
 

FABRICATION AND OPTIMIZATION OF A SENSOR ARRAY FOR INCIPIENT 

GRAIN SPOILAGE MONITORING 

 

 

 

BY 

MD. EFTEKHAR HOSSAIN 

 

 

 

A thesis submitted 

to the Faculty of Graduate Studies 

in partial fulfillment of the requirement for the degree of 

 

Master of Science 

 

 

 

Department of Biosystems Engineering 

University of Manitoba 

Winnipeg, Manitoba 

 

 
 Copyright © August 2010 by Md. Eftekhar Hossain  



i 
 

THE UNIVERSITY OF MANITOBA  

FACULTY OF GRADUATE STUDIES 

 
******** 

 
 

COPYRIGHT PERMISSION 
 
 

FABRICATION AND OPTIMIZATION OF A SENSOR ARRAY FOR INCIPIENT 

GRAIN SPOILAGE MONITORING 

 
 

A Thesis/Practicum submitted to the Faculty of Graduate Studies of  

The University of Manitoba  

in partial fulfillment of the requirement of the degree of 

 
MASTER OF SCIENCE 

 
by 
 

MD. EFTEKHAR HOSSAIN 
 
 
 
 
 

© August 2010 
 
 

Permission has been granted to the Library of the University of Manitoba to lend or 
sell copies of this thesis/practicum, to the National Library of Canada to microfilm 
this thesis and to lend or sell copies of the film, and to University Microfilms Inc. to 

publish an abstract of this thesis/practicum. 
 

This reproduction or copy of this thesis has been made available by authority of 

the copyright owner solely for the purpose of private study and research, and may 

only be reproduced and copied as permitted by copyright laws or with express 

written authorization from the copyright owner. 



ii 
 

ABSTRACT 

During storage of grain, there may have significant damage to its quality due to 

unfavorable physical and biological interactions and thus requires continuous 

monitoring. Therefore, an easy, cost-effective and environmentally friendly method 

is necessary for efficient monitoring of stored-grain. Arrays of sensors are being 

used for classifying liquors, perfumes, quality of food products mimicking 

mammalian olfactory systems. Monitoring of stored grain is a new application of 

sensor arrays. The main objective was to fabricate a carbon black polymer sensor 

array which can easily monitor incipient grain spoilage by detecting spoiling stored 

grain volatiles (benzene derivatives and aliphatic hydrocarbon derivatives) with 

minimum interference from relative humidity. Various aspects of a good sensor 

were analyzed using statistical analysis (RSD, LDA, PCA, t-test).  The developed 

sensor array can identify red flour beetle-infected and uninfected wheat and fungal 

volatiles at ambient conditions as well as some stored grain conditions (MC 16%, 

RH 52%). 
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Chapter I 

1.0 INTRODUCTION 

1.1 Background  

The world‘s principal cereal crops are barley, corn, wheat, millet, oats, rice, 

rye and sorghum. In a recent Food and Agricultural Organization cereal production 

analysis, worldwide cereal harvested was 2.24 billions of tonnes in 2008, and 

forecasted world cereal carryover was at about 500 million tonnes  into the 

following seasons, the highest level since 2002 (FAOSTAT, 2008). Inevitably, 

pressure is increasing on grain storage for the farmers or grain storage companies. 

The prolonged storage of grains requires special attention because grain is 

perishable commodity. During storage, post-harvest losses continue to range from 

9% in North America to over 30 % in developing countries (FAO, 2000). The 

significant portion of post harvest losses is caused by organisms such as insects, 

mites, and fungi. Any loss in quality or quantity of the produced grain incurs 

negative economic loss for farmers or storage managers. Also, world average 

cereal production increased about 2% per year only within last decade (FAOSTAT, 

2009). So, it is clear that good storage practice and continuous monitoring of grain 

can reduce significant pressure on world cereal production and make a remarkable 

contribution on world food security. 
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Every stored product has its own characteristic smell (Seitz et al., 1999). It 

is due to generation of species-specific volatiles through metabolism in the live 

kernel. Some smells are fruity while some are minty; some are mild while some are 

pungent. Each characteristics smell belongs to certain chemical compositions, 

e.g., alcohols, esters, aldehydes, aromatics. These volatiles can be used as 

indicator volatiles for specific healthy grain (e.g., sweet odour due to long chain 

aliphatic alcohol from wheat with certain moisture content, esteric fruity smell from 

some rice species).  Any deviation from this characteristics odour could give an 

indication of grain spoilage. 

Characteristic smells of stored products do not change much under proper 

storage conditions; however, an increase in moisture content (MC), relative 

humidity (RH), temperature (T), or foreign agents (insects, fungi, mites etc.) may 

change characteristic smells, which could be used as an indicator volatile. Red 

flour beetles usually produce quinones in a harsh environment (Howard, 1987; 

Howard et al., 1986). The fungal volatiles, mostly alcohols and ketones were 

monitored by several authors (Kaminski et al., 1987; Sinha et al., 1988 and 

Borjesson et al., 1989). These volatiles were identified by gas chromatography-

mass spectrometry (GC-MS) method.   

The causes of foreign volatiles are insect and mite pheromones (sex and 

aggregation), fungal odours, volatiles from rodent or bird excreta etc. Several 

authors (Ladisch et al., 1967; Haward 1987; Unruh et al., 1998 and Villaverde et 

al., 2007) reported insect pheromones, e.g., benzoquinone derivatives from red 

flour beetles. The reported levels of defensive secretions are variable, depending 
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not only on age and gender, but also on strain, food availability, photoperiod, 

beetle density, and health (Unruh et al., 1998).  

Volatiles arising from growth of pure cultures of key spoilage fungi, including 

Aspergillus, Penicillium, Alternaria and Fusarium species on sterile wheat, maize, 

barley and whole wheat bread have been described elsewhere (Tuma et al., 1989; 

Borjesson et al., 1989; Harris et al., 1986; Kaminski et al., 1974). A range of 

classes of volatile compounds including alcohols, carbonyls and hydrocarbons 

have been identified. The major volatile compounds found were 3-methyl-1-

butanol, 1-octen-3-ol and other 8-carbon ketones and alcohols.  

There are a wide variety of odour volatiles present in a grain bin depending 

on surrounding conditions around stored-grain. Some are present in high 

concentration, while some are at very low concentration. Some are stable over the 

period of time, while others are unstable or degradable. This choice should be 

carefully considered while selecting indicator volatiles. It would be worthy if 

reasonably stable and high concentration volatile is selected as an indicator. 

Highly concentrated and stable organic volatiles are good for monitoring purposes.  

In addition to organic volatile emission, grain also produces carbon dioxide 

(CO2) and water vapour from bulk, usually generated due to respiration of grains, 

insects and degradation of grain kernels by moulds or mites. Investigation of CO2 

and H2O concentration could be a very good tool for monitoring of gain quality. 

Very recently Jayas and Freund group developed a sensor for the monitoring of 

CO2 in wheat (Neethirajan et al., 2010). The polyanilineboronic acid (PABA) 

sensor could detect CO2 up to 2455 ppm at variable conditions. The developed 
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conducting polymer CO2 sensor exhibited dynamic performance in its response, 

recovery times, sensitivity, selectivity, stability when exposed to various CO2 levels 

inside simulated grain bulk conditions (Neethirajan, 2009).  

There are various techniques available for the detection of insect, mite or 

fungal infestation in the stored-product. Each technique has some advantages 

over others as well as limitations too. On-farm physical methods are manual 

inspection, traps, and probes (Subramanyam et al., 1990), sieving, cracking-

floatation and Berlese funnels are being used at present to detect insects in grain 

handling facilities. These methods are moderately efficient and are time 

consuming. Acoustic detection (Hangstrum et al., 1996; Mankin et al., 1996), 

pheromone traps (Suzuki and Mori, 1983; Vick et al., 1990), uric acid 

measurement, near-infrared spectroscopy, and soft X-ray method (Neethirajan et 

al.,  2007b) have the potential for use at the industry level to detect insects in grain 

samples as their usefulness was demonstrated in different research laboratories.  

Human perception through the sensory systems is the oldest way to detect 

grain quality throughout the world. Trained and efficient human sensory system 

can recognize easily moderate to intense odours that generate from grain. This 

method of detection is risky and hazardous for human health. In both developing 

and developed countries, grains are checked for off-odours upon delivery at grain 

handling and storage facilities. Two drawbacks, lack of correct decisions and 

potential negative health impact are necessitating replacement of human 

perception by instrumental methods. 
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There are various instrumental methods applied by several authors 

(Alexander and Barton, 1943; Happ, 1968; Wirtz et al., 1978;   Ladisch et al., 1967; 

Unruh et al., 1998 and Villaverde et al., 2007) for the monitoring of insect volatiles. 

These methods are ultra-violet visible spectroscopy (UV-VIS), polarography, thin 

layer chromatography, gas chromatography-based principles. Each method 

qualitatively detects the presence of particular volatiles. However, quantitative 

detection of those volatiles is cumbersome and involves a number of steps. In 

most case no quantitative information is available for these studies. Many of these 

techniques are also time-consuming, expensive or not sensitive enough for the 

early detection of fungal and insect activity. A specific biochemical marker with 

adequate reproducibility to detect early spoilage would help prevent major losses 

as a result of moulding infection or insect infestation of stored grain due to poor 

storage management. 

In-situ measurement or chemical analysis of any grain bin volatile sample 

has many advantages over ex-situ because in-situ methods avoid too many 

sampling steps and analysis. The development of an electronic nose using gas a 

sensor array combined with a pattern recognition routine offers interesting 

alternatives. Instruments of this type have already proven useful in a number of 

practical applications such as to classify various liquors, perfumes, tobacco brands 

and beers (Fukuda et al., 1991; Nanto et al., 1992; Pearce et al., 1993).  An 

electronic nose has been tested for quality estimation of ground meat (Winquist et 

al., 1993), cheeses and other foods (Lundstrom et al., 1993). 
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For odour classification metal oxide, intrinsically conducting polymer and 

conducting polymer composite sensors are usually used. Depending upon volatile 

characteristics, array of sensing materials are selected for odour identification and 

discrimination 

Carbon black- conducting polymer sensors have been employed to identify 

a wide variety of organic volatiles (Severin, 1999). Like conducting polymer 

sensors, composite sensors also operate at room temperature. It has been 

reported that a sensory array using conducting polymer composites has higher 

selectivity than both tin oxide and conducting polymer sensor arrays (Doleman et 

al., 1998).  

The level of indicator volatiles usually present in the granaries is very low, 

parts per billion (ppb) to a few parts per million (ppm) levels. So, careful selection 

of techniques for the monitoring of insect and fungal infestation is required.  The 

presence of volatile concentration should be within the minimum detection limit 

(MDL) of the instrumental technique. If not, pre-concentration of volatile will be 

required. Also rigorous data analysis is necessary for effective monitoring of 

stored-gain volatiles. 

Our particular interest is to detect incipient spoilage of stored-grain (e.g. 

wheat) by insect (e.g. red flour beetle) or fungi (Penicillium spp.) at storage 

conditions. Insect and fungal infestation involves pheromones (quinone 

derivatives) and alcoholic or ketonic volatiles (3-methyl-1-butanol, 1-octen-3-ol, 1-

octanol, 3-octanone), respectively. To detect the presence of such volatiles 

polymer composite or conducting polymer array may be used. 
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A suitable, reliable, reproducible and selective sensor array can be made 

using training volatiles avoiding interfering gases (water vapour). For example, 

poly styrene-co-allyl alcohol (PSAA), and poly-4-vinyl phenol (P4VP) are the most 

sensitive to alcoholic volatiles. Also interfering volatile response can be masked or 

reduced using a selective polymer. For example, water vapour may influence 

sensor response which can be overcome by the incorporation of hydrophobic 

polymer in the sensor arrays. 

The keen interest was to detect benzoquinone and benzene derivatives and 

aliphatic hydrocarbon derivatives (especially alcohols) as a measures of insect 

(Red Flour Beetle) and fungal infestation, respectively.  1,4-benzoquinone, anisole 

and  1-octanol were used as model volatiles along with others (methanol, acetone, 

toluene, tetrahydrofuran, water vapour) selected for the whole experimental 

studies.  

1.2 Objective 

The primary objective of this research was to develop a sensor array which, 

can efficiently recognize and differentiate the presence of aromatic compounds 

(anisole), benzoquinone, and aliphatic alcohols (1-octanol). 

To achieve the prime objective, the following sub-objectives were pursued  

 to make a suitable carbon black(CB) sensor array using stored-grain model 

volatiles; and  

 to assess the potential for using sensor array technology for detection of 

incipient spoilage of grain by recognizing compounds mentioned above.  
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1.3 Organization of the Thesis 

In this thesis, the importance of proper grain storage, prolongation of grain 

storage may cause deterioration of its quality, various methods for odour volatile 

detection with their advantages and disadvantages, types of sensor array and their 

potential applicability in incipient spoilage detection are described. This is followed 

by methods of CB-organic polymer sensor arrays fabrication and assessment of its 

performance with model volatiles statistically. Finally, use of the sensor array for 

the detection of incipient grain spoilage in small scale laboratory study is 

described. 
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Chapter II 

2.0 LITERATURE REVIEW 

2.1 Grain Storage Issues 

Harvested grain is usually not consumed by human or domestic animals in 

the same season or year. Excess production is carried over to the following 

season or even longer. In Canada, grain is generally stored in weather and pest 

proof containers or structures so that its viability, nutritional quality and 

marketability can be assured at a future date. However, grain decays with time like 

any other living organism. Stored-grain is an artificial ecosystem (Sinha and Muir, 

1973) and can be managed proficiently for a long period of time if its associated 

parameters are well understood and managed properly. Grain storage has been a 

concern throughout history. Archaeological research has revealed that large reed 

baskets or clay jars embedded in soil were archetypes of granaries used by 

neolithic people of the Nile Delta in Lower Egypt (Levinson and Levinson, 1989). In 

the first dynasty (2920-2770 BC), the granaries were cylindrical earthen silos with 

roof openings. During the middle (2040-1785 BC) and new Kingdom (1554-1080 

BC) the granaries were cylindrical chambers with vaulted rooves. The ancient 

Egyptian structures indicate that ancestors had the knowledge to preserve grain 

and to protect from insects and weather. 

For short term preservation of grain (few seasons-four to eight months) 

cylindrical bamboo baskets or granaries, or clay jars are still popular in Asian and 

African regions. In North America, wooden granaries were used for grain 

preservation in early years (1850-1950). Grain storage techniques have changed 
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world wide since the mid 20th century. It is now considered technology dependent 

and is controlled by politics, economics of the market place, weather, biological 

and other factors. 

A number of grain storage techniques are used worldwide. These 

techniques vary from country to country, region to region. The best methods are 

adapted from regional history and cultural practices based on economic viabilities. 

Grain storage systems can be classified as either bag or bulk in Asian regions 

(IRRI, 2010). In most parts of Asia grain is stored in 40-80 kg bags made from 

either jute or woven plastic. Depending on the size of storage, these bags are 

normally formed into a stack. Bags should be stacked under cover, e.g., under a 

roof, in a shed or granary or under water proof tarpaulins. Bags should be stacked 

on pallets or on an above ground structure to avoid the possibility of absorbing 

moisture from the floor. Some farmers use bag storage in outside granaries, which 

have been constructed from timber, mud/cement, large woven bamboo, or palm 

leaves. 

In several developing countries at the farm level, grain is often stored in bulk 

in small outside granaries or in woven baskets or containers made from wood, 

metal or concrete, which are located under or inside the house. These storage 

practices vary in capacity from 200-1000 kg. Losses from insects, rodents, birds 

and moisture uptake are usually high in such traditional bulk storage systems. The 

large export mills and collection houses sometimes use metal or concrete silos. 

These silos range in size from 20 to 2,000 t capacity. The advantage of silos is that 
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they can be more easily sealed for fumigation and less grain is spilt or wasted.  

Bulk storage warehouses are not very common in Asia. 

In North America, Australia and Europe bulk storage systems are used for 

grain preservation. As their export market is quite large compared with other 

countries, they maintain very systematic, cost effective approaches from farm level 

storage to transportation and, ultimately to internal and export markets. Long term 

bulk storage requires special attention from an economic point of view. After 

harvesting, on-farm storage is common in Canada for better management. 

Previously, storage systems were mainly wooden granaries. Wooden granaries 

have gradually been replaced by flat bottom cylindrical corrugated steel structures 

(followed by hopper bottom at later stages) for its efficiency in storage and 

handling (Figure 2.1). When a demand is made either internally or externally then 

this bulk grain is loaded onto trucks and is transferred to nearby elevators (grain 

handling facilities) from where grain can be loaded to rail cars for moving to 

transfer or terminal elevators and then mostly by ship to export markets. Farmers 

have the option to load their own railcars and bypass the elevator system as a 

transportation subsidy is paid by the Canadian Government. Terminal elevators 

are located in Vancouver, Prince Rupert and Thunder Bay. Terminal elevator 

systems are highly efficient in cleaning and maintaining the high of quality grain 

(Moore, 1995). 

Geographical location plays a vital role in stored grain insect infestation 

development. In tropical regions, infestations occur much faster then in cold 

regions where storage conditions are much cooler and drier all year round. 
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Whatever, the insect population present initially in the stored product, its 

reproduction and development is faster under favorable conditions of high 

temperatures (>30oC) and relative humidity (about 70%). 

a) 

 

Source: Cereal Research Center, Winnipeg, Manitoba 

b) 

 

 

Figure 2.1: a) Typical on-farm grain storage systems in Canada b) cross section of   

        hopper-bottom corrugated steel bin (Vertical solid lines-temperature   

        probes, F-cooling fan). 

 

In Canada, northern parts of the USA and Russia, the insect infestation rate 

is quite low compared to southern parts of the USA and tropical regions of the 

world, e.g., India, Thailand, and Bangladesh. There are various factors involved in 

tropical regions for high infestation. Relative humidity is consistently high during 

the year, temperatures are high, structures of granaries are different, a wide 

variety of insect species are present and their population dynamics under those 
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favorable conditions results in heavy infestations, and knowledge to manage grain 

properly is limited. 

2.1.1 Stored-grain insects, mites and fungi 

Various kinds of insects may infest stored products. The presence of insects 

varies from grain to grain and even in the geographical location. There are some 

primary and secondary insect pests in certain regions. In Canada, there are 

approximately 55,000 species of insects, a small number of which are considered 

as pests. The Canadian Grain Commission (CGC, 2010) recognizes over 50 

species of insects (including grain mites) as pests of stored grain. The Canadian 

Grain Commission identifies 20 species of insects as primary pests (19 beetle 

species and 1 species of moth). Over 33 species are considered to be secondary 

pests (21 beetle species, 11 moth species, booklice species and grain mites). 

Stored-product insects may be classified according to their sources of food 

(Linsley, 1944). They are seed-infesting species, fungus-feeding species, 

scavengers on dead animal matter, scavengers or semipredators living under bark, 

wood-borers and wood-scavengers, scavengers in the nest of other insects, 

predators, and parasites. Similarly, mites can be classified into four groups 

(Hughes, 1976) and they are stored-product feeders; predators; fungivores; and 

parasites on rodents and birds. Their food habits, population dynamics, 

morphological adaptation and their over all behavior on stored-grain ecosystem 

variables were discussed by White (1995). 

There are two classes of fungi involved in the harvested grain: pre-harvest 

or field fungi and post-harvest or storage fungi. Field fungi usually do not survive in 
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stored grain and generally cause less damage, but storage fungi can be a 

problem. These organisms, occurring mainly as spores in the soil and on decaying 

plant material, contaminate grains and oilseeds with low numbers of spores during 

harvesting.  

Storage fungi are usually inactive at low grain-moisture levels (<15% for 

wheat). However, when the moisture is higher, as in tough, damp or accidentally 

wetted grain, the spores germinate. Several species of Aspergillus and Penicillium 

are found on grains. Each fungal species requires a specific moisture and 

temperature level for germination and development, and develops in a definite 

sequence. The first fungus to develop breaks down nutrients in the seed through 

its enzymatic activity and produces moisture, which allows other fungi to germinate 

in their turn. 

Storage fungi on grains and oilseeds affect their quality by causing heating 

and spoilage, packing or caking, reduced germination, and production of off-

odours and mycotoxins. Detailed information on moulds and their effects on stored 

products is described by Sauer (1988). Health hazards to humans and animals 

from the dust-like spores include farmer‘s lung and allergies. 

2.1.2 Variables involved in infestation development 

A grain bulk undergoes interaction with living organisms and their nonliving 

environment. Deterioration of stored grain results from interactions among 

physical, chemical and biological variables or in other words, abiotic and biotic 

factors. There are a number of abiotic and biotic factors involved in insect 

infestation development in the stored grain products. Abiotic variables are relative 



15 
 

humidity, temperature, moisture content in the grain, carbon dioxide and other 

volatiles, site preparation, and bin structure; the major biotic variables other than 

grain in a grain bulk include fungi, bacteria, insects, mites, rodents, and birds. 

These pests rarely act alone. Their ecological kinships develop over the period of 

time with grain and amongst themselves, supported by certain other sets of 

variables in the complex process of deterioration of grain quality. Although 

spoilage is usually slow at the beginning, it may proceed very fast if the correct 

combination of variables are maintained in an undisturbed bulk (Sinha and Muir, 

1973). Several studies (Jayas, 1995; Jayas and White, 2003; Seitz and Ram, 

2000; Sinha et al., 1988; Bailey and McCabe, 1965) have been done to 

understand the complex process of grain deterioration. For safe preservation of 

wheat, the rule of thumb is to keep low moisture content (MC) below 14%, low 

temperature (<15oC), clean storage areas, and continuously monitor grain.  

2.1.3 Detection of infestation 

Detection of insect infestation is economically important as studies show 

that due to faulty storage post-harvest losses continue to range from nine percent 

in North America to over thirty percent in developing countries (Lucia and 

Assennato, 1994; FAO, 2000). Any loss in quality or quantity of the produced grain 

can incur negative economic impacts. So, monitoring of grain bulk and early 

detection of infestation is required. One of the best ways to prevent insect 

infestations is to monitor stored grain every two week or so to detect early signs of 

deterioration due to infestation. 
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There are various techniques available for the detection of insect infestation 

in stored-products. Each technique has some advantages over others as well as 

limitations. On-farms, manual samples, traps, and probes have been used to 

determine the presence of insects. Manual inspection, sieving, cracking-floatation 

and Berlese funnels are being used at present to detect insects in grain handling 

facilities. These methods are not efficient and are time consuming. Acoustic 

detection, carbon dioxide measurement, uric acid measurement, near-infrared 

spectroscopy, and soft X-ray method have the potential for use at the industry level 

to detect insects in grain samples as their usefulness has been demonstrated in 

the research laboratories. The advantages and disadvantages of probe traps, 

pheromone traps, acoustical methods have been discussed elaborately 

(Neethirajan et al., 2007a).  Recently, researchers have started to use electronic 

nose to monitor indicator volatiles produced as an early infestation either by 

insects, fungi or mites in grain bulk (Borjesson et al., 1996; Neethirajan et al., 

2010). 

Carbon dioxide (CO2) measurement: Another method of detecting grain spoilage 

caused by either moulds or insects is to measure the concentration of carbon 

dioxide in the intergranular air. The usual biological deterioration or respiration 

process occurring in stored grain consumes O2 and produces CO2. The ambient 

concentration of CO2 is 300-400 ppm. Concentration above this level in a certain 

bin indicates that the biological activity (moulds, insects, mites or grain respiration) 

is causing the stored grain to deteriorate. As CO2 diffuses through the air mass of 

the surrounding grain bulk, it is not necessary to sample from the right spoilage 



17 
 

pocket; but it is preferable to sample at the location where spoilage usually occurs. 

Air samples are withdrawn through small diameter tubing, using a hand pump, 

syringe or electric pump. The samples are then analyzed using gas 

chromatography (GC). This is a complicated method which has several 

uncertainties, e.g., sampling procedures, and not feasible for various types of 

granaries. GC is a costly method and may not be easily available at farmers‘ level. 

Use of a sensor for the measurement of in-situ carbon dioxide in the grain bulk 

was developed by Neethirajan et al. (2010). 

Other indicator volatile measurement: Stored grain produces odour 

volatiles when insects, mites and microflora interact with grain as a cause of 

spoilage. These odour volatiles can be used as a reliable indicator of incipient 

grain spoilage. To understand stored grain ecosystems properly it is necessary to 

work in an interdisciplinary research group, which may provide both theoretical and 

practical bases on which to improve the quality and efficiency of farm and 

commercial storage systems. Mathematical modeling of stored-grain ecosystems 

(Jayas, 1995) and integration of physical and biological processes (Parde et al.,  

2002) toward the preservation of stored grain (Jayas and White, 2003) are well 

recognized in present day storage research. Early identification of spoilage is key 

to maintaining the quality of grains.  

It is known that red flour beetles usually produce quinones in a harsh 

environment (Howard, 1987; Howard et al., 1986; Suzuki et al., 1983). Table 2.1 

briefly summarizes identification of quinone derivatives by several authors. 

Quantification of quinones was not available in most studies. However, reported 
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level of defensive secretions was variable.  The fungal odours, mostly alcohols and 

ketones, were monitored by Sinha et al. (1988) in a few experimental bins 

containing hard red spring wheat during the autumn, winter and summer seasons 

of 1984-85. These volatiles were identified by a gas chromatograph (GC) method. 

From this study, it was observed that in the presence of slightly high moisture (15-

18%), ventilated bins produced less alcoholic and ketonic volatiles compared to 

non-ventilated bins.  

Table 2.1: Various methods applied to monitor insect†,‡ volatiles 

Methods  MBQ + EBQ  MHQ + EHQ  
Alkenes/ 
Others  

References  

UV-VIS  Qualitative
†
 Qualitative  -  (Alexander and 

Barton, 1943)  

Polarographic  55.3±14.3 

µg/beetle
†,‡

  

7.0±2.0 
µg/beetle  

-  (Ladisch et al., 
1967) 

TLC (MeOH ) Qualitative Qualitative -  (Happ, 1968) 

GC  
(Hexane/MeOH)  

Qualitative
†
 Qualitative  (Wirtz et al., 

1978) 

GC  
(trimethylpentane)  

Qualitative
†
 Qualitative 11 other 

compounds  
(Howard, 
1987) 

LC/UV/MS  
(MeOH ) 

Not perfectly 

quantified
†,‡

  

Qualitative  (Pappas and 
Wardrop, 
1996) 

LC/UV/EC  
(Aq. MeOH, HCl, 
AA)  

20µg/beetle
†
  25µg/beetle  Dopamine  (Unruh et al., 

1998 ) 

GC-MS  
SPME(CAR/PDMS)  

349±107  

ng/beetle
†,‡

  

780±290 
ng/beetle  

Pentadecene  
144±69ng/beetle 

(Villaverde et 
al., 2007) 

†-Tribolium castaneum and ‡-Tribolium confusum. MBQ=2-methyl 1,4-

benzoquinone, EBQ=2-ethyl 1,4-benzoquinone, MHQ=2-methyl 1,4-
hydrobenzoquinone, EHQ=2-ethyl 1,4-hydrobenzoquinone. (adapted from Unruh 
et al., 1998). 
 

Table 2.2 gives various types of odour with most probable organic volatiles 

in granaries (Seitz et al., 2000; Balasubramanian et al., 2007). These volatiles 
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change over time with surrounding environmental conditions (e.g., moisture 

content, relative humidity, temperature, presence of microorganisms).  

Figure 2.2 shows a schematic representation of a typical grain (wheat 

kernel) and volatile generation from various stored-grain ecosystem and 

environmental conditions. Broadly, a wheat kernel has mainly three parts-germ, 

 
Table 2.2: Odour classification and probable organic volatiles  

Odour Types Source  Volatile Compounds 

Normal  Fresh  Grain itself  Hydrocarbon derivatives  

Off-odour 

Moldy  Grain core, lignin by 
microorganism 

Methoxybenzene 
derivatives & aldehydes 
and alcohols  

Sour  Grain core, lignin by 
microorganism 

Styrene, acetate  

Smoke/Burnt  Pyrolysis of lignin  Phenolic, furan, pyridine  

Foreign/Insect  Various insects  Quinones and alkenes  

 
endosperm and bran. Endosperm is full of carbohydrate/starch and protein, germ 

contains carbohydrate, and lipid, and bran contains ligno-cellulose, vitamins and 

other minor constituents. Due to respiration, kernels produce CO2 and water 

vapour at a steady rate. The actions of other organisms (insect or mould 

respiration) will produce high amount of CO2 along with other volatiles. 

Odours are usually described as either normal, moldy, sour, burnt, or 

foreign, and the intensities of off-odours are given as weak, pronounced, or strong 

(Statute Book, 1991). Because of the cool climate in Canada, East Europe, and 

Russia insect infestation is not common in winter, and thus, insect odour may not 

be present at human perception level among the off-odours that are checked.  
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Also, the procedure based on human perception suffers from a few drawbacks. 

The first drawback is lack of correct decision. There is a possibility of error 

between individuals in terms of how they recognize types and intensities of odours. 

For example, Stetter et al. (1993) studied the classification of few samples of 

wheat into the five odour categories, normal, insect, musty, foreign, or sour, by four 

inspectors. Unanimous agreement was obtained for only thirty percent of the 

samples. However, when all off-odours (insect, musty, and foreign) were put 

together into one category, unanimous agreement as to whether the samples were 

normal or off-odourous was obtained for sixty six percent of samples. The second 

drawback is the health aspect. Inhalation of mold spores from damaged grain can 

induce allergic reactions (Rylander, 1986), and exposure to fungal volatile 

metabolites can cause various disease symptoms (Samson, 1985). Thus, it would 

be advantageous to develop an instrumental replacement for the inspector. 

Instrumental methods: Ultra violet-visible spectroscopy (UV-VIS), polarography, 

thin layer chromatography, gas chromatography methods were applied by several 

authors (Alexander and Barton, 1943; Happ, 1968; Wirtz et al., 1978;   Ladisch et 

al., 1967; Unruh et al., 1998; and Villaverde et al., 2007) for the monitoring of 

insect volatiles.  Each method qualitatively detects the presence of particular 

volatiles; however, quantitative detection of those volatiles is cumbersome. In most 

case no quantitative is available for those studies. Quantification of volatiles 

requires proper experimental designs, method selectivity and purpose of the study 

as well. Ladisch et al. (1967), Unruh et al. (1998) and Villaverde et al. (2007) tried 

to quantify benzoquinone derivatives using polarographic, chromatographic 
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followed by electrochemical and GC-MS methods respectively. It was observed 

that there were significant uncertainties in their measurements. Variations occurred 

due various steps involved in their measurements and therefore, volatiles escaping 

probability was high. They did not also account the factors that insect sex may play 

a role for the generation of variable amounts of pheromones (Unruh et al., 1998). 
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Figure 2.2: Sources of odour volatiles. MC-moisture content, RH-relative humidity, T-temperature, RFB-red flour beetle  

(adapted from Seitz et al., 2000; Sinha et al., 1988; and Balasubramanian et al., 2007). 
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GC-MS: Compounds that cause off-odours in grains can be measured using gas 

chromatography followed by mass spectrometry. GC-MS is a unique instrumental 

method for identification of chemical compounds at trace level. But quantification is 

a bit cumbersome if order volatiles are transferred from a grain bin for chemical 

analysis using GC-MS. There are various steps are involved for chemical analysis. 

These are sampling, identification of volatiles and their quantification, which are 

usually complicated and leave uncertainties to some extent. These techniques are, 

however, expensive and too complex to use outside a well equipped laboratory.  

Electronic nose: In-situ measurement or chemical analysis of any grain bin 

volatile has a lot of advantages over ex-situ because many sampling steps can be 

eliminated. Use of sensor array/electronic nose could be a good choice for such 

analysis. Using an array of nonspecific sensors coupled to a pattern-recognition 

routine should make it possible to screen grain quickly and cheaply. Furthermore, 

this procedure mimics the way odours are perceived by humans and other 

animals.  

Electronic nose uses an array of chemical sensors to react to a given odour, 

and converts these reactions to an electronic signal or pattern. This signal is then 

analyzed for odour identification and discrimination. Depending upon the sensing 

materials and mechanisms, chemical sensors may be classified as metal oxide, 

intrinsically conducting polymer and conducting polymer composites. Metal oxide 

sensor consists of two common types of sensors: n-type (tin oxide or zinc oxide), 

which are sensitive to reducing gases; or p-type (nickel oxide or cobalt oxide) 

which respond to oxidizing gases. These usually operate at high temperatures 
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(200-500oC) to achieve measurable response, which in turn increases the power 

consumption of the devices and limits their application. These types of sensors are 

mostly used in detection of inorganic gases (Marquis and Vetelino, 2001) and few 

stable organic gases (Raman et al., 2008).  

An intrinsically conducting polymer sensor consists of a substrate (silicon or 

glass), a pair of interdigitated electrodes and a conducting polymer.  Typical 

conducting polymers are polypyrrol, polyaniline, and polythiophene. One of the 

chief advantages conducting polymer sensors have over metal oxide sensors is it 

operates at room temperature. However, these sensors have a disadvantage of 

relatively short lifetime. A composite sensor contains conducting particles, usually 

carbon black, dispersed in an insulating polymer in presence of a suitable solvent. 

A thin filmed chemical resistor can be prepared by spray coating, dip coating or 

drop casting. When a typical analyte is exposed to the sensor, its conductivity is 

decreased. Carbon black- conducting polymer sensors have been employed to 

identify a wide variety of organic volatiles (Severin, 1999). Freund and Lewis 

(1995) prepared conducting polymer composite sensors which were sensitive to 

identity and determine concentrations of various organic vapours in air. An array of 

such sensing elements produced a chemically reversible diagnostic pattern of 

electrical resistance changes upon exposure to different odourants. They 

described that such a sensor array can be used as a signature of organic vapours 

for identification using principal component analysis. The sensor array also could 

provide information on the components of gas mixtures. 
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Like conducting polymer sensors, composite sensors also operate at room 

temperature. It has been reported that a sensory array using conducting polymer 

composites has higher selectivity than both tin oxide and conducting polymer 

sensor arrays (Doleman et al., 1998). Using wide variety of conducting polymers, 

sensor array can be made selective to particular indicator volatile.  

2.2 Insect Infestation Control Methods 

Once the sources of grain spoilage are known then control strategies can 

be applied depending on availability, ease of handling, and cost effectiveness. In 

the following paragraphs some infestation control methods are described briefly. 

2.2.1 Physical control 

Stored-product insects have been controlled by means of physical 

parameters for thousands of years. Stored cereals should be kept in cool (below 

15oC) and dry condition (MC below 12%) for the protection of seeds from insects, 

mites and fungal infestation. Most of the insects cannot multiply below these 

conditions. If, however, some insects survive by their adaptation characteristics, 

they reduce their reproduction abilities. Most insects cannot reproduce on grain if 

MC is below 12%. Drying and cooling grain is healthy and environmentally friendly 

and widely practiced in North America. Physical control of insect infestation is well 

discussed by several researchers (Sinha and Watters, 1985; Jayas, 1995; Prakash 

and Rao, 1995). 

2.2.2 Chemical control 

Control of insect infestation using chemical methods is still popular 

worldwide. Fumigation is one of the important types of chemical methods of 
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disinfestations. The chemical used for fumigation is known as a fumigant. At 

ambient conditions a fumigant can exist in a gaseous state. Fumigants are lethal to 

stored product insects at a particular concentration and time of exposure. There 

are many fumigants available in the market, of which methyl bromide and 

phosphine are common. Ethylene bromide, ethylene dichloride, hydrocyanic acid 

are no longer used as fumigants. Due to repetitive exposure of fumigants during 

insect control, stored products may become toxic as a residual effect which, 

ultimately creates human health hazards. Therefore, CO2 can be used as an 

alternative fumigant for stored-product insect control (Mann et al., 1999a; 1999b). 

Hydrogen phosphide and CO2 are the two registered fumigants to control the 

insect infestations in stored grain bulks in Canada (CGC, 2010). 

2.3 Prediction of Infestation Development and Its Control: CanStore 

Prediction of infestation development is a complex task for humans. It 

requires interdisciplinary knowledge for accuracy of assessment. Lack of 

combination of such knowledge may ruin predictions. Expert systems are 

computer programs that solve complex problems within a given area (Flinn and 

Muir, 1995). Unlike traditional programming languages, they can store both 

qualitative and quantitative information. They also act as a storehouse of 

information that can be continuously added to and improved upon over time. 

Canadian Storage Guidelines for Cereals and Oilseeds (CanStore) is an expert 

system for Canadian farmers and store managers developed by the grain storage 

research group at the University of Manitoba (Anonymous, 1999). It is a practical 

approach for developing decision-support systems for better grain management 



27 
 

utilizing physical and biological factors. By providing inputs and understanding 

prediction and assessment from CanStore, skilled store mangers or farmers can 

get guidance for managing their stored grains. 

2.4 Artificial versus Mammalian Olfaction 

Olfaction is a sensory system used by humans to sense flavor and smell. 

Therefore, if the flavor of a particular substance is to be characterized, the use of 

smell can often provide us with suitable information (Dodd et al., 1992).  

Smelling is the recognition of characteristic simple or complex odour of a 

particular substance. A simple odour, for example an ester, contains only one 

chemical component. A complex odour is a mixture of many different odourant 

molecules each in varying concentration; for example, the headspace of wine is 

made up of numerous different molecules. Odourant molecules have some basic 

characteristics, the primary ones being that they are light (low molecular masses), 

small and polar and that they are often hydrophobic. It is clear that flavor of wine is 

distinguishable and unmistakable. But it has complex constituents and may 

change with time. 

Dodd et al. (1992) reported the threshold of odourant molecules in water 

that can be detected by a normal, healthy person. There is a wide range of values 

and in some cases, levels down to fractions of one part per billion can be detected. 

On the other hand, for compounds such as ethane, butane and acetylene, 

olfactory thresholds are much higher (parts per thousand). Attempting to detect 

complex odours containing components active at the very lowest levels by 

conventional analytical techniques is still challenging. 
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The sensor array research is inspired by the mechanisms involved in 

human olfaction. A greater understanding of human olfaction has been achieved 

by Buck and Axel (1991) and they were awarded Nobel Prize in 2004. This in turn 

has led to improvements in the design of an electronic nose. Figure 2.3 illustrates 

the basic components of the human olfactory system and compares it with the 

construction of a sensor array. The human olfaction system consists of three 

essential elements (Kauer, 1991): an array of olfactory receptor cells situated in 

the roof of the nasal cavity, the olfactory bulb which is situated just above the nasal 

cavity, and the brain. The electronic nose also has three roughly equivalent 

elements: the odour sensor array, data pre-processor, and pattern recognition. 

The odourant molecules from an object being smelled are inhaled through 

the nostrils and enter the nasal cavity. They then come into contact with the 

olfactory neurons located in the olfactory epithelium high up in the nose. These 

olfactory neurons are terminated in cilia (hairs) which lie in a thin, aqueous, 

mucous layer covering the epithelium. Special olfactory binding proteins located in 

these cell membranes interact with odourant molecules and cause excitation in the 

neuron. The number of different binding proteins is not known but has been 

estimated to be between 100 and 1000. Many olfactory neurons appear to express 

only one of the many possible olfactory binding proteins and, since the number of 

olfactory neurons is large (ca. 100 million), there is therefore a large population of 

olfactory neurons containing any given olfactory binding protein. The different 

olfactory binding proteins have partially overlapping sensitivities to odourants. For  

 
 



29 
 

 

  Figure 2.3: Artificial versus mammalian olfaction (adapted from Kauer 1991 and Deancoleman 2010). 
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example, a particular olfactory neuron or set of neurons will respond to many 

different odourant molecules - they are not highly specific in their interactions. 

Similarly, an electronic nose employs a sensor array where each sensor is 

non-specific. Various sensor technologies are employed in electronic noses, the 

most popular ones that are now used in commercial instruments being 

semiconducting metal oxides (for example, catalytically doped tin oxide) and 

electronically conducting polymers. 

The former are sensitive to combustible gases, operate at high 

temperatures (e.g., 400°C) and use thick-film technology, whereas the latter 

respond to polar compounds, operate near room temperature, offer a large choice 

of types and are manufactured electrochemically. 

The signals that form the output of a sensor array do not provide a spectrum 

of odour constituents in the way that, for example, a gas chromatograph does but 

rather information relating to the qualities of the odour which are characterized by 

particular sensor response signatures (Schild, 1990). These signatures or artificial 

‗smell prints‘ can then be processed in a pattern recognition engine and classified 

as smells (e.g., floral) in the artificial olfactory system (Lundstrom et al., 1991). The 

signals generated by the olfactory neurons feed into the olfactory bulb, which 

contains three functional layers: the glomeruli, the mitral cells and granular cell 

layer. The overall function of this stage is to reduce noise by compressing the 

signals and amplifying the output, this enhances both the sensitivity and selectivity 

of the olfactory system.  
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Finally, the signals are processed into a form suitable for input to the brain 

where it is learnt and subsequently classified. Similarly, the pre-processing stage 

in the electronic nose processes the signals from the sensor array into a form 

suitable for input to the PARC (pattern recognition) stage. Factors such as sensor 

drift and noise can be reduced by pre-processing the signals; this has been shown 

elsewhere (Gardner et al., 1992). 

2.5 Chemical Vapour Detection by Various Research Groups 

Work by the Lewis group at Caltech has focused on conductive composites 

of carbon-black (CB) and polymers (Lonergan  et al., 1996; Koscho  et al., 2002). 

The carbon-black, which is conductive, allows current to pass across the sensor 

enabling resistance measurements to be made. Because the polymeric component 

expands when it absorbs vapour, the carbon-black particles necessarily grow 

farther apart. As such, the resistance of the composite increases upon vapour 

exposure. This change is measured as ∆R/Rb, where ∆R represents the 

equilibrium resistance change upon exposure to vapour, and Rb indicates the 

baseline resistance before exposure (Lonergan  et al., 1996; Doleman et al., 

1998). The ∆R/Rb metric has been shown to be linear with concentration and mass 

uptake over a wide range of vapour concentrations (Severin et al., 2000) and is 

fairly consistent over different CB loadings in the composite (Lonergan  et al., 

1996). Analysis of the response data from such systems can be accomplished with 

any standard multivariate tool; among those used most frequently are Principal 

Component Analysis (PCA), Linear Discriminant Analysis (LDA), and Artificial 

Neural Networks (ANNs) (Duda, 1984; Jurs et al., 2000; Sisk, 2005; and Vaid et 
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al., 2001). Each of these methods is used to connect an unknown measured data 

cluster to information that has been previously collected by the detector array. 

The general use of conducting polymer (CP) was well known by the early 

1900s. But its use in electronics (Angelopoulos, 2001), optoelectronics (Gazotti et 

al., 2001), electromechanical devices (Otero 2000, Smela 1999) and sensor 

applications (Gardner et al., 2000, Dutta et al., 2003) are recent. Conducting 

polymer gas sensors offer great design flexibility (McQuade et al., 2000; Gerard et 

al., 2002). They can form selective layers in which interaction between the analyte 

gas and the conductive surface take place. This interaction can easily be 

translated into either conductivity or resistance. Due to its conjugation and high 

porosity CP sensor offers good sensitivity and reversibility, respectively, over time. 

Freund and his group (English et al., 2005) developed a sensor for the detection of 

biogenic amine vapour. They used electrochemically grown polyanilineboronic acid 

film which can detect 10 ppb butyl amine. The sensor had the detection limit 10 

fold lower than the reported human detection threshold (0.1-1.0 ppm). Gardner and 

his research group have been working in the field of electronic nose development 

(Fang et al., 2002) characterization (Leonte et al., 2006; Gardner et al., 2005) and 

applications (Gardner et al., 2000; Iwaki et al., 2009) at the University of Warwick 

since the early 1990s. 

2.6 Theoretical Approach of Gas-Sensor Interaction 

When an organic vapour is exposed to a sensor array it interacts with the 

polymer surface of the sensor, and the interaction varies from sensor to senor. 

This interaction can be described by sorption process. The sorption based 
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interaction between polymer composite (stationary phase) and gas (mobile phase) 

is governed by a partition coefficient, which was mathematically described by 

Severin (1999). 

When the interaction is of a complex nature that can be explained by the 

solvation parameter model in a form suitable for characterizing the retention 

properties of sensing phases in gas–solid chromatography as given by Eq. (1), 

generally known as linear solvation energy relationship (LSER) equation (Poole et 

al., 1992; Abraham et al., 1999): 

log SP = c + rR2 + s πH
2 + a ∑ αH

2 + b ∑ βH
2 + l logL …………………… (1) 

SP is some free energy related solute property such as a gas–solid partition 

coefficient, retention factor, specific retention volume, or relative adjusted retention 

time. The remainder of the equation is made up of product terms called system 

constants (r, s, a, b, l) and solute descriptors (R2 , π
H

2 , ∑ αH
2 , ∑ βH

2 , l logL). 

Each product term represents a contribution from a defined intermolecular 

interaction to the correlated solute property (log SP). The l log L term represents 

the contribution from cavity formation and solute–stationary phase dispersion 

interactions; rR2 the contribution from lone pair n- and π-electron interactions; πH
2 

the contribution from interactions of a dipole-type; a∑ αH
2 the contribution from 

solute hydrogen-bond acid stationary phase hydrogen-bond base interactions; and 

b∑ βH
2 the contribution from solute hydrogen-bond base stationary phase 

hydrogen-bond acid interactions. 

To apply this LSER equation it requires a well defined solid phase. It also 

requires a broad range of homologous solute molecules, usually 30 and above 

(Abraham 2010). Experimental solute descriptors were available for over 3000 
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compounds (Abraham et al., 1999; Abraham, 1993) when LSER equation was 

applied to gas-liquid interaction. A computer program has been described for the 

calculation of additional values from structure (Platts et al., 1999). 

2.7 Raw Data Processing  

Data preprocessing is one of the important tools for sensor study. It can be 

used systematically to modify the raw signals from a sensor array hoping that the 

modified signal will provide more useful input to the mathematical tool selected for 

data analysis (e.g., principal components analysis or linear discriminate analysis). 

There does not exist any general guidelines to determine the appropriate data 

preprocessing technique given a particular type of sensor array. Often the 

appropriate preprocessing technique is not known. In such cases, it may be 

beneficial to explore several preprocessing strategies to determine which is best 

suited for a particular sensor array/data analysis method.  

Common initial data preprocessing strategies are relative scaling, 

background subtraction, signal averaging, linearization, mean centering, auto-

scaling, range scaling, or baseline subtraction. The scaling can be done relative to 

a reference response or some aspect of the sample response.  

Relative scaling is used to try and eliminate the concentration dependence 

of the response intensity for each sensor. Therefore, this approach would be more 

desirable for qualitative applications.  

The subtraction technique is simply a background correction method. To 

reduce matrix effects, the response of a blank sample can be recorded and 

subtracted from each sample response. Another straightforward preprocessing 
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method is signal averaging. This technique requires replicate measurements with 

each sensor. This can be accomplished by employing multiple sensors of each 

sensor type in an array, or by taking replicate measurements of each sample. The 

signal-to-noise ratio of the sample response can be improved by N1/2, where N is 

the number of replicate measurements. 

Linearization techniques seek to take a nonlinear response and transform it 

into a linear representation. This is desirable when linear data analysis methods 

are employed. However, it is often difficult to identify the nature of the nonlinearity 

of the sensor response. A general preprocessing method has been developed to 

allow data from nonlinear sensor responses to be analyzed with linear techniques 

(Niebling and Muller, 1995). 

To remove the dependence on magnitude, mean centering of the data 

should be done. After treatment the center of the variables coincide with the origin. 

A similar preprocessing method, autoscaling, involves mean-centering the data 

and dividing by the standard deviation of all sample responses at a particular 

sensor. Autoscaling is often used when measured responses are on different unit 

scales. The autoscaled data will have a mean of zero and unit variance for each 

sensor. Range scaling transforms all response values to lie between 0.0 and 1.0. 

That is, in the transformed domain, the minimum response at each sensor is at the 

origin and the maximum response is at 1.0. For an example Gardner et al. (1998) 

described details of range scaling. 

Some preprocessing methods are designed to handle dynamic data. For 

example, a baseline subtraction method can be used to eliminate signal recorded 
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when no sample is present (Roussel et al., 1998). This is accomplished for a 

response by subtracting the first time point at a sensor from all the time points 

recorded at that sensor. This requires that the first time point of the response be 

recorded prior to exposure to a sample. Instead of relying on a single time point, 

an average over several time points can be used to determine the amount to 

subtract provided all time points used in the average are recorded prior to  

exposure to a sample. 

A number of applications involve the measurement of data from sensors 

over time. This results in a large number of measurements per sensor. Typically, 

the number of data points must be reduced in some way to make the data matrix a 

reasonable size for pattern recognition methods. In the simplest case, the steady 

state response is simply calculated, yielding one value per sensor. Several more 

complex methods for dealing with dynamic data responses have been used in 

various applications (Duda, 1984; Hertz et al., 1999; Vaid et al., 2001; and Raman 

et al., 2008). 

2.8 Data Analysis: Theoretical Approach 

There are many tools available for the analysis of data from an array of 

chemical sensors. It is always assumed that the raw sensor responses are often 

preprocessed, and the preprocessed data are then used in a multivariate analysis 

technique.  

There are a number of statistical techniques available for data analysis. It is 

the choice of the researcher which method would be applicable for reliable 

interpretation of raw data. Further delineations are based on whether the technique 
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is used for quantification or classification. Additional groupings are defined by the 

data required for the technique. Those requiring only independent variable 

information (i.e., sensor responses) are termed unsupervised methods, while those 

that also use dependent variable information (e.g., analyte classes) are termed 

supervised methods. 

The overall target was to detect incipient spoilage of grain from various 

sources (insects, fungi or mites) using a suitable sensor array. Fourteen different 

polymers with different backbone and functional groups were available for this 

research study. Backbone and functional groups ultimately generate sensing 

pattern which is easily distinguishable among the odours are exposed to the 

sensors. But each printed circuit board (PCB) has the capacity of painting seven 

polymers on to it. So a strategy is developed to eliminate seven polymers out of 

fourteen. To do this job I have proceeded in a systematic way though it is a 

conflicting but interesting task. 

To select better and more suitable sensing elements for an array designed 

to detect target analytes, a systematic statistical analysis has to be performed from 

the available data generated with the model volatiles of interest. Individual sensor 

performance needs to be evaluated in terms of selectivity, reliability and sensitivity 

with respect to model volatiles of interest. Then it has to be scored according to 

sensor‘s performance which will provide good insight and a statistical basis for 

selecting sensor materials from each sensor set.  Selectivity is usually performed 

through linear discriminant analysis (LDA), reliability from relative standard 

deviations (RSD) and sensitivity through linearity and slope. These are all 
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supervised methods for data analysis. Other methods such as principal component 

analysis (PCA) are also performed but this method is unable to provide significant 

insight into sensor performance. It is therefore an unsupervised technique for data 

analysis. Details of supervised and unsupervised techniques of data analysis were 

described by several authors (Jurs et al., 2000; Sisk, 2005; Homer et al., 2009). 

Supervised and unsupervised tools for data analysis were adapted for 

completion of the research work. Unsupervised methods are best for qualitative 

applications such as exploring relationships in the data. Supervised methods are 

used for quantitative applications, such as determining which class a particular 

observation belongs to. 

2.8.1 Reliability from relative standard deviation (RSD) 

A further consideration in selecting elements in an array is reliability, or the 

ability of sensors and the array to repeat a response to the same stimulus over 

time. Reliability is a measure of the individual sensor scatter, and is expressed as 

the inverse of variation. Although, in principle, selectivity can tell how distinct a 

fingerprint for one analyte is from another, it alone is often not sufficient to ensure 

good sensor material selection. As searching for possible sensor materials to 

detect new analytes or analytes at very low concentration ranges, it is apparent 

that reliability and sensitivity can be major limiting factors in overall performance in 

detecting and identifying target analytes. 

The variation or scatter is defined as the inverse of reliability for a given 

sensor, as the relative difference between actual vs. fitted analyte responses, 
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where fitted response is based on the response curve shown in Figures 4.5 and 

4.8; and used in constructing identification and quantification of analytes: 

RSD (%) = standard deviation of array X*100/average of array X  …….. (2) 

2.8.2 Sensitivity from linearity and slope 

Sensitivity of a sensor is a measure of the magnitude of response of that 

sensor to the stimulus of the analyte set. The sensitivity of a sensor is important, 

particularly as the incipient grain spoilage is a challenge to detect several analytes 

that are difficult to detect or are expected to appear at very low concentration 

ranges. 

The sensitivity is defined as the mean of normalized response strength: 

Sensitivity = ∑ X (s,n)………………………………………………………… (3) 

with the summation over all analytes for a given sensor s. But for individual sensor 

analyte the following equation may be used: 

∆R/R = m*P/Po + c  ………………………………………………………..… (4) 

when, sensor follows linear relationship. In case of non-linearity the treatment is 

complex. ∆R/R is normalized sensor response, P/Po is the partial pressure of 

analyte for a given temperature, c is the interception and m is the slope that varies 

with sensor-volatile interaction. 

2.8.3 Selectivity  

Selectivity is the ability of the array to distinguish one analyte from all 

others. This is naturally one of the most important criteria is selecting a sensing 

array. Quantification of selectivity relied on calculating relative distance between 

array fingerprints for pairs of analytes. An array fingerprint or signature is a 
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graphical representation of the response of the entire array to an individual 

analyte.   

Exposing the sensors to each analyte at a range of concentrations (P/Po = 

0.01 – 0.05) yields the individual response curves for each sensor to each analyte; 

the array fingerprint for each analyte is constructed by selecting a response 

magnitude in the middle of the concentration range from the response curve and 

showing that as the single sensor response to an analyte in a histogram. 

Figure 2.4 shows the normalized response patterns of the seven analytes used in 

optimizing for response to organic compounds. The response patterns alone do 

not, however, tell whether it will be able to distinguish one analyte from another, or 

how reliable are the sensors. Statistical analysis of the array begins with examining 

cross-analyte response pattern distance. This distance sums the differences 

between fitted response patterns of mth and nth analytes, over 14 sensors, 

normalized by the mean of their response patterns.  

Cross-analyte distance is defined as  

∆Smn = 1/K ∑ X(i,m) – X (i,n)………………………………………... (5)  

where, X(i,m) is the ith sensors normalized resistance change for the mth gas and 

summation of K sensor‘s used (Zhou et al., 2006). 

In principle, a small value for ∆Smn implies poor distinguishability between 

analytes, and a large value ∆Smn implies good distinguishability. 
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Figure 2.4: Response patterns of analytes using carbon black polymer sensors at  

        P/Po =0.02. Number represents different polymer sensors.  
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2.8.4 Linear discriminant analysis (LDA) 

LDA can be used to separate classes of objects or assign new objects to 

appropriate classes (Johnson and Wichern, 1982; Brereton, 1992). The 

discriminants are linear combinations of the measured variables, e.g., sensor 

responses. Discriminant functions are calculated with the objective of maximizing 

the distance between classes relative to the variation within classes. 

2.8.5 Principal component analysis (PCA)  

Sensor arrays can be used to generate a great deal of data in a very short 

time. A significant challenge exists in finding ways to extract information useful in 

solving the problem at hand from the data. Graphical analysis of the raw data is 

often not possible since the number of samples and sensors is typically greater 

than three. Therefore, methods reducing the data to dimensions that can be 

accommodated graphically are often used. Visual examination of sensor array data 

in reduced dimensions can provide useful information about both samples and 

sensors. 

Principal component analysis (sometimes referred to as factor analysis) is a 

mathematical technique used to identify important factors or variables in 

multidimensional data (Jackson, 1991; Graham, 1993).  As laboratories and 

instrumentation become more sophisticated, the amount and complexity of data 

obtained has steadily increased.  For example, it is not uncommon today for data 

from two or more different techniques (GC/MS for example) under a variety of 

conditions (retention-time and mass-to-charge ratio for example) to be used to 

characterize a particular sample.  Although one can fairly visualize 3-D data 
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(intensity vs. mass-to-charge vs. retention time, it is not possible to visualize more 

dimensions.  Therefore, as the number of dimensions in a data set increases, it 

becomes more difficult to distinguish between important and superfluous factors 

(or variables).  The goal of principal component analysis in this experiment was to 

reduce multidimensional data to two or three dimensions without losing valuable 

information.  In doing so, large amounts of data can be visualized and interpreted. 

 2-D Data: A simple illustration of principal component analysis is the 

reduction of two-dimensional data to one-dimension.  Figure 2.5 shows a data set 

described by variables y1 and y2 (left plot).  Although it is clear from the plot of y2 

versus y1 that the data form two distinct clusters (solid dots and open dots), 

neither y1 nor y2 by themselves are sufficient to demonstrate this fact.  This is 

illustrated in the middle plot where the data in the first graph is projected onto the 

y2 and y1 axis.  Note that the groups are quite close to one another in both y1 and 

y2 dimensions and therefore the groups are not easily distinguishable (i.e., the 

groups are not separated by a distance larger than the distance between members 

of an individual group).  However, it is clear from the first graph that it can draw a 

new line or axis through the data (u1) such that if the data is projected onto this 

axis, we can easily see that the data falls into two groups (Figure 2.5 on the far 

right).  The corresponding orthogonal axis (u2) now contains almost no useful 

information.  It is clear from this exercise that a simple rotation of the axis allows  

to reduce the dimensionality of the data without loosing a significant amount of 

information.  As a result, u1 is called a principal component since this new variable 

(which is just a linear combination of the original variables, y1 and y2, as it will 
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(Figure 2.5) contains most of the information that distinguishes the samples from 

one another. 

 

 
 

 Figure 2.5: Two dimensional data to one dimension. 

In this two-dimensional case of principal component analysis, there are 

three steps (Figure 2.6): i) translation of the data around the mean; ii) rotation of 

the axis such that the majority of the variance (defined as the square of the 

standard deviation, s2) is in the first dimension (or principle component); iii) if there 

are more than two dimensions, the axis is rotated such that the axis orthogonal 

(i.e., at a right angle) to the first principal component contains the next highest 

variance.  This process continues until one runs out of dimensions.  It will end up 

with the same number of principle components as original data, however, the 

principal components will be ranked based on their variances. 
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Figure 2.6: Steps involved in principal component analysis. 

 The general equations for translation and rotation of axis y1 and y2 to u1 

and u2 are given below.   

 

 
 

Figure 2.7: Rotation of two dimensional data along the axes. 
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where a and b can be considered a vector used to convert the original data (x1 

and x2) into the new data or principal component (i.e., Eq. 6).  The vector 

consisting of a and b can also be considered as weights that determine the relative 

importance of x1 and x2 in the principal component u1.   

 n-D Data: Principal component analysis of data that have many dimensions 

is typically handled using matrix algebra.  The vectors (a, b …) used to convert the 

original data (x1, x2 … xn) to the new form (u1, u2,…un), are determined by 

calculating the eigenvectors of the correlation matrix. 

PCA provides one efficient approach for reducing the dimensionality of a 

data set. First principal component accounts as much of the variability in the data 

as possible, and each succeeding component accounts for as much of the 

remaining variability as possible. Often two or three principal components provide 

an adequate representation of the data, which is convenient for graphical output. 

The details of PCA are described by several authors (Jackson, 1991; Graham, 

1993; Jolliffe, 2002). 
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Chapter III 

3.0 MATERIALS AND METHODS 

3.1 Carbon Black Polymer Sensor 

3.1.1 Materials 

The carbon black used in the composites was Black Pearls 2000 (BP2000), 

a furnace black material from Cabot Co. (Billerica, MA, USA). The polymers used 

in the composites are listed in Table 3.1. All polymers were purchased from 

Polysciences Inc. (Warrington, PA, USA) or Aldrich Chemical Co. (WI, USA) and 

were used as received. These polymers can be classified as hydrogen bond acidic 

(HBA), hydrogen bond basic (HBB), dipolar and hydrogen bond basic (DBB), 

moderately dipolar (MD) and weakly dipolar (WD). Analytes will interact with these 

polymers based on their structure and intrinsic properties (Abraham, 1993).  

The model volatiles used in this study were toluene (To), anisole (Ani),  

methanol (Me), 2-propanol (Pro), 1-octanol (Oc), acetone (Ac), 1,4-benzoquinone 

(BQ) and tetrahydrofuran (THF); all were reagent grade and were used as 

received from EM Scientific (Nevada, USA) and Aldrich Chemical Co. (WI, USA).  

3.1.2 Apparatus 

Standard glassware was used to construct a bubbler apparatus (to provide 

known partial pressures of various vapours) and a flow chamber to control the 

resulting gas stream. The bubblers were large 500 mL Pyrex bottle with two armed 

29/34 ground joint (24 cm long with a 5 cm inside diameter) from Lasalle Scientific 
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Inc., Ontario, Canada. To provide a pathway for gas flow, a glass tube terminated 

by a coarse filter frit was inserted into a glass stopper and then placed into the 

 
Table 3.1: Polymers used in the sensor arrays 

ID Symbol Polymer 

1 P4VP Poly(4-vinyl phenol) 

2 PSAA Poly(styrene-co-allyl alcohol) 

3 PMS Poly(alpha-methylstyrene) 

4 PVP Poly(N-vinylpyrrolidone) 

5 PVA Poly(vinyl acetate) 

6 PMVE Poly(methyl vinyl ether-co-malic anhydride) 

7 PBAC Poly(bisphenol A carbonate) 

11 PS Polystyrene 

12 PSMA Poly(styrene-co-maleic anhydride) 

13 PVB Poly(vinyl butyral) 

14 PSu Poly(sulfone) 

15 PMMA Poly(methyl methacrylate) 

16 PVCA Poly(vinylidene chloride-co-acrylonitrile) 

17 PEO Poly(ethylene oxide) 

 
top of each bubbler. The carrier gas was oil free compressed nitrogen from Praxis 

(Alberta, Canada) and was neither filtered nor dehumidified. The measurements 

were performed at a temperature around 25°C over the course of the experiments 

described herein and was maintained through microprocessor controlled water 

bath (Model No 28L) from Cole-Parmer, Montreal, QC, Canada. The carrier gas 

was introduced into the solvent through the porous ceramic frit, and the solvent-

saturated gas mixture exited the bubbler via the sidearm of the glass tube. 

Saturation of the gas streams in the experimental apparatus was verified for the 
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highest flow rates (1000 sccm) used in this work through measurement of the rate 

of mass loss of liquid in the bubbler, thus saturation conditions were assumed to 

have been obtained for the lower flow rates used in other experiments described in 

this work. The vapour pressures of model volatiles and associated concentration 

derived from elsewhere (David, 2009) at 25oC temperature and shown in Table 

3.2.  

 
Table 3.2: Vapour pressure of model volatiles and associated concentration at 1% 
(P/Po=0.01) 

Sl Name Vapour 
Pressure at 

25oC in mmHg 

Concentration 
in ppmv 

1 1-octanol 0.07 0.921 

2 1,4-benzoquinone 0.10 1.316 

3 Anisole 3.54 46.57 

4 Water 23.8 313.2 

5 Toluene 28.4 373.7 

6 2-propanol 44.1 578.9 

7 Methanol 123 1618 

8 THF 155 2039 

9 Acetone 240 3157 

 
The saturated vapour was carried out the sidearm of the bubbler, blended 

with a controlled background flow of pure carrier gas, and then introduced into a 

mixing chamber then transferred into the sensing chamber. The rectangular 

sensing chamber (Figure 3.1) was made of teflon (outer chamber dimension: 15.5 

cm long with width 8.5 cm and height 5.0 cm; inner chamber dimension: l=10 cm, 

w=1.0 cm and h=2.0 cm) to which inlet and outlet teflon tubing (inner diam 1.5mm) 

were attached. The sensing elements were introduced into the chamber through 

one/two/four open slot(s) and attached with PCB connected through edge 

connector (Figure 3.1). The chamber was sealed when connected with PCB. The 
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gas flow rates were controlled with mass flow controller (Model: FLO-9HL QC, 

Canada) three way valves and teflon solenoid shut-off valves. 

 

 

c) 

 
 
 
Figure 3.1: A schematic representation of sensor chamber made of teflon; a) top  

view, O-o-ring, E-edge connector slot, S-sensor array slot; b) inner 

chamber view, I-gas inlet, L-gas outlet; c) sensor array connected with  

edge connector 

3.2 Instrumentation  

3.2.1 Gas flow management system  

A custom built automated vapour delivery system (Plasmionique Inc., St 

Hyacinthe, PQ, QC, Canada) was used for successful CB-sensor characterization.  

The computer controlled system consists of mass flow controller, solenoid valves, 

eight bubblers, teflon gas mixing chamber, sensor testing chamber, common line 

pressure regulators. The automated gas flow management system affords several 

advantages-―including unattended operation during long sequences of tests, 
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reduced user exposure to toxic chemicals and precise data measurements. This 

automated system provides enough flexibility and capabilities to allow the users to 

build and design experiments with applications without the concern of limitations 

and / or expansion capabilities‖ (Neethirajan, 2009). A schematic of the custom 

built gas flow management system (Plasmionique Inc., St Hyacinthe, QC, Canada) 

is shown in Figure 3.2. 

3.2.2 Measurements 

To determine the response of the sensor elements to various vapours, the 

dc resistance of each sensor was determined as a function of time. Resistance 

measurements were performed using a simple two-point configuration. Sensors 

fabricated with the PCB supports were plugged directly into a 15 or 30-pin bus strip 

that was then connected to a multiplexing ohmmeter via a ribbon cable. The 

resistances of the composite films on gold substrates were monitored through 

Agilent data acquisition unit using PC. 

To initiate an experiment, the sensors were placed into the teflon chamber and a 

background flow of compressed air was introduced until the resistance of the 

sensors stabilized. Solvent vapour streams of various concentrations and 

compositions were then passed over the sensors. The flow rates in the bubblers 

were controlled using mass flow controllers with the flow limit 0.2 to 2000 sccm 

(standard cubic centimeter). Analyte gas flows were kept low enough (5 to 50 

sccm) to ensure that the vapour was saturated with solvent prior to dilution with the 

background gas. In a typical experiment, resistance data on the sensor array 

elements were collected for 10 min (to serve as a baseline), followed by a 5 min  
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Figure 3.2: Schematic diagram of the gas and vapour management system. (Source: Plasmionique FLOCON vapour 

delivery system manual). 
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collection during exposure to the solvent vapour stream and then were followed by 

a 5 min recovery time. 

Commercially available gas cylinders (Praxair, Edmonton, AB, Canada) with 

a blend of saturated mixture vapour and a nitrogen cylinder of ultra high purity 

(99.99%) were used for the measurements. To achieve the required levels of 

volatile concentrations (ppmv), saturated vapour gas was diluted to appropriate 

concentrations by mixing and varying the gas flow rate from the nitrogen cylinder. 

For example, a flow rate(FR) of 1000 sccm of 3157 ppmv acetone and 990 sccm 

of nitrogen in the teflon mixing chamber measured at the same pressures and 

temperatures produced 10 sccm of saturated acetone (Table 3.3). In a similar 

fashion, desired levels of volatile concentrations were achieved by mixing various 

levels of nitrogen and saturated vapour from different bubblers in air. 

Table 3.3: Typical example of gas flow and their concentration in mixture 

Carrier Gas 
sccm 

Analyte Vapour 
sccm 

Mixture Flow 
sccm 

Analyte 
Concentration 

% 

1000 0000 1000 0 
990.0 10.00 1000 1 
980.0 20.00 1000 2 

 3.2.3 Data collection system  

The data collection system used for characterization of the sensor array 

consists of an Agilent 34980A Data Acquisition Switch Unit (Agilent Technologies, 

Inc., Santa Clara, CA, USA). The dc resistance of the sensor was read 

sequentially by the Agilent data acquisition unit. The control computer was 

interfaced with data collection system through an IEEE general purpose interface 

board (GPIB). The resistance data were initially stored in the data acquisition unit 

and once a complete set of data were recorded, the GPIB communications 
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protocol sent the data to the control computer where the data were stored in a tab-

limited text file.  

3.3 Sensor Construction 

3.3.1 Gold IDA or substrate 

Gold interdigitated array electrodes (IDAs) to be used as the sensor 

substrate platform, deposited on a 1 mm thick printed circuit board (PCB) was 

custom designed upon consultation with Nano Fabrication Lab, University of 

Manitoba and Iders Inc, Winnipeg, MB. The sensor chip was fabricated by 

Dynamic & Proto Circuits Inc, Stoney Creek, ON. Each sensor chip has seven 

sensor elements (detectors) (Figure 3.3). The dimensional details of the 

interdigitated electrode are shown in Figure 3.4. 

a) 

 

b) 

 

 

 

Figure 3.3: Sensor array a) bare gold and b) polymer on gold surface. 

The gas flow management system and the data collection system were 

interlinked and connected through a LabVIEW (National Instruments Corporation, 

Austin, TX, USA) algorithm to efficiently control and simultaneously record the gas 

mixture readings and the sensor response output values. 
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a) 

 

b) 

 
 

 
Figure 3.4: Schematic representation of interdigitated gold electrode a) top view  

and b) geometry- finger length (f) = 8.075 mm, finger height (h) = 27 

μm, interdigitated spacing (w) = 100 μm, number of electrodes = 4+5 = 

9, total area = 1.962 mm2 

3.3.2 Gold array cleaning  

The surface of gold array was cleaned. Initially, coarse and fine dust was 

removed using a Winton round fine hog brush (Windsor & Newton, Harrow, 

England). Then it was cleaned stepwise gradually with first a jet of water, then 

methanol and acetone to remove any water and organic solvent soluble materials, 

respectively from the gold surface. Finally it was air dried and then a nitrogen ion 

gun was used to remove any unwanted tinny/microscopic particles from the 

electrode surface. Interdigitated gold electrodes were now ready for sensing 

material deposition either by spray coating or electrochemically. 
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3.3.3 Carbon black polymer film preparation 

Carbon black polymer sensors were prepared according to a previously 

reported procedure (Severin, 1999). For example, to prepare the carbon black-

polymer composites, 40 mg of carbon black and 160 mg of one of the insulating 

polymers (Table 3.1) were added to 20 mL of solvent. The solvents were 

tetrahydrofuran, dichloromethane, methanol and acetone. The solutions were 

sonicated for 10 min to suspend the carbon black, and the films were cast by spray 

coating using an aluminum mask on the electrode area. The spraying procedure 

was repeated several times until a measurable film resistance (few kilo ohm) was 

obtained. Before use, the sensors were dried in open air for one day. 

3.4 Stored-Grain Volatile Detection 

3.4.1 Sampling conditions 

Canadian Prairie Spring Red wheat (CPSRW) was used for this study. One 

hundred grams of wheat at moisture contents about 16% in equilibrium with 

relative humidity 52% was used. The whole experiment was run at room 

temperature.  

3.4.2 Tracking of grain spoilage from red flour beetle 

A long container (150 mL volume, 40 mm diameter, 120 mm long) was 

taken as a replica of a bin.  Then the sensor array was assembled at the top of the 

container in such a way that there should not be any leakage. However, there was 

an opening at the top to insert grain and insect through a funnel when required. 

This opening was closed. It was assumed that there was minimum interference to 
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the sensor response. Wheat (100 g) with 15-16% moisture content and 50 insects 

(red flour beetle) were used for the experiment. Red flour beetle were reared at 

70% RH and 25oC on wheat flour. Male-female insect ratio was not differentiated 

and it was assumed that 1:1 male-female ratio was present in the system. The 

responses were gathered until it reached a steady state equilibrium with saturated 

vapour pressure of each stage at ambient condition. Then the signals were 

processed and analyzed for interpretation. 
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Chapter IV 

4.0 RESULTS AND DISCUSSIONS 

4.1 Selection of Model Volatiles 

A few model volatiles (water vapour, methanol, acetone, 2-propanol, 

anisole, 1,4-benzoquinone, toluene, 1-octanol, furan) were selected to optimize 

sensor performance. The volatiles and their basic characteristics were discussed 

elsewhere (David, 2009). These volatiles have some similarities structurally with 

stored-grain volatiles. For example, benzoquinone derivatives (MBQ and EBQ) are 

usually produced from red flour beetle as aggregation or sex pheromones (Unrah 

et al., 1998; Senthilkumar et al., 2009). Long chain aliphatic alcohol and it 

derivatives evolve from wheat under certain physical (temperature, MC, RH) and 

biological conditions (Maga, 1978; Borjesson et al., 1989). Tetrahydrofuran (THF) 

and anisole were selected because their derivatives were produced when grain 

was severely damaged and produced a musty odour (Borjesson et al., 1989; Tuma 

et al., 1989; and Seitz et al., 2000). All other low molecular weight alcohols and 

ketones produced at different stages of degradation of stored-grain. 

4.2 Effect of Flow Rate on Sensor Response  

Ideally gas flow rate in a grain bin is very low unless it is purged for drying 

or cooling grain.  The gas circulation in a grain bulk proceeds through diffusion. 

The moisture and gas transfer through inter granular space-when temperature 

gradients develop in the grain bin. Other factors, such as: external-wind flow and 

pressure, internal-moisture and CO2 by respiration of grain, insect, mites, fungi are 
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also involved in the process (Jayas et al., 1983; Muir et al., 1985). Another study 

(Weast, 1970) showed that the transfer of water vapour through air was 

approximately 50000 times faster than through intergranular space. 

It was assumed that with this low flow rate it may take a long time to reach 

equilibrium for the gas-sensor system.  Figure 4.1 shows the effect of flow rate on 

carbon black polymer sensor.  At 50 sccm the sensor response is slow compared 

to at 1600 sccm and therefore, it takes a long time to reach steady state 

equilibrium at 50 sccm. There are some polymers which have slow response to 

certain analyte. To have optimum response from all sensors in the shortest 

possible time, selected step duration or exposure time was for 5 min. All sensors 

have provided 90-98% response within 5 min at 1000 sccm. To save time high flow 

rate (1000 sccm) was chosen in designing and performing most of the 

experiments. 

4.3 Linearity of Sensor Response to Pure Model Odour Volatiles 

It was mentioned in earlier sections (1.1 and 4.1) that various kinds of odour 

volatiles evolve from numerous sources, e.g., grain, insects, fungi, mites. Each 

volatile has a different degree of interactions with sensing elements, e.g., CB-

polymers.  

Linearity is the one of the measures of sensor performance with its slope. 

High slope indicates good or better sensitivity of a sensor compared to low slope 

for a particular analyte. Table 4.1 showed the sensitivity of all analytes towards 

various sensors. Regression coefficients varied within the limit of 0.9996 to 0.7802.   
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Figure 4.1: Effect of flow rate on carbon black polymer sensor (polystyrene co-allyl- 

        alcohol). Arrow indicates from low to high flow rate. Analyte used here  

        was acetone at 0.02 partial pressure and 25oC temperature. 
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For some sensor-analyte combinations/interactions, the correlation coefficients 

were low because the sensor exhibited only a very small response to the analyte. 

PVP, P4VP showed high interaction with 1-octanol and 1,4-benzoquinone, 

whereas anisole showed strong interaction with P4VP, PBAC, PVB and PSu. 

Tetrahydrophuran showed greatest interaction with PVB. 

Table 4.1: Sensitivity* of CB-polymer sensors towards model volatiles 

Sensor Me Ac THF BQ Ani Pro To Oc 

1 0.3013 1.0000 0.7126 0.7146 1.0000 1.0000 0.5718 0.4105 

2 0.0783 0.2277 0.2780 0.3149 0.4354 0.7899 0.5634 0.1017 

3 0.0180 0.0564 0.0556 0.0947 0.2706 0.1592 0.3087 0.1226 

4 1.0000 0.3150 0.0347 1.0000 0.0518 0.5158 0.3782 1.0000 

5 0.0285 0.0537 0.0413 0.1187 0.3121 0.1779 0.1911 0.1906 

6 0.0567 0.0643 0.0279 0.4232 0.5597 0.0743 0.2987 0.2946 

7 0.0280 0.1589 0.1401 0.1771 0.7258 0.3103 0.8345 0.1752 

11 0.0204 0.1000 0.1092 0.1393 0.5555 0.2654 0.6465 0.2105 

12 0.0219 0.4448 0.3434 0.1034 0.2017 0.2309 0.2667 0.0757 

13 0.1158 0.3864 1.0000 0.1256 0.8624 0.4788 1.0156 0.1916 

14 0.0380 0.1908 0.1592 0.2081 0.7498 0.4497 0.8860 0.2320 

15 0.0323 0.1569 0.1144 0.0651 0.2519 0.1894 0.1931 0.1547 

16 0.0263 0.1853 0.1683 0.0463 0.1567 0.0644 0.2027 0.2619 

17 0.0180 0.0382 0.0360 0.0531 0.3888 0.1522 1.0000 0.1868 

* for simplicity all data are represented compared to highest slope for respective 
volatile;  
To-toluene, Ani-anisole, Me-methanol, Pro-2-propanol, Oc-1-octanol, Ac-acetone, 
BQ-1,4-benzoquinone and THF-tetrahydrofuran  

4.4 Detector Response to Analytes in Presence of Background Gases 

In stored-grain ecosystems, there are always some background gases. 

They are O2, CO2, N2, water vapour. It was assumed that interference from O2 and 

N2 gas would be minimal as it remains constant in the atmosphere. In the absence 

of water vapour CO2 showed almost no interference to carbon black polymer 

sensors (Emadi et al., 2009) and conducting polymer-PABA sensor (Neethirajan, 

2009). But water vapour has significant interaction with certain carbon black 
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polymer sensors for example eight times increase for PVP and lowest for PSMA 

(Emadi et al., 2009). The polyvinyl Poly-N-vinylpyrrolidone (PVP) has the highest 

resistance variation in presence of 50% RH and in the presence of 1900 ppmv 

CO2. Presence of high relative humidity decreases overall response of certain 

volatiles (ethanol) compared to pure state (Gardner et al., 1998). They used 

polypyrrole sensor for this observation. 

Similar observations were obtained when sensors exposed low 

concentration of acetone (2%) in presence of 10% water vapour and 380 ppmv 

CO2 as background. The responses decreased by 10% for PVA sensor and 6% for 

PBAC (Figure 4.2). 

4.5 Aging Effect 

One of the key positive feature of organic polymer sensor is that, it does not 

die over a short period of time (few weeks to months). But oxide based sensor may 

die if it is poisoned by corrosive or toxic gases e.g. H2S, SO2 (Dickinson et al., 

1998; Schaller et al., 1998). The sensitivity of any sensor decreases over time due 

to exposure to various environmental conditions (e.g., high RH, temperature, dust). 

At high temperature or relative humidity, the active sites of the sensing polymer 

may get damaged and therefore lose its interactive capacity. When CB-sensor was 

kept under room conditions (20-25oC, 25% RH, low dust), the base resistance 

increased over time. But the sensor did not lose its sensitivity; however, it 

decreased considerably.  
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CB-polymer sensor (e.g. polystyrene) was kept under observation for nine 

months and sensitivity dropped about 27% from it first month‘s sensitivity with 1-

octanol. However, the sensor was still able to differentiate 1-octanol with other  

 

Figure 4.2: Carbon black polymer sensor response to 2% acetone in presence of  

background gases (dotted arrow-10% water vapour, 380 ppmv CO2), 

and in absence of background gases (solid arrow); a) for PVA b) PBAC 

polymer.  
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volatiles. Systematic observation of aging effect was not done for the other 

polymer sensors.  

4.6 Base Resistance Effect on Sensor Response 

When preparing CB-polymer sensors using spray coating, base resistance 

always varied from sensor to sensors though I had a plan to keep the base 

resistance at approximately 10k for each sensor. Thus an experiment was done to 

determine if there was any impact on sensor results from variable sensor base 

resistance. The normalized sensor response was independent of base resistance 

(Figure 4.3) which agrees with the findings of Horner and Hierold (1990). They 

showed that the application of a simple normalization of sensor data can greatly 

help in preventing quantitative information from masking qualitative aspects of the 

data. 

4.7 Sensor Response at Extreme Weather Conditions  

Weather conditions across Canada and other temperate regions vary 

considerably over the year. Relative humidity varies from 20% to 100%, whereas 

temperature varies from -50oC (winter) to 40oC (summer).  To see whether CB-

polymer retains its sensing properties within this extreme temperature or not, the 

fabricated sensors were kept at three different temperatures (25o, 5o and -20oC) for 

about 48h. Then the sensor array was brought into ambient condition and exposed 

to odour volatiles. Figure 4.4 shows response of selected polymers at various 

temperatures (25o, 5o and -20oC). Normalized sensor responses previously 

exposed at three different temperatures were similar with exposure to acetone.   
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Figure 4.3: Dependency of normalized resistance response on base resistance of  

sensors (dark solid square and triangle-within the printed circuit board; 

light solid square and triangle-among the printed circuit board). Dotted 

lines indicate mean normalized response among sensor array of two 

different PCBs for methanol (solid square) and 1-octanol (solid 

triangle). Poly-4-vinyl phenol was used here as sensing polymer. 

  



66 
 

From this observation, it may be concluded that these polymers retained their 

sensing properties in the temperature range -20 to 25oC. 

Gardner et al. (1998) showed that polypyrrole sensor response to ethanol 

decreased with an increase in temperature in the sensing chamber at fixed RH. 

Their operating temperature range was 24 to 50oC. Similar observations were 

made by Severin (1999) in the case of a CB-polymer sensor without RH at the 

temperature range 23 to 55oC. However, at single temperature, the interaction 

between polymer and odour volatile may provide useful information on detection 

and identification of particular analyte, which is beyond the present research 

scope. 

 

 
Figure 4.4: Checking of functionality of carbon black polymer sensors at three  

different temperatures (dark solid bar 25oC, grey solid bar 5oC and 

white bar -20oC). 
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4.8 Random Exposures of Analytes to CB-Sensors and Their Response to 

PCA 

Most of the experiments were performed by the exposure of volatiles 

repetitively and sequentially. So, there is a possibility of interference from the first 

exposed volatile when a sensor is exposed to second or third volatiles. To 

understand this effect, these sensors were exposed to all analytes of interest 

randomly. This experiment would also provide information whether recovery time is 

sufficient for the sensor array and is able to classify the odour or not.  

Figure 4.5 shows a typical sensor response to analytes when exposed 

randomly at certain partial pressure. Odour volatiles could not puzzle sensor as 

long as its functional sites were active. Figure 4.6 also confirms the ability of the 

sensor array to classify volatiles with random exposure of analytes. 

Another essentiality of random exposures of analytes is to condition sensors 

with various analytes. After preparation of a sensor if it is not conditioned, there is 

a possibility of sudden interfering response from new volatile. By random 

exposures of analytes at high concentration (double of operating concentration), 

sensing polymer will become sterically stable by continuous expansion and 

contraction.  
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Figure 4.5: Random exposure of analytes to a) polybisphenol-A-carbonate b)  

polystyrene sensor at fixed partial pressure (0.02) and 25oC. The 

analytes are water vapour, methanol, acetone, tetrahydrofuran, 2-

propanol, toluene, 1-octanol. Flow rate was 1000 sccm.  
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Figure 4.6 Principal component analysis using CB-polymer composite sensors  

upon random exposure of various analytes (solid diamond-anisole, solid 

square-toluene, sold triangle-tetrahydrofuran, cross-2-propanol, star-

1,4-benzoquinone, solid circle-1-octanol). 

4.9 Sensor Selection 

The analysis of sensor arrays involves fabrication, testing and exposing the 

arrays to a set of target analytes at the concentration of interest. Most of the 

experimental concentration range is low and it was within 1-5% by volume (Figure 
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4.7). It is assumed that the concentration level of odour volatiles is low (ppb/ppm) 

in the stored grain ecosystem in case of incipient spoilage detection. 

 

 

Figure 4.7: CB-polymer composite sensor (polystyrene) response to anisole at low  

concentration range (P/Po=0.005-0.02). Flow rate is 1000 sccm at 

25oC.  

 
Initially sensors were evaluated based on polymer types and ligands, and 

how the polymers were predicted to respond to analytes based on bonding or 

nature of interaction. For example, a stationary phase, hydrogen bonding basic 

nature, may show better interaction with alcoholic volatile than slightly acidic 

nature. Non-polar stationary phase should show significant interaction with non-

polar volatile compared to polar one. The arrays were selected based on 

experimental data developed in the laboratory, using a combination of statistical 

and experimental techniques. 
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In the PCB there is room for seven sensors for an array but fourteen 

different polymers are candidates for those places. So, I shall have to select seven 

best polymers which are able to serve the purpose by detecting benzoquinone 

derivatives (MBQ, EBQ and 1,4-benzoquinone), benzene derivatives (anisole, 

phenol) and long chain aliphatic alcohols (1-octanol, 1-butanol, methanol). 

It is a complex task to select best sensor array from fourteen polymers, and 

eight selected model volatiles. Individual sensor performance was evaluated in 

each sensor set in terms of supervised and unsupervised techniques. Supervised 

techniques involved sensors reproducibility, sensitivity and selectivity and 

unsupervised principal component analysis. It was then scored i to xiv for each 

sensor‘s usefullness by these metrics individually and overall (i=best, xiv=poor) 

(Table 4.2). Details of this table are described in the following sections (4.9.1 to 

4.9.4). 
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Table 4.2: Sensor selection using reproducibility, sensitivity and selectivity criteria for 1-octanol and 1,4-benzoquinone 
 

 

Ranks i ii iii iv v vi vii viii ix x xi xii xiii xiv 
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     Bold font indicates selected sensors 
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4.9.1 Reproducibility  

Figure 4.8 shows a typical example of reproducibility of carbon black 

polymer sensor at 25oC temperature. 

 

 

 
Figure 4.8: Reproducibility of carbon black polymer sensor (PBAC) to acetone at  

        0.02 partial pressure. N=6, 1000 sccm flow rate and 25oC.  

Reproducibility of an individual sensor was calculated from relative standard 

deviations (RSD) for BQ and 1-octanol at P/Po=0.02 and shown in Figure 4.9. 

Large RSD means a noisy sensor and should be removed from the sensor array. 

From the analysis it was observed that sensor 15, 7, 3, 17, 11, 13 and 14 were 

good for 1-octanol, whereas sensor 7, 11, 14, 5, 13, 17 and 3 were good for 1,4-

benzoquinone and their derivatives.  

 



74 
 

 

 
Figure 4.9: Relative standard deviation for carbon black polymer sensors upon  

exposure of analytes a) 1-octanol b) 1,4-benzoquinone at partial 

pressure 0.02. N=5. 

4.9.2 Sensitivity 

To find sensitivity of a particular sensor, it has to be exposed couple of 

odour volatiles of interest at certain concentration range (Figure 4.10). Then the 

normalized responses are to be plotted against concentration and plot should be 
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linear (Figure 4.11). From this plot the slope was found and hence the sensitivity of 

a particular sensor. It varied from sensor to sensor with respect to analyte.  

 

 

 

 
Figure 4.10: Carbon black-polysulfone (PSu) sensor response to different volatiles  

at various concentration (P/Po=0.01, 0.02, 0.04, 0.05). Flow rate was 

maintained 1000 sccm throughout all exposures at 25oC temperature.  
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Figure 4.11: Sensitivity of a typical carbon black polymer sensor (PVA) to 1-octanol  

at different partial pressures, Dotted x-axis indicates concentration of 

volatiles in ppmv at 25oC temperature. Error bar represents standard 

deviation of five exposures. 

Sensitivity was also evaluated from the slope for other volatiles of interest at 

0.01 to 0.05 concentration range and represented in Figure 4.12. PVP shows 

highest sensitivity for both 1-octanol and 1,4-benzoquinone and second highest for 

P4VP. These two polymers interact with those analytes through hydrogen bonding, 

much stronger interaction compared to other polymer. 
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Figure 4.12: Sensitivity of various carbon black polymer sensors towards  

a) 1-octanol b) 1,4-benzoquinone at low concentration range  

(P/Po=0.01 to 0.05). 
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The comparison of slope of P4VP with 1-octanol (0.128) and 1,4-

benzoquinone (0.741) explains why sensitivity was higher in P4VP sensor towards 

1-octanol compared to quinone. A high slope indicates greater contribution from pi-

pi interaction and polarizability. As BQ does not have any acidic hydrogen, 

therefore contribution for hydrogen bonding basicity is nil or no contribution. But 1-

octanol has hydrogen bonding contribution. 

Similarly, it could be explained for the other sensor volatiles interaction if a 

series of homolog with 30 and above volatiles were selected (Abraham, 2010); 

then it might generate a set of data using solvation equation (Abraham, 1993). 

However, the Equation (1) was solved using Table 4.3 and Table 4.4 and obtained 

the following Table 4.5 for regression coefficients for selected volatiles. 

Table 4.3: Values of Solute Descriptors (Abraham, 1993) 

Volatiles R2 π2
H ∑α2

H ∑β2
H logL 

Methanol 0.278 0.44 0.43 0.47 0.970 

2-Propanol 0.212 0.36 0.33 0.56 1.764 

1-Octanol 0.199 0.42 0.37 0.48 4.619 

Acetone 0.179 0.70 0.04 0.49 1.696 

THF 0.289 0.52 0.00 0.48 2.636 

Toluene 0.601 0.52 0.00 0.14 3.325 

Anisole 0.708 0.75 0.00 0.29 3.890 

 
The regression coefficients (i.e., r, s, a, b and l) show the importance of the 

contribution of the corresponding chemical forces to the partition coefficient 

between a given vapour/sorbent pair. The regression constant, c, is a residual 

product of multiple linear regressions that has no significance in relation to the 

chemical forces. 
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Table 4.4: Slope/Sensitivity of Sensor to Various Gaseous Analytes 

Sensor Me Ac THF Ani  Pro To Oc  

3 0.0981 0.2364 0.2771 0.0836 0.0564 0.0772 0.0382 

5 0.155 0.2251 0.2058 0.0964 0.063 0.0478 0.0594 

7 0.152 0.6663 0.6983 0.2242 0.1099 0.2087 0.0546 

11 0.1107 0.4192 0.5441 0.1716 0.094 0.1617 0.0656 

13 0.6294 1.6201 4.9836 0.2664 0.1696 0.254 0.0597 

14 0.2064 0.8000 0.7932 0.2316 0.1593 0.2216 0.0723 

15 0.1755 0.6577 0.5699 0.0778 0.0671 0.0483 0.0482 

To-toluene, Ani-anisole, Me-methanol, Pro-2-propanol, Oc-1-octanol, Ac-

acetone and THF-tetrahydrofuran  

Sensor 13 showed the highest tendency of the phase to interact through pi 

and n electron pairs among the sensors. Sensor 13 and 15 had considerable 

amount of phase dipolarity compared to the others. Hydrogen-bond basicity was 

poor for most of the sensor except 13. It indicates the acidic phase of sensor 13 

will interact with a basic solute or vapour. In fact from the structure it was revealed 

that only sensor 13 had the greatest capacity for hydrogen-bond basicity. From the 

values of b, it was observed that almost all sensors have the capacity to interact 

with solute through hydrogen-bond acidity. To measure the ability of the phase to 

distinguish between or to separate homologues in any homologous series, sensor 

13 contributed remarkably more than other sensors. 

For example from Table 4.4, interaction between sensor 13 and methanol 

(0.6294) is much higher compared to that of 2-propanol (0.1696). In this case 1-

octanol showed least interaction with sensor 13. This is how sensor 13 efficiently 

contributes separation of homologous series of alcohol.  
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Table 4.5: Systems Constants for Sensor (s) 

Sensor c r s a b l 

3 -37.5224 31.6794 18.2449 4.5511 33.8616 0.5094 

5 -43.1466 35.4743 21.7236 7.6798 38.1557 0.6459 

7 -29.3444 25.2999 14.8804 1.6734 27.3789 0.3012 

11 -29.5175 25.0424 14.1696 1.8864 27.4249 0.4323 

13 -91.4165 83.4684 44.1773 12.917 88.1347 1.3746 

14 -25.8551 22.2209 13.1183 1.3005 24.5864 0.2195 

15 -57.7764 48.2029 29.8219 8.5648 53.2104 0.8479 

 
4.9.3 Selectivity 

Selectivity is the ability of the array to distinguish one analyte from another. 

This ability is one of the most important criteria in selecting a sensor array. Linear 

discriminant analysis (LDA) measures a sensor‘s ability to distinguish analytes by 

maximizing the variance between the clusters and minimizing variance within the 

clusters. In principal, small value implies poor distinguish ability between analytes, 

and large values imply good distinguishability. Figure 4.13 shows the sensors 

11(PS) and 5(PVA) have the maximum capability of distinguishing 1,4-

benzoquinone and 1-octanol. 

4.9.4 Principal component analysis 

 
Another unsupervised technique was adopted to see whether sensor 

selected from the previous methods mentioned above were still able to 

differentiate those two analytes of interest. The principal component analysis 

(PCA) was done using those selected sensors responses.  

Using PCA, ev1 and ev2 were obtained for all sensors, then ranked them 

all. In terms of ev1 seven best sensors were 3, 15, 5, 13, 14, 11 and 7 while 
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Figure 4.13: Linear discriminate analysis between 1-octanol and 1,4-benzoquinone  

a) ability to discriminate by fourteen different sensors b) absolute 

discriminate value against all sensors. 

according to ev2 best sensors were 17, 4, 1, 6, 2, 11 and 14. Again PCA was done 

with the seven best sensors based on ranking for ev1 (Figure 4.14 a) and ev2 

(Figure 4.14 b). Sensor array according to ev1 showed better classifyability of 

model volatiles compared to that of ev2. Sensor array selected according to ev2 

were not be able to distinguish between anisole and toluene.  It also failed to 

distinguish benzoquinone from 1-octanol. 
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Figure 4.14: Distribution of model volatiles within principal component space  

         according to sensor array selected by a) ev1 and b) ev2. 

 
It is clearly observed that down selecting the seven best sensors in terms of 

classifyability of volatiles of interest both supervised and unsupervised techniques 

worked well. 

In terms of reproducibility of the sensor for both 1-octanol and 1,4-

benzoquinone, the best six sensors(PBAC, PMMA, PMS, PSu, PS, PVB) were 

found and PEO was the seventh sensor. PEO was rejected from the sensor array 

as it had poor sensitivity and less selectivity towards Oc and BQ. Though it was 

moderately reproducible sensor. 
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When PCA was done with the seven sensors selected from reproducibility 

criteria, it showed poor distinguishability between Oc and BQ (Figure 4.15 a). 

When PEO was excluded from the sensor array, the new sensor array was able to 

separate Oc and BQ (Figure 4.15 b).  

The best sensors (P4VP, PSAA, PVP, PVCA) in terms of sensitivity could 

not be kept in the sensor array. They were very poorly selective and least 

reproducible towards the analytes of interest. PMVE was excluded for its low 

selectivity and reproducibility, but moderate sensitivity. Moderately sensitive 

sensors were included in the sensor array. 

PVA, PS and PVB were the best sensor in terms of selectivity. These 

sensors were moderately reproducible and sensitive towards the analytes of 

interest. PBAC, PSu and PMS were moderately selective. PSMA was excluded 

from the sensor array as it was moderately selective but poorly reproducible and 

less sensitive to volatiles of interest. 

Now seven good sensors are which will be sufficient in pattern recognition 

of volatiles of interest are selected. They are PVA, PS, PBAC, PMMA, PMS, PSu 

and PVB. In this sensor array most RH sensitive sensors (PVP, P4VP) are absent 

which will ensure minimum interference from RH. However, the array has low RH 

sensitive polymer (Emadi et al. 2009). 
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Figure 4.15: PCA using a) seven best sensor in terms of reproducibility b) seven  

         best sensor after eliminating faulty or poor one (PEO). 

 

4.10 Validation of Sensor Selection 

A couple of sensor arrays were made using best seven sensing polymer in 

terms of reproducibility, sensitivity and selectivity. Then the array was exposed to 

those volatiles of interest and performed PCA using old eigen vectors. Those 

sensor arrays efficiently distinguished the analytes of interest along with other 
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volatiles when they were exposed individually in the sensor arrays (Figure 4.16).  It 

is to be noted that new exposures of volatiles to new sensor arrays fall within the 

same principal component space of previously determined using old sensor array. 

Slight variation occurred for the distribution of benzoquinone response in 

the principal component space due to its inherent property of sublimation. Another 

possibility was that inconsistency of saturated vapour pressure during gas delivery 

at the flow rate (20 sccm) for 5 to 10 min. Similar uncertainty was also observed 

while detecting quinone derivatives (MBQ and EBQ) from red flour beetle 

secretions on wheat (Senthilkumar, 2010).  

4.11 Relative Scattering between Old and New Sensor Arrays 

To find relative scattering between old and new sensor arrays towards 

various analytes (Figure 4.17), the new sensor array was exposed to a couple of 

odour volatiles. It was observed that in the case of methanol, acetone and 1-

octanol the scattering was minimum (PC1) in both old and new sensor arrays. But 

high scattering was observed for 1,4-benzoquinone. Causes for high scattering 

may be due to inconsistent vapour pressure while delivering gas from solid phase 

at a high flow rate. PC1 provides us maximum information for pattern recognition 

compared to PC2. 
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Figure 4.16: PCA a) using old sensor array b) using old eigen vectors for new  

sensor array. Space within the ellipse were distributed using 3σ along 

both axes. (white diamond-anisole, solid triangle- toluene, sold 

diamond-1,4-benzoquinone, solid square-methanol, star-acetone, 

solid circle-1-octanol). 
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Figure 4.17: Relative scattering between old and new sensor arrays towards  

various analytes (methanol, acetone, 1,4-benzoquinone and 1-

octanol). a) scattering against PC1 and b) scattering against PC2. 

4.12 Variation of Sensor Response within the PCB and among PCB 

To check the variation of sensor response within the PCB and among PCB, 

t-test was performed for equal variance. It was tested with two analytes 1-octanol 

and methanol and the obtained t-test values were 0.4151 and 0.0141 for 1-octanol 

and methanol, respectively with equal variance. From t-test table (Box et al., 1978; 

Jackson, 1991), the tcrit = 2.179 at p=0.025 and df = 12 (degree of freedom). In 



88 
 

both cases, t-test(obs) < tcrit which implies that both set were from the same 

population (Figure 4.18). 

 
 

 
 
Figure 4.18: Probability distribution of various sensor responses within PCB and  

         among PCB. 

4.13 Incipient Grain Spoilage Using Sensor Array 

4.13.1 Distribution of head space volatiles from wheat in PC Space 

From a single replicate (Figure 4.19) it is observed that head space volatiles 

from wheat occupy the space between methanol and 1-octanol and well separated 

from quinone and benzene derivatives and acetone. This means wheat does not 

have any sign of insect (RFB) infestation. Headspace volatile of wheat neither 

contain methanol nor 1-octanol; but a mixture of alcohols having high molecular 

weight was present. 
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Figure 4.19: Distribution of a) model volatiles responses within two dimensional  

space using PCA b) dynamic headspace wheat volatile response in 

the principal component space (grey solid circle and ellipse). (white 

diamond-anisole, solid triangle- toluene, sold diamond-1,4-

benzoquinone, solid square-methanol, star-acetone, solid circle-1-

octanol). 
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4.13.2 Tracking the incipient grain spoilage from red flour beetle using 

carbon black polymer sensor array 

The principal component analysis was performed on the data shown in 

Figure 4.20 to visualize the pattern differences between wheat alone and in 

presence of red flour beetle. Figure 4.21 shows the distribution of model volatiles 

sensor response and how the response varies from wheat, with and without red 

flour beetle. 

The responses from wheat alone moves towards the direction of aliphatic 

compounds especially towards the alcoholic compounds with high molecular 

weight, whereas in the presence of RFB it moves in the direction towards benzene 

derivatives. From this preliminary observation it can be concluded that headspace 

of wheat volatiles may contain aliphatic hydrocarbon derivatives mixture with high 

molecular weight. Red flour beetle produces pheromones and other volatiles which 

is quite different from pure wheat volatiles. It occupies the space in the region of 

quinones and benzene derivatives. Seitz and Ram (2000) reported that Tribolium 

insect-infested headspace volatiles contain 1,4-dimethoxy benzene, 2-methyl-1,4-

dimethoxybenzene and 2-ethyl-1,4-dimethoxybenzene that originated from 

quinone derivatives (MBQ and EBQ). 
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Figure 4.20: Incipient spoilage detection using sensor array. Dotted horizontal  

arrow-saturated vapour pressure of air; dashed horizontal arrow-

saturated vapour pressure from wheat volatiles; solid horizontal arrow 

saturated vapour pressure from red flour beetle pheromone on wheat. 

Down arrow indicates the region of sensor response when the model 

bin was opened for the insertion of wheat and red flour beetles. The 

number in the legend indicates various sensor responses. The whole 

experiment was performed at static ambient room condition. 
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They proposed that the transformation might involve either photolytically or 

thermally. Methyl radical formed from stored-grain ecosystem may interact with 

benzoquinone or hydrobenzoquinone may be methylated biologically during 

storage of grain. 

Results of this single experiment show that the sensor array can easily 

differentiate the presence of insects on wheat. However, the only concern of this 

experiment was that the population density was high. In Canada, it is zero 

tolerance of insect for consumption or exporting of healthy wheat; whereas two 

insect are allowed per kilogram of wheat in the USA. In the experiment, it was a 

much higher population than the guidelines of Canada and the US allow. Red flour 

beetles are usually, present at the top of the grain surface area. They do not 

penetrate much deeper in depth below the grain surface. Therefore, a reasonably 

high population density is expected at the top compared to rest of the grain in a 

large bin. It also ensures a high concentration of detectable headspace volatiles for 

the sensor array response.  
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Figure 4.21: Movement of the sensor array response within principal component         

space. a) two dimensional space distribution of model volatiles using 

old sensor array b) solid arrow-headspace volatiles from wheat, dotted 

arrow-headspace volatiles from red flour beetle secretions on wheat 

(cross-pure wheat, open square-presence of red flour beetle).  
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Chapter V 

5.0 CONCLUSION  

The sensor array potentially classifies stored-grain model volatiles with 

minimal interference from relative humidity. This study illustrates the application of 

a carbon black polymer sensor array for the detection of wheat spoilage due to the 

presence of red flour beetle or fungi by identifying volatiles from grain headspace 

with a one step process. The developed sensor array may help farmers in taking 

preventive measures to save their agricultural commodities like wheat, barley, rice, 

and oil seed from red flour beetle and fungi. By saving grain it would contribute 

towards global food security and reduce pressure on global agricultural production. 

Utilization of the sensor array is a cost effective, health and environmentally 

friendly way for spoilage detection compared to human sensory use.  
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Chapter VI 

6.0 RECOMMENDATIONS FOR FUTURE STUDIES 

Due to shortage of time, sensory performance could not be produced for 

fungal infestation in grain. Future work is to verify the performance of the sensor 

array for insect and fungal infestation of wheat in a large scale bin with multiple 

replications. 
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