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Abstract

We take a Student process that is based on independent copies of a random variable

X and has trajectories in the function space D[0, 1]. As a consequence of a functional

central limit theorem for this process, with X in the domain of attraction of the

normal law, we consider convergence in distribution of several functionals of this

process and derive respective asymptotic confidence intervals for the mean of X.

We explore the expected lengths and finite-sample coverage probabilities of these

confidence intervals and the one obtained from the asymptotic normality of the

Student t-statistic, thus concluding some alternatives to the latter confidence interval

that are shorter and/or have at least as high coverage probabilities.
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Chapter 1

Introduction

Let {X,X1, X2, . . . } be a sequence of independent and identically distributed (i.i.d.)

random variables with mean µ = E(X). Consider the Student t-statistic

Tn(X1, . . . , Xn) :=

∑n
i=1Xi

sn
√
n
, (1.1)

where

sn :=

√∑n
i=1(Xi −Xn)2

n− 1
and Xn :=

∑n
i=1Xi

n
.

Gosset (1908) (also known as ”Student”) concluded the exact distribution of

Tn(X1 − µ, . . . , Xn − µ)/
√
n− 1 for a random sample drawn from a normally dis-

tributed population with unknown mean µ and variance and used it to derive

confidence intervals for µ for small samples.

Giné et al. (1997) showed that if {X,X1, X2, . . . } are i.i.d. random variables and

µ is a constant, then

Tn(X1 − µ, . . . , Xn − µ)
D−−−→

n→∞
N(0, 1) ⇐⇒

X ∈ DAN and E(X) = µ,

(1.2)
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where DAN stands for the domain of attraction of the normal law, and X is said to

belong to DAN if there exist constants an and bn > 0 such that

∑n
i=1Xi − an

bn

D−−−→
n→∞

N(0, 1). (1.3)

Remark 1. If X ∈ DAN, then E|X|ν <∞ for all ν ∈ (0, 2), and an can be taken

as nE(X), while bn =
√
n`X(n), where `X(n) is a slowly varying function at infinity

defined by the distribution of X, that is `X(az)/`X(z) → 1, as z → ∞, for any

a > 0. Also, `X(n) =
√
V ar(X) > 0, if V ar(X) <∞, and `X(n) is a nondecreasing

function that converges to ∞, as n→∞, if V ar(X) =∞. There are various useful

characterizations of DAN. For example, due to Lévy (1937), we have the following

one:

X ∈ DAN ⇐⇒ lim
x→∞

x2P (|X| > x)

E(X21{|X|≤x})
= 0. (1.4)

Remark 2. If 0 < V ar(X) <∞, the classical central limit theorem (CLT) can be

used to show that condition (1.3) is satisfied, and therefore X ∈ DAN. Thus, all the

distributions with finite positive variances are in DAN. As to some examples of the

distributions in DAN that have infinite variances, a typical one is the Pareto(1,2)

distribution with the probability density function

f(x) =


2

x3
, x ≥ 1,

0, otherwise.
(1.5)
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Indeed, since for X
D
= Pareto(1,2) we have

lim
x→∞

x2 P (|X| > x)

E(X21{|X|≤x})
= lim

x→∞

x2
∫ ∞
x

2

y3
dy∫ x

1

y2
2

y3
dy

= lim
x→∞

−x2 · y−2
∣∣∣∞
x

2 ln y
∣∣∣x
1

= lim
x→∞

1

2 lnx
= 0,

then X ∈ DAN in view of (1.4). Moreover, it was shown in Example 1 of Martsynyuk

(2013) that the corresponding bn in (1.3) can be taken as
√
n log n. Additionally,

one can consider the distribution that is a discrete version of Pareto(1,2) and has

the following probability mass function:

g(x) =
c

x3
, x = 1, 2, . . . , (1.6)

where c = (
∑∞

x=1 x
−3)−1 ≈ 0.8319 (cf. p. 811 of Abramowitz and Stegun (1964) for

example). We will refer to it as the discrete Pareto distribution hereafter. Clearly,

for a random variable X from this distribution, E(X) < ∞, while V ar(X) = ∞.

Using (1.4), we establish that X ∈ DAN:

0 ≤ x2 P (|X| > x)

E(X21{|X|≤x})
=

x2
∑∞

y=[x]+1

c

y3∑[x]
y=1 y

2
c

y3

=
x2
∑∞

y=1 ([x] + y)−3∑[x]
y=1 y

−1

≤
x2
∫∞
0

([x] + y)−3 dy∫ [x]

1
y−1 dy

=
x2 [x]−2

1

2
ln [x]

−−−→
x→∞

0.
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Coming back to (1.2), we note that its ⇐ part can be viewed as an extension of

the Studentized classical CLT to DAN. It can be used to construct the following

completely data-based 1− α asymptotic confidence interval for a typically unknown

µ:

I0 :=

[
Xn −

zα/2 sn√
n

,Xn +
zα/2 sn√

n

]
, I0(1.7)

where α ∈ (0, 1) is fixed and zα/2 is the 1 − α/2 quantile of the standard normal

distribution, that is, P (|N(0, 1)| > zα/2) = α.

In view of the Student t-statistic Tn(X1, . . . , Xn) of (1.1), one can define a Student

process in D[0, 1], the space of real-valued functions on [0, 1] that are right-continuous

and have left-hand limits, as follows:

T tn(X1, . . . , Xn) :=

∑[nt]
i=1Xi

sn
√
n
, 0 ≤ t ≤ 1, (1.8)

where
∑0

i=1Xi := 0. Equivalently,

T tn(X1, . . . , Xn) =



0, 0 ≤ t < 1
n
,

X1

sn
√
n
, 1

n
≤ t < 2

n
,

...

X1 +X2 + · · ·+Xn−1

sn
√
n

, n−1
n
≤ t < 1,

X1 +X2 + · · ·+Xn

sn
√
n

, t = 1.

(1.9)

In other words, T tn(X1, . . . , Xn) is a random step function on [0, 1] that coincides at

t = 1 with the Student t-statistic.
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Csörgő et al. (2003), among other things, concluded a special convergence, known

as a functional central limit theorem (FCLT), for the so-called self-normalized partial

sums process and hence also for the Student process of (1.8). Let {W (t), 0 ≤ t ≤ 1}

denote a standard Wiener process (Brownian motion). A simpler form of this FCLT

for T tn(X1, . . . , Xn) reads as follows:

X ∈ DAN and E(X) = µ ⇐⇒

h(T tn(X1 − µ, . . . , Xn − µ))
D−−−→

n→∞
h(W (t))

for all functionals h : D[0, 1]→ R that are D-measurable and ρ-continuous,

(1.10)

where D is the σ-field of subsets of D[0, 1] that is generated by the finite-dimensional

subsets of D[0, 1] and ρ is the sup-norm metric in D[0, 1].

Remark 3. We recall that a functional h : D[0, 1]→ R is called sup-norm continuous

if for any f0(t) ∈ D[0, 1] and ε > 0, there exists δ > 0, such that for any f(t) ∈ D[0, 1]

satisfying sup0≤t≤1 |f(t) − f0(t)| < δ we have |h(f(t)) − h(f0(t))| < ε. The notion

of D-measurability for a functional is beyond the scope of the present work. We

just note that most functionals on D[0, 1], including the ones studied here (cf.

(1.11)–(1.15)), are D-measurable.

The FCLT of (1.10) for the Student process contains the CLT of (1.2) for the

Student t-statistic. Indeed, reading the convergence in (1.10) in the special case of the

ρ-continuous functional h(·) such that h(f(t)) = f(1), for any function f(t) ∈ D[0, 1],

we have T 1
n(X1−µ, . . . , Xn−µ)

D−→ W (1), or, equivalently, Tn(X1−µ, . . . , Xn−µ)
D−→

N(0, 1), as n→∞.
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Martsynyuk (2009a) considered a special analog of the Student process of (1.8)

for independent, but not necessarily identically distributed, random variables with

a common mean µ that either satisfy the so-called Lindeberg’s condition or are

symmetric around µ. Using this analog, Martsynyuk (2009a) refined previously

known FCLT’s for Studentized partial sums processes that are based on such random

variables, thus establishing completely data-based versions of these FCLT’s. The

work in Martsynyuk (2009a) was largely motivated by the need to improve on the

applicability of previous FCLT’s and to construct completely data-based asymptotic

confidence intervals for µ from FCLT’s, for which the term functional asymptotic

confidence intervals (FACI’s) was given in this work. Using the newly obtained

FCLT’s, Martsynyuk (2009a) constructed three such FACI’s for µ, by considering

convergence in distribution of three special functionals of the Student process:

sup0≤t≤1 | · |,
∫ 1

0
(·) dt, and the functional that returns the value of a function at a

fixed point t0 ∈ (0, 1]. The studies of Martsynyuk (2009a) had been motivated in

part by the problems that arose in Martsynyuk (2009b) in connection to establishing

FACI’s for the slope in the context of linear errors-in-variables models.

Martsynyuk (2009a) posed an open problem of investigating the individual and

comparative performance of the three obtained FACI’s for µ. Inspired by this

problem, in this thesis, we construct several FACI’s for an unknown mean µ of a

population from DAN and study their comparative performance.

We consider several special cases of the convergence in distribution in (1.10),

where the functional h(·) is replaced with one of the functionals hi(·), i = 1, 5, such

that for any function f(t) ∈ D[0, 1],

h1(f(t)) = f(t0), for a fixed t0 ∈ (0, 1], (1.11)

6



h2(f(t)) = sup
0≤t≤1

|f(t)|, (1.12)

h3(f(t)) = sup
0≤t≤1

f(t), (1.13)

h4(f(t)) =

∫ 1

0

fm(t) dt, for m = 1, 2, 3, 4, and 8, (1.14)

and

h5(f(t)) = a1f(1) + a2

∫ 1

0

f(t) dt, for some constants a1, a2 ∈ R. (1.15)

One can verify that all these functionals are sup-norm continuous. As mentioned

before, the functionals h1(·), h2(·), and h4(·) with m = 1 were used in Martsynyuk

(2009a) to construct FACI’s for a common mean of independent, but not necessarily

identically distributed, random variables.

We note in passing that Erdős and Kac (1946) established convergence in

distribution as in (1.10), with the partial sums process {
∑[nt]

i=1Xi/
√
n, 0 ≤ t ≤ 1}

replacing T tn(X1 − µ, . . . , Xn − µ), for the functionals h2(·), h3(·), h4(·) with m = 2,

and
∫ 1

0
| · | dt on D[0, 1], assuming that X1, X2, . . . are i.i.d. random variables with

mean zero and variance one. They also concluded the analytic forms or the Laplace

transforms of the corresponding limiting distributions, and noted that the i.i.d.

random variable condition for these results can be replaced by assuming only that

Xi’s are such that the CLT is applicable. The significance of the work of Erdős and

Kac (1946) is that the authors established examples of one of the first invariance

principles, the laws that do not depend on the underlying distribution structure, or

on the distribution of Xi’s in this case. Moreover, the idea of the invariance inspired

7



their proofs. They wrote:

“The proofs of all these theorems follow the same pattern. It is first proved

that the limiting distribution exists and is independent of the distribution

of the X’s; then the distribution of the X’s is chosen conveniently so

that the limiting distribution can be calculated explicitly.”

We use a similar invariance approach when tabulating quantiles of
∫ 1

0
Wm(t) dt for

m = 3, 4, and 8 in section 2.4.

In Chapter 2, for each of the functionals hi in (1.11)–(1.15), we first consider the

convergence in distribution in the FCLT of (1.10) with h = hi and use it to construct

a FACI for µ. Then, we evaluate the performance of the FACI by comparing its

expected length and finite-sample coverage probability to those of the commonly

used asymptotic confidence interval I0 of (1.7) that is based on the asymptotic

normality of the Student t-statistic. The FACI’s are presented in the same order as

the functionals hi, so that simpler FACI’s are studied first.

In Chapter 3, we review the performances of the FACI’s obtained in Chapter 2

and conclude which of the FACI’s present reasonable alternatives to, and overall

improvement upon, the interval I0.

Following Chapter 3, we include Appendix A with a somewhat lengthy proof of

an auxiliary result, and Appendix B with the R syntax of all the simulation results

presented throughout the thesis.
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Chapter 2

Main results

Let {X,X1, X2, . . . } be a sequence of i.i.d. random variables in DAN with a popula-

tion mean µ = E(X). In this chapter, as a consequence of the FCLT of (1.10) for

the Student process {T tn(X1 − µ, . . . , Xn − µ), 0 ≤ t ≤ 1} of (1.8), we consider the

following convergence in distribution:

hi(T
t
n(X1 − µ, . . . , Xn − µ))

D−−−→
n→∞

hi(W (t)), (2.1)

where hi : D[0, 1]→ R, i = 1, 5, are the sup-norm continuous functionals in (1.11) –

(1.15) and {W (t), 0 ≤ t ≤ 1} is a standard Wiener process. Based on (2.1), for each

hi, we construct a FACI for µ, denoted by Ii hereafter, by using already available

quantiles, or ones that we tabulate ourselves, of the limiting random variable hi(W (t))

and solving certain inequalities for µ.

The goodness of each FACI is assessed by how its expected length and finite-

sample coverage probability compare to those of the commonly used asymptotic

confidence interval I0 of (1.7) that is based on the asymptotic normality of the

Student t-statistic.
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The finite-sample coverage probabilities of Ii’s and I0 are approximated by their

respective empirical coverage probabilities. For this purpose, we take 10,000 samples

of size n from a distribution of X, and for each sample compute the bounds of Ii

and those of I0. Then, we calculate the empirical coverage probability of Ii,

ĈPi :=

∑10,000
k=1 1{µ∈Ii, for sample k}

10, 000
, i = 1, 5, (2.2)

and that of I0, namely,

ĈP0 :=

∑10,000
k=1 1{µ∈I0, for sample k}

10, 000
, (2.3)

from the same 10,000 samples, where 1A is the indicator function of set A. Five

different distributions are considered for X : N(0, 1), Exp(1), Poisson(3), Pareto(1,2),

and the discrete Pareto as given in (1.6). These distributions vary with respect to

their means, skewness, and variances. We also use four sample sizes, n = 50, 100, 500,

and 1000, and consider three confidence levels, 1−α = 0.9, 0.95, and 0.98, which are

often used in practice. Overall, we calculate the empirical coverage probabilities in

60 different scenarios, taking 10,000 samples for each, and report the corresponding

values of the pair (ĈPi, ĈP0) in tables.

To facilitate the comparison of the expected lengths of the intervals Ii to I0, we

study the ratio

ri :=
E(length of Ii)

E(length of I0)
, (2.4)

i = 1, 5. Except for r1, r4 that corresponds to h4 of (1.14) with m = 1, and r5,

theoretical evaluations of ri’s do not appear to be feasible. Therefore, for each

10



of the aforementioned 60 combinations of the distribution of X, sample size, and

confidence level, we use the same 10,000 samples that are generated for computing

ĈPi and approximate ri with the ratio of the empirical expected lengths of Ii and

I0 as follows:

r̂i :=

∑10,000
k=1 (length of Ii for sample k)/10, 000∑10,000
k=1 (length of I0 for sample k)/10, 000

. (2.5)

Values of r̂i are reported in the same table as those of (ĈPi, ĈP0).

The syntax for all the presented simulations is found in Appendix B.

2.1 Functional Asymptotic Confidence Interval

(FACI) based on h1(·)

Let t0 be any fixed number from (0, 1]. From (2.1) with h1(·) of (1.11), we have the

following convergence in distribution:

T t0n (X1 − µ, . . . , Xn − µ)
D−−−→

n→∞
W (t0). (2.6)

Due to the known property of the Wiener process that W (t0)
D
= N(0, t0), (2.6) is

equivalent to: ∑[nt0]
i=1 (Xi − µ)

sn
√
n

D−−−→
n→∞

N(0, t0). (2.7)

Set 0 < α < 1 and let P (|N(0, 1)| > zα/2) = α. It follows from (2.7) that

P

(
−zα/2

√
t0 ≤

∑[nt0]
i=1 (Xi − µ)

sn
√
n

≤ zα/2
√
t0

)
−−−→
n→∞

1− α, (2.8)

11



or, equivalently, that

P

(∑[nt0]
i=1 Xi − zα/2sn

√
nt0

[nt0]
≤ µ ≤

∑[nt0]
i=1 Xi + zα/2sn

√
nt0

[nt0]

)
−−−→
n→∞

1− α. (2.9)

Thus, we obtain the following 1− α FACI for µ:

I1 :=

[∑[nt0]
i=1 Xi − zα/2 sn

√
nt0

[nt0]
,

∑[nt0]
i=1 Xi + zα/2 sn

√
nt0

[nt0]

]
. I1(2.10)

In view of Theorem 9.3.2 in Casella and Berger (2002) and the limiting distribution

N(0, t0) in (2.7), selecting symmetric cut-off points −zα/2
√
t0 and zα/2

√
t0 in (2.8)

leads to the shortest FACI.

Evaluation of I1

The center of the interval I1 equals
∑[nt0]

i=1 Xi/[nt0], which is an unbiased estimator

of µ. The ratio of the expected lengths of I1 and I0 is:

r1 =
2zα/2E(sn)

√
nt0/[nt0]

2zα/2E(sn)/
√
n

=
1√
t0

nt0
[nt0]

≥ 1. r1(2.11)

We see that limn→∞ r1 = 1/
√
t0 and that r1 is shortest when t0 = 1, i.e., when I1

coincides with I0 of (1.7).

It can be shown theoretically that the finite-sample coverage probability of I1

is greater or equal to that of I0 when Xi
D
= N(0, 1), 1 ≤ i ≤ n. However, it

is challenging to compare the two probabilities for the other four distributions.

12



Therefore, we calculate the empirical coverage probabilities ĈP1 of I1 and ĈP0 of

I0, as in (2.2) and (2.3), respectively, for the example of t0 = 0.9.

1 − α
Distribution n 0.9 0.95 0.98

50 (0.892,0.893) (0.943,0.942) (0.977,0.976)
N(0, 1) 100 (0.899,0.897) (0.944,0.944) (0.980,0.979)

500 (0.902,0.904) (0.952,0.951) (0.979,0.979)
1000 (0.901,0.900) (0.947,0.947) (0.980,0.980)

50 (0.879,0.879) (0.930,0.928) (0.962,0.961)
Exp(1) 100 (0.892,0.893) (0.942,0.941) (0.970,0.968)

500 (0.896,0.897) (0.948,0.949) (0.977,0.980)
1000 (0.900,0.902) (0.952,0.951) (0.977,0.976)

50 (0.761,0.755) (0.819,0.806) (0.859,0.850)
Pareto(1,2) 100 (0.790,0.788) (0.843,0.836) (0.888,0.878)

500 (0.834,0.830) (0.891,0.886) (0.931,0.922)
1000 (0.843,0.841) (0.898,0.896) (0.938,0.935)

50 (0.893,0.892) (0.941,0.944) (0.975,0.976)
Poisson(3) 100 (0.895,0.892) (0.950,0.949) (0.978,0.980)

500 (0.901,0.898) (0.949,0.951) (0.978,0.978)
1000 (0.901,0.896) (0.949,0.949) (0.981,0.982)

50 (0.753,0.750) (0.796,0.787) (0.836,0.828)
Discrete 100 (0.784,0.780) (0.837,0.830) (0.876,0.867)
Pareto 500 (0.842,0.833) (0.880,0.875) (0.921,0.914)

1000 (0.847,0.841) (0.900,0.892) (0.933,0.930)

Table 2.1: Empirical coverage probabilities: (ĈP1, ĈP0), t0 = 0.9

The difference ĈP1− ĈP0 is mostly positive and ranges from -0.3% to 1.3%. For

t0 = 0.9 and the sample sizes n = 50, 100, 500, and 1000, we have r1=1.0541, that is

I1 is 1.0541 times longer than I0.
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2.2 FACI based on h2(·)

It follows from (2.1) with h2(·) as in (1.12) that

sup
0≤t≤1

∣∣T tn(X1 − µ, . . . , Xn − µ)
∣∣ D−−−→
n→∞

sup
0≤t≤1

|W (t)|, (2.12)

which, in view of (1.9), is equivalent to

max
1≤k≤n

∣∣∣∑k
i=1(Xi − µ)

∣∣∣
sn
√
n

D−−−→
n→∞

sup
0≤t≤1

|W (t)|. (2.13)

We set 0 < α < 1 and define b such that P (sup0≤t≤1 |W (t)| ≤ b) = 1− α. Tabulated

values of b can be found in Csörgő and Horváth (1985). It follows from (2.13) that

P

max
1≤k≤n

∣∣∣∑k
i=1(Xi − µ)

∣∣∣
sn
√
n

≤ b

 −−−→
n→∞

1− α. (2.14)

Having (2.14) and that

P

(
max
1≤k≤n

∣∣∣∑k
i=1(Xi − µ)

∣∣∣
sn
√
n

≤ b

 = P

 n⋂
k=1


∣∣∣∑k

i=1(Xi − µ)
∣∣∣

sn
√
n

≤ b




=P

(
n⋂
k=1

{
−b ≤

∑k
i=1Xi − kµ
sn
√
n

≤ b

})

=P

(
n⋂
k=1

{∑k
i=1Xi − b sn

√
n

k
≤ µ ≤

∑k
i=1Xi + b sn

√
n

k

})
(2.15)

leads to the following 1− α FACI for µ:

n⋂
k=1

[∑k
i=1Xi − b sn

√
n

k
,

∑k
i=1Xi + b sn

√
n

k

]
. (2.16)
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An alternative formulation of the FACI in (2.16) is given by

I2 :=

[
max
1≤k≤n

(∑k
i=1Xi − b sn

√
n

k

)
, min
1≤k≤n

(∑k
i=1Xi + b sn

√
n

k

)]
. I2(2.17)

Evaluation of I2

The bounds of the FACI I2 are random variables whose exact distributions are

difficult to obtain. After being unable to solve this problem on the example of

normally distributed Xi’s, we also believe that the exact distributions of interest are

likely dependent on the underlying distribution of Xi. Thus, we failed to obtain the

closed form expression for the expected length of I2 by direct calculations. We also

do not know whether the expected length of I2 can be successfully computed by

some other methods, such as conditioning for example. Consequentially, we compare

the expected lengths of I2 and I0 numerically.

Simulated values of r̂2 as in (2.5), the ratio of the empirical expected lengths of

I2 and I0, and values of ĈP2 and ĈP0 as in (2.2) and (2.3), the empirical coverage

probabilities of I2 and I0, are summarized in the following table. These variables

are evaluated in 60 scenarios with various sample sizes, confidence levels, and

distributions, as discussed on page 10, where each time the value of r̂2 is reported in

front of the (ĈP2, ĈP0) values.
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1 − α
Distribution n 0.9 0.95 0.98

50 1.086 (0.912,0.893) 1.070 (0.955,0.943) 1.056 (0.981,0.976)
N(0, 1) 100 1.074 (0.913,0.902) 1.059 (0.955,0.948) 1.048 (0.982,0.980)

500 1.053 (0.909,0.901) 1.042 (0.953,0.950) 1.035 (0.983,0.981)
1000 1.048 (0.906,0.903) 1.038 (0.953,0.952) 1.032 (0.979,0.978)

50 1.093 (0.896,0.877) 1.074 (0.937,0.926) 1.060 (0.967,0.962)
Exp(1) 100 1.077 (0.905,0.892) 1.062 (0.946,0.936) 1.050 (0.975,0.973)

500 1.056 (0.910,0.903) 1.046 (0.950,0.948) 1.036 (0.979,0.977)
1000 1.051 (0.904,0.896) 1.040 (0.949,0.946) 1.033 (0.980,0.979)

50 1.114 (0.773,0.758) 1.093 (0.824,0.810) 1.070 (0.862,0.852)
Pareto(1,2) 100 1.105 (0.808,0.791) 1.083 (0.854,0.843) 1.067 (0.885,0.876)

500 1.089 (0.844,0.829) 1.073 (0.894,0.887) 1.057 (0.925,0.924)
1000 1.087 (0.855,0.843) 1.067 (0.902,0.896) 1.056 (0.935,0.932)

50 1.087 (0.912,0.893) 1.070 (0.953,0.942) 1.055 (0.978,0.973)
Poisson(3) 100 1.075 (0.912,0.897) 1.058 (0.954,0.947) 1.047 (0.981,0.978)

500 1.053 (0.903,0.893) 1.043 (0.955,0.953) 1.035 (0.981,0.982)
1000 1.050 (0.909,0.904) 1.039 (0.951,0.948) 1.032 (0.981,0.980)

50 1.124 (0.762,0.751) 1.094 (0.796,0.781) 1.074 (0.839,0.829)
Discrete 100 1.113 (0.784,0.770) 1.089 (0.833,0.825) 1.069 (0.863,0.861)
Pareto 500 1.092 (0.838,0.823) 1.073 (0.884,0.876) 1.057 (0.924,0.922)

1000 1.088 (0.859,0.845) 1.068 (0.894,0.887) 1.055 (0.935,0.931)

Table 2.2: Empirical expected lengths ratio and coverage probabilities:

r̂2 (ĈP2, ĈP0)

The r̂2 values in Table 2.2 vary from 1.032 to 1.124, indicating that I2 is longer

than I0 on average. We note that the r̂2’s are higher for Xi’s from the Pareto(1,2)

and discrete Pareto distributions. This suggests that the infinite variance and/or

skewness of such Xi’s amplifies the expected length of I2 more than it amplifies the

expected length of I0. We also observe that for each of the distributions in Table 2.2,

as n or 1− α increases, r̂2 decreases. Finally, the empirical coverage probabilities

of I2 are, except for one case, higher than those of I0 by 0.1%–1.9%, with larger

differences seen for smaller 1− α levels and smaller sample sizes.
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2.3 FACI based on h3(·)

We now consider (2.1) with h3(·) of (1.13):

sup
0≤t≤1

T tn(X1 − µ, . . . , Xn − µ)
D−−−→

n→∞
sup
0≤t≤1

W (t).

Via the definition of the Student process in (1.9), this is equivalent to

max
1≤k≤n

∑k
i=1(Xi − µ)

sn
√
n

D−−−→
n→∞

sup
0≤t≤1

W (t). (2.18)

The cumulative distribution function of sup 0≤t≤1 W (t) is well-known to be related

to that of N(0, 1), denoted by Φ(·), as follows:

P

(
sup
0≤t≤1

W (t) ≤ y

)
=

{
2Φ(y)− 1, y ≥ 0,
0, otherwise.

(2.19)

Let 0 < α < 1, and define a, b ≥ 0 such that P
(
a ≤ sup 0≤t≤1 W (t) ≤ b

)
= 1 − α.

In view of (2.19), the relationship between a and b is

b = Φ−1
(

1− α
2

+ Φ(a)

)
. (2.20)

It follows from (2.18) that

P

(
a ≤ max

1≤k≤n

∑k
i=1(Xi − µ)

sn
√
n

≤ b

)
−−−→
n→∞

1− α, (2.21)
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where

P

(
a ≤ max

1≤k≤n

∑k
i=1(Xi − µ)

sn
√
n

≤ b

)

= P

({
a ≤ max

1≤k≤n

∑k
i=1(Xi − µ)

sn
√
n

}⋂{
max
1≤k≤n

∑k
i=1(Xi − µ)

sn
√
n

≤ b

})

= P

((
n⋃
k=1

{
a ≤

∑k
i=1(Xi − µ)

sn
√
n

})⋂(
n⋂
k=1

{∑k
i=1(Xi − µ)

sn
√
n

≤ b

}))

= P

((
n⋃
k=1

{
µ ≤

∑k
i=1Xi − asn

√
n

k

})⋂(
n⋂
k=1

{∑k
i=1Xi − bsn

√
n

k
≤ µ

}))

= P

({
µ ≤ max

1≤k≤n

∑k
i=1Xi − asn

√
n

k

}⋂{
max
1≤k≤n

∑k
i=1Xi − bsn

√
n

k
≤ µ

})

= P

(
max
1≤k≤n

∑k
i=1Xi − bsn

√
n

k
≤ µ ≤ max

1≤k≤n

∑k
i=1Xi − asn

√
n

k

)
.

(2.22)

Hence, we obtain the following 1− α FACI for µ from (2.21):

I3 :=

[
max
1≤k≤n

(∑k
i=1Xi − b sn

√
n

k

)
, max
1≤k≤n

(∑k
i=1Xi − a sn

√
n

k

)]
. I3(2.23)

Evaluation of I3

The interval I3 has a similar form to that of I2 given in (2.17). On page 15, we

discussed the difficulty of obtaining a closed form expression for the expected length

of I2. Due to the same reasons, we are also unable to find a closed form expression

for the expected length of I3. Therefore, we compare the expected lengths of
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I3 and I0 numerically, via r̂3 of (2.5). To do so, we first need to select a and b

according to (2.20), by choosing a first for example. With many possibilities for a, we

would naturally prefer to choose a such that the expected length of I3 is minimized.

However, without having a closed form expression for the expected length of I3, we

can only estimate the desired value of a numerically as follows (the corresponding

syntax is provided in part B.4 of Appendix B). We take 10,000 random samples of

size n from a distribution of Xi’s and calculate the average length of I3 for each of

50 different values of a that form a uniform subdivision of the interval (0,Φ−1(1+α
2

))

(the respective values of b are calculated from (2.20)). Then we select the value of

a which produces the shortest average length of I3. Such a value of a turns out

not to be the same for different distributions of Xi’s (N(0, 1), Exp(1), Poisson(3),

Pareto(1,2) and discrete Pareto), confidence levels (1− α = 0.9, 0.95, and 0.98), and

sample sizes (n = 50, 100, 500, and 1000).

In the following table, we present the values of r̂3 and (ĈP3, ĈP0), where ĈP3

and ĈP0 are as in (2.2) and (2.3), respectively.
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1 − α
Distribution n 0.9 0.95 0.98

50 1.416 (0.833,0.892) 1.439 (0.882,0.946) 1.376 (0.900,0.975)
N(0, 1) 100 1.560 (0.852,0.900) 1.681 (0.904,0.947) 1.720 (0.923,0.978)

500 1.778 (0.881,0.898) 2.205 (0.929,0.948) 2.656 (0.960,0.979)
1000 1.850 (0.884,0.899) 2.341 (0.935,0.951) 3.176 (0.966,0.982)

50 1.576 (0.820,0.879) 1.555 (0.859,0.934) 1.485 (0.880,0.965)
Exp(1) 100 1.781 (0.843,0.891) 1.855 (0.884,0.943) 1.817 (0.907,0.973)

500 2.112 (0.877,0.899) 2.632 (0.918,0.948) 2.995 (0.948,0.977)
1000 2.154 (0.879,0.895) 2.844 (0.931,0.952) 3.638 (0.958,0.979)

50 1.598 (0.728,0.759) 1.507 (0.761,0.805) 1.358 (0.789,0.854)
Pareto(1,2) 100 1.866 (0.745,0.783) 1.812 (0.797,0.833) 1.636 (0.830,0.879)

500 2.578 (0.794,0.829) 2.441 (0.846,0.882) 2.616 (0.888,0.918)
1000 2.748 (0.805,0.844) 2.776 (0.858,0.897) 3.104 (0.900,0.935)

50 1.494 (0.821,0.897) 1.493 (0.871,0.940) 1.403 (0.872,0.974)
Poisson(3) 100 1.634 (0.859,0.899) 1.739 (0.909,0.944) 1.747 (0.910,0.977)

500 1.861 (0.876,0.900) 2.325 (0.923,0.953) 2.841 (0.961,0.980)
1000 1.907 (0.879,0.895) 2.507 (0.930,0.950) 3.350 (0.958,0.981)

50 1.614 (0.720,0.752) 1.505 (0.746,0.780) 1.383 (0.761,0.831)
Discrete 100 1.923 (0.753,0.785) 1.833 (0.793,0.827) 1.670 (0.813,0.865)
Pareto 500 2.442 (0.791,0.825) 2.731 (0.841,0.874) 2.569 (0.880,0.917)

1000 2.848 (0.809,0.840) 2.845 (0.850,0.887) 3.020 (0.902,0.931)

Table 2.3: Empirical expected lengths ratio and coverage probabilities:

r̂3 (ĈP3, ĈP0)

The values of r̂3 in Table 2.3 range from 1.358 to 3.638. There is a lot of variability

in the r̂3 values, more than for any other FACI we explore in this thesis. We observe

that as the sample size increases, the ratio r̂3 also increases. Also, the empirical

coverage probabilities of I3 are lower than those of I0 by 1.5% to 10.2%. Overall,

I3 is not a very desirable confidence interval in terms of its expected length and

coverage probability.
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2.4 FACI’s based on h4(·)

Convergence in (2.1) with h4(·) of (1.14) reads as

∫ 1

0

(T tn(X1 − µ, . . . , Xn − µ))m dt
D−−−→

n→∞

∫ 1

0

Wm(t) dt, for m = 1, 2, 3, 4, and 8,

(2.24)

or, equivalently, via (1.9), as

Gm(µ) :=
1

n

n−1∑
k=1

(∑k
i=1(Xi − µ)

sn
√
n

)m

D−−−→
n→∞

∫ 1

0

Wm(t) dt, for m = 1, 2, 3, 4, and 8.

(2.25)

We note that for m = 3, 4, and 8, the exact or tabulated distribution function of

the limiting random variable
∫ 1

0
Wm(t) dt seems to be unavailable in the literature.

Inspired by the invariance approach of Erdős and Kac (1946) (cf. p. 8), we use (2.25)

and estimate quantiles of the distribution of
∫ 1

0
Wm(t) dt by those of the empirical

distribution of Gm(µ), which is based on 500,000 simulated values of the random

variable Gm(µ), where each value is computed from 10,000 independent Xi’s having

Bernoulli(0.5) distribution. We note that the quantiles of the empirical distribution

of Gm(µ) are calculated with the quantile function in R. The tabulated quantiles of∫ 1

0
Wm(t) dt for m = 3, 4 and 8 are presented respectively in Tables 2.7, 2.9, and

2.11 of this section, while the syntax for their computation is provided in part B.3

of Appendix B.
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Set 0 < α < 1 and a and b such that P
(
a ≤

∫ 1

0
Wm(t) dt ≤ b

)
= 1 − α. It

follows from (2.25) that

P (a ≤ Gm(µ) ≤ b) −−−→
n→∞

1− α. (2.26)

The derivations of FACI’s for µ from (2.26) with different values of m follow similar

lines and depend on whether m is even or odd, as summarized next.

Case I: odd m (m = 1 and 3)

Constructing a 1−α FACI for µ from (2.26) amounts to finding {µ : a ≤ Gm(µ) ≤

b}. As a random function of µ, Gm(µ) is a polynomial of power m and therefore has

m roots. Disregarding the event when all Xi’s are equal to µ, we notice that

d

dµ
Gm(µ) =

m

n(sn
√
n)m

n−1∑
k=1

(−k)

(
k∑
i=1

(Xi − µ)

)m−1

< 0, (2.27)

indicating that the polynomial Gm(µ) is decreasing and that the equations Gm(µ) =

a and Gm(µ) = b have exactly one real solution each. Therefore, the lower and upper

bounds of the FACI we get from (2.26) are the real-valued solutions of Gm(µ) = b

and Gm(µ) = a, respectively, as illustrated in the next figure on the example of

m = 3.
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Figure 2.1: Illustration of FACI construction from (2.26) with m = 3

For m= 1 and 3, we choose “equal tail” cut-off points a and b in (2.26) such that

P (
∫ 1

0
Wm(t) dt ≤ a) = P (b ≤

∫ 1

0
Wm(t) dt) = α/2. This choice of a and b is shown

to result in the shortest FACI when m = 1, but for m = 3, these cut-off values are

chosen simply for convenience.

Case II: even m (m=2, 4, and 8)

When m is even, Gm(µ) of (2.25) and
∫ 1

0
Wm(t) dt are nonnegative random

variables, and by choosing a = 0 in (2.26), we have:

P (Gm(µ) ≤ b) −−−→
n→∞

1− α. (2.28)

It is possible, but cumbersome, to work with a > 0 and evaluate numerically the

choice of such a that leads to a shortest FACI for µ. Thus, we do not include any of

our work in this regard here.
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To construct a 1− α FACI for µ from (2.28), we need to find {µ : Gm(µ) ≤ b}.

On disregarding the event when all Xi’s are equal to µ, we have

d2

dµ2
Gm(µ) =

m(m− 1)

n(sn
√
n)m

n−1∑
k=1

k2

(
k∑
i=1

(Xi − µ)

)m−2

> 0, (2.29)

which indicates that the polynomial Gm(µ) has a convex shape, and thus the equation

Gm(µ) = b has at most two real solutions. Hence, we get the FACI for µ with the

lower and upper bounds that are respectively the smaller and larger real solutions

of Gm(µ) = b, as illustrated in the figure below for the case of m = 4.

Figure 2.2: Illustration of FACI construction from (2.28) with m = 4
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2.4.1 m = 1

By using integration by parts and Theorem 5.1 with g(x) = t− x in Chapter 8 of

Karlin and Taylor (1998), it can be shown that
∫ 1

0
W (t) dt

D
= N(0, 1/3). Therefore,

(2.26) with m = 1 and b = −a reads as

P

(
−zα/2√

3
≤ 1

n

n−1∑
k=1

∑k
i=1(Xi − µ)

sn
√
n

≤
zα/2√

3

)
−−−→
n→∞

1− α, (2.30)

or, equivalently, as

P

(
2

n− 1

(
n−1∑
k=1

k∑
i=1

Xi

n
− zα/2

sn
√
n√

3

)
≤µ≤ 2

n− 1

(
n−1∑
k=1

k∑
i=1

Xi

n
+ zα/2

sn
√
n√

3

))
→ 1−α,

(2.31)

as n → ∞, where P (|N(0, 1)| > zα/2) = α. Thus, we obtain the following 1 − α

FACI for µ:

I4 :=

[
2

n− 1

(
n−1∑
k=1

k∑
i=1

Xi

n
− zα/2

sn
√
n√

3

)
,

2

n− 1

(
n−1∑
k=1

k∑
i=1

Xi

n
+ zα/2

sn
√
n√

3

)]
. I4

(2.32)

We note in passing that (2.26) with m = 1 leads to the FACI for µ with a length

of 4(b− a)
sn
√
n

n− 1
. In view of Theorem 9.3.2 in Casella and Berger (2002) and having

an N(0, 1/3) limiting distribution for G1(µ) in (2.25), this length is the shortest

when b = −a = zα/2/
√

3.
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Evaluation of I4, m = 1

At the center of the interval we have

2

n− 1

n−1∑
k=1

k∑
i=1

Xi

n
,

which is an unbiased estimator of the population mean µ. The ratio r4 of (2.4) of

the expected lengths of I4 and I0 is

r4 =

4 zα/2
n− 1

· E(sn)
√
n√

3

2 zα/2
E(sn)√

n

=
2n√

3(n− 1)
. r4(2.33)

It is a monotonically decreasing function of n, and limn→∞ r4 ≈ 1.155. We conclude

that I4 is longer than I0 on average, by a factor of approximately 1.155 for large n.

In the following table, we present finite-sample values of r4 and (ĈP4, ĈP0), the

empirical coverage probabilities of I4 and I0.

26



1 − α
Distribution n r4 0.9 0.95 0.98

50 1.178266 (0.901,0.892) (0.951,0.949) (0.977,0.974)
N(0, 1) 100 1.166364 (0.902,0.900) (0.949,0.946) (0.978,0.979)

500 1.157015 (0.895,0.897) (0.952,0.951) (0.980,0.980)
1000 1.155856 (0.899,0.898) (0.951,0.947) (0.980,0.977)

50 1.178266 (0.881,0.877) (0.936,0.930) (0.969,0.959)
Exp(1) 100 1.166364 (0.899,0.888) (0.942,0.936) (0.975,0.972)

500 1.157015 (0.897,0.898) (0.950,0.949) (0.976,0.977)
1000 1.155856 (0.896,0.896) (0.950,0.951) (0.982,0.978)

50 1.178266 (0.779,0.761) (0.841,0.816) (0.885,0.857)
Pareto(1,2) 100 1.166364 (0.807,0.791) (0.856,0.829) (0.904,0.881)

500 1.157015 (0.846,0.835) (0.894,0.882) (0.933,0.918)
1000 1.155856 (0.859,0.851) (0.907,0.893) (0.945,0.935)

50 1.178266 (0.898,0.891) (0.950,0.946) (0.978,0.975)
Poisson(3) 100 1.166364 (0.898,0.893) (0.948,0.946) (0.979,0.976)

500 1.157015 (0.899,0.899) (0.951,0.951) (0.982,0.982)
1000 1.155856 (0.900,0.901) (0.949,0.951) (0.978,0.979)

50 1.178266 (0.765,0.751) (0.817,0.790) (0.855,0.825)
Discrete 100 1.166364 (0.791,0.777) (0.845,0.821) (0.893,0.869)
Pareto 500 1.157015 (0.837,0.826) (0.895,0.877) (0.935,0.920)

1000 1.155856 (0.848,0.841) (0.899,0.888) (0.944,0.932)

Table 2.4: Expected lengths ratio and empirical coverage probabilities: r4 and

(ĈP4, ĈP0), m = 1

From Table 2.4, we see from the r4 values that I4 is 1.156 to 1.178 times longer

than I0. The coverage probability of I4 is almost always higher than that of I0.

The difference ĈP4 − ĈP0 is more significant for samples from the two Pareto

distributions, where it ranges from 0.7% to 3%, with the larger values observed for

smaller samples and higher confidence levels.
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2.4.2 m = 2

When m = 2, (2.28) reads as

P

 1

n

n−1∑
k=1

(∑k
i=1(Xi − µ)

sn
√
n

)2

≤ b

 −−−→
n→∞

1− α. (2.34)

Tabulated values of b can be found in Csörgő and Horváth (1981). For the probability

in (2.34), we have

P
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(2.35)
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where cn :=
∑n−1

k=1 k
2 =

n(n− 1)(2n− 1)

6
. Hence, we obtain the following 1 − α

FACI for µ from (2.34):

I4 :=


∑n−1

k=1 k
∑k

i=1Xi ∓
√

(
∑n−1

k=1 k
∑k

i=1Xi)2 − cn
(∑n−1

k=1(
∑k

i=1Xi)2 − b n2sn2
)

cn

 .
I4(2.36)

Evaluation of I4, m = 2

The center of I4, ∑n−1
k=1 k

∑k
i=1Xi

cn
,

is an unbiased estimator for µ. The length of I4 is a random variable given by

2

cn

√√√√√(n−1∑
k=1

k
k∑
i=1

Xi

)2

−cn

n−1∑
k=1

(
k∑
i=1

Xi

)2

−b n2sn2

. (2.37)

Theoretical evaluation of the expectation of (2.37) is complicated by the presence of

the square root. Therefore, the expectation of (2.37) is approximated numerically,

and we study r̂4 of (2.5) instead of r4 of (2.4).

The values of r̂4 and those of the empirical coverage probabilities ĈP4 and ĈP0

are summarized next. They are evaluated in 60 scenarios of different sample sizes,

confidence levels, and distributions, as discussed on page 10.
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1 − α
Distribution n 0.9 0.95 0.98

50 1.119 (0.893,0.887) 1.120 (0.948,0.946) 1.119 (0.977,0.977)
N(0, 1) 100 1.110 (0.900,0.899) 1.110 (0.951,0.945) 1.110 (0.980,0.978)

500 1.103 (0.896,0.901) 1.103 (0.948,0.949) 1.104 (0.979,0.978)
1000 1.102 (0.895,0.899) 1.103 (0.950,0.953) 1.102 (0.979,0.981)

50 1.119 (0.882,0.874) 1.119 (0.935,0.928) 1.119 (0.969,0.963)
Exp(1) 100 1.109 (0.897,0.894) 1.110 (0.942,0.938) 1.110 (0.973,0.971)

500 1.103 (0.904,0.899) 1.103 (0.950,0.945) 1.103 (0.981,0.979)
1000 1.102 (0.895,0.895) 1.102 (0.947,0.946) 1.102 (0.980,0.978)

50 1.120 (0.775,0.758) 1.119 (0.825,0.807) 1.119 (0.871,0.849)
Pareto(1,2) 100 1.111 (0.800,0.790) 1.110 (0.854,0.840) 1.110 (0.897,0.882)

500 1.104 (0.845,0.837) 1.104 (0.893,0.885) 1.103 (0.938,0.926)
1000 1.102 (0.849,0.846) 1.103 (0.911,0.900) 1.103 (0.940,0.933)

50 1.119 (0.900,0.895) 1.119 (0.946,0.946) 1.119 (0.977,0.975)
Poisson(3) 100 1.110 (0.895,0.893) 1.111 (0.951,0.952) 1.110 (0.977,0.973)

500 1.103 (0.904,0.907) 1.103 (0.950,0.949) 1.103 (0.980,0.981)
1000 1.101 (0.898,0.900) 1.102 (0.945,0.948) 1.103 (0.984,0.985)

50 1.120 (0.762,0.750) 1.120 (0.813,0.791) 1.119 (0.847,0.823)
Discrete 100 1.110 (0.788,0.776) 1.110 (0.842,0.825) 1.110 (0.881,0.866)
Pareto 500 1.103 (0.841,0.834) 1.104 (0.887,0.876) 1.103 (0.932,0.920)

1000 1.102 (0.842,0.838) 1.103 (0.901,0.895) 1.102 (0.940,0.930)

Table 2.5: Empirical expected lengths ratio and coverage probabilities:

r̂4 (ĈP4, ĈP0), m = 2

The values of r̂4 in Table 2.5 range from 1.101 to 1.120, indicating that I4 is

longer than I0 on average. The r̂4 values are very similar for the five distributions

of Xi. We observe that as the sample size n increases, r̂4 decreases. The difference

ĈP4 − ĈP0 deviates nonsignificantly around 0, with the exception of the samples

from both Pareto distributions, where this difference is always positive and more

significant, reaching a high of 2.4% for one of the small samples.

While we are unable to derive the expected length of I4, we can get a closed

form expression for the expectation of the squared length of I4, provided we assume
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additionally that V ar(X) = σ2 < ∞. Therefore, in addition to the numerical

comparison of the expected lengths of I4 and I0 via r̂4 in Table 2.5, we compare I4

to I0 by evaluating the ratio

r4SQ :=
E[(length of I4)

2]

E[(length of I0)2]
. (2.38)

The expectation of the squared length of I4 is computed in Lemma A.1 of Appendix A,

and the expected squared length of I0 is 4z2α/2σ
2/n. Thus,

r4SQ =

12σ2

5

(10b− 1)n2 + n+ 2

n(n− 1)(2n− 1)

4z2α/2σ
2

n

=
3

5
· (10b− 1)n2 + n+ 2

(n− 1)(2n− 1)z2α/2
−→
n→∞

3(10b− 1)

10z2α/2
.

(2.39)

Using the normal table for zα/2 and the tabulated b values in Csörgő and Horváth

(1981), we obtain the following values of limn→∞ r4SQ for different confidence levels

1− α:

1− α 0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 0.98 0.99
r4SQ 1.253 1.246 1.232 1.230 1.223 1.220 1.215 1.216 1.214 1.214 1.214 1.216

Table 2.6: Tabulated values of limn→∞ r4SQ

For the confidence levels of 1−α = 0.9, 0.95, and 0.98 that are considered throughout

this presentation, E[(length of I4)
2] is greater than E[(length of I0)

2] by a factor of

approximately 1.214, when n is large.
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2.4.3 m = 3

First, we generate the empirical distribution function of the limiting random vari-

able
∫ 1

0
W 3(t) dt in (2.25), according to the scheme described on page 21, and use

it to compute approximate values of a and b such that P (
∫ 1

0
W 3(t) dt ≤ a) =

P (
∫ 1

0
W 3(t) dt ≥ b) = α/2, for different values of α.

1 − α 0.8 0.85 0.9 0.95 0.98 0.99
a -0.862 -1.161 -1.658 -2.672 -4.315 -5.708
b 0.873 1.173 1.667 2.684 4.3 5.834

Table 2.7: Empirical quantiles of
∫ 1

0
W 3(t) dt

I4

Now, as was explained on page 22, the lower and upper bounds of the FACI

from (2.26), which is denoted by I4 from now on, are the real-valued solutions of

G3(µ) = b and G3(µ) = a, respectively. To get these solutions, we expand G3(µ) as

follows:

G3(µ) =
1

n

n−1∑
k=1

(∑k
i=1(Xi − µ)

sn
√
n

)3

=

−
∑n−1

k=1 k
3

s3n n
5/2

µ3+3

∑n−1
k=1 k

2
∑k

i=1Xi

s3n n
5/2

µ2−3

∑n−1
k=1 k

(∑k
i=1Xi

)2
s3n n

5/2
µ+

∑n−1
k=1

(∑k
i=1Xi

)3
s3n n

5/2
,

(2.40)

and then evaluate the real solutions of G3(µ) = b and G3(µ) = a numerically using

the solve function in R.
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Evaluation of I4, m = 3

Since we solve for the bounds of I4 numerically, there is no closed form expression

for them. Thus, deriving the expected length of I4 is not feasible, and we must turn

to r̂4 as in (2.5). We present the values of r̂4 and those of the empirical coverage

probabilities (ĈP4, ĈP0) of I4 and I0 in the following table.

1 − α
Distribution n 0.9 0.95 0.98

50 1.097 (0.892,0.893) 1.097 (0.949,0.946) 1.094 (0.976,0.974)
N(0, 1) 100 1.089 (0.895,0.894) 1.089 (0.951,0.945) 1.086 (0.978,0.978)

500 1.083 (0.897,0.898) 1.082 (0.947,0.949) 1.080 (0.981,0.978)
1000 1.082 (0.898,0.902) 1.082 (0.956,0.955) 1.080 (0.982,0.982)

50 1.097 (0.885,0.882) 1.096 (0.931,0.927) 1.094 (0.965,0.960)
Exp(1) 100 1.089 (0.889,0.887) 1.087 (0.940,0.940) 1.086 (0.974,0.972)

500 1.083 (0.894,0.897) 1.083 (0.948,0.949) 1.080 (0.980,0.978)
1000 1.082 (0.893,0.893) 1.081 (0.947,0.946) 1.079 (0.980,0.981)

50 1.097 (0.770,0.758) 1.097 (0.830,0.816) 1.094 (0.873,0.850)
Pareto(1,2) 100 1.088 (0.799,0.791) 1.088 (0.850,0.840) 1.086 (0.887,0.875)

500 1.084 (0.842,0.836) 1.082 (0.893,0.882) 1.080 (0.931,0.922)
1000 1.083 (0.850,0.846) 1.081 (0.903,0.896) 1.080 (0.939,0.933)

50 1.097 (0.897,0.888) 1.096 (0.948,0.944) 1.094 (0.978,0.975)
Poisson(3) 100 1.089 (0.898,0.897) 1.088 (0.950,0.949) 1.086 (0.978,0.977)

500 1.084 (0.905,0.904) 1.082 (0.949,0.949) 1.080 (0.979,0.979)
1000 1.083 (0.899,0.901) 1.081 (0.950,0.951) 1.079 (0.980,0.980)

50 1.098 (0.753,0.748) 1.096 (0.806,0.789) 1.093 (0.851,0.833)
Discrete 100 1.088 (0.782,0.777) 1.088 (0.833,0.820) 1.085 (0.883,0.872)
Pareto 500 1.083 (0.830,0.824) 1.082 (0.886,0.872) 1.080 (0.927,0.919)

1000 1.083 (0.842,0.837) 1.081 (0.896,0.888) 1.079 (0.940,0.932)

Table 2.8: Empirical expected lengths ratio and coverage probabilities:

r̂4 (ĈP4, ĈP0), m = 3

The values of r̂4 in Table 2.8 range from 1.079 to 1.098, indicating that I4 is

longer than I0 on average. The r̂4 values are similar for all the distributions of Xi,

and they decrease as n increases. The empirical coverage probabilities of I4 are
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mostly nonsignificantly higher than those of I0, except in the cases of the two Pareto

distributions, where 0.4% ≤ ĈP4 − ĈP0 ≤ 2.3%.

2.4.4 m = 4

Similarly to the previous case of m = 3, we first tabulate b for the random variable∫ 1

0
W 4(t) dt along the lines of page 21, where P (

∫ 1

0
W 4(t) dt ≤ b) = 1− α:

1 − α 0.8 0.85 0.9 0.95 0.98 0.99
b 1.074 1.571 2.485 4.629 8.748 12.79

Table 2.9: Empirical quantiles of
∫ 1

0
W 4(t) dt

I4

We recall from the introduction on page 23 that the lower and upper bounds

of the FACI corresponding to (2.28) with m = 4, which is denoted by I4, are the

smaller and larger real solutions of G4(µ) = b, respectively, where

G4(µ) =
1

n
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(∑k
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sn
√
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k=1 k
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3
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3
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3
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2
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3
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)3
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3
µ+
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k=1
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i=1Xi

)4
s4n n

3
. (2.41)

These solutions are evaluated numerically by using the solve function in R.

34



Evaluation of I4, m = 4

The simulated values of r̂4 and ĈP4 for I4 (m=4), and those of ĈP0 are summarized

next.

1 − α
Distribution n 0.9 0.95 0.98

50 1.087 (0.896,0.895) 1.083 (0.947,0.944) 1.084 (0.979,0.975)
N(0, 1) 100 1.079 (0.898,0.895) 1.077 (0.951,0.947) 1.077 (0.977,0.976)

500 1.073 (0.902,0.900) 1.071 (0.953,0.952) 1.071 (0.980,0.980)
1000 1.072 (0.901,0.906) 1.071 (0.952,0.950) 1.070 (0.981,0.982)

50 1.086 (0.886,0.882) 1.084 (0.935,0.929) 1.085 (0.969,0.966)
Exp(1) 100 1.079 (0.888,0.886) 1.077 (0.941,0.940) 1.077 (0.971,0.969)

500 1.074 (0.904,0.900) 1.071 (0.945,0.944) 1.072 (0.978,0.977)
1000 1.072 (0.897,0.896) 1.070 (0.950,0.950) 1.071 (0.978,0.980)

50 1.088 (0.775,0.762) 1.084 (0.822,0.812) 1.084 (0.865,0.852)
Pareto(1,2) 100 1.080 (0.791,0.779) 1.077 (0.841,0.829) 1.077 (0.891,0.880)

500 1.074 (0.839,0.831) 1.071 (0.889,0.884) 1.071 (0.934,0.927)
1000 1.073 (0.860,0.851) 1.071 (0.905,0.899) 1.071 (0.942,0.933)

50 1.086 (0.901,0.895) 1.083 (0.945,0.941) 1.083 (0.978,0.976)
Poisson(3) 100 1.079 (0.901,0.895) 1.077 (0.948,0.946) 1.077 (0.978,0.977)

500 1.074 (0.900,0.898) 1.071 (0.951,0.950) 1.071 (0.983,0.983)
1000 1.072 (0.903,0.899) 1.070 (0.947,0.950) 1.071 (0.980,0.977)

50 1.087 (0.754,0.744) 1.083 (0.807,0.792) 1.084 (0.846,0.829)
Discrete 100 1.080 (0.786,0.775) 1.077 (0.839,0.827) 1.077 (0.876,0.865)
Pareto 500 1.073 (0.825,0.820) 1.071 (0.882,0.875) 1.072 (0.923,0.916)

1000 1.073 (0.848,0.842) 1.070 (0.902,0.898) 1.070 (0.936,0.929)

Table 2.10: Empirical expected lengths ratio and coverage probabilities:

r̂4 (ĈP4, ĈP0), m = 4

From Table 2.10, we see that I4 is longer than I0 on average, since 1.070 ≤ r̂4 ≤

1.088. The values of r̂4 are similar for all the distributions of Xi’s and decrease

as n increases. As before, the ĈP4 values are mostly higher than those of ĈP0,

particularly for the Pareto distributions, although the difference ĈP4 − ĈP0 is more

modest than for I4 with a smaller m.
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Looking back at the values of r4 for m = 1 in (2.33), r̂4 for m = 2 in Table 2.5,

r̂4 for m = 3 in Table 2.8, and r̂4 for m = 4 in Table 2.10, we notice that the average

length of I4 relative to that of I0 seems to decrease as m increases. Therefore, we

continue to increase m to see if this trend continues. The next FACI presented here

is constructed from (2.28) with m = 8.

2.4.5 m = 8

Just like in the case of m = 4, we first generate the empirical distribution function of∫ 1

0
W 8(t) dt and use it to tabulate approximate values of b, where P

(∫ 1

0
W 8(t) dt ≤ b

)
= 1− α, for several values of 1− α:

1 − α 0.8 0.85 0.9 0.95 0.98 0.99
b 3.301 6.832 16.234 53.536 181.368 383.002

Table 2.11: Empirical quantiles of
∫ 1

0
W 8(t) dt

I4

Then, expanding G8(µ) of (2.25) as
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s8n n
5
µ8 − 8

∑n−1
k=1 k

7
∑k

i=1Xi

s8n n
5

µ7

+ 28

∑n−1
k=1 k

6
(∑k

i=1Xi

)2
s8n n

5
µ6 − 56

∑n−1
k=1 k

5
(∑k

i=1Xi

)3
s8n n

5
µ5

+ 70

∑n−1
k=1 k

4
(∑k

i=1Xi

)4
s8n n

5
µ4 − 56

∑n−1
k=1 k

3
(∑k

i=1Xi

)5
s8n n

5
µ3

36



+ 28

∑n−1
k=1 k

2
(∑k

i=1Xi

)6
s8n n

5
µ2 − 8

∑n−1
k=1 k

(∑k
i=1Xi

)7
s8n n

5
µ+

∑n−1
k=1

(∑k
i=1Xi

)8
s8n n

5
,

(2.42)

we find the real solutions of G8(µ) = b numerically, using the solve function in R,

thus obtaining the bounds of the FACI for µ based on (2.28) with m = 8.

Evaluation of I4, m=8

In the following table, we present simulated values for the empirical coverage

probabilities ĈP4 of (2.2) and ĈP0 of (2.3), and for the ratio r̂4 of (2.5).

1 − α
Distribution n 0.9 0.95 0.98

50 1.063 (0.896,0.894) 1.058 (0.948,0.947) 1.054 (0.976,0.974)
N(0, 1) 100 1.055 (0.905,0.900) 1.050 (0.949,0.950) 1.048 (0.980,0.980)

500 1.050 (0.901,0.902) 1.046 (0.948,0.947) 1.043 (0.979,0.981)
1000 1.051 (0.905,0.901) 1.045 (0.950,0.952) 1.042 (0.978,0.978)

50 1.063 (0.880,0.875) 1.058 (0.931,0.928) 1.054 (0.966,0.963)
Exp(1) 100 1.056 (0.892,0.889) 1.051 (0.940,0.937) 1.048 (0.974,0.973)

500 1.050 (0.899,0.900) 1.046 (0.948,0.946) 1.043 (0.979,0.977)
1000 1.049 (0.900,0.901) 1.045 (0.952,0.952) 1.042 (0.978,0.978)

50 1.066 (0.769,0.757) 1.059 (0.819,0.810) 1.056 (0.860,0.851)
Pareto(1,2) 100 1.061 (0.795,0.786) 1.053 (0.841,0.835) 1.049 (0.887,0.879)

500 1.052 (0.841,0.837) 1.048 (0.890,0.884) 1.046 (0.928,0.923)
1000 1.054 (0.851,0.852) 1.047 (0.896,0.895) 1.043 (0.938,0.934)

50 1.063 (0.891,0.889) 1.057 (0.948,0.945) 1.055 (0.977,0.976)
Poisson(3) 100 1.056 (0.896,0.895) 1.051 (0.949,0.952) 1.048 (0.981,0.979)

500 1.049 (0.898,0.897) 1.046 (0.947,0.946) 1.043 (0.980,0.978)
1000 1.049 (0.898,0.898) 1.045 (0.948,0.947) 1.042 (0.980,0.980)

50 1.069 (0.753,0.744) 1.059 (0.797,0.785) 1.056 (0.839,0.827)
Discrete 100 1.060 (0.783,0.778) 1.053 (0.837,0.827) 1.049 (0.868,0.863)
Pareto 500 1.055 (0.829,0.824) 1.049 (0.881,0.880) 1.043 (0.920,0.915)

1000 1.052 (0.842,0.835) 1.047 (0.900,0.896) 1.043 (0.932,0.927)

Table 2.12: Empirical expected lengths ratio and coverage probabilities:

r̂4 (ĈP4, ĈP0), m = 8

37



The r̂4 values in Table 2.12 range from 1.042 to 1.069. They are smaller than the

corresponding values of r̂4 in Table 2.10 (m = 4), thus supporting the trend that

the relative average length of I4 becomes shorter as m increases. For each of the

five distributions in Table 2.12, as the sample size n or the confidence level 1− α

increases, r̂4 decreases. Since r̂4 is higher than 1, we conclude that, on average, I4 is

longer than I0. The empirical coverage probabilities of I4 are mostly nonsignificantly

higher than those of I0.

Studying (2.25) with even m that are larger than 8 becomes problematic already

for m = 10. This is because the coefficients of the polynomial Gm(µ) become

enormous, especially for large samples, which leads to the numerical roots of Gm(µ) =

b being inaccurate.

2.5 FACI based on h5(·)

Finally, we consider (2.1) with h5(·), where the functional h5(·) in (1.15) is a linear

combination of the projection functional h1(·) with t0 = 1 and the integral functional

h4(·) with m = 1. We have

h5(T
t
n(X1 − µ, . . . , Xn − µ)) =

a1
∑n

i=1(Xi − µ)

sn
√
n

+
a2
n

n−1∑
k=1

∑k
i=1(Xi − µ)

sn
√
n

D−−−→
n→∞

a1W (1) + a2

∫ 1

0

W (t) dt, (2.43)

where a1 and a2 are fixed real numbers. Notice that when a1 = 1 and a2 = 0, (2.43)

is equivalent to (1.2), the asymptotic normality of the Student t-statistic, while when

a1 = 0 and a2 = 1, (2.43) coincides with (2.25) with m = 1.
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To find the limiting distribution in (2.43), we first use the integration by parts

formula as in (5.20) of Chapter 8 of Karlin and Taylor (1998) and conclude that

a1W (1) =

∫ 1

0

a1 dW (x)

and

a2

∫ 1

0

W (t) dt =

∫ 1

0

a2(1− x) dW (x).

Consequentially, by Theorem 5.1 in Chapter 8 of Karlin and Taylor (1998) with

f(x) = a1 and g(x) = a2(1 − x), the random variables a1W (1) and a2
∫ 1

0
W (t) dt

have a bivariate normal distribution with the covariance matrix

 ∫ 1

0
a1

2 dx
∫ 1

0
a1a2(1− x) dx∫ 1

0
a1a2(1− x) dx

∫ 1

0
a2

2(1− x)2 dx

 =


a1

2 a1a2
2

a1a2
2

a2
2

3

 . (2.44)

Therefore,

a1W (1) + a2

∫ 1

0

W (t) dt
D
= N(0, a1

2 + a2
2/3 + a1a2). (2.45)

Set 0 < α < 1, and define a and b such that

P (a ≤ N(0, a1
2 + a2

2/3 + a1a2) ≤ b) = 1− α. (2.46)

It follows from (2.43), (2.45) and (2.46) that

P

(
a ≤ a1

∑n
i=1(Xi − µ)

sn
√
n

+
a2
n

n−1∑
k=1

∑k
i=1(Xi − µ)

sn
√
n

≤ b

)
−→
n→∞

1− α. (2.47)
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For the probability in (2.47), we have

P

(
a ≤ a1

∑n
i=1(Xi − µ)

sn
√
n

+
a2
n

n−1∑
k=1

∑k
i=1(Xi − µ)

sn
√
n

≤ b

)

= P

(
a snn

3/2 ≤ a1 n
n∑
i=1

(Xi − µ) + a2

n−1∑
k=1

k∑
i=1

(Xi − µ) ≤ b snn
3/2

)

= P

(
a snn

3/2 ≤ a1 n
n∑
i=1

(Xi − µ) + a2

n−1∑
i=1

(Xi − µ)(n− i) ≤ b snn
3/2

)

= P

(
a snn

3/2 ≤
n∑
i=1

(Xi − µ)(a1 n+ a2(n− i)) ≤ b snn
3/2

)

=P

−a snn3/2+
∑n

i=1Xi(a1 n+a2(n−i))

a1n2+a2
n(n− 1)

2

≥µ≥−b snn
3/2+

∑n
i=1Xi(a1 n+a2(n−i))

a1n2 + a2
n(n− 1)

2

,
(2.48)

where, in the last step, we assumed that a1 + a2
n−1
2n

> 0. Hence, we obtain the

following 1− α FACI for µ:

I5 :=

∑n
i=1Xi(a1n+ a2(n− i))− bsnn3/2

a1n2 + a2
n(n− 1)

2

,

∑n
i=1Xi(a1n+ a2(n− i))− asnn3/2

a1n2 + a2
n(n− 1)

2

 .
I5

(2.49)

Evaluation of I5

The center of I5, ∑n
i=1Xi(a1n+ a2(n− i))

a1n2 + a2
n(n− 1)

2

,
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is an unbiased estimator for µ. The length of I5,

(b− a)snn
3/2

a1n2 + a2
n(n− 1)

2

, (2.50)

is minimized when b = −a, as a result of Theorem 9.3.2 in Casella and Berger (2002).

This implies that −a = b = zα/2
√
a12 + a22/3 + a1a2 (cf. (2.46)). Plugging these

values into (2.50) gives

Length(I5) =
2zα/2sn√

n

√
a12 +

a2
2

3
+ a1a2

a1 + a2

(
1

2
− 1

2n

) = Length(I0)

√
a12 +

a2
2

3
+ a1a2

a1 + a2

(
1

2
− 1

2n

) , (2.51)

where I0 is as in (1.7). Hence, the ratio of the expected lengths of I5 and I0 is:

r5 =

√
a12 +

a2
2

3
+ a1a2

a1 + a2

(
1

2
− 1

2n

) . r5
(2.52)

Let a1 be fixed. To find the values of a2 that minimize r5, we examine
d r5
d a2

,

where

d r5
d a2

=

(
2

3
a2 + a1

)(
a1 + a2

(
1

2
− 1

2n

))
2

√
a12 +

a2
2

3
+ a1a2

−
√
a12 +

a2
2

3
+ a1a2

(
1

2
− 1

2n

)
[
a1 + a2

(
1

2
− 1

2n

)]2

=

1

2

√
a12 +

a2
2

3
+ a1a2[

a1 + a2

(
1

2
− 1

2n

)]2

(

2

3
a2 + a1

)(
a1 + a2

(
1

2
− 1

2n

))
a12 +

a2
2

3
+ a1a2

−
(

1− 1

n

)
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=
1

2

[
a1 + a2

(
1

2
− 1

2n

)]2
a1
n

(
a2

(
n+ 3

6

)
+ a1

)
√
a12 +

a2
2

3
+ a1a2

. (2.53)

Without loss of generality, we assume that a1 > 0. Then, solving d r5/d a2 = 0 for

a2, we get

a2 = − 6a1
n+ 3

, (2.54)

and since d r5/d a2 is negative when a2 < −6a1/(n + 3) and positive when a2 >

−6a1/(n+ 3), r5 has a local minimum at a2 = −6a1/(n+ 3). Plugging this value of

a2 back into r5 of (2.52) gives

√
a12 +

36a1
2

3(n+ 3)2
− 6a1

2

n+ 3

a1 −
6a1
n+ 3

(
1

2
− 1

2n

) =
n√
n2 + 3

< 1 . (2.55)

Thus, for a fixed a1 > 0 and a2 chosen according to (2.54), the length of I5 of (2.49)

is shorter than that of I0. For large n, the two intervals have nearly the same length.

For example, when a1 = 1 and a2 = −6/(n+ 3), the values of r5 as well as the

empirical coverage probabilities ĈP5 of I5 and ĈP0 of I0 are provided next.
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1 − α
Distribution n r5 0.9 0.95 0.98

50 0.9994005 (0.896,0.896) (0.943,0.942) (0.977,0.977)
N(0, 1) 100 0.99985 (0.896,0.897) (0.946,0.946) (0.981,0.981)

500 0.999994 (0.896,0.896) (0.947,0.947) (0.978,0.978)
1000 0.9999985 (0.895,0.895) (0.952,0.952) (0.981,0.981)

50 0.9994005 (0.883,0.883) (0.925,0.926) (0.959,0.958)
Exp(1) 100 0.99985 (0.898,0.898) (0.937,0.938) (0.969,0.969)

500 0.999994 (0.895,0.895) (0.951,0.952) (0.978,0.978)
1000 0.9999985 (0.896,0.896) (0.951,0.951) (0.978,0.978)

50 0.9994005 (0.761,0.761) (0.809,0.809) (0.851,0.852)
Pareto(1,2) 100 0.99985 (0.787,0.788) (0.838,0.839) (0.886,0.886)

500 0.999994 (0.836,0.836) (0.888,0.887) (0.921,0.921)
1000 0.9999985 (0.842,0.842) (0.895,0.895) (0.937,0.937)

50 0.9994005 (0.890,0.891) (0.941,0.940) (0.974,0.975)
Poisson(3) 100 0.99985 (0.901,0.899) (0.947,0.947) (0.975,0.975)

500 0.999994 (0.899,0.899) (0.947,0.947) (0.980,0.980)
1000 0.9999985 (0.901,0.900) (0.953,0.953) (0.982,0.982)

50 0.9994005 (0.743,0.746) (0.797,0.795) (0.831,0.831)
Discrete 100 0.99985 (0.773,0.772) (0.832,0.832) (0.867,0.869)
Pareto 500 0.999994 (0.826,0.827) (0.875,0.875) (0.919,0.919)

1000 0.9999985 (0.842,0.842) (0.890,0.890) (0.926,0.926)

Table 2.13: Expected lengths ratio and empirical coverage probabilities: r5 and

(ĈP5, ĈP0)

In Table 2.13, the values of ĈP5 are nearly identical to those of ĈP0, and the

ratio r5 of the expected lengths is smaller but close to 1. The similarity between the

two confidence intervals is not surprising. After all, the functional h5(·) of (1.15)

that was used to derive I5 is simply h1(·)− 6
n+3

h4(·), where t0 = 1 in h1(·) and m = 1

in h4(·). That is h5(·) is almost the functional h1(·) with t0 = 1 that was used to

derive I0, as the weight −6/(n+ 3) assigned to h4(·) is small.

Even though I5 does not offer significant improvement over I0, it demonstrates

that FACI’s that are shorter than I0 and have coverage probabilities nearly equal to

that of I0 do exist. Perhaps other functionals or (not necessarily linear) combinations

of functionals that were not considered here could yield more striking examples of

such FACI’s.
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Chapter 3

Conclusions

In the previous chapter, we derived FACI’s I1 to I5 for the mean µ of a population

in DAN and compared their expected lengths and empirical finite-sample coverage

probabilities to those of the classical asymptotic confidence interval I0 of (1.7). We

note that these FACI’s have simple enough forms that do not aggravate the duration

of their numerical computation. Now, we review the performances of all the obtained

FACI’s and conclude which ones present reasonable alternatives to, and overall

improvement upon, I0.

FACI with a shorter expected length and nearly equal coverage proba-

bility

The FACI I5 of (2.49) with a1 = 1 and a2 = −6/(n+ 3) is
√
n2 + 3/n times shorter

than I0 and has nearly the same coverage as I0 (see Table 2.13). While the expected

length of I5 is not significantly shorter than that of I0, I5 does improve overall upon

the interval I0.
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FACI’s with longer expected lengths and higher coverage probabilities

We found that I1 of (2.10) with t0 = 0.9, I2 of (2.17), and I4, which is based on

(2.25) and studied for m = 1, 2, 3, 4, and 8 in section 2.4, are all longer than I0 on

average, but their empirical coverage probabilities ĈPi are mostly higher than the

empirical coverage probability ĈP0 of I0. Based on the corresponding values of

(ĈPi, ĈP0), ri of (2.4) and r̂i of (2.5) that were obtained in Chapter 2, we present a

summary table with ranges of each FACI’s ĈPi − ĈP0 values and averages of the

values of their r̂i (or ri instead, when available). Since the ĈPi − ĈP0 values were

previously observed to be higher for samples from the Pareto(1,2) and discrete Pareto

distributions, we summarize the results for these two distributions separately from

the other distributions considered in Chapter 2 (N(0, 1), Exp(1), and Poisson(3)).

FACI I1
(t0=0.9) I2

I4
(m=1)

I4
(m=2)

I4
(m=3)

I4
(m=4)

I4
(m=8)

samples
from N(0, 1),
Exp(1) and
Poisson(3)

ĈPi−ĈP0
range
(in %)

-0.3%–
0.5%

-0.1%–
1.9%

-0.2%–
1.1%

-0.5%–
0.8%

-0.4%–
0.9%

-0.5%–
0.6%

-0.3%–
0.5%

average ri
or r̂i

1.0541* 1.055 1.164* 1.109 1.087 1.076 1.050

samples from
Pareto(1,2)
and discrete
Pareto

ĈPi−ĈP0
range
(in %)

0.2%–
1.3%

0.1%–
1.7%

0.7%–
3.0%

0.3%–
2.4%

0.4%–
2.3%

0.4%–
1.7%

-0.1%–
1.2%

average ri
or r̂i

1.0541* 1.082 1.164* 1.109 1.087 1.077 1.053

Table 3.1: Summary of (empirical) expected lengths ratios and empirical coverage
probabilities for I1, I2, and I4 (* marks ri value)

The FACI’s I1 with t0 = 0.9, I2, and I4 present alternatives to I0 when having

higher frequency of “catching” the real value of µ is more important than having
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a narrower interval. However, neither of the FACI’s in Table 3.1 is clearly better

than the others when taking both the expected length and coverage probability

into consideration. For example, the highest ĈPi − ĈP0 values for the two Pareto

distributions are observed for I4 with m = 1, and as m increases, improvement in

the coverage probability of I4 over that of I0 becomes smaller. On the other hand,

the ratio of the expected lengths of I4 and I0 gets better (decreases), as m increases.

Thus, choosing the “best” FACI among I1, I2, and I4 depends on the importance

that the user assigns to having a shorter expected length versus having a higher

coverage probability.

FACI with a longer expected length and lower coverage probability

I3 of (2.23), which is based on the supremum functional, is much longer than I0

compared to our other FACI’s. As opposed to other Ii’s, the empirical coverage

probability of I3 is always lower than that of I0, by 1.5%–10.2%. This makes I3 the

least desirable among our FACI’s.

All in all, in this thesis, we hope to have demonstrated a good potential of the

FCLT based FACI’s for the mean µ of a population in DAN. With countless choices

for the functional h(·) in (1.10), this may inspire some to construct new FACI’s for

µ with properties that would be better than those of the FACI’s I1 to I5 and that

would further improve on those of the commonly used asymptotic confidence interval

I0 of (1.7), which follows from the asymptotic normality of the Student t-statistic.
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Appendix A

Deriving the expectation of the

squared length of I4 of (2.36)

Lemma A.1. Let X1, . . . , Xn be i.i.d. random variables with mean µ and finite

variance σ2 > 0. Then, for the random interval I4 of (2.36),

E[(length of I4)
2] =

12σ2

5

(10b− 1)n2 + n+ 2

n(n− 1)(2n− 1)
. (A.1)

Proof. The following known summation results will be used throughout the proof:

n−1∑
i=1

i =
n(n− 1)

2
, (A.2)

n−1∑
i=1

i2 =
n(n− 1)(2n− 1)

6
, (A.3)

n−1∑
i=1

i3 =

(
n(n− 1)

2

)2

, (A.4)
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and

n−1∑
i=1

i4 =
n(n− 1)(2n− 1)(3n2 − 3n− 1)

30
. (A.5)

Now, we recall that

(length of I4)
2 =

4

cn2

(n−1∑
k=1

k

k∑
i=1

Xi

)2

− cn

n−1∑
k=1

(
k∑
i=1

Xi

)2

− b n2sn
2

  ,
(A.6)

where cn :=
∑n−1

k=1 k
2 =

n(n− 1)(2n− 1)

6
.

First, we evaluate E
(∑n−1

k=1 k
∑k

i=1Xi

)
and V ar

[∑n−1
k=1 k

∑k
i=1Xi

]
as follows.

In view of (A.3),

E

(
n−1∑
k=1

k
k∑
i=1

Xi

)
=

n−1∑
k=1

k
k∑
i=1

E(Xi) =
n−1∑
k=1

k
k∑
i=1

µ =
n−1∑
k=1

k2µ = µcn, (A.7)

while, from the independence of X1, . . . , Xn and (A.2)–(A.5),

V ar

[
n−1∑
k=1

k
k∑
i=1

Xi

]

= V ar [X1 + 2(X1 +X2) + · · ·+ (n− 1)(X1 +X2 + · · ·+Xn−1)]

= V ar

[
X1

n−1∑
k=1

k +X2

n−1∑
k=2

k + · · ·+Xn−1

n−1∑
k=n−1

k

]

= σ2

(
n−1∑
k=1

k

)2

+ σ2

(
n−1∑
k=2

k

)2

+ · · ·+ σ2

(
n−1∑

k=n−1

k

)2
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= σ2

n−1∑
k=1

(
n(n− 1)

2
− k(k − 1)

2

)2

= σ2

n−1∑
k=1

[(
n(n− 1)

2

)2

− n(n− 1)k(k − 1)

2
+

(
k(k − 1)

2

)2
]

= σ2

[(
n(n− 1)

2

)2

(n− 1)− n(n− 1)

2

n−1∑
k=1

(k2 − k) +
1

4

n−1∑
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Using (A.7) and (A.8), we have
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(A.9)

Clearly, by the independence of X1, . . . , Xn,
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(A.10)

Finally, upon combining (A.9) and (A.10), we get
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Appendix B

R Code

B.1 Functions for computing FACI bounds

################################################################################
# These f unc t i on s generate a sample x o f s i z e n from a s p e c i f i e d d i s t r i b u t i o n .
# They a l s o compute the bounds o f a s p e c i f i c FACI and o f I 0 f o r that sample .
# They return the l eng th s o f both con f idence i n t e r v a l s and i n d i c a t o r s o f whether
# these i n t e r v a l s conta in the r e a l mu.
################################################################################

# Generate a Pareto (1 , 2 ) sample
rpare to=func t i on (n) { s q r t (1 /(1− r un i f (n ) ) ) }

# Generate a d i s c r e t e Pareto sample o f s i z e n
# d i s ca rd samples where a l l data e n t e r i e s are equal ( t h i s s i t u a t i o n has a non
# neg l i g ab l e p r obab i l i t y f o r n=50)
c=1/ 1.20205690315959428540 # as computed in : Handbook o f mathematical f un c t i on s

with formulas−Abramowitz
ddpareto=func t i on (x ) {c/xˆ3} # pmf o f d i s c r e t e pareto f o r x=1 , 2 , 3 , . . .
dpareto . pmf=ddpareto ( seq (1 :100000) ) #Store pmf va lue s to avoid recomputing them f o r

each sample
rdpareto=func t i on (n)
{ a l lEqua l=1
whi l e ( a l lEqua l==1)
{x=sample (1 :100000 , s i z e=n , r ep l a c e=T, prob=dpareto . pmf )
a l lEqua l=a l l ( x==x [ 1 ] ) }

r e turn (x ) }

x . sample . f unc t i on=func t i on (n , d i s t ) {
i f ( d i s t==”normal” ) {x=rnorm (n) ;mean=0}
i f ( d i s t==”exp” ) {x=rexp (n , 1 ) ;mean=1}
i f ( d i s t==”pareto ” ) {x=rpare to (n) ;mean=2}
i f ( d i s t==” po i s son ” ) {x=rpo i s (n , 3 ) ;mean=3}
i f ( d i s t==”dpareto ” ) {x=rdpareto (n) ; mean=c∗ pi ˆ2/6}
r e turn ( c (x ,mean) ) }

# I 0 (STUDENT STATISTIC)
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#

CLT=func t i on (x , n , s , alpha ,mean)
{CLT. l=mean(x )−qnorm(1−( alpha ) / 2) ∗ s / sq r t (n) # Calcu la te the lower bound o f I 0
CLT. u=mean(x )+qnorm(1−( alpha ) / 2) ∗ s / sq r t (n) # Calcu la te the upper bound o f I 0
CLT. l ength=CLT. u−CLT. l
i f ( (CLT. l<=mean)&&(CLT. u>=mean) ) { in .CLT=1} e l s e in .CLT=0
return ( c (CLT. length , in .CLT) ) }

# I 1 with t0=0.9
#

p ro j e c t i o n=func t i on ( d i s t , n , alpha )
{x . sample=x . sample . f unc t i on (n , d i s t )
x=x . sample [ 1 : n ]
s=sd (x )
mean=x . sample [ n+1]

z=qnorm(1−( alpha ) / 2)
t0=0.9
x . p a r t i a l=x [ 1 : ( n∗ t0 ) ]

upper=(sum(x . p a r t i a l )+z∗ s ∗ s q r t (n∗ t0 ) ) / f l o o r (n∗ t0 )
lower=(sum(x . p a r t i a l )−z∗ s ∗ s q r t (n∗ t0 ) ) / f l o o r (n∗ t0 )
l ength=upper−lower
i f ( length<=0) { stop ( ” l ength can ’ t be negat ive or 0” ) }
i f ( ( lower<=mean)&&( upper>=mean) ) { in . i n t e r v a l=1} e l s e in . i n t e r v a l=0

return ( c ( length , in . i n t e r va l ,CLT(x , n , s , alpha ,mean) ) ) }

# I 2 (ABSOLUTE SUPREMUM)
#

abs . sup=func t i on ( d i s t , n , alpha )
{b . s=c ( 1 . 6 4 5 , 1 . 7 8 , 1 . 9 6 , 2 . 2 4 , 2 . 5 7 5 , 2 . 8 1 )
a lphas=c ( 0 . 2 , 0 . 1 5 , 0 . 1 , 0 . 0 5 , 0 . 0 2 , 0 . 0 1 )
va lue s=matrix ( c ( alphas , b . s ) , l ength ( a lphas ) ,2 , byrow=F)
i f ( alpha %in% alphas == 0) { stop ( ”Choose a d i f f e r e n t alpha ! ” ) }
b=va lues [ va lue s [ ,1]== alpha , 2 ] # s e l e c t a value o f b accord ing to alpha

x . sample=x . sample . f unc t i on (n , d i s t )
x=x . sample [ 1 : n ]
s=sd (x )
mean=x . sample [ n+1]

k=seq ( 1 : n)
lower=max( ( cumsum(x )−b∗ s ∗ s q r t (n) ) /k ) # Calcu la te the lower bound o f the FACI
upper=min ( ( cumsum(x )+b∗ s ∗ s q r t (n) ) /k ) # Calcu la te the upper bound o f the FACI
length=upper−lower
i f ( length<=0) { stop ( ” l ength can ’ t be negat ive or 0” ) }
i f ( ( lower<=mean)&&( upper>=mean) ) { in . i n t e r v a l=1} e l s e in . i n t e r v a l=0

return ( c ( length , in . i n t e r va l ,CLT(x , n , s , alpha ,mean) ) ) }

# I 3 (SUPREMUM)
#

sup=func t i on ( d i s t , n , alpha )
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{ i f ( d i s t==”normal” )
{a . s=c (0 . 0955 , 0 .1056 , 0 .1131 ,0 .1131 ,0 .0414 ,0 .0502 , 0 . 0577 , 0 .0589 ,0 .0070

, 0 . 0160 , 0 .0231 , 0 . 0236)
va lue s=matrix ( c (n . vec , alpha . vec , a . s ) , 12 ,3 )
a=va lue s [ va lue s [ ,1]==n & va lues [ ,2]== alpha , 3 ] }

i f ( d i s t==”exp” )
{a . s=c (0 .0905 , 0 . 1030 , 0 .1156 , 0 . 1156 , 0 .0376 , 0 .0489 , 0 . 0577 , 0 .0589 , 0 . 0035 ,

0 .0140 ,0 .0226 , 0 . 0236 )
va lue s=matrix ( c (n . vec , alpha . vec , a . s ) , 12 ,3 )
a=va lue s [ va lue s [ ,1]==n & va lues [ ,2]== alpha , 3 ] }

i f ( d i s t==”pareto ” )
{a . s=c (0 . 0754 , 0 .0930 ,0 .1131 , 0 . 1131 , 0 .0263 , 0 .0389 , 0 .0539 ,0 .0564 ,0 .0000

, 0 . 0075 , 0 .0206 , 0 . 0221 )
va lue s=matrix ( c (n . vec , alpha . vec , a . s ) , 12 ,3 )
a=va lue s [ va lue s [ ,1]==n & va lues [ ,2]== alpha , 3 ] }

i f ( d i s t==” po i s son ” )
{a . s=c (0 . 0930 , 0 .1056 ,0 .1131 ,0 .1131 , 0 . 0401 , 0 .0502 ,0 .0577 , 0 . 0589 , 0 .0055 ,

0 .0155 , 0 . 0231 , 0 .0236)
va lue s=matrix ( c (n . vec , alpha . vec , a . s ) , 12 ,3 )
a=va lue s [ va lue s [ ,1]==n & va lues [ ,2]== alpha , 3 ] }

i f ( d i s t==”dpareto ” )
{a . s=c ( 0 .0754 , 0 .0905 , 0 .1106 , 0 . 1131 , 0 .0238 , 0 . 0389 , 0 . 0539 , 0 .0564 , 0 .0000 ,

0 .0065 , 0 .0201 , 0 .0221)
va lue s=matrix ( c (n . vec , alpha . vec , a . s ) , 12 ,3 )
a=va lue s [ va lue s [ ,1]==n & va lues [ ,2]== alpha , 3 ] }

max . a=qnorm(1−(1−alpha ) / 2)
b=qnorm((1− alpha ) /2+pnorm( a ) )

x . sample=x . sample . f unc t i on (n , d i s t )
x=x . sample [ 1 : n ]
s=sd (x )
mean=x . sample [ n+1]

k=seq ( 1 : n)
lower=max( ( cumsum(x )−b∗ s ∗ s q r t (n) ) /k )
upper=max( ( cumsum(x )−a∗ s ∗ s q r t (n) ) /k )

l ength=upper−lower
i f ( length<=0) { stop ( ” l ength can ’ t be negat ive ” ) }
i f ( ( lower<=mean)&&( upper>=mean) ) { in . i n t e r v a l=1} e l s e in . i n t e r v a l=0

return ( c ( length , in . i n t e r va l ,CLT(x , n , s , alpha ,mean) ) ) }

# I 4 (INTEGRAL with m=1)
#

in t .1= func t i on ( d i s t , n , alpha )
{b=qnorm(1−alpha / 2) # s e l e c t a value o f b accord ing to alpha

x . sample=x . sample . f unc t i on (n , d i s t )
x=x . sample [ 1 : n ]
s=sd (x )
mean=x . sample [ n+1]

sum . sum . x=sum(cumsum(x [ 1 : ( n−1) ] ) )
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lower=2/ (n−1)∗ (sum . sum . x/n−b∗ s ∗ s q r t (n) / sq r t (3 ) ) # Calcu la te the lower bound o f
the FACI

upper=2/ (n−1)∗ (sum . sum . x/n+b∗ s ∗ s q r t (n) / sq r t (3 ) ) # Calcu la te the upper bound o f
the FACI

length=upper−lower
i f ( length<=0) { stop ( ” l ength can ’ t be negat ive or 0” ) }
i f ( ( lower<=mean)&&( upper>=mean) ) { in . i n t e r v a l=1} e l s e in . i n t e r v a l=0

return ( c ( length , in . i n t e r va l ,CLT(x , n , s , alpha ,mean) ) ) }

# I 4 (INTEGRAL with m=2)
#

in t .2= func t i on ( d i s t , n , alpha )
{b . s=c ( 0 . 7 6 5 , 0 . 9 4 , 1 . 1 9 5 , 1 . 6 5 5 , 2 . 2 9 , 2 . 7 9 )
a lphas=c ( 0 . 2 , 0 . 1 5 , 0 . 1 , 0 . 0 5 , 0 . 0 2 , 0 . 0 1 )
va lue s=matrix ( c ( alphas , b . s ) , l ength ( a lphas ) ,2 , byrow=F)
i f ( alpha %in% alphas == 0) { stop ( ”Choose a d i f f e r e n t alpha ! ” ) }
b=va lues [ va lue s [ ,1]== alpha , 2 ] # s e l e c t a value o f b accord ing to alpha

x . sample=x . sample . f unc t i on (n , d i s t )
x=x . sample [ 1 : n ]
s=sd (x )
mean=x . sample [ n+1]

sum . x=cumsum(x [ 1 : ( n−1) ] )
k=seq (1 , n−1)
sum . x . k=sum(k∗sum . x )
sum . x . sq=sum( ( sum . x ) ˆ2)
c=(n∗ (n−1)∗ (2 ∗n−1) ) /6

lower=(sum . x . k−s q r t ( ( ( sum . x . k ) ˆ2)−c∗ (sum . x . sq−b∗nˆ2∗ s ˆ2) ) ) /c # Calcu la te the
lower bound o f the FACI

upper=(sum . x . k+sq r t ( ( ( sum . x . k ) ˆ2)−c∗ (sum . x . sq−b∗nˆ2∗ s ˆ2) ) ) /c # Calcu la te the
upper bound o f the FACI

length=upper−lower
i f ( length<=0) { stop ( ” l ength can ’ t be negat ive or 0” ) }
i f ( ( lower<=mean)&&( upper>=mean) ) { in . i n t e r v a l=1} e l s e in . i n t e r v a l=0

return ( c ( length , in . i n t e r va l ,CLT(x , n , s , alpha ,mean) ) ) }

# I 4 (INTEGRAL with m=3)
#

in t .3= func t i on ( d i s t , n , alpha )
{b . s=c (−0.862 , −1.161 , −1.658 , −2.672 , −4.315 , −5.708 , 0 . 873 , 1 . 173 , 1 . 667 ,

2 . 684 , 4 . 3 , 5 . 834 )
a lphas=c ( 0 . 2 , 0 . 1 5 , 0 . 1 , 0 . 0 5 , 0 . 0 2 , 0 . 0 1 )
va lue s=matrix ( c ( alphas , b . s ) , l ength ( a lphas ) ,3 , byrow=F)
i f ( alpha %in% alphas == 0) { stop ( ”Choose a d i f f e r e n t alpha ! ” ) }
a=va lue s [ va lue s [ ,1]== alpha , 2 ] # s e l e c t a value o f a accord ing to alpha
b=va lues [ va lue s [ ,1]== alpha , 3 ] # s e l e c t a value o f b accord ing to alpha

x . sample=x . sample . f unc t i on (n , d i s t )
x=x . sample [ 1 : n ]
s=sd (x )
mean=x . sample [ n+1]

sum . x=cumsum(x [ 1 : ( n−1) ] )
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k=seq (1 , n−1)
c=s ˆ3∗nˆ(5 / 2)

a3=−sum(kˆ3) /c
a2=3∗sum(kˆ2∗sum . x ) /c
a1=−3∗sum(k∗sum . xˆ2) /c
a0=sum(sum . xˆ3) /c

roo t s . a=so l v e ( polynomial ( c ( a0−a , a1 , a2 , a3 ) ) )
upper=as . double ( r oo t s . a [ Im( roo t s . a )==0]) # Calcu la te the upper bound o f the FACI
roo t s . b=so l v e ( polynomial ( c ( a0−b , a1 , a2 , a3 ) ) )
lower=as . double ( r oo t s . b [ Im( roo t s . b )==0]) # Calcu la te the lower bound o f the FACI
length=upper−lower
i f ( length<=0) { stop ( ” l ength can ’ t be negat ive or 0” ) }
i f ( ( lower<=mean)&&( upper>=mean) ) { in . i n t e r v a l=1} e l s e in . i n t e r v a l=0

return ( c ( length , in . i n t e r va l ,CLT(x , n , s , alpha ,mean) ) ) }

# I 4 (INTEGRAL with m=4)
#

in t .4= func t i on ( d i s t , n , alpha )
{b . s=c ( 1 . 0 7 4 , 1 . 5 7 1 , 2 . 4 8 5 , 4 . 6 2 9 , 8 . 7 4 8 , 1 2 . 7 9 )
a lphas=c ( 0 . 2 , 0 . 1 5 , 0 . 1 , 0 . 0 5 , 0 . 0 2 , 0 . 0 1 )
va lue s=matrix ( c ( alphas , b . s ) , l ength ( a lphas ) ,2 , byrow=F)
i f ( alpha %in% alphas == 0) { stop ( ”Choose a d i f f e r e n t alpha ! ” ) }
b=va lues [ va lue s [ ,1]== alpha , 2 ] # s e l e c t a value o f b accord ing to alpha

x . sample=x . sample . f unc t i on (n , d i s t )
x=x . sample [ 1 : n ]
s=sd (x )
mean=x . sample [ n+1]

sum . x=cumsum(x [ 1 : ( n−1) ] )
k=seq (1 , n−1)
c=s ˆ4∗nˆ3

a4=sum(kˆ4) /c
a3=−4∗sum(kˆ3∗sum . x ) /c
a2=6∗sum(kˆ2∗sum . xˆ2) /c
a1=−4∗sum(k∗sum . xˆ3) /c
a0=sum(sum . xˆ4) /c−b

roo t s=so l v e ( polynomial ( c ( a0 , a1 , a2 , a3 , a4 ) ) )
r e a l . r oo t s=as . double ( r oo t s [ Im( roo t s )==0]) # Find bounds o f FACI ( r e a l r oo t s o f

polynomial )
lower=min ( r e a l . r oo t s )
upper=max( r e a l . r oo t s )
l ength=upper−lower
i f ( length<=0) { stop ( ” l ength should not be negat ive or 0” ) }
i f ( ( lower<=mean)&&( upper>=mean) ) { in . i n t e r v a l=1} e l s e in . i n t e r v a l=0

return ( c ( length , in . i n t e r va l ,CLT(x , n , s , alpha ,mean) ) ) }

# I 4 (INTEGRAL with m=8)
#

in t .8= func t i on ( d i s t , n , alpha )
{b . s=c (3 . 3 01 , 6 . 8 32 , 1 6 . 2 34 , 5 3 . 5 36 , 1 81 . 3 68 , 3 83 . 0 02 )
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a lphas=c ( 0 . 2 , 0 . 1 5 , 0 . 1 , 0 . 0 5 , 0 . 0 2 , 0 . 0 1 )
va lue s=matrix ( c ( alphas , b . s ) , l ength ( a lphas ) ,2 , byrow=F)
i f ( alpha %in% alphas == 0) { stop ( ”Choose a d i f f e r e n t alpha ! ” ) }
b=va lues [ va lue s [ ,1]== alpha , 2 ] # s e l e c t a value o f b accord ing to alpha

x . sample=x . sample . f unc t i on (n , d i s t )
x=x . sample [ 1 : n ]
s=sd (x )
mean=x . sample [ n+1]

sum . x=cumsum(x [ 1 : ( n−1) ] )
k=seq (1 , n−1)
c=s ˆ8∗nˆ5

a8=sum(kˆ8) /c
a7=−8∗sum(kˆ7∗sum . x ) /c
a6=28∗sum(kˆ6∗sum . xˆ2) /c
a5=−56∗sum(kˆ5∗sum . xˆ3) /c
a4=70∗sum(kˆ4∗sum . xˆ4) /c
a3=−56∗sum(kˆ3∗sum . xˆ5) /c
a2=28∗sum(kˆ2∗sum . xˆ6) /c
a1=−8∗sum(k∗sum . xˆ7) /c
a0=sum(sum . xˆ8) /c−b

roo t s=so l v e ( polynomial ( c ( a0 , a1 , a2 , a3 , a4 , a5 , a6 , a7 , a8 ) ) )
r e a l . r oo t s=as . double ( r oo t s [ Im( roo t s )==0]) # Find bounds o f FACI ( r e a l r oo t s o f

polynomial )
lower=min ( r e a l . r oo t s )
upper=max( r e a l . r oo t s )
l ength=upper−lower
i f ( length<=0) { stop ( ” l ength can ’ t be negat ive or 0” ) }
i f ( ( lower<=mean)&&( upper>=mean) ) { in . i n t e r v a l=1} e l s e in . i n t e r v a l=0

return ( c ( length , in . i n t e r va l ,CLT(x , n , s , alpha ,mean) ) ) }

# I 5 (LINEAR COMBINATION OF FUNCTIONALS)
#

w1 . in t1=func t i on ( d i s t , n , alpha )
{x . sample=x . sample . f unc t i on (n , d i s t )
x=x . sample [ 1 : n ]
s=sd (x )
mean=x . sample [ n+1]
i=seq (1 , n)

a .1=1
a.2=−6∗a . 1 / (n+3)
a=qnorm( alpha / 2 ,mean=0, sd=sq r t ( a .1ˆ2+a .2ˆ2 /3+a . 1 ∗a . 2 ) ) # s e l e c t ” equal t a i l ” cut−

o f f po in t s
b=−a

lower=(sum(x∗ ( a . 1 ∗n+a . 2 ∗ (n−i ) ) )−b∗ s ∗nˆ(3 / 2) ) / ( a . 1 ∗nˆ2+a . 2 ∗ (n∗ (n−1) ) / 2) #
Calcu la te the lower bound o f the FACI

upper=(sum(x∗ ( a . 1 ∗n+a . 2 ∗ (n−i ) ) )−a∗ s ∗nˆ(3 / 2) ) / ( a . 1 ∗nˆ2+a . 2 ∗ (n∗ (n−1) ) / 2) #
Calcu la te the upper bound o f the FACI

length=upper−lower
i f ( length<=0) { stop ( ” l ength can ’ t be negat ive or 0” ) }
i f ( ( lower<=mean)&&( upper>=mean) ) { in . i n t e r v a l=1} e l s e in . i n t e r v a l=0

return ( c ( length , in . i n t e r va l ,CLT(x , n , s , alpha ,mean) ) ) }
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B.2 Computing empirical expected lengths and

coverage probabilities of FACI’s

################################################################################
# This code r epea t s a FACI computation func t i on f o r 10 ,000 samples o f s i z e n from
# a s p e c i f i e d d i s t r i b u t i o n and con f idence l e v e l . Then i t r e tu rn s
# (Mean length o f FACI) / (Mean length o f I 0) and coverage p r o b a b i l i t i e s
# f o r the FACI and f o r I 0 .
# This i s repeated f o r 60 d i f f e r e n t combinat ions o f d i s t r i bu t i o n , alpha , and n .
#
# Run ”Functions f o r computing FACI bounds” f i r s t !
################################################################################

l i b r a r y ( xtab l e )
l i b r a r y ( polynom )

reps=10000
alphas=c ( 0 . 1 , 0 . 0 5 , 0 . 0 2 )
n . va lue s=c (50 ,100 ,500 ,1000)

n . vec=rep (n . values , 3 )
alpha . vec=c ( rep ( a lphas [ 1 ] , 4 ) , rep ( a lphas [ 2 ] , 4 ) , rep ( a lphas [ 3 ] , 4 ) )
args=matrix ( c (n . vec , alpha . vec ) , 12 ,2 ) # Create a matrix o f arguments f o r the

r e p l i c a t i o n func t i on .

# Choose the m value f o r the s imu la t i on s .
m=1 # I f you change m, re−run the f o l l ow i n g ” i f ” l i n e s .
i f ( e x i s t s ( ” f a c i . fun” ,mode=” func t i on ” ) ) {rm( f a c i . fun ) } # sa f e t y measure : remove

p r ev i ou s l y s e l e c t e d f a c i . fun
i f (m==”abs . sup” ) { f a c i . fun=abs . sup ; seed=25}
i f (m==”sup” ) { f a c i . fun=sup ; seed=−171}
i f (m==”combination ” ) { f a c i . fun=w1 . in t1 ; seed=10}
i f (m==” p r o j e c t i o n ” ) { f a c i . fun=p ro j e c t i o n ; seed=399}
i f (m==1){ f a c i . fun=in t . 1 ; seed=1}
i f (m==2){ f a c i . fun=in t . 2 ; seed=223}
i f (m==3){ f a c i . fun=in t . 3 ; seed=35}
i f (m==4){ f a c i . fun=in t . 4 ; seed=149}
i f (m==8){ f a c i . fun=in t . 8 ; seed=80}

# The order o f the d i s t r i b u t i o n s in the next two l i n e s must match
d i s t s=c ( ”normal” , ”exp” , ” pareto ” , ” po i s son ” , ” dpareto ” )
d i s t s . names=c ( ”$N(0 , 1 ) $” , ”Exp(1) ” , ”Pareto (1 , 2 ) ” , ”Poisson (3 ) ” , ” D i s c r e t e Pareto ” )

s e t . seed ( seed )

f o r ( j in 1 : 5 ) {
rep . f a c i=func t i on ( arg )
{ sample=r e p l i c a t e ( reps , f a c i . fun ( d i s t=d i s t s [ j ] , n=arg [ 1 ] , alpha=arg [ 2 ] ) )

i f (m==”combination ” | m==1 | m==” p ro j e c t i o n ” )
{ r e turn ( paste ( ” ( ” , formatC (sum( sample [ 2 , ] ) / reps , format=” f ” , d i g i t s =3) , ” , ” ,

formatC (sum( sample [ 4 , ] ) / reps , format=” f ” , d i g i t s =3) , ” ) ” , sep=”” ) ) }
e l s e
{ r e turn ( paste ( formatC (mean( sample [ 1 , ] ) /mean( sample [ 3 , ] ) , format=” f ” , d i g i t s

=3) ,
” ( ” , formatC (sum( sample [ 2 , ] ) / reps , format=” f ” , d i g i t s =3) , ” , ” ,

formatC (sum( sample [ 4 , ] ) / reps , format=” f ” , d i g i t s =3) , ” ) ” , sep=”” ) )
}}
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# Apply the r e p l i c a t i o n func t i on to d i f f e r e n t alpha and n va lue s and put the
r e s u l t s in a LaTeX tab l e .

r e s . mat=matrix ( apply ( args , 1 , rep . f a c i ) , nrow=4, nco l=3,F)
d i s t r i b u t i o n=c ( ”” , d i s t s . names [ j ] , ”” , ”” )
r e s u l t s=cbind ( d i s t r i bu t i o n , n . values , r e s . mat)
colnames ( r e s u l t s )=c ( ” D i s t r i bu t i on ” , ”n” , a lphas [ 1 ] , a lphas [ 2 ] , a lphas [ 3 ] )
p r i n t ( x tab l e ( r e s u l t s ) , i n c lude . rownames=FALSE, s a n i t i z e . t ex t . f unc t i on=func t i on (x ) {

x})

# Remove r e s u l t s from workspace to guarantee the next code doesn ’ t a c c i d e n t a l l y
use these r e s u l t s .

rm( r e s u l t s , r e s . mat , d i s t r i bu t i o n , rep . f a c i ) }

B.3 Computing empirical quantiles of
∫ 1

0 W
m(t) dt

# Calcu la t i on o f emp i r i c a l quan t i l e s o f i n t 0ˆ1(W( t ) ) ˆm dt , m=3 ,4 ,8 .

r eps=500000
n=10000
alpha=c ( 0 . 2 , 0 . 1 5 , 0 . 1 , 0 . 0 5 , 0 . 0 2 , 0 . 0 1 )
m=3 # Run th i s code f o r m=3 ,4 , and 8
s e t . seed (m)

s imulate=func t i on (n ,m)
{p=0.5
x=rbinom (n , 1 , p )
s=sd (x )
(1 /n) ∗sum( ( cumsum(x [ 1 : ( n−1)]−p) / ( s ∗ s q r t (n) ) ) ˆm) }

l im . var=r e p l i c a t e ( reps , s imulate (n ,m) )

#########################################################################
################## Even power m ####################
#########################################################################

i f (m%%2 == 0)
{ h i s t ( l im . var , prob=T, breaks=m∗ 100 , xl im=c (0 , quan t i l e ( l im . var , . 9 9 , type=8) ) , x lab=”

” ,main=”” )
# Sample Quant i l e s in S t a t i s t i c a l Packages
# Author ( s ) : Rob J . Hyndman and Yanan Fan
# Recommend us ing the type=8 in the quan t i l e f unc t i on
round ( t ( as . matrix ( quan t i l e ( l im . var ,1−alpha , type=8) ) ) , 3 ) }

#########################################################################
################## Odd power m ####################
#########################################################################

i f (m%%2 == 1)
{ h i s t ( l im . var , prob=T, breaks=m∗ 100 , xl im=c ( quan t i l e ( l im . var , . 0 1 , type=8) , quan t i l e (

l im . var , . 9 8 , type=8) ) , xlab=”” ,main=”” )
# Sample Quant i l e s in S t a t i s t i c a l Packages
# Author ( s ) : Rob J . Hyndman and Yanan Fan
# Recommend us ing the type=8 in the quan t i l e f unc t i on
round ( t ( as . matrix ( quan t i l e ( l im . var , c ( alpha /2,1− alpha / 2) , type=8) , nrows=2,byrow=T)

) ,3 ) }
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B.4 Finding minimizing a’s for I3 of (2.23)

################################################################################
# This code checks the average FACI length based on the supremum fun c t i o na l f o r
# d i f f e r e n t va lue s o f a .
# The ob j e c t i v e i s to f i nd an optimal a f o r the s imu la t i on s .
#
# Run ”Functions f o r computing FACI bounds” f i r s t !
################################################################################

reps=10000
l=51 # number o f a ’ s to con s id e r p lus 1
a lphas=c ( 0 . 1 , 0 . 0 5 , 0 . 0 2 )
n . va lue s=c (50 ,100 ,500 ,1000)

sup . a . sim=func t i on ( arg )
{n=as ( arg [ 1 ] , ”numeric ” )
alpha=as ( arg [ 2 ] , ”numeric ” )
d i s t=arg [ 3 ]
max . a=qnorm(1−(1−alpha ) / 2)
a=seq (0 ,max . a , l ength . out=l )
b=qnorm((1− alpha ) /2+pnorm( a ) )

l eng th s=func t i on (n , alpha , a , b )
{x . sample=x . sample . f unc t i on (n , d i s t )
x=x . sample [ 1 : n ]
s=sd (x )
k=seq ( 1 : n)

lower=NULL
upper=NULL
f o r ( i in 1 : ( l −1) ) #Ignore l a s t a and b as they produce i n f i n i t e va lue s
{ lower [ i ]=max( ( cumsum(x )−b [ i ] ∗ s ∗ s q r t (n) ) /k )
upper [ i ]=max( ( cumsum(x )−a [ i ] ∗ s ∗ s q r t (n) ) /k ) }

l ength=upper−lower
re turn ( l ength ) }

r e s u l t s=r e p l i c a t e ( reps , l eng th s (n , alpha , a , b) )
min . a=a [ which . min ( rowMeans ( r e s u l t s ) ) ]
p l o t ( a [ 1 : ( l −1) ] , rowMeans ( r e s u l t s ) , x lab=paste ( ”min a=” , round (min . a , 4 ) ) , y lab=”

Average FACI length ” ,main=paste ( arg [ 3 ] , ” , alpha=” , alpha , ” , n=” ,n) )
ab l i n e (v=min . a , l t y=”dotdash” )
re turn ( round (min . a , 4 ) ) }

s e t . seed (8238)

########################## Normal #####################

par (mfrow=c (3 , 4) )

n . vec=rep (n . values , 3 )
alpha . vec=c ( rep ( a lphas [ 1 ] , 4 ) , rep ( a lphas [ 2 ] , 4 ) , rep ( a lphas [ 3 ] , 4 ) )
d i s t . vec=c ( rep ( ”normal” ,12) )
args=matrix ( c (n . vec , alpha . vec , d i s t . vec ) , 12 ,3 ) # Create a matrix o f arguments .
apply ( args , 1 , sup . a . sim )

########################## Exponent ia l #####################

par (mfrow=c (3 , 4) )
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d i s t . vec=c ( rep ( ”exp” ,12) )
args=matrix ( c (n . vec , alpha . vec , d i s t . vec ) , 12 ,3 ) # Create a matrix o f arguments .
apply ( args , 1 , sup . a . sim )

########################## Pareto #####################

par (mfrow=c (3 , 4) )

d i s t . vec=c ( rep ( ” pareto ” ,12) )
args=matrix ( c (n . vec , alpha . vec , d i s t . vec ) , 12 ,3 ) # Create a matrix o f arguments .
apply ( args , 1 , sup . a . sim )

########################## Poisson #####################

par (mfrow=c (3 , 4) )

d i s t . vec=c ( rep ( ” po i s son ” ,12) )
args=matrix ( c (n . vec , alpha . vec , d i s t . vec ) , 12 ,3 ) # Create a matrix o f arguments .
apply ( args , 1 , sup . a . sim )

######################### Dis c r e t e pareto #####################

par (mfrow=c (3 , 4) )

d i s t . vec=c ( rep ( ” dpareto ” ,12) )
args=matrix ( c (n . vec , alpha . vec , d i s t . vec ) , 12 ,3 ) # Create a matrix o f arguments .
apply ( args , 1 , sup . a . sim )

60



Bibliography

Abramowitz, M. and I. A. Stegun (1964). Handbook of mathematical functions

with formulas, graphs, and mathematical tables, Volume 55 of National Bureau

of Standards Applied Mathematics Series. U.S. Government Printing Office,

Washington, D.C. (Cited on page 3.)

Casella, G. and R. L. Berger (2002). Statistical Inference (2nd ed.). Wadsworth.

(Cited on pages 12, 25 and 41.)
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