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Abstract

We initiate the study of certain linear operators from a Banach algebra A
into a Banach A-bimodule X , which we call approzimately local derivations. We
show that when A4 is C*-algebra, a Banach algebra generated by idempotents, a
semisimple annihilator Banach algebra, or the group algebra of a SIN or 5, totally
disconnected group, bounded approximately local derivations from A into X are
derivations. We also prove that the same result holds if p € (1, o) and A is the
Figa~-Talamanca-Her, algebra 4,(Q) of a locally compact group G whose principle
component is abelian. Later on, we extend this idea to the space of n-cocycles
and we show that, for some of the above algebras, bounded approximately local
n-cocycles from A™ into X are n-cocycles. Finally, we consider the quantization
of these results and apply them to the Figd-Talamanca-Herz algebra A,(G) of a
locally compact group G for p € (1,00). We show that A,(G), equipped with an
appropriate operator space structure, is operator weakly amenable. We also show
that completely bounded approximately local n-cocycles from A(G)™ into any

quantized A,(G)-bimodule are n-cocycles.
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Introduction

The motivation for this thesis was sparked by the discovery that local deriva-
tions on C*-algebras are derivations. Let A be a Banach algebra, and let X be
a Banach A-bimodule. An operator D: A — X is a local derivation if for each
a € A, there is a derivation D,: A — X such that D(a) = D,(a). This concept was
introduced by R. V. Kadison in [33] and was motivated by his and J. R. Ringrose’s
earlier investigation of Hochschild cohomology of various operator algebras. These
maps arise naturally when one seeks conditions to ensure that a given map is a
derivation. He showed that if A is a von Neumann algebra and X is a dual Ba-
nach A-bimodule, bounded local derivations from A into X are derivations. In
particular, bounded local derivations from a von Neumann algebra into itself are
derivations. V. Shulman extended this result to bounded local derivations from
a C*-algebra into itself and showed that they are derivations [50]. Finally, B. E.
Johnson extended these results and showed that if A is a C*-algebra, then local
derivations from A into any Banach A-bimodule are derivations [28].

Local derivations have also appeared in other contexts. They arose from the
study of “algebraic reflexivity” of the linear space of derivations. In [35], David
R. Larson studied reflexivity and algebraic reflexivity of certain subspaces of oper-
ators and asked which algebras have an algebraically reflexive derivation space, or
equivalently, for which algebras every local derivation on the algebra is a deriva-

tion. He, together with A. Sourour, showed that the answer to that question is

1



INTRODUCTION 2
affirmative for B(X), where X is a Banach space [36]. R. L. Crist also proved
that every bounded local derivation on the direct limit of finite dimensional CSI,
algebras via *-extendable embeddings (e.g. a triangular AF algebra) is a derivation
[9]. One can also ask for which algebras the linear space of bounded derivations is
reflexive.

In this thesis we address these questions for various classes of Banach algebras
including C*-algebras, and group algebras and Figa-Talamanca-Herz algebras of
locally compact groups.

In Chapter 1 we give the necessary background material from theories of Banach
algebras, Harmonic analysis, C*-algebras and operator spaces.

In Chapter 2 we study a certain class of commutative semisimple Banach al-
gebras. We call them hyper-Tauberian algebras. We first show that the class of
hyper-Tauberian algebras forms a proper subclass of weakly amenable Tauberian
algebras. Then we investigate the basic and hereditary properties of them in
terms of their ideals, tensor products and algebra homomorphisms. In particular,
we show that there are some close relationships between hyper-Tauberian algebras
and sets of (local) synthesis. Later on, we exploit Johnson’s approach and investi-
gate bounded local derivations from hyper-Tauberian algebras and we show that,
in most of the cases, they are derivations. On the other hand, we also present other
classes of commutative semisimple Banach algebras that are not hyper-Tauberian
and show that, even in the most natural cases, they have bounded local derivations
which are not derivations.

In Chapter 3 we introduce the concept of an approzimately local derivation.
An operator D from A into X is an approximately local derivation if for each

a € A, there is a sequence of derivations {Den} from A into X such that D(a) =



INTRODUCTION 3
1}1_)1{)1() Dqn(a). Our goal here is to see whether (mainly bounded) approximately
local derivations are derivations. The advantage of considering these maps rather
than local derivations is that they are more general and they allow us to study
both reflexivity and algebraic reflexivity at the same time. On the other hand, in
the previous studies of local derivations, it has always been helpful first to study
the local multipliers (see [29]). However, as it is shown in Sections 3.1 and 3.2, we
find it more useful to consider approximately local multipliers. For instance, using
this idea helps us to extend Johnson’s result and show that approximately local
derivations from C*-algebras are derivations. We also show that bounded approxi-
mately local derivations are derivations if they are defined from a hyper-Tauberian
algebra, a Banach algebra generated by idempotents, a semisimple annihilator Ba-
nach algebra, the group algebra of a SIN or a totally disconnected group, or the
Figa-Talamanca-Herz algebra Ap(QG) of a locally compact group G for p € (1, 00)
when the principle component of G is abelian. Finally, for a non-discrete group G,
we provide an example of an essential Banach M (G)-bimodule X and a bounded
local derivation T from M(G) into X which is not a derivation.

In [33], Kadison has raised the question of whether the results of local deriva-
tions from von Neumann algebras can be extended to the local higher cohomology,
for example, local 2-cocycles. Chapter 4 is devoted to developing a theory for which
we can investigate this question. We first generalize the definition of the reflexivity
to the linear subspaces of bounded n-linear maps from Banach spaces and consider
the question of reflexivity for the space of bounded n-cocycles from A™ into X.
This naturally leads us to the concept of approzimately local n-cocycles and the
question of whether they are n-cocycles. We show that we can reduce the problem

to the characterization of certain operators from A into X which we call hyperlocal



INTRODUCTION 4
operators. Then we use this idea, together with the properties of hyper-Tauberian
algebras, to show that bounded approximately local n-cocycles from A into X
are n-cocycles when A is a hyper-Tauberian algebra, a, C*-algebra, the group alge-
bra of a SIN or a totally disconnected group, or the Figd-Talamanca-Herg algebra
A,(G) of a locally compact group G for p € (1, 00) when the principle component
of G is abelian.

In Chapter 5 we consider the quantization of the results we obtained in the
previous chapters. We first look at quantized hyper-Tauberian algebras and deduce
the quantized version of the results we obtained in Chapters 2, 3 and 4. Then we
apply them to the Figa-Talamanca-Herz algebra A4,(G) of a locally compact group
G forp € (1,00). Since the Fourier algebra A(@) = 45(@) is the predual of the von
Neumann algebra VN (@), it has a natural operator space structure which turns
it into a “quantized” Banach algebra [19]. In [46], Ruan showed that a locally
compact group G is amenable if and only if A(G) is operator amenable. In [34],
A. Lambert, M. Neufang, and V. Runde introduced an operator space structure
on A,(G) that turns it into a quantized Banach algebra. As an application, they
extended Ruan’s result and showed that (@ is amenable if and only if Ay(G) is
operator amenable for all-and equivalently for one- p (1,00). It was asked in
the above cited paper whether other quantized cohomological properties of A(G)
can be extended to Ap(G@). One of those results, obtained by N. Spronk, states
that A(G) is operator weakly amenable [51]. We show that the answer to this
question is affirmative by proving that, for any locally compact group G, A,(G)
is a quantized hyper-Tauberian algebra. This, in particular, implies that Ap(G) is
operator weakly amenable. It also shows that completely bounded approximately

local n-cocycles from A,(@) are n-cocycles.



CHAPTER 1

Preliminaries

1.1. Algebras and Banach algebras

Throughout this thesis, we consider al] the vector spaces to be over the complex
field C. Terms and concepts of basic real and functional analysis which we have
not defined or discussed can be found in [6] and [47].

An algebra is a vector space A together with a multiplication, called an algebra
product, A x A — A4; (a,b) — ab, which is associative and respects the vector

operations:

(ab)e = a(be),a(b +c) = ab + ac,(b+cla=ba+ca (a,bce A)
(aA)b = a(Ab) = A(ab) (A€ C, q,b€ A).

We say that A is commutative if ab = bg foralla,b € A. We say that A is unital if
A has a multiplicative identity i.e. thereis an element 1 € A such that 1 = la = al

for all a € A. we define the unitization of A to be A' = A® C with multiplication:

(a, \)(b, ) = (ab + ap + bA, Au)(a,b € 4, M, 11 € C).

Thus A" is a unital algebra with unit (0,1).
A subalgebra of an algebra A is a linear subspace B of A such that ab € B for
all a,b € B. A left ideal in an algebra A is a subalgebra, I C A such that,ifac 4

and b€ I, thenabe J. Similarly, we can define a right ideal and a two-sided ideal
5



1.1. ALGEBRAS AND BANACH ALGEBRAS 6
for A. When A is commutative, there is no distinction between left, right, and
two-sided ideals, and so the word “ideal” is used without any such qualification.

A modular left ideal is a left ideal [ for which there is an element e € A4 such
that a —ae € I foralla e 4. A left ideal I is proper if 0 C I C A, and maximal
if it is proper and not contained in any other proper left ideal. Given a left ideal

I of A, the quotient of I is the two-sided ideal I : A defined by
I:A={acA|aAC T}

where aA = {ab: b€ A}. The quotient of & maximal modular left ideal is called a
primitive ideal. The radical of an algebra A, denoted by rad A, is the intersection
of all the primitive ideals of A, or equivalently, the intersection of all the maximal
modular left ideals of A [2, Proposition 24.14]. An algebra A is semisimple if
rad A = {0}.

For algebras A and B, a linear map I': A — B is an algebra homomorphism, if
T'(ab) = T(a)T(b) for each a,b € A. If T is a bijection, then T is an isomorphism.

Let X be a vector space, let A be an algebra, and suppose that we have a

bilinear map A x X — X i (@, ) — az such that
(ab)z = a(bz) (a,b€ A,z € X).

Then we say that X is a left A-module. We say that ¥ is a left A-submodule of
X if Y is a subspace of X so that ay €Y foreach a € 4 and y €Y. Similarly, we
have the notions of right A-module and right A-submodule. We say that X is an
A-bimodule if X is both a left and a right A-module and

(az)b = a(zb) (a,b€ A,z € X).

Let X and Y be vector spaces, and let L(X,Y") be the linear space of (linear)
operators from X into Y. In the case that X = Y, we write L(X) instead of
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L(X,X) for simplicity. Now let A be an algebra, and let X and Y be left A-
modules. A map T € L(X, Y) is a left A-module morphism if T'(az) = aT'(z) for
alla € A and z € X. In the case that X = A, we say that T is a right multiplier.
For right A-modules X and Y, right A-module morphisms and left multipliers are
defined smularly For left [right] A-modules X and Y, let 4L(X,Y) [La(X, Y)] be
the linear space of left [right] A-module morphisms from X into Y.
A Banach algebra is an algebra A with & norm || - || such that (A4, I-1)is a

Banach space and
ladll < llalllie]l  (a,b € A4).

The definitions of homomorphism, module ete. all follow over, where we insist on
bounded maps and Banach spaces, in the appropriate places. For Banach spaces
X and Y, let B(X, Y) be the linear space of bounded (linear) operators from X

into Y. When A is a Banach algebra, we give A the norm
1@ M = llall + 1A (ae4,xe0),

in order to make it a unital Banach algebra. A Banach space X is a Banach left

A-module 1f X is a left A-module and, for some K ¢ N,
laz|l < Kllallllzl| (a € 4,z € X).

Similarly, we get the notion of Banach right A-module and a Banach A-bimodule.
Let X be a Banach left A-module. Then X*, the dual of X , becomes a Banach
right A-module by setting

(fa,z) = (f, az) (acAzeX, feX).

Similarly, if X is a Banach right A-module, then X* becomes a Banach left A-

module.
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A net {a,} in a Banach algebra A is a left approximate identity if aa, — a in

norm, for each a € A. Similarly, we have the notions of right approximate identity

and approximate identity. If {aq} is norm bounded, then we have a bounded
(left /right) approximate identity.

Let A be a complex commutative Banach algebra. A multiplicative linear

functional on A is a non-zero linear functional ¢ on A such that

¢(zy) = ¢(z)¢(y) (z,y € 4),

Le. a non-zero algebra homomorphism from A into C. It is well-known that every
multiplicative linear functional ¢ on A is bounded and llo|] <1 [2, Proposition
16.3]. Moreover, the maximal modular ideals of A are precisely the kernels of the
multiplicative linear functionals on 4 [2, Theorem 16.5]. The set of all multiplica-
tive linear functionals on A is called the carrier space of A; it is denoted by @ 4.
Hence @4 is a subset of the dual space A*. The A-topology on ® 4 is the relative
topology on ®,4 induced by the weak* topology on A*. Thus if ®4 # §, then a

basic of neighborhood of ¢ € ®4 is of the form V(d;21,...,2n;€) where

V(i1 Zni€) = { € 04 | [Y(zx) — d(zi)| <€ (k=1,..,n)},
for arbitrary positive integers n, elements Ziy,...,Tn € A, and € > 0. The carrier
space for A is the set ®4 with the A-topology. It can be shown that the carrier
space @4 is a locally compact Hausdorff space. Moreover, @4 is compact if A is
unital [2, Proposition 17.2].

Given a topological space Q, we denote by C(£) the algebra of all continuous
complex valued functions f on Q and Cy(€2) the uniform algebra of all continuous
complex valued functions f on € such that it vanishes at infinity i.e. for every
€ > 0, there is a compact set K such that |f(z)| < ¢ whenever ¢ K. Note that
if @ is compact, Cy(Q2) = C(Q).
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Let A be a commutative Banach algebra with the carrier space 4 # (. For

each a € A, let a”* be the function on &, defined by

a(¢) = ¢(a) (¢ € Da).

It is clear from the definition of the A-topology that a” is a continuous complex
valued function on ®4 which vanishes at infinity i.e. o € Co(®4). The Gelfand
representation of A is the mapping a — a” of A into Co(®4). It can be shown
that the Gelfand representation is a bounded algebra homomorphism from A into
Co(®4). Moreover, it is a monomorphism if and only if A is semisimple.

We say that A is regular if for each closed subset F' of ® 4 and each ¢y € 4\ F,

there exists a € A with

a(¢) =0 ($€F), a’(¢o) #0.

Given Banach spaces X and Y, a norm || - || on X ® Y is said to be a a cross-
norm if | 2@y ||=z || |y | forallz € X and y € Y. Given a cross-norm el

and a linear combination

u=ixi®yi€X®Y,

i=1

we have

[l < Z il s ]l -
Thus, if we define )

P lly=mf Y la |l i flv =z 0y,
then it follows that || u ||,<|| u ||,- It is a simple matter to verify that || - ||, is in
fact a cross-norm, which is called the projective tensor product norm én XQ®Y.
We let the Banach space projective tensor product of X and Y be the completion
of (X®Y,| - |l,); we denote it by X®Y. If X, Y and Z are normed spaces and
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¢: X XY — Z is a bilinear mapping, then we define

V¢ 1= sup{llé(z, )l [ 2], llyl] < 1}.

We let B(X x Y, Z) denote the normed space of all such mapping ¢ with | ¢ ]< oo,

and the norm || - ||. The linear isomorphisms determine the isometries

B(X®Y,Z) 2 B(X x Y, Z) B(X,B(Y, 2)).

Let A be a Banach algebra, and let X and V be Banach left[right] A-modules.
Let 4B(X,Y) [Ba(X,Y)] be the linear spaces of bounded left [right] A-module
morphisms from X into Y, respectively. In the case that A has a bounded approx-
imate identity, it is known that right [left] multipliers from A into ¥ are bounded.
50 4L(A,Y) =4 B(4,Y) [La(A,Y) = B4(4,Y)].

Let X be a Banach A-bimodule. An operator D € L(A, X) is a derivation if for
alla,b € A, D(ab) = aD(b) + D(a)b. For each z € X, the operator ad, € B(4, X)
defined by ad;(a) = az — za is a bounded derivation, called an inner derivation.
Let Z1(4, X), N(4,X) and 21(4, X) be the linear spaces of derivations, inner
derivations and bounded derivations from A into X , Tespectively. A is amenable
if for every Banach A-bimodule X , every bounded derivation from A into X* is
inner. A is weakly amenable if every bounded derivation from A into A* is inner. If
A is commutative, then zero is the only inner derivation from A into A*, Hence A
is weakly amenable if every bounded derivation from A into A* is zero. A Banach
A-bimodule X is called symmetric if foralla € Aandz € X » 6T = za. By [10,
Theorem 2.8.63], A is weakly amenable if and only if every bounded derivation

from A into any symmetric Banach A-module is zero.
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ForneNand T e L™(A, X), define
0"T : (a1,...,8041) +> a1T(ay,...,an11)
n
+ Z(—l)jT(al, o3 05o1, 850541, 0 0y Grp1)
=1
+ (=1)™'T(ay,-..,a0)an.
It is clear that 6™ is a linear map from L"(A, X) into L™ A, X); these maps are
the connecting maps. The elements of ker 57 are the n-cocycles; we denote this
linear space by Z™(4, X). If we replace L™(A4, X) with B™(A,X) in the above,
we will have the ‘Banach’ version of the connecting maps; we denote them with
the same symbols 6. In this case 6™ is a bounded linear map from B*(A, X) into
B™t1(A, X); these maps are the bounded connecting maps. The elements of ker §7
are the bounded n-cocycles; we denote this linear space by Z™(A, X). It is easy to
check that Z*(4, X) and Z'(4, X) coincide with our previous definition of these
spaces.
Let A be a Banach algebra, and let X be a Banach A-bimodule. By [10, Section

2.8], for n € N, the Banach space B"™(A, X) turns into a Banach A-bimodule by

the actions defined by:

(@*T)(a1,...,a,) = aT(ay,... ) Qn);

(Txa)(ay,...,a,) = T(aay,...,a,)
+ Z(—I)JT(G7 a1, .5 050511, . .. 70177-)
=1
+ (-1)"*"'T(a,q,,..., On-1)0n.

In particular, when n = 1, B(A, X)) becomes a Banach A-bimodule with respect

to the products

(a*T)(5) = aT(b) , (T %a)(b) = T(ab) — T(a)b.
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Let An: B" (A, X) — B"(4, B(A, X)) be the identification given by
(ATT-(T)(al) veey an))(an-l—l) = T(a‘17 veey an+1)‘
It is straightforward to check that A, is an A-bimodule isometric isomorphism. If
we denote the connecting maps for the complex B™(A, (B(A, X),*)) by A", then

we can easily show that

Any108™ = Ao A,

1.2. C*-algebras and operator spaces

DEFINITION 1.1. Let A be an algebra. A map x: A — A, written by a — a*,
is an involution when we have:
1. (ea+b)* =a@a* + b* for o € C and a,b € A4
2. (ab)* = b*a* for a,b € A;

3. (a*)*=aforac A.

When A4 is a Banach algebra with an involution and lla*a]| = ||a|[? for every
a € A, we say that 4 is a C*-algebra. For example, let Q be a locally compact
space. Then Cy(Q), with the uniform norm, is a commutative C*-algebra with
respect to the involution f ~ f, where f t) = Fit). Conversely, by [10, Theorem
3.2.6], every commutative C*-algebra A is isometrically #-isomorphic with Co(D4).
More generally, let H be a Hilbert space. For T € B(H), let T* € B(H) be the
adjoint of T. We can check that T' +— T™ is an involution, and that || T*T" ||=|| T%,
so that B(H) is a C*-algebra. In fact, let 4 be a closed subalgebra of B(H) such
that A= A*={T*: T ¢ A}. Then Aisa C*-algebra. Moreover, by [10, Theorem
3.2.29], every C*-algebra arises in this way. The weak operator topology on B (H)
is the topology that has a basis of neighborhoods of T' ¢ B(H) given by sets of

the form
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{SGB(H) l ’(T(mk) —S(xk) ) yk)l <e, (k: 17"'777')}:

for arbitrary positive integers n, elements Ty Ty Y1, Y € Hyand e > 0. A
von Neumann algebra, M is a C*-algebra that is closed under the weak operator
topology.

Let A be a C*-algebra which is not unital. We can see that, in general, our
unitization, 4! = A4 g C, is not a C*-algebra (as the norm dose not satisfy the
correct condition). However, there is an equivalent norm on A that turns it into
a C*-algebra (see [10, Definition 3.2.1]).

Let V' be a linear space. For m,n € N, we let Mn(V) denote the linear space
of m by n matrices whose entries are in V, and we write Mn(V) = M, (V). If
V =C, then we let My, = M. »(C) and M, = M, .(C).

We define a matriz norm [l 1] on a linear space V' to be an assignment of a
norm || - ||, on the matrix space M, (V) for each n € N. An abstract operator space
is a linear space V' together with a matrix norm || - || for which
ML ||y @ wlm4n = max{|[v]}m, |Jw]],} and
M2 [lavBlln < {lelll[v]l.)|81],
for all v € M, (V),w e M,(V) and « € M, B € My, . We let M, (V) denote
M, (V) with the given norm 1= 1] e (we usually omit the given subscript
n). We say that a matrix norm is an operator space matriz norm if it satisfies the
equations M1 and M2 of above.

Let V' and W be abstract operator spaces and ¢: V — W g linear map. For
each n € N, ¢ induces a linear map ¢, M,(V) — M, (W) defined by

In([vis]) = [p(v;y)]
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for [v;] € M,(V). The completely bounded norm of @ is

16lle> = sup{lign]| | n € Ny,

Then ¢ is completely bounded (resp. completely contractive, completely isometric)
if @]l < oo (resp. 9l < 1,each ¢, is an isometry).

Let H be a Hilbert space, and let B(H) be the space of all bounded linear
operators on H. For each n € N, there is & natural operator norm || - ln on the
™ X m matrix space M,(B(H)) = B(H™). This family of norms {ll - I} is the
operator matriz norm on B(H). An operator space is a linear subspace of B(H)
together with the operator matrix norms inherited from B(H ).

It is clear that Every operator space is an abstract operator space. Moreover,
by [19, Theorem 2.3.5], the converse is also true i.e. every abstract operator
space is completely isometric with an operator space. For this reason, we will not
distinguish between these two. We note that all the operator spaces considered in
this thesis are normed closed.

We let CB(V, W) denote the space of all completely bounded maps from V
into W. It is shown in [19] that there is a natural operator space structure on

CB(V, W) obtained by the identification
MA(CB(V,W)) = CB(V, M, (W),

Thus for every operator space V, its Banach dual space V* = B (V,C) =CB(v,C)
is again an operator space and is called the operator dual of V.
For operator spaces V and W, we say that an operator space matrix norm |||,

onV @W is a cross matrix norm if

v w =l v | wi,
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forall v € My(V) and w My(W). Given an element v in M,(V ® W), we define
Il lla= int{ll e il 1l w ] 8 11 w = a(v @ w)B),

where the infimum is taken over arbitrary decompositions for all v € M,(V),
w e My(W), & € My pyq, and B € Mg, With p,q € N arbitrary. It is shown in
[19] that this is an operator space cross matrix norm. We let the operator space
projective tensor product of V and W be the completion of (V @ W, || - [|A); we
denote it by V®,,W. There is a complete isometry CB(V, W*) = (V®apW)* given
by

(T(), w)=(T, vewW) @WeV,weWTe (VB W)*).
Also, if Z is an operator space, then there are natural complete isometric isomor-
phisms V&, W = W&,V and (V8 W)BpZ 2 V(W& 2) (see [19)).

Let A be a Banach algebra which is additionally an operator space. A is
called a quantized Banach algebra if the multiplication m : A@opA — A, specified
by m(a ® b) = ab, is completely bounded. In the case when m is completely
contractive, A is called a, completely contractive Banach algebrua.

Let X be a Banach A-bimodule. Then X is called a quantized A-bimodule if

X is an operator space and the A-bimodule operations
ABpX = X ; a®z s az

and

X@pA—X ; z®ar za

are completely bounded. It is easy to check that there is a natural quantized
A-bimodule structure on X*. A is operator amenable if for every quantized A-
bimodule X, every completely bounded derivation from A into X* is inner [46]. 4

is called operator weakly amenable if every completely bounded derivation from A
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into A* is inner [17]. By [17, Proposition 3.2], for A commutative, this is equivalent
to saying that every completely bounded derivation from A into any symmetric
quantized A-module is zero.

Let A be a quantized Banach algebra, and let X be a quantized A-bimodule.
Forn € N, let CB™(4, X) be the space of completely bounded n-linear maps from
A™ into X. Tt is easy to see that there is a natural operator quantization of the
connecting maps §" defined in section 1.1. In this case, * is a completely bounded
linear map from CB"(4, X) into CB"™1(A, X); these maps are the completely
bounded connecting maps. The elements of ker 6" are the completely bounded n-

cocycles; we denote this linear space by 0Z™"(A,X).

1.3. Harmonic analysis

A topological group is a group that is also a Hausdorff topological space in
which the multiplication map from G x G into G and the inversion map from G
into G, defined by

(u,v) —»uv and ws w7l

are continuous. A topological group is said to be compact, locally compact, dis-
crete, connected or totally disconnected if it has the corresponding property as a
topological space.

Let G be a locally compact group, and let Bg be the o-algebra of Borel subsets
of G. Then, by [10, Theorem 3.3.2], there is a positive, regular Borel measure \
on G such that:

(i) AM(U) > 0 for each non-empty, open subset U ;
(i) A(K) < oo for each compact subset K;
(iil) A(tE) = A(E) for each t € G and E € Be.
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Moreover, A is unique up to a positive multiple. It is called the left Haar measure
of G.

Let G be a locally compact group with a fixed left Haar measure \. For

1 £ p < o0, let LP(G) be the space of all the complex-valued, A-measurable

function f defined A-almost everywhere on G such that Jo |FPdX < co. We identify

functions f and g in LP(Q) if f = g A-almost everywhere. In this case, LP(G) is a

Banach space with the norm

£l = ( /G FPaN} (1 € L7(G)).

The measure algebra M (G) is the Banach space of complex-valued, regular Borel
measures on G. The space M(G) is identified with the (dual) space of all continuous

linear functionals on the Banach space Co(G), with the duality specified by setting

W, f) = /G FOdu) (f € Co(@), p € M(G)).

The convolution multiplication * on M (G) defined by setting

(v, )= /G /G Flst)dp(s)dult) (f € Co(G), u,v € M(G)).

We write d; for the point mass at s € G; the element §, is the identity of M(Q),
and [*(G) is the closed subalgebra of M(G) generated by the point masses. Then
M(G) is a unital Banach algebra and ! (G), the group algebra on G, is a closed
ideal in M(G) [10, Theorem 3.3.36]. Moreover, M(G) = LYG) = IN(@) if and
only if G is discrete. |

The strong operator topology on M(G) is defined as follows: a net {tta} con-
verges to i (o =3 u) if and only if pio * f — p* f and f* py — f*pin norm,
for every f € L'(G). From [10, Theorem 2.9.49 and Theorem 3.3.41], both L}(G@)
and I*(G) are s.0. dense in M(G).
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Let G be a locally compact group. A positive-definite function on ¢ is a
function f: G — C such that for everyn €N, z;,...,z, € G and ALy, A €C,

.7

Let P(G) be the set of all continuous positive-definite functions on G, and let B(@)
be its linear span. The space B(G) can be identified with the dual of the group
C*-algebra C*(@), this latter being the completion of L? (G) under its largest C*-
norm. With pointwise multiplication and the dual norm, B(QG) is a commutative
regular semisimple Banach algebra. The Fourier algebra A(G) is the closure of
B(G) N Coo(G) in B(G). Tt is shown in (18] that A(G) is a commutative regular
semisimple Banach algebra whose carrier space is G. Also, up to isomorphism,
A(G) is the unique predual of VN (@), the von Neumann algebra generated by the
left regular representation of @ on L*(G) i.e. the representation A: G — B(L*(@))

given by
MO (=) = f(t7'2) (t,7 € G, f € L¥(q)).

Let G be a locally compact group, and let p € (1,00). Let g € (1,00) be the
dual of p, i.e. %—{—é— = 1. The Figd-Talamanca-Herz algebra Ap(G) consists of those
functions f: G — C where there are sequences {a,}2, in L*(Q) and {6,322, in

n=1
L9(@) such that

2 llaal o) [bal o) < o0

n=1
and

f=ian*l;m

n=1
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where %(z) = u(z™?) for any functions u: G — C and z € G. It is easy to see that

Ap(G) with the norm

1£1lp = 2083 anl 2@y [al o | £ = 3 @ # b}

n=1

is a Banach space. It was shown by Herz that, with pointwise addition and multi-
plication, 4,(G) is a commutative regular semisimple Banach algebra whose carrier
space is G ([25], [24]). If p = ¢ = 2, then A3(G) = A(G) [18]. Finally, we note
that by Herz [25], A,(Q) is a Banach A(G)-bimodule.



'CHAPTER 2

Hyper-Tauberian algebras

In this chapter, we initiate the study of certain commutative regular semisimple
Banach algebras, which we call hyper-Tauberian algebras. We first investigate the
basic and hereditary properties of these algebras. Then we give some examples. Fi-
nally, we look at bounded local derivations which are defined from hyper-Tauberian

algebras and we show that, in most of the cases, they are derivations.

2.1. Introduction

Throughout this chapter, A4 and B are commutative semisimple regular Banach
algebras with the carrier spaces ® 4 and ®p, respectively. Let I be a closed ideal

in A. The hull of I is
{te®s|a(t)=0forallgec I},
and it is denoted by h(I). Let E be a subset of ® 4. Put
I(E)={a€A|la=0o0n E},
and
Io(E) = {a € A| a has a compact support disjoint from E}.

Let E be a closed set. Then I(E) is the largest and Iy(E) is the smallest idea] in
A whose hull is E [10, Proposition 4.1.20). We say that E is a set of synthesis for

A if there is a unique closed ideal in A whose hull is E. So E is a set of synthesis
20
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for A if and only if Iy(E) is dense in T (E). If we let J(E) be the closure of
{a € I(E) | suppa is compact},

then E is a set of local synthesis for A if Io(E) is dense in J(E) (see [24]). Tt is
clear that every set of synthesis is a set of local synthesis. Let A, be the set of all
elements in A with the compact support. If A, is dense in 4 ie. Ais a Tauberian
algebra [44], then J(E) is a maxima] ideal of A having E as its hull and being
essential as a Banach A-bimodule. So if E is a set of local synthesis, then J (E)is
the only closed ideal in A with this property.

Let X and Y be Banach spaces. Let S be a linear subspace of L(X, Y) and for
cachz € X let Sz={S(z) | S € &} and [Sz] be the norm-closure of Sz. Put

refo(S) = {T € L(X,Y) | T(z) € Sz,z € X},
and if § € B(X,Y) put
ref(S) = {T € B(X,Y) | T(z) € [Sz],z € X}.

Suppose that S C L(X, Y). Then S is algebraically reflezive if S = ref,(S) and
when S C B(X,Y), it is reflerive if S = ref(S). For more on these notions see [35]

and the references therein.

2.2. Local operators

Let X be a Banach left (right) A-module. For z € X » the annihilator Ann 4(z)
of z is
Anng(z) ={a € A| az =0 (za = 0)}.
Anny(z) is clearly a closed ideal in A. The hull of Anny(z) is called the support
of z (in ®4), denoted by suppyz. We will write “suppz” instead of “supp4z”

whenever there is no risk of ambiguity. In the case X = A where we regard A
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as a Banach (left or right) A-module on itself, the support of an element ¢ € A
coincides with the usual definition of supp a, namely cl{t € B4 | a(t) # 0}.

The following lemma is the modification of [18, Proposision 4.4].

LEMMA 2.1. Let X be a Banach left (right) A-module, and let z € X. Then
t € suppz if and only if for every compact neighborhood V' of t, there is an element
a € A, with the support in V, such that az # 0 (za #0).

PROOF. We prove the Lemma in the case of a left module. The other case
can be proved similarly. Let ¢ € suppz and assume that there is a compact
neighborhood V' of ¢ such that for every a € A, with suppa C V, we have az = 0.
By the regularity of A [10, Proposition 4.1.18], there is b € A such that suppb C V
and b(t) # 0. However, bz = 0 and ¢ € suppz. This implies that b(t) = 0, which is
a contradiction. For the converse, let ¢ € o 4 with the given property, and let ¢ € A
such that a(t) 5 0. We will show that az # 0. There is a compact neighborhood
V of t and § > 0 such that |a(v)] > § > 0 for all v € V. Because of the regularity
of A and [44, Theorem 3.6.15], there is b € A such that ab =1 on V. Let ¢ €A
be a function whose support is in V such that cx # 0. Then abcz = cz, therefore

ax # 0. O

The preceding lemma, indicates that ¢ ¢ supp z if and only if there is a compact
neighborhood V of ¢ in @4 such that, for every element a € A, if suppa C V, then
az = 0 (za = 0). In particular, if a € A and z € X are such that supp a is compact
and suppaNsuppz = 0, then, by applying a suitable partition of unity on supp a,

we have ax = 0 (za = 0).
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DEFINITION 2.2. Let X and Y be Banach left (right) A-modules. An operator
T: X =Y is local with respect to the left (right) A-module action if supp T'(z) C

supp z for all :cle X.

PROPOSITION 2.3. Let A be o Tauberian algebra, and let X be Banach left
(right) A-module. Then a bounded operator T A — X s local if supp T(a) C

suppa for each a € A,.

PROOF. We prove the statement in the case of left module. The other case can
be shown similarly. Let a € A and t ¢ suppa. There is an open subset V in &4
such that t € V, V is compact and V Nsuppa = . By the regularity of A, there

ise€ A, such that e=1onV and e = 0 on suppa. So
ae = 0. (1)

Since A is Tauberian, there is a sequence {a,} in A, such that n — @ as N — oo.

Put e, = a, — a,e. Then
en€Acande,=00onV (2)
for all n. Moreover, from (1),
€n = =an = ane — a = (a, — a) — (a, — a)e.

Hence e, — a as n — oco. Now let ¢ € A with suppe C V. Then supp ¢ and

SUpp €, are compact. Moreover, from (2),

supp ¢ N supp T'(e,) C suppcNsuppe, C VAV = 0.
Therefore ¢T'(e,) = 0, and so, by letting n — oo, ¢T'(a) = 0. Hence ¢ & supp T'(a).
Therefore supp T'(a) C suppa forall a € A, O

Let X and Y be Banach left (right) A-modules. It is easy to see that every

left (right) A-module morphism from X into Y is a local operator. We finish this
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section with the following proposition which indicates that, under some additional
assumptions, the converse of the above statement can also be true. We will use
this result throughout this chapter.

We recall that a Banach left [right] A-module X is essential if it is the closure
of AX = span{az | a € A4,z ¢ X} [XA = span{za | a € A,z € X} A
Banach A-bimodule X is essential if it is essential both as a Banach left and right

A-module.

PROPOSITION 2.4. If bounded local operators from A into A* are multipliers,
then, for essential Banach left (right) A-modules X and Z , and an essential Ba-
nach right (left) A-module Y,

(4) every bounded local operator T Jrom X into Y* is a left (right) A-module mor-
phism;
(#) if A has a bounded approzimate identity, then the result in (1) is also true for

every bounded local operator T from X into Z.

PROOF. We prove the result for the case when X and Z are left modules and
Y is a right module. The proof of the other cases follows similar lines.

(i) Let € X and y € Y. Define
Ls: A— X, Ly(a) = az, (a € A);

Ky:Y*— A% | (Ky(y*) , a) = {y*, va) (a€d, y*e Y™).

It is easy to see that L, and K, are bounded left A-module morphisms. Hence
K,oT o L, is a bounded local operator from A into A*, and so it is a multiplier.

Therefore K (T (abz) —aT(bz)) = 0 for all a,bin Aand z € X. So, for each ¢ € A,

(T(abr) — aT'(bz) , ye) = 0.
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The final result follows by the essentiality of X and Y.
(ii) Suppose that A has a bounded approximate identity {es}aea. For z* € Z*, by
replacing K, with

KntZ — A%, (Kl.(2), a) = (", az)
and applying a similar argument to the one made in (i), we can show that

a[T'(bx) — bT(z)] = 0. (1)

On the other hand, by Cohen’s Factorization Theorem, thereiscc€ A and z € Z

such that T(bz) — bT'(z) = cz. So we have the final result by putting a = e, in (1)

and letting o — oo. O

2.3. Definition and basic properties of hyper-Tauberian algebras

In Proposition 2.4 we showed that if bounded local operators from A into A*
are multipliers, then we can characterize bounded loca] operators from essential
modules of A into their duals. This, together with the other results of the following

two sections, is the motivation behind the following definition.

DEFINITION 2.5. We say that A is a hyper-Tauberian algebra if every bounded

local operator from A into A* is a multiplier.

The next theorem shows that the class of hyper-Tauberian algebras is a subclass
of weakly amenable Tauberian algebras.

We note that if A is Tauberian, then, by the reguiarity of A [10, Proposition
4.1.18], A = A?, where A, is the set of all elements in A with the compact support.

Thus A = A2, and so A is essential as a Banach A-bimodule on itself.

THEOREM 2.6. Let A be a hyper- Tauberian algebra. Then:

(1) A is Tauberian;
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(44) each singleton subset {t} of ®4 is a set of synthesis for A;

(71) A is weakly amenable.

PROOF. (i) Let f € A* be such that f =0 on A, and let ¢ € A* be such that
¢ # 0 on A.. Define the bounded operator S: 4 — A* by

S(a) =¢(a)f (a€A).

Since f = 0 on A, af = 0 for all ¢ € A,. Thus supp f = (. Therefore S is
local, and so, by hypothesis, it is a multiplier. Take b € A4, with w(b) # 0. By the

regularity of A, there is a € A such that a = 1 on suppb. So ab = b. Hence
S(b) = S(ab) = aS(b) = p(b)af = 0.

Therefore ¢(b)f =0, and so f = 0. Thus A, is dense in A.
(i) Let F' € A* such that F = 0 on Iy(t), and let ¢; be the multiplicative linear
functional on A defined by p;(a) = a(t) for all a € A. Define the bounded operator
T:A— A* by

T(a) = F(a)p; (a€ A).
We claim that T is local. We first show that

I'={ce A|t¢suppc} C I(t). (1)

Let ¢ € I, and let V be a compact neighborhood of ¢ in ® 4 such that VNsuppe = 0.
By the regularity of A, there is e € A such thate=1onV and e = 0 on suppec.
In particular,

ce =0. (2)

Since, from (i), A is Tauberian, there is a sequence {c.} in A, such that ¢, — ¢

as n — 00. Put e, = ¢, — cpe. Then, sincee=1onV, e, =0 on V for all n.
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Therefore e, € Iy(t). Moreover, from (2),
€= C=Cp—Cpe—C= (cn — ¢) = (¢, — C)e.

Hence e, — c as n — oo. Thus ¢ € Ip(t). This proves (1). Now let a € A. We
consider the following two cases:
Case I' t ¢ suppa. Then a € I. However, F = 0 on Iv(t), and so, from (1), F =0
on I. Thus T'(a) = 0. Therefore supp T'(a) = 0.
Case II. t € suppa. Let s ¢ suppa. There is a compact neighborhood U of s in
® 4 such that U Nsuppa = 0. Let b € A with suppb C U. Since ¢ € suppa and
suppbNsuppa = 0, ¢ ¢ suppb. Thus b(t) = 0. Hence

(bT(a) , c) =(T(a), cb) = F(a)ps(ch) =0,
for all c € A. Therefore 5T'(a) = 0, and so s ¢ supp T(a).
- Therefore, in either of the above cases, we have suppT'(a) C suppa. Thus T is a

bounded local operator, and so it is a multiplier. Now let @ € I (t) and b € A..
Then, for all ¢ € A,

(T'(ba) , ¢) =(T(b)a, c) = (T(b), ac) = F(b)ps(ac) = 0.
Thus

(T'(a) , cb) = (bT'(a) , c) = (T'(ba) , c) = 0.

Therefore T'(a) vanishes on A, - A. However, A, - A contains A? = A, and so it is
dense in A. Thus T'(a) = 0. Therefore F vanishes on I (t). Hence I(t) = I(t). .
(iii) Let D: A — A* be a bounded derivation. We first show that D is local. Let
a € A, t ¢ suppa, and let V be a compact neighborhood of ¢ in ®,4 such that
VNsuppa = 0. Let ¢ € A with suppc C V. By the regularity of A4, thereise € A

such that e =1 on V and e = 0 on suppa. Therefore

ca=0,ce =cand ae = 0.
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Thus
cD(a) = ceD(a) = cD(a)e = D(ca)e — D{c)ae = 0.

Hence t ¢ supp D(a). Therefore D is local, and so it is a multiplier. Thus D(a)b =
D(ab) = aD(b) + D(a)b for all a,b € A. Hence aD(b) = 0. Therefore D(b) = 0
since AZ = A. O

In [22], N. Groenbaek has given a necessary and sufficient condition for a
commutative Banach algebra 9 to be weakly amenable in terms of the projective
tensor product ARYA. As we will see in the following theorem, there is also a
parallel characterization for certain hyper-Tauberian algebras.

We note that if AR B is semisimple, then it is a commutative semisimple regular
Banach algebra with the carrier space @4 x @5 [2, Proposition 42.19 and Corollary

23.9].

THEOREM 2.7. Let A be a Tauberian algebra such that ARA is semisimple.
Then A is hyper-Tauberian if and only if the diagonal A = {(t,t) | t € ®4} isa
set of local synthesis for ARA.

PROOF. “4="LetT: A — A* be abounded local operator, and let 7: A®A —
C be a functional specified by

T(a®b) = (T(a), b) (a,be A).

Pick a and b in A, such that suppa Nsuppb = . By the regularity of A, there is
e € A such that e =1 on supp b, so that, b = eb. Since T is local,

supp b N supp T'(a) C suppb N suppa = §.
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S0 6T(a) = 0, and hence T'(a ® b) = (T'(a) , b) = (bT(a) , €) = 0. So T vanishes

on J, where
J=s5pati{a ®b € ARA | a,be A, and suppa Msuppb = 0}.

But J is a closed two-sided ideal whose hull is the diagonal and is also essential
as a Banach A®A-bimodule. So, by hypothesis, J = J (A). Therefore, for all
a,b,c€ A, T(ac®b) = T(a ® cb) since ac® b — a ® cb € J(A). Thus

(T(ac) , b) =(T(a) , cb) = (T'(a)c, b).

The final result follows from the fact that A; is dense in A.
“=" Let T € (A®A)* such that 7 = 0 on Iy(A). We show that 7 = 0 on J(A).
Define the bounded operator T': A — A* by

(T(a), b) =T(a®b) (a,be A).

We show that T is local. Take a € 4 and ¢ ¢ suppa. By Proposition 2.3, we can
assume that supp a is compact. There is a compact neighborhood V in &, such
that t € V and V Nsuppa = 0. Now let ¢ € A with suppe € V. Then for every
b€ A, supp (bc) C V. Thus supp (be) Nsupp a = @. Moreover, supp bc and supp a

are compact. Therefore a ® bc € Ij(A). Hence
(cT(a) , b) = (T(a) , bc) = T(a®bc) =0.

Therefore ¢ ¢ supp T'(a). Thus T is a bounded local operator, and so, by hypoth-
esis, it is a multiplier. Now let ¢,d € A and u = Doie1 6 ® b; € I(A). If we let
m: A®A — A be the multiplication operator specified by 7(a®b) = ab, then, with
the assumption of the semisimplicity of AR A, it is easy to verify that I(A) = ker .
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Hence > .2, a;b; = 0, and so

Tlc®dyu] = iT(cai ® db;)

= Z(T(c)az, byd)
= (dT(c), Z%@')
= 0.

Therefore 7 = 0 on (A®A)I(A). However, J(A) is the closure of
{u € I(A) | suppu is compact}

which is a subset of (A®A) - I(A) since AR A is Tauberian. Hence 7 = 0 on J (A).
This completes the proof. |

2.4. Hereditary properties of hyper-Tauberian algebras

In this section, we give a characterization of hyper-Tauberian algebras in terms
of their ideals, tensor products and algebra homomorphisms.

Let I be a closed ideal in A, and let E = h(I). Then, by [10, Proposition
4.1.11] and [44, Theorem 2.7.2], I is a commutative semisimple regular Banach
algebra with the carrier space 4\ E. Moreover, I, (E) is equal to I, the set of all
elements in I which have compact support in ®;. To see this, first we note that
Iy(E) € L. On the other hand, let a € I such that suppya is compact. Since
suppya € ®4 \ E C &4 and compactness is a topologically invariant property,
supp; @ is also compact as a subset of ®,, and so it is closed. Therefore, since

{t € @4 | a(t) # 0} is a subset of supp, a, its closure, which is supp a, is also
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a subset of supp;a. Thus SUPP4 @ = supp; a, and so it is compact and disjoint

from E. Hence a € I(E).

THEOREM 2.8. Let A be g hyper-Tauberian algebra. Then:
(9) a closed ideal I in A is hyper- Tauberian if and only if I = Io(E) for some closed
subset E of @ 4;
(4) a closed subset E of ® 4 is a set of synthesis (local synthesis) for A if and only
if I(E) (J(E)) is hyper- Tauberian.

PROOF. (i) Let I be hyper-Tauberian. Then, from Theorem 2.6(i), I is a
Tauberian algebra. Hence I, is dense in I. However I. = Iy(E). Therefore I =
IL(E). Conversely, let I = Iy(E) for some closed subset E of Py andlet T: I — I*
be a bounded local operator with respect to I-module actions. We first show that
T' is local with respect to A-module actions. Let a€l,t¢suppya, and let V be
a compact neighborhood of ¢ in ®,4 such that V N suppg e = . Let ¢ € A with
suppyac &V, and let v € Io(E). By the regularity of A, there is u € A4, such that

v =1onsupp,yvand v =0 on an open set containing F. Thus
u € Ip(E) and vu =wv. (1)

Hence uc € Iy(E) = I.. Moreover, since T is local with respect to I-module

actions,

supp; (uc) Nsupp; T(a) < supp,csupp;a

C VNsuppya

= 0.
Therefore ucT'(a) = 0, and so, by (1)

(cT(a) , v) = (cT(a) , vu) = (ucT'(a) , v) = 0.
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Hence cT'(a) vanishes on Iy(E) = I. Thus cT'(a) = 0. Therefore t ¢ supp 4T (a).
Hence T is local with respect to A-module actions, and so, by hypothesis and
Proposition 2.4, it is a multiplier. Thus T(ab) = aT(b) foralla € A and b € J.
In particular, T is a multiplier. Therefore [ is hyper-Tauberian. The statement
in (ii) follows immediately from (i) and the definition of set of synthesis and local

synthesis. O

COROLLARY 2.9. Let A be a hyper-Tauberian algebra. Then every finite subset

of @4 is a set of synthesis for A.

PRrROOF. Let E be a finite subset of A, and let n be the cardinality of E.
We prove the statement by induction on n. For n = 1, the result follows from
Theorem 2.6(ii). Now assume that the result is true for n = k. Let ¢t € F and put
F = E\ {t}. By induction, F is a set of synthesis, and so, by Theorem 2.8(i),
I(F) is hyper-Tauberian. Moreover,

I(B) = {a € I(F) | a(t) = 0}, ‘ (1)
where the right hand side in (1) is exactly the largest ideal in I(F) whose hull is
the singleton {¢}. However, by Theorem 2.6(ii), {t} is a set of synthesis for I (F).

Therefore, from Theorem 2.8(ii), I(E) is hyper-Tauberian. Hence F is a set of
synthesis for A. This completes the proof, 0

Let I be a closed ideal in A, and let E = h(I). Then A/I is semisimple if
and only if I = I(E) [10, p. 412]. In this case, A/I is a commutative semisimple
regular Banach algebra with the carrier space E (see [10, Proposition 4.1.11] and

[44, Theorem 2.7.2)).

THEOREM 2.10. Let E be a closed subset of ®a. If I(E) and A/I(E) are

hyper-Tauberian, then A is hyper-Tauberian.
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PROOF. Put I = I(E). We first note that A is Tauberian since I and A/T are
Tauberian. Let T: A — A* be a bounded local operator, and let ¢t: I — A be the
inclusion map. Then t*o T os: I — I* ig local with respect to I-module actions,
and so it is a multiplier. Thus
(T'(ab)) = au*(T(b)) (a,b e I). (1)
Let a € A and b € Iy(E). Then, since T is local,

supp,(T'(ab) — aT (b)) C supp, b C &4 \ E.
On the other hand, if V is a compact neighborhood in &4 \ E and ¢ € A with
supp4c &V, then ¢ € IH(E) and there is e € Iy(E) such that ec = ¢. Thus, for all
de A,
(c[T'(ab) —aT(b)], dy = (ec[T(ab) — aT'(b)] , d)
= (c[T(ab) — aT'(b)] , de)
= (*[cT(ab) ~ caT(b)] , de)
= 0,
where the last equality follows from (1). Thus supp 4(T(ab) - aT (b)) = 0, and so
T'(ab) — aT'(b) = 0 since A is Tauberian. Hence, by hypothesis,
T(ab) =aT(b) (ac Abec I). (2)
Now pick a € 4 and define the bounded operator D: A — A* by
D(b) = T(ab) — aT(b) (b€ A).

From (2), D vanishes on I. Moreover, for each b € A, D(b) € I'*. In order to see
this, by hypothesis, it suffices to show that D(b) vanishes on Iy(E). Let ¢ e Ii(E)

and take e € I(E) such that e = 1 on a neighborhood containing suppy c. Then,
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from (2),
cD(b) = c[T(a(b—be)) — aT'(b - be)] + c[T(abe) — aT (be)]

= cT'(a(b— be)) — caT'(b - be)

= (.
where the last equality follows since T is local, and suppy4 ¢ is compact and disjoint
from supp 4 (b — be). Hence (D(b) , c¢) = (cD(b) , €) = 0. Therefore we can define
the bounded operator D: A/ — I'* = (A/I)* by

D(b) =D®) (be A).

We show that D is local with respect to A/I-module actions. Let b € A and put
K = supp,r b. By Proposition 2.3, we can assume that K is compact. Let t € E
such that ¢ ¢ K. Since K is closed in ®,4, there is a compact neighborhood V of
t in ®4 such that VN K = . By the regularity of A, there is e € A such that
e=lonKande=0onV. Thusbe — b = 0 on K. However, K is the closure
of {s € E | b(s) # 0}. Hence b = 0 on E\ K. Therefore be — b = 0 on E, and
s0 b = be. Thus D) = 5(1;6) = D(be). On the other hand, be vanishes on a
neighborhood containing t. So ¢ ¢ supp, D(be) since D is local with respect to
A-module actions. Hence t ¢ supp , /1 5(5) Thus D is local, and so, by hypothesis,
it is a multiplier. Therefore ]5(b~c) = D(b)é for all b,c € A. Hence

T(abc) — aT'(bc) = T(ab)c — aT(b)c (a,b,c € A). (3)
Define the bounded operator D: A — B4(A4, A*) by
D(a)(b) = T'(ab) — aT(b) (a,be A).
From (3), it is easy to verify that D is well-defined. Moreover, upon setting

(@-5,0)=(S-a,b)=(S, ab),
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the space B4(A, A*) becomes a symmetric Banach A-module and D becomes a
bounded derivation from A into B 4(A, A*). However, from Theorem 2.6(iil), A is

weakly amenable. Hence D = 0. Thus T is multiplier. a

Let A" be the unitalization of A. Then A! is a commutative semisimple regular
Banach algebra with the carrier space 4 U {co}, where ® 4U{co} is the one-point

compactification of ®4 [10, p. 412].
COROLLARY 2.11. A is hyper- Tauberian if and only if A¥ is hyper- Tauberian.

PROOF. “==>" Follows immediately from Theorem 2.10.
“+=" Since A = I({co}), the result follows from Theorem 2.6(il) and Theorem
2.8(ii). O
Let A®B be the projective tensor product of A and B. There is a, symmetric
Banach A-module action on A®B specified by
c-(a®b)=(a®b)-c=ca®b (a,cc Abe B).

Similarly, we can define a symmetric Banach B-module action on A®B specified
by
do(a®b)=(a®b)od=a®db (ac Abdec B).

Moreover, it is straightforward to check that for ¢ €A,de Band z € AQB

(c®d):v=c-(d<>a:)=d<>(c~x).

THEOREM 2.12. Let A and B be hyper-Tauberian algebras such that ARB is

semisimple. Then A®B is hyper- Tauberian,

PROOF. Let T': A®B — (A8B)* be a bounded local operator. First we show

that T is local with respect to A-module actions. Let € ARBandte ® 4 such
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that ¢ ¢ supp, x. There is an open set V in ®4 such that ¢t € V, V is compact
and V Nsupp, = =0. Let U be an open subset of @5 such that U is compact. We

claim that
(V x U) Nsupp g5z = 0. (1)

To this end, it suffices to show that for each y=>2,08b € ABB with
supPugpy SV x U, yzr = 0. By the regularity of A and B, there are ¢ € A4, and
d€ Bsuchthatc=1onV,c=0on a neighborhood containing supp, z and

d=1onU. Thusc®d=10onV x U, and so

o0

y=(c®dy= ani ® db;. (2)

i=1

However, for each ¢, supp, ca; is compact and disjoint from supp 4 z. Hence (ca;) -

z =0, and so, from (2),

o0

YT = Z[dbi o (ca; - )] = 0.

=1

This shows that the equation (1) holds. Therefore, from the locality of T', V x U is
disjoint from supp 455 T(x), where U can be any open subset of ®5 with compact
closure. Hence, for each a € A with suppg a C V, a-T'(x) vanishes on A® B,. Thus
a-T(z) = 0. This means that ¢ ¢ supp , T(z). Therefore T is local with respect to
A-module action, and so it is a left A-module morphism. Hence T'(a-u) = a- T'(u)
foralla € A and u € A®B. Similarly, we can show that T(bou) =boT(u) for all
b € B. Therefore

Tl(a®bju] =Ta- (bou))=a-T(bo u) = (a ® b)T'(u).
Hence T' is a multiplier. 0

Let ¢: A — B be a bounded algebra homomorphism with dense range. Then

@* induces a continuous map o: &5 — 4.
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THEOREM 2.13. Let A be hyper-Tauberian, and let p: A — B be a bounded

algebra homomorphism with dense range. Then B is hyper- Tauberian.

PRrROOF. First assume that both A and B are unital. In this case, ®p is compact
and homeomorphic to o(®p). In particular, o(®35) is a closed subset of ®,. It
is easy to see that B becomes an essential symmetric Banach A-module for the

action defined by
a-b=b-a=p(a)b (a€ AbecB).

Moreover, ¢ is a bounded A-module morphism. Let T: B — B* be a bounded
local operator with respect to B-module actions. We claim that T is local with
respect to A-module actions. Let ¢ € B and ¢ ¢ supp, c. Consider the following
two cases:

Case I: t ¢ o(®p). Hence there is a compact neighborhood V of t in &4 such that
VNo(®p) = 0. Let a € A with suppya C V. Then w(a) = 0, and so, for all
b€ B, b-a=0. Therefore a - [T(c)] = 0. Hence ¢ & supp 4 T'(c).

Case I t € o(®p). Sot ¢ suppgc. Thus t ¢ suppp T(c) since T is local.
Therefore there is a compact neighborhood V in ® 4 such that t € V N o(®g) and,

for every e € B with suppge C VN o(®p), we have
eT(c) = 0. (1)

Now let a € A with suppya C V. Then suppg p(a) € V No(®p), and so, from
(1), a- T(c) = p(a)T(c) = 0. Therefore ¢ & supp, T(c).

Hence T is local with respect to A-module actions. Thus, by hypothesis and
Proposition 2.4, T is a bounded A-module morphism. Therefore, for all @ € A and
be B, T(p(a)b) =T(a-b) =a -T(b) = p(a)T'(b). The final result follows from the
fact that the range of ¢ is dense in B.
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Now consider the general case. Since A is hyper-Tauberian, A is hyper-Tauberian
from Corollary 2.11. On the other hand, we can extend ¢ to a bounded algebra
homomorphism from A into B! by defining (1) = 1. Moreover, ¢(A!) is dense
in BY. Thus, by the first part, B is hyper-Tauberian. Therefore, from Corollary
211, B is hyper—Tauberian. [

LEMMA 2.14. Let {As}er be a family of commutative semisimple reqular Ba-
nach algebras, and let A be the I*-direct sum of {Ay}yer. Then Ais a commutative
semisimple reqular Banach algebra whose carrier space, D 4, is the disjoint union

of all ®4,. Moreover, for each Y €T, 4, is an open-closed subset of @ 4.

PROOF. It is clear that A is a commutative semisimple Banach algebra. For

each vy €T, let Py: A — A, be the canonical projection of 4 onto Ay, and let

U(A,) = {B7(D) [T e 8).
We first claim that
o4= (4, (L

yel’
It is clear that ¥(A4,) C &4 for each 7 € I'. For the converse, let M be a maximal

modular ideal in A. For vy € T, put M, = P-Y(P,(M)). 1t is easy to see that M,

is an ideal in 4 and it contains M. Thus, since M is maximal,
My=M or M,=A (yeT). (2)
On the other hand, since M # A, there is vy € I such that
Ay € M. (3)

We show that



2.4. HEREDITARY PROPERTIES 39
Let e € A be a modular unit for M. If M # My, then, from (2), M, = A.
Therefore, Py (e) € Py, (M), and so, there is m € M such that Py, (m) = P, (e).

Hence, for each a € A,
ae = aPy,(e) = aPy(m) = P, (am) = am € M.

Thus Ay, = Ay (1—e)+Ae C M which, from (3), is impossible. Thus (4) holds.
This, together with the fact that P,, is onto, implies that P, (M) is a proper
modular ideal in A4,,. Therefore there is € ® Ay, such that P, (M) C I, and so,
M C P Y(I). Hence, from the maximality of M, M = P;Y(I)ie. M € W(A,).
This proves (1).

It is straightforward to check that the sets ¥(A,) are mutually disjoint. Also, for
every v € I', @4, and ¥(A,) are homeomorphic, and so ® A, can be viewed as an

open-closed subset of ® 4. This, in particular, implies that 4 is regular. O

COROLLARY 2.15. Let {4 }ver be a family of hyper-Tauberian subalgebras of
A such that A = (®verAy)™. Then A is hyper- Tauberian.

ProOF. Let A be the I'-direct sum of {Ay}yer, andlety € T By the preceding
lemma, @ A, 15 an open-closed subset of ® 4. Thus @4\ @ 4, 18 a closed subset of
®4. Moreover, A, = I(®4 \ @4,). Therefore, if T: A — A* is a bounded local
operator with respect to .4-module action, then, by a similar argument to the one
made in the proof of Theorem 2.10 and the fact that A, is hyper-Tauberian, we
have

T(ab) = aT(®) (a€ Abe A, vel).
Thus, from the assumption on A, T is a multiplier. Hence A is hyper-Tauberian.
The final result follows from Theorem 2.13 and the fact that map ¢: 4 — A defined
by ¢({a,}) = ,a, is a bounded algebra homomorphism with dense range. O
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2.5. Some examples of hyper-Tauberian algebras

It follows from B. E. Johnson’s work that Co(R) is hyper-Tauberian [28, Propo-
sition 3.1]. We extend this result by showing that Cy(f) is hyper-Tauberian for
every locally compact topological space Q. To this end, we first prove it for the

special case when Q is a compact subset of R,

LEMMA 2.16. Let K be compact subset of R. Then C(K ) is a hyper- Tauberian

algebra.

PROOF. Let R be the restriction map from Co(R) onto C(K). Then R is a
bounded algebra homomorphism. However, by [28, Proposition 2.1], the diagonal
is a set of synthesis for Co(R)BCy(R), and 50, by Theorem 2.7 (see also [28,
Proposition 3.1]), Cy(R) is hyper-Tauberian. Thus, from Theorem 2.13, C(K ) is

hyper-Tauberian. 0

THEOREM 2.17. Let ) be g locally compact topological space. Then Co(Q) is a

hyper- Tauberian algebra.

PROOF. First consider the case when Q is compact. Let T': C(Q) — C(Q)* be

a bounded local operator. First we show that T satisfies the following condition:
ab=0 implies aT'(b) = 0. (%)

Let a,b € C(Q) with ab= 0. So ¢ € I(E) where E = suppb. Since E is a closed
subset of ), E is a set of synthesis [10, Theorem 4.2:1]. Thus there is a sequence

{an} in Iy(E) such that a; — a as n — oo, On the other hand, since T is local
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and supp a,, is disjoint from E,

supp a, NsuppT'(b) C suppa, Nsuppb
= suppa,NE
= 0.

Therefore, since supp a,, is compact, a,T(b) = 0. Thus, by letting n — 00, we have
aT'(b) = 0. This proves (x). Now let ¢ € C(Q) be a self-adjoint element, and let
A(a) be the C*-subalgebra of ¢ () generated by {a,1}. It is well-known that there
is a compact subset K of R such that A(a) is isometrically isomorphic to C(K).
In particular, C(Q) is an essential and symmetric Banach C'(K)-module. Let d €
C(Q) and ¢ € C(K) with cd = 0. Then, since c € A and T satisfies condition (),
cT'(d) = 0. Hence Anngxyd C Anngx) T(d), and so Suppcxy T'(d) C SUpPpe(k) d.
Therefore T is local with respect to C(K)-module actions. Thus, from Lemma, 2.16
and Proposition 2.4, T is a C(K)-module morphism. Hence, for each b € c(Q),
T(ab) = aT'(b). The final result follows since C(Q) is the linear span of its self-
adjoint elements.

We now consider the general case. Let Q be a locally compact space, and let
£2U{oo} be its one point compactification. Then, from the first case, C(QU {o0})

is hyper-Tauberian. On the other hand,
Co(§2) = {a € C(QU {o0}) [ a(o0) = 0} = I({co})

and {00} is a set of synthesis for C(QU{oo}). Thus, from Theorem 2.8(ii), Co(Q2)

is hyper-Tauberian. ]

COROLLARY 2.18. Let Q) be a locally compact space. Then the diagonal is a set
of synthesis for Co(Q)&Cy(1).
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PROOF. Since Cy(R) has the Grothendieck approximation property, Co(Q2)®C, (1)
is semisimple [52]. Hence the result follows from Theorem 2.7 and the preceding

theorem. 0

Let G be a locally compact group. We recall that the principal component of G
is the component (the largest connected set) containing the identity; we denote it
by G.. It is easy to see that G, is a closed normal subgroup of G. B. Forrest and
V. Runde have shown in [16] that if G is a locally compact group such that G, is
abelian, then the Fourier algebra A(G) is weakly amenable. In Theorem 2.22, we
prove a stronger statement that for this class of groups, A(QG) is hyper-Tauberian.
To do this, we will follow similar steps to those taken in [16]; the tools developed
in Sections 2.3 and 2.4 will be used to modify the approach in [16]. Finally, we

prove a similar result for 4,(G), p € (1, o).

PROPOSITION 2.19. Let G be a locally compact abelian group. Then A(G) is

hyper- Tauberian.

PROOF. It is well-known that A(G)®A(G) = A(G x G) (e.g. [39)]). Thus,
since the diagonal A is a closed subgroup of G x G, by [53, Theorem 3], Ais a set
of synthesis for A(G)®A(Q). So we have the result from Theorem 2.7. O

LEMMA 2.20. Let G be q locally compact group, and let H be q closed subgroup
of G. Then:
(9) If A(G) is hyper-Tauberian, then A(H) 1is hyper- Tauberian.
(i) If H is open and A(H) is hyper- Tauberian, then A(G) is hyper- Tauberian.

PROOF. (i) Let : A(G) — A(H) be the restriction map of elements of A(G)
to H, ie. p(u) = uly for u € A(G). By [14, Lemma 3.8], ¢ is a bounded algebra
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epimorphism. Hence the result follows from Theorem 2.13.
(if) Let T: A(G) — A(G)* be a bounded local operator, and let a,b,c € A(G)

have compact support. Since H is open, there are {z:}, € G such that
supp a UsuppbUsuppe C UL, z;H, (1)

where the union on the right side is disjoint. For § = 1,...,n, let x; be the
characteristic function of z;H. Since H is open, each Xi belongs to B(G) [18,
Proposition 2.31]. Hence A; = x; A(G) is a closed subalgebra of A(G). Moreover,
from [18, Corollary 2.19 and Proposition 3.21], A; is isometrically isomorphic to
A(H). Since A(H) is hyper-Tauberian, A, is hyper-Tauberian, and so, by Corollary
2.15, A = A1 ®'.. @' A, is hyper-Tauberian. Nowlet 1: A — A(G) be the inclusion
map. Then t*oT o1: A — A* is local with respect to A-module actions, and so,

it is a multiplier. Therefore
(T(w) , w) = (uI'(v), w) (v,v,w € A). (2)
On the other hand, if u is an element in A(G) with suppu C Ui,z H, then
U= x1%+ ...+ xou € A. Hence, from (1) and (2),
(T'(ab) , c) = (aT'(b) , c).

The final result follows since A(QG) is a Tauberian algebra. d

LEMMA 2.21. Let G be a locally compact group such that G, is abelian, and
let K be a compact normal subgroup of G such that G/K is a Lie group. Then
A(G/K) is hyper- Tauberian.

PROOF. Let m: G — G/K be the quotient map. By [27, Theorem 7.12],
the principle component of G/K is n(G,)~. Thus (G/K). is abelian, and so, by
Proposition 2.19, A((G/K).) is hyper-Tauberian. However, (G/K). is open, since
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G/K is a Lie group [41, 12.2.4 Definition]. Hence A(G/K) is hyper-Tauberian
from Lemma 2.20(ii). O

We recall from [41, 12.2.14 Definition] that a locally compact group G is called
a pro-Lie group if every neighborhood of the identity contains a compact normal

subgroup K such that G/K is a Lie group.

'THEOREM 2.22. Let G be a locally compact group such that G, is abelian. Then

A(G) is hyper- Tauberian.

PROOF. First consider the case where G is a pro-Lie group. Let T AG) —
A(G)* be a bounded local operator, and let ¢ > 0. As it is shown in [16, Theorem
3.3}, there is a compact, normal subgroup K of G such that G/K is a Lie group,
and there is a projection P: A(G) — A(G : K) such that

lu — Pull < e (u€ A(G)), (1)

where A(G : K') denotes the (closed) subalgebra of A(G) consisting of those func-
tions that are constant on cosets of K. From [18, Proposition 3.25], A(G : K )
is isometrically isomorphic to A(G/K), and so, by Lemma 2.21, A(G : K ) is
hyper-Tauberian. Now let +: A(G : K) — A(G) be the inclusion map. Then
troTou: A(G: K) — A(G : K)* is local with respect to A(G : K)-module

actions, and so it is a multiplier. Therefore
(T(PaPb) , Pc) = (PaT(Pb), Pc) (a,b,ce A(G)). (2)
Now let a,b,c € A(G); where A(G)1 = {u € A(G) : [Ju]] < 1}. Then, from (1),

[{T'(ab) — aT'(b) , ¢ = Pe)| < [|T(ab) - aT(B)]| ||c — Pel]

IN

20[T]e.
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Consequently

(T'(ab) —aT'(b) , )| = [{T(ab) —aT(b), (c— Pc)+ Pc)|

IA

2|Tje + |(T(ab) - aT(b) , Pc)|.
Similarly, we can show that
T(ab) - aT(b) , Pc)| < 2||T|e+ [(T((Pa)t] — PaT(}J) , Pe)l,
and so,
{T'(ab) = aT(b) , &)| < 4||Tle + (T[(Pa)b] — PaT'(b) , Pc)|.
Finally, an argument similar to the above yields
[{T(ab) = aT(®), )] < 6|[Tlle+ [(T(PaPb) ~ PaT(Pb) , Pc)l
= 6[[T]le,
where the last equality follows from (2). Hence
(T(ab) — aT'(b) , c) =0,

since € was arbitrary. The final result follows since A(G); spans A(G).

For the general case, we note that by [41, 12.2.15 Theorem]|, G has an open sub-
group H such that H is a pro-Lie group. In particular, G. C H since H is an
open-closed subset of G and G, N H £ (). Hence H, is abelian, and so, by the pre-
ceding case, A(H) is hyper-Tauberian. Therefore A(G) is hyper-Tauberian from
Lemma 2.20(ii). O

THEOREM 2.23. Let G be a locally compact group such that G, is abelian, and
let p € (1,00). Then A,(G) is hyper-Tauberian. In particular, Ay(G) is weakly

amenable.
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PROOF. Let T: A,(G) — A,(G)* be a bounded local operator. Since A(G)

is a Banach A(G)-module (Section 1.3), we can consider the locality for T with

respect to A(G)-module actions. Let a € 4,(G) and ¢ ¢ supp A o It is easy to
see that

SUPP4(G) & = SUPP4 () & = cl{s € G | a(s) # 0}.

‘Therefore there is a compact neighborhood V of t in G such that V Nsupp Ap(G) @ =

0. Let ¢ € A(G) with supp A ¢ & V. By the regularity of 4,(G), there is an

element e € A,(G) with compact support such that e = 1 on V and SUpPP 4, €N

Supp4,c) @ = 0. Thus, since T is local,

SUPP 4, (G) € N SUPP4, g T(a) C SUPP4,(G) € M SUPP4, ¢y @ = 0.
Hence eT'(a) = 0, and so,
cT'(a) = ceT'(a) = 0.
Therefore ¢ ¢ supp 4 T'(a). Thus T is local with respect to A(@)-module actions.
On the other hand, for all ¢ € (1,00), the linear span of Coo(G) * Coo(G) is a
dense subset of Ay(G) in || - [|;-norm. Hence A,(Q) is essential as a Banach A(@)-
module. Consequently, by Theorem 2.22 and Proposition 2.4, T is an A(G)-module

morphism. Hence
T(ab) = aT'(b) (a€ A(G),be A(@)).

Therefore T is a multiplier. U

REMARK 2.24. (i) Let G be the group of rotations of R3. Then, by [30, Corol-
lary 7.3], A(G) is not weakly amenable. Therefore A(QG) is not hyper-Tauberian.
(ii) In Theorem 2.6 we showed that a hyper-Tauberian algebra is a weakly amenable
Tauberian algebra. However, the converse is not true. To see this, let T be the

unit circle. It is shown in [10, Corollary 5.6.45] and its proof that there is a closed
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subset £ of T such that E is a set of non-synthesis for A(T) but J (B)=1I(E), so
that I(F) is weakly amenable [10, Theorem 2.8.69(ii)]. Hence I(E)! is a weakly
amenable Tauberian algebra [10, Corollary 2.8.70]. However, by Proposition 2.19,
A(T) is a hyper-Tauberian algebra. Therefore, by Theorem 2.8(ii), I(E) is not

hyper-Tauberian. Thus, by Corollary 2.11, I (E)* is not hyper-Tauberian.

It is well-known that one sufficient condition for a commutative Banach algebra
2 to be weakly amenable is that 2 is closed linear span of idempotents. The
following theorem shows that the same assumption forces a Tauberian algebra to

be hyper-Tauberian.

THEOREM 2.25. Let A be g Tauberian algebra. If A is closed linear span of

idempotents, then A is hyper- Tauberian.

PROOF. Let T: A — A* be 5 bounded local operator, and let p € A be an
idempotent. Since p? = p, Suppp is an open-closed subset of ®4and p =1 on

suppp. Let a € A. Then supppn supp (¢ — pa) = (. Hence

supp [pT'(a — pa)] C supp p N supp T'(a — pa)
& supppNsupp (a - pa)
0.

i

Therefore pT'(a — pa) =0, since A is Tauberian, Thus

pT(a) = pT(pa). (1)
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Now let b € A; and take e € A such that eb = b. Since T is local and supp (bp — b)
is compact and disjoint from supp pa, (bp — b)T(pa) = 0. Thus

(pT(pa) — T(pa) , b) = (pT(pa) — T(pa), eb)
((bp — b)T'(pa) , e)

= 0.

Therefore pT'(pa) — T'(pa) = 0, since A, is dense in A. Together with (1), this
shows that T'(pa) = pT'(a). The final result follows since A is the closed linear

span of idempotents. : [}

EXAMPLE 2.26. Let I be a non-empty set, and let p € [1,00). Then P(I") and
co(T"), with pointwise addition and multiplication, are Tauberian algebras that are
closed linear span of idempotents. Therefore they are hyper-Tauberian. This result

also follows from Corollary 2.15.

2.6. Local multipliers and local derivations from hyper-Tauberian

algebras

B. E. Johnson in [28] showed that every local derivation from a C*-algebra 2
into any Banach 2-bimodule is a derivation. He showed that it is enough to es-
tablish the result for the commutative regular semisimple Banach algebra Cy(R).
For Co(R), he first studied local operators from this algebra and then deduced
results about local derivations. However, C, (R) is very well-behaved; it is a com-
mutative C*-algebra so that it is amenable and all the derivations from it into any
Banach Cy(R)-bimodule are automatically continuous. In this section, we exploit
Johnson’s approach and investigate local derivations from certain hyper-Tauberian
algebras which do not necessarily have the above properties. To compensate for

this, we look more into the “local structure” of these algebras.
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DEFINITION 2.27. Let X be a Banach left A-bimodule. An operator T: A — X

is a local right multiplier if for each a € A, there is a right multiplier T,: A — X
such that T'(a) = T,(a). Similarly, we can define local left multipliers for Banach

right A-modules.

THEOREM 2.28. Let A be a hyper- Tauberian algebra, and let X be a Banach
(right or left) A-module. Then every bounded local multiplier T' from A into X is

a multiplier.

PROOF. We prove this for the local right multipliers. The other case can be
proved similarly. Let X be a Banach left A-module, and let T: A — X be a
bounded local right multiplier. Then, for each a € A, there is a right multiplier
To: A — X such that T(a) = T,(a). Hence Ann(a) C Ann(T,(a)) = Ann(T(a)),
and so suppT'(a) C suppa. Thus T is a local operator. Therefore, by a similar

argument to what we have made in the proof of Proposition 2.4(ii),
cT(ab) — caT'(h) =0 (a,b,c € A).
Take a € A; and ¢ € A such that ¢ = 1 on supp a. Hence ca = a. Since T is a local
multiplier, there is a right multiplier M from A into X such that T'(ab) = M(ab).
Therefore
T(ab) — aT(b) = M(ab)— aT'(b)
= M(cab) — aT(b)
= cM/(ab) — aT'(b)
= cT'(ab) — caT'(b)
= 0.

The final result follows by the density of A, in A. O
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For any two subsets E; and By of @y, let Vo(Ey, E,) be the closed linear span

in ABA of the elements a1 ® ap where a; € J(®, \E;),i=12 1Itis easy to
check that V(Ey, B,) is a Banach A-submodule of ARA. The following lemma is a

modification of [28, Lemma 5.2]. We include the proof for the sake of completeness.

LEMMA 2.29. Let Ey and E, be subsets of @4, and let § € (ARA)*.
(1) If a € I(Br), then 6a € Vy(By, By)*.
(%) If a € I(Es), then af € Vo(Ey, Ep)*.
(1)) Ifa € A anda =1 on Ey, then § — 6q ¢ Vo(Ey, Ey)*.
() Ifa€ A anda=1 on By, then 6 — of € Wo(E, E,)*.

PROOF. Let ¢; € J(@, \ Ei), i =1,2. For (i) we have
(fa,c; ® c2) = (6, ac; ® cz) =0.
For (iii) we have
(0 — ba,c; ® cp) = (6, (c1—ac) ®cp) =0,
since ¢; = ac;. The other two statements can be proved similarly. ]

Let X be a Banach A-bimodule. We recall that an operator D from Ainto X
is a local derivation if for each g € A, there is a derivation D, from A into X such

that D(a) = D,(a). We are now ready to present the main result of this section.

THEOREM 2.30. Let A be g hyper-Tauberian algebra such that ABA is semi-
simple, and let X be an essential Banach A-bimodule. Then, every bounded local
derwation D from A into X* is g derivation. Moreover, if A has a bounded ap-
prommate identity, then the above statement of theorem is true for all Banach

A-bimodules.
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PROOF. Consider first the case X = AQA. Let D: A — (A®A)* be a bounded

local derivation, let E; and E, be disjoint compact subsets of @ 4, and let
g: (ABA)* — (ABA)*/Vo(By, By)*

be the natural quotient map. Put D = go D. Since ¢ is a bounded A-module

morphism, D is a bounded local derivation. Now let b, € I(E,), and define
Ti: A— (ABA) /Vo(By, Bo)* | Ti(a) = D(aby) (a € A).

Since D is a local derivation, for each a € A, there is a derivation S: A —

(ABA)*/Vo(Ey, Es)* such that D(ab1) = S(aby). So, by Lemma, 2.29(i),
Ti(a) = S(abi) = aS(b;) + S(a)b; = aS(by).

Thus T is a bounded local right multiplier, and so, by Theorem 2.28, it is a right

multiplier. Hence, for all a,c € A,

D(ach;) = aD(chy). (1)
Similariy, we can show that for all a,c € A and b, € I(Fy),

D(achy) = D(chy)a. (2)

Let a,c € A, and let U be a compact neighborhood in ® A such that F, C U and
U N E; = (. By the regularity of A, there are b,e and by in A such that =1 on
suppa Usuppc U UU Ej, e =1 on E, and e = 0 outside of U, and finally b; = 0
on Ey and by =1 on E,. Put by = b — ;. Then

b€ I(E;) , ab=a , bc=c , and eb=e. (3)
Since D is a local derivation, there is a derivation § from A into (AR A)* /Vo(E1, Ep)t

such that D(b?) = 6(b2). So, by Lemma, 2.29 (i) and (iv),

D(b%) = 6(b%) = ed(b?) = 6(eb?) — 6(e)b® = §(e) —d(e) = 0.
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On the other hand, from (1), (2) and (3),

D(a) = D(ab?

= D(abb) + D(abb,)

= aD(bbl) + l~7(bb2)a
But D(bb1) + D(bby) = D(b?) = 0. So, if we put 6 = D(bb;), then
D(a) = af — fa. (4)

Similarly, we can show that (4) holds with the same 6 if we replace a by either
c or ac. Therefore D(ac) = aD(c) + D(a)c. Since a and ¢ were arbitrary ele-
ments in A, by the density of A., we can conclude that D is a derivation into
(ARA)* [Vo(Ey, Byt

Consider the connecting map 6D given by 6*D(a,b) = aD(b) — D(ab) + D(a)b. It
is a 2-cocycle from A with the values in (A®A)*. However, since D =qo D isa

derivation, we have
go8'D(a,b) =0 (a,b€ A).
Thus ' D maps into Vy(Ei, Ez)* and since this holds for all the choices of E; and

E,, 81D maps into
(span{Vo(E1, E2) | E1 and E; are disjoint compact sets})*

which is J(A)?, by the assumption that the diagonal A is a set of local synthesis
for A®A. On the other hand, J(A)' = (A®A/J(A))*, and so 6D maps into
(A®A/J(A))* which is the dual of an essential Banach A-module. Moreover,
A®A/J(A) is symmetric. To see this, let u € A®A and a € A. Take a sequence

{u,} in A®A such that each u, has a compact support and w, — u. It is clear
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that au, —una € J(A) and au~ua = lim au, —u,a. Thus au —ua € J(A). Now
n~—00

fix b € A and define the bounded operator D: A — (ABA/J(A))* by
D(a) =6D(a,b) (a€ A).

We claim that D is a local operator. Let a € A and t ¢ supp a. There is a compact
neighborhood V' of ¢ such that suppanNV = 0. Take ¢ € A with suppc C V. By
the regularity of A, there ise € A such thate = 1 on V and e = 0 on supp a.
Then, since (A®A/J(A))* is symmetric and cq = 0,

¢D(a) = ceD(a) = cdD(a, b)e = —~cD(ab)e + cD(a)eb. (5)

On the other hand, let A € A be any element such that ch = eh = 0, and let
§: A— (ABA)* be a derivation such that D(h) = 6(h). Then

cD(h)e = cd(h)e = 6(ch)e — 6(c)he = 0.

Thus, from (5), ¢D(a) = 0, and so, by Lemma 2.1, ¢ ¢ suppD(a) i.e. D is a
bounded local operator. Therefore, by Proposition 2.4, it is a multiplier. Hence,

for all a,b,c € A, §D(ac,b) = adD(c,b). So
D(acb) — D(ac)b = aD(ch) — aD(c)b. (6)
Now take a,b € A. and ¢ € A such that c=1 on suppa Usuppb. Then from (6)
D(ab) — D(a)b — aD(b) = —aD(c)b. (7)

However, D is alocal derivation so that there is a derivation N from A into (ABA)*

such that D(c) = N(c). So
aD(c)b = aN(c)b = N(ac)b — N(a)ch = N(a)b— N(a)b = 0.

Hence, from (7), 6D(a,b) = 0 for all a,b € A,. Therefore, by the density of A,

0D =0, and so D is a derivation.
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We now consider the general case. Let z € X and define L,: X* — (ARA)* by
(Le(z") , a®b) = (z*, azb) (a,bE A, z* € X*).

It is easy to check that L, is a bounded A-bimodule homomorphism, and hence
L; o D is a bounded local derivation into (A®A)*. Thus L.(6D(c,e)) = 0 for all

cceeAandz € X. So
(6D(c,e) , azb) =0 (a,b€ A,z € X).

Thus, by the essentiality of X, D = 0, showing that D is a derivation.
Finally, suppose that A has a bounded approximate identity, X is a Banach A-
bimodule, and D: A — X is a bounded local derivation. By a similar argument to
the one made above (by replacing X with X**), we can show that for all a,b,¢,d €
A

cdD(a,b)d = 0. (8)
Put Y = X A. By Cohen’s factorization theorem [2, Theorem 11.10], Y is a closed
submodule of X. Let g be the natural quotient map from X onto X/Y. Let {ea}aca
be a bounded approximate identity for A. For each o € A, define T,: 4 — X/Y
by

Ta(a) = q(D(aes)) (a € A).

It is easy to see that T, is a bounded local right multiplier, and so, by Theorem 2.28,
it is a right multiplier. Hence, for all a,b € A and a € A, we have g(D(abe,)) =
ag(D(bes)). By letting o — oo, we see that g(D(ab) — aD(b)) = 0. So D(ab) —
aD(b) € X A. Hence 6D(a,b) € XA. So, by Cohen’s Factorization Theorem, there
ise € A and z € X such that §D(a,b) = ze. If we put d = e, in (8) and let
« — 00, then ¢6D(a,b) = 0. Similarly, by letting Y = AX, we can show that
6D(a,b) = 0 for all a,b € A. Therefore D is a derivation.



2.7. LOCAL DERIVATIONS WHICH ARE NOT DERIVATIONS 55

0O

COROLLARY 2.31. Let A be a hyper- Tauberian algebra such that ARA is semi-
simple, and let X be a symmetric Banach A-module. Then every bounded local

derivation D from A into X is zero.

PROOF. First consider the case X = A*. Since X is the dual of an essential
Banach A-bimodule, by Theorem 2.30, D is a bounded derivation. Therefore, by
weak amenability of A [Theorem 2.6(iii)], D = 0. For the general case, by a similar

argument to the one made in the proof of Proposition 2.4(ii), we have
bD(a) =0 (a,bec A). (1)

Now let a,b € A, and take ¢ € A such that ¢ =1 on suppa Usuppb. Soac=a
and be = b. Since D is a local derivation, there is a derivation S from 4 into X

such that D(ab) = S(ab). Hence
D(ab) = S(abc) = abS(c) + S(ab)c = aS(c)b + D(ab)e. 2)
However,
aS(c)b = S(ac)b — S(a)ch = S(a)b — S(a)b = 0.

Thus, from (1) and (2), D(ab) = 0. Hence D = 0 on A2, Therefore D = 0 since
A2? is dense in A. O

2.7. Commutative semisimple Banach algebras with local derivations

which are not derivations

In this final section, we give examples of classes of commutative semisimple
Banach algebras for which the question of the reflexivity of the space of derivations

fails to be true even in most natural setting i.e. from the algebra into its dual.
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Let €2 be an open connected subset of the complex plane, and let H (92) be the
algebra of analytic functions on Q. A Banach algebra of analytic functions on € is
a subalgebra A of H(Q) such that it is a Banach algebra with respect to some norm
and it contains a non-constant function. For each ¢ € 2, let ¢; be the character

on A specified by
pi(u) =u(t) (uveA).

By [10, Theorem 2.1.29(ii)], ¢; is bounded and lloe]l < 1 (¢t € Q). Therefore
lulloo < lJulla (u € A4), where || - lloo and || - ||4 are the supremum norm and the
A-norm on A, respectively. This, in particular, implies that A is a commutative
semisimple Banach algebra, and so, by a result of Johnson [2, Theorem 18.21], 0
is the only derivation on A. Therefore (bounded) approximately local derivations
on A are derivations. However, as we will see in the following theorem, this is not

always the case even for the bounded local derivations from A into A*.

THEOREM 2.32. Let Q be an open connected subset of the plane, and let A
be a Banach algebra of analytic functions on Q. Then there is a bounded local
derivation from A into A* which is not a derivation. Moreover, Z'(A, A*) is not

reflezive.

Proor. Let K be a closed disk in Q, and, for i = 0,1, 2, let
Ki={teK|ad9t)=0forallge A}

We claim that for each i, K; is finite. Otherwise, K; has a limit point in K , and
80, in (2. Thus, by [5, Theorem 3.7], a® =0 for all ¢ € A. Therefore the degree of
each element in A is at most 1. However, if a is a non-constant element in A, then

a® has the degree of at least 2. This contradiction shows that K; is finite. Hence
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there is t € Q \ (Ko U K7 U K3) and a,b, ¢ € A such that
a(t) #0, V(t) #0, "(t) #0. (1)
Now consider the operator D: A — A* defined by
D(u) = u"(t)p; (u € A).

From (1), (D(c) , a) = c"(t)a(t) # 0. Thus D is non-zero. We claim that D
is a bounded local derivation but it is not a derivation. We first show that D is
bounded. Take r > 0 such that B,(f), the closed disk with the center t and the
radius r, is a subset of Q. Let u € A. Since u is analytic and bounded on Q, by
[5, Cauchy’s Estimate 2.14], we have

2l _ 2Alulls

(1)) <

2||ul|a
r2
We now show that D is a local derivation. Define the operators D;: A — A*

(i=1,2) by

and so D is bounded.

Thus ||D(u)]| <

(Di1(v) , w) = v'(H)w(t);

(Da(v) , w) =v"(t)w(t) + v'(t)w' (t).
It is straightforward to check that D, and D, are derivations. Now let D, =
Z—,,I%Dl whenever u'(t) # 0, and D, = D, whenever v/ (t) = 0. Then, for each
u € A, D(u) = D,(u). Hence D is a local derivation. Moreover, by applying a
similar argument to the one made to prove that D is bounded, we can show that Dy
and D, are bounded. Therefore D € ref[Z1(4, A*)]. Finally a simple calculation
shows that

D(b*) - 2bD(b) = 2[¥/ (£))*p..

However, by (1), ¥(t) # 0. Thus D is not a derivation. 0O
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EXAMPLE 2.33. Let
AD)={feCcD): flpis analytic},

where D = {z € C: |2| < 1} is the open unit disc. Then (A(D), )] ||eo) is & Banach
algebra of analytic functions; it is called the disc algebra. Thus 2! (A(D), AD)*)

is not reflexive.



CHAPTER 3

Approximately local multipliers and approximately local
derivations

In this section, we primarily define approximately local multipliers and approx-
imately local derivations from Banach algebras, and then address the question of
when (mostly in the bounded case) they are multipliers and derivations, respec-
tively. To do this, we investigate the relationship between these two families of
operators. One of our main results (Theorem 3.5) states that, for unital Banach
algebras, if bounded approximately local multipliers are multipliers, then bounded
approximately local derivations are derivations. Later on, we extend this result to
a considerably larger class of Banach algebras that we call approximately locally
unital Banach algebras. By applying these ideas to the various classes of Banach
algebras, we show that bounded approximately local derivations are derivations if
they are defined from a hyper-Tauberian algebra, a C*-algebra, a Banach algebra
generated by idempotents, a semisimple annihilator Banach algebra, or the group

algebra L'(G) when G is a SIN or a totally disconnected group.

3.1. Definitions and basic properties of approximately local multipliers

and approximately local derivations

DEFINITION 3.1. Let A be a Banach algebra, and let X be a Banach right
A-module. An operator T' from A into X is an approzimately local left multiplier

if for each a € A, there a sequence of left multipliers {Tan} from A into X such
59
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that T(a) = nlingo Ton(a). If, in addition, T is bounded we say that T is a bounded
approzimately local left multiplier. Similarly, for a Banach left A-module X , We
can define approzimately local right multipliers and bounded approzimately local

Tight multipliers from A into X.

It is clear that local multipliers (respectively, bounded local multipliers) are
approximately local multipliers (respectively, bounded approximately local mul-
tipliers). We are interested in determining when bounded approximately local
multipliers are multipliers. This seems to be more general than determining the
reflexivity of the linear space of bounded multipliers (since, in Definition 3.1, we
are not assuming that each T, , is bounded), but the following theorem shows that

these two notions are closely related.

THEOREM 3.2. Let A be a Banach algebra with A = A2, and let Y be o Banach
left (respectively, right) A-module. Then the following statements are equivalent:
(?) Bvery bounded approzimately local right (respectively, left) multiplier from A
into Y is a right (respectively, left) multiplier.

(i) For each essential Banach left (respectively, right) A-module X, 4AB(X,)Y)
[respectively, B4(X,Y)] is reflezive.
(ii1) AB(A,Y) [respectively, B4(A,Y)] is reflexive.

PROOF. We prove the theorem for the case of a left module. The other case
can be proved similarly.

(i) = (ii) Let T € ref[4 B(X, Y)]. For each z € X, define:

I:: A->Y | Ty(a)=T(az) (ac A). (1)
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It is easy to check that T, is a bounded approximately local right multiplier and
so it is a right multiplier. Thus, T(acz) = aT(cx) for all a,c € A. Now the result
follows by essentiality of X,
(ii)==>(iii) Clear.
(il)=>(i) Let T: 4 —» Y be a bounded approximately local right multiplier. For
b€ A, we define T} as in (1). Then T} € ref[4B(A,Y)] =4 B(4, Y). So T(ach) =
aT'(cb) for all a,c € A. The result now follows from the fact that 4% = A. O

The following theorem shows that if a Banach algebra A has a bounded ap-
proximate identity, then the reflexivity of the linear space of bounded multipliers
from A into A* implies that every bounded approximately local multiplier from A

is a multiplier.

PROPOSITION 3.3. Let A be g Banach algebra with q bounded approzimate
identity such that 4B(A, A*) [respectivly, B4(A, A*)] is reflevive. Then for any
Banach left [respectively, right] A-module X, every bounded approzimately local
Tight [respectively, left] multiplier from A into X is 4 Tight [respectively, left] mul-
tiplier.

PROOF. We prove the theorem for the case of a left module. The other case
can be treated similarly. In view of Theorem 3.2, it suffices to prove that 4B(4,X)

Is reflexive. Let T' € ref[4B(A, X)] and F € X*. Consider
Kp: X — A" | (Kp(z), a) = Flar) (ac A ,ze X).
Then K is a bounded left A-module morphism and S0,

KroTe ref[AB(A, A*)] =4 B(A,A*)
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Thus, for all a,b € A, Kr(T(ab) - aT(b)) = 0. Hence, if we put u = T'(ab) — aT'(b),
then Fcu) = O forallc € 4 and F € 4* so that cu = 0. On the other hand,
there is a sequence {T}} of bounded right multipliers from A4 into X such that
T(ab) = nlggo Tn(ab). So

U= n]ilgo T.(ab) — aT'(b) = lim a[T(b) — T(b)).

n-—00
Therefore, u € AX. So, by Cohen’s factorization theorem, there are e € A and
T € X such that v = ex. This, together with the fact that Ay = 0, implies that
u=0. 0

DEFINITION 3.4. Let A be a Banach algebra, and let X be a Banach A-
bimodule. An operator D from A into X is called an approzimately local derivation
if for each a € A, there is a sequence of derivations {Dan} from A into X such that
D(a) = nl_1_*rglo Doypn(a). If, in addition, D is bounded, we say that D is a bounded

approxzimately local derivation.

It is clear that local derivations from A into X are exactly members of ref,[Z(4, X )]-
Also, any element of ref,[Z1(A4, X )] or ref[ZY(A4, X)] is an approximately local
derivation (bounded, in the latter case). But the converse may not be true, since
the derivations D, considered in Definition 3.4 need not be bounded.

The following theorem which determines the relationship between bounded
approximately local multipliers and bounded approximately local derivations is

critical in our study.

THEOREM 3.5. Let A be a Banach algebra such that every bounded approzi-
mately local multiplier from A into any Banach A-module is a multiplier. Let X

be a Banach A-bimodule, and let D be a bounded approzimately local derivation
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from A into X. Then for all a, b,c,d € A we have

D(acdb) — D(acd)b — aD(cdb) + aD(cd)b = 0

If, in addition, A is unital, then D is a derivation.

PROOF. Take a € 4, and let Y be the norm-closure of aX. Then Y is a closed
right A-submodule of X. So X/Y is a Banach right A-module. Define the operator
D by

D: A= X/Y , D(b)=D(@h)+Y (be A).
Since D is a bounded approximately local derivation, for each b € A, there is a

sequence of derivations {D,} from A4 into X such that D(ab) = lim D, (ab). Hence
n—oo

D(®) = lim D,(ab)+Y

ll

Lim [aDy(b) + Do (a)b] + Y
= lim [Dy(a) + Y]b.

Hence D is a bounded approximately local left multiplier from A4 into X /Y. Thus,
by the hypothesis, D is a left multiplier. Therefore, for all b,d € A, D(db) = D(d)b.
Hence D(adb) — D{ad)b € Y. Thus there is a sequence {z,} in X (possibly

depending upon a, b and d) such that
D(adb) — D(ad)b = nl:n; azy,. (1)
Fix b,d € A and define
T:A—X , T(a) = D(adb) - D(ad)b (a € A).

By (1), T is a bounded approximately local right multiplier and so it is a right
multiplier. Therefore, for all a,c € A, T'(ac) = aT'(c). So D(acdb) — D(acd)b =
aD(cdb) — aD(cd)b.
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Let A be unital with identity e. Put ¢ = d = e. Then D(ab)— D(a)b—aD(b) =
—aD(e)b. On the other hand, if A: A — X is a derivation then

aA(e)b = A(ae)b — A(a)eb = 0.

Therefore aD(e)b = 0, since aD(e)b = lim aD,(e)b for a sequence {D,} of deriva-
n—o0

tions from A into X. So D(ab) — D(a)b— aD(b) = 0. Thus D is a derivation. []J

The next theorem provides useful criteria, for determining whether a bounded
approximately local derivation from a Banach algebra with a bounded approximate

identity is a derivation.

THEOREM 3.6. Let A be a Banach algebra with a bounded approzimate identity
{ea}aca such that 4B(A, A*) and Bu(A, A*) are reflezive. Let X be a Banach
A-bimodule, and let D be o bounded approzimately local derivation from A into
X*. Then there is a bounded derivation D and a right multiplier T from A into
X* such that D = D+T. Moreover, if X is essential, then D and T are uniquely
determined by this property and the following statements are equivalent:

(1) D is a derivation.

(1) T is zero.

(#) weak* — o}—l-»rgo D(eq) =0.

() For each a € A, there is a sequence of bounded derivations {Doyn} such that

D(ea) = im Dyp(es) and sup{||Danl| | € A,n € N} is finite.

PROOF. By Proposition 3.3 and Theorem 3.5 (considering the fact that A4 =

A?) for all a,b,c € A, we have

D(acb) — D(ac)b — aD(cb) + aD(c)b = 0.
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By putting ¢ = e, and letting & — co we obtain

D(ab) — D(a)b — aD(b) + lim aD(ey)b = 0. (1)

a—0Q
Since {D(eq)} is bounded, there is z* € X* and a subnet {D(eq,)} such that
D(eq;) — 2* in the weak* topology. So
D(ab) — D(a)b — aD(b) + az*b = 0.
Define T: A — X* by T(a)=ar*and put D =D —T. It is straightforward to
check that T is a right multiplier and D is a bounded derivation.
(i) = (iv) and (ii)==(i) are obvious and (ili)==(ii) and the uniqueness follows
from the essentiality of X. For (iv)==(iii), put K = sup{ [[Danll | @ € A,n € N}.
Then for each a,b€ A,z e X,a € Aandn e N,
(Dapn(eq) , bza) = (aDoples) , bz)
= <Da,n(aea) , bz) ~ (Dayn(a) , €abT)
= (Dgn(aeq —a), bz) — (Donla) , enbs — bz).
So
[{Dan(ea) , bza)| < Kllaca - al |[bx]| + K |fa| ||]] [|ead — b|.
Therefore, first by letting n — co and then o — 00, we obtain
(D(eq) , bza) — 0.

The final result follows since, by Cohen’s factorization theorem and the essentiality

of X, every element in X can be written as bza forsomea,bc Aandzec X. O

We note that the statements of the preceding theorem hold if we replace “right
multiplier” with “left multiplier”. In fact, since 4 has a bounded approximate
identity, we can write every right multiplier from A into X* as a sum of a left

multiplier and an inner derivation from A into X*.
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We recall that a Banach algebra is approximately weakly amenable if every

bounded derivation D from A4 into A* is approximately inner [21].

COROLLARY 3.7. Let A be an approzimately weakly amenable Banach algebra
with a bounded approzimate identity. If 4B(A, A*) and By(A, A*) are reflezive,
then Z'(A, A*) is reflezive.

PROOF. Let D € ref[Z!(A, A*)]. By Theorem 3.6, there are A € Z1(A, A*)
and T" €4 B(A,A*) such that D = A+T. So T ¢ ref[Z(A, A*)]. Hence, since A is
approximately weakly amenable, for every a € A, there is a sequence {zon} € A*

such that

T(a) = lim az,y — 24 pa. (1)
Now, let {eq | @ € A} be a bounded approximate identity for A and E be a weak*-
cluster point of {e, | @ € A} in A**. Then E is a two-sided identity for A4 in A**.
In particular, for all @ € A and z € A*, (E, az — za) = (Ea — aF | z) = 0.

Therefore, from (1),
(B, T(a)) =0 (a€A). (2)

But T is a (bounded) right multiplier and so, by taking a weak*-cluster point of
T'(eq), there is y € A* such that T'(a) = ay. Thus

(B, T(a)) =(Ea, y)=(y, a).
So, from (2), y = 0, and hence T" = 0. Therefore, D is a derivation. O

Let ¢ be a character on the Banach algebra A (i.e. ¢ is a non-zero multiplicative

linear functional on A). A functional d on A is called a point derivation at ¢ if

d(ab) = d(a)p(b) + p(a)d(b) (a,be A).
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It is shown in [21, Proposition 2.1] that if a Banach algebra has a non-zero bounded
point derivation, then it is not approximately weakly amenable. As we see in
the next proposition and the following corollary, non-zero point derivations also
generate local multipliers which are not multipliers. This is noted for s particular

example in [28, p.319]. We modify it for the general case.

PROPOSITION 3.8. Let A be o Banach algebra, let ¢ be a character on A,
and let d be a point derivation at . Then the operator D: A — A* defined by
D(a) = d(a)p is a derivation which is also both g local left and right multiplier.

Moreover, if d is bounded, then so is D.

PROOF. It is straightforward to check that D is a derivation, and, if d is
bounded, then D is bounded. So it Just remains to show that D is both a lo-
cal left and right multiplier. For that, it suffices to show that for every a € A there
is Fy € A* such that for every b € 4

(D(a), b) = (F., ba) = (F, , ab). (1)
Take a € A. We consider two cases:
Case I: p(a) # 0. Put F, = D(a)/p(a). Then
(Fa, ab) = 1/p(a)(D(a), ab)
[1/¢(a)]d(a)(ab)
[1/(a)]d(a)p(a)p(b)
= (D(a), b).

Il

Similarly, we have (F, , ba) = (D(a) , b).
Case II: p(a) = 0. Put F, = d. Then it is easy to see that (1) holds. O
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COROLLARY 3.9. Let A be a Banach algebra such that A = A2, Suppose that
every bounded local left multiplier from A into A* is g left multiplier. Then A does
not have a non-zero bounded point derivation. The same result is true if we replace

“left” with “right” in the above statement.

PROOF. Let d, ¢ and D be as considered in Proposition 3.8. Then, by hypoth-
esis and the same proposition, D is both a bounded derivation and a bounded mul-
tiplier. Therefore, a simple calculation shows that D vanishes on {ab : a,b € A},

and so does d. Hence d = 0. 0

Let A be a Banach algebra, let X and Y be left (right) Banach A-modules, and
let T: X — Y be an operator. Then T is left-intertwining (right-intertwining) over
A if the operator z - T(az) —aT(z) ; X - Y (z — T(za) - T(z)a; X - Y)
is bounded for all a € A. Suppose that X and ¥ are Banach A-bimodules. Then
T is intertwining over A if it is both left-intertwining and right-intertwining. It is
easy to see that each derivation is an intertwining map. A classical approach for
determining whether an operator T: X — Y is bounded is first to see whether it
is intertwining. As we see in the next two results, this approach will help us to

determine whether an approximately local derivation is bounded.

THEOREM 3.10. Let A be a Banach algebra with a bounded approzimate identity
such that every approzimately local multiplier from A into any Banach A-module
is a multiplier. Then every approzimately local derivation from A into any Banach

A-bimodule is an intertwining map over A.

PRrROOF. Let X be a Banach A-bimodule, let D: A — X be an approximately
local derivation, and let a € A. Let {b,} be a sequence in A such that b, — 0. By
[2, Corollaries 11.11 and 11.12], there are ¢,d € A and a sequence {t,} C A such
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that for each n € N, b, = cdt,, and t,, — 0. An argument similar to the one found

in Theorem 3.5 shows that the operator T: A — X defined by
T(b) = D(ach) —aD(ch) (b€ A)

is an approximately local left multiplier, and so, by hypothesis, T" is a left multi-
plier. Thus

D x a—a- D(by) = T(dta) = T(d)t, — 0.
So D is left-intertwining over A. Similarly, we can show that D is right-intertwining

over A. O

COROLLARY 3.11. Let A be a Banach algebra with a bounded approzimate
identity such that every approzimately local multiplier from A into any Banach
A-module is a multiplier. If every derivation from A into any Banach A-bimodule
is bounded, then every approzimately local derivation from A into any Banach

A-bimodule is bounded.
PROOF. The result follows from Theorem 3.10 and [10, Corollary 277. 0O

3.2. Approximately locally unital Banach algebras

In Theorem 3.5 we showed that for unital Banach algebras, the reflexivity of
the linear space of bounded multipliers is sufficient for bounded approximately
local derivations to be derivations. In this section, we extend that result to a
considerably larger family of Banach algebras that we call approximately locally

unital.

DEFINITION 3.12. Suppose that A is a Banach algebra and @ € A. We say that
a has a left (right) identity in A if for some b € A, ba = a (ab = a). We say that

A is approzimately locally unital if there are subsets 4; and A, of A such that A
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is the closed linear span of both A; and A, and each element of A; and A, has a
left identity and a right identity in A, respectively. From the definition, it is clear
that if A is approximately locally unital then A = AZ.

EXAMPLE 3.13. Let A be a Tauberian algebra, and let A, be the set of those
elements in A with compact support. By the regularity of A, for each a € A,
there is an element b € A such that b= 1 on supp a, and 50 ab = ba = a. Thus 4

is approximately locally unital since A, is dense in A.

PROPOSITION 3.14. Let A be an approzimately locally unital Banach algebra
such that 4B(A, A*) [respectively, B4(A, A*)] is reflezive. Then every bounded
approzimately local right [respectively, left] multiplier from A into any Banach left
[respectively, right] A-module is a right [respectively, left] multiplier.

PROOF. Let X be a Banach left A-module. By Theorem 3.2, it suffices to show
that 4B(A, X) is reflexive. Let T € ref{4 B(A, X)]. By a similar argument to the
one made in the proof of Proposition 3.3, we can show that for all a,b,c € A,
aT(bc) = abT(c). Now let A; be as in Definition 3.12 and take b € A;. There is an
element a € A such that ab = b. Since T € ref[4B(A, X)), for each ¢ € A there is
a sequence {7} in 4B(4, X) such that T(be) = nILngo Tn(be). So

T(be) ~bT(c) = lim T (be) - bT(c)
= lim T:,(abc) - abT(c)
= lim T (bc) — abT(c)
= aT(bc) — abT(c)

= 0.
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The final result follows because A is the closed linear span of A;. The proof in the

case of right modules follows similar lines. O

THEOREM 3.15. Let A be an approzimately locally unital Banach algebra such
that 4B(A, A*) and B4(A, A*) are reflezive. Then every bounded approzimately
local derivation D from A into a Banach A-bimodule X is a derivation. In partic-

ular, Z'(A, X) is reflezive and ref,[Z1(4, X)] N B(A,X) =ZYA, X).
PROOF. From Proposition 3.14 and Theorem 3.5, for all q, byc,d € A,

D(acdb) ~ D(acd)b — aD(cdb) + aD(cd)b = 0. (1)
Let A; and A, be as in Definition 3.12. Take a € A, and b € A,;. There are e, feA
such that ae = a and fo =b. Let g = e+ f — ef. Then it is easy to see that
ag = a and gb = b. Now, if, in (1), we put ¢ = d = g then

D(ab) — D(a)b ~ aD(b) = —aD(g?)b.
On the other hand, if A is any derivation from A into X then,
alA(g%)b = Aag®)b — Aa)g®b = A(a)b - Aa)b=0.

Therefore, aD(g%)b = 0, since aD(g?)b = lim aD,(g%)b for a sequence {D,} of
derivations from A into X. So D(ab) = D(a)b + aD(b). The final result follows
because A is the closed linear span of both 4; and A,. 0

The following is an application of Theorem 3.15 which will be used later.

'THEOREM 3.16. Let A be a Banach algebra, and let {Ai}tier be a family of
Banach subalgebras of A such that (e 14:)” = A. Suppose that, for eachi € I,
A; 15 approzimately locally unital and 4,B(A;, AY) and By, (Ai, AY) are reflezive.
Then every bounded approzimately local derivation from A into any Banach A-

bimodule is a derivation.
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PROOF. By hypothesis, for each i € T , there are subsets Al and Al of A; such
that A; is the closed linear span of both Al and A7, each element in A! has a left
identity and each element in A7 has a right identity in A4;. So if we puf A = Uer AL
and A, = U A], then 4; and A4, satisfy the assumption of Definition 3.12 and
it follows that A is an approximately locally unital Banach algebra. Therefore,
by Theorem 3.15, it suffices to show that 4B(A, A*) and B4(A, A*) are reflexive.
Let T' € ref{aB(A, A*)], and let T} be the restriction of T to A;. By hypothesis
and Proposition 3.14, each T; is a right multiplier. On the other hand, if a € A;
and b € A; where ¢ # j then aT(h) = 0. To see this, let {T},} be a sequence in
4B(A, A*) such that T(b) = Tr:,l}-{go Tn(b). Then
aT'(b) = nh_)ngo aT,(b) = nlingo Th(ab) = 0.
Thus, for each a;,b; € A; and aj,b; € A; with 1 # j,
Tl(a: +a;) (b + b5)] = T(aa;+bd;)
= a;T(a;) + b;T(by)
= (a;+a;)T(b; + b;).
Therefore T acts as a right multiplier on the direct sum of {A:}ier which is dense
in A. Since T is bounded, it follows that T €4 B(A, A*). Similarly, we can show
that B4(A, A*) is reflexive. O

Let A and B be Banach algebras. There are Banach A-bimodule actions on

A®B specified by
c-(a®b)=ca®b , (a®b)-c=ac®b (a,c€ 4,b € B).
Similarly, we can define Banach B-bimodule actions on A®B specified by

do(a®b)=a®db , (a®b)od=0a®bd (a € A,b,d € B).



3.2. APPROXIMATELY LOCALLY UNITAL BANACH ALGEBRAS 73

Moreover, it is straightforward to check that for ¢ €A, de Band z € AQB

(a®@blz=qa-(box) =bo(a-z).

THEOREM 3.17. Let {A;}%; be a finite set of Banach algebras, and let A =
® A;. Suppose that, for each i, A; is approzimately locally unital and 4, B(4;, A} )
and By, (A, AY) are reflerive. Then every bounded approzimately local derivation

Jrom A into any Banach A-bimodule is a derivation.

PROOF. First consider the case n = 2. For i = 1,2, there are subsets A} and
A7 of A; such that A; is the closed linear span of both 4! and A, each element in
A has a left identity and each element in A7 has a right identity in A4;. Put

={a1®ay|a; € 4} Ar=1{b1®by | b; € AT}.
Then A; and A, satisfy the assumption of Definition 3.12 and so A is an approx-
imately locally unital Banach algebra. Therefore, by Theorem 3.15, it suffices to
show that 4B(A,.A*) and B4(A, A*) are reflexive. We show that AB(A, A%) is
reflexive. The other case can be treated similarly. Let T € 4 B(A, A*). We claim
that T(c-u) = c¢- T(u) for all c € 4; and w € A. To this end, it suffices to show
that, for all ¢ € A; and a;,b; € A; (i=1,2),
(T(car ®az) , b1 ®bo) = (T(a1 ® a3) , e ® ba). (1)
Let a; € AL and b, € Aj. By a similar argument to the one made in Theorem
3.15, there is g € A, such that gaz = ap and byg = by. Hence
(T'(ca; ® az), b ® ba) = (T(cay ® gaz) , by ® ba)
= {((c®9)T(a; ® az) , by ® by)
= (T(a1®az) , bic® byg)

= (T(a1 ® as) , bic® ba).
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So equation (1) holds since A is the closed linear span of both AL and A5 .
Therefore, 4B(A, A*) C4, B(A, A*). On the other hand, A is an essential Ba-
nach A;-bimodule, and so, from Proposition 3.14 and Theorem 3.2, 4, B(A, A*) is

reflexive. Thus

ref[4B(A, A*)] C4, B(A, A*). (2)
Similarly, we can show that

ref[4B(A, A*)] C4, B(A4, A*). (3)
Now let T' € ref[4B(A, A*)]. Then for every a; € Aj,as € Ay, and u € A, from (2)
and (3) we have

T[(a1 ® ag)u] = T[a]_ . (ag < ’U,)] =a T(az < u) == ((11 ® az)T(U,)

n—1

Hence T €4 B(A, A*). Forn > 2, put B = ,<§1Ai. Then A = B®A,. So the result

follows by induction. 0

3.3. Approximately local multipliers and approximately local

derivations from hyper-Tauberian algebras

Section 2.6 was concerned with the question of when the bounded local derjva-
tions from hyper-Tauberian algebras are derivations. Although we showed that the
answer is affirmative in some cases, we were not able to obtain a general result. In
this section, by using the theory of approximately locally unital Banach algebras
that we developed in section 3.2, we answer the question completely in an even

more general setting:

THEOREM 3.18. Let A be a hyper- Tauberian algebra. Then every bounded ap-

prozimately local derivation from A into any Banach A-bimodule is o derivation.
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PrROOF. By Example 3.13, A is approximately locally unital. Hence, from The-
orem 3.15, it suffices to show that 4B(A, A*) is reflexive. Let T' € ref[4B(4, A*)].
For each a € A, there is a sequence {7}, } in 4B(A, A*) such that T'(a) = nangO Tu(a).
In particular, since each T}, is a multiplier, ba = 0 implies that bT'(a) = 0. There-
fore T is a local operator, and so, by hypothesis, it is a multiplier. This completes

the proof. O

Let A be a Tauberian algebra such that every closed ideal of finite codimension
in A has a bounded approximate identity. Then, by [10, Corollary 5.3.5], each
intertwining map from A into any Banach A-bimodule is bounded. As we see in
the following theorem, this will help us to show that approximately local deriva-
tions from this type of hyper-Tauberian algebras are bounded, and so they are
derivations. Some ideas in the proof have been extracted from (28, p. 324-325].

First let us recall that for Banach spaces X and Y, and an operator T: X — Y,

the separating space of T is S(T), where
&(T) ={y €Y | 3{z,} C X such that z,, — 0 and T(zn) — y}.

So, by Closed Graph Theorem, 7" is bounded if and only if §(T) = {0}.

THEOREM 3.19. Let A be a hyper-Tauberian algebra such that every closed
ideal with finite codimension in A has a bounded approximate identity. Then every

approzimately local derivation from A into any Banach A-bimodule is a derivation.

PROOF. By the preceding theorem, it suffices to show that every approximately
local derivation from A into any Banach A-module is bounded. To this end, from
Theorem 3.10 and the remark made after Theorem 3.18, it suffices to show that
every approximately local multiplier from A into any Banach A-module is a mul-

tiplier. Let Z be a Banach left A-module, and let T: A — Z be an approximately
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local right multiplier. For each open subset U of &4 put
XU)=1U), Y(U)={z € Z | suppz C B, \U},

where our notations follow that of [49, Theorem 2.3]. Therefore, from the result
referred to, there is a finite subset £ of ® 4 such that for every t € &4 \ E there is
an open neighborhood Uy of ¢ for which Q(U:) o T is bounded where QUs): Z —
Z[Y (Uy) is the natural quotient map. Now let z € &(T") and {an} C A such that
an — 0 and T'(a,) — z. Thus Q(U:)z =0, and so supp » C D4\ U;. Hence

suppz C E' (2 € 6(T)). (1)

On the other hand, every element in Iy(E) has a compact support which is disjoint
from E. Thus, by (1), Io(B)z = 0. This means that I(E)z = 0 since, from
Corollary 2.9, F is a set of synthesis. Therefore, from the fact that I(E) has a

bounded approximate identity, we have
S(T)NIE)Z = {0}. (2)

On the other hand, let T, be the restriction of T to I(E) and ¢ € (E). By

hypothesis, there is a sequence {7},} of right multipliers from A into Z such that

T(a) = lim Ty(a). Also, from Cohen’s factorization theorem, there are b, ¢ € I (E)
n—oo

such that a = be. So
T(a) = nh_% T (bc) = nh_br{)lo 6T, (c).

Hence T'(a) € T (E)Z. However, a simple application of Cohen’s Factorization

Theorem shows that J (E)Z is closed, and so T(a) € I(E)Z. Thus, from (2),

S(To) € 6(T)N1(B)Z = {0}.
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Therefore T; is bounded, and so is T since I (E) is a closed ideal of finite codimen-

sion in A. A similar result can be obtained for approximately local left multipli-

ers. O

COROLLARY 3.20. Let G be a locally compact group such that G, is abelian,
and let p € (1,00). Then every bounded approzimately local derivation from A (G)
into any Banach Ay(G)-bimodule is a derivation. If, in addition, G is amenable,

then the result is true for all approzimately local derivations.

PROOF. By Theorem 2.23, A,(G) is hyper-Tauberian. Hence the result follows
from Theorem 3.18. If G is amenable, then, by [15, Theorem 4.2], every closed ideal
with finite codimension in A4,(G) has a bounded approximate identity. Therefore,

by Theorem 3.19, approximately local derivations from A,(G) are derivations. [J

3.4. Approximately local multipliers and approximately local

derivations from C*-algebras

Let A be a C*-algebra, and let X be a Banach A-bimodule. It is known that
derivations from A into X are bounded [10, Theorem 5.3.7], and so Z(4, X) =
Z'(A,X). In [28], Johnson has shown that local derivations from A into X are
derivations ie. Z(4,X) is algebraically reflexive. In this section we prove the
stronger statement that approximately local derivations from A into X are deriva-

tions. In particular, Z1(A4, X) is also reflexive. First, we need the following lemma.

LEMMA 3.21. Let A be a unital C*-algebra. Then every bounded approzimately

local multiplier from A into any Banach A-module is q multiplier.

PROOF. By Proposition 3.14, it suffices to show that 4B (4, A*) and By (A, A%)
are reflexive. First assume that A = C(K) for a compact subset K of R and R
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is the restriction map from Co(R) onto C(K). Then C(K) becomes an essential
Banach Cy(R)-bimodule for the actions defined by

ba = R(b)a, ab=aR(b) (ac C(K),be Cy(R)).

On the other hand, Co(R) is hyper-Tauberian (e.g. Theorem 2.17). Hence, by The-
orem 3.18 (see also Proposition 2.4), Boyw(C(K), C(K)*) and gy B(C(K), C(K)*)

are reflexive. The final result follows from the fact that
Bowx)(C(K), C(K)*) = Boyw)(C(K), C(K)*);

o) B(C(K), O(K)*) =a,w) B(C(K),C(K)*).

We now consider the general case. Let T' € ref[4 B(A, A*)], let a be a self-adjoint
element in A, and let A(a) be the C*-subalgebra of A generated by a and 1. It is
well-known that there is a compact subset K of R such that A(a) is isometrically
isomorphic to C(K). On the other hand, A is an essential Banach left A(a)-
module so, by the preceding case and Theorem 3.2, a(e)B(A4, A*) is reflexive. But
AaB(A, A*) Cawy B(A,A*) so T €a@) B(4,4%) ie. T(ab) = aT(h) for all b € A.
The final result follows since A is the linear span of its self-adjoint elements. The

reflexivity of B4(A, A*) can be proved similarly. ]

THEOREM 3.22. Let A be a C*-algebra, and let X be a Banach A-bimodule.

Then every approzimately local derivation D from A into X is a derivation.

Proor. Without loss of generality, we can assume that A is unital, for oth-
erwise we may consider the unitalization Af of A (see [10, Definition 3.2.1]) and
extend X to a Banach A'-bimodule by defining 1z = z1 = z and D to an approxi-
mately local derivation from A into X by defining D(1) = 0. By Theorem 3.5 and

Lemma 3.21, in order to show that D is a derivation it suffices to show that D is
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bounded. To this end, from [7, Corollary 1.2], it suffices to show that the restric-
tion of D to any commutative unital C*-subalgebra C(Q) of A is bounded. But
this follows immediately from the remark made after Theorem 3.18 since every
closed ideal in a C*-algebra has a bounded approximate identity [10, Theorem

3.2.21]. This completes the proof. ]

3.5. Approximately local multipliers and approximately local

derivations from Banach algebras generated by idempotents

Let A be a Banach algebra, let E be the set of idempotents in 4, and let
A(E) be the subalgebra of A generated by E. We say that A is generated by
idempotents if A(E) is dense in A. It is easy to see that A(E) is the linear span of
Y={ej...ex|n€N,e; € E}. Moreover, for each element u = €1...e, in 3, e; and

e are left and right identities for u, respectively.

THEOREM 3.23. Let A be a Banach algebra generated by idempotents. Then
every bounded approzimately local derivation from A into any Banach A-bimodule

s a derivation.

PROOF. By the remark made before the theorem, A is approximately locally
unital. So from Theorem 3.15, it suffices to show that 4B (A, A*) and B4(A, A*) are
reflexive. Let T' € ref[4B(A4, A*)], and a € A. Let e be an idempotent in A. By the
assumption, there is a sequence {T;,} C4 B(A, A*) such that T(ea) = nh_)rgo T.(ea).

Hence

€T (ea) = lim eTp(ea) = lim T, (e%a) = lim T, (ea) = T'(ea). (1)
n—oo n—00 n—00
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On the other hand, there is a sequence {S,} C4 B(A, A*) such that T'(a — ea) =

lim S, (a — ea). So

€T(a —ea) = lim eSy(a —ea) = lim S,(ea — e’a) = 0. (2)
n—o0

n—oo
Therefore, from (1) and (2), T'(ea) = eT'(a). So T €4 B(A, A*) because A is
generated by idempotents. The reflexivity of B (A, A*) can be proved similarly.
O

Let X be a Banach space, let F(X ) be the algebra of all finite rank operators in
B(X), and let Y be an (algebraic) F(X)-bimodule. M. Bresar and P. Semrl have
shown in [3, Theorem 3.6] that every linear mapping D: F(X) — Y satisfying
D(P) = PD(P) + D(P)P for every projection P in F(X) is a derivation. Now
assume that Y is, in addition, a normed F(X)-bimodule and D: F(X)—Yisan
approximately local derivation (the definition would be similar to Definition 3.4).
Then it is straightforward to check that D satisfies the above condition of Bregar

and Semrl so D is a derivation. Hence we can state the following:

THEOREM 3.24. Let X be a Banach space, let F(X) be the algebra of all fi-
nite rank operators in B(X), and let Y be a normed F(X )-bimodule. Then every

approzimately local derivation D from F(X) into Y is a derivation.

We recall that a Banach operator algebra on a Banach space X is a subalgebra
of B(X) containing F(X) such that it is a Banach algebra with respect to some
norm.

The following corollary follows immediately from the preceding theorem and

Corollary 3.9.

COROLLARY 3.25. Let X be a Banach space, and let A be a Banach operator

algebra on X. If F(X) is dense in A then every bounded approzimately local
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derivation from A into any Banach A-bimodule is a derivation. In particulor, A

does not have a non-zero bounded point derivation.

EXAMPLE 3.26. Let X be a Banach space. Then A(X), the space of approx-
imable operators, N (X), the space of Nuclear operators and Co(X)for 1 <p<oo
when X is a Hilbert space are Banach operator algebras having F(X) as a dense
subalgebra. See [10, Definitions A.3.55 and A.3.57] and [45, Chapter 2] for the

details.

3.6. Approximately local multipliers and approximately local

derivations from semisimple annihilator Banach algebras

Let A be Banach algebra and E C A. The left and right annihilator of F are
the sets lan(F) and ran(E) given by

lan(E) ={a € A|aE={0}} , ran(E)={a€ A|Ea= {0}}.

A is an annihilator Banach algebra if for every closed left ideal L and closed right

ideal R,

ran(L) = {0} if and only if L = A;

lan(R) = {0} if and only if R = A.

ExXAMPLE 3.27. (i) Let G be a compact group. Then LP(@) for 1 < p < oo and
C(G) with the convolution product are semisimple annihilator Banach algebras [1,
Section 4].

(ii) Let G be a locally compact group. Then AP(G), the algebra of almost peri-
odic functions on G with convolution product and uniform norm, is a semisimple

annihilator Banach algebra [1, Section 4].
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LEMMA 3.28. Let A be a semisimple annihilator Banach algebra. Then A is

approzimately locally unital.

PRrROOF. Let

Ay =U{I|I is a minimal right ideal};
and

Ar =U {I'| I is a minimal left ideal}.
From [2, Proposition 32.17], there is a two-sided ideal of A, denoted by soc(A4), such
that the linear span of both A; and A, are dense in soc(A) and 4 = soc(4). On
the other hand, by [2, Proposition 30.6], every minimal right ideal and minimal
left ideal has the form eA and Af for some minimal idempotents e and f in
A, respectively. In particular, e is a left identity for elements of eA and fis a
right identity for the elements of Af. Therefore, A; and A, satisfy the condition

considered in Definition 3.12 and so A4 is approximately locally unital. |

THEOREM 3.29. Let A be a semisimple annihilator Banach algebra, and let X
be a Banach A-bimodule. Then every bounded approzimately local derivation from

A into X is a derivation.

PROOF. By (2, Proposition 32.17], A4 is the closure of the direct sum of the
minimal closed bi-ideals of 4. Also, by [2, Corollary 32.12}, each minimal closed
bi-ideal of A is a semisimple annihilator Banach algebra. So, from Lemmsa 3.28
and Theorem 3.16, it suffices to show that for each minimal closed bi-ideal 7,
rB(I,I*) and B;(I,I*) are reflexive. Let T € ref[;B(I,I*)]. By [2, Theorem
32.20], there is a Banach space X such that soc(I) and F(X) are algebraically
isomorphic. Therefore, from a similar argument to the one made is Theorem 3.24,

the restriction of T' to soc(I) is a right multiplier. So T' €; B (I, I*) because of the



3.7. GROUP ALGEBRAS 83

fact that I = soc(I) and T is bounded. The reflexivity of By(I, I*) can be proved

similarly. O

COROLLARY 3.30. Let A be a semisimple annihilotor Banach algebra. Then

there is no non-zero bounded point derivation on A.
PROOF. This is a result of the preceding theorem and Corollary 3.9. O

3.7. Approximately local multipliers and approximately local

derivations from group algebras

In this section, we investigate bounded approximately local multipliers and
bounded approximately local derivations from the group algebras. We start with
the following essential theorem which states that bounded approximately local

multipliers from the group algebras are multipliers.

THEOREM 3.31. Let G be a locally compact group. Then every bounded approz-

tmately local multiplier from LY(G) into any Banach LYG)-module is a multiplier,

PROOF. Since L'(G) has a bounded approximate identity, from Proposition
3.3, it is enough to show that @) B(LY@), L}G)*) and Brie)(LYG), LH{G)*)

are reflexive. First we consider the case when @ is discrete. Let
Te ref[p(G)B(ll(G), ll(G)*)].

Take z € G and let H be the subgroup generated by z. Then H is an abelian
subgroup of G, I'(H) is a closed subalgebra of I"(G) and I}(G) is an essential
Banach I*(H)-bimodule. Also, it is easy to see that the restriction of T to I'(H) is
a bounded approximately local right multiplier from I*(H) into I'(G)*. Thus, by
Proposition 2.19 and Theorem 3.18, Tlpgay: IN(H) — IY(G)* is a right multiplier.



3.7. GROUP ALGEBRAS 84
In particular, if e is the identity in G then T(6;) = 6,T(6,). Therefore T(f) =
JT(d.) where f is in the linear span of ¥ = {4, | # € G}. The final result follows
from the fact that T is bounded and I'(G) is the closed linear span of X.
We now consider the general case. First we note that
1) B(LYG), LN G)) = 1) B(LY(G), L}(G)")
= u@BLYG), LM@Y, (1)
To see this, let T €11 B(LY(@),LY(G)*) and y € M(G). Since LY(G) is s.o.
dense in M(G) [10, Theorem 2.9.49] there is a net {f;},cs in LY(@) such that for
allg € L'(G), fix g — p+ g and 9% fi = g% p in the L'-norm. Hence
Tlpxg) = norm — lim T(f; * g)
= w'— Lim T(f; » g)
= w' = lim f;+T(g)
= uxT(g).
So T €umey B(LY(G), L*(G)*). Since I1(G) is also s.0. dense in M(G), the other
equality in (1) follows by the same argument. On the other hand, from Proposition
3.3, Theorem 3.2 and the result we obtained in the first part,
1@ B(LY(G), LH(G)")

is reflexive. So from (1), @) B(LY(G), L} (G)*) is reflexive. The reflexivity of
Bri6)(LN(G), LH(G)*) can be proved similarly. O

COROLLARY 3.32. Let G be a locally compact group, and let J be an ideql
in LYG) with finite codimension. Then every bounded approximately local multi-
plier from J into any Banach LYG@)-module is a multiplier. If, in addition, G is

amenable, then the result is true for all Banach J-modules.
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PROOF. We give the proof for the left module case. The other case can be
proved similarly. From [54], J = J2 s0 J is an essential Banach L!(Q@)-bimodule.
Also, for every Banach left I! (G)-module Y, T ¢, B(J,Y),a€ Aand b,cc J we
have
T'(abc) = abT(c) = aT'(be).
Now, since J = J2,
sB(JY) =g B(J,Y).
Hence we have the result from Theorem 3.31 and Theorem 3.9. If G is amenable,
then, by Johnson'’s theorem, L(G) is amenable, and so, by [8, Corollary 3.8], J
has a bounded approximate identity. On the other hand, by the preceding part,

7B(J, J*) is reflexive. Therefore the result follows from Proposition 3.3. O

REMARK 3.33. Let Gbe a locally compact group, and let J be an ideal in L'Y(@)
with finite codimension. Since J* is a Banach L'(@)-bimodule, from Corollary 3.32,
bounded local multipliers from J into J* are multipliers. Hence, from Corollary
3.9, there is no non-zero bounded point derivation on J. On the other hand, if

G = SL(2,R), then ideals of codimension 1 are not be weakly amenable [32].

The next theorem follows immediately from the preceding theorem and Theo-

rem 3.6.

THEOREM 3.34. Let G be g locally compact group, let X be a Banach LN&)-
bimodule, and let D be a bounded approzimately local derivation from LYG) into
X*. Then there is a bounded derivation D and a right multiplier T Jrom LY(QG)
into X* such that D = D + T. Moreover, if X is essential, then D and T are
uniquely determined by this property and the following statements are equivalent

Jor each bounded approzimate identity {ea}aen for LHG):
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(1) D is a derivation.
(i) T is zero.

(i8) weak* — lim D(e,) = 0.
Q00
COROLLARY 3.35. Let G be a locally compact group. Then
2 (LY@), LNG)")
is reflexive.

PROOF. By [10, Theorem 5.6.48], L'(G) is weakly amenable. Therefore, the
result follows from Theorem 3.34 and Corollary 3.7. 0

REMARK 3.36. Since L!(G) is semisimple, derivations on L'(G) are bounded
[31], and so bounded approximately local derivations on LY(G) are exactly the
members of ref[Z'(LY(G), L(@))]. On the other hand, L(G) is a submodule of
M(G) = Co(G)* and Cy(G) is an essential Banach L'(@)-bimodule. Hence, by
the preceding theorem, a bounded approximately local derivation D on LMG)isa
derivation if and only if weak* — alggo D(ea) = 0 for a bounded approximate identity
{ea}aen for L}(G). This provides a useful criterion for determining whether D is a
derivation. For example, let G be a SIN group. Then L!(G) has a central bounded
approximate identity {es}acn. However, if D is a derivation on L!(@), then by
[10, Theorem 5.6.53], there is a measure # € M(G) such that D(f) = fru—puxf
for all f € LY(G). Thus, for each a € A, D(ey) = 0, and so D(eq) = 0, since
Diey) = T}erolo Dy,n(eq) for a sequence of derivations {Dan} on L(@) . Hence D

is a derivation.

The following corollary indicates another application of Theorem 3.34.
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COROLLARY 3.37. Let G be a locally compact group such that every derivation
from LY(G) into M(G) is inner. Then every bounded local derivation from LY@)
into M(Q) is an inner derivation. In particular, the result is true if G is amenable

or connected.

PROOF. By [10, Theorem 3.3.15], there are right and left actions of M (@)
on Co(G) which turns C,(G) into a Banach M (G)-bimodule and the duals of
these actions agree with the convolution product in M(G). Moreover, by (10,
Theorem 3.3.23], there is a net {ex} in Coo(G) which is a bounded approximate
identity in L'(G) for both L'(G) and the Banach L}(G)-bimodule (Cy(@), - ).
Let D: LY(@) — M(G) be a bounded local derivation. Hence, by Theorem 3.34,
there is a derivation D and a right multiplier T' from LY(QG) into M (G) such that
D=D4T. Thus T'=D — D, and so

T € ref,[ZY(LNG), M(Q)] = ref [N (LY(@), M(G)].
Therefore, for every a € L1(Q), there is a measure Ko € M(G) such that
T(a) =a* p, — ptg * a.
Now let a € Coo(G). Then

<T(a)) ea) = (a'*.ua_ll'a*ay ea)

= (Ug, €a"Q—0-€Ey).
However, e, -a and a - e, approach a as a — co. Therefore

(T(a) , ea) — 0 as @ — oo. (1)
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On the other hand, since T is a right multiplier, there is p € M (G) such that
T(b) = bxpfor all b € L(G). Hence
(T(a); ea) = (axu, e)
= (¢, ea-a).
Thus
(T(a) , ea) = (1, a) as & — co. (2)
From (1) and (2), we have (4 , a) = 0. Hence x vanishes on Cwo(@). Therefore
T = 0, since Cp(@) is dense in Co(G). Thus D is a derivation, and so, by
hypothesis, it is an inner derivation. Finally, we note that if @ is amenable, then,

by Johnson’s theorem (10, Theorem 5.6.42], every derivation on LY(G) is inner.

From [29, Corollary 4.4], the same result is true for @ being connected . 0

REMARK 3.38. Recently, V. Losert has been able to proved that for every
locally compact group @, every derivation from LYG) into M(G) is inner [40].
Hence, by the preceding corollary, every bounded local derivation from LY(G) into

M (G) is an inner derivation.

We can extend the result we have obtained in Remark 3.36. In order to do
that, we will use the theory of approximately locally unital Banach algebras that

we developed in section 3.2. First we need the following Lemma.

LEMMA 3.39. Let G be a locally compact group, and let H be an open subgroup
of G. If L\(H) is approzimately locally unital, then LY@) is approzimately locally

unital.

PROOF. Since H is an open subgroup of G, we can consider LY(H) as a closed

subalgebra of L!(G) where elements in L'(H) are exactly those in LY(G) which
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vanishes off H. By hypothesis, LY(H) is approximately locally unital and so it has
subsets B; and B, satisfying the conditions in Definition 3.12. Put

Ar={f*6;| f€ B,z eG}, Ar={0;*f | f€B,,zeG).

We show that A4; and A, satisfy the assumption in Definition 3.12 for L'(@). Let
f € Biand z € G. By the assumption, there is g € L'(H) such that gxf=f.
S0 g% (f x0;) = f %6, Hence each element in A4; has a left identity. Since
Ce(G) is dense in L*(G), in order to show that L*(Q) is the closed linear span
of A;, it suffices to show that C:(G) C spait 4;. Let ¢ € C,(G). Since supp y is
compact, H is open and G = UzegHz, there is a finite subset {z1,...,2z,} of G
such that supp ¢ C Ui Hz;, where the union is disjoint. Thus, ¢ = X7 1p; where
Pi = YXHq;- 1t is easy to see that ¢; € L'(@) and suppy; C Haz,. Therefore,
i * 8,1 € L'(H) = span B;. However, ¢; = (i * 0,-1) % 6z,. So ; € 5pam A, for
each ¢ = 1,...,n. Therefore, ¢ € span A;. A similar result can be obtained for

A O

THEOREM 3.40. Let G be g locally compact group, and let X be a Banach
LYG)-bimodule. Then, in either of the Jollowing cases, every bounded approzTi-
mately local derivation from LY(G) into X is a derivation:

(1) G is a SIN-group,

() G is a totally disconnected group.

PROOF. From Theorem 3.31 and Theorem 3.15, it suffices to show that ! (@
is approximately locally unital whenever G is a SIN or a totally disconnected group.
To this end, we first consider the following two cases:

Case I: G is abelian. Then LY@) is a Tauberian algebra, and so, by Example

3.13, it is approximately locally unital.
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Case II: G is compact. Then LM@) is a semisimple annihilator Banach algebra
by Example 3.27(i). So it is approximately locally unital by Lemma 3.28.
Now let G be a SIN-group. Then, by [23, Theorem 2.13], G has an open normal
subgroup V' x K, where V & R™ for some integer n and K is compact. Since
LYV x K) = LNV)®LY(K), from the above two cases and the proof of Theorem
3.17, LM(Vx K) is approximately locally unital. Therefore, L(G) is approximately
locally unital by Lemma 3.39. A similar argument applies when G is a totally
disconnected group because in this case the identity in G has a basis consisting of

open compact subgroups. 0

REMARK 3.41. We note that there is a solvable connected Lie group @ such
that L'(G) is not approximately locally unital. This is the semidirect product
G = H x, R, where H is the Heisenberg group and p: R — AutH is a continuous
morphism. See [10, p. 404] for more details.

We conclude this section by the following theorem which provides necessary
and sufficient condition for all the bounded approximately local derivations from

M(G) to be derivations.

THEOREM 3.42. Let G be a locally compact group. Then every bounded approxi-
mately local derivation from M(G) into any Banach M (G)-bimodule is a derivation
if and only if G is discrete. Moreover, if @ is non-discrete, then there is a uni-

tal Banach M(G)-bimodule X and a bounded local derivation from M(Q®) into X

which is not a derivation.

Proor. If G is discrete, then M (G) = (@), and so the result follows from
Theorem 3.40. Now assume that G is non-discrete. By [11, Theorem 3.2}, there

is a character ¢ on M (G) and a non-zero bounded point derivation d on M(G) at
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@. Sod e M(G)* and

d(ab) = p(a)d(b) + d(a)p(b) (a,be A).
In particular, if we put J = kerd and J = ker @, then J is a maximal ideal and |
is a (proper) linear subspace of M (G) such that J2 C I. Moreover, by Proposition
3.8, the bounded operator D: M(G) — M(G)* defined by D(a) = d(a)y is both
a derivation and a local left multiplier. Let ¥ be the augmentation character on
M(G) defined by

() =p(G) (ue M(G)).

Put M = kert. Then M is a maximal ideal in M (G). If T is the restriction of
D to M, then T is a bounded local left multiplier from M. We claim that T is
not a left multiplier. Otherwise, a simple calculation shows that aD(b) = 0 and
so d(b)p(a) = 0 for all a,b € M. Therefore, M C I or M C J. On the other
hand, by [10, Theorem 3.3.30], M = M2, This means that there is no non-zero
point derivation on M(G) at v, and so 1 # . Hence M ¢ J. Also, M € I, for
otherwise, since M(G) = J + M, we would have

MG =MGPClP+MCI+I=1,

which is impossible. Hence T is not a left multiplier. Now if we let X — M(G)*
become a Banach M-bimodule by defining the left action to be 0 and the right
action to be the one induced from M(G)*, when it is viewed as the dual module
of M(G), then T': M — X is a bounded local derivation which is not a derivation.
Finally, because M(G) = M @ C4,, by defining dz = 26, = z (z € X) and
T(é.) = 0, X becomes an essential Banach M (G)-bimodule and T' extends to a

bounded local derivation from M(Q) into X which it is not a derivation. 0



CHAPTER 4

Approximately local n-cocycles

In this chapter we study reflexivity of higher cohomology of various Banach
algebras. We first generalize the definition of reflexivity to the linear subspaces
of bounded n-linear maps from Banach spaces. Then, for a Banach algebra A
and a Banach A-bimodule X » We consider the question of reflexivity for the space
of bounded n-cocycles from A™ into X. Using the similar approach as the one
introduced in Chapter 3, we consider the concept of approzimately local n-cocycles
and the question of whether they are n-cocycles. We show that we can reduce
the problem to the characterization of certain operators from A into X which
we call ‘hyperlocal operators. Then we use this idea, together with the proper-
ties of hyper-Tauberian algebras, to show that bounded approximately local n-
cocycles from A™ into X are n-cocycles when A is a hyper-Tauberian algebra,
a C*-algebra, the group algebra of a SIN or a totally disconnected group, or the
Figd-Talamanca-Herz algebra, Ap(G) of alocally compact group G, for p € (1, 00),

when the connected component of G is abelian.

4.1. Definition of approximately local n-cocycles

Let X and Y be Banach spaces. Forn € N, let X™ be the Cartesian product of
n copies of X, and let L™X,Y) and B™(X,Y) be the spaces of n-linear maps and
bounded n-linear maps from X into Y, respectively. Let S be a linear subspace

of L*(X,Y), for each Z = (z1,...,1,) € X®, let 8(z) = {S(z) | S € S}, and let
92
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[S(Z)] be the norm-closure of S (%). Put

refo(S) = {T € L*(X,Y) | T() € S(3), for cach # € X
and if S € B"(X,Y), put

ref(S) = {T € B*(X,Y) | T(%) € [S(%)], for each & € XM,

Suppose that § € L*(X,Y). Then S is algebraically reflezive if S = ref,(S) and
when S C B*(X,Y), it is reflezive if S = ref(S).

DEFINITION 4.1. Let 4 be a Banach algebra, and let X be a Banach A-
bimodule. For n € N, an n-linear map T from A™ into X is called an approzi-
mately local n-cocycle if, for each § — (a1,...,a,) € AM, there is a sequence T ,,
of n-cocycles from A™ into X such that T5.(a) = nlirgo T5.(@). If, in addition, T

is bounded, we say that T is a bounded approzimately local n-cocycle.

It is clear that each element of ref[Z™(4, X)] is a bounded approximately local
n-cocycle but the converse may not be true, since the n-cocycles T3, considered

above need not be bounded.

4.2. N-hyperlocal operators

Let A and B be Banach algebras, and let X be both a Banach left A-module and
a Banach right B-module such that for all a € Abe Bandz € X, a(zb) = (az)b.
Then we write X € A — mod — B. If, in addition, X is essential both as a, Banach
left A-module and a Banach right B-module, then we write X € ess. A —mod —~ B,

Let A and B be Banach algebras, and let X,Y € A — mod — B. An operator
D: X — 'Y is hyperlocal with respect to A-mod-B actions if, for all ¢ € A beB
and z € X,

az =zb=0 implies aD(z)b= 0.
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Let A be a Banach algebra, and let X be 3 Banach A-bimodule. For 5 €N,

an n-linear map T from A™ into X is n-hyperlocal if, for ay, ..., Gny1 € A,
Q001 = @109 = -+ = @pa,,; = () implies aoT(ay,..., @n)anyy = 0.

For n =1, it is clear that I-hyperlocal operators are exactly hyperlocal operators.
The following proposition states some sufficient conditions for a bounded n-

linear map to be an n-cocycle. This is critical for us to obtain our result.

PROPOSITION 4.2. Let A be a unital Banach algebra with unst 1 which satisfies
the following two conditions:
(?) For every unital Banach A-bimodule X, a bounded operator D: A — X is ¢
left multiplier if and only if ba = 0 implies D(b)a = 0.
(i) For every unital Banach A-bimodule X » @ bounded operator D: 4 — X is
hyperlocal if and only if

D(ach) ~ aD(cb) — D(ac)b+ aD(c)b =0

foralla,b,c e A.

Let X be a unital Banach A-bimodule, let n e N, and let T ¢ B"(A,X) be n-
hyperlocal such that T(ay,.. 8n) = 0 if any one of ay,...,a, is 1. Then T €
ZMA, X).

PROOF. We prove the statement by induction on n. For n =1, by hypothesis,
T'(acb) — aT'(cb) — T(ac)b + aT(c)b =0

for all a,b,c € A. Since T(1) =0, by putting c = 1 we get the result. Now suppose

that the result is true for n = & (k > 1). We show that it i also true for n = k41,

Let T € Bk”"l(A,X) be k£ + 1-hyperlocal such that T'(ay, ... »k+1) = 0 if any one
of ai,...,aps1 is 1. We first show that Ax(T) € B*(A, B(A, X)) is k-hyperlocal.
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Let ag,...,a411 € A such that Qa1 = -+ = agax4; =0, and put
S = ag *Ak(T)(al, PN ,ak) * Qg1

Then S: A — X is a bounded operator. We claim that S satisfies the following
condition:
be = 0 implies S(b)c = 0. (1)
Let b,c € A such that be = 0. Then
S0)c = g+ Ap(T)(ay,. .., ax) * apy1](b)c

= ao(Au(T)(a1, ..., a))(ar1b)e — ap(Ak(T)(an, ... ax))(ar+1)be

= aT(ay,...,a, ak1b)c — agT(ay, . .. ) Gk, G471 )be
= aT(ay,...,az, ap41b)e.
However, apa; = -+ = ax(ar1b) = (ax+1b)c =0, and T'is k + 1-hyperlocal. Hence
aoT (ay,. .., ay, ag41b)e = 0.

Thus (1) holds, and so, by hypothesis, S is a left multiplier. Therefore S{a) =
S(1)a for all a € A. However,

S(1) = [ao*Ae(T)(ay, .. ., ar) * ax41)(1)
= ao(A(T)(ay, ..., ak))(ak411) — ao(A(T)(ay, ... 10x)) (ak+1)1
= qoT(ay,.. 3 @y @) — aoT(ay, . . . g, Qjsty)
= 0.
Thus S = 0. Hence A4(T) is k-hyperlocal. Let ¢ be the natural quotient mapping
from B(A, X) into B(A, X)/B4(A, X), where B4(A, X) is the space of right mul-

tipliers. Since Ay(T) is k-hyperlocal and g is an A-bimodule morphism with the

* actions, g o Ax(T) is k-hyperlocal. Moreover, because of the assumption on T,
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9o A (T)(ay,...,a;) =0if any one of a3, ..., a; is 1. On the other hand, for every
T'e B(A,X),
1«T=T and Tx1-T ¢ Ba(A, X).

Thus B(A, X)/B4(A, X) is a unital Banach A-bimodule. Therefore, by the induc-
tive hypothesis, g o A4(T) is a k-cocycle. This means that for a1y ..y Ay € A,

A¥(go Ak(T))(aq, . .., ax1) = 0.
Hence, from the equation Mg 06 = Ak o A
A1 (657H(T))(ay, .. . yarr1) = AF(AL(T)) (ay, .. . ,ak+1) € Ba(4, X).
Thus, for every az,, € A,

*UT) (a1, .., arpry ) = [Arra (D)) (a1, .. ., agy1)](agr2)
= (A1 (0T, .-, 041)] (L) arss

= 6k+1 (T) (ah vy Qpy, 1)a’k+2-

On the other hand, by the assumption on T,
k
a]_T<CL2, cony Oy, 1) -+ Z(—I)JT(al, sy Qi0i41, .. y Qk41, 1) = 0.
j=1

Also,
ST ar, ..., ag, aryr1) — ST ar, ..., ag, apg)1 = 0.
Hence 6**!(T)(ay, ..., ap41,1) = 0. Therefore &Y (T) =0, andso T B4, X).

This completes the proof. 0

We are now ready to state the main result of this section:

THEOREM 4.3. Let A be a Banach algebra such that Al satisfies conditions
(4) and (4i) of Proposition 4-2. Then, for any Banach A-bimodule X and n €N,



4.3. HYPER-TAUBERIAN ALGEBRAS 97

every bounded approzimagely local n-cocycle T from A into X is an n-cocycle.

In particular, Z™MA, X) is reflexive,
PROOF. We can extend X to a Banach Af-bimodule by defining 1z = 21 = 4.
Let o: L™(A, X) — L*(A*, X) be a linear map defined by
O'(T)(al + )\1, cey O+ )\n) = T(al, .. .,an),

for a3,...,a, € A and AL, A € C. Tt is straightforward to check that 7' €
L™(A, X) is an n-cocycle if and only if o(T) is an n-cocycle. Now let T € B™4, X)
be a bounded approximately local n-cocycle, and let (a; + Myeor,Gp+ An) € Al

By the assumption on T, for g = (q,.. 10n) € AM™ there is sequence T},

of n-cocycles from A™ into X such that Tin(ay,... y0r) = lim Tin(ay,..., an).
n—00

Thus

a(T)(al—l-/\l,...,an—i—/\n) = T(al,...,an)
= lim T;,(ay,.. . 0n)
—00

= lim o(Tz.)(a; + Ay, .. ., an + Ap).
n—o0

Hence o(T') is a bounded approximately local n-cocycle. Moreover, o(T)(ay,..., a,) =
0 if any one of @1,...,08, is 1. Thus, by Proposition 4.2, o(T) is an n-cocycle.
Therefore T is an n-cocycle. O

4.3. Approximately local n-cocycles from hyper-Tauberian algebras

In this section, we use the properties of hyper-Tauberian algebras, together
with the results of the preceding section, to show bounded approximately local
n-cocycles from these algebras are n-cocycles. We start with the following critical

theorem:
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THEOREM 4.4. Let A qngd B be hyper- Tauberign, algebras. Then, Jorall X, Z e
ess. A~ mod - B and Y € ess. B —mod — A,
(?) @ bounded operator D - X — Y™ is hyperlocal if and only if

D(azb) — aD(zb) — D(az)b + aD(z)b =0

forallac A, be B andz € X,
(i) If A and B have bounded approzimate identities, then the result in (%) s also

true for all bounded hyperlocal operators from X into Z.

PROOF. (i) First assume that Y = B®A, where the B-mod-4 actions on B§A
are specified by
db®a)=db®aq | b®a)c=b®ac (a,c€ 4,b,d € B).

Let D: X — (B@A)* be a bounded hyperlocal operator, and let z € X and o € A
Define the bounded operator D: B — (B®A)* by

~

D(b) = D(ast) - aD(ab) (5 € B).

We claim that D ig local with respect to right B-module action. Let b € 4
and ¢ ¢ suppgb. There is & compact neighborhood V of # (in ®p) such that
V Nsuppgh = . Let ¢ € B with Suppgc C V. By the regularity of B, there is
e € Bsuch that e =1 op Vande=0on suppg b. So

ec=cand eb =, (1)

Put
Kg(V)zsan{n@)mlmeA,nEBandn=Oon®B\V}.

Sincee=1on V, for all § ¢ (B®A)*,

fe— 0 =0on Ko(V). (2)
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Let z € X, and define the bounded operator T': 4 —, (B@A)*/KO(V)J* by
T(u) = D(uzb) + KWV)*t (we A).
Let A € A such that by — 0. Then, from (1), huzb = 0 = yzpe. Since D is
hyperlocal, hD(uzb)e = 0. Hence
hT(u) = hD(uzb) + Ko(V)L
= hD(uzble + Ky(V)*
= 0.
In particular, T is loca] with respect to left A-module action. Since
(BEA)"/Ko(V)* = Ky(v)*

and Ky(V) is an essentia] Banach right A-module, from Proposition 2.4, it follows
that T is a right multiplier. Therefore T(w) = uTl'(v) for all u,v € A. Hence, if
we put w = g, then D(avzb) — aD(vzb) € Ko(V)*L. Thus, from essentiality of X
we have

D(b) = D(azb) - aD(zb) € Ky(V)*L.
Therefore E(b)c = 0, since suppyc € V. This means that ¢ ¢ supp B E(b), and so
Disa bounded loca] operator. Hence, from Proposition 24, Disa left multiplier,

Thus E(bd) = E(b)d for all b,d € B. Therefore
D(azbd) — aD(zbd) = D(azb)d — aD(zb)d.
The final result follows from the essentiality of X
Now consider the general case. Let y € Y and define S,: Y* — (BRA)* by
(Sy(y*), b®a) = V", bya) (a €A,beB, e Y*).

It is easy to see that Sy is both a bounded left A-module morphism and a bounded

right B-module morphism, and so Sz 0 D is a bounded hyperlocal operator from
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X into (B@A)*. Thus, for all g € A, beB,z€ X and yeY,
Sy[D(azb) — aD(zb) — D(az)b+ aD(z)b] = 0.
Hence, for all c € 4 and 4 € B,
(D(azb) — aD(zb) — D(az)b +aD(z)b , dyc) = 0.

The final results follows from the essentiality of Y,
(ii) Let {eq}aca and {fs}seq be bounded approximate identities for 4 and B,
respectively. Similar to the argument made in (i) (by replacing Z with Z*), we

can show that
c[D(azb) — aD(zb) — D(az)b+ aD(z)b]d = 0 (3)

for all a,c € A4, bbd € Bandz € X. On the other hand, since 4 and B have
bounded approximate identities, by Cohen’s factorization theorem [2, Theorem

11.10], there are e € 4, f € B and z € Z such that
D(azb) — aD(zb) — D(az)b + aD(z)b = ezf.
So we have the final result if we putc=e, and d = fzin (8),andlet o, B — co. [J
THEOREM 4.5. Let A be ¢ hyper-Tauberian algebra, and let X be g Banach

A-bimodule. Then, forn € N, every bounded approzimately local n-cocycle T Sfrom

A™ nto X is an n-cocycle. In particular, Z™MA, X) is reflezive.

PROOF. Let A be the unitalization of A. By Corollary 2.11, At is hyper-Tauberian.

Therefore, by Proposition 2.4 and Theorem 4.4, AY satisfies the conditions (i) and

(ii) of Proposition 4.2. Hence the result follows from Theorem 4.3 O

COROLLARY 4.6. Let A be g hyper- Tauberian algebra with a bounded approz-

imate identity, and let X be an essential Banach A-bimodule. Then a bounded
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operator D: A — X* g hyperlocal if and only if there is a bounded derivation D
and a right multiplier T from A into X* such that D =D+ T. In, particular, D
is o derivation if and only if weak* — al_l_lgo D(ey) =0 for a bounded approzimate

identity {e,}aea in A.

PRrROOF. It is easy to see that all derivations and multipliers are hyperlocal. Op
the other hand, let D: 4 —, X* be a bounded hyperlocal operator. By Theorem
4.4, for all a,b,c € A,

D(acb) — D(ac)b — aD(cb) + aD(c)b = 0.

The final result follows from a similar argument to the one made in the proof of

Theorem 3.6. O

COROLLARY 4.7. Let A be a hyper-Tauberian algebra with a bounded approz-
imate identity. Then A is amenable if and only if for any essential Banach
A-bimodule X and every bounded hyperlocal operator D: 4 —s X*, there are
T y* € X* such that D(a) = az* — y*a (a € A).

PROOF. Let A be amenable, let X be an essential Banach A-bimodule, and
let D: A — X* be a bounded hyperlocal operator. By Corollary 4.6, there is
a derivation D and a right multiplier T' from A into X* such that D = D+ T
Since A is amenable, there are ¥* and 2z* in X* such that D(a) = ay* — y*a and
T(a) = az* for all a € A. Thus D(a) = a(y* + 2*) — y*a. The converse follows
immediately from Corollary 4.6 and [10, Corollary 2.9.27]. 0

4.4, Approximately local n-cocycles from C*-algebras

In this section, we characterized bounded approximately local n-cocycles from

C*-algebras.
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THEOREM 4.8. Let A be a C*-algebra, let X be an essential Banach A-bimodule,
and let Y be an essential or the dugl of an essentin] Banach A-bimoduyle. Then o

bounded operator D X —>Yis hyperlocal if and only if
D(azb) — aD(zb) — D(az)b + aD(z)b=0

Jorallabe A and z € X,

PROOF. Since A has a bounded approximate identity, by similar arguments
to the ones made in the proof of Theorem 4.4, it suffices to prove the result for
Y = (ABA)*. Let A! be the unitalization of 4 [10, Definition 3.2.1]. We show that
D is hyperlocal with respect to Af-module actions. Let u, vy e Af and z € X such
that uz = gy = @, So, for all a,b € A, (au)z = z(vb) = 0. Thus auD(z)vb = (.
Hence uD(z)v = 0 on 42 ® A2 which is dense in ABA. So uD(z)v = 0. Now let ¢
and d be self-adjoint elements in A4, and let A(c) and A(d) be the C*-subalgebras
of A" generated by {¢,1} and {d,1}, respectively. It is well-known that there

isomorphic to C(E) and C(K ), respectively. Moreover, D: x —, (ABA)* is &
bounded hyperlocal operator with respect to C(E) — mod — C(K) actions. Thus,

from Theorem 4.4 and Lemms, 2.16, for every r € X,
D(czd) — cD(zd) - D(cz)d + cD(z)d = 0.

The final result follows since A is the linear span of its self-adjoint elements, 0

REMARK 4.9. In the preceding theorem, if we replace the locality condition that

we used in the definition of a hyperloca] operator with the following condition:

za =0 implies D(z)q = 0,
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then, by a similar argument and using Proposition 2.4 instead of Theorem 4.4, we

can show that D ig 5 right A-module morphism. We can also have 3 similar resylt

Then, forn e N, every bounded approzimately locg] n-cocycle T from A nto X

s an n-cocycle, n Particular, ZMA, X ) is reflezive,

PROOF. Since At is g C*-algebra, it satisfies the conditiong (i) and (i) of
Proposition 4.9 from Theorem 4.8 and Remark 4.9. Hence the result follows from

Theorem 4.3, 0

particular, D 45 ¢ derivation if and only i weak* — lim Dlea) =0 for o bounded
Q-0

approzimate dentity {eataca in A
PROOF. The proof is similar to the one made in Corollary 4.6, 0

CoOROLLARY 4.12. Let A pe 4 C*-algebry, Then A s amenable if and only
if for any essential Banach A-bimodule X and every bounded hyperlocal operator

D: A~ X* there are T, y* € X* such thay D(a) = az* - Y'a (a € A).
PROOF. The proof is similar to the one made in Corollary 4.7, 0

COROLLARY 4.13. Let A be ¢ C*-algebra, Then, for every bounded hyperiocal
operator D: A — A* there are T, y* € A* such thyy D(a) = qz* — Yo (ae A).
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PROOF. The result follows from an argument similar to the one made in Corol-
lary 4.7 together with the fact that every C*-algebra is weakly amenable (10,
Theorem 5.6.77). O

4.5, Approximately local n-cocycles from group algebras

In this section, we characterized bounded approximately local n-cocycles from

the group algebra LY(G) when G is a SIN or a totally disconnected group.

THEOREM 4.14. Let G pe a locally compact group, let X be an essentigl Banach
LYG)-bimodule, and let Y be an essential or the dugl of an essential Banach,

LY@)-bimodule, Then a bounded operator D: X - Y s hyperlocal if and only if
D(azb) — aD(zb) — D(az)b+ aD(z)b =0

for alla,b e LV(G) and 7 € X.

PRrROOF. Since 1! (G) has a bounded approximate identity, by arguments similar
to the ones made in the proof of Theorem 4.4, it suffices to prove the result for
Y = (ZING)BLHG)) . Let h,k € G, and let H and K be the closed subgroups in
G generated by h and k, respectively. We claim that D is hyperlocal with respect
to I'(H) — mod — I'(K) actions. Let f e L'(H),g € LNK) and z € X such that
fT =29 =0, and let {ea}aca be a bounded approximate identity for LY(@). For
all o, 8 € A, (eaf)z = z(geg) = 0. Hence eafD(z)gegs = 0. Therefore, by taking
w*-limit and letting o, 8 — 00, we have JD(z)g =0, and 80, D is hyperlocal with
respect to I1(H) — mod — I'(K) actions. Thus, by Proposition 2.19 and Theorem

4.4, D is a generalized derivation. In particular,

D(5h$6k) - JhD(.’EJk) — D<5h517)5k + §hD($)5k =) (h, ke G,ze X)
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Therefore, since I'(G) is the closed linear span of {6: |t € G},

D(fzg) - fD(zg) - D(fz)g + fD(x)g =0 (f,g € IX(G),z € X). (1)
Leta,b € LY(G) and z € X. Since IY(G) is s.0. dense in M(G) [10, Theorem 3.3.41]
there are {a;}ier and {b;},e; in I*(G) such that for all ¢ € LMG), a;%c— axe,
C*a; = cka, bjxc—bscand cxb; — c*b in the Ll-norm. On the other hand,
by Cohen'’s Factorization Theorem [2, Theorem 11.10], there are e € L'(@) and
z € X such that z = ze. Now if we put f=a; and g = b; in (1), then, by letting
J — o0, we have
D(a;zdb) — a;D(zb) = Dla;z(e * b)] — a;Dz(e * b)]
= norm — Jlirglo [a;z(e * b;)] — a; D[z (e * b;)]
= norm — Jlgglo D(a;zb;) — a; D(zb;)
= norm — Jlgglo D(a;x)b; — a;D(z)b;
= w*— jllrilo D(a;z)b; — a;D(z)b;
= D(a;z)b— a;D(x)b.
Hence
D(aszb) — a;D(xb) — D(a;z)b + a;D(z)b = 0. (2)
Similarly, by applying Cohen’s factorization theorem and letting i — oo in (2), we
have
D(axb) — aD(zb) — D(az)b + aD(z)b = 0.

This completes the proof. 0

REMARK 4.15. In the preceding theorem, if we replace the locality condition

that we used in the definition of a hyperlocal operator with the following condition:

za =0 implies D(z)a =0,
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then, by a similar argument and using Proposition 2.4 instead of Theorem 4.4, we
can show that D is a right LY(G)-module morphism. We can also have a similar

result regarding bounded left LY@)-module morphisms.

LEMMA 4.16. Let G be a locally compact group such that LNG) is approzimately
locally unital, and let X be a unital Banach L2 (G)t-bimodule. Then:
(1) a bounded operator T LY G = X is a right multiplier if and only if ab = 0
implies aT'(b) = 0;
(#6) a bounded operator T LYGW — X is a left multiplier if and only if ba = 0
implies T'(b)a = 0;
(#i) a bounded operator D: LNGY — X is hyperlocal with respect to LY(G)!-

bimodule actions if and only if
D(acb) — aD(ch) — D(ac)b + aD(c)b=0

for all a,b,c € LY{(G)!.

PROOF. (i) Let T a bounded operator from LY(G)" into X that satisfies the

following condition:
ab=0 implies aT'(b) =0 (a,b e LY(ah.

We will show that T is a right multiplier. First we note that if we consider the
restriction of T' to L'(G), then, by Remark 4.15 and an argument similar to the

one made in the proof of Proposition 2.4(ii),
aT(bc) = abT(c) (a,b,c € LY@)). (1)

Since L(G) is approximately locally unital, there are subsets A; and A, of LYG)
such that L'(G) is the closed linear span of both A; and A, and each element of

A; and A, has a left identity and a right identity in L!(G), respectively. Now take
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be Ayand e € L'(@) with eb = b. Then (e — 1)bc = 0, and so, by the assumption
on T, (e — 1)T(bc) = 0. Thus eT'(bc) = T(bc). This, together with (1), shows that

T(bc) = eT'(bc) = eb(Tc) =bT(c) (b€ A, ce LY@a)).
Therefore the restriction of T' to L'(G) is a right multiplier, since LY(G) is the
closed linear span of A4;. That is
T(bc) =bT(c) (b,ce LG)). (2)
Now let c € L'(G)!, b € A, and e € LY(G) with be = b. Since blec—c) = 0, by the
assumption on T', T'(ec — c) = 0. Therefore, from (2),

T(bc) = T(bec)

bT (ec)
= bT(ec —c¢) + bT'(c)
= bT(c).

Hence, for A € C,

T[(b+ A = T(bc+ Ac)

il

bT'(c) + AT(c)

= (b+N)T(c).
The final result follows from the fact that L1(G) is the closed linear span of A,.
(ii) follows by a similar argument in (i).
(iii) Let D: L'(G)! — X be a bounded hyperlocal operator with respect to L(G)!-
bimodule actions. It is clear that the restriction of D to L'(G) is hyperlocal with
respect to L!(G)-bimodule actions. Thus, by Theorem 4.14 and a similar argument

to the one made in the proof of Theorem 4.4(i1), we have

e[D(ach) — D(ac)b — aD(ch) + aD(c)bld = 0 (a,b,c,d, e € L}(G)). (3)
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Fixa € A; and e € L'(@) with ea = . Define the bounded operator K: L}(G)! —
X by
K(c) = (e = 1)D(ac).
Take ¢,d € L*(G) such that cd = 0. Since (e —1)ac = eac —ac = 0 and D is
hyperlocal, we have
K(c)d = (e - 1)D(ac)d = 0.
Hence, from (ii), K is a left multiplier. In particular, K (cb) = K(c)b for all
¢,b € LY(G). Therefore,
eD(acbh) — D(acb) = K(cb)
= K(c)b
= eD(ac)b — D(ac)b.
Consequently
D(acb) ~ D(ac)b = e[D(ach) — D(ac)b].
This, together with (3), shows that for every d € L! (@),
[D(acb) — D(ac)bld = e[D(acb) — D(ac)bld
= elaD(cb) — aD(c)b]d
= [aD(cb) — aD(c)b]d.

However, L!(G) is the closed linear span of 4;. Hence
[D(acb) — D(ac)b — aD(cb) + aD(c)bld = 0 (a, b, c,d € LY@)). (4)

Fixb € Ay and d € L'(G) with bd = b. Define the bounded operator K" VG —
X by
K'(c) = D(cb)(1 — d).
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By going through similar steps as in the preceding part, with (ii) instead of (i) and
K' instead of K, and by using the fact that L'(@) is the closed linear span of A,,

we can show that the factor d in (4) can be deleted as well. Therefore
D(acb) — D(ac)b — aD(ch) + aD(c)b=0 (a,b,ce LYGY). (5)
Now let a € A, and e € L}(G) with ae = a. Define the bounded operator
S: NG — X by
S(c) = aD(ec —c).
Let ¢,d € L'(G)" such that cd = 0. Then a(ec — c) = (ec—c)d = 0, and so,

since D is hyperlocal, S(c)d = aD(ec — c¢)d = 0. Therefore, by part (ii), S is a
left multiplier. In particular, S(cb) = S(c)b for every b € L}(G) and ¢ € LYG)E,

Hence
aD(ech) —aD(ch) = S(cb)
= S(c)b
= aD(ec)b — aD(c)b.
Consequently

aD(ecb) — aD(ec)b = aD(cb) — aD(c)b.
‘This, together with (5), shows that
D(acb) ~ D(ac)b = D(aecb) — D(aec)b
= aD(ecb) — aD(ec)b
= aD(ch) — aD(c)b.
However, L*(G) is the closed linear span of A,. Hence, for all a,b € LY{G) and
c € LHG),
D(acb) — D(ac)b — aD(cb) + aD(c)b = 0. (6)
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Finally, we note that the equality in (6) holds if we let a or b be any scalar
AeC. O

THEOREM 4.17. Let G be a SIN or a totally disconnected group. Then, for any
Banach L} (G)-bimodule X andn € N, every bounded approzimately local n-cocycle
from LHG)Y™ into X is an n-cocycle. In particular, ZM(A, X) is reflezive.

PROOF. From the proof of Theorem 3.40, L* (G) is approximately locally unital
whenever G is a SIN or a totally disconnected group. Therefore the result follows

from Lemma 4.16 and Theorem 4.3. O

THEOREM 4.18. Let G be a locally compact group, and let X be an essential
Banach L'(G)-bimodule. Then a bounded operator D from LY(@G) into X* is hy-
perlocal if and only if there is a derivation D and a right multiplier T Jrom LY(Q)
into X* such that D = D+T. In particular, D is a bounded derivation if and only
if weak* — Clh_r’rc}o D(ea) =0 for a bounded approzimate identity {eq}acs in LNG).

PRrOOF. The proof is similar to the one made in Corollary 4.6. O

COROLLARY 4.19. Let G be a locally compact group. Then G is amenable if and
only if for any essential Banach L'(G)-bimodule X and every bounded hyperlocal
operator D: L}(G) — X*, there are z*,y* € X* such that D(a) = az* — y*a
(e € LY(@)).

PROOF. By Johnson’s theorem, G is amenable if and only if L1 (@) is amenable.
Hence the result follows from a similar argument to the one made in Corollary

4.7. O
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COROLLARY 4.20. Let G be a locally compact group. Then for every bounded

hyperlocal operator D: LYG) — L*(G)*, there are 5, y* € LYG)* such that
D(a) = az* — y*a (a € LY(Q)).

PROOF. The result follows from a similar argument to the one made in Corol-
lary 4.7 together with the fact that LY(@) is weakly amenable [10, Theorem
5.6.48). 0

4.6. Approximately local n-cocycles from Figd-Talamanca-Herz

algebras

In the final section of this chapter, we state some of the major results that
we can obtain for approximately local n-cocycles and hyperlocal operators from

Figa-Talamanca-Herz algebras.

THEOREM 4.21. Let G be a locally compact group such that G, is abelian, let
p € (1,00), and let X be a Banach Ap(G)-bimodule. Then, for n € N, every
bounded approzimately local n-cocycle T from A ()™ into X is an n-cocycle. In

particular, Z*(Ap(G), X) is reflezive.
PROOF. It follows immediately from Theorem 2.23 and Theorem 4.5. O

COROLLARY 4.22. Let G be a locally compact amenable group such that G, is
abelian, let p € (1,00), and let X be a Banach Ay(G)-bimodule. Then a bounded
operator D: Ay(G) — X* is hyperlocal if and only if there is a bounded derivation
D and a right multiplier T from A,(G) into X* such that D = D+T. In particular,
D is a derivation if and only if weak* — alg{)lo D(ea) = 0 for a bounded approzimate

identity {eq}aen in Ap(G).
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PROOF. If G is amenable, then Ap(G) has a bounded approximate identity
[42, Theorem 4.10]. Hence the result follows from Theorem 2.23 and Corollary
4.6. O

COROLLARY 4.23. Let G be a locally compact group such that it has an abelian
subgroup of finite index, and let p € (1,00). Then, for any essential Banach
A (G)-bimodule X and every bounded hyperlocal operator D: A,(G) — X*, there
are z*,y* € X* such that D(a) = az* — y*a (a € A (Q)).

PROOF. It is well-known that if G has an abelian subgroup of finite index, then
Ap(G) is amenable (e.g. [16] or [34]). Thus the result follows from Theorem 2.23
and Corollary 4.7. 0



CHAPTER 5

Quantized hyper-Tauberian algebras

In this chapter, we consider the quantization of the results we obtained in
the previous chapters. We first look at quantized hyper-Tauberian algebras and
deduce the quantized results we obtained in Chapters 2, 3 and 4. Then we apply
them to the Figa-Talamanca-Herz algebra Ap(G) of a locally compact group G for

€ (1,00). We show that A,(G) is a quantized hyper-Tauberian algebra. This,
in particular, shows that 4,(G) is operator weakly amenable. It also shows that
every finite subset of G is a set of synthesis for Ap(G) and completely bounded

approximately local n-cocycles from A,(G) are n-cocycles.

5.1. Definition and basic properties

In this section we study the quantized theory of hyper-Tauberian algebras. We
start with the following definition which is the natural quantization of Definition

2.5.

DEFINITION 5.1. Let A be a commutative semisimple regular quantized Banach
algebra. We say that A is a quantized hyper-Tauberian algebra if every completely

bounded local operator from A into A* is a multiplier.

It is straightforward to verify that the analogue properties of hyper-Tauberian
algebras and hyperlocal operators which we studied in Section 2.3, Section 2.4 and
Section 4.3 hold also for quantized hyper-Tauberian algebras. We summarize some

of them in the following theorems and corollaries:
113
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THEOREM 5.2. Let A be a quantized hyper-Tauberian algebra. Then:
(3) A is Tauberian;
(i) every finite subset of ®4 is a set of synthesis for A;
(1i5) A is operator weakly amenable;
(v) a closed ideal I in A is quantized hyper- Tauberian if and only if I = I,(E) for
some closed subset E of ®4;
(v) a closed subset E of ® 4 is a set of synthesis (local synthesis) for A if and only
if I(E) (J(E)) is quantized hyper-Tauberian;

(vi) A* 4s quantized hyper- Tauberian.

PROOF. We note that if ¢ € A*, then, by [19, Corollary 2.2.3), llelles = ]l
Thus, for every f € A*, the operator S: A — A* defined by S(a) = p(a)f (a €
A) is completely bounded. Hence (i)-(iv) follow from the quantized versions of
Theorem 2.6, Theorem 2.8, and Corollary 2.9. Finally, it is shown in [19, Chapter
3] that there is an operator space structure on A such that the inclusion map
t: A — A is completely bounded. Therefore a simple calculation shows that Af
is a quantized Banach algebra, and so, by the quantized version of Corollary 2.11,

Al is quantized hyper-Tauberian. a

THEOREM 5.3. Let A be a quantized hyper- Tauberian algebra, and let X and Y
be essential quantized A-bimodules. Then a completely bounded operator D: X —

Y™ is hyperlocal if and only if
D(azb) — aD(zb) — D(az)b + aD(z)b =0

Jor all a,b € A andxz € X. If A has a bounded approrimate identity, then the

result is also true for all completely bounded hyperlocal operators from X into Y.

Proor. It follows from the quantized version of Theorem 4.4, O
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In Theorem 4.5 we showed that bounded approximately local n-cocycles from
hyper-Tauberian algebras are n-cocycles. The following theorem states the quan-
tized version of that result. So, in particular, completely bounded approximately

local derivations from quantized hyper-Tauberian algebras are derivations.

THEOREM 5.4. Let A be a quantized hyper- Tauberian algebra, and let X be o
quantized A-bimodule. Then, for n € N, every completely bounded approzimately
local n-cocycle T from A™ into X is an n-cocycle. In particular, OZ™(A, X) is

reflexive.

PRrOOF. It follows from Theorem 5.2(v), Theorem 5.3 and the quantized version

of Theorem 4.5. O

COROLLARY 5.5. Let A be a quantized hyper- Tauberian algebra with a bounded
approzimate identity, and let X be an essential quantized A-bimodule. Then a
completely bounded operator D: A — X* is hyperlocal if and only if there is a
completely bounded derivation D and a right multiplier T from A into X* such that
D =D+T. In particular, D is a derivation if and only if weak* —-a}ggo D(ey) =0

for a bounded approzimate identity {e,}aen in A.

Proor. It follows from Theorem 5.3 and the quantized version of Corollary

4.6. a

COROLLARY 5.6. Let A be a quantized hyper-Tauberian algebra with a bounded
approzimate identity. Then A is operator amenable if and only if for any essential
quantized A-bimodule X and every completely bounded hyperlocal operator D: A —
X*, there are z*,y* € X* such that D(a) = az* — y*a (a € A).
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PRrOOF. It follows from Theorem 5.3 and the quantized version of Corollary

4.7. O

5.2. Figa-Talamanca-Herz algebras as quantized hyper-Tauberian

algebras

Let G be a locally compact group. Since VN(G) € B(L*(G)) is an operator
space, A(G), regarded as the operator predual of VN(G), has a natural opera-
tor space structure which makes it a completely contractive Banach algebra (19,
Chapter 16]. Now let p € (1, 00) and suppose that there is an operator space struc-
ture on the Figd-Talamanca-Herz algebra A,(G) such that it turns A,(G) into a
quantized Banach algebra and A,(G) becomes a quantized A(G)-module (In [34],
one such operator space structure has been constructed on A,(G)). In this case,

we can show that A4,(G) is a quantized hyper-Tauberian algebra.

THEOREM 5.7. Let G be a locally compact group, and let p € (1,00). Then

AL(G) is a quantized hyper-Tauberian algebra.

PROOF. We first show that A(G) is quantized hyper-Tauberian. It is shown in

[20] that there is a complete isometry
A(G)B,AR) = AG x Q).

This map is also an algebraic isomorphism. Thus A(G)BpA(Q) is semisimple,
and so, since the diagonal A is a closed subgroup of G x G, by [53, Theorem
3], A is a set of synthesis for A(G)®,,A(G). Hence the result follows from the
quantized version of Theorem 2.7. The final result follows from the quantization

of the argument made in the proof of Theorem 2.23. [J
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COROLLARY 5.8. Let G be a locally compact group, and let p € (1,00). Then

Ay(Q) 1is operator weakly amenable.
PROOF. The result follows from Theorem 5.7 and part (iii) of Theorem 5.2. [

THEOREM 5.9. Let G be a locally compact group, let p € (1, o0), and let X and
Y be essential quantized A,(G)-bimodules. Then a completely bounded operator

D: X — Y™* is hyperlocal if and only if
D(azb) — aD(zb) — D(az)b+ aD(z)b =0

for all a,b € Ay(G) and x € X. Moreover, if G is amenable, then the result is also

true for all completely bounded hyperlocal operators from X into Y.
ProoF. It follows from Theorem 5.7 and Theorem 5.3. il

THEOREM 5.10. Let G be a locally compact group, let p € (1,00), and let X
be a quantized A,(G)-bimodule. Then, for n € N, every completely bounded ap-
prozimately local n-cocycle T' from A,(G)™ into X is an n-cocycle. In particular,

OZ"(A,(G), X) is reflezive.
ProOF. It follows from Theorem 5.7 and Theorem 5.4. O

COROLLARY 5.11. Let G be a locally compact amenable group, and let p &
(1,00). Then, for every essential quantized Ap(G)-bimodule X and every com-
pletely bounded hyperlocal operator D: A,(G) — X*, there are z*,y* € X* such
that D(a) = az* — y*a for all a € A,(G).

PROOF. It is shown in [34] that G is amenable if and only if A, (@) is operator

amenable. Therefore the result follows from Corollary 5.6. O
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