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Abstract

The design of fibre-reinforced polymer reinforced concrete (FRP-RC) is typically

governed by serviceability limit state requirements rather than ultimate limit state

requirements as conventional reinforced concrete is. Thus, a method is needed that can

predict the expected service load deflections of fibre-reinforced polymer (FRp)

reinforced members with a reasonably high degree of accuracy.

A need to develop an accurate equation which can predict the concrete contribution to

shear has also arisen as a result of the differences between the behaviour of FRP-RC

members and conventional steel reinforced concrete (RC) members. The objective of the

thesis is to evaluate existing formulas for predicting the deflection and concrete shear

capacity of FRP reinforced concrete beams.

An experimental investigation was undertaken to test FRP-RC beams which contained no

stirrups and failed in shear. These beams allowed for a direct calculation of the concrete

contribution to shear to be made since no stirrups were present. Based upon the

experimental results, code equations of determining the concrete contribution to shear

and the midspan deflection of the beams were evaluated. Here, it was found that the

JSCE equation was the most accurate for predicting the concrete contribution to shear,

while the CSA 5806-02 was the most accurate for predicting the deflection behaviour.

A parametric study was completed to increase the number of members being analyzed,.

Eleven methods of deflection calculation are compared to the experimental deflection of



197 beams tested by other investigators, while eight methods of shear calculation are

compared to the experimental failure load of 89 beams that failed in shear and did not

contain stirrups. These beams are reinforced longitudinally with aramid FRp (AFRp),

glass FRP (GFRP), or carbon FRP (CFRP) bars, have different reinforcement ratios,

geometric and material properties. All beams were tested under monotonicalty applied

load in four point bending configuration. The analysis revealed that the equation

proposed in this thesis is well suited to deflection calculation at the service load level,

while the equation proposed by the JSCE is well suited for calculating the concrete shear

capacity of a member.
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Notation

The following symbols are used in this thesis

AFRP : aramid f,rbre-reinforced polymer

Ai,p : area of FRP reinforcement in the longitudinal direction [mm2]

A, : area of steel reinforcement in the longitudinal direction [--']
a : shear span [mm]

ald : slenderness ratio

b : beam width [mm]

CFRP : carbon fibre-reinforced polymer

c : depth of neutral axis [mm]

d : effective depth [mm]

d6 : bar diameter [mm]

E. : modulus of elasticity of concrete [MPa]

Errp : modulus of elasticity of FRP [MPa]

E, : modulus of elasticity of steel [MPa]

FRP : fibre-reinforced polymer

f " 
: concrete compressive strength [MPa]

fr,p" : ultimate strength of FRP reinforcement [MPa]

f, : modulus of rupture of concrete [MPa]

fuc¿ compressive strength coefficient used in the JSCE (1997) equation for

shear [MPa]

fy : yield strength of steel reinforcement [MPa]

GFRP : glass fibre-reinforced polymer

xl11



h : beam height [mm]

I : moment of inertia [--o]

I., moment of inertia of cracked section transformed to concrete [mma]

I. effective moment of inertia l--o]

Is moment of inertia of gross section [rn-o]

IelI", : ratio of the gross moment of inertia to the cracked moment of inertia

11 : moment of inertia of section transformed to concrete [mma]

ku slenderness coefficient used in Razaçur et al. (2004) shear equation

k, : size effect coefficient used in Razaqpur et al. (2004) shear equation

L : span of the beam [mm]

L., : uncracked span of the beam [mm]

LVDT : linear variable displacement transducer

Mu : applied moment [Nmm]

M., : cracking moment [Nmm]

M¡ factored moment [Nmm]

Mn nominal moment capacity [Nmm]

Mr.* : service moment [Nmm]

Mult : ultimate moment capacity [Nmm]

m order coefficient used in Toutanji and Saafi (2000) I. equation

n : number of samples present in statistical analysis

P : applied load [N]

P., : cracking load [N]

P** failure load fNl
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Pr.* : seruice load [N]

RC reinforced concrete

V, : concrete shear capacity [N]

V¡ factored shear force [N]

yt distance from the centroid of the beam to outmost compressive fibre [mm]

cx,1 = CSA 423.3 -94 (1998) concrete stress block factor

P = reduction coefficient used in ACI 440.1R-03 (2003), Yost et al. (2003),

Proposed ACI440.1R (2004), and Mota deflection equations

gr = CSA 423.3 -94 (1998) concrete stress block factor

Þr,ecr = ACI318 (1999) concrete stress block factor

Þ¿ = sizeeffectcoefficientusedinJSCE (1997)shearequation

Fs = FRP type coefficient used in Mota deflection equation

Þn = FRP modulus coeffrcient used in JSCE (1997) shear equation

Fo = prestressing coefficient used in JSCE (1997) shear equation

Þo : relative reinforcement coefflrcient used in Mota deflection equation

Tsrv : density of the beam [N/mm3]

A : immediate deflection under a given load [mm]

Ëc : strain in the extreme concrete compressive fibre

t.' : strain in the extreme concrete compressive fibre at peak concrete stress

tcu : strain in the extreme concrete compressive fibre when concrete crushing

begins

trrp : strain in the FRP reinforcement



tfrps : strain in the FRP reinforcement at the service load level

tapu rupture strain in the FRP reinforcement

Ey : strain in the steel reinforcement when yielding commences

I : coefficient used in the CSA 5806-02 (2002) deflection equation

lrrp : FRP modular ratio

K : ratio of the neutral axis at cracking to the effective depth

pv : mean of the ratios in the natural log scale

p : reinforcement ratio

puul : balanced reinforcement ratio

Pr'p : FRP reinforcement ratio

plpvut relative reinforcement ratio

Ps = steel reinforcement ratio

oy standard deviation of the ratios in the natural log scale

{serv : curvature in the member at the service load level [rn--t]

purt : curyature in the member atthe ultimate load level [tnrn-t]
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Chapter 1 - lntroduction

1.1 - General

Fibre-reinforced polymer (FRP) reinforcing bars are currently available as a substitute for

steel reinforcement in concrete structures that may be vulnerable to attack by aggressive

corrosive agents. In addition to superior durability, FRP reinforcing bars have a much

higher strength than conventional mild steel. However, FRP bars exhibit elastic stress-

strain behaviour and a brittle failure. This is quite different from the behaviour of steel, as

can be seen in Figure 1.1. Thus, different design methodologies are required than for

conventional reinforced concrete.

2500
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CFRP
GFRP
steel
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0 0.005 0.01 0.015 0.o2
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Figure l.l - Stress versus Strain Curves for Steel and FRP
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1.2 - Objectives

With the acceptance of FRP materials as a viable substitute for steel reinforcement in

reinforced concrete (RC) structures, the need to develop a code with accurate equations

for designing concrete structures reinforced with FRP materials has arisen. The main

objective of this thesis is to aid in the progression of a design code for FRP reinforced

concrete (FRP-RC). The specific objectives of this thesis are:

l. To determine an equation that is both accurate and conservative for predicting the

immediate deflection of FRP-RC beams.

2. To determine an equation that is both accurate and conservative for predicting the

concrete contribution to shear strength.

1.3 - Scope

The scope of this investigation was limited to the shear and flexural behaviour of

reinforced concrete beams. The research program consisted of an experimental

investigation of FRP-RC beams. A database containing information from 197 FRP-RC

members was assembled and statistical analysis of the deflection behaviour of the

members was performed. Similarly, a database containing information from 89 FRP-RC

membets, which failed in shear and contained no stirrups, was assembled and statistical

analysis of the concrete shear capacity of the members was performed. Both steel and

FRP reinforced concrete beams have been used in the experimental program and the

beams were tested under monotonic four-point bending. Fatigue performance and long-

term deflection of the reinforced beams have not been investigated. The shear behaviour

of beams containing transverse reinforcement has also not been considered, nor have



shear deformations. Furthermore, to avoid the effects of arching action in the shear

analysis, only slender members were considered. Based upon the results of the parametric

study, existing models that predict the shear strength and deflection behaviour were

evaluated.



Ghapter 2 - Background

2.1 - Shear Capacity of Concrete

A well designed reinforced concrete beam should never fail in shear when exposed to the

ultimate failure conditions as shear failures provide very little warning of an impeding

failure and can be quite violent in nature. A shear failure can be characterized by a

diagonal crack propagating through the entire depth of a beam towards the applied load

and can be avoided by providing adequate transverse reinforcement in a beam. An

example of a shear failure can be seen in Figure 2.1 .

Figure 2.1 - Shear Failure in Beam # 4L-C

2.1.1 - Goncrete Shear Gapacity of Gonventional RC Beams

Given the complexity of the nature of shear failures, the shear capacity of a reinforced

concrete beam is typically found empirically. Since the various codes all have slightly

different equations for determining the shear capacity of a beam, several codes were used

to determine the shear capacity of the beams and the accuracy of each formula when

4
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compared to experimental results. Various equations proposed by independent

researchers were also considered in this research. To study the concrete contribution to

the shear capacity V., the beams tested in the laboratory did not contain any stirrups.

Here, material resistance factors were not applied to give an accurate comparison to the

experimental results. In the following, different methods used to calculate V" will be

discussed.

2.l.l.l - CSA 
^23.3-94 

Simplified Method (1998)

Based on an assumption that the shear crack propagates at an angle of 450, the CSA

423.3-94 (1998) has derived empirical formulas for the concrete shear capacity that are

dependant only on the cross-sectional area and the concrete strength. These equations

were derived primarily to give conservative estimates of the capacity of the concrete. The

CSA 423.3-94 (1998) has noted that there is a size effect factor that influences the

concrete contribution to shear and has thus limited the use of Equation 2.1 to sections

with an effective depth not exceeding 300 mm. The shear capacity of sections larger than

this should be calculated with the use of Equation 2.2.

v, =0.2t[f "bd
d <300mm Equation 2.1

,,=(ffi),rnuo>orJ-r\bd d >300mm Equation 2.2

2.1.1.2 - CSA A23.3-94 General Method (1998)

The CSA A23.3-94 (1998) has derived a more accurate method for calculating the

concrete contribution to shear known as the General Method. This method not only

predicts the concrete shear capacity, but also predicts the angle of the shear failure. The



downfall to the General Method is that the method requires the use of various tables and

figures and cannot be summarizedby a formula. Given that the objective of this thesis

was to determine a simple formula for calculating the concrete shear resistance, the

General Method was not considered.

2.1.2 - Concrete Shear Capacity of FRP-RG Beams

If the reinforcement is FRP, intuition may lead to the belief that since Equations 2.I and

2.2 are only predicting the concrete contribution to shear, that these equations are

independent on the type of reinforcement used. However, given the empirical nature of

these formulas, this is not the case. In studying the differences between the behaviour of

steel reinforced concrete and FRP reinforced concrete, it can be better understood why

the concrete shear strength would be greater for beams reinforced by steel than beams

reinforced by FRP.

Testing has repeatedly shown that beams reinforced by FRP materials experience fewer

cracks than beams reinforced by steel. Given that FRP materials have a lower modulus of

elasticity than steel, it is a known fact that the curvature must be greater for beams

reinforced with FRP. Thus, the crack widths in beams reinforced with FRP must be

greater than those present in similar steel reinforced concrete beams to allow for this

increase in curvature. This effect can better be seen in Figure 2.2. Here, the second beam

from the bottom is reinforced with steel reinforcing bars, while the other beams are all

reinforced with CFRP bars at the same reinforcement ratio. It can easily be seen that the

beam reinforced with steel has many more cracks than those reinforced with CFRP, even

though the same amount of reinforcement was used.

6
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Figure 2.2 - Comparison of FRP-RC Beams and Steel RC Beams (Michaluk, 1995)

Wider cracks present in FRP-RC beams as compared to steel reinforced beams reduce the

concrete contribution to shear by minimizing the amount of aggregate interlock present

between the cracks of the beam. The increased curvature also means that the neutral axis

must be higher in beams reinforced with FRP than in beams reinforced with steel. This

effect eliminates some concrete contribution to shear by reducing the amount of

uncracked concrete in the compression zone. The final reduction in shear capacity comes

from the poor dowel action from the reinforcing bars when FRP reinforcement is used

since FRP is relatively weak in the transverse direction. Since the concrete contribution to

shear is less when FRP is the flexural reinforcement rather than steel, new equations have

been developed to determine the concrete contribution to shear.

2.1.2.1- The JSCE Method (1997)

The Japanese Society for Civil Engineers (JSCE) has developed an equation to calculate

the concrete contribution to shear based on multiplying the cross-sectional area by a

number of factors. The equation accounts for the size effect with a factor B¿, the modulus



of the FRP with afactor Bo, and any prestressing effects with a factor Br. With the use of

a factor fu.¿, the equation also assumes that there is a limit on the shear strength of

concrete and that higher strength concrete does not guarantee a higher shear resistance.

The JSCE (1997) formula for the concrete contribution to shear has thus included a great

deal of parameters in its derivation and is presented in Equations 2.3 to 2.7 .

V, = þoþ rþ,f*ubd

p,t = Q000ld)lt4 <1.5

Þ, : (I00 p rt.pE r,.p I E -)1/3 <1.5

þ, = L for non-prestressed member

f,"¿ = 0.2(-f' ,¡'/t < o-72

2.1.2.2 - Equations Proposed by Deitz (1998)

Equation 2.3

Equation 2.4

Equation 2.5

Equation 2.6

Equation 2.7

The derivations of the equations proposed by Deitz (1995) are based on empirical

relationships which were found for the shear strength of FRP-RC slabs tested and failed

in shear. In this method, the primary reason for the reduction in shear capacity when FRP

is used as opposed to steel reinforcement is the lower modulus of elasticity of FRP.

Thus, equations were derived which included a ratio of these terms to predict the concrete

shear capacity of FRP-RC beams. These formulas come in both a simplified and a

detailed form.



SimpliJied Method

The simplified method proposed byDeitz (1998) is derived from Equation2.l and has

been modified slightly to include the ratio of the FRP modulus to the steel modulus. The

simplified formula proposed can be found in Equation 2.8.

v =!^17\bdEnoL 
2\J 

L 
E"

Equation 2.8

Detøiled Method

The detailed method proposed byDeitz (1998) also includes the ratio of the modulus of

the FRP to the steel modulus. However, unlike the simplified method, the detailed

method also accounts for the amount of flexural reinforcement present in the beam, as

well as the slenderness of the beam. The detailed method for calculating the concrete

shear capacity can be found in Equation 2.9.

,, = 1(* + r2o p,nf)rt ? < o e 
^[r\bt ?

2.1.2.3 - The ISIS M03-01 Method (2001)

Equation 2.9

ISIS M03-01 (2001) has noted that the basic form of Equations 2.1 and 2.2 could remain

the same if they were modified to account for the use of FRP materials, rather than steel.

According to ISIS M03-01 (2001), the primary reason for the concrete shear capacity to

be lower in FRP-RC beams when compared to conventional RC beams is because FRP

has a lower modulus of elasticity. Thus, Equations 2.1 and 2.2 were modified to include a

ratio of the modulus of FRP divided by the modulus of steel. After comparing the results

of the modified formulas to experimental results, it was found that the formulas would be



better modified with the square root of this ratio, which was contrary to what Deitz

(1998) had previously found. As such, ISIS M03-01 (2001) has recommended the use of

Equations 2.I0 and2.lI to calculate the concrete contribution to shear.

v, --o:^[nbd^{nffi d 3 300mm Equarion 2.10

,, =(ffi)^fnuoJu;ø >o t^[r\bd,[8,[{ d > 300mm Equation 2.11

2.1.2.4 - The CSA 5806-02 Method (2002)

The CSA 5806-02 (2002) has used the same assumption as the CSA 423.3-94 (1998)

that the shear crack propagates at an angle of 450 to develop empirical formulas for the

concrete shear capacity that are dependant only on the cross-sectional arca and the

concrete strength. Similar in form to Equations 2.1 and 2.2,the CSA 5806-02 (2002)has

reduced the concrete contribution to shear strength when FRP is the reinforcing bar. The

CSA 5806-02 (2002) has also noted that there is a size effect factor that influences the

concrete contribution to shear and has thus developed Equations 2.12 and2.l3 tobe

dependent upon the effective depth, d, of the beam.

bd >0.l{-f\bd <0.z^[f\bd d <300mm Equarion 2.12

¡ :l/3( v.d\
4 = 0.035[ f', p ¡.nEr, 

W )

," = (#*)^fn uo > o ol^[n b d d > 300mm Equation 2.13

2.1.2.5 - The ACI 440.1R-03 Method (2003)

The ACI 440.1R-03 (2003) has developed an equation to calculate the concrete

contribution to shear in a very simple manner which is dependent upon both the modulus

l0



of elasticity of the FRP reinforcement as well as the reinforcement ratio. The ACI

440.1R-03 (2003) has recommended the use of Equation2.I4 to calculate the concrete

contribution to shear.

,, _l pf?Efpbd 1 
-''=àffiffi=¿1"r"øa

( f'' \> 0.65 < o.8sþt,rct = t.o5 _ o.or[u.rnr7

2.I.2.6 - Proposed Revision to the ACI 440.1R (2004)

o=ffi-pr,.rer,.,

Equation 2.14 was found to be extremely conservative for calculating the concrete

contribution to shear. Therefore, the ACI 440.1R (2004) revisited their equation and

simplified it further, while achieving more accuÍate results than Equation2.l4 had. To do

this, the ACI440.1R (2004) related the term r<, which is the ratio of the neutral axis at

cracking divided by the effective depth, to Equation 2.7 and added a modification factor.

The new formula, given by Equation 2.16, became more accurate than Equation 2.14,

while still giving conservative estimates.

V"=5rc{f\bd; V.[bs], f.[psi], b[in], d[in]

Equation 2.14

Equation 2.15

Equation 2.16

Equation 2.17

2.1.2.7 - Equation Proposed by Razaqpur (200a)

The equation proposed by Razaqpur et al. (2004) is similar in nature to the equation given

by the JSCE (1997) in that it has a central equation with attached modification factors.

The equation proposed by Razaqpur et al. (2004) accounts for the size effect with the

11



factor Kr, and also accounts for the slenderness of the beam with the introduction of the

factor Ku. The equation for calculating the concrete contribution to shear of FRP-RC

beams can be found in Equation2.l8, with equations for K, and Ku, in Equations 2.19

and 2.20, respectively.

V, = 0.035 K"K, 
[1 

* (p trT,,r)'''

K.. = 750 .l' 450+ d

z.sfu "¿)K-= " '>l" M.,

bd <0.2K-^[nøa Equation 2.18

Equation 2.19

Equation 2.20

2.1.3 - lnclusion of Member Weight in Shear Analysis

From preliminary analysis, it became apparent that the added shear due to the self-weight

of the members could be vital in the analysis of members with large cross-sections. Thus,

the self weight of the member is considered in the analysis by assuming a concrete

density, Tsw, of 23.5kN/m3, and assuming that the critical section occurs at a distance "d"

away from the support. Using these assumptions, the applied shear can be set equal to the

concrete shear capacity. Solving for the failure load, P,nu*, Equation 2.21is derived. This

is the expected failure load which would occur due to a shear failure.

P,* = rr" - y-,øn(t/- a) Equation2.27

, - ) /-1

(v'd )' 
'

l'' )
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2.2 - Deflection Behaviour

Deflections should be within acceptable limits imposed by the use of the structure (for

example, supporting attached nonstructural elements without damage). Deflections must

be limited from an aesthetic point as well, as large deflections are not aesthetically

pleasing and give a sense of insecurity amongst the users of the structure. Thus, it is

important to be able to accurately predict the deflections that a beam will incur under a

given load. Typically, deflections are considered only at service loads since limiting

deflections is a serviceability limit state criterion.

When subjected to four-point bending, the midspan deflection of a beam can be found

using Equation2.22 (CSA A23.3-94). The difficulty in calculating the deflection for RC

sections arises from the fact that both the modulus of elasticity,E", and the moment of

inertia, I, vary with the load.

^ 
= +(, 12 -+u2)

24E I' Equation 2.22

c

2.2.1 - Deflection Behaviour of Gonventional RG Beams

Given the complexity of predicting the modulus of elasticity, E., and the moment of

inertia, I, the deflection behaviour of a reinforced concrete beam is typically found

empirically. The most common approach to determining the deflection of a RC beam is

to assume that the modulus of elasticity is constant, while only the moment of inertia is

changing. An empirical relationship can then be determined to develop an appropriate

equation to predict the effective moment of inertia, I., to be used in place of I in Equation

13



2.22. The assumption that the modulus of elasticity is constant is well warranted within

service loads but at elevated loads, the same relationship may not be true.

2.2.1.1- CSA A23.3-94 (1998) Effective Moment of lnertia Equation

The CSA A23.3-94 (1998) Code for designing RC structures has adopted the effective

moment of inertia approach for calculating the deflection of a RC beam. The effective

moment of inerlia, I", is based on semi-empirical considerations, and despite some doubt

about its applicability to conventional reinforced concrete members subjected to complex

loading and boundary conditions, it has yielded satisfactory results in most practical

applications over the years. Better known as Branson's formula (1965), the effective

moment of inertia can be calculated with the use of Equ ation 2.23 .

" 
=[ff)',n .[, 

[fr.)'],", 
.,,

Mr,'=&
!,

f,. = 0.6^[f , Equation 2.25

2.2.1.2 - CSA 
^23.3-94 

(1998) Bi-Linear Method

The CSA A23.3-94 (1998) has also derived a bi-linear method of predicting the

deflection. For the bi-linear method, it is assumed that the moment of inertia to be used in

Equation 2.22 is the gross moment of inertia, I, until cracking. After cracking, any load

above cracking should be used in place of P in Equation 2.22 and the moment of inertia

to be used should be the moment of inertia of the cracked section, I".. This deflection

Equation 2.23

Equation2.24

T4



should then be added to the deflection at the

The bilinear method of calculating deflection

2.27.

^ 
= P" (ur' - or'\

24El \ /

cg

24El \ / 24Et \

onset of cracking for

can be summed up by

the total deflection.

Equations 2.26 and

P 3 P,,.

P ) P,,.

Equation 2.26

Equation 2.27

cg ccr

2.2.2 - Deflection Behaviour of FRP-RG Beams

Knowing that the moment of inertia of FRP-RC is smaller than that of steel RC after

cracking, and that deflection is inversely proportional to the moment of inertia, it can be

accepted that the deflection for FRP-RC beams is higher than in conventionally

reinforced concrete beams at the same load level. Given that Equation 2.23 incorporates

the cracked moment of inertia, I.r, in its form, which is dependant upon the modulus of

the reinforcing material, it is commonly thought that Equation2.23 can also be used to

predict the deflection of FRP-RC beams. However, given the empirical nature of the

formula, this is not the case and Branson's formula (1965) will typically under-predict the

deflection when FRP reinforcement is used. Thus, an effort has been made to find an

equation which can accurately predict the post cracking deflection for FRP-RC beams.

Prior to cracking, a general agreement has been made that the deflection should be

calculated with the use of Equation2.26.
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2.2.2.1- Equation Proposed by Faza and GangaRao (1992)

Faza and GangaRao (1992) used a theoretical approach based on an assumed moment-

curvature relationship of FRP-RC to estimate deflections with the use of virtual work.

Faza and GangaRao (1992) made the assumption that for 4-point bending, the member

would be fully cracked between the load points and partially cracked everywhere else. A

deflection equation could thus be derived by assuming that the moment of inertia

between the load points was the cracked moment of inertia, and the moment of inertia

elsewhere was the effective moment of inertia defined by Equation 2.23. Through the

integration of the moment curvature diagram proposed by Faza and GangaRao (1992) in

Figure 2.3,the deflection for 4-point loading is defined according to Equation 2.28.

M/EI

Figure 2.3 -ldealized Curvature According toFaza and GangaRao (1992)

n = --!!-'lLo'1,,. + 3I: I 
" -l2az I ol rquation 2.28

248,1 UI ''',

Equation 2.28has limited use as it is not clear what assumptions for the application of the

effective moment of inertia should be used for other ioad cases. However, it worked quite

t6



accurately for predicting the deflection of the beams inFaza and GangaRao (1992) who

subjected the beams to 4-point bending at the third spans of the beams.

2.2.2.2 - Equation Proposed by Benmokrane et al. (1996)

Benmokrane et al. (1996) suggested that in order to improve the performance of Equation

2.23, a modification would be needed in order to account for the use of FRP materials as

the longitudinal reinforcement. Constants to modifr the equation were developed through

a comprehensive experimental program and the effective moment of inertia was defined

according to Equation 2.29 .

"=+[üJ", .o,o[, 
[H)'],.,=,,

Equation2.29

2.2.2.3 - Equation Proposed by Brown and Bartholomew (1996)

Brown and Bartholomew (1996) suggested that the basic form of Equation 2.23 should

remain unchanged, but that the effective moment of inertia should converge to the

cracked moment of inertia quicker than the cubic equation when FRP reinforcement is

used. They proposed that the basic form of Equation 2.23 could be used with reasonable

accuracy to find the service deflections of FRP reinforced concrete beams if a fifth order

equation was used rather than a cubic. The modified equation proposed by Brown and

Bartholomew (1996) is presented in Equation 2.30.

Equation 2.30
" 
=[üJu,n.[, 

tu)'],", =',
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2.2.2.4 - Equation Proposed by Toutanji and Saafi (2000)

Similar in nature to the research of Brown and Bartholomew (1996), a further

investigation of the effective moment of inertia was performed by Toutanji and Saaf,i

(2000). It was found that the order of the equation depends on both the modulus of

elasticity of the FRP, as well as the reinforcement ratio. Based on their research, Toutanji

and Saafi (2000) have recommended that Equations 2.31 and2.32 be used to calculate the

deflection of FRP reinforced concrete.

Equation 2.31
" 
=[ff)',n *[, [H)']", =,,

m = 6 -to! o¡,.0 23

2.2.2.5 - The ISIS M03-01 Method (2001)

Equation 2.32

Equation 2.33

The ISIS Design Manual M03-01 (2001) has suggested the use of an effective moment of

inertia which is derived from equations given by the CEB-FIP MC-90 (1990). Ghali et al.

(2001) have verified that I. calculated by Equation 2.33 gives good agreement with

experimental deflection of numerous beams reinforced with different types of FRP

materials. Quite different in form from the previous effective moment of inertia equations

discussed, ISIS M03-01 (2001) suggests Equation 2.33 for calculating the effective

moment of inertia of FRP-RC.

IrI",I" =

,., *[r -r'(h)']u, -r",)

SI,
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2.2.2.6 - The CSA 5806-02 Method (2002)

The CSA 5806-02 (2002) design code uses a theoretical approach based on the moment-

curvature relationship of FRP-RC to estimate deflections. The moment-curvature method

of calculating deflection is well suited for FRP-RC because the moment-curvature

diagram can be approximated by two linear regions: one before the concrete cracks, and

the second one after the concrete cracks (Razaqpur et al. 2000). Therefore, there is no

need of calculating curvature at different sections along the length of the beam as for

steel reinforced concrete. There are only three moments with corresponding curvature

that define the entire moment-curvature diagram: at cracking, immediately after cracking,

and at ultimate. With the use of the virtual work method for calculating deflection,

deflection equations for various load configurations based on the integration of moment-

curvature diagrams are given. For example, Equation 2.34 calculates the post cracking

deflection at midspan in FRP-RC members subjected to symmetric four-point bending

through the integration of the curvature diagram given in Figure 2.4.

M/EI

M.,/EIs

Figure 2.4 -ldealized Curvature According to the CSA 5806-02 Q002)
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Equation 2.34

Equation 2.35

2.2.2.7 - The ACI 440.1R-03 Method (2003)

In order for a deflection equation to be accepted for use by industry, it has to take on a

familiar form and be easy to use. The ACI 440.1R-03 (2003) have thus suggested that the

basic form of Equation 2.23,whichcalculates the effective moment of inertia of steel RC,

can remain the same for predicting the deflection of FRP-RC beams if a modification

factor is used. The ACI 440.1R-03 (2003) found that the effective moment of inertia

equation for FRP-RC is dependent on the modulus of elasticity of the FRP and

recommended the use of Equations 2.36 and 2.37 for 1, to calculate the deflection of FRP

reinforced beams

Equation 2.36

Equation 2.37

2.2.2.8 - Equation Proposed by Yost et al. (2003)

Upon finding that the ACI 440.1R-03 (2003) equation often under predicted the service

load deflection of FRP-RC members, Yost et al. (2003) attempted to modiff Equation

2.37 in order to give more accurate deflection predictions. Realizing that the accuracy of

Equation 2.37 was dependent on the relative reinforcement ratio, p/ptut, a regression

'. '(fr.)'[,i)

" 
=,[ffJ',n .[, 

[H)'],", =,,

o=o'l!.rf



ø=loouo(H.",ï?.'l

analysis was performed on a series of beams tested by Yost et al. (2003). From the

analysis, it was found that Equation2.37 could be modified slightly to better account for

the effects of FRP. Similar in form to Equation 2.37 , the researchers determined that both

the modulus and the relative reinforcement ratio are important for determining the

deflection and recommended the use of Equation 2.38 for determining B, while still using

the same form for I" as shown in Equation 2.36.

Equation 2.38

2.2.2.9 - Proposed Revision to the ACI 440.1R (2004)

Upon finding that the ACI440.1R-03 (2003) equation often under predicted the service

load deflection of FRP reinforced concrete members, the ACI 440 Committee (2004) has

proposed revisions to the design equation in ACI 440.1R-03 (2003). The moment of

inertia equation has retained the same familiar form as that of Equation 2.36 in these

revisions. However, the form of the reduction coefficient, Þ, to be used in place of

Equation 2.37 was modified. The new reduction coefficient has changed the key variable

in the equation from the modulus of elasticity to the relative reinforcement ratio as shown

in Equation 2.39.

p =+le-]=, 0
5lpur )

2.2.2.10 - Equation Proposed by Bischoff (2005)

Equation 2.39

Bischoff (2005) developed a rational equation for the effective moment of inertia to be

used in Equation 2.22 based on tension stiffening relationships found from tension tests.
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Unlike any other method presented for computing the deflection of FRP-RC, the method

given by Bischoff (2005) can also be used to calculate the deflection of conventional steel

RC. According to Bischoff (2005), the effective moment of inertia, I., should be found

using Equation2.40.

I"= Equation 2.40

2.2.3 - lnclusion of Member Weight in Deflection Analysis

The deflection equations are all sensitive to the value of the cracking moment. To

improve the accuracy of the predicted cracking moment, the equation used to calculate

the applied load was modified in order to account for the respective self weights of the

members. V/ithout accounting for the moment due to the self weight, the calculated

cracking moment of the section would be larger than the cracking moment measured

during the test and would cause incorrect estimates of deflection. The self weight was

accounted for in the analysis by including the moment due to the self weight, as well as

the moment caused by the 4-point loading in the applied moment Mu, terms found in each

equation as can be seen by EquationZ. l. The cracking load, P.r, found in Equations2.26

and2.27 was also adjusted in the analysis to account for the self weight of the members,

being def,rned according to EquafionZ.42.

Mo =Pa+Y""bhLz

1,,

'-['-'t)W)'

o ,M,,tcr-
a

8

_y n,bhLz

8a

Equation 2.41

Equation2.42
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Chapter 3 - Experimental Program

3.1 - Overview

An experimental program was carried out to study the shear behaviour of CFRP-RC

beams without stirrups and with an effective depth greater than 300 mm. Through the

completion of the literature review, it was believed that there was a definite lack of

knowledge in this particular area. This experimental program was conducted to partially

fill in that missing void. To do this, 7 beams were tested,2 reinforced with steel and 5

reinforced with CFRP. These beams were tested monotonically under 4-point bending

and the following parameters were studied as a part of the program:

1. the effect of the reinforcement type (steel or CFRP) on flexural and shear

behaviour

2. the effect of the reinforcement ratio on flexural and shear behaviour

3. the accuracy of the FRP-RC code equations for predicting deflections and the

concrete contribution to shear

3.2 - Beam Details

All beams were designed to fail in shear with a specified 28-day concrete compressive

strength of 45 MPa. Beams 4S-20-A and 4S-20-B were reinforced with 20M steel bars,

beam 3A was reinforced with 9 mm AslanrM bars, while beams 4L-A,4L-8,4L-C, and

4L-D were reinforced with 9.5 mm ribbed LeadlinerM bars. The material properties of the

AslanrM bars shown in Table 3.2 were determined by Vogel (2005) by means of tension

tests and are not the values given by the manufacturer. The dimensions of the beams were

constant with a height of 600 rnm, a width of 350 mm, and a iength of 5.4 m. However,
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the effective depth of the reinforcement was altered slightly between beams, as well as

the simply supported length. The shear span to depth ratio of the beams was greater than

2.5 for all specimens, to minimize the effect of arching action. No stimrps were provided

in any of the beams to ensure that a shear failure occurred. A summary of the beam data

is presented in Tables 3.1 and 3.2 and an explanation of the test parameters can be seen in

Figure 3.1 .

Table 3.1 - Beam Properties for Steel Reinforced Beams

Labhdf'"Esfy
Beam #

(mm) (mm) (mm) (mm) (mm) (MPa) (GPa) (Mpa)

#dg
bars (mm)

4S-20-A 5100 '1550 350 600 550 57 .25 200 400 4

4

20

204S-20-B 5400 1700 350 600 550 46.10 200 400

Table 3.2 - Beam Properties for CFRP Reinforced Beams

L
Beam #

(mm)

abhdf"Etrpfrrpu
(mm) (mm) (mm) (mm) (MPa) (GPa) (MPa)

#d6
bars (mm)

3A

4L-A

4L-B

4L-C

4L-D

51 00

51 00

51 00

51 00

5400

9.0

9.5

oÃ

9.5

9.5

1550 350 600 550 59.18 174 2563

1550 350 600 565 45.10 147 2255
'1550 350 600 550 57.25 147 2255

1550 350 600 550 57 .25 147 2255

1700 350 600 550 46.10 147 2255

i.

l'llrlLll.ÞlK----------- ------'r-l
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Figure 3.1 - Test Setup



For beams 45-20-4, 4L-8, and 4L-C that were cast prior to the start of this experimental

program, it was necessary to core cylinders out of the beams after testing to determine the

concrete strength. This process can be seen in Figure 3.2.For the remaining beams, the

concrete strength was determined through the testing of cylinders which were cast

simultaneously with the beams. The concrete strength was determined by taking the

average strength of the cylinders tested. This information, as well as the age of the

concrete at testing, can be found in Table 3.3.

!¡ti#:i:ít-'
.þìi:1.Í

Figure 3.2 - Coring of Concrete Cylinders
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Table 3.3 - Properties of Concrete Cylinders

Beam # # Cylinders Tested Age of Cylinders (days) f . (MPa)

983A 59.1 8

4L-A 174 45.r0

4L-B

4L-C

4S-20-A

697 57.25

4L-D

4S-20-B
46.10

3.3 - lnstrumentation and Testing

All beams were tested in four-point bending as shown in Figure 3.1. Pi gauges were

mounted on the surface of the beams prior to testing at midspan to determine the depth of

the neutral axis during testing, as well as to determine the strain in the reinforcement and

the concrete at ultimate. One pi gauge was placed on top of the beam, while the other

three were mounted at a depth of 185 mm, 370 mm, and 555 mm, respectively from the

top of the beam. Linear variable displacement transducers (LVDTs) were used during

testing to measure the deflection at various sections along the length of the beam. The

LVDTs were placed at midspan, directly below the load points, and midway between the

load points and the supports, for a total of 5 LVDTs.

The beams were loaded with the use of a 1000 kN capacity MTS testing machine at arate

of 2 mrn/min. All instruments were calibrated and were continuously monitored with the

use of a data acquisition system during the tests. An illustration of the instrumentation

can be seen in Figure 3.3.

28
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Figure 3.3 - Beam Instrumentation

3.4 - Iesú Resu/fs

3.4.1 - Failure Loads

The CSA A23.3-94 (1998) and CSA 5806-02 (2002) code equations were used to

determine both the shear resistance and the flexural resistance of the steel reinforced, and

FRP reinforced beams, respectively. The mode of failure resulting in the lesser resistance

was then deemed to be the predicted mode of failure. Table 3.4 gives a comparison

between the predicted failure load of each beam and the experimental failure load.
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Table 3.4 - Beam Failure Loads

Beam #
P.o*,fle*u.e

(kN)

P,na*,shea.

(kN)

Predicted

Failure

Mode

P max,expcrimental

(kN)

Experimental

Failure

Mode

4S-20-A

4S-20-B

155.13 234.31

233.56

Flexure (T)

Flexure (T)

153.17

157 .11140.30-

Shear

Shear

3A

4L.A

4L.B

4L-C

4L-D

157.90*

212.59*

20g.51*

20g.51*

197.75+

It5.9l Shear

Shear

Shear

Shear

Shear

84.16

85.42

105.51

97.49

93.00

Shear

Shear

Shear

Shear

Shear

101.95*

114.70*

114.70*

100.43+

* - Failure load according to CSA A23.3-94 (1998)
+ - Failure load according to CSA 5806-02 (2002)
(T) - Flexural failure initiated in tension by the steel yielding prior to the concrete crushing

It can be seen in Table 3.4 that all FRP-RC beams failed at loads which were lower than

anticipated. Thus, the CSA code formulas for calculating the concrete shear strength are

not conservative and should be revised. What is even more alarming is that for the steel

reinforced beams, a different failure mode was predicted. It must be noted however, that

if the material resistance factors had been applied as is done in practice, the design would

have still been satisfactory, giving predicted failure loads less than those experienced in

the lab. The experimental shear failures from beams 3A, 4L-C, and 4S-20-A are shown

below in Figure 3.4. The beams with similar reinforcement ratios to these all had very

similar failures.
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Figure 3.4 -Shear Failure for Beams 3A,4L-C, and 4S-20-A

A large reason for the lower experimental than predicted loads arises from the fact that

nearly all of the beams cracked much earlier than predicted using Equation 2.24. These

are quite alarming results as the codes are not giving conseruative estimates. A possible

reason for this is that Equation 2.25, which calculates the modulus of rupture, f,, is quite

simple and does not take into affect such variables as shrinkage and age of concrete. A

summary of the experimental cracking moments versus those defined by Equations 2.24

and2.25 is shown in Table 3.5.

Table 3.5 - Comparison between Experimental and Theoretical Cracking Moments

Beam #
M6¡,p¡sdis¡sd(kNm) M".,.*p..in¡.n¡r¡(kI.{m)

(1)
(t)/(2)

(2)

45-20-A

4S-20-B

95.34

85.5s

64.17

tr4.82

1.49

0.75

3A

4L.A

4L-B

4L-C

4L-D

96.93

84.62

95.34

95.34

85.55

48.41

s7.77

55.60

54.51

62.19

2.00

1.46

l.7r

t.75

1.38
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Since all of the beams failed in shear, an investigation was performed to see which of the

codes most accurately predicted the concrete contribution to shear for FRP reinforced

concrete beams. These equations are taken from the JSCE (lgg7),ISIS M03-01 (2001),

CSA 5806-02 (2002), ACI 440.1R-03 (2004), and the Proposed Revisions to the ACI

440.lR (2004). Only the code equations were checked here to determine which code was

predicting the concrete contribution to shear most accurately. A summary of the predicted

shear carrying capacities of these beams is shown in Table 3.6. A ratio of the

experimental shear capacity to the predicted shear capacity, V., for each beam can be

found in Table 3.7.

Table 3.7 shows that the ISIS M03-01 (2001) and CSA 5806-02 (2002) equations always

overpredictthe concrete contributionto the shear capacity of these beams. This could be

catastrophic as it means that the beams will fail at lower loads than anticipated. The JSCE

(1997) and the Proposed Revisions to the ACI440.1R (2004) equations on the other hand

are always conservative and are thus better equations for use in a design code. It can be

seen in Table 3.7 that both the JSCE (1997) and the Proposed Revision to the ACI

440.1R (2004) equations work well but that the JSCE (1997) equation is the most

accurate and also has a very low standard deviation. Thus, the JSCE (1997) equation

seems to be a very good equation for predicting the concrete shear capacity of CFRP

reinforced concrete beams. This will later need to be verif,red for a larger number of

samples
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Table 3.6 - Summary of the Concrete Shear Capacities (kN) of the FRP-RC Beams

JSCE
Beam # Experimental

(tee7)

ISIS CSA ACI Proposed

M03-01 5806-02 440.1R-03 ACI440.1R

(2001) Q002) (2003) (2004)

3A

4L.A

4L-B

4L-C

4L-D

94.03

95.22

r 15.39

107.36

103.61

76.96 231.70 124.20

77 .56 189.1 5 1 10.3 1

82.11 209.46 122.16

82.tr 209.46 t22.16

76.69 187.96 109.62

12.29

15.89

rs.69

15.69

15.88

58.54

60.66

64.86

64.86

60.22

Table 3.7 - Ratio of Experimental over Predicted Concrete Shear Capacity

Beam #
JSCE

(tee7)

ISIS CSA ACI Proposed

M03-01 5806-02 440.1R-03 ACI440.1R

(2001) (2002) (2003) (2004')

3A

4L-A

4L-B

4L-C

4L-D

r.222

t.228

r.405

1.308

1.351

0.406

0.503

0.551

0.513

0.551

0.757

0.863

0.945

0.879

0.94s

7.651

s992

7.354

6.843

6.525

r.606

r.570

r.779

1.655

1.721

Average

St. Dev.

1.303

0.079

6.873

0.659

1.666

0.08s

0.50s 0.878

0.059 0.077

3.4.2 - Deflection Behav¡our

Given that steel is a stiffer material than CFRP, and that the reinforcement ratio of the

steel reinforced beams in this study was higher than those of the CFRP reinforced beams,

it is no surprise that the steel reinforced beams had a much stiffer load versus deflection

response than the CFRP reinforced beams as can be seen in Figure 3.5.
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Figure 3.5 - Effect of Reinforcement Type on Flexural Behaviour

It can be seen in Figure 3.5 that the beams which contained the same amounts of

reinforcement behaved very similarly as nearly identical load versus deflection responses

for beams 4S-20-A and 4S-20-B and for beams 4L-A, 4L-8, 4L-C, and 4L-D were

achieved. The main difference between the beams of the same reinforcement was the

ultimate failure load, due to the varying concrete strengths between the beams. It can also

be noted that as the reinforcement ratio decreased, the ultimate deflection was increased

and the ultimate load was typically decreased.

3.4.2.1- Steel RC Beams

An investigation was performed to see which of the CSA 423.3-94 (1998) deflection

equations was the most accurate for predicting the deflection of the steel RC beams. The
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experimental load deflection behaviours of beams 4S-20-A and 4S-20-B were compared

against the predicted load deflection behaviours given by the CSA 423.3-94 (1995).

These comparisons can be seen in Figures 3.6 and 3.7 .

It can be seen in Figures 3.6 and3.7 thatthe deflection can be predicted quite accurately

using the effective moment of inertia equation given in the CSA 423.3 -94 (1998). This

can particularly be seen in Figure 3.7 as the predicted load deflection curve matches the

experimental curve quite well. Although there are some discrepancies between the

predicted and the experimental curves in Figure 3.6 resulting from the miscalculation of

the cracking moment, it can be seen that the slope of the load deflection response given

by the effective moment of inertia is the same as that of the experimental curve. Thus, the

effective moment of inertia approach seems to work very well for predicting the

deflection behaviour of RC beams. Based on the experimental program, the bi-linear

equation presented by the CSA 423.3-94 (1998) is not working as well and tends to

under predict the deflection at a given load.
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3.4.2.2 - FRP-RC Beams

An investigation was also performed to see which of the codes most accurately predicted

the deflection response for the FRP-RC beams tested. These equations are taken from

ISIS M03-01 (2001), csA s806-02 (2002), ACI 440.1R-03 (2003), and the Proposed

Revisions to the ACI 440.1R (2004). The experimental deflection response, along with

the predicted deflection response of each code, can be seen in Figures 3.8 to 3.12 for

beams 3A,4L-A,4L-8,4L-C, and 4L-D, respectively. This investigation only included

the code equations, and did not check the accuracy of the other proposed deflection

equations.
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It can be seen from Figures 3.8 to 3.12that the deflection equations tend to predictthe

deflection much better for the beams with the 4 Leadlinett bars (4L-Ato D) than for the

beam with the 3 AslanrM bars (34). This may be because beam 3A was under reinforced,

while beams 4L-A,4L-8,4L-C, and 4L-D were over-reinforced. Figures 3.8 to 3.12 also

show that the cracking loads were predicted quite poorly from the use of Equations 2.24

and 2'25 for all of the FRP-RC beams tested. This led to very poor deflection prediction

at low loads, typically where the service conditions lie for FRP-RC. Other trends include

that the equation by the ACI 440.1R-03 (2003) consistently under predicted the

deflection behaviour, while the CSA 5806-02 (2002) equation typically predicted the

deflection response very well after cracking for the over reinforced beams. The equations

of the Proposed ACI440.1R (2004) and ISIS M03-01 (2001) also predicted the response

of the over reinforced beams accurately after cracking, but led to undesired,

unconservative results.
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Chapter 4 - Parametric Study

4.1 - Introduction

Two databases were compiled from published papers using Microsoft Access to increase

the number of members analyzed. The database for shear analysis contained 89 beams

containing no stirrups, to analyze the concrete contribution to shear, whereas the

deflection analysis database consisted of 197 FRP-RC beams which were used fo analyze

the load deflection behaviour.

Microsoft Access had many benefits in its use for data basing these specimens. Mainly,

the program allowed for a user friendly interface which only focused on the input of

material and geometric properties of the tested specimens. All other parameters required

for the comparison of the experimental results and the equation predicted results were

done away from the input screens so that the final user of the database could not

accidentally modify these formulas. This could not have been accomplished with the use

of a spreadsheet. The program was also fully automated and performed all necessary

calculations to arrive at the predicted results upon completion of the necessary input data.

This led to quick, error-free, calculations that would not have been achieved with the use

of a spreadsheet. Another large benefit to using a data basing software, such as Microsoft

Access, was that queries could be done very quickly. For instance, if only the results of

certain data were desired, these limitations could be entered in the program and the

program would then only show these results. With the fully automated characteristics of

the program, this allowed for a very quick and detailed analysis to be carried out.
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The databases have similar input requirements. Both require the user to input any

material and geometric properties of their test set-up. Furthermore, the database for shear

analysis also requires that the user inputs the experimental failure load, while the

deflection database requires the user to input the failure mode and experimental load

versus deflection data. A large amount of time was spent creating a user friendly form for

entering in this data. Figure 4.1 shows the input form for the shear database if the user

were using reinforcing rods as the reinforcement, while Figure 4.2 shows the same input

form if the user were using mesh reinforcement, such as NEFMAC. It should be noted

that these are the same form but the input boxes describing the reinforcement only

become visible once the user has selected a reinforcement type. Similarly, Figures 4.3

and 4.4 show the input forms for the deflection database.
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Figure 4.1 - Screenshot for data Entry form in Shear Database for ROD reinforcement
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Material and geometric properties of the beams used in this investigation can be found in

Appendix I. The ranges of some of the important properties of the members in the

databases are shown in Table 4.1.

Table 4.1 - Ranges of Properties Present in the Database

Minimum Property Maximum

f¡ou [MPa]

E¡.0 [GPa]

f. [MPa]

ald

3.38 tril",

0.001 pr.p

520

26.2

25.5

t.82

2640

174

97.4

14.40

64.42

0.038

9.1
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With the database in place, all formulas to be tested were input into the database and the

results were compared against the experimental results. The database allowed for quick

calculations to be made which were automated upon completion of the data entry form.

This allowed for new members to be added to the database in a quick manner to increase

the sample size present and improve the statistical analysis. The database also allowed for

excellent organization and allowed for analysis to be completed on only a select group of

members if desired. For instance, if only GFRP-RC members with an effective depth less

than 300mm were to be analyzed, this could be specifìed by performing a simple query.

All statistical information would automatically be adjusted to comespond to only the

selected group, which allowed for an extensive study to be completed in a minimal time

period.

4.2 - Statistical Analysis

To check the accuracy of formulas developed by other investigators, a statistical analysis

has been performed. The most meaningful method for performing the statistical analysis

was found to be applying a log transformation to the ratios of the experimental to

calculated deflection or shear ratios. A log transformation was employed to give equal

weight to those ratios which were below one and those which were above one. Without

performing this transformation, more weight is given to the ratios above one and

information is lost when statistics is applied as can be seen inTabre 4.2.
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Table 4.2 - Comparison of Typical Statistics to Log Transform Statistics

Exp. ô Calc. õ Exp./Calc. Calc./Exp. Ln (Exp./Calc.) Ln (Calc./Exp.)

10

0.1

10

0.1

0.1

10

2.303

-2.303

-2.303

2.303

average

eâverâge

5.05 5.05 0

1.0

0

1.0

The example given in Table 4.2 demonstrates that although there are two ratios which are

the inverse of each other, the statistics favors the higher ratio when computing the

average ratio. After applying the log transformation to these ratios, it can be seen that

equal weight has been given to each of these ratios and an average of 0 was obtained.

Upon using an antilog to transform the average back into areal ratio, an average ratio of

1.0 was found, which is as expected for this dataset. Table 4.2 also demonstrates that

prior to applying the log transformation on these ratios, an average ratio of 5.05 would be

found, regardless of which way the ratio is calculated. This is very misleading as this

number does not confirm that an equation is typically underestimating or overestimating

the deflection. However, since the log transformation gives equal weight to inverse ratios,

the average indicates whether the formula typically under predicts ot over predicts the

deflection.

In checking the performance of each of the equations, the limiting factor is determining

whether or not the formula is consistently conservative. To do this, the 95olo conf,rdence

interval was checked and only those formulas whose entire confidence interval was

conservative were deemed to be acceptable. This will minimize the chance of a code

equation under predicting either the deflection of a member, or the concrete shear
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capacity. After completing the log transformation, the 95%o conftdence interval is defined

by Equation 4.L This 95o/o confidence interval is based on the Central Limit Theorem,

which assumes a normal distribution with a sufficient number of samples.

þ+t 
sao, t Ji, 

ee,*t 
s6o,, / Ji 

) Equation 4.1

When two confidently conservative methods were compared, the geometric mean and the

variance were used to establish the most accurate one. Here the geometric mean should

be as close to 1.0 as possible and the variance should be as small as possible. When using

a log transformation, the geometric mean and variance, in terms of a real ratio, are as

defined in Equations 4.2 and 4.3.

mean = ep)'

variance = eo' -l

Equation 4.2

Equation 4.3

Equation 4.4

Equation 4.5

Equation 4.6

The accuracy of the calculated cracking moment, M.,., is a key aspect to the accuracy of

the deflection calculations. The controlling variable for predicting the cracking moment is

the modulus of rupture of concrete, Ç. Thus, an analysis was done on the 197 members in

the database to determine the most accurate formula for calculating fr. The formulas were

taken from Reda Taha and Hassanain (2003) and are given by Equations 4.4 to 4.10.

f, =0.7^[f 
"

4.3 - Analysis of Cracking Load

f, =0.6^[f ,

ACr 3r8-99 (1999)

csA 423.3-94 (1998), NZS 3101 (199s), AS 3600 (1994)

OHBDC (1992)f,. =0.5^[f ,
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f,=7^(+)" cEB-FrP MC-90 (r990)

Raphael (1984)

Oluokun (1991)

Légeron and Paultre (2000)

Equation 4.7

Equation 4.8

Equation 4.9

Equation 4.10

the experimental modulus of rupture in

results \ilere found using a logarithmic

f , = 0.7(f',)'''

f,. = 0.2t4(f'")oun

f,. = 0.5(f'")''t

The accuracy of the formulas compared against

the database can be seen in Table 4.3. These

transformation as described in Section 4.2.

Table 4.3 - Accuracy of Design Methods for Calculating Modulus of Rupture

Experimental/ Galculated Modulus of Rupture

Statistical CSA 423.3

Property NZS 3101

AS 3600

ACt
OHBDC

318

CEB-FIP
Raohael Oluokun

MC-90

Légeron

and

Paultre

mean 1.01

variance 0.39

95% conf. (-) 0.96

95% conf. (+) 1.06

0.86 1.21

0.39 0.39

0.83 1.16

0.91 1.27

1.06

0.39

1.02

1.11

0.46

0.39

0.44

0.48

1.37

0.40

1.31

1.44

0.64

0.39

0.61

0.67

It can be seen in Table 4.3 that the most accurate methods for calculating the cracking

moment are given in the CSA 423.3-94 (1998), NZS 3101 (1995), AS 3600 (1994) and

CEB-FIP MC-90 (1990) codes. Therefore, this equation has been used in the database to

calculate the modulus of rupture.

4.4 - Shear Analysis

The shear analysis has been performed using members that contained no stimrps to

analyze the concrete contribution to shear. Furthermore, to avoid the effects of arching
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action in the analysis, only slender members were considered. A slender member is

defined as a member with a slenderness ratio, aJd, of at least 2.5 (MacGregor and Bartlett,

2000). It is extremely important for the equations to under-predict the shear capacity of

these members so that premature shear failures are avoided. Thus, only equations whose

entire 95Yo confidence intervals were conservative are deemed to be acceptable for

predicting the concrete shear capacity.

The database for shear analysis contained 89 beams with no stirrups, to analyze the

concrete contribution to shear. These beams were all loaded under 4-point loading and all

failed in shear. The failure loads of these beams were compared against the predicted

shear failure loads given by Equations 2.3 to 2.20. These equations, which describe the

shear failure due to 4-point loading, were reduced to account for the shear present on the

members due to their respective self-weights. The shear force due to the self-weight of

the members was accounted for in the analysis with the use of Equation 2.2i.

The trend lines for the log of the experimental over predicted shear ratios versus the

modulus of elasticity for GFRP-RC beams can be seen in Figure 4.5. In order for the

formulas to be conservative, the log of the deflection ratio has to be greater than zero.

Figure 4.5 shows that the formula proposed by Razaq¡lur et al. (2004) yields satisfactory

results and its accuracy is not affected by changes in the modulus of elasticity. This is

important since the modulus of elasticity changes rapidly among different types of FRP.

Comparable results to those received by Razaçur et al. (2004) can also be seen by the

formulas proposed by the JSCE (1997) and the CSA 5806-02 (2002). An advantage of
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these formulas is that they are always conservative for GFRP-RC, whereas the formula

given by Razaqpur et al. (2004) tends to be slightly unconservative when the modulus of

elasticity of the GFRP is higher fhan 45 GPa. Table 4.4 shows the statistical analysis of

each of the formulas. The formulas are conservative if the 95Yo confidence interval is

greater than one. The formula given by Razaqpur et al. (2004) is the most accurate for

GFRP-RC beams with a mean value of 1.03. However, the concern with this formula is

that it can, at times, be unconservative and has a lower bound to its 95Yo confidence

interval of 0.98. Thus, the use of either the JSCE (1997) or the CSA 5806-02 (2002)

formulas are preferential, as they are also accurate and have entirely conservative

confidence intervals.
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Figure 4.5 - Effect of Modulus on Concrete Shear Prediction for GFRP-RC
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'lable 4.4 - Statistical Analysis of the Predicted Shear Capacity

Method Statistical
Property

Experimental / Calculated Shear
GFRP- CFRP- AII-nC -nð d<=300mm d>300mm Vf"rn¡r^

Sample size

JSCE
(tee7)

1.24
0.24
1.16
1.3 l

1.22
0.24
1.14
1.30

1.14
0.21
1.08
1.19

1.45

0.17
1.3'7

1.s3

1.23

0.24
1 .18

1.29

mean
variation

95 % conf. (-)
95 7o conf. (+)

Deitz- m:ân

''ätifi"' ff";J"ï,18

1.25

0.3 5

1.15

1.36

0.41
0.62
0.3 5

0.47

0.77
0.93
0.6s
0.91

0.76
1.08
0.58
0.99

0.77
0.97
0.67
0.88

Deitz -
General
(1ee8)

1.37
0.32
t.26
1.48

0.46
0.57
0.40
0.s3

0.8s
0.87
0.73
r.00

0.84
1.03

0.65
1.09

0.85
0.92
0.74
0.97

mean
variation

95 % conf. o
95 %o conf. (+)

ISIS
M03-01
(2001)

1.42
0.3 5

l 31

l 55

0.85
0.49
0.75
0.96

1.10
0.52
0.99
1.22

t.2l
0.57
1.03

t.43

1.14

0.s4
1.04
1.24

meân
variation

95 % conf. (-)
95 7o conf. l+)

CSA
s806-02
(2002)

1.23

0.32
1ll4
1.33

1.29
0.40
1.16
1.43

t.t7
0.29
1.10
1.2s

r.46
0.41
1.29
1.66

1.26
0.35
1.18
1.34

mean
variation

95 % conf. (-)
95 7o conf. (+)

ACr m.ean

'ffi'ffï*llL?,
4.21
0.s3
3.74
4.75

3.28
0.61
2.83
3.81

3.66
0.57
3.27
4.t0

3.99
0.61
3.35
4.74

3.76
0.s8
3.42
4.14

Proposed mean
ACI variation

440.1R 95 % conf. (-)
Q004\ 95 %o conf. (+)

1.94
0.24
1.83

2.06

t.72
0.19
t.63
1.82

1.83

0.23
1.73

1.93

1.86
0.20
1.14
1.99

1.84
0.22
1.76
1.92

mean 1.04
0.22
0.99
1.10

1.01

0.21
0.94
l.08

1.03

0.21
0.99
1.08

1.03 1.04
Razaqpur

et al.
(2004)

variation 0.20 0.24
95 % conf. (-) 0.98 0.91
95 % conf. (+) 1.09 1.1 I

Figure 4.6 shows the trend lines for the shear ratio versus the modulus of elasticity for

CFRP-RC members. In Figure 4.6, the accuracy of the methods by Razaqpur et al.

(2004), and the CSA 5806-02 (2002) vary much more than the accuracy of the formula

given by the JSCE (1997). Furthermore, the JSCE (1997) formula also has the advantage

of giving conservative shear predictions, regardless of the modulus of the reinforcement.
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Figure 4.6 - Effect of Modulus on Concrete Shear Prediction for CFRP-RC

Since there was only one specimen with a modulus of elasticity greater than 150 GPa, a

further analysis \,vas completed which excluded this outlier from the analysis of the

CFRP-RC members. Figure 4.7 shows the trend lines for the shear ratio versus the

modulus of elasticity for CFRP-RC members excluding the outlier. In Figure 4.7, it is

apparent that the method of the JSCE (1997) is still performing the most accurately and is

always conservative. Table 4.4 shows that the equation given by Razaqpur et al. (2004)

has the most accurate average ratio. However, upon reviewing Figure 4.6, it can be seen

the formula tends to be conservative for members with a CFRP modulus less than 140

GPa, and unconservative when the CFRP modulus is greater than i40 GPa. Thus, the use

of the formula given by the JSCE (1997) is the best suited for predicting the concrete

shear strength of CFRP-RC. This formula is reasonably accurate and is conservative for

its entire 95o/o conftdence interval.
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All of the formulas for calculating the concrete shear capacity of FRP-RC are dependent

upon the effective depth, d, of the member. The trend lines for the log of the experimental

over predicted shear ratios versus the effective depth of the members can be seen in

Figure 4.8. It can be seen that the equation given by Razaçur et al. (2004) is typically

quite accunate at predicting the shear capacity of the members. However, Figure 4.8

shows that the equation tends to be unconservative for members with an effective depth

greater than 300 mm. This can be quite woffisome as this is often the case in practice.

Figure 4.8 also shows that the equations given by ISIS M03-01 (2001) and CSA 5806-02

(2002) are also quite accurate at predicting the concrete sheff capacity, regardless of the

effective depth. The formula given by the JSCE (1997) is conservative for all effective

depth values and becomes increasingly conservative as the effective depth is increased.
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This trend is desired as the designers of large structures will want an added insurance

against a beam prematurely failing in shear. Since the formulas for predicting the shear

capacity of both ISIS M03-01 (2001) and the CSA 5806-02 (2002) vary depending on

whether the effective depth is greater than or less than 300 mm, a statistical analysis has

been performed on the accuracy of the equations in both of these ranges and can be found

in Table 4.4.It can be seen in Table 4.4 that the equation given by Razaqpur et al. (2004)

is quite accurate at calculating the shear capacity for either of the cases. However, as was

also found in Figure 4.8, the formula is only consistently conservative for members with

an effective depth less than 300 mm. Table 4.4 also shows that the ISIS M03-01 (2001)

equation is performing accurately when grouped by the effective depth of the members.

The concern with the ISIS M03-01 (2001) equation was that it is inconsistent with the

modulus of elasticity of CFRP-RC as was shown in Figure 4.7.
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Figure 4.8 - Effect of Effective Depth on Shear Prediction

C)

-o
o
(õ

=o
o()
(õ

co
E
L
G)
o-x
tu
c

J

52



It has been shown that the accuracies of the shear formulas are dependent on both the

effective depth as well as on the type of reinforcement used. For this reason, a further

statistical analysis has been completed separating the members with an effective depth

less than 300 mm from those with an effective depth greater than 300 mm, reinforced

with either GFRP or CFRP in Table 4.5. According to Table 4.5, the equation given by

Razaçur et al. (2004) is the most accurate at predicting the concrete shear capacity in all

of the categories presented. However, it can also be noticed that the formula given by

Razaçur et al. (2004) is not conservative over its entire 95%o conftdence interval in any

of the categories presented in Table 4.5. Thus, the use of this formula is not

recommended as it may not be safe in all cases. On the other hand, the use of either of the

JSCE (1997) or the CSA 5806-02 (2002) gives acceptable results for all of the categories,

while still having conservative 95Yo conhdence intervals. The only area of concem with

the use of the CSA 5806 -02 (2002) formula was that it was shown to be inconsistent with

the modulus of elasticity of CFRP-RC members in Figure 4.6. The JSCE (1997) formula

on the other hand is always conservative, while still providing a reasonable accuracy.

Other areas of concern in predicting the concrete contribution to the shear capacity are

revealed by Figures 4.9 and 4.10, which show the trend lines of each of the equations

plotted against the beam slenderness ratio, a/d, and the concrete strength lr, respectively.

It can be seen that the accuracy of all of the formulas presented varies as either the

slenderness ratio or the concrete strength changes. It appears that in both cases, the

equation given by the JSCE (1997) gives good results although it does become slightly

unconservative in each case. However, neither case should be of great concern as
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slenderness ratios rarely exceed 6.5 and concrete strengths greater than70 MPa are also

rarely used.

Table 4.5 - Further Analysis of the Predicted Shear Capacity

Method
Statistical
Properfy

Experimental / Calculated Shear
GFRP-RC CFRP-RC

d<:300mm d>300mm d<:300mm d>300mm
Sample size 13 l4

JSCE
(tee7)

1.16
0.20
1.09
1.23

1.47
0.22
1.32
1.64

1.11

0.23
1.02
r.20

1.43

0.12
1.35

1.52

mean
variation

95 % conf. o
95 7o conf. (+)

Deitz - m.eân

''alrff' ff;";îiL?,

1.22
0.39
1.10
1.37

1.34
0.21
1.21

1.48

0.40
0.46
0.34
0.46

0.42
0.89
0.30
0.s9

Deitz -
General
(1ee8)

mean
variation

95 % conf. o
95 7o conf. (+)

1.34
0.36
t.2t
1.48

1.45

0.20
1.32
1.61

0.45
0.42
0.39
0.52

0.41
0.84
0.34
0.65

ISIS
M03-01
(2001)

1.38

0.39
1.23

1.53

1.56
0.21
r.40
1.73

0.81
0.39
0.71
0.92

0.93
0.66
0.11

t.21

mean
variation

95 % conf. (-)
95 7o conf. (+)

CSA
s806-02
(2002\

l.l7
0.33
1'07

1.29

r.4l
0.22
1.26
1.57

1.17
0.23
1.08
t.27

1.52
0.57
t.20
r.93

mean
variation

95 7o conf. (-)
95 7o conf. (+)

ACI m.ean

44ó*03 
ffhiï?,

4.06
0.55
3.51
4.70

4.64
0.45
3.80
5.68

3.11
0.54
2.67
3.75

3.5 I
0.7s
2.61
4.71

Proposed
ACI

mean
variation

1.93

0.23
1.80
2.07

r.97
0.27
1.13

2.24

1'69
0.21
1.57
1.82

1.18

0.13
1.67
1.90

440.1R 95 7o conf. (-)
Q0041 95 7o conf. (+)

Razaqpur
et al.

(2004)

mean
variation

95 % conf. (-)
95 7o conf. (+)

1.04
0.20
0.98
1.10

t.02
0.21
0.92
t.12

1.05

0.25
0.97
1.15

1.00
0.23
0.90
lIt2
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4.5 - Deflection Analysis

It is desirable for the deflection equations to over-predict the deflection of the members to

be conservative in the service analysis of the members. Typically, deflection behaviour is

only checked at the service conditions. The only design manual in which the service

conditions are explicitly stated is the ISIS M03-01 (2001). The service load of FRP-RC

beams is referred to as the load at which the strain in the outermost FRP layer reaches a

strain of r¡ror, equal to 2000X10-6. The analysis to determine this service load is similar to

finding the failure load of an under-reinforced FRP-RC beam and the neutral axis at

service can be found by iterating for c using Equations 4.Il to 4.13.

Equation 4.11

E ¡,'osc Equation 4.12e-oc 
- (¿-r)

A.r.rE f,ou ,.0,
Equation 4.13

d,þ,.f'" b

Once the neutral axis has been determined, Equations 4.14 and 4.75 can be used to find

the service moment. Assuming a 4-point bending configuration and accounting for the

self weight of the beam in the analysis, the service load Pr.*, can be found with the use of

Equation 4.16.

d,þ,=ï :[i)'

-/a-oc/, /- |

n / oc
Pt= . /6-2",/

/c'
/ uc

Equation 4.14
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M ,,"r, = drþr.f' , "(t - +)

n M'u,, Y-rbhL2
'.rcrv - A gA

The service conditions proposed by ISIS M03-01 (2001) often led to instances where the

service moment was smaller than the cracking moment, implying that the beam was not

cracked. However, when the moment-curvature diagrams of these members were

examined, all of these beams had curvature greater than the cracking curvature and

therefore were cracked. A typical moment-curvature diagram for these members can be

seen in Figure 4.11. The reason for this is the sudden decrease in stiffness immediately

after cracking, when concrete in tension is not considered in calculating the capacity of

the section. Since the cracking moment is greater than the service moment, all the

formulas recommend the use of the gross moment of inertia to calculate the service

deflection. This is incorrect and therefore, members that had service moments less than

the cracking moment were not included in the service load analysis. This greatly reduced

the number of members in the analysis and led to under-reinforced members not being

analyzed, as they all encountered this phenomenon.

Equation 4.15

Equation 4.16
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Since almost half of the beams in the database had, according to ISIS M03-01 (2001),

service moments smaller than the cracking moment, it was desired to perform a statistical

analysis at a load level which encompassed all of the beams in the database to improve

the reliability of the statistical equations. Upon viewing a plot of the log of the deflection

ratios versus the ratio of the applied moment to the cracking moment as shown in Figure

4.I2, a fun-nel effect could be seen. All points plotted around the horizontal axis have

been calculated correctly, while the others have not. An inspection of Figure 4.12

indicates that the consistency of the equations is improved dramatically at elevated loads

of Mu/M., larger than 8 and that the greatest arca of concern is slightly after cracking for

all equations. Similar behaviour was also observed earlier in steel RC (Choi et aL.2004).

Since all equations are accurate at higher loads, it was desired to perform an analysis of

the behaviour of the equations at a lower load where there is a greater spread between the

outputs of each equation. This load was chosen to be 1 . 1P"'.

0.04 0.06 0.08 0.1

Curvature (1/m)

.@

ÕC
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Figure 4.12 - Effect of Applied Moment on Deflection Prediction

A statistical analysis was also performed on each of the code equations at 50o/o and 80o/o

of the maximum experimental loads to validate the equations for the entire loading range.

This will allow the codes to choose a deflection equation that gives accurate results at the

load level which most closely resembles their service conditions.

4.5,1 - Derivation of Proposed Deflection Equation

It is believed that the basic form of Equation 2.23 should remain unchanged, as it has had

great success in predicting the deflection of conventional RC beams. Thus, an empirical

modification factor was developed which can be used to have the deflection response

converge to the cracked deflection response quicker when FRP is used as the longitudinal
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reinforcement. The form of the equation has maintained the same form as that of

Equation 2.36 with the only difference in the definition of B.

Through the completion of some preliminary analysis, it was found that the accuracy of

Equation 2.23 relied both on the modulus of the reinforcement, as well as on the amount

of reinforcement present. A correlation analysis was then completed at the service load

level to determine which variables affected the accuracy of B the most, if an effective

moment of inertia formula of the same form as Equation 2.36 was used. Contrary to what

the ACI 440.lR (2004) had previously found, the accuracy of B was most dependant on

the square root of the relative reinforcement ratio, rather than the relative reinforcement

ratio. This can be seen in Table 4.6, which shows that this variable's correlation with B is

the closest to 1.0 at the service load level.

Table 4.6 - Correlation Analysis at Service Load

Property
f'c Ec Errp ft,.p

(MPa) (MPa) (MPa) (MPa) P plpn^t (plpr^rlt'' lcr/lg

f'c (MPa)

Ec (MPa)

E¡..0 (MPa)

f¡o (MPa)

p

P/Pø"t

þ/P*",)t"

lcr/lg

p

1.000

0.833 1.000

0.211 0.215 1.000

0.341 0.375 0.908 1.000

0.018 -0.04r -0.66'1 -0.668 '1.000

-0.296 -0.288 -0.191 -0.050 0.453

-0.299 -0.281 -0.180 -0.034 0.450

-0.303 -0.451 0.451 0.184 -0.027

-0.037 -0.055 -0.107 -0.002 0.'106

r.000

0.214 1.000

0.233 -0.079 1.000

1.000

0.990

0.209

0.227

Unlike the Proposed ACI 440.1R (2004) equation,

coeffrcient for this term was dependent upon whether

was further found that the

reinforcement was GFRP or

it

the
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CFRP. A regression analysis was completed at the service load level for both GFRP-RC

and CFRP-RC beams, to determine that the coefficient should be 0.2 for GFRP-RC and

0.125 for CFRP-RC.

Since only over-reinforced members were able to be properly analyzed at the service

conditions, a further correlation analysis was done at a load level of 1.1P., to determine

which variables affected the accuracy of the deflection equations the most for the beams

which were under-reinforced. Here, as the ACI 440.lR (2004) had previously found, it

was determined that the accuracy of P was most dependant on the relative reinforcement

ratio. Through the completion of a regression analysis, it was determined that the same

coefficients found in the analysis at service could also be used for under-reinforced

members, while still giving conservative deflection estimates. In summary, the proposed

deflection equation follows the same format as Equation 2.36, with the difference arising

in the definition of B. Here, B is defined according to Equations 4.I7 to 4.19.

Þ = ÞoÞ,t Equation 4.17

Þo = P / Pr,ot if plpuo, <I.0

if pl puo,)7.0

if CFRP-RC

if GFRP-RC

þo=

þr =0'125

þr =0'2

Equation 4.18

Equation 4.19

PlPo,
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To verify the use of the proposed formula, the deflection responses of the proposed

formula were compared against the deflection responses received from the lab tests. The

comparison between these responses can be seen in Figures 4.I3 to 4.I1.
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In viewing Figures 4.13 to 4.11, it can be seen that the cracking loads were predicted

quite poorly from the use of Equations 2.24 and 2.25 for all of the FRP-RC beams tested.

This led to very poor deflection prediction at low loads. After the predicted cracking load

however, the proposed deflection equation predicts the deflection responses of the beams

tested quite well. In particular, the deflection responses of the over-reinforced beams (4L-

A to 4L-D) were predicted quite well. The deflection response of the under-reinforced

beam (34) was not predicted as well and is likely a result of the poor calculation of the

cracking load.

4.5.2 - Deflection Analysis at Service

The trend lines for the log of the deflection ratios versus the modulus of elasticity for

GFRP-RC beams at the service load level can be seen in Figure 4.18. In order for the

formulas to be conservative, the log of the deflection ratio has to be smaller than zero.

Figure 4.18 shows that the formulas proposed by Yost et al. (2003) and Bischoff (2005)

yield satisfactory results and their accuracies are not affected by changes in the modulus

of elasticity. This is imporlant since the modulus of elasticity changes rapidly among

different types of FRP. Comparable results to those received by Yost et al. (2003) and

Bischoff (2005) can also be seen by the formula proposed by the author (Mota). An

advantage of this formula is that at this load level it is always conservative. Table 4.7

shows the statistical analysis of each of the formulas at the service load level. The

formulas are conservative if the 95Yo confidence interval is less than one. The formula

given by Bischoff (2005) is the most accurate for GFRP-RC beams with a mean value of

1.01. However, the formula given by Mota is quite comparable in accuracy and is

conservative over the entire 95%o confidence interval.
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Table 4.7 - Statistical Analysis of the Predicted Deflections at Service

Method Statistical
Property

Experimental / Calculated Defl ection
GFRP-RC CFRP-RC AFRP-RC All Members

Sample size 67 4t 110

Faza- &
GangaRao

(tee2)

mean
variation

95 7o conf. (-)
95 %o conf. (+)

0.81
0.94
0.69
0.9s

1.10
0.36
r.00
1.21

1.92
1.24
0.63
5.81

0.92
0.'79

0.83
1.03

Benmokrane mean
variation

2'^?':, 95 % conf. (-)(1ee6) óãx cont r+l

0.49
0.'t4
0.43
0.s6

0.72
0.46
0.64
0.81

0.52
0.05
0.49
0.s6

0.57
0.69
0.52
0.63

Brown & mean-Ïlii:i- 
ff;J"#g

1.45

0.95
1.24
1.70

r.27
0.67
1.09
1.49

1.49
1.71

0.37
s.93

1.38

0.8s
1.23
1.55

Toutanji &
Saafi

(2000)

mean
variation

95 % conf. (-)
95 %o conf. (+)

1.28

0.96
1.09

1.s0

L1l
0.67
1.00
1.37

1.39
1.77
0.34
5.71

1'24
0.8s
1.11

1.39

ISIS
M03-01
(2001)

0.60
0.73
0.s3
0.68

0.90
0.50
0.79
t.02

0.69
0.02
0.61
0.71

0.70
0.'70
0.63
0.71

mean
variation

95 % conf. (-)
95 %o conf. (+)

CSA
s806-02
(2002\

0.59
0.78
0.51

0.68

0.90
0.41
0.81
1.00

1.05

0.81
0.46
2.39

0.70
0.71
0.63
0.77

mean
variation

95 % conf. (-)
95 7o conf. l+)

ACI
440.1R-03

(2003)

mean
variation

95 % conf. (-)
95 7o conf. (+)

1.35

0.80
1.t7
1.55

1.53

0.59
1.33

1.76

1.35

0.89
0.56
3.26

t.42
0.72
1.28
1.57

Yost
et al.

(2003)

0.95
0.77
0.83
1.09

1'r9
0.41
1.07
t.32

1.37
0.53
0.16
2.41

1.04
0.66
0.95
1'l4

mean
variation

95 % conf. (-)
95 %o conf. (+)

Pronosed ACI mean

iiiö ff;";iï,?,

1.24
0.84
1.07

1.43

1.19
0.41
1.07
1.32

1.87
1.16
0.64
s.44

1.23

0.69
1.12
1.36

Bischoff
(200s)

mean
variation

95 % conf. (-)
95 7o conf. (+)

1.01

0.71

0.89
1.14

1.19
0.51
1.05

1.35

1.25

0.91
0.51
3.04

1.08
0.64
0.98
1.18

0.87
0.77
0.76
1.00

0.88
0.44
0.79
0.98

1.14
0.51
0.64
2.02

0.88
0.65
0.80
0.97

mean
variation

95 % conf. (-)
95 %o conf. (+)

Mota
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From the trend lines for the deflection ratio versus the modulus of elasticity for CFRP-RC

beams at the service load level, a different trend can be seen. Figure 4.19 shows that the

accuracy of the methods by Bischoff (2005), Yost et al. (2003), the Proposed ACI440.lR

(2004),Faza and GangaRao (1991), and Toutanji and Saafi (2000) have a lesser variance

with the modulus of elasticity of the CFRP than do the methods proposed by ISIS M03-

0l (2001), CSA 5806-02 (2002), or Mota. Although the accuracy of these latter formulas

does seem to vary with the modulus of the CFRP, they do have the advantage of giving

conservative deflection estimates. Table 4.7 shows that the formula proposed by Faza and

GangaRao (1992) is the most accurate formula for CFRP-RC beams. However, the

formulas given by the CSA 5806-02 (2002) and ISIS M03-01 (2001) are similar in

accuracy and have the benefit of giving conservative deflection estimates. It can also be

seen that the formula given by Mota gives very comparable results and is also

conservative over its entire 95%o conftdence interval.

Table 4.7 demonstrates the accuracy of each of the formulas for the AFRP-RC beams

present in the database. The CSA 5806-02 (2002) equation is the most accurate equation

for calculating the deflection of AFRP-RC beams at the service load level. However,

given that there were only 2 AFRP-RC members in the database, the central limit

theorem does not apply here, and this information should be taken lightly.

Given that the method proposed by Yost et al. (2003) over predicts the deflection of

GFRP-RC and under predicts the deflection of CFRP-RC, it is no coincidence that when

looking at the entire dataset at the service load level, this method performs the most
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accurately as shown in Table 4.7. This trend can also be seen in the formula given by

Faza and GangaRao (1992), which also gives accurate results when looking at the entire

dataset. However, if consistency of a formula is the key, the formula proposed by Mota

was found to satisfr this criterion the best. This formula was both accurate and

conservative at this load level. Thus, the use of the Mota formula for calculating the

service load deflection of FRP-RC beams is recommended.

Other areas of concern in predicting the deflection at service load are revealed by Figures

4.20 and 4.2I, which show the trend lines of each of the equations plotted against the

beam slendemess ratio, ald, and relative reinforcement ratio, p/pa*, respectively. It can be

seen that the accuracy of all of the formulas presented varies as either the slenderness

ratio or relative reinforcement ratio changes. The latter is of less concern as FRP-RC

tends to usually be only slightly over-reinforced for economic purposes. However, the

effect of the slenderness ratio on deflection prediction needs further investigation. It

should also be noticed that the formulas proposed by Faza and GangaRao (1992) and

Mota are the least affected by either of these relationships.
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4.5.3 - Deflection Analysis at Load Levels close to Cracking

The trend lines of the log of experimental over calculated deflection, at a load level of

1.1P",, were plotted with respect to the modulus of elasticity of GFRP inFigure 4.22.

Figure 4.22 shows that the Proposed ACI 440.1R (2004), Yost et al. (2003), and Mota

formulas are all quite accurate at predicting the deflection of GFRP-RC beams at a load

of 1.1P.r. The figure indicates that the accuracy of these formulas, with a minor exception

to that of the Proposed ACI 440.1R (2004), does not vary with the value for modulus of

elasticity of the GFRP. The advantage to the formula given by Mota is that it is always

conservative for these types of members, while the other two equations tend to be slightly

unconservative at this load level. All other equations tend to be far less accurate at this

load level. Table 4.8 shows the statistical analysis of each of the formulas at this load. As

mentioned above, the formula given by Yost et al. (2003) is the most accurate. However,

the formula given by Mota is quite comparable in accuracy and is conservative over its

entire 95Yo conftdence interval.
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Table 4.8 - Statistical Analysis of the Predicted Deflections at 1.1P..

Method
Statistical
Property

Experimental / Calculated Deflection

GFRP-RC CFRP-RC p>pnu¡ p<p¡nr *"åtl"r,
Sample size 139 16s5ó 32 t97

Faza &
GangaRao

(tee2)

mean
variation

95 % conf. (-)
95 7o conf. (+)

0.64
t.2t
0.s6
0.73

0.83
0.53
0.74
0.93

0.70
t.02
0.63
0.78

0.68
1.29
0.51
0.91

0.70
1.06

0.63
0.7'7

Benmokrane meân

¿Ï},- ff"*ïiiì?,

0.50
1l24
0.44
0.51

0.51
r.02
0.42
0.61

0.43
0.82
0.39
0.41

1.19
1.6s
0.8s
1.67

0.50
1.1'7

0.45
0.56

Brown & mean

B;;"r;;* ^-variation"-'¿iõñi- 
ff"i"ffll3

2.75
1.28

2.40
3.15

2.67
1.r4
2.19
3.26

2.28
0.86
2.07
2.51

6.83
|.67
4.86
9.60

2.12
1.23

2.43
3.04

mean
I outantr d¿- -:---l- - variation

,ìäää; ff"iätlg

2.56
|.27
2.23
2.93

2.51
t.t4
2.06
3.06

2.13
0.86
1.94
2.34

6.34
1.68
4.51
8.92

2.54
1.22
2.27
2.84

ISIS
M03-01
(2001)

0.46
1.01

0.41
0.52

0.69
0.70
0.60
0.79

0.s0
0.84
0.46
0.55

0.60
1.60
0.43
0.84

0.51
0.97
0.46
0.56

mean
variation

95 % conf. (-)
95 %o conf. (+)

CSA
s806-02
(2002)

0.50
1.09
0.44
0.s7

0.69
0.51
0.62
0.77

0.55
0.90
0.50
0.61

0.56
1.34
0.42
0.75

0.55
0.91
0.s0
0.60

mean
variation

95 % conf. (-)
95 7o conf. (+)

ACI
440.1R-03

(2003)

mean
variation

95 % conf. (-)
95 % conf. (+)

1.94
1.28

1.69
2.22

2.53
1.14
2.07
3.09

t.75
0.86
1.59
1.92

5.23
1.19
3.67
7.46

2.09
1.25

1.87
2.34

Yost
et al.

(2003)

I .01

1.16
0.89
1.15

1.38
0.81
1.18
1.61

1.01

0.89
0.92
1.11

1.80
1I71
1.27
2.54

1.11

1.09

1.00

t.23

mean
variation

95 % conf. (-)
95 7o conf. (+)

Pronosed mean

*¿iil;ñ 
ff;J"ïi,g

1.11

r.26
0.91
r.27

1.22
0.6s
1.01
1I39

1.20
l.00
1.08

|.33

0.93
1.s2
0.68
1.28

1.15

1.09
1.04
1.21

Bischoff
(200s)

mean
variation

95 % conf. (-)
95 %o conf. (+)

1.29

1.00

1.15
1.44

t.70
0.84
1.45

r.99

1.30
0.80
1.19
t.43

1.97
1.63

l.4t
236

1'39
0.97
1.27
1.53

0.83
1.09

0.73
0.94

0.s9
0.65
0.52
0.67

0.74
0.92
0.67
0.82

0.84
1.45

0.62
1.15

0.76
1.00
0.69
0.84

mean
variation

95 % conf. (-)
95 % conf. (+)

Mota
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Trend lines for the log of the deflection ratio versus the modulus of elasticity for CFRP-

RC were plotted af aload of 1.1P.,. and are shown in Figure 4.23.In Figure 4.23,there

was initially an outlier with a modulus of elasticity greater than 150 GPa which was

removed from the analysis so as to not skew the trend lines. It can be seen that the

accuracy of all of the formulas presented tends to have a dependence on the modulus of

elasticity of the reinforcement for CFRP-RC. The dependence of the method proposed by

ACI 440.1R (2004) on the modulus of elasticity of the CFRP is quite similar to the

method proposed by Faza and Ganga Ptao (1992). However, the formula proposed by

Faza and Ganga Rao (1992) conservatively estimates deflection larger than the

experimental deflection. Meanwhile, the CSA 5806-02 (2002) and ISIS M03-01 (2001)

methods are even more conservative thanFaza and Ganga Rao's (1992) formula. It can

also be seen in Figure 4.23 that the equation given by Mota does not predict the

deflection of CFRP-RC beams well at the load level of 1.1P., However, this method does

still give conservative results at the load level which is important. Table 4.8 shows that

the formula given byFaza and GangaRao (1992) is the most accurate for predicting the

deflection of CFRP-RC beams at this load level. The formula given by the Proposed ACI

440.1R (2004) is also accurate at this load level but gives deflection predictions thatare

not conservative, which is undesired. The formula presented by Faza and Ganga Rao

(1992) on the other hand is consistently conservative.

It was previously found by the ACI 440.1R (2004) that the relative reinforcement ratio

affects the deflection of FRP-RC. Figure 4.24 plots the log of experimental over

calculated deflection for over-reinforced members and clearly shows that all of the
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methods have varying accuracy depending on the relative reinforcement ratio. Given that

members typically have reinforcement ratios that are less than 2.5 times the balanced

reinforcement ratio, the method given by Yost et al. (2003) is performing most accurately

for beams which are over-reinforced. These results are verified in Table 4.8 with the

equation by Yost et al. (2003) having anaverage ratio of 1.01. This method is the most

accurate and consistently conservative at reinforcement ratios of up to 2.5p621, while the

formula given by Mota is conservative up to 5p6u1. The CSA 5806-02 (2002),ISIS M03-

01 (2001), and Faza and Ganga Rao (1992) formulas, are conservative for nearly the

entire range of reinforcement ratios, and become increasingly accurate as the

reinforcement ratio is increased.
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Members at 1.lPcr
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When a similar plot for members which are under-reinforced in Figure 4.25 is examined,

it appears that the formula of the Proposed ACI 440.IR (2004) is quite precise at

calculating the deflection at 1.1P., for under-reinforced members, regardless of the

relative reinforcement ratio. Similar results can also be seen for the equation given by

Mota, only this formula gives slightly more conservative results than that of the Proposed

ACI440.1R (2004). This is verified by Table 4.8, which shows that both formulas are not

only accurate, but also have confidence intervals which are nearly always conservative.

o.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

P/Po^t

Figure 4.25 - Effect of Relative Reinforcement Ratio on Deflection Prediction for Under-Reinforced
Members at 1.1Pcr
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formulas presented by Yost et al. (2003) and the Proposed ACI 440.1R (2004) give

satisfactory results for calculating the deflection of GFRP-RC beams. The performance of

each of these equations with respect to the reinforcement ratio was investigated, as shown

in Table 4.9. The Yost et al. (2003) equation is more precise for over-reinforced beams,

while the formula of the Proposed ACI 440.1R (2004) is more accurate for under-

reinforced beams. It can also be seen that the equation given by Benmokrane et al. is also

accurate for GFRP-RC under-reinforced members. Table 4.9 shows that the Faza and

GangaRao (1992) formula is quite accurate at forecasting the deflection of both over-

reinforced and under-reinforced CFRP-RC members and is conservative for much of the

95o/o confidence intervals. The CSA 5806-02 (2002) equation also performs satisfactorily

for CFRP-RC, which indicates that moment-curvature based methods perform well for

CFRP-RC, mainly due to the larger stiffness of the beams after cracking compared to

GFRP-RC. It should be pointed out that the method of the CSA 5806 -02 (2002) does not

incorporate tension stiffening into its model. It is assumed that if tension stiffening was

added to the CSA 5806-02 (2002), the results would improve dramatically for GFRP-RC

beams. This will become clearer as these beams are analyzed at higher load levels, whete

tension stiffening does not play an important role, and the level of conservatism in these

methods decreases. It can also be noted from viewing Table 4.9 that the method given by

Mota gives very accurate results, which are still conservative at this load level for almost

all reinforcement schemes. The one area of concern with the equation given by Mota is

that it is overly conservative for CFRP-RC beams which are over-reinforced at this load

level.
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Table 4.9 - Further Analysis of the Predicted Deflections at 1.1P",

Experimental / Calculated Deflection
Method Statistical Property GFRP-RC CFRP-RC

P>Pu"t P(Punt P)P¡ot P<P¡nl
Sample size 115 24488

ßaza, &
GangaRao

(1992\

geometric mean 0.65
variation 1 .15

95 7o confidence (-) 0.57
95 7o confidence (+) 0.75

0.61

1.s2
0.42
0.88

0.81
0.55
0.72
0.92

0.94
0.3s
0.76
1.16

Benmokrane
et al.

(1ee6)

geometric mean
variation

95 7o confidence (-)

0.43
0.90
0.38

1.06
|.93
0.69
1.63

0.42
0.67
0.36
0.49

1.69
0.60
1.22
2.3495 %o confidence (+) 0.48

Brown & geometric mean

Barthoromew ^- - variation"-'iiõñt- 
ff"i;;;Hffi;$

2.33
0.92
2.07
2.63

6.07
1.95

3.94
9.36

2.16
0.74
1.85

2.53

9.69
0.61
6.79
13.82

Toutanji &
Saafi

(2000)

geometric mean
variation

95 7o confidence (-)
95 7o confidence (+)

2.17
0.92
t.93
2.44

s.62
t.94
3.65
8.6s

2.03
0.74
r.74
2.37

9.06
0.69
6.30
13.03

ISIS
M03-01
(2001)

0.45
0.87
0.40
0.50

0.48
1..69

0.32
0.71

0.63
0.66
0.s5
0.73

1.18

0.43
0.92
1.51

geometric mean
variation

95 7o confidence (-)
95 %o confidence (+)

CSA
s806-02
(2002)

0.s0
1.00
0.44
0.51

0.48
1.52
0.33
0.69

0.66
0.51
0.s9
0.74

0.88
0.37
0.7 |
1.09

geometric mean
variation

95 7o confidence (-)
95 7o confidence l*)

ACI
440.1R-03

(2003)

geometric mean 1.64
variation 0.92

95 7o confidence (-) 1.46

95 %o confidence (*) 1.85

4.28
t.96
2.77
6.61

2.03
0.72
t.74
2.31

9.s6
0.62
6.84
13.36

Yost
et al.

(2003)

1.47
1187

0.96
2.24

1.19
0.62
1.04
1.36

3.28
0.54
2.43
4.42

geometric mean 0.93
variation 0.97

95 7o confidence (-) 0.82
95 %o confidence (*) 1.05

Proposed
ACI44O.1R

(2004')

geometric mean
variation

95 7o confidence (-) 1.03

95 %o confidence (+) 1.35

t.l8
1.13

0.81
1.76
0.54
1.22

1.19
0.68
1.03

1.38

t.36
0.48
1.04
1.78

Bischoff
(200s)

geometric mean 1.23

variation 0.85
95 7o confidence (-) 1.10

95 7o confidence (*) 1.38

1.57
t.67
1.06
2.32

1.48
0.66
t.28
1.70

3.93
0.68
2.15
s.62

0.81
1.76
0.54

0.55
0.62
0.48

0.90
0.46
0.69
t.t7

geometric mean 0.83
variation 0.96

95 7o confidence (-) 0.73
Mota

95 7o confidence (+) 0.94 1.22 0.63

78



4.5.4 - Deflection Analysis at 50% of Failure Load

The log of experimental over calculated deflection was plotted in Figure 4.26 with

respect to the modulus of elasticity of GFRP at a load level of 50Yo of the experimental

failure load. Figure 4.26 shows that the equations are all quite accurate at predicting the

deflection of GFRP-RC beams at this load level. However, the figure indicates that the

accuracy of the formulas typically varies with the modulus of elasticity of the GFRP.

Here, many of the formulas are conservative at predicting the deflection for lower values

of the modulus and unconservative for higher values of the modulus. Only the formulas

given by the CSA 5806-02 (2002), ISIS M03-01 (2001), and Benmokrane et al. (1996)

give conservative estimates for all values of the modulus of elasticity. Table 4.10 shows

the statistical analysis of each of the formulas at this load. It can be seen that the formula

given by Mota is the most accurate with an average ratio of 1.00. However, upon

reviewing Figure 4.26, it can be seen that the formula over-predicts the deflection for

GFRP-RC beams with a modulus less than 40 GPa, and under-predicts the deflection of

the GFRP-RC beams with a modulus higher than 40 GPa. The same applies to the

equation proposed by Bischoff (2005) which is accurate when looking at the results of

Table 4.10. Thus, the equation given by ISIS M03-01 (2001) is a better equation for

predicting the deflection of GFRP-RC beams at a load level of 0.5Pn,,* since it is not only

accutate, but also conservative.
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Table 4.10 - Statistical Analysis of the Predicted Deflections at 0.5Pna,

Method
Statistical
Property

Experimental / Calculated Deflection

GFRP-RC CFRP-RC p>puor p<pu,r ,"å1"r,
Sample size 139 1975ó 165 32

Faza &
GangaRao

(1992\

mean
variation

95 % conf. (-)
95 %o conf. (+)

1.13

0s8
1.05

t.22

1.28
0.91
l.08
1.52

1.10
0.30
1.06
1.t4

1.65

1.96
1.13

2.40

t.11
0.68
1.09

1.26

, mean
.l'enmoKrane

¿;ït, ff"*ïiiL?,

0.80
0.68
0.73
0.87

0.96
l.08
0.79
1.16

0.73
0.32
0.70
0.76

1.7r
r.94
1.18
2.48

0.84
0.80
0.77
0.91

Brown & mean

"ïl$3î- ff;ïi¡i?,

1.20
0.82
1.09
t.33

1.30
t.r2
t.07
1.58

t.02
0.3s
0.97
1.07

3.15
t.76
2.22
4.48

1.22

0.90
1.t2
1.33

Toutanji &
Saafi
(2000)

mean
variation

95 % conf. (-)
95 7o conf. (+)

1.07
0.79
0.98
1.19

1.23

1.15
1.01

1.s0

0.94
0.34
0.90
0.98

2.76
1.90
1.91

3.99

t.t2
0.90
1.02
1.23

ISIS
M03-01
(2001)

0.87
0.6s
0.80
0.9s

1.14
0.98
0.95
1.36

0.86
0.34
082
0.90

1.43

2.21
0.9s
2.14

0.94
0.16
0.87
1.02

meân
variation

95 % conf. (-)
95 7o conf. (+)

CSA
s806-02
(2002)

0.84
0.6s
0.71
0.91

1.09
1.00
0.91
1.3 I

0.84
0.33
0.80
0.88

1.33

2.35
0.87
2.02

0.90
0.11
0.83
0.97

mean
variation

95 % conf. (-)
95 %o conf. (+)

ACI
440.1R-03

(2003)

mean
variation

95 % conf. (-)
95 %o conf. (+)

1.42
0.72
r.30
1.55

1.61

1.02
t.34
t.94

1.23

0.3 s

lIt7
t.29

3.64
1.35

2.71
4.89

1.41
0.8 r

1.35

1.60

Yost
et al.

(2003)

t.07
0.60
0.99
1.16

1.3 1

0.94
1.10
1.56

1.00
0.30
0.96
1.04

2.16
r.65
1.54
3.03

I .13

0.7r
1.05

t.22

mean
variation

95 % conf. o
95 7o conf. (+)

Pronosed mean

Aïiilõ.rR ^-va.riation'rzdd;i 
;;"i;äil$

1.09
0.61
1.01

1.18

1.24
0.92
1.05

1.47

1.04
0.33
1.00
1.09

|.69
t.94
1.16
2.46

1.13

0.70
1.05
1.22

Bischoff
(200s)

mean
variation

95 % conf. (-)
95 7o conf. (+)

1.02
0.59
0.95
1.11

1.28
1.00
1.07
1.54

0.97
0.30
0.94
1.01

t.92
1.89
1.33

2.77

1.09
0.13
1.01

t.t7
1.00
0.60
0.92
1.08

1.09
1.00
0.91
1.31

0.94
0.31
0.90
0.98

r.63
2.00
1.11

2.39

1.03

0.72
0.95
1.11

mean
variation

95 % conf. (-)
95 7o conf. (+)

Mota
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Trend lines for the log of the deflection ratio versus the modulus of elasticity for CFRP-

RC were plotted at a load of 0.5Pn,u", and are shown in Figure 4.27, excluding the outlier

point with a modulus of 174 GPa. It can be seen that the accuracy of many of the

formulas varies with the modulus of the CFRP reinforcement at this load level, with the

exceptions of Mota, ISIS M03-01 (2001) and the CSA 5806-02 (2002). It can also be

seen that the equations by Mota and the CSA 5806-02 (2002) are quite accurate at

predicting the deflection of CFRP-RC at this load level. However, only Benmokrane et

al. (1996) is conservative for all reinforcement types. Table 4.10 shows that the equations

given by Mota, the CSA 5806-02 (2002) and Benmokrane et al. (1996) are all accurate

but only the one given by Benmokrane et al. (1996) is conservative for predicting the

deflection of CFRP-RC beams at this load level.

Figure 4.28 plots the log of experimental over calculated deflection for over-reinforced

members. The trend lines in Figure 4.28 show that all of the methods have varying

accuracy depending on the relative reinforcement ratio. Since members typically have

reinforcement ratios that are less than 2.5 times the balanced reinforcement ratio, the

methods of Toutanji and Saafi (2000), Yost et al. (2003), Bischoff (2005), and Mota are

performing most accurately for over-reinforced beams. The methods of the CSA 5806-02

(2002) and ISIS M03-01 (2001) are also performing accurately at this load level and are

conservative up to 5p6u¡. These results are verified in Table 4.10 which shows that the

method proposed by Yost et al. (2003) is the most accurate and consistently conservative

at reinforcement ratios of up fo 2.5pøut, while the Bischoff formula is conservative up to
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3.5puu', the Mota formula is conservative up to 4.5p6¿1 and the formula proposed by

Toutanji and Saafi (2000) is conservative at all reinforcement ratios.

When a similar plot for members which are under-reinforced is examined, as in Figure

4.29,less satisfactory results are arrived at and it appears that all of the equations have a

greater difficulty in accurately predicting the deflection at 0.5P*u* for under-reinforced

members. This is verified by Table 4.10, which shows that none of the formulas have a

conservative average experimental to theoretical deflection ratio. It can also be seen that

the CSA 5806-02 (2002) equation is performing the most accurately at this load level,

with an average deflection ratio of 1.33.
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Figure 4.28 - Effect of Relative Reinforcement Ratio on Deflection Prediction for Over-Reinforced
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A further statistical analysis has been completed separating the over-reinforced from the

under-reinforced members reinforced with either CFRP or GFRP in Table 4.IL It can be

seen that the results are much more accurate for the over-reinforced beams than for the

under-reinforced beams. The formulas given by Toutanji and Saafi (2000), Bischoff

(2005), and Mota are accurate and conservative for the over-reinforced beams, regardless

of whether they are GFRP-RC or CFRP-RC. However, when looking at the under-

reinforced beams, the results are varied and the CSA 5806-02 (2002) gives the most

accurate results at this load level. It must be noted however that none of the equations

give conservative deflection estimates for the under-reinforced beams at this load level.
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Table 4.11 - Further Analysis of the Predicted Deflections at 0.5P.,*

Experimental / Calculated Deflection
Method Statistical Property GFRP-RC CFRP-RC

Faza &
GangaRao

(1992\

geometric mean 1.08

variation 0.30

95 7o confidence (-) 1.03

95 7o confidence (+) 1.13

1.40
1.52
0.97
2.03

1.13

0.31
1.05
1.22

2.66
3.23
0.98
7.23

Benmokrane
et al.

(1ee6)

0.80 2.88
0.36 3.01
0.73 1.10
0.87 7.54

geometric mean 0.71
variation 0.29

95 7o confidence (-) 0.68
95 %o confidence (+) 0.74

1.44
1.51

1.00
2.08

Brown &
Bartholomew

(1ee6)

geometric mean
variation

95 7o confidence (-)
95 7o confidence (+)

1.02 5.29
0.31 2.t5
0.94 2.39
I .10 lt.12

1.02
0.37
0.96
1.08

2.64
1.53

1.82
3.83

Toutanji &
Saafi

(2000)

geometric mean
variation

95 %o confidence (-)
95 7o confidence (+)

0.93
0.34
0.88
0.98

2.28
1.61

1.55

3.3 5

0.97
0.33
0.89

4.89
2.40
2.09

l.Os t1.42

ßIS
M03-01
(2001)

0.82
0.31
0.78
0.86

t.t6
1.76
0.77
1.74

0.98
0.3 5

0.90
1.07

2.73
3.14
1.02
7.31

geometric mean
variation

95 7o confidence (-)
95 7o confidence (+)

CSA
s806-02
(2002\

geometric mean
variation

95 %o confidence (-)
95 7o confTdence (+)

0.80
0.30
0.76
0.84

L08
1.86
0.7 |
1164

0.87
1.04

0.86
7.00

0.95 2.46
0.36 3.52

ACI
440.1R-03

(2003)

geometric mean
variation

95 7o confidence (-)
95 7o confidence (+)

t.2l
0.36
1.t4
1.28

3.01
1.16
2.21
4.10

t.28
0.33
1.18

6.41
1.44
3.45

t.39 I 1.89

Yost
et al.

(2003)

0.96
0.29
0.92
1.01

t.16
t.32
1.26
2.46

1.09
0.31
1.01

1.18

3.94
2.18
t.1l
8.78

geometric mean
variation

95 %o confidence (-)
95 7o confidence (+)

Proposed
ACI44O.IR

(2004)

geometric mean
variation

95 %o confidence (-)
95 %o confidence (+)

1.03

0.34
0.98
1,09

1.42
1.52
0.98
2.06

1.08
0.31
1.00
l.t7

2.84
3.00
1.09
7.42

Bischoff
(200s)

geometric mean
variation

95 7o confidence (-)
95 7o confidence (+)

0.94
0.28
0.90
0.99

1.50
1,44
1.05

2.14

1.06
0.31
0.98
1.15

4.03
2.46
1.71

9.s 1

0.93
0.29
0.89
0.97

1.42
1.52
0.98
2.06

0.9s
0.36
0.87
t.04

2.46
3.53
0.86
7.0r

geometric mean
variation

95 7o confidence (-)
95 7o confidence (+)

Mota
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4.5.5 - Deflection Analysis at 80% of Failure Load

The log of experimental over calculated deflection was plotted in Figure 4.30 with

respect to the modulus of elasticity of GFRP at a load level of 80% of the experimental

failure load. The equations are typically accurate at predicting the deflection of GFRP-

RC beams at this load level but the accuracy of the formulas typically varies with the

value for modulus of elasticity of the GFRP. None of the formulas are conservative aL

predicting the deflection for higher values of the modulus. The CSA 5806-02 (2002),

ISIS M03-01 (2001), Bischoff (2005), and Mota formulas tend to vary the least with the

modulus and are also accurate. Table 4.12 shows the statistical analysis of each of the

formulas at this load. The formulas given by the CSA 5806-02 (2002), ISIS M03-01

(2001), Bischoff (2005), and Mota are the most accurate equations at this load level, with

the CSA 5806-02 (2002) equation also having the benefit of being conservative.
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^lable 4.12 - Statistical Analysis of the Predicted Deflections at 0.8P,"*

Method
Statistical
Property

Experimental / Calculated Defl ection

GFRP-RC CFRP-RC p>puur p<p¡ur *"åt1".,
197321655óSample size 139

ßazz &
GangaRao

(tee2)

mean
variation

95 % conf. (-)
95 7o conf. (+)

1.18
0.29
1.13

t.23

1.18

0.25
1.11
1'25

1.18
0.22
t.14
1.22

1.22
0.49
1.06
1.40

1.18

0.27
1.14
1.22

, mean
lJenmokrane

¿iîi ff;"ffl1?,

0.91
0.33
0.87
0.95

0.96
0.32
0.89
1.03

0.89
0.20
0.87
0.92

1.13

0.70
0.94
1.36

0.92
0.33
0.88
0.96

Brown & meân

"t*$iï- ff"*ïiil?,

t.),7
0.64
1.08
1.27

1.23

0.56
1.09
1.38

1.01
0.21
1.04
1.10

2.02
1.60
1.45

2.81

1.18
0.61
1.10
r.26

mean
I outanu dg^ -;--l- - variation

(ìäää; ;;"f äilg

1.10
0.56
1.02
1.18

1.19
0.49
1.01

1.32

l.04
0.20
l.0 t
t.07

l.68
|.43
1.24
2.29

1.13

0.54
1.06
1.20

ISIS
M03-01
(2001)

1.00
0.22
0.97
1.03

1.13

0.27
l.06
1.20

L06
0.20
1.03

1.09

0.91
0.3 8

0.81
t.02

1.03

0.25
1.00
1.06

mean
variation

95 % conf. (-)
95 7o conf. (+)

CSA
s806-02
(2002)

0.98
0.22
0.95
1.01

1.09
0.27
1.02
t.16

t.04
0.20
1.01

1.07

0.86
0.35
0.78
0.95

1.01

0.24
0.98
1.04

mean
variation

95 % conf. (-)
95 7o conf. (+)

ACI
440.rR-03

(2003)

mean
variation

95 % conf. (-)
95 7o conf. (+)

1.35

0.68
1.24
1,41

r.42
0.61
t.24
1.62

1.20
0.23
1.16
1.24

2.77
1.47
2.02
3.19

1.31
0.67
1.28
1.47

Yost
et al.

(2003)

1.13

0.35
1.08
1.19

t.23
0.37
1.13

1.34

1.10
0.20
1.07
I .13

1,49
0.78
1.22
1.82

1.16
0.36
1.11

1.21

mean
variation

95 %o conf. (-)
95 7o conf. (+)

Pronosed mean

tllüî* 
ff"2'"ïä,?,

1.09

0.25
1.05

1.13

1.15

0.26
1.08
1.22

1.12
0.21
1.09
1.1s

1.06
0.43
0.94
1.20

l.1t
0.25
1.08

1.15

Bischoff
(200s)

mean
variation

95 % conf. o
95 7o conf. (+)

r.07
0.22
1.04
1.11

1.20
0.31
l.t2
1.29

1.10
0.20
1.07
1.14

1.12
0.48
0.98
t.29

t.ll
0.25
1.07
1.14

1.06
0.24
1.02
1.10

1.09
0.27
t.02
1.16

1.08
0.20
1.05
1.11

1.02
0.42
0.90
1.15

1.07

0.24
1.04
1.10

mean
variation

95 % conf. (-)
95 % conf. (+)

Mota
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Trend lines for the log of the deflection ratio versus the modulus of elasticity for CFRP-

RC were plotted at a load of 0.8P.*, and are shown in Figure 4.3I.In Figure 4.3I,the

outlier with a modulus of elasticity of 174 GPa has been removed from the analysis to not

skew the trend lines. Here, many of the equations predict the deflection similarly with

trend lines close to each other. Only the equation given by Benmokrane et al. (1996)

gives accurate results that are also conservative. This formula also has the added benefit

of having little variance in its accuÍacy with the modulus of elasticity of the CFRP. Table

4.12 veÅfies these results and shows that the equation by Benmokrane et al (1996) is the

only formula with an average deflection ratio less than 1.0. This equation is quite

accurate at this load level with an average deflection ratio of 0.96.
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Figure 4.31 - Effect of Modulus on Deflection Prediction at 0.8Pn,o, for CFRP-RC
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Figure 4.32 plots the log of experimental over calculated deflection for over-reinforced

members. The trend lines in Figure 4.32 show that most of the methods under predict the

deflection at any relative reinforcement ratio, as they have trend lines that are entirely

above the x-axis. Here, the only method which gives conservative deflection estimates at

this load level is given by Benmokrane et al. (1996). These results are verified in Table

4.I2,which shows that the equation by Benmokrane et al. (1996) is the only equation that

gives conservative deflection estimates at this load level. However, it must also be noted

that the accuracies of all of the formulas are excellent at this load level, even though the

results show that the formulas are unconservative.
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When a similar plot for members which are under-reinforced is examined, as in Figure

4.33, the results show that the equations given by the Proposed ACI 440.1R (2004),

Bischoff (2005), and Mota are accurate at predicting the deflection at 0.8P*u* for under-

reinforced members. The formulas given by ISIS M03-01 (2001) and the CSA S806-02

(2002) are also giving accurate results here and have the added benefit of being

conservative at all reinforcement ratios. This is later verifiedby Tab\e 4.12.
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Figure 4.33 - Effect of Relative Reinforcement Ratio on Deflection Prediction for Under-Reinforced
Members at 0.8P^0,

A further statistical analysis has been completed separating the over-reinforced from the

under-reinforced members reinforced with either CFRP or GFRP in Table 4.I3.It can be

seen that although the majority of the equations are giving accurate deflection predictions

for the over-reinforced beams at this load level, only the equation by Benmokrane et al.

1.00.9
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(1996) gives conservative deflection estimates. This trend can be seen for both the over-

reinforced GFRP-RC and CFRP-RC beams, When viewing the accuracy of the equations

for the under-reinforced members at this load level, it can be seen that the CSA 5806-02

(2002),ISIS M03-01 (2002), the Proposed ACI440.1R (2004), and Mota formulas are all

giving more accurate results compared to the other methods. Here, the CSA 5806-02

(2002) is conservative for both GFRP-RC and CFRP-RC beams, while the equation by

ISIS M03-01 (2001) is only conservative for GFRP-RC beams, and the equation by Mota

is only conservative for CFRP-RC beams.
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Table 4.13 - Further Analysis of the Predicted Deflections at 0.8Pnax

Experimental / Calculated Deflection
Statistical Properfy GFRP-RC CF'RP-RC

OlOnnt O(Or'ol O)O¡ol O(On,l
Sample size 115

Faza &
GangaRao

(tee2)

geometric mean
variation

95 7o confidence (-)
95 %o confidence (+)

1.17 1.24
0.20 0.57
I . 13 1.04
t.zt 1.49

1 l9
0.26
1.11

L27

1.14
0.20
1.00
1.29

Benmokrane
et al.

(1ee6)

geometric mean
variation

95 %o confidence (-)
95 %o confidence (+)

0.87 1.13

0.15 0.17
0.8s 0.90
0.89 t.42

0.94
0.28
0.88
1.01

t.14
0.48
0.87
1.50

Brown &
Bartholomew

(1ee6)

geometric mean
variation

95 %o confidence (-)
95 7o confidence (+)

1.05 1.95

0.t7 1 .7 4
1.02 1.30
1.08 2.92

1.t2
0.28
1.04
1.20

2.22
1.26
1.26
3.91

Toutanji &
Saafi

(2000)

geometric mean
variation

95 7o confidence (-)
95 7o confidence (+)

r.02 1.62
0.16 1.56
0.99 1.1 I
l.0s 2.36

1.11

0.28
1.04
1.l9

1.88
l.t4
1.1I
3.19

ISIS
M03-01
(2001)

1.13

0.28
1.05
l.2t

1.10
0.26
0.94
r.29

geometric mean
variation

95 7o confidence (-)
95 7o confidence (+)

l 03 0.85
0.16 0.3I
1.00 0.7 s

1.06 0.97

CSA
s806-02
(2002)

geometric mean
variation

95 7o confidence (-)
95 7o confidence (+)

1.01 0.82
0.16 0.37
0.98 0.72
1.04 0.93

1.11

0.28
t.04
r.19

0.98
0.22
0.8s
1.12

ACI
440.1R-03

(2003)

geometric mean
variation

95 7o confidence (-)
95 %o confidence (+)

1.18 2.s9
0.22 1.55

r.14 1.78
1.22 3.77

1.23

0.26
1.15

1.3 I

3.39
1.29
l.91
6.02

Yost
et al.

(2003)

geometric mean 1.08 1.42 1.16 1.73

variation 0.17 0.81 0.26 0.67

95 7o confidence (-) 1.05 l.l2 1.09 1.21

95 %o confidence (+) L 1 I I .80 1.24 2.47

Proposed
ACI44O.lR

(2004)

geometric mean 1.10 1.04 1.16 1.1 1

variation 0.18 0.48 0.26 0.24
95 7o confidence (-) l.0l 0.89 1.09 0.96

95 %o confidence (+) I .13 1.22 1.24 1.29

Bischoff
(200s)

geometric mean 1.08 1.04 1.17 1'41
variation 0.16 0.44 0.27 0.47

95 %o confidence (-) 1.05 0.90 1.09 1.08
95 %o confidence (+) 1.1 1 1.20 1.25 1.85

geometric mean 1.07 1.04 l l l 0.96
variation 0.16 0.48 0.28 0.19

95 %o confidence (-) 1.04 0.89 1.04 0.85
95 7o confidence (+) 1.10 1.22 1.19 1.08
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Ghapter 5 - Summary and Conclusions

5.1 - Experimental Program

Shear and deflection behaviour of FRP-RC beams was examined through an

experimental investigation. A total of seven beams were tested monotonically under 4-

point bending: two reinforced with steel and five reinforced with CFRP. The shear span

to depth ratio of the beams was greater than 2.5 for all specimens, to minimize the effect

of arching action and no stirrups were provided in any of the beams to ensure that a shear

failure occurred. The testing allowed for a comparison between the behaviour of steel

reinforced concrete beams and CFRP-RC beams. The laboratory testing was also used to

determine which code formulas are the most accurate at predicting the concrete shear

capacity and the load deflection response for FRP-RC beams. The following conclusions

were noted as a result of the laboratory testing:

1. Since the moment of inertia of steel RC is higher when compared to CFRP-RC,

concrete beams reinforced with steel have stiffer load deflection responses than similarly

FRP reinforced concrete beams. This lower moment of inertia is as a result of the higher

neutral axis immediately after cracking which can be found in FRP-RC members when

compared against similarly reinforced steel RC members.

2. Beams reinforced with steel have a higher concrete shear capacity than similar

ones reinforced with FRP. This results largely from the larger crack widths and raised

neutral axis in FRP reinforced concrete beams when compared to similarly steel
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reinforced beams. This reduces the amount of aggregate interlock present between the

concrete cracks and also the amount of uncracked concrete which can carry shear forces.

To a lesser degree, the reduction in dowel action when using FRP also contributes to the

reduction in shear capacity when compared to steel reinforced concrete.

3. As the reinforcement ratio is increased, the ultimate failure load is typically

increased but the ultimate deflection is decreased.

4. The equation for determining the cracking moment of a reinforced concrete beam

used by the CSA A23.3-94 (i 998) often over predicts the experimental cracking moment.

The empirical nature of the formula and the lack of important variables present in the

equation may need to be revisited. Such variables include both sh¡inkage and the age of

the concrete.

5. The equation presented by the JSCE (1997) best predicted the concrete

contribution to the shear resistance of the FRP reinforced concrete beams tested in this

program. The formula was not only accurate but was also conservative.

6. The dependence of the deflection equations on the cracking moment resulted in

none of the deflection equations performing particularly well for the entire load

deflection response of the beams tested in the laboratory. Given that the equation

presented by the CSA 5806-02 (2002) was the only equation that gave conservative
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deflection predictions, this formula best predicted the load-deflection response of the

tested beams.

7. The proposed deflection equation predicted the post-cracking behaviour of the

tested beams well. The equation was typically accurate, while still yielding conservative

deflection estimates. The pre-cracking behaviour was not predicted well as a result of the

poor cracking load predictions.

5.2 - Parametric Study

A parametric study was completed using published papers of other authors to add to the

number of members analyzed. Load versus deflection graphs were manually replicated

and input into the program, as well as any geometric and material properties. The

database consisted of 197 FRP-RC beams which were used to analyze the load deflection

behaviour. It also contained 89 beams which contained no stirrups and failed in shear, to

analyze the concrete contribution to shear. Beams reinforced with CFRP, GFRP and

AFRP were found in this database, however the majority were GFRP-RC beams. The

parametric study allowed for a detailed analysis of existing deflection and shear formulas

to be performed. The following conclusions were made as a result of the parametric

study:

1. The accuracy of the deflection equations improved when the moment due to the

self weight of the members was included in the analysis.
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2. The most meaningful method for performing the statistical analysis was found to

be applying a log transformation to the ratios of the experimental to calculated deflection

or shear ratios. A log transformation was employed to give equal weight to those ratios

which were below one and those which were above one. Without performing this

transformation, more weight is given to the ratios above one and information is lost when

statistics is applied.

3. The accuracy of the deflection ratios was highly dependent on the accuracy of the

calculated cracking moment. The primary variable here was the modulus of rupture.

Upon performing a statistical analysis on various equations for predicting the modulus of

rupture, it was found that rhe csA 423.3-94 (rggg), NZS 3101 (1995) and AS 3600

(1994) codes provided the most accurate equation. This is contrary to the findings of the

experimental program, which showed that this formula often over-predicted the cracking

moment. Thus, a further analysis of the formula given by the CSA 423.3-94 (1998), NZS

3101 (1995) and AS 3600 (1994) codes is recommended to improve its accuracy for all

cases.

4. The accuracy of the deflection equations varies at different loads. Given that the

service conditions are only explicitly stated in ISIS M03-01 (2001), an analysis was

performed at various loads to encompass the entire load range. This will allow the

designer to choose the deflection formula which works best at their chosen service

conditions. Results show that at higher loads, most of the methods perform well.

However, at lower loads, major discrepancies were found between individual methods.
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5. At the service load given by ISIS M03-01 (2001), the formulas proposed by Yost

et al. (2003) and Bischoff (2005) were sufficiently accurate for predicting the deflection

of GFRP-RC members, while the formulas of the CSA 5806-02 (2002) and ISIS M03-01

(2001) were the most accurate for predicting the deflection of CFRP-RC members.

6. The equation proposed by Mota was accurate for CFRP-RC and GFRP-RC and

resulted in conservative deflection estimates. The slenderness ratio and relative

reinforcement ratio was found to affect most of the deflection ratios. However, the

formula proposed by Mota was affected the least by either of these relationships and is

thus believed to work very well at the service load level.

7. At a load of 1.1P.r, it was found that both the relative reinforcement ratio and the

type of reinforcement affect the accuracy of each of the deflection equations. Here, it was

found that for GFRP-RC, the formula given by Yost et aI. (2003) performed the most

accurately for those members which were over-reinforced, while the Proposed ACI

440.1R (2004), Benmokrane et al. (1996), and Mota equations performed the most

accurately for the under-reinforced members. For the CFRP-RC members, it was found

that the formula given by Faza and GangaRao (1,992) performed accurately and

conservatively at this load level, regardless of the relative reinforcement ratio. The most

consistent equation at this load level was given by Mota. However, the Mota formula

struggled in producing accurate results for predicting the deflection of over-reinforced

CFRP-RC members at this load level, and rather, produced overly-conservative
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deflection estimates. Thus, the use of the equation given by Faza and GangaRao (1992) is

recommended for these members.

8. At loads of 50%PvaxExp âfld 80oloP¡a*p*p, almost all of the formulas performed

accurately. However, none of the methods was able to accurately calculate the deflection

of the under-reinforced CFRP-RC members at a load of 50o/o of the experimental failure

load. Further research is needed in this area as the database had a very limited number of

these members.

9. The formula developed by Mota accounts for the type of reinforcement, as well as

the relative reinforcement ratio. The formula works well and gives accurate results at the

service load level as well as at the load i.lP.,, while still maintaining a form which is

easily recognizable by designers.

10. The formula given by the JSCE (1997) tends to be the most consistent formula for

predicting the concrete contribution to the shear capacity. The equation gives reasonably

accurate results and its accuracy does not vary greatly with the type of FRP used, the

effective depth of the member, the slenderness ratio, or the concrete strength. The

formula given by the JSCE (1997) gives conservative results for all cases mentioned. The

accuracy of this formula was verified in the experimental work, as it gave the most

accurate shear predictions but was still conservative in its predictions. Thus, the use of

the JSCE (1997) code equation is recommended for predicting the concrete contribution

to shear of FRP-RC members.
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Parametric Study
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AFRP-RC Deflection M embers

V-A-1

V-A-2

(mm) (mm) (mm) (mm) (mm) (MPa) (GPa) (MPa) bars (mm)

2448

2448

Members Tested b

1224 457 406.4

1224 457 426.7

360.4 40.33

360.4 42.61

en and Frosch

47

47

1419

1419

B

16

15.9

15.9

llrrups

resentP

No

No

Failure

Mode

Shear

Shear

111



CFRP-RC Deflection M embers

Members Tested bv El-Salakawv, Kassem and Benmokrane (2003)
Labhdf'"Errpft*u#dþ

Beam #
(mm) (mm) (mm) (mm) (mm) (MPa) (GPa) (MPa) bars (mm)

s-c1 2500 1000 1000 200 165.25

s-c2B 2500 1000 1000 200 165.25

s-c3B 2500 1000 1000 200 162.1

L a b h d f'" Etrp ftrpu # d¡ Stirrups Failure
Beam #

(mm) (mm) (mm) (mm) (mm) (MPa) (GPa) (MPa) bars (mm) Present Mode

cN-1 2750

cN-2 2750

cN-3 2750

Members Tested bv El-Savad, El-Salakawy, and Benmokrane (2004)

La
Beam #

(mm) (mm)

1000 250 400 326 50 128 1536 10 9.5 No

1000 250 400 326 44.6 134 986 B 12.7 No

1000 250 400 326 43.6 134 986 11 12.7 No

FRP-1 2300

FRP-3 2300

FRP-4 2300

40 114 1536 I 9.5

40 114 1536 18 9.5

40 114 1536 27 9.5

b h d f'" Etrp ftrp, # ds Stirrups

(mm) (mm) (mm) (MPa) (GPa) (MPa) bars (mm) Present

850

850

850

Members Tested by Fernando (2001)

16s

165

165

250 199

250 195

250 199

Stirrups Failure

Present Mode

No

No

No

41.25 147 2250 I

41.25 147 2250 3

41.25 147 2250 4

Shear

Shear

Shear

Shear

Shear

Shear

10

10

10

Yes

Yes

Yes

Failure

Mode

Compression

Compression

Compression
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Labhdf'"Errpftrpu#
Beam #

(mm) (mm) (mm) (mm) (mm) (MPa) (GPa) (MPa) bars

11-2-1 1970 910

11-2-2 1970 910

11-2-3 1970 910

11-3-1 1970 9'10

11-3-2 1970 910

11-3-3 1970 910

8-2-1 1970 910

8-2-2 1970 910

B-2-3 1970 910

8-3-1 1970 910

B-3-2 1970 910

B-3-3 1970 910

Members Tested by Gross, Dinehart, and Yost (2004)

89

B9

89

121

121

121

127

127

127

159

159

159

172

172

172

172

172

172

172

172

172

172

172

172

143

143

143

141

141

141

143

143

143

141

141

141

Labhdf'"Etrpfupu#dsStirrups
Beam #

(mm) (mm) (mm) (mm) (mm) (MPa) (GPa) (MPa) bars (mm) Present

81.4 139 2640 2

81.4 139 2640 2

81.4 139 2640 2

81.4 139 2640 2

81.4 139 2640 2

81.4 139 2640 2

60.3 139 2640 2

60.3 139 2640 2

60.3 139 2640 2

61.8 139 2640 2

61.8 139 2640 2

61.8 139 2640 2

cB-4 2750 875

cB-6 2750 875

cB-8 2750 875

ls-4 2750 875

ts-6 2750 875

ls-8 2750 875

Members Tested by Kassem, El-Salakawy, and Benmokrane (2003)

ds Stirrups Failure

(mm) Present Mode

200

200

200

200

200

200

6.35

6.35

6.35

9.525

9.525

9.525

6.35

6.35

6.35

9.525

9.525

9.525

300

300

300

300

300

300

No

No

No

No

No

No

No

No

No

No

No

No

236 39.8 122 1988

236 44.8 122 1988

236 44.8 122 1988

235.5 40.4 114 '1506

235.5 39.3 114 1506

235.5 39.3 114 1506

Shear

Shear

Shear

Shear

Shear

Shear

Shear

Shear

Shear

Shear

Shear

Shear

4

6

8

4

6

8

9

I
9.5

9.5

9.5

Yes

Yes

Yes

Yes

Yes

Yes

Failure

Mode

Compression

Compression

Compression

Balanced

Compression

Compression
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Member Tested nV fonuyu.ni, n"n-ut
Beam #

(mm) (mm) (mm) (mm) (mm) (MPa) (GPa) (MPa) (mmt) Present Mode

c-120-M 1800 600 400 120 90 39.4 92.3 1800 144.8 No Shear

Beam #

No.26 1250

No.30 2500

La
(mm) (mm)

Beam #

Members Tested
bhd

(mm) (mm) (mm)

625 '150 300

1250 300 580

C1

C2

c3

Labhd
(mm) (mm) (mm) (mm) (mm)

L
Beam #

(mm)

4000 1000 1000 120 96

4000 '1000 1000 120 95

4000 1000 '1000 150 126

Members Tested b

Mar

CS

f'"

(MPa)

250

500

ama and Zhao

4000 1000 1000 120 98

abhd
(mm) (mm) (mm) (mm)

34

29.5

Etrp ft.p,

(GPa) (MPa)

Matt
f'"

(MPa)

100 1200

100 1200

L996

s and Taerwe

30.4

29.6

28

ETLfrp lfrpu

(GPa) (MPa)

Arrp

(mmt)

98.1 1 180

98.1 1 180

98.1 '1 '180

390

1 560

f'" Etrp ftrp,

(MPa) (GPa) (MPa)

Present

ps

27.2

Yes

Yes

Failure

Mode

(mm')

150 2300

274.4

1 000

650

Shear

Shear

rrups

Present

# db Stirrups

bars (mm) Present

No

No

No

Failure

Mode

Balanced

Compression

Compression

No

Failure

Mode

Tension

tt4



L a b h d f'" Et.p ftrpu # db Stirrups Failure
Beam #

(mm) (mm) (mm) (mm) (mm) (MPa) (GPa) (MPa) bars (mm) Present Mode

LL-200-C 3000 1000 1000 200 '158 66.3 147 1970 6 I No

Member Tested bv Michaluko Rizkalla, Tadros and Benmokrane (1995)

Labh
Beam # (mm) (mm) (mm) (mm)

BA1 2000

BA3 2000

BA4 2000

BR1 2000

BR2 2000

BR3 2000

BR4 2000

Members Tested bv Razaqpur,Isgor, Greenway, and Sellev (2004)

410 200

800 200

1012.5 200

600 200

600 200

600 200

600 200

La
Beam # (mm) (mm)

d f'" Errp frrpu # d6 Stirrups

(mm) (MPa) (GPa) (MPa) bars (mm) Present

250

250

250

250

250

250

250

R-C007Na

R-C007Nb

R-CO10Na

R-Co10Nb

R-C015Na

R-C015Nb

225

225

225

225

225

225

225

40.5 145 2250 7 8 No

40.5 145 2250 4 B No

40.5 145 2250 4 8 No

40.5 145 2250 2 8 No

49 145 2250 4 8 No

40.5 145 2250 5 8 No

40.5 145 2250 7 8 No

2500 950

2500 950

2500 1150

2500 1 150

2500 1 150

2500 1 150

b h d f'" Er.p frrpu

(mm) (mm) (mm) (MPa) (GPa) (MPa)

Members Tested by Tariq (2003)

130

130

130

130

130

130

380

380

380

380

380

380

310 34.49

310 34.49

310 43.21

310 43.21

310 34.05

310 34.05

Bond

Failure

Mode

120 1596

120 1596

120 1596

120 1596

120 1596

120 1596

Shear

Shear

Shear

Shear

Shear

Shear

Shear

# d6 Stirrups Failure

bars (mm) Present Mode

4

4

b

o

o

o

9.5

9.5

9.5

9.5

9.5

9.5

No

No

No

No

No

No

Shear

Shear

Shear

Shear

Shear

Shear
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Lab
Beam #

(mm) (mm) (mm)

No.18 1300

No.19 2300

No.5 1800

500 150

1000 150

750 150

Members Tested bv Zhao and Maruyama (1995)
h d f'" Er,p ftrpu # d6 Stirrups

(mm) (mm) (MPa) (GPa) (MPa) bars (mm) Present

300

300

300

250

250

250

34.3 105 1124 2

34.3 105 1124 2

34.3 105 1124 2

19

19

19

Yes

Yes

Yes

Failure

Mode

Shear

Shear

Compression
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GFRP-R C D efl ecti on M embers

Members Tested
Lab

Beam #
(mm) (mm) (mm)

l-'150-A 3000 1400 1000

l-150-B 3000 1400 1000

Members Test"

Beam # (mm) (mm) (mm) (mm) (mm) (MPa) (GPa) (MPa) bars (mm) Present Mode

SB1

S83

SB5

SB6

SB7

(mm) (mm) (MPa) (GPa) (MPa)

2438.4 914.4 254 101 .6 76.2 25.51 41 .37 830 5 9.525 No Compression

2438.4 914.4 254 101.6 76.2 25.51 41.37 800 2 12.7 No Compression

2438.4 914.4 254 101.6 76.2 25.51 41.37 800 4 12.7 No Compression

2438.4 914.4 254 101 .6 63.5 25.51 41 .37 800 3 12.7 No Compression

2438.4 914.4 254 101.6 76.2 25.51 39.99 780 2 15.875 No Compression

'150

150

Beam # (mm) (mm) (mm) (mm) (mm) (MPa) (GPa) (MPa) bars (mm) Present Mode

Abdalla and El-Bad

112

112

" 
Et.p ftrpu

63.9 42.2 692

66.3 42.2 692

COMP-OO

coMP-25

coMP-50

coMP-75

2500 1 150 200 240 190.6 35.4 43.37 886 4 12.7 Yes

2500 1 150 200 240 '190.6 35.4 43.37 886 4 12.7 Yes

2500 1150 200 240 190.6 36.5 43.37 886 4 12.7 Yes

2500 1 150 200 240 190.6 36.5 43.37 886 4 12.7 Yes

#d¡
bars (mm)

1996

11

17

Stirrups

Present

8

8

No

No

Failure

Mode

Tension

Tension

Compression

Compression

Compression

Compression

tt7



L
Beam #

(mm)

il

ilt

IV

Members Tested by Al-Salloum, Alsaved and Almusallam (1996)

2700 1250 200 210 157.5 31.3 35.6 700 4 19

2700 1250 200 260 210.7 31.3 43.4 886 4 12.7

2700 1250 200 300 247.5 40.7 35.6 700 2 19

2700 1250 200 250 197.5 40.7 35.6 700 4 19

a b h d f'" Etrp ftrpu # dþ Stirrups

(mm) (mm) (mm) (mm) (MPa) (GPa) (MPa) bars (mm) Present

Lab
Beam #

(mm) (mm) (mm)

Group B 2200 1000 200

Group D 2200 1000 200

Members Tested b

Labhdf'"Etrpfupu#d¡Stirrups
Beam #

(mm) (mm) (mm) (mm) (mm) (MPa) (GPa) (MPa) bars (mm) Present

Group ll

Group lll

(mm) (mm) (MPa)

Members Tested by Alsayed, Almusallam and Al-Salloum (1995)

2700

2700

Alsa

360

360

1250 200 210 157.5 31.3 50 620 4 19 Yes

1250 200 260 210.7 3'1.3 50 740 4 12.7 Yes

309.5 35.53

309.5 35.53

Al-Salloum and Almusallam
f'" Errp ft.pu # d6

(GPa) (MPa) bars (mm)

35.63 700 3 19.05

35.63 700 3 19.05

Yes

Yes

Yes

Yes

Failure

Mode

Compression

Compression

Compression

Compression

1996
Stirrups

Present

Yes

Yes

Failure

Mode

Shear

Shear

Failure

Mode

Compression

Compression
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Beam #

CB2B

C83B

C84B

C86B

L

(mm)

3000

3000

3000

3000

a

(mm)

Members Tested b

1 300

1 300

1 300

1 300

Beam #

(mm) (mm) (mm)

tso 1-2

200

200

200

200

hd

L

(mm)

lso 3-4 3000 1000 200 550

300 262.5

300 262.5

300 240

300 240

Benmokrane and Masmoudi

Members Tested

3000

abh
(mm) (mm) (mm)

Beam #
(mm)

E1
c LfrP I frpu

(MPa) (GPa) (MPa) bars

1000 200 300

D1

D2

52 38 773 2

52 38 773 3

45 38 773 4

45 38 773 6

ct

(mm)

1675

1675

Member Tested by Cosenz\ Greco, Manfredi and Pecce (1997)

Beam #
(mm) (mm) (mm) (mm) (mm) (MPa) (GPa) (MPa) bars (mm) Present Mode

Benmokrane
d f'"

(mm) (MPa)

Members Tested
bhd

(mm) (mm) (mm)

685

685

260 43

511 43

1996

C5 3400 1200 500 180 145 30 42 886 7 12.7 Yes Compression

102 152 115

102 152 102.5

Chaallal and Masmoudi

d6

(mm)

(GPa) (MPa) bars (mm)

Stirrups

Present

14.9

14.9

14.9

14.9

45 690 2 19.1

45 690 2 19.1

Brown and Bartholomew
f'" Et.p fupu #

(MPa) (GPa) (MPa) bars

Yes

Yes

Yes

Yes

#d5

Failure

Mode

35 41.4 550 2

35 41.4 550 2

Compression

Compression

Compression

Compression

t996
Stirrups

Present

1996

Yes

Yes

dp

(mm)

Failure

Mode

ompressron

Tension

Stirrups

Present

9.5

9.5

Yes

Yes

Failure

Mode

Compression

Compression
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Labh
Beam #

(mm) (mm) (mm) (mm)

GB10 2300 767

L
Beam #

(mm)

Member Tested by Duranovic, Pilakoutas and Waldron (1997)

s-G1 2500

s-G2B 2500

s-G3B 2500

Members Tested by El-Salakawy, Kassem and Benmokrane (2003)

150 250

a b h d f'" Errp ftrpu # d¡ Stirrups

(mm) (mm) (mm) (mm) (MPa) (GPa) (MPa) bars (mm) Present

L
Beam #

(mm)

d f'" Errp frrpu # ds Stirrups

(mm) (MPa) (GPa) (MPa) bars (mm) Present

1000 1000 200 162.05 40 40 570 7 15.9

1000 1000 200 162.05 40 40 570 14 15.9

1000 1000 200 156.75 40 40 570 21 15.9

GN-,1

GN-2

GN-3

210 39.8 45 886 3 13.5

Members Tested by El-Sayed, El-Salakawy and Benmokrane (2004)

2750

2750

2750

a b h d f'" Errp ftrpu # d6 Stirrups

(mm) (mm) (mm) (mm) (MPa) (GPa) (MPa) bars (mm) Present

Member Tested ¡V G"a¿ag"i"i, Pita

Beam #
(mm) (mm) (mm) (mm) (mm) (MPa) (GPa) (MPa) bars (mm) Present Mode

1000 250

1000 250

'1000 250

GB43 2300 750 150 250 223 50.4 45 750 3 13.5 No Shear

400 326 50 39 608 10 9.5

400 326 44.6 42 754 5 15.9

400 326 43.6 42 754 7 15.9

Yes

Failure

Mode

Compression

No

No

No

Failure

Mode

Shear

Shear

Shear

No

No

No

Failure

Mode

Shear

Shear

Shear
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L
Beam #

(mm)

sh-G-2-s 3200

sh-G-3-s 3200

abh
(mm) (mm) (mm)

L
Beam #

(mm)

1067

1067

1G0.5-2

1G1.5-1

LG1.5-2

NG0.5-1

NG1.5-1

280

280

Members Tested by Hall (2000)

abhdf'"Etrpfrrpu#d¡
(mm) (mm) (mm) (mm) (MPa) (GPa) (MPa) bars (mm)

d f'" Errp fr.pu

(mm) (MPa) (GPa) (MPa)

180

180

3700 1300

3700 1300

3700 1300

3700 1300

3700 1300

158 31 .8 42 680

r5B 30 42 680

Members Tested by Jawara (1999)

L
Beam #

(mm)

150

150

150

150

150

350 300 82 34 532 2

350 300 82 34 532 6

350 300 82 34 532 6

350 300 38 34 532 2

350 300 38 34 532 6

H1

H2

H3

#

bars

4000 1000

4000 1000

4000 1000

abhd
(mm) (mm) (mm) (mm)

Members Tested by Matthys and Taerwe (1995)

d5 Stirrups

(mm) Present

2

3

15

15

'1000

1 000

1 000

120

120

150

No

No

Failure

Mode

f'" Errp ftrp, Arrp Stirrups

(MPa) (cPa) (MPa) (mm') Present

95

89

122

Bond

Compression

Stirrups

Present

12

12

12

12

12

96.7 36.3 520 621.6

29.3 36.3 520 3350

26.3 36.3 520 1561

Yes

Yes

Yes

Yes

Yes

Yes

Failure

Mode

Tension

Tension

Tension

Tension

Tension

Compression

No

No

No

Failure

Mode

Tension

Compression

Compression
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Beam # (mm) (mm) (mm) (mm) (mm) (MPa) (GPa) (MPa) bars (mm) Present Mode

l-1504 3000 1000 1000 150 106 63.9 41.3 690 4 12.7 No Tension

l-1508 3000 1000 1000 150 104 66.3 41.3 690 4 15.9 No Tension

l-150C 3000 1000 1000 150 104 66.0 41.3 690 5 15.9 No Shear

l-200C 3000 '1000 1000 200 154 66.0 41.3 690 6 15.9 No Shear

Members Tested by Mota (2004)

Beam # (mm) (mm) (mm) (mm) (mm) (MPa) (GPa) (MPa) bars (mm) Present Mode

D3 #4 2700 900 200 400 347.5 45.15 40 691 2 25 Yes Compression

D3 #5 2700 900 200 400 355 45.15 40 691 2 10 Yes Tension

Labhdf'"Errpfrrpu#db
Beam #

(mm) (mm) (mm) (mm) (mm) (MPa) (GPa) (MPa) bars (mm)

G86

Beam #
(mm) (mm)

2300 767

Member Tested bv Naiiar, Pilakoutas and Waldron (1997)

BF9 3050 1067

150 250 220 31.8 45 1000 3 13.5

a bhd
(mm) (mm) (mm)

Member Tested

127 304.8 273.05 29.65 26.2 724

Na
f'" Etrp fupu

(MPa) (GPa) (MPa)

and Neuwerth

Stirrups Failure

Present Mode

#

bars

dg

(mm)

No

Stirrups

Present

12.7

Shear

Yes

Failure

Mode

Compression
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L
Beam #

(mm)

F1

F2

F3

3400

3400

3400

abh
(mm) (mm) (mm)

Members Tested

L
Beam #

(mm)

1200 500 185

1200 500 185

1200 500 185

F-1-GF 2100

F-2-GF 2100

F-3-GF 2100

d

(mm)

abhd
(mm) (mm) (mm) (mm)

Pecce. Manfredi and Cosenza

Members Tested by Swamy and Aburawi (1997)

145

145

145

700

700

700

La
Beam # (mm) (mm)

f'" Etrp

(MPa) (GPa) (MPa) bars

R-G007Na

R-G007Nb

R-G010Na

R-Go10Nb

R-GO15Na

R-Go15Nb

154 254 222.2

154 254 222.2

154 254 222.2

30 42 770 7

30 42 770 4

30 42 770 7

2500 950

2500 950

2500 1150

2500 1 150

2500 1150

2500 1 150

f'" Er.p fr.pu # db Stirrups

(MPa) (GPa) (MPa) bars (mm) Present

t997

b h d f'" Etrp ftrpu

(mm) (mm) (mm) (MPa) (GPa) (MPa)

dg

(mm)

42 34 586 3

42 34 586 3

42 34 586 3

Members Tested bv Tariq (2003)

160

160

160

160

'160

160

12.7

12.7

12.7

Stirrups

Present

380 346 34.49 42 674

380 346 34.49 42 674

380 346 43.21 42 674

380 346 43.21 42 674

380 325 34.05 42 674

380 325 34.05 42 674

Yes

Yes

Yes

Failure

Mode

Tension

Tension

Tension

15 Yes

15 Yes

15 No

#

bars

Failure

Mode

Compression

Shear

Shear

db

(mm)

2

2

3

J

4

4

Stirrups Failure

Present Mode

'15.9

15.9

15.9

15.9

15.9

15.9

No

No

No

No

No

No

Shear

Shear

Shear

Shear

Shear

Shear

123



La
Beam # (mm) (mm)

BC2H 1500

BC2Ha 1500

BC2N 1500

BC2V 1500

BC4H 1500

BC4N 1500

BC4V 1500

Members Tested bv Theriault and Benmokrane (1997)
bhdf'"Er.p

(mm) (mm) (mm) (MPa) (GPa)

500

500

500

500

500

500

500

130 180 147 .85 57 .2 38

130 180 151 57.2 38

'130 180 147.85 53.1 38

130 180 147.85 97 .4 38

130 180 129.2 53.9 38

130 180 129.2 46.2 38

130 180 129.2 93.5 38

L
Beam #

(mm)

GB1

G82

G83

2800

2800

2800

abhd
(mm) (mm) (mm) (mm)

L
Beam #

(mm)

1200 180

1200 180

1200 180

Members Tested by Toutanii and Saafi (2000)

ftrpu # db Stirrups

(MPa) bars (mm) Present

v-G1-1 2448

v-G1-2 2448

v-G2-1 2448

v-G2-2 2448

773 2 12.3

773 2 12.3

773 2 12.3

773 2 12.3

773 4 12.3

773 4 12.3

773 4 12.3

300 268

300 268

300 255

a b h d f'" Er.p fupu # ds Stirrups

(mm) (mm) (mm) (mm) (MPa) (GPa) (MPa) bars (mm) Present

f'" Etrp ftrpu #

(MPa) (GPa) (MPa) bars

1224

1224

1224

1224

Members Tested by Tureyen and Frosch (2002\

457 406.4 360.4 39.71 40.5 606 I
457 426.7 360.4 42.26 40.5 606 16

457 406.4 360.4 39.85 37.6 592 8

457 426.7 360.4 42.54 37.6 592 16

35 40 695 2

35 40 695 3

35 40 695 4

Yes

Yes

Yes

Yes

Yes

Yes

Yes

Failure

Mode

Compression

Compression

Shear

Compression

Compression

Shear

Compression

ds Stirrups

(mm) Present

12.7

12.7

12.7

Yes

Yes

Yes

Failure

Mode

Compression

Compression

Compression

15.9

15.9

15.9

15.9

No

No

No

No

Failure

Mode

Shear

Shear

Shear

Shear
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L
Beam #

(mm)

Labl FRPl

Labl FRP2

Labl FRP3

Lab2FRPl

Lab2FRP2

Lab2FRP3

Lab3FRP

Lab4FRP

LabSFRP

Members Tested by Yost, Goodspeed and Schmeckpeper (2001)
a b h d f'" Errp frrpu Ar.p Stirrups

(mm) (mm) (mm) (mm) (MPa) (GPa) (MPa) (rr') Present

1778 787

1778 787

1778 787

1778 787

1778 787

1778 787

1778 787

1778 787

1778 787

381

381

381

318

3'18

318

305

203

191

BeamLabhdf'.Etrpftrpr#d6StirrupsFailure
# (mm) (mm) (mm) (mm) (mm) (MPa) (GPa) (MPa) bars (mm) Present Mode

203

203

203

216

216

216

216

152

152

1a-HL 2895.6 1295.4

1a-HS 2133.6 914.4

'1a-NL 2895.6 1295.4

1a-NS 2133.6 914.4

1b-HL 2895.6 1295.4

1b-HS 2133.6 914.4

1b-NL 2895.6 1295.4

1b-NS 2133.6 914.4

179

179

179

192

192

192

192

124

124

27.6 41.4 830 80 No

27 .6 41.4 830 B0 No

27 .6 41.4 830 80 No

27.6 41.4 830 80 No

27.6 41.4 830 80 No

27 .6 41.4 830 B0 No

38.0 41.4 830 160 No

27.6 41.4 830 320 No

27.6 41.4 830 320 No

Members Tested by Yost, Gross and Dinehart (2003)

254 184.15 138.18

203.2 285.75 225.55

254 184.15 139.7

228.6 285.75 225.55

254 184.15 138.18

203.2 285.75 225.55

254 184.15 139.7

228.6 285.75 225.55

Failure

Mode

79.497 40.3 690 2

79.634 40.3 690 2

40.334 40.3 690 2

36.335 40.3 690 2

79.497 40.3 690 2

79.634 40.3 690 2

40.334 40.3 690 2

36.335 40.3 690 2

Tension

Tension

Tension

Tension

Tension

Tension

Shear

Compression

Compression

15.875

19.05

12.7

19.05

15.875

19.05

12.7

19.05

No

No

No

No

No

No

No

No

Not Reported

Not Reported

Not Reported

Shear

Not Reported

Not Reported

Not Reported

Shear
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Beam

#

1c-HL 2895.6 1295.4 254

1c-HS 2133.6 914.4 203.2

1c-NL 2895.6 1295.4 254

1c-NS 2133.6 914.4 228.6

2a-HL 2895.6 1295.4 190.5

2a-HS 2133.6 914.4 152.4

2a-NL 2895.6 1295.4 304.8

2a-NS 2133.6 914.4 228.6

2b-HL 2895.6 1295.4 190.5

2b-HS 2133.6 914.4 152.4

2b-NL 2895.6 1295.4 304.8

2b-NS 2133.6 914.4 228.6

2c-HL 2895.6 1295.4 190.5

2c-HS 2133.6 914.4 152.4

2c-NL 2895.6 1295.4 304.8

2c-NS 2133.6 914.4 228.6

3a-HL 2895.6 1295.4 152.4

3a-HS 2133.6 914.4 165.1

3a-NL 2895.6 1295.4 241.3

3a-NS 2133.6 914.4 254

Labhd
(mm) (mm) (mm) (mm) (mm)

Members Tested b

184.15 138.18

285.75 225.55

184.15 139.7

285.75 225.55

184.15 138.18

285.75 225.55

184.15 138.18

285.75 225.55

184.15 138.18

285.75 225.55

184.15 138.18

285.75 225.55

184.15 138.18

285.75 225.55

184.15 138.18

285.75 225.55

184.15 138.18

285.75 223.77

184.15 138.18

285.75 223.77

Yos Gross and Dinehart
f'" Etrp frrpu

(MPa) (GPa) (MPa)

79.497 40.3 690

79.634 40.3 690

40.334 40.3 690

36.335 40.3 690

79.497 40.3 690

79.634 40.3 690

40.334 40.3 690

36.335 40.3 690

79.497 40.3 690

79.634 40.3 690

40.334 40.3 690

36.335 40.3 690

79.497 40.3 690

79.634 40.3 690

40.334 40.3 690

36.335 40.3 690

79.497 40.3 690

79.634 40.3 690

40.334 40.3 690

36.335 40.3 690

2003
#

bars

continued
db

(mm)

2

2

2

2

2

2

2

3

2

2

2

3

2

2

2

c

2

2

2

J

15.875

19.05

12.7

19.05

15.875

19.05

15.875

19.05

15.875

19.05

'15.875

19.05

15.875

'19.05

15.875

19.05

'15.875

22.225

15.875

22.225

Stirrups

Present

No

No

No

No

No

No

No

No

No

No

No

No

No

No

No

No

No

No

No

No

Mode

Not Reported

Not Reported

Not Reported

Shear

Not Reported

Not Reported

Not Reported

Shear

Not Reported

Not Reported

Not Reported

Shear

Not Reported

Not Reported

Not Reported

Shear

Not Reported

Not Reported

Not Reported

Shear
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Members T"rt*d by Yost, Gross 
"od

# (mm) (mm) (mm) (mm) (mm) (MPa) (GPa) (MPa) bars (mm) Present Mode

3b-HL 2895.6 1295.4 152.4 184.15 138.18 79.497 40.3 690 2 15.875 No Not Reported

3b-HS 2133.6 914.4 165.1 285.75 223.77 79.634 40.3 690 2 22.225 No Not Reported

3b-NL 2895.6 1295.4 241.3 184.15 138.18 40.334 40.3 690 2 15.875 No Not Reported

3b-NS 2133.6 914.4 254 285.75 223.77 36.335 40.3 690 3 22.225 No Shear

3c-HL 2895.6 1295.4 152.4 184.15 138.18 79.497 40.3 690 2 15.875 No Not Reported

3c-NL 2895.6 1295.4 241.3 184.15 138.18 40.334 40.3 690 2 15.875 No Not Reported

3c-NS 2133.6 914.4 254 285.75 223.77 36.335 40.3 690 3 22.225 No Shear

4a-HL 2895.6 1295.4 177.8 184.15 138.18 79.497 40.3 690 2 r9.0s No Not Reported

4a-HS 2133.6 914.4 203.2 285.75 223.77 79.634 40.3 690 3 22.225 No Not Reported

4a-NL 2895.6 1295.4 203.2 184.15 138.18 40.334 40.3 690 2 rs.87s No Not Reported

4a-NS 2133.6 914.4 228.6 285.75 223.77 36.335 40.3 690 3 22.22s No Shear

4b-HL 2895.6 1295.4 177 .B 184.15 138.18 79.497 40.3 690 2 19.0s No Not Reported

4b-HS 2133.6 914.4 203.2 285.75 223.77 79.634 40.3 690 3 22.225 No Not Reported

4b-NL 2895.6 1295.4 203.2 184.15 138.18 40.334 40.3 690 2 1s.87s No Not Reported

4b-NS 2133.6 914.4 228.6 285.75 223.77 36.335 40.3 690 3 22.22s No Shear

4c-HL 2895.6 1295.4 177.8 184.15 138.18 79.497 40.3 690 2 19.0s No Not Reported

4c-HS 2133.6 914.4 203.2 285.75 223.77 79.634 40.3 690 3 22.225 No Not Reported

4c-NL 2895.6 1295.4 203.2 184.15 138.18 40.334 40.3 690 2 15.87s No Not Reported

4c-NS 2133.6 914.4 228.6 285.75 223.77 36.335 40.3 690 3 22.22s No Shear
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Members @akoutas and Wald

Beam # (mm) (mm) (mm) (mm) (mm) (MPa) (GPa) (MPa) bars (mm) Present Mode

GBl I 2300 767 150 250 220 39.8 45 '1000 3 13.5 Yes Shear

GB5 2300 767 150 250 220 31.2 45 1000 3 13.5 Yes Compression
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AFRP-RC Shear Members

Members Tested by Tureyen and Frosch (2002)

Beam #
(mm) (mm) (mm) (mm) (mm) (MPa) (GPa) (MPa) bars (mm) (kN)

v-A-1 2448

v-A-2 2448

1224 457 406.4 360.4 40.33 47 1419 I 15.9 114.8

1224 457 426.7 360.4 42.61 47 1419 16 15.9 177
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CFRP-RC Shear Members

M"-b"
Pm"*

Beam # 
(mm) (mm) (mm) (mm) (mm) (MPa) (GPa) (MPa) bars (mm) (kN)

s-c1 2500 1000 1000 200 165.25 40 114 1536 I 9.5 135.715

s-c2B 2500 1000 1000 200 165.25 40 114 1536 18 9.5 ',163.5

s-c3B 2500 1000 1000 200 162.1 40 114 I 536 27 9.5 189.285

Beam #
(mm) (mm) (mm) (mm)

cN-1 2750 1000

cN-2 2750 1000

cN-3 2750 1000

Members Tested b
La

El-Sa

250 400 326 50

250 400 326 44.6

250 400 326 43.6

d f'"

(mm) (MPa)

El-Salakaw and Benmokrane
Etrp frrpu #

(GPa) (MPa) bars

128 1536 10

134 986 8

134 986 11

d6

(mm)

9.5

12.7

12.7

Prt¡"t

(kN)

77.5

104

124.5

130



Labhdf'"Er.pftrpu#d6
Beam #

(mm) (mm) (mm) (mm) (mm) (MPa) (GPa) (MPa) bars (mm)

11-2-1 1970 910

11-2-2 1970 910

11-2-3 1970 910

11-3-1 1970 910

11-3-2 1970 910

1 1-3-3 1970 910

8-2-1 1970 910

B-2-2 1970 910

8-2-3 1970 910

B-3-1 1970 910

8-3-2 1970 910

B-3-3 1970 910

Members Tested by Gross, Dinehart, and Yost (2004)

B9

89

89

121

121

121

127

127

127

159

159

159

172

172

172

172

172

172

172

172

172

172

172

172

143

143

143

141

141

141

143

143

143

141

141

141

81.4 139 2640 2

81.4 139 2640 2

81.4 139 2640 2

81.4 139 2640 2

81.4 139 2640 2

81.4 139 2640 2

60.3 139 2640 2

60.3 139 2640 2

60.3 139 2640 2

6'1.8 139 2640 2

61.8 139 2640 2

61.8 139 2640 2

Beam #

c-120-M 1800

Labhdf'"EtrpftrpuArrp
(mm) (mm) (mm) (mm) (mm) (MPa) (GPa) (MPa) (mm')

600

6.35

6.35

6.35

9.525

9.525

9.525

6.35

6.35

6.35

9.525

9.525

9.525

Pv",

(kN)

400

8.76

11.7

8.92

14.32

15.3

'16.55

14.32

12.86

14.72

19.84

23.13

17.04

120 90 39.4 92.3 1800 144.8

Pru"*

(kN)

32.5
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Beam #" (mm) (mm) (mm) (mm) (mm) (MPa) (GPa) (MPa) (mm') (kN)

No.23 1250 625 150 300 250 34 100 1200 390 28.5

No.24 1250 625 150 300 250 34 100 1200 390 38

Labhdf'.Errpftrpu#d6
Beam # (mm) (mm) (mm) (mm) (mm) (MPa) (GPa) (MPa) bars (mm)

BA1

BA3

BA4

BR1

BR2

BR3

BR4

Members Tested by Razaqpur,Isgor, Greenway, and Sellev Q004\

2000 410 200

2000 800 200

2000 1012.5 200

2000 600 200

2000 600 200

2000 600 200

2000 600 200

250

250

250

250

250

250

250

225

225

225

225

225

225

225

40.5 145 2250 7 B

40.5 145 2250 4 I
40.5 145 2250 4 8

40.5 145 2250 2 8

49 145 2250 4 8

40.5 145 2250 5 8

40.5 145 2250 7 8

Pm"*

(kN)

96.1 8

46.99

38.45

36.1 1

46.95

47.23

42.71
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Members Tested by Ta.iq

Beam # (mm) (mm) (mm) (mm) (mm) (MPa) (GPa) (MPa) bars (mm) (kN)

R-C007Na

R-C007Nb

R-C010Na

R-CO10Nb

R-C015Na

R-Co15Nb

2500 950 130 380 3'10 34.49 120 1596 4 9.5 49.17

2500 950 130 380 310 34.49 120 1596 4 9.5 45.75

2500 1 150 130 380 310 43.21 120 1596 6 9.5 47 .555

2500 1 150 130 380 310 43.21 120 1596 6 9.5 52.655

2500 1 150 130 380 310 34.05 120 1596 I 9.5 55.855

2500 1 150 130 380 310 34.05 120 1596 I 9.5 58.29

Labhdf'"
Beam #

(mm) (mm) (mm) (mm) (mm) (MPa)

No.1 1800 750

No.15 '1800 750

No.6 1800 750

Members Tested bv Zhao and Maruyama (1995)

150

150

150

300

300

300

250

250

250

Etrp ftrpu # d6

(GPa) (MPa) bars (mm)

34.3

34.3

34.3

105 1124

105 1124

105 1124

2

J

4

19

19

19

Pu"*

(kN)

45

40.5

46
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GFRP-RC Shear Members

Members Tested b
Lab

Beam #
(mm) (mm) (mm)

BM7 1500 450

BM8 1500 450

BMg 1500 450

Members Tested by El-Sal4\4¡1y,IQqqem and Benmokrane (200Ð
Nlr*

Beam # (mm) (mm) (mm) (mm) (mm) (MPa) (GPa) (MPa) bars (mm) (kN)

s-G1 2500 1000 1000 200 162.05 40 40 570 7 15.9 114.285

s-G2B 2500 1000 1000 200 162.05 40 40 570 14 15.9 160.715

s-G3B 2500 1000 1000 200 156.75 40 40 570 21 15.9 165

Alkhrda
h

(mm)

178

Members Tested by El:Þyed, El-Salakawy a

"r*Beam # (mm) (mm) (mm) (mm) (mm) (MPa) (GPa) (MPa) bars (mm) (kN)

178 330

178 330

Widema
d f'"

(mm) (MPa)

330 279 24.1

287 24.1

287 24.1

GN-1

GN-2

GN-3

Belarbi and Nanni
E¡Lfrp I frpu

(GPa) (MPa)

2750 1000 250 400 326 50 39

2750 1000 250 400 326 44.6 42 754 5 15.9 60

2750 1000 250 400 326 43.6 42 754 7 15.9 77 .5

40 717

40 717

40 717

2001
Atrp

(mm')

1142

Max

393 36.1

684 40.05

(kN)

53.4

608 10 9.5 70.5
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Beam #

Beam#'1

Beam#2

Beam#3

Beam#4

Beam#5

Beam#6

Beam#7

Beam#8

Beam#9

La
(mm) (mm)

2000 1000

2000 1000

2000 1000

1500 750

1500 750

1500 750

1000 500

1000 500

1000 500

Members Tested
bhd

(mm) (mm) (mm)

200 300 250

200 300 250

250 300 250

200 300 250

200 300 250

250 300 250

200 300 250

200 300 250

250 300 250

Labhdf'"Errpftrpu#dg
Beam #

(mm) (mm) (mm) (mm) (mm) (MPa) (GPa) (MPa) bars (mm)

Farahmand
E

c Lfrp

(MPa) (GPa)

GB43 2300

31.2 40.3

31.2 40.3

31.2 40.3

35 40.3

35 40.3

35 40.3

31 40.3

32.5 40.3

32.5 40.3

Member Tested by Guadaenini, Pilakoutas and Waldron (2001)

Labhdf'"
Beam #

(mm) (mm) (mm) (mm) (mm) (MPa)

r996
ftrpu

(MPa)

t-150c 3000 1000

t-200c 3000 1000

Members Tested

750 150 250 223 50.4 45 750 3

690

690

690

690

690

690

690

690

690

#d6
bars (mm)

3

2

ó

2

3

4

2

3

4

10.7

15.9

12

12.7

12.7

12.7

12.7

12.7

12.7

P¡¡"t

(kN)

Michalu

1000 150

1000 200

23.7

25.8

32.6

29.9

39.3

37.2

55.7

57

57

Rizkalla

104

154

Tadros and Benmokrane

66.0

66.0

Etrp ftrpu #

(GPa) (MPa) bars

41.3 690 5

41.3 690 6

13.5

Pr,¡"t

(kN)

199s

28.75

b

(mm)

15.9

15.9

P¡¡"*

(kN)

36.735

77.78
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f'" Etrp ftrpu # d6 Pn¡"*
Beam #

(mm) (mm) (mm) (mm) (mm) (MPa) (GPa) (MPa) bars (mm) (kN)

GB6 2300 767 150 250 220 31.8 45 1000 3 13.5 21.05

L
Beam #

(mm)

F-3-GF 2100

M"-bers Test"d by Tu.iq

Beam # (mm) (mm) (mm) (mm) (mm) (MPa) (GPa) (MPa) bars (mm) (kN)

abhdf'"Etrpfrrpu
(mm) (mm) (mm) (mm) (MPa) (GPa) (MPa)

Member Tested by Swamy and Aburawi (1997)

R-G007Na

R-G007Nb

R-G010Na

R-G010Nb

R-G015Na

R-Go15Nb

700 154

2500 950 160 380 346 34.49 42 674 2 15.9 54.51

2500 950 160 380 346 34.49 42 674 2 15.9 63.69

2500 1 150 160 380 346 43.21 42 674 3 15.9 42.755

2500 1150 160 380 346 43.21 42 674 3 15.9 45.495

2500 1 '150 160 380 325 34.05 42 674 4 15.9 48.69

2500 1 150 160 380 325 34.05 42 674 4 15.9 44.875

254 222.2 42 34 586

#

bars

d6

(mm)

15

Ptø"*

(kN)

30
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Members Tested by Tureyen and Frosch (2002)

Beam # (mm) (mm) (mm) (mm) (mm) (MPa) (GPa) (MPa) bars (mm) (kN)

v-G1-1 2448 1224 457 406.4 360.4 39.71 40.5 606 8 15.9 108.1

v-G1-2 2448 1224 457 426.7 360.4 42.26 40.5 606 16 15.9 137

v-G2-1 2448 1224 457 406.4 360.4 39.85 37.6 592 8 15.9 94.8

v-G2-2 2448 1224 457 426.7 360.4 42.54 37 .6 592 16 15.9 152.6

Lab
Beam # (mm) (mm) (mm)

Lab3FRPl 1778 787

Lab3FRP2 1778 787

Lab3FRP3 1778 787

Members Tested by Yost, Goodspeed and Schmeckpeper (2001)

Labhdf'"Etrpfrrpu#db
Beam # (mm) (mm) (mm) (mm) (mm) (MPa) (GPa) (MPa) bars (mm)

2FRPa 2134

2FRPb 2134

2FRPo 2134

4FRPa 2134

4FRPb 2134

4FRPc 2134

h d f'" Etrp fuou Atrp

(mm) (mm) (MPa) (GPa) (MPa) (mm')

305

305

305

Members Tested by Yost, Gross and Dinehart (2001)

216

216

216

914

914

914

914

914

914

192

192

192

178

178

178

178

178

178

38.0 41.4 830 160

38.0 41.4 830 160

38.0 41.4 830 160

286

286

286

286

286

286

225

225

225

225

225

225

36.3 40.336 689.5 2

36.3 40.336 689.5 2

36.3 40.336 689.5 2

36.3 40.336 689.5 4

36.3 40.336 689.5 4

36.3 40.336 689.5 4

Pu.*

(kN)

25.6

26.7

26.7

19.05

'19.05

19.05

19.05

19.05

19.05

Pru"*

(kN)

28.1

35

32.05

43.8

45.9

46.05
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Beam #

1a-NS

'la-NS

1a-NS

2a-NS

2a-NS

2a-NS

3a-NS

3a-NS

3a-NS

4a-NS

4a-NS

4a-NS

La
(mm) (mm)

2133.6

2133.6

2133.6

2133.6

2133.6

2133.6

2133.6

2133.6

2133.6

2133.6

2133.6

2133.6

Members Tested b

914.4

914.4

914.4

914.4

914.4

914.4

914.4

914.4

914.4

914.4

914.4

914.4

bh
(mm) (mm)

228.6

228.6

228.6

228.6

228.6

228.6

254

254

254

228.6

228.6

228.6

285.75

285.75

285.75

285.75

285.75

285.75

285.75

285.75

285.75

285.75

285.75

285.75

Yost, Gross and Dinehart
d f'" Et.p fr.pu # d6

(mm) (MPa) (cPa) (MPa) bars (mm)

225.55

225.55

225.55

225.55

225.55

225.55

223.77

223.77

223.77

223.77

223.77

223.77

36.335

36.335

36.335

36.335

36.335

36.335

36.335

36.335

36.335

36.335

36.335

36.335

40.3

40.3

40.3

40.3

40.3

40.3

40.3

40.3

40.3

40.3

40.3

40.3

690

690

690

690

690

690

690

690

690

690

690

690

2

2

2

3

3

J

J

3

3

3

3

3

19.05

19.05

19.05

19.05

19.05

19.05

22.225

22.225

22.225

22.225

22.225

22.225

P¡¡""

(kN)

43.14775

44.48222

38.25471

40.2564

50.2649

45.59427

38.47712

52.71143

48.93044

53.60'107

42.48051

42.25811
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Appendix ll - Details of Members tested by Mota (20041
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2 -25 mm
glass bars
10M stinups

H

30 mm cover
to stimrps

2-10mm
glass bars
10M stinups

30 mm cover
to stirrups

l:o-o---ì

Beam
Ð3 #4

Beam
Ð3 #s

r40



180

160

140

120

z
.Y.

o_

100

20

10 15 20 25 30

m¡dspan deflection (mm)

Load-Deflection Behaviour of Beams tested by Mota (2004)

40 45
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Failure of Beam D3 #4
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Failure of Beam D3 #5
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