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ABSTR.ACT

A general formulation for the scattering from multiple discontinuities in waveguides is

presented in this thesis. The global scattering matrices are derived from the coupled sets of

truncated iinear equations obtained by expanding the corresponding fields in terms of

vector eigenfunctions and imposing the boundary conditions at each junction. The analysis

takes into account the near field coupling and higher order mode interaction between the

discontinuities. A reclurence procedure used in derivation of the scattering matrices gives

the proposed formulation a significant computational advantage over the commonly used

cascading techniques. The conditions for a good overall conveÍgence are illustrated for

step-discontinuities in circular waveguides. Numerical results are presented for a thick iris

in a circular waveguide and for multiple-step transformers in circular waveguides.

Improved designs for iris matched dielecnic windows are also calculated and presented.
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CF{APTER 1

INTRODUCTION

The analysis of waveguide discontinuities is a classic electromagnetic theory and

microwave engineering problem with application to the design of microwave componenrs

and antennas. Multiple-step discontinuities in waveguides are encountered in filters,

transformers, fuises, directional couplers [1], mode converters l2l, and the modelling of

horn antennas [3].

Structures with multþle waveguide discontinuities are typically analyzed by cascading

individual discontinuities. Methods for cascading generalized scattering maffices are

described by James [2], and Chu and Itoh [4]. Cascading can also be performed using the

transmission matrix representation, but this method has some disadvantages not

encountered with the generalized scattering matrix approach. The method can be

numerically unstable when too many higher order modes are included in the waveguide

sections between the discontinuities or the overall length of the waveguide sections is too

large [5]. Also, the transmission matrix method requires the field expansions in each

waveguide to have the same number of modes which may violate the criterion to avoid the

relative convergence phenomenon [6], [7]. This resffiction has been overcome using an

ímproved transmission matrix formulation proposed by Mansour and MacPhie t8l.

cascading with an admittance matrix formulation has also been proposed [9].

Problems relative to multiple discontinuities in waveguides have been solved by

numerous techniques. Rozzi and Mecklenbräuker [10] extended the variational method to

study interacting irises and steps in waveguides. De Smedt and Denturk [11] determined

the scattering from symmetric double discontinuities using the moment method with point

matching. Double discontinuities have been treated using the moment method with the

Galerkin technique by Flamid et. al. [12], Datta et. al. [13], and Scharstein and Adarns

[14]. An earlier mode matching technique was applied to double discontinuities by
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Clarricoats and Slinn [15]; however, the solution required large matrix operations which

Huckle and Masterman [16] avoided by reducing the sets of equations ancl using back

substitution. An admittance matrix formulation based on modal analysis has been used by

Alessandri et. al. [9] to solve for a special class of double discontinuities. All the mode

matching based techniques may suffer from the relative convergence phenomenon which is

eliminated by using an appropriate ratio of modal terms in the waveguide field expansions

[6], [7].

The purpose of this thesis is to present a solution for multiple-step waveguide

discontinuities where the scattering parameters are directly calculated by simultaneously

solving the multiple discontinuities rather than by cascading discontinuities.

In Chapter 2, a general formulation for the scattering from multiple waveguide

discontinuities is presented. The formulation is based on the modal analysis technique [17]

where the electric and magnetic fields in each waveguide section are expressed as an exact

expansion of orthonormal modes and the boundary conditions on the tangential field

components are enforced over each discontinuity plane. Analytic expressions for the

scattering matrices are derived from the truncated linear equations formed by applying the

mode orthogonality.

In Chapter 3, multiple-step discontinuities in circular waveguides will be considerecl

for quantitative illusftations. A thick iris in a circular waveguide is analyzed in detail to

verify the convergence and accuracy of the formulation. Numerical results are compared

with data available in the literature. Also, application is made to improve designs for iris

matched dielectric windows.

In Chapter 4, a modified formulation for the scattering from rnultþle waveguide

discontinuities is presented. The higher order modes that are excited at the discontinuities

but do not effectively interact wittr the adjacent discontinuities are matched terminated in the

analysis" A thick iris in a circular waveguide is studied quantitatively to determine a

criterion for choosing the number of interacting modes between circular waveguide
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discontinuities. The accuracy of the formulation is verified for a thick iris in a circular

waveguicle and for circular waveguide step transformers by comparing numerical results

with data available in the literature.

The conclusions and recommendations are presented in Chapter 5.
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CFT.APTER 2

ANALYSIS OF MUI,TIPLE DISCONTINUITIES

IN WAVEGUIDES

The problem of multiple discontinuities in waveguides is discussed in this chapter.

Consider the multiple-step discontinuities shown in Fig. 2.I. There are N transverse

discontinuities with N+1 waveguide regions. An arbitary multi-mode incident field is

assumed from waveguide 1.

Determining the elecfromagnetic scattering for the multiple discontinuities begins with

expressing the electric and magnetic fields in each waveguide section as an exact expansion

of orthonormal modes and enforcing the boundary conditions on the tangential fields over

each discontinuity plane. The scattering matrices are derived from the truncated linear

equations formed by applying the mode orttrogonality.

2.1 MOneL ExPANSIoNS oF THE FIELDS

The total transverse electric and masnetic fields can be written in moclal form as

follows:

in the 1st region

8,, =* (Arn n-rr*(z+z) * Bt*n^(t*@+zù)er*

HtL =\ (Ar* u-\1*@+21) - Br* u^{t*@+zù)hr*, (z.r)

in theTth region (j = 2,. . . , N)

E,¡ =L (A¡^ n-ri*çz+z¡-ù + B¡* n^{¡*@*rì)e¡*

¡tr,j=2 (a¡*r-T¡*(z+z'-) -B¡*nT¡*(z+zi))h¡*, (2.2)

-4-



j+l N N+l

L
z=0

Fig. 2.1. Section with multiple waveguide discontintuities.

z=-zl

z=-zj
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and in the N+1th region

Etr+t= I Ar*r, * r-yN*t,rr, u**r,*

HtN+t= I Ar*, ,*e-YN*r,*, h**r,*. \¿.J )

A¡* ànd B ¡* ue the forward and the backward complex coefficients, respectively, of the

mth mode in the ith region, yim is the propagation constant, and e¡*and h¡* are the

corresponding fransverse elecftic and magnetic field functions of the mthmode. The modal

field functions form an orthonormal set, i.e.,

(e¡*,h¡r)s. = [1u,*xh¡r).ds = õ*n Q.4)
òi

where S; is the ith waveguide cross section, and õ*, is the Kronecker delta.

2.2 BOUNDARY CoNoITToNS AT THE DISCoNTINUITY PLANES

At each discontinuity plane, the fransverse fields must be continuous over each aperture

ancl the tangential electric field must be zerc on the walls. The continuity of the transverse

electric and magnetic field intensities over each aperture cross section are expressed as

follows:

atz=-zl

\ (er* + B r*)e6 = I (lr* * Bz* e-rz'n Lr)rr*

Ð 
(ot* r-\¡mL¡ - n¡*)h¡* = 

4 
(A¡*r,* - ß¡*t,* e-Ti*r,*Li*t)k¡*r,*, (2.6)

-6-



andatz =0

\ (er* e-r¡'t*Lu + B¡¡*)e¡¡* = I AN*r,* €N+r,m

X (e**r-TN*Lw -Bu*)hN* = TL AN*r,* hN*i.,* (2.7)

where

L¡= -z¡ * z¡_t (i = 2,. .. , N). (2.8)

2.3 M¿.rnrx EeuarroNs FoR THE DrscoNrrNUrrrES

The orthogonality of the modes is applied to the field continuity equati ons, (2.5)-(2.7),

to form linear equations that are truncated and expressed in matrix form. The boundary

enlargement and reduction discontinuity cases are handled separately in order to properly

include the boundary condition on the transverse walls t171, t181" For a boundary

reduction discontinuity, the cross section of the waveguide section foilowing the

discontinuity is encompassed by the cross section of the waveguide section preceding the

discontinuity. The boundary enlargement case is illusfrated in Fig. 2.1.

As a result of the truncations, the solution to the scattering problem will be an

approximate solution where the accuracy is dependent on the number of modes selected in

each region. Choosing the ratio of modes approximately equal to the ratio of the waveguide

dimensions prevents the relative convergence phenomenon where the solution may

converge to an incor¡ect result or may not converge at all t6], [7].

2.3.1 Boundary Enlargernent Ðiscontinuities

For the boundary enlargement case, aÍ.each discontinuity we take the vector product of

the terms in the electric field continuity equation with a magnetic mode function from the

following waveguide section, and the vector product of the terms in the magnetic field

continuity equation with an elecfic mode function from the preceding waveguide section.

Applying the orthogonality of the modes, equarions (2.5)-(2.7) become:

-7-



atz=-z!

\ (At* + B6)(ey*,hzn)g, = F2n cosh(yr,Lr) + Dzn sinh(y2,L2) @=I,23...)

Atn- Br, = \ (Dz*cosh(y2*Lz) + Fz* sinh(y2*L2))kn, hz*)5, (n=1,2,3...), (Z.g)

atz=-z¡ (i;e1,N)

D i, = Ar, e-Yi, Li - g 
r,

F¡r=A¡re-T¡rL¡*B¡r.

2 , t* (e¡*, h¡*t,n) g . = F¡*t,n cosh(1*1,,, L¡*t) + D¡*t,, sinh(y¡*1,rL¡*t) @=7,2,3...)

D j, =2 (ot*t*cosh(y;** L¡*ù +F¡*r- sinh(yr*, *L¡*ù(e¡n,hj*r,às, (n=I,2,3..),Q10)

and at z =0

L f ** (eN*, hw*t,r) 5* = AN*r* (n=1,2,3...)

DN, = \ A**r,* (e¡¡n, h¡¡*1,.)sr,u @=r,2,3...) (z.rr)

where

Truncating the infinite series to M¡modes in each ith region, equations (2.9)-(2.11) can

be written in matrix form [19]:

atz=-zt

Gt(ü+B_r) =ÇzLz+ËzD_.z

Lt - B-t = gT (gzo-z + ÍzL), e.r4)

(2.r2)

(2.r3)

-8-



4tz=-z¡ (Ì +1,N)

9 4 = Ç¡+t E¡r + $'+r D-7+r

+ =4 (Qr\+t+å*r \*), (2.rs)

and at z =0

Ç.w Ew = 4¡¿+r

tùr= 64+,,t (2.16)

where the zsuperscript indicates matrix transpose, A1 is the known incident modal

coefficient column matrix of Mlelements, &1and4¡¿+r are the column mahices of Ml and

M¡¡*l elements of the unknown modal coefficients for the fields reflected in region 1 and

transmitted in region N+1, respectively, and

(2.17)

(2. i8)

(2.re)

(2.20)

(2.21)

2.3.2 Boundary Reduction Discontinuities

For the boundary reduction case, at each discontinuity we take the vector product of the

terms in the electric field continuity equation with a magnetic mode function from the

preceding waveguide section, and the vector product of the terms in the magnetic field

continuity equation with an elecftic mode function from the following waveguide section.

ù =l A¡* e-rmL¡ - B;*f *,*,

& = [ A¡* e-Yi*Li + B ¡*fr,*,

Ç¡= L õ*n cosh(y¡*L,)f *,* r,

{, = [ õ., sinh(y; *Li)Jr. * r.

Ç., = | (e i*, hi*r,n) r,f *,*, x M i.

-9-



Applying the orthogonality of the modes, equations (2.5)-(2.7) become:

afz=-21

A 1, + B, n = \ (F z* co sh(y 2* Lz) + D z* sinh(y2* L 2))\t z*, h r r) g, (n = 1, 2, 3...)

\ (Aø- B ø)(ezn, hr*) 5, = D z, cosh(y2nL2) +Fzn sinh(y2nL2) @= 1,2,3...), (Z.ZZ)

atz=-z¡ (i + 1,N)

F jn =\ @¡.w cosh(y¡*çrL¡*1)+Ð¡*t- sinh(y;*1 *L¡*))(e¡*\*,hj,) s ¡*t @=7,2,3...)

* 
o t* ("¡*t,n,hj*) 

s j*t= D¡*1.,n cosh(y¡*¡nL¡*r) +F¡*¡nsinh(y7*1o L¡*r) (n=I,2,3..),Q.23)

andatz =0

FN, = E lr^ (eN*l,*, hwn)5r*, Qt=1,2,3...)

Ð,**;r^,- 
hu*)5r*, : AN*1.,, (n=7,2,3...) (2.24)

where D ¡, and F ¡, are defined in (2.I2) and (2. 1 3), respectively.

As before, the infinite series are truncatedto Mtmodes in each ith region. Equations

(2.22)-(2.24) can be written in mafrix form:

atz=-zI

Lt + B-t = çT ( Çz Lz + Ë_z D-'z)

8t ( ü- h) = ÇzD_z + SzLz, e.25)

-10-



ãtz=-z¡ (i +1,¡/)

and at z =0

+ = 4 (e¿*t4j¡+$*r Dy+r )

E 4 = 9*t 4*t + $'*i E;*r,

'r
Ew = Çlv4u*t

Gn, D^, : 4n,,,_¡Y 
-Y -YTt

(2.26)

(2.27)

where the quantities are described n (2.17)-(2.20), except in the boundary reduction case

C¡ = [ (ui*l.,n,h¡*)s¡*tJ*,*r**, (2.28)

The sets of linear matrix equations for an arbitrary combination of boundary

enlargement and reduction discontinuities can be compiled by considering the

corresponding matrix equations in (2.14)-(2.16) or (2.25)-(2.27).

2.4 SceTTpnTNG MATRIX FoRMULATIoN

In scattering matrix formulation, 81ànd d¡¡a1can be expressed as

B, = 5.. A.
-lI -l

Au+t = E-n Lt (2.2e)

where S11and Szt æe the complex reflection and transmission matrices for the entire

structure, respectively. Solving the sets of linear matrix equations for an arbirary series

of boundary enlargement and reduction discontinuities, the scattering matrices are

obtained as 1201,l2Il

- 11. -



Si1=

{- 2 ç_{ P_ztl.-'Ç.r,for a 1sr discontinuity boundary enlargemenr (8.8.)

(2.30)

-!* 2 çT Q_¡U_-'G1, for a lst discontinuity boundary reducrion (8.R.)

$zt=z (gr4rtXE -r4rlt) ( Gzgit) gru--tc.,

where 9¡ (i = 1, . . . , Àf is determined by (2.21) or (2.28) for the ith discontinuity B.E. or

B.R. case, respectively, f is the unit mafrix and

(2.31)

(2.34)

( C¿ * G, GT ëz) * ( {, + et GT Ç¿) gT g, EiL Gz,ror rhe 1st and 2nd

discontinuities both B.E. or B.R. (2.32)

( g, * G_, çT Ç¿) * ( ç, + Ø GT ë) gT p_, E' Gr, otherwise.

Q¡and4; ile M¡xM¡matrices caiculated from the following recurrence formulas:

J; + e; GT gur\,]rG,,for the ith and i+1th discontinuities both B.E. or B.R.

Q¡= (2.33)

9, * {, cl Qut 4,}rG,, otherwise

Ç¡ + L¡ 8T Qu, E¡|l¡,for the ith and i+1th discontinuiries both B.E. or B.R.

8;=

U_

{¿ + e; GT QurEl}rÇ.,, otherwise

with

Qu*t=4"*t =4. (2.3s)

The recurrence formulas, (2.33) and (2.34), require that the calculation of the scattedng

matrices begins at theNth discontinuity and move successively to the lst discontinuity.
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2.5 SywrrvrETRrc Dls coNrlNUr-rxES

A longitudinally symmetric structure with N discontinuities can be reduced to N'

discontinuities with N'+1 waveguide regions, N' = N/2, alternateiy terminated with a

magnetic or electric wall. The magnetic and electric walls, placed at the symmetry plane

bisecting the N discontinuity structüe, correspond to the the even and odd mode excitation

cases, respectively lI ll, 1221.

If the N'th discontinuity and the symmetry plane are located at z = 0 and z = L¡¡,4/2,

respectively, then the electric and magnetic fields in the N+1th region are as follows [11]:

EtN'+t

H,N,*t

-s-.L

-s,(-/

Ax,*t,*(e TN'+r,m z ¡ ¡'ryt't'*t,* (, - L¡,t'*))r*,*r,*

Aru,*t,*(e-TN'*r,* z -¡'nlu'*t,* (, - Lw,*t))h*,*1.*

lrr=|( {ír + Jír )

sr, =l(sí,-sÎ,).

where f = +1 in the case of a magnetic wall (even excitation) and f = -1 in the case of an

elecfic wall (odd excitation).

f-et {ír and Sf1 be the reflection coefficient matrices of the N' discontinuities due to

even and odd excitation, respectively. The scattering matrices for the original structure of N

discontinuities can be calculated by superimposing the fwo cases [11]:

(2.36)

(2.31)

{f1 and Jf1 can be calculated using equation (2.30) where Qu,*t and R¡y11 are as follows:

i) for aNth discontinuity boundary enlargement

!, even excitation

!, odd excitation

O^,,.. =
-lv 

ft

-t3-

(2.38a)



{, even excitation

Rr,¡,, r =

! -1, odd excitation

ii) for a Nth discontinuity boundary reduction

1, even excitation

O^,,. , =
-[y +I

!, odd excitation

--lI , even excltanon

R;r¡,, r =

{, odd excitation

T = | õ*n tanh(y¡¡,*r,*L¡¡,a12) I **,*, x MN,+r .

where

(2.38b)

(2.39a)

(2.3eb)

(2.40)

The computational advantage of using the even and odd excitation in the analysis is

apparent from the number of full complex matrix inversions required. CalculatingJfl and

^sileachrequireN-l matrixinversionsof size M¡xM¡(í=2,...,N) for a total of N-2

matrix inversions. If calculated as in the previous section, the same N discontinuities

would require N-1 matrix inversions of size M¡ x M¡ (i = 2,. . . , 1Ð. The computational

effort is therefore reduced by one M¡¡x M¡¡ complex matrix inversion when the symmetry

is used in the analvsis.
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CHAPTER 3

APPLICATION TO CIRCULAR WAVEGUIDES

In this chapter, the general scattering formulation presented in Chapter 2 is applied to

circular waveguide discontinuities for numerical computations. Closed form expressions

for the vector products used in (2.2I) and (2.28) are derived for circular waveguides.

3.1 MOoaL FUNcTIoN EXPRESSIoNS

The fields in a circular cylindrical waveguide can be expressed as a combination of TE

and TM components. Assumin g un /'' time dependence, the components of the transverse

electric and magnetic fields can be written in circular cylindrical coordinates (r, Q, z) l22l

Er= -"y k"A*Jkk"r) cos(mQ) - jc¡p T U*J*(krr) cos(mQ)

Eç= lf, A*J*(k,r) sin(mQ) + jop k,B*Jk(lr,r) sin(mQ)

H,= -jaeT o*J*(k,r) sin(mþ) -T k,B^Jk!r"r) sin(mQ)

Hr= -j:rlle k"A*Jklr,r) cos(mQ) -yT t*J*(k"r) cos(mQ) (3.1)

where A*andB*are the amplitudes of the TM and TE components, respectively, e and p

are the permittivity and permeability of the medium fillitrg the waveguide, respectively, co is

the angular frequency, y is the propagation constant, J*(k"r) is the Bessel function of the

first kind of order mwherc the prime indicates differentiation with respect to the argument

k"r, and k7 : lr2 + / where ft is the wave number (/c = rrl {-rr, ) The modal propagation

constants can be calculated from the general characteristic equation derived rrrl23l.

3.2 MODAL COUPLING INTEGRALS

The coupling between the lth andTth mode over the cross section 
^S 

is given by

(8,¡ H,j)s = J {ø,, x Ír ,¡).ds = t'r" tT(n,¡Hoj- EaiH,l rdr dQ (3.2)

't<_LJ_



Substituting the expressions of the derivatives of the Bessel function, and simplifying

gives for i +7

rr. k.k t
(8, ¡, H 

u) s = i 6:7.y, a { k,, J *(k"¡ elr 1 J 
^-t(k,j 

a) - F 2 J **{k"¡ Òl

- k"¡J*(k"¡ ø)[Fr J*_t(k,¡a) -F2J**{k,¡Òf,} fg.gl

(3.4)

wherel=1elp"=LlZ and

F1= jk¡T¡A¡Aj - k¡kjZiB iAj + y¡ytZ¡A¡8, + jk¡T¡Z¡Z¡B ¡B¡

Fz= ikjy¡A¡Aj + ktktZtBtA¡ -TiT¡Z¡A,Bt + jk¡y¡Z¡ZjB iB j

The fransverse fields of the ith mode, Er¡andII¡¡ ãre normalized by dividing by

((8,¡ Hr)s)1/2 where S is the waveguide cross secrion of radius a

(E * H 
t ¡) " 

= ! 
",{ 

(F, + Fr) (fr" ¡ Ò21.r'**{k 
" 

¡ a) - I *(k 
"¡ 

a)r **2(k 
"¡ 

Q], ,r. ¿¿¿ò 
4 ,r

- amYrJ2*(kr¡ùI (3.s)

The fields, (3.1), will not be a combination of TE and TM modes for the special case of

a perfectly conducting waveguide. The mode amplitudes for the ith mode in (3.1) and

(3.4) arc then A¡ = 0 and Bi= l, and A¡ = 1 and B¡ = 0 for the TE and TM cases,

respectively. The eigenvalues of the íth mode in a waveguide of radius a,, kr¡ e, are the

roots of the Bessel function and the roots of the first derivative of the Bessel function for

the TM and TE cases, respectively. Equations (3.3) and (3.5) can be further simplified for

the TE-TE, TE-TM, TM-TE, and TM-TM region i - region 7 mode coupling cases;

however, this would result in a total of ten equations for both the boundary enlargement

and reduction cases whereas (3.3) and (3.5) cover all the cases. It should be noted that

equation (3.3) equats zero for the TM-TE mode coupling case.

For a waveguide structure with an incident TE1 mode (m = I), only the TE¡,andTMu

modes will be excited at the discontinuities.
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3.3 NurvrpRrcaI, R.esulrs

The formulation is applied to a thick iris to study the convergence and to verify the

accuacy of the analytic expressions. Also, application is made to the design of iris matched

dielectric windows.

3.3.1 ConYergence and Accuracy

Consider a thick circular iris of radius b and length L in a circular waveguide of radius

d, as shown in Fig. 3.1. The iris forms a double discontinuity comprised of a boundary

reduction followed by a boundary enlargement at a distanceX"

The optimum ratio of the number of modes should be MIN : alb, with M = P, where

M, N, and P are the number of modes in regions 1, 2, and 3, respectively [6], [7], 124).

Choosing the number of modes according to this ratio shouid ensure fast and accurate

results. This is illustrated here by studying the numerical results for an incident TE11 mode.

In Fig. 3.2 and Fig.3.3, the magnitucle of the reflection coefficient is shown as a

function of P for fixed M and N, and as a function of M (P = IlÐ lor fixed N, respectively.

It is observed that the reflection coefficient remains essentially constant atter P = M in

Fig.3.2, and after MIN = alb n Fig. 3.3. This indicates that the predicted optimum ratio of

modes represents a critical value needed for accurate results.

The convergence of the magnitude of the reflection coefficient with different ratios of

MIN (P = M from now on) is shown in Fig. 3.4 through Fig. 3.6 for several values of Lla

and ka.It is clear that the solution converges for all ratios of MlN, but the convergence is

always fastest when MIN = alb. AIso, the rate of convergence is observed to be slower as

the frequency increases and less dependent on the ratio of modes as the distance between

the discontinuities ,L increases.

Thereflection and transmission coefficients for decreasing values of Lla are shown in

Tabie 3.1 and Table 3.2, respectively, where M = N(alb) = 40. It is observed that the ratio

MIN has a noticeable effect on the solution as Lla decreases. In the case of an infinitelv

-17 -
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Fig. 3.1. Geometry of a thick i¡is.
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---+r- L/a:0.I

---- Lla=0.0I

P

Fiç.3.2. Magnitude of the reflection coefficient as a function of P wiút M = N(alb) =20,

for a thick iris with a = 2b and kq = 3.2"
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----r- N= 8

--+ N=10

---r 
N= 14

M

Fi9.3.3. Magnitude of the reflection coefficient as a function of M (P = luÐ for a thick

iris with a = 2b, Lla = 0.01, and ka = 3.2.
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Fig.3.4. Convergence of the magnitude of the reflection coefficient as a function of M

for a thick iris with a = 2b, Lla = 0.01, and ka = 2.4.
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Fig. 3.5. Convergence of the magnitude of the reflection coefficient as a function of M

forathickiriswith a=2b,Lla= 0.1, and ka=2.4.
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MAI= 4

M/l{=2

MÆ.{ = 1

M

Fig. 3.6. Convergence of the magnitude of the reflection coefficient as a function of M

for a thick iris with a = 2b, Lla = 0.01, and ka = 3.2.
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Table 3.1

Reflection coefficient as a function of Lla for a thick iris with

a =2b and ka =3.2.

Table3.2

Transmission coefficient as a function of Lla for a thick iris with

a =2b and ka:3.2.

Lla MIN = alb MIN=7

10-1

70-2

10-3

10-4

10-'

10-"

0.0

-0.18947 + j0.44710

-0.10399 + j0.31072

-0.09s09 + j0.29387

4.09433 + 10.29232

-0.09425 + j0.29173

4.09424 + j0.29215

-0.A9424 + i0.29215

-0.18518 + j0.44395

4.09394 + j0.29725

-0.06417 + j0.24557

4.05024 + j0.21846

-0.03272 + j0.17789

4.02935 + j0.16878

0.00000 + j0.00000

Lla MIN = alb MIN :7

10-1

rc-z
10-3

10-4

10--
I

10-"

0.0

0.80490 + j0.34110

0.89s96 + j0.29982

030492 + j0.29278

0.90568 + j0.29222

0.90575 + j0.29217

0.90576 + j0.292r6

0.90576 + i0.292r6

0.80914 + j0.3375r

0.90601 + j0.28628

0.93584 + j0.24448

0.94971 + j0.21836

0.96729 + j0.17787

0.9706s + j0.16878

1.00000 + j0.00000
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thin iris, the formulation mathematically collapses for MIN = 1 in the sense that (2.30) and

(2-3I) become zero and unit matrices, respectively. The numerical results always converge

to the corIect solution when MIN = alb as a result of the linear system beine well

conditioned [7].

To verify the accuracy of the formulation, comparison with numerical results calculated

by the moment method [14] are shown in Table 3.3 through Table 3.10. For l, less than

0.2 inches, excellent agreement of results are achieved with M = N(alb) = 40. However, as

I increases the number of modes must be reduced to avoid numerical instabilities as U

becomes too ill-conditioned for inversion. Significant disagreement, particularly in the

phase, is observed for large /, as the frequency increases and the ratio alb decreases. In

Tab1e 3.4, Table 3.6, and Table 3.8, the magnitude of the transmission coefficient

decreases to zero as Z increases due to the iris region being below cutoff at the operating

frequency. The proposed formulation requires the inversion of one ly'x l/ matrix. with N

shown in the tables, while two 40x40 matrix inversions are needed in t141.

The numerical difficulties with the matrix inversions arise from the effect of the

hyperbolic functions in (2.19) and (2.20). As the separarion disrance berween a

discontinuity increases, the highest order modes, which are below cutoff, cause the

hyperbolic functions to become excessively large in that region. As a result, the matrices

(2.32) and (2.34) may be too ill-conditioned for inversion. Reducing rhe number of modes

used alleviates the problem by omitting the troublesome higher order modes, but the

accuracy of the solution may suffer as already demonstrat"d. 4, is more stable than ü since

4; has fewer matrix terrns with hyperbolic functions. For example, R; would be invertible

in the iris regions specified in the tables when L = r.0 inch and M = N(alb) = 4},while u
is not invertible.

A modified formulation that restricts the higher order mode interaction between

discontinuities for large distances between discontinuities, without compromising the

accuracy, will be presented in Chapter 4.
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Table 3.3

Comparison of the reflection coefficient as a function of L for a thick iris with

ø = 0.50L75 in, b = 0.25 in, and/= 9 G}lz.

Table3.4

Comparison of the transmission coefficient as a function of tr for a thick iris with

a = 0.50175 in, b = 0"25 in, andf = 9 G}lz.

Í
L

(inch)

MomentMethod [14]

Magnitude Phase
(degrees)

Proposed Formulation

Magnitude Phase M ¡/
(degrees)

0.005

0.008

0.0s0

0.100

0.200

0.500

1.000

3.000

0.867 149.8

0.874 15t.4

0.934 155.7

0.966 158.6

0.990 161.0

1.000 162.0

1.000 162.0

1.000 762.0

0.864 149.4 40 2A

0.872 1s0"1 40 20

0.934 155.6 40 20

0.965 158.5 40 2A

0.989 160.9 20 10

0.999 16r.7 12 6

1.000 161.8 4 2

1.000 151.9 2 1

L
(inch)

MomentMethod [14]

Magnitude Phase
(degrees)

Proposed Formulation

Magnitr.rde Phase M N
(degrees)

0.00s

0.008

0.0s0

0.100

0.200

0.s00

1.000

3.000

0.498 s9.B

0.48s 60.4

0.356 65.7

0.260 68.6

0.144 71.0

0.027 72.0

0.002 12.0

0.000 7s.7

0.503 59.4 40 20

0.489 60.1 40 20

0.358 65.6 40 20

0.261 68.5 40 20

0.145 70.9 20 10

0.027 7t.8 t2 6

0.002 71.8 4 2

0.000 6r.9 2 1
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Table 3.5

Comparison of the reflection coefficient as a function of ,I- for a thick iris with

a = 0.501.75 in, b = 0.25 in, and;f = 1,2 GHz

Table 3.6

Comparison of the fransmission soefficient as a function of .L for a thick iris with

a = 0.5017 5 in, b = 0.25 in, and/= 12 GHz

L
(inch)

MomentMethod [14]

Magnitude Fhase
(degrees)

Proposed Formulation

Magnitude Phase M N
(degrees)

0.005

0.008

0.0s0

0.100

0.200

0.500

1.000

3.000

0.331 108.7

0.344 109.1

0.488 113.2

0.622 116.8

0.806 122.0

0.977 127.4

0.999 r28.r

1.000 128.2

0.328 108.5 40 20

0.340 i08.9 40 20

0.486 113.0 40 20

0.620 116.6 40 20

0.803 121.8 20 10

0.976 126.9 8 4

1.000 126.9 4 2

1.000 68.5 2 1

L
(inch)

MomentMethod [14]

Magnitude Phase
(degrees)

Proposed Formulation

Magnitude Phase M N
(degrees)

0.00s

0.008

0.0s0

0.100

0.200

0.500

1.000

3.000

0.943 18.7

0.939 19.1

0.873 23.2

0.783 26.8

0.593 32.0

0.2tr 37.4

0.034 38.1

0.000 38. i

0.94s 18.s 40 20

0.940 18.9 40 20

0.874 23.0 40 20

0.784 26.6 40 20

0.s96 31.8 20 10

0.2t7 36.9 8 4

0.038 36.9 4 2

0.000 -2r.5 2 1
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TabIe3.7

Comparison of the reflection coefficient as a function of -L for a thick iris with

a = 0.50175 in, b = 0.375 in, and;f = 9 GHz.

Table 3.8

Comparison of the transmission coefficient as a function of I for a thick iris with

a = 0.50175 in, b = 0.375 in, and/= 9 GHz.

L
(inch)

MomentMethod [14]

Magnitude Phase
(degrees)

Proposed Formulation

Magnitude Phase M ¡/
(degrees)

0.005

0.008

0.0s0

0. i00

0.200

0.500

1.000

3.000

0.199 100.8

0.205 100.8

0.272 99.3

0.337 97 "0

0.453 92"4

0.706 82.0

0.901 73.4

0.999 68.7

0.196 100.7 40 30

0.202 100.6 40 30

0.270 99.2 40 30

0.336 96"9 40 30

0.450 92.2 16 12

0.701 81.5 8 6

0.865 6r.3 4 3

0.999 51.8 1 1

L
(inch)

MomentMethod [14]

Magnitude Phase
(degrees)

Proposed Formulation

Magnitude Phase M N
(degrees)

0.005

0.008

0.0s0

0.100

0.200

0.500

1.000

3.000

0.980 10.8

0.979 10.8

0.962 9.3

0.941 7.0

0.892 2.4

0.708 -8.0
0.434 -16.6
0.052 -21.3

0.981 r0.7 40 30

0.979 10.6 40 30

0.963 9.2 40 30

0.942 6.9 40 30

0.893 2.2 16 12

0.713 -8.5 8 6

0.486 -28.6 4 3

0.063 -38.2 1 1
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Table 3"9

Comparison of the reflection coefficient as a function of ,L for a thick iris with

a = 0.5017 5 in, b = 0.37 5 in, and f = 12 GHz.

Table 3.10

Comparison of the transmission coefficient as a function of ,L for a thick iris with

a = 0.50175 in, b = 0.315 in, andf = L2 GHz.

L
(inch)

Moment Method [14]

Magnitude Phase
(degrees)

Proposed Formulation

Magnitude Phase M N
(degrees)

0.005

0.008

0.0s0

0.100

0.200

0.s00

1.000

3.000

0.006 89.3

0.00s 88.s

0.014 -102.2
0.033 -rr4.4
0.056 -138.6
0.040 150"8

0"467 -146"3
0.010 -:74.6

0.007 89.4 40 30

0.00s 88.7 40 30

0.014 -102.1 40 30

0.033 -rr4.5 40 30

0.056 -138.6 16 12

0.041 150.9 8 6

0"067 -1,44.3 1 1

0.025 L07.6 1 1

L
(inch)

MomentMethod [14]

Magnitude Phase
(degrees)

Froposed Formulation

Magnitude Phase M N
(degrees)

0.005

0.008

0.0s0

0.100

0.200

0.s00

1.000

3.000

1.000 4.7
1.000 -i.5
1.000 -12.r
0.999 -24.4
0.998 48.6
0.999 -rr9.2
0.998 t23.7

1.000 x5"4

1.000 -0.1 40 30

1.000 -i.5 40 30

1.000 -12.1 40 30

0.999 -24.4 40 30

0.998 48.6 16 12

0.999 -rr9.2 8 6

0.998 125.8 1 1

1.000 17 "6 1 1
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3.3.2 Application to [nis Matched Ðielectric Windows

Dielecnic windows are usecl to isolate gas filled or vacuum regions in waveguides. The

reflection coefficient of the dielectric window can be reduced by placing an iris on both

sides of the window. Figure 3.7 shows an iris matched dielectric window in a circular

waveguide of radius awhere the dielecnic window has relative permittivity e, and thickness

L, and the irises have inner radius b and thickness tr;.

Design curves presented by Carin et al.lISl show the iris radius b that minimizes the

reflection coefficient of an incident TE1l mode for a giveÍr e, E¡, L, L¡ and operating

frequencyl The reflection coefficient of the dielectric window was calculated by cascading

the generalized scattering maftices of the four waveguide discontinuities. Ten modes were

used for the field expansions in each waveguide region, but Fig. 3.4 and Fig. 3.6 in the

previous section show that this may be inadequate number of modes to account for the

higher mode interaction of closely spaced discontinuities. A better choice would be to use a

higher number of modes in the ratio MIN -- alb where M is the number of modes in the

waveguide and dielectric regions and N is the number of modes in the iris regions.

To demonstrate the influence of the higher order modes, comparison with results

calculated by the proposed formulation using M = N(alb) = 30 is shown in Fig. 3.8. All

dimensions are normalized to the waveguide radius a, and the frequency is normalized to

the cutoff frequency /f of the TE11 mode. The optimization was performed using the

ZXGSN minimization routine from the International Mathemattcal and Statistical Library

(IMSL) [25].It is observed that the results for ,L = 0.04a are within 1.2 percent, but an

improvement of as much as 4.2 percent can be reahzeÀ by increasing the number of modes

for Z = 0.01a. The frequency response of the matched window designs from Fig. 3.8 are

shown in Fig. 3.9 through Fig. 3.12. Design curves for L¡=5L are shown in Fig. 3.13

with the conesponding frequency response curves shown in Fig. 3.14 through Fig. 3.17.
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Fig.3.7. Geomeny of an iris matched dielecric window.
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L/a= 0.04 [18]

0.9
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The choice of ten modes in each waveguide region was made in [18] partially on rhe

basis of maintaining a reasonable computational time. Using alarger number of modes, as

done here, would have dramaticalTy increased the computation time for the optimization

procedure. Table 3.11 shows the size and number of full complex matrix ínversions

required by the proposed method compared with cascading as in t181. It is assumed that

the dielectric region is bisected with an electric and magnetic wall to use the even and odd

mode excitation analysis about the symmetry plane. The proposed formulation proves to be

a more efficient method by requiring only two relatively small matrix inversions, compared

to six matrix inversions in [18]. This allows more modes to used than in [18] without a

large increase in computation time.

In Table 3.12, the minimum number of futl complex matrix multiplications and

inversions required to calculate the scattering parameters for N discontinuities is compared

with the commonly used cascading techniques. The proposed formulation has a definite

advantage over the two cascading techniques by requiring fewer mafrix multiplications and

inversions. Compared to the proposed formulation, cascading generalized scattering

matrices (S-Matrix) [8] requires almost twice as many matrix multþlications and three

times as many matrix inversions, and the transmission matrix method (T-Matrix) [5]

requires almost 60 percent more matrix multiplications and two extra mafrix inversions.

The proposed formulation has the advantage over the transmission maftix method in being

compatible with the criterion for avoiding the relative convergence phenomenon, which

also gives the fastest convergence, and is numericaily stable when the total length of the

waveguide sections, Lr+ L'r+. . .+ l¡¿, becomes large. A transmission mafrix formulation

compatible with the criterion for avoiding the relative convergence phenomenon has been

presented in [8], but requires 2(N-1) additional matrix multiplications compared with [5].

Å1



Table 3.11

Comparison of number and size of full mafix inversions needed for
matched dielectric window analysis.

Table3.72

Comparison of the minimum number of full maffix multiplications and

inversions needed to calculate!1i and S21 for N discontinuities.

Number and Size of Inversions

Proposed Formulation two NxN

Cascading [18]

two (M + ÀD x (MI + l,¡)

two MxM
two .l/ x N

N
Proposed

Formulation

Mult Inv

S-matrix [8]

Mult Inv

T-matrix [5]

Mult Inv

2

a
J

4

5

71
722
173
224

133
286
439
58 12

11 3

194
275
356
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CHAPTER 4

IMPR.OVEÐ MODEI,I,ING WITF{ RESTRICTEÐ

HIGFTER ORÐER. MOÐE TNTER.ACTION

In order to extend the range of applicability of the general method in Chapter 2, for

very large distances between discontinuities, a modified formulation is presented in this

chapter. Consider the multiple-step discontinuities shown in Fig. 2.1. There are N

transverse discontinuities with N+1 waveguide regions. An arbinary multi-mode incident

field is assumed from waveguide 1.

In the Chapter 2 formulation, all the modes retained in each region after truncation were

assumed to be interacting with the adjacent discontinuities. The effect of the higher order

modes can result in numerical instabilities as the separation distance befween discontinuities

increases. Reducing the number of rnodes alleviated the numerical difficulties by

eliminating the destabilizing higher order modes in the truncation, but the accuracy of the

solution may be compromised by the reduction in the number of modes.

The problem can be reformulated so that the modes allowed to interact are restricted,

without compromising the accuracy, by classifying the modes in each region as interacting

or non-interacting. The interacting modes will be defined as the modes that effectively

interact between discontinuities, which includes all the propagating modes and the lower

order evanescent modes up to a level which is to be determinecl. The non-interacting modes

will be defined as the higher order evanescent modes that are excited at a discontinuity but

do not effectively interact with the adjacent discontinuities. In this modified formulation, a

finite number of non-interacting modes will be effectively matched terminated at the

discontinuities, thereby eliminating their destabilizing effect. The total number of modes in

each region can be chosen as large as needed to accurately describe the scattering at each

discontinuity.

This modified formulation parallels the analysis in Chapter 2 with the exception that the

modes in each region are partitioned into the interacting and the non-interacting cases.
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4.1 MoDAL EXPANSIONS oF'TTIE F.IE[,DS

The total transverse electric and magnetic fields can be written in modal form as

follows:

in the 1st region

Err =\ (nr* n-^11*(z+21) * B r*nTt*@+zù)er*

HtL =\ (er* n-"{v*@+21) _ Br* n^{t*e+zù)hr*, (4.1)

in theTth region (j = 2". . . , N)

ø,¡ =7 (A¡*n-vi*(z+z¡-ù + B¡*u\i*Q*zi))e *

w ,¡ = 
* 

(A ¡* ,-Yi *(z+z ¡-ù - B j* n^{¡*G+zì) k .*, (4 .z)

and in the N+lth region

EIN+I= I Ar*' ,*e-yN*L'*, ,**r,*

H t[+t =à O* *r,* u-yN *r,*, h**r,*.

A¡* and B ¡* ate the forward and the backward complex coefficients, respectively, of the

mth mode in the ith region, yim is the propagation constant, and e¡*and h¡* are the

corresponding transverse electric and magnetic field functions of the mthmode. The modal

fielcl functions form an orthonormal set, i.e.,

(e¡*, h¡r)s, = I"{.u,*x h¡n)'ds = õ*n Ø.4)
UT

where s; is the ith waveguide cross section, and õ*, is the Kronecker delta.

(4.3)
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4.2 BOUNDARY COhIITTTONS AT rHB DTSCONTINUITY FINNPS

At each discontinuity plane, the fransverse fields must be continuous over each aperture

and the tangential electric field must be zero on the walls. The continuity of the transverse

electric and magnetic field intensities over each aperture cross section are expressed as

follows:

ãtz=-2.

\ (er,- Bn)hn
p

at z = -z¡ (i = 2,..., N)

2(ot,n-T¡nL¡+B¡n)e¡n + ! Bjorj, =

\ (A¡*r,, * B¡*t,, e-Ti*1',nLi*r)e¡*r,n + ) Aj*r,, e j*t,p

p

\-a / - -Y. - f . -\
L \A¡*t,, - B¡+I,n e ti+I,nLi*L)h¡*r,, + ) A j*r,o h¡*t,r, (4.6)

p

\ (e*, r-rNnLu + Bu,)êN, * L t*o ,*o
Pn

\ (a*, u-Tn,Lu - Bw,)hu,

L¡= -z¡ * zi_t (í = 2,..., N).

andatz =0

where

-46-
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The n andp subscripts refer to the interacting and the non-interacting modes, respectively.

Since the non-interacting modes are not allowed to interact with the adjacent

discontinuities, only the pth modes excited away from each discontinuity are included in

the summations.

4.3 Mlrnrx EeuATroNS FoR TrrE ÐrscorurrNurrrEs

The orthogonality of the modes is applied to the field continuity equations, (4.5)-(4.7),

to form linear equations that are truncated and expressed in matrix form. The boundary

enlargement and reduction discontinuity cases are handled separately in order to properly

include the boundary condition on the ffansverse walls [17], [18].

4.3.1 Boundary Enlargernent Discontinuities

For the boundary enlargement case, at each discontinuity we take the vector product of

the terms in the electric field continuity equation with a magnetic mode function from the

following waveguide section, and the vector product of the terms in the magnetic field

continuity equation with an electric mode function from the preceding waveguide section.

Equations (4.5) - (4.7 ) become:

atz=-zI

\(Au+ B1n)(ee,hz*)s,

+ 2 Ar, (tzp, hz*) s, (* : 1, 2, 3...)
p

) (Ar" - ßt,)(tm, kn)s, = (D2,, cosh(TznLz) * Fzn sinh(y2,L))(em, hz,)5,

+ 2Aro (tt*, hzp)s, (* = L,2,3...), (4.g)
p

=4 (F2,, cosh(y2nLù * Dzn sinh(y2nLr))(ezn, hz*)g"

4
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àtz=-z¡ (i É 1,N)

2 , t,("¡n, h¡*t,*rr, * 
1 

t t, ("¡p, h¡*t.*) s. =

| 
(ri*r," cosh(1*1,, L¡*ù + D¡*r,n sinh(y¡*1,nL¡*r))(e¡+t,,, hj*r,*)s,*,

+ 2 A¡*r,o (e¡*t,p, hi*t,*) g,*, (m = r, 2, 3..-)
P

4' t"(e¡*, h¡,)s. - l t to k¡*, h¡p)s. =

| 
(nn" cosh(y;*1,, L¡*ù + F¡*t,, sinh(y7*r,,I, *ù)(ej*, h¡*t,,)5.

+ 2 A¡*t,o (t¡*, h¡*t,p)g (n = 1, 2, 3...),
p

andatz=0

L r*r(e¡¡n, h¡¡*1,.)r, * 
1 

u*o (e¡¡0, h¡¡*1,.)r, =

\ A**r,, (nN*l,n, hu*t,*) g**, (* = !, 2, 3...)

4 
r*"(eN*, hwn)sw - 1 t*, 

(e**, hwo)su =
p

(4.10)

where

(4.12)

(4.13)

\ A**r,n(eN*,hN*t,r)g* (m = I,2,3...) (4.11)

Din= A,ne-YinLi -B¡,

F ir= A¡, e-YinL¡ + B ¡, ,
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The infinite series are truncated to Mrmodes in each ith region, where l/¡ of the modes

are ciassified as interacting modes. Applying the mode orthogonality, equations (4.9)-

(4.11) can be written in matrix form:

atz=-21

Gt ( ü+ B_r ) = Çz Lz + S_zD_z

Ht(ü+Br)=¡,

Lt - B-t = ç{ ( ÇzD..z + 6z h) * HT b, @.14)

at z: -z¡ (i + 1, N)

9 L¡* Po 84 = Ç¿+t{¡+t+ $+r D-7*r

& E-j * KJ 84 = 4-t-*t

4 = 4 ( Ça*r \*t+$'*r E7*r ) * 4 4.,

-B-j = 4 ( g-r 4*t +$*r E;*r ¡ + gj L¡*r, Ø.rs)

andatz=0

9¡¿4¡¿+ÛvB-ry=AN*I

D* = 6,A**t

-B_¡v = tA**, (4.16)

where the T superscript indicates matrix transpose, A1 is the known incident modal

coefficient column matrix of Ml elements, Bi and 4ru+r tre the column matrices of My and,

M¡¡*l elements of the unknown modal coefficients for the fields reflected in region 1 and

ftansmitted in region N+l, respectively, A¡ and B ¡ are the forward and the backward
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non-interacting modal coefficient column matrices in region í (i + 7,1/), respectively, of

M¡- N¡ elements, and

D_r. : I A¡* e-ri^Lí - B ¡*J *, *,

&. = [ A¡* e-Ti*Li * B ¡*f, ,,^,

Ç, = l- õ*n cosh(y¡*L,) l*, * u,

{r = [ E*, sính(y¡*L,)f *,* *,

8¡ = | (, i* hi*r,*) ,,J *,*, * *,

P-¡= L (r,0,h,*r,*)r, ]r,*, x (u¡-N¡)

H¡ = f (, i,, h¡*l,*)r, l(r,o, - N ¡*1) x u ¡

4, = [ (eip, k¡*r,*) r,f @,or_ N¡*r) x (u ¡ _ u ¡).

(4.17)

(4.18)

(4.re)

(4"24)

(4.2r)

(4.22)

(4.23)

(4.24)

4.3.2 Boundary Reduction DÍscontinuities

For the boundary reduction case, at each discontinuity we take the vector product of the

terms in the electric field continuity equation with a magnetic mode function from the

preceding waveguicle section, and the vector product of the terms in the magnetic field

continuity equation with an elecmic mode function from the following waveguide section.

Equations (4.5) - (4.1 ) become :

atz:-zI

+ 
(Ah + B e)þ 1n, ht*) 

s r = \, (F z, cosh(y2nL2) + D zn sinh(y2,L2))þzn, ht,,) 5,

; f Ar, (rro, hr*)5, (m = 7,2,3...)
p
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\ (An - B tn)(ez^, hrn) sz 4 @ r" cosh(y2,L2) + F z, sinh(yr, Lz))kz*, hz,) s,

* 
4 

oro (ez*, hzp)s, (* = r, 2, 3--.), (4.25)

atz=-z¡ (i + 1,N)

L F¡, (e¡n, h¡*)s. + 2 "¡o 
(e¡0, h¡*) s. =

p

4 
(r,.r," cosh(y;*1,,, L¡*r) + D¡*t,, sinh(y7*r,,, L¡*ù)(r¡*r,n,hì*\5,*,

* f A;+r, p (e¡*t,p, kj*) r,, " (m = 7, 2, 3...)
P "l+r

4 
ot"(e¡*r,*, hi,)sj*t 

4 
tto (e¡*r,*, hip)s j*t =

and, at z:0

2 r*,(eu,, hu*)r" * 
? 

Bwp (ewo, hw*)s, =

4 
o *" (tN*r,*, hwn) s**r- ì 

B wp (r**r,*, hNp) s**, =

E A**r,n (tN*l,*, hw*t,n) 5r*, (* = r, 2, 3...) (4.27)

where D¡nand F¡nàre defined n (4.I2) and (4.73),respectively.

\ (D 
¡ *r,rc osh (yr*r,, L 

¡ * r) + F 
¡ * t,nsinh(yr*r,, L¡ *r)) k ¡ *t,*, h j *r,n) s, *,

+ ) Ai*r,, (r¡*t,*, h j*t,r),g.. , (m = r, 2, 3...), (4.26)
P ' "J+r

\arrt
). Aiv*t,n (€N*l.,n, hu*) 5**, (m = l, 2, 3...)
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As before, the infinite series are truncated, to M,modes in each ith region, where N; of

the modes are classified as interacting modes. Applying the mode orthogonality, equations

(4.25)-(4.27) can be wrinen in maüix form:

ãf. Z = -Zt

Lt + B-t = gT (Çzh + ÍrE) * UT L,

Gt(ü-B_r) = ezÐz+S.zEz

Ht ( t- år ) = Az, (4.28)

atz=-z¡ (i +1,1/)

+= 4 ( Çr L¡+t+ g'+r 4*) * 4 4.,

4 = { ( Çr L¡*t+ g+r 4*) * { 4*,

çJ 4 - k 4 = 9*t 4t +$.+r E7+r

ur4-94=4*þ

andatz =0

Ew = tAw*t

Iù, = tA**,

QrD* -4¡¿å¡¿ = &+t

(4.2e)

(4.30)

where the quantities are described n (4.17)-(4.20), except in the boundary reduction case

G¡=l(ri*r,*, h¡n)s¡+tl*,*r* *, (4.31)

L,: L (ei*l,*, h¡p)s¡*t]",*, * (u¡_ ui) @.32)
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H¡ = L (ri*1,*,

; = [ (ri*r,*,

Í¿¡') 
s ¡*tl (*,*, - N ¡*1) x M ¡

h¡p)s¡*tf 
@,*r-N¡*r) x (M¡-N;*r).

(4.33)

(4 ?A\

The sets of linear matrix equations for an arbitrary combination of boundary

enlargement and reduction discontinuities can be compiled by considering the

corresponding matrix equarions in (4.14)-(4.16) or (4.27)_(4.30).

4,4 Sc¿.TTenING MATRIx FoRMULATIoN

In scattering matrix formulation, 81and,4¡¡ç1 can be expressed as

ts-l = S-nLt

A;iot = Szt Lt (4.3s)

where J11and Lzt üe the complex reflection and transmission matrices for the entire

sttucture, respectively. Solving the sets of iinear maúix equations for an arbitrary series of

boundary enlargement and reduction discontinuities, the scattering matrices are obtained as

Q*uTg,)-'[( t_-uTur)

S11 =

Q* uT u_,)-'[-( t- uT U,)

szr = z([* 6,8*)-'(g'g/ )(d'-'4t1,). (q,4ã') ê-u_-'çr(!* uTu)-'
(4.37)

where Ë¡ 4¡ H ¡ and K¡ æe described in equarion s @"2\-@.24) or (4.31)-(4.34) for rhe

-z c{ ez!-'Gr(t* gT U, )-'], ror a 1st

discontinuity boundary enlargement (8.E.)

(4.36)

+ z GT ez U_-t G, ( t * UT g, )-t ], for a lst

cliscontinuity boundary reduction (8.R.)
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ith discontinuity B.E or B.R. case, respectively, 1is the unit matrix,

(c-* cr(!+ HT Ht)-oqf q, )
* ({z * G, ( ! * uT ur)' gT c-)( t ( I * $ tr)-, u_ * êT g, 4r' êr),

for the 1sr and 2nd discontinuities both B.E. or B.R.

f T -: (4.38)

(4.3e)

(4.40)

( {, * g, ( ! * u{ u r)-' g{ çr)

+ ( Çz* G, ( ! * uT ur)-' cT ¿)( :T e * 4 s)-, g, * $ e, Ei' êr),
otherwise.

Q¡and4; *" M¡x M¡matrices calculated frorn the following recurrence formulas:

s; + g; ( ryi ( ¿ * { g)-t 4, * êTQ_u, 4,i, ë,), fo, the ith and l+lth
discontinuities both B.E. or B.R.

Q¡=

Ç¡ + S ¡ ( gi ( ! * trT tr)-' U_, * êT eur4;i Iî, ), otherwise

4 +4 ( UT ( ! * trT tr )-'E, * êT eurg;i d, ), ro, the ith and i+lth
discontinuities both B.E. or B.R.

Ri=

S ,.4 @i (!* trT tr)-'g, *êT eur4,],ê,)1, otherwise

with

ê¡= G¡* 4, ( r * { K)-'rc| u, @.41)

4 = {, + L¡-t(!* {,K-,-t)-t p:T-,e-, Ø.42)

ê¡ = Ç¡ + 1i-r ( t * rT, E-,-)-t LT, E, Ø.4:J)
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{¡ø + Ç¡u 6,Q* l* Ú,)-tq", for the N-1th and Mh discontinuities

Qw=
both B.E. or B.R.

(4.44)

Ç¡ø + $ø 6,Q* E* t)-lG¡¿, otherwise

Ç" * S" 6, Q * l* t)-t q¡¿, fo. the N-lth and Nth discontinuities

both B.E. or B.R.
4r= (4.4s)

T .4" 6,Q* l* t)-1Ç¡¿, orherwise.

In equations (a.36)-(a.45),the following identities can be used forZ = E¡, H¡ or K; :

z(!*z_'Z)-, = !+(!*t:rz)-'(¿ -z_rz) r4.46)

(!*t:'Z_)-= [_-Zr({"2:z:')-'Z_ G.Aj)

Q* z- z' )-' = !- z (! * z_'z)-' z' Ø.48)

Froofs for the identities are shown in the Appendix.
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4.5 NUMERICAL Rpsur,rs ron CTncULAR WIvncUIDES

A thick iris in a circular waveguide is studied quantitatively to determine a criterion for

choosing the number of interacting modes in circular waveguides. Numerical results for a

thick iris in a circular waveguide are compared with data avaiiable in the literature to verify

the accuracy of the formulation. The technique is also applied to the analysis of step

fransformers in circular wavesuides.

4.5.1 ConYergence and A.ccuracy

Consider a thick circular iris of radius b and length L in a circular waveguide of radius

d, as shown in Fig. 3.1. In the previous chapter, it was found that the optimum ratio of the

number of modes for good convergenceis MIN = alb where M andN are the total number

of modes in waveguide regions and iris region, respectively. F{owever, the number of

interacting modes in the iris region P must be chosen sufficiently large enough to account

for the higher order mode interaction between the discontinuities. A criterion for choosing

the number of interacting modes can be establishecl by studying the numerical results for an

incident TE11 mode.

In Fig. 4.1 and Fig 4.2, the magnitude of the reflection coefficient is shown as a

function of P, with M = N(alb) = 40, for several values of Lla and ka.It is observed that

the reflection coefficient typically converges when the evanescent modes with yL < 4 are

allowed to interact between the discontinuities in the iris region. All the propagating modes

must be included in the ffuncations. Although good results may be obtained using fewer

modes, this criterion serves as a general guideline for choosing the number of interacting

modes in circular waveguides. Instability may occur if too many higher order modes are

allowed to interact as can be seen lor I-la = 0.4 in the figures. Comparison with numerical

results calculated by the moment method [14] are shown in Table 4.1 through Table 4.8.

The results are in excellent agreement for all values of l, using M = N(alb) = 40 and p as

shown in the tables.
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Fig. 4.1. Magnitude of the reflection coefficient as a function of P for a thick iris with

a = 1.338b and ka =2.4.
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Lla = 0.2

Lla=0.I
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Fíg. 4.2. Magnitude of the reflection coefficient as a function of P for a thick iris with

a = 7.338b and ka = 3.2.
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Table 4.1

Comparison of the reflection coefficient as a function of .L for a thick iris with

a = 0.5077 5 in. b = 0.25 in. and f = 9 GHz.

Table 4.2

Comparison of the fransmission coefficient as a function of ,L for a thick iris with

a = 0.50175 in, b = 0.25 in, and/= 9 GHz

L
(inch)

MomentMethod [14]

Magnitude Phase
(degrees)

Proposed Formulation

Magnitude Phase P
(degrees)

0.0s0

0.100

0.200

0.500

1.000

3.000

0.934 155.7

0.966 1s8.6

0.990 161.0

1.000 162.0

1.000 162"0

1.000 t62.0

0.934 155.6 12

0.965 1s8.6 6

0.989 160.9 3

1.000 162.0 1

1.000 762.0 1

1"000 162.0 1

L
(inch)

MomentMethod [14]

Magnitude Phase
(degrees)

Proposed Formulation

Magnitude Phase P
(degrees)

0"050

0.100

0.200

0.s00

1.000

3.000

0"356 65.7

0.260 68.6

0.144 71.0

0.027 72.0

0.002 72.0

0.000 7 5.7

0.358 65.6 72

0.261 68.6 6

0.145 70.9 3

0.027 72.0 1

0.002 72.0 1

0.000 72.0 1
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Table 4.3

Comparison of the reflection coeffîcient as a function of tr for a thick iris with
a = 0.50175 in, b = 0.25 in, and/= LZ GHz

TabIe 4.4

Comparison of the fransmission coefficient as a function of L for a thick iris with
a = 0.50775 in, b = 0.25 in, and/= 12 GHz.

L
(inch)

Moment Method [14]

Magnitude Phase
(degrees)

Proposed Formulation

Magnitude Phase P
(degrees)

0.050

0.100

0.200

0.500

1.000

3.000

0.488 113.2

0.622 116.8

0.806 122.0

0.977 127.4

0.999 128.1

1.000 128.2

0.486 1i3.0 12

0.620 116.6 6

0.804 121"9 3

0.977 121.3 1

0.999 128.0 1

1.000 128.0 1

L
(inch)

MomentMethod [14]

Magnitude Phase
(degrees)

Proposed Formulation

Magnitude Phase
(degrees)

0.050

0.100

0.200

0.500

1.000

3.000

0.873 23.2

0.783 26.8

0.593 32.0

0.211 37.4

0.034 38.1

0.000 38.1

0.874 23.0 12

0.784 26.6 6

0.594 3r.9 3

0.212 37.3 1

0.034 38.0 1

0.000 38.0 1
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TabIe 4.5

Comparison of the reflection coefficient as a funcúon of ,L for a thick iris with

a = 0.50175 ín, b = 4375 in, and;f = 9 GHz.

Table 4.6

Comparison of the transmission coefficient as a function of L for a thick iris with

a = 0.50175 in, b = 0.375 in, and/= 9 GHz.

L
(inch)

MomentMethod [14]

Magnitude Phase
(degrees)

Proposed Formulation

Magnitude Phase P
(degrees)

0.0s0

0.100

0.200

0.s00

1.000

3.000

0.272 99.3

0.337 97.0

0.453 92.4

0.706 82.0

0.901 73.4

0.999 68.7

0.270 99.2 15

0.336 96.9 10

0.452 92.3 5

0.705 81.9 2

0.900 73.2 1

0.999 68.5 1

L
(inch)

MomentMethod [14]

Magnitude Phase
(degrees)

Proposed Formulation

Magnitude Phase P
(degrees)

0.0s0

0.100

0.200

0.500

1.000

3.000

0.962 9.3

0.941 7.0

0.892 2.4

0.708 -8.0
0.434 -16.6
0.052 -21.3

0.963 9.2 15

0.942 6.9 10

0.892 2.3 5

0.709 -8.1 2

0.435 -16.8 1

0.052 -2t.5 1
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Table 4.7

Comparison of the reflection coefficient as a function of ,L for a thick iris with

a=0.50Il5in,b =0.375 in, and/= 72GHz.

Table 4.8

Comparison of the transmission coefficient as a function of ,L for a thick iris with

a = 0.50175 in, b = 0.375 in, and;Ê= 12 GHz.

L
(inch)

MomentMethod [14]

Magnitude Phase
(degrees)

Proposed Formulation

Magnitude Fhase P
(degrees)

0.050

0.100

0.200

0.500

1.000

3.000

0.014 -102.2
0.033 -114.4
0.0s6 -138.6
0.040 1s0.8

0.061 -146.3
0.010 -:74.6

0.014 -102.1 15

0.033 -114.4 10

0.056 -138.6 s

0.040 150.8 2

0.067 -146.3 1

0.010 -14.7 1

L
(inch)

MomentMethod [14]

Magnitude Fhase
(degrees)

Proposed Formulation

Magnitude Phase P
(degrees)

0.050

0.100

0.200

0.500

1.000

3.000

-r2
0.999 -24.4
0.998 -48.6
0.999 -119.2
0.998 123.7

1.000 r5.4

1.000 -r2.r 15

0.999 -24.4 10

0.998 48.6 s

0.999 -rr9.2 2

0.998 123.1 1

1.000 t5.4 1
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4.5,2 Application to Step Transformers

Figure 4.3 shows step transforrners that are used as transitions between waveguides of

different dimensions. The dimensions for two- and four-section quarteÍ-wave transformers

in circular waveguides, designed by Sabatter et. al. [26], are given in Table 4.9"

Comparison with numerical results for the voløge standing wave ratio (VSWR) of the two-

and four-section transformers, calculated using the rnodal analysis technique with

cascading 126f, are shown in Fig. 4.4 andFig. 4.5, respectively. Excellent agreement of

results are achieved using a total of twenty modes in each region where three modes in each

fransformer section are interacting modes.
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(a)

Fi-e. 4.3. Geometry of a ci¡cular waveguide srep transformer.

a) two-section transformer

b) fou¡-section Íansformer

(b)

A1_UT_



Table 4.9

Dimensions for step transformer designs.

(in cm)

Two-section
Transformer

Four-section
Transformer

r1

r2

r3

IA

r5

r6

ful

L2

L3

L4

1.1 165

1.1360

1.1965

1.3400

1.3610

r.2410

1.1 165

I.r2I0

1.t415

1.1 685

r.2090

1.3400

1.3990

1.3480

t.2930

r.2270
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Proposed method

Sabatier et. al.

8910111213
f (GHz)

Fig.4.4. VSWR of a two-section transformer with dimensions as in Tabie 4.9.

1.6

T.4

F(n

L.2

1.0
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F
V)

Proposed method

Sabatier et. al"

8910111213
f (GHz)

Fig. 4.5. VSWR of a four-section transformer with dimensions as in Table 4.9.

r.3

1.2

1.1

1.0
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CH,A,PTER. 5

CONCI,IJSTONS ANÐ RECON4IVTENDATXONS

In this thesis, a general solution for the scattering from multiple discontinuities in

waveguides has been presented. The global scattering matrices are calculated by

simultaneously solving for the interaction between the discontinuities using a recurrence

procedure rather than by cascading individual discontinuities. Compared with the

commonly used cascading techniques, the proposed formulation has a significant

computational advantage by requiring fewer matrix multiplications and inversions for the

calculation of the scattering matrices.

In Chapter 3, the formulation was applied to step-discontinuities in circular waveguicles

for quantitative studies. It was found that the ratio of the number of modes in each region

should be chosen approximately equal to the ratio of the waveguide cross section

dimensions to ensure a very rapid convergence of results. In the case of closely separated

discontinuities, this choice for the mode ratio is critical for achieving accurate results. The

accruacy of the proposed formulation has been confirmed by comparing numerical results

for a thick iris in a circular waveguide with data available in the literature. The computation

for the thick iris required only one relatively small matrix inversion while two 40 x 40

maffix inversions were required for the moment method solution [14].

Previously published designs for iris matched dielectric windows [18] were calculatecl

using a relatively small modes that was insufficient to account for the higher order mode

interaction of closely spaced discontinuities. By using a larger number of modes in the ratio

of the dimensions, designs have been improved by as much as 4.2 percent. The frequency

response for the improved designs have also been calculated and presented.
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The analysis in Chapter 2 takes into account the near field coupling and higher order

mode interaction befween discontinuities. However, the formulation has been modified in

Chapter 4 to eliminate the coupling of the higher order modes that do not effectively interact

with the adjacent discontinuities. This extends the applicability of the formulation to cases

with large separation distances between discontinuities. For the linear dimensions

considered, the evanescent modes with "tL < 4 were found to be effectively interacting

between the discontinuities and should be included in the truncations. Numerical results for

a thick iris in a circular waveguide and for multiple-step transformers in circular

waveguides have been compared with data available in the literature to confirm the accuracy

of the modified formulation.

Although only step-discontinuities in circular waveguides have been discussed in this

thesis, the formulation can be applied to general transverse discontinuities in waveguides of

any cross section. The conditions for good convergsnce for waveguides of other cross

section would be expected to be similar to the criterion described here, but this needs to be

verified.
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APPÐI{ÐXX

TDENTtrTIES FOR COUPLING MATRICES

Consider the matrix equations for a single boundary reduction discontinuity

Lt+ B-.=ZT B-z

Z( ü- B_t) - BÀ (1)

where A1 is the incident excitation, and 81 and B-2 are the unknown reflected and

transmitted coefficients, respectively. Solving for B-1 and E2it can be shown that

B-t = -([+ zrz )-' (¿ -z'z)t,

&r=z(!*Z'Z_)-t4a, e)

Substituting B_1 and þ2into the first equation of (1) and simplifying gives

t-Q*4'4 )-'(l -Z'z:) =z(!*z:' 4)-
or

l* (!* z:'z: )-t (¿ -Z'Z) = z!-zz'(!* 4' z:)t Z @)

From the left hand side of (4), it can be shown that

{*({ *z:'z:)-t(¿ -Z'4)= 2(!*Z":)t

Comparing (4) and (5), it is apparent that

Q=*Z": )-t = t-4'(!*Z'z:)-4

From the matrix equations for a single boundary enlargement, it can be shown that (5)

and (6) are valid for Zreplacedby ZT, where Z = G, L, 4, K.

(3)

(5)

(6)
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