the lower CCW as well as on the higher-relief eastern portion of the upper
watershed. To the west the landscape is dominated by intensive, large-

- Total event rainfall (RFsum)

- AWL does correlate with stream and drain morphometrics, which vary throughout the watershed (e.g., Figure 4)
- Partial Spearman correlation of RFsum and AWL while controlling for drain width yields r=0.8540 (p = 0.0670)
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Despite intense and continued human modification of the Prairie landscape, Through the spring of 2013, the CCW was instrumented with thirteen in- Based on observation of a total 126 rainfall events ranging 0.2 mm - 33 mm in depth and 15 mins - 34 hrs in duration, the following conclusions were reached: ; " @ m% ; L m%
the consequences of this hydrological management on the runoff regime stream water level recorders (15-minute frequency), 26 perched water ta- $U g% 3 LIl =% . ¢
remain poorly understood. Specifically, previous research carried out ble level recorders (15-minute frequency; 1.5 m depth) and five weather i. Runoff events of greatest AWL magnitude are associated with infiltration excess overland flow : ; ‘ P . ’ 2
in Prairie watersheds has not explored threshold rainfall-runoff stations (1-minute frequency) to monitor the precipitation-runoff dynamics - AWL correlates strongly and positively with RFintens. (s 22 5 b 2
behaviour as has been done in pristine, higher relief hillslopes and from spring thaw to winter freeze-up (Figure 2). Water level gauging stations - Initial water level at the beginning of rainfall events correlates significantly and strongly negatively with event AWL, indicating the greatest contributor | ' m‘i iy m‘?‘
catchments. To address this, we focus here on a large mixed-used Prairie monitor sub-watersheds of the CCW, ranging in drainage area from 0.5 to to runoff is infiltration excess overland flow. ha [
watershed for high temporal resolution hydrometric and meteorologic 642 kmZ2. - Although, due to the low relief of the CCW, infiltration excess overland flow occurring outside of the engineered slope of drains is not expected to reach the I T . R I R N . R
monitoring. stream channel before reinfiltration or evaporation.
Rainfall (RF) events were manually identified and isolated for analysis, and - Variable runoff response to extreme rainfall events among monitoring sites may be explained by rainfall heterogeneity beyond which the weather station network ~ site00s ~ site007
event hydrograph (Q) responses at the twelve gauging stations unaffected could capture; such rainfall heterogeneity is common with convective storms generated during the hot summer months (Fang et al., 2007; Reaney et al., 2007). " | "
by backflow from Lake Winnipeg were calculated. Event parameters B . ) .
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- Initial abstraction (1A - initi ion | it | itoring si . $hae oo 10,2 S |2
The Catfish Creek watershed (CCW: Figure 1) drains an area of 642 km?2 tial abstractl (1A) Event initial abstraction is strongly and positively correlated to total even’F rainfall at moqltorlng sites (see Table 2). | : ﬁ 3 : S . :
. o . - Lag to initial runoft (RFbQDb) - No threshold effects related to AMCs (depth to perched water table or rainfall from previous month, days or hours; e.g., see Figure 6). = E = il E
located approximately 90 km north-east of Winnipeg (Manitoba, Canada). - Lag to peak runoff (RFbQp) 3 : i PoE oY ’ . 05
Szgéacterlzei?(s); low relle1l5aogro tLorested rfwatershe?f.( 457 foreds;t:; - Event water level fluctuation (AWL) ili. Poor downstream connectivity and limited contributing area exist £ ' 032 c e o 03
0 LTOPS, ™ 1170 SWamp, o other), surface runo 1S managed by 4 - Time of concentration (TC) - TC does not correlate significantly with any rainfall event parameters, indicating limited transit of event water through the watersheds i 3 LS 3
network of artificial drains in both the forested and cultivated portions of . " o . - . . . " 10
i torshed. Natural forest - and wetlands are present throuahout - Duration (RF & Q events) - Hydrograph charactersitics do not correlate significantly with watershed characteristics, suggesting runoff from upstream areas contribute minimally to
'S WaIBIshec. INatral Torest LOver and Wetiands are prese oughou - Rainfall intensity (RFintens) the hydrograph at the stream gauge = o

scale agricultural operations on a near-level landscape. These parameters were compared with watershed characteristics (area, AWL ates st v with REint ndicating local rainfall and infiltrat t f water level fluctuati Site 008 Site 009
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analysis of all calculated parameters. made in other Prairie watersheds (Shaw et al., ) £, i . E £ . g
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iv. The input-output relationships observed in the CCW (Figure 6) exhibit a shape differing from those found in other threshold studies (Figure 5) E . g R . ’ =
a Water level lagget - Specifically, a critical point where, when exceeded, a sudden change in the rainfall-runoff relationship exists. This is generally the opposite of N 05 s | . 05
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FIGURE 6: Event rainfall-runoff relationships and antecedent moisture conditions (cumulative
precipitation in the 3 hours preceding initial event rainfall) observed at the 12 monitoring sites of CCW
through the 2013 open water season.

FIGURE 2: Hydrometric and meteorologic monitoring instruments in Catfish Creek Watershed;
(a) HOBO weather station, (b) Odyssey water level logger; (c) water level logger installed in
agricultural drain.

FIGURE 4: Engineered drains in the Catfish Creek Watershed; (a) Site 003, (b) Site 007.



