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Abstract

In 1953, Paige and Wexler introduced a form of the incidence matrix of a finite projec-
tive plane organized about a point line incident pair. We introduce generalised permutation
Hadamard matrices, which are related to this form. We give another form of the incidence
matrix, organized about a point line non-incident pair. We introduce generalised permuta-
tion weighing matrices, which are related to this new form. We draw a connection between
these two forms, which extends to a connection between the existence of a finite projective
plane of Lenz-Barlotti class I1.2 and a GH(n,G) whose core is group developed. In the
case where a finite projective plane has a Baer subplane, we also present a third form of
the incidence matrix. We give a non-existence result for a particular class of generalised
Hadamard matrices over a cyclic group.

Using a known construction for orthogonal matrices, we obtain a set of MOLS. Con-
structions of sets of MOLS of these sizes are known; however this construction gives Latin
squares whose rows are all shifts of the first row. Adapting a technique of Hughes, we use
collineations of projective planes to construct a Hadamard matrix of order 9% for certain
prime powers q.

We introduce skew arcs, which are sets of points in a projective space, related to parity
check matrices of linear error correcting codes. We give some constructions of skew arcs

and take an in-depth look at Wagner’s [23,14,5] code.



Chapter 1

Background

In projective geometry, there are two types of questions asked. One is about con-
figurations, the other is about existence. We touch upon both of these questions,
giving some theorems about the existence of projective planes with certain types of
automorphism groups, and give a characterization of a particular configuration in

projective spaces related to codes.
1.1 Designs

An incidence structure is a triple D = {V, B,1} where V and B are disjoint sets and
I is a binary relation, called incidence, between V and B, i.e. IC V x B. If (p,£) €1,
we say p is incident with £, or that £ is incident with p. The elements of V are called
points, those of B are called blocks or lines, those of I are called flags. We will at

times refer to an incidence structure as a design.

Example 1. A near pencil on n points is an incidence structure which has one line
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Figure 1.1:

Dy

Ds
Dy

D3

D
Dy

¢ incident with n — 1 points and n — 1 lines, each incident with the point not

on £ and a distinct point on 4.

The following is a near pencil on 6 points:

V= {p():pl:p27p3ap4>p5}
B - {bO,b])627b37 b47bs}
I= {(p21b0)|7/ € {172)3347 5}} U {(po,bi)lZ € {1’2’3’4’5}}

U {(pia bz)ll € {1’ 2) 37 4a 5}}

We often represent an incidence structure with a diagram in which lines are
represented by curves, and points as distinguished intersections of curves. The

above near pencil on 6 points is shown in Figure 1.1.

If (p,¢) € 1, the notation pI¥ is commonly used. We also say £ passes through p,
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or p is on £. If (p,£) ¢ I then the pair (p, £) is referred to as an antiflag. If pI¢; and
pléy then the lines £y and £, meet or coincide at the point p. If p;1¢ and poIf then
the points p; and p; meet on the line £. If pI¢; for i = 1,2,...n then the 4;’s are
concurrent or copointal at p. Lines that are concurrent at a point are said to intersect.
If pd¢ for i =1,2,...n then the p;’s are collinear on Z.

We can associate with each element b of B the set of points that are incident
with it. Thus, the elements of B are treated as subsets of V, and I will be given by

inclusion. Hence we can also write D = {V, B} where B C P(V).

Example 2. Thus the design given in Example 1 can be expressed as follows:

V = {po,p1, P2, P3,P4,0s5} as before, and now the 6 lines of B are given by

{po, p1}, {0, p2}, {Po, D3}, {0, Pa}, {Pos s}, {1, D2, 13, Ps, D5}

Example 3. A balanced incomplete block design (BIBD) with parameters (v, b, 7, k, \)
is a design with v points and b blocks each of which contain & points, such that
every point is in exactly r blocks and every pair of points is together in A
blocks. Since b = % and r = i\%‘fl, we can refer to a BIBD with parameters

(v,b,7,k, A) as (v, k, \)-BIBD’s. In the case that a BIBD has parameters v = b,

(and hence k = r), it is a symmetric BIBD. The following is a symmetric BIBD.

The following are the blocks of a BIBD(11,5,2): {p1,ps, 3, pa, Ps}

{P1,p2,P5,P6, P7} {P1, D3, 6, D9, P10} {P1, P4y D7, P9, P11} {1, D5, Ds, Pro, a1}
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{pz,Psyps,pg,Pu} {p2,p4,p6,p10,p11} {p2,p7,ps,p9,p10} {pg,p4,p5,p7,p10}

{ps, s, 7, P8, P11} {Pa, P, D6, D8, Do}

Example 4. A parallel class or resolution class in a design (or incidence structure)
is a set of blocks that partition the point set. Lines are considered parallel if
they belong to the same parallel class. A resolvable BIBD is a (v, k, A)-BIBD
whose blocks can be partitioned into parallel classes. The following are the
blocks of a resolvable (15,3,1) design, arranged into parallel classes. Blocks are

the horizontal triples, and the parallel classes are the seven columns of blocks.

ABC|AHI|AJK]|ADE|AFG]|ALM]|AN,O
D,J,N | B)E,G |B,M,0 | B,L,N | B,H,J | B,I,K | B,.D.F
E,H,M |C,M,N|C,E,F | C/I,J | C,L,0 |C,D,G|C, H K
F,1,0 | D,K,0| D,H,L |F,K,M | D,I,M | E,J,O | E,IL
G,K,L| F,JJL | G,I,N |G ,H,O |E,K,N|FHN |G, JM

Although parallel lines do not meet, in the case of designs, not all lines that do
not meet are parallel. From the above example, lines A, B,C and D, K, O are

disjoint but not parallel.

We call a point isolated if it is on 0 or 1 lines; similarly a line is isolated if contains
0 or 1 points. A point full if it is on all the lines, and a line is full if it contains all
the points. Generally, to avoid certain degenerate cases, we assume a design contains
no isolated points or lines, no full points or lines, and no repeated lines. A design is

finite if V is a finite set (and hence B and I are as well). In this case we write |V| = v

and |B| = b.
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Definition 1. With every finite design D, we associate a v X b matrix of 0’s and 1’s,
called its incidence matriz A, as follows. Enumerate the sets V = {py,ps, - - - , Dy}
(or, in some cases {pg,p1, - ,py_1}) and B = {€1,85, - &} (or {€o, 1, ,5_1}).
A is defined as A = [a;;] where a;; is 1 if p; (resp. p;_1) is on £; (vesp. £;_;) and 0

otherwise.

Example 5. The incidence matrix for the near pencil given in Example 1 is:

s = e e e (O
OO O DO
OO DO et O
OO = O D
OR OO O
O OO QO

For more on designs see [60)].

1.2 Projective geometries

1.2.1 Definitions of spaces

There are various definitions of projective space. We shall use the definition in [12],
which is equivalent to that in [75]. A similar one is given in [19], except that an extra
condition ensures a space of finite dimension. Alternate developments may be found

in [10], [27].

Definition 2. A projective space is a design that satisfies the following axioms:
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P1: For any two distinct points p and g there is exactly one line that is incident
with p and with g. This line as is referred to as pq.

P2: Let a,b,c, and d be four distinct points such that the line ab intersects the
line cd. Then the line ac intersects the line bd.

P3: Any ﬁne is incident with at least three points.

P4: There are at least two lines.

Example 6. The following (15,3,1) — BIBD is an example of a projective space
(see Example 7). Let the point set be

{a7 b’ c? D’ e) f? g’ b? i7j) E) [7 m7 n? 0}'

The line set is {{a, b, ¢}, {a,¢,f}, {a,0,9}, {a,b,¢}, {a,1,1}, {a,j,m}, {a,n, 0},
{b,¢,0}, {b,0,i}, {b,, &}, {b, 8,1}, {b,,n}, {b,m, 0}, {¢,0,j}, {c, e, 8}, {c, g, m},
{en} {e, Lo}, {0,¢,1}, {0, m}, {0, b, 0}, {0, 8,0}, {e,j, 0}, {e,m,n}, {e,0,i},
{&,1,0}, {f.0.7} {f. 1,0}, {f,4n}, {8, b, 0}, {g,&,n}, {b,1,j}, {b,L,m}, {i,&,m},
(.80}

Subspaces of projective spaces

We define a collection, U of points of a projective space to be linear if, given points
p and ¢ in U, then all the points on the line pq are also in U. Then the points of U ,
together with the lines determined by pairs of those points, will satisfy the first three

axioms of a projective space, and form a subspace (possibly a degenerate one, as in
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the case of a single point, or all the points of a single line).

For a set of points X, define the span of X, (X) to be N{U|X C U, Uis a linear set}.

A set of points B is called independent if for any subset B’ C B and point p € B\ B’
then p ¢ (B’').

An independent set of points of a projective space II which span II is called a
basis for II. Any two bases of a given projective space will have the same number of
elements[12]. A finitely generated space has dimension d if any basis has d + 1 points
in it.

Dimension formula[12]: Let U and W be subspaces of II. Then dim((U, W)) =
dim(U) + dim(W) - dim(U N W).

For use in the dimension formula, the dimension of a single point p is 0, while
dim(&) = —1. A hyperplane is a subspace of dimension d — 1 in a space of dimension
d. Using the dimension formula it can be noted that a hyperplane and a line must

meet in at least one point.

1.2.2 Constructions

Let V be a vector space of dimension d+1, where d > 2, over a division ring F'. Define
the geometry P(V') as follows: the points of P(V) are the 1-dimensional subspaces
of V, the lines of P(V) are the 2-dimensional subspaces of V, and the incidence of

P(V) is set-theoretical containment.
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Theorem 1. [12]

P(V) is a projective space of dimension d.

Proof. (P1) Let p and ¢ be distinct points of P(V). Let (v;) and (v,) be the cor-
responding one-dimensional subspaces of V, that is p = (v;) and ¢ = (v,). Since
{v1) # (v2), vy and v, are linearly independent; hence (v1,v9) is a two-dimensional
subspace. So £ = (vy,v;) is the unique line containing p and q.

(P2) Suppose there are distinct points p, ¢, 7, s in P(V), with corresponding one
dimensional subspaces in V, respectively (v1), (va), (vs), (v4), where v;’s are pairwise
linearly independent. If pg meets rs then there is some vs in V contained in (v1,v2) N
(vs,v4). Take vs = ay - vy +ay - vy = a3 - U3 + a4 - Vy; then take a; - vy — a3 - v3 =
G- Vs — Qg Vg = Us. S0 (vg) is contained in (vq,v3) N (vy, v4). Hence the lines pr and
gs meet at the point (vg).

(P3) The line (v;,v3) contains the distinct points (v1), (v2), and (v; + ), because
v; and v, are independent.

(P4) Since V has dimension at least 3, then there are three linearly independent

vectors g, U1, vz and so the lines (vg, v1) and (vg, v2) of P(V) are distinct. O

Example 7. The space given in Example 6 is constructed from a 4-dimensional vec-
tor space over GF(2). Each point of the space corresponds to the nonzero point

point of a line in the vector space as follows: a = (1,0,0,0),b = (0,1,0, 0),c=
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(0701170)70 = (1717171),6 = (1707170)7f = (1717070)79 = (Oalulal)ab -

(0,1,1,0),i = (1,1,0,1),j = (1,0,1,1),& = (1,1,1,0), = (0,1,0,1),m

(0,0,1,1),n=(1,0,0,1), 0 = (0,0,0, 1).
1.2.3 Desargues’ Theorem

Property [Desargues’ Theorem]. Given two triples of points, say A, B,C and

A, B',C" such that the lines AA', BB’ and CC' all meet at a point P, then points

z=ACNAC, y=ABNAB and 2= BCNB'C’' are collinear.

Figure 1.2: The Desargues’ Configuration
P

We say that a space is Desarguesian if Desargues’ Theorem holds for that space
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Theorem 2. [12] A projective space is Desarguesian only when it is constructed over

a skew field.
Theorem 3. [12] All projective spaces of dimension 8 or higher are Desarguesian.

Hence all finite projective spaces of dimension 3 or higher arise from the field by

the construction of Section 1.2.2.

1.3 Projective planes

According to Theorem 3, projective spaces of dimension 3 or higher are all Desargue-
sian, so we now take a closer look at the specific case of two dimensions. We start

with a related structure, called an affine plane.

Definition 3. An affine plane A = {P,L} or Il = {P,L,1} is a incidence structure
that has the following properties:

API1: Every pair of points meet on a unique line.

AP2: Given a point p and a line £ where p ¢ £, there is a unique line m such that
p € m and m and £ have no points in common.

AP3: There exist 8 noncollinear points.
Example 8. The following design is an affine plane (see Figure 1.3):

V= {p17p21p3>p47p5)p67p7‘; pS;pQ} and B = {{plap27p3}7 {p47p57p6}7 {p7ap8ap9}7

{p1,ps,po}, {P2, 6, 7, }, {03, P4, 08}, {P1,Pa, p7}, {P2, s, P8}, {Ps, s, Do},
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Figure 1.3: An affine plane

P, p, P,
p5 p6

P,

P, Py Py

{p3, 05,07}, {p2,Pa, 00}, {P1,P6,18}}. I is given by set inclusion.

Definition 4. A projective planeIl = {P,L} or Il = {P, L, 1} is a incidence structure
that has the following properties:

PP1: every pair of points meet on a unique line;

PP2: every pair of lines meet at a unique point;

PP3: there exist 4 points, no three of which are collinear.

Any projective plane is a projective space. Obviously, PP = P1. Since any

pair of lines meet (PP2), P2 will hold. In this case, let p = £; N 4, be the point



CHAPTER 1. BACKGROUND 15

where lines ¢; and ¢, meet. Let py, ps, ps, ps be the four points, no three of which are
collinear (from PP3). There are at least two lines, say pips and pips, so P4 holds.
Also, each line has at least three points as follows: Any line of type pip; will have
the point p;p; Npxpy, (where {4, j, k,1} is a permutation of {1,2,3,4}). Any other line
must meet both pyp, and psps, both pips and paps, and both pyps and pops. At the
very least, it is on the point joining each pair, and hence is on at least 3 points. Since
a projective space can be generated by 3 noncollinear points, it is a two dimensional
projective space.

There is a connection between affine and projective planes: If a line and all the
points on it is deleted from a projective plane an affine plane will result. Conversely
given an affine plane, a projective plane can be obtained by adding a line in a partic-
ular way.

In an affine plane, maximal sets of lines which do not meet form parallel classes, as
we will show. Let R be the relation on the lines of an affine plane A given by ¢Rm if
£ =m or £ and m have no points in common. The relation R is obviously symmetric
and reflexive. Let AR and {Rm for disjoint lines A, £ and m. If h and m had a point
in common, say p, then there would be two lines on p which were disjoint from 2,
which contradicts AP2. Hence R is transitive, and it is an equivalence relation on

the lines of A. From AP2, every point is on some line of an equivalence class, hence
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the lines of A are partitioned into parallel classes. To get a projective plane, a point
is added for each parallel class, incident with each line in that class, and a new line

is introduced which is incident to all these new points.
Example 9. One of the best known examples of an affine plane is the familiar real
plane R?. See Figure 1.4

P = {(z,y)lz,y € R}. Lines play their usual role of solutions to equations of
the type y = mz + b or 2 = ¢. These can be represented by

L = {(m,b)lm,b € R} U {{c)|c € R}

Figure 1.4: R?

@) (e |(es)

Example 10. Let us build a projective plane by adding a line to the affine plane

mentioned in Example 9. Compare Figure 1.4 to Figure 1.5
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Figure 1.5: An infinite projective plane

We let P = {(z,9)|z,y € R} U{(t)|t € R} U {(c0)} and
L={(z,y)lz,y e R}U{({®)|t € R} U {(c0)}.

The incidence is as follows:

(z,y)T(m, b) iff y = mx + b

(z,y)I(c) iff z = c

()L(m, b) iff t = m

(£)I{c0) ¥t € R

(00)I{c) Ve € R

(00)I(o0)

Example 11. The smallest finite projective plane, also known as the Fano plane
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Figure 1.6: The Fano plane

i

(see Figure 1.6), has point set P = {1,2,3,4,5,6,7}, and lines

L={(1,2,4);(2,3,5); (3,4,6); (4,5,7); (5,6,1); (6,7,2); (7,1, 3)}.
1.3.1 Some elementary properties of projective planes

For a finite projective plane II, we now consider the number of points on any line,
and the number of lines through any point. We start by showing that any two lines
of IT have the same number of points. Let ¢; and ¢, be any two lines of II, and let
the point at which they meet be py. Let the points of ¢; be pq, py, .. ., Dk, and let the
points of £; be pg, g1, ..., qr,. By PP3, there is a point ¢ not on #; or /.

Let the number of lines through ¢ be n + 1. Since ¢ must meet every point of

¢;, and it meets distinct points of £; on distinct lines, since ¢ ¢ {1, there are at least
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ki + 1 lines through ¢. Also, since every line through ¢ must meet ¢; in some point,
distinct for each line through ¢, there are exactly k; + 1 lines through q. Similarly
with £,. Hence k; = ky = n. Similarly, any point not on ¢; will have n + 1 lines on
it, and any line not on g will have n + 1 points on it. Further, for any point on £ or
£5 there will be some line not on it containing n + 1 points, hence it will also be on
n + 1 lines, for any line through ¢ there will be a point not on it which is on n + 1
lines, hence it will contain n + 1 points.

Since every line contains n + 1 points, and every point is on n + 1 lines, n the
order of the projective plane.

To get the total number of points, fix a point Q. Each point of IT meets Q on
a unique line, and there are n 4 1 lines through @, each containing n points other
than @). So in total there are n{(n + 1) + 1 = n? + n + 1 points. Similarly, there are
n?+mn+ 1 lines.

We use the notation PP(n) to denote a projective plane of order n. The plane in

Example 11 is a PP(2).

Example 12. A PP(3), whose diagram can be seen in Figure 1.7, is given by
the point set P = {p1,ps,...,p13} and the line set L = { {p1,p2, p3, P10},
{p4,Ps, p6: P10}, {P7, P8, 09, P10}, {P1, D5, D9, P11}, {P2s D6, D7, P11}, {3, Day P8y P11},

{p1, P41, 7, P12}, {D2, D5, s, P12}, {3, D6, Do, 12}, {P3, D5, D7, P13}, {P2, Day Do, P13},
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Figure 1.7: A projective plane of order 3

p13
\
p, 2, P AN
AY
\
AY
AY
\
AY
)
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1
Py P )
o, ? Pro
!
1
'
'
1
1
7
7
/
p
7 PS P9 /I
//
-, pll
7’
.
P
pl2

20

{p1, D6, P3, P13}, {P10, P11, P12, P13} }. This can also be formed by adding a line

to the affine plane given in Example 8. Compare Figure 1.3 with Figure 1.7.

Now consider the incidence matrix of a projective plane. By the foregoing discus-

sion, the incidence matrix of PP(n) is an (n® +n+ 1) X (n? + n + 1) matrix of 0’s

and 1’s.
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Example 13. The incidence matrix of the plane given in Example 12 is

111000000100 O\
0001110001000
0000001111000
1000100010100
0100011000100
0011000100100
1001001000010
0100100100010
0010010010010
0600101010000O0O0:1
0101000010001
100001010000O0T1
000000O0O0OO0OT1T1T11

The (i, j)-entry of AAT will be the number of lines in which p; meets p;. This
isn+1if ¢ = j (the number of lines through a point), and 1 otherwise (by PP1).

Hence AAT = nl + J (J is defined as the matrix of all 1’s of the appropriate size).

1.3.2 Subplanes

A subplane II' of a projective plane II is a projective plane whose points are a subset
of the points of IT and each of whose lines is a subset of a line of II. Note that a

subplane is a not a subspace of a projective plane.

Theorem 4. [10] IfTI' is a subplane of order m of a planeIT of order n where I’ 5 11

then either m?> =n or m? +m < n.

Subplanes of order +/n ére called Baer subplanes.
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Theorem 5. [10] If TI' is a subplane of order m of a projective plane I1 of order

n =m? then every line of Il meets II' in at least one point.

1.3.3 Coordinatization

The following can be found in [59]. Let II be a projective plane of order n and let
R be a set of n symbols containing the symbols 0 and 1 but not the symbol co. We
pi(;k.S non—cor;current lines 41,45, 4o, let px be loluy; let py be £14,, and let po be
¢145. Let p; be a point not on 44, €5 or £.,.

Let ps be pxpr N4y, let pg be pypr N4y and let py be papp N lo.

We now set up a correspondence between the symbols of R and the points of £; \py,
arbitrarily except that the symbol 1 is assigned to the point p4 and the symbol 0 is
assigned to the point po.

Now if pc on £1\py, corresponding to ¢ € R, this point is assigned the coordinates
of (0,¢). (So pa is (0,1) and po is (0,0).)

To get coordinates of a point pp on £, \px, if ppps N4y is (0,d) then pp is (d,0).

Now if pg is a point outside of ¢1, £ and £, pepx N ¥y is (0, f) and pgpy N4y is
(9,0) then pg is (g, f).

If pz is a point of £, \py, and pzppN¥; is (0, m) then pz is (m). Lastly, the point
Py is (00).

We now can assign coordinates to the lines according to the coordinates of the
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points. If a line £ is not on py = (00), and £ N 4e = (m) and £ N ¥4 = (0,k) then

¢=(m,k). If £is on py and £ # L, £N ¢y = (b,0), then £ = (b). Lo, = (c0).
1.3.4 Latin squares

Definition 5. A Latin square of order n is an n x n array whose elements are n
distinct symbols (commonly the numerals 1,...,n) such that each element appears

once in every row and once in every column.

Example 14. A Latin square of order 3 :

1
2
3

b QO DN
DN O

Definition 6. Two Latin squares A = [a;;] and B = [b;;] are called orthogonal if the

ordered pairs (a;;,b;5), 1 < i,j < n, are all possible n? ordered pairs.
Example 15. The following Latin squares of order 3 are orthogonal.

1 2
2 3
3 1

DN
DN O =
W = N
N W

Lemma 6. [{7] There are at most n—1 mutually orthogonal Latin squares (commonly

known as MOLS) of order n.

If a set of n — 1 mutually orthogonal Latin squares of order n exists, it is referred

to as a complete set of MOLS.
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Lemma 7. [47] Every complete set of MOLS corresponds to projective plane of the
same order. Fvery projective plane corresponds to one (or more) complete set of

mutually orthogonal Latin squares.

One way to view this correspondence is through the coordinatization of the plane.
As seen in [59], from the coordinatization we can define a planar ternary ring, and

from this we can define a complete set of MOLS.

1.3.5 The Lenz - Barlotti classification

Definition 7. A collineation of a projective plane is a surjection « : P — P that

preserves lines (hence induces a map o« : L — L such that p® € £% iff p € £).

Example 16. Define a map « on the points of the Fano plane, seen in Example 11,

as follows:

Under « lines map to lines as follows:

a[l,2,4] = [a(1),a(2), a(4)] = [2,3,5], a[1,5,6] = [a(1),a(5),a(6)] = [2,6,7],
a1, 3,7 = [a(1),a(3), (7)] = [2,4,1], @[2,3,5] = [«(2), 2(3),a(5)] = [3,4, 6],
@[2,6,7] = [a(2),a(6), ()] = [3,7,1], @[3,4,6] = [«(3), a(4),a(6)] = [3,5,7],

al4,5,7 = [a(4), a(5), a(7)] = [5,6,1].

Observe that this collineation has no fixed points or fixed lines.
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Example 17. Define another map @ on the points of the Fano plane as follows

Under § lines will map to lines as follows:
Bl1,2,4] = [6(1), 5(2), B(4)] = [1,2,4], B[1,5,6] = [6(1), 6(5),5(6)] = [1,6,5],
BlL,3,7) = [B(1), (3), B(T)] = [1,7,3], BI2,3,5] = [5(2),5(3),8(5)] = [2,7,6],
p12,6,7) = [8(2),8(6), B(7)] = [2,5,3], B[3,4,6] = [5(3), 6(4), 6(6)] = [7,4,5],
B14,5,7] = [B(4), B(5), B(7)] = [4,6,3].

This collineation fixes the points 1, 2 and 4, and it fixes the lines [1,2, 4], [1, 6, 5]

and [1,7,3].
Example 18. Define yet another map « on the points of the Fano plane as follows:

(1) =2,7(2) =3,73) =1,7(4) =5,7(5) =7, 7(6) = 6, 7(7) = 4.

Under ~ lines map to lines as follows:

7[1,2,4) = [v(1),%(2),v(4)] = [2,3,5], 7[1,5,6] = [v(1),7(5),7(6)] = [2,7,6],
113,70 = [(1),7(3),%(7)] = [2,1,4], 712,3,5] = [(2),7(3),7(5)] = [3,1,7],
712,6,7 = [7(2),7(6),¥(7)] = [3,6,4], ¥[3,4,6] = [7(3),7(4),~(6)] = [1,5,6],
7[4,5,7 = v(4),7(5), v(7)] = 5,7, 4].

This collineation fixes the point 6 and the line [4, 5, 7].

Definition 8. A center of a collineation « is a point p that is fixed linewise by a. Ie.
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all lines through p are fixed by a. If a collineation « has a center, then it is referred

to as a central collineation.

The collineation in Example 17 has the point 1 as its center. Notice that in

Example 18, that even though 6 is a fixed point, it is not a center.

Definition 9. An azis of a collineation « is a line £ that is fixed pointwise by a. Le.

all points on ¢ are fixed by «.

The collineation in Example 17 has line [1,2, 4] as axis. Note that the fixed line

in Example 18 is not an axis.
Lemma 8. [{/6] A collineation o has a center iff it has an azis.

We will refer to a central collineation with center p and axis £ as a (p, £)-collineation.
If p € £ then a (p, £)-collineation is called an elation, if p # £ then a (p, £)-collineation

is called a homology.

Lemma 9. [46] A central collineation is completely determined by its center p, its

azis £ and its action on one pointz (x #px ¢ £).

Given a point p and a line £ in a projective plane II, II is called (p, £)-transitive
if for every pair of points z,2’ (z,2’ # p; z,2’ ¢ £) where z, 2, p are collinear, there

exists a (p, £)-collineation « such that o(z) = 2.
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Lenz

Lenz developed a classification of projective planes based on what configuration of
(p, £)-transitivities can exist in the plane for flags (p,£) [71]. There were originally
seven different classes, but we will exclude those for which it is known that no planes
of that type can exist (see [46]).

Let £ be {(p,{) € P x L|p € £ and I1 is (p, £)-transitive }. Then II is said to be:

Class I : £ = @;

Class II: There exist p € P and £ € L, p € £ such that £ = {(p,£)};

Class III: There exist ¢ € P and £ € L, q ¢ £ such that £ = {(p,pq)|p € £};

Class IVa: Thére exists £ € L such that £ = {(p, £)|p € ¢};

Class IVb: There exists p € P such that £ = {(p, )£ > p};

Class V: There exist p € P and £ € L such that £ = {(p, h)|h 2 p}U{(q, £)|q € £};

Class VIL: £ = {(p,£)|p € £}.

Barlotti

Barlotti extended the classification set forth by Lenz to include transitivities for
antiflags [6].

Let B be {(p,¢) € P x L|IL is (p, £)-transitive}

Class I.1: B = &;

Class 1.2: There exist p € P and £ € L, p ¢ £ such that B = {(p,£)};
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Class 1.3: There exist p,q € P and h,f € L,p ¢ £,p € h,q ¢ h,q € £ such that

B = {(p,4), (¢, h)};

Class 1.4: There exist non-collinear points p, ¢, 7 such that

B = {(p,qr), (g, pr), (r,p0)};

Class 1.6: There exist £ € L and ¢ € P where ¢q € £, and a bijection
6 O\{g} — {hlg € h # £} such that B — {(p, p*lp € £\{g}};
Class II.1: There exist p € P and £ € L, p € £ such that B = {(p, ) };
Class I1.2: There exist p,g € P and h,¢ € L, p,q € £,p € h,q ¢ h such that
B = {(p,0), (¢, N)};
Class IIL1: There exist ¢ € P and £ € L, ¢ ¢ £ such that B = {(p, pq)|p € ¢};
Class II1.2: There exist ¢ € P and £ € L, g ¢ £ such that
B = {(¢,0)} U{(p.pa)lp € £};
Class IVa.1: There exists £ € L such that B = {(p,£)|p € ¢};
Class IVa.2: There exist £ € L and p,q € P, p,q € £ such that
B ={(r,0)|r € £} U{(q, )Ih 3 p} U{(p,k)|k > q};
Class IVa.3: There exist £ € L and an involutory fixed point free permutation ¢
of the points of £ such that B = {(p, £)|lp € £} U, A (0", h)|h > p};
Class IVb.1: There exists p € P such that B = {(p,£)|£ > p};

Class IVb.2: There exists p € P and lines h, k > p such that
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B ={(p,0)l¢ 3 p} U{(q,h)lqg € K} U{(r, k)| € h};
Class IVb.3: There exists p € P and an involutory fixed point free permutation ¢
of the lines of p such that B = {(p,£)|p € £} U,5,1(q, h)lq € h};
Class V: There exist p € P and £ € L such that B = {(p, h)|h 2 p}U{(q, £)|q € £};
Class VIL1: B = {(p,{)|p € £};

Class VIL.2: B = {(p,¢)}.
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Orthogonal matrices

2.1 Hadamard matrices

Hadamard matrices were first introduced by Hadamard in 1893 [52], and have been

the inspiration for much study.

Definition 10. A Hadamard matriz H is an n X n (=1, 1)-matrix such that
HH" =nl.
We use the notation H(n) to denote a Hadamard matrix of order n.

Example 19. The following is an H(4):

11 1 1
1 1 -1 -1
1 -1 1 -1
1 -1 -1 1

A Hadamard matrix has the property that its rows are pairwise orthogonal. It

is known that Hadamard matrices of order n can only exist for n = 1,2 or n = 4a,

30
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a € Z" and it is conjectured that they exist for all of these values [52]. For more on
Hadamard matrices and associated structures see [50].

Two Hadamard matrices are considered equivalent if one can be obtained from
the other by a series of row switches, column switches, multiplication of a row by —1,

or multiplication of a column by —1.

Example 20. The H(4) found in Example 19 is equivalent to

11 1 1
1 -1 1 -1
1 1 -1 -1 1]
1 -1 -1 1

which was obtained by switching the second and third rows.

2.2 Weighing matrices

Definition 11. A weighing matrizs W = W (n,w) is an n x n {—1, 0, 1 }-matrix which
has the property that

WWT = wl.
We call w the weight of the matrix.

Example 21. The following is a W (4, 3):
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Two weighing matrices are considered equivalent if one can be obtained from the
other by a series of row switches, column switches, multiplication of a row by —1, or

multiplication of a column by —1.

2.3 Group ring basics

To introduce generalizations of Hadamard and weighing matrices whose elements are
from a group, matrix multiplication will be defined over a group ring.
Let G = {g;|i € N} be a finite group, where N is some index set, and let R be a

commutative ring with unity. Let R[G] be the set of all formal sums
Z aiGi
ieN
where a; € R and g; € G. R[G] is the group ring, with the following operations:

The sum of two elements in R[G] is defined by
Z a;9; + Z bigi = Z(ai + b;)g;
ieN ieN ieN
and multiplication is defined by
(Z aigi) (Z biQi) => 1 D abe o
1€N €N ieN  \ gigk=g:

We use the following shorthand notation for the sum of the group elements (times

the ring unit)

Gy = Zg.

geqG
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The conjugate of an element o = .\ a;9; in the group ring is o* := Sienailg )
We are interested in two specific quotient rings. One is Z[G]/Gy for a group G.
The other is based on sharply transitive subsets of the symmetric group S,. A sharply
transitive subset of S, is a set A of permutations such that for any pair of positions,
a and b, there is exactly one p € A where p(a) = b, and the quotient ring we are
interested in is Z[S,]/J where J is the ideal generated by the sum of the elements

of a sharply transitive subset of S,,.

2.4 Generalised Hadamard matrices

Definition 12. A generalised Hadamard matriz GH(n,G) is an n x n matrix H =

[hi;], whose entries are elements of a group G, such that, for all 5 # 7,
n
> hyhy! = AGy, (2.1)
k=1
where A is an integer, called the indez of H. Note that if i = 7, Y ore hikhj"kl =nl,
where 1 is the group identity. Write H* = [hj_il], transpose followed by entry-wise
conjugation in the group ring. In this notation (2.1) becomes HH* = nl mod Gy,

with matrix multiplication carried out over the group ring Z[G].

(2

We note that A\ must be the same for all 4,7 when ¢ # j. In particular, A = Tk

We will be most interested in the case where \ = 1.
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Example 22. We let G = {1,v,+?}, the cyclic group of three elements. Then

11 1
H=11 ~r +*
1 42 o
is a GH(3,Cj3), for
11 1 11 1
HH* = 1 ,)/2 1 ’yQ o' E3Igm0d(1+’)/+’72)-
1 ¥ v 1 v 9

Observe that A = 1 for this GH.

Two generalised Hadamard matrices are considered equivalent if one can be ob-
tained from the other by a series of row switches, column switches, multiplication of
a row (on the left) by an element g € G, or multiplication of a column (on the right)

by an element g € G.

2.5 Division tables

To give some motivation for this next definition, we introduce the use of a group’s

division tables as a method of representing its elements as permutation matrices.
Let G be a group of order n and let Cg be an n x n array of elements of G in the

following way: Let g1 = 1,93, ..., g, be an ordering of the elements of G and take the

(i, 7)-entry of Cg to be e 1. We now have a matrix representation of each group
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element g namely P(g) = [a;;] where

_{ 1 if Ce(t,5) = g

Qi = !
) 0 otherwise.

We denote the permutation representation of g by [a;;] as P(g), and the group of

all such permutations as B(G). B(G) is a subgroup of S, isomorphic to G.

Example 23. The division table for the group Cj is:

1]y [
L1y |
Y11 ]y
' RAEE R

So the permutation representation is as follows:

1 0 0 010 0 0 1
PO ={010 |, Py=[001 ] andP(?)=|1 0 0
0 01 1 00 010

We can introduce a second set of permutation matrices from this table. Let s; be
the permutation that permutes the first row of Cg into the ith row. Le. s; = [bjy]

where

o= 1 if Ce(1,7) = Cel(i, k)
%7 0 otherwise.

We denote the set of all such permutations as Sg.

Lemma 10. Sg is a group isomorphic to G, and the elements of S commute with

the elements of P(G). Le. if s; € S and g € G then P(g)s: = s:B(g).
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Proof. To get from row 1 to row 4 of Cg, we are simply multiplying (on the right) by
the element g;, so it is obvious that S ~ G.

Suppose P(g)s; has a 1 in the (4, k)th position. Then, for some m;, the (j,m;)-
entry of P(g) is 1 and the (mq, k)-entry of s; is 1. Hence, the (4, m;)-entry of Cg is
g and the Cg(1,m1) = Cg(i, k). Let my be the column of Cg such that Cg(1,7) =
Ce(i,ma).

Now since

ImaGn ' = Gmai Gig% "
= (9i9my) "~ (92971)
= (919;1) 7 (9197m)
= 9591 919,
= 9i9m;
=g

the (4, k)-entry of 5;(g) is also 1. Hence P(g)s; = s;B(g).

tJ

Example 24. Let G be the dihedral group D3 = {z,y|z® = 1,3 = 1,yz = 2%y}.

Its division table is
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1 le]a]y |ay|ay

0
0
0
0
0

1

0

O = O OO

1

OO O OO

0

[en BN e BN an BE L N =}

0

OO OO =

37

1 1|22z | y | 2y | 2%y
z ||z | 1|22 |2y |2%y]| v
222z |1 [2%y] v | 2y
vyl y |zylz®y| 1 | 22| =
zy oy |22y v | = | 1 | 22
Pyllz>y| vy |yl 22| =2 | 1
In this case, the permutation representation of the group G is generated by the
001000 0
1 0000O0O 0
matrices P(z) = 8 (1) 8 8 8 (1) , and P(y) = (1)
0001600 0
000010 0
The group S, as described above, is generated by the matrices
01 00O0O0 0 001
0010O00O0 0 00O
s — 1 00000O0 and s — 0 000
* 000001 Y 1000
000100 0100
000010 0010

It can be easily checked that P(z)s, = s.B(z), PB(y)sz = s.B(y), P(z)s,

syB(z), and P(y)s, = 5,B(y), as expected.

OO O O = O

OO O, OO

The centralizer of a set A in S, is the set of all elements in S, which commute

with every element of A.

Lemma 11. The group S is the centralizer of P(G) in S,.

Proof. Suppose s is a permutation in S, such that sB(g) = PB(g)s for g € G. The
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(4, 7)-entry of s93(g)s is a 1 if, for some my, the (i, m;)-entry of s is 1 and the (my, 5)-
entry of P(g) is also 1.

The (4, j)-entry of P(g)s is 1 if for some m, the (i, m,)-entry of B(g) is 1 and the
(mg, 7)-entry of s is 1.

Suppose Cg(mi,7) = Cg(i,mg) = g, and let z be the row such that Cg(z,m;) =

Cg(1,1). Then

9:9; " = G2 Grma 95
= 019; ' 9igm,

= 10,

So the z’th row also contains the my’th entry of the first row in the j’th column.

Hence s is the element of S which permutes the first row of C¢ into the 2’th row.

O

Let G be a group of order n. We say that an n x n matrix A is group developed
over the group G if A(%,j) = A(s,t) whenever Cg(7,7) = Cq(s,t). Le. a matrix is
group developed if the matrix has the same element in each entry that there is a ¢ in
Cg.-

a b c
¢ a b | is group developed, matching in this way

b ¢ a
the pattern of entries in the division table in Example 23.

Example 25. The matrix
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Example 26. The matrix

~ 0 R0 9
Q0 0 8 o
O QAU o0
TO QO R
O O S0
Q o0 0O Q%

is also group developed, matching the division table of the dihedral group given

in Example 24.
2.6 Generalised permutation Hadamard matrices

Here is the first of two new generalisations of Hadamard matrices that we introduce

for studying projective planes.

Definition 13. A generalised permutation Hadamard matric GPH(n,m) isann xn
array H = [P;;] whose entries are elements of S,, (m x m permutations, generally
considered to be permutation matrices) such that
n
D PuPyl=s]
k=1
for some integer s when i # j. Note that if ¢ = j then > 7, Pz-kPj;l = nl. Hence

HH* =nl mod J.

Example 27. The following matrix is a generalised permutation Hadamard matrix.
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001 001 001
06010 010 010
100 100 100
001 010 100
06010 100 00O0T1

601 100 010
010 001 100
100 010 001

Two generalised permutation Hadamard matrices are considered equivalent if one
can be obtained from the other by a series of row switches, column switches, multi-
plication of a row (on the left) by an element p € S, or multiplication of a column
(on the right) by an element p € S,,.

We say that a Hadamard matrix (generalised Hadamard matrix, generalised per-
mutation Hadamard matrix) is in normalised form if all the elements in the first row
and first column are 1 (group identity, identity matrix). Every Hadamard (generalised
Hadamard, generalised permutation Hadamard) matrix is equivalent to a normalised
matrix. The submatrix of all the elements except the first row and first column of a

normalised matrix will be referred to as its core.

2.7 Generalised weighing matrices

Definition 14. A generalised weighing matrix GW (n, w; G) is an n x n matrix W =

[w;;] whose entries are either 0 or elements of the group G (note that 0 is the additive
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identity in the group ring) such that for all ¢ # 7, there is some integer m,; where

n
*
E wikwjk = mZ]GZ

k=1

and for i =j, > 7, wikwj_kl = wl where 1 is the group identity of G. Note that
these operations are taken over the group ring, so if w;;, = 0 then wy, = 0, otherwise
wi = wigl. We call w the weight of the matrix.

Matrix multiplication is defined over the group ring Z[G]. Then W is a generalised

weighing matrix if WW* = wl mod Gy-.

Note that generalised Hadamard matrices are a special case of generalised weighing

matrices where the weight is the order of the matrix.

Example 28. Taking G = {1,v,7?} as in Example 22, then the following is a

GW (5,4; Q)
0 1 1 1 1
1 0 1 v +2
W=|[11 0 ~* »
1 v % 0 1
1 4% v 1 0
since
0 1 1 1 1 0O 1 1 1 1
1 0 1 v ~°2 1 0 1 72 »
WWr=|1 1 0 4% v 1 1 0 v o2
1 v 42 0 1 1 9 v 0 1
14 4 1 0 1 v ¥ 1 0
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= 4Is mod (1 + 7 ++2).

Two generalised weighing matrices are considered equivalent if one can be obtained
from the other by a series of row switches, column switches, multiplication of a row
(on the left) by an element g € G, or multiplication of a column (on the right) by an

element g € G.

2.8 Generalised permutation weighing matrices

This is the second generalization introduced specifically for the study of projective

planes.

Definition 15. A generalised permutation weighing matriz GPW (n, w;m) is an nxn
matrix P = [PF;;] whose entries are elements of Sy, (m X m permutation matrices) or

an m X m matrix of all 0’s such that

> Pup =]
k=1

for some integer s = s;; for all 4 # j and for i = j, > ), Fip Py, = wl,. We say that

w is the weight of the matrix. Hence PP* = wl mod J.

Example 29. We let S3 be generated by z = and y =

OO
O O
O - O
—_ O O
O O
OO =

then the following is a GPW (5,4, 3):
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y zy 2’y 0

Two generalised permutation weighing matrices are considered equivalent if one
can be obtained from the other by a series of row switches, column switches, multi-
plication of a row (on the left) by an element p € S,, or multiplication of a column
(on the right) by an element p € S,.

We will mostly consider GW’s and GPW’s where the weight is n — 1 (one less
than the size of the array), hence each row (permutation row) will have only one zero
(matrix of zero’s).

We say that a weighing (generalised weighing, generalised permutation weighing)
matrix of weight n — 1 is in normalised form if the elements on the diagonal are 0 and
all the other elements in the first row and first column are 1 (group identity, identity
matrix). Every weighing (generalised weighing, generalised permutation weighing)
matrix of weight n — 1 is equivalent to a normalised one. The submatrix of all the
elements except the first row and first column of a normalised matrix will be referred

to as its core.
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2.9 Power Hadamard matrices

Definition 16. A Butson Hadamard matrix B = B(n,m) is an n X n matrix whose

elements are m* roots of unity such that BB* = nl.

Power Hadamard matrices are yet another type of orthogonal matrix and can be
seen as a generalization of Butson Hadamard matrices [34]. The entries of a power
Hadamard matrix are powers of a variable (usually ), and the conjugate is taken in

terms of the ring Z[z, 7], hence (z%)* = 2.

Definition 17. Let H = [h;;] be a matrix whose entries are powers of an indeter-
minate z, and let H* = [h%]. If there exists a polynomial f(z) € Z[z] such that
HH* = hl where the algebra is in the ring Z[z, 1]/(f(z)), then H is said to be a

power Hadamard matriz with respect to f(z), and we write H = PH(h, f(z)).

Example 30. The following is a power Hadamard matrix PH(3,1 + z + 22):

1 z z
H= z 1 z
z z 1
1 z z 1 gzt g1
Since HH*=| z 1 =z z 1 1 gzt
z x 1 A A S |
3 gzl 4+z+1 7l 4142
=| z+z7t+1 3 1+z7 42
z+14+z7! 1+z4+z? 3

And now since z +1+z7! = (z71)(2? + = + 1), the above matrix is

3] mod 1+ z + z2.



CHAPTER 2. ORTHOGONAL MATRICES 45

We define @y (x), the cyclotomic polynomial of order k as

@)= [ @-.

v is a primitive
k" root of unity

If r an n length row vector, we use the notation cire(r) for to be an n x n matrix

whose first row is r and each subsequent row is a right shift of the row above it.
1
Example 31. circ(lzyz) =

SN

@ N o~ 8
ST
el B S



Chapter 3

Matrix Forms of the Plane

3.1 The flag form of the incidence matrix

The incidence matrix of a finite projective plane has a well known normalised form,
developed in 1953 by L.J. Paige and C. Wexler [78]. This form is directly related to
complete sets of orthogonal Latin squares [14], [47], [51].

Observe that the incidence matrix of a projective plane was built with an arbitrary
ordering of the points and lines of the plane. Picking a particular ordering, we can
get a nice structure.

Suppose II is a projective plane of order n. Select a flag, (po, &). Let £y,--- 4,
be the n lines through py other than ¢4, and also let py,---,p, be the n points on
£y other than py. Now for ¢ = 1,...,n each #; has n more points on it, other than
Po- And, since all the lines 44, ..., 4, already meet (at point py), this accounts for all
n{n+ 1) remaining points. Hence label the remaining n points of £;: ppit1,. .., Dn(i+1)-
Similarly, label the n lines through p;: 11, ... s ln(i+1)- Now consider the incidence

46
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Figure 3.1: Permutations in flag form

¢

b
Pr(i+1)
matrix of II with respect to this particular ordering.
We consider the submatrix P;; consisting of the rows ni + 1,...,n(i + 1) and
columns nj +1,...,n(j + 1). Since each point ppii1,. .., Pnw+1) Must be on exactly

one line with point p;, there must be exactly one 1 in each row of this submatrix.
Similarly, each line of £p;41, .. ., £n(j41) must meet line £; in some point, so there must
be exactly one 1 in each column of this submatrix. Hence this submatrix is an n x n
permutation matrix. See Figure 3.1.

We will refer to the flag (po, %) as the anchor of this form. The submatrix
consisting of the rows n+1,...,n% +n and columns n +1,...,n% + n is the kernel
See matrix in Figure 3.2, showing the kernel as a matrix of permutations.

The kernel of this incidence matrix can be viewed in two ways; (i) as an n? x n?
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Figure 3.2: Incidence matrix in flag form

O OO —
e 4 2
o~ N £
oo — aw A A
OO O —
OO O —i
O D e i ew]
N o~ N
— ™~ [
o= o Dl. Dl Dl
OO~ O
SO - D
O -~ O O
i ™ —
— o~ 2
O O - O .r,_ P Dl
o~ O R ew]
O~ O O
e
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matrix of 0’s and 1’s, and (ii) as an n X n matrix of permutations, elements of the
symmetric group S,. Considered in this second way, this matrix is a generalised
permutation Hadamard matrix; i.e., it is a GPH(n,n).

To see this, view the above matrix in block form.

M B
4= )
where

1 11 1

100 --- 0

M=11020 0

100 --- 0
000 0 000 0 000 0
111 1 000 --- 0 0 00 0

000 ---0 000 --- 0 111 --- 1
and C is the kernel.

Since A is the incidence matrix of a projective plane, we know that AAT = nI+J;

hence

r (M B\[(M' B
AA“(BTC)(BT cr

MMT +BBT MB+ BCT

- ( BTMT +CBT BTB+CCT ) =nl+J
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Equating the (2, 2) blocks, we have BT B + CCT = nl,2 + J,2. Now noting that

11 1 00 --- 0 0 0 0
11 1 00 --- 0 00 0
11 1 00 --- 0 0 0 0
00 0 11 - 00 0
00 0o 11 - 1 0 0 0
SO R A R Do
0 0 6 00 .- 0 11 1
00 0 00 0 11
00 0 00 0 11 1)
J, 0 0
0 J. 0
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it follows that

( n 0 0 11 1 11 1

0 n 0 11 1 11
0 0 n 11 1 11 1
11 1 n 0 0 11 1
11 1 0 n 0 11 1

T :
cCh=1 14 1 0 0 n 11 R E

11 1 11 1 n 0 0
11 1 11 1 0 n 0

nl, J, -+ J,

T J,. nl, J.,

in block form CC* = . . )
J, J. - al,

Since P is a permutation matrix, P~' = PT. So for C = [B;], we get

O = [FIJ" = [Pji") = [F'] = C".

J?

Hence CC* =nl mod J, hence C is a GPH(n,n).

Note that the kernel is not unique but, for a given anchor, the different possible
kernels are equivalent (as GPH matrices). It can depend upon the order of the points
P1,- -+, Pn (order of the columns), the lines 41, - - - , £, (order of the rows), or the order

of prix1,..., ‘.pn‘(i+1) (multiplication of a row by an element of S,) or £,:,1, - .. s In(it1)
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(multiplication of a column by an element of S,). However, different anchors may

give inequivalent kernels.

Example 32. The following matrix is an incidence matrix of the Fano plane, de-

scribed in Example 11, with flag (1, (1,2,4)) as the anchor.

(1 1 110 0 00
1 00/1 100
1 00j0 011
0010|1010
010|001 01
0011001
001{01 10

The kernel is

We can replace the permutation blocks with representatives from the group

Zy = {e,a} to get the following GH(2, Zs):

e e
e a
Using the natural group isomorphism from Z; into {1, —1} we get the Hadamard

matrix
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Example 33. The following matrix is a flag form of the projective plane of order 3.

O OO —HODOD - "1 O OO ™ O
OO O ~HO— OO O ™ - OO
O OO HrHd O OO OO O
SO - OO0 1O O —dHOOD
OO 1 OO0 rm O rm OO OO
OO 1O OO OO = O - O
O T OO -1 OO~ OO v
O QOO ™= OO m OO+ O
O = OO OO O D vt OO
O O OO OO OO O ™ ™ r
O OO0 OO m™m— O OO
— O OO rA - O OO0 O
o e - OO OO0 OO0

The kernel is

3

SO i OO0 — O
O =1 OO0 O A= OO
— O OO A OO O
SO —HO H O O O
S = O OO0 O
— O OO0 O O - O
OO A0 O O O
O OO - OO0 = O
— O O+ O O+ O O

which can be represented by the following GH(3,C3) where Cs is the cyclic

2]

eWIN/
™

Ve

VYU W

group {e,v,v*}:
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Example 34. The following is a flag form of the projective plane of order 4.

)

11111/060000000O0O0O0O000O0O0GO
10000(11110000O0O0OO0DO0CO0OO0COO

100000000111 100000O0O0O0TO0

10000/00000O0O0O0O11110000

10000/0000000O0OO0OO0O0O01T1T11

01000j1 000100010001000
060100001 00010001000100

01000/0010001000100010

0100000010001 0001000°1

00100100001 000O010000°1

0010001001 00000O0OD1TO0O0T10
0010000100001 100060100

001000001001 0010O01000

0001010000001 0100O0O0CT1TO0

00010/01000010100000O0°O0°1

00010001001 0000011000

000100001 100000100100

00001{1 000001000O0C1O01O00

0000101 00000100101 000

060000100101 0000100000°1

0000110001 010010000010
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The kernel is

1 000(1 0001 0O0O0{1LO0CO0O0
0100|001 0O0(01O0O0(01O00O0
0 010/0010(001O0/0010
000610001000 1(000°71
1000(01O0O0{001O0|00O0T1
01001 00O00O0OTI1|{0010O0
0010/00O01{1 00O0(0100O0
0 001|001 0/0100O01 000
1000{0010/00011j0100
01 00/00O0T1/0010(1 000
0010|121 00O0{01O0O0[00O0O01
000101001 0O0O0/0O010Q0
1000(0001/0100|/0010
0 10O0(0O01O0fr0O0O0B|000O01
0010/0100(000T1(1 000
0001|100 0(00T1O0[|01O00
which is also representable by

e e e e

e a b ab

e b ab a |’

e ab a b

a GH(4,G) where G is the Klein-4 group {a,bla? = 1,b*> = 1, ab = ba}.

Lemma 12. IfII is a plane with kernel GPH(n,n) and s € S, is a permutation
which commutes with every element in the GPH(n,n), then we can associate with it

a (p, £)-collineation, where (p,£) is the anchor.

Proof. We define the map « as follows: points py, . . ., p, will all map to themselves, i.e.

a(po) = po, etc.. Points priy1, ... » Pn(i+1) Will be mapped according to the permutation

S, l.e. a(pm~+j) = Pni+s(j)-
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This will induce a similar map on the lines. So lines 4, ..., 4, will all map to
themselves, and a(lnit;) = lniys(j)-

All incidences with the points py,...,p, are preserved, since a line in the set
{lris1,- -, Zni+1) } maps to another line in that set, incidences with lines 4y, . .. , 4, are
similarly preserved. Now consider the incidence of points ppi1, - . ., Pn(k+1) and lines
€amt1, - - €ngms1). The incidence is given by the (k,m) element of GPH(n,n), say g.
Reordering the points according to the permutation s is the same as multiplication on
the left by s, and reordering the lines according to the permutation s is the same as
multiplication on the right by s™. Since s commutes with g, we get that sgs~! = g.
S0 if Prkti € Lnms then apprys) € (lnmas)-

This gives a central collineation with center p and axis /. O

Theorem 13. [39] If the kernel of a projective plane PP(n), with anchor (p,£),
forms a generalised Hadamard matriz GH(n,G), where |G| = n, then this PP(n) is

(p, £)-transitive.

Proof. Let II be a projective plane of order n whose kernel is a GH(n, G); |G| = n,
when anchored at (p, £). Let s € S, where S is the group associated with G described
in Lemma 10. From Lemma 12, there is a collineation associated with s. Since
|G| = n, G is a transitive subgroup of S,,, and hence S is a transitive group, and we

can get such a collineation for each element, II is (p, £)-transitive. O
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Corollary 14. If a projective plane PP(n) has a flag form such that the kernel is a

generalised Hadamard matriz of index 1, then it is of Lenz class at least II.
Converse to Theorem 13:

Theorem 15. If a projective plane PP(n) is (p,£)-transitive for flag (p,£), then it

has a kernel that is a GH(n,G) where |G| = n.

Proof. Suppose PP(n) is (p, £)-transitive. Arrange the incidence matrix with anchor
(p, %) having kernel C, a GPH(n,n) in normalised form. Let a be a permutation in
the group of (p, £)-collineations, we can associate with it a permutation s € S,,. Let
s be the permutation which takes points ppi1,. .., P2, to points a(ppi1),- - -, a(Pan)-
Since the kernel is normalised, there is an identity matrix in the (1,4)-entry of C.
So, s is also be the action of & on lines £,;,1,... s In(it1y- Since s is the action on
lines £y41,..., 2, and since there is an identity matrix in the (j,1)-entry of C,
s is the action on points pnjy1,...,Pn(j4+1). Since incidence is preserved, for every

' = g. So g is in the centralizer of the group generated by the

entry g of C, sgs~
permutations s. So by Lemma 11, the elements of GPH(n,n) are from a group of

order n. So the GPH(n,n) is a GH(n,G) where G is isomorphic to the group of

(p, £)-collineations. -

Example 35. We now take another look at the kernel of the matrix given in Ex-

ample 32. The Fano plane, along with all Desarguesian planes, are known to
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be (p, £)-transitive for all p and ¢. Hence we would expect to get a GH, as we

did. Similarly with Example 33, and Example 34 .
3.1.1 Latin squares and flag form
There is an easy way to build a set of mutually orthogonal Latin squares from the flag
form of the incidence matrix of a projective plane [14] [51]. To each column beyond

the first in the normalised kernel, we associate a Latin square whose ith row is the

1th permutation of that column acting on [ 1 -+ n ]

Example 36. Using the kernel from Example 34, we can form the following set of

MOLS:
1 2 38 4 1 234 1 23 4
2 1 4 3 341 2 4 3 2 1
3412 4321 |21 4 3}
4 3 21 2 1 4 3 341 2

3.2 The anti-flag form of the incidence matrix

We introduce here a second nice form of the incidence matrix. First, pick an anti-flag

(po, o). Let £1,...,24,11 be the n+ 1 lines on py, and we let pi1, ..., p,qq be the n+1

points on £, such that p; is on 4; for ¢ = 1,...,n + 1 (¢; must meet 4, at a unique
point). Now, for j =1,...,n—1, £; has n— 1 more points on it, other than p, and p;.
And, since all the lines ¢5,. .., 4,;; already meet (at point p;), these are all distinct.

So arrange the points so that D(n+2)+(i-1)(n—1)5 - - - » P(n+1)+(i)(n—1) are the other n — 1
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points of #;. Similarly, the lines Clnt2)+-1)(n=1)» - - - » Ln+1)+(i)(n—1) ar€ the other n — 1
lines through p;.

Now for 7,5 = 0,...,n — 1, the submatrix consisting of the rows indexed by

(n+2)+in-1),...,(n+ 1)+ (@ +1(n—-1)

and columns indexed by

m+2)+jn-1),...,(n+ 1)+ (G +1(n—1)

is either an (n — 1) x (n — 1) permutation, or (if i = j) it is a matrix of all
0’s. The points P(nt+2)+i(n—1)s - - - s Dn+1)+(i+1)(n—1) are all on the line ¢;, the lines
Llng2)1i(n—1); - - - s Lnt1)+(i+1)(n—1) all must meet ¢; in some point. If i = j, then these
lines will all meet ¢; at the same point, p;, and so the submatrix considered will be
a matrix of all 0’s. If 7 £ j, then each of the lines Lint2)+i(n—1), - - - s L 1)+ (541) (n=1)
must meet 4; in one of the points P(n+2)+i(n—1)1 - - - s D(nt1)+(i+1)(n—1)- Since it must be
a distinct point for each line (the lines all meet at point p;), then the submatrix is a
(n — 1) x (n — 1) permutation. For i # j, see Figure 3.2.

We will refer to the anti-flag (pg, £) as the anchor of this form and the submatrix
consisting of rows n+2,...,n% +n and columns n+2,...,n2 +n will be referred to

as the cokernel.
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Figure 3.3: Permutations in anti-flag form

¢;

| g(n+3)+i(n—1) g(n+1)+(i—|—1)(n—1)
nt2)+itn=1) /
7 fo

P(n+2)+i(n—1)

Theorem 16. The cokernel, C, of a projective plane is a GPW (n+1,n;n — 1).

Proof. View the above matrix in block form,

M B
A_<BT C)’
011 1
110 - 0
where M =] 1 0 1 -+ 0 ,
1 00 1
0 0O 0 000 0 00 0 0
111 1 0 0 0 - 0 0 0O 0

60 -
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Figure 3.4: Incidence matrix in anti-flag form

SO0 O o

Couon : & & 3

B né n’ o

o OO i

o oo ~—

cCoOo M o

S 1% A o n
DO DD e - @

OO O - o

DO -Oo O

N : . ”m o ”M q
OO MO O

[ e B ] O

CmMOoOo o

. - - -
oLl . ) ”2 ”3 “n
o= OO - o

(=R e i ] R =)

- o OO ~H{O O o o o O [ ) L =} — = .o
— OO cOCC O L B BT | oo e O o o (e
ot ot SO O e O Do O [ = o o - O
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and C is the cokernel.

Since A is the incidence matrix of a projective plane, AAT = nJ + J; hence
M B MT B
T _
=g &) (B o)

_( MMT+BBT MB+ BCT
~ \ B"TMT+CBT BTB4cCCT

Equating the (2,2) block entries, we obtain BTB + CCT = nl,2_; + J,2_;. Now

noting that

11 1 00 - 0 00 0
11 1 00 --- 0 00 0
11 1 00 - 0 0 0 0
00 0 11 0 0 0
0 0 0 11 --- 1 00 0

- :

BEB=1 4 ¢ 0 11 --- 1 00 0
00 0 00 - 0 11 1
0 0 0 00 - 0 11 1
\ 00 -0 00 - 0 11 - 1 )

3., 0 .. 0

0 Jn_ - 0
in block form BBT = . . ! ] .

0O 0 ... J_,
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we see that

( n 0 0 11 1 11 1

0 n 0 11 1 1 1 1

0 90 n 11 1 1 1 1

11 1 n 0 0 11 1

11 1 0 n 0 1 1 1

T :

ce = 11 1 00 n 11 1
11 1 11 n 0 0

11 1 11 1 0 n 0

1 1---1 11 --- 1 00 -+ n

nIn—l Jn—] o Jn—l

Jocr nlpy o0 Joo
in block form CCT = . ' . ! . ) '

Jn—l Jn—l T nIn—l
For a permutation P, P! = PT = P*, and also 07 = 0*. Hence if C = [Py],
we get CT = [PI]T = [PI] = [P5] = C*. Hence CC* = nImod J, or C is a

GPW(n+1,n;n—1). O
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Example 37. The following is the incidence matrix of the Fano plane in antiflag

form:

0111000

11001 060

1010010
100 1{0 01
0100|011
0010|101

0001{j1 10

Its cokernel is

Example 38. The following is the incidence matrix of a projective plane of order 3

in antiflag form.

/
C OO O A O A m OO - OO
OO OO H|[rtd OO ™= rm O O O
O OO - OO O — OO —~O
S OO ~-HOHO 1O OO O
OO~ OO0 OO~ OO —
OO -1 OO O OO O ri v~ O
O~ O OO0 O - O = O
O — OO OI0CO ™ OO~ O
O OO ~HODOODOO DO —~ ™
A OO OO ODOO A~ OO
O~ OO0 A~ OO0
e O OO~ OO OO
O rdrd - " O 00000 O
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Its cokernel is

0 O(1 0|1 01 O
0 0j]0 1|0 110 1
1 0{0 0{1 010 1
0 1{0 0j0 1|1 O
1 0(0 1(0 0|1 O
0 1}]1 0|0 010 1
1 01 0j0 110 O
0 10 1{1 0|0 O
This is a GW (4,3, Z,) where Z, is {e, a}, the cyclic group of order 2

0 e e e

e 0 e a

e a 0 e

e e a 0

Using the natural isomorphism form Z, into {1, —1} we get the following W (4, 3):

0 1 1 1
1 0 1 -1
1 -1 0 1
1 1 -1 0
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Example 39. The following is the projective plane of order 4 in antiflag form.

011111/0000000O0O0O0O0CO0O0O0O0
1100001 110000000000O0O

1010000001 11000000O0O0TO0

(

1001000000001 1100000°0

100010/000000000111000

10000100 0000000O0O0OO0OT1T11

0100000001001 00100100

01000000001 0010010010

0610000/00000100100100°1

001000(100000100010001

00100001 00000100O01100

001000001 000001100010

0001001 001000000CO0OC1O0T10
000100/0100100001O00O0O071

000100001001 000010100

00001010001 0001000100

000010/01 0001100000010

06000010/00110001O00O00O0O0CO071

0000011200001 010100000

0600000101 010000101000O0T0

000001j001 010100001000

Its cokernel is:

CO ™K OO0 A 0O00C O oo
O—H OO —-HH O OO~ OOO O
OO0 - OO O ~Hir- OO0 OO
OO 7O 1O OO0 OO0 O ™~
O = O OO0 w00 OC|o—~O
O OI0OO —=HIO - OO0 O|I-OD
OO HI 0O OO OO OoO0 O
O = OO~ OO0 O0CD —|m © O
OO OO0 OO0 OO0 O —
OO OO0 O CO O r Ol OO
O OO OO0 1O O OO O =
OO0 OO|I- OO0 OO
COOCOO OO ™OO -~ O
D OO OO 100100 - O
OO IHOOIHODOHODO|HOOD
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which is simply the following GW (5,4, C3) where C; is {e,v,7%}, the cyclic

group of order 3:

0 e e e e
e 0 e v 72
e e 0 % v
e v v2 0 e
e v v e 0

Theorem 17. If1I is a plane with cokernel GPW(n+1,n,n—1) and s € Sp_1 is a
permutation which commutes with every element in the GPW (n+ 1,n,n — 1), then

there is a (p, £)-collineation which can be associated with s, where (p,£) is the anchor.

Proof. We define the map « as follows: points py,...,Pps1 will all map to them-
selves, i.e. a(py) = po, etc.. Points P(n+2)+(i-1)(n=1)5 - - - s P(n+1)+()(n—1) Will be mapped
according to the permutation s. Hence a(p(n+1)+(i_1)(n_1)+j) = D(nd 1)+ (—1)(n—1)+s(j)-

This will induce a similar map on the lines: lines 4,...,£4,,; will all map to
themselves, and a(bimt1)+a-1)(m-1)+5) = Lint1)+G-1)n-1+50) -

All incidences with points py, ..., p,+1 are preserved, since a line in the set
{lins2)ri=1)n=1), - - - £(n+1)+@)(n—1) } maps to another line in that set, incidences with
lines £y, ..., £, are similarly preserved. Now consider the incidence of points
P(n+2)+(k-1)(n=1)» - - + s P(n+1)+(k)}(n—1) and lines g(n—l—2)+(m—1)(n—1)> sy E(n-{—l)—}-(m)(n—l)- The
incidence is given by the (k,m) element of GPW(n+1,n,n — 1), say g.

Reordering the points according to the permutation s corresponds to multiplica-

tion on the left by s, and reordering the lines according to the permutation s corre-
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1

sponds to multiplication on the right by s™'. Since s commutes with g, we get that

89571 = g. S0 i Puin)t(k-1)n-1)45 € Lnt1)m-1)(n-1)+5 then (Pt p-1)(m-1)+7) €

A (Lint1)+(m—1)(n—1)+)-

This gives a central collineation with center p and axis £. O

Theorem 18. If the cokernel of a projective plane PP(n), with anchor (p,£), forms
a generalised weighing matrizc GW (n + 1,n,G), where |G| = n — 1, then this PP(n)

is (p, £)-transitive.

Proof. Let II be a projective plane of order n whose kernel is a GW(n + 1,n,G);
|G| = n—1, when anchored at (p,£). Let s € S, where S is the group associated with
G described in Lemma 10. From Lemma 17, there is a collineation associated with s.
Since |G| =n — 1, G is a transitive subgroup of S,,_;, hence S is a transitive group,

and we can get such a collineation for each element of S, II is (p, £)-transitive. O

Corollary 19. If a projective plane PP(n) has an antiflag form whose cokernel is a

generalised weighing matriz of index 1, then it cannot be of Lenz-Barlotti class 1.1,

IL.1, I11.1, IVa.1, IVb.1, V or VIL.1.
Converse to Theorem 18:

Theorem 20. If a projective plane PP(n) is (p, £)-transitive for anti-flag (p, £), then

it has a cokernel that is a GW(n+ 1,n,G) where |G| =n — 1.
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Proof. Suppose PP(n) is (p, )-transitive. Arrange the incidence matrix with anchor
(p,£) having cokernel C, a GPW(n + 1,n,n — 1) in normalised form. We further
assume that the (2,3)-entry is also an identity matrix. (If it were not, we could
multiply each column by the inverse of that entry, then multiply the first row by the
element to get a normalised form with an identity matrix in the (2, 3)-entry.)

Let a be a collineation in the group of_‘(p, ?£)-collineations. We can associate
with this collineation a permutation s € S,,_;, which takes points P(n+2)s - - -, P2n O
points a(p(nt2)); - - -, @(Pan). Since the cokernel is normalised, s must also be the
action of o on lines £ 49)4(i=1)(n-1), - - - A1)+ (n-1), for ¢ = 2,...,n 4+ 1. Since
there is an identity matrix in the (2, 3)-entry, s is also the action on the points
P(n+2)+(n-1)s - - -1 P(n+1)+(2)(n~1)- Lhis implies s is the action on the lines £(,9), . . ., fan,
hence s is the same action on the points Pna2)+(i~1)(n=1)» - - - » P(n+1)+(i)(n—1) fOI
t=2,...,n+ 1. Let S be the set of all such permutations.

Since incidence is preserved, for every non zero entry g of C, sgs™ = g. So g is
in the centralizer of the group generated by the permutations in S. So by Lemma
11, the elements of GPW(n + 1,n,n — 1) are from a group of order n — 1. So the
GPW(n+1,n,n—1) is a GW(n + 1,n,G) where G is isomorphic to the group of

(p, £)-collineations. | O
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Example 40. The matrix in Example 38 show that there exists exactly one non-
trivial (p, ¢)-collineation of the plane. The matrix in Example 39 shows that

there exist two nontrivial (p, £)-collineation of the plane of order 4.

In Example 37, we note that any collineation in this plane that fixes a line and

a point not on the line will be the identity.

3.3 Relating flag form and anti-flag form

Given a projective plane II of order n, let K be the normalised kernel of a flag form of
the incidence matrix of II. Let C be the normalised cokernel of an anti-flag ordering
of II. The core of K is an (n — 1) X (n — 1) array of n X n matrices, and the core
of C'is an n x n array of (n — 1) X (n — 1) matrices. By choosing the appropriate
anchors for C and K, we can draw a nice correspondence between their cores. If the
incidence matrix of II is in flag form, the point line pair (p;,4;) is an anti-flag, and
we shall use that pair as our anchor for anti-flag form.

First, assume that the incidence matrix A of the plane Il is in flag form with a nor-
malised kernel. (We have points labelled po, . . ., pn24, and lines labelled 4y, . . ., £,2,r.)
Let A be the incidence matrix of IT in antiflag form with anchor (py,4;). We will de-
scribe a new ordering of points indicated as Dy, . . ., Dn24n; lines as Z), e, an+n.

So (50,20) is (p1,41). Now Pi,Ds,...,Dns1 are the points on #;; hence so also

are Po, Pn+1, Pnt2, - - - » Pon, (Such lists are given to mean in respective order, in other
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o~

words, P1 = Do, P2 = Pn+1,--- €tc.). Similarly, the lines Zl, Zz, ...y 4ny1 are the lines
Lo, lni1,losa, . . ., lan. This ordering agrees with the antiflag form: the (/1\, T) entry is
a 1 (since A was in flag form) and the ZQ, e ,2n+1 by D2, ..., Pne1 submatrix is the
identity matrix from the (1,1) block entry of the normalised kernel of A.

Now Dni2,Dnt3, - - -, Pan. Will be the points on the line 4, (@\1) other than pg and
p (D1 and Py), that is, p2,ps,..., 0. Similarly, Zn+2,2\n+3, ... ,Zgn will be the lines
by, lsy. .. L.

Fori=1,...,7m Dni2)ritn-1), Dnt2)+i(n—1)+1s - - - » Din+1)+(i+1)(n—1) Will be the points

on the line %, (the line £,,; of A). Since this line was in the first row of blocks of

the normalised kernel (consisting of identities), these will be the points

Pontis P3ntis - - - s Pn2+4 -
Similarly the lines £(ny2)ritn—1); Lint2)+itn-1)+1 - - - » Lnt1)+(i+1)(n—1) BTE
£2n+’i1 £3n+’i, C ,e’n.z-l—i .

Note that the cokernel of A is already normalised. Consider the first row of blocks

of the cokernel, representing the lines Zn+2, e .Zgn which are #,,...,4,. Since the
point pg,4; is on the line 45, ps,.; is on £3, etc. the submatrices ZHLQ, ?n+3, ... ,@n by
Din+2)+i(n~1)s - - - » Pt 1)+(i+1)(n—1) (for 2 =1,2,... n) are identity matrices. Hence the

first row of blocks of the cokernel is in normalised form. Similarly, the first column

of blocks of the cokernel is also in normalised form.
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Now compare the core of the kernel of A with the core of the cokernel of A.
Consider the (4,7) entry of the (h, k) block of the core of the cokernel of A. This
is the position representing whether or not the point Pin+1)+x(n—1)+; is on the line
Z(n+1)+h(n_1)+i, which is whether or not the point P(i-1)n+k is on the line £;_1ynys,
which is represented by the (h, k) position of the (4, j) block of the core of the kernel
of A.

This process can also be done in reverse, starting with an anti-flag form and
reordering to a flag form (picking the flag (71, Zl) as the anchor). I.e. Reverseing the
process in A will result in A. In this manner, every kernel has an associated cokernel.

Rearrangements of block matrices in this manner, having the (4, ) entry of the
(h,k) block as the (h,k) entry of the (i,7) block, have been studied by Craigen
in [28]. He found the following: If the core of a matrix GH = GH(n,G), where
G is a group of permutation matrices of order n, then the result is the core of a
GPW(n+ 1,n,n — 1) = GPW, which is developed over G. Moreover, GPW is a

GW(n+1,n,H) with [H| = n — 1 iff GH is group developed over H.

Theorem 21. There is a plane I1 of Lenz-Barlotti class 11.2 only if there is a

GH(n,G) (|G| = n) whose core is group developed.

Proof. Let II be a plane of Lenz-Barlotti class I1.2 and let A be the flag form of the

incidence matrix of II where the anchor is the flag (po, %) such that II is (pg, £o)-
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transitive. Let (p;,¢;) be the antiflag pair such that IT is (p;, £;)-transitive.

By Lemma 15, there is a group G of order n such that the kernel of A is a
GH(n,G). By Theorem 20, there is a group H of order n— 1 such that the associated
cokernel is a GW(n + 1,n — 1, H). From [28] the associated GPW (n + 1,n,n — 1)
of a GH(n,G) is a GW(n + 1,n, H) iff the core of the GH(n, G) is group developed

(developed over H). O

Example 41. There are 4 planes of order 9 [69]. They are the Desarguesian plane
(of Lenz-Barlotti class VII.2), the left and right nearfield planes (class IVb.3
and IVa.3), and the Hughes plane (class I.1). The nearfield planes of order 9

are also known as the Hall planes [19].

The following matrix corresponds with the kernel of the Desarguesian projective

plane of order 9 in flag form. It is a GH(9,G) where G = {z,y|z® = 1,¢® =

1, zy = yx}.

e e e e e e e e e

e T vy zy? P 22y 2%y oy
e Ty T y xy* %y 2t oy 2Py
e zy zy = y  zy? 2%y 2 P
e y* ¢y zy =z zy? 2’y 2P
e = Yy 2’y zy 2 y zy? 2%y
e 22y 22y 2%y zy <z zy?
e zy? 2%y ¢ y* ¥y gy 2 y
e y axy* 2%y 22 ¥ ¥y wzy z

We see that the core of this kernel is group developed (displaying the division

table representation of the cyclic group of order 8 with generator w). The
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associated cokernel is as follows:

0 e e e e e e e e e
e 0 e w w W W W W WP
e w 0 e W w W W W W?
e e w 0 W W o w Ww? W W
e W w? W 0 e w' w W Wt
e wd W W wt 0 e W ow W
e w WP W e wr 0 W W ow
e w w w® W W W 0 e Wt
e w w W W W W Wt 0 e
e w W ow W W W e Wt 0

Example 42. The following matrix is the kernel of a flag form of the (right) nearfield
plane of order 9 (Since the incidence matrix of the left nearfield plane is the
transpose that of the right nearfield plane, it is omitted). It is another GH (9, G),

where G is the same group defined in Example 41.

e e e e e e e e e

e 2 ¢t 2% xy? oy 2Py ay

e x 2 y zy %y oyt zy? %

e y y* ¥ m? zy z 2% 2%y

e zy =% 2%y 22 ¥ oz oy z

e z?y zy® 222 oy 22 zy oz y?

e ¥ oy z  ry 2%y 22 zy  xy?

e xy? 2’y =zy 9> z zx? 22y

e r?y* wmy zy? v Xy y? oz )

Note that its core is group developed, over the quaternion group, H, of eight

elements.
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The associated cokernel is

0 e e e e e e e e e
e 0 e B?> B3 C CB* B C(CB CB?
e B? 0 e CB* B® C CB> B CB
e e B? 0 C CB® B* CB CB*> B
e B CB CB? 0 e B? B3 C CB?
e CB? B C(CB B? 0 e CB® B3 C
e CB CB? B e B? 0 cC CB* B?
e B3 C CB® B CB CB* 0 e B?
e CB® B3 C CB> B CCB B? 0 e
e C CB* B* CB CB?* B e B? 0

where H = {B,C|B* =1 C*=1 C? = B? BC = CB%}.

Example 43. The following is a GPH(9,9) which is a kernel of the Hughes plane

of order 9.

e e e e e e e e e

e 73 21/t 27y sl g2 y2z? Y25 76

e 2%y zley? Y15 22z yialy Yy’ yiz

e 12 2%z r yiz®  yizTy y w23 gz Ty
e 2597 vz 2%l 27 y5 2 albryt yiat

e yrly a7y zlylat 72 % Y2 gzt ytayt
e z2yzd zlylzd 28 2y 2y 28y 2Pz yiay?
e zy'zd 5 i aytzt P afSayt Padyt ytalyt

\ e 26 Y2 Y2z 215 oyt 2Ty 27yt 3 }

Where z is the permutation (1,5,7,3,4,9,2,6,8) and y is (1, 4)(2, 5)(3,6)(7, 8, 9).
It is interesting to note that this differs from the presentation of the Hughes
plane found in [47], since the permutations z and y generate a subgroup of order
162, whereas the permutations found in [47] generate all of Sg. The group gener-

ated by = and y has a three element center (generated by (1, 3, 2)(4, 6,5)(7,9, 8),
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found using Groups and Graphs [68]). This indicates that there are two non-
trivial (p, £)-collineations where (p, £) is the anchor associated with this kernel.

The following GPW (10,9, 8) matrix is the cokernel of the antiflag from of the

Hughes plane associated with the above kernel.

(9 I ¢ I € VI ¢ I o T VI I o T ¢ S e
BeRNCTurwooe
CRRBTOHNWO X
RREecu_NToxmo
FRYIITougmQoe
RPYEI oI
Vexo<IQUme
Goo~NNXQITToe
SOGNXNIOHQe
SR XNNTQITe

The permutations as follows:

A=(1,8)(2,4,3)(5,6) S=(1,7,2,3,6,8,4) 2A=(1,3,7,5,2,8,6)

B =(2,7,4,6)(3,5) T=(1,6,7,8,3)(2,5,4) B =(1,4,5)(3,8,7)
C=(1,4,8,7,3,6) U=(1,5,8,2)(3,4,7,6) €=(1,2,6,4,8,5,7)

D =(1,2,8,5)(4,7,6) V =(1,8)(2,6)(3,7,4,5) D =(1,5,4,6,8,2,3)
E=(1,3,8,6,7)(2,5) W =(2,4,3)(5,7) ¢=(1,7,8,4,2)(3,5,6)
F=(1,6,8,3,7,5,4,2) X =(1,2,7,3,8,5,6) §=1(1,6,5,8,3,4)(2,7)
G=1(1,5,7,8,2,6,3,4) Y =(1,3,5)(48,6) ® = (1,8)(2,5,3,6)(4,7)

H=(1,7,2,3)(4,58) -Z=(1,4,6,5,2,8,7) 5 =(2,4,3)(6,7)
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3.4 Baer subplane form of the incidence matrix

There is a third interesting form of the incidence matrix of a projective plane that
has a Baer subplane. Let II be a projective plane of square order (Il is a PP(n?))
which has a Baer subplane I (IT" is a PP(n)).

We can organize the incidence matrix of IT as follows. We let the first n2 +n + 1
points and lines be those of II'. Now each point p;, i € {1...n? +n + 1}, is already
incident with n + 1 lines, and will be incident with n? — n other lines. Hence let
Cn2ni 14 (i-1)(n2—n)> Ln2 gt 14 (i=1)(n2—=n)+1> - - - » Ln2in+14i(n2—n) De the n? — n lines on p;.
Similarly, let Pp2.yni1t(i-1)(n2—n)s Pr24nt14(-1)(n2—n)+1; - - - » Pr2bnt14i(n?—n) D€ the

2

n® — n points on #;.

The submatrix with rows

Tn24n424+(i~1)(n2—n)s - + + » Tn24n41+i(n2—n)
and columns

Cn24nt2+4(i—1)(n2=n)s - - - » Cn24n+1+44(n2—n)
corresponds to the points (outside of II') on ¢; and the lines (outside of II') on p;.
If p; is on £;, then this submatrix is a matrix of all 0’s, otherwise, since each line
on p; must meet £; in some point, it is an (n® — n) x (n? — n) permutation matrix.
Hence we can view the submatrix of rp2ni0 ... Thignzy; and cp2ngs ... Cpagn24y a5 a

GPW(n? +n+ 1,n%,n? — n). We refer to this as the Baer-kernel.
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To see this, we can view the incidence matrix of I in block form.

M B
A= (5 )

where M is the incidence matrix of the subplane IT’,

111 1 000 0 0 0O 0
000 0 111 1 0 00 0
B = : . : : .
000 0 000 0 111 1

and K is the Baer-kernel.

Since A is the incidence matrix of a projective plane, we know that AAT = nl+J;

hence

r (M B[ M B
A4 “(BT K)(BT KT

_( MMT +BBT MB+ BKT

~\ BT™M? + KBT BTB+ KK” ) =nl+J

Equating the (2, 2) blocks, we have BTB + KKT = nl_, + J,4_,. Now noting

that
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BTB

we see that

KKT
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So KKT is a GPW(n* +n + 1,1, n? — n).

Moreover, the (0,1)-complement of this matrix is the incidence matrix of a projec-

tive plane of order n (In fact, it is the transpose of M). If there is 1 in the (i, j)-entry

of M, then p; is on ¢;. Considering the (7,%)-block entry of K, since p; is on £, this

must be a block of 0’s.

Example 44. The following is the incidence matrix of PP(4). It has a subplane of

order 2, so when it is organized as described above we get a

GPW(7,4,2).

GPW (22 +2+1,22,22 — 2)

/

1101000/11000000O00O0O0CO0TO
060110100/001100000O0O0O0O0O

6011010/(00001100O00O0O0O0CO0

0001101/000000110000°00

10001106/000000001100°00
060100011|0000000O0O0CO0O1T1O00O0
101000100 00000O0O0O0O0OO0T11

1000000|/001 01010001000

1000000000101 01000100

010000000001 001100010
060100000/00000110010001

00100001 0000010100100

001000001 000001011000

60001000(00100000O0O10110
0001000/0001000010100°1

0600001006(20000100001010
06000100j01 001000000101
00000101 0100001O00O0O0CO01

0000010(010100100000T10

0000001j170011000010000
00000O01|01 100100100000

\
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whose Baer-kernel is

O OO RO O|I0 1O ™m|m OO0 O
OO~ OO O O OO =H|O O
O O O O+ OO - OO O
OO OO O |l OO OO O
O OO O ™4 OO OO0 O ©
SO+ O+ OIC 1O |0 O —
O = OO0 |0 OO0 Oj- OO O
OO = OO0 OO0 OO0 OO
O O ~ O OO0 O|rmd OO OO —
Ol OO0 OO0 OO —~=H|IO O O
O O OO0 OO ™|O OO ™~ O
— OO OO Ol OO O|rdt OO
OO0 OO m™|O OO0 ™[O ™| —
O OO0 O OO Ojr+ Ofrd O O

This corresponds with the following GW (7,4, C»).

1

0 0

1 0 0 1 1
0 0

0

1
0

1

1

0 O

0 0

0

Example 45. This example is found in [82], and is attributed to David Glynn.

Let G be the group found in Example 24, with generators

] _

Then the matrix circ(0 2%y 1 y 0 1 1 zy z*% =zy 0 y 0)isa

OO DOO
COoOH OO O
- OO OO
e NeNe R k=
cCoOO0 OO
oo OO
~————

I

P

gl

8
S
OO0 O
OO~ OO
SO0 0O
OCHOOOO
OO0 OO
SCO-HOOO
~N~—————

T

GW (13,9, G), which is the Baer-kernel of the Hughes plane of order 9.
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Related Constructions

4.1 Power Hadamard matrices

A technique developed by Robert Craigen and Roger Woodford gives rise to the pos-

sibility of finding generalised Hadamard matrices from Butson Hadamard matrices.

Lemma 22. Ifni,ny, ..., ny are pairwise relatively prime, and there exists BH (h,n1),

BH(h,ny), ..., BH(h,ny) then there exists a PH(h, ®,,®,, - ®,,)

The proof of the above lemma, requires the solution to systems of modular equa-
tions, which are guaranteed if the moduli are relatively prime. It is possible to have
solutions when the moduli are not relatively prime as well. However, in the case of

ny = 2, ny = 4 and h = 4n where n is odd, this will not be possible.
Theorem 23. There is no PH(4n, (1 + z)(1 + z?)) if n is odd.

Proof. Suppose such a PH existed. Then, since £ = —1 is a zero of (1 + z)(1 +
%), replacing z® with (—1)® in our matrix gives a Hadamard matrix H. Similarly,

82
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replacing z® with (—4)® gives a Butson Hadamard matrix over 4’th roots of unity, B.
We can organize the columns of the PH in such a way that the first three rows of H

would have the following form:

-1 -1 -« =1 1 1 --- 1/-1 =1 --- =1

11 1y 1 1 .- 1 1 1 ... 1 1 1 .- 1
11 1p1 1 --- 1/-1. -1 .-~ -1}{-1 -1 --- -1
11 1

If in some position PH has the entry 2* where a = 0 (mod 4) then H would have
a 1 in that position and B would also have a 1 in that position. If PH had a z°
where b =1 (mod 4), H would have a —1 and B would have a —i. If PH had a z°¢
where ¢ = 2 (mod 4), H would have a 1 and B would have a —1.If PH had a z¢
where d = 3 (mod 4), H would have a —1 and B would have a i. So we can see that
each of the four types of columns of H, listed above, would give rise to four different

types of columns of B, giving a total of 16, as listed below. Let a be the number of
1 1

1
columns of type 1 |>let b be the number of columns of type —1 |, ete.

a b ¢ die f g his t u viw zT Yy =z

11 1 1)1 1 1 141 1 1 111 1 1 1
1 1 -1 -1|1 1 -1 =-1{% ¢ —¢ —i|d% & —i —1i

P

-1 1 -1{¢ — ¢ —2}1 =1 1 —=1}4 —i i —1i

Since H is a Hadamard matrix,
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a+btc+d=e+f+g+h=s+t+ut+tv=wtz+y+z=n

Let R;,2 = 7,2,3 be the i’th row of B. Since B is a Butson Hadamard matrix
(R1)((Rg)*)T = 0. From this we get

a+b+te+f=ct+d+g+h=s+t+w+z=ut+v+y+z=n.

From (R;)((R3)*)T =0,

atctst+u=bt+td+t+v=et+gtwty=f+h+z+2z=n,

and from (Ry)((R3)*)T =0,

at+d+w+z=bt+ct+z+y=f+gt+s+v=e+h+t+u=n.

Now sincea+b+c+d=c+d+ g+ h we get a+ b= g+ h, similarly we get

ct+d=e+f st+it=y+z utv=w+z
at+c=t+v b+d=s+u et+tg=x+z2
f+h=w+y b+c=w+z at+d=z+y
stv=e+h fHg=t+u

and, from these, b+c+2d+z+y+2z = w+z+c+y+2d+2z = n+2(d+2). Also,
t+v+f+ht+g+htutv = f+g+ttut2h+2v = t+utt+u+2h+2v = 2(t+uth+v).

Now we get (b+d+t+v)+(f+h+z+2)+(g+h+c+d)+(u+tv+y+2z) = 4n.
Subtracting t +v+ f+h+g+h+utovwegetb+d+z+z+c+d+y+2z=
b+c+2d+z+y+2z=4n—-2(t+u+h+v).

Hence n + 2(d + z) = 4n — 2(t + v + h + v) but the left hand side is odd if n is

odd, and the right hand side is always even. This is a contradiction. O

Theorem 24. There are no projective planes of order n = 4m, m odd, that is (p, £)-

transitive (p € £) where the group of (p,£)-collineations is equivalent to the cyclic
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group.

Proof. Suppose II is a plane of order n which was (p, £)-transitive (p € £), whose
group of (p, £)-collineations was the cyclic group. By Lemma 15, there is a GH(n, G)
where G is the cyclic group (say generated by g). By replacing the generator g with
z, we would get a PH(n,z™ — 1). Since 2" — 1 = (1 + z)(1 + z2)g(z), we would also
have a PH(n, (1 + z)(1 + z%)). Hence by Theorem 23, no planes of this type can

exist. 0
4.2 Latin squares

It is possible to use certain power Hadamard matrices to give sets of mutually or-

thogonal Latin squares. It is known that for n the matrix

. 2
cire(1 z z* 2% 21 ... (D7)

where the powers are taken mod n will give a PH(n, ®,) if nis odd and a PH(n, ®,,)
if n is even. In the case where n is odd, the inner product of certain pairs of rows
give the full cyclotomic polynomial. In that case, those two rows will correspond to
a Latin square, as follows.

Given a PH(n, f(z)) = [as], we define R; x R; = [b, by, - ,b,] where each
element is in the set {1,z,2%, ...,2" 1} and by = ay, - aj’kl. If all elements of R; * R;

are distinct, then the following construction gives a Latin square. Let z be the right



shift permutation matrix, so

0
0
0
0
0
1

The k’th row of the Latin square L;; is defined to be [dby].

Example 46.

SoRi*Rs= (21! z7° 1 z

Reducing the powers mod 5, gives

(z* 22 1 2

Lemma 25. If m is odd and r is relatively prime to m then the set
{a®> = (a+7)* (mod m)la € {0,...,m—1}}

contains m distinct elements.

1
0
0

0
0
0

3

0
1
0

oo O

0
0
1

OO O

z ), hence

o O

1
0
0

8 =

8

L1,5 =

8 8
NN

(o]

0
1
0

8 =8

] 8
s

(UL e I

,andletd:(l 2

8

8
.

o N O W

8 = 8
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8 8

U QO =

2

e

8 =8

W = s DN Ot

8 8
N

In the case where n = 5, we have the matrix

8

K

= DO O O e
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Proof. If two elements were congruent then (since r and 2 are invertible mod m)

a?—(a+r)2=0"— (b+r)?

—r(2a+71)=—-r(2b+7)

20+r=2b+71
20 = 2b
a=b O

Corollary 26. If m is odd, then using PH(m,®,,), there will be a Latin square

associated with R; x R; if 7 — 1 is relatively prime to m.

Knowing which inner products give us Latin squares, we can now look at which

pairs would be orthogonal.

Theorem 27. If m is odd, then using PH(m, ®,,), the Latin squares associated with

R; x Ry, and R; * Ry will be orthogonal if j — i is relatively prime to m.

Proof. We show that the positions in L;, which contain a 1 form a transversal in
Ljr (i.e. in Lk, each of those entries are distinct). Since all the rows are a shift of
the row ( 12 -~ n ), the positions corresponding to any entry in L;;, will form a
transversal in L;;. Hence L;; and L, will be orthogonal.

In row z of Lj, there will be a 1 in the a’th column if the z’th entry of R; * R; is

271, If the 2’th entry of R; * R, were z°, then there would be a 1 in the (b+1)’st
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column of Lj;. Hence there would be an (a — b) mod m in the a’th column of the
2’th row of L.

Since the z’th entry of R; x R; is 24771, the positions corresponding to 1’s in Ly
will form a transversal in Lj; if the elements of R; x R; are distinct. By Lemma 25,

these will be distinct when j — 4 is relatively prime to m. O

Example 47. Inorder 5 (from Example 46), we get RyxRy = ((2* = «® 1 2?).
Comparing the 1’s in L, 5 (indicated by circles), we see the corresponding entry
inrow 4, i =1,...,5 of Lys (indicated by squares) is one more than the power

of the i’th entry of R; * R,.

o]
]

1 4
) 3
2

Los = | [4]
3
2 [3] 5

=

D [ 2 3 [5]
3 1 4
5 5 1 3
2 4 5 2
4 4 1

2]

Similarly Ry * Ry = (2 z* 2® 1 23). For the I’s in Lyg (indicated by
circles), the corresponding entry in row 4, ¢ = 1,...,5 of L, 5 (indicated by

squares) is one more than the power of the 7’th entry of Ry * R;.

o]
el

2] 3 4 5 5
1 2 4
3] 4 3
5 [1] 2
2 3 [4] i @ |

o]

1
3
o Loys =
2

=

2
4
1

4
1
3
)

=
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In this manner, we are able to construct sets of mutually orthogonal Latin squares
of size equal to one less than the smallest prime in the prime power decomposition of
m. The McNeish bound is a constructive lower bound for sizes of sets of MOLS [47].
This will meet the McNeish bound for square free m’s, but will give Latin squares all

of whose rows are shifts of the same starting row.

Example 48. In order 15, we use the matrix

cire(1 z z* 2° 2 210 2% z* z* 2% 21 z 2° 2t o).

In this case we find a pair of orthogonal Latin squares which correspond to

R] * R15 and R2 * R15Z

2 3 4 5 6 7 8 9 10 11 12 13 14 15 1
4 5 6 7 8 9 10 11 12 13 14 15 1 2 3
6 7 8 9 10 11 12 13 14 15 1 2 3 4 5
8 9 10 11 12 13 14 15 1 2 3 4 5 6 7
10 11 12 13 14 15 1 2 3 4 5 6 7 8 9
12 13 14 15 1 2 3 4 5 6 7 8 9 10 11
1415 1 2 3 4 5 6 7 8 9 10 11 12 13
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 |,
3 4 5 6 7 8 9 10 11 12 13 14 15 1 2
5 6 7 8 9 10 11 12 13 14 15 1 2 3 4
7 8 9 10 11 12 13 14 15 1 2 3 4 5 6
9 10 11 12 13 14 15 1 2 3 4 5 6 7 8
11 12 13 14 15 1 2 3 4 5 6 7 8 9 10
13 14 15 1 2 3 4 5 6 7 8 9 10 11 12

15 1 2 3 4 5 6 7 8 9 10 11 12 13 14 |

and
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1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
5 6 7 & 9 10 11 12 13 14 15 1 2 3 4
9 10 11 12 13 14 15 1 2 3 4 5 6 7 38
131415 1 2 3 4 5 6 7 8 9 10 11 12
2 3 4 5 6 7 8 9 10 11 12 13 14 15 1
6 7 8 9 10 11 12 13 14 156 1 2 3 4 5
10 11 12 13 14 15 1 2 3 4 5 6 7 8 9
14 15 1 2 3 4 5 6 7 8 9 10 11 12 13
3 4 5 6 7 8 9 10 11 12 13 14 15 1 2
7 8 9 10 11 12 13 14 15 1 2 3 4 5 6
1112 13 14 15 1 2 3 4 5 6 7 8 9 10
51 2 3 4 5 6 7 8 9 10 11 12 13 14
4 5 6 7 8 9 10 11 12 13 14 15 1 2 3
8 9 10 11 12 13 14 15 1 2 3 4 5 6 7
1012 13 14 15 1 2 3 4 5 6 7 8 9 10 11

Example 49. In order 35, a set of 4 mutually orthogonal Latin squares can be
constructed from the following row vectors (Ry,...,MRy), each entry represents

a row of the Latin square:

26 24 22 20 18 16 14 12
25 23

8
8 8
8 8
8.8
8

( 1 .’1731 CE27 23 .’Elg 3315 CL'H 1177 373 .1'34 J}'30 $26
mQ — 1.22 $18 3314 51310 1136 $2 11533 $29 $25 $21 3’)17 $13
1.9 $5 T .’E32 $28 $24 £L'20 $16 $12 $8 IE4 )

(z° 2% 2% ¢ z° z® ozt oz ¥ P oz
My = o g3 g2 I8 12 g6 ] 20 428 17 g1l 5
g3 g2 g2 16 g0 g4 g3 g7 g2 15 g9
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( $8 1 1‘27 le {Ell $3 .’E3O 22 14 1.6 1’33 I25
9{4 — £U17 £L’9 1.1 $28 ZE20 $12 1.4 $31 3323 IL'IS .’137 $34
$26 2718 .’1710 CCQ $29 5521 13 375 32 .’L’24 3:16 )

4.3 Hadamard matrices from collineations

Hughes [59] shows that if a projective plane of order n = 2 (mod 4) has an even order
collineation, then n = 2. We adapt his technique to get Hadamard matrices of order
"—22——1 for certain prime powers gq.

Let o be a central collineation of order 2 of a projective plane II of order n. If n
is odd then « must be a homology, and if n is even then o must be an elation. In
both cases we can use «a to define a weighing matrix.

If n is even, and « is a (p, £)-collineation, let qi,qs, ..., q, be the n points on ¢
other than p. Let my, my, ..., m, be the n lines on p other than £. Let z( 1), 37(()2,1),
TG6,2) Tayr - -0 L(it) T 4 be the n points on line m; other than p where ¢ = Z. Let
Wi,1), W1y Wi2)> Wiiay - - - Weit)s W be the n lines through point ¢; other than £.

In the case where n is odd, and « is a (p, £)-collineation, we let q1, g, . . ., @n, Gns1
be the n+1 points on . Let my, ma, ..., My, Myy1 be the n+1 lines on p. Let Z(i,1),
TGy 62 Loy o T, TG0 be the n-1 points on line m; other than ¢; and p
where ¢ = ﬂg—l Let w1y, wg’l), Wi 2), wgg), e Wi, wg’t) be the n-1 lines through

point g; other than m; and £.
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We index rows and columns of a square matrix by pairs (7, ), in the even case
1<i<nand1<j<%=t andintheoddcase1<i<n+land1<j<2l=t
We define W, a {0, 1, —1}-matrix by

T if Zg5) € Wiy
W = [aj)(r.s)) Where agjyre = —1 if xfﬁ’j) € Wir,s)

0 otherwise

In the case where n is even, W is a W(%z, n), and in the case where n is odd, W

isa W("22" 1 n), as we now demonstrate.

To see that W is a weighing matrix, we show that any two distinct rows are
orthogonal. First, we consider rows indexed by (7, k), for a fixed i and k = 1,...,¢;
we say these rows are in the same block. The rows of this block represent points on
line m,, so for any line other than m;, no more than one of these points can be on it,
hence the rows in any block are disjoint, in the sense that no two will have non-zero
entries in the same column.

Now consider two rows from differing blocks, say rows (i,y) and (j,2) where
¢ # j. The only columns in which both rows could have non-zero entries are those
columns that correspond to lines Z(iy)Z(j,2), L(; )% (i,2)> Lli) TG0y OF T(hy) (50 Since
(T 23G,2)" = T4 %02 €xactly one of these lines will be some wy.s), representing
some column. Similarly, since (f; \%(j))* = Z(i,y)T(; ), exactly on of these lines will

be some representing some column. Suppose that wg,s = T(iy)T(j,z) and Wiy =

T, )%, Then the (4,y)'th row would have a 1 both column (r,s) and column
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(t,u), and the (j, z)’th row will have a 1 in column (r,s) and a —1 in column (¢, u).
A similar situation will occur for all other choices of W(t,u) and we5). Hence the inner
product of these two rows will be zero.

To see that the weight of W is n, consider a point z(; ;. This point is not on £, so
each of the n + 1 lines on it meet £. Fach line, except the line that passes through p,
is either w ) or wf;’s). Each of those n lines is represented by some column, hence
the row (4, 7) will have a 1 or a —1, so every row will have n non-zero entries.

We now have a weighing matrix where the rows of a block are disjoint, so we can

sum all the rows of a block and preserve orthogonality. Further, if there exists an

HtH o0 --- 0
) 0 H{@) --- 0
H(t), then we can multiply (on the left) by the matrix A .
0 0 --- H(@¥)
This has the effect of combining rows within a block.
1 0 1 0
Example 50. The matrix 1 é _01 é would have blocks of size 2, so using
0 -1 0 1

H(2) = ( 1 _11 ) we replace the first row with the sum of the first and second

rows, and replace the second row with the difference of the first and second rows,

11 1 1
o . . 1 -1 1 -1
similarly with the third and forth rows to get 1 -1 -1 1
1 1 -1 -1

(Due to Hughes [59]) In the case where n is even, for n > 3 adding the rows in a

block would result in 3 rows of a Hadamard matrix. Hence ”72 = 0 (mod 4), implying
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n=0 (mod 4).

In the odd case, if an H(t) exists, then combining the rows would result in a

W("zz_ L ”22— 2). In the Desarguesian case, we can do better, and find an H (”22—_1) To

do this, we find a skew W = W(”zz“ L n), then add ones to the diagonal. Hence when
the rows are combined, the result will be a Hadamard matrix.

The following theorem uses the fact that the core of the kernel of a Desarguesion
plane IT can be expressed as cire(1, 3,62, ..., 3772) where 3 generates the multiplica-
tive group of the associated field, and where entries are considered as elements of
the additive group. To see this, we use the associated Latin squares as found in
[59]. Suppose II is constructed using the field F. Then for each non-zero element
of F, 3%, the Latin square is the addition table of z3% + y, hence each row per-
mutes z* into 3* + vy, hence are equivalent to additive elements of F'. Also, since

(BN (B) +y = (B)(B*™) + v, we see that the core will be back circulant. To find

a circulant core, we simple take to rows in reverse order.

Theorem 28. IfII is a Desarguesian projective plane of odd order q, then there exists
a skew W(-‘%,q), with a decomposition into q—g—l X -";—1 blocks such that the rows of

each block are disjoint.

Proof. Consider the antiflag form of I, whichcomes from a rearrangement of the core

of the kernel circ(1, 8, 5%, ...,3972) as described above.
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From Section 3.3 the antiflag form of IT will have elements from the cyclic group
of order ¢ — 1, generated by w. Since 1+ (3 5= 0, the associated antiflag form will
have a core with the property that when there is an w® in the (7, j) position there is
an w'F ** in the (4,1) position.

A homology « of order two would be derived in this case from the element w
by the following mapping: the element w® would be mapped to the element w Tt

Let 9;—1 = m and consider a rearrangement of a division table as follows:

m+1 2 m-+2 . m—1 2m—1

m

2m—1

€

m—1

2m—2

g &g

m—2

This arrangement gives a symmetric table, with elements paired with their image

under «. As in Section 2.5, we can associate each element with a permutation matrix

A(w®) = [ay;], where

1 ifCei,5) =g
71 0 otherwise.

Replacing the elements in the antiflag form matrix with their associated permu-
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tations is still an antiflag form of II, C, although no longer normalized. If for the
previous construction we choose for z(; ;) or wy ;) the first element of the pair, then

this has the same effect as mapping the cokernel into a {0, 1, —1}-matrix via

y

1 if the(2¢ — 1,2¢) x (25 — 1, 2j) submatrix of C is ( (1) (1) )

—1 if the(2¢ — 1,24) x (27 — 1,25) submatrix of C is < (1) (1) )

0 otherwise.

Hence when an element w® has a 1, (respectively —1) then w+e will have a -1,
(respectively 1). Since the first row and first column will not be skew under these
conditions, however, multiplying the first m rows by —1 will result in a skew weighing

matrix. O

Theorem 29. For q a prime power, if there exists a Hadamard matriz of order %,

then there is a Hadamard matriz of order %

Example 51. Consider the case of the projective plane II of order 5. The flag from

of IT is
1 1 1 1 1
1 e B B @
1 8 e B p°
1 62 B e P
1 8 6 B e
and its antiflag form is
0 1 1 1 1 1
1 0 1 w o W2
1 w2 0 1 w W
1 wd w2 0 1 w
1 w w w? 0 1
1 1 w W w? 0
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Considering the following rearranged division table for the group in the above

matrix:

33—y

™ N

333~

— '3 33

[

333

We get the following symmetric weighing matrix

0

0 -1 -1

1

-1

-1 0

1

0

01
-1

0 -1 -1

—1

-1

0 -1 -1

1

0 -1 -1

1

—1

We add 1’s along the diagonal, to get

1

0 -1 -1

1

-1

-1 0

0 0 -1 -1
-1

01
-1

0 -1 -1

1

0 -1 -1

1
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Multiplying by 0 H(@) o where H(2) = ( 1 _1 > to get

11 1 -1 1-1 1-1 1 -1 1 -1

1 -1 1 1 1 1 1 1 1 1 1 1
-1 1 1 1-1 1 1 -1 -1 -1 1
-1-1 1-1 1 1 -1 1 1 -1 -1 -1
-1 1 -1 1 1 1 1 -1 1 1 -1 -1
-1 -1-1 -1 1 -1 1 1 -1 1 1 -1
-1 1 -1-1 -1 1 1 1 1 -1 1 1 |’

-1 -1 1 1 -1 1 1 -1 -1 -1 1 -1
which is an H(12).

4.4 Impact of the flag and antiflag forms on the
Lenz Barlotti classification

There are some known existence and non-existence results in generalised Hadamard
matrices and generalised weighing matrices. We can use these results, along with
results from Chapter 3 to get restriction of the possible planes for particular orders.
We consider the question of existence for projective planes of orders less than 100,
and give a table with the restrictions implied by these results, along with the result
from Theorem 24.

_In the table in Figure 4.1, we use the following abbreviations:

(BR) The Bruck-Ryser theorem states the non-existence of particular orders of

S 3
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projective planes. [59]

(deL) Paper by de Launey state the non-existence of certain generalised Hadamard
matrices. [39)

(H) If n > 2, then a projective plane of order n = 2 mod 4 has no collineations of
even order, hence cannot be of Lenz class I1.[59)

(Lam) An exhaustive search shows the non-existence of a plane of order 10. [70]

(gpw) Theorem 20, along with non-existence results in [39] imply the non-existence
of planes of Lenz-Barlotti class 1.1, 11.1, II1.1, IVa.1, IVb.1, V or VII.1.

(res) Theorem 24 gives restrictions on the possibility of planes of Lenz class II7.

E(£) means excludes Lenz class II (or greater).

R(£) means restricted Lenz class II (or greater).

E(®8) means excludes Lenz-Barlotti classes 1.1, I1.1, II1.1, IVa.1, IVb.1, V or VIL.1.
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Figure 4.1: Planes of order less than 100

order | comments order | comments
2 | prime 51 | E(£) (deL)
3 | prime 52 | R(£) (res) and E(B) (gpw)
4 prime power 53 | prime
5 | prime 54 | does not exist (BR)
6 | does not exist (BR) 55 | unknown
7 | prime 56 | E(B) (gpw)
8 prime power 57 | does not exist (BR)
9 | prime power 58 | E(£) (H) and E(B) (gpw)
10 | does not exist (Lam) 59 | prime
11 | prime 60 | R(L) (res)
12 | unknown 61 | prime
13 | prime 62 | does not exist (BR)
14 | does not exist (BR) 63 | unknown
15 | E(£) (deL) 64 | prime power
16 | prime power 65 | B(£) (deL)
17 | prime 66 | does not exist (BR)
18 | B(L) (H) 67 | prime
19 | prime 68 | R(L) (res)
20 | R{£) (res) and E("B) (gpw) 69 | does not exist (BR)
21 | does not exist (BR) 70 | does not exist (BR)
22 | does not exist (BR) 71 | prime
23 | prime 72 | unknown
24 | unknown 73 | prime
25 | prime power 74 | E(£) (H)
26 | E(L) (H) and E(B) (gpw) 75 | B(£) (deL)
27 | prime power 76 | R(L) (res)
28 | R(L) (res) and E(B) (gpw) 77 | does not exist (BR)
29 | prime 78 | does not exist (BR)
30 | does not exist (BR) 79 | prime
31 | prime 80 | unknown
32 | prime power 81 | prime power
33 | does not exist (BR) 82 | E(£) (H) and E(B) (gpw)
34 | E(£) (H) and E(B) (gpw) 83 | prime
35 | B(£) (deL) 84 | R(L) (res)
36 | R(£) (res) 85 | E(£) {deL)
37 | prime 86 | does not exist (BR)
38 | does not exist (BR) 87 | E(£) (deL)
39 | unknown 88 | E(B) (gpw)
40 [ E(®B) (gpw) 89 | prime
41 | prime 90 | does not exist (BR)
42 | does not exist (BR) 91 | E(£) (deL)
43 | prime 92 | R(£) (res) and E(B) (gpw)
44 | R(£L) (res) 93 | does not exist (BR)
45 | E(£) (deL) 94 | does not exist (BR)
46 | does not exist (BR) 95 | E(£) (deL)
47 | prime 96 | E(3B) (gpw)
48 | unknown 97 | prime
49 | prime power 98 | E(£) (H)
50 | B(£) (H) and E(B) (gpw) 99 | E(£) (deL)

100



Chapter 5

Projective Spaces and Codes

The work for this chapter was originally done under the supervison of Lynn Batten.
With the exception of Section 5.3, most of the results are to appear in a paper

coauthored with Lynn Batten [7].

5.1 Skew arcs

Recall from Chapter 1 the definition of a projective space. We consider here only
geometries over GF'(2). All lines in PG(m,2) have 3 points and all subspaces of

dimension two are Fano planes.
Definition 18. We define a skew arc S to be a set of points in PG(m, 2) such that:
1. § does not contain all points of a line.

2. Given any four distinct points of S, say sy, s, s3 and s, the third point on the

line containing s; and s, is not on the line containing s; and s4.

101
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In the Fano plane, the maximum number of points that can satisfy the conditions
of a skew arc is 3 therefore there are no more than 3 points of a skew arc on any
plane. A set of points which satisfies condition 1 is called an arc. We call 4 points that
satisfy condition 1 but not condition 2 of the above definition a planar quadrangle.

We can coordinatize the points of PG(m,2) with the nonzero (m + 1)-tuples of

zeros and ones.

Example 52. The following 8 points in PG(5, 2) form a skew arc: (1,0,0,0,0,0),
(0,1,0,0,0,0), (0,0,1,0,0,0), (0,0,0,1,0,0), (0,0,0,0,1,0),

(0,0,0,0,0,1), (1,1,1,1,0,0), (0,0,1,1,1,1).

Using the coordinates, the third point on a line containing points a; and ay is

ay + as.

Definition 19. Given a set of points S in PG(m,2), we define the set S as

{51 + 82,51,82 & S, S1 7é 82}.

We note that by the definition of a skew arc that there must be a unique point
in S for each pair of distinct points in S. So if S is a skew arc with k points, then

the size of S will be 5(—"{—1—) and S U S will have @ elements. This last equation,

|SuU S | =k—(%t1—) is'a necessary and sufficient condition for S to be a skew arc.

We use the coordinatization of points to draw a correspondence between skew arcs

and codes of minimum distance 5.
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Example 53. If S is the skew arc given in example 52 then S = {(1,1,0,0,0,0),
(1,0,1,0,0,0), (1,0,0,1,0,0), (1,0,0,0,1,0), (1,0,0,0,0,1), (0,1,1,0,0,0),
(0,1,0,1,0,0), (0,1,0,0,1,0), (0,1,0,0,0,1), (0,0,1,1,0,0), (0,0,1,0,1,0),
(0,0,1,0,0,1), (0,0,0,1,1,0), (0,0,0,1,0,1), (0,0,0,0,1,1), (0,1,1,1,0,0),
(1,0,1,1,0,0), (1,1,0,1,0,0), (1,1,1,0,0,0), (1,1,1,1,1,0), (1,1,1,1,0, 1),
(1,0,1,1,1,1),(0,1,1,1,1,1), (0,0,0,1, 1,‘1), (0,0,1,0,1,1), (0,0,1,1,0,1),

(0,0,1,1,1,0), (1,1,0,0,1, 1)}.

We see that S has 28 points, all which are distinct from the 8 points of S. So

SUS has 36 points, as expected.

5.2 Codes

We now show the relation between skew arcs and binary linear codes.

Definition 20. A (binary) codeword of length n is a binary n-tuple. We say the
distance between two codewords (of the same length) is the number of positions in
which they differ. A code is a collection of codewords and the distance of a code is
the minimum distance over all pairs of codewords.

A [n, k, d] binary linear code is a code having distance d with 2* codewords, which
are binary n-tuples, such that the sum of any two codewords is also a codeword. This

implies the code is a subspace of dimension k of GF(2)™. The dual space of C is the
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set of all vectors which are orthogonal to all the vectors in C, which is also a subspace
of GF(2)™.

We can associate with a linear code a parity check matrix H of size (n — k) x n,
whose rows are a basis of the dual space of the code. If H is the parity check matriz

of the code C then C = {z|Hz" = 0}.

Lemma 30. If H is the parity check matriz of a code C then C has distance at least

d iff any d — 1 columns of H are linearly independent. [74]

Lemma 31. Let S be a skew arc in PG(m,2) with n points. Let H be a matriz
whose columns are the elements of S, where each element of S is expressed as a

binary vector. Then H is the parity check matriz of an [n,n — (m + 1),5] code.

Proof. No two columns of H are dependent since all of the columns are distinct.
No three columns are dependent by part 1 of Definition 18. No four columns are

dependent by part 2 of Definition 18. (I

Observe that the converse of Lemma 31 is also true - the columns of a parity check
matrix of a code with distance at least 5 will form a skew arc; the fact that no three
columns are dependent is sufficient to satisfy part 1 of Definition 18, and the fact

that no three columns are dependent is sufficient to satisfy part 2 of Definition 18.
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Example 54. Using the skew arc given in Example 52, we form

[1 0 0000 1 0]
01000010
= 001 0O0O0T1T1
00010011}’
00001001
000001 0 1
the parity check matrix of an [8,2, 5] code whose 4 codewords are the vectors

comprising the null space of H, namely [0,0,0,0,0,0,0,0], [1,1,1,1,0,0,1,0],

[0,0,1,1,1,1,0,1], [1,1,0,0,1,1,1, 1.
5.3 Some basics about skew arcs

Definition 21. Given a skew arc S we define S as {s|3s1, s5, 53 € S such that for
some z, {, s1, 52} and {z, s3, s} are lines }. Also, S = {81+ s2 + s3|s1, 82,83 € 5,
817’532#83?&51}

Note that S NS = &, since if an element sy + s; + s3 were also in S, then
81+ (81 + 82 + s3) = 53 + s3, and S would not be a skew arc.

We call a skew arc S mazimal if there is no skew arc S’ such that S C 5.
Lemma 32. A skew arc S in PG(m,?2) is mazimal iff SUS U S = PG(m,?2).

Proof. Suppose SUSU S = PG(m,2), if S is not maximal then there exists p €
PG(m,2) (p ¢ S) such that S U {p} is a skew arc. If p € S then S U {p} would
contain a line, violating condition 1 of Definition 18. If p € S then SU {p} would

contain 4 points which violated condition 2 of Definition 18.
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Suppose S is maximal, then for every p # S, SU {p} is not a skew arc. If SU{p}

fails condition 1, then p € S. If SU {p} fails condition 2, then p € S. ]

Lemma 33. If m > 4, then all mazimal skew arcs in PG(m,?2) will intersect any

hyperplane.

Proof. Suppose there was a maximal skew arc S with k points and a disjoint hyper-
plane H. Since any line with two points of PG(m,2)\H must meet in H, we know
that S C H. Every point in S is the third point on a line through a point of S and a
point of S. Since S C PG(m,2)\H, it follows that § C PG(m, 2)\H. By maximality,

we get that S=H. By comparing the sizes we get

So

4k? — 4k =9m*2 _ 8

(2k—1)2=2m2 7.

This is a Diophantine equation of the form 2" = 22 + 7 which is known to have
integral solutions only when n = 3,4,5,7,15 [76].
We can eliminate certain cases by noting that the size of S must be divisible by

3. To see this, simply let p be a point of Sc PG(m,2)\H. For every point a in S,
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we know that p +a is in H so it must be the (unique) sum of two points of S, say b
and c. Now since p+a =b+cwe get p+b=a-+cand p+c = a+b. This will induce
a partition on the points of S where the size of each part is 3. Hence S is divisible
by 3.

Hence the only solutions to the above Diophantine equation that give viable so-
lutions to a skew arc that is disjoint from a hyperplane are £ = 3 in PG(2,2) and

k =6 in PG(4,2). 0

Example 55. The skew arc of size 3 in the Fano plane is contained in the comple-

ment of a hyperplane (hyperplanes in PG(2,2) are simply lines).

Example 56. The skew arc of size 6 in PG(4,2) given by the points (1,0,0,0,0),
(0,1,0,0,0), (0,0,1,0,0), (0,0,0,1,0), (0,0,0,0,1), and (1,1,1,1,1) is con-
tained in the complement of a hyperplane: these points all miss the hyperplane

described by 7 + o + 23 + 24 + 25 = 0.

It is known that the maximum size of an arc in PG(m, 2) is 2™, and these points

are the complement of a hyperplane.

Corollary 34. A mazimal skew arc cannot be derived by deleting points from a maz-

TMmuUm arc.

Proof. A maximal arc is contained in the complement of a hyperplane. 0
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5.4 Some skew arc constructions

There are several known constructions for arcs [16] [17] [18] [22] [24] [57]. For example,
given an arc of size k in PG(m, 2), an arc of size 2k can be constructed in PG(m+1, 2).
Essentially, if Ais an arc in PG(m, 2) then we can embed PG(m, 2) into PG(m+1, 2),
pick a point outside of the embedded PG(m,2), say p. Then B = AU {a+ p|a € A}
1S ;cm arc in PG(m + 1, 2).

We attempted to find something similar to the above construction for skew arcs,
leading us to the following result, which unfortunately requires two separate skew

arcs to start with.

Theorem 35. If, in PG(m,2), there are two skew arcs Sy and Sy of sizes ki and ks
respectively such that (Sy U S;) N (Sy U Sy) = @ then there ezists a skew arc of size

Proof. We embed a copy of PG(m,2) into II = PG(m + 1,2) via an isomorphism
with a hyperplane H of II. Let p € II\ H.

We define ,5?5’ as {s; + pls; € S2}. Now let S =57 U S_'g U {p}. We claim that S a
skew arc.

First, we claim S contains no lines. Since S N H contains only elements of S,
which is itself a skew arc, there are no lines of H in S. We consider lines that will

have one point in H and two in II\H. The point p will not be on a line with a point
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of 572” and a point of S; since S;1 NSy = &. Two points of 55’ will not be on a line with
a point of Sy since S; N §2 = . Since all lines of IT meet H, S satisfies condition 1
of Definition 18.

Now to see that there are no planar quadrangles in S we check that all sums of
two elements of .S are distinct. Since H is a hyperplane, the sum of any two elements
in H will be in H, and also the sum of two elements in II\ H will be in H. The sum
of an element from H and one from IT\H cannot be in H since if H contains two
points of a line, it contains the whole line. Hence the only way for an element of S
to be in H is for it to be either the sum of two elements that are both from S; or the
sum of two elements both from ,S?_f; U{p}.

Two elements from $; have their sum in S; and two elements of 5;’ have their sum
in §2 Also, p and any element from S—'é' will have their sum in S5. Hence an element
of SN H is the sum of two elements of S in only one way.

For sums in IT\ H, we look at the sum of two elements of S, one in H, the other
in IT\H. There are two types, a +p and a + b where a € S; and b € ,5?5. A point of
type a + p and a point of type a + b are distinct since ,§1 NSy, = &. Two points of
type a + b, where the a’s and b’s are distinct, will be distinct since S; NSy = @. If
the a’s are not distinct, then two sums of type a + b will be distinct simply because

the b’s are distinct. If the b’s are not distinct, then two sums of type a + b will be
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distinct since the a’s are. Two sums of type a + p will also be distinct since the a’s

are. Hence S satisfies condition 2 of Definition 18. d

In terms of codes, this construction is similar to the inverted Y1 construction [49)],

and a condition similar to that of Theorem 35 was given in [23].

Example 57. Let S; be the skew arc in Example 52, we can let S5 = {(1,0,1,0,1, 1),
(0,1,1,1,0,1)}. Since Sy = {(1,1,0,1,1,0)}, we can check (from Example 53)
that (S;US1)N(S,US,) = @. We embed PG(5,2) into PG(6,2) by identifying
each element of PG(5,2) with the element of PG(6, 1) having its last coordinate
zero. (E.g. (1,0,0,0,0,0) in PG(5,2) becomes identified with (1,0, 0,0, 0,0, 0)
in PG(6,2).) Now using (0,0,0,0,0,0,1) as p we get a skew arc with 11 points
in PG(6,2), namely (1,0,0,0,0,0,0), (0,1,0,0,0,0,0), (0,0,1,0,0,0,0),
(0,0,0,1,0,0,0), (0,0,0,0,1,0,0), (0,0,0,0,0,1,0), (1,1,1,1,0,0,0),

(0,0,1,1,1,1,0), (0,0,0,0,0,0,1), (1,0,1,0,1,1,1), (0,1,1,1,0,1, 1).

Corollary 36. If there are, in PG(m,2), n+1 skew arcs Sy, S1, ..., Sy of sizes kg,
ki, ..., ky respectively such that (S; U ,§'1) N (S; U 5'3) =0 fori#3j;,4,7=0,...,n

then there exist a skew arc of size ko + k1 +--- + k, +n in PG(m +n,2).

Proof. We can embéd PG(m,2) into PG(m + 1,2) as above and use Sp with S; to

construct a new skew arc S with Theorem 35. From the proof, we can see that since
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all points of S that intersect the original PG(m,2) are either in .§0, Sy, or §1, hence

(SUS)N(S;US;) =@ fori =2...n. We continue in this manner n — 1 times. [

Example 58. Using S; and S5 as in Example 57 and

53 = {(la 17 Oa 17 1: 1); (O, 1, 1, 1, 1, O)}, we get

{(1,0,0,0,0,0,0,0),(0,1,0,0,0,0,0,0), (0,0,1,0,0,0,0,0),
(0,0,0,1,0,0,0,0),(0,0,0,0,1,0,0,0), (0,0,0,0,0,1,0,0),
(1,1,1,1,0,0,0,0),(0,0,1,1,1,1,0,0), (0,0,0,0,0,0,1,0),
(1,0,1,0,1,1,1,0),(0,1,1,1,0,1,1,0),(1,1,0,1,1,1,0,1),

(0,1,1,1,1,0,0,1), (0,0,0,0,0,0,0,1)},
a skew arc in PG(7,2) with 14 points.

Chen [23] did something similar, using three sets to construct a skew arc, increas-
ing the dimension by two. We have shown in Corollary 36 that this can be generalised,
with any number of skew arcs in the original projective space. This led us to raise the
question of whether an additional dimension is needed for each additional set. One
answer we have found is that, with some other conditions, a construction requiring
fewer dimensions may be obtained.

For this, we introduce some new notation. If A"and B are disjoint subsets of

PG(m,2) then A+ B = {a+bla € A,b € B}. Alternately this can be viewed as the
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set {z|3a € A,3b € B and {a,b,z} is a line}.

Theorem 37. If there are, in PG(m,2), four skew arcs Sy, S1, Sa and Sz of sizes ky,
k1, ko and k3 respectively such that (.S; Ug'z) N(S;U S~'J) =0 fori#35;1,7=0,1,2,3
and there is a point d in PG(m,2) such thatd ¢ S;, d ¢ S;+S;, 1 # j, d ¢ S;+S;+ Sk
for distinct i, 5,k € {0,1,2,3} and d ¢ Sy + Sy + S2 + Sz, then there exists a skew arc

of size ko + k1 + ko + ks + 3 in PG(m + 2,2).

Proof. We embed PG(m,2) into II = PG(m + 2,2) via an isomorphism with a sub-
space H of II. Let M;, M, and M5 be the hyperplanes of I containing H. We pick
p1 € Mi\H, p, € My\H and let p3 = p; + p2 + d. Note that p; € M3\ H.

Now S = Sy U S?l U{p}tu S?Z U{p2} U ,5’?3 U {ps} is the required skew arc, which
we now show.

For i =1,2,3, SN M; is constructed exactly as in Theorem 35. So there are no
lines in H, nor in each M;. We now check that there are no lines that have one point
in each of the M;’s.

A line intersecting all of the M;’s would have one point in each M;\H. Let these
three points be a + p1, b + ps, and ¢ + p3, where a € S; U {0}, b € S, U {0}, and
c € S3U{0} (where 0+ p; would simply be the point p;). If these three points were on
alinethen a+p;+b+py+c+p3s=0; hencea+b+c+d=0,s0d=a+b+c. Ifall -

three of a,b, and ¢ were 0 then it would follow that d = 0, which is a contradiction,
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since 0 does not represent any point in the geometry. Since d =a+b+cand d # 0
we know that d € Si, Ss, S3, S1+ Sa, S1+ Sz, S5 + S5, or 57 + S5 + Ss.

From the proof of Theorem 35, no planar quadrangle is contained in a single M;.
All that is left to check is that the sum of two elements from Mi\H is not the sum of
two elements of H or of two elements of M;\H (for ¢ # j, 4,5 € {1,2,3}), and that
the sum of an element from M;\H with an element of M>\H is not the sum of an
element in M3\ H and an element of H.

As in the proof of Theorem 35, we notice that the sum of two elements of SN H
is in Sy U Sy and the sum of two elements of SN M;\H (for i € {1,2,3}) is in S; U S,
they must be distinct.

Now let us consider a+p; to be an element of SNM;\H where a € S;U{0}, b+p>
an element of SNM;\H where b € SyU{0}, and c+p3 an element of SN M3\ H where
c € S3U{0}. Let z € SNH. If the sum of a+p; and b+ p; were not distinct from the
sum of ¢+ p3 and z, then we would have a+b+c+d+2=0, henced=a+b+c+ 2.
This would imply that d € Sy, Sp + S1, So + Sa2, Sg + S3, Sg + 51 + S, Sp + S1 + S5,

So + S + S3, or Sg + 51 + Sy + Ss. O
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Example 59. To emphasize the necessity of d in the above proof, we consider the

following skew arcs. Let

So ={(1,0,0,0,0,0),(0,1,0,0,0,0),(0,0,1,0,0,0), (0,0,0,1,0,0),
(0,0,0,0,1,0),(0,0,0,0,0,1),(1,1,1,1,0,0)},

S5 =1{(1,0,1,0,1,0),(0,1,0,1,0,1),(1,1,0,0,1,1)},

S, ={(1,0,0,0,1,1),(0,1,1,0,1,0),(1,1,0,1,0,1)} and

S ={(1,0,0,1,0,1),(0,1,0,0,1,1)}.
Now (S; U S;) N (S;u ,57]) = o for 7 # j, but there is no 18 point skew arc in
PG(7,2). [15] Hence no such skew arc can be constructed from these skew arcs
having 18 poi‘nts.

Example 60. Let Sy be the skew arc given in Example 52, let

S1=1{(1,0,1,0,1,1),(0,1,1,1,0,1)},

S, =1{(1,1,0,1,1,1),(0,1,1,1,1,0)} and

S ={(0,1,0,1,0,1),(1,0,1,0,1,0)} .
Then d = (1,0,1,1,0,0) satisfies the conditions of Theorem 37. This gives us
a skew arc with 17 points in PG(7,2), which is maximum [15]. If we choose p;
to be (0,0,0,0,0,0,1,0), and p, to be (0,0,0,0,0,0,0,1), then our construction

give the following skew arc :
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(1,0,0,0,0,0,0,0), (0,1,0,0,0,0,0,0), (0,0,1,0,0,0,0,0), (0,0,0,1,0,0,0,0),
(0,0,0,0,1,0,0,0), (0,0,0,0,0,1,0,0), (1,1,1,1,0,0,0,0), (0,0,1,1,1,1,0,0),
(0,0,0,0,0,0,1,0), (1,0,1,0,1,1,1,0), (0,1,1,1,0,1,1,0), (1,1,0,1,1,1,0, 1),
(0,1,1,1,1,0,0,1), (0,0,0,0,0,0,0,1), (1,0,1,1,0,0,1,1), (1,1,1,0,0,1,1, 1),

(0,0,0,1,1,0,1,1).
5.5 Codes and constructions

We turn our attention now to a known class of codes: BCH codes [74]. Each element
of GF(2") can be expressed as an n length vector over GF(2). The matrix H is a
{0, 1}-matrix written in terms of elements of GF(2"), each representing its vector
expansion as a column. If « is primitive in GF(2") it is known that the parity
check matrix of the BCH code with distance d > 5 can be taken to be the following
2n x 2" — 1 matrix .

. 1 oY az [ ai e a(2n_2)

- 1 a3 aG e a3i .. a3(2n"2)

H

Since the columns of H are 2n length vectors over GF(2), we can view them

as points of PG(2n — 1,2) and we will refer to the set of these points (which is a
skew arc - see comment following Lemma 31) as B,,. Also, we can view all points in

PG(2n — 1,2) as 2-tuples over GF(2") as well as 2n-tuples over GF(2).

Wishing to use the skew arcs B, in constructions, we discovered the following
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theorem which gives a characterization of B, U B, looks like in PG(2n —1,2).

Theorem 38. For z # 0, z € GF(2"), the set M, = {z® +a®* + }la+ b=z} is a

subgroup of the additive group of GF(2™) with [GF'(2") : M,] = 2.
Proof. Suppose a+ b=z and ¢+ d = z. Then

P+l +P+2 4+ P =+ + P+
=a® + b + 2%+ Ad + ed?
=2’ +a®+ 0+ Fa+b+c)+cla®+b*+c?)
=23+ (a® +ca® + Fa+ ) + (b +cb® + b+ &)

=23+ (a+c)®+ (b+c).

Since (a +c¢) + (b+¢) = a+ b = z, we see that the sum of two elements of M, is
in M. Hence M,, is closed under addition.
There are exactly 2"! pairs of elements that sum to z. Suppose again we have

a+b=zand c+d=uzx, then d=a+b+c. Now if 3+ a®+ > = 2% + ¢® + d° then

A+ =+ (a+b+e)d

a® + 0% =a® + B+ a®b + a’c + ab® + bPc + ac® + be’.
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Hence we would have

a’b+d’c+ab? + b c+ac® +bc? =0
a?(b+c) +a(b+c)? = be(b+c)
a® + ab = bc + ac

a(a +b) = c(a + b)

Hence each pair of elements which sum to z gives a distinct element of M, so

[GF(2") : M] = 2. 0

Let My +2% = N, = {a®+b%|a+b=z}. If niseven we let t = (2" — 1)/3. Recall
that « is a primitive element in GF(2"). Since n is even, GF(2") contains a subfield
of order 4 which will contain the elements {0, 1, a?, o*}. Hence 1 + o + o* = 0. So
for x € GF(2") z = za® + za?. Since 23 = (zaf)? = (za?)3, we can see that 0 € N,
and hence N, = M,. If nis odd, 3 and 2" — 1 are relatively prime, so a® # b* if a # b
for a,b € GF(2"). So 0 ¢ N,. Hence N, must be the other coset of M,. So for any
element y in GF(2"), all points in B, U B,, as 2-tuples over GF(2"), which have y in
the first coordinate have either y® or a® + b3, where a + b = y, in the second. Hence
B, U E; ={(y, 2)|z € Ny}

We introduce now a small skew arc to be used along with the BCH codes in
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constructions. It has 7 points: (0, zs+ya+22), (21, Z2), (1, T2+ 22), (Y1, ¥2), (Y1, Y2+
xa), (21, 22), (21, 22+y2), where {z1,y1, z1 } and {x2, ya, 22} generate 8 element additive
subgroups (not necessarily different) of GF(2") for n > 3. We call this skew arc As,
since the code it gives via Lemma 31 is isomorphic to that given by Bj (i.e., the BCH
code of length 7).

We see that Az U :4; takes the following form, which is similar to the form of
B,U E; Elements whose first element, taken as a 2-tuple over GF(2"), is 0 have as
their second element one of {2 + yo + ;’2, Ta,Ya, 22} (which is a coset of a 4 element
subgroup of the group generated by zs,%s,22). Elements whose first element is z;
have as second element one of {zs, 2o + 23, y2 + 22, Y2} (again a coset), etc.

Let o be a primitive element in GF(2%), where z* + z + 1 is the generating
polynomial, and let {z1,y1, 21} be {a!°, a®, a®} and {z,, 92, 20} be {a?, a®, a'°}. This
skew arc and B4 do not satisfy the conditions of Theorem 35, so we alter it by adding
a!? to the second element of each column that has a first element ' or of. We then
get the following skew arc in PG(7,2) with 7 points: {(0,c®), (!, a'), (a9 a!?),
(@%1), (@%,0%), (% a?), (a®, a'?)}

Now Aj as given above and B, satisfy the conditions of Theorem 35. Hence, since
As (of size 7) and By (of size 15) are disjoint skew arcs in PG(7,2) satisfying the

conditions of Theorem 35 we can construct a skew arc of size 23 in PG(8,2) which
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gives rise to a [23, 14, 5] code.

This gives a nice construction of the Wagner code [84], answering Research Prob-
lem 18.3 of [74], but unfortunately this approach does not extend well. It works
mostly because As is small. Also, constructing with B,, when n > 4 gives codes too

small to be considered interesting.



Appendix A

Examples

For planes of small orders, we give a representation of the plane by the kernel, and
again by the cokernel. Also, for odd orders, we give the weighing matrix build from the
construction in Theorem 28 and if applicable, the Hadamard matrix from Theorem 29.
We use the standard convention of representing a —1 by a — in Hadamard and

weighing matrices.

A.1 Plane of order 2 - the Fano plane

Kernel (GH(2,G)):
e e
e a
where G = Z; = {e,a}.

Cokernel (GW (3, G)):

o
—

where G = {1}.

120
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A.2 plane of order 3

€
€
e

Kernel (GH(3,G)):

\2[\3\2 o
2 =3, 0
~——

where G = Cs = {e, 7,7}

Cokernel (GW(4,3,G)):

0 e e e
e 0 e a
e a 0 e
e e a 0
where G = Z; = {e,a}.
Skew symmetric weighing matrix:
0 1 1 1
— 0 1 =
- - 0 1
-1 -0
Hadamard matrix:
1 1 1 1
-1 1 =
- — 1 1
-1 — 1

A.3 plane of order 4

Kernel (GH(4,G)):

b ab

o o o
o Q
S
)

ab a b
where G = {a,b|a® = 1,b*> = 1,ab = ba}.
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Cokernel (GW(5,4,G)):

0 e e e e
e 0 e v ~2
e e 0 4% v
e v v 0 e
e 2 v e 0
where G = C3 = {e, v, 7%}
Baer-kernel (GW (7,4, 2)):
0O e e e 0 e O
0 0 e ae 0 e
e 00 e e a0
0 e 00 a a e
e 0 a 00 ¢ ¢
e e 0a 00 a
e a e 0 e 00
where G = Z, = {e,a}.
A.4 plane of order 5
Kernel (GH(5,G)):
11 1 1 1
1 8 p* pt B
1 6 p p* op
1 8 2 8 B
1 B> p* B B
Where G = {17ﬂ7ﬁ27ﬂ37/64}'
Cokernel(GW (6,4, G)):
0 1 1 1 1 1
1 0 1 w o W
1 w2 0 1 w W
1 * w? 0 1 w
1 w w0 1
1 1 w W w0

122
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1, w,w? w?
{

where GG

Skew symmetric weighing matrix:

1

0

0

0
1

0 0 0

0

1
0
1 00

0 0

0 0 0
010 00

0 0 1

1

1

0

0 0 0

0
010

1
1

0 0 O

1

1

0 0 0 0 0

0 0
1

1
1

1 0 0 O

0 0

0 0 O 0

0

1

0 0
011 0

1 0 0 O

0 0

0 0 0

0

1
0

1 0 0

0
010

0 0 0

1

Hadamard matrix:
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A.5 plane of order 7

Kernel (GH(7,G))

111 1 1 1 1
1 g 8 g g gt B
1 65 ,B 133 ,62 ,66 134
1 gt 6 8 B g s
1 g gt gt B
1 g2 g gt g s
1,33,32,6654/65,8
where G = {1, 8, 8%, 8%, 8%, 3°, 5%}

Cokernel (GW(8,7,G)):

01 1 1 1 1 1 1 \
1 0 1 w? w w* W B
1 w0 1 w w w WP
1 w w0 1 w w
1 w w* Wb w0 1 W?
1 w? w wt W w0 1
1 1 w? w ot W W o }
where G = {1,w,w? w3 w W}
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Skew symmetric weighing matrix:

0001001001001 00100100100

000600-00-00-00-00-00-2020 -

0000-00-00-00-00-00-00-0

-000001000010100-000--00

006100000 -010100-000-0001

01r00000-010000-001-00010

-00-0000O010CO0CO0O010100-000 -

00o100100000-010100-000-20

0100100000-010000-001-00

-0000--0000010O0OO0OO01O01O00-0

0010-000100000-010100-00

010-000100000-010000-001

-000-000--00000100001O010
001-000-000100000-010100
010001-000100000-010026020 -

-000100-000--0000O0O100O0O01
00o1100-000-000100000-010
01000-001-0060100000-0100
-0000106100~000--006000100
001010100-000-00010600°00 -

01010000-001-000100000-0

-001000010100-000--00000

00100~-010100-000-0001000

0100-010000-001-00010000

A.6 plane of order 8

Kernel (GH(8,G)):

abe ac
be

be

ab

abe
bc

ab

ac
1 abe

ab

a

ac
abe  ac

ab

a

abec ac

be

1

a

be

ab

bc abc ac a
ac

ab
c

abc a

ab be

yz for generators z,y}

B2 =ct=1;2y

= {abc|a® =

where GG
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Cokernel (GW (9,8,G)):

fd peed ek e el e e b (O
O O e

Q @ @ o v
[S13 Y~ N JUR U

o LQQLQQQOI—-‘P—-‘

o v
S Y

Qe =

[en}

i~

—

o o
o oW

= Q@LQ@LQM bt

Q
3

QQOQQQ f—

where G = C7 ={1,9,4% ¢% 9%, ¢°, ¢°}.

A.7 planes of order 9

QYR o9 ~w Q,

[SoR = I

= lQmLQmLQca bt

Q
'S

o

Q
w

@

Q.9 Q9

— O LQQ,LQ@‘Q

-

Q9 @ @ v
(I Rr- NN

O R W
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There are four known planes of order 9, the Desarguesian plane, the left and right

nearfield planes, and the Hughes plane.

A.7.1 Desarguesian plane

Kernel ( GH(9,Q));

[S I ¢ I € T 4 I ¢\ S € VI o I 4 VI
8 e 8

where G = {z,y|z® = 1,y® = 1,2y = yz}.

e e
Ly wy
v 2’y
.'132 y2
$2y2 $2
xy2 $2y2
y  xy?
Ty
Ty x
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Cokernel (GW(10,9, G)):

€

€

€

e

QO

QO

o]

—

(S~ I C N o)

33%R3I[ZI3[Z e

[~ IR T s T o

33 37(3 3% v o
(R HR3IRZo[ o
RR3HZF ooR[RY

<H AN w0 M

[ 3F vo[ZHRRF
3R [0y 0oRZRY

22 R o N R )

[ eoRRRKZ 3

A A - S T S o o B o O
33

voRRHRRT
o v RRHR 3RFY

L N B b N D B N N ¢

Cs = {w]w® = 1}.

where G



128

APPENDIX A. EXAMPLES

Skew symmetric weighing matrix:

00001000100010001000100010001006010001000

0000000-000-000-000-000-000—-000-000-000-

000000-000-000-000-000~000~-000-000-000-0

00000-000-000-000-000-000-000-000-000-00

-00000001000-000000-01000010000100-00-00
00010000000-000100~-01000010000100-00-000

0010000000-000100-00000-10000100-0000001

010000000-000100~-00000-0000—-100000010010

-000-000000010000010000~-010600—-00000100-0

000100010000000-010000-01000-0000010606-00

ogr00010000000-010000~-00000~-000101006-000

0troc010000000~00000~~-~00C6000~0001010000001
-0001000-0000000010600010000-00~-00-000001

0001000-000100001000010000~-00-00-0000010

0601000-000100000000~-~10000-00-00000010100
01000-000100000000-0000--000000100101000
-000000100~00-~-0000001000~000000-01000010
0600100100-00~-0000000000~000100-010000100

00100100-0000001000000-000100-00000-1000

010010000001001000000~000100~-00000—-0000 -

-0000~-00000100~-0~000000010000C010000-0100
0601-00000100-0000010000000-01006006-0100090
0o1000010100-0000010000000~-010000-0060600-

0r000010t0000001010000000-00000--000G00-0

-00000~-00~-0000011000~-~000000001000010000 -
00010-00-0000010000-00010000106000106000-—0
0010-0000001010000~000100000000-10000-00
61000001001010000-000100000000-0000--000

-000000~-01000010000100~00~-00000601000-000

000100-01000010000100-00-0000000000-0001

00100-00000-10000100-00000010600000-00010
01r00-00000-0000~-10000001001000000-000100
-0000010000~01000~00000100-0-00000001000O0
0001010000-01000~-00000100-0000010000000 —
001010000-00000~-00010100-0000010600060600-0
0100000--00000-00010100600001010000000-00
-00001000010000~-00-00-0000011000-0000000
6o011000010000~00~00~-00000100006~-00010000
06010000-16000~-00~-0000001010000-0060100000
0tr0000~-0000~-~-0000001001010000-0001000000
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Hadamard matrix:

11111--—-1-=--1---1-——-1---1—-=-1l---1—-=-1-—-—

1-1-11-111-111-111-111-111-111-111-111-1
11--111-111-111-111-111-111-111-111-111-
l1--11-111-111-111-111-111-111-111-111-11
~11111111----111--=-11--111-1111---1--11
-—-1-1-1-11-1--1-1-1--11-1-11-1-1-1--1--1
---111--111-=-=-111--1111-111--111—-————-——
~1--1--11-11-1=--11--1-1--1-1--111-11-1-

-11t1-11t¢11171171~-~--111"- ---11--—-111111~-—--1

--1---1-1-1-11-11-111-1--11-1=--1-1-1-1--

---11---111--111+--11111~--1111-----=-111~—---—

~1---1--11--11-11--1--11--1-11-1-1--111-1

-1111--~--111111111--111--- - ----1--111111

-~-1-11-1--1-1-1--11-1-111-1--1-=-1-=1-1-1

-—==1111-=-=-111--1111-11111=--1-—-———————11

-1--1-11-1--1--1-1-1--1-=11=11-11-1-1--1

-111t111171---11--1111111"----111----11--111-

-—-1--1-1-1--1--11-1-111-1-=-1-1-1--11-1-11
-—--1--111-----==-11--111=-=--1111--1111-111

~1--1--111-11-1-1--11-11-1==-=11-=1-1--1-

-1711711~--111111~---1-11111111~-~--111-----11--

--1-1--1-1-1-1----1-1-1-11-11-111-1--11-

111--111--11111--1111

-1--1-1-1--111-1-1--1--11-11--1--11--1-1

-111---1--1111111----111111111--111-==——
-——1--1--1--1-1-111-1--1-1-1--11-1-111-1-
———1l--=-=-————-11111----111--1111-11111--

-1--11-11-1-1--11-11-1=--1--1-1-1--1--11-

el =211 e —

-17117----11--111-1111+---1--1111111----111

--1-1-1--11-1-11-1-1-1--1=-=-11-1-11-1~--1-

~==111--1111-111--111--=-=-==-11=-=111~--—=1

-1---11--1-1--1-1--111-11-1-1--11-11-1--
-111111 - ~-—-=-=-11=-=-111111---1-11111111—-—-

~—-1-1-111-1--11-1--1-1-1-1=-=-=-1-1-1-11-1

-——=-1-11111--1111---—-—-—-111=====-111--111-

-1-=---1-1-11--1-11-1-1--111-1=-1-=-1-=11-11

}--1111111----1111111

--1--11-1-111-1-=-1--1--1-1-111-1--1-1-1-

—11111——-111-—----—-—

11111 —--—-111--
-1---1-1--1--11-11-11-1-1=--11-11-1--1--1

——=11111-11111=-=1== = ——————
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A.7.2 right nearfield plane

We include only the right nearfield plane, since the matrices for the left nearfield can
be found from the matrices for the right nearfield (by transposition of the incidence
matrix).

Kernel (GH(9,G))

e e e e e e e e e
e 2 =z oyt % x? oy 2y zy
e z? y my Yy y?  my? a?yP
ey vi o o2? m oxy oz 2%y 2Py
e zy z*? 2%y 22 42 oz oy T
e 2%y xy? 22 oy 22 xy oz 9P
e y? y r xly 2%y 22 zy  ay?
e zy? Ty =xy Yy oz 2% 22y
e 2% Ty 2yt o y zly oy a2
where G = {z,y|2* = 1,y* = 1,2y = yz}.
Cokernel (GW(10,9,G));
e e e e e e e e e

0 e B B* C CB®* B C(CB CB?
0 e CB® B® C CB* B CB
e B? 0 C CB* B® CB CB> B

B CB CB* 0 e B* B C C(CB®
CB* B CB B? 0 e CB® B (C
CB (CB? B e B? 0 c ¢B* B®

B® C CB® B CB CB* 0 e B?
CB® B C CB* B CB B? 0 e

C CB* B® CB CB* B e B? 0

%,

O & O 0 0 06 O

where G = {B,C|B*=1C*=1(C?= B? BC = CB3}.
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A.7.3 Hughes plane

Kernel GPH(9,9)

€ e e € € € € € (&

e $3 $y4 33'7y4 3343/4 y2$8 y2$2 waS IEG

e x8y2 x4y2 y4x5 -7723/233 Iy3$ y2372y y$8y2 y4l‘
e x2y2 $2y2(17 T y4$8 y4$7y Y $2y3 y4$7y
e $5y2 y4I2 $2y2$ SL’7 ySI $7y5 $4y5113’y4 y4$4
e y$2y 377?-/2 $2y4$4 3:2 yS yCL’2 y4$8y3 y4x8y4
e .’E2y4.’135 $2y4$4 1E8 ny xy?» xsy $5y3$2 y4-'175y4
e x2y4x8 .’135 374:1/2 x2y4x4 y3$7 .’274y5$y4 y3£E2y4 y4x2y4
e ZL'G y2$8 y2x2 y2$5 ZL‘y4 m7y4 $7y4 33.3

Where z is the permutation (1,5,7,3,4,9,2,6,8) and y is (1,4)(2,5)(3,6)(7,8,9),
which generate a subgroup of Sy of order 162.

Cokernel GPW (10,9, 8):

0 e e e e e e e e e
e 0 A B C D FE F G H
e B 0O A E C D H F G
e A B 0 D FEF C G H F
e S T U 0 VW XY Z
e U S T W 0V Z XY
e U S VW 0 Y Z X
e A B € D € F 0 & H
e € A B F D ¢ H 0 &
e B CACEC F DS H 0
The permutations as follows:
A=(1,8)(2,4,3)(5,6) E=(1,3,8,6,7)(2,5) S =(1,7,2,3,6,8,4)
B =(2,7,4,6)(3,5) F =(1,6,8,3,7,5,4,2) T =(1,6,7,8,3)(2,5,4)
C=(1,4,8,7,3,6) G=(1,5,7,8,2,6,3,4) U=(1,5,8,2)(3,4,7,6)

D =(1,2,8,5)(4,7,6) H=(1,7,2,3)(4,5,8) V = (1,8)(2,6)(3,7,4,5)
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W = (2,4,3)(5,7) A=(1,3,7,5,2,8,6)
X =(1,2,7,3,8,5,6) B = (1,4,5)(3,8,7)

Y =(1,3,5)(4,8,6) ¢ =(1,2,6,4,8,5,7)
Z =(1,4,6,5,2,8,7) D =(1,5,4,6,8,2,3)

A different kernel (found in [47])

e e e e e e
ar by ¢ di er fi
az by ¢ dy ex fo
az b3 c3 d3 es f3
ay by cy dy ey fa
as bs cs ds es fs
ag bs cs dg es fo
ar by ¢ dy er fq
ag by cg dg €g /8

a O o o o 0o o o 0

The permutations as follows:

91
g2
gs
94
gs
Js
gr
gs
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¢ = (1,7,8,4,2)(3,5,6)
g =(1,6,5,8,3,4)(2,7)
& = (1,8)(2,5,3,6)(4,7)

5 =1(2,4,3)(6,7)

a1 = (1,8,5,2)(3,7,6)(4,9) a»=(1,9,3)(2,7)(4,8)(5,6) as = (1,5,7,4)(2,3,8)(6,9)

by = (1,4,2,6,5,7,3,9,8) by =(1,7,8,6)(2,9)(3,5,4)
a = (1,9,3,8,2,7,5,6,4) ¢ = (1,2,6,8)(3,4,5)(7,9)
di = (1,6,2,8,3,4,5,9,7) ds=(1,4,2,5)(3,6,7)(8,9)
er = (1,7,2,9,5,8,4,3,6) ey =(1,5,7,4)(2,3,8)(6,9)
fi=1(1,5)(2,3)(4,8,9,6,7) f»=(1,3,9)(2,4,6)(58,7)
g1 =(1,3)(2,5,4,6,9)(7,8) g2 =(1,6,4,7)(2,8,3)(5,9)

hi=1(1,2,4,7,9)(3,5)(6,8) he=(1,8,5,2)(3,7,6)(4,9)

bs =(1,8,4,9,7,5,6,3,2,1)
ez =(1,3)(2,9,4,7,6)(5,8)
ds = (1,9,3,5,4,8,7,2,6)
es = (1,4,6,8,9)(2,5)(3,7)
f3=1(1,7)(2,8,6,5,9)(3,4)
g3 = (1,2,4,5,3,6,7,9,8)

hs = (1,6,4,2,7,8,3,9,5)
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as = (1,4,2,5)(3,6,7)(8,9)
by = (1,3)(2,8,7,9,5)(4, 6)
¢ = (1,6,5,9,2,4,8,3,7)
ds = (1,5,8,6,9)(2,3)(4,7)
es = (1,9,3,4,5,6,2,7,8)
f1=(1,2)(3,5)(4,9,7,6,8)
91 = (1,8,5,7,2,6,3,9,4)
he = (1,7,5,4,3,8,2,9,6)
as = (1,7,8,6)(2,9)(3,5,4)
bs = (1,6,2,5,9)(3,8)(4,7)
¢s = (1,4,6,7,3,2,8,9,5)
ds = (1,3)(2,4,9,6,8)(5,7)

es = (1,2,6,4,8,5,3,9,7)

5 =1(1,8)(2,7,9,4,5)(3,6)

gs = (1,9,3,7,6,5,8,4,2)
hs = (1,5,6,9,8,7,2,3,4)
as = (1,6,4,7)(2,8,3)(5,9)
bs = (1,9,3,6,7,2,4,8,5)
s = (1,5,7,8,4,2,3,9,6)
de = (1,2,7,9,4,6,5,3,8)
es = (1,8,7,6,3,5,4,9,2)
fo = (1,4)(2,5,6,9,8)(3,7)
g6 = (1,7,5,2,9)(3,4)(6, 8)
he = (1,3)(2,6)(4,5,8,9,7)
a7 = (1,2,6,8)(3,4,5)(7,9)
by = (1,5,8,2,3,7,6,9,4)
cr = (1,8,7,4,9)(2,5)(3,6)

dr = (1,7,8,5,6,4,3,9,2)
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er = (1,3)(2,4)(5,9,8,6,7)
fr=(1,6)(2,9,5,4,7)(3,8)
gr = (1,4,8,9,6,2,7,3,5)
hr = (1,9,3,2,8,4,6,5,7)
as = (1,3,9)(2,4,6)(5,8,7)
bs = (1,2,7)(3,4,5)(6,8,9)
cs = (1,7,2)(3,5,4)(6,9,8)
ds = (1,8,4)(2,9,5)(3,7, 6)
es = (1,6,5)(2,8,3)(4,7,9)
fo = (1,9,3)(2,6,4)(5,7,8)
gs = (1,5,6)(2,3,8)(4,9,7)

hs = (1,4,8)(2,5,9)(3,6,7)
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Baer-kernel(GW (13,9, G)):
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8
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e
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8
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8

0 z%y
0 0
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