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Abstract

Computation i\'Iarket (CIvf) is arr auctioning ba.sed resource trading/acquiring system
tltat can be cleployecl in wide-areâ computing s-vstems sucli as Grid systems. This
study mainly focuses on the auction market design and experiments. The auction
market design entails designing an economic rnodel, i.e., protocols, rules, policies,
and strategies, by using game theory. The CNI adopts a multi-unit computational
auction (MUCA) rvhich allorvs the users to bict on multiple items at one time and
then allocate in an "all or none" manner. The I{UCA offers the CIü the capability
to alloq' the tlsers to bid flexibly, efficiently, ancl easily. Holever, it also bri'gs a
problem of computational complexity-determining the rvinners for a I\,IUCA pro6lem
is NP-hard' In this thesis, we propose a set of heuristics in conjunction lvith clefining
rules and policies to solve the NIUCA problern. Simulations are performed and results
are analyzed to evaluate the heuristics.
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The rapid aclvancements in cornputer and netrvorking technologies, coupled rvith the

emergence of nerv classes of applications lvith significantly increased lesource require-

ments, tencl to rapidly depr:eciate the value of state-of-art cornputer and netrvorking

equipment. Theref'ore, it has become incleasingly important to maximizethe utiliza-

tion of the resources so that users can recoup their investment. Florvever, maximizing

the utilization of resources is a challenging task. The chalienge arises from tr,r'o sides:

resources and applications. Firstly, resources are ciistributed in nature and ma;,' lte

restlicted by varying administlative poiicies, Ìrence lvith different access privileges.

Resources also differ in their computational capabilities. On the other hancl, appli-

cations too have var¡'ing computational, data, and functional requirements. Thus,

applications have varying affinities tor,vards different resources. Due to the aboye

reasons, sonre resources might get overused rvhile others remain idle.

This lvork presents cornputation rnarket (CN4), an online auctioning s¡'stern that is

designed to help maximize the usage of the airead5, existing computing and networl<ing

resources. The CX¡l allo.r,vs users to "sell" their surplus resout:ces for certain periocls

of time, and to "bu¡"' various computing and netrvorking resources for temporary use

in wide-area netr,r'orks. N,lore specificall¡,, a rlser cân "sell" his idle resource tirnes,

or "buy" resources for use on-demand, simply b), using the se¡,ices pror-icled b)' the
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cNI's online ¿ruction system. Here, trre telms- ,,buy,, and ,,seil,,, are acroptecr from
the microeconomic to describe a moclei that is similar to tilat of human economy. It
does not imply rvhether real money ,,i,ill be used for. bul,i¡g ancl selling. Lihe oiher.
proìects using computational economic mechanisrn, we assume that virtual curre'cy
rvill be usecl to coordinate the buy ancl the sell activiiy in tlie cÀ{.

The C\f is a virtual market for u'ide-area netr,vorl<s. It solves the resource management
problem b), combining the Internet technolog¡, u,ith an eco¡omy_based model (..g.,
auction mechanism). The Clvi approach is a result of the following observations:

i' The auction mechanism, originated from game theor-v and existed as a fbrm of
gambling, has proven to be an effective, efficient, flexible and exciting solutio'
for resource allocations. The poil,er of the auction mechanism in solving the
resource allocation problem can be clemonstrated l¡oth from the human and
computational societies.

The hurnan society is essentiall), a decent ralized, clynamic, rapiclly chalgi'g ancì
geographically distributed systern. " A fundamental question in any society is
lrorv does one allocate and produce goods and resources? " [2r). Although
solving this fundamental problem is very complex clue to the size of the human
society' the market mechanisms (such as auctions) still exhibit robust solutions.
As a lesult, auctions have been rviclelS, used to sell art, collectibles, and a variety
of usecl goods from ancient ages. Auctions are playing an even more important
role in modern economy. Auctions offer proven remarkable solutions in: trading
stock securities and financial instruments, contlacting construction projects,
allocating the Personal Cornmunication Services (PCS) spectrum as held by
the Federal communications commission(FCO)[1g], to just list a few.

Like the human society, the computing systems are arso dynamic, rapidly chang_
ing, and distributed in nature. The great similarities betrveen the two s)¡stems
have led many ¡esearchers to applv the market mechanisms as a solution to the
resource management problem in n'ide-area computing systems. This categorSr
of resealch, known as computational economy approach, are noted for the capa-
bility of achieving flexible, efficient and robust solutions for the resource man-
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¿ìgement problem in lvide-area computirrgsvstems [2,7,2,1.16,4, b, 11. 13]. The

computational economy approach introduces an auction mechanism to coordi-

nate the suppl;z and the consume of computing resources. The computational

economy approach are usually formed by resource suppliers and consumers. The

supplier agent lefers to machines that provide resources such as CPU, melnor-y,

disk capacitl, ¿n¿ i/O bandwidth, r,vhile the consumer agent refers to tasks that
have some money used to pay for their executions [7]. The suppliers and con-

sumers only interact with those physically ciose ones, and react b¿Lsed on each

individual's o\,vn interests without considering the social outcomes. But using

a flexible pricing and competitive mechanism, the computational econonry ap-

proacltes àppear to fit well lvith the distributed feature of the lvide-area netlvork

systems and yield a desiraltie global resource allocation.

2. The universal connectivity made available b), the Internet provicles an ideal

setting for the deployment of a system such as the CN'Í. Through the Internet,

the CNI are available to the user community anywhere, anytime. Therefore,

the Intelnet auctions form a robust e-commerce model in toclay's ne\\¡ economy.

This has been demonstrated by the sharp contrast between the success of the

Intemet auction companies such as eBay, Amazon, Yahoo, and the failure of
the thousancls of dot.coms. In fact, auctions offer an extremely fun aird exciting
rvay of exchanging commodities and play an important part in today's economy.

The Internet makes auction experiences more convenient ancl enjoyable, hence,

attracting more and more users.

Despite the popularity of Internet auctions, one u'ould find that none of the auctions

offer the similar services as proposed by the CN,l. This is due to the fact that In-

ternet auctions are still in their early stages. Culrently, the commodities traded in
these Internet auctions are still narrolv in a sense that the majority of ttre traded

commodities are limited to the daily used goods. To take full advantage of the In-

ternet auction mechanisms, the types of commoclities iraded neecl to be extended.

For example, supporting the exchange of commodities such as time-constraint media

spaces, computing and networking resources, etc. The design ancl irnplementation of
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auctions to support these ner,v varieties of cornrnoclities is very complex ancl involves
mLrlti-dimensional technologies i.e., a combination of technologies includi¡g auction
m¿rrket design, distributed computing, security, and Quality of Service, etc. This lvilì
be the focus of the next generation auction design ancl research.

Alihough the C\¡l is similar to a lvide-area resource management system [\,Veigg],
there are significant differences. A resource management s¡rstem is concernecl ri,ith
l-esource ailocation and scheduling that involves deciding r,r,here a task should be
scheduled for execution and when the execution shoulcl be startecl. The resource
lna,nagement system assumes that the virtual "machine" has certain tesources at an'
given time. Typically, the resource attributes of the virtual machine ¿rre l<norvn before
the resout'ce management decisions are made. On the other hanr-I, the C\,f clea,ls rnore
rvith offering resource allocation services. The virtual machines are folmecl fiom the
pooi of resources that are made available by the user comrnunity. Driven bv the
needs of the users, multiple virtual machines couicl be s¡,n¡hsrir..1. Further, unlike
the traditional resout'ce management systems, resources in ClvI are associated rvith
ma¡ket values that vary based on the demand and supply. Specificaliv, a resource may
be valued more if it is rnade available when the clemancl is greater than the supplS,
and rnay be valued less otherwise.

Once a virtual machine is createcl by acquiring the lesources through the Clvf, a
traditional resource manâgement system may be instantiatecl on the vir-tual machine
to tnanage it. The model provided by the Ct\zI supports on-demancl acquisition of
resources for temporary use. Such a facility is crucial for the cleployment of ¡ext
generation Internet services [2b].

As discussed earlier, the design of CM clemands solutions involving technologies from
multi-domains' This lt'ork, holever, is mainly concerned ri,ith the CIVI auction market
clesign and experiments. The CVI clesign includes the clesign of auction market and
the rvinner determination algorithrn. The auction market design considers the design
and the use of incentive mechanisms based on game theory. The auction clesign the-
olv suggests that the design of incentive mechanisms shoulcl be directecl by the usage
of the auction, and could ',''ary fundamentally, depending on the goods iraded on the
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âuction, i.e.. the funclamental difiêrence of the incentii,e mechanisms for oil leases ancl

for ship construction [Zt]. The liter¿rture also inclicated that the unde¡standing of the

impacts of such incetrtirre mechanisms are far more complicatecl than they fiequently

appeared to be. This suggests that a large amount of expelimenial study and thor-

ough anal¡'sis are critical for determining the appropriate rules ancl strategies for an

auction market. To evaluate the design practicall¡, and experiment¿rlly, tlvo majol
measures are typicall.v* used: efficiency and revenue [21, 1B]. The higtrer efficiency

and revenue, the better. Since one of the purposes of the Cl\4 is to rnaximize the

usage of computing and netrvorking resources, the utilization of resources shoulcl also

be considered as an important measur-e. The experiments conducted by this \,vor-k)

therefore, intensively adopt the above three parameters to assess tire ClvI design.

In an attempt to achieve a greater degree of efficiency and flexibility, tlie CM adopts a

multi-unit combinatorial auction (MUCA) mechanisrn. The IvIUCA allor,i's the usei.s

to bid on combinations of resources, r,vhich reflects holv the computing and networking

resources are most likeiy being used. However, soh,ing the MUCA problem (i.e.,

determining the rvinners) is NP-harcl [22, 9, 10, 26]. This wolk tackles the problem

using heuristics. Simulations are conducted and results are analyzed to evaluate the

heuristics.

Chapter 2 introduces the related rvork in the literature. Chapter 3 presents the

Clvi's architecture as rçell as the auction malhet design, i.e., the rules, policies, ancl

strategies. Chapter 4 formally defines the N4UCA in the CNI, thoroughly cliscusses

the heuristics designed, and analytically compa,re the experimental lesults obtained.

Chapter 5 clescribes tn'o different approaches to achieve the resource allocation for

the N4UCA problem and plesents the simuiation resuìts with empha,sis on the perfor-

mance of utilization uucler various configur-ations. It also illustrates the bid generation

methoclologies for the simulation performed. Chapter- 6 gives a conclusion ancl the

future worlç.



ühapÈen 2

FÐeåeÉed WCInk

The economic moclels have been successfully usecl in resource mânagement of human

societies. To testify the pou,er and flexibilit¡, 6¡ economic models for solving resource

allocation problems in a wide-area netrvork, a variety of projects have been designed

and impletnented, a number of experiments are conducted, and the results of the
experiments are analyzed. This chapter reviews auction theoly, projects using auc-

tioning approach and researches in the area of Internet auction and combinatorial
auct,ion design.

2.L Aucúioyts

Auctions are very widely studiecl mechanism in the economic and garne theory area.

The stuclS' of auctions can be dated back to the 1960's. As auctions offer an efficient

and distributed mechanism for soiving the task ancl resource allocation problem in
multi-agent s¡rs¿s¡ttt, different types of auction protocols and various agents' strategies

in auctions have beeu researched in auction theory [San96]. This section briefly
discusses different types of auctions documented in auction theory-. An auction coulcl

be ascending or clescending, open or sealed, depending on the rules that bidders

should follow when bidding and the knowleclge of other's bidding prices. Table 2.1
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I'able 2.1: Auction anr.l -\ttributes
aucLion t¡zpes ascending clescending open-outcry seaìed-bicl

English auction

Dutch

Vickerl, auction

First-price sealed auction

shou,s some of the well-knolr¡n auction types, including: English (first-price open out-

cry) auctiou, first-price sealed-bid auctiorr, Dutch (descending) auction, and Vickery

(second-price sealecl-bid) auction. Different auction tt'pes are designed wiih distinct
feat,ures to serve diflèrent pulposes, and thelefore, are commonly used to sell diflerent

types of goods. For example, the Bngìish auction is mostly used in selling ¿rrt and

other coilectibles.

Conceptually, the English (first-plice open out-cry) auction is an ascending auction.

The seller submibs its item for bid with a mini¡num required price called reserve plice.

The first bid's offer price shouid be higher than ihe reserve price. Each bidder bids

iteratively for an item, it is reqLrired that each subsequent bid should be higher than

the current highest price. The auction ends (called clears) r,vith the higliest bidder

rvinning the auctioned item at the price it bids.

In the first-price sealed-bid auction, each bidder places its l¡id based on its own bidding

strategy rvithout knolving what others bicl. Unlike the English auction, the first-price

sealed-bid auction does not have iterative bidding process, each bidder only needs to

bid once. The one ihat bids s'ith the highest price l.ins at the price it offers.

In Dutch (descending) atrction, the seller-keeps on descending its sell price until one

bidcler gives the sell price. Similar to the first-price sealed-bid auction, each bidder

only neecls to bid once, and they don't knorv the others' bids. The highest bid r,vins

at the plice it submits. The Dutch auction clifi'erentiates fi'om the English auction in

that the Dutch auction is <lescencline.

In the Vickery (second-price sealed-bid) auction, bidders bid for an item follorving
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exactl]' the satne rules as in the fir'st-price seaiecl-bid å.uction. The onlr* difference

betr'r'een them is the u'iuning price. The highest bidder u,ins at the price of the seconcl

higirest bid in the Vickery auction. The strategy in Viciier.r' ¿uction is to bid one's

true valuation [San96]. Vicker¡. auctions are not rvidely acloptecl by auctions among

humans due to the fact that the \iickrey auction can't efficientl¡; ¿1;6i¡l ihe cheating

activil,5' of the auctioneer'. For example, an auctioneer can overst¿¡,te the second higirest

bicl price rvithout being knolvrl, r.vhich causes a rvinner to pay more than he shoulcl.

Horvever, Vickrey auctions ar.e comûlonl¡' ¡ru¿ in cornputational multi-agenr s¡rs¡smr.

For example, the first computational multi-agent system, Spau'n, used the Vickery

auction.

Auctions can also be classified b¡' |1611' bidders figure out tire value of tire auctioneci

iterns in an auction. Based on this criteria, there exists three types of auctions: private

vaiue auctions, common value auctions and correlated value auctions. Private value

auctions a,re auctions rvhere the value of a goocl is entirely depended on bidder's

individuai preferences, u'hich happens in a situation rn,here the winner lvon't reseli

tire good. On the contrary, in common value auctions, a bidder's valuation of a good

totally relies on other bidders' values of it. The private va,lue auctions and common

value auctions are tr,vo extrernely different cases. Unlike the above tlvo, the correiated

value auctions are medium ones rvhere a bidder's value of a good depends on both its
ou'n preferences and other''s r,alues, rvhich is the case for most auctions.

it is r'videly observed and accepted tirat English auctions can lead to the grearesr

re\¡enue rvith optimal resource allocation. The open nature of the English auction
provides three advantages:

e Avoicl the counter'-s¡reculating activities among the bidders.

e Guarantee no lying auctioneer.

e Bidclers gain excellent inforrration about the value of target, rvhich encourages

them to bid aggressively. Therefore, leading to an efficient auction.

English auctions are especially suitable for Internet auctions and are adopted by most
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of the online sites. CNd

special bidding rules.

also intencls to use English auction, but designing rvith sonie

2.2 Tnterraet,&uctíons

Internet and the emergence of electronic commerce infuse new life into auctions, Ieaci-

ing to the popularity of Internet auctions. Auctions run by eBay, Arnâ,zon, and Yalioo

àre some of the most famous Internet auctions. lr,{aking use of agents, Internet aric-

tions typically run for several days, lasting rnuch longer than other forms of auctions.

Internet auctions typicaliv attract both a large number of bidders and sellers because

of the eâ.sy ¿6ç.ts feature of the Internet. Most of the Internet auction sites auc-

tion a large number of categories of goods, fïom antiques and alts, books, doils and

ltears, to real estates, to just list a few. But some Internet arictions are specialized

in one palticuiar category, for exampie cars, or computers. Given the lalge number

of participants in the Internet auctions) one can imagine that the number of aric-

tioned items could be enormorous, too. Thus, determining the resource allocation for

Internet auctions typically involves more efforts on complex game-theoretic srraregy

and computation [22]. Although Iirternet auctions can be designed using an1,'type of

auction protocols, most Internet auctions are based on English auction protocols, but

each with some different rules.

Different auctions ale designed to serve different applications. it is absolutely true

that an auctioneer wants to sell his item (items) as high as possible while each biclder

u'ants to win at the lou'est possible price(s). It seerns that a goocl auction is the one

u,ith results satisfying both the auctioneer and the bidders.

Ther-efore, r,i'hich type of auction to ci'roose depends on the circumstances that v'ill
be used. In general, an auction's suitability of serving its purpose càn be decided b¡,'

the follorving measures: Hor,v efficient is ihe auction? Do the bidclers \4/aste effort on

counter-specuìating r,r'hat others bid? Does the auction mechanism efficiently prer;ent

l)'ing activities of the auctioneers? Is the auction flexible and robust? In [26], the
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reâsons for these treasures anci tlie probìems occulred in each type of ariction a¡e

very rvell discussed. With the emergence of Internet auctions, I lvould like to add tlyo
more measures: hori' easy is the auction f'or users to use? Are users rvell-informecl

and receiving instant feedback? These are the key issues that must be talçen into
consideration in designing an auction, rvhich rvill be discussecl and demonstratecl

later in the aucbion protocol design of CNf .

Currently, all Internet auctions apply single-item auction clesigns rn here biciders can

only bid on one t¡,pe of goods. Because most bidders in the CM are supposed tcr

be interested in acquiling more than one itern of computing resour.ces, the single-

iie¡n auction is not zrppropriate for the Clv{. \\¡e are thus seeking the rnore flexible

and efficient' auction type, the cclmbinatorial auction, rvhere bidding for a bunclle of
resources is possible. The next section discusses the related lvork in combinatorial
auctions.

2.$ Coneputatiosr Econonxy Fro.fects

Spau'n [4] is an implementation of a distributed computational economy. Similar
to the CNI approach, the Spawn economy uses currency, funcìs (money), price ancl

auction as the mechanisms of exchange of resource. It is organized as a market

economy fbrmed by interacting buyers and sellers. I{ou'e'r'er, the Cit4 approach is
distinct from Spalvn in four primary aspects. First, Spau'n is not an Internet-basecl

s)'stem. Secondly, the trvo systems apply different types of auctions. The Sparvn uses

Vickery (second-price sealed-price) auction, while computation market uses Englisir

(fìrst-price opcn-cry) auction. Thirdly, the deployment of the auction rnechanism is

different. In Sitar,vn, each machine maintains an auction mechanism, rn'hile the CM
uses a domain-based auction mechanism r,vith each local market having its own auc-

tion servet-. Here, I argue that the auction mechanism of Spau,n would unavoidably

decrease the system's overall scalability. As the system increases in size, the bicl-

cling overhead between the tasks and the machines rvould greatly degrade the overall

performance of the system. Also, to control the communication overhead, Sparvn

i0
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constt'¿ìins eacjh task sucll that it can only communicate u'ith the "neàresi-neighbor",

this prevelrts a task from finding and exploiting the computational resources locaied

in distant regions. NeverLheless) as an earlS' application of a micloeconomic approach

to resource nìanagemcnt [4], Spawn highlights sorne of the economic conccpts and

their applicability in dealing rvith the complexit-v of resource manâgement in large

network cornputing s)¡stems.

lvfariposa [fS, t0], cieveloped at the Univelsity of Califbrnia at Berkeley, implemented

an economic paradigm to dernonstrate the power of economic models for managing

query execution and storage manâgement in a rvicle-area distributed database system.

In lVfaliposa, each query is subrnitted r,vith a budget that is used to pay for solving the

query, and each processing sil,e attempts to maximize its revenue by buying and selling

fragments and b1, processing queries. To clecide whele to run a quely, a clistributecl

advertising service is designecl to provide information for finding sites that might want

to bicl on a query or poltions of a query. During the bidding plocess, trvo protocols

coLrld i¡e involved, one is a tlvo-phase based expensive bid protocol, ancl the other one

is a purclta,se order protocol. In the first phase of expensive bid protocol, requests for
bids are sent out to bidding sites. In the second phase, both the winnels ancl losers

of the bidding are notifiecl. The purchase or-der protocol is much faster than the

expensive bid protocol, as fer,ver messages are requirecl. It directl5, sends the query

(or subquer'¡'-) to the processing site that rvould be most likely to win the biclding

process. The site receives the query and processes it ¿rnd then returns the ansrver

r,vith a service charge. Or if the site refuses the subquery, it can either return it back

or pass it on to a tliild processing site.

NIy approach borrows some ideas from Ìt4ariposa. I also apply different protocols in
bid processing. Either trvo-phase iterative or single-phase rron-iterative protocol can

be used in an effort to clecrease the cornmunication overhead amonq the domains.

Nfark 112, 73, I4], an ongoing project at University of Nlichigan, uses market-based

adaptive architectures for information survivability. Mark shares rnâny irnporr,anr,

features with the CN,f. ìt{ark also implements an on-line market alchitecture, whicir

is built on the top of a general purpose Internet auction server: AuctionBoi. Similar

1i
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to the C\,I, agents are also served as the fundamental errtities to tracle tasks ancl

resources at prices determinccl by an auctiolt protocol. The interactions of the con-

sumer and ploclucer ageuts build supply chains. Each agent rn¿rkes decisions base<I on

its personal knowledge base. To protect the system from attack, a two-level market

model is constructed. \,Iark also introduces negotiation protocols to achiei'e Inter-
net resource reservation. HoweveL, the CNI clifferentiates the N4alk in the purpose of
the project: the CNI target toivards plovicling a service framework for government,

business, organizations and individuals; the l\4ark focus on infor-mation survivabilitv.

Tlte Java N'larket project [30], developed at the Johns l{opkins University, is a rvork-

ing s¡'stem that a,ims to transform the Internet inl,o a meta-cornputing system. It
combines the recently developed r,vcb technoiogy and the Java Applet architecture.

Lilce our system, the Java Market allorvs the proclucels and consurners to access the

Java Nfarket u'eb pages an1'rvhere on the Internet by sirnpl¡, running secut'e Java Ap-
plets on the lveb browser. The ma.jol difference betr,veen their rnodel a,ncl ours is that
tlieir rnodel lacks a hierarchical structure. This significantly limits the scalability of
theil system. Aìso, their model is not cleveloped to plovide an efficient solution for

aggregating resources that are iocated in the same netrvork neighborhood for parallel

computation.

2"4 Conabir¡atorian AuctiorÀs Ðesigr-r amd AÏgonitþrsrls

Combinatorial auctious allor.v bidding on bundles of goods and allocate in an "all if
any" nlanner. Coml¡inatorial auctions can be classified into two categories in general.

Combinatorial auctions typically refer to those in lvhich aìl auctioned items are dif-
ferent. il'{ulti-unit combinatorial auctions are those lvith identical items for some of
the goocls. Deterrnining an optirnal set of bids is NP-hard in a combinatorial auction,

and it is even harder for- a multi-unit combinatorial auction. Due to the computa-

tional cornplexity of combinatorial auctions, few auctions actuallS' applied combinato-

rial aLrction theoretically or praciically, and none a,pply the multi-item combinatorial

auction clesign [27,28,20]. Researchels rvorking with combinatorial auctions typi-
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c¿ìll)'attetnpt to solve this irroblem b1.- three approaches: lt-v heuristics [10, 22,27),by
defining sper:ial biclding procedures of nlar.Ì<et design [28], or bv enforcing some special

restrictions on the bidciing mechanism to make the f*lP-complete problem tract¿rble.

This section cliscusses related u'ork in using ihe above approaches to combinato¡ial
¿ruction problerns.

The Federal Cotnmurlications Commission (FCC) spectrum auctions and Aclaptiye
User Selection iVfechanisrn (AIJSN4)) are examples in rvhich special bictcling restr-ictions

are enfo¡ceci to make the combinatorial auction problem tractabie. The FCC spectrurn
auctions are uscd to assign the electromagnetic spectrum for Personal Communication
Services (farni15, of mobilc communications services that alloiv people access the public

Switched Telephone |ietrvork). Alttrough the FCC spectrum ar:ction and the AUSM
auction sha,re some features, their designs actually differ drarnatically.

The FCC spectrum auctions are essentially simultaneous muitiple rouncl auctions
lvith eligibility requiremeuts, namel5' "a use-it-or-lose it" rule. The bidclers can,t place

corlbinatorial bids. In fact, only single-itern bids that improve the leading bicis by

at least minimum inct'ement requirement are accepted. Bid withdranals are allo,.vecl

wil,h pcnalty. The FCC spectrum auctions consist of three stages. The stage proceeds

to a higher levei lvhen some palticular situation occurs. For example, the transition
frorn stage 1 to stage 2 happens when there are no bicls on more than T1 percent

of the population base for three consecutive rouncls; frorn stage 2 to stage 3 occurs

when there are bids on no moÌ'e than T2 percent of the population base. Using the
eiigibility based stopping rules, the FCC spectrum auctions close ri,ith the r.vinners

paying what they bid. Since the bidders can't place cornbinatorial bids, the FCC
spectrutn auctions are faced u'ith exposule problems. The clisadvantages are: the
auction mav potetttially talce a rrery long time to run, thus not very efficient. Because

the auction forbids placing combinatorial bids, bidders suffer fi-om less profit. [61

The AUSN4 is the only auction that permits all possible cornbinatolial bicìs. The

bidclers are free to submit or lvithdrau' bids at any time befbre auction closecl. The

auction closes according to some pre-defined rules. One clistinct feature of the AUSN4

is, tire biclclers can use a stanclby queue to announce their wiliingness to offer a par'-
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ticuìar price fol a palticular corlbination. The standby queue is usecl as a mecha'is¡n
to avoid the "threshold problern". Honrerrer', some researchers consider the sta¡dby
queue a too cornplex mech¿rnism for bidclers, despite its capability of cornbating the
threshold probiem.

The auction stopping rule clesign is rvolth some researching effort. liaditio'aliy,
some auctions use liard closing tirne, some auctions use conclitional stop rule, and
sorne auctions even use random stop rule. It is observed th¿t clifferent stop rule
designs can lead to totalll, dil{erent behavior of the bidclers, r.i,hich impacts on the
benefit of both the auctioneer and biclclels to sorne extent. A good clemonstration of
this is the totally difl'erent, behavior from biclders of Internet auction sites: eBay ancl
Amazon' eBay closes its auctions at a pre-clefinecl fixecl time, while Amazon continues
its auction until no nerv bids are submittecl r,vithin ten minutes. The different stopping
rule leads to significantiy rnore late biclding (the so called "last minute bid,,) on eBa5,
than on Amazon [3]. The experiment from [3] also shor.r,s that the experienced bidclers
on eBa¡' contribute more late bicls than clo less experiencecl biclders, .,vhile the case
on Amazon goes to the opposite.

Ttrotnas Sandholm presents a search algorithm for optimal winner determina tíon [zT].
The sear-cil algorithm consists of four preprocessing steps and the main search. A
special bid tree is used in the main search. The bid tree is a binar¡, tree rvith the
bicls insertecl up frotlt as the leaves. The algorithm also uses an iterative cleepening
Ax search strategy to fast the main sealcli. Sirnilar to their algorithm, Ci\4 also
uses heuristics to tackle the rvinner determination problem in combinatorial auctions.
What makes our bid tree different frorn that of [27] is, the leaves in our bid tree are
linked list of bids that consist of the same combination of items. The linked-list is
organizecl basecl on the rate of each bicl rvith the highel rate bicl comes befbre the
lolver rate i¡id.

Recently, Branch-and-bound sear-ch technique has attracted a lot of research .ffoït,
to solve Combinatorial Auction pr:oblem 

.r0,22,2T1. 
The branch-and-bound sear-ch

consists of trvo steps: a clepth-first search, ancl a baclctrack search to cover the lvhole
search space. Each time u'e add a bict that has no conflict i,vith the curlent nar-tial
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solution until a full ¿rllocation is constructed, then u'e backtracl<. The backtr-acking

depends on a good upper bound fbr the value of the optinial solution corresponcling

to the still unallocated iterns. if the sum of the upper l¡ound ancl the values of the

bids of our partial solution is not larger than the value of the best solutiorr fou¡d so

far, r.ve may backtr¿rcli immecliately.

An algorithm called CAN4US (Combinatorial Auction lVIulti-Unit Search) is presented

in [t0]. CANIUS introduces a branch-and-bound technique and an estimate function

o0 tliat will always provide an upper bound on the actual revenue. They aìso show

that the CA]\,IUS is guaranteed to find optimal allocations. Similar to our algorithm,

their backtrack also removes the most recently addecl bid f¡om the partial allocation.

But our algorithm lacks the estirnate function. Another interesting similarity betu:een

their algorithm with ouLs is, r,ve both consicler the order of the goods (that is, rvhich

goocl corresponds to the first bin, rvhich corresponds to the second, etc) and the order

of the bids within bins impact the result of the algolithm significantly.

Auother research [22] also uses branch-ancl-bound technique to solve the Multi-L,nit
Cornbinatorial Auction problern. Their experiment results sholvs that the brauch-

ancl-bouncl techniques require both a way to bound from above the value of the best

aliocation and a good criterion to decide which Ì¡ids are to be tried first. They suggest

rnalcing use of average price per unit or average plice per unit related critelia in a

branch-and-bound algorithrn, which is quite similar to the use of rate to rank the bids

in ou¡ bidding selection algorithm.

;\ significant difference betrveen our algorithm ancl algolithm discussed in ltO, 22] is,

rve require bidders to indicate the unit prices for each kind of goocl demanded instead

of a total price for the whole bid, which are the case in [10] ancl [22]. \Ve consider-this

rule is more suital¡le fol an auction for computing and networking resouïces. This

lule ettsures that alÌ the lvinners pay the same price fbl the same liind of r-esources

in the same auction no matter how much their offers are. This rule is fair for all the

bidders and encourages bidders to offer aggressive prices without regretting.

Another initiative is the study of comJrinatorial auctions for supply chain formation
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l29l A supply' chain refers to cornplex business negotiations involving interrelated

excìrattge relationships among multiple levels of production. A particular combina-

torial protocol consists of a one-shot auction and a strategic bidding poiic5,. They

perfortn experiments to analyze the importance of strategic bidcling regarding the

efficiency and producer surplus. The results shori' that producels c¿rn sometirnes gain

significantly by bidding strategicaliy. The robustness of the combinatorial protocol is

also studied.

PAUSE (Progressive Adaptive User Selection Environment), presented in f2B], de-

signs a tn'o-stage procedure to solve the gener-al combinatorial auction problern. The

frrst step is a simultaneous) multiple-round auction. In stage 1, bidders ale requìred

to bid on inclividual goods rvith progressive eligibility requirernents and an improve-

rnent margin requireureut. Stage 2 is also a simultaneous, rnultiple-round auction.

The bidders can bid on composite goods with progressive eligibilil;y requirements and

an improvement margin requirement. Ily designing the mar-kei r,vith two plogressive

adaptive stages, PAUSE presents another lvay to control the complexity of combina-

torial auction.

to
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CosãtprßÉæËåCIsa Våarå<et ffi esågra

The design of the conputation market involves two different dornains: tne sysrern

infrastructure design and the auction rnarket design. The system infr-astrLrcture de-

sign provides a platform and a mechanism on which the auction activities can be

conducted, r,vhile the auction market design specifies the set of rules follorvecl b5' the

auctioneers and the bidders. The system infrastructure clesign involves technolo-

gies in the networking and e-commerce areas) requiring an architecture that scales

well in a lvide-area netr,vorking environment. The auction market design is basically

an econontic topic, entailing designing an economic moclei (e.g., online auctioning

mechanism), a set of protocols, rules, policies, and strategies, by using game theory.

Although from clistinctly different a,reas, the system infrastructure design and auction

market are actually related ancl tightly coupled. We design the market by iaking the

current netrvork and technology capabilities into consicleration, and then design the

sl,stetn architecture reflecting the bidding activities that are decided bv the rnarket

design.
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3.1- Asstwr'¡ptions and Ob.fectives

Due to the lack of an existing model for CÀd, sevelal

the CÀ''f design.

assumptions ale made to guide

As an Internet auction system, rve ri,ould expect both a large ntimber of sellers
and buvers.

ø Examining horv the resources are used and u'h.v the user-s desire the senrices of
CN4, the second assumption is that most of the users of the C\¡I pref'cr bundles
of resources rather than single units.

ø In aclditioir, there lvill be a large amount of distributecl lesources avaiiable si-
multaueously' The availability of the resorrrces is tvpically constrainecl rvithin
certain period of tirne (i.e., their iclle times).

The above assumptions leacl to the establishment of a set of clesign objectives ¡or the
Cil,I:

e Basy to use. This is a prerequisite for a success Internet ¿uction. The users
should be able to find their bidding targets (i.e., the resources to be bid on) and
to indicate their bidding prices easily.

o Low communication overhead are involved. The large amount of traffic gener-
ated by the bidding activities coupled with transferring tasks to be executed
remotel-v could declease the perfolmance dramatically. This issue should be
adch'essed both at the design of system architecture level ancl at the design of
auction marl<et level.

ø Be able to aggregate resources (especially those geographically close resources)
to form clusters, and allow for bundle bidding (i.e., all or none allocation). Ap-
plications such as parallel computing ancl multimedia dernancls a huge amount
of'resources, which is exactly the value of the services of the CIVI are highlighied.
Therefore, the resource aggregation and bundle bidding feature is crucial.

18
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Be efft:ient to cletermine rvinners. The large number and the time-conslr¿rinecl

f'eature of lesources, combining rvith the large number- of bicls, make the u'in-

ner determination extremely challenging. A long rvinner determination process

could affect the feasibilitv of the solution.

Provide a good balance ¿ìmong the efficiency, revenue maximization, and re-

source utilization. The CVI is designed for maximizing the utilization of re-

soul'ces. Therefore, this adds extra t'equirement for auction market design and

lvinner detelrnination, although rnost auction designs focus mainly on efficiencv

and revenue.

&.2 SysÉerre AnchiteaÉure

Cornputation market divides the rvide-area netr,r'ork into regions called local markets.

Hence, the overall architecture of computation market (as shown in Figure 3.1 ) is
composed of two levels, rvhich are presented as an interconnection of local markets

and a global market that is built on top of all the local markets. The fìrst level of

computation market focuses on intra-market flou's and the second level handles the

inter-market resource florvs. In the computation market, a local market consists of

an auction server (AS), local brolcers (LBs), supplier agents (SAs), and consumer

agents (CAs). The supplier agents represent machines that provide resources such as

CPU, melnory, dish capacity and I/O banch'idth, u.hile the consumer agents represent

clients that are willing to pay in currency for those resources. An auction ser\¡er

provides a virtual market where the local supplier agents and consumer agents can

trade the computation I'esources. The currency is used to encapsulate the resource

rights and price to reflect the demand and supply. The interaction of the supplier

agents and consumer agents causes the fluctuation of the prices, which in turn resrilts

in a balance of the supply and demand of the computation resources.

lCl
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Local market (bidding process view)

Figure 3.1: Tr,r'o-levei Architecture of ConDutation I\'farket

3"2.-J, The Auction Server(AS)

The auction server is a key component in computation marhet. Arr auction server

services its local clients by offering three major functions: (a) provicling a virtual

market; (b) irnporting resources from, or exporting resources to, the global rnarket;

and (c) selecting of the winning bids. An auction sef\:er does not provicle its services

for free. In fact, it makes money, which comes frorn three sources: (a) transaction

fèes charged on its local SAs and CAs; (b) proflt from selling cheap lemote resources

in its local rnarket; and (c) profit from selling surplus local resources in the global

market. \4oney oriented, an auction server always tlies to maximize the plofits from

the services it offers.

Local -- - .
cluster

Local markets
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The auction server relies on its three rnanàgers to fuìfill its functionalities:

The auction manager determines tire lvinners of the auction according to the

bidding selection heuristics, ç'hich ri,ill be ciiscussecl in the next chapter.

The market rnanager acts as both à resource supplier and a resource consurner

in the global marlcet. If the dem¿rnd is gr-eater than the supplv in the local

market, the market manager tries to export resource surplus by posting bid(s)

to sell local resources in the global market; otherlvise, it tries to iinport resources

by bidding on remote resources in the global marhet.

The schedule manager ensures the auction opens and clears happening at the

appropriate time sequence. The schedrile manager also triggers sending emails

to provide f'eedback to the sellers alid the buyels.

&"2"2 T'he Supplier Agent(S,4)

The supplier agent is a seller representing a machine ivith idle resources. The supplier-

agent is responsible for handling the subrnission of lesources. It sencls bicl post re-

quest for the resoulrce it attempts to sell, providing the follou,ing attributes: resour-ce

attributes, ar.ailable start time, end time, and a resen,ed pr:ice (the lou'est acceptable

price). Aithough the auction server is the real market that holds the auction, the

bid post request is actually sent to a special local bloker rather than to the auction

server.

3.2.3 The Consumer A.gent (CA)

The consumer agent is responsible for handling consumption of resources. A consumer

agent is a buyer bidding iteraiively b¡' taking the performance ancl the desirability
of the resoutces into consideration. The consumer agent sends its bid sen,ice request

21
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to the auction ser'\'er and receives bicl services, such as vierving the culrent bids

information, placing. moclif¡,'ing or rvithdr-arving a bid.

3.2.4 The Local Broker (f-,ts)

The local broker represents a set of geographically close supplier agents. The local

broker has tq'o responsibilities. One is to post bids on behalf of the supplier agents

it repr-esents. The other one is aggregation, that is, it combines the collection of

bids u'ith tlie cornmon available time by examining all the post bid requests, and

then post bids to seli a cluster (or several clusters). The local broker is used here as a

mechanism to perform the aggregation function in such a lvay so that the opportunity

of selling resources fi'om the supplier agents can be optimized'

The local broker allorvs independently managed bui co-located resources to be grouped

to form clusters. The aggregation of resources in this mannet provicles an efficient

solltion to the co-allocation problem [8], and could be a cost-effective approach to

parallel computing. The aggregation pelformed by the local brokers cloes not enfolce

the resources to be allocated as a bloch, i.e., the AS can "unbundle" the resources

u'hen it sees fit, thus offering more flexibility.

3.2.6 T'he tsidding Protocols in a T,ocal Market

To enhance the scalability of the system, the computational market adopts a two-

level architecture. The first level of the architecture handles the resource management

rvithin a domain. This level uses a tlvo-phase iterative bidcling protocol, rvhich consists

of 3 stens:

1. Initially, a supplier agent sends a

tur-n aggregates and posts the bict

2. Tlie consuûler agents can bid on

bid post request to its local broker, which in

to the auction ser\¡er.

either an item or combination of items that
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are posted at the auction server

price(s).

r.vith a price (or prices) higher than thc current

t?

J, The highest bidding plice(s)

ageuts can query the current,

is reflected ¿l,t the

highest price(s) on

auction server. The c<¡nsumer

the auction server.

The step 2, 3 rnay be iterated if the consumer agents are r.i'illing to offer a higher

price. The highesi bidder(s) rvins at the close of the bidding. The auction server

notifies tire participating agents of the result at the end of the auction.

The two-phase iterative bidding protocol can be communication intensive depencling

on the number of iteration performed until closing tire bids. Thus, the C\'f only alioil,s

local consumer agents to bid on resources at the local auction ser'\/er. The inter-market

resource llows are managecl by another auction called the global auction.

3.S Vlarket Ðesigra

The auction tnarket design involves designing an economic rnodel (e.g., online auc-

tioning mechanism) and a set of protocols, e.g., the bidding rules and policies that are

followed b)' the auction users. As an Internet auction system rvith a large number of
users, one of the most important features is to provide ellicient, flexible, and easy to

use lneans for users to post and placc bids. Therefore. one of the design goals of com-

putation rnar-ket is to allou'users to acquire the computing and netrvorhing resources

efficientl¡, and flexibly. The computation market achieves this clesign goal through

several approaches: creating a spccial bid t¡,pe, enforcing resource classification, ap-

plying tr,vo-level bidding protocol, and using combinatolial auction mechanism. The

computation market design also r-eflects the users neecis ancl fits the attributes of the

resources. This section discusses how tìre computaiion marlcet is designecl to meet

users' neecl.
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3.3.1 ,4ny-bid

Anv bid is a special bid ty'pe tha.t is clesigned to offer a flexible a,nd convenient r,vay

for placing a bid. The current existing auction sysl,ems onl¡' aliorv a bidder to specify

his biclding targets (i.e, Ltre resoulces th¿l, a bidder is interested in) explicitlJ'. Given

the large number of buyers and seller-s in an Internet auction system, loczrting the

suitable bidding targets can be a very compìicated task. To malce placing bicls easier,

coinputation market clesigns a special t5,pe of bicl callecl "any-bid", rvhich basically

does not constrain a bu1,-er to bìd on any particular auctioning object. Instead,

ob.ject(s) requestecl b1,' a any-bid are abstract in a sense that the5, could be any objects

given that the objects satisfying the cornputing ancl budget constraints requested

by a bidder. A user places a bid by simply indicating the computing and budgct

requirements, and the s¡,-stem u,ill be lesponsible for allocating the resources tirat

matcir the user's requirements, if there are any. Using the any-bid, a user can place a

bid easily and flexibly u'itirout suffering from the tedious biclding process. In addition,

using the any-bid provides a biddel with more chances to obtain his bidcling targets

and a seller rn,ith more chances to sell.

3"&"2 Resource Classifi.catron

Resources, including computing and netivorking resources, are actual commodities

in the computation market. Generall¡,, in a market, the value of a commodity is

decided by its usage and social desirability. In particular, the usages of computing

and netrvorking lesources are decided by their cornputing capacities and transmitting

capacities respectirrely. In CN,f, the value of a resoulce, thelefore, is decidecl by its

social desirability and its capacit¡.. Attributes, such as CPU speed, memory size,

disk capacity, and IO bandrvidth, contribute most to the computing capacitS'. An-

other key attribute that affects the usage of a cornputing lesource is the platforrn,

Such as opelating s)¡stem and compiler support. For example, a user tvants to buy

resources to run applications under lVindows NT platform, obviously, it is no use

if the resources are from any other platforms. For networking resources, bandrvidth

,^
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Figure 3.2: Resource Classification Basecl on Attributes

and speed are major attlibutes that affect the transmission capacity. Consider, if the
users ale allowed to bid randomlS, for any combinations of attributes, the number of
possible combinations provided by the usels will be huge. Allocating the resources

that matches the specified attributes will be difficult and inefficient practically. Aiso
this would make the deterurination of the u'inners in an auction too cornplex to han-

dle. Thus, to simplify the rvinner determination problem and promote the efficiency

of CM, it's desirable to have some methods to control holv a bidder inclicates liis
resource requirements. The solution here is to define resources rvith roughl), equal

capacity (can be either computing capacity or net'vvorking capacity) into one class,

so the set of resources consist of serreral classes of resources. In this rvay, users mây

specify the attributes of the desirecl resource usirlg attribute-vatue pairs 123].

Figure 3.2 shows the hierarchies of resources, classified by resource attributes. Ac-

cording to their different usages, the set of lesources to be auctioned consist of tu,o
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categories: computing resources a,nd netrvorking resources. Computing resol¡-ces â.re

then divided into four groups, clepending on resource platforms. Under each platform,
the resources can further ìre cl¿rssified into 3 clifferent ci¿rsses based on their comput-
ing capacities. The cornputitrg capacity decreases from class 1 to class 3. Basecl on

tile connection methods, netr'vorking resoru'ces are clirriclecl into connect and mobile
resources) lvhich can further be classified into 2 classes due to their transmission ca-
pacities. The transmission capacity of class 1 resources is less than that of class 2

resour:ces.

3.3.3 Auctions

Trvo different auction types are used in the CÀ4: an open-outcry/ascending auction
(a variety of the English auction) for its local ¡narhets, and a sealed/second-price

auctiou (Vickery auction) for the global malket. As clescribed earlier, the bidding
protocol in an open-outcr¡,/ascending auction is iter¿tive in natur-e, hence can be

communication intensive. To achieve a bettel scalabilit.v, the global market avoids
the iterative bidding protocol by using a sealecl auction, rvhere each biclder onlv
submits his bid once.

26

Although conceptionally an English auction, the iocal auction is

rvith some customized auction rules and policies. The customized

are designed mainly for three purposcs:

actually designed

rules and policies

l. Fit better rvith the properties of goods auctioned in the cNI:

2. Provide convenient methods for a user to indicate his bidding requirements;

i:

,a

i

t

3. Recluce the computation complexity for the rvinner determination ploblem.
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3.3.4 Ar-lction R.uies for a f,ocal 1VÏarket

[20] suggests that the auctiotr rules can be clescribecl as three axes: rules for receiving
bicls, rules for auction clear, and rules for information revelation. Rules for receivi'g
bids decides consi;r'aints that a bid shouid satisf5, in orcler to be accepted as vaiicl.

Aucti'on Clear is a teltninology referling to the close of an auction. Rules for auction
clear, also known as stopping rule, therefore, determines under r.vhich conditions shall
an auction complete. Such conclitions for auction clear inclucle trvo types in general:

a fixed encl time and the bidding beh¿r,ior of the bidders. Quote, a concept related to
the information revelation, is used to describe the summary information announcecl

by the auctiou' Quote usuaily provides insightful information regarcling the poteirtial
otttcotnes of the auction. The information reveiation strategy cliffers among auctions
of different types, and even arnong auctions of the same t¡rpe. Nor-mally, E¡glish
auctions reveai the quote information in a tirnely manner, a¡d most sealed-bid auc-
tions disclose l,he quote information aftel the auction clears. This section presents

the auction rules for the cM from the above Derspecti'es.
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A local market in the

auction mechanisnr.

capable of explessing

Let n be the number

defined as follolvs:

cNI adopts an open-outcry/ascending multi-unit combinatorial
This demands terminologies tirat a seller or a buyer used are

multi-unit requirernents.

of r-esource classes in the cN,l. Rules for sellers and buvers are

R ules for sellers

A seller ¿ shail use the follolving terms to indicate his

bundle of resources:

willingness of auctioning off a

selli,ng rec¡uest (i,) : (C¿, P¿),

lVhere C¿: (cr.¿,c2i,...tcrr¿), and Po: (pr¿,pz¡,...,pn¡) are

prices for resource class II,2,.., n] respectively.

(3 1)

auction items, and resen e



CHAPTEN- 3. CO\IPUT.4,TION TIÄRKET DBSIGN

Rules for buyers

To use an English auction in a multi-unit combinatorial auction (N{UCA), several

issues have to be aciclressed. As stated previously, an English auction reqr:ires a new

bid to be superior to the previous bid by at least a minimum increment e . The reason

fo¡ the minimum inclement rule is based on the fact that it ensures certain speecl

for the auction [28], and thus enhances efficiency of the auction. As English auction

is originally designed for single unit auctions, enforcing increment rule in a MIJCA

could be confusing, although it is trivial for a single unit auction. To introcluce the

price increment rule into a MUCA, several issues ltave to be addressed first:

1. Shall a bidder ofÏer a courbined price, or state unit prices for each single type

of resource demanded?

Our decision is to require unit prices for each type of resource instead of a

total price for all resources. The decison is based on two main reasons: Given

the large number of users for the Internet auction, determing an appropriate

price offer is a complex task for bidders. Using unit price makes bidcling easy

and straight-forlvard: a bidder simply increases the current highest unit pr-ices

',vithout the need of complicated mathematics computations. Secondly, a unit

price-basecl rule facilitates simplifying the minimurn price increment ruie, a

requirement for an English auction. In the end, this also makes the lvinner

determination problem more manageable.

2. Given the unit price based rule, there still exists a ferv options for enforcing the

minirnum price rule. To illustrate the scenario, assume Ph : (pn,pnz,...,phn)

is the current highest biclding price vector, and Pn"-: (Irn".r,Pnet¡2,..',Pn"..)

is a new bid's bidding price r¡ector, fol r-esources [1, 2, ..., n], respectively. The

options existed for enforcing the minimum bidding price can be described as

folloivs:

e Beat ail - Beat the current highest for all the asking resource types.

That is, the bidding price Pneutj: {Pr"r,lPnu., ) Pn¡,Vpn".¡ > 0}, ivhere

28



CH.{PTER 3. COTIPUTATION NI.{RIiET DESIGN

j e [1..n].

Beat at ieast one - Beat at least

less th¿rn the other current highest.

Pn, AVP,"-¡ ) ptr¡,Vpr"-, > 0), ri,here

tseat overall requires that I pne.¡ )

one of the culrent highest ancl

Formaliy, Pneuj : {pn"r,l=pn".,
j e [t..n].

Ðr4, n'here j e ft.nl.

?a

no

Obviorrsly, Lhe beat all, beat at least one, and beat ouerall ilierprets the minimLrm
price requirelnent rule in three levels, with tlte beat a// presenting the strictest
requirement, and the beat ouerall the least strict r-equir-ement. 'lhe beat all is
not suitable for the CN4 as the iarge numbel of bidders, combinecl ri,ith a very
strict rule, could cause the price to increase too fast ancl therefore prevent the
bidders continuing to offer higher plices potentially. On the other- ìrancl, the
beat ouerall is not straight-forwarcl and is difficult to use. In addition , the beat
ouerall mle may lead to a much more complex winner determination problem.

The cNI considers the beat at least one as the most appropriate and easy to
use rule' The Ci\4 enforces the beat at least otze rr.le among bids that ask for
the same combination of resources. Flere, "bidding for the same combination of
lesources" refels to bids that ask the iclentical set of resource types, rvhile the
number of bici items for each resource type asked by these bids could differ. Let
G be such bids, it follorvs that:

G : {c c Blvi € c Avj e c,ut¿ }0Aøri ) 0}

where B is the set of bids in the auction, k€ Lt.."l.

In real world aucticlns, it's frequently observed that certain combinations occur rnore
often than others [9]. Therefble, it's reasonable and more meaningful io enforce the
beat at least one rule among bicls lvith tlie same cotrbination of resources, as they
can conceptuallv be considered as bidding for the same resource as in a single unit
auction.

(3 2)

Therefore, a bidder 7 submits a bid offer using the follor,ving form:

buy offer (j) : (i,VVj,pj), (3 3)
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Where 7 is the seller ID, \1,'i : (tuV,u2j,...,æ,,¡), anci Pj : (ptj,p2¡,...,p,,3) are bid

items (also knorvn as bidding sizes), and offer prices for resources of class 7,2, ..., n
respectively. Ìt{otice that the bidding prices satisfy the beat at least one rule among

bids lvith Lhe same combination of resources.

V/inning prices rule

All the r.r'innels pa)'the same price for each resource type. The price is the minimum

unit price of tlie type of resource among all auction rvinners. This mle is different

frorn most other multi-unit combinato¡ial auctions, where each bidcler palrs at his

olvn offer prices. W-e consider "all buyers pay the same price for the sàme resource"

as a more appropriate ruìe for the CN4. This lule encourages biclders to offer higher

prices and is fair for all the q'inners. The buyers do not need to r-egret having bought

something too expensive, hence rvill be rvilling to offer better prices rvith no hesitation

in the future. Let B be all bids in the auction, Let Q be the set of winnirrg bids,

P¡;nat: (pU,pzl,...,nr¡) be the final selling prices for resources of class 7,2, ..., n,

correspondingly. The lvinning prices rule follolvs:

Q : {S ç BlVj € S,p¡i ) pt Í,k e [1..n]]

30

(3.4)

Stopping ruie

The CÌVI adopts a fixed stop

indicated by the seller.

rule: the auction clears at a pre-defined time that is

Feedback rating policy

The bidding rules in conjunction rvith the credit policies provides useful feedback to

ihe bidder-s. This also encour'âges healthier bidding behaviors and marliet.

The Internet auction nrovides a virtual malket that allolvs auctions available to the
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user comlnunity any\vhere' anvtime. The tracles ar-e concluctecl both clomesticall,v
and internationall¡'. This high availability feature of the Intemet auction also br.ings
a potential probiern - the dis-honest ìrehavior of the sellers. A bad seller can un-
truthfully claim the quality of their resources and hurt the interests of the consulne¡s.
To overcome this problem, almost all Internet autions use a feedback lating s),stem.
For instance, both amazon.com anci eBal, ¡1ss ,,feedback rating,, policr,. rvhich in_
cludes a tally of the comments other users have macle about the seller, ancl the detail
comments.

The CNil also applies the similar feedback r.ating polic¡,. For each transaction, a seller,s
feedback rating rvili:

o increase 1 point (+1) for each positive comment recei'ed;

o not change (0) for each neutral comment received;

ø decrease 1 point (-1) for each negative comment received:

A seller's rating score is defined as:

ratzng score: total rating poi,nts recieued
the total number of commentt ,"u¡u"d (3 5)

Eid withdrawal rule

Following most of other auction designs, the CN4 allos,s bid rvithdrawal, but penal-
ties those rvithdrarval bidders. The bidde¡ should pay the difièrence berween his
bidding price and the final selling price. Let a bidder's buy offer as follons: I,Vj:
(tury,tt)2¡,"',wnj), and P¡: (ptj,pz¡,...,pr¡) are bid iterns, ancr prices for resources
of class (I,2, ..., n), respectively. LeI p¡r.roL : (hÍ,pz¡,...,pr¡) be the final selling
prices. The penalty paid by the biclder equals to:

Q'r
JI

penalty (bi,d,cter j) : Ð þ,, - pt¡)w,3

i€[\..n)
(3 6)
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3.3.5 Global Eidding Strategies

To efficiently clirect inter-market resoulce florvs, maÌket mànagel's should respond

strategicail¡, uncler clifferent rnarket situations. A ma¡ket mânager needs to be de-

signed to kno$,: Horv to iclentify the neecls for irnporting (buying) or expolting (sell-

ing) resoulces'/ rvhat kincl of resources? Florv much to bu¡- or sell? The basic functions

of a rnarket rn¿nager can be categorizecl into t$'o parts: calculation and decision mak-

iirg.

Thc auction rnechanisrn usecl by a global market is clifferent from the local markets' A

global marliet uses a vicker'y auctiorr, also kno$,n as second-price sealecl-bid auction'

The \/icker'), auction is essentiallv a single-phase non-iter-ative pt'otocol' without

knorving how much others' bicls are, a biclcler's offer price is based on his private value

zrnd prior belief's of othels' valuation. Bec¿ruse all bicls are sealed, rvhich means each

bidder has no iclea how much the others bid in the curt'ent session, the clominant

strategy in a Vichery auction is to bicl one's true l'alue' So, bidding in a Vicker5'

auction is much simpler ancl more straightforlvarcl than in other auctions, thele's no

need for biciclers to counter-speculat,e what others' bids, therefore avoicling the long

tedious bidding Process'

The auction mechanism for the global market is essentially a sealed, single-phase

norr-iterative. Different types of resources can not be solci as a bundle' A market

manager can only auction off multiple resources of the same type' The following is

the bidcling process in a global tnarket:

1 A mariiet manager submits a bici post request to the global rnarket, providing a

triple: (p|"r",,"¿,k,^ny which basically indicates its willing'ess to scll n¿e iterns

of class k resour-ce i,vith price higher than its sealed reser'ed price pf;"r"r,"¿'

The bid post lequest is acceptecì and the resour-ces are reflected in the global

aucl,ion. Hor,vever, the reservecl price Pf;ur",uud is hidden fi'om the bidders since

the auction is sealed. The fi.rst bidcler J can bicl on auctionecl resources using a

t'iple: (n|,t ,rnf), *'here pf is the bidcling p.ice' n"$ is the bidding item and k

i
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Figure 3.3: A N{arket i\,,Ianager,s Bidciing Strategics

is the resource class, and 
^! {: mk.

The global market also maintains a history of the tracling prices for all the localmarkets' The trading price history p.ovides intuitive information on the poÉsible
outcomes of the trading prices trencl. It helps the market managei.s clecide whereto buv the resources he needs. Determining from where to bid is only part of thestrategy-' Another aspect of the bidding str-ategy is io crecide hor.r, much to bid?

Fig,re 3'3 illustrates the bidding strategies that a market rnanager coulcl potentia¡y
have' A ma¡ket lnanager adjusts his bidding strategy accordi'g to three parameters
from ¡:revious sessions: a grobar average trading price p¡, a buy starti'g point p¡, ancla sell starting point p,' Note that p6 is information published by the global marliet,
accessible to all local market managers, p6 and ps arepri'ate varues usecr as rneasures
by eacli market managel' to quantitativeiy cletermine whether buying resources fromor selling resources to the global market is necessary. For a class of ¡esource i. amarket mànager compares the local market price p¿ with the global average tradi'gprice pfi, and cleterrnines his bu¡, s¡¿.¿'ng point p,t, anclseil starting point p!, and acts

accordingl5'.

A market manager classifies its local market's desirabilit.,v of a resource i into three

prudent

Vb3 Vb1 fair



an otentral ìmpactsaù

state strategy potential i,mpact

equilibriLrrn state

hlrr¡ino cfrfn

spllincr qfefn

do nothing

bid on resources fi'om the global market

posting a bid to sell resource

no impact

local price decreases

Iocal price increases

CHAPTER 3. COTIPUTATION N,IARI{ET DESIGN

Table 3.1: A market man

states:

Equilibrium state, if p', < pi < p'u;

Buying state, if pi > p'o;

Selling statc, if p' < pi.

Intuitivell', an equilibrium state reveals that the local trading price is relatively close

to the global a\¡erage trading price, indicating that neither buying nor selling activi-
ties are able to bring any profit. Buying state represents a situation r¡,here a market
lnanager couìd probably benefit from buying resource i from the global auction mar-
ket, because the price difference makes buy cheaply ancl sell high possible. Similarl¡,,
selling state indicates a possibility of making profits by selling local resources to the
global market due to a relatii'ely lower local price.

As shown in Table 3.1 , the strategy of a market manager can potentially resuli in
the increase or decrease of a resource's local t¡ading price. That is, for a resou rce i,, if
the local trading price p' is much higher than the global average tracling price pi, we

denote, resource z is under buying state, meaning a market manager's best strategy
is to bid on resource ¿ from the global marhet, and if a market manager- rvins the
bid(s), this u'ould cause the local trading price for resource z decreases. Otherwise,
if ihe local trading price p' is much lower than p[, r'esouÌce ¿ is under selling state,.
meaning a market manager-'s best strategy is to sell surplus resource z in the global
market, and if the sell offer is successful, the local trading price for resource i rvould
probably incr-ease in the next session. And if the iocal traciing price pi is close to
the global average trading price pi, resource z is under equilibrium state, meaning a
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(a)
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Figule 3.4: Demand and Supply State Transition Diasraûr

mârket manager)s best strategy is to do nothing, hence no impact oû the local tracling
price.

A market manager cletermines whether to buy or sell based on the pr-ice comparison
between the local market and the global market, focusing on a price balance bets,een
them. The motivation of this price-centric design, though, is to maintain equilibr-ium
of demand and supply of a r-esource. Figure 3.4 examines holl¡ the CNd marl<et is
designed to generate the desirable conditions to mâintain the equilibrium.

Figule 3.r1 interprets the relationship between the demand and supplS, of a resource
into three situations: State A, B, and C, rvhich represent states lvhere demand is less

than, equal to, and greater than, supply respectively. The transition of state A to B,
or from B to C, could be a result of: (t) an increase in demand (or, equivalently, the
increase in clemand is greater than the incr-ease in supply) (2) a clecrease in supply
(or, ec¡uivalently, the decrease in demand is less than the decrease i¡ suppl¡r). On
the contrary, the transitions of state C to state B, or frorn state B to A are causecl

by' (1) a decrease in demand, (or, eqriivalently, the clecrease in demancl is greater
than the dect'ease in supply) (2) an increase in supply (or, equivalentl5,, the increase
in demanci is less than the increase in supply). Note that an increase in clemancl is
essentially equivalent to a decrease in supply, and visa veLsa.
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The (a) iLr Figure 3.4 lists all the conditions that could cause the transitions among the

states A, B, and C. I{ou'ever, onl¡, the conditions in (b) are the desirable conditions

that rvc rvant the market to present. As illustrated earlier, the market design desir-es

equiiibrium of demand and supply ancl ¿-rbandons otiierq'ise. Therefor-e, if a local

market is in state B, a market manager requires no action; if a local market is in state

A, a market manager neecls to increase the demand, i.e., sell resources to the global

market; If a local market is in state C, a market mana,ger needs to increase the suppll,,

i.e., buy resources from the global marlçet. Eventually, the change in demand and

suppl5' v,ill trigger the change of the trading price in a local market. Ilence, a price-

based clecision is completely consistent r,r'ith and reflects the relationship betrveett

clemancl and suitpl¡'.

3.3.6 Bidding Price and Volume Strategy

An important aspect of the strategy is how a market manâger cletermines the appro-

priate price ancl quality offered r,vhen buying or selling. As depicted in Figure 3.3, the

CfuI market currently provicles three distinct strategies, namel)': pludent, fair, and

ambitious - corresponding to a logarithmic, lineat', and exponential curse lespectivelS'

[1], rvhich clefines the quautity of buying or selling volumes V in terms of a function

of local trading price p. The functions càn be stated as:

36

If a marliet is under equilibrium, p', 1 p' 1 p't,, t'hen

rl-n

If a nrarket is uncler buying state, ¡f ) p'0, then

rl-

( ;, /; ;

I ri los(r' - pi + 1)

I ; t i ;\

Yv2\p" - pL)

I rå e"n(ro - pi)

are weights used to

if prudent stlategy is used

if fair strategy is usecl

if ambitous strategy is used

control the buying volutne of resoulce i.u'here 1i,1$,,and 7!
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If a market is under selling state, pi { p,., then

-{Í log(- (pi - p', -r

-€t(-(po - p',))

-€i exp(- (pt - p'"))

are weights used to

1) if prudent strategy is usecl

if fair strateg¡, is usecl

if arnbitous strategy is used

control the selling volume of resource
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ChapÉer 4

ffi'åd SeåecÈåosa FäeuråsÉåcs

A sequential auction is an auction v'hele items ale auctioned one at a time. The

sequential auction has been used extensively and is simple to impiernent. IJorvever,

the sequential auction is not suitable for the CM for tr.vo reasons. First, most users

in CN4 are inter-ested in buying multiple unit of resources (i.e., bundles of resources

that are allocatecl in an "all or none" manner), the sequential auction is not efficient

enough to handle this. Second, the user requests can specify different combinations

of the various îesources at different quantities. Therefore, the ClvI adopts a multi-

unit combinatorial auction (VIUCA) in the local marlcets, in rvhich users can bid for

multiple items at one time and then allocate in an "all or none" manner. The \,IUCA

auction offers i,he bidders the capability to bid flexibly, efficientiy, and easily. Ho\t'er¡er,

it also brings a problem of computational complexity - determining the u'innet's for

a MUCA is NP-hard. Consequently, tiris problern can not be solved exactl¡', rather

approximation algorithms or heuristics come handy her-e. Further-mor-e, the time

availabìe for selecting the winners is constrainecl by the start time of the next auction

session and the "available" times of the resources. When the auctions are proceeding

continuously u'ith periodic closings, as it is here, the bid selection should be pelformed

rvithin a tight time interval. This makes solving the NIUCA problem even more

challenging.

óð
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\\'hen designing heuristics or approxim¿tion algorithms to hanclle Np-harcl problerns,
u'e often find that rnaximizing the qualit), of the solution lyhile ¡ri¡imizing the com_
putational time are often tr'r'o conflicting goals. lve are facing this pr.oblern rvhen
designing heulistics lvhich determines the ri-inners of a MUCA process. lVe ivish to
maximize the rerrenues for the auctioning plocess, but this must be clone insicle the
time rvindolv alloi'i'ed by the closing periods. in the literature, re'enue and efüciency
are considered as the tivo most important measules fol both auction rnarket clesign
and perforÛlance evaluation l1g, 211. Thus, most market clesigners typically chooses
one, either revenue or efficiency, as the primary goal, clepencling on which measure is
more impoltant for that particular auction. In Fecleral Communication Commision
(FCC), for instance, efficiency is consiclerecl as the plimary goal because the FCC
auction needs to assign the licences to those firms in a timely mannc-.r[lg]. The reason
is that if the auction takes very long to run, the iicences can not be usecl by the
firms, eventuall¡' leading to a poor revenue. Because the Cl\,I is clesignecl to maxilnize
the usage of computing and netr,vorking resource, the utilization, is identifiecl as an
important measure.

To solve the VIUCA problem r,vitliin the tight time scheclule, heuristics are clesigned,
seeking to achieve a goocl balance of efiìciency) revenue, ancl utilization. simulations
are performed to assess the solutions. This section gives a formal model of the MUCA
problem, and presents the bid-selection heuristics and the experirnental results.
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auction is essentially a multiple knapsack problem. We
as follolvs:

4"L lv{utrti-{Jruit cornbixeatorial,&ucÉion

The multi-unit cornbinatorial

clefine the problem, formall¡

Let R: {1, "'' N} be a set of l/ classes of resources (knapsacks) to be auctioned,
rvitlr capacities (c1, c2,...,c¡¡). Let B : {1, ..., K} be a set of Il bicls. A bid j € Lr..Kl
is denotecl tts'b(i) : (IN'¡,P¡), 

'vhe'e 
vvj : (ut¡,wz¡,..., u,r,¡) represents the biclcring

quantities, and P¡ : (pu,Pz¡,...,pr,r¡) represents the biclcling prices, for resources of
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class 1, 2, .., N, respectively.

A feasible solution deter¡nines a subset tl C B as the rvinning bids. The tot¿l bid

sizes (tu1, 1-ir2,...,u,'¡¿) of the u'inning bids satisfy the constraint:

(.r,.r,..., u¡¿) : I(rro, 'Ii)2i,...,wNi) < ("r,rr,..., c¡¡) (4 i)
ztu

The trading price Preasibte : (pt,p2,...,p¡¿) are the minimum unit price among the

u¡i rì n i n o' lìi rlc'

Prea^sibre : {p¿l pu < p¿¡,Yj € U,and z e [1 ¡/]]

Consequently, the feasible solution U has a revenue of / equals to,

(4.2)

.10

/( U) : ('ìxt,'tr2t...trr) * (pt,pr,...,pw)

An optimal solution U* is a feasible solution that maximizes the revenue:

(4 3)

f (U.): {f (U.)lf (U.) > Í(U),U ç B, and )] w¡r. S c¡, j € 11 ¡/l} (4.4)

xtu

4"2 Bid Seåeatior-r Eäer.Ìristics

As discussed earlier, the goal of the bid selection heuristic is to find a f'easible solution

tirat balances the revenue, efficiencS', and utilization. That is, the heuristic should be

able to find a feasible solution that gives as much revenue as possible rvithin the tight

time schedule.

According to equation 4.3, a greatel rc\¡enue f can be achieved in tlvo ways:

e by rnaximizing the total number of items to be placed in the knapsacks,
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ø by improving the trading plices, given
l.-^,-^^^1.^:^ rL^KirapsjacKs ts [,ne same.

that tlie numbel of items placecl in thc

Based on this, the algorithm in selecting the r.vinning bids is clesignecl u,ith tu,o search

stages:

1. The prirnary phase(PP) :airns to place as many "high fitness" bids as possiþle

in the knapsacks;

The refinement phase(R.P): airns to improvcr the traciing plice by removing the

lower price bids out of the solutions and replacing rvith higher price bids.

I{ere, horv the "fitness" of a bid is measured lvill be discussed in t}re next section.

4.2.L tr)ata Structure {Jsed in Eid Selection F[euristics

The heuristics uses rate and bi,d tree to help choose the lvinning bids i,visely anci

efficiently. This section cliscrtsses the concepts of rate and bi,d, tree and the motivation
of the desisn.

R-ate

In a combinatorial auction, the resources asked and the prices offered differ among

the bids. Determining u'hich bid offers a better price is not trivial in N,lUCAs. But
knowing ho,,v protnising a bid is in rnaximizing the revenue is critical for an eflicient

bicl selection. To illustlate the scenario:

Case 7: It i,s uery hard to tell which bzd i,s hi,gher i,f different comb,inati,ons of ræources

are asked.

As an example, consider trvo bids: Bid A offers price vector (3.5,2.6,0), Bi,d B offers

price vector (3.4,0,1.0). obviousiy, deciding which one, Bicl A or Bicl B, is more
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pl'ollllslng in ¡n¿rxjmizing the revenue is not trivial. As the number of resource types
ittc¡eases, .juclging lvhich bid has a better price becomes e\¡en more clifficLrlt.

Case 2: It becom,es eaen more tri,cky to compare how promising a bi,cl's pr?,ces ar-Ìtong

bids asking for th,e same cornbination of resource types.

Consicler, fbr instance, a sceuario as foliorvs: a total of (10, 20, lb) of r-esources are
auctioned' Assurne the¡e already existed 5 bids in the auction, lvith a total nurnber
of bid items: (tr,tr,fs) : (20,30, 1b), and average prices (pr,pr,ps) : (2.b, 1.5, 1.0).
Let's consider trvo nerv bicls: Bid A and Bicl B (as shown in thble 4.1) to cletermine
u'hich bid is nìore promising in improving revenue. To com¡rare, it,s intuitive to
consider Bid A and Bid B's contribution to the average prices separatell,. That is,
we consicler the final average prices in cases lvhen only bicl A or- bid lJ is aclcled
to the auction. Notice that the àverage priccs are not actually usecl in C1çf as the
r'vinning price i'uie. htstead, the minirnum prices among the rvinning bidcler.s are
used to cletermine the final selÌing prices. However, it is generally observecl and
understood that competitive bidding behavior among the bidclers lyill usually lead to
higher average pt'ices, therefo¡e better re\¡enue for an auction. Ther-ef'ore, u,e consicler
the average prices do provide intuitive information regarding improving the revenue
of an auction, although lve can't prove it mathematically.

Table 4.1: An example of a bid's contribution to the total
average prices
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i:

t
c

¡1

(

rl'

Eid item vector Eid price vector

(u1s,ru2¡,ws,,L) : (10, 2,0)

(wtn,'wzn,.sp) : (2, 10, 0)

(put,pz,t,p3A) : (2.3, 2.0, 0)

(pt,q,, pzA. p3á ) : (2.2, 2.0, 0)

Avg. prices afier
Bid Â or B is added

(2.43, 1.53, 1.0)

(2.47,1.63,r.0)

only aclcl Bicl A to the auction *.iil change trre average prices Ø?, p9, p3), to,
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hxPtlUt,txPt.t tz x Pz -f ?¿2,.t X Pzrt t3 +
-T-[2 * U2.4

30xi.5*2x2.0

.fQId

x Ps.+

I

t¿,3..1

u3.
Pz

t3

X,0 0 0, /\Pt'Pz,Pt): t

,0 0 0,
\Pt, Pz, Pz )

t1 * tu1.1

20x2.5*10x2.3
,r.u I

: (2.43,1.53, 1.0)

Sirnilarly, if only Bid B is adcled to the auction, the average

(
I

20+10 30+2

20 x 2.5 -t2 x 2.2 30 x 1.5 + 10 x 2.0

20+2 30+10

prices becornes:

f3xPs*rwsBx(tt, pt i uta x ptn tz x pz * wzB x pzn

\ ¿t+rr* ' tr*.* '

tl3B \
-,ts i- wzn

.10ì
: (2.47,1.63, 1.0)

Surprisingly, the contribution of Bid A and Bid B to the average prices appears to be

not consistent r,r,ith their price offers. For class 1 resource, Bid A outbids Bid B by

0.1$; They offer the sa,me price for class 2 resource, anci both have no offer for class

3 resource. It seems that Bid A shoulcl lead to highel arrerage prices than Bid 13, or

at least for class 1 resources. But the calculation results sirowed that Bid B actuall5'

contributes lnore on averâge price for both class 1 and class 2 resources. The reason

behind the scene is that horv prornising a bid is does not only depends on the bidding
prices. In fact, it's a combination of the follorving three factors:

1. A bid's offer prices.

2. The composition of the bid resource tJ¡pes and the nurnber of items for each

resource tvÐe.

3. The competition condition for each resource type in the auction. Hor,v compet-

itive is the bid asainst others in overaLl?

Therefore, the CIVI needs a mechanism to quantitativel'r' measure the above factors

and to direct the bid selection process. Rate is a measure to help in determining
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hon'promising a bicl is regarcling r-cvenue rnaximization, r,r'hich is clefineci as tlte value

baseci on a bicl's or'r'n offered prices clir¡ided b5,- the value of the bid basecl on the

a\ier:age bid prices in the auction, fbrmally ¿rs follorvs:
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sÀ=¡V
Rale(i\ : Lþ.=t-'P¿r x w¡*-*--\-/ 

tf:'ì' clk x e^ik

(4 5\

u'hcre z, represents a Bicl's ID, N is the number of resource classes in this auction, k is

the resoulce class, p¿¡ and w¿¡ àre Bid ¿'s bidding price, and items for class fr resource,

respectivel/; a¡ is the overall average bidding price for resource A in the auction.

Intuiiively, the rate combines the prices, iteurs composition, ancl competition factors,

in the âuction, allolvingto measure the "quality"(or "fitness") of a bicl quantitatively.

The bid selection heuristic then will choose those bids rvith higher rate first, aiming

at finding a good solution quickly. To testify the efficiency of the rate, experiments

are performed to compare it lviih different measures such as total bidding prices, or

bidding items. The results r,vill be discussed later in this chapter.

tsid Tbee

The bid selection algorithm uses a bicl tree[27] tliat is essentially a binary tree rvith

its clepth equal to the number of resource classes. Our bicl tree (as shown in 4.1) is

dift'erent from that of l27l because in the C\4 each r-esource class can have multiple

items. Therefore, the leaves in our bid tree are a linked list of bicls ivith the same

combination of resource types. The linked-lists in tlte leaves are ordered based on

the rate of bids starting from the highest rate bids. Thc path fïom the root to a leaf

represents the classes of r-esources in a bid at the leaf. From any node, the left branch

leads to a bid u'ith the corresponding class of resource; the right branch leads to a

bid ri'ithout the corresponding class of resource. Figur-e 4.1 is an example of how bids

(as slrown in Table 4.2) are organized in a bid tree.

'il{
i,

;
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Figure 4.1: The bid tree data structure for the bids in Table 4.2

Table 4.2: Ãn example of bids subrnitted to the Auction
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./-
f Rate:1.083 

I

I {0.0,30} 
I

ury4lr_i
i

I Fare: 1.0 
ì

I {0,0,5} 
|

Ll,0'oil_,

Rate:1.102

{8,0,1 2)

Bidder 3

Bidder 5

Bidder 1

Bidder'6

Bidder 12

Biclder 4

Bidder B

Bidder 2

Bidder 10

Bidder- 7

Bidder I
Bidder 11

{5, 10, 0}

i3,5, oÌ

{8,0, 12}

{2,0,0}

{6, 0, 0}

{0, io, o}

{0, 5, 0}

{0, B, 0}

{0, 30, 20}

{0, 5, 10}

{0,0, 5}

{0,0, 30}

{3.2,2.3,0}

{3.5, 2.3,0}

{3.3, 0,0.6}

{4.0, 0, 0}

{3.5, 0,0}

{0, 2.3,0}

{0,2.4,0}

{0, 2.5,0}

{0, 2.3, 0.6}

{0, 2.4,0.6}

{0, o, 0.6}

{0, 0, 0.65}
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4"2.2 tsid Selection F{euristics

As mentioned earlier, the bicl selection heuristics use two stages irr determining the

rvinning bids: the primary phase and the refinernent phase. \\/e assume that the

resource classes are arranged in a descending older by their expected plices, i.e.,

resources of class 1 are expected to be sold at a higher price than resources of class

2. The primary phase starts lvith class 1 resources and adds bids until it can't fincl

any such bids or no bicls can be included due to resource exhaustion. Then it adds

class 2 resources and so on.

A "selection mask" of size N is used to implement the prirnary phase, acting as

a mechanism to indicate the search space as the algorithm progresses. The rz-th

location of the mask corresponds to class r¿ resource, u'here r¿ € [1..¡/]. A location

in the mash has three states: "enabled', "disabled', and "anÌ'. The values in the

selection mask determine the search spâce of the corr-esponding resource class. If a

class's corresponding mask value is:

ø enabLed: the search space includes those bids that consist of this resource class;

ø d'isabled: the search space excludes those bids that consist of this resource class;

@ anA: this resource class can be in or out of the search space.

The primary phase algorithrn is given beloq':

+o

i. The search starts wiih the

with "any". In this case,

indicating the search rvill

first value "enabled" in the selection mask and others

the selection mask values { "enabled" , "anA" , "any"} ,

consider those bids asking for resources of class 1,
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rvith or ri,ithout asking for resources of class 2 and class 3. Consequentl¡,', the

search space includes the bids that can be reachecl by traversing the paths

{111,110,101,100} in the bid tree. Thelefore, the follorving bicls are under the

scope of the search spàce of this stage:

Bid No. 1; {Røte: 1, (3,5,0), (3.5,2.3,0)}

Bid No. 2: {Rate: 0.963, (b, 10, 0), (3.2,2.3,0)}

Bid No. 3: {Rate : I.I02, (8,0, 12), (J.3,0,0.6)}

Bid No. 4: {Rate - 1.143, (2,0,0), (4.0,0,0)}

Bid No. 5: {Rate: 1, (6, 0, 0), (3.b, 0, 0)}

2. The search cletermines the next bid to be added by consiclering the l¡id rvith

the highest "fitness" in the search space. By choosing different parameters such

as price, ualue, or rate, we can create a farnily of heuristics. If the available

resources are enough to be allocated to the culrent higtrest rate bid, then move

tlre bid to the soluti,ot¿-li,st.

3. Repeat step 2 until no bids can be added to the sorut'ion-rist.

4. Change the current, "enabled' selection mask variable to "disabled' andset the

next selection mask location from "an,¡J' to "enabled' . The search space changes

due to the changes in the selection mask. Consequently, those bicls that include

the class with "d'isabled' in their corresponding selection masks rvill be excluclecl

from the tlext stage of search because they've already been considered in the

previous stage. Follows the bids listed in Figure 4.1, below is the set of bids

that rvill be included in the search space when selection masl< values equal to

{"disabled" , "enabled", "any"}:

-17
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ø Bid No. 8: {Rate: 1.087, (0, 8,0), (0, 0.25, 0)}

ø Bid No. 7: {Rate: 1.043, (0,5,0), (0,0.24,0)}

e Bid No. 10: {Rate: 1.029, (0,5, 10), (0,2.4,0.6)}

o Bid No. 9: {Rate : 1.0, (0, 30, 20), (0, 2.3, 0.6)}

5. Repeat step 2,3, and 4 until all the selection mask locations are "di,sablerl'. The

primar¡r phase terminates.

Theoletically, tire bid tree clata stlucture usecl in the primar5' phase can equivalently

be replacecl by using a iinked-list. I{or.vever, bid tree is used to organize the bicls nicely

based on the compositions and the rate of the bids. It makes evolution of sealch space

from one stage to the otlier clear and straight-forward.

The primary phase achieves a feasible solution for the auction. The solution obtainecl

by the plimar¡' phase is improved by a refinement phase, rvhich focuses on trading

price improvement. The algorithm records the minimum bid rate(:þ)in the soluti.on-

Ii,st after the primary phase. During the refinement phase, we only consider those bids

that remain in the bid tree with rate higher than å. Those bids are moved from the

bidtree to a bacl;-lzsú. The back-li,st can be sortecl by rate, uølue, or price, depending

on which parameter is used in the refinement phase. Assurne after the primary phase,

the revenue is r¿. The follon'ing is a brief description of the refinement phase:

The refinernent phase examines the bids in the back-list starting at the top of the list.

For each bid, ii determines u'hether sufficient resources are available to accommodate

tlre bicl. If resources are found, tire bid is inserted into a new solut'ion-list;; Otherwise,

bids are renoved from the previous sohttion-Ii,sú to make room fbr the new bid. Once

enouglr space is found, the bid from the back-li,st is inserted into the soluti,on-li,st.
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There ma¡" exist some space for re-inserting some of the r-emovecl bids or soüÌe rnore

bids from the l¡ack-lisú into tlrc soluti,on-list because of the removal of bicls from the

solutzon-lisú. A series of acicls ancl removes may have been perfbrrned on the solu,t,io¡¡,-

listat this time. To determine the impact of these changes, the total revenue pror.'idecl

by the current version of the soluti,on-Li,sú is evaluateci. Leb this levenue be p. \\'e note

doç,n this revenue in a history-Iist ancl if p ) 0.8m, tìre search continues examining

the rest of the bicls on the back-list.

The refinements performecl to the soluti,on-li,st are tagged b)' the last knolvn re\¡cnue

ancl recorcled in a ltistory-list. Once the refinement phase terminates due to the

revenue falling below 0.8m or empty back-li,st, the history-list is usecl to roll-back to

the best solution that lvas found during the refinement phase.

4.2"3 Sirnulation R"esults and Ïliscussion

In this section, rve present the results from the simulations that evaluate the perfor-

mance of the bid selection heuristics under different scenarios. All heuristics are based

on the plimary and refinement phases explained in Section 4.2.2. The performance

tests are bascd on three parameters: bid rate (R,), bid value (V), and bid price

(P). Ditrerent combinations of thsee parameters (shorvn in 4 3) are usecl to stucly the

impact of these parameters.

Tabie 4.3: Heuristics Using Diffeleni Combinations of
Parameters

Jc)

Prirnary phase
parameter

Fleuristics
narne

Refinement phase
parameter
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Table 4.3: Fleuristics Using Different Combinations of

Parameters

DD I IrlrrrâtêlPrtce

For each parameter combination, three test cases (,{,8, C) are designed and the

confiqurations of each test case are listed in Table 4.4 and 4.5.

Table 4.4: Common configu'*ations used in all test cases

Configuration narne Value

i
'1

I
n
T

'\.i'i
|).
-!
l¿
:t
1
.i.

\
li
:i

'i,.
L,
':i

i!

::.

50

Nun¿ber of resource classes:

Nu,mber of si,rnulati'on IUTLS:

15

100

Nun¿Íter o¡ ,'"rourr", per class: uniformly fl.om the lange [2000-2250].

Reserue pri,ces for resources: uniformly from the 
'-ange [0.5-4-5].

Table 4.5: Distinguish conflgurations of ihe test cases

Test case Number of bids Mean items/bid Mean classes/bid

n

B
U

i000
1000

i000

500

100

100

/1

/l
=
o
L

Table 4.6,4.7,4.8 shor,vs the relative performance of the heulistics for test case A, B,

and C respectivelY.

Table 4.6: Performance of the bicl selection heulistics for

test case A

Heurisi;ics Upper
bound

Primary
nheqo

PP as

pelcent of
upper bound

Refinement
phase

Improvement
through

refinement

Final result
as percent of
upper bound

VR
RV
t?p

99226
98226
98226

79557

84886

84886

80.99%
86.42%
86.42%

8447r
85388

87265

0%ù.1

0.607
2.80%

85.94%
86.93%
88.84%
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Table 4.6: Performàllce of the bid selection heuristics for
test case A
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Table 4.7: Perfolrnance of tire bicl selection heuristics for
test case B

Heurisiics Upper
bound

Primary
phase

PP as

percent of
upper bound

Refinement
phase

Improvement
through

refinement

Final lesuli
as percent of
upper bound

VN
RV
RP

9200i
92001

92001

79001

83795

93795

85.87%
91.08%
91.08%

81847

84005

85231
0.25%
T.717

60%ù 88.96%
9r.3r%
92.64%

Table 4.8: Performance of the bid selectio' heuristics for-
test case C

The results sholv that the bid-value-based primary phase has the rvorst resuits. For

test cases A, B, ancl c, bid-value-based primary phase results are (g0.9g% , g5.gT%,

78.88%) as compared to (86.42%, gr.0ï%, 86.67ù/o) for rate-basecl primary phase.

Particularlv interesting is the observation that r,vhen average bicl size is small(test

case B), the primary phase yields better results than with bigger a\¡erage bicl sizes

(test cases A and C). Further, the rate-based primaly phase combined lvith price-

based refinement performs the best in all three test cases. This suggests that price

(or price related n'actor such as rate) has the most impact(dominates) on the revenue.

Heuristics Upper
bound

Primary
phase

PP
percent of

upper bound

Gò lìefinement
phase

Improvernent
through

refinement

Final result
as pelcent of
upper bound

VR
RV
DD!Lt

102516

102516

1025 16

80870

88851

88851

78.BB%

86.67%
86.67%

87924
89532
92428

0.77%
4.02%

2Toó.( 85.767
87.33%
90.I6t/o
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The \/R approach has the biggest refinernent (6.10%, 3.60%,8.72%) in any of the test

cases. It can be obsen'ed that the bigger the bici size is, the more benefits achieved

by the refinement phase. Holvever, irrespective of the refinement improvement, the

final results of \/R are ahvays \.vorse than RV and RP. Intuitively, this suggests that

considering the rnost promising bids in terms of producing the revenue first lias a

significant impact on the final result.

4.3 Generatirag tsids

Using simulation methods to model real-world problem dernands generating data that

reflects real-rvorld problems. Particularly, gener-ating bids that can match the realis-

tic bidding behavior would help us better understand and evaluate our algorithms.

Horvever, as there ale no auctions for exchanging computing and networking resources

in the real r,vorld, lve thus lack such realistic clata. What \\/e can do is to generate

bids that r,ve believe would most likely appear in a realistic situation, based on our

knor,vledge and undersbanding of the problem.

4"3.L Required Pararneters

The pararneters needed for modeling the auction can be divided into tr,vo groups:

probiem modeling parameters, and bid parameters. The problem modeling pàrame-

ters relate to NIUCA auction modeling. The bid parameters reiate to bid generation

in a NIUCA.

Ivlodeling the \4UCA probiem in the CM needs the follorving par-ameters:
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@ numlBs: the nurnber. of local blokels:

ø numClasses: the ltumber of resource classes;

e numbids[numlBs]: the number of bids generated for each local broker;

e numltems[numlBs][numClasses]: the number of auctioned items of each class

for each local broker;

ø numCoBicls: tire number of CoBids.

Generating a bid for a NIIJCA involves the following parameter-s:

o lbID: Iocal broker ID indicates rvhich local brol<er this bid beiong*s to.

ø bidltems[numClasses]: the an'ay indicates the number of item for each resource

class.

e numPricesflnumClasses]: the aïr-ay indicates the bid price for each resour-ce class.

4.3"2 Generating the parameters

For tire required parameters listed in 4.3.1, some parameters (such as numlBs, nurn-

Classes) are directly provided, while others are programmably generated by sirnu-

lation. This section focuses ou how to programmaìtly generate the pararneters and

lvhich distribution function to be used.

The foliolving shows how the modeling parameters are gener-atecl:
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@ numBicis[nurnlBs] Input parameters: startNumBids, endNumBids

numBicls[i] is randomly clistributecl from [startNumBids, enclNumBiclsl, q,here

i e [7..n'umLBs]

ø numltemsfnuml,Bs] fnumClasses]

Input parameters: startNurnftems, endNumltems

nurnltemsfi]fi] is randomly distributecl fi-om fstaltNumltems, endNumltemsl,

n'here i e lT..numLB s], and 7 € lI..numClassesl.

Generating a bid is equal to ansr,vering the follo,,ving questions: (1) Hou, mâny items

does a bid have? (2) how many classes of lesources in this bid? (3) how many items

in each class and which class? (4) r,vhat are the plices for these iteins? Here's the

answers to the above questions:

1. I{ow many total bid irems (ttlBldltems) in a bid?

Input pararneters: meanBidltems inclicates the average bid items for all bids

generated.

Output parameters: total bid iterns in a bid is genelated as exponential dis-

tribution rvith an a\¡erage of meanBiclltems:

expBicllterns : ne\\¡ Exponential ( meanBiclltems, biclstream );

ttlBidltems : expBidltems.sampte0 ;

2. Iforv many classes (classNum) in a bid?

Input parameters: meanClassNum inclicates the average classes for all bicls

ð4
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generated:

Output parameters: number of classes in a bid is generatecl as exponential

distribution rvith an averaqe of meanClassNum.

3. Holv many iterns for each class and which ciass?

generateBidltems Function that generate ihe bid items for a bid.
variables:
classNum : number of resource classes tliis bid has;
ttlBidltems : total number of items (for all resource classes)

a"sked by this bid;
allocltems : number of items already allocated by ihis bid;
classPos : the resource class number';

F'unction genelateBidltems(classNum, ttlBidltems)
allocltems : 0;
n : l'
While (t ¡: classNum)

//classPos inclicates this class has bid items
Randoml5' choose a classPos frorn [0, classNum-1];
Randomiy generate a number p from [0, t];

ll If therc's no item for this classPos resource
If (bidliemsfclassPos] -- 0)

If (tr ¡ classNum)

llíf this is not the last class that
bidlterns[classPos] : (ttlBidltems - allocltems) * p;

Else
bidltemsfclassPos] : tilBidltems - allocltems;

End If
allocltems *: biclltems[classPos];
n:n+1;

End If

End While
End Function

4. What price for each class?

Input parameters:

dd
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resPricesfnumClasses] indicates the reserved price for each class.

inclJnitsfnumClasses] indicates the minimum increase unit for each class.

prBidlncl5] : [0, 0.2, 0.8, 0.9, 1.0] indicates the probability of price in-

creaseûrent e, the price incr-ease by (L*e,2*€,,3+e,4xe) r,vith probability of (0.2,

0.6,0.1,0.1) respectively. This is based on the observation and understanding

that most of the bidders rvill bid rationally - S0% of bidders only increase price

by 1 or 2 times of minimurn price irnprovement requirement.

+ getlncRate: function that generates the price inclease
* r'ate for bid orice.

Function getlncRate(])
rate:1;
rand : Generate a random number frorn [0, 1];

For i : 0 to prBidlnc.length
If (prBidlncfi] ¡ rand ¡: prBidlnc[i+t] )

Late:r'ate*i;
End If
Return rate;

End For
End Function

+ generateBidPrices *'l'":',î 
îåio*"f ili,:5,ii1iïi'

+ incUnit.
* resPrices[numClaLsses] : the reservecl price vector
+ incUnits[numClasses]: the minimum plice inc::easement requirement
* for- each lesource class

Function gener-ateBidPrices(r'esPrices[numClasses], incUnits[numClasses])
curHighestPrices - get culrent highest bid from bids rvith

the same cornl,¡ination of classes;

If (classNum :: 1)

rate : getlncRate(incUnit);
Forn:0tonumClasses-1

If (bidliemsfn] ¿ 0)

BidPrices[n] : curHighesiPrices[n] + incUnits[n] + rate;
End If
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Bnd For
Else

All classes has the same probability of increase bid price
End If

End Function



Chæpten 5

FåeuråsÉåcs flcr ffi,esoffitrce

Co:aååocatåosa

One of our design goals is to allow bidders to indicate their bidding requirements flex-

ibly, efficiently, and easily. Different bid types are designed to achieve this goal. To

support high resource-consuming tasks such as: bio-computing, multimedia applica-

tions, and parallel computing, resource co-allocation is highly desirable. As described

in market design, CoBids makes bid concurrently from several auctions and then

allocates in an "all or none" manner possible.

A bidder specifies his requirement on the locations of the resour-ces by placing three

kinds of bids:

LB specific bid: resources shoulcl be from a specific local bloker.

CoBids: resources are from several local brokers instead of one local broker.
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Any-bid: no constraints on resource location.

Because any-bid have the loosest constraints on resoufce locations, normalll,, they

har,e more chances to win.

This chapter discusses the extension of the bid-selection heuristics in chapter 4 to two

ner'r' heuristics to address the resoulce co-allocation issue when different bid types are

jointly used. The trvo nelv heuristics, namely, CoBi,ds fi,rst aqtproach, and no preference

approaclt,, ale designed mainly to: (1) experiment how to allocate the CoBids; (2)

research to help in understanding how the CoBids impacts the utilization ancl the

revenue.

5"1- CotsiCs F irst Approach

The basic idea of the CoBicls first approach is to allocate CoBids first because CoBids

have mor-e constraints than other bids.

Figure 5.1 shor,vs the sequence of the CoBids first approach. To better illustrate

the approach, we mal<e the following assumptions: assume LBs (4, B, C, D, E, F)

are posting sell bid offers, and a set of bidders l/ : {1,2,...,r2} place various bids,

including CoBids, LB specific bids, and an)¡-bid, bidding on resources from LBs. As

indicated in figure 5.1, Biclders [1..5] place CoBids, rvhile other bidders place LB

specific bids and any-bids. Let {ø¿} denotes bidder k place a bid on resources from

LB A.

The CoBids first approach involves six steps:
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1

3

5

{f3)

lr4l

Figure 5.1: Figure CoBids Irirst Approach Algorithm

Step 1: Allocate CoBids first using the primary phase (PP) algorithm.

Step 2: Allocate the LB specific-bids using the PP algorithm.

Step 3: Backtrack for all the CoBids related bids as follows:

Assume, after Step / and Step 2, the revenues for LB (4, B, C, D, E, F) are (reu-

enue(A), reuenue(B), reuenue(C), reuenue(D), reuenue(E)) correspondingly.

Backtlack uses an arbitrary order for the LBs. Let's assume the sequence

of backtrack is fi'om LB A to LB F. Within each LB, consider bids with

rates from the lorvest to the highest. Given, for instance, rate(a1) < rate(aa)

and rate(b2) < rate(å5), the order of backtraching is: bi.dderl -+ bi,dderL -+

bidderL -+ bi,dderS -+ bidderS. For each CoBids, the backtrack is performed as

follorvs: (as an example, let's consider bidder 1)
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I. Check the bids from bidder 1 by removing ar, cr, ancl e1 from solutions of

LB A, C, and E correspondingly;

II. Resclredule and get nerv revenues for LB (4, C, E), u,hich are (new_reuenue(A),

neu-reuenue( C ), new_r.euenue ( E)), correspondinglv.

III. If Ð,ur1^,,"j neu -reuenue(lb)

bids ø1,c1,ei fLotn their cor-responding solution sets; OtÌreru,ise, fix all

bids offered bv bidder 1.

Step l: Allocate the any-bids using the PP algorithm. For each LB with available

capacities, check if there's an)/ unallocated any-bids can be allocated to this

LB, and accept those any-bids that improve the total revenue.

Step 5: Keep on doing 4 until no capacity is left for- all LB, or no un-allocated any-bid

can lead to an increase of the total revenue.

5.2 No Fneference Appnoach

Different fi'om CoBids first approach, no preference approacl2, as depicted b¡, its name,

is to treat all the bids with the same priority no matter what type of bid it is. The

no preference approach involves four steps:

Step 1: Allocate all the bids equally rvith no preference for CoBicls using the primarl,

phase algorithm. Let ,s¡, sn,sc,sn,sp,,sr be the set of bids that are in-

cluded in the solutions for LB A, B, C, D, E, and F cor.respondingly. Let

Ra,Ra,Rc,Rn,RB,Rp be the revenues from their corresponding solutions

Ss, SB, Sc, Sn, Sø, Sp respectivelS'.
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Step 2: Clleck if each coBicl's lelated bids are in their corresponding solution-sets. The

order of the checking process starts from the highest CoBicls to the lor,r,est

CoBids (Consider CoBids with bid for LB A first, then B, then C, ..., to F)

For LB A, B, C, D, E, F, rve assume:

e Current solution sets: S¿, Sp, Sc, Sn, Sø, and ^9p.

ø Revenues: Ã4, Rn,Rc,Ro,Rn, and -R¡.

The fbllor,ving is the pseuclocode for the no plefelence approach:

Let G : the set of CoBids;

whiie (G + {})
Let aCoBids : rernove a CoBids from G;

Let, B : all bids in aCoBids;

llif an bids in B are in the current solution sets

If (Vó € B are in the solution sets [,5¿...S¡]) 1'hen

Marlc all bids in B with fix tags;

Else

ll all bids in B ¿l,re sepelated into trvo sets: Y and N

ll Yt those bicls that are included in the current solution sets

Let Y:{Yç BlVyeY¡y e !¿.¡a..¡1S,}

I I N, those bids that are not included in the current solution sets

Let N : {N Ç BlVn€ ¡/ A n f U¿rt¡..plS¿};

Try 1:

Add all n e N to tire solutions by rernoving bids without fix

tàgs

as needed, Evaluatc solutions after the replacement,

Calculate revenues from the new solution sets as:

(Rx, RH ,Ru , RH, n,H , nl).

Try 2:
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Remove all y € Y from the solutions and add some bids as neeclecr.

Evaluate the solutions after the replacement,

Calculate revenues from the new solution sets as:

(R\, Rt; , Rt" , Rl , Rl , Rl) .

Eualuate Try 1 and Try 2:

If (Ðre ¡a..rlAfl) ¿ (Dr.¡a..r14,)') Ttren

Accept solutions from Try 1:

Updaie solution sets ,S¿, SB,SC,So,SB,.9¡ accordingly;

Update revenues: R¿ : Rf; , for all i € lA..Fl;
Label all b e B with fix tags.

Else

Accept solutions from Try 2:

Update solution sets ,54, Sn, SC, SD, Sp,^9p accoldingly;

Update revenues: R.¿: Rl, for i e [A..F];
Discard all b e B.

trnd If
End If

End While

Step 3: Allocate the any-bids using the PP algorithm. For each LB rvitli available

capacities, check if there's any unallocated anr¡-bids can be allocated to this

LB, and accept those any-bids that improve the totai revenue.

Step l: Keep on doing 3 until no capacity is left for all LB, or no un-allocated anr-bid

can lead to an increase of the total revenue.

5.3 Sirnulation FR esults

The intent of the simulation is to achieve a better unclerstanding of the impact of the

CoBi'ds fi,rst approachand the no preference approach,, and to evaluate the design of
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the algorithms. A group of simulation test cases are clesigned to compare the perfor-

mance measures betri.'een the tlvo apploaches. To assess the auction marlcet design

practically and experimentally, efficiency and revenue maximization are extensively

used in literature [21, 1S]. As the C\4 is designed to maximize the utilization of the

computing ancl netu,orì<ing resources, we also consider the utilization as an imporLant

performance measure for resource allocation. Therefore, unlike most other auction

nrarket designs, this group of simulations use utili,zation and reuenue to evaluate the

algorithms. The decision of not measuring the efficiency of the algorithms is based on

the observation that the heuristics are always capable of solving the lt4UCA problem

quickly duling the simulations.

The simulations are based on the following parameters:

e Percentage of CoBids;

e Numl¡er of bids;

ø Number of LBs;

e Average of LBs per CoBids.

Using the above parameters, the performed simulation, thelefore, enables us to anslver

the following questions:

(1). Which approach is capable of achieving a better utilization?

(2). Hoi,v is the utilization affected by the above parameters?

(3). Horv is the revenue affected by the above parameters?
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Figure 5.2: Bid accept ratio, utilization, and item accept ratio versus percentage of

CoBids. Simulation configurations: the number of LBs - 20, the number of bids for

each LB : 1200_300]

5.3.1 Simulation results: utilizations

The utilization related performance measures used in the simulations include: bid

accept ratio, utilization, and item accept latio, u'irich are defined as follor,vs:

(5. 1)

(5 2)

The simulation results are as follows:

(5.3)
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Figure 5.3: Figure Bid accept ratio, utilization, and item accept ratio versus the

number of bids. Simulation configurations: the number of LBs - 20, the percentage

of CoBids : 70To.

Figur:e 5.2 shows the performance measures of the tr,vo approaches under different

percentage of CoBids. The simulation uses 20 local brokers, 200-300 bids are randomly

generâted for each local broker. The tests are perfor-mecl based on a set of bids in x'hich

\yo, L\To, 15%, and 20% of the bids are CoBids. For both approaches, ihe bid accept

ratio and item accept ratio are stable when the percentage of CoBids varies from 5%

to20To, rvith the CFA (a) performs slightly bettel than the NPA (b). The utilization

decreases with an increase in the percentage of CoBids for both approaches. The

decrease of the utilization is caused by more constraints on allocating the resources,

hence causing some resources not able to be allocated. The CFA exhibits a much

better utilization comparing with that of the NPA when the percentage of CoBids

increases, indicating that considering the bids with more constraints help allocate

more resources.

0r)
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L
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Figure 5.3 shou,s the performance measures r'vhen the number of bids generateci varies.

The bid accept ratio and the item accept ratio decrease with the increase of the

number of bids fbr- both approaches. Notice that the tlvo approaches have almost

identical curves for the iLem accept ratio, while the CFA yields a slightly better bicl

accept ratio when the number of bids increases. The better bicl accept ratio suggests

that evaluating the CoBids first could potentially include more bids in the solution.

And because the item accept ratios are the same, therefore, suggesting that srnall size

bids (bids asking for a smaller number of items) have more chance to u'in in the CFA.

The utilization increases lvith an increase in the number of bicls rvhen the number

of bids ar-e rvithin [50-100] range for both approaches. When the number of bids are

betr,veen [100-300], the utilization of the CFA is stabìe ancl close to 700%, rvhile the

utilization of the NPA clecreases slightly rvith the increase of the number of bicls. The

reason is that ihe CFA tends to include more small-size bids in the solution, therefore,

leading to a better utilization.

Figure 5.4 shows how the number of LBs affects the performance rneasures. The

simulation randomly generates [200-300] bids with 20% of lvhtch are CoBids. The tests

are performed when the number of LBs are 5, 70, 25, and 20. Fol' both approaches,

the item accept ratio is almost the same and stable; the bid accept r-atio is stable

too, but the bid accept ratio for the CFA is slightly better than that of the NPA.

The results are consistent rvith those shown in Figure 5.3, the small-size bids have

mo¡e chances to rvin the auction no matter what the size of the number of LBs is.

For both apploaches, the utilization increases u'ith the increase in the number of LBs

r,vhen the number of LBs is r,vithin [5-10]. When the number of LBs is betrveen 10-20,

the utilization of CFA is stable and close to 100%; rvhile the utilization of the NPA

is also stable, but slightly iess than that of the CFA, because more constraints exist

oi
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Figure 5.4: Figule Bid accept ratio, utilization, and item accept ratio versus the

number of LBs. Simulation configurations: the number of bids for each LB: [200-

3001, the percentage of CoBids : 20T0.

among the LBs caused by the CoBids and the bigger size bids in the NPA.

AvgLBs/CoBids is a measur-e used to indicate the average number of LBs in which

a CoBids spans. The larger the AvgLBs/CoBids, the more constraints for resource

allocation. hence. the rvorse the utilization. This is demonstrated in Figure 5.5. The

simulation configurations are: the number of LBs:20, 200-300 bids are randoml¡'

generatecl by each local broker, l\t/a of which are CoBids. It is shorvn that the

utilization of CFA clecreases only slightly rvith the increase of AvgLBs/CoBicls; while

the utilization of NPA decleases dramatically ri'ith the increase of AvglBs/CoBicls,

i.e., from 98% t,o 82% corresponding to the AvgLBs/CoBids is 2.3 to 8.5, respectively.

The increase of AvgLBs/CoBids has almost no impact on both the bid accept ratio

ancl bid accept ratio. In fact, the bid accept ratio and item accept ratio, are pretty

close for the tr,vo approaches.
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Figure 5.5: Figure Bid accept ratio, utilization, and item accept ratio versus

AvgLBs/CoBids, Simulation configurâtions: the number of LBs - 20, the number

of bids generated is uniformly distributed rvithin [200-300], the perceniage of CoBids

:70V0.

The sinulation in Figure 5.6 uses different percentage of CoBids (:20%) than that

in Figure 5.5. The purpose is to compare the performance measures lvhen the per-

centage of CoBids doubles. The trvo approaclìes still exhibit very stable and close

curves for the item accept ratio. The bid accept latio, declines for both approaches,

but is more stâble in the CFA. The result of the utilization is very interesting. In

Figure 5.5, the utilization for the CFA is observecl to be slightly decreasing ,,vith the

increase in the AvgLBs/CoBids, rvhich is not the case rvhen the percentage of CoBids

increases to 20%. For the CFA, the utilization goes from 98% dorvn to 80% r,r'hen the

AvgLBs/CoBids rises from 2.3 up to 8.4, correspondingll,. No exception, the utiliza-

tion for the NPA, too, declines dramaticaliy with the increase of the AvgLBs/CoBids,

and is 2To worce in average than that of the CFA.

-;-it"ñ;*ót r"t'.¡"jl

- -e . - ltem accept ratio(b)
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Jligure 5.6: Figure Bicl accept ratio, utilization, and item accept ratio versus

AvgLBs/CoBids, Simul¿tion configurations: the number of LBs - 20, the nurnber

of bids generated is uniformly distributed within 1200-300], the percentage of CoBids

-_20%

In summaly, the CFA achieves better utilizat,ions than the NPA for ail simulation

configurations. Intuitively, this means that considering the bids u'ith more constraints

first is à useful strateg¡'. and could potentially lead to a better utilization. Hou'ever,

in cases r'vhere the constraints for resource allocation (i.e., the percentage of CoBids

and the AvgLBs/CoBids) exceeds some threshold, the utilization rn'ill suffer for both

approaches.

5.3.2 Sirnulation results; reverìu.es

70

As mentioned eariier, rerrenue is

desÍgn. To compare ancl evaluate

an important measure in evaluating the malket

the revenues generated from different simulation
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configurations usirìg different algorithrns (CFA anci NPA), \tr:e use percent of rer'-

enues/upper bouncl as a meâsure insteacl of usiirg revenues directl¡'. As clifferent

simulations differ in their maxirnum revenues) the percent of revenues/upper bound

is more meaningful and intuitive to cornpaì-e the capabiliiy of different algorithrns in

rnaxilnizing the revenue.

Figure 5.7 shows the perfbrmance of levenues under different simulation configura-

tions. The simulation r-esrilts of utilization measures showed in section 5.3.1 sLrggest

that the CFA performs better than the NPA. Holever, the performance of revenues

appears to be reversed. The NPA achieves very stable reverìues ([86% - 90%]) un-

der all simuiation configurations, and outperfbrms the CFA by 3ù/o in a,r'erage. The

re\¡enues frorn the CFA, although rvorse than that of the NAP, are stable for most

of the test cases, except u'hen the number of bids increases dlamaticall¡,, (as shorvn

in figure 5.7 (b)). This indicates that when the competition becomes intensive, the

CFA tends to make a decision of fixing some of the CoBids too earl¡', rvhich in turn

affects the final selling price. This is reflected in a significant ciecline in revenue (from

90.65% decreases to 80.54t/o corresponding to the number of bicls of 100 to 300). Due

to the sàme reason, the revenue of the CF¡\ also tends to be affected more by the

AvgLBs/CoBids (test case (d) and (e)) than the NPA does.

The simulation results of utilizations and l:evenues pose tr,vo sides of the CFA and the

ì'lPA. The CF¡\ achieves better utilization while the NPA tends to give better re\¡enue.

The simulation results allorv us to have a better understanding of the behaviors of the

two àpproaches. Hence, depending on the degree of the irnportance of the utilization

and the revenue) \\¡e can malce decisions on which approach to use later on.
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(a) revenue/upper bound(%) versus percent of CoBids (d) revenue/upper bound(%) versus AvgLBs/CoBids
(numLBs: 20, percent of CoBids: 10%)
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This work introduces an online auction market framer'vork and design that is targeted

to.',vards helping business, organization, government, and individuals to rnaximize the

utilization of the already exisitecl computing and netr,vorking resources. The study fo-

cuses on several aspects: (1) auciion market design (i.e., the design of rules, policies,

and strategies for auction market); (2) solve the rvinner determination problem in

a multi-unit combinatolial auction problem using heuristics; (3) design and perforrn

cornputational exper-iments,. to assist in the algorithm design, and to heip understarrd

and study the behavior of the auction design; (4) evaluate the design systematically

and analytically using performance measures such as revenue, efficiency, and utiliza-

tion.

lVe considel the design and experiment of the CN{ contlibutes in three areas:

1. The Internet auction market design: this research extends the application of

the online auction market to computing and networking resources, a nei,v kincl

t,5
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of commodit¡r ewç¡uttgecl on the l¡ternet auctions. The CN,l is desig'ed as a

service pr-oviclet'fi'amervor-k fol exchanging computing and netrvorliing resources.

This differentiates itself from the normal computational economy resear-ches,

targeted at designing approaches for resource management. To fit better with

the features and usage of the new commodity, this work initiaies rules, methods,

and concepts to leverage the usability and user experiences of the Ci\4. It is wortir

mentioning that we demonstrated the methods and concepts (such as beat at

least one rule, resource classification, any-bid, and CoBids, etc) to the public

during TRLabs'TechForum held in October 2001, the feedback from the people

we talked to shorved that 1,hey liked the design and thought that the concepts

and methods are vely reasonable and really make biclding on a cornplex Internet

auction easier and more convenient.

The multi-unit combinatorial auction study and experiment. This worli designs

"rate" to quantitaiively measure the quality of the bid in terms of ploducing

better revenues, and the experimental results have sho,,vn it to be efièctive in

helping the heuristics achieve a good solution efficientiy.

The resource management in wide-area netrvolking systems. As stated in the

introduction, although the focus of the CM differs significantly fi'om a tracli-

tional resource management system, we consicler the CM as a new application

that can extend the usage of the tlaclitiollal resource management. In fact,

the combination of the two technologies exhibit a very promising and valuable

oppoltunity in the future.

Although systematical experiments are conducted to help us accomplish a plototype

for tlre CNI, s'e realize that the study of the behavior of the auction market clesign is

t1

2.
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still ver-y limitecl. As in manJ/ other studies on t,he I,IUCA problem, the experiments

of the CNd also suffer from the lack of realistic data[9, 17]. As indicated by the auction

market design theorv, empirical data offers a valuable complement to the study of the

auction market design[3]. Therelbre, irnplementing the prototype and putting it into

practical use could allor,v us to obtain valuable empirical data for the problem. Based

on the empirical data, rve can further test and refine the auction market design. We

identify this as a future rvork.
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