
A Formal Specification and Design of
an Online Bazaar System

By

June He

A Thesis

Submitted to the Faculty of Graduate Studies at University of Manitoba

in Partial fulfillment of the Requirements

for the Degree of

MASTER OF SCIENCE

Department of Computer Science

University of Manitoba

Winnipeg, Manitoba

@ June He, September 2002

THE UNIVERSITY OF MANITOBA

FACULTY OF GRADUATE STUDIES

COPYRIGHT PERMISSION PAGE

A Formal Specification and Design of
an Online Bazaar Svstem

BY

June He

A Thesis/Practicum submitted to the Faculty of Graduate Studies of The University

of Manitoba in partial fulfillment of the requirements of the degree

of

MASTER OF SCIENCE

June He O 2003

Permission has been granted to the Library of The University of Manitoba to lend or sell copies of this
thesis/practicum, to the National Library of Canada to microfilm this thesis and to lend or sell copies
of the fIIm, and to University Microfilm Inc. to pubtish an abstract of this thesis/practicum.

This reproduction or copy of this thesis has been made available by authority of the copyright owner
solely for the purpose of private study and research, and may only be reproduced and copied as
permitted by copyright laws or with express written authorization from the copyright owner.

Abstract

The Bazaar System is an online application system which also provídes a framework for

a virtual marketplace. Dffirent users can carry out deferent kinds of business activities

through the system automatically. The design of a good model for the Bazaar System

involves an integrated solution to the issues of distribution, integration, replication and

security. Because of the complexity of the system, formal methods are used to specifu and

design the system's properties.

Object-Z, a formal specffication language, is used to specify the Bazaar System's

functionality. By using a formal method in the design of the system, we avoid or eliminate

any ambiguities, incompleteness, inconsistency, and keeps cost down. In particular, the

thesis focuses on the feasibility of applying formal techniques to the design of a Bazaar

System. The resulting Balaar System is applicable as a powerful B2B, B2C and C2C

multifunction system.

Acknowledgements
I am grateful to my supervisor, Dr. Sylvanus Ehikioya, for his guidance and

encouragement during my research. In particular, I thank him for his patience with me

helping me to edit and structure the thesis so that it can be readable. Thanks too for the

countless hours he devoted to me, even at the expense of his leisure.

I also wish to thank the members of my examining committee, Dr. Sylvanus Ehikioya,

Dr. Peter Graham and Dr. Jose Rueda for agreeing to serve on my examination

committee.

Finally, I wish to thank my family for their support.

llt

Table of Contents:

Chapter 1: Introduction --------

1.1 Benefit of the Bazaar System ----------------2

1.2 Description of theBazaar System ---------- 4

1.3 Contributions of the Thesis ----- 4

1.4 Organization of the Thesis -------6

Chapter 2: Literature Review

2.IBazaar System and Online Auctions -------- 7

2.2Technical Needs of the Bazaæ System

2.2.1Three-tier Architecture -----------------10

Z.2.ZBnterprise JavaBeanru ------- ---------11

2.3 Design Issues in the Bazaar System --------I2

2.3.1 COM+ or EJB -------------Tz

2.3.2Why User Entity Beans to Access Databases -----------------13

2.4Formal Methods ----------------r4

_________________16

Chapter 3: Requirements Analysis ----------

3.2 Use Case Analysls --------- _________19

3.3 The Requirement Specification ------- ------21

3.3.1 The Login Subsystem --27

3.3.2The Order Subsystem ----33

3.3.3 The Offer Subsystem -37

3.3.4The Supplier Subsystem --------------39

3.3.5 The Store Subsystem ------- ------------4I

3.3.6 The Product Subsystem ----------------43

3.3.7 The Inventory Subsystem -------------45

lv

Chapter 4: The System Design Specification ----------- --------------49

4.1 Architecture Design of the Bazaar System --------------51

4.1.1 The Basic Objects of the System -----51

4.I.ZThe Complex Objects of the System --------------57

4.2Detalled Design Document -----61

Chapter 5: Implementation of the Bazaar System -----68

5.1 The Implementation of EJB at Server Side -- --------------68

5.1.1 Home Interface -----------69

5.1.2 Remote lnterface -----69

5.1.3 Enterprise Bean Class ------ ----------69

5.2The Implementation of the Administration System ----70

5.Z.TThe Main Menu ----------72

5.2.2The User Manager Menu -------------73

5.2.3'lheProduct Manager Menu ,,
5.2.4The System Manager Menu ---------15

5.3 The Implementation of the Front-end ---------- ----------16

5.3.1 Design Patterns -----------77

5.3.1.1 The Mode View Controller Pattern ---------77

5.3.1.2 The Front Component Pattern ---------------78

5.3.1.3 The Value Object Pattern -------79

5.3.2The Front-End Interfaces --------------80

5.3.2.I The Main Page of Front-End ----------------81

5.3.2.2 The Home Page of Buyer -------82

5.3.2.3 The Home Page of Store Owner ---------- ---------------83

5.3.2.4 The Home Page of Supplier

Chapter 6: The Conclusions and Future Work ---------86

References ------------88

Appendix A ---------- -------------91

List of Figures:

Figure 2.1

Figure 3.1

Figure 3.2

Figure 3.3

Figure 3.4

Figure 3.5

Figure 3.6

Figure 3.7

Figure 3.8

Figure 3.9

Figure 3.10

Figure 3.11

Figure 3.12-a

Figure 3.12-b

Figure 3.13-a

Figure 3.13-b

Figure 3.14-a

Figure 3.14-b

Figure 3.15-a

Figure 3.15-b

Figure 3.I6-a

Figure 3.16-b

Figure 3.I1-a

Figure 3.17-b

Figure 3.18-a

Figure 3.18-b

Figure 3.18-c

Figure 4.1

High-level Architecture of Bazaar System -------------11

Use Case Diagram of the Bazaar System ---------------20

Activity Diagram for Login System -----------20

Collaboration Diagram for Search -----------22

Collaboration Diagram for Order Products or Services ------------22

Collaboration Diagram for Purchases ---------- ---------23

Collaboration Diagram for Offer Products or Services ------------24

Collaboration Diagram for Bidding -------- 24

Collaboration Diagram for Modify ---------25

Collaboration Diagram for Return Products or Services ---------- 25

Collaboration Diagram for Communication ----------- 26

Collaboration Diagram for Watch ----------26

Formal Specification of LogSys ------------- ---------30

Formal Specification of AccountSys -------32

The Internal Classes of OrderSys and their Relationship ----------33

Formal Specification of OrderSys ---------- -------------34

The Offer Class and its Relationship to OfferSys --- 37

Formal Specification of LogSys ----------- --------------38

The Supplier Class and its Relationship to SupplierSys -----------39

Formal Specification of SupplierSys -------40

The Store class and its Relationship to StoreSys -----41

Formal Specification of StoreSys -------- ----------------42

The Internal Classes of ProductSys and their Relationship -------43

Formal Specification of ProductSys ------- --------------44

The Classes and their Relationship in lnventory Subsystem ------45

Formal Specification of InventorySys -----47

Formal Specification of ItemSys ----------- --------------41

TheBazaar System Architecture ----------- --------------49

vl

Fígtre 4.2

Figure 4.3

Figure 4.4

Figure 4.5

Figure 4.6

Figure 4.7

Figure 4.8

Figure 4.9

Figure 4.10

Figure 4.11

Fígtre 4.I2

Figure 4.13

Figure 4.14

Figure 5.1

Figure 5.2

Figure 5.3

Figure 5.4

Figure 5.5

Figure 5.6

Figure 5.7

Figure 5.8

Figure 5.9

Figure 5.10

Figure 5.11

Figure 5.12

Figure 5.13

Figure 5.14

Figure 5.15

Figure 5.16

Figure 5.17

Components Diagram of the Bazaar System -----------50

The Class Diagram of Account EJB -------- -------------52

The Class Diagram of Mailer EJB -------- ---------------53

The Class Diagram of Offer EJB -------- ----------------54

The Class Diagram of Order EJB -------- ----------------55

The Class Diagram of Product EJB -------- --------------56

The Class Diagram of Inventory EJB ------56

The Class Diagram of Consumer EJB ------58

The Class Diagram of Supplier EJB -------- -------------58

The Class Diagram of Owner EJB -------- ---------------59

The Class Diagram of Catalog EJB -------- --------------60

The Class Diagram of Cart EJB -------- -----60

Database Table and Relationship------- -----61

J2EE Environment --------------68

The Administration System ----1I

The Main Menu of the Administration System --------72

The Main Menu (Pressing BazaarBarl) ------------ ---- 12

The Result of Search by Order No. -------- --------------73

Input Boxes of the User Manager --------- ---------------74

The Menu of the User Manager --------- ----14

The Menu of the Product Manager ---------15

The Menu of the System Manager ----------16

The Menu of Subsystems --------- -----------76

MVC in the Bazaar System ---- 7 8

The Organization of Page for Front-End ---------- ------80

The Screen of Main Page of the Bazaar System -------81

The Screen of Buyer Home Page of the Bazaar System -----------82

The Order Processing ------------83

The Screen of Store Owner Home Page of theBazaar System

------84

The Screen of Supplier Page of theBazaar System ----------------85

CHAPTER 1

TNTRODUCTION

The Internet and World Wide Web represent a foundation on which enterprises are

working to build an information economy. Information has value similar to goods and

services, and is a vital part of the market. An information economy challenges today's

enterprises to re-consider the way they do business [Kas2000]. Information technology

assists buyers and sellers to do product brokering, merchant brokering, negotiation,

payment and delivery, and other related activities through the Internet. This business

activity is called e-commerce [Lom2000].

ABazaat System is an online application system for e-commerce. The activities of users

in the Bazaat System are Internet-related. There are three types of e-commerce models:

Business-to-Consumer (B2C), Business-to-Business (B2B), and Consumer-to-Consumer

(C2C) [Fri2000] and a Bazaar System can function to provide any of the above three

models. In a Bazaar System, sellers offer consumers products through the Internet while

buyers can select products by browsing the Internet. The Bazaar System may also ìnvolve

a business at both ends of a transaction. For example, through the Bazaar System, a
purchase manager of a company can place orders to suppliers or a sales manager can

offer f,rnished goods to dealers. Ehikioya and Suresh [Ehi2000] defined mechanisms for
correct and effective financial services necessary for e-commerce in intangible goods and

services. This aspect will not be discussed in this thesis.

The Bazaar System used in this thesis operates in the B2B segment where volume buyers

of products meet bulk sellers. The system can be accessed by different kinds of users via
different views to do different kinds of activities in the Bazaar System. The companies

that sell products or services on the Bazaar System are connected to the suppliers and

buyers through the system without having to create point-to-point connections to each of
them. The Bazaar System handles the task of integrating large amounts of product

information or services from a variety of vendors using different systems. Using the

Bazaar System, the companies can reach new customers, and leverage information from

competitors to increase sales.

1.1 Benefits of the Bazaar System

In today's highly competitive business environment, customer service and customer

satisfaction are often considered as critical. Customer satisfaction and financial success

are two sides of the same coin. With the guarantee of quick processing time, prompt and

better customer service, and accurate management information, the Bazaar System can be

used to achieve these twin goals. Additional benefits are online access, no time limits,

high effrciency, no place limits, and user friendliness.

o Online access

The users of the Bazaar System can view information online. The system generates

marketing literature, product announcements and public pricing at a high speed and

gteatly benefits the companies by getting rid of the costs associated with printing and

distributing written information. Changes to the information and updates can be made

quickly, without significant delays and cumbersome work [Terl997).

r No time limits

A business website is an electronic storefront that never closes. Customers all over

the world can order products and access services 365 days a year,7 days a week, 24

hours a day. The users can access the Bazaar system at times that suit them.

. High efficiency

There is a vast amount of information on the Internet, and many tools available today

make this information very accessible. Companies can provide all their literature and

other pricing-related information on a web server, which provides customers a chance to

browse and download the desired information. Companies also have to enable online
ordering for their customers and dealers. To target household consumers, companies also

have to enable even housewives sitting at home to order goods on the Internet. The

Bazaar System fulfills these needs by satisfying the customer using fast online transaction

processing, and by being reliable and easy to use. It also benefits the companies involved

by lowering their costs.

o No place limits

A customer can access the Bazaar System from anywhere through the same website.

A site on the Internet is an inexpensive way to reach a global audience because the

number of people using the Internet all over the globe is increasin g at aphenomenal rate.

A customer does not need to go to different physical places to get different product

information.

o Create revenue opportunity

The Bazaat System provides automatic business processing, including online order,

account management, automatic order/delivery confirmation, order tracking, and on time

inventory control, which enable the stores to cut cost and increase revenue. For example,

through the Bazaar System, a store manager can update product information and

automatically receive related information from consumers. The store manager can watch

the order line (a list of items in an order) and inventory online, and send order

information to the related product suppliers at once.

o fmplement a new style of business

Using the Internet, theBazaar System can change the style of business. For example,

traditional shopping activities require a huge effort from the consumer. The consumer

spends much time in searching for products or services, comparing prices and other

features of a good or service to help make an optimal purchase decision [Mou1998]. The

Bazaat System stores many different kinds of information for the various users, so they

can get hold of them easily and quickly.

o User Friendly

The Bazaar System supports different user interfaces for different kinds of users. A
user of theBazaar System can even select a language used for his/her interface.

1.2 Description of tbeBazaar System

The main objective of the Bazaar System is to create an interactive online bazaar that

provides a unique shopping experience for the users of the system . Thebazaar consists of
a number of different areas that are owned by agents or agencies. Entrance into an area

can be restricted by the system based on user attributes or by the owner of the area. Each

area provides different types of goods and services for sale. Users can buy commodities,

custom items or just interact with each other. The bazaar is available to users 24 hours a

day,7 days a week.

The Bazaar System ensures that its users are able to conduct their activities in a safe and

secure environment. The system ensures that only authorized users are allowed in the

bazaar and that all online interactions between agents are secured. Agents indicate what

type of activity is displayed to the other agents within thebazaar.

The Bazaar System interacts with outside systems to conduct business. All online

transactions are verified with other financial systems in real-time. The systems of the

sellers of goods and services also interact with the bazaar system to provide descriptions

of merchandise and services sold.

The Bazaar System has powerful access, administrative and moderator functions. All of
these functions are seamlessly integrated into the system for easy administration and

access control.

1.3 Contributions of the Thesis

The main objective of this thesis is to investigate the feasibility of applying formal

techniques to the design of aBazaar System. Other contributions include defining a new

model of bazaar systems and applying new techniques, such as J2EE (Java Z platform,

Enterprise Edition) and multi-tier architecture, to implement the system.

The Bazaar System is an online application system for e-commerce. It has powerful

access, administrative and moderator functions, and it ensures that the users of the system

are able to conduct their activities in a safe and secure environment. The Bazaar System

guarantees quick processing time, prompt and better customer service, and accurate

management information

Formal methods can facilitate specifìcation, design, development, maintenance,

reliability, and maintainability of a system, and they have been proven to be effective in
developing complex systems. To our knowledge, formal methods have never been

applied to a Bazaar system, and thus, this is also a contribution of the thesis. The

applications of the formal methods in the thesis include:

Using UML use case diagrams and collaboration diagrams to model the requirements

analysis;

Using Object-Z to specif,i the behavior of the Bazaar System;

Using UML component diagrams and class diagrams to model the architectural

design of the Bazaar System; and

Using formal design style to document the detailed design of the Bazaar System.

A clearly defined model of the Bazaar System is presented in the thesis. The correctness

of a software model has been emphasized as one of the major aspects for developing a

correct software system' UML is used in modeling, requirements management, analysis

and design of the Bazaar System. UML has a well-defined syntax and semantics for its
notation, so it is selected for documenting the design of the Bazaar System. Based on

different models, such as online market place and auction systems, the Bazaar System is

modeled as a powerfulB2B,B2c and c2c murtifunction system.

The Bazaar System is implemented as a multi-tier Web application using J2EE
technology' The J2EE platform provides a multi-tier distributed application model. The
thesis emphasizes the benefits of using the new technical skills on bazaar systems.

1.4 Organization of the Thesis

The organization of the rest of the thesis is as follows: In Chapter 2, the background of
bazaar systems and the technical requirements to build the system are reviewed. In

Chapter 3, a requirements specification of the Bazaar System is outlined. Use case

diagrams, activity diagrams and collaboration diagrams in UML are used to do the

requirement analysis. A specification of the Bazaar System is given which assumes

familiarity with the basic features of the Object-Z notations as given in [Ros199Z] and

[Duk1991]. In Chapter 4, the design specification is described. Class diagrams, state

diagrams and component diagrams of UML are used to illustrate the architecture design

and the design specification is elaborated in the detailed design document with design

details. In Chapter 5, a prototype implementation is introduced. Chapter 6 contains the

conclusion of the thesis and discusses possible future work.

CHAPTER 2

LITERATURE REVIEW

Electronic commerce has provided consumers with more options, more alternatives and

more opportunities than ever before. Consumers now enjoy virtually unlimited access to

goods and services, access that was heretofore unthinkable. Various onlìne businesses are

developing very fast. Consumers now have the ability to purchase goods using their

computer, PDA or even a web-enabled portable phone. Generally, when we speak of
electronic commerce and the individual customer, we most commonly think of business-

to-consumer (B2C) transactions. But one of the most innovative developments in

electronic commerce is the rapidly growing consumer-to-consumer (C2C) market.

The Bazaar System can implement business-to-business (B2B) marketplaces. The

Internet and World Wide Web have emerged as a valuable networked information source

that is increasingly being used for commerce. B2B marketplaces generally are Web sites

where transactions between businesses occur. Some bring together a broad variety of
buyers and sellers; others address narrower segments of the market, such as a certain

genre of products or an individual company and all of its suppliers. The ideal business-to-

business marketplace avoids collusion in favor of either buyers or sellers. It manages to
get buyers to feel their needs are being served, and nudges companies making the selling
as partners and not just as competitor [Fri2000]. The idea behind theBazaar System is to

help users with the negotiation step in the purchase process by making the ,,best possible

deal" on the users' behalf [Cha I 996] .

2.I Bazaar Systems and Online Auctions

Auctions are an important market mechanism, which allow selling rare and unusual

goods. Auctions apply in situations where a more conventional "market" does not exist or
is inappropriate' Online auctions are becoming an increasingly important channel for
electronic commerce. Internet based auctions are rapidly diversifying to become products

specific. There exist more than 150 online auction sites on the Internet today. The best-

known auction companies are eBay for a wide range of products, CNET for electronic

goods, Priceline for air-line tickets, and E*Trade for financial products. The rapid growth

of auction sites has created a robust, vibrant online shopping opportunity for online

consumers which was never before available. Due to a larger number of bidders and

items to be sold auctions on the web are growing fast for the reason that a sufficient

match can be found. Abazaar system is also a form of an auction system.

Much work on auction design exists, but rnost of them concentrate on single items. But

usually, rnultiple non-identical items are offered and a bidder's offer for an item may depend

on what other items win. Nisan [Nis2000] presented the Combinatorial Auctions

mechanisms. In Nisan's Model, the system allows bids on combinations of items. Compared

to single item bidding, combinatorial bidding can meet the desire of the bidders, true

preferences, and may lead to better allocation.

A typical B2B online auction system includes modules to manage product inventory,

point of sale, ordering, purchasing, receiving, customer management, accounts receivable

and payable, general ledger and online credit card processing, along with a Web

storefront. Bazaar systems can provide similar services as auction systems. A successful

e-commerce system should do more than merely provide an online bazaar where buyers

and sellers come to exchange dollars for goods and services. The Bazaar system should

be a marketplace that provides services to satisfy the customers every time they visit the

site. The Bazaar System should operate as an independent agency, and the services of the

system should be designed and provided independently of the people behind the business-

to-business site.

Existing auction services normally rely on a central auction server. Such a centralized

approach is not appropriate to meet market requirements. As the market grows, a
centralized server will perform poorly, since the many users will overload the server

making the whole auction process less responsive than sellers and buyers would likely
consider acceptable. Further, as the auction market becomes global, the centralized

approach cannot effectively cater to variation/regional market regulations and

procedures; different markets may employ their own rules, monetary regulations,

payment procedures, etc. Ezhilchelvan and Morgan [Ezh200ll investigate ways of
enabling widely distributed, arbitrarily large numbers of auction servers that cooperate in

conducting an auction. Each auction server serves a local market and is a part of the

global system. Allowing a user to bid at any one of the servers is the principal way of
achieving scalability. The Bazaar System follows the same ideas and it is implemented as

a distributed system.

2.2 Technical lr{eeds of the Bazaar System

The Bazaar System is Internet-based, and will require distributed transactional

applications and server-side technology. One way to meet this need is to use a multi-tier

model. Normally, thin-client multi-tier applications are hard to write because they

involve many Iines of intricate code to handle transactions, state management,

multithreading, resource pooling, and other complex low-level details.

In the competitive environment of the information economics, timing has always been a

critical factor to adopting new technologies. Organizations need to quickly develop and

deploy customer applications. They need ways to simply and efficiently integrate these

applications with existing enterprise information system and to scale them effortlessly to

meet changing demands [Kas2000]. Using the J2EE technologies [Kas20001, the Bazaar

System can meet these goals.

The J2EE is a standard set of Java technologies that streamline the development,

deployment, and management of enterprise applications. The J2EE platform offers

additional benefits, including [Kas2000]:

¡ It provides a simplified architecture and development model;

o It is easier scaled to meet demand variations;

. It is easy to integrate with existing information systems;

¡ It offers a wide choice of servers and tools, and many components are available;

. It provides a flexible security model.

The server side technology of J2EE uses Enterprise JavaBeans* (EJB) technology. EJBs

have maintained unprecedented momentum among platform providers and enterprise

development teams. EJB servers reduce the complexity of developing middleware by

providing automatic support for middleware services such as transactions, security, and

database connectivity. With EJB technology, distributed transactional applications

become easier to write because EJBs separate the low-level details from the business

logic. Thus, developers concentrate on creating the best business solution and leave the

rest to the underlying architecture. We will discuss EJBs in detail in Section 2.2.2.

2.2.1 Three-tierArchitectureModel

A three-tier architecture divides an application into three parts that may run on different

types of computers: clients, applications servers, and data sources. The client handles the

processing of personal productivity applications. Application servers process business

applications such as ordering and searching, while the data is contained in a database

configuration. The three-tier architecture is decomposed as follows:

o Client Tier:

The user component displays information and processes graphics, handles

communications, keyboard input and local applications. These provide maximum

portability across different computer platforms and operating systems.

. Application Service Tier:

The application service tier provides a set of sharable, multitasking components that

interact with clients, peer services and the data source tier. In the Bazaar System, this tier

will be responsible for enforcing business policies, keeping peer services informed of
changes and notifying users of important events. It provides a controlled view to the

underlying data source.

. Data Source Tier:

The data source tier consists of all the databases contained in the system. The three-

tier approach enables system administrators to separate the business logic from

t0

processing logic. This modularity allows business changes to be incorporated more

rapidly into applications. New software modules and program objects can be written to

work with existing databases, taking advantage of the resident programming logic rather

than requiring an entirely new application to be written.

There are three tiers in the web-based Bazaar System, the thin-client servlet (a client

program that invokes business logic running on the server), the EJB server (the

application server), and the database server. Figure 2.1 illustrates this architecture.

Figure 2.1 High-level Architectu re of Bazaar System

2.2.2 Enterprise JavaBeansrM

An Enterprise Bean is a simple class that provides two types of methods: business logic

and lifecycle. A client program calls the business logic methods to interact with the data

held on the server. A container calls the lifecycle methods to manage the Bean on the

server. In addition to these two types of methods, an Enterprise Bean has an associated

configuration file, called a deployment descriptor, which is used to configure the Bean at

deployment time. A container is an entity that provides life cycle management, security,

deployment, and runtime services to components. Each type of container also provides

component-specific services [Kas2000].

Besides the creation and deletion of Beans, the EJB server also manages transactions,

concurrency, security and data persistence. The connections between the client and

server, are provided by using the RMI (Remote Method Invocation) and the JNDI (Java

Naming and Directory Interface) APIs, and servers can optionally provide scalability

through thread management and caching.

1l

Thin-Client
Servlet

Enterprise
Java Beans

Server

Entity Beans and Session Beans are two types of enterprise Beans. The former

implements a business entity while the later implements a business task. Typically, an

entity Bean represents one row of persistent data stored in a database table. Entity Beans

are transactional and long-lived. As long as the data exists, the entity Bean can access and

update that data. This does not mean you need a Bean running for every tuple. Instead,

Enterprise Beans are loaded and saved as needed. A session Bean might execute database

reads and writes, but it is not required. A session Bean might invoke the JDBC calls itself
or it might use an entity Bean to make the call, in which case the session Bean is a client

to the entity Bean. A session Bean's fields contain the state of the conversation and are

transient. If the server or client crashes, the session Bean is gone. A session Bean is often

used with one or more entity Beans and for complex operations on the data [Kas2000].

2.3 Design Issues in the Bazaar System

A developer is often faced with the difficult choice of selecting one technology among

competing technologies. In this situation, it is important to examine the technologies

thoroughly to identify their areas of strengths and weaknesses. In developing the Bazaar

System, one such difficult choice is whether to use COM+ or EJB.

2.3.1 COM+ or EJB

COM+ and EJB are the two leading contenders to control the middle tier. Both provide

critical support for the business logic that runs today's highly scalable e-commerce

systems. COM+ and EJB can be described as Component Oriented Middleware

(coMWare). Such coMWare is needed for the Bazaar Sysrem [ses2000].

The two most important differentiating points between EJB and COM+ are programming

language restrictions, and portability versus performance. Today, the languages of choice

for COM+ and EJB are Visual Basic and Java, respectively. If one selects EJB one must

implement the system in Java, otherwise one can use Visual Basic if the choice is COM+.

12

The other important difference between COM+ and EJB is the choice between portability

and performance and, indirectly, the choice between portability and cost. COM+

emphasizes performance while EJB emphasizes portability, and performance is basically

the reciprocal of cost. While these two approaches are irreconcilable, each offers distinct

advantages. With the portability (EJB) approach, one can develop systems that run on a

range of operating systems. The performance (COM+) approach allows one to

dramatically reduce overall system cost.

For the Bazaar System, EJBs are the better solution. TheBazaar System is intended to be

platform independent, so it can be run on any operating system. Thus, the Java language

and EJBs are selected for implementation of the Bazaar System.

2.3.2 Why use Entity Beans to Access Databases?

In most examples of applying J2EE system, Entity Beans are used to access databases

directly. Session Beans and other objects need to call Entity Beans to access the

databases. The benefit of using Entity Beans to hold data is to maintain consistency of
data in the Bazaar System. However, the drawback is that it is time consuming. In some

cases, we can use session Bean to access the databases directly.

Occasionally, a distributed application will need to update multiple server objects

simultaneously. But updating alarge number of server objects one at a time can be very

expensive, with each update requiring one or more remote method invocations. In the

case of a client program accessing Entity beans, for example, the client acquires a list of
primary keys from an EJB finder method, and then individually updates the enterprise

beans through those Beans' remote interface. Unfortunately, the server has to create and

perform transaction management for each of these instances, resulting in unacceptable

overhead. One solution to this problem is to use the Batch Session Bean pattern, which

encapsulates the transaction to be performed on multiple server objects into a server-side

stateless session bean. This object receives a collection of objects to be used as

parameters for updating the collection of Entity beans [Kas2000].

13

2.4 Formal Methods

The Bazaar System is a web-based, distributed system. The design of the Bazaar System

is very complex because it involves several areas and many different techniques. Using

formal methods to develop the Bazaar System can help to avoid ambiguities,

incompleteness, inconsistency, and keep cost down. Using formal methods provides a

good solution for the fundamental issues in the Bazaar System design. Formal methods

ensure quality and hence increase reliability of the Bazaar System.

The strength of formal methods is that they can be used to deduce properties of a system

and reason about the consistency of a design. The benefits of adapting formal techniques

include lo-Zl997l: "improve the correctness of the description, reduce ambiguities and

inconsistencies, and increase the readability of the description". The architecture of the

metamodel is validated by a complementary technique.

A formal specification is a minimal description of a system in a mathematical notation,

usually based on algebra or a calculus. For example, Z is a calculus based on set theory

and first order predicate calculus, and is usually not executable [Kre1997]. Formal

specifications are precise, clear, unambiguous, provable, and one can reason in formal

specifications to produce inference. Formal specifications should be used for safety

critical systems, security systems, the definition of standards, transaction processing

systems. Generally, formal specifications should be used for anything that is hard,

complex, or critical [Krel997]. "Although the Bazaar System is not a safety critical

system, it requires that the operations it performs be correct and that only authorized

users can access critical components of this system because any error or uncontrolled

access could lead to huge financial losses. In this respect, formal methods act as a quality

assurance mechanism for enforcing the correctness and security requirements of the

Bazaar System" [Ehi200l]. Object-oriented formal specifìcations can be understood at

two conceptual levels, they can be viewed as a black box, whose observable properties

are described by the entire specification, and as a white box containing objects whose

individualproperties are described by the class of the specification to which they belong.

14

2.4.1 The Unified Modeling Language

UML (Unified Modeling Language) is a standard notation for objected-oriented

modeling. UML is a semi-formal language, and it helps users to develop software

iteratively and visually model software. UML will be used in modeling, requirements

management, analysis and design of the Bazaar System. UML saves a lot of time in
developing a big, complex system as the Bazaar System. UML help to generate a clear

document, therefore shorten the design phase.

The Unified Modeling Language (UML) is a language for modeling information systems

and software artifacts. UML can be used to visualize, specify, construct, and document

knowledge about software-intensive systems and their purpose at an abstract level. UML
was accepted as a standard object-oriented modeling language by the OMG (Object

Management Group) in 1997, and is becoming the dominant modeling language in the

industry IUMLl999].

In addition to its specific use as core of the analysis and design model, UML's breadth

and high level of abstraction makes it an excellent base model from which other models

and submodels can inherit. The syntax and semantics of notations provided in UML are

defined in terms of its metamodel. In the metamodel, there are three distinct views:

abstract syntax in UML class diagrams, static semantics (ensuring that all UML
constructs are statically well formed) and dynamic semantics (specifying the meaning of
the constructs). UML covers such concepts as types, classes, components, packages,

diagrams, methods, operations, relationships, attributes, and constraints.

In UML notation, icons, 2-d symbols, paths and strings are used as graphical constructs.

Additional diagram elements include mappings, names, labels, keywords, expressions

and notes. The element properties, in a general sense, mean any value attached to a model

element, including attributes, associations, and tagged values.

In this thesis, four UML diagrarns will be used:

. Use case diagrams which are used to capture requirements;

15

Collaboration diagrams which show, in a spatial view, how objects collaborate to

perform use cases;

Class diagrams representing the system structure; and

State diagrams that describe the local behavior of classes.

Use cases help in specifuing the functionality of the system. They also require the analyst

to think about and define what actors are using the system. This information is used to

construct the system context diagram that gives a structural overview of the system's

environment.

2.4.2 Object-Z

Object-Z will be used for the formal specification of the Bazaar System. The use of
Object-Z enables system designers and programmers to create, understand and maintain

specifications of complex interfaces and their interaction. It gives practitioners a better

understanding of the design process and fosters the usefulness of formal methods.

Object-Z is an object-oriented formal specification language. Object-Z is an extension of
Z which facilitates specification in an object-oriented style. The major extension in
Obiect-Z is the class schema, which captures the object-oriented concept of a class by

encapsulating a single state schema, and its associated initial state schema, with all the

operation schemas which may change its variables. Classes may be incrementally

specified using Object-Z's notion of inheritance, which enables definitions from one class

to be included in another via inheritance, and this feature significantly improves the

clarity of large specifications [0-21997]. Object-Z has been applied to a range of case

studies including a mobile phone system, communication protocols, a buttons console

and the denotation semantics of programming languages fste1992].

The main features of Object-Z include class and inheritance [Rosl992]. Classes in
Object-Z are the major modeling construct for specifying a system. A class has a common

state structure and operations for describing an object. The state is composed of

t6

attributes. Syntactically, a class in Object-Z is a named box composed of a visibility list,

type and constant definitions, a state schema, an initial schema and operation schemas.

Using inheritance, classes in Object-Z can be used to define other classes. A class can

inherit from one or several classes. The types and constant definitions of the inherited

classes and those declared in the derived class are merged. Operations with the same

name are conjoined, and operations can be renamed. Classes can be instantiated in other

classes as attributes.

In Object-2, instantiation is used as a mechanism for modeling relationships between

objects, which in UML is modeled using association. Objects which instantiate other

classes as their attributes can referto the objects of the instantiated classes. The values of
these attributes are object-identities ofthe referenced objects.

A system specified using an Object-Z consists of a collection of objects. The objects

collectively denote some system state. A class defines the types of state variables and

behavior of constituent objects. An object's value is the underlying value of that object at

some point in its evolution. This comprises the value of the object's state, togetherwith a

list of operations that are enabled for this value of the object's state.

t7

CHAPTER 3

REQUIREMENTS ANALYSIS

This chapter describes the requirements of the Bazaæ System using formal methodology.

UML diagrams are used to specify the requirements of the Bazaar System and, Object-Z

is used for the specification of the requirements.

3.1. Identification and Limitations

The Bazaar System is a complex system. It is necessary to make some limitations to

implement the system within the constraints of a Master of Science thesis. The following

assumptions and defînitions are made:

o I user is a person who can access the Bazaar System, including Owners, Consumers

(individual), Wholesale Buyers, Suppliers, and System Managers.

o Each user has a unique identifier.

o The manager of the Bazaar system assigns the rights for each type of users.

o The type of a user determines the access level of the user.

o The owner of a store specifies the rights and limits for a user to access the

information of that store.

For each kind of user, the rights and limits are as follows:

Owners:

Owners are agents or agencies who own stores that are accessible via the Bazaar

System. They have the highest priority (access right) level in the bazaar system. All
information about the stores is accessible to the owner. They can communicate with any

other user directly through thebazaar system. They have the right to indicate what type of
activity is displayed to other users within the bazaar. Each owner has the right to modify

information about their own store (e.g., inventory of products, product policy, etc.).

r8

C o ns umers (indiv id uals) :

Consumers buy goods or services from the bazaar system. They can see related

information on some kinds of goods or services, place an order; give suggestions, etc.

They must be able to initiate transactions and provide details of transactions such as

credit vs. cash, amount to be paid, etc.

llholesale buyers:

Wholesale buyers are specialized consumers that must be able to buy quantities in

bulk (large amounts). Wholesale buyers must declare themselves as wholesale buyers at

the time of purchase. A consumer who buys a large quantity of products is not considered

as a wholesale buyer unless helshe is registered with the bazaar. Registering as a
wholesale buyer enables the wholesale buyer to get any special offers, discounts or

privileged reductions that are generally not available for all consumers.

Suppliers:

Suppliers are allowed to see information of the stores to which they supply goods.

They give an offer or quotation when there is a competitor's product.

System manøger:

The System manager creates and assigns privileges to other users who access

bazaat. He creates the products and services information, and is also responsible

maintaining the system. All the information in the system is accessible to him.

3.2. IJse Case Analysis of the Bazaar System

The Bazaat System can support many operations. Each operation is related to a use case.

The use case relationships between users and functions are illustrated in Figure 3.i.

Before a user can perform any function in Figure 3.1, he must login into the Bazaar

System. The login operation is illustrated in Figure 3.2.

the

for

l9

vt

Figure 3.1 Use Case Diagram of theBazaar System

SignlnScreen

Registration

Validation

OwnerMenu

Pay for Purchase

/\
1 SupplierMenu ì\.'_ _/

Figure 3.2 Activity Diagram for Login System

20

There are eight use cases for owners, including Search, Modify (access rights, inventory,

store information), Communication (with wholesale buyers, suppliers, employees),

Watch (competitors), Report (monthly income, daily income, products in store), Order
(give order to suppliers), Bidding (with supplier), and pay for purchase (to supplier).

There are six use cases for consumers (individual) and one extra function for wholesale

buyers, including Search, Watch (for sale), Order (give order to suppliers), Bidding
(for wholesale buyers only), Return (products), and pay for purchase (to supplier).

There are six use cases for suppliers, including Search, Offer (give offers to store

owners), Modiff (product list, price), Bidding, Report, and communication

In the following discussions, each case shown in Figure 3.1 is explained in detail so that a

proper understanding of the operations involved in the use cases should become clear.

Cøse 1: Search

Every user can search for information in the Bazaar System that is accessible to

thern. The Bazaar System responds to search requests according to the type of users and

the searched source. Figure 3.3. describes the search case in detail. The search case

provides the following functions for a user in the system:

search stores by Store name, manager name, products and prices.

search Products or services by name, supplier, store name(s), and selling prices.

search People (employee, owner, manager, wholesale buyer) by title, address, and

contact.

Search Suppliers by supplier name, supplied products (or service), and contact.

Case 2: Order Products or Services

When receiving an order from a user, who is a consumer or a storeowner, the system

creates anorderinstance, and asetofinstancesoforderlines. Theprocessing includes

21

Ç
i

User

Search Key Words

Figure 3.3 Collaboration Diagram for Search
Pasdve

validation checks to determine whether the customer is known or new and the

composition of order lines. After an order is created, the order details, including product

id and description, supplier name and store name, etc. can not be changed. The customer

details (e.g., address) may be changed at any time, and the product quantity can be

changed too. If an order has no order lines that can be met (that is, all store entries are

zero), the order is required to be returned to the customer with some suitable covering

note and the order instance is deleted. The details of the order case are described in

Figure 3.4.

Fill in Order Form tu*.lnt"rf"*¡ Order Products
¡>

Results&Confirm
lnwntory\

ç
I

User

tõ¡r"ord";¡*l_-- -r
o*

\Checkt

c_)
-!-I

^Seller

\
Notiñ7 \

Passr'ye

Figure 3.4 collaboration Diagram for order products or services

Passive

22

Case 3: Paying for Purchases

After an order is accepted, the buyer can select payment of amount one or more

times. The buyer fills out a form including Order ID, paying amount, credit number, etc.

The system creates/modifies buyer's related information. The seller will check the

buyer's account and send back the balance of his/her account to the buyer. The system

will then modify the status of the order and send all the necessary information to the

related seller. The details of paying forpurchases case are described in Figure 3.5.

T:g$-[e""t*-""""' Payment Command tP"y-""{
AuthorizedPas'ye

\"-:
O

---- l-
Seller

ie"y".4"";.r.* Ir__ _.]
Pas-ve

-?-
Fill in PaY-¡

,,\
euyer \

\
Notiñ/ \

luse.4"""""t|t_l
Pas've

Figure 3.5 Collaboration Diagram for pay for purchases

Case 4: Offer of Products or Services

When receiving an offer from a supplier, the system creates an offer instance and

sends the offer information to the store managers involved. If a store manager accepts the

offer, the system creates a set of instances of offer line for the store manager. As with an

order, most details can not be changed after an offer line is created, but the shipping

address and the quantity can be changed at any time. The processing includes validation

checks to determine whether the product is stored in the system or is new. If the product

is new, the system manager must add the product first before the offer is created. The

details of the offer of products or services case are described in Figure 3.6.

Case 5: Bidding

A buyer (a wholesale buyer or an owner) can execute a Bidding function. The buyer

completes a bidding form (including user id, item id, quantity, and offering price), the

system checks the user's preference and the policy of the product. If the bid is acceptable,

the system will send the information to the buyer immediately and request the buyer to

23

Fill in Offer Form *_F-þd.t"'r"; l
[_:]

\,"ø

Pasg-ye

Offer k Product lnfo.

Check Product Info. ProductEntry:

Mail Otrel
L

Passive

Fill in Bidding Form

Results&Confirm

Notiñ7

Active

Figure 3.7 Collaboration Diagram for Bidding
Pasdve

Otrer lnfo

sg ve

I Pt"dr;t E.tt''l
[____]

Passr've

Cøse 6: Modify Information

Owners and suppliers in the Bazaar System have the rights to modify relevant

information in the System. Owners of stores can modify the prices, product list, and

inventory of the products/services in their stores, and can also modify user access rights

relevant to their stores. Suppliers can modify their product prices and product list. The

details of modify information case are described in Figure 3.g.

I
L-

Pa

Figure 3.6 Collaboration Diagram for Offer Products or Services

fill in an order form. If the bidg could not be decided by the system, it will be sent to the

store manager and the system requests the user to wait. The system will send the seller's

decision to the user. The details of bidding case are described in Figure 3.7.

Ç-l--
Buyer

C)1_
I

Seller

24

c)
-1---
User

Modiñ/ Command Userlnterface:

\
D"t"B;;¡

I

Figure 3.8 Collaboration Diagram for Modify
f-_-l

Pas-ve

Case 7: Return Products

A user (a wholesale buyer, or a storeowner) can select thereturn function. The user

fills in a form providing returned products information (including product name, data,

quantity, price, order ID.). The system checks if the return is valid. If valid, a

confirmation is sent to the user and to the related seller and the product inventory is

modified. If not, the system informs the user that the return is not acceptable and provides

an explanation. A policy (as well as other constraints) section needs to be developed,

which indicates how long after purchase a buyer can return a product. The details of
return product case are described in Figure 3.9.

Ç Fitt in Return Form I u*r1"t".f""",
L>ir

Return lnfo. I R"t.,." P."d,r"t= I
,\ passye

û=.r' \
Þesults&confirm Return

k Rights

Pasgye

Passive

--l- -,\
Seller Passive

Authorized

Results

\active \
\ c\eck History

Buyinb Record\\t
OrderLine:

Pasr'ye

Figure 3.9 Collaboration Diagram for Return Products or Services

Cose 8= Communication

A user in the system can communicate with another user by sending email. For

example' a consumer can give suggestions or send requests to store owners or suppliers.

Also, a store manager can send product information to consumers, send requests to

suppliers, and send suggestions to the system manager of the Bazaar System. Similarly, a

SystemAdmin:

25

supplier can give supplied product to store managers, and send suggestions to the system

manager. The details of communication case are described in Figure 3.10.

t,
I

onsumer

TL
| î""'"

Extends)

|

I
O

I

,\
Supplier

[Communlælion]

System Manager

Give Suggestlon:

3.10 Collaboration Diagram for Communication

Cøse 9: Watch

Owners can watch competitors through the system and consumers can watch for

sales. The system collects and organizes the competitors' information for each

storeowner, including the price and sale policy of the same product from other stores, and

the supplier list for a designate product. The details of the watch case are described in

Figure 3.1 1. << Notat¡on >>

Find products on sale
including price, store
name, policy etc.

(_) Consumer
I

@
Passive -_-----x

---lExte!lL-

ìt --l *;,.* fqu're!el-J_y-1.''E i

./ \ -l- --''---:]u="ì
-'--;;;t

{ lnclude} Pass''Ye

Q
I

\1

: Watch Competitors: Ò

-

--r1
iO

Extencl\ -_l-
I

I

Owner

Figure 3.11 Collaboration Diagram for Watch

<< Mail Geneßtor>>

26

3.3. Specification of the Requirements

In this section, we describe the requirements of the Bazaar System using the formal

specification language, Object-Z, and provide a simple relationship in UML to

demonstrate the Object-Z state space of each object. Recall (see Section 2.4.2) that

Object-Z is an extension of theZ language. A Z specification defines a number of state

schemas, and inferring which operations may affect a particular state schema requires

examining the signatures of every operation. In contrast, Object-Z associates individual

operations with one state, and facilitates specification in an object-oriented style.

There are several kinds of tables in the Bazaar System, and each table has an identified

name. Thebazaar system is required to maintain a database of these tables. The following
basic types are used in the specification:

fUserid, Userlnfo, Id, OrderE, OrderLineE, Double, Stringl

Userid is used to identify a user. Id can be an item id, an order id, or an orderline id.

Userlnfo includes user name, contact, credit card, and other information. OrderE is used

to hold information for an order, while OrderLineE is used to hold an orderline,s

information. Double and String represent the usual data types for real and string

quantities respectively.

The system performs some operations according to the needs of different kinds of users.

All users must 'enter the system' first, then do some operations, and finally ,exit the

system'. Before a user becomes an identified user, he/she must execute the 'registration,

operation except a general consumer who only browses the system for information. So,

the first component of the system is the Log subsystem.

3.3.1 The Login Subsystem

A login subsystem maintains a set of accounts, one for each user of the system. Each

account consists of user id, password, and user information. The 'id's of users must be

unique in the system. There are several key operations in the system, such as, 'access an

account', 'delete an account', 'change password', and 'change user type'.

21

Every user has an account, including user id, password and other user information.

Account = [userid : Userid, passud : String, info : userlnfo]

We assume every user has a unique user id. If two accounts have the same id, the two accounts

are identical. The state space is described by the following schema.

LogSys

users : P Account

V u1,u2: Account I uI e users A u2 €. users o

uT.userid : u2.userid e uI: u2

The state invariant of Log,Sys asserts that if two accounts have the same user id, then the two

accounts are identical.

There are two classes in the login subsystem, logsy s and. (JserAccoutxt. The specification

of an operation requirement is given in the following format:

[Name] ([input parameter(s)]) [outputparameter(s)]
Precondit'ion
Postcondition

An operation can have one or many input parameter(s) and output parameter(s). Sometimes,

it has no input or output at all (i.e., the input parameters and output parameters are optional).

Each operation requirement is described by two assertions - the precondition and the post-

condition' Alagar and Periyasamy [41a1998] provide the definitions of these two assertions.

The precondition for a requirement asserts what must be true before any function or operation

implementing the requirement is invoked. The postcondition assefts what must be true after

the function or operation that implements the requirement terminates.

28

The LogSys Class:

There are three operations inthe LogSys class: login, logout, and change password.

logln (u: Userid, p: String)

Precondition :

No other user in the system has the same user id as the user with user id (u) in the active

accounts (active) and the user's password exists in the system.

Postcondition

The state space of active users is modified to include the new account, and the status of the

user is set to active.

logout (u: Userid)

Precondition

The user in the system has the same user id as the user with user id (a) in the active accounts

(active) and the user's password exists in the system.

Postcondition

Remove the user with user id (u) from the active accounts.

changePassword (oldPasswd, newpasswd, confirmpasswd: string)

Precondition

The user with oldPasswd exists in the system, and is in the active accounts.

Postcondition

The user's password (whose name matches the input) has been changed to the new password

supplied as input (newPasswd).

The formal specification of the class zogsys is shown in Figure 3.r2-a.

29

LogSys

| (to g In, Io g Out, chang eP as sw ord.)

userzd : Userid;
passwd : String;
act'iue : P Useri,d

logln
L(actiue)
u? : Userid;
p? : Stri,ng

u? / acti,ue

passud : p?
ytasswd' : po,sswd,

actiuet : actiueU {u7}

logOut
L(acti,ue)
u? : Userid

u? € act'iue
passwd - passwd
actiuet:actiue\{"?}

changePassword
L(passwd)
oldP asswd?, newP asswdT, confi,rmP asswd?

passwd : oldPasswd?
newP asswd? : conrtrmP asswd?
passwd' : newPasswd?

Figure 3.12-a Formal Specification of LogSys

The UserAccount Class:

The UserAccount class has four methods. These are to 'add an account', 'delete an account,,

'change a user's information', and 'get a user's information,.

I¡'trc

addAc count (a: Ac c ount)

Precondition

No other user in the System has the same userid as the specified user (a.userid).

Postcondition

The user's account is added to the accounts set (i.e., ensures that the set of accounts in the

system is modified to include the new account).

D eleteAccount (userid: U serid)

Precondition

The account with the specified userid exists in the system.

Postcondition

The account whose userid matches the input (userid) is deleted from the system.

c Inn g e U s erlnfo (u s e rid : IJ s e rid, us e rlnfo : U s e r Info)

Precondition

The user with the specified userid exists in the system.

Postcondition

The user's information in the account is changed to the new information (userlnfo).

GetDetails (userid: U serid)

Precondition

The user with the specified userid exists in the system.

Postcondition

The user's information is returned as the output.

Figure 3.r2-b shows the formal specification of the class userAccount

31

UserAccount

| (a dd A cco unt, d elete A ccount, chang e U s er Inf o, g et D et ail s)

account : Account;
accounts :P Account;
userzd : Userid;
info : Userlnfo

accounts : Ø

addAccount
A,(accounts)
acc? : Account

acc? / accounts
accounts' : accounts U {acc?}

deleteAccount
A,(accounts)
acc? : Account

acc? e accounts
accountst : accounts \ {øcc?}

changeUserlnfo
L,(account)
user? : Userid;
info? : Userlryfo

laccount: Accountl account € accounts A account.userid,: user? o
account.info : i,nÍo?

account' : o,ccount

getDetai,ls
user? : Userid;
resultt : Userlnfo

f a: Account | ø e accounts A a.userid: user? o
resultt : a.'info

Figure 3.12-b Formal Specification of UserAccount

32

3.3.2 The Order subsystem

Users place order that will be processed by the system. When receiving an order from a user,

the system creates an order instance, and a set of instances of order line. This processing

includes validation checks to determine whether the customer exists or is new and on the com-

position of order lines.

After an order is created, the order details, inctuding product id and description, supplier name

and store name, etc, can not be changed. However, as before, the customer details, especially

the address, may be changed at any time, and the quantity of each product can be changed

too. An order instance is processed by processing each of its order lines. The details of the

processing are not included here, but involve checking that at least some of the order lines can

be met and that an order line is not for the same product as another order line on the same

order. If an order has no order lines that can be met (that is, all store entries are zero), the order

is returned to the user with a suitable message and the order instance is deleted.

The order subsytem has only one class, OrderSys. The OrderSys class contains two inter-

nal classes: Order and Orderline (Figure 3.13-a). The operations of the class, c¡eate order,

add order line, update order, remove order, and get o¡der details, are specified in Figure 3.13-b.

Order
oid: Id;
orderE : OrderU

OrderLine
oli,d : Id;
orderLi,neE : OrderLineU

Figure 3.13-a The Internal classes and Relationship to ordersys

33

OrderSys

| (cr e at e O r d er, a d" d" O r d er L in e, d, el et e O r d. er L,in e, up d, at e O r d, er,
r emo u e O rd er, g et D et ails)

user : Useri,d;
oid : Id;
oli.d : Id;
order: Order;
orders : P Order;
orderLine : OrderLzne;
orderL'ines : P OrderLi,ne;
isMadeBy : Id <-> Userid

createOrder
L,(orders, order Lznes)
order? : Order;
orderLi,ne? : OrderL,ine;
user? : Usertd;
otidl : Id;
oidt: Id

order? / orders
orders' : ordersU {order?}
orderLine? / orderLines
orderLines' : orderLines lJ {orderLine?}
i,sMadeBy' : 'isMadeBy U {oidl ¡--+ user?}

addOrderLi,ne
L,(orderLines)
oi,d? : Id;
orderLine? : OrderL'ine:
oli,d!: Id

fo: orderl o € orders A o.ozd: oid? o

orderLine? / orderLines
orderLinest : orderL,ines l) {orderLi,ne?}
order' : order
isMadeBy' : isMadegA

I¡rlrc

deleteOrderL'ine
A,(orderLi,nes)
olid? : Id

) orderL: OrderLine I orderL € orderLtnes A ord"erL.olid : olid,? o
orderL,inest : orderLines \ {orderL}

updateOrder
L(order)
order? : Order;
oidt : Id

order?
order'

orders
order?

remoueOrder
L(orders)
oid? : Id;
user? : Usertd

lorder: Order I order e orders A order.oid.: oid,? o
orders' : orders\ {order}

i,sMadeBy' : 'isMadeBy \ {oid? ,-- user?}

getDetails
oid? : Id;
resultl : OrderE

lorder: Order I order € orders A order.oid.:
result! : order.orderU

o'id? c

Figure 3.13-b The Specification of OrderSys

Data Modeling:

In high level Object-Z presentation, the data modeling entities that make up the state are mod-

eled as functions from some unique identifiers to the instance. In the order subsystem, for
example, we considered three entities: user entity (UserInfo), order entity(Ordery), and or-

derline entity(OrderLineE). These three entities have been defined as basic types already (see

Section 3.3).

35

Schema of User:

The user entity (Userlnfo) is independent of other entiries.

schema, mapping user identifi ers (Userid) to user instances.

We model it by using simple

UserBaselUserlnf ol
Userid --- UserlnÍo

Order Schema:

An order must have some order lines; an order line must be related to one order. The order

and order line entities are, therefore, dependent, and the relation ship isPartOf exists between

them.

Ord er B a s elO rd er, O rder L in e]

order . ¿ofl _+++ Order
orderLi,ne: olid --r'- OrderLi,ne
i,sPartOf : oli,dd <-+ oid

'isPartOf € (dom OrderLi,ne)---+ (dom Order)

Order System

An order line is related to an order instance; each

order line. The full system state includes these two

relationship between them.

order instance is related to at least one

substate components, and the isMadeVy

OrderSy stemlUs er, Order, OrderLi,
UserBase[User]
O rd er B as e[O rd er, Ord er L i,n e]

isMadeBy : o'id <-+ user

isMadeBy € (dom OrderLine) -+ (dom Order)

Analysis of Operations in the Order system:

The events that affect the Order system are the receipt and deletion of orders, and the creation,

modification and deletion of users. Having specified the state as independent substates, it is
userful to define schemas for updating these substates. When we update on the user substates,

we do not change the isMadeBy relation; when we update the order part, we may change this

36

relationship. The change can be described as:

LUserBaselUse
L OrderSy s[U s er, Order, OrderLine]
E O rder B as elOr d er, O rd er L in e]

'isMadeBy' : i,sMadeBy

Another operation that can be used to change the details of entity instances is to change an

order entity or change an order line entity. Since the two entities are related, such an operation

needs to change the two related instances of the two entities at the same time. The order's

relationship does not change.

3.3.3 The Offer subsystem

A user (usually a supplier) provides an offer to supply a product or service, which will be

processed by the system. The system receives events to create, modify and delete elements of
tables in the database in response to processing an order. After an offer is created, the offer de-

tails, including product id and description, supplier name, and store name, can not be changed.

However, it is possible to change the offer details, especially the price, at any time, and the

number of the offer items can be changed too.

The offer subsystem has only one class, OfferSys. The OfferSys class contains an internal

class offer. Figure 3 .r4-a shows the offer subclass and relationship to offerSys.

Offer

buyer : String;
seller : String;
item: Id;
price : Double

Figure 3.14-a The Offer and its Relationship to OfferSys

JI

Figure 3.14-b describes the specification of the OfferSys class. There are four operations in

OfferSys class, create an offer, update offer price, remove an offer, and get the offer's details.

OfferSys

| (creat e O ff er, up d at e O ff er P ri ce, rem o u e O fr er, g et D et ails)

oi,d : Id;
items : P Id;
offer : Offer;
offers : P Offer

createOffer
A,(offers)
offer? : Offer;
item? : Id;
oidt : Id

offer? / offers
ztem? € ,items

offers' : offers U {offer?}
oi,d! : offer?.oi,d

updateOfferPri,ce
A,(offer)
price? : Doub\e;
oid? : Id

1offer: Offer I offer € offers A offer.oid: oid,? o
offer.price: price?
offer' : offer

remoueOffer
L(offers)
oi.d? : Id
-offer: Offer I offer e offers A offer.oid,: o,id,? o

offers' : offers\ {offer}

Iwrc

getDetails
oi,d? : Id;
resultt : Offer

- offer : Offer I offer
resultl: oft'er

€ offers A offer.oid : oid? c

Figure 3.14-b Formal Specification of OfferSys

3.3.4 The Supplier subsystem

The supplier subsystem manages supplier information, such as, supplier address and supplier's

policy, in the Bazaar System.

The supplier subsystem has only one class, SupplierSys. The SupplierSys class contains an

internal class supplier. Figure3.l5-adescribes the class supplier.

Figure 3.15-a The Supplier and Relationship to SupplierSys

The Supplier.Sys class has several operations such as: create

address, delete a supplier, and get a supplier's details. The

system is described in Figure 3.15-b.

a supplier, change policy, change

specification of the supplier sub-

39

Suppli,erSys

| (createsupplier , changePoli,cy , changeAd,d.ress , remouesupplier, getDetails)

supplier : Supplier;
suppliers : P Supplier

createSuppl'ier
A,(suppliers)
supplier? : Supplzer;
id!: Id

supplier? / suppliers
suppl'iers' : suppliers U {supplier?}
idt : supplier? .id

changePolicy
L(supplier)
policy? : String;
id? : Id

) suppli,er : Supplier I supplier € suppliers A suppli,er.i,d, : id,? o
supplier.pol'icy : poli,cy?
supplier' : supplier

changeAddress
A,(supplier)
add? : Add;
i,d? : Id
-supplier: Supplier I supplier € suppliers A suppli,er.i,d,: i,d,? o

supplier. address : ad,d,?

suppLier' : supplier

remoueSupplier
L(suppli,ers)
id? : Id

1 supplier : Supplier I supplier e suppliers A supplier.id, : id,? o
suppliers' : suppl,iers \ {supplier}

getDetails
id? : Id;
result! : Supplier

lsuppli,er: Suppl,ier I suppli,er e supplzers A suppLi,er.id,: id,? o
resultl : suppluer

Figure 3.15-b Formal Specification of SupplierSys

3.3.5 The Store Subsystem

The store subsystem is used to manage store information, such as store name, managers,

address, and policy in the Bazaar System. The store subsystem consists of only one class,

StoreSys. The StoreSys class contains an internal class, store. Figure 3.I6-a shows the Store

class and its relationship to StoreSys.

Store

Tnanager : String;
nan'Le : Stri,ng;
address: Add;
policy : String

Figure 3.16-a The Store and Relationship to StoreSys

The store subsystem provides several operations including: create a store, change policy,

change address, delete a store, and get a store's details. Figure 3.16-b describes the speci-

fication of the store subsystem.

StoreSys

| (createstore, changePolicy , changeAd"d,ress , remouestore, getD etai,ls)

si,d : Id;
store: Store;
stores : P Store

[¡trc

createstore
L(stores)
store? : Store;
sidt : Irl

store? /. stores
stores' : storesU {store?}
sidl : store?.sid

changePol,icy
L(store)

lstore: Store I store e stores A store.sid: s,id? o
store.policy : policy?

store' : store

. changeAddress
L(store)
add? : Add;
sid? : kl
lstore: Store I store € stores A store.si,d: sid.? o

store.address: add?
store' : store

remoueStore
L(stores)
si,d? : Id

lstore: Storel store e stores A store.sid: s,id,? o
stores' : stores \ {súore}

getDetails
si,d? : Id;
result!: Store

lstore: Store I store e stores A store.si,d: sid,? o
resultl. : store

Figure 3.16-b Formal Specification of StoreSys

42

3.3.6 The Product subsystem

The product subsystem provides functionality to manage product information, such as product

category, product name, supplier and policy for dealing with returns. The product subsystem

consists of one class, the ProductSys class. It contains two internal classes, Category and

Product. Figure 3.I7-a shows the two internal clases: Category and. Prod.ucl and illustrates

their relationship to ProductSys.

Category
cid : Id;
narne : Stri,ng;
desn : String

Product
p'id, cat : Id;
suppli,er : Id;
nan'Le : Stri,ng;
desn : String

Figure 3.17'a The Internal classes of ProductSys and their Relationship

The formal specification of ProductSys is given in Figure 3.I7-b. There are seven operations in
the product subsystem. These operations are: create category, create product, change supplier,

change category, delete product, and get details of a product.

ProductSys

| (creat e C at, create P r o d,u ct, ch an g e S up p li er, chan g e C at,
d elete C at, d elet e P r o duct, g et D et ails)

i,d, : Id,;

cat: Category;
cats : P Category;
product: Product;
suppl'iers : P Supplier;
products : P Product

Iwn
cats : Ø
products : Ø

creo,teCo,t

L(cats)

cat? / cats
idt : cat?.ci,d
co,ts': catsU{cat?}

createProduct
L(products)
cid? : Id;

3 cat : Category I cat e cats A cat.ci,d : cid,? o
product? / products

productst : productsU {productT}
idt : product?.pi,d

deleteCat
L(cats)
id? : Id

l cat : Category I cat e cats A cat.c,id : id,? o
co,ts' : cats\{cat}

deleteProduct
A,(products)
id? : Id

l product : Product I product € products A prod,uct.pi,d, : id"? o
products' : products \ {product}

changeSupplier
L(product)
supi,d? : Id;
pid? : Id

)supplier: Suppli,er I supplier e suppliers A supplier.id.: supi,d,? o
(Sprodust : Product I produst e prod,ucts A prod,ust.p,i,fl,: pid,? o

produst. supplier : supi,d7)
product' : p)rod,uct

changeCat
L(product)
cati,d? : Id;
pi,d? : Id

1 cat : Category I cat € cats A cat.cid: catid? o

(-produst: Productl produst e products A prod"ust.pij,: pi,d,? o
produst.cat: catid?)

productt : prod,uct

getDetails

-product: Product I product e products A product.pid: zd,? o
(3 cat : CategorE I cat e cats A co,t.c,id: [)roduct.cat.

result! : product)

Figure 3.17-b Formal Specification of productSys

3.3.7 The Inventory subsystem

Item

product: Id;
store : Id;
price: Double;
cost : Double;
details : Strzng

Inuentory
i,d: Id;
item : Id;
qty : Int

and Relationship to Inventory and ltem

45

Figure 3.18-a The TWo Subclasses

The inventory subsystem is used to control and monitor the quantity of items in stores. There

are several items for each product. The same product for different stores has different item

ids. A buyer needs to provide item id, when an order for a product in the Bazaar System is

made. The inventory system consists of two classes, Itemsys and Invento,ry,tys. The two inter-

nal classes, Item and Inventory also exist in the inventory subsystem.

Figure 3.18-a shows the two internal classes. The ltemsys class has five operations namely,

create item, change price, change cost, delete items, and get details of an item. The formal

specification of ltemSys is given in Figure 3.18-b.

ItemSys

| (cr eat e It ern, chan g e P ri, ce, chan g e C o st, d, el ete It em, g et D et ails)

i,d, : Id,;

item: Item;
items : P Item;
products:P Product

Iwrc

createltem
L(items)
item? : Item;
id!: Id
item? / items
- p : Product I p € products A, p.pid : item? .procLuct o

itemst : items0 {item?}
idl : item?.i,d

changePri,ce
L(item)
pri,ceT : Double;
id? : Id

l item : Item I item € 'items
ttem.price: price?

'itemt : item

A item.id : id,? o

changeCost
L(i.tem)
cost? : Double;
i,d,? : Id,

litem: Itern
item.cost

item' : item

items A itern.id : 'id? o'itern e
,cost?

deleteltem
L(items)
id? : Id

1i,tem : Itern I itern e items A
'itemst : items \ {itern}

:id?c

getDetails
i,d? : Id;
resultl : Item,

l item : Item I ltem € i.terns

resultl : 'item

Figure 3.18-b Formal Specification of Itemsys

There are four operations provided by InventorySys class. The operations are create inventory,

change quantity, remove inventory, and get detail. Figure 3.18-c provides a formal specifica-

tion of InventorySys.

[nuentorySys

| (cr e at e I nu ent o ry, ch an g e Q u antity, r em o u e I nu ent o r y, g et Q u ant ity)

item: Item;
'items : P ltern;
'inuentory : Inuentory;
inuents : P Inuentory

I¡¡n

createlnuentorA
L,(inuents)
inuent? : Inuentory

l itern : Item I item € i,tems [, item.id : inuent? .,item o
inuentst : inuents U {inuent?}

changeQuantity
A,(inuentory)
qty? : Int;
id? : Id

l inuentory : Inuentory I inuentory Ç ,inuents A 'inuentory.id, : id"? c
inuentory.qty : qty?

remouelnuentory
A,(i,nuents)
id? : Id
- inuentorE : Inuentory I inuentory € ,inuents A inuentory.i,d, : zd,? o

inuentst :'inuents \ {inuentory}

getQuantity
i.d? : Id;
result! : Intu

-inuentory:
result! :

Inuentory I i,nuentory e inuents A ,inuentory.i,d, : i,d,? o
inuentory.qty

Figure 3.18-c Formal Specification of InventorySys

The Bazaat System thus consists of seven subsystems, namely: login, order, offer, supplier,

store, product, and inventory. The Bazaar system can be specified as follows:

Bazaar'lLogsys; ord,ersys; offersys; supptiersys; store; prod,uct; Inuentoryl

48

CHAPTER 4

THE SYSTEM DESIGN SPECIFICATION

Based on the requirements specification of the Bazaar System (see Chapter 3), a design

document will now be created. The architectural design is described in Section 4.1. A
formal, detailed design document for a subset of the Bazaar System and an example are

given in Section 4.2. The entire detailed design document is attached in Appendix A.

First we present the architectural design. UML component and class diagrams (Figures

4.2 - 4.13) are used to describe the architectural design. The return types of some

methods and the types of attributes are not specifìed in the architectural design. They are

left to the detailed design and implementation phases of the system development.

4.7 Architectural Design of theBazaar System

Figures 4'l and 4.2 gïve a general idea of the structure of the whole system. The two

figures are explained in Section 4.1.

Figure 4.1 The Bazaar System Architecture

Web Browser

Java Server Page/HTTP Form

Java-enabled Web Server
(Servlet)

Enterprise Java Beans
IEJBs)

System Manager

49

J;;";rT__ i

SystemAdmin

T

Figure 4.2 Components Diagram of theBazaar System

50

From a users'point of view, the Bazaar System is described in Figure 4.1. There are four

kinds of external users in the system. They are store owners, consumers, suppliers and the

system manager. These external users are web-based users, and they access the Bazaar

System via the Internet. The system manager is a special user, and may not access the

Bazaar System through the Internet.

The Bazaar System consists of complex objects and several basic objects. Each object is

related to a component on the server and can be implemented as an EJB. The

relationships between, and structure of, these objects are described in Figure 4.2. There

are fìve packages, Consumer, Storeowner, Supplier, websupport, Shoppingcart, and

SystemAdmin. Each package is related to one complex objects. The components in a
package are basic objects.

The Bazaar System is a three-tier application, which includes the server, client, and data

source tier. The basic objects in the package of the Consumer, StoreOwner and the

Supplier should be deployed to server. The complex objects of Consumer, StoreOwner,

and Supplier are also components at the server end. An object, such as the Account

object, can be deployed more than once. The components Utility, Mail, and ShoppingCart

are help tools, and they also need to be deployed to the server side. The client side

consists of two separate and independent systems, the Front-end system (Websupport)

and the Administrative system (SystemAdmin). The Front-end system is GUI for
common users, such as the users who want to order product through the Bazaar System

and the Administrative system is for the system manager to manage theBazaar System.

4.1.1 The Basic Objects of the System

A basic object is an object on the server side implemented using a single EJB. It can be

implemented as an EJB and deployed separately as a component to a JZEE container. In

addition, a basic object can be deployed with other basic objects to the server side as a

component to a J2EE container. For example, a Mail object is a basic object which is

deployed as a component separately to a J2EE container. The Account object is also a

51

basic object, but it is deployed three times with other objects to J2EE containers to form

three components on the server side (see Figure 4.2). Figures 4.3 - 4.8 show the class

diagrams of the basic objects in the Bazaar System. Each object contains an instance of
an EJB class, a Homelnterface class and a Remotelnterface class as well as other helper

classes (including model class, exception handler class, and help class, etc.). The

Homelnterface class is for the objects accessing the EJB at the server and the

Remotelnterface class support the objects accessing the EJB at client side. The

relationship between these classes is also described in the class diagrams.

Account: The Account object is implemented as an entity bean. Figure 4.3 shows the

class diagram of the Account EJB. There are four other classes, Account

(remote interface), AccountHome (home interface), AccountException, and

AccountModel, in the Account package. The classes in the package should be

deployed as a component (Account Bean) on the server side.

Figure 4.3 The Class Diagram of the Account EJB

The Account object holds information about users in theBazaar System. Actions by users

on client machines call the Account EJB in the server side to perform any operation

related to the user's information. These operations include registration of new users,

deleting an account, change an account, getting a user's information, and login/out. All
these operations are mapped to business methods in the Account EJB. Additional details

Remotelnterface
PackageName: Account: :model

PackageName: Account: :ejb

+getDeta¡ls():
+setoontactlnfo():
+getMothed():
+setMothod():

Homelnterface+create():
+fìndByPr¡maryKey():

52

of the operations are described in Account object of "Appendix 4". For example, if a

user want to register intheBazaar System, first the client inputs all the information using

the client end user interface, then the information is transferred to the Account EJB at the

server end. After evaluation (i.e., checking to see no such client exists in the system), the

information is stored in the database.

Mailer: The mailer object is implemented as a session bean. Figure 4.4 shows the class

diagram of the Mailer EJB. There are six classes: MailerEJB, Mailer (remote interface),

MailerHome (home interface), sendMailException, EmailHelper, and EmailMessage, in

the Mailer package. The classes in the package should be deployed as a component

(Mailer Bean) on the server side.

+ Subject : String
+ htmlContents : String
+ emailReceiver : String

+EmailMessage():
+getMethods():

Figure 4.4 The Class Diagram of the Mailer EJB

The Mailer object is a tool to transfer information from one account to another internally

or externally. The Mailer object provides several operations including: create message,

change recipient, send mail, and get methods (for subject, content and recipient). The

Mailer object is used to communicate among the users in the Bazaar System. The details

of the operations of the Mailer object are described in Mailer Object of "Appendix A,'.

Offer: The Offer object is implement as a session bean. The class diagram for the Offer

EJB is shown in Figure 4.5. Offer contains fìve classes: OfferEJB, Offer (remote

interface), OfferHome (home interface), Offerline, and OfferModel. The classes

sendMailException

+ sendMailException () : +receiveSendmail ():

+sendMail ():
+getMailHelper():

+sendMait ():
create () ;

53

Remotelnterface PackageName: Offer: :model

- itemNo : String
- lim¡tQty :int
- offerPrice : double
- lineNo : int

- offerld : int
- l¡neltems : Collection
- mailToName : String
- mailToAddr :

- offerDate :

- siatus : String
- totalPrice : double

+getMethod():
+setMethod():

Homelnterface
+create():
+findByPrimaryKey():

findUserOffers () :

in the package should be deployed as a component (offer Bean) on the server

side.

Figure 4.5 Class Diagram of the Offer EJB

A user uses the Offer object to do any operation related to offers. These include: creating

an offer, deleting an offer, getting an offer's details, and changing the offer price and

offer status. The details of these operations are described in Offer Object of "Appendix

4". For a user to create an offer, first the user enters the offer information (i.e., product

offered, quantity and price), through the remote interface at the client side; then the

information is transferred to the Offer EJB at the server side; after the evaluation, the

information is stored in the database and is passed to the user(s) who should receive the

offer.

Order: The Order object is implemented as an entity bean. The class diagram of the

Order EJB is illustrated in Figure 4.6. The Order object has fìve classes:

OrderEJB, Order (remote interface), OrderHome (home intercace), Lineltem,

and OrderModel. The classes in the package should be deployed as a component

(Order Bean) on the server side.

The Order object provides operations related to order actions, which include: creating an

order, deleting an order, changing order information (line item, store, credit card, status

etc.), and get methods for order attributes. There are two entities in the order object, line

54

item and order. When creating an order instance, two entities are created, an order entity

and several line item entities. The order entity holds information about an order and it

contains an order id, line items, user id and other order information. Each line item entity

contains item id, quantity, unit price, and line item id. The order object is a component on

the server side. The order information is accepted through the interface on the client side,

and transferred to the server side. After evaluating all the values, the order information is

stored in the database. If a user wants to search for some information about an order, fìrst

the search key is transferred to the order component at server side, then the OrderEJB

retrieves the related information from the database and sends it to the client.

- ordøld : lntegø
- lineltsrs :Cdlectim
- nane : String
- address :

- charg€Cad :

- userld : String
-aderhe:
- status : String
- tdalPrice : Dolble

Figure 4.6 Class Diagram of the Order EJB

Product: The product object is implemented as an entity bean. The class diagram of the

Product EJB is depicted in Figure 4.7.The object has six classes, ProductEJB,

Product (remote interface), ProductHome (home interface), ProductException,

Item, and ProductModel. The classes in the package should be deployed as a

component (Product Bean) on the server side.

The product EJB is used to create a product instance and to provide operations related to

products. All the object's operations, which include: creating a category, creating a

product, deleting a category, deleting a product, changing product information, and get

methods (for the supplier, category attributes) are based on the two entities, product

- itønl',lo : String
- qty : int

- unitPrice : Double

- lineNo : int

+ gdN4dhod (

+ sdlr/dhod (

+cræte():
+findByPrimayKey ():
+findUserOrders ():

55

entity and item entity. The details of the Product object operations are described in

Product Object of "Appendix 4".

Figure 4.7 The Class Diagram of Product EJB

Inventory: The inventory object is implemented as an entity bean. The class diagram of
an Inventory EJB is shown in Figure 4.8. The Inventory object has five

classes, InventoryEJB, Inventory (remote interface), InventoryHome (home

interface), InventoryException, and InventoryModel. The classes in the

package should be deployed as a component (Inventory Bean) to the server

side.

The Class Diagram of Inventory EJB

PackageName: Product:modelPackageName: Product:ejb

Product l^ I ProdcutEJB

- getDetails ()
- addltems ()+getDetails():

+ addltems ():

ProductExceDt¡on
{lmported}

Homelnterface+create():+ProductException():

PackageName: lnventory: :model

- itemNo : String
- limitQty : int
- offerPrice : double
- lineNo : int

PackageName: lnventory: :ejb

I lnventorvEJ
1 I {lmported} ,

+getMethod():
+setMethod():

- ltemld : String
-qÇ:int

Homelnterface+ lnventoryException () : +create():
+findByPrimaryKey():

Figure 4.8

56

Each inventory EJB is used to create an inventory instance for a store. The operations of
an Inventory object include: create an inventory instance, delete an inventory instance,

get quantity, and change quantity. The details of these operations are available as

Inventory Object in "Appendix 4". Besides these simple objects, there are four complex

objects in the system, namely Consumer, Supplier, Owner, and ShoppingCart. The next

section introduces the complex objects.

4.1.2 The Complex Objects of the System

Complex objects are objects that contain more than one EJB on the server side. A
complex object, such as the Consumer object, shares information with other objects

(basic or complex). When a complex object is deployed to a JZEE container, the other

related objects need to be deployed with it so that all the objects together will be a
component at the server side. A complex object is implemented as an EJB, but it depends

on other EJBs. For example, the consumer object is implemented as ConsumerEJB, but

the ConsumerEJB depends on other two EJBs: OrderEJB and AccountEJB. Like basic

objects, a complex object is instantiated from an EJB class, Homelterface class and

Remotelnteface class and other helper classes (including a model class, exception handler

class, and help class). The complex objects in the Bazaar System include: Consumer,

Supplier, Owner, and ShoppingCart. Figures 4.9 - 4.13 describe these complex objects.

We briefly describe these objects below. The details of the operations of each object are

described in "Appendix 4".

Consumer: The consumer object is implemented as a session bean. Figure 4.9 shows the

class diagram for the Consumer EJB. The Consumer EJB is dependent on

Order EJB and Account EJB. Therefore, the Consumer EJB should be

deployed together with these two EJBs as one component on the server side.

The consumer object handles operations for users (buyers) who have already registered

with the Bazaar System. Besides Account object and Order object operations, additional

operations, such as: get order reference and get account reference, add consumer's

57

details, and get consumer's details are also available. The consumer EJB needs to call the

Account EJB or the Order EJB to process a request from a client.

l- --lr Remotelntelface

+ ejbMothods (

<< Notation >>

Consumer EJB is session bean,
wh¡ch is related to the clients of

consumers and wholesale buyers.

---{
o.d"rÉJB.

Con=ar-"rHa-" --
I . __ _ fl1portod) _ _..] n

r:-"'*--l
userld: String
password:String

Homelnterface

Figure 4.9 Class Diagram of the Consumer EJB

Supplier: The supplier object is implemented as a session bean. Figure 4.10 shows the

class diagram for the Supplier EJB. The Supplier EJB depends on Offer EJB

and Account EJB. Therefore, the Supplier EJB should be deployed together

with those two EJBs as one component on the server side.

of suppliers

A.ccounttlB:

OfferEJB:

Homelnterface

Figure 4.10 Class Diagram of the Supplier EJB

+ getAccountDetails () :

+getorderDetails():
+changelnfio():
+createAccount():
+createOrder():

<< Notation >>

Supplier EJB ¡s session bean, f\
which is related to the clients I

Supplier n-
J_

i SupplierEJB
i (tmponod)

tr"jbM"thod.() --'l
I'rl

is-t'
{lmpodôd} i i'-

+create():
findByPr¡maryKey (L

PackageNa me: Supplier::ejb

+ getAccountDetails (
+changelnfo():
+createAccount():
+getofferDetaits():
+createOffer():

userld: String
password:String

ofurld: int
offerDetails:
itemDetails:

58

The supplier object provides all the operatìons required by suppliers. Besides the Account

object and Offer object operations, other operations, such as create supplier, delete

supplier, change supplier information, and get consumer's details are available. The

supplier EJB needs to call the Account EJB or the Offer EJB to process a request from a

client.

Owner: The owner object is implemented as a session bean. The class diagram of the

Owner EJB is depicted in Figure 4.1l. The Owner EJB depends on Order EJB,

Offer EJB, and Account EJB. So the Owner EJB should be deployed together

with these three EJBs as one component on the server side.

<< Notation >>

. g"tA**"tD"t"t. ()l --l r-;"jbM"th"dt () -l
+getOrderDetails():] I i-r -

+ getAccountDetails () : I 1l * ejbMothods () :

+ getOrderDetails ():] -:
+ changelnfo () : lr- -- --

l!
+createAccount():]l O*.lerHgme
+createorder(): ii--

(rmPorted)

+getOfferDetails(): r--_
+createoffer():]l

+createl):

Owner EJB is session bean,
which is related to the clients

of store owners

AccountEJB:

OfferEJB:

-Qr:,lTT-iÐgeName : StoreOwner::ejb

Owner
_(lmported)

n

i+findByPrimaryKey():L-

The owner object provides all the necessary operations for store owners. Besides Account

object, Inventory object, and Store object operations, other operations, such as: get

references, change owner's information, and get owner's details are available. The owner

EJB needs to call the Account EJB, the Store EJB or the Inventory EJB to process a

request from a client.

ShoppingCart: The ShoppingCart object is implemented as two session beans; Cart and

Catalog. Figure 4.12 shows the class diagram of the Catalog EJB while

Homelnterface

Figure 4.11 Class Diagram of the Owner EJB

59

Figure 4.13 shows the class diagram of the cart EJB. The catalog bean

has six classes: CatalogEJB, Catalog (remote interface), CatalogHome

(home interface), CatalogException, ProductMode, and CatalogDao. The

cart bean has five classes: caftEJB, cart (remote interface), cartHome

(home interface), CartModel, and Cartltem.

Figure 4.12 The class diagram of Catalog EJB

CartEJB

nrJi
CatalogEJB:

CartHome

Figure 4.13 The class diagram of Cart EJB

The shoppingcart object is a special object in the Bazaar System, which is used to hold

selected items when a buyer browses through the catalog, searches for products, and

modifies or holds an order instance temporarily.

PackageName: Gart:model

Homelnterface+CatalogException():

ckageName: Cart::ejb n

+getDetails():
+ addttems ():

Homelnterface+createO():

60

4.2 Detailed Design Information

The requirements specification developed in Section 3.3 is now augmented with design

details. The detailed design of the Bazaar System is based on seven basic objects

(Account, order, off"r, store, Mai[Item, and product) and four complex objects

(C onsumer, Supplier, Ow ner and ShoppingC ar t).

Each object's class is related to a database table or several database tables. There are

twelve tables in the Bazaar System, order, offer, category, product, item, itemline, store,

accounL consumer, owner, supplier, and inventory. The relationship among the database

tables intheBazaar System is shown in Figure 4.14.

Figure 4.14 Database Tables and their Relationship

The following information is used to describe the detailed functional requirements for
each class:

Index
Class Name

61

Inheritance
Imported Classes
Purpose
Remarks
Properties
Methods

Index is a reference assigned to this object. This reference is unique and is
assigned solely for the purpose of identifying and cross-referencing thisobject.

class Name is a unique name that describes the corresponding class.

Inheritance describes the inheritance relationship between this class and it's derived
class(es).

Imported Classes list all the classes imported by this class.

Purpose briefly describes the objective of the class.

Remarks explains any details concerning this class, which are not captured by any of the
above.

Properties describes the property of this class.

For example, the Account object is described as follows:

Account Object:

Index: Obj-l
Class Name: Account
Inheritance: None
Imported classes: None
Purpose: Holds information for a user to access the system and to execute

appropnate operatlons
Remarks: Created before the user can access the system
Properties: Entity bean

A method is described as following style:

Index
Name
Purpose
Visibility
Input parameters
Output parameters
Pseudocode
Remarks

62

Index is a reference assigned to the method. This reference is unique and is assigned
solely for the purpose of identifying and cross-referencing this method.

Name is a unique name that describes this method.

Purpose describes the method in short prose.

Visibility describes what type the method is, whether the method is visible internal or
external for the users.

Input parameters is a list of input parameters required for the method.

Output parameters lists the set of output parameters that are expected to be returned by
the method. Sometimes, there may not be any output parameter for a method. It
should be noted that the method may also change some global entities in the
system.

Remarks explains some details concerning the method which are not captured by any of
the above. For example, the relationship between the current method and other
methods.

For example, the methods of the Account object are described as follows:

Method to set the attributes:
lndex: Con-1
Name: AccountEJB
Purpose: To initialize the attributes of the object
Visibility: External; visible
lnput parameters: None
Output parameters: None
Pseudocode: find datasource for connection {

datasource =
lookup('Java: comp/en/jdbc/MyDataSource")

;

Remarks: t*"

Methods of the Object;
lndex: Op-1
Name: registration
Purpose: To add a user to the system
Visibility: External;visible
lnputparameters: userld;password;creditCard;email;userDetails
Outputparameters: Confirm information (userld, password)
Pseudocode: if userExists(userid)

return null,
else {

c reateAccounf(userl d, password, cred itCa rd, ema i l) ;
add Detai ls(userld, userDetails) ;

return (userld, password);
)

63

Remarks:

lndex:
Name:
Purpose:
Visibility:
lnput parameters:
Output parameters:
Pseudocode:

Remarks:

lndex:
Name:
Purpose:
Visibility:
lnput parameters:
Output parameters:
Pseudocode:

Remarks:

lndex:
Name:
Purpose:
Visibility:
lnput parameters:
Output parameters:
Pseudocode:

Remarks:

lndex:
Name:
Purpose:
Visibility:
lnput parameters:
Output parameters:
Pseudocode:

)
else

No

op-2
deleteAccount
To delete an account
External; visible
userld
None
if userExists(userid) {

del eteAccounf(userld) ;

d e I ete D eta il(us erl d) ;

return true;

return false;
No

op-3
login
To login into the system
External; visible
userld; password
A message (successfully or fail)
if (userld) in userArray(userld, status) {

print("user is Already in the system");
)
else if (userExists(userid) & vatidP(password)) {

add userld to userArray;
the Status of the user is set to active;
print("login into the system successfully");

print("the userid or password is not correct");

No

op-4
changeAccount
To change a user account's information
External; visible
userld; newData
None
if userExists(userld) {

getDBConnection;
modify database(UPDATE account tabte WtTH
userid = userld);

)
No

op-5
getAccountDetails
To retrieve a user's account details
External; visible
userld
list of (userld, password, creditCard,balance, email)
if userExists(userld) {

)
else

newData, WHERE

64

getDBConnection;
retrieve data from database {

SELECT (name, address, password, credit,
balance, email)

FROM account table
WHERE userid = userld);

)
)Remarks: No

lndex: Op-6
Name: getUserDetails
Purpose: To retrieve a user's detail
Visibility: External; vislbte
lnput parameters: userld
Output parameters: list of details
Pseudocode: getDBConnection;

if userExists(userld) {
retrieve data from database {
SELECT (name, address, etc.)

FROM userJable
WHERE userid = userld;

)
)Remarks: The table name user table and details will change (depends on

the caller consumer, supplier or owner).

lndex: Op-7
Name: changeUserlnfo
Purpose: To change a user's information
Visibility: Externat; visible
lnput parameters: userld; newData
Output parameters: None
Pseudocode: getDBConnection;

if userExists(userld) {
modify database{

UPDATE userJable W|TH newData,
WHERE userid = userld;

)

Remarks:

Index: Op-8
Name: logout
Purpose: To exit the system
Visibilíty: Externat; visible
lnput parameters: userld; password
Output parameters: None
Pseudocode: if (userld, password) in userArray {

delete (userid, password) from userArray;
the Status of the user is set to inactive;

]Remarks: No

lndex: Op-g

)
No

65

Name: createAccount
Purpose: To create an account
Visibility: External; visible
lnput parameters: userld; password; status; credit; email
Output parameters: None
Pseudocode: lf (isValidDate(userld, password)) {

getDBConnection;
add data to database {

INSERT (userld, password, status, credit, email)
INTO accoun!_table;

return true;
)

else
return false;

)Remarks: No

lndex: Op-10
Name: addDetails
Purpose: To add user information to the system
Visibility: External; visible
lnput parameters: userld; info
Output parameters: None
Pseudocode: if userld in userArray

Store info to database;
Remarks: Abstract method

Methods used internally by the object

lndex: ln-1
Name: userExists
Purpose: To check if the user exists in the system
Visibility: lnternal; invisible
lnput parameters: userld
Output parameters: result (true or false)
Pseudocode: getDBConnection;

retrieve data from database {
string = SELECT userid FROM account

WHERE userid = userld;
)
if (string = null)

return false;
else

return true;
Remarks: No

lndex: ln-2
Name: isValidData
Purpose: To check if the data is valid
Visibility: lnternal; invisible
lnput parameters: userld; password
Output parameters: result (true or false)
Pseudocode:

if ((userld = null) ll (password = nuil))
return false;

66

Remarks:

lndex:
Name:
Purpose:
Visibility:
lnput parameters:
Output parameters:
Pseudocode:

Remarks:

lndex:
Name:
Purpose:
Visibility:
lnput parameters:
Output parameters:
Pseudocode:

Remarks:

lndex:
Name:
Purpose:
Visibility:
lnput parameters:
Output parameters:
Pseudocode:

Remarks:

else
return true;

No

ln-3
validP
To check if the user's password is correct
lnternal; invisible
userld; password
result (true or false)
search database {

string = SELECT password FROM account
WHERE userid = userld;

)
if (string = password)

return true;
else

return false;
No

ln-4
deleteAccount
To delete an account
lnternal; invisible
userld
None
getDBConnection;
remove an account entry from database {

DELETE FROM accoun[_tabte
WHERE userid = userld;

)
No

ln-5
deleteDtails
To delete a user's detailfrom database
lnternal; invisible
userld
None
getDBConnection;
remove an account entry from database {

DELETE FROM userJabte WHERE
userid = userld;

)
No

67

CHAPTER 5

IMPLEMENTATION OF THE BAZAAR SYSTEM

TheBazaar System is implemented using the J2EE platform. J2EE enables developers to

write reusable, and portable server-side business logic using an environment (see Figure

5.1) that provides a multi-tier distributed application model. The components at the server

consist of a"Bazaar Servlet", Entity Beans, Session Beans, and Container Classes.

Client Tier Middle Tier EIS Tier

Figure 5.1 J2EE Environment (adapted from [l])

The next section describes how the Bazaar System was implemented using J2EE and JSp

(Java Server Pages) technologies.

5.1 The Implementation of EJBs on the Server Side

Depending on the J2EE platform to handle complex system-level issues, Enterprise

JavaBeans technology provides a distributed component model that enables developers to

focus on solving business problems. First, we explain the implementation of the EJBs

described earlier.

As described earlier, there are Home Interface, Remote Interface and Enterprise Bean

Classes for each EJB.

EJB Container

Entity Beans
Session Beans

Client Enterprise
Information
Systems

RDBS
Web Container

Servlets, JSP Pages,
HTML. XML

Client

68

5.1.1 Home Interface

The home interface provides the methods for creating and removing enterprise beans.

This interface must extend javax.ejb.EJBHome. A client can do the following operations

through the home interface:

o Create new enterprise bean instances;

o Get the metadata for an enterprise bean through the java.ejb.EJBMetaData interface;

r Remove an enterprise bean instance; and

' Obtain a handle to the home interface, which provides mechanism for persistent

enterprise beans.

5.1.2 Remote Interface

The remote interface defìnes the client's view of an enterprise bean -the set of business

methods available to the clients. This interface must extend javax.ejb.EJBObject. The

remote interface supports business methods and delegates invocation of a business

method to the enterprise bean instance. A remote interface defines the methods that

allow clients to perform the following operations via a reference to an enterprise bean

instance:

. Obtain the home interface;

. Remove the enterprise bean instance;

. Obtain a handle to the enterprise bean instance; and

. Obtain an entity bean instance's primary key.

5.1.3 Enterprise Bean Class

The enterprise bean class provides the actual implementation of the business methods of
the bean. The container calls on the particular bean when the client selects the

corresponding methods listed in the remote interface. The enterprise bean class must

implement the j ava. ej b. EntityBean or j ava. ej b. sess ionBean interface.

Both the remote interface and enterprise bean class have responsibility for two

specialized categories of methods: create methods and finder methods. Create methods

69

provide ways to customize the bean when it is created, and finder methods provide ways

to locate beans.

There are two kinds of EJBs, Entity Beans (EBs) and Session Beans (SBs). The

description of these two types of EJBs was given in Chapter 2. An EB represents an

object's view ofbusiness data stored in persistent storage (such as a database). The bean

provides an object wrapper around the data to simplify the task of accessing and

manipulating it. In our implementation, a client accesses the database via EBs, which

represent specific information in the Bazaar System. An EB represents a single logical

row of data in a database table. It allows shared access from multiple clients and can live

pastthe duration of a client's session with the server (i.e. is "persistent"). Usually atable

in the database is related to an EB at the server side.

EBs provide robust, long-lived persistent data management. A business object, that needs

to live after a client's session with the server is over, should be modeled as an EB. EBs

live even after a client's session with the server is over.

SBs are used to implement business objects that contain client-specific business logic. A
Session Bean typically executes on behalf of a single client and can not be shared among

multiple clients because the state of such a business object reflects its interaction with a

particular client and is not for general access. SBs do not directly represent shared data in

the database, although they can access and update such data. The state ofa session object

is non-persistent and need not be written to the database. Such state exists only for the

duration of a client "session".

5.2. The Implementation of the Administration System

The administration system enables the system administrator to manage the Bazaar

system. It is divided into three sub-systems: System Manager, User Manager, and

Product Manager, and two web-page Managers: Adminstorepage, and

AdminSupplierPage. The activities of the sub-systems are illustrated in Figure 5.2.

70

Slgn ldûrtSaoon

!¡nÍd lD&Passwçd

lligurt 5.2

Tr¡ck tlser

'l'hr: Atl min istr¡ tion Srrtenr

Ádmh5upplierPaç

Ohanç Producl
lnfsrnatbn

Þ-

5.2.1 The Main Menu

The main menu of the Administration System is shown in Figure 5.3. There are two

icons, which act as quick access keys, BazaarBarl and BazaarBarZ. By pressing

BazaarBarl, the quick access keys, Add Consumer, Add Product, and Add Supplier will
show up as shown Figure 5.4. By pressing BazaarBar2, quick search keys will appear

(i.e., by product id, by purchase order number, by user id).

. -Fl¡l

Figure 5.4 The Main Menu (pressing BazaarBarl)

The use of quick searches is very convenient for the system administrator to search for

information in the Bazaar System. Figure 5.5 shows a result of search by purchase order

number.

f-r: I

Itrl m,@

Figure 5.3 The Main Menu of the Administration System

72

Figure 5.5 The Result of Search by Order No.

The web page managers are situated in the main menu, they appear by clicking on
"System" drop down menu on the main page. The function of the AdminStorepage is to
add and modify a store's home page for the owner(s) of the store, and the
AdminSupplierPage has the function of adding and modifying a supplier,s home page for
suppliers. Three icons (with figures in) in the main menu lead you to three sub-systems.
The menu for Product Manager, User Manager and System Manager pops up in the main
menu on clicking the corresponding icons.

5.2.2 The User Manager Menu

The User Manager menu is built into the main menu as an internal frame (see Figure 5.6).
The User Manager Menu appears if a user clicks on the first icon (with two men). The
user manager screen has a data grid for displaying all the information about user
accounts. If a user clicks on a button, the related interface appears (see Figure 5.7).

There are several functions in the User Manager subsystem: add user (supports adding a

consumer, adding a supplier, and adding a storeowner); delete user; and system
modification (including add a store information and add supplier information).

73

S].stem Add User Delete lJser

,l i ,r
.:ru?.elJt{.i

.

:: .lli Palsltsr{li

:: Uger]l,pê:

,,c¡ert+Çá,ry¡¡.t
Cred¡tCartl-typ-e: l:¡¡la6Íércar4 'r " -.,1

Ealãriie:
'. : .4.)

.rFilìäil;',,i

iããË..-.|-._-[*"':l

El'tpinr-{atq: I I

fi+¡e:

.Cânàdà i.'::..1'i

User'':nÐmé:. .'.|..::. ::

',::'a
.,,,r,stqry1

¡,:t .Arf¡fre-sg_:
'.:aa

:.':.. ::a::.::, clf'y1

r.:,.,,,. t .]- ?!et
ì trltanp-l.loi
,i.,.,,¿iF¡:cûtlÊ;.

¡ EJte¡qel:em"jll
lrlroT¡Íe . tartua+ie:

arierfaiié:¡ |

Figure 5.7 Input Boxes of the User Manager

Figure 5.6 The menu of the User Manager

U$er'-natrre:
.' :r:¡tdoress;

t_t

74

5.2.3 The Product Manager Menu

The Product Manager menu is built into the main menu as an internal frame (see Figure
5.8). There is a table in the screen for displaying all the information related to a product.

There are three items in the menu bar, "System", .,Add New product,', and .,Modify

Product". The "System" icon is used for saving information to the Bazaar System and

exiting the Product Manager sub-system. The icons in the toolbar enable the users with
the functions of the Product Manager sub-system to track a product, or search for a

product.

5.2.4 The System Manager Menu

The menu of the System Manager sub-system is built into the main menu as an internal
frame (see Figure 5.9). There are three items in the menu bar, ,,System,,, ,,Report,,,

and

"Database". The "System" menu is for a user to modify the system. The .,Report,,
menu

can be used to generate and display various reports for users, such as, user account

structure reports, monthly new account information reports, and new product reports. The

"Database" menu is used to modify the database structure (e.g., add tables), and search

for information in database. Additional functions are associated with the toolbar buttons,

such as the toolbar "create a home page" for a user which is used to create a home page

for a store or supplier.

Figure 5.8 The Menu of Product Manager

t5

The user interface allows multiple windows to be tiled and/or piled up in one screen.

More than one sub-system's menus can exist in the main menu as internal frames at the

same time without conflicts (see Figure 5.10).

S!¡stem'.Flepo¡l tDatabase

s)Ëtamì /rrtd Usái.:,, Þólstè. Uééí: : :, fl,ló.r¡fi

Delarte:Llser

5.3. The Implementation of the Front-End
In this section, we first introduce four design patterns [Ha12000] and how they are used to

implement the Front-End components. Then give some implementation examples of
Front-end interfaces in the Bazaar Svstem.

Figure 5.9 The menu of System Manager

Figure 5.10 The Menus of Sub-Systems

76

5.3.1 The Design Patterns

JSP technology is used to implement the client side functionality. Since the client

software executes on user systems, it is not possible to control every aspect of the client

environment (e.g., hardware, operating system platform, and browser version). There are

trade-offs to be made in partitioning application responsibility between server and client

in any distributed application [Kas2000]. Using design patterns can solve those problems.

So several design patterns are described in implementing the client side application. The

benefits of using these design patterns Íìre many just as formalizing the system. Four

design patterns are introduced in this thesis: Model View Controller Pattern (MVC),

Front Component Pattern (FCP), Value Object Pattern (VOP) and Command Pattern

(CP). These patterns are described in detail below.

5.3.1.1 The Model View Controller Pattern (MVC)

Simple GUI based applications are commonly organized around event-driven user

interfaces. The developer creates the graphical elements in a user interface with a tool

and then writes blocks of code that execute application actions in response to user input.

Some design methodologies emphasize starting with the user interface, and developing

the final system around it. The result is a system organized around user interface

elements and user actions on those elements, with persistent data manipulation,

application functionality, and display code completely intertwined. This approach can be

successful for a small system, but is often inadequate for large, complex, distributed

systems, such as the Bazaar System. Sophisticated applications, that require long-term

maintenance, need to be structured so that a maintainer can learn and understand them. In

this approach, code is less reusable, because each component depends on other

components in order to do anything.

In order to increase reusability, the MVC pattern facilitates maintenance, extensibility,

and flexibility by partially decoupling data presentation, data representation, and

application operations. The MVC pattern also enables multiple simultaneous data views

IKas2000].

11

The MVC design pattern separates the application data from both the ways the data can

be viewed and accessed, and also from the mapping between system events and

application behaviors. This improves distributed application design. There are three

component types in the MVC pattern: the Model component, the View component, and

the Controller component. The Model component encapsulates the application state,

provides access to functions and notifies interested parties when data changes. The View

component presents data to the user and maintains consistency with the model data. The

Controller component translates user inputs into application actions and selects

appropriate data displays based on user input and context.

The MVC pattern is used in the Bazaar System. Figure 5.1 1 shows how the MVC pattern

is applied intheBazaar System.

Enterprise
Bean

Session EJB
and

Controller Classes

Figure 5.11 MVC in the Bazaar System

5.2.1.2 The Front Component Pattern (FCp)

To simplify implementation and maintenance of user interface presentation and

workflow, the FCP is used to implement the Bazaar System.

There are many ways to present data, as interactive applications grow. A well-factored

application will partition responsibility for specific tasks to various classes. But the fine-
grained partitioning of responsibility between classes increases the number of objects, as

well as the number of connections between objects. A class that explicitly references

many other classes is less reusable. Additionally, the interface presented by any particular

JSP Pages, Java Beans

78

class becomes arbitrarily complex, making the system difficult to maintain and extend.

These problems can be overcome by applying the front component pattern.

Many Web applications are structured as highly interdependent system. The collection of
Web pages is very brittle, a change in any of which may affect many other pages, and the

changes may be diffrcult to trace. The FCP can avoid this problem by centralizing the

dispatch of HTTP service requests within a single Servlet. The Servlet class maps user

requests to application model operations and determines which user views to present

next.

In the Bazaar System, the Front Component is the single point of entry for HTTP requests

to Controller in the MVC design (i.e., a component to which all requests for application

URLs are delivered). The Front Component, Mainjsp, processes these requests and

delegates the generation of the response to the template page.

5.3.1.3 The Value Object Pattern (VOP)

The data for an address object can be retrieved once, sent to the client from the server,

and instantiated on the client. The local copy of the address can serve as a proxy.

Subsequent accesses to the copy of an address object's state are local without

communicating to the server. Such a client-side copy of an object is called a value object.

Accessing the value object can reduce network traffic and improve response time

[Kas2000].

The VOP has three types of components: LocalEntityObject, EntityObjecl and

ValueObiecl. The LocalEntityObject presents a local interface to a remote object and

represents one or more properties of the remote object. The EntityObjecthas meaningful

identity; it represents one or more properties as immutable objects. The ValueObject

represents the value of a property of some other object, provides access to its state via
property assessors.

The value object Pattern is also used to implement theBazaar system.

79

5.3.1.4 The Command Pattern (CP)

As mentioned above, the complexity of interconnections between components is

encapsulated in the Front Component. If the Front Component does not have a clear,

consistent, and extensible mechanism for making these connections, it will become a

monolithic chunk of code that is difficult maintain, understand, and extend. If the FCp

pattern is used in the system, the Command pattern is needed to manage Front

Component complexity. The Command pattern is used to manage the potential

complexity of the Front Component. With the command pattern, extensions to the front

component functionality do not change the Front Component's API. Each extension

simply defines a new command handled by the command pattern and a way to handle the

command.

5.3.2 Several Interfaces of the Front-End

The client in the Bazaar System is the user's browser. It displays HTML from the Front

Component, and posts user input to the Front Component. The Front Component in the

Bazaar System is implemented by the servlet, Mainservletjava, which is mapped to the

single URL namespace. Mainservlel uses two classes, Processorjava and

Request-to-Event-Translatorjava to map user actions to model actions, and the class

ScreenFlowManageriava to select and create the next presentation (i.e. HTML page).

The Front component transmits HTML or JSp pages to the client.

The HTML and JSP pages are the main part of the implementation of the Front-End. The

organization of each page is depicted in Figure 5.12.

Header

Menu-Bar Main-Body

Footer

Figure 5.12 The Organization of page for Front-End

80

5.3.2.1The Main Page of the Front-End

The main page in theBazaar system is shown in Figure 5.13. Recall that there are four

different kinds of users in the Bazaar System, store owners, suppliers, registered users

and buyers. An unregistered user can only search public information and do regular

shopping. Before registration, a buyer can search products and put them into the shopping

cart, and buy the product(s) using a credit card. Without registering in the Bazaar System

the buyer can not receive any internal discounts. There are only four items in the menu-

bar area, Information, OnSale, Shopping, and Registration. An unregistered user can

check public information, such as, the stores and the kinds of products in the system, and

find product information for a store. An unregistered user can also check on sale

information, but only if the information is public. A registered user can login to the

system by entering his/her user name and password directly from the main page.

Figure 5.13 The Main Page of the Bazaar System

8l

5.3.2.2 The Home Page for a Buyer

After registration, a buyer can do all shopping activities. Figure 5.14 shows the buyer

home page in theBazaar System. The items in Menu-Bar area (see Figure 5.12) list the

operations for registered buyers, including searching information related to a product, a

store, or a supplier, fìnding all sale products (internal or public). ShoppingCart can also

be used to hold all selected items for a user in the Bazaar System even after the user

logout from the system. There-is an account for each registered user, and users can access

and modify the information in their accounts.

Figure 5.15 shows how an order activity is implemented in the Bazaar System. Four

objects on the server are involved in the order activity. They are ShoppingCart, Order,

Inventory, and Store. A buyer searches the system to find the products he/she wants to

buy, then puts them in the shopping cart. After some research, the buyer makes his/her

order for the items in the shopping cart. The order information is passed to the Order

object, then all items are checked for availability in the inventory.

The On-line Bazaar Systern

You have successfrrlly lo6jn into the Bzaar System as a buyerl

As a buyer, you ca¡ sea'ch any information related to shopping activities, such as find a particula¡ oroduct
price, avalable quantity, and promotion information; Thjregiitered useis can receive

"r"i.
6rn.r{À tir- t¡,

regular users. They can ¡q[g¡ unsatisfied products and bid r'úth store managers.

You cm select one ofthe flollowing categories to start your shopping

Aulomotive ,T¿rv¿lrv Clothine

Fumture Crafts Books

Cornputer

Electroruc s

Send meil to with questions or comments about lhis web s¡te.
Copyrighl O. All r¡ghts reseryed

Figure 5.14 The screen of Buyer Home page of the Bazaar system

82

I

en d

I'

t
F<

i_

I

rtl
i

i;;
"

Ì -s
I

,il-,,r',,
Ì',r.o- !ily......

It9r-2. c !v ?

Ne!il{.
Or

igc"" I tIL

-T119
g el Items'-

Items

Shoppin

-i
>"1

I

ì
rdËr cän

ò-i¿"i Inventory

I
I

i

I

I

I

I
I

s;;;;
l

j ::rr:r:r:" n:lt

check I

',1

I

N o tify
I

j'-
I

Figure 5.15 The Order Processing

5.3.2.3 The Home Page for a Store Owner

After a user logs in to the Bazaar System as a store owner, the home page for a store

ovr'ner appears (as shown in Figure 5.16). The main functions includeing Search, Order,

Modifu, Bid, and Report, are listed in the Menu-Bar area (see Figure 5.12). An owner can

search all the information in the system (except some stores' internal information), order

products or services from suppliers and bargain with them, modify the rights and limits

for a user to access the owner's store and other product or user information of the store.

The store policy is accessible by clickingthe Policy item. A store owner's home page in

the Bazaar System is used internally in the Bazaar System to list the operations for the

particular store owner(s). The home page of the store can be accessed by clicking the

Home menu item. Figure 5.16 also lists and explains some important operations an owner

can perform in the Main-Body of the window. For example, an owner can click the check

inventory item to check the related store's inventory or click the products list itemto find
the products available at the store.

83

,ft{
<tjDleose

ïfnle
The On-lin e Bazaar System

You have successârlly log:n into lheBazaN System as a store owner!

As a store owner, you can sea¡ch most infomation in the Bazaar System; indrcate what type of achrn¡es
related to yow store re available for other kinds ofusers and nroclF¡ them any time; ãve order to suppliers as
a wholesale buyer; check inventcrv for each product in store.

A- store owner ca¡ check: the products infomation of ihe store directly by click procluct üst

the suppliers informaiion ofthe store by click suppher list

Send mail to with questions or comments about thìs web site.
All rights reserved.Copyrighl @

5.3.2.4 The Home Page for a Supplier

After a user logs in to the Bazaar System as a supplier, the window shown in Figure 5.17

appears. A supplier can access his/her own home page by clicking the Home item, and

can find the supplier's policy by clicking the Policy item. The main operations provided

to a supplier are listed in the Menu-Bar area and include: Search, Report, Check

Inventory, Give Order, and Bid. A supplier can access and modify his/her account by

clicking the Account item.

The Main-Body in Figure 5.17 contains a description of most operations a supplier can

do in the Bazaar System.

Figure 5.16 The screen of store owner Home Page of theBazaar system

84

C:\Documents and S ettings\Adminiskôlor\0 esktop\T hesis\SupplierHome.hlm

t:tN

,<f. Dleor\{nlr
The On-lin e Bazaar System

You have successfi:lly 1o6þ into the Bazaar System as a supplier!

As a supplier, you can serch a:iy product informalion, such as, sale price, discount policy, qumtitv on ha¡d
(QoIr), and related store information; You can put up an offer and barem with a søre marràger', generate
various reports, ncludìng montlilv-sale report, pioduðts on stock repiñþg¡h ¡eþIlAl,.poä.

' -

You can keep rack olthe updated sales mount ofappropriate product l: every store. By clickng each store
respectively, all the information related in the store will pop up and lead you firther r¡rto detad.

Send mail to with quest¡ons or commenls about this web sjte
All rights reserved.Copyright O

Figure 5.17 The screen of supplier Home Page of the Bazaar system

85

CHAPTER 6

CONCLUSIOIIS AND FUTURE WORK

The thesis focused on the specification of an online Bazaar System. It investigated the

development of the Bazaar System using formal methods. Formal methods were used to

specifu the software requirements and design. Two kinds of formal languages, UML and

Object-2, were used for the thesis.

UML was used forthe requirements analysis and to model the architecture design of the

Bazaar System. It is known nowadays that an object-oriented language is necessary but

insufficient to create object systems.

The formal specification of the Bazaar System was done using the Object-Z formalism. A
type checking tool, wizard [Johl996], was used to check the correctness of the Object-Z

specification document. In this thesis, Object-Z was used in the functional specification

of requirement analysis.

Object-Z was used to specify and design the essential functionalities of the Bazaar

System. Object-Z was not used for the formal specifîcation of all the methods

implemented in the Bazaar System. Future effort needs to address using Obje ct-Z to
specify and design the implementation details of all the methods infheBazaar System.

The thesis used J2EE technologies to implement the Bazaar System. The J2EE platform

provides system services that simplify the work that application objects need to perform.

The thesis emphasized the business functions implementation of the Bazaar System. For
a real application system, system security and its implementation are major issues. In
future, we still need to do some performance analysis, such as determining how robust

and trustworthy is the Bazaar System using performance tools. Predicting application
performance when deploying e-commerce applications and performance analysis should

be considered.

86

In the future, we will need to explore the possibility of using UML for software testing to

address the entire testing lifecycle in detail and do performance analysis of the Bazaar

System. The formal integration tests using UML collaboration could be future research

interest and it is beyond the discussion of this thesis. Also, we need to use other

formalisms to capture design specifications, such as, fìnite state machines and I/O
automata, to specify the requirements of the Bazaar System.

87

REFERENCES

[Alal998] V. S. Alagar and K. Periyasamy, Specification of Sofrware Systems, Spring-
Verlag, 1998.

lBar1992l Rosalind Barden, Susan Stepney, and David Cooper, "The Use of 2,,, J.E.
Nicholls (Editor), Proceedings of the 6th Z (Jser Meeting, york 1991,
Workshops in Computing, 99-124. Springer-Verlag, 1992.

Michael Butler, "lntroductory Notes on Specification with 2,,, Dept. of
Electronics and computer Science, university of southampton, March
2001.

Anthony chavez and Pattie Maes, "Kasbah: An Agent Marketplace for
Buying and Selling Goods", conference on Practical Applications of
Intelligent Agents and Multi-Agent Technologt, April 1996.

Roger Duke, P. King, and Graeme Rose and Graeme Smith, ,,The Object-Z
Specification Language", Technolog,, of Object-Oriented Language and
System (TOOLS), Prentice-Hall, 1991, Page 465-483.

Roger Duke, Gordon Rose and Graeme Smith, "Object-Z: a Specification
Language Advocated for the Description of standard s", Technical Report
No. 94-45, software verification Research centre Deparment of computer
Science, Queensland 4072, Australia, December 1994.

Ehikioya S. A. and suresh J., "Electronic commerce for services and
Intangible Goods", First international conference on Internet computing,
Monte Carlo Resort, Las Vegas, Nevada, USA, June 26-29,2000.

Ehikioya s. A.; "A Formal specification of Auction Systems using Z
Notation", International Journal of Computer Science and Information
Systems, March 2001, (Submitted).

P. Ezhilchelvan and G. Morgan, "A Dependable Distributed Auction
system: Architecture and an Implementation Framework", The Fifth
International Symposiunt on Autonomous Decentralized Systems (with
Emphas is on E le ctronic Commerce), March 26-28, 2001, Dallas, Texas.

John Friend, "Be more than a bazaat, business web sites told", Business,
November 16th, 2000.
(available at http://inq.phillv.com/content/inqu irer/2000/ I l/ I 6/business/B2B I 6.htm¡

Marty Hall, servlet and Javaserver Pages, sun Microsystem press, 2000.

[But200l]

IChal996]

[Duk1991]

[Dukl994]

lEhi2000l

lEhi2001l

ïEZH2001l

IFri2000]

[Ha12000]

88

[Joh I 996]

IKas2000]

[Krel997]

[Lom2000]

[Mor2000]

[Moul998]

[Nis2000]

lo-zteeTl

[Poll999]

ISes2000]

[Ros1992]

Wendy Johnston, "A Type Checker for Object-2", Technical Report No.
96-24, software verification Research center Department of computer
Science, Queensland 4072, Australia, September 1996.

Nicholas Kassem and The Enterprise Team, Designing Enterprise
Applications with the Java 2 Platform, Enterprise Edition, Sun
Microsystem Laboratories, Aug 2000.

Rob Kremer, "SENG 611 Requirements Engineering, Formal
Specification", Software engineering Research Network, University of
Calgary, Alberta, Canada, 1997 .

Alessio R. Lomucio, Michael Woodridge and Nicholas R. Jennings, ,,A

classification Scheme for Negotiation in Electronic commerce", European
Perspective on Agent-Mediated Electronic commerce, (eds, c. sierua and
Dignum), Springer Verlag, March 2000.

Joan Moris, Peter Ree and Pattie Maes, "sardine: Dynamic seller strategies
in an Auction Marketplace", Proceedings of the conference on Electronic
Commerce (EC'00), Minneapolis, MN, October 17-20,2000.

Alexandros Moukas, Robert Guttman, and Pattie Maes, "Agent-mediated
Electronic commerce: An MIT Media Laboratory perspective",
Proceedings of the International conference on electronic commerce,
Korea, 1998.

Noam Nisan, "Bidding and Allocation in Combinatorial Auctions,,, ACM
C onfer ence on Ele c tr oni c C ommerc e, April 17, 2000.

Alena Griffiths, "Modular Reasoning in Object-2", Technical Report No.
97-28, Software verification Research center Department of computer
Science, Queensland 4072, Australia, August lg97.

Fiona Polack and Susan Stepney, "systems Development using Z
Generics", FM'99: World Congress on Formal Methods, Toulouse, France,
1999, Proceedings Volume IL Volume 1709 or Lecture Notes in computer
Science, Springer-Verlag, 1999, pages 1048-1067.

Roger Sessions, "EJB vs. COM+: It comes down to language, performance,,,
O bj e c tw a t c h Inc., 20 00, (Avai lab le on http :i/www. obj ectwatch. com).

Graeme Rose, "Objecl-L", in S. Stepney, R. Barden and D. Gooper, editors,
object orientation in z, lvorkshops in computing, springer-Verrag, 1992,
page 59-77.

89

[Stel992]

lTer1997l

luMLl9eel

[uML2000]

Susan Stepney, Rosalind Barden, and David Cooper, "Object Orientation in
2", lí/orltshops in Computing Series, Springer-Verlag, 1992.

Ioannis S. Terpsidis, Alexandtos Moukas, Bill pergioudakis, Georgios
Doukids and Pattie Maes, "The Potential of Electronic commerce in Re-
engineering consumer-Related Relationships Through Intelligent Agents",
Advances in Information Technologies: The Business challenge, Ios press,

1997.

Unified Modeling Language (UML) Specification, version 1.3a, Object
Management Group, March 1999. (available at: hnp://rvww.rarionar.corn/unrl)

soon-Kyeong Kim and David carrington, "uML Metamodel Formalization
with Object-Z: The State Machine Package", Technical Report No. 00-29,
software verification Research center Department of computer Science,
Queensland 4072, AusÍralia, August 2000.

90

APPENDIX A

DETAILED DESIGN

The functional requirements of the

Account Object:

Index:
Object Name:
Inheritance:
Imported Objects:
Purpose:

Remarks:
Properties:
Methods:

Method to set the attributes:

Index:
Name:
Purpose:
Visibility:
Input parameters:
Output parameters:
Pseudocode:
Remarks:

Methods of the Object:
Index:
Name:
Purpose:
Visibility:
Input parameters:
Output parameters:
Pseudocode:

Remarks:

Index:
Name:

following objects are now described in greater detail.

obj- 1

Account
None
None
Holds information for a user to access the system
and to execute appropriate operations
Created before the user can access the system
Entity bean

Con-l
AccountEJB
To initialize the attributes of the object
External; visible
None
None
find datasource connection
No

op-l
registration
To add an user to the system
External; visible
userld; password; creditCard; email; userDetails
Confirm information (userId, password)
createAccount(userld, password, creditCard, email);
addDetails(userld, userDetails);
return (userld, password);
No

op-2
deleteAccount

91

Purpose: To delete an account
Visibility: External; visible
Input parameters: userld
Output parameters: None
Pseudocode: if userExists(userid) {

deleteAccount(userld) ;

deleteDetail(userld);
return true;

)
else

return false;
Remarks: No

Index: Op-3
Name: login
Purpose: To login into the system
Visibility: External; visible
Input parameters: userld; password
Output parameters: A message (successfully or fail)
Pseudocode: if (userld) in userArray(userld, status) {

print("user is Already in the system,,);
ì
J

else if (userExists(userid) & validP(password)) {
add userld to userArray;
the Status of the user is set to active;
print("login into the system successfully,,);

)
else

print("the userid or password is not correct"):

Remarks: No

Index: Op-4
Name: changeAccount
Purpose: To change a user account's information
Visibility: External; visible
Input parameters: userld; newData
Output parameters: None
Pseudocode: if userExists(userld)

modify database(UPDATE account rable WITH

Remarks: No
newData' WHERE userid : userldJ;

Index:
Name:
Purpose:

op-5
getAccountDetails
To retrieve a user's account details

92

Visibility:
Input parameters:
Output parameters:
Pseudocode:

Remarks:

Index:
Name:
Purpose:
Visibility:
Input parameters:
Output parameters:
Pseudocode:

Remarks:

Index:
Name:
Purpose:
Visibility:
Input parameters:
Output parameters:
Pseudocode:

Remarks:

Index:
Name:
Purpose:
Visibilify:
Input parameters:
Output parameters:
Pseudocode:

Remarks:

Index:
Name:

External; visible
userld
list of (userld, password, creditCard,balance, email)
if userExists(userld)

retrieve data from database (SELECT (name,
address, password, credit, balance, emai[) FROM
account table WHERE userid = userld);

No

op-6
getUserDetails
To retrieve a user's detail
External; visible
userld
list of details
if userBxists(userld)
retrieve data from database (SELECT (name, address, etc.)
FROM user table WHERE userid: userld);
The table name user table and details will chang depends
on the caller consumer, supplier or owner).

op-7
changeUserlnfo
To change a user's information
External; visible
userld; newData
None
if userExists(userld)

modify database(UPDATE user table WITH
newData, WHERE userid : userld);

No

op-8
logout
To exit the system
External; visible
userld;password
None
if (userld, password) in userArray

delete (userid, password) from userArray;
the Status of the user is set to inactive;

No

op-9
createAccount

93

Purpose: To create an account
Visibility: External;visible
Input parameters: userld; password; status; credit; email
Output parameters: None
Pseudocode: If (isValidDate(userld, password)) {

INSERT (userld, password, status,credit, email)
INTO account table;
return true;

)
else

return false;
Remarks: No

Index:
Name:
Purpose:
Visibility:

Index:
Name:
Purpose:
Visibility:

Input parameters: userld; info
Output parameters: None
Pseudocode:

Remarks:

Op-l0
addDetails
To add user information to the system
External; visible

if userld in userArray
Store info to database;

No

In-2
isValidData
To check if the data is valid
Internal; invisible

Methods used internally by the object

Index: In-l
Name: userExists
Purpose: To check if the user exists in the system
Visibility: Internal; invisible
Input parameters: userld
Output parameters: result (true or false)
Pseudocode: string = SELECT userid FROM account

WHERE userid : userld;
if (string: null)

return false;
else

return true;
Remarks: No

Input parameters: userld; password

94

Output parameters: result (true or false)
Pseudocode:

if ((userld : null) ll (password : null))
return false;

else
return true;

Remarks: No

Index: In-3
Name: validP
Purpose: To check if the user's password is correct
Visibility: Internal; invisible
Input parameters: userld; password
Output parameters: result (true or false)
Pseudocode: search database

string: SELECT password FROM account
WHERE userid : userld;

if (string : password)
return true;

else
return false;

Remarks: No

Index: In-4
Name: deleteAccount
Purpose: To delete an account
Visibility: Internal; invisible
Input parameters: userld
Output parameters: None
Pseudocode: relnove an account entry from database {

DELETE FROM account table
WHERE userid : userld;

)
Remarks: No

Index: In-5
Name: deleteDtails
Purpose: To delete an user's detail from database
Visibility: Internal; invisible
Input parameters: userld
Output parameters: None
Pseudocode: remove an account entry from database {

DELETE FROM user rable WHERE
userid = userld;

Ì
Remarks: No

95

Order Object:

Index:
Object Name: Order
lnheritance:
Imported Objects: None
Purpose:
Remarks:

Properties:
Methods:

obj-2

None

To create purchase order instance
After an order is created, the order details
including user's information and orderline items
can be changed at any time before the order's
status is set to be "ACTIVE't
Entify bean

Method to set the attributes:

Index: Con-l
Name: OrderEJB
Purpose: To initialize the attributes of the object
Visibility: External; visible
Input parameters: None
Output parameters: None
Pseudocode: find datasource connection;

orderld:0; total price: 0;
orderDate : Clendar.getlnstance0 ;Remarks: No

Methods of the Object:
Index: Op-l
Name: createOrder
Purpose: To create a purchase order for a user
Visibility: Exrernal; visible
Input parameters: lineltems; storeld; userld; creditCard; carrier; totalPrice
Output parameters: No
Pseudocode: if (isvalidData(lineltems; storeld; userld; creditcard;

carrier; totalPrice)) {
orderld : getUniqueOrderldQ;
orderDate : currentDate0;
updateDate : orderDate;
status: "PENDING";
insertOrder(orderld, storeld, userld, creditCard,

carrier, orderDate, status, totalPrice);
insertl-ineltems(orderld, lineltems);

96

lnsertOrderStatus(orderld, updateDate, deliverDate,
status)

return true;

)
else

return false;
Remarks: No

Index: Op-2
Name: deleteOrder
Purpose: To delete an order instance
Visibility: External; visible
Input parameters: orderld
Output parameters: Confirm information (successful or fail)
Pseudocode: if orderExists(orderld) {

del eteOrder(orderld) ;
del etel- ineltems(orderld) ;

deleteOrderStatus(orderl d) ;
return true;

Ì
else

return false;
Remarks: No

Index: Op-3
Name: changeOrder
Purpose: To change an order's information
Visibility: External; visible
Input parameters: orderld; newOrder(storeld,userld, creditCard, carrier,

orderDate, status, totalPrice)
Output parameters: None
Pseudocode: if orderExists(orderld)

UPDATE order table SET
order newOrder, WHERE
orderid: orderld;

Remarks: No

Index: Op-4
Name: changeorderStatus
Purpose: To change an order,s status
Visibility: Exrernal; visible
Input parameters: orderld; newStatus
Output parameters: None
Pseudocode: if orderExists(orderld)

Modify database

{

97

(if status : "READY" {
del iverDate : currentDate0 ;

UPDATE order_status_table SET
de liverdate : del iverDate,
status : newStatus, WHERE
orderid: orderld;

)
else if {

updateDate : currentDateQ;
UPDATE order_status_table SET
updatedate : updateDate,
status : newStatus, WHERE
orderid : orderld;

Ì
)

Remarks: only store owners and system manager can modify order
status.

Index:
Name:
Purpose:
Visibility:
Input parameters: orderld; newlineltems
Output parameters: None

op-5
changeLineltems
To change an order's lineltems(add, delete or update item)
External; visible

Pseudocode:

Remarks:

if orderExists(orderld)
delete(newLineltems) ;

insert(newl. ineltems) ;

None

Index: Op-6
Name: findUserOrders
Purpose: To retrieve a user's all orders' Ids from database
Visibilify: External;visible
Input parameters: userld
Output parameters: list of orderlds
Pseudocode: orderldlist: SELECT orderíd FROM order table

WHERE userid: userld);
return orderldl.ist;

Remarks: No

Index: Op-7
Name: findStoreOrders
Purpose: To retrieve a store's all orders' Ids from database
Visibility: External; visible
Input parameters: storeld
Output parameters: list of orderlds

98

Pseudocode:

Remarks:

Index:
Name:
Purpose:
Visibilify:
Input parameters:
Output parameters:

Pseudocode:

Remarks:

Index:
Name:
Purpose:
Visibility:
Input parameters:
Output parameters:
Pseudocode:

Remarks:

Index:
Name:
Purpose:
Visibility:
Input parameters:
Output parameters:
Pseudocode:

Remarks:

Index:
Name:
Purpose:
Visibility:

orderldlist: SELECT orderid FROM order table
WHERE storeid : storeld);

return orderldl-ist;
None

op-8
getOrderDetails
To retrieve an order's information from database
External; visible
orderld
list of (orderld, storeld, userld, creditCard, carier,

orderDate, status, totalPrice)
list : SELECT (orderid, storeid, userid, creditcard,

carrier, orderdate, status, totalprice)
FROM order table
WHERE orderid : orderld);

return list;
None

op-9
getOrderStatus
To retrieve an order's status from database
External; visible
orderld
list of (orderld, updateDate, deliverDate, status)
list : SELECT (orderid, updatedate, deliverdate, status)

FROM order_statusJable
WHERE orderid: orderld);

return list;
None

Op-10
getLineltems
To retrieve an order's items
External; visible
orderld
list of items
list: SELECT (orderid, itemid, quantity, uniprice)
FROM line_item_table WHERE orderid: orderld);
return list;
None

Op-11
getPendingOrders
To retrieve all pending orders' Ids from database
External; visible

99

Input parameters: None
Output parameters: list of orderlds
Pseudocode: orderldlist: SELECT orderid FROM order table

WHERE status - "P");
return orderldlist;

Remarks: None

Methods used internally by the object

Index: In- I
Name: orderExists
Purpose: To check if the oder exists
Visibility: Internal; invisible
Input parameters: orderld
Output parameters: result (true or false)
Pseudocode: string: SELECT orderid FROM order table

WHERE orderrid : orderld;
if (string : null)

return false;
else

return true;
Remarks: None

fndex: In-2
Name: getUniqueOrderld
Purpose: To get a unique oderld
Visibility: Internal; invisible
Input parameters: None
Output parameters: orderld
Pseudocode: orderld: nextseqNum(order table)

return orderld;
Remarks: None

Index: In-3
Name: isValidData
Purpose: To check if the data is valid
Visibilify: Inrernal; invisible
Input parameters: dafa
Output parameters: result (true or false)
Pseudocode: if any input data is invalid

return false;
else

return true;
Remarks: None

100

fndex: In-4
Name: insertOrder
Purpose: To add an order entry to database
Visibility: Internal; invisible
Input parameters: orderld; storeld; userld; creditCard; carrier,

orderDate; status; totalPrice
Output parameters: None
Pseudocode: INSERT INTO order table VALUS

(orderld; storeld; userld; creditCard; carrier,
orderDate; status; totalPrice);

Remarks: None

Index: In-5
Name: insertOrderStatus
Purpose: To add an order_status entry to database
Visibilify: Internal; invisible
Input parameters: orderld; updateDate; deliverDate; status
Output parameters: None
Pseudocode: INSERT INTO order_status_table VALUS

(orderld, updateDate, deliverDate, status);
Remarks: None

Index: In-6
Name: inseftLineltems
Purpose: To add an order_status entry to database
Visibility: Internal; invisible
Input parameters: list of item(orderld, itemld, qty, uniprice)
Output parameters: None
Pseudocode: if array.haveNextQ {

add an item entry to database {
INSERT INTO line item rable VALUS
(orderld, itemld, qry, uniprice);

)
)

Remarks: None

Index: In-7
Name: deleteOrder
Purpose: To remove an order entry from database
Visibility: Internal; invisible
Input parameters: orderld
Output parameters: None
Pseudocode: DELETE FROM order table WHERE

orderid = orderld;
Remarks: None

101

Index:
Name:
Purpose:
Visibility:
Input parameters:
Output parameters:
Pseudocode:

Remarks:

Index:
Name:
Purpose:
Visibility:
Input parameters:
Output parameters:
Pseudocode:

Remarks:

Offer Object:

fndex:
Object Name:
Inheritance:
Imported Objects:
Purpose:
Remarks:
Properties:
Methods:

Input parameters:
Output parameters:
Pseudocode:

Remarks:

Methods of the Object:
Index:

Method to set the attributes:
Index: Con-l
Name: OfferEJB
Purpose: To initialize the attributes of the object
Visibilify: External; visible

In-8
deleteOrderStatus
To remove an order entry from database
Internal; invisible
orderld
None
DELETE FROM order table WHERE

orderid : orderld;
None

In-9
deleteLineltems
To remove all lineltems for an order from database
Internal; invisible
orderld
None
DELETE FROM line_itern_table WHERE

orderid : orderld;
None

obj-3
Offer
lr{one
None
To create an offer.
None
Entify bean

None
None
find datasource connection
offerld : 0 ; offerDate : Calendar. getlnstanceQ ;

None

op-l

102

Name: createOffer
Purpose: To create an offer
Visibility: External;visible
Input parameters: sellerld; buyerld; itemld; offeringprice
Output parameters: No
Pseudocode: if (isValidData(sellerld, buyerld, itemld,

offeringPrice)) {
offerld : getUniqueOfferld0 ;

offerDate : Calendar. getlnstance0;
status: "inactive";
INSERT INTO offer rable VALUES
(offerld, sellerld, buyerld, itemld, offerDate,
offeringPrice, status);
return true;

)
else

return false;
Remarks: An active offering price will be used in order processing

Index: Op-2
Name: DeleteOffer
Purpose: To delete an offer instance
Visibility: External; visible
Input parameters: offerld
output parameters: confirm information (successful or fail)
Pseudocode: ifofferExists(offerld) {

DELETE FROM offer table WHERE
offerid: offerld;
return true;

)
else

return false;
Remarks: None

Index: Op-3
Name: getOfferDetails
Purpose: To retrieve an offer details from database
Visibilify: Exrernal; visible
Input parameters: offerld
output parameters: list of (sellerld,buyerld,itemld,offeringprice)
Pseudocode: if offerExists(orderld) {

Iist : SELECT (sellerld,buyerld,
iteml d, o fferin gP ri ce)
FROM offer table
WHERE offerid : offerld;

return list;

103

)
else

return null;
Remarks: None

Index: Op-4
Name: changeOfferingPrice
Purpose: To update offering price
Visibility: External; visible
Input parameters: offerld; price
Output parameters: None
Pseudocode: if offerExists(offerld) {

UPDATE offer table
SET price: price
WHERE offerid: offerld;
return true;

)
else

return false;
Remarks: None

Index: Op-5
Name: changeofferStatus
Purpose: To update offer status
Visibility: Exrernal; visible
Input parameters: offerld; newStatus
Output parameters: None
Pseudocode: if offerExists(orderld) {

UPDATE offer table
SET status : newStatus
WHERE offirid: offerld;
return true;

Remarks: None
return false;

Methods used internally by the object

Index: In- I
Name: offerExists
Purpose: To check if the offer exists
Visibility: Inrernal; invisible
Input parameters: offerld
Output parameters: result (true or false)

)
else

t04

Pseudocode:

Remarks:

Index:
Name:
Purpose:
Visibility:
Input parameters:
Output parameters:
Pseudocode:

Remarks:

Index:
Name:
Purpose:
Visibility:
Input parameters:
Output parameters:
Pseudocode:

Remarks:

Store Object:

Index:
Object Name:
Inheritance:
Imported Objects:
Purpose:
Remarks:
Properties:
Methods:

Method to set the attributes:
Index:
Name:

string: SELECT offerid FROM offer table
WHERE offewid : offerld;

if (string: null)
return false;

else
return true;

None

In-2
getUniqueOfferld
To get a unique offerld
Internal; invisible
None
offerld
offerld : nextSeqNum(offer table)
return offerld;
None

In-3
isValidData
To check if the data is valid
Internal; invisible
data
result (true or false)
if any input data is invalid

return false;
else

return true;
None

obj-4
Store
None
None
To create a store and provide store information
None
Entity bean

Con-1
StoreEJB

10s

Purpose: To initialize the attributes of the object
Visibilify: External;visible
Input parameters: None
Output parameters: None
Pseudocode: find datasource connection
Remarks: None

Methods of the Object:
Index: Op-l
Name: createStore
Purpose: To create an store and add store information to the system
Visibility: External; visible
Input parameters: storeld; storeName; managerName; address;

PhoneNo; itemCode; email; policy
Output parameters: No
Pseudocode: if (isvalidData(storeld, storeName, managerName,

address, phoneNo, itemCode, email, policy)){
add an entry to database {
INSERT INTO store_rable VALUES
(storeld, storeName, managerName, Address,
PhoneNo, itemCode, email, policy);
return true;

)
else

return false;
Remarks: None

Index: Op-2
Name: Deletestore
Purpose: To delete an store instance
Visibility: External; visible
Input parameters: storeld
output parameters: confirm information (successfur or fair)
Pseudocode: if storeExists(storeld) {

DELETE FROM srore table WHERE
storeid: storeld;
return true;

)
else

return false;
Remarks: None

Index:
Name:
Purpose:
Visibility:

op-3
getStoreDetails
To retrieve an store details from database
External; visible

r06

Input parameters: storeld
Output parameters: list of (storeld, storeName, managerName, address,

phoneNo, itemCode, email, policy)
Pseudocode: if storeExists(orderld) {

list : SELECT (storeid, storename, managername,
address, phoneno, itemcode, email, policy)
WHERE storeid : storeld;

return list;

)
else

return null;
Remarks: None

Index: Op-4
Name: changeStorePolicy
Purpose: To update a store policy
Visibility: External; visible
Input parameters: storeld; policy
Output parameters: None
Pseudocode: if storeExists(storeld) {

UPDATE store_table
SET policy: policy
WHERE storeid : storeld;
return true;

Ì
else

return false;
Remarks: None

Index: Op-5
Name: changeStoreAdress
Purpose: To update a store's address
Visibility: External; visible
Input parameters: storeld; newAddress
Output parameters: None
Pseudocode: ifstoreExists(storeld) {

UPDATE store_table
SET address : newAddress
WHERE storeid : storeld;
return true;

)
else

return false;
Remarks: None

Index: op-6

t07

Name: changeStoreEmail
Purpose: To update a store's email
Visibility: External; visible
Input parameters: storeld; newEmail
Output parameters: None
Pseudocode: if storeExists(storeld) {

UPDATE store_table
SET email: newEmail
WHERE storeid : storeld;
return true;

)
else

return false;
Remarks: None

Index: Op-7
Name: getltemCode
Purpose: To retrieve a store's item code
Visibility: External; visible
Input parameters: storeld
Output parameters: itemCode
Pseudocode: if storeExists(storeld) {

itemCode : SELECT itemcode
FROM store_table
WHERE storeid : storeld;

return itemCode;

Ì
else

return null;
Remarks: None

Methods used internally by the object

Index: In-l
Name: storeExists
Purpose: To check if the store exists
Visibility: Internal; invisible
Input parameters: storeld
Output parameters: result (true or false)
Pseudocode: string: SELECT storeid FROM store table

WHERE storeid : storeld;
if (string: null)

return false;

108

Remarks:

Index:
Name:
Purpose:
Visibility:
Input parameters:
Output parameters:
Pseudocode:

Remarks:

Item Object:

Index:
Object Name:
Inheritance:
Imported Objects:
Purpose:
Remarks:
Properties:
Methods:

Input parameters:
Output parameters:
Pseudocode:
Remarks:

Methods of the Object:
Index:
Name:
Purpose:
Visibilify:
Input parameters:

else
return true;

None

In-2
isValidData
To check if the data is valid
Internal; invisible
data
result (true or false)
if any input data is invalid

return false;
else

return true;
None

obj-s
Item
None
None
To create an item
None
Entity bean

None
None
fi nd datasource connection
None

op-1
createltem
To add an item to the system
External; visible
itemld; productld; listPrice; unitCost;
storeld; status; attr

Method to set the attributes:
Index: Con-l
Name: ItemEJB
Purpose: To initialize the attributes of the object
Visibility: External;visible

109

Output parameters: No
Pseudocode:

if (productExists(productld) &
isValidData(itemld, productld, listPrice,

unitCost, storeld, status, attr)) {
INSERT INTO item table VALUES

(itemld, productld, listPrice,
unitCost, storeld, status, attr);

return true;

)
else {

print("itemld already existed!");
return false;

Ì
Remarks: None

Index: Op-2
Name: deleteltem
Purpose: To delete an item instance
Visibility: External; visible
Input parameters: itemld
output parameters: confirm information (successful or fail)
Pseudocode: if itemExists(itemld) {

DELETE FROM item_table WHERE
itemid: itemld;
return true;

)
else

return false;
Remarks: None

Index: Op-3
Name: getltemDetails
Purpose: To retrieve an item details from database
Visibility: External; visible
Input parameters: itemld
Output parameters: list of (itemld, productld, listprice,

unitCost, storeld, status, attr);
Pseudocode: if itemExists(itemld) {

list: SELECT (itemid, productid, listprice,
unitcost, storeid, status, attr)
FROM item_table
WHERE iteid: itemld;

return list;
Ì
else

lr0

return null;
Remarks: None

Index: Op-4
Name: getPruductld
Purpose: To retrieve an item's productld
Visibility: External; visible
Input parameters: itemld
Output parameters: Pruductld
Pseudocode: if itemExists(itemld) {

productld : SELECT productid
FROM item_table
WHERE itemid: itemld;

return productld;

)
else

return null;
Remarks: None

Index: Op-5
Name: getltemPrice
Purpose: To retrieve an item's list price
Visibility: External;visible
Input parameters: itemld
Output parameters: listPrice
Pseudocode: if itemExists(itemld) {

listPrice : SELECT listprice
FROM item_table
WHERE itemid: itemld;

return listPrice;
)
else

return null;
Remarks: None

Index: Op-6
Name: getltemCost
Purpose: To retrieve an item's unit cost
Visibility: External; visible
Input parameters: itemld
Output parameters: unitCost
Pseudocode: if itemExists(itemld) {

unitCost : SELECT unitcost
FROM item_table
WHERE itemid: itemld;

return unitCost;

ltl

)
else

return null;
Remarks: None

Index: Op-7
Name: getltemStatus
Purpose: To retrieve an item's status
Visibility: External; visible
Input parameters: itemld
Output parameters: status
Pseudocode: if itemExists(itemld) {

status = SELECT status
FROM item_table
WHERE itemíd: itemld;

return unitCost;
)
else

return null;
Remarks: None

Index: Op-8
Name: changeltemstatus
Purpose: To update an item's status
Visibility: External; visible
Input parameters: itemld; newStatus
Output parameters: None
Pseudocode: if itemExists(itemld) {

UPDATE item_rable SET
status : newStatus WHERE
itemid: itemld;
return true;

)
else

return false;
Remarks: None

Index: Op-9
Name: changeltemPrice
Purpose: To update an item's price
Visibility: External; visible
Input parameters: itemld; newPrice
Output parameters: None
Pseudocode: if itemExists(itemld) {

UPDATE irem_rable
SET listprice : newPrice

112

WHERE itemid: itemld;
return true;

return false;
Remarks: None

Index: Op-10
Name: changeltemCost
Purpose: To update an item's status
Visibility: External; visible
Input parameters: itemld; newCost
Output parameters: None
Pseudocode: if itemExists(itemld) {

UPDATE item_table
SET unitcosl: newCost
WHERE itemid: itemld;
return true;

)
else

return false;
Remarks: None

Methods used internally by the object

Index: In- I
Name: itemExists
Purpose: To check if the item exists
Visibility: Internal; invisible
Input parameters: itemld
Output parameters: result (true or false)
Pseudocode: string: SELECT itemid FROM itern_table

WHERE itemid : itemld;
if (string : null)

return false;
else

return true;
Remarks: None

Index: In-Z
Name: productExists
Purpose: To check if the productld exists
Visibility: Internal; invisible
Input parameters: productld
Output parameters: result (true or false)

)
else

113

Pseudocode: string: SELECT productid FROM product_table
WHEREproductid : productld;

if (string: null)
return false;

else

return true;
Remarks: None

Index: In-3
Name: isValidData
Purpose: To check if the data is valid
Visibility: Internal; invisible
Input parameters: data
Output parameters: result (true or false)
Pseudocode: if any input data is invalid

return false;
else

return true;
Remarks: None

Product Object:

Index: Obj-6
Object Name: Product
Inheritance: None
Imported Objects: None
Purpose: To create a product instance
Remarks: None
Properties: Entity bean
Methods:

Method to set the attributes:
Index: Con-l
Name: ProductEJB
Purpose: To initialize the attributes of the object
Visibility: External; visible
Input parameters: None
Output parameters: None
Pseudocode: find datasource connection
Remarks: None

Methods of the Object:
Index: Op-l
Name: createCategory

t14

Purpose: To add an category instance to the system
Visibility: External; visible
Input parameters: categoryId; name; desc
Output parameters: No
Pseudocode: if (isValidData(categoryld, name, desc)) {

INSERT INTO category_table VALUES
(categoryld, name, desc);

return true;

)
else {

return false;

)
Remarks: None

Index: Op-l
Name: createProduct
Purpose: To add an product instance to the system
Visibility: External;visible
Input parameters: productld; supplierld; catagoryld; name; desc

storeld; status; attr
Output parameters: No
Pseudocode: if (categoryExists(categoryld) &

i sValidData(productld, suppl ierld,
categoryld, name, desc)) {

INSERT INTO irem_table
VALUES (productld, supplierld, catagoryld,

name, d.Ð;
return true;

Ì
else {

ì
return false;

I
Remarks: None

Index: Op-3
Name: deleteCategory
Purpose: To delete an gategory instance
Visibility: External; visible
Input parameters: categoryld
output parameters: confirm information (successful or fail)
Pseudocode: if categoryExists(itemld) {

DELETE FROM caregory_rable
WHERE catid : caregoryId;
return true;

)
else

ll5

return false;
Remarks: None

Index: Op-4
Name: deleteProduct
Purpose: To delete an product instance
Visibility: External; visible
Input parameters: productld
Output parameters: Confirm information (successful or fail)
Pseudocode: if productExists(productld) {

DELETE FROM product table
WHERE pr o duc t id : productld;
return true:

)
else

return false;
Remarks: None

Index: Op-5
Name: getCategoryDetails
Purpose: To retrieve an category details from database
Visibility: External;visible
Input parameters: catld
Output parameters: list of (catld, name, desc);
Pseudocode: ifcategoryExisrs(catld) {

list: SELECT (cateld, name, desc)
WHERE catid: catld;

return list;

)
else

return null;
Remarks: None

Index: Op-6
Name: getProductDetails
Purpose: To retrieve an product details from database
Visibility: External; visible
Input parameters: productld
Output parameters: list of (catld, supplier, category, name, desc);
Pseudocode: if productExists(productld) {

list: SELECT (productid, supplier, catgory,
name, desc)

FROM product table
WHERE pr o ductid : productld;

return list;
)

ll6

else

return null:
Remarks: None

fndex: Op-7
Name: getSupplier
Purpose: To retrieve a product's supplier
Visibility: External; visible
Input parameters: productld
Output parameters: supplier
Pseudocode: if productExists(productld) {

supplier : SELECT supplier
FROM product table
WHERE pr o ductid : productld;

return supplier;

)
else

return null;
Remarks: None

Index: Op-8
Name: getCategory
Purpose: To retrieve a product's category
Visibility: External;visible
Input parameters: productld
Output parameters: category
Pseudocode: if productExists(productld) {

category : SELECT category
FROM product table
WHERE pr o duct id : productld;

return category;
\t
else

return null;
Remarks: None

Index: Op-9
Name: changeSupplier
Purpose: To update a product,s supplier
Visibility: External;visible
Input parameters: productld; newSupplier
Output parameters: None
Pseudocode: if productExistsþroductld) {

UPDATE product table SET
supplier: newSupplier
WHERE pr o ducti d : productld;

117

return true;

)
else

return false;
Remarks: None

Index: Op-10
Name: changeCategory
Purpose: To update a category's name and description
Visibility: External; visible
Input parameters: catld; newName; newDesc
Output parameters: None
Pseudocode: ifcategoryExists(catld) {

UPDATE category_table SET
name: newName, desc: newDesc
WHERE itemid: itemld;
return true;

)
else

return false;
Remarks: None

Index: Op-lI
Name: changeProduct
Purpose: To update a product's name or description
Visibility: External; visible
Input parameters: productld; newName; newdesc
Output parameters: None
Pseudocode: if productBxists(productld) {

UPDATE product table SET
name : newName, desc : new Desc
WHERE pr o duct i d : productld;
return true;

)
else

return false;
Remarks: None

Methods used internally by the object

Index: In-l
Name: categoryExists
Purpose: To check if the item exists
Visibilify: Internal; invisible
Input parameters: catld

lt8

Output parameters: result (true or false)
Pseudocode: string : SELECT catid FROM category_table

WHERE catid : catld;
if (string: null)

return false;
else

return true;
Remarks: None

Index: In-2
Name: productExists
Purpose: To check if the productld exists
Visibility: Internal; invisible
Input parameters: productld
Output parameters: result (true or false)
Pseudocode: string: SELECT productid FROM product table

WHEREproductid : productld;
if (string : null)

return false;
else

return true;
Remarks: None

Index: In-3
Name: isValidData
Purpose: To check if the data is valid
Visibility: Internal; invisible
Input parameters: data
Output parameters: result (true or false)
Pseudocode: if any input data is invalid

return false;
else

return true;
Remarks: None

Inventory Object:

fndex: Obj-7
Object Name: Inventory
Inheritance: None
Imported Objects: None
Purpose: To create an item inventory
Remarks: None
Properties: Entify bean

119

Methods:

Method to set the attributes:
Index: Con-l
Name: InventoryEJB
Purpose: To initialize the attributes of the object
Visibility: External; visible
Input parameters: None
Output parameters: None
Pseudocode: find datasource connection
Remarks: None

Methods of the Object:
Index: Op-l
Name: createlnventory
Purpose: To add an item inventory to the system
Visibility: External; visible
Input parameters: itemld; qty
Output parameters: None
Pseudocode: if itemExits(itemld) {

INSERT INTO inventory_table VALUES
(itemld, qty);
return true;

)
else {

print("no such item exists, create the item fìrst,,);
return false;

)
Remarks: None

Index: Op-2
Name: deletelnventory
Purpose: To delete an item inventory instance
Visibility: External; visible
Input parameters: itemld
Output parameters: Confirm information (successful or fail)
Pseudocode: if itemExists(itemld) {

DELETE FROM invenrory_table
WHERE itemid: itemld'
return true;

return false;
Remarks: None

Index: Op-3

Ì
else

t20

Name: getQuantity
Purpose: To retrieve an item quantity from inventory
Visibitity: External; visible
Input parameters: itemld
Output parameters: qty
Pseudocode: if itemldExists(itemld) {

gty = SELECT quqntity
FROM inventory_table
WHERE itemid = itemld;

Return qty;

)
else

return -l;
Remarks: None

Index: Op4
Name: reduceQuantity
Purpose: To reduce an item inventory
Visibility: External; visible
Input parameters: itemld; num
Output parameters: qty
Pseudocode: if iternldExists(itemld) {

oldQty = gerQty(itemld);

9tY=oldQty-num;
if (qty > 0) {

createlnventory(itemld, qty) ;

return qty;

Ì

return -l;
Remarks: None

Index:. Op-5
Name: addQuantity
Purpose: To increase an item inventory
VisÍbility: External; visible
Input parameters: itemld; num
Output parameters: qty
Pseudocode: if itemldExists(itemld) {

oldQty = gerQry(iremld);

9tY=oldQty+num;
createlnventory(itemld, qty) ;

return qty;

)
else

Ì
. else

t2t

return -l;
Remarks: None

Methods used internaìly by the object

Index: In-l
Name: itemExists
Purpose: To check if the item exists
Visibility: Internal; invisible
Input parameters: itemld
Ouþut parameters: result (true or false)
Pseudocode: string - SELECT itemid

FROM inventory_table
WHERE itemid = itemld;

if (string = null)
returq false;

else

return true;
Remarks: None

CatalogDao Object:

Index: Obj-8
Object Name: CatalogDao
Inheritance: None
Imported Objects: None
Purpose: To create an object for other object to retrieve

category, product and item information from
database by search keys

Remarks: The objecido not rnoáify dut
Properties: Java class that encapsulates SQL calls
Methods:

Method to set the attributes:
Index: Con-l
Name: CatalogDao
Purpose: To initialize the attributes of the class
Visibility: External; visible
Input parameters: None
Ouþut parameters: None
Pseudocode: find datasource connection

122

Methods of the Object:
Index:
Name:
Purpose:
Visibility:
Input parameters:
Output parameters:
Pseudocode:

Remarks:

Index:
Name:
Purpose:
Visibilify:
Input parameters:
Output parameters:
Pseudocode:

Remarks:

Index:
Name:
Purpose:
Visibility:
Input parameters:
Output parameters:

Pseudocode:

Remarks:

Index:
Name:
Purpose:
Visibility:
Input parameters:
Output parameters:

op-1
getCategory
To retrieve a category details
External; visible
catld
list of (catld, name, desc)
list: SELECT (catld, name, desc)

FROM category_table
WHERE catid: catld;

return list;
None

op-2
getProduct
To retrieve a product details from database
External; visible
productld
list of (catld, supplier, category, name, desc);
list: SELECT Qtroductid, supplier, catgory,

name, desc)
FROM product table
WHERE pr o ducti d : productld;

return list;
None

op-3
getltem
To retrieve an item details from database
External; visible
itemld
list of (itemld, productld, listPrice,

unitCost, storeld, status, attr);
list: SELECT (itemid, productid, listprice,

unitcost, storeid, síatus, attr)
FROM item_table
WHERE iteid: itemld;

return list;
None

op-4
getCategories
To retrieve all category
External; visible
None
Iist of catlds

123

Pseudocode: list: SELECT catid FROM category_table;
return list;

Remarks: None

Index: Op-5
Name: getProducts
Purpose: To retrieve the products of a category from database
Visibility: External; visible
Input parameters: catld
Output parameters: list of supplierlds
Pseudocode: Iist: SElECTproductid

FROM product_table
WHERE catid: catld;

return list;
Remarks: None

Index: Op-6
Name: getltems
Purpose: To retrieve an item details from database
Visibility: External; visible
Input parameters: productld
Output parameters: list of itemlds
Pseudocode: list: SELECT itemid

FROM item_table
WHERE iteÌd: itemld;

return list;
Remarks: None

Index: Op-7
Name: searchProductsByName
Purpose: To retrieve products by product name
Visibility: External; visible
Input parameters: keyWords
output parameters: list of (itemld, listPrice, store, productld, productName,

Suppl ier, productDesc)
Pseudocode: list: SELECT (itemid, rístprice, store, a.productid,

FR'M it"^ _t#: I #:,^!::{ 1itr:),
WHERE a.productld : b.productld and

b.productid in (SELECT product from
product table

WHERE lower(name) like key'Word);
return list;

Remarks: None

Index: Op-8
Name: searchProductsByCatName

124

Purpose:
Visibility:
Input parameters:
Output parameters:

Pseudocode:

Remarks:

Index:
Name:
Purpose:
Visibilify:
Input parameters:
Output parameters:

Pseudocode:

Remarks:

Index:
Name:
Purpose:
Visibility:
Input parameters:
Output parameters:

Pseudocode:

To retrieve products by category name
External; visible
keyWords
list of (itemld, listPrice, store, productld, productName,

Supplier, productDesc)
list: SELECT (itemid, listprice, store, a.productid,

name,supplier, desc)
FROM item_table a, product table b
WHERE a.productld : b.productld and

b.productid in (SELECT product from
product table c, category_table d

WHERE c.category: d.catid and
low er (d. name) like keyWord) ;

return list;
None

op-9
searchProductsBySupplier
To retrieve products by supplier name
External; visible
keyWords
list of (itemld, listPrice, store, productld, productName,

Supplier, productDesc)
list: SELECT (itemid, listprice, store, a.productid,

name, supplier, desc)
FROM item_table a, product table b

WHERE a. productld : b. pr o ductld and b.pro ductid
irz (SELECT productid from product table c,

supplier table d
WHERE c.productid : d.productid and

low er (d. name) like keyWord) ;

return list;
None

Op-10
searchProductsB yStore
To retrieve products by store name
External; visible
keyWords
list of (itemld, listPrice, store, productld, productName,

Suppl ier, productDesc)
list: SELECT (itemid, listprice, store, a.productid, name,

supplier, desc) FROM item_table a, product table b
WHERE a.productld: b.productld and a.itemid

rn (SELECT itemid from item table c, store table d
WHERE c.itemid: d.itemã and

low er (d. name) like keyWord) ;

125

Method to set the attributes:
Index: Con-l
Name: UserDao
Purpose: To initialize the attributes of the class
Visibility: External; visible
Input parameters: None
Output parameters: None
Pseudocode: find datasource connection

Methods of the Object:
Index: Op-l
Name: getCosumer
Purpose: To retrieve a consumer,s details
Visibility: External;visible
Input parameters: userld
Output parameters: list of (userld, name, address, phone, email,

level, languagePref, favCategory)
Pseudocode: list: SELECT (userid, name, address, phone, email,

I ev e l, Iangua ge pr ef, fav c ate gory)
FROM consumer table
WHERE userid: userld;

j return list;
i Remarks: None

return list;
Remarks: None

UserDao Object:

Index: obj-e
Object Name: UserDao
Inheritance:
Imported Objects: None
Purpose:

Remarks:
Properties:
Methods:

Index:
Name:
Purpose:
Visibility:

None

To create an object for other object to retrieve
users' (consumers, suppliers, and store owners)
information from database
The object do not modify data
Java class that encapsulates SQL calls

op-2
getSupplier
To retrieve a supplier details from database
External; visible

126

Input parameters: supplierld
Output parameters: list of (supplierld, name, address, phone, email,policy)
Pseudocode: list: SELECT (supplierld, name, address, phone,

e mai l, I an gua gepref, po I i cy)
FROM supplier table
WHERE supplierid : supplierld;

return list;
Remarks: None

Index: Op-3
Name: getOwner
Purpose: To retrieve a store owner's details from database
Visibility: External; visible
Input parameters: userld
Output parameters: list of (userld, name, address, phone, email,policy)
Pseudocode: list: SELECT (userid, name, storeid,shares, address,

phone, email, brieffacts, languageprefl
FROM owner table
WHERE userid: userld;

return list;
Remarks: None

Index: Op-4
Name: getStore
Purpose: To retrieve a store's details from database
Visibility: External;visible
Input parameters: storeld
output parameters: list of (storeld, storeName, managerName, address, phone,

pseudocode: risr: 3Ëi'rd;T:l#ii?:"i:)"-e, manasername,
ddress, phone, email, policy, itemcode)

FROM store_table
WHERE storeid : storeld;

return list;
Remarks: None

Index: Op-5
Name: getCosumers
Purpose: To retrieve the consumers at same favorite category
Visibility: External; visible
Input parameters: catld
Output parameters: list of userlds
Pseudocode: list: SELECT userid

FROM consumer table
WHERE/a v c ate gory : catld;

return Iist;
Remarks: None

127

Index: Op-6
Name: getOwners
Purpose: To retrieve a store owners from database
Visibility: External;visible
Input parameters: storeld
Output parameters: Iist of ownerlds
Pseudocode: list: SELECT userid

FROM owner table
WHERE storeid : storeld;

return list;
Remarks: None

Index: Op-7
Name: searchConsumersByName
Purpose: To retrieve consumer details by name
Visibilify: External; visible
Input parameters: keyV/ords
Output parameters: list of (userld, name, email, favCategory)
Pseudocode: list = ELECT (userid, name, email, favcat)

FROM consumer table
WHERE lower(name) like keyWord;

return list;
Remarks: None

Index: Op-8
Name: searchsupplierByName
Purpose: To retrieve supplier details by name
Visibility: External; visible
Input parameters: keyWords
Output parameters: list of supplierlds
Pseudocode: Iist: SELECT supplierid

FROM supplier table
WHERE lower(nante) like keyWord);

Remarks: None

Index: Op-9
Name: searchsupplierByproduct
Purpose: To retrieve supplier by product
Visibility: External; visible
Input parameters: productld
Output parameters: list supplierlds
Pseudocode: list: SELECT supplierid

FROM supplier table a, product table b
WHERE a.supplierid = b.supplier and

b.productid : productld;
return list;

t28

Remarks: None

Index: Op-10
Name: searchStoreByltem
Purpose: To retrieve store by item
Visibility: External; visible
Input parameters: itemld
Output parameters: list of storelds
Pseudocode: list: SELECT storeid

FROM store_table a, item_table b
WHERE a.storeid: b.store and

b.itemid: itemld;
return list;

Remarks: None

Index: Op-ll
Name: searchOwnersByName
Purpose: To retrieve consumer details by name
Visibility: External; visible
Input parameters: keyWords
Output parameters: list of (userld, name, email, favCategory)
Pseudocode: list: SELECT (userid, name, email, store)

FROM owner table a, store_table b
WHERE lower(a.name) like keyWord;

return Iist;
Remarks: None

Consumer Object:

Index: obj- 1o
Object Name: Consumer
Inheritance: None
Imported Objects: Account; Order;
Purpose:
Remarks:
Properties:
Methods:

Methods of the Object:

Methods from Account:
registration
login

To create an object for consumer
Holds main operations for consumer
Stateless session bean

129

logout
getAccountDetails
changeAccount

Methods from Order:
createOrder
deleteOrder
changeOrder
changel.ineltes
getOrderDetails
getlineltems
find userOrders

Index: Op-l
Name: getReferences
Purpose: To get account and order references
Visibility: External;visible
Input parameters: None
Output parameters: None
Pseudocode: if (accountReference : null) {

obRef: lookup the reference ofaccount;
accountHomeRef : portableRemoteObject.

narrow(obRef, AccountHome.class);
)
if (orderReference : null) {

obRef: lookup the reference oforder;
orderHomeRef = portableRemoteObject.

narrow(obRef, OrderHome.class) ;

ì
Remarks: None

Index: Op-Z
Name: addConsumer
Purpose: To add a consumer's information to the system
Visibility: External; visible
Input parameters: name; address;phone; email; Ievel;

lan guagePref; favCategory
Output parameters: None
Pseudocode: userld : context.getcallerprincipal0.getName0;

INSERT INTO consumer table
VALUES (userld, nu-.,ãdd.ess, phoneNo, email, level,

langus gePref, fav Cate gory)
Remarks: None

Index:
Name:
Purpose:

op-3
getCosumerdetails
To retrieve a consumer's details

130

Visibility: External;visible
Input parameters: None
Output parameters: list of (userld, name, address, phone, email,

level, languagePref, favCategory)
Pseudocode: list: SELECT (userid, name, address, phone, email,

I ev e l, I an guagepr ef, fav c a t e gory)
FROM consumer table WHERE
us er id : context. getCallerPrincipal0.getName0;

return list;
Remarks: None

Index: Op-4
Name: changeConsumer
Purpose: To change a consumer's information
Visibility: External; visible
Input parameters: newConsumer(name, address, phone, email,

level, languagePref, favCategory)
Output parameters: None
Pseudocode: UPDATE consumer table

SET name: name, address: address, phone: phoneNo,
e m ai I : emai l, lev e I : lev el, fav c at : fav Category,
I a n gu a g e pr ef : I anguagePref

WHERE userid : context.getCallerPrincipal0.getName0;
Remarks: None

Owner Object:

Index: Obj-ll
Object Name: Owner
Inheritance: None
Imported Objects: Account; Order; Store; Inventory
Purpose: To create an object for owner
Remarks: Holds main operations for owner
Properties: Stateless session bean
Methods:

Methods of the Object:

Methods from Account:
regrstratron
login
logout
getAccountDetails

131

Methods from Order:

Methods from Store:

Methods from Inventory:

Methods from ltem:

Index:
Name:
Purpose:
Visibility:
Input parameters:
Output parameters:
Pseudocode:

changeAccount

createOrder
deleteOrder
changeOrderStatus
getOrderDetails
getl-ineltems
findStoreOrders

getStoreDetails
changePolicy
changeAddress
changeEmail

addlnventory
reducelnventory

getltemDetails
getPruductld
changeltemCost
changeltemPrice

op-1
getReferences
To get account and order references
External; visible
None
None
if (accountReference: null) {

obRef: lookup the reference ofaccount;
accountHomeRef = portableRemoteObj ect.

narrow(obRef, AccountHome.class);
)
if (orderReference : null) {

obRef: lookup the reference oforder;
orderHomeRef : portableRemoteObj ect.

narrow(obRef, OrderHome.class);
)
if (storeReference : null) {

obRef : lookup the reference of store;
storeHomeRef : portableRemoteObj ect.

narrow(obRef, StoreHome.class);
)
if (inventoryReference : null) {

132

obRef : lookup the reference of inventory;
inventoryHomeRef : portableRemoteObject.

narrow(obRef, InventoryHome.class);
)
if (itemReference : null) {

obRef : lookup the reference of item;
itemHomeRef : portableRemoteObj ect.

narrow(obRef, ItemHome.class);
)

Remarks: None
Index: Op-2
Name: addOwner
Purpose: To add an owner's information to the system
Visibility: External;visible
Input parameters: name; store; shares; address; phoneNo;

email; brieffact; languagePref
Output parameters: None
Pseudocode: userld : context.getcallerPrincipal0.getName0;

INSERT INTO consumer table
VALUES (userld, name, store, shares, address, phoneNo,

Remarks: None
email' languagePref)

Index: Op-3
Name: getOwnerdetails
Purpose: To retrieve a consumer's details
Visibility: External; visible
Input parameters: None
output parameters: list of (userld, name, store, shares, address, phoneNo,

pseudocode: ri,t: sËlËL+'¿:iT:::',':it:?l:::,"?ro,n,, address,
phone, email, level, Ianguagepref, favcat)

FROM owner table WHERE
us erid : context.getCal lerPrincipal0. getName0;

return Iist;
Remarks: None

Index: Op-4
Name: changeOwner
Purpose: To change an owner,s information
Visibility: External;visible
rnput parameters: newowner(name, store, shares, address, phoneNo,

emai l, briefFact, languagePref)
Output parameters: None
Pseudocode: UPDATE consumer table

r33

SET name : name, store : stote, shares : shares,
address: address, phone: phoneNo,
email: email, languagepref : languagePref,

WHERE userid : context.getCallerPrincipal0.getName0;
Remarks: None

Index: Op-5
Name: getltems
Purpose: To retrieve items of a store
Visibility: External; visible
Input parameters: None
Output parameters: list of itemlds
Pseudocode: userid : context.getCallerPrincipal0.getName0;

storeld : SELECT storeid
FROM owner table
WHERE userid: userid;

list: SELECT (itemid, productid, listprice,
unitcost, storeid, status, attr)

FROM item_table
WHERE storeid : storeld;

return list;
Remarks: None

ShoppingCart Object:

Index: Obj-12
Object Name: ShoppingCart
Inheritance: None
Imported Objects: None
Purpose: To browse through the catalog or search for

products and to modiô/ and hold an order instance
temporally

Remarks: None
Properties: Stateless session bean
Methods:

Method to set the attributes:
Index: Con-l
Name: ShoppingCartEJB
Purpose: To initialize the attributes of the class
Visibility: External; visible
Input parameters: None
Output parameters: cart

134

Pseudocode:

Methods of the Object:
Index:
Name:
Purpose:
Visibility:

cart: new HashMapQ;

op-l
createShoppingCart
To add items to a cart
External; visible

Input parameters: cartl
Output parameters: HashMap cart
Pseudocode:

Remarks:

create a cart (with or without items) for an order
cart : cartl.clone0
None

Index: Op-2
Name: getDetails
Purpose: To retrieve all item details in a cart
Visibility: External; visible
Input parameters: cart
Output parameters: list of cartltems
Pseudocode: if cart.hasNexQ {

itemld: cart.next0;
qtyNeeded : cart.get(itemld);
item : catalogDao. getltem(itemld) ;

productld : item. getProductld0 ;

product : catalogDao.getProduct(productld);
productName : product.getNameQ;
cartltem : new Cartltern(itemld, productld,

productName, item. getAttribute0,
qtyNeeded, item. getl-istCost0) ;

items.add(cartltem);

)
return items;

Remarks: None

Index: Op-3
Name: addltem
Purpose: To add an item to a cart
Visibility: External; visible
Input parameters: itemld; qty
Output parameters: None
Pseudocode: cart.put(itemld, qty);
Remarks: None

Index: Op-4
Name: deleteltem
Purpose: To delete an item from a cart

135

Visibility:
Input parameters:
Output parameters:
Pseudocode:
Remarks:

Index:
Name:
Purpose:
Visibilify:
Input parameters:
Output parameters:
Pseudocode:

Remarks:

Index:
Name:
Purpose:
Visibility:
Input parameters:
Output parameters:
Pseudocode:
Remarks:

External; visible
itemld
None
cart.remove(itemld);
None

op-5
updateltemQty
To update the quantity of an item
External; visible
itemld;qty
None
cart.remove(itemld);
cart.put(itemld, qty);
None

op-6
empty
To clear a cart
External; visible
cart
None
carl.clear0;
None

in a cart

136

