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ABSTRACT

The conventional describing function method is developed by
a procedure that clearly indicates under what conditions it is
permissible to use the conventional describing function method to
determine the general characteristics of the transient response of
a nonlinear systems

The first approximation method of Kryloff and Bogoliuboff is
developed, and the results of this method are used to obtain the
method of equivalent linearization,

The relationship between the technigues of Kryloff and
Bogoliuboff and the conventional describing function method is studied.

A4 new describing function, called the elliptic describing
function, is developed, For most practical systems in wnich the
non-linearity can be represented reasonably closely by an odd cubic
" approximation, the elliptic describing function is more accurate
than the conventional describing function. This describing function

odd~

is restricted totsymmetrical, single~valued, frequency ~ independent

nonlinearities,
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CHAPTER 1
INTRODUCTION
The design of many types of practical control systems re-

quires the consideration of nonlinear phenomena, and as a result
the study of nonlinear systems has been greatly stimulated in
recent years. However, as yet, no general method of solving non~
linear problems has been found. The conventional describing
function method, which is based on an assumed form of.solution
similar to that used to develop the methods of
Kryloff and Bogoliuboff ., is the most widely used design techw
nigue for nonlinear control systemse.

1.1 THE PROBLEM

The purpose of this thesis is (1) to study the
methods of Kryloff and Bogoliuboff, and to determine their
relationship with the conventional describing function; and
(2) to attempt to develop a describing function which is more
accurate than the conventional describing function.

This study will be restricted to self-excited systems

containing one nonlinearityﬁg

# However, where the results obtained are applicable to systems
with forcing functions, this fact will be stated, '
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Only nonlinearities with no time verying characteristics will be
considered in this study., Ixemples of the application of the
conventional describing function method and the
methods ~of Kryloff and Bogoliuboff are readily found in the
literature (1,23,25,29,30), and thus will not be included in
this thesisk. The systems to be studied will be assumed to be
in the form shown in Figure 1.1, since by suitable block diagram
manipulation, practically all types of control systems containing

one nonlinearity can be represented by this form (11, pp,390 -~ 402;

33).

r(t) +®@ ([ Nontinear 172(¢) Linear ct)

o i rr ez - (5) e/emen? (s)

Figuré 1.1 General block diagram of a control system incorpors-
ating one nonlinear element.

Following this introductory chapter, the conventional
describing function method is briefly described. In chapter

three, the methods of Kryloff and Bogoliuboff are developed s

# Numerals in parentheses refer to the bibliography at the end
of the thesis,
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and the relationship between the conventional describing func-
tion method and the methods of kKryloff and Bogoliuboff are clari-
fied. A new type of describing function, called the clliptic
describing function, is introduced in chapter four. The final
chapter reviews the findings of this study and states some of
the guestions which remain unanswered.

1.2 TERMINOLOGY

For the purpose of this study a describing function will
be defined as a function which relates a characteristic (or
characteristics) of the input to a device to a characteristic
{or characteristics) of the output from a device. In some cases
a describing.function may be defined only for a certain class of
inputs.

The transfer function concept of linear analysis 1s an
example of a describing function since it relates the Laplace
transformsof the output and input of?\l?gevice° In nonlinear
design and analysis, the most common type of describing function,
which we shall denote as the conventional describing function,

" is defined as the ratio of the phasor of the fundamental component
of the output to the phasor of the input sinusoid.

The methods are stated in terms of control systems termin-
ology, although the results can be applied equally well to other
ﬁhysical systems, For applications to circuit theory, the method,
developed by Stout, of converting a nonlinear circuit to an equiv~

P

alent block diagram is particularly useful (26,27,28).



CHAPTER 2

THE CONVENTIONAL DESCRIBING FUNCTION METHOD

The stability of noenlinear systems can be studied through
the application of the conventional describing function; and if
sustained oscillations exist,their approximate amplitude and
frequency can be determined. In some special cases the method
can also be used to indicate the general characteristics of the
transient response of a nonlinear system. The basic principles
involved in the conventional describing function technique will
be briefly outlined in this chapter.ﬁ.

2.1 THE CONVENTIONAL DESCRIBING FUNCTION

If the input to & nonlinear element is sinusoidal; say
e = a sin uWt, (2.1)
then the output can be represented by a Fourier series
m = f m, sin n&t. | (2.2)
n=1
The conventional describing function for the nonlinear element

is defined by

N (a,w) - ﬂ R (2e3)
a

£ Although the development has been rearranged somewhat, the
method outlined in this chapter is essentially the same as
that of Kochenburger (23). The rearrangement of the material
was thought desirable in order to clarify the use of the
conventicnal describing method to indicate the general char-
acteristics of the transient response, and also to illustrate
more clearly the relationship between the conventional dese
cribing function method and the methods of Krylolf and
Bogoliuboff. : :
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Constant average components in signals can be handled by
considering the nonlinear characteristic to be shifted or displaced
by the amount of the constant component. The conventional des-
cribing function is then found as described previously by assum-

ing a sinusoidal input to the modified characteristic,

2,2 SYSTEM ANALYSIS

The conventiénal describing function method is based on
the assumption that, insofer as system performance is concerned,
the input to the nonlinear clement of a system can be adequately
approximated by a sinusoild.

The signifiéance of this assumption will be illustrated by
Pigure 2.1, showing the block diagram of a system with a non-

linear element N and linear elements with a transfer function

G(s).

) + e(t) Y 2] 6/5) o)

Figure 2.1 General block diagram of a control system incorpore

ating one nonlinear element,

If the input to N is assumed to be sinusoidal, the result-

ing output will be periodic, - The Fourier series of this periodic
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output will contain components at the fundamental frequency

(the frequency of the input) and, in general, all higher harmonic

frequencies. The output from the nonlineer device passes through

the linear elements and is subtracted from the system input,
having the Laplace transform R(s), to give the input signal to
the nonlinear device, If the assumption stated is to be valid
for this system, the fundamental component must be the only sig-
nificant component of the feedback signal,

The assumption isusually justified for two reasons: first,
the harmonics of the output from the nonlinear device are ordin-
érily of smaller amplitude than the fundamental; and, second, in
most controlnsystems the gain of the linear element decreases as
the frequency increases, with the result that in transmission
through the linear elements the higher harmonics are attenuated
compared with tﬁe fundamental .

The conventional describing function is calculated on the
assumption of a steady state sinusoidal input. However, it seems
reasonable to assume that the describing function will be appli-~
" cable when the input‘to the nonlinear element is nearly sinu-

. soidal, with amplitude and frequency changing slowly. This
assumption is the basis for the use of the conventionsl des-
cribing function to determine the general characteristics of
the transient response; and also for the extension of the method

to random input signalse.



Let us consider the describing function of the nonlinear
element as a transfer function and use Laplace transforms to find
the response of the system, keeping in mind that the results
obtained are valid only for solutions which are approximately
. . . i
sinusoidal in form.

Consider the system of Figure 2.1 in which the nonlinear
element has a describing function N(a,t). If it is assumed the

system has zero initial conditions, the following equations are

readily obtained:

C(s) = E(s) N(a,4) G(s), = (2.4)

5(s) = R(s) - C(s), | (2.5) -
and C(s) = o(s) Wat) . * g (2.6)

R(s) 1 £ G(s) N(a,W)

Equation 2.6 can be thought of in terms of the poles and
zeros cf the transfer function, where the poles and zeros move
slowly around the complex plane. Thus we have used the describ-
ing function representation to substitute for an equation which may
contain rapidly varying relationships (such as the relations des=-

. cribing the action of a relay) one with slowly varying para-

neters.

& It should be noted that the use of the Laplace transform to
obtain a solution with slowly varying amplitude and frequency
involves an additional approximation to those made previously

f%ransfer

since the Laplace transform“nethod is valid only for differen-
tial eouations with constant coefficients. However, provided
the amplitude and frequency vary only slowly, ““. Laplace
transform method will give an approximate solution.

# If the initial conditions are not zero the appropriatc terms
can easily be inserted in equation 2.6 (10, pps60-61).

function
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The stability of a linear control system is most easily
determined by the use of the Nyquist criterion (10,pp.118-15L),
Using this method the stability of a system, with an open loop
transfer function NG(s), is determined by finding the number of
encirclements the NG(jW) plot makes of the -1 point. It is
obviously equivalent to find the number of encirclements the
G(3W) plot makes of the ~1/¥ (or crifical) point. This criter;
ion can also be applied to a nonlinsar system by using the approx-
imate equation 2,6, except in this case the -1/N (or critical)
point is dependent on the amplitude and freguency of the response,

For frequency ~ independent nonlinearities the position
of the critical point can be found by plotting the -1/N(a) locus
which is scaled in the amplitude of the input to the nonlinearity.,
An intersection of the -1/N(a) locus and G(j&) locus, say at
as and W, , corresponds to steady state oscillations of amplitude
ac and frequency #,. The point 8, W in Figure 2.2 is an example

of such an intersection.

Gl w)

"%V(a) :

Figure 2.2. System a /nc.
with stable oscillations

at a,, W..

For frequency - dependent nonlinearities a series of
~1/N(a, #) loci, with frequency as a constant parameter for

each locus, must be plotted, An intersection of the ~1/N(a,@%)
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locus, say at ag, with the G(j&) plot at 4, corresponds to a steady

state oscillation of amplitude a, and frequency M%c The point ag,

(¢}

¥, in Figure 2.3 is an example of such an intersection.
é?{}co)

& Inc. /f'\ . . )
Figure 2.3 System with

stable oscillstions at

ay; Y.

The behaviour of a system when operating in the region
near the intersection representing steady state oscillations is’
important since it deﬂermines whether the oscillations can exist
in an actual system., For slight disturbances from the point of
infersection the résponse will be nearly sinusoidal, with slowly
varying amplitude and frequency, and thus the describing function:
approach will be valid,

First, consider the system represented by Figure 2,2.% If
the system is operating at the point a,, &, and a slight disture
bance increases the amplitude of oscillations, the syétemAenters
a stable region and the amplitude of the oscillations will decay
to ag. In thé event that the oscillations decrease in amplitude,
the system enters an unstable region and the amplitude of the

oscillations increases to ag,. Thus, the system will have stable

& To simplify the discussion all systems are assuned to be open-
loop stable and minimum phase.
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oscillations with amplitude a; and frequency #,. The same con-
ditions are also found to exist for the system of Figure 2.3,
Another condition, which may exist, is shown in Pigure 2.k,

If operation at a,, W, ever cccurred, the slightest further in-

crease in amplitude would cause the output to grow indefinitely,

w /hce.

/ .
Figure 2,4 System &)

with stability R 1NE.

-—54&K2) Qe T

boundary at ag, .

Likewise, the result of the slightestldecrease would be to cause
the output to decrease to zeros Thus stable oscillations cannot
exist at g, W, in é practical system since some disturbance
(noise) is always present., The intersection 8g s wc in this case
ié a stability boundary,

A final example is shown in Figure 2.5. Steady state
oscillations cannot occur at agy, &y in an actual system, but

‘sustaincd oscillations can exist at a,,, W,5e

/ Nﬂc-
Figure 2,5 System with —/4§Kﬁ) :
stability boundary 2,7,
¢,1 and stable oscillations

h}
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Small disturbances which do not excite the system beyond aol?éél
will die out completely, but disturbances large enough to excite
the system beyond acl,&él will cause sustained oscillations to
exist at ago,¥p0.

These examples by no means exhaust the possible situa-
tions which exist, but the same reasoning may be applied to any
other cases which arise.ﬁ

Providing the basic assumptions and limitations are kept
well in mind, the method may be of very great value in determin~

#
ing, at least qualitatively, the transient response of a systemoﬁ—
Therefore, many of the useful design techniques for linear
systems, such as the Mpeak specification, may be applied to
nonlinear systems. The describing function may also be used

to obtain root-locus plots, again providing the necessary cone

ditions for the validity of the method are observed.

X It is interesting to note that Loeb has developed an
alternative method for determining whether the point of
intersection corresponds to stable sustained oscillations

(11, pp.419-421),

# It is difficult to calculate the transient response

’ precisely because of the difficulty of determining the
appropriate variation of sinusoidal amplitude to corr-
espond to a given transient input to the nonlinear device,

4 For example, in most practical control systems, with one
integration or more in the open locp transfer function,
the error response to a step input may be considered
approximately sinusoidal with varying amplitude and
freqguency,



2,3 CONCLUDING CCMMIENTS

The principle of equivalent energy balance, developed
by Kryloff and Bogoliuboff in connection with the method of
equivalent linearization, can be used as a basis for the cal-
culation of the conventional describing function,ﬁ Thus if
the output from the nonlineaf device is assumed to represent a
force and the system output to revresent a displacement, then
the conventional describing function method can be given the
following physical interpretation: the nonlinear force is re-
placed by an equivaient force such that the active and reactive
work per cycle of the actual nonlinear.force and equivalent force
are approximately equalogﬁ

If information regarding system perfcrmance for sinusoidal
input signals is desired, then the dual input describing function
method should be used since the conventionsl describing function
method will give incorrect results in many cases (12, pp. 133~
1565 313 32). Unfortunately, the develcpment of the dual in-

| put describing function method is too lengthy to include in

this study.

The main objection to the conventional describing function
method is the uncertainty of the accuracy of the results. Johnson
ﬁas'developed a series solution for a nonlinear differential equa~

tion, such that the first term of the series 1s the result of a

& See Appendix A

# The terms active and reactive work per cycle have been defined
for mechanical systems in exactly the same way as they are
defined for electrical systems. The definition of these terms
is explained more fully in Appendix 4.
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conventional describing function analysis (25). Thus, the higher
order terms can be considered as correction terms for the cone
ventional describing function., However, the necessary calcula~
tions are complicated and the method is of little practical usee.

Despite its limitations, the conventional des-
cribing function is widely used because: (1) in many cases
there is no practical alternative method; and (2) in most prac-
tical cases the results are sufficiently accurate for design

purposes,




CHAPTER 3

THE SINUSQIDAL TECHNTOUES OF
KRYLOFF AND BOGOLIUBOFF

The first approximation method of Kryloff and Bogoliuboff
provides a technique for obtaining an epproximate solution of
the following type of quasi-linear differential cquation:

X £ Fx At (x,%) =0, (3.1)
where uf (x,%) is a single~valued function (1, pp. 181-208) (¥
The method of equivalent linearization of Kryloff and
Bogoliuboff consists of obtaining an "equivalent! lineesr diff-
erential eQuation which has epproximately the same solution as
the original nonlinear &ifferential equation (1, pp. 231-245).

The methods of XKryloff and Bogoliuboff and the conventional
describing function method are similar since the orocedure in
each case is based on the assumption of a sinusoidal form of
solution. In this chapter, the relationship between the methods
of Kryloff and Bogoliuboff and the conventional describing func-

" tion method will be examined,

# An equation is called quasi-linear if the solution of
the eguation does not vary appreciably from the solution
& the linear equation obtained when M= O,

& In this thesis, the following notation is adopted to
denote time derivatives:
ax = x, a%x 2%, -~ ==, d = x(n)_
dt at? ath
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FIRST APPROXTMATION METHOD OF KRYILOFEF AND BOGOLIUBOFE

=

3,1 TH

For L= O, equation 3.1 reduces to s linear differential
equation with a solution and its first derivative given by the
following equationss
a sin (&t £ 8), | (3.2)
aldcos (Ut £ 9). (3.3)

u

X

X
Since we are dealing with quasi-linear equations, it
appears logical to assume the solution and its first derivative

to be of the form of equations 3.2 and 3.3, where a and P are
functions of times to be determined, |
Differentiating equation 3.2, and for simplicity writing
G =Wt £ B, we get |
X =asino L allcos 0 £ a § cos o, (3.4)
ﬂhi@h, by means of equation 3.3, reduces to the following:
| 2sin 8 £ a % cos 6 = 0. (3.5)
Differentiating equation 3.3, we get
¥ = hwcos © ~ ad? sin O - &l § sin Q. (3.6)
When the values for X, %, and ¥ from equations 3.2, 3.3,
and 3.6 respectively are substituted into equation 3,1, and the
proper simplifications made, one obtains
2lWcos O - awfé sin 0 =-¢f (a sin 9, alcos 0).(3.7)
Equations 3.5 and 3,7, being linear functions of 2 and ?@,
can now be solved readily for these quantities. We thus get

a = -4t (a sin @, al/cos 8) cos 6, (3.8)
./f) .

=447 (a sin @, eleos 6) sin &, (3:9)
ald
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Since a and @ are assumed to be slowly varying functions
of time, we may, as a first approximation, consider them as
being approximately constant during one period of the trigono~
metric functions involved,

Thus, making use of this approximation, we can expand
f (a sin @, alcos @) cos O and f (a sin @, s&cos 6) sin ©

into the following Fourier series:

~~

A cos n 0 4 B, sinn 0),(3.10}

£ (a sin 6, adcos 6) cos 0 = 1L A A "
2

gEM%

5

cos n O £ Bnl sin n 6),(3.11)

M

(ot

£ (asine, al cos 8) sin 0 = L A '/ "
: ‘ 2

1

1}

n

where the Fourier coefficients are given by the usual integrals,

that is: ‘
247 .
A = 1-,// f(a sin ©, alcos ©) cos © cos n © d G, (3.12)
n o5
w7 /o '
e
B, = _1_f f(a sin @, eWcos B) cos © sin nd de, (3.13)
o
277 ‘
An‘ = l.//’ f(a sin 6, aldcos 6) sin © cos ne do, (3.14)
o .
1 ﬁ .
B, =1 f(a sin 6, alJcos Q) sin @ sin nd 49, (3.15)

Using equations 3.10 and 3,11, we can write equations 3.8

and 3.9 in the following form:

o0
Q -
a = myls ~ e > (A cos n6 £ B_ sin ne), (3.16)
20 ‘o v T n |
2 ot
/ : : : :

g= uhy -l 2 (4 T cos n 6 A B ' sin nG), (3.17)

—0o "= = n n

2at 2L

Integrating these equations between t and t £ T, where T

is a period of sin @ and cos @, and considering a and ¥ as
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remaining approximately constant in this interval, we get

alt, £ 1) - alt) = -4k, (3.18)
g o
i
g (t AT) - 8(t) = g4y . (3.19)
T 20l :

Since, by assumption, a and p vary only slowly cduring one
period, we can obtain from equations 3.18 and 3.19 the following

approximate equations:

° .
28 :
° i
p=ubs (3.21)
2ail)

@

Letting the total phase &t £ § be &, we have & =4 /£ [
Using the relationship of equation 3.21, we obtain

é= whiuhy', (3.22)
2al

The first approximetion to the solution of equation 3.1
will then be x = a sin& , where the amplitude a and the phase &
arc obtained from equations 3.20 and 3.22 r_éspectivelzu

If, for an amplitude a4, the following condition exists:

a = ”}%%): 0, - (3.23)

then the first approximation method predicts sustained oscilla~
tions with an amplitude aj. |

The question of whether these oscillations can exist in a
| practical system can be determined by considering the sign of

& for small departures of a from 2,4
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If for a slightly less than a;, we have 2>>0; and if for 2
siightly greater than al, we have §<:O, then, for small departures
from a;, the amplitude will tend to return to ay (the departure
must be small enough that the sign condition for & remAins setis-
fied). This condition indicates that sustained cscillations with

an amplitude a| can exist in the system,

If 2<0 for a slightly less than a,, and if a>0 for a
slightly greater than a5 sustained oscillatlons cannot exist at
ay in an actval physical system since any disturbance (noise)
will cause the amplitude to depart further from 8q . In this case,
‘a stability boundary exists at the amplitude 2y o
If a = 0 for a slightly changed from al, sustained oscilla-

tions will exist at the amplitude to which the oscillation is

disturbed,

3,2 THE METHOD OF EQUTIVALENT LIKDARIZATION OF KRYIOFF AND BOGOLIUBOFY

If the coefficisnts Aand K of the linear second order
differential eqﬁation ’

RAINE L W LK) x=0 (3.24)
are chosen such that its solution,a sin 6513 approximately egual
to the first approximation method solution of egquation 3.1, the
Meguivalent" linear equation 3.24 can then be solved to find an
approximate solution to equation 3.l.

If the amplitudes cf the solutions of the lineAar equétion
3.2l and the nonlinear equation 3.1 arc to be egual, the following

condition must be satisfied:
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AL
a -~ & 2 3025>
Differentiating equation 3,25, we obtain
~-Ab
22.p Y (3.26)
~ 2

Substituting equation 3,25 into the above equation gives

%= a. | C (3.27)
2 .

Using the equation for & obtained from the first approxima~
tion method (equation 3.20), and solving for‘)&, we have

A= kg ' = (3.28)
2al)

The totel phase of the solutions of the two equations is

equal providing the following condition is satisfied:

g =Jx to’ {~ Za ,_22 %t%ﬁoo (3.29)

K /09

" Differentiating equation 3.29, we have

9‘/ oﬁ{_ A f

. .
/v\ u. r'&)" /

ol
—~~
(S
°
Lo

O
~

Since we are dealing with quasi-linear differentiel equa-

of the type(3. 1) _
tions A the damping ratio 1§. __is small, and, &s an approxi-

A

mation, eguation 3.3C becomes

8 =Jx ;e (3.31)

Using the equation for & obtained from the first approxi-

mation method (equatﬂon ER ?2,)we obtain

WL =/ fw? . (3.32)

2al)
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Sguaring this equation glves

2 .
K = 2w (ﬁu- % A %4(.‘7‘.OX§~¢ (3.33)

a6 Redd
For auasi-linear eguations, the frequency correction term

T . - . ‘
ALy will be small comparcd with . Neglecting the second order
2: )

frequency correction term in equation 3.33, we obtain the follow-

ing expression for X:
K = ho' (3.34)
= \

Thus an "equivalent! linecar dif ferenﬁial equation, which has
approximately the same solution as equation 3.1, is obtained by
replacing the term AT (:{,%) by an equivalent term AZ A Kx,
where Aand K are given by equations 3.28 and 3.3L respectively,

Any of the teéhniques of linear theory may now be used Lo
study this equivalent l:near equation,

-Since the solution of' the equivalent linear equation 3.2L is
%= 6 Brsin /5 el R G NI Gl LR Gol , (3.35)
2 275 J
or approximately
. =Ab 5 Y

x5 e? sind JKARCt £ B/ (3.36)
the solution of the nonlinear equation camnot be found uniess a
is known so that Aand X can be calculated.

However, by following the precedure used to doveJ.oo equations

3025 ~ 3.28, the following eguation for a can be obtaineé:

g’ - -2 A ‘ (3037)

2
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Thus, the amplitude a, as found from equation 3.37, can be
~At

substituted for e £  in equation 3.36, and also used to cal-
culate the parameter K.

It should be noted that the method of eaquivalent linecariza-
tion provides no new information, but is merely a different pro-
cedure for applying the first approximation msthod.

3,3 RELATTONSHIP BETWELEN THS CONVENTTONAL DESCRIBING FUNCTION
METHOD AND THE TECHNIQUIS OF KRYLOFF AND BCGOLIUBOFF.

First, let us see how the describing function method can be
applied to a differential eguation of the form:

R 4O £pe(x,2) = o | (3.38)

An equation of this type can be considered as representing -
the zero-input error rcsponse of a single~loop feedback system

(Fieure 3.1) with linear

rz) +® x@) o s17(Z) Cle) @)

Figure 3.1 Single-loop feedback system

elements having 2 transfer function

cld= 1, (3.39)
ZEPE
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and, for an error signal x, an output m from the nonlinear element
given by the relationship
- o O\ . ~
m =l (x, x). (3,040)
I ‘9( < i 1 1 e <
fpuf x,X) contains a linear term dependent on X, say ax,

it can be removed from the nonlinear block by meking the transfer

function of the linear block

G(s) = __ 1 o . (3.41)
s< L as L@

Now obscrve that the describing function method cen be

applied to the system of Figure 3.1 in the normal maﬂnero

For a seccond order system with a freguency-independent non~
linearity, the procedure used to solve the equivalent linear
equation resulting from the Method of Equivalent Linesarization
can also be applied to effect a solution to the equivalent linear
equation obtéined from the describing function methodaﬁ

However, for frequency-dependent nonlinearities, the solution

& the equivalent linear equatioﬁ resulting from the describing
function method is more difficult to cbtain since the equivalent
parameters are dependent on two unknown functions, that is, the
amplitude and frequency (the equivalent parameters‘are dependent
only on the amplitude in the Msthod of Enuivalent Linearization).
For this reason, two simultaneous equations involving the ampli-'
tude and frequency are obtained. In 211 but a very few cases,

these equations must be solved by a graphical techniques

Since the relationship between the first anproximation

#  Supra p.20
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method and eguivalent linearization has been developed, the con~
ventional describing function method will be compared with only

the method of equivalent linearization.

3.32 The Approximant

Although both the methods of Kryloff and Bogoliuboff and
the conventional describing function method are based on the
assumption of a sinusoidal form of solution, the approximant is
not the same for both;

In the conventional describing function approsch, the
assumed values of the derivatives of the solution are cxactly
equal to the derivatives of the assumed solutione

In the methods of Kryloff and Bogoliuboff, a frequency of
oscillation is assumed, ard then a phase correction term g is cal~
culated. However, this correction term is not teken into account
in the coefficient of the ﬁrigonometric function of the assuﬁed
value of the first derivetive, and thus the assumed value of the
first derivative is not equal to the first derivative of the assumed
solution (except when the correction term is zero).

These observations seem to indicate that, providing cther

approximations are equally accurate for both methods, the des-

—
-

cribing function method will give more accurate recsults than‘the
methods of Kryloff and Bogoliuboff.

However, for frequency-dependent nonlinearities, the des~
¢ribing function method requires more calculations since both

the amplitude and frequency of oscillations cccur in the para~
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meters of the caquivalent linear term; whereas the equivalent para-
meters arc dependent only on the amplitude in the equivalent

lirearization method.

3.3b  Nature of the Apvroximation

T} £

he equivalent gaih of the nonlincar device for the des-
cribing function method is chesen to minimize the mean square
error between the actual output and the sinusoidal approximabtion
of the output for a sinusoidal inputﬁq

For the equivalent linearization method of Kryloff and
Bogoliuboff, the.equiﬁalent gain is chosen such that the rate
of change of the amplitude and phase of the solution of the actual
nonlinear cquation and the equivalent linear equation are approx-

i

imately equal,

3,3¢ Results Obtainad

If we apody the conventional describing function method to
equation 3.1 for the case of a frequency-independent nonlinearity,
the nonlinear relationshipag4f(x) is replacad by the funcition

277
Ax f (a sin @) sin © de,
2aj7./o

Therefore, since this is precisely the equivelent term ob-
tained by the method of eguivalent lincerization, the two methods

. are equivalent for frequency-independent nonlinearities,

The output from the nonlinear device 1s approximated by

the first term of a series, the Fourler series, formed from
an orthogonal set of functions, and so the mean sguare error
between the actual end arrroximating function is minimized
(69 PPe 156"158)0 '




Eowever, in ceneral, the two methods will yield different rosults

- - ~ - < 39
because the approximants are di

conventional describing function method gives more accurate
results than the method of conivalent linearization since an add-

itionel approximation is involved in the latter.

l, CONCLUDING COMENT:

I3,

Since 21l the methods discussed yield approximetely the

same informstion, it is important to determine whether onc of

s wreferable for a particular application,

W

-

ethods

ot
g
W
=]
':

*o‘

Obviously the describing function method is of much greatar
applicability for two reasons: first, the nonlinearity need not
be single valued as required for the mathods of Kryloff and
Bogzoliuboff; and, second, there is no restriction on the order
of the differential’equation,

A
£

involve an additional approximation to those made in the conven-
tional describing function method, and therefore are usually not

as accurate.

As nointed out previously, the methods of Kryloff and Bogoliuboff
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However, as a result of this additional approximation, the
method of equivalent linearization gives an equivalent lincar
equation which is easier to solve than the equivalent linear
equation obtained from the conventional describing function
technique. However, the same approximation may be applied to
the conventional describing function method, that is, the fre-

, quency.in the equation for the’equivalent linear parameters

- can be assumed to be &. If this approximation is made, the
equivalent linear equation obtained by the equivalent lineari-
zation method and the‘conventional describing function method
become identical. The validity of this type of approximation
can be checked by determining whether the frequency correction
~term is small.

From the material of this chapter, it can be concluded

" that the conventional describing function method can completely
replace the techniques of Kryloff and Bogoliuboff,

. If the nonlinear term A (x,X) is assumed to represcnt
Aa force and x to represent displacement, the method of equivalent

' either of
linearization can be gived“the following physical interpretations:i

(1) The nonlinear force &f(x,x) is replaced by an

equivalent linear force K £ A%, ’where K and _/\ are éhosen such

that the equivalent force produces the same active and reactive

work per cycle as the nonlinear force.

& See Appendix A
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(2) The nonlinear force is replaced by an equivalemnt
linear force Kx £ A% such that the equivalent linear force

is equal to the first harmonic of the nonlinear force.




CHAPTER /4
THE ELLIPTIC DESCRIBING FUNCTION

In this chapter, a new describing function, which is more
accurate than the conventionai describing function for meosT
practical casgz, is defined. This new describing function is
restricted tg“s;mmetrical, single-valued, frequency~independent
nonlinearities.

/7 .
L.l A RESUME OF PREVIOUS ATTEMPTS TO OBTAIN A MORE ACCURATE
DESCRIBING FUNCT ION '

Klotter (9), Prince (35), and Gibson and Prasamma-Kumar
(36) have defined describing functions based on a sinusoidal
input to the nonlinear element and an equivalent sinusoidal
output which is chosen according to some characteristic of the
actual output. chéver, since these describing functions are
difficult to evaluate, and in general are no more accurate than
the conventional describing function, they have not become
widely used.

West and others (12, pp. 133-156; 31; 32) have defined a
describing function based on an input signal composed of two
sinusoldal signals of different amplitudes and frequencies, and
an equivalent output signal composed of two sinusgidal signals
with the same frequencies as the input signals. If the two
signals are harmonically related (such as the fundamental and

third harmonic), the dual-input describing function can be used

Y
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to study system oscillations. Unfortunately, the dual-~input
describing function is difficult to calculate, and therefore it
is not normally used to study oscillations in self-cxcited systems.

Hamel (11, pp. 446-483), Tsypkin (11, pp. L,55-h83), and

Manabe (15) have developed exact methods for finding the steady
state response of nonlinear systems, but their methods are applice~
able only to systems in which the wave shape of the oscillations is

known 2 priori at one point in the system.

l,,2 CHOICE OF A DESCRIBING FUNCTION

‘With the exception of the dual-input describing function
and the methods developed by Hamel, Tsypkin and Manabe, all
describing functions for nonlinear systems have been derived
on the assumption of a sinusoldal input signal and a sinusoidal
approximation of the output. ¢

If the filtefing of the lincar elements is not perfect
for the harmonics of the.output from the nonlincar device, these
harmonics will be present in the system output and the input to

‘the nonlinear device, A describing function based on a sinusoidal
approximation of the input and output of a nonlinear dev1ce can
never account for the presence of harmonics in the system.

Therefore, it was proposed to define a describing func-
tion which would glve a more accurate representatlon of the

actual wave shape of system oscillations than is possible with

a sinusoidal approximations

N

[
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After many unsuccessful attempts had becn made to obtain

a describing function which would account for the presence of
harmenics in the system, it was decided that a restriction on
the generality of the problem was necessary if any progress was
to be made. Therefare the method will be restricted to odd- symmet-
rical; singlé—valued, freqnéncy—independent nonlinearities.

. As can be seen from Figure 4.1, it is possible, by vary-
ing the modulus k, to obtain a varietyvof wave shapes with the
Jacobian elliptic functions sn (u,k) and cn (u,k)%% Therefore,

it seems probable that by approximeting the input and output

/,0 T e,
1 1 =
]
[ s 7
S (4{, Z) .9_/25,//
g 0
05. 7~ 4
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e
0 7 3 = /.0

Lela Sn(u,k) as 2 function of u/X.
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L1b Cn(u,k) as a function of u/K.
Figure 4.1 Jacobian elliptic functions,

‘*Fol' efnilions see ( / 7) yr 72 f73.
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of a device with elliptic functions, a representation of the
‘wave shape of systeﬁ oscillations, which is more accurate *than
» sinusoidal approximation, could be obtained.

The following criteria will be applied to obtain the
Jacobian elliptic function approximation of a periodic functions:
the actual function will'bc approximated by the Jacobian elliptic
function which has the same amplitude and period as the actual
function, and the minimum mean square error between the actual
function and the approximating function for a complete period
of the function will be obtained b; varying the modulus k.

The choice of a criterion’was made on the basis of obtain-
ing a reasonably accurate approximation ﬁith a minimum of math-
enatical difficultiese |

Let us denote the instantaneous relationship between the
input and output of a nonlinear device by | |

m = f(e), | ‘ (La1)
where e is the input and m is the output.

The notation

11

e xisn(ui,ki) ‘ (4o2)

n

or e xicn(ui—Ki,ki) _  (be3)
will be used to dencte the input signal to the nonlinear device
(this choice of reference for the cn(u,k) function considerably
simplifies the calculations). |

& If the radian frequency of the input signal is W, the

A relationship between the argument u; and time t is

ui = 2Kj_ (Jt, . (l&ol-l)
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where the first complete integral K4 has a modulus ki.

The output of the nonlinear device will be approximated
by the elliptic function

m = xosn(uo,ko) | (La5)
or m = xocn(uo—Ko,kb), (4.6)
where X _, u;, K, and the elliptic function.[sn (uo,ko) or
cn(uo~Ko, ko)] to be used are determined on the following basis:

(1) The amplitude'xo is found from the relationship

x = f(xi)o o \ (Le7)
(2) The argument u_ is chosen so that the period of the
elliptic function is equal to the period of the actual function,:
that is, |

-~

uo - QKODt = Ui Ko, ' » ’ (Z&DB)

where the first complete elliptic integral Ko has a modulus Kqa
(3) The modulus ko and the elliptic fuﬁction t0 be used
are chosen sobthat the mean square error between the actual func-
tion and the approximating fundtion for one period of the func-.
‘tion is a minimum.
The necessary calculations to obtain the elliptic function -
approximation are described in detail in appendix B'for an input
e = xisn(ui,ki) - - (Le9)
4and an assumed form of output '
m = xen(u k) ‘ ‘ (4.10)
_(this form of output will be used as the approximation only
Cif it givés less mean square/error than the xocn(uo—Ko,ko)
form of output)s. The calcuiations for other combinations of

: input and output functions are similar, and therefore only the
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results of the calculations will be stated.
As is shown in appendix B (eguation B.AL), the modulus
X 1is to be found from the following equation:
- oE L 2k F |
k(g2 Tigh?
= *g { Ko [l 2 = & £ (kN2 £ 30k ]

Bko)(kot\/z

g IS

2 A
# 3 k) [k =14 (%" 1¢, (4.11)
- X
where D = !Oo uocn(uo,ko)dn(uo,ko)f [xisn(ui,ki)]duo,

T{o
yo E(uo)cn(uo,ko)dn(uo,ko)f [xisn(ui,ki) ] du,

=
n

2
F = fso sn(uo,l{:o)cn (uo,'l{o)f [xisn(ui’ki) ] duOu

Tt is evident from this equation that the necessary cal~
culations to obtain an expression for.kO would be extremely
difficult to perform, One of the main difficulties is that the
modulus k, occurs as a parameter in transcendental functions,
and therefare the equation must be solved by numerical methods.
The calculations would cbviously be greatly simplified 1f the
need for a numerical solutiqn”was eliminated.

One possiEle method of avoiding the numerical solution
would be to express the nonlinear relationship in such a mamner
that if ko and ki were‘assumed known the gquation could easily.
be solved fof the parameters of the’honlinear relétionshipa
___By calculating the parameters of the nonlinear relationship
 for the full range of k_ond ki," a graph involving k , ki

and the parameters of the nonlinear relationship could be

[
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obtained. Then, if ki and the parameters of the nonlinear
relationship were known, the modulus ko could be obtained from
such a graphe.

In an attempt to simplify the calculations, a number of
methods of approkimating the nonlinesr relationship were exam-
ined., The only suitable method found was an odd cubic polynomial
approximation. If the nonlinear relationship is approximated
by a cubic

n = £(e) arble £ as?), (4.12)
only the parameter a is required to specify the nénlinear
relationship since the coﬁstant b may be considered as part of

the gain of the linear elements. If the nonlinear relationship
is approximated by an odd cubic polynomial, equation 4.1l (and
the equations for other combinations of input and output ellip-
tic functions) can easily be solved for axiz if ko and ks are

assumed known, thus making it possible to obtain a graph in-

)

volving axiz, ko, and ki. The required formula is calculated

in appendix B and the resulting graph is shown in Figure 4.2,

page 35 . This graph also includes the relationship between

.the parameters for an input xicn(uiaKi) and an output xocn(uo~Ko).
The relationship for the other combinations of input and output
functions was not plotted because of their limited usefulness

and the large amount of time required for the calculations¥,

4 Infra pe-41
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Although a cubic approximation may not give a "good fit"
for some nonlinearities, the approximation of thé nonlinear
relationship by a cubic is justified for two reasons:

(1) Most nonlinearities for which the exact methods
of Hamel, Tsypkin and Manabe are not applicable‘may be adequately
approximated by a cubic. (saturation and dead zone are the most
common examples). Therefore, the method will be applicable to
most of the systems for which there is no method of obtaining
an exact solution,

(2) Soudack (20) has obtained very accurate solutions
for a certain class of nonlinear differential equations by
approximating the nonlinear relationship by a cubic polynomial,
Tt seems reasonable to assume that a cubic approximation will
give vaccurate results for a wider ciass of differential equations
than those treated by Soudack. It will be assuned that a cubic
approximation gi&es accurate results, and then the validity of
this assumptién will be tested by comparing the results obtained
with the correct solutions,

Since it has not been possible to justify any particular

method of approximating the nonlinear relationship with a cubic

polynomial, the method will be applied using both the Legendre
and Chebyshev approximations to determine whether one of these
approximations will give more accurate results than the other.
If equation A;iZ is obtained using a Legendre or Chebyshev
approximetion the range of the approximation is-1 £ e £1.

Thus to obtain the most accurate result, a change of dependent
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variable should be made in the equation representing system per-
formance such that x; in the approximate solution of the result-
ing equation is equal to or only slightly less than one .ﬁ

L3 SYSTEM ANALYSIS

Consider the application of the elliptic describing function
to the single~loop system of Figure 4.3 for the condition of zero

. # . .
input signal. If the nonlinear input-output relationship of the

)+ e %) 2 °(¢) c(t)

N & (s)

Figure 4,3 General block diagram of control system incorporating
one nonlinear element

element denoted by N'in Figure 4.3 1is appro:dmated by a cubic
polynomial, the necessary elliptic function input :,cisn(u.1 ,ki)
to produce an approximate elliptic function output xosn(uo,ko)
can be determined from equation 4.7 and Figure 4.2, Let us
denote this input-output relationship by

xisn(ui,ki) =y [xosn(uo,ko)] . (La13)

& ‘It is also possible to change the range of the polynomial
approximation by a suitable change of variable; however
this procedure would require more calculations than the
one outlined above, :

# It is assumed that the proper change of dependent-variable

k has been made in the system equations by performing a suit-
&ble transformation of system parameters. The best procedure
for meking this transformation is given on pages 46-47.
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A1l possible combinations of sn(u,k) and en(u,k) functions are
necessary to completely specify the input-output relationship,
but only the calculations for the sn{u,k) function approximation
of input and output are given since the calculations are similar
for ather cases,
If the output from the linear clements or, equivalently,

the negative of the input to the nonlinear element for an ellip-

tic function input xbsn(uo,ko) to the linear elements is approxi-

mated by an elliptic function according to the relationship

c = ~xisn(ui,ki) = f, [}%Fn(uo’ko)] s (Lo1h)
the condition for sustained oscillations in the system of Figure
L.3 is
- 1
fl [xosn(uo,ko)] = .-.fzk [xosn(uo,z{o)} - (L.15)

Therefore, to employ the elliptic describing function in
system analysis, it is necessary that tﬁe response of the linear
elements to an elliptic function input be approximated by an
elliptic function,

All attempts to calculate the output from the linear -
elements directly in terms of elliptic functionsvended in fail-~
we, DBecause of the case with which the response of a linear
device to sinusoidal input signals can be determined, it was
decided to treat the input as a Fourier series, and then attempt
to synthesize an approximate elliptic function from the output

Fourier seriese

The Fourier series expansibns of the elliptic functions

are ziven by the following equations (4,pp.167-169):
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. <0
sn(u,k) = W F 2 sin (onfl)v R (4.16)
Kk n=0 sinh (n,l;L_),,-r:rg_'
[( 2) K
=0
en(u-k,k) =  $%  sin L(enf1)v £ n 180], {La17)
KK n=C Gcosh (nfl) wX'
(2 X ]

where v is defined by the following relationship

vz T u. , (L18)
2K - '

Substituting equation 4.4 into equation 4,18 gives

v = Wt, |
and thus the input to the linear device may be represented by
the following expansion :
xosnlug,k ) = X, 2 sin(2n/l) Gt . (4.19)

X k n=0 sinh (n,ll )‘TfKo }
: X_
o

If the linear eleménts are characterized by their steady
state transfer function

(30 = fw) M9, (4+20)
the response of the linear device to the elliptie function

input is

crxor 2 /L(2na] sinf Goa)en o (°n%1)w§%(u 21)
Kk, 170 _smh [(n,%) ﬂ-’x{ ]

or, equivalently,

c = 017-' ﬁo _L(Zn,ll)(d]cos{ # 2nl1)W ,zgs(w)} s:.n{ (2r~}1)63’b/¢(/@}
n=0 sinh 21’1,‘1) Trh ]
K

2)

# é_L(2n%l)lo] sm{ g [(?nfl)w} #ﬁ(“)}cos{ (2nrl)l~’t%¢(¢0)} (La22)
sinh [gn,llg wKy'
KO

It was decided to approximate the series by the elliptic

function which gives the least mean square error between the actual
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function and the approximating function.

Many difficulties werc encountered in synthesizing an approx-
imate elliptic function from the Fourier scries, and therefore it
was found necessary to introduce some further approximations.

From equations 4.16 and L.17, it is seen that all higher
harmonics of the Fourler series of the elliptic function have either
zero or 180 degrees phase shift from the fundamental component.
Providing the first term of the Fourier series in equation 4,22
is large comparcd with the higher harmonic terms (which is usually
the case for control systems), the best mean square error approxi-
mtion to eguation L.22 by a2 sinusoidal scries containing terms with
either zero or 180 degrees phase shift is obtained by neglecting
the césine terms in equation L.22,

Therefore, the approximate system output is

¢z xoy o2 K Lna)0] cos{ oL (2n1)w) -¢<w>§ sinf <9n¢1>@u¢<w>§<4,23)

';{"’O’i;; n=0 sinh gn,élg W}i E

This Fourier series will be approximated by the elliptic
function which has the same first and third harmonic terms :m
" its Fourier expansion, This specification fixes the type of
elliptic function to be used, the modulus k, and the amplitude.

Let us write eonation L.23 in the following manner:

('5"{') ¢
c =X, T A((J)sir()h ( §K) §o sinE(2n/l%r&)t(%§g&)}ﬂ
X k. { sinh (fK,! ” sinh K'{nFL
o (Z&,) E ZE

=D

/- ‘:12;; A[(?n%l)w] cosgﬁ{( ?n%l)wE —5’5(&9)} sinl(2nf1)0: %@/(w)} A, (Lo24)
sinh EEn,ﬂ% wK, } »
o

K

where k is chosen such that the following equation is satisfied:
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@)
A/(BQ)COS{Q)/(B@—Q/((&)} sinh ( 57%) = oinh E—’,)-‘-f-'—z X (4.25)
A’(w) sinh (32"4’1(0') sfinh‘ Z\ ;m{' )‘ )
() T

The series of equation L.24 is to be approximated by the ellip-
tic function which has the same first two terms in its Fourier series.

That is, equation /.24 is to be approximated by the function

/ (Kt ) ,
¢ = kKK A(®) sinh (2K ) sn(u/i2Kgle), k). (4.26)
kK, sinh WLq) T
(2K,7)

Since the approximate output elliptic function must equal the
negative of the elliptic function input to the nonlinear device
(e;.lua.tion Lelk), equation L.26 can be written as follows:

c = -xy sh(ui,ki) =1, [xo sn(uo,ko)}

(K1)

—Je »
= kK, W) sinn (TG ) sn(uf2k pl@), k). S (ke27)
k K, sinh (fka') | +
. (2K, ) ,

This approximation can now be used to solve equation L.15
for the parameters of the elliptic function approximation of

system oscillations,

% This equaﬁion can be satisfied only if the phase shift bet-
ween th,e first 8}’15. third harmonic gain 1s in the range
-7 f3w) - lw)g W/2. 1If the phase shift is outside

2

this range, equation 4.24 should be written with terms of the
form sin [(2nf1)V £ n lSO] , and thus would be approxi- :
mated by a cn(u-K,k) function. Since the phase shift is
usually in the range - /24 8(3@) -Ha)E /2, the ellip-
tic describing function calculations will not be carried

out for phase shifts outside this range.
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First, note that since the method has been restricted to
frequency~independent nonlinearitiss there is no '"phase shift"
between the elliptic function input and output of the nonlinear
device, that is, f Ex sn(u Lk )Ehas no phase shift from x sn(u ,k ).

271 W o’ o ; o 0’ o
Therefore, using the relationship

sn(u A 2K) = —sn(u), (L.28)

iy

it is evident £ i:x sn(u .k )}must have a "phase shift" of 2 z{
from x sn(u »K ) ir equation lul‘S is to be satisfied. Thus, using

equation L.27, we have

2K, = 2K #l), | (1.29)
™
~and consequently
/) -
sl =T (4..30)

Therefore, the frequency of system oscillations is the frequency

at which the Nyquist plot of G/(s) crosses the negative real axis,

Q.

Once the ch,ouoncy of oscillations is knowm, .a’fw) an
A’ cos Eﬁ(jw} - Q‘(&))} can be easily found from the Nyquist plot.

Knowing K@) and f-‘-.(f-.a) cos Eﬂ(SU) - ,@/(w)j , equation 4.25
may‘ be solved for the ki,ko rela,tioﬁship of the linesar elements ,
To calculate this equation for every example would be extremely
difficult-so it was decided to obtair; a plot of the relationship
for several ratios of A’(}ld) cos[ﬂjl(%&) - Qﬁ’({o)} to A/(w). To reduce
the number of diagrams required, the relationship of ec!luéxtion La 25
is plotted on the same Figure as the relationship given by equation
B.48 (and given graphically by Figure A.,’B).v' The resulting graph
‘is given in Figure L.k, page 43 and, to an expanded scale,in

Figure 4.5, page 44.
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Perhaps, in order to prevent confusion, it would be desirable
to examine more closely exactly what Fisures L.4 and 4.5 represent .
From a threce dimensional plot of the relationship between ki’ko’
and axi2 given by equation B.48, Figure 4.2 is obtained by vlotting
several ki, axi2 curves for constant wvalues of ko° By plotting
the ki,ko relationship given by equation 4.25 onto Figure 4.2
(and thus obtaining Figures L.L and AOB), vertical projections from
the ki,ko plene are being plotted onto thevsurface representing
equation B.LS,

Once the ratio AﬁBL» cos (@fBuﬂ - ﬁ@d)] to K&d) has been
found, the relationship Between ko ard ki for the system is iknown
to be a point on the Yratio! line‘of Ficures L.4 and L.5. .The
point.on this line which corresponds to steady state oscillations <

can bc obtaincd from the magnitude conditions. Using equation

L.27, the magnitude condition necessary to satisfy equation L.12 is

p Cﬁka‘)
x5 = (x40 )b kK, M@) sinn (2K ) | (4.31)
EOKO sinh  (@WK,1)
(2K, )
Therefore, we have
2 . fxat) .
g AL RN (1.32)
Hw)b k;K; sinh (ky')
(2K; )

By plotting this equation for the ki’ k, locus foun@ from
the ratio conditions, an intersection with the surface represcnt-
ing equation B.48 can be obtained. This integsection corresponds
to the conditions necessary to satisfy equation L.15, and thus
represents the parameters of the elliptic function approximation

of system oscillations,
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To facilitate the calculation of eguation 4.32, the function

D
\‘Z*\O
k_ X sinh (2X. ) as a function of kg
kiK; sinh @st)
(2K )

is plotted for different values

of kg in Figure 4.6, page 47 and, to an expanded scale, in Figure 4.5,
page 4&.

As mentioned at the end of the previous section, it is necessary
to change the independent variable in the equation describing system
performence such that x; in the approximate solution of the resulting
equetion is egual to, or only slightly less than, one. For the standard

feedback system zrepresented by the block diagram of Figure 1.1, the

following relation may be written (for self-excited systems):

Aic$ = G(s), A (4.33)
ZECTT

The necessary change in variable is most easily made by setting

c-= ¢'n (where n is a constant) in equation 4.33 to obtain

Ly = a(s) = G (s). (4.34)
Ef{?(-c'n)} n

Thus, the change of variable is made by dividing the gain of the lineear

elements by the normelizing factor n and setting ¢ = ¢'n in the nonlineer
relationship.
However, the value of ™. required to make X4 of the required
magnitude is unknown. Fortunately, a suitable value is usually arrived
et by noting the gain of the linezr elements and the form of the nonlin-
earity and in any case the eguation need not be completely solved to
determine if a satisfactory n has been chosen since if xisgl, ﬁhen

SXas

lgsga, and this condition can be checked when equation 4£.32 is being

plotted.
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Since knowing the gain of the linear elements to the first harmonic
of the system oscillations mey be very useful in selecting a normelizing
factor, it is usually preferable to calculate the Nyquisgélot of the un-~
noiralized system, and then normalize the values from this nlot. The
4(3p) 005:5(3@) - ¢Qgi} to 4(w) ratio and the phase of the Nyquisf plot

are unchanged by normalization, and the norzmalized gain of the first har-

monic becomes

Aw) = Alw) . (4.35)

n

The procedure for applying the elliptic .describing function to
system analysis mey be swumarized es follows:

(1) The approximate frequency of oscillations is the Trequency at
which the Kyguist plot of the trensfer function of the linesr elements
crosses the negative real axis.

(2) The ratio 4(3w) cos-[¢(3w) - d (a;)] to L(&) is found from the
transfer function of the linear elements, and the corresponding "ratio’
line" is located in Tgure 4.4 (or 4.5).

(3) Approximate the nonlinear relationship by & cubic polynomial
(noting the necessary change of variable), and with the aid of Figure
4.6 (or 4.7) plot axiz versus kiifrom equation 4.32 onto Figured.d
{or 4.5) for the values of ki,ko on the ratio line found in step 2.

(4) Find axi2 anc ki from the intersection of the line plotted
in step 3 and the surface representing equation B.45, that is, the ratio
line found in step 2.

(5) Tow knowing ki, axiz, and a, the elliptic function approximation
of the system output can bebdeterminéd.

Some examples of the application of -the elliptic describing func-

tion are given in appendix D.



4.4 COXCLUDING COMMENTS

The examples which have been studied (appendix U) seem to indicate
that a lLegendre polynomial approximation of the nonlinearity gives more
accurate results than a Chebyshev approximation, but more-examples would
have 1o be studied before a definite conclusion could be reached.

While it is difficult to state precisely on what renge the ampli-
tude of the normalized system output must be to give accurate results,
the examples studied indicate that accurate results are obtained when X4
is in the range .6 <x;<1.

Further calculations are necessary to obtein the elliptic describ-
ing function relationship for values of the modulus greater than .99999
and for systems in which the phase shift between the first and third
harmonic is in the range /2 <@ (3e) - ¢(w)< -77/2.

The accuracy of the method could be improved if the figures were-
expanded.

Despite these shortcomings, it has been found that the elliptic des-
cribing function, as developed here, gives more accurate results than the
conventional describing function. Before the usefulness and the accuracy
of the method cen be determined, it would be necessary to apply the method

to a wider range of examples.




(AL THOUGHTS

-~
A short r&bume”of the topics studied and the conclusions

o
veXl .

reached will be given in this chap
THA SINUSOIDAL

5.1 ijE CORVERTIONAL DESCRIBIEG FUNCTION METEQOD AND THE VUD
CECHNIQUES OF KRVIOFE AXD POCCLIUBOFF

conventional describing function method was developed in

menner as to clearly indicate under vwhat conditions the meithod
an be used to determine the characteristics of the transient behaviour

of a systems.
The first approximetion method of Kryloff end Pogoliuboff was

developed, and the results of this method were used to obtain the method

of equivalent linezrization.
It was found that the conventional describing function and eguiv-

glent linearization give exactly the same results for freguency-indepen-

al

o ke

dent nonlinearities, and, in genera
vith frequency-dependernt nonlinearities.

, the conventional describing function

accurate for systems

is more
5.2 THE BILIPTIC DESCRIBING FUNCTION
was

A new describing function, the elliptic describing function,

developed. This describing function proviies a :ore accurate represent~:

ation of the input-output relationship of a nonlineer device than is

possible with a sinusoidal approximation.
The main objection to the elliptic describing function, as with

the conventional describing function, is that the method gives no sure

rlterld regarding the existence of sustained oscilliebions.

is the need to change the indegpen-

Lnother weakness of the method
dent variable in the systew equations, Hlthough this has not presented




%]

eny difficuliies in the exzuwp

tudied, it is possible that someone
S who vwas unianilar with the method might have difficulty in making & sat-
isfezctory change in variable in the system equations. In the examples
udied, cccurste results were obtained when the amplitude of the oscill-
ations in the normasliged system W&S in the range .6<:»;i< 1.

For all the examples studied, it was found thet the elliptic describ-

ing function gave more accurate results than the conventional describing

function.
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APPENDTX A

PHYSICAL SIGNTFICANCE OF THE CONVENTIONAL
DESCRIBING FUNCTION AND EQUIVALENT LINEARIZATION

Providing the output of the nonlinear device is assumed
to represent a force and the system output, say x, a displacement,
the conventional describing function and equivalent linearization
can be given the following physical interpretations:

(1) The nonlinear force is replaced by an equivalent
linear force Kx £AA¥, where K and Aare chosen such that the
equivalent force produces the same active and reactive work per
cycle as the nonlinear force,

" (2) The nonlinear force is replaced by an equivalent

linear force Ix £AAx such that the equivalent force is equal

te the first harmoniec of the aonlinear foree,

A.1 PRINCIPLE CF SQUIVALENT BALANCE OF ENERGY

Before a physical significance based‘on energy reiation-
ships can be developsd, it is necessary go define a reactive
power term for mechanical systems similar to the term "“wattless'
or reactive power commonly used in alternating current theory.

From alternating current theory, the real (or active)

component of power P, and its twattless" (or reactive) component

Pr are defined as follows:

P, = ;L_fr eicos O dt, | (A1)
T Jo
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['- e isin C dt, (4.2)
0

s
3

where e, 1, @ and T are voltage, current, phase engle and period
of the function respectively,
If the force is F (t), the active component of power in a

mechanical systen is

P, =_T_ Tr (t) % (¢) at, (4.3)

and by analogy with equations A.1 and A.2 the reactive com~
ponent, of power in a2 mechanical system will be defined zas

P, = _Z_L_{T F(£) % (t - T/L) dt. (4.4)
T Jo ‘ v

The active and reactive work per cycle is obtained by
multiplyving these expressions by T.

If the nonlinear force is &f (x, Xy x(n>), the active
and reactive work per cycle of the ﬁonlinear force is given by
the following equations: |

Active work of nonlinear forceZW, (NL) :ﬁ/af(x,nz,-——,x@)):z dt,
(4.5)

Qeucflve work of nonlineer force E-';Nr (NL) -
(%, % e, x(0)) % (& - T/L) db. o (A.6)

The active and reactive work per cycle of the eguivalent
linear force is given by the following expressions:

Active work of cqulvalent lmea force 2V, (L)

= ;{ji % x dt ,éz\f t, (A.7)

Reactlve wor{ o*’ equivalent linear force =W, (L

KJ’O (t - T/L) x dt ,é,\f" % (¢ - Th
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A.la The Sonventional Describine Function

Let the generating solution for the nonlinear differcn-
ti&l equation be

X = a sinwt, | (4£.9)
where a and @ are constants to be determined. All derivatives
of the solution are assumed to be exact derivatives of egquation
A.G.

Substituting the generating solution into equations A.5

Vg (ML) = f, uf Ea singt, a g cos Gt ,~———- ,{a sin (@t)(n):ﬁ

e
W, (L) = Kj
de

= AaR . ' (A.11)

), (A.10)

t
" 2
2 cos @t sin Ft d(Wt) LAl 2”*@Wcos?@t dwt)

. Equating the expressions for the active work of the non-
linear force and the equivalent linear force, and solving forA,
we have

2y ‘ (n)
As A f £ Ea sin@Wt, al) cos &t,~——,(a sinWt) E
ai/o

cos Wt A{wt). (A.12)

Similarly, the parameter K may be found by equating the
reactive work per cycle of the nonlinear and eguivalent linear
forces (equations A,6 and 4.8) for the generatine solution given
by equation A.9, Whence, the parameter X is given by the follow-
ing equation:

2T .
X :/f_{/{f [a sinft, a&cos Wh,~——-, (a sinﬁt)(n>] sin&t dl@t).
wa 40 (A.13)
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Thus, with the cenerating solution of cguation A.Q
nonlinsar force is replaced by the equivalent linear force
O, LT ’ (n)7
] 7 - [ . . P
AL £ Ea sin &t, adcos Wt -==,(a sin &t WYL sindot dw

N
-,(a J¢nww)("éco v aldst

*ivplent Linsari

ivalent force that

O,

escribing fiunction method

zation

The

same principle may be applied to obtain

terpretation for equivalent linecarizatiocn. -

The
X <

]
X

where

are functions of

)
na

= [ {aswn (wt%@/, a@cos Wt £ P)

generating solution is of the following form:
(A1)
(4.15)

#B8)s
?),

a sin @Wt

2 & cos @@t

time to be determined.

ve

-
i

is the frequency of the solution chéL= 0, and a and ?

j a cos (Lt

(xﬁ'&a16>
27 .
[ a2 sin (@t £ §) cos Wt £ @) 4 (k)
Jo
2
'ﬁ’a?a cos® (gt /£ 72y & @Wt). (1.17)

is obtained by applying

to a system with 2 non-

a physical in-

stituting the senerating solution into equations A.5 and

£ B)




H 1y + 3- 03 ey
Jsine the 2onroxing

L5 o~ ~11 o RS ARne . PR SR A
lon oif emueblon A4.lfh, and for simnlicity

oyl
N =y .
W) = £ f{a sin 6, a&fcos @) a sin 9 do, (A.29)
o o
Wo(L) = K f 8% sin G cos G d ©
s 2 2
AXN(T a“lcos® ¢ de. (&£.20)
C

If we assume a to be approximately constent over one period,

equations A.19 and A.20 become

C 2w . .

W, (ML) :,&ej f(a sin ¢, a&)kos 6) sin ¢ d6, (A,21)
o

(L) = A2 , (4,22)

o

Setting the active work par cycle of the nonlinear force
and the equivalent linear force equal (approximately), and solving

for A, we get

27
Az 22 f f(a sin 6, a #hcos 8) cos © 48, (A.23)
27 4o
The same approximations may be applied to the reactive

work per cycle to obtain the follewing equation for the parameter K:

2%
K a4 f(a sin 6, a & cos 9) sin O d6. (A.2L)
i
The egquivalent linear parameters given by equations A.23
and A.2l; are the seme as those obtained using the method of

equivalent linearization.

A,2 PRINCIPLE OF HARMONIC BALANCE

Another physical interpretation may be obtained if the non-
linear force is replaced by a linear force vhich is equal to the

fArst harmonic of the nonlinear force,
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: The Conventional Describine Funetion

Again the senerating solution is of the form
X = a sin &t, (A,25)
where a and @ are constants to be determined. 211 derivatives

of the solution are assumed to e exact derivatives of equation

The equivalent linear term which is equal to the first

harmonic of the non-linear forcc, is

—

0 2T e . . (n)
P LY ‘5{ f“{a sind@t, adicos Wt,~-—(a singt)\D j‘isin&jt d(ézﬁt)g sin&t
LT Jo 4
25 ' .
Al | Tlasintk, aldcosth,-+(a siné»&t)hﬁcos A d(&”t)] cos &t .
!H,} o

This is precisely the equivalent linear term which would be ob~
tained if the conventional describing function method were used.
In fact, the procedure outlined here follows directly from the
definition of the conventional describing function.

A.2b Equivalent Linearization

Again the generating solution is of the following form
a sin @t £ ¢), (A.26)

a Wcos (Gt £ 3), (A.27)

n

X

n

s
X
wherevéj is the frequency of the solution for= 0, and a and P
arc slowly varying functions of time,
Since a and £ are assumad to be slowly varying functions
of time, the nonlinear forces may be expanded as a Fourier series
by considering a and § as remaining avproximately constent during

one period., The first harmonic F of the resulting Fouriler series
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-

is
™ EA ” <& o . - :' .
F o= ii? £ {asin @, a& cos @) sin & d@‘E51n e £ p)
Wl 4
[ Xe]
i Aaj’z” f (asin 6, al cos G) cos @ o@% cos (Wt £ g). (h.28)
o

The equivelent linear term Fy for the generating solution
of couvations A,26 and A.27 is
Fi, = K a sin (@t £ 8) A A atcos (&t £ P). (£.29)

By eaunating the coefficients of cos Wt £ ) and sin @t 4 8)
in equations A.28 and A.29, we obtain the following parameters
from the principle of harmonic balance:

~

A= A& 79 7(a sin @, adcos Q) cos © do, (£,30)

sl

e

7w
K = fe ;{2*’ £ (asin ©, a8 cos @) sin 9 do, (4.31)

These are precisely the equivalent paramebers obtained

from the method of couivalent lincarimation and the principle

of eguivalent energy balanceqﬂ

X Tt should be noted that the last paragraph on page 238

£ Minorsky (11) is incorrect. 4 correct wording would

e as follows: It is seen that both winciples, that of
Fquivalent Balance of Energy and that of Harmonic Balance,
are equivalent, because the work of the higher harmonics
per cycle of the fundamental freguency has been neglected
in the equivalent balance of energy concept. Obviously
Minorsky's statement, "the work of the higher harmonics
per cvcle of the fundamental frequency is zero," is in~
correcte.

b

=5 o O

t



APPTNDIX. B

CALCULATION OF THZ EILTIPTIC DESCRIBING FUNCTION

-
i
)

DERIVATIVE COF THE LILIPTIC FUNCTIONS WITH RESPECT TO
= :

TRST
TR NODULUS

The first elliptic integrsl is defined by the expression
by <o ) iy

, k22 1. (B.1)

F(f, x) =u :ﬁ' C
0 1 =~ x%1in%

If we consider u as being constant, and take the derivative

of both sides of equation B.l, we obtain the following equation:
7 ; -
K sin® 0 do  / 1 a2 =0. (B.2)

Jo (Vz~k“ sin“@) \/I‘k2sin4¢ dk

After performing the integration in equation B.2 (17,p.46),

Y

k| F-D - sin § cos ¢ = =1 ag . (B.3)
CUE (k‘)z,/l—kzsin2¢ J1 - k2sin2p die

Solving for df/dk, and observing the relations (17,p.43)

D = F-E, : (B.L)
k2
2 2 '
(k')%= 1-k<, (B.5)
we have

_Q = -k ?L &281n2¢ o "2 2 ~ sin ¢ cos @ . (B.6)
(k )2k (k1)2]1-k<sin?p j

Using equation B.6, we can write d(sing) in the following

3k
"'OI‘u -
e
a(sing) = -k cos @ fl-kgsin% 1 2-(c)%F - sinf cosd ‘%’(BQ’Z)
dk (k)2 12 ()2 1025102 |

From the definitions of the elliptic functions, we have



sn
cn
cn (R.8)
and thus equation B.7 may be written as follows:
\" - 1 3\ ? c\a’s/
~ W,k = -k en (u,k) dn(u, )\ k! sg - sn(u gk)cn(uqk)ngDQ)
] | )< (kt)=dn(u,k) ~
Similerly, the derivatives of en(u,k) ard dn{u,k) with res-
pect to k are given by the following equations:
; : . " o
dgon{u,k)z = k sn(u,k) dn(u,k) é B-{x)F -~ snlu, 1) en{u.l )@',(B 10)
< &
o LGen02 (k02 an(u,n)

5t §_{5n(u,}:)§: -k snz(u,k)
dic dn (u,k)

A 13 en(u,k) snfu,k) gE—(k’)ZE - sn{u,k) cn (unk\k( 2,11)

4(k')2(k)2 (kﬁ)zdn(upc)j

R,2 APPROXIMATTION OF NOWLINmAR INPUT-QUTPUT RETATICNSHIPS WITH
2LLIPTIC FUNCTIONS

necessary calculations to obtain the elliptic function

=3
oy
[0}
o

approx1n n are described in detail for an input

e = »; sn(ug,k;)
and an assumed form of output

m = X, sn(uogo)
(this form of output will be used as the approximation only if
it gives less mean squarc error than the xocn(uo—Ko,ko) form of
output). The calculations for other combinations of input and
output functions are similsr, and therefore only the results of
the calculations will be stated.

The instantancous error between the actual function and
the Jacobian elliptic function approximant is given by the

following eguation:




-

I b
T . Is! s oL
xqosmlug,ky

P

It is desired to minimize the mean sgusre value of this

PR o5 4

expression over one period of ug, bub because of the relations
sn(u,k) = sn{2K-u,%) = - =sn{uf2K,k) = -~ sn(LK-u,k), the same

N

he mean square error

ct

value of 1} < will be obtained if we minimize
aver one auarter period of the function.

o find the value of k, which minimizes the mean square

error, we must solve the foliowing expression for kg :
Kaf o ? 2
2 0 o~k 4 1 x \ 4~ —
d %bL Exisn{ui}hi)E - “n(“oﬂ“o/, dug = 0. (B.13)
QX & : ‘5
ol
Interchangineg differentiation and integration, we have

K Cr 3 9
=21° g % I{x4sn(a.,k.)§ x snlu Lk ) Edu « (B.14
—_ i 1771 o o’ o
Jo  I,L i 4

5
~ 2 o)
e T roon Lo - 0
A...{O s - 2:\0 e A O T o
1 5 B < . N2
Ko kot (k t)7
/v ~
= 2x D o~ (B.15)
2 3
::o
where
Aoz o Ug 5n<uojko>cn<u )Cﬂ( 4O> duo, (Bolé)
O
— :‘: -/ N\ N - N\ 1 5 ko A
Bz § © E{u,)sr (ao,wo;cn(uo,hojqn(uo,xo) dug, (B.17)
O

«
1l

Ko 2, . 2, .
‘5 ° ¢n (uo,xo)sn (uo,ko) du (B.18)



[ “ v o 1 )" /1 A
D= eniu Lk )dn(u du s
14 [ad
4 - 1]
T - {70 Nar{11 T Yan{s [T N e 1w N .
5= L(uo,pnkhojmo,¥y\qo,x0) f hi%u\al,&i,\.ch
JO
X ) = , =
? o= 50 an(u ik e (w ik ) f lwsalu. e )b du .
k :rlkv\ozmokl. K\« ,L\.O/ _l .k l’ i/‘j} o
SO

he integral in counation,

£

o
<
1

TR

W

(o]
3
[¢)
¢

Qs
v = gsk(uo,ko)cn(uo,ko) an(ug,k, ) .dug.
If we substitute the equation
. 2
A . - < ) 1
o] Ean\uo,ho); = =k sn(u ,Lo,cn(uo,uo)

1

v1 s
idn{uo,ko,j du

I
|-

Now performing the integration by parts, we have

A :J{udv = uv - va du
K

K

ey 1 °© ;4 7% R k)
= _u02 dn (uo,&o> A1 } dn (uo’Ko’duo
3
2, o 2y~ S0

equation (17,p.78)

{
+

l...J

(B.28)
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Az 1 [ ,k) an(u_,k ) fo
{u o2fo) = ug U5k )

1t

1 VE(K, Lk _K1'2]- .
_2_1{_;2[«0 o) = Kolk ") (B.30)

' The integral in equation B,17 can also be integrated by

parts if we let

u = Kuy), (8.31)
av = sn(uo,ko)cn(uoko)dn(uo,ko) du,, (B.32)
whence -
du = d E(uo), ' | (B.33)
v = I sn(uo,ko)cn(uo,ko)dn(uo,ko> du . (B.3L)

By uéing the identityb(l7,p°78)

E(u) =!u dn’u du, (B.35)
equation B.33 ;ay be written in the form

du = dn?“(uo,ko)duo° (B.36)

As found previously (equation B.27), the evaluation of the
integral in equation B.34 yields the following result:

_ 2
2k .
o
Using equations B.36 and B.37 to perfarm the integration

by parts, we have

K
B:Jo udv:uv—fvdu
o

i K ' - °
= <B(ug) an(u_k,) E 0o/ 1 fKO an(u k) duy. (B.38)
2k02 © 2k °

If we substitute the identities
dn?(u,k) A‘kz snz(u,k) =1
and snz(u,k) # cnz(u,k) =1

into equation B,38, we obtain
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T,

. K . <
B = ﬁéﬁugl dnz(uo,ko) E 041 j‘o (l~k02)dn2(u Jk )du
2k o ° 21{02 o) 0o © o
Ko .2/ 2
# %.{o dn (uo,&o)cn (uo,ko) duo. (B.39)

Evaluating the integrals (18,pp. 17-18) in equation B.39,

we get

3

v ol

B = -E(uy) dn“(u_,k.) # (1-k5)? Blug,k )
2k~ 22

£ (L 2B (g ko) = (L-k g

o »
6k, 6k <
2 ) Ko
A ko sn(uo,&o) cn(uo,ko) dn(uo,ko) .
6 .
= _(kOJ)ZE(Kofgg) pa (1_ko)2 E(Ko,ko)
2K % 2k o<
2y 1 2
A (1LAxE) EFKO,RO) - (1-%,)K, . (B.10)
Using the identity
(x")? = 1%,
equation B.40 can be reduced to the following expression
IS [_(1,4 &) BOE_ e )=(eg "V } (B.11)

Using the identity
snz(u,k) / cnz(u,k) =1,
equation B,18 may be written in the following forms

K
Cc = fo o Esnz(uo,ko) - snb’(uo,ko)}duo. ~ (B.L2)

After evaluating the integrals (18,pp.17-18), we have
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C =y - Bu k) ~(2 4 k2)u, 4 2(1 *)E(u_k )

% PR W
-kozsn(uo,ko)cn(uo,ko)dn(uo,kn) %o
3k b °
= K ~E(Kg5k,) = (242K
koz ‘ Bkoh
£ 200 £ B0 k) (8.43)

Using the results of equations B,3%, Bull, and B.43, equation
B.1l5 can be expressed as follows:

__2.__D_ - 25 ;‘ 2k0 F -’-‘AXOG, ‘ (Boll-lt>
k 12 N2
o ko(ko') (ko')

where D, E, and F are given by equations B.19, B.20, and B.21

respectively, and G is given by the following expression:

G = 1 {Ko [ae, - 1 4 (0,102 43 (1))
ko(k,")?3
# 3E(K k) k2 -1 4 r(kof')z]}. (B.L5)
If the nonlinear relationshib is
£(e) = e £ ae3, (Bo46)
then. from equation 4.7, we have/
x %%, f axiB, (B.47)

Using these relations and the exmessions given by equa~
tions B.19, B.20, and B.21, the following expression for axiz can

be obtained from equation B.LL:
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<
(o] =
‘ uo~n(u ) ]cxﬂub,ko)dn(uo,ko)sn(ui,ki)duo

v ! 2
Ly

5

L

4

2
2 2 Oo Sn(uo’ko)cn (uo,ko)sn(ui,ki)duo -G
(“ ")

14 (./;8)

X )
(ko‘)2

rlm

A2 §K° sn(uo,ko)cnz(uo,ko)sns(ui,ki) du,
(k )
where G is given by equation B..L5, and the relationship between
u, and uy is given by equation L.8.

Similar calculations may be performed for the other com-
binations of input and output functions. The resulting equations
are given in table B.1l, pages 71 and T2.

Tt was not possible to reduce equation B.48 further, and
thus the integrals in this expression were evaluated by numerical
integration.

The elliptic functions were calculated using Landen's
scale of increasing amplit‘udesoﬁ

A1l numerical calculations were done on a Bendix G~15D
digital computer,

A plot of equation B.48 (and the equation for an input
xicn(uiuKi,ki) and an output xocn(uo—Ko,ko) ;s given in figure

Le2,

i 4 See Appendix C



EQUATIONS FOR THE CALCUIATION OF THE ELLIPTIC

TABLE B.1
SCRIBING FUNCTION

Input

Output.

Bouations for axi2

xisn(ui,ki)

xosn(uo,ko)

. =
2 foo [uo-E(uo)]cn(uo,ko)dn(uo,ko)sn(uiki)du
] §
0 (kq )2 |
5 .
2k Ko sn(uo,ko)cn (uo,ko)sn(ui,ki)duo -G

K . 3 SRRy ﬁ.“g
-2 [ us-E(u ) F enlu,k )dn(u ,k Jsn (ug ks dau, |
< £o¥ O ( kol )2

) I{ ; A

A 2
Lg.:)%/o

2 3
o sn(uo?ko)cn (uo,ko)sn (ui’ki)duo

xicn(ui

"Ki,ki)

xosn(uo,ko)

(% [ “(u)} en(u,k_Yan(ug &, en(u, -k, ki )du,)
oo [T

2 ) -
sn(u ,ko)cn (uo,ﬁo)cn(ui-Ki,ki)duO-G

£ o2k, j{Ko o
&g«‘;ﬁz ° _

-3 X
o - e ¢ K a0 -Ks ks
2e!> u E(u')%g n(uo,lo)dn(uo, O)cn (24 Kl,kl)duo
(k1)

Ko . , 3
£ 2% ZJ( sn(uo,ko)cn (uo,ﬁo)cn (ui"Ki’ki)duo

&@f ")

-




TABLE B.1 (CONTINUED)

'EQUATIONS FOR THE CAICULATION OF THE ELLIPTIC DESCRIBING FUNCTION

Input Output Equations for a.xiz
Q__/Ko uo~E(uO) sn(u K,k )dn(u K sk )sn(u % ,c:j\
k ?T'T~2
% -2k Ko en{u -K L,k )snz(u K L,k Jsn(us,k.)du A G %
1,
L\O
» 5 Em” _ o
xisn(ui,:ci) xocn(uo-Ko,ko) ax,© =

K
CC:-% _2____[ o uo—E(uo) sn(uo-—h ,k )dn(u Kok )snB(v], l,du
kO o} (koiyz

- 2ko Juo cn(u ...I\ k )snz(u '—uo,k )Sn (ul)kl)du

ot
Y

T,
ﬁm K Fu ~E(u )23 sn(uo-Ko,ko)dn(uo—-Ko,ko)cn(u‘i—-Ki,ki)duo

- -

A
.
o
Q
~
o
-

T 2 7, 1
E2ko ) o cn(uo-—L{O,ko)sn (uO—L{O,zco)cn(ui~I{i,ki)duo,l G
T T)<f0
i; A o
2 .

x]_c:n(ul 5ok ) cn(u —I\o, k) axi

%
_G / E —-m(u ) sn(uo—Ko,ko)dn(uo-Ko,ko)CnB(ui— Ki,ki}iuC

‘t\‘ '
T
<--21{ {[‘{O Cn(uo».l( k \qn (u K kg )cn (“ ~K, 5k ks )du,




APPENDIX C
NUMERICAL CALCULATION OF ELLIPTIC
FUNCTIONS USING LANDEN'S SCALE

OF INCREASING AMPLITUDES¥

The numerical values of elliptic functions are most
easily calculated by using a methed of successive transfor-
mations which reduce the elliptic integral to an elementary
integfal. The transformation was first discovered in a geo-
metrical form by Landen in 1775, and since that time many
‘possible variations of the method have been developed. Only
the method based on Landen's scale of increasing amplitudes,
which is the most useful method for the calculations of this

thesis, is developed in this section.

& Most of the material in this section was obtained from
‘Hancock (15,pp 73-82) and King (16). However in certain
places it was found desirable to expand upon the develop-
ment glven in these books,
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C.1 INTEGRAL TRANSFORMATIONS

For convenlence we introduce the following notation:

(c.1)

F(a,b,?) f
\/a cos2¢ A b251n~¢

E(a,b,d) f \/zcos2¢ 4 b%sin?p 4g . (8.2)
In order to clarify the relationship between equations
C.l and C.2 and the elliptic integrals,it is convenient to

write

k2 = 14249, (@)
k'= p (C.4)
a ,

in which case we have:

\/ a”cos 2¢ pA b5 in2¢ = 2 /l-kzsin%', ’ (C.5)

The functions C.1 and C.2 are consequently F\k,ﬁ)) and

aB(k,8), where F(k,¥) and E(k,f) are the usual elllptlc integrals (17,p.43).

l Q\\\/O /

Figure C.l Geometrical figure for the numerical calculation of

elliptic functions
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Referring to Figure C.1, let P be 2 point on a circle
with centre Ojand let Q be any peint on the diameter AB. Fur-
thery,let us write

QA = a s B = b,
L2 = 6 0P = 28 (c.6)
then obviously

e = g, (c.7)

Now, let us define the following functions:

ay = %(aflb):
b = \fab,
Cl = %(a—b)o (008)-

From these relationships and Eigure C.l, we get
OA = OB = OP = ay,
0Q & a)-b = (a~b) = cqe ‘ (€.9)
Considering triangles QPR and OPR, and using the rela-
. tionships of C.6, C.7 and C.9, we get
PR = QP sinf; = 2, sin 20, (c.10)
QR = QP cos By Zcq A aq cos 20. ' (C.11)
If we square equations C,10 and C,1l1l, and add the result-
ing equations, we obtain the following:
(QP)2 S alz sin? 20 f 012 A a12 cos? 20 4 2cl a) cos 20,
= cl2 # 2, ap cos 20 4 alz, |
3(2202) (cos?pt sin'B) 4 3(a%-62)(cos*P-sin’p),

82cos?p £ b2sin’Pa C(C.12)

1

]
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Substituting this result into equations C.10 and C.1l
gives the following equations:

sin §. = a15in20

JaZcos?p £ bsin g , (¢.13)

cos fy = gafa, cos2f :
Jézcoszﬁ'% b2sin<P . . (L)

Multiplying equations C.13 and C.14 by by and ay respec-
tively, squaring the resulting equations, and then adding the
squared equations, gives, after considerable manipulation,

the following eguation:

2 2 .. 2. - 2 \2
a12 cos” Py £ by sin? gy = a]_2 Qicoé2¢ 4 bsin ¢) . (C.15)
‘ al cosz¢ A bzsinzﬂ

Applying the sine law to triangle NOP in Figure C.l gives

sin (2f-p1) = c15in(180-20) | (C.16)
Q)

After substituting ecquations C.8 and C.12 into equation
C.léywe obtain

sin (2¢-¢l) = 1(a-b)sin2® .
Jazcos2ﬂ / b2sin“g (C.17)

Substituting equation C.13 into equation C.16 gives the
following alternative form:
sin(2¢-¢l) =0y sin fy. ) (C.18)
&

From the geometry of triangle QPS in Figure C.1, we obtain

PS = ¢p cosb2¢ Aoays (c.19)
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Substituting equation C.8 into couation C.19, and per-
forming suitable menipulations, wec obtain
PS = a cos2p £bsing. (C.20)

From triangle QPS, and equations C.12 and C.20, we have

Cos(2§.73 - Ql) = ‘E‘.S' = acos%ﬁ A bsinzﬂ. (C.21)
PR \Jamcos P £ besin“f

Substituting equation C,15 into C,21 gives the following

result:

cos(20 - ¢1)= 1 alzcos2¢l A blzsinzﬂl (C.22)
al

PIE

V FigurelC.Z; Geometrical form of landen's transformation

In figure C.2 a point P! is chosen on the circle an
incremental distance from P. If the small angle between PP,
and the tangent to the circle at P is £, and if the incremental

change in the angles § and @, is denoted by A and A0,
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respectively, then the angles shown in Figure C.2 follow directly
from the geometry of the figure.

Applying the sine law to triangle PIPQ, we have

sinAfy = sin PP/Q,
Pp/ PQ
sin Af, = sin(90 £ 2~ ~ APy £ g),
PP? PQ
= COS (2¢-—¢l- At E)a
PQ (C.23)

If we let P’ approach P, then in the limit we have the
following relationships:

PP = 22, 9,

sin A)’D]_ = d;Zﬁl,

2 - BB A€ =20 -8y,
and equation C.23 becomes

dffy = cos(28 -~ B1)a | ; (C.24)
2a1dg PQ

After substituting equations C.12 and C.22 into equation
C.2L, and performing suitable manipulations, we have

280 = apy

(C.25)
Va<cos?p £ b*sin“g Va1<cosPy A b1singy :

Integrating, this expression becomes
F(g,b,8) 2F(a,by,8:). | (C.26)
Applying elementary trigonometric‘relationships to equam
tion C.18 gives

sin 20 cosfly ~ cos 2 sinfy = ¢sin B1e (C.27)
. 2
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Multiplying equation C.27 by sin Ql, and using elementary
trigonometric identities, gives

cos 20 = ~c sin2¢l # cos fy (sin Py sin 20 £ cos Py cos 2%). (C.28)
a .

Replacing sin ¢l and cos ¢l in the above equation by the
relationships given in equations C.13 and C.l4, and again using

trigonometric relations, we get

cos 2f = ~cy sin ﬁl # cos By gal%clcos 20 3° (C.29)
ay acos“PLosin<g '

By using trigonometric identities, and substituting
equations C.8 and C.15 into equation C.29, we obtain the follow-

ing result:

cos 20 = -c1 sin ¢1 4 cos ¢l\!al cos? @1 A b12 sin? ¢l (C.30)
aﬂ

Obviously equation €.,30 may be written in either of the

following forms:

2 .2
2 cos? =1 - c1 sin® ¢l A cosﬂl aq Zcos? bl sin ¢l, (C.31)

!
2 sin® g =1 - ¢y sin ¢l - COS 1‘/al cos ¢ A b sin Q (C.32)
al l

2

Multiplying equations C.31 and C.32 by a“ and b2 respece

tively, and adding the resulting equations, gives
2 (a2 cos™ ¢ A b sin @) :,(a2 £ 6°) |
2.2 . 2 2 .2y 2 2 2 .2
~(a"~b )El sin ¢l¢(a ~b“)cosfy \/;l cos ¢l%bl sin ¢l. (C.33)
al ‘ al

Equation C,.33 can also be written in the form

2(a2c052¢%b2sin2¢) = (a2 bz)(coszﬁﬁsinzﬁ)
n(az—bz)cl sin2¢l%(a2-b )cos¢ \/;; cos ¢lrb s1n ¢ (Co3h)
ay
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Using equations C.8 and trigonometric identities,we
can reduce equation C.34 to the following form:
2 (azcoszﬁﬁ,lbzsinzﬂ) 4 2b 2
2 2 2.2 . 2 2 2 .2
= }"(81 cos ¢l 4 by sin ¢1), pA hcl cos;bl\/;l cos ¢17£ bl sin ¢1° (C.35)

Multiplyine this expression by the differential relation

given in equation C.25, and using equations C.&; we have
2.2 2 . ,

Jazcoszﬂ A b7sinP ap - alzc'os 6. A b 231n2¢ ag

by 1 11

= cjcosfydf; - abdg ' . (C.36)
\/a‘cos‘ifo Z b5in-P

By using equation C.25 and the relations of equations C.8,

we can obtain the following identity:

a d,fZ) - aq d¢ :
\/azcoszfé A b2sin2¢' J aldcos 52)1 # blésinzﬂl
= 02 1an)?] ap
Jazcoszﬁ;lbzsin2¢
= opdp - abdp . (¢.37)

2J;2c052¢' %bzsinzﬁ \jazcoszﬂ FA b2sinp
Subtracting equation C.37 from equation C.36 gives

2 2 2eind A2 a
{Jav cos“ @ £ b sin“P \E[cos ¢ ; b‘s:m‘d;é-l 1
[\]al cos ¢l # by Sl”l ¢ - \J'a?cos‘{é P SlnT-I

Le cos¢ld¢l -1 <%0 S " (c.38)
2Ja12cos Py A l sin“@y

Integrating, this expression becomes

d¢l

E(a:bsﬁ)“agF(a:b:¢)=E(al;bl)¢l)"al2 F(alabl,¢l)%clsin¢l
"%CZF(a:b’Qs)e : . - (C 039)
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C.2 SUCCESSIVE TRANSFORMAT TONS

By the same method as al’bl’cl were derived from a,b,
we may derive 355 b2,02 from al’bl’ etc., and thus form the
following array of numbers:

- (1 '
al - (2)(8‘)[b) 3 bl

as - (%)(al%bl)’ b2 =,/albi, C2 = %(al-bl)

—~ o e e

1
)
?’
v
Q
*.J
L
Nl
~~
o’
~’

From the following relations:

2
=Dy = a; b)“,

ap-by = alébl - foyby = a3-by ..E/"al - \1’1;:1 Jo1s
2 L+ .

we have

a2—b2 4 al-bl ®
2

In general, this becomes

a,~bp&any - by 3
2

and thus, we have

len.}p (an-bn) = 0,
This limit is approached very rapidly, even when a and ® are
of very different magnitudes,

When a, = by, then equations C.1 and C.2 become
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Fa b ,0)<g, | (C.51)
&n
E(an’bn’¢>=an¢° (C°Z*'2)

Setting a =1, b = kﬁ, and applying equation C.26 success~
ively for increasing values of n, we have
P(l,8) (3)F(ey,by,0)) = (1)%F(ay,B,,0,)

S - - - (%)nF(an’bn’¢n>= gn s (C.43)
2nan

where the f's arc calculated from the formula

sin ¢l = aysin 20 .
b
J;2cosz¢%b2sin2¢

i = in 2
sin §, 39; n 2 > y = = (Cokh)
oo o507,

If we begin with @ = /2, we have

- - - n,
e Pp = 2W, By = 4T, - - -0, —1_;:‘(2) 3 (Coks)
and thus obtain
F(}:{;_ﬁ:) s K= gn?ro (Col-ké)
2 2

Starting with equation C.39, and then reapplying the equa-
tion successively to the E(an’bn9¢n>“an2 F(ay,b,,8,) terms, which
océur on the right hend side of the equation, we have (note that
as h increases E(an,bn,ﬂn)nanz F(a,,b,,P,) approaches zero))
E(a,b,B) ~a F(a,b,f) = oqsindy £ c,sinfy A -~ Ao sind A - - -

~(1)c%F(a,b,8) - cle(al,bl,¢l) ~ 20,2 F(ay,b,,8,)

el 1
-2l Fla b ,8) - = = - (C.47)
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where the @'s are calenlated from equation C.44.
Setting a = 1, b = k', and applyinz equation C.26, equa-

tion C.L7 becomes

E(k,§)-F(k,8) = cysinfy £ op sinfly £ - ~ = £ c sinf / - - -
. 2 .
= - = Hlog 20 Phe ) h - - 2% 4 - JF(B,K). (C.18)

If we begin with § =T , and apply equation C..5, we get
2 v

&

= 2 2 2
K-.EKQI;,Q) = (e, ,zzol ’Q*Cz AN ;zncn/, e (C.49)

By applying relations C.43, C.46, C.L8, and C.L9 we can
calculate the first elliptic integral, the first complete elliptic
integral, the second elliptic integral, and the second complete

elliptic integral,

¢

C,3 CAICULATION OF THE ANGIL”AND THE JACOBIAN ELLIPTIC FUNCTIONS

SN(uk), DN(u,k) IN TEZRMS OF THE ARGUMENTu AND THE MODULUS k. -

If the array of numbers C.40 is celculated for aj =1,
b = k', to such a value of n that C, is less than the allowable
error in the calculated values, then Qn for a certainuand k can
be found from equation C..L3, that is,

fn = 2 u. (C.50)

From equation U.18 we can obtain a recurrence formula

sin (2¢n__l - Qn) = ¢, sin Py, ‘ (C.51)
an
which enables us to calculatc successively the angles f, 1,0, o5
S B

Then directly from the definition of the Jacobian elliptic

functions, we have



o

._CL*_

sn(u,k) = sin ¢,

cnfu,k) = cos ¢,

#

an(u,k) =/1-k%sin2g. (c.52) .



EXAMPLES OF THr APPLICATION OF THE ELLIFTIC DESCRIBING FUNCTION

The steady state response for several systems was calculated using
the elliptic describirg function, and the results obtained were compared
with the results obtained from en analog computer study. an approximation
of system oscillations was also obtained using the conventional describ-
ing function method.

4s an example of the application of the elliptic describing function,

consider the nonlinear feedback system of figure D.1, where the nonlinear

/’Gi) + elt) N (2D é;(é) c(?)

re D.l Nonlinear fTeedback system

element N is an ideal relay with an output of plus or minus one, and the

linear elements have a transfer funciion

(1)
- . -/

The Nygquist plot of this transfer function is shown in Figure D.2.
This Fycuist plot crosses the negative real axis at two points:

(1) The point 2, corresponds to an unstable limit cycle.

(2) The point a, corresponds to a stable limit cycle with a frequency
of 1.58 radians per second.

We will be concerned only with the stable limit cycle.
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CJ:'—/;D”&’ ‘CJ 7L .
e — ay
/ e
2 o = £ 75

Sca /e :
/S ens Vs

Figure D.2 Xyquist plot
gux 5

From the Nyouist plot, we find

405 cosld(38) - G = 316 cos 2 = .067. (p.2)
Al) 470

A "patio" line for the ratio 067 is sketched on Figure 4.5
(see Figure D.3).

Since the gzin of the linear elements to the first hermonic
is 4.70, the ''gain" of the nonlinear elements to the first harmonic
will be approximately 1/4.70 or .213. &s a crude approximation,
assume the "gain" of the nonlinear device to be the ratio of the
amplitude of the output to the amplitude of the input. Using this
approximation, end knowing the amplitude of the output from the
relay to be onre, the "gain" of the nonlineer element will be &pproex-
imately .213 when fhe amplitude of the input is .470.

To ensure that the amplitude of the normalized solution is
less than one (but not too much less), let us normalize the system
output according to the relationship

¢! = ¢/10. - | | (2.3)
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Using this relationship, the normalized ncnlinear relztion-

ship mey be approximated by the following polynomials:

legendre epproximation -~ m' = 2.81le!' - .780(@')3], (0.4
Chebyshev approximation - n' = 2.55{%' - ¢667(e')%]. (.5
Using & normaligzing factor of ten, we have
At@@) = A(®) = .470. (.6

10
First, let us use the elliptic describing function for
the Legendre approximation of the nonlinearity.

For the values of kj,k, on the "ratio" line, the follow-
~

ing values of axi‘ are obtained from equation 4.32 (using Figure

4.7 to simplify the calculations):

2
ko ki ax;
.298399 «54 _ ~§94
.£999 <50 <3719
999 .48 563
.99 -4§ =54é

-85 .30 o351

.9 231 .25
.8 .23 .283
oD .15 .258.

2 . -
These values of axi and ky are plotted on Figure D.3 to

e
PN

obtain a line which intersects the 067 "ratio" line.

4

iﬁlf equation 4,32 were plotted for k;,k, values in the sec-
ond quadrant of Figure D.3, another intersection of the
"ratio" line would occur. However, since ax;< would be

pesitive and a is negative, the solution would have an

iraginary amplitude. Obviously this is not a physically

realizable solution.

)
)

)
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M 4
Ll

1is intersection gives us the following perameters of the
elliptic function approximation of system oscillationss

ki = .38,

axi2 = ,320.

Thus, we have
2 o
x4 =,axi =/.320 = .640.
J— .18 )

This is the amplitude of oscillations for the normalized
system. The amplitude for the unnormalized system is 6.40.

Therefore the elliptic function approximation of system osc=-

(%N

illations is

¢ = 6.40 sn(1.64%t, .38).

Similarly, the Chébyshev approximation yields the following
result:

¢ = 6.48 en(1.72%, .54).

The pertinent values for this example and two other examples
for which the elliptic describing function has been applied are

given in Table D.1.



TABLE D.1

EXAMPLES OF THE APPLICATION OF THE ELLIPTIC DESCRIBING FUNCTION METHOD

System Parameter Systen No.l System No.2 System No.3
e 2
Transfer Function G(s) 5;ss++7%)2 10 , 10
s(s + 1) s(s + l)
/77:/(—() +/ /77"/("() +/ /;7:/{-4) 7“/"‘/“' P -
Nonlinearity - L~
—— & —e &~ V| & ===
-~/ -/ -/
Analog Computer Simulationr#
Amplitude of Oscillations 6.85 6.89 6,70 ‘
Frequency of Oscillations (rps.) 1.55 6.38 6.38 .
' N
Conventional Des cribing Function Analysis '
Amplitude of Oscillations 5.98 635 6.30
Frequency of Oscillations (rps,) 1.58 6.28 6,28
Percentage Error in Amplitude 12,7 7.85 5.97
Vlllptlc Describing Function with Legcndre
Approximation of Honlinearity
Normalizing Factor 10 10 10
legendre Approximation of Normalized m! = 2,8le! 3 n!' = 2,8le’ 3 m!' = 2,51e! 3
Wonlinearity: ~ 2,91(e!) - 2.91(et) - 1.65(e")
Amplitude of Oscillations 6.40 6.97 6.86
Freouency of Oscillations (rps.) 1,58 6.28 6.28
Percentage Error in Amplitude 5.83 1.16 2.39

3¢

All systems are of the type shown in Figure D.1.

#All analog computer solutions were obtained on a Pace TR 10



TABLE D.1 (CONTINURD)

EYAMPLES OF THE APPLICATION OF THE ELLIPTIC DESCRIBING FUNCTION MKTHOD

System Parameter

System No,1

System No.2

System No.3

Ellipt’ic DeSCI“ibing I?unc-tion X‘Jith Chebyshev
Approximation of lonlineariby

Hormalizing TFactor 8 10 10
Chebyshev Approximation of Normalized m’ = 2,55e! 3 m! = 2,55e! 3 m!' = 2,51e! 3
Nonlinearity s - 1,70(e?) - 1.70(e!) - 1,65(e")
Amplitude of Oscillations 6,48 6.50 6.L7
Frequency of Oscillations (rps.) 1.58 6.28 6,28
Percentage Brror in Amplitude 5,041 5.66 344

&
#]



