
CASCADE REALIZATION OF COMPLEX WAVE DIGITAL
Ah{D ANALOG NETWORKS

by

Gordon B. Scarth

A thesis presented to the Faculty of Graduate Studies

University of Manitoba
in panial fulfillment of the requirements for the degree

Doctor of Philosophy

Febrruary 1992, Winnipeg, Manitoba



E*H ),*låtTo*'
Acquisitions and
Bibliographic Services Branch

395 Wellington Street
Ottawa, Ontario
K1A ON4

The author has granted an
irrevocable non-exclus¡ve licence
allowing the National Library of

Bibliothèque nationale
du Canada

Direction des acquisitions et
des services bibliographiques

395, rue Well¡ngton
Ottawa (Ontario)
K1A ON4

Canada to reproduce, loan,
distribute or sell cop¡es of
his/her thesis by any means and
in any form or format, mak¡ng
this thesis available to interested
persons.

The author retains ownership of
the copyright in his/her thesis.
Neither the thesis nor substantial
extracts from it may be printed or
otherwise reproduced without
his/her permission.

L'auteur a accordé une licence
irrévocable et non exclusive
permettant à la Bibtiothèque
nationale du Canada de
reproduire, prêter, distribuer ou
vendre des copies de sa thèse
de quelque manière et sous
quelque forme que ce soit pour
mettre des exemplaires de cette
thèse à la disposition des
person nes i ntéressées.

You¡ lile VoIrc rclércnce

Ou l¡le Noke rélérence

L'auteur conserve la propriété du
droit d'auteur qu¡ protège sa
thèse. Ni la thèse ni des extraits
substantiels de celle-ci ne
doivent être imprimés ou
autrement reproduits sans son
autorisation.

ISBN Ø-3L3-778L6-4

Canadä



CASCÄDE REALIZá,TION OF GOI{PLEK WAVE DIGITAI

AND ANÄIOG NEI'TTORKS

GORDON B. SCARTE

BY

A thes¡s submitted to the Faculty of Graduate Studies of the University of Manitoba Ín partiat
fulf-dlment of the requirements for the degree of

Permission has been granted to the LIBRARY OF THE UNMRSITY OF MANITOBA to
lend or sell copies of this thesis to the NATIONAL LIBRARY OF CANADA to microfilm this
thesis and to lend or sell copies of the fïlm, and UMVERSITY MICROFILMS to
publish an abstract of this thesis.

The author reserves other publication rights, and neither the thesis nor extensive extracts
from it may be printed or otherwise reproduced without the author's written permission.

DOCTOR OF PHILOSOPEY

@ 1992



I hereby declare that I am the sole author of this rhesis.

I authorize the University of Manitoba to lend this thesis to other institutions or individuals
for the ptupose of scholarly resea¡ch.

I fu¡ther authorize the University of Manitoba to reproduce this thesis by photocopying or
by other means, in total or in part, at the request of other institutions or individuals for the
purpose of scholarly research.

Gordon B. Scarth

Gordon B. Scarth



Fettweis first proposed that a complex reference network can be implemented using real
wave digital (WD) elements by requiring the properry known as one-realness. A one-real

network simply has a real driving-point impedance when evaluated at uniry. This thesis

developes a new theory for complex wave digital flMD) filters allowing the reaüzation of
general complex reference nen'vorks without alteration to make them one-real. Thus the

networks do not require the properry of one-realness and all quantities are allowed to be

complex.

A port reference impedance is now allowed to be complex, containing a constant
positive resistance and a constant reactance (imaginary resistor). The volrage wave incident
and reflected wave variables,.4 and B, are redefined as

A=V +ZI
B=V-Z'I

and the familiar concept of the WD mapping of analog networks is preserved. The
generalization reduces to the known theory of real WD friters if all quantities are real and,

funhermore, a stabilify theory exists. The resulting definition of power is the same as

suggested by Fettweis. The existence of complex port impedances is necessary and

sufficient for the computability of a complex WD nenvork unless the ne¡work is composed

of one-real sections, when the port impedances can be real. Thus, a motivation for the
generalization is found in the additional degree of freedom in the choice of the imaginary
part of the port reference (that is, there is an additional parameter), which can be used

simultaneously to guarantee computability of the complex WD ne¡pork and to simplify the

CWD elements.

Many useful complex dynamic and non-dynamic one-ports, as well as non-dynamic

two-ports that do not have a real WD equivalent can now be defined from the new

definitions of the signal variables. The analog series connected imaginary resistor when

viewed as a two-port has a complex WD equivalent as a simple pass-through connection.

ln conrast, the analog parallel connected imaginary resistor when viewed as a t\ilo-port has

a WD equivalent of a pair of mutually inverse conjugate multipliers in the signal paths

which is a hybrid form of scaling. Thus the definition of the voltage waves has a bias

towards series connections. Similarly, the dual def,rnition of complex current waves has a

bias towards parallei connections.

The new definitions of the incident and reflected wave variables lead to new dehni¡ions

for the complex n-port series and parallel adaptors which allow complex port references.

üi-
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The complex series three-port adaptor with a reflection-free port has the same scattering

matrix as the real case. Thus, no extra computations are needed, that is, there is no penalty
for having free parameters in the port references. The complex ttree-port parallel adaptor is

more complicated than the series adaptor. Equivalences berween the three-port adaptors

only exist when each adaptor contains a reflection-free port, in which case each adaptor can

be decomposed into combinations of real two-port adaptors and pairs of murually inverse

conjugate multipliers.
The complex reference networks are designed using a new generalization of the

synthesis algorithm, given in [16], to the complex domain. The algorithm is novel since it
does not require the use of zero-finding or polynomial manipulation routines associated

with the determination of intermediate polynomials, namely, it is based entirely on
polynomial evaluations. Complex networks a¡e derived with general fi¡st-order complex

sections which are capable of independentiy realizing a transmission zero anywhere in the

complex plane. It is found that a more judicious representation for a complex elementary

section, from the viewpoint of network synthesis, is a set of canonic parameters rather than

the set of lumped-element parameters. The canonic parameters completely cha¡acterize a

section and are given by the location of the transmission zero, the reflectance evaluated at

the transmission zero, and for reciprocal sections, the return group delay (or simply the

delay) evaluated at the ransmission zero.

A complex WD ladder network is realized from a complex reference filter using one of
nro methods. The first method rnaps a complex reciprocal reference network to the

equivalent CWD network on an element-by-element basis. This inherently requires the use

of complex three-port series and parallel adaptors. The second method maps a complex
elementary section as a dynamic two-port to the CWD equivalent. This method requires at

most two real normalized two-port adaptors and two unimodular multipliers for each

dynamic section, which is referred to as the canonic cascade section. From the examples
presented, the realization method using the cascade section appears less sensitive to binary
quantizations than the method using three-port adaptors.
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The theory of complex networks has a rich hisory f35,40,43,451. Until numerical

algorithms operating on a sampled signal (ie. digital ñlters) became popular, this theory

found linle practical applicæion. V/ith the adventof the numerical cornput€r, complex

networks have been realized by several authors [2G31,63-66] using complex digtal
filters. Applications include SSB-FDM modulation [65], transmultiplexer design [63-
&,661, non-symmetric bandpass filters Í35,431and complex modulation (complex

envelope representation) [75]. A morc general application is the realization of a rcal

tra¡rsfer function using complex networks 153-55,70,741. The usefulness is enhanced by

special purpos€ digttal signal processors (DSP) thu a¡e opnmized for complex operations.

Many different design philosophies exist for the r€aliz¿¡1sn of a complex network with
each having inherently different cha¡acteristics. The designer would logically wish to use

the method of realization that contains the rnost attr¡rctive properties. Of the many classes,

the class of wave digrtal (WD) filters as originated by Ferweis [1] is the most promising

tl8l. A properly designed rtrD filter inherits many of the beneficial properties of the analog

filter it is derived f¡orn, henceforth known as the refercnce filær. These include low
sensitivity to parametric deviæions [6J. Other attractive properties under non-linear (digital)

conditions include zero-input stability [3,6], forced-response stability [6,7], suppression of
limit cycles [3,O, and a continuous input-ouçut rclationship [7].

Fetnveis first introduced complex WDF in [2ó] where he stated that it may be possible

to realize a complex reference network using real WD elernents and unimodular multiplien

if the reference network contains a property known as one-realness. A one-real network is

cqnposed of elernents thu have a real input inpedance a¡V = 1 in the tf plane. The

necessity for the condition arises from using real pon-reference impedances (discussed in

the next chapær). For a computable WDF, there cannot exist a delay-free path. For a one-

port, this translaæs ino the condition thæ the rcflectance p must be zero at V = I [26].
The deñnition of the reflectance with real references is given by

Chapter I

Introduction

where Z (y)is the complex driving-point impedance of the one-port and R is the real port

reference. This gives the condition that

I

n =z(vò- 
nr Zfi)+ R

(1.1)



and thus the name "one-real".

Obviously, a general complex ladder network is not one-real stnceZ(ty= 1)is usually
complex for each brranch impedance, and thus it cannot be reaiized using real WD elements

without alteration to make it one-real. Any complex impedance function in the ydomain
can be made externally one-real by introducing a constant phase change in the reflectance

function. After a one-real impedance function has been derived from a general impedance,

the problem then arises of how to extract one-real sections, or sections that have an

impedance of the form [26]

Z(yll¡y=y=R

However, a one-real impedance function is not necessarily ¡salizable as an interconnection

of one-real branch impedances in a ladder configuration. Indee{ a trivial example of a
doubly-terminaæd series inductor and imaginary resistor was made one-r€al, but sections

could not be extracted in the fomr of a doubly-terminated one-real LCX lumped-element

one-ports. This suggests that an externally one-real network does not imply internal one-

realness in the t¡domain, analogous to the way external passivity does not imply internal

passivity.
With real WD nenvorks, a panicular passive linear classical filter can always be realized

with either twe.port or three-port adaptors [6]. However, it is not known if a complex

ladder WD filter in the t/domain can be reålized using real three-port adaptors since no

examples of cascade synthesis exist, and no indication of any method of realization has

been proposed (excluding the case where a complex filær is decomposed into real filters
with real arithmetic operations throughout Ín,281). This leads to the question as to

whether or not such a realization using the one-real theory is possible. It is not known if
non-reciprocal filter sections with transmission zeros anywhere on the Wplane can be

real iz ed using one-realness.

A one-real complex ladder realization does exist tf areal WD ladder network is

frequency shifted in the s domain instead of the t¡domain [26] (the relation between the

complex frequencies s and yis found in Section 4.1, equation (a.3)). It exists because

the corresponding form of the t¡domain frequency variable, resulting from the shifting in
the s domain, maps areal immitunce into a one-real immittance as given by the form of
(1.3). The shifting in the s domain introduces a unimodular multiplier in series with each

delay and the port reference impedance remains real. However, the discussion given above

implies that approximation methods used to induce desirable properties in the t¿domain

z (v4= n(L * iavl
\V+JA I

/ t î\
\L.L)

( 1.3)
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(for example, a f,ilter with linea¡ phase in the z domain) that result in a complex ladder flrlter

cannot be realized using one-realness. Namely, any transformations on a ladder LC filter
in order to create a complex one-real filter must be performed after the real wave digital LC
filter has been realized.

Greater success has been found in the realization of one-real lattice WD filters

127,28,561. It has been found that the one-real property is not restrictive when realizing
complex lanice WD f,rlters arising from real even-order classical filters [28]. This is
because the function being realized is a complex one-port reflect¿nce, which corresponds to

a WD allpass function. The reflectance is made one-real by exracting a constant phase

change in the form of a unimodular multiplier. When a constant phase is removed from an

allpass function, another allpass function remains (which is now one-real). Thus a real
two-port adaptor, a unimodular multiplier and delay can be extracted as a building block
and the larice is formed using a form of the Schur algorithm [32]. Another form of this
section is the so-called Cross adaptor [56] which requires only two independent real
quantizations in its implementation, however it is poorly scaled.

Non-WD complex lattices have also been developed [29-31]. All of the above lanice

realizations are essentially equivalent to within a scaling transformation on the ports of rhe

two-port building blocks; that is, simple scaling multipliers in the signal paths.

Another configuration for a network is the ladder realization, which reelizss ¿

transmittance rather than a reflectance. A transmittance has the input and oulput at different
ports, while a reflectance has the input and output at the same port, and therefore is a one-
port. Thus one-port synthesis realizes a reflectance. All the ransmission zeros of a
network a¡e realized directly with a transmittance, whereas a reflectance realizes all
transmission zeros of a network through cancellation (that is, in order to create a zeÍo at the

output port, two signals must cancel exactly, which is usually difficult to achieve in a
finite-precision digital realization). This leads to higher stopband sensitiviry for the

reflect¿nce compared to the transmittance and thus to higher stopband sensitivity for a one-
port. Note that the property of low passband sensitivity is inherited from the analog

doubly-terminated network From these observations, the lattice approach will not be

used, and the ladder realization will be implemented exclusively.
The use of real port imp€dances with corunon complex elements that a¡e not one-real

have a WD equivalent that may be either non-computable or unnecessarily complicated.

This is a reason for not using real port impedances for complex networks which are not
one-real. For example, consider either a series or parallel connection of an imaginary
resistor viewed as a two-port as shown in Figure 1.1.



ívhS12
o-¡-.<{
+-+
V1 V2

Figure 1.1: Constant complex two-pøE: a) series+onn€cted imagrnary resistor

b) parallel+onnectcd imaginary resistor.

The diagonal elements of the scuæring ma¡rix (d€scribed in ttre next chapter) describing
either the series-connected (1.4a) or the parallel-connected (1.4b) irnagmary resistor

a)

s- I- - R,R2 + A (Rl + R, f-nrnz 

.#;i'* nz) 

-RtRz?i-,- n) ] ,,.0.,0,

s- I l-Rr+R2+iX ZRt

R1 + R2 * jxl 2R2 R1- R2+ jX

must be non-zero forreal port references, and thus the ports canrþt be made reflection-free.
This will normally lead to delay-free loops within a structurc containing the above

elements. An analog one-port source with an irnaginary resistor as shown in Figure 1.2

b)

A

Figure 1.2: One-pøt source and imaginary resistø using real port references.

has the WD equivalent with real port impedances shown on the right in the above figrrre.

This flow diagram is clearly not the usual combination of a source and sink. Consider as a

last example a one-port inductor in series with an irnagtnary resisor as shown in Figure

1.3.

jx



Figure 1.3: One-port inductor and imaginary resistor using real port references.

The WD equivalent is clearly more compücated than the real case (X = 0) since it requires

three multiplications and two additions. Also, the interconnection of rhe above WD
equivalent with a tlnee-port adaptor will create a delay-free loop.

Other cascade filter structures can be found in the literature, including the orthogonal

[29] and uniury filters [77]. These stn¡ctures a¡e based on signal flow diagrams that
possess the unitary property which is associated with beneficial scaling characteristics.
However, the stn¡cnres are derived without the use of port impedances, and therefore they
do not explicitly inherit the properties of analog networks. Thus, the conceptuaily pleasing

characteristic that the synthesis in either the analog or the discrete domain (using WD
filters) is equivalent, is not inherited by the stn¡ctures without port impedances. Since no

direct advantage has been identified for not transferring analog characteristics, and since

Fenweis has shown that the orthogonal (unitary) filters are equivalent to normalized WD
filters [18], the WD filters with the beneficial properties outlined earlier may be the
preferred choice for a general complex digital filter stn¡ctu¡e.

In this thesis, the author will rederive the theory of WD filten in order to give a truly
general theory of complex WD networks. The generalization to complex WD networks
should reduce to the known theory of real WD net'works if all quantities a¡e restricted to be

real. Clearly, the generalization is useless if either of the following cannot be guaranteed:

first all of the familiar WD elements must 5ç ¡ealizable, and second, a simple stability
theory must exist and follow from the definition of power (similar to the real case).

In order to guarantee these t'wo objectives, the definitions of the incident and reflected
(voltage) wave quantities a¡e redefined to allow complex port reference impedances. This
new definition requires that all WD components must be rederived. It was found by the

author [53-54] that this generalization allowed the realization of complex lanice WD
networks using only the complex two-port adaptor and delays (no external multipliers), and

a simple stability theory exists which gives the beneficial properties of zere'input and

forced-response stability. The earlier work by the author [53] only supported a highly

1L+fr
2L+jX

-JX
2L+jX

R=L
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restricted class of complex filærs.

A motivation for the generalization is found in the additional degree of freedom in the

choice of the imaginary part of the port impedance, that is, there is an additional param€ter.

The exisænce of the itnagnary part of the port imp€dance (leading to the theory developed

in this thesis) is necessary and sufficient to grnrantee that a complex rilD network is

computable as shown by the following theorem.

Theorem 1.1:

ln general, a complex \VD cascade netwøk is computable if and only if the port
rcference impedances are allowed to be complex; when the complex nenvork is

one-real, the pøt impedances can be chosen to be real.

Proof:

ln order to show necessity, consider the interconnection of wo adjacent

complex WD dynamic or constant two-ports. At the interconnection, the reflectance

of either port has the following form:

where Zs is the real or complex port reference impedance wittr a positfue real part,

úd4V4 is the input impedance of the appropriæe port under consideration.

Although it may difficult to identify the reference input impedance from the WD
counterpart, the existence of Z(y) is sufficient for the proof.

A computable network possess€s the property that the otal delay within every

loop is a positive integer multiple of a basic &lay 16,731 (the proof as given for the

real case is based on graph theory and thus also applies fø complex discrete

networks). This implies thu every loop must contain at least the term z-r (adelay)

as a factor. At the interconnection of two ports a loop is bisected, and thus the

reflected signal frorn either the left port 6 the right pøt (or possibly both) must

contain positive delay. Thus either the reflecunce of the right pøt or the reflectance

of the left port (ø possibly both) must be zero rcgardless of the associated incident

signal at z -- -, that is, when V = l. This is consistent with the need fø reflection-

free ports within a WD structure. Thus, for the complex WD network to be

computable, it is clear from (1.5a) above and the observation that at least one

reflectance must be zero at tll= 1, that

^ -4vò- zôr Avò+zo
(1.5a)

4v= rl= zõ (r.sb)
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for one of the complex input impedances. If Z$y = 1) is complex, which is tnre in
general for complex nerworks, then at least one port impedance must be complex
within the WD network for the flowgraph to be computable. A special case of this
is an interconnection of one-real two-ports, where the evaluation of (1.5b) is a real
constant. In this case the port reference impedance can be chosen to be real. In
either case the port interconnection criterion was ass¡,rmed to be satisfied.

The proof for the sufficiency of allowing complex port reference impedances

will follow through constn¡ction from the development given in Chapters tV and V.

The purpose of this thesis is to derive the many remaining complex WD elements in
order to realize complex ladder networks (as opposed to the complex lattice) and more
general reference networks that have not yet been investigated To this end the following
will present the new definitions of all of the complex'WD elements that a¡e needed to realize
general complex ne¡works.

Complex analog networks will be reviewed in Chapter tr along with the definition of
the complex fnst-order and zeroth-order elementary sections. Equivalences between the

real Brune section and two complex reciprocal sections are given as well as several

equivalences between the complex sections.

The network synthesis algorithm given in t16l will be generalized to the complex

domain in Chapter Itr. The motivation for the development of the algorithm as well as

impiementation considerations will be discussed
Chapter [V introduces complex wave digital filærs with the new definitions of the wave

variables. Many useful dynamic and non-dynamic one-port as well as constant two-port
equivalences are given. The new definitions for the series and parallel adaptors with
complex impedances is given as well as the definition of the two-pon adaptor. Several

adaptor equivalences conclude the chapter.

Complex WD ladder filters are realized in Chapter V. First, the realization method
employing three-port adaptors is outlined and examples a¡e given. Finally, a new complex
first-order section, known as the canonic cascade section, is derived and examples using
the section are prcsented-

This thesis concludes with Chapter VI which stâtes several observations and

summffizes the thesis.



In order to justify the need for the generalization of wave digltal ñlters to the complex
domain, general complex networks will be discussed in the following. Many examples of
complex analog networks exist [35,40,43,55], howev€,Í, much of the pioneering work was

done by Beleviæh t40l. All work in this a¡ea has treatd a complex element as an abstact
lumped-element elecüical device which is eitber physically unrealizable ø very difficult to
realize as an analog device. The present work will continue this point of view.

There a¡e several theoretical advantages gahed by including complex elements in ttre
librrary of acceptable elements. Pertraps the greatest advantage is the exisænce of general

first-orde¡ complex building blocks thæ are capable of independently realizing transmission
zeros anywhere in the complex plane. AIso, sirrce the phase of the gain of the reflecarrce
function is a free parirmeter when realizing a transmitt¡lnce, the phase can be made any

aúitrary value (this is in contrast to the one-real case given in the preceding Chapær when a

unique phase is chosen in order to induce the one-real property). This leads to an infinite
number of realizations of the same ¡eal voltage transfer function as oppos€d to the real case

where the number of rcalizations of the same transfer function is finite. This introduces an

exm degrce of freedom that may be taken advantage of during the design process in order
to derive appealing characæ¡istics of the resulting network Anottrer theoretical advantage

is found in the obseryation that many conmþn elernents can be generated from
combinations of complex elements.

The zero-'shifting process used to n¿lize finiæ transmission zeros can also be exænded

to include the imaginary resistor as shown by Belevirch t40l and Humphreys [43].

2.1 New Complex Elements

Complex Analog Networks

Chapter II

The most conrnlon conplex elenrens that a¡e addd to the library of acceptable elenrents

a¡e the imagnary resistor [40,43], the complex transformer [4O], and the complex g]¡rator.

A simple way of deriving a complex netwøk frun a real nenvork is to shift the frequency

response with.the following transformation on the complex frequency variable t¡r,

which simply translaæs all of the poles and zeros in the imaginary axis di¡ection by the

8

V+V-iO" (2.1)
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Íunount 0o. This introduces an irnaginary resistor in serie.s with each inductor and in
parallel with each capacior. Non-symmetric bandpass fiIters were intnoduced [35] using
this concept, since the lowpass prototype for the bandpass filter is fi¡st shifted using the
above transforrration to give a non-symmeuic lowpass response about the origin. Other
work in the area of non-symmetric bandpass filters can be found in [43], where actual
networks are derived.

The imaginary resistor, which is also known as a constant t€actance, is perhaps the

rnost well-known complex elemenL The input impødance sf ¿¡¡ im¡ginary resisor is

constant fø all frequencies and complex, namely Z = jX. It is an ideål, physically
unrealizable, reciprocal and lossless device [4O].

1!¡s imnginary rcsistor, in different combinations, can rcplace corûnon analog

eleænts. This rneans that our "libmr¡/" of components used to build networks, in its
simplest form, contains only a resistor, an imaginary ¡esistor and an inductor (or a
capacitor). For example, imaginary resistors in a T+onnection can be used to replace a

dualizer with a real g¡'ration resistance R when viewed as a one-port [4O, p. 116]. A
g)¡r¿tor with aq inductor (capacitor) connected to port two can be used to replace a capacior
(inducor). Other corllrnon analog elements can also bc replaced with combinations with
the imaginary resistor. For exarnple, an exact equivalence exists for a Eansformer with a

real turns ratio n [4O, p. 118]. Although many elements are now not strictly required, no

advantage is ordinarily found þ limiting our possible selections of conponents, thus all of
the common elements will b€ allowed

The ideal complex transfornær [4O] is d€fined by the following voltage+urrent
equations relating poß 1 and2,

It is ideal,lossless and non-rcciprocal t401. This contrasts with the real ideal transformer

which is a recip'rocal device.

Finally, the complex gyr"¿tor can be defined by imposing the lossless property upon the

generalization of a real g¡'ratø, gving the following

wherc f is a complex constant hereby known as the g¡nation adminance and o= tl. By
the convention set for the rcal g¡naor in [40], d = *1. Noæ that t]re cønplex gyrator as

defined above is a physically umealizable,lossless and a non-reciprocal device when

Re{f } * 0. In this thesis, no advantage will be gained from the addd degree of freedom in

vl= n* v2

12= -n Il

It = 'aWz
Iz= dl'Vt

(2.2a,b)

(2.3a,b)



the imaginary part of I and thus real gyrators will be used exclusively.

2.2 The Positive Function

The immittance function of a real passive network is known as a positive-real function.
A simila¡ result holds for complex networks, where the imminance of a complex passive
network is known as a positive funcrion (PF) [40,43,45]. Clearly, the positive real
property is a special case of the PF property, where the function must also be real when the
complex frequency variable t¿is real. The basic propeny of a positive rarional function
Z(yl is given by [45, p. 129]

which can also be expressed as

The asterisk operator denotes the complex conjugate. Other properries include:

- if there are any poles on the j@-axis, they must be simple and the residues of all
poles on the j@-axis musr be real and positive

- the denominator of Z(yl must be ar leasr modified Hurwitz
- since the inverse of a PF must be a PF, the zeros of. Z(yr) must also be at leasr

modified Hurwitz
The foilowing theorem dealing with a complex passive network will give the

correspondence between a PF þassive immittance) and its associated reflectance function
as referenced to a complex immittance, and is an extension of the proof given in [43].

Theorem 2.1:

An immittance function Z(ylis a PF if and only if the complex reflectance function
defined bv

Re(Z(y)| > 0, Re{r¡} > 0

l0

Z(Vò + Z'(Vò, 0, Re{r¡) > 0

satisfies the property

(2.4)

for any finite constant imminanceZ, = R, + jX, of the same immittance type æZ(yl

(2.5)

Áv4 =z(vò 
- z;

Z(yr) + Z,

lp(øl < 1, Re{y} > 0

(2.6a)

(2.6b)
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ard R, > 0.

Proof:

To prove necessity, Írssume Z = R + 7X is a PF. Thus Z is finite in the open RHP

(right half plane) and has a finiæ number of simple poles on the ry= ¡q axis. Also

R > 0 in the closed RHP. The magniurde of plyiis given by

andsinóeR>0andRr>0,

lp0ò12 sr + ldv4l< I
Thus ldy4l < I for Re{ ïr} > 0, and since dy4 is rational in polynomials in r¡, it is
aboundedfunction. Note thu p(Vò= l atapole of Z. Toprovesufüciency,

assume ldy4l S I for Re{ V¡} > 0 (and thus analytic) in the closed RHP and solve

forZ{y)from (2.6a),

lpl,vòP =
(R-R,P +(X+X,f
(R+R,f+(X+X,f

and let ¡o(yf = q, + iþ. The real partof 14) is thus,

a¡rd since I p|Vòl I I and R, ) 0, it is clear ttrat Re(Z(yf) > 0 in Re{rø} à 0 for
pßò+ l. At apole ry=¡40 of Z onthe ry=¡çaxis (when p(Vò= 1), the value of
ne(Z (yf) evaluated in the RHP at V= ù + jQnear but not at the pole (ie. ù > 0) is
approximaæly

n"(4v4) = ^,l 
t - ld''llt-ì

\(t-oP+p'l

which is positive since the residue A is positive and real. Thus, ne{Z(yt)}> 0 in

Re(t¡{ > 0.

2.3 Properties of A Complex Lossless Immittance

ne{z(r¡f}=Rrf A l=nela1=' lv-ihl lø *¡(o- ø)l

In th€ preceding s€ction, it was fourd that a passive immittance function must possess

the characteristics of a PF. Now consider the specialized class of complex lossless

networks where the following equality holds [4O, p. l3l]

(2.6c)

Q.e)

and thus a lossless function is a para-odd function. The lower asterisk repres€nts the para-

conjugaæ (or the Hurwitz conjugæe) defined by

(2.6e)

Ê *b- qrl

(2.6Ð

Ah

4Vò + z4V4 = 0, Re {tø > 0

(2.6e)

(2.7)



In the real case this reduces to the familiar definition Z.(Vò = Z(-Vò.

para-conjugate reduces to

which is simply the complex conjugate of the function.

on the V= jQ axls

z.(uò = z.(-v.)

For the lossless case, Z(yl of order ¿ can be represented as

,n
Z(Vò= jXo+A*V+T* I Ai

v i=r V-ihi

z.0o) = z.UQ)

where the A¡ are real and positive for all values of i. It is clear natl¡fican be

represented as

(2.8)

On the V= jQ axis the

/t¡ù*z.Uo)=o

/, o\

In particular, the following holds

t2

and thus

where the real functionX(p)is given by

Á,¡O) = txo + jA*Q -i!9- *

The derivative of the function X(p) is positive and real for all frequencies Q [7l, p. a95]
(note that the proof in [7i] is given for a PRF, however, it is also valid for a PF)

(2.10)

Ë -jA¡
L-
¡=t Q- Q¡

4¡ù= ¡ x(ø)

x(O)= x6+A*Q l.Ðrtr,

(2.rr)

(2.r2)

d Á,0), o
dQ

(2.r3)

(2.r4)

(2.15)



This can be restated to say that at a real part zero of the immittance on the V= jQ axis, the
derivadve of the immittance is strictlv oositive

Hereafter in this thesis, all relevant functions will be assumed to be lossless unless stated
otherwise.

2.4 Canonic Polynomial Representation of A Complex Lossless Two-Port

In the ea¡lier analysis, all quantities were given using voltage-curent signais. An
alternative representation is given by the so cailed scattering parameters. This
representation will be used exclusively for the remainder of the thesis and in particular will
be used to represent lossless two-Dorts.

The voltage-crurent signal variables V and.l are replaced by the voltage-wave
variables A and^B as defined by the following transformation as referenced to an

impedance of 1 Ç),

A(uò=v(uò+t(vò
B (vò=v (vò - I (u4

4z(vì > o
dvl

where A is the incident (input) wave va¡iable and.B is the reflected (ouçut) wave
variable. This is a specific case of the general ransformation as reference to a constant
impedance Zwith real partR as given by

1-IJ

(2.r6)

Using the above transformation, a stable complex lossless two-port can be represented

by the signal variables A1 and Bi, i=|,2 in the following matrix form

[Btl = t|- h d; 
.]fatl 

o .q\
I,Bù 8L f -on. )Leil

where the scattering matrix as defined by

A (vò=

B (vò=

v (uò+z I (uò

fi-

v (uò - z.t (vò

fR-

(2.r7)

(2.18)



is unitary. The polynomialsl h, and g are known as the canonic polynomials and
satisfy

gg*=ff* + hh* (Z.ZI)

which is the analytic continuation of the Feldtkeller equation. The polynomial g has all of
its zeros strictly in the left-half plane (that is, it is Hurwitz) since the network is stable by

assumption. The complex constant ois unimodula¡ and if the network is reciprocal, it is
given by

s={ h of.1- 8L f -oh*)

Another form often used is the transfer matrix defined bv

that is

1.4t+

The"f, h and g polynomials can be scaled by a complex consrant K giving the new
canonic polynomials

o={
J,r

(2.20)

f ¿KÍ
h +Kh
g +Kg

which changes the ovalue to the unimodula¡ quantity

o ,Kc
K,

fB,l tlos* h lf¿rl
L¿ ii = 

71. "n. s I Larl

r=!l oq. h 
IJlon* I i

Notice that if K is real then the ovalue will not change with the scaline of the

polynomials.

The scanering marix can be represented in terms of the open-circuit impedance matrix

la a.t\
\/-.LL)

(2.23)

(2.24)

(2.25a,b,c)

(2.26)



parameters

as given by

^rT I zn-222-I+4,, zzLz

-l

z¡1*222+1+AzL zzzt -zú*222-l+ò,,

Lz = ztLzZZ- zt2zzr

Simila¡, the scattering matrix given in tenns of the short-circuit adminance matrix

Y= f 11: v,,:? l çz zt¡
L lzt Y22 )

z =l 'rt ztz 
ft z2r zzz J

is given by

r [-]tt + Y22+ I - ò', -2Yn I
rl

)rl+tzz+l+lrL -ZYzt Yrr-Y22+1-Arl

^y 
=YlrYz2'YrzJzr (2.30a,b)

A complex two-port can be defrned using lumped element values as parameters.

However, from the point of view of nro-port synthesis using reciprocal elementary
sections, a more judicious choice for the parameters of the section are the return group

delay and the reflectance, both evaluated at the transmission zero of the section, and the
Iocation of the transmission zero. Note that for non-reciprocal sections the return group

delay wili not þ needed.

The reflectance of a lossless complex trffo-port evaluated at the transmission zero Vrg is
given by

15

(2.27)

(2.28a,b)

Since the reflectance is evaluated at a transmission rÊro wheref* lv= w = 0, the analytic

continuation of the Feldtkelier equation (2.21) reduces to

tduÀln = ---:-:-alr 
s{vòlv= w

hh*ly=w= ggolv=w

(2.3r)

(2.32)



which gives

For a transmission zero (Vo = jQò on the imaginary axis, the reflectance is unimodular,

since (2.33) above is in the form of x - l/x* . Using this fact, the reflectance evaluared ar

Vo = jfuo can be expressed as

The magnitude of the reflectance evaluated at a ransmission zero not located on the

imaginary axis is bounded by

hl -8* |

g lv= vo- h.lr= ro

p=þ=sio, -n<0<n

as the reflectance represents a passive network, and is thus analytic in the closed right-half
plane.

The return group delay evaluated at the transmission zerof@o, hereafter called the delay
D, is defined in a similar manner to the forward group delay and is defîned by [58]

IO

D=-Evl¿,ll.49]r\l
lav"\sfu4lllv=¡0.

where the operator'Ev'refers to the para-even function given by

nu (¿(rø)) = H{uò+ P,.(ø)

lf t,rrtl < 1, Re{r/o)> o

lf t'rrll > 1, Re{Ho) < o

(2.33)

Note that the forwa¡d group delay is defined by replacing ldUò byflyf in
Consider the reflectance expressed in polar form

(2.34)

where the phase of the reflectance is given by the real function 0 (Uò.

(2.35a,b)

frø=l\øleie@)

(2.36)

(2.37)

(2.36) above.

(2.38)

Substitute the above



i¡to the definition of the delay in order to derive

þ = -'" lfr ''(l\øleio 
('4))ly= 

iQ.='" {&'4lFø|-. *4i 
e(Ø)} 

l*=r" 
(2 3s)

However, when t¿is restricted to the r¡=7d axis, the above becomes

and thus the retum group delay evaluated on the imaginary axis is proponional to the

derivative of the phase of the reflectance. Note that the imaginary part of (2.4Oa) is zero at

a transmission zero. The expression for the delay given above (2.36) can also be

represented as

þ = -R'f -; d n(t*{dl). ¿{e (ø))ìl

I dQ !ô " dA lb=ç"

However, the above evaluated at a transmission zero, when"¡JÊ = 0, yields

{s' -h:\ =g' -E-\g hl* g h

þ - - ¿-e(ø)l
dQ lo= ø

as can be shown by the differentiation of the anal¡ic continuation of the Feldrkeller
equation (2.21). Thus, the expression for the delay can be simplified to

D = (+- +ll e.43)\8 h lly¡=¡q"

t7

o=+\l-#.(l 
",).)

where g'refers to the differentiation of g by t¡. The following Theorem shows thatD
evaluated at a transmission zero as given above is real and positive for a complex lossless

and reciprocal two-port.

Theorem 2.2:

The return group delay D given by Q.a! is both real and strictly positive when

evaiuated at a transmission zero, and can be expressed as

(2.40a,b)

(2.4r)

(2.42)

" = (tr -T)1,=,* Q. 4a)
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Proof:
Consider the delay function (2.4a) evaluated at a transmission zero. From (2.41-
42) above, the delay is real. To show that it is positive, we first show that the sign
of the delay is equal o the sign of the derivative of the imminance at a real part zero.

To this end, consider the definition of the reflectance referenced to a constant
positive immittance of the same rype æZ(Vòas given by

After tlrc differentiation of the left-ms equation of thc above with rcspect to yrand
soûre rea¡rangem€nt, the following is derived:

*=m, zo =Ro + /xo, Ro > o

However, at a real part zero of the immittance Z = jX (which is always tn¡e for a
lossless function), the above becomes

{__A- 2Relzol pt h Vop - zz - z(zo - z;¡ a,y

The denominator can be expressed as

and thus is always positive. Furthermore, Re(26) = Ro ) 0 by assumption, and

thus the sign of the delay is equal to the sign of the derivæive of the immittance. At
a real part zero, the derivative of ttre immittance is real and positive as nrentioned in
Section 2.3, arñ thus the delay is real and positive.

2.5 Reflection-Free Port of A Complex Lossless Two-Port

D =l-l= 2RelZol

lZol2 + X2 +ZImlZoW

lZol2 + X2 +ZIm(Zs)X = Ro2 + (X + Xsf

(2.44b)

In rnany applications it is useful to have the freedom of indtrcing the reflection-free
prcperty at one of the ports of a complex lossless ttvùport. A port is reflection-free if the

reflected wave for the port is independent of the corresponding incident wave when

evaluated rT \r= I (that is, the corrcsponding diagonal elernent of the scattering matrix is
zßrc at V= D. Inducing the reflection-free property requires the absorption of a constant

two-port into the original dynamic section, thereby changing the canonic polynomials so

&
dry

(2.Mc\

( 2.44d)

(2.44e)



that either h or h* has a

this orocess is shown in

zero at V= I, for port

the following figure,

There is a great deai of freedom in choosing the canonic polynomials of the constanr
section. Two free real parameters are required, and thus a possible choice for the

polynomials are given below as a function of a complex scalar consrant p ,

f = 1

_R,,--_L
I*!r-pp

!r-þþ

L9

1 or pon 2, respecdvely. An example of
where porrZ is made reflection-free.

Figure 2. 1 : Reflection-free two-port.

h*(ty= 1) +0

Note that/= 1, which removes the third degree of freedom commonly found in a complex
constant section (see Section2.6.3). There is a total of three distinct choices for the scalar
polynomials since the value of unity can be assigned to one of the other polynomials,
namely h or g. However, no advantage is found with a different definition for the

constant section than the one given above. The analog section corresponding to the above

when p is complex is given in the following figure,

h*(ry= 1) =0

6=I (2.45a,b,c,d)



Figure 2.2: Complex constant two-port.

where the values of the imaginary resistors are given by

jxz

Xl =

When B is real, the above polynomials (2.a5) describe a real transformer with a turns rario

of

20

^'l t-pp.+ne{p}

r,'{p}

xz=

The development for inducing the reflection-free property fo'r port two will be given in
the following. A simil¿¡ argument can be given for port one, however, this will not be

required in this thesis and thus will not be presented.

x3= t-\n:lf -n"{p}

m{B}

Consider a general complex, dynamic tlvo-port with a ransfer matrix

r=!l oq. h 
I^ fLoh* s J

The section can be made reflection-free for the port two by inserting a constant section with
polynomials as given in (2.45) on the right, as shown in Figure 2.2, giving the following

(2.46a,b,c)

(2.47)

(2.48)



overall transfer matrix for the new section,

From the scattering matrix (2.20), it is clear that inducing port two reflection-free requires
h*lv= r = 0. From the generai form of the transfer matrix of the reflecdon-free two-port
(2.49), the relation h*1y,,=r = 0 clearly implies

t-1l
^lt-þp. ¡l

and since g is hurwitz by assumption,lpl . t. The new reflection-free polynomials are

given by

fnp=f

og,*-ph h-p
*

oh.-Bg g-þ "r. I
oh* )

þ =*1,=,

zl

Notice that both the/polynomial and the o value for the secúon do not change.

2.6 Complex Elementary Sections

hRF=+b- p.or,,)
^'l t-pp

(2.4e)

As will be shown in Chapter III, a compiex lossless t'wo-port network of any order can

be composed exclusively of complex first.order and zeroth-order sections. The following
will present all of the complex sections needed for the synthesis of a real or complex
network of arbitrary frnite order. First, the complex reciprocal first-order sections realizing
a transmission zero at infinity or at the origin will be given. Second, the complex
reciprocal first-order sections realizing a finite imaginary axis zero will be presented.

Thfud, the complex non-reciprocal first-order sections realizing a transmission zero

anywhere in the finite t¡plane will be given, where the real axis is a special case. Finally,
the complex zeroth-order sections, otherwise known as the complex constant sections, will
be presented. The elementary sections are given in table form, with each table containing a

snF=_+=k

(2.s0)

aRF= a (2.51a,b,c,d)



Paraftßters section, aV-l domnin Matrix description, and the Canonic Polynnmials for
the section. Note that if the appropriate imaginary resistors are assigned values of either
ze o or inf,rniry, all of the complex sections reduce to real sections.

The Paramet¿rs section contâins the analog domain symbol for the section showing the

actual lumped-elements required for the definition of the section and the defining equations.
For the reciprocal fi¡st-order sections, the reflectance and the delay evaluated at the

transmission zero are given in terms of the section element values, and the element values

are given in terms of the delay, the reflectance, and, where appropriate, the value of the

transmission zero. The defining equations given in the two domains, rhar is, the V-I and

the wave domain, demonstrates that each first-order section can be adequately represented

in either domain with a canonic number of parameters (namely three parameters for
reciprocal sections and four parameters for non-reciprocal sections). For non-reciprocal

sections the delay is not needed and thus will not be supplied
The V-l domain Matrix description gives either the open-circuit impedance matrix, the

short-ci¡cuit adminance matrix, or the chain matrix, with the order showing the preference

for the presentation.

T)ne Canonic Polynomi¿is section gives the deñning polynomials both in terms of the

V-I lumped element values, and also the reflectance, the transmission zæro tf appropriate,

and for reciprocal sections the delay. The þ vaiue defined from (2.50) and the resulting
canonic polynomials defined by (2.51) are given for port nvo reflection-free.

2.6.L Complex First-Order Reciprocal Sections

In the following, the complex first-order reciprocal sections will b€ presented. The
reflectance evaluated at the Eansmission zero for a section is unimodular.

2.6.1.1 Sections that Realize a Transmission Zero at Infinitv

The following two tables define the CAl_"" and the CB 1_- sections which realize a

transmission zero at infinitv.
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()

H

CAl_". Section: Transmission zero at infinitv

X.F

N

r-cos0+1"- d

X1 =1-+las-9
sin 0

I \ Xt+ip\ty=4=ffi=eie

¿(v=À =, x? . ,o' lx!+lr

,=[

tt)

à

()

U

(X1+ jLylXl

Í=I
,- ,(Xr +j)zLVl etev
t L 

-- ,x?d
,(xrz *t)rv_(=¡-ç a1=!+t"z x? d

o=1

Lry

4Ê.
Lry

Origrnal

z)

4
Lry

(\- jLyt)x1

Table 2.1: The CAl-.. section that realizes a transmission zero at infînitv.

Lry

Port2 Reflection-free

ß= - ejer d+L

lnr=1
, (ry+\ele
/?RF=:

''l(d +2)d
v+d +l

9RF= U6¿
on¡=1
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q)

CB1_- Section: Transmission zero at infinitv

X
.fi

N

t =---v-
w. - I +cos I
^I --

sin 0
/ \ Xt+ip\ttt=*) ='ï ' l. 

= ei9

^l-J
¿( v =J =----2- ¡ 9' 

lx? + t)c

"=l

tÀ

C)

U

jCXtttt + | 
1

Cry Cry

f=1'
n =|(xr + ¡¡zç, =eilv

s --)(xf + r)cy+ r =!o +r

6=l

O.igrnal

1,1

1

cry

Table 2.2: T\e CB 1-- section that realizes a transmission zero at infinitv.

2.6.L.2 Sections that Realize a Transmission Zero at the Origin

The following wo tables define the CC1-0 and the CDl-0 sections which realize a
transmission zero at the oriein.

-jCXlty + |
CV

Port2 Reflection-free

P= d *-gL

¡fur= 1

, (v+l)eienxr=@¿
ry+d +l

9xr= n**
oRF=1
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tr
a)

E
k

CCl 0 Section: Transmission zero at the oriein

X
EI

N

C= d
cos0+1

U)

()

U

w--1+cos0lrl --
sin I

Xt+i
p(Vt =0) =ffi = eie

¡r-vZ
d(V=O) ='l^t tO

Xf+r

,=l9*rvt+i)h cxfv 
I

I cxf v @x1ry- j)\)

f=V

25

ùigtnal

s =v.## =,{*Ld

o=-1

Table 2.3: The CC1_0 section that realizes a transmission zero at the origin.

oi0
d

Port2 Reflection-free

P= d*ÆI
hr=t/
. (ttt + l\eienxr=fiffi

8nr

oRp

(d+I)ry+1
,td12,n

=-l
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CD1_0 Section: Transmission zero at the origin

X

N

r- d
L--

1 -cos I
X1 =1J!as 0

sin 0

p(v=g¡ =\:i ="¡e' At-l
d(Vt =0) =-2- -2 g

Xi+l

câ

a

U

z =l ix';,tL't'

f=ttt

o=Ø#=#
g=v.#=vr**
o=-1

/^

Original

Table 2.4: The CD1-0 section that realizes a transmission zero at the origin.

2.6.I.3 Sections that Realize a Transmission Zero On the Finite j@ Axis

The following four tables define the CA1jp, CBljþ, CCIjQ, and the CDIjQ
sections which reahze a finite transmission zero anywhere on the imagtnary axis, except at

the origin or at infinity.

Lry l
-jX1 + Ltyl

Port 2 Reflection-free

P=#r
Íw =tlt
, (ry+l)eie
nRF =lãlzq{a

8nr

Q.r

(d+r)ry+I
,t¿tTT,{71

1
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CAI_¡q Section: Tra¡rsmission zero at ih

x
H

N

lxzxt+j(xz-xùLvlh (xz-jLulx?

z-

¿=cos0+1..2dh
Xr=1+cos0 Xz=-Lh

sin 0

p(¡ù={!=,i'
¿(¡ù =2- 41 .,0

lxtz *t)xz2

(t)

()

U

LXzV D{zttt

, iX¡I=V+-i=tY-lh
,. ,, j(Xt+t)zxzV -jrihy

'x?dh

(x2- jLy)xf lxzxt- j(xz+x1)Lylx1

27

Orignal

D{zV D{zV

, -Y"h=-l

8= ,L¡&r, + t)xz+zx?)v

_(oø-l , _¡ø

a=l
dh

X?

Table 2.5: The CALjQ section that realizes a finite non-zero transmission zero.

X=dhz+7+jdfu
p=#
fw=v-ih

Pon 2 Reflection-free

, jxz-T åRF =

8RF =

-jh(V + rl,{Xeie

'[lcr.:t''[t
-¡Wxl(¡¿A+lrd) vl+x1

dRr= 1

Inic - lïx.
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L

CBI_¡ ç Section: Transmission zero at iQo

x

N

1-cos0 rL =_ Ø=eE
dh2

Xr=1*cos9 xz=j-' sin9 Ch

p(¡ù=ffi=,i'
^-, )¿l¡d =2 c!2- >o

Xf +7

,=l
L

vt

n-

jX2 +X1)C ty + |

.i
f =ttt-#=ty-ihçt\2

, ,-j(Xt+l)zv -jeiqf
tþ---

cry
jCXzty + |

cry

Orisinal

28

2Xz

jCXzttt + I
cty

Jlz -XùC ry + t

8= ,(z*r- jx? -¡)v j
(¿a-,\ ,=' '- "' -lh

dh
a=l

Xz

Table 2.6: Ttre CBlj@ section that realizes a finite non-zero transmission zero.

dh

cry

X=dhz +l + jdfu
p=#
Ínr=tl-jh

Port 2 Reflection-free

cxz
/¡nr _-jh(ry + Il,l7.eie

\)a( - 1Yx.

- ¡Wxl(¡ah+Lø)vr +x1
8RF =

oRr= 1

ho( -r'tx.
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CCI_¡q Section: Transmission zero at iQo

x

N
"=l

lj(xz-xr) + CX2X1ylX1

c=;åJ h=ù
X1

sin I Ch
p7oò =ffi=ri'
a(¡ù =z c!12 ,o

Xf +L

CA

U

X2

j(jcxzry + I)xl

r=vt-+=v-ih
¡=txt2-r* i =ú.

' cxr' cxt d
.,) .

g = V+-L'(l" 
+-l -+u ¡ ,CXrt CXz

1 .,
= ry +¿-Jh

o=-1

Origrnal

.ìa\

X2

X2

l-¡(xz+X1) + CX2x1y/X1

j(jCxzry + I)xf

Table 2.7; T\e CCIjq' section that realizes a finite non-zero transmission zero.

X=d+1+jdfu

ß=- ef,X+

Íxe=V-ih

Port2 Reflection-free

X2

åRF =
(v + r)[x. eie

Itritx
8RF'

Q.r

I ¡ \-
(xrø* dh" +I-jdfi¡¡)tX.

t-

=-l
4 xx' - l,lx
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CDL_¡ç Section: Transmission zero at jQn

x.E

N

| = d ù.=-Xz
l-cos 0 L

X1
sin I

/.,\ Xt+ip\Jw =-:-----:- - eJv

^t -lt\f
d\jN =2--*- >o

X( +L

.t)

o

, -l i(x2+x1) +Lry
' -1, jX2+Lry

. iXcI=V*"1=Vl-JØ

t =&.!*ixt =æ.-Z L L d

o=rt*tXf +r *iXzo72LL

1 ..
= ry +¿- lh

6=-L

Original
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jX2 + Lry Ij(xz-xt) + Lv )

Table 2.8: The CDIjA section that realizes a finite non-zero transmission zero.

2.6.2 Complex First-Order Non-Reciprocal Sections

In the following, the complex fi¡st-order non-reciprocal sections will be presented. The
reflectance evaluated at the transmission zero for a section is not unimodular. A restriction

on the location of the real part of the transmissio n zero(-6) i*pUø by passivity is given by

X=d+I+jdfu
ß=-!!,X*
fnr=tl-ih
, (V+L\'[X.eie

,,\¡l-----:_

4 XX" - L,lX

Port 2 Reflection-free

4>1 <+ (-øJ.o
4 < l <+ (-Or)t o

where 4 is the magnirude of the reflectance evaluated at the transmission zero.

8Rr=

dRF =

(rr* ¿Ñ *t -¡¿ø),[T

--1
4 xx* - L,lx

(2.s2)
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2.6,2.1 Sections that Realize a Transmission Zero Anywhere in !r Plane

The following two tables define the CE1 and CFl sections which realize a finite
transmissionzero anywhere in the t¡plane.

CEl Section: Transmission zero at 4r- jû,

tt)tr
c)
0)

L

x
'¡<

N

G_
Zr¡cos0+r12+I

_r}t¡cns0+t72+l

-nz +r

X1 2 tlslt 0

,=--J
xlcz + tl

f =v-xr?G *ix: =v+h+jç,,TLL

,1@P-+
, ^ùnejon=z-

n2-t

xz=

./)

O

h'- t[z4cos o*n2 * r)ø1
4

¿=J
4

p(+-¡ù =

Original

ùn2s 2 0

T12 - t\zn"os 9+ n2 + r)

, -x?cqr=-ï

h=+

j (X2 + x1) + Lry jX2 + Xf G + W1
jx2-xfG+Lry j(x2-x) +Ly )

Orn2t z g

(-cz+t)x?-L+2jxt

I =V+ ,(c, *t)x1z + t

=t{

o=-l

*(n'!t) ø *,^
n'- r

(G+t)2x]+t

þ=-z

Table 2.9: The CEI section that realizes a transmission zero anywhere on the r¡plane.

,fnr = W+ ù+ jh
,. ^ (Y+l)eie6rq
'-ñr' -

l¡ ø.0,4-¡ û,+ù+1) rz -¡^[ffi
o,,= xii ù+0,4-i h+o,*t) n2-t)v
o¡\^ 

l¡ç,* ø*(-¡ø+ ù+ t)nz - l^t -Pf,. t
æ - Ê -¡ wo? +,4 É.¡ ø,+3 d q,

oRF = -1

PortZ Reflection-free

-jh+ Q,- | +Utr+ 6+ t)n2

ix,t*"i

= qei9

e-ieh¡l
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CFl Section: Transmission zero at -h- jh

x

N

G_
Zr¡cos0+r12+1

_r}r1cos0+r12+l

-nz +r

X1 2 rlso 0

(z4.or o*n2 +r)A,
X2

JL

U (xz-xr) + CX2X1ylX1

-lalf=ut-e =ul+ù+jû,rrCCXcr

Ç=

IA

o

c)

X2

(-GXz+CX2V-ilxf

Çn'* t)ø
n2-r

p(+-¡ù

Ôr=4'C
Iq=È2

(z4.or o*n2 +r)Q,

h

h

Origmal

,(-c,+t)xf-t, ,*r,
-nhqeje-L-

n2-t
-,..,,(c,*t)xr2

_(-c,+t)xf-1+2jxt

X2

(c+t)zxf+t

(GXz + CXzV- j)X?
Xz

l-¡ (xz + X1) + CX2X1 yì1X 1

=v*W*ih

+J
CXt

, ,*r,

þ=-z
e_jeùn

ñ

n2-L

Ínr = Vt + Qr+ jh

Table 2.10: The CFI section that realizes a transmission zero anywhere on the yplane.

+1

Port2 Reflection-free

= q¿)0

X2

cxz

l¡ç,r+,4-¡þ,+A,+r)nLilm
x{ ¡ ø*Or4-¡ þ,+Ar+r) n2 -t7 vo"'-fr* 

+ ù+Ç¡h+ ù+ t)qz - l^t -[fÃ
t = - t? -¡ o-Ê.þÁ ç? *¡ ø*O? rd n2

oRF = -1

(ry + L)eie6.r1



2.6.2.2 Sections that Realize a Transmission Zero on the Real Axis

The following two tables define the CG1 and CH1 sections which realize a finite
transmission zero anywhere on the finite real axis, except at the origin.

ct)
Lr
v

¡r

CGl Section: Transmission zero at -ù

x

N

G-
Zrlcosg+42+L

_r2r1cos0+q2+l

1a
-1J

-n2+l

Xt 2 ntuo
,(n2-tfz4cos o+r12+t)
o 

a,lrlú" à2

*=+

¡=r-oT'=v,+ù
U)

O

z

Odgrnal

h

h

oô

o

,(-c'+t)xf-r+2jx1

p(i) =

-'rhneje
n2-t

,,(G2*t)x,2+t=Y=TT

jX1 + Lry GXf + Ly

-GXf + Ly -jX1 + Lry

(-cz +t)x? -r+2jx1
(G + t)zxf +r

(n2+t)ø
-tA+-.---L

n2-l

ß=-z= \4"-jtP--'(rT2 
+L)h+n2 - |

fxr=V+h

Table 2.11: The CG 1 section that realizes a transmission zero on the finite real axis.

PottZ Reflection-free

= \elo

hxl =2

^l -pp. * tl(nz * t) o,+ n2 - rl

(tø+ 1) hneie

dRF =
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CH1 Section: Transmission zero at -ù

X

N

,,1 -n2 + r

Zr1cos0+42+l

v ,2t1cos0+t72+I
'^ r - ^-2

C_

"= t l(
czx] + tl1

f=r-8=V+ù
rt)

()

4sin 0

n2-t
T^\
(24cos 0+n" +LJO,

ø=t
pçù =

la\^. l-G¿ + IlXt¿ - Ih 
-\

ùi$nal

2cxf
h =2ùneie

n2 -t

CXtttt+j)h (G+CUix?f

-G+cy)xf(cx1v-ilxt)

(-cz+t)xrz-kzjx1

g=v+

(G+t)2xf+t

+2jX1

,(c2*t)xf+t, ,*r,
= rll *(n'* t) ø

C=-l

R:-, ùn'-je
P --'h\ 

t) ù+ n2 - L

fnp=V+h

Table 2.12: The CHI section that realizes a rransmission zero on the finite real axis.

n2-t

Port 2 Reflection-free

= T7el0

åRr =
1t -pF;16'* t)ø*,tz - |

8n¡ =
f( nt-r) ç, +r12+t)+[( a2+r) ù +nz-r]

(V+ 1)Q,nere

oRF = -1

^|ffi[('¡'*r) ø+nz-r)



2.6.3 Complex Constant Sections

A constant section, also known as a zeroth-order section, is usually used to either
induce the reflection-free properry at a port, or as the last section in a realization. The most
general constant section contains th¡ee real parameters. This is evident from the inspection
of the canonic poiynomials representing the section. They appear to be represented by four
real parameters since fwo out of six deglees of freedom are removed from the polynomials
(they can be scaled by the value of either polynomial setting one polynomial to unity).

However, from the Feldtkeller equation (2.21), one parameter is dependent upon the others
giving a total of th¡ee real parameters. The general zeroth-order sections are given in
Tables 2.I3 andZ.l4 as a n and T connection of imaginary resistors.

Note that under certain conditions the z or T connection can be replaced with a section

containing two imaginary resistors and a real ideal transformer. If X2 * - Xt, then the T
connection is equivalent to the foilowing:

Ê,

Figure 2.3: Equivalent of the T connection of imaginary resistors with X2 * - Xz.

where the values are given by

35

If X1 * - X2, then the Tconnection is also equivaient to the following Figure:

o

Ëz

n= x'
X2+X3

fr=Xr+nXz
â X,;
^2=; (2.s3)



Figure 2.4: Equivalent of the T connection of imaginary resistors with X1 *

where the values are given by

--X1+X2,r- 
4

ît = ,rxz

îz= xt *+
Note that if Xl = - Xz = X3, the T connection is equivalent to a complex gyrator

defined by (2.3) with an imaginary gyrarion admittance.

'É"

ilF
L_o

lXz

th
|r
(.)

Ð
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C0_æ Section: Consrant Section

X
F

N

- X2.

./,

a-
()

U

w. _ n"{S) +Irn{å}
^t -Re{g} -Re{å) - 1

xz=kn{.g) +kn{/¿)

v^_ kn{S) +kn{lz}
^r -Re{g) +Re{å} r

X3 +X2 +X1

f=l
¡ =t-X3Xz 

+ XzXt * r ; [y. *Xl +Xz + Xtf
2 X3X1 ' 2'l'-" ' XzXt J

(2.s4)

as

j(þ +X2)xy

i&.Xt
jxtxt lj(x2+x1)þ )

Table 2.I3: C}:n constant section.
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CO_T Section: Constant Section

x
ñ

N

v)

O

-,. _/[Re {g) + Re { /,} - 1]'^r -krr(S) +kn(å)

v^= i"L -ltr {g) + kn { å}

z =li(xz 
+xù

f=l
, _t-X3 +Xt , JlXlXz+X3X1+X2X1+ Il

zXZzXZ

x3=
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Two special forms of the constant section with nvo free parameters are given in Tables

2.15 and 2.16, and are labelled the C0_1 and C0-2 sections, respectively. The C0_1

section contains a series imaginary resistor and a real transformer, and the C0_2 section

contains a shunt imaginary resistor and a real transformer. Note the form of the canonic

polynomials, where the imaginary parts of the å and g polynomials a¡e equal for the C0_1

section, and are the additive inverse of each other for the C0_2 section. Thus, neither of
the sections are appropriate for inducing the reflection-free property using the definitions of
the polynomials given in (2.45).

The complex transformer is given in Table 2.L7. Ttre real transformer is a special case

and is found by replacing n* with n in the definitions.

"r[Re {s} - Re { å} - 1]

ozxz=1'/t3:T^1 +1+

iXo I
¡tú ixzt l

Xz +X

-¡n(s) + Irn (å)

o=-1

JlXzXz+X3X1+X2Xy - l)

Table 2.I4: C}_T constant section.
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C0_l Section: Constant Section with real transformer

Y lvlatrix

| -¡ nil
v=l 7 7l

I ni -nzil' LT xJ

n =^{ffijffi +Re{å} >o

X =2n[h{/,}]

n =./iprffi- 1 +Re(s) >o

x =2ntm (s)l

Table 2.15: Series irnaginary resistor and real transformer CÐ_l constant section.
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Canonic Polvnomials

.A
q)
(t)

¡;

C0_2 SeÆtion: Constant Section with real transformer

Í=t
n=t!2J-.#
o=rn2+I +Jxo Z n '2n
C=l

Zlvlafix

,=l j* +l
| ¡x jxl
I n -ãl
L N'J

n =r/inr¡1,¡12 * 1 + Re{ t} >0

x=ffi
n =n/ipr¡s[2J +Re{s} >o

x =-åhTsl

Table 2.16: Shunt imaginary resistor and real ransforrner C0-2 consunt section.

Canonic Polynomials

Í=l
o=#.#
o-tn2+l -JAo z n zX

a=l
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T0 Section: Complex transformer

ID

o
E

,=1g-h

n* =g+h

Chain Matrix Canonic Polvnomials

tn
K=l

Lo

0l
,)

, tllll -Ih=-'' 2 n

o =7nnt + |ozn

"=+

Table 2.17: Complex ransformer T0 section.

2,7 Real elementarv Sections

i the real elementary sections âre given in [16], however they are presented here for

. .ompleteness since they may be required for the synthesis given in Chapter m. Note that
, the canonic polynomials representing the sections will be given in a different form and also

, ,he port two reflection-free polynomials will be supplied. Also, the F1 non-reciprocal

I section containing an inducto¡ was not defined ea¡lier in [6] and is given nTabte2.23.

2,7,L First Order Reciprocal Real Sections

The fi¡st-order real sections that ¡ealize a transmission zero at the origin or at infinity are

given in the following Tables 2.18-21.
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Al Section: Transmission zero at infîniry

H

.h

O

r\

1-1
J-L

¡ =L7y =Y2' d,

1- Ult=;"r,r*L=--tL
o=1

Origrnat

t =r*
p(,v =d = 1

d(v=*) =?ro

Table 2.18: Real Al section that realizes a transmission zero at infinity.

[t I
lvt rLr=l
t11lww

,10

cf',

(.)

6)

Port2 Reflection-free

/nr = 1 p=-J-
, v/+r d+l
/?ftP=-.:

't(d +2)d
ty+d+l

t*r= U6rrO
dRF= 1

B1 Section: Transmission zero at infinitv

(n

a-

c=+
p(v =d = -t

d(v=4 =Z

Í=l
h=-rcry=+

s=+LV+t=f+r
6=L

Origrnal

l- 1 1l
l4 ..èl

IvC VCIZ=l 
I11 rl

>o lvc vc)

Table 2.19: Real B 1 section that realizes a transmission zero at infinitv.

Port2 Reflection-free

./Rr=l þ= =I .

. -(¡¡r+ 1) d + |
nRF= {@ffd

v+d+l
9xr= ¡-1¿ *2¡d
oRr= 1
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C1 Section: Transmission zero at the oriein

O#
ch'a

€

U

C =Ld,

p(tlt=0) = t

d(rt,=0) =2C

Odgmal

f=V
¿-11-1,'-ze- 

d
r1 18=v+;ë=vl+ d

o= -1

Table 2.20: Real Cl section that realizes a transmission zero at the oriein.

>0

I cv -cv1
l-cv cv )

Al+l

rt)
()
c)

fsp = \/ ß=_=_1_
. ttl+l d+Lnxr=wã

(d+L)v+IsRF=frffi
oRr = -1

Port 2 Reflection-free

D1 Section: Transmission zero at the oriein

crt

()

U

L=Ld
2

p(ttt=0) =-t

d(ttt=0) =2t

Origmal

f=V
o=-àI=+

s=V*iL=V**
o= -1

Table 2.21: Real Dl section that realizes a transmission zero at the oriein.

>0

I Lv Lwl
ILv LV)

fsr =v p=h
, -(v+ 1)
/?pp=-#

''l(d +2) d

Pott2 Reflection-free

8Rr=
(d+I)ry+l

oRF = -1
,{@a



2.7.2 First Order Non-Reciprocal Real Sections

The two f,rst-order non-reciprocal sections that realize a transmission zero on the real

axis are given in the following two tables. The El section contains a capacitor while rhe F1

section contains an inductor.

</)
li()

El Section: Real ransmission zero at l- ó

X
lr

N

-n+ 1

(̂/ =---------:p+ L

c=4
o,

/\
P\ttt=4,) =p

.41

U2

U

I crt,

z=l Gz

| -G+CV
LG,

f=r-3=V/+ù

,-r-G2*1_" ph
--^ a, -- ^L v P"-r
o=trr*tGZ+lô,zc

ùig¡aI

G+Cttt

62
CV

62

Qr=f

= r*(P'!t) ù
o=-l P'-l

J

þ='2
h-r

Íxr=tlt+h

Table 2.22: Real El section that realizes a transmission zero on the real axis.

Port 2 Reflection-free

ånr

pø
*(g*r) pz

@+r)ph

''l -p'*{0,- r *(ø *ùpzl
( Ê -ù Q¡ pz *ú ø4 o-t 4 wt) pz) v

oRr = -1
^lñlo,-t *(6*r)p2)
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F1 Section: Real ransmission zero ar l- ô,

X

N

q)

>r

U

.1I=rl,-êL=Vl+ø

, t-Gz+l ^ PQrh=+=j
2 G2L p2-l

g=ry¡tcztl
" G¿L

11 -P+I(J¡ =- p+ L

, p+l
Lr =-(p-t)ù

/rp\v =-N = p

'I

Q'=ã,

,=l

Orignal

Lry à*t,
-ä* t, Lty

+J

=, *(P'* t) ù
p2-l

o= -1

þ=-2

Table 2.23: Real F1 section that realizes a transmission zero on the real axis.

ù.- L

fnr=tl+ù

Port 2 Reflection-free

ån¡

PQr

+(q,.+ r) p2

(v+1)ph

''l -p'*úø- r *(ø *t)pll
( p, -t) ù+ pz +l ø4 O-t 4 O,*t) p2l v

dRF = -1

l'rrltl -p" * rl_Q,- t *(ø * t) p2)



2.7.3 Second-Order Reciprocal Real Sections

The following three tables give the A2,BZ and Brune second-order sections. The A2

and B2 sections reahze two complex conjugate transmission zeros on the 7@ axis when the

reflectance is plus or minus one. The Brune section is more general since it also realizes

two complex conjugate transmission zeros on the j@ axis, but the reflectance can be any

unimodular constant. The port 2 reflection free polynomials a¡e not given for the Brune

section since they are very complicated and are not necessary.

aÀ
|<
c)
c)

A2 Section: Two bansmission zeros at + iù)

X

H

^4++

L=4--l-
dÑ

c =id

p(v'='û¡2) =t

d\rt'=-h"J =4C

cr't

>\

I

(J

r + vzrc _t + vzrcl
Lul - Lul 

I

-L+tyzlC 
t*vrrc 

|- LV, Lttl )

f-

^ . 1 . .2
I = !/' *-CL= Vt' + h

, =# =rYo

¡ tUl 1

8 =V'*tr*ã.
^u/ ,2=V+t O*h

o=1

Origmal

)
fr _1

CL

>0

Table 2.24: Real A2 section that realizes complex conjugate transmission zeros on j@ axis.

B= -z----J-
dfu- +d+2

he=ú *h2

Port 2 Reflection-free

hxp 2 Wt-W
8nr=

(v+

(a ñ.a.ù(v, #) * z( 62 *t),y

{

onp= 1

)
ø+

^Mqd,.4^[ñ- d

,,)
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82 Section: Two transmission zeros at t lôì

X
.f{

N

L=rd
A

C =4-_l..2dh
/ô\

p\ttt2 =-h') = -1.

/¡\
d\rt2 =-h") =4t

U'

Q

O

f=û*à,=ú*h'
, ''V ^V/
'=-=zZ=- 5
s =y/2.#,.+.

=V+r#.ñ

t + V?rc
ryc

t + V?tc
ryc

Origrnal

.¿ 1

@o -:;LL

t + ttt2tC
ryc

t + Vt2tC
tyc

>0

Table 2.25: Real 82 section that realizes complex conjugate transmission zeros oni@ axis.

O=

þ=zj-
dfo- +d+2

Íxp=v2*h2

Port? Reflection-free

hxp =-2

8RP=

(rø*rfø'*ù

( ¿ ø' r¿*z)(,,P *ø'l + z( 62 +t),y

ORF =l
W¡,-^\fWÐ

{hT,,fi
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fr

Brune Section: Two t¡ansmission zeros at X jh

x
'F

N

[- . cos($ + i
'{16 *'"i4,*
dh + *(d
dtuãe-

pftr=+J']t =

CA

()

U

f = tltT .#,= V2 + h2

,,(n2 -ùrû,,[{, - r)zc +dv
"=1---- - 2 ,cL

n2CLVtZ+l nCLryz+l

I ^ r\ ("+l)nCL
d\Vt" ={¿-) =rÏ ^

_, dfu-sintfl
Ç=

/-

+o

(n - t)2C ry

nCLttP + |

(n - t)zC ry

¡l / \ \
'(cos[ Ø +l)h

f +iþ-t)

^ _,(nr*t)ú ,[(r- r)]2c *4v . t^ -!:--------------o 2 n 2 ncL 'nCL

h'=#

,Æ-iØ-r)

=l¿zt :snz d vz *rl¿h-"os-e ,n d hv * 6
dzt -sin2 g dzt -dn2 o

o=1

(n - r)2C ty

CLV? +r
(n - t)2cy

(n-I)zC+nL

Table 2.26: Real Brune section that realizes complex conjugate ransmission zeros on the

i@ axis.

-ejo

>0

[a6.o'(d -''i"(d *'i"( òaúvø
dzh2 -,i"2(d
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2.8 Equivalences Between the Brune Section and the Complex Sections

The Brune section given in ttre preceding table is a general second-order section thæ

realizes nro complex conjugate transmission zsros on theipaxis. Consider the realization
of the t'wo complex conjugate uansmission zeros using any of the four fîrst-order complex

sections CA1-¡6 CBI¡S, Ccl¡fl, or CDljfl, Clearly, if ttre nryo zeros are realized using
consecutive cmplex scctions of the sar¡E t]?e, then within at most a constant section the
nvo corylcx sections gtouped ogether must be equivalent to the respective Brune section
on a tweport basis.

I-et the Brune section as given in Table 2.26æ, described by the lumped-element
paramet€rs L, C and, ¿. The equivalencc bctwecn each of the for¡r complex fi¡st-order
sections mentioned in thc preceding paragraph and thc Bn¡ne section are given in the

following four tables, where for each table the equivalence from both perspectives are

supplied. Thus a Brune section can be replaced with two complex first-order sections and
vice-versa

Complex Sections

u=#
*t=*r,l$
*r=#r{T

^=Xt 
+Xz 

=L
Xt -Xo

'i\ -jút

Table 2.27: \wvalence between the Brune section and npo CA1j0 complex sections.

Brune

t. =Ð{thXt'Xz

n -(h+xù h
Ðhxî

Xt -Xcn=ffi



ca

jx2

Complex Sections

^ (n-t)zC
La=----:-

n+ L

Æt

v,- | ^nlE^'- r-lUz
*. -(n 

+ r) nfú"L .^ll 
^ln-I)zt v

X'> -Xt 1

X2+X1 n

Table 2.28: Equivalence between the Brune section and two CBIj| complex secdons.

48

Brune

, -x?xrc,"- Xr+X2

n _(Xz-Xt)X{"

Xc +Xtn=æ
Xz-Xt

?x?



Complex Sections

-i\-iút

Co=(n + 1) C

",=h{F
x.= 1 ^lE"L (n+1) V C

Xt *Xlm=-=n
Xt-Xz

Table 2.29: Equivalence between the Brune section and two CCIjQ complex secrions.

:19

Brune

, Ð{tÛcot'=vixz

. _(Xt-Xù Co
"- 2xr

Xt +Xcn=î;Ë



-jxt

La

iX"

Complex Sections

, (n+Il nL
Ln=-

(, - r)z
xt==J-t[4

L-NI L

xr=\'*ll..[q
(n-!)¿r v

X,> _X,m=Vffi=n

Table 2.30: Equivalence between the Brune section and two CújA complex secrions.

2.9 Equivalences Between the Complex Sections

mLo

-jnüz

50

Each f,rst order complex section is equivalent to another section, that is, each section
can be replaced with an equivalent section without affecting the operation of the nerwork.
This is because one section is the dual of the equivalent section. This can also be seen from
Tables 2.I-I2 gtving the canonic polynomials representing the sections defined as a

function of the reflectance, transmission zero, and for reciprocal sections the delay. From

the tables, the following sections are equivalent: CAl_"" and CB1_.., CC1_0 and CDl_0,
CAljdand CBljQ, Cclj|and CD1j0, CEl and CFl, and finally CGl and CHl. The

equivalences are given for the reciprocal sections in the following Tables 2.3I-34.

Brune

, x?Lou=wv¡*
n _(h +X) L"

x?x,
X,¡ -X,

tL 
-- X2+X1



CAl æ

Table 2.31: Equivalence bet"veen the CAl-". and the CBl_- complex sections.

L=Cî?

xt=ît

CBl -

51

CC1-O

r-L
v2/l' 1

Îr =xr

rr- L
^txi

xr =Îr

Table 2.32: Equivalence between the CCl_0 and the CDl_0 complex secrions.

CDl-O

L=C X?

Ît =xr



c{r j0

^)L=C Xi
xr =Îr

^')
xz=#

X2

Table 2.33: Equivalence between the CAlj@ and the CBljd complex secrions.

cB 1J0

52

ccrJQ

r-L
X?

ît=xt
â -X?
'íz=ì

^2

C= La7xi
xr =Îr

^7
Xz=?

Xz

Table 2.34: Equlalence between the CClj@ and the CDUA complex sections.

cDr j0

L=C X?

Ìt=xt

î. =-x?.-L 
Xz



The synthesis of real doubly-terminated lossless two-ports has a rich history. The
basic problem is to reabze a lossless two-port as shown below

Complex Lossless Two-Ports

Chapter III

Synthesis of

where the resistive terminations are assumed to be normalized to a value of unity.
A first attempt to realize a lossiess two-port involved the realization of either the open-

ci¡cuit impedance matrix or the V-I chain matrix. Since these matrices contain more than
the canonic number of polynomials needed to represent the network, an altemate approach
has recently been adopted [55,59,60,61].

In this method, the synthesis is carried out in the scattering wave domain through the
factorization of the scattering transfer matrix. Information about the ne¡rork parameters
(that is, the impedance or admittance parameters) are not required and the synthesis of the
network is based on three polynomials that are derived from the required steady-state
transfer function. The polynomials will be designated by f, h, ffid g, and satisfy the
properries given in Section 2.4. Thus, the network is represented by the canonic number
of polynomials and since the synthesis is based entirely on these polynomials, a greater

accuracy can be obtained over the earlier approach since implicit relationships benreen
matrix elements do not need to be maintained.

The accepted approach to the implementation of the factorization method applied ro rhe

synthesis of netu;órks involves extensive zero-finding and polynomial manipulation
routines [55,59,60,61]. This method can derive networks with high accuracy, however

53

Figure 3.1: Doubly-terminated complex network.

Complex
Lossless
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the algorithm strongly dependens upon how the zero-finding routine converges and how
the olerances are matched to the problem to be solved Fø accu¡aæ solutions, the amount
of computational time required can be considerable.

In this \ilorh the synthesis algorithm suggested by Jannasz [16] will be extended to the
complex domain to allow the realization of general real or complex lossless two-ports. The
new algorithm is based on polynorrial evalrctioru only and does not require either rhe

zero-finding routines or the polynomial manipulations. Thus the compuær implemenution
is several orders of magniurde fasær than thc ea¡lier method with comparable accuracy.

Each elementary section is re,prcsented by a set of canonic parameters, namely, the

transmission zero, the reflectarice ard forreciprocal sections the delay. Greater freedom in
the realization proaess \trill be found since complex networks composed exclusively of
either inductors or capacitøs as the dynamic elements are possible

It should be noted that all synthesis algorithms assume that the given/, h, and g
polynomials satisfy the conditions given in Se¡tion 2.4,thatis, the polynomials represenr a
stable and realizable lossless ttvo-port ne¡'vork.

In the real case, the numbsr of realizations of the uansmittance that are possible from
the given canonic polynomials is fîniæ. However, fø complex networks the number of
realizations is infinite, although the number of unique stn¡ctures is finiæ. This is a result of
the added degree of freedom that can be found by scaling the å polynomial by a
unimodular multiplier (which will not effect the ransmittance of the nenrork).

3.1 Extraction of An Elementary Section via Factorization of the Scattering
Transfer Matrix

AII synthesis algorithms are based on the removal of a low-order section from a

network, leaving a remaining nenvork with a lower order than the original. The low-order
sections referred to in this thesis a¡e the real and complex elementary lossless sections
given in Chapter tr. The class of synthesis algorithms are basically distinguished by the

way in which the low-order network is extracted and similarly by the way in which the

remaining network is rcprcsented. The scattering rnatix facorization (also called
decomposition) synthesis algorithm will be briefly outlined in the following.

A lossless two-port network N can be presented by the canonic polynomials given in
the form of a transfer matrix as

An elementary lossless section denoted by N" can be extracted from the above ransfer
matrix leaving a remaining network denoted by Nn as shown below.

'=iliro: X ]
(3.1)



This process is equivalent to factoring the scattering transfer matrix as follows:

tl og* h I _ | loogo* ho l[ ongn- hn I
Tl ""r. I ) = ffil;r;. ;; lL ;;ä. ;; I rz'z>

The sum of the orders of N" and Np are assumed to equal the order of N. From the

above, the foilowing relations must hold,

I
I

Figure 3.2: Extaction of an elementary section.

f = fofn
h=hogn+o¿o*hp
g=gagR+ooho*hp

a = aaop (3.3a,b,c,d)

Solving for the polynomials of the remaining network N¡, the following are derived:

fo=L-
Ja

h^=g"h:tog
olof"*

8o*8 - ho*h

The section Nu realizes at least one of the ransmission zeros of N and thus (3.4a) is a
polynomial. In order for å¡ and gn to represent polynomials, the polynomiaiffi* must

divide into the numerators of (3.4b,c), or in other words, the numerators must contain the

8n
fof"*

c,R=Ë (3.4a,b,c,d)
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zeros of fJot.
A solution for (3.4b,c) lflas sho\fln to exist by Fetnveis [59,60] and formulated in terms

of the solution of a linea¡ set of equations. This inherently requires the coefñcient form in
the rep'resentation of the canonic polynomials, which introduces inaccuracies in higher
order sysæms. A more ¿rccurate solution using the product form of the polynomials which
requires the use of zero'finding routines is given for the real case in t61l and for the

complex case in [55]. Both methods require polynomial manipulations.
Jarmasz [1f] fomulated the synthesis problem in a different manner by recognizing

that if the canonic polynomials of a netrvo'rk a¡e evaluated at a mnsmission zero, the

section that realizes the ransmission zero is effectively decoupled from the nenpork This
observation allows the development of the efficient synthesis algorithm given in [16]. In
the following, the algorithm due to Jarmasz will be extended to include the synthesis of
complex lossless two-ports.

3.2 Canonic Representation of Elementary Complex Sections

A canonic number of parameærs, which are easily calculate{ is needed to repres€nt the

complex elernentary sections. Reciprocal and non-reciprrocal sections require three and four
real parameters, respectively. To this end, consider the flow diagram fm the networks N"
and Np as given in the following figure where the nerwork N" is assumed to represent a

complex elenrentary section.

Íg
8a

For the synthesis process Írssume that the signal from pon nvo does not contribute to B1

(that is Az= O). Evaluating the canonic polynomials of the network at the transmission

zero Vraof the section N", we havefo(V.\= 0, which decouples the left-most part of N"
from the remaining network (since Az =0) as shown in the following figure:

Figure 3.3: Flow diagram of the N" andN¡ networks.

e&
8ø

Íe
8n

oúp
8n



p(và = Po(\tà

o(và =D"(tttà

Decoupled at the

11/

Note that for reciprocal sections/o. (W) = 0 and thus the left-most section is then decoupled
regardless of the remainder of the network. In either case, it is clear from the above figure
that from the viewpoint of port one, the only element that contributes to.B 1 is the ratio of
the å and g polynomials for the first section. This is by definition the reflectance p, and
therefore

Figure 3.4: Flow diagram of the N" and Np networks evaluated at Va.

ho
8a

-6oh¿
8a

transmission zeÍo
{^]K
gR

tsfu

and thus the reflectance of the fust section ¿ is equal to the overall reflectance p when
evaluated at the transmission zeÍo V.Ía,

p @")= p"(W) (3.6)

8a
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Vo

Pn

Dp

Two parameters associated with the first elementary section are now known, namely
the location of the transmission zero (which is supplied in the original/polynomial) and

the reflectance evaluated at the transmission zero. For non-reciprocal sections, both
parameters are general complex numbers and thus the two parameters a¡e all that is needed

to completely characteri zæ the section.

However, for reciprocal sections, both parameters are real numbers, they are namely
the imaginary part of the transmission zero and the angle of the reflectance (since the

reflectance is unimodular). Thus for reciprocal sections, one more real parameter is
needed. Intuitively, the extra parameter should only be a function of the ratio of the å and

g poiynomials for the section. This is because the only known quantity, from Figure 3.4,

is the reflectance of the section. Another way of stating this is that a degree of freedom

might be lost if the/poiynomial of the section is used, since it will go to zero at the

p @,) = I1*, = þ tv"l = po (vo)

onfp
8n

-Anhn*
8n

(3.5)
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transmission zero. Although many possibilities may exist, a convenient choice for the

extra parameter is the return gloup delay (known here after as the delay D) given in
Chapter tr and as suggested in [16]. The delay is real and positive when evaluated ar rhe
transmission zero as shown in Theorem 2.2, and only a function of the ratio of the å and
g polynomia-ls of the section as shown by the definition (2.36), repeated below:

Thus from the above observations and from (3.5-6), it is clear that

and thus the delay of the first elementary reciprocal section is equal to the delay of rhe
overall network when evaluated at the transmission zero of the section.

The reflectance, and for reciprocai sections the delay are given in the Tables of the
elementary sections in Chapter tr. For reciprocal sections the reflectance is unimodula¡ and
the delay is positive as shown by the tables. Similarly, for non-reciprocal sections the
reflectance is not unimodular and the delay is not needed. In either case, it is clear from the
tables that an elementary section can be represented by the transmission zero, the
reflectance and for reciprocal sections the delay of the section. These will be defined as the
canonic pffameters.

Thus, it is clear from the tables given in Chapter II, a complex first-order section, or a
real second-order section (where appropriate), can be chosen. Therefore the canonic
polynomials of the fust elementary section are known.

3.3 Recomputation for the Remaining Network

o 
"u o)= . Ev,v+,4#"ìt= . Ev 

{*,4#)} =, u r",

þ=- *\fr,4m)ll,=,r"

The canonic parameters completely represent an elementary complex section. The
above discussion focussed on the first section of a nework, where the first section was
assumed to be identified and completely defined. In order to represent the remaining
sections, a more in depth formulation is required as given in the following.

The canonic parameters for the sections realizing the remaining transmission zeros of a
network can be calculated in the same manner as used for the first section. Consider the
parameters for the second elementary complex section, which would represent the
parameters of the fi¡st section of N¡ from Figure 3.4. This can be thought of as realizing
Np as two sectionS, N6 and N' where N6 is assumed to be the elementary complex section
(the same procedure as before) and N, is whatever remains. Assume that the tansmission
zeros of N" and N6 are not equal. The parameters of N6 as calculated from the originat/,

(3.7)

(3.8)
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h and g polynomials do not represent the actual section, rather they represent a

combination of the reflectance and where appropriate the delay of both the f,rst and second

sections, N" and N6. Thus to f,rnd the actual canonic parameters for the second section, rhe

flust section must be extracted from the network.

The canonic polynomials for the second section are given as a function of the firsr
section and the original canonic polynomials from equations (3.4). From the above
discussion, it is appropriate to relabel section N¡ as N6 in (3.4). Clea¡ly, (3.4) gives a

general relationship which can be evaluated at any appropriate location.

In order to calculate the parameters for N6, the evaluation of the h andg polynomials
for the second secrion must be passed through the fust section, gtuittg a new set of
evaluations for the h andg polynomials as shown below,

where the polynomials.fo, ho, and gofor N" are known. The calcuiated complex numbers
hø(Va) and g{ty6) now represent the actual polynomials evaluated at the transmission zero

for the section. Thus the reflectance as given bv

ha(vù= s J,Vb)h(tt/ù - n Ávùs @d\

sb{vù=

is known. Note that the reflectance can be expressed in terms of the original reflectance

calculated for N6 as given by

s *(vùs (vù - h".(vùh(vu)

olÁ,vbY'.@b)

pu(vu) = fuvu) =

l,{vøY".@ø)

The same observations will appiy to the delay of the section N6 and will not be

repeated. Consider a reciprocal section, the delay is given from (3.7) and (3.9) as

sÁvb)h(vù - n"Mùe@ø)
o" (s *(Vùs Mù - h".(tt/b)h(Vù)

pt(vù =

where it is understood that after all algebraic manipulations have been completed, all

ou=&,4m=ft,\

s"Mùp@ø) - hÁvø)

o" (s 
".(Vu) 

- h,.(tttb) p (Vb))

(3.9a,b)

s(uòo"ffi

(3.10)

(s*{ø-;".(ffi
sr,vò- oÁrrffi

(3.11)

/? lr\



polynomials will be evaluated at Vu. Simplifying the above gives the following:

o, = ftlta"¿.,4ffi1. t\s^{vò - h".(ffi . t\sÁvò 
^rffi]fl

o, = #4;i$) . #4'*tø. n^(ffi. fr\stø - ^¿ffi
(3.1 3b)

^ _ F,, fts ^tø 
- #o^tøffi - t^W".r,IJb=Lt'

After multiplymg the numerator and denominatø of the second ærm by glh and the third
term by h/9, and then recognizing the definition of the delay, ,fve get

D; = D *#ruøl 
* o n¿v¡ - 

#sÁv¿nffi *- fli;".(uò) 
* o o".Juò * frþ*&òffiub-u - -

(3.14)

Apply the property

-fu¿ø.Íduøffi. t##þ,
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sÁvò-r¿ffi

(3.13a)

we derive

D¡ = D .#;uøl 
* o n¿ø - #gvùffi *ll:luøL. 

* o o".tø -lfrt'.tø\1.ffi
ub-t-t- -

ido'tø\=-l#otø1.

(3.13c)

(3.1s)



Finally, after recognizing that at a tansmission zero of a reciprocal section,

the following is derived:

Da=D + #r¿øl+ Dhlyr)-fis,tøffi

Define the function

s&ò _lh(uòl
i@- LsM-1.

t"fu'ffi- hÁ,vò

which is found in (3.18). Thus, the delay can be expressed as

Du (Va) = D (Vù + A (Vù + A. (Vo)

Aftï=

by recognizing that D* = D since D is real. This is an expression giving the actual delay
of the second elementary section and is a generalization of the expression given in t 161 .

Thus the reflectance and the delay of the second elementary complex section are

known. Therefore, after choosing the appropriate section, ail information pertaining to the

second section is completely known. The canonic parameters of the ñrst and second
section can now be used to derive the third section, and so on. This synthesis process will
be generalizedtn a later section.

3,4 Calculation of the Reflectance and the Delay

#r¿øt+ Dhtg-fismlffi

a1ot

(3. 17)

t"&'ffi- h|,vò

The observations made above, namely equations (3.10, 20), assumed that all of the
transmission zeros were distinct. However, the general case should provide for multiple
transmission zeros, that is, the case of more than one transmission zero at the same

location. A simple example of this is an allpole filter that contain all of the transmission
zeros at infinity. For this case the canonic parameters for all multiple ransmission zeÍo

sections will be the same, and thus another method of calcuiating the reflectance and the

(3.18)

(3.1e)

(3.20)
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delay is needed.

The method used for the muldple transmission zero case was given by Jarmasz [16]
which followed suggestions by Martens [57]. In this method, the polynomial evaluarions
at the transmission zero are not used explicitly. Rather, the polynomials are sampled at N
sample points a¡ound a ci¡cle of nonzero radius centered at the transmission zero. The
resulting set of values will be known as the sample cha¡acterization.

The actual values of the polynomials can be found by recognizing that the Taylor series
expansion of the polynomiai about the ransmission zero has the same form as the discrete
Fourier transform generalized to a nonzero radius. Consider the Taylor series expansion of
the å and g polynomials of order N about the transmission zero of section k, where

as given by

where the complex a¡ and b¡ arc the Taylor series coefFrcients [52], and N is given by

1<¿<N

Evaluate the above (3.22) at l/ equally spaced intervals of the circle of radius r centered at
the transmission zero Vt as given by

t{vò =

N-1I
i=0

N-1

8(ø= I
i=0

V= V*+, "iT", n = 0 (1) (N-1)

and as shown in Figure 3.5,

a¡(v - vtY

b¡(v- vr)i

N = deg(g)+ 1

(3.2r)

(3.22a,b)

(? )?\

(3.24)



Figure 3.5: Sample points for the sample characterization.

in order to derive

Transmission zero at Vlk
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where hln, k ] and g lr, k)represent the N sample points on the circle for section k,

which is defined as the santple characterization. Tlte above equations have the form of the
DFT of the discrete sequences a¡ and å¡ generalized to radius r. Thus, one can view the
Taylor series coeff,rcients a¡ and å¡ as discrete-time sequences with the corresponding DFT
of hln,,t ] and gln, k ], that is, the following represent DFT pairs:

0<is(N-1)

¡/-1
hln, k] = I

i=0

N-1

gln, k] = I
i=0

a¡(k)ri¿iffni

The sample characterization given by (3.25) can be conveniently calculated by simply
sampling the /¡ and g polynomials at the points (3.24) as given below

b¡(k)ri ¿iffni

a¡(k)<-> hln, k)
b¡(k) <+ gln, k)

(3.25a,b)

hln, k )= h(vo+ r ejT")

(3.26a,b)



Note that for a transmission zero at inñnity, ñrst apply the mapping

to the å and g polynomials, and after rationalizing the nuæraor and denominator, let

tl/ + 0. a¡i5 mnpping also changes the sign of o for all fust-order sections.
The radius r is chosen o be less than the shqtest Euclfulean distance benpeen distinct

transmission zetos, and as suggested in U6l, 0.2 of this distance works wellin practise .

As mentioned ea¡lier, tb quantities needcd fq the evaluation of the canonic parameters
a¡e both the l¡ and g polynomials and thei¡ derivatives evaluaæd at the ransmission zerc)

of the section. By using the Taylor series expansion (3.22) and the observation regarding
the DFT pain (3.26), the quantities a¡e easily evaluated from the definition of the DFT as

N-l
h(Vtl= a{=# I hln, kl

¿=0

gln, kl = slvr*, aff^)

vt -, l-
V

&

(3.27a,b)

and

g @k)= åo = Nl

(3.27c)

/V- I

l#*llr= yk o,, = #"¿, tn, k),lT "

Note that the higher order derivatives can be calculated in the saÍre way, but for this
application, only the zeroth and fint derivatives a¡e needed. Using (3.28-29), the
reflectance and delay are calculated as

p(v*l=ol'r),rß' gWk)

N-l

¿=0

¡Í- I

lÍV *llr= vk 
u, = #"à r ln, kl,-iT"

gln, kl (3.28a,b)

(3.29a,b)



The recompuadon formulae for section N6 given earlier (3.9) can be expressed in
terms of the sample characterization as

D (vt) --
lf,rwll,=*

L. | _ t 1 _ Bafn, b)hlr, b) - holn, b)gln, bl
TLDLTL)U l-

^ t.. L.r ga*ln, b)gLn, bf - ho*ln, blhln, blgLN,DJ=
faln, O [o* ln, O )

0<¿<(N-1)

g (tt/k)

where

l*¿r,ll,=,r
h (vò

This simply maps the original sample characterization for the section into the actual
characterization for the section. Equations (3.28-30) can then be used to calculate the
canonic parameters. Note that all/polynomials must be monic as given in the tables of
Chapter tr.

3.5 Complex Synthesis Algorithm
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foln, bl = f,(Vu * , ,iT ")

holn,bl=ho(ru*rr'T")

goln,b)=go(ru*rri{"l

(3.30a,b)

The aigorithm for the synthesis of complex lossless two-ports follows from the
discussion given above. T\ef, h, andg polynomials for a network are assumed to be

known, where the order of the zeros of the/polynomial represents the desired order of the
elementary sections realizing the finite ransmission zeros. If they exist, transmission zeros

at infinity can be realized at any appropriate location. The procedure for the synthesis of
the nenvork is equivalent to the realiz¿tion of the ransmission zeros given by Vu where

1<k<N.
Although the sample characterization is not required for all cases, the synthesis

algorithm will tre presented in terms of the sample cha¡acterization for simplicity. That is,

the sample characterization can realize either the distinct or the multiple transmission zero

(3.3 1a,b,c)

(3.32a,b,c)
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case, and thus the algorithm presented will be the most general.

For the ktå ransmission zero, t¿¿, calculate the sample characterization as given in
(3.27a,b), that is calculate the h¡rlr, k) and the gtln, k ] complex numbers from the

original polynomials for 1 < k < N. Then calculate the canonic pammeters for the fust
section (k = L) and identify the section from the tables in Chapter II, including the
secfion's canonic polynomials. Now extract the fust section by mapping the sample

characterization using (3.33) for 2 < k < N. Repeat this process by extracting secrion /

and recomputing for the remaining sections as shown below for (/ + 1) < ¿ < N
inclusively.

, f ,_ ., gtln, kThrln, kl - kln, k)gtln, kl
hkLn, tc l=

The complex numbers h¡f,n, k ] and gdn, k ]on the right of the above equarions are

recomputed and reassigned on the left. Note that ¡hefiln, k ], the htln, k ] and the
gtln, k ] terms represent new polynomial evaluations of the known polynomials for section
/, and all of the polynomial evalua¡ions for a section occur at the same frequency as given

by G.2Ð. \\e llh elementary complex section can be identified from the canonic
parameters given from the sets ådn, k ] and g[_n, k ] and (3.30), and thus ail relevanr

information about the kth section is known. Continue this process until / equals N when
the synthesis is complete.

Fet¡reis has shown [59-60] that the extraction of a lossless elementary secrion is
possible as long as the given canonic polynomials satisfy the conditions given in Section

2.4. Namely, the scattering matrix representing the network must be unitary on the

imaginary axis and the g canonic polynomial must be strictly Hurwitz. Now it is possible
to determine the canonic polynomials given in (3.4) that represent a lossless sub-network
of order N - m, where m is the order of the extracted section. Furthermore, the canonic
polynomials can be represented in terms of the canonic paftirneters and vice versa as given
in the Tables cha¡acterizing the elementary sections found in Chapter II. Thus, from the

preceding observations, it is clear that an elementary section can be extracted from a

network using the synthesis algorithm, thereby reducing the order of the remaining sub-

network by the order of the extracted section. Note that the extraction did not involve the

manipulation of intermediate polynomials. Also, the relative magnitude of the reflectance

(either unimodular, g¡eater than one, or less than one in magnirude) is invariant and the

delay for reciprocal sections is positive for each elementary section since the section is

realizable.

gÃn, k)= grln, kl¿tlr, kl - hr.ln, klh¡lr, kl
filn, klfr lr, k)

(3.33a,b,c)
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From the tables of Chapter II, there is some freedom in the choice for a complex
section; that is, a section with either an inductor or a capacitor as the dynamic element is
possible for a given set of canonic parameters. Also, freedom is found in the case of
complex conjugate transmission zeros, since they can be realized as either two f,ust-order
complex sections or a real second-order section. Note that if two first-order complex
sections a¡e chosen the sections are not required to follow one another in the cascade and
they can be placed anywhere wirhin the network.

Thus a particular set of canonic parameters does not necessarily specify a unique
section. Moreover, the canonic parameters for the secúons are derived from the
polynomials of the network and a¡e thus independent of the exact sections used (except for
the finite transmission zero case, unless either secrions {CAljw, CBljw} or {CCljw,
CDljw) a¡e used exclusively). This leads to the result that the canonic p¿ìrameters

completely specify a network and are equally as important as the lumped element values of
a network. In fact, the parameters are equivalent to the lumped element values as shown
by the relationships given in the tables. The equivalences in Tables 2.31-34 show the
relationships between the sections.

The synthesis algorithm is based entirely on polynomial evaluatioru, and thus routines
for zero-finding and polynomials manipulations a¡e not needed. The sample
characterization approach requires more evaluations than the method of evaluating the

polynomials at the transmission zero, however, the added computational time is not
significant. Furthermore, the sample characterization method can handle the synthesis of
both the multiple and the distinct transmission zero cases, and thus only one computer
pro$am is needed for general nerwork synthesis.

3.6 Extraction of the Last (Constant Complex) Section

After the last dynamic elementary section is extracted, a final complex constant section
(or a real section as a special case) must be realized in order for the synthesized nenvork to
satisfy the original canonic polynomials and for the load resistive termination to equal uniry
in Figure 3.1. This is performed by extracting the last dynamic section and recomputing
the sample characterization. Label the resuking constanr secrion (N+1).

The sample characterization and the canonic parameters, including the transmission
zero, are known for the last dynamic section. Thus recompute the sample cha¡acterization
using

hu *tln1 - 
g¡ul¿' N låv* r þrN ]---l¡¡[f' {þ*r In' N ]

oufnln, N Ï¡u- [n, N ]

8ru+ rln ] =
g¡,t*ln,N ]Sru * tln,N ] - å¡¿* ln, N lh¡¡* r [n, N ]

fuln, N Vw* [n, N ]
(3.34a,b)



which extracts the last dynamic section leaving a constant section. The sample
cha¡acterizations å,y + tln, N ] and B¡,¡ + tln, N ] represent the cha¡acterizarions from the
exffaction of the preceding section. The complex sets h¡t * tln ] and g¡,, * rln ] represent the
constant h and g polynomials for the last section, which are given by

The"f¡¿ * 1 polynomial is equal to unity since by assumption all/polynomials a¡e monic.
The o¡¿ * 1 value is arbitrary since the ovalue for the overall network is usually arbitary.
Thus from the constant"fN * r, ft¡¡,. 1 and g¡v + r polynomials for the section and Tables
2.13-17, the last constant section can be determined.

Note that the last section will be a real ideal transformer for a real network as well as for
many complex networks realizing real canonic polynomials. However, the laner is not
always the case, particularly when at least one complex section is made reflection-free or
when the original å polynomial is scaled by a complex unimodular constant.

3.7 Recomputation Using a Constant Complex Section

hu *t _1
N

_1
N

N-1

\ n-* r[']
n=0

8¡¿+t

N-1

¿=0
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In the synthesis of electrical networks, it is desirable to have the freedom of inducing a
panicular properry in a section. The three most coÍrmon properties that a¡e induced are
port one reflection-free, port two reflection free and a pass-through at a certain frequency.
All of the elementary sections üsted in the tables of Chapter tr behave as a pass-through at a
certain frequency as given by the definition of the section. Howev€r, the reflection-free
property must be explicitly induced in an elementary section.

From the discussion in Section 2.5, a general constant complex section is needed to
make a port reflection-free. After inserting the appropriate complex section at the desi¡ed
port, the set of the sample characterization for the remaining sections (all dynamic sections
to the right of the current section) in the network must be recomputed- The recomputation
formulae given in (3.33) can be used where thef ¡, h¡, a.nd g¡ polynomials a¡e replaced with
the constant polynomials ttrat represent the inserted constant section. Thus the

recomputation pricess in this case requires no polynomial evaluations, since it involves
only complex number operations. This process can be viewed as extracting a constant

section from the network in the same way that a dynamic section is extracted, as discussed

8w * [n] (3.35a,b)
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in an earlier Section.

Note that the above only discussed the case for a reflection-free port. However, a

complex constant secüon can be inserted anywhere in the nerwork in order to induce a
desirable properry. The same steps would be followed for the recomputation for the
remaining nerwork.

The insertion of a constant complex section is a form of scaling, that is, changing the
parameter values of the elementary sections. Thus, inserting the constant section will not
alter the structure of the network. For example, consider a network that is fust realized
without inducing any properties in the sections, and then rcaltzeÀ, a second time inducing
reflection-free ports. The dynamic elementary sections for both cases can always be

chosen to be the same, albeit with different parameter values. Note that these observations
only apply to the dynamic sections. For example, the last constant section obtained from
the realization may change.

3.8 Design Examples

Few examples of complex analog networks exist in the literature, and no examples exist
of either realizations of frequency shifted networks or realizations of networks with the
phase of the å polynomial scaled by an arbinary real constant. In order to give examples
of complex analog net"vorks and to support the observations made in this thesis, Appendix
A contains the following five examples of classical filters: Elliptic filters of orders 4, 5, 8,

14, and a Chebyshev filter of order 5. All filters a¡e of the lowpass type excepr the 14th

order Elliptic which is of the bandpass type.

All examples were generated using the synthesis algorithm outlined above with a

progam wrinen by the author in the PASCAL computer language. The program requires:
the canonic polynomials of the network in factored form, the imagrnary axis shift, the å
polynomial phase shift and type of complex section desired (when a choice benpeen

sections is appropriate).

Note that the example that required the most computer time was the 14th order Elliptic
filter realized with complex sections and reflection-free ports. However, the solution to
this example required under a minute to calculate on a Macintosh tr computer with a clock
speed of 16 MHz. In onder to put this in perspective, the 8th øder Elliptic filter realized
using the method of Cascade Synthesis (factoring the transfer matrix) [55] without
reflection-free ports required over fou¡ hours on the same computer for the same accuracy

as the example presented.

It should be noted that the synthesis algorithm implemented is very sensitive to the

accuracy of the given polynomials. However, this usually will not create a problem since

the transmittance gain can be found to a high degree of accuracy from a given set of poles

and zeros. It then remains to f,rnd an å polynomial that accurately fits the anal¡ic
continuation of the Feldtkeller equation (2.21). This can be easily done using azeto-
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finding routine. However, this process is independent of the algorithm since it deals with
the polynomial description of the network.

In all examples both the canonic parameters and the lumped element values are given in
order to provide an indication of the relative magnitudes of the values. This again

demonstrates that either type of description can charactenze a network. All of the

transmission zeros were realized in the order given in the tables in the Appendix, and if
they exist, ransmission zeros at infrnity were realized last (although this need nor be the

case since the transmission zeros can be realized in any order).

The following general observations can be made about the dynamic sections from the

examples. It is possible to realize the given real canonic polynomials with real sections.

Complex sections a¡e needed if the polynomials are shifted along the imaginary axis or if
the phase of the å polynomial is changed by an arbirary constant not equal to 0o or 180o.

From the 4th order Elliptic and the 5ü order Chebyshev examples, equivalent realizations

are possible using the same type of fust-order complex section regardless of either, the

filter order, or tle change of phase of the å polynomial if finite transmission zeros exist.

Also, from the 5ú and 8ù order Elliptic examples, realizations are possible using the same

rype of fi¡st-order complex section with the polynomial shift along the imaginary axis. It is
possible to realize a network using either of the four first-order complex reciprocal sections

exclusively as shown by the 5ú order Elliptic example, and thus realizations containing
only inductors or capacitors as the dynamic elemens are possible. Non-reciprocal sections

can be realized as shown by Tables A.7l-72. Finally, any section, whether real or
complex, can be made reflection-free as shown by all of the examples.

The following observations can be made about the constant sections for networks with
f,rnite ransmission zeros. The last constant section will be a complex constant section if
any of the following is true, the network is realized with reflection-free compiex sections,

the polynomials of an odd order filter are shifted along the imaginary axis, or the phase of
the å polynomial is changed by an arbitrary constant not equal to 0o or 180o. The real

sections of a real network can be made reflection-free using real transformers, while the

complex sections will require a constant complex section whether the network polynomials

are real or not.

For all-pole filters, the sarne observaúons apply except that the last section will be a real

ideal transformer for the change of phase of the å polynomial.
The accuracy of the synthesis algorithm can be tested by comparing the canonic

parameters for the very narrow band 14th order Elliptic bandpass filter to those found in

[ 1 6]. This fiiter represents a very difficuit case since a high degree of accuracy is needed in

the reaiization because it has a relative bandwidth of only 0.025Vo and the finite
transmission zeros are indistinguishable to three significant digrts. From the comparison of
the parameters from Table A.74, it is clear that the two sets of parameters agree to at least 5

significant digits. The discrepancy may be due to the use of the sample characterization in
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the derivation of the example. A comparison for the complex case is not possible,

however, a realization using the CBljw section throughout gave a f,rnal ideal transformer
value of 0.83179907921888, which is in agreement with [16] to six significant digits, and

thus the complex realization is considered acceptable.

The complex analog nerworks derived will be used as the reference networks for the

wave-digital frlters presented in the following chapters. Either the lumped element values

or the canonic parameters can be used to represent the sections. The freedom to choose

either set of parameters allows for nryo efficient and equivalent methods of realizing
complex digital filters, as outlined in Chapter V.



Complex'Wave Digital Networks

The arguments given in the Inuoduction suggest that tl¡e one-real approach to the

realization of complex rcference networks is too resrictive and it will therefore be

abandoned for the following møe general ttr€6y of CWD filters thæ allows constant

complex rcference iryedances.
It is known that the wave digital realization of a net'work maps an analog network to its

equivalent digrtal network in a one-teone conespondence [6]. Also, if a digital filter
stn¡cture is found which possesses the desirable properties of low sensitivity and zero-

input and forced-response stability, then it is necessarily equivalent to a wave digital filær

[18]. Thus the generalization of wave digtal filærs to the complex plane should have these

properties. The following new definitions rcahzr this objective.

4.L Definition of the Complex Voltage and Power l{ave Veriables

Chapter IV

Introduction to

A new generalization of WD net''rorks is found with the following rrcw definition of the

incident and reflected voltage waves, ,4 and 8, in ærrns of the steady-state voltage V and,

the current / where r¡is a frequerrcy variable (discussed below) defined as follows:

The impedanceZ,hetrceforth known as the port reference impedance, is an arbitrary

complex constant containing a positive ¡esisunce R and a constant reactance X. The

above equations simply map an analog voltage+urrent network to an analog wave nenpork

(in ærms of the steady-state variables). Note that the conjugate sign in equation (4.1b)

which defines the refleaed wave is necessary for the powef, equation to reduce to a simple

form (and thus fø a sability theory simila¡ to the real case to exist) as shown in the next

section. This mapping is most easily visualized in terms of a complex one-port network as

shown below.

A (vò=v (vò+ z I (y)
B (vò=v(vò-z* I(vò

Z=R+jX (4.1a,b,c)
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Complex
Analog

Passive or
Lossless

One-Port N

The network is then transformed to the disøete (digltal) domain with the familiar bilinea¡
transformation

Figure 4.1: Complex one-ports in the analog and CWD domains.

The complex frequency variable t¡ is used to map rational functions in the digrtal domain to

rationai functions in the t¡domain and is related to the frequency va¡iable z = efi, by

where Tis the sampling perid. If s = o+ jøand \t= ù + jQ,the above becomes

6+iO = eoel@-7,
eoeJø + |

V¡= z'\' z+ I

Complex
Wave Digttal

Passive or
Lossless

One-Port N

-aIJ

Thus the (real) frequency variables in both domains are related by

a=4+)

,¡,=,*h{sJ =#=#

L+w
L---

L-Vl

which maps the Nyquist range -n < afT < E, in a one-to-one corespondence, onto the

Laplacian fiInge -æ < Q < *. Substituting the bilinear transformati on (4.2a) into the voltage

wave variables (4.1) gives

and hence a wave analog complex network is transformed to a wave discrete complex

network henceforth known as the complex wave digitai (CWD) domain.

(4.2a,b)

(4.3)

(4.4)

(4.s)

(4.6a,b)
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The return goup delay given for analog filters by Q.aÐ can be expressed as a function
of the discreæ variable z-r as given by

4dr.rl d, Ár_r)d,.r)=ffi_ffi
and is related to the delay given in the analog dmain by the following:

As suggested in [16], a more appropriate choice for the function in terms of z-l is given by

ô(z't¡ =-z'r4r'r)

ô(z-t¡

which is a tunction of {z-t) ë {.U|

\z-r)=
-?14.vdv=#!)

(t + z'rY

The above definitions (4.1) lead to the recognized form of the reflection coefficient for
complex impedances [4O]

zzt (4vòlr=ffi
(t + z'rY

On the unit circle z-l

(4.7)

where Z(y)is the complex driving-point impedance of the one-port.
crxrent given by the inverse transformæion are

v=ffi
¡=44-

Z+Z*

(4.8)

= ¿-iølf , the above becomes

^ _z(vò- z*

' - 21u¡*t

(4.e)

(4.10)

(4.11)

The voltage and

(4.12a,b)



Now consider a complex n-port N which can bc cha¡actsrized using a variety of
matrices (eg. scanering, transfer, etc.) and shown below.

Femveis [6] has extended the work of Belevitch t4O1 o give a canonical rcpres€ntation

of the network in the fomr of a complex scattering matrix S, which relates the column
vector A of incident voltage waves A¡ to the column vector B of reflected voltage rffaves

B¡,i=l(l)nbyB=SA.
For a general complex ¿-port networrk with impeJance matrix 2 ndport references

Z¡, i = 1(1)n, the scanering matrix is given by

C-omplex Wave Digtal
Passive or l.ossless

n-port N

Figure 4.2: CT/D n-port.

which can also be rewritæn as

s = rn - zBt(2 * zlt G.r4)

where Zis a srictly diagonal port refercnce impedance rnarix with the corresponding port
references on the diagonal, and R is the real part of Z. Ttte voltage wave va¡iables given in
matrix form are given by

s =(2 -z'Xî,*zl'

A,=V+ZI
B=Y-Z'l

and the inverse transformæion is given by

v=lG(z't¡+T,B)
2

r=+õ(A-B)

(4.r3)

(4.15a,b)

(4.16a,b)



where õ is a real diagonal matrix containing the inverses of the real parts of the port
references, and is in general not equal to the real part of the port admittance matrix as

shown by

where the inverse always exists because of the choice of the diagonai resistance matrix.

Intimately coupled with the definitions of voltage-waves are the so-called incident Â
and reflected B power waves [6] as redefrned for the complex case in matrix form by

, -1ltwhere G "" is the positive defìnite square root of G.

4.2 Definition of Power

Z=R+jX
õ=R-l

Using this cha¡acterization, the definition of the power (aiso calted pseudo-power) of
an /?-port in terms of the more commonly used voltage waves is given by

p = 4.r(Ç _ s.rõs )n

î,=+G't'(v +zr)
î =tã't\v -z.r)
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where the asterisk symbol denotes conjugation of all the eiements within the matrix when

evaluated along rhe y=¡q axis. These expressions are derived using the fact that the
quadratic form of a Hermitian matrix is purely real as shown in the following derivation.

The definition of the apparent power in the analog domain is given by

(4.77a,b)

P=t
;- f

where U is a complex scalar, and V and I are voltage and cu:rent coiumn matrices of the
same order, respectively. Substituting the definitions for the curent and voltage in terms
of the voltage wave variables as given in (4.16) leads to

(l¿,1'- ln¡12)Gt

(4.18a,b)

U = I*TV

(4.19a,b)

(4.20)



since

Rewriting the above and ignoring the scalar multiplier, we get

u = Ã*rGzz*A-B*rG2zB + L*rGzzB - B*rG2z*A (4.23)

and after substituting the relation relating the incident and reflected signals B = SA, the
above simplifies to

u = l-{õ22* - s*rã2zs *G2zs - s.rõ22.)n @.24)

By definition, the power P is the real part of the apparent power U,

u = I(A-t - B-r) õ' (2. d, + zn) g.zr)

p = Relu) = n¿{¿,.\627* - s*rõ2zs +G2zs - s-rõ22-}n} @.25)

We can identify the Hermitian H and the anti-Hemritian HÁ matrix components of the
inner-most b'racketed term Íìs
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HA = (2. - zE'+ S*r(Z* - zE2s + zãzzs - zs*rí2z* 14.26a,b1

where we have used the fact that diagonal matrices commute under multiplication. Thus the
real power is given by

p =Re{A*"(n * HA) A} = Re{^r*r(H ) 4 * ne(a-TIHA) a} Ø.27)

However, the quadratic fonn of a Hermitian matrix is purely real and the quadratic form of
an anti-Hermitian matrix is purely imaginary, and thus the poweris given by

p = ¡-rl(z + z*W2 - s-{z + z.)õ2s } ¡, G.zB)

The above can be written in a simpler form by identifying (Z + Z.) as wice the resistance

(4.22)

ll =(z + z*82 - s-{z + 2.fi2s



matrix R, giving (again ignore any constants)

as given in (4.19a).

The conditions for passiviry (P > 0) and losslessness (P = 0) (also called. pseudo-
passivity and pseudo-losslessness) from the above equations are given by

(non-negative definite) and

P = A*r(õ - s-rõs )¡,

respectively, when evaiuated along the yr= j@ axis.
The last equation shown above can be used to define the power wave (normalized)

form of the complex scattering matrix. Assuming that S cha¡acterizes a lossless network,

the normalized form of the scattering matrix, namely S, is uniury (the complex form of
orthogonal) and is given by

õ-s.rõs > o

This conesponds to simple scaling in the signal paths, that is, real scaling transformers at
the ports of the scattering matrix. This effectively sets the real parrs of the port references
to unity, while the imaginary parts are not constrained.

4.3 Two-Port Scattering Matrix

õ=S.rõs

/ó

(4.29)

For a lossless two-port, the scattering matrix S can be represented by

-1ta - 
1ta

S =GÀ/¿S G-r/¿

(4.30)

where R 1 and R2 Ne the real parts of the port references, and"ñ h, andg are known as

the canonic polyrv.:mials and are functions of either Vlor z. The lower asterisk operator {.

is the para-conjugate defined by

(4.3r)

'={ 

"

+^l
-oo. 

]

(4.32)

(4.33)



where n is equal to the degree of the g polynomial. If the network is reciprocal, the

complex constant ois given by

o = Lþ (4.3s)- f*Rt

The polynomial S has all of its zeros strictly in the lefçhalf plane (ie. it is Hurwitz). For
lossless trilo-port networks the following relation holds

f.fuò =f.lV.) <+ f.G^) = 7-"f*(z*)

which is known as the analytic continuation of the Feldtkeller equation. For normalized
networks, simply let

in the above equations (4.33,35-36), and thus the complex constant obecomes
unimodular.

For a complex two'port characterized by an open-circuit impedance matrix

z =l '-'r z-Lz I c 4.38)
L zzt zzz J

with port references

sg*=W + hh*

/Y

(4.34a,b)

Rr=Rz

the scattering matrix can be written as

(4.40a,b)

Similarly, if the complex two-port is represented by a short-circuit adminance matrix

s=

(4.36)

-2122-2p22-Z2z¡-L,¿

Zt=Rt+jXt
Zz= Rz+ jXz

(4.37)

I tzz*,zz)zi-2241-L2
I

L - 2R2z2t

L7= 211222- zlZzZl

-2R1212 
I

(z¡21;¡zi-2p22-L^, )

(4.39a,b)



with the port references as given above, the scattering matrix can be written as

5- 1 | 
-""'*"'zit+a''zlzz ZRvn l-t2222-yfiiÇr7rl ,^rrr, .!1121+y22zi-t+t,zpi )

Av = )l tyZZ' yr}y}l
(4.42a,b)

and through the inverse transformation, ttre open-circuit impedance matrix is given by

y= | )tt ltz I
I, lzt Jzz J

., _ 1 [(zrh+zr*h*o) * (zf g+zyg*o) 2R1f*o ]" -@ ZRtr (22*s+22g.ò-(zz*n+zzn.o))

Note that the condition for reciprociry t37l remains unchanged as

Srõ = õs

where S is now complex.

4.4 Impedances Mapped to the CWD Domain
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(4.4r)

Using the transformations from the voltage-current to the CWD domain, as given by
(4.12), simple combinations of imFedances can be mapped into the corresponding
(equivalent) CWD element. For dynamic one-port impedances, the corresponding CWD
element is an allpass section. Only constant two-port elements will be considered in this
section, namely the complex transformer and the imaglnary resistor in series and parallel
combinations.

4.4.L One-port Impedances

The one-port dynamic and constant elements found in complex reference networks are

the voltage source, the resistor, the imaginary resistor, the inductor and the capacitor.
When each element is mapped to a CWD one-port, the port reference is chosen in order to
simplify the resulting reflectance and to guaftmtee computabiliry of the resulting section.
The port reference is the complex conjugate of the driving-point impedance of the one-porr
evaluated atV= 1 (forcingthereflectanceatV= I to be zero).

(4.43)

(4.44)



Imaginary Resistor

ê.

bo

Imaginary Resistor

y=jXI

(̂)

È
I

Þo
IY

ã

-

Èr'\

Resistor series I.R.

V=iXI
x= It - -x, o*o

1+q

Z=Rt- j X
B=-A

Resistive source & I.R.
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Table 4.1: Source and non-dynamic one-ports in the analog and CWD domains.

Table 4.1 shows the equivalence between the coûrmon non-dynamic one-ports in both
domains. The imaginary resistor can be viewed in two different ways, depending upon the
domain in which the equivalence is desired, which is related to the choice of the reference
impedance. The first view point is shown in the fîrst column, where we require the
equivalence of the analog imaginary resistor. Here the reflectance is a simpie inversion and

the real part of the port reference is arbitrary. The second view point as given in the second
column adds an extra degree of freedom (found in the general reference impedance Z)
which is needed when we desire the equivalence of the CWD imagrnaty resistor in the form
of a unimodular multiplier (in other words, f,rnding the equivalent of a CWD unimodular
multiplier when viewed as a one-port).

The third column of Table 4.1 shows a simple complex termination, which corresponds
to a wave sink and zero input. A more general form of this is shown in the fourth column
with the inclusion of an ideal voltage source. In this case, the CWD one-port equivalent is

Y=(R + j X)I

Z=Rt+ jXt
B =sj0¿

Z

V =E +(R +7X)1

Z=R -jX
B=0

Z=R -jX
B=E



a wave sink and an input equal to the value of the voltage souÍce.
The one-port inductor and capacitor equivalences are given in Tables 4.2-3,

respecrively.

õ.

s

Inductor Inductor series I.R.

V =LVI

()

È
I

O
Þo

È

lnductor parallel I.R.
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Y =(Ly+ jx)l

Z=L

B=-z-LA

Notice that a unimodular multiplier in series with a delay is needed only for the section
with the inductor in parallel with the imaginary resistor. In all other cases, only a simple
inversion is needed (no computations are required and no quantizations are necessary).

Table 4.2: Inductive one-porrs in the analog and CWD domains.

Z=L-lX

B=-z-rA

_iXL
L=L

L_JX

B-72-rA

L_ iX
' L+jx



Capacitor

!s
èf)o
cg

+

v

Capacitor series I.R.

V= I' cry

+

v

rt)

È
I
{)
ö0
ctl

€g

ot

B

Capacitor parallel I.R.

v=kiu'.4
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z=Lc

B =z-r A

v=Ët' | +fiCry

For this case, a unimodula¡ multiplier in series with a delay is needed only for the
section with the capacior in parallel with the imaginary resistor. Again, in all other cases,

only a simple invenion is needed (no computations are required and no quantizations are

necessary).

4.4.2 Non-Dynamic Two-Ports

Table 4.3: Capacitive one-ports in the analog and CWD domains.

t=+-i*

B =z-r A

The only new complex non-dynamic nro-port sections a¡e the complex tansforrner

[¿10] and the series and parallel connections of the irrraginary resistor. Table 4.4 gives the
correspondence between these sections in the analog and CWD domains.

7- -Ë

r-jxc
B-72'rA

,=-l'-o,cl' \1+Ëcl



Complex Transformer

E
10 'E

Gtttr:<-ìt

Series Imaginary Resistor

¡rtI t-l 12

---i ¡-
TET jx

Vt=n* V2

Iz=-nlt

o
al
È
I(l)

ão
ll
o

crl

oE'
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I
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æ

21
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æ

Parallel Imaginary Resistor
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Vt-Vz=jX11
It='Iz

Zt=Rt+jXt

v =Rt 
-.üh 

=-zi- nno nn*

h

A1

21

By

In each case, the second port impedance was chosen to simplify the scatæring matrix of
the section and to guarantee computability of the resulting section. For the complex
transformer, the second port reference is a real scalar multiple of the firsr Thus a complex
transformer cannot be used for an arbitrary change of reference impedance as in the real
case. That is, only the magnitude of the reference impedance can be changed with a
complex transfo.rmer, not the real and i-agi"ary parts independently. Noæ that with a
unimodular rurnsi'atio the second port reference is the complex conjugate of the first, and
thus this section does not have an effect upon the port impedance. With the nvo-port series

imaginary resistor, the second port reference is the sum of the complex conjugates of the

first pon reference and the imaginary resistor value. Similarly, with the fwo-port parallel

Table 4.4: Nondynamic two-ports in the analog and CWD domains.

B2

Vt=j X(\+l)
Vt=Vz

74

A2

Zt=Rt+j Xt

4,=Rt -j(x +X)

h= zi-Ë

A1 82#
I
*

21lz,

81 'l Az
@

Zt =Rt +j Xt

z =--tx 
zi 

=zi- zi-r t
zi-x$=r-' -ix
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imagmary resistor, the second port reference is the parallel combinæion of the complex
conjugaæs of the first port reference and the imagmary resistor value. Thus we can see the
domination (or carry-over) of the familiar characteristics of the analog domain.

The scatæring matrix of the complex transfornrer is in the familiar fonn of scaling (a
pair of inverse multipliers). For the series imagnary resistor, the scatæring matrix has a
particularly simple form where the signal quantities arc pass€d through the section
unmodified. However, for the parallel imagnary resistor, the scattering matrix is in a
hybrid form of scaling, that is, one multiplier is the cmplex conjugate inverse of the other.
This can be thought of as a constant change of phase. Obviously, of the two
configurations for the imaginary resistor, the series form is preferred when a choice is
available since it does not involve computations.

It should be noted that the scattering matrices fø the series and parallel connections of
the imaginary resistor cannot be derived by using series and parallel complex three-port
adaptors, respectively, since a delay-free loop would result

The reference impedance for port two was explicitly chosen in the expressions given in
Table 4.4, however, this may be undesirable in some situations. It is possible to have
independent port references for ports one and two. However, car€ must be taken in the
placement of the resulting section in a digital network because the sections will not contain
a reflection-free porr

The general expressions for the series imaginary resistor, the parallel irnaginary resistor
and the complex transformer as a function of both port references are given by,
respectively:

f¿rl- t | -zi
lnr)- zr + zr+ jxt

farl- I [-ziz2+¡xFzi*zr) lixru llo,lLul-Ml, ,¡* *, _zúî*ix(2,,_z;)lllrJ

la,l = 1 | -r; + nn'22 2n* R1 llo,l (lt)l--,;ffi| ,, *, z,- n ;zi lü;l (4'45a'b'c)

The scatæring matrices can be expressed in normalized form using (4.32) and a¡e given

below for the series i.agttary resistor, the parallel i-aginary resistor and the complex
transformer, respectively :

+22+jx 2h llo,l2R2 \-zi+ix lLerl



[â']_ 1 | -zi*22+ix
l¡r)- zt+k+ixl z^rnæ;

[â, L [ -ziz, + ¡x (-zi + z2) zjx {RR; I I-a,-l

l4)=Ml r,*^trlø -znî *fi(zr-z)]La,l

[â,.l_ , [--zi*nn*22 zn*!-RiÇ ItÂ,I
lilt)- z'.'".k1 tn{Frnr- 21-nn.'; )l¡r)

4.5 Interconnection of Ports

A CWD network is composed of at least one and usually many building btocks
connected together in such a way that the resulting network has the same characteristics as

an analog reference network. However, before the blocks can be connected together, they
must be compatible for connection, that is, the port references for the ports to be connected
must be related. The conditions that must be satisfied for compatibility of ports numbered
I and2 are given in both domains as

2,lEø
21- z| + jx

I r^ r
llo'l
I LÂ,.]
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After the substitution of ttrese conditions into the deflrnitions of the voltage-wave variables
(4.6), the following compatibility condition is derived relating the port references for the
two ports:

Thus the port references must be the complex conjugate of each other in order to be
compatible for connection (this forces zero reflectance at the port connection).

Vt=Vz
It=-Iz
Bt=Az
Bz= At

(4.46a,b,c)

zt=Zi

(4.47a-d)

(4.48)



4.6 CWDF Adaptors

It was noted in a preceding section that the wave-digital transformation maps an analog
network to a digital nefwork and the digltal network inherits the same characteristics as the
reference analog network. As an example, consider a ladder network composed of
interconnections of one-ports containing dynamic elements. The digitai nefwork inherits
the properties because each dynamic element is treated as a one-port, which is easily
transformed to a CWD element using Tables 4.2-4.3. Similarly, the interconnecrion of the
elements (both series and parallel) is mapped to the CWD domain as either a series or
parallel adaptor (usually wittr three ports). That is, the physical connection of analog
elements is transformed to series and parallel adaptors using the definition of the wave
variables and Kirchhoffs Laws. In general, an adaptor could have any number of ports
(but at least two); however, WD networks are primarily composed of t'wo-port and three-
port series and parailel adaptors.

In order for the resulting CWD network to be computable, all three-port adaptors in a
network except one will have to contain a reflection-free port. Furthermore, the reflection-
free port must be connected to another CWD building block and chosen to eliminate any
delay-free loops that may otherwise exist t6l. A reflection-free porr has the corresponding
reflected wave independent of the incident wave, and thus the corresponding diagonal
element of the scattering matrix is zero. Ordinarily, the chosen reflection-free port is not
unique, however, in the foliowing the last port of the adaptor will arbitrarily be made
reflection-free with the understanding that other combinations exist.

All of the adaptors derived are lossless and reciprocal under infìnite-precision
conditions and they can be made passive under finite-arithmetic conditions (after they have
been quantized). With a real adaptor after quantization, the port reference resistances
coresponding to the quantized form of the adaptor can be found. This leads to
losslessness under quantized conditions. However, this relationship does not hold for
complex adaptors unless the aclaptor reduces to the form of the real adaptor, when at most
the real parts of the quantized port reference impedances witl be identifiable.

In the following, all definitions and derivations reduce to the known theory of real
wave digital filters if all quantities are restricted to be real as required for the generalization.

4.6.I General n-port Complex Series Adaptor

87

The series adaptor is used to represent an analog series connection of one-ports in the
CWD domain. This involves mapping the Kirchhoff Laws and the conditions for a series
connection through the given transformation (4.6).
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4,6.I.1, Definition of the Complex Series Adaptor

The complex series adaptor must represent a series connection of ports in the analog
domain with complex poft references. This condition is given by

V1 + V2 + V3 + . . . * V, = Q

It= Iz- 13=...- In (4.49a,b)

Assume that the port reference impedances are given by

Zu= Ru+ jXr, R, ) 0, u = I(l)n (4.50a,b)

From the definition of the wave quantities (4.6), we know that for ports o = r(r)n

Au=Vu+ ZJ,
Bu=vo- ZirI, (4.51a,b)

Solving for Vu from (4.51a) above and substituting with appropriate subscripts into
(4.49a), we get

A1-Z{1+ Az-2212+ A3-23þ+... + An- Zft[n=0 (4.52)

However, all /r, u = l(I)n are equal, and thus the above becomes

A1+ A2+ A3+...* An-(Zt+22+23 +... + Zn)Ip=Q (4.53)

Solving for1, from (4.5lb) and substiruting into the above

2R1)(At + Az+ A3 + ...a An)-(Zt+ 22+ 23+... + Z,)(Ar-Br)=0 (4.54)

and solving for Br,

Bu = Au -2 Ru-(ü !-Az ! Az + ... ! A^) , 1) = r(r)n (4.55)
¿rt 'r ¿JZ + 23 + ... * Zn

Define the complex scalar quantity known as the port coefficient

1D
A _ LI\I)
rv 21+22+23+...*Zn (4.56)



and finally

Bu= Au- þ"(At + A2+ At + ... * An), u= I(l)n

Define the sum of the port reference impedances as

Ztot= f, ,,
j= I

then
,7*

h+ þz+ þt+...+ þn=l+?ø
¿'tot

From the above and (4.56) it is easily shown that the magnitude of the coefficient is
bounded above

IBJ=, (4.60)

although usually this bound is pessimistic. The complex scattering matrix for the general
/¿-port series adaptor is given by
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f Brl
l¡" I

ls. | =
tf l

LB")

The adaptor cannot be factored in such a way that a real n-port series adaptor can be
identified using real or complex diagonal scaling matrices, unless one port is reflection-
free. An attempt at tltis operation would generate a matrix with all but the diagonal
elements equal to the corresponding real series adaptor without a reflection-free port.
Unfornrnately, the diagonal elements of the scattering matrix cannot be independently
scaled using diagonal scaling matrices.

(4.s7)

1-h -h -þt

-þz r-p2 -þz

-h -h r-p3

(4.s8)

:::
-þ" -þ" -þ"

(4.se)

[4,It-l
lAclt-l

l¿, | (4.6r)
lrl
lA")

-þ"



4.6.1.2 Dependent Coefficient

From equation (4.59) above, it is clear that one of the port coefficients pp is dependent
upon the remaining coefficients, and furthermore this dependency encompasses all of the
ports. Let the dependent coefficient be the nth coefficient. Solvin g for prand substituting
into (4.55) we derive

Bv=Au- þ"(ù+ A2+ A3+

I
Br= - 

LUt 
* 82+ B3 +... + Bn-r*

(4.62a,b)

It is ciear from (4.56) that the number of real independent paramerers that characterize the
series adaptor is n, and they are given by

which is one more than the real case. Clea¡ly, the adaptor coefficients can be determined
from these parameters. However, only the real parts of the actual port references can be
found, whereas only the sum of the imaginary parts of the references is known.

4.6.I.3 Reflection-free Port

... ¡ A")

?AN,

90

ff, 2<t¡sn, and 

^+å ",

, 1)=l(1)n-L

+ A2 + Al + ...* Ort

The nú port can arbitrarily be made reflection-free by setting S,* = 0 in the scattering
matrix. This adds another constraint which allows the removal of another coefficient,
namely

Substituting this into (4.56) we ger

21+22+23+...*Zr-r=Z;

or, in terms of the port resistances and port constant reactances

Rr, = Rl + R2+R¡ + ... * Rn- r

þn= L

(4.63)

(4.64)

(4.6s)



Thus the sum of the port impedances is purely real, and from the definition of the

coefficients p, from (4.56), it is clear that with a reflection-free port with general complex

port impedances all of the cofficients are purely real (thus the scattering matrix is purely

real). It is now clear that this case reduces to the defrnitions of the real series adaptor with a
reflection-free port and the generalization to the complex plane requires no extra

computations over the real case. Also, for every port we have an extra degree of freedom

(that is, an extra parameter) in the imaginary part of the port impedance which can be used

to simplify the form of other CWD elements.

In this case the values of the coefficients have a particularly simple form. It is clear that

0 =Xr +X2+X3+...+Xn

which, when substituted into (4.56) leads to the following condition

^ þ, 1)=l(l)nPu= k,

and thus there are only (n-2) real parameters. Again, given the parameters, the real parts

of the port references can be found. However, no information is given for the imaginary

pafts of the port references. The cond"ition on the nth coefficient (4.65) leads to the

following relation

9L

(4.66a,b)

L z,=2Rn

þu= (Rr+Rz+...+Rn-r) )

Using the same argument as the earlier case, one coefficient is dependent upon the others

and it can be removed. The (n-1)th coefficient can be arbitrarily chosen as dependent, and.

the following equations are derived,

þt+ h+ þ3+...+ þ,-r=*

u= 1(l)n

(4.67)

Bu=Ao+ þ"(8"- Ar) , t¡=l(r)n-2
Bn -r = - (Ar+ By + 82+ 83 + ... + B" -z)

Bn= - (Ai + A2+ A3 + ... + A"-ù

(4.68a,b)

(4.6e)

(4.7ja,b,c)



4.6.1..4 Symbols of the General n-port Complex Series Adaptor

The symbols used for both the dependent port case and the reflection-free case are

shown below, where the second figure has a bar associated with the reflected wave of port

n showing that it is reflection free.

'Çe

Figure 4.3: Symbols used for the n-port complex series adaptor.

4.6.1.5 Complex three-port Series Adaptor

The complex three-port series adaptor deserves special attention because of its

usefulness in CWD networks. With the complexity of the form of (4.62), the non-

reflection-free case is presented without a dependent coefficient with the following
scattering matrix
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where the complex coeff,rcients are given by

[B'llBtl =
L¡.-l

From the earlier observations, the adaptor is a function of three real parameters. Again,

note that this adaptor cannot be factored in such a way that a real three-port series adaptor

can be identified using real or complex diagonal scaling matrices. A wave-flow diagram is

given in the following figure.

1-þt -h -þt

-þz r-P2 -þz

-fu -fu r-P3

Þ"=7jfr* 7; , 1)= 1(1) 3

lro,r
ll¿' I

Ito'''

(4.7 r)

(4.72)



Figure 4.4: Wave-flow diagram of the complex three-port series adaptor without a RF
port.

The reflection-free case with port three reflection-free and a dependent coefficient 2 has

the following scattering matrix,

B1 -þ1

where the real coefficient is given by

-P3

[Br I
I n"l
La, j
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From the earlier observations, this is exactly the definition of the real three -port series

adaptor with port three reflection-free. Clearly, in this case only one real quantization is
required in the bina.y implementation of this adaptor, and similarly the adaptor is a function
of one real parameter. The wave-flow diagram is given in the following figure.

r-þ,
h-r

-1

-þt

þt
-1

B3

-þt

h-r
0

l_
llar I

ll¿, I

lLo'l

Þ'=fia

(4.73)

(4.7 4)



Figure 4.5: Wave-flow diagram of the cmplex three-port series adapor with a RF port.

The port impedances are relaæd by

The scattering matrix given as a function of the port references is given by
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which can be expressed in normalized form using (4.32) as given by

21+22=fi

[B'l
lBzl =
L¡, j

Rz
R1+R2

-Rz
R1+R2

-l

-Rr -RrRt+& Rt+R2

Rr -Rz
R1 +R2 R1+ R2

-r0

[r'l

L;;l 
=

The symbols used a¡e shown below, where the second figure has a bar associated with
the reflecæd wave of port three showing that it is reflection free.

Rz -1rfi8
R1+ R2 R1 + R2

-tRÊ; Rr
R1 + R2 R1 +R2

-{[ -'(E
-

(4.7s)

[e'l
l{rl (4.76)
LÁ¡J

-1rÆî
fÆr- + Rt

-ß;
fÆ-r + Rt

0

fÂ'l
l.î, | (4.77)

LÂ,J



Figure 4.6: Symbols used fo¡ the rhree-porr series adaptors.

4.6.2 General n-port Complex Parallel Adaptor

----rD-
þI

The parallel adaptor is used to represent an analog parallel connection of one-ports in
the CWD domain. This involves mapping the Kirchhoff Laws and the conditions for a
parallel connection through the given transformation.

4.6,2.1 Definition of the Complex Parallel Adaptor

The compiex parallel adaptor mìrst represent a parallel connection of ports in the analog
domain with complex port references. .This condition is given by

Vt=VZ=V3=...-Vn
11+12+þ+...*.[,r=Q

Assume that the port reference impedances are given by

ß+.
t¿I
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Zu= Ro+jX", Rr)0, u=I(\)n

and define the port admittances as

From the definition of the wave quantities (4.6), we know that for porrs D = r(r)n,

Solving for 1, from (4.8la) and substituting into the condition for a parallel connection
(4.80b), we get

Y"=*=Gu+iQu, u=I(I)n

Ao=Vu+ ZJu
Bu= Vu - Zirlu

(4.78a,b)

(4.79a,b)

(4.80)

(4.81a,b)
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(ù-Vt) rr * (Az-Vz)Y2+ (fu -Vz) Yt +... + (A,-V,)Yn=0 (4.82)

However, all of the port voltages are equal, thus

(ü - V")Y1 + (A2- V")Yz+ (h -V")Yz+ ... + (A"- V")Yn= 0 (4.83)

Substituting the definition of the port voltage in terms of the incident and reflected waves of
the port, namely

vr=zlAy-=Zrþu Ø.g4)2Ru

into (4.83) and solving for the reflected wave we get

U,,_(2 Ru(YÁl + YzAz + YzAt + ... +YnA,)l _z*- \ zu\Yt+Y2+Y3+...+Yn) l="zrA"' u=l(I)n (4'85)

Define the complex scala¡ quantity aff as the mú coefficient associated with port u by

and define the unimodular constant øo as

giving the new form of ,Bp as

*m_ ZRDYL*"-w

Br= alAt+a3¿,2+ulr4+...+agAn -urA, , u=l(l)n (4.88)

Other choices for the definition of the coefficients are possible, however, the choice
presented here gives a more uniform scattering matrix and the coefficients collapse in a
natuml way to the definitions of the real parailel adaptor if the port references are purely
real. Note that the sum of the coefficients over the port u is

q,], + q,3 + af, + ...+ü# =25" @.8g)L¿

and thus the maenitude of each coefficient is bounded above bv

ã,=zå, lfil=l (4.87)

(4.86)



although usually this bound is pessimistic. The complex scattering matrix for the general
n-portparallel adaptor is given by

[¡'l
la.'l
l¿. | =lf l

L¿" j

Similar to the comments for the series adaptor, the parallel adaptor cannot be factored in
such a way that a real n-port parallel adaptor can be identified using real or complex
diagonal scaling matrices, unless one port is reflection-free. Again, an attempt at this
operation would generate a matrix with all but the diagonal elements equal to the
corresponding real parallel adaptor without a reflection-free port. As mentioned earlier, the
diagonal elements of the scattering matrix cannot be independently scaled using diagonal
scaling matrices.

4.6.2.2 Dependent Coefficient

I atl <2

al -ã, a!
a) oî-ã,
a] al

al a3

d,í

d,i

dí-at

Similar to the series adaptor case, from equation (4.89) above, it is ciear that one of the
coefficients a( is dependent upon the remaining coefficients for a particular port o, and
obviously this dependency is not constant over all ports. tæt the dependent coeff,rcient for
port u be the uù coefficient. Solving for øff and substituting into (4.88) we derive

:

vn
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(4.e0)

ai
ai
ai

[Ar It-l
lA,¡lt-l
lAq It-ll:ltl
LA"J

aI- dn

Bt=At

u-1\.Ì
Bu=Au- L "+'(A"-A¡)-

Bn= An

(4.er)

n
\i ni- .1¿ *t

É
i= u+

n-I

T

(ü - A¡)

ai(A"-A¡), u=2(1)n-L

ah(e" - ei) (4.92a,b,c)



4.6.2.3 Reflection.free Port

The nü port can arbirarily be made reflection-free by setting Sr* = 0 in the scattering
matrix (4.91). This adds a constraint on aft, nameiy

aç = ãr=ZJ
Ln

Substituting this expression into rhe definition of aff, we ger

which is similar to the expression found for the series adaptor (the only difference is that
the above expression uses admittances while the earlier expression used impedances).
Equation (4.94) can be rewritten in terms of the port conductances and susceptances as

Y1 +Y2+Y3+...*Yn-t=Yi

From the defÌnition of the coefficients a( and the condition given above (4.94), it is clear
that the reflection-free property does not lead to a real scattering matrix for the parallet
adaptor.

with the added constrainr given by (4.93), a new condition on rhe sum of the
coefficients for port n is derived as follows
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Gn=Gt+G2+GZ+...*Gn-I
0=Qt+Qz+Qz+...+8n

Similar to the earlier case, a coefficient associated with port n is dependent upon the
others, and thus it can be removed. Let coefficient (n-1) be the dependent coefficient of
port n, and for the other ports o, let the t¡ù coeffrcient be dependent. The following
equations a¡e derived

(4.e3)

qA + o"2" + o"2 + ... +dI- I = 1

(4.e4)

Bu= Au -

(4.95a,b)

u-1

T

Bt=At-

d,L(Au - Ai\

rl

;-,

st

L¿
=U+

qi(^ - Ai)

ai(A"-Ai), u=2(1)n-2

(4.96)



Bn_r=(t - ai ) A,_t+ o¿l_t

4.6.2.4 Symbols of the General n-port Complex Parallel Adaptor

The symbols used for both the dependent port case and the reflection-free case are
shown below, where the second figure has a ba¡ associated with the reflected wave of port
n showing that it is reflection free.

Bn= An-l -

n -7.sÃ-ì"n Z-/

n-¿I
dl,_t(A"-t-A¡)

air(A"- r - A¡)
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Figure 4.7: Symbols used for the n-port complex parallel adaptor.

4.6.2.5 Complex three-port Parallel Adaptor

(4.97a,b,cd)

The complex three-port parallel adaptor deserves special attention for the same reason
as the tlree-port series adaptor. With the complexity of the form of (4.91), the non-
reflection-free case is presented (for completeness) without a dependent coefficient with the
following scattering matrix.

*lq

Again, note that this adaptor c

[B' I
lBcl
L¡rl

l"i-a, a! al lro,l=l a) o1 -ã, "; llo'l
| "] al d1 - ãrllo,l

annot be factored in such a wav that a real three-port parallel

(4.e8)
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adaptor can be identified using real or complex diagonal scaling matrices.
One would question whether simplifications may occur in the scattering matrix which

would allow fewer independent quantizations when the definitions of the coefücients are
inserted. To investigate this, consider a different (but equivalent) fonn of the scanering
matrix with a new definition of the coefficients. I-et ttre coefficients be redefined bv

which associates one coefñcient per porr Now the sum of the coefficients over all the
ports is exactly two, and one coefñcient is deperdenr l-et ttris coefficient be the third, after
substituting this constraint, the scattering marrix becoæs

üu= (Ír + Y2+ Y3 +... + Ín) '
2Y

[B'l
li:J=

The matrix appears to be not only a function of two independent coefficients du but also
three independent ratios

R'øt - Zi
Z1

Rzüt
Z2

Rsøt
Z3

u = 1(1)n

Clearly, no simplifîcations occur leading to fewer independent quantizations.
diagram is given in the following figure.

Rtqz
Z1

Rzaz - Zi
Z2

Rsdz
Z3

Rt(2- at- azl
Z¡

Rz(Z-q-qe)
Z2

(4.ee)

X, n=1(1)3

, Rt(at + qz),.7

[A 'ltîl

Figure 4.8: Wave-flow diagram of the complex three-port parallel adaptor without a RFporr

(4.1m)

B, Kl
,ZI

(4.101)

A wave-flow

22



The scattering matrix of the complex three-port parallel adaptor with port three

reflection-free and with the alternate definition of the coefficients as given by (4.100) is
given below

[B'-l
lúl =
tøi)

R t _1 Lúzz _ -.\ Eø
21 21 ZtRt wLl Zßz

Rzüt Lzlzt - ..\ -Z; ØZz ZzWz -Ll 22 ZzRz

Rzdt t _REüt ^Zz'23

where the port admittances are related by

Again, to investigate whether simplifications occur when the scattering matrix is given
in a more elemental form, consider the foilowing equivalent representation of the above

scattering matrix,
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[B 'llB.¡ l=
L¿,J

Y1 + Y2= fi

-Gz Yt Gt Yz q (vi + Yä)
Gy+ G2yi G1+ G2yi G1+ G2 yi

where

G1)=RelYrl , 1)= 1(1) 3

The scattering matrix can be factored as shown below

Gz Yt -Gt Yz Gz (ri + ri)

[Ar I
I -l

lAzl Ø.r02)
L¿rl

G1+ G2y; Gr+ Gzy) Gt+ Gz y;

,Y, Yz 
oY1+Y2 Y1+Y2

(4.103)

[Arl
|,q"l
Lerl

(4.104)

(4.10s)



IBrlI Bc J=
l.a1 )

l-oo
ri
ol-o

r)
ooI *

Y3

(4.106)

where again T3 is given by (4.103). The outer most matrices on the right side of (4.106)
correspond to simple inverse conjugate multipiiers in the signal paths at the ports, which
appear to be very similar to the CWD form of a parallel connected imaginary resistor as

given in the last column of Table 4.4. However, the sections represented by these matrices
do not correspond to the parallel connected imaginary resistor in general, since the value of
the imaginary resistor must remain real. Notice that the inner most matrix is only a function
of G1 and G2, and appears to have the same general form as the reflection-free series
adaptor. The inner most matrix can be further factored to give

-GZ

G1+G2
GZ

G1+G2
II

Gt
G1+G2

-Gt
G1+G2

I

Gt
G1+G2

GZ
G1+G2

0

I Br II B.> I-t-l

L¿¡J

9Lo
Y1

^G)U

Y;

l\ o ol[ ¿rl
l0 Y2 0llez 

I

L 0 0 Y3)1 fi)

(4.r07)

The additional factors that were removed correspond to real ideal transfonners located at the
ports. The inner most matrix is the definition of the real three-port parallel adaptor with a
reflection-free port, and thus it can be concluded that the complex three-port parallel adaptor
is equivalent to a real three-port parallel adaptor (with a reflection-free port) with inverse
conjugate multipüers in the signal paths. The above scattering matrix can be expressed as a
function of the real parameter dl defined by

t02

0ga
Yä

-GZ
G1+G2

Gt
G1+G2

Gt
G1+G2

GZ
G1+G2

-Gt
G1+G2

GZ
G1+G2

as given by

+ o o

o & o

00æ

1

0

[¿r ]lA.>l
teã)

o, = ;"9] ^\-f I I ttz
(4.108)
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The wave-flow diagram is given in the following figure.

h-l 1-at
d1 -üy
d,1 1- at

1

1

0

+ o o

o & o

004

Figure 4.9: Wave-flow diagram of the complex three-port parallel adaptor with a RF port.

From (4.1,04), it is clear that the complex three-port parallel adaptor with a reflection-
free port is a function of three real parameters, namely

103

[¿r]lAtl
L¿ãl

where again the Gi are given by (4.105) and correspond to the real pa:ts of the port
admittances. Note that the rano Qs/Gz can be expressed as a function of the ratios given in
(4.110) using (4.103) as shown below.

(4.10e)

The symbols used are shown in Figure 4.10, where the second figure has a bar
associated with the reflected wave of port tluee showing that it is reflection free.

lG, Qt Qz I

lct 'Gt ' cn I

t _Ø \l Q,\
Qt =l Gr llQz *ctlGt h *lllcz G, 1

\ Lrr/\ Grl

(4.110)

(4.111)



Figure 4.10: Symbols used for the three-port parallel adaptors.

4.6.3 Equivalence Between the Reflection-free three-port adaptors

q"lt

The complex series three-port adaptor with a reflection-free port has the same scattering
matrix as the real case (4.73-76), and the complex parallel three-port adaptor with a
reflection-free port can be decomposed into a real parallel adaptor with inverse-conjugate
multipliers in the signal paths at the ports (4.107-109). These observations leads to an
equivalence between the complex series and parallel adaptors with a reflection-free port
since a real three-port adaptor of one type can always be replaced with the other type[6].

Consider the scattering matrix of the complex parallel three-port adaptor with port three
reflection-free as given in (4.109) and shown below

{l.l

r04

t3o o

| '1lo çz olvi
lo;sa
LYä

Sp=

The matrix can be factored as shown below.

d4-

d1

d,1

I l-a1
-d1
r-at

I

1

0

+ o o

o & o

004
(4.r12)



-atGl
Yi

0

0

Sp=

0

1I-ut)Gz
Y;

0

(4.1 13)

The inner most matrix is the definition of the series adaptor with port three reflection-free as

a function of the parameter ø1. Since this scattering matrix is exactly ttre scattering matrix
of the complex series adaptor, the following equivalence is given

f 1-q'
I or-i
L -r

:9-
Yä

-d'1 -d'1

d1 dt-I
-1 0

Yt
atGI

0

0

00

&ooa

105

or,*,*
rrl tr2

Figure 4.11: Equivalence between the complex parallel and series 3-port adaptors.

Similarly, the complex three-port series adaptor with port three reflection-free has the
following scattering marix

Yz=Yi +Yi

1r-ø't)Gz
Y;

Yt

A 1 d1G1

B, -otGL
Yi

The above matrix can be expressed in terms of the scattering matrix of the complex parailel

adaptor as given b"lor,

Yz

(r- at)Gz

Qy

Ss=

I
Yä 83

a1=-SJ--
írL + V2

r-h 'þt

h-r þt
-1 -1

bA3
G3

-þt

h-r
0

(4.114)
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00

Sr=

0

0

-Ji
G3

as shown in the following figure,

C omp lex P arallel Adap tor
Scattering mntríx

function of þt, + Iz
ur'G2

þßt
Y1

0

0

--#

fi,

i06

Figure 4.72: Eqaivalence benveen the complex series and parallel tlree-port adaptors.

4.6.4 Complex Two-port Adaptor

0

U-p')cz

21+þ=/l

B2
_Y;

{t-p')cz

hGt
Ar Y1

The nvo-port adaptor can either be defined as a series or parallel adaptor. However,
from the convention set by Fettweis [6], it will be defined from the paraltel adaptor. The
complex two-port adaptor simply adapts the reference impedance seen from a port and has
the following symbol as a function of one complex scalar pammeter d.

0

0

9r
Y3

s)

Y2

0

t, -yi

(4.rr

b-p,)cz
Y2

ftGt

tltl
P,,,+,+rrl rt2

ri= Rr
I'r 

R1+ R2

-Y3
qnt

Gz Az

Y3



The heavy bar identifies port one with the definitio n of a in (4. 1 1 8). The adaptor
represents a simple connection in the analog domain, and thus the conditions that must be
satisfied are given by

Figure 4.13: Symbol of the complex two-port adaptor.

where 21 and22 are the port references for ports one and two, respectively. When the
above equations are mapped to the voltage-CWD domain, the following scattering matrix
results:

l-(1iA rk-
fBtl= | \zt + Zzl 21+ 22

LBil | zn, 4-zi
I 21+22 21+22

Def,rne the complex coeffïcient of the two-port adaptor as

, Zt-ZIt=7ufi,

which is a function of two real parameters, namely

r07

Vt=Vz
It=-lz

21= R7 + jX1

Zz= Rz+ jXz

After substituting the definition of the complex pammerer into (4.117), the scattering matrix
becomes

(4.116a-d)

lRr (x1 + x2)l

\Rr' R, l

(4.117)

(4.1 18)

(4.11e)



which is a function of one complex parameter (as expected since it must be a function of
two real parameters from (4.119)). The diagonal terrns are bounded in magnirude by one
and the off-diagonal terrns are bounded by two, which is expected for voltage-wave
reflectances and transmittances. Also, the complex two-port adaptor is lossless under
infinite-precision conditions as expected. The wave-flow diagram is shown in the
following figure:

r¡,r [-"1-å)
Lnl=[ ,_"

!-aa* I
r - a. lro,l
a 

_jtA;l

Figure 4.14: Wave flow diagram of the complex two-port adaptor.

which is simila¡ in form to the real case except an inversion is replaced by an unimodular
multiplier.

The scattering matrix (4.120) can be factored by expressing the constant complex
pammeter in polar form

108

(4.r20)

rl

where lBl < 1 (the equality holds only when the real part of one port reference is zero,
which is ordinarily not allowed), as given by

(r-p)

$=
L-d,

01

a= B ¿ie

le 
ien

LO

lço
o lt -B r+Pfl e-ierz o ll -B

¿'n )L t-B þ lL o ,¡',, )l o

L

(4.12r)

l
I

l
(4.122)
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The inner-most matrix is the definition of the real two-port adaptor as a function of the real
parameter p, which coresponds to the magnitude of the complex two-port parameter. The
outer most matrices correspond to mutually inverse conjugate multipliers in the signal paths
(similar to the parallel connected imaginary resistor), and is represented by the following
signal flow diagram:

+
21 ^lh

,I

#
Figure 4.15: Signal flow diagram of mutuaiiy inverse conjugate multipliers.

The analog equivalent of the above section is given by one of the following constanr
sections, depending upon which port of the above is considered independent.

Figure 4.16: Analog equivalent of inverse conjugate multipliers:
a) given in terms of port two, b) given in terms of port one.

The imaginary resistor values for Figure 4.16a) are given by

o, -ilT- t)2, * (f - t)zr.l

v-f
X., = 2 jRt- r-f

with the port impedance of the second port

(4.I23a,b)
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z. =2V:)!t-L -(v- f) v

p.
Rz = ï (4.r24a,b)

y/

whereRr (Rz)isthereal par-of 21Øù. Simnariy,theimaginaryresisrorvaluesfor
Figure 4.16b) are given by

u, _ njRzTt'
^1 - 

L- *y-v

'll-* 
\ *'littv -I)Zzy+(y-I)Zz-t') (4.12sah\x2=-ffi \-.tztu,w¡

with the port impedance of rhe first port

zr=2U-f)nzYf
y-y

Rt = RzTf (4.126a,b)

In both cases, the real pa:ts of the port impedances a¡e related by a real constant.
The remaining matrices of (4.122), which are identicar and are given by

I t-¡en 0 I
L o ,,r,r) (4'127)

are a special case of the above Figure 4.15 and correspond to sections as shown in the
following figure:

eÞ-C¡+*o
ej6

Z7k

o<_CÞ-{+
ej6

Figure 4.I7: Complex section with unimodular multipliers.
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where õ = -0/2 and ô' = e/2 for the sections on the left and on the right of the reai two-porr
adaptor, respectively. In this case, the values of the imaginary resistors from Figure
4.16a) simplify to

with the oort reference

xL= f"or(¡)- r]n, - sin(ô) rmØì
sin (a)

x"= Rl,- 
sin(ô)

Similarly for Figure 4. 1 6b), simply exchange the numera.ls 1 and 2 n the above
expressions for the imaginary resistors and the port impedances.

Note that for the section with unimodular multipliers shown in Figure 4.I7, rhereal
pafrs of the port impedances of both ports are equal; that is, the section does not change the
real part of the port impedances. This is consistent with the theory of normalized sections
since the scattering matrix is unitary (see Section 4.2). Also note that the imaginary part of
one port impedance as given in the above equation @.129a) is independent of the imaginary
part of the other port impedance. This independence can be removed by inserting a thfud
imaginary resistor in series in order to form a T-connection, with the value equal to the
imaginary part of the appropriate port impedance.

A section with one of the unimodular multipliers equal to unity in Figure 4.77 canbe
considered to be equal to the section in Figure 4.17 cascaded with a complex transformer
with a unimodular turns ratio. In this case, since a transformer with a unimodular turns
ratio does not effect the port impedance, the resulting section contains the same external
port references. The complex transformer can be shifted through the network using
flowgraph transformations if this becomes desirable.

The factorization of the complex two-port adaptor as given in (4.722) into the sections

mentioned above is shown in the fisue below:

p. -iõ
ZZ=-*e ¡ =Rt- lcl L

cos l9l\'ll

Rz=Rt

-jRr*(g)

(4.128a,b)

(4.129a,b)
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Figure 4.18: Equivalent of a complex two-port adaptor in terms of a real adaptor.

where the inner two-port adaptor is real and the dashed lines represent port
interconnections. Using equations (4.124a-126a), the port impedances Zz, Z¿ and25 can

be determined as a function of ø from (4.118) and P, 0 from (4.121). The value of the

real parameter p of the real two-port adaptor is given by the following ratio:

z^l zî-l
I

-p

24'. 4

eie/2

This can be derived by identifyngZq and,Z5,and by recognizing that þ2 = d,u* from
(4.12I) and the ratio of the off-diagonal terms of the scattering matrix (4.120) gives,

rt2

eieD

Note that the real parameter p as given above (4.130) is consistent with the theory of real
'WD filters. The analog domain equivalent of the real two-port adaptor with the complex
port impedances Za andZ5 is a series connected imaginary resistor with a value of

p= Relzal - Re{25)

¿ io12

Relza) + Re(25)

Thus the analog equivalent of the network given in Figure 4.18 consists of a ladder
connection of seven imaginary resistors (four from the two sections to the left and two
from the section on the right of the real two-port arìaptor, and one from the real two-port
adaptor itself). Howevet, the values of the imaginary resistors are related in such a way

nt - \-aa.)
R2 g -a\t -u.)

Xr =I'2
-(zrzt - zz* zr*) - (zrzr* - zzz t*) þ

(4.130)

¡@ + ln2

(4.131)

(4.132)
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that the section reduces to a short circuit be¡veen the two ports. This is expected since the
analog equivalent of the section in Figure 4.13 is originally def,rned from a simple
connection as defrned by equations (4.116a,b).

The power-wave (or normalized) form of the scattering matrix, as defined by equation
(4.32), is given by

'|-^r t -o.(t-"1lâ'l I lt-ø./
I I 

-¡t^tlLBZJLffi
The above given in terms of the port references is given by

| -ø-t,1 zøn; I
[Â,1 =f\7Æl zñ 

l[Â,1tî,) l,Æ'#]LÂ,i
Since the magnitude of ø is bounded above by one, let

ft)i-oo.)

and def,rne

Substituting the above two equations into the normalized form of the scattering matrix, we
derive the following more elegant form

]'r,

fÂ,1 = | 
- (."'d e¡þy-e) (sinB) eir lfÂl

lÊr) | (sinB)erz (cosB) eie I L¿l

Again, this scattering matrix can be factored as

a =(cosp) eie

(4.r33)

ei2Y- | - a
.TL-d,

(4.138)

Notice that the inner most matrix is the definition of the normalizedreal two-port adaptor

, =1,', 
olle-ierz 0 l[ *"' , sin É lle 

ierz 0 l[" o 
IL01JL0 siet2llsinB cosplL0 t¡erz)lg 1j

(4.r34)

(4.r3s)

(4.r36)

(4.r37)
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given in t161. The same comments apply to the other matrices as in the earlier case since
they conespond to three sections, each with equal unimodular multipliers in the signal
paths.

e J"t e-iq12

Figure 4.19: A complex normalized two-port adaptor in terms of a real adaptor.

4.6,5 Equivalence Between the Complex Two.port Adaptor and Complex
Transformer

Consider the normalized form of the CWD complex transformer with general port
references given by (4.46c) and the complex two-porr adaptor given by (4.134). The
scattering matrix for the transformer is written as

^ 1 | -zi + nn* 22 2n*,[Ffr2c- r I

" - tu ,r2l z",rnrn; zy - nn* Zi

which can be expressed as

e ie/2

æ
B2

À,
ooo

e ieD

or as

l-zi+rr.zz Ë_ I
e - 2ntn$2 l-Tffi- n 

I"-rurn*Vl ., Z1-nn*Zi 
I

L 2n,lR1R2 I

By setting n = I ín either of the above scattering matrices, the definition of the complex

two-port adaptor is found as given by (4.134), with the complex parameter given in

. 2n'[RtR,¡
!)=-

21* nn* Z2

-Zi + nn" Zz 
12n^[Ffi

., Zt - nn* Zl
2no,[RlR2

(4.13e)

'ol
o+)

(4.140)

(4.r4r)
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(4.118). Note that if unnormalized matrices are used, the same conclusions can be drawn.
Another case of interest is found by placing the following constraint on the port

references in the above scattering matrix (4.141)

which is the matching condition for port references discussed in Section 4.5. Substitute
(4.142) into (4.141) in order to derive

Note that if unnormalized matrices were used, the above matrix would also have been
generated. Consider equating the left-most scattering matrix

- 2nRtò=...
21+ nn* Zl

Zt=Zi

-zily.zi 
1

2nRy

, Zt-nn* 21

2n*R1

to the normalized two-port adaptor scattering matrix

- ZnRt
r)^=-

21+ nn* Zl

[ - l.oto) e¡þY-e)Sr=l ', ",- L lsinþ) eir

(4.t42)

zi bn. - I)
ZnR1

1

[1 ol
| *l
t0 +)

in order to derive the following equations,

(sinB) eir

("osP) sie

(4.143)

2n*R1

given by

] 
= (,i'r)";,

-f=qì e-ieeiy 1

\sinp/

r (99úì eiee-ir
\ sinB , 

,o.ro,

ziA _rr.) - cosÉ 
s-tesir2nR1 sinp

(4.r44)

Zt + nn* Zi 
= e-jy

2nR1 sinB
(4.L46a,b)



Solve for n from the two above equations as

which gives a relation between the complex nrns ratio and the complex two-poft adaptor
parameter. The above can be simplified by recognizing that

in order to derive

n=
(sinP) eir

(sinp) eir = {Y ao* 11 1 - "Y I-a*
("osfl s-iosizr = o. l::;

and thus the complex tutns ratio corresponding to a normalized complex two-port adaptor
is purely real. Note that the remaining section ín (4.143) represents a straight pass-through
connection since the turns ratio is real.

Note that the complex two-port adaptor can also be derived from either the series/\
(X = 0)or parallel (X = "",¡ connected imaginary resistor as given in (4.45a,b) for the
unnormalized case and (4.46a,b) for the normalized case, respectively. The values of the
imaginary resistor in each case correspond to a pass through connection in the analog
domain, which again shows the carry-over of properties between the CWD and analog
domains.

4.6,6 Complex Two-port and Three-port Adaptor Equivalences
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(4.147)

Two normalized real two-port adaptors can be used in an elegant combination in order
to realize either the series or parallel real three-port adaptor. The same equivalents used in
the real case can also be used for both the complex reflection-free series and the complex
parallel three-pon adaptors, since each adaptor can be expressed in tenns of the
corresponding real adaptor. The two equivalents will be given using the normalized forms
of the respective scattering matrices.

Consider the section composed of two normalized complex two-port adaptors as shown
in the figure below:

(4.148a,b)

(4.14e)



Figure 4.20: Section composed of complex two-port adaptors.

where cr is the parameter of the normalized complex two-port adaptor. The scattering
matrix with the ports labelled as above is given by

11-LLI

(-a+ ll-øa* + 1) ',1-a+14-ad +Ia
-d,* + 1

',1 -a+ 14 -ad + l a$=

(4.1s0)

However, if the parameter s is real, then the scattering matrix is also real and reduces to the

following form

l-æ +r

-a*+I J-ã.+I

"/:î + |

û

,,1-a+ 14-aa' + 1

s

The normalized form

(a- 1)a*

-a*+l
'l-a+ 14-ad + 1

t=l 
^

t

of the

&+t ^lã\Ld -a Iû*to & {-û+r 
I

-a 4-a'.1 o l

"/:æ + L

0

attering matrix for the series adaptor is grven by (4.77), and

(4.1s 1)



is repeated below.

It is clear that the above two scattering marrices (4.I5L-152) are equal if

o=&=n/ ß.,
lRr + Rz

$=

Rz .tFæ; -{Rt
R1+ R2 R1+ R2 {RFTI
-\rRrM Ri -^fF;
R1 + R2 R1 + R2 ,tpr +F;

4&o
{RlT-Ã-t @TT2

where B1 is the real parameter of the series adaptor given in (4.74). The above (4.15j)
gives the equivalence for the compiex three-port series adaptor with port three reflection-
free and the section in Figure 4.20 as shown in the following figure:
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(4.1s2)

,rø

Figure 4.27: Eqtavalent form of the complex series three-port adaptor.

Similarly, using the equivalence between the series and parallel adaptors given in
Figure 4.11 and in equarion (4.112), the following is derived:

21+ 7a=Q

(4.153)



,rø

or,*,*
Ltt U2

Yt
atG1.

Yz=Yi +Yä

-atGr b
Yi G3

Figure 4.22: Equivalent form of the complex parallel three-port adaptor.

which gives the equivaience for the complex three-port parallel adaptor. The complex two-
port adaptor parameter is given by

L19

The above two equivalences suggest that the general structure of Figure 4.20 canbe
used instead of either of the series or the parallel three-port adaptors in a network. This
observation will be used in the following chapter in order to derive the CWD realizations of
the complex canonic sections given in the tables in Chapter tr.

4.7 Robustness of Complex Wave Digital Filters

A discrete filter behaves ideally if all signal levels are calculated with high precision
without the existence of overflows or underflows. In this case the floating-point
representation of the signals is ordinarily used. However, during the recursive operation of
a digital filter, the actual signal levels within the structure deviate from the ideal signal
levels. This is a result of representing the actual signals with a finite number of bits, which
lead to underflow and overflow quantization errors. The robwtness l69f of a digital filter

a= {qt (4.rs4)



r20

is a measure of how well the digltal f,ilter behaves as compared to the ideal filter (within the
consfaints imposed by finite arithmetic). A¡other way of stating this is that the deviation
between the actual and digital signals within the operation of a robust frlter should be small.
Thus the property of robustness encompasses not only the zero-input and forced-response
stability of a filter, but also other desirable properties. The stability of a complex wave
digitai filter was presented in t53l and wili be briefly summa¡ized in the following Section.

4.7.1 Stability of Complex Wave Digital Filters

The stability of a digital network under zero-input, forced response and looped
conditions is critical for the usefulness of the filter. It has been shown rhat under infinite
precision conditions, when all values are calculated using floating-point values and no
underflow or overflow errors can occur in the linear system, the wave digital filter can be
designed to be stable for all bounded input signals. However, in a digital system values are
represented with a finite number of digits and usually in binary. Thus, all signals and
results of additions or multiplications are quantized and the system is no longer linear. This
process creates underflow errors, which are errors in signals due to the inability to
represent an infinite number of digits, and overflow errors, which develop because the
magnitude of the largest number that can be represented is bounded (usually by one or
two). Underflow elrors create relatively small deviations in the signals of the nerwork,
whereas overflow errors create large deviations from the nominal values of the signals and
thus should be avoided if possible.

The discussion of the stability of a complex'wD network follows from the
generalization of the concepts used in the real domain. These include the definitions of the
norrns operating on complex sequences associated with an n-portdigital network.
However, the existence of the generalization of the stability argument is based on the
definition of the steady-stare power of the complex digital system as given by

p = ¿..r(Ç - s-rõs )a (4.15s)

which is the same expression suggested by Fettweis given in t261.
This definition leads to the conditions on the (non-linear) complex operators acting on

the signals in order to guarantee both the zero-input and the forced-response stability of the

digital system. A condition for stability is that the complex overflow operator ( and the

complex underflow operator ô must be contractive, as given by

lt tl

lllll < 1



The notation in the above refers to the norm of the operator, expressed as

llrll =,']poffi)

ll¡ll = 'in^fþ@)l)¡*01 lxl I

where l.r I is the magnitude of the complex number x. The arguments of both operators are
the real and imaginary parts of the complex input signal. Thus, in the real domain, rhe
operators are viewed as being two-dimensional in nature; whereas in the complex domain,
the operators are clearly one-dimensional. The two-dimensional view is the most usefui
one to adopt where the real and imaginary parts of the operators can be considered
independently, that is (for either operator),

llall s r

tzL

(4.156a,b)

where (r,y) e c, (x., xi, !r, /¡ ) e R., *d (, *d (¡ a¡e the equivarent real operators of the

complex operator ( (;r).
Viewing the operators as non-linear one-ports connected in series with complex

circulators at the output of the state pons, the above immediately implies that the one-pons
must be passive. Thus as long as the non-linear complex one-ports are passive it is
guaranteed that no zero-input parasitic oscillations can exist [53].

Conditions similar to those in [43] are given for forced response stability. They extend
to the complex case by letting the overflow truncation function, as shown below for the

equivalent real and imaginary operators, (r and (¡, of the complex operator ( (tite real and
imaginary functions can be chosen the same), lie within the shaded area.

y = ((x)
((x)= ç,(r,) + j(¡(x¡)

y, = Çr(x,)
y¡= (¡(x¡)

(4.157a,b)

(4.158a,b,c,d)



Figure 4.23: Real or imaginary equivalent of the overflow truncation function.

where øis the maximum allowable signal amplitude. This gives incremental passivity as

extended to complex networks as discussed in [53]. Notice that the overflow truncation
function satisfies the restriction on the magnitude of the norm of the operator as given in
(4.156).

The overflow function cannot have a slope greater than plus or minus one, ie. the

continuous curve cannot have a slope exceeding + 45o. Various forms of the overflow
error function have been found as summarized in [67] that meet this constraint. They
include the saturation function, as shown in Figure 4.24
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and the triangle function as shown in Figure 4.25.



Both of the above functions give incremental passivity, and thus forced response stability.
Notice that the triangle overflow function has a greater signal deviation error than the
saturation function.

4.7,2 Robustness

Figure 4.25: Tnangle overflow function.

It is impossible to measure precisely the robustness of either an actual digital filter, or
more generally a digital filter structure, because of the many variables involved. However,
as suggested in [69], a list of desirable properties can be compiled, such as the stability and
sensitivity behavior of the filter under consideration. If a particular filter satisfies all of the
desirable properties, then the filter will be called robust.

A brief review of the properties found in 169l will be summarized in the following. For
robustness, we require:

a) No zero input parasitic oscillations can exist. It is essential for overflow
oscillations, however, it is tolerable for underflow oscillations if the amplitudes
are smal-.

b) For non-zero input the superimposed parasitic oscillations should be small.
c) The dynamic range shouid be as high as possible.

d) Forced-response stability should be guaranteed.

e) Attractivity should be maintained, that is, small changes in the initial conditions
should not cause lasting changes in the output signal (ignoring the granular
response from underflow errors).

f) For any fìxed initial conditions, small changes in the input signai shouid cause

only small changes in the output signal.

g) There should be no chaotic behavior (again, ignoring the granular response from
underflow errors).

h) The saturation behavior should be as good as possible under the constraint of
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binary (fixed lvordlength) operations. This implies that the behavior should be

approximately linear for small signal levels, with a monotonous transition
towards saturation at higher signal levels.

i) The above properties must be able to be satisfied not only for the quantized

coefficients, but also for a finite neighborhood of the quantized values.
j) Al operations that must be performed on the signals must be sufficiently simple

so that their actual application in digital hardware is feasible.

The generalization of real wave digital filters to the complex domain found in this thesis
inherits the robusfiress of its real counterpart. This is mainly due to the carry-over of the
critical stability argument [53] used in the real case. Namely, passivity and incremenral
passivity, which guarantee zero-input and forced-response stability, respectively, also
guarantee properties a, b, and d to f. Property c is associated with the low sensitivity
of WD filters. The overflow and underflow operators discussed earlier that give passiviry

and incremental passivity satisfy properties g, h, and j. Finally, property i is associated

with low sensitivity.
Thus a well-designed CWD filter can be considered robust as defined above.



Cascade and Ladder Realizations tlsing
Complex'Wave Digital l.{etworks

The theory presented in the preceding chapters allows therealization of general complex
reference networks withor¡t alteration (that is, without msking them one-real), as can be
proved by construction. Since all of the familiarWD elements have now been successfully
derived, the first condition fo¡ the generalization to be of practical use, as given in Chapter
I, has been achieved. A stability theory guaranæeing zereinput and forced-response

stability has been derived [53] and follows from the definition of the steady-state po\ryer

Chapter V

The resulting networks can contain any of the CWD elements thus fa¡ discussed. Other
elements not discussed such as the n-port circulator, the unit element, and the so-called
lanice "daptor can easily be generalizd,for CWD networks and thus will not be presented

here.

Complex networks arise from four main sources. The first source is f¡om the method
of frequency shifting discussed in Chapter II, where a real network is frequency shifted by
applymg the following tansformation on the frequency variable:

p = ¡*r(õ - S.rõs )n

The second source arises from changing the phase of the /r polynomial by an arbitrary real
constanL The third arises from the realization of a real transfer function using the new
fi¡st-order elementary sections presented in Chapter tr. Finally, the fourth arises from a

direct approxirnation with a complex transfer function.
All of the fint-order elementary complex sections realize a transmission zero

independently of any other transmission zero (as opposed to grouping the transmission
zeros in complex conjugate pai¡s). Four of the sections can realize a transmission zero

anywhere on the W= jQ axis. Although one form of these sections has been quoted in the

literature [40], the significance of the sections, namely that any of the four sections is the

most general first-order reciprocal section, may have been somewhat overlooked. The

v+v- ifu

(s.1)

(s.2)

r25
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other sections realize transmission zeros at the origin, at infînity, on the real axis, or
anywhere on the fìnite plane (exciuding the preceding cases). A section can be viewed as

equivalent to another section when viewed as a fwo-port (one section contains an inductor
while the other contains a capacitor as the dynamic element). That is, it is always possible
to use one section in place of the other.

A complex network consisting of the complex canonic sections given in the tables of
Chapter II can be realized using one of ¡vo different viewpoints. The first inherently
requires the use of three-port series and parallel adaptors since dynamic elements are

realized as one-ports, while the second requires the development of a more general first-
order section that will be viewed as a dynamic two-port. The method using three-port
adaptors involves the element-by-element transformation of a reciprocal network, while the
other method transforms each reciprocal or non-reciprocal canonic section of a ne¡,vork.
The method using the three-port adaptors allows both canonic and non-canonic nenvorks in
a form of cascade synthesis known as the ladder configuraúon. However, the dynamic
first-order section method is inherently canonic in nature. This method will be referred to
as the Cascade Realization method.

In the following, complex quantities will be assumed throughout.

5.1 Ladder Realization Using three-port Adaptors

In the following, a brief review u/ill be given of the WD realization method using three-
port adaptors as well as scaling and quantization considerations for CWD networks. This
method realizes a nefwork by transforming the elements and the interconnection of elements
that compose the network to the CWD domain. Each element is considered to be a one-port
except those non-dynamic elements that a¡e defined as a two-port (for example, the
complex transformer). Examples of this realization method will be given in Section 5.2.

5.1.1 CWD Realization of Complex Reference Networks

A complex analog (reference) network in a ladder configuration composed of RLCX
elements can be realized using the CWD elements given in the preceding Chapter. The
realization is equivalent to a direct mapping of the analog elements in a one-to-one
relationship to the coresponding CWD elements. Each analog one-port is mapped to a
CWD one-port, and each connection of analog n-ports is mapped to a discrete (or
algorithmic) representation of the connection in the form of either a parallet or series

complex adaptor. By convention, a dynamic two'port is realized using a dynamic one-port
connected to a tlnee-port adaptor, while a constant two-port is realized using a constant
CWD two-port. During the reaüzation process, the port impedances of all one-ports and

two-ports are given by Tables 4.1-4.4, including the port impedances of all input (external)
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ports.

These conditions alone cannot uniquely define a CWD network. However, from the
realizability condition discussed in Section 4.6, no delay-free directed loops can exist
which imposes a further constraint on the CWD network. This constraint requires all but
one of the three-port adaptors to contain a reflection-free port, and this port must be
connected (through a simple directed path) to the port of another three-port adaptor. Thus
using equations (4.69,4.97) defining the port impedances of the reflection-free ports, all of
the port impedances of the CWD net'work are defined.

The choice of location of the one three-port adaptor that does not contain a ¡eflection-
free port is arbitrary. However, it is usually chosen to be the central adaptor in order to
minimize the path length needed to compute the value of all of the signal nodes in the
operation of the filter in real-time.

A CWD netwo¡k derived from a complex reference network through cascade (ladder)
synthesis is inherently viewed as a two-port. Normally, the input is associated with port
one and the output with port nvo. The input of port ¡wo and the output of port one is
normally ignored (though they need not be) when realizing doubly-terminated reference
filters, thus giving a one-input, one-ouq)ut ne¡rork realizing a transmittance.

This process can be easily visualized with an example. Consider the following doubly-
terminatedl analog domain network

which contains three dynamic elements and one constant element (ignoring the port
resistors). This can be viewed as two dynamic two-ports (each requiring at least one three-
port adaptor) and a constant two-port. The above ne¡rork has the following CWD
equivalent,

Figure 5.1: Example of a complex analog network.

1 Doubly-terminated ne¡vorks are commonly used because of thei¡ excellent sensitivity properties [40].
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where the series adaptor was made reflection-free and "T" represents a delay. The
equivalence of the above network is clear when considering Tables 4.1,-4.4 along with the
definitions of the complex adaptors. From the relevant port impedances as given in the
diagtam, all of the parameters of the adaptors are defined. Notice that although complex
port impedances are found throughout the structure, only the right-most parallel adaptor
contains complex parameters. However, the existence of the complex port impedances
allows the CWD equivalent of a complex network to be computable, and thus this example
demonsfrates the significance of Theorem 1.1.

Of course, other combinations of complex analog elements can occur. Two of the
general f,ust-degree reciprocal sections, which can be made equivalent when considered as

a two-port and as discussed in Section 2.6.I.3, have the following CWD equivalents.

zoi 4
I

Figure 5.2: CWD equivalent of Figure 5.1.
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Figure 5.3: CWD equivalent of the parallel inductor first-order complex section.
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Figure 5.4: CWD equivalent of the series capacitor first-order complex section.

Ineachcasethevalues ofZland.Z,3arearbitrary,whereasthevalues of21,23,anð.22are
given by Tables 4.2-4.4.

From the above Fwo examples it is clear that CWD networks may or may not contain
external multipliers, that is, multipliers external to the adaptor blocks. The external
multipliers arise from the constant tvvo-ports as given in Table 4.4 and any unimodular
multipliers that are defined by dynamic one-ports.

In order to simplify the quantization process as discussed in Section 5.1.3, one has the
option of absorbing all external multipliers into the associated scattering matrix. In some
cases this process forces the elements of the scattering matrices associated with CWD
blocks to have a magnitude in the range that would lead to a favorable dynamic range.
However, as shown in the examples in Section 5.2, this process may lead to a less

favorable implementation in some cases, and thus the realizations with and without external
multipliers should be investigated.

5.1.2 Scaling the CWD Networks

(Ð zI

1

.Ì-
,1

B1

729

During the operation of a CWD f,rlter in real-time, the values of signals at many of the

nodes2 may frequently approach or exceed the bounds on the largest and smallest number
that can be represented. Since this limits the dynamic range [6] of the filter, which also
increases the noise [6], the CWD filter must be scaled before it is implemented. The way
in which a f,rlte¡ is scaled depends upon the constraint that the designer wishes to place on
the frlter. The two most popular constraints for scaling are the normalized form and the
L2-norm at the states of the network [6,9-11]. Scating is ordinarily performed on the

three-port adaptor matrices (a constant two-port such as those given in Table 4.4 cannot be

scaled).

4

As

¿ A node refers to a location tlnt contains a sienal value.



5.I.2.1 Normalized Scaling

This scaling condition imposes the constraint that the Loo-norm at the stâtes within the

nework must be less tha¡r or equal to one for a unit impulse input. This decreases the
probability of overflow at the states. However, since the flow graph of a CWD filter is
proper [73], this will also inherently decrease the probability of overflow at the internal
nodes of the blocks. This scaling condition is associated with normalized or power wave
digital filters. From equation (4.32) relating the scattering matrices of a voltage and a
power wave network, and repeated below,

it is clear that simple real scaling transformers can be used on each three-port adaptor in
order to realize the normalized form scaled network and the value of the turns ratio of each

transformer is defined by the square-root of the associated port conductance (õ = ¡ -t¡.
This method associates three real scaling transformers with each three-port.

5.I.2.2 L2-Norm Scaling

The scaling consraint of L2-norrn scaling sets the L2-norm at each state equal to unity
for a unit impulse input. This can be achieved with one real scaling transformer for every
state. The scaling transformer is placed in the main signal path and is calculated by
numerically finding theL2norm at the state before scaling, then selecting the transformer
vaiue to set this norm to unity. The L2-norm is numerically computed using the impulse
response in the discrete domain.

5.1.3 Quantization of A CWD Network

-1la - 
1l^

S =Gr/¿S G-r/¿
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As mentioned in an ea¡lier section, the implementation of a digital filter in digltal
hardware inherently requires the filter to be in a form ttrat is comparible with the hardware.
In other words, the digital filter must fi¡st be quantized, that is, represented in binary form
as an integer divided by an integer power of two. The ¡wo constraints on this process are
the following: the resulting filter must remain passive (as given by equation(4.26)), and
satisfy the frequency specifrcations. A non-linear optimization method has been developed
by the author whish quantizes the scattering matrices associated with the blocks of a CWD
network, and is deScribed in [76].

In order to maintain passivity, magnitude truncation is used when quantizing each
value. Thus, each element of the scattering matrix is quantized using magnitude truncation.

(5.3)
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Real extemal multipliers that are found in inverse pairs, such as the real ideal transformer,
are quantized to a power of two, and therefore both of the multipliers are quantized at once
(the inverse of a power of ¡wo value is another power of two value). Note that with
complex inverse multipliers this method cannot be used, and four independent real
quantizations will be needed with magnitude truncation (the multipliers represenr passive
and not lossless sections after quantization). In the same way single complex multipliers,
such as unimodular multipliers, require nro independent quantizations with the same
conclusions.

Note that after a network has been expressed in binary form the resulting frequency
response may contain a frequency independent shift. This is a result of the fact that CWD
networks cannot be made lossless under binary conditions, and thus only passivity can be
guaranteed. However, a frequency independent shift is not significant since it represents a

constant shift for all frequencies. If it becomes necessary, a multiplier can be inserted at the
oulput node in o¡der to remove the shift. If the network realizes a transmittance and
operates as a single-input, single-ouçut filter, then the multiplier inserted corresponds to an
ideal transformer.

5,2 Design Examples Using three-port Complex Adaptors

A computer program written for the Macintosh computer in the PASCAL computer
language has been developed by the author that derives a scaled and quantized CWD filter
from a lumped RLCX reference filter. The attenuation responses of the CWD and nominal
filters are generated over the digital frequency range -æ < oJT ( æ. However, the responses
are presented as a function of the normalized frequency which ranges from -0.5 to +0.5.
The following presents several design examples that show the vatidity of the theory
developed.

5.2.1 Non-canonic c\{D Realization of Frequency shifted Filters

The realization of a real reference filter in the form of an LCX ladder with finite
transmission zeros and without coupled coils is necessarily non-canonic. A filter with
complex elements can be derived from such a filter by frequency shifting as given in (5.i)
above. The CWD network realizing the complex filter will have the sameþnz as the
corresponding real'WD filter realizing the unshifted network with the only difference being
the use of complex adaptors instead of real adaptors and the inclusion of unimodular
multipliers.

Consider an 8ft order Eüiptic filter in a non-canonic realization that has been shifted by
1.1 r/s in order to generate a complex filter. The attenuation responses of both the nominal
and the CWD filter are shown in the following plors.
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The CWD filter was scaled for the Loo-norm and quantized using 11 bits. The nominal

and quantized attenuation plots are virn¡ally identical in the stopband which is a result of the
large number of bits used. The passband shows a small deviation, which is expected from
the property of low passband sensitiviry. The deviation at the corners is a characteristic of
a passive (rather than lossiess) WD network.

5.2.2 Canonic CWD Realization of Complex Filters

It is now clear ttrat reference filters with a real transfer function can be implemented
using CWD networks (for example, the sections given in the equivalences in Figures 5.3
and 5.4). A CWD network may contain only series (with a series capacitor or inductor) or
parallel (with a parallel inductor or capacitor) complex adaptors.

Consider the 4ft order Elliptic example given in Appendix A of a complex filter
realization of the real tansfer function. The following tlvo sections will present the CWD

filter equivaients of both the inductor-section (CDl-tø) and the capacitor-section

(CC1-ld) realizations. For all realizations power wave scaling will be used.

5.2.2.1 Realization Using Complex Parallel Adaptors Exclusively

The 4th order Elliptic filter is realized with the CDIjQ section exclusively. The only
CWD elements needed with this methd of realization are the complex parallel three-port
adaptor, the delay, the ideal transformer and the wave source and sink (any simple
inversions are ignored).

This example is f,irst realized from the definition of the CWD nenvork without alteration
(Figures 5.7 and 5.8). A second realization is derived by absorbing ali external multipliers
into the associated scattering matrices (Figures 5.9 and 5.10). Both realization are
quantized to the same specifications with a 1.5 dB passband ripple. The attenuation
responses of both the nominal and the CWD quantized filters are shown in the following
four plots.

The first realization with external multipliers as shown in Figures 5.7 and 5.8 required
10 bits for the quantization for a 1.5d8 rippie in the passband. The quantized passband

and stopband responses are indistinguishable from the nominal response as a result of the
large number of bits required to meet the frequency specifications. The second realization
without external multipliers as shown in Figures 5.9 and 5.10 required 12 bits for the
quantization. The necessity for the two extra bits over the previous case is mainly the result

of absorbing the frnal ideal transformer into the last scattering matrix. However, although
two extra bits are used, the quantized passband and stopband responses do not compare
favorably with the ea¡lier case. Thus the fl¡st realization method is preferred.
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Figure 5.7: Stopband of the 4th order Elliptic fìlter with external multipliers.
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Figure 5.8: Passband of the 4th order Elliptic filter with external multipliers.
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135

Figure 5.10: Passband of the 4th order Elliptic filter without external multipliers.
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5,2.2.2 RealÍzation Using Complex Series Adaptors Exclusivety

The 4th order Elliptic filter is realized with the CCIjQ section exclusively. The only
CWD elements needed with this method of realization are the CWD equivalents of the
parallel combination of the imaginary resistor, as well as the unimodular multiplier
connected to the complex three-port series adaptor.

As with the earlier example, this example is realized with and without external
multipliers in order to derive two networks. The differences between the ¡wo
implementations is more significant in this case than the ea¡üer example since external
complex multipliers exist from the equivalents of the parallel connected imaginary resistors.

Both quantizedrealizatons required 7 bits in order to meet the same frequency
specifications as the ea¡lier example of a 1.5 dB passband ripple (compared with 10 bits
with external multipliers and 12 bits without external multipliers for the earlier example).
However, from the attenuation plots given in the following four figures, the quantized
responses for both realizations show several differences.

The response of the quantized realization with external multipliers as shown in Figures
5.1 1 and 5.12 is similar to the nominal response. However, the stopband did not achieve
the same attenuation. The passband response performed better than the nominal nea.r zero
frequency, with the response deteriorating near the edges of the passband.

The response of the quantized realization without external multipliers as shown in
Figures 5.13 and 5.14 compares poorly to the realization with external multipliers. The
stopband greatly deviates from the nominal and the desired attenuation is not reached.
Also, the passband is very poor since the ripple width is larger than any of the earlier
examples, and the response is irregular and it is not symmetric about the origin.

Clearly, although the same number of bits are required for both realizations in order to
meet the frequency specifications, the implementation with the extemal multipliers
quantized separately has a superior response in both the stopband and the passband. Thus,
again in this case, the realization with external multipliers is preferred.
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Figure 5.14: Passband of the 4ù order Elliptic frlter without extemal multipliers.
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5.2.2.3 Comments On the Two Equivalent Realizations

The two techniques presented in the earlier sections shows that it is possible to realtze
the same reference filter using a CWD network containing either series or parallel three-port
complex adaptors exclusively. From either a quantization or scaling point of view using
the schemes outlined in Sections 5.1.2 and 5.1.3, both networks are equivalent in so far as

they realize the same canonic polynomials.

The major difference benreen the net'uvorks is found by recalling the differences
between the three-port series and parallel complex adaptors. The series three-port adaptor
is significantly simpler in form than the parallel adaptor, particularly with a reflection-free
port. The network with series adaptors is equivalent, on a block basis, to the network with
parallel adaptors wittr specific complex multipliers removed from the parallel adaptor

scattering matrix as shown in Figure 4.11. However, from the two previous examples, the
quantized form of both networks that realize the same reference filter show diffe¡ences with
respect to both the number of bits needed for a set of frequency specifications.

5.2.2.4 Etliptic Example of order 5

Consider as another example the 5ú order Elliptic filter given in Appendix A. Since the
filter order is odd a real canonic section appears as the last dynamic section. The filter
realizations containing the CClj@ and CDlj@ sections were quantizedto satisfy the
same frequency specifications and 9 bits were required for both cases. The nominal and
quantized stopband attenuation plots are identical as a result of the large number of bits
used. The nominal and quantized passband attenuation plots a¡e shown in Figure 5.15

siven below.
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Both realizations ïvere quantized in the same manner as the 4th order Elliptic example,
however, the phenomenon observed with that example is not apparent in this case. This
may be the result of the existence of the last real dynamic section. This section may act in a
similar manner for both realizations thereby desensitizing the quantized,reaJizatons with
respect to the type of adaptor used.

In order to investigate the effect of the number of bits used in the quantization for this
example, realizations were generated using 4,5, 6,7, and 8 bits for the realization using
the series adaptor. The stopband attenuation plot of the nominal and 4 bit quantized

realization is shown in Figure 5.16. Clearly the desired attenuation is not reached. The
stopband attenuation plots of the remaining realizations converge to the nominal response

as more bits are used and thus they will not be presented.

The passband attenuation plots for the five quantized realizations are shown in Figure

5.17. Clearly, the realization with 4 bits has the greatest deviation. The case with 8 bits is
similar to ttre case given above in Figure 5.15 using 9 bits. Notice that with this example
the operation of quantization caused the greatest deviations at the edges of the passband (a

frequency independent shift is not significant since it can be removed with a scalar

multiplier at the output port).
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Figure 5.15: Passband of the quantized 5th order Elliptic filter.
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5.3 Cascade Realization of Complex Networks

It is known that an eiegant combination of real t\ryo-port adaptors can be used to replace
either the series or the parallel real three-port adaptor (Section 4.6.6). Thus reai first-order
sections reabzed using the real three-port adaptors can be replaced with the equivalent
realization using only real two-port adaptors. This observation was given a theoretical
foundation in U6l by transforming an analog four-port to the WD domain. With the
colrect terminations, the real canonic elementary sections can be realizedin this manner.

The reflection-free versions of the complex three-port adaptors can be made equivaient
to the corresponding real adaptors with simple multipliers in the signal parhs. This
observation along with the comments given in the preceding paragraph suggest that a
general complex first-order section exists which is composed of complex two-port adaptors
in a configuration simila¡ to the real case. The following will give the derivation of this
section, which hereafter will be known as the carnnic cascade section. Note that the
normalized complex fwo-port adaptor will be used exclusively throughour since it is already
scaied for power waves.

5.3.1 Derivation of the Canonic Cascade Section

A general first-order complex section exists that can reaJttzp a transmission zero
anywhere in the complex plane. Thus, it must represent the first-order complex canonic
sections given in Chapter tr mapped to the CWD domain. Also, it must reduce to the real
first-order sections given in [16] if all quantities are restricted to be real.

The derivation of the section is based on a generalization of the section given in the real
case with rwo additional degrees of freedom. These additional parameters are found in the
arguments of two unimodula¡ multipliers introduced in order to supply the canonic number
of parameters required by a first-order section. Although the form of the section is not
unique, it will be chosen in order to parallel the real case wherever possible. To this end,

consider the canonic cascade section given in the figure shown below.
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The figure shows that the canonic cascade section contains t'wo complex normalized two-
port adaptors and nvo unimodular multipüers. It will be found from the canonic
polynomials representing this section, as given by (5.5), that it has port two reflection-free.
Note that the multiplier € can take on the values

e

Figure 5.18: General canonic cascade section.
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and usually has a value of +1 (and thus can usually be ignored). The parameter ¿ will be

used to change the sign of oif necessary. The two complex normalized two-port adaptors

a¡e functions of the real parameter K and the complex parameter ø. The real parameter
K will be referred to as the gain of the second adaptor with respect to the first. For
reciprocal sections the gain will be unity, while for non-reciprocal sections the gain can be

any real value (including zero). The canonic polynomials of this section (ignoring ¿) are
given by

f=z-L- K.!* 
,qa G+ P)

t=*1 (s.4)



h- ¡t-d + | 4 -K d,* + I 4 -aa* + L ^'l -Kz aa

It is clear that the/polynomial contains azero anywhere on the r-1 plane with the

appropriate choice of the parameters found in Figure 5.18, since the magnitude of the zero

is given by the constant K and the phase is dependent upon the free parameters r and ¡t.
Since the central two-port in the form given above represents an umecognizable CWD
element as it is composed of a delay and nvo unimodular multipliers, Figure 5.18 is given
in an equivalent form as shown below.

_ 1 -Ka* +l
ej G+ ¡t)s -K u+ 7

4-a*a1,[-¡çqa1q

O=- (-a+ rf-r a* +l)a*e-iG+tt)

_xa4#,,

(-o* * rI-r a+ r)a

e-l î

r44

(5.5a,b,c,d)

Notice that the internal connections located benveen the t'wo-port adaptors represent a

complex ideal transformer and a dynamic one-port.

The port impedance of port two is equal to that of port one (since the node weights [18]

Figure 5.19: Equivalent form ofthe general canonic cascade section.



for ports one and two are equai) and the port impedances of the inner ports are given

Conside¡ the special case of a transmission zero on the unity circle (that is, the jfaxis
on the reference frequency domain) which represents a reciprocal section. The section in
this case reduces to the form shown in the following figure:

23=
(-o* *t)21* +(a-r)z1a*

24=
(-x o. + r)zf +(Ka - r\Z1Ka*

-aa,* +l

-Kzq, q,* + 1
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by

(5.6a,b)

with the following canonic polynomials

f - z-l

t
Figure 5.20: Reciprocal canonic cascade section.

A3

-ZL

d,
- 

dej G. tr)

þ=
(-oo* + l)e-ir

d,



and the port impedance given by

23=

By using the general form of the canonic polynomials representing either the non-
reciprocal (5.5) or the reciprocal (5.7) form of the canonic cascade section, all of the

canonic sections given in the tables in Chapter II can be mapped to the CWD domain. This
is achieved by first transforming all port two reflection-free polynomials for the first-order

sections to the z-1 domain by using the bilinear transformation (4.2a). Then the resulting
polynomials are equated to the polynomials representing the canonic cascade section
(5.5,5.7) in order to derive the values of the real and complex constant parameters given in
Figures 5.18 and 5.20. Note that the derivation for the real sections are given in [16] and

thus will not be repeated here.

5.3,2 Canonic First-Order Complex Sections Mapped to the CWD Domain

The following presents the solutions for the canonic cascade section parameters in
tabular form. Since every complex first-order section is equivalent to the dual of the

section, the tables give the parameters that represent both sections. Each table contains the

analog symbol for each of the t'wo equivalent sections, the z-1 domain polynomials for the
sections, and the constant parameters. Note that the paftìmeters ø and Ka arc reated as

independent quantities for the special case in Table 5.8. All quantities are expressed in
teÍns of the analog domain canonic parameters, namely, the location of the analog

transmissio î zeÍo (@s for reciprocal sections un¿ (-ø - ¡ç) for non-reciprocal sections), the

reflectance evaluated at the transmission zero 1eie, andfor reciprocal sections the analog

delay d. T\e quantities are also given in terms of the discrete transmissionzeÍo Çeiv (1or

reciprocal sections Ç = 1 and v = ØT ), the reflectance evaluated at the transmission zero

r1el0, andfor reciprocal sections the discrete delay ô. Note that the synthesis algorithm
presented in Chapter III can be extended to the z-1 domain using the discrete canonic
parameters and polynomials. The real fi¡st-order and second-order reciprocal and non-

reciprocal sections are given in [16].

(-o* *l)Zf +(a-r)Z1a*
-d, u,* + |
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(5.7a,b,c,d)

(5.8)
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Note that the parameters given in the tables represent the mapping of the complex f,rst-
order sections given in Chapter tr to the CV/D domain. This contrasts with the realization
method outlined in Section 5.1, where instead of mapping an enti-re dynamic section
(requiring the canonic cascade section), the individual elements are mapped to the CWD
domain (requiring three-port adaptors with dynamic one-ports and constant two-ports).
Also, the number of real parameters required to represent each section is the canonic
number, namely three and four parameters for reciprocal and non-reciprocal sections,
respectively.
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Table 5.6: CWD equivalent of the CG1 and the CHl sections.
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Canonic Polvnomials
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fxP = z-r

, nejqnÞE =-
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18RF=--:
N-r1L+l

oRF =- 1

Special case: Transmission zeÍo at r = -1

Table 5.7: Special case of the CG1 and the CH1 sections with r = -1.
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K=0

q=-nf 
-¡12 a 1

ejtt = eio

si,t = sjo

€=1

Special case: Transmission zero at
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Table 5.8: Special case of the CGl and the CH1 sections with r = I.

5.3.3 Complex Zero-Order (Constant) Complex Sections

The following will present the CWD equivalences of the zeroth-order (constant)

complex sections as given in Tables 2.13-17. A constant section in a CWD network as

discussed in Section 5.3 normally only appears as the last section in the network. Ali of
the CWD constant sections have the form shown in Figure 5.21, that is, inverse conjugate
multipiiers in the signal paths.

f=

CWD Parameters

1

d,=0

Kd,=^f 1:Uæ

ei tt = ejo

eir - e-ie

€=1



For each section, the value of the multiplier and the reference impedance of port ¡ro in
terms of port one will be given. Note that in general a complex two-port adaptor will be
required between ports three and t'wo in order to adapt the port reference to satisfy the port
interconnection criterion (4.48) in a CWD network.

Figure 5.21: General form of a complex consrant section.

Analog Symbol

1</1
IJI

C0_æ Section

Table 5.9: CWD equivalent of the C0_æ section.

CWD Parameters

-j(Xz +X2)X1+(X3 +X2+X1) 21*

zz= X3X2X1+ j(Xz +Xy)X321*

j(þ +X2)Xr -(X¡ +X2+X1) Zy*

-jxzxt



Analog Symbol

C0_T Section

Table 5.10: CWD equivalent of the C0_T section.

CWD Parameters

Analog Symbol
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zz=

T_
-j(Xz+X1) +21*

XzXz +X3X1+X2X1+ j6t +X2)21*

-lxz

C0_1 Section

j(X2+X1) -21*

Table 5.11: CWD eauivalent of the C0 1 section.

CWD Parameters

I=n

7, =Zt* -ix-n2



Analog Symbol

C0_2 Section

Table 5.12: CWD equivalent of the C0_2 section.

CWD Parameters

Analog Symbol
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/-\
^ _n\X+lZt")r-x

XZt*
u/ 

-----------i-"'-- nzlX+flt.)

Table 5.13: CWD equivalent of the T0 section.

5.3.4 CWD Ladder Realization

T0 Section

As mentioned in Chapter III, an elementary section is described by the section type, and

the anaiog (discrete) domain canonic parameters as given by the location of the

transmission zero Wo (¿b), the reflectance evaluated at the transmission zero r1ei0, and for

reciprocal sections the delay evaluated at the transmission zero D (Ð. The canonic
parameters are assumed to have been calculated using the synthesis algorithm given in
Chapter trI.

The ordering of the sections is given by the order of the transmission zeros, and since

CWD Parameters

7= n*

Zt =or-* nn
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each section is determined by the canonic parameters mentioned in the preceding paragraph,
the network is completely known. The discrete CWD ladder network is realized by
interconnecting the transformed sections as given in Tables 5.1-5.8 while imposing the
constrai¡t of the port interconnection criterion.

The port reference of the left-most pofl is assumed to be normalized to unity. Since
both ports of all dynamic two-ports contain the same port reference impedance as shown in
Figures 5.18-20, the external port references of all dynamic sections will thus be equal to
uniry. The dynamic sub-network of the CWD ladder network is realized by simply
interconnecting the canonic sections def,rned in the above tables as a function of the analoe
domain canonic parameters.

The last section, which is the section farthest to the right, is normally a constant
section. The form of the last section is given in Figure 5.21, with the port reference of port
two given in Tables 5.9-5.13. Notice that in general the impedance of port rwo is not
unity. However, the value of the load resistance is assumed to be normalized to unity as

shown in Figure 3.1. Thus, in order to connect the last section, a complex two-port
adaptor is inserted at port two of Figure 5.27 n order to complete the CWD network.

5.3.5 Canonic Cascade Section Using Real two-port Adaptors

The canonic cascade section as given in Figure 5.18 can be decomposed into a section
containing normalized real two-port adaptors and unimodular multipliers. The equivalence
shown in Figure 4.19 along with the properties of linear networks can be used in order to
derive the equivalent of the canonic cascade section as shown in Figure 5.22, where the
real normalized rwo-port adaptor angles are given by

and the unimodula¡ constants are given by

¿iFt =

s = (.o, þt) eiv

cos Ér = lql
cos fu=lKal

l-Ka
!-Ka*

silz - 7-a
1- a*

(5.9a,b,c)

(5.1Oa,b,c)
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Figure 5.22: \vlalent of the canonic cascade section using real two-port adaptors.

Notice that the section requires two real tweport adaptors and four unimodula¡ multipliers.
The number of unimodular multipliers will be reduced by two in the following section.
The respective port impedances a¡e known after the decompositioir from the discussion of
the factorization of the complex fwo-port adaptor found in Section 4.6.4.

5.3.6 Minimum Multiplier Realization of CWD Filters
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The section given above in Figure 5.22is the most convenient form to use for the actual

implementation of the dynamic sections given in Tables 5.1-5.8. The section can be

simplified by taking advantage of the properties of linear flow graphs. However, since the

form given in Figure 5.22 is inconvenient to use for this discussion, consider the general

form of the section as given in the following figure as a function of four general

unimodular multipliers with angles labelled 0¡, k=l(l)4.

A2
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Figure 5.23: General form of the canonic cascade section using real t'wo-port adaptors.

The canonic polynomials for this section are given by
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o = -et (et * ez - et - e+) (5. 1 la,b,c,d)

Notice that the location of the transmission zero is defined by the unimodular multiplier
associated with the delay (which gives the angle of the transmission zero) and the ratio of
the multipliers of the two real two-port adaptors (which gives the magnitude of the
transmission zero).

Consider the general section given above as a reciprocal section as shown in the
following figure:

f = z-r -cos 
þr ,-iet

cos þ¿

å = sin ht^ þzejþt - et - eq)

A2

r = r-i 
(k * eo,) _ cos p1 ¿-jo+7-t

cos p2
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Figure 5.24: Reciprocal form of the canonic cascade section using real2-portadaptors.

with the following canonic polynomials
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Notice that the location of the transmission zero is now uniquely defined as the value of the
unimodular multiplier associated with the delay.

Using either of the sections given in Figures 5.22-23, the four angles 0¡r, k=I(l)4 can
be determined for gach dynamic section in a CWD realization by simply equaring the values

found in Figures 5.22 and 5.23. I-etthe angles of the Fh section be labelled. as 0!,.

The unimodular multiplier represented by gl G¡etop most unimodular multipüer in

å = sin þtan þa{et- k- e+)

Í=z-r-e-iït

--e-j@t*eò - r,os P s-i9a7-r
cos B

o=-eiþt*ez-et-eq) (5.12a,b,c,d)
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Figure 5.23) can be drawn-through the remainder of the network to the right, in order to
form an ideal complex transformer, with a turns ratio that is unimodular, as the last element
to the right (that is, to the right of the last complex two-port adaptor associated with the

constant section). This process will also inroduce a contribution from gl mo ej. fnus
one unimodular multiplier per section can be removed.

Now consider two adjacent cascade sections labelled as the Fh and the (/+1)th

sections connected as described ea¡lie¡. flhe ejangle from the /th section can be combined

with the 9f 
* t 

angle from the (/+t¡th section for each of the dynamic sections of the

network. The 9i angle from the first section will not change, and the gf angle from the
last dynamic section can be combined with the constant section shown in Figure 5.21.
This process will further remove one unimodular multiplier per section.

Thus, after the above simplifications, each dynamic section is a function of the canonic
number of real pilameters (that is, three and four parameters for reciprocal and non-

reciprocal sections, respectively). The real parameters are found in the real angles p1 and

þz of the normalized two-port adaptors (for reciprocal sections the angles are equal

removing one degree of freedom), and the two angles ãi *¿ 0! areassociated. with the
unimodular multipliers.

The remaining dynamic section will hereafter be known as the minimal characterization
and is shown along with ttre final ideal complex transformer in the Figure 5.25. The
unimoduiar ansle becomes

ãl= el+ e; t * oi-', /= 1(1)N

where

el=sf=s

The angle of the complex ideal transformer is given by

e+= (å ,Í)

(s. 13)

(s.14)

(s.15)
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The minimal form of the complex cascade section reduces in a simple manner to the real
section given in t16l if all quantities are real, and thus the canonic cascade secrion is the
most general form of a first-order section.

Now consider the last constant section as given in Figure 5.21. The section after the
simplifications discussion above is shown in the following figure:

Figure 5.25: Minimalreabzation of the canonic cascade section.

tñ/

A2

- - o..<-JO----{o
ejù

where the turns rato ny is real as defined from

Y= nreior

Figure 5.26: The last constant section in a CWD network.

nrel\sld *d) ejØ

(s.16)



r63

Notice that the unimodular multipliers from the last dynamic section as well as rhe last
complex ideal tansformer have been combined with this section. Now consider the real
transformer on the left of the section in Figure 5.26 as well as the top unimodular
multiplier, drawn through the section toward the right. This process will remove one
multiplier from the section,leaving the following constant section in the minimal
cha¡acterization.

Figure 5.27: Minimal form of the last constant section in a CWD nerwork.

where the last transformer on the right has a complex turns ratio of

tLN +t = nrei(ø- er) 6.n)

etz\¿i(d *d)

Notice that the minimal form of the section contains three complex multipliers, however,
ordinarily at least one can be ignored since the input at port two is usually zero when
realizing a transmittance (however, this need not be the case).

The output of the voltage wave complex two-port adaptor can be efficiently computed
using

X=At-Az

I
nreib'-e)

nrei(ø-Q e2

which involves nvo complex multiplications and th¡ee complex additions/subffactions.

a2=(t-ì)x*t,
/\

Bt = B¡- -tt - ø{-x

(r - o.)
(5.18a,b,c)



5.3.7 Quantization of the Minimal Form CWD Realization

Once the CWD network has been reduced to the minimal form as described above, the
only elements that remain are terns involving sines and cosines (except the last two-port
adaptor). They arise from the real normalized two-port adaptors associated with the
dynamic sections and the real and imaginary parts of unimodular multipliers. Thus the
quantization process involves the binary representation of sines and cosines. Note that the
conìments given in Section 5.1.3 about quantization also apply to this discussion.

Since the quantized form of a unimodular multiplier cannot have a magnitude of unity in
general, the quantized form of a unimodular multiplier is passive and not lossless. A
similar argument holds for the real normalized two-port adaptors [16]. From (5.18), the
quantized form of the complex two-port adaptor involves two quantizations.

5,4 Design Examples Using the Minimal Form of the First-Order Sections

The following presents three design examples of lowpass Elliptical filters that a¡e

realized using the minimal form of the canonic cascade section. The finite transmission

zeros for ail examples are realized using the CClj@ fust-order complex section. Note that
the complex filter output for a real transfer function is real under nominal conditions.

The examples were generated by a computer progüm written by the author in the
PASCAL computer language for the Macintosh computer. The program is capable of
determining the quantized form of a CWD network which meets a set of frequency
specifications. As with the examples given in Section 5.2, all, attenuation plots are given as

a function of the normalized frequency. That is, the frequency range plotted is from -0.5 to
0.5 (instead of -æ to æ). Any frequency independent vertical shifts are removed in order to
compare the shape of the plot to the nominal plot.
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5.4.1 Elliptic Filter of Order Four

The 4th orrder Elliptic filter as given in Appendix A was quantized to the sanæ

frequency specifications (a passband ripple of 1.5 dB) as the example given in Secúons
5.2.2.1 and 5.2.2.2. The rwo realizations given earlier required 7 bits (series adaptors)
and 10 or 12 bits (parallel adaptors), while for this example using the cascade section
throughout 6 bits are required This implies that the cascade section is less sensitive than
the realization method employing complex three-pon adapon.

The stopband and passband attenuation plots are shown in Figures 5.28 and 5.29,
respectively. With the larger number of bits used for the earlier examples, both the
sopband and passbandplots app€ar o deviaæ less from the nominal plot than the example
given here. Notice the quantized stopband plot is very close to the nominal, except the
large nominal attenuation is not achieved. The quantized passband plot deviates from the
nominal to the extent that the plot does not appear Etliptic in nature. This is a result of the
low number of bits used.

This example was regenerated using I bits, which is a rough average of the bis
required for the examples given in Sections 5.2.2.1and5.2.2.2, in order to compare the
realizations. The stopband and passband attenuation plots are shown in Figures 5.30 and
5.31, respectiyely. Clearly, the quantized and nominal attenuation plots are difficult to
distinguish in ihe stopband. The passband attenuation plot shows an improvement over the
earlier examples. This again implies the cascade section is less sensitive than the realization
using complex three-port adaptors.
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Figure 5.28: Stopband attenuation plot of the 4th order Etliptic filter using 6 bits.
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Figure 5.29: Passband attenuation plot of the 4th order Elliptic filter using 6 bits.
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Figwe 5.30: Stopband attenuation plot of the 4th order Elliptic filter using I bits.

lo/

-o.12-0.'t0-0.08-0.06-0.04-0.02 0.00 0.02 0.04 0.06 0.08 0.'t0 0.12

Normalized Frequency

Figure 5.31: Passband. attenuation plot of the 4th order Elliptic filter using 8 bits.



5.4.2 Elliptic Filter of Order Five

The 5ü order Elliptic filter as given in Appendix A was quantized to the same

frequency specifications (a passband ripple of 1.5 dB) as the example given in Section
5.2.2.4. Whereas the earlier example based on either the series or parallel three-port
adaptor realization required 9 bits, this example based on the cascade section required 7 bits
for the quantization. Again, this implies the insensitivity found earlier.

The stopband and passband attenuation plots are shown in Figures 5.32 and 5.33,
respectively. V/ith the larger number of bits used for the earlier example, both the stopband

and passband plots appear to deviate less from the nominal plot than the example given
here. Notice the quantized stopband plot is identical to the nominal. The quantized
passband plot deviates from the nominal at the edges of the passband.
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Figure 5.32: Stopband attenuation plot of the 5ft order Elliptic filter using 7 bits.



4

c)

-o.25 -0.20 -0.15 -0..10 -0.05 0.00 0.05 o.1o 0.15 o.2o o.25

Normalized Frequency

Figure 5.33: Passband attenuation plot of the 5ú order Elliptic filter using 7 birs.

5.4.3 Elliptic Filter of Order Eight

The 8th order Elliptic frlter as given in Appendix A was quanrized to 9 bits in order to
satisfy a passband ripple of 1.5 dB. The stopband and passband attenuation plots are
shown in Figures 5.34 and 5.35, respectively.

From the stopband attenuation piot it is clear that the quantized and nominal plots are
similar since the stopband attenuation is achieved However, the locations of the
transmission zeros have shifted slightly. The quantized passband attenuation plot is very
similar to the nominal plot, except at the corners of the passband.
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Figure 5.34: Stopband attenuation plot of the 8th order Elliptic filter using 9 bits.
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Figure 5.35: -Passband attenuation plot of the 8ú order Elliptic filter using 9 bits.
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5.5 Comparison of the Two Reatization Methods

Several observations can be made when comparing the complex first-order section

realization methods using either the three-port adaptor or the cascade section. The two
realization methods discussed in Sections 5.1 and 5.3 are capable of realizing the same

reciprocal ladder filter. However, nomeciprocal f,rlters must be realizú using the cascade

section. Thus the comparison of the two realization methods will be limitted to reciprocal
networks. Notice that for this discussion either the series or the parallel three-port adaptor

realization can be considered equivalent with respect to the number of calculations required
and the number of independent quantizations needed. Thus the discussion of the three-port
adaptor method applies to either adaptor type.

The networks derived from the three-port adaptor approach must be scaled after the

construction of the network with real scaling transformers. This requires additional
computations. However, the cascade section is composed of normalized elements and thus

external scaling is not required.

The realization method using the three-port adaptor approach is based on the element-
by-element transformation of one of the two sections shown in Figure 5.36,

jxt
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where the dashed box represents a one-port dynamic element possibly in combination with
an imaginary resistor. If both sections realize the same transmission zero, the section on
the left is usually the dual of the section on the right. Regardless of which section is used

to realize a transmission zero, the mapping presented in Figures 5.3-4 and the equivalences

between the three-port adaptoß and combinations of two-port adaptors possibly with
external multipliers given in Section 4.6.6,lead to the general form of the CWD section

shown in Figure 5.37a). Note that it is assumed that the three-port adaptors were
normalized before the adaptor equivalences were applied.

The section shown in Figure 5.37a) represents the direct transformation of a first-order
section after making use of the adaptor equivalences. The complex multipliers can be

expressed in polar form as Tt - npiù and h. = n2si9z, creating two constant two-port
sections on each side of the central section containing the real two-port adaptors. Since the

two sections consist of a real transformer and a section with equal unimodular multipliers,

-jxl

Figure 5.36: General first-order complex sections.
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the section shown in Figure 5.37b) can be derived from a). Note that the real transformer
on the left is combined with the Íansformer on the right. By applying suitable flowgraph
transformations on Figure 5.37b), the flowgraph resulting from the three-port adaptor
approach can be made similar to the canonic section flowgraph (the ideal transformer on the
right can be ignored since it represenrs scaling).

I

h

I

*
.L

Figure 5.37: General form of the transformaúon of a complex first-order section,
a) Direct transformation, b) Equivalent of the direct transformation.

The number of computations required for each approach can be compared. For the
comparison, assume that the three-port and nro-port adaptor equivalences are not applied.
In the following, assume that all signals that are processed are complex. Also, assume that
a complex multiplication requires four real multiplications and ¡wo real additions (the
number of multiplications can be reduced to three at the expense of more additions).
Similarly, assume that a complex addition requires two real additions.

The three-port adaptor method of realization using unnormalized adaptors requires five
complex multiplications, one real multiplication and four complex additions operating on
complex signals. This is equivalent to2?realmultiplications and eight real additions. The
canonic cascade section in the minimal characterization requires fwo complex

a) b)

eiø nLnz
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multiplications, eight real multiplications and four complex additions. This is equivalent to
24 real multiplications and eight real additions. Thus, it is clear that the cascade section
requires two more real multiplications than the merhod using three-port adaptors. The
added computations from the scaling of the three-port adaptors was not included in this
analysis. Note that if the normahzeÅ, form of the cascade section is not used, the series
three-port adaptor with a reflection-free port (a function of one real multiplier) can be used
to replace the two two-port adaptors in Figure 5.24 inorder to decrease the number of
required computations.

The number of independent real quantizations for both methods are given by six and 1 1

for the cascade and three-port adaptor realization methods, respectively (note that the
cascade section was assumed to be reciprocal for the comparison). Thus the cascade
section requires nearly half the number of independent quantizaúons that the three-pon
adaptor method requires, which leads to the lower sensitivity that was observed in the
examples in Section 5.3.

The preferred realization method uses the canonic cascade section because of the fewer
real independent quantizations that are required and the uniformity of the sections. That is,
a basic block structure that is, in general, a function of four real parameters is capable of
realizing any of the real or complex flrst-order elementary sections. The preferred method
of realization for a particular application will of course depend on the constrainrs placed on
the operation of the implemented net'work.

The above discussion shows by construction that it is possible to realize a general
complex filter without alteration (to make it one-real) using complex port impedances and
the related structures. This gives the suff,rciency of Theorem 1.1 in Chapter I of allowing
complex port impedances and thus completes the proof. Thus, the imaginary part of the
port impedance can be used simultaneously to guÍìrantee computability of the complex WD
network and to simplify the CWD elements (real port impedances with complex netr#orks
do not allow this freedom). Also, the port impedances of a WD structure based on porr
impedances are necessarily complex, unless the network is one-real.



This thesis has developed a new theory for complex wave digital (WD) filters allowing
the realization of general complex reference networks without alteration (the net'works do
not require the property of one-realness). A port reference impedance is now ailowed to be

complex, containing a positive resistance and an imaginary resistance, or constant
reactance. The voltage wave incident and reflected wave variables, A and.B, are

redefined and the familiar concept of the WD mapping of analog networks is preserved.

The generalization reduces to the known theory of real WD filters if all quantities are real,

and a stability theory exists. The resulting definition of power and the power-wave
description are the same as suggested by Fettreis. A motivation for the generalization is
found in the additional degree of freedom in the choice of the imagrnary parr of the port
reference (that is, there is an additional parameter) which can be used simultaneously to
guarantee computability of the complex WD net'work and to simplify the CWD elements
(real port references with complex networks do not allow this freedom).

The new definitions of the incident and reflected wave variables lead to new definitions
for the complex n-port series and parallel adaptors which allow complex port references.

The complex series three-port adaptor with a reflection-free port has the same scattering
matrix as the real case. Thus, no extra computations are needed, that is, no penalty is
imposed for having free parameters in the port references. The complex three-port parallel
adaptor is more complicated than the series adaptor. Equivalences between the three-port
adaptors exist only when each adaptor contains a reflection-free port

Many useful complex dynamic and non-dynamic one-ports, as well as non-dynamic
two-ports that do not have a real'WD equivalent are now defined. The analog series

connected imaginary resistor when viewed as a two-port has a straight forward complex
WD equivalent of a simple pass though connection. Similarly, the analog parallel
connected imaginary resistor when viewed as a two-port has a WD equivalent of inverse
conjugate multipliers in the signal paths which is a hybrid form of scaling. Thus the

definition of the voltage waves have a bias towards series connections. Similarly, the dual
definition of complex current waves have a bias towa¡ds parallel connections.

The complex reference networks are designed using the new generalization to the

complex domain of the synthesis algorithm given in [16]. The algorithm is novel since it
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does not require the use of zero.finding or polynomial manipulation routines associated
with the determination of intermediate polynomials, namely, it is based entirely on
polynomial evaluations. Complex networks are derived by using general first-order
complex sections which are capable of independently realizing a transmission zero
anywhere in the complex plane. It is found that a more judicious representation for a
complex elementary section, from the viewpoint of network synthesis, are the canonic
parameters rather than the lumped-element parameters. The canonic parameters completely
characterize a section and a¡e given by the location of the ransmission zero, the reflectance
evaluated at the transmission zero, and for reciprocal sections, the retum goup delay (or
simply the delay) evaluated at the tansmission zero.

A complex WD ladder network is realized from a complex reference filter using one of
two methods. The first method maps a complex reciprocal reference network to the
equivalent CVVD network on an element-by-element basis. This inherently requires the use
of complex three-port series and parallel adaptors. The second method maps a complex
reciprocal or non-reciprocal elementary section as a dynamic t',vo.port to the CWD
equivalent. This method requires at most two real normalized two-port adaptors and two
unimodular multipliers for each dynamic section, which is referred to as the canonic
cascade section. From the examples presented, the realization method using the cascade
section appears less sensitive to binary quantizations than the method using three-pon
adaptors.



Complex Analog Design Examples

Few examples of compiex analog networks exist in the literature, and no examples exist
for either the realizations of frequency shifted networks or the realizations of ne¡works with
the phase of the å polynomial scaled by an arbitrary real constant. In order to give
examples of complex analog networks and to support the observations made in this thesis,

the following Appendix contains five examples of classical filters: Elliptic filters of orders

4, 5, 8, 14, and a Chebyshev filter of order 5.

Each filter is realized using the following:
a) real sections throughout.

b) real secúons with each dynamic section having port two reflection-free
(RF).

c) complex sections throughout

d) complex sections with each dynamic section having port two reflection-free.

In addition, the 4ft order Eliiptic frlter and the 5ú order Chebyshev filter are realized with
four different phase shifts of the å polynomial, namely 45o, 90o, 135o, and 180o. The

5th order Elliptic is realized an additional four times with each of the four first-order
reciprocal sections CA1jw, CB1jw, CCljw and CD1jw. Also, realizations are given

for four differentl@ axis shifts for the 5th and 8ft ord.er Elliptic examples, namely -j2, -jI,
+jl and +j2. The 8th order Elliptic is realized a f,rnal time with the/and å polynomials
exchanged in order to create a network with non-reciprocal sections.

For each type of frlter, the canonic polynomials and the attenuation stopband plots are

given, where the frequency axis of the attenuation plots has a range of 2æ (digital

frequencies). The passband plot is also given for the 14th order Elliptic example from [16]
since it is a very narrow band f,rlter and the passband cannot be detected in the stopband
plot.

For all cases, both the canonic par¿rmeters and the lumped element values are given.

The canonic parameters are given with a sufficient accuracy to calculate the lumped element

values to a higher accuracy than the one presented if this becomes necessary.

Appendix A
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V 2.600000000000000000000e+ 1 +j0.000000000000000000000e+0

./)
v
0,)
N

-4. 57 8 8 99000000000m0000e-2
-4. 57 8 I 99000000000000000e-2
- | .999 462400000000000000e- 1

- t .999 462400000000000000e- 1

2.59807 621 1 35 33 1 5940000e+ 1 +j 0.000000000000000000000e+0

ct)

()
N

- 6. 1 870506 47 5 1 41 583 520Ne-2
-6. 1 870506 47 s14158352000e-2
1.6462449838829 61 1 3 8000e-2
| .6462049 83 8829 61 1 3 8 000e-2

oô

+ j3.7 16022 1 00000000000000e- 1

- j3.7 r6022100000000000000e- 1

+ j2.07 6219900000000000000e- 1

- j2.07 6219900000000000000e- 1

1 .000000000000000000000e+0 +j 0.000000000000000000000e+0

<t)

v
q)
N

0. 000000000000000@0000e+0
0. 0000000000000@000000e+0
0. 000000000000000000000e+0
0.000000000000000000000e+0

h

177

+j r.629 M8294 1 8008 8933000e- 1

-j 1.629 448294 1 8008 8 93 3000e- 1

+j 3.388423 549929 47 2963000e- 1

-j 3.388 423 5 49929 47 29 63 000e- 1

Table 4.1: 4th order Elliptic canonic polynomials.

f

+j 5.042522500000000000000e- 1

-j 5.042s225000@000000000e- 1

+j 1 .065 898 3 30O00000000000e+0
-j 1.06s 8983 30@0000000000e+0
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Description: 4 Elliptic Canonic Parameters

t78

-1.6 -0.8 0.0 0.8 1.6
frequency

Figure 4.1: 4th order Elliptic fullband plot.

Section

1

2
BRUNE2
BRUNE2

1.000000000000000
1.0000000000000ü)

Description: 4 Elliptic Canonic Parameters RF pon 2

td

Table A.2: 4ú order Elüptic canonic parameters with real secrions.

Section

2
BRUNE2
BRUNE2

1.098456804919560
0.232172253166848

Table 4.3: 4ü order Elliptic canonic par¿Ìmeters with real sections and port 2 RF.

A"s{d

1.000000000000000
1.000000000000000

td

4.279780320238098
0.244918865281266

1.098456804919560
0.086764297935227

Ars{d

d

4.279780320238098
0.092239444290098

d



Description: 4 Elliptic Canonic Parameters

Section

1

2
aJ
AT

CCljw
CCljw
CCljw
CCljw

Table 4.4: 4ù order Elliptic canonic paramerers with complex sections.

1.00000000
1.00000000
1.00000000
1.00000000

IA

Description: 4 Elliptic Canonic Pa¡ameters RF port 2

ere{p)

1.09845680
-0.49838743
0.04031452
-0.æ254213

Section

1

2
3
4

Table 4.5: 4th order Elliptic canonic parameters with complex sections and port 2 RF.

CCljw
CCljw
CCljw
CCljw

4.27978032
2.29731862
0.0429007r
0.00210594

d

IA
1.00000000
1.00000000
1.00000000
1.0m0000

179

Description: 4 Elliptic Canonic Paramerers h 45

A"s{d

1.0984s680
-0.84451t50
-0.001086s6
-0.rM32050

Table 4.6: 4th order Elliptic canonic parameters with å polynomial scaled by 45 o.

Section

1
a
L

J
4

CCljw
CCljw
CCljw
CCljw

4.27978032
2.45619364
0.09223944
0.12629905

d

lÅ
1.00000000
1.00000000
1.000{Kn00
1.00000000

Description: 4 Elliptic Canonic Parameters h 90

Ars{d

1.88385497
0.28701073
0.82571268
0.78285603

Table 4.7: 4th order Elliptic canonic parameters with å polynomial scaled by 90 o.

Section

1

2
-J
llI

CCljw
CCljw
CCljw
CCljw

4.27978032
2.29731862
0.0429007r
0.00270594

d

1.00000000
1.00000000
1.0m00000
1.00000000

tÀ Ars{d

2.66925313
r.07240890
1.61111085
1.s68254r9

4.27978032
2.29731,862
0.0429007r
0.m270594

d



Description: 4 Elliptic Canonic Parameters h L35

Section

Table 4.8: 4tn order Elliptic canonic parameters with å polynomial scaled by 135 o

I
2
aJ
/1

CCljw
CCljw
CCljw
CCljw

IA

1.00000000
1.00000000
1.00000000
1.00000000

Description: 4 Elliptic Canonic Parameters å 180

Ars{d

-2.828s340r
1.8s780706
2.3965090r
2.35365236

Tab1e 4.9: 4th order Elliptic canonic parameters with å polynomial scaled by 180 o

Section

I
2
a
J
+

CCljw
CCljw
CCljw
CCljw

4.27978032
2.29731862
0.0429m7r
0.0n.270594

d

lÅ
1.00000000
1.00000000
1.00000000
1.00000000

Description: 4 order Elliptic Lumped Element Values

180

1

2
3

Section

¿'e{p}

-2.04313585
2.64320522
-3.10t278r3
3.13905052

BRUNE2
BRUNE2

TO

Table 4.10: 4th order Elliptic lumped element values with real sections.

1.89293934
7.53813225

4.27978032
2.29731862
0.0429007r
0.æ270594

L

d

Description: 4 order Elliptic Lumped Element Values RF port 2

1
a
I

2
2
J

Section

BRUNE2
TO

BRUNE2
TO
TO

0.86386147
0.w736179

Table 4.11: 4th order Etliptic lumped element values with real sections and port 2 RF.

C

1.89293934

20.24964667

L

2.40504666
15.86067023
r.36269167

n

0.86386147

0.00274050

C

2.40504666
0.6i013108

15.86067023
r.16993751
r.90902573

n



Description: 4 order Elliptic Lumped Element Values

Section

1

2
aJ
/1

5

CCljw
CCljw
CCljw
CCljw

TO

2.94148863
t.22304846
0.0214s907
0.04ß5297

C

Table A.LZ: 4th order Etliptic lumped element values with complex sections.

Description: 4 order Elliptic Lumped Element Values RF port 2

1.63386926
-3.92953181
49.60319911

-786.73998336

X1

Section

I
1

2
2
J
-J
4
4
5

CCljw
COPi
CCljw

COPi
CCljw

COPi
CCljw

COPi
COPi

0.674194t5
-1.62146840
43.71930s00

-693.4_1747924

X2

2.94148863

r.47599622

o.oqenglq

0.06347949

C

Table 4.13: 4th order Elliptic lumped element values with complex sections and RF port2.

181

r.63386926
-0.97376318
-2.22576122
0.64962572

-1840.6733s8
0.25969432

-r3.83398363
0.06326706
-0.01620919

51980762rr

X]

n

Description: 4 order Elliptic Lumped Element Values h 45

Section

I
2
a
J
À.+

5

0.674t94r5
0.11613691
-r.34359046
-0.13581892
20.34217602
-0.20155609

-14.77919435
-0.04735778
0.00771929

CCljw
CCljw
CCljw
CCljw

COPi

X2

Tabie A.14: 4th order Elliptic lumped element values with l, polynomiat scaled by 45o.

6.18438600
r.r7264316
0.025s6607
0.00158344

C

o.ttoqgtst

-0.47214844

-o.osiz+aqe

-0.0158617s
o.00849377

X3

0.72738367
6.92047958
2.2829416r
2.42291967
2.77140635

XI
0.32066796
-1.69116617

36.69613287
-592.49223487

t8.371r7307

X2 X3

0.42358027



Description: 4 order Elliptic Lumped Element Values h 90

I
2
)
Å-
)

Section

CCljw
CCljw
CCljw
CCljw

COPi

Table 4.15: 4th order Elliptic lumped element values with å polynomial scaled by 90 o

39.08700486
r.55433257.
0.04470238
0.00269908

C

Description: 4 order Eiliptic Lumped Element Values h 135

0.24066087
r.68270295
0.96047681
r.00254537
r.03923048

X]

Section

1

2
aJ
/1-
5

CCljw
CCljw
CCljw
CCljw

COPi

Table 4.16: 4th order Elliptic lumped element values with å polynomial scaled by 135 o

0.05073&1
-r.27587528

20.98715606
-347.59068052

25.980762rr

88.0s416979
3.20445722
0.16190853
0.00918224

X2

C

Description: 4 order Elliptic Lumped Element Values å 180

r82

-0.r5782037
0.74749004
0.39079026
0.41570350
0.42358027

XI

X3

1.03923048

Section
1
I

2
3
4

CCljw
CCljw
CCljw
CCljw

TO

Table A.l7: 4th order Elliptic lumped element values with å potynomial scaled by 180 o

0.02252175
-0.61886750
5.79M80r5

-r02.r7282s28
18.37rr7307

7.85238847
18.88536070
52.79956474

837.43648455

X2

C

-0.6r20M08
0.25448324
-0.02015999
0.00t27r07

X1

X3

2.77140635

0.25255175
-0.10500908
0.01776863

-0.00112029

X2

0.0t923789

n



Description: 5 order Chebyshev canonic polynomials

Þ4 8.14rss4238553398 +j 0.000000000000000

U)

c)
N

-0.0894583 62200190 +j 0.990107 112003389
-0.234205032817997 +j 0.61 1979847721094
-0.28949334123s6r3 +j 0.00000000O000000
-0.23420s0328r7997 -j 0.61 t9r984772r094
-0.0894s8362200190 -j 0.990107 1 12003389

M

I

8.141554238s53398 +j 0.000000000000000

./)

c)
N

0.000000000000000 +j 0.000000000000000
0.000000000001 143 +j 0.951056515795481
0.000000000001044 -j 0.9s1056sr6783792
-0.00000000W247 6 +j 0.58778 525127 8035
0.000000000000431 -j 0.s8778s253230rs6

h

i.00üXXn00000000 +j 0.000000000000000

Table 4.18: 5th order Chebyshev canonic polynomials.
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f
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5ù order Chebyshev fullband plor

Description: 5 Chebyshev Canonic Parameters

Section

1

2
3
4
5

A1
B1
A1
B1
A1

Table A.19: 5ú order Chebyshev canonic parameters with real sections.

1.00000000
1.00000000
1.00000000
1.00000000
0.99995099

tÀ Ars {pt
-0.00000000
3.t4t59265
0.00000001
3.t4r59264
0.wr25347

0.93682013
1.83300031
0.ffi6r&
1.83300031
0.93681333

d



Description: 5 Chebyshev Canonic Pa¡ameters RF 2

Section

I
2
J
4
5

Table A.20: 5ú order Chebyshev canonic paraûrcters with real sections and port 2 RF.

A1
B1
A1
B1
AI

1.00000000
1.00000000
1.00000000
1.00000000
0.99996398

IA

Description: 5 Chebyshev Canonic Para¡¡eærs å 45

A.s{d
-0.00000000
3.14159265
0.00000000
3.14159265
0.æt92r23

Table A.2l: 5th order Chebyshev canonic parameters with å polynomial scaled by 45 ".

I
2
J
4
)

Section

CBI-INF
CBI-INF
CB I_INF
CB I-INF
CBI-INF

0.93682013
0.58471119
0.47263477
0.49405776
0.68850828

d

1.00000000
r.00000000
1.00000000
1.00000000
0.9999494s

td

185

Description: 5 Chebyshev Canonic Pa¡ameæn lr 90

A"s (d
0.78539816
-2.356r94s0
0.78539816
-2.35619450
0.78539822

Table A.22: 5ú order Chebyshev canonic parameters with å polynomial scaled by 90 o

Section

I
2
J
4
5

CBI_INF
CBI-INF
CB I-INF
CBI-INF
CBI_INF

0.93682013
1.83300031
0.ffi61&
1.83300031
0.93681370

d

1.00000000
1.00000000
1.00000000
1.00000000
0.99994945

td A"s{pt

r.57079633
-r.57079633
r.57079632
-r.s7079633
r.57U79639

0.93682013
1.83300031
0.ffi6r&
1.83300031
0.93681370

d



Description: 5 Chebyshev Canonic Pa¡ameters h 135

Table A.23: 5ú order Chebyshev canonic paramet€rs with å polynomial scaled by 135 ".

Section

I
2
-J
4
5

CBI-INF
CBI_INF
CBI-INF
CBI-INF
CBI-INF

r.00000000
1.00000000
1.00000000
1.00000000
0.9999494s

ld

Description: 5 Chebyshev Canonic Pa¡a¡neærs å 180

Ars {d
2.356194,/;9
-0.78539817
2.356194/;9
-0.78539817
2.35619455

Table A.A: 5ü order Chebyshev canonic paftrmeters \ryith å polynomial scated by 180 o.

I
2
3
4
5

Section

B1
A1
B1
AI
BI

0.93682013
1.83300031
0.6ffi6r&
1.83300031
0.93681370

d

1.00000000
1.00000000
1.00000000
1.00000000
0.99995099

tÅ

186

Description: 5 Chebyshev Lumped Element Values

1

2
J
4
J
6

Section

A"s{/ol

3.14159265
-0.00000001
-3.14159265
-0.00000001
-3.140339r8

A1
BI
A1
B1
A1
TO

2.13488t54

3.00t92291

2.13489704

0.93682013
1.83300031
0.ffi6r&
1.83300031
0.93681333

L

d

Table A.25: 5ü order Chebyshev lumped element values.

C

t.ogitotzg

t.t9tt0729

0.99973870

n



Description: 5 Chebyshev Lumped Element Values RF 2

I
I
2
2
3
3
4
4
J
5
6

Section

A1
TO
B1
TO
A1
TO
B1
TO
A1
TO
TO

2.134_88t54

4.23159723

:

230483070

:

L

Table A.26: 5ù order Chebyshev lumped element values and port 2 RF.

3.420/;9210

+.øiræzr

C

Description: 5 Chebyshev Lumped Element Values h 45

1

2
J
4
5
6

Section

CBI-INF
CBI-INF
CBI-INF
CBI-INF
CBI_INF

TO

Table A.27: 5ft order Chebyshev lumped element values with å polynomial scaled by

450.

t.ttossgíT

0.47s62s02

z.zg7zøgst

0.4/'507747

1.g7û&vts
0.sgorßn

n

t87

0.3r2&6t6
0.93131833
0.43947498
0.93131833
0.31264835

C

Description: 5 Chebyshev Lumped Element Values h 90

1

)
3
4
)
6

2.41421356
-0.41421356
2.41421357
-0.4142t356
2.41421336

Section

XI

CBI-INF
CB1-INF
CBI-INF
CBI-INF
CBI_INF

TO

Table A.28: 5ú order Chebyshev lurnped element values with l¡ polynomial scaled by

900.

r.06744077
0.54555365
1.50046145
0.54555365
r.067_M8r6

C

0.99822999

'n

r.00000000
-0.99999999
1.00000000
-0.99999999
0.99999994

XI

0.99768900

n



Description: 5 Chebyshev LumpedElement Values h 135

I
2
3
4
5
6

Section

CBI-INF
CBI_INF
CBI_INF
CB1_INF
CBl INF

TO

Table A.29: 5ù order Chebyshev turnped element values with å polynomial scaled

1350.

r.82223537
0.15978897
2.56144792
0.15978897
r.82224794

C

Description: 5 Chebyshev Lumped Element Values å 180

0.4t42r356
-2.4r421354
0.41421356
-2.41421354
0.4t42r353

xI

I
2
3
4
5
6

Section

BI
AI
BI
A1
B1
TO

Table A.30: 5ù order Chebyshev lumped element values with å polynomial scaled by

190".

t.wttotzg

1.09tto729

L

188

n

o.gginzet

2.13488154

3.00092291

2.r348g7M

C

1.00m,2527

n



Description: 5 order Elliptic canonic polynomials

v s.08797927 49M563æ8W +j 0.M

U)

Ë
C)
N

-0.0235590893583009s 100 -j 1.001 r&3243777 427 4ffi
-0. 18 1 18541 r258782692m -j 0.858482414¡.3329û79{/0-
-0.51179432488142946200 +j 0.M
-0. I 8 1 1 8s41 125878269200 +j 0.8584824rQ3329607900
-0.02355908935830095100 +i 1.001 I&3243777 427 4ffi

V

g

5.08797927494563t9800 +j 0.M

at)

g
c)
N

-0.000000000000001820s0 -j 0.9862e632s2r6367 stm
-0.000000000000001 820s0 +j 0.986264632s2r6367s090
-0.0000000000000307 4655 -j 0.7 8839627 5 | 59 63330840
-0. 0000000000000307 465 5 +j 0.7 8 8 39 627 5 1 59 633 30840
O.ffi+i0.ffi

M

h

l.M+jO.M

ctt

Ë
Q)
N

189

O.ffi +j r.0&62295875831567000
0.w -j r.w6229s875831s67000
0.m +j 1.3318177s809400546300
0.w -j 1.3318177s809400s463ffi

Table 4.31: 5ü order Elliptic canonic polynomials.

Í
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Description: 5 Elliptic Canonic Parameærs

190
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Figure 4.3: 5ut orderElliptic fullband plot.

I
2
3

Section

BRUNE2
BRUNE2

AI

0.999999962782Mr
0.999999726175078
1.000000000000596

IA

Description: 5 Elliptic Canonic Pa¡ameters RF port 2

Table A.32: 5ü orderElliptic canonic prirameters with real sections.

1

2
3

Section

BRUNE2
BRUNE2

A1

1.629991081405960
0.&32621573280t7
-0.000000000000000

Ars (d

Table A.33: 5ú order Elliptic canonic parilmeters with real sections and port 2 RF.

0.999999962782041
0.999999775238420
1.000000000000421

lÅ

7.967967818455033
0.78392515793823r
0.921283326122010

r.629991081405960
0.514771985615197
-0.000000000000000

d

Ars (d
7.967967818455033
0.&3463173254037
0.65021 1580273026

d



Description: 5 Elliptic Canonic Parameærs

Section

1

2
-J
4
5

Table A.34: 5ù orderElliptic canonic paraûpters with complex section CAljw.

CAljw
CAljw
CAljw
CAljw

AI

0.99999996
0.99999996
0.99999973
0.99999934
r.00000000

IA

Description: 5 Elliptic Canonic Parameters

Ars {d
1.62999108
r.27933203
0.&326216
1.36287977
-0.00000000

Section

1

2
3
4
5

Table 4.35: 5ü orderElliptic canonic parameters with complex section CBljw.

CBljw
CBljw
CBljw
CBljw

AI

7.96796782
7.æ530258
0.78392515
1.27881054
0.92128333

d

0.99999996
0.99999996
0.99999973
0.99999934
1.00000000

tÅ

191

Description: 5 Elliptic C-anonic Parameters

A's {d
1.62999108
r.27933203
0.&326216
1.36287977

.0.00000000

Section

I
2
3
4
5

Table A.36: 5ü orderElliptic canonic parameters with complex section CCljw.

CCljw
CCljw
CCljw
CCljw

AI

7.96796782
7.&530258
0.78392515
r.27881054
0.92128333

d

0.99999996
0.99999996
0.99999982
0.99999992
1.00000000

lÅ

Description: 5 Elliptic C-anonic Parameten

Ars (d
1.62999108
-t.39449463
0.40947587
-0.11211207
0.00000000

I
)
3
4
5

Section

Table A.37: 5ü order Elliptic canonic parameters with complex section CDljw.

CDljw
CDljw
CDljw
CDljw

A1

7.96796782
7.8582205s
0.52033748
0.1462rw6
0.M1929t6

d

0.99999996
0.99999996
0.99999982
0.99999992
1.00000000

tÅ A"s{/o}

1.62999108
-r.39M9463
0.4t947587
-0.11211207
0.00000000

7.96796782
7.85822055
0.52033748
0.14621906
0.04192916

d



Description: 5 Elliptic LumpedElem€nt Values

I
2
3
4

Section

BRUNE2
BRUNE2

A1
TO

Table 4.38: 5ú orderElliptic lumpedelement values with real sections.

0.1864r882
1.64448t43
2.17088483

L

Description: 5 Elliptic Lumped Elerent Values RF port 2

1

1
)
)
3
3
4

Section

BRUNEz
TO

BRUNE2
TO
A1
TO
m

3.736r9W
0.0926/724

c

Table 4.39: 5ü order Eltiptic lumped elenpnt values with real sections and port 2 RF.

0.1864r882

2.08165351

t.wsõzßq

L

Description: 5 order Elliptic Lumped Element Values

192

1.26r74615
3.700/¡,242

1.00000703

n

1

2
3
4
5
6

Section

CAljw
CAljw
CAljw
CAljw

A1
TO

3.736r9W

0.07319021

l

C

0.10417811
0.14856346
r.29462172
0.53186739
2.r7088483

L

Table A.4O: 5ù order Elliptic lurnped elerent values with complex section CAljw.

r.2ffi74615
0.88881273
3.700/f/239
0.94519296

2.01889t24
0.58960259

n

C xI
0.94249058
1.344M1r8
3.00119519
1.23297626

-0.11091040
0.15816407
-1.72420019
0.70835043

x2

1.00000703

n



Description: 5 order Elliptic Lumped Element Values

1
J

3
4
)
6

Section

CBljw
CBljw
CBljw
CBljw

A1
TO

2.17088483

L

Table 4.41: 5ü order Elliptic lurnped element values with complex section CBljw.

Description: 5 order Elliptic Lumped Element Values

0.rr727959
0.0822407r
0.1437323r
0.3498597r

C

1

2
J
4
5
6

Section

CCljw
CCljw
CCljw
CCljw

A1
TO

xt
0.94249058
t.344mtr8
3.00119519
1.23297626

47.69950569

L

Table A.42: 5ü orderElliptic lumped element values with complex section CCljw.

8.00906374
-rr.42t34&5

5.22397r45
-2.14615590

Description: 5 o¡der Elliptic Lumped Element Values

x2

8.46899519
6.68s62933
0.27138655
0.07333974

C

193

I
2
3
4
5
6

Section

CDljw
CDljw
CDljw
CDljw

AI
TO

094249058
-r.19389631
4.81585526

-r7.820æ242

r.00000703

xI

n

7.5229ræ7
9.52961848
6.29412230

23.29078535
47.69950569

L

Table A.43: 5ù orderElliptic lumped elernent values with complex section CDljw.

0.11091040
-0.14M9533
2.76673059

-r0.2380r6s7

X2

C

0.94249058
-1.19389631
4.81585526

-17.820û242

n

X1

4.687503M

-8.00906374
10.14545063
-8.38262384
31.01908r53

X2

4.6875034./.

n



Description: 5 Elliptic Canonic Parameærs RF pon 2

Table A.44: 5ù order Elliptic canonic parameters with complex sections and port 2 RF.

1

2
3
4
5

Section

CCljw
CCljw
CCljw
CCljw
CBI-INF

Description: 5 order Elliptic Lumped Element Values RF port 2

0.99999996
0.99999997
0.99999978
0.99999970
r.00000000

IA

I
1

)
2
a
J
3
4
4
5
5
6

Section

CCljw
coPi

CCljw
CÛPi

CCljw
c0Pi

CCljw
c0Pi

CBI-INF
COPi
COPi

Æs {/d
1.62999108

-1.5r254380
0.50003614
-0.55475288
-0.u7233405

L

7.96796782
7.03016818
0.u346317
0.57337790
0.65021158

d

Table 4.45: 5ù order Elliptic lumped element values with complex sections and port 2 RF.

8.46899s19

6.9339262

034nn48

0.30992887

0.0M02r72

C

194

0.94249058
-1.27128535
-1.0600r759
1.01916438
3.9rffi2220
-0.02741367
-3.51227234
0.15091498

-27.63743824
0.rw52r43
0.08824736

x1

Description: 5 Ellipúc Canonic Parameters shift -j2

0.11091040
0.06224ffi
-0.14138855
-0.06317338
2.19092010
0.0t241781
-2.422ffi389
-0.07158789

-0.05505495
0.06132842

x2

1

2
3
4
5

Section

Table 4.46: 5ft order Elliptic canonic panürcters with all polynomials shifted by -i2.

CCljw
CCljw
CCljw
CCljw

A1

1.120ã8o8o

-0.89816358

o.ot¿gç{Jte

-o.o7847923

-o.os¿r¿oo¡
-0.14929640

X3

0.99999996
0.99999996
0.99999982
o.99999992
1.00000000

tÀ tus (pt

1.62999108
-r.3949463
0.ñ947587
-0.11211208
0.00000000

7.96796782
7.85822055
0.52033748
o.14621906
0.0/.192916

d



Descripúon: 5 Elliptic Canonic Parameters shift -jl

I
2
3
4
)

Section

Table A.47 : 5ù order Elliptic canonic parameters udth all polynomials shifted by -j 1.

CCljw
CCljw
CCljw
CCljw

AI

0.99999996
0.99999996
0.99999982
0.99999992
1.00000000

tÅ

Description: 5 Elliptic Canonic Pararreærs shiftjl

tus(pl
r.62999108
-r.39M9M3,
0.4fp,47587
-0.r r211208
0.00000000

I
2
3
4
5

Section

Table 4.48: 5ft order Elliptic canonic paranreters with all polynomials shifted by j1.

CCljw
CCljw
CCljw
CCljw

A1

7.96796782
7.85822055
0.52033748
0.t4ó,2t906
0.Mr92916

d

0.99999996
0.99999996
0.99999982
0.99999992
1.00000000

lÅ

195

Description: 5 Elliptic Canonic Parameæn shift j2

Ars (pt

r.62999108
-r.39M946i
0.40947581
-0.1121120t
-0.0000000c

I
2
3
4
5

Section

Table 4.49: 5ü order Elliptic canonic paranìeters with all polynomials shifted by j2.

CCljw
CCljw
CCljw
CCljw

AI

7.96796782
7.85822055
0.52033748
0.14621906
0.Mr92916

d

0.99999996
0.99999996
0.99999982
0.99999992
1.00000000

tÀ Ars (d
t.62999108
-r.39M946i
0.4æ4758'l
-0.t12rr20Í
-0.0000000c

7.96796782
7.85822055
0.52033748
0.r462t90É,
0.04t929r6

d



Description: 5 order Elliptic Lumped Element Values shift -j2

1

2
3
4
5
6

Section

CCljw
CCljw
CCljw
CCljw

AI
ctO_1

47.69950520

Table 4.50: 5ú order Elliptic lumped elerent values with all polynomials shifted by -j2.

L

Description: 5 order Elliptic Lump€d Element Values shift -jl

8.¿16899519
6.68s62933
0.27138656
0.07333974

C

Section

1

2
3
4
5
6

CCljw
CCljw
CCljw
CCljw

A1
CÐ_1

0.942A90s8
-1.19389631
4.81585525

-r7.820û228

9s.3996sr34

XT

47.69950520

Table 4.51: 5ù order Elliptic lumped element values with atl polynomials shifted by -j1.

L

-0.t2623547
-0.04880684
-5.5163461
-4.W24 

_1234

Description: 5 order Elliptic Lurnped Elernent Values shift jl

x2

8.46899519
6.68s62933
0.27138656
0.07333974

C

196

I
2
aJ
4
)
6

Section

CCljw
CCljw
CCljw
CCljw

A1
c0_1

4.68750196

0.9424m58
-1.19389631
4.81585525

.17.820ffi228

47.69982s68

n

x1

47.69950520

Table A.52: 5ù order Elliptic lumped element values with all polynomials shifæd by j1.

L

r.82717976
-0.07244642
I 1.10483338
-5.84744330

X2

8.46899519
6.68s62933
0.27138656
0.07333974

C

4.68750196

0.94249058
-1.19389631
4.81585525

-17.820ffi22Í

-47.69982s68

n

XT

0.0s719096
-2.31457292

r.5802182:/
-4r.w23520r

X2

4.68750196

n



Description: 5 onder Elliptic Lumped Element Values shift j2

I
2
3
4
5
6

Section

CCljw
CCljw
CCljw
CCljw

AI
c0_1

Table 4.53: 5ü order Elliptic lumped elernent values with all polynomiats shifted by j2.

47.69950520

L C

60

50

40

30

20

10

0

8.46899519
6.68562933
0.27138656
0.07333974

0.94249058
-1.19389631
4.81585525

-r7.820û22Í

-95.39ç'65134

X]

E

Q)

0.03852930
0.15990830
1.10593711

20.406367r0

X2

197

n

4.687s0196

-2.4 -1.6

Figure 4.4:

-0.8 0.0 0.8 1.6 2.4
frequency

5ú orderElliptic fullband plot shifted by j1.

3.2



Description: 8 order Elliptic canonic poþomials

þ1 2.9279ffi+2 +j0.W+0
-9 . t0240618 1 5 625 3 6000000e-3
- 4.226 17 9 4020 1 533 6200000e -2
- 1 . 3037 1 30999293347 80000e- I
-2.7 407 84957 7 17 469 450000e- I
-2.7 407 849 57 7 17 469 450000e- 1

- 1.3037 1309992933 47 80000e- I
- 4.22617 9 4020 | 533 6200000e -2
-9.10240618 1 5 625 36000000e-3

q)

6)
N

¿

I

2.9278829228&232289000e+2 +j 0.ffi+0
3.92r 547 r37 68 I 875 898000e-3
3.921547 13768 1875898000e -3

- | .9 4027 67 9 46249 88369000e - 3
4 .9 4027 67 9 46249 88369000€ -3
- 6.4/.621 47 LM 59 42805 8 000e -4
- 6.44621 47 | M59 42805 8 000e 4
t.399 &r 4085539307 53000e-4
1.399 &r 40855393075 3000e-4

ct2

Ëq)
N

-i 9 .99 65223 L 59 5 44657 8 1 000e- I
-j 9.5392307 443ffi003 1 I 000e- I
-j 7. 8953 1 E7 5 t7 7 3957050000e- I
-j 3.4 L | 4208339 8 67 3 62 80000e - I

+ j 3.4t L 4?ß8339 8 67 3 62 80000e - I
+j 7.8953 1 87 5177 3957050000e- I
+j 9.5392307 4/3ffi3 I I 000e- 1

+j 9 .99 65223 | 59 5 44657 8 I 000e- I

198

v

h

1.ffi+0 +j0.ffi+0
0.ffi+0
0.ffi+0
0.ffi+0
0.ffi+00.m.t{
0.ffi+0
0.ffi{O
0.ffi+0

vt
eit)
N

-j 3 . | 5923 47 9 5 829 6687 7 90CÆ,e - I
+j 3.r 5923 47 9 5829 668779000e- 1

-j 7 .æ528437 8217 507982000e- 1

+j 7 .60528437 8217 507982000e- 1

-j 9 .4r7 47 | 6f,59 ffi5 1027000e- 1

+j 9.417 47 t6É,59 ffi51 027000€- I
+j 9.948867 38430/./'û74 I 000e- 1

-j 9.9 48867 3843@./¡ñ74 I 00ft - 1

Í

Table 54: 8ù order Elliptic canonic polynomials.

+j 1.055397 623M69401 20000e+0
-j 1.055397 6234/,69401 20000e+0
+j 1. 1 14952056832 1 80504000e+0

- j r.r | 49 5205683 2 1 80504000e+0
+j 1.380630107805 1 59522000e{
-j 1.380630107805 I 59s22000e'ú
+j 3.323643 5M7 493W 1 63000e{
-j 3 .3236 35M7 493W 163000e{



^60
E

=40
q.)

Description: 8 Elliptic C-anonic Pa¡arreters

t99

-1.6 -0.8 0.0 0.8 1.6
frequency

Figure A.5: 8û order Elliptic tullband plot.

I
2
3
4

Section

BRUNE2
BRUNE2
BRUNE2
BRUNE2

1.00000000000000(
1.00000000000000(
1.00000000000000(
1.00000000000000(

tÀ

Tabte 4.55: 8ú o'rder Elliptic canonic parameters with real sections.

1.66549505017989ó
0.87437297M27579
0.541347707654213
0.205r68413833498

A's (d
8.4ffi3981ø178332
1.812421205592946
0.558791472457æ8
0.06ó261697254630

d



Description: 8 Ellþtb fuicP¡'urgs RF port 2

Section

I
2
3
4

BRUNE2
BRUNE,
BRUNE2
BRUNE2

Table 4.56: 8ú order Elliptic canonic para¡neters with real sections and port t'wo RF.

1.00000000000000(
r.00000000000000c
r.00000000000000(
1.00000000000000(

tÅ

Description: 8 Elliptic Canonic Parameters

1.6ó5495050179896
0.709804007639389
0.3667ñ7106838s9
0.139262839140198

Ars (d

I
2
J
4
5
6
7
8

Section

UUrJw
CCljw
CCljw
CCljw
CCljw
CCljw
CCljw
CCljw

Table 4.57: 8ü orderElliptic canonic paranrcters with complex sections.

I.UUtJUUTJt'
1.00000000
1.00000000
1.00000000
1.00000000
1.00000000
1.00000000
1.00000000

8.4663981,M178332
1.539&8224519777
0.388865297r97562
0.0451475M946848

IA

200

d

Ary{/of

r.oo)4v)u)
-r.M223808
0.58059629
-0.26706/52
0.07169814
-0.0t428074
0.0010s485
-0.0000410s

Description: 8 Elliptic Canonic Pa¡ameters RF port 2

1

)
3
4
5
6
7
8

Section

ð.400Jyör4
8.43432203
t.29592012
0.62348356
0.07768417
0.01548577
0.00034308
0.0000r335

CCljw
CCljw
CCljw
CCljw
CCljw
CCljw
CCljw
CCljw

d

Table 4.58: 8ü order Elliptic canonic pafturrcters with complex sections and port two RF.

r.00000000
1.00000000
1.00000000
1.00000000
1.00000000
1.00000000
r.00000000
1.00000000

tÀ A's {d
1.66549505
-r.54573012
0.69672652
4.73673516
0.2962r996
-0.43382111
0.07562326
-0.14396483

8.4óÉ.39814
7.52655809
1.539&822
1.32237806
0.38886530
0.3944363s
0.04514750
0.06487300

d



Description' $ Flliptic Canonic Pa¡ameær

I
2
3
4
5
6
7
8

Section

CCljw
CCljw
CCljw
CCljw
CCljw
CCljw
CCljw
CCljw

Table 4.59: 8ù order Elliptic canonic paraûpters '¡¡ith all polynomials shifted by -i2.

1.00000000
1.00000000
1.00000000
1.00000000
1.00000000
1.00000000
1.00000000
1.00000000

tÅ Ary(d
1.66549505
-r.44223808
0.580s9629
-0.2670f/,52
O.ffi169814
-0.01428074
0.0010s48s
-0.0000410s

Description: 8 Elliptic Canonic Parameærs shift -jl

s shift -j2

I
2
3
4
J
6
7
8

Section

8.4639814
8.43432203
r.29592012
0.623483s6
0.077684t7
0.01548577
0.00034308
0.00001335

d

CCljw
CCljw
CCljw
CCljw
CCljw
CCljw
CCljw
CCljw

20r

Table 4.60: 8ü order Elliptic canonic pammeters with all polynomials shifted by -j1.

1.00000000
1.00000000
1.00000000
1.00000000
1.00000000
1.00000000
1.00000000
1.00000000

tÅ tus(d
1.6654950s
-1.44223808
0.58059629
-0.26706/52
0.07169814
-0.0t428074
0.0010548s

-0.00004105

Description: 8 Elliptic C-anonic Pa¡ameters shift jl

1

2
3
4
5
6
7
I

Section

8.466.39814
8.43432203
t.29592012
0.62348356
0.07768417
0.01548577
0.00034308
0.00001335

d

CCljw
CCljw
CCljw
CCljw
CCljw
CCljw
CCljw
CCljw

Table A.6l: 8ù orderElliptic canonic parameters with all polynomials shifted by jl.

1.00000000
1.00000000
1.00000000
1.00000000
1.00000000
1.00000000
1.00000000
r.00000000

td Ars (d
1.66549505

-1.4,/;22380Í
0.s8059629
-0.2670ó/'5t
0.07169814
-0.0t42807¿
0.00105485
-0.00004r0:

8.466398r4
8.43432203
1.29592012
0.62348356
0.07768417
0.01548577
0.00034308
0.0000133s

d



Description: 8 Elliptic Canonic Pa¡ameters shift j2

I
2
3
4
5
6
7
8

Section

CCljw
CCljw
CCljw
CCljw
CCljw
CCljw
CCljw
CCljw

Table A.62: 8ú order Elliptic canonic prirameters with all polynomials shifted by i2.

1.00000000
1.00000000
1.00000000
1.00000000
1.00000000
1.00000000
1.00000000
1.00000000

td

Description: 8 Elliptic Lumped Element Values

Ary(d
1.6ó549505
-r.M223808
0.s80s9629
-0.2670f/,52
0.07169814
-0.01428U74
0.0010s485
-0.00004r0J

1

2
3
4
5

Section

BRUNE2
BRUNE2
BRUNE2
BRUNE2

TO

8.46639814
8.43432203
1.29592012
0.62348356
0.07768417
0.0t548577
0.00034308
0.00001335

d

Table A.63: 8ú orderElliptic lumped element values with real sections.

0.r727765r
1.05616319
2.W057226
2.80892386

202

L

Description: 8 Elliptic Lu¡npedElement Values RFport 2

I
I
2
2
3
J
4
4
5

Section

4.15439481
0.34248781
0.M99625r
0.00125413

BRUNE2
TO

BRUNE2
TO

BRUNE2
TO

BRUNE2
TO
TO

C

Table A.64: 8ú order Elliptic lumped element values with real sections and port nvo RF.

0.17277651

1.33190545

3.r2783003

4.r4ffi948

-

L

1.2507638r
2.223880f4
5.02268395

25.69746/!69
r.63106797

n

4.1543948r

0.271s83r0

0.03339384

0.m084965

-

C

t.2s07638r
0.89048952
2.22388064
0.91808355
5.02268395
1.00679049

25.6974f469
r.15735286
t.7r22M5r

n



Description: 8 order Elliptic Lumped Elernent Values

1

2
3
4
5
6
7
I
9

Section

CCljw
CCljw
CCljw
CCljw
CCljw
CCljw
CCljw
CCljw

TO

935056149
7.4758810ó
0.705786ó7
0.31736716
0.03889205
0.ffi774328
0.00017154
0.00000668

C

Table A.65: 8ù order Etliptic lumped element values with complex sections.

090951792
-r.r3759210
3.34742029
-7.444263t6
27.88277689

-t40.M637597
r89s.9967516

-48722.307ffi34

xt

Description: 8 order Elliptic Lumped Element Values RF port 2

Section

I
1

2
)
3
J
4
4
5
)
6
6
7
7
I
I
9

CCljw
COPi

CCljw
c0Pi

CCljw
CTPi

CCljw
CÐPi

CCljw
c0Pi

CCljw
CÐPi

CCljw
COPi

CCljw
C'OPi
COPi

0.10r33190
-0.t2674228
r.27077995
-2.82û6292
18.623524t0

-93.5,m07508
17s3.9û96522

-45Ut2.3499673s

9.3s056r49

7.34252801

0.8713æ77

0.75969659

o.rssiooeq

0.24679634

o.oziææe

0.03260515

-

C

X2

203

0.9495n92
-r.36927240
-1.02538570
r.08766736
2.75349523
-0.12351690
-2.s9076519
0.213s4984
6.70229716
0.1 1867603

-4.s37ffi392
0.t9992502

26.43428522
0.23834505

-r3.86827977
-0.1656s683
0.03s58878

XT

585.57828356

n

Table 4.66: 8ü order Elliptic lurnped element values with complex sections and port nro
RF.

0.r0133190
0.0û77935
-0.1.29W14
-0.06152806
1.02930908

0.03s254ffi
-1.180û232
-0.06643r84
3.ffirr020

-0.06578904
-3.5025134,/-
-0.05517509
13.3æ4693r
-0.19747879
-9.22782561
0.13132347

-0.01481013

X2

1.20796222

-0.96177530

o.oszSzqo¡

-0.14506010

-o.oszittzs

-0.04450456

-0.03902923

0.033ffi235
-0.02081081

X3



Description: 8 orderElliptic LumpedElement Values shift -j2

1

)
3
4
)
6
7
8
9

Section

CCljw
CCljw
CClju
CCljw
CCljv
CClju
CCljw
CClju

TO

9.35056149
7.47588106
0.70578667
0.31736716
0.03889205
0.t0774328
0.00017154
0.00000668

C

Table A.67: 8ft orderElliptic lurnped elementvalues with all polynomiats shifted by -j2.

0.9t95t792
-r.r3759210
3.34742029

-7.44426316
27.88n7689

-r40.M637597
1895.99667516

-48722.307ffi32

Description

XI

I
)
J
4
5
6
7
I
9

Section

CCljw
CCljw
CCljw
CCljw
CCljw
CCljw
CCljw
CCljw

TO

8 orderElliptic LumpedElement Values shift -jl

-0.rr32r743
-0.M37794r
-1.60088358
-1.01154837
41.51347728
-38.20723463

4404.16241135
-28139.45431888

9.35056149
7.47588106
0.70s78667
0.31736716
0.03889205
0.00774328
0.00017154
0.00000668

C

X2

Table 4.68: 8ú order Elliptic lumped element values with all polynomiats shifted by -j1.

2M

0.90951792
-1.r3759210
3.34742029
-7.444263t6

27.88277689
-t40.M637597

1895.99667516
-48722.30760638

Description: 8 orderElliptic LurnpedElement Values shift jl

xI

585.57828868

n

1

2
3
4
)
6
7
8
9

Section

CClju
CClju
CClju
CClju
CClju
CClju
CClju
CClju

TO

1.93050609
-0.06507913
12.325&912
-r.48983267
67.55166æ9

-54.24792517
2508.793t7ffi

-34&7.72778801

9.35056r49
7.47588106
0.705786ó7
0.31736716
0.0388920s
0.00774328
0.00017154
0.000006ó8

C

X2

Table 4.69: 8ft order Elliptic lumped element values with all polynomials shifted by j 1.

0.9w5r792
-1.r3759210
3.34742029

-7.44426316
27.882t7689

-r40.0/i637597
1895.99667516

-48722.307ffi632

xI

585.57828715

n

0.05203151
-2.414û715
0.ffi99247s

-27.4107724r
10.80058505

-339.29066.907
1348.29362394

-64469.62406297

X2

585.578295M

n



Description: 8 order Elliptic Lumped Element Values shift j2

1

2
3
4
5
6
7
8
9

Section

CCljw
CCljw
CCljw
CCljw
CCljw
CCljw
CCljw
CCljw

TO

9.35056149
7.47588106
0.70578667
0.31736716
0.03889205
0.00774328
0.00017154
0.00000668

C

Table 4.70: 8ü order Eltiptic lumped element values with all polynomials shifted by i2.

0.90951792
-1.r3759210
3.34742029
-7.44426316
27.88277689

-r40.M637597
189s.9967516

-48722.30760ó35

xt
0.03500214
0.14160826
0.45485731
3.56017399
7.ffi574r27

208.50907@f
t095.02842639

-113175.80804067

^60
E

á40
q)

X2

205

585.57829285

n

-s.2 -2.4 -1.6

Figure 4.6: 8ü orderElliptic fullband plot shifted by jl.

-0.8 0.0 0.8 1.6
frequency



Description¡ 3 Flliptic Canonic Parameters after
exchanging the/ and å polynomials

1
,)

3
4
)
6
7
8

Section

cFl
CFl
cF1
cF1
cFl
cFl
CFl
cF1

Table 4.71: 8ü orderElliptic canonic paraÍìeters with/and å polynomials exchanged.

0.9807421782W72
0.98846221429816
1.01404058ffi790,2
r.0147075&677322
r.013894267484888
1.014559363421499
0.98ffi4488786269
0.985964558905910

Description: 8 Elliptic Lum@ Element Values afær exchangng the "f and å polynomials

tÀ

I
2
3
4
5
6
7
8
9

Section

CFl
cFl
cFl
CFl
cFl
cFl
cFl
cFl
TO

1.274331742082993
.2.5æ99701772320r
0.127316376085360
-0.133355859515346
-2.s1885065&12622
2.484287&7890324
.0.957578854867896
0.971081676793818

A's (/d

3.83724Æ6
r5.86391307
3.ffi756671
3.77917706

rr3.97752982
107567ffi59
63.54028264
&.552343r4

C

206

Table A.72: 8ú order Elliptic lumped element values with/and å polynomials exchanged-

t.35127907
-0.32685426

15.68843869
-14.97û3532
-0.32200307
0.341,19095
-r.92663070
1.89523088

xI
-0.82489500
0.19952980
-0.3Ø77M
0.34792634
-0.00931636
0.00987152
0.01582890

-0.01557092

x2
6.45430766
16.07430627

-t42.86371534
-136.376352ffi
-13.61055994
-r4.42rût3l
rr2.5r425761
110.68052394

R

r.00342127

n
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Figure A.7: 14ü orderElliptic tullband plor



E

gso

1.464s

Description:

209

1.4650

1

2
3
4
5
6
7
8

Section

Figure 4.8: 14ú orderElliptic passband plot.

BRUNE2
BRUNE2
BRI.JNE2
BRUNE2
BRUNE2
BRUNE2

c1
B1

14 Elliptic Canonic Parameters

1.4655 1.4660
frequency

1.000000000002052
1.000000000000619
1.000000000000599
1.000000000000233
1.000000000000475
1.000000000000172
0.999999999999998
0.999999999988sM

tÅ

Table A.l4: 14ù order Elliptic canonic pammeters with real sections.

-t.681979728735969
-1.556678547494/5r
-0.989025057559922
-0.r7032w74732248
-0.01¿øm55W5495
-0.002285924171847
-0.000000000000000
3.141592653581955

A"s{p}

1.4665

186.399961283533143
3.t78343341720900
t.278142565519755
0.223t086r,5s27554
0.022045889552428
0.003750586580709
0.00048907948847r
r.2453r54193W203

d



Description: 14 Elliptic Canonic Parameters RF port 2

I
2
3
4
5
6
7
I

Section

BRUNE2
BRUNE2
BRUNE2
BRUNE2
BRUNE2
BRUNE2

C1
B1

1.0000000000020s2
1.000000000000619
1.000000000000717
r.000000000001370
1.000000000032757
1.000000000076/73
0.999999999989135
0.999999999999999

tÅ

Table 4.75: 14ù orderElliptic canonic par¿¡meters with real sections and port npo FF.

Description:

-r.681979728735969
-r.s68474945067798
-r.619{p6743ffir874
-r.ffi7257r90s05580
-r.6752c0/23,45945m
-r.67616395&28675
-0.000000000000002
3.141592653589792

A"s(pl

1

2
3
4
5
6
7
8
9
10
11
t2
13
l4

Section

CCljw
CCljw
CCljw
CCljw
CCljw
CCljw
CCljw
CCljw
CCljw
CCljw
CCljw
CCljw
ccl_0

B1

14 Elliptic Canonic Pa¡ameærs

1.000000000002052
1.000000000002049
1.000000000000619
r.000000000000567
1.000000000000600
1.000000000000258
1.000000000000233
1.000000000000069
1.000000000000475
1.000000000000160
1.000000000000176
1.000000000000075
0.999999955571s38
1.000000000000000

ld

186.399961283533143
3.7787W725593045
r.5280266,28888073
1.3t95r7521340930
r.522622582698051
1.63t6347t3196574
2.474020892415707
0.000136253597376

2r0

d

-1.681979728735969
r.693756792492627

-1.58039454t979r85
2.150525283719941
-2.15226200t787222
2.97rt928t9214553

-2.97 1184063883335
3.127186/,65078518

-3.127187582731513
3.139306059152389
-3.L393M1M35M42
3.141152521070623
0.021788480795309
3.141592653589793

A"s(/4

Table 4.76: 14ú orderElliptic canonic paranìeters with complex sections.

186.399961283533143
186.14t954883242989

3.778545849694890
3.t613r9234338t4
r.278399Mt76r,9
0.259419809646930
0.223rrr763543324
0.0189s2609545458
0.0220s280807M12
0.003500ó78895454
0.003751613183988
0.00072214306123r

r0rffi.4227611202154
0.000000060292790

d



Description:

1

2-J
4
5
6
7
I
I
10
11
12
t3
t4

Section

CCljw
CCljw
CCljw
CCljw
CCljw
CCljw
CCljw
CCljw
CCljw
CCljw
CCljw
CCljw
CCl-O

CBl INF

14 Elliptic Canonic Parameærs RF port 2

1.0000000000020s2
1.000000000002040
1.000000000000619
1.00000000000û179
1.000000000000717
1.00000000000ûf 15
1.000000000001370
1.000000000000742
1.000000000032792
1.000000000019004
1.000000000076/31
1.000000000045608
0.999999999989135
0.999999999999999

tÀ

Table A.77: 14ù orderElliptic canonic parameters with complex sections and port two
RF.

-t.681979728735969
r.687237572536880

-1.568506556262263
r.84562365M24720
-r.6967M350894683
2.058829ffi149,m08

-2.22308t557458250
r.&r22997722938s

-2.872610798183983
0.949048004r33r02
2.9324tæ63ffi5692
0.4/;90/;961s099089
-2.t9mr26/¡9781115
r.05rt79929809550

Ary(pì

186.399961283533143
185.295426511457036

3.7787W725593082
2.67024122539919t
1.528026628888250
0.4r7302577419850
1.3t95t7521350613
0.203622222271528
t.522622570830383
0.417142054182997
1.631634700820653
0.526752783294tt3
2.470020892369623
0.0001362535857s7

Description: 14 orderElliptic Lumpd Element Values

2tl

d

I
2
3
!:
J
6
7
I
9

Section

BRUNE2
BRUNE2
BRUNE2
BRUNE2
BRUNE2
BRUNE2

C1
B1
TO

0.01186690
0.9375M23

r0.95835391
14t.2929784r
818.13543384
4078.0__r702t9

L

Table 4.78: 14ü order Elliptic canonic pafilmeters with real sections.

r05.45305976
2.41034655
0.7121t679
0.10358137
0.0t95r342
0.00157259
0.40024ø.54
1.60601882

C

0.98821173
0.54573036
0.15833768
0.08433s88
0.1587327r
0.t92-48719

0.83180234

n



Description:

I
I
2
2
aJ
3
4
4
5
5
6
6
7
7
8
8
9

Section

BRUNE2
TO

BRUNE2
TO

BRUNE2
TO

BRUNE2
TO

BRUNE2
TO

BRUNE2
TO
c1
TO
B1
TO
TO

4 orderElliptic LumpedElercnt Values RFport 2

0.01186690

0.926s4913

5.63001114

10.95149963

s.¡osãzz t t

4.r9N5394

:

L

105.4530s976

2.43894946

r.38û7679

r.33637s96

1.ffig1481

1.52W7864

r.z¡iorøs

467851t52935

C

Table A.79: 14ú order Elliptic canonic parameters with real sections and port two RF.

Description: 14 order Elliptic Lumped Element

0.98821173
1.00591586
0.54573036
1.38693s86
0.15833768
2.57457M8
0.08433s88
3.45708862
0.1587327r
2.srrrsO/¿
0.19248774
2.279W7r

t.34s2s4s3

o.oosis¡e r
1.05340742

n

212

I
2
3
4
5
6
7
8
9
l0
11
t2
13
T4
15

Section

CCljw
CCljw
CCljw
CCljw
CCljw
CCljw
CCljw
CCljw
CCljw
CCljw
CCljw
CCljw
ccr_0
BI
TO

209.6É.30t0r4
212.16405783

3.81516405
6.99t93245
2.836156/-l

17.91207510
15.40354615

182.&523037
212.554&763

1339.07276125
1435.1 1889809
7455.ffiM259
5050.81080967
3317r462.t9r65

C

4.8945690s
0.88402363
-0.99044756
0.5405r730
-0.s3939s76
0.085¿10667

-0.08541108
0.w720322
-0.00720266
0.00114330

-0.00114327
0.00022007
9r.787 

_99087

XT

Values

Table 4.80: 14ú orderElliptic canonic parameters with complex sections.

0.00s30397
-0.00524145
0.29t07940

-0.15885086
0.39193156
-0.06¡20s7s3
0.07212513

-0.00608274
0.m522930

-0.00083006
0.00077419

-0.00014902

X2 n

2.2m36542



Description: 14 order Elliptic Lumped Element Values RF port 2

I
I
)
2
3
3
4
4
5
5
6
6
7
7
I
8
9
9
10
10
11
l1
t2
l2
l3
t3
t4
L4
l5

Section

CCljw
COPi

CCljw
COPi

CCljw
COPi

CCljw
COPi

CCljw
COPi

CCljw
COPi

CCljw
COPi

CCljw
cOPi

CCljw
COPi

CCljw
cOPi

CCljw
COPi

CCljw
cOPi
ccl_0
c0Pi

CBI-INF
c0Pi
Cr0pi

209.66301014

209.6s249s98

3.t7007712

3.ffi7gffi

1.74746572

0.7857t731

t.tizt+oot

0.21903705

42.34443556

0.263ffiOr

t+.sitzsgtt

0.27711287

+.siørclno

3694.969tss94

-

C

-0.89456905
-0.8923r3t4
0.88984742
0.88294098
-1.W229240
-7.22875493
0.75702898
0.7s451695
-0.881¿10151
-1.0628473
0.60130911
0.683ffi233
-0.49452t92
-0.39174684
0.93193523
r3t342506
-0.13530772
0.1963t552
r.94677375

23.93515018
0.tM97r32
0.7r23r523
4.378756/¡9
-1.79301943
-0.58000830
-t.34834t14
t.72411341
r.78206553

-1.53780038

X1

0.00530397
-0.00265201
-0.0053u24
0.00265210
0.2945M
-0.14115067
-030302247
0.15363393
0.63610930
-0.3007788E
-1.41473r72
0.6u32309
0.33341418
-0.18053803
-5.07212250
1.4M73829
0.0262493r
0.08418201

-4.21659853
0.87211038
0.01484303
0.23t4556r
-4.00937580
0.54657479

-o.26122787

sz.siæzgtt
0.80775922

x2

213

o.asiosso4

-0.88767170

Lesi¡sest

-r.02722635

2.(ß38925

-2.57034557

o.orsgæ¡o

3.2166¡9102

-0.28521Wg

t.24822102

-1.13008766

0.62951138

z.+g+lszel

o.58æ2367
-r.7r3w9x)

X3

Table A.8l: 14ù order Elliptic canonic parameters with complex sections and po,rt wo
RF.



CSYN, CANIAL, CLAD and CV/D

Appendix B

The computer programs that were used to generate the examples given in the thesis will
be discussed in the following. Note that all softwa¡e was written in the PASCAL computer

language for the Macintosh computer using the LightSpeed Pascal compiler. Since the total
length of the written code exceeds 20,000 lines, the software listing will not be supplied.

For each program, the required input files, the method of running the program, the

options available and the output files generated will be outlined. The four programs that

will be discussed are:
. CSYN - complex synthesis of lossless two-port networks using the algorithm

given in Chapter Itr based on the sample cha¡acterization.
. CANAL - complex analysis of the/, h, andg polynomials of the sections

generated by CSYN.
. CLAD - complex ladder simulation program based on the complex three-port

adaptor approach (element-by-element transforrnation to the complex

wave digitai domain).
. CWD - complex ladder simulation program based on the canonic cascade section

approach (dynamic two-port transforrnation to the complex wave di$tal
domain).

Note that for all progrÍìms, the files representing a particular design a¡e assumed to

occupy their own unique folder (directory). Also, by convention , allfiles within a

particular folder have the following fonn

O rder F i lteiTyp e I i IeN arne

Computer Software

where Order is the filter order, FilteiType is the filter type (either Butterworth (butt),

Chebyshev (cheb), or Elliptic (ell)), andFileNarne is a particular input or oulput file.
Notice ¡hat FileNarnr is separated from the remaining part of the complete filename by a
period.
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All of the various input and output files a¡e identified by FíleName, for example,

4 ell.CWDFreqResp

refers to a fourth order Elliptic filter frequency response generated by the CWD progam.
By double clicking on any frle within the folder when either of the programs begin running,
all of the relevant frles will automatically be loaded if they exist.

All frequency response files contain four columns, and they are: the normalized
frequency (from -0.5 to 0.5), the actual frequency (from -æ to +æ), a particular response of
the ladder filter (either infinite-precision, scaled, minimal characterization, quantized, etc.),
and f,inally the nominal response generated from the original/and g poiynomials. All
responses are given as an attenuation, that is

- 20.0 * logl0 (response + 1.0e-30)

The quantization process explicitly assumes that all filters are of ttre type lowpass,
however, other filter types can easily be implemented. The four programs will be

discussed in the following.

8.1 CSYN - Complex Synthesis of Lossless Two-port Networks

This program generates a real or complex lossless two-port network from the original

f, h andg polynomials. The synthesis algorithm outlined in Chapter III is implemented
using the sample characterization. All of the elementary first and second order sections
given in the tables in Chapter II are realizable sections. The user has the freedom of
specifying the å polynomial phase shift and the imaginary axis polynomial shift.

Input Files:
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Order FilteiType <No FileName>: the nominal polynomial file containing the
g, h, andf polynomials (in the order given) of the overall
network. The representation of each polynomial is given by

poly. order
poly. complex gain

poly. complex zeros

Order FilterType.dír: the synthesis directives file containing information

- needed in order to realize a lossless fwo.port nework. The file
contains the following:

1. Finite-zero ordering: if finite transmission zeros exist,
then the ordering gives the order of the sections realizing
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the transmission zeros as referenced to the order given in
the/polynomial. For example, if a tenth order Elliptic
filter is to be realized with 5 Brune sections. then the

ordering could be

12345
(note that the zeros of the/polynomial must be ordered

in complex conjugate pairs). However, if the filter is to
be realized using complex first-order sections, then the
following ordering can be used

12345678910
(note that now the zeros of the/polynomial do not have

to come in complex conjugate pairs). If no finite zeros

exist, then this line is not included.
The remainder of the file specifres the sections to be

used. A separate line is used for each section. Each line
consists of an ordered sequence of control codes
(separated by spaces) as given in the following:

The order of the sectioni this must be given for all
sections (either I or 2) and it must appear first
on a line.

Transmission zero at infiníry: specified by the

character 'I'. Any of the following codes may

come after this code.

Capacitor section: specifred by the character'C',

this chooses a dynamic section containing a

capacitor if a choice between sections is

appropriate. A number code follows the'C'
for reciprocal finite transmission zeros with
l=CCl and 2=CB 1 sections. The default is the

CCl section. The'L'code can not follow this

code.

Inductor secrton: specified by the character'L',
this chooses a dynamic section containing an

inductor if a choice between sections is

appropriate. A number code follows the'L'
for reciprocal finite transmission zeros with
l=CDl and 2=CA1 sections. The default is the

CDl section. The 'C'code can not follow this

code.

2.



Output Files:

Order FilteiType.sect: contains all information about all of the sections.

Order FilterType.cir: the definition of the synthesized nerwork used by the

CLAD ladder simulation program.

Order FilterType.nom: the definition of the nominal network used by the

CLAD ladder simulation program.

Order FílterType.annl: information about the sections used by the CANAL
analysis program

Order FilterType.CWD: the definition of the synthesized net"vork used by the

CWD ladder simulation progrÍur.
Order FilteiType.CanParm: contains a summary of the canonic parameters for

all of the secrions.

Order FílterTypelurnpParm: contains a summary of the lumped element
parameters for all of the sections.

Order FílteiType.SDomainPalys: contains a summary of the section analog

domain/, h, andg polynomials and, if they exist, the
reflection-free polynomials based on the method outlined in
Section 2.5 .

Order FilteiType.RF ltolys: contains a summary of the section analog domain

f, h, andg reflection-free polynomials based on the equations
given in the tables of Chapter tr for the first-order complex
sectrons.

z17

Reflection-free port: specified by the character
'R', and followed by the port to be made
reflection-free (1 or 2). This code can follow
any of the other codes.

8.2 CANAL - Complex Analog Domain Analysis

The CANAL program analyzes the canonic polynomials of the sections generated by
CSYN. The program recombines the polynomials of the sections in order to reconstruct
the original f, h, andg polynomials. This is achieved by muttiplying the transfer
matrices of all of the sections. This operation is performed using the summation form of
the polynomials, and thus for higher order systems the reconstructed polynomials will lose

accuacy. However, the polynomials give an indication of the validity of the design.



Input Files:

Order FilteiType <No FíleName>: the nominal polynomial file containing the
g, h, andf polynomials (in the order given) of the overall
network. The representation of each polynomial is given by

poly. order
poly. complex gain
poly. complex zeros

Order FilteiType.anal: the canonic polynomials of each section as derived by
the CSYN program.

Ouq',ut Files:

order Filteirype.anal_dafa: contains a sunmary of the canonic poþomials
derived.

8.3 CLAD - Complex Ladder Simulation using Complex 3-port Adaptors

The CLAD program designs and simulates the complex WD realization of the analog
network derived using CSYN based on the lumped elements composing the network. The
program also determines the quantized ne¡pork that meets a given set of frequency
specifications. Note that only reciprocal networks can be realized, however, they can be
non-canonic (for example, a real Elliptic filter without coupled coils).

A network can be scaled for either power lilaves or voltage waves, however, power
wave scaling is recommended. After the values of the real scaling transformers have been
determined, the user has the option of either absorbing the transformers into the associated
scattering matrices or leaving them external. If the scaling transformers are not absorbed,
they will be quantized to the nearest power of ¡wo. The user also has the option of
absorbing all external multipliers into the associated scanering matrices (shrink the
networÐ. At each stage, the user can generate the nominal frequency response if this is
desired. After the final nominal version of the Network is derived, the design can be
quantized using the frequency specifications and the quantization directives discussed
below. The frequency response of the quantized network is generated automatically if a
solution is found.

The non-linear optimization procedu¡e used to quantize the network allows the integer
denominators of the quantized sections to be different from section to section. All
denominators can also be equal, which is perhaps more appropriate for the implementation
on a digital signal processor (DSP).
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Input Fíles;

Order FilteiType.nom: the nominal polynomial file containing the g arrdf
polynomials (in the order given) of the overall network as well
as the number of points used to generate the frequency

response. The f,rst line of the file contains the number of
frequency points. The second line contains the representation

used by the polynomials, either'zeros' or 'coefficient'. In
either case, the representation of the polynomial is first given by

the order, and then the gain (for both cases). If the zero form is

used, the actual complex zeros are then given. If the coefficient
form is used, the complex coefficients are given from the

constånt term to the higher order term.

Order FilteiType.cín the lossless network lumped element description of the

network as derived by CSYN. The first line contains the

polynomial imaginary axis shift (usually zero). The second and

third lines contain the port one and port tlvo reference

impedances as given as complex numbers (usually unity),
respectively. The nenvork description starts on line four as

discussed below. Each comoonent starts on a nelv line unless

specified otherwise.

1. Connection: this gives the type of connection of the

element, either
'parallel'

'series'
'seriesþarallel' (series connection of elements in parallel)

'paralleVseries' (parallel connection of elements in series)

'transformer'
r*l

The '*' represents the end of the file. Directly following
the type of connection is the actual element (unless the

connection was a transformer, when the complex nrns
ratio would follow.

2. Element: this gives the type of element that is connected,

either,

'imag res' (imaginary resistor)

'inductor'

2t9
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'capacitor'
'inductor series imag res'

'inductor parallel imag res'
'capacitor series imag res'

' capacitor parallel imag res'

3. Value: this follows the element type. Either one or two
real numbers are specified and separated by a space. For
the fust three choices given above, one real number is
needed, while for the remaining choices, two real
numbers are given.

order FilterType.ffre: g¡ves the frequency specifications to be used for the
quantization process. More than one set of passband and
stopband specifications can be given in order to generate a set

of staircase specifications. The frequency range under

consideration ranges from -æ to +7r, thus the stopband for a
lowpass filter is separated. For this reason the stopband
specifications are given in terms of the positive frequencies and
the negative frequencies. The form of the file is given below.

1. Passband: the flrst line gives the number of passband

specifications that will be given (usually one). The next
line gives the starting freq, the ending frequency, and the
maximum attenuation in dB all separated by spaces.

2. Positive Stopband: the number of positive stopband

specifications is given (zero is allowed), followed on the
next line by the starting frequency and the minimum
attenuation that must be achieved benveen the starting

frequency and +æ.

3. Negative Stopband: rhe number of negative stopband

specifications is given (zero is allowed), followed on rhe

next line by the starting frequency and the minimum
attenuation that must be achieved between the starting

frequency and -æ.

order FilterType.qdtr: gsves the quantization directives to be used during the
non-linear oprimizarion of the design. The file conrains the
following,

all_den_equal : boolean

fix_passive_with_wordlength : boolean

number_pass: integer

number_stop_pos : integer
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numbr_stop_neg : integer

number_solutions : integer

maximum_bitjden.re maximum_bit_iden.im : integer

start_bit iden : integer

max_bits : integer

l. all_den_eEnl: if true, all integer denominators are equal.

2. fîx1tøssive_with_wordlength: if a block of the

quantized design is not passive, then if
f,rx_passive_with_wordlength is true the wordlength will
be increased in order to facilitate a passive design.

number_¡tass: the number of frequency points to check
in the passband.

runnber_stopJ)os; The number of frequency points to
check in the positive stopband.

number_stop_!eg: the number of frequency points to
check in the negative stopband.

runnber_solutions:

m aximwn _b it _i d e n. r e, maxi mwn _b i t _í d e n. i m : the
maximum number of bits that is allowed. Set

maximum_bit_iden.im to zero.

start bit iden; the number of bits to use to start the

3.

4.

f.

6.

7.

Output Files:

8.

quanúzation process.

9. max_bits: if all_den_equal is false, max_bits gives the

maximum difference in bits from the highest bit block to

the lowest bit block. If if all_den_equal is true this is

ignored.

Order FilteiTypeAdap: the nominal blocks that realize the network, including
complex 3-port adaptors and non-dynamic trvo-ports.

Order FilterType.ScAdap: the nominal scaled network blocks.

Order Fílterþpe.ShAdap: the nominal shrunk network blocks (all external

multipliers absorbed).

Order FilteiType.QuAdnp: the quantized network blocks.

O r der F ilterTyp e.Resp : the nominal attenuation response.

Order FilterType.ScResp: the nominal scaled attenuation response.

Order FíbeiType.ShResp: the nominal shrunk attenuation response.

O rder F í lteiTyp e.QuResp : the quantized attenuation response.



8.4 CWD - Complex Ladder Simulation Using the Cascade Section

The CWD program designs and simulates the complex WD realization of the analog

network derived using CSYN based on the canonic parameters. The program also

determines the quantized network that meets a given set of frequency specifrcations. Note

that reciprocal or non-reciprocal networks can be realized, however, they must be canonic.

The user has the option of generating the frequency response of the nominal design based

on the cascade section, the representation involving real adaptors and four unimodular
mulúpliers, the minimal characterization and the quantized characterization.

The net'work can be quantized using the non-linea¡ optimization technique implemented

which assumes that the integer denominator of the quantized sections a¡e all equal. The

frequency range is assumed to extend from 0.0 to 2æ (instead of -æ to +æ as will the CLAD
program). Thus, in this case the passband is separated into two frequency ranges, which

will be referred to as the positive passband (within 0.0 to æ) and the negative passband

(within 0.0 to æ). The stopband is not affected. Again, several sets of frequency

specifications can be given in order to form a set of sr¿írcase spe*iftcations.

During the simulation of the quantized filter, the user has the option of using either
floating-point signals or binary signals (in which case the number of bits used for the

signals must be specified). Note that for comparison purposes, floating-point signals are

usually preferred.

The object of the simulation is usually to frnd the impulse response. The simulation

will continue to generate output until the total energy in the states decreases past a constant

set by the user. The simulation can also continue past this point to the next integer power

of rwo if the user wishes (in order to generate the frequency response using the FFf).

Input Files;
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Ordcr FilteiType <nofile wtme>i the nominal poþomial file containing the

g, h, andfpolynomials (in the order given) of the overall
network. The representation of each polynomial is given by

poly. order
poly. complex gain

poly. complex zeros

Order FilteiType.CWD: contains the canonic parameters generated from the

CSYN program that describe the sections as well as the sections

used. The first and the second lines contain the l¿ polynomial
phase shift and the imaginary axis polynomial shift. The

remainder of the file contains the sections. The end of the frle is
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signified with the character'N'.
Order FilterType.FreqSpecs: contains the frequency specifrcations for the

quantized network. The file contains information on the
positive passband, the negative passband, and the stopband as

given in the following.
1. Positive Passband: the first line contains the number of

positive passband frequency specifications (zero is
allowed). The following lines conrain the starring
frequency, the ending frequency and the maximum
attenuation beween the frequencies.

2. Negative Passband,: the fi¡st line contains the number of
negative passband frequency specifications (zero is
allowed). The following lines contain the starting
frequency, the ending frequency and the maximum
attenuation betrveen the frequencies.

3. Stopband: the first line contains the number of stopband

frequency specifications. The following lines contain the

starting frequency, the ending frequency and the

minimum attenuation between the frequencies.

Order FilterType.QuantSpecs: contains the quantization directives to be used

during the non-linear optimization process. The file contains
the following,

PowerOfTwoV/ithEnergy : boolean

BinaryCoeff : boolean

LSBitsCoeff : integer

MSBitsCoeff : integer

BinarySignals: boolean

LSBitsSignals : integer
MSBitsSignals : integer

UnderFlowType (set to Truncation)
OverFlowType (set to Saturation)
FreqPointsPerRange : integer

MaxWordlængth : integer

MaxEnergy: extended

l. PoweroflwoWithEnergy: if true, the simulation will
continue past the MaxEnergy constant to the next integer
power of two.

2. BinaryCoeff: for quantization purposes, set this to true

3. LSBitsCoeff: the starting value of the number of least
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significant bits to use for the coefficients.
4. MSBitsCoeff: the stafüng value of the number of most

significant bits (in front of the decimal place) ro use for
the coefficients.

5. BinarySignals: if true, the signals will be binary.
6. ZSBírsSignals: if binary signals is true, this gives the

starting value of the number of least significant bits to
use for the signals.

I . MSBitsSignals: if binary signals is true, this gives the

surting value of the number of most significant bits (in
front of the decimal place) to use for the signals.

8. UnderFlowType: set to Truncation.

9. OverFlowType: set to Saturation.

10. FreqP ointsPerRange: the number of frequency points

to check for the frequency specifications for the

quantization process in each of the three frequency
ranges.

Il. MøcWordlength: the maximum number of bits that

can be used.

12. MaxEnergy: the energy required in the states of the

frlter in order to stop the simulation (around 1.0e-8 for
an accurate ou!put).

Outpur Files:

Order FilterType.CWDSect: the nominal sections that realize the network
based on the canonic cascade section.

Order FilterType.CWDReSecn the nominal sections that realize the network
based on the canonic cascade section composed of rwo real2-
port adaptors and four unimodular multipliers.

Order FilterType.CWDMí,nSecr: the nominal sections that realize the nenvork
based on the minimal characterization of the canonic cascade

section.

Order FilteiType.CWDQuantSections: the quantized sections that realize the

network.
Order FilterType.CWDTimelmpResp: the time domain nominal impulse

response of the filter.
Order FikerType.CWDTimeRespNorms: the L2-norrrs and the Loo-norms at

the significant signal nodes of the nominal impulse response.
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order FilterType.CWDResp: the nominal attenuation response based on the
transfer matrix multiplicarion.

order FilterType.cwDMirResp: the nominal attenuation response from the
minimal characterization based on the transfer matrix
multiplication.

O r de r F i It e iTyp e .CW D P ar tR e s p : the panial frequency ran ge nominal
attenuation response from the minimal cha¡acterization based on
the ransfer matrix muitiplication.

order Filteirype.CWDTimeRøsp: the nominal attenuation response from the
minimal characterization based on the FFT of the imoulse
response.

O r der F i It erTy p e.CW D P ar fT imeR e sp : the partial frequency ran ge nominal
attenuation response from the minimal characterization based on

the FFT of the impulse response.

O r der F i I t erTyp e .CW D Quant F r e qR e sp : the attenuation response from the
quantized network based on the FFT of the impulse response

from the quantized simulation.
Order FílteiType.CWDQwntNorms: the L2-norms and the Loo-norms at the

significant signal nodes of the quantized impulse response.

Order FilteiType.CWDQwntBitsUsed: a record of the bits used during the
quantization process, where the frequency specification were
not met and by how much.

Order FilterType.zlnvDomaínPolys: the canonic polynomials for each section

in the z-1 domain.
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