesis.

Acknowledgement must be given to Dr. Aftab Mufi, Dr. Darshan Sidhu, and Dr. Ehab El-
Salakawy for lending their expertise in the Civil Engineering aspects of this thesis, explaining
concepts that were beyond my knowledge.

The assistance and input provided by my friends is greatly appreciated. Further acknowl-
edgements are owed to Nico Danell for proof reading this thesis.

Special thanks are owed to my girlfriend, Mercedes Rich, for her support, understanding
and encouragement throughout the entire process of completing this thesis. Special thanks
are also owed to my family: my parents, Karen and Jacob, and my sister, Heather. They
provided an environment and lifestyle that allowed for completion of this thesis. Without
the support shown by them throughout my entire life it is impossible to predict if I would
have been able to reach this point.

iii

Contents

Abstract L . e e e e e i
List of Figures o e viii
Listof Tables e ix
1 Introduction 1
1.1 Motivation e e 1
1.2 Scope e 2
1.3 Proposed Solution 3
1.4 System Requirements L oL 5

2 Existing System

2.1 TheBridge e
2.2 Measurement System L. L oL 8
2.3 Data Acquisition Unit o oo 11
2.4 Problems With the System 13
3 Data Collection And Preprocessing 15
3.1 DataCollection e 15
3.1.1 DataStorage L 16
3.1.2 Reading Data into the System 16
3.2 Data Preprocessing L e 17
3.2.1 Temperature Effecto 18
3.22 Zero-Offset 19
3.2.3 Combining Both Effects 19
3.2.4 Unsuccessful Strategies 20
325 MethodUsed 21
3.2.6 Mathematical Morphology 21

v

Contents

3.2.7

Preprocessing Algorithm

4 Event Detection
4.1 Preliminary Values and Algorithms to Aid Detection

4.2

4.3 Determining Effectiveness of the Detector

4.1.1

4.1.2

Event Detection Algorithm
Finding the Next Event
Determining Global Events

4.2.1
4.2.2
4.2.3
4.24

Threshold Values
4.1.1.1 Estimating System Noise
4.1.1.2 Threshold A
4113 ThresholdB
Signal Preparation
4.1.2.1 Gaussian Smoothing

Determining a Bounding Window for an Event

Cascading the Detector

5 Event Classification

5.1 Usable Data for Classification
5.2 Event Features

5.3

5.4

521 SourceLane.
52.2 Girder Ratios
5.2.3 Vehicle Weight Classes
Classification Implementation
531 GroupingEvents
Classification Simulation
541 Vehicles,
542 Lanes e
5.4.3 Semsor Locations
54.4 SECAN Output
5.4.5 Weight Simulation
5.4.6 Determining Noise Level
5.4.7 FPailureModel
5.4.8 Pailure Simulation

5.4.8.1 Failure Simulation with Noise
5.4.9 Classifier Creation

Contents

5.4.10 Classifier Testing Lo 68

5.4.10.1 Generating Realistic Events 68

54102 Results 68

5.4.10.3 Error Count Threshold 71

5.5 Finalized Classifier L 73

5.5.1 Classifying Real Data with Simulation Parameters 73

5.5.2 Classifying Real Data with Real Parameters 74

5.5.3 Sensor Failures vs Structure Failures 76

6 Conclusions 78

6.1 Conclusions e 78

6.2 Future Work 79
References 81
Appendix A SECAN Parameters Al
Appendix B Matlab Code B1
B.1 Event Detection (Shell) B2
B.2 Preprocessing Algorithm oo oo B4
B.3 Bvent Detection. B5
B.4 Event Parameter Detection B7
B.5 Event Classification (Simulation) B9

vi

List of Figures

1.1

2.1
2.2
2.3
2.4
2.5
2.6
2.7
2.8
2.9

3.1
3.2
3.3
3.4

4.1
4.2
4.3

5.1
5.2
5.3
5.4
5.5
5.6

Block Diagram of Proposed System

Cross Section of Red River-North Perimeter Bridge,
Cross Section of Red River-North Perimeter Bridge,

Showing Girders
Showing Lanes.

Location of Sensors on Red River-North Perimeter Bridge

Cross Section of Girders, Showing Sensor Locations

Installed Sensors on Red River-North Perimeter Bridge

Wheatstone Bridge
Sensor Node for Red River-North Perimeter Bridge
Strain and Temperature Comparison, July 4%, 2007
Strain and Temperature Comparison, January 4%, 2

008

Strain Curve of a Single Window Showing Undesirable Effects

Examples of Morphological Operations
Example of Closing-Opening a Signal
Cleaned Strain Channel

Comparison of Noise Estimate to Cleaned Signal .
Effect of Smoothing on an Event
Flowchart of the Event Detection Algorithm

Usefulness of Sensors at Bottom vs Top of Midspan

Amplitude Difference between Midspan and Abutment

Sensor Curves of an Event in the Passing Lane . .
Sensor Curves of an Event in the Normal Lane . .
Images of Real Trucks used in SECAN Simulation
Trucks as Point Loads for use in SECAN Simulation

© 0 N

10
11
12
14
14

19
23
26
27

31
33
39

41
42
43
44
49
50

vii

List of Figures

5.7

5.8

5.9

5.10
5.11
5.12
5.13
5.14
5.15
5.16
5.17

Lane Positions and Girder Numbering, Redefined for SECAN 51
Weight Comparison for Truck A, Passing Lane 53
Curves showing M/I ratio when Main Girder is Failing 56
Curves showing M/I ratio when Other Girder is Failing 57
Girder Ratios for Varying Degrees of Failure 58
Girder Ratio Histograms for Varying Degrees of Failure, Full Weight 60
Girder Ratio Histograms for Varying Degrees of Failure, 50% Weight 61
Separability Examples e 62
Histograms for Classification 65
Flowchart of Simulation and Classification Algorithm 72
Locations where a Cracking Fault is Detectable by Strain Sensors 77

vii

List of Tables

5.1 Girder Ratios to be Used for Classification 46
5.2 Controlled Tests e 54
5.3 Separability of Passing Lane Girder Ratios. 63
5.4 Separability of Normal Lane Girder Ratios. 64
© 5.5 Girder Ratios which are able to Classify 65
5.6 Weight Class Boundaries 66
5.7 Classification Parameters L. 67
5.8 Baseline Simulation Classification, all Girders Healthy 69
5.9 Error Simulation Classification Results 70
5.10 Real Data Classification, Simulation Parameters 73
5.11 Weight Class Boundaries, Real Data 74
5.12 Classification Parameters, Real Data 75
5.13 Real Data Classification, Real Data Parameters 76

ix

Chapter 1

Introduction

Structural health monitoring (SHM) is a developing field based on the idea of autonomously
monitoring the health and stability of structures for the purposes of identifying the state
of the structure. One use for this monitoring is failure detection and prevention. This
project expands a pre-existing SHM system, composed only of a monitoring station, with
the goal of developing algorithms for continuous monitoring and automated fault detection
that can eventually be employed on-site to provide continuous, autonomous monitoring of

the structure.

1.1 Motivation

The overriding motivation for this project is that there are no systems commercially avail-
able that can automatically and reliably interpret measurements from an existing SHM
system to determine the health of a bridge. The current system for fault detection of a
bridge involves sending an inspection team to inspect the bridge visually. This inspec-
tion typically occurs every two years. As a result, any faults that can grow from visually
unnoticeable to complete failure within a two year period may be missed by the current

inspection process.

Because of these shortcomings, having a system that can continuously monitor a bridge and
determine the state without requiring human input is a vast improvement over standard
methods. However, an automatic SHM system does not necessarily need to remove all

human factors from monitoring and prevention to be considered a success. With artificial

INTRODUCTION 1.2 Scope

intelligence (AI) at the level it is today, humans are still much more adept at recognizing
where failures are in a bridge and how to repair them. If a monitoring system can simply
alert a monitoring station that something is not right with the bridge, an expert can be
sent to inspect the bridge to determine what caused the system to conclude there was a
fault.

Another benefit of having an automated SHM system exists for bridges located in remote,
rural areas. These areas can be extremely far from an urban centre, yet the highways
still require bridges. As a result, it can be expensive to deploy an inspection team on a
regular basis when the bridge is functioning properly. By installing an automated system,
it can remotely monitor the bridge and report the status to a facility in an urban centre,

preventing expensive deployment unless a problem is detected.

To provide further motivation for this project, there was very little research found that
was concerned with modelling structure failure and implementing a classification method
for determining if the modelled failure is occurring. This thesis can be used as a basis for

methods on modelling structure failure as well as classifying this failure.

1.2 Scope

The scope of the project is to develop measurement processing algorithms that can be
implemented in an SHM instrument. However, implementing a physical instrument that
can be deployed is not part of the project. While there may be a number of potential failure
modes for a structure, this project focuses only on identifying and determining failures that
are detectable through the bridge girders. As well, the algorithm developed for the project
should ideally differentiate between measurement system failure and structure failure to
ensure robustness to imperfections in the existing system. The project should also be able

to get information about different components of the system.

The entirety of the project is designed using the Red River-North Perimeter Bridge, dis-
cussed in Section 2.1. This bridge is used for all aspects of the project that require a physical
structure. Empirical data is taken from the measurements gathered from the system in-
stalled on this bridge and simulations are done using computational models of this bridge.
As a result, processing is designed to accommodate application-specific issues that arise
from the bridge, and may not apply generally to all solutions. Ensuring that the solution

is general and can apply to every bridge was not a priority; however, by examining the

INTRODUCTION 1.8 Proposed Solution

base concepts and methods it is very possible that the solution can indeed be applied to a

general structure with certain application-specific modifications.

1.3 Proposed Solution

The proposed solution to the problem is to develop an intelligent monitoring system that
can continuously monitor a structure with the goal of identifying problems as they occur,
rather than periodically monitoring the structure at fixed intervals. The system is composed
of algorithms that monitor the strain channels supplied by the existing measurement system
for anomalies. For the purposes of monitoring, the response to vehicle loading events was
chosen as the main feature that would provide the required information about the state
of the bridge. In order to use the events, they must first be identified and extracted,
and then classified. Unfortunately, when observing the strain channels directly from the
measurement system, some problems were discovered that made it difficult to extract events.
These problems require using preliminary processing to clean the signal. As a result, there
are three subsystems that make up the system: the preliminary processing subsystem, the

event defection subsystem, and the event classification subsystem.

The preliminary processing subsystem is charged with removing unwanted and negative
effects from the signal to facilitate event detection and classification. To do this, the un-
wanted effects must first be identified so that a method can be implemented to remove
them. Chapter 3 provides an in-depth discussion of the algorithms and theory necessary to

understand this subsystem.

The goal of the event detection algorithm is to separate the events from the rest of the signal
so that they can be properly analyzed. For this to be possible, the algorithm must be able
to identify automatically both where events are located in the channel, and which channels
contain the same event for comparison purposes. Chapter 4 covers the event detection

algorithm.

The final subsystem, the event classification system, is the main component of the project.
The classifier is based on anomaly detection: that is, if something is found that does not
fit a given model, it is considered anomalous, or failed. To properly design a classification
system, it is first required to select descriptive features, and then select a failure model.

Once the model is selected, simulations are required to determine how the model will show

INTRODUCTION 1.8 Proposed Solution

a failure. It is only after this is done that a classifier can be developed and implemented.

The classification subsystem is discussed in Chapter 5.

Figure 1.1 shows a block diagram of the proposed system.

Sampled analog ' Acquire measurements from
input from structure current measurement system

Raw Strain
Data
Cleaned
Isolate events and determine Strain Data Process measurements to

event parameters <_ remove unwanted effects

Classify events as either

- expected or anomalous
Event Data

Output: System either Failing
or Not Failing

Figure 1.1: Block Diagram of Proposed System.

INTRODUCTION 1.4 System Requirements

1.4 System Requirements

For the system to be completely successful, several requirements have to be satisfied. These

are listed below in no particular order.
1. The system must be able to process = seconds of data in less than x seconds.
2. The system must be automated and reliable.
3. The system must not cause an alarm from sensor faults.
4. The system must not identify false positives or false negatives.
5. The system must have a way to isolate an evaluation component.
6. The system must be robust towards non-structural induced fluctuations.

Of these requirements, all were successfully implemented with the exception of Requirement
3. Development of the project revealed that the existing SHM measurement system provides
no redundancy for individual sensors. Because of this, fatal sensor errors, where the sensor
ceases to function and is unrecoverable, are unable to be separated from structure failures.
The system does not, however, raise an alarm for non-fatal sensor failures provided the
sensor recovers within a reasonable amount of time and begins to operate properly once

again.

Chapter 2
Existing System

In order to completely understand the project and this report, some background information
on the existing system that was the source for the project is required. The existing system is
composed of three different components: the bridge, the measurement system, and the data
acquisition unit. The required information will be provided for each of these components

throughout this chapter.

2.1 The Bridge

The bridge used for this project, whenever a physical representation was required, is the
Red River-North Perimeter Bridge. This bridge spans the Red River north of Winnipeg,
Manitoba, Canada on Provincial Truck Highway 101 (PTH 101). A sensing system is
installed on the portion of the bridge next to the abutment on the eastbound side, having a
span of 25m and an average width of 12m. The bridge consists of a concrete deck supported

by five steel girders with metal straps connecting them.

Figure 2.1 shows a basic drawing of a cross-section of the bridge that is being monitored,
showing the girders and their positions relative to each other. It also provides numbering
for the girders and indicates from which direction the bridge is being viewed. Since the left
edge of the image is the edge that faces the centre of the bridge, this is the side closest to the
westbound side of the bridge. This means that, viewing this cross-section, the direction of
traffic is into the page. This girder numbering is very important, as all future references to

girders are done using these numbers. As an example, the girder closest to the westbound

EXISTING SYSTEM 2.1 The Bridge

To Centre
of Bridge
_I 2.743m __.l 2.743m ___‘ 2.743m __‘ Varies __l
Girder# 1 2 3 4 Average 5
2.126m

Figure 2.1: Cross Section of Red River-North Perimeter Bridge
Showing Girder Information [1].
(Not To Scale)

side of the bridge is named Girder 1. The distance between Girders 4 and 5 is shown as
being variable; this is because Girder 5 is angled. For the purposes of the project, the girder
is assumed to be parallel to Girder 4 with a separation equivalent to the average separation

given in Figure 2.1.

In addition to knowing the naming convention and the locations of the girders, knowledge
of the location of the traffic lanes is also important. Figure 2.2 shows a cross-section of
the bridge with the position of the three lanes marked relative to the edge of the bridge,
and provides key distances from the girders to the lanes. Throughout this report, the three
lanes are referred to as the Passing Lane, the Normal Lane, and the Merging Lane, naming
conventions taken from highway driving conventions. It can be seen that the Passing Lane
sits on Girders 1 and 2, the Normal Lane sits mainly on Girder 3, and the Merging Lane

sits on Girder 4.

7.320m
< »] Merging

Passing Lane | Normal Lane Lane

.

ToCentre = 3660m | 3.660m | o0

m
of Bridge —
o o ol T
5

Girder# 1 2 3 4

Figure 2.2: Cross Section of Red River-North Perimeter Bridge
Showing Lane Information [1].
(Not To Scale)

EXISTING SYSTEM 2.2 Measurement System

2.2 Measurement System

The measurement system installed on the bridge is a combination of strain gauges and ther-
mocouples. The strain gauges used are metal foil strain gauges (Vishay CEA-06-W250A-
350) [2][3], and are sampled electrically by the data acquisition unit. Metal foil gauges have
a variable resistance that is dependent on the area of the gauge. If a surface to which the
gauge is attached bends, this area will stretch, which will then change the resistance. This
change in area can be then converted into a strain value by using an appropriate factor,

specific to the device.

There are thirty-six metal foil strain gauges installed on the Red River-North Perimeter
Bridge. Of these, twenty are on the connecting straps between girders, denoted as Szz, and
sixteen are on the girders, denoted as Gzz. The locations of these sensors are shown in Figure

2.3. Girder gauges marked with an asterisk are mounted at the top of the girder.

=TeY]) ¢) T —EaGe, B7 l T
1 | i ' [1 t ' ' '
: : : X Gsn HBS2 fs3 @s4 g#ss . .
: : ; . ! / 1G8” Q9
5HG2 ' : o ;
AT T
;
.

‘_ﬁ_(7 — i

! 1
ise Ws7 HBss Hss 13310 .
. ' : .

1
1

i

! 1

: : J tc_’zG‘lO. GO
[

'

'

l

s

1

: .
: \ ——BG11 '
X : . : .
. s1:1 s12 Bs13 fis14 8815
: L .

.

\

|
puie
3 - 4
G {]
3
ez
—i]
=
mr
w
-
>
et
Y]
1S]
=
N
TTT®
o
w

23

3m

25m

Figure 2.3: Location of Sensors on Red River-North Perimeter Bridge.
(Image Credit: Dean K. McNeill)

According to Figure 2.3, Girder 1 contains Sensors G1, G6 and G7, Girder 2 contains
Sensors G2, G8 and G9, Girder 3 contains Sensors G3, G10 and G11, Girder 4 contains
Sensors G4, G12 and G13, and finally Girder 5 contains Sensors G5, G14 and G15. Sensor
GO is a reference (also called a dummy) gauge; this means that is it theoretically unloaded

EXISTING SYSTEM 2.2 Measurement System

and was installed to provide a reference for interpreting the loaded sensor values. For this
project, the sensors on the straps are ignored, and will not be discussed here. There are also
sensors installed within the deck itself, however, like the sensors on the straps, these sensors
are not used in the project. Each sensor generates its own data stream; this is referred to
as the data channel for the sensor. This is used in the report to refer to the data stream the
sensor generates, rather than the sensor itself. As an example, Channel 1 is the data stream
generated by Sensor G1. Figure 2.4 shows a cross section of a girder at the abutment and
the midspan, with the sensor locations shown for each location.

1260mm

100mm

(a) Abutment Girder.

300mm

1260mm

100mm

(b) Midspan Girder.

Figure 2.4: Cross Section of Girders, Showing Sensor Locations.
(Not to Scale)

In addition to the sensors, there are a number of thermocouples (Omega 5TC-TT-20-36) in-
stalled on the bridge to measure ambient temperature [2]. To work properly, thermocouples
require a reference junction that is kept at a constant temperature. For this installation,
the reference is kept with the data acquisition unit.

EX1sSTING SYSTEM 2.2 Measurement System

Figure 2.5 shows some of the sensors installed on the bridge; specifically four strap sensors

(circled in red) and one girder sensor (circled in green).

Figure 2.5: Installed Sensors on Red River-North Perimeter Bridge.
(Image Credit: Dean K. McNeill)

10

EXISTING SYSTEM 2.8 Data Acquisition Unit

2.3 Data Acquisition Unit

The data acquisition system is that which interfaces between the measurement system and
the outside world. In order to poll the measurement system, the data acquisition unit (DAQ)
implements a Wheatstone Bridge in the quarter-bridge setup [4]. This resistor bridge uses
matched resistors and determines the change in resistance of one resistor as a function of
the output voltage [4]. Figure 2.6 shows a traditional Wheatstone Bridge. In this figure,

Rq is the gauge resistance, modeled as a matched resistor with an error term AR.

Vs

Re=R + AR

Figure 2.6: Wheatstone Bridge [4].

The output voltage is given in Equation 2.1 [4].

_(R+AR 1 _ [2R+2AR- (2R + AR) V. — AR V. (21)
°"\2R+AR 2) ° 4R+ 2AR *7 \4R+2AR) ° '
The change in resistance, AR, is expressed as a function of the output voltage in Equation
2.2.

4RV,
AR= ——— .
V.- 2v, 22)

11

EXiSTING SYSTEM 2.8 Data Acquisition Unit

Using the Wheatstone Bridge, the strain gauges are sampled at a rate of 100Hz. The DAQ
outputs a measurement file every 30 seconds, which consists of the prior 3000 samples of
data. This file is then transferred as a binary file via an Ethernet connection to a computer
hosting a database server. Once the measurement file is on the database server, it is
converted to the database format and stored in the database in an easily accessible form.
Figure 2.7 shows one of the nodes of the DAQ, responsible for monitoring a subset of the

gauges.

Figure 2.7: Sensor Node for Red River-North Perimeter Bridge.
(Image Credit: Dean K. McNeill)

The data acquisition system is located in a cabinet under the bridge, attached to the
abutment. This cabinet contains all the computing instruments needed to monitor the Red
River-North Perimeter Bridge. Some of these instruments cannot be exposed to freezing
temperatures. As a result, a thermostatically controlled heater is installed in the cabinet,
with the purpose of keeping the temperature above 0°C.

12

EXISTING SYSTEM 2.4 Problems With the System

2.4 Problems With the System

All realized systems operate in a way that is different from the optimal, laboratory-based
predictions. The existing system is no exception to this and some problems exist with the
measurement system and the DAQ. These are that the sampling rate can cause problems,
the thermocouple reference is not held at a constant temperature, and the strain output is

extremely influenced by temperature.

The sampling rate causes problems because it may be under-sampling the strain signature
generated as a vehicle traverses the bridge. This is described in detail in [5]. In short, by
sampling at only 100Hz, it is possible to miss the true peak of the strain signature, giving a
poor digital representation of the curve and potentially leading to false conclusions. This is
in reality the only problem with the sampling rate. In this particular case, aliasing is not a
concern since the sampling rate is high enough to avoid aliasing all but the peak component

of an event, which allows for a good representation of the event shape.

A more serious problem is that the thermocouple reference is not held at a constant temper-
ature. As a result, the measured temperature from the thermocouples is different from the
true ambient temperature: it is affected by both changes in the cabinet temperature, as well
as changes in the ambient temperature. This leads to serious oscillatory problems in the

thermocouple output when the heater activates during the colder periods of the year.

The most serious problem with the current system is in the implementation of the Wheat-
stone Bridge. By using a quarter bridge, the only part of the resistor bridge that is exposed
to the environment is the strain gauge. Since the Wheatstone Bridge attempts to use three
matched, high precision resistors to determine the variation in gauge resistance, having only
the gauge resistor exposed to the ambient temperature leads to temperature induced fluc-
tuations in the strain similar to that described in [6][7][8]. While this may not be a serious
concern, it is compounded by the presence of the heater. In the winter months, the heater
causes the cabinet temperature to oscillate, resulting in a severe temperature mismatch in
the Wheatstone Bridge. These rapid fluctuations pose a serious problem to any attempted
investigation of the signals. Figures 2.8 and 2.9 demonstrate the affect the heater has on
recorded strains. Figure 2.8 is a plot of 24 hours of data taken from the Red River-North
Perimeter Bridge on July 4", 2007 (the summer). Figure 2.9 is a similar plot of data taken
from the same bridge on January 4*", 2008 (the winter). Both Figures 2.8 and 2.9 show the

unloaded dummy channel and how it compares to the temperature.

13

EXIsSTING SYSTEM 2.4 Problems With the System

In the summer, the strain data tends to track the temperature in a slow, almost linear
fashion. However, in the winter, the strain varies wildly due to the temperature oscillations
caused by the heater turning on and off. The variations in the winter are so severe that
they can be noticed even on a small time scale. This causes issues, described in more detail

in Section 3.2, when attempting to examine events.

35 T T d v T T T T 600

Temperature £C)
o
4
[

Buain {microstrainy

. : \ 400
1 2 3 4 5] 7 8 9
Seconds after 12:00AM ¥ 10°

Figure 2.8: Strain and Temperature Comparison, July 4", 2007.

Temperature C)
Strain (microstrain)

=

4 L s . N . . L L _op0
9
Seconds after 12:00AM 4

Figure 2.9: Strain and Temperature Comparison, January 4%, 2008.

14

Chapter 3

Data Collection And

Preprocessing

For a measurement system to be useful, there needs to be a way to remove data from the
system. This data must be removed from the system in a suitable form. For the purposes
of structural health monitoring, data is generated in a stream. Therefore, the system must
have a way to process and handle the continuous data without unnecessarily losing samples

or destroying useful information.

When the physical data is first removed from the measurement system, it is not in an
acceptable form to be used with any other portions of the project. There is the potential
for unwanted effects to be present in the recorded signals. Two effects considered are
environmental effects, related mainly to temperature variations, and a zero-offset error,

related to the measurement system not being properly initialized at installation.

Both of these effects must be removed before the data can proceed to the event detection
algorithm. However, removing them was a non-trivial task and many methods failed before

a suitable method was found.

3.1 Data Collection

Special consideration is necessary when dealing with large amounts of data. Large amounts

of data must be processed in pieces, because of physical limitations imposed on computing

15

DaTA COLLECTION AND PREPROCESSING 3.1 Data Collection

systems such as available RAM and hard disk space. Since structural health monitoring
generates huge amounts of data, and is continuously generating more data, there is no way
to examine the entirety of the data in one block. As a result, some way to cascade sensor
data must be implemented. For the purposes of this project, data was read directly from
an online database. There was no interaction done with the measurement system, as an
interface is already in place that takes the physical measurements and places them in the

database.

3.1.1 Data Storage

The database stores its data on a sample-by-sample basis. Each sample has a corresponding
timestamp with a resolution of one second, and a sample index which ranges from 1 to 100.
As well, each sample has data stored channel-by-channel; for this project, the only data
elements of interest were the girder strain measurements and the external thermocouple
output. The data in each sample is composed of fifteen loaded strain channels and one

unloaded strain channel, as well as the average of seven thermocouples.

3.1.2 Reading Data into the System

Since the data is located on a MySQL database server, it can be extracted in arbitrarily
sized blocks. Each block is then processed in arbitrarily sized windows. For this project,
the window size used is 15,000 samples, translating to 2.5 minutes of readings, assuming
no samples are missing. This assumption is not always accurate, as there are many gaps
in the recorded measurements. However, there is nothing that can be done about these
gaps, since they result from issues with a communication link, with the corresponding data
being irrecoverable. By using windows that are based on the amount of samples and not on
timestamps, these gaps can be ignored for the purpose of inputting data into the system.
While an event may become corrupted by these gaps, only one event can be corrupted per

gap, and the gaps are not very common.

To ensure continuity of the data, the input windows are cascaded during processing. Once
half the window, or 7,500 samples, has been examined, the first 7,500 samples are removed
and the next 7,500 are then read. This requires only the current 15,000 samples to be stored
in the working memory of the processing program. It should be noted that the 7,500 sample

cutoff is a loose limit; the event detector may require reading more than 7,500 samples to

16

Data COLLECTION AND PREPROCESSING 3.2 Data Preprocessing

extract an entire event, this is allowed by the system and will be discussed further in Section
4.2. If the algorithm detects that the current window is the final window (that is, there is no
more data to read), then the entire 15,000 samples are examined without cascading.

Blocks of data can be taken off the database server in almost any length. If the data is
stored on a hard disk, more data can be taken in one piece than if the data was stored only
in the RAM allocated to the software. A minimum length of 15,000 samples is required to
satisfy the requirements of the window, and the maximum length depends on the storage
of the machine. For perspective on the typical file size that can be expected, a file with two
full days of data, or 17,280,000 data points x 17 data channels, has an average size of 3GB.
Input file cascading can be done if required, however, if files are not cascaded, the loss of
information at the boundary between files will be minimal and not a serious concern due to
the sheer amount of information available to be processed. Depending on concerns about
the speed of degradation of the structure, the block size can range from being long enough
for bulk processing (for example, processing the data from the previous day at 12:00AM
each day), or smaller for a more real time approach (for example, processing the data in 20

minute pieces).

3.2 Data Preprocessing

The main goal of processing the strain data is to isolate vehicle events, since these events
contain the information required to draw conclusions about the state of the structure. Before
the events can be extracted from the measurements, however, several problems exist with

the raw data.

Two unwanted effects are present and easily visible when examining the raw strain data
from the gauges on the bridge: environmental fluctuations and a zero-offset value. The
main cause of the environmental fluctuations is temperature, and as a result, temperature
effects and environmental effects are used interchangeably. Because of the two problematic
effects, processing must be perforined on the data before the event detection algorithm can
be applied. This is considered the preprocessing step, since it is done to prepare the data
so that it can be processed by the event detection algorithm.

For the purpose of this discussion, the signal is assumed to be noiseless. While in reality
the signal is fairly noisy, the preprocessing does not try to remove the noise and, as a result,

17

Data COLLECTION AND PREPROCESSING 8.2 Data Preprocessing

providing consideration for the noise has no impact on the process. It is therefore left out
to avoid unnecessary complications to formulas by introducing noise-based terms.

3.2.1 Temperature Effect

The raw data obtained directly from the measurement system may contain fluctuations
due to temperature, even when considering the relatively small size of the data window
compared to temperature cycles [6][7}[8][9]- This temperature effect must be removed;
ignoring it creates inconsistencies in measuring events and complicates any event detection
algorithm that is implemented. The temperature effect can be modeled as an additive effect,
added to the original signal such that Equation 3.1 represents the strain output with the

temperature effect included.

So(t) = S5(t) + f(T(2)) (3.1)

Where S,(t) is the output strain from the system at time t, S,(¢) is the strain from the
structure at time ¢, T'(t) is the temperature at time ¢ and f(7") is an unknown transformative

function that is applied to the temperature.

Some difficulties arise in trying to remove the temperature effect shown in Equation 3.1.
First is that it cannot be assumed that the effect is significant in every data window. In
other words, the portion of a temperature effect present may not necessarily impact the
output of the system in any way. In fact, in most data windows, the temperature effect is
not significant. Another issue is that, even if a temperature effect is found to be significant
during a window, it may not be significant on all channels in that same window. For the
effect to be considered present and significant, it is required that f(7') # C, C constant,
for the duration of the window. To compound the difficulty in finding an algorithm to
remove temperature fluctuations, f(7°) is not identical for all channels, leading to individual
channels showing different variations for the same temperature. Since the effect may not
be present in all channels, the algorithm should be designed to preserve channels that do
not have a temperature fluctuation present, so that it can be applied indiscriminately to all

channels for all windows.

18

Data COLLECTION AND PREPROCESSING 3.2 Data Preprocessing

3.2.2 Zero-Offset

The other unwanted effect is that the zero-offset value of the signal is not constant across all
channels. For this project, the zero-offset is defined as the strain value found in the channel
when there is no vehicle on the bridge. That is, it is the offset found when the strain value
should be zero; in the ideal case, this would obviously be zero. Having an offset that is not
zero causes problems similar to the temperature effect; it makes both event detection and

event comparison difficult.

3.2.3 Combining Both Effects

Unfortunately, neither the zero-offset nor the temperature effect exists individually and
both must be dealt with at the same time. An example of both of these effects can be seen

in Figure 3.1. The strain curve shown in Figure 3.1 is from Channel 2; the strain value

-220

—225¢

Strain (microstrain)

-230

-235 * .
0 5000 10000 15000

Sample

Figure 3.1: Strain Curve of a Single Window Showing Undesirable Effects.

here should be zero, with noise, except during events. This is clearly not the case; there
is a noticable linear decrease, the zero-offset value is ambiguous but is likely ~—222, and
the events (larger peaks) seen from sample number 9,000 onwards are barely visible. From
this example, it should be clear as to why preprocessing is required: the events are hidden

in the trend, and no baseline strain value exists that allows accurate peak measurements.

19

DATA COLLECTION AND PREPROCESSING 3.2 Data Preprocessing

As a general model, the strain output with both a temperature effect and non-zero offset is

shown in Equation 3.2.

So(t) = Ss(t) + f(T(#)) + 2O (3.2)

Where S,(t), Ss(t), T(t) and f(T') are identical to Equation 3.1 and ZO is the zero-offset
value. The parameters Sq(¢), f(T) and ZO are unique to individual channels. Several

strategies were attempted before a suitable method for correction was found.

3.2.4 Unsuccessful Strategies

Several unsuccessful strategies were employed at correcting both of these problems. The
first attempt was to try temperature compensation using the unloaded dummy gauge [6][10].
The concept behind this idea was simple; if the dummy gauge has no structurally introduced
strain, then any variations in its value should be caused by temperature effects. As well,
since all sensors are in the same environment, it was assumed that all sensors would show
the same effect from the temperature. Initial attempts involved simply subtracting the
dummy channel from the other channels. This did not work, since it appeared that the

temperature effect was time-shifted in different channels.

As a result, the next attempt was to find an approximation of f(7") using the dummy
channel and the temperature [6][11]. The concept was that once f(T') was found, it could
be used to subtract the effect from any channel. This also did not work, and is what led to
the conclusions that the temperature effect is different for all channels and that it needed

to be dealt with on a case by case basis.

The next method was an envelope detection algorithm typically used in amplitude mod-
ulation problems [12]. While this method showed initial success at removing the minor
temperature fluctuations that were seen, it also had a tendency to destroy the event infor-
mation. As well, in cases where envelope detection did work, it proved to be very slow,

taking approximately 30 seconds per channel to clean a 2.5 minute window.

The most successful of the failed attempts was highpass frequency domain filtering [9].
This technique provided excellent results; it succeeded in removing both the low frequency
temperature effects as well as removing the zero-offset value. The problem with filtering
arose when trying to find a cut-off frequency that kept all events intact while removing

the unwanted effects. This frequency seemed to be slightly different for each window that

20

Data COLLECTION AND PREPROCESSING 3.2 Data Preprocessing

was filtered. As well, filtering was slow, though not nearly as slow as envelope detection,
because of the need to perform the Fourier transform, apply a filter and then perform the

inverse Fourier transform.

3.2.5 Method Used

The selected method is a modified envelope detection algorithm. It is a two-step process
that first removes events, leaving the background trending of data. It then removes the
trend that is left over from the original signal, leaving the events. The concept for this
method was found in Using Morphological Filters to Extract Spiky Transients in EEG [13].
This thesis presents a method which removes spiky transients from an EEG heart signal,
leaving behind the background information which represents what is important in an EEG.
For the purpose of this project, the algorithm is backwards; the spiky transients can be
considered the events, and the background information is the undesirable effect. However,
since the method presented in [13] results in the background information with the events
removed, this result can simply be subtracted from the original signal to obtain only the
events. The algorithm employs mathematical morphology to extract geometric properties
from the signal. Two specific geometric shapes of interest exist in the signal. The events,
which have a short profile consisting of a defined start, defined end and high amplitude
peak, and the background fluctuations, which typically do not have an easily defined end,

are small in amplitude and have long profiles.

3.2.6 Mathematical Morphology

Mathematical morphology is a technique that is commonly applied to image processing,
and because of this, it was initially difficult to predict how the techniques would apply to a
one-dimensional strain signal. In the most basic form, morphological operations are defined
for binary images, are based on set theory, and consist of taking a geometric shape (the
structuring element) and performing a set operation, such as the union, of the structuring
element with the data in an attempt to extract geometric artifacts that are present [14]. By
expanding how morphology works with binary images, it can also be applied to non-binary

images, and as a result, non-binary signals as well.

For the purposes of the project, two morphological operations were chosen: opening and

closing. From an image processing perspective, opening can be seen as a technique that

21

DatA COLLECTION AND PREPROCESSING 8.2 Data Preprocessing

smoothes the contour by breaking small connections and erasing small spikes [14]. Opening
can be used to identify geometric areas which can fit the entirety of the structuring element.
In a complementary fashion, closing can be seen as a technique that eliminates gaps smaller
than the structuring element [14]. While these concepts are more easily visualized with
binary images, a description of how they apply to one-dimension signals is given later in
this section. Opening and closing both rely on two fundamental morphological operations,
dilation and erosion. In brief terms, dilation runs along the border of an image and increases
it, while erosion runs along the border and reduces it [14]. Equations 3.3 to 3.6 show
the general formulas for erosion, dilation, opening and closing, of two sets, A and B, in
Euclidean space Z, expressed in terms of set operations [14]. In the equations, B, indicates
set B centered at point z.

Erosion: A6 B ={z|(B, C A)} (3.3)
Dilation: A® B = {z|(B,NA # 0)} (3.4)
Opening: Ao B=(AeB)o B (3.5)
Closing: AeB=(A®B)o B (3.6)

Figure 3.2 shows an example of the dilation, erosion, opening and closing operations applied
to an image, with a disk as the structuring element. These concepts are easily visualized
when applied to binary two-dimensional images, but the concepts apply in a similar fashion
to one-dimensional signals as well. Equations 3.7 and 3.8 show a specific form of erosion
and dilation used for one-dimensional signals [13]{15], in which f is the function to be
eroded/dilated, with length N, and b is the structuring element, with length M.

(f ©b) (z) = min (f(z +n) — b(n)) n:-%{,...%{,O<x+n§N (3.7)
(f @ b) (&) = max (f(z + n) + b(n)) n:——%,‘..z\;,0<x+n§]\f (3.8)

For cases where the structuring element is equal at all indices (b(n) = C, C constant), the
b(n) term can be ignored from both Equations 3.7 and 3.8. For the purposes of this project,

a constant vector is used as the structuring element.

22

Data COLLECTION AND PREPROCESSING 3.2 Data Preprocessing

(a) Original Image.

x e

(b) Dilation, Structuring Element: Disk r = 3. (c) Erosion, Structuring Element: Disk r = 3.

o X

(d) Opening, Structuring Element: Disk r = 3. (e) Closing, Structuring Element: Disk r = 10.

Figure 3.2: Examples of Morphological Operations.

23

Data COLLECTION AND PREPROCESSING 3.2 Data Preprocessing

By looking at Equations 3.7 and 3.8, the effects of dilation and erosion of a one-dimensional
signal can be predicted. Using one of these techniques behaves like convolution. For each
point in the signal, dilation will replace the point being examined with the maximum value
found within the range of the structuring element, centered on the point being examined.
The structuring element is then moved to the next point and truncated if it exceeds the
boundaries of the signal. FErosion is similar, taking the minimum value instead of the

maximun.

As an example, assuming a structuring element of size 3, and a signal consisting of [1 2
1 3 4 4 1] the result of dilation will be [max(1, 2) max(1, 2, 1) max(2, 1, 3) max(1, 3, 4)
max(3, 4, 4) max(4, 4, 1) max (4, 1)] or [2 2 3 4 4 4 4]. This creates a very rough upper
envelope, with plateaus potentially the length of the structuring element. Using erosion
creates a lower envelope, with a similar process to dilation. The result of the erosion of the
example signal would be the minimum of each data set, or [1 111 3 1 1]. As shown by
these examples, dilation and erosion are useful for quickly extracting information about the
upper and lower bounds of one-dimensional signals. When opening and closing combine
erosion and dilation, a more favourable result is created than when just one of the two is
used. Both opening and closing tighten the envelope created, allowing for better removal
of the events and representation of the shape of the background curve.

3.2.7 Preprocessing Algorithm

The goal of the preprocessing algorithm is to remove the unwanted effects, and keep the
events. By considering the results of the morphological operations from the example above,
it is possible to predict how these operations will interact with a strain signal. Closing,
by dilating then eroding, will pro{ride a lower envelope of the upper envelope; opening
similarly provides the upper envelope of the lower envelope. These envelopes will include
events unless the structuring element is too wide to fit inside the event. Therefore, the
structuring element should be wider than the widest event expected, or it will be removed
along with the unwanted effect. To guarantee removal of unwanted effects, the structuring
element must be thinner than the thinnest fluctuation in the effect. Despite these seemingly
simple restrictions, meeting them may not be possible. Slow moving vehicles can generate
large events, on the order of thousands of samples, requiring an extremely long structuring
element. Conversely, the smaller environmental effects have a typical duration of 100 to 500

samples; using a structuring element larger than this will not remove any of them. A

24

Data COLLECTION AND PREPROCESSING 3.2 Data Preprocessing

compromise must then be made, with the emphasis on keeping the events. The majority of
event spikes are at most 300 samples long, and so this value was chosen to be the size of

the structuring element.

The actual preprocessing algorithm involves performing both opening and closing on the
signal. The two operations are done in pairs, once with closing the original signal first,
then opening the result, then by opening the original signal, following by closing the result.
This technique of doing closing-opening and opening-closing was based on [13}[16]. The two

operations are shown in Equations 3.9 and 3.10
Co(t) = (So(t) eb)od (3.9)

Oc(t) = (So(t) o b) o b (3.10)

Where Co(t) is the closed-opened signal, Oc(t) is the opened-closed signal, So(t) is the

output from the measurement system and b is the structuring element.

It is required to perform both operations: closing followed by opening. Simply performing
closing will remove events by tracing the top of the event; it is only by performing opening
on the result that the events can be skipped. To illustrate this point, Figure 3.3 shows the
results of closing the original signal, then opening the closed signal. Figure 3.3c shows that
closing-opening yields an approximation of the upper envelope for the base trend in the
data.

Since there are no events on the bottom of the signal, performing closing following opening
is not a neccessity. The closing pass is useful because of the presence of noise, and by
closing the result of opening, it is possible to smooth out some of the variations that
noise spikes place in the envelope. Performing opening-closing yields a lower envelope

approximation.

The process of closing-opening and opening-closing is performed on a channel by channel
basis; once both are done, they are averaged point-by-point and the result is said to be the

collection of unwanted effects. This is' shown in Equation 3.11.

Co(t) + Oc(t)

. = f(T(t)) + 2O (3.11)

Where Co(t) is the closed-opened signal, and Oc(t) is the opened-closed signal.

25

DaTA COLLECTION AND PREPROCESSING

8.2 Data Preprocessing

65

60

55

50}

45

40

Strain (microstrain)

351

30

20
0

500 1000 1560 2000 2500 3000 3500 4000 4500
Sample

(a) Original Signal.

65 65
60 80
55

55
= 50
.g 50 vg
3 g 45
8 £
s g
= c 40
£ . g

5

3 i a0 S -

L e e
30 L 25
B i e e S LY S
25 e » e
[} 500 1000 1500 2000 2500 3000 3500 4000 4500 o 500 1000 1500 2000 2500 3006 3500 4000 4500
Sampla Sample
(b} Closed. (c) Closed Then Opened.

Figure 3.3: Example of Closing-Opening a Signal.

26

Data COLLECTION AND PREPROCESSING 3.2 Data Preprocessing

A cleaned signal, a signal that has the unwanted effects removed (but is still noisy), is
therefore the original output signal minus this result, as shown in Equation 3.12.

Co(t) + Oc(t)

Sc(t) = So(t) - 2

(3.12)

With Se(t) being the cleaned signal.

An additional step is performed to guarantee the removal of the zero-offset value, and that
is to subtract the median of S.(t) from S.(¢). Equation 3.13 therefore gives the final result

of the preprocessing algorithm.

Su(t) = Su(t) — med(Se(t)) (3.13)

Figure 3.4 shows the data from Figure 3.1 after it has been cleaned by the preprocessing
algorithm. Notice that the algorithm has succeeded in removing the linear effect and then
resolving the zero-offset ambiguity and removing it. As well, it has enhanced the five events
present near the end of the signal. In other words, the strain values for the start and end
points of each event are almost identical, which allows for more useful interpretations to be

made.

Strain (microstrain)
-

0 5000 15000
Sample

Figure 3.4: Cleaned Strain Channel.

27

Data COLLECTION AND PREPROCESSING 3.2 Data Preprocessing

The preprocessing algorithm is of fundamental importance to the project. Even though
the temperature effects are rarely present, and may be missing for months at a time, when
they are present it could prove disastrous for detection and classification. Through sparse
observations, since it is infeasible to examine every segment of an entire year of data, the
effects are rarely present in the summer months, and much more likely to be present in
the winter months. This could be explained by the much larger and faster temperature

fluctuations seen in the winter, as shown in Section 2.4.

28

Chapter 4

Event Detection

The events caused by vehicles traversing a bridge contain valuable information that can be
used to determine if a bridge is working properly. Unfortunately, the events are entrenched
in the data streams, essentially hidden in a vast sea of noise. Without some method for
detecting when events are occurring, it is impossible to extract the necessary information

to make automated decisions about the health of a bridge.

Event detection is a three-step process. When the algorithm is started, no events are known.
In step one, on a channel-by-channel basis, the next event in a channel is found. In step
two, the locations of the events in the individual channels are compared against each other
to determine if the identified events are the same. In step three, a single window in time is
selected to represent the event. Once all three steps are done, the process is repeated until

all the data has been processed.

For the purposes of determining the health of a bridge, only one value is needed per event;
this is the maximum, or peak, value of individual strain channels during the event. The
location of the event peak is required for the event detector to operate; the starting location
and the end of the event are required to extract peak values from channels that were missed

by the detector. In all, this requires four measurements to be extracted for each event.

29

EVENT DETECTION 4.1 Preliminary Volues and Algorithms to Aid Detection

4.1 Preliminary Values and Algorithms to Aid Detection

Before the event detection algorithm can begin, three values must be determined and a
separate pre-processing algorithm must prepare the data. The required values are two
threshold values used to isolate events, as well as an estimate for the amount of noise in
the system. The preprocessing algorithm that is applied is a smoothing algorithm, with the
goal of making the signal more amenable to the requirements of automatic event detection

and, eventually, classification.

4.1.1 Threshold Values

The first values to determine are two threshold values. The first of the thresholds, referred
to as Threshold A, is used to determine that an event is occurring; that is, when a value
is above Threshold A, it indicates that the value is part of an event, and not just part
of the background noise. This does not mean that this point is the start of an event; it
simply means that it is definitely in an event. The other threshold, Threshold B, is used to
determine when the signal has decayed back into noise levels, which indicates the start and
the end point of an event. Since these thresholds are used to separate events from noise,
they must be able to do this independently of the noise level. Since the noise level is not
constant throughout the course of a year, the thresholds must be determined dynamically,
based on the noise level in the data currently being examined.

4.1.1.1 Estimating System Noise

To base the threshold values on noise levels in the system, a method must be developea s

that allows for estimation of the system noise into a quantifiable value. This noise level is
obtained by examining the dummy signal taken from the preprocessing stage described in
Section 3.2 and further processing it in order to remove large noise spikes. The reasoning
behind the need to remove the large noise spikes and not simply using the cleaned dummy
signal to represent the background noise is that, despite being theoretically unloaded, the
dummy signal records some artifacts of the events on the bridge. The method used to

remove noise spikes is a multi-step process.

The first step is to identify the samples in the original signal that are above the upper
envelope and below the lower envelope. These envelopes are the same that were found

30

EVENT DETECTION 4.1 Preliminary Values and Algorithms to Aid Detection

during the preprocessing stage by using the opening-closing and closing-opening techniques
described in Section 3.2.7. Recall that the envelopes skip over the larger fluctuations in a
signal; identifying the points above the envelopes therefore identifies the points that would

be considered as large noise spikes.

The next step is to replace the identified points with the equivalently indexed sample from
the proper envelopes. That is, a point above the upper envelope is replaced by its time-
domain equivalent point from the upper envelope and similar for points below the lower
envelope. Points within the envelopes are not changed. Following this step, it is a simple
matter to subtract the resulting signal from the original signal to obtain a vector that
contains only the noise spikes. After this, this new result is subtracted from the cleaned
signal, that is, the result of the preprocessing step. Figure 4.1 shows an example of a cleaned

signal compared to the signal used to represent the noise level.

15

10

Strain {microstrain)
w

(=1

5}

Noise Representation
----------------- - Cleaned Signal

500 1000 1500 2000 2500 3000 3500 4000 4500
Sample

Figure 4.1: Comparison of Noise Estimate to Cleaned Signal.

The resulting vector is deemed to consist only of background noise. Based on this vector,
the noise is then estimated to be zero mean, Gaussian noise with a standard deviation equal
to the standard deviation of the vector. This standard deviation is representative of the

noise level, and is referred to as o,.

31

EVENT DETECTION 4.1 Preliminary Values and Algorithms to Aid Detection

4.1.1.2 Threshold A

Once this approximation of the background noise is obtained, Threshold A can be deter-
mined based on o,. The value of Threshold A is 4o,,; the factor of four is used because,
with zero-mean noise, the probability that a value is within four standard deviations is
P(|X| < 4o,) = 0.9999. That is, 99.99% of values in a normal distribution fall within
four standard deviations of the mean. Therefore, if a strain value is found to be outside
of this range, it can be concluded with large certainty that it does not belong to the noise

distribution, and is therefore part of an event.

4.1.1.3 Threshold B

Threshold B is determined in a similar method to that of Threshold A. Threshold B is
equal to one quarter of Threshold A, or simply o,,. This value was chosen to indicate that
the measured strain value is in fact back in the noise distribution. The reasoning behind
using a spread between thresholds is to add a hysteresis effect to the system, preventing
the system from oscillating between the finding an event and claiming the event has ended.
This would lead to an unreasonably large amount of false events, as well as compromising

the integrity of the legitimate events, making classification virtually impossible.

4.1.2 Signal Preparation

Once both thresholds have been determined, the strain curves need to be further processed
to increase the visibility of events to an automated detection algorithm. In order to do
this, a Gaussian smoothing algorithm is applied to all channels [14]. Gaussian smoothing
is an algorithm typically applied to blur images, but the concepts apply equally to a one-
dimensional signal. The algorithm eliminates a significant amount of high frequency noise.
Removing this noise helps in eliminating pathological cases in determining the start and
end of the event. One such case is where a random noise spike exceeds Threshold A and
then almost immediately drops below Threshold B. The other advantage of the smoothing
algorithm is that it removes noise that corrupts peak values and leaves a smooth event. An

example of a smoothed event versus an unsmoothed event is given in Figure 4.2.

32

EVENT DETECTION 4.1 Preliminary Values and Algorithms to Aid Detection

70 T v T 80
it !
60 it 70 ‘x
i i ‘
so i 50
- ia _ 5 f\
§ % A 3 ,]Al
= Al =
N Lo i
g . £, fy ¥l
< H i i f ¥
. i | g o
o " \\\ @ 20 ’['ﬁ
i \ i
0 ,/ A 10 i [}
/ \] ¥
H N\ — 4
[\] SNSRNRPASE - S U G E ok _,L_‘\"’A,.A,V,\V.q,,‘,/l \;X‘lww.\ AT e
19 1(')0 200 300 460 500 600 -100 100 200 300 400 560 600
Sample Sample
(a) Smoothed Event. (b) Unsmoothed Event.

Figure 4.2: Effect of Smoothing on an Event.

4.1.2.1 Gaussian Smoothing

A Gaussian smoothing filter is similar to a windowed averaging filter, except that it com-
putes a weighted average for a data point based on the values of a Gaussian distribution
(these values are referred to as the coefficient vector). A new signal is then constructed
by piecing together the results of the weighted averages. A Gaussian smoothing window
is centered on the data point being examined; this is done to give it the largest weighting.
Using non-uniform coefficients instead of a standard uniform window average better pre-
serves the shape of the original signal. The following approach for one-dimensional Gaussian

smoothing is based on the smoothing filter discussed in [14].

Three parameters are required for Gaussian smoothing to generate an appropriate coefficient
vector. These are the length of the window, M, the value for the standard deviation, o,
and how far into the tails of the distribution the end points will be, R. The mean should
be set to 0 since the distribution is only being used to generate coefficients. Also, M should

be made odd to balance the number of terms on each side of the centre point.

As an example, specifying M = 5, R = 3 and ¢ = 2 would make a window of size 5, with
the coefficients for the weighted average equal to [0.0648, 0.1506, 0.1995, 0.1506, 0.0648].
These values are directly from the probability density function of the Gaussian distribution
since, for example, 0.0648 = (2@) 1 ¢3°/8. This allows for averaging to take into account

33

EVENT DETECTION 4.1 Preliminary Values and Algorithms to Aid Detection

the values around the data point, but gives them less emphasis than the data point being

examined. The values around the centre point are referred to as the signal window.

Since the sum of the coefficient vector is not equal to 1, a normalizing factor is introduced.
This factor, which is the total of the coefficient vector, is divided from the weighted average;
the reasoning for this is similar to why the calculation for the arithmetic mean is divided
by the number of elements (windowed averaging, which uses the arithmetic mean, can be
viewed as Gaussian smoothing with a coefficient vector of 1s). In the example above, this
factor would be 2(0.0648 + 0.1506) + 0.1995 = 0.6303. By dividing by this, it guarantees
that the result of the smoothing filter will always be equal to or less than the maximum

value in the signal window without grossly attenuating the signal.

The general equation for a Gaussian smoothing filter is specified in Equation 4.1. Two
special cases are Equation 4.2, used when n < [%J (the start of the filter is before the
signal), and Equation 4.3, used when N —n < [%j (the end of the filter is after the signal),
where N is the length of the signal. These two equations are used so that zero padding
is not required. For the equations, f,(z) is the output of the smoothing, while f(z) is the
input and 1 <n < N.

Let g[t] be the coefficient vector, with ¢ valid from — |4 | to [|, assuming M is odd.

1»_
2
Z xn—i—z (41)
=M |
2
%)
Z (Tnsi)g (4.2)
N—
Z -'L'n-l-z)g[" (4'3)
i=-| ¥

The smoothing process tends to reduce peak values; however, through observation it was
found that this reduction is percentage based, with a similar factor applying to all events. As
aresult, the attenuation is not a significant issue and the smoothed signal is used for all sub-

sequent aspects of the project: determining event components and event analysis.

34

EvENT DETECTION 4.2 Event Detection Algorithm

4.2 Event Detection Algorithm

Once all channels have been smoothed, there are two ways to go about detecting events. All
events can be found for one channel, then another channel, repeated sequentially throughout
all channels. After this, the channels can be compared to determine which events are from
the same global event, and a series of all events constructed. The other method is to find
events one by one through all channels, determine which of the individual channel events
are from the same global event, and then after an event is processed, determine the next

one.

The second method was chosen to be implemented, since it allowed for easier testing and
seemed more straightforward for termination conditions. In hindsight, both methods are
equally suited to solving the detection problem and could be implemented with a similar

amount of work.

Recall that event detection is a three step process. First, the next event in a channel is
found. Next, it is determined which channel events are part of the same global event.

Finally, a window is selected to represent the event.

For the algorithm, three states must be defined. The first is that an event has been found
on a channel (Event Found), the second is that there are no more events left on the channel
(No Events), and the final state is when an event has yet to be found, but it has not been

proven that there are no more events (Searching for Fvents).

4.2.1 Finding the Next Event

This step is executed when a channel is in the state Searching for Events. Rather than
monitoring all fifteen channels, the only channels that are monitored for events are Channels
1 through 5. Recall that these channels obtain measurements from each of the five girders
near the abutment; if any events are going to occur on the bridge, they will need to occur
here before they occur at the middle of the span. A channel is flagged as containing an
event the first time a value that exceeds Threshold A is encountered. Once this happens,

the channel is monitored for two values.

The maximum value is tracked so that the location and value of the peak can be stored.
While this tracking is being done, the strain values are monitored to see if they drop
below Threshold B, which would indicate the end of the event. Once the end of the event

35

EvENT DETECTION 4.2 Event Detection Algorithm

is determined, it is possible to move backwards through the event, monitoring for a drop
below Threshold B to determine the start. The start must be determined in reverse because
Threshold B, which identifies the end points, is smaller than Threshold A, which identifies
when to start looking at an event. It is determined last because it simplifies the calculations,
allowing linear progression through an event until the end is detected. Once both end points
have been identified, the channel is switched into the state Event Found.

It is possible that no data point is found that exceeds Threshold A. In this case, it can be -
concluded that there are no more detectable events left on the channel, and the channel is
placed in the state No Fvents. If a channel is put in No Fvents, its data is set to nonsense

and ignored for the remainder of the algorithm.

4.2.2 Determining Global Events

In order for the event detection algorithm to be useful for the purposes of this project,
events found on different channels need to be labelled as part of the same global event, so
that the characteristics between channels can be observed properly. Once all channels are in
the states of either Fvent Found or No Events, and at least one channel is in Event Found,
then a process begins to identify which channels have found the same global event. This is

done by comparing the peak locations found by the different channels.

If any peaks are within a certain distance from each other in the time domain, then all
peaks are said to belong to the same event. The distance used is 200 samples, centered
on the first examined peak, or one second in both positive and negative directions. This
was chosen because it is unlikely that two separate events will occur within a one second
window and it is equally unlikely that the propagation of the load across the girders will
take longer than one second. To make computations easier, all peaks are compared to the

earliest peak found in the data (the reference peak).

For example, if Channel 1 has a peak at sample 1150, Channel 2 at 1152, Channel 3 at 1145,
Channel 4 at 1562 and Channel 5 is in No Events, the reference peak will be 1145, from
Channel 3. The algorithm will conclude that Channels 1 (reference+5), 2 (reference+7) and
3 (reference+0) contain the event, while in Channels 4 (reference+417) and 5 (No Euvents)

the event is missing, likely masked by noise.

Using the mean of the peaks of any channels that match the reference peak was considered,
but the advantages were not there to justify changing the algorithm. The starting and

36

EVENT DETECTION 4.2 Event Detection Algorithm

ending points from each of the channels determined to be part of the event are stored,
and then the channels are put into Searching for Fuvents. The process is repeated until all

channels are in the No Events state.

4.2.3 Determining a Bounding Window for an Event

Once an event has been detected, a suitable window needs to be selected to represent the
event in its entirety. This window is selected from the starting and ending points of each
channel found to contain the event, and in order to accommodate the entire event, the largest
window, within reason, is chosen. This means that a small test is put in place to attempt
to remove outliers and nonsensical values. This happens when one channel is exceedingly
noisy when compared to the others; its noise level is much higher than the predicted value
and as a result, the event may appear to start early and end late in this channel. These

values, however, should not impact how the window of the event is determined.

Because the data set is small, containing anywhere from one to five elements, using tradi-
tional measures such as the deviation from the mean will not provide a robust identification
of an outlier as both the mean and standard deviation are easily skewed by an outlier in
small data sets. The measure chosen instead is the Median Absolute Deviation (MAD) [17].
The formula for the MAD is given in Equation 4.4.

MAD = median(jz — z]) (4.4)
Where z,,, is the median of the data set x.

Any value that is found to be greater than 3.5 times the MAD is removed from consideration.
After this check is performed on both the set of starting values and the set of ending values,
the event window is constructed by taking the minimum of the remaining starting values

and the maximum of the remaining ending values.

When the system was implemented, the choice was made to calculate all windows after all
events were found. This choice was made to facilitate debugging, to allow all the windows
to be calculated at once, so that they could more easily be plotted and compared to the

original signal to determine the accuracy of the detector.

Once this process is complete, it can be concluded that all the events are found and classi-

fication can begin on the events.

37

EVENT DETECTION 4.8 Determining Effectiveness of the Detector

4.2.4 Cascading the Detector

Recall from Section 3.1 that the data collection needs to be cascaded so that the entirety
of the data can be read. This poses difficulties to the event detection algorithm, as the
preliminary algorithm relies on having the entire signal present. Some minor changes to
the algorithm are required to accomodate this. The noise estimate and thresholds must
be recomputed for each window. The condition for the transition to No Events changes
from no event being detected in the channel, to no more events being detected before the
midpoint of the window. While this midpoint seems like the new end of the channel, an
event already detected is allowed to cross the midpoint boundary to keep continuity.

When all channels are placed in No Events, the detector is cascaded by moving back the
tracking value the algorithm uses, the end of the last event found in a given channel. This
is done to ensure that the same event is not detected twice when it occurs at the edge of a
window. The value is lowered by 7,500 each time the reset happens, with a floor value of
1, and all channels are placed back into Searching For Fvents. If the data collection system
determines that the end of the data set has been reached, the algorithm behaves as it would

without cascading. Figure 4.3 shows a flowchart of the algorithm.

4.3 Determining Effectiveness of the Detector

In order to test how well the detector isolates events, data from Model-Free Bridge-Based
Vehicle Classification [9] was used. The author, Grant Rutherford, manually counted vehi-
cles on August 2279, 2007. The results of this count were that 582 large vehicles traversed
the bridge. In comparison, the event detection algorithm described above determined 1,576

events for the same time period.

While it is more promising that more events were detected, rather than less being detected,
it still causes concern. One possible explanation for this large discrepancy is the type of
events detected. While only large vehicles were counted during the experiment, the event
detector may be capable of detecting smaller events. Testing this theory, the event detector
determined there was 582 events above a threshold of 15.2 microstrain.

38

EVENT DETECTION 4.8 Determining Effectiveness of the Detector

Start

A 4

Request Data From
Preprocessing Stage

H

Yes: >

Remove Noise i i
} Determine Noise
Spikes from > Level
Dummy Channel
y
End
Determine

Sthoolnh Iall < Threshold A,
annels Threshold B

No L____j
For ali Channels 1
through 5

More Data
Available?

A

A

Channel Finished.
Set to No Event

Identify start, end,

¢ No peak location

A

Channel Set to
All Channels set Event Found

10 No Event? All Channels

No Event or
Event Found?

Yes
4 A 4
For all Events Determine next chronological
Determine event and which channels
Bounding Window share it

Figure 4.3: Flowchart of the Event Detection Algorithm.

39

Chapter 5

Event Classification

Event classification proved to be a difficult problem to generalize for every potential load
case that can appear in the sensor measurements. It is based on anomaly detection; that
is, events are classified as either an expected or an unexpected event. Because no general
form was found, the classification problem has been broken up into several sub-problems.
Each sub-problem represents a different classification case; these are split up by traffic
lane and by weight class. In order to understand and test the classification algorithm, a
simulation needed to be used to generate controllable failure conditions. Data produced
by this simulation led to the development of a theory for the classifier; this theory can

eventually be applied to a physical system.

5.1 Usable Data for Classification

Recall from Section 2.2 that the measurement system for the Red River-North Perimeter
Bridge consists of fifteen active, loaded strain gauges for monitoring. However, not all of
the data channels are usable for analyzing the behaviour of the bridge. There are three
sensors per girder: one at the abutment and two at the midspan, where one is at the
top of the girder and another at the bottom. Of these sensors, the strain readings from
sensors at the top of the girders have small event amplitudes and, as a result, events are
indecipherable from background noise. Figure 5.1 shows two vehicle events as recorded by
both the bottom midspan sensor and the top midspan sensor. Examining this plot clearly

shows how the top midspan channel contains little useable information. This eliminates five

40

EvENT CLASSIFICATION 5.1 Usable Data for Classification

70

——- Bottom of Midspan
ol (e TOP Of Midspan

|
&i
.]
| |

20 rﬂnwm'-ww %%5’.‘*.9.%) k“ﬂwwwmm'%\w 4

501

Strain Reading {microstrain)

1 : 1 : L . L L
500 1000 1500 2000 2500 3000 3500 4000 4500
Sample

Figure 5.1: Usefulness of Bottom Midspan Sensor vs Top Midspan Sensor.
(Offsets Modified for Visibility)

sensors from the system, leaving only the abutment sensors and the sensors at the bottom
of the midspan (future references to midspan sensors mean the sensors at the bottom of

the midspan).

In addition to removing an entire group of sensors from consideration because their signal
is too weak to be useful, the same problem applies to an entire girder, Girder 5. Girder 5 is
the girder that is at the edge of the merging lane; it gets very little traffic and carries very
little load. As a result, measurements from this girder contain no useful information about
how the bridge is behaving. It is also unlikely to fail due to the much smaller loads it carries
when compared to the other girders. Because of these characteristics, measurements from
Girder 5 are ignored for the purposes of event classification. This leaves the system with
eight possible sensor locations from which to measure. These are the sensors on Girders 1

through 4, located at the abutment and at the bottom of the midspan.

Of the remaining eight sensors, either set (abutment or midspan) can be used for classi-
fication, but different sets should not be mixed due to the fact that the strain signature
is slightly different at the midspan and the abutment and the two cannot be compared
directly. The midspan sensors typically record higher strain values, and if sensor groups

were to be mixed, a scaling factor can be employed to try and fix this problem. Figure 5.2

41

EvVENT CLASSIFICATION 5.2 FEvent Features

Y
o

-~ Abutment
e Bottom of Midspan | |

©
wn
T

[}
o
T

=
8 o251
"
o
8
E 20r
on
£
8 15}
Q
[
k=
‘m 10}
7]
5)
L fin 0
0 “I/J (AN
5 . . " . .
o] 50 100 150 200 250 300

Sample

Figure 5.2: Amplitude Difference between Midspan and Abutment Sensors.

shows a close-up view of the second event in Figure 5.1, for the purpose of comparing the
readings of an abutment sensor and a bottom midspan sensor. As indicated by the over-
laying curves in Figure 5.2, the event amplitudes are different for the two sensor locations.
As a result of this amplitude discrepancy, for this project, event classification is done using
only the abutment channels. Despite this choice, the process outlined in this chapter will
apply to midspan sensors as well, and can be employed to monitor both groups of sensors

simultaneously if additional coverage is deemed necessary.

5.2 Event Features

The initial data extracted to describe an event is the peak strain value from the different
channels being monitored. The four channels monitored for this project are from sensors
located on Girders 1 through 4, at the abutment (G1, G2, G3 and G4 from Figure 2.3)
and are referred to respectively as Channels 1 through 4. Therefore, each event is initially
described by a 4 element vector, V;,, = [max(C) max(Cs) max(Cs) max(Cy)], consisting of
the peaks of each of the four channels. Unfortunately, issues arise when trying to use V,, for
classification, due to the large variation in peak strains recorded for different vehicles; these
are discussed in Section 5.2.2. These issues cause V,, to not be very useful for extracting

42

EVENT CLASSIFICATION 5.2 Event Features

quality information about the response of the bridge to the event. To solve this problem,
some transformations are performed on the four quantities to establish new features: the
source lane of the event, the girder ratios, and the weight class of the event.

5.2.1 Source Lane

One feature that can be derived from V,, is the source lane of the event. Determining the
source lane is fairly simple; it is found based on the channel with the largest strain peak
and is identically the index of the maximum value in V,,,. If an event originates from the
Normal Lane, then Girder 3, the Main Girder for the event, will show the most strain.
Similarly, if an event originates in the Passing Lane, then Girder 1 will be the main girder.
One more case is defined, Unknown Lane, when the peak strain channel is either Channel
2 or Channel 4. The source channel is an important feature since the distribution of load
is different based on which channel is the source channel. Figures 5.3 and 5.4 show curves
generated by the sensing system, with Figure 5.3 indicating the vehicle crossing in the
Passing Lane and Figure 5.4 showing the same vehicle crossing in the Normal Lane. By
examining Figure 5.3 it can be seen that the strongest response is in Channel 1, followed by
Channel 2, then 3 and finally a weak response in Channel 4. In contrast to this, Figure 5.4

120

—— Channel 1
Channel 2
Channel 3 |
-~ Ghannel 4

Strain Reading (microstrain)

50 100 150 200 250 300 350 400

Figure 5.3: Sensor Curves of an Event in the Passing Lane.

43

EVENT CLASSIFICATION 5.2 Event Features

80 T g v T T
——— Channel 1
- Channel 2 ||
~~~~~~~~~~~~~~~~~ Channel 3
Channel 4
e
s ]
o
o
g
£ 4
f=2l
c
G 4
«
@
o
=
5 J
7
_10 , . 1 : :
50 100 150 200 250 300

Figure 5.4: Sensor Curves of an Event in the Normal Lane.

shows a different response, with the strongest channel being Channel 3, followed by Channel

2, then 4 and 1. There is no excessively weak signal in this case.

Events labelled as originating in an Unknown Lane are thrown out, since they are unpre-
dictable in their response, unlike Normal Lane or Passing Lane events, and are a small
fraction of the events recorded. Equation 5.1 provides a formal definition of the source

lane.

Passing Lane max; (Vi) =1
Source Lane = ¢ Normal Lane max; (Vi) =3 (5.1)

Unknown Lane max;(V,) =2 or 4

Where max;(V;,) indicates the index of the maximum value of Vp,, starting from 1.

5.2.2 Girder Ratios

The peak values located in V,,, while quite telling about how a bridge is operating, do not
lead to the formulation of a general model that can apply to an unknown case. This is
because the values in V,, have a large potential range based on the type and size of the

44



EVENT CLASSIFICATION 5.2 Event Features

vehicle that is causing an event. This means that a general model would need to incorporate
this large range of acceptable values, and that anomaly detection would in reality only be
possible at the two extremes, when values are higher than expected for the largest event,
or lower than expected for the smallest event. For an idea of how large this range is, data
from the Red River-North Perimeter Bridge for August 22" was passed through the Event
Detection algorithm. For events deemed to be originating in the Normal Lane, the minimum
peak in Channel 3 was 2.4 microstrain, while the maximum was 49.5 microstrain. For the
Passing Lane, Channel 1 had a minimum peak of 2.4 microstrain, while the maximum was
71.6 microstrain. If a vehicle has an expected response of 20 microstrain, and failure in
the bridge causes a reading of 30 microstrain, there would be no way to determine that
the event should have given a reading of 20 microstrain, and thus no way to qualify it as a

failure case.

The next set of features that are derived from V/, is the set of girder strain ratios. The ratios
are more useful than the raw strain values found in V;, because they behave consistently
no matter what the actual values in V,, are. This solves the problem described above
where peak amplitudes can fluctuate over a wide range; the ratios between the girders can
be shown to be constant over all amplitude ranges, provided noise is absent. This was
demonstrated through simulation, and is discussed in Section 5.4.5. Using these relative
measurements to compare how the strain is split between the different girders in the bridge
is a meaningful description of the operating conditions of the bridge; this description of
how strain is distributed across the bridge is referred to in this document as Load Sharing.
Recall Figures 5.3 and 5.4; it can be seen that the value of these ratios will depend on the
source girder. Since Girder 1 is the main girder when an event is from the Passing Lane,
the ratios taken for a vehicle in the Passing Lane should all be taken with respect to Girder
1. When an event is from the Normal Lane, the ratios should be taken with respect to
Girder 3. Additional ratios can be taken provided they are taken in a decreasing direction
of amplitude; that is, all ratios taken should be greater than 1. The ratios that were selected
to be examined for this project are summarized in Table 5.1.

Table 5.1 shows four ratios that can be used for each lane case. Each one contains an
additional entry that does not depend on the main girder. This additional ratio can provide
further information to supplement the ratios dependant on the main girder, to hopefully
provide an expanded view on the state of the structure and the sensing system.

45



EvVENT CLASSIFICATION 5.2 Event Features

Table 5.1: Girder Ratios to be Used for Classification.

Passing Lane Normal Lane

Main Girder: Girder 1 | Main Girder: Girder 8

Gl G3
G2 Gl
Gl G3
G3 G2
Gl G3
G4 (€
G2 G2
G3 GI

5.2.3 Vehicle Weight Classes

In addition to identifying the source lane and girder ratios, each event is assigned into
a different weight class. The need for different weight classes is due to the presence of
(additive) noise corrupting a measured strain channel. Recall that the ratios defined in the
previous section are independent of the absolute amplitudes of the different peaks, but only
in the absence of noise. Additive noise introduces into these ratios a dependency on the
absolute amplitudes. This dependency is introduced because adding a value on both parts
of a ratio has a different influence on the result of the ratio depending on what the initial

values are. This is explained in Equation 5.2.

A+N
B+N

A
approaches the ideal 5 2 A and B get larger than N. (5.2)

Equation 5.2 also applies in the inverse situation. If A and B get smaller, the ratio drifts
away from the ideal value of —g. If N is the noise level, Equation 5.2 means that the average
ratio will drift depending on how A and B relate to the level of noise.

Due to the noise level being directly responsible for the magnitude of the disparity between
the base ratio and the calculated ratio, the different weight classes are defined based on
the magnitude of the peak in the main girder with respect to the noise level, N. For
the actual system, three weight classes are used; the boundaries of these classes are based

on the amount of noise. The boundaries are also dependent on the frequency of different

46



EVENT CLASSIFICATION 5.8 Classification Implementation

event amplitudes; this helps in preventing all events from being put in the same weight

class.

5.3 Classification Implementation

BEvent classification is performed here using a single distribution. Events are classified as
either being a member of the distribution or not, and this is done by cdmparing events
against a decision boundary. This boundary is a threshold value, which divides the problem
into members and non-members; that is, the probability of an event being a member of the
class would be compared to this threshold and either included or excluded.

A single decision boundary that is usable in all cases is impractical to consider; it cannot
.be expected that the bridge will respond identically to all potential stimuli. This is where
the different features described in Section 5.2 factor in. The problem is split into many
sub-problems, with each sub-problem performing its own classification of events. These
sub-problems are defined by three parameters: the vehicle weight class, the source lane,
and the ratio used. Events can then be classified based on the probability that a calculated
ratio is above the chosen threshold. Classification dealing only with individual events poses
a problem, however. Due to the presence of noise and other potential measurement errors,
simply detecting a single value outside of the selected range and using it to conclude that
the bridge has failed is not a robust system and will generate far too many false positives
to be useful. As a result, adding memory to the system will allow it to detect and monitor
trends and consistencies in the data. This leads to a concept of binning.

5.3.1 Grouping Events

In order to solve the memory problem, each sub-problem is given a bin, and an associated
event error counter. The reasoning for using an error count is similar to why the CAN bus
protocol [18] uses an error count. That is, simply because an anomaly is seen does not
necessarily mean something has failed; it is only after a number of anomalies are detected
in a given interval that a conclusion can accurately be made about the state of failure.
This introduces the idea for an error count. In the CAN protocol [18] a device can be in
three states based on its error count, where each determines a different level of failure. A
similar case can be made for classifying events. An isolated anomaly will likely be a sensor

malfunction, a large noise spike, or some other one-time problem with the measurement

47



EVENT CLASSIFICATION 5.4 Classification Simulation

system. These isolated anomalies should be ignored, since they do not indicate anything
about the state of the structure. Similarly, assuming a structure is failing, an isolated
proper event (an event that fits within the expected error variation) should not remove an
alert that the structure is failing. An error count allows tracking of the number of anomalies
compared to the number of proper events, provided the count is increased when an anomaly

is detected and decreased if an event is proper.

In the general case, the error count does not need to change in the same way in every
situation. For example, anomalies could increase the error count proportionally to how far
they are from the threshold. Despite providing additional freedom, in reality this is not
especially useful. All anomalies should be considered equally serious, and should be valued
equally. The choice was made for each anomaly to increase the error count by 1, with no
ceiling on the maximum count, while each proper event decremented the error count by 1,
with a floor value of zero. If these conditions are in place, then an error count which is
steadily increasing will indicate a failure, while an error count that remains around zero

will indicate that no failure has happened.

Because the Red River-North Perimeter Bridge has yet to fail, there is no real data available
to indicate a failed structure. This led to the need to perform simulations in order to
understand what happens to strain values with different amounts of noise, different vehicle
weighting, and different failure cases. Knowledge of the simulation is required to discuss
specifics on how the classifier is implemented and how decision making is performed. As a

result, these specifics will be discussed in both Sections 5.4.9 and 5.5.

5.4 Classification Simulation

For the purposes of modelling failure, simulations needed to be run to extract information
about how the bridge behaves under different conditions. These simulations were run using
a program supplied by Dr. A. Mufti, SECAN4 (referred to simply as SECAN) [19]. This
program allows for complete parameterization of a bridge structure as well as a load vehicle.
Using this information, it performs a static loading calculation based on load position. The
simulation allows the load to be positioned at any point across the surface of the bridge.
Combining the results of several simulations allows for the generation of a curve similar to
what is captutred by the physical system when a vehicle traverses the bridge. The material
constants required for the simulation were provided by Dr. D. Sidhu [20] and are included

48



EvENT CLASSIFICATION 5.4 Classification Simulation

in Appendix A. To ensure the accuracy of the simulation, several important elements first

needed to be examined.

5.4.1 Vehicles

For the simulation, two different trucks were simulated to represent real vehicles. These
trucks, named Truck A and Truck B, are representative of trucks loaded to the maximum
legal axle weight for the Province of Manitoba; the difference between the two is the number
of axles on the trucks (62,500kg [9]). See Figure 5.5 for images of the two trucks that were
the basis for the simulation. Figure 5.6 shows these two trucks converted into a sequence
of point loads [21]. This conversion is necessary so that the trucks could be used by the
SECAN simulation.

(a) Truck A.

e

(b) Truck B.

Figure 5.5: Images of Real Trucks used in SECAN Simulation.
(Image Credit: Dean K. McNeill)

49



EvVENT CLASSIFICATION 5.4 Classification Simulation

170.00 kN 17020KN 5540 kN
1.3 50m [13)m 44m |
[ Pl !
= L L] E- s —1_
S PN R - 2.0m
= L] oz = = —_l—__'

TOTAL WEIGHT OF TRUCK = 393.60 kN

(a) Truck A.
170.10 kN 230.30 kN 170.10kN 55 kN
125) 6.12 | 1-55] 1.55| 5.74 33 so |
[ 1 | | | I J
= = 3 g >>:0 =] 7 oo i ]
e e ——— e — - 20m
=3 =3 =3 = [ ] =

TOTAL WEIGHT OF TRUCK = 82550 kN

(b) Truck B.

Figure 5.6: Trucks as Point Loads for use in SECAN Simulation [21].

50



EveENT CLASSIFICATION 5.4 Classification Simulation

In order to simulate the physical system as closely as possible, the trucks were moved in a
fashion similar to how they would be expected to traverse the bridge. The actual sensing
system samples the sensors at 100Hz; for a vehicle moving at 100km/h, which is standard
highway speed, Equation 5.3 shows the distance travelled per sample.

1000m/km
3600s/h

0.27m _ 27cm
0.0ls  sample

velocity = 100km/h * =2Tm/s = (5.3)
This result shows that a truck travelling at 100km/h will move 27cm between each sam-

ple.

5.4.2 Lanes

The source lane of the vehicle is controlled by a parameter in SECAN. In order to properly
simulate all cases of the bridge, both lanes needed to be simulated. The lanes are defined as
horizontal position from the left-most girder. For this bridge, the left-most girder is in fact
Girder 5; the girder under the merging lane. Figure 5.7 shows the locations of the lanes,
from Figure 2.2, re-labelled for how the lanes were defined for SECAN. The vehicles were
centered in the lane, with axles placed 1m on each side, at 4.5m and 6.5m (Normal Lane)
and 8.2m and 10.2m (Passing Lane).

P
<«

- 3.535m
Passing Lane NormalLane [g—u )l

ToCentre |* 3560m |  3.660m
of Bridge —

R B
3 2

Girder# 5 4 1

Figure 5.7: Lane Positions and Girder Numbering, Redefined for SECAN [1].
(Not to Scale)

5.4.3 Sensor Locations

Different measurement locations can be defined in the input for SECAN, which allows for
multiple sensing locations to be defined. The locations of the sensors are defined only as

a distance from the abutment; no positioning on the girder is able to be defined. For

51



EvENT CLASSIFICATION 5.4 Classification Simulation

robustness of the simulation, measurements are taken from both near the abutment and
at the midspan, although the values from the midspan are not used in any way for this

project.

5.4.4 SECAN Output

The output provided by SECAN, unlike the measurement system, is not strain values.
SECAN outputs the moment about the geometric centroid. This value can be converted

directly into a strain value by using Equation 5.4 [19].

. My
train = —= 4
strain = —— (5.4)

Where M is the moment described above, y is the distance of the sensor to the centroid,
I is the moment of inertia about the neutral axis and E is the modulus of elasticity of the

girder material.

This moment is output for each girder in the simulation at each measurement location;
in this case, two values for each of girders 1 through 5. The output is given in reverse
order; that is, Girder 5 is labelled as Girder 1, Girder 2 as Girder 4, and vice-versa. While
Equation 5.4 is convenient for converting the output of SECAN into strain to match it up
with the output of the real system, in reality it is unnecessary. Calculating y accurately
is a difficult endeavour, since the physical dimensions of the girders are hard to determine
based on available documentation. However, it can be assumed that y will be identical
for all girders, and will cancel when the ratios are taken; the same can be assumed for E.
This leads to Equation 5.5, a more simplified form of the strain equation given earlier. The
concept is labelled as the M/I ratio, since it is not a strain value, but can be used as one
for the purposes of classifying events based on girder ratios. The M/I ratio will be treated
as unit-less when used in discussions to match the unit-less strain measurements from the
physical system.

M/I Ratio = {Vlf (5.5)

52



EvENT CLASSIFICATION 5.4 Classification Simulation

5.4.5 Weight Simulation

SECAN was used to simulate the concept of different vehicle weight classes. This was done
by providing a scalar multiplier on all components of the vehicle weights. The multipliers
used were 1.0, 0.75, 0.50 and 0.25. The purpose of the weight simulation was to determine
how the moment varies with respect to weight. Figure 5.8 shows the values of the M/I ratio
for Sensor 1 for a vehicle in the passing lane in a case with no noise, for all four of the

different weight levels.

14000

————— 100% Weight
.............. 75% Weight
. 50% Weight |4

12000 / \‘
' - 25% Weight

10000

8000+

M/l Ratio

6000

4000 -

2000

140

Figure 5.8: Weight Comparison for Truck A, Passing Lane.

Investigating these curves shows that the shape remains the same, independent of the weight
class. This leads to the conclusion that the same type of vehicle will generate the same event
curve independent of the weight, simply scaled by some factor. Numerically comparing the
curves in Figure 5.8 shows that this is indeed the case, and that the scale factor is identically
the multiplier used on the weight. It follows directly from this result that girder ratios will
be identical for different weights of the same type of vehicle, since the multiplying constants

will apply equally to the terms on both the top and bottom of the ratio.

53



EVENT CLASSIFICATION 5.4 Classification Simulation

5.4.6 Determining Noise Level

Once the idealized output was generated, it became apparent that to properly simulate a
real system, noise would need to be added. Recall that the noise model used is that of
zero-mean Gaussian noise. The variance of the noise was determined directly from data
taken from the Red River-North Perimeter Bridge. On July 12", 2007, ten tests were run
on the Red River-North Perimeter Bridge. These tests were controlled for different trucks,
speeds and source lanes and are summarized in Table 5.2. In Tests 1 through 8, Truck A
traversed the bridge first, followed by Truck B. In Test 9, only Truck B traversed the bridge,
and in Test 10, the two trucks travelled side-by-side.

These tests were convenient for the purposes of noise simulation since they provided a direct
comparison between the results of the physical system and the results of SECAN. Since the
two trucks used in the controlled tests are the same as the two trucks shown in Figures 5.5
and 5.6, the controlled tests can be used to determine a proportional constant that relates

the noise level to the amplitude of the event response.

Table 5.2: Controlled Tests.

Test, Speed Lane
1 25km/h Normal
2 50km/h Normal
3 75km/h Normal
4 100km/h Normal
5 100km/h Passing
6 100km/h Normal
7 100km/h Passing
8 100km/h Passing
9 100km/h Passing
10 | 100km/h Both

54



EvENT CLASSIFICATION 5.4 Classification Simulation

To determine this proportional constant, the event detection algorithm was run on Con-
trolled Test 4. Recalling Section 4.1.2, one result of this detection is the standard deviation
of the noise. This result was compared to the unsmoothed peak value for Channel 3 of the
event and used to determine a ratio for the amount of noise in the measurement system that
can be applied directly to the SECAN results. The result of this test was that the standard
deviation of the noise was 1.17 microstrain while the peak had a value of 50 microstrain.
This leads to the ratio expressed in Equation 5.6, with o, being the standard deviation of

the noise.

On 1.17 1
= = 5-
max(Ca) ~ 50 1273 (5:6)
Or, expressed in a more useful form,
_ ma,X(C;;)
ST Y (5.7)

The peak value of the M/I ratio provided by SECAN for a similar test, that is, Truck A in
the Normal Lane, was 9264. By using Equation 5.7, this leads to a noise standard deviation
of 216.80. This value is used for all simulations that include noise, independent of factors
such as the size and weight of the vehicle, the source lane, or any smoothing performed on
SECAN curves.

5.4.7 Failure Model

The model for structure failure used in this project is a decrease in the moment of inertia
of a specific girder [22]. Modifying the moment of inertia of a girder has two effects on the
M/I ratio for that girder. The first is that the calculated moment, M, decreases because
the girder will take less load. The second is, of course, that I itself decreases. This leads
to a potentially ambiguous state, where a decrease in I may result in either an increase in
the M/I ratio, or a decrease in the M/I ratio, depending on which quantity has more of a
change. In a simpler case, for the girders that are not failing, M will increase due to these
girders needing to support a larger portion of the vehicle load. This increase in M, coupled
with the knowledge that I is unchanged, leads to an obvious increase in the M/I ratio and

consequently the strain.

55




EvENT CLASSIFICATION 5.4 Classification Simulation

In order to determine how the M/I ratio for the failing girder changes as I is changed,
SECAN was run with different I values. Figures 5.9 and 5.10 show two different cases:
when the failing girder is the main girder and when it is not. Both cases are with Girder
3 failing, and show curves of Girder 3; Figure 5.9 with the vehicle in the Normal Lane and

Figure 5.10 with the vehicle in the Passing Lane. Examining both these figures shows a

12000

Iat 100%
------------ Iat 90%
I at 80%

10000+

8000

M# Ratio

6000

4000

2000

0 20 40 60 80 100 120 140
Sample

Figure 5.9: Curves showing M/I ratio when Main Girder is Failing.

distinct trend in the M/I ratio; as a girder fails, the M/I ratio will increase. Since, for the
purposes of classification using girder ratios, the M/I ratio is directly comparable to the
strain values from the measurement system, the strain values recorded by a sensor on a

girder will increase as the girder fails.

Despite this promising result, recall from Section 5.2.2 that the absolute value is useless for
classification and these findings cannot be used directly since the expected response for an
unknown vehicle is itself unknown. In other words, if the baseline value is not known, a
deviation from the baseline cannot be measured. However, these findings can be applied to
the girder ratio measurements, since a baseline for the ratios does exist that can be applied
to any unknown vehicle. Figure 5.11 shows the girder ratios presented in Table 5.1 for a
truck in the Normal Lane, failing Girder 3; this plot is of C; vs Girder Ratio, where C; is
used according to Equation 5.8. These ratios are calculated without noise and can therefore
be considered an ideal situation and impractical, but they represent the idea of a baseline

56



EvENT CLASSIFICATION 5.4 Classification Simulation

3500

—— 1 al 100%
- 1at 80%
—— 12t 80% |-

30001

2500+

20001

M/l Ratio

1500

1000} ;” %

0 20 40 80 80 100 120 140
Sample

Figure 5.10: Curves showing M/I ratio when Other Girder is Failing.

measurement that can be applied to any and all events.

Inew = CiI,,C; = 1,0.9,0.8,...,0.1 (5.8)

Figure 5.11 shows that there is a considerable change in the ratios for large changes in I. An
equation exists which relates changes in I to a cracking failure. This is given in Equation
5.9 [23], which shows the percentage of change in I to a given percentage of the girder that

is cracked.

crack height 3
I - I .
¢ X <1 girder height) ° (59)

crack height
1 girder height

that the crack occupies, and I, is the moment of inertia for the uncracked girder. Using

Where I, is the I for a cracked girder represents the percentage of the girder

Equation 5.9 shows that a 2% crack causes a 5% decrease in I, while a 5% crack will cause

a 15% decrease in I.

57



EVENT CLASSIFICATION

5.4 Classification Simulation

7.5 7

6.5f

Ratio

55

45 -

3.5 -
1 0.9 0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.3

Inortia Costflicient

(a) &

3.8

3.8

/

3.2

28}

Halio

26F g
24} T

2.2p—

1 0.9 0.8 0.7 0.6 0.5 0.4 0.3 0.2 [N}
Ineria Coefficient

() &

1 0.9

0.8

0.7 0.8 0.5 0.4 0.3 0.2 a1
[nertia Coetticiant

(b) &

0.8

0.7 0.8 0.5 04 0.3 0.2 0.1
Inertia Coelticient

@) &

Figure 5.11: Girder Ratios for Varying Degrees of Failure.
Girder 8 Failing, Truck in Normal Lane.

58



EvENT CLASSIFICATION 5.4 Classification Simulation

5.4.8 Failure Simulation

Since it has been shown that modeling failure using a decrease in I is reasonable, and that
small cracks will result in larger variations in I, the next step in the project is to simulate
realistic failure to try and generate a classification approach. Simulating realistic failure
involves adding noise to the SECAN results, and then performing the same processing as

described in Section 4.1.2, mainly by smoothing the signal.

5.4.8.1 Failure Simulation with Noise

Noise is simulated into the system by using the Matlab 7.7 random number generator to
generate a vector of Gaussian Noise, distributed N(0,216.80). This vector is then added to
the SECAN results to create a noisy event curve. This adds noise to one curve; in order
to generate a variety of cases, this process is done 10,000 times. The same SECAN vector
is used in each case, with a different noise vector being used. The resultant vector is then
smoothed using the Gaussian Smoothing algorithm described in Section 4.1.2.1. The ratios
described in Table 5.1 are then computed for all 10,000 cases and then stored. This process
was repeated for different levels of failure and for all four possible girder failures. The results

were plotted in histograms; an example of these histograms is shown in Figure 5.12.

Figure 5.12 shows histograms for three failure cases for the four ratios when a truck is in
the Passing Lane and Girder 1 is failing. These three failure cases are with I healthy, with
C; = 0.9 and with C; = 0.8. The SECAN data for Figure 5.12 was generated with Truck
A at full weight. To show the impact of weight classes when noise is involved, Figure 5.13
shows the same case, but with Truck A at 50% weight. By using the amount of visual
separability as a measure of ease of classification, it appears more difficult to classify the
50% case over the 100% case. Extrapolating on this idea, the amount of visual separability
can be measured to determine the expected ability of a ratio to perform as a classifier.
This was done subjectively using a simple ranking system of 5 (very accurate classification)
down to 1 (impossible to classify). Ratios that are ranked a 3 or higher were deemed usable
to classify. Figure 5.14 shows an example of the 5 rankings. Non-integer rankings were
assigned for some cases (for example 3.5), indicating that they are slightly more visible
than one ranking, but not enough to qualify for the next ranking.

59



EVENT CLASSIFICATION

5.4 Classification Simulation

1800 -
BE3A 100% Healthy
80% Healthy
=B 80% Healthy
. o
3
g
e
o
=
fs
o
!
i1
i !
0 4 fod ' s ;
1.4 1.45 15 1.55 1.6 1.65 1.7 1.75
Peak to Peak Ratio
G1
(@) &
1800
EEREE 100% Healthy

90% Healthy
80% Healthy

& Occurances

20 30 40 50 60 70
Peak to Peak Ratio

(© &

# Occurances

A Occurances

1600

1400

1200

1600

1400

1200

1000

800

600

400

200

B2 100% Healthy
80% Heatthy
80% Healthy

3.6 3.8 4 4.2 4.4 4.6 4.8 5

Peak to Peak Ratio

(b) &

EZEE 100% Healthy
80% Heatthy
80% Healthy

e 1 i ) L
25 26 27 28 29 3 31
Peak to Peak Ratio

(d) &

Figure 5.12: Girder Ratio Histograms for Varying Degrees of Failure.
Girder 1 Failing, Truck in Passing Lane, Full Weight.

60




EVENT CLASSIFICATION

5.4 Classification Simulation

# Occurances

# Oceurances

1600

1400

1200

1000

800

600

400

200

2500

2000

1500

1000

500

20

1.5 1.55 1.6
Peak to Peak Ratio

() &

B2 100% Healthy
2 9G% Heakhy
{2557 80% Healthy

1.7 1.75

B2 100% Healthy
A 90% Healthy

{77771 80% Healthy

40 50 60

Peak to Peak Ratio

(c) &

70 80 20

& Occurances

# Occurances

1600
ESEEH 100% Heatthy
1400} 34 90% Healthy
80% Healhy
1200
1000
800
600
400
200
3.6 3.8 4 42 4.4 4.6 48 5
Peak to Peak Ratio
(b) G1
G3
1600 -
{2559 100% Heatihy
1400 - & 80% Healthy
B80% Healhy
1200 -
1000 -
800 -

600 -

400 -

200 -

24 25 26 27 28 29 3 3.t 3.2
Peak to Peak Ratio

@ &

Figure 5.13: Girder Ratio Histograms for Varying Degrees of Failure.
Girder 1 Failing, Truck in Passing Lane, 50% Weight.

61



EVENT CLASSIFICATION

5.4 Classification Simulation

# Occurances

# Oceurances

1800 -

1600

1400

1200

800

600

400

200

1600

$0% Healthy

N [EE571 80% Heskhy

B2 100% Heatthy

1200

1000

1.6 1.65 1.7

Peak to Peak Ratio

(a) Separability Level 5.

27

1800

1600

1400

1200

# Oceurancas

600

400}

200

28

1000

800

1.75

Peak to Peak Ratio

1400 -

# Occurances
g
<

36 3.8 4

4.2 44

Peak to Peak Ratio

100% Healthy
72 90% Heatthy
80% Heatthy

4.6 4.8 5

(b) Separability Level 4.

100% Healthy
80% Healthy

[ 80% Healthy

(c) Separability Level 3.

1500 -

0% Healthy

80% Healthy

00% Healthy

28 3

Peak lo Peak Ratio

(d) Separability Level 2.

Figure 5.14:

¥ Occurances

Separability Examples.

0
3t 1

42 1.44

1.46

1.48 1.5
Peak to Peak Ratio

A 100% Healthy
0% Heaithy
0% Healthy

(e) Separability Level 1.

62



EVENT CLASSIFICATION 5.4 Classification Simulation

Many simulations were used to generate the separability rankings. Three different weight
classes were used, 100%, 75% and 50%, with all four girders failing, and with vehicles in
both lanes. This resulted in 3 x 4 x 2 = 24 different cases, each with four ratios. The
complete set of rankings are provided in Tables 5.3 and 5.4.

Table 5.3: Separability of Passing Lane Girder Ratios.

Weight | Failed Girder
100 1
75 1
50 1
100 2
75 2
50 2
100 3
75 3
50 3
100 4
75 4
50 4

63



EVENT CLASSIFICATION

8.4 Classification Simulation

Table 5.4: Separability of Normal Lane Girder Ratios.

Weight | Failed Girder
100 1
75 1
50 1
100 2
75 2
50 2
100 3
75 3
50 3
100 4
75 4
50 4

In Tables 5.3 and 5.4, the cells highlighted in green show the best channel for each set

of ratios, provided that the channel is rated 3 or higher.

Any cell in blue is unusable

for classification. Cells in white are usable for classification but do not provide the best

discrimination. Examining the colouring of columns allows the removal of certain ratios. In

Table 5.3, it can be seen that neither the % ratio nor the % ratio can detect any failures.

As a result, there is no need to monitor these two ratios. In Table 5.4, there is no ratio

that is not used, so all four ratios must be monitored. The results of Tables 5.3 and 5.4 are

promising, as it shows that there is at least one ratio that allows for failure detection for

any failing girder. These ratios are given in Table 5.5.

64



EVENT CLASSIFICATION 5.4 Classification Simulation

Table 5.5: Girder Ratios which are able to Classify.

Failing Girder | Ratio(s) to Use, Passing Lane | Ratio(s) to Use, Normal Lane
1 Gl Gl G3 G2
G2'G3 Gl' Gl
9 Gl G1 G3 G3
G2’ G3 G1° G2
Gl G3
3 &3 &
G3
4 N/A &

5.4.9 Classifier Creation

Once the ratios have been identified in terms of separability, the next task is to determine
how exactly to use these results in a classifier. The histograms in Figure 5.15 show over-
lapping Gaussian distributions; this is in essence a textbook problem which would typically
be used to demonstrate Bayesian classification [24]. This would work by determining the
probability that a given ratio falls in any of the distributions and classifying the ratio ac-
cording to the distribution from which it is most likely to have come. The problem with this

1600

100% Healthy
0% Healthy
80% Healthy

1400

1200

1000

# Occurances
(=] [+
Q f=3
(=] (=]

£
(=3
o

N
Q
(=1

4.4

0 7
3.6 3.8 .
Peak to Peak Ratio

Figure 5.15: Histograms for Classification.

65



EvENT CLASSIFICATION 5.4 Classification Simulation

approach is that girder failure is not divided into a set of discrete distributions. The fail-
ure spectrum is continuous and to classify using a distribution generated from 90% healthy
does not make for a realizable solution. The main reason this solution is unrealizable is that
most bridges that are newly built do not have the data necessary to generate the failure

distribution.

A different solution to the classification problem is simply to use the healthy distribution,
represented by blue in Figure 5.15. Since the histogram is shaped like a normal distribution,
it is possible to model the probability that a ratio belongs to the healthy distribution. The
proprieties of the standard deviation say that 95% of the values of a normal distribution lie
within two standard deviations of the mean (that is, P(|X — p| < 20) = 0.95). Since both
the mean and standard deviation of the healthy distribution can be obtained from a physical

system through data mining and training algorithms, this method is easily realizable.

The classification system is implemented by dividing the problem into 18 sub-problems.
These are the following ratios: %, %, %, %, % and %, each with three weight classes.
The weight classes are defined by the relative amplitude of the peak in the main girder to
the noise level in the system, N, and are shown in Table 5.6. The class boundaries were
found experimentally; any peak that is below the left boundary for Class 3 is considered as

as having an insignificant amplitude with respect to noise, and is thrown out.

Table 5.6: Weight Class Boundaries.

Lane | Class Identifier | Left Boundary | Right Boundary
Passing 3 10N 30N
Passing 2 30N 50N
Passing 1 50N 0
Normal 3 10N 28N
Normal 2 28N 38N
Normal 1 38N 0

Fach of the 18 sub-problems contains its own mean and standard deviation to represent a

healthy distribution.

66



EVENT CLASSIFICATION 5.4 Classification Simulation

Equation 5.10 shows the formula for updating an individual bin count in the classification
algorithm, where py is the mean of the bin, o} is the standard deviation of the bin, and rat;

is the ratio currently being examined.

count(b) + 1 rat; — > 2
count(b) = ®) Irati = ol > 20 (5.10)
max(0, count(b) — 1) otherwise

For events in the Passing Lane, each event updates two bins; for events in the Normal Lane,
each event updates four bins. Events that are classified as an Unknown Lane do not update
anything. The classification parameters found are listed in Table 5.7, and were obtained

from analyzing the tests done in Section 5.4.8.1.

Table 5.7: Classification Parameters.

Failing Girder | Weight Class n o
% 1 1.4796 | 0.0127
% 2 1.4799 | 0.0169
% 3 1.4800 | 0.0257
% 1 3.9829 | 0.0772
% 2 3.9760 | 0.1005
% 3 3.9564 | 0.1458
% 1 3.3392 | 0.0752
% 2 3.3275 | 0.0971
% 3 3.3031 | 0.1394
% 1 1.2979 | 0.0143
% 2 1.2978 | 0.0189
% 3 1.2977 | 0.0286
% 1 2.0695 | 0.0318
—g% 2 2.0671 | 0.0420
—g—z 3 2.0620 | 0.0616
% 1 2.5730 | 0.0599
% 2 2.5642 | 0.0770
% 3 2.5462 | 0.1112

67



EveENT CLASSIFICATION 5.4 Classification Simulation

5.4.10 Classifier Testing

In order to determine how well the classifier presented above works, some testing needed
to be done. To test the classifier, SECAN data was used once again in place of real event
data. However, to ensure realism, data was taken from the physical system to help steer

the generated events in the right direction.

5.4.10.1 Generating Realistic Events

In order to generate realistic events, distribution parameters needed to be extracted from
the physical system. The parameters that were needed are the percentage of events that
are in the passing lane and the normal lane, as well as the distribution of event amplitudes.
For simplicity, it is assumed that each event has a peak proportional to how much it weighs
with respect to Truck A. Since Section 5.4.5 showed that, without noise, event curves can be
directly scaled by a multiplying constant for differently weighted vehicles, the peak values
found from the physical system can be normalized with respect to the peak of the controlled
tests using Truck A to generate an amplitude distribution. To supply actual data for this,
data was taken from the North Perimeter Bridge on August 2279, 2007. Two SECAN
vectors are used, one for Truck A in the Passing Lane, and another with Truck A in the

Normal Lane.

Since Truck A generates different event signatures depending on the source lane, the source
lane of each of the physical events are first found. For events originating in the Passing Lane,
the amplitude is divided by 60 microstrain, the smoothed peak value for Controlled Test 5;
for events originating in the Normal Lane, the amplitude is divided by 37 microstrain, the
smoothed peak value for Controlled Test 4. Since the event detector found 1,509 events on
August 227, 2007, a random number is generated between 1 and 1,509. This number is

then used to select an event, giving an amplitude multiplier to use and a source lane.

5.4.10.2 Results

The simulation described above was run many times to test different error cases. Tables
5.8 and 5.9 show the results of classifying simulation data. For these tables, the category
C; indicates the percentage of I used, Count is the bin count at the end of the simulation,

68



EvENT CLASSIFICATION 5.4 Classification Simulation

and Max Count is the peak value that the bin count reached throughout the simulation.

For each of these simulations, the number of events generated is 10,000.

Table 5.8: Baseline Simulation Classification, all Girders Healthy.

Bin | Bin Name | Count Max Count
1 G12W1 0 2
2 G12W2 0 2
3 G12W3 1 8
4 G13w1 0 3
5 G13W2 0 2
] G13W3 2 8
7 G31W1 1 3
8 G31W2 1 2
9 G31W3 0 6

10 G32W1 0 2
11 G32W2 0 3
12 G32W3 0 5
13 G34W1 0 3
14 G34W2 0 2
15 G34W3 1 6
16 G21W1 1 2
17 G21W2 1 3
18 G21W3 0 7

69



EVENT CLASSIFICATION

5.4 Classification Simulation

Table 5.9: Error Simulation Classification Results.

Bin l Bin Name [ Ci l Count l Max Count | C; | Count ] Max Count ‘ C; | Count ! Max Count
Failing Girder 1
1 G12W1 95 273 273 90 601 601 85 619 619
2 G12W2 95 39 39 90 289 289 85 304 304
3 G12W3 95 0 13 90 679 679 85 1190 1190
4 G13W1 95 7 30 90 487 487 85 615 615
5 G13wW2 95 1 5 90 154 155 85 263 263
6 G13W3 95 0 7 90 1 21 85 446 447
7 G31W1 95 8 22 90 435 435 85 469 469
8 G31w2 95 1 6 90 286 286 85 393 393
9 G31W3 95 4 10 90 725 725 85 1948 1948
10 G32W1 95 0 4 90 4] 3 85 9 9
11 G32W2 95 1 3 90 0 4 85 4] 4
12 G32W3 95 0 5 90 0 7 85 4 8
13 G34W1 95 0 4 90 0 2 85 0 3
14 G34W2 95 0 2 90 0 3 85 0 2
15 G34W3 95 0 9 90 [ 5 85 0 11
16 G21W1 95 2 11 90 377 377 85 469 469
17 G21W2 95 0 5 90 206 206 85 381 381
18 G21W3 95 2 10 90 228 235 85 1482 1482
Failing Girder 2
1 G12W1 95 76 76 90 465 465 85 514 514
2 G12wW2 95 10 16 90 232 233 85 204 294
3 G12W3 95 0 16 90 422 425 85 1020 1022
4 G13wW1 95 0 6 90 164 165 85 464 464
5 G13W2 95 0 6 90 15 18 85 164 164
6 G13W3 95 8 17 90 2 22 85 445 448
7 G31W1 95 0 6 90 225 225 85 474 474
8 G31W2 95 1 4 S0 26 27 85 232 232
9 G31W3 95 1 9 90 7 14 85 522 524
10 G32W1 95 0 13 90 376 376 85 514 514
11 G32W2 95 0 4 90 158 158 85 336 337
12 G32W3 95 0 8 90 2 40 85 1025 1028
13 G34W1 95 0 3 90 0 5 85 0 3
14 G34W2 95 0 2 90 0 2 85 1 3
15 G34W3 95 1 7 90 2 5 85 1 9
16 G21W1 95 0 4 90 4 3 85 0 4
17 G21wW2 95 1 1 90 o 3 85 1 3
18 G21W3 95 1 7 90 0 6 85 0 7
Failing Girder 3
1 G12W1 95 0 3 90 0 4 85 0 7
2 G12W2 95 0 4 90 1 4 85 0 4
3 G12W3 95 1 8 90 1 10 85 2 11
4 G13W1 95 0 4 90 92 93 85 366 366
5 G13W2 95 0 3 90 13 19 85 189 189
6 G13W3 95 1 14 90 0 13 85 204 206
7 G31W1 95 0 5 90 8 18 85 307 307
8 G31W2 95 0 3 90 1 8 85 34 34
9 G31W3 95 1 7 90 0 6 85 4 11
10 G32wW1 95 0 5 90 258 258 85 502 502
11 G32W2 95 0 3 90 37 37 85 247 247
12 G32W3 95 1 6 90 0 21 85 149 159
13 G34W1 95 0 2 90 1 7 85 0 4
14 G34W2 95 o 3 90 0 4 85 2 4
15 G34W3 95 0 7 90 ] 7 85 1 7
16 G21wW1 95 0 2 90 0 4 85 0 3
17 G21W2 95 0 2 90 0 2 85 [ 4
18 G21W3 95 [ 6 90 2 6 85 [ 7

Contlinued on nezxt page. ..

70



EVENT CLASSIFICATION 5.4 Classification Simulation

Table 5.9: Continued from previous page. ..

Bin Bin Name 1 C; l Count ‘ Max Count I Ci I Count [ Max Count ! C; 1 Count Max Count
Failing Girder 4
1 G12wW1 95 0 4 90 0 3 85 1 4
2 G12wW2 95 2 4 90 0 3 85 0 3
3 G12W3 95 Y 11 90 0 10 85 0 6
4 G13wW1 95 0 4 90 0 2 85 4] 3
5 G13wW2 95 0 2 90 0 3 85 0 3
6 G13W3 95 4 9 90 0 7 85 1 11
7 G31W1 95 [ 2 90 1 3 85 1 5
8 G31wW2 95 0 2 90 0 3 85 1 3
9 G31W3 95 0 5 90 ] 6 85 1 5
10 G32W1 95 1 3 90 0 4 85 2 5
11 G32W2 95 0 3 90 [ 3 85 0 3
12 G32wW3 95 4 8 90 4 9 85 0 8
13 G34W1 95 0 7 90 152 152 85 373 373
14 G34W2 95 Y 2 90 0 8 85 166 167
15 G34W3 95 1 5 90 0 12 85 91 93
16 G21W1 95 0 2 90 0 4 85 1 4
17 G21W2 95 0 2 90 0 4 85 0 2
18 G21W3 95 0 6 90 0 6 85 1 5

Tables 5.8 and 5.9 show the results of 13 simulations. The baseline simulation, 100% Healthy
where C; = 100, is shown in Table 5.8 and can be used to show what type of counts can be
expected from standard operation. The other simulations in Table 5.9 show varying degrees
of failure and what type of bin counts can be expected for these failures. The results here
are very useful; they agree with the results found in Tables 5.3 and 5.4 and show that
for each girder failing, there are bins that will show the failure. By comparing bin counts
to the maximum they attained in Table 5.9, it follows that for cases that can detect an
error, the error count will steadily increase as more and more events are entered into the

classifier.

5.4.10.3 Error Count Threshold

In order to make a decision on whether or not a failure is happening, some threshold must
be placed on the error counts. This threshold should be high enough that it is impossible to
reach under normal operating conditions, but not so high that it would take several months
to identify a fault. Judging from the error counts in Table 5.8, the bin count in the fault
free situation never exceeds a value of 10. In reality, this value might be a little tight,
and a value between 30 and 50 may be more ideal. Once an error count has exceeded the
pre-determined threshold, an alert can be raised that there is a problem with the bridge and
that it should be examined. To summarize how the simulations and classifications work,

Figure 5.16 consists of a flowchart of the algorithms used.

71



EVENT CLASSIFICATION 5.4 Classification Simulation

Generate Events
Select Lane  f——Pp! Add Noise

Select Amplitude

Select Event 1

oo

Yes

4

Determine Weight
Class

Select Next Event

A 4

Update Bin
Counts

No
Any Count Above
Threshold?

Yes Failure

Figure 5.16: Flowchart of Simulation and Classification Algorithm.

72



EvENT CLASSIFICATION 5.5 Finalized Classifier

5.5 Finalized Classifier

‘With the simulations complete and a theoretical classification system tested to be function-
ing, the classification system developed can be applied to the physical system from the Red
River-North Perimeter Bridge to see how well it functions outside of the idealized simulation

enviroment used for development.

5.5.1 Classifying Real Data with Simulation Parameters

The first attempt at classifying real data was to classify the data previously taken from
the Red River-North Perimeter Bridge for August 2279, 2007 with the classifier using the
weight classes from Table 5.6 and the parameters given in Table 5.7. This proved to be a
disastrous approach; the results are summarized in Table 5.10.

Table 5.10: Real Data Classification, Simulation Parameters.

Bin { Bin Name | Count Max Count
1 G12W1 52 52
2 G12W2 22 23
3 G12W3 111 112
4 G13w1 80 80
5 G13wW2 40 41
6 G13W3 165 167
7 G31W1 74 74
8 G31wW2 48 48
9 G31W3 352 353

10 G32W1 38 39
11 G32W2 24 24
12 G32W3 152 152
13 G34W1 62 62
14 G34wW2 34 35
15 G34W3 208 208
16 G21W1 76 76
17 G21W2 50 50
18 G21W3 394 394

73



EVENT CLASSIFICATION 5.5 Finalized Classifier

Table 5.10 makes the claim that all four girders are failing all at the same time; this is
clearly not the case as the Red River-North Perimeter Bridge has not failed.

5.5.2 Classifying Real Data with Real Parameters

Upon investigation of the poor results of the prior classification, the cause of the problem was
quickly identified. The simulation parameters, while comparable to parameters obtained by
analyzing the real data, were different enough that almost all events were flagged as errors.
As a result, new parameters and weight classes were selected based on the August 2279,
2007 data; these are summarized in Tables 5.11 and 5.12.

Table 5.11: Weight Class Boundaries, Real Data.

Lane | Class Identifier | Left Boundary | Right Boundary
Passing 3 10N 25N
Passing 2 25N 40N
Passing 1 40N o0
Normal 3 10N 20N
Normal 2 20N 30N
Normal 1 30N 00

The most notable difference between these parameters and the simulation parameters in
Table 5.10 is that ¢ is almost a full order of magnitude larger in most cases. This can be
attributed to the differences between the real data and the simulation data. The simulation
assumnes a, constant level of noise, that physical effects are not present, and that each vehicle
has the same shape of signature. When these assumptions are relaxed, the potential for
greater variance between events exists. In order to test the new parameters, data was taken
from the Red River-North Perimeter Bridge for August 23"¢, 2007. The results of classifying
these new events with the parameters in Table 5.12 are presented in Table 5.13, showing
data that is consistent with the results recorded in Table 5.8 and lead to the same threshold
that was discussed earlier in Section 5.4.10.3; that is, one between 30 and 50.

74



EVENT CLASSIFICATION

5.5 Finalized Classifier

Table 5.12: Classification Parameters, Real Data.

Failing Girder | Weight Class- I o
% 1 1.4147 | 0.0937
% 2 1.4295 | 0.1499
% 3 1.4970 | 0.2320
% 1 3.3110 | 0.6850
% 2 3.3528 | 0.9768
% 3 3.5177 | 1.2161
g% 1 2.3476 | 0.3840
g% 2 2.3137 | 0.6699
% 3 2.4015 | 0.7678
g% 1 1.3824 | 0.1055
g.g. 2 1.3540 | 0.1562
-g% 3 1.3886 | 0.2163
o 1 1.8730 | 0.1954
g% 2 1.8545 | 0.1816
% 3 1.8675 | 0.2297
-g_f 1 1.6912 | 0.1896
% 2 1.6863 | 0.2726
% 3 1.7069 | 0.2977

75



EvENT CLASSIFICATION 5.5 Finaolized Classifier

Table 5.13: Real Data Classification, Real Data Parameters.

Bin | Bin Name | Count | Max Count
1 Gi12wW1 0 3
2 G12W2 0 2
3 G12W3 0 3
4 G13W1 0 2
5 G13W2 0 2
6 G13W3 0 2
7 G31W1 0 5
8 G31W2 0 3
9 G31W3 0 2
10 G32W1 0 6
11 G32W2 0 6
12 G32W3 0 4
13 G34W1 0 5
14 G34W2 2 8
15 G34W3 1 4
16 G21W1 0 4
17 G21W2 0 3
18 G21W3 0 2

5.5.3 Sensor Failures vs Structﬁre Failures

The entirety of the discussion up to this point has stressed detecting structure failures.
However, in a realistic implementation, the structure is not the only point of failure in the
system. The measurement system can also fail, and a failure of the measurement system

should not conclude that a structure failure has occurred.

‘There are two types of potential sensor failures for the measurement system. The first type
of sensor failure is a non-fatal sensor failure. This type of failure is a short term anomaly,
one that the sensor will eventually correct. An example of this is a sudden jump in the
zero-offset, followed by a jump back down. For this category of sensor failure, the process
of keeping an error count will succeed in preventing the system from concluding that a

structure failure has occurred.

The second type of sensor failure is a complete and persistent failure, where something
is physically wrong with the sensor. Examples of complete failure are the strain gauge
becoming de-bonded from the girder, wire corrosion, or a power supply issue. These issues
are impossible to differentiate from a structure failure without some form of redundancy
in the system. Despite having two usable sensors per girder, a failure in the bridge is
only detectable in a girder height = girder height square located around a crack [19]; an

76



EVENT CLASSIFICATION 5.6 Finalized Classifier

Crack Detectable | Crack Not Detectable

Figure 5.17: Locations where a Cracking Fault is Detectable by Strain Sensors.

example is shown in Figure 5.17. Figure 5.17 shows a cracking fault in a girder, and the
area where a sensor would need to be located for this fault to appear in the strain values.
Any sensors located outside this area will not show any variations in strain values [19]. This
is an unfortunate situation since it removes any redundancy between sensors. Theoretically,
a sensor failure could be detected provided the behaviour is so anomalous that it cannot
possibly be caused by a slight crack in a girder. Examples of this would be strain readings
on the order of thousands of microstrain, or a large negative strain.

The system described in this report is not fully realized; as a result, a method to determine
fatal sensor failures was not implemented, but it would be a simple matter to place different
error cases in the classification system, if it is required. In reality, however, a fatal sensor
failure will require the sensor to be replaced; to replace a sensor, an individual must be
sent to the bridge. When a girder failure is seen, the system will conclude that the bridge
must be examined, thus having a fatal sensor failure also conclude that the bridge must be

examined may not be an unwanted consequence.

Numerous methods exist to automate the collection of parameters for the algorithm. These

are briefly discussed in Section 6.2.

77



Chapter 6

Conclusions

6.1 Conclusions

The algorithms developed in this project show exciting opportunities for the field of struc-
tural health monitoring. All three of these algorithms solve important problems that may
prevent effective automated monitoring. The algorithms designed, while focused on solving
specific problems encountered with the measurement system installed on the Red River-
North Perimeter Bridge, should be capable of performing well on any general system, due
to the fundamentals of the algorithms being model independent.

The preprocessing algorithm attempts to remove environmental fluctuations in recorded
strain measurements in situations where a model for the fluctuations cannot be found. The
algorithm shows that it is possible to remove unwanted effects without damaging the desired
information; this eliminates the need for prior knowledge about when the effects are present
and how they manifest themselves. It can also eliminate unexpected effects that were not

predicted, provided they match the profile of slow, general trending effects.

The event detection algorithm accurately removes events using dynamic thresholds based
on information present in the signal itself. This requires no pre-existing knowledge about
expected amplitudes of events or distributions of the background noise. The detection
algorithm succeeded in isolating events in the signal. While the detection rate is not 100%,
it is high enough that the missed events do not pose any problems with the remainder of

the project.

78



CONCLUSIONS 6.2 Future Work

The event classification algorithm successfully identified failure in the case where failure
was simulated by a decrease in the moment of inertia for a girder. A simulation was used to
show that a classifier based on a derivative of Bayesian classification is accurate and able to
detect when weakening occurs in the girders. While it is unrealistic to expect to have data
on how an arbitrary bridge responds when failing, it is possible to derive a set of expected
parameters for good operation, and monitor for deviations from these. The classification
algorithm uses an error count to ensure that isolated or short term anomalies in the sensing
network, or periods of larger than expected noise, do not cause an error on the structure
to be reported. Using an error count can be interpreted as waiting for a persistent error

condition to surface before reporting any problems.

The work presented in this project showed that, while using absolute peak values of the
strain measurements was not a good feature for classification, several features that were
immediately derivable from the peak values, the girder ratios, the weight class, and the

source lane, were capable of performing the task of classification.

In conclusion, the project shows that it is possible to take imperfect measurement data,
remove the unwanted effects and extract a classification feature, in this case, the event; both
of these are shown to work on real-world data. In addition, the project shows that a classifier
based on detecting anomalous behaviour can identify failure. This was demonstrated using
simulation, but could not be tested using real-world measurements as there was no data
available for the bridge in this study which represented a failure state.

6.2 Future Work

Despite the promise shown by this report, there is room to improve on the project. First
and foremost, a learning algorithm can be designed and implemented to allow the system
to determine automatically the proper parameters that it needs for classification, those
being the means and standard deviations for each girder ratio for a healthy structure. As
well, different classification schemes could be developed to try and complement the scheme
presented, with a goal of improving the classification rate. An example of this would be to
try and sort the events by vehicle type as well as weight. Work can also be undertaken in
an attempt at lowering the standard deviation measured for a healthy structure.

Because of the potential for seasonal drifting, it would be a worthy exercise to determine

the quality of the classifier when applied to a season that is not the training season, for

79



CONCLUSIONS 6.2 Future Work

example, classify winter data using a summer training set. If the results are unusable, a
possible solution would be to have two models for expected behaviour. One would cover
the summer data, and another could cover winter data, with the proper model being used

at specific times of the year.

In expanding on the knowledge of how the different girder ratios are expected to react,
discussed in Section 5.4.8.1, it may be possible to implement an algorithm that can interpret
error counts to determine the location of the failure. Using this information, it may also be
worth trying to find redundancy that allows for fatal sensor errors to be determined.

In addition to expanding the concepts developed in this project, the problems discussed
reveal ways that may improve the physical implementation of the system. A suggestion is
to move the entire measurement resistor bridge to the same environment, so that all four of
its components fluctuate identically with temperature. At the very least, the measurement

node should be taken out of the cabinet where the heater resides.

Another potential application of this project to the physical implementation is in decimating
data for storage. The event detector results in a bounding window for each event; it can be
assurried that any data that is not part of a window is therefore simply background noise
and contains no information worth storing. As a result, the amount of stored data could be
reduced by a considerable amount if the only samples stored are those that fall in an event

window.

The project also leads to a recommendation for proper monitoring of an entire structure.
Because a fault is detectable only if a sensor falls within a portion of the girder surrounding
the fault, a complete sensor network would need to have, at the very least, sensors placed
at appropriate separations across entire girders; recall that this separation would be the
girder height. It would also be beneficial to implement some sensor redundancy, which
would require this distance to be smaller; this spacing should be at most half of the girder
height.

80



References

[1] Manitoba Infrastructure and Transportation, Construction Drowings of Red River
Bridge on PTH-101, Correspondence, 2009.

[2] J. S. Wilson, ed., Sensor Technology Handbook. Massachusetts: Newnes, 2005.

(3] J. Pople, “Errors and uncertainties in strain measurements employing metal foil
gauges,” (Tavistock, Devon, UK), pp. 532 — 74, 1984.

[4] C. Tanaphatsiri, W. Jaikla, and M. Siripruchyanun, “A current-mode wheatstone
bridge employing only single do-cdta,” in Circuits and Systems, 2008. APCCAS 2008.
IEEE Asia Pacific Conference on, pp. 1494-1497, 30 2008-Dec. 3 2008.

[6] “Introduction to digital signal processing,” Tech. Rep. TN-517, Vishay Micro-
Measurements, Aug 2007.

[6] “Strain gage thermal output and gage factor variation with temperature,” Tech. Rep.
TN-504-1, Vishay Micro-Measurements, Aug 2007.

[7] M. Brauwers and F. Brouers, “Temperature and strain effect on electrical resistivity
of transition metal alloys: application to strain gauges,” Journal of Physics F: Metal
Physics, vol. 6, no. 7, pp. 1331-1339, 1976.

[8] B. Studyvin, R. Doty, and R. Repplinger, “Temperature effects on strain gages used
on aerospace nickel hydrogen batteries,” in Battery Conference on Applications and
Advances, 1999. The Fourteenth Annual, pp. 325-328, 1999.

[9] G. Rutherford, “Model-free bridge-based vehicle classification,” Master’s thesis, Uni-
versity of Manitoba, Winnipeg, Manitoba, Aug 2008.

81



References

[10] V. Fil’chikov, V, “Normalizing transducers of strain-gauge sensors with correction of
temperature sensors,” Telecommunications and Radio Engineering, vol. 49, no. 11,
pp. 92-97, 1995.

[11] J. Huang, “System engineering and data m anagement for structural health monitor-
ing,” Master’s thesis, Dalhousie University, Halifax, Nova Scotia, June 2007.

[12] S. Haykin and M. Moher, Introduction to Analog and Digital Communications. New
York: John Wiley & Sons, second ed., 2007.

[13] X. Luo, C. Peng, and X. Guo, “Using morphological filters to extract spiky transients
in eeg,” in Neural Interface and Control, 2005. Proceedings. 2005 First International
Conference on, pp. 72-74, May 2005.

[14] R. C. Gonzalez and R. E. Woods, Digital Image Processing. New Jersey: Prentice Hall,
second ed., 2002.

[15] P. Tadejko and W. Rakowski, “Mathematical morphology based ecg feature extraction
for the purpose of heartbeat classification,” in Computer Information Systems and
Industrial Management Applications, 2007. CISIM ’07. 6th International Conference
on, pp. 322-327, June 2007.

[16] M. Sedaaghi, “Direct implementation of open-closing in morphological filtering,” Elec-
tronics Letters, vol. 33, pp. 198-198, Jan 1997.

[17] P. Kersten, “Fuzzy order statistics and their application to fuzzy clustering,” Fuzzy
Systems, IEEE Transactions on, vol. 7, pp. 708-712, Dec 1999.

[18] Robert Bosch GmbH, CAN Specification, Version 2.0, Sept 1991.

[19] Dr. A. Mufti, Correspondence, 2009.

[20] Dr. D. Sidhu, Correspondence, 2009.

[21] A. Mufti et. al., “Load tests on north perimeter red river bridge.” First Draft, 2008.

[22] X. Jin, Q.-p. Zhong, and G.-s. Yang, “Stress damage failure analysis and prediction of
beams under pure bending loads,” Gong Cheng Li Xue/Engineering Mechanics, vol. 16,
no. 1, pp. 123 ~ 127, 1999. [Abstract].

[23] Dr. E. El-Salakawy, Correspondence, 2009.

82



References

[24] R. O. Duda, P. E. Hart, and D. G. Stork, Pattern Classification. New York: John
Wiley & Souns, second ed., 2001.

83



Appendix A

SECAN Parameters

This appendix contains a list of structural parameters to be used for modeling the Red
River-North Perimeter Bridge in SECAN, as supplied by Dr. D. Sidhu [20]. All distances

are in meters.

Al



SECAN PARAMETERS

e No. of Harmonics: 40

e No. of Girders: 5

o Span Length: 24

e B of Girder Material: 2e8
G of girder Material: 8e7

No. of Diaphragms: 4

No. of intermediate supports: 0

Girder Spacings, starting from left:
— 2.126
— 2,743
— 2.743
— 2.743

— 0.03767352
— 0.03387336
— 0.03387336
— 0.03387336
— 0.03456791
e Torsional inertia of girders, starting from left:
— 0.2099809e-4
— 0.1358832e-4
— 0.1358832e-4
— 0.1358832¢-4
— 0.1362817e-4
e Slab Thickness: 0.2
e I of Slab Material: 2.8e7
o G of Slab Material: 1.2e7

Equivalent Shear Area: 0

Moment of inertia of girders, starting from left:

A2



SECAN PARAMETERS

e B value of Diaphragms: 2e8

e Distance of Diaphragms from left abutment:

— 4.087
— 8.931
— 14.985
— 19.828
o I value of Diaphragms:
— 0.109881e-2
— 0.109881e-2
— 0.109881e-2
— 0.109881e-2

A3



Appendix B

Matlab Code

The following appendix contains the Matlab source files for the algorithms.

B.1
B.2
B.3
B4
B.5

Event Detection (Shell)
Preprocessing Algorithm
Event Detection

Event Parameter Detection

Event Classification (Simulation)

B2
B4
Bb5
B7
B9

B1



MATLAB CODE

B.1 Event Detection (Shell)

B.1 Event Detection (Shell)

function EventDetection(input_file, output_file)
outfile = char(output_file);

STDEV_COEFF = 0.6745;
PEAK_DISTANCE_THRESHOLD = 100;

FIRST_.TO_READ = 1; CURRENT_OFFSET = 0; READING_AMOUNT = 15000;

done = false;

dataFormat = *%f, %f, %, %E, %f, %f, %f, Uf, %f, 4f,
W, WE, hE, WE, UL, RE, UL, RE
FI = fopen(char(input_file),’r’);

incData = zeros(18,READING_AMOUNT) ;

peaks = ones(15,250000) .* Inf;
allData = ones(250000,3) .*x Inf;

totalEvents = 0;

while (“done)
if (FIRST_TO_READ == 1)
READING_AMOUNT = READING_AMOUNT * 2;
else

incData(:,1:READING_AMOUNT/2) = incData(:,READING_AMOUNT/2+

1 :READING_AMOUNT) ;

CURRENT_OFFSET = CURRENT_OFFSET + READING_AMOUNT/2;

end

for j = FIRST_TO_READ: (FIRST_TO_READ-1) + READING_AMOUNT/2

tempData = fgets(FI);

tempData = tempData(find(tempData==’,’,1)+2:length(tempData));

tempData = sscanf (tempData,dataFormat);
incData(:,j) = tempData;
if (feof (FI))
done = true;
break;
end
end
incData = incData(:,1:j);

if (FIRST_TO_READ == 1)
READING_AMOUNT = READING_AMOUNT/2;

B2



MaTLAB CODE B.1 Event Detection (Shell)

FIRST_TO_READ = FIRST_TO_READ + READING_AMOUNT/2;
currentPeak = zeros(1,5);
currentEnd = zeros(1,5);
currentStart = zeros(1,5);
end

[temp numElements] = size(incData);
clear temp;

[allMod,allSmoothed,dummyNoise] = Preprocessing(incData,numElements) ;

[totalEvents,peaks,allData,currentStart,currentEnd,currentPeak] =
EventDetector (CURRENT _OFFSET, STDEV_COEFF ,PEAK_DISTANCE_THRESHOLD,
READING_AMDUNT,done,dummyNoise,allSmoothed,allSmoothed,currentStart,
currentEnd, currentPeak, totalEvents,peaks,allData);

%Resets to help cascading

currentStart = currentStart - READING_AMOUNT/2;
currentStart (isinf (currentStart)) = 0;
currentStart (isnan(currentStart)) 0;

it

currentEnd = currentEnd - READING_AMOUNT/2;

currentPeak = max(currentPeak - READING_AMOUNT/2,0);
currentPeak (isinf (currentPeak)) = 0;
currentPeak (isnan(currentPeak)) 0;

end

save(outfile)
fclose(FI);

B3




MATLAB CODE B.2 Preprocessing Algorithm

B.2 Preprocessing Algorithm

function [allCleaned,allSmoothed,dummyNoise] = Preprocessing(incData,numElements)
%Performs the required preprocessing algorithms.

allOrig = zeros(15,numElements) ;
smallScaleFixed = zeros(15,numElements);

for n = 1:16
channel = incData(n+1,:);
allOrig(n,:) = channel;

v = ones(1,300);
closed = imclose(channel,y);
closed = imopen(closed,y);

opened = imopen(channel,y);
opened = imclose(opened,y);

smallScaleFixed(n,:) = (closed+opened)/2;

if (n == 16)
events = channel .* (channel > opened);
events(“events) = opened(~events);
events = events .* (events < closed);
events(“events) = closed(“events);
events = channel - events;

end

end

allCleaned = allOrig - smallScaleFixed -

repmat (median(allOrig-smallScaleFixed,2),1,numElements);
allSmoothed = zeros(15,numElements);
dummyNoise = allCleaned(16,:) - events;

for k = 1:16
allSmoothed(k,:) = GaussianSmooth(allCleaned(k,:),5,21,2);
end
end

B4



MATLAB CODE B.3 Fvent Detection

B.3 Event Detection

function [totalEvents,peaks,allData,currentStart,currentEnd,currentPeak] =
EventDetector(CURRENT“OFFSET,STDEV_COEFF,PEAK_DISTANCE_THRESHOLD,
READING_AMDUNT,done,dummyNoise,scanningSignal,peakValueSignal,currentStart,
currentEnd, currentPeak, totalEvents,peaks,allData)

allEnds = ones(100,5) .* Inf;
allStarts = ones(100,5) .* Inf;
allMaxes = ones(100,5) .* Inf;
allCurrMax = ones(100,5) .* Inf;
numEvents = 0;

currentMax = zeros(1,5);

THRESHOLD = 4 * STDEV_COEFF * std(dummyNoise);
eventDetected = 1;

while (eventDetected > O &% (dome || min(currentStart) <= READING_AMOUNT/2))
eventDetected = 0;
for channel = 1:5
channelFoundEvent = 0;
chan = scanningSignal(channel,:);
currMax = 0;

if (currentPeak(channel) == Q)
for j = max(currentEnd(channel)+1,1):length(chan)
if (chan(j) >= THRESHOLD && (currMax == O || chan(j)
> chan{currMax)))
currMax = j;
end

if (currMax > O && chan(j) < STDEV_COEFF*std(dummyNoise))
currentEnd(channel) = j;
currentPeak(channel) = currMax;
currentMax(channel) = chan(currMax);
eventDetected = 1;
channelFoundEvent = 1;

for k = currMax:-1:1
if (chan(k) < STDEV_COEFF#*std (dunmyNoise))
currentStart (channel) = k;
break;
end
end
break;
end

B5



MATLAB CODE B.8 Event Detection

end
else
if (currentPeak(channel) < Inf)
eventDetected = 1;
channelFoundEvent = 1;

end

end

if (channelFoundEvent == 0)
currentPeak (channel) = Inf;
currentStart (channel) = Ihf;

end

end
newPeak = min(currentPeak) ;

if ((done || min(currentStart) <= READING_AMOUNT/2) &&

length(find(isinf (currentPeak)==1)) < 5)

numEvents = numEvents + 1;

for channel = 1:5

if (abs(currentPeak(channel) - newPeak) < PEAK_DISTANCE_THRESHOLD)

allEnds (numEvents,channel) = currentEnd(channel);
allStarts(numEvents,channel) = currentStart{(channel);
allMaxes (numEvents,channel) = currentMax(channel);
allCurrMax (numEvents,channel) = currentPeak(channel);

currentPeak(channel) = 0;
else
allEnds (numEvents,channel) = -Inf;
allStarts (numEvents,channel) = Inf;
allMaxes (numEvents,channel) = -Inf;
allCurrMax (numEvents,channel) = -Inf;
end
end
end
end
[temp numElements] = size(peakValueSignal);
clear temp;

[totalEvents,peaks,allData] = EventParameterDetection(
CURRENT_OFFSET,numElements,numEvents,peakValueSignal,allMaxes,
allEnds,allStarts,totalEvents,peaks,allData);

end

B6



MATLAB CODE B.4 Bvent Parameter Detection

B.4 Event Parameter Detection

function [totalEvents,peaks,allDatal = EventParameterDetection (CURRENT_OFFSET,
numElements,numEvents,signal,allMaxes,allEnds,allStarts,
totalEvents,peaks,allData)

%Determines window and peak values

i = 1:numElements;

wind = ones(numEvents,numElements) ;
for eventNumber = 1:numEvents;
maxes = allMaxes(eventNumber,:);
ends = allEnds(eventNumber,:);
starts = allStarts(eventNumber,:);

peakChan = find(maxes==max(maxes));

starts = starts(max(1,peakChan-2):min(5,peakChan+2));
ends = ends(max(1,peakChan-2) :min(5,peakChan+2));

starts = starts(“isnan(starts));
starts = starts("isinf(starts));
ends = ends("isnan(ends));
ends = ends("isinf(ends));

MADstart = median(abs(starts - median(starts)));
MADend = median(abs(ends - median(ends)));

startDevs = (starts-median(starts))/MADstart;
endDevs = (ends-median(ends))/MADend;

for j = 1:length(starts)
if (abs(startDevs(j)) > 3.5)
starts(j) = inf;
end
if (abs(endDevs(j)) > 3.5)
ends(j) = -inf;
end
end

theStart = min(starts);
theEnd = max(ends);

wind(eventNumber,:) = ones(1,numElements) .* (i>=theStart) .* (i<=theEnd) ;
end

B7



MarLAB CODE B.4 Event Parameter Detection

b = totalEvents;
for j=1:15;
for k = b+il:b+numEvents
peaks(j,k) = max(signal(j,:).*wind(k-b,:));
allData(k,:) = [CURRENT_OFFSET find(wind(k-b,:)==1,1)
find(wind(k-b,:)==1, 1,’last’)];
end
end

totalEvents = totalEvents + numEvents;

end

B8



MATLAB CODE B.5 Event Classification (Simulation)

B.5 Event Classification (Simulation)

clear; close all;

fail = 0;
STD_COEFF = 2;
%define error bins
Gi2W = [1 2 31;
G13W = [4 5 6];
G31W = [7 8 91;

G32W = [10 11 123;
G34W = [13 14 15];
G21W = [16 17 18];

bins = zeros(1,18);
binMaxes = zeros(1,18);

means = zeros(1,18); stdevs = zeros(1,18);

%#Define classifier parameters

means (G12W(1)) = 1.4796; stdevs(G12W(1)) = 0.0127;
means(G12W(2)) = 1.4799; stdevs(G12W(2)) = 0.0169;
means(G12W(3)) = 1.4800; stdevs{(G12W(3)) = 0.0257;
means (G13W(1)) = 3.9829; stdevs(G13W(1)) = 0.0772;
means (G13W(2)) = 3.9760; stdevs(Gi3W(2)) = 0.1005;
means(G13W(3)) = 3.9564; stdevs(G13W(3)) = 0.1458;
means(G31W(1)) = 3.3392; stdevs(G31W(1)) = 0.0752;
means(G31W(2)) = 3.3275; stdevs(G31W(2)) = 0.0971;
means (G31W(3)) = 3.3031; stdevs(G31iW(3)) = 0.1394;
means (G32W(1)) = 1.2979; stdevs(G32W(1)) = 0.0143;
means (G32W(2)) = 1.2978; stdevs(G32W(2)) = 0.0189;
means (G32W(3)) = 1.2977; stdevs(G32W(3)) = 0.0286;
means (G34W(1)) = 2.0695; stdevs(G34W(1)) = 0.0318;
means (G34W(2)) = 2.0671; stdevs(G34W(2)) = 0.0420;
means (G34W(3)) = 2.0620; stdevs(G34W(3)) = 0.0616;
means (G21W(1)) = 2.5730; stdevs(G2iW(1)) = 0.0599;
means (G21W(2)) = 2.5642; stdevs(G21W(2)) = 0.0770;
means (G21W(3)) = 2.5462; stdevs(G21W(3)) = 0.1112;

%Generate Events
numEvents = 5000;
noise = 216.8;

PLcount
NLcount

zeros(1,3);
zeros(1,3);

B9



MatLAB CODE B.5 Event Classification (Simulation)

events = EventGenerator (numEvents,3,100);
events = GaussianSmooth(events,5,21,2);

for i=1:numEvents :
peaks = squeeze(max(events(1:5,:,1i),[1,2)); peaks(5:-1:1) = peaks(1:5);
peaks = peaks’;

lane = find(peaks==max(peaks)); lane = (lane-1)/2 + 1;
maxPeak = max(peaks);
if (lane == 1)
%Determine weight class 1, 2 or 3
if (maxPeak > 10*noise && maxPeak <= 30*noise)
w = 3;
elseif (maxPeak > 30#*noise && maxPeak <= 50%noise)
w o= 2;
elseif (maxPeak > 50%noise)
w=1;
else

if (w>0)
G1G2
G1G3

peaks (1) /peaks(2);
peaks (1) /peaks(3);

PLcount (w) = PLcount(w)+1;

if (abs(G1G2 - means(G12W(w))) > STD_COEFF*stdevs(G12W(w)))
bins(G12W(w)) = bins(G12W(w))+1;
binMaxes(G12W(w)) = max(binMaxes(G12W(w)),bins(G12W(w)));
else
bins(G12W(w)) = max(0,bins(G12W(w))-1);
end
if (abs(G1G3 - means(G13W(w))) > STD_COEFF*stdevs (G13W(w)))
bins(G13W(w)) = bins(G13W(w))+1;
binMaxes(G13W(w)) = max(binMaxes(G13W(w)),bins(G13W(w)));
else
bins(G13W(w)) = max(0,bins(G13W(w))-1);
end
else
fail = fail+l;
end
elseif (lane == 2)
%#Determine weight class 1, 2 or 3
if (maxPeak > 10*noise && maxPeak <= 28+%noise)
w = 3;
elseif (maxPeak > 28*noise && maxPeak <= 38*noise)

B10



MatLaB CODE B.5 Bvent Classification (Simulation)

w = 2;

elseif (maxPeak > 38#noise)
w=1;

else

if (w>0)

NLcount{w) = NLcount(w)+1;

G3G1 = peaks(3)/peaks(1);
G3G2 = peaks(3)/peaks(2);
G3G4 = peaks(3)/peaks(4);
G2G1 = peaks(2)/peaks(1);

if (abs(G3G1 - means(G31W(w))) > STD_COEFF*stdevs(G31W(w)))
bins(G31W(w)) = bins(G31W(w))+1;
binMaxes (G31W(w)) = max(binMaxes(G31W(w)),bins(G31W(w)));
else
bins(G31W(w)) = max(0,bins(G31W(w))-1);
end
if (abs(G3G2 - means(G32W(w))) > STD_COEFF*stdevs(G32W(w)))
bins(G32W(w)) = bins(G32W(w))+1;
binMaxes(G32W(w)) = max(binMaxes(G32W(w)),bins(G32W(w)));
else
bins(G32W(w)) = max(0,bins(G32W(w))-1);
end
if (abs(G3G4 - means(G34W(w))) > STD_COEFF*stdevs(G34W(w)))
bins(G34W(w)) = bins(G34W(w))+1;
binMaxes (G34W(w)) = max(binMaxes(G34W(w)),bins(G34W(w)));
else
bins(G34W(w)) = max(0,bins(G34W(w))-1);
end
if (abs(G2G1 - means(G21W(w))) > STD_COEFF*stdevs (G21W(w)))
bins(G21W(w)) = bins(G2IW(w))+1;
binMaxes(G21W(w)) = max(binMaxes(G21W(w)),bins(G21W(w)));
else
bins(G21W(w)) = max(0,bins(G21W(w))-1);

end
else
fail = fail+l;
end
else
display([’Error with lane = ’ num2str(lame)]);
end '
end

B11



