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Abstract

Regularization method is a commonly used technique in high dimensional data analysis.

With properly chosen tuning parameter for certain penalty functions, the resulting estima-

tor is consistent in both variable selection and parameter estimation. Most regularization

methods assume that the data can be observed and precisely measured. However, it is

well-known that the measurement error (ME) is ubiquitous in real-world datasets. In many

situations some or all covariates cannot be observed directly or are measured with errors.

For example, in cardiovascular disease related studies, the goal is to identify important risk

factors such as blood pressure, cholesterol level and body mass index, which cannot be mea-

sured precisely. Instead, the corresponding proxies are employed for analysis. If the ME

is ignored in regularized regression, the resulting naive estimator can have high selection

and estimation bias. Accordingly, the important covariates are falsely dropped from the

model and the redundant covariates are retained in the model incorrectly. We illustrate how

ME affects the variable selection and parameter estimation through theoretical analysis and

several numerical examples.

To correct for the ME effects, we propose the instrumental variable assisted regularization

method for linear and generalized linear models. We showed that the proposed estimator

has the oracle property such that it is consistent in both variable selection and parameter

estimation. The asymptotic distribution of the estimator is derived. In addition, we showed

that the implementation of the proposed method is equivalent to the plug-in approach under

linear models, and the asymptotic variance-covariance matrix has a compact form. Exten-

sive simulation studies in linear, logistic and poisson log-linear regression showed that the

proposed estimator outperforms the naive estimator in both linear and generalized linear

models. Although the focus of this study is the classical ME, we also discussed the variable

selection and estimation in the setting of Berkson ME. In particular, our finite sample sim-

ulation studies show that in contrast to the estimation in linear regression, the Berkson ME

may cause bias in variable selection and estimation. Finally, the proposed method is applied

to real datasets of diabetes and Framingham heart study.
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Chapter 1

Introduction

Variable selection is an important data analysis technique in high-dimensional problems.

Regularization methods achieve the goal of variable selection and parameter estimation si-

multaneously, which has been a popular research area recently. On the other hand, the

measurement error is ubiquitous in real data applications. It is known that ignoring ME can

result in biased estimation in conventional regression methods. In a similar way, ignoring the

ME in high-dimensional can result in estimation and selection bias. In this thesis we illus-

trate how ME affects the variable selection through several heuristic examples, and propose

a new method correcting for ME effect in regularization methods. This thesis is organized

as follows. The background information of regularization methods and measurement error

models, including different theories and methodologies are reviewed in Chapter 1. Regu-

larized regression in linear ME model is presented in Chapter 2. Specifically, a motivating

example is introduced at first, followed by theoretical results, numerical examples, real data

application and theorem proofs. The estimation performance with different penalty func-

tions and model selection criteria are also discussed. Chapter 3 covers the topic of regularized

regression in generalized linear ME model, which consists of theories, numerical examples,

proofs and a real data application. Summaries and conclusions of the thesis are presented in

Chapter 4, along with the discussions and future research. Technique details are relegated

to the Appendix.
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1.1. Motivating Example

1.1.1 Variable Selection under Classical ME Model

Consider the following linear model with classical ME,

y = βxx+ βTz z + ε,

x = 1.5w + u,

x∗ = x+ δ,

where w is an instrumental variable and (z1,−w, z2, . . . , z7)T are jointly generated from

N(0,Σ) with Σij = 0.7|i−j|. The coefficients (βx, β
T
z ) = (3, 1.5, 0, 0, 2, 0, 0, 0), ε and u are

standard normal, whence the correlation between w and x is around 0.83. The random ME

δ follows normal distribution with mean zero and variance σ2
δ . The details can be found in

example (2.2.2) of this chapter. Figure (1.1) shows the estimation and selection results of the

naive estimator ignoring the ME and the proposed estimator (denoted as RIV for regularized

IV estimator). It can be observed that the naive estimator is biased away from the true value.

The values of false positive (FP) and false negative (FN) are both nonzero meaning that

redundant features are falsely retained in the model and some important features are removed

incorrectly. As a comparison, the estimation is stable and close to the true value of β for

the proposed RIV estimator. In addition, the values of FP and FN are both close to zero

across different values of σ2
δ/σ

2
x. Since the ME causes unpredictable estimation and selection

results, it is of interest to develop new methods correcting for ME effects and recovering the

underlying true model.
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Figure 1.1: Estimation and selection eesults for Example (2.2.2) with n = 200. The x axis
represents σ2

δ/σ
2
x. Top left: estimation of naive estimator; top right: estimation of RIV

estimator (blue dotted-line corresponds to zero true coefficient; red dotted-line corresponds
to nonzero true coefficient); bottom left: selection results of naive estimator; bottom right:
selection results of RIV estimator (blue dotted-line: FP; red dotted-line: FN).
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1.1.2 Variable Selection under Berkson ME Model

Now consider the following Berkson ME model, where the datasets are simulated from the

linear model

y = βxx+ βTz z + ε,

where (z1, x
∗, z2, . . . , z7)T are jointly generated from N(0,Σ) with Σij = 0.7|i−j|, (βx, β

T
z ) =

(3, 1.5, 0, 0, 2, 0, 0, 0). The covariate x is generated as x = x∗ + δ with the random errors ε

and δ being standard normal. It is known that the naive estimator for Berkson ME model

is consistent. We examine finite sample performance and compare the naive estimator with
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the estimator obtained using the true unobserved data (TR). From the Figure (1.2) it can be

seen that for a relatively small sample size, the estimation of naive method under Berkson

ME model is unstable as the ratio σ2
δ/σ

2
x increases, compared with the TR method, which is

centered around the true value of β and remains stable across different values of the ratio.

Figure 1.2: Estimation and selection results with n = 200. The x axis represents σ2
δ/σ

2
x. Top

left: estimation of naive estimator; top right: estimation of TR estimator (blue dotted-line
corresponds to zero true coefficient; red dotted-line corresponds to nonzero true coefficient);
bottom left: selection results of naive estimator; bottom right: selection results of TR esti-
mator (blue dotted-line: FP; red dotted-line: FN).
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The simulation results for a larger sample size (n = 2000) is reported in Figure (1.3). It

can be seen that for large sample size, the naive estimator performs much better compared

with small sample size. It is as expected since we know that the naive estimator under

Berkson ME model is consistent.
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Figure 1.3: Estimation and selection results with n = 2000. The x axis represents σ2
δ/σ

2
x.

Top left: estimation of NA estimator; top right: estimation of TR estimator (blue dotted-line
corresponds to zero true coefficient; red dotted-line corresponds to nonzero true coefficient);
bottom left: selection results of NA estimator; bottom right: selection results of TR estimator
(blue dotted-line: FP; red dotted-line: FN).
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1.2. Objectives of the Thesis

High-dimensional variable selection has been an active research area in statistics, economics,

genomics, computer sciences and health sciences. The high dimensionality and enormous

data size make the conventional statistical methods infeasible theoretically and computa-

tionally. In most cases, only a subset of covariates are important and the rest are redundant.

To address this problem, various regularization methods are proposed for variable selection.

For example, the bridge regression (Frank and Friedman, 1993), least absolute shrinkage and

selection operator (Lasso, Tibshirani 1996), smoothly clipped absolute deviation (SCAD,

Fan and Li 2001), adaptive Lasso (Zou, 2006), minimax concave penalty (MCP, Zhang et al.

2010), Elastic net (Zou and Hastie, 2005) and Dantzig selector (Candes et al., 2007). More

detailed review of regularization methods can be found in Negahban et al. (2009) and Fan

and Lv (2010).

In real data analysis, some covariates cannot be measured precisely or observed directly.

For example, in cardiovascular disease studies, we are interested in identifying important

risk factors of cardiovascular heart disease (CHD) such as long-term average systolic blood

pressure, cholesterol level and body mass index. Those factors are either unobservable or

measured with errors. In lung cancer risk studies, we are interested in the relationship be-

tween lung cancer incidence and the individual exposure to the air pollutants. The actual

amount of pollutant inhaled by each individual cannot be measured directly. Instead, the

pollution level are measured by several monitoring stations in a certain area. In pharmacoki-

netic study, the goal is to examine the efficacy of a drug. The actual absorption of medical

substance in bloodstream is unobservable. Instead, the predetermined dosage of a drug is

used in analysis. In the agriculture study, we are interested in the relationship between yield

of a crop and the amount of fertilizer. The actual amount of fertilizer absorbed in the crop is

unobservable and the predetermined dose of the fertilizer is used instead. More theoretical

methods, examples and applications in ME models can be found in Carroll et al. (2006).

Applying the regularization methods naively on proxy or mismeasured covariates can

lead to biased estimates and possible omission of important variables. As a consequence,

methods for variable selection in ME models are proposed. For example, Liang and Li

(2009) applied the correction-for-attenuation and orthogonal regression approach on the

penalized least squares and quantile regression, respectively. Ma and Li (2010) proposed the

variable selection technique for general parametric and semi-parametric ME models. Zhang

et al. (2017) developed a model selection criterion based on minimizing prediction errors

for linear model. Instrumental variable methods are also proposed for high-dimensional

problems. For example, Caner and Fan (2010) and Caner and Fan (2015) suggested selecting
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relevant instrumental variables at the first stage, before the other procedures that are applied

afterwards. Fan and Liao (2014) proposed the focused generalized method of moments, which

applies the instrumental method for variable selection in high dimensions. Lin et al. (2015)

proposed two-stage regularization method for instruments and covariates selection under the

joint normality assumption of random errors for linear regression model. Huang and Zhang

(2013) proposed the penalized score functions for variable selection in linear ME models

assuming the variance covariance matrix of ME to be known.

In this thesis, we study the effects of ME on variable selection and parameter estima-

tion by developing theoretical results and conducting numerical examples. We propose the

regularized regression method in generalized linear ME models based on instrumental vari-

ables (IV). The simulation studies are conducted comparing the performance of the naive

estimator ignoring the ME with the proposed estimator. The ME introduces selection and

estimation bias for naive estimator, especially with high ME variance. Whereas the regular-

ized instrumental variables (RIV) estimator is robust to the magnitude of the ME variance.

In addition, we show that the proposed estimator has the oracle property such that it is

consistent in both variable selection and parameter estimation, and the estimators corre-

sponding to nonzero coefficients follow normal distribution asymptotically. In this chapter,

we introduce some notations used in the thesis, and review several regularization methods

and ME models.

1.3. Regularization Methods

Massive and high-dimensional data are becoming available in many areas, such as astronomy,

physics, genome and health sciences, business and finance, social media, signal processing and

imaging, etc. In regression settings, it is common that there is a large number of predictors

for a given response variable. Therefore, it is of interest to identify a relatively small set of

important predictors. Specifically, in a linear model

yi = βTxi + εi, i = 1, 2, . . . , n

where xi, β ∈ Rp are a vector of predictors and parameters respectively, and εi is a random

error. Both the sample size n and the number of predictors p can be very large and it

is typical that p > n. In this case, conventional inference methods either fail or become

inefficient. To overcome this difficulty, various regularized regression methods have been

developed in the literature. Suppose the true model is sparse, i.e. the number of nonzero

elements in β0 is bounded by some positive integer s < n. For example, the constrained

8



least squares estimator is the solution of the problem

minimize
n∑
i=1

(yi − βTxi)2 subject to ||β||0 ≤ s,

where ||β||0 ≤ s denotes the number of nonzero elements in β.

The estimator can be computed by the regularization method of the following form

min
β

n∑
i=1

(yi − βTxi)2 +

p∑
j=1

pλn(βj), (1.3.1)

where p(·) is a penalty function with tuning parameter λn. A commonly used penalty

function is least absolute shrinkage and selection operator (Lasso) proposed by Tibshirani

(1996), which takes the form pλn(βj) = λn|βj|. Besides parameter estimation, the Lasso

achieves the goal of variable selection, which sets some of the estimates to be exactly zero.

To gain an insight of this mechanism, suppose the columns of n by p matrix X is orthonormal

such that XTX = Ip. Rewrite the penalized least squares objective function as

n∑
i=1

(yi − βTxi)2 +

p∑
j=1

pλn(βj)

=(y −XXTy)T (y −XXTy) + (XTy − β)T (XTy − β) +

p∑
j=1

pλn(βj)

=(y −XXTy)T (y −XXTy) +

p∑
j=1

(zj − βj)2 +

p∑
j=1

pλn(βj),

where zj is the jth element of XTy. Then (1.3.1) becomes a componentwise minimization

problem. For Lasso penalty, the univariate version of penalized least squares problem

1

2
(zj − βj)2 + λ|βj|

has the following closed-form solution

β̂Lasso
j = sign(zj)(|zj| − λ)+,

where a+ denotes the positive part of a. If the magnitude of ordinary least squares estimator

is less than λn, the Lasso estimator shrinks it to zero. Besides Lasso, there are many other

penalty functions with good properties. Fan and Li (2001) suggested that a good estimator

should have the oracle property. That is, the zero coefficients are estimated as zero with

9



probability approaching 1, and the nonzero coefficients are estimated as if the subset of

covariates under true model is known. Fan and Li (2001) proposed the smoothly clipped

absolute deviation (SCAD) penalty function which is defined as

pλ(βj) =


λ|βj|, if |βj| ≤ λ;

− |βj |
2−2aλ|βj |+λ2

2(a−1)
, if λ < |βj| ≤ aλ;

(a+1)λ2

2
, if |βj| > aλ;

for some a > 2 and λ > 0. Similarly, the solution of SCAD estimator in univariate case is

β̂SCAD
j =


sgn(zj)(|zj| − λ)+, if |zj| ≤ 2λ

{(a− 1)zj − sgn(zj)aλ}/(a− 2), if 2λ < |zj| ≤ aλ

zj, if |zj| > aλ.

Compared with the univariate Lasso solution, it can be observed that except for a short

interval, β̂SCAD
j is consistent in estimation for large values of parameters. Taking a = 3.7 as

suggested by Fan and Li (2001), the 3D plot and the corresponding heat map of pλ(β) with

respect to the parameters λ and β is given in Figure (1.4) and (1.5). It is easy to see that

the value of penalty function stays close to zero if β or λ is close to zero. In addition, the

first-order derivative of SCAD is given by

p′λ(|βj|) = λ

{
I(|βj| ≤ λ) +

(aλ− |βj|)+

(a− 1)λ
I(|βj| > λ)

}
.

From the Figure (1.6) and (1.7) it can be observed that for a given value of βj, p
′
λ(|βj|) is

zero with a sufficiently small value of λ (especially when λ < |βj|/a).

There are several regularization methods that also process the oracle property. For

example, the minimax concave penalty (MCP, Zhang et al. 2010) is defined as

pλ(βj) =

 λ|βj| −
β2
j

2a
, if |βj| ≤ aλ,

1

2
aλ2, if |βj| > aλ,

which has the oracle property with properly chosen parameters a and λ. The adaptive Lasso

(Zou, 2006; Zhang and Lu, 2007) is defined as weighted version of Lasso which is given by∑p
j=1 wj|βj|. It was shown that with properly chosen tuning parameter and data-driven

weights, the adaptive Lasso estimator performs as well as an oracle procedure.
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Figure 1.4: 3D Plot of SCAD penalty Figure 1.5: Heat Map of SCAD penalty

Figure 1.6: 3D Plot of SCAD gradient Figure 1.7: Heat Map of SCAD gradient

The elastic net method proposed by Zou and Hastie (2005) encourages the grouping effect

where highly correlated covariates are retained in/dropped out from the model together,

while retaining the sparsity property like Lasso. The elastic net penalty function is given by

(1− α)

p∑
j=1

|βj|+ α

p∑
j=1

β2
j

where α ∈ [0, 1]. It can be observed that the elastic net is a convex combination of Lasso and

ridge penalty since it becomes ridge penalty when α = 1 and to Lasso penalty when α = 0.

Some other regularization methods include the bridge regression (Frank and Friedman, 1993),

group Lasso Yuan and Lin (2006) and Dantzig selector (Candes et al., 2007). More detailed

11



review of regularization methods can be found in Negahban et al. (2009) and Fan and Lv

(2010).

1.4. Model Selection Criteria

Conventional variable selection methods like stepwise regression, best subset selection often

involve choosing the best model among a sequence of candidate models with different com-

plexities. Similarly, there is a sequence of candidate models in regularized regression indexed

by the tuning parameter. The choice of tuning parameter is important for selecting the best

model. We discuss several model selection criteria in this section for choosing the optimal

tuning parameter.

Cross-Validation

Cross-validation is a simple, intuitive and commonly used method to estimate the prediction

error by splitting the data into training and testing sets. The following algorithm illustrates

the way that cross-validation works. For choosing the optimal tuning parameter λ, grid

search over λ or log(λ) is routinely performed over the interval [λmin, λmax], where λmin is

zero or some small positive number and λmax is often set as the smallest number such that

all coefficients are shrunken as zero. In practice, there may exist more than two candidate

models yielding small cross-validation errors, which do not differ much with each other. In

this case we use the one-standard-error rule to select the tuning parameter. Specifically, the

standard error of cross-validation error is calculated for each λ, then choose the sparsest

model whose cross-validation error is within the one standard error of the model with lowest

cross-validation error.

Algorithm 1: K-fold cross-validation

randomly divide the dataset into K folds S1, S2, . . . , SK ;

for k = 1, 2, . . . , K do

fit the model on training set S[−k] (the complete dataset without the Sk);

calculate the prediction error ek on test set Sk;

end

calculate the cross-validation error
∑K

k=1 ek/K

12



Information Criteria

Basically, the information criteria are measures for model selection based on likelihood.

A typical information criterion consists of two parts: measure of model fitting with some

penalty on the model complexity which can be written as

IC = −2 logL(θ) + kd,

where k is the number of estimated parameters in the model and d is some coefficient.

The Akaike information criterion (AIC, Akaike 1974) corresponds to the case where d = 2.

Founded on information theory, the AIC is obtained by minimizing the information lost

by a given model, measured by Kullback–Leibler distance of the likelihood function of the

candidate model from the unknown true likelihood function. In the literature, the AIC is

mostly criticized for not yielding the consistent estimator. However, in situations where

statistical models are used to approximate complex systems for certain objectives, a “good”

model is preferred over the “true” model, as suggested in Konishi and Kitagawa (2008). The

Bayesian information criterion (BIC, Schwarz et al. 1978) corresponds to the case where d =

log(n). The BIC is obtained by maximizing the posterior probability, from the Bayesian point

of view. Compared with AIC, the BIC is shown to be consistent in model selection. Variants

of BIC were also developed in statistical literature accounting for the high dimensionality,

for example in Chen and Chen (2012).

Besides the criteria discussed above, there are other model selection criteria in the lit-

erature, for example, Mallow’s Cp (Mallows, 1973), the risk inflation criterion (RIC, Foster

and George 1994) and generalized cross-validation (GCV, Golub et al. 1979).

1.5. Measurement Error Models

Measurement error is ubiquitous in real data analysis. In medical and clinical studies, it

is often the case that some or all of the variables cannot be precisely or directly measured.

Instead, indirect or proxy measurements are used. Several examples of ME models are

listed as follows. (1) In Framingham Heart Study, a cohort of residents are followed for the

development of coronary heart disease. Important risk factors such as long-term average

systolic blood pressure, cholesterol level and body mass index cannot be observed directly.

The observed values are the measurements during clinic visits on a given day. (2) In lung

cancer study, the outcome of interest is the incidence of lung cancer. The actual amount

of pollutants inhaled by individual is an important factor, which is unobservable. Instead,

the observed exposure is measured by some monitoring station for the air pollution level at
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certain area. (3) When evaluating the efficacy of a drug in pharmacokinetics study, the actual

absorption of the medical substance in bloodstream cannot be measured. The predetermined

dosage of the drug are used for analysis instead. (4) Fertilizers contain essential elements

that are needed by plants, such as nitrogen, phosphorus and potassium. The predetermined

dose of the fertilizer serves as proxy for the absorbed amount, in modeling the relationship

between the yield of crop and the amount of fertilizer used. (5) In biology, the biomass

cannot be measured precisely. Indirect measurements like estimation with satellite image is

used to approximate the true value of biomass. (6) In health-care research, it is commonly

known that ME is manifest and masking the relationship between diet and health status. The

long-term nutrition, fat, energy, carbohydrates intake, alcohol and/or tobacco consumption

are unobservable, which are approximated by the self-report food questionnaire or a 24 hour

recall interview. (7) In econometrics, a classical example is to model the relationship between

wage and factors like education, experience, age, gender, race. Obviously the factors like

education and experience are unobservable and are approximated by measures like schooling

and number of work years. A commonly used ME model for the true predictor x and its

proxy x∗ is defined as

x∗ = x+ δ, (1.5.1)

where δ is a random measurement error satisfying E(δ|x) = 0. Model (1.5.1) is also called

the classical additive ME model. In other situations like the lung cancer example, the

relationship is modeled as

x = x∗ + δ, (1.5.2)

where E(δ|x∗) = 0. Model (1.5.2) is called Berkson ME model. To gain some insights about

the two ME models, consider the following two numerical examples. For the classical ME

example, the data is generated as follows.

y1 = sin(x1) + ε1,

x1 ∼ Uniform(−π, π),

ε1 ∼ N(0, 0.2),

x∗1 = x1 + δ1,

δ1 ∼ N(0, π)
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such that σ2
δ1
/σ2

x1
≈ 0.95. For the Berkson ME example, generate the data as below.

y2 = sin(x2) + ε2,

x2 = x∗2 + δ2,

ε2 ∼ N(0, 0.2),

x∗2 ∼ Uniform(−π, π),

δ2 ∼ N(0, π).

The sample size is 500 in both examples. The scatter plot of both examples are shown in the

Figure (1.8) and (1.9), where black circle represents sample (x, y) and red cross represents

sample (x∗, y). It can be observed that the ME masks the relationship between x and y in

both ME models.

Figure 1.8: Scatterplot with classical ME

−3 −2 −1 0 1 2 3

−
1

0
1

2

Figure 1.9: Scatterplot with Berkson ME
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Consider another two simple linear regression examples. The model setting is the same

as above except that the response yj is generated by yj = 1.5xj +εj, j = 1, 2 in both classical

and Berkson ME models. The sample size is n = 200. The fitted least squares regression

line is shown in the graphs below. The black points and lines represent the scatterplots and

regression lines fitted with true datasets (x, y). The red color corresponds to the datasets

with ME (x∗, y). It can be observed that the slope of regression line is attenuated towards

zero in classical ME model whereas the Berkson ME does not cause bias in estimation but

with increased variance.
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Figure 1.10: Fitted line with classical ME
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Figure 1.11: Fitted line with Berkson ME
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The true patterns of the datasets can be masked by ME and the estimation and statistical

inference become invalid in the presence of ME. Different methods were proposed to correct

for the ME effects. We briefly introduce some ME model analysis techniques in this section.

Method of Moments

As illustrated in Figure (1.10), the ME causes estimation bias for least squares estimator in

linear regression. Thus the resulting naive estimator is inconsistent. To quantify this effect,

consider a univariate simple linear ME model

y = α + βx+ ε, (1.5.3)

x∗ = x+ δ, (1.5.4)

where E(ε|x, x∗) = 0 and E(δ|x) = 0. It is known that if the ME is ignored, the naive

estimator β̂NA
p→ κβ, where κ = σ2

x/(σ
2
x + σ2

δ ) is often referred as attenuation factor or

reliability ratio. Therefore, we can obtain an bias-corrected estimator β̂ = β̂NA/κ if κ is

known or can be consistently estimated. Since it can be observed that σ2
x∗ = σ2

x + σ2
δ from

(1.5.4), κ can be estimated if one of the following three terms σ2
x, ME variance σ2

δ or the

ratio σ2
x/σ

2
δ is known. The extension of method of moments to multivariate linear model is

straightforward and can be found in Fuller (2009).
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Regression Calibration

The regression calibration is one of the statistical methods that correct for the covariates

ME effects. The basic idea is to replace the unobserved covariates x with the regression of

x on the observed x∗ along with other ME free covariates. Consider the model (1.5.3) and

(1.5.4). Taking the conditional expectation on x∗ we obtain the following equation

E(y|x∗) = α + βE(x|x∗).

This equation suggests that the unbiased estimator of (α, β) can be obtained by regressing

y on E(x|x∗). Since x is not observed, extra information is required for estimating E(x|x∗).
Usually we need a validation set where the true value of x can be observed. Or there exists

an unbiased instrument w such that the regression of w on x∗ yields the same results as if we

are regressing x on x∗ according to Carroll et al. (2006). The estimation can also be obtained

with replicate data. For example, consider the model (1.5.4) where x∗i1 = x+δi1 with a second

measurement x∗i2 = x + δi2, where i = 1, 2, . . . , n, x ∼ N(µx, σ
2
x) and δ1, δ2 ∼ N(0, σ2

δ ). The

parameters µx, σ
2
x and σ2

δ can be estimated with standard analysis of variance technique.

Then the conditional expectation of x on x∗ is given by

E(x|x∗) = (σ2
δµx + σ2

xx
∗)/(σ2

δ + σ2
x).

The generalization to multiple covariates with ME and repeated measurements is straight-

forward. Note that the regression calibration is an approximation method such that the

resulting estimator is approximately consistent in generalized linear models. It should be

taken with caution when working with nonlinear models where the performance of regres-

sion calibration can be worse. A comprehensive and detailed review of regression calibration

method can be found in Chapter 4 of Carroll et al. (2006).

Simulation Extrapolation

The simulation extrapolation (SIMEX) proposed by Cook and Stefanski (1994) is a simu-

lation-based approach correcting for ME effect. Given the simple linear model (1.5.3) with

classical additive ME (1.5.4), it is known that the naive estimator

β̂NA
p→ βσ2

x/(σ
2
x + σ2

δ ).

17



The SIMEX procedure consists of two stages, simulation and extrapolation. In the simulation

stage, pseudo errors δbi are generated and added to x∗ such that

x∗bi(ζ) = x∗i +
√
ζδbi, i = 1, 2, . . . , n, b = 1, 2, . . . , B, (1.5.5)

where δbi is independently and identically distributed from N(0, σ2
δ ). For each simulated

dataset indexed by b, the estimator

β̂b(ζ)
p→ βσ2

x/(σ
2
x + (1 + ζ)σ2

δ ).

Averaging over b we obtain the estimator β̂SIM(ζ) = 1
B

∑B
b=1 β̂b(ζ). According to the asymp-

totic form of β̂b(ζ), the estimator is consistent if ζ = −1. However, since the variance does

not decrease as seen from the mechanism of (1.5.5), the consistent estimator when ζ = −1

can only be extrapolated in this case. To this end, let ζm be a sequence of positive numbers

with increasing order 0 < ζ1 < ζ2 < · · · < ζM . Then a sequence of estimators are ob-

tained and denoted as β̂SIM(ζ1), β̂SIM(ζ2), . . . , β̂SIM(ζM). As a function of ζm, the function

β̂SIM(ζm) is then extrapolated to ζ = −1 to obtain the proposed SIMEX estimator. The

extension of SIMEX method to more complicated cases where the ME is non-additive or σδ

is unknown can be found in Chapter 5 of Carroll et al. (2006).

Instrumental Variable Method

Compared with the methods that require the variance of ME σ2
δ to be known or can be

estimated, the instrumental variable (IV) method is applicable provided that there exists

some instrumental variable that satisfies certain conditions. Specifically, an instrument w

for x is said to be valid if it is correlated with x, uncorrelated with the ME δ and does

not contain any information of the response variable after accounting for all other possible

covariates. In this section, the IV method is illustrated under the setting of simple linear

model (1.5.3) and (1.5.4). Now assume there exists an instrumental variable w such that it

is related with x through

x = γw + u, (1.5.6)

where u is independent of w with E(u) = 0. Note that γ can be consistently estimated from

(1.5.4) and (1.5.6) using the regular least squares method. Further, the equation (1.5.3) can

be rewritten as

y = α + βγw + ε∗,
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where ε∗ = βu + ε. Thus β can be consistently estimated by regressing y on γw, in which

case the computation procedure is also called the two-stage least squares method.

1.6. Variable Selection with Measurement Error

In this section we review some existing literature on variable selection problems with mea-

surement errors, under the settings of regularized ME models.

Yi et al. (2015) proposed the estimation and model selection procedure for longitudinal

data which is subject to missingness and measurement errors. The algorithm is briefly

described as below. Firstly the SIMEX procedure is employed and a sequence of estimators

β̂(ζ) (see (1.5.5)) from the corresponding unbiased estimating equations. Then the SIMEX

estimator β̃ is obtained by extrapolating ζ to the value ζ = −1, namely β̃ = β̂(−1). Note

that in Yi et al. (2015) the SIMEX estimator β̃ is assumed to be normally distributed

asymptotically. Then the final step is to solve the following minimization problem of some

penalized quadratic loss function

l(β) =
1

2
(β − β̃)TVn(β − β̃)− n

d∑
j=1

pλ(|βj|)

for some positive definite weight matrix Vn. The estimator β̃ is shown to have oracle property

under some standard conditions in the settings of regularized regression.

Ma and Li (2010) proposed penalized estimating equation for variable selection in ME

models. For a general parametric model, denote py|xz(y|x, z; β) as the conditional probability

density function of the response variable y on the covariates (x, z), where x is unobservable

or measured with errors, and z is ME free. Suppose instead of x, we observe x∗ where

x∗ = x+ ∆. The unbiased estimation equation is defined as

S(x∗, z, y) = S∗β(x∗, z, y)− E∗(a(x, z)|x∗, z, y),

where

S∗β(x∗, z, y) = ∂ log

∫
px∗|x,z(x

∗|x, z)py|x,z(y|x, z)p∗x|z(x|z)dµ(x)/∂β,

and a(x, z) is some function that satisfies

E[E∗{a(x, z)|x∗, z, y}|x, z] = E
{
S∗β(x∗, z, y)|x, z

}
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with the expectation E∗ calculated with respect to some posited density function p∗x|z(x|z).

The penalized estimating equation is then defined as

n∑
i=1

S(x∗i , zi, yi; β)− np′λ(β) = 0,

where p′λ(β) = (p′λ(β1), p′λ(β2), . . . , p′λ(βd))
T . For certain types of penalty functions and

properly chosen tuning parameters, the resulting estimator is shown to have properties like

consistency and asymptotic normality.

Liang and Li (2009) proposed two variable selection approaches for partially linear ME

models. For simplicity, we illustrate the idea under the settings of simple linear regression

model. The method can be generalized to partially linear ME model by using partial residual-

based loss function. Consider the linear ME model

y = βTx x+ βTz z + ε

x∗ = x+ δ
(1.6.1)

where E(ε|x, z) = 0, δ is independent of (x, z, ε) with E(δ) = 0. Denote β = (βTx , β
T
z )T ,

Σδ as the covariance matrix of the random error δ. The first estimator based on correction

for attenuation method is then given by minimizing the following penalized least squares

function
1

2

n∑
i=1

(yi − βTx x∗i − βTz zi)2 − n

2
βTx Σδβx + n

d∑
j=1

pλ(|βj|).

The second method, penalized quantile function is given by

n∑
i=1

ρτ

(
(yi − βTx x∗i − βTz zi)/

√
1 + βTxCδβx

)
+ n

d∑
j=1

pλ(|βj|),

where ρτ (r) = τmax(r, 0) + (1− τ)max(−r, 0) and Cδ is some matrix assumed to be known.

The estimators of the two methods are shown to have good properties as in Liang and Li

(2009).

Huang and Zhang (2013) proposed to perform variable selection in linear ME models via

penalized score functions. Under the linear ME model (1.6.1) with the assumption that the

random error ε ∼ N(0, σ2
ε ), the quantity

∆ = x∗ + yΣδβx/σ
2
ε
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is a sufficient statistic for x as shown in (Stefanski and Carroll, 1987). The conditional score

function is given by

S1(β, σ2
ε ) =


(y − E(y|∆, z))

(
∆

z

)
n− d
n

σ2
ε −

(y − E(y|∆, z))2

V (y|∆, z)/σ2
ε

 ,
where

E(y|∆, z) = (βTx ∆ + βTz z)/(1 + βtxΣδβx/σ
2
ε )

and

V (y|∆, z) = σ2
ε/(1 + βtxΣδβx/σ

2
ε ).

Another unbiased estimating equation called corrected score function is given by

S2(β) =

[
(y − βTx x∗ − βTz z)x∗ + Σδβx

(y − βTx x∗ − βTz z)z

]
.

Then the penalized score equations are defined as

Sk(β)− np′λ(β) = 0,

where k = 1, 2 refers to penalized conditional score and penalized corrected score method, re-

spectively. Specifically, under the score-based information criteria, Huang and Zhang (2013)

showed that the estimation procedure is consistent in model selection.

The regularized regression for linear ME model with IV is presented in next chapter.

The linear ME model settings, methods and theoretical results are presented in Section 1.

Numerical examples comparing the proposed estimator with naive estimator using different

model selection criteria are given in Section 2, followed by a real data application on diabetes

example in Section 3. The proofs of theorem are relegated to the Section 4.
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Chapter 2

Regularized Regression in Linear ME

Model

Massive and high-dimensional data are becoming available in many areas, such as astronomy

and physics, genome and health science, business and finance, social media, signal processing

and imaging, etc. For a given response variable of interest, the number of potential predictors

can be very large. A subset of important covariates can improve the prediction accuracy

and the interpretability of the model, which is usually done through regularized regression.

However, most of the existing literature assume the data are measured precisely, which is

not the case in many real applications. When there is ME in the dataset, the so-called oracle

property does not exist anymore, which results in estimation and selection bias. Hence, under

the ME model settings, how to reduce the dimension by removing the redundant features,

without losing those important ones, is of primary interest. We introduce the proposed

regularized instrumental variable method for linear ME model in this chapter.

2.1. Regularized Linear ME Model

In this section we discuss the instrumental variable method under the settings of linear ME

model. In particular, we compare the regularized naive estimator with the proposed reg-

ularized instrumental variable estimator through different scenarios of numerical examples.

Different model selection criteria are also discussed. In addition, the proposed RIV estima-

tor is shown to have the oracle property, which is consistent in both variable selection and

parameter estimation. Specifically, consider a linear regression model

y = α + βTx x+ βTz z + ε, (2.1.1)
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where x ∈ Rp is a vector of covariates that are unobservable or measured with errors, z ∈ Rq is

a vector of error-free covariates, the coefficients β = (βTx , β
T
z )T ∈ Rd is assumed to be sparse.

Without loss of generality, assume the intercept α is zero. If the covariates x are observable

and are measured precisely, the coefficients can be estimated through the regularized least

squares method

β̂ = argmin
β∈Rd

(
1

2

n∑
i=1

(yi − βTx xi − βTz zi)2 + n

d∑
j=1

pλn(|βj|)

)
(2.1.2)

for a random sample (yi, xi, zi), where pλn(·) is some penalty function with tuning parameter

λn. However, in real applications, some or all of the predictors are usually unobservable

or are measured with errors. For example, long-term average systolic blood pressure is an

important factor affecting the cardiovascular heart disease and is generally accepted in the

literature to have ME issues. Suppose the covariates x are unobservable, instead we observe

x∗ = x+ δ, (2.1.3)

where δ is a random ME. Further assume that there exists an instrument variable (IV) w

that is related with x through the equation

x = Γw + u, (2.1.4)

where Γ is a p×l matrix with rank p, u is independent of w with E(u) = 0 and E(uuT |z) = Σu.

The random errors in (2.1.1) and (2.1.3) are assumed to satisfy E(ε|x, z, w) = 0 with constant

variance and E(δ|x, z, w) = 0. For an independently and identically distributed random

sample (yi, x
∗
i , zi, wi), let w̃i = (wTi , z

T
i )T , Γ̃ = diag(Γ̂, Iq), x̃i = (x̂Ti , z

T
i )T , where x̂i = Γ̂wi, Γ̂

is a consistent estimator of Γ and can be estimated by multivariate least squares fitting of

x∗ on w, i.e.

Γ̂ = (
n∑
i=1

x∗iw
T
i )(

n∑
i=1

wiw
T
i )−1.

In addition, denote β0 as the true model parameter,

βJ = {βj, j ∈ J }, J = {j : β0j 6= 0},

βJc = {βj, j ∈ J c}, J c = {j : β0j = 0},
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s = |J | the cardinality of J , and Γ̃J the matrix consisting of rows of Γ̃ corresponding to the

index set J . Furthermore, write

an = max{p′λn(|β0J |), j ∈ J},

bn = max{p′′λn(|β0J |), j ∈ J},

b = p′λn(|β0J |) ◦ sign(|β0J |),

Σ = diag(p′′λn(|β0J |)),

where ◦ is Hadamard product.

Similar as (2.1.2), the regularized instrumental variable estimator is defined as the mini-

mizer of the following objective function

Qn(β) =
1

2

n∑
i=1

(yi − x̃Ti β)2 + n
d∑
j=1

pλn(|βj|). (2.1.5)

Remark 1. Since the naive estimator is inconsistent in estimation and selection gener-

ally, the observed covariates are replaced by its corrected version x̃ based on instruments.

Furthermore, since the objective function in (2.1.5) involves the non-independence of ran-

dom sample (yi, x̃i) due to the involvement of Γ̂, the standard results for regularized linear

regression cannot be applied.

Remark 2. In general, a larger value of λn imposes more weights on the penalty and

produces a sparser model. The tuning parameter λn can be chosen in different ways. For

example, the Akaike information criterion (AIC), Bayesian information criterion (BIC), k-

fold cross validation and generalized cross validation (GCV). With a properly chosen tuning

parameter λn, the proposed estimator is shown to have the following properties.

Theorem 1. If an = O(n−1/2), bn = o(1) and E(w̃w̃T ) is positive definite, then there exists

a local minimizer β̂ of Qn(β) such that ||β̂ − β0|| = Op(n
−1/2).

Theorem 2. If λn → 0,
√
nλn →∞ and lim inf

n→∞
lim inf
ξ→0+

p′λn(ξ)/λn > 0, then with probability

approaching 1, the root n consistent estimator β̂ in (2.1.5) satisfies

(a) β̂Jc = 0,

(b) β̂J has the following asymptotic normal distribution

√
n(H + Σ)(β̂J − β0J + (H + Σ)−1b)

d→ N(0, DCDT ),

where

H = Γ̃0JEw̃w̃
T Γ̃T0J ,
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D = (Is, Γ̃0J(βT0J ⊗ Il+q)),

C = E(KKT )

and

K =

(
Γ̃0Jw̃(y − βT0J Γ̃0Jw̃)

(Γ̃0Jw̃ − x̃∗J)⊗ w̃)

)
.

Remark 3. According to Theorem 2, the asymptotic covariance matrix of β̂J can be

estimated with the following consistent estimator

n−1(Ĥn + Σ(β̂J))−1(D̂nĈnD̂
T
n )(Ĥn + Σ(β̂J))−1,

where Ĥn, D̂n, Ĉn are the sample counterparts of H, D, C evaluated at β̂J and Σ(β̂J) =

diag(p′′λn(|β̂J |)).
Remark 4. For some penalty functions (e.g. SCAD and MCP), b and Σ are both zero

when the tuning parameter λn is sufficiently small. Hence the resulting estimator has the

oracle performance such that β̂Jc = 0 and the asymptotic distribution of β̂J is given by

√
n(β̂J − β0J)

d→ N(0, H−1DCDTH−1).

2.2. Simulation Studies

Finite sample simulations are conducted to assess the performance of the proposed estimator

in this section. We compare the variable selection and parameter estimation results from

regularized linear regression models using the following three random samples: the precisely

measured datasets (xi, zi, yi) without ME, the observed sample (x∗i , zi, yi) ignoring ME, and

the predicted sample (x̂i, zi, yi) using instrumental variables. The results corresponding to

the three methods are denoted as TR, NA and IV, respectively. The proposed method is

implemented with SCAD penalty function. Other penalty functions are also included in

example (2.2.4). According to Wang et al. (2007), the tuning parameter selected by BIC has

the property of recovering the true model consistently for SCAD penalty. We use the BIC

criteria to select the tuning parameter in simulation examples. The simulation examples

using other model selection criteria are also discussed. In this chapter, the optimization is

conducted using R package called ncvreg developed by Breheny and Huang (2011). The

false positive (FP) reported in the table represents the average number of zero coefficients

incorrectly estimated as nonzero. Similarly, the false negative (FN) represents the average
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number of nonzero coefficients incorrectly estimated as zero. The MCC stands for Matthews

correlation coefficient, which is a general measure of describing the confusion matrix of

true/false positives/negatives and is defined as

MCC =
(TP × TN − FP × FN)√

(TP + FP )(TP + FN)(TN + FP )(TN + FN)
.

The MCC ranges from -1 to 1, where large value indicates good prediction. Finally, the

mean of ||β̂ − β0||2 is denoted as the mean squared error (MSE).

2.2.1 Numerical Example for Linear Model 1

In this example we simulate 1000 datasets consisting of 200 observations from the following

linear regression model

y = βxx+ βTz z + ε,

where (βx, β
T
z ) = (1.5, 3, 0, 0, 2, 0, 0, 0) and ε is standard normal. In addition, the covariate

x is generated as x = 1.5w + u where (z1, w, z2, . . . , z7)T are jointly generated from N(0,Σ)

with Σij = 0.7|i−j| and u is standard normal. In this example the correlation between w and

x is around 0.83. The unobserved covariate is generated as x∗ = x+δ, where δ follows normal

distribution with mean zero and variance σ2
δ . Figure (2.1) shows the estimation mean, FP

and FN across different values of σ2
δ . The results from naive method are on the left hand

side and the results of RIV method are on the right. For the naive method, the estimation is

biased and FP is inflated. The bias and FP get larger as σ2
δ/σ

2
x increases. As a comparison,

the RIV estimator is robust against the magnitude of σ2
δ/σ

2
x in terms of estimation, FP and

FN.
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Figure 2.1: Estimation and selection results of Example 2.2.1 with n = 200
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The simulation results for σ2
δ = 2 are reported in Table (2.1). It can be observed that

the estimation is biased for naive method due to ME effects. Specifically, βx is biased

towards zero due to the attenuation effect and the estimation of β1, β2 are inflated due

to the correlation structure of the covariates. In contrast, the estimation for TR and RIV

method is close to the true value of model parameter. The selection results are shown in

Table (2.2). Specifically, the table on the left shows the four summarized measures FP, FN,

MCC and MSE, and the percentage of correct specification is shown in the table on the right.

The results from the TR sample have the lowest FP, FN, MSE and highest MCC among all

three methods. The IV method performs similarly as the TR model with respect to all four

measures. In contrast, the selection bias is high when ME is ignored, as shown from the

results of NA method. For NA method, it can also be observed that the false inclusion of z2

contributes to the majority of FP, although the covariate z2 is not affected by ME directly.
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Table 2.1: Estimation eesults of Example 2.2.1 with n = 200, σ2
δ = 2

β1= 3 βx= 1.5 β2= 0 β3= 0 β4= 2 β5= 0 β6= 0 β7= 0

TR 3.00 1.50 -0.00 0.00 2.00 -0.00 0.00 -0.00

IV 3.01 1.51 0.00 -0.00 2.00 -0.00 -0.00 0.00

NA 3.66 0.59 0.61 0.01 2.01 0.00 0.00 -0.00

Table 2.2: Selection eesults of Example 2.2.1 with n = 200, σ2
δ = 2

FP FN MCC MSE

TR 0.1 0.0 0.97 0.03

IV 0.1 0.0 0.97 0.07

NA 1.1 0.0 0.76 1.77

z1 x z2 z3 z4 z5 z6 z7

TR 100 100 98 98 100 98 98 98

IV 100 100 98 98 100 98 98 98

NA 100 100 8 97 100 98 96 94

The estimation results of mean and standard deviations are shown in Table (2.3). The

numbers in parentheses are standard errors. The standard error formula performs satisfac-

torily. The boxplots corresponding to Table (2.1) for all three methods are shown in Figure

(2.2). The boxplot in the first, second and third row corresponds to results for TR, IV and

NA, respectively. It can be observed that the estimation mean center around the true value

of the coefficients for TR and IV methods, compared with the NA method which has sub-

stantial bias. In addition, the spread for all coefficients estimates is small. Note that there

are a few outliers for the estimates of β2 in IV method, which is due to the prediction error

in the estimation procedure. The number of points marked as outliers is negligible compared

to the total number of points in that column. The performance of variable selection among

three methods (σ2
δ = 1) with sample sizes n = 50, 100, 200 are reported in Table (2.4). As

the sample size increases, it can be seen that both FP and FN decrease for TR and RIV

methods, whereas the FP increases for naive method. In addition, the performance of MCC

and MSE is better for TR and RIV methods than that of the naive method. The selection

is biased for naive method no matter how large the sample size is.
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Figure 2.2: Boxplots of coefficient estimates in Example 2.2.1 with n = 200, σ2
δ = 2; First

row: TR, second row: IV, third row: NA
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Table 2.3: Mean and standard errors for nonzero coefficients of Example 2.2.1 with n = 200,
σ2
δ = 2

Mean SD

β̂1 3.01 (0.180) 0.178 (0.018)

β̂x 1.50 (0.146) 0.138 (0.014)

β̂5 1.99 (0.151) 0.140 (0.032)
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Table 2.4: Selection results with different sample size of Example 2.2.1 with σ2
δ = 1

n=50 n=100 n=200

FP FN MCC MSE FP FN MCC MSE FP FN MCC MSE

TR 0.3 0 0.92 0.08 0.1 0 0.96 0.03 0.1 0 0.98 0.01

IV 0.3 0 0.92 0.52 0.2 0 0.96 0.19 0.1 0 0.98 0.07

NA 0.5 0 0.87 0.87 0.6 0 0.85 0.71 0.8 0 0.82 0.64

2.2.2 Numerical Example for Linear Model 2

In this example we simulated 1000 datasets consisting of 200 observations from the following

linear regression model

y = βxx+ βTz z + ε,

where (βx, β
T
z ) = (3, 1.5, 0, 0, 2, 0, 0, 0), and ε is standard normal. In addition, the covariate

x is generated as x = 1.5w+u where (z1,−w, z2, . . . , z7)T are jointly generated from N(0,Σ)

with Σij = 0.7|i−j| and u is standard normal. Note that in this example the covariate x is

negatively correlated with all other covariates and the values of the first two coefficients are

interchanged. The estimation, FP and FN are shown in Figure (1.1). In this example both

the values of FP and FN increase with σ2
δ for naive method, as seen from the bottom left

graph. Similarly as in Example (2.2.1), the RIV estimator is robust against the magnitude

of σ2
δ . The simulation results where σ2

δ = 2 are reported in Table (2.5) and (2.6). Besides

the similar patterns that are observed in Example 1, it can be seen that the NA method

have both high FP and high FN in selection results. The increase of FN is due to the fact

that z1 is dropped from the model incorrectly, as shown in Table (2.6). On the other hand

the TR and IV methods perform well in recovering the true model. The selection results for

σδ = 2 with sample size n = 50, 100, 200 are reported in Table (2.7). The TR and IV method

perform like the oracle procedure as both values of FP and FN are decreasing towards zero

as the sample size increases. For the NA method, the FP and FN remain at a high level

regardless of the sample size. The boxplots for all coefficients of three methods are shown in

Figure (2.3). There are two points worth noting here. First, the mean estimates of β2 center

around the true values for TR and IV methods. Whereas it is attenuated towards zero due

to the ME effect for NA method, of which the spread is small from the interquartile range.

Second, the estimate for β1 of NA method is centered around zero, which shows the ME

effect on other nonzero coefficients from another point of view.
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Table 2.5: Estimation results of Example 2.2.2 with n = 200, σ2
δ = 2

β1= 1.5 βx= 3 β2= 0 β3= 0 β4= 2 β5= 0 β6= 0 β7= 0

TR 1.50 3.00 0.00 0.00 2.00 0.00 0.00 -0.00

IV 1.49 3.00 -0.00 -0.00 2.00 -0.00 0.01 0.00

NA 0.05 1.15 -1.20 -0.00 1.99 0.00 0.00 -0.00

Table 2.6: Selection results of Example 2.2.2 with n = 200, σ2
δ = 2

FP FN MCC MSE

TR 0.1 0.0 0.97 0.03

IV 0.1 0.0 0.97 0.20

NA 1.1 0.9 0.46 7.26

z1 x z2 z3 z4 z5 z6 z7

TR 100 100 98 98 100 98 99 97

IV 100 100 98 98 100 98 97 97

NA 8 100 2 98 100 98 96 94

Table 2.7: Selection results with different sample size of Example 2.2.2 with σ2
δ = 2

n=50 n=100 n=200

FP FN MCC MSE FP FN MCC MSE FP FN MCC MSE

TR 0.3 0 0.93 0.14 0.2 0 0.96 0.05 0.1 0 0.98 0.02

IV 0.5 0.2 0.77 3.34 0.3 0 0.88 0.91 0.2 0 0.96 0.34

NA 1 0.9 0.51 7.46 0.9 0.9 0.53 6.17 1 0.8 0.54 5.69
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Figure 2.3: Boxplots of Example 2.2.2 with n = 200, σ2
δ = 2; First row: TR, second row:

IV, third row: NA
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2.2.3 Numerical Example for Linear Model 3

In this example we show that in some special cases the ME can cause the nonzero coefficients

to be incorrectly shrunken to zero asymptotically, even if the corresponding covariates are

error free. Let (w, z) be generated the same way as in Example (2.2.1) and x = 0.707w+ u,

u ∼ N(0, 0.5) so that cor(w, x) ≈ 0.7. Further, let x∗ = x + δ, δ ∼ N(0, 1) and β0 =

(0.7,−1∗, 0.2, 0, 0, 0.7). It is known that the naive estimator

β̂NA
p→ (Σx + Σδ)

−1Σxβ.
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In this example, we have

β̂NA
p→ (0.5,−0.4, 0, 0.02,−0.02, 0.7).

Therefore, the naive method will result in nonzero values of FN asymptotically. The selection

results with sample sizes n = 100, 500, 1000 are reported in Table (2.8). The TR and RIV

estimators perform like the oracle procedure, where the values of FP, FN and MSE decrease

as sample size gets larger. On the other hand, the FN remains at one for naive estimator

regardless of sample size.

Table 2.8: Selection results of Example 2.2.3 with σ2
δ = 1

n=100 n=500 n=1000

FP FN MCC MSE FP FN MCC MSE FP FN MCC MSE

TR 0.1 0.5 0.77 0.06 0.1 0.2 0.90 0.02 0 0 0.99 0.01

IV 0.2 0.8 0.67 0.24 0.1 0.5 0.80 0.07 0 0.1 0.96 0.02

NA 0.1 0.9 0.67 0.49 0 1 0.7 0.45 0 1 0.7 0.44

2.2.4 Numerical Example for Linear Model 4

In this example we examine the effects of ME on all the covariates (with high/medium/low

correlations). Notations are changed a bit in this example. Specifically, the datasets are

generated from the linear model

y = βT t+ ε

where β = (1, 0, 0.7, 0.6, 0, 0.5, 0.4, 0, 0, . . . , 0), the covariates t = (t1, t2, . . . , t20) are jointly

generated from multivariate normal distribution N(0,Σ) with Σij = 0.7|i−j|. In addition, tk

is measured with errors δk ∼ N(0, σ2
δ ), (k = 1, 4, 7). The penalty functions are chosen as

SCAD, MCP and Lasso. BIC, AIC and Cross-validation are used as model selection criteria.

The simulation results are reported in Table (2.9), (2.10) and (2.11). Each table consists of

the selection results from penalized regression with SCAD, MCP and Lasso penalty functions,

respectively. The results from TR, IV and NA methods are compared with respect to four

summary statistics FP, FN, MCC and MSE, with different sample sizes (n = 50, 100, 200)

and standard deviations of ME (σδ = 1, 2, 5).

Table (2.9), Figure (2.4), (2.5) and (2.6) show the linear model selection results with the

tuning parameter chosen by BIC. The figures show the frequency of correct selection for each

covariate. Note that the low values of FP, FN and MSE and high values of MCC indicate

a good model fit. First, regardless of the penalty functions chosen, values of σδ and sample
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sizes, the model fit for TR and IV method is consistently better than the naive method. For

SCAD penalty with n = 50, the FP remains at 2.3 for TR and IV, with the value for NA

being slightly higher. The FN is around 1.4 for TR and IV methods, whereas FN is greater

than 2 for naive method and is increasing with the variance of ME. The other two model

fit statistics are also better for TR and IV methods with larger MCC and smaller MSE. As

the sample size increases, the results from TR and IV are approaching the oracle as both

the FP and FN are decreasing towards zero. Also it is worth noting that the IV method is

robust against the magnitude of ME variance, which is not the case for naive method. The

effect of ME can be observed from the selection results in details. Figure (2.4) shows the

frequency plot of the correct selection for the SCAD penalty. The graphs in the same row

correspond to the same value of σδ/σx, and the graphs in the same column correspond to

the same value of sample size n.

Table 2.9: Linear model selection results of Example 2.2.4 with BIC

n=50 n=100 n=200

FP FN MCC MSE FP FN MCC MSE FP FN MCC MSE

True 2.3 1.4 0.54 1.199 1.2 0.7 0.75 0.469 0.8 0.2 0.88 0.155

σδ = 1 IV 2.3 1.5 0.53 1.372 1.0 0.9 0.74 0.613 0.8 0.3 0.86 0.197

Naive 2.5 2.1 0.41 2.441 2.3 1.4 0.53 1.771 2.1 1.2 0.60 1.466

σδ = 2 IV 2.4 1.7 0.47 1.777 1.2 1.0 0.72 0.71 0.7 0.5 0.85 0.279

S
C

A
D

Naive 2.5 2.3 0.36 3.015 2.5 2.0 0.42 2.389 2.4 1.7 0.48 2.09

σδ = 5 IV 2.3 1.4 0.53 2.264 1.2 1.0 0.72 0.851 0.8 0.7 0.80 0.461

Naive 2.6 2.4 0.35 3.164 2.6 2.2 0.38 2.515 2.3 2.0 0.45 2.218

True 2.0 1.4 0.57 1.157 0.8 0.7 0.80 0.399 0.5 0.1 0.92 0.118

σδ = 1 IV 2.0 1.5 0.55 1.312 0.8 0.9 0.78 0.538 0.4 0.2 0.91 0.155

Naive 2.3 2.2 0.40 2.419 1.6 1.7 0.56 1.709 1.9 1.1 0.62 1.387

σδ = 2 IV 2.0 1.7 0.51 1.683 0.8 0.9 0.76 0.711 0.4 0.4 0.89 0.245

M
C

P

Naive 2.3 2.5 0.36 2.999 1.9 2.3 0.44 2.309 2.3 1.8 0.47 2.048

σδ = 5 IV 1.9 1.5 0.56 2.171 0.9 1.1 0.74 0.832 0.5 0.6 0.86 0.403

Naive 2.2 2.6 0.34 3.081 2.1 2.3 0.40 2.505 1.9 2.2 0.45 2.209

True 2.9 0.4 0.65 0.554 2.0 0.0 0.78 0.196 1.6 0.0 0.82 0.097

σδ = 1 IV 2.7 0.6 0.64 0.708 1.9 0.2 0.77 0.294 1.8 0.0 0.80 0.137

Naive 3.3 1.3 0.47 1.648 3.3 0.8 0.55 1.373 3.3 0.5 0.61 1.265

σδ = 2 IV 3.0 0.9 0.57 0.907 2.4 0.4 0.70 0.408 1.7 0.1 0.80 0.21

L
as

so

Naive 3.2 1.9 0.37 2.096 3.3 1.5 0.44 1.891 3.3 1.3 0.48 1.81

σδ = 5 IV 2.9 0.9 0.57 1.005 2.2 0.4 0.71 0.534 2.2 0.2 0.75 0.331

Naive 3.2 2.2 0.33 2.211 3.1 2.0 0.37 2.024 3.3 1.6 0.42 1.942
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Figure 2.4: The frequency of correct selection in Example 2.2.4 for SCAD with BIC; black
cross - True, red triangle - IV, blue circle - Naive
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The common selection errors for naive method are on x1, x2, x4, x5, x7, as more blue cir-

cles are appearing close to bottom. From the data correlation structure, and the simulation

setting such that x1, x4, x7 are measured with errors, it can be seen that the ME affects the

selection of the covariates that are highly/moderately correlated with mis-measured covari-

ates. The weakly correlated covariates are also affected, for example x8, x9, x11, x16, x19, x20.

As the ratio σδ/σx increases, the correct selection frequency drops for the naive method

(eg. x1, x4). As comparison, the RIV method is robust against the ratio. For MCP penalty

(Figure (2.5)), the FP is slightly lower compared with SCAD. The overall pattern for both

penalty function remains similar.
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Figure 2.5: Correct selection frequency results of Example 2.2.4 for MCP with BIC; black
cross - True, red triangle - IV, blue circle - Naive
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Figure (2.6) shows the frequency plot of correct selection for Lasso. First, the pattern

resembles that for the SCAD and MCP cases. The TR method performs the best among the

three methods, followed by the RIV method. The naive method cannot select the true model

consistently among all scenarios. For Lasso penalty, the FN is lower than that of SCAD and

MCP for all TR, IV and NA methods. Whereas the FP is much higher as a trade-off. For

example, the values of FP and FN are 0.8, 0.7 for SCAD penalty in naive method (σδ = 5),

compared with 2.2, 0.2 for that of Lasso. In particular, x2 and x5 contribute the most to the

excessive covariates selected. In this sense Lasso tends to select less sparse model compared

with the other two penalty functions.
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Figure 2.6: Correct selection frequency results of Example 2.2.4 for Lasso with BIC; black
cross - True, red triangle - IV, blue circle - Naive
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Table (2.10), figure (2.7), (2.8) and (2.9) show the linear model selection results with the

tuning parameter chosen by AIC. As discussed in the section of model selection criteria, the

AIC always tends to select a bigger model compared with BIC. Hence, the results obtained

from using AIC criteria have higher FP and lower FN, which is the case for all three models.

This effect improves the FN for all models in some sense. However, the increase of FP is

too much compared with the extent of improvement in FN. For example, consider the case

where σ2
δ = 2 and n = 200. For the SCAD penalty with BIC, the (FP,FN) for IV and NA

are (0.4,0.4) and (2.3,1.8), respectively.
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Table 2.10: Linear model selection results of Example 2.2.4 with AIC

n=50 n=100 n=200

FP FN MCC MSE FP FN MCC MSE FP FN MCC MSE

True 4.5 0.9 0.46 1.4 4.0 0.2 0.6 0.499 3.4 0.0 0.67 0.188

σδ = 1 IV 4.5 0.9 0.45 1.567 4.3 0.4 0.56 0.641 3.4 0.1 0.66 0.231

Naive 5.7 1.2 0.34 2.771 5.2 0.8 0.43 1.67 5.0 0.6 0.48 1.323

σδ = 2 IV 4.6 1.1 0.42 2.407 4.2 0.5 0.54 1 3.0 0.2 0.67 0.333

S
C

A
D

Naive 5.1 1.6 0.31 3.285 5.3 1.2 0.36 2.351 5.7 0.9 0.39 1.976

σδ = 5 IV 5.0 1.1 0.39 3.309 4.1 0.6 0.53 1.836 3.3 0.3 0.63 0.388

Naive 5.6 1.6 0.27 3.751 5.1 1.3 0.35 2.533 5.3 1.1 0.37 2.191

True 4.0 0.9 0.49 1.353 3.4 0.2 0.64 0.482 2.9 0.1 0.7 0.194

σδ = 1 IV 4.2 1.0 0.46 1.603 3.6 0.3 0.61 0.611 2.9 0.1 0.69 0.238

Naive 4.9 1.3 0.36 2.702 4.6 0.9 0.45 1.669 4.3 0.7 0.51 1.311

σδ = 2 IV 4.1 1.1 0.45 2.298 3.7 0.5 0.57 0.998 2.9 0.2 0.68 0.336

M
C

P

Naive 4.6 1.8 0.31 3.24 4.5 1.4 0.38 2.307 4.9 1.0 0.41 1.971

σδ = 5 IV 4.4 1.2 0.42 3.294 3.6 0.6 0.57 1.836 2.9 0.3 0.66 0.39

Naive 4.8 1.8 0.29 3.599 4.7 1.4 0.35 2.518 4.7 1.3 0.37 2.167

True 5.6 0.1 0.52 0.731 4.9 0.0 0.58 0.286 4.6 0.0 0.6 0.124

σδ = 1 IV 5.4 0.4 0.49 0.917 5.3 0.1 0.54 0.398 4.4 0.0 0.61 0.166

Naive 6.1 0.7 0.39 1.844 5.8 0.4 0.46 1.42 5.8 0.3 0.47 1.234

σδ = 2 IV 5.2 0.6 0.47 1.536 5.3 0.2 0.52 0.616 4.3 0.1 0.61 0.249

L
as

so

Naive 6.3 1.0 0.33 2.562 5.3 1.0 0.39 1.979 6.1 0.6 0.41 1.84

σδ = 5 IV 6.3 0.6 0.39 2.273 5.6 0.3 0.49 1.31 4.6 0.2 0.58 0.314

Naive 6.2 1.3 0.28 2.734 5.9 1.0 0.35 2.174 6.2 0.9 0.36 2.016
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Figure 2.7: Correct selection frequency results of Example 2.2.4 for SCAD with AIC; black
cross - True, red triangle - IV, blue circle - Naive
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If AIC is used in the same scenario, the (FP,FN) for IV and NA become (3.0,0.2) and

(5.7,0.9). It can be seen that the small decrease in FN comes with large increase of FP.

On the other hand, consider the same case where σ2
δ = 2 and n = 200. The (FP,FN) for

IV and Naive method for Lasso penalty with BIC are (1.7, 0.1) and (3.3, 1.3), respectively.

Whereas they become (4.3, 0.1) and (6.1, 0.6) if AIC is used instead. In this case there is

no improvement in FN. In other words, the model selected by AIC is getting bigger without

any substantial improvement, in terms of the model selection metrics used in the current

simulation. Figure (2.7) and (2.8) show the frequency plot of correct selection for SCAD

and MCP penalty functions.
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Figure 2.8: Correct selection frequency results of Example 2.2.4 for MCP with AIC; black
cross - True, red triangle - IV, blue circle - Naive
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The performance is similar with each other and we see the overall correct selection fre-

quencies drop due to bigger models are falsely selected. Figure (2.9) shows the frequency

plot for Lasso penalty, which amplifies the false selection effect due to the nature of the Lasso

penalty.
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Figure 2.9: Correct selection frequency results of Example 2.2.4 for Lasso with AIC; black
cross - True, red triangle - IV, blue circle - Naive
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Table (2.11), figure (2.10), (2.11) and (2.12) show the linear model selection results with

the tuning parameter chosen by cross-validation. The cross-validation is based on minimizing

the prediction error. From this point of view, cross-validation is not guaranteed to choose

the true model consistently. It can be observed that the selection results for cross-validation

is similar to that of AIC. Note that the overall pattern among the three different methods

(TR, IV and NA) remain the same.
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Table 2.11: Linear model selection results of Example 2.2.4 with cross-validation

n=50 n=100 n=200

FP FN MCC MSE FP FN MCC MSE FP FN MCC MSE

True 3.5 1.1 0.48 1.241 2.7 0.5 0.65 0.391 2.7 0.1 0.71 0.148

σδ = 1 IV 3.4 1.4 0.45 1.946 3.0 0.7 0.59 0.858 2.6 0.4 0.69 0.29

Naive 3.3 2.1 0.34 2.97 4.0 1.3 0.42 2.279 4.2 1.2 0.43 1.987

σδ = 2 IV 3.6 1.4 0.44 1.567 2.9 0.6 0.63 0.521 2.5 0.2 0.72 0.187

S
C

A
D

Naive 3.6 1.7 0.39 2.471 4.3 1.0 0.46 1.604 4.7 0.7 0.48 1.335

σδ = 5 IV 3.7 1.4 0.43 2.261 3.0 0.8 0.57 0.935 2.5 0.5 0.67 0.401

Naive 3.7 2.1 0.32 3.12 3.9 1.8 0.35 2.463 4.1 1.5 0.39 2.177

True 2.3 1.4 0.54 1.159 2.4 0.4 0.68 0.383 1.9 0.2 0.78 0.145

σδ = 1 IV 2.7 1.6 0.47 1.792 2.2 0.8 0.64 0.842 1.5 0.4 0.77 0.285

Naive 2.8 2.4 0.33 3.151 3.5 1.6 0.40 2.355 3.7 1.4 0.42 2.004

σδ = 2 IV 2.2 1.6 0.51 1.552 2.0 0.7 0.67 0.537 1.7 0.2 0.77 0.2

M
C

P

Naive 2.4 2.0 0.43 2.474 2.8 1.3 0.51 1.601 3.7 0.8 0.53 1.343

σδ = 5 IV 2.5 1.7 0.47 1.989 1.9 1.0 0.64 0.943 1.3 0.5 0.77 0.408

Naive 2.5 2.5 0.33 3.157 2.8 2.2 0.37 2.452 3.6 1.7 0.38 2.187

True 4.6 0.2 0.57 0.55 4.0 0.0 0.63 0.205 4.3 0.0 0.62 0.119

σδ = 1 IV 5.1 0.6 0.47 1.01 4.4 0.3 0.57 0.513 4.7 0.0 0.59 0.225

Naive 5.0 1.5 0.33 2.118 5.3 1.0 0.38 1.913 5.8 0.7 0.42 1.82

σδ = 2 IV 5.0 0.4 0.51 0.743 3.9 0.1 0.63 0.303 4.4 0.0 0.61 0.151

L
as

so

Naive 5.0 0.9 0.42 1.652 5.4 0.5 0.46 1.34 5.5 0.3 0.50 1.24

σδ = 5 IV 5.2 0.7 0.45 1.291 4.7 0.3 0.54 0.644 5.0 0.2 0.54 0.331

Naive 4.8 1.7 0.31 2.273 5.1 1.4 0.32 2.072 5.6 0.9 0.39 1.983
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Figure 2.10: Correct selection frequency results of Example 2.2.4 for SCAD with cross-
validation; black cross - True, red triangle - IV, blue circle - Naive
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Figure 2.11: Correct selection frequency results of Example 2.2.4 for MCP with Cross-
Validation; black cross - True, red triangle - IV, blue circle - Naive
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Figure 2.12: Correct selection frequency results of Example 2.2.4 for Lasso with Cross-
Validation; black cross - True, red triangle - IV, blue circle - Naive
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2.3. Real Data Application

In this section we apply the proposed method on a real dataset. The data is from a

community-based study on the prevalence of coronary heart disease risk factors in Virginia

by Willems et al. (1997). Risk factors like smoking habits, blood pressure, high-density

lipoprotein, cholesterol and glycosylated hemoglobin are collected from 403 among rural

blacks in Virginia. In our analysis, the outcome of interest is systolic blood pressure. The

covariates being considered are: glycosylated hemoglobin (glyhb), body mass index (bmi).

total cholesterol (chol), high-density lipoprotein (hdl), chol/hdl (ratio), age, gender, height

in inchs, weight in kilogram. Specifically, the stabilized glucose, waist and hip in inches are

used as instrumental variables for glycosylated hemoglobin and bmi. A regularized linear

regression model is fitted to the dataset to identify the important factors affecting systolic

blood pressure. The tuning parameter is selected by BIC. The results from the naive method

ignoring the ME and the proposed RIV method are presented in Table (2.12), as well as the

results from the ordinary least squares. Numbers in parentheses are estimated standard

errors. From the results in Table (2.12) it can be observed that the naive method selects

only age as the important predictor for blood pressure. However, growing evidence in epi-

demiological studies shows that there is positive relationship between the blood pressure and

bmi, eg. Falkner et al. (2006) and Linderman et al. (2018). After correcting for the ME

effect, the proposed RIV method selects bmi, cholesterol and age as important covariates.

The plots of coefficient estimates against the tuning parameter for both methods are shown

in Figure (2.13). It can be observed from Figure (2.13) such that, besides the magnitude of

the estimates, the ME also affects the selection results through the model selection criteria.
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Figure 2.13: Estimates of regression coefficients for diabetes data. Left panel: estimates of
naive method as a function of tuning parameter λ; Right panel: estimates of IV method.
The vertical line corresponds to the optimal value of λ selected by BIC.
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Table 2.12: Estimated regression coefficients and standard errors (SE) of diabetes data

SCAD-BIC OLS

IV Naive IV Naive

intercept 91.03 (7.031) 107.86 (3.187) 72.68 (31.622) 71.43 (82.255)

bmi 0.48 (0.176) 0 (-) 1.11 (0.478) 0.46 (1.336)

stab.glu 0 (-) 0 (-) 2.19 (4.536) 1.38 (3.274)

chol 0.02 (0.024) 0 (-) 0.04 (0.046) 0.05 (0.046)

hdl 0 (-) 0 (-) 0.07 (0.142) 0.04 (0.143)

ratio 0 (-) 0 (-) -0.07 (1.579) -0.37 (1.591)

age 0.61 (0.065) 0.63 (0.064) 0.55 (0.073) 0.59 (0.071)

gender 0 (-) 0 (-) 4.21 (3.265) 1.28 (3.043)

height 0 (-) 0 (-) -0.04 (0.409) 0.12 (1.220)

weight 0 (-) 0 (-) -0.16 (0.156) 0.00 (0.483)
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2.4. Linear ME Model Proofs

Proof of Theorem 1

The idea of the proof is similar to that of Ma and Li (2010). Define the score function as

sn(β) = − 1

n

n∑
i=1

(yi − x̃Ti β)x̃i +

p∑
j=1

p′λn(|βj|)sign(βj)

It is sufficient to show that sn(β) = 0 has a solution β satisfying ||β̂ − β0|| = Op(n
−1/2). To

this end, we show for any β such that ||β̂ − β0|| = n−1/2C the inequality (β − β0)T sn(β) > 0

holds with probability approaching 1. Using the Taylor expansion, we have

(β − β0)T sn(β)

=(β − β0)T

(
−n−1

n∑
i=1

(yi − x̃Ti β0)x̃i + p′λn(|β0|) ◦ sign(β0)

)
+(β − β0)Tn−1

∑
x̃ix̃

T
i (β − β0) + (β − β0)Tp′′λn(|β0|)(β − β0)(1 + o(1))

The term in first line of last equation is of order Op(Cn
−1). The second term is Op(C

2n−1)

and the third term is op(C
2n−1). Hence the second term dominates the other terms with a

sufficiently large C. Together with the positive definiteness of E(w̃w̃T ), (β − β0)T sn(β) is

shown to be positive with probability tending to 1, which completes the proof.

Proof of Theorem 2

It is sufficient to show that for any β satisfying ||β − β0|| = Op(n
−1/2),∂Q(β)/∂βj > 0, 0 < βj < Cn−1/2;

∂Q(β)/∂βj < 0, − Cn−1/2 < βj < 0

for every βj ∈ βJc . Note that

∂Q(β)

∂βj
= −

n∑
i=1

(yi − βT x̃i)x̃ij + np′λn(|βj|)sign(βj)

= n

{
−n−1

n∑
i=1

(yi − βT0 x̃i)x̃ij + n−1

n∑
i=1

(β − β0)T x̃ix̃ij + p′λn(|βj|)sign(βj)

}
= nλn

{
Op(n

−1/2/λn) + λ−1
n p′λn(|βj|)sign(βj)

}
48



The first term of the last second equation is Op(n
−1/2), together with ||β − β0|| = Op(n

−1/2)

and the assumption lim inf
n→∞

lim inf
φ→0+

p′λn(φ)/λn > 0, the sign of the partial derivative is com-

pletely determined by the sign of βj, which completes the proof of (a) in Theorem 2.

The first order differential equation with respect to βJ (given β̂Jc = 0) is

∂Q(β̂J)

∂βJ
=−

n∑
i=1

(yi − β̂TJ x̃Ji)x̃Ji + np′λn(|β̂J |) ◦ sign(β̂J)

where ◦ is Hadamard product. Setting the first order derivative as zero, then

n−1

n∑
i=1

(x̃Jix̃
T
Ji + Σ(β̃J))n1/2(β̂J − β0J) + n1/2b = n−1/2

n∑
i=1

(yi − βT0J x̃Ji)x̃Ji.

The RHS can be written as

n−1/2

n∑
i=1

(yi − βT0J x̃Ji)x̃Ji

=n−1/2
∑

(yi − βT0Jαi + βT0Jαi − βT0J x̃Ji)x̃Ji

=n−1/2
∑{

(yi − βT0J x̃Ji)αi + (yi − βT0Jαi)(x̃Ji − αi) + βT0J(αi − x̃Ji)(x̃Ji − αi)
}

where αi = Γ̃0Jw̃i. It can be shown that the second and third term is op(1) and the first

term is:

n−1/2

n∑
i=1

(yi − βT0J x̃Ji)αi

=n−1/2
∑(

yi − βT0J Γ̃0Jw̃i + w̃Ti Il+q(Γ̃0J − Γ̃J)Tβ0J

)
αi

=n−1/2
∑(

(yi − βT0J Γ̃0Jw̃i)αi + Γ̃0J(βT0J ⊗ Il+q)(
∑

(Γ̃0Jw̃i − x∗Ji)⊗ w̃i)
)

=n−1/2
(
Is, Γ̃0J(βT0J ⊗ Il+q)

)
·
∑(

(yi − βT0Jαi)αi
(Γ̃0Jw̃i − x̃∗Ji)⊗ w̃i)

)
≡Dn−1/2

∑
Ki

→D ·N(0, C)

where

D =
(
Is, Γ̃0J(βT0J ⊗ Il+q)

)
,
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C = E(KKT ).

Also

Hn ≡n−1
∑

x̃Jix̃
T
Ji

=n−1Γ̃J
∑

w̃iw̃
T
i Γ̃TJ

p→Γ̃0JEw̃w̃
T Γ̃T0J

=H.

The proof is then completed by applying Slutsky’s theorem. Note that the following facts

are used in the proof and are listed as below.

Kronecker Product Properties

For matrices Aj, Bj, Cj and Dj, j = 1, 2, we have the following facts

vec(A1B1C1) = (CT
1 ⊗ A1)vec(B1)

(A2C2 ⊗B2D2) = (A2 ⊗B2)(C2 ⊗D2)

provided that the dimensions of the matrices match. Under the current model setting, we

have

vec[(Γ̂− Γ0)T ] =


γ̂1 − γ01

...

γ̂p − γ0p



=


(W TW )−1

. . .

(W TW )−1



W T (X∗1 −Wγ01)

...

W T (X∗p −Wγ0p)


=
(
Ip ⊗

∑
wiw

T
i

)−1 (∑
(x∗i − Γ0wi)⊗ wi

)
.
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Chapter 3

Regularized Regression in

Generalized Linear ME Model

In this chapter, we discuss about the regularized instrumental variable method in generalized

linear ME models. In particular, the RIV estimator is obtained by minimizing the proposed

objective function, which is based on the conditional moments with some penalty function.

It is shown that under some conditions, the proposed estimator enjoys the oracle property.

The asymptotic distribution is derived and finite sample performance is examined through

numerical examples. Finally, the proposed method is applied to Framingham heart study

dataset.

3.1. Regularized Generalized Linear ME Model

In generalized linear model, the response variable y has the following density function

f(y; η, ϕ) = exp[(yη − b(η))/ϕ+ c(y, ϕ)]

where η = α+βTx x+βTz z, x ∈ Rp is a vector of covariates that are unobservable or measured

with errors, z ∈ Rq is a vector of error-free covariates, the coefficients β = (βTx , β
T
z )T ∈ Rd

is assumed to be sparse. In addition, b(·), c(·, ·) are known functions and ϕ is dispersion

parameter which is assumed to be known. If the covariates x are observable and measured

precisely, the coefficients can be estimated through the regularized likelihood function

argmin
α,β

(
ln(α, β) + n

d∑
j=1

pλn(|βj|)

)
(3.1.1)
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where ln(α, β) is the log-likelihood function, pλn(·) is some penalty function with tuning

parameter λn. When x are measured with errors or cannot be observed directly, the regu-

larization procedure applied on mismeasured proxies of x does not have the oracle property

anymore. Hence the true model cannot be identified correctly due to ME effect. We propose

to correct the ME effect with instrumental variables. Similar as in the linear model (2.1.4),

suppose the covariates x are unobservable and we observe

x∗ = x+ δ,

where δ is a random ME. Further assume that there exists an instrument variable (IV) w

that is related with x through the equation

x = Γw + u,

where Γ is a p × l matrix with rank p. In contrast to the linear model, the distribution

fU(u;φ) of the random error u is assumed to be known indexed by some unknown parameter

φ and is independent of (w, z) with E(u) = 0. The random error δ in (2.1.3) is supposed to

satisfy E(δ|x, z, w) = 0 and (x∗T , wT ) is a surrogate for x.

In generalized linear model, the conditional expectation of the response y on covariates

(xT , zT ) is given by

E(y|x, z) = G−1(α + βTx x+ βTz z),

where G is link function. For example, G(a) = logit(a) for logistic model and G(a) = log(a)

in Poisson model. Note that all expectations are conditional on z throughout this chapter

unless stated explicitly. Denoting x̆∗ = (1, x∗T , zT )T and x̆ = (1, xT , zT )T , we have

E(x̆∗y|w) =

∫
x̆∗G−1(α + βTx Γw + βTz z + βTx u)fU(u;φ)du

=

∫
x̆G−1(α + βTx x+ βTz z)fU(x− Γw;φ)dx

(3.1.2)

Let random sample (yi, x
∗
i , zi, wi) be independent and identically distributed. Define

m(v;ψ) =

∫
x̆G−1(α + βTx x+ βTz z)fU(x− v;φ)dx,

ρ̂i(ψ) = yix̆
∗
i −m(Γ̂wi;ψ),

where ψ = (α, βTx , β
T
z , φ)T and Γ̂ = (

∑
x∗iw

T
i )(wiw

T
i )−1. It is easy to see that m(Γw;ψ) =

E(x̆∗y|w). The proposed regularized IV estimator is defined as the minimizer of the following
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function

Qn(ψ) + n

d∑
j=1

pλn(|βj|) (3.1.3)

where Qn(ψ) = 1
2

∑n
i=1 ρ̂i(ψ)TAiρ̂i(ψ), Ai = A(wi) is a nonnegative definite matrix which

may depend on wi.

Remark 1. In general, a larger value of λn imposes more weights on the penalty and

produces a sparser model. The tuning parameter λn can be chosen in different ways. For

example, the Akaike information criterion (AIC), Bayesian information criterion (BIC), K-

fold cross validation and generalized cross validation (GCV). With a properly chosen tuning

parameter λn ,the proposed estimator is shown to have the following properties.

The notations are slightly different in this chapter. Denote Hn(ψ) as Hessian matrix of

Qn(ψ), ψ0 = (α0, β
T
0 , φ0)T = (α0, β

T
0x, β

T
0z, φ0)T as the true value of model parameters. Define

ψJ = (α, βTJ , φ)T where

βJ = {βj, j ∈ J }, J = {j : β0j 6= 0},

βJc = {βj, j ∈ J c}, J c = {j : β0j = 0},

s = |J | the cardinality of J , ΓJ the matrix consisting of rows of Γ corresponding to the index

set J , and γ = vec(ΓT ) as the vector that is consisting of the columns of ΓT . In addition,

denote

an = max{p′λn(|β0j|), j ∈ J},

bn = max{p′′λn(|β0j|), j ∈ J},

b = (0, p
′

λn(|βT0J |), 0)T ◦ sign(ψ0J),

Σ = diag(0, p′′λn(|βT0J |), 0).

With the notations defined above, we have the following theorems.

Theorem 3. Assume E||yx̆∗||2 < ∞ and E[H(ψ0)] is positive definite, an = O(n−1/2),

bn = o(1), then there exists a local minimizer ψ̂ of the objective function (3.1.3) such that

||ψ̂ − ψ0|| = Op(n
−1/2).

Theorem 4. If λn → 0,
√
nλn →∞ and lim inf

n→∞
lim inf
ξ→0+

p′λn(ξ)/λn > 0, then with probability

approaching 1, the root n consistent estimator ψ̂ satisfies

(a) β̂Jc = 0,

(b) ψ̂J has the following asymptotic normal distribution

√
n(H + Σ)(ψ̂J − ψ0J) +

√
nb→d N(0, DCDT )
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where

H = E

[
∂ρT (ψ0J)

∂ψJ
A(w)

∂ρ(ψ0J)

∂ψTJ

]
,

D =

[
Is+2, E

(
∂ρT (ψ0J)

∂ψJ
A(w)

∂ρ (ψ0J)

∂γT

)(
Ip ⊗ E(wwT )−1

)]
,

C = E(KKT )

and

K =

(
∂ρT (ψ0J) /∂ψJ · A(w)ρ (ψ0J)

(x∗J − Γ0Jw)⊗ w

)

Remark 2. The sample counterpart of covariance matrix DCDT has an alternative ex-

pression that eases the calculation and is given by

D̂CDT =
1

n

∂Qn(ψ̂J)

∂ψJ

∂Qn(ψ̂J)

∂ψTJ

where
∂Qn(ψ̂J)

∂ψJ
=

n∑
i=1

∂ρTi (ψ0J)

∂ψJ
Aiρi(ψ0J)

Remark 3. Though the estimator is consistent regardless of the choice of A(w), there

exists an optimal weight A(w) matrix theoretically for a most efficient estimator. Following

Wang and Hsiao (2011), the optimal weight matrix is given by

A(w) = E[ρ(ψ0J)ρT (ψ0J)|w].

Since the optimal weight matrix involves unknown parameters, the calculation of A(w) can

be done via a two-stage estimation procedure. First, minimize the objective function using

the identity matrix as weight matrix. In the second stage, the estimators are obtained with

the optimal weight matrix which is calculated with the estimates from first stage.

Remark 4 For some penalty functions (e.g. SCAD and MCP), b and Σ are both zero

when the tuning parameter λn is sufficiently small. Hence the resulting estimator has the

oracle performance such that β̂Jc = 0 and the asymptotic distribution of ψ̂J is given by

√
n(ψ̂J − ψ0J)

d→ N(0, H−1DCDTH−1).

Remark 5 In situations where the integral in (3.1.2) does not have analytical form, Monte

Carlo methods (e.g. importance sampling) are used to approximate the integral. Specifically,
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we can follow the suggestions in Wang and Hsiao (2011) for calculating the (3.1.2).

• Choose a candidate distribution whose density function h(x) is known;

• Generate i.i.d. random sample {xis, s = 1, 2, . . . , S, S + 1, . . . , 2S; i = 1, 2, . . . , n} from

density function h(x);

• Calculate the Monte Carlo approximation of m(Γwi;ψ) as

mS1(Γwi;ψ) =
1

S

S∑
s=1

x̃isG
−1(α + βTx xis + βTz zi)fU(xis − Γwi;φ)

h(xis)
,

and

mS2(Γwi;ψ) =
1

S

2S∑
s=S+1

x̃isG
−1(α + βTx xis + βTz zi)fU(xis − Γwi;φ)

h(xis)
;

• The approximated loss function is then calculated as

Qn(ψ) =
1

2

n∑
i=1

ρ̂Ti,S1(ψ)Aiρ̂i,S2(ψ)

where ρ̂i,S1(ψ) = yix̆
∗
i −mS1(Γ̂wi;ψ) and ρ̂i,S2(ψ) = yix̆

∗
i −mS2(Γ̂wi;ψ).

Remark 6 As noted in Abarin and Wang (2012), for some models like gamma log-linear

and poisson log-liner model, the analytical form of the expectation (3.1.2) can be obtained

for some error distribution fU(u). For example, when the random error u follows an uni-

variate normal distribution u ∼ N(0, φ), the integral in (3.1.2) has the following closed-form

expression

E(x̆∗y|w) = ăT ξ,

where ă = (1,Γw + βxφ, z
T )T and ξ = exp(α + βxΓw + βTz z + 1

2
β2
xφ). With the closed-form

expression, the computation burden is eased a lot.

3.2. Simulation Studies

3.2.1 Numerical Example for Logistic Regression 1

In this example we simulate 1000 datasets from the model y ∼ Bernoulli(p(α + xTβ)),

where p(b) = exp(b)/(1 + exp(b)) and the coefficients (α, βT ) = (1, 3, 1.5, 0, 0, 2, 0, 0, 0). The

covariate x = 1.5w + u where (z1, w, z2, . . . , z7)T are jointly generated from N(0,Σ) with

Σij = 0.7|i−j| and u is standard normal. In this example the correlation between w and

55



x is around 0.83. The unobserved covariate is generated as x∗ = x + δ, where δ follows

normal distribution with mean zero and variance σ2
δ . The estimation and selection results

with BIC model selection criteria are reported in Tables (3.1) and (3.2). It can be observed

that the estimation for TR and IV is close to the true values of coefficients compared with

NA method, of which the estimation is biased due to the ME effect. In terms of selection

results, the values of FP and FN are both low for TR and IV methods. The boxplots for all

coefficients of three methods are shown in Figure (3.1). The pattern of IV results mimics

that of TR method, with the mean values centering around the true values of coefficients.

The estimation of naive method is biased, with larger spread for some covariates (e.g. β2,

β4).

Table 3.1: Estimation results of Example 3.2.1 with n = 200, σ2
δ = 5

α=1 β1= 3 βx= 1.5 β2= 0 β3= 0 β4= 2 β5= 0 β6= 0 β7= 0

TR 1.04 3.09 1.54 0.02 0.06 1.92 0.04 0.02 0.04

IV 1.03 3.12 1.47 0.01 0.07 1.91 0.05 0.04 0.04

NA 0.72 2.87 0.28 0.38 0.12 1.39 0.03 0.01 0.05

Table 3.2: Selection results of Example 3.2.1 with n = 200, σ2
δ = 5

FP FN MCC MSE

TR 0.4 0.0 0.90 1.51

IV 0.6 0.0 0.87 1.62

NA 1.1 0.1 0.75 3.20

z0 z1 x z2 z3 z4 z5 z6 z7

TR 100 100 100 90 90 98 93 93 89

IV 100 100 100 87 87 98 90 90 86

NA 100 100 96 41 82 96 86 94 83
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Figure 3.1: Boxplots of Example 3.2.1 with n = 200, σ2
δ = 5; first row: TR, second row: IV,

third row: NA; intercept α is denoted as 0

0 1 x 2 3 4 5 6 7

0
5

1
0

T
R

0 1 x 2 3 4 5 6 7

0
5

1
0

IV

0 1 x 2 3 4 5 6 7

−
2

0
2

4

N
A

3.2.2 Numerical Example for Logistic Regression 2

In this example we simulate 1000 datasets from the model y ∼ Bernoulli(p(α+xTβ)), where

the coefficients (α, βT ) = (1, 1.5, 3, 0, 0, 2, 0, 0, 0). The covariates (z1,−w, z2, . . . , z7)T are

jointly generated from N(0,Σ) with Σij = 0.7|i−j|. In this example the correlation between x

and other covariates is negative. The rest of model setting remains the same as in Example

(3.2.1). The overall pattern of the results in this example is similar as that in Example

(3.2.1). In addition, it is worth noting that the selection of NA method has high values in

both FP and FN. In other words, ignoring the ME can result in selecting irrelevant variables
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and failing to retain those important ones, as observed in the simulation examples.

Table 3.3: Estimation results of Example 3.2.2 with n = 200, σ2
δ = 5

α=1 β1= 1.5 βx= 3 β2= 0 β3= 0 β4= 2 β5= 0 β6= 0 β7= 0

TR 1.12 1.53 3.24 0.05 0 2.13 0.02 0.03 -0.04

IV 1.12 1.78 3.1 -0.21 -0.25 2.15 0.13 -0.08 -0.1

NA 0.47 -0.03 0.36 -0.59 0 0.82 -0.01 0.02 -0.02

Table 3.4: Selection results of Example 3.2.2 with n = 200, σ2
δ = 5

FP FN MCC MSE

TR 0.2 0.0 0.94 1.35

IV 0.8 0.0 0.84 5.02

NA 1.2 0.9 0.53 11.68

z0 z1 x z2 z3 z4 z5 z6 z7

TR 100 98 100 94 100 99 96 93 95

IV 100 99 100 84 87 100 84 83 85

NA 100 14 100 17 97 93 93 89 88

3.2.3 Numerical Example for Poisson Log-linear Regression 1

In this example we simulate 1000 datasets from the model y ∼ Poisson(exp(α+xTβ)), where

the coefficients (α, βT ) = (1, 1.5, 3, 0, 0, 2, 0, 0, 0). The instrumental variable and covariates

(z1, w, z2, . . . , z7)T are jointly generated from N(0,Σ) with Σij = 0.7|i−j|. The generation

mechanism of x is the same as in Example (3.2.1). The estimation results are reported in

Table (3.5) and the selection resulted are reported in Table (3.6). It can be seen that in

poisson log-linear model, the naive method performs the worst among all three methods.

The FP and FN remain at high level when σ2
δ = 5. As comparison, the results from RIV

method is similar to that of the TR method, where values of FP, FN and MSE are close to

zero and MCC is close to one.

Table 3.5: Estimation results of Example 3.2.3 with n = 200, σ2
δ = 5

α= 1 β1= 1.5 βx= 3 β2= 0 β3= 0 β4= 2 β5= 0 β5= 0 β5= 0

TR 1.0 1.51 3.01 0 0 1.99 0 0 0

IV 1.02 1.50 2.98 0.01 0 2.02 0 0.02 0

NA 4.7 2.82 0.75 1.5 0.69 2.22 0.83 1.22 0.5
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Table 3.6: Selection results of Example 3.2.3 with n = 200, σ2
δ = 5

FP FN MCC MSE

TR 0 0 0.99 0.03

IV 0.3 0 0.94 0.07

NA 2.6 0.7 0.32 25.68

z0 z1 x z2 z3 z4 z5 z6 z7

TR 100 100 100 100 100 100 100 100 100

IV 100 100 100 93 94 100 95 95 96

NA 74 96 84 22 53 75 58 48 61

3.2.4 Numerical Example for Poisson Log-linear Regression 2

In this example we simulate 1000 datasets from the model y ∼ Poisson(exp(α+xTβ)), where

the coefficients (α, βT ) = (1, 3, 1.5, 0, 0, 2, 0, 0, 0). The instrumental variable and covariates

(z1, w, z2, . . . , z7)T are jointly generated from N(0,Σ) with Σij = 0.5|i−j|. The generation

mechanism of the covariate x is the same as in Example (3.2.1). Note that there are two

things that differ from the previous example. First, the values of the first two coefficients

are interchanged such that the coefficient corresponding to ME is smaller. Second, the

correlation among all covariates also decreases. The estimation results are reported in Table

(3.7) and the selection results are reported in Table (3.8). The pattern among the three

methods is similar to that in Example (3.2.3). Though the FP and FN improve a bit for

naive method as the variance of ME is low compared with the previous example, the results

of RIV method is still much better compared with that of naive method.

Table 3.7: Estimation results of Example 3.2.4 with n = 200, σ2
δ = 1

α= 1 β1= 3 βx= 1.5 β2= 0 β3= 0 β4= 2 β5= 0 β5= 0 β5= 0

TR 1 3 1.5 0 0 2 0 0 0

IV 1 3 1.5 0.01 0.05 2 -0.02 0 0

NA 1.49 3.42 1.04 0.4 0.24 2.02 0.29 0.33 0.23

Table 3.8: Selection results of Example 3.2.4 with n = 200, σ2
δ = 1

FP FN MCC MSE

TR 0. 0 0.98 0.02

IV 1.4 0 0.73 0.07

NA 2.4 0.3 0.49 5.72

z0 z1 x z2 z3 z4 z5 z6 z7

TR 100 100 100 100 100 100 100 100 100

IV 100 100 100 74 66 100 71 75 73

NA 73 100 100 38 60 100 52 58 55

3.3. Real Data Application

The Framingham heart study (Kannel et al., 1986) is a long-term cohort study monitoring

the development of coronary heart disease (CHD). The dataset consists of 1615 observations
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with a binary outcome variable indicating the occurrence of CHD. There are 128 CHD

cases in the dataset. The covariates include age, systolic blood pressure (SBP), smoking

status and serum cholesterol. It is well-known that the long-term SBP cannot be measured

precisely hence has the measurement error. For this reason, we apply the proposed method

on the Framingham dataset to identify important factors of the occurrence of CHD. For the

covariate SBP, we apply the logarithm transformation log(SBP-50) and use the transformed

SBP at exam 2 as instrumental variable. The data is standardized prior the analysis. The

covariates include transformed SBP (x), serum cholesterol (z1), age (z2) and smoking status

(z3). Following Ma and Li (2010), all main factors and interaction terms, as well as the

age squared are considered in the model. The results of RIV, naive and the naive plug-in

methods are reported in Table (3.9). Specifically, the naive plug-in method refers to the two-

stage estimation method, where the analysis is conducted based on the predicted covariate

x̂. We use the SCAD penalty function with BIC chosen as the model selection criteria. It

can be observed that the results for naive and naive plug-in methods are similar, which select

more covariates compared with RIV method. However, both methods fail to retain the main

effect z2 in the model. As a comparison, the RIV method selects a sparser model including

all main effects only.

Table 3.9: Estimated coefficients and standard errors (SE) of Framingham dataset

RIV Plug-in Naive

intercept -2.68 (0.276) -2.74 (0.118) -2.74 (0.118)

x 0.34 (0.093) 0.34 (0.094) 0.33 (0.090)

xz1 0 (-) 0.30 (0.087) 0 (-)

xz2 0 (-) 0.62 (0.135) 0.64 (0.134)

xz3 0 (-) 0 (-) 0 (-)

z1 0.32 (0.020) 0 (-) 0.32 (0.088)

z2 0.46 (0.010) 0 (-) 0 (-)

z3 0 (-) 0.24 (0.104) 0.23 (0.105)

z2
2 0 (-) -0.23 (0.109) -0.23 (0.109)

z1z2 0 (-) 0 (-) 0 (-)

z1z3 0 (-) 0 (-) 0 (-)

z2z3 0 (-) 0 (-) 0 (-)
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3.4. Generalized Linear ME Model Proofs

Proof of Theorem 3

The proof follows from that of Ma and Li (2010). Write the score and hessian function

of Qn(ψ) as Gn(ψ) and Hn(ψ) respectively. Using the Taylor expansion, the score of the

objective function Qn(ψ) +
∑d

j=1 pλn(|βj|) can be written as

Sn(ψ) = Gn(ψ0) + p̃
′

λn(|β0|) ◦ sign(ψ0) +Hn(ψ∗)(ψ − ψ0) + p̃
′′

λn(|β0|)(ψ − ψ0)(1 + op(1))

where ψ∗ is in between ψ and ψ0. It is sufficient to show that Sn(ψ) = 0 has a solution ψ

satisfying ||ψ̂−ψ0|| = Op(n
−1/2). To this end, we show for any ψ such that ||ψ−ψ0|| = n−1/2C

the inequality (ψ − ψ0)TSn(ψ) > 0 holds with probability approaching 1. It follows that

(ψ − ψ0)TSn(ψ) = (ψ − ψ0)T (Gn(ψ0) + p̃
′

λn(|β0|) ◦ sign(ψ0)) + n||ψ − ψ0||2(1 + op(1))

It is can be seen that the first term is of order Op(C). The second term is of order Op(C
2).

Hence for a sufficiently large C, the second term dominates the others. (ψ − ψ0)TSn(ψ) is

shown to be positive with probability tending to 1, which completes the proof.

Proof of Theorem 4a

Taylor expansion of Sn(ψ) around ψ0 is given by

Sn(ψ) = Gn(ψ0) +Hn(ψ∗)(ψ − ψ0) + np̃
′

λn(|β|) ◦ sign(ψ)

= nλn

{
1

nλn
Gn(ψ0) +

1

nλn
Hn(ψ∗)(ψ − ψ0) +

1

λn
p̃
′

λn(|β|) ◦ sign(ψ)

}
For j ∈ J c and εn = Cn−1/2 it can be shown that

Sn(βj) = nλn

{
Op(

1√
nλn

) +
p
′

λn
(|βj|)
λn

sign(βj)

}
.

Together with the condition lim inf
n→∞

lim inf
ξ→0+

p′λn(ξ)/λn > 0 we have Gn(βj) > 0 if 0 < βj < εn;

Gn(βj) < 0 if −εn < βj < 0. Hence P (βj = 0)→ 1 for j ∈ J c.

61



Proof of Theorem 4b

The Taylor expansion of Sn(ψJ) around ψ0J is given by

Sn(ψJ) = Gn(ψ0J) +Hn(ψ∗J)(ψJ − ψ0J) + np̃
′

λn(|β0J |) ◦ sign(ψ0J) + np̃
′′

λn(|β∗J |)(ψJ − ψ0J)

where

p̃
′

λn(|β0J |) = (0, p
′

λn(|βT0J |), 0)T ,

p̃
′′

λn(|β∗J |) = diag(0, p′′λn(|β∗TJ |), 0),

Gn(ψ0J) =
n∑
i=1

∂ρ̂Ti (ψ0J)

∂ψJ
Aiρ̂i(ψ0J)

and

Hn(ψ∗J) =
n∑
i=1

[
∂ρ̂Ti (ψ∗J)

∂ψJ
Ai
∂ρ̂i(ψ

∗
J)

∂ψTJ
+
(
ρ̂Ti (ψ∗J)Ai ⊗ Is+2

) ∂vec
(
∂ρ̂Ti (ψ∗J)/∂ψJ

)
∂ψTJ

]
.

Rearrange the terms we get

− 1√
n
Gn(ψ0J) =

√
n

(
1

n
H(ψ∗J) + p̃

′′

λn(|β∗J |)
)

(ψJ − ψ0J) +
√
np̃
′

λn(|β0J |) ◦ sign(ψ0J).

Note that

1

n
H(ψ∗J)→p E

[
∂ρT (ψ0J)

∂ψJ
A(w)

∂ρ(ψ0J)

∂ψTJ
+
(
ρT (ψ0J)A⊗ Is+2

) ∂vec
(
∂ρT (ψ0J)/∂ψJ

)
∂ψTJ

]
= B

(3.4.1)

since the expectation of the second term is

E

[
ρT (ψ∗J)A⊗ Is+2

∂vec
(
∂ρT (ψ∗J)/∂ψJ

)
∂ψTJ

]

=E

[
E(ρT (ψ∗J)|w̃)A⊗ Is+2

∂vec
(
∂ρT (ψ∗J)/∂ψJ

)
∂ψTJ

]
=0.
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Now consider the first order Taylor expansion of Gn(ψ10) around γJ0

Gn(ψ0J) =
n∑
i=1

∂ρTi (ψ0J)

∂ψJ
Aiρi(ψ0J) +

∂2Q̃n (ψ0J)

∂ψJ∂γTJ
(γ̂J − γ0J) (3.4.2)

where

∂2Q̃n (ψ0J)

∂ψJ∂γTJ

=
n∑
i=1

[
∂ρTi (ψ0J , γ

∗
J)

∂ψJ
Ai
∂ρi(ψ0J , γ

∗
J)

∂γTJ
+ (ρTi (ψ0J , γ

∗
J)Ai ⊗ ls+2)

∂vec(∂ρTi (ψ0J , γ
∗
J)/∂ψJ)

∂γTJ

]
.

Using similar argument of equation (3.4.1), it can be shown that

1

n

∂2Q̃n (ψ0J)

∂ψJ∂γTJ
→p E

(
∂ρT (ψ0J)

∂ψJ
A
∂ρ(ψ0J)

∂γTJ

)
.

In addition, the term γ̂J − γ0J in equation (3.4.2) can be written as

γ̂J − γ0J = (
∑

Ip ⊗ wiwTi )−1
(∑

(x∗Ji − Γ0Jwi)⊗ wi
)

Hence the equation (3.4.2) can be written as

Gn(ψ0J) = Dn

n∑
i=1

Ki

where

Dn =

(
Is+2,

∂2Q̃n (ψ0J)

∂ψJ∂γTJ
(Ip ⊗ (

n∑
i=1

wiw
T
i )−1)

)

→
(
Is+2, E

(∂ρT (ψ0J)

∂ψJ
A
∂ρ(ψ0J)

∂γTJ

)
(Ip ⊗ E(wwT )−1)

)
= D,

Ki =

(
∂ρTi (ψ0J) /∂ψJ · Aiρi (ψ0J)

(x∗Ji − Γ0Jwi)⊗ wi

)
.

Then
√
n(B + Σ)(ψ̂J − ψ0J) +

√
nb→d N(0, DCDT )
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Chapter 4

Conclusion and Discussion

In this thesis we illustrated how ME affects the variable selection through several heuristic

examples, and proposed regularized instrument variable method correcting for ME effects

in both linear ME and generalized linear ME models. Specifically, the proposed estima-

tor is shown to have the oracle property, which is consistent in both variable selection and

parameter estimation. The asymptotic distribution is derived for the proposed estimator

in both linear and generalized linear ME models. Extensive simulation studies for linear,

logistic and poisson log-linear models are conducted examining the performance of the pro-

posed estimator, as well as the naive estimator. Simulation results show that the proposed

estimator performs well in various model settings with finite sample size, compared with

naive estimator. The ME effect on variable selection in classical and Berkson ME models,

as well as different penalty functions and model selection criteria are discussed. Finally the

proposed method is applied to real datasets of diabetes and Framingham heart study. For

the future research, there are many other models besides the generalized linear ME model,

the proposed method can be future generalized to nonlinear models. It is worth noting that

computation in high-dimensional nonlinear model is changeling and new algorithms need to

be developed.
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Appendix

A. Derivation of BIC Model Selection Criteria

In this section we sketch the idea of the derivation of the BIC criteria, the detailed proof can

be found in Schwarz et al. (1978), Neath and Cavanaugh (2012), and Bhat and Kumar (2010).

Assume the data (y1, y2, . . . , yn) come from some unknown probability density function g(y),

where g(y) is referred as the true model. In addition, assume that the L candidate models

are coming from a family of distributions

F(k) = {f(y|θk) : θk ∈ Θk}

for k = 1, 2, . . . , L. Note that Θk are parameter spaces with different subsets of covari-

ates. Let π(k1), π(k2), . . . , π(kL) be the prior distribution of the candidate models Mk,

k = k1, k2, · · · , kL. Then the posterior distribution of model Mk(θk) is given by

p(k, θk|y) =
π(k)g(θk|k)f(y|θk)

m(y)

where g(θk|k) is the prior distribution of θk given the candidate model Mk, f(y|θk) is the

density function of y and m(y) is the marginal distribution of y. The Bayesian information

criteria chooses the model with maximum posteriori, which amounts to maximizing the

posterior probability with respect to k

p(k|y) =

∫
p(k, θk|y)dθk

=

∫
Θk

π(k)g(θk|k)f(y|θk)
m(y)

dθk.
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Maximizing p(k|y) is equivalent to minimizing the negative log-likelihood function (with a

constant factor 2)

−2 log p(k|y) = 2 log(m(y))− 2 log(π(k))− 2 log

(∫
Θk

g(θk|k)f(y|θk)dθk
)
. (4.0.1)

Now write L(θk) as the likelihood function corresponding to f(y|θk). Use Taylor expansion

of logL(θk) around θ̂k, the maximizer of L(θk)

logL(θk)

= logL(θ̂k) + (θk − θ̂k)T
∂ logL(θ̂k)

∂θk
+

1

2
(θk − θ̂k)T

[
∂2

∂θkθTk
L(θ̂∗k)

]
(θk − θ̂k)

= logL(θ̂k)−
1

2
(θk − θ̂k)TnI(θ̂∗k)(θk − θ̂k)

where θ̂∗k is in between θk and θ̂k. Hence∫
Θk

g(θk|k)f(y|θk)dθk

=

∫
Θk

g(θk|k)

[
L(θ̂k) exp

(
−1

2
(θk − θ̂k)TnI(θ̂∗k)(θk − θ̂k)

)]
dθk.

Using the non-informative prior where g(θk|k) = 1 and the fact that θ̂k →p θk, we have∫
Θk

L(θk) ≈ L(θ̂k)

√
(2π)kn−k|I−1(θ̂k)|.

Now the negative log-likelihood function (4.0.1) can be written as follows.

− 2 log p(k|y)

=2 log(m(y))− 2 log(π(k))− 2 log

(
L(θ̂k)

√
(2π)kn−k|I−1(θ̂k)|

)
=2 log(m(y))− 2 log(π(k))− 2 logL(θ̂k) + k log

n

2π
+ log |I(θ̂k)|

∝ − 2 logL(θ̂k) + k log(n)

which is the Bayesian information criteria after ignoring the constant term with respect to

n.
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B. Score and Hessian Matrix Examples in Simulation

In this section we provide the details of score and hessian expressions used in the numerical

examples. Note that the conditional expectation (3.1.2) is given by

E(x̃∗y|w) =

∫
x̃∗G−1(α + βTx Γw + βTz z + βTx u)fU(u;φ)du

=

∫
(1, (Γw + u)T )TG−1(α + βTx Γw + βTz z + βTx u)fU(u;φ)du

(4.0.2)

For the first stage estimation where the identity matrix is used as weight matrix, the score

and hessian function are given by

∂Qn(ψ)

∂ψ
= − 1

n

n∑
i=1

( ∫
x̃i(1, x

T
i )b

′′
i (·)f(u;φ)du∫

b
′
i(·)∂f(u;φ)/∂φ(1, xTi )du

)
(yix̃

∗
i − E(x̃∗y|w))

where bi(·) = b(α + βTx Γwi + βTz zi + βTx ui). When the random error u follows an univariate

normal distribution, it can be shown that

∂f(u;φ)

∂φ
= f(u;φ)

u2 − φ
2φ2

and
∂2f(u;φ)

∂φ2
= f(u;φ)

u4 − 6u2φ+ 3φ2

4φ4

In which case we have

∂Q2
n(ψ)

∂ψ∂ψT
= − 1

n

n∑
i=1

(
H

(11)
i H

(12)
i

(H
(12)
i )T H

(22)
i

)

where H
(11)
i ∈ R(d+1)×(d+1), H

(12)
i ∈ Rd+1 and H

(22)
i ∈ R. Write

e
(1)
i = yi −

∫
b
′

i(·)f(u;φ)du

, and

e
(2)
i = yix

∗
i −

∫
b
′

i(·)xif(u;φ)du,
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we have

H
(11)
i = e

(1)
i

∫
b
′′′

i (·)x̃ix̃Ti f(u;φ)du−
∫
b
′′

i (·)x̃if(u;φ)du

∫
b
′′

i (·)x̃Ti f(u;φ)du+

e
(2)
i

∫
b
′′′

i (·)xix̃ix̃Ti f(u;φ)du−
∫
b
′′

i (·)xix̃if(u;φ)du

∫
b
′′

i (·)xix̃Ti f(u;φ)du

H
(12)
i = e

(1)
i

∫
b
′′

i (·)x̃i∂f(u;φ)/∂φdu−
∫
b
′

i(·)∂f(u;φ)/∂φdu

∫
b
′′

i (·)x̃if(u;φ)du+

e
(2)
i

∫
b
′′

i (·)xix̃i∂f(u;φ)/∂φdu−
∫
b
′

i(·)xi∂f(u;φ)/∂φdu

∫
b
′′

i (·)xix̃if(u;φ)du

H
(22)
i = e

(1)
i

∫
b
′

i(·)∂2f(u;φ)/∂φ2du− (

∫
b
′

i(·)∂f(u;φ)/∂φdu)2+

e
(2)
i

∫
b
′

i(·)xi∂2f(u;φ)/∂φ2du−
∫
b
′

i(·)xi∂f(u;φ)/∂φdu

where in logistic model b
′
(η) = 1/(1 + exp(−η)) = p, b

′′
(η) = p(1 − p) and b

′′′
(η) = p(1 −

p)(1− 2p); in poisson model b
′
(η) = b

′′
(η) = b

′′′
(η) = exp(η).
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