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Abstract

When wireless decision-making entities have complete and global information, the

network control problems are frequently addressed in the model-based paradigm.

However, due to the practical limitation of information incompleteness/locality, di-

rectly applying the model-based solutions will face difficulties since a model of the

network dynamics may even not be available in advance, or in most cases its details

may be inaccurate or not instantaneously known. Thus, wireless decision-making

entities may face a black-box network control problem and the model-based network

management mechanisms will be no longer applicable. As a result, the method of

controlling-by-learning without the need for the a priori network model, namely, the

model-free learning, has been considered as one promising implementation approach

to wireless networks. In this thesis, the applications of the model-free learning in three

networks with different characteristics and objectives are investigated, they are an op-

portunistic spectrum access (OSA) network with multiple heterogeneous secondary

users (SUs) and primary channels, a cloudlet-based mobile cloud computing (MCC)

network with multi-mobile-device computation offloading in a multi-channel wireless

contention environment, and an energy harvesting based network comprising a single

macro-cell base station (MBS) with grid power supply and multiple small-cells with

renewable energy supply. Effective and efficient model-free learning mechanisms in

these networks are aimed to be designed. In particular, i) a new Stochastic Learning

Automata (SLA) based algorithm, called N-SLA, is designed for the OSA network to
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adapt each SU’s spectrum access strategy in an unknown and dynamic environment so

as to converge towards a Nash Equilibrium (NE) in a fully distributed way, ii) a fully

distributed computation offloading (FDCO) algorithm based on machine learning

technology is proposed for the cloudlet-based MCC network so that each mobile user

can make the offloading decisions independently and adaptively, and a pure-strategy

NE can be finally achieved, and iii) a Post-Decision State based Approximate Re-

inforcement Learning (PDS-ARL) algorithm is proposed for the energy harvesting

based network, which learns on-the-fly the optimal context-aware proactive caching

policy with a high learning efficiency, to fully reap the benefits of energy harvesting.

Both analytical and numerical results validate the efficacy of the proposed algorithms.

Keywords: Cognitive radio networks, opportunistic spectrum access, Nash Equilib-

rium, ordinal potential games, stochastic learning automata, cloudlet-based mobile

cloud computing, computation offloading, exact potential game, machine learning,

energy harvesting, proactive caching, post-decision state, approximate reinforcement

learning, Markov decision process.
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Chapter 1

Introduction

Wireless networks operate within a dynamic environment, which entails many

time-varying characteristics such as variable link qualities, dynamic spectrum usage,

and changing traffic patterns [1]. The changing nature of these characteristics will

significantly affect network performance, and hence has a profound impact on the

efficient network control. However, in many practical scenarios, the complexity of

network dynamics makes it difficult to determine the network evolution model in

advance. As a result, without knowing the accurate network model in advance, the

wireless decision-making entities may face a black-box network control problem and

the traditional model-based network control mechanisms will be no longer applicable.

Thus, the methods of model-free learning without the need for the a priori network

model are considered promising and more appropriate [2–4].

Many existing studies on model-free learning in wireless networks focused on ra-

dio environment awareness in order to enhance spectrum efficiency. This leads to the

concept of Cognitive Radio (CR) networks [5], which are featured by a novel physical
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layer and medium access control (PHY-MAC) architecture, namely, spectrum sharing

between the licensed/primary networks and the unlicensed/secondary networks, for

opportunistic spectrum access based on the detection of spectrum holes [6]. Specifi-

cally, in CR networks, a secondary network relies on spectrum cognition modules to

make proper decisions for seamless spectrum access without interfering the primary

transmissions. For this category of works in the literature, “learning” is a set of tech-

niques for feature classification of primary signal identification [7]. For an overview

of the relevant techniques, the readers may refer to recent survey works in [8–10].

In addition to being aware of the environment, learning is also necessary for the

efficient adaptation of the wireless networks to their environment with unknown and

time-varying characteristics. Specifically, due to the incomplete information and

the complex interactions among the transmit parameters and policies (e.g., trans-

mit power, coding scheme, modulation scheme, communication protocol, etc.) and

their impacts on the environment, the precise effects of the network inputs, i.e., the

adopted transmission strategies, on the network outputs, i.e., the achieved various

network performance such as data rates and delay, is unavailable. In this case, the

decision-making entities not only need to dynamically characterize their network situ-

ations, but also have to accordingly infer the proper transmission strategies for better

adaptation to the environment. Since learning enables the decision-making entities

to adapt their behaviors based on the reinforcement from their interaction with the

environment and build their understanding of the environment from scratch through

trial-and-error, it has been considered as one key implementation approach to adap-

tive, self-organized network control in wireless networks [11, 12]. In the context of
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Figure 1.1: Cognition cycle of a single decision-making entity [13]

adaptive control, controlling-by-learning in wireless networks is usually described by

the cognition-decision paradigm as shown in Fig. 1.1 [13]. This paradigm describes

the learning-based strategy-taking process of a single decision-making entity from a

high-level perspective and interprets it as a cognition cycle to present the information

flow from environment cognition to the final network control decision. Specifically,

the single decision-making entity observes its environment by parsing incoming infor-

mation streams to infer the communication context. Then, the entity orients itself.

Normally, the incoming network message would be dealt with by generating plans.

The “Decide” phase selects among the candidate plans. “Acting” initiates the selected

plan. “Learning” is a function of observations and decisions, which directs the entity’s

behaviour.
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1.1 Overview of Model-Free Learning Techniques on

Network Adaptive Control

In the literature, the existing learning algorithms on network adaptive control are

generally classified as either centralized or decentralized. In a centralized scenario,

there exists a single decision-making entity, also called as a single agent, which takes

charge of the whole network control but with limited ability of network modeling or

environment observation. The objective is to design an efficient centralized learning

algorithm for the single entity to adapt to the unknown and time-varying environment

by properly and adaptively configuring the transmission parameters. In contrast,

the problem becomes more complicated in a decentralized scenario, where multiple

distributed decision-making entities/agents exist. In this scenario, each agent not

only has to adapt to the environment, but also has to coordinate its strategy with

others in the network, based on only a limited amount of information exchange among

them. Furthermore, how to guarantee the network convergence under the condition

of interest conflicts among these agents creates even more challenges.

1.1.1 Centralized Learning Techniques

In a centralized scenario, if the agent-environment interaction forms the Markov

Decision Process (MDP) [14], Reinforcement Learning (RL) algorithm [15–17], which

was proposed by Watkins in 1989 [18] to solve the MDP problem without knowledge

of the transition probabilities, can be utilized to obtain the optimal solution. RL

is a technique that permits an agent to modify its behavior by interacting with its
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Figure 1.2: The reinforcement learning cycle [7]: At the beginning, the agent receives

an observation of the current state and the accrued reward, based on which, the agent

updates its policy, and then selects a certain action according to the updated policy.

environment, and the only source of knowledge is the feedback the agent receives from

its environment after executing an action. The feedback can be a positive (reward)

or negative (cost) quantity, telling how good or bad an action is. The objective

of the agent is to find the proper stationary policy that probabilistically maps the

environment state to action so that the accumulated long-term utility of the agent is

optimized. In Fig. 1.2 [7,19], an RL-based cognition cycle for an agent is illustrated.
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In time epoch t, the learning agent receives an observation ot of the state st. The

observation is accompanied by a delayed reward rt(st−1, at−1) representing the reward

received at time t resulting from taking action at−1 in state st−1 at time t − 1. The

learning agent uses the current observation ot and the past experience such as the

delayed reward rt(st−1, at−1) to compute the action at that should be taken at time

t. The action at results in a state transition from st to st+1 and a delayed reward

rt+1(st, at). Thus, the learning agent is not passive and does not only observe the

outcomes from the environment, but also affects the environment via its actions such

that it might be able to drive the environment to a desired state that brings the

highest reward to it. It has been demonstrated that the RL algorithm can converge

to the optimal policy when applied to single-agent MDP models [15, 18].

In the literature, RL algorithms have been mostly applied into CR networks for

determining the spectrum sensing and access policies. For example, in [20], by leverag-

ing the model-free RL algorithm, a novel spectrum sensing strategy for a CR network

with a single SU and multiple licensed channels was proposed, aiming to determine

the best channel to sense so as to reduce the sensing time overhead and further im-

prove the SU’s achievable throughput. An RL-based scheme, which enabled effective

OSA to improve the efficiency of spectrum utilization with no prior knowledge of the

environment’s characteristics and dynamics, was proposed in [21]. The dynamic load-

balancing spectrum decision for a CR network that dynamically distributed packets

from SUs to different available primary channels was studied in [22], where an RL

algorithm was applied to find the minimum delay policy when the traffic and channel

characteristics were unknown. In [23], a two-stage RL approach was proposed to not
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only select a channel for data transmission, but also to predict how long the channel

would remain unoccupied so that the time spent on channel sensing could be mini-

mized. Macaluso et al. in [24] further explored the question of when RL algorithm

improved the performance of opportunistic channel selection by characterizing the

primary user (PU) activity using the concept of Lempel-Ziv complexity, and showed

that RL was beneficial only for some levels of PU activity and complexity.

While RL algorithms can lead to optimal policies for MDP problems, their per-

formance in non-Markovian environments remains questionable [25, 26]. Hence, the

authors in [25–27] proposed the policy-search approach as an alternative method

for non-Markovian learning tasks. Policy-search algorithms directly look for optimal

policies in the policy space itself, without having to estimate the actual states of the

systems [25, 26]. In particular, by adopting policy-gradient algorithms, the policy

vector can be updated to reach an optimal solution (or a local optimum) in non-

Markovian environments. Policy-gradient algorithms have shown promising results

in robotics applications [28, 29] .

1.1.2 Decentralized Learning Techniques

In decentralized scenarios, according to the degree of coupling among the dis-

tributed agents, learning techniques are built upon either loosely coupled multi-agent

systems or game based multi-agent systems.

When considering the learning mechanism in a multi-agent system, it is natural

to simply adopt the standard single-agent learning algorithms by assuming that each

agent is an independent learner with a local utility function. In doing so, the activities
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of the other agents are treated as part of a stationary environment and the learning

agents update their policies without considering their interactions with other agents.

Since multi-agent learning based on single-agent learning requires the joint learning

process to be decomposed into local ones, individual agent behaviors are relatively

disjoint, and the agents are able to ignore the information raised by the interactions

with each other. This is the reason for us to call it as a “loosely coupled multi-

agent system”. This approach enjoys popularity especially within the studies in the

cooperative decision-making domain [30,31]. Its typical applications can be found in

modeling the hunter-prey systems [32] and team coordination [33].

However, it is worth pointing out that for most multi-agent systems, convergence

of single-agent learning based algorithms is not guaranteed. Furthermore, even when

convergence can be reached, it usually takes a significant amount of time for merely

determining switching between one pair of actions [4]. As a result, most of the

practical single-agent learning based mechanisms are limited in the special scenarios

such as the fully-cooperative multi-agent systems or two-agent multi-agent systems

[4].

To better address the problems raised by agent interactions in multi-agent systems,

the decentralized network control is always modelled as games [34]. One important

reason for adopting game theoretic models in multi-agent systems lies in the require-

ments that decisions are to be made in a distributed manner with the limited ability

of both information acquisition and action coordination. This may be either due to

the overwhelming dimension of the state-action space as the number of agents grows,

or due to the overhead for information exchange among agents. In the game-based
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decision-making model, the individual rationality property of the agents leads to the

concept of the best response. The best response of an agent is defined as the lo-

cal strategy under which the local payoff is not worse than that under any other

strategies, given the joint adversary strategies. In the context of games, the goal of

learning now becomes finding the strategy-updating rules for converging to a specific

equilibrium (such as NE).

When the network evolution is not subject to a stochastic environment, most of the

network control problems that require considering the interactions among distributed

agents can be formulated as repeated games [35]. In contrast to the MDP-based

learning mechanisms that heavily depend on value iteration, policy-search now plays

an important role in deriving the learning rules for repeated games. In the literature,

there are four prototypical learning schemes that repeated games are based on, in-

cluding (i) fictitious play (FP), (ii) gradient play (GP), (iii) learning automata (LA),

and (iv) no-regret learning. The basic prerequisite of FP and GP is that the agents

are willing to reveal their action information to the others after each round of play, so

that each agent can track the frequency of action selection by the other agents [36].

In this sense, FP and GP are frequently considered as model-dependent learning

mechanisms since they try to build the model of the opponents’ joint policies from

accumulated experience. However, compared with other model-based, non-learning

mechanisms such as dynamic programming (DP) for MDPs [14], FP and GP do not

need any a priori knowledge of the network or other agents. Therefore, as long as

the learning agents are able to observe the actions of the rival agents or afford the

overhead for action information exchange, FP and GP can be employed as the basic
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solutions for many resource management games in wireless networks [36–40]. In con-

trast, LA and no-regret learning are featured by the process of action selection using

only local information, without action information exchange among agents. Most of

the LA based and no-regret learning based schemes were used to address the problem

of channel contention in CR networks, which can be found in [41–46], where LA were

employed to obtain Nash Equilibrium (NE) policies [41–43], while no-regret learning

were widely applied for learning the Correlated Equilibrium (CE) [44–46].

When the network evolution is subject to a stochastic environment, repeated

games are then extended into stochastic games (SG) [47], in which the payoff of

each agent at each round of the game is also dependent on the state variable, whose

evolution is influenced by the joint actions of all agents. Compared with repeated

games, SG is considered as a more practical tool for modeling the agent interaction

in a stochastic wireless environment, where the elements of the wireless environment

(e.g., channel states, buffer states and collision states) evolve stochastically and are

influenced by the transmission strategies of each agent. In the context of SGs, learn-

ing schemes are mainly referred to the value iteration based and the conjecture based

algorithms. Value iteration based learning algorithms can be considered as a combi-

nation of a matrix game solver and a value iteration based state value learner, aiming

to find a specific equilibrium (NE or CE) of the SG [48–51]. However, for both the

NE based and the CE based value iteration learning algorithms, since it is necessary

for the SG to be of complete information in order to immediately obtain the NE/CE

of the matrix game, it is required that the learning agents should keep track of the

entire Q-table from all the other agents at each state. By contrast, in the condition
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without knowing what the strategies of the other agents are, or what their payoff

functions are, the concept of “conjecture” [52] about one agent’s opponent policies is

introduced in the conjecture based learning algorithms [53–55]. Compared with the

standard value iteration based learning mechanism, the Q-table in conjecture based

learning algorithms is constructed with only local states and actions. Hence, to ad-

dress the unaffordable transmission overhead resulting from information exchanging,

the policy conjecture can be implemented to approximately learn the matrix game

equilibrium strategy and the Q-table of the SG.

1.2 Motivation and Objectives

In the literature, most of the learning applications in wireless networks are limited

to CR networks. The main reason is that CR networks have been widely recognized as

intelligent wireless communication networks. In the framework of CR networks, the

abilities of being aware of the ongoing Radio Frequency (RF) activities in surround-

ing environment and learning from the sensed observation to adapt to the unknown

and time-varying environment are typically emphasized. However, there still exist

some open issues that are yet to be addressed in the area of learning for distributed

spectrum access in CR networks. For example, the existing works mainly focused

on situations with homogeneous SUs and uniform MAC protocols, which makes it

possible to achieve convergence to NEs autonomously by using the standard SLA [56]

algorithm. Thus, learning algorithm design for more general situations with heteroge-

neous SUs needs to be developed. In addition, with the development of advanced ma-

chine learning techniques and the increase of demand on adaptive and self-organized
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network control in wireless networks, learning techniques are expected to be applied

to more and more wireless networks. Actually, learning becomes necessary in scenar-

ios where i) the network evolution mathematical model can not be built accurately

due to the unknown or complicated environment dynamics, or ii) each user has to

optimize its own behaviour without the accurate behaviour model of other users due

to the unaffordable overhead of information exchange. Since different networks have

different characteristics, the existing learning algorithms for CR networks may not be

applicable to other different networks. Thus, specialized learning algorithm designs

for other different wireless networks need to be developed.

Motivated by all above, in this thesis, learning applications are investigated in

three different networks: an OSA network with multiple heterogeneous SUs and pri-

mary channels, a cloudlet-based MCC network with multi-mobile-device computa-

tion offloading in a multi-channel wireless contention environment, and an energy

harvesting based network comprising a single MBS with grid power supply and mul-

tiple small-cells with renewable energy supply. The main objective of this thesis is

to design effective and efficient learning algorithms for the three wireless networks.

These learning designs are based on the distinct characteristics of the corresponding

networks.

1.2.1 An OSA network

In CR networks, autonomous learning algorithms are desired in order to enable

all CR nodes to learn on their own the unknown RF environment and to optimize

their behaviours such as spectrum access independently and adaptively. To achieve
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this, SLA approach has been widely applied. For example, in [57], Zandi et al. pro-

posed a distributed adaptive learning and access policy for SUs, where the channel

selection and access could effectively adapt to a wide range of traffic load patterns

in the primary network, and could converge towards a pure strategy NE without any

information exchange. In [58], Xu et al. studied the problem of multi-user sequen-

tial channel sensing and access in dynamic cognitive radio networks, and proposed a

distributed stochastic learning algorithm to cope with the uncertain, dynamic, and

incomplete information constraints. Both [57] and [58] focused on the scenario where

the number of primary channels was no less than the number of SUs. Such scenario

leaded to a deterministic transmission, i.e., the transmission probability for each SU

was one. In [59–62], the scenario where the number of SUs was larger than the num-

ber of primary channels was considered. Wu et al. in [59] studied the problem of

distributed channel selection for interference mitigation in a time-varying radio en-

vironment without information exchange. Zheng et al. in [60] investigated a more

general and practical system model where the users’ activities were dynamically vari-

able, and designed a low-complexity fully distributed no-regret learning algorithm

for channel adaptation. Nevertheless, these studies focused on minimizing the experi-

enced interference in the physical layer only, and ignored the consideration of multiple

access control mechanisms at higher layers. In [61,62], authors employed the uniform

MAC protocol to coordinate transmissions among SUs that tried to access the same

idle channel.

Unlike all these existing works that mainly focused on homogeneous SUs and

uniform MAC protocols, a more general scenario with heterogeneous SUs is considered
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here. Specifically, in the OSA network, distributed channel selection is considered by

jointly considering the following aspects: (1) the availability of spectrum holes are

time-varying and its statistics are unknown to SUs; (2) there is no central controller

and no information exchange among SUs; (3) each SU is allowed to opportunistically

occupy the idle channel with a probability, and in general, such probabilities for

different SUs are different, depending on their individual service requirements; and

(4) the interests of SUs are conflicting since each SU tries to selfishly maximize its

own expected throughput. I am trying to answer the fundamental questions that (1)

without channel statistics, how could a SU choose a channel with high availability to

improve its chance for access? (2) without a central controller and any information

exchange, how could a SU effectively resolve collisions and achieve self-coordination

for channel access?

1.2.2 A Cloudlet-based MCC network

Mobile devices, such as smartphones, tablets, and notebooks, are increasingly

penetrating our daily lives as convenient tools for communication, entertainment,

business, social networking, etc. With such enormous popularity, users expect to run

desktop-level applications, such as interactive gaming, virtual reality, and natural lan-

guage processing, on mobile devices [63, 64]. However, these emerging mobile appli-

cations typically require intensive computation and high energy consumption [65,66],

which does not match the limited computation capabilities and battery power on mo-

bile devices. To address these challenges, a new architecture, known as MCC [67], was

emerged as a promising approach to broaden the capability of mobile devices by mi-
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grating part or all of computational tasks from mobile devices to infrastructure-based

cloud servers, which ordinarily have powerful computing capability, high computation

power, and huge storage.

However, since the infrastructure-based cloud servers are located centrally in the

core network and ordinarily far away from the mobile users/devices, some major ob-

stacles exist that limit an effective deployment of MCC strategies: i) the extra trans-

mission energy cost at mobile devices, and ii) the long latency experienced through

a wide area network (WAN). In fact, in macro-cellular networks, the transmit power

necessary for cell edge users to access a remote cloud might null all potential bene-

fits coming from offloading [68]. Moreover, for latency-sensitive mobile applications,

such as augmented reality, online games, and speech recognition, the user Quality of

Experience (QoE) may be greatly degraded due to high latency introduced by WAN.

To tackle these challenges, the cloudlet-based MCC network was proposed recently

to better support latency-sensitive and resource-intensive mobile applications [69,70].

Specifically, in the cloudlet-based MCC framework, the mobile devices can speed

up their mobile application executions by offloading their computation tasks to the

nearby resource-rich computing servers/clusters via one-hop wireless access, rather

than relying on a remote cloud [71].

The cloudlet-based MCC networks have attracted significant attention in recent

years. Many existing works (e.g. [72–74]) optimized offloading strategies in a single-

mobile-device scenario, while only a few works (e.g. [68, 75,76]) addressed the multi-

mobile-device computation offloading problem. Moreover, under the setting of multi-

ple mobile devices, most existing works adopted centralized optimization for managing
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both radio and computing resource allocations. However, since the complete infor-

mation is required for centralized optimization, all devices need to report their local

information to the central controller, which results in very high network overhead.

In addition, the centralized optimization problem is commonly complex, and leads to

some kind of heuristic solutions. What’s more, since the mobile devices are owned

by different individuals who may act according to their own interests, they may not

have the incentive to follow the centralized optimal solution. All of these make the de-

sign of an efficient distributed multi-mobile-device computation offloading mechanism

imperative.

Motivated by the aforementioned discussions, the design of an efficient distributed

multi-mobile-device computation offloading algorithm for a cloudlet-based MCC net-

work is studied. In such a network, each mobile device can make its decision indepen-

dently, based on the execution cost in terms of both energy consumption and time

cost. However, under multi-channel setting, it is critical to achieve efficient wireless

access coordination among multiple mobile devices. Otherwise, if too many mobile

devices choose the same wireless channel for offloading simultaneously, severe colli-

sions may happen and the achievable average transmission rate for each mobile device

can be significantly reduced. This results in very low energy efficiency and very long

transmission time. Therefore, to achieve an efficient computation offloading mech-

anism in a distributed cloudlet-based MCC network, two key challenges need to be

carefully tackled: 1) How does each mobile device make a decision independently

between the local computing and the cloud computing? 2) How does a mobile de-

vice choose a proper channel in order to achieve a high transmission rate without
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information exchange with other devices?

1.2.3 An Energy Harvesting based network

Resulted from rapid growth of wireless multimedia traffic, enormous energy con-

sumption of wireless communication networks has become one of the major concerns

for future 5G networks. At the same time, providing stable grid power supply may

be very costly or even infeasible in some remote or hazardous locations [77], and

grid-tied servers may violate environmental quality regulations in rural areas that are

ecologically sensitive [78, 79]. In view of the soaring electricity prices as well as the

significant carbon footprint of grid power, off-grid renewable energy, harvested from

ambient vibrations, heat, wind, or solar radiation, has been embraced as a major or

even the sole power supply for some small networks, thanks to the recent advance in

energy harvesting techniques [80, 81].

Here, an energy harvesting based network consisting of a single MBS with grid

power supply and multiple small-cells with renewable energy supply is considered.

When an user request is denied by its SBS, it needs to be served by the MBS instead,

which typically consumes more energy and also increases CO2 emissions. Thus, for

both energy conservation and environmental protection, it is necessary to maximize

the service ratio at the SBSs. However, due to the randomness of the renewable energy

generation and the limitation on the battery capacity, energy shortage or waste will

occur at the SBSs when the traffic patten mismatches the energy harvesting process,

which makes it challenging to fully reap the benefits of energy harvesting.

In the literature, there have been extensive studies on this mismatching issue
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[82–84]. However, in most of these works, the traffic pattern was adjusted through

postponing the early demands, which may degrade their delay performance. To avoid

such performance degradation, proactive caching was introduced in energy harvesting

based networks [85]. Specifically, when the harvested energy is sufficient, contents

can be proactively pushed to users before their actual demands, so that the energy

waste due to the battery overflow can be avoided. Later, the content requests can

be satisfied by users’ local storage. Obviously, the benefits of proactive caching are

i) transferring the harvested energy into the future and ii) enhancing user experience

through achieving zero delay.

In past years, proactive caching has received an increasing amount of atten-

tion [86–91]. However, most of these existing works considered stable grid power

supply and focused on designing low-rate transmission strategy for power saving,

which can not be directly applied to energy harvesting based networks. To apply

proactive caching in energy harvesting based networks, the following issues have to

be addressed: i) both the random energy generation and the limited battery capacity

have to be considered, ii) proactive caching decisions should jointly consider the con-

tent popularity distribution and the dynamic battery status, and iii) the objective is

to match random energy arrivals with random user requests over time.

Motivated by all above, the proactive caching design in the energy harvesting

based network is investigated. However, designing an effective proactive caching

policy is very challenging due to the following reasons:

• In order to match random energy arrivals with random user requests for fully

reaping the benefits of energy harvesting, the stochastic models for both random
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processes should be known a priori. However, due to the high unpredictability

of renewable energy, it is difficult, if not impossible, to obtain the stochastic

model of energy harvesting process.

• To make proactive caching decisions, the battery states under which the proac-

tive caching action should be taken need to be determined, and which contents

should be proactively cached at which users also has to be determined. Un-

fortunately, without the stochastic model of energy harvesting process, it is

difficult to make efficient proactive caching decision based on the instantaneous

battery status only. Besides, since contents may only be interesting to users for

a finite period of time, and the content popularity distribution may change over

time, it is also difficult to make efficient proactive caching decisions on which

contents should be proactively cached at which users according to the instanta-

neous content popularity distribution only. Moreover, different users may have

different content preferences based on their own contexts, e.g., age, gender, and

personality, which further complicates proactive caching by increasing both the

state and action dimensionalities significantly.

• Since complete stochastic information about network dynamics is not available,

offline optimization algorithms (such as DP [14]) become infeasible, and online

approaches are preferred. However, due to the “curse of dimensionality” (the

joint system state including battery status, content life span, content popularity

distribution at each user, and the content lists cached at each user), the standard

tabular based online learning algorithms (such as R-learning [92, 93]) become

inapplicable.
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Therefore, designing an online learning algorithm which learns the optimal context-

aware proactive caching policy on-the-fly with a high learning efficiency is important.

1.3 Summary of Contributions

The main contributions are summarized as follows.

1) Distributed opportunistic spectrum access in an unknown and dynamic environ-

ment: A stochastic learning approach (this work has been published in the IEEE

Transactions on Vehicular Technology).

• The distributed throughput maximization problem in the OSA network is first

formulated as a noncooperative game. Then, the game is proved to be an ordi-

nal potential game [94] by carefully constructing an ordinal potential function.

According to the property of the ordinal potential game, the formulated game

has at least one pure-strategy NE.

• To derive the NEs, a Best Response (BR) [95–97] based algorithm is first pro-

posed, which can guarantee the convergence towards NEs within finite time,

based on the assumptions that there exists a coordinator for SUs to work in a

round-robin fashion and a common control channel for SUs to exchange their

information.

• SLA is then introduced into the formulated game to adapt decision-making in an

unknown and dynamic environment. To investigate the convergence property of

the SLA in ordinal potential games, which has not been addressed in literature, a

weighted potential game is defined, which is proved to have the same NE set with
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the formulated ordinal potential game. After that, a new SLA based algorithm

is proposed, called N-SLA, to achieve the NEs of the weighted potential game,

or equivalently the NEs of the formulated ordinal potential game.

• Simulation results are provided to demonstrate the convergence of both the BR

based and the SLA based algorithms, and illustrate the efficiency of them in

terms of sum log expected throughput.

2) Distributed multi-mobile-device computation offloading for cloudlet-based mobile

cloud computing: A game-theoretic machine learning approach (this work has been

published in the IEEE Transactions on Vehicular Technology).

• The multi-mobile-device computation offloading decision making problem is for-

mulated as a noncooperative game, which takes into account both communi-

cation and computation costs of computation offloading in the cloudlet-based

MCC network. By carefully constructing an exact potential function, the for-

mulated game is then proved to be an exact potential game [98]. According to

the property of the exact potential game, the formulated game has at least one

pure-strategy NE.

• To achieve the NEs in a fully distributed way, the machine learning technology

is introduced to adapt each mobile device’s decision-making in an unknown and

dynamic environment. An FDCO algorithm is proposed, which can converge

towards a NE without any information exchange among mobile devices.

• The NE solutions achieved by the proposed FDCO algorithm are further quan-

tified in terms of the number of beneficial cloudlet computing mobile devices
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and the network-wide execution cost. The proposed FDCO algorithm is analyt-

ically shown to maximize the number of beneficial cloudlet computing mobile

devices without incurring higher network-wide execution cost than computing

locally by all mobile devices.

3) Learning based online context-aware proactive caching for an energy harvesting

based network (this work has been submitted to the IEEE Transactions on Wireless

Communications).

• A context-aware proactive caching problem in an energy harvesting based net-

work is presented. By taking into account various unique aspects of the consid-

ered network, the original problem is formulated as an MDP framework.

• To conquer both incomplete stochastic information and “curse of dimensional-

ity” in the formulated MDP, an PDS-ARL algorithm is proposed, which can

learn the optimal context-ware proactive caching policy on-the-fly and achieve

a remarkable improvement on the learning rate by reducing both the state and

action dimensionalities significantly.

• Extensive simulations are carried out to validate the effectiveness of the pro-

posed algorithm. By comparing with the standard R-learning algorithm and the

non-proactive strategy, the proposed algorithm shows significant performance

improvement in terms of the learning rate and the service ratio at SBSs.
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1.4 Organization of the Thesis

The rest of the thesis is organized as follows. In Chapter 2, the problem of

distributed spectrum access in an OSA network is considered and an SLA based

approach is investigated. In Chapter 3, the problem of distributed multi-mobile-

device computation offloading for cloudlet-based MCC is considered and a game-

theoretic machine learning approach is investigated. In Chapter 4, the problem of

online context-aware proactive caching for an energy harvesting based network is

considered and an RL based algorithm is investigated, followed by conclusions and

future work in Chapter 5.



Chapter 2

Distributed Opportunistic Spectrum

Access in an Unknown and Dynamic

Environment: A Stochastic Learning

Approach

In this chapter, the problem of distributed throughput maximization in an OSA

network with multiple heterogeneous SUs and primary channels is investigated. This

problem is first formulated as a noncooperative game, which is further proved to be an

ordinal potential game. Then, a BR based algorithm is proposed to achieve the NEs of

the formulated game, given that there exists a coordinator for SUs to work in a round-

robin fashion and a common control channel for SUs to exchange their information.

To further relieve the network overhead due to information exchange among SUs, a

N-SLA algorithm is designed, which can converge to a NE of the formulated ordinal

24
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Figure 2.1: System Architecture.

potential game in a fully distributed way. To my best knowledge, I’m the first to

address the convergence issue of the SLA based algorithms for ordinal potential games.

Simulation results validate the effectiveness of the proposed algorithms.

2.1 System Model and Game Formulation

2.1.1 System Model

Consider a distributed OSA network consisting ofM SUs (or equivalently,M pairs

of secondary transceivers) and N independent primary channels, owned by N PUs.

Time is divided into slots with an equal length. Let Xn(t) denote the availability

status of channel n at time slot t. Xn(t) = 1 means channel n is available and

Xn(t) = 0 otherwise, as shown in Fig. 2.1. Assume that Xn(t), n = 1, · · · , N , follows

a stationary random process over t, with the mean θn = E[Xn(t)] ∈ [0, 1] [57, 58].

For explanation purpose, a case where all SUs locate in a small-scale mutually

interfering area [57,58] is considered. At the beginning of time slot t, each SU selects
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one channel for sensing. Based on the sensing outcome 1, each SU makes a decision

on access. If the selected channel n (n = 1, · · · , N) is sensed to be idle at SU

m (m = 1, · · · ,M), it will access this channel with a transmission probability Pm

(0 < Pm ≤ 1). Otherwise, it will keep silent in the current slot. A transmission is

successful only if there is a single SU in transmission in the given channel. Otherwise,

a collision occurs. The collision-free achievable rate of SU m (m = 1, · · · ,M) on each

channel can be calculated as

rfm(t) = log2(1 +
pmd

−α
m |ξm(t)|2

σ2
) (2.1)

(2.1) is obtained based on Shannon theory, where pm is the transmission power of SU

m, σ2 is the noise power, dm is the distance between the transmitter and the receiver

of SU m, α is the path loss factor, and |ξm(t)|2 is an exponentially distributed random

fading coefficient with unit mean. Note that the channel bandwidth of each primary

channel has been normalized to be 1 for simplicity.

2.1.2 Game Formulation

Define am as the channel selection action of SU m, a−m as the set of channel

selection actions of all SUs except SU m, i.e., a−m = {a1, · · · , am−1, am+1, · · · , aM},

and Un as the set of SUs who select the channel n (n = 1 · · · , N), i.e., Un = {m ∈

{1, · · · ,M} : am = n}. Then, the achievable throughput of SU m in time slot t can

be written as:

rm(am,a−m, t) = Xam(t)Im(Uam , t)rfm(t) (2.2)

1For simplicity, it is assumed that the channel sensing is perfect. However, the analysis in this
chapter can easily be extended to the scenario with imperfect channel sensing by introducing the
detection probability Pd and the false alarm probability Pf .
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where Im(Uam , t) = 1 if only SU m from Uam transmits over the channel am in time

slot t, and 0 otherwise.

Hence, the expected throughput of SU m is given by

Rm(am,a−m) = E[rm(am,a−m, t)]

= E[Xam(t)]E[Im(Uam , t)]E[rfm(t)]

= θamPm
∏

l∈Uam ,l 6=m

(1− Pl)r̄fm (2.3)

Here, a distributed throughput maximization problem is considered, where each

SU tries to maximize its own expected normalized rate without a central controller:

max
am=1,··· ,N

R̂m(am,a−m), ∀m = 1, · · · ,M (2.4)

where

R̂m(am,a−m) =
Rm(am,a−m)

r̄fm

= θamPm
∏

l∈Uam ,l 6=m

(1− Pl) (2.5)

According to problem (2.4), each SU m tries to maximize its own utility function

R̂m, which complies with the property of noncooperative games. Thus, to solve

this distributed throughput maximization problem, a noncooperative game denoted

by GOSA = {M,N , {R̂m(am,a−m)}m∈M} is formulated, where M = {1, · · · ,M}

is the set of players (or SUs), N = {1, · · · , N} is the set of actions (or primary

channels) that each player can take, and R̂m(am,a−m) is the utility of the player

m (m = {1, · · · ,M}) upon taking action am ∈ N while other players taking a−m.

Each player independently and selfishly adjusts its strategy to maximize its individual

utility R̂m(am,a−m).
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Definition 2.1. A channel selection profile a∗ = (a∗1, · · · , a∗M) is a pure strategy NE

of GOSA if and only if no SU can improve its utility function by deviating unilaterally,

i.e.,

R̂m(a∗m,a
∗
−m) ≥ R̂m(am,a

∗
−m), ∀m ∈M, ∀am ∈ N (2.6)

2.2 Properties of NEs in GOSA

In this section, the properties of the NEs in GOSA are investigated. The formulated

game GOSA will be proved to be an ordinal potential game [94].

Definition 2.2. A game is called an ordinal potential game if the incentives of all

players of the game for changing their actions can be reflected by a function Φ : a =

(a1, · · · , aM)→ R, called an ordinal potential function, i.e.,

R̂m(am,a−m)− R̂m(a′m,a−m) > 0⇐⇒ Φ(am,a−m)− Φ(a′m,a−m) > 0,

∀m ∈M, ∀am, a′m ∈ N , am 6= a′m (2.7)

where “⇐⇒′′ means “equivalent to”.

In general, the proof of the existence of an ordinal potential function in a game is

sufficient to prove the game being an ordinal potential game.

Theorem 2.1. The formulated noncooperative game GOSA is an ordinal potential

game.

Proof. To prove the theorem, two scenarios are considered separately: (I) the number

of channels N is no less than the number of SUs M , i.e., N ≥ M , and (II) N < M .
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In scenario (I), since the spectrum resource is redundant, each SU can transmit with

probability 1. Thus, effective orthogonalization mechanism to avoid collisions among

SUs is crucial. In scenario (II), each SU m (∀m ∈ M) transmits with a probability

Pm, where 0 < Pm < 1, to share the limited spectrum with other SUs.

Scenario (I): With Pm = 1, R̂m(am,a−m) (∀m ∈M) can be rewritten as

R̂m(am,a−m) = υam(|Uam |) =

 θam , |Uam| = 1

0, otherwise
(2.8)

where |Uam| denotes the number of SUs taking the same action am.

Then, a bounded function Φ1 : a = (a1, · · · , aM)→ R can be defined as follows,

Φ1(am,a−m) =
N∑
n=1

|Un|∑
k=1

υn(k) (2.9)

Note that equation (2.9) follows the same form of the Rosenthal’s potential function

[99]. Following similar proof given in [57],

Φ1(a′m,a−m)− Φ1(am,a−m) = R̂m(a′m,a−m)− R̂m(am,a−m),

∀m ∈M,∀am, a′m ∈ N , am 6= a′m (2.10)

From (2.10), it is obvious that the property in (2.7) holds. Therefore, the function

Φ1 : a = (a1, · · · , aM) → R is an ordinal potential function so that the game GOSA

with Pm = 1 (∀m ∈ M) is an ordinal potential game. Moreover, since the deviation

in the utility of an arbitrary player m is exactly reflected by the deviation in the

ordinal potential function, the game GOSA with Pm = 1 (∀m ∈ M) is also an exact

potential game [98].

Scenario (II): With 0 < Pm < 1 (∀m ∈ M), a bounded function Φ2 : a =
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(a1, · · · , aM)→ R is defined as:

Φ2(am,a−m) = −
∑
m∈M

βm(
∑

l:al=am

βl + βm + 2yamm ) (2.11)

where

βm = log2(1− Pm), (2.12)

yamm = log2(
θamPm
1− Pm

) (2.13)

Suppose that an arbitrary SU m (m ∈M) unilaterally changes its action from am to

a′m (am, a
′
m ∈ N , am 6= a′m). According to (2.11),

Φ2(am,a−m) = −[βm(
∑

l∈Uam |(am,a−m)

βl + βm + 2yamm ) +
∑

p∈Uam |(am,a−m),p 6=m

βp(βm+

∑
l∈Uap |(am,a−m),l 6=m

βl + βp + 2yapp ) +
∑

q∈Ua′m |(am,a−m)

βq(
∑

l∈Uaq |(am,a−m)

βl + βq + 2yaqq )+

∑
e:ae 6=am,a′m

βe(
∑

l∈Uae |(am,a−m)

βl + βe + 2yaee )] (2.14)

and

Φ2(a′m,a−m) = −[βm(
∑

l∈Ua′m |(a
′
m,a−m)

βl + βm + 2ya
′
m
m ) +

∑
q∈Ua′m |(a

′
m,a−m),q 6=m

βq(βm+

∑
l∈Uaq |(a′m,a−m),l 6=m

βl + βq + 2yaqq ) +
∑

p∈Uam |(a′m,a−m)

βp(
∑

l∈Uap |(a′m,a−m)

βl + βp + 2yapp )

+
∑

e:ae 6=am,a′m

βe(
∑

l∈Uae |(a′m,a−m)

βl + βe + 2yaee )] (2.15)

Then,

Φ2(a′m,a−m)− Φ2(am,a−m)

= βm(
∑

l∈Uam |(am,a−m)

βl + βm + 2yamm )− βm(
∑

l∈Ua′m |(a
′
m,a−m)

βl + βm + 2ya
′
m
m ) + βm
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∑
p∈Uam |(am,a−m),p 6=m

βp − βm
∑

q∈Ua′m |(a
′
m,a−m),q 6=m

βq

= 2βm(
∑

l∈Uam |(am,a−m)

βl + yamm −
∑

l∈Ua′m |(a
′
m,a−m)

βl− ya
′
m
m ) (2.16)

Define

R̃m(am,a−m) = log2(R̂m(am,a−m)), ∀m ∈M, am ∈ N (2.17)

Substituting (2.5) into (2.17),

R̃m(am,a−m)

= log2(θamPm
∏

l∈Uam |(am,a−m),l 6=m

(1− Pl))

= log2(
θamPm
1− Pm

) +
∑

l∈Uam |(am,a−m)

log2(1− Pl) (2.18)

According to (2.12) and (2.13),

R̃m(am,a−m) = yamm +
∑

l∈Uam |(am,a−m)

βl (2.19)

Substituting (2.19) into (2.16),

Φ2(a′m,a−m)− Φ2(am,a−m)

= 2βm(R̃m(am,a−m)− R̃m(a′m,a−m))

= 2βm(log2(R̂m(am,a−m))− log2(R̂m(a′m,a−m))) (2.20)

Since βm = log2(1− Pm) < 0,

R̂m(am,a−m)− R̂m(a′m,a−m) > 0⇐⇒ Φ2(am,a−m)− Φ2(a′m,a−m) > 0,

∀m ∈M, ∀am, a′m ∈ N , am 6= a′m, 0 < Pm < 1. (2.21)
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Therefore, the function Φ2 : a = (a1, · · · , aM) → R is also an ordinal potential

function and the game GOSA with 0 < Pm < 1, ∀m ∈ M, is an ordinal potential

game.

From [98], it can be concluded that there exists at least one pure strategy NE

in the formulated noncooperative game GOSA. However, deriving such NEs is not

straightforward, especially for scenario (II). In next sections, how to achieve the

pure strategy NE of GOSA will be investigated.

2.3 BR based Algorithm

In this section, a BR based algorithm is proposed to find the pure-strategy NEs

of GOSA, by assuming that there exists a coordinator for SUs to work in a round-

robin fashion and a common control channel for SUs to broadcast their individual

information, e.g., the updated actions and the transmission probabilities.

The proposed BR based algorithm is divided into two stages: in stage (1), each

SU distributively learns the channel availability statistics (θ1, θ2, · · · , θN), by adopting

such as the upper-confidence-bound 1 (UCB1) algorithm in [100–102]; Based on these

results, in stage (2), SUs select primary channels one by one, and in each round, one

SU chooses the best response to the strategies of SUs who have already made decisions

beforehand. Specifically, given Un(t) (∀n ∈ N ) in time slot t, the SU chooses the best

channel n∗(t) satisfying

n∗(t) = argn∈N max[ωn(Un(t))] (2.22)
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where

ωn(Un(t)) =

 υn(|Un(t)|), if m ∈ Un(t)

υn(|Un(t)|+ 1), otherwise
(2.23)

in scenario (I), or chooses n∗(t) satisfying

n∗(t) = argn∈N max[θnPmκn(Un(t))] (2.24)

where

κn(Un(t)) =


1, if Un(t) = {m} or Un(t) = ∅∏
l∈Un(t),l 6=m

(1− Pl), otherwise
(2.25)

in scenario (II). The proposed BR based algorithm is summarized in Algorithm 1.

Theorem 2.2. The proposed BR based algorithm converges to a pure-strategy NE of

GOSA, starting from any point.

The proof of Theorem 2.2 is shown in Appendix A.1.

Remark 2.1. In the proposed BR based algorithm, the information exchange among

SUs is indispensable, which may result in high network overhead, and may not be

feasible in some practical communication networks. Therefore, designing a fully dis-

tributed online-adaptive algorithm is required, so that each SU can independently and

adaptively adjust its own strategies based on its individual experienced action-reward

without the coordinator or any information exchange.

2.4 SLA based algorithm

In this section, a fully distributed algorithm based on SLA is proposed and its con-

vergence to the pure-strategy NEs of GOSA in an unknown and dynamic environment
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Algorithm 1: The Best Response based Algorithm
1 Stage (1): Each SU estimates the channel availability statistics

(θ1, θ2, · · · , θN).
2 Stage (2):
3 Initialize t = 0, am(0) = 0,∀m ∈M, and Un(t) = ∅, ∀n ∈ N
4 Repeat:
5 SetM1 =M,M2 = ∅.
6 for t = 0, 1, · · · , do
7 WhileM1 6= ∅,
8 The coordinator randomly selects a SU m ∈M1.
9 if in scenario (I), i.e., Pm = 1,∀m ∈M,

10 the SU chooses n∗(t) according to (2.22).
11 else if in scenario (II), i.e., 0 < Pm < 1, ∀m ∈M,
12 the SU chooses n∗(t) according to (2.24).
13 end if
14 The SU m broadcasts the selected channel n∗(t) through the common

control channel.
15 Each SU updates {Un(t)}n∈N according to the following rule:

Un(t+ 1) =


Un(t)\m if n = am(t− 1), n 6=am(t)
Un(t)

⋃
{m} if n = am(t), n 6=am(t− 1)

Un(t) otherwise

16 The SU m tunes to n∗(t) for sensing, and transmits with probability Pm if
available.

17 Exclude m fromM1 and include it inM2.
18 Update t = t+ 1.
19 end While
20 Until convergence.

is investigated. Since the game GOSA in scenario (I) is proved to be an exact po-

tential game, the existing SLA based algorithms for achieving the pure-strategy NEs

(e.g., [57] and [62]) can be applied directly. However, investigating the convergence

property of the SLA based algorithms for the ordinal potential game in scenario (II)

is challenging. To my best knowledge, there is no SLA based algorithm available in

literature for ordinal potential games. Thus, in this section, the discussion is focused
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on the scenario (II). A modified noncooperative game G̃OSA will be first defined,

which is shown to have the same NE set as the original game GOSA. Then, by proving

G̃OSA to be a weighted potential game, a new SLA (N-SLA) algorithm is proposed

to achieve the pure-strategy NEs of G̃OSA, which equivalently proves the convergence

towards the NEs of GOSA.

2.4.1 A Modified Noncooperative Game

A modified noncooperative game from GOSA is defined as follows.

Definition 2.3. A modified noncooperative game is defined as G̃OSA = {M,N , {Um

(am,a−m)}m∈M}, whereM andN are the same as in the game GOSA. Um(am,a−m) =

log2(θamPm
∏

l∈Uam ,l 6=m
(1− Pl)) + $ (∀m ∈ M), where $ > 0 is a predefined constant

to guarantee the utility Um(am,a−m) is nonnegative.

Proposition 2.1. The modified game G̃OSA has the same NE set as the original game

GOSA.

Proof. In the modified game G̃OSA, each player m (m ∈ M) tries to maximize its

utility Um(am,a−m), i.e.,

max
am∈N

Um(am,a−m), ∀m ∈M (2.26)

Using the monotonicity of the logarithm function,

a∗m = arg max
am∈N

Um(am,a−m)

= arg max
am∈N

log2(θamPm
∏

l∈Uam ,l 6=m

(1− Pl))



Chapter 2: Distributed Opportunistic Spectrum Access in an Unknown and Dynamic
Environment: A Stochastic Learning Approach 36

= arg max
am∈N

θamPm
∏

l∈Uam ,l 6=m

(1− Pl)

= arg max
am∈N

R̂m(am,a−m), ∀m ∈M (2.27)

Thus, the optimization problems (2.4) and (2.26) have the same solution set, or in

other words, the modified game G̃OSA and the original game GOSA have the same NE

set.

Proposition 2.2. The modified game G̃OSA is a weighted potential game.

Proof. According to (2.20), for ∀m ∈M, and ∀am, a′m ∈ N , am 6= a′m,

Φ2(a′m,a−m)− Φ2(am,a−m)

= 2βm(log2(R̂m(am,a−m))− log2(R̂m(a′m,a−m)))

= 2βm(R̃m(am,a−m) +$ − R̃m(a′m,a−m)−$)

= −2βm(Um(a′m,a−m)− Um(am,a−m)) (2.28)

According to [94], the modified game G̃OSA is a weighted potential game, where the

weighted potential function is Φ2 : a = (a1, · · · , aM) → R and the weight vector

is (−2β1, · · · ,−2βM). Since (2.28) complies with the property (2.7), the weighted

potential game is also an ordinal potential game, so that there exists at least one

pure-strategy NE in G̃OSA.

In the next subsection, an N-SLA algorithm is proposed to find the pure-strategy

NEs of the modified game G̃OSA, which are also the NEs of the original game GOSA.
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2.4.2 N-SLA Algorithm

Algorithm Description

At first, define Pm(j) = (Pm1(j), Pm2(j), · · · , PmN(j)) as the mixed strategy of SU

m (m ∈ M) in the jth iteration, where Pmn(j) (n ∈ N ) is the probability for SU m

to choose channel n in the jth iteration and
∑N

n=1 Pmn(j) = 1, ∀j ≥ 0,∀m ∈M. The

key ideas of the proposed N-SLA algorithm are as follows: 1) each SU m (m ∈ M)

chooses one primary channel for sensing and access in each iteration according to the

current mixed strategy Pm(j); 2) the mixed strategy Pm(j) of each SU m is updated

based on R̄wm(am(j),a−m(j)), which is defined as

R̄wm(am(j),a−m(j)) =
log2(R̂m(am(j),a−m(j))) +$

$
(2.29)

and converges to a pure-strategy NE at the end. The details of the proposed N-SLA

algorithm is described in Algorithm 2.

Remark 2.2. Note that in the proposed N-SLA algorithm, SUs do not need to

compute R̂m(am(j), a−m(j)) according to (2.5), by requesting the information of

both the channel statistics and other SUs including their channel selection strate-

gies and their transmission probabilities. Instead, each SU m (m ∈M) can estimate

R̂m(am(j),a−m(j)) by only measuring the successful access it achieves within T ′ slots

on the selected channel am(j). Since the mixed strategy of each SU is updated only

based on the individual experienced action-reward, there is no need of a coordinator for

managing the sequential access of SUs, and each SU independently and adaptively up-

dates its strategy without any information exchange. Therefore, the proposed N-SLA

algorithm is fully distributed.



Chapter 2: Distributed Opportunistic Spectrum Access in an Unknown and Dynamic
Environment: A Stochastic Learning Approach 38

Algorithm 2: N-SLA Algorithm
1 Initialization: Set j = 0 and Pmn(j) = ( 1

N
, 1
N
, · · · , 1

N
), ∀m ∈M.

2 While there exists a Pm(j) (m ∈M), in which the maximum Pmn(j) (n ∈ N )
is less than 0.99,

3 each SU m selects a channel am(j) according to its current mixed strategy
Pm(j).

4 for t = jT ′ : T ′ − 1 + jT ′,
5 in time slot t, each SU m (m ∈M) performs channel sensing and channel
contention on the selected channel am(j). At the end of the tth slot, each SU
m receives the random reward r̂m(am(j),a−m(j), t) specified by

r̂m(am(j),a−m(j), t) = Xam(j)(t)Im(Uam(j), t)

end for
6 for m = 1 : M ,
7 SU m estimates R̂m(am(j),a−m(j)) according to

R̂m(am(j),a−m(j)) = R̂est
m (am(j),a−m(j)) + ξ

R̂est
m (am(j),a−m(j)) =

∑T ′−1+jT ′

t=jT ′ r̂m(am(j),a−m(j), t)

T ′

where ξ is the estimation error.
8 end for
9 Each SU m (m ∈M) updates its Pm(j) according to the following rule:

Pmn(j + 1) = Pmn(j) + bR̄wm(am(j),a−m(j))(1− Pmn(j)), n = am(j)

Pmn(j + 1) = Pmn(j)− bR̄wm(am(j),a−m(j))Pmn(j), n 6= am(j) (2.30)

where 0 < b < 1 is the step size.
10 Update j = j + 1.
11 end While

Remark 2.3. According to the existing SLA based algorithms ( [57–62]), the mixed

strategy Pm(j) of each SU m is updated based on the received instantaneous reward

rm(am,a−m, t). However, such updating rule is not feasible in this problem since the

sufficient condition specified by Theorem 3.3 in [56] for {Pm(j)}m converging to the

pure-strategy NEs no longer holds in ordinal potential games. In the implementation
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of the proposed N-SLA algorithm, the mixed strategy of each SU is updated based

on R̄wm(am(j),a−m(j)). In the following, it will be shown that such updating rule

guarantees the convergence towards the pure-strategy NEs of the formulated ordinal

potential game.

Convergence of the proposed N-SLA algorithm

In this subsection, it is shown that under the proposed N-SLA algorithm, the

channel selection probability vector Pm(j) (∀m ∈ M) converges to the pure strat-

egy NEs of the modified game G̃OSA. The proof consists of two stages. In the first

stage, an ordinary differential equation (ODE) is derived, whose solution approxi-

mates the asymptotic behavior of the channel selection probability matrix P (j) =

[PH
1 (j), · · · ,PH

M (j)] if the parameter b used in (2.30) is sufficiently small, where (·)H

denotes the conjugate transpose operation. In the second stage, the solutions of the

ODE are characterized and the long term behavior of P (·) is derived.

Ordinary differential equation (ODE): Define R̄w(j) = (R̄w1(a1(j),a−1(j)),

· · · , R̄wM(aM(j),a−M(j))) as the reward profile at the jth iteration, and G(·) as a

function of P (j), a(j), and R̄w(j), which represents the updating rule specified by

(2.30). Then, the matrix form of the updating rule given by (2.30) can be expressed

as

P (j + 1) = P (j) + bG(P (j),a(j), R̄w(j)) (2.31)
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Define Y (P ) as the conditional expectation of G(P (j),a(j), R̄w(j)) given P (j) = P ,

i.e.,

Y (P ) = E[G(P (j),a(j), R̄w(j))|P (j) = P ] (2.32)

Lemma 2.1. Define a piecewise-constant interpolation of P (j) as

P b(t′) = P (j), t′ ∈ [jb, (j + 1)b) (2.33)

As the step size b → 0, the sequence {P b(·)} converges weakly to Q(·), which is the

solution of the following ODE:

dQ

dt′
= Y (Q),Q(0) = P (0) (2.34)

where P (0) is the initial channel selection probability matrix.

Proof. The proof follows the same procedure to prove the Theorem 3.1 in [56].

Solution to the ODE: Since P contains N ×M components, denoted by Pmn,

m ∈M, n ∈ N , the component equations of (2.34) can be written as

dPmn
dt′

= Pmn(1− Pmn)E[R̄wm|P , am = n]+
∑

n′∈N ,n′ 6=n

Pmn′(−Pmn)E[R̄wm|P , am = n′]

= Pmn
∑

n′∈N ,n′ 6=n

Pmn′E[R̄wm|P , am = n]− Pmn
∑

n′∈N ,n′ 6=n

Pmn′E[R̄wm|P , am = n′]

= Pmn(
∑

n′∈N ,n′ 6=n

Pmn′(E[R̄wm|P , am = n]− E[R̄wm|P , am = n′]))

= Pmn(
∑
n′∈N

Pmn′(E[R̄wm|P , am = n]− E[R̄wm|P , am = n′])),

∀m ∈M,∀n ∈ N (2.35)
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where E[R̄wm|P , am = n] denotes the expected reward of SU m if it employs the pure

strategy n while any other SU m′ (∀m′ ∈ M, m′ 6= m) employs the mixed strategy

Pm′ . Specifically, E[R̄wm|P , am = n] can be represented as

E[R̄wm|P , am = n] =
∑

(a1,··· ,am−1,am+1,··· ,aM )

R̄wm(n,a−m)
∏

m′∈M,m′ 6=m

Pm′am′ (2.36)

Theorem 2.3. With a sufficiently small parameter b, P converges to a pure NE of

the modified game G̃OSA.

The proof of Theorem 2.3 is shown in Appendix A.2.

2.5 Simulation Results

In this section, numerical results are provided to demonstrate the performance

of both the BR based and the N-SLA algorithms. The convergence of both algo-

rithms is first illustrated, and then, the performance is evaluated in terms of sum

log expected throughput, which is a commonly used metric to evaluate the tradeoff

between efficiency and fairness among multiple users [103, 104]. In simulations, set

b = 0.1, T ′ = 100 slots, and r̄fm = 1, ∀m ∈ M. Note that this simplification may

affect the absolute performance values, but not the optimization. In addition, both

the mean channel availability parameters θn (∀n ∈ N ) and the transmission proba-

bilities Pm ( 0 < Pm ≤ 1, ∀m ∈M) are simulated following the uniform distribution,

i.e, θn ∼ U [0, 1], ∀n ∈ N , and Pm ∼ U [0, 1], ∀m ∈M.
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Figure 2.2: Evolution of the channel selection actions by the Algorithm 1 for the

unconstrained transmission case

2.5.1 Convergence behavior of the proposed BR based and

N-SLA algorithms

Figs. 2.2 and 2.3 show the convergence behaviors of am(t) (∀m ∈M) over time t

by using Algorithm 1, with respect to the scenario (I) and the scenario (II), respec-

tively. In Fig. 2.2, M = 4, N = 8, (θ1, · · · , θ8) = (0.5, 0.3, 0.7, 0.6, 0.2, 0.8, 0.3, 0.2),

and in Fig.2.3, M = 8, N = 4, (θ1, · · · , θ4) = (0.8, 0.6, 0.5, 0.3), (P1, · · · , P8) =

(0.2, 0.3, 0.6, 0.5, 0.4, 0.8, 0.6, 0.5). From these two figures, it can be seen that un-

der the scenario (I) (i.e., Fig.2.2), the network converges after M time slots and

the selected channels are the M most available primary channels (θ1, θ3, θ4, θ6) =

(0.5, 0.7, 0.6, 0.8), while under the scenario (II) (i.e., Fig. 2.3), due to the heteroge-
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Figure 2.3: Evolution of the channel selection actions by the Algorithm 1 for the

constrained transmission case

neous ties of SUs who have different transmission probabilities, the network conver-

gence consumes more time than that in scenario (I).

Figs. 2.4 to 2.8 show the convergence behavior of the Algorithm 2, by setting

$ = 32 and all other parameters to be the same as in Fig. 2.3. Fig. 2.4 plots the

evolution of the channel selection probabilities Pmn(j) (∀n ∈ N ) for an arbitrary SU.

It can be seen that the channel selection probability vector Pm(j) evolves from a

mixed strategy (1
4
, 1

4
, 1

4
, 1

4
) to a pure-strategy (0, 0, 0, 1) within about 450 iterations.

The evolution of the channel selection actions am(j) for each SU m (m ∈ M) is

further shown in Figs. 2.5 to 2.8. It can be seen that after the network converges,

SUs 1, 2, 5, 8 will always select channel 1 to access (as shown in Fig.2.5), SUs 3, 7

will always select channel 2 to access (as shown in Fig. 2.6), while SU 6 and SU 4
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Figure 2.4: Evolution of the channel selection probabilities for SU 4 by the Algorithm

2

will always select channel 3 and channel 4 to access, respectively (as shown in Figs.

2.7 and 2.8). This channel selection result can be easily justified to be an NE of the

formulated game.

Fig. 2.9 compares the proposed BR based and the N-SLA algorithms in terms

of the values of the ordinal potential function at convergence. In this simulation,

three scenarios with respect to the transmission probability vector (P1, · · · , P8) are

considered. In scenario 1, the transmission probabilities of SUs are dissimilar, i.e.,

(P1, · · · , P8) = (0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8); in scenario 2, the transmission prob-

abilities across different SUs are randomly selected as (P1, · · · , P8) = (0.2, 0.3, 0.6, 0.5, 0.4, 0.8, 0.6, 0.5);

and in scenario 3, the transmission probabilities of all SUs are identical, i.e., Pm = 0.5,

∀m ∈ M. Other parameter settings are (θ1, · · · , θ4) = (0.8, 0.6, 0.5, 0.3), $ is 60 for
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Figure 2.5: Evolution of the channel selection actions for SUs 1, 2, 5, 8, by the Algo-

rithm 2

scenario 1, 32 for scenario 2, and 80 for scenario 3. For the two proposed algorithms,

under each scenario, the maximum and the minimum values of the ordinal potential

function at convergence are compared by independently simulating 500 trials. From

Fig.2.9, it can be seen that in all three scenarios, the two proposed algorithms achieve

same maximum values, but different minimum values. The reason is explained as fol-

lows. As shown in the Theorem 2.3, the Algorithm 2 can converge to the NEs only

when b → 0. However, b cannot be too small in practice since smaller b leads to

slower convergence speed. Thus, for a practical value of b, the solutions found by the

Algorithm 2 may be non-equilibrium points, which lead to lower values of the ordinal

potential function at convergence. However, the same maximum values achieved by

the two proposed algorithms illustrate that Algorithm 2 can still converge to the NEs
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Figure 2.6: Evolution of the channel selection actions for SUs 3, 7, by the Algorithm

2

under the current parameter settings. The percentages that Algorithm 2 converges

to NEs in all three scenarios are further shown in Table 2.1. From the table, it can be

seen that Algorithm 2 converges to the NEs most of the time, which clearly indicates

the effectiveness of the proposed fully distributed algorithm.

2.5.2 Sum log expected throughput of the proposed algorithms

In this subsection, the system performance in terms of sum log expected through-

put achieved by the NE solutions is evaluated. For comparison purpose, a random

selection scheme and a globally optimal solution are also simulated. In the random

selection scheme, each SU randomly chooses a channel in each time slot, while the

globally optimal solution tries to maximize the sum log expected throughput in a
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Figure 2.7: Evolution of the channel selection actions for SU 6 by the Algorithm 2

Iteration index (j)
100 200 300 400 500 600 700 800 900 1000

C
h
an

n
el

in
d
ex

(n
)

1

1.5

2

2.5

3

3.5

4

a4(j)

Figure 2.8: Evolution of the channel selection actions for SU 4 by the Algorithm 2
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Figure 2.9: Comparison of the proposed two algorithms in terms of the convergence

values of the ordinal potential function

centralized manner by assuming all the information including the primary channel

statistics and the SUs’ transmission probabilities is known a priori. The presented

results are average values over 1000 independent trials.

Table 2.1: The equilibrium percentage achieved by Algorithm 2 in all three scenarios

scenario 1 scenario 2 scenario 3
94.6% 92.2% 93.4%

The performance comparison is carried out under three different cases, as shown

in Figs. 2.10-2.12. Case I as shown in Fig. 2.10 considers a homogeneous OSA

network where the availability statistics of primary channels and the transmission

probabilities of SUs are identical. The parameter settings are θn = θ = 0.7, ∀n ∈ N ,
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Figure 2.10: Performance comparison of different approaches in case I

and Pm = P = 0.5, ∀m ∈ M. From Fig. 2.10, it can be seen that the pro-

posed algorithms achieve the same performance as the globally optimal solution. It

is because that in case I, the ordinal potential function specified by (2.11) can be

rewritten as Φ2(am,a−m) = (− log2(1−P ))(
∑

m∈M log2(R̂m(am,a−m)) +M log2(θ) +

M log2( P
1−P )). As discussed before, the proposed algorithms try to maximize the ordi-

nal potential function Φ2(am,a−m). Thus, the obtained NE solution (a∗m,a
∗
−m) satis-

fies (a∗m,a
∗
−m) = arg max

(am,a−m)
(− log2(1−P ))(

∑
m∈M log2(R̂m(am,a−m))+M log2(θ)+

M log2( P
1−P )) = arg max

(am,a−m)

∑
m∈Mlog2(R̂m(am,a−m))= arg min

(am,a−m)

∑
m∈M |Uam|. Ac-

cording to the procedures in Algorithm 1, all the pure-strategy NEs will achieve the

same
∑

m∈M |Uam|. Thus, the proposed algorithms can achieve globally optimal per-

formance.

Case II considers a CR network with different availability statistics across the
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Figure 2.11: Performance comparison of different approaches in case II

primary channels, but identical transmission probabilities across the SUs, as shown

in Fig.2.11. The parameter settings are (θ1, θ2, θ3) = (0.7, 0.5, 0.2), and Pm = P = 0.5,

∀m ∈ M. From this figure, the performance achieved by the proposed algorithms is

very close to the globally optimal solution. This is because in case II, Φ2(am,a−m)

can be rewritten as Φ2(am,a−m) = (− log2(1 − P ))(
∑

m∈M log2(R̂m(am, a−m)) +∑
m∈M log2(θam) + M log2( P

1−P )), and the NEP solution (a∗m,a
∗
−m) achieved by the

proposed algorithms satisfies (a∗m,a
∗
−m) = arg max

(am,a−m)
(
∑

m∈M log2 (R̂m(am,a−m)) +∑
m∈M log2 (θam)). Thus, due to the existence of the term

∑
m∈M log2(θam), the

proposed algorithms can not find the globally optimal solution.

In case III as shown in Fig. 2.12, the simulated CR network has different avail-

ability statistics across the primary channels and different transmission probabilities

across the SUs. Specifically, the simulation parameters are set as: (θ1, θ2, θ3) =



Chapter 2: Distributed Opportunistic Spectrum Access in an Unknown and Dynamic
Environment: A Stochastic Learning Approach 51

the number of SUs (M)
4 5 6 7 8 9 10

ac
h
ie
va
b
le

su
m

lo
g
ex
p
ec
te
d
th
ro
u
gh

p
u
t

-50

-45

-40

-35

-30

-25

-20

-15

-10

global optimal solution
random selection scheme
proposed algorithms

Figure 2.12: Performance comparison of different approaches in case III

(0.7, 0.5, 0.2), (P1, · · · , PM) = (0.2, 0.7, 0.5, 0.1) for M = 4, (P1, · · · , PM) = (0.2, 0.6,

0.3, 0.8, 0.5, 0.3) for M = 6, (P1, · · · , PM) = (0.4, 0.2, 0.6, 0.3, 0.8, 0.1, 0.5, 0.6) for

M = 8, and (P1, · · · , PM) = (0.2, 0.4, 0.4, 0.5, 0.2, 0.8, 0.1, 0.6, 0.3, 0.1) for M = 10.

Since in case III, the ordinal potential function Φ2(am,a−m) specified by (2.11) is

totally different from the global optimization
∑

m∈M log2(R̂m(am,a−m)), an obvious

gap exists between the proposed algorithms and the globally optimal solution.

However, in all these three figures, it can be seen that the proposed algorithms

always outperform the random selection approach. Thus, it can be concluded that

for distributed channel access, the proposed algorithms can not only converge to the

pure-strategy NEs, but also achieve better network performance in terms of sum log

expected throughput than the random selection approach.



Chapter 3

Distributed Multi-Mobile-Device

Computation Offloading for

Cloudlet-based Mobile Cloud

Computing: A Game-Theoretic

Machine Learning Approach

In this chapter, the problem of multi-mobile-device computation offloading for

cloudlet-based MCC in a multi-channel wireless contention environment is investi-

gated. The studied network is fully distributed so that each mobile device makes the

offloading decisions based only on its individual information, and without information

exchange. This multi-mobile-device computation offloading decision making problem

is first formulated as a noncooperative game. After analyzing the structural property

52
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of the formulated game, it is shown to be an exact potential game, which has at least

one pure-strategy NE. To achieve the NEs in a fully distributed environment, a fully

distributed computation offloading (FDCO) algorithm based on machine learning

technology is proposed. Then, the performance of the proposed FDCO algorithm in

terms of the number of beneficial cloudlet computing mobile devices and the network-

wide execution cost is theoretically analyzed. Finally, simulation results validate the

effectiveness of the proposed algorithm by comparing it with counterparts.

3.1 System Model and Game Formulation

3.1.1 System Model

A cloudlet-based MCC network consisting of a set ofM = {1, 2, · · · ,M} mobile

devices and one cloudlet that could be located in a cellular base station or a Wi-Fi

access point [71] is considered. There are N wireless channels and the set of channels

is denoted as N = {1, 2, · · · , N}. Each mobile device has a computationally intensive

task to be completed, which consists of B equal-size data packets. Similar to many

previous studies on MCC (e.g. [105–107]), a quasi-static scenario is considered where

the set of mobile devices M remains unchanged during a computation offloading

period (e.g., hundreds of milliseconds or several seconds), while may change across

different periods. The mobile devices can process their tasks locally or offload them to

the cloudlet via a wireless channel. Since both the communication and computation

aspects play critical roles in the cloudlet-based MCC network, the communication

and computation models are introduced next in details.
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Communication Model

Without loss of generality, assume that a computation task requires Ncyc CPU

cycles for processing. Denote am ∈ {0}
⋃
N as the computation offloading action of

the mobile device m. am = 0, if the mobile device m decides to compute its task

locally on its own mobile device. Otherwise, the mobile device m will offload its task

via the wireless channel am ∈ N . A slotted time structure is considered and the

time slot length and the time slot index are denoted by τ and t ∈ T = {1, 2, · · · , },

respectively. In each time slot, if more than one mobile device select the same channel

for offloading, a carrier sense multiple access (CSMA) mechanism is used to handle

the potential collisions [108]. For any mobile device which has contended the channel

successfully, it will receive one unit throughput in terms of one packet per slot. Thus,

given the decision profile of all mobile devices, which is denoted as a = (a1, · · · , aM),

in each time slot t, the random transmission rate of a mobile device m that chooses

to offload the computation to the cloudlet via the wireless channel am ∈ N can be

computed as:

rm(a, t) = Jm(a, t) (3.1)

where Jm(a, t) indicates whether mobile device m successfully contends the channel

in slot t and can be represented as

Jm(a, t) =

 1, if mobile device m contends channel am successfully in slot t

0, otherwise

(3.2)
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According to the principle of CSMA, Jm(a, t) is a Bernoulli random variable with a

probability mass function (PMF) of

Pr(Jm(a, t)) =


1

sam
, if Jm(a, t) = 1

1− 1
sam

, otherwise
(3.3)

where sam denotes the number of mobile devices that choose channel am for offloading.

Based on (3.1-3.3), the expected rate achieved by the mobile device m with the

decision profile a can be calculated as

Rm(a) =
1

sam
(3.4)

From (3.4), the average transmission time and energy consumption of the mobile

devicem for offloading the task of size B packets can be further calculated respectively

as

tm,off (a) =
B

Rm(a)

= Bsam (slots) (3.5)

em,off (a) =
pB

Rm(a)
τ

= pBsamτ (J) (3.6)

where p is the transmit power at each mobile device.

Computation Model

In the following, the execution overhead in terms of energy consumption and time

cost for both local and cloudlet computing will be discussed.
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Local Computing: For local computing, the computation tasks are executed on

mobile devices. Let fl be the computation capability (in terms of the CPU cycles per

second) of a mobile device. Then, the time consumption for locally computing one

task can be computed as

tl,exe = dNcyc

flτ
e (slots) (3.7)

and the required energy consumption is

el,exe = νlNcyc (J) (3.8)

where νl is a coefficient denoting the consumed energy per CPU cycle at a mobile

device, which can be obtained by measurements as in [107].

Cloudlet Computing: For cloudlet computing, a mobile device first offloads its

computation task to the cloudlet via a wireless channel, and then the cloudlet will

execute the computation task on behalf of the mobile device. Specifically, for the

computation offloading, the mobile device would incur an overhead for transmitting

the computation task to the cloudlet. According to the communication model intro-

duced before, the transmission time and energy consumption of each mobile device

for offloading one task have been derived by (3.5) and (3.6), respectively.

After receiving the data, the cloudlet will execute the requested computation

task. Let fc be the computation capability (in terms of the CPU cycles per second)

assigned to each mobile device by the cloudlet, which can be determined according

to the cloud computing service contract subscribed by the mobile devices with the

telecom operator [109]. Ordinarily, fc ≥ fl. Then, the execution time of one task at
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the cloudlet equals

tc,exe = dNcyc

fcτ
e (slots) (3.9)

Combining (3.5), (3.6), and (3.9), the overall time (including transmission time

and execution time) and energy consumption of mobile device m using cloudlet com-

puting becomes

tm,c(a) = tm,off (a) + tc,exe

= (Bsam + dNcyc

fcτ
e) (slots) (3.10)

em,c(a) = em,off (a)

= pBsamτ (J) (3.11)

Actually, the mobile device should pay the cloud for computing service, if it selects

to offload the computation task to the cloud. However, as shown in most related works

in the literature [109–111], such cost was commonly assumed to be pre-paid. This

chapter followed the same convention.

3.1.2 Game Formulation

By considering the potential contention among mobile devices and the fully dis-

tributed manner in decision making, the objective is to minimize each mobile device’s

execution overhead individually, which can be formulated as

min
am∈{0}

⋃
N
Om(am,a−m) ∀m ∈M (3.12)
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where

Om(am,a−m) =

 λ1tl,exe + λ2el,exe, if am = 0

λ1tm,c(am,a−m) + λ2em,c(am,a−m), if am ∈ N
(3.13)

a−m = (a1, · · · , am−1, am+1, · · · , aM) denotes the set of computation offloading actions

by all mobile devices except the mth one, and λ1, λ2 ∈ (0, 1) denote the weighting

parameters of time and energy consumption, respectively 1.

Substituting (3.7), (3.8), (3.10), and (3.11) into (3.13),

Om(am,a−m) =

 Fl,1, if am = 0

Fc,1(sam), if am ∈ N
(3.14)

where

Fl,1 = λ1d
Ncyc

flτ
e+ λ2νlNcyc (3.15)

Fc,1(sam) = λ1(Bsam + dNcyc

fcτ
e) + λ2pBτsam (3.16)

Obviously, Fc,1(sam) is an increasing function of sam . Since 1 ≤ sam ≤ M , Fc,1(1) ≤

Fc,1(sam) ≤ Fc,1(M). If Fl,1 < Fc,1(1), according to the optimization problem defined

in (3.12), the mobile device will always choose to execute the computation task on

its own device. Similarly, if Fc,1(M) < Fl,1, the mobile device will always choose

to offload the computation task to the cloudlet. Thus, in this chapter, these two

trivial situations will be ignored and the discussion will be focused on the case that

Fc,1(1) ≤ Fl,1 ≤ Fc,1(M).

Theorem 3.1. The distributed execution overhead minimization problem (3.12) is
1In practice, the proper weights can be determined by applying the multiple criteria decision

making theory [112].
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equivalent to the following distributed utility maximization problem:

max
am∈{0}

⋃
N
Um(am,a−m) ∀m ∈M (3.17)

where the utility Um(am,a−m) of mobile device m is defined as

Um(am,a−m) =


1

λ2νlNcyc+λ1(dNcyc
flτ
e−dNcyc

fcτ
e)
, if am = 0

1
λ1B+λ2Bpτ

1
sam

, if am ∈ N
(3.18)

Proof. Subtracting λ1dNcycfcτ
e on both sides of (3.14) results in

Om(am,a−m)− λ1d
Ncyc

fcτ
e =

 λ1(dNcyc
flτ
e − dNcyc

fcτ
e) + λ2νlNcyc, if am = 0

(λ1B + λ2pBτ)sam , if am ∈ N
(3.19)

Since dNcyc
flτ
e − dNcyc

fcτ
e ≥ 0, Om(am,a−m)− λ1dNcycfcτ

e > 0. Thus,

min
am∈{0}

⋃
N
Om(am,a−m) ⇐⇒

min
am∈{0}

⋃
N

(Om(am,a−m)− λ1d
Ncyc

fcτ
e) ⇐⇒

max
am∈{0}

⋃
N

1

Om(am,a−m)− λ1dNcycfcτ
e
⇐⇒

max
am∈{0}

⋃
N
Um(am,a−m) (3.20)

According to (3.20), each mobile device tries to maximize its own utility function

Um. Thus, this distributed utility maximization problem can be formulated into

a noncooperative game, which is denoted by Goff = {M,A, {Um(am,a−m)}m∈M}.

Here,M is the set of players (i.e., mobile devices), A = {0}
⋃
N is the set of actions

that each player can take, and Um(am,a−m) is the utility of player m (m ∈M) upon

taking action am ∈ A while other players taking a−m. Each player independently and

selfishly adjusts its strategy to maximize its individual utility Um(am,a−m).
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Definition 3.1. A strategy profile a∗ = (a∗1, · · · , a∗M) is a pure strategy NE of the

noncooperative game Goff if and only if no mobile device can improve its utility

function by deviating unilaterally, i.e.,

Um(a∗m,a
∗
−m) ≥ Um(am,a

∗
−m), ∀m ∈M,∀am ∈ A (3.21)

In the following, an FDCO algorithm will be proposed to derive the pure strategy

NEs of the formulated game Goff in a fully distributed way.

3.2 FDCO Algorithm

In this section, the existence of NEs in the formulated game Goff is first discussed

by analyzing its structural properties, and then the proposed FDCO algorithm is

presented in details.

3.2.1 Existence of NEs in the Formulated Game Goff

Before discussing the existence of NEs in the formulated game Goff , the definition

of exact potential games is first given as follows.

Definition 3.2. A game is called an exact potential game if the deviation in the

utility of an arbitrary player m is exactly reflected by the deviation in a function

ψ : a = (a1, · · · , aM)→ R, which is called an exact potential function, i.e.,

Um(am,a−m)− Um(a′m,a−m) = ψ(am,a−m)− ψ(a′m,a−m),

∀m ∈M,∀am, a′m ∈ A, am 6= a′m (3.22)

Based on the definition of exact potential games, the following theorem is obtained.
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Theorem 3.2. The formulated game Goff has at least one pure strategy NE.

Proof. Define a bounded function ψ : a = (a1, · · · , aM)→ R as

ψ(am,a−m) =
N∑
n=1

sn∑
v=1

Fc,2(v) + Fl,2

M∑
m=1

1{am=0} (3.23)

where

Fc,2(v) =
1

λ1B + λ2Bpτ

1

v
(3.24)

Fl,2 =
1

λ2νlNcyc + λ1(dNcyc
flτ
e − dNcyc

fcτ
e)

(3.25)

1{am=0} =

 1, if am = 0

0, otherwise
(3.26)

For a computation offloading decision profile a, the number of players selecting

channel n is denoted as sn, ∀n ∈ N . Suppose that an arbitrary player m (m ∈ M)

unilaterally changes its action from am to a′m. Since am, a′m ∈ N ∪ {0}, the following

three cases are considered: 1) am, a
′
m ∈ N and am 6= a′m; 2) am = 0 and a′m ∈ N ; 3)

am ∈ N and a′m = 0.

Case 1): Since am, a′m ∈ N and am 6= a′m,

Um(am,a−m) =
1

λ1B + λ2Bpτ

1

sam
= Fc,2(sam) (3.27)

Um(a′m,a−m) =
1

λ1B + λ2Bpτ

1

sa′m + 1
= Fc,2(sa′m + 1) (3.28)

According to (3.23),

ψ(am,a−m) =

sam∑
v=1

Fc,2(v) +

sa′m∑
v=1

Fc,2(v) +
N∑

n=1,n 6=am,a′m

sn∑
v=1

Fc,2(v) + Fl,2

M∑
m=1

1{am=0}

(3.29)
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ψ(a′m,a−m) =

sam−1∑
v=1

Fc,2(v) +

sa′m
+1∑

v=1

Fc,2(v) +
N∑

n=1,n6=am,a′m

sn∑
v=1

Fc,2(v) + Fl,2

M∑
m=1

1{am=0}

(3.30)

Then,

ψ(am,a−m)− ψ(a′m,a−m) = Fc,2(sam)− Fc,2(sa′m + 1)

= Um(am,a−m)− Um(a′m,a−m) (3.31)

Case 2): Since am = 0 and a′m ∈ N ,

Um(am,a−m) =
1

λ2νlNcyc + λ1(dNcyc
flτ
e − dNcyc

fcτ
e)

= Fl,2 (3.32)

Um(a′m,a−m) =
1

λ1B + λ2Bpτ

1

sa′m + 1
= Fc,2(sa′m + 1) (3.33)

and

ψ(am,a−m) =

sa′m∑
v=1

Fc,2(v) +
N∑

n=1,n 6=a′m

sn∑
v=1

Fc,2(v) + Fl,2 + Fl,2

M∑
i=1,i 6=m

1{ai=0} (3.34)

ψ(a′m,a−m) =

sa′m
+1∑

v=1

Fc,2(v) +
N∑

n=1,n 6=a′m

sn∑
v=1

Fc,2(v) + Fl,2

M∑
i=1,i 6=m

1{ai=0} (3.35)

Obviously,

ψ(am,a−m)− ψ(a′m,a−m) = −Fc,2(sa′m + 1) + Fl,2

= Um(am,a−m)− Um(a′m,a−m) (3.36)

Case 3): Following the similar procedure as in Case 2), it is easy to show that

ψ(am,a−m)− ψ(a′m,a−m) = Um(am,a−m)− Um(a′m,a−m).

In summary, the formulated game Goff is an exact potential game with the exact

potential function ψ(am,a−m) specified by (3.23). According to [98], the formulated

game Goff has at least one pure strategy NE.
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3.2.2 FDCO Algorithm

The FDCO algorithm starts with a mixed strategy, which is defined as Pm(t) =

(Pm0(t), Pm1(t), Pm2(t), · · · , PmN(t)) for playerm (m ∈M) in the tth time slot. Here,

Pmi(t) (i ∈ A) is the probability for player m to choose the action i in the tth time

slot and
∑N

i=0 Pmi(t) = 1, ∀t ≥ 0,∀m ∈ M. The key idea of the proposed FDCO

algorithm is as follows: Each player m (m ∈ M) takes an action in each time slot

according to the current mixed strategy Pm(t). Then, the environment responds with

a random reward R̂wm(am(t),a−m(t)), which is defined as

R̂wm(am(t),a−m(t)) =
Rwm(am(t),a−m(t))

Fc,2(1)
(3.37)

where

Rwm(am(t),a−m(t)) =

 Fl,2, if am(t) = 0

1
λ1B+λ2Bpτ

rm(am(t),a−m(t)), if am(t) ∈ N
(3.38)

The mobile device m uses this reaction to update its strategy Pm(t) based on the

SLA technology [56] as follows:

Pmi(t+ 1) =

 Pmi(t) + bR̂wm(am(t),a−m(t))(1− Pmi(t)), if i = am(t)

Pmi(t)− bR̂wm(am(t),a−m(t))Pmi(t), if i 6= am(t)

(3.39)

This cycle repeats until a pure strategy NE is converged. It is easy to see from

(3.39) that each mobile device m updates its own strategy Pm(t) based on the local

information, thus, the proposed FDCO algorithm allows each mobile device to learn

the optimal strategy through interactions with an unknown and dynamic environment

independently and automatically. The details of the proposed FDCO algorithm is

described in Algorithm 3.
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Algorithm 3: FDCO Algorithm
1 Initialization: Set t = 0 and Pmi(t) = ( 1

N+1
, 1
N+1

, · · · , 1
N+1

), ∀m ∈M.
2 While there exists a Pm(t) (m ∈M), in which the maximum Pmi(t) (i ∈ A) is
less than 0.99,

3 each player m takes an action am(t) according to its current mixed strategy
Pm(t).

4 At the end of the tth slot, each player m receives the random reward
Rwm(am(t),a−m(t)) specified by (3.38).

5 Each player m (m ∈M) updates its Pm(t) according to the following rule:

Pmi(t+ 1) =

{
Pmi(t) + bR̂wm(am(t),a−m(t))(1− Pmi(t)), if i = am(t)

Pmi(t)− bR̂wm(am(t),a−m(t))Pmi(t), if i 6= am(t)

where 0 < b < 1 is the step size.
6 Update t = t+ 1.
7 end While

3.2.3 Convergence Analysis

In this subsection, the convergence of the proposed FDCO algorithm towards

the pure strategy NEs of the formulated game Goff is investigated. Let P (t) =

[PH
1 (t), · · · ,PH

M (t)]. Then, according to [56], the following two lemmas are obtained.

Lemma 3.1. Define a piecewise-constant interpolation of P (t) as

P b(t′) = P (t), t′ ∈ [tb, (t+ 1)b) (3.40)

As the step size b → 0, the sequence {P b(·)} converges weakly to Q(·), which is the

solution of the following ordinary differential equation (ODE):

dQ

dt′
= Y (Q),Q(0) = P (0) (3.41)

where P (0) is the initial decision selection probability matrix and Y (Q) is the condi-

tional expected function defined as

Y (P ) = E[G(P (t),a(t), R̂w(t))|P (t) = P ] (3.42)
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In (3.42), R̂w(t) = (R̂w1(a1(t),a−1(t)), · · · , R̂wM(aM(t), a−M(t))) denotes the re-

ward profile, and G(·) is a function of P (t), a(t), and R̂w(t), which is defined by

(3.39).

Lemma 3.2. If the parameter b is sufficiently small, all the stable stationary points

of (3.41) are the NEs of the formulated game Goff .

Based on Lemmas 3.1 and 3.2, the following theorem can be derived, which pro-

vides a sufficient condition for P (t) to converge towards the NE of the formulated

game Goff .

Theorem 3.3. If there exists a bounded differentiable function K(P ) : P → R such

that for some positive constant c,

∂K(P )

∂Pmi
− ∂K(P )

∂Pmi′
= c(hmi(P )− hmi′(P )) (3.43)

where hmi(P ) denotes the expected reward function of player m if it employs the pure

strategy i while other players m′ (∀m′ ∈ M, m′ 6= m) employs the mixed strategy

Pm′, i.e.,

hmi(P ) =
∑

a−m(t)=(a1(t),··· ,am−1(t),am+1(t),··· ,aM (t))

E[R̂wm(i,a−m(t))]
∏

m′∈M,m′ 6=m

Pm′am′ (t)

(3.44)

the proposed FDCO algorithm converges to a pure strategy NE of the formulated game

Goff .

The proof of Theorem 3.3 is shown in Appendix B.1.

Next, it will be shown that such sufficient condition is satisfied in the formulated

game Goff . Define K(P ) as

K(P ) = E[ψ(am(t),a−m(t))|P ]
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=
N+1∑
i=1

PmiE[ψ(i,a−m(t))|P ] (3.45)

Then,

∂K(P )

∂Pmi
= E[ψ(i,a−m(t))|P ] (3.46)

and

∂K(P )

∂Pmi
− ∂K(P )

∂Pmi′

= E[ψ(i,a−m(t))|P ]− E[ψ(i′,a−m(t))|P ]

=
∑

a−m(t)=(a1(t),··· ,am−1(t),am+1(t),··· ,aM (t))

(ψ(i,a−m(t))− ψ(i′,a−m(t)))
∏

m′∈M,m′ 6=m

Pm′am′ (t)

=
∑

a−m(t)=(a1(t),··· ,am−1(t),am+1(t),··· ,aM (t))

(Um(i,a−m(t))− Um(i′,a−m(t)))
∏

n′∈M,m′ 6=m

Pm′am′ (t)

(3.47)

According to (3.38),

E[Rwm(i,a−m(t))] =

 Fl,2, if i = 0

1
λ1B+λ2Bpτ

1
si
, if i ∈ N

= Um(i,a−m(t)) (3.48)

Combining (3.48) and (3.44),

hmi(P )− hmi′(P )

=
∑

a−m(t)=(a1(t),··· ,am−1(t),am+1(t),··· ,aM (t))

(E[R̂wm(i,a−m(t))]− E[R̂wm(i′,a−m(t))])

∏
m′∈M,m′ 6=m

Pm′am′ (t)

=
∑

a−m(t)=(a1(t),··· ,am−1(t),am+1(t),··· ,aM (t))

(λ1B + λ2Bpτ)(Um(i,a−m(t))− Um(i′,a−m(t)))
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∏
m′∈M,m′ 6=m

Pm′am′ (t)

= (λ1B + λ2Bpτ)(
∂K(P )

∂Pmi
− ∂K(P )

∂Pmi′
) (3.49)

Therefore, the sufficient condition specified in Theorem 3.3 is satisfied, or in other

words, the NEs of the formulated game Goff can be achieved by using the proposed

FDCO algorithm.

Note that the proposed scheme actually consists of two stages: Learning stage and

Offloading stage. At the Learning stage, following the FDCO algorithm, each mobile

device m learns to make the optimal computation offloading decision by transmitting

pilot signals. In particular, each mobile device m which selects decision am ∈ N

according to the current Pm(t) will contend on channel am based on the CSMA

mechanism. If the mth mobile device contends am successfully, it will transmit pilot

signal on it and receive a non-zero rate in the current slot. Otherwise, it will keep

silent and receives rate 0. Based on this result, each mobile devicem updates its Pm(t)

according to (3.39), and repeats this process in the next slot till convergence. After the

convergence, at the Offloading stage, each mobile device m executes its computation

task following its optimal computation offloading decision from the previous stage.

Thus, the efficiency of the proposed scheme is mainly determined by the length of the

Learning stage. Since the slot length during the Learning stage depends on the size

of pilot signal, and such pilot signal can be set to be arbitrarily small, the slot length

at the Learning stage can be very small (e.g., in unit of millisecond as shown in [99]),

so that the proposed scheme can converge within a very short time and can achieve

a high efficiency.
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3.3 Performance Analysis

In this section, the performance of the proposed FDCO algorithm is analyzed in

terms of the number of beneficial cloudlet computing mobile devices and the network-

wide execution cost.

3.3.1 The Number of Beneficial Cloudlet Computing Mobile

Devices

Definition 3.3. Given a random computation offloading decision profile a, the mth

mobile device that chooses cloudlet computing (i.e., am ∈ N ) is beneficial if the

cloudlet computing does not incur higher execution cost than the local computing

(i.e., Om(am,a−m) ≤ Om(0,a−m)).

Since a larger number of beneficial cloudlet computing mobile devices implies a

higher utilization of the cloudlet resources and thus a higher revenue for providing

the cloudlet computing service, the number of beneficial cloudlet computing mobile

devices has been widely used as an important performance metric for cloudlet-based

MCC networks [113].

According to the concept of NEs specified by (3.21), the following Corollary is

obtained.

Corollary 3.1. At the NE a∗ of the formulated game Goff , if a mobile device m

chooses channel a∗m (a∗m ∈ N ) for offloading, this mobile device must be beneficial.

Therefore, the number of beneficial cloudlet computing mobile devices at NE a∗ equals∑M
m=1 1{a∗m>0}.
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Theorem 3.4. For the formulated game Goff , the proposed FDCO algorithm maxi-

mizes the number of beneficial cloudlet computing mobile devices.

The proof of Theorem 3.4 is shown in Appendix B.2.

3.3.2 Network-wide Execution Cost

Under the FDCO algorithm, let CFDCO be the total execution cost of all the

mobile devices, andNUMFDCO be the number of beneficial cloudlet computing mobile

devices. Then, CFDCO is bounded based on the following theorem.

Theorem 3.5. For the formulated game Goff , the proposed FDCO algorithm does

not incur a larger network-wide execution cost than computing locally by all mobile

devices. Moreover, if NUMFDCO = M , CFDCO is upper-bounded by

CFDCO ≤ (min(Fl,1,
Z

N
)− Fl,1)M +MFl,1 (3.50)

Otherwise, if 0 < NUMFDCO < M , CFDCO is upper-bounded by

CFDCO ≤ (min(Fl,1,
Z

N
)− Fl,1)N(

Fc,2(1)

Fl,2
− 1) +NFl,1 (3.51)

where

Z =
1

Fc,2(1)
M +Nλ1d

Ncyc

fcτ
e+ (N − 1)

1

Fc,2(1)
(3.52)

The proof of Theorem 3.5 is shown in Appendix B.3.

3.4 Simulation Results

In this section, the performance of the proposed FDCO algorithm will be demon-

strated through simulations. The convergence behavior of the proposed algorithm is
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Figure 3.1: Evolution of the decision selection probabilities P1i(t) by the FDCO

algorithm

first verified, and then its performance in terms of the number of beneficial cloudlet

computing mobile devices and the network-wide execution cost is evaluated. In all

simulations, set M = 20, b = 0.1, λ1 = λ2 = 0.5, Ncyc = 1000 Megacycles, B = 10,

fm = 1GHz, fc = 10GHz, νl = 10W/GHz, p = 100mW, τ = 20ms. The parameter

selection is based on the previous works in literature [61, 74,114–117]. Note that the

observations of this work are independent of the specific parameter settings.

3.4.1 Convergence Behavior of the FDCO Algorithm

Fig. 3.1 plots the evolution of decision selection probabilities Pmi(t) (i = 0, 1, 2, 3)

for an arbitrary mobile device m (m ∈M). It can be seen that the decision selection

probability vector Pm(t) evolves from a mixed strategy ( 1
N+1

, 1
N+1

, · · · , 1
N+1

) to a

pure strategy (0, 1, 0, 0) at the end, which illustrates the convergence of the proposed

FDCO algorithm. To further verify the convergence towards a pure strategy NE by
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Figure 3.2: Evolution of the number of mobile devices choosing action 0 by the FDCO

algorithm

the proposed FDCO algorithm, Figs.3.2-3.5 are plotted to show the evolution of the

number of mobile devices that choose each action i (i ∈ {0, 1, 2, 3}). Note that i = 0

denotes the local computing, while i = n (1 ≤ n ≤ 3) denotes the cloudlet computing

via channel n. From these figures, it can be seen that after the system converges,

there are 5 mobile devices choosing local computing, and on each channel, there are

5 mobile devices contending to offload their tasks to the cloudlet, which can be easily

justified as a NE of the formulated game Goff .

3.4.2 Performance Evaluation of the FDCO algorithm

In this section, the performance of the proposed FDCO algorithm in terms of the

number of beneficial cloudlet computing mobile devices and the network-wide execu-
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Figure 3.3: Evolution of the number of mobile devices choosing action 1 by the FDCO

algorithm

tion cost is evaluated. Three ordinary greedy heuristic algorithms are also simulated

for comparison. They are: 1) local computing, where all mobile devices choose to

compute the tasks on their own devices; 2) cloudlet computing, where all mobile

devices choose to offload the tasks to the cloudlet via a channel selected randomly

with equal probability; and 3) random computing, where each mobile device chooses

an action from {0} ∪ N randomly with equal probability. If a mobile device chooses

action 0, it will compute the task locally. Otherwise, it will offload its task to the

cloudlet via channel n (n ∈ N ). Run experiments with different number of channels

N = 1, 2, · · · , 5, and repeat each experiment over 100 times.

Fig. 3.6 shows the comparison among the proposed FDCO algorithm, the cloudlet

computing and the random computing algorithm in terms of the average number of
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Figure 3.4: Evolution of the number of mobile devices choosing action 2 by the FDCO

algorithm

beneficial cloudlet computing mobile devices. Note that the local computing algo-

rithm is not included since its number of beneficial cloudlet computing mobile devices

equals zero. From the figure, it can be seen that when N ≥ 4, the number of beneficial

cloudlet computing mobile devices achieved by the proposed FDCO algorithm equals

M . That means if the spectrum resource is sufficient (i.e., N ≥ 4 in this simulation),

under the proposed FDCO algorithm, all mobile devices will automatically choose

one channel to offload their tasks to the cloudlet. Then, according to the Corollary

3.1, all of them become beneficial cloudlet computing mobile devices. In all simula-

tion scenarios, the proposed FDCO algorithm outperforms the other two. Even when

N = 5, 42% performance gain can be achieved. This is because the proposed FDCO

algorithm achieves an efficient wireless access coordination among multiple mobile de-
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Figure 3.5: Evolution of the number of mobile devices choosing action 3 by the FDCO

algorithm

vices, so as to maximize the number of beneficial cloudlet computing mobile devices.

Fig. 3.7 describes the comparison of the proposed FDCO algorithm with the three

algorithms in terms of the average network-wide execution cost. From the figure, it

can be seen that when the spectrum resource is small (e.g., N ≤ 3 in this simu-

lation), local computing can achieve less network-wide execution cost than cloudlet

computing and random computing. It is because under this scenario, both cloudlet

and random computing may cause severe congestion on wireless channels, and lead to

high network-wide execution costs, nevertheless, such potential performance degra-

dation due to the transmission collisions is avoided by using the local computing.

However, with the increase of the number of available channels, the congestion issue

on wireless channels can be alleviated, so that both cloudlet and random comput-
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Figure 3.6: The comparison of different schemes in terms of the average number of

beneficial cloudlet computing mobile device

ing methods outperform the local computing by adopting the low execution cost at

the cloudlet. Under all simulation scenarios, the proposed FDCO algorithm always

achieves the least network-wide execution cost by balancing the transmission and

computation costs.
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execution cost



Chapter 4

Learning based Online

Context-Aware Proactive Caching for

an Energy Harvesting based Network

In this chapter, an energy harvesting based network consisting of a single MBS

with grid power supply and multiple small-cells with energy harvesting is considered.

The objective is to maximize the service ratio at the SBSs for both energy conser-

vation and environmental protection. To address the mismatching issue between the

random renewable energy generation and the random user request arrivals so as to

fully reap the benefits of energy harvesting, a context-aware proactive caching prob-

lem is investigated. It is first formulated as an MDP framework. Then, to address

the incomplete stochastic information about the network dynamics and the “curse of

dimensionality” issue of the formulated MDP, an PDS-ARL algorithm is proposed,

which learns on-the-fly the optimal context-aware proactive caching policy with a

77
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high learning efficiency. The simulation results validate the efficacy of this algorithm

by comparing it with baselines in terms of both the learning rate and the service ratio

at the SBSs.

4.1 System Model and Problem Formulation

4.1.1 System Architecture

Consider an energy harvesting based network which comprises a single MBS and

multiple non-overlapping small-cells. Each small-cell further consists of a SBS and

several associated users, as shown in Fig. 4.1. Following [118,119], assume SBSs op-

erate in disjoint sub-channels with the MBS and the interference among neighbouring

SBSs can be effectively eliminated by techniques such as enhanced inter-cell interfer-

ence coordination (eICIC) or/and orthogonal multiple access [120, 121]. Hence, this

chapter focuses on only one SBS and all other SBSs can work in the same way.

The time-slotted structure is considered and a set M = {1, · · · ,M} of M users

is associated with the SBS. The MBS is powered by the grid power, while the SBS is

powered through energy harvesting. The harvested energy is stored in a battery with

a finite capacity of ebmax . The SBS is connected with the MBS via a wired/wireless

backhaul link to fetch contents and store them in its cache. Based on the local content

popularity analysis [122–124], the SBS can proactively cache one content from each

of L content categories CC1, · · · , CCL that the associated users may be interested

in. Since contents may be outdated after a while, the content at the SBS is updated

every T ′′ time slots, called one period [125,126]. As in [118], since the focus here is on
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MBS

SBS

User

Figure 4.1: System Architecture.

the procedure of pushing contents from the SBS to its associated users, the time and

energy consumption to fetch contents from the MBS is ignored. At each slot t, each

user m (m ∈ M) maintains a list of pushed contents Cm,t in its local cache. Notice

that since users do not usually watch the same content twice, they will only cache

the contents that haven’t been watched yet.

4.1.2 Content Request Model

Along the time, each user m (m ∈ M) generates an independent sequence of

requests {Vm,t}t, where Vm,t ∈ {0, 1} is an indicator of a request in slot t. Vm,t = 1 if

user m generates a request in slot t. Otherwise, Vm,t = 0. Define πm = Pr(Vm,t = 1),
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which denotes the time-average activity probability for user m. In slot t, if Vm,t = 1,

user m sends a request targeting content from one of L content categories according

to its specific preference. A content preference profile (CPP) is associated with each

individual user, which is defined as the probability distribution that each user requests

a content from each category. Specifically, denote CPPm,t = (Pm,t,1, · · · , Pm,t,L) as

the CPP of user m in slot t, where Pm,t,l (l = 1, · · · , L) denotes the probability that

user m requests CCl. By considering the facts that i) users will not request the

content they already watched, and ii) the content of each category is updated every

T ′′ slots, CPPm,t evolves following a Markov process as follows:

• According to some measurement studies in [122–124], the initial CPP of each

user can be obtained as CPP 0
m = [P 0

m,1, · · · , P 0
m,L], m ∈ M. Thus, in the first

slot of each period, indexed by t = iT ′′, i = 0, 1, · · · , CPPm,t = CPP 0
m.

• Within each period, user m (m ∈M) requests the content following the current

profile CPPm,t. If user m is inactive or the request can not be satisfied in slot

t, let

CPPm,t+1 = CPPm,t (4.1)

Otherwise, if the request of CCl (l ∈ {1, · · · , L}) is satisfied, then, CPPm,t+1

is updated following [124]

Pm,t+1,l′ =

 0, l′ = l;

Pm,t,l′∑
l′′ 6=l Pm,t,l′′

, l′ 6= l.

(4.2)
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4.1.3 Content Transmission Model

For the content transmission to user m (m ∈ M), the required transmit power

pm satisfies

Eξ[W log2(1 +
pm|ξ|2d−αm

σ2
)] = r0 (4.3)

where r0 is the target average data rate in each slot, W is the bandwidth of the

SBS, ξ is the small-scale fast fading coefficient, dm is the distance of user m from

the SBS, α represents pathloss exponent, and σ2 denotes noise power. Note that

the expectation in (4.3) results from the fact that the slot duration, ranging from

minutes to hours depending on the nature of services [87,90], is much longer than the

fast fading at a timescale of milliseconds. Based on the channel model, the required

transmit power pm can be derived, and the corresponding energy consumption em can

then be calculated as em = pmτ , where τ denotes the slot duration.

4.1.4 Working Modes and Battery Model

In each slot, the SBS has three possible working modes: sleep, reactive trans-

mission, and proactive caching. In the sleep mode, the SBS does nothing, and all

requests from the users will be blocked. In the reactive transmission mode, the SBS

reactively satisfies one request initiated by the users in this slot. Since there may exist

multiple requests, the SBS has to determine which request will be satisfied. Notice

that although the SBS only targets at one user for transmission, the users with closer

distances to the SBS can also receive the transmitted content, and will cache it if it

has neither been watched nor cached yet, or just consume it if it is exactly what they
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request currently. For this sense, more than one request can be satisfied by the SBS

through reactive transmission at one time. In the proactive caching mode, the SBS

proactively pushes an unrequested content to the users who may be interested in the

future. In this mode, the SBS has to determine which content should be pushed to

which users, and how much transmit power needed so that all the selected users can

receive the content successfully. Obviously, in this case, the energy consumption is

determined by the user with the worst channel condition.

Denote ebt ≤ ebmax as the battery state at the beginning of slot t, and ect as the

energy consumption in slot t. ect = 0 if the SBS is in the sleep mode and ect = em

(m ∈M) if the SBS transmits to user m via either reactive transmission or proactive

caching (where m should be the user with the worst channel condition). Since ect is

always constrained by the available battery energy, ect ≤ ebt . Let eht be the harvested

energy in slot t and be ergodic [118]. Then, the battery energy state evolves as

ebt+1 = min{ebmax , ebt − ect + eht} (4.4)

4.1.5 Objective

When a user requests a content that is neither in its local cache nor satisfied

by the SBS transmission, the request is then handled by the MBS. This chapter

aims at maximizing the service ratio SR at the SBS, defined as the ratio between

the number of requests served by the SBS and the number of total arrived requests.

Mathematically, the objective can be formulated as

max
a1,··· ,aT

SR = lim
T→∞

∑T−1
t=0 Ω(t)∑T−1

t=0

∑M
m=1 Vm,t

(4.5)
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where T is the total number of slots, Ω(t) is the number of requests satisfied by the

SBS in slot t,
∑T

t=0

∑M
m=1 Vm,t is the total number of arrived requests within T slots

from all users, and the decision variables {a1, · · · , aT} represent the actions taken by

the SBS in each slot, denoting which content is transmitted to which user.

However, obtaining the optimal {a1, · · · , aT} in problem (4.5) is quite challenging

due to the following reasons:

• In each slot t, the number of feasible actions can be huge. It is because there

may be multiple requests from the users that satisfy ect ≤ ebt , so that any of

these users can be the transmission target of the SBS. Moreover, for each feasi-

ble target, multiple choices may exist on determining the transmission content

under the proactive caching mode. Such large number of feasible actions in each

slot makes decision making very difficult.

• Due to the temporal correlation of both the battery states and the content

preference profiles at each user, the current action not only affects the immediate

reward, but also influences the network evolution in the future. Hence, in each

slot, with the observed instantaneous network information, it is challenging to

determine the optimal action so as to optimize the long term performance.

To address these issues, in the following, an PDS-ARL algorithm is proposed to

solve this problem effectively and efficiently.



Chapter 4: Learning based Online Context-Aware Proactive Caching for an Energy
Harvesting based Network 84

4.2 PDS-ARL algorithm

Due to the involved Markov process (both the battery energy evolution and the

CPP evolution of each user), MDP [14] becomes an effective mathematical tool for

solving problem (4.5). Next, problem (4.5) is first formulated as an MDP framework.

4.2.1 MDP Formulation

Since an standard MDP framework contains four elements: states, actions, reward

function, and state transition, each of them will be described as follows.

States

In each slot t, to make action control, the SBS has to observe

• ebt : the battery energy state in slot t. Only if there is sufficient energy, the

SBS can make the transmission action, either reactive transmission or proactive

caching. Otherwise, it enters sleep.

• ζt: If each period is defined to consist of T ′′ stages, ζt denotes the index of the

stage within the current period, and ζt ∈ {0, 1, · · · , T ′′− 1}. If ζt = T ′′− 1, i.e.,

the last stage of a period, since the content of each category will be updated in

the next slot, it is meaningless to do proactive caching in the current time slot.

• Ct = (C1,t, · · · , CM,t): the pushed content lists at each user’s local cache in slot

t. If ζt = 0, Cm,t = ∅. Otherwise, Cm,t ⊆ {CC1, · · · , CCL}, m ∈M.

• CPPt = (CPP1,t, · · · ,CPPM,t): the content preference profiles for each user

in slot t. If ζt = 0, CPPm,t = CPP 0
m.



Chapter 4: Learning based Online Context-Aware Proactive Caching for an Energy
Harvesting based Network 85

• Ret = (Re1,t, · · · , ReM,t): the content requests from each user in slot t. Rem,t =

CCl (l ∈ {1, · · · , L}) denotes that user m requests the content from category

CCl, while Rem,t = 0 denotes that user m is inactive.

In summary, the system state in each slot t can be denoted as St = (ebt , ζt,Ct,CPPt,

Ret).

To make the action control tractable, the battery energy ebt is discretized into

a finite set. Similar assumption has also been adopted in the literature, e.g., [127]

and [128]. Specifically, the battery energy is discretized with minimum energy unit of

eunit. Then, ebt ∈ {0, 1, · · · , ẽbmax}, where ebt = i (i ∈ {0, 1, · · · , ẽbmax}) corresponds to

ieunit amount of energy in the battery and ebmax = ẽbmaxeunit. Similarly, the amount of

energy arrived in each slot t is also discretized with eht = i representing there are ieunit

energy arrival. To discretize ect , a series of distances 0 = D1 < D2 < · · · < Dw = radii

are selected, where radii denotes the small-cell radius. If user m’s (m ∈M) distance

dm from the SBS satisfies Di−1 < dm ≤ Di, i ∈ {2, · · · , w}, dm is then discretized

as Di. {D1, · · · , Dw} are selected so that after discretization, em = pmτ = intmeunit,

where intm is a positive integer.

Denote S as the system state space. Since Ct, CPPt and Ret are dependent on

ζt, S can be divided into several subspaces with respect to different ζt. Specifically,

• if ζt = 0, Ct = ∅,CPPt = [CPP 0
1 , · · · ,CPP 0

M ], andRem,t ∈ {0, CC1, · · · , CCL},

m = 1, · · · ,M . Thus, the associated subspace Sζt=0 has a size of

|Sζt=0| = (ẽbmax + 1)(L+ 1)M (4.6)

• if ζt = i, i ∈ {1, · · · , T ′′ − 1}, it means within the current period, at most i
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contents have been transmitted by the SBS, and for each user, it has cached

at most i contents, and has requested at most i contents. Thus, the associated

subspace Sζt=i has a size of

|Sζt=i| = (ẽbmax + 1)Ci
L[f(i, 0) + f(i, 1) + · · ·+ f(i, i)]M (4.7)

where f(i, j), j ∈ {0, 1, · · · , i}, represents the number of all possible combina-

tions (Cm,t,CPPm,t, Rem,t) for each user m (m ∈ M) when it has cached j

contents from the i contents transmitted by the SBS. f(i, j) can be formulated

as

f(i, j) = Cj
i (C

0
L−j(L+ 1) + C1

L−j(C
1
L−1 + 1) + · · ·+ C

xi,j
L−j(C

1
L−xi,j + 1)) (4.8)

Since users won’t cache the contents they have already viewed, Cy
L−j(C

1
L−y + 1),

y = 0, 1, · · · , xi,j, denotes the number of all possible combinations (CPPm,t, Rem,t)

for each user m (m ∈M) when it has watched y contents from the (L− j) non-

cached contents, where xi,j satisfies xi,j + j ≤ L and xi,j ≤ i.

In summary, the overall state space size |S| can be calculated as

|S| = |Sζt=0|+
T ′′−1∑
i=1

|Sζt=i|

= (B̃max + 1)Υ(L,M, T ′′) (4.9)

where

Υ(L,M, T ′′) = (L+ 1)M +
T ′′−1∑
i=1

Ci
L(f(i, 0) + f(i, 1) + · · ·+ f(i, i))M

From (4.9), it can be seen that the overall state space size can be quite huge, even

with small values of L,M, and T ′′. For example, by setting L = M = T ′′ = 3,

Υ(L,M, T ′′) already becomes 411565.
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Actions

As modelled before, in each slot, the SBS has three possible working modes: sleep,

reactive transmission, and proactive caching. However, these three modes may not

always be available at the SBS. For example, if ζt = T ′′ − 1, proactive caching is

unavailable. Thus, the available actions are state-dependent. In the following, the

action space, denoted as A(St), will be described with respect to different system

states.

• If ζt = T ′′− 1 and Ret = [0, · · · , 0], it means at the last stage of a period, there

is no request from the users. In this case, the SBS does nothing, no matter how

much energy available in the battery, i.e., at ∈ A(St) = {0}, where 0 denotes

the SBS enters sleep.

• If ζt = T ′′− 1 and Ret 6= [0, · · · , 0], it means at the last stage of a period, there

exist requests from the users. Denote Mr
t as a user set consisting of all users

who request contents that have not been locally cached yet and can be satisfied

by the battery energy. IfMr
t 6= ∅, the reactive transmission mode is available,

and the SBS can select one user from the set Mr
t for reactive transmission.

Thus, in this case, at ∈ A(St) = {0,Mr
t}, and the number of total possible

actions equals 1 + |Mr
t |.

• If ζt 6= T ′′− 1 and Ret = [0, · · · , 0], it means there is no request from the users

and proactive caching can be available. DenoteMp
l,t (l ∈ {1, · · · , L}) as a set of

users who have neither watched nor cached CCl yet within the current period

and satisfy em ≤ ebt . If there exists Mp
l,t 6= ∅, l ∈ {1, · · · , L}, the proactive
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caching mode becomes available, and the SBS can select one user from the set

Mp
l,t as the user with the worst channel condition for proactively pushing CCl.

Thus, in this case, at ∈ A(St) = {0,Mp
1,t, · · · ,M

p
L,t}, and the number of total

possible actions equals 1 +
∑L

l=1 |M
p
l,t|.

• If ζt 6= T ′′−1 andRet 6= [0, · · · , 0], all three working modes can be available, and

at ∈ A(St) = {0,Mp
1,t, · · · ,M

p
L,t}. Since Mr

t ⊆ {M
p
l,t}l∈{1,··· ,L}, A(St) = {0,

{Mp
l,t}l∈{1,··· ,L}, so that the number of total possible actions in this case equals

1 +
∑L

l=1 |M
p
l,t|.

Based on all above analysis, it is concluded that the action space size can be up

to 1 +ML.

Reward Function

The per-slot reward for each user m (m ∈ M) is defined as rwm,t, which denotes

whether the current request is satisfied by the SBS or not. Mathematically, it can be

expressed as

rwm,t =



0, Vm,t = 0

0, Vm,t = 1, Rem,t 6∈ Cm,t, and Rem,t is not satisfied by the SBS transmi-

ssion

1, Vm,t = 1, Rem,t 6∈ Cm,t, and Rem,t is satisfied by the SBS transmission

1, Vm,t = 1, Rem,t ∈ Cm,t

(4.10)

Notice that in each slot t, if user m is inactive, i.e., Vm,t = 0, rwm,t = 0. If user m

is active, i.e., Vm,t = 1, rwm,t = 0 when the content request can neither be found
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in the local cache nor be satisfied by the SBS transmission. Otherwise, rwm,t = 1.

By summing up the rewards of all users, the overall reward rwt is obtained, which

denotes the number of total requests satisfied by the SBS in slot t and is formulated

as

rwt(St, at) =
M∑
m=1

rwm,t (4.11)

State Transition

The state transition can be expressed as the following conditional probability:

Pr(St+1|St, at)

= Pr((ebt+1 , ζt+1,Ct+1,CPPt+1,Ret+1)|(ebt , ζt,Ct,CPPt,Ret), at)

= Pr(ebt+1|ebt , at)Pr(ζt+1|ζt)Pr(Ct+1|Ct,Ret, ζt, at)Pr(CPPt+1|CPPt,Ret, ζt)

· Pr(Ret+1|CPPt+1) (4.12)

In the following, all conditional probabilities in (4.12) are calculated.

Pr(ebt+1|ebt , at) : Since ebt+1 = min(ebmax , ebt − ect + eht), i.e.,

ebt+1 =

 ebt − ect + eht , if eht < ebmax + ect − ebt

ebmax , otherwise
(4.13)

then,

Pr(ebt+1 |ebt , at) =

 Peh(eht = ebt+1 − ebt + ect), if ebt+1 < ebmax∑
eht≥ebmax+ect−ebt

Peh(eht), if ebt+1 = ebmax

(4.14)

where Peh(·) denotes the stochastic model of the energy harvesting process. Notice

that due to the high unpredictability of renewable energy, such a stochastic model

may not be always available a priori.
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Pr(ζt+1|ζt) : If 0 ≤ ζt < T ′′ − 1, ζt+1 = ζt + 1, otherwise, ζt+1 = 0. Thus,

Pr(ζt+1|ζt) =


1, if 0 ≤ ζt < T ′′ − 1, ζt+1 = ζt + 1

1, if ζt = T ′′ − 1, ζt+1 = 0

0, otherwise

(4.15)

Pr(Ct+1|Ct,Ret, ζt, at) : Since Pr(Ct+1|Ct,Ret, ζt, at) = Pr(C1,t+1|C1,t, Re1,t, ζt, at) · · ·

Pr(CM,t+1|CM,t, ReM,t, ζt, at), it only needs to compute Pr(Cm,t+1|Cm,t, Rem,t, ζt, at) for

an arbitrary user m, m ∈M.

When ζt = T ′′ − 1, since the content of each category will be updated in the

next slot, the pushed list in the local cache will be reset to empty at slot t + 1, i.e.,

Cm,t+1 = ∅, while when ζt < T ′′ − 1, Cm,t+1 will be updated based on the current

Cm,t, Rem,t, and at. Specifically, in slot t, if user m’s request Rem,t (Rem,t 6= 0) can

be satisfied by its local cache, i.e., Rem,t ∈ Cm,t, Rem,t will be removed from its local

cache in slot t + 1. If the SBS transmits CCl (CCl 6= Rem,t, l ∈ {1, · · · , L}) which

has neither been viewed nor cached by user m yet with energy ect ≥ em, CCl will

be then added to user m’s local cache in slot t + 1. Otherwise, the pushed list in

user m’s local cache will keep unchanged in slot t+ 1. Mathematically, Cm,t+1 can be

formulated as:

• If ζt = T ′′ − 1,

Cm,t+1 = ∅ (4.16)

• If ζt < T ′′ − 1,



Chapter 4: Learning based Online Context-Aware Proactive Caching for an Energy
Harvesting based Network 91

– when Rem,t 6= 0, and Rem,t 6∈ Cm,t,

Cm,t+1 =



Cm,t, if ect < em

Cm,t, if the SBS transmits Rem,t with ect ≥ em

Cm,t, if the SBS transmits a content that has already been

viewed or cached by user m with ect ≥ em

Cm,t
⋃
{CCl}, if the SBS transmits CCl (CCl 6= Rem,t, l ∈

{1, · · · , L}) that has neither been viewed nor cached by

user m yet with ect ≥ em

(4.17)

– When Rem,t 6= 0, and Rem,t ∈ Cm,t,

Cm,t+1 =



Cm,t \Rem,l, if ect < em

Cm,t \Rem,l, if the SBS transmits a content that has already

been viewed or cached by user m with ect ≥ em

{Cm,t \Rem,l}
⋃
{CCl}, if the SBS transmits CCl (l ∈ {1,

· · · , L}) that has neither been viewed nor cached by user

m yet with ect ≥ em

(4.18)
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– When Rem,t = 0,

Cm,t+1 =



Cm,t, if ect < em

Cm,t, if the SBS transmits a content that has already been

viewed or cached by user m with ect ≥ em

Cm,t
⋃
{CCl}, if the SBS transmits CCl (l ∈ {1, · · · , L}) that

has neither been viewed nor cached by user m yet with

ect ≥ em

(4.19)

Correspondingly, the transition probability of Cm,t can be calculated as

• If ζt = T ′′ − 1,

Pr(Cm,t+1|Cm,t, Rem,t, ζt, at) =

 1, if Cm,t+1 = ∅

0, otherwise
(4.20)

• If ζt < T ′′ − 1,

– when Rem,t 6= 0, and Rem,t 6∈ Cm,t,

Pr(Cm,t+1|Cm,t, Rem,t, ζt, at)
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=



1, if ect < em and Cm,t+1 = Cm,t

1, if the SBS transmits Rem,t with ect ≥ em and Cm,t+1 = Cm,t

1, if the SBS transmits a content that has already been viewed

or cached by user m and Cm,t+1 = Cm,t

1, if the SBS transmits CCl (CCl 6= Rem,t, l ∈ {1, · · · , L}) that

has neither been viewed nor cached by user m yet with ect ≥ em,

and Cm,t+1 = Cm,t
⋃
{CCl}

0, otherwise

(4.21)

– When Rem,t 6= 0, and Rem,t ∈ Cm,t,

Pr(Cm,t+1|Cm,t, Rem,t, ζt, at)

=



1, if ect < em and Cm,t+1 = Cm,t \Rem,l

1, if the SBS transmits a content that has already been viewed

or cached by user m with ect ≥ em and Cm,t+1 = Cm,t \Rem,l

1, if the SBS transmits CCl (l ∈ {1, · · · , L}) that has neither been

viewed nor cached by user m yet with ect ≥ em, and Cm,t+1 =

{Cm,t \Rem,l}
⋃
{CCl}

0, otherwise

(4.22)

– When Rem,t = 0,

Pr(Cm,t+1|Cm,t, Rem,t, ζt, at)
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=



1, if ect < em and Cm,t+1 = Cm,t

1, if the SBS transmits a content that has already been viewed

or cached by user m with ect ≥ em and Cm,t+1 = Cm,t

1, if the SBS transmits CCl (l ∈ {1, · · · , L}) that has neither

been viewed nor cached by user m yet, and Cm,t+1 = Cm,t
⋃
{CCl}

0, otherwise

(4.23)

Pr(CPPt+1|CPPt,Ret, ζt) : Pr(CPPt+1|CPPt,Ret, ζt) = Pr(CPP1,t+1|CPP1,t,

Re1,t, ζt) · · ·Pr(CPPM,t+1|CPPM,t, ReM,t, ζt). Similarly, I only focus on computing

Pr(CPPm,t+1| CPPm,t, Rem,t, ζt) for an arbitrary user m, ∀m ∈M.

If ζt = T ′′− 1, the content preference profile for user m will be reset to the initial

value CPP 0
m in slot t + 1, i.e., CPPm,t+1 = CPP 0

m. Otherwise, CPPm,t+1 will

be updated based on CPPm,t and Rem,t. Specifically, if user m is inactive in slot t,

i.e., Rem,t = 0, its content preference profile will keep unchanged in slot t + 1, i.e.,

CPPm,t+1 = CPPm,t. If user m requests Rem,t (Rem,t 6= 0) in slot t, since such a

request can always be satisfied by either the SBS via proactive caching or reactive

transmission, or the MBS when it is blocked by the SBS, the probability that user m

requests Rem,t will become 0 in slot t+ 1 and CPPm,t+1 is updated following:

Pm,t+1,l =


0, if CCl = Rem,t

Pm,t,l∑
CCl′ 6=Rem,t

Pm,t,l′
, if CCl 6= Rem,t

(4.24)

The transition probability of CPPm,t can then be calculated as

Pr(CPPm,t+1|CPPm,t, Rem,t, ζt)
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=



1, if ζt = T ′′ − 1 and CPPm,t+1 = CPP 0
m

1, if ζt < T ′′ − 1, Rem,t = 0, and CPPm,t+1 = CPPm,t

1, if ζt < T ′′ − 1, Rem,t 6= 0, and CPPm,t+1 complies with (4.24)

0, otherwise

(4.25)

Pr(Ret+1|CPPt+1) : For each user m (m ∈ M), it generates a content request in

each time slot following the average activity probability πm. Thus,

Pr(Rem,t+1|CPPm,t+1) =

 πmPm,t+1,l, if Rem,t+1 = CCl

1− πm, if Rem,t+1 = 0

(4.26)

Based on the MDP framework, the original optimization problem (4.5) can be

rewritten as

max
µ(St)

SR =
limT→∞

1
T
E[
∑T−1

t=0 rwt(St, µ(St))]∑M
m=1 πm

(4.27)

which is equivalent to

max
µ(St)

r̄w = lim
T→∞

1

T
E[

T−1∑
t=0

rwt(St, µ(St))] (4.28)

where the expectation operation is taken over all random parameters and the opti-

mization is taken over any possible stationary policy µ : St ∈ S → at ∈ A(St) [14].

According to [14], the optimal average reward r̄w∗, together with the optimal dif-

ferential value vector dv∗ = [dv∗(S1), · · · , dv∗(S|S|)], satisfies the following Bellman’s

equation:

r̄w∗ + dv∗(S) = max
a∈A(S)

[rw(S, a) +
∑
S′∈S

Pr(S′|S, a)dv∗(S′)], ∀S ∈ S (4.29)

If a = µ∗(S) attains the maximum value of (4.29) for each S ∈ S, the stationary

policy µ∗ is optimal. From (4.29), if all the stochastic information is known a priori,
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the optimal policy µ∗ can be obtained by using the traditional DP methods such

as the value iteration or the policy iteration [16] in an offline manner. However,

in practice,Peh(·) may be unknown, which makes the traditional offline algorithms

become infeasible. R-learning [15] is the most widely used approach for solving the

average reward maximization in MDP framework without the knowledge of transition

probabilities. However, in this problem, this classic tabular based method can not

be adopted since the large size of table (|S| × |A|) requires enormous memories and

very long time for convergence. To address this issue, in the next subsection, an

PDS-ARL algorithm is proposed, which can learn the optimal policy on-the-fly with

a high learning efficiency.

4.2.2 An PDS-ARL Algorithm

PDS based Learning Algorithm

Since in the state transition Pr(St+1|St, at), all the transition probabilities except

Pr(ebt+1 |ebt , at) can be derived a priori, this partially known information can be ex-

ploited to speed up the learning rate. Compared with the conventional R-learning

algorithm, the proposed PDS based learning algorithm can significantly improve the

convergence speed, without any performance degradation.

PDS: Define PDS as the intermediate system state after the SBS takes an action

at but before the energy eht is harvested. Specifically, the PDS in slot t, denoted by

Ŝt = (êbt , ζ̂t, Ĉt, ĈPP t, R̂et), is defined as

êbt = ebt − ect (4.30)
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ζ̂t = ζt+1 (4.31)

Ĉt = Ct+1 (4.32)

ĈPP t = CPPt+1 (4.33)

R̂em,t is generated following the probability distribution in ĈPPm,t if

R̂em,t 6= 0,m = 1, · · · ,M (4.34)

Note that PDS is actually a virtual state.

PDS based Learning Algorithm: Based on the definition of PDS, the differential

value function for each PDS is formulated as:

dv∗(Ŝt) =
∑
St+1∈S

Pr(St+1|Ŝt)dv∗(St+1), Ŝt ∈ S (4.35)

where the transition Pr(St+1|Ŝt) is independent of the action and satisfies:

Pr(St+1|Ŝt) =

 Peh(eht = ebt+1 − ebt + ect), if ebt+1 < ebmax∑
eht≥ebmax+ect−ebt

Peh(eht), if ebt+1 = ebmax

(4.36)

By comparing (4.29) with (4.35), it is obvious that there is a deterministic mapping

from dv∗(St) to dv∗(Ŝt) as

r̄w∗ + dv∗(St) = max
at∈A(St)

(rwt(St, at) +
∑
R̂et

Pr(R̂et|ĈPP t)dv
∗(Ŝt)), ∀St ∈ S

(4.37)

Note that since the problem (4.37) is essentially the same as the problem (4.29), the

optimal policy µ∗(St) (∀St ∈ S) can be determined by

µ∗(St) = arg max
at∈A(St)

(rwt(St, at) +
∑
R̂et

Pr(R̂et|ĈPP t)dv
∗(Ŝt)) (4.38)
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According to (4.37)-(4.38), if dv∗(Ŝt) for ∀Ŝt ∈ S can be learnt and approximated,

the optimal differential value function dv∗(St) for each state St ∈ S and the optimal

policy µ∗(St) can be obtained. From (4.35)-(4.36), dv∗(Ŝt) (∀Ŝt ∈ S) can be obtained

by just learning the unknown dynamics Peh on-the-fly. Similar to the conventional

R-learning algorithm, an iterative method can be employed to approximate dv∗(Ŝt)

for ∀Ŝt ∈ S. Specifically, at slot t, dv∗(Ŝt) is updated by

dv∗t+1(Ŝt) = (1− εt)dv∗t (Ŝt) + εtdv
∗
t (St+1) (4.39)

where εt is the learning rate in the tth iteration for weighting the newly learned ex-

perience, and satisfies the following stochastic approximation conditions: 0 < εt < 1,∑
t εt = ∞, and

∑
t ε

2
t < ∞ [129]. Compared with the conventional R-learning al-

gorithm, where all state-action pairs have to be visited infinitely, the proposed PDS

based learning algorithm reduces the learning space to include only states. Further-

more, since (4.37) is equivalent to (4.29), there is no performance degradation in the

proposed PDS based learning algorithm.

However, due to the huge size of the state space |S|, the PDS based learning

algorithm may still encounter the curse of dimensionality. To address this challenge,

in the following, an ARL algorithm is proposed.

ARL Algorithm

In this part, a parameterized function is first defined to represent the differential

value function dv∗. Then, a gradient-descent based iteration method is proposed to

learn the defined parameters.
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Parameterized Function Representation: For the state space S, a feature-

extraction function χ : S → F is adopted to map states into features in the feature

space F . Specifically, corresponding to an arbitrary state St ∈ S (or an arbitrary

PDS Ŝt ∈ S), there is a feature vector χ(St) = (Feb(St), Fζ(St), {Fm,CC1(St), · · · ,

Fm,CCL(St)}m∈M), where

• Feb(St) = (Feb,0(St), Feb,1(St), · · · , Feb,ẽbmax (St)) is the battery feature vector

with

Feb,i(St) =

 1, if ebt = i

0, otherwise
, ∀i ∈ {0, 1, · · · , ẽbmax} (4.40)

• Fζ(St) = (Fζ,0(St), · · · , Fζ,T ′′−1(St)) is the stage feature vector with

Fζ,i(St) =

 1, if ζt = i

0, otherwise
, ∀i ∈ {0, 1, · · · , T ′′ − 1} (4.41)

• Fm,CCl(St) = (Fm,l,1(St), Fm,l,2(St), Fm,l,3(St)) is the content feature vector of

CCl for user m, m = 1, · · · ,M, l = 1, · · · , L. Within the current period,

– Fm,l,1(St) = 1 if CCl has been watched by user m, otherwise, it is 0;

– Fm,l,2(St) = 1 if CCl has been cached by user m, otherwise, it is 0;

– Fm,l,3(St) = 1 if CCl is currently requested by user m, otherwise, it is 0.

Hence, by using the feature-extraction function χ, each state can be represented with

a binary vector of length ẽbmax + 1 + T ′′ + 3LM .

After feature extraction, a linear approximate architecture is considered for the

differential value function dv∗ as

d̃vt(Ŝt,γt) = χ(Ŝt)γt
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=

ẽbmax+1+T ′′+3LM∑
i=1

χ(Ŝt)(i)γt(i) ∀Ŝt ∈ S (4.42)

where γt denotes the adaptable parameter vector at slot t, with a length of ẽbmax +

1 + T ′′ + 3LM . By representing dv∗ in such a compact way, at each slot t, instead

of learning the differential value function for each PDS, it only needs to learn and

update the parameter vector γt, which has a much more manageable size of ẽbmax +

1 + T ′′ + 3LM . To this end, the learning space has been significantly reduced from

|S| to ẽbmax + 1 + T ′′ + 3LM .

Gradient-Descent based Iteration: Define an error function as

err =
1

2
[dv∗(Ŝ)− χ(Ŝ)γ]2, ∀Ŝ ∈ S (4.43)

Then, the optimal parameter vector γ∗ should satisfy

γ∗ = arg min
γ
err (4.44)

Based on the gradient-descent method, γ∗ is obtained by adjusting the parameter

vector following

γt+1 = γt −
1

2
ρt5γt [dv∗(Ŝt)− χ(Ŝt)γt]

2

= γt + ρt(dv
∗(Ŝt)− χ(Ŝt)γt)χ(Ŝt) (4.45)

where ρt is a positive step-size parameter. It has been proved in [15] that if ρt de-

creases in such a way as to satisfy the standard stochastic approximation conditions as

described above, the gradient-descent based iteration (4.45) is guaranteed to converge

to a local optimum.
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Since dv∗(Ŝt) is unknown, the iteration (4.45) cannot be performed directly. How-

ever, h∗(Ŝt) can be approximated by the training example ext in slot t, as

γt+1 = γt + ρt(ext − χ(Ŝt)γt)χ(Ŝt) (4.46)

where

ext = max
at+1∈A(St+1)

(rwt+1(St+1, at+1)− r̄wt +
∑
R̂et+1

Pr(R̂et+1|ĈPPt+1)χ(Ŝt+1)γt)

(4.47)

and the average reward r̄wt updates following

r̄wt+1 = r̄wt(1− ηt) + ηt(rwt+1(St+1, at+1) + χ(Ŝt+1)γt − χ(Ŝt)γt) (4.48)

ηt is the learning rate for updating r̄w. Since ext is an unbiased estimate, i.e., E[ext] =

dv∗(Ŝt), the iteration (4.46) can still be guaranteed to converge to a local optimum

[15].

PDS-ARL algorithm

The proposed PDS-ARL algorithm is summarized as follows. The feature vec-

tors for all system states are first extracted. Then, at the beginning of each slot

t, the greedy action in (4.38) is taken at the SBS, where dv∗(Ŝt) is replaced by its

approximate function χ(Ŝt)γt. After performing the action, the immediate reward

rwt(St, at), the PDS Ŝt, and the next state St+1 can be observed, based on which,

the parameter vector γt and the average reward r̄wt are updated following (4.46) and

(4.48), respectively. This process continues until both γk and r̄k converge. The details

of the proposed algorithm is shown in Algorithm 4.
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Algorithm 4: The Post-Decision State based Approximate Reinforcement
Learning Algorithm
1 Input: the feature vectors for all system states, the learning rates ρt and ηt.
2 Output: the parameter vector γ and the average reward r̄w.
3 Initialize t = 0, the parameter vector γt = 0, the average reward r̄wt = 0, and
the system state Sr ∈ S.

4 for t = 0, · · · , T − 1 do
5 set St = Sr, based on which, take the greedy action:

at = arg max
at∈A(St)

(rwt(St, at) +
∑
R̂et

Pr(R̂et|ĈPP t)χ(Ŝt)γt)

Observe the immediate reward rwt(St, at), the PDS Ŝt, and the next state
St+1.

6 At St+1, take the greedy action:

at+1 = arg max
at+1∈A(St+1)

(rwt+1(St+1, at+1) +
∑
R̂et+1

Pr(R̂et+1|ĈPPt+1)χ(Ŝt+1)γt)

Observe the immediate reward rwt+1(St+1, at+1), the PDS Ŝt+1, and the state
St+2.

7 Update the parameter vector γt with equation (4.46), and the average reward
r̄wt with equation (4.48).

8 Update Sr = St+2.
9 end

4.3 Numerical Results

In this section, the effectiveness of the proposed PDS-ARL algorithm is evaluated.

In the simulation, set radii = 10m, {D1, D2, · · · , Dw} = {0, 2, 4, 6, 8, 10}, r0
W

= 1

bps/Hz, and α = 2. The maximum transmit power or equivalently the transmit

power for cell-edge user is set as pmax = 0.5Watt. The channel coefficient ξ follows

Rayleigh fading. The mean value of the channel fading and the noise power σ2 are set

so that (4.3) holds for pm = pmax and dm = radii. For each user m, both the mean

activity probability πm and the distance dm to the SBS follows uniform distributions,
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Figure 4.2: Comparison between the PDS-ARL algorithm and the R-learning algo-

rithm

i.e, πm ∼ U [0, 1], dm ∼ radii × U [0, 1], ∀m. For simplicity, the slot length τ is

normalized as 1. The battery energy is quantized with unit eunit = 0.02 so that

the transmit power for a distance Di, i ∈ {1, · · · , 6}, equals (i − 1)2eunit. For the

learning rates, I set ρt = 1
t0.9

and ηt = 1
t
. Assume that users’ content preference

distribution follows Zipf distribution with a skew parameter 3 and the energy arrival

process follows a Poisson distribution with mean ēh. Notice that the analytical results

do not depend on any specific stochastic model, and hence can be applied to more

general cases. Other parameters are defined for each simulation scenario separately.

Firstly, the effectiveness of the proposed PDS-ARL algorithm in terms of the con-

vergence rate is evaluated by comparing it with the conventional R-learning algorithm.

As analyzed before, R-learning algorithm has the severe “curse of dimensionality” is-

sue, even with a small number of users. Thus, to facilitate the simulation, only one

user is considered here, i.e. M = 1, with an activity probability 0.5 and a distance
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Figure 4.3: The influence of battery capacity ẽbmax
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6m to the SBS. Other parameters are set as follows: T ′′ = 3, L = 3, ebmax = 12, and

ēh = 5. From Fig. 4.2, it can be seen that even with M = 1, R-learning algorithm

takes more than 5 × 104 slots before convergence. On the contrary, the proposed

PDS-ARL algorithm converges to a steady-state value within 200 slots. Furthermore,

the performance of the proposed PDS-ARL algorithm is very similar to that of the R-

learning algorithm. Namely, the proposed PDS-ARL algorithm can achieve a similar

performance as the R-learning algorithm but with a significantly reduced convergence

time. Thus, the proposed PDS-ARL algorithm is more effective and practical than

the conventional algorithm.

Next, the performance of the proposed PDS-ARL algorithm in terms of SR is

evaluated by comparing it with a non-proactive strategy, in which only reactive trans-

mission is available. In all these simulations, unless specified, set M = 3, T ′′ = 3,

L = 3, ẽbmax = 20, ēh = 10, πm = 0.5, ∀m ∈ M, [d1, d2, d3] = [4, 8, 6], and the initial

content preference rankings for each user are randomly generated as [CC1, CC2, CC3],

[CC3, CC1, CC2], and [CC2, CC3, CC1], respectively.

Figs. 4.3 and 4.4 evaluate the influence of the battery capacity ẽbmax and the

average energy arrival ēh, respectively. In Fig.4.3, set ēh = 10 and vary ẽbmax from 4

to 50, while in Fig.4.4, set ẽbmax = 20 and vary ēh from 2 to 20. From Fig.4.3, it can be

seen that when the battery capacity is very limited (e.g., ẽbmax = 4 in this simulation),

the proposed PDS-ARL algorithm achieves very limited performance gains compared

with the non-proactive strategy. However, with the increase of battery capacity,

the proposed PDS-ARL algorithm achieves much better performance than the non-

proactive strategy (e.g., yielding around 30% improvement when ẽbmax = 20 and 50%
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improvement when ẽbmax = 50). This is because when the battery capacity ẽbmax = 4,

the SBS can only serve user 1, who requires 4 unit transmission power and is the least

among all users. Thus, the benefit due to proactive caching is limited. However, when

the battery capacity ẽbmax ≥ 20, all three users could be served by the SBS, which

creates more opportunities for the SBS to perform proactive caching. By exploring

the similarity of content preferences among users, the proposed PDS-ARL algorithm

improves the energy utilization efficiency and hence outperforms the non-proactive

strategy significantly. A similar explanation can be applied to the observations from

Fig.4.4, where both two algorithms achieve almost the same performance when the

average energy arrival ēh is very limited (e.g., ēh = 2 in this simulation), while with the

increase of ēh, the proposed PDS-ARL algorithm achieves much better performance

than the non-proactive strategy (e.g., yielding around 30% improvement when ēh = 10

and 50% improvement when ēh = 20).

Fig. 4.5 shows the performance comparison by varying user activity probability

πm, m = 1, 2, 3. From this figure, it can be seen that with a low user activity probabil-

ity (e.g., π1 = π2 = π3 = 0.1 in this simulation), the service ratio SR achieved by both

two algorithms is close to 100%. With the increase of πm, m = 1, 2, 3, both service ra-

tios decrease, but the one with the non-proactive strategy drops much faster than that

with the proposed PDS-ARL algorithm. This is because when π1 = π2 = π3 = 0.1,

the request generation rate is very low. By setting ēh = 10 and ẽbmax = 20, the bat-

tery energy will be always sufficient to support the content requests, which makes the

advantage of proactive caching insignificant. With the increase of user activity proba-

bility, the request generation rate increases, which then leads to an increase of energy
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consumption. Thus, the battery energy may not be always sufficient to support all

users’ content requests, which results in the decrease of the service ratios. However,

with insufficient battery energy, optimizing energy utilization becomes important.

Thus, by performing proactive caching to utilize the limited renewable energy in a

more efficient manner, the proposed PDS-ARL algorithm achieves much better per-

formance than the non-proactive strategy (e.g., yielding around 30% improvement

when πm = 0.3 and 65% improvement when πm = 0.8).

Fig. 4.6 shows the performance comparison by varying the number of users M .

In this simulation, I set ẽbmax = 50, and πm = 0.5, ∀m. In addition, for each user, the

distance to the SBS and the initial content preference ranking are generated randomly.

Specifically, for M = 1, {d1} = {8} and the user’s initial content preference ranking

is {CC2, CC1, CC3}. For M = 3, {d1, d2, d3} = {4, 8, 4} and the users’ initial content

preference rankings are {CC2, CC3, CC1}, {CC3, CC1, CC2}, and {CC1, CC2, CC3}.

For M = 5, {d1, d2, d3, d4, d5} = {2, 4, 6, 6, 8} and the users’ initial content preference

rankings are {CC1, CC2, CC3}, {CC3, CC1, CC2}, {CC2, CC3, CC1}, {CC1, CC3, CC2},

and {CC2, CC1, CC3}. From Fig. 4.6, it can be seen that with a single user in the

small-cell, both algorithms achieve a similar performance, while with the increase

of the number of users, the proposed PDS-ARL algorithm starts outperforming the

non-proactive strategy and the performance gap increases with the number of users.

The reason is similar to that in Fig. 4.5. With a small number of users, the battery

energy is sufficient to support all content requests so that the proactive caching is

not necessary. With the number of users increasing, more content requests can be

generated and the deliberate energy utilization becomes important. By exploring
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Figure 4.7: The influence of the number of content category L.

the similarity of content preferences among users, the proposed PDS-ARL algorithm

improves the energy utilization significantly through effective proactive caching.

In order to demonstrate the impact of the CPP diversity among users, Fig. 4.7

presents the performance comparison by setting the period T ′′ as 3 and varying the

number of content categories L. In this simulation, I randomly generate users’ initial

content preference rankings as follows: For L = 3, the initial content preference

rankings are {CC3, CC1, CC2}, {CC3, CC2, CC1}, and {CC1, CC3, CC2}; For L = 6,

they are {CC4, CC3, CC5, CC2, CC6, CC1}, {CC3, CC1, CC6, CC4, CC5, CC2}, and

{CC6, CC2, CC4, CC1, CC5, CC3}. With T ′′ = 3, each user will at most watch 3

preferable content categories within each period. If L = 3, all users have a common

set of contents that will be potentially watched within each period, whereas if L = 6,

since different users may have different content preferences, the 3 preferable content

categories that will be most likely watched by each user can be quite different, and

hence the similarity on users’ CPPs can be very limited. Thus, as shown in Fig. 4.7,
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Figure 4.8: The influence of the period T ′′.

when L = 3, the proposed PDS-ARL algorithm attains 50% performance gains over

the non-proactive strategy, while with L = 6, the performance gains arrive at 15%.

In Fig. 4.8, these two algorithms are compared by varying the period T ′′. The pa-

rameter settings are as follows: {π1, π2, π3} = {0.5, 0.8, 0.6}; With T ′′ = 2, L =

2 and the initial content preference rankings are {CC1, CC2}, {CC1, CC2}, and

{CC2, CC1}; With T ′′ = 5, L = 5 and the initial content preference rankings are

{CC2, CC1, CC3, CC5, CC4}, {CC5, CC2, CC4, CC3, CC1}, and {CC3, CC5, CC1, CC4,

CC2}. When T ′′ = 2, the content of each category will be updated every a period

of 2 time slots and within each period, only one time slot could be available for

proactive caching. Thus, as shown in Fig. 4.8, due to the limited proactive caching

opportunities, the performance gains of the proposed PDS-ARL algorithm over the

non-proactive strategy is limited. Nevertheless, when T ′′ = 5, the content of each cat-
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egory will be updated every 5 time slots and within each period, 4 time slots could be

used for proactive caching. With the increase of the proactive caching opportunities,

the performance gains of the proposed PDS-ARL algorithm over the non-proactive

strategy reach 50% in Fig. 4.8.



Chapter 5

Conclusions and Future Work

5.1 Conclusions

In this thesis, the applications of the model-free learning in three different wireless

networks have been investigated. Specifically, distributed throughput maximization

by a proposed N-SLA algorithm in an OSA network with multiple heterogeneous

SUs and primary channels is studied in Chapter 2, followed by an analysis of the

multi-mobile-device computation offloading in a multi-channel cloudlet-based MCC

network through a proposed machine learning based FDCO algorithm in Chapter 3.

In Chapter 4, the problem of context-aware proactive caching in an energy harvesting

network consisting of a single MBS with grid power supply and multiple small-cells

with energy harvesting is discussed, and an PDS-ARL algorithm which learns on-the-

fly the optimal context-aware proactive caching policy with a high learning efficiency is

proposed. Via effective and efficient model-free strategy learning mechanism designs,

these networks can be adaptive to an unknown and dynamic environment and achieve

112
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significant improvement of network performance when comparing with counterparts.

In Chapter 2, the distributed throughput maximization problem of the OSA net-

work is first formulated as an ordinal potential game, which has at least one pure-

strategy NE. Then, to achieve the pure-strategy NEs, two algorithms: a BR based

algorithm and an N-SLA algorithm are proposed. The BR based algorithm is proved

to converge towards NEs, but requiring indispensable information exchange among

SUs, while the N-SLA algorithm is fully distributed and can converge towards NEs

without any information exchange. Simulation results demonstrate that the proposed

algorithms can not only guarantee the convergence to NEs, but also achieve a good

network performance in terms of sum log expected throughput.

In Chapter 3, the problem of distributed computation offloading decision making

among multiple mobile devices in the cloudlet-based MCC network is first formu-

lated as a noncooperative game, which is further proved to be an exact potential

game. Then, to achieve the pure strategy NEs, an FDCO algorithm based on ma-

chine learning technology is proposed, which can converge towards the pure strategy

NEs without any information exchange. Furthermore, by conducting the performance

analysis on the proposed FDCO algorithm, it shows that the proposed FDCO algo-

rithm maximizes the number of beneficial cloudlet computing mobile devices and does

not incur larger network-wide execution cost than computing locally by all mobile de-

vices. Simulation results demonstrate that the proposed FDCO algorithm can not

only converge to a pure strategy NE, but also achieve a good network performance

in terms of both the number of beneficial cloudlet computing mobile devices and the

network-wide execution cost.
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In Chapter 4, the context-aware proactive caching problem in the energy har-

vesting based network is first formulated as an MDP framework. However, due to

the incomplete stochastic information about the network dynamics and the “curse

of dimensionality” issue of the formulated MDP, neither the conventional dynamic

programming nor the standard reinforcement learning can be applicable. To address

all these challenges, an PDS-ARL algorithm is designed to learn the optimal proac-

tive caching policy on-the-fly. By adopting the PDS approach to reduce the action

space and the ARL approach to reduce the state space, the proposed PDS-ARL algo-

rithm achieves a remarkable improvement on the convergence rate compared with the

conventional R-learning algorithm. Furthermore, by deliberate energy utilization via

effective proactive caching, the proposed PDS-ARL algorithm improves the renewable

energy utilization significantly compared with the non-proactive strategy. Through

simulation, the effectiveness of the proposed PDS-ARL algorithm in terms of both

the convergence rate and the service ratio has been demonstrated by comparing it

with baselines.

From the results of this thesis, it can be seen that learning has great capacities and

potential in solving network control with incomplete network evolution model or with

limited information exchange. By effective and efficient specialized learning designs,

the decision-making entities can adaptively choose their transmission strategies in a

self-organized manner without much requirement for knowing the network conditions

and achieve good performance. I hope this thesis will serve as an important guideline

for future research directions to further understand model-free learning mechanisms

and expand their applications in wireless networks.
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5.2 Future Work

Some future research directions on the applications of model-free learning in wire-

less networks are outlined as follows.

• Obtaining the convergence condition for learning algorithms in more general

multi-agent decision making processes: Generally speaking, the goal of a perfect

self-organized learning mechanism for multi-agent decision making processes is

to achieve self-play/autonomy, stability and optimality simultaneously. How-

ever, for multi-agent learning, improving network performance typically incurs

more signalling and coordination, thus undermining the self-play structure. Es-

pecially, when learning is implemented under the framework of games, achieving

any two goals is usually at the cost of undermining the third goal. As a result,

most current studies focused on ensuring convergence to a stable operation point

in self-play by allowing a limited control signal exchange. In the literature, the

approaches to find the convergence condition of learning algorithms mainly fall

into the following category. For learning processes that can be approximated

with a linear system described as a set of ODEs in continuous time, the typical

way of obtaining the convergence condition is to construct a Lyapunov function

for the ODE-based dynamic and then prove that the strategy updating mecha-

nism produces an asymptotic pseudo-trajectory of the flow defined by the ODE

(see Chapters 2 and 3). Although there are a few already known conditions

that ensure the convergence of a learning algorithm, most of them are limited

within a small scope. One important case is the network control problem that

is modelled as an exact potential game. However, the exact potential game
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requires significant homogeneity among local players (or agents), which limits

the applications for the exact potential game-based learning algorithms. There-

fore, for most current studies with heterogeneous properties, whether a stability

condition can be found for a learning algorithm remains an open issue and is

yet to be addressed.

• Analyzing the convergence rate of learning algorithms: In addition to the issues

associated with finding the convergence condition for a learning algorithm, an-

other concern for applying model-free learning in wireless networks is to derive

the convergence rate. Although analytical results for the convergence rate of

learning algorithms are highly desired, most of the existing studies were only

able to show empirical results for the learning convergence rate through numeri-

cal simulations. The reason for this is partly due to the asymptotic convergence

condition (if there is any), which requires that the states and actions should

be visited infinitely to ensure the convergence. Given such a limitation, one

possible approach to analyze the convergence rate of a learning algorithm is to

regard the learning process as a discrete time Markov chain. In this approach,

the standard Markov chain analysis can be applied to obtain the expected learn-

ing time (number of iterations) before arriving at the chain’s absorbing state

(e.g., a NE).

• Designing efficient learning mechanisms in the scenarios of dramatical environ-

mental changes: As described in Chapters 2, 3 and 4, the network environment

is considered to be quasi-static, in which the MDP model of the network is

invariant if the MDP-based learning (i.e., RL) is adopted, or the set of players
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is invariant if the game-based learning (i.e., SLA) is adopted. However, when

the network environment has dramatically changed in terms of the MDP model

or the set of players, learners generally need to start the same learning pro-

cess from the very beginning. As a result, when the decision-making agents are

required to swiftly switch from an old situation to a new one, the existing learn-

ing algorithms will face great challenges if they can only restart the learning

process in the new situation. In order to address such a challenge, a natural

consideration is to utilize the acquired experience of strategy taking that is

obtained from the old situations. Since the experience transferring paradigm,

Transfer Learning (TL) [130], aims to transfer knowledge (i.e., experience) from

the well-established learning processes to a newly-established learning process

in a different situation, it is considered as a promising approach in the scenarios

of dramatical environmental changes.
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Appendix A

Appendices of Chapter 2

A.1 Proof of Theorem 2.2
In time slot t (t ≥ 1), suppose SU m (m ∈M) is selected, and the current action

profile of all the other SUs is denoted as a−m(t). Following (2.22) (under scenario
(I)) or (2.24) (under scenario (II)), the SU m chooses am(t) = n∗(t) so that

R̂m(n∗(t),a−m(t)) ≥ R̂m(n,a−m(t)) ∀n ∈ N (A.1)

Using the property of ordinal potential games (2.7),

Φ(n∗(t),a−m(t)) ≥ Φ(n,a−m(t)) ∀n ∈ N (A.2)

where

Φ(n∗(t),a−m(t)) =

{
Φ1(n∗(t),a−m(t)), in scenario (I)
Φ2(n∗(t),a−m(t)), in scenario (II)

(A.3)

Since a−m(t− 1) = a−m(t) and am(t− 1) ∈ N , (A.2) can be rewritten as

Φ(a(t)) ≥ Φ(a(t− 1)) (A.4)

Thus, in both scenarios, the ordinal potential function Φ(a(t)) is non-decreasing
with time t. Due to the bounded property of both Φ1(am,a−m) and Φ2(am,a−m)
(∀m ∈ M,∀am ∈ N ), Φ(a(t)) will converge to a (local) maximum. Since any (local)
maximum of the ordinal potential function is a NE [56], the Theorem 2.2 holds.

A.2 Proof of Theorem 2.3
Define a function ι(P ) as

ι(P ) = E[Φ2(am,a−m)|P ]

130



Appendix A: Appendices of Chapter 2 131

=
N∑
n=1

PmnE[Φ2(n,a−m)|am = n,P ]

=
N∑
n=1

Pmn
∑

a1,··· ,am−1,am+1,··· ,aM

Φ2(n,a−m)
∏

m′∈M,m′ 6=m

Pm′am′ (A.5)

Thus,

∂ι(P )

∂Pmn
=

∑
a1,··· ,am−1,am+1,··· ,aM

Φ2(n,a−m)
∏

m′∈M,m′ 6=m

Pm′am′ , ∀m ∈M,∀n ∈ N

(A.6)

and

dι(P )

dt′
=

∑
m∈M,n∈N

∂ι(P )

∂Pmn

dPmn
dt′

(A.7)

Substituting (2.35) and (A.6) into (A.7),

dι(P )

dt′
=

∑
m∈M,n∈N

E[Φ2(n,a−m)|P , am = n]Pmn(
∑
n′∈N

Pmn′(E[R̄wm|P , am = n]−

E[R̄wm|P , am = n′]))

= −$
∑

m∈M,n∈N ,n′∈N

βmPmnPmn′(E[R̄wm|P , am = n]− E[R̄wm|P , am = n′])2 (A.8)

According to (2.12), βm < 0, ∀m ∈ M. Thus, ι(P ) is non-decreasing along time. In
addition, since ι(P ) is bounded as specified in (A.5), P converges to P ∗ such that
dι(P ∗)
dt′

= 0. Thus, from (A.8) and (2.35),

dι(P ∗)

dt′
= 0,

⇒ P ∗mnP
∗
mn′(E[R̄wm|P ∗, am = n]−E[R̄wm|P ∗,am = n′])2 = 0, ∀m ∈M,∀n, n′ ∈ N

⇒ dP ∗mn
dt′

= 0, ∀m ∈M,∀n ∈ N

⇒ P ∗ is a stable stationary point of the ODE (2.34) (A.9)

Following the Theorem 3.2 in [56] that all stable stationary points of the ODE are
the NEs, Theorem 2.3 holds.
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Appendices of Chapter 3

B.1 Proof of Theorem 3.3
Since P contains (N + 1)×M components, denoted by Pmi, m ∈ M, i ∈ A, the

component equations of (3.41) can be written as

dPmi
dt′

= Pmi(1− Pmi)E[R̂wm(am(t),a−m(t))|P (t) = P , am(t) = i] +
∑

i′∈A,i′ 6=i

Pmi′(−Pmi)

E[R̂wm(am(t),a−m(t))|P (t) = P , am(t) = i′]

= Pmi
∑

i′∈A,i′ 6=i

Pmi′hmi(P )− Pmi
∑

i′∈A,i′ 6=j

Pmi′hmi′(P )

= Pmi(
∑

i′∈A,i′ 6=i

Pmi′(hmi(P )− hmi′(P )))

= Pmi(
∑
i′∈A

Pmi′(hmi(P )− hmi′(P ))), ∀m ∈M, ∀i ∈ A (B.1)

Then,

dK(P )

dt′
=

∑
m∈M,i∈A

∂K(P )

∂Pmi

dPmi
dt′

=
∑

m∈M,i∈A

∂K(P )

∂Pmi
Pmi(

∑
i′∈A

Pmi′(hmi(P )− hmi′(P )))

=
1

2

∑
m∈M,i,i′∈A

PmiPmi′(
∂K(P )

∂Pmi
− ∂K(P )

∂Pmi′
)(hmi(P )− hmi′(P )) (B.2)

Substituting (3.43) into (B.2),

dK(P )

dt′
=

1

2
c

∑
m∈M,i,i′∈A

PmiPmi′(hmi(P )− hmi′(P ))2 ≥ 0 (B.3)
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Thus, K(P ) is non-decreasing along time. In addition, since K(P ) is bounded, P
converges to P ∗ such that dK(P ∗)

dt′
= 0. From (B.3) and (B.1),

dK(P ∗)

dt′
= 0

⇒ P ∗mjP
∗
mi′(hmi(P

∗)− hmi′(P ∗))2 = 0,∀m ∈M,∀i, i′ ∈ A

⇒ dP ∗mi
dt′

= 0, ∀m ∈M,∀i ∈ A

⇒ P ∗ is a stable stationary point of the ODE (3.41). (B.4)

According to Lemma 3.2, Theorem 3.3 holds.

B.2 Proof of Theorem 3.4
According to Theorem 3.3, the proposed FDCO algorithm converges to a pure

strategy NE a∗ that maximizes K(P ), i.e.,

a∗ = arg max
P

K(P ) = arg max
a

ψ(a) (B.5)

From (3.23),

ψ(a) =
N∑
n=1

sn∑
v=1

Fc,2(v) + Fl,2

M∑
m=1

1{am=0}

=
N∑
n=1

sn∑
v=1

Fc,2(v) + Fl,2(M −
N∑
n=1

sn)

=
N∑
n=1

(Fc,2(1)− Fl,2 + Fc,2(2)− Fl,2 + · · ·+ Fc,2(sn)− Fl,2) + Fl,2M (B.6)

Since Fc,2(v) specified by (3.24) is decreasing with v, it is easy to prove

max
a

ψ(a) ⇐⇒ max
a

N∑
n=1

sn

s.t.Fc,2(sn) ≥ Fl,2 ∀n ∈ N

⇐⇒ max
a

M∑
m=1

1{am>0}

s.t.Fc,1(sam) ≤ Fl,1 ∀am ∈ N ,m ∈M (B.7)

Combining with (B.5),

a∗ = arg max
a

ψ(a)
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=

{
arg maxa

∑M
m=1 1{am>0}

s.t.Fc,1(sam) ≤ Fl,1 ∀am ∈ N ,m ∈M
(B.8)

B.3 Proof of Theorem 3.5
Let ā be an arbitrary pure strategy NE achieved by the FDCO algorithm, and

s̄n be the number of mobile devices selecting channel n (∀n ∈ N ) at NE ā. Given
Fc,1(1) ≤ Fl,1,

∑M
m=1Om(ā) = MFl,1 if Fc,1(1) = Fl,1. In the following, I focus on the

case that Fc,1(1) < Fl,1, i.e., there exists at least one mobile device m̄ that chooses
cloudlet computing via channel ām̄ ∈ N . According to the concept of NEs,

Om̄(ām̄, ā−m̄) ≤ Fl,1 (B.9)
Om̄(ām̄, ā−m̄) ≤ Om̄(i, ā−m̄) ∀i ∈ N (B.10)

Summing up both sides of (B.10) over i yields∑
i∈N

Om̄(ām̄, ā−m̄) ≤
∑
i∈N

Om̄(i, ā−m̄)

⇒ Om̄(ām̄, ā−m̄) ≤
∑

i∈N Om̄(i, ā−m̄)

N
(B.11)

Since ∑
i∈N

Om̄(i, ā−m̄) = Fc,1(s̄ām̄) +
∑

i∈N ,i 6=ām̄

Fc,1(s̄i + 1)

=
1

Fc,2(1)

∑
i∈N

s̄i +Nλ1d
Ncyc

fcτ
e+ (N − 1)

1

Fc,2(1)

≤ 1

Fc,2(1)
M +Nλ1d

Ncyc

fcτ
e+ (N − 1)

1

Fc,2(1)
(B.12)

equation (B.11) can be rewritten as

Om̄(ām̄, ā−m̄) ≤ 1

NFc,2(1)
M + λ1d

Ncyc

fcτ
e+

N − 1

N

1

Fc,2(1)

=
Z

N
(B.13)

Combining (B.9) and (B.13),

Om̄(ām̄, ā−m̄) ≤ min(Fl,1,
Z

N
) (B.14)

Since

CFDCO =
M∑
m=1

Om(ām, ā−m)
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=
∑

m∈M,ām>0

Om(ām, ā−m) +
∑

m∈M,ām=0

Fl,1

=
∑

m∈M,ām>0

Om(ām, ā−m) + (M −
∑
m∈M

1{ām>0})Fl,1 (B.15)

according to (B.14), (B.15) can then be rewritten as

CFDCO ≤ min(Fl,1,
Z

N
)
∑
m∈M

1{ām>0} + Fl,1(M −
∑
m∈M

1{ām>0})

= (min(Fl,1,
Z

N
)− Fl,1)

∑
m∈M

1{ām>0} +MFl,1 (B.16)

Obviously, at the NE ā, the number of beneficial cloudlet computing mobile devices
is no more than M , i.e.,

∑
m∈M 1{ām>0} ≤M . If

∑
m∈M 1{ām>0} = M , from (B.16),

CFDCO ≤ (min(Fl,1,
Z

N
)− Fl,1)M +MFl,1 (B.17)

If
∑

m∈M 1{ām>0} < M , there exists at least one mobile device m̂ that takes an action
ām̂ = 0. Since at the NE ā, the mobile device m̂ cannot reduce its execution cost by
choosing cloudlet computing via any channel n ∈ N , i.e.,

Fc,1(s̄n + 1) ≥ Fl,1 ∀n ∈ N

⇒ s̄n ≥
Fc,2(1)

Fl,2
− 1 ∀n ∈ N (B.18)

then,

∑
m∈M

1{ām>0} =
N∑
n=1

s̄n ≥ N(
Fc,2(1)

Fl,2
− 1) (B.19)

Since (min(Fl,1,
Z
N

)− Fl,1) ≤ 0, substituting (B.19) into (B.16),

CFDCO ≤ (min(Fl,1,
Z

N
)− Fl,1)N(

Fc,2(1)

Fl,2
− 1) +MFl,1 (B.20)

Thus, the Theorem 3.5 holds.
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