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Abstract

we initiate the study of certain linear operato¡s from a Banach argebra .4
into a Banach .A-bimodure x, which we cail approxi,mately rocar d,eri,uati,ons. we
show that when ,4 is a c*-argebra, a Banach algebra generated by idempotents, a
semisimple annihilator Banach argebra, or the group argebra of a sIN or a üotaly
disconnected group, bounded approximatery locar derivations from .4 into x are
derivations. we aìso prove that the same resurt hords if p e (r,oo) and á is the
FigilTalamanca'Herz argebra AoG) of a roca'y compact group G whose principre
component is aberian. Later on, we extend this idea to the space of n_cocycres
and we show that, for some of the above algebras, bounded approximatery rocar
n-cocycres ¡.o* ¿(z) into x are n-cocycles. Finaly, we consider the quantization
of these resurts and appty them to the FigilTaramanca-Herz argebra Ao(G) of a
locally compact group G 10r pe (t, oo). we show that Ao(G), equipped with an
appropriate operator space structure, is operator weakly amenable. We also show
that completely bounded approximately local n_cocycles from Ao(G)(,) into any
quantized Ao(G) -bimodule are n_cocycles.
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Introduction

The motivation for this thesis was sparked by the discovery that local deriua-

t'ions on C* -algebras are deri,uati,on* Let A be a Banach algebra, and let X be

a Banach .A-bimodule. An operator D: A ---+ X is a local derivation if for each

a € A, there is a derivation Do: A -- X such thai D(ø) : D"(ø).This concept was

introduced by R. V. Kadison in [33] and was motivated by his and J. R. Ringrose's

earlier investigation of Hochschild cohomology of various operator algebras. These

maps arise naturally when one seeks conditions to ensure that a given map is a

derivation. He showed that if A is a von Neumann algebra and X is a dual Ba-

nach ,A-bimodule, bounded local derivations from Á into X are derivations. In

particular, bounded local derivations from a von Neumann algebra into itself are

derivations. V. Shulman extended this result to bounded local derivations from

a C*-algebra into itself and showed that they are derivations [50]. Finalty, B. E.

Johnson extended these results and showed that if A is a C*-algebra, then local

derivations from .4 into any Banach ,A-bimodule are derivations [28].

Local derivations have also appeared in other contexts. They arose from the

study of "algebraic reflexivity" of the linear space of derivations. In [35], David

R. Larson studied reflexivity and algebraic reflexivity of certain subspaces of oper-

ators and asked which algebras have an algebraically ¡eflexive derivation space, or

equivalently, for which algebras every local derivation on the algebra is a deriva-

tion. He, together with A. Sourour, showed that the answer to that question is
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affirmative for B(x), where x is a Banach space [Bo]. R. L, crisi arso proved

that every bounded local derivation on the direct limit of finite dimensional CSL
algebras via o-extendable embeddings (e.g. a triangular AF algebra) is a derivation

[9]' One can also ask for which aJgebras the linear space of bounded derivations is

reflexive.

In this thesis we address these questions for various classes of Banach algebras

including c*-algebras, and group argebras and Figà-Talamanca-Herz algebras of
locally compact groups.

In Chapter 1 we give the necessary background material from theories of Banach

algebras, Harmonic analysis, C*-algebras and. operator spaces.

In Chapter 2 we study a certain class of commutative semisimple Banach al-
gebras. We call them hyper-Tauberian algebras. We first show that the class of
hyper-Tauberian algebras forms a proper subclass of weakly amenable Tauberian

algebras. Then we investigate the basic and hereditary properties of them in
terms of their ideals, tensor products and algebra homomorphisms. In particular,

we show that there are some close relationships between hyper-Tauberian algebras

and sets of (local) synthesis. Later on, we exploit Johnson,s approach and investi_

gate bounded local derivations from hyper-Tauberian algebras and we show that,
in most of the cases, they are de¡ivations. on the other hand., we also present other
classes of commutative semisimple Banach algebras that are not hyper-Tauberian

and show that, even in the most natural cases, they have bounded local derivations

which are noü derivations.

In Chapter 3 we introduce the concept of an approri,mately local d,eriuati,on.

An operator D from A into X is an approximately local derivation if for each

a e A, there is a sequence of derivations {Do,,,} from A into x such that D(a) :
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]'*n","(")' our goal here is to see whether (mainly bounded) approximately
local derivations are derivations. The advantage of considering these maps rather
than ]ocal derivations is that they are more general and they allow us to study
both reflexivify and algebraic reflexivity at the same time, on the other hand, in
the previous studies of local derivations, it has always been helpful fi¡st to study
the local multipliers (see [2g]). However, as it is shown in sections 3.1 and 8.2, we

find it mo¡e useful to consider approximately local multipliers. For instance, using
this idea helps us to extend Johnson's result and show that approximately local
derivations from c*-algebras are derivations. We also show that bounded approxi-
mately local derivations are derivations if they a¡e defined from a hyper-Tauberian
algebra, a Banach algebra generated by idempotents, a semisimple annihilator Ba-
nach algebra, the group argebra of a sIN or a totary disconnected group, or the
Figà-Talamanca-Herz algebra Ar(G) of a rocaJly compact gïoup G for p € (1, oo)

when the principle component of G is abelian. Finall¡ for a non-discrete group G,
we provide an example of an essential Banach M(G)-bimodule x and a bounded
local derivation ? ftom M(G) into x which is not a derivation.

In [33], Kadison has raised the question of whether the results of local deriva-
tions from von Neumann algebras can be extended to the locar higher cohomology,

for example, local 2-cocycles. chapter 4 is devoted to developing a theory for which
we can investigate this question. W'e first generali ze thedefinition of the reflexivity
to the linear subspaces of bounded n-linear maps from Banach spaces and consider

the question of reflexivity for the space of bounded n-cocycles from A@) into x.
This naturally leads us to the concept of approrimately local n-cocycles and the
question of whether they are n-cocycles. we show that we can reduce the problem
to the characterization of ce¡tain operators from Ainto X which we call hyperlocal
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opero'tors. Then we use this idea, together with the properties of hyper_Tauberian
algebras, to show that bounded approximatery rocal n-cocycres ¡o^ ¿Ø) into x
are n-cocycres when ,4' is a hyper-Tauberian argebra, a c*-argebra, the group arge_
bra of a sIN or a totary disconnected group, or the Figà-Talamanca_Herz argebra
Ao(G) of a locally compact group G ror p e (1, oo) when the principle component
of G is abelian.

In chapter 5 we consider the quantization of the results we obtained in the
previous chapters' we first look at quantized hyper-Tauberian algebras and deduce
the quantized version of the resurts we obtained in chapters 2, J and,4. Then we
apply them to the Figà-Taramanca-Herz argebra AoG) of a rocaily compact group
G for p e (1, oo). Since the Fourier algebra A(G) :: Ar(G)is the predual of the von
Neumann algebra vN(G), it has a natural operator space structure which turns
it into a "quantized" Banach argebra [Lg]. In [46], Ruan showed that a rocalry
compact group G is amenabre if and only if ,4(G) is operator amenabre. In [84J,A' Lambert, M' Neufang, and v. Runde introduced an operator space structure
on Ar(G) that tu¡ns it into a quantized Banach argebra. As an apprication, they
extended Ruan's resurt and showed that G is amenabre if and onry if Ao(G) is
operator amenabre fo¡ ail-and equivarentry for one- p € (r,oo). It was asked in
the above cited paper whether other quantized cohomorogical properties of A(G)
can be extended to Ao(G). one of those results, obtained by N. spronk, states
that A(G) is operator weakly amenable [51], we show that the answer to this
question is a'ffirmative by proving that, for any rocaty compact group G, Ae(G)
is a quantized hyper-Tauberian argebra. This, in particular, impries that ,4o(G) is
operator weakry amenabre. It also shows that completery bounded approximaterv
local n-cocycles from AoG) are n_cocycles.



CHAPTER 1

Preliminaries

1.1. Algebras and Banach algebras

Throughout this thesis, we consider ar the vector spaces to be over the comprex
field c' Terms and concepts of basic real and functional analysis which we have
not defined or discussed can be found in f6j and [ 7].

An algebra is a vector space .4 together with a murtiprication, caued an argebra
product' A x A -* A; (a,b) - ob, which is associative and respects the vector
operations:

(ab)c: a(bc),a(b * c) : ab + ac,(b + c)a: ba * ca (a,b,c e A)
(aÀ)å: a(Àb):À(ab) (Àe C , a,be A).

we say that A is commutative if ab : bafor at a,b e A. we say that A is unitar if
,4 has amultiplicativeidentityi.e. thereis an elementl e Asuchthat l:7a: aI
for all a e A- we define the unitization of A to be AH : Ao c with multiprication:

(a, À)(b, f¡ : (ab * ap, _l bÀ, À¡,r,)(a,b e A,À, p e C).

Thus ,4fl is a unital algebra with unit (0,1).

A subalgeb¡a of an argebra .4 is a rinear subsp ace B of ,4 such that ab Ç B for
arl ø,be B. A reft idear in an argeb¡a A is a subargebr a I c Asuch that, ir a e A
and å e r, then øb e I. similarr¡ we can define a right idear and a two_sided idear

5
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for A. when ,4 is commutative, there is no distinction between left, right, and
two-sided ideals, and so the word ,,idear,' is used without any such quarification.

A modular left ideal is a left ideal .I for which there is an element e € .4 such
that a -ae€ lfor ar ae A. A reft idear/is properif 0 ç I ÇA,and maximar
if it is proper and not contained in any other proper left ideal. Given a left ideal
I of A, the quotient of I is the two_sided ideat I : ,4 defined by

I:A:{aeAlaAcI},
where o¡: {ab: b e A}. The quotient of a maximal modular lefi ideal is called a
primitive idear. The radicar of an algebra,4., denoted by rad ,4, is the intersection
of all the primitive ideals of A, or equivalently, the intersection of all the maximal
modular left idears of A 12, proposition 24.141. An algebra .4 is semisimple if
nd A: {0}.

For algebras .4 and B, a linear map ?: A _- B is an algebra homomorphi,smif.
T(ab) : r@)T(b) for each a,b e A. If r is a bijection, then z is an isomorphism.

Let x be a vector space, rei .4 be an algebra, and suppose that we have a
bilinear map .4 x X -+ X;(o,r) * ax such that

(ab)r: a(bx) (a,b e A,r e X).

Then we say that x is a left á-modure. we say that y is a left ,4_submodure of
x irY is a subspace of x so that øa €y for each a € A andye r. similarry, we
have the notions of right ,A-modure and right .4-submodure. we say that x is an
.A-bimodule if X is both a left and a right ,4_module and

(ar)b: a(rb) (a,b e A,r e X).

Let x and y be vector spaces, and ret L(x,y) be the rinear space of (rinear)
operators from x into Í. In the case that x : y, we write tr(x) insiead of
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L(x,x) for simplicity. Now ret A r¡e an algebra, and ret x and y be .eft, A_
modules. A map T e L(X,y) is a left .A_module morphism if T(ar) : aT(r) for
all ø € -4 and r e x.In the case that x: A,we say thatris aright murtiplier.
For right 4-modules x and' Y, right -A-module morphisms and left multipliers are
defined similarly. For left þight] ,4_modules X and )2, let ¿,L(X,y) [LA(X,f)] be
the linear space of reft þightJ .A-modure morphisms from x inio y.

A Banach algebra is an algebra 4 with a norm ll . fl such that (A,ll . lf) is a
Banach space and

ll"ull s llollll¿ll @,b e A).

The definitions of homomorphism, module etc, all follow over, where we insist on
bounded maps and Banach spaces, in the appropriate praces. For Banach spaces
x and Y,Iet B(x,y) be the rinear space of bounded (rinear) operators from x
into Y. When .4 is a Banach algebra, we give.Afi ühe norm

ll(o, À)ll : lløli + lÀl (a e A,À e C),

in order to make it a unitar Banach argebra. A Banach space x is a Banach reft
.A-module if X is a left Á-module and, for some K € IN,

llo"il < Kllallllxll (a e A,r e x).

similarly, we get the notion of a Banach right .A-modure and a Banach A_bimodure.
Let x be a Banach left á-modure. Then x*, the duar of x, becomes a Banach

right ,A-module by setting

ffo,r) : (f ,ar) (a e A,r € X, f e X.¡.

similarly, if x is a Banach right ,A-modure, then x* becomes a Banach bft A_
module.
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A net {a.} in a Banach algebra ,4 is a left approximate identity if aao--+ ø in

norm, for each ø e A. Similarly, we have the notions of right approximate identity
and approximate identity. If {a"} is norm bounded, then we have a bounded

(left/righi) approximate identity.

Let A be a complex commutative Banach algebra. A multiplicative linear

functional on .4 is a non-zeïo linear functional þ on A such that

ö(ry) : ó(r)ë(y) (r,y e A),

i.e. a non-zero algebra homomorphism from á into C. Ii is well-known that every

multiplicative linear functional þ on A is bounded and ll/ll < r [2, proposition

16'3]. Moreover, the maximal modular ideals of. A are precisely the kernels of the

multiplicative linear functionals on A[2, Theorem 16.5]. The set of all multiplica-

tive linear functionals on .4 is cared the carrier space of .4; it is denoted by Õ¿.

Hence Õ¿ is a subset of the duar space .4*. The .A-toporogy on @¿ is the rerative

topology on Þ4 induced by the weak* toporogy on A*. Thus if Þt# Ø, then a

basic of neighborhood of. þ € Õ¿ is of the formV(þ;r;t,..,r,;e) where

V(ó;*r,...,rnie): þþ e Þ¿ I lrþ@ù -ó("òl <€ (k:1,...,n)),
for arbitrary positive integers n, elements tr¡. . . ,rn € A, and e ) 0. The carrier

space for á is the set @a with the ,A-topology. It can be shown that the carrier

space Õ¿ is a locally compact Hausdorff space. Moreover, Õ¿ is compact if ,4 is

unital [2, Proposition 17.2].

Given a topological space o, we denote by c(cl) the algebra of all continuous

complex valued functions / on Q and C6(O) the u¡iform algebra of all continuous

complex valued functions / on o such that it vanishes at infinity i.e. for every

e ) 0, there is a compact set K such that l/(")l < e whenever r # K. Note that
if O is compact, Co(O) : C(0).
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Let A be a commutative Banach algebra with the ca¡rie¡ space Õ¿

each ø e A,let ø^ be the function on @a deflned by

I

t Ø. For

a^(þ) : þ(a) (d e o¿).

It is clear from the definition of the .A-topology that ø^ is a continuous complex

valued function on (Þ¿ which vanishes at infrnity i.e. a^ e co(o¿). The Gelfand

representation of ,4 is the mapping a r- aA of ,4 into Co(øt). It can be shown

that the Gelfand representation is a bounded algebra homomorphism from A into

co(@¿). Moreover, it is a monomorphism if and only if ,4 is semisimple.

we say that .4 is regular if for each closed subset F of. e¡ and each do e @¿ \Jn,
thereexistsø€¿with

ø"(ó) :o (þ e F), a^(óù + o.

Given Banach spaces X and y, a norm ll . ll o" X Øy is said to be a a cross_

normif ll "8v ll:ll " ll ll v ll foran re x andg €)2. Given across-norm ll .ll,
and a linear combination

EXØY,

we have

ll "ll,sÐll ", ll ll øll
i:l

Thus, if we define

n

u:Ðr¿Øa¿

ll " llr: inf{Ð ll "o ll ll a¿ll: u: Ð riØyi},

then it follows that ll u llr<ll z ll". It is a simpte mafter to verify thai ll . ll., is in
fact a cross-norm, rvhich is called the projective tensor product norm on x Øy.
We let the Banach space projective tensor product of X and Y be the completion

of (x s y' ll ' ll"); *" denote it by xôy. E x,I. and z are normed spaces and
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þ: X xY -, Z is a bilinea¡ mapping, then we define

ll d ll: sup{ll/(r, y)il I ll'll, llull s r1.

We let B(X xY, Z) denote the normed space of all such mapping / wirh ll d ll< *,
and the norm ll ' ll. The rinear isomorphisms determine the isomet¡ies

B(x6Y, z) = B(x x y, z) = B(x, B(y, z)).

Let A be a Banach algebra, and let x and I/ be Banach teft[right] á_modures.
Let aB(x,Y) [BA(x,r)J be the rinear spaces of bounded lefi fright] .A_module
morphisms from x into y, respectively, In the case that .4 has a bounded approx_
imate identity, it is known that right [eft] multipliers from A intol/ are bounded.
so AL(A,Y) :o B(A,Y) [L¡(A,Y) : B¡(A,Y)1.

Let X be a Banach .A-bimodure. An operator D e L(A, x) is a derivation if for
all a,b e A, D(ab) : aD(b) + D(a)b. For each r e x,the operato r ad,, e B(A, x)
defined by ad,(a) : ar - xa is a bounded derivation, called an inner derivation.
Let zt(A,x), N,(A,x) and zt(A,x) be the linear spaces of derivations, inner
derivations and bounded derivations from á inio x, respecti vely. Ais amenable
if for every Banach A-bimodure x, every bounded derivation from A into x* is
inner' '4 is weakly amenable if every bounded derivation from ,4, into A* is inner. If
á is commutative, then zero is the onry inne¡ derivation from .4 into ,4.*. Hence ,4
is weakly amenable if every bounded derivation rrom Ainto A* is zero. A Banach

'4-bimodule x is calred symmeüric if for ar a e Aand ,, € x, ar: xa. By [L0,
Theo¡em 2'8'63J, .4 is weakry amenabre if and only if every bounded derivation
from ,,4 into any symmetric Banach .A_module is ze¡o.



1.1. ALGEBRAS AND BANACH ALGEBRAS

For n e N and T e L(A,X), define

õ"7 : (a1,...,an+t) Þ alT(a2,...,an+r)

+ f{-f)rf{art...,a¡-ttajaj+t,...,an+r)
j=1

+ (-t)+LT(a!,...,an)an+t.

It is clear that ô" is a linear map from L(A,x) into Ln*r(A,x); these maps are
the connecti'ng maps. The elements of ker 6n are the n-cocycles; we denote this
linear space by z"(A,x). If we reprace L(A,x) with B"(A,x) in the above,

we will have the 'Banach' version of the connecting maps; we denote them with
the same symbols d". In this case d" is a bounded rinear map from B,(A,x) into
B"*t(A,x); these maps are the bound,ed, connecting maps. Theelements of kerô,
are the bounded n-cocycles; we denote this rinear space by z"(A,x). It is easy to
check that Zt(A,X) and z'(A,X) coincide with our previous definition of these
spaces.

Let Abe a Banach algebra, and ret x be a Banach,,4-bimodure. By [10, section
2.8], for n € NI, the Banach space B'(.4, x) turns into a Banach ,A-bimodule by
the actions defined by:

(axT)(ay...,an) : aT(a1,...,an)l

(T x a)(a1,...,an) : T(aa1,...,an)

+ f{-f)rfia,at,...,ajaj+1,...,an)
j=1

+ (-t)+lf@,ar,...,a,*_t)an.

In particular, when n: \, B(A,x) becomes a Banach .A-bimodure with respect
to the products

(axr)þ): aT(b) , (T*a)(b):T(ab) -r@)b.
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Let Â,, : B"+r (A, x) - B.(A, B(A, x)) be the identification given by

(/t"(T) (a1, . . ., an)) (an+t) : T (a1, . . . t an+l).

It is straightforward to check that Â,, is an ,A-bimodule isometric isomorphism. If
we denote the connecting maps fo¡ the complex B"(A,(B(A,X),*)) by A,, then
v¡e can easily show that

An+1 o5n+1 -¡",oArr.

I.2. C*-algebras and operator spaces

DnprwlTroN 1.1. Let.4 be an algebra. A map x: A _-+ A, written by a_t ¿*,
is an involution when we have:

1. (aa+ô)*: da* +b* for a € C and a,b € A;

2. (ab)- : b*a* for a,b e A;

3.(o.).:øfor ae A.

When á is a Banach algebra with an involution and lla-all : llall, for every
a € 4, we say that A is a c*-algebra, For exampre, ret Q be a locany compact
space' Then c¡(o), with the uniform norm, is a commutative c*-algebra with
respect to the invorution r * r, where rQ):/@. corru.rsery, by [10, Theorem
3.2.6]], every commutative c*-algebra.4 is isometrically x-isomorphic with co(o¿).
More generally, let H be a Hilbert space. For ? e B(H), ret ?* € B(H) be the
adjoint of ?. We can check that ? r+ ?* is an involution, and thai ll T.T ll:ll Tllz,
so that B(H) is a c*-algebra. In fact, ret A be acrosed subargebra of B(r/) such
that A: A* : {T* : T € ,4}. Then .4 is a C*_algebra. Moreover, by [10, Theorem
3.2.291, every c*-algebra arises in this way. The weak operator toporogy on B(H)
is the iopology that ha¡ a basis of neighborhoods of r e B(1/) given by sets of
the form
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{s e B(H)llQ@,,) - S(rn),an)l<u, (h:1,...,n)},

for arbitra¡y positive integers n, elements rtt...,rn,A7,...,An
von Neumann algebra M is a C*_algebra that is closed under
topology.

Let A be a c*-algebra which is not unitar. we can see that, in generar, our
unitization, Ad : Ao1 c, is not a c*-algebra (as ihe norm dose not satisfy the
cor¡ecf condition). However, there is an equivalent norm on Ar that turns it inio
a C*-algebra (see [I0, Definition 8.2.1]).

Let v be a linear space. For m,n € NI, we ret Nn^,,(v)denote the linear space
of mby r¿ matrices whose entries are in V, and.we write Nrf"(y) : MIr,r(/). m
V : C, then we let M-,,, : M_,r(C) and M," : MI",,(C).

we define a matrir norm ll ' il or a linear space ,, to be an assignment of a
norm 

f f 
.ll, on the matrix space Mi,(Z) for each n € N. An abstract operøtor space

is a linear space Z together with a matrix norm ff . fl for which
Ml llu @ rll^*,: max{llull *,ll.l!,} and
Mz llauBll" < llallllull^llpll,
fo¡ all u eNn,.(V),. e l\d"(Ii) and a € M,,-, þ €:M.^,,. We let M,(V)denote
M"(I/) with the given norm ll ' ll : il' lr' (*. usuaty omit the given subscript
n)' we say that a matrix norm is an operator space matrix norm ifit satisfies the
equations Ml and M2 of above.

Let V andW be abstract operator spaces and. þ: V ___+ W alnearmap. For
each n € N, d induces a linear map ó,: M,(V) _, IV,(W)defined by

ë"([ro¡]) : [ó(uùl

eH,a.nde>0,4

the weak operator
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for [u¿¡l e M"(V). The completely bound,ed, normof / is

lldll¿ : sup{lld"ll I n e N}.

Then / is compretery bound,ed, (resp. cornpretery contractiue, completely i,sometri,c)
1f llóll"u < oo (resp. ildll¿ S I,each /,, is an isomerry).

Let H be a H'bert space, and ret B(H) be the space of a, bounded ,inear
operators on 'H' For each n € N, there is a natural operator norm rf . il, on the
n x n marrix space Mn(B(/1)) = B(H"). This fam'v of norms {lr . ,,} is the
operator matrir norrn on B(H). An operator space is a rinear subspace of B(H)
together with ihe operator matrix norms inherited from B(/1).

It is clear that every operator space is an abstract operator space. Moreover,
by [19, Theorem 2.J.5], the converse is arso true i.e. every abstract operator
space is compretery isometric with an operator space. For this reason) we wil not
disiinguish between these two' we note that atl the operator spaces considered in
this thesis are normed closed.

we let c,(v,rØ) denote the space of at compretery bounded maps from Z
into w - It Ís shown in ilg] that there is a naturar operator space structure on
CB(V,W) obtained by the identification

M"(CB(V,W)) 
= CB(V, M,(W)).

Thus for every operator space Z, its Banach dual space Z* : B(V,C) : CB(V,C)
is again an operator space and is called the operator d,ual of V.

For operator spaces 

', 
and w, wesay that an operator space matrix norm lf .lf,on I/ 8 W is a cross matrix norm if

lluØwll,:llu ll ll ,ll,

t4
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for all u € Me(v) and w e Mq(w). Given an element u in M,(v Øw),we define

li " lln: inf{ll a llll , llll , llll þ ll,": a(u ø w)þ},

where the infimum is taken over arbit¡ary decompositions fo¡ aü u e Mo(v),
w e Mn(w), o e Mn,pxqt and' B e Mpxq,n, with p, q € IN arbitrary. It is shown in
[19] that this is an operator space cross mat¡ix norm. we ret the operator space
projective tensor product of Z and W be the completion of (V øW,ll . lln); *.
denote itIry v6"rw. There is a comprete isometry cB(v,w.) = (v6*w)* given
by

(Í@) , w): (T , uØu) (u e V, w €W,T e (V6"pW).).

Also, if Z is an operator space, then there are natural complete isometric isomor-
phisms v6"ew = w6oov and. (v6*W)6*z e v6"e(w6*z) (see [rs]).

Let A be a Banach argebra which is additionalry an operator space. ,4 is
called a quanti,zed Banaclt. algebra if the multiplication m: A6*A_+,4, specified
by m(a I b) : øÓ, is completely bounded. In the case when rru is completely
contractive, ,4 is called a completely contractiue Banach algebra.

Let x be a Banach ,A-bimodure. Then x is cailed a quantized A-bi,mod,ute if
X is an operator space and the ,A_bimodule operations

AA"pX --- X i aØ r ¡-+ ar

and

X6'eA-->X i rØa-+ra
are completely bounded. It is easy to check that there is a natural quantized

'A-bimodule structure on x*. -4 is operator amenabre if for every quan tized A_
bimodule x, every compretery bounded derivation from A into x* is inner [46]. A
is called operator weakly amenable if every compretely bounded derivation rrom A
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into.4* is inner [17]. By [12, Proposition 3.2], for,4 commutative, this is equivalent

to saying that every completely bounded derivation from A into any symmetric

quantized ,A-module is zero.

Let A be a quantized Banach algebra, and let x be a quantized ,A-bimodule.

For n € N, let cB"(A,x) be the space of compretely bounded n-linear maps from

,4(") into X. It is easy to see that there is a natural operator quantization of the

connecting maps d'defined in section 1.1. In this case, ôn is a compietely bounded

linear map from cB"(A,x) into cB"+t(A,x); these maps are the completely

bounded connecting rnaps. The elements of kerð'" are the cornpletely bound,ed, n_

cocycles; we denote this linear space by OZ.(A,X).

1.3. Harmonic analysis

A topological group is a group that is arso a Hausdo¡fi topological space in

which the multiplication map from G x G into G and the inversion map from G
into G, defined by

(uru) r-, uu and tJ¡-'tl-t,

are continuous. A topological group is said to be cornpact, locally compact, dis-

crete, connected or totally disconnected if it has the corresponding property as a

topological space.

Let' G be a locally compact group, and let ßç be the ø-algebra of Borel subsets

of G. Then, by [10, Theorem J.9.2], there is a positive, regular Borel measure À

on G such that:

(i) À(U) ) 0 for each non-empty, open subset [/;

(ii) À(/f) < oo for each compact subset K;

(iii) À(¿E') : 
^(E) 

for each t e G and, E e ßc.
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Moreover, À is unique up to a positive multiple. It is called the left Haar measure

of. G.

Let G be a locally compact group with a fixed left Haar measure À. For

I < p ( oo, let If (G) be the space of ail the comprex-valued, À-measurabre

function / defined À-almost everywhere on G such that !.lf Ird,^ < oo. We identify
functions / and g in Ip(G) if / : 9 À-armost everywhere. In this case, .Lp(G) is a
Banach space with the norm

ll/llo: tl.trf axli (f e LP(G)).

The measure algebra M (G) is the Banach space of complex-valued,, regular Borel

measures on G. The space M (G) is identified with the (dual) space of all continuous

linear functionals on the Banach space c6(G), with the duality specified by setting

0" , r): [^f {t)ortt) U e cs(G),p e M(G)).
JG

The convolution multiplication + on M(G) defined by setting

0" * , , f) : I" l.f þt)d,¡-t(s)d,u(t) (f e cs(G), tf,,u e M(c)).

we write ô" for the point mass at s € G; the element ð'" is the identity of M(G),
and ll(G) is the closed subalgebraof M(G) generated by the point masses. Then

M (G) is a unital Banach algebra and. Ll(G), the group algebra on G, is a crosed

ideal in M(G) [1-0, Theorem 3.8.36]. Moreover, M(G): Lt(G): tt(G) if and

only if G is discrete.

The strong operator toporogy on M(G) is defined as folows: a net {¡;.} con-

verges to l"0t.13'¡r) if andonly if ¡tor,f - pxl and f *p,- f *pinnorm,
for every r e Lt(q. From [r-0, Theorem 2.g.4g and rheorem 3.8.41], both ¿1(G)

and l1(G) are s.o. dense in M(G).
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compact group. A positive-definite function on G is a

that for every n € NI, 21, ...,tn € G and Àr,. .. , À,, € C,

f roÐ/(" ir;r) > o.
i.j

Let P(G) be the set of all continuous positive-definite functions on G, and ret B(G)
be its linear span. The space B(G) can be identified with the duar of the group
c*-algebra c*(G), this ratter being the completion of L\(G) under its largest c*_
norm' with pointwise murtiprication and the duar norm, B(G) is a commutative
regular semisimple Banach algebra. The Fourier argebra A(G) isthe crosure of
B(G) a coo(G) in B(G). Ir is shown in [lBJ that A(G) is a commurative regular
semisimple Banach argebra whose carrier space is G. Arso, up to isomorphism,
á(G) is the unique preduar or v N(G), the von Neumann argebra generated by ihe
left regular representation of G on L2(G) i.e. the representation À: G + B(L2(G))
given by

S(t)(f)(æ) : ¡çt-lr) (t,r e G, f e Lr(G)).

Let G be a locally compact group, and let p e (I,oo). Let q € (7,oo) be the
dual of p, i.e' o+å : t. The Fi,gà,-Taramanca-Herz argebra AoQ)consists of those
functions f : G --+ c where there are sequences {o,}L, in It(G) and {ó,,},.,a, in
Ls(G) such thar

i llo,ilr",crlló,ll¿,rcl < oo
n=7

and

/: Ë an*ú,,
n=I
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where ú(r) : u(r-r) for any functions u: G __+C and r e G.It is easy to see that
AoG) with the norm

ll/llo : i"r{Ë lþ^ll¡,,ellb,llz,1c¡ j / : Ë øn *ú.¡
n=l n=r

is a Banach space' It was shown by Herz that, with pointwise addition and multi_
plication, Ao(G) is a commutative regular semisimple Banach algebra whose carrier
space is G ([25], [24]). rf p: q:2, then Ar(G): A(G) [r8J. Finaily, we nore
that by Herz [25], AoG) is a Banach ,4(G)_bimodule.



CHAPTER 2

Hyper-Tauberian algebras

In this chapter' we initiate the study of certain commutative regular semisimple
Banach algebras, which we call hyper-Tauberian algebras. We first investigate the
basic and hereditary properties of these algebras. Then we give some exampres. Fi_

nally, we look at bounded local derivations which a¡e defined from hyper-Taube¡ian

algebras and we show that, in most of the cases, they are derivations.

2.1. Introduction

Throughout this chapter, .,4. and B are commutative semisimpre regular Banach
algebras with the ca¡rier spaces Õ¿ and Þ6, respectively. Let 1 be a closed ideal
in á. The hull of. I is

{t e ø¡l a(t) : o for alt a e I},

and it is denoted by h(I). Let E be asubset of Õ¿. put

I(E):{aeAlø:0on.E},

and

Io(E) : {a e A I a has a compact support disjoint from E}.

Let E be a closed set. Then /(E) is the rargest and Ie(E) is the smalest idear in
-4 whose hull is E [10, proposition 4.r.20]. we say that E is a set of synthesi,s ror
A if there is a unique crosed ideal in A whose hull is .Ð. so .Ð is a set of synthesis

20



2.2. LOCAL OPERATORS 2I
for Aif and onry tn I'(E) is dense in 1(E). If we let J(E)bethe crosure of

{a e I(E) | r,rpp a is compact},

then E is a set of rocøI synthesi,s for A fi 16(.Ð) is dense in .r(E) (see [2a]). it is
clear that every set of synthesis is a set of locai synthesis. Let A"be ihe set of all
elements in ,4 with the compact support. If á" is dense in A ,i.e. A is a. Tøuberi,an
algebra [++], then J(E) is a maximal ideal of .4 having .E as its huil and being
essential as a Banach .A-bimodure. so if ^Ð is a set of rocar synthesis, then J(E) is
the only closed ideal in ,4 with this property.

Let x and r be Banach spaces. Let s be a linear subspace on L(x,y) and for
each r € x let 52 : {.9(r) | ^9 e .s} and [szJ be the norm-c]osure of .sr. put

ref"(S) : {? € L(X,y) lr@) e Eæ,r € X};
and if S c B(X, y) pui

ref(S) : {? € B(X,y) lr@)e [6"], r € X].
suppose that,s c L(x,y). Then s is argebrai,cary refleriae* s: refo(s) and
when S c B(X,Y), it is refleriueif E: ref(^9). For more on these notions see [ss]
and the references therein.

2.2. Local operators

Let x be a Banach reft (right) ,4.-modure. For ø e x, the annih'ator Ann¿(z)
of c is

Ann¿(ø) : {ø € Al ax:0 (ra:0)}.
Anna(z) is clearry a crosed idear in ,4. The huil of Ann¿(r) is caled the support
of r (in Õ¿), denoted by supp,n. we will write "suppr,, instead. of ,,supp4ø,,

whenever there is no risk of ambiguity. In the case x : .4. where we regard _4
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as a Banach (lefi or right) ,A-module on itself, the support of an eleme nt a e A
coi¡rcides with the usuar definition of suppø, namery cr{ú e aal a(t) l0}.

The following lemma is the modification of [1g, proposision 4.4].

Lprr¡ue 2.7. Let x be a Banach teft (right) A-mod,ure, and, ret r € x. Then

t e suppx i'f and only i,f for eaery cornpact nei,ghborhood,v of t, there is an erement

a e A, wi,th the supporÍ i,n V , such tltat ar I 0 (na I 0).

PRoo¡'. We prove the Lemma in the case of a left module. The other case

can be proved similarly. Let t e supp Ø and. assume that there is a compact

neighborhood I/ of ú such that for every o, € ,4, with supp ¿ Ç I/, we have ¿z : 0.

By the regularity of ,4 [10, proposition 4.1.1g], there is å e ,4 such that supp b ç v
and å(ú) f 0. However, br, :0 and t € suppu. This implies that b(t) :0, which is

a contradiction. For the converse, let ú € Õ¡ with the given property, and let a € A
such that a(t) + 0. we will show that ar I 0. There is a compact neighborhood

v oIt and d>0suchihat la(u)l >ô>0foraI u ev. Becauseof theregularity
of ,4 and [44, Theorem 8.6.15], there is b e Asuch that ab:r onv. Let ce A
be a function whose support is in I/ such that cr + 0. Then abcr: cr, therefore

ax 10. D

The preceding lemma indicates ihat ú É rrrpp u if and only if there is a compact

neighborhood I/ of ú in Q¿ such that, for every element a € A,if supp a Ç I/, then

ar:0 (ra:0). Inparticular, if.a e Aand r € x aresuch that suppa is compact

and supp ø r-ì supp r : 0, then, by applying a suitable partition of unity on supp a,

we have a,r :0 (xa:0).
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Dprrw*roN 2-2' Let x and I'be Banach reft (righi) ,A-modules. An operator
T: x ''Y is locar with respect to the reft (right) ,A-modure action if supp r@) c
suppn for all r e X.

PRoposrrro* 2.3' Let A be a Tauberi,an argebra, and, ret x be Banacrt, Ieft
("ght) A-module' Trzen a bound,ed, operatorT: A -> x i,s rocar i,f suppT(a) c
supp a, for each a e. A..

PRoor' we prove the statement in the case of left module. The other case can
be shown similarry. Let a e A and ú f supp ø. There is an open subset v in e¿
such that t e V,7 is compact and V fì supp a: Ø. By the regularity of ,4., there
is e e A" such that e: 1 on V ande:0 on suppø. So

ae:0. (1)

Since .4 js Tauberian, there is a sequenc e {ar} in ,4. such that an___+ ø as r¿ _+ oo.
Put er, : an ørre. Then

en e A" and er: 0 on I/ (2)

for all n. Moreover, from (1),

ên_ a_ o,n o,ne_ a,: (ar_ a) _ (on_ o)".

Hence en + eas 7u ---+ cÐ. Now let c € Awith supp c C V. Then suppc and
supp e?? are compact. Moreover, from (2),

suppc O supp T("") çsuppc tì supp en ç V tV" : Ø.

Therefore cT(e,):0, and so, by leiting, ---+ oo, cT(a):0. Hence ú I supp?(ø).
Therefore supp ?(a) C supp a for all a e A. D

Let x and Y be Banach refi (right) -A-modures. It is easy to see that every
left (right) .A-module morphism from x into y is a locar operator. w.e finish this
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section with the foììowing proposition which indicates that, und.er some additional
assumptions, the converse of the above statement can arso be true. we wil use

this result throughouü this chapter.

we recall that a Banach left [right] .A-module x is essenti,at if itis the closure
of AX : span{ar I o e A,r e X} IXA: span{øø I o e A,r e X}]. A
Banach 'A-bimodule X is essenti'at if it is essential both as a Banach left and right
.4-module.

PRoposrrroN 2.4. If bound,ed, Iocal operators from A i,nto A* are murtipri,ers,
then, for essent'ial Banach teft (rigÍLt) A-mod.ures x and, z, and, an essential Ba_
nach ri,ght (Ieft) A-module y 

,

(c) euery bounded local operator T from x i,nto y* ,is a teft (ri,ght) A-mod,ule mor_
phi,sm;

(ä') i'f A has a bounded appror,imate,identi,ty, then the result i,n (i,) i,s also true for
eaery bounded local operator T from X i,nto Z.

PRoor'. we prove the resurt for the case when x and z areleft modures and
Y is a right module. The proof of the other cases folows similar rines.

(i) Let re X andye y. Define

Lr:A-aX, L,(a):ar, (ae A);

Kr:Y* --+A* , (Ko@"), a):(y" , yo) (ae A, A* €y*).
It is easy to see that L, and. Ko are bounded reft ,A-module morphisms. Hence
KE o T o L' is a bounded local operator from ,4 into A*, and. so it is a multiplier.
Therefore Ko(T(abx) - ar(bx)): 0 for all a,b in .4 and r e X. So, for each c €. A,

(T(abr) - aT(bæ) , ac) :0.
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The final result follows by the essentiality of X and y.
(ii) suppose thaî A has a bounded approximate identity {e.*}oetr. For z* e z*,by
replacing Ks with

K'r": Z -, A* , (X'",(r), a): (z* , az)

and applying a similar argument to the one made in (i), we can show that

a[T(br) - bT(r)]:0. (1)

on the other hand, by cohen's Factorization Theorem, there is c € .4 and z € z
such that r þr) - br (n) : cz . so we have the finar resurt by putting a : eo in (r)
and letting a ---+ oo. D

2.3. Definition and basic properties of hyper-Tauberian algebras

In Proposition 2.4 we showed that if bounded local operators from A into A*
are multipliers, then we can characterize bounded local operators from essential

modules of ,4 into their duals' This, together with the other results of the following
two sections, is the motivation behind the following definition.

DpprNlrrou 2.5. we say that ,4 is a hyper-Tauberian algebraif every bounded
local operator from .¿4. into A* is a multiplier.

The next theorem shows that the class of hyper-Tauberian algebras is a subclass

of weakly amenable Tauberian algebras,

we note that if ,4 is Tauberian, then, by the regularity of á [r.0, proposition

4.1.18], A": A?, where.4" is the set of alr erements in A with the compact support.
Thus A :w, and so -4 is essentiar as a Banach,A-bimodure on itserf.

TupoRpli¿ 2.6. Let A be a hyper_Tauberian algebra. Then:

(i) A is Tauberi,an;
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(i,i,) each singleton subset þj "f 
Þ¡ i,s a set of syntltesis for A;

(i¿C) A is wealcly amenable.

Pnoor. (i) Let f eA. besuchthat/:0on A.,and,letg€ A*besuchthat
g + 0 on A". Define the bounded operator S: A -- A* by

,9(a) :ç@)f @eA).

Since / : 0 on A., øf : 0 for all a e A". Thus supp f : Ø. Therefore,g is

local, and so, by hypothesis, it is a multiplier. Take b e A" with gþ) + 0. By the

regularity of A, there is ø e .4 such that a : 1 on supp ó. so ¿b : b. Hence

,9(b) : S(ab) : ø^9(å) : tp(b)af : g.

Therefore gþ)f :0, and so /:0. Thus,4." is dense in A.

(ii) Let F e A* such that F : 0 on rs(ú), and let rp¿ be the multiplicative linear

functional on A deflnedby g¿@) : a(t) for all a € A. Define the bounded operator

T:A---+1'by

T(a) : F(o)P, (a e A).

We claim that T is local. We first show that

I:{c€AltÉruppc}gIoO. (1)

Let c € .I, and let v be a compact neighborhood of ú in Õa such that vosupÞ c : Ø.

By the regularity of ,4, there is e € ,4 such that e : 1 on v and e : 0 on suppc.

In particular,

ce:0.

since, from (i),,4 is Tauberian, there is a sequence {c*) in.4" such that cn ---+ ¿

as r¿ -+ oo. Put en : cn - cne. Then, since e : 1 on V, €, :0 on i/ for all n,.

26
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Therefore e" e Is(t). Moreover, from (2),

€n - c - cn - cme - c : (cn - c) - (c" - c)e.

27

Hence €n + c as r¿ ---+ oo. Thus c € /oe. This proves (i). Now let ø € A. We

consider the following two cases:

Case I: ú f suppø. Then a € I. However, .F : 0 on 16(ú), and so, from (1), F : 0

on 1. Thus T(a) :0. Therefore supp?(a) : @.

case II: ú e supp a. Let s ( supp ø. There is a compact neighborhood [/ of s in
Õ¿ such thatU Osuppa:Ø. Letb e,4 with suppö Ç U. Since ú € suppø and

supp ó fì supp a : Ø, ú t' supp ó. Thus b(t) :0. Hence

(br@), c) : (T("), cb) : pço¡rt(cb) : g,

for all ce. A. Therefore bT(a):0, and so s f supp?(ø).

Therefore, in either of the above cases, we have supp T(o) ç suppa. Thus ? is a
bounded local operator, and so it is a multipìier. Now let ø € /(ú) and b e A".

Then, for all c e A,

Q(ba) , c): Q(b)a, c): F(b) , ac): pç6¡rt(ac):g.

Thus

(rþ) , cb) : (bT(a) , ") 
: e(ba), c) : 0.

Therefore 7(ø) vanishes on ,4'".á. Hou'ever, A"..4 contains AZ: A., and so it is
dense in A. Thus T(a) :0. Therefore F vanishes on /(ú). Hence /(¿) : /0O.
(iii) Lei D: A -, A* be a bounded derivation. we first show that D is local. Let

a e. A, ú t' supp a, and let I/ be a compact neighborhood of ú in Õa such that
7ñsupp o' : Ø. Let c e-4 with suppc c v. Bythe regularity or A,there is e € A
such that e:1 on V and e:0 on supp¿. The¡efore

ca:0rce: c and øe :0.
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Thus

cD(a) : ceD(a) : cD(a,)e: D(ca)e _ D(c)ae : 0.

Hence ú fr suppD(a). Therefore D is locar, and so it is a multiprier. Thus D(a)b:
D(ab) : aD(b) + D(a)b for a[ a,b € A. Hence aD(b): 0. Therefore D(å) : g

sinceÆ: A. 
tr

rn [22], N. Groenbaek has given a necessary and sufficient condition for a
commutative Banach algebra 2l to be weakly amenable in terms of the projective
tensor product 2162l As we will see in the following theorem, there is also a
parallel characterization for certain hyper-Tauberian argebras.

We note that if ¿ôa is semisimple, then it is a commutative semisimple regular
Banach algebra with the carrier space @¿ xÞB [2, proposition 42.rg andcorollary
23.el.

T¡rponeu 2.7. Let A be a Tauberian algebra such that A6A
Then A ,is hyper-Tauberian i,f and, ontg i,f the d,i.agonal L : {(t,t)
set of local synthesis for A6A.

i,s semisi,mple.

IteÞ4j,i,sa

Paoor'. r¿g') ls¡ T: A -r,4* be a bounded local operator, and letf : A6A --
C be a functional specified by

r@øb): (T(a) , b) (a,b e A).

Pick ø and å in,4" such that suppar-lsupp b:Ø. By the regurarity of ,4, there is
e € A such that e: 1 on suppó, so that, b: eb. Since ? is local,

supp ö O supp T(") çsuppó O supp a : Ø.
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So å?(ø):0, and hence fç"øb): (T(a) , b): þf@), e) :0.
on .I, where

-r : sÞan-{¿ Ø b e A6A I a,b e A" and,supp ¿ rt supp b : Ø}.

Bui J is a closed two-sided ideal whose hull is the diagonal and is also essential

as a Banach ,4ô,4-¡imodule. so, by hypothesis, J : J(L). Therefore, for ail
a,b,ce A",T(acgb) : i,ç"øcb) since acØb_ aØcó e -r(Â). Thus

(T(ac), ð) : (T(") , cb): (T(a)c, b).

The final result follows from the fact that ,4" is dense in ,4,

"-}" Let f e ØAÐ* such that T: 0 on /o(A). We show that T: 0 on J(A).
Define the bounded operator T: A -, A* by

(T(o) , b):T(aØb) (a,b e A).

we show that 7 is local. Take a € A and ú f supp a. By proposition 2.8, we can
assume that supp a is compact. There is a compact neighborhood I/ in @¿ such
that ú € 

', 
and Tnsupp a:Ø. Now ret ce A with supp cCV. Then for every

b € A, supp (åc) C Z. Thus supp (bc) O supp ø : Ø. Moreover, supp óc and supp a
are compact. Therefore aØbc e Is(A). Hence

(cr@), ó) : (T(") , bc) :yçog óc) : g.

Therefore ú f supp?(ø). Thus ? is a bounded local operator, and. so, by hypoth_

esis, it is a multiplier. Now Iet c,d, € á and z: DËr a¿Øb¿ e I(A). If we let
r: A6A -+ ,4 be the multiplication operator specified by zr.(øg b) : ob,then, with
the assumption of the semisimpricity of A6A, it is easy to verify that /(a) : ker zr.

29

So f vanishes
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Hence ÐTroobo:0, and so

rlþØ d)ul : lrl"ar Ø dbi)
i.=I
co

\(T(caù , dbr)

iqrçc¡on , øoa¡

(dI(") ,f o,uu,
i=1

0.

Therefore T : o o" @62¡r1a,¡, However, /(A) is the closure of

{z e /(A) I r,rpp z is compact}

which is a subset of (,4ô,4) ./(A) since A6A is Tauberian. Hence T : 0 on J(a).
This completes the proof. tr

2.4. Hereditary properties of hyper-Tauberian algebras

In this section, we give a characterization of hyper-Tauberian algebras in terms

of their ideals, tensor products and algebra homomorphisms.

Let I be a closed ideal in A, andlet E: h(I). Then, by [1-0, proposition

4.1.11] and [44, Theorem 2.7.2],1 is a commutative semisimple regular Banach

algebra with the carrier space fÞa \ E. Moreover, 1¡(E) is equal to r", the set of all

elements in 1 which have compact support in Õ¡. To see this, first we note that

Iy(E) ç 1.. on the other hand, let a € .I such that supp¡ ø is compact. since

supp¡ a Ç Qe \ E ç Þa and compactness is a topoiogically invariant property,

supp¡a is also compact as a subset of. @¡, and so it is closed. Therefore, since

{f e Õa I o(t) * 0} is a subset of supp, a, its crosure, which is supp a, is arso



a subset of supp, ø. Thus

from -8. Hence a, e Io(E).
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suppe ¿ : supp/ ø, and so it is compact and

31

disjoint

TuooRpvr 2.8. Let A be a hyper_Tauberi.an algebra. Then:

(i') a closed i,deal I in A is hyper-Tauberian i,f and, onry if I :A@ for some closed,

subset E of Qe;

(ä) a closed subset E of e¡ is a set of synthesi,s (tocal synthesis) for A i,f and, onty
if I@) (J(E)) i,s hsper-Tauberiøn.

PRoor'. (i) Let 1 be h¡,per_Tauberian.

Tauberian algebra. Hence .I" is dense in -I.

Then, from Theorem 2.6(i), /
However I": Io(E). Therefore

rsa

I_
Io(E) conversely, let .I : 7@ for some closed subset E oT Þa,and let T: I _-+ Jo

be a bounded local operator with respect to l-module actions. We first show that
7 is local with respect to .A-modure actions. Let a € r, ú f supp aa, ànd.ret z be
a compact neighborhood of ú in @¡ such that I/ ñ suppa a : Ø. Let c e ,4 with
suPP¿ "cv, and let u e Io(E). By the regurarity of á, there is z €,4" such that
z : 1 on suppá u and u : 0 on an open set containing .Ð. Thus

u € Io(E) and uu: u.

Hence uc e Io(E) : 1.. Moreover, since ? is rocal u,ith respect

actions,

supp¡ @c) nsupp¡ ?(a) supp¿cñsupp¡ø

Z o supp¿ ø

Ø.

Therefore ucT(a): 0, and so, by (1)

("7("),u):(cT(a),uu) : (ucT(a) , u) :0.

(1)

to .I-module

ç

C
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Hence c7(ø) vanishes on TfÐ:.I. Thus cT(a):0. Thereforet (supp¡T(a).
Hence 7 is local with respect to á-modure actions, and so, by hypothesis and
Proposition 2.4, it is a multiplier. Thus T(ab) : aT(b) for all a €.4 and b e L
In particular, 7 is a multiplier. Therefore 1 is hyper-Tauberian. The statement
in (ii) follows immediately from (i) and the definition of set of synthesis and local
synthesis. 

tr

coRolr,aRv 2.g. Let A be a hyper-Tauberian argebra. Then eaery fini,te subset,

of Qa i,s a set of sgnthesis for A.

Pnoor'. Let E be a finite subset of r,, and let rz be the cardinarity of -Ð.

we prove the statement by induction on n. For n : 1, the result follows from
Theorem 2.6(ii). Now assume that the result is true fo¡ n: k. Lett Ç E and put
F : E \ {¿}' gv induction, F is a set of synthesis, and so, by Theorem 2.g(ii),
/(.F') is hyper-Tauberian. Moreover,

I(E) : {a e I(F) | ø(t) : s1, (1)

where ihe right hand side in (1) is exactly the largest ideal in /(¡') whose hull is

the singleto" {¿}. However, by Theorem 2.6(ii), {ú} is a set of synthesis for r(F.).
Therefore, from Theorem 2.g(ii), /(E) is hyper-Tauberian. Hence .Ð is a set of
synthesis for A. This completes the proof. !

Let -I be a closed ideal in.A, and ret E: h(I). Then AII is semisimple if
and oniy it I:1(E) [10, p. alCI].In this case, Af I is acommutativesemisimple

regular Banach algebra with the carrier space .Ð (see [t0, proposition 4.1.11] and

[44, Theorem 2.7.2]).

TueoRerr¿ 2.r0' Let E be a closed, subset or et. If I(E) and A/I(E) are

hyper-Tauberian, then A i,s hyper-Tauberian.
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PRoor'. Put 1 : I(E).w'e first note that á is Tauberian since l and Af I are
Tauberian. Let T : A -, A* be a bounded local operator, and let t: I __+,4 be the
inclusion map' Then t'* oT o t: I -+ 1* is rocar with respect to 

'-module 
actions,

and so it is a multiplier. Thus

t:(T(ab)): at:(T(b)) (a,b e r).

Let a €,4 and b e Is(E). Then, since ? is local,

(1)

suppa(?(øó) - ar(Ð) c supp¿ b c OÁ \ .ø.

on the other hand, if v is a compact neighborhood in Õ¡ \ E and c € ,4 with
supp¿ "cv, then c e Is(E) and thereis e e /6(E) such that ec: c. Thus, for all
deA,

(c[r@e _ aT(b)], d,) : (ec[T(ab) _ aT(b)], d,)

:ïii\,:").?",,0,"'0",
:0,

where the last equaiity follows from (1). Thus supp, e@b) _ afþ)): Ø, and so
f@Q - aT(b) :0 since .A is Tauberian. Hence, by hypothesis,

T(ab) : q7ç6¡ (a e A,b e I). e)
Now pick a e A and define the bounded operator D: A ___+ A* by

D(b):T(ab) - aT(b) (b e A).

From (2), D vanishes on 1. Moreover, for each ó e A, D(b) e 1r. In order to see
this, by hypothesis, it suffices to show that D(b) vanishes on 16(E). Let c e Is(E)
and take e e Is(E) such that e : 1 on a neighborhood containing suppa c. Then,



2.4. HEREDITARY PROPERTiES 34

from (2),

cD(b) 

: "ï,Y,i 
-i;';,' -#r '::. crr(abe) - ar'Ql

=Q.

where the last equality follows since ? is local, and supp¿ c is compact and disjoint

from suppaþ -be). Hence (D(b) , c) : (cD(b) , e):0. Therefore rpe can define

the bounded operator ñ: AII --, Ia = (AlI)" by

ñ1t7:nçu¡ þeA).

we show that ñ is local with respect to AII-module actions. Let b e Aand put

K : supp¿ ¡ru. W Proposition 2.3, we can assume that K is compact. Let t e E
such that t # K. Since K is closed in (Þ¿, there is a compact neighborhood v of

ú in Õ¿ such that v n K : Ø. By the regularity of. A,there is e e Asuch that

e: 1on K and e:0 on v. Thus be-b:0 on K. However, K is the closure

of {s e E lb(s) l0}. Henceb:0 on.Ð\K. Thereforebe-b- 0 on.Ð, and

so 6 : 1". fnus õ(a) : n(le¡ : D(be). On the other hand, óe vanishes on a

neighborhood containing ú. so ú f supp¿ D(åe) since D is local with respect to

,A-module actions. Hence t ( supp¡¡¡õqa¡. rnur .D is local, and so, by hypothesis,

it is a multiplier. Therefore nçí"¡ : ñç6¡Z for all b,c e A. Hence

T(øbc) - aT(bc) : T(ab)c - aT(b)c (a,b,c e A). (B)

Define the bounded operator D: A --- ß¿,(A,/.) by

o(a)(b) : T(ab) - ar(Q @,b e A).

From (3), it is easy to verify that D is well-defrned. Moreover, upon setting

(o.S , ö) : (S .o, , b): (S , ab),
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the space B^(A,á*) becomes ä, symmetric Banach á-module and D becomes a

bounded derivation from ,4 into B¡(A,A*). However, from Theorem 2.6(iii), ,4 is
weakly amenable. Hence D :0. Thus ? is a multiplier. n

Let Ail be the unitalization of A. Then ,4ü is a commutative semisimple regular
Banach algebra with the car¡ier space Õ¿ u {oo}, where Õa u {oo} is the one_point

compactification of OÁ [l_0, p.  I2].

coRor-leRv 2.rr. A i,s hyper-Tauberian i,f and, onty i,f Ar is hyper-Tauberian.

PRoor'. (c-¡', psllsws immediately from Theorem 2.10.
((s" gi¡çs A : I({æ}), the resurt foilows from Theorem 2.6(ii) and rheorem
2.8(ii). !

Let AãB be the projective tensor product of ,4 and B. There is a symmetric
Banach Á-module action on ,4ôB specified by

c. (a Ø b) : (aØ b) . c : ca Øb (a,c e. A,b e B).

Similarly, we can define a symmetric Banach B-module action on ,468 specified

by

d,o (a Ø b) : (a8 b) o d. : ø Ø d,b (a e A,b,d, e B).

Moreover, it isstraightforward to checkthat for c€ A, de B and ø eA6a

(cØ d)r : c'(do r) : d,o (c.x).

TneoRBn¿ 2.72. Let A and, B be hyper-Tauberian argebras such that A6p ¿s

semisi,mple. Then A6B i,s hyper-Tauberian.

Pnoor'. Let T: A6B -- (,468). be a bounded rocar operator. First we show

thai ? is local with respect to .A-module actions. Let r e A6B andú € Þ4 such
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that ú É *pp¿'. There is an open set I/ in Õ¿ such that t ev,z is compact

and TnsupÞ¿r : Ø. Let u be an open subset of (Þ¡ such thatù is compact. we
claim that

(V xU) Osuppo5, x:Ø. (1)

To this end, it suffi.ces to show that for each y : In?, a¿ Ø b¿ € ,4ôB wiih
suPP¡ôs a c v x u, yr : 0. By the regurarity or Aand B, there are c e A. and.

d e B such that c: 1 on V, c:0 on a neighborhood containing suppÁr and

d:1on [/. Thus cØd,:1on i/ x U, and so

y : (cØ d)y: Ë ca¿ Ø d,b¿.
i:L

Howe'er, for each i, supp¿cøi is compact and disjoint from supp¿ r. Hence (ca¿).

r :0, and so, from (2),

,r:i¡or¿o (ca¿.u)l :0.
i=I

This shows that the equation (1) hords. Therefore, from the locality of. T, v x u is
disjoint from supp¿anT(x), where (J canbe any open subset of e6 with compact

closure. Hence, for each o' e A with supp¿ a C v, a.T(r) vanishes on ,468". Thus

a'T(r): 0. This means that ú d rupp¿?(r). Therefore ? is rocal with respect to
l'-module action, and so it is a reft A-modure morphism. Hence T(ø.u) : a.T(u)
for all a e A and u e ,A68. Similarl¡ \r¡e can show that T(bou) : boT(u) for all
b e B. Therefore

Tl(a Ø b)ul : r[a. (boz)] : a. T(bo u) : (a Ø b)r@).

HenceZisamultiplier.

Let g: A - B be a bounded argebra homomorphism with d.ense range. Then
cp* induces a continuous map o: en ---+ Þ¿,

(2)
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Tuponplr¿ 2.IJ. Let A be hyper_Tauberian, and, Iet g: A _+ B be a bound,ed,

algebra homomorphi,sm wi,th d,ense range. Then B i,s hyper-Tauberian.

PRoor'. First assume that both.4 and B are unital. In this case, os is compact

and homeomorphic io o(Õ3). In particular, o(eB) is a crosed subset of Õa. It
is easy to see that B becomes an essential symmetric Banach .A-module for the
action defined by

a.b: b. a: p(a)b (a e A,b e B).

Moreover, g is a bounded A-module morphism. Let T: B __- B* be a bounded

local operator with respect to .B-module actions. We claim that ? is local with
respect to ,A-module actions. Let c € B and ú f suppa c. consider the following
two cases:

case I: t t' o(@ B). Hence there is a compact neighborho od v of. ú in (Þ¿ such that
V no(ÞB): ø. Let a €.4 wiih supp¿ o.çV.Then p(a) :0, and so, for all
b e B, b'a:0. Therefore a.lT(c)l: 0. Hence t ( suppaT(c).

CaseII:t € o(@B). Soú f suppsc. Thusú É rrppu?(c) since?islocal.
Therefore there is a compact neighborhood I/ in Õa such that t e v ao(Õs) and,

for every e € B with supp¡ e C V r-ì a(@¡), we have

eT(c) : g'

Now let a e A with supp¿ a C V. Then supp6 p@) ç Zñø(tÞs), and

(r), o . T(c) : 9@)rþ): 0. Therefore t ( supp¿ ?(c).

Hence 7 is local with respect to ,A-module actions. Thus, by hypothesis and
Proposition 2.4, T is a bounded .A-module morphism. Therefore, for all a € A and.

b e B, T(p@)b) : T(a .b) : o .T(b) : p@)f þ). The finat ¡esutt fo[ows from the
fact that the range of rp is dense in B.

(1)

so, from



2.4. HEREDITARY PROPERTIES 
38

Now consider the generar case. since á is hyper-Tauberian, Ail is hyper_Tauberian
from corollary 2.rr. on the other hand, we can exiend p to abounded algebra
homomorphism from ,Afl into Bil by defining p(1) :1. Moreover,,p(At) is dense
in BH. Thus, by the fi¡st part, Bfl is hyper-Tauberian. Therefore, from coroilary
2.77, B is hyper-Tauberian. 

D

Lpuua 2'r4' Let {Ar}rcr be a fami,ry of commutatiue semi,simpre regurar Ba-
nach algebras, and tet A be the rL -d,i,rect sum of {,4r}.rry. Then A is a commutatiue
semi'si'mple regular Banach argebra whose carrier space, @¡, i,s the d,i,sjoi,nt uni,on
of allQar. Moreoaer, for each? € l, @a, i,s an open_closed, subset of e,¿,.

Pnoop' It is crear that A is a commutative semisimpre Banach argebra. For
each 7 € l, let Pr: A- A, be the canonicar projection of ,4 onto,4r, and let

v(h): {p;re) l/ e Õa"}.

We first claim that

@¿: U v(,4.,). (1)
?€I

It is clea¡ that Ü(,4r) C Þ¡ for each 7 e l. For the conve¡s e,let M be a maximal
modular ideal in ,,4.. For 7 € l, put M, : p;r(pt(M)). It is easy to see that M.,
is an ideal in ,4 and it contains M. Thus, since M is maximal

Mt: M or Mt:,4 (7 e l).

On the other hand, since M # A, there is 7o € f such that

Aro # M.

We show that

M: M.ro.

(2)

(3)

(4)
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Let e e A be a modular unit for M. If M + Mro, then, from (2), Mro : ¡.
Therefore, P*(") € p.*(M), and so, there is rn e M such that pr"(*): pro(e).

Hence, for each a e Aro,

ae: aPro(e) : apro(m) : pro(am) : am e M.

Thus '4"0 : AroQ - ") 
-r A-,oe c M which, from (B), is impossibre. Thus (4) hords.

This, together with the fact that pro is onto, impries that pro (M) is a proper
modular ideal in,4"o. Therefore there is 1e (Þ4ro such that pro(M) C l,and so,
M ç P"r;tQ)' Hence, from the maximarity of M, M : ptor(I) i.e. M € v(4,,).
This proves (1).

It is straightforward to check that the sets ù(,4r) are mutuaily disjoint. Also, for
every 7 € l, @4., and ü(,4") are homeomorphic, and so e¡, càn be viewed as an
open-closed subset of Õ¿. This, in particurar, impries that ,4 is regurar. !

CoRol,laRy 2.15. Let {Ár}.r.r be a fami,Ig of hyper_Tauberian subalgebras of
A such that A: (@ze¡4)-. Then A is hyper-Tauberian.

Pnoor" Let Abe the /1-direct sum of {/r}"ur, and let 7 € f. By the preceding
lemma, Õ¿' is an open-closed subset of Õ¡. Thus Õ¡ \ (Þ¡., is a crosed subset of
@¿. Moreover, A, : I(@,a.\ Õ¿r), Therefore, if T: A -- A*is a bounded local
operator with respect to ,4-module action, then, by a similar argument to the one
made in the proof of rheorem 2.10 and the fact that A, is hyper-Tauberian, we
have

T(ab) : s716¡ (a e A,b e Ar,7 € t).
Thus, from the assumption on A, T is a murtipìier. Hence .,4. is hyper-Tauberian.
The final result follows from Theorem 2.18 and the fact that map p : A -+,4 defined
bv ç(orj) : Etat is a bounded algebra homomorphism with dense range. tr
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2.5" Some examples of hyper_Tauberian algebras

It follows from B. E. Johnson's work that c6(R) is hyper-Tauberian [2g, propo_

sition 3.1]. we extend this resurt by showing that c¡(o) is hyper_Tauberian for
every localiy compact topological space e. To this end, we first prove it for the
special case when O is a compact subset of lR.

Levue 2'16' Let K be a compact subset of R. Then c(K) is a hyper-Tauberian
aLgebra.

PRoop'. Let R be the restriction map from c.(R) onto c(K). Then.R is a
bounded algebra homomorphism. However, by [2g, proposition 2.1], the diagonar
is a set of synthesis for c6(rR)6c0(R), and so, by Theorem 2.2 (see arso [2g,
Proposition 3.1]), co(R) is hyper-Tauberian. Thus, from Theorem 2.18, c(K) is
hyper-Tauberian, 

¡

TnpoRs\4 2'rT. Let e be a rocarly compact topologicar spøce. Then c6(e) i.s a
hy per- Taub erian al g ebra.

Pnoor', First consider the case when e is compact. Let T: C@) * C(O). be
a bounded local operator' First we show that T satisfies the following condition:

ab:0 implies aT(b) : g. (")

Let a,b e c(Q with øå : 0. so a e l(E)where -Ð : suppó. since E is a crosed
subset of CI, -Ð is a set of synthesis [10, Theorem 4.2.r]. Thus there is a sequence

{ø"} in 16(E) such tha,t an -+ a as 7¿ --+ oo. on ühe other hand, since ? is local
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and suppø, is disjoint from ,Ð,

supp an n supp Z(å) C supp an O supp ö

: suppa, OE

:Ø.

Therefore, since supp ø,, is compa ct, arT(b): 0. Thus, by letting ,, _+ oo, we have
aT(b) :0' This proves (*). Now let ¿ e c(a) be a sep-adjoint element, and let
A(a) be the c*-subalgebra of c(f-)) generated by {o,1}. It is wel-known that there
is a compact subset K of iR such that,4(ø) is isometrically isomorphicto c(K).
In particular, c(f^l) is an essential and symmetric Banach c(K)_module. Let d €
c(a) and c Ç c(K) with cd: 0. Then, since c € -A and ? satisfles condition (*),
cif (d) :0. Hence Ann6l¡¡¡ d, C Ann6çç)T(d,), and so suppclr¡ T(d,) çsuppsl'¡ d.
Therefore ? is local with respect to c(K)-modure actions. Thus, from Lemm a2.16
and Proposition 2.4, ? is a c(K)-modure morphism. Hence, for each ó e c(r-l),
T(ab) : aT(b). The final result follows since C(o) is the linea¡ span of its self-
adjoint elements.

we now consider the generar case. Let e be a localy compact space, and ret
fì u {oo} be its one point compactification. Then, from the first case, c(f-) u {*})
is hyper-Tauberian. On the other hand,

C6(O) : {a € C(CIu {*}) I ø(oo) : 0} : 1({oo})

and {oo} is a set of synthesis for C(O u {*}).
is hyper-Tauberian.

CoRolr,eRy 2.I8. Let e be a locally compact spu,ce.

of synth.esi,s for Cs(A)6Co(O),

Thus, from Theorem 2.8(ii), Co(0)

I

Then tlte di,agonal'is a set
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PRoor' since c6(o) has the Grothendieck approximation property, cs(a)6co(o)
is semisimple [52]. Hence the result follows from Theorem2.T and the preceding
theorem. 

tr

Let G be a locally compact group. we recar that the pri,nci,pal component of G
is the component (the largest connected. set) containing the identity; we denote it
by G"' It is easy to see that Gu is a crosed normar subgroup of G. B. Forrest and
v' Runde have shown in [16] ihat if G is a rocaly compact group such that G, is
abelian, then the Fourier algebra ,a(G) is weakry amenabre. In Theorem 2.22, we
prove a stronger statement that for this class of groups, 4(G) is hyper_Tauberian.
To do this, we wi[ fol]ow similar steps to those taken in [r.6]; the toors deveroped
in sections 2.8 and2.4wlr be used to modify the approach in [16]. Finaily, we
prove a similar result for Ar(G), p € (1,oo).

PRopos*roN 2.1g' Let G be a localry compact aberi,an group. Then A(G) i,s

hyper-Tauberian.

Pnoop. It is welt-known rhar AG)AAG) = ¿(C x G) (e.g. IBgl). Thus,
since the diagonal a is a crosed subgroup of G x G, by [58, Theorem B], a is a set
of synthesis for A(G)6A(G). so we have the resurt from Theor em 2.7. D

Leuue 2.20. Let G be a rocalry cornpact group, and, ret H be a crosed subgroup

of G. Th,en:

(ù If A(G) is hyper-Tauberian, then A(H) i,s hyper_Tauberian.

(ä) If H i,s open and, A(H) i,s hyper-Tauberian, then A(G) i,s Ítyper-Tauberian.

Pnoor" (i) Let p: A(G) -, A(H) be therestriction map of erements or A(G)
to 1/, i'e' p(u) : ul¡¡ for u e A(G). By [1a, Lemma 3.g], p is a bounded argebra
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epimorphism. Hence the result follows from Theorem 2.13.

(ii) Let f : A(G) -- A(G). be a bounded local operator, and let a,b,c e A(G)

have compact support. Since fi is open, there are {rn}?=rÇ G such that

suppa U suppb Usupp cC U.?:rr¿H, (1)

where the union on the right side is disjoint. For i : 1, . . . , n, let ¡¿ be the

cha¡acteristic function oL qH. since .Ër is open, each y¿ belongs io B(G) [1g,
Proposition 2.31]. Hence A¿ - x¿A(G) is a closed subalgebra of A(G). Moreover,

from [18, corollary 2.1g and Proposition B.2r], Ai is isometrically isomorphic to

A(H). since A(r1) is hyper-Tauberian, á¿ is hyper-Tauberian, and so, by corollary
2.!5, A: ,4r01. . .@1An is hyper-Tauberian. Now let t: A ---+,a(G) be the inclusion

map. Then f oT o t: A -+ A* is local with respect to ,A-module actions, and so,

it is a multiplier. Therefore

Q(uu) , w): (uT(u) , u) (u,u,u e A).

on the other hand, if z is an element in .4(G) with supp u c uirr,;.I/, then

u: XLU + . . . + Xnu €. r4.. Hence, from (1) and (2),

(r@Q,c):(ar(Q,c).

The final result follows since ,4(G) is a Tauberian algebra. tr

Lpuva 2.27. Let G be a locally compact group such th,at G" ,i,s abel,ian, and,

let K be a compact normal subgroup of G such iltat G/K i,s a Lie group. Then

A(C lK) i,s hyper-Tauberi,an.

PRoo¡'. Let r: G ---+ G/K be the quotient map. By [ZT, Theorem 7.12],

the principle component of GIK is z'(G")-. Thus (G/K)" is abelian, and so, by

Proposition 2.r9, A((G/K)") is hyper-Tauberian. However, (GlK)" is open, since

(2)
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G/K is a Lie group l4L, 12.2.4 Definition]. Hence A(GIK) is hyper-Tauberian

from Lemma 2.20(i1).

We recall from [41, I2.2.I4 Definition] that a locally compact group G is called

a pro-Li,e group if every neighborhood of the identity contains a compact normal

subgroup K such that GIK is a Lie group.

TupoReM 2,22. Let G be a locally compact group such that G" 'is abeli,an. Then

A(G) is hyper- Tauberian.

Pnoor. First consider the case where G is a pro-Lie group. Let T: A(G) --
A(G). be a bounded local operator, and let e ) 0. As it is shown in [l-6, Theorem

3.3], there is a compact, normal subgroup K of G such that G/K is a Lie group,

and there is a projection P: A(G) -+ A(G: K) such that

llu-Pull<e (ue A(G)), (1)

where A(G : K) denotes the (closed) subalgebra of A(G) consisting of those func-

tions that are constant on cosets of If. Flom [18, proposition 8.25], A(G : K)
is isometrically isomorphic to A(G|K), and so, by Lemma 2.2r, A(G: K) is

hyper-Tauberian. Now let t: A(G : K) ---+ A(G) be the inclusion map. Then

t* o T o t: A(G : K) ---+ A(G : K). is local with respect to A(G : K)-module

actions, and so it is a multiplier. Therefore

Q@aPb) , Pc): (PaT(Pb) , pc) (a,b,cÇ A(G)). (2)

Now let a,b, c € A(G)t where A(G), : {u €. A(G) : ll"ll S 1}. Then, from (1),

lQ@b) - ar(Q , c- Pcll < llr(ab) - ar(fill llc- pcll
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Consequently

lg(ab) - arþ), c)l : llr@Ð - arþ), (" _ pc) + pc)l

Similarly, we can show that

l( T(ab) - ør(b) , P")l < zllrlle + l(Tl(pa)b] - earç:o¡ , p")1,

and so,

l(T(ab) - arþ), c)l < +llrlle + l(rt(rø)al - par(fi , p")1.

Finally, an argument similar to the above yields

l(T(øb)-ar(b), c)l

: 6ll7lle,

where the last equality follows from (2). Hence

(T(ab) - ar(Q, c) : 0,

since e was arbitrary. The final result follows since A(G)1 spans A(G).

For the general case, we note that by [41, r2.2.r5 Theorem], G has an open sub-

group 11 such that r/ is a pro-Lie group. In particular, G. c.F/ since H is an

open-closed subset of G and G.nH lØ. Hence fr" is abelian, and so, by the pre-

ceding case, ,A(fr) is hyper-Tauberian. Therefore ,4(G) is hyper-Tauberian from

Lemma 2.20(ü).

TnpoRplvl 2.23. LetG be alocally compact group suchtlzatGu i,s abeli,an, and,

letp e (r,-). Then Ao(G) is Ìryper-Tauberi,an. In par-ti,curar, Ar(G) i,s weakry

amenable.
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Paoor'. LetT Ao@) -+ Ao(G)" be a bounded local operator. since,4o(G)

is a Banach ,A(G)-module (section 1.8), we can consider the locality for ? with

respect to , (G)-module actions. Let a e Ao(G) and t f suppalc¡ a. It is easy to

see that

suPPe(ç¡ o : supp¡o (G)a : cl{s € G I a(s) I 0}.

Therefore there is a compact neighborhood I/ of ú in G such that vnsuppool G) a :
Ø. Let c € á(G) with supp^(c) c çv. By ihe regurarity of Ar(G), there is an

element e e Ap(G) with compact support such that e : 1 on I/ and supp,aolc¡ e O

suPPeolc¡ a: Ø. Thus, since ? is local,

suPPaolc¡ e fì supp¡o1c¡T(a) C suppÁo(c¡ e lì supp¿o G) a : Ø.

Hence eT(a): 0, and so,

cT(a) : ceT(a) :9.

Therefore ú f suppalclr,ø). Thus ? is local with respect io A(G)-module actions.

on the other hand, for all q e (L,oo), the linear span of coo(G) + c66(G) is a
dense subset of An(G) in ll'llo-norm. Hence AoG) is essential as a Banach A(G)-

module. consequently, by Theorem2.22 and proposition2.4, ? is an,4(G)-module

morphism. Hence

T(ab) : q716¡ (a e A(G),b e Ao@\.

Therefore ? is a multiplier.

RpvaRi< 2.24. (i) Let G be the group of rotations of lRs. Then, by [80, corol-

lary 7.3], ,4(G) is not weakly amenable. Therefore ,4(G) is not hyper-Tauberian.

(íi) In Theorem 2'6 we showed that a hyper-Tauberian algebra is a weakly amenable

Tauberian algebra. However, the converse is not true. To see this, let 1l be the

unit circle. It is shown in [10, Corollary 5.6.45] and its proof that the¡e is a closed

¡
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subset E of .f such that -E is a set of non-synthesis for ,4(1r) but I (E): {ff, so
that I(E) is weakly amenable [10, Theorem 2.g.6g(ii)j. Hence /(ø;l 6 a weakly
amenabre Tauberian argebra [1-0, corotary 2.g.70]. However, by proposition 2.1g,
á(11) is a hyper-Tauberian algebra. Therefore, by Theorem 2.8(ii), r(E) is not
hyper-Tauberian, Thus, by Corollar y 2.I!,I(E)fl ¡ not hyper_Taube¡ian.

It is well-known that one suff.cient condition for a com-utative Banach algebra
2l to be weakly amenabre is that 2r is crosed ]inear span of idempotents. The
following theorem shows that the same assumption forces a Tauberian algebra to
be hyper-Tauberian.

T'poRpir¿ 2'25. Let A be a Tauberian argebra. If A is crosed, I,inear span of
i,dempotents, then A i,s hyper_Tauberian.

PRoon. Let T: A -_- A* be a bounded local operator, and let p e A
idempotent. since p2 : p, suppp is an open-closed subset of Õ¿ and p:
suppp. Let a €,4. Then suppp l-ìsupp (o _ po): Ø. Hence

supp þ?-(ø - po,)l suppp ñ supp T(a _ pa)

suppp O supp (o _ po)

Ø.

Therefore pT(a - pa) :0, since .4 is Tauberian. Thus

pT(a) : pT(pa).

C

C

be an

1on

(1)
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Nowlet be A. and take e€ Asuch ihat eb:b. since zis local andsupp (bp-b)
is compact and disjoint from supppø, (bp - b)f @a) : 0. Thus

Therefore pf (pa) - f (pa) : 0, since ,4" is dense in

shows that T(pa) : pT(a). The final result follows

span of idempotents.

A. Together wiih (1), this

since .4 is the closed linear

tr

Exevplp 2-26. Let I be a non-empty set, and ret p € [1, *). Then re(r) and

co(f), with pointwise addition and multiplication, are Tauberian algebras that are

closed linear span of idempotents. Therefore they are hyper-Tauberian. This result
also follows from Corollary 2.I5.

2.6. Local multipliers and rocal derivations from hyper-Tauberian

algebras

B' E' Johnson in [28] showed that every local derivation from a C*-algebra pI

into any Banach 2l-bimodule is a derivation. He showed that it is enough to es-

tablish the result for the commutative regular semisimple Banach algebra c0(R)
For C6(R), he first studied local operators from this algebra and then deduced

results about local derivations. However, ce(JR) is very well-behaved; it is a com_

mutative C*-algebra so that it is amenable and all the derivations from it into any

Banach Cs(lR)-bimodule are automatically continuous. In this section, we exploit
Johnson's approach and investigate local derivations from certain hyper-Tauberian

algebras which do not necessariry have the above properties. To compensate for
ühis, we look more into the "rocar structure" of these argebras.
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Depwrrrox 2.27. Let x be aBanach left ,4-bimodule. An operator T: A --+ x
is a local ri.ght multi,p\i,er if for each a €. A, there is a right multiplier To: A -+ x
such that T(a):7"(a).Similarl¡ we can define local left multi,pli,ers for Banach

right ,A-modules.

TspoRelr¿ 2.28. Let A be a hyper-Tauberian algebra, and, let x be a Banach,

(right or left) A-module. Then euery bound,ed, Iocal multipli,er T from A i,nto x i,s

a rnulti,pli,er.

Pnoor" We prove this for the local right multipliers. The other case can be

proved similarly. Let x be a Banach lefi ,A-module, and let T: A -- x be a

bounded local right multiplier. Then, for each a e A, there is a right multiplier

To: A ---+ X such that T(o.) : T"(a). Hence Ann(a) C Ann(e(ø)) : Ann("(ø)),
and so supp 7(ø) C supp ø. Thus ? is a rocal operator. Therefore, by a similar

argument to what we have made in the proof of proposition 2.4(ii),

cT(ab) - caT(b):g (a,b,ce A).

Take ¿ € -4" and c €.4 such that c:1on suppa. Hence co,:0,. since T is alocal

multiplier, there is a right multiplier M from.4. into x such that T(ab) : M(ab).

Therefore

r@Q - arþ) : M(ab) - arþ)

M(cab) - ar(b)

cM(ab) - ar(b)

cT(ab) - car(b)

0.

The final result follows by the density of. A" in A. tr
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For any two subsets -Ði and E2 0f. Õ¿, let vo(Et, E2) bethe crosed rinear span
¡n A6A of the elements atØaz where a¿ e J(Þe\¿l,), i : r,2. It is easy to
check that vo(Et, E2) is a Banach -A-submodu Ie or A6A. The fortowing remma is a
modification of [28, Lemma 5.2]. we include the proof for the sake of completeness.

Lptrve 2.2g. Let E1 and, E2 be subsets of Þ¿,, and, Iet 0 e (A6q..
(i.) rf ae. I(Eù, then0ae U\(Er,E2)r.
(i,i,) ff a e I(82), then a0 eUo(ù,E2)L.
(äi) ff ae A and,a:l onE1, then0 _0ae V^(Et,E2)L.
(¿u) If ae A and,a:l on Ã.2, then0_a0 e V\(Et,E2)L.

PRoo¡'. Let q € J(aA\ Ec), i : r,2. For (Í) we have

(0a, c1 Ø c2) : (0, aq g c2) : g.

For (iii) we have

(0 - 7a,q Ø cz) : (0, (q _ act)B c2) : g,

since c1 : ac. 'The other two statements can be proved simitarry. D

Let x be a Banach .A-bimodure. we recail that an operator D from A into x
is a ]oca.l derivation if for each a e A, there is a derivation Do from.A into x such
that D(a): D"(a).we are now ready to present the main resurt of this section.

TspoRpl¿ 2'30' Let A be a hyper-Tauberian algebra such that A6A is sem¿_
s'imple, and' Iet x be an essential Banach A-bimod,ule. Then euery bound,ed, roco,r
deri'uati'on D frorn A i,nto x* is a d,eri,uation. Moreouer, i,f A has a bound,ed, ap_
prorimate i'd'enti,ty, ilten the aboue statement of theorem ,is true for a, Banach
A-bi,modules.
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Paoor'. consider first the case x : A6A. Let D: A ---+ (A6A). be a bounded

local derivation, let.Ð1 and E2be disjoint compact subsets of ea, and let

q: (A6A). -- (AAA)- lv6(9, E2)L

be the natural quotient map. Put õ : q o D. Since q is a bounded ,A_module

morphism, D is a bounded local derivation. Now let ör e l(Er),and define

T1: A -- (A6Ð. /Vo(Et, Er)t , T1(a) : bçaur¡ (a e A).

since D is a local d.erivation, for each a e A, there is a derivation,s: A -,
(A6A).lV\(Er, Ez)L such that nçaUr!: ,S(aör). So, by Lemma 2.2g(i),

T1(a) : S(ab): ø,S(år) + ,9(a)ó1 : aS(bù.

Thus 7r is a bounded local right multiplier, and so, by Theorem 2.2g, it is a right

multiplier. Hence, for all a,ce A,

D(acb): obkbù.

Similarly, v/e can show that for all a,c€ A andb2e I(82),

(1)

D(acb2): D("br)o. (2)

Let a,c e A", and let u be a compact neighborhood in (Þ¿ such that E2 C II and

u ì EL : Ø. By the regularity of. A,there are å,e and fu in Asuch that ô : 1 on

suppo Usupp c u ulJ Et, e: 1 on E2 ande:0 outsid e of.(J,and finally ór :0
on El and år : 1 on t,2. Put bz: b - å1. Then

b¿ € I(E¿) , o,b: a , bc: c , and, eb: e. (B)

since D is a local derivation, there is a derivation ô from Ainto (A6A)" lvo(Er, Ez)r
such that ñ1U'¡: ô(å2), So, by Lemma Z.2g (jji) and (iv),

n(u') : 6(b") : e6(b2) : õ(ebz) - õ(e)b2 : õ(e)- d(e) : 6.
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On the other hand, from (1), (2) and (3),

n@) : o1"u2¡

: nlaUçU, + br))

: oç"uur¡ + n@uur¡

: 
"bluar¡ 

+ nçøur¡o.

But D(bb) + nçuur¡ : ñ(b,): 0. So, if we pur 0 : D(bb), then

D(a):a0-0a. (4)

Similarly, rile can show that (4) holds with the same d if we replace ø by either

c or o,c. Therefore D(ac) : oÐ(c) + D(a)c. Since ø and c were arbitrary ele-

ments in A., by the density of. A", v/e can conclude that Õ is a derivation into

(A6A)- /Vo(Et,Ez)L.

Consider the connecting map ó1D given by õrD(a,b) : aD(b) - D(ab) + D(a)b. It
is a 2-cocycle from A with the values in (,4ôA).. However, since .D : q o D is à

derivation, we have

qo õrD(a,b) :0 (a,b e A).

Thus ôlD maps into Vo(Et,Ez)r and since this holds for all the choices of E1 and

Ez, 6L D maps into

(Ðãñ{%(Er,Er) I E1 and E2 are disjoint compact sets})r

which is J(A)r, by the assumption that the diagonal A is a set of local synthesis

f.or A6A. On the other hand, ,/(A)t = (AAAIJ(L))*, and so ôD maps inro

(AA!J@)). which is the duai of an essential Banach .A-module. Moreover,

AAAI J(L) is symmetric. To see this, let u €,46.4 and a € A. Take a sequence

{u,} in .46.4' such that each un has a compact support and. un ---+ u. It is ciear
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thatau,-une € /(A) andau-LLa: ffiou,-una. Thusaz _uøeJ(A). Now

fix ö € ,4 and define the bounded operator D: A -+ (AAAI J(L)). by

D(a) : 6D(a,b) (a e A).

we claim thatD is alocal operator. Let a € Aandú f suppø. There is acompact

neighborhood v of ú such that supp atv : Ø. Take c e Awith supp c Çv. By

the regulariiy of Á, there is e € á such that e : 1 on v anð. e : 0 on suppa.

Then, since (,4ô..4. lJ(L)). is symmetric and co, : 0,

"D(o) 
: ceD(a) : c6D(a,b)e: -cD(ab)e * cD(a)eb. (5)

on the other hand, let h € A be any element such that ch : eh : 0, and let

6: A --+ (A6A). be a derivarion such that D(h): d(å.). Then

cD (h)e : c6 (h)e : 6 (ch)e - 6 (c)he : 0.

Thus, from (5), cD(a): 0, and so, by Lemma 2.I, t # supp2(a) i.e. D is a

bounded local operator. Therefore, by proposition 2.4, it is a multiplier. Hence,

for all ø,b,c € A, õD(ac,b) : aõD(c, b), So

D(acb) - D(ac)b: aD(cb) - aD(c)b. (6)

Now take ø,b € A" and c €,4 such that c:1on suppøUsuppö. Then from (6)

D(ab) - D(a)b - aD(b) : -aD(c)b. (7)

However, D is a local derivation so that there is a derivation .ðy' from .4 into (,4ô,4).

such that D(c):,n{(c). So

aD(c)b: aN(c)b: N(ac)b - N(a)cb: t/(ø)ô - .n/(ø)å : 0.

Hence, from (7), õD(a,ö) : 0 for all a,b € A". Therefore, by ihe density of A",

õD :0, and so D is a derivation.
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We now consider the general case. Let r € X and define L,; X* -t (a6,4)- by

(L"(r.), ø8å) :(r* , arb) (a,be A, r* e X.).

It is easy to check thaí L, is a bounded .4.-bimodule homomorphism, and hence

L,o D is a bounded local derivation into (l-6,4)*. Thus L,(6D(c,e)) :0 for all

c,e€A andre X. So

(õD(c,e), axb):0 (a,be A,reX).

Thus, by the essentiality of X, õD:0, showing that D is a derivation.

Finally, suppose that A has a bounded approximate identity, x is a Banach .,4.-

bimodule, and D : A --+ X is a bounded local derivation. By a similar argument to

the one made above (by replacing X with X**), we can show that for a\l a,b,c,d e

A

c6D(a,b) d : 0. (8)

Put Y : XA. By Cohen's factorization theorem [2, Theorem 11.10], Y is a closed

submodule of. X . Let g be the natural quotient map from X onto XIY . Let {eo} oe¡,

be a bounded approximate identity for A. For each o € 
^,, 

define To: A ---+ XIY
by

T.(a) : q(D(ae")) (a e A).

It is easy to see thatT.- is a bounded local right multiplier, and so, by Theorem 2.28,

it is a right multiplier. Hence, for all a,b e A and a € Â, we have q(D(abe*)) :
aq(D(be")). By leiting a --+ oo, 'üe see that q(D(ab) - an(Q): 0. So D(ab) -
aD(b) € XA. Hence 6D(a,b) e XA. So, by Cohen's Factorization Theorem, there

is e € A and r e X such that õD(ø,b) : ,". If we put d,: ee in (8) and let

a ---+ oo, then cõD(a,å) :0. Similarly, by letiing Y : AX, vre can show that

6D(a,ö) : O for all a,b e A. Therefore D is a derivation.
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coRoLi,anv 2.8r. Let A be a hyper-Tauberi,an algebra such that A6A i,s semi,_

si,mple, and let x be a symrnetric Banach A-mod,ule. Then euery bounded, local

deriuat'ion D from A into X ,is zero.

PRoor'. First consider the case x : A*. since x is the dual of an essential

Banach .A-bimodule, by Theorem 2.s0, D is a bounded derivation, Therefore, by

weak amenability of ,4 [Theorem 2.6(iii)], D : 0. For the general case, by a similar

argument to the one made in the proof of proposition 2.4(1i), we have

bD(a):g (a,beA).

Now let a,b € A. and take c e A such that c: 1 on suppø Usupp b. So ac: a

and bc : ó. since D is a local derivation, there is a derivation ,g from .4 into x
such that D(ab) : S(ab).Hence

D(ab) : S(abc) : abS(c) + S(ab)c: aS(c)b + D(ab)c. (2)

However,

aS(c)b: S(ac)b - S(a)cb: S(a)b - ,9(ø)b : 0.

Thus, from (i) and (2), D(ab) : Q.

,41 is dense in ,4.

2,7. cornrnutative semisimple Banach algebras with local derivations

which are not derivations

In this final section' we give examples of classes of commutative semisimple

Banach algebras for which the question of the reflexivity of the space of derivations

fails to be true even in most natural setting i.e. from the algebra into its dual.

tr

(1)

Hence D :0 on Af;. Therefore D : 0 since

tr
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Let o be an open connected subset of the complex plane, and let Ër(o) be the
algebra of analytic functions on e. A Bønach algebra of analytic functi,onson fì is
a subalgebra A of H(Cl) such that it is a Banach algebra with respect to some norm
and it contains a non-constant function. For each t € o, let g¿ be the character

on .4. specified by

pt(u) : u(t) (u e A).

Bv [10, Theorem 2.r.29(ä)J, p¿ is bounded and lle,ll s 1(r e o). Therefore

ll"ll* < ll"ll" fu e -4), wher. ll'll* and ll.lla are rhe supremum norm and rhe
A-norm on ,4., respectively. This, in particular, implies that Ais a commutative
semisimple Banach algebra, and so, by a result of Johnson [2, Theorem 1g.21], 0
is the only derivation on .4. Therefore (bounded) approximateÌy local derivations

on A are derivations' However, as we will see in the following theorem, this is not
always the case even for the bounded local derivations from A into ,4.*.

TH¡oRplr 2.82. Let e be an open connected, subset of the plane, and, ret A
be a Banach algebra of analyti,c functi,ons on e. Then there ,is a bound,ed, local

deri'aation from A i,nto A* whi,ch 'is not a d,eriuation. Moreouer, zt (A, A*) i,s not
refi,eri,ue.

Pnoor'. Let K be a closed disk in O, and, for i :0, 1,2, let

K¿:{te KlaØQ) :0for aI'aeA}.

we claim that for each i, K¿ is finite. otherwise, 1l¿ has a rimit point in K, and.

so, in Q. Thus, by [5, Theorem B.T), a(i): 0 for ail ø € A. Therefore the degree of
each element in A is at most 1. However, if ø is a non-constant element in .4, then
a2 has the degree of at least 2. This contradiction shows that K¿ is finite. Hence
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there is ú € 0 \ (KoU KrU K2) and ø, b,c € A such that

a(t) * 0, b'(t) I 0, c,,(t) I 0.

Now consider the operator D : A --+.4. defined by

D(u) : u"(t)9, (u e A).

From (1), (D(") , a) : c"(t)a(t) + 0. Thus D is non-zero. we claim that D
is a bounded local derivation but it is not a derivation. We first show that D is
bounded' Take r ) 0 such that B,@, the closed disk with the center ú and the

radius r, is a subset of o. Let u e A. since u is analybic and bounded on CI, by

[5, Cauchy's Estimate 2.L4], we have

lr"(t)1. 
zllz.]l- .zll")À .

r"

Thus llD(z)ll s'zry, and so D is bounded.

we now show that D is a locar derivation. Define the operatorc D¿: A -, A*
(í,:7,2) by

(Dt(r), w):u'(t)w(t);

(Dr(u) , w) : u" (t)u(t) + ut Q)wt (t).

It is straightforward to check that D1 and. D2 are derivations. Now let Du :
u" (t\

*6O, whenever u'(t) + 0, and Du: D2 whenever u,(t):0. Then, for each

u e. A, D(u) : D"(u). Hence D is a local derivation. Moreover, by applying a
similar argument to the one made to prove that D is bounded, v¡e can show that D1

and Dz are bounded. Therefore D e rcnlzL(A,,4-)]. Finally a simple calculation

shows that

D (b') - zbD (b) : 2lb, (t)12 çt.

However, by (1), b'(t) # 0. Thus D is not a d.erivation.

(1)

tr
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Exevple 2.33. Let

/(D-): {/ e C(n-) :/le is anatyric},

where D: {z e c.: lzl < 1} is rhe open unit disc. Then (A(D), ll.ll-) is a Banach

algebra of analytic functions; it is called the d,zsc algebra, Thus zr(A(E),,4(D-).)

is not reflexive.



CHAPTER 3

Approximately local multipliers and approximately local
derivations

In this section, we primarily define approximately local multipliers and approx-

imately local derivations from Banach algebras, and then address the question of

when (mostly in the bounded case) they are multipliers and derivations, respec-

tively. To do this, we investigate the relationship between these two families of

operators' One of our main results (Theorem 3.5) states that, for unital Banach

algebras, if bounded approximately local multipliers are multipliers, then bounded

approximately local derivations are derivations. Late¡ on, we extend. this result to

a considerably larger class of Banach algebras that we call approximately locally

unital Banach algebras. By applying these ideas to the various classes of Banach

algebras, we show that bounded approximately local derivations are derivations if
they are defined from a hyper-Tauberian algebra, a c*-algebra, a Banach algebra

generated by idempotents, a semisimple annihilator Banach algebra, or the group

algebra Lt (G) when G is a SIN or a totally disconnected group.

3.1. Definitions and basic properties of approximately local multipliers

and approximately local derivations

DppIr¡tuoN 3.1. Let A be a Banach algebra, and let x be a Banach right

,A-module' An operator ? from .4 into X is an approrimately local Ieft rnulti,pti,er

if for each a e A, there a sequence of lefi murtipliers {7^.} from A into x such

59
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that 7(a) : jg 7","("). If, in addition, ? is bounded we say that ? is a bound,ed,

approtirnately local left multipleer. similarly, for a Banach left A_module x, we

can define approri'mately local right mutti,pli,ers and. bounded, approyimately local

ri,gÌtt multi,pli,ers from A into X.

It is clear that local multipliers (respectively, bounded local multipliers) are

approximately local multipliers (respectively, bounded approximately local mul-
tipliers)' We are interested in determining when bounded approximately local

multipliers are multipliers. This seems to be more general than determining the
reflexivity of the linea¡ space of bounded multipliers (since, in Definition 3.1, we

are not assuming that each To,n is bounded), but the following theorem shows that
these two notions are closely related.

TneoReiu 3.2. Let A be a Banach argebra wi,th A:Æ, and, Iety be a Banach

left (respecti,uely, rigltt) A-mod,ure. Then the followi,ng statements are equ,iualent:

(i') Euery bounded øppro,imatery rocøI rí,ght (respect,iuely, Ieft) mutti,pri,er from A
i.nto Y i,s a right (respectiuely, teft) multiplier.

(ä) For each essential Banach Ieft (respecti,uely, ri,ght) A-mod,ure x, AB(x,y)
frespecti,uely, B ¿,(X,Y)] fs refl,eriae.

(z¿i) AB(A,Y) frespecti,uely, B¿,(A,y)l is reflexiue.

PRoor" We prove the theorem for the case of a left module. The other case

can be proved similarly.

(i) =+ (ii) Let T e ref[eB(X,y)].For each r e X,define:

T,,A-,Y ,7,(a):T(ar) (ae A). (1)
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It is easy to check thai Q is a bounded approximately local right multiplier and
so it is a right murtiprier. Thus, T(øcn) : øT(cx)for at a,c e A. Now the resurt
follows by essentiality of X.
(ii):+(iii) Clear.

(iii):>(l) Let T: A -- y be a bounded approximatery rocal right murtiplier, For
b e A, we define ?6 as in (1). Then To € ref[eB(A,y)] :¡ B(A,y). So T(acb) :
aT(cb) for all a, c € A. The resurt now foilows from the fact that F : A. !

The following theorem shows that if a Banach argebra á has a bounded ap_
proximate identity, then the reflexivity of the linear space of bounded multipliers
from ,4 into á* impries that every bounded approximately rocar murtiprier from á
is a multiplier.

PRoposrrro* 3.8. Let A be a Banach argebra wi,h a bound,ed approrimate
i'dentity such that *B(A,A*) frespecti,uty, B¿(A,A.)] i,s refi,exiue. Then for any
Banaclt' left [respectiuely, ri,ght] A-mod,ure x, eaery bound,ed, approrimatery rocar
ri'ght lrespecti'uery, Ieftl muttipri,er from A i,nto x i,s a right [respectiuery, teft] mut_
ti,pli,er.

PRoor" we prove the theorem for the case of a left modure. The other case
can be treated sim'arly. In view of rheorem J.2, itsuffices to prove that aB(A, x)
is reflexive. Let T e ref[aB(A, X)] and F e X*. Consider

Kp: X ---+ A* , (Ko(r) , a) : F(ar) (a e A,r e X).

Then K¡ is a bounded left , _module morphism and so.

Kp o T e ref[¡B(A, A*)J :¡ B(A, A").
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Thus, for all a,b e A, K¡(T(ab) - af þ\: 0. Hence, if we put u : T(ab) _ aT(b),
then F(cz) :0forallc€ Aand,F e A* sothat cu:0. ontheotherhand,
there is a sequence {7,} of bounded right multipliers from ,4 into X such that
T(ab): Æår"(oa). so

, : j* r"(ab) _ ar(e: jg a[n(b) _ r(b)).

Therefore, u eTX' so, by cohen's factorization theorem, there are e € A and.
x e x such thaù Lt': er. This, together with the fact that Au: 0, impries that
u:0.

¡

DsFrNrrro¡{ s.4. Let A be a Banach algebra, and ret x be a Banach á_
bimodule. An operator D from,4 into x is cared an approx,imatery rocar d,eri,uation
if for each a € A, there is a sequence of derivations {Do,,"} from Ainto x such that
D(a) : ]*.D","("), If, in addition, D is bounded, we say that D is a bound,ed,

ap pro ri,mately I ocal d,eriu ati, on.

It is clear that local derivations ftom Ainto x are exactly members of ref"[zt(A, x)1.
Also, any element of. rcn"fzr(A, x)J or ref[zL(A,x)] is an approximatery rocar
derivation (bounded, in the ratter case). But the converse may not be true, since
ühe derivations D,n considered in Definition 3.4 need not be bounded.

The following theorem which determines the relationship between bounded
approximately local multipliers and bounded approximately local derivations is
critical in our study.

TnpoRovr B'5. Let A be a Banach argebra such that euery bound,ed, approri,_
mately local multi,pli,er from A i,nto any Banach A-mod,ure is a murti,pli,er. Let x
be a Banach A-bi'mod,ure, and, ret D be a bound,ed, approri,matery locar d,eri.uation
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from A into X . Then for all a,b, c, d, e A we haae

D(acdb) - D(acd)b - aD(cd,b) * aD(cd)b : 0

If, i,n addi,t'ion, A i,s uni,tal, then D ,is a d,eri,uation.

PRoor'. Take ø e ,4, and let IZ be the norm-closure of ax. Then y is acrosed

right A-submodule of x. so x /y is a Banach right ,A-module. Define the operator

nav

D: A -* Xly , O(U) : D(ab) +y (b e A).

since D is a bounded approximately local derivation, for each b e A, there is a
sequence of derivations {D,} from A into x such that D(ab): J* D,(ab). Hence

o(u) : )yyD.(ab) +y
: 

]y1[an"Q) + D"(a)b] + y
: jgn [D"(a) +y]b.

Hence õ is u bounded approximately local left multiplier from .4 into xly. Thus,
by the hypothesis, D isaleft murtiprier. Therefore, for arb,d, e e, nçau¡ : n@)u.
Hence D(adb) - D(ad)b e y. Thus there is a sequen ce {r,} in x (possibry

depending upon ø, å and d) such that

D(adb) - D(ad,)b: _\yorn. (1)

Fix å, d e A and define

T: A---+ X , T(a) : D(adb) - D(ad.)b (a e A).

By (1)' 7 is a bounded approximately local right multiplier and so it is a right
multiplier. Therefore, for all o,,c e A,T(ac): aT(c). So D(acd,b) _ D(acd)b:
aD(cdb) - aD(cd,)b.
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Let A be unital with identity e. put c: d,: e. Then D(ab) - D(a)b- aD(b) :
-aD(e)b. On the other hand, if A: A --+ X is a derivation then

a\(e)b: L(ae)b - A(ø)eb: 0.

Therefore aD(e)b: 0, since aD(e)b: j* aD.(e)b for a sequen ce {D,} of deriva-

tions from á into X. So D(ab) - D(a)b - aD(b): 0. Thus D is a derivation. D

The next theorem provides useful criteria for determining whether a bounded

approximately iocal derivation from a Banach algebra with a bounded approximate

identity is a derivation.

TseoRprr¿ 3.6. Let A be a Bana,ch algebra wi,th, a bound,ed, approrimate i,d,enti,ty

{eo}oe¡. such that ¿B(A,A*) and, B,a.(A,A*) are refi,eriae. Let x be a Banøch

A-bi'module, and let D be a bound,ed approri,mately local d,eriaati,on from A i,nto

x*. Th'en th,ere i.s a bound,ed deriuati,on D and, a ri,gÌtt multipli,er T from A i,nto

Xo such that D : D +7. Moreouer, i,f X is essential, then D and, T are uni,quely

determined by thi,s property and the folrowi,ng staternents are equ,iualent:

(C)Disaderiaation

(ä) T ,i,s zero.

(äi) weak. - J* D(e.) : g.

(i'u) For each a e /\, there 'is a sequence of bound,ed, d,eriuations {D*,,) such that

D(e"): 
Jgg D.,n(eo) and, sup{llD*,*ll I a e Â, n e N} i.s finite.

PRoor'. By Proposition 3.3 and rheorem 3.b (considering the fact that A :
A2) for all a,b,c e A, we have

D(acb) - D(ac)b - aD(cb) * aD(c)b : 0.
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By putting c : €a and letting a --+ oo we obtain

D(ab) - D(a)b - aD(b) + jim aD(e.)b:0.

Since {D(e")} is bounded, there is r* e X* and a subnet {D("*,)}
D(".) ---+ r* in the weak* topology. So

(1)

such that

D(ab) - D(a)b - aD(b) r ar*b : 0.

Define T: A---+ x* by T(a): ar* and putD - D -?. It is straightforward to
check that 7 is a right murtiprier and D is a bounded derivation.

(Ð ===+ (iv) and (ii)==+(i) are obvious and (iii)=a(ii) and the uniqueness follows
from the essentiality of X. For (iv):+(iii), pur /l : sup{llD. ,,ll I oe Â, n e N}.
Then for each ø, b e A,n e X,a e 

^ 
and n € N,

(D,,*(",), bra) : (aD*,*(e.), br)

: (D.,*(ae.) , br) - (D.,,(o) ,eobr)

: (Do,n(aeo - a) , br) - (D,,,(o) , eobr _ br).

So

l(D-,*("-) , brall < Kllae, - øll llóØll + nllall llrll lle"ö - óll.

Therefore, first by letting r¿ --+ oo and then a _) oo, we obtain

(D("") , bra) ---+ Q.

The final result follows since, by Cohen's factorization theorem and the essentiality
of x, every element in x can be written as bxa for some a,b e Aand r € x. tr

We note that the statements of the preceding theorem hold if we replace ,,right

multiplier" with "left multiplier". In fact, since .4 has a bounded approximate
identity, we can write every right multiplier from ,4 into X* as a sum of a left
multiplier and an inner d.erivation from ,4 into X*.
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we recall that a Banach algebra is approximately weakly amenabre if every
bounded derivation D from á into á* is approximately inner [21].

CoRoLleRv 3'7' Let A be an approlirnately wealcly amenable Banach algebra

wi'th a bounded appro,imate i'd,entity. If ¡B(A,A*) and, B¡(A,A*) are refleúue,
then Z1(A, A.) is refl,eriae.

PRoor. Let D e reflZt(A,A-)1. By Theorem 3.6, there are A €. Zr(A,A.)
and 7 e a B(A,,4*) such that D: a+?. so ? e ref[zr(A,A.)]. Hence, since .4. is

approximately weakly amenable, for every a e A, there is a sequence {ro,n} e A*
such that

T(a): )jÆor","-ra,na. (1)

Now, let {". I o e À} be a bounded approximate identity for A and E be aweakn_

cluster point of {"*lo € A} in.4**. Then ^Ð is atwo-sided identiiy for A in.4**.
In particular, for all ø €,4 and r e A*, (8, an _ ra) : (Eo_ aE, r) : g.

Therefore, from (t),

(E,T(a)):s (aeA).

But ? is a (bounded) right murtiplier and so, by taking a weak*-cluster

T(".), there is y e A* such that T(a) : øy. Thus

(E,f@\:(Ea,U):(y,o).

So, from (2), y:0, and hence T:0. Therefore, D is a derivation.

(2)

point of

!
Let cp be a characte¡ on the Banach algebra A (i.e. p is anon-zero multiplicative

linear functional on .4). A functional d on ,4 is cailed a point derivation at g if

d(ab) : d(a)e(b) + e@)d,(b) (a,b e A)
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It is shown in [2r, proposition 2.7] thatif a Banach argebra has a non_zero bounded
point derivation, then it is not approximatery weakry amenabre. As we see in
the next proposition and the following corollary, non-zero point derivations also
generate local multipliers which are not multipliers. This is noted for a particular
example in [28, p.319]. We modify it for the general case.

PRopos*roN 3.g. Let A be a Banach argebra, Iet, g be a character on A,
ønd let d, be a point d,eriuati,on at p. Then the operator D: A __+ A* d,efi,ned, by
D(a) : d(")ç is a d,eriuat'ion which i,s also both a local left and, right multipli,er.
Moreouer, i,f d i,s bound.ed,, then so is D.

PRoor'. It is straightforward to check that D is a derivation, and, if d is
bounded, then D is bounded. so it just remains to show that D is both a ro_

cal lefb and right multiprier. For that, it suffices to show that for every o,e .4 there
is F', e ,4.* such that fo¡ every b € A,

(D(") , b): (F", ba): (F", ab).

Take ø € ,4. We consider two cases:

case I: eØ) # 0. Put F": D(a)/p(a). Then

(F", ab) : tleþ)@(a) , ob)

: ftle@)]d(a)ç("b)

: [tle@)]d(a)ç(")eþ)

: (D(a) , b).

Similarly, we have (F" , ba): (D(a) , b).

Case II: ç(a):0. Pui Fo: d.. Then it is easy to see that (i) holds.

(1)

!
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co*ol,leRv 3.9. Let A be a Banach algebra such that A :8. suppose that
eaery bounded local left mutti,ptier from A i,nto A* ,is a Ieft multi,pli,er. Then A d,oes

not haue a non-zero bounded poi'nt deri,uati,on. The same result ,is true i.f we replace

"\eft" with, "r,ight" i,n the aboue staternent.

PRoor" Let d, tp and D be as considered in proposition B.g. Then, by hypoth-
esis and the same proposition, D is both a bounded derivation and a bounded mul-
tiplier. Therefore, a simple calculation shows that D vanishes on {ab: a,b e A},
and so does d. Hence d,:0.

Let A be a Banach algebra, Iet X and y be refi (right) Banach A-mod.ules, and

Let T : x -+ Y be an operator. Then T is teft-i,ntertwi,ni.ng (ri,ght-i,ntertwi,ni,ng) over

,4 if the operator r r. T(ar) - aT(r) ; X -+ y (x + T(xa) _T(r)a ; X - y)
is bounded for all a e A. suppose that x and y are Banach ,4_bimodules. Then
T is i,ntertwin'ing over Aif it is both left-intertwining and righi-intertwining. It is

easy to see that each derivation is an inte¡twining map. A classical approach for
determining whether an operator T: X -> Y is bounded is first to see whether it
is intertwining. As \.ve see in the next two results, this approach wili help us to
determine whether an approximately local derivation is bounded.

TneoRpnr 3.r0. Let A be a Banach algebra wi,th, a bound,ed, approrirnate i,d,enti,ty

sucÌt' that euery o,pprorimately rocal multi,pli,er from A into any Banach A_mod,ule

i's a rnultipli,er. Then eaery o,pprori,mately local d.eriuation from A i,nto any Banach

A-bi.module is an,intertwi,ni,ng map ouer A.

Pnoo¡'. Let X be a Banach A-bimodule, let D: A _+ X be an approximately

local derivation, and let ¿ € A. Let {ó,} be a sequence in á such that bn---+ 0. By

[2, corollaries 11,11 and 11.12], there are c,d, e Aand a sequence {¿,} c .4 such

tr
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that for each n € NI, ö," : cd,tn and ú¿ --+ 0. An argument similar to the one found

in Theorem 3,5 shows that the operator T: A -+ X defined by

T(b): D(acb) - aD(cb) (b e A)

is an approximately local left multiplier, and so, by hypothesis, ? is a left multi-

plier. Thus

lD x a - a. Dl(b,) : T(dt.) : T(d)t, -- 0.

So D is left-intertwining over,4,. Similarly, we can show that D is right-intertwining

over A.

coRolr,eav 3.77. Let A be a Banach algebra wi,th a bound,ed, approri,mate

i'denti'ty such that eaery approri,mately local rnultipli,er from A i,nto any Banach

A-module i,s a multi,plier. If euery deri,aation from A i,nto any Banacþ, A-bi,mod,ule

'is bounded, then eaery approri,mately local deri.uation from A i,nto any Banach

A-bi,module is bounded.

PRoo¡'. The result follows from Theorem 8.10 and [r-0, corollary 2.7.7]. ¡

3.2. Approximately locally unital Banach algebras

In Theorem 3.5 we showed that for unital Banach algebras, the reflexivity of

the linear space of bounded multipliers is suffcient for bounded approximately

local derivations to be derivations. In this section, we extend that result to a

considerably larger family of Banach algebras that we call approximately locally

unital.

DpprwtuoN 3.12. suppose that .4 is a Banach argebra and ø € ,4. we say that

ø has a Ieft (right) i'd,enti'ty in ,4 if for some b e A, ba: a (ab: a). we say that

A is approri,matelg locally unital if there are subsets A¿ and, A, of A such that ,A

D
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is the closed linear span of both ,4,¿ and, A, and each erement of A¿ and, A, has a

left identity and a right identity in A, respectively. Fhom the definition, it is clear

that if A is approximately locally unital then ,4 :Æ.

Exerr¿pr,p 3.13. Let A be aTauberian algebra, and ret A.bethe set of those

elements in ,4 with compact support. By the regurarity of A, for each a € A",
there is an element b e A such that b : 1 on supp a, and so ab : ba: ø. Thus A
is approximately locally unital since A" is dense in .4.

PRoposrriorv s.14. Let A be an approri,matery rocarly uni,tar Bønach algebra

such that *B(A,A*) [respectiuely, B,c,(A,A)] i.s refl,eriue. Then euery bound,ed,

approri'mately local right frespecti,uely, tffi rnutti,pti,er from A i,nto any Banach left
frespecti,uely, nght] A-mod,ule i,s a ri,ght frespecti,aely, Ieft] multi,pli,er.

PRoop. Let x be a Banach left,A-modure. By Theorem B.z, itsuffi.ces to show
that aB(A,x) is reflexive. Let T e rerfa?(A, x)1, By a similar argument to the
one made in the proof of proposition 3.8, we can show that for 

^r a,b,c e A,
aT(bc): abr(c).Now let.4¿ be as in DefinitionJ.r2 and take b e A¿. There is an

element a e Asuch that ab : b. since z e ref.[aB(A,x)], for each c e A there is
asequence {f"} in .¿,B(A,X) such thatT(bc):Jgg[,(åc). So

rþc) - bT(c) : )j*r"(u") - brþ)

]19¡nçou") - abrþ)

aìim T"(bc) - abT(c)

aT(bc) - abT(c)

0,
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The final result follows because ,4 is the closed linear span of A¿. The proof in the

case of right modules follows similar lines. !

THpoRsN4 3.L5. Let A be an approrimately IocaIIy uni,tal Banach algebra such

that ¡B(A,A*) and By(A,A*) are refl,eri,ae. Then euery bound,ed, approri,mately

local deriuation D from A i,nto a Banach A-bi,module X i,s a d,eriuati,on. In parti,c-

ular, Zr (A, X) is refl,exi,ue and refolZt (A, X)l ì B(A, X) : Zr (A, X).

PRoo¡'. From Proposition 3.14 and Theorem 3.5, for all o,,b,c,d, e A,

D(acdb) - D(acd)b - aD(cdb) -t aD(cd)b:0. (1)

Let A¿ and.4,. be as in Definition 3.12. Take a e A, and b e .4¿. There arc e, f e A

such that o,e: o, and /b:b. Let g: e+f - e/. Then it is easy to see that

dg : a and gb: b. Now, if, in (1), we put c : d: g then

D(ab) - D(a)b - aD(b) : -aD(g2)b.

On the other hand, if A is any derivation from ,4 into X then,

a\(s2)b: L(a,s2)b - L(a)szb: A(¿)å _ A(a)å : 0.

Therefore, aD(g2)b : 0, since aD(g2)b : j53 aD,(gz)b for a sequence {D,} of

derivations from A into X. So D(aô) : D(a)b + aD(b). The final result follows

because .4 is the closed línear span of both A¿ and A,. tr

The following is an application of rheorem B.1b which will be used later.

TueoRBlt¡ 3.L6. Let A be a Banach algebra, and ret {Ao}or, be a farni,ly of

Banach subalgebras of A such th,at (@,iaA¿)- : A. Suppose th,at, for eaclt.i Ç. I,
A¿ i.s approri,mately IocaIIy uni,tal and, ¡.B(A¿,AI) and, Bn,(Ao,Ai) are refl,eri,ue.

Then euery bounded approri,mately local deriuati,on from A ,into any Banach A-

bi,module'is a d,eri,uat'ion.
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PRoop' By hypothesis, for each ¿ € .I, there are subsets A! and, Al of A¿ such

that A¿ is the closed linear span of both Alo and Ai, eachelement in áj has a left
identity and each element in ái has a right identity in 4¿. so if we pui A¿ : u¿ç¡A!¿

and A, : l)¿ç¡Af,, then .4¿ and A, satisfy the assumption of Definition 8.12 and

it follows that A is an approximately locally unital Banach algebra. Therefore,

by Theorem 3'15, it suffices to show tbat ¡B(A,.4*) and B¿,(A,A*) arereflexive.

LetT e reflaÙ(A,,4.)], and ret fr be the restriction of r to A¿. By hypothesis

and Proposition 3.14, ea.chT¿ is a right multiplier. on the other hand, if. a e A¿

and ö € .4¡ where i I j then aT(b) :0. To see this, let {Ç} be a sequence in

¿.8(A,.4*) such thar 
"(ó) 

: #*Ç(b). Then

aT(b) : ]4"r"þ): jg Tn(ab) : s.

Thus, for each a¿,b¿ € A¿ and a¡,b¡ e Aj wlth i # j,

Tl(oo + a¡)(b¿ + b¡)l : T(a¿a¡ + bibi)

: a¿T(a¡) + biT(bj)

: (o¿ + o¡)T(bo + b¡).

Therefore T acts as aright multiprier on the direct sum of {Ao}nr, which is dense

in .4. since z is bounded, it foilows ihat ? €¡ B(A,,4.). simitarr¡ we can show

that B¡(A,.4*) is reflexive. !

Let A and B be Banach algebras. There are Banach A-bimodule actions on

.46.8 specified by

c.(oøb):caØb , (øgó).c:acØb (a,ce A,beB).

Similarl¡ v¡e can define Banach B-bimodule actions on .46.8 specified by

do(a8ó) : aØdb, (o8 b)od,: aØbd, (a e A,b,d,e B).
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Moreover, it is straightforward to check that for ce A, d, e B and r e AAB

(aØb)r: a.(boø) : bo (a.r).

TsBoRplr¿ B.IT. Let {An}T=, be a fi,ni,te set of Banach algebras, and, let A :2
o?rAo. 

Suppose that, for each i, A¿ i,s approri,mately locally uni,tal and, aoB(A¿, Ai)
and' B¡r(A¿,Ai) are refletiae. Then eaery bound,ed, approrimately local deriuation

from A into any Banach A-bimod,ule i,s a d,eriuation.

Pnoor'. First consider the case n : 2. For i : r,2, there are subsets Al and
Ai or. Aa such that .4¿ is the closed rinear span of both ,41 and Al, each element in
áj has a left identity and each element in Ai has a right identity in .4¿. put

At : {qØ a2l a¿ e Alo}, A, : {bt Ø b2 I bi € Ai}.

Tlren '4¿ and A* satisfy the assumption of Definition 8.12 and so ,4 is an approx_

imately locally unital Banach algebra. Therefore, by Theorem 3.1b, it suffices to
show that ¿B(A,"4*) and B.q(A,A*) are reflexive. we show that ¡B(A,,4.) is

reflexive. The other case can be treated similarly. Let, T e.a B(A,"4.). we claim
that T(c' u) : c. T(u) for all c e Aland u €,4. To this end, it suffices to show
that, for all c € .41 and a¿,b¿ € A¿ (i:7,2),

(T(ca,1Øa2) , hØbz): (T(qØaz) , btcØbz). (1)

Let a2 e A!2 and bz e Ai. By a similar argument to the one made in Theorem
3.15, there is g € á2 such that ga2: az ãnd, bzg : bz. Hence

(T(cqØ az), hØbz) : (T(cqØ ga2), hØbz)

: ((cØs)T(atØa2) , hØbz)

: (T(o, ø a2) , b1c Ø bzs)

: (?(ot ø a2) , fucØbù.
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So equation (1) holds since A2 is the closed linear span of both A!, and Ai .

Therefore, "qB(A,A*) Ç¡, B(A,A.). on the other hand, Ais an essential Ba-

nach ,41-bimodule, and so, from Proposition 3.14 and rheo¡em 8.2, erB(A,-4.) is

reflexive. Thus

ref[¿B (A, A.)] Ç¡, B (A, A.).

Similarly, v¡e can show that

ref[¡B(A, A.)) Ç¡, B(A, A.).

Now let T e ref[aB(A, A.)]. Then for every ø1 e A1,a2 e A2, and, u Ç. A, from (2)

and (3) we have

"[(ot 
ø a2)u]:Tla1.(a2oz)] : a1.T(a2ou): (atøaz)T(u).

n-l
For r¿ ) 2, put B : 6,.4¿. Then A: ß6A,. So the resulti:t

tr

(2)

(3)

Hence T Ç.A B(A,A-).

follows by induction.

3.3. Approximately local multipliers and approximately local

derivations from hyper_Tauberian algebras

Section 2.6 was concerned with the question of when the bounded local deriva-

tions from hyper-Tauberian algebras are derivations. Although we showed ihat the

ans\Ã/er is affirmative in some cases, we were not able to obtain a general result. In
this section, by using the theory of approximately locally unital Banach algebras

that we developed in section 3.2, we ans\^r.er the question completely in an even

more general setting:

TnooRnu 3.1'8. Let A be ø hyper-Tauberian algebra, Then euery bound,ed ap-

prori'rnately local deriuati,on from A i,nto any Banach A-bi,mod,ule ,is a d,eriuati,on.
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Pnoor" By Example 3.18, ,4, is approximatery localy unita]. Hence, from The-

orem 3'15, it suffices to show that aB(A,á.) is ¡eflexive. Let T e reff¡ß(A, A.)1.

For each a e. A, there is a sequence {""} in ¿.8(A,.4*) such LhatT(a): j* T,(o).
In particular, since eachT,. is a multiplier,ba:0 implies thaÍbr(a):0. There-

fore 7 is a local operator, and so, by hypothesis, it is a multiplier. This completes

ihe proof.

Let A be a Tauberian algebra such that every closed. ideal of finite codimension

in .4 has a bounded approximate identity. Then, by [to, corollary b.B.b], each

intertwining map from ,4 into any Banach .A-bimodule is bounded. As we see in

the following theorem, this will help us to show that approximately local deriva-

tions from this type of hyper-Tauberian algebras are bound.ed, and so they are

derivations. some ideas in the proof have been ext¡acted from [2g, p. B2a,j;25].

First let us recall that for Banach spaces x and y, and. an operator T: x ---+ {,
the separati,ng space of ? is G("), where

6(f) : {a eV I l{",} C X such that nn--+ 0 and T(r.) _- y}.

so, by closed Graph rheorem, z is bounded if and onry if g(") : {0}.

TupoRBn¿ 3.79. Let A be a hyper-Tauberi,an algebra such th,at euery closed,

i'deal with fini.te codi,mens,ion i.n A has a bound,ed, approxi,mate id,enti,ty. Then euery

approrimately local d'eri'uati,on from A'into any Banach A-bi,module i,s a d,eriuation.

Pnoor'. By the preceding theorem, it suffices to show that every approximately

local derivation from .4 into any Banach .A-module is bounded. To this end., from

Theorem 3.10 and the remark made afte¡ Theorem 8.1g, it suff.ces to show that
every approximately local multiplier from .4 into any Banach .A-module is a mul_

tiplier. Let Z be a Banach left ,A-module, and let ?: A ___, Z be an approximately

tr
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local right multiplier. For each open subset I/ of @¿ put

X(U) : I(U), y(U) : {z e Zl .rppz c @a \ t/},

where our notations foilow that of [4g, Theorem 2.s]. Therefore, from the resurt
¡eferred to, there is a finite subset E of. easuch that for every t e @t \ E there is
an open neighborhood u¿ of. ú for which avù o ? is bounded where evù: z ___+

z/Y(uò is the naturar quotient map. Now .et z e6(") and {o,} c.4 such that
an + 0 and T(a,) + z. Thus e(Ur)z: 0, and so supp , C Þe\ t/¿. Hence

suppzCE (ze6e\.
(1)

on the other hand, every erement in 16(E) has a compact support which is disjoint
from.Ð. Thus, by (1), I6(E)z:0. This means that I(E)z:0 since, from
coroilary 2'9, E is a set of synthesis. Therefore, from the fact that r(E) has a
bounded approximate identity, we have

c(r) n r(E)z: {0}. (2)

on the othe¡ hand, Iei ?s be the restriction or T tu I(E) and, a e I(E). By
hypothesis, there is a sequence {r,} ofright multipliers from .4 into z such that
T(a) : ]xr"t"¡.Also, from cohen's factorization theorem, there are b,c e I(E)
such that a: öc. So

r(a) : ]Ær¡u"): J¡g br,þ).

Hence T(a) e T@2. However, a simple appl.ication of cohen,s Factorization
Theorem shows that I(E)Z is closed, and. so f@) e I(E)'. Thus, from (2),

s(?r) c s(r) n r(Ð)z: {0}.

tô
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Therefore 7s is bounded, and so is ? since 1(E) is a closed ideal of finite codimen-

sion in A. A similar result can be obtained for approximately local left multipli-
ers. !

coRor,leRv 3.20. Let G be a locally compact group such that G" i,s abelian,

and' let p e (r, æ) . TÌt en eaery bounded, approni,mately locar d,e,iuøti,on frorn Ao(G)

'into any Banach Ao(G)-bi,module i,s a deri,uation. If, i,n ad,d,i,ti,on, G ,is amenabre,

then the result 'is true for atl approri,mately local d,eriuations.

Pnoor" By Theorem 2.23, Ae(G) is hyper-Tauberian. Hence the result follows

from Theorem 3.18. If G is amenable, then, by [15, Theore m 4.2], every closed ideal

with finite codimension in ,4o(G) has a bounded approximate identity. Therefore,

by Theorem 3.19, approximately local derivations from AoG) are derivations. tr

3.4. Approximately rocar murtipriers and approximatery rocal

derivations from C*-algebras

Let A be a c*-algebra, and let x be a Banach ,A-bimodule. It is known that
derivations ftom A into x are bounded [10, Theorem 5.8.7], and so zt(A,x) :
Z|(A,X)' In [28], Johnson has shown that local derivations from Ainto X are

derivations i.e. z'(A,x) is argebraicalry reflexive. In this section we prove the
stronger statement that approximately local derivations from A into X are deriva-

tions. In particular, z'(A,x) is also reflexive. First, we need the following lernma.

Lprr¿ue 3.27. Let A be a uni,tar c*-algebra. Then euery bound,ed, approrirnately

local multipli,er from A i,nto any Banach A-mod,ule i,s a multi.pli,er.

Pnoor'. By Proposition 3.14, it suffices to show thar, ¡B(A,A.) and BA(A, A*)
a¡e refl.exive. First assume that A : c(K) for a compact subset K of lR and -R
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is the restriction map from co(R) onto c(K). Then c(K) becomes an essential

Banach C¡(lR)-bimodule for the actions defined by

ba: R(b)a , ab: aÀ(b) (a e C(K),ó € Co(R)).

on the other hand, c'(R) is hyper-Tauberian (e.g. Theor em2.rT). Hence, by The-
orem 3.18 (see also Proposition 2.4), Bso6¡¡@(K),C(K).) and crolp¡B(C(K),C(K).)
are reflexive. The final ¡esult follows from the fact that

Bc@(C (K), C (K).) : Bco(n) (C (K), C (K)- ) ;

c67B (C (K), C (I().) :co(R) B (C (K), C (K).).

we now consider the generar case. Let T e refla7(A, A*)l,let ø be a serf-adjoint

element in,4, and ler A(a) be the c*-subaigebraof. Agenerated by ø and 1. It is
well-known that there is a compact subset K of IR such that A(a) is isometrically
isomorphic to c(K). on the other hand, A is an essential Banach reft A(a)_

module so, by the preceding case and rheorem 8.2, ,e.6¡B(A,,4*) is reflexive. But
¿,8(A,A*) Çeço¡ B(A,A.) so ? €¿1o¡ B(A,A.) i.e. T(ab) : aT(b) for alt b e A.
The final result follows since á is the linear span of its self-adjoint elements. The
reflexivity of. Ba(A,A*) can be proved similarly. tr

TnpoRprr¿ 3.22. Let A be a c*-algebra, and, let x be a Banach A_bi,mod,ule.

Then eaery approri'mately local d,eri,uation D from A i,nto x i,s a d,enuation.

PRoor" Without loss of generalit¡ v¡e can assume that A is unital, fo¡ oth-
erwise v/e may consider the unitalization .4r of ,4 (see [t0, Definition 3.2.1]) and
extend x to a Banach.Afl-bimodule by defining 1r : x! : x and D to an approxi_

mately local derivation from r4H into X by defining D(1) : 0. By Theorem 8.5 and
Lemma 3.21, in order to show that D is a derivation it sufices to show that D is
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bounded. To this end, from [7, coroilary r.2], it suffices to show that the restric_

tion of D to any commutative unitar c*-subalgebra c(o) of .4 is bounded. But
this follows immediately from the remark made after Theorem B.1g since every

closed ideal in a c*-algebra has a bounded approximate identity [1_0, Theorem

3.2.2I1. This completes the proof.

3.5. Approximatery rocar murtipriers and approximatery local
derivations from Banach argebras generated by idempotents

Let A be a Banach algebra, let E be the set of idempotents in A, and let
A(E) be the subalgebra of ,4, generated by .Ð. we say that ,4 ,is generated, by

'idempotents ir A@) is dense in ,4. It is easy to see that A(E) is the linear span of
D: {e1...en In e I/, e¿e E}.Moreover, for each element LL:€1...e,nin E, e1 and

en ate left and right identities for z, respectively.

TupoRplr¿ 8.28. Let A be a Banach algebra generated, by i,d,ernpotents. Then

euery bounded approrimately local deriuati,on from A i,nto any Bano,ch A_bi,mod,ule

'is a deriuati,on.

Pnoor'. By the remark made before the theorem, Ais approximately locally

unital. so from Theorem 3.15, it suffices to show that aB(A,.A.) and B,s.(A, A) are

reflexive. Let T e reflaB(A, A*)],and a € A. Lete be an idempotent in,4. By the

assumption, there is a sequence {f"} CA B(A,.4*) such that T(ea): J* T,(ea).
Hence

eT(ea): jlg eT,(ea): J* T,(e2a): 
J1g T,(ea) : T(ea). (1)

n
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on the other hand, there is a sequence {s"} c¿ B(A,A-) such that T(a- ea) -_

jg +{, - eø). so

eT(a - ro) : 
Æå eSn(a _ ea) : ]g;*5,("o 

_ e2a) : g. (z)

Therefore, from (1) and (2), T(ea) : eT(a). So ? e¿ B(A,A.) because ,4, is

generated by idempotents. The reflexivity of. Ba(A,A) can be proved similarly.

D

Let X be a Banach space, let F(X) be the algebra of all finite rank operators in

B(x), and let Y be an (atgebraic) F(x)-bimodule. M. Bresar and p. Semrl have

shown in [3, Theorem 3.6] that every linear mapping D: F(X) _* y satisfying

D(P) : PD(P) + D(P)P for every projecrion p in F(x) is a derivarion. Now

assume that Y is, in addition, a normed F(x)-bimodule and D : F(x) --+ y is an

approximately local derivation (the definition would be similar to Definition 3.4).

Then it is straightforward to check that D satisfies the above condition of Bresar

and Semrl so D is a derivation. Hence we can state the following:

TnsonaI'4 3.24. Let x be a Banach space, let F(x) be the algebra of alt fi_
ni'te ranlc operators i,n B(x), and lety be a normed, F(x)-bi.mod.ule. Then euery

approrimately local d,eriuati,on D frorn F(x) i,nto y i,s o, d,eriuati,on.

we recall that a Banach operator algebra on a Banach space x is a subalgebra

of B(X) containing F(X) such that it is a Banach algebra with respect to some

norm.

The following corollary follows immediately from the preceding theorem and

Coroilary 3.9.

coRor,LeRv 3.25. Let x be a Banach, space, and,let A be a Banach operator

algebra on x. Ir F(ë) 'is dense i,n A tlten euery bound,ed, approri,mately locøl
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deriuat'ion from A i,nto any Banach A-bimod,ule zs a d,eriuation. In parl,icular,

does not haue a non-zero bounded point d,eri,uati,on.

Exertpr.p 3.26. Let x be a Banach space. Then A(x), the space of approx-

imable operators, N(x), the space of Nuclear operators and co(x) for 1 ( p < oo

when x is a Hilbert space are Banach operator algebras having F(x) as a dense

subalgebra. see [10, Definitions A.B.5s and A.8.5fl and [45, chapier 2] for the

details.

3.6. Approximately local multipliers and approximately local

derivations from semisimple annihilator Banach algebras

Let A be Banach algebra and E c ,4. The left and right annihilator of E are

the sets lan(Ø) and ran(E) given by

lan(E) : {a € Al aE: {0}} , ran(.Ð): {a € Al Ea: {0}}.

á is an anni,lt'ilator Banaclt, algebrø if for every closed left ideal L and closed right

ideal .R,

ran(L): {0} if and only if L : A;

lan(Æ) : {0} if and only if R: A.

Exeuplp 3.27. (i) Let G be a compact group. Then trp(G) for l { p < oo and

C(G) \ 'ith the convolution product are semisimple annihilator Banach algebras [1,
Section 4].

(ii) Let G be a locally compact group. Then ,4p(G), the algebra of almost peri-

odic functions on G with convolution product and uniform norm, is a semisimple

annihilator Banach algebra [1, Section 4].

81

A
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Lpuve 3.28. Let A be a sem,i,s'impre anni,hilator Banach algebra. Then A i.s

approri,mately locølly unital.

PRoor'. Let

A¿: u {/ | / is a minimal right ideal};

and

A, : l) {/ | / is a minimal left ideal}.

From [2, Proposition 32.rT], there is a two-sided ideal of .4, denoted by soc(á), such

that the linear span of both á¿ and ,4.,. are dense in soc(,A) and ,4, : *d..Ð. o'
the other hand, by [2, Proposition 30.6], every minimal right ideal and minimal
left ideal has the lorm eA and Af for some minimal idempotents e and / in
1., respectively. In particular, e is a left identity for elements of. eA and / is a
right identity for the elements of Af . Therefore, A¿ and..4.. satisfy the condition

considered in Definition 3.12 and so A is approximately locally unital. tr

TnpoRErvr 3.29. Let A be a semi,si,mpre anni,hi,lator Banach algebra, and,let x
be a Banach A-bi,mod,ule. Then euery bound,ed, approrimately local d,eriuati,on from
A i,nto X ,is a deriuation.

PRoor'. By [2, Proposition Bz.rT], á is the closure of the direct sum of the

minimal closed bi-ideals of ,4. Also, by [2, corollary 82.12], each minimal closed

bi-ideal of ,4 is a semisimple annihilator Banach algebra. so, from Lemma 3.28

and Theo¡em 3.16, it suffices to show that for each minimal closed bi-ideai 1,

rB(I,f) and B¡(1,-I*) are reflexive. Let, T e ref[¡B(/,1.)]. By 12, Theorem

32.201, there is a Banach space x such that soc(/) and F(x) are argebraicaly

isomorphic. Therefore, from a similar argument to the one made is Theorem 3.24,

the restriction of ? to soc(r) is a right multiplier. so z e¡ B(1, r) because of the
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similarly.
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and 7 is bounded. The reflexivity of. B¡(I,I*) can be proved

!

Then
coRor,leRv 8.30. Let A be a semi,si,mpre annihzrator Banach argebra.

there i,s no non-zero bound,ed, poi,nt d,eriuati,on on A.

PRoor" This is a resurt of the preceding theorem and corollary 3.9.

3.7. Approximatery local murtipriers and approximatery rocal

derivations from group algebras

In this section, we investigate bounded approximately local multipliers and
bounded approximately local de¡ivations from the group algebras. We start with
the following essential theorem which states that bounded approximately local
multipliers from the group algebras are multipliers.

TnpoRpn¿ B'Br. Let'G be arocally compact group. Then euery bound,ed, o,ppror-

i'mately local multi,pli,er from L,(G) i,nto any Banach Lr(G)-mod,ule ,is a multi,plzer.

Pnoor" since -Ll(G) has a bounded approximate identity, from proposition

3.3, it is enough to show that ¿riç¡B(Lt(G),Lr(G).) and -B¿,1c¡( Lr(G),Lr(G).)
are reflexive. First we consider the case when G is discrete, Let

T e ref[r,1c) B (It (G),¿' (c).)].

Take r € G and ]ei Ër be the subgroup generated by z. Then .t/ is an aberian

subgroup or G, II(H) is a closed subargebra or F(G) and ll(G) is an essential

Banach 11(1/)-bimodule. Also, it is easy to see that the restriction of ? to l1(l¡) is
a bounded approximately local right multiplier from /r(ä) inio ¿r(G).. Thus, by
Proposition 2.79 and Theorem 8.18, ?j¿,1ø¡: tr(H) -+ It(G). is a right multiplier.

D
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In particular, if e is the identity in G ihen T(õ,) : õ,7(6.) Therefore TU) :
rr@) where / is in the rinear span of E : {á,, | ø e G}. The final resurt fo[ows
from the fact that ? is bounded and /r(G) is the crosed rinear span of D.
We now consider the general case. First we note that

¡ç¡B(LL(G), L, (G)-) : tçc¡B(Lt (G), L, (G)")

: uç¡B(Ll(G),Lr(G).). (1)

To see this, let r e¡ç¡ B(L|(G),L'(G).) and ¡,t e M(c). since tri(G) is s.o.
dense in M(G) [10, Theorem2.9.49] there is anet {f¿}¿ç¡ in Lt (G) such that for
allg € L'(G), r¿*9 - ¡t+g and g* f¿+ g+¡-t inthe zr-norm. Hence

T(p * s) : norrn -,ll1 f U¿ * g)

: ,._JITrU¿*g)
: ?r. - iLm f¿ * T(g)

: t-r*T(g).

soT e¡aç) B(L,(G),L',(G).).Since /1(G) is arso s.o. d.ense in M(G),the other
equality in (1) follows by the same argument. on the other hand., from proposition

3.3, Theorem 8.2 and the result we obtained in the first part,

rç¡B(Ll(G), Lr(G)")

ís reflexive' So from (1), ,G¡B(L'(G),L'(G)-) is reflexive. The reflexivity of
B¡,G¡(LL(G), Lt(G).) can be proved similarly. n

coRor'i'aRv B.B2' Let G be a rocaily compact group, and, Iet J be an ,id'ar

¿n Lr(G) with fi,nite cod,imension. Then euery bound,ed, approrimatery locar multi_
pli'er from J into any Banach Lr(G)-rnod,ure ,is a multi,pri,er. IJ, i,n ad,d,ition, G is
amenable, then the result is trae for all Banach J_mod.ules.
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Pnoop. we give the proof for the reft module case. The other case can be
proved similarly. Fïom [SaJ, J: J2 so.Iis an essentia] Banach trr(G)_bimodule.
Also, forevery Banachrent Lt(G)-module y,T e¡ B(J,y), a€ Aandó, ce Jwe
have

T(abc): abT(c) : aT(bc).

Now, since J: J2,

¡B(J,y):¡,1c¡ B(J,y).
Hence we have the resurt from Theorem s,B1 and rheore m J.2.If G is amenabre,
then, by Johnson's theorem, L'(G) is amenabre, and so, by [g,coro'ary B.g], J
has a bounded approximate identity. on the other hand, by the preceding part,
tB(J,.-/.) is reflexive. The¡efore the resurt foilows from proposition 8.3. !

ReveRx 3.33. Let G be a locally compact group, and let ..I be an ideal in Lr(G)
with finite codimension. since ,,/* is a Banach 11(G)-bimodure, from coroilary 3.32,
bounded local multipriers from -I into J* are multipriers. Hence, from cororary
3'9, there is no non-zero bounded point de¡ivation on J. on the other hand, if
G: 9L(2,JR), ihen idears of codimension 1 are not be weakry amenabre [32].

The next theo¡em foriows immediatery from the preceding theorem and rheo_
rem 3.6.

THøoRpn¿ B'84. Let G be a rocally compact group, Iet x be a Banach Lr(G)_
bi'module, and let D be a bound,ed, approri,mately rocar d,eriuati,on from LL(G) i,nto
x*' Then there is a bound,ed, d,eriaationD and, a right multi,prier T frorn Lr(G)
into X* such that D: D*7. Moreouer, if X i,s essential, thenD and,T are
uni'quely determined, by thi,s proper-ty and, the forlowi.ng statements are equ,iaarent

for each bounded, approri,mate i,d,enti,ty {eo}oe¡ for LL(G):
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(i)Disad,eriuati,on.

(ä) T ,is zero.

(i,i.i) ueak. - J* D(e.) : g.

CoRor,r,¿Rv 8.85. Let G be a locally compact group. Then

z1(LI(G), Lt(G).)

i,s refl,eri,ue.

Pnoor" ey [r0, Theorem 5.6.4gj, Lt(G) is weakry amenabre. Therefore,
result follows from Theo¡em 8.34 and Corollary 8.7.

RoueRr 8.36. since Lt(G) is semisimpre, derivations on zr(G) are bounded

[3L], and so bounded approximately local derivations on Ll(G) are exactly the
members of tef[21(Lr(G),L1(G))J. o" the other hanð., Lr(G) is a submodu]e of
M(C) : Co(G). and Cs(G) is an essential Banach .[1(G)-bimodule. Hence, by
the preceding theorem, a bound.ed approximately rocar derivation D on LL(G) is a
derivation if and only if weak. -J]å D (".) : 0 for a bounded approximate identity
{eo}o* for Lt(G). This provides a useful criterion for determining wheiher D is a
derivation. For exampre, ret G be a sIN group. Then Ll(G) has a centrai bounded
approximate identity {eo}oel. However, if D is a derivation on ,[r(G), then by

[10, Theorem 5.6'53], there is a mea"sure p € M(G) such that DU) : r * rr- r.rx r
for all f e Lr(G). Thus, for each a e L, D(e.): 0, an¿ so D(e") : 0, since
D(""): Æ D-,n(eo) for a sequence of derivations {Do,,,} on rr(G) Hence D
is a derivation.

The following coroilary indicates another apprication of rheorem 8.84.
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ÇoRor-leRv B.BT. Let G be a rocalry compact group such that euery d,eri,uati,on

from L,(G) into M(G) 'is ,inner. Then euery bound,ed, rocal d,eri,uation from Lr(G)
i,nto M(G) 'is an'inner deri,uation. In par-ticular, the result is true i,f G i,s amenable
or connected.

Pnoor' By [10, Theorem 8.8.15], there are right and reft actions of M(G)
on c6(G) which turns c"(G) into a Banach M(G)-bimodure and the duars of
these actions agree with the convolution product in M(G). Moreover, by [10,
Theorem 3'3.29], there is a net {eo} in c¡6(G) which is a bounded approximate
identitv in Lr(G) for borh L'(G) and the Banach tr1(G)-bimodure (ce(c), . ).
Let D: Lt(G) -, M(G) be a bounded rocal derivation. Hence, by Theorem 3.34,
there is a derivation D and a right multiplier ? from Lt(G) into M(G) such that
D :D*?. Thus T :D- D, and so

T e r ef 
"lZL 

(L, (G), M (G)l : r ef"[Nr (Lt G), M (G)].

Therefore, for every a e LL(G), there is a measure p," e M(G) such that

T(a) : a* I,to - l_ra* a.

Now let a e Coo(G). Then

(T(a), e") : (o*po- lra*a, eo)

t..: UJo , eo, a_ a. eo).

Howevet, eo"a and a. eo approach û a,s a --) oo. Therefore

(T(o) , eo) - 0 as ø ---+ oo. (1)
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On the other hand, since ? is a right multiplier, there is ¡r €
T(b):bx¡tfor allbe Lt(C). Hence

(T(a),e"): (ax¡L,,eo)

: 0" , "o,o),

(T(o) , eo) - (p , o) as a ---+ oe. (2)

From (1) and (2), we have (p , o): 0. Hence p vanishes on ces(G). Therefore
T - 0, since c¡6(G) is dense in c6(G). Thus D is a derivation, and. so, by
hypothesis, it is an inner derivation. Finaily, we note that if G is amenabre, trren,
by Johnson's theorem [10, Theorem 5.6.42], every d.erivation on Lr(G) is inner.
From [29, coroilary 4.4], the same resurt is true for G being connected . !

ReueRx 3'38. Recently, v. Losert has been able to proved that for every
locally compact group G, every derivation from trl(G) into M(G) is inner [40].
Hence, by the preceding coro[ary, every bounded rocar derivation from .Di(G) into
M (G) is an inner derivation.

we can extend the resurt we have obtained in Remark 8.86. In order to do
that, we will use the theory of approximatery localry unitar Banach argebras that
we developed in section 8.2. First we need the following Lemma.

Levv¿ B.Bg' Let G be a rocarly compact group, and, ret H be an open subgroup
of G' rf LL(H) is approri,matery rocaily unitar, then Lr(G) i,s approrimatery locaily
uni,tal.

PRoor'. since 11 is an open subgroup of G, we can consid.e r LL (H) as a crosed
subalgebra of L,(G) where erements in rr(Ir) a,re exacily those in Lr(G) which
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vanishes ofr. H. By hypothesis, tr1(rf) is approximatery locaily unitar and so it has

subsets B¿ and B, satisfying the conditions in Definition 8.12. put

A¿:{Í*6,1f €B¿,r€G}, A,:{6,*IIf e B,,reG}.

we show that At and A, satisfy the assumption in Definition 8.12 for Lt(G). Let
f e & and ø € G. By the assumption, there is g € Lt(H) such that g* r: r.
So g * (l * õ,) : f * 6,. Hence each element in /¿ has a left identity. Since
Ç"(G) is dense in Lr(G), in order to show that rl(G) is the crosed rinear span
of A¿, it suffices to showthat c"(G) ç Ðm,4¿. Let tp e c"(G). since supprp is
compact, .FI is open and G : lJ"ççH4 there is a finite subset {rr,...,rn} of G
such that supp p C UT:tHr6 where the union is disjoint. Thus, cp : D|:tg¿where
g¿: gx*,,' It is easy to see that g¿ e Lr(G) and supp g¿ Ç Hr¿.Therefore,
tp¿ * õ,¡ € LI(H) : sp-ãn-B¿. However, gn : (go* ô,,n_r) + ô,,. So p¿ e Ðãñ,A¿ for
each i:1,...,n. Therefore, tp € span-,4¿. A similar result can be obtained for
Ar. 

tr

TupoRnu 8.40. Let G be a rocally compact group, and, ret x be a Banach
L1(G)-blmodule. Th,en, in ei,ther of the followi,ng cases) eaery bound,ed, approri_
mately local deri,uati,on from Lr(G) i,nto X i,s a d,eri,uati,on:

(i,)G¿saSlN-group,

(i,i) G i,s a totally d,isconnected, group.

PRoor'. Flom Theorem 8.31 and rheorem 8.15, it suffices to show that rr(G)
is approximately locally unital whenever G is a SIN or a totally disconnected group.
To this end, we first consider the following two cases:

case I: G is abelian' Then zI(G) is a Tauberian argebra, and so, by Exampre
3.13, it is approximately locally unital,
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case II: G is compact. Then Lt(G) is a semisimple annihilator Banach argebra
by Example B.zT(i). so it is approximatery rocalry unitar by Lemma 8.2g.

Now let G be a slN-group' Then, by [zs, Theorem 2.rB], G has an open normar
subgroup V x K, where y = IR'for some integer n and K is compact. Since
Lt(v x K) = Ll(v)6rt1x¡, from the above two cases and the proof of Theorem
3'77, Ll(v xK) is approximately locaily unitar. Therefore, Lt(G)is approximatery
locally unital by Lemma 8.3g. A similar argument appries when G is a totaily
disconnected group because in this case the identity in G has a basis consisting of
open compact subgroups. 

D

RpvaRrc 3.41. we note that there is a solvable connected Lie group G such
that LL(G) is not approximately locally unital. This is the semidirect product
G: H xolR, where.Fl is the Heisenberg group and p: lR. __r AutIl is a continuous
morphism. See [10, p. A}a] for more details.

We conclude this section by the following theorem which provides necessary
and sufficient condition for all the bounded approximately local derivations from
M(G) to be derivations.

Tu¡oRev 8,42. Let G be a locaily compact group. Then eaery bound,ed, approri,-
mately local deri,uati'on from M(G) into any Banach M(G)-bi,mod,ule i,s a d,eri,uation

i'f and only if G i,s d,i,screte. Moreouer, i,f G i,s non-d,i.screte, then there ,is a uni_
tal Banach M(G)-bi,mod,ule x and. a bound,ed, rocar deriuation from M(c) i,nto x
whi,ch is not a d,eri,uation.

PRoor'. If G is discrete, then M(G) : tl(G), and so the result follows from
Theorem 3.40. Now assume that G is non-d.iscrete. By [1J_, Theorem 3.2], there
is a character p on M(G) and a non-zero bounded point derivation d on M(G) a,t



3.7. GROUP ALGEBRAS

p. So d e M(G). and

d(ab) : e@)d(b) + d(a)e(b) (a,b e A).

In particular, if we put r: kerd and J: ker g, then -I is a maximal idear and 1

is a (proper) linear subspace on M (G) such that J2 c I. Moreover, by proposition

3.8, the bounded operator D: M(G) -- M(G). defined by D(a): d,(a)p is borh
a derivation and a local lefi multiplier. Let { be the augmentation character on

M(G) defined by

,þQ") : t'(G) (p, e M(G)).

Put M: kerr/. Then M is a" maximar idear in M(G). If ? is the restriction of
D to M, then ? is a bounded locar left multiplier from M. we claim that ? is

not a left multiplier. otherwise, a simple calculation shows that aD(b): 0 and

so d'(b)p@):0 for all a,b e M. Therefore, M c I or M c J. on the other

hand, by [10, Theorem 3.8.30], M: Mz. This means that there is no non-zero

point derivation on M(G) at tþ, and so ú +p. Hence M ç J. Also, M f I, for
otherwise, since M(G) : J * M, we would have

M(G) : M(G)z c J2 + M c r * I : r,

whiclr is impossible. Hence ? is not a reft multiplier. Now if we let x : M (G)"
become a Banach M-bimodule by defining the left action to be 0 and the right
action to be the one induced ftom M(G)*, when it is viewed as the dual module

of M(G), then 7: M '' X is a bounded local derivation which is not a derivation.

Finally, because M(G) : M @ Cô", by defining õ"Í : rõ": r (n € X) and

T(õ") :0, x becomes an essential Banach M(G)-llimodule and r extends to a
bounded local derivation from M(G) into x which it is not a derivation. tr
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CHAPTER 4

Approximately local n_cocycles

In this chapter we study reflexivity of higher cohomorogy of various Banach
algebras' we first generalize the definition of reflexivity to the linear subspaces
of bounded n-rinear maps from Banach spaces. Then, for a Banach aigebra .4
and a Banach .A-bimodure x, we consider the question of reflexiviby for the space
of bounded n-cocycres from .4(") in,o x. using the similar approach as the one
introduced in chapter 3, we consider the concept of. appronimatery locar n_cocycres
and the question of whether they are n-cocycles. We show that we can reduce
the problem to the characterization of certain operators ftom A into x which
we call hyperlocar operators. Then we use this idea, together with the proper_
ties of hyper-Tauberian argebras, to show that bounded approximatery rocal n_
cocycles ¡ro^ ¿Ø) in,o x are n-cocycres when .4 is a hyper_Tauberian argebra,
a c*-algebra, the group argebra of a sIN or a totalry disconnected group, or trre
Figà-Talamanca-Herz argebra AoG) of a locaty compact group G, for p e (1, oo),
when the connected component of G is abelian.

4.1. Definition of approximately local n-cocycles

Let x and y be Banach spaces. For r¿ € N, ret x(') be the cartesian product of
n copies of x, and let' L(x,y) and B"(x,I/) be the spaces of n-rinear maps and
bounded n-linear maps from x(') into F, respectivery. Let .s be a rinea¡ subspace
of L(X,F), for each ñ: (nt,...,rn) e X@),lei S(ã) : {^g(") | S e S}, and let
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t.S(t)j be rhe norm-ctosure of .S(õ). put

ref,(S) : {T € L"(X,y)|f@) e S(¿),for each ã Ç XØ)};

and if E C B.(X,y), put

ref(S) : {? e B"(X,y) lr@) € [.S(")],for each ã € X@)].

suppose that E c L(x,',). Then s is algebrai,caily refi,eri.ueir. s: refo(.s) and
when .S C B"(X,y), it is refl,eri.ue if S : ref(S).

Dp'rxrrro* 4.r' Let A be a Banach argebra, and ret x be a Banach ,4_

bimodule' For n € Ni, an n-rinear map T from AØ) into x is calred an appro,i_
mately local n-cocycle if, for each ã' : (at,. . . ,an) e. A@), there is a sequence ft,,
of n-cocycles from á(") into X such that 76,,(ã,): i* Ta,,(ã).If, in addition, ?
is bounded, r,r/e say that ? is a bound,ed, approrimately local n_cocycle.

It is clear that each erement of.ref[Z"(A,x)] is a bounded approximately local
n-cocycle but the converse may not be true, since the n-cocycles ?i,r, considered
above need not be bounded.

4.2. N-hyperlocal operators

Let A and B be Banach algebras, and let X be both a Banach left A-module and
a Banach right B-module such that for all ¿ € A, b eB and q Ç X, a(rb) : (ax)b.
Then we write x e A- mod - B. If, in addition, x is essentiar both as a Banach
left.A-module and a Banach right B_module, then we write X € ess. A_mod,_ B.

Let A and -B be Banach argebras, and rei x,y eá - mod - B. An operator
D : x -+ Y is hyperrocar with respect to ,A-mod-B actions if, for a[ ø € A, b e B
andreX,

ar : rb:0 implies aD(r)b:0.
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Let A be a Banach argebra, and ret x be a Banach ,A-bimodure. For n € NI,
an n-ljnear map ? from A(n) into X is n_hgperlocal if , for a0,...tan+r e A,

dgo,y: a1a2: ... : anan+r : 0 implies ø6?(ø1, ...,an)an¡1 : g.

For n: 1, it is crear that l-hyperrocar operators are exactry hyperrocar operators.
The following proposition states some suffi.cient conditions fo¡ a bounded n_

linear map to be an n-cocycre. This is criticar fo¡ us to obtain our resurt.

PRoposrrroN 4.2. Let A be a uni.tar Banach argebra wi,th unit I whi,cr¿ satisfies
the followi,ng two condi.tions:

('i') For euery un'ital Banach A-bi,mod,ure x, a bound,ed, operator D: A --+ x i,s a
left multi,plier i,f ønd, onty i,f ba : 0 i,mpli,es D(b)a : 0.
(i'i) For euery un'ital Bo,nach A-bi,mod,ure x, a bound,ed, operator D: A -+ x is
hyperlocal i,f and onty if

D(acb) - øD(cb) - D(ac)b * aD(c)b : 0

for all a,b,c € A.

Let X be a uni,tal Banach A_bi,mod,ule,

hyperlocal such that T(or,...,an) : 0

z"(A, x).

PRoor" we prove the statement by induction on n. For fr - r,by hypothesis.

T(acb) - aT(cb) - T(ac)b * aT(c)b : g

fo¡ all a'b'c e /' since 
"(1) 

: 0, by putting c: 1 we get the resurt. Now suppose
ihat the resurt is true for n: k (k > 1). we show that it is arso true for n: Itr7.
LetT e Bh+t(A,X) be &+l-hyperlocal such that T(a1,...,an+t):0 if any one
of a1'"'¡ak+:is 1' we fi¡st show that Â¡(?) e Bk(A,B(A,X))is &-hyperrocal.

Iet, n € NI, ønd tet T €
if øny one of ar,...,en

B"(A,X) be n-

i.s 1. Then T e
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Let as,... rak+r€.4 such that asra: . - : atcak+t: 0, and put

,9 : ao *.4.¿(?)(a1, . . ., an)* oÈ+r.

Then 5: A -'+ X is a bounded operator. We claim ihat ,S satisfies the followiug
condition:

bc: 0 implies 
^9(ö)c 

: 0. (1)

Let b,c € A such that óc: 0. Then

S(b)c : [ø6 *Â¿(")(att...,an) * a¡a1](b)c

: as(/\¡(T)(au. . ., an))(ak+ú)c_ a6(,4.¡(") (or, . . ., a¡,))(a¡.,1)bc

: a6T(ay.,. ¡ak, a¡¡1b)c - a6T(a1,. .,,aL, a¡¡1)bc

: a6T(ay...,Økta¡¡1b)c.

However, a604 : . . . : at (at +þ) : (a¡rab)c : 0, and T is k * 1_hyperlocal. Hence

asT(a1r . . . t ah, a¡rab)c : 0.

Thus (1) holds, and so, by hypoihesis, 
^9 is a left multiplier. Therefore ,g(ø) :

.9(1)ø for all a e A. However,

,9(1) : [ø¡*Â¿(f)(&rt...,an)xa¿+r](1)

: ao(/¡t"(T)(at, . . ., at))(ar+r1) _ ao(/y*(T)(a1, . . ., a¡))(ø¡,.1)1

: asT(a1,...,&k¡an+t) - asT(a1,..., aN, ax+t)

n
U,

Thus '9 = 0' Hence 
^r(") 

is È-hyperlocar. Let q be the naturar quotient mapping
from B(A'x) into B(A, x) I BA(A, x), where Be(A,x) is the space of right mur-
tipliers' Since i,¡(?) is k-hyperlocal and g is an ,A-bimodule morphism with the
* actions, q o 4t¡(T) is k-hyperlocar. Moreover, because of the assumption on ?,
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qol\¡(T)(al,...,ør) :0if anyoneof att...,ø¡ is 1. on theotherhand, forevery
T e B(A,X),

1*?: ? and ?*1 _ T e B4(A,X).

Thus B(á, x) /BA(A,x) is a unital Banach .A-bimodure. Therefore, by the induc_
tive hypothesis, goÂ¡(?) is a &-cocycle. This means that for att...,a,¡¡1e A,

A*(q o Â¿(?))(ai, . . ., øÈ+1) : 0.

Hence, from the equation Âr+l o 6k+t - 4t, o Âr,

Â¡a1(óË+1(?))(or,. ..,at +t): ak(Â¡,(?))(or,. . .,at+t) € BA(A, x).
Thus, for evet! a¡"¡2 € A,

6k+r (T)(ar, . . . , at +t, at"+z) : [Ar+r (ôe+r 
i T))(or, . , . , an+ù](an+z)

: [Â¿*r (ð*+t (T))(or, . . . , a¡¡1)](r)a¡¡2

: 6k+t(T)(ar,...,r,k+L,I)or*r.

On the other hand, by the assumption on ?,

a7T(a2,. ..,dk+r¡r¡ + f1-r )iT(or.,...,ajØj+1,..., ak+l,1) : 0.
,=1

Also,

ök+t (T)(ar, . . . ¡ úk¡ø¿+r1) _ õk+r (f)@rt . . . 7 a¡ç,a¡..,.1)1 : Q.

Hence 6h+1(T)(a4,".,ah+1,1) :0, Therefore ök+t(T): 0, andsoz € Bk+r(A,x).
This completes the proof. 

n
We are now ready to state the main result of this section:

Tuoonev 4.J. Let A be a Banach argebra such that AH søti.sfi,es condi,tions
(i') and (i,i) of Proposi,ti,on l.p. Then, for any Banach A_bi,mod,ule x and,n € NI,
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eaery bounded approximatery rocar n-cocycre T from A@) i,nto x i.s an n_cocycre.
In par-ti,cular, Z"(A,X) i,, refl,eúue.

PROOF' we can extend x to aBanach .Afl-bimodule by defining 1r : rr: r.
Let ø: L(A,x) - L"(Ail,x) be a linear map defined by

o(T)(qa Àr,. .., ãn *À,") : T(or,. . ., an),

for ø1,...,an € 14. and Àr,...,À", € C. It is straightforward to check that ? €L(A,x) is an n-cocycre if and only if o(T) isan n-cocycre. Now ret ? € B,(A, x)
be a bounded approximately local n_cocycle, and let (ar * Ài, . . . ,an* À,) ç /il@).
By the assumption on T, for õ : (or,...,an) e ¿(r), there is a sequen ce T¿,n
of n-cocycles from ,4.(") into X such that T¿,n(a1,...,an): jg Ta,,(at,...,an).
Thus n

o(T)(q*Àr,. ..,en* Àn) : T(or,...,an)

: 
]STa,"ço', "',en)

: 
)i$"çr-,"¡(¿r + Àr, ...,dn-¡ À,).

Hence o(T) is a bounded approximately local n_cocycle.
0 if any one of art...,ø, is 1. Thus, by proposition

Therefore ? is an n-cocycle.

Moreover, o(T)(a1, . . ., an) :
4.2, o(T) is an n-cocycle.

n

4'3' Approximatery rocar n-cocycres from hyper-Tauberian argebras
In this section, v/e use the properties of hyper-Tauberian algebras, together

with the resurts of the preceding section, to show bounded approximatery rocar
n-cocycles from these algebras are n_cocycles. We start with the following critical
theorem:
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THpoRpn¿ 4'4' Let A and, B be hyper-Tauberi,an argebras. Then, for alr x, z eess. A- mod _ B and,y e ess. B _ mod, _ A,
(i,) a bound,ed, operator D: X _+ y* i,s hyperlocat if and, only if

D(arb) - aD(rb) - D(ax)b _t aD(r)b: g

forallae A,be B and,ze X.
(i'ù If A and, B haue bound,ed, approrimate i,d,enti,ti,es, ilten the resurt in (i) is atsotrae for all bounded, hyperlocal operators from X into Z.

PRoor'. (i) Firsi assume that )z : B'A,where the B_mod_.A actions on 86á
are specified by

d(bØa):dbØø , (bøa)c:óg ac (a,c€A,b,d,eB).
Let D: x -+ (86,Ð. beaboundedhyperrocaroperator, andiet n e x anda,_ A.Define the bounded operator ñ: B __, (A6$. Ay

õþ) : D(axb) _ aD(rb) (b e B).

\Ã/e claim that D is local with respect to right .B_module action. Let b e Aand ú ( supps å. There is a compact neighborhood tr/ of ú (in Õ¡) such thatvnsupps b : Ø' Let c e'B with supp¡ c C v. By the regurarity of B, there is
e € B such that e : 1 on V ande : 0 on supp6ó. So

ec: c and eä: 0.

Put

Ko(V): Sãn={n Ø m I m e A,n€ B and n : Lon Os \ Z}.
Since e:1on V,for aII0 e (B6A).,

0e - 0: 0 on Ko(V).

(1)

(2)
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Let z e X, and define the bounded operator T: A _* (86A). /Ko(V), bv

T(u) : D(uzb) + Ko(V)t fu e A).
Leth € ásuch thathu:0. Then, from (1), huzb:0:uzbe. SinceDis
hyperlocal, hD(uzb)e: 0. Hence

hT(u) : hD(uzb)+Ko(V)r

: hD(uzb)e + Ko(V)r

:0.
In particurar, ? is rocar with respect to refi -A-modure action. since

(B6A). / Ko(v)t = Ko(v).,

and K¡(v) is an essentiar Banach righi ,A-modure, from proposition 2.4, itforowsthat T is a right multiplier. Therefore T(uu) : uT(u) for all u,1) e.4. Hence, ifwe put u - at then D(auzb) - aD(uzb) e Ks(V)a. Thus, from essentiality of X,we have

ñ1u¡ : D(aú) - aD(xb) e Ko(v)I.
Therefore ñ1u.,":0' since suppa c€v' This means that ú É suppaõ(å), and soõ ir u bounded rocar operator. Hence, from proposition 2.4, õis a reft murtiprier.tnus ñþe: õþ)¿for all b,d, e B. The¡efore

D(axbd) - aD(rbd,) : D(axb)d, - aD(rb)d,.

The final result follows from the essentiality of X.
Now consider the general case. Let A e y and define Sr: y*_+ (¡16,4). by

(so@\ , bØa): (a" , bya) (ae A, b e B , u* €y*).
It is eesy to see thai .9, is both a bounded left ,A-module morphism and a boundedright 'B-modure morphism, and so 5, o D is abounded hyperrocar operator from
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X into @4/-).. Thus, for alL a e A, b e B, r eX and A Çy,

So[D(arb) _ aD(rb) _ D(ar)b + aD(r)b]: a.

Hence, for all c € A and d e B,

(D(arb) _ aD(rb) _ D(ar)b + aD(r)b, d.sc) : g.

The final results follows from the essentiality of I/,
(ii) Let {e-}o* and {fp}pçe be bounded approximate identities fo¡ A and B,
respectively' similar to the argument made in (i) (by repracing z with z**), we
can show that

cfD(arb) _ aD(rb) _ D(ar)b + aD(n)b]d : 0

for all a,c e A, b,d e B and r e X. On the other hand, since,4
bounded approximate identities, by cohen,s factorization theorem
11.10J, there are e € A, f e B and. z € Z such that

D(arb) - aD(rb) - D(ar)b + aD(n)b: ezÍ.

So we have the final ¡esult if we put c : €o and d, : f p in(B), and let a, B_) co, !
TueoREvt 4'5. Let A be a hgper-Tauberian algebra, and, Iet X be a Banach

A-bi'module' Then, for n €. r\, euery bound,ed, approri,matery locar n-cocycre T fromAØ) ,into X ,is an n-cocycle. In par-ticular, Z,(A,X) i,s refleriue.

Pnoor Let Ail be the unitarizatio n of A. By coroilar y 2.!r,4ü is hyper_Tauberian.
Therefore, by proposition 2.4 and Theo¡e m 4.4,ÁH satisfies the conditions (i) and
(ii) of Proposition 4'2' Hence the result fotows from Theorem 4.8. D

conor'i'eRv 4'6' Let A be a hyper-Tauberian argebra wi*h a bound,ed, appror_
'imate ,identi,ty, and, let X be a.n essential Banach A_bi,mod,ule. Then a bound,ed,

100

(3)

and B have

[2, Theorem
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operator D: A --+ x* 'is hyperlocal i,f and, onty i,f there i,s a bound,ed, d,eri,uati,onD
and a right multipli,erT from A into X* such that D:D*7. In parti.cular, D
i,s a deriuati,on i,f and, only i,f weak* _Jgg D("*) :0 for a bound,ed, approx,imate,identi,ty 

{eo}oç¡ i,n A.

PRoor' It is easy to see that all derivations and multipliers are hyperlocal. on
the othe¡ hand, ret D: A -> x* be a bounded hyperrocar operator. By Theorem
4.4, fot all ø,b, c e. A,

D(acb) - D(ac)b - aD(cb) t aD(c)b: g.

The final resurt fonows from a similar argument to the one made in the proof of
Theorem 8.6.

tr
coRoi-laRv 4'7 ' Let A be a hyper-Taube,ian algebra wi,th a bound,ed, appror_

imate identity' Then A i,s amenabre i,f and, onty i,f for any essent,iar Banach
A-bi'module x and' euery bound,ed, hyperlocar operatoìr D: A , x* , there aret*,y* e X* such that D(ø) : at* _ y.a (a e A).

PRoo¡" Let A be amenable, ret x be an essential Banach .A_bimodure, and
let D: A -t x* be a bounded hyperrocar operator. By cororary 4.6, there is
a derivation D and a right multiplier ? from.A into x* such that D : D +7.
Since .4 is amenable, there are y* ancl, z* in X* such that D(a): aA* _y*a and
T(ø) : az* for all ø € -4. Thus D(a) : a(a* + z*) _ a*a.The converse follows
immediately from Corollary 4.6 and [10, Corolla ry 2.g.27]. tr

4'4' 'Lpproximatery locar n-cocycres from c*-argebras

In this section, we characterized bounded approximatery rocar n_cocycles from
C*-algebras.



4.4. C__ALGÐBRAS 
702TuooRnlr 4.g. Let A be a c*-argebra, tet x be an essentiar Banach A-b,imod,ure,and ret y be an essentiar or the d,ual of an essentiar Banach A_b,mod,ure. Then abounded operator D: X _+ y ds hyperlocal if and, onty if

D(ørb) - øD(rb) _ D(ar)b i øD(r)b :0
foralla,beAandx€X.

pROOr'. Since -4 has a bounded approximate identity, by sim'ar argumentsto the ones made in the proof of rheo¡em 4.4, itsuffices to prove the ¡esurt forY : (A6A)*' Let Afr be theunitarizatio n of A[t', Definition 3.2.1]. lve show tharD is hyperl0car with respect to ,Aü-modure actions. Let u,u e Ar and. x€ x suchthat ur: r,u: g, So, for all a,b € A, (au)r: r(ub):0. Thus auD(x)ub:0.Hence uD(x)u: 0 on A2 Ø Az which is dense ¡n A6A. So uD(x)u:0. Now let cand d' be serf-adjoint erements in ,4, and let A(c) and A(d,) bethe c*_subargebrasof 'Afl generated by {c,1} and {d,,7}, respectivery. It is wer-known that thereare compact subsets .E and K of rR such ihat A(c) and, A(d,) areisometricaryisomorphic to C(E) and C(K), respectively. Moreover, D: X __ (áô,4). is abounded hyperlocal operator with respec t to C(E)_ mod _ C(K)actions. Thus,from Theo¡ em 4.4 and Lemma 2.16, for every r ç X,

D(crd) - cD(xd) _ D(cx)d, * cD(r)d,: g.

The final result follows since ,,4 is the ljnear span of its self_adjoint elements. !
R¡uaRr 4'9' rnthe preceding theorem, if we replace the locality condition thatwe used in the definition of a hyperrocar operator with the forowing condition:

ra:0 implies D(z)a: Q,



103then, by a sim'a¡ argumenr 
"", :il;:::.H 

2.4 insread or rheorem 4.4, wecan show that D is a right '4-modure morphism' w'e can arso have a sim'ar resurtregarding bounded left . _module morphisms,

TuooR''r 4.10. Let A be a c*-argebra, and, ret x be a Banach A_bimodure.Then' for r¿ € N' euery bounded, approú,matery rocar n-cocycre T from A@) i,nto xis an n_cocycle. In par.t,icular, Zn(A,X) is refleriue.

PRoor'. Since ,4fl is a C*_algebra, it satisfies the c

ilï:J:4..2 
ftomrheo¡em 4 8 and Remark r, ".J',iitäf:î::J;*,

!
TueoRpu 4'77. Let A be a cr-argebra, and, ret x be an essent,iar Banach A_bimodule. Then a bound,ed, operator D : A --+ X* is hyperlocal i,f and, onty í,f there i,sa deriuationD and, a right multipli,erT fromA i,nto X* suchthat D:D*7. Inpart,icular, D ,is a d,eriuation i,f and, onty i,f wealt. * 

-lg Dþ*) : 0 for a bound,ed,approrimate i,denti,ty {eo}oet, in A. 
a+oo

PRoor,. The proof is similar io the one made in Corollary 4.S. D
coROr'leRv 4'72' Let A be a c*-argebra. Then A i,s amenabre i,f and, onrgi'f for any essentiar Banach A-bi'rnod'ure x and, euery bound,ed, hyperrocar oprroto,D: A -, X* , there are t*, A* e X* such that D(a) : øro _ A_a (a e A).

PROOT" The proof is sim'ar to the one made in corotary 4.7. D
coROi'l'eRv 4'73. Let A be a c*-argebra. Then, for euery bound,ed hyperrocaloperator D: A -, A*, there are t*,a* e A* such th;f"O@;":'o*. _ a*a (a e A).
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PRoop. The resurt forows from an argument sim'ar to the one made in co¡or_Iary 4.T together with the fact that every c*_argebra is weakry amenabre [10,Theo¡em 5.6.TT1.

D

4.5. Approximately local n_cocycles from group algebras
In this section, rve characte¡ized bounded approximatery locar n_cocycres from

the group argebra L'(G) when G is a sIN or a totalry disconnected group.

TuEoRpl't 4'74' Let G be a locally compact group, tet x be an essential Banach
L1(G)-bi'modure, and, ret y be an essentiar or trze d,ual of an essential Banach
L1(G)-btmod,ule. Then a bound,ed, operator D: X __+y is hyperlocal i,f and, onty if

D(axb) - aD(rb) - D(ar)b _t aD(x)b: g

for all ø,b e Lr(G) and, r € X.

PRoor' since zr(G) has a bounded approximate identity, by arguments similarto the ones made in the proof of Theorem 4.4, itsuffices to prove the result fo¡y : (L1(G)ô211c¡¡.. Let h,rc e G, and ret .Ër and K be ihe crosed subgroups inG generated by å, and &, respectivery. we craim thai D is hyperrocar with respecttoII(H) -mod -lt(K) actions. Let f e L.(H),g e LI(K) and,xe x such tharft: xg:0' and let {eo}o6a be a bounded approximate identity for trr(G). For
all a,B e /t, (eof)r: r(gep):0. Hence eof D(r)geB:0. Therefore, by taking
ø*-limit and letiing a, þ - oo, we have f D(x)g :g,and so, D is hyperlocal with
respect to 11(H) - mod -I'(K) actions. Thus, by proposition 2.1g and Theorem
4.4, D is a generalized derivation. In particular,

D(õ¡r6¡,) - õnD(xõn) - D(õ¡x)ö¡i6¡D(r)õ¡:g (h,k e G,r e X).
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Therefore, since /1(G) is the closed linear span of {õrlt € G},

Dff"s) - f D@g) - D(lÐg+ ÍD(n)s:o (f ,s e rr(G),r e x). (1)

Let a,b e Lr(G) andø € x. since 11(G) is s.o. dense in M(G)[r0, Theorem 3.8.41]

there are {oo}oq and {b¡}¡ç¡ in ll(G) such that for all ce Lr(G), ai*c_+ a* c,

c * a¿ ---+ c * a, b¡ * c --+ b * c and c * b¡ --+ c x ö in the trl-norm. On the other hand,
by Çohen's Factorization Theorem [2, Theorem 11.10j, there are e e Lt(G) and
zeX suchthat r,:ze. Nowif weput f :a¿andg:bjin(l),then,byletiing
j - æ, we have

D(ø¿rb) - a¿D(rb) : D[a¿z(e* å)] - a¿Dfz(e * b)]

: nornx - ]*D["or(e + b¡)] - a¿Dfz(e * b¡))

: norrn - ]\D(oorø,) - a¿D(nb¡)

: norn'L - ]HD("l")b¡ - a¿D(r)b¡

: ,- -r.tïå D(a¿flb¡ _ a¿D(x)b¡

: D(a;r)b - a¿D(r)b.

D(a¿rb) - a¿D(rb) - D(a¿r)b -t a¿D(x)b:0. (2)

similarly, by applying cohen's factorization theorem and letting i -, oe in (2), we

have

D(axb) _ aD(rb) _ D(ar)b r aD(r)b : 0.

This completes the proof. n

Reu¿Rx 4,15. In the preceding theorem, if we replace the rocarity condition
that we used in the definition of a hyperlocal operator with the following condition:

ra: Q implies D(r)a:0,

Hence
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then, by a simila¡ argument and using proposition 2.4 instead of rheorem 4.4, we
can show that D is a right rl(G)-module morphism. We can also have a similar
result regarding bounded left trr(G)_module morphisms.

L'ir¡rr¿e 4.16. Le'tG be arocarly compact group suchthat Lr(G) i,s approrzmatery
locally un'ital, and let X be a uni,tal Banach Lr(C¡Ë_6¿*od,ule. Then:
(i) a bounded operatorT: L.(G)H --+ x i,s ø right murtipri,er i,f and, onty if ab:0
i,mpli,es aT(b) : g.

(ä) a bounded, operatorTt LL(G), -+ X ,is a Iffi mutti,pli,er i,f and, only i,f ba: g

implzes T(b)a:0;
(ä'i,) a bounded, operator D: Lr(G)Ë ---+ f, i.s hyperlocøl wi,th respect to Lt(G)t_
bi,module act'ions i,f and, onty i,f

D(acb) - aD(cb) - D(øc)b -t aD(c)b : 0

for all a,b, c e L|(C¡n .

Pnoor' (i) Let ? a bounded operator from Ll(G)ü into x that satisfies the
following condition:

ab:0 implies aT(b) :0 (a,b e ¿l1C;fl¡.

We will show that ? is a right multiplier. First we note that if we consider the
restriction of T to Lt(G), then, by Remark 4.15 and a¡. argument similar to the
one made in the proof of proposition 2.4(ä),

aT(bc): abT(c) (a,b,c e LIG)). (1)

since tr1(G) is approximatery rocaily unital, there are subsets A¿ and A, of Lr(G)
such that L'(G) is the crosed rinear span of both A¿ and A, and.each element of
A¿ and,4.' has a lefb identity and a right identity in Lt(G),respectivery. Now take
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b e A¿ and e € L'(G) with eb: b. Then (e-r)bc:0, and so, rry the assumption

on T, (e - I)f þc): 0. Thus eT(bc) : T(bc). Thís, together with (1), shows that

T(bc) : eT(bc) -- eb(Tc) : øT(c) (b e A¿,c e Lr(G)).

Therefore the restriction of r to Lr(G) is a right multiplier, since.Li(G) is the
closed linear span of ,4¿. That is

T(bc) : bT(c) (b, c € Lt (G)). e)
Now let c e L|(G)H, b e A,and e € Lt(G)with åe : b. since b(ec-c) : 0, by ihe
assumption on T, bT(ec - c) :0. Therefore, from (2),

fþc) : T(bec)

: bT(ec)

: bT(ec - c) + bf þ)

: brþ).

Hence,forÀeC,

?[(b+À)c] 

: :;r;;:")_,
: (ó + À)"(c).

The final result follows from the fact that L, (G) is the closed linear span of ,4,..

(ii) follows by a similar argument in (i).

(iii) Lei D : Lr (ç)H ---+ x be a bounded hyperlocal operator with respec t to Lr (c¡il-
bimodule actions. It is clear that the restriction or D tu Lr(G) is hyperlocal with
respect to 11(G)-bimodule actions. Thus, by Theorem 4.14 anda similar argument

to the one made in the proof of Theorem 4.4(ä), we have

e[D(acb) - D(ac)b - aD(cb) + aD(c)b]d: 0 (o, b,c,d.,e e fr(C)). (B)
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Fix a € At and e e L,(G) with ea: ø. Define the bounded operator K: LL(G)| ---+

xbv

K(c):(e-I)D(ac).

Take c, d e tL(c¡H such that cd,:0. since (e - L)ac: eac- ac:0 and D is

hyperlocal, we have

K(c)d: (e - t)D(ac)d : 0.

Hence, from (ii), K is a left multiplier. In particular, K(cb): K(c)b for all
c,b e Ll(G). Therefore,

eD(acb)-D(acb): 

Irr?,

= eD(ac)b - D(ac)b.

Consequently

D(øcb) - D(ac)b: e[D(acb) - D(ac)b].

This, together with (3), shows that for every d Ç. Lr(G),

fD(acb) - D(ac)bld, : elD(acb) - D(ac)bld.

: elaD(cb) - øD(c)bld,

: løD(cb) - aD(c)bld.

However, L'(G) is the closed linear span of .4¿. Hence

[D(acb) - D(ac)b - aD(cb) + aD(c)b]d.:0 (a,b,c,d, e Lr(G)). (4)

Fix b e A, and d e Lt(G) with åd: ó. Define the bounded operator K,: LL(G¡fl --
xbv

K'(c) : D(cb)(t - d').
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By going through simila¡ steps as in the preced,ing part, with (ii) instead of (i) and

K/ instead of K, and by using the fact that trr(G) is the closed linear span of L",
vr'e can show that the factor d in (a) can be deleted as well, Therefore

D(acb) - D(ac)b - aD(cb) * aD(c)b:0 (a,b,c € ¿1(G)). (5)

Now let a e A, and e e Lr(G) vmth ae : a. Define the bounded operator

S: LL(G)| --- X by

'9(c) : øD(ec- c)'

Let c,d e l,,t(G)H such that cd,:0. Then a(ec- c) : (ec- c)d,: 0, and so,

since D is hyperlocar, s(c)d : aD(ec - c)d :0. Therefore, by part (ii), ,s is a
left multiplier. In particular, S(cb):,g(c)b for every ö € LI(G) and c € ¿1(G)[.

Hence

aD (ecb) - aD (cb) 

: 
trOr?,

= aD(ec)b - aD(c)b.

Consequently

aD(ecb) - aD(ec)b: aD(cb) - aD(c)b.

This, together with (5), shows thai

D(acb) - D(ac)b 

: '"f 
r""lr', _::r""::',,

: aD(cb) - øD(c)b.

However, L'(c) is the closed linear span of A,. Hence, for all a,b e Lr(G) and.

c e LL(G)t,

D(acb) - D(ac)b - aD(cb) i øD(c)b : 0. (6)
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ÀeC.
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we note that the equality in (6) holds if we let a or b be any scalar

!

TspoRpn 4.77. LetG be a sIN or atotarly d,,isconnected, group. Then, for any

Banach Ll(G)-blmod,ule x and, n €. NI, eoery bound.ed, approtimately local n-cocycle

from Ll(G)(") into X 'is an n-cocycle. In parti,cular, Z,(A,X) is refl,eri,ue.

Pnoor'. From the proof of rheorem 9.40, Lr (G) is approximately locally unital

whenever G is a SIN or a totally disconnected group. Therefore the result follows

from Lemma 4.76 and Theorem 4.3.

THpoRorr¡ 4.18. Let G be a locally compact group, and, let x be an essential

Banach Lt(G)-blmodute. Then a bound,ed operator D from Lt(G) ,into x* i,s hy-

perlocal if and only i,f tlt ere i,s a d,eriuati,on D and a ri,gÍtt multi,pli,er T frorn L, (G)

into X* such that D : D *T. In par-ti,cular, D ,is a bound,ed d,eri,uati,on i,f and, only

i'f weak* - Jgg D("") : 0 for a bounded approri,mate i,d,enti,ty {e.}o.n in Lt(G).

PRoo¡'. The proof is similar to the one made in Corollary 4.6. !

coRol,leev 4.r9. LetG be aIocaIIy compact group. ThenG ,is amenableif and,

onlg i,f for any essent'ial Banach L1(G)-blmod,ule x ønd, euery bound,ed, hyperlocal

operator Dt LI(G) - X*, there are r*,U* € X* suclt that D(a) : at* - A*a

(a e L\(G)).

Pnoor. By Johnson's theorem, G is amenable if and only if Lr(G) is amenable.

Hence the result follows from a similar argument to the one mad.e in Corollary

4'7' tr

¡
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coRolr,eRv 4.20. Let G be a rocaily compact group. Then for euery bound,ed,

hyperlocal operator D: LL(G) - Lr(G)*, there are r*,yo € Lr(G)" such that
D(a) : o,r* - a*a (a e LI(G)).

Pnoor. The result foilows from a similar argument to the one made in Corol-

Iary 4.7 together with the fact that Lr(G) is weakly amenable [10, Theorem

5.6.481.

4. 6. Approximately local n-cocycles from Figà_Talarnans¿_I{.r,

algebras

In the final section of this chapter, we state some of the major results that
\¡/e can obtain for approximately local n-cocycles and hyperlocal operators from
Figà-Talamanca-Herz algebras.

TnroRplr¡ 4.2r. Let G be a locallg cornpact group such, th,at G" ,is abeli,an, let
p e (7,æ), and let x be a Banach Ao(G)-bi,module. Th,en, for rz € NI, euery

bounded, approri,mately local n-cocycle T from Ae(G)@ i,nto X is an n_cocycle. In
part'icular, Z" (Ae(G), X) i,s refi,eri,ue.

PRoor'. It follows immediately from Theorem 2.28 and rheorem 4.5. !

coRor,leRv 4.22. Let G be a locally compact amenable group such that G" is
abelian, let p e (1, -), and let x be a Banøch, Ao(G)-bi,mod,ute. Then a bound,ed,

operator D: Ao(G) ---+ x* i,s hyperrocal i,f and, onty i,f there i,s a bound,ed, d,eriuati,on

D and a right rnulti,pli,erT from Ar(G) i,nto x* such that D : D+7. In parti,cular,

D i,s a deriuati,on i.f and, only i.f wealt- - J1g D(".) : 0 for a bound,ed, approrimate
i,denti,ty {eo}oe¡ tn ,a"@).

tr



PRoor', If G is

[42, Theorem 4.10J.
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amenable, then Ar(G) has a bounded approximate identity

Hence the result follows from Theorem 2.28 and corolary

tr

coRor,leRv 4.23. Let G be a locarly compact group such that, i,t has an abelian

subgroup of fini'te'ind,er, and let p e (1,oo). Then, for any essent,iar Banach

Ao(G)-bimodule x and eaery bound,ed,hyperrocar oTterator D: Ao(G) ---+ x*, there

are t*,A* e X* such that D(a) : o,r* - y*o, (a e Ar(G)).

Pnoor" It is well-known that if G has an abelian subgroup of finite index, then
Ao(G) is amenable (e.g. [16] or [Ba]). Thus the result follows from Theor em 2.28

and Corollary 4.7. tr



CHAPTER 5

Quantized hyper-Tauberian algebras

In this chapter, we consider the quantization of the results we obtained in

the previous chapters' We first iook at quantized h¡per-Tauberian algebras and

deduce the quantized results we obtained in chapters 2, B and 4. Then we apply

them to the Figà-Talamanca-Herz algebra AoG) of a locally compact group G for

p e (7,oo). we show that Ar(G) is a quantized hyper-Tauberian algebra. This,

in particular, shows that Ao(G) is operator weakly amenable. It also shows that
every finite subset of G is a set of synthesis ror Ao(G) and completely bounded

approximately local n-cocycles from Ar(G) are n_cocycles.

5.1. Definition and basic properties

In this section we study the quantized theory ofhyper-Tauberian algebras. \Ã/e

start with the following definition which is the natural quantization of Definition

2.5.

DeFtwlrloN 5.1. Let Abe acommutative semisimple regular quantized Banach

algebra. We say thal A is a quanti,zed hyper-Tauberian algebraif every completely

bounded local operator from ,4, into ,4* is a multiplier.

It is straightforward to verify that the analogue properties of hyper-Tauberian

algebras and hyperlocal operators which we studied in Section 2.8, Section 2.4 and

Section 4.3 hold also for quanüized hyper-Tauberian algebras. We summarize some

of them in the following theorems and corollaries:
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TspoRpn¡ 5.2. Let A be a quanti,zed h,yper-Tauberi,an algebra, Then:

(i) A is Tauberi,an;

(i,i) euery finite subset, of Q¡'is a set of synth,esi,s for A;
(ä,i) A ,is operator weakly amenable;

(iu) ø closed i,d,eat I in A is quanti,zed, hyper-Tøuberi,an if and, only if I :T{fi ¡or
some closed subset E of Þ¡;
(u) a closed, subset E of @¡,is a set of synthesi,s (Iocat synthesis) for A i,f and, onty

i.f I@) (J(Ð)) i,s quanti,zed hyper-Tauberian;

þl lA i,s quanti,zed, hyper-Tauberian.

Pnoor'. We note that if I € A*, then, by [19, Corollary 2.2.8],llell*: llell.
Thus, for every f e A*, the operator S: A -+ A* defined by.g(a) : g@)f (a e
A) is completely bounded. Hence (i)-(iv) follow from the quantized versions of

Theorem 2.6, Theorem2.B, and coroilary 2.g. Finally, it is shown in [1g, chapter

3] that there is an operator space structure on Aü such that the inclusion map

t: A '-+ r4'B is completely bounded. Therefore a simple calculation shows that .4ü

is a quantized Banach algebra, and so, by the quantized version of corollary 2.11,

.4[ is quantized hyper-Tauberian.

TupoRnu 5.3. Let A be a quanti,zed, hyper-Tauberian algebra, and,Iet x and,y

be essenti,al quanti,zed, A-bimodules. Then a completely bound,ed, operator D: x ---+

Y* i,s hyperlocal i,f and, only i,f

D(arb) - aD(rb) - D(ar)b r aD(r)b : 0

for all a,b € A and r e x. If A has a bound,ed, approri,rnate i,d,enti,ty, then the

result i,s also true for all cornpletely bound,ed hyperlocal operators from x i,nto y.

Pnoo¡'. It follows from the quantized version of rheorem 4.4, n

!
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In Theorem 4.5 we showed that bounded approximately local n-cocycles from

hyper-Tauberian algebras are n-cocycles. The following theorem states the quan-

tized version of that result. So, in particular, completely bounded approximately

Iocal derivations from quantized hyper-Tauberian algebras are derivations.

TueoRpl¡ 5.4. Let A be a quanti,zed hyper-Tauberian algebra, and, let x be a

quanti,zed, A-bimod,ule. Then, for n e lñ, euery completely bound,ed. approri,matelg

local n-cocgcle T from A(") i,nto x i,s an n-cocycle. In parti,cular, oz"(A,x) i,s

refi,eriue.

Pnoor" It follows from Theorem 5.2(v), Theorem 5.3 and the quantized version

of Theorem 4.5.

CoRol,L¡Rv 5.5' Let A be a quanti,zed hyper-Tauberian algebra wi,th a bound,ed,

approrimate i,d,enti,ty, and let x be an essential quanti,zed A-bi,mod,ule. Then a

cornpletely bound,ed operøtor D: A ---+ x" i,s hyperlocal i,f and, only i,f there i,s a

completely bounded deriaati,onD and, a ri,ght multi,pli,erT from A i,nto X* suclt that

D : D *7. In pa,t'icular, D i,s a deriuation i.f and only i,f weale- - jgg D(e.) : g

for a bounded approrimate identi,ty {eo}oç¡ in A.

Pnoor. It follows from Theorem 5.3 and the quantized version of Corollary

4'6' tr

coRolr,eRv 5.6. Let A be a quanti,zed hyper-Tauberi,an algebra u¿th a bound,ed,

approrimate i,denti,ty. Then A ,is operator amenable i,f and, only i,f for any essential

quanti,zed A-bimodule X and eaery cornpletelg bounded hyperlocal operator D: A --+

X*, there are r*,A* € X* such that D(a) : o,t* - y*a (a e A).

tr



Pnoor'.

4.7.
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It follows from Theorem 5.3 and the quantized version of corollary

!

5. 2. Figà-Talamanc a-}lerz algebras as quantized hyper-Tauberian

algebras

Lei G be a locally compact group. since z/{(G) c Be,2(c)) is an operator

spâce, A(G), regarded as the operator predual of vN(G), has a natural opera-

tor space structure which makes it a completely contractive Banach algebra [1g,

Chapter 16]' Now let p € (1, *) and suppose that there is an operator space struc-

ture on the Figà-Talamanca-Herz algebra AoG) such that it turns AoG) into a

quantized Banach algebra and Ao(G) becomes a quantized A(G)-module (In [84],

one such operator space structure has been constructed on ,Ao(G)). In this case,

we can show that AoG) is a quantized hyper-Tauberian algebra.

Tn¡oRptt¿ 5.7. Let G be a IocaIIy compact group, and letp € (1,oo). Then

Ar(G) zs ø quant,ized hyper-Tauberian algebra.

PRoor" We first show that á(G) is quantized hyper-Tauberian. It is shown in

[20] that there is a complete isometry

A(G)a.eA(G)=A(GxG).

This map is also an algebraic isomorphism. Thus A(G)6*eçc¡ is semisimple,

and so, since the diagonal a is a closed subgroup of G x G, by [58, Theorem

3], A is a set of s1'nthesis for A(G)ô,e A(G). Hence the result follows from the

quantized version of Theorem 2.7. The frnal result follows from the quantization

of the argument made in the proof of Theorem 2.28. tr
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coRoLleRv 5.8. Let G be a locally compact group, and, ret p e (1,æ). Then

Ar(G) is operator weakly amenable.

PRoor'. The result follows from Theorem b,z and part (iii) of rheorem 5.2. tr

THsoRpN4 5.9. Let, G be a locally compact group, let, p € (1, *), and,let X and,

Y be essenti,al quanti,zed Ar(G)-bi,modules. Then a completely bound,ed, operator

D: X --, Y* i,s hyperlocal i,f and only i,f

D(arb) - aD(rb) - D(ar)b r aD(r)b : 0

for all a,b e Ao(G) and, r € x. Moreouer, if G ,is arnenable, then the result i,s also

true for all completely bounded hyperlocal operators from x i,nto y.

Pnoor'. It follows from Theorem 5.2 and Theorem b.3.

TnpoRelt 5.70. Let G be a locallg compact group, ret p e (1, -), and, let x
be a quant'ized Ao(G)-bi,module. Then, for n € NI, euery completely bound,ed, ap-

proxi,mo,tely local n-cocycleT from Ao(C¡(") i,nto X is an n-cocgcle. In part,icular,

O Z" (4G), X) i,s refl,eni.ue.

Pnoo¡'. It follows from Theorem b.Z and Theorem 5.4. tr

coRor,leRv 5.17. Let G be a locallg compact amenable group, and let p €
(1,*). Then, for euery essenti,al quantized Ar(G)-bi,mod,ure x and, eaery corn-

pletely bound,ed h.yperlocal operator D: Ao(G) -- X*, there are r*,A* € X* such

that D(a): o,t* -y*a for all a e Ar(G).

Pnoor'. It is shown in [Ba] that G is amenable if and only if Ar(G) is operator

amenable. Therefore the result follows from Corollary 5.6. tr

tr
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