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Abstract

Waiting time distributions of runs and patterns have been successfully used

in various areas of statistics and applied probability-for example, in reliability,

sampling inspection, quality control, DNA sequencing and hypothesis testing. The

main goal of this thesis is to give a comprehensive study of waiting time distribu-

tions of runs and patterns using the finite Markov Chain imbedding technique. We

provide a simple and general method to obtain the exact distributions, means and

probabiliiy generating functions for waiting time distributions of compound and

later patterns. Computational algorithms based on the finite Markov chain imbed-

ding technique are developed for automatically computing the exact distributions,

means and probability generating functions of waiting times for compound and later

patterns.

To see the applications of waiting time distributions, we introduce a general

theoretical framework that leads to the run-length distribution for a multitude of

control charts that are based either on a simple rule (e.g., Shewhart, Cusum, EWMA

charts) or on a compound set of rules (e.g., Shewhart with runs rules, robust Cusum

and robust EWMA charts). It handles both discrete and continuous cases and

can incorporate process properties, such as different types of shifts, directly. The

framework is simple to apply and is fully automated.
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Chapter 1

Tntroduction

1.1 Overview

The distribution theory of runs and patterns has been widely studied and applied

in many fields such as reliability (Chiang and Niu, 1981; Fu, 1985, 1986a, 1986b,

1993; Chao and Fu, 1989, 1991; Chao, Fu and Koutras, 1995), sampling inspection

(Shmueli and Cohen, 2000), quality control (Mosteller, 7941; Wolfowitz, 1943; Fu,

Spiring and Xie, 2002), hypothesis testing (Wald and Wolfowitz, 1940; Wolforvitz,

1g43; Walsh, 1962; Lou, 1996, i997), DNA sequencing (Waterman, 1995; Fu, Lou

and Chen, 1999), psychology (Schwager, 1983; Koutras and Alexandrou, 1997) and

ecology (Schwager, 1983). Traditionally, most of the research work focused on the

study of runs in a sequence of bistate trials. There are two general types of problems

that arise in the study of runs: (i) the distribution of the number of occurrences of

,k consecutive successes (or failures), and (ii) the distribution of the number of trials

(waiting time) to observe the first (or rth) occurrence of k consecutive successes (or

failures). The latter case is known as the waiting time problem, which is the main

focus of this thesis.

Historically, the distribution theory of runs has been of scientific interest since

the time of De Moivre (7667-7754) (see Johnson, Kotz and Kemp, 1992, page 426)'

From around 1940 to 1970, there \Mere many papers that contributed to this area,

but most r,vere concerned with the study of conditional distributions of runs given the

total number of successes or of deriving approximate formulas for the distributions
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of runs (Fu, 1996). In the past two decades, more complicated problems have been

proposed and treated based on different random sequences (for example, Marì<ov

dependent trials). This worlç has not only been focused on runs but also on the

more general concept of patterns.

Traditionally, a combinatorial approach was adopted to study the distribution

theory of runs and patterns. However, from both theoretical and computational

points of view, it always entails heavy and tedious task, if not impossible. In addition

to the combinatorial approach, two popular approaches have been extensively usecì

in this field over the past decade. One is the conditi,onal probabi,ti,ty generati,ng

functi'ons approach (e.g., Ebneshahrashoob and Sobel, 1990; Aki, 1gg2, 1997; Aki

and Hirano, 1995; Aki, Balakrishnan and Mohanty, 19g6; Hirano, Aki and Uchida,

7997), while the other approach is the fi,ni,te Markou chai,n i,mbed,d,i,ng techni,que

introduced by Fu and Koutras (1994) and Fu (1996). The finite Marl<ov chain

imbedding technique has certain practical advantages; for example, it can be used

to deal with very general classes of waiting time problems. Throughout this thesis,

our r,vork will be based on this approach.

The remainder of this chapter introduces and gives a brief literature review

of several important distributions associated with runs and patterns; in particular,

distributions of order Æ and sooner and later waiting time distributions. These

distributions are central to the work in this thesis.

L.2 Distributions of Order k

Distributions of order k are among the most important class set of distributions

associated with runs. Philippou and Muwafi (1982) studied the distribution of

the waiting time until the first occurrence of k consecutive successes (k fixed) in

a sequence of Bernoulli trials with success probabiliLy p (q: I - p). philippou,
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Georghiou and Philippou (1983) called this distribution a Geometri,c d,i,stri,butron oJ

order lt. They further defined a Negati,ue Bi,nom'ial di,stri,buti,on of ord,er k and a

Poi,sson di,stri,but'ion of order k. Subsequently, various distributions of order ,k have

been extensively studied. Since the class of this type of distribution is rather large,

we only introduce some important distributions related to our work. To that end,

let X denote the random variable of interest, which has some distribution of order

k.

Geometric distribution of order k (Gt(p))

The expression of the exact distribution given by Philippou and Muwafi (1gS2) is

P(x : r): t ( *,_: 
::- )n l:)r1+ 

+'Lk, 
(1 1)

trt...,îk \ *r)"')ek / \P/

fot r: k,lr+ 1,..., where the summation is over all nonnegative integers rr,...,tk
such that 11 * 2r2 + . . . + kr¡ : r - k. Clearly, it reduces to the usual Geometric

distribution when Ìt : I.

Negative Binomial distribution of order k (NBk(r,p))

The distribution of the waiting time until the rth occurrence of k consecutive suc-

cesses is called I'he Negati,ue Bi,nomial di,stribut,ion of order k. It is clear that a

Geometric distribution of order k is a special case of a Negative Binomial distribu-

tion of order k when r : 7. The exact distribution given by Philippou, Georghiou

and Philippou (1983) is

r): r ( "':. "*luj!¡t )r"l:)''* 
*'^, 

(r2)
r,t...fitt \ "l)' ')rJh)t -r / \P/

for r: ltr,lcri_T,..., where the summation is over allnonnegative integers !x7,...,rk
such that :r1 i 2r2+ .'. + kr¡, : r - kr.

Poisson distribution of order k (Pr(p))

This distribution is obtained as a limiting form of a Negative Binomial distribution

of order k. LeL X,be a random variable distributed as l/B¡(r,p) and assume that
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q + 0 and lim"-ærQ: À (À > 0). It can be shown (Philippou, Georghiou and

Philippou, 1983) that

(1 3)

as r -+ co, \Mhere the summation is over all nonnegative integers rrt . . ., ír¡ such

that 11 *2r2 + "'+ krt - r. The limit form in Equation (1.3) is called a Poi,sson

di,stributi,on of order k. When lç:1, it reduces to the usual Poisson distribution.

Logarithmic (series) distribution of order k (LS¡(p))

Like the Poisson distribution of order k, this distribution is also derived as a limiting

form of a Negative Binomial distribution of order Æ. Let X, be a random variable

distributed as l/B¡(r,p). Assuming that r -+0, it can be shown (Aki, Kuboki and

Hirano, i984) that

P(x,:rlx,>-[kr]+1) -+ ,?," t (ri+"'+r¡-t)!
) ' -klogp ,ru_ro :xl' . .rx! )

(1 ¿,\

ror r: r,2,..., where the summation is over all nonnegative integêrs Í1,...,ttt
such that 11-12r2 + "'+ lcr¡ - n. The limit form in Equation (1.a) is called a

Logari,thmi,c (seri,es) di,stri,bution of order k.

Binomial distribution of order k (B¡,(n,p))

The distribution of the number of occurrences of Æ consecutive successes is called the

Binomi,al di,stri,buti,on of order fr. The exact distribution was derived independently

by both Hirano (1986) and Philippou and Makri (tgSO) as

ït*...:-rt+z \ - (q\ut+"'+øa
rrt...,rk,r )'"\;) 

)

le)
\P/

'¿t-l" 
ttt¿

p(Y 
- *\ -t \r\ - 

tu) 
- ( r.Ð/

for r:0,7,2,...,1r1k), where the inner summation is over all nonnegative integers

17,. . ., u¡ such that z1-t2r2*' . .Ikr¡: n-'i-kr. It reduces to the usual Binomial

distribution when k : L Fu and Koutras (1994) gave a different formula by using

k-r /\-\-l¿-¿Ll
¿-0 ør,'..,ø1, \
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the finite iVlarkov chain imbedding technique which is introduced in Chapter 2.

Other distributions of order fr

In addition to the above, there are many distributions of order k that have been

investigated; for example, the Compound Poisson distribution of order ,k (..g.,

Philippou, 1983; Panaretos and Xekalaki, 1986), the hypergeometric and inverse

(or negative) hypergeometric distribution of order k (..g., Panaretos and Xekalaki,

1986; Godbole, 1990b), the Pólya and inverse Pólya distributions of order k (u.g.,

Philippou, Tripsiannis and Antzoulakos, 1989; philippou and Tripsiannis, 1gg1;

Tripsiannis, 1993), etc. No further introduction of these distributions is siven since

they exceed the scope of this thesis.

Remark 1.1 The Negative Binomial and Binomial distributions of order k dis-

cussed above assume nonouerlappi,ng counting. This type of counting produces ?gpe

I di,stri'buti,ons of order k. Similarly, at least k and ouerlappi,ng counting schemes

produce Type II and Type III di,stri,buti,ons of order Æ, respectively (Balakrishnan

and Koutras,2002). These counting schemes are defined more precisely in Chapter

2.

Since the formulas for the exact distributions of order ,k are quite complicated,

alternative formulas have been derived to avoid difficulty in numerical computation.

For example, Uppuluri and Patil (1983) obtained a simpler formula for Geometric

distribution of order k as

oo

P(Y - n\ - -fr \-/-l \rY '/-\- 
L )

j=0
("-ki-ik)røn-l'

oo/
pÈ+l 5-l- r\j ( " -' u\ / tj=0 \

k-ik-1)
r) (qpu)i, r ) k, (1 6)
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which involves only two single summations. Muselli (1996) gave a more computa-

tionally attractive expression for the distribution as

T-rì lt-l

P(x :') :'Ï' (t¡i:¿tqt-' {( " -oi!; t \ * n ('r=r t\ -' - / \
-jj:; ')) 0T)

which entails only a single summation. Another way to avoid computational diffi-

culties is to derive the probability generating function of a distribution of order k.

Probability generating functions are useful not only in finding an exact distribution,

but also in studying the characteristics of that distribution.

Replacing different underlying sequences, there were numerous papers that ex-

tended the study of distributions of order k. Several authors dealt with these dis-

tributions based on Markov dependent trials (e.g., Hirano and Aki, 1993; Mohanty,

7994). Aki (1985) defined a binary sequence of order k as an extension of a se-

quence of Bernoulli trials. He studied several distributions of order k based on this

sequence and called the resulting class of distributîons ertended di,stri,but,ions of or-

der k (see also Hirano and Aki, 1937). Philippou (1988) developed a new class of

distributions called multi,parameter d'istri.buti,ons of order Æ (equivalent to extended

distributions of order k by appropriately changing the parameters). Further gen-

eralizations of multiparameter distributions of order k have been developed (e.g.,

Philippou, Antzoulakos and Tripsiannis, 1989; Philippou and Antzoulakos, 1990;

Antzoulal<os and Philippou, 1997).

In addition to the study of exact distributions, Poisson approximations of these

distributions have been derived by several authors. Chen-Stein approximations may

be the most popular method of treating such problems. References include: Fu

(1985, 1986a, 1986b, 1993), Arratia, Goldstein and Gordon (1989, 1gg0), Godbole

(1990a, 1991), Goldstein (1990) and Wang (1993).
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1.3 Sooner and Later Waiting Time Distributions

In many situations, it is necessary to study waiting time problems associated r,vith

two or more runs or patterns; for example, an experiment stops or a system fails

whenever one of several predefined runs or patterns occurs. Sometimes, order among

these runs or patterns is important and must be taken into consideration; for exam-

ple, the DNA sequence of a virus contains certain patterns that occur in order. In

the previous section, two types of distributions of order k that belong to the class

of waiting time distributions have been introduced: the Geometric and Negative

Binomial distributions of order k. In this section, we introduce another important

class of waiting time distributions called sooner and later wai,ting ti,me d'istri.but,ions.

The distribution of the waiting time until the first occurrence of a success run

or a failure run (of fixed length) in a sequence of Bernoulli trials was first introduced

by Feller (1968). Ebneshahrashoob and Sobel (1990) called this a sooner waztr,ng

ti,me dzstri,buti,on and referred to this type of problem as a succession quota (SQ)

problem or a sooner waiting time problem. They also considered as a dual the SQ

later problem-waiting for a success run or a failure run, whichever comes later-and

derived explicit formulas for their probability generating functions. The resulting

distribution is termed a later wai,ti,ng time di,stributi,on. Generally speaking, sooner

and later waiting time distributions refer to the waiting times for several simple

patterns, whichever comes sooner or later.

From 1980 to 1990, some general results were derived for the waiting time to the

first occurrence of one or more specified patterns; see, for example, Li (1980), BIom

and Thorburn (1982), Breen, Waterman and Zhang (1985) and Chryssaphinou and

Papastavridis (1990). However, most of these results were discussed under some

conditions or explained the routes for deriving the probability generating functions

of such waiting times but did not provide explicit expressions as Ebneshahrashoob
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and Sobel did. Since Ebneshahrashoob and Sobel's work, the sooner and later wait-

ing time problems have been extensively studied. Ling and Low (1993) generalized

Ebneshahrashoob and Sobel's results in a sequence of independent and identically

distributed (i.i.d.) multistate trials. Aki and Hirano (1993) and Balasubramanian,

Viveros and Balakrishnan (1993) studied this problem in a sequence of homogeneous

Markov bistate trials. Other pertinent references include: Uchida and Aki (lggb),

Aki, Balakrishnan and Mohanty (1996), Koutras (rgg7a, iggTb), Aki and Hirano

(1999), Antzoulakos (1999), Han and Aki (2000a, 2000b). NIost of this research

included the study of sooner and later waiting time distributions of a success run

and a failure run in a sequence of bistate trials. Koutras and Alexandrou (1997)

investigated the sooner waiting time problems in a sequence of trinary trials. Uchicla

(i998) derived probability generating functions for sooner waiting times of count-

ably many simple patterns, and for later waiting times of two simple patterns in a

sequence of i.i.d. muliistate trials, but under a very restrictive assumption that each

simple pattern was aligned in ascending order. To the best of our knowledge, there

are no general results for sooner and later waiting time distributions of I (l > 2)

simple patterns when the underlying sequence consists of Markov dependent mul-

tistate trials. In particular, when we consider the later waiting time problem of

several simple patterns, the enumeration schemes (nonoverlapping and overlapping)

should be taken into consideration.

One primary goal of the thesis is to develop a simple and general method, both

from theoretical and computational points of view, to deal wiih the sooner and later

waiting time problems. Our results are presented in Chapters 3 and 4.
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L.4 Summary

In this chapter, we have briefly reviewed and discussed: (i) primary developments

in the study of the distribution theory of runs and patterns, (ii) approaches that

are often adopted in studying the distribution theory of runs and patterns, and (iii)

some well-known distributions associated with runs and parrerns.

The rest of this thesis is organized as follows. In Chapter 2, we introduce

some basic concepts of runs and patterns and the finite Markov chain imbedding

technique. Chapter 3 and Chapter 4 give a comprehensive study of waiting time

distributions of compound and later patterns, respectively. Numerical examples are

given to illustrate our results. In Chapter 5, computer algorithms based on the

finite Markov chain imbedding technique are developed for automatically obtaining

the results derived in Chapters 3 and 4. Chapter 6 shows the application of waiting

time distributions in quality control. Finally, in Chapter 7, we extend the results

obtained in Chapter 3 and list some open problems for future research.



Chapter 2

Fislite Vlarkov Chaire lnnbedding

2.L Basic Concepts of Runs and Patterns

Let {X,} be a sequence of rn-state (m > 2) random variables defined on the state

space l: {ór, b2,...,b^}.Tïaditionally, a run means a finite sequence of consecu-

tive successes or failures. For example, the sequence S.9^9S,9 means a success run of

length 5. For multistate trials, a run is defined to be a finite sequence of consecutive

identical symbols. Due to recent rapid developments in science, this definition has

become rather restrictive and is not sufficient for solving more complicated problems.

For broader applications, we require a more general definition.

Definition 2.1 We say that Â is a s'imple pattern if Â is composed of a specified

sequence of k states; i.e. ,{ - b¿, .. ' ó¿* (the length of the pattern k is fixed, and the

states in the pattern are allowed to be repeated).

It is clear that a success run (or a failure run) of length k (Æ fixed) is a special case

of a simple pattern. We define a subpattern of a simple pattern ,{ to be a finite

sequence having the general form b¿r...b¿,, I < j < k. It is clear that a simple

pattern is a subpattern of itself. The subpattern plays an important roie in the

finite Markov chain imbedding technique.

Define a segment to be any (contiguous) subset of a simple pattern. For exam-

ple, let t\: búúzb2be a simple pattern; then, the subpatterns b1, b1b1 and, b1bft2

âre segments of Ä. On the other hand, b2, b1b2, b2b2 and brb2b2 are segments of Ä,

10
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but not subpatterns. Let À1 and,A2 be two simple patterns with lengths k1 and À2,

respectively. We say that.A.1 and Â2 are di,sti,nct if neither is a segment of the other.

We define the union 
^1 

U 
^2 

to be the occurrence of either the pattern Ä1 or the

pattern Â2.

Definition 2.2 We say that ,A is a compound pattern if it is a union of I distinct

simple patterns; i.e. .4. : UÍ=r Â¿ (the lengths of simple patterns do not have to be

the same).

It is obvious that a compound pattern reduces to a simple pattern when I :7.

Definition 2.3 Let Ar, . . . ,;\¿ be I distinct simple patterns. we say that ø :
-4.1 o Â2 o ' ' ' o .A¿ is an ordered series pattern if Â1 is the first to occur among the

patterns Âr,.. .,1\¿, Lz is the next to occur among the patterns Â2,...,Â,, and so

on.

From the above definition, we see that an ordered series pattern is formed by ob-

serving the first occurrence of the simple patterns /\¿, ,i : 1, . . . ,1, in the defined

ordering. To clarify this definition, we provide the following example.

Example 2.1 Let o : /\t o A2 o Â3 be an ordered series pattern \Mith 
^r - 

13,

Lz : 22 and Âe : 31. consider two realizations -81 and Rz of. a sequence of

eighteen three-state trials:

172733273221227337,

77T2ß323n1227337.

It is easy to see that ø occurs in -R1, however, ø does not occur in R2 since Á.1 is

not the first one to occur in the ordering as specified by o. On the other hand, the

ordered series pattern A2 o 4.1 o Ä3 has occurred in R2. AIso note that in Ær, Âr

occurs three times before Á.3, and Á.2 occurs twice before.A.3.

Rt:

Rz:
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Let T : {1, 2, . . . ,l} and define P to be the set of all ordered series Darrerns

generated by permuting I distinct simple patterns 4r,...,Â.¿; that is,

P:{o¿io¿:,4,¿ro.A.¿ro...oL¿,,,i-1,...,L1.,ij€Tand,i¡*infor jlk}. (2.I)

For example, for l:2, we have P: {or,o2: o1: Âr o,4.2 and oz:.1\zo,{r}. It is

easy to verify Lhat card(P) : ll (l! permutations).

Definition 2.4 We say that Â¿ is a later pattern if it is a union of all l! ordered

series patterns in P; i.e. Â¿ : l)¿nt:ro¿, for each o¿ € p.

Remark 2.1 Given a later pattern 1\r:l)¿¿t:roo, by definition, it should be clear

that any two ordered series patterns o¿ and o¡ (i * 7) cannot occur at the same

time. For example, \et o1: 11o 22o33 and o2:22o 11o 33. Consider a realization

of a sequence of twelve three-state trials: 713-223TT2193. It is easy to see that o1

occurs on the twelfth trial since the simple patterns 'II','22, and ,33' occur in order

and '1f is the first one to occur in the sequence; however, ø2 does not occur on the

twelfth trial since the pattern'22' is not the first one to occur in the order.

Next, we consider the waiting time problems. Define the waiting time for a

simple pattern ¡ - bùb¿r. . ö¿o to be

W(L) : inf{n : Xn-k+r : bi,,...,Xn : b¿o}
: Minimum number of trials required to observe the pattern Ä,

and define the waiting time for a compound pattern .4. : Uj=, Â, us

w (L) : Minimum number of trials required to observe one of the
simple patterns Âr, . . ., A¿.

For given integer r, r :7,2,..., we define the waiting timew(r: A.) to the rth
occurrence of a pattern Â (simple or compound) as

w (r : lt) : inf {n: n is the number of trials required to observe the rth

occurrence of the pattern .4.).
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Similarly, lvedefinethewaitingtimeforanorderedseriespatterno:Äro...oA¿

AS

w(o): Minimum number of trials required to observe the pattern o,

and define the waiting time for a later pattern .A¿ : lJ!ot=, on us

w (L") : Minimum number of trials required to observe one of the
ordered series patterns or,. . ., 6¿t.

Clearly, waiting time problems associated with a compound pattern Â : Uj=, Ä¿

and a later pattern A¿ : UÍ=r oo (t > 2) are the sooner and later waiting time prob-

lems, respectively. From the above definitions, it is easy to see that the later waiting

time distribution of I (I > 2) simpte patterns can be viewed as the waiting time dis-

tribution of a compound pattern defined through all the ordered series patterns

generated by permuting all the simple patterns. From this point of view, the later

waiting time problems can be treated in a similar way as the sooner case.

With these definitions of patterns, \Me further introduce different countins

schemes. Four of the most frequently used counting schemes are:

e Nonoverlapping counting in the sense of Feller (1968): recounting immediately

after a given pattern has occurred.

overlapping counting in the sense of Ling (1988): when a given pattern (with

length À) occurs, start counting backward (up to the last (k-l)th trial) to find

the overlap of the current pattern and the next occurring pattern, recounting

from this subpattern.

Exactly k counting in the sense of Mood (19a0): counting the number of runs

of exact length Æ.
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ø At least k counting: counting the number of runs of length greater than or

equal to k.

The first two counting schemes can be used for any pattern; however, the last two

counting schemes can only be used for runs. Given a specified pattern .4., let X"(^)
be the number of occurrences of .4. in a sequence of n multistate trials with respect to

nonoverlapping or overlapping counting. Similarly,Iet En,¡ and G,.,,¡ be the numbers

of success runs of length k in a sequence of n bistate trials with respect to exactly fr

and at least k counting, respectively. We give an example to illustrate these counting

schemes.

Example 2.2 Suppose \Me flip a coin fifteen times with outcomes

S S S S F F F.9F.9F,S.9F^9,

where the success event ^9 denotes a head. Consider a simple pattern ,{ : ,g,S;

then we have X15(^) : 3 under nonoverlapping counti"s ($,SSSFFFSFSF^g^gf,S)

and x15(.4) :4 under overlapping counting (Ss-S¡TTFSFSFSSF^9). similarly,

f.or k:2, then we have -Ð15,2: 1(^9^9.9.9FFFSFSF6SFS) and G15,2 - 2

(sss.gFFFSFSFssFS). consider another simple pattern ,A. : ,gFS; then we

have x15(A) : 2 under nonoverlapping counting (,s.g.g]FFFSFSF^9,SF.g) and

Xrr(A) : 3 under overlapping counting (.g.g.g,Sl¡,FFÉ¿^9F56{ó) Obviously, it
does not make sense if the exactly k and at least k counting were used for this

pattern since it is not a run.

To close this section, we point out that the distributions generated by compound

patterns cover many well-known distributions; for example, Binomial distribution,

Binomial distribution of order k, geometric distribution, geometric distribution of

order Æ, negative binomial distribution, negative binomial distribution of order k,
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sooner and later waiting time distributions and distributions of the scan statistic.

Table 2.1 summarizes patterns corresponding to different random variables and their

distributions.

Remark 2.2 Two things should be noted in Table 2.1: (i) the random variable

associated with Binomial distribution of order k is often denoted by Ät,r under

nonoverlapping counting, and by Mn,u under overlapping counting; and (ii) the scan

statistic S"(r) of window size r in a sequence of bistate trials is defined as

t+r-L
Sn(r): max )- Xo.1<t<n-r*I 

¡_-_¡

we refer to Fu (2002) for the study of the exact distribution of .g"(r).

(2 2)

2.2 Finite Markov Chain Imbedding
2.2.L Introduction

The finite Markov chain imbedding technique was first employed by Fu (1986b) and

successfully used by Chao and Fu (1989, 1991) in studying the reliability of a large

series system, such as repairable systems and consecutive-Æ-ouïof-n:F systems. Fu

and Koutras (1994) gâve a complete introduction to this approach and applied it
to the study of distributions of runs in a sequence of Bernoulli trials with respect

to different counting schemes. Since their work, the finite Markov chain imbed-

ding technique has become a popular approach to study the distribution theory of

runs and patterns and its related applications; seeT for example, Lou (1996, 7gg7),

Koutras (1997b), Koutras and Alexandrou (1gg7), Doi and yamamoto (1998), Bout-

sikas and Koutras (2000).

The fundamental idea of the finite Marl<ov chain imbedding technique is to

imbed the random variable of interest into a Markov chain. Since the probabilistic
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Table 2.1: Some well-known distributions generated by compound patterns.

Distribution Compound pattern Random
variable

Standard
notation

Binomial

Binomial distribution
of order k

Geometric

Geometric distribution
of order Æ

Negative Binomial

Negative Binomial
distribution of order Æ

Sooner waiting time

Later waiting time

Scan statistic

Â:,S

,4. : ^9. ",S
of length Æ

.4.:,9".,S
of length Æ

A : ,S.' .^9

of length k

Â: Ul=, l\¿, I ) 2

t t tll.l\L:U|=to¿,.1)2

x"(^)

,ç(^)

w(^)

w(^)

W(r: t\)

W(r: L)

w(^)

w(L")

s"(r)

(n,p)

Br(n,p)

G(p)

G n(p)

N B(r,p)

N B¡(r,p)

B
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behavior of a Markov chain is uniquely characterized by its transition probability

matrix, the exact distribution of the random variable can be expressed in a simple

form in terms of the transition probability matrix of its imbedded chain. To see

how it works, we first introduce the notion fi,ni,te Markou chai,n i,mbedd,able.

Definition 2.5 We say that a random variable X"(^) is fi,ni,te Markou chai,n imbecl-

dableif: (i) there exists a finite Markov chain {Y, , t: 0, 1, . . . ,n} defined on a finite

state space f) : {or,or,...,a*} with initial probability {o and transition probabil-

itymatricesM¡t:I,...,fr,and(ii) thereexistsapartition{C":fr:0,I,...,1}
of the state space f) (l may depend on n), such that

P(X"(L) - r) : P(Y" e C"lËo)

for each :x :0,I,. . . ,1.

The next theorem derived by Fu and Koutras (199a) provides a formula for

computing the exact distributions of x"(A). W. state it without proof.

Theorem 2.1 If X"(^) i.s fi.ni,te Markou chai,n imbeddable, then

p(x,(L) - r) :€, lil *,\ u'(c,), ,: o, 1, . . .,r, (2 J)
\¿=1 /

where {o : P(Yg : úr,Yg : a2¡...,Y0 : a*), M¿, t : 7,...,tu, o,re rn x Tn

trans'it'ion probabi,li,ty matrices associ,ated wi,th {Y¿}io and U (C") : Ði,,a¿€c, ê¿, and,

where e¿: (0,. . . ,0,1,0,. . .,0) zs a uni,t uector correspond'ing to a¿.

Equation (2.3) is a matrix version of the Chapman-Kolmogorov equation. It is

obvious that Equation (2.3) can be written as

P(X"(L) - r) : ËoM"U'(C,), ,: 0, 1, . . .,1,
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when the imbedded N4arkov chain is homogeneous. Finding the exact distribution

of X"(,{) may not be trivial since the pattern may be very compiicated. According

to Fu (1996), there are three essential steps for finding the distribution of a given

pattern by using the finite Markov chain technique: (i) construction of a proper

state space 0 based on the structure of a specified pattern; (ii) construction of a

finite Markov chain and its transition probability matrix; and (iii) construction of a

partition {C"} o" the state space O that has a one-to-one correspondence with the

random variable X"(^) in the sense that p(X"(L) - r): p(y"e C"l€o) for all z.

We give a simple example to make the above procedure more transparent.

Example 2.3 Let {X¿}þ, be a sequence of Bernoulli trials with success probability

p and failure probability q, respectively, and let Ä : ,S. Then the distribution

of X"(X.) is the usual Binomial distribution under nonoverlapping counting. To

find such a distribution by using the finite Markov chain imbedding technique, we

proceed as follows. Firstly, let Y¿ : Ðlt X¿, I < t < rz. Then it is easy to check

that {Y¿} is aMarkov chainwithstate spâce o: {0, 1,...,n}. secondly, we define

the transition probabilities as

Pt¡ : P (Y: jlYr-t : ù : { P ::j.:'i +r'L "'/ |.q ifi:¿,
for 0 ( i, 1n-7, Pnn: 1, and 0 elsewhere. Then, the transition probability matrix

can be written as
0

1

2M:
n-I

n

qp
qp

q

0

Thirdly, we define C" : {z} for r : 0,L,...,n. Then {C, : r: 0,1, . . .,n} forms

a partition of the state space 0. From Theorem 2.1, we have

p

qp
1

P(X"(L) - r) : (sM"el,*r, t : 0,7,. . .,r1, (). 4\
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r'vhere {o : (1,0, . . . ,0)r*(",+r) is the iniiial distributio" (p(yo : 0) = 1) and ei*,
is the transpose of the unit vectot êr+r: (0,...,1,...,O)rx(r,.+r¡. It can be shown

that Equation (2.4) is in fact equivalent to the usual expression for the Binomial

distribution; that is,

{sM"e"*r:

The proof can be found in result A1 of th

Generally speaking, construction of an imbedded Markov chain {Yr} associated

with the random variable of interest may not be as simple as in the above example.

For more complicated patterns or random variables, it may not be enough for {IZ¿}

to record information with only one component. In this situation, \Me can define

Y¿ with two (or more, if necessary) components (or dimensions) to record enough

information. Usually, the first component records the total number of occurrences

of a given pattern in the first ú trials and the second component records the status

of I'¿ with respect to different counting schemes or conditions at trial ú. Fu (1996)

introduced the forward and backward pri,nci,p/e in studying the distributions of the

number of runs and patterns and the waiting time distributions. We give a detailed

discussion in the next section.

2.2.2 Forward and Backward Principle

When dealing with problems regarding the distribution theory of runs and patterns

via the finite Markov chain imbedding technique, we may encounter some difficulties.

For example, how do we imbed a random variable of interest associated with a spec-

ified pattern into a Markov chain? The forward and backward principle introduced

by Fu (1996) provides a general way to analyze this type of problem and facilitates

the study of the finite Markov chain imbedding technique. The idea of the forward

and backward principle mainly consists of two parts: (i) understanding of the struc-

(; ) 
p'qn-'

e Appendix.
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ture of a specified pattern, and (ii) the counting procedure applied throughout the

sequence of n multistate trials. To illustrate this principle, consider a sequence of

n i.i.d. m-state trials {X,} defined on the state space f : {ör,b2,...,b*}.Given a
simple pattern n- bab¿r"'b¿o of length Æ, suppose rve are interested in finding the

exact distribution of X'(,{) with respect to nonoverlapping counting. We proceed

as follows:

(i) Decompose the pattern ¡ - brrb¿z . b¿u forward,into k- 1 subpatterns labelled

t - hr, 2 : birb¿",,.., k - t - b;rb¿r...ö¿o_, and let,0, stand for none of the

subpatterns '1',. ..:k - 1'. These subpatterns (including 0) are called end,i,ng

blocks.

(ii) Let T : (rt,-..,rn) be a realization of the sequence {xo}, where r¿ is the

outcome of the ¿th trial, We define a Markov chain {yr}?=o operating on 4
to be Yt(ù : (u,u) for each ú - 0,. . .,n, where z denotes the total number

of occurrences of the pattern ,A in the first I trials (counting forward, from

the first trial to the úth trial) and u denotes the subpattern (ending block)

(counting backwardfrom the úth triat). Based on this construction, the stare

space CI associated with {yr} is defined by

0: {(u, u):u:0,1,...,1and u:0, 1,..., k- I},

where ¡ : lnlkl is the maximum number of occurrences of the pattern Â in

the sequence or n trials. It is easy to verify rhat card,(o) : (¿ + 1)k.

(iii) For t : 7, . . . ,fr, the transition probabilities are determined by the follolving

equations:

p lU: (u' ,o') ly-r: (",ù)

( Dr-r,po, if u'.:uforu-0,...,1and 1),,u' :0,..., k-I,
: \ pno if u' :u*7foru:0,...,1_ I,,t)' :0 andu:k-I,

|. 0 otherwise,
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where Du-o, denotes the sum over all states å¿o such that the ending block a

is shifted to u', and p;u is the probability corresponding to the last element ô¿,.

of the pattern Ä.

(iv) Define the partition {C" : l(r,u) : (r,u) e 0, 1) : 0,1,..., k - I], for r --

0, 1, . . ., l) on the state space O in the sense that

P(X"(L) - r) : P(h e C"lÊò,

foreach r:0.t.....1.

From the construction of the transition probabilities in (iii), it is easy to see that

{yr} is a Markov chain. The forward and backward principle provides a classification

for a realizatíon 4 of the sequence {X¿} according to the number of patterns and

the ending blocks. With some modifications, the forward and backward principle

can be extended to a sequence of homogeneous Markov dependent multistate trials,

but we will not discuss this case any further. The next example gives an detailed

illustration of this principle and catches more ideas about the finite Markov chain

imbedding technique.

Example 2.4 Let {X¿}þ, be a sequence of i.i.d. 3-state trials such that each

trial has possible outcomes .F, ,S and ,S. with corresponding probabilities po, pt

and p2, respectively. Let Â be a simple pattern with Â : SFF and assume that

nonoverlapping counting is used. To find the exact distribution of X"(.4.), we first

decompose the pattern Â forward into two subpatterns ,S and ^9F, and relabel them

as 1 : '9 and 2: SF. Let'0'stand for neither the subpattern'1'nor the subpattern

'2'. Define a Markov chain Y: (u,u) for each ú:0, 1,...,fr, where z represents

the total number of occurrences of the pattern .4. in the first ú trials and o :0,I,2
are ending blocks (counting backward from trial ú). The state space based on this
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imbedded Markov chain is then given by

0 : {(u, u) : u: 0, 1,...,/ and u : 0,I,2},

where ¿ : lnl3l. Clearly, card(Q) : 3(l f 1). Then the transition probability matrix

associated with the imbedded Markov chain {yr} is given by

(0,0)
(0, 1)

(0,2)
(1,0)
(1,1)

M : G'.2)

(/,0)
(¿,1)
(t,2)

PoiP2 Pt 0

Pz PT Po

PzPt0

000
000
Po00

0 0

000
000
000

Po!_P2 Pt 0

PZ PT PO

Pzpto
0

Po

0

0 0 0

PO

0 0 0
Po*P2 Pt 0

Pz PT Po
001

Finally, we define C,tobe C,: {(r,i.):'i:0,I,2}, r:0,1,...,1.Then {C,,
r : 0,1, . . . ,l) forms a partition of the state space o. Hence, from Theorem 2.1,

we have

P(X"(L) - r) : ËoM"U'(C,), *:0, 1, ...,1,

where €o : (1,0, . . .,O)r*e(¿+i) is the initial distribution and u'(c,) is the trans-

pose of the row vector (0,'.',1, 1, 1,...,0)r"s(¿+r) such that the locations of l's
correspond to the states (r,i), ,i:0,1,2, respectively.

The major advantages of the finite Marl<ov chain imbedding technique are that

it does not involve heavy mathematics and it is efficient from a computational point

of view. Especially with today's high speed computers, computation on large matri-

ces is no longer an impossible task. To close this section, we point out that the finite

Markov chain imbedding technique is not only useful in studying the distributions
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of runs and patterns, but also in solving problems associated with compound statis-

tical decision rules and random permutations. We refer to Fu (1ggb), Fu, Lou and

Wang (1999), Johnson and Fu (2000) and Fu and Lou (2000) for further references.



Chapter 3

Wfaitirrg Time Distributiosls of
Correpound Patterns

In this chapter, we assume that, unless otherwise stated, {&} is either a sequence

of i.i'd. or first-order homogeneous Markov dependent m-state trials. The main

purpose of this chapter is to develop a simple and general method to obtain the

exact distributions) means and probabitity generating functions for the waiting time

distributions of compound patterns. Except for Theorem 3.1, all theorems r,vith

proofs are ne\M.

3.1 Preliminaries

Let {Y¿ : t : 0, 1,. . .} be a homogeneous Markov chain defined on a finite state

space 0 with transition probability matrix M having the form

CI \.4

(3 1)

where card(Q) : k+l is the size of the state space 0, A is the subset of all absorbing

states with card(A) : l, and f¿ \ ,4 is the subset of all non-absorbing states. Let

€o : (€ : 0)rr(r+¿) be the initial distribution of {y¿}, where € : (6r,...,{¿) and

D!=r€o: 1, and let (1¡ : 0)rr(r+¿) be a row vector, where 1r : (1,...,1)1r¡. The

following lemma, which is a special case of a result from Fu and Lou (2002), plays an

indispensable role in studying waiting time distributions. Ii yields the probability

^î f^¿ \ -4 [ Är^ro
-IUI: : IA L o¿"t

C**¿ f-r;;l

24
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of the event that the chain enters the set of absorbing states for the first time. We

provide details of the result, includins the proof.

Lemma 3.L For any state j e A, we haue

p(h: j,y"_, # A,. . .,y, 4 Ál€o) _ ¿N"-LC¡, (3 2)

where C ¡ i,s the column uector of the matrir C correspondi,ng to the state j , and,

more generally,

P(h e A,Y,-t ç A,...,Y, ç 1l€o) : {i¡¡n-t(/ - ^¡)1;, 
(3 3)

where I 'is the k x k i,denti,ty matrir, and 1'* i,s the transpose of the row uector

1r:(1,...,1)r**.

Proof. Since M has the form given by (3.1), it that

Mn-I:[+
rllc

n-
T
Fo

; fol

K-

ows tl

'l
-l l

)r ânywhere Kn-t - C"-r + NC"-2+... + N"-2C.

from the Chapman-Kolmogorov equation that

P(h-, : i,Y,-z ç A,. . .,Y çAl{o) : (€

¿e0\A,itfollows

: O)M"-I(e¿ : 0)' : {N"-rel;,

where the dimension of the row vector (e¿:0) is 1x (k+t), andeln is the transpose

of the unit vectot €.¿ : (0, . . . ,7,. . .,0)r*¿. From the definition of a Markov chain,

we have

P(Y": j,Y"¡ # A,...,Yt # Al€o)

: t P(h-t:'i,Yn-2 ç A,. . .,Y # Al€o) p(n: jlht: i)
i€CI\,4

: t ËNn-t e'ìp¿j : €^/"-t Ð pot elo : {N"-L C ¡.

stâte

¿€o\.4 ;co\ A
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This completes the proof of equality (3.2). Equality (3.3) follows from the definition

of a Markov chain and equality (3.2):

P(h e A,h-' 4 A,. . .,Y #Ál€o)

: Ð P(h : j,h_, # A,...,y,. #Al€o) : D €N"-'c¡j€A je¡
: {¡¡n -r Ð C,: €ÃI"-t D Ð pn, e'o : (N,-r f Ð no¡ 

"lojeA j€Aiea\A i€a\A j€A

/\r:€lVn-I t (r- t pmldo:€¡¡"-tlÐ .'n- f t¿€a\A \ rn€f2\á / \¿e c¿\¿ ¿€f¿\A m€f¿\,4

: {¡¡n-r (L'n - 
^/1;) 

: {¡¡n-t(/ - 
^¡)1;.

,\
Pmer 

)

This completes the proof.

3.2 Exact Distributions

To derive the exact distribution of the waiting time random variable lrll(,{), we

adopt the forward and backward principle. We start from the i.i.d. case. Given

a compound pattern Ä : UÍ=r Â¿ with each simple pattern having length Æ¿, then

each simple pattern can be decomposed forward into k¿ subpatterns. Define the

state space f) as
T

f¿:{Ø}uruUs(n,),
,i=I

where Ø is the initial state and s(^,) : {all the subpatterns of ,A.¿}, ,i : r,. ..,1.

Itiseasytoverify thatcard(o) < rtm*Ðj=r(k¿- r). Forexample, letf :
{br,br} and A, : Är U 4.2 with l\t : búúz and Lz : bú2b2, then S(^r) U S(^2) :
{br,brbr,btbz,b1b1b2,brb2b2} and 0 : {Ø,bt,bz,b1b1,b1b2,b1b1b2,bú2b2}. Hence, the

states in the state space f) can always be relabelled as

CI : {1, ...,k,at,...,at}, (3 b)

where ùrt . . . , e,¿ àre, absorbing states corresponding to the patterns Á.1, . . . , A¿.

(3 4)
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It has been shown that the number of patterns (or runs) X"(^) and the waiting

time tr42(,4') in a sequence of multistate trials are finite Marhov chain imbeddable in

the sense ofFu (1986b, 1996), Fu and Koutras (1994), Koutras (1997b) and Koutras

and Alexandrou (1997), hence there exists a Markov chain {y, t: 0, 1,..,} defined

on the finite state space 0 whose transition probability matrix M has the form

t

:

þ
NI: 

tL

d1

;,

where the p¿r's are

backward principle.

is given by

pattern dependent and are

From Lemma 3.1, the exact

(3 6)

determined via the forward and

waiting time distribution of W (t\)

P(W(L): n) :
¿

\ egttçtt) : n,w(L,) : 
"¡;-1

¿

Ð €^¡"-'c(*¡)

É^/"-t(/ - 
^I)1;,

(3 7)

(3 8)

for n: I,2,..., where { is the initial distribution, C(a¡), j : I,...,1, are the

column vectors of the matrix C, and 1/* is the transpose of the row vector 1¡ :
(1, 1, . . ., 1)r'r. A different derivation of Equation (3.8) is shown in result A2 of the

Appendix.

Remark 3.1 It is important to point out that the waiting time distribution is

highly dependent on the initial distribution { of the imbedded Markov chain {y¿}.
Setting up the initial distribution { can be very tricky, especialiy when {X,} is a

sequence of Markov dependent multistate trials and Ä is a compound pattern. To

Pl.,t
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avoid this problem, 'r/ve purposely introduce the initial state Ø and define p(yo :
Ø)=I(€:(1,0,...,0)).

Remark 3.2 If {X,} is a sequence

of the imbedded chain {y¿} can be

o-

of i.i.d. multistate trials, then the state space O

reduced to

T

{Ø, P} u U s(^¿), (3.e)
4- |

of number of states can be significant especially when the size of f is very large.

Equations (3.7) and (3.8) remain applicable to the case when {X,} is a sequence

of first-order homogeneous Markov dependent trials by replacing corresponding tran-

sition probability matrix in the equalities. If {X,} is a sequence of independent but

non-identical multistate trials, then the transition probability matrix at time ú as-

sociated with the imbedded Markov chain has the form

where the state B means that no subpattern belongs to Uj=rS(^n). The reduction

*r:l+ c, 1r l, (3.10)

and the exact waiting time distribution of W(lt) is given by

P(w(^) : n) : f * lU ¡¡,) c,(*r)
j=l \t=1 /

/n-7 \
{{||llr,)(r-^¡")1;.\¿:r /

The construction procedure for the exact distribution of W(r : Á.) is similar to

Example 2.4. We only need one more component for each state in the state space f)

to record the total number of occurrences of the pattern Â in the first ú trials, and

those subpatterns (excluding Â itself) are used as ending blocks.

(3.11)

(3. i2)
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3.3 Means and Frobability Generating Functions
3.3.1 Main Results

The probability generating function is an indispensable tool for studying the char-

acteristics of waiting time distributions. Usually, finding the probability generating

function for the waiting time entails tedious mathematics and heavy probability

theory, even for the case of simple patterns in a sequence of Bernoulli trials. For

example, Feller (1968), by using the theory of recurrent events, obtained the prob-

ability generating function for the waiting time of a success run, À - .g. . . ,g, of

length k in a sequence of Bernoulli trials as

9*ç'1(s) :
(p')*(1 - ps)

(3 13)

and probabil-

patterns in a

1-s*qqksk+r'

We first observe that the mean and probability generating function of the wait-

ing time W(L) can be derived (see Fu, Spiring and Xie, 2002) straightforwardly

from Equaiion (3.8).

Theorem 3.L For ø wai,ti,ng ti,rne random uari.ablew(L), its mean and. probab,ility

generati,ng functi,on are gi,uen by

E lw (L)l: € (/ - ^¡)-'1;

In this section, we develop a general method for finding the means

ity generating functions of waiting time distributions of compound

sequence of i.i.d. or Markov dependent multistate trials.

(3.14)

and

e*6¡þ): 1 -f (s - t){(r - sÀr)-rtl, (3.15)

respectiuely.

Although formulas (3.14) and (3.15) are rather simple, from application point

of view, Equation (3.15) does not yield an explicit analyticai form for the probability
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generating function in the way that Equation (3.13) does. To find the mathematical

form of g*6¡þ), the major difficulty is that given Àf, we have to find the explicit

analytical form of the inverse of the matrix (1 - sÀ/) which is extremely tedious, if
not impossible. It can be done only if ÄI is a very small and simple matrix. This

is the primary motivation for developing a general method of finding probability

generating functions for any waiting time distribution involving simple or compound

patterns.

Traditionally, the mean waiting time E tW(^)] is obtained by differentiat-

ing the probability generating function once and evaluated at s : 1; that is,

EIW(L)): glÌ,)1n¡(r)1"=r. Contrary to the traditional approach, we develop a sim-

ple technique to find E IW (L)l first and then extend the technique to obtain the

probability generating function.

Theorem 3.2 For a wai,ting t'ime random uari,ableW(L), the mean waiti,ng ti,me

E[W(L)] can be erpressed as

E lW (L)l :,Sr * Sz * "' +,9*,

where (St,.. .,5¡r) i,s the solut,ion of the si,multaneous recurs,iue equati,ons

(3.16)

S¿: (e¡ + (St , Sz,. .. ,.ge)^¡(i) , for i, :7,. . .,k, (3.17)

and, e¿ :and where 
^I(r), 

'i:7,...,k, are the column uectors of the matrir N,
(0, . . . , 0, 1,0, . . . , 0), 'i : I, . . . ,k, are unit uectors.

Proof. Since W(L) is finite Markov chain imbeddable and its imbedded Markov

chain {d} defined on the state space f) has transition probability matrix M having

the form given by Equation (3.6),

P(W(L))n):ÊN"-tL'r.
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It follows from the definition that

co

Elw(L)l : \rgtrç\2")
= Ë €^/"-,1;

ø-1

ook: I Ð €N"_rdl

,b oo

= t \ËN"-tdo
k: Ðs,,

;-1

where e : Ëgtn-'"'0, foyi:1, . . . , k. Further, last-step analysis yields that, fbr

'i:t,...,k,
k

{N"-re|: €^¡"'-2^¡(r) : I p¡; ËN"-2el¡, (3.1S)
j:1

and

This completes the proof. tr

Remark 3.3 Since (St, Sr, . . . , ^9¡) is the solution of the simultaneous recursive

equations (3.17), it follows that

s¿ : Ë €¡¡"-t";
ñ-1

: Ëu'n *Ë €t"-, (f ,,n',\
n:2 \j=l /

k
*t\-: (en * Lp¡"S¡

ò-1

^ | /^: (en* (St,,S2,..., Sfr)^/(i).

(St, Sr,. . ., ^9r) : €(/ - /\¡)-t.
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Hence,

E IW(L)l:,Sr * Sz * . . . * S,t : {(/ - ^¡)-'1;.
This yields Equation (3.14).

In view of Theorem 3.2, it is easy to see that the technique could be extended

directly to show that the explicit analytic form of probabiiity generating function

9*6¡þ) can be obtained in terms of Õ-,n,(s), the probability generating function

of the sequence of cumulative probabilities {P(W(L) > n)}Êr.

Theorem 3.3 For a uai,ti,ng ti,me random uari,able W (L), we haue

Õ,u,n,(r) : dt(r) + .' . + d¡(s), (3. ie)

where (dt(s) ,...,ó¡(s)) zs the solut'ion of the si,multaneous recurs,iue equat,ions

ón(s) : s(e'o* s(dr(s),. . . , d¡(s))^f (i,), f ori:7,2,. . .,k, (3.20)

and

s*6¡G): 1* (t - :) Õ,",n,(r).

Proof. The proof of part (3.19) is along the lines of the proof of Theorem 3.2:

oo

Õ-,n,(r) : f s"(ÄI"-1fi
ó-l

ook: tt sn{Nn-re'o

,k co

t I s"(N"-leln

À

: | ø,(r),

(3.2r)
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r,vhere ór,(s): DÊr t"¿N"-re'ofori - 1,. ..,k. rt foliows from last-step analysis

and Equation (3.18) that

ón(r) : i s"{Ä/"-Iei
ñ-1

co /x ,\: s{eln+ 
,,=D_r"ë*"-, lr-l 

pjo 
":j)

: s(elo+ ,f ,,0 lË ,"-'r¡¡"-rur)
j=L \n=2 /

: s{e'o+ s(d,(s) ,...,ón(s))^¡(r)

This completes the proof of equality (3.19). Equality (3.21) follows from the defini-

tion of g*6¡(s) and Õ-1n¡(s):

Q*1n¡(s) : Ë r"€¡¡"-t(¡ - 
^r)1;ñ-1

: Ë,"€¡¡"-tL'h 1 Ë,"*tgltr'r* + r

: t + (t- l) *-,^,(r).\ s/

This completes the proof. n

In view of the definition of $¿(s), it is clear that the óo(t), ,i: I,. . .,k, are prob_

ability generating functions for the sequences of probabilities {p(Ç : z)}ff=r, re-

spectively. Since P(W(L) ) n) :D!=rP(Y": ¿), the result Õ_,n,(r) : Ðf:róo(r)
comes as no surprise.

Next theorem provides another way to evaluate g*6¡þ) which is often simpler

in computation.

Theorem 3.4 For a wai,ti,ng ti,me random uari,ableW (L), the probab,ili,ty generating

functi,on g*6¡þ) can be erpressed as

¿

e*ç,1(s) : Ð(ót, ó2, . . . , ót)C(*¡), Q.22)j=r
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where C(*¡), j :1,...,1, are the column uectors of the matri't C'

Proof. It follows from definition and last-step analysis that

All the above results in this section are under the assumption that {X,} is

a, sequence of i.i.d. multistate trials. Moreover, the results are also true if {X,}

is a sequence of first-order homogeneous Markov dependent multistate trials. The

only difference between i.i.d. and Markov dependent trials is that the transition

probability matrices of two imbedded Markov chains are slightly different. We do

not repeat the proof for the above results under Markov chain dependency but an

example to iilustrate this point is provided in the next section.

e*6¡þ) : I s" P(W (À) : 
")m-1

co /t \: Ð r" lÐrfwft) : r, w(L¡) - ") ln=r \¡:t /
oo /t \: Ðr"f ÐCr"-'c(*)l
n=r \j:t /

lco: t t s"(N"-rC(a¡)
j=Ln=l
I oo / k .\: t t r"g¡¡"-1 lÐno..,"lo¡

j:L n=l \i=1 /
¿ À /æ .\

j:L i:r \n:t /
¿k: t t nt.iÓt(s)

¿

: Ð(dr(r), ór('),. . ., þ¡(s))C(a¡).
j=r

This completes the proof. n



3.3.2 Examples and Symbolic Computation

To make our results more transparent, we provide the following two examples.

Exarnple 3.1 Let {X,} be a sequence of Bernoulli trials with success and failure

probabilities P(X¿ - S) :p and P(Xo - F) : q: I-p, respectivel¡ and let

Â: -Ar U,A.2 be a compound pattern with A1 : ^9,S and,A.2 : FF.It is easy to see

that the imbedded Markov chain {Y¿} associated with the waiting time I4z(.{) has

state space f): {Ø} uf uU?:rs(^,¿) : {Ø,s,F,a1,a2} and transition probability

matrix

M:

with initial distribution

Theorem 3.2 that (Sr, S,

Ø

^9
F

Q,1

Q.2

00
p0
0q

opq
oo q

opo
000
000

(1,0, 0,0,

the soluti

È-s0-

, ,S3) is

(€ : (1,0,0)). It follows from

simultaneous recursive equations

Yo

re

'V

the

0

1

orfo

UT

l1
l0
o)

on

:1

-Q-,TJU L

^Ç-UUL

This yieids

E [w(^)):

Similãrly, by Theorem 3.3,

recursive equations

' , p(1 +q) , q(I+p)
'- r-pq - r-pq

(d'(r), ór('),/3(s)) is

* pSs,

* qSz.

spót(s) -r spþs(s),

sqó{s) + sqþ2(s).

ô , ÙIrq

L-pq

the solution of the simultaneous

d'(')

Óz(s)

ó'(s)
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With some simple computation, it follows from Theorem 8.3 that

Õ-,n,(r) :,.+:#.+:#
and

e*6¡(s): 1* (t - 1) Õ-rnr(s)\ s/
Further, by Theorem 3.4, it also yields

eorems

[unctio.

Ø

,9

M: F
A1

4,2

By the same tolcen, Thr

probability generating f

00
00

00
Pt0
0 1-

0p
001
0p,

10
01
3.4 yield

ly, as

and

tive

0

0

3.2,3.3

r, I€Sp€C

I
-l

l
ih

on

(p"+q')t':_pqs3
7 - pqs'

e*6¡þ) : f(ø' (t), ór(t), þs(s))c(a¡)
j:L

: póz(s) + qós(s)

: (p2 + q2)s2 + pqss

r - pqs2

In addition to the above, we use this example to illustrate that these results also

apply to the case when {X,} is a homogeneous Markov chain having transition

probability matrix

A- { lr, \-r'lF lp, t_p, l'
Given the initialprobabilitiesP(X1 - S) :p and P(X, - F) : q: L-p,it
is easy to show that the imbedded Markov chain {Y¿} associated r,vith the waiting

time I/(,4.) has state space f¿: {Ø,5,F,a1,o.2} and transition probability matrix

given by

e mean waiting time and its

P*QPz q+p(r-pt)Elw(L)l: 1* 1-(1 -pùpz
-f

1-(1 -pt)pz



ðt

and

e*61(s) : pt. =ei:l*+ (1 - ,,r. 
q-t'+-rt\ -.p)t.

1 - (1 - pt)pzs2 ' \- rz't 
1 - (1 - pt)pzs2 '

when pt : pz - p and 7 - p, - 1 - pz : Q, this reduces to the i.i.d. case. A general

formula for ç-61(s) in the case where Âr :,S...,9 of length k1 and Lz: F...F
of length k2 are derived as results A3 and A4 in the Appendix.

From the above example, we see that Theorems 3.2-3.4 are applicable both

to the case that {X,} is a sequence of i.i.d. multistate trials and to the case that

{X,} is a sequence of Markov dependent multistate trials. Moreover, the method

is independent of the size of the state space f of multistate trials, but the results

do depend on the initial distribution {. For large I (or large k¿,,i:1,...,1), it is

clear that the /¿(s) cannot be readily obtained by hand through the simultaneous

recursive equations. We therefore develop symbolic computational algorithms for

use in a computer algebra system. Computer programs based on the mathematical

software MAPLE have been developed to obtain the transition probability matrix

Ä/, mean Elw(L)l and probability generating function g*s,¡(s) automatically. we

discuss the algorithms in Chapter 5. The following example is solved as a result of

our computer program.

Example 3.2 Let {X¿} be a sequence of i.i.d. four-state trials with possible out-

comes A, C, G and ?, and let Â - 
^1 

u A2 u Â3 be a compound pattern with

l\t: AGTT, Lz: AAA and .43 : GCT. Assume that p(X¿ - A) : po, p(Xi:
C) : p", P(X¿ - G) : ps and, P(Xo - T): ptt where potp"+psipt: I,
'i : 7,2,' . . . Note that in our computer progrâ,m, the letters A, C, G and T
are transformed to I, 2, 3 and 4, respectively. It is easy to see that the imbed-

ded Markov chain {Y¿} associated with the waiting time W (L) has state space
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f) : {Ø, A, C, G,T, AG, AA, GC, AGT, dr, e2,43} and transition probability matrix

Ø
AA

C
G
T

ACM : ':",
AA
GC

AGT
Q,1

Q,2

ù,3

1

0

0

0

1

0

0

0

t

with initial distribution {o : (1,0,0,0,0,0,0,0,0,0,0,0) for % ({ : (1,0,0,0,0,

0,0,0,0)). From the computer program, .we obtâin

E [w(^)]: I+p"+p?
p2 r p"pspt * popspt(p" -l pt)(7 + p")

and

oPo
00
oPo
oPo
oPo
oPo
00
oPo
oPo

000
000
000
000
000
000
opoo
ooPt
Pt00

pt 0 0 0 0

PtPgPo00
pt 0 0 0 0
pt00p"0
pt 0 0 0 0

000p"pt
þtþn000
00000
00000

Pg

0

Ps

þ"

Pg

Pg

0

Ps

Pq

P"

P"

P"
0

Pc

0

P"

P"

P,
000
000
000

00 0 0 0 0

00 0 0 0 0

00 0 0 0 0

9*6¡þ) :

where

A : 1 _ (1 _ po)s _ p"(r _ po)s2 +ln"nsnr _ pZ!_r")] sg

* popspt(p" * pt)sa + pZpnpr(p" I p¡)s5 .

Similarly, the mean and probability generating function can also be obtained from

the computer program for the case when {Xr} is a sequence of homogeneous Markov

dependent trials. In Figure 3.1, we show the probabilitydistributions of i4l(.4,) when

{X,} is a sequence of i.i.d. and Markov dependent trials. For the i.i.d. case, we set

Pa : Pc : Ps : fu : 0'25. For the Markov dependent case, we set the initial

pZt3 pcpost(r + pas I p|sr)
P""i-lh'LvLr lpt.-l\A
s3 [pZ -l p"pnp, + popgpr(p" + pr)(L + pos)s]

A)

P"PgPt(7 -l P"s)
A
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0.04

0.035

0.03

0.025

o.o2

0.015

0.01

Figure 3.1: Probability distributions of the waiting time Vtrl(Ä) for Example 3.2.

probabilities to be pa : pc : ps : pt : 0.25, and the transition probability matrix

of {X,} as

A-
A
C
G

T

0.25 0.10 0.50 0.15
0.35 0.25 0.10 0.30
0.10 0.20 0.25 0.45
0.15 0.15 0.45 0.25

3.3.3 Extensions

We know that the waiting time W (r : .4.) to the rth occurrence of the pattern Â can

be written as

W(r : L):Wt(^) + '..+W,(L), (3 23)

where W¿(l\), 'i : I,...,r, are interwaiting times. If {X,i is a sequence of i.i.d.

multistate trials and A is a simple pattern with a nonoverlapping counting scheme,

then the {Wo6)} are i.i.d. random variables, and the probability generating function

of the waiting lime W (r : ,4.) is given by

9w 1r,n7þ) : (ç* rn) (s) )" (3.24)
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If nonoverlapping counting is replaced by overlapping counting, then wr(L), . . . ,

W,(L) are i.i'd. random variables whose common distribution is the distribution
of W2(r\). Note that the {W¿(t\)}i=, have the same imbedded Marlcov chain ex-

cept that the initial distribution for W1(1,) is €r : (1,0,...,0) : e1 and €z :
(0, . . . ,0, 1,0,. . .,0) : e¡ is the initial distribution for all the waiting times wr(L),
''' ,W,(L), where the state 7 is the longest subpattern (excluding .{ itself) in the

pattern A with respect to overlapping counting (for example, if .4. : ,9FF^SF then

the state'j'corresponds to the state',gF'). Hence, by Equation (3.23), w(r: t\)
has a probability generating function given by

9we,rt¡(t) : ç*rør(t) (ç*rrn (t))"-t (3.25)

Further, if {X,} is a sequence of Markov dependent multistate trials and .4. is a simple

pattern, then the probability generating function of W (r : Â) has the same form as

Equation (3.25) except that the state 'j' associated with the initial distribution {,
for W2(L) is the last element of the pattern ,4..

For a compound pattern, Equation (J.24) is valid only if {&} is a sequence

of i.i.d. multistate trials with nonoverlapping counting. In general, things become

very complex and the initial distributions {o for wn(L), ,i: r,...,r, may differ a
lot' The general form of {, and gwç,r¡(s) remain unknown for the case of compound

patterns, especially when {x,} is a sequence of Markov dependent trials.



Chapt er 4

Waitit g Time Distnibutions of
tndened Senies and l,aten Fatterris

In this chapter, \Me assume that, unless otherwise stated, {x,} ir a sequence of

first-order homogeneous Markov dependent m-state trials. Let o be an ordered

series pattern and let Â¿ be a later pattern as defined in Chapter 2. The aim of

this chapter is to investigate the distribution theory of the waiting times W (o) and

W (Lr). All the results in this chapter are new.

Remark 4.1 Given an ordered series pattern ø : Är o . . .o À¿, it is important to

mention that the waiting time distribution of W (o) is an "improper distribution";

that is, the probability Di=rP(W(o): n) < I. The reason for this is rather

simple: there always exists a positive probability that at least one of the pamerns

L¡, i - 2,.. .,1, occurs before the pattern Âr. Hence, the generating function of

w(o)' 
oo

ú,r,(t) : 
,p, 

s" P (W (o) : n),

is not a probability generating function and tÞ*,"r(I) < I.

4.L Preliminaries

Given a compound pattern ,4. : Uj:, Ä¿, recâll the following results obtained in

Chapter 3:

4I
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(i) The exact distribution of I4z(Â) is given by

P(W(L) : n) : f ,ç*çn) : n,W(L¡) : n)
.J-t

: Ð €;lr"-' c (*¡): €ivn-1 (r - /\¡)1; , (4.r)
J:L

ror n :7,2,. .., where € : (1,0, . . . ,0) is the initiar distribution with p(yo:
Ø) = 7, and c(a¡), i :1,...,1, are the column vectors of the matrix c
corresponding to the absorbing states a¡, i : I,...,1.

(ii) The mean waiting time E tll(^)] is given by

E [W(L)]: ^9r * Sz f- .. . * ,9r, (4 
'\

S¿: (e, * (St, 52,. . ., ^9k)^¡(i) , fori: I,.. . ,k,

and where 
^¡(r), 

'i:7,...,k, are the column vectors of the matrix À/

e¿: (0,. . . ,0, 1,0, . . .,0), i - 1, . . . ,k, are unit vectors.

(iii) The probability generating function of W (lr) is given by

e*<n>G) : i r" (f ,rrtl): n,w(L¡):'))
n=7 \r=i /

I

: Ð(ót,ó2,...,ón)c(*¡),
J-L

where (dt(s), ...,ór(t)) is the solution of the simultaneous recursive equa

ón(t) : s(en + s(dr(s),. . ., dr(r))A¡ (ù), i, : I,2,. . .,ti.

where (st,...,,s¿) is the solution of the simultaneous recursive eouations

^-J, ¿Lll(l

(4.3)

tions

For convenience, retw(t\¡14r,...,r\¿) be the waiting time to the first occurrence of

Ä1, and that,A.¡ occurs first among all the patterns Âi,...,4¿. For the same reâson
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as stated in Remark 4.1, the random variables W(L¡lAr, . . . , Â,), j : I,...,1, àre

improper random variables. It follows from the definition of w(L¡14r,...,,A.¿) that

P(W(LjlLL,... ¡^¿) : n) : P(W(^) : n,W(A,¡) : n)

and

P(w(^):

Further, from Equation (4.3)

by

and

T

,) : Ð P(W(LjlÄ,,,. . ., L,) : r).
t-l

the generating function of W(L¡lÂr,...,Â¿)

,þ*,n,,n,,...^¡(t) : I s"P(W(A¡lÂt, ..., Lù : n)
ø-1

\ s"P(W(A) : n,W(t\¡)

(ór,ór,...,ó*)C(o7), i - 1,.

n)

I

(4.4)

is given

(4.5)

T

(/) /.c) - \- r/, lo\xw(^) \"/ - /t Y'çy1¡-¡¡r,...,¡,¡ \ù,/'

Lemma 3.1 and Equations (4.I)-(4.6) lay the foundation for studying the exact

distributions, means and probability generating functions for the waiting times of

order series and later patterns.

4.2 Waiting Time Distribution of an Ordered Series pattern

Let o - 
^i 

o "' o A.¿ be an ordered series pattern generated by I distinct simple

patterns Âr,. . . ,,{¿ with lengths 4q,.. ., fr¿, r€spectively. Our main interest in this

section pertains to finding the probabilities {e(W@): n): n: I,2,...} and

the generating function of W(o). The construction of the state space f) for the

imbedded Markov chain {Y¿} associated with W(o) can be divided into two cases:

(l) ko > 2 for all 'i :7,. ..,1, and (ii) k¿ :7 for some ,i : I,.. .,1. Firstly, consider

(4 6\
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case (i): k¿>. 2 for all 'i: r,...,1 under nonoverlapping counting. Let ^g'(Ä¿) be the

set of all subpatterns of .4.¿ excluding A¿ itself (e.g., if f : {br,br} and _4.1 : b1b2b1,

then ,9'(Ar) : {h,brb2}), and let T(4,) : {0} U f U S'(Â,), ,i: t,...,L We define

a Markov chain {Y , t : 0, 1, . . .} on the state space O having the form

I-7 I

f):CIou Uf¿,uU{*,},
;-l ;-1

(4.7)

where O6 and Q¿, 'i : 7, . . . ,l - l, are defined as

(tìslo: {(0,u) :ue [JT(A¡) l,
(J=l )

0i : {fr,a:,11":r...¿andu€ Ú r(nr)},
.. j=i+l )

a1 is the absorbing state corresponding to the pattern ø and e2t. . ., a¿ are the

absorbing states corresponding to the patterns Ä2, . . . , A¿, respectively. For example,

let | : {br,b"} and ø : Ar o Â2 o,43 with,A.1 : btbz, Lz : bzbth and A.s : b2b2;

then the state space is 0: f)o U 0, U 02 U {*r, a2,o.r}, where

0o

fl1

Q2

{(0, o), (0, ö,) ,(o,br),(o,b2b:)},

{(1, o), (r, b,), (r, br), (7,b2b:)},

{(12, 0), (r2,b), (72,b2)},

and the absorbing states dr, (r2 and a3 correspond to the patterns o : btbzob2blblo

b2b2, 4.2 : b2bft1 and Ä3 : bzbz, respectively. Note that: (i) the state (0,0) is the

initial state; (ii) the state (1,0) means that the simple pattern,A.l has just occurred;

and (iii) the state (l2,bL) means that r\.r and Ä2 have occurred in order with ending

block å1. With this construction, it is clear that the state space f) can always be

relabelled as f) : {1,... ,k,er,...,o,t} and hence the transition probability matrix

M (r) of the imbedded Markov chain {Y¿} associated with W (") with respecr ro
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nonoverlapping counting can be has the form

M(*)
- \Pii ), 14 Rr

where the transition probabilities p;¡ depend on the structure of the simple patterns

Âr,...,4¿ and the order of these patterns in ø.

For case (11): k¿: 1 for some ¿ - 1, . . . ,1, we require some minor modifications

on the state space o. rf ki : 1 for some 'i; i.e., Á.¿ € f, then the state space fl
still has the same form as Equation (4.2) except that the set Ur=1T(^j) in f)6 is

replaced by the set !j:rT(^¡) \Ur1L, : k¡:1) and the ser U,,=n*rT(^¡) in O¿ is

replaced by the set !j_,*, T(^r) \ Ur1n, : k¡:1 and j > i+ 1Ì. For example, let

f : {år,bz,,bs} and ø : Âr o A2 o Â3 with,A.1 : bt, l\z : b2b1b2,and Â3 : ó¡; then

the state space is Q: CI6 U01 UCI2 U {*r,or,a3}, where

aysw

j
tained and alob

I

flo

01

ç'¿2

{(0, o), (0, br), (0, b2br)},

{(1, o), (r, ó,), (7, br), (7, b2bù},

{(12, 0), (72, bù, (72, b2)},

and the absorbing states eL, d2 and o3 correspond to the patterns o : brob2b1b2ob3,

l\z: bzbtb2 and As : ås, respectively.

The construction procedure for the case of overlapping counting is the same

as the case of nonoverlapping counting except that the transition probabilities are

defined with respect to overlapping counting. In order to malce the entire imbedding

procedure more transparent, we provide the following example, focusing especially

on constructing the transition probabilities of the matrix M.

Example 4-t Let {X,} be a sequence of three-state Markov dependent trials with
possible outcomes 7,2 and 3, and let o: Â1 or\2 or\3 be an ordered series parrern



+o

with 
^r 

- 13, Âz : 31 and Â3 : 22. Given the initial probabiliti€S pr, p2 and ps

and the transition probability matrix of {X,},

r ln:r_ pp prsl
A- 2 | nn pzz pzz | ,

3 | rsr psz pse 
_l

then the imbedded Markov chain {Y¿} associated with the waiting time W (o) has

state space

f) : {(0,0), (0, 1), (0,2), (0,3), (1,0), (1,1), (7,2), (1,3), (12,0), (I2,t),

(72,2), (I2,3), a1, a.2, o.sj,

where the absorbing states a7., (r2 and o3 correspond to o, l\2 and 4.3, respectively.

The transition probability matrix M @) with respect to nonoverlapping counting is

given by

M@) :

(0,0)
(0, 1)
(0,2)
(0,3)
(1,0)
(1,1)
(1,2)
(1,3)

(12,0)
(12,1)
(72,2)
(12,3)

dl
A2
dg

Since neither the pattern'31'nor the pattern '22' could occur until the first occur-

rence of the pattern'13', the transition probabilities PIY¡: aslY_t: (0,2)] :pz2

and PIY¿ : azlY-t : (0,3)] : p3t. Similarly, Ply, : asl\4: (1, 2)l : p22. The

transition probability matrix M e) with respect to overlapping counting is almost

the same except for the transition probabilities P[Y¿ : (1, I)lYr_,, : (1,0)] : O

and PIY¡: (72,0)lyr-t : (1,0)] : p31. The reason of this is due to the fact that

P3
0

P23

UnlDt
o prr prz
oPzto
oopz2

0000
pr3000
0000
0000

0000
0000
0000
0000

000
000
ooP22
oPsro

0000
0000
0000
0000

u Psr Ps2 p3B

o prr pr2 ptz
o pr, 0 pzs
o 0 ps2 pz3

u000
0000
0000
psr000

000
000
ooP22
000

0000
0000
0000
0000

0000
0000
0000
0000

0Pt
oPt
oP"
oPs

Pr2 PL3
pr2 pr3
o Pzs

p32 p33

000
000

Pzz00
000

u000
0000
0000

0000
0000
0000

00
00
00

00
00

100
010
001
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the difference between overlapping and nonoverlapping counting only occurs when

Âr : 13 has occurred at time ú - 1 and the outcome of the trial is '1' at time ú.

From the above example, it is clear that the idea of our construction procedure

is based on the character ofthe ordered series pattern o and, the counting procedure.

Now the probability of W(o) and its generating function can be obtained.

Theorem 4.L Let o : Lto' . .oÂ¿ be an ordered, seri,es pattern generated, by I si,mple

patterns Ar, . . . , A¿. With respect to nonouerlappi,ng count,ing, we haue

(i,) the probabi,li,ty mass functi,on of W (o) ,is gi,uen by

P(W(o) - n) : {lri;f C14(ar), n: I,2,. . ., (4 9)

where € : (1,0,...,0) i,s the i,ni,tial di,stri,but'ion wi,th P(Ys: (0,0)) : I, and

Cqi','¡(a1) i,s the fi,rst column uector of the matri.r Cçryi

(ä) the generat,ing functi,on of W (o) i,s gi.uen by

,þÍ,i,),@: (ór,ó2,...,ón)cçN¡(a), (4.10)

where (dt(s), ...,ör(t)) 'is the soluti,on of the si,multaneous recurs,iue equati,ons

óo(t) : s{eln+ s(dr(s),..., d*(r))^¡r"t(r) , ,i: I,2,...,k,

and where N(") (i), i : r,...,k, are the column uectors of the matri,r N(r),
and e¿: (0,...,0,1,0,...,0),'i:1,..., k, are uni,t uectors.

Proof. Let A denote the set of all absorbing states. Since the absorbing state a1

corresponds to the pattern o, it follows from Lemma 3.1 that

P(W (o) - n) : p (n : d7,Y"_, 4 A,. ..,yr 4A) : €^¡i;iO1,nr¡(a1).
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This completes the proof of part (i). For the proof of part (ii), we let r\* : o l)

N'n:rLo). Then it follows from Equation (4.5) that

,lN',| , ,
Qw(¡\s) :

This completes

Applying Equation (4.5), we can obtain the

j : I,. . .,1. The next theorem shows that

be expressed in terms of the product of the

j:1,...,1.

s"P(W(L.) : r,W(") - n) : (ór,ór,...,ön)Ct¡n (ar).

proof.

co

\'
ZJ

the

The results in Theorem 4.1 remain applicable to the case of overlapping counting,

except that the matrices N(r) and Clri; are replaced by ÃI1o¡ and, C p¡ respec-

tively.

There is yet another way to obtain the generating function of W (o). Let

Lï: U'n:,t\n, j : \,...,1, and let W(LjlLj,...,Â¿) be the waiting time to the

first occurrence of the pattern Â7, and that Â3 occurs first among all the parrerns

Â¡, . . . , Âr. For the same reason as stated in Remark 4.1, the random variables

W(L¡lA¡,. . ., A,), j : 7,.. .,1 - 1, are improper random variables. However, the

random variable W(lytlA,) : W(L,) is a proper random variable. For convenience,

we still denote the probability generating function of tr42(,r\,) by ,þ*<n,¡ (s) and use the

term "generating function" instead of "probability generating function". For each

i:7,...,1, we imbed the random variable w(L;) with the same arguments as in

Chapter 3. Then the corresponding transition probability matrices of the imbedded

Markov chains associated with i4z(.4.i) have the form

M w<n;t :

generating functions ú* rn,,n,,...,n,r(t),

the generating function ,þ*r¿(s) can

generating functions ú* rn,,n,,...,n,r(t),



49

Remark 4.2 When we study the generating function of W (") in terms of the gen-

erating functions ,þ*rn,,n,,...,n,r?), i - 1,...,1, we need to consider the order âmong

all the simple patterns Ar, . . . , Ä¿. The initial distributions of the imbedded Marlcov

chains associated wiih l4z(Äi), j : r,. . . ,1, may vary a lot according to underly_

ing sequence or counting procedure. Therefore, in the sequel, we use the notation

tþwØ¡t^j,...,^¿)(sl{) to mean that such a generating function depends on the initial

distribution of its imbedded Markov chain.

Theorem 4.2 The generating functi,on of W (o) wi,th respect to nonouerlapping

count'ing is gi,uen by

,þff1",{') tltY W(h¡lA.¡,...,Ìr¡) (4.1i)

where€áf)(ni-r) : (1,0,...,0) , j:7,...,1, aretheinitiøld,i,stributi,onswi,thi,nitial

state Ø¡. : j* (P(Yt: Ø¡.) = 7), i* is the last element of the pattern l\¡t, and,

€åt'(no) : {: (1,0,. ..,0) (wi,th usual i,ni,ti,al stateØ¡.:Ø) ba conuent,ion.

Proof. For the ordered series pattern o : l\t o . . . o.A¿, it follows from its definition

that r\.1 must occur first among the patterns Á.1, . . . , Lt, Á.2 must occur first among

the patterns Â2, . . . , Â¿ given that Âr has occurred, and so on. Hence, we have

- --:
W (o) : 

Ð 
W (L¡lAr, . . ., l\¿).

Since Â1 is the first manifest pattern, it is clear that the initial distribution of

the imbedded Markov chain {Y¿} associated with W(Lî) is { : (1,0,...,0) :
€åÐ(no) with initial probability P(Ys : Ø) = t. Thus, the generating function

1þw<¡tlÂ1...Â¡) (tl{á")(.a.6)) can be obtained via imbedding the random variable W (Li).

Similarly, since Â¡, j : 2,...,1, occur in sequential order, the initial states Ø¡. of

the imbedded Markov chains associated with I4z(Ài), i :2,...,1, are the last

('l€ái)(^¡-,)) ,

I:II
õ-1
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elements j* of L¡-r, j : 2,. . . ,1, respectively. Hence, the initial distributions are

€åf.)(ni-t) : (1,0,...,0) with initial state Ø¡. - j* and P(Y.: Ø¡.) = I. The

generating functions ,lr*,n,,n,...n,, (rl€áÏ(n¡-r)) , j : 2,...,1, can be obtained via

imbedding the random variables W(LÐ, j :2,...,1, respectively. Now, since the

random variables W(L¡I^¡ L¿), j - 1,. ..,1, ate conditionally independent, the

generating function ,bff,)r(t) of W (o) is the product of the generating functions
, /,.tMl ,^ .\,þ*Ø,tn,...n,, ("1€àr.'(Ar-t),) , i:1,...,1. This establishes equality (4.11). D

We provide a detailed example to make our result more transparent.

Example 4.2 Let o : /\t o Â2 o ,43 be an ordered series pattern with Â1 - 13,

l\z : 31 and Âs : 22 as in Example 4.I. We first imbed the random variable

w(Li), where Ai : ULrAo. Then the imbedded Markov chain {Yr} associated

with I4z(,4,i) has state space f): {Ø,I,2,,3,e,1,c12,a3} and transition probability

matrix

Ø

1

2

M,.,,^*.: 3

Q.1

d2

4.3

Applying Equation

where

0p,
o prr
o Prt
00

000
Pts00
ooPzz
oPtro

Pz Ps

Ptz 0

o P"s

Psz Psz

1

0

0

0

0

0

00
00
00

(4 5)

0

0

0

0

1

0

0

0

1

and using our computer program, we obtain

clt /olÊ\ - 
Pt¡s2 x At

Yw(AtlLrL2Le) \" ls,r - A. )

A1

L2

Pt - PtPzss I pzpzts - PtPzzPszs2 - pzpztpzss2 * pzpztpszs2,

7 - pns - pszs - pzspszs2 - ptzpzts2 I pnpsss2 I pnpzzpszs3 I pnpnpzsss



Ð1

Given the occurrence of the pattern Âr, we imbed the random variable W(Lö),

where Li:Utu:rÂ¿. The imbedded Markov chain {Y¿} associated with l{z(ni) has

state space g: 
{Øs :3,1,2,3,e,2,a3} and transition probability matrix

Øs

I
)M,,,,^..: :,r v\2) ó

A2

ù.9

Since ,4.1 occurs before Â2, the initial state Ør.. - j* of this imbedded Markov

chain is the last element of Â1; i.e. Ø¡ : 3. Hence, the transition probabilities

P(Y: jlYo: Øs:3) :p3¡, i:1,2,3. Using our computer program, it yields

_ psrs2 X As

L4)

where

A3 : Pss - PttPszs t Pzs4zzs I PnP:;'s - PnPztPsss2 - pttpzspszs2 * pnpzspzts2

t Pnpztqzzs2,

A4 : 7 - pns - psss - pzspszs2 - ptzpzts2 t pnpzzs2 - ptspztpszs3 t pnpztpzzss

-r Ptz4ztQszss .

By the same token, we obtain from our computer program that

1þw<¡s)
p22s2 x Lg

where

A5 : pn-pnpns*p.3pzzs,

A6 : 7 - ptts - psss - pzsptzs2 - przpzts2 - ptspzts2 i pttpzzs2 - ptspztpszs3

- Ptz4ztPsts3 * pnpzspszs3 I pnpztpses3.

'Þ 
*,n,¡ n, nr, (t I 

gál tnt l)

A6I'teái'(^,)) :
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By Theorem 4.2, we can obtain the generating function úff),(s) bV taking the

product of the generating functions ,Þ*rnrlnrnrn,(sl{) , ,þ*rnr,n"n, (rl€ál(,{1)) and

1þw<¡s¡ ('l{ál (Ar))

When {X,} is a sequence of i.i.d. multistate trials, it is easy to see that

eái){ni-t) : €á'(Â¡-r) : { for aIl j :1,. . .,1. In the case of overlapping counting,

the result in Theorem 4.2 still holds except that the initial distributions in Equation

(4.11) are replacea ¡v gáÎl(,4.¡-r) : (0,...,1,...,0) : e¡", i - 1,...,1, where the

stateT'isthelongestoverlapofthepatternsÄ¡-rwith 1\n, lç: j,...,l,inthesense

of overlapping counting and eáiJtnrl : € : (1,0, . . . ,0) by convention (the state 7.

corresponding to the usual initial state Ø). For example, let o : l\t o Ä2 o,4.3 with

Âr:133, 
^2:32 

and Äs:331; then the state'jo'for eáiJfnrl corresponds to

the state '33' (the longest overlap of r\.1 with Â2 ând A1 with 
^3). 

if there are no

overlaps, then it is trivial that {[o.)(,a.¡-r) : €áI,(,a,¡-r).

Corollary 4.1 The generat'ing functi,on of W(o) w'ith respect to ouerlapp,ing count-

i,ng zs gi,uen by

(4.r2)

whereeáii tnr-tl : (0,. ..,I,...,0) : ej"j j - 1,.. .,1,g,rethei,ni,ti,al d,i,stri.buti,ons

suchthatthestate j" i,sthelongestouerlapof thepatternsr\¡twithl\n, k: j,...,1,

i,n the sense of ouerlapp,ing counti,ng, and,eáiJtnrl : € : (1, 0, . . ..,0) by conuention

(the state j" correspondi,ng to the usual i,ni,ti,al state Ø).

Example 4.3 Under the same setup as in Example 4.1, consider the ordered series

pattern o : 1\r o Á.2 o Ä3 with Ar : 133, A2 : 32 and A3 : 331 with respect

to overlapping counting. We first imbed the random variable W (Li), where Ai :

¿

F_r*,^,r^j,,^¿) 
('teáiJ 1.4.,-')),
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Ul=rÂ0. The imbedded Markov chain {Y¿} associated with W(Lî) has state space

O: {Ø, I,2,3,13,33, er,e2,a3} and transition probability matrix

Ø

1

oL
o.]

M,,,, ^.,: 13-33
Q1

Q,2

Ag

010 0

0

1

0

0

0

1

The initial distribution of the imbedded Markov chain {Y¿} associated with W(Âi) is

{ : (1,0, . . .,0) (P(% : Ø) = 1). Applying Equation (a.b) and using our compurer

program, we obtain

'Þ*rnrrnrnrn, 
(sl€) : p13p33s3 X A1

where

Pt - PtPzzs *PzPzts *pspsts - ptpzzpzts2 lpzpzspzts2,

7 - p11s - pzzs - pnpzts2 - ptspsts2 i pttpzzs2 - ptzpzzpus3 * pßpzzpstss.

Given the occurrence of the pattern Âr, we imbed the random variable W(Li),
where Li -- Uî:rA¿. The imbedded Marlcov chain {Y¿} associated with lz(,4.i) has

state space g: {Øa:3,1,2,3,33,a2,as} and transition probability matrix

0

0

0

0

0

Pst

op', pz pz o

0 Prt Ptz 0 prt
0 Pzt Pzz Pzs 0

0p1 0 0 0

0p31 0 0 0

00000

Psz

Pzz
00000
00 0 0 0

00 0 0 0

L2

a1

L2

M *1n;t

0 Ptl Psz
opnPn
0 Pzt Pzz
oPst o

00 0

0

0

0

Psz

Psz

Pzs

t! L,7

Pzs

0

0

00 0 0 0

00000

(
v/3

1

2

33

A2

d,g

0

0

0

fJJ

Pss

0

0

0

0

Pzt

For the same reason as stated in Example 4.2, the initial state Ø¡. : j* of this

imbedded chain is the last element of Ä1; i.e. Øs : 3. But note that, since the longest

010 0

0t0 0
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overlap of the patterns Â1 with .4.2 and Â1 with Â3 is '33', the initial distribution of

the imbedded Markov chain {Y¿} associated with W (L;) ir €á?) (Âr) : (0, 0, 0, 0, 1) :
e¡" (the state'jo'corresponds to the state'33'). Using our computer program) \,ve

find that

'þ*,n,,n"n", 
(tl€á?)(^,)) : -h'?s/ r-Psss

By the same token, we obtain from our computer program that

t. /-r^(o)z^ r\ P31P33s3xA3
vw6s) (slËòr'\t\2)) : - a, ,

where

Pzz-PttPzzStPnPzts,

1 - Pns - PzzS - pszs - ptzpzts2 - ptspzts2 - pzzpzzsz I pnpzzs2

I PÍpsss2 I pzzpsss2 - pttpzzpzzss - ptzpzzpstss - ptspztpszss r pnpzzpszss

* PnPztPszs3 I pnpzzpsrs3 * p.¿pstpszs3 - ptspzzpstpsssa I pnpzspztpsssa.

By corollary 4.7, we can obtain the generating function $f,r),r(r) bv taking the

product of the generating functions ,lr*6r¡nrnrn,(rl€), ,Þ*6r1nrnr¡ (rl{á?)(Â1)) and

1þwØzt ('l€á?)(nr))

4.3 Later \Maiting Time Distributions of Two simple pat-
terns

Let 4.1 and A2 be two simple patterns and A. : Âr U 4.2. Then we have

P : {ot,a2: 01: Är o Ä2 and oz: 1\z o Ar},

and the later pattern.A.¿ : atlJo2. We introduce three different ways to obtain the

exact distribution and probability generating function of W (lt). Firstly, following
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the construction procedure described in Section 4.2,we can imbed the random vari-

ablesW(or) and W(or) into two separate Markov chains. With respect to nonover-

lapping counting, let M 4¡¡. and M 2ç¡¡; denote the transition probability matrices

associated with the imbedded Markov chains of W(o1) andW(o2), r'espectively.

Theorem 4.3 Let l\r : o1l)o2 be a later pattern wi,th o1: ÄroÂz and, o2: ÄzoÂr.

Wi,th respect to nonouerlappi,ng counting, we haue

(i,) the eract di,stributi,on of W (lt1) i,s gi,uen by

P(w(^L):n) 
: ;ff,lîl-ä'iîiir:'?,.,(*ù, (4 13)

for n:1,2,.. ., where € : (1,0, . . ., 0) i,s the i,ni,ti,al di,stri,but,ion wi,th p(yo:
(0, 0)) : I, and C¿eÐ(*r), ¿ : 7,2, are the fi,rst column uectors of the matri,ces

C uf*1,'i : 7,2, respectiuely ;

(xx) the probabi,lity generati,ng functi,on of W(L") i,s gi,uen by

ç!il^u@ : ,þÍi1",, (') + ,t'ff),,('). (4.r4)

Proof. From Theorem 4.1(i), we have

P(W (o¿) - n) : ËlVTrñ'tC,(N) (01),,i : 7,2.

It follows from the definitions of the random variables W (or), W (or) and W (lt)
that the event {W (L") : n} is the union of the events {W ("r) : n} and {W (o2) :
n), where {W("r): n} and {W("r) : n} are mutually exclusive. Hence, we have

P (w (^L) : n) 
: :i;,:)::;r' iiii^;|,, r",r
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This completes the proof of part (i). Part (ii) follows immediately from the definition

of ø!Àì (s). n' wl^L) \ '

Note that the generating functions,r/fl,J,,(s) and ,þ{iì"r(s) can be obtained through

Theorem 4.1(ii). In the case of overlapping counting, the above results still hold

except that the transition probability matrices are replacedby M4ç¡ and Mz@),,

respectively.

Without imbedding the random variables W(ot) andW(o) into two Markov

chains separately) we can also imbed the random variable W (L") into a Markov

chain directly. Define a Markov chain {yr} o" the state space 0 having the form

f): f)o U Q1 U {at,az}, (4.15)

where 06 and 01 are defi

o^u!u

o.s !r

2
. ^. - | |.UE(J

;-1

. -, _ 1 0, u 
- 

L) L

T(^r)

and u

ned as

(
{ (0, u)
t

{(u,r)
)
€ T(Â¡), j#uj,

and c1 and c2 are absorbing states corresponding to the ordered series patterns ø1

and o2, respectively. Note that the imbedded Markov chains for nonoverlapping

and overlapping counting cases are defined on the same state space 0, but their

transition probabilities are slightly different according to the counting procedures

and structures of Â1 and Á.2. However, both transition probability matrices defined

on the state space f) have the same form as Equation (3 1) Applying Equations

(4I)-(a'3) to the pattern Â¿, this imbedding procedure provides a second way to

obtain the exact distribution, mean and probability generating function of W(L¡).

The next theorem provides a third way to obtain the probability generating

function of W (t,7) under nonoverlapping counting.
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Theorem 4.4 Let /\r : o1l)o2 be a later pattern w,ith oy: -A.t o-Àz and, o2: -AzoÂr.

Wi,th respect to nonouerlappi,ng count'ing, we haue

(i) the generati,ng functi,ons of W(o1) andW(o2) are g,iuen by

øfl,],,{t) :'l'*rn,,n,n",GlË)''lt*,n", (tl€ái)(^t)), (4.16)

,ttff),,{t) : ,Þ*rn,,n,n,r!lË)rþ*ø,, (rteá})(Ar)) , Ø.17)

where eáf){n,) , ,i: I,2, are the i,ndtial d,i,stri,buti,ons as d,efi,ned, i,n Theorem

.4.2;

(ii) the probability generati,ng functi,on of W (A,) i,s g,iuen by

,pf()^")(t) ,þff¿u(s) + ¿fl,J,, (s)

'Þ* rnr,nrnrr?lÊ)'l' * rnr, (t l€áI) (nt ))

l'þ * 6,,n, n,, (t l€) rþ * Ø,¡ (" tgåi' (^r))

Corollary 4.2 Let l\t : o{)o2 be a later pattern wi,th o1: ÂroÂz and, o2: ÄzoÂr.

Wi,th respect to ouerlappi,ng count'ing, we haue

(4.18)

Proof. Equalities (4.16) and (a.17) are special cases of Equation (4.11). Since the

events {W("r): n} and {W("r): n} arc mutually exclusive, it follows from the

definition and the results of part (i) that

el\,)n",(") : å "" (Ðrr*rou) :")) ,þ{iì,u(s) + r¡f,J,,(s)

: 
'þ*6,1n,n", 

(tl€) ,þ*rn"¡ (ttgái'(rrt)) + ,Þ*6"1n,n,¡GlË) ,þ*<^,, (rl€ái)(.ar))

This completes the proof. n
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(i) the generati,ng functi,ons of W(oy) andW(o2) are g'iuen by

,,¡(o) ls) :, w(ot) , ,

,¡(o) ls) :' w(oz)' '

, -(o\, ^ ,where €à,1"'(^n), 'i : I,2,
| 1.

4't t

are the i.ni,ti.al di,stri,but'ions as defr,ned i,n

'þ. rn,,n,n"r!lË)'þ * <n", (t teáiJ (^t )),

'þ*rn"tn,n,r(tl{) ú-<^,, (ttCáiJ (^r)),

:'Þ*rn,,n,nrr?lÊ)'þ*rnr, (ttgåi] fn,l)

l'þ * Ørtn,n,, (s l€)'þ* <n,) (t l 
gáí] (nr))

(4.1e)

(4.20)

Corollary

(i,i,) the probabi,li,ty generating functi,on of W (1r7) 'is giuen by

vf/n",G) : rþ!il"uþ) + t¡f,)",,(s)

(4.27)

In order to demonstrate various ways of obtaining the probability generating

functions and to make our theoretical results more transparent, we provide the

following example.

Example 4.4 Let {X,} be a sequence of (i.i.d. or first-order homogeneous Marl<ov

dependent) three-state trials with possible outcomes 1, 2 and 3, and let Ar :13
and A2 : 31 be two simple patterns. We are interested in finding the probability

generating function for the later pattern A.¿ : atl) ø2, where ar :13 o 31 and

oz : 3IoI3. We show the three different ways of obtaining the probability generating

function of W (lt¡). We first consider the i,i.d. case. The imbedded Markov chain

{Y¿} associated with the random variable W(or) has state space f) given by

0 : {(0,0), (0,1), (0,2), (0,3), (1,0), (1, 1), (1,2),(7,3),a1,a2},

where o1 and û2 correspond to the patterns o-1 and Á.2, respectively, and transition
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probability matrix with respect to nonoverlapping counting given by

(0,0)
(0, 1)

(0,2)
(0,3)
/1 n\

M¡¡¡1 : ).';(
\rt r/
(7,2)
(1,3)

Q,1

Q,2

0p,
0p,
oPt
00
00
00
00
00

00
00
00
0p,
00
00
00
Pt0

pzpz 0 0 0 0
pz0pt 0 0 0
pzps 0 0 0 0
pzpz 0 0 0 0

0 0 0 prpzpe
0 0 0 p-'.pzpz
0 0 0 ptpzps
0 0 0 0 pzps

00 0 0 0 0 0 0

00 0 0 0 0 0 0

10
01

Theorem 4.1(ii) and our computer program yield

,t,(N) ls) : P?PZsa(r - Pzs)
Yw(ot)\ù/ -

Following the same procedure for W (o2), we obtain

,þl¿r(') : p?p\sa(I - ns)
(1 -t

Hence, summing over l;ff1.u(s) and ,þÍiì"r(s), we have

çliàr(') :
(1 - " 

+p-'.pss2)(1 - r :-'ptpss2 i-ptpzpzs3)'

p?p3t4(2-pÉ-pes)

By the same token, we obtain from our computer program that

(4.22)

'Þfr),,,(t)

,Þfr),"r(t)

vf ,)n",G)

p?pzs3 (7 - pss)(I - pts - p2s)

(1 -r¡ '

ptpïss (l - pts)(t - pzs - p¡s)
(1 -r¡ '

(1 - r + ptpzs2)(1 - r i ptpss2 + pflzpss3)'

ptpss3 (h * ps - ptpzs - pzpss - p?s - p\s

- 2ptpss + pp3s2 i p?prtt * 2pp2pss2).

A
(4.23)
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Now, Iet us imbed the random variable W (L") directly. The imbedded Markov

chain {Y¿} has state space

f) : {(0,0), (0,1), (0,2), (0,3), (1,0), (1,1), (r,z), (1,3),

(2, o), (2, L), (2, 2), (2, 3), du azj,

where 01 and û2 corr€spond to the pattern ø1 and 02, r€sp€ctively, and transition

probability matrix with respect to nonoverlapping counting given

(0,0)
(0, 1)

(0,2)
(0,3)
(1,0)
(1, 1)
11 9ì

M out : );' ;(|.rt 0J

(2,0)
(2,r)
(2,2)
(2,3)

Q,1

A2

Ps 0 0 0 0 0

0 pt 0 0 0 0

ps 0 0 0 0 0

pz 0 0 0 0 pt
00ptpzps0
00ptpzps0
0 0 ptpzpz 0

000prps0
000000
000000
000000
000000

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

Pz

0

0

Pt Pz

Pt Pz

Pt Pz
0p,
00
00
00
00
00
00
00
00

00
00
00
00
00
00
00
00
Pt Pz

Pt Pz

Pt Pz

Pt Pz

by

0

0

0

0

0

0

0

0

þt
0

Pz

Ps

0

0

0

0

0

0

0

Pt
0

0

0

0

00 0 0 0 0 0 0 0 0 0 0

00 0 0 0 0 0 0 0 0 0 0

10
01

The transition probability matrix 1yt p) with respect to overlapping counting can be

obtained by the same arguments, Applying Equation (4.3) yields the same results

given by Equations (4.22) and (a.23). Further, we compute the follor,ving generating

functions:

ptpss2(1 - pss)

'þ*rnrrnrnrr(t l€) :

'þ*rnrrnrnrr(tl€) 
:

1 - s -| ptpzs2 I p-'.pzpss3'

ptpzs2(I - øs)
- s -l Ptpss2 * prpzpss3'

PtPss2: 
1- , U**z'

rþ*6,t (rlgáÐ(^r))
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, / ./^/ì,
Iþw<¡z) (rlgåt)(^,)) : ¡]ffi,
, /, -(()\,. r)) : pss(I - pzs - pss)Iþw(¡ù(sl€ò-'(^-,, 1_s* ptpss2 j

, /,,(o\,. r\ _ prs(1 -pts-pzs)Ú*rn,, (tl€ò"' (^r),) :'ffi
Theorem 4.4 and Corollary 4.2 yíeld the same results given by Equati ons (4.22)

and (4.23) after some simple algebra. The probability generating functions for

the Markov dependent case can be obtained as the i.i.d. case. Since the analytic

form of the probability generating functions is quite complicated, we set the initial
probabilities to be pt : 0.3, pz : 0.3 and p3 : 0.4, and the transition probability

matrix of {X,} as

A1 : -0.525s4(15687s7 * 33003s6 -l974590st + gz7gz}Osa + 27g28000s3

+ 144240000s2 - 1390400000s * 1344000000),

L2 : (201s3*b0s2-3600s+4000)(4gs3+ 25s2 - 1800s+2000)

(b1s3 - b0s2 + 3600s - 40oo),

and qflnu(r) : LrlLn, where

A3 : t0.5s3(tr2+rs7 +14855s6 - 326970su +3¡tZ¿00sa + 26556000s3

- 215520000s2 + 403200000s - 224000000),

L4 : (201s3*50s2 -3600s+4000)(4gs3+ 25s2 - 1800s+2000)

(b1s3 - bos2 + 3600s - 4000).

|-0.30 040 030 IA: | 0.25 0.30 0.45 | .

L 0.35 0.35 0.30 J

Imbedding the random variables W("t) and W(o) separately or imbedding the

random variable W(L") directly produces çl\r)^",(") : Lt/Lz, where
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Further, we compute the following generating functions:

-0.3s2 (31s2 + 420s - 1200)

20Ls3 * 50s2 - 3600s + 4000',

0.70s2 (19s2 - 210s + 800)

201s3 * 50s2 - 3600s + 4000'

-3s2 (3s2 + 10s + 120)

51s3 - 50s2 + 3600s - 4000'

5.25s2 (s2 + tts + 40)

48s3 + 25s2 - 1800s + 2000'

3s(27s2+240s-400)
51re - 56sz a 36995- 4ggg'

-7s(s2+60s-100)
48s3frffi

From Theorem 4.4 and Corollary 4.2, we obtain the same results for the probability

generating functions elil^u(s) and çlf,)n",(s) after simplification.

4.4 Later Waiting Time Distributions of I (I
Fatterns

In this section, we extend the results from the previous section to I (l > 2) simple

patterns. Let 41, . . . , A¿ be I simple patterns. Then we have the set P of alÌ ordered

series patterns generated by these I simple patterns as defined in (2.1) and the later

pattern A-r: Utn'=roo. Firstly, following the construction procedure described in

section 4.2, we can imbed the random variables w(on), ,i : r,. . .,1!, into ll separate

Markov chains. With respect to nonoverlapping counting, Iet M¿1¡¡¡, ,i: I,...,1!,
be the transition probability matrices associated with the imbedded Marl<ov chains

of w (o¿), 'i : L, . . . ,l!, respectively. The next theorem is an extension of rheorem

4.3.

Theorem 4.5 Let l\¡. : U'nt:roo (l > 2) be a later pattern, where o¿ e p .for each

'i :7,. . .,1!. With respect to nonouerlappi,ng count,ing, we haue

1þwØrLnrnr, (tl€) :

ú*rnrrnrn"rþlË)

1þwe,t) ('le áf fnrl)

Iþwøz) ('teálfn,l)

1þwø,> ('teái)lnrl)

,þ*Ø") ('teái)tn,l)
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(i) the eract di,stri,but'ion of W (t\¡) i,s gi,uen by

¿l

p(w(LL) - n): I p(w(o¿): n): t €NTrñ\c,(N)(CIr) , (4.24)
oáe r ;-1

where € : (1,0,. .. , 0) i,s the i,ni,ti,al di,stributi,on with P(Ys: (0,0)) : 1,

C¿ev)(*r), ¡, - 1,. ..,1!, are the first column uectors of the matrices C¿(M,

I, . . ., ll., respect'iuely ;

(i,i,) the probabi,lity generati,ng functi.on of W(lt¡) is gi,uen by

II

,pl.il ,(') :I*f),@., w(r'.t). ,_,

Note that the generating functions rÞff1,r(r), , - 1,.. .,.L , can be obtained through

Theorem 4.1(ii). In the case of overlapping counting, the above results still hold

except that the transition probability matrices are replacedby Mtlo), i: !,...,11,
respectively.

In addition to the above imbedding procedure, \Me can imbed the random vari-

abIeW(t\7) into a Markov chain directly. LetP¡, j : I,...,1- 1, be the sets of all

permutations of the elements of T: {I,2,...,1} taken j at a time; that is,

P¡: {iri,r...i¡:i,¡, eI for 1( k < j and,i¡,f i,*for k#*},

and card(P¡) : Cj x jl : ëil. For example, let T : {I,2,3}; then pz :

{12,2I,13,31,23,32}. We define a Markov chain {y, t t:0, 1,...} on the state

space 0 having the form

and

(41:.'\

f):f)or'Ünr, Ü{rr},
j=l j=l

j :1,. ..,1 - 1, are defined as

(tì
l(o,u) :u e U r(^i) l,lj=t)
(

\(u,u) : u:'it'iz' ' 'i¡ e P¡ and u €
t

(4.26)

where 06 and f)¡,

,rn_)),tl
t"-+;. ; .
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and a1,...,du are absorbing states corresponding to the ordered series patterns

o7t...,d¿r, r€spêctively. The above construction procedure is the same for both

nonoverlapping and overlapping cases except that their transition probabilities are

slightly different according to the counting procedures and structures of 4r,...,4¿.

Applying Equations (4.1)-(4.3), the exact distribution, mean and probability gen-

erating function of W (L1) can be obtained.

The next theorem, an extension of Theorem 4.4, provides a third way to obtain

the probability generating function of W (L¡).

Theorem 4.6 Let 1\r:U'nt=ro¿ (t >-2) be a later pattern, where o¿ €P for each

'i: 7,. . .,,1!. Wi,th respect to nonouerlappi,ng counting, we haue

(i,) f or any ordered series pattern oi : L¿, o . ' . o A.¿, e P , the g enerati,ng functi,on

of W (o¿) 'is giuen by

¿

¡lNl / \ T-T ¡ / ,-(N\,^ .\
9ìi 

r'" s,", : 
ol=f, 

Q w 6¡ ¡r^;j,...,^¡¿ l (.s 
I €ò¡.' (Ät1, -,¡ ) J'

' -(N\¡ ^ \where €àr.'(An,r_,1) : (1,0,...,0), j:I,...,1, are

with initi,aL state Ø¡* : J. eV, : Ø¡.) = 7),

patternÂo,r_,,, and,eáf.){n,,) : € : (1, 0, . . ., 0)

Ø) bA conuenti,on;

(i,i,) the probabi,li,ty generating functi,on of W (lt;) i,s gi,uen bg

¿tt

j" 'is

(wi.th

'i:I,...,l!, (4.27)

the i,ni,ti,al di,stributi,ons

the last element of the

usual i,ni.ti,al state Ø¡. :

çlil^r(') : à ,t'ff),{') : 
Ð.U tþwØ¿¡t^¿j, 

,^;¿) ('lgái'(A,,,_,,)) . Ø.28)
oi€P i:l j=I

Proof. The proof of part (i) is similar to the proof of Theorem 4.2. The proof of

part (ii) follows from the definition of çÍIà",(s) and part (i). !
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Equations (4.27) and (a.28) still hold when {X,} is â sequence of i.i.d. multistate

trials, except that the initial distributionr €áI,(^01,_,¡), j : I,...,1, are replaced

bv €.

corollary 4.3 Let l\r:Utn':ron A >2) be a later pattern, where o¿ e p for each

'i :1,. . . ,l!. Wi,th respect to ouerlappi,ng counting, we haue

(i) for any ordered series patterno¿:/\¿to...o 1\¿, e.P, the generati,ng functi,on

of W (o¿) i,s gi,uen by

T

'þÍ1Ì",,(t) 
: 

.4 
tþwr¡¿¡t,¿j,.,^¡t, (tteáiJ(^o1r-,¡)) , z : 7, " ',11, (4.2g)

- .l.\ ,

where €àr".'(Ar,r_,,) : (0,...,1,...,0) : €jo, j : I,...,1, are the ini,tial

di,stri'buti,ons such that the state j" i,s the longest ouerlap of the patterns Âo,r_,,

w'ith A.¿u, k: j,...,1, i,n the sense of ouerlapp'ing counting, and, Cáfl{-to.) :
{ : (1,0,',.,0) ba conuent'ion (the state j" corcespond,i,ng to the usual i,ni,ti,al

state Ø);

(i,i,) the probabi,lity generati,ng functi,on of W(lt) i,s gi,uen by

¿lI
ellÌn",þ) : 

"*Ðr'l'f,)",{') 
: 

Ðrq 
tþwØ¡¡r^¿j, ,^¡¿, (ttcáiJ(Â,,,-,,)) ' (4'30)

Clearly, it is impossible to compute the probability and generating function

of W(o) and the exact distribution and probability generating function of W(lt')
by hand. Computer programs based on the Mathematical software MAPLE have

been developed to make our work fully automated. We discuss the computational

issues in the next chanter.

Example 4.5 Let {Xo}T=, be a sequence of four-state trials with possible outcomes

I,2,3 and 4 (or A, C, G and 7), and let Âr : !4I4, L2:4I4I and À3 :2J2J.
We consider the following two cases:
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0.20 0.20 I
0.25 0.35 

|

0.25 0.10 
|

0.20 0.25 )

mogeneous Markov dependent trials.

1. Set Pt : Pz : PB: P+: 0.25 for {X,} being a sequence of i.i.d. trials.

: PJ : Pq,: 0.25 and the transition

The state spaces 0 and the transition probability matrices of the imbedded Markov

chains for both cases are generated by our computer programs automaticatly. Fig-

ures 4.1 and 4.2 show the probability distributions of W(L") for both cases with

respect to nonoverlapping and overlapping counting.

2. Sei the initial probabilities to be pt: pz

probability matrix of {X¿} as

[ 0.25 0.35

. | 0.15 0.25
JL: I

| 0.35 o.3o

L 0.25 0.30

for {X,} being a sequence of first-order ho
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Figure 4.1: Probability distributions of the later waiting time I4l(Ä¿) for Case 1,
Example 4.5 with respect to nonoverlapping and overlapping counting.

Figure 4.2: Probability distributions of the later
Example 4.5 with respect to nonoverlapping and

waiting Lime W (lt;)
overlapping counting.

,rI

'"1
ooI

':I

for Case 2,



Chapter 5

Algorithrns for Waitirrg Tirme
Ðistributions

In this chapter, we develop computational algorithms for use in a computer algebra

system to implement the results in Chapters 3 and 4. For convenience, relabel

the possible outcomes b1,b2,...,b^ as 1,2, ...)n-L with probabilities pt,pz,...,pm,

respectively. Given a, compound pattern A : UÍ:r.4.¿, wê first discuss the algorithms

for computing the exact distribution, mean and probability generating function of

the waiting time W (L)

Algorithm r' {X,} is assumed to be a sequence of i.i.d. multistate trials.

Step 1. Decompose each simple pattern forward and create the state space 0 hav-

ing the form given by (3.a) for the imbedded Markov chain {y¿} . Let

Or : f) \ {absorbing states} - CI \ {at,...,o,¿}

and Æ : card,(Qt

r@):

)

{

We define a one-to-one index map / as

i, Y a € 01 and'i:I,2,...,k,
j V, € {or, ...,c"t} and j : kil,..., k+t.

Step 2. Generate the transition probability matrix M having the form given by

(3 6) Initially, we set M to be a (fr + l) x (k + t) 0 matrix. For each

u € {a1,...,at}, replace p¡6¡,¡ç-¡ by 1. For each ø € f)1 and 7 - 1,. .. )Tn1

Iet ø1 be a pattern which is composed of states ¿^,,, and 7 such that j follows ø.

68
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Find the longest subpattern (counting backward) of ø1 that belongs to 0 and

denote itby u2. Then we replace pr@),Í@ùLry p¡.

Step 3. Extract the submatrix ÀI and C from the transition probability matrix M
obtained in Step 2. From Equation (3.8) and Theorems 3.2-3.4, we can easily

set up the simultaneous recursive equations and compute the distribution,

mean and probability generating function.

It is easy to implement Step 1 in the computer program. For Step 2, we provide

an example to illustrate the idea of setting up the transition probability matrix.

Example 5.1 Let {X,} b. â, sequence of i.i.d. three-state trials with possible out-

comes I,2 and 3 (m :3) and let r\. : Â, UÁ., be a compound pattern with Ar : 112

and Ä2 : 1332. Then we have

f) : {Ø,L,2,3,11,13, rJ3,a1,a2},

0i : {Ø,1,2,3, 11, 13, 133},

where a1 and d2 correspond to Âr : 112 and À2 : 7332, respectively. We define

a one-to-one index map "f as described in Step t: Í(Ø):7, f (I) :2, f (2) :3,

/(3) : 4, f GI): 5, /(13) : 6, .f(133) :7, f (ar) :8, f (az) :9. Suppose the

imbedded Marl<ov chain is in state u : \L at trial t - \ then ø1 is composed of ø

and j : I,2,3 (possible outcomes at trial ú) such thal j follows c..,; that is,

I nL if i:1,
,,:{rt2 if j:2,,

l. 113 if j :3.

For ø1 - 111, the longest subpattern is ø2: 11 (1U: counting backward <-).
Note that '11f is not the longest subpattern since it does not belong to f). Hence,

the transition probability P(Y¿: tTlYt_¡-: 11) : p¡6¡,¡q.2) : p¡¡r¡,¡1tt¡ : p5': pr.

Similarly, the transition probabilities P(V, : atlYt-t - 11) - p2 and P(y, :
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13lyr-t : 11) : prr. This illustrates the idea of setting up the transition probability

matrix in our computer program.

As stated in Remark 3.2, when {X¿} is a sequence of i.i.d. multistate trials,

the state space f) can be reduced to a smaller one. However, when the state space

of the imbedded chain is changed, the corresponding transition matrix is changed,

too. Therefore, the way of assigning such a matrix in the algorithm is different from

Algorithm I. With a simple modification in Step 1 and Step 2, we have the follor,ving

algorithm.

Algorithm II: {X,} is assumed to be a sequence of i.i.d. multistate trials and the

imbedded Marlcov chain {Y¿} has a smaller state space f).

Step 1. Decompose each simple pattern forward and create the state space O hav-

ing the form given by (3.9) for the imbedded Markov chain {yr} ur described

in Remark 3.2. Let

O \ {absorbing states} : f) \ {"r, ...,a¿},

{j : j is the first element of the simple pattern L¿, 'i: I,...,1},

r\r"
We define a one-to-one index map / as

i, V u € f)1 and'i :1,2,...,k,
j V u € {ot, ...,a¿} and 7 : k ¡_7,...,k +1.

Step 2 Generate the transition probability matrix M having the form given by

(3 6). Initially, we set M fo be a (k+l) x (k+l) 0 matrix. Then we replace

the transition probabilities as follows:

o-q ql

Trrl

t^:

and k : card(Qt).

¡f") : 
{

(1) For each ø € {*t,...,o,¿}, replace p¡<-t,¡<øby !.
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(2) For each ø € o1 and / € fr, let a.r1 be a pattern which is composed

of states ¿¿ and 7 such thaf j follows ø. Find the longest subpattern

(counting backward) of ø1 that belongs to CI and denote ít by a2. Then

repiace pÍ@),r@ùby p¡.

(3) For each ø € o1 and j e lz, let ø3 be a pattern which is composed

of states ø and 7 such thal j follows ø. Find the longest subpattern

(counting backward) of a;3 and denote it by ua. rf aa e o then replace

Pr@),r@a)by p¡'Otherwise, replace p¡@),¡(p) by D¡.r.p¡, where f3: {j:
jc-lzandwaøCIÌ

Step 3. Same as Step 3 in Algorithm I.

The following example shows the difference between Algorithm I and Algorithm II.

Example 5.2 Let {X,} be a sequence of i.i.d. five-state trials with possible out-

comes 1, 2, 3, 4 and 5, and let ,4. - 
^i 

u 
^2 

u ,t\3 be a compound pattern with

/\t : 7I2, Âz : 13, and z\.3 : 15. Using our computer program based on Algorithm

I, we obtain the state space f) : {Ø, I,z,J,4,5,IL,otr,d2,o3} for the imbedded

Markov chain {f¿} and transition probability matrix

û)

1

2
Ð.f
I

4M: :
.t

11
II

A1

A2

A3

oprpz
ooPz
oprPz
oprpz
oprpz
oprpz
00 0

PtP+Ps 0

opnop,
PzP+Ps 0

PePqPs 0

PsP+Ps 0

PsP+Ps 0

opnop,

000
optPs
000
000
000
000
Pz Ps Ps

100
010
001

00 0 0 0 0 0

00 0 0 0 0 0

00 0 0 0 0 0

with initial distribution {6: (1,0,0,0,0,0,0,0,0,0) for y6 (€: (1,0,0,0,0,0,0)).

Similarly, from our computer program based on Algorithm II, we obtain the state



space O : {Ø,1,6, 11, er,e2¡a3} for the imbedded Markov chain

represents the state 'þ'.. no subpattern belongs to Ui=r ^g(Ai) :
and transition probability matrix

72

{d} (the state '6'

{1,11, a.1,a2,o3})

Ø
1I
F
o

M:11

o p, pz*"'*ps o

0 0 pz1-pa pt
o pt pzr".*ps o
00Dtnt

*l

d2

dg

with initial distribution €o

programs yield

: (1,0, 0,0, 0,0, 0) for Y6 ({ Both computer

Elw(^)l:
PûslPtPsIPTpz

and

e*G):
pts2 (pz I ps + ptpzs)

1 - s f (ptpt + ptps)s2 r p?pzs3'

Next, we discuss the algorithm for the case when {X,} is a sequence of first-

order homogeneous Markov dependent trials. We assume that {X,} has initial
probabilitiês ?r, pz, . . . ,p* and transition probability matrix

Ptt Ptz Pt^
o:' '?' .

Prnl Pm2 P^*
Algorithm III: {X,} is assumed to be a sequence of first-order homogeneous

Markov dependent trials.

Step 1. Decompose each simple pattern forward and create the state space CI hav-

ing the form given by (3.a) for the imbedded Markov chain {y}. Let

f¿l : 0\ {absorbing states} : CI \ {rr, ...,u¿},

Q2 : f¿t\{Ø},

000
o ptps
000
Pz Ps Ps

00 0 0
00 0 0

00 0 0

100
010
001
: (1,0,0,0)).

II

2

A-

TN
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and k : card,(Qt). We define a one-to-one index map / as

V ø € 01 and'i : !,2,...,k,
V u e{tt,...,o¿} and j : kf 1,.. .,k +1.

Step 2. Generate the transition probability matrix M having the form given by

(3.6). Initially, we set M to be a (k + l) x (Æ + /) 0 matrix. Then we replace

the transition probabilities as follows:

For each u € {ay...,a¿}, replace pr6,¡6¡by 7.

For each j :1,. . .,ffi, replace p¡@>,¡<¡l by p¡.

For each a e {'/.2 and 7 - 7,...)rn) let ¿ denote the last element of ¿.,.'

and let ø1 be a pattern which is composed of states ¿,., and 7 such that

7 follows ø. Find the longest subpattern (counting backward) of ø1 that

belongs to 0 and denote ítby u2. Then replace pÍ@),r@ùby p¿¡.

Step 3. Same as Step 3 in Algorithm I.

Given a later pattern l\r:l)¿nt=roo, we have introduced three different ways in

Chapter 4 to obtain the exact distribution and probability generating function of

the waiting time W(l\y): (i) imbedding the random variables W(oo), ,i: I,...,1!,

separately, (ii) imbedding the random variable W (L") directly, and (iii) using Equa-

iion (4.28) (or Equation (4.30) for overlapping counting) which is expressed in

terms of the generating functions tþwØ¿¡r^¿j,...,^¡¿) (rteái)(Ao,r-,,)) fori : I,. ..,11

and 7 : I,...,1. When I is large, the transition probability matrices associated

with the imbedded Markov chains of W(o¿),'i: I.,...,11, andW(/\a) are quite

large. Hence, it may not be efficient to obtain the analytic form for the probability

generatingfunction of W(lt¡) through (i) or (ii). Therefore, we do not provide fur-

ther discussion for these algorithms. However, computer programs based on (i) and

(ii) are still useful in numerical computation. To compute the generating function

(;
¡(,): 

\ ¡

(1)

(2)

(3)
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^t. /.t*(N)t¡ r\ , / t*(O)t ^ .\ . .tþw6¡¡r^;j,...,^¿¿) (sl€ò;-'(Â¿r¡-,1)) o"þ*,ni,t'i.,...,n¿,¡ (tl€òrl-'(^r1¡-,¡)) rot fixed z and j,
we can use our computer programs based on Algorithms I and III for the compound

pattern l)t^:, A.oo with minor modifications in setting up the initial distribution and

transition probability matrix. The transition probability matrix associated with the

imbedded Markov chain of the waiting time Iz7(u'o:¡ Lnr) is much smaller. This

provides an efficient way to obtain the probability generating function of W (L¡).

We see that all the algorithms discussed in this chapter are similar. The key

is how to correctly set up the transition probability matrix. In summary, the for-

ward and backward principle lays the foundation for constructing the state space

and setting up the transition probability matrix. Our algorithms are very easy to

implement. With today's computers, it takes no more than one hour to compute the

exact distributions, means and probability generating functions for waiting times of

reasonably large compound and iater patterns.



Chapter 6

Applications of lMaiting Tirne
Ðistributions in Quality Control

6.1 Introduction

The multitude of control charts for monitoring various process parameters (such as

the mean, variance, and proportion) exists due to the multiple types of shifts that

can occur in that parameter over time. No single chart is optimal for detecting

all types of shifts. Sometimes several charts are used simultaneously, while in other

cases new combined charts are used (e.g., robust Cusum charts and Shewhart charts

with runs rules).

Various control charts have been investigated in terms of the run length dis-

tributions based on a given pattern (usually a step function) by various methods.

Comparisons among several of these charts have been done using different methods:

by simulation (Roberts, 1959), through numerical analysis (e.g., solving integrals

numerically, such as Robinson and Ho, 1978; Luceno and Puig-Pey, 2000; and Rao,

Disney and Pignatiello Jr.,2001) to theoretical approximations and exact deriva-

tions.

Among the theoretical derivations, many authors have used the Markov chain

approach (Champ and Woodall, 1987; Lucas and Saccucci, 1990; Lucas and Crosier,

2000) introduced by Brook and Evans (1972). Since each author focused on one or

more charts, the different Markov chain applications were tailored to each case.

For instance, the state space of the Marlçov chain has been formulated differently
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by different authors (Lucas and Crosier,1982; Champ and Woodall, 1987), and in

several cases it was not soecified at all.

We introduce a general unified framework that is based on discretization and

the use of a finite Markov chain imbedding technique for run statistics (Fu, 1996).

The method can be applied to any control scheme that is based either on a simple

boundary crossing rule, or on a compound rule based on run or scan statistics that

include several criteria. Some known results can be viewed as soecial cases of our

general method.

Our unified approach sheds light on the relation between different types of mon-

itoring schemes, and their performance in the presence of different data structures.

It also enables a straightforward performance comparison of various schemes, thus

being important from an applied point of view as well.

The rest of this chapter is laid out as follows: Section 6.2 describes the general

framework, which is based on a Markov chain imbedding formulation. We show how

some well known charts can be formulated in this framework. In Section 6.3, we

provide a detailed numerical example of a compound rule based on a run statistic

and Cusum to demonstrate how to imbed it as a Markov chain. In Section 6.4, we

discuss the implications and possible extensions of this general approach.

6.2 The Markov Chain Approach

Brook and Evans (1972) introduced a Markov chain representation for computing

the run-length distribution of a Cusum chart. Their basic idea for a discrete moni-

toring statistic (u.9., a count) is to treat lhe m values that the monitoring statistic

can obtain within the control limits as states of a Markov chain, and all the values

that exceed the limits as an absorbing state. If the monitoring statistic is con-

tinuous, the same method is used, after discretizing the area of the control chart
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into m regions within the control limits and one region that exceeds the limits (the

absorbing state).

We formalize and generalize this method as follows: for a control scheme that

involves a compound decision rule, the run length is imbedded into a finite Markov

chain {Yr}, u..ording to the rules applied (denotedby ó,.,...óù. {Yr} then has a

state space CI and transition probability matrix M¡havingthe form given by (3.10).

The run length probability distribution is then given by

P(RL: n) :€ (f{ r,) (t - 
^¡,)1;, 

n: r,2, . .,
\¿=1 /

where € : (1,0,. . .,0) and 1¡ : (1,1,. . ., 1).

We denote a simple rule by þ and the monitoring statisiic by

(6 1)

Wr(k) : fWt-x+t, . . .,Wrl,

where k is the length of the "history" that is retained in order to reach a decision

at time ú. A compound rule dictates that the chart signals an alarm at time ú if
any one rule þ¿(W¿(k)) based on the monitoring statistic Wr(k) : lW*t,+t,...,Wr\
exceeds some limit at time ú (or falls within a certain area on the chart).

For this general pattern, we define the imbedded Markov chain {yr} u,

Y(Wr(k);ót,...,ó¿) : H(ói(Wt(k));ù : r,...,1), (62)

where fl is a function that combines the information from the / different rules. In

general, the state space f) of the imbedded Markov chain {yr} is induced by S¿ and

the vector Wr(k)

6.2.L DiscretizingW¿

Although all the different uses of the Markov chain approach rely on discretizing

a continuous variable, we make an important distinction between two types of dis-

cretization: natural vs. artificial. Discretizing a random variable can either arise
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naturally from the monitoring scheme, or else it is artificially imposed. Examples

where discretization arises naturally are charts with discrete monitoring statistics

(such as counts) and charts with a continuous monitoring statistic which effectively

divide the values of the statistic into two or more regions (e.g., Shewhart charts

with or without runs rules).

Examples where discretization is carried out artificially are Cusum and EWMA

charts (Brook and Evans , 7972; Fu, Spiring and Xie, 2002). The reason for imposing

an artificial discretization is to simplify the calculation of a complicated probability.

For example, in Cusum and EWMA schemes it is hard to calculate the probability

ihat the monitoring statistic exceeds the boundary. The alternative, which is based

on discretizing the continuous measurements, is described in Section 6.2.2.

For W¿, the monitoring statistic at time ú, we use R(Wt) to denote a natural

discretization of W¿ ànd D(Wt) an artificial discretization of Wr. Arule þ(W¿(Æ)) de-

termines which type of discretization is used, and the values of the last k monitoring

statistics that should be retained.

6.2.2 Imbedding Well-Knoïvn Monitoring Schemes

The Markov chain approach introduced by Brook and Evans (1972) was used by

several authors to derive the average run length (ARL) or the entire run length

distribution for various control charts. We show how the different results can be

formalized as described above, and how the run length is imbedded into a finite

Markov chain. We describe rules that lead to natural discretization, rules that

require artificial discretization, and rules that involve both types of discretization.

Class 1: Rules that lead to natural discretization

The class of monitoring schemes where the decision rule leads to a natural discretiza-

tion of I4l¿ includes schemes that are based on a discrete statistic and schemes where
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the control chart is divided into discrete regions.

The "history" that is retained in this case has the form lil(wr-r+,.), . . . , R(wr)l;
that is, the values of the last k monitoring statistics must be tracked in order to
reach a decision' Examples of charts with naturally discre tizing rules and different
values of k are:

o A Shewhart chart, where we only retain information on the statistic Xt at
time ú, i.e. Â(X¿).

o A discrete Cusum chart such as a Poisson Cusum, where the monitoring statis-
tic is a function of the observation at time t (Xr) and of the cumulative sum

of the observations until time I - t (Sr-t ). In such cases we retain inf'ormation

on times ú - 1 and ú, i.e. [Æ(^9¿_r), Æ(Xr)].

A Shewhart chart with Western Electric rules, where the decision rule is based

on information of the locations of the Æ previous values of the statistic. The
following set of western Erectric rules (see Montgomery, 2001) are widelv
applied: signal an alarm if

one or more points exceed the B_sigma control limits;

two of three consecutive points fail beyond the 2-sigma limits;

four of five consecutive points fall beyond the 1-sigma limits;

eight consecutive points fall on one side of the center line.

If all four rules are combined, then we must retain the locations of the last g

points, i.e. [,4(X¿_ z), R(Xr_u), . . . , R(Xr)]

1I.

2.

,f.

According to the rules /¿, z :
Wr(k) is imbedded into a Markov

1,...,1 (with or without runs rules), the statistic

chain Yr(Wr(k); ót, . . . , óù. A simple example is
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a Shewhart chart where Xr is naturally discretized into an indicator taking two

possible levels: o (outside the limits) and B (within the limits). The state space for

Y(W1(L);ó): R(Xr) is 0 : {Ø,R,d}, and the corresponding transition matrix is

given by

M: (6 3)

where Ø is the dummy initial state for the imbedded Markov chain and po :
P(LC L < Xt < UC L), under a given value of the monitored parameter.

Class 2: Rules that require artificial discretization

When the monitoring statistic is continuous there are cases where it is too compli-

cated to compute the run-length distribution directly. Two such examples are the

Cusum and EWMA charts. An alternative is to discretize X¡ artificially. This leads

to a discrete Cusum/EWMA statistic W¿, al;'d we retain the last k discrete values

lD(Wr_**r), . . ., D(Wr)1.

For example, a one-sided Cusum chart can be discretized such that the Cusum

statistic .9¿ obtains m-12 values (or 2(m + 1) + 1 values for a two-sided chart):

the in-control area [0, h) is divided into m equally-sized regions and the out-of-

controi area lh, oo) is the m * 1 region (as described in Brook and Evans , 7972;

Fu, Spiring and Xie, 2002). For both the Cusum and EWMA schemes we retain

information on the accumulating statistic (denoted bV ,S) at time ú - 1 and on the

accumulated statistic (denoted bV X) at time ú, i.e. k : 2 and we retain 2 last

discrete values [r(Sr-r), D(Xr)).This information is imbedded into a Markov chain

Y'(Wr(2);ó) : H(ó(w'(zÐ): D(,S,).

The transition matrix includes m-13 states. By selecting m to be large enough,

the run-length of the discretized statistic will approach that of the continuous one.

Class 3: Rules that involve natural and artificial discretization

Io Pn 1-n^1
I o Pn 7-Pa I'
L0 0 1 I
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This class is the most general. It includes decision rules that require monitoring

a naturaliy discrete statistic and a continuous one. Two examples are the "robust

Cusum chart" (Lucas and Crosier, 1982) and the "robust EWMA chart" (Lucas

and Saccucci, 1990) which are combinations of a Shewhart chart (with 4 or 5-sigma

Iimits) and a Cusum or EWMA chart. Two statistics are tracked simultaneously:

the Cusum/EWMA continuous statistic (.9¿) and the naturally-discretized Shewhart

statistic (X¿).

The decision rule is compound: signal an alarm if the continuous (Cusum or

EWMA) statistic exceeds the (Cusum/EWMA) Iimits, or if two consecutive She-

whart statistics exceed the Shewhart chart limits. The information that is needed

in order to reach a decision is based on the last Cusum/EWMA value and the last

two Shewhart statistics: W¿(2) : ISFI, XÀ. Here the Cusum/EWMA statistic is

artificially discretized, and the Shewhart statistic is naturally binary:

ó'(wr(2)) : D(Sr),

ór(wr(z)) : R(xr)

(6 4)

(6.5)

These two rules are then combined and imbedded into a Markov chain {Y¿}.

Other hypothetical decision rules that fall into this category would be Cusum

or EWMA schemes with runs rules.

6.3 An Example of a Compound Rule that Involves Natural
and Artificial Discretization

To illustrate this general case) we consider a hypothetical one-sided Cusum chart,

which in addition to the upper control limit has â, "warning limit". The compound

decision rule is to signal at time ú if the Cusum statistic, given by ,9r : max (0, S¿-r *
X¿) exceeds the upper control limit at time ú; or if two of three consecutive Cusum



82

statistics fall in the interval between the warning and control limits. Without loss

of generality, we assume that the X¿ are i.i.d. ¡/(0,1).

As in the ordinary Cusum chart, for computational reasons the accumulated

statistic X is artificially discretized with step A:

D(X) - i.L, 'i:0,+I,+2,. . . , *(nz -f 1).

We define po : P(D(X) : zA) and F(i) : P(D(X) < ,A) as follows:

rl¿+.5)^ 1 r -2
pn : l. -):"-'- d,n,,i :0,+1, ... )rTrL)

J (i-.s)^ t/2r
¡[-(rn+r)+.5]Â I _¡,2

P-6+r7: J_* ,ffi" 
- dr,

roo 1 1-2
p^*r : l. -): e-'- d,r,

ll(m+r)-.sl\ {2tr

(6 6)

Lñ/.\ \-.Itlxl: > D..
Ll

j=_(mÍr)

This results in a discrete Cusum statistic S. We denote the upper control limit by

h: (m+ 1)A and the warning limit by h*:rn*A., rn* 1rn. Then 
^9¿ 

can assume

the values i,4., i, :0, 1, . . . ,ffi t 1 in the interval [0, å,].

In addition, the chart in this example is naturally divided by the second rule

into three regions (as illustrated in Figure 6.1):

( r, if 0< Stlh*,
I

Ã(Sr) :l12 ifh*<St1h, (67)
|. "r if &>h.

The "history" that is required in this scheme in order to reach a decision is

k : 3, wíLh W¡(3) : [Sr_r, Sr_r, Sr]. We can thus write the two rules as:

ó'(wr(3)) : st,

ór(w(s)) : [n(s,_,), E(s,)]

(6 8)

(6 e)
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h
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Figure 6.1: An illustration of the three-region chart from a one-sided Cusum with
a warning limit.

The combined rules induce a state spâce of a Markov chain of the form:

v'(Wt(3); óu óz) : H (ót(Wr(s)) , ór(Wr(3))) : [R(S,-r ), ,S,], (6.10)

where Æ(Sr) : rr,r2or 13 and St :'iL,'i : 0,1,. .., m -l L For simplicity we write

St : 'i to denote St : i,L. States that includê 1"3 or m * 7 a,s one of their coordinates

can be combined into o, the absorbing state. Hence, the state space is:

f¿: {(Ø,Ø),(Ø,0),... ,(Ø,^), ("r,0), ...,(rr,m),(r2,0),... ,(rr,^* - 1), *} (6.11)

with 2 + 2(m+ 1) + rn* states.

Remark 6.1 Here \Me assumed that Xo is in the dummy state Ø with probability

one, that is, P(X6: Ø) = 1. Hence the states (Ø,Ø), (Ø,0), ..., (Ø,m) are required

so that Y6 and Yr of the imbedded Markov chain {Y¡} can be properly defined with

the initial distribution given by P (Ys: (Ø,Ø)) : I.

If {yr} is not in the absorbing state, it will notmove into a if: (i) ,S¿+r ( â., (ii)

{h. <,Sr+r < h, R(SFI):Ø and A(Sr) :rt}, and (iii) {h. < S¿+r ( h, R(SFI):
n(Sr) : Ø or r1). If one of the three conditions is met, then

P {Y*r: [Æ(^9r),,9t+t] I Yt: [R(St-t), Sr]]

( F(Xt*r: -'St) if 'S,*, : 3,

_ ) P(Xr*,,: ,S¿+r - Sr) if 0 < S¿a1 t h*,: 
1 P(Xr+t: S,*, - ,S,) if condiiion (ii) or (iii) hotd, (6'12)

[ 0 otherwise.
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Since the rows of the transition matrix add to 1, the probability of moving into

the absorbing state can be obtained by subtracting all the positive probabilities in

the row from 1.

To illustrate such a transition matrix, we choose rrl :3, h : 4 (A : _*¿1 
: 1)

and h* :2 (m* : T :2). Then, D(Xr): i,L:,i,,i:0,*1, L2,...,t4, and

^9¿ 
obtains the values 'i :0,7,2,3,4 (with 4 denoting the absorbing state a). The

transition matrix M is given by

I-

(Ø, 0)

(ø, 1)

(ø,2)

(ø,3)

(¡r, o)

(.r, r)

(rt,2)

('r, 3)

(¡: 
' 
o)

\12, t

1 - ¡'(3)

r - F(2)

r - F(-1)

r - 1¡(-2)

I - ¡'(3)

1 - ¡'(2)

I - r¡(-t)
r - F(-2)

r - ¡'(1)

l-

and it can always be written in

Figure 6.2 gives the run length probability distributions for the case when h :3
and h* : 2 with different values of. m, The mean and standard deviation of run

Iength are computed by using the following formulas:

the for

E [RL]

n lnr'l

{ (1- ¡¡)-'r*,

€ (1 + N) (/ - N)-'L',r,

from Fu, Spiring

Table 6.1.

F(o) p1

¡'(*1) po

Ì¡(-2) p-I

F(-3) p-2

F(-2) p-r

F(-3) p-2

and Xie (2002), Theorem 1(iii). Numerical results are given in
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m=29
0.1

0.08

0.06

0.04

0.o2

0

0.1

0.08

0.06

0.04

o.o2

0

0

0

Figure 6.2: Probabiiity distributions of the run length for a one sided Cusum with
3-sigma control limit, 2-sigma warning limit and a compound decision rule, at rn :
14,29,74,I49.

m=74 m=1 49
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Table 6.1: Quartiles, mean and standard deviation of the run length for a one-sided
Cusum with 3-sigma control limit, 2-sigma warning limit and a compound decision
rule at different levels of discretization (rn).

rn Qt Qz Qz Mean StdDev.

14

29
7,1ta

749
299

749
I499
r874

4.626
5.066
5.223
5.316

5.348

5.364
t tÈ7Dd.tJ r t-)

5.376
5.376

8.444
9.213
9.486

9.649
9.703
9.730
9.747
9.753
9.753

74.904
76.232
16.701

76.976
77.075
17.r24
17.154
77.764
77.764

77.739
72.749
13.103

13.319
13.392

73.428
13.450
r,7.+Ð (

13.459

9.386
10.187
70.473
10.649

10.709
10.738

t0.756
70.762
10.763

Remark 6.2 Traditionaliy, the mean and standard deviation of the run-length dis-

tribution are used for comparing the performance of control charts. However, in view

of our numerical result that the run length distribution for a compound control rule

is rather right skewed, we feel that displaying the quantiles of the distribution is

more adequate. The quantiles can be derived directly from the distribution. In

general, the distribution resulting from a compound control rule is always highly

skewed to the right, especially when it involves several control charts. This is a

direct consequence of the fact that the waiting time 7 resulting from the compound

rule is the minimum waiting time among the individual rules Tt,Tz,. . . ,Tn.

6.4 Discussion

In many cases two or more control charts are used simultaneously, either to monitor

several parameters (e.g., the mean and the standard deviation), or to be able to

detect different sizes or types of shifts (..g., u Cusum and an X-bar simultaneously).

In such cases, it is important to know the signaling behavior of the joint charts.
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The combined run-length is the time until the first signal is raised by any one

of the charts. Mathematicaliy, it is a waiting time problem with

T:min(Tr,...,Tr),

where fr, 'i : I,...,r, are waiting times of r charts (or decision rules). When

the monitoring charts are independent, the distribution of the combined run-length

can be easily derived. In the dependent case, the combined run-length distribution

of a compound rule is more complicated. Even in this situation, it still can be

incorporated into the general Markov chain imbedding framework. For example,

the additional Western Electric rule /a "eight consecutive points fall on one side of

the centerline" can be easily incorporated into the example of the compound rule

of Section 6.3 by using an additional coordinate with states 0, 1, . . . ,7 and state

8 as absorbing state. We leave the details to the reader. Further, with a simple

modification of the transition matrix, the results in Section 6.3 can be extended to

the case when the sequence {X¿} has a Markovian dependence structure.

The unified approach can be used to learn about a chart's ability to detect

different types of signals. In order to study the performance of some monitoring

scheme for a particular parameter pattern (..g., u step-shift or linear trend from the

target value), we can integrate a given pattern into the Markov chain and compute

the run length distribution. In comparison to the case of a constant parameter,

the Markov chain is no longer time homogeneous. This means that the transition

probabilities will now depend on the value of the parameter at time ú. A simple

example would be to incorporate a simulated pattern of the process mean ¡l¿ into a

Shewhart scheme. The transition matrix, M¡, would be the same as (6.3), except

lhat po would depend on time, i.e.po,r.

In conclusion, the general framework described here can be used for framing a

multitude of control charts into a Markov chain imbedding setting for the purpose
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of computing the run length distribution. It extends to combinations of charts, to

dependence, and to many other monitoring schemes, both hypothetical and ones

suggested in the control chart literature.



Chapter 7

Future Directions

7.L Asymptotics of Runs and Patterns

In this section, we develop some general results which may be useful for studying

the asymptotics of runs and patterns. Let .4. be a simple pattern and {X¿} be a

sequence of i.i.d. multistate trials. Suppose nonoverlapping counting is used. Recall

the following results obtained in Chapter 3:

(u) e*r,,n (t) : [p*,^,(t)]".

(b) Since p-rnr(r) : 1* (t - *) Õo",n,(s), it follows that

Õ.,n, (r) : å [r - ,n,",^, (r)] .

(c) From (b), we have (Þ-,..n,(r) : å [1 - pou,.,n,(r)].

(d) Since P(X"(L) ( r) : P(W(r, 
^) 

> n) (Feller, 1968), we have

P(x"(L) : r) : P(x"(L) < r * 1) * P(x"(^) < 
")

: P(W(r +1:Ä) >n)-P(W(r:Ä) >n).

Based on these results, we have the following theorem.

Theorem 7.1 Gi,uen a si,mple pattern lt, the double probabi,li,ty generøti,ng funct'ion

of the number of occurrences X"(lt) is gi,uen by

G(s,t): Ë e*n(n)(t)s,:+ ff:f".4+l g.Ð
n=o )" 1-s11 -g*,r(r)¿l

89
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Proof. It follows from the definition that

oo

G(s,t) : D ç*^,n,(t)t"
n=0

: Ë fË P6,6): r)¿') s'L \ L - \-^7¿\'^l
n=0 \r:0 /
oo co

: Ð Ð [P(W(r+ 1 : .A.) > n) - p(W(r, 
^) 

> n)]s"t,
r=0 n:0
co .l oo: f ;tlP(w(r+1:Â) )niL)-P(w(r:.A.) )nl-1)l s'+lr"

r=0 " n=0

ool
: - I 

ftr,r+r:,t¡(s) - Qwþ,¡v)(t)] ¿'
--¡¡ 5 L

lR s ¡ /\ ,'l ,.: 
- L r - " l4*(,,nt\s) - 9*ç¡,,n¡(")] t'sf¡r-s'
t* 

Ë ew.,¡) (r)¿'- å îr*u*,n,(s)¿':
1-o"_o - -r:O

1 |. I ç-,n, (r) I
1 - r Ll - ç*,n,þ)t t - ç*rnrþ)tl

1 f1_ç*,n,G)l: 1_, Lr _ p*rnt (r)¿l

This completes the proof. tr

Corollary 7.1 We haue from Theorem 7.1 that

s*nØ)(t): n.D?G(t,')1,:o' (2)

Theorem 7.1 states that the probability generating function g*^u,) (t) of x"(^)
can be obtained through the double probability generating function G(s,t) of X"(Â).

We give an example to illustrate this result.
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Example 7.1 Let a simple pattern be Á. : S in a sequence of n Bernoulli trials.

Then we can obtain the probability generating function of i4z(,4.) as

ps
1 - n<

From Theorem 7.1 and Corollary 7.1, we have

G(s,t): *t43):_;_,"
: 7 + (q + pt) s+ (ø + pt)"'+ (q + pt)t tt

+ (q + pt)n tn + (q + pt)t tu + "'.

Similarly, if ,4. : ,9,9, then we have

,,pð
t-qs-pqs2'

and hence

G(s, f) : I - qs - p2s' - pqs2

| - ç*,n,þ)t (1 - r) (1 - qr - pqs2 - p2s2t)
1f

1-' L

t_t-
1 - p,",n, (t)

: 1 + s + (t - o' + p't)r' + (t - p2 - p2q * p2t + qp',t) tt

+ (1 - p' - p'q - p'qt - p3q + p't - p4t + p2qt * p3qt

+p'q't+p4t2)s4+..'.

However, differentiating the double generating function G(s,t) n times may be

troublesome. It is necessâry to look for another \May to solve this problem. In view

of Equation (7.1), the double generating function G(s, ú) always has a rational form.

Stanley (1986) proposed a method for computing the coefficients of a rational func-

tíon R(r)lQ@) : Ð,,¿o fnrn, which we briefly describe. Without loss of generality,

suppose that Ã(z) : gol/fi*..'* þ"r" and Q(ø) :1* 1úrl"'t'Y¿rd (possibty

e> d).Then, equating the coefficients of rn in R(r): Q@)D">o/'r" yields the

recursive formula

l. /.ó/fn : -"hfn-1 -' " -'Y¿fn-¿t þn,
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\,vhere Ín : 0 for n ( 0 and þn : 0 for n ) e. Equation (7.3) provides an easy

way to obtain the probability generatingfunction of X"(t\.). For brevity, we denote

g*n(¡\ (i) as,p"(t).

Theorem 7.2 The probabi,li,ty generati,ng functi,on of X"(L) wi'th L - ^9' ' S oÍ

length k i,n a sequence of Bernoulli, tri,als sati,sfi,es the followi,ng set of recurrence

relat'ions:

( ç,-,,(t) + pkte,-r(¿) - pk(q + pt)ç"-*-{t) for n > k,

ç,(t):{ t-pk+pkt forn:k,
[ 1 fornlk.

la A\
\r.=/

Proof. Since

9*çn¡(s) :

it follows from Theorem 7.1 that

(p')*(1 - ps)

1-s-Fqqksk+r)

1-

1 - s - pktsk + pk(q * pt)sn+t

r - prtr
1 - s - pktsk +pk(q¡_pt)sn+r'

Let Æ(s) - 1-pfrse and 8(r) :1-s -pkßk+pk(q¡-pt)sk+r. Setting 0o:!,
0n: -pk,.yt: _7,.yt : -pkt, and 7¿".1 : pk(q*pf) and applying Equation (7.3),

we establish Equations (7.a). !

\Mhen ,4. : ,S, it is well-known that the random variable X"(^) (binomial

random variable) in a sequence of n Bernoulli trials with success probability p : pn

tends to a Poisson random variable with parameter À : )ryyn¿"; that is,

ìf

)ry.P6"(A) : *) : "-^'i, r:0,1,....

1IG(s,t):, -lf -ò L

pournr (t) l
ç--@)
s + qpk sk+1f

,l1-s L

1f
1-' L

1

1

1 - s - pktsk + pk(q -l

(1 - r) - pktk(7 -

r _ pksh
Il

l

ps,
h+7t^

s^I
(1

pt

s)

(7 5)
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This classical result is known in the literature as "Poisson theorem" (see Balakr-

ishnan and Koutras, 2002, page 175). Furthermote, several asymptotic results for

X"(^) with Â - ^9. 
. .,S of length k have been constructed that are parallel to the

Poisson theorem under diflerent assumptions on p and k. For example, assume that

the success probability 0 < p < 1 (q : l-p) is fixed and the length k: kn depends

on n) so that nqpk" -+ À as both k,, -+ oo and n -+ oo. Feller (1968), by using

the asymptotic form of the probability generating function of X"(.A.), showed that

the limiting distribution of X"(L) is Poisson. In addition, he also established the

asymptotic normality of X"(.4,) via renewal theoretic arguments.

Most of the aforementioned asymptotic results in the literature were focused on

runs in a sequence of bistate trials. For any pattern Â, it is challenging to study these

asymptotic problems, especially when {X¿} is a sequence of i.i.d. (or homogeneous

Markov dependent) rn-state (m > 2) trials. Equations (7.1) and (7.3) provide a

direction for studying these asymptotic problems. We ieave this unfinished work to

the interested reader.

7.2 Other Issues

In addition to the study of asymptotics of runs and patterns, some interesting issues

that were not addressed in this thesis are listed below for future research.

1. In Chapters 3 and 4, we developed a simple and general method for com-

puting the probability generating functions of compound and later patterns.

The probability generating function can also be used to obtain the variance;

however, it may be a tedious task when the form of the probability generating

function is very complicated. It is necessary to develop a simple and general

method for computing the variance.
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2. All the results in Chapters 3 and 4can be extended to the case when {&} is

a sequence of higher order homogeneous Markov dependent trials. The key to

solving this problem is the appropriate setup of the initial distributions, and

we need two or more components for each state in the state space f).

3. The unified approach for computing the run length probability distributions

in Chapter 6 can be extended to the case when the observations {X¿} have

AR(I) or AR(2) dependent structure.

4. There is not much literature regarding statistical inference of parameters in

waiting time distributions. Since the finite Marl<ov chain imbedding technique

has advantages in numerical computation, a computer-based approach may be

useful in treating such problems.



Appendix

A"L. Giuen the transiti,on probabi,litu

0

I
2M: 

:

n-1,
n

and for r :7,

matri,r

qp
qp 0

qp

o qp
1

wehaue,for0<r1n,

¿oMne',¡r: ( :\ p"q,-,, (1)
\",/

where €o : (1,0,...,0)rx(n+q and €t:*r: (0,...,1,...,O)rx(rr+r) wi,th 1 at the

(r + 7)th component.

Proof. We prove Equation (1) bV induction. For n : 1, we have r : 0 or 1. Thus,

we have for z : 0,

€oM;,: r',ol 
[ 3 T ] | å ] 

:n: ( å )o,n'

ËoM.'r: tt,ol [3 T ] [?
:p: ( å)''n'

This implies that Equation (1) holds lor n:1. Now suppose Equation (1) holds

for n - 1: that is.

{sM'-Ld"*, : ( " ;t ) 
o"n"_u-", o ( r 3 n - r.

95
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Note that

0

1

:

Md^,. : :-'--î+L r*I
:

-^1'IL_ L

n

qp
qp 0

qp
qp

0 ".

0

0

:

0

1

0

0

qp
1

: pe*l 8êr+r.

Hence, from our assumption for r¿ - 1 and the above equation, \Me have

{oMne',*, : ËoM"-' (lW"l-*r1

: ËoM"-' (r.1, + Qe',+t)

: pËoM"-'.1, + q¿oMn-rd,+t

: ,(:_i) ,r-,n@-,)-("-1) + n(";t 
) 

oxn@-')-r
\- ',/

: l( "-1 l*/n-1\lL\,'-rl \ " ))o-u"-
/-\: I'" llfqn-'.01r1n.
\r /'

This implies that Equation (1) holds for any n. This completes the proof. !

.L2. Gi,uen a pattern lt (si.mple or con'Lpound), the eract di,stributi.on of the wai,ti,ng

ti,me random uari,able W (L) i.s gi,uen by

P(W(L) - n): €^¡"-'(1 - 
^¡)1;,

where € : (1,0,...,0) i.s the i,niti.al di,stri,buti,on, I i,s the k x k i,denti,ty matri,r, and

L'^ 'i,s the transpose of the row uector 1¡ : (1, I,...,1)r*r.
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Proof. For the same reason as stated in Theorem 3.2, we note that the tail proba-

bility of W(,4.) is given by

P(W(L))n):€^r'-'1;.

Hence, we have

P(W(L) : n) : P(W(L) > n) - P(w(L) > n* 1)

: €^I"-t L'k - ÊN"L'k

: {^,r'-r(/ _ N)1;.

This completes the proof. ¡

43. Let l\: Ar U lt2 be a cornpound pattern ui,th lvt - ,S' ' ' S oÍ length k1 and'

L2 -- F . ' . F of length k2 i,n a sequence of Bernoulli, trials wi,th success probabi,li,ty

p and fai,lure probabi,li,ty Q: I - p, respect'iuely. The probabi,li,tE generati'ng functi'on

of the wai,ti,ng ti,me random uari,able W (L) i,s gi,uen by

,^ /o\ - 
(r -ps)(ps)È'[1 - (qs)È')] + (1 -qs)(qs)Æ'lr - (ps)È'] ()\

Yvtç¡'¡\") - (1 -pr)(1 - qr) -pqs2 [1 - (ps)r"-t] [1 - (qs)À"-r] ' \-'l

Proof. First, we note that the imbedded Markov chain {Y¿} associated with W(L)

has state space

frr-1 kz-I

f) : {Ø,s,,g,s,...,m, F,FF,...,1:r-,.,r)c,2}

{1,2,3,. . . ,kt,k1l I,k1|_ 2, . . . ,k, * kz - I, a1, a2}
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and transition probabilitv matrix

M:

1

2

-i
k1

+1
-L,

:

o

-1
A1

a2

It follows from Theorem 3.3 that (/1(r), dr(r),

simultaneous recursive eouations

,Ókr+kr-r(s)) is the solution of the

* órr+nrt(s)1,

K1

1".

fu-r k2

r+.kz

d'(s)

ór(t)

d'(')

ó+(')

dr, (")

d,t,a1(s)

ónr+z(s)

dt'+t (s)

ps lót(s) + /¿,a1(s)

psóz(s),

PsÓsG),

psÓnr-t(s),

qs [dr(s) + . . . + d*,(r)],

qsÓnr+t(s),

qsÓnr+z(s),

ón'+nrt(s) qsónr+n"-z(s).

From the above simultaneous recursive equations, note that /3(s) ,...,ónr(s) can

be expressed in terms of /2(s); that is, ds(r) : psóz(s),...,ön,(") : (pt)r,-'ór(t).
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Hence, þ2(s) can be written as

ór(s) : ps[ót(r) + dn,*r(") +. ..-t ón,+r,-t(r)]

: ps2 + pslónr+t(r) + .'. * ón,+,,-r(r)]

: ps2 + pt {øt' + qtlór!) + psþ2(s) + . . .+ (pt)r,-'ör!))

+q'rt + (qt)' [ørir) +psþ2(s) +...+ (pr)*'-'órG)]+..'

* qkz-tr*' i (qs)k'-t iør{r) + psþ2(s) + . . .+ (pr)*'-'dr(r)]}

Solving the above equation, we obtain

ó,(s): G:lÐT1 _
ps2 (L - ps) lr - (qr)*,]

Thus, d*,(r) : (ps)kt-292(s) can

Similarl¡

qs) - pqs2lI

be obtained

'..+

the above expression. By

: (1 -ps)(ps)å' i1 - (qs)fr,)] + (r - qs)(qs)e, 
11 - þs)È']

(1 -pt)(1 - q") - pqs2 [1 - (ps)r'-t] 11 - (qt)r,-'l

This completes the proof. tr

The result in A3 matches the formula derived by Feller (1968) and Ebne-

shahrashoob and Sobel (1990). It also shows that the finite Markov chain imbedding

dr(r))

- (ps)t'-tJ [t - 1qs¡t,-t]'

by substituting the solution of /2(s).

psg2(s) +

lìtürþ) 
]

/2(s) inio

Ó*'+*'-'(t) :- 

"'nio"or'""r;ijÏ:t 

lø'{') +

, ;1 ,( f1 -þs¡r'-t(qr)"'-'1s+L 
1_ps(

can be obtained by substituting the solution of

Theorem 3.4 and some simple algebra, we get

g*61þ) : PÓnr(s) * qÓn'+n,-{s)

(pt)o'-'órþ))\
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technique can be used in deriving a general formula. Under the same assumption

as in 43, \Me can obtain a general formula for the case of first-order homogeneous

Markov dependent bistate trials. We state it without proof.

A4. Let l\ : Ar U 4.2 be a cornpound pattern wi.th 4.1 - .9. . S of length k1 and,

Lz:F...Follengthk2i,nasequenceoffirst-orderhomogeneousMarlcoudependent

bi,state tri,als wi,th i,ni,ti,al probabi,li,ti,es P(X1- S) : p and P(Xt - F) : q: I - p,

r es p ecti,u ely, an d tran si,ti, o n p r o b ab i,li,ty m øtr i,r

A-: lo' Qt

.r Lpz Qz

where Q¿: I - pi, 'i : I,2. Then the probabi,li,ty generati,ng functi,on of the wai,ti,ng

t'ime random uariable W(L) i,s gi,uen by

A' -F Ao/-\ ...._ ' tD\Yry67\ð) - A_ r \d/

where

A1 : (1 * p,r)(prr)*'-t {rr - p8zs2 t qprr' lI - Qrt)r,-t] },
L2 : (I - qrt)(qrr)^,-t {nr - qpts2 * pqi's211 - þ,r)*'-t]},
A3 : (1 -prr) (r - qrt) - pzQts2 i1 - (prr)*'-t] [t - @rt)r,-tf .
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