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Abstract

In 1953, Paige and Wexler introduced a form of the incidence matrix of a finite projec-

tive plane organized about a point line incident pair. We introduce generalised permutation

Hadamard matrices, which are related to this form. We give another form of the incidence

matrix' organized about a point line non-incident pair. We introduce generalised permuta-

tion weighing matrices, which are related to this new form. We draw a connection between

these two forms, which extends to a connection between the existence of a finite projective

plane of Lenz-Barlotti class IL2 and a GH(n,G) whose core is group developed. In the

case where a finite projective plane has a Baer subplane, we also present a third form of

the incidence matrix. We give a non-existence result for a particular class of generalised

Hadamard matrices over a cyclic group.

Using a known construction for orthogonal matrices, we obtain a set of MOLS. Con-

structions of sets of MOLS of these sizes are known; however this construction gives Latin

squares whose ro\¡/s are all shifts of the first row. Adapting a technique of Hughes, rve use

collineations of projective planes to construct a Hadamard matrix of order Ç ø, certain

prime powers q.

We introduce skew arcs, which are sets of points in a projective space, related to parity

check matrices of linear error correcting codes. We give some constructions of skew arcs

and take an in-depth look at Wagner's [23,14,5] code.



Chapter 1

Background

In projective geometry, there are two types of questions asked. One is about con-

figurations, the other is about existence. We touch upon both of these questions,

giving some theorems about the existence of projective planes with certain types of

automorphism groups, and give a characterization of a particular configuration in

projective spaces related to codes.

1.1 Designs

An 'inc'idence structure is a triple D : {V, 6, I} where V and B are disjoint sets and

Iisabinaryrelation,called'inc,idence,betweenVand ß,i.e. ICVxB. If (p,()eI,

we say p is 'inci,denú with (., or that l. is 'inci,denú with p. The elements of V are called

po'ints, those of B are called blocks or l'ines, those of I are called flags. We will at

times refer to an incidence structure as a desi,gn.

Example 1. A near penci,l on n points is an incidence structure which has one line
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Figure 1.1:

/ incident with n - 1 points and n - 1 lines, each incident with the point not

on !. and a distinct point on /.

The following is a near pencil on 6 points:

{Po, Pt, Pz, Ps, P+, Ps}

{bo,bt,bz, bs, bq, bs}

{(pn,bo)lz e {r, 2,s,4,s}} u {(po,bo)lz e {1, 2,J,4,5}}

U {(p,, b¿)li e {1,2,3,4,5}}

We often represent an incidence structure with a diagram in which lines are

represented by curves, and points as distinguished intersections of curves. The

above near pencil on 6 points is shown in Figure 1.1.

rf (p, t) € r, the notation pr(. is commonly used. we also say (. passes through p,

v-
B-

I-
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or p'is on(.. rf (p,!) # r then the pair (p,(.) is referred to as an antiflag. Hpr!1 and

pI!.2 then the lines !.1 and (.2 rneet or coinc'ide at the point p. If pl!. and p2I(. then

the points p1 and p2 meet on the line !.. rf pr!.¿ for e : !,2,...n then the /¿'s are

concurrent or copointal at p. Lines that are concurrent at a point are said Io i,ntersect.

If p¿I(. fori :7,2, . .. n then the p¿'s are collinear on (..

\Me can associate with each element b of ß the set of points that are incident

with it. Thus, the elements of ß are treated as subsets of V, and I will be given by

inclusion. Hence we can also write D : {V, B} where ß ç p(V).

Example 2. Thus the design given in Example 1 can be expressed as follows:

V : {po,pt,pz,ps,pa,ps} as before, and now the 6 lines of ß are given by

{po, pt}, {po, pr}, {po, pt}, {pr, pn}, {po, pu}, {pr, pr, pz, p q, ps} .

Example 3. A balanced i.ncomplete block design (BIBD) with parameters (u, b,r, k, À)

is a design with o points and ö blocks each of which contain k points, such that

every point is in exactly r blocks and every pair of points is together in À

blocks. Since b : ï and r : H, we can refer to a BI BD with parameters

(u,b,r,k, À) as (u, k, À)-BIBD's. In the case that a BIBD has parameters ? : b,

(and hence k : r), it is a symmetric BIBD. The following is a syrnmetric BIBD.

The following are the blocks of a BIBD(11, b, Z)t {pr,pz,pB,pq,pa}

{pt, pz, Ps, Pa, Pz} {pr, pr, Pa, Pg, p:m} {pt, p4, p7, ps, prl} {pt, pr, pa, þ,0, pr-}
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{pz, pz, Ps, Pg, Ptt} {pz, P¿, P6, Pto, Plr_} {pz, pz, pe, ps, prc} {pz, p a, ps, pz, prc}

{Pz, Pe, Pz, Pe, nn} {Pa, Ps, Pa, k, ps}.

Example 4. Ã parallel class or resolut'ion class in a design (or incidence structure)

is a set of blocks that partition the point set. Lines are considered parallel if

they belong to the same parallel class. A resoluable BIBD is a (u, k, À)-BIBD

whose blocks can be partitioned into parallel classes. The following are the

blocks of a resolvable (15,3,1) design, arranged into parallel classes. Blocks are

the horizontal triples, and the parallei ciasses are the seven columns of blocks.

A,B,C
D, J, N
E,H,M
F,I,O
G,K,L

A,H,I
B, E,G
C,M,N
D, K,O
F,J,L

A,J,K
B, M,O
C,E,F
D,, H, L
G,I, N

A,D,E
B,L,N
C,I, J
F,K,M
G, H,O

A, F,G
B,H,J
C, L,O
D,I, M
E,K,N

A,L,M
B,I, K
C, D,G
E, J,O
F,H,N

A, N,O
B,D,F
C,H,K
E,I, L
G,J,M

Although parallel lines do not meet, in the case of designs, not all lines that do

not meet are parallel. From the above example, lines A, B,C and D,K,O are

disjoint but not parallel.

We call a point i,solated if it is on 0 or 1 lines; similarly a line is 'isolated if contains

0 or 1 points. A point fullif it is on all the lines, and a line is futl if it contains all

the points. Generally, to avoid certain degenerate câses) we assume a design contains

no isolated points or lines, no full points or lines, and no repeated lines. A design is

fi'nite if V is a finite set (and hence B and I are as well). In this case we write lVl: u

and lßl: þ.



CHAPTER 1. BACKGROUND

Definition 1. With every finite design D, we associate auxb matrix of 0's and 1's,

called its inci,dence matrir A, Æ follows. Enumerate the sets v : {pr,p2,... ,p,}

(or, in some cases {p¡,pr,... ,p,_1}) and, B: {h,12,... ,lo} ( or {{s,Lt,... ,{u_r}).

A is defined as ,4 : la¿¡l where a¿¡ is I if p¿ (resp. pr-r) is on /y (resp . l¡-ù and 0

otherwise.

Example 5. The incidence matrix for the near pencil given in Example 1 is:

For more on designs see [60].

L.2 Projective geometries

I.z.L Definitions of spaces

There are various definitions of projective space. We shali use the definition in [12],

which is equivalent to that in [75]. A similar one is given in [19], except that an extra

condition ensures a space of finite dimension. Alternate developments may be found

in [10], [27].

Definition 2. A projecti,ue spaceis a design that satisfies the following axioms:

/o 1 1 1 1 1

lr loooo
lrolooo
lrooloo
lrooolo
\r o o o o 1
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P1: For any two distinct points p and q there is exactly one line that is incident

with p and with q. This line as is referred to as pq.

P2: Let a,b,c, and d be four distinct points such that the line øb intersects the

Tine cd. Then the line ¿c intersects the line ôd.

P3: Any line is incident with at least three points.

P4: There are at least two lines.

Example 6. The following (15,3,1) - BIBD

(see Example 7). Let the point set be

{ø,b, c,O, o, f , E,b,í, j,t,l,m,n, o}.

The line set is {{o, b, e}, {o, c, f}, {a, O, g},

{b, r, b}, {b, o, i}, {b, f, ú}, {b, g, f}, {b, j, n},

{c, i, n}, {c, [, o], {0, e, t}, {0, f, *}, {0, b, n},

{r,l.,h}, {1, g,j}, {f,i, o}, {f, t, n}, {g,b, o},

{i, f, r}}.

Subspaces of projective spaces

is an example of a projective space

{s,b,t}, {o, i, I}, {s, j, m}, {o, n, o},

{b, m, o}, {c, o, j}, {c, e, t}, {c, g, m},

{0, €, o}, {r, j, o}, {r, *, n}, {e, g, i},

{g, f , n}, {b, i, j}, {b, f, m}, {i, t, m},

We define a collection,U of points of a projective space to be I'inear if, given points

p and q in U, then all the points on the Iine pq are also in I/. Then the points of [/,

together with the lines determined by pairs of those points, will satisfy the first three

axioms of a projective space, and form a subspace (possibly a degenerate one, as in
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the case of a single point, or all the points of a singie line).

For a set of points X, define the spanof X, (X) to be n{Ul X c U,Uis a linear set}.

A set of points B is called independenú if for any subset B' c B and point p € B\B/

then p ç (B').

An independent set of points of a projective space lI which span lI is called a

basi,s f.or II. Any two bases of a given projective space will have the same number of

eiements[12]. A finitely generated space has dimensi,on d if any basis has d+ 1 points

in it.

Dirnension formula[l2]: Let u andW be subspaces of fI. Then dim((U,W)):

dirn(U) + dim(laz) - dim(i/ ìW).

For use in the dimension formula, the dimension of a single point p is 0, while

dim(ø) - -i. A hEperplaneis asubspace of dimension d- 1in aspace of dimension

d. Using the dimension formula it can be noted that a hyperplane and a line must

meet in at least one point.

L.2.2 Constructions

Let V be a vector space of dimension d+1, where d > 2,over a division ring F. Define

the geometry P(l/) as follows: the points of P(Iz) are the l-dimensional subspaces

of V, the lines of P(I/) are the 2-dimensional subspaces of V, and. the incidence of

P(y) is set-theoretical containment.

10
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Theorem l. [12]

P(y) 'is a projecti,ae space of d'imension d.

Proof. (P1) Let p and q be distinct points of p(v). Let (u1) and (o2) be the cor-

responding one-dimensional subspaces or v, that is p : (u) and q : (u2). Since

(rù I (ur), ut and u2 are linearly independent; hence (q,uz) is a two-dimensional

subspace. So (.: (q,uz) is the unique line containing p and q.

(P2) Suppose there are distinct points p,Q,r,s in p(V), with corresponding one

dimensional subspaces in I/, respectively (?rr) , (rr), (r¡), (rn), where u¿,s are pairwise

linearly independent. If pq meets rs then there is some u5 in V contained in (u1 , uz) À

(us,ua). Take u5 - a1 .ut t az.'t)2 : az. us I aq. ua; then take a1 .,t)1 - as.,us :

a¿ "uq - a2 "t)2:'ù6. so (u6) is contained in ('u1, o¡) ll (uz,ua,). Hence the lines pr and,

qs meet at the point (u6).

(P3) The line (u1 , o2) contains the distinct points (ur) , (u"), and (u1 * uz) , because

u1 and u2 àrE independent.

(P4) Since V has dimension at least 3, then there are three linearly independent

vectors uo,'u7,u2 àírd so the lines (t'6,u1) and (uo,uz) of p(V) are distinct. n

Example 7. The space given in Example 6 is constructed from a 4-dimensional vec-

tor space over GF(2). Each point of the space corresponds to the nonzero point

point of a iine in the vector space as follows: o: (1,0,0,0), b: (0,1,0,0), c:

11
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(0,0, 1,0), o : (1, 1, 1, 1), e : (1,0, 1,0), f

(0, 1, 1, 0), i : (1, 1, 0, 1), j : (1, 0, 1, 1), ú

(0,0, 1, 1), n : (1,0,0, 1), o : (0,0,0, 1).

t.2.3 Desargues' Theorem

(1, 1,0,0), g : (0, 1, 1, 1), tl

(1, 1, 1,0), [ : (0, 1,0, 1), m

12

Property fDesargues' Theorern]. Gi,uen two trþles of points, say A,B,C and,

A' , B' ,c' such that the I'ines AA' , BB' and cc' all meet at a po,int p , then poi,nts

r: AC aA'C', U: ABnA'B' and z: BC aB'C' are colli,near.

Figure 1.2: The Desargues' Configuration

P

We say that aspace is Desarguesi.anfi Desargues'Theorem holds for that space.
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Theorem 2. [12] A project'iue spdce'is Desarguesi,an onlg when it is constructed, ouer

a skew fi,eld.

Theorem 3. [12] All project'iue spaces of dimension 3 or hi.gher are Desargues,ian.

Hence ali finite projective spaces of dimension 3 or higher arise from the field by

the construction of Section I.2.2.

1.3 Projective planes

According to Theorem 3, projective spaces of dimension 3 or higher are all Desargue-

sian, so we nov/ take a closer look at the specific case of two dimensions. We start

with a related structure, called an affine plane.

Definition 3. An ffine plane A: {P,L} or lI: {p, L,r} i.s a i,nc,id"ence structure

that has the following properties:

APl: Eaerg pai,r of poi,nts meet on a unique line.

APZ: G'iuen apointp and aI'ine(. wherepç1, there'is auniquel,inem suchthat

p € rn and m and {. haue no po'ints 'in common.

APS: There eri,st 3 noncoll'inear points.

Example 8. The following design is an affine plane (see Figure 1.3):

V : {pt,P2,Pr,Pq,Ps,Pa,Pi,Pa,Pg} andB: {{pr, pz,ps}, {p¿,ps,pu}, {pr,ps,ps},

{h, ps, ps}, {pr, pu, pz, }, {ps, P¿, Ps}, {pt, pt, pz}, {pr, ps, pe}, {ps, pa, pg},

l3
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Figure 1.3: An affine plane

{pt,pr,Pr}, {pr,Pa,Ps}, {pt,pa,pr}}. I is given by set inclusion.

Definition 4. A project'iue plane II : {P, L} or lI : {P, L,r} is a'inc,idence structure

that has the following properti,es:

PPL: euery pai.r of po,ints meet on a un'ique l,ine;

PPZ: euery pa'ir of li,nes meet at a unique po'int;

PP?: there eri,st I po'ints, no three of whi,ch are coll'inear.

Any projective plane is a projective space. obviously, PPÍ + pr. Since any

pair of lines meet (PP2), P2 will hold. In this case, let p : lt ) {2 be the point

I4
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where lines /1 and (.2 meet. Let p1,pz,ps,pa be the four points, no three of which are

collinear (from PP3). There are at least two lines, say p1p2 and.ptpt, so p4 holds.

Also, each line has at least three points as follows: Any line of type p¿p¡ will have

the point p¿p¡ìpnpt, (where {i, j,k,l} is a permutation of {1, 2,,2,4}). Any other line

must meet both pp2 and p3pa, both p1p3 and p2pa, and both plpa and p2ps. At the

very least, it is on the point joining each pair, and hence is on at least 3 points. Since

a projective space can be generated by 3 noncollinear points, it is a two dimensional

projective space.

There is a connection between affine and projective planes: If a line and all the

points on it is deleted from a projective plane an affine plane will resuit. Conversely

given an affine plane, a projective plane can be obtained by adding a line in a partic-

ular way.

In an affine plane, maximal sets of lines which do not meet form parallel classes, as

we will show. Let fi be the relation on the lines of an affine plane .4 given by tRm if

I : m or / and m have no points in common. The relation ,R is obviously symmetric

and reflexive. Let hR(. and (.Rm for disjoint lines ä, (. and m. If. h and mhad a point

in common, sãY P, then there would be two lines on p which were disjoint from /,

which contradicts AP2. Hence ,R is transitive, and it is an equivalence relation on

the lines of ,4. From AP2, every point is on some line of an equivalence cì.ass, hence

15
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the lines of "4 are partitioned into parallel classes. To get a projective plane, a point

is added for each parallel class, incident with each line in that class, and a new line

is introduced which is incident to all these new points.

Example 9. One of the best known examples of an affine plane is the familiar real

plane IR2. See Figure 1.4

P : {(r,a)lr,A e R}. Lines play their usual role of solutions to equations of

the type A: rnr, * b or r: c. These can be represented by

L: {(*,b)lm,b e R} u {(c)lc e R}

Figure 1.4: IR2

16

Example 10. Let us build a

mentioned in Example g.

projective plane

Compare Figure

by adding a line to the affine plane

1.41o Figure 1.5
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Figure 1.5:

\ l¿¡
.......\-.

An infinite projective plane

We let P : {(*,a)lr,a € R} u {(¿)lú € lR} u {(oo)i and

L: {(r,a)lr,y € R} u {(¿)lr e R} u {(-)}.

The incidence is as follows:

(r,y)I(m,b)Ltry:mrtb

(r,y)I(cliffr:c

(t)I(m,b) ltr t: m

(t)I(oo) V¿ € IR

(oo)I(c) Vc € R

(oo)I(oo)

Example 11. The smallest finite projective plane, also known as the Fano plane

17
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Figure 1.6:

(see Figure 1.6), has point set P: {1,2,9,4,5,6,7}, and lines

tr : {(1, 2, 4) ; (2,3, 5) ; (3, 4, 6) ; (4,5, 7) ; (b, 6, i) ; (6, T, 2); (7,1, 3)}.

1.3.1 Some elementary properties of projective planes

For a finite projective plane fI, we now consider the number of points on any line,

and the number of lines through any point. We start by showing that any two lines

of fI have the same number of points. Let !.1 and $ be any two lines of II, and let

the point at which they meet b" po. Let the points of /1 be po,pt,...,pxt and let the

points of l.2be po,Qt,...,Qr"z.By PPS, there is a point q not on (.1 or !.2.

Let the number of lines through q be n * L Since q must meet every point of

(1, and it meets distinct points of {4 on distinct lines, since Q # h, there are at least

18

The Fano plane

I
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h -f I lines through q. Also, since every line through q must meet Ll in some point,

distinct for each line through q, there are exactly kr * 1 lines through q. Similarly

with (,2. Hence kt : kz: n. Similarly, any point not on lr will have n -l 1 lines on

it, and any line not on q will have n * 1 points on it. Further, for any point on {.2 or

(.2 there will be some line not on it containing n t 1 points, hence it will also be on

n * I lines, for any line through q there will be a point not on it which is on n * 1

lines, hence it will contain n I I points.

Since every line contains zz + 1 points, and every point is on n f 1 lines, n the

order of the projective plane.

To get the total number of points, fix a point Q. Each point of lI meets I on

a unique line, and there are n * 1 lines through Q, each containing n points other

than Q. So in total there are n(n + 1) + I:n2 *ni 1 points. Similarly, there are

n2+n*1lines.

We use the notation P P (n) to denote a projective plane of order n. The plane in

Example 11 is a PP(2).

Example 12. A PP(3), whose diagram can be seen in Figure 1.7, is given by

the point set P : {pr,pz,...,pß} and the line set L: { {pr,pr,ps,pn},

{p¿,ps,Pa,Pn}, {pr,pr,ps,prc}, {pr,pr,ps,p,¡}, {pr,pu,pr,p-¡}, {pr,pn,ps,pr-},

{pt,pn,Pz,Pn}, {pr,pr,Pa,Pr-}, {pr,pu,Ps,Pn}, {pr,pu,pz,pr.}, {pz,ps,ps,pß},

i9



CHAPTER. 1. BACKGROUND

Figure 1.7: A projective plane of order 3

{pt,pa,Pe,pß}, {pro,prr,Ptz,Pn} }. This can also be formed by adding a line

to the affine plane given in Example 8. Compare Figure 1.3 with Figure 1.2.

Now consider the incidence matrix of a projective plane. By the foregoing discus-

sion, the incidence matrix or PP(n) is an (n2 *n*r) x (n2 ]-n]_ 1) matrix of 0's

and 1's.

20
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Example 13. The incidence matrix of the plane given in Example 12 is

1110000001000
000i110001000
0000001111000
1000100010100
0100011000100
0011000100100
1001001000010
0100100100010
0010010010010
0010101000001
0101000010001
1000010100001
00000000011i1

The (2,7)-entry of AAr will be the number of lines in which p¿meetsp¡. This

is n * 1 if z : 7 (the number of lines through a point), and 1 otherwise (by PPI).

Hence AAr : nI + J (J is defined as the matrix of all 1's of the appropriate size).

1.3.2 Subplanes

A subplane fI' of a projective plane fI is a projective plane whose points are a subset

of the points of fI and each of whose lines is a subset of a line of lI. Note that a

subplane is a not a subspace of a projective plane.

Theorem 4. [10] If r| i,s a subplane of order m of a planefr of ord,er n wheren' + fi

then either m2 : n or m2 * m I n.

Subplanes of order fn arecalled Baer sttbplanes.

21
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Theorem 5. [10] If lI' i,s a subplane of order rn oÍ a projectiue plane fI of order

n : rr1,2 then euerg l,ine of fI meets fI' i.n at least one po,int.

1.3.3 Coordinatization

The following can be found in [59]. Let lI be a projective plane of order n and let

Æ be a set of n symbols containing the symbols 0 and 1 but not the symbol oo. We

pick 3 non-concurrent lines lt,{.2,(.oo,Iet px be lzt*; let py be l.1l.oo and let po be

!.1(.2. Let pt he a point not on {1,.(.2 or !oo.

Let p¡ be pxpt ) (.1, Iet pn l¡e pvpt I (.2 and let p¡ be p¿,pn I l*.

We now set up a correspondence between the symbols of R and the points of /1\py,

arbitrarily except that the symbol 1is assigned to the point pa and the symbol 0 is

assigned to the point p¿.

Now if pc oî h\pv, corresponding to c € R, this point is assigned the coordinates

of (0, c). (So pa is (0, 1) and p6 is (0,0).)

To get coordinates of a point po on lr\p*, if pnp¡ I [.1 is (0, d) then po is (d,0).

Now if pB is a point outside of (,1, 1.2 and (.oo, pøpx lì11 is (0,/) and pppv)!.2is

(9,0) then pø is Ø, f).

If p2is apointof /-\py, andp2psr-ì11 is (0,^)thenp2 is (zn). Lastl¡ thepoint

py is (oo).

We now can assign coordinates to the lines according to the coordinates of the

22
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points. If a line / is not on pv : (oo), and !. f) (.* - (nr.) and l. a (t : (0, k) then

l: (*,k).If / is on py and !l l*, (.n12: (b,0), then l.: (b). /"": (oo).

L.3.4 Latin squares

Definition 5. A Lati,n square of order n is an n x n array whose elements are n

distinct symbols (commonly the numerals 1, . . .,n) such that each element appears

once in every row and once in every column.

Example 14. A Latin square of order 3 :

123
231
312

Definition 6. Two Latin squares A:lo,¡] and B :lb¿¡l are called orthogonalif the

ordered pairs (ø¿¡, bn¡),7 < i,, j 1n, are all possible zz2 ordered pairs.

Example 15. The following Latin squâres of order 3 are orthogonal.

r 2 3l
2 311,
3 i 2l

723
312
231

Lemma 6. [/r7] There are at mostn-I mutually orthogonal Latin squl,res (commonly

known as MOLS) of order n.

If a set of n - 1 mutually orthogonal Latin squâ,res of order n exists, it is referred

to as a complete set of MOLS.
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Lemma 7. [/r7J Euery complete set of MOLS corresponds to projectiue plane of the

same order. EuerE project'iue plane corresponds to one (or more) complete set of

mutuaLly or-thogonal Latin squares.

One way to view this correspondence is through the coordinatization of the plane.

As seen in [59], from the coordinatization we can define a planar ternary ring, and

from this we can define a complete set of MOLS.

1.3.5 The Lenz - Barlotti classification

Definition 7. A collineat'ion of a projective plane is a surjection a : P ---+ P that

preserves lines (hence induces a map a : L -- Z such that po € ¿ iff p e ¿).

Example 16. Define a map a on the points of the Fano plane, seen in Example 11,

as follows:

a(t) : 2, a(2): 3, a(3) : 4, a(4): b, a(5) : 6, a(6) :7, a(T) : r.

Under a lines map to lines as follows:

a[I,2,a] : [a(1) ,a(2),o(4)] : [2,3,5], o[1,5,6] : ["(1), c(5), a(6)] : [2,6,7],

o[1,3,7] : [a(1), o(3), o(7)] : [2,4,I], a12,3,51 : la(2),a(3), o(b)] : [3,4,6],

a12,6,71 : [o(2),o(6), o(7)] : [3,7,1], a[3, 4,6] : ["(3), a(a), a(6)] : [3,5,7],

a14,5.,7]¡: [a(4),a(5), a(7)] : [5,6, 1].

Observe that this collineation has no fixed points or fixed lines.
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Example 17. Define another map P on the points of the Fano plane as follows

P(1) :7, P(2) :2, 0(3) :7, þ(4) : 4, P(5) :6, p(6) :5, 0(7) :3.

Under p lines will map to lines as follows:

p[7,2,4]: [p(1),p(2),p(4)]:11,2,41, 01r,5,61 : [p(1) ,p(5),p(6)] : [1,6,5],

p[r,3,7]: lp(I),p(3),p(7)l -- [1,7,3], p[2,3,5]: [p(2),p(3),p(5)] : 12,7,61,

p12,6,71 : lpQ),p(6),p(7)l: [2,5,3] , p13,4,61 : [p(3), p(4),p(6)):17,4,5],

014,5,7]]: v3(4), p(5), p(7)l: [4,6,3].

This collineation fixes the points 1,2 and 4, and it fixes the lines 1r,2,4],, [1, 6, b]

and [1,7,3].

Example 18. Define yet another map 7 on the points of the Fano plane as follows:

r(1) : 2, tQ): 3, .y(3) -- 1, t(Ð: 5, r(5) :7, t(6) : 6, t(7) : 4.

Under 7 lines map to lines as follows:

1[I,2,a] : [r(1) ,.y(2),7(4)] : [2,3,5], ryl1,5,6] : [r(1),7(5),7(6)] : 12,7,6|],

7[1,3,7] : [r(1),7(3),.y9)] : 12,1,41, .y12,3,51 : hQ),.y(3),r(b)l : [3,1,7],

'y12,6,71 : l'yQ),7(6), ^r3)l: [3,6,4], 7[3,4,6]: [r(3), t(Ð,t$)]: [1,b,6],

't14,5,7]1: WØ),r(5), r(7)l : 15,7,41.

This collineation fixes the point 6 and the line [4,5,71.

Definition 8. A center of a collineation a is a point p that is fixed linewise by c. Ie.
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all lines through p are fixed by a. If a collineation o has a center, then it is referred

to as a central collineati,on.

The collineation in Example 17 has the point 1 as its center. Notice that in

Example 18, that even though 6 is a fixed point, it is not a center.

Definition 9. An atis of a coliineation a is a line t that is fixed pointwise by a. I.e.

all points on (. are fixed by c.

The collineation in Example 17 has line [1,2,4] as axis. Note that the fixed line

in Example 18 is not an axis.

Lemma 8. [/16] A colli.neati,on a has a center i.ff it has an aris.

We will refer to a central collineation with center p and axts {. as a (p, [)-colli,neation.

If p € (. then a (p,l)-collineation is called an elat'ion, if p * (. then a (p, !)-collineation

is called a homologg.

Lemma g. [/16] A central colli,neation i.s completelE determi.ned by ,its center p, i,ts

ari,s (. and i,ts act'ion on one poi,nt r (r * p r É ().

Given a point p and a line (.in a projective plane II, II is called (p,{)-transit'iue

if foreverypairof points r,r'(r,r'lp;r,r'É /) where r,r',p arecollinear, there

exists a (p,l)-collineation a such that a(r) : ¡'-
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Lenz

Lenz developed a classification of projective planes based on what conflguration of

(p,/)-transitivities can exist in the plane for flags (p,l) [71]. There were originally

seven different classes, but we will exclude those for which it is known that no planes

of that type can exist (see [46]).

Let.C b" {(p, Q e P * Llp € (. and lI is (p,/)-transitive }. Then II is said to be:

ClassI:t:Ø;

ClassII: Thereexistp€Pand {.e L,p€l suchthat t:{(p,!)};

Class III: There exist q € P and L e L, q f (, suchthat "C 
: {(p, pùlp e ¿};

Class lVa: There exists (. e L such that t: {(p,{.)le e l.};

Class IVb: There exists p € P such that t : {(p, t)l¿ > p};

Class V: There exist p € P and {. e Lsuch that t : {(p,h)lh > p}¿{(q,{)lq e L};

Class VII: I : {(p,Qle e !}.

Barlotti

Barlotti extended the classification set forth by Lenz to include transitivities for

antiflags 16].

Let !8 bu {(p, {) e P x IIII is (p,[)-transitive]

Class I.7: ß: Ø:

Ciass L2: There exist p € P and I e L,p# tsuch that A: {@,()};

27
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Class I.3: There existp, q € P and /2, 1. e L,p#¿,p €h,q çh,q €¿ such that

E: {(p,t),(q,h)};

Class I.4: There exist non-collinear points p,Q,r such that

E : {(p, qr), (q,pr), (r,pq)};

Class I.6: There exist / € .L and q € P where q e ¿, and a bijection

ó,¿\{q} - {hlq€h+ /} such that !3 :{(p,pólp e /\{q}};

Class II.1: There exist p e P and l. € L, p€ I such that !3 : {(p,l)};

Class II.2: Thereexistp,q € P and h.,{, e L,p,q € l,p e h,q # h.such that

E: {(p,l),(q,lz)};

Class III.1: There exist q€ P andl.€ L, qf (.stch that !3: {(p,pùlpe l};

Class III.2: There exist q € P and (. € L, Q f / such that

E : {(q, !)} u {(p, pùlp e !};

Class IVa.l: There exists {. e L such that E: {(p,!)lp e [.];

Class IYa.2: There exist I € .L and p,Q € P, p,qe / such that

ß : {(r,t)lr e ¿} ¿ {(q,h)lh = 
p} u {(p, k)lk > q};

Class IVa.3: There exist / e ,L and an involutory fixed point free permutation t

of the points of / such that E : {(p, t)llp e t} Uorr{(p' , h)lh > p};

Class IVb.1: There exists p € P such that B : {(p,t)l! > p};

Class IVb.2: There exists p e P and lines h,k ) p such that
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ß : {(p,qV > p} ¿ {(q,h)lq e k} u {(r, k)lr e h};

Class IVb.3: There exists p € P and an involutory fixed point free permutation ú

of the lines of p such that !8: {(p, Ðlp e l.}l)n=r{(ø,|r,)lq € h};

Class V: There exist p € P and !. e Lsuch that ß : {(p,h)lh )p}u{(q, l)lq e {.};

Class VII.1: E: {(p,[)lp e {.};

Class ylI.2: ts: {(p,!)}.

29
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Orthogonal matrices

2.L Hadamard matrices

Hadamard matrices were first introduced by Hadamard in 1893 [52], and have been

the inspiration for much study.

Definition 10. A Hadamard, matri,r 11 is an n x n (-t, t)-matrix such that

HHT:nI.

We use the notation H (n) to denote a Hadamard matrix of order n.

Example 19. The following is an H(4):

lt 1 1 1\
I r 1 -1 -1 I

I r -1 i -r I

\r -1 -1 r)
A Hadamard matrix has the property that its rows are pairwise orthogonal. It

is known that Hadamard matrices of order n caî only exist for n : L,2 or n : 4a,
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o' e Z+ and it is conjectured that they exist for all of these values [52]. For more on

Hadamard matrices and associated structures see [b0].

Two Hadamard matrices are considercd equ'iualent if. one can be obtained from

the other by a series of row switches, column switches, multiplication of a rov/ by -1,

or multiplication of a column by -1.

Example 20. The H(a) found in Example 19 is equivalent to

Definition 11. A wei,ghi,ng matri,rW : W(n, tr.,) is an 7¿ x n {-I,0, l}-matrix which

has the property that

WWT : wL

We call w the we,ight of the matrix.

Example 21. The following is aW(4,3):

31

lt 1 1 1\
f r -1 1 -1 I

I i i -r -1 I '

\r -i -1 r)
which was obtained by switching the second and third rows.

2.2 \Meighing matrices

fliåi)\r 1-1 o
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Two weighing matrices are considered equi,ualent if one can be obtained from the

other by a series of row switches, column switches, multipiication of a, rov¡ by -1, or

multiplication of a column by -1.

2.3 Group ring basics

To introduce generalizations of Hadamard and weighing matrices whose elements are

from a group, matrix multiplication will be defined over a group ring.

Let G : {gili'e N} be a finite gïoup, where N is some index set, and let Æ be a

commutative ring with unity. Let r?[G] be the set of all formal sums

Ðoono
¿€N

where a¿ € R and g¿ e G. RlGl is the group ring, with the following operations:

The sum of two elements in ,R[G] is defined by

f;^no- à 
b¿e¿: I(ou t b¿)g¿

and multiplication is defined by

(ä',*) (ä',,,) :ä(-p,, 
",ur)n,

We use the foliowing shorthand notation for the sum of the group elements (times

the ring unit)

G¡::Ðt
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The conjugateof an element a : D¿er,t o,¿g¿irtthe group ringis e! :: Ðr.* ao(go\.

We are interested in two specific quotient rings. One is ZlGllGÐ for a group G.

The other is based on sharply transitive subsets of the symmetric group .9,. A sharply

trans'itiue subset of ^9" is a set,4 of permutations such that for any pair of positions,

¿ and b, there is exactly one p € -4 where p(a) : ö, and the quotient ring we are

interested in is Z[S.]f J where.T is the ideal generated by the sum of the elements

of a sharply transitive subset of ^9,.

2.4 Generalised Hadamard matrices

Definition 12. A general'ised Hadamard matrir GH(n,G) is an nx n matrix fI :

[h¿¡], whose entries are elements of a group G, such that, for aII i, I .j ,

in*n;;: ÀG¡,
lc:l

(2 r)

where À is an integer, called the,inderof H. Note that f i: j,ÐT:rhkh;; - nI,

where 1 is the group identity. Write H* : lhitl, transpose followed by entry-wise

conjugation in the group ring. In this notation (2.1) becomes HH" : nI mod Gy,

with matrix multiplication carried out over the group ring ZlGl.

we note that À must be the same for all i,7 when i.+ j.In particular, À: fr.
We will be most interested in the case where À: 1.
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Example 22. We let G: {1, 1,12}, the cyclic group of three elements. Then

/t 1 1\
H:l r 'v n2 ì\i + 1)

is a Gl1(3, C3), for

Two generalised Hadamard matrices are considered equ,iualentif one can be ob-

tained from the other by a series of row switches, column switches, multiplication of

a row (on the left) by an element g € G, or multiplication of a column (on the right)

by an element g € G.

2.5 Division tables

To give some motivation for this next definition, we introduce the use of a group's

division tables as a method of representing its elements as permutation matrices.

Let G be a group of order n and let Cc be an n x n array of elements of G in the

following way: Let gt : r, gz, . . . , gn be an ordering of the elements of G and take the

(i,, j)-entry of. Cc to be gß¡1.We now have a matrix representation of each group

HH.:(l 
1 1 \ /r 1 1 \

\r l'I)(,l "; i)=313mod(1 
+z+^'r\

Observe that À : 1 for this GfI.



CHAPTER 2. ORTHOGONAL MATRICES

element g namely F(g) : [a¿¡] where

We denote the permutation representation of gby laryl as F(g), and the group of

all such permutations as f(G) P(G) is a subgroup of ^9", isomorphic to G.

Example 23. The division table for the group Cs is:

+ ll 1 I t l'v'

tÉJJ

^ f r ircc(¿,j):g
'n¡:10 otherwise.

So the permutation representation is as follows:

lt o o\ /o 1 o\ lo o 1\
f(1) :{o 1o f ,f{") :{o o l f ,andß(t\:l1o o ì'\/ \o orl \r oo) \o ro)

We can introduce a second set of permutation matrices from this table. Let s¿ be

the permutation that permutes the first row of Cç into the zth row. I.e. s¿ : [åj,t]

where

, _ I r 11 cc(l,i) : cc(i,k)
"jk-10 otherwise.

We denote the set of all such permutations as ,95,.

Lemma 10. ,Sc i,s a group i.somorphi,c to G, and the elernents of S commute with

the elements of p(G). I.e. i.fs¿ € ,S and, g e G thenp('.g)ro: s¿FØ).

f ll t lf I t
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Proof. To get from row 1 to row i of. Cç, v/e are simply multiplying (on the right) by

the element !¿, so it is obvious that S - G.

Suppose FG)q has a 1in the (j,k)th position. Then, for some m1,the (j,*r)-

entryof F(g) islandthe(rn1,k)-entryof s¿is1. Hence,the(7,rn1)-entryof C6is

g and the C6(1,^r): Cc(i,k). Let m2be the columnof Cç such that Cc(7,j):

Cç(i.,m2).

Now since

-1 _1 _1g^zgr : gmzg¿ '9¿9r'

: (gng*l)-t (grg,.l)

: Grg i 
t)-' (gtg,-l)

: g¡gtt gtgr"l

: g¡g*l

-9

the (j, À)-entry of s¿p(g) is also 1. Hence ß(g)t : s¿Fb).

n

Example 24. Let G be the dihedral group Ds : {r,yl*t : I,A2 : \,Ur : ,ry}.

Its division table is
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In this case, the permutation representation of the group G is generated by the

.ft

matrices F@) :

001000
100000

000100
000010

010000
001000

11000001s": I o o o o o 1 | andsr:
000100
000010

B å B B B 1 l,*or{u) : | | B B B å B I

000100
000001

001000
010000

The group ,S, as described above, is generated by the matrices

000001
10 0 0 0 0l'

000100
000010

010000
00i000

It can be easily checked that p(r)s,: s,F(x:), T(A)t": s*F(A), ß(r)to

sn$@), and p(g)sa : ssF(A), as expected.

The centrali.zer of a set ,4 in ,S, is the set of all elements in ,S, which commute

with every element of ,4.

Lemma It. The group S 'is the centralizer of P(G) i,n Sn.

Proof. Suppose s is a permutation in ,S, such that sp(g) : Fk)s for g € G. The

1 T ,T" a ra 12a

I 1 r" T a ra a
r T 1 12 ïy r"a u
r r' T 1 r"a u ra
a a ra r"u 1 T, r
ra ry rt'!l a r 1

a T a ra r T 1
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(2, j)-entry of sp(g)s is a 1 if, for some m1, the (i,,rn1)-entry of s is 1 and the (m1, j)-

entry of T(g) is also 1.

The (i,7)-entry of p(g)s is 1 if for some m2the (i,,m2)-entry of p(g) is 1 and the

(m2, j)-entry of s is 1.

Suppose Cc(*r, j) : Cc(i,*r) : g, and let z be the row such that Cc(",^r) :

Cc(1,2). Then

-l _1 _1gr9¡-:9"9rnr9*t9j'

_1 1: 7tg¿ '9¿9*,

1: 9tg*r.

So the z'th row also contains the m2'th entry of the first row in the 7'th column.

Hence s is the element of ,S which permutes the flrst row of C6 into the z'th row.

n

Let G be a group of order n. We say that â,n ?? x n matrix A is group deueloped

over the group G if A(i, j): A(t,ú) whenever Cç(i,, j): Cc(s,i). I.e. a matrix is

group developed if the matrix has the same element in each entry that there is a g in

Cc.

the pattern of entries in the division table in Example 23-
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Example 26. The matrix

(rbcdef
co,befd
bc0,fde
def0,bc
efdcab
fdebca

is also group developed, matching the division table of the dihedral group given

in Example 24.

2.6 Generalised permutation Hadamard matrices

Here is the first of two new generalisations of Hadamard matrices that we introduce

for studying projective planes.

Definition 13. A general'ised permutat'ion Hadamard matrirGPH(n,rn) is aînxn

array H : [P"¡] whose entries are elements of ^9- (m x m permutations, generally

considered to be permutation matrices) such that

f nup,r, : rt
?-

for some integer s when i. + j. Note that if i, : j then tt, nrP¡*' : nI. Hence

HH*:nI mod J.

Example 27. The following matrix is a generalised permutation Hadamard matrix.

39
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001 00i 001
010 010 010
100 100 i00

001 010 100
010 100 001
100 001 010

001 100 010
010 001 100
100 0i0 001

Two generalised permutation Hadamard matrices are considered equiualentif one

can be obtained from the other by a series of row switches, column switches, multi-

plication of a row (on the left) by an elernent p e ,S,,, or multiplication of a column

(on the right) by an element p € Sn

We say that a Hadarnard matrix (generalised Hadamard matrix, generalised per-

mutation Hadamard matrix) is in normali,sed form if all the elements in the first row

and first column are 1 (group identity, identity matrix). Every Hadamard (generalised

Hadamard, generalised permutation Hadamard) matrix is equivalent to a normalised

matrix. The submatrix of all the elements except the first row and first column of a

normalised matrix will be referred to as its core.

2.7 Generalised weighing matrices

Definition 14. A general'ised we'igh'ing matrir GW(n,u;G) is an n x n matrixW :

[tl¿¡] whose entries are either 0 or elements of the group G (note that 0 is the additive
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identity in the group ling) such that for alI i 17, there is some integer m¿¡ where

f .mr;r: m¿jGÐ
k:1

and fori: i, Di:t w¿nw¡t : u)r where 1 is the group identity of G. Note that

these operations are taken over the group ring, so if.w¡¡:0 then wit :0, otherwise

wi¡ : w¿I. We call u the wei,ghtof the matrix.

Matrix multiplication is defined over the group ringV,[Gl. Then W is ageneralised

weighing matrix if WW* : wI mod G¡.

Note that generalised Hadamard matrices are a special case of generalised weighing

matrices where the weight is the order of the matrix.

Example 28. Taking G : {r,'y,^12} as in Example 22, then the following is a

GW (5, a; G)

W-

srnce

WW* :

(i ? i iï 
)(l +'; î

ï iï)[i liü)(, I +,; î
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:4Is mod (1 +t +f).

Two generalised weighing matrices are considered equi,ualentif. one can be obtained

from the other by a series of row switches, column switches, multiplication of a row

(on the left) by an element g € G, or multiplication of a column (on the right) by an

element g € G.

2.8 Generalised permutation weighing matrices

This is the second generalization introduced specifically for the study of projective

planes.

Definition 15. A general,ised permutation wei.gh'ing matrir GPW (n,w;rn) is an n x n

matrix P : [P"¡] whose entries are elements of ,S- (m x m permutation matrices) or

aî rn x rn matrix of all 0's such that

Ð nre;r: 't
for some integer t - sri for all i I j andfor i : j, Di:rP,xPin : u)I,n. We say that

t¿ is the wei,ght of the matrix. Hence PP* : wI mod J.

Exampre2e. weret,s3begenerated*r: (i å å) 
andy: (i å å)

then the following is a GPW (5,4,3):
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/o 1 1 1 1\r-: ; IIt0*'araul
Itr'a o s ra 

I

It :LA A 0 ,'A I

\r a ra r2a o )
Two generalised permutation weighing matrices are considered equiualentlf. one

can be obtained from the other by a series of row switches, column switches, multi-

plication of a row (on the left) by an element p € Sn, or multiplication of a column

(on the right) by an element p e Sn.

We will mostly consider GW's and GPW's where the weight is n - 1 (one less

than the size of the array), hence each row (permutation row) will have only one zero

(matrix of zero's).

We say that a weighing (generalised weighing, generalised permutation weighing)

matrix of weight n - 1 is in normal'isedform if the elements on the diagonal are 0 and

all the other elements in the first row and first column are 1 (group identity, identity

matrix). Every weighing (generalised weighing, generalised permutation weighing)

matrix of weight n - \ is equivalent to a normalised one. The submatrix of all the

elements except the first row and frrst column of a normalised matrix will be referred

to as its core.
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2.9 Power Hadamard matrices

Definition 16. A Butson Hadamard matrix B : B(n,rn) is annx n matrix whose

elements are nlth roots of unity such that BB" : nL

Power Hadamard matrices are yet another type of orthogonal matrix and can be

seen as a generalization of Butson Hadamard matrices [3a]. The entries of a power

Hadamard matrix are powers of a variable (usually ø), and the conjugate is taken in

terms of the nngZ[r,r-1], hence (r"). : a,-a.

Definition L7. Let H : lho¡l be a matrix whose entries are po$/ers of an indeter-

minate r, and let H* : fhlr). If there exists a polynomial /(z) e z[r] such that

HH* : hI where the algebra is in the ring Zl",*llj(r)), then fI is said to be a

power Hadamard matri,r with respect to /(z), and we write H : PH(h, f (")).

Example 30. The following is a power Hadamard matrix PH(3,I * r -f r2):

/trr\
H:l r 7 r Ilr\r r 1/

since ,,.:('::) (rtr*,,',;;l )
( B r-1+r+r r-7+1+z\

: I r+r-1+I 3 1+r-1+r I-t-li -_i _1 '-'^t'r; I\z+7+r-1 l1_r1-r-1 J /
And now since r + 1 + t-l : ("-')(*' * r *1), the above matrix is

31 mod I*r*12.
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We define Õr(r), the cyclotomi,c polynomi,al of order k as

Õ¡(r) : II @-ù.
I','.",:"::'fl,i1;;

If r an n length row vector) we use the notation ci,rc(r) for to be an n x n matrix

whose first row is r and each subsequent row is a right shift of the row above it.

,< 

('" 

î ',; 
\Example3l. circ(L,"):l;; r i 

I

\r a'1/
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Matrix Forms of the Plane

3.1 The fl.g form of the incidence matrix

The incidence matrix of a finite projective plane has a well known normalised form,

developed in 1953 by L.J. Paige and C. Wexler [7S]. This form is directly related to

complete sets of orthogonal Latin squares l!4l,1471, [51].

Observe that the incidence matrix of a projective plane was built with an arbitrary

ordering of the points and lines of the plane. Picking a particular ordering, v/e can

get a nice structure.

Suppose fI is a projective plane of order n. Select a flag, (po,to). Let !1,... ,ln

be the n lines through p6 other than 1.6, and also let p1 ,... ,pn be the n points on

/6 other than p6. Now for i : L,. . . )n each t¿ has n more points on it, other than

p6. And, since all the lines !t, . . . , !.n abeady meet (at point po), this accounts for all

n(n-l1) remaining points. Hence label the remaining n points of (.¿: pn¿¡1t. . .tpn(i+7).

Similarly, label the n lines through p¿: ln¿+t,...,!n(¿+r,. Now consider the incidence
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Figure 3.1: Permutations in flag form

{i

matrix of II with respect to this particular ordering.

We consider the submatrix P¿3 consisting of the rows ni I 1,. . . ,n(i * 1) and

columns nj * 7,. . . ,n(j * 1). Since each point pni*¡_t. . .tpnþ+1¡ must be on exactly

one line with point p¡, there must be exactly one 1 in each row of this submatrix.

Similarly, each line of ln¡¡1, . . . , !n(j+r) must meet line l¿ in some point, so there must

be exactly one 1 in each coiumn of this submatrix. Hence this submatrix is àn n x n

permutation matrix. See Figure 3.1.

We will refer to the flag (po, lo) as the anchor of this form. The submatrix

consisting of the rows ?z*1,.. .,n2 ln and columns n+L,...,tu2 f n is the Ìternel.

See matrix in Figure 3.2, showing the kernel as a matrix of permutations.

The kernel of this incidence matrix can be viewed in two ways; (i) as an n2 x n2

47

ln(¡+t)



CHAPTER 3. MATRIX FORMS OF THE PLANE

Figure 3.2: Incidence matrix in flag form

0 0 0 ... 0 0 0 0 0

1 1 1 ... 1 0 0 0 0

0 0 0 -.- 0 1 1 1 1

48

1 1 1 ... 1

1 0 0 ... 0

1 0 0 ... 0

: : : ". :

1 0 0 ... 0

0 0 0 ...
0 0 0 .-.
0 0 0 ...

0

0

0

0 1 0 ... 0

0 1 0 .-. 0

0 1 0 -.. 0

: : : ". :

0 1 0 ... 0

0 0 1 .-. 0

0 0 1 ... 0

0 0 1 ... 0

ó o 1 ... o

0 0 0 ... 0 0 0 0 0 1 1 1 ... 1

P., P..

0 0 0 ... 1

0 0 0 ... 1

0 0 0 ... 1

: : : ". :

0 0 0 ... 1
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matrix of 0's and 1's, and (ii) as an n x n matrix of permutations, elements of the

symmetric group ,9,,. Considered in this second way, this matrix is a generalised

permutation Hadamard matrix; i.e., it is a GPH(n,n).

To see this, view the above matrix in block form.

A-

where

t:I
0 000
0 000
1 ... 0 0 0

( Y' "')

11
10
10

io
00
00
i1

1

0

0

0

1

0

0

:

0

000
ii1
000

00
10
01
::

0

0

0

:

B-

0 0 0 ... 0 0 0 0 ... 0 1 1 1 ... 1

and C is the kernel.

Since A is the incidence matrix of a projective plane, we know that AAT : nI * J;

hence

AAT : ( 
"v. 

z) (# å")

:( MMT + BBT MB + BCT \
BrMr +CBr nrA *-CCr ) 

: nI + J
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Equating the (2,2) blocks, we have BT B + CCT : nlnz | -I,"r. Now noting that

BTB:

0

0

0

0

0

0

1

1

00
00
::
00

00
00

0ó

11 1 00 0

1 1 1 0 0 ... 0

1i ioo ó

0 0 0 1 1 ... 1

0 0 0 1 1 ... 1

0 0 ... 0 i 1 ..: t

11
11

ii
0\0l
i-)(il

0

0

0

in block form BBr

00
00

00

00
00

00
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it follows that

FORMS OF THE PLANE 51

L n 0

1 0n
:::
1 00

J, J^ \
nI, Jn I.t: '. : I

Jn nI. )
SoforC:lPo¡)

i1
11
::
11

:(

p-1,

1

1

:

1

0 11
0 11

n ii
I n 0

1 0n

n0
0n

00

11
11
....

1 11
1 11
:'.:
1 11

0 11
0 11

CCT :

11
11

it

11 1

:

00 n

:

nIn
Jn

i.
-DT

11

:

0

0

... n

, we get

in block form CCr

Since P is a permutation matrix,

cr : lPif : lP ji.r) : [Pi'] : C*

Hence CC*:nI mod J, hence C is a GPH(n,n).

Note that the kernel is not unique but, for a given anchor, the different possible

kernels are equivalent (as GPH matrices). It can depend upon the order of the points

pt,...,p,, (order of the columns), the lines !t,...,/,., (order of the rows), or the order

of pn¿+t,...,pi(¿+t) (multiplication of a row by an element of ,S,) or.(n¿¡1,...¡tn(i+r)
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(multiplication of a column by an element of S"). However, different anchors may

give inequivalent kernels.

Example 32. The following matrix is an incidence matrix of the Fano plane, de-

scribed in Example 11, with flag (1, (I,2,4)) as the anchor.

The kernel is

0000
1100
0011

111
100
100

10i0
0101
1001
0110

010
010
00i
001

I
)
representatives from the groupion blocks with

ng GH(2, Z2):

We can replace the permutat

Zz : {e,ø} to get the followi

/ee\
\.r ")

Using the natural group isomorphism from 22 rnto {1, -1} we get the Hadamard

matrix

" - [i -',]
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Example 33. The following matrix is a flag form of the projective plane of order 3.

The kernel is

which can be represented by the following GH(3,C3) where C3 is the cyclic

group {",.y,.y'},

000000000
1i1000000
000111000
000000111

1111
1000
1000
1000

100100100
010010010
001001001
100010001
010001100
001100010
100001010
010i00001
001010100

0100
0i00
0100
00i0
0010
0010
0001
0001
0001

GiÐ

010
001
100
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Example 34. The following is a flag form of the projective plane of order 4.

01000
01000
01000
01000
00100
00100
00100
00100
00010
000i0
00010
00010
00001
00001
00001
00001

0000000000000000
1111000000000000
0000111100000000
0000000011110000
0000000000001111

11111
10000
i0000
10000
10000

1000100010001000
0100010001000100
0010001000100010
0001000100010001
1000010000100001
0100i00000010010
0010000110000100
0001001001001000
1000000101000010
01000010i0000001
00100100000i1000
0001100000100100
1000001000010100
0100000100101000
0010100001000001
0001010010000010
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The kernel is

which is also representable by

/e e e e\
I " a b ab I

[ " b ab o, I'
\e ab o. b )

a GH(4,G) where G is the Klein-4 group {a,bla2 : I,b2 :1,ab: ba}.

Lemma L2. If Tr 'is a plane with kemel GPH(n,n) and s € ,S, is a permutati.on

wh'ich commutes with euery element'in the GPH(n,n), then we can associ,ate with it

a (p,l)-colli,neat'ion, where (p,l) is the anchor.

Proof. We define the map a as follows: points po, . . ., p", will all map to themselves, i.e.

a(po) : ps, êtc.. Points pnirr¡. . .tpn(i¡t) will be mapped according to the permutation

s, i.e. a(p.¿+¡) : pni*s(j).

55

1000
0100
0010
0001

1000
0100
0010
0001

1000
0100
0010
0001

i000
0100
0010
000i

1000
0100
0010
0001

0100
1000
0001
0010

0010
0001
1000
0100

0001
0010
0100
1000

1000
0100
0010
0001

0010
0001
1000
0100

0001
0010
0100
1000

0100
1000
0001
0010

1000
0100
0010
0001

0001
0010
0100
1000

0100
1000
0001
0010

0010
0001
1000
0100



CHAPTER 3. MATRIX FORMS OF THE PLANE

This will induce a similar map on the lines. So lines lo,...,ln wlll all map to

thetnselves, and a((.n¿+¡) : lni+s(j).

All incidences with the points p0,. ..tqtn are preserved, since a line in the set

{h¿+t,...,[n(¿+t1] maps to anotherlinein that set, incidences with lines lo,...,lnare

similarly preserved. Now consider the incidence of points pnk+7; . . . tpn(k¡t) and lines

lnm+7,...,Ln(*+r¡. The incidence is given by the (k,*) element of GPH(n,n),say g.

Reordering the points according to the permutation s is the same as multiplication on

the left by s, and reordering the lines according to the permutation s is the same as

multiplication on the right by r-t. Since s commutes with g,wa get that sgs-7 - g.

So if p,,¡*¿ € (nrn+j then a(pn¡,+n) e a(|.,-*r¡.

This gives a central collineation with center p and axts (.. tr

wùth anchor (p,l),

then th'is PP(n) i.s

Proof. Let fI be a projective plane of order n whose kernel is aGH(n,G);lGl:n,

when anchored ut (p,t). Let s € ,S, where S is the group associated with G described

in Lemma 10. From Lemma 12, there is a collineation associated with s. Since

lcl : n, G is a transitive subgroup of ,9,, and hence ^9 is a transitive group, and

can get such a collineation for each element, lI is (p, /)-transitive.

56

Theorem L3. [39J If the kernel of a projectiue plane PP(n),

f orrns a general'ised Hadamard matri,r G H (n, G) , where lGl : n,

(p, l) -trans'it'iue.

we

tr
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Corollary 14. If a projectiue plane PP(n) l'¿as a fl,ag form such that the kernel is a

generali,sed Hadamardmatrix of inder 1, theniti,s of Lenz class atleast II.

Converse to Theorem 13:

Theorem I5. If a project'iue plane PP(n) i,s (p,(.)-trans'itiue for flag (p,t), then i,t

has a kernel that i,s a GH(n,G) where lGl: n.

Proof. Suppose PP(n) is (p, /)-transitive. Arrange the incidence matrix with anchor

(p,{) having kernel C, a GPH(n,n) in normalised form. Let a be a permutation in

the group of (p,/)-collineations, v/e can associate with it a permutation s € Sn. Lel

s be the permutation which takes points pn*tt...,p2n to points a(pn+t),...,a(pz.).

Since the kernel is normalised, there is an identity matrix in the (1,2)-entry of C.

So, s is also be the action of c on lines /,r¿.,1, ...,{n(i+t). Since s is the action on

lines /,,-,1,...,12n, and since there is an identity matrix in the (7,1)-entry of C,

s is the action on points pnj*rt. . . tpn(¡¡t¡. Since incidence is preserved, for every

entry g of. C, sgs_l - g. So g is in the centralizer of the group generated by the

permutations s. So by Lemma 11, the elements of GPH(n,n) are from a group of

order n. So the GPH(n,n) is a GH(n,G) where G is isomorphic to the group of

(p, /)-collineations.

Example 35. We now take another look at the kernel of the matrix given in Ex-

ample 32. The Fano plane, along with all Desarguesian planes, are known to

57
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b" (p,/)-transitive for allp and [.. Hence we would expect to get a GH, as we

did. Similarly with Example 33, and Example 34 .

3.1.1 Latin squares and flag form

There is an easy way to build a set of mutually orthogonal Latin squares from the flag

form of the incidence matrix of a projective plane [14] [51]. To each column beyond

the first in the normalised kernel, we associate a Latin square whose ¿th row is the

zth permutation of that column acting on I t n ).

Example 36. Using the kernel from Example 34, we can form the following set of

MOLS:

58

1

2

,)

4

1

.)

4

2

34
T2
27
43

he

2

1

4

.)

3 4l
4 3l
t 2l'
211

2

4

ù

1

fr

r2341
4 3 211
2 r 4 3l'
34r2|

3.2 The anti-flag form o incidence matrix

We introduce here a second nice form of the incidence matrix. First, pick an anti-flag

(po,to). Let (.1,...,tn+7 be the nl'I lines on ps, and we let pt,...tpntr be the ni-I

points on {.s such that p¿ is on l¿foyi: L,...1r1+I ((,¿ must meet Ls at a unique

point). Now, for j:I,...)rL-I,l¡ hasn-l morepoints onit, otherthanp6 andp¿.

And, since all the lines /1 ,...,!n+7 already meet (at point p1), these are all distinct.

so arrange the points so that p@+2)+(i_7¡(n-1); ...tp@+t)+(i)(n-t) are the other n * 7
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points of /¿. Similarly, the lines /1,raz¡+(;-1)(n-1) , . . . ,16+7)+(¿)(n-l) are the other n * r

lines through p¿.

Now for i, j : 0, . . ., n - 7,the submatrix consisting of the rows indexed by

(n +2) + i.(n- 1),. ..,(r+ 1) + (i + 1)(r - 1)

and columns indexed by

(n +2) + j(n- 1),. ..,(n+ 1) + (r + 1)(n - t¡

is either an (n - 1) x (" - 1) permutation, or (if ? : j) it is a matrix of all

0's. The points pçn+z¡+t1n-7)t. . .¡p@+t)+(i+1)(n-1) are all on the line l¿, the lines

{çn+z¡+i@_l),... ,(Ø+t)+(j+r)(n-r) all must meet l¿ in some point. If ,i:7, then these

lines will all meet !.¿ al the same point , p¿, àrrd so the submatrix considered will be

a matrix of all 0's. If i,+ j, then each of the lines !çn+z)+j(,,_1),...,1@+r)+(j+r)1rz-r¡

must meet {.¿ in one of the points p@+z)+¿(n_l),... )p@+Ð+(i+r)(n_i). Since it must be

a distinct point for each line (the lines all meet at point p¡), then the submatrix is a

(" - I) x (n - 1) permutation. For i.+ j, see Figure 8.2.

We will refer to the anti-flag (po, tù æ the anchor of this form and the submatrix

consisting of rows ni2,...,tu2 *n and columns n12,...,fl2 *n will be referred to

as the cokernel.
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Figure 3.3:

[@+s)+t(n-t)

Permutations in anti-flag form

(.¿

(.@+t)+(o+t)(,,_r)

l@¡2)+t(n-r)

P(?z+1)+(¿+1)(?z-1)

Theorem t6. The cokernel, C, oÍ a projecti,ue pLane is a GPW(n-ll,n;n - 7).

(o

Proof. View the above matrix in block form,

A:/ M B\(s' c )'

where M :

B-

011
110
101

i oó

000
111
000

oóo

1

00
00
11
::

1

0

0

i
0

1

0

0 000
0 000
1 ... 0 0 0

0

0
-0

t000 0 1 1 7 ...

,'/ P("+z)+¿(n-t)

P1n+z)+r1n-r¡
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Figure 3.4: Incidence matrix in anti-flag form

P,, P'.

0 0 ... 0 0 0 ... 0 0 0 ... 0 0 0 ..
1 I ... i 0 0 ... 0 0 0 ... .0 0 0 ..
0 0 ... 0 1 1 ... 1 0 0 ... 0 0 0 ..
0 0 ... 0 0 0 ... 0 1 1 ... 1 " 0 0 ..

: : : : : ". : : : . : : :. '.
0 0 ,.. 0 0 0 ... 0 0 0 ... 0 I 1 ..

0 i 0 0 ... 0
0 r 0 0 ... 0

:::::
0 I 0 0 ... 0

0 0 1 0 ... 0
0 0 I 0 ... 0

ó o r o .. ò

0 0 0 1 ... 0

0 0 0 r ... 0

ô ó o r ... ô

:

0 0 0 0 ... 1

0 0 0 0 ... 1

:::: i

0 0 0 0 ... 1
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and C is the cokernel.

Since,4 is the incidence matrix of a projective plane, AAr : nI + J;hence

AAT : 3)(# ä.)(Y.

( ¡w¡ut' + BBr MB + BCr \:\nrur+CBr BrB+cc')
Equating the (2,2) block entries, we obtain B7: B + CCT : nlnr_1 * Jn"_1. Now

noting that

1

1

00 0 00
00 0 00

0

0

0

0

0

0

1

1

1

BTB:

1 00

0 11
0 11

0 ii

11

00
00
::
00

00
00
....

00 0

in block f.orm BBr

0

:(

11

0
0

J.--t

0 -.. 0

Jnt 0
0 J^-

00



63CHAPTER 3. MATRIX FORMS OF THE PLANE

we see that

CCT :

in block form CCr :

For a permutation P, P-T : PT

I 11
1 1i
:::
i 11

0 11
0 1i
:::
n 11

0 il
0 11
i::
n 11

I n 0

1 0n

r o0

n0
0n

00

11
11
::
11

:

I n 0 '.. 0

1 0n 0

: : : ". :

1 0 0 ... n

Jn-t Jn-t \nl,t Jn-t 
I
I: ". : lJn¡ nI,-, f

also 0" : 0*. Hence if

Hence CC* : nI mod J,

:

11
11

11

/ ,1,-,
I J,-,
Il:
\ Jn-t

: P*, and

1

1

11
11

11

c : [Pn¡],

orCisa

n

we get Cr : lPll" : [Pl) : lP]) : C*.

GPW(nl_\,n;n-7).
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Example 37. The following is the incidence matrix of the Fano plane in antiflag

form:

Its cokernel is

Example 38. The following is the incidence matrix of a projective plane of order 3

in antiflag form.

000
100
010
001

0i11
1100
1010
1001

0ii
101
110

0100
0010
0001

00000000
11000000
00110000
00001100
00000011

011i1
11000
10100
10010
10001

00101010
00010101
10001001
01000110
10010010
01100001
i0100100
01011000

01000
01000
00100
00100
00010
00010
00001
00001
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Its cokernel is

65

This is a GW(4,3, Zz) where 22 is {e,o}, the cyclic group of order 2

(; 
,íÍ )

Using the natural isomorphism form 22 into {1,

/o 1 1 1

lr o 1-1
lr-1 o 1

\r 1 -1 o

-1) we get the following W(4,3):

\

I

)

00
00

10
01

10
01

10
01

10
01

00
00

10
01

01
10

10
01

01
10

00
00

10
01

10
01

10
01

01
10

00
00
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Example 39. The following is the projective plane of order 4 in antiflag form.

Its cokernel is:

000000000000000
111000000000000
000111000000000
000000111000000
000000000111000
000000000000111

011111
110000
101000
100100
100010
100001

000100100100100
000010010010010
000001001001001
100000100010001
01000001000i100
001000001100010
100100000001010
010010000100001
001001000010100
100010001000100
010001100000010
001100010000001
100001010100000
01010000i010000
001010100001000

0i0000
010000
010000
001000
001000
001000
000100
000100
000100
000010
0000i0
000010
000001
000001
000001

000
000
000

1

0

0

0

1

0

0

0

1

100
0i0
001

0

0

1

1

0

0

0

1

0

100
010
001

100
010
001

000
000
000

100
010
001

0

0

1

1

0

0

0

1

0

0

1

0

0

0

1

i
0
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which is simply the following GW(5,4,C¡) where Cs is {",.y,.y,}, the cyclic

group of order 3:

Proof. We define the map c as follows: points po,...,p,,+r will all map to them-

selves, i.e. o(ps) : p¡, €tc.. Points p@+z)+(¿_l)(n-1); ...,p1n+t¡+(i)(n_t) will be mapped

according to the permutation s. Hence a(p@+t)+(¿_1)(n_1)+j) : p@+1)+(i_1)(n_r)+s(j).

This will induce a similar map on the lines: lines /6, ...,tn+7 wilt all map to

themselves, and a(!. çn+l )+(¿- r) (¿- 1)+j ) : {. 64)+ (r_l)(n_ r)+sg) .

All incidences with points po,...tpnrlare preserved, since a line in the set

{t6¡z¡+(t-r)(n-r) , . . . , !6+Ð+(¿)(n-r)} maps to another line in that set, incidences with

lines /6, .. .,{n are similarly preserved. Now consider the incidence of points

PØ+z)+(x-t)(n-1), ...tP@+t)+(ft)(n-r) and lines t6+z¡+1,r"-t)(z-1), . ..,1.6+t)+þn)(n-l). The

incidence is given by the (k,*) element of GPW(n * I,n,n - I), say g.

Reordering the points according to the permutation s corresponds to multiplica-

tion on the left by s, and reordering the lines according to the permutation s corre-
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/o e e e e \
I" o e.y.y2 Il"eo-y2^yl
l".y.y2o;l
\" ;'z j " o )

Theorem L7. If II ,is a plane with cokernel GPW(n]-I,n,n- t) and s e Sn: 'is a

permutat'ion whi,ch commutes uith euery element i.n the G PW (n I r, n, n - r) , then

there'is a (p,l)-colli,neation which can be associ,ated wi.th s, where (p,!) is the anchor.
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sponds to multiplication on the right by s-1. Since s commutes with g,we get that

sgs-t : g. So if p@+Ð+&-1)(n-r)+j e l6+t)+þn-1)(n-1)+: then a(p1,+1)+(k-r)(n-r)+¡) €

ù (l 6¡t)+ (rn- t ) ('- t)+¡ ) .

This gives a central collineation with center p and axis [..

Theorem 18. If the cokernel of a projectiue plane PP(n), with anchor (p,{.), forms

a generali,sed wei,ghing matri,r GW(n i 1,n,G), where lGl : fl - I, then thi,s PP(n)

i.s (p, {) -trans'iti,ue.

Proof. Let lI be a projective plane of order n whose kernel is a GW(n]_r,n,G);

lcl : n-I, when anchored ut (p,(.). Let s € ^9, where,S is the group associated with

G described in Lemma 10. From Lemma 17, there is a collineation associated with s.

Since lcl : fl- 1, G is a transitive subgroup of Sr-1, hence S is a transitive group,

and we can get such a collineation for each element of ,S, lI is (p, /)-transitive. tr

Corollary 19. If a project'iue plane PP(n) has an anti,fi,ag form whose colcernel is a

generalised uei,ghing matr'ir of i,nder 1, then'it cannot be of Lenz-Barlotti classI.l,

II.1, III.1, IVa.1, IVb.1, V or VII.1.

Converse to Theorem 18:

Theorem 20. IÍ a project'iue plane PP(n) i,s (p,l)-transitiue for ant'i-flag (p,[), then

it has a cokernel that 'is a GW(n i I,n,G) where lcl : n - 7.
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Proof. Suppose PP(n) is (p,!)-transitive. Arrange the incidence matrix with anchor

(p,{) having cokernel C, a GPW(n * 1, n,fr- 1) in normalised form. We further

assume that the (2,3)-entry is also an identity matrix. (If it were not, we couid

multiply each column by the inverse of that entry, then multiply the first row by the

element to get a normalised form with an identity matrix in the (2,3)-entry.)

Let a be a collineation in the group of_(p,/)-eollineations. We can associate

with this collineation a permutation s € S",-i, which takes points p@+z),...,pznto

points a(p@+z)),...,a(pz.). Since the cokernel is normalised, s must also be the

action of o on lines !6+z)+(?-1)(n-1) ,...,[6+t)+(z)(n-r) , fori : 2,. . .,n * 7. Since

there is an identity matrix in the (2,3)-entry, s is also the action on the points

P@+z)+(n-t),..., P@+t)+(z)(n-r¡. This implies s is the action on the lines l1,r+z¡,...,12n,

hence s is the same action on the points p@+2)+(i_1)(n-1)r ...,p@+t)+(r)(¿-r) for

'i :2,. . . )n * 1. Let S be the set of all such permutations.

Since incidence is preserved, for every non zero entry g of. C, sgs-1 : g. So g is

in the centralizer of the group generated by the permutations in ,S. So by Lemma

11, the elements of GPW(n I L,n,n - 7) are from a group of order n - I. So the

GPW(n1.I,n,n-7) is aGW(n*I,n,G) where G is isomorphic to the group of

(p, /)-collineations.
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Example 40. The matrix in Example 38 show that there exists exactly one non-

trivial (p, /)-coilineation of the plane. The matrix in Example 39 shows that

there exist two nontrivial (p,!)-collineation of the plane of order 4.

In Example 37, we note that any collineation in this plane that fixes a line and

a point not on the line will be the identity.

3.3 Relating flag form and anti-flag form

Given a projective plane fI of order n,Iet K be the normalised kernel of a flag form of

the incidence matrix of fL Let C be the normalised cokernel of an anti-flag ordering

of lI. The core of 1( is an (n - 1) * (" - 1) array of. n x n matrices, and the core

of C is annxnàrray of (n- 1) x (zz- 1) matrices. Bychoosingthe appropriate

anchors for C and K, v¡e can draw a nice correspondence between their cores. If the

incidence matrix of lI is in flag form, the point line pair (pr,[r) is an anti-flag, and

we shall use that pair as our anchor for anti-flag form.

First, assume that the incidence matrix,4 of the plane lI is in flag form with a nor-

malised kernel. (We have points labelled po,. . . ,pn2+n and lines labelled (0,. . . ,lnr+n.)

Lef Ã,betheincidencematrixof fIinantifl.agformwithanchor (pr,lr). Wewillde-

scribe a new ordering of points indicated as 00, ...,înr+nl lines as î0,...,înr+n.

So (âo,Zo) ir (pr,(l). Now pl ,îr,...,în+1 are the points on [1; hence so also

àre ps,Pn*rtPn*2t. . .,P2n (such lists are given to mean in respective order, in other
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words, ît: po, îz: pn+t,... etc.). Similarly, the lines tt,lz,...,ln+7 are the lines

lo,{n+rttn+2,...,!2n.This ordering agrees with the antiflag form: the (î,Î) entry is

a 1 (since A was in flag form) and the 1r,...,în+tby îr,...,în+l submatrix is the

identity matrix from the (1,1) block entry of the normalised kernel of ,4.

Now f,,-,2, în+8,. . . ,îrn will be the points on the line /6 (fr) ottier than ps and

pt (ù and f6), that is, p2,p3,...,pn. Similariy, 1n+2,în+s,...,îrn will be the lines

lzr{sr'--,!n-

Fori:1,...,n,î6+z¡+tqn-1,î6+z)+i(n-1)+1 ,...,îç,"+r¡+(i+i)(n-1) willbethepoints

on the Iine î¿a1 (the line Ç¡¿ of. A). Since this line was in the first row of blocks of

the normalised kernel (consisting of identities), these will be the points

P2n+i, P3n+i, . . ., Pn2+i .

Similarly the iines î6¡z¡+r1n-r¡,16*r¡*o1n-t)*7 . . .,16+¡+(¿+1)(r¿-i) are

lzn+¿, [ßn+¿, . . ., ln"+i. .

Note that the cokernel of ,î is already normalised. Consider the first row of blocks

of the cokernel, representing the linesîn¡2,....îrn which are {.2,...,!n. Since the

point pzn+¿ ís on the line 12, pzr+¿ is on (3, etc. the submatrice s în+2,1n+s, . . . ,1r. by

first row of blocks of the cokernel is in normalised forni. Similarly, the first column

of blocks of the cokernel is aiso in normalised form.
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Now compare the core of the kernel of A with the core of the cokernel of A.

Consider the (2,7) entry of the (h, k) block of the core of the cokernel of ,â'. This

is the position representing whether or not the point î@+Ð*n@-r)+j is on the line

î6¡q+n@-r¡+r, which is whether or not the point p¡-r)n+k is on the Iine lçt-t¡n+n,

which is represented by the (h,k) position of the (2, j) btock of the core of the kernel

of A.

This process can also be done in reverse, starting with an anti-flag form and

reordering to a flag form (picking the flug (ør,1ù * the anchor). I.u. Reverseing the

process in Â will result in .4. In this manner, every kernel has an associated cokernei.

Rearrangements of block matrices in this manner) having the (i, j) entry of the

(h,k) block as the (h,k) entry of the (z,j) block, have been studied by Craigen

in [28]. He found the following: If the core of a matrix GH : GH(n,G), where

G is a group of permutation matrices of order n, then the result is the core of a

GPW(ni-L,n,n-1): GPW, which is developed over G. Moreover, GPW is a

GW(n I l,Tr,f{) with lHl : n - I ifr GH is group developed over ff.

Theorem 21. There 'is a plane II of Lenz-Barlott'i class II.2 only i,f there ,is a

GH(n,G) (\Gl: n) whose core i's group deueloped.

Proof. Let ll be a plane of Lenz-Barlotti ciass II.2 and let ,4. be the flag form of the

incidence matrix of fI where the anchor is the flug (po,/6) such that fl is (p6,/s)-
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transitive. Let (p1,(.1) be the antiflag pair such that lI is (p1,/1)-transitive.

By Lemma 15, there is a group G of order n such that the kernel of A is a

GH (n, G). Bv Theorem 20, there is a group lf of order n - 1 such that the associated

cokernel is aGW(nlL,n-1,H).From [28] the associated GPW(n*7,n,n-I)

of. a GH(n, G) is a GW(n * 7,T1,ä) itr the core of the GH(n,G) is group developed

(developed over 11).

Example 41. There are 4 planes of order I [69]. They are the Desarguesian plane

(of Lenz-Barlotti class VII.2), the left and right nearfield planes (class IVb.3

and IVa.3), and the Hughes plane (class I.1). The nearfield planes of order g

are also known as the Hall planes [19].

The following matrix corresponds with the kernel of the Desarguesian projective

plane of order 9 in flag form. It is a GH(9,G) where G : {r,Alr3 : I,A3 :

I,ry : yr\.

eeeeeeeee
e r a ra2 r'a' 12 a2 r2a ra
e ra r a ra2 r2a' 12 a2 rza
e rza ra r a ra2 r'a' 12 a2
e a2 r2a :xy r a ïa2 r2a" 12

e 12 a2 r2a ra r a ra2 r'a2
e r2a2 12 a2 r2a ïa r a ra2
e :raz r"a' 12 a2 r2a ra r a
e a raz *'y' 12 a2 r2a ïa r

We see that the core of this kernel is group developed (displaying the division

table representation of the cyclic group of order 8 with generator ø). The

t.)
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a.ssociated cokernel is as follows:

Example 42. The following matrix is the kernel of a flag form of the (right) nearfield

plane of order 9 (Since the incidence matrix of the left nearfield plane is the

transpose that of the right nearfleld plane, it is omitted). It is another GH(9,G),

where G is the same group defined in Example 41.
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0eeeeeeeee
e0ea4aa7a6a5a2a3
e a4 0 e a6 a tr7 a3 t)5 a2
eea40a7u6au2a3a5
eu5a2a30eu4aa7a6
ea3a5u2a40eu6aa7
ea2a3a5eu40u7a6a
eaa7a6u5u2a30eu4
eu6au7a3a5u2u40e
eaTa6aa2a3a5ea40

Note that its core is

elements.

eeeeee
r a2 r2a' ra2 y r2u
12 a ra r2a y2 ra2
a2 12 ra2 :La r r'y'

r2y' r2a tr2 a2 raz a
ra2 r2a2 a 12 ry r
a r r2a r2a2 12 ra

rza ra a2 r r'y' 12

ra ra2 r r2a y2

group developed, over the quaternion

ee
e12
CT
eu
era
e r2a
ea2
e ra2
e r2a2

e

ry
r'a'
12a
T

a2
ry2

a,

group, fl, of eight
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The associated cokernel is

where H

75

0eeeeeeeee
e O e 82 3S C CB3 B CBCB2
eB2OeCB3SZCCB2BCB
eeSZOCCBSSSCBCB2B
e B CBCB2 O e 6Z 3S C CBs
eCB2 B CB B2 O e CB3 B3 C
eCB CB2 B e 82 O C CB3 gS

e 83 C CBs B CBCB2 O e gZ

eCBs 3S C CB2 B CB 3Z O e

e C CBs 3Z CBCB2 B e 82 O

: {B,ClBn : I Ca :I C2 : 82 BC : CBs}.

Example 43. The following is a GPH(9,9) which is a kernel of the Hughes plane

of order 9.

eee
e 13 ra4
e rgaz raa2
e r2a2 r2a2r
e r5a2 aar2
e a*a r7a'
e rzyar\ ,'anrn
e r2yarg r5
e 16 a'r8

eeeeee
rTaa rnan a'rg a2r2 azr' 16

aars r'y"r rasr a'r'a arga2 a4r
r anrs aar7a a r'g3 anr7a

r'a2r 17 a\r r7a5 *na'ran anrn
*'anrn 12 a5 ar2 ao*tat an*tan

18 ra2 ra3 rga ,tatr' anruan
rna" r'anrn a3r7 ,na'ran at"'an an*'gn
a'r' a2r5 ra4 r'an rTan 13

Where z is the permutation (1,5, 7,3,4,9,2,6,8) and E is (1, 4)(2,5)(3,6)(7,8,9).

It is interesting to note that this differs from the presentation of the Hughes

plane found in [47], since the permutations z and y generate a subgroup of order

162, whereas the permutations found in [a7] generate all of ,9e. The group gener-

ated by z and g has a three element center (generated by (1, 3,2)(4,6,5)(7,9,8),
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found using Groups and Graphs [68]). This indicates that there are two non-

trivial (p,/)-collineations where (p,t) is the anchor associated with this kernel.

The following GPW(10,9,8) matrix is the cokernel of the antiflag from of the

Hughes plane associated with the above kernel.

0eeee
e0 AB C
eB 0 A E
eAB 0 D
eSTU 0

eU ^9 TW
eT U ^9 VeQIß C Ð
e t UA S
eE C U. €

eee
FGH
HFG
GHF
XY Z
Z XY
Y ZX
061)
ñ 0 6
Øñ0

ee
DE
CD
EC
VW
OV
WOes
Ðe
sÐ

The permutations as follows:

A: (I,8)(2,4,3)(5,6) ,S : (1, 7,2,3,6,8,4) QI: (I,J,7,5,2,8, 6)

B : (2,7,4,6)(3,5) T : (7,6,7,9,3)(2,,5,4) 
'8 

: (1,4,5)(3,g,7)

C : (I,4,8,7,3,6) U : (1,5,8,2)(3,4,7,6) C: (1, 2,6,4,8,5,7)

D : (I,2,8,5)(4,7,6) V : (I,8)(2,6)(3, 7,4,5) Ð : (1, 5,4,6,8,2,3)

E : (1,3,8,6,7)(2,5) W : (2,4,3)(5,7) €: (1,7,8,4,2)(3,5,6)

F : (1, 6, 8, 3, 7,5,4,2) X : (1,2,7 ,3,8, 5, 6) S : (1, 6, 5, 8, 3,4)(2,7)

G : (I,5,7,8,2,6,3,4) Y : (1,3,5)(4,8,6) 6 : (1,8)(2,5, 3,6)(4,7)

H : (1,7,2,3)(4,5,8) -Z : (7,4,6,5,2,9,7) ñ: (2,4,3)(6,7)
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3.4 Baer subplane form of the incidence matrix

There is a third interesting form of the incidence matrix of a projective plane that

has a Baer subplane. Let II be a projective plane of square order (II is a PP(n2))

which has a Baer subplane fI' (fI' is a PP(n)).

We can organize the incidence matrix of fI as follows. We let the first n2 + n + 7

points and lines be those of fI'. Now each point pi,,¿ € i1... n2 +n+ 1), is already

incident with n * 1 lines, and will be incident with n2 - n other lines. Hence let

lnz+n+t+(¿-7)(n2-.n)t lnr+r+t+(¿-t)(nz-n)+7, . . . ,lnr¡n+t+¿(n2-n) be the n2 - n lines on p¿.

Similarly, let p,'z¡r¡1+(i-r)(nz-n),Pn2+n+t+(t_ t)(nz-n)+1 r . . .r pn2+n+t+i(nz-rr¡ be the

n2 - n points on l.¿.

The submatrix with rows

T n2 +n+2+(¿-t)(n2 -n) t . . ., T n2 ¡n*7+i(n2 -n)

and columns

cnz +n+z+(i -1,)(n2 -n) t . . ., cn2 ¡n1-t+ ¡ (n2 -n)

corresponds to the points (outside of II') on {.¿ and the lines (outside of lI') on pj.

If p¡ is on {.¿, then this submatrix is a matrix of all 0's, otherwise, since each line

on pj must meet /¿ in some point, it is an (r' - n) x (n2 - n) permutation matrix.

Hence we can view the submatrix of rnr*n*2. . .Tna¡nz¡1 and cn2+n+2. . . cn+¡nz.¡t âs â

GPW (n2 * n * 1,n2,n2 - n). We refer to this as the Baer-kernel
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To see this, we can view the incidence matrix of lI in block form.
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A:(M B\
\B' K )

where M is the incidence matrix of the subplane fI',

| 1 1 1 ... 1 o o o o o o o

looo o 111 1 ooot)_ at) 
- 

|t:::::::::::
l\000 0 000 0 111\

and K is the Baer-kernel.

Since A is the incidence matrix of a projective plane, we know T,hat AAT : nI I Jl

hence

AAT
)(

Equating

that

MMT + BBT MB + BKT
BT MT + KBT BT B + KKT

blocks, we have BT B + K Kr Now noting

t)

x4r B \
gr K,)

):'t*t
: nlna-n * Jnn-n.

*(
-\

the (2,2)

/u B_t-\¡" K
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11 1

1i 1

li i

00 0

00 0

:::
00 0

00

00 0

00 0

0 0 ... 0

11 1

11 1

i t ... t
BTB:

we see that

KKT :

00
00
::
00

00
00
::
00

00
00

1

1

00 0

11
11

1i
11
11

it

i
1

:

11
11
::

1

1

n0
0n
:'.

11 1 11 1 00
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So KKr ts a GPW(n' + n * I,n2,n2 - n).

Moreover, the (0,1)-complement of this matrix is the incidence matrix of a projec-

tive plane of order n (In fact, it is the transpose of M).If there is 1 in the (2,7)-entry

of. M, then p¿ is on !.¡. Considering the (7,2)-block entry of. K, since p¿ is on /¡, this

must be a block of 0's.

Example 44. The following is the incidence matrix of PP(\. It has a subplane of

order 2, so when it is organized as described above we get a

G PW (22 + 2 + \, 22,22 - 2) : GPW (7, 4,2).
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11000000000000
00110000000000
00001100000000
00000011000000
00000000110000
00000000001100
00000000000011

1101000
0110100
0011010
0001101
1000110
0100011
1010001

00101010001000
00010101000100
00001001100010
00000110010001
10000010100100
01000001011000
00100000010110
00010000101001
10000100001010
01001000000101
i0i00001000001
01010010000010
10011000010000
01100100100000

i000000
1000000
0100000
0100000
0010000
0010000
0001000
0001000
0000100
0000100
0000010
0000010
0000001
0000001
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whose Baer-kernel is

This corresponds with the following GW(7,4,C2).

Example 45.

Let G be the group found in Example 24, with generators

81

/01 1 1 o 1 o

f o o 1 i o 1

110 011 0

1010 0 - 1

Ir o - o 011
1110 0 0

\1 1 0 1 0 0

This example is found in [82], and is attributed to David Glynn.

":I
010000
001000
100000
000010
000001
000100

and A-

/o o o 1 o o\
foooooll

[;i,'Éij
rar'ara0yThen the matrix ci,rc(O *'A 7 y 0 1 1 0) isa

GW(I3,9,G), which is the Baer-kernel of the Hughes plane of order g.

00
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01

10
01

00
00
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00
00

00
00

00
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10
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01
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00

10
01

10
01

00
00

00
00

10
01

10
01

01
10

00
00

00
00

10
01

00
00

00
00

01
10

01
10

10
01

10
01

00
00

01
10

00
00
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10
01

10
01

10
01

10
01
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01
10
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01
10
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01
i0

10
01

00
00

01
10
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00

00
00
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Related Constructions

4.L Power Hadamard matrices

A technique developed by Robert Craigen and Roger Woodford gives rise to the pos-

sibility of finding generalised Hadamard matrices from Butson Hadamard matrices.

Lemma 22. If n1, fl2, . . . , rL¡" are pairw,ise relatiuely prime, and there etists B H (h, n1) ,

BH(h,nz), . . ., BH(h,nk) then there eri,sts a PH(h,Qnrônr. . .Õ,,.)

The proof of the above lemma requires the solution to systems of modular equa-

tions, which are guaranteed if the moduli are relatively prime. It is possible to have

solutions when the moduli are not relatively prime as well. However, in the case of

Ttrt:2,Trz:4 and h:4n where n is odd, this will not be possible.

Theorem 23. There i,s no PH( n,(I + r)(t + r')) ,if n is odd.

Proof. Suppose such a Pll existed. Thên, since r - -1 is a zero of (1 + r)(1 +

r2), replacing z" with (-1)" in our matrix gives a Hadamard matrix 11. Similarly,

82
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replacing z" with (-i)" gives a Butson Hadamard matrix over 4'th roots of unity, B.

We can organize the columns of the PH in such a way that the first three rows of f1

would have the following form:

83

11 1

11 i
-1 -1 -1

g

1

1

i

1 ... 1

-1 -11 ... 1

:::

1 1 1\
-1 -1 -1 I

-1 -1 -1 
I: : i ,/

i
-1

1

If in some position PH has the entry z" where a: 0 (mod 4) then Ì1 would have

a 1 in that position and B would also have a 1 in that position. If PH had a rb

where b: I (mod 4), H would have a -1 and B would have a -i. If PH had a r'

where c : 2 (mod 4), H would have a 1 and B would have a -l.If PH had a rd

where d: 3 (mod 4), H would have a -1 and B would have a i. So we can see that

each of the four types of columns of H,listed above, would give rise to four different

types of columns of B, giving a totai of 16, as listed below. Let a be the number of

columns of type

ef

1i
11
i-i
::

Since 11 is a Hadamard matrix,

az

11
-i -i
i-i
i:

stuu

1111
i i-i -i
1 -1 1 -i

h

1

-1
-i

abcd

1111
1 1-1-1
1-1 1-1

WT

11
ii
i-i
::
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a+b + cI d" : e + f t g -l h : s+ú + uIu :'u) I r + A * z : n

Let Ra,'i : i,2,3 be the i'th row of B. Since B is a Butson Hadamard matrix

(At)((Êr).)" : o. From this we get

a+b-t e+ r : c* d+ g + h :s*ú* w + r : ulu +a I z : n.

From (Ar)((Ãr)-)t:0,

al c* s+u: bl d+t+u : e* g _fw +A : f + h+ r I z : n,

and from (Ær)((Ar)-)" : 0,

a t d * w i z : b* c* :r + A : f + g + s * u : e + h + t +,t.,1 : n.

Now since a+b-f c* d: c+ d* g +h we get atb: g + lL, similarly we get

84

c*d:elf
alc:tlu

s*ú:g+z u*u:tuJ_!L
b+d:s+u e*g:r+z

f +h:w+A b+c:wl z ald:r-f?J
sJ_'u:e-fh f+g:t*u

and, from these, b+c+2d*r*yl2z: wizlr+A+2d+22: n|Z(dtz). Also,

t+u+f +h*g*h*u+p : f *gtt+u+2h+2u : t*u*t+u+2h+2u :2(tiu+h+u).

Now we get (ó +d+t+u)+(/+ h+r+z)+(g +å+ c+d)*(z+ u*ytz):4n.

Subtracting ¿+ u + f + h+ g + h* ulu we get b+ dl r * z * c+ d+U * z :

b + c + 2d -f r -t a * 2z : 4n - 2(t + u + h + u).

Hence n + 2(d * z) : 4n - 2(t I u i h. + u) but the left hand side is odd if n is

odd, and the right hand side is always even. This is a contradiction. n

Theorem 24. There o,re no projectiae planes of order n:4rr1,, m odd, that,is (p,{)-

transit'iue (p e l) where the group of (p,!)-colli,neat'ions i,s equ'iualent to the cgclic
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group.

Proof. Suppose fI is a plane of order n which was (p,/)-transitive (p e /), whose

group of (p,/)-collineations was the cyclic group. By Lemma 15, there is a GH(n,G)

where G is the cyclic group (say generated by g). BV replacing the generator g with

r, we would get a PH(tu,tn - 1). Since rn - I: (1 + z)(1 + *,)g(r), we would also

have a PH(n,(l + u)(1 + r')). Hence by Theorem 23, no planes of this tvpe can

exist.

4.2 Latin squares

It is possible to use certain porver Hadamard matrices to give sets of mutually or-

thogonal Latin squares. It is known that for n the matrix

ci,rc( t r ï4 re z]6 *(n-r)2 7

where the powers are taken mod n will give a PH(n,Õ") if n is odd and a PH(n,Q2.)

if n is even. In the case where n is odd, the inner product of certain pairs of rows

give the full cyclotomic polynomial. In that case, those two rows will correspond to

a Latin square, as follows.

Given a PH(n,f@)) : la¿¡|, we define Ra* R, : lbr,br,...,b,.l where each

elementisintheset{1,r,t2,...,""-1} andå¿:aik.a;;.Ifallelementsof F¿*-R¡

are distinct, then the following construction gives a Latin square. Let r be the right
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shift permutation matrix, so

/o 1 o 0... o o\
I o o 1 o ... o o II o o o 1 ... o o Itl..r:l: : : : : : l,andletd:(1 2

I 0 0 0 0 ... 1 0 I

I o o o o ... o 1 I

\r o o 0... o o)
The k'th row of the Latin square L¿¡ rs defined to be [då¡].

Example 46. In the case where rL:5, we have the matrix

(: î';::;\
lrn íL 7 r 14 |

[,r :::^: î)
So-R1 xA5:(z-1 ï-3 I 13 r)

Reducing the powers mod 5, gives

( tn 12 r 13 r ), hence

li 3i; ål
'',':lå'^?isl

f s r 2, *]
Lemma 25. IÍ m 'is odd and r i,s relati,uely pri,me to rn then the set

{ot -(a+r)2 (mod m)lae {0,... ,*-I}}

conta'ins m d'istinct eLements.
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Proof. If two elements were congruent then (since r and 2 are invertible mod rn)

o,' - (0.* r)2 : b' - (b + r)'

-r(2af ") 
: -r(2b+r)

2alr:2bIr

2a: 2b

a:b tr

will be a Lat'in squareCorollary 26. If rn is odd, then usi.ng PH(m,Q,n), there

associated wi,th R¿ * R¡ ú j - i 'is relati,uely prime to m.

Knowing which inner products give us Latin squares, we can now look at which

pairs would be orthogonal.

Theorem 27. If m'is odd, thenusing PH(m,ô,.), the Lati,n squares associatedwith

R¡ * R¡ and R¡ * R¡, wi,ll be orthogonal i.f j -,i 'is relat'iuely pri,rne to m.

Proof. \Me show that the positions in L¿¡" which contain a 1 form a transversal in

L¡r (i.e. in L¡n, each of those entries are distinct). Since all the rov/s are a shift of

the row ( 1 2 "' n ), the positions corresponding to any entry in L¿¡" will form a

transversal in L¡n. Hence L¿¡ç and l¡r will be orthogonal.

In row z of L¿¡, there will be a 1 in the ¿'th column if the z'th entry of A¿ x Æ¡ is

r"-1 . rf. the z'th entry of R¡ x -R¡ were rb, then there would be a 1 in the (å + l)'st
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column of L¡n. Hence there would be an (" - b) mod zn in the a'th column of the

z'th row of L¡r.

Since the z'th entry of R¿ x R¡ is a"-u-l, the positions corresponding to !'sin L¿¡

will form a transversal in L¡n rf the elements of ft x R¡ are distinct. By Lemma 25,

these will be distinct when j - i. is relatively prime Lo m. n

Example 47. In order 5 (from Example 46), we get ,R1 *R2: ( ra r 13 L, ).

Comparing the 1's in .L1,5 (indicated by circles), rve see the corresponding entry

in row 'i;, 'i :1, . . ., 5 of. L2,5 (indicated by squares) is one more than the power

of the z'th entry of R1* R2.

li 3 ó ; 9l
tr,,u: lO z z 4 5 I Lz,s:" 

LY ó ; I ij
Similarly R2 * R1 -- ( r 14 n2 L ,t ). For the l's in L25 (indicated by

circles), the corresponding entry in row ,i, 'i : 1,...,5 of. L1,5 (indicated by

squares) is one more than the power of the i'th entry of R2 * R1.

Lt,s: Lz,s:

trr 4 b 1

4 tr r 2 3r 2 tr 4 5

3 4 582
512 3 tr

o
5

4
t)

2

t 2 3 4 tr
b 1ø3 4

Eb 12 J

3 4 582
2E 4 b I

5

4

,f

2

o

234
CÙz z
ãl1) 24lo
345
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In this manner, we are able to construct sets of mutually orthogonal Latin squares

of size equal to one less than the smaliest prime in the prime power decomposition of

m. The McNeish bound is a constructive lower bound for sizes of sets of MOLS [a7].

This will meet the McNeish bound for square free rn's, but will give Latin squares all

of whose rows are shifts of the same starting row.

Example 48. In order 15, we use the matrix

circ( 1 r 14 19 r rr0 16 14 14 16 :r10 xJ 19 :x4 r ).

In this case \Ã/e find a pair of orthogonal Latin squares which correspond to

.R1 x -R15 and R2 * .R15:

89

1

'f
5
n
I

9

11

13

15

2

4

6

8

10

72

74

910
11 12

13 74

15 1
4c)Lù

45
67
89
10 11

12 13

74 15

I2
34
56
78

234567
4 5 6 7 8 9

6 7 8 I 1011
8 I 101172 13

10 11 12 13 t4 15

12 1374 15 7 2

14 15 7 2 3 4
12 3 4 5 6

3 4 5 6 7I
5 6 7 8 910
7 8 I 101112
91011721314
11121314151
1314 15 I 2 3

15r 2 3 4 5

8

10

12

I4
1

.f

5

I

I
11

13

15

2

4

6

11 12 13 14 15

i3L4 15 t 2

15 12 3 4

23456
4 5 6 7 8

6 7 8 910
89101112
10 11 12 13 14

12 1314 15 1

14 15 r 2 3

12345
3 4 5 6 7

5 6 7 8 9

7 8 9 1011
910117213

and
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Example 49.

t 2 3 4 5 6 7 I I 101172 1314 15

5 6 7 8 9 101172 1314 15 r 2 3 4

9 101172 1374 15 I 2 3 4 5 6 7 8

13 14 15 t 2 3 4 5 6 7 8 9 10 11 12

2 3 4 5 6 7 I 9 10i112 1374 15 1

6 7 8 I 1011t2 1314 15 1 2 3 4 5

101172 1374 i5 r 2 3 4 5 6 7 8 I
14 15 7 2 3 4 5 6 7 8 I 10 11 L2 13

3 4 5 6 7 I I 101172 1314 15 L 2

7 8 I 101112 1314 15 7 2 3 4 5 6

11 L2 13 t4 15 1 2 3 4 5 6 7 8 9 10

15 7 2 3 4 5 6 7 8 9 10 11 t2 13 74
4 5 6 7 8 9 101112 1314 15 t 2 3

8 9 101112 1314 15 7 2 3 4 5 6 7
12 1374 15 r 2 3 4 5 6 7 8 I 1011

In order 35, a set of 4 mutually orthogonal Latin squares

90

can be

constructed from the following rov/ vectors (Ðtt,. ..,ßn), each entry represents

a ro\M of the Latin square:

( rtn r32 r30 r28 126 r24 r22 r2O r78 7,76 r74 r12
ffil : f10 18 16 14 12 1 233 r37 r29 r27 r25 

',237'27 r19 rr7 r15 r73 r77 19 17 15 13 r )

( 1 r37 r27 r23 r79 x;75 rr7 17 13 fr34 r3o

ßz: r22 r18 r74 r70 16 12 r33 r29 r25 r27 r77

19 r5 r r32 r28 r24 r20 116 r12 18 14 )

( rt r32 ï26 r20 :r74 18 fr2 r37 r25 rr9 r13 17

ffis: r r30 f24 r78 rI2 16 I r29 r23 r77 I11 15

r34 f'28 r22 176 rlj 14 r33 r27 x;21 r75 ,n )

126

trl3
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( r' r r27 r79 r71 13 r30 r22 r74 16 r33 r25
çì? ï77 f9 rl f28 f2O f72 14 7'31 r23 /15 f7 f34t L4 - 

,^26 rl. rr0 12 r29 :E2r rr' 15 :x32 r24 ,ru )

4.3 lladamard matrices from collineations

Hughes [59] shows that if a projective plane of order n: 2 (mod 4) has an even order

collineation, then n:2. We adapt his technique to get Hadamard matrices of order

o2-1 .-n: Ior certaln prlme pOVierS q.

Let a be a central collineation of order 2 of. a projective plane fI of order n. If n

is odd then a must be a homology, and if n is even then a must be an elation. In

both cases v/e cân use o to define a weighing matrix.

If n is even, and a is a (p,/)-collineation, let q1, Qz,...,Qnbe the n points on /

other thanp. Lelm1,Trtr2,...,ffin be the n lines onp other than(,. Let rç¡¡, rft,t¡,

rç,2¡, rft,z¡i ..., n1,t), rT¿,r) be the n points on line m¿ other than p where ¡: $. Let

ult,t¡, ,To,r), w(¿,2)t .T4r), . . ., tu1r,,t), ul.t) be the n lines through point q¿ other than (..

In the case where n is odd, and a is a (p,/)-collineation, we let q1 ,Q2,...tenten*I

be the n*l points on !.. Let m1,TT12,... )n'Ln) mn¡1be the n*1 lines on p. Let rç,r¡,

*Io,r), rç.,21, r(t,z¡) . . .i txþ,t), rf,Ð be the n-1 points on line m¿ other than q¿ and p

where t : *. LeI wç,t¡, uft¡1, u1t,z)t .f.r), . . .i 1,DU't)) ruft,r¡ be the n-1 lines through

point q¿ other Lhan m¿ and {,.
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We index rows and columns of a square matrix by pairs (i,,¡), tn the even case

I < i <n and I < j < i :ú, andintheodd case 7 <i <n*1 and I < j I T : t.

lVe define W, a {0,1, -l}-matrix by

( 1 if r1i,¡¡ € wç,s)

W : laç,¡¡1.,"¡] where ø1,,¡¡1,,"¡ : { -1 if 
"io¡l 

€ w¡,s)

|. 0 otherwise

In the case where zz is even, W is a W (+,n), and in the case where n is odd,, W

is aW(Ç,n), as we nov/ demonstrate.

To see that W is a weighing matrix, we show that any two distinct rows are

orthogonal. First, we consider rows indexed by (i,k), for a fixed i and k : 1,. . .,t;

vie say these rows are in the same block. The rows of this block represent points on

Iine m¿,so for any line other than m¿,no more than one of these points can be on it,

hence the rows in any block are disjoint, in the sense that no two will have non-zero

entries in the same column.

Now consider two rows from differing blocks, sây rows (i,g) and (7, z) where

i, + j. The only columns in which both rows could have non-zero entries are those

columns that correspond to lines rç,s¡r1¡,2)t rT¿,ùr(¡,,), r1,r)ri¡,") or rio,o.lri¡,";. Since

(rç,s¡r1¡,4)o : *To,ù"1¡,,¡ exactly one of these lines will be some wî,"), representing

some column. Similarly, since (r(.i,o¡rfi,a)o : rç,0¡r[,,¡, exactly on of these lines will

be some representing some column. Suppose that t11,,"¡ : rþ,a)r(j,z) ând wç,u) :

ïi¿,ùr(¡,"). Then the (2,g)'th row would have a 1 both column (r, s) and column
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(t,u), and the (j,z)'th row will have a 1in column (r,s) and a -1 in column (t,u).

A similar situation will occur for all other choices of wlt,u¡ and t11","¡. Hence the inner

product of these two rows will be zero.

To see that the weight of.W is n, consider a point r1;,¡y. This point is not on /, so

each of the n * 1 lines on it meet [.. Each line, except the ìine that passes through p,

is either ü;1r,s¡ orui,,"¡. Each of those n lines is represented by some column, hence

the row (e,7) will have a 1or a -1, so every row will have n non-zero entries.

We now have a weighing matrix where the rows of a block are disjoint) so we can

sum all the rows of a block and preserve orthogonalitv.räïijn*,Ott ,1:* .*;t. 
l". f o H(t) õì

H(t), rhen we can multipry (on the refr) by rhe marrix 

1, ô o ... ,;u, )
This has the effect of combining rows within a block.

/t o 1 o\
Example 50. The matrix [ ? å -0, 

j | *"r,0 have blocks of size 2, so using

\o -1 o r)
,fU : ( ! 

t" 
) *" replace the first row with the sum of the first and second\/ 

\l -7) 
- -r------

rows, and replace the second row with the OtU*7ï ofthe 
T" ïO 

second rows,

I r -1 1 -1 I
similarly with the third and forth rows to Set | , _i _', 1 I

\r 1 -1 4)
(Due to Hughes [59]) In the case where n is even, for n ) 3 adding the rows in a

biock would result in 3 rows of a Hadamard matrix. Hence * = 0 (mod 4), implying
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n:0 (mod  ).

In the odd case, if an Il(ú) exists, then combining the rows would result in a

W(+,#l In the Desarguesian case, we cân do better, and find an H(#) fo

do this, we find a skew W : W(+, n), then add ones to the diagonai. Hence when

the rows are combined, the result wili be a Hadamard matrix.

The following theorem uses the fact that the core of the kernel of a Desarguesion

plane fI can be express ed as circ(I, 0, P' , . . . , Pn-') where p generates the multiplica-

tive group of the associated field, and where entries are considered as elements of

the additive group. To see this, we use the associated Latin squares as found in

[59] Suppose fI is constructed using the field F. Then for each non-zero element

of. F, B",lhe Latin square is the addition table of rP" + g, hence each row per-

mutes rB" into rP" + gr, hence are equivalent to additive elements of F. Also, since

(Po*t)(P") * A : @o)(P"*t) i y, we see that the core will be back circulant. To find

a circulant core, r¡/e simple take to rows in reverse order.

Theorem 28. If TI 'is a Desargues'ian project'iue plane of odd order q, then there eri,sts

a skewW(+,q), wi.th a decompos,iti.on i,nto Ç x f blocks such that the rows of

each block are di,sjoi,nt.

Proof. Consider the antiflag form of fI, whichcomes from a rearrangement of the core

of the kernel ci.rc(I, P, 13', . . . , Pn-') as described above.
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From Section 3.3 the antiflag form of lI will have elements from the cyclic group

of order q - I, generated by ,. Since t + pË : 0, the associated antiflag form will

have a core with the property that when there is an a;o in the (2,7) position there is

an ,*+" in the (7, z) position.

A homology a of order two would be derived in this case from the element ø#

by the following mapping: the element øo would be mapped to the element ,**".

Let Ç : ffL ã,nd consider a rearrangement of a division table as follows:

This arrangement gives a symmetric table, with elements paired with their image

under a. As in Section 2.5, we can associate each element with a permutation matrix

2I(r"): lau¡1, where

^ Ír ircc(¿,j):gøii:10 
otherwise.

Replacing the elements in the antiflag form matrix with their associated permu-



96CHAPTER 4. RELATED CONS:|RUCTIONS

tations is still an antiflag form of I, C, although no longer normalized. If for the

previous construction we choose for rç,¡¡ or wçt,¡¡ the first element of the pair, then

this has the same effect as mapping the cokernel into a {0,1, -l}-matrix via

e,ij :

Hence when an element ø" has a 1, (respectively -1) then u*+" will have a -1,

(respectively 1). Since the fir'st row and first column will not be skew under these

conditions, however, multiplying the first m rows by -1 will result in a skew weighing

matrix.

Theorem 29. For q a prime pouer, i,f there erists a Hadamard matrir of order Ç,

then there i,s a Had,amard, matrir of ord,er Ç.

Example 51. Consider the case of the projective plane lI of order 5. The flag from

of lI is

and its antiflag form is

I 
r irthe(2i-r,zi)x(2i_1,27) submatrixorcis (¡ Î)

1 -t 
if the(22 _ 7,2i,)x(2i-:,2i)submatrixof Cis (l å)

|. 0 otherwise.

[i *åi'ù\r p p'p'

011i 11
107ua3Ø2
Iu201au3
la3a201u
7ua3a201
11 a u3uf 0
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Considering the following rearranged division table for the group in the above

matrix:

La2aa3
u)

a3a
a2i
Ia2

We get the following symmetric weighing matrix

00 1 0 1 0 1 0 1 0 1 0

00 0-1 0-1 0-1 0-1 0-1
-10 0 0 1 0 0 1 0-1-1 0

01 0 0 0-1 1 0-1 0 0 1

-10-1 0 0 0 1 0 0 1 0-1
01 0 1 0 0 0-1 1 0-1 0

-10 0-i-1 0 0 0 1 0 0 1

01-1 0 0 1 0 0 0-1 1 0

-10 0 1 0-1-1 0 0 0 1 0

0 1 1 0 -1 0 0 1 0 0 0 -1
-10 1 0 0 1 0-1-1 0 0 0

01 0-1 1 0-1 0 0 1 0 0

We add 1's along the diagonal, to get

10 1 0 1 0 1 0 1 0 1 0

01 0-1 0-1 0-1 0-i 0-1
-10 1 0 1 0 0 1 0-1-1 0

01 0 1 0-1 1 0-1 0 0 1

-10-1 0 1 0 1 0 0 1 0-1
01 0 1 0 1 0-i 1 0-1 0

-10 0-1-1 0 1 0 1 0 0 1

01-1 0 0 1 0 1 0-1 1 0

-10 0 1 0-1-1 0 1 0 1 0

01 1 0-1 0 0 1 0 1 0-1
-10 1 0 0 i 0-1-1 0 1 0

01 0-1 1 0-1 0 0 1 0 1
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1
ta-

(r)u

a
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Multiplying by

1

1

-1
-1
-1
-1
-1
-1
-1
-1
-1
-1

H(2) 0 o

o H(2) 0

o o H(2)

1-1 1-1
1111
1 1 1 -1
1 -1 1 1

-1 1 1 1

-1 -1 1 -1
-1 -1 -i 1

1-1-1-i
1 1 -1 -1

-i 1 1-1
1 -i 1 1

1 1 -1 1

where H (2) :

-1 1

11
1 -1
11

-1 1

1 -1
11

-1 1

11
-1 1

-1 -i
-1 -1

1\
4 ) 

toget(

1

-1
1

-1
1

-1
1

-1
1

-1
1

-1

t2).

(l
-1

1

-1
-1

1-
1

-1
1-
1

-1
1

-1

1

1

1

-1
1

1

1

1

-1
-1
-1

1

1 -1
11
11
1 -1
1 -1
1 -1
11
11
1 -1
11
11
1 -1

which is an 11(

4.4 Impact of the flrg and antiflag forms on the
Lenz Barlotti classification

There are some known existence and non-existence results in generalised Hadamard

matrices and generalised weighing matrices. We can use these results, along with

results from Chapter 3 to get restriction of the possible planes for particular orders.

We consider the question of existence for projective planes of orders less than 100,

and give a table with the restrictions implied by these results, along with the result

from Theorem 24.

In the table in Figure 4.1, we use the following abbreviations:

(BR) The Bruck-Ryser theorem states the non-existence of particular orders of



CHAPTER 4. RELATED CO¡úSTRUCTIONS

projective planes. [59]

(del,) Paper by de Launey state the non-existence of certain generalised Hadamard

matrices. [39]

(H) If n ) 2,then a projective plane of order n : 2mod 4 has no collineations of

even order, hence cannot be of Lenz class II.[59]

(Lam) An exhaustive search shows the non-existence of a plane of order 10. [70]

(gp*) Theorem 20, along with non-existence results in [39] imply the non-existence

of planes of Lenz-Barlotti class I.1, IL1, III.1, IVa.1, IVb.1, V or VII.1.

(res) Theorem 24 gives restrictions on the possibility of planes of Lenz class II+.

E(.t) means excludes Lenz class II (or greater).

R(.t) means restricted Lenz class II (or greater).

E(tB) means excludes Lenz-Barlotti classes I.1, II.1, III.1, IVa.1, IVb.1, V or VII.1.
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Figure 4.1: Planes of order less than 100
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Chapter 5

Projective Spaces and Codes

The work for this chapter was originally done under the supervison of Lynn Batten.

With the exception of Section 5.3, most of the results are to appear in a paper

coauthored with Lynn Batten [7].

5.1 Skew arcs

Recall from Chapter 1 the definition of a projective space. We consider here only

geometries over GF(2). All lines in PG(m,,2) have 3 points and all subspaces of

dimension two are Fano planes.

Definition 18. We define a skew arc S to be a set of points in PG(m,2) such that:

1. ^9 does not contain all points of a line.

2. Given any four distinct points of ^9, say s1,s2,s3 and sa, the third point on the

line containing s1 and s2 is not on the line containing s3 and sa.
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In the Fano plane, the maximum number of points that can satisfy the conditions

of a skew arc is 3 therefore there are no more than 3 points of a skew arc on any

plane. A set of points which satisfies condition 1 is called 
^n 

o,rc. We call 4 points that

satisfy condition 1 but not condition 2 of the above definition a planar quadrangle.

We can coordinatize the points of. PG(m,2) with the nonzero (m * I)-tuples of.

zeros and ones.

Example 52. The following 8 points in PG(5,2) form a skew arc: (1,0,0,0,0,0),

(0, 1,0,0,0,0), (0,0, 1,0,0,0), (0,0,0, 1,0,0), (0,0,0,0, 1,0),

(0,0,0,0,0, 1), (1, 1, 1, 1,0,0), (0,0, 1, 1, 1, 1).

Using the coordinates, the third point on a line containing points 01 and ø2 is

a1 * a2.

Definition 19. Given a set of points S in PG(m,2), we define the set ,9 as

{tt + szlsr, s2 € S, q + s2}.

We note that by the definition of a skew arc that there must be a unique point

in ,9 for each pair of distinct points in ,S. So if ,S is a skew arc with k points, then

the size of S will b" AlÐ and ^9 U ^9 wiil have 4f) elements. This last equation,

¡SuSl :.4&*Ì,is a necessary and sufficient condition for,9 to be a skew arc.

We use the coordinatization of points to draw a correspondence between skew arcs

and codes of minimurn distance 5.

r02
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Example 53. If S is the skew arc given in example 52 then 5 : {(1, 1,0,0,0,0),

(1,0,1,0,0,0), (1,0,0,1,0,0), (1,0,0,0,1,0), (1,0,0,0,0,1), (0,1,1,0,0,0),

(0, 1,0, 1,0,0), (0, 1,0,0, 1,0), (0, 1,0,0,0, 1), (0,0, 1, 1,0,0), (0,0, 1,0, 1,0),

(0,0, 1,0,0, 1), (0,0,0, 1, 1,0), (0,0,0, 1,0, 1), (0,0,0,0, 1, 1), (0, 1, 1, 1,0,0),

(1,0,1,1,0,0), (1,1,0,1,0,0), (1,1,1,0,0,0), (1,1,1,1,1,0), (1,1,1,1,0,1),

(1,0, 1, 1, 1, 1), (0, 1, 1, 1, 1, 1), (0,0,0, 1, 1, 1), (0,0, 1,0, 1, 1), (0,0, 1, 1,0, 1),

(0,0, 1, 1, 1,0), (1, 1,0,0, 1, 1)).

\Me see that ,S has 28 points, all which are distinct from the 8 points of S. So

S U .9 has 36 points, as expected.

5.2 Codes

We now show the relation between skew arcs and binary linear codes.

Definition 20. A (binary) codeword of length n is a binary n-tuple. We say the

di,stance between two codewords (of the same length) is the number of positions in

which they differ. A code is a collection of codewords and the distance of a code is

the minimum distance over all pairs of codewords.

A fn, k, d) binary li.near code is a code having distance d with 2È codewords, which

are binary n-tuples, such that the sum of any two codewords is also a codeword. This

implies the code is a subspace of dimension k of GFQ)". The dual space of C is the
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set of all vectors which are orthogonal to all the vectors in C, which is also a subspace

of GF(2)".

We can associate with a linear code a parity check matrix H of size (n - k) x n,

whose rov/s are a basis of the dual space of the code. If 11 is the parity check matrir

of the code C then C : {rlHrr _ 0}.

Lemma 30. If H is the pari,ty check matrir of a code C then C has di.stance at least

d i.ff ang d - 7 columns of H are l'inearlg ,independent [7/r]

Lemma 3t. Let S be a slcew arc in PG(m,2) with n po,ints. Let H be a matri.r

whose columns are the elements of S, where each element of S i,s erpressed as a

bi,nary uector. Then H is th.e paritg check matri.r of anln,n- (m*I),51 cod,e.

Proof. No two columns of H arc dependent since all of the columns are distinct.

No three columns are dependent by part 1 of Definition 18. No four columns are

dependent by part 2 of Definition 18. !

Observe that the converse of Lemma 31 is also true - the columns of a parity check

matrix of a code with distance at least 5 will form a skew arc; the fact that no three

columns are dependent is sufiÊcient to satisfy part 1 of Definition 18, and the fact

that no three columns are dependent is sufficient to satisfy part 2 of Definition 18.
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Example 54. Using the skew arc given in Example 52, we form

105

H-

10000010
0i000010
001000i1

00001001
00000101

0 0 0 1 0 0 1 1l'

the parity check matrix of an [8,2,5] code whose 4 codewords are the vectors

comprising the null space of H, namely [0,0,0,0,0,0,0,0], [1, 1, 1, 1,0,0, 1,0],

[0,0, 1, 1, 1, 1,0, 1], [1, 1, o, o, 1, 1, 1, 1].

5.3 Some basics about skew arcs

Definition 21. Given a skew arc ^9 we define,9 as {sl-stts2,sz € ,9 such that for

some u, {*,rr,s2} and {",rr,s} are lines }. Also,,9 : {si * sz + sslsr,s2,s3 €,S,

stlszlsslsr\

Note that ,9 n S : Ø, since if an element s1 * s2 * s3 were also in ,9, then

sr * (sr * sz + 
"r) 

: s2 f s3, and ,9 would not be a skew arc.

We call a skew arc ,S marimal if there is no skew arc ,9' such that S ç S'.

Lemma 32. A skew arc S i.n PG(m,2) i,s marimal iff S U S U,9 : PG(m,2).

Proof. Suppose ^9U.9U,1 : PG(m,z), if ^9 is not maximal then there exists p €

PG(m,Z) (p # S) such that ,9 u {p} is a skew arc. I1 p e ,9 th..t ,S u {p} would

contain a line, violating condition 1 of Definition 18. If p e ^î th"n S U {p} would

contain 4 points which violated condition 2 of Definition 18.
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Suppose ,9 is maximal, then for every p + S, S u {p} is not a skew arc. If ,S u {p}

fails condition 1, then p € S. If S u {p} fails condition 2, then p e ,9. n

Lemma 33. If m ) 4, then all mari,mal skew arcs in PG(m,2) will i,ntersect anE

hgperplane.

Proof. Suppose there was a maximal skew arc ^9 with k points and a disjoint hyper-

plane 11. Since any line with two points of PG(m,2)\ff must meet in H, we know

that ,3 Ç fI. Every point in 3 is the third point on a line through a point of ,l and a

point of ,S. Since S c PG(m,2)\11, it foilows that ,9 c PG(m,2)\É1 By maximality,

we get that ,Ç : H. By comparing the sizes we get
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k(k - r) ¡m_1.

2

4k2 -4k:2*+2 -8

(2k- 1)':2'n+2 -7'

This is a Diophantine equation of the form 2n : 12 * 7 which is known to have

integral solutions only when n : 3 , 4, 5 ,7 , 15 [76] .

We can eliminate certain cases by noting that the size of ,S must be divisible by

3. To see this, simply tet p be a point of ,9 c PG(rn,2)\H. For every point a in ,9,
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we know LhaT p * ¿ is in l1 so it must be the (unique) sum of two points of ,S, say b

and c. Now since pta: b+c we getp*b: a*c and plc: ¿*b. This will induce

a partition on the points of ,S where the size of each part is 3. Hence ,S is divisible

bv 3.

Hence the only solutions to the above Diophantine equation that give viable so-

lutions to a skew arc that is disjoint from a hyperplane are lc: 3 in PG(2,2) and

lc :6 in PG(4,2).

Example 55. The skew arc of size 3 in the Fano plane is contained in the comple-

ment of a hyperplane (hyperplanes in PG(z,2) are simply lines).

Example 56. The skew arc of size 6 in PG(4,2) given by the points (1,0,0,0,0),

(0, 1,0,0,0), (0,0, 1,0,0), (0,0,0, 1,0), (0,0,0,0, 1), and (1, 1, 1, 1, 1) is con-

tained in the complement of a hyperplane: these points all miss the hyperplane

described by rt i rz + rs I ra -¡ z5 : g.

It is known that the maximum size of an arc in PG(m,Z) is 2*, and these points

are the complement of a hyperplane.

Corollary 34. A marimal skew arc cannot be deri.ued by deleti,ng points from a mar-

imum arc.

Proof. A maximal arc is contained in the complement of a hyperplane. ¡
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5.4 Some skew arc constructions

There are several known constructions for arcs [16] [17] [18] l22l124] [57]. For example,

given an arc of size kin PG(rn,2), an arc of size2k can be constructedin PG(m+I,Z).

Essentially, if .4 is an arc in PG(m,2) then we can embed PG(m,2) into PG(rn+7,2),

pick a point outside of the embedded PG(m,2), say p. Then B : AU {a l- pla e A}

is an arc in PG(m+I,2).

We attempted to find something similar to the above construction for skew arcs,

leading us to the following result, which unfortunately requires two separate skew

arcs to start with.

Theorem 35. If, in PG(m,2), there are two skew arcs 51 and, Sz of si,zes k1 and k2

respect'iuelg such that (fi U St) n (S, U Sr) : Ø then there exists a skew arc of si,ze

lq I kz -f I i,n PG(m + 7,2).

Proof. We embed a copy of. PG(m,2) into tI : PG(m + I,2) via an isomorphism

with a hyperplane H of.lI. Let p € II\ã.

We define Sa, *{r, +pl"o € ^9r} Now let,S : ^9r uSju {p} W. claim that,S a

skew arc.

First, we claim,S contains no lines. Since S a H contains only elements of ,91,

which is itself a skew arc, there are no lines of H in S. We consider lines that will

have one point in 11 and two in n\H. The point p will not be on a iine with a point

108
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of 
^9J 

and a point of 51 since Si f-l,Sz : Ø. Two points of .f wiil not be on a line with

a point of ,91 since S, n S, : Ø. Since all lines of II meet 11, ,S satisfies condition 1

of Definition 18.

Now to see that there are no planar quadrangles in S we check that all sums of

two elements of ^9 are distinct. Since H is a hyperplane, the surn of any two elements

in f/ will be in H, and also the sum of two elements in lI\11 will be in H. The sum

of an element from f/ and one from II\11 cannot be in fI since if f/ contains two

points of a line, it contains the whole line. Hence the only way for an element of ,9

to be in fl is for it to be either the sum of two elements that are both from ,S1 or the

sum of two elements both from Sll u {p}

Two elements from Sr have their sum in ^lr and two elements of ,Sj have their sum

i" ,lr. Also, p and any element from ^f wiil have their sum in Sz. Hence an element

of 5 n fI is the sum of two elements of S in only one way.

For sums in lI\11, we look at the sum of two elements of ^9, one in -Ë1, the other

in II\H. There are two types, o,+p and ø*b where ¿ €,Sr and b € S-i.A point of

type ø*p and a point of type a-lb are distinct since ^lr n S, : Ø. Two points of

type a f b, where the o's and ô's are distinct, will be distinct since ,lr n ,S, : Ø. If

the ¿'s are not distinct, then two sums of type a * b will be distinct simply because

the å's are distinct. If the b's are not distinct, then two sums of type a -l b will be
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distinct since the ¿'s are. Two sums of type a + p will also be distinct since the

are. Hence ,S satisfies condition 2 of Definition 18.

In terms of codes, this construction is similar to the inverted Yl construction [49],

and a condition similar to that of Theorem 35 was given in [23].

Example 57. Let ,S1 be the skew arc in Example 52, we can let .92 : {(1,0, 1,0, 1, 1),

(0, 1, 1, 1,0, 1)Ì. Since S, : {(I,1,0, 1, 1,0)}, we can check (from Example 53)

that (^91 U St) n (S, u Sr) : Ø. We embed PG(5,2) into PG(6,2) by identifying

each element of PG(5,2) with the element of PG(6,1) having its last coordinate

zero. (E.g. (1,0,0,0,0,0) in PG(5,2) becomes identified with (1,0, 0,0,0,0,0)

in PG(6,2).) Now using (0,0,0,0,0,0, 1) as p we get a skew arc with 11 points

in PG(6, 2), namely (1,0,0,0,0,0,0), (0, 1,0,0,0,0,0), (0,0, 1,0,0,0,0),

(0,0,0, 1,0,0,0), (0,0,0,0, 1,0,0), (0,0,0,0,0, 1,0), (1,1, 1, 1,0,0,0),

(0, 0, 1, 1, 1, 1, 0), (0, 0, 0, 0, 0, 0, 1), (1, 0, 1, 0, 1, 1, 1), (0, 1, 1, 1, 0, 1, 1).

Corollary 36. If there øre, i,n PG(m,2), n*l skew arcs So, St, ..., Sn of s'izes ks,

kt, ..., kn respect'iuely such that(S, U S,) n (S¡ U El : Ø for i I j;'i,j : 0,...,tu

then there etist a skew arc of si,ze ko * h+ .. . + k, + n in PG(m i n,2).

Proof. We can embed PG(m,2) into PG(m + 7,2) as above and use ,So with ,S1 to

construct a new skew arc ,S with Theorem 35. From the proof, we can see that since

øts

n
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al1 points of S that intersect the original PG(m,Z) arc either in Ss, ,S1, or,S1, hence

lSuS) n (^9, u So) : Ø for i' : 2...n. We continue in this manner n - Itimes. n

Example 58. Using,Sl and ,S2 as in Example 57 and

,Ss : {(1,1,0,1,1,1), (0,1,1,1,1,0)}, we get

{(1, 0,0, 0,0,0,0, 0), (0, 1,0, 0,0,0, 0,0), (0,0, 1, 0, 0, 0, 0, 0),

(0, 0, 0, 1, 0,0, 0, 0), (0, 0, 0, 0, 1, 0,0, 0), (0, 0, 0,0, 0, 1, 0,0),

(1, 1, 1, 1,0,0,0,0), (0,0, 1, 1, 1, 1,0,0), (0,0,0,0,0,0, 1,0),

(1,0, 1,0, 1,1, 1,0), (0, 1, 1, 1,0, 1,1,0), (1, 1,0, 1, 1, 1,0, 1),

(0, 1, 1, 1, 1,0,0, 1), (0,0,0,0,0,0,0, 1)),

a skew arc in PG(7,2) with 14 points.

Chen [23] did something similar, using three sets to construct a skew arc, increas-

ing the dimension by two. We have shown in Corollary 36 that this can be generalised,

with any number of skew arcs in the original projective space. This led us to raise the

question of whether an additional dimension is needed for each additional set. One

answer we have found is that, with some other conditions, a construction requiring

fewer dimensions may be obtained.

For this, we introduce some new notation. If A-and B are disjoint subsets of

PG(rn,2) then A+ B : {a * bla e A,b e B}. Alternateiy this can be viewed as the
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set {rl3a € A,1b € B and {a,b,r) is a line}.

Theorem 37. If there are, i,n PG(m,2), four skew arcs So, Sr, 52 and, Sz of s'izes ks,

kt, kz and,ks respectiuely suchthat(S¿US,)n(S¡US¡) : Ø fori# j;'i, j:0,I,2,3

and there i,s a po'int d in PG(m,2) such that d # S¿, d É S¿* S¡, i. + j, d ê S *^9¡-¡^9¿

for d'ist'inct i,, j,k € {0, 1, 2,3} and d # So * Si *,92 +,9r, then there erists a skew arc

of si,ze ko I h I kz -t ks t 3 i,n PG(m + 2,2).

Proof. We embed PG(m,2) into lI : PG(m + 2,2) via an isomorphism with a sub-

space fl of IL Let M1, M2, ànd Ms be the hyperplanes of II containing H . We pick

h e M1\H, Pz e Mt\H and let ps: pt * pz + d. Note that p3 e M3\H.

Now ,9 : ,so U ^91' u {pt} u Sl'¿ {pr} u sl' u {pr} ir the required skew arc, which

we now show.

For i : 1,2,3, S ì Mi is constructed exactly as in Theorem 35. So there are no

lines in 11, nor in each M¡ We now check that there are no lines that have one point

in each of the M¿'s.

A iine intersecting all of the M¿'s would have one point in each Mo\H . Let these

three points be ¿* pt, b*p2, and clps, where ¿ € ,S1 U {0}, b e Sz U {0}, and

c € 53U{0i (where 0ipo would simply be the point po). If these three points were on

a line then ¿ *h+b+pr*c*pz:0; hence a+blcld:0, so d : a-l b+c. If all

three of a,b, and c were 0 then it would follow that d: 0, which is a contradiction,

I12
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since 0 does notrepresent anypointinthegeometry. Since d,:a+b+cand d+0

we know that d € ^91, ^92, Se, St *,S2, ,Sr *,Ss, Sz +,Sr, or ,Sr *,Sz *,Ss.

From the proof of Theorem 35, no planar quadrangle is contained in a single M¿.

All that is left to check is that the sum of two elements from M¿\H is not the sum of

two elements of H or of two elements of M¡\U (for i. I j, i, j e {7,2,3}), and that

the sum of an element from M1\fI with an element of. M2\H is not the sum of an

element in M3\I1 and an element of H.

As in the proof of Theorem 35, we notice that the sum of two elements of 
^9 

n 11

is in,56u,9o and the sum of two elements of ,Sfì Uo\H (for z € {1,2,3}) is in S,U5¿,

they must be distinct.

Now let us consider a*pt to be an element of SnMl\-Ë/ where ¿ € ,Sr U{0}, b+p,

an elernent of SnM2\.Il where b e SzU{0}, and c*p¡ an element of ^9nMs\Ël where

c € ,93 U {0} Let z € ,9n H. If the sum of aih and b*pz were not distinct from the

sum of c*ps and z, then we would have a+ b+ c+di z:0, hence d,: a*b*c+ z.

This would imply thal d €,So,,Ss*,91, Ssi- 52,,So*,Ss, ^90*,Sr *^9z,,So*^9r *,Ss,

,So *,Sz * Ss, or ,So *,9r +,9, * Se.
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Example 59. To emphasize the necessity of d in the above proof, we consider the

following skew arcs. Let

.96 : {(1,0,0,0,0,0), (0, 1,0,0,0,0), (0,0,1,0,0,0), (0,0,0, 1,0,0),

(0,0,0,0, 1,0), (0,0,0,0,0, 1), (1, 1,1, 1,0,0)),

,Sr : {(1,0, 1,0, 1,0), (0, 1,0, 1,0, 1), (1, 1,0,0, 1, 1)},

^9, 
: {(1,0,0,0, 1, 1), (0, 1, 1,0, 1,0), (1,1,0, 1,0, 1)} and

,se : {(1,0,0, 1,0,1), (0,1,0,0, 1, 1)}.

Now (^9, U S,) n (S¡ U S,) : Ø for i. + j, but there is no 18 point skew arc in

PG(7,2). [15] Hence no such skew arc can be constructed from these skew arcs

having 18 points.

Example 60. Let ^96 be the skew arc given in Example 52, let

,Sr : {(1,0, 1,0, 1, 1), (0, 1, 1, 1,0, 1)},

S, : {(1, 1,0, 1, 1, 1), (0, 1, 1, 1, 1,0)} and

Ss : {(0, 1,0, 1,0, 1), (1,0, 1,0, 1,0)} .

Then d, : (7,0, 1, 1,0,0) satisfies the conditions of Theorem 37. This gives us

a skew arc with 17 points in PG(7,2), which is maximum [tS]. If we choose p1

to be (0,0,0,0,0,0,1,0), andp2 to be (0,0,0,0,0,0,0,1), then our construction

give the following skew arc :
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(1,0, 0, 0, 0, 0, 0, 0), (0, 1, 0, 0, 0, 0, 0, 0), (0, 0, 1, 0, 0, 0, 0, 0),

(0,0,0, 0, 1,0,0,0), (0, 0, 0,0,0, 1,0,0), (1, 1, 1, 1,0,0,0,0),

(0,0,0,0,0,0, 1,0), (1,0, 1,0, 1, 1, 1,0), (0, 1, 1, 1,0, 1, 1,0),

(0, 1, 1, 1, 1, 0, 0, 1), (0, 0, 0, 0, 0, 0, 0, 1), (1, 0, 1, 1, 0, 0, 1, 1),

(0,0,0, 1,1,0,1, 1).
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(0,0,0, 1,0,0,0,0),

(0, 0, 1, 1, 1, 1, 0, o),

(1,1,0, 1, 1, 1,0, 1),

(1, 1, 1,0,0, 1,1, 1),

5.5 Codes and constructions

We turn our attention now to a known class of codes: BCH codes [74]. Each element

of GFQ") can be expressed as an n length vector over GF(2). The matrix.[1 is a

{0,l}-matrix written in terms of elements of GF(2'), each representing its vector

expansion as a column. If a is primitive in GF(Z) it is known that the parity

check matrix of the BCH code with distance d ) 5 can be taken to be the following

2nx2-1matrix.

[t e. e2 oi oe_2)ft : 
Lt aB a6 a,i os{z^-z)f

Since the columns of H are 2n lenglh vectors over GF(2), we can view them

as points of PG(2n - 1,2) and we will refer to the set of these points (which is a

skew arc - see comment following Lemma 31) as .B,,. Also, we can view all points in

PG(2n- 7,2) as 2-tuples over GF(Z') as well as 2n-tuples over GF(z).

Wishing to use the skew arcs Bn in constructions, we discovered the following
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theorem which gives a characterization of BnUB, looks like in PG(zn-7,2).

Theorem 38. For r + 0, r e GF(zn), the set M, -- {rt + ¿3 + bsla * b : r} i,s a

subgroup of the add'it'iue group of GF(2) wi.th IGF(Z) : M,l:2.

Proof. Suppose alb: r and c*d: r. Then

13 + aB + b3 + 13 + c3 * d,s : a3 + b3 + c3 + ds

: a3 ]_b3 +13 +c2d*cd2

: 13 * a3 + bB + c2(a + b + c) + c(a2 + b2 + c2)

: 13 r(ot + ca2 + c2a+.3) + (b3 + cb2 + c2b + c3)

: 13 I (ø+c)3 + (b+c)3.

Since (a + c) + (b + c) : a ]-b: t, v/e see that the sum of two elements of M, is

in Mr. Hence M" is closed under addition.

There are exactly 2'-1 pairs of elements that sum to r. Suppose again we have

a*b: z and cid: ø, then d,: a+b+ c. Now if 13 + a3 +b3:13 * c3 +d3 then

a3 +b3 : c3 * (a+b+ c)3

a3 + b3 : a3 i b3 + azb + a2c t ab2 * b2c + ac2 I bc2.
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Hence we would have

a2b + a2c * abz + b2c r ac2 + bc2 : o

a2çb + c) + a(b * c)2 : bc(b + c)

a2 + ab: bci ac

a(a*b): c(a+b)

O,: C.

Hence each pair of elements which sum to r gives a distinct element of Mr,

[GF(z") : M,]:2.

Let M,*13 : 
^t 

: {ot+ bslaib: r}.If zz is even \Me let ú: (2 - 1)/3. Recalt

that a is a primitive element tn GF(2*). Since n is even, GF(z") contains a subfield

of order 4 which will contain the elements {0, 1, oú, a2ú}. Hence 1 * at + d2t : 0. So

for r € GF(z) t : re.t I ra2t. Since *s : (rat)s : (ra2t)3, we can see that 0 e Àt

and hence 
^t: 

Mr. Ifnis odd,3 and 2n -I arerelatively prime, so a3 f b3 if alb

for a,b eGF(2). So 0 É N".Hence l/" must be the other coset of M,. So for any

element y in GF(2"), ali points in BnUl,, as 2-tuples over GF(2'), which have E in

the first coordinate have either y3 or a3 + b3 , where a * b : gr, in the second. Hence

B*UI.: {(a,z)lz e No}.

We introduce no'ù/ a small skew arc to be used along with the BCH codes in

TT7

SO

n
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constructions. It has 7 points: (0,rr+Ar*zz), (rr,rr), (rt,rr1-zz), (Ar,Ar), (h,Azl

rz), (zt, zz), (zt, zzlAz), where {*r,Ar.,z1} and {*r,Ar, z2} generate 8 element additive

subgroups (not necessarily different) of GF(z) for n ) 3. We call this skew arc ,43,

since the code it gives via Lemma 31 is isomorphic to that given by Be (i.e., the BCH

code of length T).

We see that A3 U Ã tates the following form, which is similar to the form of

n*¿1. Elements whose first element, taken as a 2-tuple over GF(z"), is 0 have as

their second element one of {rr+Uzl zz,r2,Uz,z2} (which is a coset of. a 4 element

subgroup of the group generated by *r,Uz,zz). Elements whose first element is ø1

have as second element one of {rr,rr1- zz,Az* zz,yz} (again a coset), etc.

Let a be a primitive element in GF(24), where ra + r * 1 is the generating

polynomial, and let {r1 ,Ut, zt} be {a10, ae , 06l¡ and {r2,Uz, zz} be {a2 , a8, a10}. This

skew arc and Ba do not satisfy the conditions of Theorem 35, so we alter it by adding

a13 to the second element of each column that has a first element a10 or a6. \Me then

get the following skew arc in PG(7,2) with 7 points: {(0,ou), (o'o,o'n), (oto,ott),

(on, 1), (on, ot), (ou, on), (ou,ot')j

Now A3 as given above and Ba satisfy the conditions of Theorem 35. Hence, since

,43 (of size 7) and Ba (of size 15) are disjoint skew arcs in PG(7,2) satisfying the

conditions of Theorem 35 we can construct a skew arc of size 23 in PG(8,2) which

118
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gives rise to a 123,14, 5] code.

119

This gives a nice construction of the Wagner code [84], answering Research Prob-

lem 18.3 of l7a), but unfortunately this approach does not extend we1l. It works

mostly because ,43 is small. Also, constructing with B, when n > 4 gives codes too

small to be considered interesting.



Appendix A

Examples

For planes of small orders, we give a representation of the plane by the kernel, and

again by the cokernel. Also, for odd orders, we give the weighing matrix build from the

construction in Theorem 28 and if applicable, the Hadamard matrix from Theorem29.

We use the standard convention of representing a -1 by a - in Hadamard and

weighing matrices.

4.1 Plane of order 2 - the Fano plane

Kernel (GH(2,G)):

/ e e\
\''")

where G:Zz:{e,a}.

Cokernel (GW(3,G)):

where G : {1}.

720
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^.2

127

Kernel

plane of order

(GH(3,G)):

where G: Cs: {e,.y,.y2}.

Cokernel (GW(4,3, G)):

where G : {a,bla2 : I,b2 : I,

where G:Zz:{e,a}.

Skew symmetric weighing matrix:

/01
f - ot_
\- 1

Hadamard matrix:
/t 1

I-ll_
\- 1

4.3 plane of order 4

Kernel (GH@,G)):

G+Ð

(; ,,íÍ 
)

i;)
ii)

Gííù
ab: ba]i.
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Cokernel (GW(5,4,G)):

where G : Ct : {e,.y,.y2}.

Baer-kernel (GW (7, 4, 2)) :

where G: Zz: {e,a}.

4.4 plane of order 5

Kernel (GH(5,G)):

where G : {1, p, p2, pt, pn}.

Cokernel(GW (6,4, G)):

ftll11
0 e e e 0 e 0

00eaeje
e00eeo.0
0 e00acle
e0a00ee
ee0a00¿
eo.e0e00

[1 fri,i;)

011111
107au3ut2
La201aa3
La3u201a
laa3u201
11aa3u20
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where G: {I,a,a2,.r3}

Skew symmetric weighing matrix:

0010
000

00 0

010 0

0- 0

0101
00

01 0

001
0110

010
010-

Hadamard matrix:

1010101
0-0-0-0
10 010-
0-10 00
0010010
000-10

000100
01000 1

0- 0001
001000

010 00
10 0010

123

0

0

1

0

1

0

0

0

0

111-1-
1-1111

1111
1-11

1-111
1-

1- 1

1-
111-

11
11 11

11 1

1-1-1-
111111
11 1

11
i-11
11 11
111-11
1-11 1

11ii
1-11

111
1- i-
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4.5 plane of order 7

Kernel (GH(7,G))

where G: {1, p,p',pt,pn

Cokernel (GW(8,7,G)):

where G: {1, u,e2,a3,a4,.^,5}

(r 1 1 1 1 1 1

Ir p p3 p',l3u pn 0'
frpupp'p'puon
fr pnpu p p3p"p6
f r pu pn 13'p pt p'
lr p'pupnp'p pt
\r ps p'pu pn p' p

, 13', Puj

01111111
10Iu2aa4a5a3
Ia301u2aa4a5
7a5a301u2aa4
1ua4u5a301tü2
Lu2au4a5a301
11u2aa4a5a30
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Skew symmetric weighing matrix:

,4..6 plane of order 8

Kernel (GH(8,G)):

1111111
abcabbcabcac
aco.bcabbcabc
abc0,cabcabbc
bc abc o,c o, b c ab

abbcabcaco.bc
c ab bc abc o.c 0, b

b c ab bc abc 0,c o,

where ç : {abcla2 : b2 : ¿2 : I; ry : yr lor generators z, y}

0001 0 0 1 0 0 1 00 1 0 0 1 00 1 00 1 00
00 00 0- 0 0-0 0-0 0-0 0-0 0-0 0-
00 00- 0 0-0 0-0 0-0 0-0 0-0 0- 0

-0 00 0 0 i 0 0 00 i 0 1 0 0-00 0--00
00 10 0 0 00-0 1 0 1 0 0-0 00-00 0 1

01 00 0 0 0-0 1 000 0-0 0 1-0 00 1 0

-0 0-0 0 00 0 I 000 0 1 0 1 00-00 0-
00 100 1 00 0 00-0 I 0 1 0 0-0 00-0
01 00 I 0 0 0 0 0-0 1 0 0 0 0-0 0 1-0 0

-000 0--0 0 0 00 1 0 0 0 0 1 0 1 00-0
00 10-0 00 1 0000 0-0 I 0 I 0 0-0 0

01 0-0 0 0 1 0 00 00-0 I 00 0 0-0 0 1

-0 00-0 0 0--0000 0 1 00 0 0 1 0 1 0
00 1-0 0 0-0 00 1 0 0 0 0 0-0 1 0 1 0 0

01 000 1-0 0 0 1 00 0 0 0-0 1 0 00 0-
-0 00 1 0 0-0 00--0 0 0 0 0 1 0 000 1

00 11 0 0-0 0 0-00 0 1 0 0 00 0-0 1 0

01 00 0-0 0 1-000 1 0 0 0 00-0 1 0 0

-0 00 0 1 0 I 0 0-00 0--0 0 0 00 1 0 0
00 10 1 0 1 0 0-000-0 0 0 1 0 0 00 0-
01010 0 0 0-0 01-0 0 010 0 0 0 0-0
-0 01 0 0 0 0 1 0 1 00-0 0 0--0 0 0 0 0

00 10 0-0 1 0 1 00-0 0 0-0 0 0 1 0 0 0
01 00-0 1 0 0 00-0 0 1-0 0 0 1 0 0 0 0
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Cokernel (GW(9,8, G)):

where G : Cz : {1, g, g2, g3, ga, 95 , 96}.

4.7 planes of order 9

There are four known planes of order 9,

nearfield planes, and the Hughes plane.

^.7.L 
Desarguesian plane

Kernel ( GH(9,G));

the Desarguesian plane, the left and right

126

011111111
1 0 7 g 9293969495
1 1 0 gtg6 g g2g5g4
7g930gnr9'9296
79'96940g'Lg93
Tgtgrg'0gng6g2
lgu92gslgn0gtg
1gng5g2g969301
tg'g4 96 93 92 g 1 o

ee
er
era
e r2a
ea2
e12
e r2a2
e ra2
ea

ee
12 a2

r2a2 12

raz r'a'
y raz
ra
rar
r2a ra
a2 r2a

ee
r2a ra
a2 rza
12 a2

r'a' 12

ra2 r'a'
a raz
ra
rar

eee
a ra2 r2a2
rara2
rara
r2a ry r
a2 r2a ra
12 !J2 r2a

r2a2 12 a2
ra2 r'a' 12

where G : {*,Al*t -- 1,U3 :1,rE: yr}.
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Cokernel (GW(10,9, G)) :

where G:Ca:{ulag -1}.

0eeeeeeeee
e0ea4aa7u6a5u2u3
eu40eu6ua7u3a5u2
eett40a7a6aa2u3u5
eu5u2a30ea4aaTu6
ea3a5u2a40eø6au7
ea2a3a5ea40u7u6a
eaa7a6a5a2a30eu4
e u6 a u7 a3 a5 u)2 t4 0 e

ea7 a6 a t^t2 a3 a5 e a4 0

727
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Skew symmetric weighing matrix:

128

00001000 1 000 1 000 1 000 i 0001000 1 000 1 000 1 000
00 0 0000-0 0 0-0 0 0-0 0 0-0 0 0-0 0 0-0 0 0-0 00-0 0 0-
00 0 000-0 00-0 0 0-0 0 0-00 0-00 0-0 0 0-0 0 0-0 0 0-0
00 0 00-0 0 0-0 0 0-0 0 0-0 00-0 00-0 0 0-0 0 0-0 0 0-0 0

-0000000 1 000-0 000 00-0 1 0000 I 0 000 1 00-00-0 0

000 i0000 000-0 00 1 0 0-0 1 0 000 1 00 00 1 00-00-0 0 0

00 1 00000 00-0 00 1 00-00000-1 000 0 1 00-00000 0 I
01 000000 0-000 1 00-00000-0000-1 0000 00 1 00 1 0
-0 0 0- 0 0 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 - 0 1 0 0 0 - 0 0 0 0 0 1 0 0 - 0
000 1000 1 0000 000-0 1 0000-0 1 000-00000 I 00-00
00 1 000 1 0000000-0 1 0000-00000-000 1 0 1 00-0 00
01 000 10 00000 0-0 00 00--00000-0 00 1 0 1 00000 0 1

-0 0 01 0 0 0 - 0 0 0 0 0 0 0 0 1 0 0 0 0 1 0 0 0 0 - 0 0 - 0 0 - 0 0 0 0 0 1

000 1000-000 1 0000 I 0 000 1 0000-0 0-00-0 00 0 0 1 0
00 1 000-000 1 00000000-1 0000-00-000000 1 0 1 00
01 000-0 00 1 0000000 0-0000--00 0 000 1 00 1 0 I 0 0 0

-000000 1 00-00-00000 0 1 000-00 0 000-0 1 0000 1 0

000 100 1 00-00-0000 000000-000 1 00-0 i 0000 1 0 0

00 1 001 00-000000 1 0 00000-000 1 0 0-00000-1 0 0 0

01 001000 000 1 0 0 I 00 0000-000 1 00-00000-000 0-
-0000-00 000 I 00-0-0000000 1 0 00 00 1 0000-0 1 0 0
000 1-000 00 1 00-000 00 1 00 00000-0 1 0000-0 1 0 00
00 1 0000 1 0 1 00-0000 0 1 000 0000-0 1 0000-0000 0-
01 0000 1 0 1 000 000 1 0 1 0000 0 00-00 0 00--0 0000-0
-0 0000-00-00 000 1 I 0 00-0 000000 0 1 000 0 i 00 0 0-
00 0 10-00-00000 1 0000-000 1 0000 1 0000 1 000 0-0
0 0 1 0- 0 0 0 0 0 0 1 0 1 0 0 0 0 - 0 0 0 1 0 0 0 0 0 0 0 0 - I 0 0 0 0 - 0 0
01 00000 1 0 0 1 0 1 0000-000 1 00000 0 00-0000--0 0 0

-0 0 0 0 0 0 - 0 1 0 0 0 0 1 0 0 0 0 1 0 0 - 0 0 - 0 0 0 0 0 0 1 0 0 0 - 0 0 0

000 100-0 1 0 000 1 0000 1 00-00-0 00 00000 00-00 0 1

00 1 00-00 000-1 0000 10 0-0 0000 0 1 00000 0-000 1 0
01 0 0- 0 0 0 0 0 - 0 0 0 0 - 1 0 0 0 0 0 0 1 0 0 1 0 0 0 0 0 0 - 0 0 0 1 0 0

-00000 1 0 000-0 1 000-0 000 0 1 00-0-0000 000 1 0 00
000 i0 1 0000-0 1 00 0-00 000 1 00-00 0 00 I 0 00000 0-
00 1 01 000 0-00 000-000 1 0 1 00-00000 1 0000000-0
01 00000--00000-000 i 0 1 000000 1 0 1 0000000-00
-0 0 0 0 1 0 0 0 0 1 0 0 0 0 - 0 0 - 0 0 - 0 0 0 0 0 1 1 0 0 0 - 0 0 0 0 0 0 0

00 0 11 0000 I 0000-00-00-00000 1 0 000-000 1 00 0 0
00 I 0000-1 0000-00-000000 1 0 1 00 00-000 1 000 0 0

01 0000-0000--0000 00 1 00 1 0 1 000 0-000 1 0000 00
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Hadamard matrix:

1 1 1 1 1-- - 1---1---1-- - 1---1- - - 1--- 1--- 1---
1-1-11- 1 11-111-111- 1 11-111 - 111-111-111-1
11--111 - 111-111-111 - 111-r1 1 -111-111-111-
1-- 1 1- 1 I 1- 1 1 1- 1 1 1- 1 1 1- 1 1 1- 1 1 1- 1 1 1- 1 1 1- 1 1

-11111111- 111- 11--111-1111---1--11
--1-1-1 - 1 1-1--1-1-1 - -1 1-1- 1 1-1-1-1--1--1

1 1 1-- 1 1 1----11 1-- 11 1 1-1 1 1--111--
-1--1-- 1 1-11-1---11 --1-1-- 1 -1--111-11-1-
-111-11111111---111-- 11- 111111---1
--1---1 - 1-1-11-11-1 1 1-1--1 1 -1--1-1-1-1--

1--- 1 11--111--11 1 11--11 1 1- --111---
- 1 - - - 1 - -1 1 - - 1 1 - I 1 - - 1 - - 1 1 - - 1 - 1 1 - 1 - 1 - - 1 1 1 - 1

-1111----111111111-- 111- -1--111111
--1-11- 1--1-1-1--11 - 1-111- 1--1--1--1-1-1

1111 -111--1111-11111--1--- ---11
-1--1-1 1 -1--1--1-1- 1 --1--1 1 -11-11-1-1--1
-111111 1 ---1--11111 1 1----1 1 1----11--111-
- - 1 - - 1 - 1 - 1 - - 1 - - 1 1 - 1 -1 1 1 - 1 - - 1 - 1 - 1 - - 1 1 - 1 - 1 1

1 - - 1 1 1 - 1 1 - - 1 1 1 - - - -1 1 1 1 - - 1 1 1 1 - 1 1 1

-1--1-- 1 11-11-1-1-- 1 1-11-1 ---11--1-1--1-
-1 11--1 1 11 11---1-11 1 111 11---111-----11
--1-1-- 1 -1-1-1- 1 - 1-1-11- 11-111-1--11-

1--- 111- --111--111--11111--1111
-1--1-1- 1--111-1-1- - 1--11- 1 1--1--11--1-1
-111 1--1111111- 111111111--111
-- 1-- 1- - 1-- 1- 1- 1 1 1- 1 -- 1- 1- 1 -- 1 1- 1- 1 1 1- 1-

11-- -11111- 111--1111-11111--
- 1-- 1 1- 1 1- 1- 1-- 1 1- 1 1 - 1-- 1- - 1- 1- 1-- 1-- 1 1-
-111 -11--111-111 1---1--1 111111----111
-- 1- 1- 1 - - 1 1- 1- 1 1- 1- 1 - 1-- 1- - 1 1- 1- 1 1- 1-- 1-

111-- 1111-111--1 1 1--- -11--111----1
-1---11 --1-1--1-1-- I 11-11- i -1--11-11-1--
-111111- -11----111111 1-11111111---
--1-1-1 1 1-1--1 1-1-- 1 -1-1-1 - ---1-1-1-1 1-1

1-11111--1111-- -111 111--111-
- 1 - 1 -1- 1 1 - - 1 - 1 1 - 1 - 1 - - 1 1 1 - 1 - 1 - - 1 - - 1 1 - 1 1

-11111--111- -1--1111111-*--1111111
--1--1 1 - 1-1 1 1-1--1- - 1--1-1 - 1 1 1-1--1*1-1-

11111-11111--1- --11111 -111--
-1---1- 1 --1--11-11- 1 1-1-1-- 11-11-1--1--1

t29



APPENDIX A. EXAMPLES

^.7.2 
right nearfield plane

0eeee
e0eB23s
eBz0eCBs
eegz0C
e B CBCB2 0

eCB2 B CB 3Z
eCBCB2 B e

eBSCCBsB
e CBs 3S C CBz
eCCBsSsCB

130

We include only the right nearfield plane, since the matrices for the left nearfield can

be found from the matrices for the right nearfield (by transposition of the incidence

matrix).

Kernel (Gl1(9, G))

eeeeeeeee
e 12 r a2 r'a' ra2 a r2a ra
e r 12 a ra r2a a2 ra2 r2a2
e a a2 tr2 ra2 ïa r r2a2 r2a
e ra r2a2 r2y 12 a2 raz a r
e r2a ra2 r2a' a 12 ra r a2
e a2 a r r2a r'a' 12 ra ïa2
e ra2 r2a :xa a2 r r2a2 12 a
e r2a2 ïa raz r a r2a a2 tr2

where G : {",A1"3 : I,A3 -- !,rg : yr}.

Cokernel (GW(10,9,G)) ;

e

C
gs

C83
e

0
gz

CB
B

C82

e

CB3
C
83
B2
e

0

C82
CB
B

eee
B CB CB2

CBz B CB
CB CB2 B
3S C CB3
CB3 3S C
C CB3 3I
0egz
Bz0e
eB20

where G : {B,ClBn :1 Ca : I C2 : B2 BC : CBsj.
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4.7.3 Hughes plane

Kernel GPH(9,9)

131

eeeeeeeee
e 13 ra4 rTan rnaa a2r8 a'r" a2r' 16

e rga2 rna2 Ears r2a2r ra3r a2r'a ar8a2 a4r
e r2a2 r2a2r :x aars aarTa a r'a3 aarTa
e r5a2 aar' r2a2r 17 a\r r7a' rny'ran aara
e a*a r7a' "'an*n 12 a5 ar2 anrrat an*'an
e r2y4r5 ,'anrn n8 raz ra3 rsa ,tatr' an*uan
e r2yar8 r5 raa2 "'anrn a3r' *nauran atr'an anr'an
e 16 u2rg a2r2 a2r5 ra4 rTan rTua 13

Where r is the permutation (1,5,7,3,4,9,2,6,8) and g is (1,4)(2,5)(3,6)(7,8,9),

which generate a subgroup of ^9e of order 162.

Cokernel GPW(70,9,8):

jeeeeeeeee
eOABCDEFGH
eBOAECDHFG
eABODECGHF
e S T U O V W XY Z
eU,9 TW 0 V Z XY
eT U ^9 V W 0 Y Z X
eQIßtÐ€ß06r)
etU8 S Ð C ñ 0 ø
eB C 2I e S Ð Ø ñ 0

The permutations as follows:

A: (1,8)(2,4,3)(5,6) E : (1,3,8,6, 7)(2,5) ,S : (1, 7,2,,3,6,8,4)

B : (2,7, 4, 6)(3, 5) F : (1, 6, 8, 3, 7,5,4,2) T : (7,6,7,9,3)(2, 5, 4)

c: (r,4,8,7,3,6) G: (7,5,7,8,2,6,3,4) U: (r,5,9,2)(3,4,7,6)

D: (1,2,8,5)(4,7,6) H: (7,7,2,3)(4,5,8) V : (7,8)(2,6)(3,7,4,5)
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W:

X-

Y-

(1,7, g,4,2)(3,5,6)

(1, 6, 5, 9,3,4)(2,7)

(r,3,7, b,2,8,6)(2,4,3)(5,7)

(r,2,7,3,9, 5,6)

(1, 3, 5)(4, g, 6)

91 
-

!8 : (1,4,5)(3,8,7)

e : (1, 2,6,4,9,5,7)

Ð : (1,5,4,6,8,2,3)

(Ê-

3r:

6 : (1, 8)(2, 5, 3,6)(4, 7)

lt : (2,4, 3)(6, 7)Z : (1,4,6,5,2,8,7)

A different kernel (found in [47])

eee
€atb1
€azb2
êasb3
€aab4
€asb5
€aab6
eazbT
€aabs

eee
C1 dl €1

C2 d"2 a2

c3 dJ ês

C4 d4 €4

c5 ds ê5

c6 d6 e6

C7 d7 €7

cs d,s €s

eee
fthhl
fz 9z h2

ft 9s hz

fn9ah4
fr9sh5
fu9ah6
f, 9r h7

Ía 9e h6

A1

b1

C1

d,t

The permutations as follows:

: (1,8,5,2)(3, 7,6)(4,9) a2:

8) bz: b3 : (1, 8, 4, 9, 7,5,6,3,2,I)

4) c2

: (1, 6,2,8,3,4,5,9,7) dz: (r,4,2,5)(3,6,7)(8,9) ds : (1,9, 3, 5,4,8,7,2,6)

€1 : (I,7,2,9,5,8, 4,3,6) ez: (7,5,7,4)(2,3,8)(6,9) ee : (1,4,6,8, 9)(2,5)(3,7)

9t

h1

7)

8) gz : (L,6,4,7)(2,8,3)(5,9) Qs

¿s : (1, 5,7,4)(2,3,8)(6,9)(1, 9, 3)(2, 7)(4, 8)(5, 6)

(1, 7, 8, 6)(2, 9)(3, 5, 4)

: (L,2,6,8)(3,4,5)(7,9) cs : (1,3)(2,9,4,7,6)(5,8)

: (I,4,2,6,5,7,3,9,

: (1,9,3, 8,2,7,5,6,

: (I,7)(2,8, 6, 5, 9)(3, 4)

: (1,2,4,5,3,6,7,9,8)

: (1, 6,4,2,7,8,3,9,5)

fz: (I,3,9)(2,4,6)(5,8, 7) fs: (1,5)(2,3)(4,8,9,6,

: (1,3)(2,5,4,6,9)(7,

: (I,2,4,7 ,9)(3, 5)(6,

f,

8) h2: (1,8,5,2)(3, 7,6)(4,9) h3
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A4:

b¿:

c4 : (1,6,5,9,2,4,8,3,7) a6:

9s : (1,9,3,7,6,5,8,4,2) €7 :

hs : (1, 5, 6, 9, 8, 7, 2,3,4) f, :

b6:

L6

da:

(1,9,8, 6,7,2,4,8, 5) h7

(7,2,7,9,4,6,5,3,9) ös :

€6 : (1,8, 7,6,3, 5, 4,9,2) c8 :

de:

i33

¿s : (1, 3, 9)(2, 4, 6)(5, 8, 7)

ee : (1,6, 5)(2,8, 3)(4, 7, 9)

!_
./8 -

9a:

hs:

(1, 3) (2, 4) (5, 9, 8, 6, 7)

(1, 6)(2, 9, 5, 4,7) (3, 8)

(r, 4,2,5) (3, 6, 7) (9, g)

(1, 3)(2, 9,7,9,5)(4, 6)

: (1,4,8, 9,6,2,7,3,5)

: (1,9,3,2,8,4,6,5,7)

(1,6, 4,7)(2,8,3)(5, 9) 9z

(1, 5, g, 6,g)(2,3)(4,7)

(r,2,7)(3,4, 5)(6, 8, 9)

(7,7,2)(3,5, 4)(6, 9, 8)

(1, 8, 4)(2, 9, 5)(3, 7, 6)(r, 4)(2,5, 6, g, g)(3, 7)

(1, 7, 5, 2, g)(3, 4)(6, 8)

(i, 9, 3)(2, 6, 4)(5, 7, 8)

(1, 5, 6)(2, 3, 8) (4,9,7)

(1, 4, 8) (2, 5,9)(3, 6, 7)

(1, 3)(2, 6)(4, 5, 8, 9, 7)

(r,2, 6,9) (3, 4, 5) (7, g)

(r,5,7,8,4,2,3, g,6)(1,9,3, 4,5,6,2,7,9)

(1, 2)(3, 5)(4, 9, 7, 6, 8)

dq:

€4:

I
J4:

9a-

h¿ : (1,7,5,4,3,8, 2,9,6) Íu:

(1,8, b, 7,2,6,J,9,4)

(1, 5,8, 2,3,7,6,9,4)

(1, 8, 7, 4,9)(2,5) (3, 6)

A5:

bs:

L5

ds:

€5:

.fs :

9a:

ha:

AZ:

bz:

CZ:

dz:

(1, 7, 8, 6)(2, 9)(3, 5, 4)

(r, 6, 2,5, g) (3, g) (4, 7)

(7,4,6,7,3,2,9, 9,5)

(1, 3)(2, 4,9., 6,9)(5, 7)

(r,2,6,4, g,5,3, g,7)

(1, 8)(2, 7,9, 4,5)(3, 6) (1,7,8, 5,6,4,3,9,2)
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Baer-kernel(Gw (73,9, G) ) :

134

0r'AIy01LrAr2ArA0g0
00r2AIy01IrAr2Aïy0y
A00r2AIy01IryrzAry0
0y00r2A7g011rAr2ArA
rA0g00t'AIy01IrAr2A
r2ary 0 y 0 0 r2A 1 y 0 1 1 rA
rAr2ArA 0 E 0 0 r2A I E 0 1 1

IrAr2ArA0y00r2AIg01
1 1 rAr2ArA 0 g 0 0 r2A I g 0

01IrAr2AïA0y00r2AIE
A 0 1 7 rAr2ArA 0 y 0 0 r2A 1

ly011rAr2ArA0y00r2A
r2AIg017rAr2ArA0E00

where r:

) 

.".,:

000100
000001
000010
100000
001000
010000

010000
001000
100000
000010
000001
000100
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