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Abstract

The goal of image compression is to reduce the number of bits required to represent

an image with a minimum loss of visual quality. However, conventional image com-

pression algorithms, such as JPEG, produce unpleasant artifacts in decoded images at

high compression ratios. This thesis investigates a CNN-based approach to improve

the performance of the widely used JPEG codec.

In recent times, there has been an increasing interest in using convolutional neu-

ral network (CNN) for various image processing tasks, owing to their ability to learn

very compact features from images. However, the use of CNNs to improve the per-

formance of existing image codecs is very limited in literature. Motivated by this, we

investigate a CNN based image compression framework which improves the perfor-

mance of the JPEG algorithm by optimally sub-sampling the input image with a CNN

referred to as compact convolutional neural network (ComCNN) prior to JPEG encod-

ing and by performing super resolution and enhancement of the decoded image with

a CNN referred to as enhancement based reconstruction convolutional neural network

(EBR-CNN). Both CNNs are optimally trained to minimize the end-to-end image

distortion for a given value of the JPEG quality factor. Experimental results are pre-

sented which compare the performance of the proposed compression framework with

several alternative learning and non-learning based image sub-sampling and super res-

olution methods. These results show that the proposed method provides noticeable
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improvements in decoded image quality compared to the other alternatives.
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Chapter 1

Introduction

A digital image is a two-dimensional array of pixels where each pixel represents a

color intensity. These intensity values are represented by bits, and the number of bits

required to represent an image determines the amount of computer memory required

to store it. The first digital image was captured in 1957, and it was a black and white

image that contained 176 × 176 pixels. By a black and white image, it means that

each pixel has two states of intensity. Therefore, to represent a pixel digitally, we will

require only one bit. As that image contains 30976 pixels in total, it will take 30976

bits or 3.78-kilobytes (kB) (1 byte = 8 bits) to store it in memory. However, back

then, due to the unavailability of solid-state devices, the computers offered very little

memory space. Also, the computer memory was too expensive. Therefore, the idea of

image compression started receiving attention of the researchers. By compression, it

means to represent any digital content with the smallest possible number of bits. As

the technology evolved, the digital images were no more confined to black and white

and color images also started to become more common place. Typically, a color

image contains three separate color components. If each color component requires 8

bits, each pixel will require 24 bits. Clearly, a color image requires more bits than a
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CHAPTER 1. INTRODUCTION 2

black and white image. The image size can be reduced by using data compression.

However, with compression, the visual quality of an image degrades, and, therefore,

how to achieve the best trade-off between the image quality and the file-size has

become an important research problem. As a result, throughout the last few decades,

we have observed the development of many image compression algorithms. Although

we have achieved many technological breakthroughs in solid-state devices, allowing

us to produce storage devices with high memory capacities at a lower price compared

to the 1980s, our capability to capture very high resolution images has out paced the

developments in storage technology. Moreover, we are using digital platforms in every

aspect of our life, and these services often require the transmission of digital content,

such as images and video wirelessly. However, we always have a very limited allotment

of bandwidth to support these services. As a result, image compression remains an

important research filed. Recently, the application of convolutional neural networks

(CNN) to image compression has been received considerable research attention in last

few years.

1.1 Concept of Image Compression

The main aim of image compression is to reduce the redundancy that presents in an

image, and thereby, to encode an image using the smallest possible number of bits in

order to store or transmit the image at a given reconstruction quality. Typically, there

are three types of redundancies present in any image namely inter-pixel redundancy,

psycho visual redundancy, and coding redundancy [3].

It has been observed that very often neighboring pixels in an image share nearly

the same pixel magnitude. This type of phenomenon is called inter-pixel redundancy.

Psycho visual redundancy occurs in an image due to the fact that the human vision
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sensitivity is selective in nature. It is less sensitive to changes in chrominance (color)

and more sensitive to changes in luminance (brightness). Coding redundancy arises

as the frequency of occurrence of all quantization levels are not same, some are more

frequent and some are less. Therefore, it is not required to represent each quantization

level with the same number of bits. Rather we can assign more bits to the less frequent

levels and less bits to more frequent levels and thereby, we can achieve a lower average

number of bits/level.

Generally, image compression can be divided into two types: lossless compression

and lossy compression. Lossless compression is a reversible process whereas lossy com-

pression is irreversible. Once a file is compressed using a lossy compression method, it

cannot be brought back to the original form exactly. Lossy compression methods are

often used in consumer devices for their much higher compression rate [4]. Typically,

lossless compression is required when information losses are intolerable, e.g., medical

images used for diagnostics. Huffman coding [5], Golomb coding [6] and Arithmetic

coding [7] are some of the common lossless methods of image compression. These

methods adopt what is known as entropy coding to reduce the statistical redundancy

within the image [8]. On the other hand, the state of the art image codecs, such as

joint photographic experts group (JPEG) [9] and JPEG2000 [10] use linear transforms

such as discrete cosine transform (DCT) [11], discrete sine transform (DST) [12], and

wavelet transform together with scalar or vector quantization for very efficient lossy

compression of images.

1.2 Motivation and Contribution of This Thesis

In recent times, there has been an increasing interest in using a convolutional neu-

ral network (CNN) for image compression with the goal of developing better image
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compression algorithms than existing standards such as JPEG and JPEG2000. This

is because the CNNs may have the ability to learn very compact hidden representa-

tions directly from training images. It has been observed in recent research that some

of the CNN based techniques have the potential to outperform the current image

compression standards. However, CNN based image compression research is still in

infancy and the methods developed so far cannot be used to implement a complete

codec with multiple functionalities. For example, it is not possible to vary the bit

rate of a CNN-based image codec as required in most practical applications of image

compression. Therefore, an interesting avenue of research is to enhance the perfor-

mance of a state-of-the-art image codec such as JPEG by incorporating CNN based

pre- and post-processing techniques. This is the goal of this thesis.

Recent research has shown that deep learning and CNNs produce better results

than traditional methods in many image processing tasks. The main contribution of

this thesis an investigation of an approach to improve the performance of the JPEG

codec using CNNs for image sub-sampling, super resolution, and denoising. The

proposed reconstruction framework, on one hand, is capable of reducing the noise

produced by the image codec and on the other hand, is capable of enhancing the

reconstructed image for better visual quality compared to what an lossy image codec

can do alone, particularly under high compression.

1.3 Related Work

When dealing with image compression, some of the main challenges are image re-

construction, removal of noise, and improvement of visual quality. Therefore, the

related work using deep learning can be divided into two categories: (1) image super-

resolution, (2) image deblocking and artifact reduction.
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1.3.1 Image Super-Resolution using Deep Learning

In this section, we will discuss three most popular CNN based image super-resolution

models, namely super resolution convolutional neural network (SRCNN) [13], fast

super resolution convolutional neural network (FSRCNN) [14], and very deep super

resolution convolutional networks (VDSR) [15].

Dong et al. propose a CNN based image super resolution method SRCNN [13],

which can directly learn an end-to-end mapping between a low resolution image and

a high resolution image. The network architecture of this model is very simple,

as it consists of only three layers. Each layer is a convolution layer followed by

ReLu activation function. The hyperparameters of each conv layer are denoted by

(fi, ni, ci) where the variables fi,ni,ci represent the filter size, the number of filters

and the number of channels, respectively. The main tasks of these layers are patch

extraction, non-linear mapping, and reconstruction. The input of the model is a

bicubic interpolated version of a low-resolution image, and the sizes of the high-

resolution output image and bicubic interpolated image are the same. The network

architecture of SRCNN is given in the Figure 1.1.

Later Dong et al. again proposed a method called FSRCNN [14], which is an

improved version of SRCNN. The main difference between SRCNN and FSRCNN is

that in FSRCNN, no pre-processing of the image is needed to get the same size as the

target high-resolution image because up-sampling is done by a transposed convolution
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Figure 1.1: Network architecture of SRCNN.



CHAPTER 1. INTRODUCTION 6

(5,56,1)

D
ec
on
v

LR

SR

C
on
v	
+	
PR

eL
u

C
on
v	
+	
PR

eL
u

C
on
v	
+	
PR

eL
u

C
on
v	
+	
PR

eL
u

C
on
v	
+	
PR

eL
u

(9,1,56)

(1,12,56) (3,12,12) (3,12,12) (1,56,12)

Figure 1.2: Network architecture of FSRCNN.

layer which makes the model faster than SRCNN. The non-mapping layer of SRCNN

is replaced by shrinking, mapping, and expanding steps. The filter size is smaller,

and the network size is deeper in FSRCNN than SRCNN. The network architecture

of FSRCNN is given in the Figure 1.2.

The very deep super resolution network (VDSR) is proposed in [15]. The network

architecture of this model is very deep, as it consists of 20 layers. The residual learning

technique is used here for better performance and acceleration of the training speed.

This technique allows the model to learn the difference between the high resolution

and the interpolated images instead of an end-to-end mapping, as has been done

in SRCNN [13]. The input of the model is just like SRCNN, which is a bicubic

interpolated version of a low-resolution image, and the sizes of the feature maps are

kept the same by doing zero padding. The network architecture of VDSR is given in

Figure 1.3.
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1.3.2 Image Deblocking and Artifact Reduction using Deep Learning

Different types of strategies have been proposed in the literature to remove the block-

ing artifact of the JPEG compressed image. Among them traditional filter-based

methods [16], [17] for image denoising and the sparse coding-based methods [18], [19]

for restoring the compressed images are the most popular. Though these methods

generate sharper images, most of the time their results suffer from additional arti-

facts and time-consuming optimizations [20]. In recent times, deep neural networks,

especially CNN-based methods have been gaining popularity in de-noising and arti-

fact reduction tasks. Artifact removing convolutional neural network (AR-CNN) [21],

denoising convolutional neural network (DnCNN) [22], compression artifact suppres-

sion convolutional neural network (CAS-CNN) [1] are the most popular CNN based

methods. The authors of SRCNN [13] first introduced CNN based artifact remov-

ing network (AR-CNN) [21]. AR-CNN is an extended version of the SRCNN [13]

obtained by adding a feature enhancement layer after the feature extraction layer in
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Figure 1.5: Network architecture of DnCNN.
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Figure 1.6: Network architecture of CAS-CNN [1].

SRCNN. Therefore, the four layers of the AR-CNN are feature extraction, feature

enhancement, mapping, and reconstruction layer. To avoid training difficulties, the

authors train the network in two stages. At first, a shallow network is trained, and

then it is used to initialize the final four-layer CNN. The network architecture of

ARCNN is given in the Figure 1.4.

Zhang et al. propose the deep denoising convolutional neural network (DnCNN)

architecture [22] for several general image denoising tasks such as Gaussian noise,

single image super-resolution, and JPEG image deblocking. The depth of the network

is set to 20 layers. The DnCNN does not predict the denoised image directly. It

is trained to predict the residual error, and a denoised image can be obtained by

subtracting the output of the network from the input. Residual learning [23] and

batch normalization [24] technique are adopted in this network for the improvement

of denoising and fast training. The network architecture of DnCNN is given in the

Figure 1.5.

CAS-CNN [1] is a 12-layer deep convolutional network for image compression arti-

fact suppression. A residual architecture, an edge emphasized loss function, symmet-

ric weight initialization, and skip connections are introduced to train deep networks

for regression tasks without any difficulty. The authors propose a neural network with
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hierarchical skip connections and a multi-scale loss function for compression artifact

suppression. The network architecture of CAS-CNN is given in the Figure 1.6.

1.4 Outline of the Thesis

Chapter 2 represents some preliminaries about the thesis to follow. It describes a

background to deep learning including backpropagation, optimization methods, and

activation function.

Chapter 3 gives the description of problem formulation and provides the details

of network architecture.

Chapter 4 presents the training procedure and the parameters settings used in

this thesis. It also includes the experimental results with comparative and individual

analyses of the results.

Chapter 5 concludes the thesis with a summary of findings and direction for future

work.



Chapter 2

Overview of Convolutional Neural

Networks

The objective of this thesis is to investigate an approach to improve the performance

of the JPEG algorithm by using CNNs for pre- and post-processing. An overview of

the basic JPEG algorithm is provided in Appendix A. In this chapter an overview of

CNNs is provided.

2.1 Convolutional Neural Networks

CNNs are one of the most popular approaches for deep learning with image data.

CNNs are originally proposed by LeCun in 1989 for handwritten ZIP code recognition

[25]. A CNN consists of an input layer, several hidden layers, and an output layer.

Examples of hidden layers are convolutional layers, pooling layers, and fully connected

layers. Based on the specific application, CNN architectures vary in the number and

type of layers. For example, for categorical purposes, the network should include a

classification layer.

10
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The neurons in a CNN receives input from only small portion of an image at a

time. Pixels from such a small block is processed by a convolutional filter to extract

fetures. Features are then captured by the respective feature maps of the network

and multiple different feature maps are used to make the network robust to varying

levels of contrast, brightness, noise, etc. in images.

2.2 Convolutional Layers

A convolutional layer performs the convolutional operation between the input and a

specific filter. A convolutional operation is shown in Figure 2.1. The output of a con-

volutional operation is called a feature map. Normally, the input of the convolutional

operation is an image if the layer is the first layer of the network. If the convolutional

layer is not the first layer of the network, then the input is a feature map produced

by the previous layer. The filters are smaller than the input, and for this reason, it

is possible to perform the convolution operation multiple times at different points on

the input. The filters are a set of weights and also known as the kernels. A layer with

input X produces a feature map Z by performing a convolution of X with a filter

F [26].

Figure 2.1: A convolutional operation between input image X and the the filter F .
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The size of the feature map depends on the size of the filters and padding pref-

erences. If the requirement is to preserve the input volume in the output volume,

then zero padding is required. Zero padding means adding the symmetrical amount

of zeros around the edges of input. The amount of padding to be used along the filter

dimension f is given by p = f−1
2

. However, when the requirement is reducing the

size of the feature map, then a stride parameter is needed. Any data volume size can

be achieved by adjusting the stride parameter. The stride parameter controls how

many pixels the filter should skip when moving the filter horizontally or vertically.

The dimension of the feature map is given by

Nout =
Nin + 2p− f

s
+ 1,

where Nin is input size, f is kernel/filter size, and s is stride.

2.3 Method of Learning the Parameters in CNN

The method of learning the weight parameters in CNN includes two steps: (1) forward

propagation to determine the outputs and (2) back propagation to update the weights.

To understand these steps, let us consider a convolutional layer with a filter F , an

input X, and an output O as shown in Figure 2.2. During forward propagation, we

move across CNN, moving through its layers to compute the O of each layer which is

a convolution operation between X and filter F (see previous section) and at the end

we obtain loss L using the loss function. In latter step, we feed the loss L backwards

to get the loss gradient ∂L/∂O at each layer from the previous layer. Then the loss

is further propagated to the inputs of each layer as shown in Figure 2.2. This step

is known as back propagation. Now to update the weights of filter F , we need to
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Loss	gradient	
from	the	next	layer

convolution

convolution

Figure 2.2: A schematic view of learning method.

compute ∂L/∂F and plug it in an weight updating rule based on an optimization

algorithm (see Figure 2.2), and ∂L/∂X becomes the loss gradient of the previous

layer. We will highlight more about the optimization algorithm in next section.

The value of these gradients are computed using the chain rule. It can be shown

that the local gradient ∂L/∂F is nothing but a convolution operation between input

X and the loss gradient ∂L/∂O while the local gradient ∂L/∂X is a full convolution

operation between a 180-degree rotated filter F and loss gradient ∂L/∂O [27].

2.4 Optimization Algorithms

Different types of optimization algorithms are available in the literature, and each

algorithm has a different approach to calculate, update, and find the optimal values
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of model parameters. Some of the most important examples are briefly described

below. For more details see [26].

2.4.1 Stochastic Gradient Descent

Stochastic gradient descent (SGD) is one of the most popular optimization algorithms

in deep learning. Instead of using the whole dataset per gradient calculation, SGD

uses a small portion of the dataset that is called a batch. Using batches during the

training of a CNN, computational complexity per weight update can be reduced.

The main aim of SGD is to reach the minima using approximate gradients for each

batch of training data, where each batch is randomly sampled from a dataset. The

pseudo-code of SGD optimization is given in Algorithm 1.

In each iteration, the gradients of the objective function are calculated with re-

spect to the weight. Then the difference is taken to update the weights. Before

performing weight update, the gradients are scaled by learning rate α to balance out

the contribution and avoid over-correction.

Algorithm 1 Stochastic Gradient Descent Algorithm

1: θ, Initial parameter
2: ε, Learning rate
3: D, Dataset
4: m, Batch size
5: while stop criterion not met do
6: {xi, yi}← sample batch pairs (D)
7: d← 1

m
5θ

∑
i L(f(xi; θ), yi) . compute gradient

8: θ ← θ − εd . update weights
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2.4.2 Adam

Currently, Adam is one of the most popular optimization algorithms because of its

robustness to hyper-parameters, fast convergence speed, little memory requirements,

and straightforward implementation. The authors of [28] state that the name Adam

is derived from adaptive moment estimation. The main differences between SGD and

Adam lies in the incorporation of adaptive learning rates and momentum. SGD does

not consider the previous step while updating the weights; rather, it always consid-

ers constant steps towards the minimum. However, the addition of momentum with

SGD means giving the gradient a better ability to update the weight by taking into

consideration the previous step. Momentum helps to accelerate SGD in the relevant

direction and dampening the oscillations [29]. When a method computes individual

learning rates for different parameters, it is called an adaptive learning rate method.

As Adam is an adaptive learning rate method, it computes individual adaptive learn-

ing rates for different parameters from estimates of first and second moments of the

gradients [28]. The authors of [28] describe Adam as combination of adaptive gra-

dient algorithm (AdaGrad) [30] and root mean square propagation (RMSProp) [31].

These two methods are the adaptive learning rate methods and the extensions of

SGD. By maintaining an adaptive learning rate, AdaGrad can operate effectively on

sparse gradient problems, and RMSProp can work well on online and non-stationary

problems [28]. In the RMSProp algorithm, the learning rates are adapted based on

the average of recent magnitudes of the gradients for the weight. During the adaption

of learning rates, Adam not only considers the average first moment (the mean) like

RMSProp but also considers the average of the second moments of the gradients (the

uncentered variance) [28].

The pseudo-code of Adam optimization is given in Algorithm 2.
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Algorithm 2 Adam

1: θ, Parameter Set
2: ε, Learning rate
3: D, Dataset
4: m, Batch size
5: ρ1, ρ2, Decay rates
6: δ, Small constant used for numerical stability
7: s← 0, r ← 0, First and second moments
8: t← 0, Step
9: while stop criterion not met do

10: {xi, yi}← sample batch pairs (D)
11: d← 1

m
5θ

∑
i L(f(xi; θ), yi) . compute gradient

12: s← ρ1s+(1−ρ1)d
1−ρ1t . Update first moment

13: r ← ρ2r+(1−ρ2)d�d
1−ρ2t . Update second moment

14: θ ← θ − ε s√
r+δ

. Update weights
15: t← t+ 1

2.5 Activation Function

The selection of a proper activation function is essential to the design a CNN. Different

types of activation functions are presented in the literature. Among them, the most

widely used activation function is called ReLu, which is also used in this research

work. Mathematically, it is defined as

f(x) = max(0, x).

The ReLu function is shown in Figure 2.3. This type of function is differentiable and

also easy to compute. It does not suffer from the vanishing gradient problem that

arises in training of neural networks with a large number of layers [32].
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Figure 2.3: ReLu activation function.

2.6 Batch Normalization

During the training of deep neural networks, the distribution of each layer’s input

changes due to the change of the previous layers parameters. As a result, the training

algorithm slows down and the training process becomes harder. This problem is

referred to as the internal covariate shift [24]. Ioffe et al. [24] propose a method

known as batch normalization to solve this problem. To reduce the internal covariate

shift, batch normalization normalizes each scalar feature independently, by setting it

to zero mean and unit variance and then scaling and shifting the normalized value

for each training mini-batch according to

xi =
(xi − µ)√
σ2 + ε

γ + β, (2.1)

where γ is the scale parameter, and β is the shift parameter. γ and β are often

initialized at 1.0 and 0.0, respectively. Mean (µ), and variance (σ2) are computed

across each batch. During training, µ and σ2 are the current input mini-batch statis-
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tics, and during the evaluation, they are replaced with running average statistics over

the training data. Moreover, batch normalization allows to speed up the training by

using a higher learning rate and reduces strong dependency on initialization. It also

improves gradient flow through the network. More details can be found in [24].

In convolutional layers, the same normalizing mean and variance are applied at

every location within a feature map to ensure the statistics of feature map remain

same regardless of spatial location [26]. A minor modification is needed in equation

2.1 to perform batch normalization in CNN which is described in [24].

2.7 Residual Learning

Another problem in training CNN is the degradation of the training accuracy with

the increasing network depth. The authors of [23] proposed residual learning of CNN

to solve this problem. A residual neural network is composed of units where a layer

output is not only fed into the next layer but also into a subsequent ones skipping the

layers in between. It has been shown in [23] that the learning of a residual mapping

is much easier than the original unreferenced mapping.



Chapter 3

Methodology

3.1 Problem Description

A general block diagram of the image compression system investigated in this thesis

is shown in Figure 3.1. In this diagram X represents the image to be compressed

and Y is a sub-sampled version of X. The image Y is encoded and decoded with a

Sub-sampling JPEG	Encoder

Super	resolution
&

Denoising
JPEG	Decoder

Encoder

Decoder

Figure 3.1: Block diagram of underlying problems.
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standard JPEG image codec to produce a quantized version Ŷ . The docoded image

goes through denoising and super resolution operations to get an approximation close

to the original image X. By super resolution we refer to the task of restoring the

sub-sampled version of the image back to high resolution (HR). The key advantage

of this approach is due to the fact that we are quantizing a smaller image so that we

can perform higher compression but with better visual quality compared to directly

quantizing the original full size image. However, such an approach poses several

challenges which are described below.

On one hand, the fundamental problem with image sub-sampling is that we are

fixing the sampling-rate such as 1/2, 1/4 etc. and by doing so we are at the risk

of getting aliasing artifacts if the sampling-rate is lower than the Nyquist rate of

the image. On the other hand, quantization typically results in blocking artifacts,

especially at low bit-rate. Thus the performance of the system critically depends on

the sub-sampling and quantization processes. Additionally, restoring the image back

to the HR is also challenging as there is no proper definition of a mapping between

the sub-sampled space to the HR space. Also, the sub-sampled image could be a

cropped portion of the original HR image and, therefore, it can be intractable to map

the sub-sampled image to the HR space [33].

In the system we investigate, while the estimation of Y from X suffers only from

sub-sampling and blurring, the estimation of X̂ from Ŷ suffers from quantization

artifacts introduced by the JPEG codec. Therefore, the estimation of X̂ is more

complex and harder compared to estimating Y from X especially under high com-

pression. Previous research show that, a CNN can learn complex nonlinear mapping

involved in for image sub-sampling, super resolution, and compression artifact re-

moval from training data [1], [15], [22]. This is the motivation behind the approach
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investigated in this thesis.

A more detailed block diagram of the proposed system is shown in Figure 3.2. In

this system a CNN architecture referred to as the compact representation convolu-

tional neural network (ComCNN) [34] is used for sub-sampling the image to half the

original size. The sub-sampled image is then quantized using the JPEG image codec.

The quantized version of the image is then restored back to the original size using

another CNN which performs a joint image super resolution and removal of JPEG

coding artifacts. In this thesis, we propose a CNN architecture referred to as the

enhancement based reconstruction convolutional neural network (EBR-CNN) for this

purpose. Once both CNNs have been trained, the encoding of an image is done by us-

ing the ComCNN and the JPEG encoder, while decoding is done by using the JPEG

decoder and the EBR-CNN. The CNN based sub-sampled and super resolution tech-

niques tend to produces superior results compared to traditional methods as CNNs

can be explicitly trained to minimize the information loss via training. Traditional

JPEG

conv+R
eL
u

conv+R
eL
u

conv

ComCNN

Compact	Representation Decoded	Image

Reconstructed	Image

Original	Image	

conv+B
N
+R

eL
u

Residual

conv

conv+B
N
+R

eL
u

conv+B
N
+R

eL
u

D
eC

onv

conv+R
eL
u

conv+R
eL
u

EBR-CNN

Figure 3.2: Block diagram representation of the proposed image compression framework.
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methods such as bilinear or bicubic image sampling, does not involve minimization

of a loss function [35].

3.2 Architecture of ComCNN

We have closely followed the ComCNN architecture described in [34]. A summary

of this architecture is given here for completeness. The complete network consists of

three layers as follows:

1. The first layer is a convolutional layer with 64 filters, each with size 3 × 3.

This layer uses a stride of 1 and padding to maintain the dimension of the

input. The output of this convolutional layer is followed by a ReLU activation

function. The main purpose of this layer is to extract overlapping patches from

input image [34].

2. The second layer is also a convolutional layer where the number of filters, size

of the filters, and padding remain the same as of the first layer. Like the first

layer, the output of this layer is also followed by a ReLU activation function.

The main purpose of this layer is to downscale the input image to half of its

original size, and, therefore, the stride is set to 2.

3. The final layer is used for generating the sub-sampled image and, therefore, a

convolution layer with only 1 filter of size 3 × 3 is used. The stride is set to 1

and the padding remains unchanged.

We train the ComCNN independently from the rest of the system.
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3.2.1 ComCNN Training Strategy

The image set {X train
i ,X train

i } is used to train the ComCNN, whereX train
i represents

the original HR images and i = 1, .., N . The main goal of ComCNN is to learn a

mapping fcom(X train) that predicts a compact representation of an image. As the

compact image and the original HR image both have different spatial resolutions,

they are not directly comparable in training the network. In this case, either we need

to sub-sample the original HR image to match the size of the compact image or up-

sample the compact image to match the original HR image. The exact method used

to address this issue is not mentioned in [34]. Note that if we sub-sample the original

HR image, there will be an inevitable loss of information. Therefore, we decided to

up-sample the compact image to match with the original HR image using bicubic

interpolation for training the network. Accordingly the loss function used to train

the ComCNN is defined as

lcom(θcom) =
1

N

N∑
i=1

||g(fcom(X train
i ;θcom))−X train

i ||2,

where θcom represents trainable weight parameters of the mapping function fcom(.)

and g(.) denotes the bicubic up-sampling operator.

3.3 Proposed Architecture of EBR-CNN and Justification

In this section we describe in detail the architecture of the EBR-CNN proposed in this

thesis for reconstruction of the JPEG codec output. EBR-CNN consists of eighteen

weight layers. As mentioned earlier, this CNN is required to both perform super

resolution of the JPEG codec output to the size of the original input image and the

removal of compression artifacts produced by the JPEG codec. The main idea that



CHAPTER 3. METHODOLOGY 24

we propose here is to optimize a single CNN to jointly perform both tasks. This

is achieved by cascading the FSRCNN proposed in [14] for image super resolution

and DnCNN proposed in [22] for image denoising. The purpose of each layer in the

EBR-CNN is described below:

1. Feature extraction: The first layer performs the convolution on the JPEG

decoded output and uses ReLU as the activation function. This layer generates

56 feature maps of the sub-sampled image with 5× 5 filters.

2. Shrinking: The dimension of the feature maps of the first layer is very large

and, therefore, if directly mapped to HR feature space, it will make the com-

putational complexity of mapping step very high. Thus a shrinking layer is

adopted to reduce the feature dimension of the sub-sampled image. This layer

is formed by a convolution layer and a ReLU activation function which generates

16 feature maps using 1× 1 filters.

3. Non-linear mapping: This is the most important step which affects the per-

formance of super-resolution. Multiple (third to sixth) convolution layers with

ReLu activation functions are used instead of a single wide layer, which deter-

mines both the mapping accuracy and complexity. Each layer contains 12 filters

of size 3× 3.

4. Expanding: This seventh layer acts as the inverse of the shrinking layer. It is

introduced to expand the low-dimensional features so that a good restoration

quality can be achieved. This layer generates 56 feature maps using filters of

size 1 × 1 for convolution and ReLU activation function is used at the output

of each layer.

5. Deconvolution: The eighth layer up-samples and aggregates the feature maps
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obtained from previous layer with deconvolution using a filter size of 9×9. The

deconvolution, which is the opposite operation of the convolution, performs up-

sampling by using a stride larger than 1. The output of this layer is an image

which has the same size as the original HR image.

6. Denoising: Rest of the layers are designed to predict the residual error instead

of predicting the denoised image directly. In this way, the final reconstruction

image can be obtained by adding the deconvolutional layer output and the

residual error. These layers are also convolutional layers which generates similar

number (64) of feature maps using 64 filters of size 3 × 3 followed by batch

normalization and ReLu activations except the last layer. The last layer is the

convolutional layer. As this layer generates the final output, a single filter with

size 3× 3 is used.

All hyperparameters used in EBR-CNN are listed in Table 3.1.

When designing EBR-CNN the ideal objective is to first remove compression ar-

tifacts from the sub-sampled image and then perform super resolution. This would

Table 3.1: Hyperparameters used in EBR-CNN.

Layer number layer name Filter size Number of filter Activation function Batchnormalization

1 conv layer 5,5 56 ReLU no
2 conv layer 1,1 16 ReLU no
3 conv layer 3,3 12 ReLU no
4 conv layer 3,3 12 ReLU no
5 conv layer 3,3 12 ReLU no
6 conv layer 3,3 12 ReLU no
7 conv layer 1,1 56 ReLU no
8 deconv layer 9,9 1 n/a no
9 conv layer 3,3 64 ReLU yes
10 conv layer 3,3 64 ReLU yes
11 conv layer 3,3 64 ReLU yes
12 conv layer 3,3 64 ReLU yes
13 conv layer 3,3 64 ReLU yes
14 conv layer 3,3 64 ReLU yes
15 conv layer 3,3 64 ReLU yes
16 conv layer 3,3 64 ReLU yes
17 conv layer 3,3 64 ReLU yes
18 conv layer 3,3 1 n/a no
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prevent compression artifacts being amplified during super resolution. However, as

ground truth for sub-sampled image is not available, it is not possible to train the

system to denoise the sub-sampled image first. Performing super resolution prior to

denoising allows training of the combined network to minimize the loss between the

original and reconstructed HR images.

3.3.1 EBR-CNN Training Strategy

Let Ŷ
train

i be the output of the JPEG codec for the training set X train
i , i = 1, .., N .

The image set {Ŷ
train

i ,X train
i } is used to train the EBR-CNN network. Residual

learning [23] strategy is adopted during EBR-CNN training to achieve better per-

formance and faster convergence of the training algorithm. Therefore, the goal of

this network is to learn a residual mapping as well as predict the residual image

rtrainEBR = X train−fLU(Ŷ
train

i ), where fLU(.) is the up-sampling operator performed by

the deconvolutional layer of EBR-CNN. The loss function used to train the EBR-CNN

is defined as

lEBR(θEBR) =
1

N

N∑
i=1

||fEBR(Ŷ
train

i ;θEBR)− rtrainEBR,i||2,

where θEBR represents the weight parameters of the EBR-CNN mapping function

fEBR(.).

In principle, a better approach is to train both ComCNN and EBR-CNN as a

single network. However, this would involve back propagation of the derivatives from

EBR-CNN to ComCNN through the JPEG codec. This is not straight forward as the

quantization involved in the JPEG codec is a non-differentiable operation.



Chapter 4

Experimental Results

In this chapter, we present experimental results to demonstrate the performance of the

image compression system proposed in chapter 3. These results include comparisons

of the proposed system with several other alternatives.

4.1 Design Procedure

The design of the proposed image compression system consists of the following steps.

1. Image compression in the proposed system is performed by a standard JPEG

codec. The bit rate in bits per pixel (bpp) of the system is therefore determined

by the quality factor (QF) setting of the codec. QF can be varied in the range

1−100, where a lower value corresponds to higher compression and, therefore, a

lower bit rate. However, QF required to achieve a given bit rate depends on the

image being compressed and, therefore, QF has to be chosen by trial-and-error

to achieve the desired bit rate.

2. Training ComCNN using the available training sets of images.

27
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3. Training EBR-CNN for the ComCNN obtained in step 2 and the JPEG codec

with the chosen QF setting.

All experiments have been implemented using Python with the Keras library [36],

[37] running on the Tensorflow backend. Training is performed on a ASUS ROG

STRIX G531G computer with an Intel Core i7-9750H 2.60GHz CPU, 16 GB of RAM,

and an NVIDIA GeForce GTX 1650 GPU. The operating system is Windows 10.

4.2 Parameters Settings

The proposed image compression system is trained using the stochastic gradient de-

scent (SGD) algorithm with an Adam optimizer [28]. The optimizer is initialized with

the following default parameters: β1 = 0.9, β2 = 0.999, ε = 1× 10−8.

One of the main advantages of Adam optimizer is that it performs well with the

default parameter values in most problems [38]. Although Adam optimizer can work

well without using learning rate decay, it is sometimes useful to decrease the learning

rate in order to limit the maximum per-parameter learning rate value [38]. Taking

this into account, the initial learning rate is set to 0.001 and decayed exponentially

for each epoch according to the rule

lr = lr0 exp(−kt),

where t is the epoch number, lr is the learning rate for current epoch. The initial

learning rate lr0 and the exponential constant k are the hyper parameters.

The filters weights of ComCNN and EBR-CNN are initialized using the He initial-

izer [32]. In He initialization, the weights are subtracted from a uniform distribution

with zero mean and a variance that depends on the size of the layer’s input. The rea-
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son behind is taking into account the number of inputs during initialization to make

the training faster and more efficient. Both ComCNN and EBR-CNN are trained for

50 epochs. Due to memory constraints of the computer, the batch size has been set

to 64.

4.3 Training and Testing Datasets

The training dataset is taken from [39] which contains 400 images with size 180×180.

Instead of training the network using whole images, each image is divided into multiple

number of patches so that the network can learn the features that are present in small

areas (e.g. edges) and thus can improve generalization ability of the network [40].

The number of image patches depends on the stride size. The patch size is set

to 40× 40 and the stride is set to 20. Therefore, 64 patches are extracted from each

image using the equation

N =

⌊
M − P
S

+ 1

⌋2
,

where N is the number of patches of size P × P extracted from an image of size

M × M , using a stride S. As the performance of a deep learning network depends

on the size of the data set used to train it, we further increase the size of our data

set by introducing data augmentation [40].

Data augmentation creates modified samples of the original data which expands

the diversity of the dataset. This process involves augmenting each patch 8 times by

random horizontal and vertical flips as well as rotations by random angles. As a result,

we obtain 400×64×8 = 204800 patches in total, which are used to train the two CNNs.

For testing, we use 8 well known images shown in Figure 4.1 which are commonly



CHAPTER 4. EXPERIMENTAL RESULTS 30

(a) Cameraman (b) House (c) Pepper

(d) Butterfly (e) lena (f) Ship

(g) Star fish (h) Parrot

Figure 4.1: Testset. The sub-figures (c), (e), (f) have dimension of 512× 512 while the rest
has dimension of 256× 256 each.

used in literature to bench mark the performance of compression algorithms. Note

that the test images are not included in the training set.

4.4 Performance Metrics

The most common performance metrics used for evaluating image compression algo-

rithms are:

� Peak signal-to-noise ratio (PSNR)
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� Mean square error (MSE)

� Structural similarity index modulation (SSIM)

4.4.1 Peak Signal-to-Noise Ratio (PSNR)

PSNR is the most commonly used performance metric to measure the quality be-

tween the original and compressed images. The PSNR is calculated between two

images in the logarithmic decibel scale. It is the ratio between the maximum possible

power of the signal and the power of distorting noise that affects the quality of its

representation. The PSNR is defined as

PSNR = 20 log10

[
255√
MSE

]
dB.

4.4.2 Mean Square Error (MSE)

The MSE refers to the average of the squared error between the original and com-

pressed images. The MSE is defined as

MSE =
1

mn

m∑
i=1

n∑
j=1

[I ′(i, j)− I(i, j)]2,

where I ′ is the compressed image and I is the original image. The size of the image

is m× n.

4.4.3 Structural Similarity Index Modulation (SSIM)

SSIM is a method to calculate the perceptual difference between two similar images.

This method is used to compare luminance, contrast, and structure of two images.
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SSIM of original image (X) and compressed image (Y) can be defined as

SSIM(X, Y ) =
(2µxµy + C1) + (2σxy + C2)

(µ2
x + µ2

y + C1)(σ2
x + σ2

y + C2)
,

where µx and µy are the local means for image X and image Y . Similarly, σx and

σy are the standard deviation of image X and Y , σxy = σx × σy, and C1, C2 are

regularization constants.

4.5 Alternatives Used for Comparison

Different types of learning- and non-learning based techniques have been used to

evaluate the performance of the proposed compression framework along with JPEG

codec alone.

� Pure non-learning based approach shown in Figure 4.2, which will refer to as

the method-1. In this method, sub- and up-sampling operations are performed

using bicubic interpolation.

JPEG

Decoded	Image

Original	Image

Up-sampled	Image

Compact	Representation

Bicubic
Up-sampling

Bicubic
Sub-sampling

Figure 4.2: System architecture of Method-1.
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Figure 4.3: System architecture of Method-2.

� The method-2 (see Figure 4.3) adopts the learning based approach ComCNN for

sub-sampling the image. However, bicubic interpolation is used for upsampling

operation.

� In method-3 (Figure 4.4) sub-sampling operation is performed using ComCNN
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Figure 4.4: System architecture of Method-3.
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but reconstruction is performed using bicubic up-sampling and DnCNN [22].

All systems use the same bit rate (bpp). However, each system requires a different

QF to achieve a given bit rate which has been found by trial-and-error, using the

Algorithm 3 in Appendix B.

To compare the experimental results quantitatively, we have used PSNR and SSIM

as quality metrics. We also compare the visual quality of the reconstructed images

for qualitative evaluation. Table 4.1−4.6 present the PSNR and SSIM comparisons

of the investigated methods for all test images. Each table compares the performance

of all methods at a given compression ratio as determined by a value of QF. However,

note that, in each table, all methods use the same bit rate for a given image.

Table 4.1: Comparison of PSNRs (dB) for JPEG QF=5.

Test
Images

bpp JPEG only Method-1 Method-2 Method-3 Proposed

Cameraman 0.2 24.45 24.73 24.89 25.76 26.21
House 0.2 27.77 29.61 29.70 30.81 31.11
Peppers 0.2 27.26 29.20 29.34 30.35 30.64
Butterfly 0.3 23.80 24.39 24.46 26.86 27.07
Lena 0.2 27.32 29.84 29.88 30.89 31.08
Ship 0.2 25.56 26.49 26.58 27.41 27.56
Starfish 0.3 23.99 24.71 24.75 25.83 26.04
Parrot 0.3 24.51 25.00 25.15 25.58 25.58

Average 0.2 25.59 26.75 26.84 27.94 28.16



CHAPTER 4. EXPERIMENTAL RESULTS 35

Table 4.2: Comparison of PSNRs (dB) for JPEG QF=10.

Test
Images

bpp JPEG only Method-1 Method-2 Method-3 Proposed

Cameraman 0.3 26.47 25.44 25.73 27.23 27.33
House 0.3 30.56 30.69 30.92 32.63 32.75
Peppers 0.2 30.15 30.22 30.39 31.61 31.63
Butterfly 0.5 26.67 26.57 26.72 29.22 29.32
Lena 0.2 30.41 31.35 31.44 32.37 32.51
Ship 0.3 28.13 28.23 28.45 29.44 29.53
Starfish 0.4 26.72 26.57 26.73 28.34 28.55
Parrot 0.4 26.84 26.01 26.28 26.99 27.09

Average 0.3 28.24 28.14 28.33 29.73 29.84

Table 4.3: Comparison of PSNRs (dB) for JPEG QF=15.

Test
Images

bpp JPEG only Method-1 Method-2 Method-3 Proposed

Cameraman 0.4 27.71 25.99 26.25 27.84 27.84
House 0.3 32.07 31.15 31.43 33.08 33.32
Peppers 0.3 31.55 30.63 30.86 31.94 32.16
Butterfly 0.6 28.15 27.59 27.61 30.32 30.53
Lena 0.3 31.95 32.04 32.14 33.14 33.24
Ship 0.4 29.53 28.69 28.95 30.01 30.00
Starfish 0.6 28.20 27.54 27.50 29.45 29.47
Parrot 0.5 28.08 26.57 26.72 27.53 27.68

Average 0.4 29.66 28.78 28.93 30.41 30.53

Table 4.4: Comparison of SSIMs for JPEG QF=5.

Test
Images

bpp JPEG only Method-1 Method-2 Method-3 Proposed

Cameraman 0.2 0.7262 0.7569 0.7602 0.8030 0.8111
House 0.2 0.7731 0.8003 0.8012 0.8359 0.8388
Peppers 0.2 0.7118 0.7977 0.7964 0.8329 0.8358
Butterfly 0.3 0.7412 0.7872 0.7871 0.8647 0.8673
Lena 0.2 0.7324 0.8226 0.8236 0.8487 0.8510
Ship 0.2 0.6582 0.7163 0.7193 0.7472 0.7492
Starfish 0.3 0.7083 0.7513 0.7540 0.7984 0.8002
Parrot 0.3 0.7124 0.7926 0.7957 0.8276 0.8309

Average 0.2 0.7205 0.7781 0.7797 0.8198 0.8231
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Table 4.5: Comparison of SSIMs for JPEG QF=10.

Test
Images

bpp JPEG only Method-1 Method-2 Method-3 Proposed

Cameraman 0.3 0.7951 0.7948 0.7982 0.8412 0.8429
House 0.3 0.8184 0.8259 0.8301 0.8609 0.8623
Peppers 0.2 0.7916 0.8282 0.8276 0.8570 0.8567
Butterfly 0.5 0.8417 0.8551 0.8566 0.9173 0.9187
Lena 0.2 0.8214 0.8586 0.8608 0.8792 0.8802
Ship 0.3 0.7673 0.7891 0.7942 0.8167 0.8167
Starfish 0.4 0.8162 0.8292 0.8314 0.8701 0.8724
Parrot 0.4 0.8136 0.8329 0.8378 0.8634 0.8652

Average 0.3 0.8082 0.8267 0.8296 0.8633 0.8644

Table 4.6: Comparison of SSIMs for JPEG QF=15.

Test
Images

bpp JPEG only Method-1 Method-2 Method-3 Proposed

Cameraman 0.4 0.8359 0.8237 0.8207 0.8589 0.8589
House 0.3 0.8470 0.8371 0.8417 0.8680 0.8704
Peppers 0.3 0.8275 0.8413 0.8415 0.8648 0.8649
Butterfly 0.6 0.8826 0.8854 0.8792 0.9326 0.9356
Lena 0.3 0.8586 0.8740 0.8759 0.8891 0.8913
Ship 0.4 0.8137 0.8069 0.8118 0.8329 0.8336
Starfish 0.6 0.8615 0.8554 0.8528 0.8910 0.8906
Parrot 0.5 0.8559 0.8559 0.8532 0.8762 0.8784

Average 0.4 0.8478 0.8474 0.8471 0.8767 0.8779
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From Table 4.1, it can be seen that methods which use image sub-sampling and

super resolution perform better than the JPEG algorithm used alone. Even the non-

learning based approach achieves a 1.16 dB gain in PSNR and a 0.185 gain in SSIM.

However, as QF is increased (reduced compression), the JPEG codec outperforms the

non-learning based approach, method-1. This is quite expected, as a JPEG algorithm

introduces less blocking artifacts with less compression. However, the problem with

non-learning based image sub-sampling and reconstruction is that, only bicubic up-

sampling are not able to significantly reduce the noise introduced by sub-sampling

and compression, rather they amplify noise during the up-sampling operation. A

better solution can be achieved by the addition of learning based approach ComCNN

for image sub-sampling which is trained to preserve more useful information [34].

However, as we still use bicubic up-sampling during image reconstruction, the gains

in PSNR over JPEG algorithm decreases with increasing QF.

It is well known in literature that CNN based image reconstruction methods often

outperform traditional methods such as simple bicubic/bilinear methods [41]. Our

experimental results also seem to support this observation. The relative performance

gains of the proposed method over the other methods are presented in Table 4.7

and Table 4.8. It is noticeable from these experimental results that, as the QF is

increased, the performance gap between the JPEG algorithm alone and the CNN

based approaches closes. Such behavior of CNN based approaches is to be expected

as CNNs are trained to eliminate artifacts due to image sub-sampling and JPEG

compression. As the QF is increased, compression artifacts largely disappear and

hence the performance gap closes.

The visual quality comparisons for QF = 5 and QF = 10 are presented in Fig-

ure 4.5−4.8. It can be seen that blocking artifacts due to JPEG compression are
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more obvious in the images decoded directly with the JPEG codec. However, these

artifacts are less visible when JPEG compression is performed on a compact repre-

sentation of the original image. Both method-3 and the proposed method achieve

better visual quality than rest of the methods investigated here. Method-3 and the

proposed approach not only reduce the visual artifacts significantly but also preserve

more visual details on both edges and textures as well.
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(a) Original (b) JPEG only

(c) Method-1 (d) Method-2

(e) Method-3 (f) Proposed Method

Figure 4.5: Visual quality comparison of reconstructed images (Butterfly, QF=5).
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(a) Original (b) JPEG only

(c) Method-1 (d) Method-2

(e) Method-3 (f) Proposed Method

Figure 4.6: Visual quality comparison of reconstructed images (Butterfly, QF=10).
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(a) Original (b) JPEG only

(c) Method-1 (d) Method-2

(e) Method-3 (f) Proposed Method

Figure 4.7: Visual quality comparison of reconstructed images (Lena, QF=5).
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(a) Original (b) JPEG only

(c) Method-1 (d) Method-2

(e) Method-3 (f) Proposed Method

Figure 4.8: Visual quality comparison of reconstructed images (Lena, QF=10).
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4.6 Comparisons of Computational Time

In the previous section, we have seen that both the DnCNN and EBR-CNN based

image compression frameworks perform quite similarly in terms of gains in PSNR,

SSIM, and reducing visual artifacts. Therefore, it is necessary to evaluate the per-

formance of these two frameworks through a different performance metric to better

understand why adopting EBR-CNN in post-processing phase can be beneficial over

DnCNN in compression framework. To do so, we computed the total time required

to train both the networks over 50 training epochs with similar training strategies as

mentioned in chapter 3 and the results are presented in Figure 4.9. Also, we computed

the MSE during each training epoch and is presented in Figure 4.10. From Figure 4.9,

it can be seen that the proposed image reconstruction method has considerably lower

training time compared to the DnCNN (around 8.5 hours which is nearly half of the

times required to train DnCNN). That is, the proposed method converges faster to a
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16

Figure 4.9: Total Training time as a function of epochs.
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Figure 4.10: MSE vs epoch.

lower MSE than the DnCNN which is also evident in Figure 4.10.

4.7 EBR-CNN Depth Analysis

When designing the EBR-CNN network, it is important to pay attention to the num-

bers of layers being used in the network. The number of layers is referred to as the

depth of the network. The first 8-layers of EBR-CNN are designed according to FS-

RCNN [14]. During depth analysis we fix the first 8-layers which perform different

tasks such as feature extraction, shrinking, non-linear mapping, expanding, and de-

convolution. The purpose of the rest of the layers are to learn the residue which are

designed as mentioned in DnCNN [22]. From the experimental results available in the

literature we can conclude that increasing the depth in general increases the perfor-

mance of CNNs [23], [42]. Since the enhancement layers are designed in a similar way,

we perform depth analysis on the enhancement layers by varying the number of layers
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Table 4.9: PSNR results for different depth sizes of EBR-CNN

Image Depth=13 Depth=18 Depth=28
Cameraman 27.26 27.33 27.37
House 32.65 32.75 32.75
Pepper 31.52 31.63 31.64
Butterfly 29.40 29.32 29.36
Lena 32.59 32.51 32.41
Ship 29.47 29.53 29.53
Starfish 28.37 28.55 28.54
Parrot 27.09 27.09 27.03

Average 29.79 29.84 29.83

between 5 to 20 along with the 8 initial layers. Table 4.9 compares the performance

of EBR-CNN with different numbers of layers. It can be seen that increasing depth

size of 13 layers (8 initial layers + 5 enhancement layers) to 18 layers (8 initial layers

+ 10 enhancement layers) also increases the performance. The performance with a

depth size of 28 layers (8 initial layers + 20 enhancement layers) is quite similar that

with depth size of 18 layers but involves a higher complexity and a lot more training

time. We, therefore, used 18 layers to produce the final results.

4.8 Robustness to Quality Factors Variations

In the proposed method, EBR-CNN is trained for a given QF and hence a given bit

rate. Using the same system with a different QF setting will inevitably results in a

performance degradation. To investigate the sensitivity of the proposed method to

QF, we decided to test the proposed method on never seen artifacts that arise due to

different JPEG QFs. In order to conduct the experiment, the proposed method was

trained for QF=5, QF=10, and QF=15 and was then tested on QFs in the range 5 to

30. During testing, each image from the testset is first compressed by setting QF to a

given value in the interval 5 to 30 and then passed through an EBR-CNN trained for a
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Figure 4.11: Robustness of PSNR performance against QF mismatch.

different QF. Then the PSNR and SSIM of each reconstructed image were measured.

The results shown here have been obtained by taking the average PSNR and SSIM

over whole set of test images. It should be noted that the test images are not included

in training set. Figure 4.11 and 4.12 show performance comparisons of EBR-CNN

trained with different QFs. It is clear that the EBR-CNN performs best only if the

QF used during training matches the QF used to compress the images under testing.

However, it can be seen from the results that the EBR-CNN shows fair amount of

robustness to deviation of QF from the value used during training. For example, the

performance of EBR-CNN trained for QF=10 remains within about 1dB in PSNR

and 0.2 in SSIM of the performance EBR-CNNs trained for QF=5 and QF=15.

4.9 Experimental Results on Standard Image Datasets

In order to evaluate the effectiveness and robustness of the proposed method, we

conducted experiments on three standard datasets including Set5 [43], Set14 [44]
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Figure 4.12: Robustness of SSIM performance against QF mismatch.

and Urban100 [45]. The average PSNR and SSIM results are shown in Table 4.10.

From these results, it can be observed that the performance of the proposed method

consistently outperforms the JPEG algorithm alone for all three datasets.

Table 4.10: Average PSNR(dB) and SSIM results of JPEG and the proposed method for
quality factors 5,10 and 15 for Set5, Set14 and Urban100.

Datasets
Quality
Factors

JPEG
Proposed
method

PSNR SSIM PSNR SSIM

Set5
5 26.20 0.7216 29.40 0.8397
10 29.06 0.8184 31.33 0.8805
15 30.55 0.8562 32.05 0.8947

Set14
5 24.92 0.6791 26.93 0.7587
10 27.52 0.7889 28.34 0.8204
15 28.91 0.8348 28.97 0.8433

Urban100
5 23.39 0.6988 25.05 0.7759
10 25.65 0.7984 26.51 0.8358
15 26.94 0.8378 26.99 0.8449



Chapter 5

Conclusion and Future Work

In this thesis, we have investigated an approach to improve the performance of the

JPEG algorithm at high compression using a CNN framework, which uses a CNN to

sub-sample the input image prior to the JPEG encoding and another to up-sample and

denoise the decoded image. The main contribution of this thesis is the investigation

of a novel CNN, referred to as the EBR-CNN, used for joint denoising and super

resolution of the JPEG compressed images.

The experimental results have demonstrated that proposed method can consis-

tently outperform the standalone JPEG codec. The results have also shown that

the proposed EBR-CNN can be trained much faster and achieves better performance

than the previously reported DnCNN which has been widely used in the literature

for image denoising.

Although EBR-CNN shows very promising results, there is room for further im-

provements. One possibility is to train both ComCNN and EBR-CNN to minimize an

end-to-end loss function. There is evidence in the literature which suggest that such

end-to-end training can lead to improvements. However, end-to-end training of two

CNNs which sandwich a JPEG image codec is an open research problem as rounding

49
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function used in quantization is not differentiable as required by the back propagation

algorithm. It would be also interesting to explore new ways to increase the perfor-

mance of the trained models while maintaining their competitive speed by varying

the number and size of the layers and filters. Finally, another interesting avenue of

research is to incorporate variable rate compression into the proposed method.



Appendix A

An overview of JPEG algorithm

JPEG algorithm is the most widely used lossy compression algorithm for images.

Typically, a lossy compression method discards some amount of information from

an image to obtain higher compression rates than purely lossless methods. Since it

throws out a certain level of information, it is not possible to recover the original

image from compressed data. Obviously, the decoded image quality degrades with

the level of compression. Block diagram representation of the JPEG encoder and

decoder are shown in Figure A.1 and Figure A.2 respectively.

It is known that neighboring pixels of an image are highly correlated, which gives

rise to spatial redundancy in an image. Therefore, the first step of JPEG encoding

DCT Quantizer Zig-Zag
Scanning

Run-length
	Encoder Huffman	Encoder

Bit	Storage

Block
Preparation

Figure A.1: JPEG encoder.

51
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IDCT

DequantizerReverse	Zig-Zag
Scanning

Run-length
	DecoderHuffman	Decoder

Bit	Storage

Image
Builder

Figure A.2: JPEG decoder.

is block preparation, which captures some neighboring pixels in a block. Typically,

a blocks of size 8 × 8 are considered. The spatial frequency of magnitudes can vary

significantly within such a block [46]. It has been found out that the human visual

system is less sensitive to high spatial frequencies than the lower ones. If the magni-

tude of high spatial frequency components falls below a specific threshold, then they

will not be detected by human eyes [46]. Therefore, it is possible to introduce some

level of compression without degrading the perceptual quality of an image just by

discarding some or all of higher frequency components in an image. To do so, first,

we need to transform the original spatial domain image input into the equivalent

frequency domain, which will help to capture the high-frequency components. In the

JPEG algorithm, this is done by using the discrete cosine transform (DCT). over-

all compression can be achieved by applying relatively coarse quantization to these

frequency components.

The forward DCT can be expressed as

F (u, v) =
2

N
C(u)C(v)

N−1∑
x=0

N−1∑
y=0

f(x, y) cos[
π(2x+ 1)u

2N
] cos[

π(2y + 1)v

2N
],
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where u and v = 0, ....N − 1, N = 8, and

C(k) =


1√
2

for k = 0

1 otherwise,

and the inverse DCT can be expressed as

f(x, y) =
2

N

N−1∑
u=0

N−1∑
v=0

C(u)C(v)F (u, v) cos[
π(2x+ 1)u

2N
] cos[

π(2y + 1)v

2N
],

where x and y = 0, ....N − 1. The Forward DCT is a part of the JPEG encoder,

while the inverse DCT belongs to the JPEG decoder. With forward DCT, we will get

a matrix of DCT coefficients. The top-left DCT coefficient in the matrix is the DC

coefficient, and the rest are AC coefficients. Now to eliminate the higher frequency

components, quantization is performed over the matrix of DCT coefficients. This is

done by dividing each DCT coefficient by its corresponding quantizer step size and

Figure A.3: Sample quantization table [2].
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then rounding to the nearest integer [46]. Quantized coefficient are obtained as

FQ(u, v) = Round(
F (u, v)

Q(u, v)
),

where Q(u, v) represents the quantization step sizes as shown in Figure A.3, and the

decoded DCT coefficients are given by

F ′Q(u, v) = FQ(u, v)×Q(u, v).

After quantization, many zeros appear in higher frequencies. These quantized co-

efficients can be stored more efficiently by rearranging the elements in zigzag order

from left to bottom to get an array of quantized coefficients and applying run length

coding for lossless compression. The rest of quantized coefficients are encoded with

an entropy encoder, e.g., Huffman encoder.
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Algorithm 3

1: Initialize: OBPP = 0, TBPP = 0, QF = x, QFt = 50, fo = 0,ft = 0

2: Get an image

3: Get image height h and width w

4: Encode the image with QF

5: Compute the binary file size fo

6: Calculate, OBPP ← fo
h×w

7: Get compact representation of original image using ComCNN

8: while true do

9: Encode with QFt

10: Compute binary file size ft

11: Calculate, TBPP ← ft
h×w

12: VBPP ← (OBPP − TBPP )

13: if THL ≤ VBPP ≤ THH then . where THL represents low threshold value

and THH represents high threshold value

14: return QFt

15: break

16: else if VBPP > THH then
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17: a← QFt + 1

18: b← QFt +QFt

19: QFt ← ba+b2 c

20: else if VBPP < THH then

21: c← bQFt − QFt

2
+ 1c

22: d← QFt − 1

23: QFt ← b c+d2 c

24: break
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