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ABSTRACT

Effects on point-defect drift-diffusion in the strain fields of
straight edge or screw dislocations, due to the anilsotropy of the point
defect in its saddle-point configuration, are investigated. Expressions
for sink strength and bias that include the saddle-point shape effect are
derived, both in the absence and presence of an externally applied stress.
These are found to depend on intrinsic parameters such as the relaxation
volume and the saddle-point shape of the point defects, and extrinsic
pérameters such as temperature and the magnitude and direction of the
.externally applied stress with respect to the line direction and Burgers

vector direction of the dislocation.

The theory is-applied to fce copper and bﬁc iron. It is found
that screw dislocations are biased sinks and that the stress—induced bias
differential for the edge dislocations depends much more on the 1line
direction than the Burgers vector direction. Comparison with the stress—
induced bias differential due to the usual Stress Induced Preferred
Absorption (SIPA) effect is made. It is found that the present effect

causes a blas differential that is more than an order of magnitude larger.
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Chapter 1

INTRODUCTION

When a sufficiently energetic particle collides with an atom of a
crystalline material, the primary collision énd subsequent cascade of col-
lisions result 1in one or more atoms being displaced from their lattice
sites. Equal numbers of vacancies and interstitials are created. As a re—
sult, the material contalns concentrations of these point defects in excess
of their respective thermal equilibrium concentrations. This provides a
driving force for the point defects to come out of solution. At elevated
temperatures the point defects are mobile and can combine with impurity
atoms or point defects of the same type to nucleate point—defect clusters,
or recombine with point defects of the opposite type, or annihilate at ex—
tended crystal defects such as voids, dislocation loops, network disloca-
tions or grain boundaries. An extended crystal defect (or sink) will
evolve if an excess of one type of point defect 1s absorbed by it. The
evolution of the various sinks.is believed to be the cause of the macro-
scopic deformation of a crystalline material subjected to irradiation.
Well-known phenomena that belong to this category 1nclude irradiation

growth, irradiation creep, and void swelling.

To understand irradiation damage processes, it is essential to
undérstaﬁd the interaction between point defects and sinks. Basicaily, the
interaction of a point defect with a sink results in a modification of the
potential barriers to ?ossible atomic jumps, subsequently affecting the
migration of the point defect. In metallic crystalline materials, the main
contribution to the interaction energy 1s due to the long-range elastic

interaction between the strain field of the point defect and those of the
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sink and the externally applied stress, if any. This interaction energy

can be expfeééed by )

EGR = [Py = 5% 1 St (P 184 (B )
where

813(R) = ey y(p) + e5(p) - | (2)

Repeated indices imply summation. A lower case Roman index may have a
value of 1, 2 or 3, while a Greek index may have a value of 1 or 2 only.
eij(;) is the strain field of the sink, and Eij(5) is the strain field éue
to an externally applied stress at the point defect position, . Pij is
the elastic dipole tensor of the point defect, so named because Pij repre—
sénts the magnitude and direction of the three mutually perpendicular force
dipoles that, when placed at J, would produce the same linear elastic
strain field as the point defect. uijkl is the elastic polarizability of

the point defect and describes the modification of the point-defect dipole

tensor due to the applied stress.

The point—defect arrival rate at a sink must be calculated within
a drift-diffusion theory. In most prevlous calculations, the continuum
theory.of drift—-diffusion was employed and the diffusion tensor was assumed
to be isotropic. With these assumptions, the point-defect drift-diffusion

current is given by

J = D, JO(E,t) - 8D, C(ROFERE) (3)
where Do is the ideal diffusion coefficient, B 1is the reciprocal of the
product of Boltzmann's constant and the absolute temperature, and C(p,t) is

the point-defect concentration.



- Much useful information has been derived concerning polnt—defect
migration into sinks that have a significant assoclated strain field, e.g.
edge dislocations, using equation (3). In these calculationmns, E(;) is
replaced by -pAV, where AV 1is the isotropic volume strain of the point
" defect, which interacts with the hydrostatic component, p, of the stress
field of the sink. Since AV for an interstitial is greater than that for a
vacancy, the current of interstitials into any sink with a positive value
of p will be greater than the current of vacancies into the same sink,
assuming equal supersafuration of both types of point defects. The sink is
sald to have a larger sink strength for interstitials than for vacancies,
and is also said to be biased towards interstitials (sink strength and bias
will be defined in Sectién 2). Sinks that are biased towards interstitials
include vacancy loops, interstitial loops and straight edge dislocations,
but not straight screw dislocations since the associated strain field is in
pure shear (i.e. p=0) in this case. The existence of blased sinks is very
important in the explanation of many irradiation deformation phenomena,

such as vold swelling, and irradiation creep and growth [2].

Furthermore, based on eqﬁation (3), application of a uniform
external stress can affect the point-defect drift-diffusion through the
i cross term contalned in the second term on :ithe right hand side of equation
(1). This effect causes the blas to &epend on thg relative orientation of
the Bu?gérs vector [3-5] and line direction [4] with respect to the exter—
nal streés:field,-and gives rise to a stresé-induced preferred absorption
(SIPA) effect, which‘is'a f;voured mechanism to explain irradiation creep

[2-6].



However, it has been pointed out that equation (3) is, in
general, inadequate [7—10}; fhrough a ﬁicroscopic derivation, Dederichs
and Schroeder [10] showed fhat if the saddle-point configuration of the
point defect is isotropic, then the form of equatioﬁ (3) can be retained by
replacing Do with D = Bo exp[~B(Es—Eg)] and E with Eg’ where Es is the
drift potential when the point defect is in the saddle—point configuration
and Eg is the corresponding quantity in the equilibrium configuration. All
previous results can then be used by replacing E with Es and C with C
exp[—B(Es—Eg)] (11,12]. However, the saddle-point cénfiguration of point
defects is not isotropic, Iin general. This has been verifiéd for cubic
métals by computer simulations [13-15]. The work necéssary to modify the
continuum theory to include the shape of the point defect iIn the saddle-

point configuration is extensive but necessary; otherwise important effects

may be overlooked, as the evidence presented below would suggest.

Tﬁe effect of saddle-point anisotropy, also known as saddle-point
shape effect (SAPSE), on the point-defect migration into an infinitesimal
edge dislocation loop (IEDL) was studied by Woo {16]. It was found that,
while both types of loops (vacancy and interstitial) had a bias for inter-
stitials, the vacancy loép had a larger bias by a factor of approximately
5/3 in fcc copper and . approximately 4/3 in bec iron. - Previously it was
believed thétqthe two types of loops had the same blas. This bias differ-
ential has important Implications towards exflaining the simultaqeous

growth of Vécancy and Interstitial loops in some materials {16].

As mentioned earlier, an-isotropic point defect does not interact
with the strain fleld of a screw dislocation. However, Bullough and

Newman [17] pointed out that the shear field of an anisotropic point defect
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will interact with the pure shear strain field of a screw dislocationm.
From this point of view, screw dislocations may be blased sinks and, 1if so,

may be an important factor in irradlation damage calculations.

More evidence that SAPSE i1s an important effect can be found in
the case of an externally applied stress. The effect of an externally
gpplied stfeSS'on the bias of a straight edge dislocation was first comn—
sidered by Heald and Speight [2] and Wolfer and Ashkin [6]. It was envis-—
aged to be caused by a change in the point-defect/dislocation interaction
due to the induced change in the dipole tensor.by an external shear, repre-
sented by the second term in equation (l). As mentioned earlier, this is
the basis.of the SIPA mechanism often used to explain the phenomenon of
irradiation creep [2-6]. It has been pointed out {7-10] that the non-
equivalence of the jump directions in external fields due to the anisotropy
of the saddle-point configurations could add to the stfess effect on the
bias. Woo [16] foﬁnd that the blas change for an IEDL due to SAPSE had the
same stress dependence as the usual SIPA effect, and named the resulting
stress—induced preferred absorption effect SIPA-SAPSE to distinguish it
from the usual SIPA effect which he called SIPA-I. The magnitude of the
bias change due to-SIPA—SAPSE for an IEDL was found to be more than an
‘ order:of magnitude larger than that of the SIPA-I effect in fecc copper -and -
bee irom. The.SIPA-SAPSE results apfear to be in better agreement‘with

experiment than the SIPA-I results [16].



Recently, Tomé et al. [18] numerically solved the drift-diffusion
equations for point defects, including SAPSE*, in the strain fileld of a
straight edge dislocation iﬁ a high—density dislocation lattice, and with
an e#ternally applied uniaxial stress. For fcc copper, they found that the
dependence of the dislocation sink strength on the orientation of the uni-
axial stress relative to the Burgers vector was small and negative, whereas
the dependence on the orientation of the uniaxial stress relative to the
line direction was much larger in magnitude and also negative. Tﬁe usual
SIPA theory predicts both coefficlents to be positive, and the dependence
of the orientation of the unlaxial stress with the Burgers vector to be
1Qrger. These results suggest that the.shape of point defects in their
saddle-point configuration may have an important conseqﬁence for irradia-

tion damage studies.

However, beiné a numerical solution, the calculation of Tomé et
al. may encounter the following difficulties. Firstly, numerical results
are normally less physically fransparent, especially in the case of the
bias of a dislocation since it is a function of many variables. Secondly,
numerical results are difficult to incorporate in rate-theory calculations
of the macroscopic effects of irradiation deformation. ~ Thirdly, numerical
'accuracy limits the approximate magnitude of the external applied elastic
strain. Consequently, thelr calculation hadrto be performed using an in-

crementallelastic strain step of 10—3, which may be more than an order of

* Tome et al. [18] claimed that their results contain effects beyond
SAPSE, which came from the anisotropy of the equilibrium configuration.
The author concurs with Dederichs and Schroeder [10] and maintains that
the anisotropy of the equilibrium configuration does not lead to aniso-
tropic diffusion in a cubic crystal, even in the presence of a small
deviatoric applied stress. S
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magnitude larger than appropriate under normal conditions, where terms of
order of 82 can be safely ignored. The non-linear stress dependence of
their results is quite apparent.r Fourthly, limitation of the size of the
integfation region makes it difficult to calculate cases where sink densi-

ties are more dilute.

The purpose of thls thesis 1is to study analytically the biases of
infinite straight édge and screw dislocations in the absence and presence
of an externally applied stress including the full effect of the saddle-
point anisotropy. The résults are applied to fec copper and bee irom, and

the implications of the results are discussed.




Chapter 2

FORMULATION

ﬁe now conslder point-defect drift-diffusion in an applied strain
field, Ekz(g), taking into account the anlsotropy of the saddle—-point con~
figurations. From the microscopic derivation of Dederichs and Schroeder
[10], this can be described in terms of the renormalized density W(r,t) =
C(;,t)exp(BEg) by che Lagrangian

&’y (g, E) WCE,t)

L[w<5,t>]=f~v— [ﬁijq) e, e, @WEO] (4)

where V is the integration volume, K(3) 1s the point—defect production

rate, and 5ij(5) is the renormalized diffusion tensor given by *
L 1 o iy s o
B, - 7;h1hj%effcp) explBE, (Zh, (D] 5)
w

where the summation is over all nearest—neighbour position vectors, h, to
which a jump may occur.: The superscript, s, in Pzz(ﬁ) indicates that we.
are referring to the dipole tensor of the point defect in the saddle-point
configuracdou. Pzg(ﬁ) ie defined in the perfect crystal, and therefore we
are assuming that the applied strain does not perturb the dipole temsor.:
In so doing, we are neglecting the second term of equation (1) in the argu-
ment of the exponeutial iu equation (5). This is to facllitate study of7>
the intrinsicrehaoe effect aione and_not the stress—induced one. We
fucther'noce that laff 1n equation (5) is an effective [10] (i.e. averaged

_ over different nonﬁequivalent equilibrium configurations of the point

. defect) ideal jump frequency in the y direction, and W(x,t) in equation (4)

I\

* The symbol in y denotes the unit vector in the direction of h. This

symbol 1s used throughout the report with similar meaning.



refers to the total concentration of non-equivalent equilibrium configura-
tions of thé game defect [10]. We emphasize that, as a result of A:ff, the
possible jump directions are no longer those of only one particular equili-
brium configuration, but are those of any one of the equivalent equilibrium
configurations. The effect of an external applied stress on the equilibri-
um energies does not affect this situation [10}. Equations (4) and (5)
hold regardless of the symmetry of the point defect, as long as we can

. ® on the orientations of the point defect

k& R

before and after the jump. In cases where we can drop the 9 dependence of

neglect the dependence of P

o
leff’ we may wrlte equation (5) as

B, =03 ) b jexp[BE, PP (1] | (6)

B

where Z is the coordination number and Do is the ideal diffusion coeffici-
ent éiven by Do =-%hzszf. In non—cubic cases, the same assumption leads
" to an approximation where the anisotropy of the ideal jump frequency is
averaged out. Within this approximation, D° is replaced by the averaged
ideal diffusion coefficient, szf, which is effectively what has been used
in equation (3) in‘most previous calculations [19-22]. Although this may
not be a good approximation in certain cases, the averaging allows the un—
; maéking of the effect due to the anisotropy of the saddle—point configura-
R tion tfromrthat due to the anisotropy_of the ideal jump frequency or jﬁmp
disféﬁéé5 bf>tﬁéipéinfkdefect, which is of interest in the present investi-

gation.

The extremum principle, Wheﬁ‘applied'to equatibn (4), results in
‘Va bouhdary value problem which cannot be solvéd analytically. ~ One further
E:appfdkimation'is;neéessary to make the problem tractable. In this paper,




we consider the case of the infinite, straight edge or screw dislocation.
Both dislocation types have translational symmetry along thelr line direc~
tions. Accordingly, we choose a cylindrical polar coordinate system with
the line diréction of the dislqcation along the z—axis. We now approximate
the renormaliéed density by a cylindrically symmetric ansatz, W(;) ] no(r).
Note that r now represents the cylindrical polar coordinate. This is simi-
lar to the spherical symmetrization procedure first introduced by Schroeder
and Dettmann [12] and used successfully in other applications [22]. After
making this approximation, the extremum principle for the Lagrangian gives
: the following one-dimensional, second-order differential\equation:

dn

. %%F [xB, ¢ ()31 + K(x) = © (7)
where

- 21 de_

D ce(r) = . 77 Ty ll\,(5)1’ . | (8)

?u refers to the Wth component of the uﬁit vector along gz in cylindrical
polar coordinates. Note that ﬁere, as elsewhere, Greek letter subscripts
.take only the values 1 and 2. Note also that equations (7) and (8) are
inherently different from their counterpartsrresulting from the spherical

7 symmetrization procedure in the case of the TEDL [16], thus requiring .a

} separate derivation. -~ - - - -

Replacing Ek2(5)P (h) by -E (E’h) in equation (6) and substitut-

ing into equation (3), we obtain

SRR ARt 2m SR
L de PPN
Bege (™) %Piff% A f G Penol-98, o)) )
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where Djff is the diffusion coefficient in the stress—free crystal. It is

usually not a bad approximation to assume that the effective jump direc-
tions are isotropic and replace the summation by an integration. Then

»
Deff(r) becomes

2
dg de A - ~
o _ aneff | ©¥h r, o oTN2 o
Deff(r) = 3D0 Y fo . (}; 3) exp[ BEs(g,}})] . (10)
If we define
2a
g(x) = f f —(r'h)zexp[—BEs(g,,s,l)l : o an

then equation (10) can be written as

CA - eff s

Deff(r) = (r) ,(12)
where g(r) can be interpreted as a scaled effective drift potential for the

point defect.

The-shape effect can now be considered. To allow focusing on it
ae much as possible, we make the simplifying assumption that K(r) = 0 in
equation (7) ano use the simplest set of boundary conditions, which is
generally referred to as the Constant Boundary Concentration Method [23].

- We imagine the dislocation to be surrounded by a cylindrical reservoir of

. radius, R, centred at the dislocation and maintained at a constant point— e

-

i‘defect concentration, c. The concentration at the dislocation core 1is
"assumed to be the thermal equilibrium concentration, so that the renormal-
ized concentration then is given by |

where C lis the thermal equilibrium concentration far from a dislocation.
r; is the radius from the straight dislocation at which a point defect will
i find it difficult to leave the dislocation by thermal motion alone. Once

inside ro, the point defect is assumed to be absorbed by the dislocation.
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Thus, r, is termed the capture radius. With these assumptions, the current
of point defects through a unit volume can be written as

Deff

1= —9-9—{?3 - ¢®yx?

(14)

where Q8 13 the atomic volume,‘and kz is called the sink strength and is a
measure of the ability of a sink to absqrb point defects. The derivation
of the expression for the sink strength can be found in Appendix A, with
tﬁe result expresséd in terms of £, the sink strength per unit dislocation

line length:

[
1]

R
2, dt -1
k“/p = 27] Jr -———tg(t)l (15)

[+

where .

R -1/2

(np) (16)
and p is the dislocation line density. Another quantity of interest is the
bias, B, which describes whether a sink has a larger sink strength for an

interstitial or a vacancy:

.~ :
B=_1 Y | (17)

1

Thus, a.sink with a negative blas will have a larger sink strength for
. vacancies whereas a sink with a positive bias will have a larger sink-
strength for interstitials. As explained in the'iﬁtroduction, the bias of
| a diéioéétiéﬁ haé:iﬁportanf poﬁséquenées for the macroscopic effeq}s of

'irradiatibﬁ démage iﬁ:metals;fa;;'

Finally, for the evaluation of g{r), we use the identity

FTORALA B R | | (18)
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where P = Tr(P j)’ P, is a normalized eigenvalue so that Pp is the nth

eigenvalue of Pij(y), ‘and 3( n) is the nth normalized eigenvector of Pij(h)
Note that
dop =3 . - (19)
= .
Thus,
B G = Pp, £ (pefel® . (20)

.—13f-
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Chapter 3

THE BIAS OF STRALGHT DISLOCATIONS WITH NO EXTERNAL APPLIED STRESS

3.1 CALCULATION OF g(r) FOR AN EDGE DISLOCATION

The strain field of an infinite straight edge dislocation, with

the line direction along the =z—axis and the Burgers vector along the

 x-axis, is given by [24]

A A A

ey, = - f{Z(l—“)y-'-y(xz-yz)],
ey, = S2vyhy (xP-y D)1, | (21)

~A ~

- Xex2- 25'= .
€12 T XY 21°
with

__b
T Em-v)

vhere b is the magnitude of the Burgers vector, v is Poisson's ratio, and X
and § are given by

X=712 = cos © R
1 r (22)

vy Iy = sinrer -

Where-er is the polar anglé.. All other elements of e are zero. It is

ij

" convenient to separate eij into its isotropic and deviatorlc components.

Thus,

e 1 ;- LR
=1l FE
1373 "1k £i1 L

3

function. Note that :

where fi ‘1s théfdéViéfbfiE’tom?oﬁeﬂt, and 8, 1s the usual Kronecker delta

13

- 14 -




Therefore, in the absence of an externally applied stress,

(n)_(n)

ES Pekk Pp fij i j

(25)

and

= (gp)® oao (@ o~a, (n) (n)\m
mwsgqroiyﬁﬁmwmww%uf‘w.am
m

~ ~

In order to integrate over all };, we make the assumption that h lies along
the first principal directign of the point—defect dipole tensor. This is
valid in most cases, since g is usually in a direction of high symmetry of
the polnt—defect saddle-point configuration. Therefore,

h=e1) | (27)
o o i
Additionally, we must relate $(2) and 5(3) to h.
In Aﬁpendix B, we show that
(n) _(n) . - -
ey ej 2[h j(36 )+61j(1 Gnl)] . (28)

(no implied
summation)

Substitution into equation (26) gives

. . ,
3 N
g(r) = 57 .[0 rurv exp(BPekk)y(u,v)der

= 1 3 m 21 ~n .
+ 5= Eﬁ{E-EP(Pl—l)] rurvexp(BPekk)_ ; - (29)

: ,:filjlfizjzi"?i i YFF’?’il;jI’..'_%mtjg)de?

wheréf;i
féfj*ﬁahfngFTfttt-'l:ffg>4f AR A ~A A ’ o

m “m
The evaluation of equation (29) is carried out in Appendix C with the

result that i?“

% i

tt\igg(r) - 1+FE(b)2+0< y o | (31)

. -15 -




where FE 1s given by

2.2, o \2
E LB P2(1 Zv% 0+ %fpl‘l) + 1%6{5 + ~__Zl_§}(p1_1)2}. (32)
1672 (1-v) (1-2v)

The first term in the square bracket of equation (32) represents
the contribution to the drift potential due to the interaction between the
hydrostatic components of the strain fieids of the point defect and the
dislocation; and is the origin of the so-called "size effect” in the usual
rate theory of irrédiation damage {1}. The tﬁird term represents the con-
tribution due t6 the interaction between the deviatoric component of the
displacement field of the point defect and the shear component of the
strain field of‘the dislocétion, This term vanishes in the case where the
poiﬁt defect is isotropi&, i.e. when p1=1 (we assume Py, = p3). The‘second
term arises as a cross term between the two terms in the definition Qf Es
(equation (25)) caused by the non-linearity of the exponential in the defi-
nition of the effective drift potential in equation (il). The last two
terms represent the effect of the saddle-point anisotropy on point-defect
drift-diffusion in the field of a straight edge dislocation. It will be
shown in Section 5 that, in the stress—free case, this effect only changes
the éink strength and bigs of the edge dislocvatlon by a sm#ll amount; This
changg is an increase in most cases, except when P lies in the range

| 0.89<p1(1, as can be shown from equation {32). : —

3.2 CALCULATION OF g(r) FOR A SCREW DISLOCATION

The strain field of an infinite straight screw dislocation with

the line direction along the‘z—axis is given by [24]

\

13T T T e

- 16_




and (33)

~

©33 T Garr  ©

32
where the symbols have the same meaning as in the straight edge dislocation

case. All other elements of e are zero. Note that

i}

e = 0 (34)
and so separation of eij into isotropic and deviatoric components is un—
necessary. The interaction energy can be convenieﬁtly written as

N o ..b S (n)_(n)

Es(FaB) = = oagPPpGyuyTyey T3 (35

where |
_fo 1 : _ A

G = (_1 0) . (36)
The G tensor has some useful properties which are listed below:

6 T =
_ pv Ty
and ' (37)

G = .
LK VK uv
Substituting equation (28) into equation (35), gives
E =---4—-Pb (p,-1)G ;A; (38)
8 7t ‘P1 pv v 3 .

We note that, for an isotropic point defect (pn=1, n=1,2,3), E 6 = 0, as
mentioned in the Introduction. Continuing as. for the straight edge

' dislocation, we find, for the straight screw dislocation (see Appendix D)

63 [u1)112 2m bo2m

T »g(r)’= A o) (4ut3) T (?)’ o K
R S (39)
- 1+FS(—E-)2+0(r—4)
whefe:
222 : : , :
P - _9.‘5_?_2_(1,1_1»)2 s | e (40a)
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and

a=3Ep-1y L (401)

Equations (39) and (40) clearly show that the contribution to the
drift potential in the case of a screw dislocation comes only from the in—
teraction between the shear componenes of the fields. Drift due to a "size
effect” interaction is completely absent (cf. equstion (32)). It can be
seen immediately that the drift potential vanishes for an isotropic defeet,
where p1=1. As a consequence of the saddle—point anisotropy, screw dislo-
cations are generally'biased sinks. However, unlike edge dislocations,
which are usually biased towards interstitials, screw dislocations can be
biased towards vacancles in cases where the "degree” of anisotropy of
vacancles [determined by (p1-1)2] is ﬁuch larger than that of intersti-
tials. This 1s because, for edge dislocations, the drift potential is
dominated by the "size effect"” interaction, which is larger for inter-
 stitia1s because of their larger hydrostatic strain field. The analogous
hydrostatic strain field does not contribute to the interaction of the
point defects and the screw dislocation. This bias of a screw dislocation
is entirely an effect of the saddle—point.anisotropy and may have important

consequences for the interpretation of irradiation damage experiments.

3.3 THE SINK STRENGTH AND BIAS

Having derived expressions for g(r) for “both types of disloca—
'tions, we can now evaluate the sink strengths and biases from

equation (15) From equations (31) and (39) we can write

5(r) = 1 +F<—> oL T e
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For simplicity, we have dropped the superscripts E and S that indicate the
type of dislocation. The sink strength per unit line length can now be

evaluated from equation (15):

¢ = 7 24£ 73 | (42)
In(R™+Fb )—1n(r°+Fb )

and the bias can be written as
' ) ~1
2 2 2 2
1In(R +Fvb )—1n(ro +Fvb )

B=1- (43)

2 2 2 2
In(R +Fib )] ln(ro +Fib )

where the subscripts 1 and v refer to interstitial and vacancy

respectively.
If we put
P = KAV = 2 1+v ve

- 312y e

where K is the bulk compressibiiity, n the shear modulus, V the volume and
€, the relaxa;ion strain of the point defect, then assuming R2>>Fb2>>r°2,
it can be shown that, for an isotropic point defect, equation (42) reduces

to

- 27
ln(BHR/BuVsob)

" which can be compared with the one derived by Heald and Speight [2,4] for
similar conditions: . . 7

1n(2.31rR/BuVeob)' .

A diséﬁséiéﬁxbf'fhé4vélidiﬁy of neglecting O(r—4) in g(r) in equation-(él)

“and of the acéﬁfécy of equation (42) is.given in Appendix G.
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Chapter 4

THE EFFECTS OF AN EXTERNALLY APPLIED STRESS

If sij(g) of equation (2) 4is caused by a uniform externally

applied stress, then we may use the identity

E

ey Egmt(m)t(m) 4h)

i 7]

), 8, 1s a normalized eigenvalue so that €sm is the m—-th

(m)

where € =-%Tr(€

1j

eigenvalue of eij’ and is the mrth normalized eigenvector of eij'

Again, we have

D5 =3 . (45)

Thus thé contribution to Es due to the externally applied stress can be

written as

S () = - Pepﬂsmtim)tgm)ggn)eg“) . (46)

. | L -
Denoting ES($,Q) in equation (20) by ES(S’B)’ we have
. ~ i ~ e ~
B (DD = E (I . , “47)
¢ can be expanded in a McLaurin series in terms'of ¢. We only consider the

physically important range in which the external stress satisfies E: <<'E§.

~ In this range, we may neglect terms of 0(52) and higher.  Therefore

z(e) = (0)(1+ %5_ _ | (48)
‘ﬁhereig"}

s _la, S

T T d L0 S (49)

Then,:from‘équatibn (15) ;,ﬁi’_
L1 g'(v)yde dt : 50
t ¢ J r—_)'tg(t o -(50)

rtle(t)]” .
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where

EHORE: ) R, (51)

The change of the bias due to the externally applied stress is, from

equation (17),

Gty
AB = E—-'(—E-—- - 2‘——) . : (52)
171 v ‘

Substituting equation (28) into equation (46), we obtain

ES(R = - e = 3 Pe(p -1 t{Me{Phih 1) (53)

We observe that the first term of equation (53) is independent of h,x, and
p_ and can therefore be taken outside the double integral of equation (12).
n

In fact, we can define

ff(s) - D:ff

ff(E) represents the change of the ideal diffusion coefficient under a

exp(3BPe) . (54)

hydrostatic pressure. Thus equations (12) and (11) can be rewritten ex-

plicitly in terms of the internal applied stress as

D er(r,e) = DS (e)g(x,e) (55)
and | '
2q : .
g(r,e) = 3[ f (3; 3;) exp[~ BEi(g 9) Eed(},}.e)] (56)
where —
"»;‘;d(g{,e) - - %Be(plfl)(sntgn)tgn)ﬁi;}j—l) . (57)

7 Note that E:d(g,e) in equation (57) vanishes for a pure hydrostatic applied.

‘stress (s‘¥1; n=1,2, 3).'.We can noﬁ évalﬁéte‘g'(r) and obtain

el e 23 ,
8'(x) = —BJE’(p1 1) f J (y, y) (s e$e g“)h h=L)exp[-BEL (5, )] (58)



Note that for an isotropic point defect (pn=1, n=1,2,3), g'(r}) 1s =zero.
Thus, the change in blas that we will calculate is strictly due to the ani-
sotropy of the saddle-polnt configuration of the point defect. The details

of the evaluation of equation (58) for the edge dislocation are presented

in Appendix E with the result that

2 2
g' (r) = P(pl-l){H fé-(l—sncoszgn)+(l+l-l§ ;b—z-)(l—sncosz)tn)] (59)

where Bn 1s the angle between the Burgers vector of the edge dislocation
and the nth principal direction of the externally applied stress, and ln is
the corresponding angle for the line direction of the edge dislocation. H%

and HE are given by
2.2

Hy = —E 2 [7(1-29) - (7-10v-8v") (p, 13- (2-2v-v7)(p, -1)P]  (60)
112(1-v)“x
and
B 'BZPZ
Hy = ———— 21 (1-2v) 24 (3-30v+48v> )(p, —1)+3(1+v )(pl-l) 1. (61)
224(1- v) T

In equation {59), we are neglecting terms of O(r ) and higher. Using the

same approximation for the screw dislocation (see Appendix F)

; oo - 2 ?2m
a0 5 A s
mw=

g'(x)
(62)
%i 02,1018 o)

.where A is given by equation (40b)

If ﬁe separaﬁénfhé:léotropic and deviaﬁbfic‘compbnents,'
equation (48) can'be‘rewfitteh as -
ey =t Sy, w8y pdhy 3y
) T EOIRED, B, | (63)
IR ST
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A
where the (EEJ'S are evaluated using equation (50) with

8'1g0(T) = 8" (0)+8", (1) (64)
and
2
| = - ¥ =
g u(r) g l_lo(r)sncc)s: LI for u 8 or A {65)
where
2
3 b
8'go (1) = 1P (p;~1)H, 2
and : : (66)
, 3 v
B'yo(0) = TR (e L), )

w

The H values for the edge dislocations are given by equations (60) and

{61). Those for the screw dislocations are both zero.

The isotropic component arises from the point—defect size effect
interaction with the strain field of the external stress (equation (54)}),
plus the cross term arising from shape effect interaction with the shear
strain fields of the straight dislocation and the size effect interaction
with the isotroplc component of the externally aﬁplied stress. It is inde-
pendent of the stress orientation with respect to the ‘Burgers vector and.
the line direction»of the dislocatibn,'and therefore does not cause 5}e—
:‘fé;ré@ éﬁsbfption §f’point defects; The deviétoric'components, on the
6thér ﬁéﬁé,‘éfiséérfrqm the shape effegf inferaéﬁiéﬁ with the combined
stfaiﬁrfieldsiofifﬁé;gﬁféigﬁt'disloéétibn aﬁd_#héf&éﬁiétoricxcomponent of

the extefﬁal‘étress; If-deéeﬁ&sVonrthé'reiétive orientation of fhe Burgers
vector aﬁd the liné:diféctién hith respect to the externally applied stress
>difeeEioﬂ; én&_éhéfé£d£é>;aﬁ3éé.éréfegrea abégfpfionfbfpqint‘defécéé. HWe:
‘iﬁoté_;ha£ éqﬁétioﬁ4}53) gﬁ§réntées thét4C(€k;) =7C(0);1f €1t hés no deVi—
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atoric component. The effect of the hydrostatic component of €14 has
already been separated out and incorporated into the "ideal" diffusion

coefficient.

If 0 is the trace of the external applied stress tensor oij’ and
u a normalized elgenvalue so that 0un is the nth eigenvalue of Uij (see

equation 44), we have the following relationship between the strain and the

stress
_(-2v) e S
€7 EY)Y 3 (67)
and

where ¥ is the shear modulus. We note that the eigenvectors of Oij are the

same as those of © Using equations (48) and (63), the sink strength in

ij*
the presence of Uij is given by

2oy PR ;(0)_{1%31:% { of* (1-u_cos?r )+ 43(1—‘1“.:0823“)}] (69)

where
2 2 2
(p -1) b~ (R™-r))
10 A A (R2+Fb2)(r§+Fb2) :
>f and : - . - : ' , -
R LS U (0)
*’f o 10 lnr a 2 * 1

(R +Fb ) (r +Fb )

'Here, the subscripts and superscripts denoting dislocation and point-defect

types are dropped to simplify the notation.i{f; ‘

ij is then given by

t&  The change in the corresponding bias by the o
(1—B}‘[AT (l—u cos l )+ﬂT (l—u cos B )] . (72)
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and
g o2 B( i<gii v—eiv) H B or A : (73)

It is immediately obvious from equations (72) and (73) that the
application of an external stress changes.the bias of straight dislocations
(both screw and edge) as a consequence of the saddle—point anisotropy. The
resulting blas change varies as a functlon of the dislocation orientation
with respect to the priocipal directions of the external stress. As a re—
sult, the biases of sgsome dislocations would be ralsed while those of
others, that are differently oriented, would be lowered. This would cause
a stress-induced preferred absorption of point defects at the dislocationms,
in the same way as the usual SIPA mechanism for irradiation creep does

w

[2-6]. Of course, it should be remembered that the usual SIPA is a conse-

quence of the stress—induced anisotropy of the point—defect dipole tensor,
whereas in the present.ﬁork, the preferred absorption is caused by the in-
trinsic anisotropy of the point—defect dipole tensor. To highlight the
difference between the‘SIPA effects arising from the two different origins,
we have chosen to call the usual SIPA arising from the second—-order inhomo—
geneity effect SIPA-I, and the SIPA we consider in this work SIPA-SAPSE, as

mentioned in the Introduction. At this point, we must emphasize that al-

though SIPA;SAPSE and SIPA—I have ‘different origins, they are not mutually ~ — = =

—

'exclusive{_ In fact they should occur. simultaneously. When the intrinsic
‘ranisotropy of the point—defect saddle point is small and the elastic polar-

izability of th' point defect at the saddle point is large, one would ex-

pect SIPA—I to dominate:over SIPA—SAPSE.‘ Otherwise, the opposite would. be

expected._ We note that a classical example used for 'SIPA is the split
'H”dumbbell interstitial [3], which deforms significantly under the action of

a shear stress, '{,é;, it is said “to be very soft in shear. However,
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although much experimental evidence suggests that the equilibrium intersti-
tial configuration in many cublc metals is consistent with the dumbbell

picture, it is not obvious that this can be generalized to the saddle-point

configuration.

The behaviour of SIPA-SAPSE can be studied most readily by com—
parison with SIPA~-I. The change in the sink strength of an edge disloca-
tisn due to the second-order inhomogeneity effect, as a function of the
dislocation orientation, has been derived [3,4] using the linear elastieity
theory. Using this result, and assuming that the interstitial is soft in
shear while the vacancy shear modulus is unaffected by the external stress,
the corresponding” bias ehange of the edge dislocation can be cast in the

same form as equations (72) and (73), as follows:

1 g 2 2
A = -BY—T A - A 4 -
W (1 B)u[ w, (1 u_cos n)+ WB(I u _cos Bn)} (74)
where
S5Ap
- _ (0 i
AWb o 30{1-v)+4(4- 5v)Aui (73)
€1
and
AW, = AW . (76)

" Here 8: is the relaxation strain of the interstitial%in the absence of-the
‘ Vexternal applied stress, and ni(1+Aui) is its shear modulus. Note that for
,;a uniaxial external stress u, = (3,0,0). Comparing equations (74) and

4(72), _we note this remarkable similarity, with' _one governing the bias

'f_,change upon the application of an external stress due to SIPA-I and the

‘t‘”other governing that due to SIPA—SAPSE respectively.
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Although SIPA-I and SIPA~-SAPSE are indistinguishable with respect
to the linear stress dependence and the stress—orientation‘dependence of
the resulting irradiation creep, the two mechanisms do differ in many
respects. Perhaps the most important one is the relative significance of
the 1line direction dependence and the Burgers vector dependence. For
SIPA-I, the line direction depeneence is about 1/3 of the Burgers vector
dependence (see equation (76)). On the other hand, for SIPA—SAPSE,‘the
line direction dependence is roughly 10 times larger than the Burgers
vector dependence, as can be shown from a rough estimate of the ratlo of
gill‘zfﬁ in equations (70) and (71). This large line direction dependence
-in the case of SAPSE is not related to the dislocation strain field and is
“solely a consequence of the.external stress—induced anisotropy of the 1deal
diffusion tensor and the translational symmetry of the dislocation line.
This symmetry dictates that all point-defect currents must flow in a plane
normal to the_dislocation line. A uniaxial tensile stress applied along
the line direction will cause the material to elongate in the line direc—
tion and contract in the direction of the defect—current flow. = An M-type
point defect [16], which is elongated at the saddle point along the jump
direction, would therefore encounter a higher energy barrier during its
jump along the flow line than in the absence of the applied stress. On the
E other'hand, an F—type'point defect>[16], which is flattened at the saddle
point along the jump direction, would encounter a lower energy barrier than
in the absence of the applied stress. Consequently, the applied stress
4 lowers the sink strength of the dislocation for H—type defects and in—
creasesrthat for F-type defects. Thus, from equation (70), it can be seen
rthat most of ‘the contribution to ;‘efh comes from the first term in the
‘square bracket.f The second term contributes about 10%. That the first
z.term is not related to the strain field can be readily seen by putting b=0,

‘t Whereupon the second term vanishes. Note that ,gfs vanishes in this case»
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A
also. This shows that the second term of ;J and the entire XJB are a
consequence of the dislocation strain field, while the first term is

related to the symmetry effect described in the foregoing discussion.

In the case of an edge dislocation loop, this line direction
dependence translates into a Burgers vector direction dependence. It has
been shown [25] that a finite edge dislocation loop may be approximated by
averaging the line‘direction of an edge dislocation in a plane to which the
Burgers vector is normal. In this approximation, the sink strength and
bias of the loop are given by replacing coszln by the average value [25]
coszln = 1/2(l—c0523n) in equations {(69) and (72). It will be shown in the
next section that this yields results consistent with those from a separate

calculation for the infinitestimal edge dislocation loop [16].

The . second difference between SIPA-I and SIPA-SAPSE is the tem—
perature dependence. SIPA-SAPSE is inversely proportional to the absolute
temperature_explicitly, while SIPA—I is not explicitly temperature depen—
dent. Any temperature dependence is through-the temperature dependence of
the sink strength, z(0). However, it is not experimentally easy to separ-
ate the temperature dependence of other effects such as thermal emission of

—

vacancles from e sinh,ror‘bulk reoombination.

The.third difference.is the dependenoe on the point—defect size.
SIPA—SAPSE is directly proportional to the point—defect size through P,
rwhereas SIPA—I is inversely proportional to the point—defect size. From
.computer simulation studies,qthe relaxation strain of copper is smaller
than that of iron. ' Comparing the SIPA effect in copper and iron may
‘”Jprovige’an opportunity for experimental differentiation between these two
mechantsms.r | |
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Chapter 5

APPLICATION TO FCC COPFER AND BCC IRON

The saddle-point dipole tensors for a wvacancy and the <1002
dumbbell interstitial have been calculated by computer simulation for both
copper [13,14] and iron [14,15]. For copper, three sets of parameters are
listed in Table 1 corresponding to different interatomic potentials of the
modified Morse type [13,14]. For iron, one set of parameters is listed in
Table 2, corresponding to a Johnson potential [14,15]. The sink‘strengths,
ner unit line length of an edge dislocation for anisotropic vacancies and
Interstitials in copper and iron at 500 K, are plotted against dislocation
density in Figures 1 and 2. For comparison,‘the sink strengths for isotro-
plc point defects are also plotted. In all cases, the interaction between
the shear fields due to the shape anisotropy increases the sink strengths
by a small amount. The case for the screw dislocations is similar. How-
ever, according to equation (32), the anisotropy can reduce the sink
strength of an edge dislocation if P, lies in the narrow range 0.89<p1<1
(assuming v=1/3). 1In Figure 3, biases for both types of dislocation in
copper have_been plotted versus dislocation 1ine.density.. The results
show satisfactory consistency for the three different interatomic poten—
;Hitials. The screw dislocation has a slight bias for vacancies. This indi-

rcates that vacancies are more attracted to areas of shear strain than are
f<100> dumbbells.J However, this bias is very small and may be insignificant
' in the presence of other sinks.‘ On the other hand the edge dislocation
has a 1arge bias for the <100> dumbhell. Therefore, in the presence of edge
dislocations more interstitials than vacancies will annihilate at the dis-
1ocation, leaving an excess of vacancies in the material. Voids, ‘which are

T 1 A0 T S E I ‘ : ~ R SR . :
usually assumed to ~be neutral sinks, can grow under these conditions
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 TABLE 1

FOR FCC COPPER; OBTAINED BY COMPUTER SIMULATION

PARAMETERS FOR VACANCIES AND INTERSTITIALS IN THE SADDLE-PQINT CONFIGURATION

VW
L

‘Defect’ ,"~ rPotential Tr[Pij] 3 P, Py %(2) 8(3) Reference
‘ ‘ (eV)
1 0
Vacancy MO 5.61 -0.73 [ 0.21 3.52 -1 0 14
Migration ' : 0 N\ 1
<100> 1 0
Interstitial MO - 68.9 1.10 | 0.87 1.03 0 1 14
Migration ‘ -1 0
' I 0
Vacancy M1 3.4 -1.13 |0 4,13 -1 0 13
Migration 0 1
<100> 1 0
Interstitial Ml 45.6 1.14 | 0.83 1.03 0 1 13
Migration -1 0
| I 0
Vacancy MM 4.67 -1.01 | 0.31 3.70. -1 0 14
Migration 0 1/
<100> 1 0
Interstitial MM 45.3 1.17 | 0.78 1.05 1 0 1 14
Migration . -1 0




 :PARAMETERS FOR _VACANCIES AND INTERSTITIALS IN THE SADDLE-POINT CONFIGURATION

- TABLE 2

' FOR BCC IRON, OBTAINED BY COMPUTER SIMULATION

o
v
g
o

‘}Dgfect ?otential Tr[Pij] Py Py %(l)_k Reference

' - (eV) .
1

" Vacancy Johnson -2.82 2.73 0.135 1 15
Migration ‘ 1
<100> [ 1

Interstitial Johnson 63.1 1.50 0.89 .05 14
Migration 1
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300 K. Dipole tensors for the anisotropic point defects are calculated usding the MM
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because of this point-defect segregation. Bias versus dislocation line
density, for both types of dislocations in iron, has been plotted in

Figureﬂﬁ. As in copper, the edge dislocatlion has a strong bias for inter-
stitials. However, the screw dislocation may be a sgignificant sink in
iron. It is also strongly biased toward interstitials, and thus can be an

important factor In irradiation damage studies in irom.

The effect of the external applied stress can be seen from the
values oflthe stress coefficients, ATa’ To get some idea of the signifi-
~cance of this effect, it ie instructive to compare these results with the
corresponding'quantity AWQ; due to SIPA-I. Of course, such a comparison is
valid ooly for edgetdisiocations,,because the screw dislocation is usualiy
assumed to be an unbiased sink. If we assume that the interstitial at the
saddle point ie soft in shear, then the change In sink strength due to

. SIPA-I is‘given by equations (74) to (76). For the purpose of the present

comparison, we assume that C(O)/éi = 1.

The SIPA-SAPSE coefficients are compared with the SIPA-I coeffi-

ciente:forrcopper'and iron in Table 3 and Tahle 4, respectively,; for a tem .-
pereture of 500 K and a dislocation line density of 1010 cm/cm3. These
%%coeffieients ere'eseeotielly ihdepeﬁdeot of the dislocation line.density-}
‘:For copper, two features are immediately apparent.. First, comparing the
V‘f;AT's and the AW's, it can be ~seen that the effect of an externally appliedrf

_stress on the bias of an edge dislocation due to SIPA—SAPSE is opposite in

_sign to that due to SIPA—I.f Second for SIPA— s the dominant orientation

i_factor is AWB which relates to the orientation of the stress with respectf G

hto the Burgers vector.;' For SIPA SAPSE this coefficient is essentially’"””

.negligible compared with the coefficient AT for the orientation of the.

| —‘3}5‘-',
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TABLE 3 -

3
STRESS. DEPENDENCE COEFFICIENTS FOR STRAIGHT DISLOCATIONS

see Equations‘ 70-76 for-definition

IN COPPER AT 500 K AND p = 10*% cn/cn’
SIPA-SAPSE SIPA-I
VACANCY INTERSTITIAL buy = -1 By, = -0.5
= S E E E E E E
[POTENTIAL | ATy Hg Hy He. - Hy Aty AT N N - A
MO | -6.95 [6.54 | 29.51 | 247.32 | 577.54 | -0.49 | -6.90 | 0.47 | 0.16 | 0.17 | 0.06
"ML | -5.65 |1.25 | 15.07 77.91 | 248.60 | -0.22 | =5.57 | 0.47 | 0.16 | 0.17 | 0.06
M{o | -7.17  3.12 | 25.88 | 53.72 | 243.01 | -0.23 | -7.00 | 0.47 | 0.16 | 0.17 | 0.06
TABLE 4
STRESS DEPENDENCE COEFFICIENTS®FOR STRAIGHT DISLOCATIONS
' IN_IRON AT 500 K &M p = 10! cw/ea®
. SIPA-SAPSE SIPA-T
VACANCY INTERSTITIAL Bu, = -1 Bu, = -0.5
. 5 E E E E E E
W W
[POTENTIAL ATA HB HA HB HA ATB ATX AWB A A AWB A .
JOHNSON | ~15.91 | -7.43 | 4.51 | -355.33 | 771.83 | 1.64 | -14.28 | 0.45 | 0.13 | 0.15 | 0.05
4 . .
*




stress with respect to the line direction. Further, the magnitude of ATA
is an order of magnitude greater than that of AWB for SIPA-I. For iron, we
see that both ATB and Aws have the same sign. But, for SIPA-SAPSE, ATA is
the dominant orientation factor and has the opposite sign to AWA for
SIPA-I. ATA for SIPA-SAPSE could be up to two orders of magnitude greater
than AW, for SIPA-I.

B

Figure 5'illustrates the orientation dependence more clearly. It
emphasizes the fact that the dominant factor is the orientation of the
stress with respect to the line direction. This is in qualitative agree-—
ment with the numerical solution of Tomé et al. [18], who also found a
large line directionddehendence.' Quantitative‘agreement is difficult to
obtain at the high dislocation line density and high applied stress level
for which they report results, because of differences in the model for cal-
- culating the currents and because of the non-linear stress dependence at

high applied stress levels.

4 In the last section,‘we mentioned that one may approximate an
edge dislocation loop by averaging the line direction of an-edge disloca—
tion»in a plane to which the Burgers vector is normal. Using this approxi-
: mation, ATB for the finite loop can be calculated. The results are pre—

"gsented in Table SJ 7The4results from the SIPA-I theory are included as well

as results for the infinitesimal edge dislocation loop [16], for compari—f

fson. It ‘can be seen that values of ATB due to SAPSE for the infinitesimal

- and finite 1oop cases, are quite similar, with the infinitesimal loop re—ge

'sults abOut 307 higher in all cases.‘ Comparison with the SIPA-I results,

':Vhowever, shows that the magnitude of the SIPA SAPSE effect is 5 to 25 times\

‘large} than that of SIPA-I.‘ In this connection, the SIPA effect in loops,

A as observed experimentally by Garner, Wolfer and Brager [26}, may be a con-
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TABLE 5

COMPARISON OF SIPA-SAPSE AND STIPA-I STRESS COEFFICIENTS FOR

10

DISLOCATION LOOPS IN COPPER AND IRON AT 500 K AND P = 10 cm/cm
SIPA-SAPSE SIPA-I
Finite Loop IEDL

Material Potential ATB ATZL AT%L AWB (Aui=—1) AWB (Aui=-0.5)
Copper |, MO 2.97 4.12 | 3.16 0.39 0.14
Copper M1 2.57 3.78 | 3.18 0.39 0.14
Copper MM 3,27 - - 0.39 0.14

Iron | Johason 8.78 11.72 | 17.10 |  0.39 0.14




sequence of SAPSE rather than due to the elastic polarizability of the
point defect. Since the SIPA-SAPSE effect in loops 1s mainly a consequence
'of the 1line direction dependence of the dislocation sink strength, it
follows that SIPA-SAPSE in loops depends more on the relative orientation
with respect to the stress direction of the loop—plane normal rather than
the Burgers vector, which happens to be in the same direction as the loop—
plane normal in the caselof an edge dislocation 100#. This majr be an im-
portant point that may permif experimental discrimination between the two

SIPA effects.




Chapter 6

SUMMARY AND CONCLUSIONS

The effects of the anisotropy of the saddle-point configurations
of point defects (SAPSE) have been studied in this report. Expressions for
both the sink strengths and the biases of infinite straight edge and screw
dislocations in an isotropic linear elastic medium have been calculated.
From these expressions, we can come to several general conclusions. First,
SAPSE does not significantly affect the magnitude of the dislocation sink
strengths. However, a screw dislocation will be a biased sink for aniso-
troplc vacancies and interstitials. In copper this bias is very small, but
in irom it is ﬁuite largé and, hence, may have to be considered in irrad;a—

tion damage studies. Second, the application of an external stress changes

the bias In a way similar to the usual SIPA for edge dislocations (SIPA-I),»

in that the change 1s proportional to.g.and they both have a similar depen-
dence on the orientation of the applied stress, with respect to the Burgers
vector direction and the line direction. SIPA-SAPSE applies to bo;h screw
and edge‘dislocations. However, unlike SIPA-I, in SIPA-SAPSE the imﬁortant
factor 1s the orientafion of the stress with respect to the line direction,
rather than the Burgers vector direction. The sign of the change in the-
sink strength is a fuhction of the sad&ie-pqint shape of the point defect,
i.e.,‘whether_it’is_eloﬁgated or fiatténed in the jump direction. The mag-
nitude ofitﬁélcﬁéﬁééfin SIPA—SAPSE is ﬁofgbtﬁan an éfder of magnitude
larger ﬁhan that ianIPA;I for coppef aﬁd irp#;_ Fﬁftherﬁore, the change in
the éiﬁk strength depends on teﬁpératﬁfe’and péint—defect size différently
in the’tﬁo SiPA mechanisms. In the SAPSE caée, the change varies Inversely
ﬁifﬂvéémééfa£ﬁré expliéléi}iéﬁ&:vafié;véiféé££§'ﬁi£ﬁ:fhé‘point;defééf‘sizé;
whilexigkthe SIPA-T case, the change with temperatﬁré varies as the dislo-
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cation sink strength temperature dependence and varies inversely with the

point—-defect size.

The SAPSE on the point—defect drift-diffusion to a finite dislo-
cation loop has also been studied approximately by averaging over the line
direction. For iron and coppér, SIPA-SAPSE is also much larger than that
of SIPA-I. It is postulated that if SIPA-SAPSE is the governing SIPA
mechanism, the SIPA effect would depend mainly on the relative orientation
with respect to the applied stress direction of the loop-plane normal

rather than the Burgers vector.
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APPENDIX A

DERIVATION OF EXPRESSION FOR SINK STRENGTH OF A CYLINDRICAL SINK
USING THE CONSTANT BOUNDARY CONCENTRATION METHOD

Here we wish to solve the differéntial equation

5 - 02 a0 . gat) = 0 | (A-1)
subject to the boundary cogditions

n(r,) = c® : | , (A-2)
and |

n(R) = C. | ) (A-3)
" Note that equation (A-3) is derived from an assumption that R is

sufficiently large so that Eg(R) - 0. The solution of equation (A-1),

subject to bbundary conditions given by equations (A-2) and (A-3), is

- - ¥ at .
n(r) = a(CC ),f IO : (A-4)

 where
, . , S
@ = L ol ' » (4-5)
[s] .

- The current density is given by

- £f
3 = 2803 Fa(r)]
_ - | | (A-6)
peff - ° 5 : ' -
= -————(c—c ) —_,
’;ft;:Tﬁé current into a cylinder of radius r and unit 1ength is
- 1;; ~ 2ff(c_C yii e ,f: |
= f‘;]’dg = m—ﬁ-ﬁ—-ZWG . oL (A-7)
 ‘Thé current through a ﬁﬁitiﬁblﬁmé‘iérgiveﬁ by -

T=1p . L ey
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where p 1s the dislocation density. The current through a unit volume can

also be written as

I = Diff(c;lc ); 2 _ (A-9)

where k2 is called the sink strength. A comparison of equations (A-B) and

(A-9), using equations (A-5) and (A-7), reveals that

2 R .
k™ dt -7
—p—— = ZW./'[I tg(t . (A 10)
: 0 . .
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APPENDIX B
RELATIONSHIP OF 5(2) AND 5(3? IN TERMS OF 3(1)

Let 9, ¢, and ¥ be the three Eulerian angles [B.l] between the

basis sets g(n) and the x-y—-z cartesian coordinate system. In terms of

cartesian coordinates, g(n) can be expressed as the following column

vectors

ein 8 cos ¢ sin ¢ cos ¥ + cos & cos ¢ sin ¥
s 3(1) = sin & sin ¢ 1], s(z) =1 -cos ¢ cos ¢ + cos 6 gsin ¢ sin V¥ |,
'f? cos @ -gin ¢ sin ¢
L -sin ¢ sin § + cos ¢ cos ¢ cos
L;f( : 5(3) =] cos ¢ sin ¢ + cos © sin ¢ cos ¥ |J.
-sin 6 cos ¢>
VWe can now evaluate eiz)egz) frem the elements of 9(2); In the above

1

description, the angle ¢.represents a rotatlon about ' . For simplicity,

we assume that ¢ is distributed randomly, so that we may average over ¥ and
assume coszw = sin2¢ =-% and cos ¢ sin y = 0. Then eiz)egz) becomes

4 ein2¢+coszeeosz¢'wcos@sin@(eosze—l)>' ~cosbsinbcosé
e§2)e§2) ='%‘ i 7’;{ ‘,7_ S cosz¢+coszesin2¢ *cesﬁsiﬁesin¢

eymmetficali !‘;«: 2ot o ' : sinze

éimilafly, we can shew?;,'r TR T AR
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Using equations (B.l) and (B.2), we can combine the expressions for

e§1>e§1), eiz)egz), and eis}e§3)
(1)

terms of ey

into the following general expression in

(n) (n) _ (1) (1) (1) (1)
1 ey T %ney ey +2(6n2+6n3)(6:{j e; ey )

{no implied

e

summation)

5 {e§1>e§1)(36n1-l) + &

gy (-8, (B.3)
REFERENCES
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APPENDIX C
EVALUATION OF g(r) FOR AN EDGE DISLOCATION

g(r) for an edge dislocation is given by

2T A A

g(r) = %F 0 rry exp(BPekk)T(u vyde

3 °°13 m 2'H'AA
+ i;-;gi —7I58P(p;~1)] . rurvexp(BPekk)‘ (c-1)

filjlfizjzo . cfimjm'f(u,\’,il,jl’ e .im,jm)dﬁr -

The y values can be detefmined using the solution in Appendix B of refer-

ence 16{a) with the result that

-4 ‘
g(r) = T; + T, + T, + 0(r ) ’ (Cc-2)
where
T = 1__ L ex (Fl). )de (C—3a)
1 2“ 0 ] p ry r ) |
2'!!‘ ~ ‘
Ty = 20 Z07CP” 1)F‘ y EXP(F—y)dG s (C-3b)
1 b2 ‘20 ~2 27 "2 b
T3 = SeontP '1> (P [5y" + —=— x“Texp(F2y)d®_, (C-3c)
3~ 560 5 p(FLy)de_
_ ‘ 0 (1-2v) ,
and_e.t = ‘ s
¥ 21r<"1 Sy e

These integrals can be evaluated with the aid of tables of integrals [C.1]:

T. =1 + —_— (F—= ) Sl L L (C-5a)
! m2=:1 {<2m>u;2 e

- 50 -



mE2m (C-5b)

1
T, = M) Y —2—
e R S L

1 p Y m b.2m 27 ‘
T, = 75g(P~1)" 2 ———— [F17 [5Qm-1) + —=—3] , (C-5¢)
3140071 o=l [2my11}> T (1-2v)>
and
Cm)!! = 2m (2m-2)...2 . : (C~6)

Substituting equations (C-5a) to (C-5¢) into equation (C-2) we obtain
g(r) = 1+ (% + o™ (c-7)
ﬁhere

E _ 8%p2(1-2v)%-

1 1 27 2.
F 1+ (p,-1) + 55 {5 + ———=}(p,~1)"] . (C-8)
16“2(1_v)g - ‘45’ 1 140 2’ A

(1-2v)

REFERENCES

C.1 I.F. Gradshteyn and I.M. Ryzhik, "Table of Integrals, Series and
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APPENDIX D
EVALUATION OF g(r) FOR A SCREW DISLOCATION

g(r) for a screw dislocation is given by

2T dﬂ ~A A P PN
_ 3 h7".02  ,1,b _
8(x) = zﬂﬁ a5 (FA76, T hyhy) (0-1)
where
A = 15-?- (;;1—1) . » . |  (D-2)

Expanding the exponential in an infinite series, we obtain

211' A~ A
g(r) =5— | Tr y(u v)de_

3 1 1,bm -
+5- 2. (GAD) L G G o +e:G (p-3)

e,
LR N S Y(u,v,vl,vz,...,vm,3,3,...,B)der
2 m

The Y values can be determihed‘ using the solution in Appendix B of
reference 16(a) éﬁ&ﬁusing the identitieé given:byrequation (37) we obtain

i
N (@m) 1 omby2n
g(r) = 6 Z T Ga3yT &

(0-4)

where . =

(‘Znﬂ-"l:)!‘!r-.;(.21.1'1+1)."(21'n-]’.)....7.1 SR " (0-5)
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APPENDIX E
EVALUATION OF g'(r) FOR AN EDGE DISLOCATION

g'(r) for an edge dislocation is given by

g'(r)

]

2'"' dB . ~
268 (p, - 1){j{ ./. s oM §“’h h exp[—BE§<5,p>}

(E-2)

380 | oo} -

Substifuting for E:(;,y) (see equations (25) and (28)) we obtain

21TAA

—BP(pl-l){ (ﬂ) (n)./; rur exp(BPe k)Y(u,”,i jyde,

g'(r)

+

(n) (n) 2: ( p( ‘ 1y 25 A - .(BP )'
2 e ti [‘B p~I" o TuiveRPFFe

(E-3)

. ...f f v i i LI 4 de
ljl 12j2 i 3 v(H, 3, l’jl’ s msj )

(r) |E=0}

"The Y values can be determined using the solution in Appendix B of refer-

“4ence 16(a) with the result that

- (r) —BP(pl—l)‘[T + T2 + T3 -3_3(%)~|€=6} fogf‘") T
;{wﬁere o _4' |
T - 1 +A-21—5—sn[t§n).]2]i(’)’2 + %sn[;gn)jzzzo , (E-52)
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e _ 2 1 (11-4v) _1ywb (n) 2
T = + 105 Ty (PrDFs Lty 1T,
(E-5b)
+ 135 (112\:)( —1)F—-s [t(n)] {2(1-2v)14,-91,,1} - %’6(1’1"1)1" [t(n)]zI ,
1 2. b2 (n) 9
Ty = 9Tt "———_( LD TED s 16717 [451,+(18+54 (1-2V)+9 (1-2v) )T
393 3780(1 2v) r 04 22
+ 9102”‘2(1-2\0 1291+sn[t§“)]2[18104+(4S—54(1-2v))122+9(1-2v)2140 ~ (E-5¢)

+ 9 02+2(1 ~2v2 )120]+s [t(n)]ZZ(l —2v)2 I,

- where T, T, and Ty are given by equations (C—BQ) to (C-3¢) in Appendix C.

F is given by equation (C—4) in Appendix C, and

1 ZTIAA

e 1 b b” e
Iab =3 . y X exp(F;y) der . (E-6)

These integrals can be evaluated with the aid of tables of integrals [E.l]:

o = 7% 1112;0 [(zmil’lz (?gé,?m R o
Ipg = % m:0 [‘(’2‘!1;)'!‘!‘]”2(? ?zm %n%}))— ’ | ETm)
o ~= i % | mzo__[_(_z_mt' !‘ ~ ( %)zfxl (?Egg ; Eiﬂi)) o (3:7' d)
02 %_0 1, e E-7e)
| 112 :.ﬂ %F‘E >t — iﬁk)élﬁ\(’makzl)(m’rl) e
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1 — 1 b.2m  (2mHl)
Iy =7 2 ———5 (B =5y » ‘ (E-7g)
22 ° % ié% (o2 T (2 ()

- b 2m 1 _
Los z; [(2m)!!]2 (FD™ (e (E=7h)

Cm)!l = 2n)*(2m2)...2 . (E-8)

and’

We also note the following identities:
(n)
t1

= cos B » (E~9a)

(n) _ -9
ty cos ln - (E-9b)
tén) = //1 - coszsn - coszkn . _ : {E-9¢)

where Bn is the angle between the Burgers vector of the edge dislocation
and the nth principal direction of the externally applied stress, and An is
the éngle between the line direction of the edge dislocation and the nth

principal direction of the externally applied stress.

Substituting equations (E-7) and (E-9) into equations (E-3), we

‘obtain
. i 1 1 (Fb)Zm (E-lOa)
) [(gm)!!]z (mt2) (wtl)
1, b2 1 (2m3) b.2
+ =(F2)° (1- A 2: (FD)
6Q r) ( s cos A ) = [(Zm)!!] (m+2)(m+1)2 T
Te lT +——(p -1)(F ) (1-8 cos8 >z;——————<F">2“‘——1——~—l2(m+1>- 2 ]
2 210 1 [ )!!] ' (o2)(mFl) (1-2v)
_ 7 S . m=0
el (E-10b)
g 1 9
h_+.Ziﬁ{P1_1)(F ) (1—s cos l )E:———————“——(F;) '(E;Ejragfjl7m+12 (1—2v)] ’

oi@m 1]
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e 1 1 1 1 ( b.2m 1
37 373" 40 (1_2\,)2( -1)? (F‘) (1-s cos *s )Z[(Zm)!!} 7FP )y ()

[(1-2v)2 (21 ) (m+l) = 6(1-29)(2mH1) + 3(m-1)]

(E~10¢)
1 1 b, 2m
(p.-1)2 (F )2 (1-5 _cos 2, D ): ——— (F))
1680 (1 542 71 =0 [(2m)11]% T
. z;;a%z;;ij'[(l—ZV)2(2m+3)(2m+1) - 6(1-2v)(2m+l) + 12m + 15} .

Substituting equations {(E-10) into equation (E-4), we arrive. at the final

result:
. 3 E b2, 2 E b2 2 -4
gi(r) = IﬁBP(pl_l)[H ;E{l—sncos Bn)+(1+HA-;§)(1—sncos An)+0(r ) {(E-11)
where B
E 82P2
H, = ————5—5[7(1-2v) 2 (7-10v-8v2 )(p,-1)-(2- —2v-v? )(pl-l) ] (E-12)
B 120-9)"
and
B a2p? 2 2 2 2
He = — 121 (1-2v) 4+(3-30v+48v) (p, -1 )43 (1+v) (p,-1)°] - (E-13)
A 2 2 1 1
224 (1-v)" 7 ,

Note that the sum of the first terms in equations (E-10a), (E-10b), and

(E-10c) cancel the fourth term of equation (E-4).
REFERENCES . -

E.1 I.F. Grédsﬁteyn and I.M. Ryzhik, "Table' of ‘Integrals, Series. and
Products™, Academic Press, New York (1965), 4th Edition.
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APPENDIX F
EVALUATION OF g'(r) FOR A SCREW DISLOCATION

g'(r) for a screw dislocation is given by

27! dB ~ A (n) (n) ~
—BP(pl-l) (r 1Y) (s ty j h h -l)exp[ -BE (5 3;)] (F-1)

g'(r) =
27 de ~ A

g'(r) = 782(p;~1){ d“h./; R ORI R WS DT N ) I

: : (F-2)

1
=~ 38(x) I€=0} .

Substituting for Ei(g,ﬁ)-(equation 38) equation (F-2) becomes

dﬂ 2ﬁ dﬁ A A AN A
g'(r) = —--BP(p1 -1){ ——E‘/; o (r h) s tin) gn)hihjexp(%ﬁEGuvruhv 3)

' ‘ (F-3)

1
- §g(r) |€=0} .
where A is given by equation (D-2) is Appendix D. Expanding the exponen—

tial in an infinite serles, we obtailn

o - 21!' A~
g'(r) = %B?(pl-l){%;sntgn)tgn)ﬁ T, Y(u,v,1, j)da

+%—s W 3 L dbym 6, , G, | .-G -
S B L

) e L 5 - m

. rr - : .’.r Y(u’\) i j \’1,\’2,.0-,“ ,3 3,-.-,3)d9 - _g(r)l _0 . -

t-l \’ 1-11 112 - lim
The ¥y values can be determined using the solution in Appendix B of refer-'
ence 16(a) and using the identities given by equation (37), equation (F-4)

reduces to

.-
LY
IR
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~n2)[(2mH1) 11]2 2m

Vewy = v 2 = (1 b _
g'(r) = 368P(p;~1)(1-s _cos™x ) m§0 ey Gas T~ 4P (F-5)
where (2mtl)!! 1s given by equation (D-5) of Appendix D and

tgn) = CcO8 An (F-6)

where An is the angle between the line direction of the screw dislocation

and the nth principal direction of the externally applied stress.
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APPENDIX G
THE CYLINDRICAL SYMMETRIZATION PROCEDURE

Here we examine the accuracy of the cylindrical symmetrization
procedure and the approximations involved in neglecting O(r_a) in equations
(31) and (39). The boundary value problem that results from applying the
extremun principle-to equation (4), with K(r)=0, can be solved exactly for
an isotropic point defect in the strain field of an edge dislocation. The

rgsulting expression for the sink strength per unit line length, £, is [23]

b b b b b
= ZHIO(L;;)/;KO(LE) . IO(L;;) - Ko(L;;J * I, (G-1)

where I0 and K0 are the modified Bessel functiong of zero order and

L2 = F (pn=1, n=1,2,3),
' (6-2)
L = BP (1-2v)
4n (1-v)

Following the ecylindrical symmetrization procedure and putting- p1=1 in

equation (29), we have

_ 27 de b
glr) = g 57 exp(-2Ls1n6 )
_ (G-3)
- -2 2n,b2n . - : ‘
= 3 (n!) L“(;)“. : -
n=0 )

Equaéion (15)_can theﬁ be ﬁumerically evaluate& using as many terms of
'eqﬁatibn (C-é)ras desifed, and compared éith éqﬁation (G-1) #o deterﬁine
the u@gnitﬁde.bf‘iﬁé4err6r introduced by fﬁe cyiindrical symmetrization
procedure. In ;ddition, we will compére’the results in equation (31),

setting p1=1 in eqﬁatio# (32), with equation (G-l1). The results for two

example sets of parameters are listed in Table G-l. We choose the capture

- 59 -~




radius to be equal to b. The values of v and b are those for fcec copper.
The value of 70 eV for Tr(Pij) is an upper limit on the values used in the
actual calculation (see Table 1). The first set of temperature and dislo-
cation density values are those for the “"worst" case in terms of error.
Two facts immediately become obvious. First, the cylindrical symmetriza-
tion procedure overestimates the sink strengths. Second, two terms of the
series give a better result than the sum to convergence {(to 10_6) of the
entire series. Thé partial sums of the series, in equation (G-3), is mono-
tonically increasing. Since the first two terms of the series yield a re-
sult tﬁat already exceeds the exact result, adding more terms will increase
the error. This makes neglecting terms of O(r-4) and higher mandatory in
the anisotropic case. In addition to these results, we note that overesti-
mation will occur for both ci and i, - Since B is proportional to the
difference of these two parameters, some of the error will be cancelled.
Finally, we note that the error, s 6.5%Z in the cylindrical symmetrization
procedure, is probably less than the accuracy with which the elements of
the dipole tensor are known.--At any rate, we feel that the accuracy is
good endugh to give us a good physlical picture of the shape effect on

point-defect migration to a straight dislocation.
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TABLE G-1

COMPARISON OF THE EDGE DISLOCATION SINK STRENGTH FOR

ISOTROPIC POINT DEFECTS WITH THE EXACT SOLUTION
!

S ) z £ SERIES
Tr [P 15 1 v r =b TEMP. P EXACT Two
) : 3 Sum To pA Terms %
(eV) (nm) , () (cm/em™) L SOLUTION Convergence | Error Only Error
70 0.343 | 0.2556 300 1010 34.3 3.15 .3.71 17.9 3.36 6.5
70 1 0.343 | 0.2556 500 108 , 20.6 1,31 1.40 6.6 1.34 2.5






