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ABSTRACT 

 

My thesis examines nonlinearity between catch and effort. I use a meta-analysis of 

published literature and generalized linear mixed-effects models (GLMM) on both fixed and 

mobile gear fisheries of Atlantic Canada. The meta-analysis examines the proportionality of 

catch to effort using the slope of the reduced major axis (RMA) log-log regression, which 

accounts for “errors-in-variables”. The GLMMs explored proportionality while accounting for 

variation among fishing vessels. Both analyses found evidence for disproportionality between 

catch and effort. Catch that increases disproportionally to effort could result from either 

facilitation or recruitment of effort into the fishery. Catch increases that are less than 

proportional are expected from competitive interactions among fishers or gear saturation.  The 

GLMM also revealed that the level of aggregation (by set, trip, monthly, or annually) can affect 

the apparent proportionality between catch and effort. In general, catch and effort should not be 

considered to be proportional. 

 

Key words: meta-analysis, generalized linear mixed-effects model (GLMM), catch, effort, error-

in-variables, proportionality, disproportionality, mixed effects, RMA, OLS, aggregation. 
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Introduction 

Before 1980, most of the studies focused on fish biology, very little work was done 

regarding fleet dynamics and fishermen’s behaviour. Since 1980, however, there has been a 

revival of interest in these topics. Currently, most such studies employ statistical analysis with 

advanced statistical methods. The dynamic behaviour of fishing fleets is the most important link 

between understanding fish biology and catch rates. Studying the behaviour of fishermen is the 

key to understanding why one catch is greater than another (Hilborn 1985). Despite years of 

research, there is still much debate over the validity and reliability of the use of commercial 

catch and effort data to estimate fish abundance. Currently, many, if not most, fish population 

analyses are based on a metric known as catch-per-unit-effort (CPUE). The effort is a measure of 

fishing activity, and nominal effort is the way it is represented (number of vessels, hours fished, 

etc.). It is one of several data sources contributing to research among the following: virtual 

population analysis (VPA), statistical catch-at-age (SCA), and, more recently, integrated 

analyses such as stock synthesis. There are a number of variables for fishing effort, such as the 

number of vessels or the number of anglers. To measure effort, the number of vessels is 

multiplied by time, whether the time is in days or hours of fishing. All this information can be 

acquired from the available fisheries data. If the available information includes CPUE and catch 

number, then we can calculate effort by dividing catch number by CPUE. Having CPUE can be 

helpful for acquiring any incomplete data from either catch or effort (Ricker 1975).  

CPUE is most often used as an index of abundance, though abundance is not the only 

factor that affects CPUE. For example, CPUE often varies among years and areas fished due 

changing distributions and abundance. In addition, the size of vessels and number of active 

vessels in response to market forces can also influence the relationship between catch and effort. 
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Most previous work has used standardization of CPUE to remove the impact of such factors in 

order to obtain independent data from the original data (e.g. Kimura 1981, Vignaux 1996, 

Maunder 2001, Campbell 2004). Most fishery studies that assess fish stocks (VPA, and 

integrated analyses) have used methods that include fitting models to an index of abundance, 

usually CPUE. A number of studies have used statistical methods and concluded that CPUE is 

inaccurate and may be misleading in providing indices of abundance (Saville and Oe 1980, Gillis 

and Peterman 1998, Salthaug and Godø 2000). Harley et al. (2001) used meta-analysis to reveal 

that there is a common disproportionality between CPUE and abundance. They represented this 

relationship as a power curve, based on the value of a shape parameter, the exponent 𝛽.  Despite 

the fact that CPUE has been recognized as being an inaccurate metric for reflecting abundance, it 

continues to be used for this very purpose, to represent abundance (Harley et al. 2001, Maunder 

et al. 2006).  

A number of studies have standardized catch and effort data for different reasons, such as 

to remove the impact of factors such as fishing location, target species, and environmental 

conditions, because each of these factors is measured differently (Su et al. 2008). Standardization 

can be performed in various ways, for example via a log-linear model or using advanced 

methods such as a generalized linear model. When using the log transformation, logging both 

sides of the equation will convert the multiplication to addition. This transformation makes it 

easier to deal with the variables and helps to remove as much variability as possible from the 

factors. It is often assumed that CPUE is proportional to abundance, however, using CPUE = C/f 

(C = catch, f = nominal effort) also assumes that catch is proportional to effort (Gillis 2003). If 

this is in fact untrue, then CPUE may not accurately reflect abundance.  

Many studies have used catch and effort data for a variety of reasons. Catch and effort 
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data have been used to investigate factors that affect catch, such as the choice of fishing location, 

the target species, and environmental conditions (Su et al. 2008). Catch and effort data have also 

been examined to determine the fishing tactics employed. Fishing tactics are the decisions made 

before each fishing operation that determine such things as fishing location, gear, and target 

species. Fishing location and seasonal effects are some of the important factors that influence the 

choice of fishing tactics (Pelletier and Ferraris 2000). The chosen search strategy is helpful in 

interpreting catch rate and relates to the area fished and the time spent fishing; an example is the 

San Diego tuna fleet (Orbach 1977). There are two strategies used: “hunter” and “chaser”. 

Hunters are fishermen that rely on themselves, are more knowledgeable, and have more 

experience. The chasers, on the other hand, are typically greater in number and used radio 

information to follow the hunters, thus moving into aggregations of boats. However, within each 

group skippers have different amounts of relevant knowledge (Orbach 1977). 

 Fishing tactics and strategies have been used to better understand the catch rate. The 

fishing tactics employed by a skipper at sea during a fishing trip can be considered as having two 

components: the first component is the métier, which is the choice of target species, in area 

fished, and gear used, selected for the fishing trip by the skipper, and the second relates to the 

indices that show how the skipper behaved during the fishing trip, such as aggregation or 

movement within the area. These fishing tactics and strategies have a high impact on catch rates 

(Marchal et al. 2006). 

My thesis will examine whether the amount of fish caught is proportional to nominal 

effort. The model that has been used in current fisheries is shown in the equation below 

(Maunder and Punt 2004): 

𝐶! = 𝛽! ∙  𝑓!  ∙  𝑁!                                                           (1.1) 
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Where Ci is the catch, β0 is a constant (catchability), f is the fishing effort, and N is the 

abundance, which may be represented as density. 

There are many reasons for disproportionality between catch and effort: the changing 

behaviour of fishing fleets through competition, facilitation among vessels, or a numerical 

response to fish availability, among others. Competition is defined as individual usage or defense 

of a resource to reduce the availability of that resource to any other individuals. Competition is 

one of the main reasons for why some natural foragers dominate others and among fishing 

vessels it may cause variation in success among vessels.  

Competition results when different forgers target the same species, either at different 

times of the day, on different days, or even during different seasons, such that there is no real 

interaction between them but the species may be reduced by one of them, which, in turn, affects 

the other. This indirect competition is known as exploitation competition. In the late 1800’s, lake 

sturgeon (Acipenser fulvescens) was overexploited as fishermen targeted it as a preferred species. 

By the early 1900’s, this species’ numbers had been greatly reduced. Moreover, the heavy 

exploitation had a similar negative effect on lake herring (Leucichthys artedi) in Lake Erie. Then, 

in the 1920’s and 1930’s, it was whitefish (Coregonus clupeaformis) in Lake Huron that were 

overexploited. All these overexploited species encountered a sharp decline in their catch (Smith 

1968). Similar declines in catch and abundance can be observed within seasons and fishing areas 

on a shorter time scale.  

For the target species with low abundance, the relationship between catch and nominal 

effort can be non-intuitive. For example, with decreasing abundance it may take a trawl or a trap 

longer to catch the same amount of fish. If they attempt to fish until their gear is saturated 

nominal effort, in the term of hours, will increase while the catch remain the same and overall 
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catch-per-unit effort will decline. 

Another form of competition is called gear competition (Rothschild 1967), or competition 

among fish for space in the gear. In this case, longer fishing times catch proportionately less fish 

because fish already in the nets, traps, or on the hooks limit the capture of additional fish. This 

will occur more rapidly when fish populations are high or locally aggregated, but can be 

mitigated by retrieving gear over shorter time intervals. It can also occur when gear becomes 

saturated by unwanted species, limiting the capture of target species (Dauk and Schwarz 2001).  

Interference competition is a direct interaction among competitors. It occurs when one 

forager physically interferes with another while that one is trying to access a resource (Stillman 

et al. 1997, Delong and Vasseur 2013). When the number of vessels increases, the additional 

interactions may result in a reduction in catch due to factors such the gear (nest, hooks, traps, 

etc.) of one fisherman interfering with that of others. This is independent from fish population 

abundance and can rapidly reverse when vessel number decline. For example, setting new nets 

near one that is already in operation can scare the fish away and decrease the catch rate from the 

first net. Also, when there are a number of vessels fishing schooling fish, they disperse the 

school, reducing fishing success. When vessels are targeting the same species, their search 

operations can overlap. The evidence of interference was from the sole (Solea solea) and plaice 

(Pleuronectes platessa) when targeted by the Dutch beam trawl fleet. Immediate decrease in 

catch estimated to be14% when vessels increased in the open north area even when doubling 

fishing effort (Poos and Rijnsdorp 2007). The catch rate increased when vessel density declined 

by 10% due to the reduction in interactions (less competition) (Rijnsdorp et al. 2000). An 

experiment done with chinook salmon found that, when vessel density increases, the catch rate of 

chinook salmon decreases. Vessel densities were randomized in the experiment, so these changes 
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represent competitive effects rather than local depletion of fish. Thus, variation in vessel density 

may exert a substantial influence on catch rates during the commercial fishing season (Abrahams 

and Healey 1993). 

The Ideal free distribution (IFD) in fleet dynamics is a behavioural hypothesis that 

examines the spatial relationship between foragers and their resources. It starts with the 

assumption that, in an ideal world, all foragers would have the same knowledge of their 

environment and there is no cost or restriction in the movement between targeted areas. In 

addition to these assumptions, the model assumes that foragers have the same ability in foraging 

and in accessing resources and that they reduce each other’s success through competitive 

interactions (Gillis and Peterman 1998). When the assumptions are reasonable, based on IFD, the 

benefits will be distributed equally between foragers, and the proportion of foragers at any site 

will equal the proportion of resources available. When any one of these assumptions is violated, 

however, this will affect IFD and changes in the prediction will occur. These violations will 

provide a new way to look at predicted distributions. If foragers lack knowledge about the 

environment, then they will need to search among various foraging sites to acquire new 

information to improve their success. If they have different abilities and costs they will not 

follow an IFD. If some foragers are more successful, have knowledge about their area and can 

defend it, then this will produce a new ideal dominance distribution through asymmetrical 

interference (Gillis and Peterman 1998, Abrahams and Healey 1990, Gillis et al. 1993, Gillis 

2003, Swain et al. 2003). 

Regulations such as limited fishing seasons, gear restrictions, and others may be another 

reason for catch decline. These regulations increase the competition for a limited available catch. 

Fishermen will see this interference as a form of restrictive regulations rather than as a form of 
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competition. Because of the restrictive regulations, if anything goes wrong for the fishermen, 

such as a wrong choice of area or if gear stops working, this will ultimately reduce the catch 

because of the limited fishing season.  

Another of the many possible reasons for a low catch is traveling time and searching for 

an area with aggregation of the target species. Some fishermen fish in new areas to get to know 

them and acquire information. When they fish in an area with low numbers of fish, even if they 

increase their fishing effort, catch will not increase accordingly. Fishermen in the salmon gillnet 

fishery, for example, go fishing early in the season in order to test their gear and get it in good 

working order so they don’t lose their catch later on due to malfunction. Moreover, some 

fishermen fish for the purpose of feeding themselves or their families, even when fish are less 

abundant, and, once they have caught enough to last for the rest of the year, they stop fishing. 

Also, when fishermen do not want to increase their costs, they fish in an area close to home, 

which may be less abundant; here, again, catch will not increase in direct correlation to effort. 

Areas more desirable and less risky may also have a lower catch rate, even if fishermen increase 

their efforts there (Hilborn and Walters 1992).  

There are different types of response to changes in prey density. One of them is the 

numerical response, such as aggregative responses where increases in local prey numbers lead to 

predators moving into an area. Numerical responses occur in the case of British Columbia’s 

salmon gillnet fleet. The movement of boats there was in response to fish abundance (Millington 

1984). The numerical response accrues when fishermen devote effort in response to quantitative 

measures of fishing success, such as fish density. The numerical response can be stronger when 

the time necessary for fishermen to get to the prey is shorter. For example, rainbow trout lakes 

attract 2.5 times more fishermen than other lakes, because rainbow trout lakes are close to the 
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center of British Columbia, making travel shorter, which, in turn, attracts higher numbers of 

fishermen to travel from the greater Vancouver area (Post et al. 2002). Fishing location affects 

the distribution of fishermen. The more success had in an area, the more predators will be 

attracted to that area; this is a positive numerical response. 

From the analysis of models on the predation process, it has been found that the 

distribution of foragers’ search time and catches are dependent on the distribution of prey. In 

addition, a change in abundance is not reflected in catch per fishing day, except when the school 

density is proportional to abundance (Paloheimo and Dickie 1964). The difficulty lies in 

determining the reasons for the increase in catch, and therefore dollar returns, resulting from 

increased effort. There are two possible reasons for this. The first one is that gross dollar returns 

of individual vessels increase when vessels fish for more days because the increased experience 

improves their efficiency: a learning response. The second reason is that gross dollar returns per 

vessel increase when more vessels fish in the same area without interfering with each other, 

which can result from a facilitation response where vessel share information or assist in fish 

capture. The gross dollar returns from an individual vessel may not increase when the number of 

vessels fishing in the same area increases. This may be because of competition for preferred 

trawling sites (Lapointe 1989).  

Catch variability may occur because of long-term shifts in the distributions of fish, or 

because of changes in fleet composition due to having found new, alternative fishing 

opportunities. For example, in the case of the English sole fishery, some of the changes in catch 

were because of the changes in cod abundance. When English sole catchability and, thus gross 

dollar returns decreased during the early 1960’s, it was because the abundance of English sole 

had decreased, while cod abundance had increased (Lapointe 1989). When the search targets two 
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different species, catch rates may vary as a result of switching to alternative prey. For example, if 

foraging time is T, then when T = T1 + T2, where T1 is time spent foraging for species one and T2 

is time spent foraging for species two, then when foragers spend more time searching for the first 

species, the time foraging for the second species will decrease. This will reduce the catch rate of 

the second species in the fishery statistics, which do not identify the species toward which effort 

is directed (Lapointe 1989).  

 

Meta-analysis in Ecology 

Originally, reviewing research followed two main methodologies. The first is called 

“narrative review” and attempts to synthesize the results of a large body of research into a single 

consistent narrative; the reviews handled by this method do not include details of the source or 

the search terms used to obtain studies (Roberts et al. 2006). The second methodology is called 

vote counting and refers to a process where the significant results from various studies are 

counted (Koricheva et al. 2013). In order to avoid the bias potentially afflicting these two 

methods, the statistical techniques of meta-analysis have been developed (Gates 2002).  

The term “meta-analysis” was coined in 1976 by Gene V. Glass. Meta-analysis is one of 

the methods of research synthesis, which can be conducted qualitatively or quantitatively: 

qualitatively in the form of narrative review and quantitatively by using statistical methods 

(Koricheva et al. 2013). Meta-analysis uses techniques that collect analytical results and integrate 

the findings to get a wider understanding of a specific question. Combining the findings from a 

number of studies strengthens the evidence for a specific question or hypothesis. This method 

was first used in medicine and social sciences. Meta-analysis in ecology began to be performed 

early in 1990s (Koricheva et al. 2013) on questions such as the value of life history variable and 
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the presence of competition (Jarvinen 1991, Gurevitch et al. 1992). It has grown in use, 

investigating topics such as value of endangered species (Richardson and Loomis 2009) and 

patterns in habitat loss and species decline (Bender et al. 1998). 

Meta-analysis uses tools that are powerful and unbiased, which helps in summarizing the 

results of studies for the same question or in the same area. The most helpful aspect of meta-

analysis is that it represents the outcomes of each study on a common scale. This scale is what is 

called “effect size”; this includes information about the effects under investigation from each 

study (Koricheva et al. 2013). The process of meta-analysis begins with a precise question being 

asked on a specific topic. One develops criteria for a process of selection, starting with the initial 

search. In case of too broad a question, the question and the criteria should be refined in order to 

proceed with the full research. If sufficient data are available, a proper meta-analysis can be 

conducted. In the case of insufficient data, one can explain the gap in the area of interest. To 

conduct a meta-analysis, one must choose the effect size and the moderator, design the data file, 

extract the data, choose the model, choose the software, perform the analysis, check the bias, 

calculate the effect sizes and confidence intervals for each study, calculate the mean effect size 

and the confidence interval, test for heterogeneity, and, finally, interpret the results (Koricheva et 

al. 2013). It is important to have clear criteria for selection of studies, whether to include or 

exclude studies that seem untrustworthy or studies with samples that do not represent the target 

population (Gates 2002). 

A component of research synthesis is the systematic review method, which one conducts 

on a specific topic or question of interest. The systematic review can be done by describing the 

steps used to select studies and by explicitly identifying the criteria used. This is helpful to others 

who are interested in similar studies. The systematic review can be done with or without meta-
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analysis, depending on whether or not there are sufficient data to conduct the meta-analysis. The 

systematic review alone shows the current studies, available knowledge, and gaps in the 

reviewed area (Koricheva et al. 2013).  

One important step in meta-analysis is the collection of the effect size from each study. 

The effect size in one study is independent from that of the others. The best way of estimating 

the true effect size is to identify and select independent studies from which one can trust the 

findings. As all the studies chosen will contribute to the overall estimate of the true effect, a 

study with precise findings should be weighted more heavily than others; this will increase its 

influence on the overall estimate. Meta-analysis also has some bias issues when it comes to the 

selection of studies. When poor methodology is used in one or more of studies used, meta-

analysis can produce misleading, inaccurate results.  

The difference in the effect size between studies can be because of various factors: 

biological factors, such as when selecting studies that are based on different areas, or statistical 

factors, such as when selecting studies that use different methods to acquire their findings. It is 

best to identify these factors when doing a meta-analysis (Gates 2002). There are two kinds of 

effect size: fixed effects and random effects. In the case of fixed effects, the effect size in the 

population will be fixed but with unknown constants, so the true effect size is assumed to be the 

same for all studies in the meta-analysis. This is called a homogenous case. However, with 

random effects, the population effect size may differ randomly from study to study, so each 

study has a different effect size. Statistically, the difference between calculating the fixed effect 

and the random effect is found in the standard error, related to the effect size. In the case of 

fixed-effects, the standard error will be calculated and the variability estimated within the study. 

Fixed effects ignore any other factors that explain the variability. On the other hand, the standard 
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error in the random-effects model will be calculated both within a given study and between 

studies. The random effect accounts for errors from sampling a population. These errors arise 

from the variability estimated within a study and the variability estimated between studies. The 

standard error that results from random effects will be larger than in the case of fixed effects 

(Raudenbush 1994, Field 2001). The random variation acknowledged to exist among studied 

effects is due to additional, unknown factors. This can be accounted for by allowing this 

variation and assuming that the difference between true effect sizes for different studies is 

because of random variation around the overall mean effect. This mean effect represents the 

population of studies. When there is no variation between studies, the variance will be equal to 0, 

and if the true effect size is equal to the overall mean of the true effect size, then the random-

effects model will be converted to a fixed-effects model (Koricheva et al. 2013). 

To find out whether the studies selected for a meta-analysis are consistent or inconsistent, 

the test of heterogeneity should be performed. This detects whether there is any difference in the 

results of the studies. The test of heterogeneity assesses the hypothesis that all studies have the 

same effect size. This is computed via the Cochran’s Q test, which produces a summary of the 

squared deviations of all the effect sizes in the studies to be examined in the meta-analysis. 

Meta-analysis with a small number of studies may not detect the heterogeneity. In case of an 

insignificant result, this cannot be considered evidence of homogeneity; it is more accurate when 

there are more studies and, more importantly, when each study has a large sample size. There is 

an alternative approach that has been developed that quantifies the effects of heterogeneity. This 

approach provides a measure for the inconsistency in the studies’ results. This approach is 

represented in I2, which is the percentage of total variation across studies due to heterogeneity. 

This can be calculated by I2 = 100% × (Q − df) / Q, where Q is Cochran’s and df represents the 
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degrees of freedom. I2 can be between 0% and 100%, where 0% represents no heterogeneity, and 

this percentage increases as the heterogeneity increases (Higgins et al. 2003). Heterogeneity has 

a major impact on a meta-analysis. The results of a heterogeneity test are derived from 

mathematical criteria: I2 is the percentage of total variation across studies due to heterogeneity. 

Alternatively, H can be provided as the proportion of total variation in study estimates that is due 

to heterogeneity. Either H or I2 is important to calculate when publishing the results of a meta-

analysis because this helps show the impact of heterogeneity (Higgins and Thompson 2002).  

When using two different measures of the true effect, it is important to check one against 

the other to find out how they vary and to detect any biases that may exist. Bivariate data are 

commonly analyzed using linear regression models. Model I regression, which is also called 

ordinary least square regression (OLS), is used to predict or estimate the relationships among 

variables. In this approach, estimating the parameter, i.e. the coefficient 𝛽 in the regression line, 

can be done by minimizing the sum square of the distance between the observed value and the 

fitted line (Imbrie 1956). In OLS, it is assumed that X is fixed and Y varies, assuming that X can 

be measured without error (Smith 2009). Usually, however, both X and Y varies and is subject to 

error. However, when X is under the control of the experimenter it can be treated as fixed, even 

though there is uncertainty about its true value due to factors such as measurement error 

(Berkson 1950). It is also assumed that Y is normally distributed (Quinn and Keough 2002).  

Model II regression theory is more useful in case of errors in the independent variables. 

Nowadays, it is widely recognized that OLS is not the best fit in all situations. For example, 

when using Model I regression with the existence of errors in the independent variables, the 

value of the parameter, the coefficient β in the regression line, will be lower than otherwise 

expected. Reduced major axis regression (RMA), also known as geometric mean regression 
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(GM), has been recognized to be an appropriate alternative (LaBarbera 1989, Smith 2009, Quinn 

and Keough 2002). The GM Model II method is the preferred way of estimating the relationship 

between X and Y (Ricker 1973). The calculation of the slope coefficient 𝛽 is simply the division 

of the standard deviation of Y by the standard deviation of X. This is equivalent to minimizing 

the sum of the triangle area constructed by fitting the horizontal and vertical lines dropping from 

the observed value to the fitted line (Quinn and Keough 2002). The standard error of the slope 

for RMA is the same as the standard error of the OLS model (Imbrie 1956, Laws and Archie 

1981, Quinn and Keough 2002).  

 

GLM and GLMM in fisheries 

Generalized linear model is introduced in ecology in 1990 to deal with data exposed to 

errors (Aebischer and Coulson 1990, Austin et al. 1990) and in twenty first century GLM played 

an increasing role in the analysis of fisheries data (Maunder and Punt 2004). Goñi et al. (1999) 

used a generalized linear model to analyze hake catch rates to support the indices of abundance. 

These data were provided by a Spanish trawl fishery between 1991 and 1996. They tried to 

determine fishing power (the catchability associated with the characteristic of a vessel) using 

vessel tonnage. They also included year and month in the model used. They found that vessel 

tonnage and year have a significant effect on catch rate. The total variation in the data, which 

consisted of 54%, was explained by vessel size. Hake abundance fluctuated across the years. Ye 

et al. (2001) used a generalized linear model on data from a Kuwait driftnet fishery. They used 

both gamma and Bernoulli distributions for non-zero catches. They found that the decrease of the 

catch rate of silver pomfret (Pampus argenteus) changed fishermen’s fishing behaviour toward 

hilsa shad (Tenualosa ilisha). Dick (2004) discussed the distribution errors in the mean response. 
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He also used a generalized linear model. He evaluated different distributions to fit the data using 

the Akaike information criterion (AIC), these being lognormal, gamma, Weibull, log-logistic, 

and inverse Gaussian. He found that the AIC is an effective technique for discriminating among 

potential error distributions using moderate and large sample sizes. The AIC favored log-normal 

over other distributions. GLMs have also been used to examine fisheries survey methodology. 

The NAFC’s (Northwest Atlantic Fisheries Centre) standard survey bottom trawl was used in an 

experiment conducted in 2001 to estimate trawl efficiency to capture snow crab (Chionoecetes 

opilio). A second trawl was placed underneath the main one to capture any escaped crab. The 

results showed that the model had over-estimated true efficiency (Dawe et al. 2010). 

A generalized linear mixed model (GLMM) is used in ecology to deal with non-normal 

data in the presence of random effect, which is often used to account for variation among 

individuals (Milsom et al. 2000, Pawitan et al. 2004, Vergara et al. 2007). A generalized linear 

mixed model (GLMM) has been used in a number of studies. Helser (2004) used a GLMM to 

examine fishing power among chartered industry-based vessels and on a research trawler, the 

FRV Miller Freeman, for bottom trawl surveys on the upper continental slope of the U.S. West 

coast. A GLMM can be helpful when using the year as a fixed effect and treating vessels as 

random effects. Two distributions were used: discrete distribution for a non-zero haul and 

continuous distribution for non-zero catch rates; both applied to four ground fish species. The 

best model was chosen based on which produced the smallest AIC value, which was the effect of 

random vessels and year. Using fixed effects is not appropriate; however, using vessels as a 

random effect is reasonable. Bishop et al. (2004) compared the results of various models, 

including a generalized linear mixed model, with the standardization of fishing effort and the 

relative index of abundance. He used different vessels’ covariates in the models. The use of 
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random effects did not make a difference in the results. The standard error was different from 

one model to another because of the difference in statistical efficiency. A GLMM can deal with 

spatial and temporal correlations. Baum and Blanchard (2010) used generalized linear mixed-

effects models to estimate trends in the relative abundance of Northwest Atlantic oceanic and 

large coastal sharks between 1992 and 2005. The catch rate of eight kinds of sharks was 

standardized. There was a decline in the number of shark types, stabilization in the abundance of 

mako and thresher sharks, and an increase in the tiger shark population. Overall, the GLM and 

GLMM approaches are becoming standard methods in fisheries analysis in the way that linear 

regression and associated methods were used in the 20th century. 

 

Fisheries Studied 

Snow crab trap fishery 

 Snow crab (Chionoecetes opilio), also known as queen crab, is distributed in the North 

Atlantic and North Pacific Oceans.  It is the most valuable species in the Atlantic region. Snow 

crabs live in both sandy and muddy, cold-water environments. The size of mature male snow 

crab is greater than that of the female (Paul 1992), with males in the Gulf fishery growing up to 

16.5 cm CW (carapace width) while females are generally less than 9.5 cm in width (pers. 

Comm. Elmer Wade, Gulf Fisheries Centre, Fisheries and Oceans Canada). Fisheries are 

restricted to landing mature males with a width of 9.5 cm or more. Landing female snow crabs is 

forbidden in the fishery, in order to insure reproduction. Snow crabs are fished using various 

kinds of traps, such as conical, pyramidal and rectangular. There are a number of restrictions 

applied to snow crab fisheries, such as the number of licenses and traps allowed to a single 

fishery, seasonal limits, designated areas, and vessel size permitted in relation to the water’s 
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depth. Landed snow crabs are preserved in ice or in a circulation of salted water to ensure good 

quality in the long run. High numbers of snow crabs are harvested from Newfoundland and the 

Gulf of St. Lawrence. Snow crabs can be harvested from the spring to the fall (Weston 2011).  

The Scotian Shelf 4X trawl fishery	

 The trawl fishery of division 4X captures several ground fish species including haddock 

(Melanogrammus aeglefinus), redfish (Sebastes mentella), pollock (Pollachius virens L.), cod 

(Gadus morhua) and halibut (Reinhardtius hippoglossoides). Regulations were introduced to the 

fishery in late 1960 to reduce overharvesting and catch decline in haddock. These regulate 

fishing seasons, spawning areas, fish size, fishing gear, species and catch. The fishery was closed 

when catch peaked between March and May. However, the closure was based on spawning and 

not on the catch. This closure was to avoid the disruption of fish by gear during breeding. In this 

closure all gears other than pelagic fishing gears that cannot reach the bottom of the sea, such as 

purse seines and midwater trawls, was prohibited. By-catch of haddock and cod during the 

closure was limited to 1% of total catch (Halliday 1988). Today, haddock and redfish are the 

major species taken by trawl in division 4X (pers. comm. Peter Comeau, Bedford institute of 

Oceanography, Dartmouth, NS). 

Gear types 

The choice of gear to be used in a fishery is an important decision. The gear and its 

method of deployment define the nominal effort that is integral to traditional calculations of 

catch per unit effort (CPUE) and the expected relationship between fishing activities and catch. 

Gear is selected depending on the target species and the characteristics of area to be fished. The 

choice of gear may depend on the depth of the water, mesh size, and the speed of the vessels to 

be used (Squires 1987). There are fixed and mobile types of fishing gear. Fixed gear remains 
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stationary in one location over time and includes such things as traps, pounds, gill nets, long 

lines, seiners, trammel nets, small ring nets, and drifters (Stergiou and Erzini 2002). Snow crabs 

can be captured by traps, of which there are varying kinds used by fisheries. The conical trap 

with a larger mesh size is favoured by fishermen for its efficiency in catching more crabs within 

the legal size. Traps are made out of steel in order to be able to capture crabs from the very 

bottom of the water. The depth at which the traps are used can vary from 50 to 280 m. Harvested 

crabs can be stored in ice or salted water (Rose 1992, Chiasson et al. 1993, Xu and Millar 1993, 

Winger and Walsh 2011). Mobile gear is towed and dragged behind a boat and includes such 

things as trawls and dredges. A number of studies have discussed the impact of using trawls and 

dredges on the seabed (Messieh et al. 1991, Jones 1992, Watling and Norse 1998). Trawling by 

dragging nets over the seabed is a very common method of catching fish and is used by vessels 

with a length of between 10 and 130 m. Trawls often catch not only the target species, but also 

anything else in their way. Some trawls are dragged along the seabed when the target species is 

in deep water, such as in the case of Atlantic cod and shrimp (Watling and Norse 1998). There 

are various kinds of trawls, such as the otter trawl and beam trawl. The otter trawl has a cone 

shape and is held by two otter boards to keep the trawl open. These boards weigh thousands of 

kilograms. It is constructed with a number of panels that help to prevent species from escaping 

the net. The opening end of the otter trawl also consists of a ground rope, which is supported by 

rubber discs, bobbins, spacers, etc. The ground gear captures as many ground species as possible 

and prevents the trawl from being damaged while dragging it along the seabed. Otter trawls are 

made of wood, aluminum, or both. The important species most often fished for using otter trawls 

are cod, yellowtail and other flounders, haddock, redfish, and pollock. To begin fishing, the 

vessel simply releases the net into the water and drags it for several hours. The net is then pulled 
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out of the water and the fish are sorted and packed in ice. The beam trawl has a steel beam 

instead of the two otter boards to keep the trawl mouth open (Squires 1987, Watling and Norse 

1998). 

My thesis will examine proportionality between catch and effort data by exploring the 

slope of the log-log regression using meta-analysis and the slope of the exponent of effort using 

generalized linear mixed-effects model in the Gulf of St. Lawrence snow crab data and 4X 

Scotian Shelf trawl fishery data to account for variation among fishing vessels.  
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Chapter Two 

Meta-analysis of published data relating catch to nominal effort 
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Abstract 

My study analyzes ninety-one previously published cases, drawn from the broader 

literature via a search of 3246 journal articles and reports, to examine proportionality between 

catch and effort in fisheries’ data. The formal meta-analysis for this project examines 

proportionality through the slope of the log-log regression of catch on effort. To account for any 

“errors-in-variables” bias, reduced major axis (RMA) regressions are used to define the 

relationship. I investigated the role of fishery type, effort unit, gear, gear type, and target species 

as moderator variables in a mixed-effects meta-analysis. The typical disproportionality that was 

expected from facilitation and a numerical response of effort to favorable catches was indicated 

by the meta-analysis, with the observed slope of the log-log regressions exceeding one. 

However, in specific fisheries, the slopes can be higher, lower or close to one, suggesting that the 

effects of vessel behaviour (interference competition, facilitation, or numerical responses) should 

be considered for each fishery, individually. Among moderator variables (covariates) fishery 

type was shown to impact the proportionality between catch and effort 

 

Key words: Meta-analysis, catch, effort, error-in-variables, proportionality, disproportionality, 

mixed-effects, RMA, OLS. 
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Introduction 

Traditionally, catch in a fishery is assumed to be proportional to both the abundance of 

the species pursued (target) and the amount of fishing activity (effort). This assumption is the 

basis for the use of catch-per-unit-effort (CPUE) as both an index of abundance (Richards and 

Schnute 1986) and as a data series in more complex methods such as stock synthesis (Methot and 

Wetzel 2013). However, many processes know to play a role in fishing activities could invalidate 

the assumption of proportionality. The disproportionality could result from the changing 

behaviour of fishing fleets through competition, fishing facilitation, or a numerical response to 

fish availability and other factors. There are however a number of studies that relate the 

disproportionality between catch and effort to interference competition. This occurs when one 

forager directly interacts with another, or interferes by dispersing prey, while the second is trying 

to access a resource (Stillman et al. 1997). When vessels aggregate in an area, interference 

among vessels may also become more intense. In this case, a doubling of effort may not double 

the catch due to interference; catch may increase to a lesser extent. Overall, this would contribute 

to a trend where the observed increase in catch with effort decelerates. This is because vessels 

will negatively affect each other in their ability to find fish. For example, Abrahams and Healey 

(1993) tested some factors that affect the distribution of B.C. salmon trawlers. The vessels 

caught chinook salmon and found that, when vessel density increased, the catch rate of chinook 

salmon decreased, so the degree of change in catch rate in relation to the changes in vessel 

density was significant. The result of Abrahams’ study suggests that variation in vessel density 

may exert a substantial influence on catch rates during the commercial fishing season. Gillis 

(2003) also took a similar point of view, when he discussed foragers based on ideal free 

distributions in fleet dynamics (IFD). The IFD is a behavioural hypothesis that examines the 
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spatial relationship between foragers and their resources and assumes interference competition 

(Poos and Rijnsdorp 2007) exists among foragers (vessels). In a commercial fishery like the 

Pacific herring (Clupea pallasi) fishery, fish may disperse in response to fishermen setting their 

nets or moving their vessels, reducing fishing success. Congestion of vessels can also affect 

fishing gear through loss or damage (by entanglement with other gear). This will also decrease 

the overall catch (Gillis and Peterman 1998)  

An alternative form of disproportionality can result from facilitation (Lapointe 1989) and 

numerical responses (Solomon 1949, Millington 1984, Ledbetter 1986). In general, numerical 

responses occur when the predator density changes in relation to changes in prey density (Post et 

al. 2008). In fisheries, numerical responses result from additional vessels being mobilized when 

fish are more abundant. For example, when vessels try to allocate fishing effort in an area and 

have the ability to exploit fish aggregations, this will influence their fishing efficiency and the 

catch rate. In the case of facilitation, the fish harvest becomes proportionately higher when more 

fishing effort is applied. For example, even when vessel density increases, fishers can increase 

their catches by communicating with each other about the best areas to fish in. In addition, 

having more vessels in a water body facilitates the coverage of larger areas, increasing the 

chance to catch fish and thus the effectiveness of nominal fishing effort.  

A synthesis of published fisheries data can provide insight into the generality of 

proportionality between catch and effort. Meta-analysis, first introduced by Gene V. Glass 

(1976), and is becoming a popular method of research synthesis. It can be conducted 

qualitatively or quantitatively: qualitatively in the form of a narrative review, and quantitatively 

by using statistical methods (Koricheva et al. 2013). Meta-analysis has become a common tool 

for the synthesis of previous research in ecology and fisheries. It uses techniques that collect an 
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analytical result and then integrate these findings with others to get a wider understanding of a 

specific area of study. Combining the findings from a number of studies strengthens the evidence 

for a specific question or hypothesis. Gurevitch et al. (2001) have reviewed the history of meta-

analysis and discussed its application in the field of ecology and evolution. Today, there are 

many studies using meta-analysis in ecology and evolutionary biology (Gurevitch et al. 1992, 

Arnqvist and Wooster 1995, Adams et al. 1997, Bender et al. 1998, Koricheva 2002, Harrison 

2011). There are also a growing number of papers using meta-analysis for fisheries (Côté et al. 

2001, Worm and Myers 2003, Evans et al. 2011). For instance, Worm and Myers (2003) applied 

meta-analysis in the context of population interactions across the North Atlantic Ocean. They 

used data for Atlantic cod (Gadus morhua) and Northern shrimp (Pandalus borealis) drawn from 

the NAFO (Northwest Atlantic Fisheries Organization, Dartmouth, Nova Scotia, Canada) 

database to test for patterns in the catches of target species. Catch and effort data from different 

fisheries have been extensively analyzed for various purposes. The purpose of meta-analysis is to 

combine all these data into one study to arrive at a conclusion or theory in response to the 

question asked. In my study, I will collect and synthesize data from published fisheries studies to 

perform a meta-analysis that addresses the questions: is catch generally proportional to effort in 

published fisheries data, and does the relationship vary substantially among fisheries?  

 

Methods 

The data sources used in this study were collected using the Google Scholar search 

engine, the International Commission for the Conservation of Atlantic Tuna (ICCAT) website 

(http://www.iccat.int), and the International Council for the Exploration of the Sea (ICES) 

website (http://www.ices.dk). Initially, searching the databases with the search terms “catch” and 
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“effort” identified potential studies within these sources. To find out if a given paper discussed 

both catch and effort, I examined its summary in the data source. If the summary referenced both 

catch and effort, I then reviewed the paper to determine if that study explicitly reported these 

catch and effort data. If not, I excluded it from my research. I reviewed 1000 summaries using 

the Google Scholar database and found 606 with catch and effort data. I reviewed 2246 

summaries from the ICCAT website and found 1155 papers with catch and effort data. I did not 

find any time series data containing both catch and effort data using the ICES website. Finally, I 

selected only the documents from the list with long-term studies (studies that had a time series of 

data from the same site over multiple years). In total, only 91 out of the 3246 potentially relevant 

cases in the databases met all of my search criteria.  

The meta-analysis for this project used two measures of effect size. The first measure was 

the ordinary least square regression slope (OLS) as an effect size, and the standard errors of the 

slopes as sample variability. The second measure was the reduced major axis slope (RMA). The 

RMA slope has the same standard errors as the ordinary least square regression slopes (Sokal 

and Rohlf 1995, Quinn and Keough 2002, Price and Phillimore 2007). The Model II regression 

can be found by minimizing the sum of the triangle areas constructed by vertical and horizontal 

lines from each observed value to the fitted line. The RMA measure accounts for error-in-

variables that can bias OLS slopes (Quinn and Keough 2002, p. 101). For my analysis, I used 

both random and mixed-effects meta-analysis models to examine these effect size measures. A 

mixed-effects model allows for a combination of both fixed and random effects. There are two 

levels to this model: the parameter being studied (the fixed-effects model) and the variations 

between different studies (the random effect) (Konstantopoulos 2006). 

The catch model that has been used in current fisheries analysis is shown in the equation 
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below (Maunder and Punt 2004): 

𝐶! = 𝛽! ∙  𝑓!  ∙  𝑁!                                                           (2.1) 

where Ci is the catch, β0 is a constant (catchability), f is the fishing effort, and N is the 

abundance, which may be represented as density. I can modify equation (2.1) by adding powers, 

which allows for potential nonlinearity in the relationships between catch and either effort or 

abundance. 

𝐶! = 𝛽! ∙  𝑓!
!!  ∙  𝑁!!!                                                          (2.2) 

In equation (2.2), proportionality is reflected in the variables 𝛽1 and 𝛽2. I examine 

proportionality by testing whether 𝛽 is equal to one, greater than one, or less than one, 𝑖 = 1, 

2,…, n, 𝑖 is the observation of the slope. I used log transformation on both catch and effort to 

convert the multiplication into addition. Equation (2.2) will be rewritten as 

𝑙𝑜𝑔 𝐶! = 𝑙𝑜𝑔 𝛽! + 𝛽! 𝑙𝑜𝑔 𝑓! + 𝛽!log (𝑁!) (2.3) 

where  𝛽! equal one. These slopes are the effect sizes in my meta-analysis. In this form, the 

effect sizes are independent of the measurement scale of the original catch and effort data. I do 

not have abundance but I added year effect to reflect inter-annual changes in fish availability. 

I also examined fishery covariates (moderator variables) that could be determined from 

the original sources: fishery type (such as artisanal, commercial, or research); nominal effort 

measure (such as hours, sets, trips, or hooks); gear type used (such as mobile, fixed, or a mixture 

of both); gear (such as gillnet, trawl, electrofishing, purse-seine, pole and line, long line, or 

mixed); target species (yes or no); and species category (tuna, such as bigeye tuna (Thunnus 

obesus), shark, such as blue shark (Prionace glauca), shrimp, such as brown tiger prawns 

(Penaeus esculentus), redfish (Sebastes mentella); billfish, such as swordfish (Xiphias gladius), 

salmon, such as chinook salmon (Oncorhynchus tshawytsch), haddock (Melanogrammus 
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aeglefinus), herring, such as Atlantic herring (Clupea harengus), cod (Gadus morhua), or Nile 

perch (Lates niloticus)). Equation (2.4) will allow me to discover the effect of these covariates on 

the slope. The alteration of the slope will indicate the effect of the covariates on the relationship 

between catch and effort. Each study generated a slope, which was the effect size in the meta-

analysis to which the moderator was applied.  

𝑌!" = 𝜇 +𝑚!  +  𝛼!                                                (2.4) 

where 𝑌!" is the observed slope, 𝜇 is the overall mean, 𝑚!  is the moderator, 𝛼! is the random 

effect for the study, 𝑖 is the observation (the slope from the study 𝑖), and 𝑗 is the value of the 

moderator as a fixed effect. In a statistical review, heterogeneity is any variability in study 

outcomes that occurs among studies. In my case, the heterogeneity is the variability among 

studies between true effects (slopes). If I have high heterogeneity, the studies I have selected 

may be too different from each other to combine. For interpreting heterogeneity, Higgins et al. 

(2003) suggest that we categorize as follows: 0% = no heterogeneity, 25% = low heterogeneity, 

50% = moderate heterogeneity, and 75% = a high level of heterogeneity. In this study, I am 

interested in knowing if it is best to use a fixed-effects model or a random-effects model. Fixed-

effects assume the same true effect size in each study, and the sample variability estimated 

within each study. A random-effects model allows for the true effect size to vary among studies 

and assumes these differences between effect sizes is because of random variation around the 

mean of effect size. Random effects include both variation between studies (due to random 

differences in true effect size) and within study (due to sample variability or sample error). The 

mixed effect model combines both fixed and random effects. 

I used a mixed-effects model in this study to allow me to determine the effect of 

moderators on the size of the average slope (Viechtbauer 2010). Fishery data may have different 
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slopes depending on the known and unknown factors in each case. The true effects (slopes) are 

assumed to be distributed normally, with a variance of 𝜏2, 𝜇!~N (0, 𝜏2). To fit a mixed-effects 

model, I needed to estimate 𝜏2, the amount of residual heterogeneity among true effects (slope). 

In my case, I have estimated 𝜏2 with a restricted maximum-likelihood estimator (Viechtbauer 

2010) using the R programing language with the metafor package (R Core Team 2014). Metafor 

can fit both random- and mixed-effects models, providing a variety of diagnostics and allowing 

the examination of moderador variables as fixed effects (Viechtbauer 2010). 

The moderator variables used were: fishery type (including artisanal, commercial, and 

research), effort unit (including hours, sets, boats, days, hooks, and trips), and gear type 

(including fixed, mobile, and a mixture of both). I combined the reduced major axis regression 

slope as effect size (random effect) with various moderator variables (fixed effects). Fitting 

moderators as fixed effects in a mixed-effects model creates “dummy variables” to represent the 

individual levels in the moderator variables. For example, fishery type has three levels: artisanal, 

commercial, and research. One of these levels becomes the reference level (𝛽!). By default, the 

first level of the moderator will be the reference level. 𝛽! will estimate the reference level slope, 

𝛽! and 𝛽!will indicate how much lower or higher the slope is than the reference level. The slope 

for levels other than the base level was calculated by adding the parameter estimate to the 

intercept. The 95% confidence interval was calculated as shown:  

𝛽! ± 1.96 𝑠𝑒(𝛽!) 
 

where 𝛽! is the parameter estimate, se(𝛽!) is the standard error of the parameter, 1.96 is the 

quantile of the normal distribution, and 𝑖 is the observation of the slope. If the slope is different 

in each of the studies, this will result in significant heterogeneity and support the representation 

of slope as a random-effect. For this, I am going to test for heterogeneity. If 𝜏2 is greater than 0, 
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then there is heterogeneity among the true effects. I2 composed of both heterogeneity among 

studies and sampling variability. The test of moderators (QM) will indicate if coefficients 

(moderator levels excluding the reference) are equal to 0 or greater than 0. This test will show if 

the moderators contribute to the heterogeneity in the slope.  

To begin, I examined the correlation between log catch and log effort, which represents 

the strength of their relationship I expected that there would be a strong relationship between 

catch and effort. To confirm that, I analyzed the data using random-effects models with Fisher’s 

z-transformation of correlations as the effect size. Fisher’s z-transformation was developed to 

deal with a non-normally distributed Pearson’s r variable through a normally distributed z 

variable. I transformed the average of z values back into the Pearson’s correlation for display 

purposes (Silver and Dunlap 1987, Alexander 1990). I used the back transformation as effect size 

with a random-effects model and a mixed-effects model. I then used the mixed-effects model 

with a number of moderator variables: fishery type, target species, effort type, effort unit, gear 

type (mobile or fixed), and gear to examine influences on the strength of the correlation. I fit the 

model with and without one of the moderators (full and reduced model) and used likelihood ratio 

tests to compare them.  
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Results 

To begin, I examined the correlation between catch and nominal effort in my set of 

ninety-one studies. There is generally a high correlation between log transformed catch and 

effort. Overall, the mean of the correlations was 0.75. Figure 2.1 also shows how the strength of 

the relationship between catch and effort varied from one study to another. This was consistent 

with the results of the mixed-effects models using Fisher’s z (transformed correlation) as effect 

size (Figure 2.2). In Figure 2.2, the forest plot shows Fisher’s z-transformed correlations of log 

catch and log effort as measured by various studies. There is clear heterogeneity from one study 

to another. The total variability in the strength of the relationship, which is composed of both 

heterogeneity among studies and sampling variability, was shown as the percentage: I2 = 

86.12%. The heterogeneity in the correlations was estimated to be 𝜏2 = 0.4671 (Table 2.1). This 

result suggests that there is high heterogeneity among studies in the strength of the relationship 

between catch and effort. The funnel plot (Figure 2.2) appears symmetric and the regression test 

for the funnel plot did not suggest the asymmetry that would indicate selection bias in the studies 

used: p = 0.6598. 

The strength of the correlations varied among the moderator variables. The test of 

moderators (QM) using Fisher’s z (transformed correlation) showed that the strength of the 

relationship between catch and effort increased when fishermen caught their intended target 

(p=0.0237, Table 2.2). Fishery type and gear were not significant using the QM test (Table 2.2). 

The likelihood-ratio tests (LTR) of possible moderators agreed with the QM test for target 

species, but also indicated that gear type was a significant moderator (Table 2.2). However, a 

more complex model containing both target and gear type was not a significant improvement 

over using target species alone as a moderator (LRT (df= 2)= 5.0619, p-value = 0.0245) 
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I examined the proportionality between catch and effort using random (no moderator) 

(Table 2.3) with both OLS and RMA slopes as effect size. The OLS slope was generally less 

than one (mean = 0.73 for all studies) but greater than one (mean = 1.15 for all studies) for the 

RMA slope. The 95% confidence intervals for each regression excluded one, which is the slope 

associated with proportionality. The total variability in slopes, which is composed of both 

heterogeneity among studies and sampling variability, was shown as a percentage: I2= 56.98% 

(Table 2.1) (Higgins and Thompson 2002). The heterogeneity in the true slope was estimated to 

be τ2 = 0.1912 (Table 2.1). I followed Higgins et al. (2003) in their categorization of the 

heterogeneity; if the heterogeneity among the studies exceeds 50%, then this is classified as 

moderate and the estimates of these studies should not be treated as a single common value, 

which would correspond to a fixed effect model for slopes in the absence of moderators. 

Moderator variables on the regression slopes were investigated in more detail with the 

RMA regressions. The outcomes of the mixed-effects model using RMA slope as effect size 

show that the test of moderator (QM) produced a p-value of 0.0320 for fishery type and a p-value 

of 0.0668 for gear type. The confidence intervals for this moderator suggested that catch 

increases disproportionately faster than effort in artisanal fisheries. Gear type approached 

significance when using mixed gear (both fixed and mobile gear in the fishery) (Table 2.4) 

though the reasons for this are unclear from the level of detail available for these fisheries from 

the literature. Other potential moderators (whether or not the species was targeted, effort unit, 

specific gear used) were not significant. When RMA slope was used with fishery type as a 

moderator variable, the total variability in the slopes, which is composed of both heterogeneity 

among studies and sampling variability, was shown as a percentage: I2 = 56.67%. The 

heterogeneity in the true slope was estimated to be 𝜏2 = 0.1884 (Table 2.1). Once again, the 
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analysis suggested that a single “typical” slope for the log catch on log effort regressions would 

not represent the variability in proportionality among fisheries. 

I have used a forest plot and a funnel plot to show the results of analyzing the RMA 

slopes of my ninety-one studies, without a moderator variable of fishery. In the forest plot, 

confidence intervals vary in width and the inclusion of one (proportionality). The funnel plot 

appears to be symmetrical, indicating that there is no clear bias in study selection. This was also 

supported by the regression test which did not suggest asymmetry: p = 0.6068 (Figure 2.3). 
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Table 2.1: Heterogeneity measures for meta-analysis. The outcomes of random- and mixed-

effects models of fishery type using OLS slope as effect size. k = 91, where k is the number of 

studies. 𝜏2 is the heterogeneity in the true slope. The estimator is REML. SE is the standard error. 

I2  is composed of both heterogeneity among studies and sampling variability.  

 

 

 

 

 

 

 

 

  

Model 
Effect size ~ moderator 

𝜏2 SE I2 

Fisher’s z ~ fishery type 0.4680 0.0905 86.14% 

Fisher’s z  0.4671 0.0893 86.12% 

OLS slope ~ fishery type 0.1352 0.0458 48.43% 

OLS slope 0.1341 0.0452 48.16% 

RMA slope ~ fishery type 0.1884 0.0554 56.67% 

RMA slope 0.1912 0.0554 56.98% 
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Table 2.2: The outcomes of the mixed-effects models using Fisher’s z (trans. correlation) as 

effect size. n is the number of studies. SE is the standard error. QM and LRT are the tests of 

moderators. 

Moderator n  Fisher’s z  SE CI lower 95%   CI upper 95% 

Non 90 0.9623 0.0823 0.8010    1.1235 

Fishery type: test of moderators: QM (df = 2) = 1.5449, p-value = 0.4619 

Fishery type: test of moderators: LRT (df= 2) =1.5889, p-value = 0.4518 

Artisanal 10 0.7593 0.2315 0.3056    1.2129 

Commercial 74 0.9717 0.2489 0.4839   1.4595 

Research 6 1.2490 0.4012 0.4626   2.0353 

Gear: test of moderators: QM (df = 8) = 15.4850, p-value = 0.0504 

Gear: test of moderators: LRT (df= 2) = 15.6023, p-value = 0.0484 

Bait boat 2 1.8103 0.4995   0.8312 2.7893 

Electrofishing 2 0.0656 0.7388 -1.3823 1.5135 

Gillnet 8 0.4793 0.5564 -0.6112 1.5697 

Long line 25 0.9602 0.5225 -0.0637 1.9842 

Mix 9 0.9156 0.5522 -0.1666 1.9978 

Pole and line 3 1.5086 0.6369  0.2602 2.7569 

Purse-seine 18 1.132 0.5316  0.0901 2.1739 

Shore angling 1 2.2222 0.8776  0.502 3.9423 

Trawl 22 0.9052 0.5236 -0.1209 1.9314 
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Table 2.2 (continued from previous page) 

Target species: test of moderators: QM (df = 1) = 5.1190, p-value = 0.0237 

Target species: test of moderators: LRT (df= 2)= 5.0619, p-value = 0.0245 

Yes 77 1.4093 0.2130  0.9917 1.8268 

No  13 0.8891 0.2299  0.4385 1.3397 
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Table 2.3: The outcomes of the random-effects model using OLS, RMA slopes, and Fisher’s z as 

effect size with no moderator variables. 

 

Effect size K Criteria Slope SE CI lower 95% CI upper 95% 

Fisher’s z 90 All studies 0.9623 0.0823 0.8010    1.1235 
 
OLS 

 
91 

 
All studies 

 
0.7278 

 
0.0603 

 
0.6097 

 
0.8460 

 
OLS 
 

 
60 

 
N>10 years 

 
0.7474 

 
0.0700 

 
0.6103    

 
0.8846 

RMA 91 All studies 1.1498    0.0661 1.0203 1.2794 
 

RMA 60 N>10 years 1.1636 0.0812 1.0045 1.3227 
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Table 2.4: The outcomes of the mixed-effects model using RMA slope as effect size to estimate 

the slopes of the moderator variables. k = 91. n is the number of studies. SE is the standard error. 

QM is the test of moderators. 

 

 

Moderator n  Slope           SE        CI lower 95%    CI upper 95% 
 

Fishery type: test of moderators: QM (df = 2) = 6.8843, p-val = 0.0320 
 
Artisanal 22 1.6775 0.2156 1.2549 2.1001 

Commercial 63 1.0881 0.2268 0.6435 1.5326 

Research 6 1.278 0.4202 0.4545 2.1015 

Effort unit: test of moderators: QM (df = 5) = 4.5990, p-val = 0.4667 

Hours   20 1.1468 0.1585 0.8362 1.4574 

Sets  12 0.8893 0.234 0.4306 1.348 

Boats 17 1.2187 0.214 0.7993 1.638 

Days 8 1.0287 0.273 0.4937 1.5637 

Hooks  20 1.3263 0.2086 0.9174 1.7351 

Trips 14 1.1004 0.2273 0.6549 1.5458 

Gear type: test of moderators: QM (df = 2) = 5.4114, p-val = 0.0668 

Mix   9 1.5633 0.2292 1.1142 2.0125 

Fixed  35 1.2232 0.2528 0.7278 1.7186 

Mobile 47 1.034 0.246 0.5519 1.516 
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Figure 2.1: Forest plot showing the result of correlation between catch and effort of ninety-one 

studies ordered by RMA slope. 
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Figure 2.2: Forest, and funnel, showing the results of Fisher’s z of ninety-one studies. 
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Figure 2.3: Forest plot and funnel plot showing the ninety-one studies without moderator 

variable, using random-effects model and RMA slope as the effect size. 
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Discussion 

My results show a general tendency for a disproportionate relationship between catch and 

effort, with much variation among fisheries. There are many possible reasons for 

disproportionality in the changing behaviour of fishing fleets, such as interference competition 

(Abrahams and Healey 1993), fishing facilitation (Stuster 1978), or a numerical response to fish 

availability (Post et al. 2002). The general trend that I observed when using reduced major axis 

slope (catch increase more than effort) could be caused by either facilitation or numerical 

responses among fish harvesters. In facilitation, fish harvest becomes more efficient when more 

fishing effort is applied. For example, Lapointe (1989) found that gross dollar returns per vessel 

increased when more vessels fished in the same area.  

An increase in fleet efficiencies due to information exchange has been observed in a wide 

variety of fisheries. Stuster (1978) illustrated that many successful U.S. fisheries, such as the 

west coast crews, use radio transmission to exchange information. They can increase their catch 

by half through this use of direct communication. Facilitation can also occur through information 

sharing; for example, Lapointe (1989) found that information sharing helps vessels to compare 

among areas and helps in predicting seasonal gross dollar returns per vessel. In the San Diego 

tuna fleet, fish harvesters used two operative strategies; the first known as “the hunter” and the 

second as “the chaser”. Hunters relied on themselves, were knowledgeable, and had more 

experience. On the other hand, chasers used radio information to follow the hunters and 

aggregate around them (Orbach 1977). Vessels can also increase their catch by apparent 

facilitation For example, when vessels and fish are concentrated in the same area, fish harvesters 

may be able to successfully locate aggregations of fish, even as overall abundance declines 

(Deng et al. 2005).  
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Numerical responses (Post et al. 2008) may also cause catch to increase 

disproportionately with fishing effort. Numerical responses refer to an increase in the number of 

vessels or of fishing activity by each vessel when fish are more abundant. The numerical 

responses can be observed in the way that increased abundance attracts more vessels to fish in 

the area, such that the number of vessels increases in response to increase in catch. Numerical 

responses are also shown in fisheries studied by the Inter-American Tropical Tuna Commission, 

where efforts are concentrated on an area of high fish density (Gulland 1956). Hilborn and 

Ledbetter (1979) found that vessels responded to salmon densities as well as to the presence of 

other vessels along the B.C. coast. 

In my results, the measure of nominal effort did not affect the proportionality of the 

relationship between catch and effort. However, one might expect that more highly resolved 

effort measures would capture more detail and patterns in fleet dynamics. McConnell et al. 

(1995) discussed the influence of heterogeneity on the estimated value of catch rate among fish 

harvesters. They found that fishermen who fished long hours, had more experience, or fished in 

close areas had high historic catch rates. Thus, more detailed effort measures would be expected 

to differ in proportionality, but I did not see this trend among the fisheries examined. 

In each study, various forms of effort were measured, such as hooks, hours, trips, and 

other types of effort. In some studies, catch was measured by number of fish, and in others it was 

measured in kilograms. My use of the log-log transformation successfully converted these 

different measures to the common metric of proportionality. The different units only impact the 

constant, allowing slopes to provide a common, dimensionless metric. These slopes can be 

compared to each other among different fisheries, as they are numbers with no units. Using the 

log transformation on both catch and effort changes multiplication to addition in the basic catch 
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equation (Maunder et al. 2006). This transformation linearizes the relationship and makes the 

variability in the response (catch) more homoscedastic. More current standardizations use 

generalized linear models with log links and gamma distributed responses to achieve the same 

result, but the transformation method is more readily employed for meta-analysis. 

The only strong effect of moderators was seen with the fishery type (for slope) and target 

species (for correlation). It is not possible to definitively say why artisanal fisheries demonstrated 

slopes significantly greater than 1. However, this may be a result of the greater flexibility in 

numerical responses. Fishers who have alternative activities, such as farming or other vocations 

on shore, may only enter the fishery when conditions are very good, while industrialized 

commercial fishing may be required to continue maximally through a range of fish abundances. 

The association of target species with stronger relationships between catch and effort is 

reasonable, given that target species should be taken with greater reliability by knowledgeable 

fish harvesters. 

The biological, geographical, and technological uniqueness of fisheries beyond the 

documented moderator variables was represented through random- and mixed- effects meta-

analysis. Treating individual fisheries as random effects is reasonable when the relationship 

between catch and effort is expected to be truly different among them. As my results illustrate, 

each case produced a different slope (there was not just one slope for all the cases) and there was 

a distribution for all of these slopes, where, using the random-effects model, the mean effect size 

of the distribution was significantly greater than one. Each fishery study was different, so, not 

only were there various fishery types, but also various types of effort, in addition to other factors 

that made each of the data sets extracted from these studies unique. Koricheva et al. (2013) 

clarify some of these points, explaining that the random variation acknowledged among study 
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results is due to unmeasured factors. It can be accounted for by assuming that the difference 

between true effect sizes for different studies is because of random variation (due to the 

unmeasured factors) around the overall mean effect. This mean effect then represents the 

population of studies. Field (2001) presented a brief tutorial on meta-analytic methods in which 

he discussed two simulations that compare these methods. He defined fixed- and random-effects 

models, as well as discussing the statistical differences between them. He thereby illustrated that 

random effects cannot control type I error in meta-analysis with 15 or fewer studies but can 

account for that when a meta-analysis contains a large number of studies.   

Variation in the measurements of both catch and effort could lead to negative bias in the 

observed slopes, due to error-in-variables effects (Quinn and Keough 2002) on the estimated 

relationship. This became visible when comparing the OLS (ordinary least squares) and RMA 

(reduced major axis) regression slopes. As expected, my results clarify the difference between 

OLS and RMA; they present OLS with a lower slope estimate in comparison to RMA. As 

illustrated by Smith (2009), RMA operates on the assumption that the independent variable is 

also measured with error. The use of two different measures may help in illustrating how these 

measures can vary, in order to detect any biases that may occur. These biases are especially 

important to be aware of when employing standard likelihood methods, because they do not 

consider errors-in-variables. Model II regression theory provides more meaningful results in case 

of errors in the independent variables. When Model I regression is used in the presence of errors 

in the independent variables, the value of the parameter will be closer to 0. It has therefore been 

widely recognized that OLS is not the best fit in all situations, because OLS assumes that error is 

present only in the dependent variables. The suitable situation for use of OLS is when there is no 

error in the variables. RMA has been recognized to be an appropriate alternative (Smith 2009). 
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My results showed that using OLS would have resulted in a completely different answer to my 

question and changed my interpretation of the results. In fact, the estimation of slope was less 

than 1 (as shown by the confidence interval) when using the random-effects model and OLS for 

all studies examined. These results would be interpreted as interference competition. Taking into 

account error-in-variables, using RMA resulted in a higher estimation of slope that is 

significantly greater than 1. These results change the interpretation, showing that the reason for 

disproportionality is more likely due to fishing facilitation or numerical responses among fish 

harvesters. 

In my examination, the correlation between catch and effort was high, as it was expected 

to be. The result is consistent with an underlying positive relationship between catch and effort; 

more fishing tends to land more fish. For many fisheries, the fit of the data was examined by 

analyzing the correlation between catch and effort. Báez et al. (2007) illustrated this in their 

examination of the data of traditional Spanish drifting longline boats in the Balearic Sea (western 

Mediterranean). They found that catch correlated to effort by observing that the number of 

swordfish captured correlated to fishing effort but not to distance to the coast or to depth. 

To examine the consistency of the catch-effort relationship among fisheries, I tested 

heterogeneity among the results of the studies. Heterogeneity will affect the way that I interpret, 

and draw conclusions about the presence of a general trend among the selected studies. I was 

able to detect moderate heterogeneity from the effect sizes in these studies, demonstrating 

variation and supporting my use of a random-effects model. Field (2001) noted that if there were 

heterogeneity between effect sizes, the results would show the standard errors in a random-

effects model to be greater than the standard errors in a fixed-effects model. Koricheva (2013) 

illustrated that the use of a random-effects model can account for part of the variation in the data.  
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The relevance of heterogeneity is consistent with the results of previous fishery studies. 

Goodyear (2003) illustrated that there is both spatial and temporal heterogeneity in the catch rate, 

which is related to the changes in sea surface temperatures. Moreover, Johnson and Libecap 

(1982) discussed heterogeneity among fishermen regarding their ability to fish, as was detected 

from catch data for the bay shrimp season in the fall of 1978. Fishermen’s heterogeneity was 

based on their success over time (higher catch than average), due to differing amounts of 

knowledge about setting nets and the location of the shrimp. 

I have found that the disproportionality observed in the slope of log-log regressions that 

exceed 1 maybe occur due to the following reasons: numerical response of effort to higher catch 

and fishing facilitation. To better understand the disproportionality further studies need to 

consider collecting abundance data in order to provide a clear indication of the relationship 

between catch and effort. 

In this chapter, I used a meta-analysis to determine if there was a consistent or typical 

relationship across studies between nominal effort and fishing success. I reviewed many sources 

of published and “grey” literature for the meta-analysis. I cite in my paper the ninety-one of 

these sources that were suitable for my analysis. The research examined the slope data within 

each of the ninety-one studies and analyzed the effect size using two different measures. This 

study identified that fishing catch values were not proportional to nominal effort by using a 

random-effects model to illustrate the effects on catch. The random-effects model, using OLS for 

all the studies examined, revealed that the estimation of slope was less than 1 and that the 

confidence interval was significant, whereas the results of RMA showed a higher estimation of 

slope and the confidence interval was significantly greater than 1. My findings suggest that the 

disproportionality may be because of facilitation and numerical responses. Using various 
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moderator variables to check for disproportionality, I found that some of the moderator variables 

used such as fishery type, and target species were significant. Additional potential statistical 

causes for these patterns are developed in Chapter 4.   
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Chapter Three 

The connection between meta-analysis and the application of GLM and GLMM to catch 

standardization: using nominal effort in the case of fixed and mobile gears. 
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Introduction 

The meta-analysis used in chapter two combined the results of time series data from 

various studies. This provided a general idea about the relationship between catch and effort. The 

data used in the meta-analysis were combined across studies, though there were various fishery 

types, such as artisanal, commercial, and research. The effort measure used, such as hours, sets, 

trips, or hooks, was different for each fishery. Different gear was also used by each fishery, such 

as gillnet, trawl, electrofishing, purse seine, pole and line, long line, or a mix of various types. 

The species analyzed were tuna, such as bigeye tuna (Thunnus obesus), shark, such as blue shark 

(Prionace glauca), shrimp, such as brown tiger prawns (Penaeus esculentus), redfish (Sebastes 

mentella), billfish, such as swordfish (Xiphias gladius), salmon, such as chinook salmon 

(Oncorhynchus tshawytsch), haddock (Melanogrammus aeglefinus), herring, such as Atlantic 

herring (Clupea harengus), cod (Gadus morhua), and Nile perch (Lates niloticus). The general 

results from the meta-analysis may differ from the results of one fishery. A specific fishery can 

give a close look at the relationship between catch and effort. This will reveal any differences 

between the slope produced by meta-analysis and the slope produced with more highly resolved 

data from a specific fishery. The results from meta-analysis using a mixed-effects model with 

RMA favored proportionately higher catches with increasing effort. This may be because of a 

number of reasons, such as facilitation (Healey et al. 1990) and numerical responses (Millington 

1984). The forest plot (Figure 2.3) illustrates that each fishery had a different slope, but these 

slopes varied significantly (indicated by measures of heterogeneity) around a value close to 1. 

This suggests that we must look individually at specific fisheries whose relationships between 

catch and effort may differ from what I have generally found with meta-analysis. If the specific 

fishery results of slope are greater than 1, it will be similar to the one obtained via meta-analysis. 
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This would suggest that facilitation and numerical responses maybe behind this 

disproportionality. If the results show that the slope is 1, then this would agree with the 

relationship assumed when using catch per unit effort (CPUE) and seen in results like those of 

Bishop et al. (2004). Catch would be proportional to nominal effort and, as effort increases, catch 

should increase in the same proportion. However, if the results show that the slope is less than 1, 

then this would suggest interference competition (Poos and Rijnsdorp 2007), gear saturation 

(Dauk and Schwarz 2001), or reasons related to other aspects of fishermen’s behaviour, such as 

intending to fill the net (Salas and Gaertner 2004). 

The meta-analysis was done using both ordinary least squares (OLS) and reduced major 

axis (RMA) regression. Linear regression is commonly used in fisheries and ecological studies. 

However, the parameters estimated using linear regression assume that model error is solely 

associated with fishery data, due to its having many problems, such as outliers, zeros, etc. The 

problem with OLS regression is that it may bias the results due to any errors in the observed 

values of the predictor variables. If there is heterogeneity in the error variance, errors not 

normally distributed, outliers are present, or errors exist in the predictor variables, then the 

estimated results from the model using ordinary least square regression must be biased (Hilborn 

and Walters 1992, Chen and Jackson 2000). Some of these problems can be solved by using a 

nonlinear model (Chen and Jackson 2000, Motulsky and Christopoulos 2004). The use of a GLM 

and a GLMM will fit the heteroscedastic and non-linear data more accurately than the use of 

simple linear regression. The resulting parameter estimates performed with a GLM and a GLMM 

should be more accurate. A GLMM can resolve issues such as autocorrelation, and nonlinearity 

in the relationship (Breslow and Clayton 1993, Carl al. 2008). A number of the analyses 

conducted on fisheries have either ignored vessels or treated them as fixed effects by using 
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simple statistical techniques, such as linear regression. However, each vessel operates uniquely 

and each fisherman has his own ideas about and goals in fishing. This should be taken into 

consideration in the analysis (Salas and Gaertner 2004). To account for this, vessels will be 

treated as random effects, using a generalized linear mixed-effects model. This will account for 

variation in the parameter estimates caused by individual variation among vessels. 
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Chapter Four 

Applying GLM and GLMM to catch standardization: using nominal effort in the case of 

deployments of fixed and mobile gear  
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Abstract 

This chapter examines the relationship between catch and effort data in two different 

fisheries: the Gulf of St. Lawrence snow crab fishery (fixed gear) and the haddock/redfish trawl 

fishery of southwest Nova Scotia (mobile gear). The purpose of this analysis is to examine the 

proportionality between catch and nominal effort at the scale of individual sets (traps or trawls). 

This was conducted using a generalized linear mixed-effects model to account for variation 

among fishing vessels. Proportionality was explored through of the exponent of effort. The 

disproportionality indicated by this analysis, i.e. catches increasing less than proportionally to 

effort, was expected to be from interference competition, exploitation competition, and gear 

saturation in both fisheries examined. Data aggregated by month and year resulted in catch 

increasing disproportionately faster than effort, which could result from facilitation, numerical 

responses, or aggregation biases. This establishes that similar disproportional relationships can 

exist between nominal effort and the resulting catch in both fixed and mobile gear fisheries, 

contrary to the implicit assumptions underlying the use of CPUE as a fisheries indicator of 

abundance.  

 

Key words: Generalized linear mixed-effects model (GLMM), catch, effort, proportionality, 

aggregation.  
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Introduction 

Catch per unit effort (CPUE) data from commercial fisheries are commonly standardized 

to deal with spatial and temporal patterns or vessel characteristics that could confound its 

interpretation as an index of fish abundance (Goñi et al. 1999, Punt et al. 2000, Ye et al. 2001). 

However, standardization alone will not solve all of the problems present in the data. A GLM 

(Maunder and Punt 2004) can treat the covariates, such as year, month, gear type, etc., as fixed-

effects but does not consider unique differences among vessels that are not captured in general 

measures such as size or horsepower. The “skipper effect” is a known example of such a 

difference (Marchal et al. 2006). A GLMM would treat the fixed covariates in the same manner 

as a GLM, it could also treat vessels as random effects (Helser et al. 2004), allowing some 

parameters’ values to vary among vessels when specific covariates cannot be easily identified. A 

general overview of GLMM use can be found in McCulloch and Neuhaus (2001), Breslow and 

Clayton (1993), and Bolker et al. (2009).  

The use of standardized CPUE as an index of abundance implies that if fishing effort 

increases, the catch size will increase in proportion. Thus, we can expect that, if fishermen 

double their effort, they will get twice the catch: a simple linear relationship. However, this may 

not occur for several reasons, including interference competition, exploitation competition, gear 

saturation, facilitation, and numerical responses. There can be competition for good fishing 

spots, which can produce aggregation of vessels and create interference between them. If the 

relationship between catch and effort is disproportional, where catch rate decreases in relation to 

increased effort, it may be a result of interference competition among these vessels. Poos and 

Rijnsdorp (2007) did an experiment on effort allocation of fishing vessels to examine 

interference competition and found that, even when effort was doubled, there was a decrease of 
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14% in the catch rate because of interference competition. A numbers of studies have discussed 

or shown interference competition among vessels (Healey and Morris 1992, Gillis and Peterman 

1998, Rijnsdorp et al. 2000). Catch rate may decrease through exploitation competition because 

of the resultant reduction of the fisheries’ resources (Healey et al. 1990). Rijnsdorp (2000) 

studied exploitation competition in an area heavily fished. The catch rate was reduced by 10% 

within 48 hours. Vessels with weaker engines had a higher decline in catch rate than did vessels 

with powerful ones. This is evidence of interference competition among vessels. Catch rate may 

increase rapidly with an increase in effort because of fishing facilitation, where fishermen share 

information on where to locate fish using various methods, such as radio, radar, and word of 

mouth (Healey et al. 1990). Facilitation may occur by communication in response to catch 

availability or in an attempt to minimize hazardous situations by communication about local 

risks associated with fishing (Salas and Gaertner 2004). Numerical responses may occur in 

response to local fish aggregation, attracting vessels to aggregate in the same area. Millington 

(1984) examined vessel aggregation in response to fish density in the British Columbia salmon 

gillnet fleet from 1979 to 1981. He found that there is a strong relationship between catch value 

per week per boat and the numbers of gillnet boats fishing in the following week. Gear saturation 

occurs when the gear used to fish becomes full, which is one of the reasons for a decline in catch 

rate (Dauk and Schwarz 2001). The presence of multiple species in an area can exacerbate gear 

saturation when the net fills up with species other than the one targeted, which, in turn, decreases 

the catch rate of the target species (Walters 2003). Longlines reach gear saturation quickly 

because of the limit on the number of hooks (Skud 1978). Trap saturation also causes a decrease 

in catch rate (Miller 1979). Fishermen’s behaviour may also affect catch rate, for example, if the 

goal of a fisherman is to fill his net, or in the case of a small vessel that may be fishing to cover 
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its travel costs (Salas and Gaertner 2004). If a fisherman intends to fill a number of nets from one 

area, the time required to fill each net will increase as abundance decreases gradually in the area.  

In this chapter, I will focus on catch standardization using generalized linear mixed-

effects models (GLMM). I will apply these models to fixed-gear (the Gulf of St. Lawrence snow 

crab fleet trap fishery data) and mobile-gear data (from a trawl fishery in southwest Nova 

Scotia).  This will be done in an attempt to answer the fundamental question “is catch 

proportional to nominal effort?” in the context of a detailed analysis (set-by-set) of catches from 

specific commercial fisheries (Maravelias et al. 1996, Helser et al. 2004). 

 

Methods 

Two fisheries provided data for this study, one representing fixed and the other mobile 

fishing gear. Data on mixed species catches from the trawl fishery of southwest Nova Scotia 

(mobile gear) were provided by colleagues at the Bedford institution of Oceanography (Bedford 

Institute of Oceanography, Dartmouth, Nova Scotia). I focused on the otter trawl, the most 

common type of gear used by this fishery. This gear works by being dragged along the seafloor, 

where it captures most of the fish in its way (Engel and Kvitek 1998). The trawl data analyzed 

were limited to NAFO, Division 4X for the years of 2008 to 2013 in the Northwest Atlantic 

Fisheries, the southwestern Scotian Shelf, and the Bay of Fundy (Figure 4.1). Species landed in 

these areas included haddock (Melanogrammus aeglefinus), cod (Gadus morhua), halibut 

(Reinhardtius hippoglossoides), redfish (Sebastes mentella), pollock (Pollachius virens L.), red 

hake (Urophycis chuss), silver hake (Merluccius bilinearis), white hake (Urophycis tenuis), and 

winter flounder (Pleuronectes americanus). 
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In contrast, the data provided by my colleagues at the Gulf Fisheries Centre (Moncton, 

New Brunswick) from the snow crab trap fishery of the Gulf of St. Lawrence pertains to the 

fishing of a single species. The snow crab (Chionoecetes opilio) fishery is one of the dominant 

and most valuable fisheries in Atlantic Canada (Conan and Comeau 1986, Lovrich and Sainte-

Marie 1997, Hébert et al. 2001). The fishery operates in the Gulf of St. Lawrence, around Cape 

Breton Island, on the Scotian Shelf, on the Labrador Shelf, and in the bays of Newfoundland 

(Miller 1976). The fishing season is between April and July. Only males with a carapace 

(cephalothorax) of a minimum size of 95 mm wide are allowed to be harvest in the fishery 

(Hébert et al. 2001). Watson (1970) examined the maturity of male snow crabs from the Gulf of 

St. Lawrence and found that, out of a sample size of 194, 50% were mature already with a size of 

57 mm and all males with a size above 72 mm were mature. It is prohibited for fisheries to 

harvest female and soft-shelled crabs (Miller, 1976). This prohibition is meant to protect the 

species from exploitation and has been in enforcement since 1973 (Conan and Comeau 1986, 

Elner and Beninger 1992). Traps are the only type of fishing gear allowed in this fishery. Any 

boat entering the fishery is obligated to have a license for crab fishing and to support the fishery 

with data collection (Miller 1976). 

The response variables examined in the trawl data analysis included the total value of fish 

landed by the trawl and the weight of haddock (29.27% of total landed weight), cod (6.32%), 

redfish (33.12%), and pollock (20.84%), which together account for 89.6% of the landed weight 

and 81.97% of the landed value. Values were calculated using price data publically available 

from the Prince Edward Island Department of Agriculture and Fisheries 

(http://www.gov.pe.ca/fard/index.php3?number=1024862). The analysis began by creating 

monthly values from the weekly values for each species. At first, the weekly values (price) of  
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Figure 4.1: The map illustrates the fishing area of the trawl fishery in Southwest Nova Scotia, 

NAFO, division 4X. The ports of Digby, Yarmouth, and Shelburne are identified on the west 

coast of Nova Scotia. It illustrates the fishing area for snow crab (Chionoecetes opilio). The 

fishery is in the Gulf of St. Lawrence, in Zone 12. 
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dressed fishes (fish whose fin, tail and head have been removed) were converted to the values of 

rounded fishes (whole fish) by multiplying by the conversion factor. The conversion factor used 

was defined by species and area (FAO 1980). For each species, the prices used were from 4X 

ports only (Yarmouth, Digby and Shelburne (Figure 4.1)). If there was more than one relevant 

port for a species, the average price was calculated. Prices were then aggregated to calculate a 

monthly price by averaging weekly values. Missing monthly values were imputed using data 

from the previous month. These same steps were taken for all six years and the results were 

combined to calculate monthly prices for the whole period. The monthly values created for each 

species were then matched to the data by species name, year, and month, in order to create values 

for each row in the data. Species that did not have values (in the weekly fish price reports) were 

removed from the analysis. The percentage of removed species was less than 1% (0.009%) of the 

total weight.  

The next step was to aggregate the data, set-by-set, by month, and by year. A set is 

defined as a trawl in the 4X data and a trap in the snow crab data. The weight for each species 

was aggregated based on the set ID to create set-by-set data. Monthly data was aggregated to 

contain the monthly effort and catch of each vessel. The greatest level of aggregation was by 

year for each vessel. I removed sets greater than 6 hours, which are less than 0.02% of total 

recorded hours and choose to work with active vessels that fished more than 100 sets per year. 

The most extreme 5% of the catch weight or values were removed to reduce the impact of 

inaccuracies and atypical records from the overall trends studied in subsequent analysis. 

After data selection and aggregation, I conducted data exploration. I followed Zuur’s 

2010 protocol (Zuur et al. 2010) by examining the response variables (catch and value of each 

species), and the predictor variables: length of vessel, tonnage, hours, year, month and week. I 
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explored outliers, normality, excess zeros, and autocorrelation in the responses. I examined 

outliers, co-linearity, and possible interactions in the predictor variables. Finally, graphically I 

examined potential patterns in the relationships between responses and predictors. The same 

steps were taken before the analysis of data aggregated by year and by month. Preliminary 

analysis with a simple generalized linear model (GLM) produced a quantile-quantile plot that 

was not linear; it was skewed on high and small values. Potential individual variation in vessel 

performance led to the use of generalized linear mixed models (GLMM). The initial GLMM 

displayed severe autocorrelation in its residuals, so I attempted to reduce this by analyzing a 

subset of the full data (Dormann et al. 2007, Beguería and Pueyo 2009). The data were ordered 

and a random selection of one set per vessel per day was used to reduce the autocorrelation.  

The examined data from the Gulf of St. Lawrence Snow Crab fishery were restricted to 

zone 12 (Figure 4.1) (Hébert et al. 2001) from 2006 to 2009. The covariates available included 

landing date, soak time (how long the trap was in the water), the location of the traps (longitude 

and latitude), effort (the number of traps on a line), and day of the year fished. The analysis 

focused on zone 12 because it covers the majority of the Gulf of St. Lawrence and the fishery 

based in New Brunswick and Prince Edward Island. The response variable examined in the snow 

crab data analysis was the weight of the snow crab. Zero-catches were dropped, which was five 

records out of the 14569 (0.0003%). The records greater than one week of soak time were then 

removed. These were 338 records out of 14564 records (0.02% of the total soak time). To keep 

the numbers of traps at 150 or less, 0.004% of the total traps, 55 records out of 14226, were 

removed. I then created a subset of the most active fishermen, whose minimum number of 

landing records for each year was 10 because their performance would more accurately reflect 

the interannual changes in abundance rather than less active fishers who were not evenly 
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represented throughout the data. I then ordered the data by vessel, year, month, and day. In this, I 

followed Zuur’s general 2010 protocol for data exploration (Zuur et al. 2010). I aggregated the 

data set-by-set, by month, and by year and randomly selected one record per fisherman per day 

similar to the 4X trawl data). The final subset contained 46.18% of the total landed weight. 

I used a GLMM with a gamma distributed response for my analyses because the 

distribution of the catch data was strictly positive, skewed, and distinctly non-normal. A GLMM 

contains the same three components as a GLM: (1) a randomly distributed response; (2) the 

linear predictor; and (3) the link function. The observed value of the response (C in equation 

(2.1)) has an independent distribution, which is a member of the exponential family of 

distributions. This family includes the normal, binomial, and Poisson, or in my case the gamma 

distribution (McCullagh and Nelder 1989, Bishop et al. 2004). Gamma distributions are 

commonly used to represent natural variables that must be greater than zero and display skew 

similar to that observed in log-normal distributions. I modeled catch weight (Cij) using the 

gamma distribution; 𝑖 is the catch observation and 𝑗 is the vessel I.D. The variance of catch 

weight is (𝜙 ∙ 𝜇!"), where 𝜇!"  is the mean of the catch weight and φ (also parameterized as ν-1) is 

the dispersion parameter of the gamma distribution (Zuur et al 2009). The second component is 

the linear predictor, as shown in equation (4.1):  

𝜂!" = 𝑙𝑜𝑔!𝛽! + 𝛽!𝑙𝑜𝑔!𝑓! + 𝑎!                                                          (4.1) 

𝑎!~𝑁(0,𝜎!!) 

where 𝜂 is the linear predictor, 𝛽! is the intercept, 𝛽! is the effort coefficient, and 𝑎!  is the 

random effect for vessel j. The third component is the link function. In general, the link function 

works by defining the relationship between the linear predictor 𝜂 and the mean of the distribution 

𝜇!" (Venables and Dichmont 2004). I used the log link function to represent the nonlinear 
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relationships in the model. Thus, logging 𝜇!" will equal the value of the linear predictor shown in 

equation (4.2), which can also be expressed as (4.3). 

𝑙𝑜𝑔!  𝜇!" = 𝜂                                                      (4.2) 

 

𝜇!" = 𝑒!                                                           (4.3) 

In my study, I raised the effort to a power to allow for nonlinearity. I used the log link in 

equation (4.2) to transform the predictor variables, which will express 𝜇!  as: 

𝜇!" = 𝑒!"#!!!!!! !"#! !!!!!                                                         (4.4) 

Using the algebraic properties of logarithms I can convert equation (4.4) to a multiplicative 

expression and simplify, which will give us equation (4.5). 

 𝜇!"= 𝛽! ∙ 𝑓!!  ∙ 𝑒!!                                                           (4.5) 

This equation allows us to represent nonlinear relationships by raising the explanatory variables 

to powers. 

The GLMM model consists of two parts: a fixed part, and a random part. The first part of 

equation (4.1), which contains𝛽!, the intercept, and 𝛽, the coefficient of the explanatory variable, 

comprises the fixed part, while 𝑎!  is the random part. 𝑎! changes the intercept by randomly 

changing the vessels fished. I used the R statistical programming language (R Core Team 2014) 

to fit the data to a generalized linear mixed-effects model (GLMM) by using the lme4 package. 

Model selection was performed using likelihood ratio tests, which compares two nested models 

(Vuong 1989).  
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Results  

The exploratory analysis in both fisheries showed that catch value and weight were 

skewed to the right, with some extreme values. Variance appeared similar for both responses at 

all levels of data aggregation examined. The histograms of 4X species’ were not normally 

distributed. The tests for autocorrelation were significant for both the response variables. 

Covariates were also examined. Checking for the existence of a correlation between covariates 

showed that the length of vessel overall and the gross registered tonnage (between 10 to 665 

tons) were highly correlated. I choose to work with length of vessel to represent vessel size. 

Month and week were obviously correlated so I choose to work with month as a measure of time 

aggregated within years as it is often used in fisheries reports. Graphically examining patterns 

among covariates showed no obvious interactions. 

The GLMM of the 4X trawl fishery in southwest Nova Scotia (haddock, mobile gear) is 

presented in Table 4.1. There are 25 vessels, which are represented by the random factor, and 

2109 observations of haddock. The random effects (vessels' I.D.) are assumed to be normally 

distributed, with a mean of 0 and a variance of 1.837. This value indicates that there is little 

variability among the intercepts of the vessels in comparison to the overall residual variance 

(6.10, Table 4.1). The coefficient of the log of hours fished, representing the exponent of effort in 

equation 4.5, was significantly less than 1 (H0: slope = 1, t =-14.42, df = 4600, p < 0.0001). This 

indicates disproportionality in the relationship between catch and effort. The coefficients for year 

and month mere mostly significant showing how catch changes among years and within a year 

(Table 4.1). The outcomes of the Gulf of St. Lawrence model (snow crab, fixed gear) shows that 

coefficient of log traps was significant and less than 1, showing disproportionality in the 

relationship between catch and effort similar to the trawl fishery. Log soak, year, and week of the 
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year were all significant showing that catch changes depending on how long the trap was in the 

water, among years, and within a year. The 69 snow crab vessels are represented by the random 

factor. There are 4029 observations of snow crab catch. The random effects (vessels' I.D.) are 

assumed to be normally distributed, with a mean of 0 and a variance of 0.0181. This variance 

suggests that the lines representing the linear predictor are close together (small differences in 

the intercept) suggesting that there is little variation among vessels in their ability to catch snow 

crab (Table 4.2). Using a GLMM with a random selection of one set per vessel per day both the 

trawl and trap fishery helped to reduce the autocorrelation in the data (Figure 4.2). 

The relationship between catch and effort varied among species and the level of data 

aggregation. The set-by-set analysis for the 4X data using GLMM (Table 4.3) showed that catch 

decelerated as effort increased in the case of haddock, cod, and 4X species’ value. The slope is 

barely different than 0. On the other hand, catch decreased when effort increased in the case of 

redfish and pollock, as shown by a negative slope. The set-by-set analysis of the snow crab data 

shows catch increasing closer to one, but still significantly lower. The data aggregation has a 

significant impact on the slope as compared to analyzing the data set-by-set. As Table 4.3 

illustrates, the aggregation by month of all the data sets for each vessel shows that the 

relationship between catch and effort changes. The slope under these conditions moved closer to 

1 in the case of haddock, pollock, cod, and 4X species’ value, but was greater than 1 for redfish. 

The snow crab data analysis continues to show catch increasing almost as much as effort; the 

slope is almost indistinguishable from 1 (upper confidence interval = 0.9932). The aggregation 

by year of all the data sets for each vessel results in a slope is greater than the set-by-set, but not 

much different from the analysis of monthly data. The slope from the snow crab data analysis 

shows the greatest deviation from the monthly analysis; however this is suspect because it is 
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based on only the four years of observations. Most importantly for snow crab, the confidence 

intervals for the coefficient of nominal effort effect did not include one for all set-by-set analyses 

and for the monthly aggregations of data as well. This shows that the relationship between catch 

and effort can easily be disproportionate, and especially when analyses are based on 

disaggregated data.  
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Table 4.1: The outcomes of the 4X trawl fishery’s haddock model using a generalized linear 

mixed model fit using data from individual trawls (sets). January 2008 is the reference month 

and year of the model contrasts. The coefficients are on the scale of the linear predictor. The 

response variable is catch weight in kilograms. n = 4620 for 25 vessels. 

 

4X trawl fishery in southwest Nova Scotia, Haddock (mobile gear) 

Random effects 

Groups Name Variance   
Vessels’ I.D. Intercept 1.837 
Residual  6.100 
Fixed effects  

Covariates Estimate Standard error t-value p-value 
 
Intercept  6.2035 0.1900  32.64 

 
< 0.0001  

Log hours   0.1130 0.0615  1.84    0.0663 
Year 2009  0.3370 0.1002  3.36    0.0008 
Year 2010  0.0437 0.0981  0.45    0.6558 
Year 2011 -0.2803 0.0983 -2.85    0.0044 
Year 2012 -0.5284 0.0911 -5.8 < 0.0001 
Year 2013 -0.4795 0.0966 -4.96 < 0.0001 
February  0.0817 0.1519  0.54    0.5906 
March -0.6397 0.1418 -4.51 < 0.0001 
April -1.9294 0.1449 -13.31 < 0.0001 
May -2.1067 0.1443 -14.6 < 0.0001 
June -1.4433 0.1507 -9.57 < 0.0001 
July -1.1022 0.1530 -7.2 < 0.0001 
August -1.2137 0.1572 -7.72 < 0.0001 
September -0.6841 0.1627 -4.2 < 0.0001 
October -0.6031 0.1610 -3.75    0.0002 
November -0.4481 0.1528 -2.93    0.0034 
December -0.4858 0.1651 -2.94    0.0033 
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Table 4.2: The outcomes of the Gulf of St. Lawrence snow crab data using a generalized linear 

mixed model fit using maximum-likelihood and gamma with log link function and set-by-set 

data. The coefficient estimates are provided on the scale of the linear predictor. The response 

variable is catch weight in kg. The AIC = 67592.3 and n = 4029. 

 

Gulf of St. Lawrence snow crab (fixed gear) 
 
Random effects 
 
Groups Name Variance  
Vessels' I.D. Intercept 0.0181 
Residual  0.2206 
Fixed effects  
 
Covariates Estimate Standard error t-value p-value 

Intercept  5.2805 0.0766  68.91 < 0.0001 
Log traps  0.7721 0.0166  46.51 < 0.0001 
Log soak  0.0381 0.0071  5.37 < 0.0001 
Year -0.0479 0.0072 -6.64 < 0.0001 
Week of year -0.0448 0.0030 -14.82 < 0.0001 
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Figure 4.2: Comparison of the autocorrelation between GLMM models (haddock) fit with (a) all 

data and (b) a subset of single randomly selected sets (one per vessel per day) 

(a) 

 

 

 

 

 

 

 

 

 

(b) 
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Table 4.3: The outcomes of models using set-by-set, and data aggregated by month and by year, 

using a GLMM. The coefficient estimates are provided on the scale of the linear predictor. The 

95% confidence intervals for the estimates are provided in parentheses. The covariates used are 

log10 effort (hours or traps), year, and month as fixed effects, and vessel as a random effect. For 

aggregation by year month and week were not covariates. The response variables are catch 

weights or total landed value.  

 

Species Criteria n Intercept, upper and 
lower CI 

 Loge hours (slope), upper 
and lower CI 

Cod Set 4442 4.9090, (4.63275.1853) 
 

 0.2057,  (0.1183, 0.2931) 

 Monthly 1115 4.7639, (4.3036, 5.2243) 
 

 0.7419, (0.6719, 0.8117) 

 Yearly 149 5.7623, (4.6706, 6.8540) 
 

 0.6779, (0.5093, 0.8465) 

Haddock Set 4620 6.2036, (5.8311, 6.5760) 
 

 0.1130, (-0.0076, 0.2337) 

 Monthly 1127 6.0528, (5.5750, 6.5305) 
 

 0.7255, (0.6613, 0.7898) 

 Yearly 149 6.8148, (5.6319, 7.9975) 
 

 0.6775, (0.5047, 0.8502) 

Pollock Set 4045 5.6562, (5.2245, 6.0879) 
 

-0.0632,  (-0.1813,0.0549) 

 Monthly 1095 4.7866, (4.1667, 5.4064) 
 

 0.8669, (0.7864, 0.9473) 

 Yearly 149 6.5867, (5.4285, 7.7449) 
 

 0.6685, (0.4894, 0.8477) 

Redfish Set 3479 6.5073, (6.0043, 7.0104) 
 

-0.7708, (-0.8819, -0.6597) 

 Monthly 986 3.8048, (3.0769, 4.5326) 
 

 1.2059, (1.1170, 1.2949) 

 Yearly 150 2.9233, (2.3027, 3.5439) 
 

 1.2532, (1.2356, 1.2707) 

Value Set 3434 7.6958, (7.4831, 7.9086)  0.1223, (0.0482, 0.1964) 
 

 Monthly 1151 7.8754, (7.4773, 8.2735) 
 

 0.5222, (0.4694, 0.5749) 

 Yearly 150 6.9341, (6.1071, 7.7612)  0.7011, (0.6027, 0.7993) 
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Table 4.3 (continued)    
     
Species Criteria n Intercept, upper and 

lower CI 
Loge traps, upper and lower 
CI 
 

Snow crab Set 4029 5.2805, (5.1303, 5.4307) 0.7721, (0.7396, 0.8046) 

 Monthly 689 4.3328, (4.0941, 4.5716) 0.9558, (0.9185, 0.9932) 

 Yearly 276 8.1719, (7.6696, 8.6741) 0.4504, (0.3822, 0.5186) 
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Discussion  

The relationship between catch and nominal effort is strongly affected by the level of data 

aggregation prior to analyses. It is well known that spatial data aggregation has its issues 

(Openshaw 1977, Holt et al. 1996). Temporal data aggregation may have similar issues, causing 

the aggregated data to magnify a model’s result. In my case, the temporal data aggregation may 

have caused such a situation, as the slope was less than 1 using the data set-by-set but greatly 

enlarged to values approaching and greater than 1 when using aggregated data. The impact of 

data aggregation was visible in all cases where the slope from data using aggregation by month 

and year was greater than the slope produced from set-by-set data. Data aggregation may also 

cause the loss of important information, which may bias the results or obscure existing patterns 

(Orcutt et al. 1968, Clark and Avery 1976, Chang et al. 2014). Taylor and Iwanek (1980) suggest 

disaggregating data to more accurately represent existing patterns. It is also possible that the data 

included in the aggregation are not enough to estimate the necessary parameters. Increasing the 

number of observations as well as the number of groups aggregated will help produce unbiased 

parameter estimates (Orcutt et al. 1968, Clark and Avery 1976). For example, the use of data 

aggregated by year for the snow crab fishery yields a biased coefficient estimate because the 

number of parameters estimated is five while the number of observations is four, one for each 

year, which is less than the parameters estimated. My aggregated data calculates mean catch per 

vessel on a monthly or yearly basis instead of examining catches from individual sets and thus 

has less variation. The variability of aggregated catches (based on area, time, etc.) can result in 

biased estimates (Holt et al. 1996). Though the error in the models can be reduced through data 

aggregation, this leads to uncertainty about the estimated parameters and any decisions to be 

made from the results (Chang et al. 2014).  
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The statistical phenomena of “errors-in-variables” (Hilborn and Walters 1992) may also 

bias the observed proportionality in our analyses. In this case, the attribution of all variation to 

the response variable (catch) tends to bias the results towards slopes closer to zero (randomness).  

In our case, it would favour slopes less than one even if the true underlying relationship was 

proportional. However, it would not account for slopes great than one, or exclude the effect of 

other mechanisms. 

Fisherman’s behaviour may also impact the slope values in temporally aggregated data. 

The slope can be less than 1 (using data set-by-set) when fishermen fish with the intention of 

filling their nets or traps rather than for a fixed time interval, which will pull the slope down to 

be less than 1. This could be the case when, for example, a fisherman intends to fill 15 trawls 

from one area. Here the first net may be full within one hour, while the second takes perhaps two 

hours and the third takes four hours. The overall relationship between catch and effort will 

decelerate because the catch is decreasing gradually in the area, likely due to a decline in 

abundance or dispersal of fish. This effect may be behind the extreme (negative) coefficient of 

effort observed for redfish, where trawls of long duration and poor success could fail to fill the 

net but dominate the overall relationship. Another reason for the slope to be less than one is gear 

saturation by other species. For example, each trap can hold only a certain number of crabs and 

may fill up with species other than crabs, which then of course decreases the catch size. Gear 

saturation also occurs within species. Here, the traps may also fill with crabs within a short 

period of time. If the traps are left in place fishing becomes unproductive, which also decreases 

the catch rate over time (Dauk and Schwarz 2001). A relationship between catch and effort could 

emerge in this case, but it would be a weak relationship. 

The slope may be less than 1 in the case of competition even when fish are abundant. 
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Vessels may interfere with each other by direct interactions or disturbing the fish (interference 

competition, Goss-Custard 1980) or by locally depleting the fish (exploitation competition) 

(Forman 1967, Gillis and Peterman 1998). Previous studies have found a role for both forms of 

competition in the success of fishing activities (Rijnsdorp et al. 2000, Poos and Rijnsdorp 2007). 

In the case of interference, increasing effort will be less effective at fish capture and may result 

in a nonlinear relationship between catch and effort, producing lower catches than would be 

expected from proportionality. Exploitation itself may lead to disproportionality between catch 

and effort due to continued fishing while local availability declines. For example, if the level of 

fishing effort takes 10% of the local population weekly, then after the first week they will leave 

90% of the original abundance. The 10% harvest of the following week will be lower for the 

same amount of effort. The longer that fishing occurs the more the catch will be depressed. This 

is the standard conceptual model of fishing mortality (Ricker 1975), which may not be taken into 

account when reporting fisheries statistics. This can be even more extreme in cases where 

increased fishing effort can impact communities and collapse local fishing success (Laë 1997). 

Facilitation (Lapointe 1989) would tend to bias proportionality opposite to the effects of 

competition. Technology, such as GPS, radiotelephone, and radar, increase the capacity for 

sharing information within fleets and can support facilitation that increases catch rates (Deng et 

al. 2005, Stevenson et al. 2011). Another form of facilitation is word-of-mouth transfer of 

information, where fishermen share tips and techniques amongst each other to locate fish 

(Healey et al. 1990). 

In this chapter, we analyzed fixed and mobile gear data using a generalized mixed-effects 

model to examine the proportionality between catch and nominal effort. In the aggregated data 

snow cab was closest to a proportional relationship, though still less than one.  The disaggregated 
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trawl fishery data displayed slopes closer to, or in several cases indistinguishable from, zero. 

This may be due to the manner in which effort was measured. In the snow crab fishery the 

nominal effort measure is number of traps, which are set for similar time periods. Effort 

increases are associated with more traps. In the trawl fishery, nominal effort is measured by 

hours fished. “More effort” could be due to more vessels or longer trawls. Thus, fishing to fill a 

trawl through varying fish densities may reduce or eliminate any relationship between nominal 

effort and catch. My analysis compared data aggregated by individual set as well as data 

aggregated by month and year. I found that the relationship between catch and effort was often 

disproportionate which may be because such factors as interference, exploitation competition, 

gear saturation, numerical responses, and other fishermen’s behaviours (e.g. whether or not 

fishermen intend to fill their nets). Data aggregated by month and year could produce a slope 

closer to or even greater than 1, which may be because of the ability of these time frames to 

capture the variation in vessels entering or leaving the active fishery (numerical responses) or 

responding to information available in the fleet (facilitation). My chief recommendation is to 

collect set-by-set (disaggregate) data or records whenever possible to avoid misleading trends 

and to retain the ability to examine patterns across temporal scales. This would increase the 

reliability in estimating the parameters and help avoid biased results (Taylor and Iwanek 1980). 

It is also recommended that the number of observations aggregated be increased, in order to 

produce an unbiased parameter estimate (Clark and Avery 1976, Orcutt et al. 1968). 

Distinguishing amongst the many potential behavioural and statistical influences discussed here 

is not possible without further directed studies. However, I can say that the a priori assumption 

of proportionality, implicit in the use of CPUE, is unwarranted. Instead, fitting models with catch 
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as the response and effort as a predictor will allow the test of this hypothesis and lead to less 

potentially biased catch standardizations for stock assessments in the future.   
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Conclusion 

This research used various methods to examine the proportionality between catch and 

nominal effort. I used meta-analysis and a generalized linear mixed-effects model on two 

different fisheries, one using fixed and the other mobile gear. I used fixed-effects with meta-

analysis and I incorporated the random effects using vessels’ I.D. in the GLMM. This research 

has shown that, catch is not universally proportional to nominal effort in fisheries data. It is not 

the case that increasing fishing effort, such as increasing hours spent on fishing, or increasing the 

number of traps will necessarily increase catch by the same factor. Effort does not correlate 

directly with catch in this case; there is no single possible explanation for the variability of catch. 

There are a number of factors that act collectively. In order to find an accurate explanation, we 

need to consider all of these when collecting data.  

Fishermen’s behaviour should always be considered when interpreting catch and effort 

statistics. Fishermen are different from each other in their goals in fishing, their knowledge, and 

their ideas. Catch may reach its peak in one fishery, while competing crews may not catch very 

much, even though both of them are in the same area, and this may be explainable through the 

fact that each of them has different goals. Fishermen’s behaviour may decrease the catch when 

the goal is to fill the net even when other tactics may yield higher catch rates. Another factor that 

may decrease catch is that, when there is a high catch and a high number of vessels aggregated in 

the same area (numerical responses), the fishermen may face interference competition. In 

addition, exploitation competition has a huge effect on a number of fish species, such as sharks, 

large pelagic fish, etc. Some areas have been depleted because of over-fishing, which, in turn, 

affects catch and may create disproportionality in the relationship between catch and effort. 

When fishermen intended to catch a given species, disproportionality in the form of a decelerated 
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catch rate could appear for a number of reasons. One of them is gear saturation by species other 

than the intended target filling nets and traps and preventing the capture of the target. If gear fills 

up with debris or if high numbers of fish fill up a net quickly, further potential catches may be 

lost and catch rate will decrease as a result. Another factor one may encounter is species 

competition, where species compete for the bait. When fish populations increase in an area, high 

numbers of vessels will aggregate creating numerical responses. If these vessels cooperate with 

each other, facilitation will result, and catch may increase for all vessels. 

Statistical influences on the relationship between catch and effort must also be 

considered. As in so many models, “error-in-variables” bias may be present when there is 

uncertainty in both catch and effort measures. In addition, aggregated data may provide false 

information about the relationship between catch and effort. It may show that catch has 

increased, but, in reality, catch may have decelerated with effort. This was shown to be the case 

in the set-by-set analysis, which more accurately portrayed the relationship on the scale of 

fishing activities than the analyses of data aggregated by month and year. 

Thus, although a many reasons could explain the disproportionality between catch and 

effort, both behavioural and statistical, the use of CPUE in estimating abundance, as C/f 

(C=catch, f=nominal effort) assumes that catch will be proportional to effort. This analysis has 

shown that this is not the case, which leads to the conclusion that CPUE may be misleading and 

should not be automatically assumed to accurately reflect fish abundance trends in fisheries data.  
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Appendix A: R Code for Meta-analysis. 

The following samples of R code represent typical instructions to perform the analyses of 
Chapter 2. To conserve space, it is not an exhaustive listing of all analyses used in the chapter. 
 
 
# load library(ies) and read data 
require(metafor) 
metaData=read.table("~/Desktop/final analysis /Meta-sheet with p values L to S.csv",  
                      sep=",",  
                      header=T, 
                      stringsAsFactors=F) 
table(metaData$FisheryType) 
keep=c("artisanal","commercial", "research") 
metaData=metaData[metaData$FisheryType%in%keep,] 
table(metaData$FisheryType) 
# Define meta-analysis variables 
yi=metaData$RMA_slope   # effect size as RMA slope 
sei=metaData$OLS_SE     # sample variability as standard errors of the slopes 
#----------------------------------------------------------------------------- 
# Meta-analysis and summaries for all data... 
# For interpretation see: Viechtbauer, W. (2010). Conducting meta-analyses in 
#                         R with the metafor package. Journal of Statistical 
#                         Software, 36(3), 1-48.  
metaRMA=rma(yi,sei) 
summary(metaRMA) 
confint(metaRMA) 
par(mfrow=c(1,2)) 
forest(metaRMA, refline=1, order="obs", slab=metaData$StudyID) 
funnel(metaRMA) 
# test for funnel plot asymmetry  
regtest(metaRMA, model="rma", predictor="sei") 
#----------------------------------------------------------------------------- 
# Define moderator: FisheryType 
FisheryType=factor(metaData$FisheryType, 
            levels=c("artisanal","commercial", "research")) 
nLevels= length(levels(FisheryType)) 
contrasts(FisheryType)=contr.treatment(n=nLevels,base=1) 
table(FisheryType) 
# Mixed-model meta-analysis (RMA slope as RE, FisheryType as moderator variable) 
metaRMAFisheryType=rma(yi, sei, mods = ~ FisheryType) 
summary(metaRMAFisheryType) 
confint(metaRMAFisheryType) 
print(levels(FisheryType))  
par(mfrow=c(1,2)) 
forest(metaRMAFisheryType, refline=1, order="obs", slab=FisheryType) 
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funnel(metaRMAFisheryType,pch=as.character(FisheryType),cex=0.5) 
#---------------------------------------------------------------------------- 
# Mixed-model meta-analysis (RMA slope as RE, FisheryType as moderator variable) 
metaRMAFisheryType=rma(yi, sei, mods = ~ FisheryType) 
summary(metaRMAFisheryType) 
confint(metaRMAFisheryType) 
print(levels(FisheryType))  
par(mfrow=c(1,2)) 
forest(metaRMAFisheryType, refline=1, order="obs", slab=FisheryType) 
funnel(metaRMAFisheryType,pch=as.character(FisheryType),cex=0.5) 
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Appendix B: R code for 4X analysis using set-by-set data. 
 

The following samples of R code represent typical instructions to perform the analyses of Chapter 
4. To conserve space, it is not an exhaustive listing of all analyses used in the chapter. 

 
rawDataVal = read.table("rawDataVal1.csv",        
                        header = TRUE,               
                        sep = ",", 
                        stringsAsFactors = FALSE) 
head(rawDataVal)     
names(rawDataVal) 
#How many species that have Na prices in the data frame 
sum(is.na(rawDataVal$price)) 
dim(rawDataVal)[1] 
# Let's explore a bit... 
X=rawDataVal[is.na(rawDataVal$price),] 
head(X) 
unique(X$SPECIES) 
NA_SPECIES=unique(X$SPECIES) 
NA_SPECIES_WT=sum(rawDataVal$RND_WEIGHT_KGS[ 
  rawDataVal$SPECIES%in%NA_SPECIES]) 
TOT_WT=sum(rawDataVal$RND_WEIGHT_KGS) 
NA_SPECIES_PCT=NA_SPECIES_WT/TOT_WT 
NA_SPECIES_PCT 
# Remove species that does not have prices in the beginning 
x=rawDataVal[rawDataVal$SPECIES%in%NA_SPECIES,] 
x 
str(x) 
rawDataVal1 <- rawDataVal[!rawDataVal$SPECIES%in%NA_SPECIES,] 
dim(rawDataVal1) 
str(rawDataVal1) 
allData=rawDataVal1 
head(allData) 
names(allData) 
str(allData) 
dim(allData) 
# How many sets from each year? 
table(allData$YEAR_FISHED) 
# Change integers into numeric 
allData$TRIP_ID=as.numeric(allData$TRIP_ID) 
allData$SETID=as.numeric(allData$SETID) 
allData$YEAR_FISHED=as.numeric(allData$YEAR_FISHED) 
allData$MONTH_FISHED=as.numeric(allData$MONTH_FISHED) 
allData$DAY_FISHED=as.numeric(allData$DAY_FISHED) 
allData$TONNAGE_CLASS=as.numeric(allData$TONNAGE_CLASS) 
allData$GROSS_TONNAGE=as.numeric(allData$GROSS_TONNAGE) 
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allData$HOURS_FISHED=as.numeric(allData$HOURS_FISHED) 
str(allData) 
# Change what needs to be a factor into a factor 
allData$VCLASS=factor(allData$VCLASS) 
allData$TONNAGE_CLASS=factor(allData$TONNAGE_CLASS) 
allData$PSEUDO_VESSEL_ID=factor(paste("V",allData$PSEUDO_VESSEL_ID, 
                                      sep="")) 
allData$GEAR_CODE_1=factor(allData$GEARCODE1) 
allData$GEAR_TYPE_ID=factor(allData$GEAR_TYPE_ID) 
allData$GEAR_TYPE_DESC=factor(allData$GEAR_TYPE_DESC) 
allData$NAFO_DIV=factor(allData$NAFO_DIV) 
allData$UNIT_AREA=factor(allData$UNIT_AREA) 
allData$GEAR_CODE_2=factor(allData$GEARCODE2) 
allData$GEAR_DESC=factor(allData$GEAR_DESC) 
allData$EFFORT_LEVEL=factor(allData$EFFORT_LEVEL) 
str(allData) 
# Next let's deal with the issue of date... 
# Change LANDED_DATE and DATE_FISHED into posix time 
# Strip quotes from the string 
wstr = substr(allData$LANDED_DATE,1,11) 
# Convert the string to a date 
allData$LANDED_DATE1=as.Date(wstr, format="%Y-%m-%d") 
# Strip quotes from the string 
wstr2 = substr(allData$DATE_FISHED,1,11) 
# convert the string to a date 
allData$DATE_FISHED1=as.Date(wstr2, format="%Y-%m-%d") 
# create day of year 
allData$FISHED.doy=as.numeric(format(allData$DATE_FISHED1, 
                                     format = "%j",  
                                     tz="GMT")) 
# creat week 
allData$FISHED.week=as.numeric(format(allData$DATE_FISHED1, 
                                      format = "%W",  
                                      tz="GMT")) 
# creat weekday 
allData$FISHED.weekday=as.numeric(format(allData$DATE_FISHED1, 
                                         format = "%w",  
                                         tz="GMT")) 
str(allData) 
 
# Compare YEAR_FISHED, ...  with date fields 
allData[1400:1430,c(5:7,17)] # spotcheck look OK 
# General data set characteristics 
# Size: 
dim(allData) 
# Number records by year 
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table(allData$YEAR_FISHED) 
# Number of trips and trips by year 
x=allData[!duplicated(allData[,"TRIP_ID"]),] 
dim(x) 
table(x$YEAR_FISHED) 
rm(x) 
# Number of sets and sets per year 
x=allData[!duplicated(allData[,"SETID"]),] 
dim(x) 
table(x$YEAR_FISHED) 
rm(x) 
head(allData)                              
# Create data frame with important variables  
setData=as.data.frame(list(TRIP_ID = allData$TRIP_ID, 
                            SETID = allData$SETID, 
                            value = allData$value, 
                            RND_WEIGHT_KGS = allData$RND_WEIGHT_KGS, 
                            UNIT_AREA = allData$UNIT_AREA,  
                            PSEUDO_VESSEL_ID = allData$PSEUDO_VESSEL_ID, 
                            HOURS_FISHED = allData$HOURS_FISHED, 
                            LOA = allData$LOA, 
                            SPECIES = allData$SPECIES, 
                            SPECIES_ABBREV= allData$SPECIES_ABBREV, 
                            GEAR_DESC = allData$GEAR_DESC, 
                            GROSS_TONNAGE = allData$GROSS_TONNAGE, 
                            YEAR_FISHED = allData$YEAR_FISHED, 
                            MONTH_FISHED = allData$MONTH_FISHED, 
                            DAY_FISHED= allData$DAY_FISHED, 
                            FISHED.doy = allData$FISHED.doy, 
                            EFFORT_LEVEL=allData$EFFORT_LEVEL, 
                            NAFO_DIV = allData$NAFO_DIV, 
                            DATE_FISHED= allData$DATE_FISHED, 
                            LAT = allData$LAT, 
                            LON = allData$LON)) 
 
str(setData) 
head(setData) 
dim(setData) 
#Remove non-positive values 
setData = setData[setData$value>0,] 
setData = setData[setData$RND_WEIGHT_KGS>0,] 
setData = setData[setData$HOURS_FISHED>0,] 
setData = setData[setData$YEAR_FISHED>0,] 
head(setData) 
# Remove sets greater than 6 hours 
setData = setData[setData$HOURS_FISHED<7,] 
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table(setData$HOURS_FISHED) 
head(setData) 
# Distribution of gear types 
table(setData$GEAR_DESC) 
levels(setData$GEAR_DESC) 
# Keep "OTTER TRAWL, STERN" and remove 4 of SCOTTISH SEINE 
setData = setData[setData$GEAR_DESC=="OTTER TRAWL, STERN",] 
table(setData$GEAR_DESC) 
head(setData) 
# Occurrences of sizes and vessels 
table(setData$GROSS_TONNAGE) 
table(setData$LOA) 
table(setData$PSEUDO_VESSEL_ID) 
# Remove missing values 
dim(setData)[1] 
setData <- na.omit(setData) 
dim(setData)[1] 
# Choose vessels fished more than 100 sets per year 
# Convert factor to character 
setData$PSEUDO_VESSEL_ID <- as.character(setData$PSEUDO_VESSEL_ID) 
str(setData) 
table(setData$YEAR_FISHED) 
table(setData$PSEUDO_VESSEL_ID,setData$YEAR_FISHED) 
x=table(setData$PSEUDO_VESSEL_ID,setData$YEAR_FISHED) 
x=x>99 
x 
x=x*1 
x 
is.matrix(x) 
xx=rowSums(x) 
xx 
xxx=xx[xx==6] 
xxx 
names(xxx) 
keepVessels=names(xxx) 
keepVessels 
setData=setData[setData$PSEUDO_VESSEL_ID%in%keepVessels,] 
head(setData) 
dim(setData) 
table(setData$PSEUDO_VESSEL_ID,setData$YEAR_FISHED) 
str(setData) 
# We will convert year, month, and loa to factors 
setData$fYEAR_FISHED <- factor(setData$YEAR_FISHED) 
setData$fMONTH_FISHED <- factor(setData$MONTH_FISHED) 
setData$fLOA <- cut(setData$LOA, 3) 
str(setData) 
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# Order data by vessel, year, month, day  
o=order(setData$PSEUDO_VESSEL_ID, 
        setData$YEAR_FISHED, 
        setData$MONTH_FISHED , 
        setData$DAY_FISHED, 
        setData$SETID) 
x=setData[o,] 
head(x) 
dim(setData) 
summary(setData$RND_WEIGHT_KGS) 
setData=setData[setData$RND_WEIGHT_KGS>0.45,] 
summary(setData$RND_WEIGHT_KGS) 
qqnorm(log(setData$RND_WEIGHT_KGS)); qqline(log(setData$RND_WEIGHT_KGS)) 
dim(setData) 
# QUESTION: What is the relationship between weight and set characteristics for each species 
# VARIABLES: Response: weight 
#            Predictors:  log(HOURS_FISHED), LOA, 
#                         YEAR_FISHED, MONTH_FISHED 
#                          (VID as random effect?) 
# Compare GLM, GLMM, and GAMM approaches for each species 
#Create data frame for each species 
#--------------------------------------------------------------------------------------------------HADDOCK  
df1 = setData[setData$SPECIES == "HADDOCK", ] 
head(df1) 
dim(df1) 
dim(setData) 
df1 <- subset(df1, !duplicated(df1[,1:2]))  
sum(duplicated(df1[,1:2])) #OK!  
table(df1$YEAR_FISHED, df1$SPECIES) 
#Remove Nas 
df1[!is.na(df1$HOURS_FISHED),] 
# How many sets from each year? 
table(df1$YEAR_FISHED) 
dim(df1) 
# Number records by year 
table(df1$YEAR_FISHED) 
# Number of trips and trips by year 
x=df1[!duplicated(df1[,"TRIP_ID"]),] 
dim(x) 
table(x$YEAR_FISHED) 
rm(x) 
# Number of sets and sets per year 
x=df1[!duplicated(df1[,"SETID"]),] 
dim(x) 
table(x$YEAR_FISHED) 
rm(x) 
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table(df1$HOURS_FISHED) 
# Distribution of gear types 
table(df1$GEAR_DESC) 
levels(df1$GEAR_DESC) 
# Occurrences of sizes and vessels 
table(df1$GROSS_TONNAGE) 
table(df1$LOA) 
table(df1$PSEUDO_VESSEL_ID) 
# How many vessels fishing for haddock  
table(df1$PSEUDO_VESSEL_ID,df1$YEAR_FISHED) 
# >>> Data Exploration (use Zuur as a guide) <<< 
# Zuur's general 2010 protocol can be summarized as examining: 
#  A Outliers in Y & X 
#  B Homogeniety in Y 
#  C Normality in Y 
#  D Zero trouble in Y 
#  E Collinearity X 
#  F Relationships Y vs X 
#  G Interactions in X 
#  H Independence in Y (spatial & temporal) 
# QUESTION: What is the relationship between catch and effort in the trawl of specific species 
# VARIABLES: Response: Catch 
#            Predictors:  HOURS_FISHED, LOA, YEAR_FISHED, MONTH_FISHED, 
FISHED.week 

o=order(df1$PSEUDO_VESSEL_ID,df1$YEAR_FISHED,df1$MONTH_FISHED  
        ,df1$DAY_FISHED,df1$SETID) 
x=df1[o,] 
head(x) 
#------------------------------------------------------------------------------------------------------ 
# QUESTION: What is the relationship between catch and effort for each species 
#          #Find if the relationship is proportional or disproportional between catch and effort for 
each species 

# 
# VARIABLES: Response: Catch 
#            Predictors:  log(HOURS_FISHED), LOA, 
#                         YEAR_FISHED, MONTH_FISHED 
#                          (VID as random effect?) 
# 
# Compare GLM, GLMM, and GAMM approaches 
#------------------------------------------------------------------------------------------------------ 
# GLM full model 
glm.01a= glm(RND_WEIGHT_KGS ~ log(HOURS_FISHED) +  
               fLOA + 
               fYEAR_FISHED+ 
               fMONTH_FISHED, 
             data=df1, 
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             family=Gamma(link="log"))               
summary(glm.01a) 
par(mfrow=c(2,2)) 
plot(glm.01a) 
par(mfrow=c(2,2)) 
Y_hat = predict(glm.01a) 
E = residuals(glm.01a, type="pearson") 
E_lo = lowess(as.numeric(Y_hat), as.numeric(E)) 
plot(Y_hat,E); lines(E_lo, col="red")  
hist(E) 
qqnorm(E); qqline(E) 
acf(E) 
# Compare models after dropping one predictor 
drop1(glm.01a) 
# Create table for word from glm 
str(summary(glm.01a)) 
out=summary(glm.01a) 
table=as.data.frame(out$coefficients[,1:2]) 
table$lowerCI = table[,1] - table[,2]*1.96 
table$upperCI = table[,1] + table[,2]*1.96 
table 
#------------------------------------------------------------------------------------------------------ 
#GLMM 
# Generalized linear mixed model 
library(lme4) 
# Dealing with autocorrelation 
# 0) order by vessel, year, month, day, setID 
o=order(df1$PSEUDO_VESSEL_ID, 
        df1$YEAR_FISHED, 
        df1$MONTH_FISHED , 
        df1$SETID) 
df1=df1[o,] 
head(df1) 
#Typically how many sets per day? 
x=aggregate(df1$RND_WEIGHT_KGS,  
            by=list(df1$PSEUDO_VESSEL_ID,df1$FISHED.doy), 
            FUN=length) 
summary(x) 
# Randomly select one set per vessel per day 
# 1) define function to randomly pick a single  
#    Value from a numeric vector 
pickem=function(x) { 
  sample(x,1) 
} 
# 2) Make the numeric vector of sets to keep 
keepSets=as.numeric(aggregate(df1$SETID, 
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                              by=list(df1$PSEUDO_VESSEL_ID, 
                                      df1$FISHED.doy), 
                              FUN=pickem)[,3]) 
length(keepSets) 
# 3) select set records for analysis 
df1=df1[df1$SETID%in%keepSets,] 
dim(df1) 
# Simplify model? Use intercept random effect model with data subset 
glmm4=  glmer(RND_WEIGHT_KGS ~ log(HOURS_FISHED) +  
                fYEAR_FISHED+ 
                fMONTH_FISHED + 
                (1 | PSEUDO_VESSEL_ID), 
              data=df1, 
              family=Gamma(link="log")) 
drop1(glmm4,test="Chisq") 
# keep it all 
print(summary(glmm4), corr=F) 
# Diagnostic plots 
par(mfrow=c(2,2)) 
Y_hat = predict(glmm4) 
E = residuals(glmm4, type="deviance") 
E_lo = lowess(as.numeric(Y_hat), as.numeric(E)) 
plot(Y_hat,E); lines(E_lo, col="red")  
hist(E) 
qqnorm(E); qqline(E) 
acf(E) 
# 
str(summary(glmm4)) 
out=summary(glmm4) 
table=as.data.frame(out$coefficients[,1:2]) 
table$lowerCI = table[,1] - table[,2]*1.96 
table$upperCI = table[,1] + table[,2]*1.96 
table 
#------------------------------------------------------------------------------------------------------COD 
#create data frame with COD species  
str(setData) 
dim(setData) 
head(setData) 
df1 = setData[setData$SPECIES == "COD", ] 
head(df1) 
dim(df1) 
str(df1) 
df1 <- subset(df1, !duplicated(df1[,1:2]))  
sum(duplicated(df1[,1:2])) #OK! 
# How many COD each year 
table(df1$YEAR_FISHED, df1$SPECIES) 
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#Remove Nas 
df1[!is.na(df1$HOURS_FISHED),] 
dim(df1) 
#How many sets from each year? 
table(df1$YEAR_FISHED) 
# Number records by year 
table(df1$YEAR_FISHED) 
#Number of trips and trips by year 
x=df1[!duplicated(df1[,"TRIP_ID"]),] 
dim(x) 
table(x$YEAR_FISHED) 
rm(x) 
#Number of sets and sets per year 
x=df1[!duplicated(df1[,"SETID"]),] 
dim(x) 
table(x$YEAR_FISHED) 
rm(x) 
#Distribution of gear types 
table(df1$GEAR_DESC) 
levels(df1$GEAR_DESC) 
#Occurrences of sizes and vessels 
table(df1$GROSS_TONNAGE) 
table(df1$LOA) 
table(df1$PSEUDO_VESSEL_ID) 
table(df1$PSEUDO_VESSEL_ID,df1$YEAR_FISHED) 
summary(df1$RND_WEIGHT_KGS) 
qqnorm(log(df1$RND_WEIGHT_KGS)); qqline(log(df1$RND_WEIGHT_KGS)) 
# We will convert year, month, and loa to factors 
df1$fYEAR_FISHED <- factor(df1$YEAR_FISHED) 
df1$fMONTH_FISHED <- factor(df1$MONTH_FISHED) 
df1$fLOA <- cut(df1$LOA, 3) 
str(df1) 
# Order data by vessel, year, month, day  
o=order(df1$PSEUDO_VESSEL_ID,df1$YEAR_FISHED,df1$MONTH_FISHED 
,df1$DAY_FISHED,df1$SETID) 

x=df1[o,] 
head(x) 
# GLM full model 
glm.01= glm(RND_WEIGHT_KGS ~ log(HOURS_FISHED) +  
              fLOA + 
              fYEAR_FISHED+ 
              fMONTH_FISHED, 
            data=df1, 
            family=Gamma(link="log"))               
summary(glm.01) 
par(mfrow=c(2,2)) 
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plot(glm.01) 
par(mfrow=c(2,2)) 
Y_hat = predict(glm.01) 
E = residuals(glm.01, type="pearson") 
E_lo = lowess(as.numeric(Y_hat), as.numeric(E)) 
plot(Y_hat,E); lines(E_lo, col="red")  
hist(E) 
qqnorm(E); qqline(E) 
acf(E) 
#Other potential issues? 
glm.01a= glm(RND_WEIGHT_KGS ~ log(HOURS_FISHED) +  
               fLOA + 
               fYEAR_FISHED+ 
               fMONTH_FISHED, 
             data=df1, 
             family=Gamma(link="log"))               
print(summary(glm.01a), corr=F) 
par(mfrow=c(2,2)) 
plot(glm.01a) 
par(mfrow=c(2,2)) 
Y_hat = predict(glm.01a) 
E = residuals(glm.01a, type="pearson") 
E_lo = lowess(as.numeric(Y_hat), as.numeric(E)) 
plot(Y_hat,E); lines(E_lo, col="red")  
hist(E) 
qqnorm(E); qqline(E) 
acf(E) 
# Compare models after dropping one predictor 
drop1(glm.01a) 
str(summary(glm.01a)) 
out=summary(glm.01a) 
table=as.data.frame(out$coefficients[,1:2]) 
table$lowerCI = table[,1] - table[,2]*1.96 
table$upperCI = table[,1] + table[,2]*1.96 
table 
#---------------------------------------------------------------------------------------------------- 
#GLMM 
library(lme4) 
# Dealing with autocorrelation 
# 0) order by vessel, year, month, day, setID 
o=order(df1$PSEUDO_VESSEL_ID, 
        df1$YEAR_FISHED, 
        df1$MONTH_FISHED , 
        df1$SETID) 
df1=df1[o,] 
head(df1) 
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# Typically how many sets per day? 
x=aggregate(df1$RND_WEIGHT_KGS,  
            by=list(df1$PSEUDO_VESSEL_ID,df1$FISHED.doy), 
            FUN=length) 
summary(x) 
# Median of 4 sets per day 
# 
# Randomly select one set per vessel per day 
# 1) define function to randomly pick a single  
#    value from a numeric vector 
pickem=function(x) { 
  sample(x,1) 
} 
# 2) make the numeric vector of sets to keep 
keepSets=as.numeric(aggregate(df1$SETID, 
                              by=list(df1$PSEUDO_VESSEL_ID, 
                                      df1$FISHED.doy), 
                              FUN=pickem)[,3]) 
length(keepSets) 
# 3) select set records for analysis 
df2=df1[df1$SETID%in%keepSets,] 
dim(df2) 
#---------------------------------------------------------------------------------------------------- 
glmm4=  glmer(RND_WEIGHT_KGS ~ log(HOURS_FISHED) +  
                fYEAR_FISHED+ 
                fMONTH_FISHED + 
                (1 | PSEUDO_VESSEL_ID), 
              data=df2, 
              family=Gamma(link="log")) 
drop1(glmm4,test="Chisq") 
# remove fLOA 
print(summary(glmm4), corr=F) 
# diagnostic plots 
par(mfrow=c(2,2)) 
Y_hat = predict(glmm4) 
E = residuals(glmm4, type="deviance") 
E_lo = lowess(as.numeric(Y_hat), as.numeric(E)) 
plot(Y_hat,E); lines(E_lo, col="red")  
hist(E) 
qqnorm(E); qqline(E) 
acf(E) 
str(summary(glmm4)) 
out=summary(glmm4) 
table=as.data.frame(out$coefficients[,1:2]) 
table$lowerCI = table[,1] - table[,2]*1.96 
table$upperCI = table[,1] + table[,2]*1.96 
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table 
#---------------------------------------------------------------------------------------------------- 
# FYI look back at GLM equilivant with same subset 
glm.4=  glm(RND_WEIGHT_KGS ~ log(HOURS_FISHED) + 
              fYEAR_FISHED+ 
              fMONTH_FISHED, 
            data=df1a2, 
            family=Gamma(link="log")) 
drop1(glm.4,test="Chisq") 
print(summary(glm.4), corr=F) 
# Diagnostic plots 
par(mfrow=c(2,2)) 
Y_hat = predict(glm.4) 
E = residuals(glm.4, type="deviance") 
E_lo = lowess(as.numeric(Y_hat), as.numeric(E)) 
plot(Y_hat,E); lines(E_lo, col="red")  
hist(E) 
qqnorm(E); qqline(E) 
acf(E) 
glmm5a =  glmer(RND_WEIGHT_KGS ~ log(HOURS_FISHED) + 
                  (1 | PSEUDO_VESSEL_ID), 
                data=df1a2, 
                family=Gamma(link="log")) 
print(summary(glmm5a), corr=F) 
# What about random effects? 
glm5a =  glm(RND_WEIGHT_KGS ~ log(HOURS_FISHED), 
             data=df1a2, 
             family=Gamma(link="log")) 
print(summary(glm5a), corr=F) 
table(df1a2$PSEUDO_VESSEL_ID,df1a2$YEAR_FISHED) 
head(df1a2) 
dim(df1a2) 
str(df1a2) 
#---------------------------------------------------------------------------------------------------- POLLOCK 
df1 = setData[setData$SPECIES == "POLLOCK", ] 
head(df1) 
dim(df1) 
dim(setData) 
df1 <- subset(df1, !duplicated(df1[,1:2]))  
sum(duplicated(df1[,1:2])) #OK!  
table(df1$YEAR_FISHED, df1$SPECIES) 
#remove Nas 
df1[!is.na(df1$HOURS_FISHED),] 
# How many sets from each year? 
table(df1$YEAR_FISHED) 
# Number records by year 



 

108 

table(df1$YEAR_FISHED) 
# Number of trips and trips by year 
x=df1[!duplicated(df1[,"TRIP_ID"]),] 
dim(x) 
table(x$YEAR_FISHED) 
rm(x) 
# Number of sets and sets per year 
x=df1[!duplicated(df1[,"SETID"]),] 
dim(x) 
table(x$YEAR_FISHED) 
rm(x) 
# Distribution of gear types 
table(df1$GEAR_DESC) 
levels(df1$GEAR_DESC) 
# Occurrences of sizes and vessels 
table(df1$GROSS_TONNAGE) 
table(df1$LOA) 
table(df1$PSEUDO_VESSEL_ID) 
table(df1$PSEUDO_VESSEL_ID,df1$YEAR_FISHED) 
# Order data by vessel, year, month, day  
o=order(df1$PSEUDO_VESSEL_ID,df1$YEAR_FISHED,df1$MONTH_FISHED 
,df1$DAY_FISHED,df1$SETID) 

x=df1[o,] 
head(x) 
# GLM full model 
glm.01= glm(RND_WEIGHT_KGS ~ log(HOURS_FISHED) +  
              fLOA + 
              fYEAR_FISHED+ 
              fMONTH_FISHED, 
            data=df1, 
            family=Gamma(link="log"))               
summary(glm.01) 
par(mfrow=c(2,2)) 
plot(glm.01) 
par(mfrow=c(2,2)) 
Y_hat = predict(glm.01) 
E = residuals(glm.01, type="pearson") 
E_lo = lowess(as.numeric(Y_hat), as.numeric(E)) 
plot(Y_hat,E); lines(E_lo, col="red")  
hist(E) 
qqnorm(E); qqline(E) 
acf(E) 
str(summary(glm.01)) 
out=summary(glm.01) 
table=as.data.frame(out$coefficients[,1:2]) 
table$lowerCI = table[,1] - table[,2]*1.96 
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table$upperCI = table[,1] + table[,2]*1.96 
table 
#------------------------------------------------------------------------------------------------ 
#GLMM 
# Generalized linear mixed model 
library(lme4) 
# Dealing with autocorrelation 
# 0) order by vessel, year, month, day, setID 
o=order(df1$PSEUDO_VESSEL_ID, 
        df1$YEAR_FISHED, 
        df1$MONTH_FISHED , 
        df1$SETID) 
df1=df1[o,] 
head(df1) 
# Typically how many sets per day? 
x=aggregate(df1$RND_WEIGHT_KGS,  
            by=list(df1$PSEUDO_VESSEL_ID,df1$FISHED.doy), 
            FUN=length) 
summary(x) 
# Randomly select one set per vessel per day 
# 1) define function to randomly pick a single  
#    value from a numeric vector 
pickem=function(x) { 
  sample(x,1) 
} 
# 2) make the numeric vector of sets to keep 
keepSets=as.numeric(aggregate(df1$SETID, 
                              by=list(df1$PSEUDO_VESSEL_ID, 
                                      df1$FISHED.doy), 
                              FUN=pickem)[,3]) 
length(keepSets) 
# 3) select set records for analysis 
df1=df1[df1$SETID%in%keepSets,] 
dim(df1) 
#------------------------------------------------------------------------------------------------ 
# Simplify model? Use intercept random effect model with data subset 
glmm4=  glmer(RND_WEIGHT_KGS ~ log(HOURS_FISHED) +  
                fYEAR_FISHED+ 
                fMONTH_FISHED + 
                (1 | PSEUDO_VESSEL_ID), 
              data=df1, 
              family=Gamma(link="log")) 
# no warning 
drop1(glmm4,test="Chisq") 
# remove fLOA 
print(summary(glmm4), corr=F) 
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# diagnostic plots 
par(mfrow=c(2,2)) 
Y_hat = predict(glmm4) 
E = residuals(glmm4, type="deviance") 
E_lo = lowess(as.numeric(Y_hat), as.numeric(E)) 
plot(Y_hat,E); lines(E_lo, col="red")  
hist(E) 
qqnorm(E); qqline(E) 
acf(E) 
# FYI look back at GLM equilivant with same subset 
glm.4=  glm(RND_WEIGHT_KGS ~ log(HOURS_FISHED) + 
              fYEAR_FISHED+ 
              fMONTH_FISHED+ 
              fLOA, 
            data=df1a2, 
            family=Gamma(link="log")) 
drop1(glm.4,test="Chisq") 
print(summary(glm.4), corr=F) 
# Diagnostic plots 
par(mfrow=c(2,2)) 
Y_hat = predict(glm.4) 
E = residuals(glm.4, type="deviance") 
E_lo = lowess(as.numeric(Y_hat), as.numeric(E)) 
plot(Y_hat,E); lines(E_lo, col="red")  
hist(E) 
qqnorm(E); qqline(E) 
acf(E) 
#------------------------------------------------------------------------------------------------ 
# Create table for word from glmm4 
str(summary(glmm4)) 
out=summary(glmm4) 
table=as.data.frame(out$coefficients[,1:2]) 
table$lowerCI = table[,1] - table[,2]*1.96 
table$upperCI = table[,1] + table[,2]*1.96 
table 
#------------------------------------------------------------------------------------------------ REDFISH 
df1 = setData[setData$SPECIES == "REDFISH", ] 
head(df1) 
dim(df1) 
dim(setData) 
df1 <- subset(df1, !duplicated(df1[,1:2]))  
sum(duplicated(df1[,1:2])) #OK!  
table(df1$YEAR_FISHED, df1$SPECIES) 
#remove Nas 
df1[!is.na(df1$HOURS_FISHED),] 
# How many sets from each year? 
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table(df1$YEAR_FISHED) 
# Number records by year 
table(df1$YEAR_FISHED) 
# Number of trips and trips by year 
x=df1[!duplicated(df1[,"TRIP_ID"]),] 
dim(x) 
table(x$YEAR_FISHED) 
rm(x) 
# Number of sets and sets per year 
x=df1[!duplicated(df1[,"SETID"]),] 
dim(x) 
table(x$YEAR_FISHED) 
rm(x) 
# Distribution of gear types 
table(df1$GEAR_DESC) 
levels(df1$GEAR_DESC) 
# Occurrences of sizes and vessels 
table(df1$GROSS_TONNAGE) 
table(df1$LOA) 
table(df1$PSEUDO_VESSEL_ID) 
table(df1$PSEUDO_VESSEL_ID,df1$YEAR_FISHED) 
# Order data by vessel, year, month, day  
o=order(df1$PSEUDO_VESSEL_ID,df1$YEAR_FISHED,df1$MONTH_FISHED 
,df1$DAY_FISHED,df1$SETID) 

x=df1[o,] 
head(x) 
# GLM full model 
glm.01= glm(RND_WEIGHT_KGS ~ log(HOURS_FISHED) +  
              fLOA + 
              fYEAR_FISHED+ 
              fMONTH_FISHED, 
            data=df1, 
            family=Gamma(link="log"))               
summary(glm.01) 
par(mfrow=c(2,2)) 
plot(glm.01) 
par(mfrow=c(2,2)) 
Y_hat = predict(glm.01) 
E = residuals(glm.01, type="pearson") 
E_lo = lowess(as.numeric(Y_hat), as.numeric(E)) 
plot(Y_hat,E); lines(E_lo, col="red")  
hist(E) 
qqnorm(E); qqline(E) 
acf(E) 
glm.01a= glm(RND_WEIGHT_KGS ~ log(HOURS_FISHED) +  
               fLOA + 
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               fYEAR_FISHED+ 
               fMONTH_FISHED, 
             data=df1a1, 
             family=Gamma(link="log"))               
summary(glm.01a) 
par(mfrow=c(2,2)) 
plot(glm.01a) 
par(mfrow=c(2,2)) 
Y_hat = predict(glm.01a) 
E = residuals(glm.01a, type="pearson") 
E_lo = lowess(as.numeric(Y_hat), as.numeric(E)) 
plot(Y_hat,E); lines(E_lo, col="red")  
hist(E) 
qqnorm(E); qqline(E) 
acf(E) 
# Compare models after dropping one predictor 
drop1(glm.01a) 
str(summary(glm.01a)) 
out=summary(glm.01a) 
table=as.data.frame(out$coefficients[,1:2]) 
table$lowerCI = table[,1] - table[,2]*1.96 
table$upperCI = table[,1] + table[,2]*1.96 
table 
#------------------------------------------------------------------------------------------------ 
#GLMM 
library(lme4) 
# We assume that the random effect   
# changes ONLY for the intercept value for eta (liner predictor) 
# Dealing with autocorrelation 
# 0) order by vessel, year, month, day, setID 
o=order(df1$PSEUDO_VESSEL_ID, 
        df1$YEAR_FISHED, 
        df1$MONTH_FISHED , 
        df1$SETID) 
df1=df1[o,] 
head(df1) 
# Typically how many sets per day? 
x=aggregate(df1$RND_WEIGHT_KGS,  
            by=list(df1$PSEUDO_VESSEL_ID,df1$FISHED.doy), 
            FUN=length) 
summary(x) 
# Median of 5 sets per day 
# Randomly select one set per vessel per day 
# 1) define function to randomly pick a single  
#    value from a numeric vector 
pickem=function(x) { 
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  sample(x,1) 
} 
# 2) make the numeric vector of sets to keep 
keepSets=as.numeric(aggregate(df1$SETID, 
                              by=list(df1$PSEUDO_VESSEL_ID, 
                                      df1$FISHED.doy), 
                              FUN=pickem)[,3]) 
length(keepSets) 
# 3) select set records for analysis 
df1=df1[df1$SETID%in%keepSets,] 
dim(df1) 
#------------------------------------------------------------------------------------------------ 
# Simplify model? Use intercept random effect model with data subset 
glmm5=  glmer(RND_WEIGHT_KGS ~ log(HOURS_FISHED) +  
                fYEAR_FISHED+ 
                fMONTH_FISHED+ 
                (1 | PSEUDO_VESSEL_ID), 
              data=df1, 
              family=Gamma(link="log")) 
drop1(glmm5,test="Chisq") 
print(summary(glmm5), corr=F) 
# Diagnostic plots 
par(mfrow=c(2,2)) 
Y_hat = predict(glmm5) 
E = residuals(glmm5, type="deviance") 
E_lo = lowess(as.numeric(Y_hat), as.numeric(E)) 
plot(Y_hat,E); lines(E_lo, col="red")  
hist(E) 
qqnorm(E); qqline(E) 
acf(E) 
#------------------------------------------------------------------------------------------------ 
# Create table for word from glmm5 
str(summary(glmm5)) 
out=summary(glmm5) 
table=as.data.frame(out$coefficients[,1:2]) 
table$lowerCI = table[,1] - table[,2]*1.96 
table$upperCI = table[,1] + table[,2]*1.96 
table 
#------------------------------------------------------------------------------------------------Snow crab 
rawData=read.table("Crab Logbook 2006-2009 Gillis 2015.csv",  
                   sep=",",  
                   header=T, 
                   stringsAsFactors=F) 
head(rawData) 
str(rawData) 
Data = rawData 
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# Variable definitions and type conversions 
Data$Status[Data$Status=="Autochtones"]="First Nations" 
Data$Status=factor(Data$Status) 
Data$Year=factor(Data$year) 
Data$Fisher=factor(Data$Fisher) 
Data$Zone=factor(Data$Zone) 
Data$Status=factor(Data$Status) 
Data$WofY=factor(Data$weekOfYear, ordered=T) 
Data$WofF=factor(Data$WeekOfFishing, ordered=T) 
Data$DofY=factor(Data$dayOfYearFished, ordered=T) 
Data$Catch=Data$SlipQtyDayKg 
Data$logCatch=log10(Data$Catch) 
Data$Traps=Data$EffortDay 
Data$logTraps=log(Data$EffortDay) 
Data$Soak=Data$soaktimeHrs 
# Record with 0 soak time are assigned 1 hour  
Data$Soak[Data$Soak==0] = 1 
Data$logSoak=log(Data$Soak) 
str(Data) 
# Choose only Area 12 Sets 
Data=Data[Data$Zone=="12",] 
# Drop Zero Catch records 
sum(Data$Catch==0) 
Data = Data[Data$Catch>0,] 
# Choose Soak Times one week or less 
sum(Data$Soak>=168) 
Data=Data[Data$Soak<=168,] 
# Choose records with 150 traps or less (license limit) 
sum(Data$Traps>=150) 
Data=Data[Data$Traps<=150,] 
dim(Data) 
# Data available to use  
dim(rawData)[1]-dim(Data)[1] 
names(Data) 
x=table(Data$Fisher, Data$Year) 
# Minimum number of landing records in every year to include? 
yearlySetMin = 10 
x=x[x[,"2006"] >= yearlySetMin & 
    x[,"2007"] >= yearlySetMin & 
    x[,"2008"] >= yearlySetMin & 
    x[,"2009"] >= yearlySetMin, ] 
selectFishers=row.names(x) 
length(selectFishers) 
DataFishers=Data[Data$Fisher %in% selectFishers,] 
dim(DataFishers) 
table(DataFishers$Year) 
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table(Data$Year) 
rm(x)  # housekeeping 
str(DataFishers) 
# Convert character to POSIX  
DataFishers$pDateLanded = strptime(DataFishers$DateLanded, 
                                   format = "%m/%d/%Y",  
                                   tz="GMT") 
DataFishers$pDateSailed = strptime(DataFishers$DateSailed, 
                                   format = "%m/%d/%Y",  
                                   tz="GMT") 
DataFishers$pDateCaught = strptime(DataFishers$DateCaught, 
                                   format = "%m/%d/%Y",  
                                   tz="GMT") 
DataFishers$TripDur = DataFishers$pDateLanded - DataFishers$pDateSailed 
table(DataFishers$Year) 
setData=DataFishers 
#Remove non-positive values 
setData = setData[setData$Catch>0,] 
dim(setData) 
summary(setData$Catch) 
setData=setData[setData$Catch>470,] 
dim(setData) 
summary(setData$Catch) 
qqnorm(log(setData$Catch)); qqline(log(setData$Catch)) 
table(setData$Year) 
hist(setData$logSoak) 
hist(setData[setData$logSoak>=0,"logSoak"]) 
hist(setData$logTraps) 
hist(setData[setData$logTraps>=0,"logTraps"]) 
# Will log Traps to get multiplicative equation  
setData$logCatch <- log(setData$Catch) 
setData$logTraps <- log(setData$Traps) 
# convert factor to numeric 
setData$WofY=as.numeric(setData$WofY) 
setData$Status=as.numeric(setData$Status) 
setData$TripDur=as.numeric(setData$TripDur) 
setData$Year=as.numeric(setData$Year) 
# Order data by vessel, year, month, day  
o=order(setData$Fisher,setData$Year,setData$WofY,setData$DofY,setData$Traps) 
x=setData[o,] 
head(x) 
acf(log(x$Catch), main = "catch") #auto-correlation functions 
library(lme4) 
# Assume that the random effect   
# changes ONLY for the intercept catch for eta (liner predictor) 
# Dealing with autocorrelation 
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# 0) order by Fisher, year, WofY, DofY, Traps 
o=order(setData$Fisher, 
        setData$Year, 
        setData$WofY , 
        setData$DofY, 
        setData$Traps) 
setData1=setData[o,] 
head(setData1) 
# Typically how many Traps per day? 
x=aggregate(setData1$Catch,  
            by=list(setData1$Fisher,setData1$DofY), 
            FUN=length) 
summary(x) 
# Median of 2 traps per day 
# 
# Randomly select one trap per Fisher per day 
# 1) define function to randomly pick a single  
#    value from a numeric vector 
pickem=function(x) { 
  sample(x,1) 
} 
# 2) make the numeric vector of traps to keep 
keepTraps=as.numeric(aggregate(setData1$Traps, 
                              by=list(setData1$Fisher, 
                                      setData1$DofY), 
                              FUN=pickem)[,2]) 
length(keepTraps) 
# 3) select set records for analysis 
setData2=setData1[setData1$Traps%in%keepTraps,] 
dim(setData2) 
glmm4=  glmer(Catch~ logTraps 
               + logSoak  
               + Year 
               + WofY 
                +(1 | Fisher), 
              data=setData2, 
              family=Gamma(link="log")) 
#good no warning 
drop1(glmm4,test="Chisq") 
print(summary(glmm4), corr=F) 
# diagnostic plots 
par(mfrow=c(2,2)) 
Y_hat = predict(glmm4) 
E = residuals(glmm4, type="deviance") 
E_lo = lowess(as.numeric(Y_hat), as.numeric(E)) 
plot(Y_hat,E); lines(E_lo, col="red")  
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hist(E) 
qqnorm(E); qqline(E) 
acf(E) 
str(summary(glmm4)) 
out=summary(glmm4) 
table=as.data.frame(out$coefficients[,1:2]) 
table$lowerCI = table[,1] - table[,2]*1.96 
table$upperCI = table[,1] + table[,2]*1.96 
table 


