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ABSTRACT

A general formulation for the scattering from multiple discontinuities in waveguides is
presented in this thesis. The global scattering matrices are derived from the coupled sets of
truncated linear equations obtained by expanding the corresponding fields in terms of
vector eigenfunctions and imposing the boundary conditions at each junction. The analysis
takes into account the near field coupling and higher order mode interaction between the
discontinuities. A recurrence procedure used in derivation of the scattering matrices gives
the proposed formulation a significant computational advantage over the commonly used
cascading techniques. The conditions for a good overall convergence are illustrated for
step-discontinuities in circular waveguides. Numerical results are presented for a thick iris
in a circular waveguide and for multiple-step transformers in circular waveguides.

Improved designs for iris matched dielectric windows are also calculated and presented.
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CHAPTER 1
INTRODUCTION

The analysis of waveguide discontinuities is a classic electromagnetic theory and
microwave engineering problem with application to the design of microwave components
and antennas. Multiple-step discontinuities in waveguides are encountered in filters,
transformers, irises, directional couplers [1], mode converters [2], and the modelling of
horn antennas [3].

Structures with multiple waveguide discontinuities are typically analyzed by cascading
individual discontinuities. Methods for cascading generalized scattering matrices are
described by James [2], and Chu and Itoh [4]. Cascading can also be performed using the
transmission matrix representation, but this method has some disadvantages not
encountered with the generalized scattering matrix approach. The method can be
numerically unstable when too many higher order modes are included in the waveguide
sections between the discontinuities or the overall length of the waveguide sections is too
large [5]. Also, the transmission matrix method requires the field expansions in each
waveguide to have the same number of modes which may violate the criterion to avoid the
relative convergence phenomenon [6], [7]. This restriction has-been overcome using an
improved transmission matrix formulation proposed by Mansour and MacPhie [8].
Cascading with an admittance matrix formulation has also been proposed [9].

Problems relative to multiple discontinuities in waveguides have been solved by
numerous techniques. Rozzi and Mecklenbriuker [10] extended the variational method to
study interacting irises and steps in waveguides. De Smedt and Denturk [11] determined
the scattering from symmetric double discontinuities using the moment method with point
matching. Double discontinuities have been treated using the moment method with the
Galerkin technique by Hamid et. al. [12], Datta et. al. [13], and Scharstein and Adams

[14]. An earlier mode matching technique was applied to double discontinuities by
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Clarricoats and Slinn [15]; however, the solution required large matrix operations which
Huckle and Masterman [16] avoided by reducing the sets of equations and using back
substitution. An admittance matrix formulation based on modal analysis has been used by
Alessandri et. al. [9] to solve for a special class of double discontinuities. All the mode
matching based techniques may suffer from the relative convergence phenomenon which is
eliminated by using an appropriate ratio of modal terms in the waveguide field expansions
[61, [7].

The purpose of this thesis is to present a solution for multiple-step waveguide
discontinuities where the scattering parameters are directly calculated by simultaneously
solving the multiple discontinuities rather than by cascading discontinuities.

In Chapter 2, a general formulation for the scattering from multiple waveguide
discontinuities is presented. The formulation is based on the modal analysis technique [17]
where the electric and magnetic fields in each waveguide section are expressed as an exact
expansion of orthonormal modes and the boundary conditions on the tangential field
components are enforced over each discontinuity plane. Analytic expressions for the
scattering matrices are derived from the truncated linear equations formed by applying the
mode orthogonality.

In Chapter 3, multiple-step discontinuities in circular waveguides will be considered
for quantitative illustrations. A thick iris in a circular waveguide is analyzed in detail to
verify the convergence and accuracy of the formulation. Numerical results are compared
with data available in the literature. Also, application is made to improve designs for iris
matched dielectric windows.

In Chapter 4, a modified formulation for the scattering from multiple waveguide
discontinuities is presented. The higher order modes that are excited at the discontinuities
but do not effectively interact with the adjacent discontinuities are matched terminated in the
analysis. A thick iris in a circular waveguide is studied quantitatively to determine a

criterion for choosing the number of interacting modes between circular waveguide
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discontinuities. The accuracy of the formulation is verified for a thick iris in a circular
waveguide and for circular waveguide step transformers by comparing numerical results
with data available in the literature.

The conclusions and recommendations are presented in Chapter 5.



CHAPTER 2
ANALYSIS OF MULTIPLE DISCONTINUITIES
IN WAVEGUIDES

The problem of multiple discontinuities in waveguides is discussed in this chapter.
Consider the multiple-step discontinuities shown in Fig. 2.1. There are N transverse
discontinuities with N+1 waveguide regions. An arbitrary multi-mode incident field is
assumed from waveguide 1.

Determining the electromagnetic scattering for the multiple discontinuities begins with
expressing the electric and magnetic fields in each waveguide section as an exact expansion
of orthonormal modes and enforcing the boundary conditions on the tangential fields over
each discontinuity plane. The scattering matrices are derived from the truncated linear

equations formed by applying the mode orthogonality.

2.1 MODAL EXPANSIONS OF THE FIELDS
The total transverse electric and magnetic fields can be written in modal form as

follows:

in the 1stregion

E ;=) (Ap e m@+20 1B, eylm(ﬂzl))em
nm

Htl = 2 (Alm e—ylm(z+zl) - Blm eylm(z+zl)>h1m’ 2.1)
m

in the jthregion (j=2,..., N)

E,= Z ( Ajm e—ij(z+z-_1) +Bj, eij(z+Zj)) Cim
m

H;=Y (4, ¢ %50 _p, limC2))p, (2.2)
nm



2 j j+1 N N+l

Z=—Zl

Fig. 2.1. Section with multiple waveguide discontintuities.



and in the N+1th region

_ ¥ z
E/ Ny = 2 Ansime VM en
m

~,
Hpi =Y Aysime NImZhy o (2.3)

m

A;y, and B, are the forward and the backward complex coefficients, respectively, of the
mth mode in the ith region, v;,, is the propagation constant, and e;,, and k,,, are the
corresponding transverse electric and magnetic field functions of the mth mode. The modal
field functions form an orthonormal set, i.e.,

Cim Bids. = | (€1 X Bip)-ds = By, (2.4)
1 S

i

where §; is the ith waveguide cross section, and J,,,, is the Kronecker delta.

2.2 BOUNDARY CONDITIONS AT THE DISCONTINUITY PLANES

At each discontinuity plane, the transverse fields must be continuous over each aperture
and the tangential electric field must be zero on the walls. The continuity of the transverse
electric and magnetic field intensities over each aperture cross section are expressed as
follows:

atZ’-—"—Zl

Y (Aip +Bipey, = D (Agp +Bye 2mL2)e,

m m

Y (A —Bin)hy, = > (Agm — By 2 L2)py,, (2.5)
m m

atz=-z; (j=2,...,N-1)

Y (Ajm e limL; +Bjm>ejm =y (Aj+1,m +Biiim ¢ Virim Lj+1)ej+1,m
m nm

> (4, ¢ imbi—B; )b, = 3 (A1 —Bjame #onli)n,, . (26)
m nm



andatz=0

> (A ¢ mLn 4 Bym)eNm = Y ANiim €Niim
m m

> (A ¢ WL ~ Byl = > ANitm Byiim (2.7
m

m

where

Li=-z;+z; 4 (i=2,...,N). (2.8)

2.3 MATRIX EQUATIONS FOR THE DISCONTINUITIES

The orthogonality of the modes is applied to the field continuity equations, (2.5)-(2.7),
to form linear equations that are truncated and expressed in matrix form. The boundary
enlargement and reduction discontinuity cases are handled separately in order to properly
include the boundary condition on the transverse walls [17], [18]. For a boundary
reduction discontinuity, the cross section of the waveguide section following the
discontinuity is encompassed by the cross section of the waveguide section preceding the
discontinuity. The boundary enlargement case is illustrated in Fig. 2.1.

As a result of the truncations, the solution to the scattering problem will be an
approximate solution where the accuracy is dependent on the number of modes selected in
each region. Choosing the ratio of modes approximately equal to the ratio of the waveguide
dimensions prevents the relative convergence phenomenon where the solution may

converge to an incorrect result or may not converge at all [6], [7].

2.3.1 Boundary Enlargement Discontinuities

For the boundary enlargement case, at each discontinuity we take the vector product of
the terms in the electric field continuity equation with a magnetic mode function from the
following waveguide section, and the vector product of the terms in the magnetic field
continuity equation with an electric mode function from the preceding waveguide section.

Applying the orthogonality of the modes, equations (2.5)-(2.7) become:

7



at z =—‘Zl

2 (A1, + Bipieim h2n>51 = F,, cosh(y,,L,) + D,, sinh(y,,L,) ®=1,23.)

m

Aln _Bln = Z (Dzm COSh('Yszz) + F2m Sinh(’Ysz2)><eln, h2m>Sl (l’l= ]., 2, 3...), (2.9)
m

atz=—z (j#1,N)

2 F]m <ejm, hj"'l’n)Sj = Fj+1,n COSh('Yj+1,n Lj+1) + Dj+1,n Sil’lh(’)/]'+1,nLj+1) (}’l= 1,2, 3.)
m

D]n = 2 (Dj+LmCOSh(’Yj+1,ij+1) +Fj+1,m Smh(YﬁLmLﬁl))(eJn’hJ+Lm>SJ (}’L= 1, 2, 3...), (2 10)
m

andatz=0
Z FNm <eNm’ hN+1,n>SN = AN+1,n (}’1,: 1, 2) 3)
m
Diin = X, ANt m (@ st mds,  (1=1,23.) @.11)
m
where
Dy=A,erli-p, (2.12)
Fi=A, e rlitB, . (2.13)

Truncating the infinite series to M; modes in each ith region, equations (2.9)-(2.11) can

be written in matrix form [19]:
atz = —Zl
G (A +B;)=CrFy+5,Dy

A1-Bi=G{(CyDy+ 5, Fy), (2.14)



atz=-z; (j#1,N)

&
I

T
_G__j ( gj+1 l—)j+1 + _§j+1 Ej+1 )>
andatz=0
GnvEy=A4nn

T
Dy =§NA-N+1

(2.15)

(2.16)

where the T superscript indicates matrix transpose, A; is the known incident modal

coefficient column matrix of M; elements, B; and Ay, are the column matrices of M ; and

M)y, elements of the unknown modal coefficients for the fields reflected in region 1 and

transmitted in region N+1, respectively, and

D;= [Azm e—yimLi_Bim M;x 1

Ei= [Aim ¢ imLi + By, M;x1
gi = [ 8mn COSh(Yim Li) ]Mi x M;

éi = [ On sinh(Y;,, L;) ]Mi X M;

G = (im hi+1,n>Si ]Mi+1 % M;"

2.3.2 Boundary Reduction Discontinuities

(2.17)

(2.18)

(2.19)

(2.20)

(2.21)

For the boundary reduction case, at each discontinuity we take the vector product of the

terms in the electric field continuity equation with a magnetic mode function from the

preceding waveguide section, and the vector product of the terms in the magnetic field

continuity equation with an electric mode function from the following waveguide section,

—9_



Applying the orthogonality of the modes, equations (2.5)-(2.7) become:
atz = —Z1

Alﬂ +B1n = Z (Fzm COSh(’Y2m L2) +D2m Sinh(’Y2m L2))<32m, h1n>S2 (I’l= 1, 2, 3...)
m

2 (A im _Blm)<62n’ h1m>Sz = D2n COSh('an Lz) +F2n Sinh(’an L2) (I’l= 1,2, 3), (222)

m

atz=-z; (j#1,N)

2 ( J+im COSh('Y]+1,m +1)+ J+lm Sinh(’Yj+1,mLj+1))<ej+mahjn>sj+1 (I’l=1, 2, 3)
Z Djm< i+ 1> jm>S ]+1n COSh('Y]H,n ]+1)+ J+ln Slnh('y]-e‘l,n ]+1) (I’L 1,2,3. )(2 23)
m
andatz=0
n =D AN (eN 1 hNn>SN+1 (n=1,2,3..)
m

2 D (enstm s, = Avsin (=1,2,3.) (2.24)
m

where D, and F;, are defined in (2.12) and (2.13), respectively.
As before, the infinite series are truncated to M; modes in each ith region. Equations

(2.22)-(2.24) can be written in matrix form:
atz = —Z
A1 +By=G{(CyF, +5,D;)

G (A-B;)= €Dy + 5, Fy, (2.25)

—10—



atz=—z (j#1,N)

T
Ej =G; (Cj1 Eju1 + Sji1 Djsr)
GiD;j =Cji1 Djyy + 841 Ejirs (2.26)
andatz=0
T
Ey=GnAna
gNl—)N :A-N+1 (2.27)

where the quantities are described in (2.17)-(2.20), except in the boundary reduction case
Gi=L et binds, Ly .- (2.28)

The sets of linear matrix equations for an arbitrary combination of boundary
enlargement and reduction discontinuities can be compiled by considering the

corresponding matrix equations in (2.14)-(2.16) or (2.25)-(2.27).

2.4 SCATTERING MATRIX FORMULATION

In scattering matrix formulation, B; and Ay, can be expressed as
Bi=S114,
Ay =821 Ay (2.29)

where Sy;and §,; are the complex reflection and transmission matrices for the entire

structure, respectively. Solving the sets of linear matrix equations for an arbitrary series
of boundary enlargement and reduction discontinuities, the scattering matrices are

obtained as [20], [21]

—11-



-2 __6_1{ U -1 G, for a 1st discontinuity boundary enlargement (B.E.)

éll = (230)

~1+2 Z_Q{ o,U - G, for a 1st discontinuity boundary reduction (B.R.)

S21=2 (GnBY )Gy Ry )-(G3R5) G, UG, (2.31)

where G; (i = 1,..., N) is determined by (2.21) or (2.28) for the ith discontinuity B.E. or

B.R. case, respectively, g 1s the unit matrix and

(C,+GG1S,)+ (5,+G,G1¢C,) G3 Q3 R5' G, for the 1st and 2nd

I~
I

discontinuities both B.E. or B.R. (2.32)

$H+G Q’TQ +1C+ 6 QT§ QTQ R3' G,, otherwise.
22 V1Y X2 =2 T 21182 /Y2 =3RK3 Ly

©;and R; are M; x M; matrices calculated from the following recurrence formulas:

S;+C; Gl Oy R;A G, for the ith and i+1th discontinuities both B.E. or B.R.
9= (2.33)
T -1 .
Ci+58;G; Q41 Riv1 Gy, otherwise
Ci+3; ng 91 5;11 G, for the ith and i+1th discontinuities both B.E. or B.R.
Ri= (2.34)
T -1 .
S;i+C;Gi Qi1 Ri.1G;, otherwise
with
Oni =Ry =L (2.35)

The recurrence formulas, (2.33) and (2.34), require that the calculation of the scattering

matrices begins at the Nth discontinuity and move successively to the 1st discontinuity.

—12_



2.5 SYMMETRIC DISCONTINUITIES

A longitudinally symmetric structure with N discontinuities can be reduced to N’
discontinuities with N'+1 waveguide regions, N’ = N/2, alternately terminated with a
magnetic or electric wall. The magnetic and electric walls, placed at the symmetry plane
bisecting the N discontinuity structure, correspond to the the even and odd mode excitation

cases, respectively [11], [22].

If the N'th discontinuity and the symmetry plane are located at z = 0 and z = Ly.,4/2,

respectively, then the electric and magnetic fields in the N'+1th region are as follows [11]:

~Yn+ Y — L
E Ny = 2 AN’+1,m(e N+lmZ  pe'NrLm (2-Ly +1))eN'+1,m

m

~Yar Yoy — L
Hyp1 = 3 Ay (e Vim 2 TN elm @-LyveDhy.y,, — (236)
m

where I' = +1 in the case of a magnetic wall (even excitation) and I" = —1 in the case of an

electric wall (odd excitation).

Let ﬁl and S 11 be the reflection coefficient matrices of the N’ discontinuities due to

even and odd excitation, respectively. The scattering matrices for the original structure of N

discontinuities can be calculated by superimposing the two cases [11]:
1
S11=5 (S +S11)

1
Sy =5 (811511 (2.37)
89y and S7; can be calculated using equation (2.30) where Opry1 and Ry,q are as follows:

i) for a N'th discontinuity boundary enlargement

T, even excitation

v = (2.38q)

I, odd excitation
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I, even excitation

Ryri = (2.38b)
T, 0dd excitation
if) for a N'th discontinuity boundary reduction
I, even excitation
Oy = (2.39a)
T, odd excitation
T ”1, even excitation
Ry = (2.39b)
I, odd excitation
where
T = 8, tanh(Yyr,1 5 Ly1/2) ] (2.40)

My 1 X My

The computational advantage of using the even and odd excitation in the analysis is

apparent from the number of full complex matrix inversions required. Calculating gfl and
__.Sj‘fl each require N1 matrix inversions of size M; x M; (i=2,..., N") for a total of N—2
matrix inversions. If calculated as in the previous section, the same N discontinuities
would require N—1 matrix inversions of size M; x M; (i =2, ..., N). The computational
effort is therefore reduced by one My x My complex matrix inversion when the symmetry

is used in the analysis.
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CHAPTER 3
APPLICATION TO CIRCULAR WAVEGUIDES

In this chapter, the general scattering formulation presented in Chapter 2 is applied to
circular waveguide discontinuities for numerical computations. Closed form expressions

for the vector products used in (2.21) and (2.28) are derived for circular waveguides.

3.1 MODAL FUNCTION EXPRESSIONS
The fields in a circular cylindrical waveguide can be expressed as a combination of TE

. [
and TM components. Assuming an " time dependence, the components of the transverse

electric and magnetic fields can be written in circular cylindrical coordinates (7, ¢, z) [22]

E, ==Y ke Ay T3k, 1) cos(mg) — jou " B,, J,(k, r) cos(mg)
Ey= y—’?— A, J,(k.7) sin(m¢) + jou k. B,, J, (k. r) sin(me)
H,=-jwe " A,, I,,(k.7) sin(ng) -y k,B,, I,(k,1) sin(mg)

Hy=—joe k A, J, (k. 1) cos(mg) — 'Y%Bm J, (k. r) cos(mg) (3.1)

where A,, and B,, are the amplitudes of the TM and TE components, respectively, € and [
are the permittivity and permeability of the medium filling the waveguide, respectively, @ is
the angular frequency, v is the propagation constant, J,,(k. r) is the Bessel function of the

first kind of order m where the prime indicates differentiation with respect to the argument

k,r, and k> = k* +* where k is the wave number (k = @ \/—e—u ). The modal propagation

constants can be calculated from the general characteristic equation derived in [23].

3.2 MODAL COUPLING INTEGRALS

The coupling between the ith and jth mode over the cross section S is given by

21 a
(EgHpg = L(E,ixH,j)-ds - jo fo (Ey; Hy— E g H,) rdr do (3.2)
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Substituting the expressions of the derivatives of the Bessel function, and simplifying

gives for i #

T kcik .
(Ey Hpyp)g = j——chi = %Cj Yja{kci']m(kci a)[FIJm—l(kcj a) —szm+1(kcjd)]

— kg Tl D[F1 Ty (ki @) =By d ki )]} (3.3)

where Y =\ e/ u=1/Z and

F1 =Jk]’YlAlAJ _ki k]ZlBLA_] + ’YZ'YJZ]ALB] +Jle]ZZZ]BLB]

12

The transverse fields of the ith mode, E; and H,;, are normalized by dividing by

(Ey Hy) g )2 where S is the waveguide cross section of radius a

T
B His = 7 Yl (Fy + F) (kg @) 121Gk @) = T Kii )T i @)

— dmF, Jx(k ;@) } (3.5)

The fields, (3.1), will not be a combination of TE and TM modes for the special case of
a perfectly conducting waveguide. The mode amplitudes for the ith mode in (3.1) and
(3.4) are then A; =0 and B; = 1, and A; = 1 and B; = 0 for the TE and TM cases,
respectively. The eigenvalues of the ith mode in a waveguide of radius a, k,; g, are the
roots of the Bessel function and the roots of the first derivative of the Bessel function for
the TM and TE cases, respectively. Equations (3.3) and (3.5) can be further simplified for
the TE-TE, TE-TM, TM-TE, and TM-TM region i - region j mode coupling cases;
however, this would result in a total of ten equations for both the boundary enlargement
and reduction cases whereas (3.3) and (3.5) cover all the cases. It should be noted that
equation (3.3) equals zero for the TM-TE mode coupling case.

For a waveguide structure with an incident TEy; mode (m = 1), only the TE;, and TM,,

modes will be excited at the discontinuities.
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3.3 NUMERICAL RESULTS
The formulation is applied to a thick iris to study the convergence and to verify the
accuracy of the analytic expressions. Also, application is made to the design of iris matched

dielectric windows.

3.3.1 Convergence and Accuracy

Consider a thick circular iris of radius » and length L in a circular waveguide of radius
a, as shown in Fig. 3.1. The iris forms a double discontinuity comprised of a boundary
reduction followed by a boundary enlargement at a distance L.

The optimum ratio of the number of modes should be M/N = a/b, with M = P, where
M, N, and P are the number of modes in regions 1, 2, and 3, respectively [6], [7], [24].
Choosing the number of modes according to this ratio should ensure fast and accurate
results. This is illustrated here by studying the numerical results for an incident TE;; mode.

In Fig. 3.2 and Fig. 3.3, the magnitude of the reflection coefficient is shown as a
function of P for fixed M and N, and as a function of M (P = M) for fixed N, respectively.
It is observed that the reflection coefficient remains essentially constant after P = M in
Fig. 3.2, and after M/N = a/b in Fig. 3.3. This indicates that the predicted optimum ratio of
modes represents a critical value needed for accurate results.

The convergence of the magnitude of the reflection coefficient with different ratios of
MIN (P = M from now on) is shown in Fig. 3.4 through Fig. 3.6 for several values of L/a
and ka. It is clear that the solution converges for all ratios of M/N, but the convergence is
always fastest when M/N = a/b. Also, the rate of convergence is observed to be slower as
the frequency inéreases and less dependent on the ratio of modes as the distance between
the discontinuities L increases.

The reflection and transmission coefficients for decreasing values of L/a are shown in
Table 3.1 and Table 3.2, respectively, where M = N(a/b) = 40. It is observed that the ratio

MI/N has a noticeable effect on the solution as L/a decreases. In the case of an infinitely
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Fig. 3.1. Geometry of a thick iris.
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Fig. 3.2. Magnitude of the reflection coefficient as a function of P with M = N(a/b) = 20,

for a thick iris with @ =2b and ka = 3.2.
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Fig. 3.3. Magnitude of the reflection coefficient as a function of M (P = M) for a thick

iris with @ = 2b, L/a = 0.01, and ka = 3.2.
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Fig. 3.4. Convergence of the magnitude of the reflection coefficient as a function of M

for a thick iris with a = 2b, L/a = 0.01, and ka=24.
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Fig. 3.5. Convergence of the magnitude of the reflection coefficient as a function of M

for a thick iris with @ = 2b, L/a = 0.1, and ka = 2.4.
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Fig. 3.6. Convergence of the magnitude of the reflection coefficient as a function of M

for a thick iris with @ = 2b, L/a = 0.01, and ka = 3.2.
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Table 3.1

Reflection coefficient as a function of L/a for a thick iris with

a=2band ka =3.2.

Lia MIN = a/b MIN =1

107 -0.18947 + j0.44710 ~-0.18518 + j0.44395
1072 -0.10399 + j0.31072 —0.09394 + ;0.29725
10~ —-0.09509 + j0.29387 -0.06417 + j0.24557
1074 —0.09433 + j0.29232 -0.05024 +;0.21846
107> —0.09425 + j0.29173 —-0.03272 + j0.17789
1076 —0.09424 + j0.29215 —0.02935 +j0.16878
0.0 —0.09424 + j0.29215 0.00000 + j0.00000

Table 3.2

Transmission coefficient as a function of L/a for a thick iris with

a=2band ka =3.2.

Lia MIN = alb MIN =1

107! 0.80490 + j0.34110 0.80914 + j0.33751
1072 0.89596 + 0.29982 0.90601 + j0.28628
1073 0.90492 + j0.29278 0.93584 + j0.24448
107 0.90568 + j0.29222 0.94977 +j0.21836
107 0.90575 + j0.29217 0.96729 + j0.17787
107 0.90576 + j0.29216 0.97065 + j0.16878
0.0 0.90576 + j0.29216 1.00000 + j0.00000
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thin iris, the formulation mathematically collapses for M/N = 1 in the sense that (2.30) and
(2.31) become zero and unit matrices, respectively. The numerical results always converge
to the correct solution when M/N = a/b as a result of the linear system being well
conditioned [7].

To verify the accuracy of the formulation, comparison with numerical results calculated
by the moment method [14] are shown in Table 3.3 through Table 3.10. For L less than
0.2 inches, excellent agreement of results are achieved with M = N(alb) = 40. However, as
L increases the number of modes must be reduced to avoid numerical instabilities as U
becomes too ill-conditioned for inversion. Significant disagreement, particularly in the
phase, is observed for large L as the frequency increases and the ratio a/b decreases. In
Table 3.4, Table 3.6, and Table 3.8, the magnitude of the transmission coefficient
decreases to zero as L increases due to the iris region being below cutoff at the operating
frequency. The proposed formulation requires the inversion of one Nx N matrix, with N
shown in the tables, while two 40 x 40 matrix inversions are needed in [14].

The numerical difficulties with the matrix inversions arise from the effect of the
hyperbolic functions in (2.19) and (2.20). As the separation distance between a
discontinuity increases, the highest order modes, which are below cutoff, cause the
hyperbolic functions to become excessively large in that region. As a result, the matrices
(2.32) and (2.34) may be too ill-conditioned for inversion. Reducing the number of modes

used alleviates the problem by omitting the troublesome higher order modes, but the

accuracy of the solution may suffer as already demonstrated. R; is more stable than U since
R has fewer matrix terms with hyperbolic functions. For example, R; would be invertible
in the iris regions specified in the tables when L = 1.0 inch and M = Nf(alb) = 40, while U
is not invertible.

A modified formulation that restricts the higher order mode interaction between
discontinuities for large distances between discontinuities, without compromising the

accuracy, will be presented in Chapter 4.
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Table 3.3
Comparison of the reflection coefficient as a function of L for a thick iris with
a =0.50175 in, b = 0.25 in, and f = 9 GHz.

Moment Method [14] Proposed Formulation

L Magnitude  Phase Magnitude  Phase M N
(inch) (degrees) (degrees)
0.005 0.867 149.8 0.864 149.4 40 20
0.008 0.874 150.4 0.872 150.1 40 20
0.050 0.934 155.7 0.934 155.6 40 20
0.100 0.966 158.6 0.965 158.5 40 20
0.200 0.990 161.0 0.989 160.9 20 10
0.500 1.000 162.0 0.999 161.7 12 6
1.000 1.000 162.0 1.000 161.8 4 2
3.000 1.000 162.0 1.000 151.9 2 1

Table 3.4

Comparison of the transmission coefficient as a function of L for a thick iris with
a =0.50175 in, b = 0.25 in, and f = 9 GHz.

Moment Method [14] Proposed Formulation

L Magnitude  Phase Magnitude  Phase M N
(inch) (degrees) (degrees)
0.005 0.498 59.8 0.503 59.4 40 20
0.008 0.485 60.4 0.489 60.1 40 20
0.050 0.356 65.7 0.358 65.6 40 20
0.100 0.260 68.6 0.261 68.5 40 20
0.200 0.144 71.0 0.145 70.9 20 10
0.500 0.027 72.0 0.027 71.8 12 6
1.000 0.002 72.0 0.002 71.8 4 2
3.000 0.000 75.7 0.000 61.9 2 1
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Table 3.5
Comparison of the reflection coefficient as a function of L for a thick iris with
a=0.50175 in, b = 0.25 in, and f = 12 GHz.

Moment Method [14] Proposed Formulation

L Magnitude  Phase Magnitude  Phase M N
(inch) (degrees) (degrees)
0.005 0.331 108.7 0.328 108.5 40 20
0.008 0.344 109.1 0.340 108.9 40 20
0.050 0.488 113.2 0.486 113.0 40 20
0.100 0.622 116.8 0.620 116.6 40 20
0.200 0.806 122.0 0.803 121.8 20 10
0.500 0.977 127.4 0.976 126.9 8 4
1.000 0.999 128.1 1.000 126.9 4 2
3.000 1.000 128.2 1.000 68.5 2 1

Table 3.6

Comparison of the transmission coefficient as a function of L for a thick iris with
a =0.50175 in, b = 0.25 in, and f = 12 GHz.

Moment Method [14] Proposed Formulation

L Magnitude = Phase Magnitude  Phase M N
(inch) (degrees) (degrees)
0.005 0.943 18.7 0.945 18.5 40 20
0.008 0.939 19.1 0.940 18.9 40 20
0.050 0.873 23.2 0.874 23.0 40 20
0.100 0.783 26.8 0.784 26.6 40 20
0.200 0.593 32.0 0.596 31.8 20 10
0.500 0.211 37.4 0.217 36.9 8 4
1.000 0.034 38.1 0.038 36.9 4 2
3.000 0.000 38.1 0.000 -21.5 2 1
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Table 3.7
Comparison of the reflection coefficient as a function of L for a thick iris with
a =0.50175 in, b = 0.375 in, and f = 9 GHz.

Moment Method [14] Proposed Formulation
L Magnitude  Phase Magnitude  Phase M N
(inch) (degrees) (degrees)
0.005 0.199 100.8 0.196 100.7 40 30
0.008 0.205 100.8 0.202 100.6 40 30
0.050 0.272 99.3 0.270 99.2 40 30
0.100 0.337 97.0 0.336 96.9 40 30
0.200 0.453 92.4 0.450 92.2 16 12
0.500 0.706 82.0 0.701 81.5 8
1.000 0.901 73.4 0.865 61.3
3.000 0.999 68.7 0.999 51.8 1

Table 3.8

Comparison of the transmission coefficient as a function of L for a thick iris with
a =0.50175in, b = 0.375 in, and f = 9 GHz.

Moment Method [14] Proposed Formulation

L Magnitude  Phase Magnitude  Phase M N
(inch) (degrees) (degrees)
0.005 0.980 10.8 0.981 10.7 40 30
0.008 0.979 10.8 0.979 10.6 40 30
0.050 0.962 9.3 0.963 9.2 40 30
0.100 0.941 7.0 0.942 6.9 40 30
0.200 0.892 2.4 0.893 2.2 16 12
0.500 0.708 -8.0 0.713 -8.5 8 6
1.000 0.434 -16.6 0.486 -28.6 4 3
3.000 0.052 -21.3 0.063 —38.2 1 1
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Table 3.9
Comparison of the reflection coefficient as a function of L for a thick iris with
a =0.50175 in, b = 0.375 in, and f = 12 GHz.

Moment Method [14] Proposed Formulation

L Magnitude  Phase Magnitude  Phase M N
(inch) (degrees) (degrees)
0.005 0.006 89.3 0.007 89.4 40 30
0.008 0.005 88.5 0.005 88.7 40 30
0.050 0.014 -102.2 0.014 -102.1 40 30
0.100 0.033 -114.4 0.033 -114.5 40 30
0.200 0.056 -138.6 0.056 -138.6 16 12
0.500 0.040 150.8 0.041 150.9 8 6
1.000 0.067 —146.3 0.067 -144.3
3.000 0.010 -74.6 0.025 107.6 1 1

Table 3.10

Comparison of the transmission coefficient as a function of L for a thick iris with
a =0.50175in, b = 0.375 in, and f = 12 GHz.

Moment Method [14] Proposed Formulation

L Magnitude  Phase Magnitude = Phase M N
(inch) (degrees) (degrees)
0.005 1.000 -0.7 1.000 0.7 40 30
0.008 1.000 -1.5 1.000 -1.5 40 30
0.050 1.000 -12.1 1.000 -12.1 40 30
0.100 0.999 -24.4 0.999 —24.4 40 30
0.200 0.998 —48.6 0.998 —48.6 16 12
0.500 0.999 -119.2 0.999 -119.2 8 6
1.000 0.998 123.7 0.998 125.8 1 1
3.000 1.000 15.4 1.000 17.6 1 1
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3.3.2 Application to Iris Matched Dielectiric Windows

Dielectric windows are used to isolate gas filled or vacuum regions in waveguides. The
reflection coefficient of the dielectric window can be reduced by placing an iris on both
sides of the window. Figure 3.7 shows an iris matched dielectric window in a circular
waveguide of radius a where the dielectric window has relative permittivity &, and thickness
L, and the irises have inner radius b and thickness L;.

Design curves presented by Carin et al. [18] show the iris radius b that minimizes the
reflection coefficient of an incident TE;; mode for a given a, €,, L, L;, and operating
frequency f. The reflection coefficient of the dielectric window was calculated by cascading
the generalized scattering matrices of the four waveguide discontinuities. Ten modes were
used for the field expansions in each waveguide region, but Fig. 3.4 and Fig. 3.6 in the
previous section show that this may be inadequate number of modes to account for the
higher mode interaction of closely spaced discontinuities. A better choice would be to use a
higher number of modes in the ratio M/N = a/b where M is the number of modes in the
waveguide and dielectric regions and N is the number of modes in the iris regions.

To demonstrate the influence of the higher order modes, comparison with results
calculated by the proposed formulation using M = N(a/b) = 30 is shown in Fig. 3.8. All
dimensions are normalized to the waveguide radius a, and the frequency is normalized to
the cutoff frequency f, of the TE;; mode. The optimization was performed using the
ZXGSN minimization routine from the International Mathematical and Statistical Library
(IMSL) [25]. It is observed that the results for L = 0.04a are within 1.2 percent, but an
improvement of as much as 4.2 percent can be realized by increasing the number of modes
for L = 0.01a. The frequency response of the matched window designs from Fig. 3.8 are
shown in Fig. 3.9 through Fig. 3.12. Design curves for L; = 5L are shown in Fig. 3.13

with the corresponding frequency response curves shown in Fig. 3.14 through Fig. 3.17.
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Fig. 3.7. Geometry of an iris matched dielectric window.
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The choice of ten modes in each waveguide region was made in [18] partially on the
basis of maintaining a reasonable computational time. Using a larger number of modes, as
done here, would have dramatically increased the computation time for the optimization
procedure. Table 3.11 shows the size and number of full complex matrix inversions
required by the proposed method compared with cascading as in [18]. It is assumed that
the dielectric region is bisected with an electric and magnetic wall to use the even and odd
mode excitation analysis about the symmetry plane. The proposed formulation proves to be
a more efficient method by requiring only two relatively small matrix inversions, compared
to six matrix inversions in [18]. This allows more modes to used than in [18] without a
large increase in computation time.

In Table 3.12, the minimum number of full complex matrix multiplications and
inversions required to calculate the scattering parameters for N discontinuities is compared
with the commonly used cascading techniques. The proposed formulation has a definite
advantage over the two cascading techniques by requiring fewer matrix multiplications and
inversions. Compared to the proposed formulation, cascading generalized scattering
matrices (S-Matrix) [8] requires almost twice as many matrix multiplications and three
times as many matrix inversions, and the transmission matrix method (T-Matrix) [5]
requires almost 60 percent more matrix multiplications and two extra matrix inversions.
The proposed formulation has the advantage over the transmission matrix method in being
compatible with the criterion for avoiding the relative convergence phenomenon, which
also gives the fastest convergence, and is numerically stable when the total length of the
waveguide sections, Ly + L, +. . .+ Ly, becomes large. A transmission matrix formulation
compatible with the criterion for avoiding the relative convergence phenomenon has been

presented in [8], but requires 2(V-1) additional matrix multiplications compared with [5].
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Table 3.11
Comparison of number and size of full matrix inversions needed for

matched dielectric window analysis.

Number and Size of Inversions

Proposed Formulation two NxN

two (M +N)x (M +N)
Cascading [18] two MxM
two NxN

Table 3.12

Comparison of the minimum number of full matrix multiplications and
inversions needed to calculate S3; and S,y for N discontinuities.

|, T SN S B

Proposed S-matrix [§] T-matrix [5]
Formulation
Mult Inv Mult Inv Mult Inv
7 1 13 3 11 3
12 2 28 6 19 4
17 3 43 9 27 5
22 4 58 12 35 6
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CHAPTER 4
IMPROVED MODELLING WITH RESTRICTED
HIGHER ORDER MODE INTERACTION

In order to extend the range of applicability of the general method in Chapter 2, for
very large distances between discontinuities, a modified formulation is presented in this
chapter. Consider the multiple-step discontinuities shown in Fig. 2.1. There are N
transverse discontinuities with N+1 waveguide regions. An arbitrary multi-mode incident
field is assumed from waveguide 1.

In the Chapter 2 formulation, all the modes retained in each region after truncation were
assumed to be interacting with the adjacent discontinuities. The effect of the higher order
modes can result in numerical instabilities as the separation distance between discontinuities
increases. Reducing the number of modes alleviated the numerical difficulties by
eliminating the destabilizing higher order modes in the truncation, but the accuracy of the
solution may be compromised by the reduction in the number of modes.

The problem can be reformulated so that the modes allowed to interact are restricted,
without compromising the accuracy, by classifying the modes in each region as interacting
or non-interacting. The interacting modes will be defined as the modes that effectively
interact between discontinuities, which includes all the propagating modes and the lower
order evanescent modes up to a level which is to be determined. The non-interacting modes
will be defined as the higher order evanescent modes that are excited at a discontinuity but
do not effectively interact with the adjacent discontinuities. In this modified formulation, a
finite number of non-interacting modes will be effectively matched terminated at the
discontinuities, thereby eliminating their destabilizing effect. The total number of modes in
each region can be chosen as large as needed to accurately describe the scattering at each
discontinuity.

This modified formulation parallels the analysis in Chapter 2 with the exception that the

modes in each region are partitioned into the interacting and the non-interacting cases.
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4.1 MODAL EXPANSIONS OF THE FIELDS
The total transverse electric and magnetic fields can be written in modal form as

follows:

in the 1st region

Eq=Y, (A, ¢ 20 4 gy MinC+20) g
n

Hy =3, (A, @) g, @)y, @

nm

in the jthregion (j=2,..., N)

Etj _ 2 ( Ajm e—ij(z-;-z._l) + Bjm eij(z+Zj)) €
m

H;=Y (4, ¢ %0 B, Jlm@ D)), 4.2)
m

and in the N+1th region

_ -, z
Eina= 2 Ansime N Zen g

m

~
Hiya = Avsime NImZhy o (4.3)

m

A;y, and B,,, are the forward and the backward complex coefficients, respectively, of the
mth mode in the ith region, vy, is the propagation constant, and e;,, and k;  are the
corresponding transverse electric and magnetic field functions of the mth mode. The modal

field functions form an orthonormal set, i.e.,
<eim, hin)gi = _’. (eim X hin)'ds = 8mn (4~4)
S

where S; is the ith waveguide cross section, and §,,, is the Kronecker delta.
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4.2 BOUNDARY CONDITIONS AT THE DISCONTINUITY PLANES

At each discontinuity plane, the transverse fields must be continuous over each aperture
and the tangential electric field must be zero on the walls. The continuity of the transverse
electric and magnetic field intensities over each aperture cross section are expressed as

follows:

at z =—“Zl

2 (Aln +Bln)eln = Z (A2n + BZn e_yanz)eZn + z A2p e?.p

n n D
Y (A1, -B)hy, = Y, (43, -By,e L)y, 4 D Ay by, (45)
n n p

atz=-z (j=2,...,N)

Y, (4, e inly 4 Bj)e;, + D Bipep =
n 14

Yoot L:
z (Aj+1,n +Bj e Tt ]+1)ej+1,n + 2 Ajlp €stp
n p

Y, (4, ¢l ~Bj)hy — Y B by, =
n p

~Yiin  L:
> (4,1, ~Bjine P h 4 D Ay bty (46)
n p

andatz=0

S (A, e Wnln 4 Byp)ey, + > By, ey, = > ANiineNsin
n p n

Y (Ay, e Wnln ~ By hy, - D Buphwy = Y Aysinbyi, 47
n p n

where

LiE-~Zi+Zi_1 (i=2,...,N). (4'8)
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The n and p subscripts refer to the interacting and the non-interacting modes, respectively.
Since the non-interacting modes are not allowed to interact with the adjacent
discontinuities, only the pth modes excited away from each discontinuity are included in

the summations.

4.3 MATRIX EQUATIONS FOR THE DISCONTINUITIES

The orthogonality of the modes is applied to the field continuity equations, (4.5)-(4.7),
to form linear equations that are truncated and expressed in matrix form. The boundary
enlargement and reduction discontinuity cases are handled separately in order to properly

include the boundary condition on the transverse walls [17], [18].

4.3.1 Boundary Enlargement Discontinuities

For the boundary enlargement case, at each discontinuity we take the vector product of
the terms in the electric field continuity equation with a magnetic mode function from the
following waveguide section, and the vector product of the terms in the magnetic field
continuity equation with an electric mode function from the preceding waveguide section.

Equations (4.5)-(4.7) become:

atz = —Z1

Y (A1, + By, h2m>51 = Y (Fy, cosh(Y,, Ly) + D, sinh(yy, Ly)){es, homls,

n n

+ D Ag ey ko), (m=1,2,3.)
P
Y (A1, =By, Xeim h1n>51 = 3 (Dy, cosh(Yy, Ly) + Fy, sinh(Yy, L)) eqm, h2n>51
n n

+ DAz (e hap)s  (m=1,2,3.), (4.9)
p
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atz=-z; (j#1,N)

Z Cjn> Bt m) 2 Bjp {¢jp, J+1,m>SJ- =
2 ( j+ln COSh('Y]+1 n ]+1) + DJ+1 n Slnh(’Y]+1 n ]+1))< j+1ln hj+1,m>5'j+1

+ ZAJ'H,p <ej+1,p’ hj+1,m>5j+1 m=1,2,3..)
P

2 Dy {ejm> Bjn)g I 2 Bjy (€jm» hjp)Sj =
p
2 (Dji1,n €OSh(ji1  Ljsnt) + Fia1 Sinh(Yj41, Ljs1) X€jns hj+1,n>5j
n
+ z A]+1p< Jms ]+1 P>S (n=1,2,3.), (4.10)
andatz=0
z Fyp {€nps hN+1,m>SN + Z BNp <eNp> hN+1,m>SN =
n p

2 AN+1,n <eN+1,n’ hN+1,m>SN+1 (m=1,2,3..)
n

Z DNn <eNm’ hNn>SN - Z BNp <eNm> th>SN =
n p

2 ANt (e By ads,  (m=1,2,3.) (4.1D)
n
where
D, =A,e 'mli_p, (4.12)

in

F,=A;, e inlitp. (4.13)
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The infinite series are truncated to M; modes in each ith region, where N ; of the modes

are classified as interacting modes. Applying the mode orthogonality, equations (4.9)-

(4.11) can be written in matrix form:

at z = —zy
G (A1 +B;)=CyF,+5,D,
Hi(Aj+B;)=4,
A -B;= G1 (C2Dy+5,Fy) +H1 Ao,

atz=-z; (j#1,N)

G Ej+ BiBj = Ciu1 Ejuy + Sju1 Dy
HiFj+KiB;j=4;,
1—)-j=§jT(§;+1D]+1+§,+1 J+1)+H Aiiq
( Di+Si ]+1)+K A
andatz=0
GnEyn+PyBy=AN.
DN=Q£AN+1
_EN=££A—N+1

(4.14)

(4.15)

(4.16)

where the T superscript indicates matrix transpose, A, is the known incident modal

coefficient column matrix of M; elements, B; and Ay, are the column matrices of M 1 and

My, elements of the unknown modal coefficients for the fields reflected in region 1 and

transmitted in region N+1, respectively, A; and B; are the forward and the backward

— 49 _



non-interacting modal coefficient column matrices in region i (i # 1, N), respectively, of

M; - N; elements, and

Q—l‘ = [ Aim e_YimLi —Bim M;x1 (417)
F-:[A. VimLi | g, } 4.18
i im € T 5y M;x 1 ( . )
Ci=L 8y coshrn Ly 1, ), (4.19)
Si= [ 8y sinhvin Ly I, | (4.20)
gi = [ <ein’ hi+1,m>5i ]Ni+1 x M; 4.21)
Bi= i ivrnds, L s r, -y (4.22)
=i biads Jor n e, (4.23)
Ki= | ip, hi+1’m>5i ](Mi+1 -Ni1) x (M; =Ny (4.24)

4.3.2 Boundary Reduction Discontinuities

For the boundary reduction case, at each discontinuity we take the vector product of the
terms in the electric field continuity equation with a magnetic mode function from the
preceding waveguide section, and the vector product of the terms in the magnetic field
continuity equation with an electric mode function from the following waveguide section.

Equations (4.5)-(4.7) become:

at z =-Z

2 (Aln + Blnxeln’ hlm)sl = Z (F?,n COSh(YZn LZ) + D2n Sinh(’YZn LZ))<82n’ h1m>52
n n

+2%ﬂ%ﬁm® (m=1,2,3.)
p
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> (A1, —BiXe,n, Rins, = Y. (D3, cosh(Yy, Ly) + Fy,, sinh(y,,, Ly) Xey,n, honls,
n n
+ Y Ay, (eas hopds, (m=1,2,3.), (4.25)
p
atz=-z; (j# 1, N)
;an s Bjmls, + % Bip (€jp> Bjmls, =
Z (F j+1n COSW(Yiyy n Liy) + Djyq sinh(Y;,4 , Lj+1))<ej+1,m hjm>5j+1
n

+ 2 Ajitp €ja1ps hjm>5j+1 (m=1,2,3.)
P

2 D et il = X Bjp it B, | =
n p
Z (Dj+1,n COSh('Yj+1,n L)+ Fiiin Sinh(Yjﬂ,n Lj+1))<ej+1,m’ hj+1,n>5j+1
n
+ XA Ceim Binpds, m=1,2,3.), (4.26)
p
andatz=0
2 Fry, <eNn9 th)gN + 2 BNp <eNp, th)sN =
n P

2 AN+1,n <eN+1,n’ th>SN+1 m=1,2, 3.)

n

Z DNn <eN+1,m’ hNn>SN+1 - Z BNP <eN+17m’ hNP>SN+1 =
n p

> Anitn (eNstm hyainlg,,, (m=1,2,3.) 427)

n

where D;, and F;, are defined in (4.12) and (4.13), respectively.
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As before, the infinite series are truncated to M, ; modes in each ith region, where N; of
the modes are classified as interacting modes. Applying the mode orthogonality, equations

(4.25)-(4.27) can be written in matrix form:
atz = —z;
A+ By =__Q1T(£2E2 +8,D, ) + 2{1—4-2
1=B1)=C,Dy+5,F,
Hy (A;-B;) = A, (4.28)

atz=-z; (j#1,N)

II

( +1—-]+1+_SJ+1 J+1)+HA

T
=P; (Cjs1 Eje1 + Siuy +1)+KA

GjD;-P;B;j=C;yy Djiy + 841 Ejig

ngj —gjﬁj = A_j+1, (4~29)
andatz=0
T
En=GnAyyg
T
By = QNANH
GnDy —PyBy=Ayy, (4.30)

where the quantities are described in (4.17)-(4.20), except in the boundary reduction case

Gi=[Kerimtis, 1y o (431)

b= [ (€i+1,m> hiP>Si+1 ]Ni+1 x (M; —N;) (4.32)
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I:{i B [ <ei+1’m5 kin>Si+1 ](Mi+1 "Ni+1) S Mi (4'33)

K= | itm hiP)SM ](Mi+1 =Ni) x (M; =Ny 1) (4.34)

The sets of linear matrix equations for an arbitrary combination of boundary
enlargement and reduction discontinuities can be compiled by considering the

corresponding matrix equations in (4.14)-(4.16) or (4.27)-(4.30).

4.4 SCATTERING MATRIX FORMULATION

In scattering matrix formulation, B; and Ay, ; can be expressed as

By =844
Ay =51 44 (4.35)

where S;jand §,; are the complex reflection and transmission matrices for the entire
structure, respectively. Solving the sets of linear matrix equations for an arbitrary series of

boundary enlargement and reduction discontinuities, the scattering matrices are obtained as

(et ) [(1-8{H,) 2610, 076, (1+ 8 H, )], fora 1t

discontinuity boundary enlargement (B.E.)
Sy = (4.36)
(et b)) [(1-18,) +26] QU6 (1+ 8 H, )] fora 15t

discontinuity boundary reduction (B.R.)

Sy =2 ({+££§N)_1(§N§1_vl )(éan §ﬁ£1)'--(é3 5_51 ) Q/\z Q_l_Q_l (!+{i_{l__1[1 )

(4.37)

where G,, P;, H;, and K; are described in equations (4.21)-(4.24) or (4.31)-(4.34) for the
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ith discontinuity B.E or B.R. case, respectively, [ is the unit matrix,

( G+ Gy ({ + Qirﬁl )_1§1T§2 )
+(8+ G (1+HH )61 6 ) (8 (1+ K K, ), + 65 0, 851 6, ),
for the 1st and 2nd discontinuities both B.E. or B.R.
(4.38)

Iz
I

(8,+6,(1+H H ) '¢T¢c,)

+(C+ G (1+H{H, )6l 8, )(E (1+ KL K, ) ', + 61 0,851 6,),

otherwise.

9; and R; are M; x M; matrices calculated from the following recurrence formulas:

S+ Ci(H (I+K K,)"H; +GTQ10y Rik G; ), for the ith and i+1th
discontinuities both B.E. or B.R.

9= (4.39)
Ci+ 8 (i (1+ KT K ) H; + G 011 Rt G:), otherwise
C+8 (BN (1+ KT K 'H, + 670, R 6)), for the ith and i+1th
discontinuities both B.E. or B.R.
R; = (4.40)
g +éi ( l—_iiT(! +.-[§iT§i )_llz'li +§A§rgi+1 ﬁ?& C=/;\i )], otherwise
with
6=+ b (1+K K) K] B, (@.41)
é\i =S+ Py (I+K 1K1 )'PL, (& (4.42)
Qi =C;+P ( I+ 52{1 K1 )_151{1 S; (4.43)
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Sy +Cy Gy (1+ Py PY ) Gy, for the N-1th and Nth discontinuities

both B.E. or B.R.
Oy = (4.44)

Cn + Sy 215 ( I+Py 517\; )_1§N, otherwise

A A

Cy +Sy Gy (1+PyPh ) Gy, for the N-1th and Nth discontinuities

both B.E. or B.R.
Ry = (4.45)

:*S:/_\N +§N g%(l‘i‘g]vgg)_lg]v, otherwise.

In equations (4.36)-(4.45), the following identities can be used for Z=P, H;, orK;:

2(1+2'2 )" = 1+ (1422 )" (1-2'2) (4.46)
(1+2'2)'=1-2'(1+22")'z (4.47)
(1+z2')'=1-z(1+22)7 2" (4.48)

Proofs for the identities are shown in the Appendix.
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4.5 NUMERICAL RESULTS FOR CIRCULAR WAVEGUIDES

A thick iris in a circular waveguide is studied quantitatively to determine a criterion for
choosing the number of interacting modes in circular waveguides. Numerical results for a
thick iris in a circular waveguide are compared with data available in the literature to verify
the accuracy of the formulation. The technique is also applied to the analysis of step

transformers in circular waveguides.

4.5.1 Convergence and Accuracy

Consider a thick circular iris of radius b and length L in a circular waveguide of radius
a, as shown in Fig. 3.1. In the previous chapter, it was found that the optimum ratio of the
number of modes for good convergence is M/N = a/b where M and N are the total number
of modes in waveguide regions and iris region, respectively. However, the number of
interacting modes in the iris region P must be chosen sufficiently large enough to account
for the higher order mode interaction between the discontinuities. A criterion for choosing
the number of interacting modes can be established by studying the numerical results for an
incident TE{; mode.

In Fig. 4.1 and Fig 4.2, the magnitude of the reflection coefficient is shown as a
function of P, with M = N(a/b) = 40, for several values of L/a and ka. It is observed that
the reflection coefficient typically converges when the evanescent modes with yL < 4 are
allowed to interact between the discontinuities in the iris region. All the propagating modes
must be included in the truncations. Although good results may be obtained using fewer
modes, this criterion serves as a general guideline for choosing the number of interacting
modes in circular waveguides. Instability may occur if too many higher order modes are
allowed to interact as can be seen for L/a = 0.4 in the figures. Comparison with numerical
results calculated by the moment method [14] are shown in Table 4.1 through Table 4.8.
The results are in excellent agreement for all values of L using M = N(a/b) = 40 and P as

shown in the tables.
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Fig. 4.1. Magnitude of the reflection coefficient as a function of P for a thick iris with

a=1.338b and ka =2.4.
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Fig. 4.2. Magnitude of the reflection coefficient as a function of P for a thick iris with

a=1338b and ka =3.2.
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Table 4.1
Comparison of the reflection coefficient as a function of L for a thick iris with
a =0.50175 in, » = 0.25 in, and f = 9 GHz.

Moment Method [14] Proposed Formulation

L Magnitude  Phase Magnitude  Phase P
(inch) (degrees) (degrees)
0.050 0.934 155.7 0.934 155.6 12
0.100 0.966 158.6 0.965 158.6 6
0.200 0.990 161.0 0.989 160.9 3
0.500 1.000 162.0 1.000 162.0 1
1.000 1.000 162.0 1.000 162.0 1
3.000 1.000 162.0 1.000 162.0 1

Table 4.2

Comparison of the transmission coefficient as a function of L for a thick iris with
a =0.50175 in, b = 0.25 in, and f = 9 GHz.

Moment Method [14] Proposed Formulation

L Magnitude  Phase Magnitude = Phase P
(inch) (degrees) (degrees)
0.050 0.356 65.7 0.358 65.6 12
0.100 0.260 68.6 0.261 68.6 6
0.200 0.144 71.0 0.145 70.9 3
0.500 0.027 72.0 0.027 72.0 1
1.000 0.002 72.0 0.002 72.0 1
3.000 0.000 75.7 0.000 72.0 1
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Table 4.3
Comparison of the reflection coefficient as a function of L for a thick iris with
a=0.50175 in, b = 0.25 in, and f = 12 GHz.

Moment Method [14] Proposed Formulation

L Magnitude  Phase Magnitude  Phase P
(inch) (degrees) (degrees)
0.050 0.488 113.2 0.486 113.0 12
0.100 0.622 116.8 0.620 116.6 6
0.200 0.806 122.0 0.804 121.9 3
0.500 0.977 127.4 0.977 127.3 1
1.000 0.999 128.1 0.999 128.0 1
3.000 1.000 128.2 1.000 128.0 1

Table 4.4

Comparison of the transmission coefficient as a function of L for a thick iris with
a =0.50175 in, b = 0.25 in, and f = 12 GHz.

Moment Method [14] Proposed Formulation

L Magnitude  Phase Magnitude  Phase P
(inch) (degrees) (degrees)
0.050 0.873 23.2 0.874 23.0 12
0.100 0.783 26.8 0.784 26.6 6
0.200 0.593 32.0 0.594 31.9 3
0.500 0.211 37.4 0.212 37.3 1
1.000 0.034 38.1 0.034 38.0 1
3.000 0.000 38.1 0.000 38.0 1
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Table 4.5
Comparison of the reflection coefficient as a function of L for a thick iris with
a =0.50175 in, b = 0.375 in, and /= 9 GHz.

Moment Method [14] Proposed Formulation

L Magnitude  Phase Magnitude  Phase P
(inch) (degrees) (degrees)
0.050 0.272 99.3 0.270 99.2 15
0.100 0.337 97.0 0.336 96.9 10
0.200 0.453 92.4 0.452 92.3 5
0.500 0.706 82.0 0.705 81.9 2
1.000 0.901 73.4 0.900 73.2 1
3.000 0.999 68.7 0.999 68.5 1

Table 4.6

Comparison of the transmission coefficient as a function of L for a thick iris with
a =0.50175 in, b = 0.375 in, and f = 9 GHz.

Moment Method [14] Proposed Formulation

L Magnitude  Phase Magnitude  Phase P
(inch) (degrees) (degrees)
0.050 0.962 9.3 0.963 9.2 15
0.100 0.941 7.0 0.942 6.9 10
0.200 0.892 2.4 0.892 2.3 5
0.500 0.708 -8.0 0.709 -8.1 2
1.000 0.434 -16.6 0.435 -16.8 1
3.000 0.052 -21.3 0.052 -21.5 1
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Table 4.7
Comparison of the reflection coefficient as a function of L for a thick iris with
a =0.50175 in, b = 0.375 in, and f = 12 GHz.

Moment Method [14] Proposed Formulation

L Magnitude  Phase Magnitude  Phase P
(inch) (degrees) (degrees)
0.050 0.014 -102.2 0.014 -102.1 15
0.100 0.033 -114.4 0.033 -114.4 10
0.200 0.056 -138.6 0.056 —-138.6 5
0.500 0.040 150.8 0.040 150.8 2
1.000 0.067 —-146.3 0.067 -146.3 1
3.000 0.010 ~74.6 0.010 ~74.7 1

Table 4.8

Comparison of the transmission coefficient as a function of L for a thick iris with
a =0.50175 in, b = 0.375 in, and f = 12 GHz.

Moment Method [14] Proposed Formulation

L Magnitude  Phase Magnitude  Phase P
(inch) (degrees) (degrees)
0.050 1.000 -12.1 1.000 -12.1 15
0.100 0.999 —24.4 0.999 -24.4 10
0.200 0.998 -48.6 0.998 ~48.6 5
0.500 0.999 -119.2 0.999 -119.2 2
1.000 0.998 123.7 0.998 123.7 1
3.000 1.000 15.4 1.000 154 1
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4.5.2 Application to Step Transformers

Figure 4.3 shows step transformers that are used as transitions between waveguides of
different dimensions. The dimensions for two- and four-section quarter-wave transformers
in circular waveguides, designed by Sabatier ez. al. [26], are given in Table 4.9.
Comparison with numerical results for the voltage standing wave ratio (VSWR) of the two-
and four-section transformers, calculated using the modal analysis technique with
cascading [26], are shown in Fig. 4.4 and Fig. 4.5, respectively. Excellent agreement of
results are achieved using a total of twenty modes in each region where three modes in each

transformer section are interacting modes.
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Fig. 4.3. Geometry of a circular waveguide step transformer.
a) two-section transformer

b) four-section transformer

— 64—



Table 4.9

Dimensions for step transformer designs.

(in cm)

Two-section Four-section

Transformer Transformer
1 1.1165 1.1165
Ty 1.1360 1.1210
3 1.1965 1.1415
T4 1.3400 1.1685
Fs 1.2090
T's 1.3400
L 1.3610 1.3990
L, 1.2410 1.3480
L,y 1.2930
Ly 1.2270
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1.6

Proposed method

o Sabatier et. al.

VSWR

f(GHz)

Fig. 4.4. VSWR of a two-section transformer with dimensions as in Table 4.9.
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VSWR

1.3

Proposed method

° Sabatier et. al.

f (GHz)

Fig. 4.5. VSWR of a four-section transformer with dimensions as in Table 4.9.
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CHAPTER 5§
CONCLUSIONS AND RECOMMENDATIONS

In this thesis, a general solution for the scattering from multiple discontinuities in
waveguides has been presented. The global scattering matrices are calculated by
simultaneously solving for the interaction between the discontinuities using a recurrence
procedure rather than by cascading individual discontinuities. Compared with the
commonly used cascading techniques, the proposed formulation has a significant
computational advantage by requiring fewer matrix multiplications and inversions for the
calculation of the scattering matrices.

In Chapter 3, the formulation was applied to step-discontinuities in circular waveguides
for quantitative studies. It was found that the ratio of the number of modes in each region
should be chosen approximately equal to the ratio of the waveguide cross section
dimensions to ensure a very rapid convergence of results. In the case of closely separated
discontinuities, this choice for the mode ratio is critical for achieving accurate results. The
accuracy of the proposed formulation has been confirmed by comparing numerical results
for a thick iris in a circular waveguide with data available in the literature. The computation
for the thick iris required only one relatively small matrix inversion while two 40 x 40
matrix inversions were required for the moment method solution [14].

Previously published designs for iris matched dielectric windows [18] were calculated
using a relatively small modes that was insufficient to account for the higher order mode
interaction of closely spaced discontinuities. By using a larger number of modes in the ratio
of the dimensions, designs have been improved by as much as 4.2 percent. The frequency

response for the improved designs have also been calculated and presented.
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The analysis in Chapter 2 takes into account the near field coupling and higher order
mode interaction between discontinuities. However, the formulation has been modified in
Chapter 4 to eliminate the coupling of the higher order modes that do not effectively interact
with the adjacent discontinuities. This extends the applicability of the formulation to cases
with large separation distances between discontinuities. For the linear dimensions
considered, the evanescent modes with YL < 4 were found to be effectively interacting
between the discontinuities and should be included in the truncations. Numerical results for
a thick iris in a circular waveguide and for multiple-step transformers in circular
waveguides have been compared with data available in the literature to confirm the accuracy
of the modified formulation.

Although only step-discontinuities in circular waveguides have been discussed in this
thesis, the formulation can be applied to general transverse discontinuities in waveguides of
any cross section. The conditions for good convergence for waveguides of other cross
section would be expected to be similar to the criterion described here, but this needs to be

verified.
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APPENDIX
IDENTITIES FOR COUPLING MATRICES

Consider the matrix equations for a single boundary reduction discontinuity

T

>

1 +B1=2

=

2

(4;-

(i)

1)= By )

IIN

where A, is the incident excitation, and B, and B, are the unknown reflected and

transmitted coefficients, respectively. Solving for B; and B, it can be shown that

I+2'2 )" Z A @

1-(1+2'2 )" (1-2'2 ) =21+2"2 )" ©
or
1+(1+2'2 ) (1-2'z )= 2-22"(1+2'2)7'2 @
From the left hand side of (4), it can be shown that
1+(1+2'2 )" (1-2'2 )= 2(1+2'2 )" (5)
Comparing (4) and (5), it is apparent that
(1+2'2 ) =1-2"(1+2'2 )2 (©)

From the matrix equations for a single boundary enlargement, it can be shown that (5)

and (6) are valid for Z replaced by Z', where Z = G, P, H, K.

—70 —



REFERENCES

G. Matthaei, L. Young, and E. M. T. Jones, Microwave Filters, Impedance-

Matching Networks, and Coupling Structures. New York: McGraw-Hill, 1964.

G. L. James, "Analysis and design of TE;;-to-HE; corrugated cylindrical
waveguide mode converters," IEEE Trans. Microwave Theory Tech., vol. MTT-29,

no. 10, pp. 1059-1066, Oct. 1981.

K. Raghavan, A. D. Olver, and P. J. B. Clarricoats, "Compact dual-mode dielectric

loaded horn," Electronics Letters, vol. 22, no. 21, pp. 1131-1132, Oct. 9, 1986.

T. S. Chu and T. Itoh, "Generalized scattering matrix method for analysis of
cascaded and offset microstrip step discontinuities," IEEE Trans. Microwave Theory

Tech., vol. MTT-34, no. 2, pp. 280-284, Feb. 1986.

A. S. Omar and K. Schiinemann, "Transmission matrix representation of finline
discontinuities," IEEE Trans. Microwave Theory Tech., vol. MTT-33, no. 9, pp.
765-770, Sept. 1985.

R. Mittra and S. W. Lee, Analytical Techniques in the Theory of Guided Waves.
New York: Macmillan, 1971.

M. Leroy, "On the convergence of numerical results in modal analysis," IEEE Trans.

Antennas Propagat., vol. AP-31, no. 4, pp. 655-659, July 1983.

R. R. Mansour and R. H. MacPhie, "An improved transmission matrix formulation
of cascaded discontinuities and its application to E-plane circuits," IEEE Trans.

Microwave Theory Tech., vol. MTT-34, no. 12, pp. 1490-1498, Dec. 1986.

—71 -



10.

11.

12.

13.

14.

15.

16.

F. Alessandri, G. Bartolucci, and R. Sorrentino, "Admittance matrix formulation of
waveguide discontinuity problems: computer-aided design of branch guide directional
couplers," IEEE Trans. Microwave Theory Tech., vol. MTT-36, no. 2, pp. 394-403,
Feb. 1988.

T. E. Rozzi and W. F. G. Mecklenbriuker, "Wide-band network modeling of
interacting inductive irises and steps," IEEE Trans. Microwave Theory Tech., vol.

MTT-23, no. 2, pp. 235-245, Feb. 1975.

R. De Smedt and B. Denturck, "Scattering matrices of junctions between rectangular

waveguides," IEE Proc., vol. 130 Pt. H, no. 2, Mar. 1983.

A. K. Hamid, 1. R. Ciric, and M. Hamid, "Moment method solution of double step
discontinuities in waveguides," Int. J. Electronics, vol. 65, no. 6, pp. 1159-1169,

1988.

A. Datta, B. N. Das, and A. Chakraborty, "Moment method formulation of thick
diaphrams in a rectangular waveguide," IEEE Trans. Microwave Theory Tech., vol.

MTT-40, no. 3, pp. 592-595, Mar. 1992.

R. W. Scharstein and A. T. Adams, "Galerkin solution for the thin circular iris in a

TE;{-mode circular waveguide," IEEE Trans. Microwave Theory Tech., vol. MTT-
36, no. 1, pp. 106-113, Jan. 1988.

P. J. B. Clarricoats and K. R. Slinn, "Numerical solution of waveguide-discontinuity

problems," Proc. IEE, vol. 114, no. 7, pp. 878-886, July 1967.

P. R. Huckle and P. H. Masterman, "Analysis of a rectangular waveguide junction
incorporating a row of rectangular posts," Electronics Letters, vol. 5, no. 22, Oct.

30, 1969.

—72 -



17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

A. Wexler, "Solution of waveguide discontinuities by modal analysis," IEEE Trans.

Microwave Theory Tech., vol. MTT-15, no. 9, pp. 508-517, Sept. 1967.

L. Carin, K. J. Webb, and S. Weinreb, "Matched windows in circular waveguide," IEEE
Trans. Microwave Theory Tech., vol. MTT-36, no. 9, pp. 1359-1362, Sept. 1931.

G. Gesell and 1. R. Ciric, "Scattering from double discontinuities in circular

waveguides," IEEE Antennas Propagat. Soc. Int. Symp., Chicago, July 1992.

G. Gesell and L. R. Ciric, "A novel recurrence modal analysis formulation for
multiple waveguide discontinuities," Proc. Antennas and Applied Electromagnetics

Symp., University of Manitoba, Winnipeg, Canada, Aug. 1992.

G. Gesell and I. R. Ciric, "Recurrence modal analysis for multiple waveguide
discontinuities and its application to circular structures," IEEE Trans. Microwave

Theory Tech. (submitted).

R. E. Collin, Field Theory of Guided Waves. New York: McGraw-Hill, 1960.

A. Z. Elsherbeni, J. Stanier, and M. Hamid, "Eigenvalues of propagating waves in a
circular waveguide with an impedance wall," IEE Proc., vol. 135, Pt. H, no.1, Feb.

1988.

P. H. Masterman and P. J. B. Clarricoats, "Computer field-matching solution of
waveguide transverse discontinuities," Proc. IEE, vol. 118, no. 1, pp. 51-63, Jan.

1971.

International Mathematical and Statistical Library, Problem Solving Software System

for Mathematical and Statistical Fortran programming, 1985.

C. Sabatier, R. Behe, and P. Brachat, "Approximate formulas for step-discontinuities

in circular waveguides," Electronics Letters, vol. 5, no. 3, Feb. 1, 1990.

—73—



