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Abstract

Waiting time distributions of runs and patterns have been successfully used
in various areas of statistics and applied probability—for example, in reliability,
sampling inspection, quality control, DNA sequencing and hypothesis testing. The
main goal of this thesis is to give a comprehensive study of waiting time distribu-
tions of runs and patterns using the finite Markov Chain imbedding technique. We
provide a simple and general method to obtain the exact distributions, means and
probability generating functions for waiting time distributions of compound and
later patterns. Computational algorithms based on the finite Markov chain imbed-
ding technique are developed for automatically computing the exact distributions,
means and probability generating functions of waiting times for compound and later

patterns.

To see the applications of waiting time distributions, we introduce a general
theoretical framework that leads to the run-length distribution for a multitude of
control charts that are based either on a simple rule (e.g., Shewhart, Cusum, EWMA
charts) or on a compound set of rules (e.g., Shewhart with runs rules, robust Cusum
and robust EWMA charts). It handles both discrete and continuous cases and
can incorporate process properties, such as different types of shifts, directly. The

framework is simple to apply and is fully automated.
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Chapter 1

Introduction

1.1 Overview

The distribution theory of runs and patterns has been widely studied and applied
in many fields such as reliability (Chiang and Niu, 1981; Fu, 1985, 1936a, 1986b,
1993; Chao and Fu, 1989, 1991; Chao, Fu and Koutras, 1995), sampling inspection
(Shmueli and Cohen, 2000), quality control (Mosteller, 1941; Wolfowitz, 1943; Fu,
Spiring and Xie, 2002), hypothesis testing (Wald and Wolfowitz, 1940; Wolfowitz,
1943; Walsh, 1962; Lou, 1996, 1997), DNA sequencing (Waterman, 1995; Fu, Lou
and Chen, 1999), psychology (Schwager, 1983; Koutras and Alexandrou, 1997) and
ecology (Schwager, 1983). Traditionally, most of the research work focused on the
study of runs in a sequence of bistate trials. There are two general types of problems
that arise in the study of runs: (i) the distribution of the number of occurrences of
k consecutive successes (or failures), and (ii) the distribution of the number of trials
(waiting time) to observe the first (or 7th) occurrence of k consecutive successes (or
failures). The latter case is known as the waiting time problem, which is the main

focus of this thesis.

Historically, the distribution theory of runs has been of scientific interest since
the time of De Moivre (1667-1754) (see Johnson, Kotz and Kemp, 1992, page 426).
From around 1940 to 1970, there were many papers that contributed to this area,
but most were concerned with the study of conditional distributions of runs given the

total number of successes or of deriving approximate formulas for the distributions



of runs (Fu, 1996). In the past two decades, more complicated problems have been
proposed and treated based on different random sequences (for example, Markov
dependent trials). This work has not only been focused on runs but also on the

more general concept of patterns.

Traditionally, a combinatorial approach was adopted to study the distribution
theory of runs and patterns. However, from both theoretical and computational
points of view, it always entails heavy and tedious task, if not impossible. In addition
to the combinatorial approach, two popular approaches have been extensively used
in this field over the past decade. One is the conditional probability generating
functions approach (e.g., Ebneshahrashoob and Sobel, 1990; Aki, 1992, 1997; Aki
and Hirano, 1995; Aki, Balakrishnan and Mohanty, 1996; Hirano, Aki and Uchida,
1997), while the other approach is the finite Markov chain imbedding technique
introduced by Fu and Koutras (1994) and Fu (1996). The finite Markov chain
imbedding technique has certain practical advantages; for example, it can be used
to deal with very general classes of waiting time problems. Throughout this thesis,

our work will be based on this approach.

The remainder of this chapter introduces and gives a brief literature review
of several important distributions associated with runs and patterns; in particular,
distributions of order k£ and sooner and later waiting time distributions. These

distributions are central to the work in this thesis.

1.2 Distributions of Order k

Distributions of order & are among the most important class set of distributions
associated with runs. Philippou and Muwafi (1982) studied the distribution of
the waiting time until the first occurrence of k consecutive successes (k fixed) in

a sequence of Bernoulli trials with success probability p (g = 1 — p). Philippou,



Georghiou and Philippou (1983) called this distribution a Geometric distribution of
order k. They further defined a Negative Binomial distribution of order k and a
Poisson distribution of order k. Subsequently, various distributions of order k& have
been extensively studied. Since the class of this type of distribution is rather large,
we only introduce some important distributions related to our work. To that end,
let X denote the random variable of interest, which has some distribution of order
k.
Geometric distribution of order k (Gy(p))
The expression of the exact distribution given by Philippou and Muwafi (1982) is
PX=n= ¥ (TFtn )y (?) - (1)
By Th Ly bk p

forz =k, k+1,..., where the summation is over all nonnegative integers 1, - -,z
such that z; + 2z + - + kzp, =z — k. Clearly, it reduces to the usual Geometric
distribution when k = 1.
Negative Binomial distribution of order k (NBy(r,p))
The distribution of the waiting time until the rth occurrence of k consecutive suc-
cesses is called the Negative Binomial distribution of order k. It is clear that a
Geometric distribution of order % is a special case of a Negative Binomial distribu-
tion of order k¥ when r = 1. The exact distribution given by Philippou, Georghiou
and Philippou (1983) is

P(X=0)= Y ( A )px <§)+ T

T yere Ty AR 3

forx = kr,kr+1, ..., where the summation is over all nonnegative integers z1, ..., z;
such that =1 + 229 + -+ - + kxp, = 2 — kr.
Poisson distribution of order k (Py(p))
This distribution is obtained as a limiting form of a Negative Binomial distribution

of order k. Let X, be a random variable distributed as N B, (r,p) and assume that



g — 0 and lim, g = A (A > 0). It can be shown (Philippou, Georghiou and
Philippou, 1983) that

. @1t
P(X,—kr=z)—=e™ > — > ¢=0,1,2,..., (1.3)
T1,...Tk Tyl Tp!
as 7 — 00, where the summation is over all nonnegative integers 1, ..., z; such

that z; + 225 + - - - + kxp = 2. The limit form in Equation (1.3) is called a Poisson
distribution of order k. When k = 1, it reduces to the usual Poisson distribution.
Logarithmic (series) distribution of order & (LS (p))

Like the Poisson distribution of order k, this distribution is also derived as a limiting
form of a Negative Binomial distribution of order k. Let X, be a random variable
distributed as NBy(r,p). Assuming that r — 0, it can be shown (Aki, Kuboki and
Hirano, 1984) that

P(X, = 2lX, > [kr] + 1) - kpm 5 (1 + -+ zp — 1)! <_q_>zl+m+xk,
—klogp ., CRRRREY p
for z = 1,2,..., where the summation is over all nonnegative integers z1, ...,z
such that z; + 225 + -+ + kzy = z. The limit form in Equation (1.4) is called a
Logarithmic (series) distribution of order k.
Binomial distribution of order k (By(n, p))
The distribution of the number of occurrences of k consecutive successes is called the

Binomaal distribution of order k. The exact distribution was derived independently

by both Hirano (1986) and Philippou and Makri (1986) as

X —a =kf 5 <$1+...+$k+x >pn (g)fﬁ...m’ s

=0 Z1,...,Tp TR 1 Tk, T D
forz =0,1,2,...,[n/k], where the inner summation is over all nonnegative integers
Z1,..., %k such that z1+2z5+- - -+ kzp = n—i—kz. It reduces to the usual Binomial

distribution when k = 1. Fu and Koutras (1994) gave a different formula by using



the finite Markov chain imbedding technique which is introduced in Chapter 2.
Other distributions of order k

In addition to the above, there are many distributions of order k that have been
investigated; for example, the Compound Poisson distribution of order k (e.g.,
Philippou, 1983; Panaretos and Xekalaki, 1986), the hypergeometric and inverse
(or negative) hypergeometric distribution of order & (e.g., Panaretos and Xekalaki,
1986; Godbole, 1990b), the Pélya and inverse Pélya distributions of order % (e.g.,
Philippou, Tripsiannis and Antzoulakos, 1989; Philippou and Tripsiannis, 1991;
Tripsiannis, 1993), etc. No further introduction of these distributions is given since

they exceed the scope of this thesis.

Remark 1.1 The Negative Binomial and Binomial distributions of order % dis-
cussed above assume nonoverlapping counting. This type of counting produces Type
I distributions of order k. Similarly, at least k and overlapping counting schemes
produce Type II and Type III distributions of order k, respectively (Balakrishnan
and Koutras, 2002). These counting schemes are defined more precisely in Chapter

2.

Since the formulas for the exact distributions of order k are quite complicated,
alternative formulas have been derived to avoid difficulty in numerical computation.
For example, Uppuluri and Patil (1983) obtained a simpler formula for Geometric
distribution of order k as

P(X=z) = pki(—l)j < Bk - gk ) (gp*y

j=0 J

P (1) ( zk _jjk -1 ) (@™, 2>k (1.6)
=0



which involves only two single summations. Muselli (1996) gave a more computa-

tionally attractive expression for the distribution as

P(X = 1) = [jél(_l)j—lpfkqj—lK z ‘jj_k2‘ 1 ) +q ( v ;7_]“1_ 1 )} (L.7)

which entails only a single summation. Another way to avoid computational diffi-
culties is to derive the probability generating function of a distribution of order k.
Probability generating functions are useful not only in finding an exact distribution,

but also in studying the characteristics of that distribution.

Replacing different underlying sequences, there were numerous papers that ex-
tended the study of distributions of order k. Several authors dealt with these dis-
tributions based on Markov dependent trials (e.g., Hirano and Aki, 1993; Mohanty,
1994). Aki (1985) defined a binary sequence of order k as an extension of a se-
quence of Bernoulli trials. He studied several distributions of order £ based on this
sequence and called the resulting class of distributions eztended distributions of or-
der k (see also Hirano and Aki, 1987). Philippou (1988) developed a new class of
distributions called multiparameter distributions of order k (equivalent to extended
distributions of order k¥ by appropriately changing the parameters). Further gen-
eralizations of multiparameter distributions of order k£ have been developed (e.g.,
Philippou, Antzoulakos and Tripsiannis, 1989; Philippou and Antzoulakos, 1990;
Antzoulakos and Philippou, 1997).

In addition to the study of exact distributions, Poisson approximations of these
distributions have been derived by several authors. Chen-Stein approximations may
be the most popular method of treating such problems. References include: Fu
(1985, 1986a, 1986b, 1993), Arratia, Goldstein and Gordon (1989, 1990), Godbole
(1990a, 1991), Goldstein (1990) and Wang (1993).



1.3 Sooner and Later Waiting Time Distributions

In many situations, it is necessary to study waiting time problems associated with
two or more runs or patterns; for example, an experiment stops or a system fails
whenever one of several predefined runs or patterns occurs. Sometimes, order among
these runs or patterns is important and must be taken into consideration; for exam-
ple, the DNA sequence of a virus contains certain patterns that occur in order. In
the previous section, two types of distributions of order k& that belong to the class
of waiting time distributions have been introduced: the Geometric and Negative
Binomial distributions of order k. In this section, we introduce another important

class of waiting time distributions called sooner and later waiting time distributions.

The distribution of the waiting time until the first occurrence of a success run
or a failure run (of fixed length) in a sequence of Bernoulli trials was first introduced
by Feller (1968). Ebneshahrashoob and Sobel (1990) called this a sooner waiting
time distribution and referred to this type of problem as a succession quota (SQ)
problem or a sooner waiting time problem. They also considered as a dual the SQ
later problem—waiting for a success run or a failure run, whichever comes later—and
derived explicit formulas for their probability generating functions. The resulting
distribution is termed a later waiting time distribution. Generally speaking, sooner
and later waiting time distributions refer to the waiting times for several simple

patterns, whichever comes sooner or later.

From 1980 to 1990, some general results were derived for the waiting time to the
first occurrence of one or more specified patterns; see, for example, Li (1980), Blom
and Thorburn (1982), Breen, Waterman and Zhang (1985) and Chryssaphinou and
Papastavridis (1990). However, most of these results were discussed under some
conditions or explained the routes for deriving the probability generating functions

of such waiting times but did not provide explicit expressions as Ebneshahrashoob
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and Sobel did. Since Ebneshahrashoob and Sobel’s work, the sooner and later wait-
ing time problems have been extensively studied. Ling and Low (1993) generalized
Ebneshahrashoob and Sobel’s results in a sequence of independént and identically
distributed (i.i.d.) multistate trials. Aki and Hirano (1993)‘ and Balasubramanian,
Viveros and Balakrishnan (1993) studied this problem in a sequence of homogeneous
Markov bistate trials. Other pertinent references include: Uchida and Aki (1995),
Aki, Balakrishnan and Mohanty (1996), Koutras (1997a, 1997b), Aki and Hirano
(1999), Antzoulakos (1999), Han and Aki (2000a, 2000b). Most of this research
included the study of sooner and later waiting time distributions of a success run
and a failure run in a sequence of bistate trials. Koutras and Alexandrou (1997)
investigated the sooner waiting time problems in a sequence of trinary trials. Uchida
(1998) derived probability generating functions for sooner waiting times of count-
ably many simple patterns, and for later waiting times of two simple patterns in a
sequence of i.i.d. multistate trials, but under a very restrictive assumption that each
simple pattern was aligned in ascending order. To the best of our knowledge, there
are no general results for sooner and later waiting time distributions of [ (I > 2)
simple patterns when the underlying sequence consists of Markov dependent mul-
tistate trials. In particular, when we consider the later waiting time problem of
several simple patterns, the enumeration schemes (nonoverlapping and ovérlapping)

should be taken into consideration.

One primary goal of the thesis is to develop a simple and general method, both
from theoretical and computational points of view, to deal with the sooner and later

waiting time problems. Our results are presented in Chapters 3 and 4.



1.4 Summary

In this chapter, we have briefly reviewed and discussed: (i) primary developments
in the study of the distribution theory of runs and patterns, (ii) approaches that
are often adopted in studying the distribution theory of runs and patterns, and (iii)

some well-known distributions associated with runs and patterns.

The rest of this thesis is organized as follows. In Chapter 2, we introduce
some basic concepts of runs and patterns and the finite Markov chain imbedding
technique. Chapter 3 and Chapter 4 give a comprehensive study of waiting time
distributions of compound and later patterns, respectively. Numerical examples are
given to illustrate our results. In Chapter 5, computer algorithms based on the
finite Markov chain imbedding technique are developed for automatically obtaining
the results derived in Chapters 3 and 4. Chapter 6 shows the application of waiting
time distributions in quality control. Finally, in Chapter 7, we extend the results

obtained in Chapter 3 and list some open problems for future research.



Chapter 2

Finite Markov Chain Imbedding

2.1 Basic Concepts of Runs and Patterns

Let {X;} be a sequence of m-state (m > 2) random variables defined on the state
space I' = {by, bs, ..., by, }. Traditionally, a run means a finite sequence of consecu-
tive successes or failures. For example, the sequence S59.555 means a success run of
length 5. For multistate trials, a run is defined to be a finite sequence of consecutive
identical symbols. Due to recent rapid developments in science, this definition has
become rather restrictive and is not sufficient for solving more complicated problems.

For broader applications, we require a more general definition.

Definition 2.1 We say that A is a simple pattern if A is composed of a specified
sequence of £ states; i.e. A = b;, ---b;, (the length of the pattern & is fixed, and the

states in the pattern are allowed to be repeated).

It is clear that a success run (or a failure run) of length £ (k fixed) is a special case
of a simple pattern. We define a subpattern of a simple pattern A to be a finite
sequence having the general form b;, - - “bi;, 1 < j < k. It is clear that a simple
pattern is a subpattern of itself. The subpattern plays an important role in the

finite Markov chain imbedding technique.

Define a segment to be any (contiguous) subset of a simple pattern. For exam-
ple, let A = byb,byb, be a simple pattern; then, the subpatterns b1, biby and bbby

are segments of A. On the other hand, by, b;by, boby and bybsbs are segments of A,

10
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but not subpatterns. Let A; and A, be two simple patterns with lengths k; and ko,
respectively. We say that A; and A, are distinct if neither is a segment of the other.
We define the union A; U Ay to be the occurrence of either the pattern A; or the

pattern A,.

Definition 2.2 We say that A is a compound pattern if it is a union of [ distinct
simple patterns; i.e. A = [!_; A; (the lengths of simple patterns do not have to be

the same).
It is obvious that a compound pattern reduces to a simple pattern when [ = 1.

Definition 2.3 Let A;,...,A; be [ distinct simple patterns. We say that o =
AyoAyo---0A;is an ordered series pattern if A; is the first to occur among the
patterns Ay, ..., A, Ay is the next to occur among the patterns As,...,A;, and so

O11.

From the above definition, we see that an ordered series pattern is formed by ob-
serving the first occurrence of the simple patterns A;, 4 = 1,...,[, in the defined

ordering. To clarify this definition, we provide the following example.

Example 2.1 Let 0 = A; o Ay o A3 be an ordered series pattern with A; = 13,
Ay = 22 and A3 = 31. Consider two realizations R; and R, of a sequence of

eighteen three-state trials:

Ry @ 112133213221221331,

Ry @ 112213323221221331.

It is easy to see that o occurs in R;, however, o does not occur in Ry since A; is
not the first one to occur in the ordering as specified by 0. On the other hand, the
ordered series pattern A, o A; o A3 has occurred in R,. Also note that in Ry, A\

occurs three times before Az, and Ay occurs twice before Aj.
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Let 7 = {1,2,...,1} and define P to be the set of all ordered series patterns

generated by permuting [ distinct simple patterns Ay, .. ., Ay; that is,
P = {O'i ey :AilOAiZO-“OAil, 1= 1,...,“, ij € 7 and 7;j 7’521c for]#k} (21)

For example, for [ = 2, we have P = {01,095 : 07y = Aj o Ay and oy = Ay oAy} Tt is

easy to verify that card(P) = 1! (I! permutations).

Definition 2.4 We say that Az is a later pattern if it is a union of all {! ordered

. . . 1
series patterns in P; ie. Ap = Uﬁ'zl o0y, for each o; € P.

Remark 2.1 Given a later pattern Ay, = UL, o3, by definition, it should be clear
that any two ordered series patterns o; and o; (¢ # 5) cannot occur at the same
time. For example, let 01 = 11022033 and 05 = 22011 033. Consider a realization
of a sequence of twelve three-state trials: 1132231T12133. It is easy to see that o
occurs on the twelfth trial since the simple patterns ‘11°, ‘22’ and ‘33’ occur in order
and ‘117 is the first one to occur in the sequence; however, oy does not occur on the

twelfth trial since the pattern ‘22’ is not the first one to occur in the order.

Next, we consider the waiting time problems. Define the waiting time for a
simple pattern A = b;,b;, - - -b;, to be

W(A) = inf {’I’L . Xn——k-l—l = biu - ,Xn = bzk}
= Minimum number of trials required to observe the pattern A,

and define the waiting time for a compound pattern A = Ué:l A; as

W(A) = Minimum number of trials required to observe one of the
simple patterns A;, ..., A;.

For given integer r, r = 1,2,..., we define the waiting time W(r : A) to the rth
occurrence of a pattern A (simple or compound) as
Wi(r:A) = inf{n:n is the number of trials required to observe the rth

occurrence of the pattern A}.
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Similarly, we define the waiting time for an ordered series pattern o = Ajo - -0 A

as
W (o) = Minimum number of trials required to observe the pattern o,

and define the waiting time for a later pattern A; = Uf:l 0; as

W(AL) = Minimum number of trials required to observe one of the
ordered series patterns o, . .., op.

Clearly, waiting time problems associated with a compound pattern A = Ul_; A;
and a later pattern A, = UL 0; (I > 2) are the sooner and later waiting time prob-
lems, respectively. From the above definitions, it is easy to see that the later waiting
time distribution of [ (I > 2) simple patterns can be viewed as the waiting time dis-
tribution of a compound pattern defined through all the ordered series patterns

generated by permuting all the simple patterns. From this point of view, the later

waiting time problems can be treated in a similar way as the sooner case.

With these definitions of patterns, we further introduce different counting

schemes. Four of the most frequently used counting schemes are:

e Nonoverlapping counting in the sense of Feller (1968): recounting immediately

after a given pattern has occurred.

e Overlapping counting in the sense of Ling (1988): when a given pattern (with
length k) occurs, start counting backward (up to the last (k—1)th trial) to find
the overlap of the current pattern and the next occurring pattern, recounting

from this subpattern.

e Exactly k counting in the sense of Mood (1940): counting the number of runs

of exact length k.
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e At least k£ counting: counting the number of runs of length greater than or

equal to k.

The first two counting schemes can be used for any pattern; however, the last two
counting schemes can only be used for runs. Given a specified pattern A, let X,,(A)
be the number of occurrences of A in a sequence of n multistate trials with respect to
nonoverlapping or overlapping counting. Similarly, let E,, ;, and Gk be the numbers
of success runs of length % in a sequence of n bistate trials with respect to exactly k
and at least k counting, respectively. We give an example to illustrate these counting

schemes.

Example 2.2 Suppose we flip a coin fifteen times with outcomes
SSSSFFFSFSFSSFS,

where the success event S denotes a head. Consider a simple pattern A = SS;
then we have X15(A) = 3 under nonoverlapping counting (SSSSFFFSFSFSSFS)
and Xi5(A) = 4 under overlapping counting (SSSSFFFSFSFSSFS). Similarly,
for k = 2, then we have Fi55, = 1 (SSSSFFFSFSFSSFS) and Gisz = 2
(SSSSFFFSFSFSSFS). Consider another simple pattern A = SEFS ; then we
have Xi5(A) = 2 under nonoverlapping counting (SSSSFFFSFSFSSFS) and
X15(A) = 3 under overlapping counting (SSSSFEFF SFSFSSES). Obviously, it
does not make sense if the exactly &k and at least k counting were used for this

pattern since it is not a run.

To close this section, we point out that the distributions generated by compound
patterns cover many well-known distributions; for example, Binomial distribution,
Binomial distribution of order k, geometric distribution, geometric distribution of

order k, negative binomial distribution, negative binomial distribution of order k,
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sooner and later waiting time distributions and distributions of the scan statistic.
Table 2.1 summarizes patterns corresponding to different random variables and their

distributions.

Remark 2.2 Two things should be noted in Table 2.1: (i) the random variable
associated with Binomial distribution of order k is often denoted by N, under
nonoverlapping counting, and by M, ; under overlapping counting; and (ii) the scan

statistic S, (r) of window size r in a sequence of bistate trials is defined as

t+r—1
Sp(r) = 1Str§n§t_>_cr+l kZ:; X. (2.2)

We refer to Fu (2002) for the study of the exact distribution of Sy, (r).

2.2 Finite Markov Chain Imbedding
2.2.1 Introduction

The finite Markov chain imbedding technique was first employed by Fu (1986b) and
successfully used by Chao and Fu (1989, 1991) in studying the reliability of a large
serles system, such as repairable systems and consecutive-k-out-of-n:F systems. Fu
and Koutras (1994) gave a complete introduction to this approach and applied it
to the study of distributions of runs in a sequence of Bernoulli trials with respect
to different counting schemes. Since their work, the finite Markov chain imbed-
ding technique has become a popular approach to study the distribution theory of
runs and patterns and its related applications; see, for example, Lou (1996, 1997),
Koutras (1997b), Koutras and Alexandrou (1997), Doi and Yamamoto (1998), Bout-
sikas and Koutras (2000).

The fundamental idea of the finite Markov chain imbedding technique is to

imbed the random variable of interest into a Markov chain. Since the probabilistic



Table 2.1: Some well-known distributions generated by compound patterns.

Distribution Compound pattern | Random | Standard
variable | notation

Binomial A=S Xn(A) B(n,p)

Binomial distribution |A=5-..8 Xn(A) By (n,p)

of order & of length &

Geometric A=S W(A) G(p)

Geometric distribution | A=$...8 W(A) Gr(p)

of order & of length &

Negative Binomial A=S W(r:A) | NB(r,p)

Negative Binomial A=S-.-8 W(r:A) | NBy(r,p)

distribution of order k£ | of length k&

Sooner waiting time A=U_ Ay 1>2 | W(A)

Later waiting time A = U?:l o3, 12> 2| W(ApL)

Scan statistic

16
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behavior of a Markov chain is uniquely characterized by its transition probability
matrix, the exact distribution of the random variable can be expressed in a simple
form in terms of the transition probability matrix of its imbedded chain. To see

how it works, we first introduce the notion finite Markov chain imbeddable.

Definition 2.5 We say that a random variable X, (A) is finite Markov chain imbed-
dable if: (i) there exists a finite Markov chain {¥; : ¢ = 0,1,...,n} defined on a finite
state space Q = {ai, as, ..., an} with initial probability £, and transition probabil-
ity matrices My, t =1,...,n, and (ii) there exists a partition {C, : 2 = 0,1,---,1}

of the state space €2 (I may depend on n), such that
P(Xn(A) = .'E) = P(Yn € nglﬁo)
for each z = 0,1,...,L

‘The next theorem derived by Fu and Koutras (1994) provides a formula for

computing the exact distributions of X,,(A). We state it without proof.

Theorem 2.1 If X, (A) is finite Markov chain imbeddable, then
P(X,(A) =z) =&, <H Mt> U'(C,), 2=0,1,...,1, (2.3)
t=1

where £ = P(Yy = a1,Yy = ag,...,Yy = am), My, t = 1,...,n, are m x m
transition probability matrices associated with {Y;}2, and U(Cy) = Yig.cc, €i, and

where e; = (0,...,0,1,0,...,0) s a unit vector corresponding to a;.

Equation (2.3) is a matrix version of the Chapman-Kolmogorov equation. It is

obvious that Equation (2.3) can be written as

P(X,(A) =) = €M"U (C,), z=0,1,...,1,
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when the imbedded Markov chain is homogeneous. Finding the exact distribution
of X,(A) may not be trivial since the pattern may be very complicated. According
to Fu (1996), there are three essential steps for finding the distribution of a given
pattern by using the finite Markov chain technique: (i) construction of a proper
state space {1 based on the structure of a specified pattern; (ii) construction of a
finite Markov chain and its transition probability matrix; and (iii) construction of a
partition {C;} on the state space © that has a one-to-one correspondence with the
random variable X, (A) in the sense that P(X,(A) = ) = P(Y, € C,|&,) for all =.

We give a simple example to make the above procedure more transparent.

Example 2.3 Let {X;}7, be a sequence of Bernoulli trials with success probability
p and failure probability ¢, respectively, and let A = S. Then the distribution
of X,(A) is the usual Binomial distribution under nonoverlapping counting. To
find such a distribution by using the finite Markov chain imbedding technique, we
proceed as follows. Firstly, let V; = 32t X;, 1 < ¢t < n. Then it is easy to check
that {Y;} is a Markov chain with state space Q = {0,1,. .. ,n}. Secondly, we define
the transition probabilities as

p ifj=4i+1,

pi’:P(Yt:jlYH:i):{q if j =i,

for 0 <7< n—1, p,, =1, and 0 elsewhere. Then, the transition probability matrix

can be written as

0lqgp
1 q p 0
2
M — ‘ q .P
n—1 0 qg p
n 1

Thirdly, we define C, = {z} for x = 0,1,...,n. Then {Cz:2=0,1,...,n} forms

a partition of the state space 2. From Theorem 2.1, we have

P(X,(A) =z)=¢M"e,,,, 2=0,1,...,n, (2.4)
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where £, = (1,0,...,0)1x(nt1) is the initial distribution (P(Yy = 0) = 1) and €1
1s the transpose of the unit vector e,; = (0,...,1,..., 0)1x(nt1)- It can be shown
that Equation (2.4) is in fact equivalent to the usual expression for the Binomial

distribution; that is,

1 n —

'The proof can be found in result A1 of the Appendix.

Generally speaking, construction of an imbedded Markov chain {Y;} associated
with the random variable of interest may not be as simple as in the above example.
For more complicated patterns or random variables, it may not be enough for {V:}
to record information with only one component. In this situation, we can define
Y; with two (or more, if necessary) components (or dimensions) to record enough
information. Usually, the first component records the total number of occurrences
of a given pattern in the first ¢ trials and the second component records the status
of Y; with respect to different counting schemes or conditions at trial ¢. Fu (1996)
introduced the forward and backward principle in studying the distributions of the
number of runs and patterns and the waiting time distributions. We give a detailed

discussion in the next section.

2.2.2 Forward and Backward Principle

When dealing with problems regarding the distribution theory of runs and patterns
via the finite Markov chain imbedding technique, we may encounter some difficulties.
For example, how do we imbed a random variable of interest associated with a spec-
ified pattern into a Markov chain? The forward and backward principle introduced
by Fu (1996) provides a general way to analyze this type of problem and facilitates
the study of the finite Markov chain imbedding technique. The idea of the forward

and backward principle mainly consists of two parts: (1) understanding of the struc-
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ture of a specified pattern, and (ii) the counting procedure applied throughout the

sequence of n multistate trials. To illustrate this principle, consider a sequence of

n 1id. m-state trials {X;} defined on the state space I' = {b;, by, ..., by, }. Given a

simple pattern A = b;, b;, - - - b;, of length k, suppose we are interested in finding the

exact distribution of X, (A) with respect to nonoverlapping counting. We proceed

as follows:

(1)

(ii)

(iii)

Decompose the pattern A = b;,b;, - - -b;, forwardinto k—1 subpatterns labelled
1=0by,2=0bby, ... k—1= bi, bs, - - - b, and let ‘0’ stand for none of the
subpatterns ‘1’,...,%k — 1’. These subpatterns (including 0) are called ending

blocks.

Let n = (z1,...,2,) be a realization of the sequence {X.;}, where z; is the
outcome of the ith trial. We define a Markov chain {Y:}, operating on 7
to be Yy(n) = (u,v) for each t = 0,...,n, where u denotes the total number
of occurrences of the pattern A in the first ¢ trials (counting forward from
the first trial to the ¢th trial) and v denotes the subpattern (ending block)
(counting backward from the #th trial). Based on this construction, the state

space {) associated with {Y;} is defined by
Q={(y,v):u=0,1,...,1 and v=0,1,...,k— 1},
where | = [n/k] is the maximum number of occurrences of the pattern A in
the sequence of n trials. It is easy to verify that card(Q) = (I + 1)k.
For ¢ = 1,...,n, the transition probabilities are determined by the following
equations:
P [Y; = (u,v) |V, = (u,v)]
Yo i if o =uforu=0,...,land v,v' =0,...,k—1,

=< D ifu':u+1foru:0,...,l——1, v':Oandv:k—l,
0 otherwise,
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where 3, ,,» denotes the sum over all states b;; such that the ending block v
is shifted to v', and p;, 1s the probability corresponding to the last element b;,

of the pattern A.

(iv) Define the partition {C; = [(z,v) : (z,v) € Q, v = 0,1,...,k — 1], for z =

0,1,...,1} on the state space {2 in the sense that
P(Xn(A)=1z) = P(Y, € C,l¢&,),
foreach z =0,1,...,1.

From the construction of the transition probabilities in (iii), it is easy to see that
{Y}} is a Markov chain. The forward and backward principle provides a classification
for a realization 7 of the sequence {X;} according to the number of patterns and
the ending blocks. With some modifications, the forward and backward principle
can be extended to a sequence of homogeneous Markov dependent multistate trials,
but we will not discuss this case any further. The next example gives an detailed
illustration of this principle and catches more ideas about the finite Markov chain

imbedding technique.

Example 2.4 Let {X;}?, be a sequence of i.i.d. 3-state trials such that each
trial has possible outcomes F', S and S* with corresponding probabilities pg, p1
and pq, respectively. Let A be a simple pattern with A = SFF and assume that
nonoverlapping counting is used. To find the exact distribution of X, (A), we first
decompose the pattern A forward into two subpatterns S and SF, and relabel them
as1l= S and 2= SF. Let ‘0’ stand for neither the subpattern ‘1’ nor the subpattern
‘2’. Define a Markov chain Y; = (u,v) for each ¢ = 0,1,...,n, where u represents
the total number of occurrences of the pattern A in the first ¢ trials and v = 0,1, 2

are ending blocks (counting backward from trial £). The state space based on this
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imbedded Markov chain is then given by
Q={(u,v):u=0,1,...,land v = 0,1, 2},

where I = [n/3]. Clearly, card(Q2) = 3(I+1). Then the transition probability matrix
associated with the imbedded Markov chain {¥;} is given by

0,00 [ Po+p2 pr O] 0O 0 0

0,1) D2 P1 Ppo 0 0 0 0 0

(0,2) P2 m 0] po 0 0

(1,0) 0 0 0 |po+p2 p1 O

(1,1) 0 0 0 p2  p1 po 0 0

0 0 0 P P10 | po
M= (1,.2) 2 1
0 0 0
’ Do

(¢,0) po+p2 p1 O

(1, 1) 0 0 0 ) 1 Po

¢2) | 0 0 1
Finally, we define C; to be C; = {(z,i) : 4 = 0,1,2}, z = 0,1,...,l. Then {C, :
z =0,1,...,0} forms a partition of the state space Q. Hence, from Theorem 2.1,
we have

P(Xn(A) =2) = £EM™U (Cy), 2=0,1,...,1,

where £, = (1,0,...,0)1x3041) is the initial distribution and U’ (C}) is the trans-
pose of the row vector (0,---,1,1, 1,...,0)1x30+1) such that the locations of 1’s

correspond to the states (z,7), i = 0, 1,2, respectively.

The major advantages of the finite Markov chain imbedding technique are that
it does not involve heavy mathematics and it is efficient from a computational point
of view. Especially with today’s high speed computers, computation on large matri-
ces is no longer an impossible task. To close this section, we point out that the finite

Markov chain imbedding technique is not only useful in studying the distributions
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of runs and patterns, but also in solving problems associated with compound statis-
tical decision rules and random permutations. We refer to Fu (1995), Fu, Lou and

Wang (1999), Johnson and Fu (2000) and Fu and Lou (2000) for further references.



Chapter 3

Waiting Time Distributions of
Compound Patterns

In this chapter, we assume that, unless otherwise stated, {X;} is either a sequence
of ii.d. or first-order homogeneous Markov dependent m-state trials. The main
purpose of this chapter is to develop a simple and general method to obtain the
exact distributions, means and probability generating functions for the wailting time
distributions of compound patterns. Except for Theorem 3.1, all theorems with

proofs are new.

3.1 Preliminaries

Let {Y; : t = 0,1,...} be a homogeneous Markov chain defined on a finite state

space 2 with transition probability matrix M having the form

Q\VA A
Q\A | Nixk | Crsa
M= , 3.1
A [ Orxr | I (8.1)

where card(Q2) = k+1 is the size of the state space Q, A4 is the subset of all absorbing
states with card(A) = I, and Q\ A is the subset of all non-absorbing states. Let
€ = (€ : 0)1x(kty be the initial distribution of {Yi}, where € = (&,...,&) and

F1& =1, and let (15 : 0)1x(r+1) be a row vector, where 1 = (1,...,1)1x4. The
following lemma, which is a special case of a result from Fu and Lou (2002), plays an

indispensable role in studying waiting time distributions. It yields the probability

24
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of the event that the chain enters the set of absorbing states for the first time. We

provide details of the result, including the proof.

Lemma 3.1 For any state j € A, we have
P(Yo=5,Ya0 g A,... Y1 ¢ Alg) =Ny, (3.2)

where C; is the column vector of the matriz C corresponding to the state 7, and

more generally,
PYoe ALY, 1 ¢ A,... .Y ¢ Alg) = EN"Y(I — N)1, (3.3)

where I s the k x k identity matriz, and 1;3 s the transpose of the row vector

1k - (1, ey 1)1><k-

Proof. Since M has the form given by (3.1), it follows that

MP- — [ N1 l K, }

0 | I
where K, ;1 = C" '+ NC" 2 +...4+ N"2C. For any state i € \ 4, it follows

from the Chapman-Kolmogorov equation that
P(Yn1=10,Yha ¢ A,... Y1 ¢ Al&) = (£:0)M™(e;: 0) = (N e,

where the dimension of the row vector (e; : 0) is 1 x (k+1), and e, is the transpose
of the unit vector ; = (0,...,1,...,0)1xz From the definition of a Markov chain,

we have

P(Yn :jayn-—l ¢ A;“‘)H ¢AI£O)
= 3 P(Yau=6,Yod A,... Vi & Alg) P(Yy = j[Ypy = 1)
1€\ A

= > gNn_le;pijzﬁNn_l > by ;ZﬁNn"IC’j.
iEO\A €A
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This completes the proof of equality (3.2). Equality (3.3) follows from the definition

of a Markov chain and equality (3.2):

PYa € AYa 1 ¢ A Yy ¢ Alé,)

=Y P(Ya=35Yu ¢ A,....Y: ¢ Al¢g) = Y eN"1¢

jEA JjEA
=ENTIY Ci=ENTTY Y pye;=EN"T Y Ypye
JjeA JEAIEO\A iEQ\A JEA
=EN"T Y (1— 3 pim) e;=€N"*1<Zeé— > > pime;)
i€Q\A mea\A i€\ A iEQ\A me\ A

=¢N"H1, — N1,) = ¢EN" (I — N)1,,.

This completes the proof. O

3.2 Exact Distributions

To derive the exact distribution of the waiting time random variable W(A), we
adopt the forward and backward principle. We start from the i.i.d. case. Given
a compound pattern A = Ul-=1 A; with each simple pattern having length %;, then
each simple pattern can be decomposed forward into k; subpatterns. Define the
state space (2 as

Q={0}uTu Llj S(Ay), (3.4)

where ( is the initial state and S(A;) = {all the subpatterns of A} i=1,...,L
It is easy to verify that card(Q) < 1+ m 4+ Sl (k; — 1). For example, let I' =
{b1,b2} and A = Ay U Ap with Ay = bbiby and Ay = bybyby, then S(Ay) U S(As) =
{bl,blbl,blbg,blblbz,blbng} and Q = {0, b1, b2, b1b1, b1ba, bibibs, biboby}. Hence, the

states in the state space ) can always be relabelled as
Q={1,...,ko,...,}, (3.5)

where a;, ..., o are absorbing states corresponding to the patterns Aj, ..., A,



27

It has been shown that the number of patterns (or runs) X,(A) and the waiting
time W(A) in a sequence of multistate trials are finite Markov chain imbeddable in
the sense of Fu (1986b, 1996), Fu and Koutras (1994), Koutras (1997b) and Koutras
and Alexandrou (1997), hence there exists a Markov chain {V; : ¢ = 0,1,...} defined

on the finite state space {2 whose transition probability matrix M has the form

1 Pur o Duk Play - D1y
_ k| Pk Drk | Pres  Drey | [ N|C
M=o 0 01 0|7 0|1 | (3:6)
o i 0 0 0 1 ]

where the p;;’s are pattern dependent and are determined via the forward and
backward principle. From Lemma, 3.1, the exact waiting time distribution of W (A)

is given by

= Y EN"C(a) (57)
= £Nn—1(I - N) ;c> (3'8)

for n = 1,2,..., where ¢ is the initial distribution, C(oy), j = 1,...,1, are the
column vectors of the matrix C, and 1} is the transpose of the row vector 1; =
(1,1,...,1)1xk A different derivation of Equation (3.8) is shown in result A2 of the

Appendix.

Remark 3.1 It is important to point out that the walting time distribution is
highly dependent on the initial distribution &€ of the imbedded Markov chain {V:}.
Setting up the initial distribution &€ can be very tricky, especially when {X;} is a

sequence of Markov dependent multistate trials and A is a compound pattern. To
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avoid this problem, we purposely introduce the initial state ) and define P(Yy =

0)=1(=(1,0,...,0)).

Remark 3.2 If {X;} is a sequence of i.i.d. multistate trials, then the state space )
of the imbedded chain {¥;} can be reduced to

Q={0,6}U L_IJ S(A;), (3.9)

where the state 8 means that no subpattern belongs to Ul_; S(A;). The reduction

of number of states can be significant especially when the size of I is very large.

Equations (3.7) and (3.8) remain applicable to the case when {X;} is a sequence
of first-order homogeneous Markov dependent trials by replacing corresponding tran-
sition probability matrix in the equalities. If {X;} is a sequence of independent but
non-identical multistate trials, then the transition probability matrix at time ¢ as-

sociated with the imbedded Markov chain has the form

N, | C
M, = { Ot It J : (3.10)
and the exact waiting time distribution of W(A) is given by
l n—1
P(W(A)=n) = I3 (H Nt> Cr(ay) (3.11)
J=1 t=1
n—1
= ¢ <H Nt> (I —N,)1,. (3.12)
t=1

The construction procedure for the exact distribution of W(r : A) is similar to
Example 2.4. We only need one more component for each state in the state space §2
to record the total number of occurrences of the pattern A in the first ¢ trials, and

those subpatterns (excluding A itself) are used as ending blocks.
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3.3 Means and Probability Generating Functions
3.3.1 Main Results

The probability generating function is an indispensable tool for studying the char-
acteristics of waiting time distributions. Usually, finding the probability generating
function for the waiting time entails tedious mathematics and heavy probability
theory, even for the case of simple patterns in a sequence of Bernoulli trials. For
example, Feller (1968), by using the theory of recurrent events, obtained the prob-
ability generating function for the waiting time of a success run, A = S--- 3, of

length k in a sequence of Bernoulli trials as

(ps)*(1 — ps)
Pwny(s) = 1 — 5+ gpksk+1’

(3.13)

In this section, we develop a general method for finding the means and probabil-
ity generating functions of waiting time distributions of compound patterns in a

sequence of i.i.d. or Markov dependent multistate trials.

We first observe that the mean and probability generating function of the wait-
ing time W(A) can be derived (see Fu, Spiring and Xie, 2002) straightforwardly
from Equation (3.8).

Theorem 3.1 For a waiting time random variable W (A), its mean and probability

generating function are given by
EW(A)] =¢(I-N)™1; (3.14)
and
Pwn(8) =1+ (s — DEI — sN) 711, (3.15)
respectively.

Although formulas (3.14) and (3.15) are rather simple, from application point
of view, Equation (3.15) does not yield an explicit analytical form for the probability
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generating function in the way that Equation (3.13) does. To find the mathematical
form of w4, (s), the major difficulty is that given N, we have to find the explicit
analytical form of the inverse of the matrix (I — sIN') which is extremely tedious, if
not impossible. It can be done only if N is a very small and simple matrix. This
is the primary motivation for developing a general method of finding probability
generating functions for any waiting time distribution involving simple or compound

patterns.

Traditionally, the mean waiting time E[W(A)] is obtained by differentiat-
ing the probability generating function once and evaluated at s = 1; that is,
E[W(A)] = @S%A)(s)lszl. Contrary to the traditional approach, we develop a sim-
ple technique to find £ [W(A)] first and then extend the technique to obtain the

probability generating function.

Theorem 3.2 For a waiting time random variable W (A), the mean waiting time

E[W(A)] can be ezpressed as

EW(A)] =81+ Sy + -+ Sk, (3.16)

where (S1,...,Sk) is the solution of the simultaneous recursive equations
Si=¢e; +(81,8,,...,S)N@), fori=1,...,k (3.17)
and where N (i), i = 1,...,k, are the column vectors of the matriz N, and e; =

0,...,0,1,0,...,0), i = 1,...,k, are unit vectors.

Proof. Since W(A) is finite Markov chain imbeddable and its imbedded Markov
chain {Y;} defined on the state space Q2 has transition probability matrix M having

the form given by Equation (3.6),

P(W(A) > n) = EN™ 1},
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It follows from the definition that

EW() = iP(W(A)zm
= et
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where S; = ZSN nle fori=1,... k. Further, last-step analysis yields that, for
n=1
i=1,...,k,
k
EN""e; = EN"TPN(i) = Y pji EN™ e, (3.18)
i=1
and
S; = > EN"le,
n=1
! © k I
= fe;+ > EN™? ijiej
n=2 j=1
.k
= fe;+ > p;iS;
Jj=1

= ee; -+ (51,52, ceey Sk)N(’L)

This completes the proof. 0O

Remark 3.3 Since (51, 5,,...,S5k) is the solution of the simultaneous recursive

equations (3.17), it follows that

(51,52, . '7S/c) = é’(I — N)-—l.



Hence,

E[W(A)] =S+ S+ -+ 5, =£(I—N)—11;c.
This yields Equation (3.14).
In view of Theorem 3.2, it is easy to see that the technique could be extended
directly to show that the explicit analytic form of probability generating function

Yw)(s) can be obtained in terms of @y, (s), the probability generating function

of the sequence of cumulative probabilities { P(W (A) > n)}<

n=1-
Theorem 3.3 For a waiting time random variable W(A), we have

Dy (8) = 1(8) + -+ dr(s), (3.19)
where (¢1(s), ..., dx(s)) is the solution of the simultaneous recursive equations
¢i(s) = sée; + s(1(s), ..., 9u(s))N(G), fori=1,2,... k, (3.20)
and

Py (8) =1+ (1 - %) D, (). (3.21)

Proof. The proof of part (3.19) is along the lines of the proof of Theorem 3.2:
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where ¢;(s) = X2, s"¢éN ”‘le; for ¢ = 1,..., k. It follows from last-step analysis

and Equation (3.18) that

¢i(s) = > s"EN™le,
n=1
! e k !
= sfe;+ » SEN"T? (Z Dji ej>
n=2 j=1

k 0
- sty (e
n=2

j=1
= ste;+5(¢1(s), ..., d(s)) N ().
This completes the proof of equality (3.19). Equality (3.21) follows from the defini-

tion of @y ) (s) and @y, (s):

e}
7

Pwa(s) = D s"EN"TYI - N)1,

n=1

iy I 0 )
= Y s"EN"T1, - , > sMENTT 4+ 1

n=1 n=0

1
This completes the proof. O

In view of the definition of ¢;(s), it is clear that the ¢;(s), i = 1,..., k, are prob-
ability generating functions for the sequences of probabilities {P (Y, = 1)}, re-
spectively. Since P(W(A) > n) = 228, P(Y; = 1), the resuls Do (8) =28, ¢i(s)
comes as no surprise.

Next theorem provides another way to evaluate @4, (s) which is often simpler

in computation.

Theorem 3.4 For a waiting time random variable W (A), the probability generating

Junction @y (s) can be expressed as

l

Owy (5) = D (b1, 2, . .., %) C (), (3.22)

=1
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where C(ay), j=1,...,1, are the column vectors of the matriz C.

Proof. It follows from definition and last-step analysis that

SOW(A)(S)

This completes the proof.

i S P(W(A) = n)
is” (2_:1 PW(A) =n, W) = n))

i s" (Z £N”_1C(ozj)>

n=1 i=1

I oo
ST s"ENTTIC(ey)
j=1ln=1

I o k
S5 oren (el
j=1n=1 i=1

l k 0
>3, (5 rent el
j=1li=1 n=1

Ik
D> pia; 9i(s)
F=l1i=1

l
Z(¢1(S)a ¢2(8)7 s )¢k(8))c(aj)'
j=1

|

All the above results in this section are under the assumption that {X;} is

a sequence of i.i.d. multistate trials. Moreover, the results are also true if {X;}

is a sequence of first-order homogeneous Markov dependent multistate trials. The

only difference between i.i.d. and Markov dependent trials is that the transition

probability matrices of two imbedded Markov chains are slightly different. We do

not repeat the proof for the above results under Markov chain dependency but an

example to illustrate this point is provided in the next section.
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3.3.2 Examples and Symbolic Computation

To make our results more transparent, we provide the following two examples.

Example 3.1 Let {X;} be a sequence of Bernoulli trials with success and failure

probabilities P(X; = S) = p and P(X; = F) = q¢ = 1 — p, respectively, and let

A = A; UA; be a compound pattern with A; = S5 and Ay = FF. It is easy to see

that the imbedded Markov chain {Y;} associated with the waiting time W (A) has

state space Q = {0} UT UUZ, S(A;) = {0, S, F, a1, a3} and transition probability

matrix
OO0 p ¢gl0 0O
S10 0 ¢g{p O
M= F [0 p 0[0 ¢ :{](\)T CIJ’}
o {0 0 0]1 O
ay | 00 00 1

with initial distribution £, = (1,0,0,0,0) for Y, (¢ = (1,0,0)). It follows from

‘Theorem 3.2 that (51,52, S3) is the solution of the simultaneous recursive equations

S1

S

S3

This yields

1+ 1+ 3
p( q)+9( D) o4 3P

EW(A)] =1+

l-pg  l-pg = 1-pg

Similarly, by Theorem 3.3, (¢1(s), ¢2(s), #3(s)) is the solution of the simultaneous

recursive equations

$1(s)
$2(s)
$3(s)

S)
sp$1(s) + spgs(s),
5qp1(s) + sqpa(s).
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With some simple computation, it follows from Theorem 3.3 that

ps? +pgs®  qs? + pgs®
1 — pgs? 1 — pgs?

QW(A)(S) =8+

and

1 (P* + ¢?)s® + pgs®
Pw(s) =1+ <1 N E) P (8) =3 —pgs®

Further, by Theorem 3.4, it also yields

2

Pwan(s) = D (41(s), d2(s), #3(5))Clay)

i=1

= poa(s) + q¢s(s)
(p* + ¢%)s* + pgs®
1 — pgs? '

In addition to the above, we use this example to illustrate that these results also
apply to the case when {X;} is a homogeneous Markov chain having transition

probability matrix

S mn 1l—p
A= .
F [p2 1—1172]

Given the initial probabilities P(X; = S) = pand P(X; = F) = ¢ = 1 — p, it
is easy to show that the imbedded Markov chain {¥;} associated with the waiting
time W (A) has state space Q = {0, S, F, a1, @} and transition probability matrix

given by
P[0 »p q 0 0
S10 0 1—-p|p 0
M= F | 0 p 0 0 1-—p :{]:(Ij}
ar | 0 0 0 1 0
ag | 0 0 0 0 ]

By the same token, Theorems 3.2, 3.3 and 3.4 yield the mean waiting time and its

probability generating function, respectively, as

p+qps q+p(l—p)
I-(1=p)ps 1—(1—pi)ps

EWA)] =1+
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and

ps® + gpys® ( ) gs* +p(1 — p1)s°
. — py) - _
1 —(1 - p1)pss? 1= (1 — p1)pas?
When p; =p;, =pand 1 —p; = 1 —p, = g, this reduces to the i.i.d. case. A general

Pwa) (3) =n

formula for ¢y, 4,(s) in the case where Ay = S---5 of length £y and Ay = F--. F
of length ky are derived as results A3 and A4 in the Appendix.

From the above example, we see that Theorems 3.2—3.4 are applicable both
to the case that {X;} is a sequence of i.i.d. multistate trials and to the case that
{X;} is a sequence of Markov dependent multistate trials. Moreover, the method
is independent of the size of the state space I' of multistate trials, but the results
do depend on the initial distribution £€. For large { (or large k;, 2 = 1,...,1), it is
clear that the ¢;(s) cannot be readily obtained by hand through the simultaneous
recursive equations. We therefore develop symbolic computational algorithms for
use in a computer algebra system. Computer programs based on the mathematical
software MAPLE have been developed to obtain the transition probability matrix
N, mean E [W(A)] and probability generating function ey, (s) automatically. We
discuss the algorithms in Chapter 5. The following example is solved as a result of

our computer program.

Example 3.2 Let {X;} be a sequence of i.i.d. four-state trials with possible out-
comes A, C, G and T, and let A = A; UAy U A; be a compound pattern with
Ay = AGTT, Ay = AAA and A3 = GOT. Assume that P(X;=A)=p, PX;=
C) = p., P(X; = G) = pg and P(X; = T) = p;, where p, +Petpg+p =1,
¢ = 1,2,---. Note that in our computer program, the letters A C, Gand T
are transformed to 1, 2, 3 and 4, respectively. It is easy to see that the imbed-

ded Markov chain {Y;} associated with the waiting time W (A) has state space
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Q={0,A,C,G,T,AG, AA,GC, AGT, a1, a, as} and transition probability matrix

O [0 po po. P, p» 0 0 0 O0]l0 0 0
A0 0 p. 0 p Pg Pa O 010 0 O
C 10 pa pc po » 0 0 0 0]0 0O O
G100 p. 0 p, ;» 0 0 p. 0[]0 0 0
T |0 po po po » 0 0 0 0|0 0 O
M- AG |0 po 0 p, 0 0 0 p. P10 0 O
AA |0 0 p. 0 p pg 0 0 0|0 p, O
GC |0 po po P 0O 0 0O O 00 O Dy
AGT | 0 p, p. po 0 0 0 0 O pe 0 O
o |0 0 0 0 0 0 0 o 01 0 o0
a |0 0 0 0 0 0 0 0 0]0 1 O
a3 |0 0 0 0 O O O O o010 0 1 |

with initial distribution &, = (1,0,0,0,0,0,0,0,0,0,0,0) for ¥y (€ = (1,0,0,0,0,

0,0,0,0)). From the computer program, we obtain

1 2
EIW ()] = Lo
Pa + DeDgPt + DaPp(De + pe) (1 + p4)
and
2.3 3 2.2
pas DeDgS° (1 + pos + pis DaPgDe(1 + pgs
Pwn(s) = pa'“——aA +p; - 2 ( Apa . )+pt' e t(A Pas)
_ 5P} + Pepyps + Papeps(pe + 1) (1 + pas)s]
A ?
where

A = 1= (1=pa)s = pa(l=pa)s’ + [pepgpe — p2(1 — po)] 5°

+ PaDepe(pe + pe)s* + D20 ,pi (Do + p1) 5.

Similarly, the mean and probability generating function can also be obtained from
the computer program for the case when {X;} is a sequence of homogeneous Markov
dependent trials. In Figure 3.1, we show the probability distributions of W (A) when
{X:} is a sequence of i.i.d. and Markov dependent trials. For the i.i.d. case, we set

Pa = Pe = pg = pr = 0.25. For the Markov dependent case, we set the initial
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0.045
0.04}
0.035} ":_.
+--- Markov dependent

0.0251
0.02r
0.015}
0.0t

0.005¢

=]

Figure 3.1: Probability distributions of the waiting time W (A) for Example 3.2.

probabilities to be p, = p. = p; = p; = 0.25, and the transition probability matrix

of {X;} as

0.25 0.10 0.50 0.15
035 0.25 0.10 0.30
0.10 0.20 0.25 0.45
0.15 0.15 0.45 0.25

NOQQ

3.3.3 Extensions

We know that the waiting time W (r : A) to the rth occurrence of the pattern A can
be written as

Wr:A)=Wi(A)+-- -+ W.(A), (3.23)
where W;(A), ¢ = 1,...,r, are interwaiting times. If {X;} is a sequence of i.i.d.
multistate trials and A is a simple pattern with a nonoverlapping counting scheme,
then the {W;(A)} arei.i.d. random variables, and the probability generating function
of the waiting time W (r : A) is given by

SOW(T:A)(S) = (SOW(A)(S))T- (3.24)
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If nonoverlapping counting is replaced by overlapping counting, then Wy(A),. ..,
W;(A) are i.i.d. random variables whose common distribution is the distribution
of Wa(A). Note that the {W;(A)},_, have the same imbedded Markov chain ex-
cept that the initial distribution for W,(A) is &, = (1,0, . .,0) = e; and &, =
(0,...,0,1,0,...,0) = e is the initial distribution for all the waiting times Wy (A),
-+, Wr(A), where the state j is the longest subpattern (excluding A itself) in the
pattern A with respect to overlapping counting (for example, if A = SFFSF then
the state ‘57 corresponds to the state ‘SF”). Hence, by Equation (3.23), Wi(r:A)

has a probability generating function given by

Pwiay(8) = Py (8) (sz(A)(S))T_l . (3.25)

Further, if { X;} is a sequence of Markov dependent multistate trials and A is a simple
pattern, then the probability generating function of W (r : A) has the same form as
Equation (3.25) except that the state ‘5’ associated with the initial distribution &,
for W3(A) is the last element of the pattern A.

For a compound pattern, Equation (3.24) is valid only if {X;} is a sequence
of i.i.d. multistate trials with nonoverlapping counting. In general, things become
very complex and the initial distributions g for Wi(A), i =1,...,r, may differ a
lot. The general form of &; and ¢y(,.4(s) remain unknown for the case of compound

patterns, especially when {X;} is a sequence of Markov dependent trials.



Chapter 4

Waiting Time Distributions of
Ordered Series and Later Patterns

In this chapter, we assume that, unless otherwise stated, {X.;} is a sequence of
first-order homogeneous Markov dependent m-state trials. Let o be an ordered
series pattern and let Ay be a later pattern as defined in Chapter 2. The aim of
this chapter is to investigate the distribution theory of the waiting times W (o) and
W (Ar). All the results in this chapter are new.

Remark 4.1 Given an ordered series pattern o = Ay o --- o Ay, it is important to
mention that the waiting time distribution of W (o) is an “improper distribution”;
that is, the probability 52, P(W(c) = n) < 1. The reason for this is rather
simple: there always exists a positive probability that at least one of the patterns
Aj, 7 =2,...,1, occurs before the pattern A;. Hence, the generating function of
W (o),

[ee]

Dy (8) = > s"P(W(o) =n),
n=1

is not a probability generating function and ww(a)(l) < 1.

4.1 Preliminaries

Given a compound pattern A = U§:1 A;, recall the following results obtained in

Chapter 3:

41
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(i) The exact distribution of W (A) is given by

PW(A)=n) = n, W(A;) = n)

!
2P
= Xl:gN“ 'Clay) = EN™HI — N)1,, (4.1)

forn=1,2,..., where £ = (1,0,...,0) is the initial distribution with P(Yy =
0) = 1, and C(ey), j = 1,...,1, are the column vectors of the matrix C

corresponding to the absorbing states o, j =1,..., 1.
(ii) The mean waiting time E [W(A)] is given by
EW(A)] =8+ Sy + -+ S, (4.2)
where (S1,...,S) is the solution of the simultaneous recursive equations
Si=te;+(51,5,...,5)N(@), fori=1,... k,

and where N (7), ¢ = 1,...,k, are the column vectors of the matrix N , and

e;=(0,...,0,1,0,...,0),i=1,...,k, are unit vectors.

(iii) The probability generating function of W (A) is given by

P (s) = i s" (Z_; P(W(A) =n,W(A;) = n))

n=1
I
= Z(¢17¢27"'7¢k)c(aj)’ (43)
j=1
where (¢1(s), ..., x(s)) is the solution of the simultaneous recursive equations

¢i(s) = s€e; + 5(1(s), ..., pe(s))N(@), i =1,2,... k.

For convenience, let W(Aj|A4, ..., A;) be the waiting time to the first occurrence of

Ay, and that A; occurs first among all the patterns Ai, ..., A;. For the same reason
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as stated in Remark 4.1, the random variables W (A;|Ay,...,A), j =1,...,1, are

improper random variables. It follows from the definition of W(Aj|Ay, ..., A;) that
PW(AjlAL, .., M) =n) = P(W(A) =n, W(A;) =n)

and

PW(A) =n) =Y P(W(AjAy, ..., A) = n). (4.4)

j=1
Further, from Equation (4.3) the generating function of W (A;|Ay,...,A,) is given
by

¢W(Aj|A1 Al)(s) = ZSHP AIAl,--- A):n)

.....

= Z s"P(W(A) =n,W(A;) =n)
= (¢1,62,...)C(ay), =1,...,1, (4.5)

and

I
SDW(A) Zld)W(A JAL e Ap) 8)' (4'6)
J:

Lemma 3.1 and Equations (4.1)—(4.6) lay the foundation for studying the exact
distributions, means and probability generating functions for the waiting times of

order series and later patterns.

4.2 Waiting Time Distribution of an Ordered Series Pattern

Let 0 = Ajo---0A; be an ordered series pattern generated by [ distinct simple
patterns Ay, ..., A; with lengths ki, ..., k;, respectively. Our main interest in this
section pertains to finding the probabilities {P(W (o) = n) : n = 1,2,...} and
the generating function of W (o). The construction of the state space ) for the
imbedded Markov chain {Y;} associated with W (o) can be divided into two cases:
(i) ks > 2 foralli=1,...,l, and (ii) k; = 1 for some 1 = 1,..., 1. Firstly, consider
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case (i): k; > 2 forall4 = 1,...,! under nonoverlapping counting. Let S'(A;) be the
set of all subpatterns of A; excluding A, itself (e.g., if I' = {by, bo} and Ay = bbby,
then S'(A1) = {b1,b10,}), and let T(A;) = {0} UTU S (A;), i=1,...,1. We define
a Markov chain {Y; : ¢ =0,1,...} on the state space Q having the form

-1 !

Q=0 U |J ulJ{al, (4.7)

i=1 i=1
where €y and Q;, i =1,...,1 — 1, are defined as

!

Qy = {(O,v):ve UT(Aj)},

j=1

Q, = {(u,v):uzl---iandve LIJ T(Aj)},

j=itl
o is the absorbing state corresponding to the pattern o and as,...,o; are the
absorbing states corresponding to the patterns A,, ..., A}, respectively. For example,

let I’ = {bl,bg} and o = A1 @) A2 o A3 with Al = blbg, A.2 = bgblbl and A3 = bgbg;

then the state space is 2 = QU Q; Uy U {1, ag, a3}, where

o = {(070)7 (O’bl)v (OabQ)v (07b2b1)}a
Ql = {(170)7(1abl)7(1ab2)7(17b2b1)}7
Qy = {(12,0), (12,b1), (12,()2)},

and the absorbing states a;, o and a3 correspond to the patterns o = byby o babi by 0
baba, Ay = bob1by and Az = byby, respectively. Note that: (i) the state (0,0) is the
initial state; (ii) the state (1,0) means that the simple pattern A; has just occurred;
and (ili) the state (12, ;) means that A; and A, have occurred in order with ending
block b;. With this construction, it is clear that the state space Q can always be
relabelled as 2 = {1,...,k,04,...,} and hence the transition probability matrix

M vy of the imbedded Markov chain {V;} associated with W (o) with respect to
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nonoverlapping counting can be obtained and always has the form

M) = [ e f “ } = (i) gy

where the transition probabilities pij depend on the structure of the simple patterns

Ay, ..., Ay and the order of these patterns in o.

For case (ii): k; = 1 for some i = 1,..., [, we require some minor modifications
on the state space Q. If k; = 1 for some 4; i.e., A; € T', then the state space {2
still has the same form as Equation (4.7) except that the set Uiy T(A;) in Qp is
replaced by the set Uj_; T(A;) \ U;{A; : k; = 1} and the set Ulmisr T(A)) in O is
replaced by the set U’—;,; T(A)) \ Uj{Aj: k; =1and j > i+1}. For example, let
[' = {b1,b2,03} and 0 = A 0 Ay 0 Az with Ay = by, Ay = bybyby, and Ag = bs; then
the state space is Q = Qo U UQ, U {oq, as, a3}, where

QO = {(O’ 0)7 (07 b2)7 (07 b2b1)}7
O = {(1>O)7(17b1)9(1’b2)7(17b2b1)}7
Qg = {(12, 0), (12,b1), (12,b2)},

and the absorbing states a;, as and as correspond to the patterns o = by 0byb by 0bs,

Ay = bob1by and Ay = b3, respectively.

The construction procedure for the case of overlapping counting is the same
as the case of nonoverlapping counting except that the transition probabilities are
defined with respect to overlapping counting. In order to make the entire imbedding
procedure more transparent, we provide the following example, focusing especially

on constructing the transition probabilities of the matrix M.

Example 4.1 Let {X;} be a sequence of three-state Markov dependent trials with

possible outcomes 1, 2 and 3, and let ¢ = A; 0 Ay 0 A3 be an ordered series pattern
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with A; = 13, Ay = 31 and A3 = 22. Given the initial probabilities p1, p, and ps

and the transition probability matrix of {X},

1 P11 P12 D13
A= 2 P21 P22 P23 |,
3 D31 P32 P33

then the imbedded Markov chain {Y;} associated with the waiting time W (o) has

state space

Q = {(0,0),(0,1),(0,2),(0,3),(1,0), (1,1), (1,2), (1,3), (12,0), (12,1),

(12, 2), (12, 3), aq, Qa, ag},

where the absorbing states a1, ap and a3 correspond to o, Ay and As, respectively.

The transition probability matrix M ~) with respect to nonoverlapping counting is

given by
0,0 [0 p1 p2 p3| 0 0 0 0 0 0 0 0 0 0 0
(O) 1) 0 p11 pi2 0 P13 0 0 0 0 0 0 0 0 0 0
0,2) 0 pa 0  pas 0 0 0 0 0 0 0 0 0 0 pa2
(0,3) 0 0  p3z p33 0 0 0 0 0 0 0 0 0 pa1 0
(1, 0) 0 0 0 0 0 P31 P32 D33 0 0 0 0 0 0 0
(1, 1) 0 0 0 0 0 P11 P12 P13 0 0 0 0 0 0 0
(1,2) 0 0 0 0 0 pa1 0 pos 0 0 0 0 0 0 pa2
M(N) = (1,3) 0 0 0 0 0 0 P32 P33 | pa1 0 0 0 0 0 0
(12,0) 0 0 0 0 0 0 0 0 0 P11 P12 D13 0 0 0
(12,1) 0 0 0 0 0 0 0 0 0 P11 P12 P13 0 0 0
(12,2) 0 0 0 0 0 0 0 0 0 p2a 0 p23|p2 O 0
(12,3) 0 0 0 0 0 0 0 0 0 P31 P32 P33 0 0 0
oy 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0
asz 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0
as | 0 0 4] 0 0 0 0 0 0 0 0 0 0 0 1]
= [_N_LM__C(M_J
0 I )

Since neither the pattern ‘31’ nor the pattern ‘22’ could occur until the first occur-
rence of the pattern ‘13’, the transition probabilities P[Y; = a3|Y;_; = (0,2)] = pys
and P[Y; = 05|Y; ) = (0,3)] = ps;. Similarly, P[Y; = a3]Y;_1 = (1,2)] = pao. The
transition probability matrix M ) with respect to overlapping counting is almost
the same except for the transition probabilities P[Y; = (1,1)|Y;_; = (1,0)] = 0
and P[Y; = (12,0)[Y;—1 = (1,0)] = ps;. The reason of this is due to the fact that
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the difference between overlapping and nonoverlapping counting only occurs when

Ay = 13 has occurred at time ¢ — 1 and the outcome of the trial is ‘1’ at time ¢.

From the above example, it is clear that the idea of our construction procedure
is based on the character of the ordered series pattern o and the counting procedure.

Now the probability of W (o) and its generating function can be obtained.

Theorem 4.1 Let o = Ajo-- -0l be an ordered series pattern generated by stmple

patterns Ay, ..., A;. With respect to nonoverlapping counting, we have
(i) the probability mass function of W (o) is given by
PW(o)=n)= !;“N?];)lC’(N)(al), n=12..., (4.9)

where § = (1,0,...,0) is the initial distribution with P(Yy = (0,0)) = 1, and

Cny(ar) is the first column vector of the matriz Cwy;

(i3) the generating function of W (o) is given by

¢§V]\Q)(3) = (¢1, 92, .- - 0k)C vy (), (4.10)
where (¢1(s), ..., ¢x(s)) is the solution of the simultaneous recursive equations

¢Z(S) = Sse; + S(¢1(8)7 SRR ¢k(8)>N(N)(Z)’ i = 1; 27 e '7k7

and where N (i), i =1,...,k, are the column vectors of the matriz Ny,

and e; = (0,...,0,1,0,...,0), i =1,...,k, are unit vectors.

Proof. Let A denote the set of all absorbing states. Since the absorbing state o

corresponds to the pattern o, it follows from Lemma 3.1 that

P(W(G) = n) - P(Yn - al>Yn—1 ¢ A:’ . '7le ¢ A) = gN?J;T—)lC(N)(al)
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This completes the proof of part (i). For the proof of part (ii), we let A* = o U
(Ut=s A). Then it follows from Equation (4.5) that

W (8) = D s"P(W(A*) = n,W(0) =n) = (61, s, . ., $) C oy ).
n=1
This completes the proof. 0O

The results in Theorem 4.1 remain applicable to the case of overlapping counting,
except that the matrices Ny and C(ny are replaced by N 0y and C(p), respec-
tively.

There is yet another way to obtain the generating function of W(o). Let
A} = Uézj Ay j=1,...,1, and let W(A;|A;,...,A;) be the waiting time to the
first occurrence of the pattern Aj, and that A; occurs first among all the patterns
Aj ..., Ay For the same reason as stated in Remark 4.1, the random variables
W(A;|A4, ... ), 7 =1,...,1 — 1, are improper random variables. However, the
random variable W (A;|A;) = W (A;) is a proper random variable. For convenience,
we still denote the probability generating function of W (A;) by Yy (8) and use the
term “generating function” instead of “probability generating function”. For each
Jj=1,...,1, we imbed the random variable W (A7) with the same arguments as in
Chapter 3. Then the corresponding transition probability matrices of the imbedded
Markov chains associated with W (A3) have the form

N, C
— (A7) W(AY) S
MW(A;)—-{ 07 ] I7 },j—l,...,l.

Applying Equation (4.5), we can obtain the generating functions Vv anins A,)(5)>
7407

.....

J =1,...,1. The next theorem shows that the generating function ¢W(a) (s) can

be expressed in terms of the product of the generating functions (L Ay Al)(s),
7

.....

i=1,...,1
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Remark 4.2 When we study the generating function of W (o) in terms of the gen-
erating functions (U N (s), 7=1,...,1, we need to consider the order among
all the simple patterns Aq,..., A;. The initial distributions of the imbedded Markov
chains associated with W(A;f), J =1,...,1, may vary a lot according to underly-
ing sequence or counting procedure. Therefore, in the sequel, we use the notation

.....

distribution of its imbedded Markov chain.

Theorem 4.2 The generating function of W (o) with respect to nonoverlapping
counting s given by

l
7’[)‘("’]\8)(8) = HwW(Alej A (Slgé?i)(‘/\j-—l)>7 (4.11)

Gyt

where gé,ji (Ajo1) = (1,0,...,0), 5=1,...,1, are the initial distributions with initial
state Oy = 7* (P(Yy = 0;x) = 1), j* is the last element of the pattern A1, and
EéN) (Ao) =€ = (1,0,...,0) (with usual initial state B;» = 0)) by convention.

Proof. For the ordered series pattern o = A; o--- 0 Ay, it follows from its definition
that A; must occur first among the patterns Ay, ..., A;, Ay must occur first among
the patterns Ay, ..., A; given that A; has occurred, and so on. Hence, we have
W(O’) = Z W(Alej, e ,Al).
=1

Since A; is the first manifest pattern, it is clear that the initial distribution of
the imbedded Markov chain {Y;} associated with W(A}) is & = (1,0,...,0) =
§é,N)(A0) with initial probability P(Yy; = §) = 1. Thus, the generating function
Uyriayayap (s]ﬁéN) (A0)> can be obtained via imbedding the random variable W (A%).
Similarly, since A;, j = 2,...,[, occur in sequential order, the initial states 0« of

the imbedded Markov chains associated with W(A3), j = 2,...,1, are the last
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elements j* of A;_1, j = 2,...,[, respectively. Hence, the initial distributions are
& (Aj1) = (1,0,...,0) with initial state 0 = j* and P(Yp = 0;) = 1. The
generating functions @Z)W(Aleijl) (s]géf(/\j_l)) , 7 =2,...,1, can be obtained via
imbedding the random variables W(A;f), J =2,...,1, respectively. Now, since the
random variables W (A;|A;---A)), j = 1,...,l, are conditionally independent, the
generating function wsvj‘g) (s) of W(o) is the product of the generating functions

'g/)W(Aij._AAl) (slséﬁ)(/\j_l)) , 7 =1,...,1. This establishes equality (4.11). O

We provide a detailed example to make our result more transparent.

Example 4.2 Let 0 = A; o Ay o A3 be an ordered series pattern with A; = 13,
Ay = 31 and A3 = 22 as in Example 4.1. We first imbed the random variable
W(A3), where A} = UL, A;. Then the imbedded Markov chain {Y;} associated
with W(A}) has state space Q = {0,1,2,3, a1, @, a3} and transition probability

matrix
o p1 p2 p3| O 0 0 ]
110 pu p2 0 |ps 0 O
2 0 p21 O p23 0 O p22 N C
Mw(A*) = 3 O 0 p32 p33 O p31 O — [ W(A;‘) i V-V;AT) :' .
Yo |00 0 o1 0 0 0
ag |0 0 O OO0 1 O
3 |0 0 0 0|0 0 1 |

Applying Equation (4.5) and using our computer program, we obtain

2
_ Pp13st X Ay
wW(A1|A1A2A3)(8l£) - Ay ’

A = P1 — P1P33S + Papais — p1p23P3282 - p2p21p3332 + p3p21p3232,

Ay = 1—p115— P335 — Po3Paas® — P12Pns” + P11P33S” + P11P23D328° + P1oPa1Psss’.
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Given the occurrence of the pattern A;, we imbed the random variable W(A3),
where A3 = U, A;. The imbedded Markov chain {¥;} associated with W (A%) has

state space 2 = {03 = 3,1,2,3, ap, a3} and transition probability matrix

O3 [0 ps1 P32 pss| O ]
1 0 pu pi2 ps| O
2 0 par 0 py3| O
3 0 0 p32 p33|pm

— W(A*)’CW(A*
o | I |

a |0 0 0 011
a3 O 0 0 010

P—*OO§ OO

Since A; occurs before A,, the initial state 0;» = j* of this imbedded Markov
chain is the last element of Aj; i.e. )3 = 3. Hence, the transition probabilities
P(Y1 =j|Yy = 05 = 3) = psj, j =1,2,3. Using our computer program, it yields

2
N P315° X Ag
77/)W(A2|A2A3) ( IE( )( 1)) = A, )

Az = ps3 — p11Ds3S + Pa3P3as + PraPsis — P12P21P33s® — P11P23P328> + P12P23P31 8>
+ P13P21032 32,
Ay = 1- D115 — P33s — p23P3282 - 1012172182 + 117112?3352 - p13p21p3233 + p11p23p3283

+ P12po1D33S°.

By the same token, we obtain from our computer program that

2
N P22s” X Ag
W(A3) ( ’E( )( 2)) = Ag )

where

As = D1z — P12P33S + P13P3as,
Ng = 1—- D118 — P33S — p23p3252 - p12p2182 — P13P31 s? + 1911293352 - P13p21P3253

— P12P23P31 s° + P11DP23P32 8+ P12P21P33 s°.
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By Theorem 4.2, we can obtain the generating function 1/)55\8)(3) by taking the

product of the generating functions Y aninanas 1€y Yuwiagingag) (sl&éiv) (Al)) and
N

D iag) (8|§(§)1 )(AQ))'

When {X;} is a sequence of ii.d. multistate trials, it is easy to see that
5(5,?? (Ajo1) = Eé)N) (Aj_y) =& forallj=1,...,l. In the case of overlapping counting,
the result in Theorem 4.2 still holds except that the initial distributions in Equation
(4.11) are replaced by 5(%1_0*)(/\]-_1) =(0,...,1,...,0) = ejo, j =1,...,1, where the
state j° is the longest overlap of the patterns A;_; with Ay, k= 7,...,1, in the sense
of overlapping counting and Séi) (Ao) =€ =(1,0,...,0) by convention (the state j°
corresponding to the usual initial state }). For example, let o = A; o Ay 0 A3 with
Ay = 133, Ay = 32 and A3 = 331; then the state ‘5° for 5(%?*) (A1) corresponds to
the state ‘33’ (the longest overlap of A; with A, and A; with As). If there are no
overlaps, then it is trivial that 55,?) (Aj_q) = 5&?’;) (Aj_1).

Corollary 4.1 The generating function of W (o) with respect to overlapping count-

g 18 given by

.....

l
7’/}‘(4?(37)(8) = 1_-[1¢W(Aj|/\j AD (Slsé?*)(/\j-l)), (4.12)
j=

where Eé?*) (Aj—1) =(0,...,1,...,0) = €jo, j=1,...,1, are the initial distributions

such that the state j° is the longest overlap of the patterns Aj_1 with Ay, k=73,...,1,

in the sense of overlapping counting, and 5(%9*) (Ao) = €=(1,0,...,0) by convention
J

(the state j° corresponding to the usual initial state 0).

Example 4.3 Under the same setup as in Example 4.1, consider the ordered series
pattern o = A; o Ay o Ay with A; = 133, Ay = 32 and A3 = 331 with respect

to overlapping counting. We first imbed the random variable W (A?}), where A} =
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U, A;. The imbedded Markov chain {V;} associated with W (A%) has state space
Q=1{0,1,2,3,13,33, a1, as, a3} and transition probability matrix

070 p p ps O 0]0 0 07

110 pup2 0 pg 0|0 0 O

2 10 py po ps O 0|0 0 O

310 pi 0 0 0 p3| 0 pg O N c
MW(A§J = 1310 py 0 0 0 0 |py pz 0 |= [ ”6("?) “}(A?) J .

3310 0 0 0 0 ps3s| 0 py pn l

o |0 0 0 0 0 0|1 0 0

Qo 0 0 O 0 0 0 0 1 0

00 0 0 0 0/0 o0 1|

The initial distribution of the imbedded Markov chain {Y¥;} associated with W (A?) is
§£=(1,0,...,0) (P(Yo =0) =1). Applying Equation (4.5) and using our computer
program, we obtain

_ P13Psss® X Ay
77/)W(A1|A1A2A3)($'€) - AQ )

A1 = D1 — P1D22S + DaP21S + P3P31S — P3PaaPaSe + DaP23D3157,

Ay = 1- D118 — P22s — p12p2152 - 2713]33182 + p11P2282 - p12p23p3183 + p13p22p3133.

Given the occurrence of the pattern A;, we imbed the random variable W (A3),
where A5 = U}_, A;. The imbedded Markov chain {¥;} associated with W (A%) has
state space Q = {03 = 3,1, 2, 3,33, az, a3} and transition probability matrix

03 [0 Ps1 ps2 pa3z O 0 0
110 pu pi2 pis 0] 0 O
2 10 par p2 p3 0|0 0
Mw(m) = 3|0 pan 0 0 psfp 0 |= [ NW(AE) CWI(A;) J
* 3300 0 0 0 pu|pn pu 0 |
Lo 0 0 0 0 0 1 0
es [0 0 0 0 0[]0 1 |

For the same reason as stated in Example 4.2, the initial state 0« = j7* of this

imbedded chain is the last element of A;; i.e. 03 = 3. But note that, since the longest
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overlap of the patterns A; with Ay and A; with A is ‘33", the initial distribution of
the imbedded Markov chain {Y;} associated with W (A%) is 5(%?) (A1) =(0,0,0,0,1) =
ejo (the state ‘7°’ corresponds to the state ‘33?). Using our computer program, we

find that

(0) _ D32s
wW(A21A2A3) (5’503 (A1>) — 1 —p338'

By the same token, we obtain from our computer program that

3
0 P31P335° X Ag

where

Az = po3 — P11pe3S + P13pars,
Ay = 1-— P11S — P22S — P33S — 2912272152 - ]31311?3182 - p23p3252 +p11p2252
+ P11P33s° + Dospass® — P11P22P33S° — D12D23P31S° — D13Pa1Dsas’ + D11D23D32S"

+ P1oPa1P33s® + P13Paapas® + P13P31D338° — P13D29D31D33 5" + D12P23P31P338 "

By Corollary 4.1, we can obtain the generating function %2?,)(8) by taking the

product of the generating functions Yo ag 1ayagng) (SI€) Vv aglngig) (s!ﬁég) (Al)) and
o

¢W(A3) (ngéz)(A2))

4.3 Later Waiting Time Distributions of Two Simple Pat-
terns

Let A; and Ay be two simple patterns and A = A; U A5. Then we have
P ={01,00: 010 =A0As and 05 = Ay o A},

and the later pattern A = 01 Uoy. We introduce three different ways to obtain the

exact distribution and probability generating function of W (AL). Firstly, following
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the construction procedure described in Section 4.2, we can imbed the random vari-
ables W (1) and W (oy) into two separate Markov chains. With respect to nonover-
lapping counting, let My and Myy) denote the transition probability matrices
associated with the imbedded Markov chains of W (oy) and W (o3), respectively.

Theorem 4.3 Let Ay = 01U0y be a later pattern with o1 = AjoAy and og = AgoA;.

With respect to nonoverlapping counting, we have

(i) the ezact distribution of W(AL) is given by
P(W(AL)=n) = P(W(o1) =n)+P(W(os) =n)
= ENTH Oy () + ENG R Comy (1), (4.13)

forn=1,2,..., where § = (1,0,...,0) is the initial distribution with P(Yy =
0,0)) =1, and Cyny(a1), @ = 1,2, are the first column vectors of the matrices
(™)

Civy, 1= 1,2, respectively;

(4) the probability generating function of W(AyL) is given by
oo (5) =00 (s)+ 90 (s). (4.14)
Proof. From Theorem 4.1(i), we have
P(W(0:) = n) = ENJCiny(aa), i = 1,2.

It follows from the definitions of the random variables W(o1), W (o2) and W(Ay)
that the event {W(Ar) = n} is the union of the events {W(c1) = n} and {W(0,) =

n}, where {W(oy) =n} and {W(02) =n} are mutually exclusive. Hence, we have

PW(Ap) =n) = P(W(oy) =n)+P(W(o3) =n)

= §N?(1\/1)01(N) (1) + §N§(_]\/1)C2(N)(041)-
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This completes the proof of part (i). Part (ii) follows immediately from the definition

of w%) (s). O

Ap)

Note that the generating functions ¥(™) (s) and @)
W(o1)

W(o3)

(s) can be obtained through
Theorem 4.1(ii). In the case of overlapping counting, the above results still hold
except that the transition probability matrices are replaced by M 10y and My,

respectively.

Without imbedding the random variables W (o) and W (o5) into two Markov
chains separately, we can also imbed the random variable W(Ay) into a Markov

chain directly. Define a Markov chain {Y¥;} on the state space Q having the form
Q= Q() U Ql U {041, Oég}, (415)

where 2y and ; are defined as

=1

Q = {(O,U)Z’UEOT(A]')},
@ = {(y,v):u=1,2and v € T(A;), j #u},

and oy and oy are absorbing states corresponding to the ordered series patterns o;
and oy, respectively. Note that the imbedded Markov chains for nonoverlapping
and overlapping counting cases are defined on the same state space 2, but their
transition probabilities are slightly different according to the counting procedures
and structures of A; and A,. However, both transition probability matrices defined
on the state space {2 have the same form as Equation (3.1). Applying Equations
(4.1)—(4.3) to the pattern Ay, this imbedding procedure provides a second way to

obtain the exact distribution, mean and probability generating function of W(AL).

The next theorem provides a third way to obtain the probability generating

function of W(Ap) under nonoverlapping counting.
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Theorem 4.4 Let Ap = 01Uos be a later pattern with o7 = AjoAy and oy = AgoAy.

With respect to nonoverlapping counting, we have

(i) the generating functions of W (o) and W(o3) are given by

Qﬁévj\(fc)rl)(s) = 77/)W(A1;A1A2)(5]£) wW(M) (Slﬁéﬁ)(Al)) , (4.16)
7,/1‘(4,]\22)(8) = ¢W(A2[A1A2)(SI£) www (Slﬁéﬁ) (A2)> , (4.17)

where 5&\?(/\1-), 1 = 1,2, are the initial distributions as defined in Theorem

4.2

(i) the probability generating function of W(AL) is given by

sy () = B0 () + 08 (s)
= Yumamnn (51€) Yy, (1657 (A1)
+¢W(A2|A1A2) (8'5) ¢W(A1) (8’€é)j\i)(A2)) . (418)

Proof. Equalities (4.16) and (4.17) are special cases of Equation (4.11). Since the
events {W (o) = n} and {W(o2) = n} are mutually exclusive, it follows from the

definition and the results of part (i) that
0 2
NOE 2_:1 5 (Zl P(W(0;) = n)> =950 (s) + 00 (s)
= Buriasimnnn 516) Yrwnyy (5160 (A1) + Yiyainingy (1) By, (51657 (A2)

This completes the proof. O

Corollary 4.2 Let Ap, = 01Uoy be a later pattern with o1 = AjoA, and gy = AgoA;.

With respect to overlapping counting, we have
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(1) the generating functions of W(o1) and W (a,) are given by

wéx?(zrl)(s) = ¢W(A1|A1A2)(Sl£) ¢W(A2) (Slg((ai)(Al)) ) (4.19)
Pt () = By (516) By, (51657 (12)) (4.20)

where Eéi) (As), @ = 1,2, are the initial distributions as defined in Corollary

4-1;

(ii) the probability generating function of W(AyL) is given by

gOE"?()/\L)(S) — w‘("?(ll)(s)—!_w‘(‘(’)(?fz)(s)
= Dninnn (516) Yy, (1657 (1))
+ P ngins o (516) Gy (51667 (A)) (4.21)

In order to demonstrate various ways of obtaining the probability generating
functions and to make our theoretical results more transparent, we provide the

following example.

Example 4.4 Let {X;} be a sequence of (i.i.d. or first-order homogeneous Markov
dependent) three-state trials with possible outcomes 1, 2 and 3, and let A; = 13
and Ay = 31 be two simple patterns. We are interested in finding the probability
generating function for the later pattern A; = oy U 09, where 0; = 13 0 31 and
oy = 31013. We show the three different ways of obtaining the probability generating
function of W(Ar). We first consider the i.i.d. case. The imbedded Markov chain

{Y:} associated with the random variable W (o) has state space §2 given by
Q = {(O? 0)7 (07 1)7 (07 2)7 (07 3)7 (17 0)’ (17 1)) (17 2)7 (1) 3)) al; a2}7

where o and oy correspond to the patterns o; and As, respectively, and transition
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99

(0,0) [O pr P p3 0 0 O 0|0 O
(0,1) 0 D1 D2 0 D3 0 0 0 0 0
0,2) |0 p1 2 p3 0 0 0 0|0 0
(0,3) 0 0 D2 D3 0 0 0 0]0 D1
M= (10) 10 0 0 0 0 ppps|0 0| _[ Nul|Cuw
M= (1,1) |00 0 0 0 p p ps|0 0 0

(L2) [0 0 0 0 0 pi p, p3|0 O
(1,3) 0 0 0 0 0 0 D2 P3| 0

o |00 0 0 0 0 0 0|1 0

@ [0 0 0 0 0 0 0 0[0 1|

Theorem 4.1(ii) and our computer program yield

pip3s*(1l — pss)
(1= s+ pipss®)(1 — s+ p1p3s? + pi1papss®)

Y0 () =

Following the same procedure for W(o;), we obtain

NOE pipist(1 — ps) |
Wiea) (1 — 5+ p1pss?)(1 — s + p1p3s? + prpapss?)

Hence, summing over wévj\gl)(s) and 7,/)5‘,1\22)(3), we have

QO(N) ( ) - p%p§S4(2 — P15 — psé’)
2 (1 — 5+ p1p3s?)(1 — s + p1pss? + pi1papss’)”

By the same token, we obtain from our computer program that

Pip3s*(1 — p3s)(1 — p1s — pas)
(L — 54 p1p3s?)(1 — s + p1p3s? + pipopss?)’

Y (s) =

PO (5 = p1p3s® (1 = p15)(1 — pas — pss)
Wi2) (1~ s+ pipss?)(1 — s + pip3s? + pi1papss®)’
#O) (s) = = ,
2 (1 = s+ p1p3s?)(1 — s + p1p3s? + p1papss?)

A = p1pss’(py + ps — pip2s — Papss — pPs — pis

— 2p1p3s + p1p3s® + pipss® + 2p1pap3s?).

(4.22)

(4.23)
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Now, let us imbed the random variable W(AyL) directly. The imbedded Markov

chain {Y;} has state space

Q = {(0,0), (07 1), (07 2)7 (Oa3)> (170)a (1,1),(1,2), (1: 3)’

(2a 0)> (27 1)’ (27 2)7 (2’ 3)’ Qq, C\zz},

where a; and as correspond to the pattern o; and oy, respectively, and transition

probability matrix with respect to nonoverlapping counting given by

(0,00 [0 pr 2o p» O 0 0 0 0O 0 0 0|0 O
0,2) |0 pr p2 P 0 0 0 0 0 0 0 0|0 0
(0,3 |0 0 p p3 0 0 0 0 p, 0 0 0/0 0
(1,0 |O 0 0 0 0 p p» p3 O 0 0 0]0 O
(1,L1) |0 0 0 0 0 p p, ps O 0 O 0|0 O
Moo — (1L,2)]0 0 0 0 0 pp,pp 0 0 0 00 0
™M = (1,3 ]00 0 0 0 0 p, ps 0 0 0 O|p O
(200 |0 0 0 0 0 0 0 0 0 p p, ps| 0 O
(1) |00 0 0 0 0 0 0 0 p, po 0|0 ps
(22) |00 0 0 0 0 0 0 0 p p p3|0 0
(2,3) |0 0O 0 0 0 0 0 0 0 p p, p3|0 0
o1 {00 0 0 0 OO0 0 OO O0 0]1 O
@@ [0 0 0 0 0 0 000 0 0 0/0 1|
_ [N(NHC(N)]
0 | I

The transition probability matrix M o) with respect to overlapping counting can be
obtained by the same arguments. Applying Equation (4.3) yields the same results
given by Equations (4.22) and (4.23). Further, we compute the following generating

functions:
p1p3si(1 — pss)
1 — s+ p1ps3s? + p1papss®’

p1p3s*(l — prs)
1— s+ pi1pss? + p1papss®’

2
(N) _ P1Ps3s
Ywaa (S|€@ (A2)> "~ 1~ 5+ pipss?’

wW(AllAlAz)(s’g) =

¢W(A2|A1A2)(8|€) =
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2
(V) . P1P3s
Yuan) (815@ (Al)) 1 — s+ pipss?’
(0) _ P3S(1 — pas — pss)
Vrwias) <S’€® (A2)) 1 — 5+ pipss?

(0) p15(1 — P18 — pas)
Yo (5150 (Al)) 1—s+pipss?

Il

Theorem 4.4 and Corollary 4.2 yield the same results given by Equations (4.22)
and (4.23) after some simple algebra. The probability generating functions for
the Markov dependent case can be obtained as the i.i.d. case. Since the analytic
form of the probability generating functions is quite complicated, we set the initial
probabilities to be p; = 0.3, ps = 0.3 and p; = 0.4, and the transition probability
matrix of {X;} as

A=1025 030 045

0.35 0.35 0.30

0.30 0.40 O.BOJ

Imbedding the random variables W(o1) and W (o,) separately or imbedding the
random variable W (Ap) directly produces gogé\? (s) = Ay/A,, where

Ar)

A; = —0.5255%(15687s" + 33003s° 4 974590s° + 8278200s* + 2792800055
+ 1442400005 — 13904000005 -+ 1344000000),
Ay = (201s° 4 50s® — 3600s + 4000) (485> + 2552 — 1800s + 2000)

(51s* — 50s? + 36005 — 4000),

and (@)

W(AL)

(s) = As/Ay, where

Az = 10.55°(5241s" + 148555°% — 326970s° + 33174005* + 2655600055
— 2155200005 + 4032000005 — 224000000),
Ay = (2015° +50s* — 36005 + 4000) (485> + 255° — 1800s + 2000)

(515 — 50s* + 36005 — 4000).
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Further, we compute the following generating functions:
—0.3s% (3152 + 4205 — 1200)
Vweiaag (818) = 201s® + 50s% — 3600s + 4000’
0.70s% (19s? — 210s + 800)
Y nging ) (sle) = 201s% + 5052 — 3600s + 4000’
™) —3s% (35 + 10s + 120)
Vi ( o 51s% — 5052 + 3600s — 4000’

As))

A )) 5.255% (s* + 11s + 40)
V)T 4853 + 2552 — 18005 + 2000’

A))

3s(27s* + 240s — 400)
5153 — 5052 + 36005 — 4000’
o) _ —Ts(s®+ 605 — 100)
1/’W<A2> (3|5®3 (Al)) 4893 + 2552 — 18005 + 2000

sl
Yrngy (SIES(
€5

wW(Al) (S

From Theorem 4.4 and Corollary 4.2, we obtain the same results for the probability

) (s) and (9

Ap) Wiy (s) after simplification.

generating functions gogx

4.4 Later Waiting Time Distributions of [ (I > 2) Simple
Patterns

In this section, we extend the results from the previous section to I (I > 2) simple
patterns. Let Ay, ..., A; be [ simple patterns. Then we have the set P of all ordered
series patterns generated by these [ simple patterns as defined in (2.1) and the later
pattern A; = U?:l 0;. Firstly, following the construction procedure described in
Section 4.2, we can imbed the random variables W (o;), i = 1,...,1!, into I! separate
Markov chains. With respect to nonoverlapping counting, let M iz, 1=1,..0,1
be the transition probability matrices associated with the imbedded Markov chains

of W(c;), i =1,...,1!, respectively. The next theorem is an extension of Theorem

4.3.

Theorem 4.5 Let A, = U, 05 (1 > 2) be a later pattern, where o; € P for each

t=1,...,1l. With respect to nonoverlapping counting, we have
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(i) the ezact distribution of W (Ay) is given by

I
PW(AL) =n)= > P(W(o:) =n) =D &N/ Ciy(c), (4.24)
0;EP =1
where £ = (1,0,...,0) is the initial distribution with P(Yy = (0,0)) = 1, and
Cyny(oa), i =1,...,1, are the first column vectors of the matrices Cyny, i =
1,..., 1, respectively;

(i) the probability generating function of W(Ay) is given by
N
W(AL) ZQ/JX(/V(;) (4'25)

Note that the generating functions 'gbévj\(’zl)(s), i =1,...,1! can be obtained through
Theorem 4.1(ii). In the case of overlapping counting, the above results still hold
except that the transition probability matrices are replaced by M io), 1=1,...,1,

respectively.

In addition to the above imbedding procedure, we can imbed the random vari-
able W(AL) into a Markov chain directly. Let P, 7=1,...,1—1, be the sets of all

permutations of the elements of 7 = {1,2,...,1} taken j at a time; that is,
Pj = {iriz---i5:4p € L for 1 < k < j and iy, # i,y for k # m},

and card(P;) = C]l- x jl = (7_1'7)—, For example, let 7 = {1,2,3}; then P, =
{12,21,13,31,23,32}. We define a Markov chain {Y; : ¢t = 0, 1,...} on the state

space {) having the form
-1

Q=0,UJ QU U{a]}, (4.26)

Jj=1 Jj=1

where €9 and §2;, j =1,...,0— 1, are defined as
l
Qo = {(0,’()) NS U T(AJ)},

0 = {w,v):u:zm-~-z'je7>jandve U T(Aw},

ki1t
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and «j,...,ay are absorbing states corresponding to the ordered series patterns
01, ..,0y, respectively. The above construction procedure is the same for both
nonoverlapping and overlapping cases except that their transition probabilities are
slightly different according to the counting procedures and structures of Aq, ..., A,.
Applying Equations (4.1)—(4.3), the exact distribution, mean and probability gen-

erating function of W(AL) can be obtained.

The next theorem, an extension of Theorem 4.4, provides a third way to obtain

the probability generating function of W (Ap).

Theorem 4.6 Let Ap = UL, 0; (I > 2) be a later pattern, where o; € P for each

i=1,...,l1. With respect to nonoverlapping counting, we have

(i) for any ordered series pattern o; = A;, 0--- 0 A;, € P, the generating function

of W{(oy) is given by

a (1657 () i= 1,00, (4.27)

where Eéﬁ)(AiU_l)) = (1,0,...,0), 7 = 1,...,1, are the initial distributions

with initial state O;« = j* (P(Yy = 0;x) = 1), j* is the last element of the

pattern A; and £(N)( Ayp) =€ =(1,0,...,0) (with usual initial state O;» =

(G-1)’

@) by convention;

(i) the probability generating function of W(AyL) is given by

g/l]/\Q\L) Z ¢§v]\2 Z H ¢W(A i i) (Slgéj'\i)(‘/\‘i(j—l))) . (4-28)

=1 j=1

Proof. The proof of part (i) is similar to the proof of Theorem 4.2. The proof of
part (ii) follows from the definition of QO%)AL) (s) and part (i). O
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Equations (4.27) and (4.28) still hold when {X;} is a sequence of i.i.d. multistate

trials, except that the initial distributions 58? (Ai(j_l)), j=1,...,1, are replaced
by &.

Corollary 4.3 Let A, = U, 0; (1 > 2) be a later pattern, where o; € P for each
=1

1=1,...,11. With respect to overlapping counting, we have

(i) for any ordered series pattern o; = Ay, 0+ -0 A;, € P, the generating function
of W (o) is given by
!
o) _ (o -
w‘(,y(?,i)(s) - H ¢W(Aij[Aij ..... Ail) (Slé.@j*) (Ai(j—l))) ? = 17 M l') (429>

J=1

where 5(%?)(./\1-(]._1)) = (0,...,1,...,0) = ejo, j = 1,...,1, are the initial

distributions such that the state j° is the longest overlap of the patterns Ai(j_l)
with As,, k= j,...,1, in the sense of overlapping counting, and gé?*)(Aio) =
€ =(1,0,...,0) by convention (the state j° corresponding to the usual initial

state 0);

(i) the probability generating function of W(AyL) is given by

o1
O Py —_
Pty ) = 2 2, () = 2 Tl bwa i,

g €P i=1j5=1

A (s|g§,f3(Ai(j_l))). (4.30)

......

Clearly, it is impossible to compute the probability and generating function
of W(c) and the exact distribution and probability generating function of W (Ay)
by hand. Computer programs based on the Mathematical software MAPLE have
been developed to make our work fully automated. We discuss the computational

issues in the next chapter.

Example 4.5 Let {X;}; be a sequence of four-state trials with possible outcomes
1,2,3and 4 (or A, C, G and T), and let A; = 1414, A, = 4141 and A; = 2323.

We consider the following two cases:
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1. Set py = py = p3 = ps = 0.25 for {X;} being a sequence of i.i.d. trials.

2. Set the initial probabilities to be p; = py = p3 = ps = 0.25 and the transition
probability matrix of {X;} as

0.25 0.35 0.20 0.20
0.15 0.25 0.25 0.35
0.35 0.30 0.25 0.10
0.25 0.30 0.20 0.25

for { X} being a sequence of first-order homogeneous Markov dependent trials.

The state spaces 2 and the transition probability matrices of the imbedded Markov
chains for both cases are generated by our computer programs automatically. Fig-
ures 4.1 and 4.2 show the probability distributions of W (A7) for both cases with

respect to nonoverlapping and overlapping counting.
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Figure 4.1: Probability distributions of the later waiting time W(A.) for Case 1,
Example 4.5 with respect to nonoverlapping and overlapping counting.
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Figure 4.2: Probability distributions of the later waiting time W(Ay) for Case 2,
Example 4.5 with respect to nonoverlapping and overlapping counting.



Chapter 5

Algorithms for Waiting Time
Distributions

In this chapter, we develop computational algorithms for use in a computer algebra
system to implement the results in Chapters 3 and 4. For convenience, relabel
the possible outcomes by,by,...,b0, as 1,2,...,m with probabilities py,pa, - -, P,
respectively. Given a compound pattern A = J\_, A;, we first discuss the algorithms
for computing the exact distribution, mean and probability generating function of

the waiting time W (A).

Algorithm I: {X,} is assumed to be a sequence of i.i.d. multistate trials.

Step 1. Decompose each simple pattern forward and create the state space 2 hav-

ing the form given by (3.4) for the imbedded Markov chain {V;} . Let
Q = Q\ {absorbing states} = Q\ {ay,...,a}

and k = card(Qy). We define a one-to-one index map f as

Flw) = 1t YwéeQande=1,2,...,k,
17 Vwed{or,...,qq}and j=k+1,... k+L
Step 2. Generate the transition probability matrix M having the form given by
(3.6). Initially, we set M to be a (k + 1) x (k + 1) 0 matrix. For each
w € {a,- -, 01}, replace Py sy by 1. For each w € Q; and j = 1,...,m,

let w; be a pattern which is composed of states w and j such that j follows w.

68
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Find the longest subpattern (counting backward) of w; that belongs to 2 and

denote it by wy. Then we replace P, sy By Dj-

Step 3. Extract the submatrix N and C from the transition probability matrix M
obtained in Step 2. From Equation (3.8) and Theorems 3.2—3.4, we can easily
set up the simultaneous recursive equations and compute the distribution,

mean and probability generating function.

It is easy to implement Step 1 in the computer program. For Step 2, we provide

an example to illustrate the idea of setting up the transition probability matrix.

Example 5.1 Let {X;} be a sequence of i.i.d. three-state trials with possible out-
comes 1, 2 and 3 (m = 3) and let A = A;UA, be a compound pattern with A; = 112
and Ay = 1332. Then we have

Q = {0,1,2,3,11,13,133, a1, s},

0 = {0,1,2,3,11,13,133},

where o; and ay correspond to A; = 112 and A, = 1332, respectively. We define
a one-to-one index map f as described in Step 1: f(0) = 1, f(1) = 2, f(2) = 3,
f(3) =4, f(11) =5, f(13) =6, f(133) =7, f(a1) = 8, f(az) = 9. Suppose the
imbedded Markov chain is in state w = 11 at trial ¢ — 1; then w; is composed of w

and j = 1,2,3 (possible outcomes at trial ) such that j follows w; that is,

111 ifj=1,
wp =14 112 ifj=2
113 if j = 3.

For wy = 111, the longest subpattern is w, = 11 (111: counting backward +—).
Note that ‘111’ is not the longest subpattern since it does not belong to Q. Hence,
the transition probability P(Y; = 11[Y; .1 = 11) =p s .. =D, a1y = P55 = P1-
Similarly, the transition probabilities P(Y; = a;|Y;-; = 11) = p, and P(Y; =



70

13|Y;—; = 11) = ps. This illustrates the idea of setting up the transition probability

matrix in our computer program.

As stated in Remark 3.2, when {X;} is a sequence of i.i.d. multistate trials,
the state space {2 can be reduced to a smaller one. However, when the state space
of the imbedded chain is changed, the corresponding transition matrix is changed,
too. Therefore, the way of assigning such a matrix in the algorithm is different from
Algorithm I. With a simple modification in Step 1 and Step 2, we have the following

algorithm.

Algorithm II: {X;} is assumed to be a sequence of i.i.d. multistate trials and the

imbedded Markov chain {Y;} has a smaller state space €.

Step 1. Decompose each simple pattern forward and create the state space 2 hav-
ing the form given by (3.9) for the imbedded Markov chain {¥;} as described
in Remark 3.2. Let

2, = Q) {absorbing states} = Q\ {o4,...,a},
Iy = {j:jis the first element of the simple pattern A;, i =1,...,1},

FQ - F\Fl,

and k = card(£2;). We define a one-to-one index map f as

flw) = i YweQandi=1,2,...,k,
1 J VYwe{a,..,qtandj=k+1,...,k+1L

Step 2 Generate the transition probability matrix M having the form given by
(3.6). Initially, we set M to be a (k+1[) x (k+1) 0 matrix. Then we replace

the transition probabilities as follows:

(1) For each w € {1, -+, o}, replace psuy sy by 1.



71

(2) For each w € Q; and j € Ty, let wy; be a pattern which is composed
of states w and j such that j follows w. Find the longest subpattern
(counting backward) of w; that belongs to £ and denote it by ws. Then
replace pruy sy BY Dj-

(3) For each w € Q; and j € Ty, let ws be a pattern which is composed
of states w and j such that j follows w. Find the longest subpattern
(counting backward) of ws and denote it by wy. If ws € Q then replace
Prwyiwy DY pj. Otherwise, replace p;) ;s by ¥jer, pj, where I's = {5 :
Jj €Ty and wy ¢ Q}.

Step 3. Same as Step 3 in Algorithm I.
The following example shows the difference between Algorithm I and Algorithm II.

Example 5.2 Let {X;} be a sequence of i.i.d. five-state trials with possible out-
comes 1, 2, 3, 4 and 5, and let A = A; U Ay U A3 be a compound pattern with
Ay =112, Ay = 13, and A3 = 15. Using our computer program based on Algorithm
I, we obtain the state space Q = {0, 1,2,3,4,5,11, 01, a9, i3} for the imbedded

Markov chain {Y;} and transition probability matrix

@10 po po ps ps ps 0|0 0O O
110 0 p 0 ps 0 pi|0 ps ps
210 po p2 p3 ps ps 010 0 O
310 p1 p2 p3 po o ps 0|0 0 O
e 210 p2ops ppops 00 0 O
510 p p p3 po ps 010 0 0
11 10 0 0 0 ps 0 pi|ps ps ps
@ |0 0 0 0 0 0 0]1 0 0
a2 |0 0 0 0 0 0 0|0 1 0
a [0 0 0 0 0 0 0|0 0 1|

with initial distribution &, = (1,0,0,0,0,0,0,0,0,0) for ¥, (¢ = (1,0,0,0,0,0,0)).

Similarly, from our computer program based on Algorithm II, we obtain the state
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space {2 = {0,1,6,11, a1, o, a3} for the imbedded Markov chain {¥;} (the state ‘6’
represents the state ‘5’: no subpattern belongs to U3, S(A;) = {1,11, a1, o, asz})

and transition probability matrix

[0 po po+--+ps 00 0 0
110 0 Da + Dy |0 p3 ps
6 0 P1 P2+ -+ ps 0 0 0 0
M= 11 [0 0 D4 P1 | D2 P3 Ds
Qg 0 0 0 0|1 0 O
Oy 0 0 0 0/0 1 0

as | 00 0 0jo o0 1|

with initial distribution &, = (1,0, 0,0,0,0,0) for Y; (¢ = (1,0,0,0)). Both computer

programs yield
1

EW(A)] =
Wl D1Ps + P1Ps + Pivs

and

ow (5) = p152(P3 + D5 + p1p2s)
Y 1— 54 (p1p3 + p1ps) 52 + p2pys®

Next, we discuss the algorithm for the case when {X;} is a sequence of first-
order homogeneous Markov dependent trials. We assume that {X;} has initial

probabilities pi,pa, ..., pm and transition probability matrix

I [ pu D12 Dim

2 Da21 D22 DPom
A= . .

m | Pm1 Pm2 Pmm J

Algorithm III: {X;} is assumed to be a sequence of first-order homogeneous

Markov dependent trials.

Step 1. Decompose each simple pattern forward and create the state space {2 hav-

ing the form given by (3.4) for the imbedded Markov chain {¥;}. Let

O 0\ {absorbing states} = Q\ {ay,...

&\ {0},

,Ol[},

5
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and k = card(£2;). We define a one-to-one index map f as

flw) = 1 Ywéelandi=1,2,...,k,

W= J Vwed{a,...,q}and j=k+1,...,k+1

Step 2. Generate the transition probability matrix M having the form given by
(3.6). Initially, we set M to be a (k+1) x (k+1) O matrix. Then we replace

the transition probabilities as follows:

(1) For each w € {ay, -, o}, replace Py sy by 1.
(2) For each j =1,...,m, replace p;g). ;i) by pj-

(3) For each w € Q5 and j = 1,...,m, let 7 denote the last element of w
and let w; be a pattern which is composed of states w and j such that
j follows w. Find the longest subpattern (counting backward) of w; that

belongs to 2 and denote it by w,. Then replace p;e.y s,y bY Dij-

Step 3. Same as Step 3 in Algorithm 1.

Given a later pattern Ap = Ué’zl 0;, we have introduced three different ways in
Chapter 4 to obtain the exact distribution and probability generating function of
the waiting time W(AyL): (i) imbedding the random variables W(o;), i = 1,...,1!,
separately, (ii) imbedding the random variable W (Ap) directly, and (iii) using Equa-
tion (4.28) (or Equation (4.30) for overlapping counting) which is expressed in
terms of the generating functions ¢W(Aijmij ,,,, ay) (3|§é§i)(~/\i(j_1>)) for i = 1,...,1!
and 7 = 1,...,l. When [ is large, the transition probability matrices associated
with the imbedded Markov chains of W(o;), i = 1,...,l!, and W(A) are quite
large. Hence, it may not be efficient to obtain the analytic form for the probability
generating function of W(Ay) through (i) or (ii). Therefore, we do not provide fur-
ther discussion for these algorithms. However, computer programs based on (i) and

(ii) are still useful in numerical computation. To compute the generating function
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Yrwng ngengy (166 Mign)) OF Brugn ia, gy (51657 (Asg.))) for fixed i and j,
we can use our computer programs based on Algorithms I and III for the compound
pattern Uﬁczj A;, with minor modifications in setting up the initial distribution and
transition probability matrix. The transition probability matrix associated with the
imbedded Markov chain of the waiting time W(Ufc:j A;,) is much smaller. This

provides an efficient way to obtain the probability generating function of W(Ayp).

We see that all the algorithms discussed in this chapter are similar. The key
is how to correctly set up the transition probability matrix. In summary, the for-
ward and backward principle lays the foundation for constructing the state space
and setting up the transition probability matrix. Our algorithms are very easy to
implement. With today’s computers, it takes no more than one hour to compute the
exact distributions, means and probability generating functions for waiting times of

reasonably large compound and later patterns.



Chapter 6

Applications of Waiting Time
Distributions in Quality Control

6.1 Introduction

The multitude of control charts for monitoring various process parameters (such as
the mean, variance, and proportion) exists due to the multiple types of shifts that
can occur in that parameter over time. No single chart is optimal for detecting
all types of shifts. Sometimes several charts are used simultaneously, while in other
cases new combined charts are used (e.g., robust Cusum charts and Shewhart charts

with runs rules).

Various control charts have been investigated in terms of the run length dis-
tributions based on a given pattern (usually a step function) by various methods.
Comparisons among several of these charts have been done using different methods:
by simulation (Roberts, 1959), through numerical analysis (e.g., solving integrals
numerically, such as Robinson and Ho, 1978; Luceno and Puig-Pey, 2000; and Rao,
Disney and Pignatiello Jr., 2001) to theoretical approximations and exact deriva-

tions.

Among the theoretical derivations, many authors have used the Markov chain
approach (Champ and Woodall, 1987; Lucas and Saccucci, 1990; Lucas and Crosier,
2000) introduced by Brook and Evans (1972). Since each author focused on one or
more charts, the different Markov chain applications were tailored to each case.

For instance, the state space of the Markov chain has been formulated differently

75
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by different authors (Lucas and Crosier, 1982; Champ and Woodall, 1987), and in

several cases it was not specified at all.

We introduce a general unified framework that is based on discretization and
the use of a finite Markov chain imbedding technique for run statistics (Fu, 1996).
The method can be applied to any control scheme that is based either on a simple
boundary crossing rule, or on a compound rule based on run or scan statistics that
include several criteria. Some known results can be viewed as special cases of our

general method.

Our unified approach sheds light on the relation between different types of mon-
itoring schemes, and their performance in the presence of different data structures.
It also enables a straightforward performance comparison of various schemes, thus

being important from an applied point of view as well.

The rest of this chapter is laid out as follows: Section 6.2 describes the general
framework, which is based on a Markov chain imbedding formulation. We show how
some well known charts can be formulated in this framework. In Section 6.3, we
provide a detailed numerical example of a compound rule based on a run statistic
and Cusum to demonstrate how to imbed it as a Markov chain. In Section 6.4, we

discuss the implications and possible extensions of this general approach.

6.2 The Markov Chain Approach

Brook and Evans (1972) introduced a Markov chain representation for computing
the run-length distribution of a Cusum chart. Their basic idea for a discrete moni-
toring statistic (e.g., a count) is to treat the m values that the monitoring statistic
can obtain within the control limits as states of a Markov chain, and all the values
that exceed the limits as an absorbing state. If the monitoring statistic is con-

tinuous, the same method is used, after discretizing the area of the control chart
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into m regions within the control limits and one region that exceeds the limits (the

absorbing state).

We formalize and generalize this method as follows: for a control scheme that
involves a compound decision rule, the run length is imbedded into a finite Markov
chain {Y;}, according to the rules applied (denoted by ¢,...¢;). {V;} then has a
state space {1 and transition probability matrix M, having the form given by (3.10).
The run length probability distribution is then given by

P(RL:n)zﬁ(ﬁth) (I-N)1,, n=1,2,..., (6.1)
t=1
where £ = (1,0,...,0) and 1, = (1,1,...,1).
We denote a simple rule by ¢ and the monitoring statistic by
Wt(k) = [Wt—k+1, ce Wt],

where £ is the length of the “history” that is retained in order to reach a decision
at time 7. A compound rule dictates that the chart signals an alarm at time ¢ if
any one rule ¢;(W;(k)) based on the monitoring statistic Wy(k) = [Wi_gt1,. .., Wi

exceeds some limit at time ¢ (or falls within a certain area on the chart).
For this general pattern, we define the imbedded Markov chain {¥;} as
YVi(Wi(k); ¢1, -, &) = H($i(We(k));i = 1,...,0), (6.2)

where H is a function that combines the information from the [ different rules. In
general, the state space  of the imbedded Markov chain {¥;} is induced by ¢; and
the vector Wy (k).

6.2.1 Discretizing W,

Although all the different uses of the Markov chain approach rely on discretizing
a continuous variable, we make an important distinction between two types of dis-

cretization: natural vs. artificial. Discretizing a random variable can either arise
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naturally from the monitoring scheme, or else it is artificially imposed. Examples
where discretization arises naturally are charts with discrete monitoring statistics
(such as counts) and charts with a continuous monitoring statistic which effectively
divide the values of the statistic into two or more regions (e.g., Shewhart charts

with or without runs rules).

Examples where discretization is carried out artificially are Cusum and EWMA
charts (Brook and Evans, 1972; Fu, Spiring and Xie, 2002). The reason for imposing
an artificial discretization is to simplify the calculation of a complicated probability.
For example, in Cusum and EWMA schemes it is hard to calculate the probability
that the monitoring statistic exceeds the boundary. The alternative, which is based

on discretizing the continuous measurements, is described in Section 6.2.2.

For W,, the monitoring statistic at time ¢, we use R(W;) to denote a natural
discretization of W, and D(W;) an artificial discretization of W;. A rule ¢(Wy(k)) de-
termines which type of discretization is used, and the values of the last k£ monitoring

statistics that should be retained.

6.2.2 Imbedding Well-Known Monitoring Schemes

The Markov chain approach introduced by Brook and Evans (1972) was used by
several authors to derive the average run length (ARL) or the entire run length
distribution for various control charts. We show how the different results can be
formalized as described above, and how the run length is imbedded into a finite
Markov chain. We describe rules that lead to natural discretization, rules that

require artificial discretization, and rules that involve both types of discretization.

Class 1: Rules that lead to natural discretization
The class of monitoring schemes where the decision rule leads to a natural discretiza-

tion of W; includes schemes that are based on a discrete statistic and schemes where



79

the control chart is divided into discrete regions.

The “history” that is retained in this case has the form [R(Wiks1), ..., ROV
that is, the values of the last k monitoring statistics must be tracked in order to
reach a decision. Examples of charts with naturally discretizing rules and different

values of k are:

e A Shewhart chart, where we only retain information on the statistic X; at

time ¢, i.e. R(X}).

e A discrete Cusum chart such as a Poisson Cusum, where the monitoring statis-
tic is a function of the observation at time ¢ (X:) and of the cumulative sum

of the observations until time ¢ — 1 (S,_;). In such cases we retain information

on times ¢ — 1 and ¢, i.e. [R(S;-1), R(X3)].

e A Shewhart chart with Western Electric rules, where the decision rule is based
on information of the locations of the % previous values of the statistic. The
following set of Western Electric rules (see Montgomery, 2001) are widely
applied: signal an alarm if

1. one or more points exceed the 3-sigma control limits;
2. two of three consecutive points fall beyond the 2-sigma, limits;
3. four of five consecutive points fall beyond the 1-sigma limits;

4. eight consecutive points fall on one side of the center line.

It all four rules are combined, then we must retain the locations of the last 8

points, i.e. [R(X;_7), R(X;), ..., R(X;)].

According to the rules ¢;, i = 1,...,1 (with or without runs rules), the statistic

Wi(k) is imbedded into a Markov chain Y,(Wi(k); ¢1,...,4). A simple example is
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a Shewhart chart where X; is naturally discretized into an indicator taking two
possible levels: « (outside the limits) and R (within the limits). The state space for

Yi(Wi(1);¢) = R(Xy) is @ = {0, R, a}, and the corresponding transition matrix is

given by
0 p, 1-p,
M=|0p, 1-p, |, (6.3)
0 0 1

where () is the dummy initial state for the imbedded Markov chain and p, =

P(LCL < X; < UCL), under a given value of the monitored parameter.

Class 2: Rules that require artificial discretization

When the monitoring statistic is continuous there are cases where it is too compli-
cated to compute the run-length distribution directly. Two such examples are the
Cusum and EWMA charts. An alternative is to discretize X; artificially. This leads
to a discrete Cusum/EWMA statistic W;, and we retain the last k discrete values

[D(Wi—ps1), - - ., DOV,)].

For example, a one-sided Cusum chart can be discretized such that the Cusum
statistic S; obtains m + 2 values (or 2(m + 1) 4+ 1 values for a two-sided chart):
the in-control area [0,h) is divided into m equally-sized regions and the out-of-
control area [h,oc0) is the m + 1 region (as described in Brook and Evans, 1972;
Fu, Spiring and Xie, 2002). For both the Cusum and EWMA schemes we retain
information on the accumulating statistic (denoted by S) at time ¢t — 1 and on the
accumulated statistic (denoted by X) at time ¢, i.e. k = 2 and we retain 2 last
discrete values [D(S;—1), D(X})]. This information is imbedded into a Markov chain
Y, (Wi(2); ) = H(¢(W:(2))) = D(Sy).

The transition matrix includes m+ 3 states. By selecting m to be large enough,

the run-length of the discretized statistic will approach that of the continuous one.

Class 3: Rules that involve natural and artificial discretization
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This class is the most general. It includes decision rules that require monitoring
a naturally discrete statistic and a continuous one. Two examples are the “robust
Cusum chart” (Lucas and Crosier, 1982) and the “robust EWMA chart” (Lucas
and Saccucci, 1990) which are combinations of a Shewhart chart (with 4 or 5-sigma
limits) and a Cusum or EWMA chart. Two statistics are tracked simultaneously:
the Cusum/EWMA continuous statistic (S;) and the naturally-discretized Shewhart
statistic (Xy).

The decision rule is compound: signal an alarm if the continuous (Cusum or
EWMA) statistic exceeds the (Cusum/EWMA) limits, or if two consecutive She-
whart statistics exceed the Shewhart chart limits. The information that is needed
in order to reach a decision is based on the last Cusum/EWMA value and the last
two Shewhart statistics: Wy(2) = [S;—1,X¢]. Here the Cusum/EWMA statistic is

artificially discretized, and the Shewhart statistic is naturally binary:

¢1(Wi(2)) = D(Sy), (6.4)
¢=(Wi(2)) = R(Xy). (6-5)

These two rules are then combined and imbedded into a Markov chain {Y;}.

Other hypothetical decision rules that fall into this category would be Cusum

or EWMA schemes with runs rules.

6.3 An Example of a Compound Rule that Involves Natural
and Artificial Discretization

To illustrate this general case, we consider a hypothetical one-sided Cusum chart,
which in addition to the upper control limit has a “warning limit”. The compound
decision rule is to signal at time ¢ if the Cusum statistic, given by S; = max (0, S;—1+

X:) exceeds the upper control limit at time #; or if two of three consecutive Cusum
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statistics fall in the interval between the warning and control limits. Without loss

of generality, we assume that the X; are i.i.d. N(0,1).

As in the ordinary Cusum chart, for computational reasons the accumulated

statistic X is artificially discretized with step A:
D(X)=1A, i=0,4+1,%£2,...,+(m+1). (6.6)

We define p, = P(D(X) = ¢A) and F(i) = P(D(X) < iA) as follows:

/ T L R S I
i — € z, 1=V, )ttty M,
P (i—5)A /27

[=(m+1)+5)A 1] ~}?
Py = / —=c ° dz,

—00 vV 2

/oo ]_ _%wzd
= ——e ,
Pruta [(m+1)—5]A /21

i
F@) = > »p,.
j=—(m+1)
This results in a discrete Cusum statistic S. We denote the upper control limit by

h = (m 4 1)A and the warning limit by A* = m*A, m* < m. Then S; can assume

the values 1A, i = 0,1,...,m + 1 in the interval [0, A].

In addition, the chart in this example is naturally divided by the second rule

into three regions (as illustrated in Figure 6.1):
ry i 0< S < by
R(St) = To if A* S St < h, (67)
rs if Sy > h.

The “history” that is required in this scheme in order to reach a decision is

k =3, with Wy(3) = [Si—a, S;_1, S:]. We can thus write the two rules as:

H(W(3) = S, (6.8)
¢2(Wi(3)) = [R(Si-1), R(Sy)]- (6.9)
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\/\ L1
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Figure 6.1: An illustration of the three-region chart from a one-sided Cusum with
a warning limit.

The combined rules induce a state space of a Markov chain of the form:

Ye(Wi(3); b1, d2) = H($1(Wi(3)), $2(We(3))) = [R(Ss-1), S, (6.10)

where R(S;) = 1,75 or 73 and Sy = iA,i=0,1,...,m + 1. For simplicity we write
Sy = 1 to denote S; = iA. States that include r3 or m+ 1 as one of their coordinates

can be combined into o, the absorbing state. Hence, the state space is:
Q={(0,0),(0,0),...,(@,m),(r,0),...,(r1;,m), (r2,0),..., (re,m* — 1), a} (6.11)

with 2 4 2(m + 1) + m* states.

Remark 6.1 Here we assumed that X is in the dummy state () with probability
one, that is, P (Xo = 0) = 1. Hence the states (0, 0), (0,0), - --, (§, m) are required
so that Y, and Y] of the imbedded Markov chain {¥;} can be properly defined with
the initial distribution given by P (Y, = (0,0)) = 1.

If {Y;} is not in the absorbing state, it will not move into v if: (i) Syrq < A*, (id)
{h* S St_+_1 < h,, R(St_l) - (Z) and R(St) = 7'1}, and (111) {h* S St—i—l < h, R(St_l) =
R(S;) =0 or r1}. If one of the three conditions is met, then

P{Yi1 = [R(Sy), Se41] | Ve = [R(Si-1), Se]}

F(Xt+1 = _St) if St+1 =0,

P(Xt+1 = St+1 - St) lf 0 < St+1 < h*,

P(X441 = Si41 — ;) if condition (ii) or (iii) hold,
0 otherwise.

(6.12)
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Since the rows of the transition matrix add to 1, the probability of moving into
the absorbing state can be obtained by subtracting all the positive probabilities in

the row from 1.

To illustrate such a transition matrix, we choose m =3, h =4 (A = Ehﬁ =1)
and h* = 2 (m* = & = 2). Then, D(X;) = iA =4, i = 0,+1,+2,..., 44, and

S; obtains the values 4 = 0,1,2,3,4 (with 4 denoting the absorbing state o). The

transition matrix M is given by

@e (@0 @y @2 @3 (r1,0) (r1,1) (r1,2) (r1,3) (r2,0) (r3,1) | «
(2, 9) F(0) P1 P2 P3 1— F(3)
(0,0) F(0) p1 P2 p3 1- F(3)
(9,1) F(-1) Po P1 p2 1— F(2)
9,2) F(=2) p_1 1— F(~1)
(9,3) F(=3) p_s 1 - F(~2)
(r1,0) F(0) P1 P2 P3 1 — F(3)
(r1,1) F(-1) Po P1 P2 1-F(2)
(r1,2) P(-2)  p_1 1~ F(=1)
(r1,3) F(=3) p_s 1 - F(=2)
(r2,0) F(0) P1 1—-F(1)
(re,1) F(-1) po 1— F(0)
o 1

and it can always be written in the form

- [ 51]

Figure 6.2 gives the run length probability distributions for the case when h = 3
and h* = 2 with different values of m. The mean and standard deviation of run

length are computed by using the following formulas:

E[RL] = ¢(I-N)'1,,
E[RL?] = &(I+N)I—N)71,

from Fu, Spiring and Xie (2002), Theorem 1(iii). Numerical results are given in

Table 6.1.
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m=14 m=29
0.1 0.1
0.08 0.08
0.06} 0.06
0.04+ 0.04
0.02 0.02
0 0
0 20 40 60 80 100 0 20 40 60 80 100
m=74 m=149
0.1 0.1
0.08¢ 0.08
0.06 0.06
0.041 0.04
0.02 0.02
0 0 g
0 20 40 60 80 100 0 20 40 60 80 100

Figure 6.2: Probability distributions of the run length for a one sided Cusum with

3-sigma control limit, 2-sigma warning limit and a compound decision rule, at m =
14,29, 74,149.
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Table 6.1: Quartiles, mean and standard deviation of the run length for a one-sided
Cusum with 3-sigma control limit, 2-sigma warning limit and a compound decision
rule at different levels of discretization (m).

m Q1 Q- Qs Mean | StdDev.
) 4.626 | 8.444 | 14.904 | 11.739 | 9.386
14 | 5.066 | 9.213 | 16.232 | 12.749 | 10.187
29 |5.223 19.486 | 16.701 | 13.103 | 10.473
74 1 5.316 | 9.649 | 16.976 | 13.319 | 10.649
149 | 5.348 | 9.703 | 17.075 | 13.392 | 10.709
299 | 5.364 | 9.730 | 17.124 | 13.428 | 10.738
749 | 5.373 | 9.747 | 17.154 | 13.450 | 10.756
1499 | 5.376 | 9.753 | 17.164 | 13.457 | 10.762
1874 | 5.376 | 9.753 | 17.164 | 13.459 | 10.763

Remark 6.2 Traditionally, the mean and standard deviation of the run-length dis-
tribution are used for comparing the performance of control charts. However, in view
of our numerical result that the run length distribution for a compound control rule
is rather right skewed, we feel that displaying the quantiles of the distribution is
more adequate. The quantiles can be derived directly from the distribution. In
general, the distribution resulting from a compound control rule is always highly
skewed to the right, especially when it involves several control charts. This is a
direct consequence of the fact that the waiting time T resulting from the compound

rule is the minimum waiting time among the individual rules T3, T, . .., T}.

6.4 Discussion

In many cases two or more control charts are used simultaneously, either to monitor
several parameters (e.g., the mean and the standard deviation), or to be able to
detect different sizes or types of shifts (e.g., a Cusum and an X-bar simultaneously).

In such cases, it is important to know the signaling behavior of the joint charts.
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The combined run-length is the time until the first signal is raised by any one

of the charts. Mathematically, it is a waiting time problem with
T =min(Ty,...,T;),

where T;, ¢ = 1,...,r, are waiting times of r charts (or decision rules). When
the monitoring charts are independent, the distribution of the combined run-length
can be easily derived. In the dependent case, the combined run-length distribution
of a compound rule is more complicated. Even in this situation, it still can be
incorporated into the general Markov chain imbedding framework. For example,
the additional Western Electric rule ¢4 “eight consecutive points fall on one side of
the centerline” can be easily incorporated into the example of the compound rule
of Section 6.3 by using an additional coordinate with states 0,1,...,7 and state
8 as absorbing state. We leave the details to the reader. Further, with a simple
modification of the transition matrix, the results in Section 6.3 can be extended to

the case when the sequence {X;} has a Markovian dependence structure.

The unified approach can be used to learn about a chart’s ability to detect
different types of signals. In order to study the performance of some monitoring
scheme for a particular parameter pattern (e.g., a step-shift or linear trend from the
target value), we can integrate a given pattern into the Markov chain and compute
the run length distribution. In comparison to the case of a constant parameter,
the Markov chain is no longer time homogeneous. This means that the transition
probabilities will now depend on the value of the parameter at time ¢. A simple
example would be to incorporate a simulated pattern of the process mean p; into a
Shewhart scheme. The transition matrix, M, would be the same as (6.3), except

that p, would depend on time, i.e. p,,.

In conclusion, the general framework described here can be used for framing a

multitude of control charts into a Markov chain imbedding setting for the purpose
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of computing the run length distribution. It extends to combinations of charts, to
dependence, and to many other monitoring schemes, both hypothetical and ones

suggested in the control chart literature.



Chapter 7

Future Directions

7.1 Asymptotics of Runs and Patterns

In this section, we develop some general results which may be useful for studying
the asymptotics of runs and patterns. Let A be a simple pattern and {X;} be a
sequence of i.i.d. multistate trials. Suppose nonoverlapping counting is used. Recall

the following results obtained in Chapter 3:

T

(a) (pW(r:A)(S) - [@W(A)(S)] .

(b) Since @, (s) =1+ (1 - l) D, 4 (8), it follows that

8§

s
1-—s

@W(A) (s) = [1 - (pW(A)(S):I .

(c) From (b), we have ®  (s) = 1% [1 - goW(T:A)(s)].

(d) Since P(X,(A) <r)=P(W(r:A) > n) (Feller, 1968), we have

P(Xa(A)=7) = P(X,(A) <r+1)— P(X,(A) <1)
= PW({r+1:A)>n)—PW(r:A)>n).

Based on these results, we have the following theorem.

Theorem 7.1 Given a simple pattern A, the double probability generating function

of the number of occurrences X,,(A) is given by

1 [1 ~<pW<A)(S)] .

_ Nt — Nl
G(8>t) T;)(’DXMA)( )S l1—-s|1-— (JOW(A)(S)t (7 )

89
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Proof. 1t follows from the definition that

o0

G(s,t) = ZO Py ()8

- S (Sruw=nr)s

n=0

= Z Z [PW(r+1:A)>n)—P(W(r:A)>n)|s"t"

=0 n=0

_ iii W(r+1:A)>n+1) - P(W(r:A) > n+1)] s

n=0

21
= 2 < [Bwia)(s) — Bwen ()]
r=0

1 ,
- g Z 1 — [(pwo A)( ) 90W(r+1:A)(5)] 3
r=0
_ 1
- 1 l: 1 . (pW(A)(S) }
1-s|[1- QDW(A)(S)t 1- QOW(A)(S)t

_ 1 [1—%@)(8)}_

1—s|1- (pW(A)(s)t

This completes the proof. O

Corollary 7.1 We have from Theorem 7.1 that

1
P (0) = —DIG(s,1)| (72)

s=0

Theorem 7.1 states that the probability generating function ¢, (¢) of Xy (A)
can be obtained through the double probability generating function G(s, ) of X, (A).

We give an example to illustrate this result.
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Example 7.1 Let a simple pattern be A = S in a sequence of n Bernoulli trials.
Then we can obtain the probability generating function of W (A) as

ps
1—gs

P (8) =

From Theorem 7.1 and Corollary 7.1, we have

G(S t) — 1 1-— (pW(A)(S) _ 1
’ 1—5 1=, s)t 1—gqs—pst

= 1+ (g+pt)s+(g+pt)’s*+(g+pt)° s

+(g+pt) st (g+pt)° s+

Similarly, if A = 5SS, then we have

2.2
_ b’s
(pW(A)(S) — 1— qs —pqs2’
and hence
G - 1 (PW(A)(S) 1—q8—p 52 —pqs
(s,t) = — =5 (—gs - pgs’ — P>
1—s @W(A)(s)t s) qs — pqs® — p?s%t)

= 1+8+( —p?+p%) s+ (1-p* = PPa+p't+ qp’t) 5°

2

+(1—p* — pPq — p*¢* — pPa +p’t — p't+ Pt + Pqt

+ %%t + p*tH)st + - -

However, differentiating the double generating function G(s,t) n times may be
troublesome. It is necessary to look for another way to solve this problem. In view
of Equation (7.1), the double generating function G(s,t) always has a rational form.
Stanley (1986) proposed a method for computing the coeflicients of a rational func-
tion R(z)/Q(z) = Xp>o fnz", which we briefly describe. Without loss of generality,
suppose that R(z) = o+ fr1z+- -+ B.2° and Q(z) = 1 +mz+- - -+ vaz* (possibly
e > d). Then, equating the coefficients of 2” in R(z) = Q(z) X5 foz" yields the
recursive formula

fo=-"nfn1——Yafa—a + Bn, (7'3)
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where f, = 0 for n < 0 and 8, = 0 for n > e. Equation (7.3) provides an easy

way to obtain the probability generating function of X,(A). For brevity, we denote

(Ipxn(/\) (t) as ©n (t) :

Theorem 7.2 The probability generating function of X,(A) with A = S---S of

length k in a sequence of Bernoulli trials satisfies the following set of recurrence

relations:
On_1(t) + pton_k(t) — p*(q + pt)on—r-1(t) forn >k,
en(t) =14 1-p"+p* forn =k, (7.4)
1 forn < k.
Proof. Since
(ps)*(1 - ps)
QOW(A)(S) =

T 1— s+ gpFshtt’
it follows from Theorem 7.1 that
o = 1 [l

1 [1=s+gpfsTt —pFsF(1 — ps)
1—s | 1—s—pFtsk + pk(q+ pt)sk+?

1] (1—s)—pPs*(1—s)
~ 1—s |1 —s—pFtsh + pk(g + pt)sk+?
1 — pFsk

1 — s — pktsk + pk(g + pt)sk+t
Let R(s) = 1 — pks* and Q(s) = 1 — s — phts* + pF(g + pt)s¥™. Setting fy = 1,
Bp = —p*, 11 = —1, v, = —p*t, and 41 = p*(¢ + pt) and applying Equation (7.3),
we establish Equations (7.4). O

When A = S, it is well-known that the random variable X,(A) (binomial
random variable) in a sequence of n Bernoulli trials with success probability p = p,

tends to a Poisson random variable with parameter A = nh_)rgo npy,; that is,

z

lim P(Xa(A) = 2) = e_)‘i— T=0,1,.... (75)

n—Cco
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This classical result is known in the literature as “Poisson theorem” (see Balakr-
ishnan and Koutras, 2002, page 175). Furthermore, several asymptotic results for
X, (A) with A = S---S of length k have been constructed that are parallel to the
Poisson theorem under different assumptions on p and k. For example, assume that
the success probability 0 < p < 1 (¢ = 1—p) is fixed and the length k& = k, depends
on n, so that ngp™ — X as both k, — co and n — oco. Feller (1968), by using
the asymptotic form of the probability generating function of X,(A), showed that
the limiting distribution of X, (A) is Poisson. In addition, he also established the

asymptotic normality of X, (A) via renewal theoretic arguments.

Most of the aforementioned asymptotic results in the literature were focused on
runs in a sequence of bistate trials. For any pattern A, it is challenging to study these
asymptotic problems, especially when {X;} is a sequence of i.i.d. (or homogeneous
Markov dependent) m-state (m > 2) trials. Equations (7.1) and (7.3) provide a
direction for studying these asymptotic problems. We leave this unfinished work to

the interested reader.

7.2 Other Issues

In addition to the study of asymptotics of runs and patterns, some interesting issues

that were not addressed in this thesis are listed below for future research.

1. In Chapters 3 and 4, we developed a simple and general method for com-
puting the probability generating functions of compound and later patterns.

- The probability generating function can also be used to obtain the variance;
however, it may be a tedious task when the form of the probability generating
function is very complicated. It is necessary to develop a simple and general

method for computing the variance.
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2. All the results in Chapters 3 and 4 can be extended to the case when {X;} is
a sequence of higher order homogeneous Markov dependent trials. The key to
solving this problem is the appropriate setup of the initial distributions, and

we need two or more components for each state in the state space .

3. The unified approach for computing the run length probability distributions
in Chapter 6 can be extended to the case when the observations {X;} have

AR(1) or AR(2) dependent structure.

4. There is not much literature regarding statistical inference of parameters in
waiting time distributions. Since the finite Markov chain imbedding technique
has advantages in numerical computation, a computer-based approach may be

useful in treating such problems.



Appendix

A1l. Gwen the transition probability matriz

0 g op
1 g p 0
2
M= ' q .p ,

n—1 0 q p

n | 1]
we have, for 0 <z <n,

n ' n T n—x

&M 6m+1=<$>pq , (1)

where & = (1,0,...,0)1x(m+1) ond g1 = (0,...,1,...,0)1xms+1) with 1 at the
(x 4+ 1)th component.

Proof. We prove Equation (1) by induction. For n =1, we have z = 0 or 1. Thus,

we have for x = 0,

60M6'1=(1,0)[g 219] [H=q=<(1)>p°ql

and for x =1,

r_ ¢ p||0|__ _ (1) 10
This implies that Equation (1) holds for n = 1. Now suppose Equation (1) holds

for n — 1; that is,

n—1

. )pmq(”‘l)—m, 0<z<n-1

50Mn_16’z+1 = (

95
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Note that

0[qgp 170]
1 q p 0 0
/ T qg p 0
Mem—i—l z+1 g p 1
: 0 ) :
n—1 qg p 0
n | 1110

= pe;-f—qe;“.

Hence, from our assumption for n — 1 and the above equation, we have
EcMre,,, = M (Mez—l—l)

= M (Pe;c -+ Qelx+1)

= PéoMn—lelz -+ qgoMn_le’m—l

n—1 z—1 (n—1)—(z— n—1 z (n—1)—z
_ p<x_1>p 14D~ 1>+q< >pq< 1)

This implies that Equation (1) holds for any n. This completes the proof. O

A2. Given a pattern A (simple or compound), the exact distribution of the waiting

time random variable W(A) is given by
P(W(A) =n)=EN""H(I — N)1,

where € = (1,0,...,0) is the initial distribution, I is the k X k identity matriz, and

1}, is the transpose of the row vector 1 = (1,1,...,1)1xk-
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Proof. For the same reason as stated in Theorem 3.2, we note that the tail proba-

bility of W (A) is given by
P(W(A) > n)=€¢N"11.
Hence, we have

PW(A)=n) = P(W(A)>n)— P(W(A)>n+1)
= EN"T1—¢N"Y,

= EN"}I - N)1j.
This completes the proof. a

A3. Let A = Ay UA, be a compound pattern with Ay = S---S of length ki and
Ay = F--- F of length ky 1n a sequence of Bernoulli trials with success probability
p and failure probability ¢ = 1 — p, respectively. The probability generating function

of the waiting time random variable W (A) is given by

(1= ps)(ps) [1 = (g9))] + (1 — 45)(as)* [1 — (ps)"]
I R e e ey g o S o R

Proof First, we note that the imbedded Markov chain {Y;} associated with W (A)

has state space

ki1—-1 ko—1
Q = {0,5,55,....5 -8, F,FF,...,F-- F,a,00}

= {1,2,3,...,k1,]€1+1,k1+2,...,]€1-f-kg—-1,061,0(2}



and transition probability matrix

1
2

ki—1

k1
k1+1
k1+2

k1 4+ ko —2
k1+ ko —1
ay
Gig

[0 p 0lg 0 O 0[0 O
0 0 p Ojlg 0 O 00 O
0 00 plg 0 O 0j0 O
000 0lq 0 0 0lp 0
0 p 0 070 4 0 070 0
0 p 0 0l0 0 ¢ 0o o
0 p 0 0/0 00 -~ g0 0
0 p O 0{6 0 0 --- 0|0 ¢

0 0 1 0

i 0 0 0 1

98

It follows from Theorem 3.3 that (¢1(s), ¢2(s), - - ., dr,+x,—1(8)) is the solution of the

simultaneous recursive equations

Pryrkp—1(8) =

From the above simultaneous recursive equations, note that ¢s(s),. ..

be expressed in terms of ¢(s); that is, ¢3(s) = psda(s),. ..

8,

ps[$1(8) + dry+1(8) + - + Bryrky—1(8)]

p8¢2(3)7
p5¢3(8)7

PSPi,-1(8),
gs [#1(s) + -+ + S (s)],
5),
5%k, +2(s),

(
)
5Pk 41(
(

qSPry+ho—2(5)-

» Ok, (8) can

, Ok, (8) = (ps)" 2o (s).
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Hence, ¢2(s) can be written as

¢2(s) = ps[di(s) + Gri+1(s) + - + Ptk -1(5)]
= ps” + s [Pr1(5) + o+ Prirre-1 ()]
= ps”+ps{gs” +qs [¢a(s) + psga(s) + -+ (ps)" s (s)]
+0°5° + (45)* [92(5) + psa(s) + - + (ps)" 2a(s)] + - -
+ ¢ 715" 4 (g5) 71 [da(s) + psda(s) + -+ + (ps) 2ga(s)] |

gs* [1 = (gs)"7] L 1= (@) [1 = (ps)~] "
g (=091 —p9) 2(8)}'
Solving the above equation, we obtain

ps*(1—ps) [1 - (g5)"]
(1 - ps)(1 —gs) —pgs®[1 — (ps) "] [1 — (gs)"~1]
Thus, ¢, (s) = (ps)¥2¢5(s) can be obtained by substituting the solution of @y (s).

= p82—|—p8{

¢2(s) =

Similarly,

Drrha-1(5) = (g8)* P41 (s)

= (a9)"7 {gs* + g5 [9a(s) + psa(s) + - + (p5)" %a(s)] }

1 - (ps)"~]

— ko—1 li

(gs) {5 + i b2(3)

can be obtained by substituting the solution of ¢s(s) into the above expression. By

Theorem 3.4 and some simple algebra, we get

QOW(A)(S) = pd, (5) + 4Pk +hp-1(8)

(1 - ps)(ps)™ |1 - (g5)")] + (1 — gs5)(g9)* [1 — (ps)"]
(1 —ps)(1 —gs) — pgs® [1 — (ps)F~1] [1 — (gs)*71]
This completes the proof. O

The result in A3 matches the formula derived by Feller (1968) and Ebne-
shahrashoob and Sobel (1990). It also shows that the finite Markov chain imbedding
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technique can be used in deriving a general formula. Under the same assumption
as in A3, we can obtain a general formula for the case of first-order homogeneous

Markov dependent bistate trials. We state it without proof.

A4, Let A = Ay U Ay be a compound pattern with Ay = S---5 of length ki and
Ay = F--- F of length ks in a sequence of first-order homogeneous Markov dependent
bistate trials with initial probabilities P(X, =S)=p and P(X; = F)=q¢=1—p,

respectively, and transition probability matriz

S| oa
A =
F [P2 lh]’

where ¢; = 1 — p;, © = 1,2. Then the probability generating function of the waiting

time random variable W (A) is given by

Ay + Ay
(PW(A)(S) = T) (3)

where

S = o oo 1 00
Ny = (1- q25)(q25)k2—1 {qs _ qp182 +pq152 [1 _ (pls)kl_l}} 7

Ay = (1—pis)(l — g3) — paqi$° [1 _ (pls)kl“l] [1 _ (qzs)kz—-l] _
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