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Abstract

Fettweis first proposed that a complex reference network can be implemented using real
wave digital (WD) elements by requiring the property known as one-realness. A one-real
network simply has a real driving-point impedance when evaluated at unity. This thesis
developes a new theory for complex wave digital (WD) filters allowing the realization of
general complex reference networks without alteration to make them one-real. Thus the
networks do not require the property of one-realness and all quantities are allowed to be
complex.

A port reference impedance is now allowed to be complex, containing a constant
positive resistance and a constant reactance (imaginary resistor). The voltage wave incident
and reflected wave variables, A and B, are redefined as

A=V +Z1]

B=V-2"1
and the familiar concept of the WD mapping of analog networks is preserved. The
generalization reduces to the known theory of real WD filters if all quantities are real and,
furthermore, a stability theory exists. The resulting definition of power is the same as
suggested by Fettweis. The existence of complex port impedances is necessary and
sufficient for the computability of a complex WD network unless the network is composed
of one-real sections, when the port impedances can be real. Thus, a motivation for the
generalization is found in the additional degree of freedom in the choice of the imaginary
part of the port reference (that is, there is an additional parameter), which can be used
simultaneously to guarantee computability of the complex WD network and to simplify the
CWD elements.

Many useful complex dynamic and non-dynamic one-ports, as well as non-dynamic
two-ports that do not have a real WD equivalent can now be defined from the new
definitions of the signal variables. The analog series connected imaginary resistor when
viewed as a two-port has a complex WD equivalent as a simple pass-through connection.
In contrast, the analog parallel connected imaginary resistor when viewed as a two-port has
a WD equivalent of a pair of mutually inverse conjugate multipliers in the signal paths
which is a hybrid form of scaling. Thus the definition of the voltage waves has a bias
towards series connections. Similarly, the dual definition of complex current waves has a
bias towards parallel connections.

The new definitions of the incident and reflected wave variables lead to new definitions
for the complex n-port series and parallel adaptors which allow complex port references.



The complex series three-port adaptor with a reflection-free port has the same scattering
matrix as the real case. Thus, no extra computations are needed, that is, there is no penalty
for having free parameters in the port references. The complex three-port parallel adaptor is
more complicated than the series adaptor. Equivalences between the three-port adaptors
only exist when each adaptor contains a reflection-free port, in which case each adaptor can
be decomposed into combinations of real two-port adaptors and pairs of mutually inverse
conjugate multipliers. -

The complex reference networks are designed using a new generalization of the
synthesis algorithm, given in [16], to the complex domain. The algorithm is novel since it
does not require the use of zero-finding or polynomial manipulation routines associated
with the determination of intermediate polynomials, namely, it is based entirely on
polynomial evaluations. Complex networks are derived with general first-order complex
sections which are capable of independently realizing a transmission zero anywhere in the
complex plane. Itis found that a more judicious representation for a complex elementary
section, from the viewpoint of network synthesis, is a set of canonic parameters rather than
the set of lumped-element parameters. The canonic parameters completely characterize a
section and are given by the location of the transmission zero, the reflectance evaluated at
the transmission zero, and for reciprocal sections, the return group delay (or simply the
delay) evaluated at the transmission zero.

A complex WD ladder network is realized from a complex reference filter using one of
two methods. The first method maps a complex reciprocal reference network to the
equivalent CWD network on an element-by-element basis. This inherently requires the use
of complex three-port series and parallel adaptors. The second method maps a complex
elementary section as a dynamic two-port to the CWD equivalent. This method requires at
most two real normalized two-port adaptors and two unimodular multipliers for each
dynamic section, which is referred to as the canonic cascade section. From the examples
presented, the realization method using the cascade section appears less sensitive to binary
quantizations than the method using three-port adaptors.

-1V -
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Chapter 1

Introduction

The theory of complex networks has a rich history [35,40,43,45]. Until numerical
algorithms operating on a sampled signal (ie. digital filters) became popular, this theory
found little practical application. With the advent of the numerical computer, complex
networks have been realized by several authors [26-31, 63-66] using complex digital
filters. Applications include SSB-FDM modulation [65], transmultiplexer design [63-
64,66], non-symmetric bandpass filters [35,43] and complex modulation (complex
envelope representation) [75]. A more general application is the realization of a real
transfer function using complex networks [53-55,70,74]. The usefulness is enhanced by
special purpose digital signal processors (DSP) that are optimized for complex operations.

Many different design philosophies exist for the realization of a complex network with
each having inherently different characteristics. The designer would logically wish to use
the method of realization that contains the most attractive properties. Of the many classes,
the class of wave digital (WD) filters as originated by Fettweis [1] is the most promising
[18]. A properly designed WD filter inherits many of the beneficial properties of the analog
filter it is derived from, henceforth known as the reference filter. These include low
sensitivity to parametric deviations [6). Other attractive properties under non-linear (digital)
conditions include zero-input stability [3,6], forced-response stability [6,7], suppression of
limit cycles [3,6], and a continuous input-output relationship [7].

Fettweis first introduced complex WDF in [26] where he stated that it may be possible
to realize a complex reference network using real WD elements and unimodular multipliers
if the reference network contains a property known as one-realness. A one-real network is

composed of elements that have a real input impedance at ¥ =1 in the ¥ plane. The
necessity for the condition arises from using real port-reference impedances (discussed in
the next chapter). For a computable WDF, there cannot exist a delay-free path. For a one-
port, this translates into the condition that the reflectance p must be zero at ¥'= 1 [26].

The definition of the reflectance with real references is given by

_Z(y)-R
PEZW+R b

where Z () is the complex driving-point impedance of the one-port and R is the real port
reference. This gives the condition that



Z(Wly=1=R (1.2)

and thus the name "one-real".

Obviously, a general complex ladder network is not one-real since Z(w = 1) is usually
complex for each branch impedance, and thus it cannot be realized using real WD elements
without alteration to make it one-real. Any complex impedance function in the y domain
can be made externally one-real by introducing a constant phase change in the reflectance
function. After a one-real impedance function has been derived from a general impedance,
the problem then arises of how to extract one-real sections, or sections that have an
impedance of the form [26]

Z(VI)=R(1 +ja“’) (1.3)
v+jo

However, a one-real impedance function is not necessarily realizable as an interconnection
of one-real branch impedances in a ladder configuration. Indeed, a trivial example of a
doubly-terminated series inductor and imaginary resistor was made one-real, but sections
could not be extracted in the form of a doubly-terminated one-real LCX lumped-element
one-ports. This suggests that an externally one-real network does not imply internal one-
realness in the y domain, analogous to the way external passivity does not imply internal
passivity.

With real WD networks, a particular passive linear classical filter can always be realized
with either two-port or three-port adaptors [6]. However, it is not known if a complex
ladder WD filter in the ¥ domain can be realized using real three-port adaptors since no
examples of cascade synthesis exist, and no indication of any method of realization has
been proposed (excluding the case where a complex filter is decomposed into real filters
with real arithmetic operations throughout [27, 28]). This leads to the question as to
whether or not such a realization using the one-real theory is possible. It is not known if
non-reciprocal filter sections with transmission zeros anywhere on the ¥ plane can be
realized using one-realness.

A one-real complex ladder realization does exist if a real WD ladder network is
frequency shifted in the s domain instead of the y domain [26] (the relation between the
complex frequencies s and y is found in Section 4.1, equation (4.3)). It exists because
the corresponding form of the y domain frequency variable, resulting from the shifting in
the s domain, maps a real immittance into a one-real immittance as given by the form of
(1.3). The shifting in the s domain introduces a unimodular multiplier in series with each
delay and the port reference impedance remains real. However, the discussion given above
implies that approximation methods used to induce desirable properties in the ¥ domain
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(for example, a filter with linear phase in the z domain) that result in a complex ladder filter
cannot be realized using one-realness. Namely, any transformations on a ladder LC filter
in order to create a complex one-real filter must be performed after the real wave digital LC
filter has been realized.

Greater success has been found in the realization of one-real lattice WD filters
[27,28,56]. It has been found that the one-real property is not restrictive when realizing
complex lattice WD filters arising from real even-order classical filters [28]. This is
because the function being realized is a complex one-port reflectance, which corresponds to
a WD allpass function. The reflectance is made one-real by extracting a constant phase
change in the form of a unimodular multiplier. When a constant phase is removed from an
allpass function, another allpass function remains (which is now one-real). Thus a real
two-port adaptor, a unimodular multiplier and delay can be extracted as a building block
and the lattice is formed using a form of the Schur algorithm [32]. Another form of this
section is the so-called Cross adaptor [56] which requires only two independent real
quantizations in its implementation, however it is poorly scaled.

Non-WD complex lattices have also been developed [29-31]. All of the above lattice
realizations are essentially equivalent to within a scaling transformation on the ports of the
two-port building blocks; that is, simple scaling multipliers in the signal paths.

Another configuration for a network is the ladder realization, which realizes a
transmittance rather than a reflectance.- A transmittance has the input and output at different
ports, while a reflectance has the input and output at the same port, and therefore is a one-
port. Thus one-port synthesis realizes a reflectance. All the transmission zeros of a
network are realized directly with a transmittance, whereas a reflectance realizes all
transmission zeros of a network through cancellation (that is, in order to create a zero at the
output port, two signals must cancel exactly, which is usually difficult to achieve in a
finite-precision digital realization). This leads to higher stopband sensitivity for the
reflectance compared to the transmittance and thus to higher stopband sensitivity for a one-
port. Note that the property of low passband sensitivity is inherited from the analog
doubly-terminated network. From these observations, the lattice approach will not be
used, and the ladder realization will be implemented exclusively.

The use of real port impedances with common complex elements that are not one-real
have a WD equivalent that may be either non-computable or unnecessarily complicated.
'This is a reason for not using real port impedances for complex networks which are not
one-real. For example, consider either a series or parallel connection of an imaginary
resistor viewed as a two-port as shown in Figure 1.1.
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Figure 1.1: Constant complex two-ports: a) series-connected imaginary resistor
b) parallel-connected imaginary resistor.

The diagonal elements of the scattering matrix (described in the next chapter) describing
either the series-connected (1.4a) or the parallel-connected (1.4b) imaginary resistor

-Ri + Ry + jX 2R,
S =
Ri+Ry+ jX 2R, Ri—Ry+ jX
_ . ~RiRy + X{-Ry + Ry) 2jXR, J (42
RiRy + jX (Ry + Ry) 2jXR, ~RiR2 + jX(R, - R2) o

must be non-zero for real port references, and thus the ports cannot be made reflection-free.
This will normally lead to delay-free loops within a structure containing the above
elements. An analog one-port source with an imaginary resistor as shown in Figure 1.2

X B
_W\’—-To B e )

-+
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A

Figure 1.2: One-port source and imaginary resistor using real port references.

has the WD equivalent with real port impedances shown on the right in the above figure.
This flow diagram is clearly not the usual combination of a source and sink. Consider as a
last example a one-port inductor in series with an imaginary resistor as shown in Figure
1.3.
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Figure 1.3: One-port inductor and imaginary resistor using real port references.

The WD equivalent is clearly more complicated than the real case (X = 0) since it requires
three multiplications and two additions. Also, the interconnection of the above WD
equivalent with a three-port adaptor will create a delay-free loop.

Other cascade filter structures can be found in the literature, including the orthogonal
[29] and unitary filters [77]. These structures are based on signal flow diagrams that
possess the unitai'y property which is associated with beneficial scaling characteristics.
However, the structures are derived without the use of port impedances, and therefore they
do not explicitly inherit the properties of analog networks. Thus, the conceptually pleasing
characteristic that the synthesis in either the analog or the discrete domain (using WD
filters) is equivalent, is not inherited by the structures without port impedances. Since no
direct advantage has been identified for not transferring analog characteristics, and since
Fettweis has shown that the orthogonal (unitary) filters are equivalent to normalized WD
filters [18], the WD filters with the beneficial properties outlined earlier may be the
preferred choice for a general complex digital filter structure.

In this thesis, the author will rederive the theory of WD filters in order to give a truly
general theory of complex WD networks. The generalization to complex WD networks
should reduce to the known theory of real WD networks if all quantities are restricted to be
real. Clearly, the generalization is useless if either of the following cannot be guaranteed:
first all of the familiar WD elements must be realizable, and second, a simple stability
theory must exist and follow from the definition of power (similar to the real case).

In order to guarantee these two objectives, the definitions of the incident and reflected
(voltage) wave quantities are redefined to allow complex port reference impedances. This
new definition requires that all WD components must be rederived. It was found by the
author [53-54] that this generalization allowed the realization of complex lattice WD
networks using only the complex two-port adaptor and delays (no external multipliers), and
a simple stability theory exists which gives the beneficial properties of zero-input and
forced-response stability. The earlier work by the author [53] only supported a highly



restricted class of complex filters.

A motivation for the generalization is found in the additional degree of freedom in the
choice of the imaginary part of the port impedance, that is, there is an additional parameter.
The existence of the imaginary part of the port impedance (leading to the theory developed
in this thesis) is necessary and sufficient to guarantee that a complex WD network is
computable as shown by the following theorem.

- Theorem L1;

In general, a complex WD cascade network is computable if and only if the port
reference impedances are allowed to be complex; when the complex network is
one-real, the port impedances can be chosen to be real.

Proof:

In order to show necessity, consider the interconnection of two adjacent
complex WD dynamic or constant two-ports. At the interconnection, the reflectance
of either port has the following form:

AW - Zo (1.52)

P= Tz

Zy+Zo

where Zj is the real or complex port reference impedance with a positive real part,
and Z(y) is the input impedance of the appropriate port under consideration.
Although it may difficult to identify the reference input impedance from the WD
counterpart, the existence of Z(y) is sufficient for the proof.

A computable network possesses the property that the total delay within every
loop is a positive integer multiple of a basic delay [6,73] (the proof as given for the
real case is based on graph theory and thus also applies for complex discrete
networks). This implies that every loop must contain at least the term z-1 (a delay)
as a factor. At the interconnection of two ports a loop is bisected, and thus the
reflected signal from either the left port or the right port (or possibly both) must
contain positive delay. Thus either the reflectance of the right port or the reflectance
of the left port (or possibly both) must be zero regardless of the associated incident
signal at z = oo, that is, when y = 1. This is consistent with the need for reflection-
free ports within a WD structure. Thus, for the complex WD network to be
computable, it is clear from (1.5a) above and the observation that at least one
reflectance must be zero at y = 1, that

Zy=1)=Z, (1.5b)
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for one of the complex input impedances. If Z{y = 1) is complex, which is true in
general for complex networks, then at least one port impedance must be complex
within the WD network for the flowgraph to be computable. A special case of this
is an interconnection of one-real two-ports, where the evaluation of (1.5b) is a real
constant. In this case the port reference impedance can be chosen to be real. In
either case the port interconnection criterion was assumed to be satisfied.

The proof for the sufficiency of allowing complex port reference impedances
will follow through construction from the development given in Chapters IV and V.

The purpose of this thesis is to derive the many remaining complex WD elements in
order to realize complex ladder networks (as opposed to the complex lattice) and more
general reference networks that have not yet been investigated. To this end the following
will present the new definitions of all of the complex WD elements that are needed to realize
general complex networks.

Complex analog networks will be reviewed in Chapter II along with the definition of
the complex first-order and zeroth-order elementary sections. Equivalences between the
real Brune section and two complex reciprocal sections are given as well as several
equivalences between the complex sections.

The network synthesis algorithm given in [16] will be generalized to the complex
domain in Chapter III. The motivation for the development of the algorithm as well as
implementation considerations will be discussed.

Chapter IV introduces complex wave digital filters with the new definitions of the wave
variables. Many useful dynamic and non-dynamic one-port as well as constant two-port
equivalences are given. The new definitions for the series and parallel adaptors with
complex impedances is given as well as the definition of the two-port adaptor. Several
adaptor equivalences conclude the chapter.

Complex WD ladder filters are realized in Chapter V. First, the realization method
employing three-port adaptors is outlined and examples are given. Finally, a new complex
first-order section, known as the canonic cascade section, is derived and examples using
the section are presented.

This thesis concludes with Chapter VI which states several observations and
summarizes the thesis.



Chapter II

Complex Analog Networks

In order to justify the need for the generalization of wave digital filters to the complex
domain, general complex networks will be discussed in the following. Many examples of
complex analog networks exist [35,40,43,55], however, much of the pioneering work was
done by Belevitch [40]. All work in this area has treated a complex element as an abstract
lumped-element electrical device which is either physically unrealizable or very difficult to
realize as an analog device. The present work will continue this point of view.

There are several theoretical advantages gained by including complex elements in the
library of acceptable elements. Perhaps the greatest advantage is the existence of general
first-order complex building blocks that are capable of independently realizing transmission
zeros anywhere in the complex plane. Also, since the phase of the gain of the reflectance
function is a free parameter when realizing a transmittance, the phase can be made any
arbitrary value (this is in contrast to the one-real case given in the preceding Chapter when a
unique phase is chosen in order to induce the one-real property). This leads to an infinite
number of realizations of the same real voltage transfer function as opposed to the real case
where the number of realizations of the same transfer function is finite. This introduces an
extra degree of freedom that may be taken advantage of during the design process in order
to derive appealing characteristics of the resulting network. Another theoretical advantage
is found in the observation that many common elements can be generated from
combinations of complex elements.

The zero-shifting process used to realize finite transmission zeros can also be extended
to include the imaginary resistor as shown by Belevitch [40] and Humphreys [43].

2.1 New Complex Elements
The most common complex elements that are added to the library of acceptable elements
are the imaginary resistor [40,43], the complex transformer [40], and the complex gyrator.

A simple way of deriving a complex network from a real network is to shift the frequency
response with the following transformation on the complex frequency variable y,

v oV-jd @2.1)

which simply translates all of the poles and zeros in the imaginary axis direction by the



amount ¢,. This introduces an imaginary resistor in series with each inductor and in
parallel with each capacitor. Non-symmetric bandpass filters were introduced [35] using
this concept, since the lowpass prototype for the bandpass filter is first shifted using the
above transformation to give a non-symmetric lowpass response about the origin. Other
work in the area of non-symmetric bandpass filters can be found in [43], where actual
networks are derived.

The imaginary resistor, which is also known as a constant reactance, is perhaps the
most well-known complex element. The input impedance of an imaginary resistor is
constant for all frequencies and complex, namely Z = jX. It is an ideal, physically
unrealizable, reciprocal and lossless device [40].

The imaginary resistor, in different combinations, can replace common analog
elements. This means that our "library” of components used to build networks, in its
simplest form, contains only a resistor, an imaginary resistor and an inductor (or a
capacitor). For example, imaginary resistors in a T-connection can be used to replace a
dualizer with a real gyration resistance R when viewed as a one-port [40, p. 116]. A
gyrator with an inductor (capacitor) connected to port two can be used to replace a capacitor
(inductor). Other common analog elements can also be replaced with combinations with
the imaginary resistor. For example, an exact equivalence exists for a transformer with a
real turns ratio n [40, p. 118]. Although many elements are now not strictly required, no
advantage is ordinarily found by limiting our possible selections of components, thus all of
the common elements will be allowed.

The ideal complex transformer [40] is defined by the following voltage-current
equations relating ports 1 and 2,

Vi=n*V,
12 =-n 11 (2'2a9b)

It is ideal, lossless and non-reciprocal [40]. This contrasts with the real ideal transformer
which is a reciprocal device.

Finally, the complex gyrator can be defined by imposing the lossless property upon the
generalization of a real gyrator, giving the following

I =-0YV;,
12 = O'Y‘VI (2.3a,b)

where Y is a complex constant hereby known as the gyration admittance and o= %1. By
the convention set for the real gyrator in [40], 6= +1. Note that the complex gyrator as
defined above is a physically unrealizable, lossless and a non-reciprocal device when

Re{Y} # 0. In this thesis, no advantage will be gained from the added degree of freedom in
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the imaginary part of ¥ and thus real gyrators will be used exclusively.
2.2 The Positive Function

The immittance function of a real passive network is known as a positive-real function.
A similar result holds for complex networks, where the immittance of a complex passive
network is known as a positive function (PF) [40,43,45]. Clearly, the positive real
property is a special case of the PF property, where the function must also be real when the
complex frequency variable yis real. The basic property of a positive rational function
Z(y) is given by [45, p. 129]

Re{Z(y)} 20, Re{y}=20 (2.4)
which can also be expressed as

Z(W)+Z(y) 20, Re{y}=0 (2.5)

The asterisk operator denotes the complex conjugate. Other properties include:
- if there are any poles on the j-axis, they must be simple and the residues of all
poles on the j@-axis must be real and positive
- the denominator of Z{y) must be at least modified Hurwitz
- since the inverse of a PF must be a PF, the zeros of Z(y) must also be at least
modified Hurwitz
The following theorem dealing with a complex passive network will give the
correspondence between a PF (passive immittance) and its associated reflectance function
as referenced to a complex immittance, and is an extension of the proof given in [43].

Theorem 2.1:
An immittance function Z(y) is a PF if and only if the complex reflectance function
defined by
-2
= 2.6
AY) Z(y) + Z, (2.62)
satisfies the property
lo(W)|<1, Re{y}=20 (2.6b)

for any finite constant immittance Z, = R, + jX, of the same immittance type as Z(y)
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and R, > 0.
Proof:

To prove necessity, assume Z = R + jX is a PF. Thus Z is finite in the open RHP
(right half plane) and has a finite number of simple poles on the y = j¢ axis. Also
R 20 in the closed RHP. The magnitude of p(y) is given by
(R-RP+(X + X, P

_ 2.6¢
lmwF(R+&FHX+LY (2.60)

and sinceR 20and R, >0,
WF<s1 = |p(yls! (2.6d)

Thus | p(y)| < 1 for Re{ y} 20, and since p(y) is rational in polynomials in y, it is
a bounded function. Note that p (y) =1 at a pole of Z. To prove sufficiency,
assume | p(y)| < 1 for Re{ y} 2 0 (and thus analytic) in the closed RHP and solve

for Z(y) from (2.6a),
_Z'+Z,ply)
Ly)= Ty (2.6¢)
and let o(y) = & + jB. The real part of Z(y) is thus,
Re(2(y) = R M) .60
r 2 .
(1-af+B

and since | p(y)| < 1 and R, > 0, it is clear that Re{Z(y)} 2 0 in Re{y} 2 0 for
p(¥) = 1. Atapole y=jg of Z on the ¥ = j¢ axis (when p (y) = 1), the value of
Re{Z (y)) evaluated in the RHP at ¥ = ¢, + j¢ near but not at the pole (ie. @ = 0) is

approximately
Re(Z (¥)) = Rc{ A } ~Re| —A } ~— Ady (2.6g)
v=ito] \p+ilo-t) 42 +(9-gf
which is positive since the residue A is positive and real. Thus, Re{Z(y)} 20 in
Re{y}20.

2.3 Properties of A Complex Lossless Immittance

In the preceding section, it was found that a passive immittance function inust possess
the characteristics of a PF. Now consider the specialized class of complex lossless
networks where the following equality holds [40, p. 131]

Z(y)+ Zo(y)=0, Re{yj20 2.7

and thus a lossless function is a para-odd function. The lower asterisk represents the para-
conjugate (or the Hurwitz conjugate) defined by



Z{y) = Z"(-y") (2.8)

In the real case this reduces to the familiar definition Zs(y) = Z(-y). On the v = j¢ axis the
para-conjugate reduces to

z4djg) = z*(j9) (2.9)

which is simply the complex conjugate of the function. In particular, the following holds
on the ¥ =j¢ axis

zljp) + z*(jp) = 0 (2.10)

For the lossless case, Z(y) of order n can be represented as

Z(y) = jXo + Ay + .2 _@ 2.11)

where the A; are real and positive for all values of i. It is clear that Z(/¢) can be
represented as

Z(f¢)=JX0+J'Am¢-];§9-+ 3 ﬁ (2.12)
i=1 - @

and thus

z(i¢)=fX(¢>) (2.13)

where the real function X (d)) is given by

i (2.14)

x(0)=Xo+A.0-40 4
¢ i=1¢-

The derivative of the function X (¢) is positive and real for all frequencies ¢ [71, p. 495]
(note that the proof in [71] is given for a PRF, however, it is also valid for a PF)

4 x{¢)>0 (2.15)
¢



This can be restated to say that at a real part zero of the immittance on the = j¢ axis, the
derivative of the immittance is strictly positive

d
L2(1>0 (2.16)

Hereafter in this thesis, all relevant functions will be assumed to be lossless unless stated
otherwise.

2.4 Canonic Polynomial Representation of A Complex Lossless Two-Port

In the earlier analysis, all quantities were given using voltage-current signals. An
alternative representation is given by the so called scattering parameters. This
representation will be used exclusively for the remainder of the thesis and in particular will
be used to represent lossless two-ports.

The voltage-current signal variables V and ] are replaced by the voltage-wave
variables A and B as defined by the following transformation as referenced to an

impedance of 1 €,

A(y)=V(W+I(y
B(y)=V(w-1(y) (2.17)

where A is the incident (input) wave variable and B is the reflected (output) wave
variable. This is a specific case of the general transformation as reference to a constant
impedance Z with real part R as given by

NPRAULAI

B(W)=Y-(—W);§M (2.18)

Using the above transformation, a stable complex lossless two-port can be represented
by the signal variables A; and B;, i=1,2 in the following matrix form

SR 1 A g @

where the scattering matrix as defined by



14

S -_%{ ]’ﬁ 27” (2.20)

is unitary. The polynomials f, A, and g are known as the canonic polynomials and
satisfy

g8x=ffx + hhx (2.21)

which is the analytic continuation of the Feldtkeller equation. The polynomial g has all of
its zeros strictly in the left-half plane (that is, it is Hurwitz) since the network is stable by

assumption. The complex constant & is unimodular and if the network is reciprocal, it is
given by

=L 2.22
c 7 (2.22)

Another form often used is the transfer matrix defined by

AR
PR R [ @2y
that is

_1 og» h |

T“f[ch* 2 | 2.29)

The f, h and g polynomials can be scaled by a complex constant K giving the new
canonic polynomials

f—Kf
h —-Kh
g oKg (2.25a,b,c)

which changes the o value to the unimodular quantity

0'—-9%% (2.26)

Notice that if K is real then the o value will not change with the scaling of the
polynomials.
The scattering matrix can be represented in terms of the open-circuit impedance matrix



parameters
711 212
Z ~_—[ } .
21 222 (227
as given by
S- 1 { z11-222-1 + A, 2212 }
N +zpp+ 1+ 4, 2291 -Z11 +22- 1 + 4,
Az = 211222 - 212221 (2.28a,b)

Similar, the scattering matrix given in terms of the short-circuit admittance matrix

_[ Y11 Y12
_[ Y21 y22 ] (2.29)
is given by
S - 1 {‘}’11 +yn+1l-4y -2y12
yi1+yaz+ 1 +4y -2y21 Yin-yn+1-4y
Ay =Y11y22 - Y12Y21 (2.30a,b)

A complex two-port can be defined using lumped element values as parameters.
However, from the point of view of two-port synthesis using reciprocal elementary
sections, a more judicious choice for the parameters of the section are the return group
delay and the reflectance, both evaluated at the transmission zero of the section, and the
location of the transmission zero. Note that for non-reciprocal sections the return group
delay will not be needed.

The reflectance of a lossless complex two-port evaluated at the transmission zero ¥y is
given by

K
=AY 2.3
p Wly=w

Since the reflectance is evaluated at a transmission zero where ff |y = y, = 0, the analytic
continuation of the Feldtkeller equation (2.21) reduces to

hhely = o = 88+ ly= e (2.32)
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which gives
h =8

# [w= i (2.33)

V=¥

For a transmission zero (Y = j@,) on the imaginary axis, the reflectance is unimodular,
since (2.33) above is in the form of x = 1/x*. Using this fact, the reflectance evaluated at
Yo = j¢, can be expressed as

p=§-=e1'9, -T<B<Tn (2.34)

The magnitude of the reflectance evaluated at a transmission zero not located on the
imaginary axis is bounded by

as the reflectance represents a passive network, and is thus analytic in the closed right-half
plane.

(wo)| <1, Refwo)>0

ool oo

("’O)l > 1, Re{wp) <0 (2.35a,b)

The return group delay evaluated at the transmission zero j@,, hereafter called the delay
D, is defined in a similar manner to the forward group delay and is defined by [58]

D=-Ev

where the operator 'Ev' refers to the para-even function given by

Ev {A(y)} = %(P( ¥) + P(v) (2.37)

Note that the forward group delay is defined by replacing A{y) by f{y) in (2.36) above.
Consider the reflectance expressed in polar form

by) = | By)| e () (2.38)

where the phase of the reflectance is given by the real function 6 (). Substitute the above
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into the definition of the delay in order to derive

D=-Ev {dd—w 1n(’§(w)| efe(w))}i =—Ev {adv—lzn(‘g(w)') + di(/e(w))}! (2.39)

W=j¢0 W=j¢o

However, when yis restricted to the y = j¢ axis, the above becomes

_jilnﬂ §(¢)|)+di¢(6(¢))}]

D =-Re

p=1¢,

D=-4dg (¢)i (2.40a,b)
49 o=

. and thus the return group delay evaluated on the imaginary axis is proportional to the

derivative of the phase of the reflectance. Note that the imaginary part of (2.40a) is zero at

a transmission zero. The expression for the delay given above (2.36) can also be

represented as
____{1___g'_bl+(_g'_i)) 4

However, the above evaluated at a transmission zero, when ffx = 0, yields

R

as can be shown by the differentiation of the analytic continuation of the Feldtkeller
equation (2.21). Thus, the expression for the delay can be simplified to

D= &4 (2.43)
& h v=jgo

where g' refers to the differentiation of g by . The following Theorem shows that D

evaluated at a transmission zero as given above is real and positive for a complex lossless

and reciprocal two-port.

Theorem 2.2:
The return group delay D given by (2.43) is both real and strictly positive when
evaluated at a transmission zero, and can be expressed as

(2.44a)
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Proof:

Consider the delay function (2.44a) evaluated at a transmission zero. From (2.41-
42) above, the delay is real. To show that it is positive, we first show that the sign
of the delay is equal to the sign of the derivative of the immittance at a real part zero.
To this end, consider the definition of the reflectance referenced to a constant
positive immittance of the same type as Z () as given by

b-ZW=20 7 gy X Ro>0 (2.44b)

g A+

After the differentiation of the left-most equation of the above with respect to y and
some rearrangement, the following is derived:

g _h'. 2 Re{Zo) az (2.44¢)
8 b zp-22-2(z0-25) ¥

However, at a real part zero of the immittance Z = jX (which is always true for a
lossless function), the above becomes

A\l

D=

B 2 Re{Zo) dz ( 2.44d)
h|Zol2 + X2+ 2 Im{Zo}x 4V

0e|°°

The denominator can be expressed as
|Zo[? + X% + 2 Im{Zp)X = RZ + (X + Xof (2.44¢)

and thus is always positive. Furthermore, Re{Zy} = Ry > 0 by assumption, and
thus the sign of the delay is equal to the sign of the derivative of the immittance. At
a real part zero, the derivative of the immittance is real and positive as mentioned in
Section 2.3, and thus the delay is real and positive.

2.5 Reflection-Free Port of A Complex Lossless Two-Port

In many applications it is useful to have the freedom of inducing the reflection-free
property at one of the ports of a complex lossless two-port. A port is reflection-free if the

reflected wave for the port is independent of the corresponding incident wave when

evaluated at y = 1 (that is, the corresponding diagonal element of the scattering matrix is
zero at ¥ = 1). Inducing the reflection-free property requires the absorption of a constant
two-port into the original dynamic section, thereby changing the canonic polynomials so
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that either 4 or i has a zero at = 1, for port 1 or port 2, respectively. An example of
this process is shown in the following figure, where port 2 is made reflection-free.

o—s~— Complex —#»—0—— Complex p—#—0
Lossless Constant
Dynamic Two-Port
O—=a— Two-Port N ,B
he(y=1)=0 h(y=1)=0

Figure 2.1: Reflection-free two-port.

There is a great deal of freedom in choosing the canonic polynomials of the constant
section. Two free real parameters are required, and thus a possible choice for the

polynomials are given below as a function of a complex scalar constant 3 ,

b=
g=——l—

V1-p88

o=1 (2.45a,b,¢,d)

Note that f = 1, which removes the third degree of freedom commonly found in a complex
constant section (see Section 2.6.3). There is a total of three distinct choices for the scalar
polynomials since the value of unity can be assigned to one of the other polynomials,
namely h or g. However, no advantage is found with a different definition for the
constant section than the one given above. The analog section corresponding to the above

when f3 is complex is given in the following figure,
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Figure 2.2: Complex constant two-port.

where the values of the imaginary resistors are given by

Im{ B

Xy = '
1-V1-88" +Relp)

5. - mip)

Vi-p8"

X; = Im([i} (2.462,5.c)
1-V1-BB" -Re(B)

When f is real, the above polynomials (2.45) describe a real transformer with a turns ratio
of

n= 1-B (2.47)
1+

The development for inducing the reflection-free property for port two will be given in
the following. A similar argument can be given for port one, however, this will not be
required in this thesis and thus will not be presented.

Consider a general complex, dynamic two-port with a transfer matrix

1 Og* h
T-f[ Ohe g } (2.48) -

The section can be made reflection-free for the port two by inserting a constant section with
polynomials as given in (2.45) on the right, as shown in Figure 2.2, giving the following



overall transfer matrix for the new section,

ogx-ph k- [3 og« } (2.49)

1/1 ﬁﬂ f{ oh«-PBg g- ﬁcrh*

From the scattering matrix (2.20), it is clear that inducing port two reflection-free requires
hx|y=1=0. From the general form of the transfer matrix of the reflection-free two-port

(2.49), the relation A |y - | = O clearly implies

__O'h*
h= 4

vt (2.50)

and since g is hurwitz by assumption, | 8| < 1. The new reflection-free polynomials are

given by
fRE=Ff

L (1-B"og)

L_(g- p"ch)

OpRr =0 (2.51a,b,c,d)
Notice that both the f polynomial and the ¢ value for the section do not change.
2.6 Complex Elementary Sections

As will be shown in Chapter III, a complex lossless two-port network of any order can
be composed exclusively of complex first-order and zeroth-order sections. The following
will present all of the complex sections needed for the synthesis of a real or complex
network of arbitrary finite order. First, the complex reciprocal first-order sections realizing
a transmission zero at infinity or at the origin will be given. Second, the complex
reciprocal first-order sections realizing a finite imaginary axis zero will be presented.
Third, the complex non-reciprocal first-order sections realizing a transmission zero
anywhere in the finite y plane will be given, where the real axis is a special case. Finally,
the complex zeroth-order sections, otherwise known as the complex constant sections, will
be presented. The elementary sections are given in table form, with each table containing a
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Parameters section, a V-I domain Matrix description, and the Canonic Polynomials for
the section. Note that if the appropriate imaginary resistors are assigned values of either
zero or infinity, all of the complex sections reduce to real sections.

The Parameters section contains the analog domain symbol for the section showing the
actual lumped-elements required for the definition of the section and the defining equations.
For the reciprocal first-order sections, the reflectance and the delay evaluated at the
transmission zero are given in terms of the section element values, and the element values
are given in terms of the delay, the reflectance, and, where appropriate, the value of the
transmission zero. The defining equations given in the two domains, that is, the V-I and
the wave domain, demonstrates that each first-order section can be adequately represented
in either domain with a canonic number of parameters (namely three parameters for
reciprocal sections and four parameters for non-reciprocal sections). For non-reciprocal
sections the delay is not needed and thus will not be supplied.

The V-I domain Matrix description gives either the open-circuit impedance matrix, the
short-circuit admittance matrix, or the chain matrix, with the order showing the preference
for the presentation.

The Canonic Polynomials section gives the defining polynomials both in terms of the
V-1 lumped element values, and also the reflectance, the transmission zero if appropriate,
and for reciprocal sections the delay. The 3 value defined from (2.50) and the resulting
canonic polynomials defined by (2.51) are given for port two reflection-free.

2.6.1 Complex First-Order Reciprocal Sections

In the following, the complex first-order reciprocal sections will be presented. The
reflectance evaluated at the transmission zero for a section is unimodular.

2.6.1.1 Sections that Realize a Transmission Zero at Infinity

The following two tables define the CA1_oo and the CB1_co sections which realize a
transmission zero at infinity.



CAl_e Section: Transmission zero at infinity

—cosB+1
L L d
| o——— TN ——o0  x;-lcost
Tg sin 6
& +j
2| X 4X1 ply=o = 11-11' j6
2
dly=od = l_>0
© © (x2+1)L
(X rLyXn o x? ]
£ , Ly Ly
= = .
N X2 (X1 -LyXy
. Ly Ly |
Original Port 2 Reflection-free
) = =_.ej9
?é = i)2 6 g d+1
8 h:;(){1 +J; Ll//=ejdl// frRe=1
z X1 \ _(y+1)e®
= 2 R ld+2d
% 2 x2 d gRE = v+d +1
Y{d+2)
Q =1 _ +2)d
orp=1

Table 2.1: The CA1_oo section that realizes a transmission zero at infinity.
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CB1_e Section: Transmission zero at infinity
X, X C= 1- ZOS 6
5 o 0 X1 = 1+cosB
2 sin 6
< 1 X1 +j .
g ¢ ply=2 =—X-1‘j?=€’6
dly=of =—2—>0
o= ° (x2+1)c
JCX1w+1 1
v 1
£ , Cy Cy
E - 1 —jiCXjy+1
Cy Cy
Original Port 2 Reflection-free
& —-ef
E f=1 B d+1
g eify Re=1
= =1 12 = :
% h—z(Xl +j)Cy= 4 e _(W+1)ele
K =\r -
8 g=—1(X12+1)Cu/+1=l/+1 d+2)d
g 2 d w+d +1
g o=1 8RF = ==
&) V(d +2)d
Orr=1

Table 2.2: The CB1_co section that realizes a transmission zero at infinity.

2.6.1.2 Sections that Realize a Transmission Zero at the Origin

The following two tables define the CC1_0 and the CD1_0 sections which realize a

transmission zero at the origin.



CC1_0 Section: Transmission zero at the origin

C=—ud
C cosO+1
E O K -O X1=1+0059
g ne
g : : =0) =21 _ e
2CX?
d(y=0="221 50
o o X2+1
£ 7| (CXiy )X CXity
z CxiPy  (CXiy—j)Xi
Original Port 2 Reflection-free
% ==& j
T_Eg f=v P d+1
S|, LX) o o=y
% _2 CXIZ B d hRF =(—-——W+1)eje
S X;%+1 +21d
g g=y+1 : 3 =‘l/+% (d+1)y+1
g CXy 8RF =~ TF=——= 5
8 Yd +2vd
o=-1 _
OrRp =—1

Table 2.3: The CC1_0 section that realizes a transmission zero at the origin.
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CD1_0 Section: Transmission zero at the origin
. _ L=—d
Xq JX] 1—cos @
4 o —O X = l+cos @
g sin 6
Xi1+j .
= ==t _J —pj6
3 L p(y=0) X, ¢
dy=0=—2L_>0
o O X241
.x 3
g Z= jX1+Ly Ly
= Ly  —jXi+Ly
N
Original Port 2 Reflection-free
7] = -eje
.é f=vy p d+1
) , , Re=vy
S CST) L. (y+1)ei®
Qo 2L d ARE = ———
e X2 +1 +21d
gl g=y+ito=ysl (d+D)y+1
8 1 SR =TT 2V
g=- Orr =-1

Table 2.4: The CD1_0 section that realizes a transmission zero at the origin.
2.6.1.3 Sections that Realize a Transmission Zero On the Finite j¢ Axis
The following four tables define the CA1_j@, CB1_j¢, CC1_j¢, and the CD1_j¢

sections which realize a finite transmission zero anywhere on the imaginary axis, except at
the origin or at infinity.



CA1_j¢ Section: Transmission zero at j

L [ =cosf+1 " _-X
~ 00 dgn’ L
E © O Xl =-1_ﬁ9_si_9 X2 =_.L¢X)
<1é ] sin 8
5 JX % )¢ (¢0) X1+j_
= L ey
. LX:2
djog =2—LX1° 50
° © (%:2+1)x2
[X2X1 +j(X2 - X)Ly} X1 (X2 —jLYX;2
E LXoy LXoy
S| 4=
N (X2 -jLyX1?  [XoX1—j(X2+X)LyiX,
L LXoy LXoy |
Original Port 2 Reflection-free
2 .
f=w+22 2y g X=dgy"+1+jdgp
2 ; L 2 i ﬁ=€;j9
| o1 &)Xy - jelty X
g x ddo fre = Y= jgo
Sl llx2+)x+2xy jxp | o o FO0(W+ VX e
21 8= +== RF = -
E| 2 X2 L Vxx*-1Vx*
g (dw-)v . _—joalX [(jddo+1+d) y + X7
S -
= —jto gRF= = =
deo xx* - 1¥x*
o=1 ORE = 1

Table 2.5: The CAl_j¢ section that realizes a finite non-zero transmission zero.



CB1_j¢ Section: Transmission zero at j¢,

1-cos 8
. . C=-227 =1
JX] 'JX] d¢02 % CXp
5| © O x -ltcos®  Xp=—L-
g g - sin Céo
g T ; =M= 6
e . P(J¢0) X~/ e
% CXo2
0 i o dlja) =2-822" 59
X2 +1
A% +X)Cv+1 jCXow+1
= JCXay+1  [X2-X))Cy+1
N Cw Cy
Original Port 2 Reflection-free
: 2 .
|ty v X=ddu’ 1 +jdo
% 2 ; p=£7°
(X )y —jelby X
3 I e frE = Y- jfo
o . . _ —i j6
% =1(2X2 "'./XIZ_J)V’_ J hRg = J¢O(W+1NX€
gl 272 X5 CX, Vxx* - 1¥x*
3| law-dw gup = 20X liderr1 4y + X1
dao x*-1Vx*
O'=1 O'RF= 1

Table 2.6: The CB1_j¢ section that realizes a finite non-zero transmission zero.
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CC1_j¢ Section: Transmission zero at j@,

C C= d -1
r——i{—-| cos 6+ 1 CXa
5 o O xy=lt*cos® Xy =—1
o 1 | sin 6 Céo
s . ) , . X+
& X] % 4X] pligo i_j = e/
. CX;2
dljog =2-C21° 50
o O X12 +1
y [j (X2 - X1) + CXa X1 Y1 X JUCXay + DXy
Bl Zz._ X2 | X2
R JUCX W+ X2 [—i(X2 +X1) +CXpX1Y1X)
X2 Xy
Original Port 2 Reflection-free

S X=d+1+jd¢o
2 f=v cx, ¥ j%o gl
g =1X12“1+ J _ _ef® X'
g 2 cx;2 CX1 d Re=W~jdo
5 1
_Qc:g g=\l/+1X12+1— J hRF___(w+1)\[X_e19
5 2 cx2 X VXX* - 1%
3 1_; , 2 . :

=+l —jp gRF_(Xw+d¢o +1-jda)Vx

()':—1 ~ XX*— ].VX
ORF = -1

Table 2.7: The CC1_j¢ section that realizes a finite non-zero transmission zero.
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CD1_j¢ Section: Transmission zero at j@,

. ) — a -X
X X L=—=2q _ ;¢
1 it 1—-cos @ L
E 0 , O x; =l+tcos 6 Xp=—Lgy
> I sin 6
g X1 +j
3 it =217 o6
E ) pligd == =e
JA2
I o dlig)=2—L >0
° X2 +1
£ [ i(X2+X)+Ly X2 +Ly }
E JX2+Ly  j(X2-X1)+Ly
Original Port 2 Reflection-free
. X=d+1+jdey
X ,
2| fewlE=y-in o=eh
g h_1X12 ___1 +El —.QLG f —X* j
> 2 L L d RF=V~/%0
< ; (w+1)Vx*ei6
o g=w+1X12+1 L% hpp =t 1S €
g 2 L L NXX*-1VX
< .
S =w+711 — jto . (Xy/+d¢02+1-jd¢o)\/?
RF=
G‘_—__l v XX*—- 1{7
ORp = -1

Table 2.8: The CD1_j¢ section that realizes a finite non-zero transmission zero.
2.6.2 Complex First-Order Non-Reciprocal Sections

In the following, the complex first-order non-reciprocal sections will be presented. The
reflectance evaluated at the transmission zero for a section is not unimodular. A restriction

on the location of the real part of the transmission zero (—¢,) implied by passivity is given by

n>1 e (—¢,)<O

n<l (—¢,) >0
where 77 is the magnitude of the reflectance evaluated at the transmission zero.

(2.52)
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2.6.2.1 Sections that Realize a Transmission Zero Anywhere in ¥ Plane

The following two tables define the CE1 and CF1 sections which realize a finite
transmission zero anywhere in the y plane.

CE1 Section: Transmission zero at -@r-j &
JXq JX] G= —772+1 5 —XlzG
2ncos 0+ % +1 —XL
=__2.
L X1=12ncose+n2+1 #=7
7Nsin 6
g 7% %, (M= 2neos 6+ 72+ s
£ s $rnPsin? 6
= G
- —— L=1(n2—1X2ncose+n2+1)
D C i
N (=G2+1x2-142jX .
P('¢r']¢x)=( )21 3 2L < o
(G+1)4Xy°+1
>
= 71 j(X2 +X1) +Ly jX2 +X12G +Ly
E X12G? + 1] jXo - X12G +Ly j(X»-X1) +Ly
Original Port 2 Reflection-free
X12G  jXo . _ e~%¢m
fey-=Z + 2yt b4y [ B=—2— :
LT ~igi+ =1 +(ji+ ¢+ 12
3 h=;(-G ”2"1 AL e
6
§ h_2¢rnej9 hrp =2 (V’+1)e’ ¢"T’ -
B - ievod-igront)n2V -pp"+1
gl _o(erex?et x|, Migredsienert)n?-1ly
S|8=V+ T + 2 ERF= _ . " ’\/———*——
3 (n2+1) 6, ligi+ or+{<jgi+ o+ Y2 - 1]V -pB" 41
=Y+ ] 2., .2 2.2
Voo A== 0070 6747 01407+ 2
G=—1 O’RF=-1

Table 2.9: The CE1 section that realizes a transmission zero anywhere on the y plane.



CF1 Section; Transmission zero at -¢»-Jj¢;

2
-n*+1 _
C G =2 > ¢r _:CQ
ncos 6+ n<+1
2ncos B+ 12 +1 ¢ ==L
: : . -1
X % JX] & 7sin 8 X2
8 2
% X2=(2ncose+n +1)¢,
= G -2+
A -1
— C =
) C (217c0s 6+ 12 +1) ¢y
(_a2 2_ 1194
ol gpjo) R UK 12Xy
(G+1)2X12 +1
2 (X2 -X) +CXoX1yiX1  (GX2+CXay—j)X:?
g -1 X2 X2
N G2+l (-GXo+CXoy-j)Xi%  [j(X2+X1) + CXo X1 YiX;
X2 X2
Original Port 2 Reflection-free
. . —
fry-G-Lo=ytttjt | p=-2— bl
B | ~jti+ o1 +{jgi + g+ U2
| e e [ Sy Pt
) 1 -
g @nejecxlz . e = CADLAL
N h=2 RF = . . -
£ R Ligrrod it t) n2-1]V - 741
L . . ,
| —— (G2+x2+1 ore Mgt =jorrort) n>1 v
2 %
I lez R B R VA A
n“+ye . 2 2 2 2
Sy A=t 07+0 6176007 +0)
o=-1 ORF = -1

Table 2.10: The CF1 section that realizes a transmission zero anywhere on the y plane.




2.6.2.2 Sections that Realize a Transmission Zero on the Real Axis

The following two tables define the CG1 and CH1 sections which realize a finite
transmission zero anywhere on the finite real axis, except at the origin.

CG1 Section: Transmission zero at -¢,
Xy 7] G- —-n%+1
2ncos 8+n2 +1
2
. X1=12ncose+n +1
- 7Msin 6
‘é L_1(772—1X277°05 6+n2+1)
g T4 Y
i G ¢r(773m Q
—Gx?
e ¢r= L1
—-G?+1)X12 - 142/X .
D ( plo) LCHXP L2y
(G+1)*X1¢ +1
£ g1 jXi+Ly  GX;2+Ly
R G2X2+1| ~GX\2+Ly —jX; +Ly
Original Port 2 Reflection-free
X2 -j6
f:W_G_LIl_=W+¢r ___( > ¢S‘ne" -
» n“+1)¢+n--1
E h=1(—G2+1)X12—1+2jX1
S 2 ‘ L fRE=V+ ¢
oy Tl i hee =2 (¥ +1)¢rne/®
o 2 RF = -
e i V-pg"+1[(n?2 + 1) g+ 721
5| _, .G +1x2+1
| &V ¢ oxp mLP=) 42 +{(n21) g v
2 =
=y,+(_u1)_¢r V=8 + 1 [(n>+1) ¢ +n*-1
n¢-1
o=-1 . OrF = -1

Table 2.11: The CG1 section that realizes a transmission zero on the finite real axis.




CHI1 Section: Transmission zero at -¢y

2
I Ge— M %1
IC\ 2ncos 8+12 +1
2
X X X1=12ncose+n +1
o 1 1 2 7sin @
3
o 2 _
g C= -1
= G (2n1c0s 6+ 12 + 1) ¢,
e e (Dr:ﬁ
a2 2_1uni
ol-0) (G2 +1)x2 - 142 el
(G+1)2X12 +1
»
B 1 (CX1y+))X1 (G +CyX,?
= G2x2 + 1| (-G + CYXICX1y—j) X1
Original Port 2 Reflection-free
f=y-Z=y+¢ ne-i9
¢ p=-2— % 2
2 h=(—G2+1)X12——1+2jX1 (72 +1)gr+n2-1
g 20x,° for = ¥+ 6
= elb .
§ h=2?277_1 hRrp =2 (y+ 1) dme’?
2 (Gz+l)X 241 V -8B +1[(772+1)¢r+772—1}
gl g=y+l :
S 2 cxy? ogp = 71 9 7241] +{(n2+1) g 1] w
2 - >
Ln ;1) ig V88" +1[(n2+1) ¢, +n7-1]
ne-1
o=-1 ORF = -1

Table 2.12: The CH1 section that realizes a transmission zero on the finite real axis.




2.6.3 Complex Constant Sections

A constant section, also known as a zeroth-order section, is usually used to either
induce the reflection-free property at a port, or as the last section in a realization. The most
general constant section contains three real parameters. This is evident from the inspection
of the canonic polynomials representing the section. They appear to be represented by four
real parameters since two out of six degrees of freedom are removed from the polynomials
(they can be scaled by the value of either polynomial setting one polynomial to unity).
However, from the Feldtkeller equation (2.21), one parameter is dependent upon the others
giving a total of three real parameters. The general zeroth-order sections are given in
Tables 2.13 and 2.14 as a 7 and T connection of imaginary resistors.

Note that under certain conditions the 7 or T connection can be replaced with a section
containing two imaginary resistors and a real ideal transformer. If X, # — X3, thenthe T
connection is equivalent to the following:

15\(1
n:l
O O
o, o]

Figure 2.3: Equivalent of the T connection of imaginary resistors with X, # — X3.

where the values are given by

Xs
X2 + X3
X1+ nX3

5= ’% (2.53)

n
Xy

y Il

bt

If X1 # — X5, then the T connection is also equivalent to the following Figure:



n:l L o
17?1 § H g
o o
Figure 2.4: Equivalent of the T connection of imaginary resistors with X; # — X».

where the values are given by

5(\2 = X3 + ‘Xn—l- (2.54)
Note thatif X} = — X, = X3, the T connection is equivalent to a complex gyrator as
defined by (2.3) with an imaginary gyration admittance.

CO_rn Section: Constant Section
X5
o o o %, Imlg)+mm()
& Re{g} —-Re{h} -1
I -
__Im{g) +Im{A}
o o Re{g} +Re{h} ~1
-x . .
B 7 = 1 ] HX3+X9)X1  jX3X) }
= X3+X2 +X) jX3X) J(X2 +X1) X3
N
3 _1=X3X2 + X5 X3 _1[ X3+X +X1J
% s xx, PR Ix
A _1X3X0 +X5X) 1 [ —{X3+X> +X1}}
'é g FME7 e XX, +1+21 X7+ e
S =1
O o=

Table 2.13: CO_n constant section.
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CO_T Section: Constant Section
) X /X x, i[Relg +Re(A - 1
5| © o Im(g) +Im{A)
.83 .
= J
g : X2=
E X5 Im{g} +Im(A)
X3 _Jj[Re{g) -Re{h} 1]

o o Im{g) +Im{Aj
.x . .
g 7| iXa+X)  jXa
= X2 j(X3+X))
N
& f=1
g L1 Xat Xy (XX +XsX) + XXy + 1]
% 2 X, 2 X5
< =1 X3tX1 |y, 1JIXsXo +X3X1 + XX - 1
g 2 X 2 X3
5 o=-1

Table 2.14: CO_T constant section,

Two special forms of the constant section with two free parameters are given in Tables
2.15 and 2.16, and are labelled the CO_1 and CO_2 sections, respectively. The C0O_1
section contains a series imaginary resistor and a real transformer, and the C0_2 section
contains a shunt imaginary resistor and a real transformer. Note the form of the canonic
polynomials, where the imaginary parts of the # and g polynomials are equal for the CO_1
section, and are the additive inverse of each other for the C0_2 section. Thus, neither of
the sections are appropriate for inducing the reflection-free property using the definitions of
the polynomials given in (2.45).

The complex transformer is given in Table 2.17. The real transformer is a special case
and is found by replacing n™ with n in the definitions.
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CO0_1 Section: Constant Section with real transformer
n:l n=VY[Re{h)]2+1 +Re{h) >0
g| o— o
s X =2n[Im{ Al
A “ n=Y[Re{g]]2-1 +Reg} >0
X=2n[In
o o n[In{g}]
Y Matrix Canonic Polynomials
f=1
_j nj 2 .
= = _inc-1 X
Y = X X h"z A ton
. 2.
rjo=nd 2 jX
X X g:inTﬂh%7
o=1

Table 2.15: Series imaginary resistor and real transformer CO_1 constant section.

C0_2 Section: Constant Section with real transformer

I n=Y[Re{h]2+1 +Re{h) >0

l_n__

n.
O
“2mm({A)
“ n=V[Re(g]]2-1 +Re{g} >0
O

Parameters
B

=-1_n
2Im{g)
Z Matrix Canonic Polynomials

P
SERE

Table 2.16: Shunt imaginary resistor and real transformer C0_2 constant section.
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TO Section: Complex transformer

nl

Parameters

O O
g—-h
H n*=g+h
C o}

Chain Matrix Canonic Polynomials

Kz[n* 0} h=—n—

Table 2.17: Complex transformer TO section.
2.7 Real elementary Sections

The real elementary sections are given in [16], however they are presented here for
completeness since they may be required for the synthesis given in Chapter III. Note that
the canonic polynomials representing the sections will be given in a different form and also
the port two reflection-free polynomials will be supplied. Also, the F1 non-reciprocal
section containing an inductor was not defined earlier in [16] and is given in Table 2.23.

2.7.1 First Order Reciprocal Real Sections

The first-order real sections that realize a transmission zero at the origin or at infinity are
given in the following Tables 2.18-21.



A1l Section: Transmission zero at infinity

o—000 —o 1
z L L=2é wL ~yL
Q Y =
: ply=o9=1 L L
- dly==4=2>0 Y
o o) L
" Original Port 2 Reflection-free
=
g f=1 fre=1 p=—=1
o) d+1
=] . v w+1
= h=iLy== AR =——e=
S 277 d V(d+2)d
Q _1 4 w+d+1
z g==Ly+1==+1 =
2 2 d SR d+ 24
U G:l ) O'Rle

Table 2.18: Real Al section that realizes a transmission zero at infinity.

B1 Section: Transmission zero at infinity

O O 1
2 C=2 L1
b5} 1 wC yC
g ~C P(W‘:""):‘l Z = 1 1
A ) yC yC
dly=od =% >0 LA 4
o o dly=9=2
" Original Port 2 Reflection-free
-"é f=1 fr =1 -1
8 B R ﬁ=d+1
S " WVE T ({d+2d
) 174 y+d+1
g =iLy+1=2+1 =t
S LA @+ 24
J c=1 Orr =1
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Table 2.19: Real B1 section that realizes a transmission zero at infinity.



C1 Section: Transmission zero at the origin
[ L
g ¢ 2 Cy -Cy
| e {2
; =0)=1
§ ply=0) ~Cy Cy
d(y=0=2C >0
o 0
- Original Port 2 Reflection-free
=
k= = RE=VY =1
s f=v el B=—5
= p=1l-1 hRF =——=
£ 2C  d (d+2)d
% g=w+;—1=y/+% gRF=(d+1)w+1
= o=-1 V(d+2)d
@ Org =-1

Table 2.20: Real C1 section that realizes a transmission zero at the origin.

D1 Section: Transmission zero at the origin
o O
é L=%d Ly L
-| LY Ly
g L ply=0)=-1 “[ Ly Lw}
a
dly=0)=2L >0
o o (=0
" Original Port 2 Reflection-free
= ~ f=—1_
g f=vy Re=VY d+1
,,,,,,,, g,. h=-l-1‘=':1“ hRF=—(W+1)
£ 2L 4 _ Y{d+2)d
2 =y+ll=ysl
5 o=- d+2)d
Orp = -1

Table 2.21: Real D1 section that realizes a transmission zero at the origin.



2.7.2 First Order Non-Reciprocal Real Sections

The two first-order non-reciprocal sections that realize a transmission zero on the real
axis are given in the following two tables. The E1 section contains a capacitor while the F1
section contains an inductor.

E1 Section: Real transmission zero at (— (1),)
C
K G=-p+1
“ 1
g oL ¢ L o
g C=:—CZ ¢r=:g
D C "
ply=-)=p
o o
Cy G+Cy
£ | a? G2
E -G+Cy Cy
G? G?
Original Port 2 Reflection-free
Por
f=y-S=y+g B=-2
z ¢ o= 1+(9r+1)p?
= 2 RE=Y+¢
S _1=G“+1 __ po
E“‘ h—é C =2 2__1 hop =2 (W+l)p¢r
2 P T a1
| B < 1lo 1+l )51
Q 2 C
3 (0*+1) ¢ [(p2-1) grtp?+1] 0 14 9+1) 07
=Y gRF= VT
el -B*+1[¢,-1+{g-+1)7
o ORF = -1

Table 2.22: Real E1 section that realizes a transmission zero on the real axis.



F1 Section: Real transmission zero at (- ¢,)

G
—
o -p+1
2 o0——— ) ( o T p+1
§ = p+1
(p-1)¢r
o L o plw=-¢)=p
==L

¢r—GL
’>< L Llir
g Z: W G+ W
E —-l+L1// Ly

Original Port 2 Reflection-free
fey——L=y+g =2 P
3 ot oo o
£ hi= =22 - | fe=vror
5 P (v+1)por
S 2 hrp =2
Qy o= +l§;l 2
% =y V-2 +1[g-1+(g+1)p?
g (02+1) ¢, (p2-1) ¢rtp®+1] o 014 8+1) T w
o =V/+“2—‘“ 8RF= >
o V- +1[6r-1+(¢r+ 17
o=-
ORE = -1

Table 2.23: Real F1 section that realizes a transmission zero on the real axis.
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2.7.3 Second-Order Reciprocal Real Sections

The following three tables give the A2, B2 and Brune second-order sections. The A2
and B2 sections realize two complex conjugate transmission zeros on the j¢ axis when the
reflectance is plus or minus one. The Brune section is more general since it also realizes
two complex conjugate transmission zeros on the j¢ axis, but the reflectance can be any
unimodular constant. The port 2 reflection free polynomials are not given for the Brune
section since they are very complicated and are not necessary.

A2 Section: Two transmission zeros at =+ jdp
L
L=4———1—2- do> ==L
. deo CL
&
a =4
5 2
& ¢ ply2=-a?) =
2
o o d(l;/2=-¢0)=4C >0
[ 1+yC 1+ yAC]
£ Ly Ly
g =
— _1+yAC 1+y2AC
L Ly Ly ]
Original Port 2 Reflection-free
= 1
2 B
2 f=v+er =2 gy’ d¢02+2d+2
g h=il/=2‘—" fRE = Y%+ ¢o ,
2 2C d (w+li¢0 +w)
& v, e 2
1
g g= l// +2C CL \/(q)o +1)d+4'\/(¢0 +1)d
e ( 2 )( 2. 2 2
3 _ v, 2 dgy +d+2 W+¢0)+7—(¢0 +1)q/
=Y+2-+ 4 gRF= = 5
o= ‘/((1)0 +1)d+4‘/(¢0 +1)d
O’R_p=l

Table 2.24: Real A2 section that realizes complex conjugate transmission zeros on j¢ axis.



B2 Section: Two transmission zeros at =+ jgy
L=1g 2_1
o o 4 w =L
£ do
5 2
£ € ply2=-07) =
O O 5
d(w2=-¢0 ) =4L >0
[ 1+y2LC 1+y2LC |
é - e vC
E 1+y2LC 1+y2LC
L wC yC
Original Port 2 Reflection-free
- ]
2l 24l p=2
a| fEVrELEV R Ao +d+2
= 2
g pea1 ¥ __ ¥ frE=y2+ o
> 2L d 2
5 v e = -2 (v+ o +y)
gl fTV harter V(go2e1)a+ 4V g241)a
2 2 2
5 _ W+2%/+¢02 gRF=(d¢O +d+2)( w2+ ) +2(¢0 +1)y/
2 2
o=1 \/(4)0 +1)d+4\/(¢0 +1)a’
ORE = 1
Table 2.25: Real B2 section that realizes complex conjugate transmission zeros on j¢ axis.
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Brune Section: Two transmission zeros at = jgy

=2 cos( @ +1 C=1d¢0—sin(9)
L - . 2
_fm\'— (d¢o+sm(6})¢0 (cos(d+1)¢o
dép +sin( 4 2
o c | p=dfotsm9 oo’ =—L-
% o l( n:l o d@—ﬁn(d nCL
L 1L 4 j(n-1)
= plyi=) = ij_(n =eio
| & =iln-1)
0 0 y4ly2=gp)) =2 lrtDRCL
(n-12%C+nL
[ n2CLy?+1 nCLy?+1 |
£ g (r=1Cy (n-172Cy
[ =
E nCLy?+1 CLy? +1
_ (n-1%Cy  (n-DCy |
N, S R, SR
f“‘/’ +nCL_w +%
2|, an2-10v? [An-12c+Ly [dgocos(d —sin(g) + sin(gdv] wao
g :onor i d2go” - sin2(6)
;‘? =1(n2+1)u/2+1[(n—1)}2C+LJq/+ 1
o 2 n 2 nCL nCL
=]
§ =[d2¢02+sin24 w2+2[d¢>0-0059 sin ¢ ¢0W+¢02
d2p; —sin? 6 d%p¢ — sin? 6
o=1

Table 2.26: Real Brune section that realizes complex conjugate transmission zeros on the

J® axis.
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2.8 Equivalences Between the Brune Section and the Complex Sections

The Brune section given in the preceding table is a general second-order section that
realizes two complex conjugate transmission zeros on the j¢ axis. Consider the realization
of the two complex conjugate transmission zeros using any of the four first-order complex
sections CA1_j¢, CB1_jg, CC1_j¢, or CD1_j¢. Clearly, if the two zeros are realized using
consecutive complex sections of the same type, then within at most a constant section the
two complex sections grouped together must be equivalent to the respective Brune section
on a two-port basis.

Let the Brune section as given in Table 2.26 be described by the lumped-element
parameters L, C and n. The equivalence between each of the four complex first-order
sections mentioned in the preceding paragraph and the Brune section are given in the
following four tables, where for each table the equivalence from both perspectives are
supplied. Thus a Brune section can be replaced with two complex first-order sections and
vice-versa.

L mLa
o O I_I 0
X; X Xy <jmX, JmXy | pimX;
o O O
Complex Sections Brune
=—nL_
La n+1 L =§—1X'_1%
X =rLy/E
1-nY C C =(X1 +X2) L,
X T C 26X
S pXi-X
Xl _X2 n X] +X2

Table 2.27: Equivalence between the Brune section and two CA1_j¢ complex sections.



X /X1 JmX, jmX
O O
e Ca JES - _(_:_a
T m
X JmX,
i O | ')
Complex Sections Brune
az(n'l)zlc L_2X12X2Ca
n+ =X, 1 X,
=1 AL Kt
n-1Yy C C _(X2-X) XoCy
(n+ 1)\/@ 2x2
(n-12Y C
_X-X 1 n=%2tXy
" X X, X2-X
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Table 2.28: Equivalence between the Brune section and two CB1_j¢ complex sections.
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C,
—

JX] J% -jX; -jmX 7 -jmX, JmX 4 H
O O O O
Complex Sections Brune
= 1
= hL X1+ X
= n-1y C tre .
- 1 _Ll_L C =(X]_ 'Xﬂ Ca
= (n+1)¥ C 2%
X1t X XX
X1-X; X -Xp

Table 2.29: Equivalence between the Brune section and two CC1_j¢ complex sections.




JX; -JX; -ij] JmX;
o o o— 5
7% JmXp
o : O ' O O
Complex Sections Brune
+ 1) nL
La =(_r_l__)2_ [ = 2X12 a
(n-1) (X2-X)) X,
Xy =L/ 2L
L-nt C c=X1+X) L,
X2 =(fl + 1) ﬂ_L ZXIZX2
(n-121 € X Xi
m=X2—X1 =n Xo+X;
X2 +Xy

Table 2.30: Equivalence between the Brune section and two CD1_j¢ complex sections.
2.9 Equivalences Between the Complex Sections

Each first order complex section is equivalent to another section, that is, each section
can be replaced with an equivalent section without affecting the operation of the network.
This is because one section is the dual of the equivalent section. This can also be seen from
Tables 2.1-12 giving the canonic polynomials representing the sections defined as a
function of the reflectance, transmission zero, and for reciprocal sections the delay. From
the tables, the following sections are equivalent: CA1_sc and CB1_oo, CC1_0 and CD1_0,

CAl_j¢and CB1_jp, CCl_jpand CD1_j¢, CEl and CF1, and finally CG1 and CH1. The
equivalences are given for the reciprocal sections in the following Tables 2.31-34.



CAl_oo CB1_o»
L Jj‘}l ~J7A<1
e —/ 000 ——o
X1 7X1 == C
o) O
=y C =L
L=CX; X12
X1=X3 5\(1 =Xj

Table 2.31: Equivalence between the CA1_eo and the CB1_eo complex sections.

CC1_0 CD1_0
C Ji’l ‘./521
| (
o) 1€ 0
X 4X1 L
0 o)
c=L L=CXx?
X; R
X =%, =X

Table 2.32: Equivalence between the CC1_0 and the CD1_0 complex sections.



CAl_j¢ CB1_j¢

C
X1 X X1 T

JX2
0 ) O . O
L=CX} c=L
~ Xi
X1=Xj % =X
-‘?2 1 12
Xp==1 %, _Xi
X; X,

Table 2.33: Equivalence between the CA1_j¢ and the CB1_j¢ complex sections.

CCl_jo CD1_jo
C
X 4X1
o] —0 | © O
L
JX1 X 'JXl
X2
o} ol o ! ‘o)
C=4L )
X12 L=CX1
X; =3\(1 X1=Xj
32 ~ X2
X2—"i(_1 X2=-—}g—1—
Xo 2

Table 2.34: Equivalence between the CC1_j¢ and the CD1_j¢ complex sections.



Chapter III

Synthesis of
Complex Lossless Two-Ports

The synthesis of real doubly-terminated lossless two-ports has a rich history. The
basic problem is to realize a lossless two-port as shown below

1Q

o—AA\AN\—0 O
+ + +

Complex

v Lossless

£ 1 Two-Port Y § 1Q

- . N i
! ol Yol

Figure 3.1: Doubly-terminated complex network.

where the resistive terminations are assumed to be normalized to a value of unity.

A first attempt to realize a lossless two-port involved the realization of either the open-
circuit impedance matrix or the V-I chain matrix. Since these matrices contain more than
the canonic number of polynomials needed to represent the network, an alternate approach
has recently been adopted [55,59,60,61].

In this method, the synthesis is carried out in the scattering wave domain through the
factorization of the scattering transfer matrix. Information about the network parameters
(that is, the impedance or admittance parameters) are not required and the synthesis of the
network is based on three polynomials that are derived from the required steady-state
transfer function. The polynomials will be designated by f, A, and g, and satisfy the
properties given in Section 2.4. Thus, the network is represented by the canonic number
of polynomials and since the synthesis is based entirely on these polynomials, a greater
accuracy can be obtained over the earlier approach since implicit relationships between
matrix elements do not need to be maintained.

The accepted approach to the implementation of the factorization method applied to the
synthesis of networks involves extensive zero-finding and polynomial manipulation
routines [55,59,60,61]. This method can derive networks with high accuracy, however
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the algorithm strongly dependents upon how the zero-finding routine converges and how
the tolerances are matched to the problem to be solved. For accurate solutions, the amount
of computational time required can be considerable.

In this work, the synthesis algorithm suggested by Jarmasz [16] will be extended to the
complex domain to allow the realization of general real or complex lossless two-ports. The
new algorithm is based on polynomial evaluations only and does not require either the
zero-finding routines or the polynomial manipulations. Thus the computer implementation
is several orders of magnitude faster than the earlier method with comparable accuracy.
Each elementary section is represented by a set of canonic parameters, namely, the
transmission zero, the reflectance and for reciprocal sections the delay. Greater freedom in
the realization process will be found since complex networks composed exclusively of
either inductors or capacitors as the dynamic elements are possible. ’

It should be noted that all synthesis algorithms assume that the given f, h, and g
polynomials satisfy the conditions given in Section 2.4, that is, the polynomials represent a
stable and realizable lossless two-port network.

In the real case, the number of realizations of the transmittance that are possible from
the given canonic polynomials is finite. However, for complex networks the number of
realizations is infinite, although the number of unique structures is finite. This is a result of
the added degree of freedom that can be found by scaling the A polynomial by a
unimodular multiplier (which will not effect the transmittance of the network).

3.1 Extraction of An Elementary Section via Factorization of the Scattering
Transfer Matrix

All synthesis algorithms are based on the removal of a low-order section from a
network, leaving a remaining network with a lower order than the original. The low-order
sections referred to in this thesis are the real and complex elementary lossless sections
given in Chapter II. The class of synthesis algorithms are basically distinguished by the
way in which the low-order network is extracted and similarly by the way in which the
remaining network is represented. The scattering matrix factorization (also called
decomposition) synthesis algorithm will be briefly outlined in the following.

A lossless two-port network N can be presented by the canonic polynomials given in
the form of a transfer matrix as

HER

An elementary lossless section denoted by N, can be extracted from the above transfer
matrix leaving a remaining network denoted by Mg as shown below.
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Figure 3.2: Extraction of an elementary section.
This process is equivalent to factoring the scattering transfer matrix as follows:

1

og+ h } 1 [O’aga* h, M ORER* hr 3.2)
f

Chx g fofz Oaha*  &a ORhp* 8R

" fR

The sum of the orders of N, and Ny are assumed to equal the order of N. From the
above, the following relations must hold,

f=rdr
h = hagR + O'aga*hR
8 = 8a8R + Osha,hp
O = 0,08 (3.3a,b,c,d)

Solving for the polynomials of the remaining network Ng, the following are derived:

f1e=]{-

gah - hag
hp = 5——=2
R UafJa*

- 8ax8 - ha*h
fafa*

op=< (3.4a,b,c,d)
(o

The section N, realizes at least one of the transmission zeros of NV and thus (3.4a)is a
polynomial. In order for 4R and gg to represent polynomials, the polynomial f,f,+ must
divide into the numerators of (3.4b,c), or in other words, the numerators must contain the
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zeros of fafye.

A solution for (3.4b,c) was shown to exist by Fettweis [59,60] and formulated in terms
of the solution of a linear set of equations. This inherently requires the coefficient form in
the representation of the canonic polynomials, which introduces inaccuracies in higher
order systems. A more accurate solution using the product form of the polynomials which
requires the use of zero-finding routines is given for the real case in [61] and for the
complex case in [55]. Both methods require polynomial manipulations.

Jarmasz [16] formulated the synthesis problem in a different manner by recognizing
that if the canonic polynomials of a network are evaluated at a transmission zero, the
section that realizes the transmission zero is effectively decoupled from the network. This
observation allows the development of the efficient synthesis algorithm given in [16]. In
the following, the algorithm due to Jarmasz will be extended to include the synthesm of
complex lossless two-ports.

3.2 Canonic Representation of Elementary Complex Sections

A canonic number of parameters, which are easily calculated, is needed to represent the
complex elementary sections. Reciprocal and non-reciprocal sections require three and four
real parameters, respectively. To this end, consider the flow diagram for the networks N,
and Ny as given in the following figure where the network N, is assumed to represent a
complex elementary section.

Figure 3.3: Flow diagram of the N, and NR networks.

For the synthesis process assume that the signal from port two does not contribute to B
(that is A3 = 0). Evaluating the canonic polynomials of the network at the transmission

zero Y of the section N,, we have f, (y,) = 0, which decouples the left-most part of N,

from the remaining network (since A, = 0) as shown in the following figure:



Decoupled at the transmission zero ¥,

p(Va) = pa(Va)
D( WG) =Da(Wa)

Figure 3.4: Flow diagram of the N, and Ng networks evaluated at y,.

Note that for reciprocal sections fz* (Y4) = O and thus the left-most section is then decoupled
regardless of the remainder of the network. In either case, it is clear from the above figure
that from the viewpoint of port one, the only element that contributes to B is the ratio of
the & and g polynomials for the first section. This is by definition the reflectance p, and
therefore

p (Wa)=§_i(‘l’a)='§_2(‘/’a) = pa (V) (3.5)

and thus the reflectance of the first section p, is equal to the overall reflectance p when
evaluated at the transmission zero y,

P (Wa) = pa (¥ (3.6)

Two parameters associated with the first elementary section are now known, namely
the location of the transmission zero (which is supplied in the original f polynomial) and
the reflectance evaluated at the transmission zero. For non-reciprocal sections, both
parameters are general complex numbers and thus the two parameters are all that is needed
to completely characterize the section.

However, for reciprocal sections, both parameters are real numbers, they are namely
the imaginary part of the transmission zero and the angle of the reflectance (since the
reflectance is unimodular). Thus for reciprocal sections, one more real parameter is
needed. Intuitively, the extra parameter should only be a function of the ratio of the 4 and
g polynomials for the section. This is because the only known quantity, from Figure 3.4,
is the reflectance of the section. Another way of stating this is that a degree of freedom
might be lost if the f polynomial of the section is used, since it will go to zero at the
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transmission zero. Although many possibilities may exist, a convenient choice for the
extra parameter is the return group delay (known here after as the delay D) given in
Chapter I and as suggested in [16]. The delay is real and positive when evaluated at the
transmission zero as shown in Theorem 2.2, and only a function of the ratio of the 4 and
g polynomials of the section as shown by the definition (2.36), repeated below:

v

D=-
Evi~ (3.7)

V=it

Thus from the above observations and from (3.5-6), it is clear that

Da(jou) = - B { "( gﬁ;)} o {dv’ Z"(Z((;Z;

and thus the delay of the first elementary reciprocal section is equal to the delay of the
overall network when evaluated at the transmission zero of the section.

The reflectance, and for reciprocal sections the delay are given in the Tables of the
elementary sections in Chapter II. For reciprocal sections the reflectance is unimodular and
the delay is positive as shown by the tables. Similarly, for non-reciprocal sections the
reflectance is not unimodular and the delay is not needed. In either case, it is clear from the
tables that an elementary section can be represented by the transmission zero, the
reflectance and for reciprocal sections the delay of the section. These will be defined as the
canonic parameters.

Thus, it is clear from the tables given in Chapter II, a complex first-order section, or a
real second-order section (where appropriate), can be chosen. Therefore the canonic
polynomials of the first elementary section are known.

} D (jgu) (3.8)

3.3 Recomputation for the Remaining Network

The canonic parameters completely represent an elementary complex section. The
above discussion focussed on the first section of a network, where the first section was
assumed to be identified and completely defined. In order to represent the remaining
sections, a more in depth formulation is required as given in the following.

The canonic parameters for the sections realizing the remaining transmission zeros of a
network can be calculated in the same manner as used for the first section. Consider the
parameters for the second elementary complex section, which would represent the
parameters of the first section of Ng from Figure 3.4. This can be thought of as realizing
NpR as two sectidp’s, Ny and N,, where Ny, is assumed to be the elementary complex section
(the same procedure as before) and N, is whatever remains. Assume that the transmission
zeros of N, and Ny, are not equal. The parameters of Ny, as calculated from the original f,



h and g polynomials do not represent the actual section, rather they represent a
combination of the reflectance and where appropriate the delay of both the first and second
sections, N, and Ny. Thus to find the actual canonic parameters for the second section, the
first section must be extracted from the network.

The canonic polynomials for the second section are given as a function of the first
section and the original canonic polynomials from equations (3.4). From the above
discussion, it is appropriate to relabel section Ny as Ny in (3.4). Clearly, (3.4) gives a
general relationship which can be evaluated at any appropriate location.

In order to calculate the parameters for Ny, the evaluation of the 4 and g polynomials
for the second section must be passed through the first section, giving a new set of
evaluations for the 4 and g polynomials as shown below,

_ 8dWo)h(Wp) - hd Wo)g(ws)
hil V) = A WbYar(Wb)

_ 8ad Wo)8(Wh) - ha Wo)h(Wh)
sdvs)= JdWolfar(Wp) (3.92.6)

where the polynomials f;, 4,4, and g, for N, are known. The calculated complex numbers
he(Wp) and gp(yp) now represent the actual polynomials evaluated at the transmission zero

for the section. Thus the reflectance as given by

by v 8dWe)h(wh) - hd Wo)g(Wh)
PV = gV = o (V) - had VW7 .10

is known. Note that the reflectance can be expressed in terms of the original reflectance
calculated for Ny, as given by

_ 8dWe)p(¥s) - hd W)
A A P (A (A (%) G0

The same observations will apply to the delay of the section Ny, and will not be
repeated. Consider a reciprocal section, the delay is given from (3.7) and (3.9) as

M)
el 5(y) (g“*("”"’“*“”’g‘m“)
_2%1 W)__d_z G, (3.12)

where it is understood that after all algebraic manipulations have been completed, all



polynomials will be evaluated at ;. Simplifying the above gives the following:

D= - LY

“dyi) et hot Vi) et i
g‘;g ju_f(h"‘ )Z(g g%)" V)

ga¥)- ha,.(w)M

-4u—,g4w) ﬁuwﬁ‘—"ﬁ %,(g‘—“”)um e
) - v -

After multiplying the numerator and denominator of the second term by g/h and the third
term by h/g, and then recognizing the definition of the delay, we get

st ot et i)
(3.13a)

(3.13b)

(W
)+ D hdw)- J!_;(ga(w) . ﬂu-,(ha.(w )+ had) + ffgad w))f—:(—ﬂ

Db=D+

h(y) 2
ga(vf)m hdw) 8ad 0 - ha W)
(3.14)
Apply the property
Lfnw)=- L—id';(h(w))}* (3.15)
we derive
L)+ D hdy)- Led) 2D [ ihd )] +D o[ fealvl], £0
‘ﬁg V’) _d - Qs 4 8as _*h(ll/)

Dy=p +£ 0 W)
sV hidy) gl V(D - ol
(3.16)
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Finally, after recognizing that at a transmission zero of a reciprocal section,

g(v) _[rw)
st G
the following is derived:
Srdvi)+ D i) e 2 [t <D natoh-[ o] [50]
Dy=D +
ga(wﬁ—“u%-ha(w V] o) - ol
(3.18)
Define the function
LLdu)+ D hdv)- Lledv) 20
Aly) = "9 (3.19)
ga(vf)m - hd¥)
which is found in (3.18). Thus, the delay can be expressed as
Dy () =D (wp) + A (W) + A+ () (3.20)

by recognizing that D« =D since D is real. This is an expression giving the actual delay
of the second elementary section and is a generalization of the expression given in [16].

Thus the reflectance and the delay of the second elementary complex section are
known. Therefore, after choosing the appropriate section, all information pertaining to the
second section is completely known. The canonic parameters of the first and second
section can now be used to derive the third section, and so on. This synthesis process will
be generalized in a later section.

3.4 Calculation of the Reflectance and the Delay

The observations made above, namely equations (3.10, 20), assumed that all of the
transmission zeros were distinct. However, the general case should provide for multiple
transmission zeros, that is, the case of more than one transmission zero at the same
location. A simple example of this is an allpole filter that contain all of the transmission
zeros at infinity. For this case the canonic parameters for all multiple transmission zero
sections will be the same, and thus another method of calculating the reflectance and the



delay is needed.

The method used for the multiple transmission zero case was given by Jarmasz [16]
which followed suggestions by Martens [57]. In this method, the polynomial evaluations
at the transmission zero are not used explicitly. Rather, the polynomials are sampled at N
sample points around a circle of nonzero radius centered at the transmission zero. The
resulting set of values will be known as the sample characterization.

The actual values of the polynomials can be found by recognizing that the Taylor series
expansion of the polynomial about the transmission zero has the same form as the discrete
Fourier transform generalized to a nonzero radius. Consider the Taylor series expansion of
the 4 and g polynomials of order NV about the transmission zero of section &, where

1<k<N (3.21)

as given by

N-1
W)=Y a(v- v

i=0
N-1
8y = Z bi(y - wif (3.22a,b)
i=0
where the complex a; and b; are the Taylor series coefficients [52], and N is given by

N =deg{g}+ 1 (3.23)

Evaluate the above (3.22) at N equally spaced intervals of the circle of radius r centered at
the transmission zero Y as given by

W=ye+re En n=0(1) N-1) (3.24)

and as shown in Figure 3.5,



j Im{y ~_ Transmission zero at W
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Figure 3.5: Sample points for the sample characterization.

in order to derive

N-1

hin, kl= ai(k)rie/ y "t
i=0
N-1

gln, k}=2 bl(k)r‘ef‘?“"”
i=0

(3.25a,b)

where 4 [n, k ] and g [n, k ] represent the N sample points on the circle for section ,

which is defined as the sample characterization. The above equations have the form of the
DEFT of the discrete sequences @; and b; generalized to radius . Thus, one can view the
Taylor series coefficients a; and b; as discrete-time sequences with the corresponding DFT

of h[n, k]and g [n, k], that is, the following represent DFT pairs:

a;(k) < hln, k]
bi(k) > gln, k]

(3.26a,b)

The sample characterization given by (3.25) can be conveniently calculated by simply

sampling the 4 and g polynomials at the points (3.24) as given below

h[n,k]=h(wk+re"%")
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g[n,k]=g(wk+rejfv_”") , (3.27a,b)

Note that for a transmission zero at infinity, first apply the mapping

51 3.27
4 v (3.27¢)

to the h and g polynomials, and after rationalizing the numerator and denominator, let
v — 0. This mapping also changes the sign of ¢ for all first-order sections.
The radius r is chosen to be less than the shortest Euclidean distance between distinct
transmission zeros, and as suggested in [16], 0.2 of this distance works well in practise.
As mentioned earlier, the quantities needed for the evaluation of the canonic parameters
are both the 4 and g polynomials and their derivatives evaluated at the transmission zero
of the section. By using the Taylor series expansion (3.22) and the observation regarding
the DFT pairs (3.26), the quantities are easily evaluated from the definition of the DFT as

N-1
=gn=-Ll
h(Wk)_aO—N h[n,k]
n=0
N-1
g{wi)=bo = 1% gln, k] (3.28a,b)
n=0
and
N-1 )
= =-1_ ]—75"
[dw (W)j“lll=\vk aj rN ZO h[n, k]e
N-1 ,
; LTT
dsv]|  =hi=ig 2 elm k1T (3.29a,b)
a n=0

Note that the higher order derivatives can be calculated in the same way, but for this
application, only the zeroth and first derivatives are needed. Using (3.28-29), the
reflectance and delay are calculated as
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D(w)= (3.30a,b)

The recomputation formulae for section Ny, given earlier (3.9) can be expressed in
terms of the sample characterization as

Ahb[n’b]___ga[n,b]h[n,b]-ha[n, bb]jg[n,b]

Oufa [n, b lfa* n,

_ga*[n,b]g[n’ bJ‘ha*[n7 b}h[ﬂ, b:l
gim b= A

0<sns(N-1) (3.31a,b,c)

where

faln b 1=falys + r e %7)
ha(n, b]=ha(x//b+reijl")

galn, b]=ga(wb+rej21\7”") (3.32a,b,c)

This simply maps the original sample characterization for the section into the actual
characterization for the section. Equations (3.28-30) can then be used to calculate the
canonic parameters. Note that all f polynomials must be monic as given in the tables of
Chapter II.

3.5 Complex Synthesis Algorithm

The algorithm for the synthesis of complex lossless two-ports follows from the
discussion given above. Thef, 4, and g polynomials for a network are assumed to be
known, where the order of the zeros of the f polynomial represents the desired order of the
clementary sections realizing the finite transmission zeros. If they exist, transmission zeros
at infinity can be realized at any appropriate location. The procedure for the synthesis of
the network is equivalent to the realization of the transmission zeros given by vy, where
1<k<N.

Although the sample characterization is not required for all cases, the synthesis
algorithm will be presented in terms of the sample characterization for simplicity. That s,
the sample characterization can realize either the distinct or the multiple transmission zero
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case, and thus the algorithm presented will be the most general.

For the k*% transmission zero, Vi, calculate the sample characterization as given in
(3.27a,b), that is calculate the hy [n, k ] and the g, [n, & ] complex numbers from the
original polynomials for 1 < k £ N. Then calculate the canonic parameters for the first
section (k = 1) and identify the section from the tables in Chapter II, including the
section’s canonic polynomials. Now extract the first section by mapping the sample
characterization using (3.33) for 2 < k < N. Repeat this process by extracting section /
and recomputing for the remaining sections as shown below for(/ + 1)< k< N
inclusively.

_giln, ke n, k- hyln, klgeln, k]
heln, k= oufiln, ke [, k]

_ 8 [n’ k:lgk[n’ k] - hl*[n’ k}hk[n’ k]
gdn, k= AN (3.33a,b,c)

The complex numbers hyn, k ] and g n, k ] on the right of the above equations are
recomputed and reassigned on the left. Note that the f;[n, k], the &;[n, & ] and the

gi[n, k] terms represent new polynomial evaluations of the known polynomials for section
[, and all of the polynomial evaluations for a section occur at the same frequency as given
by (3.24). The kth elementary complex section can be identified from the canonic
parameters given from the sets k7, k ] and g{n, k ] and (3.30), and thus all relevant
information about the & section is known. Continue this process until / equals N when
the synthesis is complete.

Fettweis has shown [59-60] that the extraction of a lossless elementary section is
possible as long as the given canonic polynomials satisfy the conditions given in Section
2.4. Namely, the scattering matrix representing the network must be unitary on the
imaginary axis and the g canonic polynomial must be strictly Hurwitz. Now it is possible
to determine the canonic polynomials given in (3.4) that represent a lossless sub-network
of order N - m, where m is the order of the extracted section. Furthermore, the canonic
polynomials can be represented in terms of the canonic parameters and vice versa as given
in the Tables characterizing the elementary sections found in Chapter II. Thus, from the
preceding observations, it is clear that an elementary section can be extracted from a
network using the synthesis algorithm, thereby reducing the order of the remaining sub-
network by the order of the extracted section. Note that the extraction did not involve the
manipulation of intermediate polynomials. Also, the relative magnitude of the reflectance
(either unimodular, greater than one, or less than one in magnitude) is invariant and the
delay for reciprocal sections is positive for each elementary section since the section is
realizable.
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From the tables of Chapter II, there is some freedom in the choice for a complex
section; that is, a section with either an inductor or a capacitor as the dynamic element is
possible for a given set of canonic parameters. Also, freedom is found in the case of
complex conjugate transmission zeros, since they can be realized as either two first-order
complex sections or a real second-order section. Note that if two first-order complex
sections are chosen the sections are not required to follow one another in the cascade and
they can be placed anywhere within the network.

Thus a particular set of canonic parameters does not necessarily specify a unique
section. Moreover, the canonic parameters for the sections are derived from the
polynomials of the network and are thus independent of the exact sections used (except for
the finite transmission zero case, unless either sections {CA1_jw, CB1_jw} or {CC1_jw,
CD1_jw} are used exclusively). This leads to the result that the canonic parameters
completely specify a network and are equally as important as the lumped element values of
a network. In fact, the parameters are equivalent to the lumped element values as shown
by the relationships given in the tables. The equivalences in Tables 2.31-34 show the
relationships between the sections.

The synthesis algorithm is based entirely on polynomial evaluations, and thus routines
for zero-finding and polynomials manipulations are not needed. The sample
characterization approach requires more evaluations than the method of evaluating the
polynomials at the transmission zero, however, the added computational time is not
significant. Furthermore, the sample characterization method can handle the synthesis of
both the multiple and the distinct transmission zero cases, and thus only one computer
program is needed for general network synthesis.

3.6 Extraction of the Last (Constant Complex) Section

After the last dynamic elementary section is extracted, a final complex constant section
(or a real section as a special case) must be realized in order for the synthesized network to
satisfy the original canonic polynomials and for the load resistive termination to equal unity
in Figure 3.1. This is performed by extracting the last dynamic section and recomputing
the sample characterization. Label the resulting constant section (N+1).

The sample characterization and the canonic parameters, including the transmission
zero, are known for the last dynamic section. Thus recompute the sample characterization
using

h {n]=8N[’l,N]hN+1[n,N]-hN[n,N]gN+1[n,N]
el on fu [, N e [, NV ]

_gn«[n,Nlgns1[n,N]-hys[n, Ny, 1[n,N]
gy+ilnl= P N T[N ] (3.34a,b)
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which extracts the last dynamic section leaving a constant section. The sample
characterizations Ay 1 [n, N ] and gy +1 [n, N ] represent the characterizations from the
extraction of the preceding section. The complex sets Ay . 1 [# ] and gy + 1[n ] represent the
constant z and g polynomials for the last section, which are given by

N-1
hN+1=Z‘V1—z hN+1£n]
n=0
N-1
8N +1 =NL Z} gn+1ln] (3.35a,b)
n=

The fy +1 polynomial is equal to unity since by assumption all f polynomials are monic.
The oy +1 value is arbitrary since the ¢ value for the overall network is usually arbitrary.
Thus from the constant fi + 1, Ay + 1 and gy + 1 polynomials for the section and Tables
2.13-17, the last constant section can be determined.

Note that the last section will be a real ideal transformer for a real network as well as for
many complex networks realizing real canonic polynomials. However, the latter is not
always the case, particularly when at least one complex section is made reflection-free or
when the original 4 polynomial is scaled by a complex unimodular constant.

3.7 Recomputation Using a Constant Complex Section

In the synthesis of electrical networks, it is desirable to have the freedom of inducing a
particular property in a section. The three most common properties that are induced are
port one reflection-free, port two reflection free and a pass-through at a certain frequency.
All of the elementary sections listed in the tables of Chapter II behave as a pass-through at a
certain frequency as given by the definition of the section. However, the reflection-free
property must be explicitly induced in an elementary section.

From the discussion in Section 2.5, a general constant complex section is needed to
make a port reflection-free. After inserting the appropriate complex section at the desired
port, the set of the sample characterization for the remaining sections (all dynamic sections
to the right of the current section) in the network must be recomputed. The recomputation
formulae given in (3.33) can be used where the f, A, and g; polynomials are replaced with
the constant polynomials that represent the inserted constant section. Thus the
recomputation process in this case requires no polynomial evaluations, since it involves
only complex number operations. This process can be viewed as extracting a constant
section from the network in the same way that a dynamic section is extracted, as discussed
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in an earlier Section.

Note that the above only discussed the case for a reflection-free port. However, a
complex constant section can be inserted anywhere in the network in order to induce a
desirable property. The same steps would be followed for the recomputation for the
remaining network.

The insertion of a constant complex section is a form of scaling, that is, changing the
parameter values of the elementary sections. Thus, inserting the constant section will not
alter the structure of the network. For example, consider a network that is first realized
without inducing any properties in the sections, and then realized a second time inducing
reflection-free ports. The dynamic elementary sections for both cases can always be
chosen to be the same, albeit with different parameter values. Note that these observations
only apply to the dynamic sections. For example, the last constant section obtained from
the realization may change.

3.8 Design Examples

Few examples of complex analog networks exist in the literature, and no examples exist
of either realizations of frequency shifted networks or realizations of networks with the
phase of the 4 polynomial scaled by an arbitrary real constant. In order to give examples
of complex analog networks and to support the observations made in this thesis, Appendix
A contains the following five examples of classical filters: Elliptic filters of orders 4, 5, 8,
14, and a Chebyshev filter of order 5. All filters are of the lowpass type except the 14th
order Elliptic which is of the bandpass type.

All examples were generated using the synthesis algorithm outlined above with a
program written by the author in the PASCAL computer language. The program requires:
the canonic polynomials of the network in factored form, the imaginary axis shift, the 4
polynomial phase shift and type of complex section desired (when a choice between
sections is appropriate).

Note that the example that required the most computer time was the 14th order Elliptic
filter realized with complex sections and reflection-free ports. However, the solution to
this example required under a minute to calculate on a Macintosh II computer with a clock
speed of 16 MHz. In order to put this in perspective, the 8th order Elliptic filter realized
using the method of Cascade Synthesis (factoring the transfer matrix) [55] without
reflection-free ports required over four hours on the same computer for the same accuracy
as the example presented.

It should be noted that the synthesis algorithm implemented is very sensitive to the
accuracy of the given polynomials. However, this usually will not create a problem since
the transmittance gain can be found to a high degree of accuracy from a given set of poles
and zeros. It then remains to find an 4 polynomial that accurately fits the analytic
continuation of the Feldtkeller equation (2.21). This can be easily done using a zero-
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finding routine. However, this process is independent of the algorithm since it deals with
the polynomial description of the network.

In all examples both the canonic parameters and the lumped element values are given in
order to provide an indication of the relative magnitudes of the values. This again
demonstrates that either type of description can characterize a network. All of the
transmission zeros were realized in the order given in the tables in the Appendix, and if
they exist, transmission zeros at infinity were realized last (although this need not be the
case since the transmission zeros can be realized in any order).

The following general observations can be made about the dynamic sections from the
examples. It is possible to realize the given real canonic polynomials with real sections.
Complex sections are needed if the polynomials are shifted along the imaginary axis or if
the phase of the 4 polynomial is changed by an arbitrary constant not equal to 0° or 180°.
From the 4th order Elliptic and the 5t order Chebyshev examples, equivalent realizations
are possible using the same type of first-order complex section regardless of either, the
filter order, or the change of phase of the 4 polynomial if finite transmission zeros exist.
Also, from the 5th and 8th order Elliptic examples, realizations are possible using the same
type of first-order complex section with the polynomial shift along the imaginary axis. Itis
possible to realize a network using either of the four first-order complex reciprocal sections
exclusively as shown by the 5th order Elliptic example, and thus realizations containing
only inductors or capacitors as the dynamic elements are possible. Non-reciprocal sections
can be realized as shown by Tables A.71-72. Finally, any section, whether real or
complex, can be made reflection-free as shown by all of the examples. ;

The following observations can be made about the constant sections for networks with
finite transmission zeros. The last constant section will be a complex constant section if
any of the following is true, the network is realized with reflection-free complex sections,
the polynomials of an odd order filter are shifted along the imaginary axis, or the phase of
the /4 polynomial is changed by an arbitrary constant not equal to 0° or 180°. The real
sections of a real network can be made reflection-free using real transformers, while the
complex sections will require a constant complex section whether the network polynomials
are real or not.

For all-pole filters, the same observations apply except that the last section will be a real
ideal transformer for the change of phase of the 4 polynomial.

The accuracy of the synthesis algorithm can be tested by comparing the canonic
parameters for the very narrow band 14th order Elliptic bandpass filter to those found in
[16]. This filter represents a very difficult case since a high degree of accuracy is needed in
the realization because it has a relative bandwidth of only 0.025% and the finite
transmission zeros are indistinguishable to three significant digits. From the comparison of
the parameters from Table A.74, it is clear that the two sets of parameters agree to at least 5
significant digits. The discrepancy may be due to the use of the sample characterization in
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the derivation of the example. A comparison for the complex case is not possible,
however, a realization using the CB1_jw section throughout gave a final ideal transformer
value of 0.83179907921888, which is in agreement with [16] to six significant digits, and
thus the complex realization is considered acceptable.

The complex analog networks derived will be used as the reference networks for the
wave-digital filters presented in the following chapters. Either the lumped element values
or the canonic parameters can be used to represent the sections. The freedom to choose
either set of parameters allows for two efficient and equivalent methods of realizing
complex digital filters, as outlined in Chapter V.



Chapter IV

Introduction to
Complex Wave Digital Networks

The arguments given in the Introduction suggest that the one-real approach to the
realization of complex reference networks is too restrictive and it will therefore be
abandoned for the following more general theory of CWD filters that allows constant
complex reference impedances.

It is known that the wave digital realization of a network maps an analog network to its
equivalent digital network in a one-to-one correspondence [6]. Also, if a digital filter
structure is found which possesses the desirable properties of low sensitivity and zero- .
input and forced-response stability, then it is necessarily equivalent to a wave digital filter
[18]. Thus the generalization of wave digital filters to the complex plane should have these
properties. The following new definitions realize this objective.

4.1 Definition of the Complex Voltage and Power Wave Variables

A new generalization of WD networks is found with the following new definition of the
incident and reflected voltage waves, A and B, in terms of the steady-state voltage V and
the current / where y is a frequency variable (discussed below) defined as follows:

AW=vW+ZI(y
B(y=V(y-Z*I1(y)
Z=R+jX (4.1a,b,c)

The impedance Z, henceforth known as the port reference impedance, is an arbitrary
complex constant containing a positive resistance R and a constant reactance X. The
above equations simply map an analog voltage-current network to an analog wave network
(in terms of the steady-state variables). Note that the conjugate sign in equation (4.1b)
which defines the reflected wave is necessary for the power equation to reduce to a simple
form (and thus for a stability theory similar to the real case to exist) as shown in the next
section. This mapping is most easily visualized in terms of a complex one-port network as
shown below.

72
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Figure 4.1: Complex one-ports in the analog and CWD domains.

The network is then transformed to the discrete (digital) domain with the familiar bilinear
transformation

<

=Z-1 1+
v z+1 1-y

(4.2a,b)

The complex frequency variable y is used to map rational functions in the digital domain to
rational functions in the y domain and is related to the frequency variable z = e57, by

—tanhlsT) -z =1 _1-2-1
wtanh(z) e =l (4.3)

where T is the sampling period. If s = 0+ jwand y= @, + j¢, the above becomes

h = e%l9-1
o +jo 0001 1 (4.4)

Thus the (real) frequency variables in both domains are related by

¢ = i

which maps the Nyquist range -7 < T < 7, in a one-to-one correspondence, onto the
Laplacian range -ec < ¢ < oo, Substituting the bilinear transformation (4.2a) into the voltage
wave variables (4.1) gives

N
——
N
—
N’
Il

V{z-)+2Z1(z)

B(zY)=V(z1)-2Z*I(z")) (4.6a,b)
and hence a wave analog complex network is transformed to a wave discrete complex
network henceforth known as the complex wave digital (CWD) domain.
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The return group delay given for analog filters by (2.43) can be expressed as a function

of the discrete variable z-! as given by

fet) Aoz

)= -4z 4.7
S = e D
and is related to the delay given in the analog domain by the following:
= 2YD(Y)y= 12t
zl)= 2( g (4.8)

o (1+2z1p

As suggested in [16], a more appropriate choice for the function in terms of z-! is given by
5(z) = 2 Dz

221 (DW= 1:2)
= 4.9)

1+2!

(1+z1p

8(z-1)
which is a function of D{z-1) <> D(y). On the unit circle z-1 = e~/ the above becomes

Dljg)lo = arfi
S(ejot) = o= anlef) (4.10)
Yoo
The above definitions (4.1) lead to the recognized form of the reflection coefficient for
complex impedances [40]

Z(y)-2* (4.11)

where Z (w) is the complex driving-point impedance of the one-port. The voltage and
current given by the inverse transformation are

v=~4*4A+2ZB
Z+Z*

1=4=8 (4.12a,b)
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Now consider a complex n-port N which can be characterized using a variety of
matrices (eg. scattering, transfer, etc.) and shown below.

Bz{ % ?Az 34 % ?A3 "-Bn-1§ Z’"’fAn_l

ol | <
Complex Wave Digital
Z] Passive or Lossless Zy
O n-port N -0
B ] An

Figure 4.2: CWD n-port.
Fettweis [6] has extended the work of Belevitch [40] to give a canonical representation

of the network in the form of a complex scattering matrix S, which relates the column
vector A of incident voltage waves A; to the column vector B of reflected voltage waves

B, i = 1(1)n by B = SA.

For a general complex n-port network with impedance matrix Z and port references
Z;, i = 1(1)n, the scattering matrix is given by

s =(Z-z*)Z+2)! (4.13)
which can also be rewritten as

S =I,-2R(Z + 2) (4.14)
where Z is a strictly diagonal port reference impedance matrix with the corresponding port
references on the diagonal, and R is the real part of Z. The voltage wave variables given in

matrix form are given by

A=V+ZI
B=V-Z'1 (4.15a,b)

and the inverse transformation is given by

G(A-B) (4.16a,b)
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where G is a real diagonal matrix containing the inverses of the real parts of the port
references, and is in general not equal to the real part of the port admittance matrix as

shown by

Z=R+ jX

G =R (4.17a,b)

where the inverse always exists because of the choice of the diagonal resistance matrix.
Intimately coupled with the definitions of voltage-waves are the so-called incident A
and reflected B power waves [6] as redefined for the complex case in matrix form by

) )
Il

GYAV +21)
GYqv.-z*1) (4.18a,b)

]

where G /2 is the positive definite square root of G.

4.2 Definition of Power

Using this characterization, the definition of the power (also called pseudo-power) of
an n-port in terms of the more commonly used voltage waves is given by

P=AT(G-S"TGS ) A

P= (4P -1B:P)&, (4.19a,b)

i=1

where the asterisk symbol denotes conjugation of all the elements within the matrix when

evaluated along the ¥ = j¢ axis. These expressions are derived using the fact that the
quadratic form of a Hermitian matrix is purely real as shown in the following derivation.

The definition of the apparent power in the analog domain is given by

U=TTy (4.20)

where U is a complex scalar, and V and I are voltage and current column matrices of the
same order, respectively. Substituting the definitions for the current and voltage in terms

of the voltage wave variables as given in (4.16) leads to
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U=1(A*T-B*T)G?(z*A + ZB) 4.21)

1
4

since
GT=G (4.22)

Rewriting the above and ignoring the scalar multiplier, we get
U=A"TG*Z*A - B*TG*ZB + A*TGZB - B*TGZ*A (4.23)

and after substituting the relation relating the incident and reflected signals B = SA, the
above simplifies to

U=ANG%2* - S*TG%ZS + G2ZS - S"TGZ*)A (4.24)
By definition, the power P is the real part of the apparent power U,
P =Re{U} = Rl A*NG?Z" - §*TGZS + G?ZS - S*TG2Z*)A) 4.25)

We can identify the Hermitian H and the anti-Hermitian HA matrix components of the
inner-most bracketed term as

H=(Z+2")G*-s'NZ + 2*)G?s
HA=(Z*-Z)G%+S*NZ" - Z)G?S +2G2ZS - 28*TG*Z* (4.26a,b)

where we have used the fact that diagonal matrices commute under multiplication. Thus the
real power is given by

P =Re(A™(H + HA) A} = Re{A*T(H ) A} + Re[A*T(HA) A} (4.27)

However, the quadratic form of a Hermitian matrix is purely real and the quadratic form of
an anti-Hermitian matrix is purely imaginary, and thus the power is given by

P=AN(Z+7)G%-s*NZ + 2G2S} A (4.28)

The above can be written in a simpler form by identifying (Z + Z*) as twice the resistance
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matrix R, giving (again ignore any constants)
P=AT(G-S*TGS ) A (4.29)

as given in (4.19a).
The conditions for passivity (P = 0) and losslessness (P = 0) (also called pseudo-
passivity and pseudo-losslessness) from the above equations are given by

~

G-S'TGS =20 (4.30)
(non-negative definite) and
G=STGS (4.31)

respectively, when evaluated along the y=j¢ axis.
The last equation shown above can be used to define the power wave (normalized)
form of the complex scattering matrix. Assuming that S characterizes a lossless network,

the normalized form of the scattering matrix, namely S , 1s unitary (the complex form of
orthogonal) and is given by '

S=Gs G (4.32)

This corresponds to simple scaling in the signal paths, that is, real scaling transformers at
the ports of the scattering matrix. This effectively sets the real parts of the port references
to unity, while the imaginary parts are not constrained.

4.3 Two-Port Scattering Matrix

For a lossless two-port, the scattering matrix S can be represented by

1
h OJR;Z—*

=1
S ~ 8
f -Chs

(4.33)

where R and R are the real parts of the port references, and f, 4, and g are known as
the canonic polyncmials and are functions of either yor z. The lower asterisk operator *
is the para-conjugate defined by
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A =r-v") o pal)=z7(") (4.34a,b)

where 7 is equal to the degree of the g polynomial. If the network is reciprocal, the
complex constant o is given by

g:j}é% (4.35)

The polynomial g has all of its zeros strictly in the left-half plane (ie. it is Hurwitz). For
lossless two-port networks the following relation holds

ggx= I;——ﬁl w + hhs (4.36)
2

which is known as the analytic continuation of the Feldtkeller equation. For normalized
networks, simply let

R1 =R, 4.37)
in the above equations (4.33,35-36), and thus the complex constant ¢ becomes

unimodular.
For a complex two-port characterized by an open-circuit impedance matrix

_[ #1212 ] 4.38
[ 221 222 (4.38)
with port references

Z1=R + X3

Zy =Ry + jX3 (4.39a,b)
the scattering matrix can be written as

S 1 (224-222)2;-2221 I'AZ - 2R121 2
-2122-21222-22211-Az - 2R2221 (Zl+21 1)25'21222'Az
Az = 211292 - 212221
(4.40a,b)

Similarly, if the complex two-port is represented by a short-circuit admittance matrix
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yu Yz
Y= { ] 4.41
Y21 Y22 ( )
with the port references as given above, the scattering matrix can be written as
* *
S= 1 [ -y22Z2+y1121-1+8yZ1 Z2 2R1y12 :}
- * *
-¥2222-91121-1-8,21Z2 2R2y21 Y1121+y2222-1+8y212
Ay =y11y22 - 112921
(4.42a,b)

and through the inverse transformation, the open-circuit impedance matrix is given by

- : [z, 421" he 0) +(21°g +Z1 g o) 2R f+0 }

(g-gx0)—(h—hr0)| 2Rf (2, g+Z28+0) - (2,*h+Zy e 0)
| (4.43)

Note that the condition for reciprocity [37] remains unchanged as

STG=Gs (4.44)
where S is now complex.
4.4 Impedances Mapped to the CWD Domain

Using the transformations from the voltage-current to the CWD domain, as given by
(4.12), simple combinations of impedances can be mapped into the corresponding
(equivalent) CWD element. For dynamic one-port impedances, the corresponding CWD
element is an allpass section. Only constant two-port elements will be considered in this
section, namely the complex transformer and the imaginary resistor in series and parallel
combinations.

4.4.1 One-port Impedances

The one-port dynamic and constant elements found in complex reference networks are
the voltage source, the resistor, the imaginary resistor, the inductor and the capacitor.
When each element is mapped to a CWD one-port, the port reference is chosen in order to
simplify the resulting reflectance and to guarantee computability of the resulting section.
The port reference is the complex conjugate of the driving-point impedance of the one-port
evaluated at ¥ = 1 (forcing the reflectance at ¥ =1 to be zero).
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Imaginary Resistor | Imaginary Resistor Resistor series LR. | Resistive source & I.R.
I I I R I R X
o | e | omaAA— WA
+ + + +
g
Y jX % ix 14 jX v Q)
| ) ]
plo—d | oI | o d | =
g
< V=jX1I V=jXI V=(R+jX)I V=E+(R+jX)I
= Rll -Xi 6+0
tarf2 )
° A A A A
= P .
(5]
& .
e Z -10 A el®Q z A
.\g B = 0 B = E
g B B
% Z=R1-jX Z=R1+jX; Z=R-jX Z=R-jX
B=-A B=eibA B=0 B=E

Table 4.1: Source and non-dynamic one-ports in the analog and CWD domains.

Table 4.1 shows the equivalence between the common non-dynamic one-ports in both
domains. The imaginary resistor can be viewed in two different ways, depending upon the
domain in which the equivalence is desired, which is related to the choice of the reference
impedance. The first view point is shown in the first column, where we require the
equivalence of the analog imaginary resistor. Here the reflectance is a simple inversion and
the real part of the port reference is arbitrary. The second view point as given in the second
column adds an extra degree of freedom (found in the general reference impedance Z)
which is needed when we desire the equivalence of the CWD imaginary resistor in the form
of a unimodular multiplier (in other words, finding the equivalent of a CWD unimodular
multiplier when viewed as a one-port).

The third column of Table 4.1 shows a simple complex termination, which corresponds
to a wave sink and zero input. A more general form of this is shown in the fourth column
with the inclusion of an ideal voltage source. In this case, the CWD one-port equivalent is
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a wave sink and an input equal to the value of the voltage source.
The one-port inductor and capacitor equivalences are given in Tables 4.2-3,

respectively.
Inductor Inductor series I.R. | Inductor parallel LR.
1 I I
o, S —
+ + +
= JjX
g .
g 1% L 1% L V jX L
&
> ; ; ]
4 —
=
<
JXLy
V=Lyl =(Ly +jX)[
ys (Ly+X) Veryix
A A A
-1 a; -1 a> a; 14
i;)\ ,
$ 4 T zZ T zZ T
O
o
8
o
Z B B B
E X
",
S - Z=L-jX Z=——
é Z= / L-jX
@) B:-Z'lA B=-z1A B'—'—'}‘Z‘lA
L—-jX
r= L+jX

Table 4.2: Inductive one-ports in the analog and CWD domains.

Notice that a unimodular multiplier in series with a delay is needed only for the section
with the inductor in parallel with the imaginary resistor. In all other cases, only a simple
inversion is needed (no computations are required and no quantizations are necessary).
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Capacitor Capacitor series LR. | Capacitor parallel LR.
I I I
+ + . +
é JjX
'i 1 C= 1% C—= |V ijx|] |C=<
g o— o— ©
v=__L v =(__L + 1X)l KX
Cy Cy 1+XC wI
A A A
LS S O
~ 33 Y
S
8l z T 7z T z T
)
g LS [T . O]
é B B B
g
E VA =l A ="1' —jX Z= _‘IX
S ¢ ¢ 1-jXC
% B=z'A B=z'A B=yz14
_[1- jXC)
T JXC

Table 4.3: Capacitive one-ports in the analog and CWD domains.

For this case, a unimodular multiplier in series with a delay is needed only for the
section with the capacitor in parallel with the imaginary resistor. Again, in all other cases,
only a simple inversion is needed (no computations are required and no quantizations are

necessary).
4.4.2 Non-Dynamic Two-Ports

The only new complex non-dynamic two-port sections are the complex transformer
[40] and the series and parallel connections of the imaginary resistor. Table 4.4 gives the
correspondence between these sections in the analog and CWD domains.
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Complex Transformer Series Imaginary Resistor | Parallel Imaginary Resistor
I n:1 1L I L I L
+ + | + + | + +
jX
. i X
wg Y |y ¥ |y Xy
2 3
=] - - - - - -
< 5] © 0 - 0 - 0
Vi=n*V, Vi-Va=jX1 Vi=jX(h+h
bh=-nl L=-b Vi=Vp
1
Ay n* B; A B, Ay B,
- O O 0 OB B0 o= IC )
3
2 T
z Z 7 Z V3 Z U Z
&n
8
E B n* A B, Ay By I Ay
é O O -0 O—agt -0 O—t- O —a—0
3 Zy=Ri1+j X, Z1=Ri1+jX) Li=Ri+jX;
X A
Ry -jX Z; , _9XZ, _Z;
Zy=———=—1 =R, -j(X+X LH=—r—"=—
% nn* nn* ZZ 1 ]( ]) Z; —jX !y
%
X

Table 4.4: Non-dynamic two-ports in the analog and CWD domains.

In each case, the second port impedance was chosen to simplify the scattering matrix of
the section and to guarantee computability of the resulting section. For the complex
transformer, the second port reference is a real scalar multiple of the first. Thus a complex
transformer cannot be used for an arbitrary change of reference impedance as in the real
case. That is, only the magnitude of the reference impedance can be changed with a
complex transformer, not the real and imaginary parts independently. Note that with a
unimodular turns.ratio the second port reference is the complex conjugate of the first, and
thus this section does not have an effect upon the port impedance. With the two-port series
imaginary resistor, the second port reference is the sum of the complex conjugates of the
first port reference and the imaginary resistor value. Similarly, with the two-port parallel
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imaginary resistor, the second port reference is the parallel combination of the complex
conjugates of the first port reference and the imaginary resistor value. Thus we can see the
domination (or carry-over) of the familiar characteristics of the analog domain.

The scattering matrix of the complex transformer is in the familiar form of scaling (a
pair of inverse multipliers). For the series imaginary resistor, the scattering matrix has a
particularly simple form where the signal quantities are passed through the section
unmodified. However, for the parallel imaginary resistor, the scattering matrix is in a
hybrid form of scaling, that is, one multiplier is the complex conjugate inverse of the other.
This can be thought of as a constant change of phase. Obviously, of the two
configurations for the imaginary resistor, the series form is preferred when a choice is
available since it does not involve computations.

It should be noted that the scattering matrices for the series and parallel connections of
the imaginary resistor cannot be derived by using series and parallel complex three-port
adaptors, respectively, since a delay-free loop would result.

The reference impedance for port two was explicitly chosen in the expressions given in
Table 4.4, however, this may be undesirable in some situations. It is possible to have
independent port references for ports one and two. However, care must be taken in the
placement of the resulting section in a digital network because the sections will not contain
a reflection-free port.

The general expressions for the series imaginary resistor, the parallel imaginary resistor
and the complex transformer as a function of both port references are given by,

respectively:

[Bl}= —Z;-%-Zz + jX 2R, [Al]
Byl Zy+Zp+jX 2R, Zy-Z, +jX |lA2
[Bl] ) . ~Z1Z,+ X (-2} + 2,) 2X R, MAI}
Byl Z\Z, + jX(Z1 + Z)) 2jX Ry ~Z\Z; + jX (2, - ;) ||A2
* * *
[Bl] S W [A‘] (4.452,b,)
B2l Zi+nn*Z, 2n Ry Zy— nn*Z; Aj :

The scattering matrices can be expressed in normalized form using (4.32) and are given
below for the series imaginary resistor, the parallel imaginary resistor and the complex
transformer, respectively:
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Bi|_ 1 { ~Z{ +Zy +jX 2YR1R; A
B,| Zi+Zp+jX 2Rk, Zi-Zy +jX |4,
§1 _ 1 l:—Zl*Zz +jX (—Zl* + ZZ) 2jX YRRy A\l
B, 2&+X(Z+Z)| o RE  -zz+x(z-7) |4,
B . ~Z{ +nn*Zy 2n* YRR |[ 4,
B Zi+nn’Zy| mVRER;  Zi-nn*Zy ||,

(4.46a,b,c)
4.5 Interconnection of Ports

A CWD network is composed of at least one and usually many building blocks
connected together in such a way that the resulting network has the same characteristics as
an analog reference network. However, before the blocks can be connected together, they
must be compatible for connection, that is, the port references for the ports to be connected
must be related. The conditions that must be satisfied for compatibility of ports numbered
1 and 2 are given in both domains as

Vi=V;
L=-1
By = A (4.47a-d)

After the substitution of these conditions into the definitions of the voltage-wave variables
(4.6), the following compatibility condition is derived relating the port references for the
two ports:

Z1=2, (4.48)

Thus the port references must be the complex conjugate of each other in order to be
compatible for connection (this forces zero reflectance at the port connection).
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4.6 CWDF Adaptors

It was noted in a preceding section that the wave-digital transformation maps an analog
network to a digital network and the digital network inherits the same characteristics as the
reference analog network. As an example, consider a ladder network composed of
interconnections of one-ports containing dynamic elements. The digital network inherits
the properties because each dynamic element is treated as a one-port, which is easily
transformed to a CWD element using Tables 4.2-4.3. Similarly, the interconnection of the
elements (both series and parallel) is mapped to the CWD domain as either a series or
parallel adaptor (usually with three ports). That is, the physical connection of analog
elements is transformed to series and parallel adaptors using the definition of the wave
variables and Kirchhoff's Laws. In general, an adaptor could have any number of ports
(but at least two); however, WD networks are primarily composed of two-port and three-
port series and parallel adaptors.

In order for the resulting CWD network to be computable, all three-port adaptors in a
network except one will have to contain a reflection-free port. Furthermore, the reflection-
free port must be connected to another CWD building block and chosen to eliminate any
delay-free loops that may otherwise exist [6]. A reflection-free port has the corresponding
reflected wave independent of the incident wave, and thus the corresponding diagonal
element of the scattering matrix is zero. Ordinarily, the chosen reflection-free port is not
unique, however, in the following the last port of the adaptor will arbitrarily be made
reflection-free with the understanding that other combinations exist.

All of the adaptors derived are lossless and reciprocal under infinite-precision
conditions and they can be made passive under finite-arithmetic conditions (after they have
been quantized). With a real adaptor after quantization, the port reference resistances
- corresponding to the quantized form of the adaptor can be found. This leads to
losslessness under quantized conditions. However, this relationship does not hold for
complex adaptors unless the adaptor reduces to the form of the real adaptor, when at most
the real parts of the quantized port reference impedances will be identifiable.

In the following, all definitions and derivations reduce to the known theory of real
wave digital filters if all quantities are restricted to be real as required for the generalization.

4.6.1 General n-port Complex Series Adaptor
The series adaptor is used to represent an analog series connection of one-ports in the

CWD domain. This involves mapping the Kirchhoff Laws and the conditions for a series
connection through the given transformation (4.6).
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4.6.1.1 Definition of the Complex Series Adaptor

The complex series adaptor must represent a series connection of ports in the analog
domain with complex port references. This condition is given by

Vi+Vo+Va+...+V,=0
[1=[2=]3=--~=1n (4.49a,b)

Assume that the port reference impedances are given by
Zy=Ry+jXy, Rp>0, v=1(1)n (4.50a,b)
From the definition of the wave quantities (4.6), we know that for ports v = 1(1)n

Av = Vv + Zv[v
By=Vy-Zsl, (4.51a,b)

Solving for Vy, from (4.51a) above and substituting with appropriate subscripts into
(4.49a), we get

A1-Zi +Ay-Z0l0 + A3 -Z3ls + ... + Ap - Znln = 0 (4.52)
However, all I, v=1(1)n are equal, and thus the above becomes
Ai+Ar+ A3+ + A - (21 + 20+ Z3+ .. + Z,) [, =0 (4.53)
Solving for I;, from (4.51b) and substituting into the above
2Ry(A1 + Ay + Az + ... + An);(Zl +Zy+Z3+ ...+ Z,)(Ay-By)=0 (4.54)
and solving for B,

2Ry(A1+ A2+ A3+ ...+ Ap)
i+ Zy+2Z3+ ...+ 2,

By=Ay- , v=1)n (4.55)

Define the complex scalar quantity known as the port coefficient

- 2Ry
ﬁv - 2y +Z2y+Z23+ ...+ 2, (4.56)



and finally
By=Ay-Bu(A1+ A2+ A3+ .. +A4,), v=11)n

Define the sum of the port reference impedances as

n
Ztot= Z Zi

i=1

then

*

B+ Byt Bt ot Pu=1 420t
Zior

89

(4.57)

(4.58)

(4.59)

From the above and (4.56) it is easily shown that the magnitude of the coefficient is

bounded above

B <2

(4.60)

although usually this bound is pessimistic. The complex scattering matrix for the general

n-port series adaptor is given by

. ) 1-B -B -5 B
B; 'ﬁZ 1- ﬁ2 ‘ﬁZ ’ﬂZ
B3 = -B B 1-B -B3
B, : :
. B B B 1-B.

A_3 (4.61)

The adaptor cannot be factored in such a way that a real n-port series adaptor can be
identified using real or complex diagonal scaling matrices, unless one port is reflection-
free. An attempt at this operation would generate a matrix with all but the diagonal
elements equal to the corresponding real series adaptor without a reflection-free port.
Unfortunately, the diagonal elements of the scattering matrix cannot be independently

scaled using diagonal scaling matrices.
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4.6.1.2 Dependent Coefficient
From equation (4.59) above, it is clear that one of the port coefficients B, is dependent
upon the remaining coefficients, and furthermore this dependency encompasses all of the
ports. Let the dependent coefficient be the nth coefficient. Solving for 3, and substituting
into (4.55) we derive '
By=Ay-Bo(A1+ A+ A3+ ..+ 4,), v=11Dn-1

*
tot

B,=-\Bi+By+Bs+..+B,_1+

(A1 +A2+A3+...+An)

tot

(4.62a,b)

It is clear from (4.56) that the number of real independent parameters that characterize the
series adaptor is n, and they are given by

n
X2, 2<v<n, and LY X, (4.63)
Ry
i=1

which is one more than the real case. Clearly, the adaptor coefficients can be determined
from these parameters. However, only the real parts of the actual port references can be
found, whereas only the sum of the imaginary parts of the references is known.
4.6.1.3 Reflection-free Port

The n'h port can arbitrarily be made reflection-free by setting S, = 0 in the scattering

matrix. This adds another constraint which allows the removal of another coefficient,
namely '

B.=1 (4.64)
Substituting this into (4.56) we get
Zy+Zo+Z3+ ..+ 2y 1 =2, (4.65)
or, in terms of the port resistances and port constant reactances |

Ry=Ri+Ry+R3+..+R,_
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0=X1+Xo+X3+..+X, (4.66a,b)

Thus the sum of the port impedances is purely real, and from the definition of the
coefficients B, from (4.56), it is clear that with a reflection-free port with general complex
port impedances all of the coefficients are purely real (thus the scattering matrix is purely
real). Itis now clear that this case reduces to the definitions of the real series adaptor with a
reflection-free port and the generalization to the complex plane requires no extra
computations over the real case. Also, for every port we have an extra degree of freedom
(that is, an extra parameter) in the imaginary part of the port impedance which can be used
to simplify the form of other CWD elements.

In this case the values of the coefficients have a particularly simple form. It is clear that

n
Y Zi=2R, (4.67)
i=1
which, when substituted into (4.56) leads to the following condition

Po=72, v=1n

Nl’ic
3 e

_ Ry )
ﬁvw(fh +Ry+...+R,.q1) v=1(Dn (4.68a,b)

and thus there are only (n-2) real parameters. Again, given the parameters, the real parts
of the port references can be found. However, no information is given for the imaginary
parts of the port references. The condition on the nth coefficient (4.65) leads to the
following relation

*

Byt Byt Bat ot Py = Lot (4.69)

Ztot

Using the same argument as the earlier case, one coefficient is dependent upon the others
and it can be removed. The (n—l)th coefficient can be arbitrarily chosen as dependent, and
the following equations are derived,

Bv=Av+ﬁv(Bn‘An) ) U=1(1)n-2
Bn-1=“(An+Bl +Bz+B3+...+Bn_2)
Bp=-(A1+ A2+ A3+ ..+ A1) (4.70a,b,c)
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4.6.1.4 Symbols of the General n-port Complex Series Adaptor

The symbols used for both the dependent port case and the reflection-free case are
shown below, where the second figure has a bar associated with the reflected wave of port
n showing that it is reflection free.

Bzifz f* 5] * §»

A] A] B,
o— S o - -
z R S— Zz —

1| g5 s B
Ot ] — ot B - -
By i B e

Figure 4.3: Symbols used for the n-port complex series adaptor.
4.6.1.5 Complex three-port Series Adaptor

The complex three-port series adaptor deserves special attention because of its
usefulness in CWD networks. With the complexity of the form of (4.62), the non-
reflection-free case is presented without a dependent coefficient with the following
scattering matrix

B 1- .Bl “ﬁl ‘ﬁl Aq
{32} =l B 1-B -P {Az} 4.71)
B B 1-p |

where the complex coefficients are given by

= 2Ry -
ﬁv—zl 7,12 v=1(1)3 (4.72)

From the earlier observations, the adaptor is a function of three real parameters. Again,
note that this adaptor cannot be factored in such a way that a real three-port series adaptor

can be identified using real or complex diagonal scaling matrices. A wave-flow diagram is
given in the following figure.
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4, As
O g + ~-0
) |
O—g () () 0
B, -h -B By

Figure 4.4: Wave-flow diagram of the complex three-port series adaptor without a RF
port.

The reflection-free case with port three reflection-free and a dependent coefficient 2 has
the following scattering matrix,

B 1- ﬁl '.Bl 'ﬁl Aq
BZ = ﬁl -1 ,Bl ﬁl -1 A2 (473)
Bs -1 -1 o |
where the real coefficient is given by
-_ R
Bi=x % (4.74)

From the earlier observations, this is exactly the definition of the real three -port series
adaptor with port three reflection-free. Clearly, in this case only one real quantization is
required in the binary implementation of this adaptor, and similarly the adaptor is a function
of one real parameter. The wave-flow diagram is given in the following figure.
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Ay
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-B
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o—= g () -&—0
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Figure 4.5: Wave-flow diagram of the complex three-port series adaptor with a RF port.

The port impedances are related by

Zi+Z,=17;

The scattering matrix given as a function of the port references is given by

Ry —R) —R,
Ri+Ry Ri+Ry; Ri+R;
B
By|=| R _R Ry
B Ri+ Ry Ri+Ry Ri+ Ry
3
-1 -1 0

which can be expressed in normalized form using (4.32) as given by

R2 YRRy, _—YR;,
§1 Ri+R; Ri+Ry VR1+R2
B,|=| YRRz R, -YRy
R Ri+Ry Ry+Ry {R{+R;
B
S ) -

_‘/R1+R2 VR1+R2

4.75)
Ay
Ar 4.76)
As
A,
A, 4.77)

The symbols used are shown below, where the second figure has a bar associated with
the reflected wave of port three showing that it is reflection free.
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Figure 4.6: Symbols used for the three-port series adaptors.
4.6.2 General n-port Complex Parallel Adaptor

The parallel adaptor is used to represent an analog parallel connection of one-ports in
the CWD domain. This involves mapping the Kirchhoff Laws and the conditions for a
parallel connection through the given transformation.

4.6.2.1 Definition of the Complex Parallel Adaptor

The complex parallel adaptor must represent a parallel connection of ports in the analog
domain with complex port references. - This condition is given by

Vi=Vo=Vs=...=V,
L+hLh+h+.,..+1,=0 (4.78a,b)

Assume that the port reference impedances are given by
Zv = Rv +ij , Rv > 0, V= l(l)n (4.79a,b)
and define the port admittances as

Yy =_Zl_=Gv+ij , V=1Dn (4.80)

v

From the definition of the wave quantities (4.6), we know that for ports v = 1(1)n,

Av = Vv + Zv[v

By=Vy-Zyly (4.81a,b)
Solving for I, from (4.81a) and substituting into the condition for a parallel connection
(4.80b), we get ‘
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(A1-V1) Y1 +(A2-V2) Yo+ (A3-V3) Y3+ ..+ (A,-V,) Y, =0 (4.82)
However, all of the port voltages are equal, thus
(A1 - VU) Yl + (Az - V‘U) Y2 + (A3 - Vv) Y3 + ...+ (An - VU) Yn = O (4.83)

Substituting the definition of the port voltage in terms of the incident and reflected waves of
the port, namely

_ZvAv-ZuBy
Vy=Segts (4.84)

into (4.83) and solving for the reflected wave we get

_[2Ru(Y1A1 + YoA2 + Y3A3 + ... +YVA,)\ Z3 B
Por Zy(Y1 + Yo + Y3+ ... +7,) Zy Ay , v=1Dn (4.85)

Define the complex scalar quantity o as the mth coefficient associated with port L by

m_ 2Ry Y
o ZyY1+ Y2+ Y3+ ...+ 7Y, (4.86)
and define the unimodular constant &v as
~ Z* ~
Op=22 |ayl=1 (4.87)
Zy
giving the new form of By, as
By= 0lA; + 03Ar+ QA3 + .. +alA, - Ap Ay , V=1(D)n (4.88)

Other choices for the definition of the coefficients are possible, however, the choice
presented here gives a more uniform scattering matrix and the coefficients collapse in a
natural way to the definitions of the real parallel adaptor if the port references are purely
real. Note that the sum of the coefficients over the port v is

o+ o+ ol + .. +a{;=3§2 (4.89)
v

and thus the magnitude of each coefficient is bounded above by
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|| <2 (4.90)

although usually this bound is pessimistic. The complex scattering matrix for the general
n-port parallel adaptor is given by

al-op  a? o} ol
B, 1 2 = 3 n Ay
B, 4) oy -0 o5 125 Aoy
B3| = og?} a?? 063? -0z - of Aj (4.91)
B, ' A,
L ol o2 o3 ol - oy,

Similar to the comments for the series adaptor, the parallel adaptor cannot be factored in
such a way that a real n-port parallel adaptor can be identified using real or complex
diagonal scaling matrices, unless one port is reflection-free. Again, an attempt at this
operation would generate a matrix with all but the diagonal elements equal to the
corresponding real parallel adaptor without a reflection-free port. As mentioned earlier, the
diagonal elements of the scattering matrix cannot be independently scaled using diagonal
scaling matrices.

4.6.2.2 Dependent Coefficient
Similar to the series adaptor case, from equation (4.89) above, it is clear that one of the
coefficients o' is dependent upon the remaining coefficients for a particular port v, and

obviously this dependency is not constant over all ports. Let the dependent coefficient for
port v be the vt coefficient. Solving for o and substituting into (4.88) we derive

n
By =A4; Z of (A - A)
i=2

v-1
Bv=Av-z o (Ay - Z o (Ap- A), v=2(1)n-1
i= i=v+1
n-1

Bn=Ap- ok (A, - A) (4.92a,b,c)
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4.6.2.3 Reflection-free Port

The nth port can arbitrarily be made reflection-free by setting S, = 0 in the scattering
matrix (4.91). This adds a constraint on ¢}, namely

~

A=Z

o=y, Z (4.93)
Substituting this expression into the definition of offt, we get
Yi+Yo+ Y3+ .. +Y, 1=Yn (4.94)

which is similar to the expression found for the series adaptor (the only difference is that
the above expression uses admittances while the earlier expression used impedances).
Equation (4.94) can be rewritten in terms of the port conductances and susceptances as

Gun=G1+Gy+G3+...+G,_1
0= Ql + Q2 + Q3 + ...+ Qn (4953,b)

From the definition of the coefficients ' and the condition given above (4.94), it is clear
that the reflection-free property does not lead to a real scattering matrix for the parallel
adaptor.

With the added constraint given by (4.93), a new condition on the sum of the
coefficients for port » is derived as follows

ol+ol+ad 4. ol l=1 (4.96)
Similar to the earlier case, a coefficient associated with port » is dependent upon the
others, and thus it can be removed. Let coefficient (n-1) be the dependent coefficient of

port n, and for the other ports v, let the v coefficient be dependent. The following
equations are derived

n
Bl =A1-Z a{ (A1 -A,')
i=2

Bu=Ay- ) ob(Av-A) Y. ab(Av-4) . v=21)n-2
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n-2
Bui=(1-0 ) A 140y Ag- D 0f 1 (An.1-A)

i=1

n-2
Bu=An1- D 0h(Au1-A) (4.97a,b,c,d)

i=1

4.6.2.4 Symbols of the General n-port Complex Parallel Adaptor
The symbols used for both the dependent port case and the reflection-free case are

shown below, where the second figure has a bar associated with the reflected wave of port
n showing that it is reflection free.

s[%fs sl %

sl |7 ol &

Zr | | a |9 | &
O—— Lbhmaa Omet—] ) N
B | % B, % T

4l g 1 k4, 1

Figure 4.7: Symbols used for the n-port complex parallel adaptor.
4.6.2.5 Complex three-port Parallel Adaptor

The complex three-port parallel adaptor deserves special attention for the same reason
as the three-port series adaptor. With the complexity of the form of (4.91), the non-
reflection-free case is presented (for completeness) without a dependent coefficient with the
following scattering matrix.

1~ 2 3
B o -0 alA (241 Al
Bal=| o od-ap o3 ||A2 (4.98)
B ~ |lA
3 o of o3-03]?

Again, note that this adaptor cannot be factored in such a way that a real three-port parallel
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adaptor can be identified using real or complex diagonal scaling matrices.

One would question whether simplifications may occur in the scattering matrix which
would allow fewer independent quantizations when the definitions of the coefficients are
inserted. To investigate this, consider a different (but equivalent) form of the scattering
matrix with a new definition of the coefficients. Let the coefficients be redefined by

2Y,
Y1+Y2+Y3+..+Y,)"

oy = v=1(n (4.99)

which associates one coefficient per port. Now the sum of the coefficients over all the
ports is exactly two, and one coefficient is dependent. Let this coefficient be the third, after
substituting this constraint, the scattering matrix becomes

Rlal-Z’f Rioy Ri(2- 01 - x)
Z, VA Z
l:g;J = R_%‘ll_ Rzaé - Z; R2(2 'Zal - a2) li::;J (4100)
B3 2 2 2 Az
R3a; R 1. Rale + )
_ Z3 ' Z3 Z3 |

The matrix appears to be not only a function of two independent coefficients ay, but also
three independent ratios

Ro  v=11)3 (4.101)
Zy

Clearly, no simplifications occur leading to fewer independent quantizations. A wave-flow
diagram is given in the following figure.

Figure 4.8: Wave-flow diagram of the complex three-port parallel adaptor without a RF port.
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The scattering matrix of the complex three-port parallel adaptor with port three

reflection-free and with the alternate definition of the coefficients as given by (4.100) is
given below

R1a1 _ﬁ R1 Z;;__ 0!1) RlZ;
Zy Z Z1\R3 Z1R3
B4 * * Ay
B,| = Rooy Ry|Z3 0‘1) 2 RyZs Ay | (4.102)
B Zy Z>\R3 Zy ZoR3 A
3 3
Ry 1-R3 0
L Z3 Z3 _
where the port admittances are related by
Yi+ Y=V} (4.103)

Again, to investigate whether simplifications occur when the scattering matrix is given

in a more elemental form, consider the following equivalent representation of the above
scattering matrix,

—

=Gy Yy
G+ Gy Yi"

Gy Y1
Gi1+ Gy Y;

Y,
Y1+ 1

where

G Yp
Gi+ Gy Yi"

-G1 Yy
G1+ Gy Y;

Y,
Y1+Y2

Gy

vy + v;)

G+ Gy

Gy

Y{
(¥; +73)

G1+G2

Gy=Re{Y,) , v=1(1)3

The scattering matrix can be factored as shown below

*

Y,

(4.104)

(4.105)
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L o o || _& G G1
By Yq G1+Gy G1+Gy G1+Gy y 0 0 A
B } o L o - GzG G-G1G . GzG { 01 0 H "
* + + +
o o L. |
L Y3

(4.106)

where again Y3 is given by (4.103). The outer most matrices on the right side of (4.106)
correspond to simple inverse conjugate multipliers in the signal paths at the ports, which
appear to be very similar to the CWD form of a parallel connected imaginary resistor as
given in the last column of Table 4.4. However, the sections represented by these matrices
do not correspond to the parallel connected imaginary resistor in general, since the value of
the imaginary resistor must remain real. Notice that the inner most matrix is only a function
of G1 and G7, and appears to have the same general form as the reflection-free series
adaptor. The inner most matrix can be further factored to give

Q% 0 o0 |[_-G2 G2 1 YL 0 0 |
By Yy Gi+Gy G1+Gp G1 Aq
By |=| 0 Gy 0 Gy Gy 1 0 Yy 0 Ap
B vX G1+Gy G1+Gy Gy A
3 2 G G 3

G 1 2 o o B3
0 0 3 |LG1+G; Gi+Gy G3 |
L Y3 )
(4.107)

The additional factors that were removed correspond to real ideal transformers located at the
ports. The inner most matrix is the definition of the real three-port parallel adaptor with a
reflection-free port, and thus it can be concluded that the complex three-port parallel adaptor
is equivalent to a real three-port parallel adaptor (with a reflection-free port) with inverse
conjugate multipliers in the signal paths. The above scattering matrix can be expressed as a
function of the real parameter «; defined by

G
=gl (4.108)

as given by
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Lo o (o, o
Bl Yl a-1 1-o 1 Gl A]_
{BH 0% o a @ 10 2o [Az}
B3 ) oy 1-o 0 Y3 A3
o o & 0 0 &
§ Y3 ) )
(4.100)

The wave-flow diagram is given in the following figure.

_n Y A __G’?;
Al Gy 52— 2 Y3 B3
o 0O—+) st

_al
- O— b

o—a—O—+) et} ~—(+) O—=—o
B, G Gq ¥ A

Y} nLat Gs

Figure 4.9: Wave-flow diagram of the complex three-port parallel adaptor with a RF port.

From (4.104), it is clear that the complex three-port parallel adaptor with a reflection-
free port is a function of three real parameters, namely

Gy Q1 &
{G1 oG (4.110)

where again the G; are given by (4.105) and correspond to the real parts of the port
admittances. Note that the ratio 03/G3 can be expressed as a function of the ratios given in
(4.110) using (4.103) as shown below.

Go o1

03 G, ||@2, Gy
=0 M1 pxe M1 4,111

Gy Gy

The symbols used are shown in Figure 4.10, where the second figure has a bar
associated with the reflected wave of port three showing that it is reflection free.
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B A, B,

Figure 4.10: Symbols used for the three-port parallel adaptors.
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4.6.3 Equivalence Between the Reflection-free three-port Adaptors

The complex series three-port adaptor with a reflection-free port has the same scattering
matrix as the real case (4.73-76), and the complex parallel three-port adaptor with a
reflection-free port can be decomposed into a real parallel adaptor with inverse-conjugate
multipliers in the signal paths at the ports (4.107-109). These observations leads to an
equivalence between the complex series and parallel adaptors with a reflection-free port
since a real three-port adaptor of one type can always be replaced with the other type[6].

Consider the scattering matrix of the complex parallel three-port adaptor with port three

reflection-free as given in (4.109) and shown below

1 o o
YI -1 1- (94} 1
Sp=| 0 _Q% 0 o -0
) G o1 1-oy 0
o o 1
_ Y3 |

The matrix can be factored as shown below,

Yy
G1 0
Q)
O '6‘2""
0 0

(4.112)
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__(lel 0 0 _ Yl 5
Y 0
! 1 G l-og -0 -y Gy Y
S,=| o A% o g o ol 0 Z
Y3 1 -1 0 (1-n)G2 vy
A -G3 0 0 G3
0 o =3 L .
_ Y3

(4.113)

The inner most matrix is the definition of the series adaptor with port three reflection-free as
a function of the parameter ;. Since this scattering matrix is exactly the scattering matrix
of the complex series adaptor, the following equivalence is given

B, A,
1-04)Gy _ 1
YE‘ (1- o) Gy
o 2 <
Ay B, A, uGy Y3 B,
O h—&=~0 op—(O—O0—— He—0—_#o0
' = —_—
Ol oq,ﬁ,—& O Ot —— Ottt O ) ~-0
B, G Gy Aj BlilG_l_ o Za_ As
Y3=Y] +Y, YT 0 = Gl(il 5 @3

Figure 4.11: Equivalence between the complex parallel and series 3-port adaptors.

Similarly, the complex three-port series adaptor with port three reflection-free has the
following scattering matrix

1-p B B |
Ss=| B-1 B Bi-1 (4.114)
-1 -1 0

The above matrix can be expressed in terms of the scattering matrix of the complex parallel
adaptor as given below:
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-Y r~ -
1 0 0 BiG1 0 0
BiG1 Y1
v Complex Parallel Adaptor ( 1 )
S, = 0 ) 0 Scattering matrix 0 ————[;1 2
(1"8 1)G2 Sfunction of B, —Y—l, I 2
_y * G Gy 0 0 23_
0 0 -3 L Y3 |
_ o3 |
(4.115)
as shown in the following figure,
B, Ay
3
=) (1-8)G,
(1-8)62 )

;B 2 ? A BiG1 ~—Y§
Ay B, Ay I G3 Bj
O] H—e—0 o—(O—0—fp— H»—o0—O#o0

S W =

Oet— 5  e0 owO—o—w] B0 | 4050 e
Bl A 3 B 1 _Yi*‘ Gl GZ G3 A 3

* %

Z\+2Zp =2, BiGy =R
A R{+Ry

Figure 4.12: Equivalence between the complex series and parallel three-port adaptors.

4.6.4 Complex Two-port Adaptor

The two-port adaptor can either be defined as a series or parallel adaptor. However,
from the convention set by Fettweis [6], it will be defined from the parallel adaptor. The
complex two-port adaptor simply adapts the reference impedance seen from a port and has
the following symbol as a function of one complex scalar parameter .



107

Ay By
o 0
Z Zy
O—t—]| O

Figure 4.13: Symbol of the complex two-port adaptor.

The heavy bar identifies port one with the definition of ¢¢ in (4.118). The adaptor
represents a simple connection in the analog domain, and thus the conditions that must be
satisfied are given by

Vi=W,
L=-1;
Z1= Rl + jX1
Zy = Ro + jX, (4.116a-d)

where Z; and Z, are the port references for ports one and two, respectively. When the
above equations are mapped to the voltage-CWD domain, the following scattering matrix
results:

_ z;"—zz) 2R,
{Bl}= 1+ 2y Z1+ 27y [Al]
B; 2Ry  Z1-2,
21+ 2y 21+ 2,

4.117)

Define the complex coefficient of the two-port adaptor as

Zy -2,
== "= 4.11
* Zl+Zz ( 8)

which is a function of two real parameters, namely

R; (Xi+X5)
{R?_, —__R2 } 4.119)

After substituting the definition of the complex parameter into (4.117), the scattering matrix
becomes
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_a*(l—a) 1-aa*

[Bl}= tme’l - [Al} (4.120)
Ba -« o A2

which is a function of one complex parameter (as expected since it must be a function of
two real parameters from (4.119)). The diagonal terms are bounded in magnitude by one
and the off-diagonal terms are bounded by two, which is expected for voltage-wave
reflectances and transmittances. Also, the complex two-port adaptor is lossless under
infinite-precision conditions as expected. The wave-flow diagram is shown in the

following figure:

PEEK

—a
o - +

Figure 4.14: Wave flow diagram of the complex two-port adaptor.

which is similar in form to the real case except an inversion is replaced by an unimodular
multiplier.

The scattering matrix (4.120) can be factored by expressing the constant complex
parameter in polar form

o= el (4.121)

where \ ,Bi < 1 (the equality holds only when the real part of one port reference is zero,
which is ordinarily not allowed), as given by

[ (1_ﬁ) 0 ] l1-o 0
‘. 1-o* {e.je/z 0 } —B 1+B {e-je/z 0 } 1-8
- 0 . 0 &2l 1-B B eo2ll 0 1

(4.122)



109

The inner-most matrix is the definition of the real two-port adaptor as a function of the real

parameter 3, which corresponds to the magnitude of the complex two-port parameter. The
outer most matrices correspond to mutually inverse conjugate multipliers in the signal paths

(similar to the parallel connected imaginary resistor), and is represented by the following
signal flow diagram:

Figure 4.15: Signal flow diagram of mutually inverse conjugate multipliers.

The analog equivalent of the above section is given by one of the following constant
sections, depending upon which port of the above is considered independent.

X1 X5

X2 X

O- o] o o
a) b)
Figure 4.16: Analog equivalent of inverse conjugate multipliers:
a) given in terms of port two, b) given in terms of port one.

The imaginary resistor values for Figure 4.16a) are given by

X _illr-1)2, + (7*’* - 1)z,
Y7

JR1

r-v

(4.123a,b)

with the port impedance of the second port



110

Ry = —— (4.124a,b)

where R (Rz) is the real part of Z; (Z7). Similarly, the imaginary resistor values for
Figure 4.16b) are given by

X =21_1__22_7’Z_
Y-7

Xy = ___][(')’* - 1)Zz’)/+ (Y— l)Zz* 7*]

. (4.125a,b)
Y=7

with the port impedance of the first port
Z1 = 2——-—-————-—(1 — 'Y*)Rf'}"}’*
=7
R1=Ryyy" (4.126a,b)

In both cases, the real parts of the port impedances are related by a real constant.
The remaining matrices of (4.122), which are identical and are given by

edb2
o o (4.127)
e

are a special case of the above Figure 4.15 and correspond to sections as shown in the
following figure:

o-&—o{ )0

elé

Z 7))

o—@—()—to

elé

Figure 4.17: Complex section with unimodular multipliers.
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where 6 = —6/2 and § = 6/2 for the sections on the left and on the right of the real two-port
adaptor, respectively. In this case, the values of the imaginary resistors from Figure
4.16a) simplify to

_ {:003(5)— I]Rl — sin (5) Im{Z,)

X =
sin (6)
X, =% (4.128a,b)
sin (6}
with the port reference
Ry -6 . S
Zy = 562 =R1—1R1tan§-
Ccos (_2_,_)
Ry =R, (4.129a,b)

Similarly for Figure 4.16b), simply exchange the numerals 1 and 2 in the above
expressions for the imaginary resistors and the port impedances.

Note that for the section with unimodular multipliers shown in Figure 4.17, the real
parts of the port impedances of both ports are equal; that is, the section does not change the
real part of the port impedances. This is consistent with the theory of normalized sections
since the scattering matrix is unitary (see Section 4.2). Also note that the imaginary part of
one port impedance as given in the above equation (4.129a) is independent of the imaginary
part of the other port impedance. This independence can be removed by inserting a third
imaginary resistor in series in order to form a T-connection, with the value equal to the
imaginary part of the appropriate port impedance.

A section with one of the unimodular multipliers equal to unity in Figure 4.17 can be
considered to be equal to the section in Figure 4.17 cascaded with a complex transformer
with a unimodular turns ratio. In this case, since a transformer with a unimodular turns
ratio does not effect the port impedance, the resulting section contains the same external
port references. The complex transformer can be shifted through the network using
flowgraph transformations if this becomes desirable.

The factorization of the complex two-port adaptor as given in (4.122) into the sections
mentioned above is shown in the figure below:
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l-«
1-8 eJ9R | I ejonr
I
oo—O—o0——O—O0—b— —e0o (OO0
A | | [ B,
|« I I
Z % % Z | Z Zs | % 2
B, I I I 4,
O+ O0—p— B —p—O—=
1-p eon ejor
1-o

Figure 4.18: Equivalent of a complex two-port adaptor in terms of a real adaptor.

where the inner two-port adaptor is real and the dashed lines represent port
interconnections. Using equations (4.124a-126a), the port impedances Z3, Z4 and Zs can
be determined as a function of ¢ from (4.118) and 8, 6 from (4.121). The value of the
real parameter 8 of the real two-port adaptor is given by the following ratio:

_Re{Z4) - Re{Zs)
h= Re{Z:) + Re{Zz} (4.130)

This can be derived by identifying Z4 and Zs, and by recognizing that 8 ? = aar* from
(4.121) and the ratio of the off-diagonal terms of the scattering matrix (4.120) gives,

Ry __(1-0a”) (4.131)

Ry (1-0)1-a)

Note that the real parameter 8 as given above (4.130) is consistent with the theory of real
WD filters. The analog domain equivalent of the real two-port adaptor with the complex
port impedances Z4 and Zs is a series connected imaginary resistor with a value of

2,2, -2,°2,") -2, 2," - 2,2,*)

4.132)
j(B+1)R,

X, =1
175

Thus the analog equivalent of the network given in Figure 4.18 consists of a ladder
connection of seven imaginary resistors (four from the two sections to the left and two
from the section on the right of the real two-port adaptor, and one from the real two-port
adaptor itself). However, the values of the imaginary resistors are related in such a way
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that the section reduces to a short circuit between the two ports. This is expected since the
analog equivalent of the section in Figure 4.13 is originally defined from a simple
connection as defined by equations (4.116a,b).

The power-wave (or normalized) form of the scattering matrix, as defined by equation
(4.32), is given by

(4.133)

=R

The above given in terms of the port references is given by

R _(z;‘—zz 2RR; |
B Zi+2Z,) Z1+2, |[4
{j} S e (4.134)
B2 2{R\R; Z1-2, Aj
Zl +Zz Zl +Zz

Since the magnitude of « is bounded above by one, let
o ={cosp) ei® (4.135)

and define

227 = __11 - (4.136)
-

Substituting the above two equations into the normalized form of the scattering matrix, we
derive the following more elegant form

B, - (cosﬁ) ei(27-6) (sinﬁ) ejv Ay
= _ _ R (4.137)
B, (sinﬂ) eiv (cosﬁ) ei® A,
Again, this scattering matrix can be factored as
g = [efY 0 He'f“)/z 0 } —cos B sinfB [e‘ff’/2 0 Mef?' 0 }
01 0 e92]] sinf8 cosf 0 e&921L0 1
(4.138)

Notice that the inner most matrix is the definition of the normalized real two-port adaptor
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given in [16]. The same comments apply to the other matrices as in the earlier case since
they correspond to three sections, each with equal unimodular multipliers in the signal
paths.

elr e 7012 ejor
o-/\b—o-———o-b—o O ———D—o—o—b-—o
Ay B,
3, A,
ey e~012 ejor

Figure 4.19: A complex normalized two-port adaptor in terms of a real adaptor.

4.6.5 Equivalence Between the Complex Two-port Adaptor and Complex
Transformer

Consider the normalized form of the CWD complex transformer with general port

references given by (4.46c¢) and the complex two-port adaptor given by (4.134). The
scattering matrix for the transformer is written as

~Z1 +nn*Zy 2n*VRiR;

§=—1 g (4.139)
Zi+nn" Zy | 2nYR1R; Zi-nn* Z,
which can be expressed as
~Z{ + nn* Z, n*
n
_ 2niRiRy | AR
§ = <MKy . (4.140)
Z1 + nn* Zs 1 Zy—nn" 2,
2nVR1R2
or as ) .
—Z{ +nn* 2, 1
2nYR1Ry
S = _2nYR1Ry 1o (4.141)
Zy +nn* Z, ) Zi-nm*Zy || gn*
L 2n*VRiR; |- "

By setting n = 1 in either of the above scattering matrices, the definition of the complex

two-port adaptor is found as given by (4.134), with the complex parameter given in
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(4.118). Note that if unnormalized matrices are used, the same conclusions can be drawn.
" Another case of interest is found by placing the following constraint on the port
references in the above scattering matrix (4.141)

Zy=2Z,

(4.142)

which is the matching condition for port references discussed in Section 4.5. Substitute
(4.142) into (4.141) in order to derive

_—Zf +nn* Z; ] ]
2nR1
o __ 2nR Lo
Zy + nn* Z7 ; Zy—nn*Zy || gnt
L 2n*R1 _ "

(4.143)

Note that if unnormalized matrices were used, the above matrix would also have been
generated. Consider equating the left-most scattering matrix

SC=

__ Z; (nn* - 1)
2nR1
2nR1
Zy + nn* Z 1

A (1 - nn*)
2n*R1

to the normalized two-port adaptor scattering matrix given by

- (cosﬁ) eil27-6)

S, =
2 (sinﬁ) eV

in order to derive the following equations,

- (Cosﬂ ) e-ifei
. , sinf3
sinp) el )

( 'B) . = (sinﬁ) e’y

(cosp) ei® 1

Z1 (1 - nn*) _cosp 0-i0ei
2nR, sinf

Z1+nn* ZI‘ _ edr
2nR, sinf3

|

(4.144)

1

cosp elbe-jy
sinf3

(4.145)

(4.146a,b)
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Solve for n from the two above equations as

n= (sing) ei7 (4.147)

1+ (cosﬁ) eJ0ei2y

which gives a relation between the complex turns ratio and the complex two-port adaptor
parameter. The above can be simplified by recognizing that

(sinf)esr= V1 - aar® 1/ IL_—Q‘*—
-

(cosB) ev%ei2r = a* Il—i (4.148a,b)
-
in order to derive
n= \/(1 (—1axl ‘*‘)"*) (4.149)
Rall 2494

and thus the complex turns ratio corresponding to a normalized complex two-port adaptor
is purely real. Note that the remaining section in (4.143) represents a straight pass-through
connection since the turns ratio is real.

Note that the complex two-port adaptor can also be derived from either the series
(X = 0) or parallel ( = oo) connected imaginary resistor as given in (4.45a,b) for the
unnormalized case and (4.46a,b) for the normalized case, respectively. The values of the
imaginary resistor in each case correspond to a pass through connection in the analog
domain, which again shows the carry-over of properties between the CWD and analog
domains.

4.6.6 Complex Two-port and Three-port Adaptor Equivalences

‘Two normalized real two-port adaptors can be used in an elegant combination in order
to realize either the series or parallel real three-port adaptor. The same equivalents used in
the real case can also be used for both the complex reflection-free series and the complex
parallel three-port adaptors, since each adaptor can be expressed in terms of the
corresponding real adaptor. The two equivalents will be given using the normalized forms
of the respective scattering matrices.

Consider the section composed of two normalized complex two-port adaptors as shown
in the figure below:
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E
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Figure 4.20: Section composed of complex two-port adaptors.

| 2

where o is the parameter of the normalized complex two-port adaptor. The scattering
matrix with the ports labelled as above is given by

i (~o+ oo +1) V—a+iv-ad + 1 (-1 B
—a’ +1 Vo' +1 -0 +1
S - Y—a+1v-ao +1a o2 Y—a+ 1v—aa" +1
N +1 N-o+1
(x—1)a" V—a+ 1V-ao" +1 0
i —o +1 N0k +1

(4.150)

However, if the parameter O. is real, then the scattering matrix is also real and reduces to the
following form

—ol+1 V-2 +1la —
S=| Y_a2+1a o? V-0 +1 (4.151)
o Voo +1 0

The normalized form of the scattering matrix for the series adaptor is given by (4.77), and



is repeated below.

R, ~R{R, —VR{ |
Ri+R, Ri1+Ry YR +R;
S = | YRR, Ry —VR,
Ri+Ry Ri+R; YR +R;
LYR1+R; YR+ Ry B

It is clear that the above two scattering matrices (4.151-152) are equal if

__ VR _
a"v———R1+R2 \/E
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(4.152)

(4.153)

where f3; is the real parameter of the series adaptor given in (4.74). The above (4.153)
gives the equivalence for the complex three-port series adaptor with port three reflection-

free and the section in Figure 4.20 as shown in the following figure:

B, A, O
1 1R, Al B3
YR, 2
o
VR =
A YRy YR3 Bj -1 A
OO O— ] H——0—O#0 |—O<<2>
— == |
Ol D) Qe O -0 -
B, _1_ A VR As 1 B,
3 .
L+ =27, p
B, Asj
O

O
Figure 4.21: Equivalent form of the complex series three-port adaptor.

Similarly, using the equivalence between the series and parallel adaptors given in
Figure 4.11 and in equation (4.112), the following is derived:
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Yy ﬂ*
Gy Y3
B, Ay o—(—0—— ——0—(O 0
1 = Ay B3
YR, 2
o
1 g
Ay YR , VR; B (1-a)G2 4,
= Y
o-<t-()—0—— a,ﬁ,ﬁ —t—0— (-0 ———o—O»—o
B1 1 lGl G2 VE A3 ‘(1-a1)GZBZ
VR b o Ya
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B, A,
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—09G1 n
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Figure 4.22: Equivalent form of the complex parallel three-port adaptor.

which gives the equivalence for the complex three-port parallel adaptor. The complex two-
port adaptor parameter is given by

o=vYay (4.154)

The above two equivalences suggest that the general structure of Figure 4.20 can be
used instead of either of the series or the parallel three-port adaptors in a network. This
observation will be used in the following chapter in order to derive the CWD realizations of
the complex canonic sections given in the tables in Chapter II.

4.7 Robustness of Complex Wave Digital Filters

A discrete filter behaves ideally if all signal levels are calculated with high precision
without the existence of overflows or underflows. In this case the floating-point
representation of the signals is ordinarily used. However, during the recursive operation of
a digital filter, the actual signal levels within the structure deviate from the ideal signal
levels. This is a result of representing the actual signals with a finite number of bits, which
lead to underflow and overflow quantization errors. The robustness [69] of a digital filter
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is a measure of how well the digital filter behaves as compared to the ideal filter (within the
constraints imposed by finite arithmetic). Another way of stating this is that the deviation
between the actual and digital signals within the operation of a robust filter should be small.
Thus the property of robustness encompasses not only the zero-input and forced-response
stability of a filter, but also other desirable properties. The stability of a complex wave
digital filter was presented in [53] and will be briefly summarized in the following Section.

4.7.1 Stability of Complex Wave Digital Filters

The stability of a digital network under zero-input, forced response and looped
conditions is critical for the usefulness of the filter. It has been shown that under infinite
precision conditions, when all values are calculated using floating-point values and no
underflow or overflow errors can occur in the linear system, the wave digital filter can be
designed to be stable for all bounded input signals. However, in a digital system values are
represented with a finite number of digits and usually in binary. Thus, all signals and
results of additions or multiplications are quantized and the system is no longer linear. This
process creates underflow errors, which are errors in signals due to the inability to
represent an infinite number of digits, and overflow errors, which develop because the
magnitude of the largest number that can be represented is bounded (usually by one or
two). Underflow errors create relatively small deviations in the signals of the network,
whereas overflow errors create large deviations from the nominal values of the signals and
thus should be avoided if possible.

The discussion of the stability of a complex WD network follows from the
generalization of the concepts used in the real domain. These include the definitions of the
norms operating on complex sequences associated with an n-port digital network.
However, the existence of the generalization of the stability argument is based on the
definition of the steady-state power of the complex digital system as given by

P=AT(G-S*TGS )A (4.155)

which is the same expression suggested by Fettweis given in [26].
This definition leads to the conditions on the (non-linear) complex operators acting on
the signals in order to guarantee both the zero-input and the forced-response stability of the

digital system. A condition for stability is that the complex overflow operator { and the

complex underflow operator § must be contractive, as given by

lel<1
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6]l <1 (4.156a,b)

The notation in the above refers to the norm of the operator, expressed as

el = 2,12

“x =0\ x|

(4.157a,b)

where | x| is the magnitude of the complex number x. The arguments of both operators are
the real and imaginary parts of the complex input signal. Thus, in the real domain, the
operators are viewed as being two-dimensional in nature; whereas in the complex domain,
the operators are clearly one-dimensional. The two-dimensional view is the most useful
one to adopt where the real and imaginary parts of the operators can be considered
independently, that is (for either operator),

y={(x)
Clx)= G (x) + G (xi)
Yr= gr (xr)
yi=Gi(xi) (4.158a,b,c,d)

where {x,y} € C, {x,, xi, y,, y; }€R, and & and {; are the equivalent real operators of the

complex operator § (x).

Viewing the operators as non-linear one-ports connected in series with complex
circulators at the output of the state ports, the above immediately implies that the one-ports
must be passive. Thus as long as the non-linear complex one-ports are passive it is
guaranteed that no zero-input parasitic oscillations can exist [53].

Conditions similar to those in [43] are given for forced response stability. They extend
to the complex case by letting the overflow truncation function, as shown below for the
equivalent real and imaginary operators, ¢ and {;, of the complex operator ¢ (the real and
imaginary functions can be chosen the same), lie within the shaded area,
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Figure 4.23: Real or imaginary equivalent of the overflow truncation function.

where ¢ is the maximum allowable signal amplitude. This gives incremental passivity as
extended to complex networks as discussed in [53]. Notice that the overflow truncation
function satisfies the restriction on the magnitude of the norm of the operator as given in

(4.156).

The overflow function cannot have a slope greater than plus or minus one, ie. the

continuous curve cannot have a slope exceeding + 450, Various forms of the overflow
error function have been found as summarized in [67] that meet this constraint. They
include the saturation function, as shown in Figure 4.24
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Figure 4.24: Saturation overflow function.

and the triangle function as shown in Figure 4.25.
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Figure 4.25: Triangle overflow function.

Both of the above functions give incremental passivity, and thus forced response stability.
Notice that the triangle overflow function has a greater signal deviation error than the
saturation function.

4.7.2 Robustness

It is impossible to measure precisely the robustness of either an actual digital filter, or
more generally a digital filter structure, because of the many variables involved. However,
as suggested in [69], a list of desirable properties can be compiled, such as the stability and
sensitivity behavior of the filter under consideration. If a particular filter satisfies all of the
desirable properties, then the filter will be called robust.

A brief review of the properties found in [69] will be summarized in the following. For
robustness, we require: '

a) No zero input parasitic oscillations can exist. It is essential for overflow
oscillations, however, it is tolerable for underflow oscillations if the amplitudes
are small.

b) For non-zero input the superimposed parasitic oscillations should be small.

¢) The dynamic range should be as high as possible.

d) Forced-response stability should be guaranteed.

e) Attractivity should be maintained, that is, small changes in the initial conditions
should not cause lasting changes in the output signal (ignoring the granular
response from underflow errors).

f) For any fixed initial conditions, small changes in the input signal should cause
only small changes in the output signal.

g) There should be no chaotic behavior (again, ignoring the granular response from
underflow errors).

h) The saturation behavior should be as good as possible under the constraint of
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binary (fixed wordlength) operations. This implies that the behavior should be
approximately linear for small signal levels, with a monotonous transition
towards saturation at higher signal levels.

1) The above properties must be able to be satisfied not only for the quantized
coefficients, but also for a finite neighborhood of the quantized values.

j) All operations that must be performed on the signals must be sufficiently simple
so that their actual application in digital hardware is feasible.

The generalization of real wave digital filters to the complex domain found in this thesis
inherits the robustness of its real counterpart. This is mainly due to the carry-over of the
critical stability argument [53] used in the real case. Namely, passivity and incremental
passivity, which guarantee zero-input and forced-response stability, respectively, also
guarantee properties a, b, and d to f. Property c is associated with the low sensitivity
of WD filters. The overflow and underflow operators discussed earlier that give passivity
and incremental passivity satisfy properties g, A, and j. Finally, property i is associated
with low sensitivity.

Thus a well-designed CWD filter can be considered robust as defined above.



Chapter V

Cascade and Ladder Realizations Using
Complex Wave Digital Networks

The theory presented in the preceding chapters allows the realization of general complex
reference networks without alteration (that is, without making them one-real), as can be
proved by construction. Since all of the familiar WD elements have now been successfully
derived, the first condition for the generalization to be of practical use, as given in Chapter
I, has been achieved. A stability theory guaranteeing zero-input and forced-response
stability has been derived [53] and follows from the definition of the steady-state power

P=A'T(G-S*TGS )A (5.1)

The resulting networks can contain any of the CWD elements thus far discussed. Other
elements not discussed such as the n-port circulator, the unit element, and the so-called
lattice adaptor can easily be generalized for CWD networks and thus will not be presented
here.

Complex networks arise from four main sources. The first source is from the method
of frequency shifting discussed in Chapter II, where a real network is frequency shifted by
applying the following transformation on the frequency variable:

[l A [ (5.2)

The second source arises from changing the phase of the h polynomial by an arbitrary real
constant. The third arises from the realization of a real transfer function using the new
first-order elementary sections presented in Chapter II. Finally, the fourth arises from a
direct approximation with a complex transfer function.

All of the first-order elementary complex sections realize a transmission zero
independently of any other transmission zero (as opposed to grouping the transmission
zeros in complex conjugate pairs). Four of the sections can realize a transmission zero
anywhere on the = j¢ axis. Although one form of these sections has been quoted in the
literature [40], the significance of the sections, namely that any of the four sections is the
most general first-order reciprocal section, may have been somewhat overlooked. The
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other sections realize transmission zeros at the origin, at infinity, on the real axis, or
anywhere on the finite plane (excluding the preceding cases). A section can be viewed as
equivalent to another section when viewed as a two-port (one section contains an inductor
while the other contains a capacitor as the dynamic element). That is, it is always possible
to use one section in place of the other.

A complex network consisting of the complex canonic sections given in the tables of
Chapter II can be realized using one of two different viewpoints. The first inherently
requires the use of three-port series and parallel adaptors since dynamic elements are
realized as one-ports, while the second requires the development of a more general first-
order section that will be viewed as a dynamic two-port. The method using three-port
adaptors involves the element-by-element transformation of a reciprocal network, while the
other method transforms each reciprocal or non-reciprocal canonic section of a network.
The method using the three-port adaptors allows both canonic and non-canonic networks in
a form of cascade synthesis known as the ladder configuration. However, the dynamic
first-order section method is inherently canonic in nature. This method will be referred to
as the Cascade Realization method.

In the following, complex quantities will be assumed throughout.

5.1 Ladder Realization Using three-port Adaptors

In the following, a brief review will be given of the WD realization method using three-
port adaptors as well as scaling and quantization considerations for CWD networks. This
method realizes a network by transforming the elements and the interconnection of elements
that compose the network to the CWD domain. Each element is considered to be a one-port
except those non-dynamic elements that are defined as a two-port (for example, the
complex transformer). Examples of this realization method will be given in Section 5.2.

5.1.1 CWD Realization of Complex Reference Networks

A complex analog (reference) network in a ladder configuration composed of RLCX
elements can be realized using the CWD elements given in the preceding Chapter. The
realization is equivalent to a direct mapping of the analog elements in a one-to-one
relationship to the corresponding CWD elements. Each analdg one-port is mapped to a
CWD one-port, and each connection of analog n-ports is mapped to a discrete (or
algorithmic) representation of the connection in the form of either a parallel or series
complex adaptor. By convention, a dynamic two-port is realized using a dynamic one-port
connected to a three-port adaptor, while a constant two-port is realized using a constant
CWD two-port. During the realization process, the port impedances of all one-ports and
two-ports are given by Tables 4.1-4.4, including the port impedances of all input (external)



127

ports.

These conditions alone cannot uniquely define a CWD network. However, from the
realizability condition discussed in Section 4.6, no delay-free directed loops can exist
which imposes a further constraint on the CWD network. This constraint requires all but
one of the three-port adaptors to contain a reflection-free port, and this port must be
connected (through a simple directed path) to the port of another three-port adaptor. Thus
using equations (4.69,4.97) defining the port impedances of the reflection-free ports, all of
the port impedances of the CWD network are defined.

The choice of location of the one three-port adaptor that does not contain a reflection-
free port is arbitrary. However, it is usually chosen to be the central adaptor in order to
minimize the path length needed to compute the value of all of the signal nodes in the
operation of the filter in real-time.

A CWD network derived from a complex reference network through cascade (ladder)
synthesis is inherently viewed as a two-port. Normally, the input is associated with port
one and the output with port two. The input of port two and the output of port one is
normally ignored (though they need not be) when realizing doubly-terminated reference
filters, thus giving a one-input, one-output network realizing a transmittance.

This process can be easily visualized with an example. Consider the following doubly-
terminated! analog domain network
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Figure 5.1: Example of a complex analog network.

which contains three dynamic elements and one constant element (ignoring the port
resistors). This can be viewed as two dynamic two-ports (each requiring at least one three-
port adaptor) and a constant two-port. The above network has the following CWD
equivalent,

1 Doubly-terminated networks are commonly used because of their excellent sensitivity properties [40].
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Figure 5.2: CWD equivalent of Figure 5.1.

where the series adaptor was made reflection-free and "T" represents a delay. The
equivalence of the above network is clear when considering Tables 4.1-4.4 along with the
definitions of the complex adaptors. From the relevant port impedances as given in the
diagram, all of the parameters of the adaptors are defined. Notice that although complex
port impedances are found throughout the structure, only the right-most parallel adaptor
contains complex parameters. However, the existence of the complex port impedances
allows the CWD equivalent of a complex network to be computable, and thus this example
demonstrates the significance of Theorem 1.1.

Of course, other combinations of complex analog elements can occur. Two of the
general first-degree reciprocal sections, which can be made equivalent when considered as
a two-port and as discussed in Section 2.6.1.3, have the following CWD equivalents.

Figure 5.3: CWD equivalent of the parallel inductor first-order complex section.
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Figure 5.4: CWD equivalent of the series capacitor first-order complex section.

In each case the values of Z; and Z3 are arbitrary, whereas the values of A 1 23, and Z, are
given by Tables 4.2-4.4.

From the above two examples it is clear that CWD networks may or may not contain
external multipliers, that is, multipliers external to the adaptor blocks. The external
multipliers arise from the constant two-ports as given in Table 4.4 and any unimodular
multipliers that are defined by dynamic one-ports.

In order to simplify the quantization process as discussed in Section 5.1.3, one has the
option of absorbing all external multipliers into the associated scattering matrix. In some
cases this process forces the elements of the scattering matrices associated with CWD
blocks to have a magnitude in the range that would lead to a favorable dynamic range.
However, as shown in the examples in Section 5.2, this process may lead to a less
favorable implementation in some cases, and thus the realizations with and without external
multipliers should be investigated.

5.1.2 Scaling the CWD Networks

During the operation of a CWD filter in real-time, the values of signals at many of the
nodes? may frequently approach or exceed the bounds on the largest and smallest number
that can be represented. Since this limits the dynamic range [6] of the filter, which also
increases the noise [6], the CWD filter must be scaled before it is implemented. The way
in which a filter is scaled depends upon the constraint that the designer wishes to place on
the filter. The two most popular constraints for scaling are the normalized form and the
Lo-norm at the states of the network [6,9-11]. Scaling is ordinarily performed on the
three-port adaptor matrices (a constant two-port such as those given in Table 4.4 cannot be
scaled).

2 A node refers to a location that contains a signal value.
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5.1.2.1 Normalized Scaling

This scaling condition imposes the constraint that the L.,.norm at the states within the

network must be less than or equal to one for a unit impulse input. This decreases the
probability of overflow at the states. However, since the flow graph of a CWD filter is
proper [73], this will also inherently decrease the probability of overflow at the internal
nodes of the blocks. This scaling condition is associated with normalized or power wave
digital filters. From equation (4.32) relating the scattering matrices of a voltage and a
power wave network, and repeated below,

§=G2s G2 (5.3)

it is clear that simple real scaling transformers can be used on each three-port adaptor in
order to realize the normalized form scaled network and the value of the turns ratio of each

transformer is defined by the square-root of the associated port conductance (G = R,
This method associates three real scaling transformers with each three-port.

5.1.2.2 L,-Norm Scaling

The scaling constraint of Lp-norm scaling sets the Ly-norm at each state equal to unity
for a unit impulse input. This can be achieved with one real scaling transformer for every
state. The scaling transformer is placed in the main signal path and is calculated by
numerically finding the L) norm at the state before scaling, then selecting the transformer
value to set this norm to unity. The Ly-norm is numerically computed using the impulse
response in the discrete domain.

5.1.3 Quantization of A CWD Network

As mentioned in an earlier section, the implementation of a digital filter in digital
hardware inherently requires the filter to be in a form that is compatible with the hardware.
In other words, the digital filter must first be quantized, that is, represented in binary form
as an integer divided by an integer power of two. The two constraints on this process are
the following: the resulting filter must remain passive (as given by equation(4.26)), and
satisfy the frequency specifications. A non-linear optimization method has been developed
by the author which quantizes the scattering matrices associated with the blocks of a CWD
network, and is described in [76].

In order to maintain passivity, magnitude truncation is used when quantizing each
value. Thus, each element of the scattering matrix is quantized using magnitude truncation.
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Real external multipliers that are found in inverse pairs, such as the real ideal transformer,
are quantized to a power of two, and therefore both of the multipliers are quantized at once
(the inverse of a power of two value is another power of two value). Note that with
complex inverse multipliers this method cannot be used, and four independent real
quantizations will be needed with magnitude truncation (the multipliers represent passive
and not lossless sections after quantization). In the same way single complex multipliers,
such as unimodular multipliers, require two independent quantizations with the same
conclusions.

Note that after a network has been expressed in binary form the resulting frequency
response may contain a frequency independent shift. This is a result of the fact that CWD
networks cannot be made lossless under binary conditions, and thus only passivity can be
guaranteed. However, a frequency independent shift is not significant since it represents a
constant shift for all frequencies. If it becomes necessary, a multiplier can be inserted at the
output node in order to remove the shift. If the network realizes a transmittance and
operates as a single-input, single-output filter, then the multiplier inserted corresponds to an
ideal transformer.

5.2 Design Examples Using three-port Complex Adaptors

A computer program written for the Macintosh computer in the PASCAL computer
language has been developed by the author that derives a scaled and quantized CWD filter
from a lumped RLCX reference filter. The attenuation responses of the CWD and nominal
filters are generated over the digital frequency range -1 < @T < 7. However, the responses
are presented as a function of the normalized frequency which ranges from -0.5 to +0.5.
The following presents several design examples that show the validity of the theory
developed.

5.2.1 Non-canonic CWD Realization of Frequency Shifted Filters

The realization of a real reference filter in the form of an LCX ladder with finite
transmission zeros and without coupled coils is necessarily non-canonic. A filter with
complex elements can be derived from such a filter by frequency shifting as given in (5.1)
above. The CWD network realizing the complex filter will have the same form as the
corresponding real WD filter realizing the unshifted network with the only difference being
the use of complex adaptors instead of real adaptors and the inclusion of unimodular
multipliers.

Consider an 8th order Elliptic filter in a non-canonic realization that has been shifted by
1.1 1/s in order to generate a complex filter. The attenuation responses of both the nominal
and the CWD filter are shown in the following plots.
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Figure 5.6: Passband attenuation of the 8th order Elliptic filter.
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The CWD filter was scaled for the Lo-norm and quantized using 11 bits. The nominal

and quantized attenuation plots are virtually identical in the stopband which is a result of the
large number of bits used. The passband shows a small deviation, which is expected from
the property of low passband sensitivity. The deviation at the corners is a characteristic of
a passive (rather than lossless) WD network.

5.2.2 Canonic CWD Realization of Complex Filters

It is now clear that reference filters with a real transfer function can be implemented
using CWD networks (for example, the sections given in the equivalences in Figures 5.3
and 5.4). A CWD network may contain only series (with a series capacitor or inductor) or
parallel (with a parallel inductor or capacitor) complex adaptors.

Consider the 4th order Elliptic example given in Appendix A of a complex filter
realization of the real transfer function. The following two sections will present the CWD

filter equivalents of both the inductor-section (CD1_j¢) and the capacitor-section
(CC1_j¢) realizations. For all realizations power wave scaling will be used.

5.2.2.1 Realization Using Complex Parallel Adaptors Exclusively

The 4th order Elliptic filter is realized with the CD1_j¢ section exclusively. The only
CWD elements needed with this method of realization are the complex parallel three-port
adaptor, the delay, the ideal transformer and the wave source and sink (any simple
inversions are ignored).

This example is first realized from the definition of the CWD network without alteration
(Figures 5.7 and 5.8). A second realization is derived by absorbing all external multipliers
into the associated scattering matrices (Figures 5.9 and 5.10). Both realization are
quantized to the same specifications with a 1.5 dB passband ripple. The attenuation
responses of both the nominal and the CWD quantized filters are shown in the following
four plots.

The first realization with external multipliers as shown in Figures 5.7 and 5.8 required
10 bits for the quantization for a 1.5dB ripple in the passband. The quantized passband
and stopband responses are indistinguishable from the nominal response as a result of the
large number of bits required to meet the frequency specifications. The second realization
without external multipliers as shown in Figures 5.9 and 5.10 required 12 bits for the
quantization. The necessity for the two extra bits over the previous case is mainly the result
of absorbing the final ideal transformer into the last scattering matrix. However, although
two extra bits are used, the quantized passband and stopband responses do not compare
favorably with the earlier case. Thus the first realization method is preferred.
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Figure 5.7: Stopband of the 4th order Elliptic filter with external multipliers.
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Figure 5.8: Passband of the 4th order Elliptic filter with external multipliers.
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Figure 5.9: Stopband of the 4th order Elliptic filter without external multipliers.
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Figure 5.10: Passband of the 4th order Elliptic filter without external multipliers.
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5.2.2.2 Realization Using Complex Series Adaptors Exclusively

The 4th order Elliptic filter is realized with the CC1_j¢ section exclusively. The only
CWD elements needed with this method of realization are the CWD equivalents of the
parallel combination of the imaginary resistor, as well as the unimodular multiplier
connected to the complex three-port series adaptor.

As with the earlier example, this example is realized with and without external
multipliers in order to derive two networks. The differences between the two
implementations is more significant in this case than the earlier example since external
complex multipliers exist from the equivalents of the parallel connected imaginary resistors.

Both quantized realizations required 7 bits in order to meet the same frequency
specifications as the earlier example of a 1.5 dB passband ripple (compared with 10 bits
with external multipliers and 12 bits without external multipliers for the earlier example).
However, from the attenuation plots given in the following four figures, the quantized
responses for both realizations show several differences.

The response of the quantized realization with external multipliers as shown in Figures
5.11 and 5.12 is similar to the nominal response. However, the stopband did not achieve
the same attenuation. The passband response performed better than the nominal near zero
frequency, with the response deteriorating near the edges of the passband.

The response of the quantized realization without external multipliers as shown in
Figures 5.13 and 5.14 compares poorly to the realization with external multipliers. The
stopband greatly deviates from the nominal and the desired attenuation is not reached.
Also, the passband is very poor since the ripple width is larger than any of the earlier
examples, and the response is irregular and it is not symmetric about the origin.

Clearly, although the same number of bits are required for both realizations in order to
meet the frequency specifications, the implementation with the external multipliers
quantized separately has a superior response in both the stopband and the passband. Thus,
again in this case, the realization with external multipliers is preferred.
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Figure 5.14: Passband of the 4th order Elliptic filter without external multipliers.



139

5.2.2.3 Comments On the Two Equivalent Realizations

The two techniques presented in the earlier sections shows that it is possible to realize
the same reference filter using a CWD network containing either series or parallel three-port
complex adaptors exclusively. From either a quantization or scaling point of view using
the schemes outlined in Sections 5.1.2 and 5.1.3, both networks are equivalent in so far as
they realize the same canonic polynomials.

The major difference between the networks is found by recalling the differences
between the three-port series and parallel complex adaptors. The series three-port adaptor
is significantly simpler in form than the parallel adaptor, particularly with a reflection-free
port. The network with series adaptors is equivalent, on a block basis, to the network with
parallel adaptors with specific complex multipliers removed from the parallel adaptor
scattering matrix as shown in Figure 4.11. However, from the two previous examples, the
quantized form of both networks that realize the same reference filter show differences with
respect to both the number of bits needed for a set of frequency specifications.

5.2.2.4 Elliptic Example of order §

Consider as another example the 5th order Elliptic filter given in Appendix A. Since the
filter order is odd a real canonic section appears as the last dynamic section. The filter
realizations containing the CC1_j¢ and CD1_j¢ sections were quantized to satisfy the
same frequency specifications and 9 bits were required for both cases. The nominal and
quantized stopband attenuation plots are identical as a result of the large number of bits
used. The nominal and quantized passband attenuation plots are shown in Figure 5.15
given below.
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Figure 5.15: Passband of the quantized 5th order Elliptic filter.

Both realizations were quantized in the same manner as the 4th order Elliptic example,
however, the phenomenon observed with that example is not apparent in this case. This
may be the result of the existence of the last real dynamic section. This section may actin a
similar manner for both realizations thereby desensitizing the quantized realizations with
respect to the type of adaptor used. ’ v

In order to investigate the effect of the number of bits used in the quantization for this
example, realizations were generated using 4, 5, 6, 7, and 8 bits for the realization using
the series adaptor. The stopband attenuation plot of the nominal and 4 bit quantized
realization is shown in Figure 5.16. Clearly the desired attenuation is not reached. The
stopband attenuation plots of the remaining realizations converge to the nominal response
as more bits are used and thus they will not be presented.

The passband attenuation plots for the five quantized realizations are shown in Figure
5.17. Clearly, the realization with 4 bits has the greatest deviation. The case with 8 bits is
similar to the case given above in Figure 5.15 using 9 bits. Notice that with this example
the operation of quantization caused the greatest deviations at the edges of the passband (a
frequency independent shift is not significant since it can be removed with a scalar
multiplier at the output port).
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5.3 Cascade Realization of Complex Networks

It is known that an elegant combination of real two-port adaptors can be used to replace
either the series or the parallel real three-port adaptor (Section 4.6.6). Thus real first-order
sections realized using the real three-port adaptors can be replaced with the equivalent
realization using only real two-port adaptors. This observation was given a theoretical
foundation in [16] by transforming an analog four-port to the WD domain. With the
correct terminations, the real canonic elementary sections can be realized in this manner.

The reflection-free versions of the complex three-port adaptors can be made equivalent
to the corresponding real adaptors with simple multipliers in the signal paths. This
observation along with the comments given in the preceding paragraph suggest that a
general complex first-order section exists which is composed of complex two-port adaptors
in a configuration similar to the real case. The following will give the derivation of this
section, which hereafter will be known as the canonic cascade section. Note that the
normalized complex two-port adaptor will be used exclusively throughout since it is already
scaled for power waves.

5.3.1 Derivation of the Canonic Cascade Section

A general first-order complex section exists that can realize a transmission zero
anywhere in the complex plane. Thus, it must represent the first-order complex canonic
sections given in Chapter II mapped to the CWD domain. Also, it must reduce to the real
first-order sections given in [16] if all quantities are restricted to be real.

The derivation of the section is based on a generalization of the section given in the real
case with two additional degrees of freedom. These additional parameters are found in the
arguments of two unimodular multipliers introduced in order to supply the canonic number
of parameters required by a first-order section. Although the form of the section is not
unique, it will be chosen in order to parallel the real case wherever possible. To this end,
consider the canonic cascade section given in the figure shown below.
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Figure 5.18: General canonic cascade section.

The figure shows that the canonic cascade section contains two complex normalized two-
port adaptors and two unimodular multipliers. It will be found from the canonic
polynomials representing this section, as given by (5.5), that it has port two reflection-free.
Note that the multiplier € can take on the values

e=x%1 (5.4)

and usually has a value of +1 (and thus can usually be ignored). The parameter & will be
used to change the sign of o'if necessary. The two complex normalized two-port adaptors
are functions of the real parameter K and the complex parameter .. The real parameter

K will be referred to as the gain of the second adaptor with respect to the first. For
reciprocal sections the gain will be unity, while for non-reciprocal sections the gain can be
any real value (including zero). The canonic polynomials of this section (ignoring €) are
given by
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{—a+Iv-Ka" +1v/-aa" + 1V-K2aa* +1e-iT
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eJ(t+wy —Ka+1 -Koa+1

o+ -Ka*+1)a*ed(t+4)

g=
a*+1)-Ka+1)a

(5.5a,b,c,d)

It is clear that the f polynomial contains a zero anywhere on the z-1 plane with the
appropriate choice of the parameters found in Figure 5.18, since the magnitude of the zero
is given by the constant K and the phase is dependent upon the free parameters Tand p.
Since the central two-port in the form given above represents an unrecognizable CWD
element as it is composed of a delay and two unimodular multipliers, Figure 5.18 is given
in an equivalent form as shown below.
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Figure 5.19: Equivalent form of the general canonic cascade section.

Notice that the internal connections located between the two-port adaptors represent a
complex ideal transformer and a dynamic one-port.
The port impedance of port two is equal to that of port one (since the node weights [18]
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for ports one and two are equal) and the port impedances of the inner ports are given by

- +1)Z1 +{a-1)Z21¢¢
( * ) * ) *

Z3 = "
—-oxo +1

Ko +1)Z1* +(Ka - 1)Z1Ka*
-K?qo*+1

Z4 =( (56a,b)

Consider the special case of a transmission zero on the unity circle (that is, the j¢-axis
on the reference frequency domain) which represents a reciprocal section. The section in
this case reduces to the form shown in the following figure:

O— B0
A, B,
o
Z3 $ B;
| , T L=27
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Figure 5.20: Reciprocal canonic cascade section.

with the following canonic polynomials

e
f=z1l—C&
oe (T+ 1)

i . (~aa* +1)e-it
- o
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1 -+l —ot+l
= -
el(T+)g —a+1 —o+1

o=— “—‘ffo(cffi) (5.7a,b,c,d)

and the port impedance given by

" +1)Z1" + (- 1)Z 1"
oo +1

By using the general form of the canonic polynomials representing either the non-
reciprocal (5.5) or the reciprocal (5.7) form of the canonic cascade section, all of the
canonic sections given in the tables in Chapter II can be mapped to the CWD domain. This
is achieved by first transforming all port two reflection-free polynomials for the first-order
sections to the z-1 domain by using the bilinear transformation (4.2a). Then the resulting
polynomials are equated to the polynomials representing the canonic cascade section
(5.5,5.7) in order to derive the values of the real and complex constant parameters given in
Figures 5.18 and 5.20. Note that the derivation for the real sections are given in [16] and
thus will not be repeated here.

5.3.2 Canonic First-Order Complex Sections Mapped to the CWD Domain

The following presents the solutions for the canonic cascade section parameters in
tabular form. Since every complex first-order section is equivalent to the dual of the
section, the tables give the parameters that represent both sections. Each table contains the
analog symbol for each of the two equivalent sections, the z-1 domain polynomials for the
sections, and the constant parameters. Note that the parameters & and K« are treated as
independent quantities for the special case in Table 5.8. All quantities are expressed in
terms of the analog domain canonic parameters, namely, the location of the analog
transmission zero (¢ for reciprocal sections and (-cp, - j¢,~) for non-reciprocal sections), the
reflectance evaluated at the transmission zero 7e/9, and for reciprocal sections the analog
delay d. The quantities are also given in terms of the discrete transmission zero {e/V (for
reciprocal sections { = 1 and v = ayT ), the reflectance evaluated at the transmission zero

ne/®, and for reciprocal sections the discrete delay 8. Note that the synthesis algorithm
presented in Chapter III can be extended to the z-! domain using the discrete canonic
parameters and polynomials. The real first-order and second-order reciprocal and non-
reciprocal sections are given in [16].
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Note that the parameters given in the tables represent the mapping of the complex first-
order sections given in Chapter II to the CWD domain. This contrasts with the realization
method outlined in Section 5.1, where instead of mapping an entire dynamic section
(requiring the canonic cascade section), the individual elements are mapped to the CWD
domain (requiring three-port adaptors with dynamic one-ports and constant two-ports).
Also, the number of real parameters required to represent each section is the canonic
number, namely three and four parameters for reciprocal and non-reciprocal sections,
respectively.

CAl_oo and CB1_co Sections

2| o———m o o o
&
o0 ) ) : —
Tg JX; -JX7 -~ C
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o O O O
Function of Analog Parameters Function of Discrete Parameters
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g {d+2 ~ V6+1

& eit =ej0 eilt = ¢i0
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e=1 e=1

Table 5.1: CWD equivalent of the CA1_co and the CB1_oo sections.
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CC1_0 and CD1_0O Sections

Analog Symbols
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Table 5.2: CWD equivalent of the CC1_0 and the CD1_0 sections.



149

CAl_j¢y and CB1_jgy Sections
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Table 5.3: CWD equivalent of the CA1_j¢ and the CB1_j¢ sections.
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CCl_j¢o and CDI1_j¢y Sections

Analog Symbols
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Discrete Canonic Polynomials
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Table 5.4: CWD equivalent of the CC1_j¢ and the CD1_j¢ sections.
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CEl and CF1 Sections
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Table 5.5: CWD equivalent of the CE1 and the CF1 sections.




152

CG1 and CHI1 Sections
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Table 5.6: CWD equivalent of the CG1 and the CH1 sections.
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Special case: Transmission zero at r=-1
Canonic Polynomials CWD Parameters
‘B = —T’e"'je K = O
= =51
'3 fRE=12
§ A nei® oa=-v-n?+1
RF = — —(———
% V-n?+1 et = ¢j6
= 1
8RF =——F7——— JT = 76
,——772 1 elt=e
ORF =— 1 e=1

Table 5.7: Special case of the CG1 and the CH1 sections with r = -1.

Special case: Transmission zeroat r =1
Canonic Polynomials CWD Parameters
B=- er =0
- n
. = 1
: fre=1 Ka=-=/1-1/n2
eld
[ hRp =—=&—— . .
§ mw1-1/n? it = ¢f0
O hRF :—-—-——-—1 eﬂ = e?/le
V1-1/n? _q
ORp=-—1 £=

Table 5.8: Special case of the CG1 and the CH1 sections with r = 1.

5.3.3 Complex Zero-Order (Constant) Complex Sections

The following will present the CWD equivalences of the zeroth-order (constant)
complex sections as given in Tables 2.13-17. A constant section in a CWD network as
discussed in Section 5.3 normally only appears as the last section in the network. All of
the CWD constant sections have the form shown in Figure 5.21, that is, inverse conjugate

multipliers in the signal paths.
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Figure 5.21: General form of a complex constant section.

For each section, the value of the multiplier and the reference impedance of port two in
terms of port one will be given. Note that in general a complex two-port adaptor will be
required between ports three and two in order to adapt the port reference to satisfy the port

interconnection criterion (4.48) in a CWD network.

CO_m Section
Analog Symbol CWD Parameters
JX> .
o o 7=—J'(X3 +X0)X1 +(X3 +X2 +X1) Z3
-JX3X1
Xy /X3 7, XaXoXi +i(Xp +X)Xs2"
J(X3 +X0) X1 ~(X3 + X2 +X1) Z1°
O O

Table 5.9: CWD equivalent of the CO_m section.
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CO_T Section
Analog Symbol CWD Parameters
JX; jX3
5 4= (X2 +X1)+2Z;"
~jX2
JX5 ' .
Z ___X3X2 +X3X1 +X2X1 +j(X3 +X0)Z;
J(X+X)-27"
O

Table 5.10: CWD equivalent of the CO_T section.

CO0_1 Section

Analog Symbol CWD Parameters
JX;
n ] o ’)l =n
*
n2
O

Table 5.11: CWD equivalent of the CO_1 section.
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C0_2 Section
Analog Symbol CWD Parameters
n:l n(X +jz1")
O O = JT
mTTX
X
- | l V) =__X_Z_1*__
n2(X +jz1’)
O O
Table 5.12: CWD equivalent of the C0_2 section.
TO Section
Analog Symbol CWD Parameters
n:l
o O y=n*
l I Zr = Z .
nn
O Q

Table 5.13: CWD equivalent of the TO section.
5.3.4 CWD Ladder Realization

As mentioned in Chapter I, an elementary section is described by the section type, and
the analog (discrete) domain canonic parameters as given by the location of the
transmission zero Yy (o), the reflectance evaluated at the transmission zero 7e/9, and for
reciprocal sections the delay evaluated at the transmission zero D (8). The canonic
parameters are assumed to have been calculated using the synthesis algorithm given in
Chapter III.

The ordering of the sections is given by the order of the transmission zeros, and since
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each section is determined by the canonic parameters mentioned in the preceding paragraph,
the network is completely known. The discrete CWD ladder network is realized by
interconnecting the transformed sections as given in Tables 5.1-5.8 while imposing the
constraint of the port interconnection criterion.

The port reference of the left-most port is assumed to be normalized to unity. Since
both ports of all dynamic two-ports contain the same port reference impedance as shown in
Figures 5.18-20, the external port references of all dynamic sections will thus be equal to
unity. The dynamic sub-network of the CWD ladder network is realized by simply
interconnecting the canonic sections defined in the above tables as a function of the analog
domain canonic parameters.

The last section, which is the section farthest to the right, is normally a constant
section. The form of the last section is given in Figure 5.21, with the port reference of port
two given in Tables 5.9-5.13. Notice that in general the impedance of port two is not
unity. However, the value of the load resistance is assumed to be normalized to unity as
shown in Figure 3.1. Thus, in order to connect the last section, a complex two-port
adaptor is inserted at port two of Figure 5.21 in order to complete the CWD network.

5.3.5 Canonic Cascade Section Using Real two-port Adaptors

The canonic cascade section as given in Figure 5.18 can be decomposed into a section
containing normalized real two-port adaptors and unimodular multipliers. The equivalence
shown in Figure 4.19 along with the properties of linear networks can be used in order to
derive the equivalent of the canonic cascade section as shown in Figure 5.22, where the
real normalized two-port adaptor angles are given by

o= (cos ﬁl) ey
cos B = |af

cos B =|Ko| (5.9a,b,c)

and the unimodular constants are given by

V1-ko

eiln=4] 1= (5.10a,b,c)
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Figure 5.22: Equivalent of the canonic cascade section using real two-port adaptors.

Notice that the section requires two real two-port adaptors and four unimodular multipliers.
The number of unimodular multipliers will be reduced by two in the following section.
The respective port impedances are known after the decomposition from the discussion of
the factorization of the complex two-port adaptor found in Section 4.6.4.

5.3.6 Minimum Multiplier Realization of CWD Filters

The section given above in Figure 5.22 is the most convenient form to use for the actual
implementation of the dynamic sections given in Tables 5.1-5.8. The section can be
simplified by taking advantage of the properties of linear flow graphs. However, since the
form given in Figure 5.22 is inconvenient to use for this discussion, consider the general
form of the section as given in the following figure as a function of four general
unimodular multipliers with angles labelled 8, k=1(1)4.



159

L

Figure 5.23: General form of the canonic cascade section using real two-port adaptors.

The canonic polynomials for this section are given by

Fo g1 SO B 63
cos f3,

h = sin By tan Bpei (61— 63 - 64)

g=g BT CEIN cos 1 e~/04z-1
cos

o=—ei(61+6,-65-64) (5.11a,b.c,d)

Notice that the location of the transmission zero is defined by the unimodular multiplier
associated with the delay (which gives the angle of the transmission zero) and the ratio of
the multipliers of the two real two-port adaptors (which gives the magnitude of the
transmission zero).

Consider the general section given above as a reciprocal section as shown in the
following figure:
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Figure 5.24: Reciprocal form of the canonic cascade section using real 2-port adaptors.

with the following canonic polynomials
f=zl-eJj63
h=sinﬁtan/3ej(91—93—94)

g = .e__‘lieie_‘t)._ cOS ﬁ e—-je4z-1
cos 3

o=—ei(61+62-63-04) (5.12a,b.c.d)

Notice that the location of the transmission zero is now uniquely defined as the value of the
unimodular multiplier associated with the delay.

Using either of the sections given in Figures 5.22-23, the four angles 6y, k=1(1)4 can
be determined for ¢ach dynamic section in a CWD realization by simply equating the values

found in Figures 5.22 and 5.23. Let the angles of the /th section be labelled as Bé.

The unimodular multiplier represented by 941 (the top most unimodular multiplier in
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Figure 5.23) can be drawn-through the remainder of the network to the right, in order to
form an ideal complex transformer, with a turns ratio that is unimodular, as the last element
to the right (that is, to the right of the last complex two-port adaptor associated with the
constant section). This process will also introduce a contribution from 94{ into 921. Thus
one unimodular multiplier per section can be removed.

Now consider two adjacent cascade sections labelled as the ™ and the (l+1)th

sections connected as described earlier. The 921 angle from the /th section can be combined
with the 911 * angle from the (+1)th section for each of the dynamic sections of the

network. The 911 angle from the first section will not change, and the 02N angle from the
last dynamic section can be combined with the constant section shown in Figure 5.21.
This process will further remove one unimodular multiplier per section.

Thus, after the above simplifications, each dynamic section is a function of the canonic
number of real parameters (that is, three and four parameters for reciprocal and non-
reciprocal sections, respectively). The real parameters are found in the real angles 8; and
B2 of the normalized two-port adaptors (for reciprocal sections the angles are equal

removing one degree of freedom), and the two angles 911 and 931 are associated with the
unimodular multipliers.

The remaining dynamic section will hereafter be known as the minimal characterization
and is shown along with the final ideal complex transformer in the Figure 5.25. The
unimodular angle becomes

5’1 l I-1 -1
1=61+6; +6; 7, [=11N (5.13)

where
6, =6, =0 (5.14)

The angle of the complex ideal transformer is given by

N
%:—(Z ef) (5.15)
k=1
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Figure 5.25: Minimal realization of the canonic cascade section.

The minimal form of the complex cascade section reduces in a simple manner to the real

section given in [16] if all quantities are real, and thus the canonic cascade section is the
most general form of a first-order section.

Now consider the last constant section as given in Figure 5.21. The section after the
simplifications discussion above is shown in the following figure:

Aq B,
1 /% e7or
Y
04
Vg
ny s e](gz" +d) el Az

Figure 5.26: The last constant section in a CWD network.

where the turns ratio Ny is real as defined from

'y= n'yejOY

(5.16)
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Notice that the unimodular multipliers from the last dynamic section as well as the last
complex ideal transformer have been combined with this section. Now consider the real
transformer on the left of the section in Figure 5.26 as well as the top unimodular
multiplier, drawn through the section toward the right. This process will remove one
multiplier from the section, leaving the following constant section in the minimal
characterization.

Ay B,
1
nyei6-6)
04
o268+ ) nyeilor=6) Az

Figure 5.27: Minimal form of the last constant section in a CWD network.

where the last transformer on the right has a complex turns ratio of
nN +1 =nyej(9T'97) (517)

Notice that the minimal form of the section contains three complex multipliers, however,
ordinarily at least one can be ignored since the input at port two is usually zero when
realizing a transmittance (however, this need not be the case).
The output of the voltage wave complex two-port adaptor can be efficiently computed
using
X=A1-A;

By={1-alX + 4,

By=B,- ((Tl-‘—“))x (5.18a,b.c)

which involves two complex multiplications and three complex additions/subtractions.
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5.3.7 Quantization of the Minimal Form CWD Realization

Once the CWD network has been reduced to the minimal form as described above, the
only elements that remain are terms involving sines and cosines (except the last two-port
adaptor). They arise from the real normalized two-port adaptors associated with the
dynamic sections and the real and imaginary parts of unimodular multipliers. Thus the
quantization process involves the binary representation of sines and cosines. Note that the
comments given in Section 5.1.3 about quantization also apply to this discussion.

Since the quantized form of a unimodular multiplier cannot have a magnitude of unity in
general, the quantized form of a unimodular multiplier is passive and not lossless. A
similar argument holds for the real normalized two-port adaptors [16]. From (5.18), the
quantized form of the complex two-port adaptor involves two quantizations.

5.4 Design Examples Using the Minimal Form of the First-Order Sections

The following presents three design examples of lowpass Elliptical filters that are
realized using the minimal form of the canonic cascade section. The finite transmission
zeros for all examples are realized using the CC1_j¢ first-order complex section. Note that
the complex filter output for a real transfer function is real under nominal conditions.

The examples were generated by a computer program written by the author in the
PASCAL computer language for the Macintosh computer. The program is capable of
determining the quantized form of a CWD network which meets a set of frequency
specifications. As with the examples given in Section 5.2, all attenuation plots are given as
a function of the normalized frequency. That is, the frequency range plotted is from -0.5 to
0.5 (instead of -w to ). Any frequency independent vertical shifts are removed in order to
compare the shape of the plot to the nominal plot.



165
5.4.1 Elliptic Filter of Order Four

The 4th order Elliptic filter as given in Appendix A was quantized to the same
frequency specifications (a passband ripple of 1.5 dB) as the example given in Sections
5.2.2.1 and 5.2.2.2. The two realizations given earlier required 7 bits (series adaptors)
and 10 or 12 bits (parallel adaptors), while for this example using the cascade section
throughout 6 bits are required. This implies that the cascade section is less sensitive than
the realization method employing complex three-port adaptors.

The stopband and passband attenuation plots are shown in Figures 5.28 and 5.29,
respectively. With the larger number of bits used for the earlier examples, both the
stopband and passband plots appear to deviate less from the nominal plot than the example
given here. Notice the quantized stopband plot is very close to the nominal, except the
large nominal attenuation is not achieved. The quantized passband plot deviates from the
nominal to the extent that the plot does not appear Elliptic in nature. This is a result of the
low number of bits used.

This example was regenerated using 8 bits, which is a rough average of the bits
required for the examples given in Sections 5.2.2.1 and 5.2.2.2, in order to compare the
realizations. The stopband and passband attenuation plots are shown in Figures 5.30 and
5.31, respectively. Clearly, the quantized and nominal attenuation plots are difficult to
distinguish in the stopband. The passband attenuation plot shows an improvement over the
earlier examples. This again implies the cascade section is less sensitive than the realization
using complex three-port adaptors.

¥
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Figure 5.28: Stopband attenuation plot of the 4th order Elliptic filter using 6 bits.
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Figure 5.29: Passband attenuation plot of the 4th order Elliptic filter using 6 bits.
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Figure 5.30: Stopband attenuation plot of the 4th order Elliptic filter using 8 bits.
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Figure 5.31: Passband attenuation plot of the 4th order Elliptic filter using 8 bits.
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5.4.2 Elliptic Filter of Order Five

The 5t order Elliptic filter as given in Appendix A was quantized to the same
frequency specifications (a passband ripple of 1.5 dB) as the example given in Section
5.2.2.4. Whereas the earlier example based on either the series or parallel three-port
adaptor realization required 9 bits, this example based on the cascade section required 7 bits
for the quantization. Again, this implies the insensitivity found earlier.

The stopband and passband attenuation plots are shown in Figures 5.32 and 5.33,
respectively. With the larger number of bits used for the earlier example, both the stopband
and passband plots appear to deviate less from the nominal plot than the example given
here. Notice the quantized stopband plot is identical to the nominal. The quantized
passband plot deviates from the nominal at the edges of the passband.
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Figure 5.32: Stopband attenuation plot of the 5th order Elliptic filter using 7 bits.
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Figure 5.33: Passband attenuation plot of the 5th order Elliptic filter using 7 bits.
5.4.3 Elliptic Filter of Order Eight

The 8th order Elliptic filter as given in Appendix A was quantized to 9 bits in order to
satisfy a passband ripple of 1.5 dB. The stopband and passband attenuation plots are
shown in Figures 5.34 and 5.35, respectively.

From the stopband attenuation plot it is clear that the quantized and nominal plots are
similar since the stopband attenuation is achieved. However, the locations of the
transmission zeros have shifted slightly. The quantized passband attenuation plot is very
similar to the nominal plot, except at the corners of the passband.
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Figure 5.34: Stopband attenuation plot of the 8th order Elliptic filter using 9 bits.
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Figure 5.35: .Passband attenuation plot of the 8th order Elliptic filter using 9 bits.
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5.5 Comparison of the Two Realization Methods

Several observations can be made when comparing the complex first-order section
realization methods using either the three-port adaptor or the cascade section. The two
realization methods discussed in Sections 5.1 and 5.3 are capable of realizing the same
reciprocal ladder filter. However, nonreciprocal filters must be realized using the cascade
section. Thus the comparison of the two realization methods will be limitted to reciprocal
networks. Notice that for this discussion either the series or the parallel three-port adaptor
realization can be considered equivalent with respect to the number of calculations required
and the number of independent quantizations needed. Thus the discussion of the three-port
adaptor method applies to either adaptor type.

The networks derived from the three-port adaptor approach must be scaled after the
construction of the network with real scaling transformers. This requires additional
computations. However, the cascade section is composed of normalized elements and thus
external scaling is not required.

The realization method using the three-port adaptor approach is based on the element-
by-element transformation of one of the two sections shown in Figure 5.36,

X &

o ] o) o o)
Figure 5.36: General first-order complex sections.

where the dashed box represents a one-port dynamic element possibly in combination with
an imaginary resistor. If both sections realize the same transmission zero, the section on
the left is usually the dual of the section on the right. Regardless of which section is used
to realize a transmission zero, the mapping presented in Figures 5.3-4 and the equivalences
between the three-port adaptors and combinations of two-port adaptors possibly with
external multipliers given in Section 4.6.6, lead to the general form of the CWD section
shown in Figure 5.37a). Note that it is assumed that the three-port adaptors were
normalized before the adaptor equivalences were applied.

The section shown in Figure 5.37a) represents the direct transformation of a first-order
section after making use of the adaptor equivalences. The complex multipliers can be

expressed in polar form as y; = n1e/6 and P = nyeff2, creating two constant two-port
sections on each side of the central section containing the real two-port adaptors. Since the
two sections consist of a real transformer and a section with equal unimodular multipliers,
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the section shown in Figure 5.37b) can be derived from a). Note that the real transformer
on the left is combined with the transformer on the right. By applying suitable flowgraph
transformations on Figure 5.37b), the flowgraph resulting from the three-port adaptor
approach can be made similar to the canonic section flowgraph (the ideal transformer on the
right can be ignored since it represents scaling).

1 1
n b el et Tz
o——O— ——0O—8o o——(O— —O—(O—®o
Ay B, Ay B,
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Figure 5.37: General form of the transformation of a complex first-order section,
a) Direct transformation, b) Equivalent of the direct transformation.

The number of computations required for each approach can be compared. For the
comparison, assume that the three-port and two-port adaptor equivalences are not applied.
In the following, assume that all signals that are processed are complex. Also, assume that
a complex multiplication requires four real multiplications and two real additions (the
number of multiplications can be reduced to three at the expense of more additions).
Similarly, assume that a complex addition requires two real additions.

The three-port adaptor method of realization using unnormalized adaptors requires five
complex multiplications, one real multiplication and four complex additions operating on
complex signals. This is equivalent to 22 real multiplications and eight real additions. The
canonic cascade section in the minimal characterization requires two complex
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multiplications, eight real multiplications and four complex additions. This is equivalent to
24 real multiplications and eight real additions. Thus, it is clear that the cascade section
requires two more real multiplications than the method using three-port adaptors. The
added computations from the scaling of the three-port adaptors was not included in this
analysis. Note that if the normalized form of the cascade section is not used, the series
three-port adaptor with a reflection-free port (a function of one real multiplier) can be used
to replace the two two-port adaptors in Figure 5.24 in order to decrease the number of
required computations.

The number of independent real quantizations for both methods are given by six and 11
for the cascade and three-port adaptor realization methods, respectively (note that the
cascade section was assumed to be reciprocal for the comparison). Thus the cascade
section requires nearly half the number of independent quantizations that the three-port
adaptor method requires, which leads to the lower sensitivity that was observed in the
examples in Section 5.3.

The preferred realization method uses the canonic cascade section because of the fewer
real independent quantizations that are required and the uniformity of the sections. That s,
- a basic block structure that is, in general, a function of four real parameters is capable of
realizing any of the real or complex first-order elementary sections. The preferred method
of realization for a particular application will of course depend on the constraints placed on
the operation of the implemented network.

The above discussion shows by construction that it is possible to realize a general
complex filter without alteration (to make it one-real) using complex port impedances and
the related structures. This gives the sufficiency of Theorem 1.1 in Chapter I of allowing
complex port impedances and thus completes the proof. Thus, the imaginary part of the
port impedance can be used simultaneously to guarantee computability of the complex WD
network and to simplify the CWD elements (real port impedances with complex networks
do not allow this freedom). Also, the port impedances of a WD structure based on port
impedances are necessarily complex, unless the network is one-real.



Chapter VI

Conclusion

This thesis has developed a new theory for complex wave digital (WD) filters allowing
the realization of general complex reference networks without alteration (the networks do
not require the property of one-realness). A port reference impedance is now allowed to be
complex, containing a positive resistance and an imaginary resistance, or constant
reactance. The voltage wave incident and reflected wave variables, A and B, are
redefined and the familiar concept of the WD mapping of analog networks is preserved.
The generalization reduces to the known theory of real WD filters if all quantities are real,
and a stability theory exists. The resulting definition of power and the power-wave
description are the same as suggested by Fettweis. A motivation for the generalization is
found in the additional degree of freedom in the choice of the imaginary part of the port
reference (that is, there is an additional parameter) which can be used simultaneously to
guarantee computability of the complex WD network and to simplify the CWD elements
(real port references with complex networks do not allow this freedom).

The new definitions of the incident and reflected wave variables lead to new definitions
for the complex n-port series and parallel adaptors which allow complex port references.
The complex series three-port adaptor with a reflection-free port has the same scattering
matrix as the real case. Thus, no extra computations are needed, that is, no penalty is
imposed for having free parameters in the port references. The complex three-port parallel
adaptor is more complicated than the series adaptor. Equivalences between the three-port
adaptors exist only when each adaptor contains a reflection-free port.

Many useful complex dynamic and non-dynamic one-ports, as well as non-dynamic
two-ports that do not have a real WD equivalent are now defined. The analog series
connected imaginary resistor when viewed as a two-port has a straight forward complex
WD equivalent of a simple pass through connection. Similarly, the analog parallel
connected imaginary resistor when viewed as a two-port has a WD equivalent of inverse
conjugate multipliers in the signal paths which is a hybrid form of scaling. Thus the
definition of the voltage waves have a bias towards series connections. Similarly, the dual
definition of complex current waves have a bias towards parallel connections.

The complex reference networks are designed using the new generalization to the
complex domain of the synthesis algorithm given in [16]. The algorithm is novel since it
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does not require the use of zero-finding or polynomial manipulation routines associated
with the determination of intermediate polynomials, namely, it is based entirely on
polynomial evaluations. Complex networks are derived by using general first-order
complex sections which are capable of independently realizing a transmission zero
anywhere in the complex plane. It is found that a more judicious representation for a
complex elementary section, from the viewpoint of network synthesis, are the canonic
parameters rather than the lumped-element parameters. The canonic parameters completely
characterize a section and are given by the location of the transmission zero, the reflectance
evaluated at the transmission zero, and for reciprocal sections, the return group delay (or
simply the delay) evaluated at the transmission zero.

A complex WD ladder network is realized from a complex reference filter using one of
two methods. The first method maps a complex reciprocal reference network to the
equivalent CWD network on an element-by-element basis. This inherently requires the use
of complex three-port series and parallel adaptors. The second method maps a complex
reciprocal or non-reciprocal elementary section as a dynamic two-port to the CWD
equivalent. This method requires at most two real normalized two-port adaptors and two
unimodular multipliers for each dynamic section, which is referred to as the canonic
cascade section. From the examples presented, the realization method using the cascade
section appears less sensitive to binary quantizations than the method using three-port
adaptors. '



Appendix A

Complex Analog Design Examples

Few examples of complex analog networks exist in the literature, and no examples exist
for either the realizations of frequency shifted networks or the realizations of networks with
the phase of the 4 polynomial scaled by an arbitrary real constant. In order to give
examples of complex analog networks and to support the observations made in this thesis,
the following Appendix contains five examples of classical filters: Elliptic filters of orders
4,5, 8, 14, and a Chebyshev filter of order 5.

Each filter is realized using the following:

a) real sections throughout.

b) real sections with each dynamic section having port two reflection-free

(RF).

¢) complex sections throughout

d) complex sections with each dynamic section having port two reflection-free.
In addition, the 4t order Elliptic filter and the 5th order Chebyshev filter are realized with
four different phase shifts of the 4 polynomial, namely 45°, 90°, 135°, and 180°. The
5th order Elliptic is realized an additional four times with each of the four first-order
reciprocal sections CA1_jw, CB1_jw, CC1_jw and CD1_jw. Also, realizations are given
for four different j¢ axis shifts for the 5th and 8th order Elliptic examples, namely -j2, -j1,
+jl and +j2. The 8th order Elliptic is realized a final time with the f and 4 polynomials
exchanged in order to create a network with non-reciprocal sections.

For each type of filter, the canonic polynomials and the attenuation stopband plots are
given, where the frequency axis of the attenuation plots has a range of 2w (digital

frequencies). The passband plot is also given for the 14th order Elliptic example from [16]
since it is a very narrow band filter and the passband cannot be detected in the stopband
plot.

For all cases, both the canonic parameters and the lumped element values are given.
The canonic parameters are given with a sufficient accuracy to calculate the lumped element
values to a higher accuracy than the one presented if this becomes necessary.
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Description: 4 order Elliptic canonic polynomials
8

K

2.600000000000000000000e+1  +j0.000000000000000000000e+0

-4.578899000000000000000e-2  + j3.716022100000000000000¢-1
-4.578899000000000000000e-2 - j3.716022100000000000000e-1
-1.999462400000000000000e-1  + j2.076219900000000000000e-1
-1.999462400000000000000e-1 - j2.076219900000000000000e-1

h
2.598076211353315940000e+1 +j 0.000000000000000000000e+0

Zeros

K

6.187050647514158352000e-2  +j 1.629448294180088933000e-1
6.187050647514158352000e-2  -j 1.629448294180088933000e-1
1.646204983882961138000e-2  +j 3.388423549929472963000e-1
1.646204983882961138000e-2  -j 3.388423549929472963000e-1

f

ZEeros
]

K

1.000000000000000000000e+0  +j 0.000000000000000000000e+0

0.000000000000000000000e+0 +j 5.042522500000000000000¢-1
0.000000000000000000000e+0  -j 5.042522500000000000000e-1
0.000000000000000000000e+0 +j 1.065898330000000000000e+0
0.000000000000000000000e+0  ~j 1.065898330000000000000e+0

ZE€ros

Table A.1: 4th order Elliptic canonic polynomials.
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Figure A.1: 4th order Elliptic fullband plot.

.2

Description: 4 Elliptic Canonic Parameters

Section

| A

Arg{p)

d

1|BRUNE2
2|BRUNE2

1.000000000000000
1.000000000000000

1.098456804919560
0.232172253166848

4.279780320238098
0.244918865281266

Table A.2: 4th order Elliptic canonic parameters with real sections.

Description: 4 Elliptic Canonic Parameters RF port 2

Section

A

Arg{ o)

d

1|BRUNE2

2|BRUNE2

1.000000000000000

1.0000000006000000

1.098456804919560
0.086764297935227

4.279780320238098
0.092239444290098

Table A.3: 4th order Elliptic canonic parameters with real sections and port 2 RF.



Description

: 4 Elliptic Canonic Parameters

Section

| A

Arg{p}

d

CCl_jw
CCl_jw
CCl1_jw
CCl_jw

IO UV NI

1.00000000
1.00000000
1.00000000
1.00000000

1.09845680
-0.49838743
0.04031452
-0.00254213

4.27978032
2.29731862
0.04290071
0.002705%4

Table A.4: 4th order Elliptic canonic parameters with complex sections.

Description:

4 Elliptic Canonic Parameters RF port 2

Section

A

Arg{p)

d

CCl_jw
CCl_jw
CCl_jw
CCl_jw

HWN—

1.00000000
1.00000000
1.00000000
1.00000000

1.09845680
-0.84451750
-0.00108656
-0.14432050

4.27978032
245619364
0.09223944
0.12629905

Description: 4 Elliptic Canonic Parameters 4 45

Section

| A

Arg{ )

d

CCl_jw
CCl_jw
CCl_jw
CCl_jw

SN

1.00000000
1.00000000
1.00000000
1.00000000

1.88385497
0.28701073
0.82571268
0.78285603

4.27978032
2.29731862
0.04290071
0.00270594

Description: 4 Elliptic Canonic Parameters # 90

Section

A

Arg{ o)

d

CCl_jw
CCl_jw
CCl_jw
CCl1_jw

EG TS I N WA

1.00000000
1.00000000
1.00000000
1.00000000

2.66925313
1.07240890
1.61111085
1.56825419

4.27978032
2.29731862
0.04290071
0.002705%4

179

Table A.5: 4th order Elliptic canonic parameters with complex sections and port 2 RF.

Table A.6: 4th order Elliptic canonic parameters with 4 polynomial scaled by 45 °.

Table A.7: 4th order Elliptic canonic parameters with 4 polynomial scaled by 90 °.



Description: 4 Elliptic Canonic Parameters ~ 135

Section

A

Arg{p}

d

CCl_jw
CCl jw
CCl_jw
CCL_jw

W=

1.00000000
1.00000000
1.00000000
1.00000000

-2.82853401
1.85780706
2.39650901
2.35365236

4.27978032
2.29731862
0.04290071
0.00270594

180

Table A.8: 4th order Elliptic canonic parameters with 4 polynomial scaled by 135 °.

Description: 4 Elliptic Canonic Parameters 4 180

Section

1A

Arg{p}

d

CCL_jw
CCljw
CCl_jw
CCl jw

RN

1.00000000
1.00000000
1.00000000
1.00000000

-2.04313585
2.64320522
-3.10127813
3.13905052

4.27978032
229731862
0.04290071
0.00270594

Table A.9: 4th order Elliptic canonic parameters with 4 polynomial scaled by 180 °.

Description: 4 order Elliptic Lumped Element Values

Section L C n
1 |BRUNE2| 1.89293934 0.86386147 2.40504666
2 |BRUNE2| 7.53813225 0.00736179 15.86067023
3 TO - - 1.36269167

Table A.10: 4th order Elliptic lumped element values with real sections.

Description: 4 order Elliptic Lumped Element Values RF port 2
Section L C n

1 |BRUNE2| 1.89293934 0.86386147 2.40504666

1 TO - - 0.61013108

2 |BRUNE2 | 20.24964667 | 0.00274050 15.86067023

2 TO - - 1.16993751

3 TO - - 1.90902573

Table A.11: 4th order Elliptic lumped element values with real sections and port 2 RF.

-



Description: 4 order Elliptic Lumped Element Values

Section C X1 X2 n
1 |CC1_jw [2.94148863 1.63386926 0.67419415 -
2 |CCl_jw |1.22304846 | -3.92953181 | -1.62146840 -
3 |CC1_jw {0.02145907 | 49.60319911 | 43.71930500 -
4 [CC1_jw [0.00135297 |-786.73998336 [-693.41747924 -
51 TO - - - 51.98076211

Table A.12: 4th order Elliptic lumped element values with complex sections.

Description: 4 order Elliptic Lumped Element Values RF port 2

Section C X1 X2 X3
11 CCl1_jw|2.94148863 1.63386926 0.67419415 -
1| COPi - -0.97376318 0.11613691 | 0.77049151
2 | CC1_jw| 1.47599622 | -2.22576122 -1.34359046 -
21 COPi - 0.64962572 -0.13581892 | -0.47214844
3 | CCl_jwi 0.04611974 {-1840.673358 | 20.34217602 -
3| COPi - 0.25969432 -0.20155609 | -0.05524646
4 | CC1_jw| 0.06347949 |-13.83398363 | -14.77919435 -
41 COPi - 0.06326706 -0.04735778 | -0.01586175
5| COPi - -0.01620919 0.00771929 | 0.00849377

Table A.13: 4th order Elliptic lumped element values with complex sections and RF port 2.

Description: 4 order Elliptic Lumped Element Values 4 45

Section C X1 X2 X3
11 CC1_jw| 6.18438600|] 0.72738367 0.32066796 -
21 CCl_jw| 1.17264316] 6.92047958 -1.69116617 -
3|1 CCl_jw| 0.02556607| 2.28294161 36.69613287 -
41 CCl_jw| 0.00158344] 2.42291967 |-592.49223487 -
5| COP1 - 2.77140635 18.37117307 | 0.42358027

Table A.14: 4th order Elliptic lumped element values with 4 polynomial scaled by 45°.
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Description: 4 order Elliptic Lumped Element Values 4 90

Section C X1 X2 X3

CCl_jw | 39.08700486| 0.24066087 0.05073641
CCl_jw | 1.55433252] 1.68270295 -1.27587528
CCI_jw| 0.04470238| 0.96047681 20.98715606
CCl_jw | 0.00269908( 1.00254537 |-347.59068052 -
COP1 - 1.03923048 25.98076211 | 1.03923048

P W RN

Table A.15: 4th order Elliptic lumped element values with 4 polynomial scaled by 90 °.

Description: 4 order Elliptic Lumped Element Values 4 135
Section C X1 X2 X3

CCl1_jw | 88.05416979] -0.15782037 0.02252175
CCl_jw| 3.20445722] 0.74749004 -0.61886750
CCl_jw| 0.16190853| 0.39079026 5.79448015
CCl_jw| 0.00918224| 0.41570350 |-102.17282528 -
COPi - 0.42358027 | 18.37117307 | 2.77140635

U W —

Table A.16: 4th order Elliptic lumped element values with A4 polynomial scaled by 135 °.

Description: 4 order Elliptic Lumped Element Values 4 180

Section C X1 X2 n

CCl_jw| 7.85238847]-0.61204408 | 0.25255175 -
CCl_jw| 18.88536070] 0.25448324 | -0.10500908 -
CCl1_jw| 52.799564741 -0.02015999 | 0.01776863 -
CC1_jw |837.43648455] 0.00127107 | -0.00112029 -

TO - - - 0.01923789

(LI S SRS I SR

Table A.17: 4th order Elliptic lumped element values with 4 polynomial scaled by 180 °.



Description: 5 order Chebyshev canonic polynomials
8

M | 8.141554238553398  +j 0.000000000000000

-0.089458362200190 +j 0.990107112003389
-0.234205032817997 +j 0.611919847721094
-0.289493341235613  +j 0.000000000000000
-0.234205032817997 -j 0.611919847721094
-0.089458362200190 -j 0.990107112003389

Zeros

K

8.141554238553398  +j 0.000000000000000

0.000000000000000  +j 0.000000000000000
0.000000000001143 +j 0.951056515795481
0.000000000001044  -j 0.951056516783792
-0.000000000002476 +j 0.587785251278035
0.000000000000431  -j 0.587785253230156

ZEros

](

> | 1.000000000000000 +j 0.000000000000000

Table A.18: 5th order Chebyshev canonic polynomials.
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Table A.19: 5th order Chebyshev canonic parameters with real sections.
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Figure A.2: 5th order Chebyshev fullband plot.

Description: 5 Chebyshev Canonic Parameters
Section W Arg{p} d

1] Al 1.00000000{-0.00000000 | 0.93682013

21 BI1 1.00000000] 3.14159265 | 1.83300031

3] Al 1.00000000§ 0.00000001 | 0.66646164

4| BI 1.00000000 | 3.14159264 | 1.83300031

51 Al 0.99995099| 0.00125347 | 0.93681333

3.2



Description: 5 Chebyshev Canonic Parameters RF 2

Section | A Arg{p} d
11 Al 1.00000000 | -0.00000000] 0.93682013
2| Bl 1.00000000 | 3.14159265 | 0.58471119
3] Al |1.00000000 | 0.00000000 | 0.47263477
4| BI1 1.00000000 | 3.14159265 | 0.49405776
51 Al 10.99996398 | 0.00092123 | 0.68850828

Table A.20: 5th order Chebyshev canonic parameters with real sections and port 2 RF.

Description: 5 Chebyshev Canonic Parameters # 45

Section

Arg{p)

d

CB1_INF
CBI1_INF
CBI1_INF
CBI_INF
CBI1_INF

N BN e

1.00000000

0.99994945

0.78539816
-2.35619450
0.78539816
-2.35619450
0.78539822

0.93682013
1.83300031
0.66646164
1.83300031
0.93681370

Table A.21: 5th order Chebyshev canonic parameters with 4 polynomial scaled by 45 °.

Description: 5 Chebyshev Canonic Parameters 2 90

Section

Arg(p}

d

CB1_INF
CBI1_INF
CBI1_INF
CBI1_INF
CB1_INF

(S, QR SV S

0.99994945

1.57079633
-1.57079633
1.57079632
-1.57079633
1.57079639

0.93682013
1.83300031
0.66646164
1.83300031
0.93681370

Table A.22: 5th order Chebyshev canonic parameters with 4 polynomial scaled by 90 °.




Table A.23: 5th order Chebyshev canonic parameters with 4 polynomial scaled by 135 °.

Table A.24: 5th order Chebyshev canonic parameters with & polynomial scaled by 180 °.

Description: 5 Chebyshev Canonic Parameters 4 135

Section

Arg{p)

d

NP W

CBI1_INF
CBI1_INF
CBI1_INF
CBI1_INF
CBI1_INF

0.99994945

2.35619449
-0.78539817
2.35619449
-0.78539817
2.35619455

0.93682013
1.83300031
0.66646164
1.83300031
0.93681370

Description: 5 Chebyshev Canonic Parameters 4 180

Section W Arg{p d
1} Bl 1.00000000 | 3.14159265] 0.93682013
21 Al 1.00000000 | -0.00000001| 1.83300031
31 B1 1.00000000 | -3.14159265| 0.66646164
4| Al 1.00000000 | -0.00000001} 1.83300031
5| Bl ]0.99995099 |-3.14033918| 0.93681333

Description: 5 Chebyshev Lumped Element Values

Section L C n
1 Al 2.13488154 - -
2 B1 - 1.09110729 -
3 Al 3.00002291 - -
4 B1 - 1.09110729 -
5 Al 2.13489704 - -
6 TO - - 0.99973870

Table A.25: 5th order Chebyshev lumped element values.




Description: S5 Chebyshev Lumped Element Values RF 2

Section L C n
1 Al 2.13488154 - -
1 TO - - 1.77055967
2 B1 - 3.42049210 -
2 TO - - 0.47562502
3 Al 4.23159723 - -
3 TO - - 2.28726851
4 B1 - 4.04810971 -
4 TO - - 0.44507747
5 Al 2.90483070 - -
5 TO - - 1.97606445
6 TO - - 0.59014317

Table A.26: 5th order Chebyshev lumped element values and port 2 RF.

187

Description: 5 Chebyshev Lumped Element Values h 45

Section C X1 n
1 |CBI_INF] 0.31264616 2.41421356 -
2 |CBI1_INF| 0.93131833 -0.41421356 -
3 {CBI_INF| 0.43947498 2.41421357 -
4 |CB1_INF| 0.93131833 -0.41421356 -
5 |CB1_INF| 0.31264835 2.41421336 -
6 TO - - 0.99822999

Table A.27: 5th order Chebyshev lumped element values with 4 polynomial scaled by

45°.

Description: 5 Chebyshev Lumped Element Values & 90

Section C X1 n
1 |CB1_INF| 1.06744077 1.00000000 -
2 |CB1_INF| 0.54555365 -0.99999999 -
3 |CB1_INF| 1.50046145 1.00000000 -
4 | CBI_INF| 0.54555365 -0.99999999 -
5 |CB1_INF| 1.06744816 0.99999994 -
6 TO - - 0.99768900

Table A.28: 5t order Chebyshev lumped element values with h polynomial scaled by

90°.
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Description: 5 Chebyshev Lumped Element Values 4 135

Section C X1 n
1 | CB1_INF 1.82223537 0.41421356 -
2 |CB1_INF| 0.15978897 -2.41421354 -
3 |CB1_INF| 2.56144792 0.41421356 -
4 |CB1_INF| 0.15978897 -2.41421354 -
5 |CBI1_INF 1.82224794 0.41421353 -
6 TO : - - 0.99843263

Table A.29: 5th order Chebyshev lumped element values with & polynomial scaled by

135°.

Description: 5 Chebyshev Lumped Element Values ~ 180

Section L C n
1 Bl - 2.13488154 -
2 Al 1.09110729 - -
3 B1 - 3.00092291 -
4 Al 1.09110729 - -
5 B1 - 2.13489704 -
6 TO - - 1.00002527

Table A.30: 5th order Chebyshev lumped element values with k polynomial scaled by

180°.



Description: 5 order Elliptic canonic polynomials

8

M | 5.08797927494456309800 +j 0.00000000000000000000

-0.02355908935830095100  -j 1.00116432437774274600
-0.18118541125878269200 -j 0.85848241403329607900
-0.51179432488142946200 +j 0.00000000000000000000
-0.18118541125878269200 +j 0.85848241403329607900
-0.02355908935830095100 +j 1.00116432437774274600

ZEros

M | 5.08797927494456309800 +j 0.00000000000000000000

-0.00000000000000182050  -j 0.98626463252163675090
-0.00000000000000182050 +j 0.98626463252163675090
-0.00000000000003074655  -j 0.78839627515963330840
-0.00000000000003074655 +j 0.78839627515963330840
0.00000000000000000000  +j 0.00000000000000000000

ZE€ToS

N 1.00000000000000000000  +j 0.00000000000000000000

0.00000000000000000000 +j 1.06462295875831567000
0.00000000000000000000  -j 1.06462295875831567000
+j 1.33181775809400546300
0.00000000000000000000  -j 1.33181775809400546300

Zeros
L

Table A.31: 5t order Elliptic canonic polynomials.
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Figure A.3: 5th order Elliptic fullband plot.

Description: 5 Elliptic Canonic Parameters

Section

| A

Arg{p)

d

1 IBRUNE2
2 |IBRUNE2
31 Al

0.999999962782041
0.999999726175078
1.000000000000596

1.629991081405960
0.643262157328017
-0.000000000000000

7.967967818455033
0.783925157938231
0.921283326122010

Table A.32: 5t order Elliptic canonic parameters with real sections.

Description: 5 Elliptic Canonic Parameters RF port 2

Section

1A

Arg{p}

d

BRUNE2
BRUNE2
Al

W N =

0.999999962782041
0.999999775238420
'1.000000000000421

1.629991081405960
0.514771985615197
-0.000000000000000

7.967967818455033
0.643463173254037
0.650211580273026

Table A.33: 5t order Elliptic canonic parameters with real sections and port 2 RF.




Table A.34:

Table A.35:

Table A.36:

Table A.37:

Description:

5 Elliptic Canonic Parameters

Section

| A

Arg{p}

d

CAl_jw
CAl_jw
CAl_jw
CAl_jw
Al

bW -

0.99999996
0.99999996
0.99999973
0.99999934
1.00000000

1.62999108
1.27933203
0.64326216
1.36287977
-0.00000000

7.96796782
7.64530258
0.78392515
1.27881054
0.92128333

sth

order Elliptic canonic parameters with complex section CA1_jw.

Description: 5 Elliptic Canonic Parameters

Section

| A

Arg{p}

d

CB1_jw
CB1_jw
CB1_jw
CB1_jw
Al

(T S PV &

0.99999996
0.99999996
0.99999973
0.99999934
1.00000000

1.62999108
1.27933203
0.64326216
1.36287977

-0.00000000

7.96796782
7.64530258
0.78392515
1.27881054
0.92128333

sth

order Elliptic canonic parameters with complex section CB1_jw.

Description: 5 Elliptic Canonic Parameters

Section

| A

Arg{p}

d

CCl_jw
CCl_jw
CCl1_jw
CCl_jw
Al

N AW -

0.99999996
0.99999996
0.99999982
0.99999992
1.00000000

1.62999108
-1.39449463
0.40947587
-0.11211207
0.00000000

7.96796782
7.85822055
0.52033748
0.14621906
0.04192916

5th order Elliptic canonic parameters with complex section CC1_jw.

Description: 5 Elliptic Canonic Parameters

Section

A

Arg{p)

d

CD1_jw
CD1_jw
CD1_jw
CD1_jw
Al

(W ISR S R

0.99999996
0.99999996
0.99999982
0.99999992
1.00000000

1.62999108
-1.39449463
0.40947587
-0.11211207

0.00000000

7.96796782
7.85822055
0.52033748
0.14621906
0.04192916

5th order Elliptic canonic parameters with complex section CD1_jw.
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Description: 5 Elliptic Lumped Element Values
Section L C n
1 {BRUNE2| 0.18641882 3.73619040 1.26674615
2 |BRUNE2| 1.64448143 0.09264724 3.70040242
3 Al 2.17088483 - -
4 TO - - 1.00000703

Table A.38: 5t order Elliptic lumped element values with real sections.

Description: 5 Elliptic Lumped Element Values RF port 2
Section L C n
1 |BRUNE2| 0.18641882 3.73619040 1.26674615
11 TO - v - 0.88881273
2 |BRUNE2| 2.08165351 0.07319021 3.70040239
21 TO - - 0.94519296
3] Al 3.07592184 - -
31 T0 - - 2.01889124
41 TO - - 0.58960259

Table A.39: 5th order Elliptic lumped element values with real sections and port 2 RF.

Description: 5 order Elliptic Lumped Element Values

Section L C X1 X2 n
1 |CAl_jw| 0.10417811 - 0.94249058 | -0.11091040 -
2 |CAl_jw| 0.14856346 - 1.34404118 { 0.15816407 -
3 |CAl_jw ]| 1.29462172 - 3.00119519 | -1.72420019 -
4 ICA1_jw| 0.53186739 - 1.23297626 | 0.70835043 -
5 Al 2.17088483 - - - -
6 TO - - - - 1.00000703

Table A.40: 5t order Elliptic lumped element values with complex section CA1_jw.
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Description: 5 order Elliptic Lumped Element Values

Section L C X1 X2 n
1 |CBL_jw - 0.11727959 | 0.94249058 | 8.00906374 -
2 |CB1_jw - 0.08224071 | 1.34404118 | -11.42134645 -
3 |CBl_jw - 0.14373231 | 3.00119519 | 5.22397145 -
4 |CBl_jw - 0.34985971 | 1.23297626 | -2.14615590 -
5| Al 2.17088483 - - - -
6| TO : - - - - 1.00000703
Table A.41: 5t order Elliptic lumped element values with complex section CB1_jw.
Description: 5 order Elliptic Lumped Element Values
Section L C X1 X2 n
1 1CC1_jw - 8.46899519 | 0.94249058| 0.11091040 -
2 |CCl_jw - 6.68562933 | -1.19389631] -0.14049533 -
3 |CCl_jw - 0.27138655 | 4.81585526] 2.76673059 -
4 | CCl_jw - 0.07333974 |-17.82060242| -10.23801657 -
5| Al 47.69950569 - - - -
6] TO - - - - 4.68750344
Table A.42: 5th order Elliptic lumped element values with complex section CC1_jw.

Description: 5 order Elliptic Lumped Element Values

Section L C X1 X2 n
1 |ICD1_jw| 7.52291097 - 0.94249058 | -8.00906374 -
2 |ICD1_jw| 9.52961848 - -1.19389631 | 10.14545063 -
3 ICD1_jw| 6.29412230 - 4.81585526 | -8.38262384 -
4 |ICD1_jw | 23.29078535 - -17.82060242] 31.01908153 -
5 Al 47.69950569 - - v - -
6 TO - - - - 4.68750344

Table A.43: 5% order Elliptic lumped element values with complex section CD1_jw.




Description:

5 Elliptic Canonic Parameters RF port 2

Section

L

Arg{p}

d

CCl_jw
CCl_jw
CCl_jw
CCl_jw
CB1_INF

[V SR EL Y

0.99999996
0.99999997
0.99999978
0.99999970
1.00000000

1.62999108
-1.51254380
0.50003614
-0.55475288
-0.07233405

7.96796782
7.03016818
0.64346317
0.57337790
0.65021158
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“Table A.44: 5t order Elliptic canonic parameters with complex sections and port 2 RF.

Description: 5 order Elliptic Lumped Element Values RF port 2

Section L C X1 X2 X3
1 |CCl_jw - 8.46899519 | 0.94249058 | 0.11091040 -
1| COPi - - -1.27128535 | 0.06224604 1.12038080
2 | CCl_jw - 6.64339262 | -1.06001759 | -0.14138855 -
2 | COPi - - 1.01916438 | -0.06317338 | -0.89816358
3 | CCl_jw - 0.34271148 3.91602220 | 2.19092010 -
3| COP1 - - -0.02741367 | 0.01241781 0.01499076
4 | CCl_jw - 0.30992887 | -3.51227234 | -2.42266389 -
4 | COPi - - 0.15091498 | -0.07158789 | -0.07847923
5 |CB1_INF - 0.00402172 |-27.63743824 - -
5| COPi - - 0.10952143 | -0.05505495 | -0.05414003
6 | COPi - - 0.08824736| 0.06132842 | -0.14929640

Table A.45: 5 order Elliptic lumped element values with complex sections and port 2 RF.

Description:

5 Elliptic Canonic Parameters shift -j2

Section

A

Arg{p)

d

CCl_jw
CCl_jw
CCl_jw
CC1_jw
Al

nnph W

0.99999996
0.99999996
0.99999982
0.99999992
1.00000000

1.62999108

0.40947587
-0.11211208
0.00000000

7.96796782
-1.39449463] 7.85822055
0.52033748
0.14621906
0.04192916

Table A.46: 5t order Elliptic canonic parameters with all polynomials shifted by -j2.




Description:

5 Elliptic Canonic Parameters shift -j1

Section

| A

Arg{p}

d

CCl_jw
CCl1_jw
CCl_jw
CCl_jw
Al

(W, JF ~L SV Y NS

0.99999996
0.99999996
0.99999982
0.99999992
1.00000000

1.62999108
-1.39449463
0.40947587
-0.11211208,

0.00000000

7.96796782
7.85822055
0.52033748
0.14621906
0.04192916

Description:

5 Elliptic Canonic Parameters shift j1

Section

| A

Arg{p}

d

CCl_jw
CCl_jw
CCl_jw
CCl_jw
Al

[ JE LR S

0.99999996
0.99999996
0.99999982
0.99999992
1.00000000

1.62999108
-1.39449463;
0.40947587
-0.11211208}
-0.00000000

7.96796782
7.85822055
0.52033748
0.14621906
0.04192916

Description: 5 Elliptic Canonic Parameters shift j2

Section

A

Arg{p}

d

CCl_jw
CCl_jw
CCl_jw
CCl_jw
Al

R W=

0.99999996
0.99999996
0.99999982
0.99999992

1.00000000

1.62999108
-1.39449463
0.40947587
-0.11211208
-0.00000000

7.96796782
7.85822055
0.52033748
0.14621906

0.04192916
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Table A.47: 5t order Elliptic canonic parameters with all polynomials shifted by -j1.

Table A.48: 5t order Elliptic canonic parameters with all polynomials shifted by j1.

Table A.49: 5t order Elliptic canonic parameters with all polynomials shifted by j2.
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Description: 5 order Elliptic Lumped Element Values shift -j2
Section L C X1 X2 n
1 [CCl_jw - 8.46899519 | 0.94249058| -0.12623547 -
2 |CCl_jw - 6.68562933 | -1.19389631] -0.04880684 -
3 |CC1_jw - 0.27138656 | 4.81585525| -5.51463461 -
4 1CCl_jw - 0.07333974 |-17.82060228| -4.09241234 -
5] Al 47.69950520 - - - -
6]C0_1 - - 95.39965134 - 4.68750196

Table A.50: 5t order Elliptic lumped element values with all polynomials shifted by -j2.

Description: 5 order Elliptic Lumped Element Values shift -j1
Section L C X1 X2 n
1 |CCl_jw - 8.46899519 | 0.94249058 | 1.82717976 -
2 |CCl_jw - 6.68562933 |-1.19389631 | -0.07244642 -
3 |CCL_jw - 0.27138656 | 4.81585525 | 11.10483338 -
4 |CCl_jw - 0.07333974 |-17.82060228 | -5.84744330 -
51 Al 47.69950520 - - - -
6|CO0_1 - - 47.69982568 - 4.68750196

Table A.51: 5t order Elliptic lumped element values with all polynomials shifted by -j1.

Description: 5 order Elliptic Lumped Element Values shift j1
Section L C X1 X2 n
1 |CCl_jw - 8.46899519 0.94249058 0.05719096 -
2 |CCl_jw - 6.68562933 | -1.19389631f -2.31457292 -
3 |CCl_jw - 0.27138656 4.81585525 1.58021822 -
4 | CCl_jw - 0.07333974 | -17.82060228] -41.09235201 -
51 Al 47.69950520 - - - -
6| Co_1 - - -47.69982568 - 4.68750196

Table A.52: 5th order Elliptic lumped element values with all polynomials shifted by j1.
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Description: 5 order Elliptic Lumped Element Values shift j2

Section L C X1 X2 n
1 |CCl_jw - 8.46899519 | 0.94249058 0.03852930 -
2 |CCl_jw - 6.68562933 | -1.19389631 0.15990830} -
3 |CCl_jw - 0.27138656 | 4.81585525 1.10593711 -
4 | CCl_jw - 0.07333974 | -17.82060228] 20.40636710} -
5 Al 47.69950520 - - - -
6| C0_1 - - -95.39965134 - 4.68750196

Table A.53: 5t order Elliptic lumped element values with all polynomials shifted by j2.
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Figure A 4: 5th order Elliptic fullband plot shifted by j1.
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Description: 8 order Elliptic canonic polynomials

M | 2.927900000000000000000e+2  +j 0.000000000000000000000e+0
-9.102406181562536000000e-3  -j 9.996522315954465781000e-1
-4.226179402015336200000e-2  -j 9.539230744364000311000¢-1

. | -1:303713099929334780000e-1  -j 7.895318751773957050000¢-1
o | -2.740784957717469450000e-1  -j 3.411420833986736280000e-1
8 | -2.740784957717469450000e-1  +j 3.411420833986736280000e-1
-1.303713099929334780000e-1  +j 7.895318751773957050000¢-1
-4.226179402015336200000e-2  +j 9.539230744364000311000e-1
-9.102406181562536000000e-3  +j 9.996522315954465781000e-1
P4 | 2.927882922864232289000e+2  +j 0.000000000000000000000e+0
3.921547137681875898000e-3  -j 3.159234795829668779000e-1
3.921547137681875898000e-3  +j 3.159234795829668779000¢-1
w | -1.940276794624988369000e-3  -j 7.605284378217507982000e-1
£1-1.940276794624988369000e-3  +j 7.605284378217507982000e-1
K| -6.446214710459428058000e-4 -} 9.417471665966451027000¢-1
-6.446214710459428058000e-4  +j 9.417471665966451027000¢-1
1.399641408553930753000e-4  +j 9.948867384304460741000e-1
1.399641408553930753000e-4  -j 9.948867384304460741000e-1

» | 1.000000000000000000000e+0 -+ 0.000000000000000000000e+0
0.000000000000000000000e+0  +j 1.055397623446940120000e+0
0.000000000000000000000e+0  -j 1.055397623446940120000e+0

« | 0.000000000000000000000e+0  +j 1.114952056832180504000e+0

2| 0.000000000000000000000e+0  -j 1.114952056832180504000e-+0

R | 0.000000000000000000000e+0  + 1.380630107805159522000e+0
0.000000000000000000000e+0  -j 1.380630107805159522000e+0
0.000000000000000000000e+0  +j 3.323643504749309163000e+0
0.000000000000000000000e+0  -j 3.323643504749309163000e+0

Table 54: 8th order Elliptic canonic polynomials.
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Figure A.5: 8t order Elliptic fullband plot.

Description: 8 Elliptic Canonic Parameters

Section A Arg{p d

BRUNE2} 1.000000000000000f 1.665495050179896| 8.466398144178332
BRUNE2} 1.000000000000000f 0.874372974427579| 1.812421205592946

BRUNE2?] 1. 0.541347707654213| 0.558791472457098
BRUNE2] 1. 0.205168413833498| 0.066261697254630

N ==

Table A.55: 8th order Elliptic canonic parameters with real sections.
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Description: 8 Elliptic Canonic Parameters RF port 2

Section

|A

Arg{p}

BRUNE2|
BRUNE2|
BRUNE2

SN =

BRUNE2]

1.665495050179896
0.709804007639389
0.366760710683859
"0.139262839140198

8.466398144178332
1.539648224519777
0.388865297197562
0.045147504946848

Table A.56:

Table A.57: 8t order Elliptic canonic parameters with complex sections.

Table A.58: 8th order Elliptic canonic parameters with complex sections and port two RF.

8th order Elliptic canonic parameters with real sections and port two RF.

Description: 8 Elliptic Canonic Parameters

Section

Arg{p}

d

CCl_jw
CCl_jw
CCl_jw
CCl_jw
CCl_jw
CCl1_jw
CCl_jw
CCl_jw

CO~J O\ WU & W N

1.66549505
-1.44223808
0.58059629
-0.26706452
0.07169814
-0.01428074
0.00105485
-0.00004105

8.46639814
8.43432203
1.29592012
0.62348356
0.07768417
0.01548577
0.00034308
0.00001335

Description: 8 Elliptic Canonic Parameters RF port 2

Section

Arg{p)

d

CCl1_jw
CCl1_jw
CCl_jw
CCl_jw
CCl_jw
CCl_jw
CCl_jw
CCl_jw

cCoNON NP W

1.66549505
-1.54573012
0.69672652
-0.73673516
0.29621996
-0.43382111
0.07562326
-0.14396483

8.46639814
7.52655809
1.53964822
1.32237806
0.38886530
0.39443635
0.04514750
0.06487300




Description: 8 Elliptic Canonic Parameters shift -j2

Section

Arg{p}

d

CCl_jw
CCl_jw
CCl_jw
CCl_jw
CCl_jw
CCl_jw
CCl_jw
CCl_jw

NN AW

1.66549505
-1.44223808
0.58059629
-0.26706452
0.07169814

8.46639814
8.43432203
1.29592012
0.62348356
0.07768417

-0.01428074 0.01548577

0.00105485
-0.00004105

0.00034308
0.00001335

Table A.59: 8t order Elliptic canonic parameters with all polynomials shifted by -j2.

Description:

8 Elliptic Canonic Parameters shift -j1

Section

Arg{p)

d

CCl_jw
CCl_jw
CCl1_jw
CCl_jw
CCl_jw
CCl_jw
CCl1_jw
CCl_jw

O~ WN =

1.66549505
-1.44223808
0.58059629
-0.26706452
0.07169814
-0.01428074
0.00105485
-0.00004105

8.46639814
8.43432203
1.29592012
0.62348356
0.07768417
0.01548577
0.00034308
0.00001335

Table A.60: 8t order Elliptic canonic parameters with all polynomials shifted by -j1.

Description: 8 Elliptic Canonic Parameters shift j1

Section

Arg{p}

d

CCl_jw
CCl_jw
CCl_jw
CCl_jw
CCl1_jw
CCl_jw
CCl1_jw
CCl_jw

CONON N B WN—

1.66549505
-1.44223808
0.58059629
-0.26706452
0.07169814
-0.01 428073

0.00105485
-0.0000410

8.46639814
8.43432203
1.29592012
0.62348356
0.07768417
0.01548577
0.00034308
0.00001335

Table A.61: 8t order Elliptic canonic parameters with all polynomials shifted by j1.



Description: 8 Elliptic Canonic Parameters shift j2

Section | Pl

Arg{p}

d

CC1_jw | 1.00000000
CC1 jw | 1.00000000
CC1_jw | 1.00000000
CC1_jw | 1.00000000
CC1_jw | 1.00000000

CO~IAAUN LW -

CCl1_jw | 1.00000000

1.66549505
-1.44223808
0.58059629

0.07169814

0.00105485

8.46639814
8.43432203
1.29592012

-0.26706452] 0.62348356

0.07768417
0.01548577
0.00034308

CC1_jw | 1.00000000 -0.0142807:'

CC1_jw | 1.00000000| -0.00004105 0.00001335

Table A.62: 8t order Elliptic canonic parameters with all polynomials shifted by j2.

Description: 8 Elliptic Lumped Element Values
Section L C n
1 |IBRUNE2| 0.17277651 4.15439481 1.25076381
2 |BRUNE2| 1.05616319 0.34248781 2.22388064
3 |BRUNE2| 2.09057226 0.04996251 5.02268395
4 |BRUNE2| 2.80892386 0.00125413 25.69746469
5 TO - - 1.63106797

Table A.63: 8th order Elliptic lumped element values with real sections.

Description: 8 Elliptic Lumped Element Values RF port 2
Section L C n
1 |BRUNE2| 0.17277651 4.15439481 1.25076381
1 TO - - 0.89048952
2 |BRUNE2| 1.33190545 0.27158310 2.22388064
2 TO - - 0.91808355
3 |BRUNE2| 3.12783003 0.03339384 5.02268395
3 TO - - 1.00679049
4 |BRUNE2| 4.14609948 0.00084965 25.69746469
4 TO - - 1.15735286
5 TO - - 1.71220651

Table A.64: 8t order Elliptic lumped element values with real sections and port two RF.
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Description: 8 order Elliptic Lumped Element Values

Section C X1 X2 n
1 |CCl_jw| 9.35056149 0.90951792 0.10133190 -
2 |CCl_jw| 7.47588106 -1.13759210 -0.12674228 -
3 |CCl_jw] 0.70578667 3.34742029 1.27077995 -
4 |CCl_jw| 0.31736716 -7.44426316 -2.82606292 -
5 |CCl_jw| 0.03889205 27.88277689 18.62352400 -
6 |CCl_jw| 0.00774328 -140.04637597 -93.54007508 -
7 |CCl_jw| 0.00017154 1895.99667516 1753.96096522 -
8 | CCl_jw| 0.00000668 -48722.30760634 -45072.34996735 -
91 TO - - - 585.57828356

Table A.65: 8th order Elliptic lumped element values with complex sections.

Description: 8 order Elliptic Lumped Element Values RF port 2

Section C X1 X2 X3
1| CCl_jw| 9.35056149 0.90951792 0.10133190 -
1] COPi - -1.36927240 0.06077935 1.20796222
2 | CCl_jw| 7.34252801 -1.02538570 -0.12904414 -
21 CoPi - 1.08766736 -0.06152806 -0.96177530
3 | CCl_jw| 0.87136077 2.75349523 1.02930908 -
3| CoPi - -0.12351690 0.03525460 0.08787963
4 | CC1_jw| 0.75969659 -2.59076519 -1.18060232 -
41 COP1 - 0.21354984 -0.06643184 -0.14506010
5 | CCl_jw} 0.19876099 6.70229716 3.64411020 -
5| COPi - 0.11867603 -0.06578904 -0.05247728
6 | CC1_jw} 0.20679634 -4.53766392 -3.50251344 -
6| COPi - 0.09992502 -0.05517509 -0.04450456
7 1 CC1_jw| 0.02260606 26.43428522 13.30946931 -
71 COP1 - 0.23834505 -0.19747879 -0.03902923
8 | CC1_jw] 0.03260515 -13.86827977 -9.22782561 -
8| COPi - -0.16565683 0.13132347 0.03360235
9| COPi - 0.03558878 -0.01481013 -0.02081081

Table A.66: 8t order Elliptic lumped element values with complex sections and port two

RF.
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Description: 8 order Elliptic Lumped Element Values shift -j2

Section C X1 X2 n
1 | CCl_jw| 9.35056149 0.90951792 -0.11321743 -
2 | CCl_jw| 7.47588106 -1.13759210 -0.04377941 -
3 | CCi_jw| 0.70578667 3.34742029 -1.60088358 -
4 | CC1_jw| 0.31736716 -7.44426316 -1.01154837 -
5| CC1_jw| 0.03889205 27.88277689 -41.51347728 -
6 | CCl_jw| 0.00774328 -140.04637597 -38.20123463 -
7 { CC1_jw} 0.00017154 1895.99667516 4404.16241135 -
8 | CC1_jwj 0.00000668 -48722.30760632 | -28139.45431888 -
91 TO - - - 585.57828868

Table A.67: 8t order Elliptic lumped element values with all polynomials shifted by -j2.

Description: 8 order Elliptic Lumped Element Values shift -j1

Section C X1 X2 n
1 |CCl_jw| 9.35056149 0.90951792 1.93050609 -
2 |CCl_jw| 7.47588106 -1.13759210 -0.06507913 -
3 |CCl_jw| 0.70578667 3.34742029 12.32564912 -
4 |CCl_jw| 0.31736716 -7.44426316 -1.48983267 -
5 | CCl_jw| 0.03889205 27.88277689 67.55166609 -
6 | CCl_jw| 0.00774328 -140.04637597 -54.24792517 -
7 |CCl_jw| 0.00017154 1895.99667516 2508.79317664 -
8 | CCl_jw| 0.00000668 | -48722.30760638 -34647.72778801 -
91 TO - - - 585.57828715

Table A.68: 8t order Elliptic lumped element values with all polynomials shifted by -j1.

Description: 8 order Elliptic Lumped Element Values shift j1

Section C X1 X2 n
1| CCl_jw} 9.35056149 0.90951792 0.05203151 -
2 | CCl_jwj 7.47588106 -1.13759210 -2.41460715 -
3 1 CCl_jw| 0.70578667 3.34742029 0.66992475 -
4 | CCl_jw} 0.31736716 -7.44426316 -27.41077241 -
5 | CC1_jw| 0.03889205 27.88277689 10.80058505 -
6 | CC1_jw| 0.00774328 -140.04637597 -339.29066907 -
7 1| CC1_jwj 0.00017154 1895.99667516 1348.29362394 -
8 | CC1_jw| 0.00000668 | -48722.30760632 | -64469.62406297 -
9 TO - - - 585.57829544

Table A.69: 8t! order Elliptic lumped element values with all polynomials shifted by j1.
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Description: 8 order Elliptic Lumped Element Values shift j2

Section C X1 X2 n
1 |CCl_jw| 9.35056149 0.90951792 0.03500214 -
2 |CCl_jw| 7.47588106 -1.13759210 0.14160826 -
3 |CCl_jw] 0.70578667 3.34742029 0.45485731 -
4 | CCl_jw} 0.31736716 -7.44426316 3.56017399 -
5 | CCl1_jw| 0.03889205 27.88277689 7.60574127 -
6 | CC1_jw| 0.00774328 -140.04637597 208.50907604 -
7 {CCl1_jw| 0.00017154 1895.99667516 1095.02842639 -
8 | CCl_jw| 0.00000668 -48722.30760635 | -113175.80804067 -
91 TO - - - 585.57829285

Table A.70: 8th order Elliptic lumped element values with all polynomials shifted by j2.
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Figure A.6: 8th order Elliptic fullband plot shifted by j1.



Description: 8 Elliptic Canonic Parameters after
exchanging the f and # polynomials

Section A Arg{p)
11 CF1 [0.980742178206472 {1.274331742082993
2 | CF1 ]0.988066221429816 }-2.509997017723201
3| CF1 |1.014040586647902 |0.127316376085360
4 | CF1 ]1.014707564677322 |-0.133355859515346
5| CF1 ]1.013894267484888 |-2.518850656412622
6 | CF1 [1.014559363421499 |2.484287647890324
7 | CF1  10.986094488786269 |-0.957578854867896
8 | CF1 |0.985964558905910 |0.971081676793818

206

Table A.71: 8th order Elliptic canonic parameters with f and # polynomials exchanged.

Description: 8 Elliptic Lumped Element Values after exchanging the f and A polynomials
Section C X1 X2 R n

1] CF1 3.83724406 | 1.35127907 | -0.82489500 | 66.45430766 -

2 | CF1 15.86391307 | -0.32685426 | 0.19952980 | 16.07430627 -

3| CF1 3.60756671 | 15.68843869 | -0.36447704 |-142.86371534 -

4 | CF1 3.77917706 | -14.97603532 | 0.34792634 {-136.37635260 -

5| CF1 113.97752982 | -0.32200307 | -0.00931636 | -13.61055994 -

6 | CF1 107.56766659 | 0.34119095 | 0.00987152 | -14.42160131 -

7| CF1 63.50028264 | -1.92663070 | 0.01582890 | 112.51425761 -

8 | CF1 64.55234314 | 1.89523088 | -0.01557092 | 110.68052394 -

91 TO - - - - 1.00342127

Table A.72: 8t order Elliptic lumped element values with f and 4 polynomials exchanged.
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Table A.73: 14th order Elliptic canonic polynomials from [16].
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Figure A.7: 14t order Elliptic fullband plot.
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Figure A.8: 14t order Elliptic passband plot.
Description: 14 Elliptic Canonic Parameters
Section | A Arg{ g} d

1 |BRUNE2]| 1.000000000002052] -1.681979728735969| 186.399961283533143
2 {BRUNE2] 1.000000000000619| -1.556678547494451|  3.778343341720900
3 |BRUNE2| 1.000000000000599| -0.989025057559922| 1.278142565519755
4 |BRUNE2| 1.000000000000233| -0.170329074732248| 0.223008665527554
5 |BRUNE2| 1.000000000000475| -0.014400551215495] 0.022045889552428
6 |BRUNE2| 1.000000000000172| -0.002285924171847| 0.003750586580709
71 C1 0.999999999999998 | -0.000000000000000  0.000489079488471
8| Bl 0.999999999988544| 3.141592653581955| 1.245315419309203

Table A.74: 14th order Elliptic canonic parameters with real sections.
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Description: 14 Elliptic Canonic Parameters RF port 2

Section | A Arg{p} d
1 |BRUNE2]1.000000000002052 |-1.681979728735969 | 186.399961283533143
2 {BRUNE2]1.000000000000619 |-1.568474945067798 3.778709725593045
3 |BRUNEZ2|1.000000000000717 |-1.619096743661874 1.528026628888073
4 |BRUNE2|1.000000000001370 {-1.667257190505580 1.309517521340930
5 |BRUNEZ2|1.000000000032757 {-1.675200234594504 1.522622582698051
6 |BRUNE2|1.000000000076473 |-1.676163956428675 1.631634713196574
71 C1 0.999999999989135 | -0.000000000000002 2.470020892415707
81 BI 0.999999999999999 | 3.141592653589792 0.000136253597376

Table A.75: 14t order Elliptic canonic parameters with real sections and port two RF.

Description: 14 Elliptic Canonic Parameters
Section | A Arg{p d

1| CC1_jw | 1.000000000002052 | -1.681979728735969 | 186.399961283533143
2 | CC1_jw | 1.000000000002049 | 1.693756792492627 | 186.141954883242989
3 | CC1_jw | 1.000000000000619 | -1.580394540979185 3.778545849694890
4 | CC1_jw | 1.000000000000567 | 2.150525283719941 3.161319234433814
5 | CC1_jw | 1.000000000000600 | -2.152262001787222 1.278399400017669
6 | CC1_jw | 1.000000000000258 | 2.971192819214553 0.259419809646930
7 | CCI1_jw | 1.000000000000233 | -2.971184063883335 0.223111763543324
8 | CC1_jw | 1.000000000000069 | 3.127186465078518 0.018952609545458
9 | CC1_jw | 1.000000000000475 | -3.127187582731513 0.022052808070412
10{ CC1_jw | 1.000000000000160 | 3.139306059152389 0.003500678895454
11 CC1_jw | 1.000000000000176 | -3.139306106354442 0.003751613183988
12| CC1_jw | 1.000000000000075 | 3.141152521070623 0.000722143061231
13} CC1_0 |0.999999955571538 | 0.021788480795309 | 10100.4227611202154
14| Bl 1.000000000000000 | 3.141592653589793 0.000000060292790

Table A.76: 14t order Elliptic canonic parameters with complex sections.
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Description: 14 Elliptic Canonic Parameters RF port 2
Section E Atg{p) d

1 | CCl1_jw |1.000000000002052 | -1.681979728735969| 186.399961283533143
2 | CCI1_jw |1.000000000002040 | 1.687237572536880 | 185.295426511457036
3 | CClI_jw |1.000000000000619 | -1.568506556262263| 3.778709725593082
4 | CC1_jw |1.000000000000479 | 1.8456236504247201 2.670241225399191
5 | CCl1_jw |1.000000000000717 | -1.696704350894683| 1.528026628888250
6 | CC1_jw |1.000000000000415 | 2.058829601494008 | 0.417302577419850
7 | CC1_jw {1.000000000001370 | -2.223081557458250| 1.309517521350613
8 | CC1_jw [1.000000000000742 | 1.641229977229385| 0.203622222271528
9 | CC1_jw |1.000000000032792 | -2.872610798183983| 1.522622570830383
10| CC1_jw |1.000000000019004 | 0.949048004133102| 0.417142054182997
11} CC1_jw |1.000000000076431 | 2.932416063605692| 1.631634700820653
121 CC1_jw |1.000000000045608 | 0.449049615099089| 0.526752783294113
131 CC1_0 |0.999999999989135 | -2.090412649781115] 2.470020892369623
14|CB1_INF] 0.999999999999999 | 1.051179929809550| 0.000136253585757

Table A.77: 141 order Elliptic canonic parameters with complex sections and port two

RF.

Description: 14 order Elliptic Lumped Element Values
Section L C n
1 {BRUNE2 0.01186690| 105.45305976 | 0.98821173
2 |BRUNE2 0.93754423 2.41034655 | 0.54573036
3 |BRUNE2| 10.95835391 0.71211679 | 0.15833768
4 |BRUNE2| 141.29297841 0.10358137 | 0.08433588
5 |BRUNE2| 818.13543384 0.00951342 | 0.15873271
6 |BRUNE2| 4078.0170209 0.00157259 | 0.19248719
7 C1 - 0.00024454 -
8 B1 - 1.60601882 -
9 TO - oo- 0.83180234

Table A.78: 141 order Elliptic canonic parameters with real sections.



Description: 14 order Elliptic Lumped Element Values RF port 2
Section L C n
1 |[BRUNE2| 0.01186690 |[105.45305976 | 0.98821173
1 TO - - 1.00591586
2 |BRUNE2] 0.92654913 2.43894946 | 0.54573036
2 TO - - 1.38693586
3 |BRUNE2| 5.63001114 1.38607679 | 0.15833768
3 TO - - 2.57457448
4 |BRUNE2 | 10.95149963 1.33637596 | 0.08433588
4 TO - - 3.45708862
5 |BRUNE2| 5.30587711 1.46691481 | 0.15873271
5 TO - - 2.51115044
6 |BRUNE2| 4.19405394 1.52907864 | 0.19248774
6 T0 - - 2.27904671
7 C1 - 1.23501045 -
7 TO - - 1.34525453
8 Bl - 4678.51152935 -
8 TO - ' - 0.00825361
9 TO - - 1.05340742
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Table A.79: 141 order Elliptic canonic parameters with real sections and port two RF.

Description: 14 order Elliptic Lumped Element Values

Section C X1 X2 n
1 |CCl_jw | 209.66301014 | -0.89456905 0.00530397 -
2 ICCl_jw | 212.16405783 | 0.88402363 | -0.00524145 -
3 ICCl1_jw 3.81516405 | -0.99044756 0.29107940 -
4 ICCl_jw 6.99093245 | 0.54051730 | -0.15885086 -
5 |[CCl_jw 2.83615641 | -0.53939576 0.39193156 -
6 [CCl_jw 17.91207510 | 0.08540667 | -0.06205753 -
7 |CCl_jw 15.40354615 | -0.08541108 0.07212513 -
8 |CCl_jw | 182.64523037 | 0.00720322 | -0.00608274 -
9 [CCl_jw | 212.55464763 | -0.00720266 0.00522930 -
10 |CC1_jw | 1339.07276125 | 0.00114330 | -0.00083006 -
11 |CC1_jw | 1435.11889809 | -0.00114327 0.00077419 -
12 |CC1_jw | 7455.66404259 | 0.00022007 -0.00014902 -
13|CC1_0 | 5050.81080967 | 91.78799087 - -
14| B1 33171462.09165 - - -
15| TO - - - 2.29036542

Table A.80: 14t order Elliptic canonic parameters with complex sections.
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Description: 14 order Elliptic Lumped Element Values RF port 2
Section C X1 X2 X3

1 | CCl_jw | 209.66301014| -0.89456905 | 0.00530397 -
1| COPi - -0.89231314 | -0.00265201 0.89708804
2 | CCl_jw | 209.65249598 | 0.88984742 | -0.00530424 -
2 | COP1 - 0.88294098 | 0.00265210 -0.88767170
3 | CCl_jw 3.77007712 | -1.00229240 | 0.29456046 -
3| COPi - -1.22875493 | -0.14115067 1.65735687
4 | CCl_jw 3.66479640 | 0.75702898 | -0.30302247 -
4 | COPi - 0.75451695 0.15363393 -1.02722635
5 | CCl_jw 1.74746572 | -0.88140151 | 0.63610930 -
51 COpPi - -1.06284473 | -0.30077888 2.00438925
6 | CCl_jw 0.78571731| 0.60130911 | -1.41473172 -
6 | COPi - 0.68360233 | 0.68432309 -2.57034557
7 | CCl_jw 3.33214007 | -0.49452192 | 0.33341418 -
7 | COPi - -0.39174684 | -0.18053803 0.61584030
8 | CCl_jw 0.21903705| 0.93193523 | -5.07212250 -
8 | COPi - 1.31342506 | 1.40473829 3.21669102
9 | CCl_jw | 42.34443556| -0.13530772 0.02624931 -
9 | COPi - 0.19631552 0.08418201 -0.28521099
10 | CCl_jw 0.26360401 1.94677375 | -4.21659853 | -
10| COPi - 23.93515018 0.87211038 1.24822102
11 CCl_jw| 74.85328933| 0.10497132 0.01484303 -
11] COPi - 0.71231523 0.23145561 -1.13008766
12 | CCl_jw 0.27711287 | 4.37875649 | -4.00937580 -
121 COPi - -1.79301943 0.54657479 0.62951138
13} CC1_0 4.90616120| -0.58000830 - -
13| COPi - -1.34834114 | -0.26122787 2.48476283
14 { CB1_INF]| 3694.96915594| 1.72411341 - -
14} COPi - 1.78206553 | 52.58002977 0.58642367
15 COPi - -1.53780038 0.80775922 | -1.71309990

Table A.81: 14t order Elliptic canonic parameters with complex sections and port two

RF.



Appendix B
Computer Software

CSYN, CANAL, CLAD and CWD

The computer programs that were used to generate the examples given in the thesis will
be discussed in the following. Note that all software was written in the PASCAL computer
language for the Macintosh computer using the LightSpeed Pascal compiler. Since the total
length of the written code exceeds 20,000 lines, the software listing will not be supplied.

For each program, the required input files, the method of running the program, the
options available and the output files generated will be outlined. The four programs that
will be discussed are: ’

* CSYN - complex synthesis of lossless two-port networks using the algorithm
given in Chapter III based on the sample characterization.

* CANAL - complex analysis of the f, 4, and g polynomials of the sections
generated by CSYN.

* CLAD - complex ladder simulation program based on the complex three-port
adaptor approach (element-by-element transformation to the complex
wave digital domain).

* CWD - complex ladder simulation program based on the canonic cascade section
approach (dynamic two-port transformation to the complex wave digital
domain).

Note that for all programs, the files representing a particular design are assumed to
occupy their own unique folder (directory). Also, by convention, all files within a
particular folder have the following form

Order FilterType FileName
where Order is the filter order, FilterType is the filter type (either Butterworth (butt),
Chebyshev (cheb), or Elliptic (ell)), and FileName is a particular input or output file.

Notice that FileName is separated from the remaining part of the complete filename by a
period.

214
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All of the various input and output files are identified by FileName, for example,
4 el. CWDFreqResp

refers to a fourth order Elliptic filter frequency response generated by the CWD program.
By double clicking on any file within the folder when either of the programs begin running,
all of the relevant files will automatically be loaded if they exist.

All frequency response files contain four columns, and they are: the normalized
frequency (from -0.5 to 0.5), the actual frequency (from -x to +7), a particular response of
the ladder filter (either infinite-precision, scaled, minimal characterization, quantized, etc.),
and finally the nominal response generated from the original f and g polynomials. All
Tesponses are given as an attenuation, that is

- 20.0 * logq(y (response + 1.0e-30)

The quantization process explicitly assumes that all filters are of the type lowpass,
however, other filter types can easily be implemented. The four programs will be
discussed in the following.

B.1 CSYN - Complex Synthesis of Lossless Two-port Networks

This program generates a real or complex lossless two-port network from the original
/> hand g polynomials. The synthesis algorithm outlined in Chapter III is implemented
using the sample characterization. All of the elementary first and second order sections
given in the tables in Chapter II are realizable sections. The user has the freedom of
specifying the 4 polynomial phase shift and the imaginary axis polynomial shift.

Input Files:

Order FilterType <No FileName>: the nominal polynomial file containing the
8, h, and f polynomials (in the order given) of the overall
network. The representation of each polynomial is given by

poly. order
poly. complex gain
poly. complex zeros
Order FilterType.dir: the synthesis directives file containing information
' needed in order to realize a lossless two-port network. The file
contains the following:
1. Finite-zero ordering: if finite transmission zeros exist,
then the ordering gives the order of the sections realizing
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the transmission zeros as referenced to the order given in
the f polynomial. For example, if a tenth order Elliptic
filter is to be realized with 5 Brune sections, then the
ordering could be
12345

(note that the zeros of the f polynomial must be ordered
in complex conjugate pairs). However, if the filter is to
be realized using complex first-order sections, then the
following ordering can be used

12345678910
(note that now the zeros of the f polynomial do not have
to come in complex conjugate pairs). If no finite zeros
exist, then this line is not included.

2. The remainder of the file specifies the sections to be
used. A separate line is used for each section. Each line
consists of an ordered sequence of control codes
(separated by spaces) as given in the following:

The order of the section: this must be given for all
sections (either 1 or 2) and it must appear first
on a line.

Transmission zero at infinity: specified by the
character T'. Any of the following codes may
come after this code.

Capacitor section: specified by the character 'C',
this chooses a dynamic section containing a
capacitor if a choice between sections is
appropriate. A number code follows the 'C'
for reciprocal finite transmission zeros with
1=CC1 and 2=CB1 sections. The default is the
CC1 section. The L' code can not follow this
code.

Inductor section: specified by the character 'L,
this chooses a dynamic section containing an
inductor if a choice between sections is
appropriate. A number code follows the 'L
for reciprocal finite transmission zeros with
1=CD1 and 2=CA1 sections. The default is the
CD1 section. The 'C' code can not follow this
code.
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Reflection-free port: specified by the character
R’, and followed by the port to be made
reflection-free (1 or 2). This code can follow
any of the other codes.

Qutput Files:

Order FilterType.sect. contains all information about all of the sections.

Order FilterType.cir: the definition of the synthesized network used by the
CLAD ladder simulation program.

Order FilterType.nom: the definition of the nominal network used by the
CLAD ladder simulation program.

Order FilterType.anal: information about the sections used by the CANAL
analysis program

Order FilterType.CWD: the definition of the synthesized network used by the
CWD ladder simulation program.

Order FilterType.CanParm: contains a summary of the canonic parameters for
all of the sections.

Order FilterType LumpParm: contains a summary of the lumped element
parameters for all of the sections.

Order FilterType.SDomainPolys: contains a summary of the section analog
domain f, h, and g polynomials and, if they exist, the
reflection-free polynomials based on the method outlined in
Section 2.5 .

Order FilterType RF polys: contains a summary of the section analog domain
f, h, and g reflection-free polynomials based on the equations
given in the tables of Chapter II for the first-order complex
sections.

B.2 CANAL - Complex Analog Domain Analysis

The CANAL program analyzes the canonic polynomials of the sections generated by
CSYN. The program recombines the polynomials of the sections in order to reconstruct
the original f, h, and g polynomials. This is achieved by multiplying the transfer
matrices of all of the sections. This operation is performed using the summation form of
the polynomials, and thus for higher order systems the reconstructed polynomials will lose
accuracy. However, the polynomials give an indication of the validity of the design.
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Input Files:

Order FilterType <No FileName>: the nominal polynomial file containing the
8, h, and f polynomials (in the order given) of the overall
network. The representation of each polynomial is given by

poly. order
poly. complex gain
poly. complex zeros

Order FilterType.anal: the canonic polynomials of each section as derived by
the CSYN program.

Quitput Files:

Order FilterType.anal_data: contains a summary of the canonic polynomials
derived.

B.3 CLAD - Complex Ladder Simulation Using Complex 3-port Adaptors

The CLAD program designs and simulates the complex WD realization of the analog
network derived using CSYN based on the lumped elements composing the network. The
program also determines the quantized network that meets a given set of frequency
specifications. Note that only reciprocal networks can be realized, however, they can be
non-canonic (for example, a real Elliptic filter without coupled coils).

A network can be scaled for either power waves or voltage waves, however, power
wave scaling is recommended. After the values of the real scaling transformers have been
determined, the user has the option of either absorbing the transformers into the associated
scattering matrices or leaving them external. If the scaling transformers are not absorbed,
they will be quantized to the nearest power of two. The user also has the option of
absorbing all external multipliers into the associated scattering matrices (shrink the
network). At each stage, the user can generate the nominal frequency response if this is
desired. After the final nominal version of the Network is derived, the design can be
quantized using the frequency specifications and the quantization directives discussed
below. The frequency response of the quantized network is generated automatically if a
solution is found.

The non-linear optimization procedure used to quantize the network allows the integer
denominators of the quantized sections to be different from section to section. All
denominators can also be equal, which is perhaps more appropriate for the implementation
on a digital signal processor (DSP).
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Input Files:

Order FilterType.nom: the nominal polynomial file containing the g and f
polynomials (in the order given) of the overall network as well
as the number of points used to generate the frequency
response. The first line of the file contains the number of
frequency points. The second line contains the representation
used by the polynomials, either 'zeros' or 'coefficient’. In
either case, the representation of the polynomial is first given by
the order, and then the gain (for both cases). If the zero form is
used, the actual complex zeros are then given. If the coefficient
form is used, the complex coefficients are given from the
constant term to the higher order term.

Order FilterType.cir: the lossless network lumped element description of the
network as derived by CSYN. The first line contains the
polynomial imaginary axis shift (usually zero). The second and
third lines contain the port one and port two reference
impedances as given as complex numbers (usually unity),
respectively. The network description starts on line four as
discussed below. Each component starts on a new line unless
specified otherwise.

1. Connection: this gives the type of connection of the
element, either
‘parallel’
'series’
'series/parallel’ (series connection of elements in parallel)
‘parallel/series' (parallel connection of elements in series)
‘transformer’
Ay
The "*' represents the end of the file. Directly following
the type of connection is the actual element (unless the
connection was a transformer, when the complex turns
ratio would follow.
2. Element: this gives the type of element that is connected,
either,
'imag res' (imaginary resistor)
'inductor’
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‘capacitor’
'inductor series imag res'
'inductor parallel imag res'
‘capacitor series imag res'

' capacitor parallel imag res'

3. Value: this follows the element type. Either one or two
real numbers are specified and separated by a space. For
the first three choices given above, one real number is
needed, while for the remaining choices, two real
numbers are given.

Order FilterType.qfre: gives the frequency specifications to be used for the
quantization process. More than one set of passband and
stopband specifications can be given in order to generate a set
of staircase specifications. The frequency range under
consideration ranges from -x to +7, thus the stopband for a
lowpass filter is separated. For this reason the stopband
specifications are given in terms of the positive frequencies and
the negative frequencies. The form of the file is given below.

1. Passband: the first line gives the number of passband
specifications that will be given (usually one). The next
line gives the starting freq, the ending frequency, and the
maximum attenuation in dB all separated by spaces.

2. Positive Stopband: the number of positive stopband
specifications is given (zero is allowed), followed on the
next line by the starting frequency and the minimum
attenuation that must be achieved between the starting

frequency and +.

3. Negative Stopband: the number of negative stopband
specifications is given (zero is allowed), followed on the
next line by the starting frequency and the minimum
attenuation that must be achieved between the starting
frequency and -x.

Order FilterType.qdir: gives the quantization directives to be used during the
non-linear optimization of the design. The file contains the
following,

all_den_equal : boolean
fix_passive_with_wordlength : boolean
number_pass : integer
number_stop_pos : integer
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number_stop_neg : integer

number_solutions : integer

maximum_bit_iden.re maximum_bit_iden.im : integer
start_bit_iden : integer

max_bits : integer

1. all_den_equal: if true, all integer denominators are equal.

2. fix_passive_with_wordlength: if a block of the
quantized design is not passive, then if
fix_passive_with_wordlength is true the wordlength will
be increased in order to facilitate a passive design.

3. number pass: the number of frequency points to check
in the passband.

4. number_stop pos: the number of frequency points to
check in the positive stopband.

5. number stop neg: the number of frequency points to
check in the negative stopband.

6. number_solutions:

7. maximum_bit_iden.re, maximum_bit_iden.im: the
maximum number of bits that is allowed. Set
maximum_bit_iden.im to zero.

8. start_bit_iden: the number of bits to use to start the
quantization process.

9. max_bits: if all_den_equal is false, max_bits gives the
maximum difference in bits from the highest bit block to
the lowest bit block. Ifif all_den_equal is true this is
ignored.

ut Files:

Order FilterType. Adap: the nominal blocks that realize the network, including
complex 3-port adaptors and non-dynamic two-ports.

Order FilterType.ScAdap: the nominal scaled network blocks.

Order FilterType.ShAdap: the nominal shrunk network blocks (all external
multipliers absorbed).

Order FilterType.QuAdap: the quantized network blocks.

Order FilterType.Resp: the nominal attenuation response.

Order FilterType.ScResp: the nominal scaled attenuation response.

Order FilterType.ShResp: the nominal shrunk attenuation response.

Order FilterType.QuResp: the quantized attenuation response.
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B.4 CWD - Complex Ladder Simulation Using the Cascade Section

The CWD program designs and simulates the complex WD realization of the analog
network derived using CSYN based on the canonic parameters. The program also
determines the quantized network that meets a given set of frequency specifications. Note
that reciprocal or non-reciprocal networks can be realized, however, they must be canonic.
The user has the option of generating the frequency response of the nominal design based
on the cascade section, the representation involving real adaptors and four unimodular
multipliers, the minimal characterization and the quantized characterization.

The network can be quantized using the non-linear optimization technique implemented
which assumes that the integer denominator of the quantized sections are all equal. The
frequency range is assumed to extend from 0.0 to 2% (instead of -x to += as will the CLAD
program). Thus, in this case the passband is separated into two frequency ranges, which
will be referred to as the positive passband (within 0.0 to &) and the negative passband
(within 0.0 to ). The stopband is not affected. Again, several sets of frequency
specifications can be given in order to form a set of staircase specifications.

During the simulation of the quantized filter, the user has the option of using either
floating-point signals or binary signals (in which case the number of bits used for the
signals must be specified). Note that for comparison purposes, floating-point signals are
usually preferred.

The object of the simulation is usually to find the impulse response. The simulation
will continue to generate output until the total energy in the states decreases past a constant
set by the user. The simulation can also continue past this point to the next integer power
of two if the user wishes (in order to generate the frequency response using the FFT).

Input Files:

Order FilterType <no file name>: the nominal polynomial file containing the
g, h, and f polynomials (in the order given) of the overall
network. The representation of each polynomial is given by
poly. order
poly. complex gain
poly. complex zeros
Order FilterType.CWD: contains the canonic parameters generated from the
CSYN program that describe the sections as well as the sections
used. The first and the second lines contain the /4 polynomial
phase shift and the imaginary axis polynomial shift. The
remainder of the file contains the sections. The end of the file is
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signified with the character 'N'.

Order FilterType.FreqSpecs: contains the frequency specifications for the
quantized network. The file contains information on the
positive passband, the negative passband, and the stopband as
given in the following.

1. Positive Passband: the first line contains the number of
positive passband frequency specifications (zero is
allowed). The following lines contain the starting
frequency, the ending frequency and the maximum
attenuation between the frequencies.

2. Negative Passband: the first line contains the number of
negative passband frequency specifications (zero is
allowed). The following lines contain the starting
frequency, the ending frequency and the maximum
attenuation between the frequencies.

3. Stopband: the first line contains the number of stopband
frequency specifications. The following lines contain the
starting frequency, the ending frequency and the
minimum attenuation between the frequencies.

Order FilterType.QuantSpecs: contains the quantization directives to be used
during the non-linear optimization process. The file contains
the following,

PowerOfTwoWithEnergy : boolean
BinaryCoeff : boolean
LSBitsCoeff : integer

MSBitsCoeff : integer
BinarySignals : boolean
LSBitsSignals : integer
MSBitsSignals : integer
UnderFlowType (set to Truncation)
OverFlowType (set to Saturation)
FreqPointsPerRange : integer
MaxWordLength : integer
MaxEnergy : extended »

1. PowerOfTwoWithEnergy: if true, the simulation will
continue past the MaxEnergy constant to the next integer
power of two.

2. BinaryCoeff: for quantization purposes, set this to true

3. LSBitsCoeff: the starting value of the number of least
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significant bits to use for the coefficients.

4. MSBitsCoeff: the starting value of the number of most
significant bits (in front of the decimal place) to use for
the coefficients.

5. BinarySignals: if true, the signals will be binary.

6. LSBitsSignals: if binary signals is true, this gives the
starting value of the number of least significant bits to
use for the signals.

7. MSBitsSignals: if binary signals is true, this gives the
starting value of the number of most significant bits (in
front of the decimal place) to use for the signals.

8. UnderFlowType: set to Truncation.

9. OverFlowType: set to Saturation.

10. FreqPointsPerRange: the number of frequency points
to check for the frequency specifications for the
quantization process in each of the three frequency
ranges.

11. MaxWordLength: the maximum number of bits that
can be used.

12. MaxEnergy: the energy required in the states of the
filter in order to stop the simulation (around 1.0e-8 for
an accurate output).

Qumput Files:

Order FilterType.CWDSect: the nominal sections that realize the network
based on the canonic cascade section.

Order FilterType.CWDReSect: the nominal sections that realize the network
based on the canonic cascade section composed of two real 2-
port adaptors and four unimodular multipliers.

Order FilterType. CWDMinSect: the nominal sections that realize the network
based on the minimal characterization of the canonic cascade
section.

Order FilterType.CWDQuantSections: the quantized sections that realize the
network.

Order FilterType.CWDTimelmpResp: the time domain nominal impulse
response of the filter.

Order FilterType. CWDTimeRespNorms: the Ly-norms and the L_,-norms at

the significant signal nodes of the nominal impulse response.
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Order FilterType. CWDResp: the nominal attenuation response based on the
transfer matrix multiplication.

Order FilterType. CWDMinResp: the nominal attenuation response from the
minimal characterization based on the transfer matrix
multiplication.

Order FilterType.CWDPartResp: the partial frequency range nominal
attenuation response from the minimal characterization based on
the transfer matrix multiplication.

Order FilterType. CWDTimeResp: the nominal attenuation response from the
minimal characterization based on the FFT of the impulse
response. A

Order FilterType. CWDPartTimeResp: the partial frequency range nominal
attenuation response from the minimal characterization based on
the FFT of the impulse response.

Order FilterType. CWDQuantFreqResp: the attenuation response from the
quantized network based on the FFT of the impulse response
from the quantized simulation.

Order FilterType.CWDQuantNorms: the Ly-norms and the L__-norms at the
significant signal nodes of the quantized impulse response.

Order FilterType. CWDQuantBitsUsed: a record of the bits used during the
quantization process, where the frequency specification were
not met and by how much.

Order FilterType.zInvDomainPolys: the canonic polynomials for each section
in the z-1 domain.
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