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Abstract

To select a set of appropriate numerical attributes of features from the interested
objects for the purpose of clé,ssiﬁcation has been among the fundamental problems
in the design of an imagery pattern recognition system. Omne of the solutions, the
utilization of moments for object characterization has received considerable atten-
tions in recent years. In this research, the new techniques derived to increase the
accuracy and the efficiency in moment computing are addressed. Based on these
developments, the significant improvement on image reconstructions via Legendre
moments and Zernike moments has been achieved. The effect of image noise on
image reconstruction, the automatic selection of the optimal order of moments for
image reconstruction from noisy image, and the usage of moments as image features

for character recognition are analyzed as well.
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Chapter 1

Introduction

One of the basic problems in the design of an imagery pattern recognition system
relates to the selection of a set of appropriate numerical attributes of features to be
extracted from the object of interest for the purpose of classification. The recognition
of objects from imagery may be achieved with many methods by identifying an
unknown object as a member of a set of known objects. Efficient object recognition
techniques abstracting characterizations uniquely from objects for representation
and comparison are crucially important for a given pattern recognition system.

Research on the utilization of moments for object characterization in both in-
variant and noninvariant tasks has received considerable attention in recent years.
The principal techniques explored include Moment Invariants, Geometric Momends,
Rotational Moments, Orthogonal Moments, and Complez Moments. Various forms
of moment descriptors have been extensively employed as pattern features i scene
recognition, registration, object matching as well as data compression.

The mathematical concept of moments has been around for many years and has
been used in many diverse fields ranging from mechanics and statistics to pattern
recognition and image understanding. Describing images with moments instead of
other more commonly used image features means t_lhat global properties of the image

are used rather than local properties.



Historically, Hu{36][37] published the first significant paper on the utilization of
moment invariants for image analysis and object representation in 1961. Hu’s ap-
proach was based on the work of the nineteenth century mathematicians Boole,
Cayley, and Sylvester, on the theory of algebraic forms. Hu’s Uniqueness Theorem
states that if f(z,y) is piecewise continuous and has nongero values only in the
finite part of the (z,y) plane, then geometric moments of all orders exist. It can
then be shown that the moment set {mp,} is uniquely determined by f(z,y) and
conversely, f(z,y) is uniquely determine& by {m,,}. Since an image segment has
finite area and, in the worst case, is piecewise continuous, a moment set can be
computed and used to uniquely describe the information contained in the image
segment. Using nonlinear combinations of geometric moments, Hu derived a set of
invariant moments which has the desirable properties of being invariant under image
translation, scaling, and rotation. However, the reconstruction of the image from
these moments is deemed to be quite difficult.

The Rotational moment is an alternative to the regular geometric moment. The
Rotational moments are based on a polar coordinate representation of the image
and can be used to extend the definition of moment invariants to arbitrary order in
a manner which ensures that their magnitudes do not diminish significantly with in-
creasing order. Smith and Wright[69] used a simplified Rotational moment technique
to derive invariant features from noisy low resolution images of ships. Boyce and
Hossack[15] derived the Rotational moments of arbitrary order that are invanant to
rotation, radial scaling, and intensity change.

In 1980, Teague[73] presented two inverse moment transform technigues to deter-
mine how well an image could be reconstructed from a set of moments. The first

method, called moment matching, derives a continuous function

glz,y) = goo+ g10% + g1y + g202® + guizy + gooy® +
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gaot® + gnz’y + gy’ + gesy® + ..,

whose moments exactly match the geometric moments {m,,} of f(z,y) through or-
der n. However, this technigue is impractical for calculation as it requires one to
solve an increasing number of coupled equations when higher order moments are
considered. Then, Teague suggested the notion of orthogonal moments to recover
the image from moments based on the theory of orthogonal polynomials. Teague
introduced the rotationally invariant Zernike moment, which employs the complex
Zernike polynomials as the moment basis set, and the Legendre moment, using
Legendre polynomials as its basis set. Significant efforts have been made in vari-
ous experimental image reconstruction tasks performed by Teague, then Boyce and
Hossack[15], Teh and Chin{75], Taylor and Reeves[72], and more recently, Khotan-
zad and Hong[45]{46] with both Zernike and Legendre methods. However, no
high quality multi-graylevel image has ever been successfully reconstructed from its
original version.

Later, the notion of Complez moments was introduced by Abu-Mostafa and
Psaltis[1] as a simple and straightforward way to derive a set of invariant moments.
Abu-Mostafa and Psaltis used Complez moments to investigate the informational
properties of moment invariants. However, comparing Compler moments with the
Zernike moments, they concluded that the Compler moment invariants are not
good image features. In other work, Abu-Mostafa and Psaltis[2] examined the
utilization of moments in a generalized image normalization scheme for invariant
pattern recognition. They redefined the classic image normalizations of size, posi-
tiom, rotation, and contrast, in terms of Complez moments. Moment invariants were
shown to be derivable from Compler moments of the normalized image as well.

Teh and Chin[75] performed an extensive analysis and comparison of the most

common moment definitions. They examined the noise sensitivity and information



redundancy of Legendre moments along with five other types of moments. Teh and

Chin concluded that higher order moments are more sensitive to noise. Among the
explored techniques, Complez moments are least sensitive to noise while Legendre
moments are most severely affected by noise. In terms of information redundancy,
Legendre, Zernike, and pseudo-Zernike moments are uncorrelated and have the
least redundancy. In terms of overall performance, Zernike and pseudo-Zerlnike
moments are the best. In general, orthogonal moments are better than other types
of moments in terms of information redundancy and image representation.

More recently, Prokop and Reeves[62] reviewed the basic geometric moment the-
ory and its application to object recognition and image analysis. The geometric
properties of low-order moments were discussed along with the definition of several
moment-space linear geometric transforms. Prokop and Reeves also presented an
extensive review summarizing most of research advancements related to the moment-
based object representation and recognition techniques over the past 30 years.

The speed of computing image moments is extraordinarily important when higher
order moments are involved. Several schemes of hardware architectures have been
performed to speed up the computation of image moments. Reeves[64] proposed
a parallel, mesh-connected SIMD computer architecture for rapidly manipulating
moment sets. The architecture offered a reasonable speeding up over a single pro-
cessor for high speed image analysis operations and was expected to be implemented
in VLST technology. Andersson|6} developed a VLSI moment-generating chip and
presented a real-time system by implementing the processor. Hatamian|33] pro-
posed an algorithm and single chip VLSI implementation to generate raw moments.
It is claimed that 16 geometric moments, my(p = 0,1,2,3,¢ = 0,1,2,3), of a
512 x 512 x 8 bit 1mage can be computed at 30 frames/sec. The moment algorithm

is based on using the one-dimensional discrete moment-generating function as a



digital filter.

The organization of this thesis is as follows. Chapter 2 will review the general
characteristics of various types of moments and their properties. In Chapter 3,
the new techniques derived to increase the accuracy and the efliciency in moment
computing, will be addressed. Chapter 4 will discuss the reconstruction algorithms
of the Legendre moments and the Zernike moments, and provide significantly
improved reconstructed images from these orthogonal moments. Then, the effect
of image noise on image reconstruction and the automatic selection of the optimal
order of moments for image reconstruction will be analyzed in Chapter 5. Several
specific recognition aspects of proposed moment techniques for character recognition
are studied in Chapter 6. Finally, Chapter 7 will summarize the important results

and conclusions of the entire study.



Chapter 2

Theory of Moments

2.1 Introduction

Numerous problems in mechanics, physics, and engineering lead to the problem of
characterization of a {function in terms of some functionals. In particular, moment
functionals have attracted great attention|78] due to their mathematical simplicity
and numerous physical interpretations.
A complete characterization of moment functionals over a class of univariate func-
tions was given by Hausdorff[26] in 1921,
Let {p,,} be a real sequence of numbers and let us define
m
A = 31 () e (21)
i=0
Note that A™y, can be viewed as the mth order derivative of p,.
By Hausdorff’s theorem, a necessary and sufficient condition that there exists a

monotonic function F(z) satisfying the system
pn::f dF(z),  n=0,1,2,.. (2.2)
0
is that the system of linear inequalities

Afp, >0 E=0,1,2,.. (2.3)




should be satisfied. Le., if f(z) is a positive function (which is the case in image

processing ), then the set of functionals

completely characterizes the function.
A necessary and sufficient condition that there exists a function F(z) of bounded
variation satisfying (2.2) is that the sequence

~ (P
p-m, | —
E ( ) |APT™ p=20,1,2,..

m=0
should be bounded.

These results were extended to the two-dimensional case by Hildebrandt and
Schoenberg(34] in 1933.

Since then, moments and functions of moments have been utilized in a num-
ber of applications to achieve both invariant and noninvariant recognitions of two-
dimensional and three-dimensional image patterns[62].

In this chapter, the various tjrpes of moments are defined and their properties
are summarized. It is assumed that an image can be represented by a real valued

measurable function f(z,y).

2.2 Geometric Moments in Image Processing

2.2.1 Preliminaries

The two-dimensional geometric moment of order (p + ¢) of a function f(z,y) is

defined as
ap ba
Mpq=f / 2 y? f(z,y) dzdy, (2.4)
a1 b

where p,qg = 0,1,2,...,00. Note that the monomial product zPy? 1s the basis function

for this moment definition.




A set of n moments consists of all M,,’s for p + ¢ < =, 1.e., the set contains
1(n+1){n + 2) elements.

The use of moments for image analysis and pattern recognition was inspired by
Hu{37] and Alt{5]. Hu stated that if f(z,y) is piecewise continuous and has nonzero
values only in a finite region of the (z,y) plane, then the moment sequence { My}
is uniquely determined by f(z,y), and conversely, f(z,y) is uniquely determined by
{Mp,}. Considering the fact that an image segment has finite area, or in the worst
case is piecewise continuous, moments of all orders exist and a complete moment
set can be computed and used uniquely to describe the information contained in
the image. However, to obtain all of the information contained in an image requires
an infinite number of moment values. Therefore, to select a meaningful subset of
the moment values that contain sufficient information to characterize the image

uniquely for a specific application becomes very important.

2.2.2 Properties of Geometric Moments
The lower order moments represent some well known fundamental geometric prop-
erties of the underlying image functions.
Central Moments
The central moments of f{z,y) are defined as
as bo ~ B
frg = f fb (z =2} (v — §) f(=,y) dady, (2.5)
Q1 1

where  and § are defined in (2.10).
The central moments iy, defined in Eq. {(2.5) are invariant under the translation

of coordinates(37]:

¥y = y+48, (2.6)




where a and g are constants.

Mass and Area

The definition of the zeroth order moment, { Myo}, of the function f(z,y)

as by
Mrog:f /b flz,y) dady (2.7)

represents the total mass of the given function or image f(z,y). When computed

for a binary image, the zeroth moment (2.7) represents the total area of the image.

Centre of Mass

The two first order moments,

ag b;;
Mg =f /b z f(z,y)dody (2.8)

and
as bo
Mg, = f /b y f(z,y)dzdy (2.9)
&) 1

represent the centre of mass of the image f(x,y). The centre of mass is the point
where all the mass of the image could be concentrated without changing the first
moment of the image about any axis. In the two-dimensional case, in terms of

moment values, the coordinates of the centre of mass are

Mo Moy

, j= 2 2.10
Moo Y7 Moo (2.10)

T =
As a usual practice, the centre of mass is chosen to represent the position of an
image in the field of view. The equations in (2.10) define a unique location of the

image f(z,y) that can be used as a reference point fo descrirbe the position of the

image.




Orientations

The second order moments, { Moz, My1, Moo}, known as the moments of intertia,
may be used to determine an important image feature, orientation. In general, the
orientation of an image describes how the image lies in the field of view, or the
directions of the principal axes.

In terms of moments, the orientations of the principal axes, §, are given by[35]

6 = Emn—l(—z’“’L). (2.11)
2 Ha2o — Hoz

In {2.11), 6 is the angle of the principal axis nearest to the @ axis and is in the range

—7r/4 <8 <7/

Projections

An alternative means of describing image properties represented by moments is
to consider the relationship between the moments of an image and those of the
projections of that image. The moments in the sets { My} and {Mop} are equivalent
to the moments of the image projection onto the z axis and y axis respectively.

Consider the horizontal projection, h{y), of an image f(x,y) onto the y axis given
by

by) = [ fley)de. (2.12)

Then, the one-dimensional moments, M,, of h(y) are obtained by

M, = sz y? h{y) dy. (2.13)

by

Substituting {2.12) into {2.13) gives

a3z bo
M, :/ jb 4@ f(z,y) dedy = Ma,. (2.14)

Figure 2.1 illustrates the projections of an object onto the  axis and y axis and

the moment subsets corresponding to the projections.
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Figure 2.1: Moments projections onto z and y axes.
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2.2.3 Moment Invariapts

The earliest significat work employing moments for image processing and pattern
recognition was performed by Hu[37} and Alt[5]. Based on the theory of algebraic
invariants, Hu[36]{37] derived relative and absolute combinations of moments that
are invariant with respect to scale, position, and orientation.

The method of moment invariants is derived from algebraic invariants applied
to the moment generating function under a rotation transformation. The set of
absolute moment invariants consists of a set of nonlinear combinations of central
moments that remain invariant under rotation. Hu defines the following seven func-
tions, computed from central moments through order three, that are invariant with

respect to object scale, translation and rotation:

$1 = fao + Moo (2.15)
$2 = (p20— poa)® + 4piy (2.16)
¢3 = (pao —3p2)" + (Bpar — pos)’ (2.17)
¢s = (pso — p12)’ + (a1 — pros)’ (2.18}

¢s = (tso — 3paa)(pao -+ p12)[{pa0 + paz)® ~ 3(pa1 + poa)?]

+(Bpar — proa)(par + pos)[3(ua0 + paz)® — (a1 + fos)’] (2.19)
g6 = (p20 — pos)[(#s0 + p12)* — (p21 + pre3)’]

+4p(pao + p12)(p2r + pos) (2.20)
¢7 = (Bpar — proa)(prso + paz) a0 + pa2)® — 3(par + pros)?]

—(pao — 32 ) (a1 + fo3)[3(ks0 + p12)* — (21 + pos)*- (2.2-1)

The functions ¢; through ¢g are invariant with respect to rotation and reflection
while ¢7 changes sign under reflection.

Hu's original result has been slightly modified by Reiss{66] in 1991. Reiss revised

12




the fundamental theorem of moment invariants with four new invariants. The cor-
rection presented by Reiss affects neither similitude (scale) nor rotation invariants
derived using the original theorem, but it does affect features invariant to general
linear transformations.

The definition of the geometric moments (2.4) has the form of the projection of
the image function f(z,y) onto the monomial zPy?. However, with the Weierstrass

approximation theorem[17], the basis set {zFy?}, while complete, is not orthogonal.

2.3 Complex Moments

The notion of complex moments was introduced in [1] as a simple and straightfor-
ward technique to derive a set of invariant moments. The two-dimensional complex

moments of order (p, g} for the image function f(z,y) are defined by:
az b2
o :f /b (2 + jy) (2 — jy) f(z,y) dedy, (2.22)
ai 1

where p and g are nonnegative integers and 7 = /—1.
The complex moments of order {p, q) are a linear combination with complex co-
efficients of all of the geometric moments { M, } satisfying p + ¢ = n + m.

In polar coordinates, the complex moments of order {p + ¢) can be written as

Cpg = fuzw_/;oo PP eI P9 (0 cosb, p sind) p dpdb. (2.23)
If the complex moment of the original image and that of the rotated image in the
same polar coordinates are denoted by Cpy and (7, the relationship between them
1s
O, = Cpge P97, (2.24)
where 8 1s the angle that the original image has been rotated.

The complex moment invariants can be written in the form of

C'rsctk + Carcff:: (2'25)

U

13




where

(r~8) + k(t —u) = 0. (2.26)

This combination of complex moments cancels both the imaginary moment and the

rotational phase factor, and thus provides real-valued rotation invariants.
However, these complex moment invariants are not, in general, good features[1}.

They suffer from information loss, suppression, and redundancy which limit their

discrimination power.

2.4 Orthogonal Moments

2.4.1 Legendre Moments
Legendre Polynomials

The nth - order Legendre polynomial is defined by

= : 1 4
= jxt = —(2* ~ 1) :
P.(z) E)am 2! = o dmn(a} ) (2.273

The Legendre polynomials have the generating function

1 oo
= > r° Pz), r < 1. {2.28)
V1=2rz+r:

From the generating function, the recurrent formula of the Legendre polynomials

can be acquired straightforwardly:

d 1 d o,
g(m) = &:(;}T Py(z))

T—r i 1
= s7° 7 Py(w)
(1—2rz + r2)3/2 g}

(mwr)ir’ P,(z) (1 — 27z + 7%) iosr“l Py(z).

f

_Then we have

tPu(z) ~ Proi(z) = (k4 1)Perr(z) — 22k Py (2) + (k — 1) Pr1 (),
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or, the recurrent formula of the Legendre polynomials:

2n+1

‘Pn-+1() ﬂ'+'1

Pya(z). (2.29)

The Legendre polynomials { P, (z)} [17] are a complete orthogonal basis set on

the interval |-1, 1}:
2

—— dmn, 2.
2m -+ 1 ( 30)

+1
/ Pol(z) Palz)de =
-1
where &,,, 1s the Kronecker symbol.

Figure 2.2 and Figure 2.3 show some of the two-dimensional Legendre polyno-

mials in the image space.

Legendre Moments

The (m -+ n)th order of Legendre moment of f(x,y) defined on the square [—1,1] x
[~1,1] is

Amn = (2m + 12}(2” +1) V/:lj::l Po(z) Pu(y) f(=,y) dedy, (2.31)

where m,n = 0,1,2, ...

Using {2.4), (2.27), and (2.31), we have

A = (2m + 1){2n + 1) /+1/‘ y) f(, ) dody

4

_ 2m+1312n+1 [/‘_ Zﬂmjmj Zankykf(w,y)dmdy
)
4

(2m + 1)(2n + 1) Zzﬂm;f‘lnk/] :c’y Fle,y) dedy.

J=0k=0

Therefore, the Legendre moments and geometric moments are related by

(2m+1 )(2n + 1)

Amn = Z Z Qg Cnie M. (2.32)
3=0 k=0

The above relationship indicates that a given Legendre moment depends only

on geometric moments of the same order and lower, and conversely.
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Figure 2.2: The plots of some two-dimensional Pp,(z)}FP,(y) Legendre polynomials.
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2.4.2 Zernike Moments

The usage of Zernike polynomials 1n optics dates back to the early 20th century,
while the applications of orthogonal moments based on Zernike polynomials for

image processing were pioneered by Teague{73} in 1980.

Zernike Polynomials

A set of orthogonal functions with simple rotation properties which forms a complete
orthogonal set over the interior of the umit circle was introduced by Zernike[79].

The form of these polynomials is
Vi (2,) = V(0518 p086) = B (p) ep(jm) (2.33)

where n is either a positive integer or zero, and m takes positive and negative integers
subject to comstraints n — jm| = even, jm| < n, p is the length of the vector from
the origin to the pixel at (z,y), and @ is the angle between vector p and the z axis
in the counterclockwise direction.

The Radial polynomial R,,(p) is defined as

(n—|m])/2 Iy (n — s)! n—2s 2.34
R (p) = i EE R o

a=0
with B m(p) = Rum(s)
Figure 2.4 and Figure 2.5 show some of the V,,.(z,y) polynomials.
The Zernike polynomials (2.33) are a complete set of complex-valued functions

orthogonal on the unit disk 2% + y* < I

T
Tl )] Voo (2, y) dedy = S s 2.35
ffﬂﬂ,?g” (2, 4)]" Vag(z, y) dzdy n 1 e Oma (2.35)
or, in polar coordinates
2w pl e i
L o, 601 Vo, )7 48 = T b by (2.36)
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where the asterisk denotes the complex conjugate.
As is seen from (2.33) and (2.36), the real-valued radial polynomials {R,.(r)}

satisfy the relation

1

f@ Rot() R () dr = 5 B (2.37)

The radial polynomials R,..{p) have the generating function
[14¢—/1=2t{1-2p2) 42" &
/ = S Raanlp). (2.38)
(2tp)my/1 - 2t(1 = 2p7) + 12 i
When m = 0, it is interesting to see that the equation {2.38) reduces to
1 oo
=Y t*P,(1 —2p%), (2.39)
JI=2(1—2p2) +12 1%

and becomes the generating function for the Legendre polynomials of argument

2p* — 1, so that
Ramolp) = Pa(20* = 1). (2.40)
Zernike Moments

The complex Zernike moments of order n with repetition m for an 1mage function

flz,y) are defined as

41 .
Ap, = f/ VY (p,8) dady, .
7 ) g T Vomlp, 6) ddy, (2.41)
or, in polar coordinates
n-+1 2 gl )
A = = j; fﬂ f(p,8) Bm(p) exp(—jm8b) p dpdf. (2.42)

where the real-valued radial polynomial R,..(p) is defined in (2.34).

Due to the conditions n — |m| = even and |m| < n for the Zernike polynomials
(2.33), the set of Zernike polynomials contains 2(n + 1)(n + 2) linearly independent
polynomials if the given maximum degree is n. 7

Since A, = An_m, then {A,,| = |A, |, therefore, one only needs to consider

|Apm| with m > 0.
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Rotational Properties of Zernike Moments

Under a rotation transformation, the angle of rotation of the Zernike moments is
sitmply a phase factor. Therefore, the Zernike moments are invariant under image
rotation.

If the original image and the rotated image in the same polar coordinates are

denoted by f{p,8) and f"(p,8) respectively, the relationship between them is

f(p,0) = f(p, 6 — e}, (2.43)

where « is the angle that the original image has been rotated. Using (2.42), the

Zernike moment of the rotated image is

G = P27 [ 50,6 @) Run(p) cop(—imb) pdpd
) 2r  pl
= P2 f(6,6 ~ @) Ban(p) capl(—jm(6 = o + ) p dpd8
= = : : fo “ fgl F(p,8 — ) Rum(p) exp(—jm(6 — ) exp(~jma) p dpd,

therefore, the relationship between A7 and A, is
AT = Apm ezp{—jma). (2.44)

Equation (2.44) indicates that the Zernike moments have simple rotational trans-
formation properties. The magnitudes of the Zernike moments of a rotated image
function remain identical to the original image function. Thus the-magnitude of
the Zernike moment, |A,.,], can be employed as a rotation invariant feature of the

fundamental image function.

2.4.3 Pseudo-Zernike Moments

If we eliminate the condition n — |m| = even from the the Zernike polynomials

defined in {2.33), {Vpm} becomes the set of pseudo-Zernike polynomials. The
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set of pseudo-Zernike polynomials was derived by Bhatia and Wolf{12] and has

properties analogous to those of Zernike polynomials.
For the pseudo-Zernike polynomials, the real-valued radial polynomial R...(p}

1s defined as

niml n+l1-—g)!
Rumlp) = 3 (~1) Gntl-s)

— sl(n— |m{—8)(n+|m|+1-s)!

P (2.45)

where n = 0,1,2,...,00 and m takes on positive and negative integers subject to
im| < n only. Unlike the set of Zernike pélynomials, this set of pseudo-Zernike
polynomials contains (n + 1)? linearly independent polynomials instead of

1(n + 1)(n + 2) if the given maximum order is n.

The definition of the pseudo-Zernike moments is the same as that of the Zernike
moments in (2.41) and (2.42) except that the radial polynomials {Rnm(p)} in (2.45)
are used.

Since the set of pseudo-Zernike orthogonal polynomials is analogous to that of
Zernike polynomials, most of the previous discussion for the Zernike moments can

be adapted to the case of pseudo-Zernike moments.
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Chapter 3

Accuracy and Efficiency of
Moment Computing

3.1 Introduction

An essential issue in the field of pattern analysis is the recognition of patterns and
characters regardless of their positions, sizes, and orientations. As discussed in
the previous chapter, moments and functions of moments can be employed as the
invariant global features of an image in pattern recognition, image classification,
target identification, and scene analysis.

Generally, these features are invariant under image translation, scale change, and
rotation only when they are computed from the original two-dimensional images. In
practice, one observes the digitized, quantized, and often noisy version of the image
and all these properties are satisfied only approximately. The problem of the dis-
cretization error for moment computing has been barely investigated, though some
initial studies into this direction for the case of geometric moments were performed
by Teh and Chin[74].

In this chapter, the detailed analysis of the discretization error for moment com-
puting is addressed. Several new techniques developed to inprease the accuracy in

moment computing are provided.
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3.2 Geometric Moments Computing

(Geometric moments are the most popular type of moments. The definition of geo-

metric moments (2.4) is rewritten here for convenience:

+ oo -+ 00
My, = /:m f_m =¥y f(z,y) dady. (3.1)

If an analog original image function f{z,y) is digitized into its discrete version
fle:,y;) with an M x N array of pixels, the double integration of (3.1) must be
approximated by double summations. In fact, in digital 1mage processing, one
can observe f(z,y) only at discrete pixels, i.e., instead of {f{z,y) (2,y) € R},
{flei,y;);1 <1 < M,1 <37 < N}isused It has been a common prescription to
replace M, in (3.1) with its digital version

M N
Mg =32 3 2l } flass) Bady, (32)
where Az and Ay are sampling intervals in the z and y directions. However, when
the moment order increases, (3.2} cannot produce accurate results.

By (3.1), one obtains
+oo ptoo
My = /_Oo [m 2 y* f(z,y) dedy
= /meyqf(w,y)dmdy
an b:
= [7 [ ey fw,g)dudy, ()

where

A= [al,ag] X [b],bg}

is the area covered by the image.

Then, it is clear that

m+ ST LYt
M= 23 [T [ 9 f(e v dady, (5.4)




where Az = #; — 2;_; and Ay = y; — yj_1 are the sampling intervals in the z and y

directions, and

A

23114—}"?33 = a2, (35)
A

ml—wﬁ = a; (3.6)
2
A

y.N“%“—,f- = by; (3.7)
A

Y1 — Ey“’ = b (3.8)

By the second mean value theorem for integration, if f and g are integrable

functions on the set A, and if f is also continuous, then

[ 1@)e(=)dz = £a) [ gl=)dz (3.9)

for some a C A.

Applying this result to (3.4) yields

(LA
B

M= 1Y flon) [

i=1 j=1 i

L Ay
UTE L og
e f a Y dzxdy, (3.10)
2 W3
where (o, 3;) belongs to the (7,7) pixel.
Let us assume without loss of generality that cach pixel is quantized to one value,

it 1s normal to replace f(a;, 3;) by f(z:,y;). This gives the following approximation

of Mpg:
M N
Mpg = 3 3 hoali,45) F(2i,95), (3.11)
121 g=1
where
Az Ly Ay
EAEET AR
hpa(2i,y;) = fw_@ fy |, *Fytdedy (3.12)
1 5 k] 5
represents the double integration of zPy? over the pixel [z; — %E, z; + %—’5] X

Note that

(3.13)

(2 + 82 )7 — [(z; — A2 )P [(y; + 887" = [(y; — 58)71]
)

hPQ(E:i:yJ') = (p_]_ 1) (q +1
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Then the question is how to acquire the double integration (3.12)7 The simplest

method to carry out the computation of hp,(z:,y;) is to use the following formula:

ho (i, y;) = 2f yf Az Ay

(3.14)

to replace (3.12). However, the above approximation will result in a substantial

error when the order p + ¢ increases.

Since the double integration in (3.12} can be separated as
Ay

!Biﬂ’r‘%z- o ¥+
hP?(a:i:yj) :f A z? dx ./-1; yqdy:
i

LAz _ Ay
T 7

for simplicity, we consider the single integration

hp(mi) :/ Aw :de:l’j,

and replace hy{(z;) with
hpfz:) = 2f Az.
When p = 1, h/(z;) holds.
When the order p increases to 2, from (3.16), we have

hz('mi) _ -[:,'+

Ax

X3

ho(e:) = ho(mi) + 0=

The approximation error for the single integration 1s %%i.

In the case of p = 3,

halz:) = /“2 3
alz;) = z°dz

(3.15)

(3.16)

(3.17)



= zlAz+
4
, z; (Az)
ha(e:) = ha(fﬂz‘)*é—‘*(jl—)-

The error is increased.

The approximation error will quickly get out of control when the order p in-
creases. Obviously, when the higher order moments are involved, the problem of
numerical approximation error in the moment computing must be solved before any
implementation.

By the well-known techniques of numerical integration[18], the integration of

(3.16) can be approximated with various accuracies. For example, applying Simp-

son’s rule in the case of moment order p = 3, we get

o+ 4% Ar 1 Az 4 1 Az
LR ot B Pl BN BTSSP Mt X
/_d L (e 5 4 gl + g (et )]
= :[33 Ai‘ -+ —“—“‘“—‘mi (Am)s
: 4

This is the same result as that of the integration.
Evidently, when the order p goes higher, more accurate rules are required to limit
the approximate error to a tolerable level.

As the solution, the alternative eztended Simpson’s rule

f” f(z)dz = 4—’1;[1771 4 59 fs +43Fs +49Fs + Fs + fo+ ...
+fna +A9F N3 + 43 -2 + 59 fno1 + 171 N]
1
+O(ﬁ) (3.18)

is employed in this research to compute the moments numerically[60]. In (3.18), N
is the number of points which are equally spaced apart by constant k inside a single
interval.

The above discussion about the approximation errors in geometric moment cal-

culations certainly can be extended to the acquisition of the Legendre moments.
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3.3 Legendre Moments Computing

3.3.1 Approximation Error

The {m + n}th order Legendre moment is defined in (2.31) as

A = (2m + 131(271 +1) V/:i/:l Pp(z) Pa(y) f(z,y)dzdy,

where the mth order Legendre polynomial is

Similar to the case of geometric moments, we can approximate A, by

- (2m + 1)(2n + 1)
mi - 4

i Xn: P (6, 95) (25, 95), (3.19)

i=1j=1
where

Pr(z) Pu(y) dedy. (3.20)

it 5E pyi+ G
hAm(mz',yj)"-:f
&

A F:y
i—"§£ ?.afj—"a"i

Since the Legendre polynomials F,,(z) and P,(y) are independent, the double

integration in (3.20) can be written as

:n,'+‘-“—2£ yj—i—%’i ms+% yj+%1vl
fmi_% " Pm(m)Pn(y)dmdy:/mi_%E Pm(m)d:n/yj_%l Puy)dy.  (3.21)

Therefore, similar to the case of geometric moments, the alfernative extended Simp-
son’s rule can be applied in Legendre moment calculations to limit the approximate
error to a certain level.

By using the alternative extended Simpson’s rule, the approximation errors are
reduced dramatically. It makes further use of the Legendre moments possible as
well.

To show the improvement of accuracy in Legendre moment computing by adopt-
ing the alternative eztended Simpson’s rule, an experiment was designed.

If we assume that the image function f(z,y) is a constant image with graylevel

a, ie., flz,y) = a, it is easily seen that all Legendre moments should equal zero
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except Agp = a. We use the sum of all Legendre moment squares except for the
case of m = n = { as the measure to evaluate the approximation error, which has
the form of
-n'{maz m
m=n#0 (3.22)

By= 3 3 M

m=0 nz=0

Clearly, the smaller the E) value in (3.22), the better the performance of the

approximation. Five different numerical integration rules, N = 3, N = § N =

13, N = 18, and N = 23 are employed and all normalized £,’s are illustrated in

Figure 3.1. The highest Legendre moment order used in this experiment is 36.

S TR IR —
N R N=8
b ! ———— N=13
3 f e,
L,iJ*:OS_ .............................................................................. o {" I S 1 =
= ]
ke ] i
T 0.6 < e e S R PRSP PP L
£ ) ‘ ‘
= A 1; /'
e ] ; ;o
Q h "I :
2_04 e B l,r ................. l,\ ....................
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5 _ ; ; | 7
a P P4
3024 cf B
oV /f /‘/ :
U) /I 3/,_/‘
] /// /".’:.
0 e
10 30 35 40 45 50 55 60
Moment Order

Figure 3.1: Normalized E,’s obtained by applying five different numerical integra-

tion rules to a constant image.
Fach E;

Only the E,’s which are less than 1.0 are presented in Figure 3.1.

increases very sharply after the moment order is over a certain number. As expected,

the higher accuracy approximation rules perform better than the lower ones do.
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Order! N=3| N=8 N=13| N=18| N =123
12 0.00003
14 0.00039
16 0.00308
18 0.01780
20 0.07873 | 0.00002
22 0.27537 | 0.00009
24 0.77483 | 0.00036 | 0.00001
26 1.77074 | 0.00122 | 0.00002
28 $.00373 | 0.00008 | 0.00001
30 0.01027 | 0.00024 | 0.00002
32 0.02562 | 0.00064 | 0.00005 | 0.00001
34 0.05822 | 0.00160 | 0.00012 | 0.00002
36 (0.12126 | 0.00372 | 0.00029 | 0.00004
38 (0.23284 | 0.00807 | 0.00068 | 0.00010
40 0.42134 | 0.01779 | 0.00190 | 0.00043
42 0.73673 | 0.04279 | 0.00728 | .00294
44 1.15393 | 0.07487 | 0.01208 | 0.00436
46 0.11278 | 0.01524 | 0.00458
48 0.16089 | 0.01773 | 0.00459
50 0.22783 | 0.02100 | 0.00469
52 0.32621 | 0.02745 | 0.00469
54 0.47053 | 0.04105 | 0.00499
13 0.67317 | 0.06711 | 0.00695

* Table 3.1: N is the number of points which are equally spaced apart by constant A

inside a single interval.
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3.3.2 Efficiency

With the appearance of more powerful computers, 1t becomes practical to compute
and use the higher order moments. However, the computation of moments, specifi-
cally, if the higher order moments are involved, is still a time consuming procedure.
Since most of computing work in this thesis was achieved with a 25MHz 386 personal
micro-computer, reducing the computing time became even more critical.

From the discussion in the previous section, the Legendre moments of an image

function f{z,y) can be obtained numerically by the formula

~ 2m+1)(2n+1) N &

)\mn = 4 Z Z hAﬂm(ZEi, yj) f(.’Bz', yj) (3_23)
=1 7=1
where
zit A2 pyj+52
Pama (i, 95) = f Ax sy F{z) P.(y) dedy. (3.24)
mi_T ¥i—"5

As we have discussed, when the higher order Legendre polynomials P, (z) and
F,.(y) are involved, to keep the approximation error under a certain level, the multi-
interval step alternative extended Stmpson’s rule can be employed. However, if the
well accepted recurrent formula (2.29) of the Legendre polynomials is applied to
compute the Legendre polynomials P, (z) and P,(y), under the situation that N
takes a moderate value 10, even when the image consists of a small number of pixels,
for example, 24 by 24, the computing time could be too long to be tolerated.

To speed up the computation, the most important measure is to avoid using
the recurrent formula (2.29) of the Legendre polynomials. The fastest, the most
efficient measure, of course, is to use the Legendre polynomials themselves. Based
on this requirement, the Legendre polynomials up to order 55 are worked out.

Some of the higher order Legendre polynomials are included in Appendix A.

To speed up the computation of Legendre polynomials further, the well known

Horner’s Rule has been applied. For instance, a real polynomial f(z) of degree n
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or less 1s given by
F(@) = anz™ + an 12" 4 ot apz® ez + ag (8.25)

with the coefficients ag, a1, a@s, ..., @n—;, and a, representing real numbers. In
programming practice, assuming that all coefficients are nonzero, a straightforward
naive approach to compute this polynomial will cost 1("2_+11 multiplications and n
addition operations. However, with Horner’s Rule, the polynomial f(z) can be

expressed by writing
F(2) = (((@n& + s )+ ang)e + . Je+a)e fa  (3.26)

With this new formula, it requires only n multiplications and n additions to compute
the polynomial. Since the operation of multiplication takes much longer than that
of addition, in terms of the computation time, the new formula is about ”% times
faster than the straightforward naive approach.

Adopting the high order Legendre polynomials listed in Appendix A and Hor-
ner’s Rule has dramatically reduced the computing time required in Legendre

moments computation, and more importantly, made this research possible.

3.4 Zernike Moments

3.4.1 Introduction

As mentioned in the previous chapter, the complex Zernike moments of order n

with repetition m for a continuous image function f(z,y) are defined as

1
Anm = s // flz,y) Vin(p, 0)dzdy (3.27)
242 <1

T

in the zy image plane, and

L

Ao = "2 [T [ 1(0,6) Rm(p) exp(—im8) pdpdé (3.28)
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in polar coordinates. The real-valued radial polynomial R, (p) is defined as

(n - s)!

=0 st(mtml sy (alml — sy

R (3.29)

where n — |m/| = even and jm| < n.

The feature of invariance under image rotation makes the Zernike function one of
the most important moments. However, the nature of Zernike moment computing,
using the summation of square pixels to achieve the computation defined on a unit
disk, makes it more difficult to solve the accuracy problems.

For a digitized image function f(z,y), as discussed in the previous chapter, the

double integration of (2.41) can be approximated by double summation:

-~ n+1

Anm = —— SN ha(my) F2,95), zi+y; <1 (3.30)
[T
where
s+ BE pyi+ B
hannlenws) = [0 [, Vialp, O)dudy. (3.31)
@i 55 Jy— 5

From the defimitions of _Zinm and ha,, (2:,7y;), we can find that there are two kinds
of major errors in the computation of the Zernike moments Ay, geometric and

approximate.

| 3.4.2 Geometric Error

When computing the Zernike moments, if the centre of a pixel falls inside the
border of unit disk z? + y* < 1, this pixel will be used in the computation; if the
centre of the pixel falls outside the unit disk, the pixel will be discarded. Therefore,
the area covered by the momenti computation is not exactly the area of the unit
disk.

Figure 3.2 shows the different areas covered by a unit disk and all pixels whose

centres fall inside the unit disk.

34




\

s e|e|e o &)
sle|o/ s 0/o/eie e 0 00
\oocooooooooooo
sis|o|oe(ne|lo|eio|(o(siojejo|e
e|ejeo|(e|/o|je|e|je|o|0|0oe o e|e|a e
\\oooooo-ocooooooooooo
..\oooo.ooooooooooooooco
le|ele e/o 0 s/c . 0/oje 0o/o 0|0 e 0 o 00 0l
/lelole|e|ela|a]e[e|e|eje[e|a|e][eje|e|e e[e]|e
,iooooooooooooo.ooooooooo/
‘sio|o/o/o(oje e/ojssjs|se/o . s|0|jee0oje e|e|e
ool ojo ojo|e/ajsje(eje/o|jejo 0 00 0o nje|e e
oo o(e(o(e|ojcia|jee/e|(ee|o|o|jo| s e laoeaio e
(0|0 |e|0/e/oio/sis 000 s 0 0000 s 0|0 siee
,_,oooooooooooooooooooooooo\
/,,oooooooooooooooooooaoo\
Vo ela|o|e|/e|o/ejealelo e|/s|a|e|e|a|0|o|e|o|e
(oooooooooooooooooooo
.ooootoooooooooooooooa.\
e olojs s/sj0o 0o 0s0 o e|s e e 0e
oio (oo o0 0|0 ejejs oo sje
(/e 8000 /o 00 000 e 0
e/e|o/e|e|0js 0|00 o o
1o /elele ool

Figure 3.2: Different areas covered by a disk and all pixels whose centres fall inside

the disk
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In the case of Zernike moment, the unit disk 1s located in a 2 units x 2 units

square which is composed of » x n pixels. Therefore, the area of the unit disk is 7.
If A(n) represents the number of pixels whose centres fall inside the unit disk, the

summation of the areas of all these pixels is

4
‘4.1,1'33[5 = A(n) i (332)

n?
Now, the geometric error between the unit disk and the summation of all the
pixels used in the Zernike moment computation 1s

R(n) = A(n) 4 . (3.33)

n2
For the Zernike moment computing, it is crucial to know, when n tends to
infinity, i.e., if the number of pixels is increasing, how fast the geometric error R(n)
converges to zero.
In fact, this issue is closely related to a famous problem in analytic number theory,

due originally to Gauss and referred as The Lattice Points of a Circle Problern [47..

3.4.83 The Lattice Points of a Circle Problem

Let A(z) be the number of lattice points (u,v) inside or on the circle u? + v* = z,

so that A(z) ~ 7z as z tends to infinity. Let

R(z) = A{z) — 7z, (3.34)

R(z) = O{<®). (3.35)

We list some significant steps in the history of the estimation of R(z) here:

Gauss (1834), 6 =1 = 0.5000000000;
Sierpinski (1906), 6 = : = 0.3333333333...;
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Walfisz (1927), 6 = 128 =0.329959514..;
Titchmarsh|76] (1935), 6 = 1% =0.326086957..,
Hua[38] (1042), 6 = 1 = 0.325000000;

and more recently

Iwaniec and Mozzochi[40] {1988), # = L = 0.318181818... .

22
In the other direction, it has long been known that 4 > 0, and this result also has

been improved by Hardy[31], Landau[47], and Ingham[39] to:

tim 2, (3.36)
7= zi (logz)?
and
T 20) oo (3.37)

s
This result shows that the smallest possible f cannot reach # = 1. This still remains
an open problem in the number theory.

Comparing our problem with The Lattice Points of a Circle Problem, we find
that the z in (3.34) is equivalent to n? in (3.33) when both z and n tend to infinity.
On the other hand, the number of lattice points in The Laitice Points of a Circle
Problem and the number of pixels within the unit disk in our problem are identical

4

when the area of each lattice is 1, and the area of each pixel is 5. Then, it follows

that (3.33) can be

R(n) = O(z). (3.38)

Therefore, we obtain

R(n) = O(n*61). (5.39)




With the latest result from Iwaniec and Mozzochi, the geometric error in the

Zernike moment computing is

R(n) = O(n™11) (3.40)
n=24 n=48§ n=04 n=128
n~! | 0.0416666 | 0.0208333 | 0.0156250 | 0.0078125
no1 | 0.0131188 | 0.0050979 | 0.0034437 | 0.0013382
n=z | 0.0085051 | 0.0030070 | 0.0019531 | 0.0006905

Table 3.2: Range of geometric errors for several commonly used image sizes.

Several commonly used image sizes are employed here to show the range of geo-

15

3
i, and nz

metric errors in cases of n=1, n , respectively. The results are displayed

in Table 3.2.

Like the case in our experiment, when n is 24, with the best result from Iwantec

and Mozzochi[40], the geometric error is at the range of
i = 0.0131188....

Obviously, this is not a very encouraging result. Since the higher order Zernike

moments are the accumulations of the lower order computed Zernike moments, if

18

the geometric error is around Q(n~ir), when the order of Zernike moments goes
higher, the accumulated geometric errors would quickly get out of control and the

use of higher order Zernike moments would be severely handicaped.

3.4.4 Approximation Error

As discussed previously, in the zy image plane with a digitized image function

f{z,y), the Zernike moments of order n with m repetitions are

+ +1
A = = SN b (6, 95) Floi 35),

T moy

zl +yi <1, (3.41)
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where

ms-fr% 3,fj+—‘0‘§”i )
hAnrn(mi:yj) = Ax L Ay ‘/;Lm(pFG)dmdy (342)
L 1T 2

The Zernike polynomials V;, (p, d) are defined as
Vi (,0) = Roum(p, 6) ep(jm), (3.43)

where the Radial polynomial R,.,,(p) 1s

{n—|m|}/2 (n — s)!

Fam(p) = ; = (2 — ) (P~ )

P (3.44)

Unlike the Legendre polynomials Py, (z) and P,(y), which are independent, the
Zernike polynomials 1,,,(p, ) are two-dimensional functions of p and §. Therefore,
to reduce the approximation error in the Zernike moment computation is more
complex than .tha,t of Legendre moments.

Under this particular situation, naturally, the way to reduce the approximation
error is to compuie the double integrations and ha,,, (z;,y;) by using some well
known cubature formulas{23].

Suppose we have a two-dimensional domain §2 and wish to approximate f f(x)d(}.

Let f € Q, and aT = (a,b) € Q. We have the Taylor expansion of the integrand

function f(x):

f(x) = f(msy)
= f(a) + (= —a)fu(x) + (y — D) fy(a)
Ll - @) fenla) + 2 - a)(y - Dasla) = (v~ B Fnl)
, 1 — (n—1 n—i-1 ; 07 f(a)
+error. (3.45)

Let_
Taf = /n F(x)dQ,
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then it follows|23] that:

Inf = I91f(a) + fula)n( — a) + f(a)aly — B) + ..
i o (") gyl = e 0

oG\ i) By
“+error, (3.46)

and

Cuf = f@)3 A+ fula ZA + 1) 0 Al — )+
1 1 -1\ 0 f(a - Cielp. i
T(n—l)![jz:%( j ) 2B e = a7y - 1] ()

Taking a = 0, and comparing Inf with C,f, we obtain the following equations

which can determine the weights of a cubature formula:

T

N At Tyl = Inat iy i=01,. . ,k<n, (3.48)

1
=1

where n is the number of nodes inside {2, and

In:/nf(m,y)dﬂ. (3.49)

This is a linear system of equations for the weights A;. For example, taking 7 < 2,

we obtain the equations

i=1

ZAimi = IQ&?, Z‘A’:yi = Iny

i=1 i= 1
™

ZAZ:L'E = Iﬂmzy ZA z:y: = Inzy, ZA!-yz ” Iny

i=1 i=1 i=1
To achieve sufficient accuracy, traditionally, we can increase the number of nodes
in each pixel. Solving the linear system equations obtained from the (3.48), we can

find the weights for all nodes inside each pixel.
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Figure 3.3: 5-dimensional formula L.

One simple formula which can be adopted {0 increase the approximation accuracy
is shown in Figure 3.3. Using the unit height, we can determine the weights of the

cubature formula
Csf = ALf(0,0) + A2 F(0,1) + A3 £(1,0) + A f(0, —1) + Asf(—1,0). (3.50)

Employing (3.48), we obtain five linear system equations:

5

; = €]

25: Az, = Inz

i=1

2}15% = Iy (3.51)
_i Aimf = Jquz?

i=1

ZS:Az‘yf = Iny®

i=1

where
o= [ Hein
From (3.51), straightforwardly, we can obtain the 5-dimensional cubature formula

by solving the following five linear system equations:

Ay 44, +A; +A4A; +A; = 4
1]

+As ~As =
+ A3 +As = 2/3
+As +44 = 2/3.
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The solutions of the above five linear system equations lead to

Csf = %{Sf((], O) T f(G, 1) + f(l,O) + f(oa “1) + f(—l,U)}, (3'53)

where f(z;,%2) is a two dimensional function.
We can use another type of the 5-dimensional formula, which 1s shown in Fig-

ure 3.4, as well.

Figure 3.4: 5-dimensional formula II.

With the same five equations in (3.51) but different z; and y; values, we have a

set of five linear system equations

A]_ +A2 +.4.3 ‘I‘A4 +A5 == 4:
+0.25A4, +0.254, = 2/3.
which produce the 5-dimensional cubature formula: '
4

The number of nodes in each pixel can be increased further to achieve higher
accuracy. An example is to use the 13-dimensional cubature formula, which is
illustrated in Figure 3.5, fo reduce the approximation error.

We can determine the weights of the cubature formula

Ciaf = A1F(0,0) + A2 f(0.5,0.5) + A3 f(0.5, ~0.5) + A4 f(—0.5, —0.5)
+AsF(—0.5,0.5) + Ag f(0,1) + A7 f(1,1) + Asf(1,0) + Ao f(1,-1)
+ A f(0, = 1)+ A f(—1,-1) + Apf(~1,0) + A f(—1,1) (3.56;
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Figure 3.5: 13-dimensional formula

the same way we did for the 5-dimensional formula by employing (3.48) and solving
thirteen linear system equations. The eguations are listed in the Appendix of this

chapter, and the solutions of these equations lead to

Ciaf = le—s{mof(o,o)
+16[f(0.5, 0.5) + f(0.5, —0.5) + f(-0.5, —0.5) -+ f(—O.S, 0.5)]
—9[f(0, 1) + £(1,0) +-£(0, 1) -+ f(—1,0)]
8[A(L D)+ f(L, -1+ f(=1,-1)+ f(-L 1)} (3.57)

It is possible to impose additions on the weights A; to reduce the number of linear
system equations and make the determination of the A4; easier. For example, we can

assume that the thirteen dimensional cubature formula 1s
Ciaf = A{0,0)
+ A2[f(0.5,0.5) + £(0.5,—0.5) -+ f(-0.5,-0.5) + f(-0.5, 0.5)]

+ A3[f(01 1) + f(l,U) + f(O, _1) + f(""lso)]

+ -44[f(1: 1) + f(lz _1) + f("*ia _1) T f(—l, 1)]: (358)
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which leads to

13

>, =10

i'i‘il

Z Ala:f —_ IQ:122

T (3.59)
3 Aly? = Iy’

=1

13
4 4
ZAimi = Iﬂm 3

i=1

and
A.'l "5'4:1‘4.2 +4A3 —3-4:444 - 4

+A, +2A; +44, = 2/3

(3.60)

Therefore, the 13-dimensional cubature formula (3.58) can be written as:

Cisf = %{10#(@,0)
-+ 16[£(0.5,0.5) + f{0.5,—0.5) + f(~0.5,-0.5) -+ f(—0.5,0.5)]
— [F(0,1) ++ F(1,0) + f(O,~1) + f(—1,0)]
+4[f(L, 1) + F(1L, -1+ f(-1,-1) + F(-L ]} (3.61)

If we ignore the geometric error and let the image function f(z,y) be a constant
image with graylevel a, like the case of Legendre moments, all Zernike moments
should equate to zero except Agy = a. Therefore, we can use the following measure

to evaluate the approximation errors of the Zernike moments

Ey = ZZ ]ﬁnmlz m=n (. (3.62}

The two different types of 5-dimensional cubature formulas, the 13-dimensional
formula with different sets of weights, and the simplest i-dimensional formula are
employed 1o evaluate the approximation errors in the computation of the Zernike
moment. All normalized E,’s which are less that 1.0 are illustrated in Figure 3.6,

and their values are listed in Table 3.3.
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Figure 3.6: Normalized approximation errors obtained by applying five different
types of multi-dimensional cubature formulas on a constant image.

Order | 1.D | 5-D(I) | 5-D(11) | 13-D{I} | 13-D(II)
9 | 0.0009 | 0.0007 | 0.0009 | 0.0007 | 0.0007
4 | 0.0056 | 0.0040 | 0.0088 | 0.0040 | 0.0040
6 | 0.0141 | 0.0080 0.0167 | 0.0079 | ©.0079
8 | 0.0281 |0.0122 | 0.0334 | 0.0120 | 0.0121
10 | 0.0502 | 0.0191 | 0.0499 | 0.0189 | 0.0188
12 | 0.1077 | 0.0603 | 0.1071 | 0.0661 | 0.0615
14 | 0.1785 | 0.1401 | 0.1803 | 0.1863 | 0.1531
16 | 0.2907 | 0.3693 | 0.3395 | 0.6067 | 0.4388
18 | 0.4149 | 0.9837 | 0.6178 | 1.9872 | 1.2722
20 | 0.6193 | 2.7800 | 1.2479

22 0.7192
24 0.8879
26 1.4654

Table 3.3: Values of the normalized approximation errors from appling five different
types of multi-dimensional cubature formulas on a constant image.
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Table 3.3 and Figure 3.6 show that the multi-dimensional formulas could not

produce better results than the simplest 1-point formula did. In other words, the
traditional method to reduce the approximation errors could not improve the accu-
racy in this particular situation.

The reason that these multi-dimensional cubature formulas do not work is that
the Zernike moments are defined within the unit disk #* + y* < 1. Since we use
all pixels whose centres fall into the unit disk for the Zernike moment computing,
the one-dimensional formula will not produce extra errors because all f{z;,y;) used
in the computing are covered by the definition. However, when multi-dimensional
cubature formulas are adopted, on the boundary of the unit disk, some f(z:,vy;)
used to compute the pixels on the boundary will not fit the condition z% + y* < 1.
For example, with the condition z® + y* < 1, there will be respectively 40, 16,
and 140 nodes used in the Zernike moment computation which fall outside the
unit disk for 5-dimensional formula I, 5-dimensional formula II, and 13-dimensional
formulas. This certainly brings extra errors to the Zernike moments and makes the

approximation errors go up quickly.

3.4.5 A New Proposed Solution to Reduce Approximation
Error

We redefine the digitized version Zernike moments as

- n+1 .
Apm = — Do b (2, 95) F(24,95), X4yl <1-7, (3.63)
g Ty
where
st By S
hawn@09) = [0 [ o) Vi(p,6) dady, (3.64)
mi——-2—~ yJ_ 3 .

and ~ is an adjustable factor. For example, in our case, we let

Az + Ay

ot (3.65)

g
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where € is an arbitrary small number. Then, with this new condition

Azr + Ay
— — ¢,
1 ;

zi+yl<1-
the number of nodes that fall outside the unit disk will be reduced to 16, 0, and
68 for the 5-dimensional formula I, 5-dimensional formula 1I, and 13-dimensional
formulas, respectively. Obviously, under this condition, the geometric errors will be
higher.

Employing 0.0001 as the e value, we re-evaluate all five different formulas discussed

above. Table 3.4 and Figure 3.7 show the results.

0 5 10 15 20 25 30 35
Moment Order

Figure 3.7: Normalized E,’s obtained by applying five different types of multi-
dimensional cubature formulas on a constant image with the new proposed tech-
nique.

Compared with Figure 3.6, Figure 3.7 shows that the error E4 goes up quickly

to the level of 30% for all five different formulas, then the ratios of increase slow
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Table 3.4: Values of the normalized E4’s from appling five different types of multi-
dimensional cubature formulas on a constant image with the new proposed tech-

nique.

Order | 1-D | 5-D(I) | 5-D(1I} | 13-D(I) | 13-D(II)
2 | 0.0698 | 0.0681 | 0.0683 | 0.0681 | 0.0681
4 | 0.1961 | 0.1858 | 0.1886  0.1858 | 0.1858
6 | 0.3082 | 0.2820 | 0.2852 | 0.2819 | 0.2818
8 | 0.3661 | 0.3266 | 0.3307 | 0.3264 | 0.3250
10 | 0.3752 | 0.3314 | 0.3385 | 0.3307 | 0.3298
12 | 0.4026 | 0.3544 | 0.3621 | 0.3538 | 0.3537
14 | 0.4445 | 0.3840 | 0.3928 | 0.3857 | 0.3897
16 | 0.5083 | 0.4333 | 0.4418 | 0.4410 | 0.4540
18 | 0.5313 | 0.4420 | 0.4560 | 0.4569 | 0.4820
20 | 0.6089 | 0.4839 | 0.5008 | 0.4989 | 0.5373
99 | 0.6863 | 0.5242 | 0.5434 | 0.5374 | 0.5918
24 | 0.7116 | 0.5375 | 0.5750 | 0.5610 | 0.6505
96 | 0.7928 | 0.5667 | 0.6177 | 0.6151| 0.7776
98 | 1.0185 | 0.6572 | 0.7004 | 0.7384 | 1.0084
30 0.6993 | 0.7843 | 0.8240

32 0.7353 | 0.8848 | 0.8721

34 0.9804 | 1.0203 | 1.0620

36 1.1503
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down. As expected, all four multi-dimensional formulas produce better results than
the simplest one-dimensional formula does.

The results shown in Figure 3.7 and Table 3.4 are better than those of Figure 3.6
and Table 3.3. However, one is reluctant to call the digitized version of Zernike
moments under the new condition a flawless solution to the approximation error
problen of the Zernike moment computing. Though it indeed controls the increase
ratio of the error to a Jower level under certain circumstances, we would like to use
it as an alternative rather than call it a complete solution to compute the Zernike

moments,

3.5 Conclusions

In this chapter, the problems of accuracy and efficiency in moment computing are

discussed.

3.5.1 Legendre Moment Computing

It has been shown that most problems concerning accuracy and efficiency 1n the
Legendre moment computing have been solved. Therefore, we are able to use the

higher order of the Legendre moments in further research confidently.

3.5.2 Zernike Moment Computing

Because of the nature of the Zernike moment calculations, the two major problems

in the Zernike moment computing, geometric and approximation errors, are more

difficult.

Geometric Error

We adopted the latest results from a classical problem in Number Theory, The

Lattice Points of a Circle, in our study on the geometric error of Zernike moment
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computing. It shows that the geometric error is

R(n) = O(n"17). (3.66)

io

For example, in the case of n = 24, n™17 = 0.0131188....

We have to admit that the errors in the range of O(n~ 1) are too large to be
ignored. More seriously, since the higher order Zernike moments are the accumu-
lations of the lower order computed Zernike moments, when the order of Zernike
moments goes higher, the accumulated geometric errors will be quickly out of con-
trol.

Increasing the size of an image, or n, will indeed make the geometric errors R(n})
for the individual moments smaller. However, in many cases, to increase n will
result in higher order moments being required to provide the needed image features.
Therefore, to increase the size of an image in order to reduce the geometric errors
is not recommended.

Certainly, the existence of the geometric errors severely handicaps the usage of

the Zernike moments.

Approximation Error

The approximation error in the Zernike moment computing is discussed in this
chapter as well. To reduce the approximation error, some well known cubature for-
mulas are applied. However, to implement the multi-dimensional cubature formulas
cannot improve the accuracy significantly.

The digitized Zernike moments are achieved from the summation of square pixels,
whose centres fall inside the unit disk. However, on the unit disk boundary, a pixel
whose centre falls inside the boundary does not mean that the entire pixel falls
into the unit disk. Therefore, the multi-dimensional cubature formulas, which use a

number of nodes inside a pixel 1o achieve sufficient accuracy, will no longer be valid.
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To make the the multi-dimensional cubature formulas valid in the Zernike mo-
ment computation, we proposed a new condition in the Zernike moment computing.
The new condition
where

_A:tz—‘rAy_LE

T 4

in our case, was employed as an alternative solution. The results show that, for
all four multi-dimensional formulas, the approximation errors go up quickly in the
early stage, then the ratios slow down. From the approximation error point of view,
the multi-dimensional formulas under the new condition provide better results than
the simplest one-dimensional formula does.

Though it is premature to say that changing the condition 1s a perfect solution to
reduce approximation errors in the Zernike moment computing, careful selection
of the multi-dimensional formula and modification on the condition on the choice
of better points, i.e. 27 +y7 < 1 -+, will indeed improve the performance of the

Zernike moment computation significantly.

51




A

Appendix

Following is a set of thirteen linear system equations

which leads to

+ Az +A43
+.54, +.545
+.545 —.545
+.2549 +.2544
+.25A49 —.254,
+.20A9 +.25.4;,
+,12642, +.125A4;
+.1254, —.1254,
+.1264» +.125A43
+.1264, —.125A4,

'i‘A-! +.45
—.54s —.5 A
—.54 +.545
+.2544 +.25.4s
+.2544 —.254y
+.254, +.254¢
—.1254; —.1354,
—. 1254, +.1284;
—.1254; ~.12545
—.12544 +.12545

+.06254, +.06254,
+.06254, —.06254,
+.062542 +.062545

Solving these

+.06254, +.06254;
+.062544 —.0625A4%
+.06254, +.062545

+As

+Ag

+4s

+A4q

13

E = ||

i=1

13

E Ajm; = Ige
i=1

13

E Asyi = Iny
i=1

13

E A;mf = Igza:2
=1

13

E Aiziy = Inzy
1=1

13

E Al = Igy?
=1

13

E A;m‘? = Joz®
=1

13

E A,'m;f)yi = Inzty
i=1

13

E Areiy? = Inay?
i=1

13

E A} = Ind®
=1

i3

E A,‘mf— = Tl
=1

13
E A,’ﬂ:?y = Iqaly
gl

13

o <3
E A.‘z‘?y" = Igz"y?,
=1

+Ar +Ag
+Ar -4
447
+4y
+Ar
+Az
+Ar +Ag
+Ar

-+ Az

+ A7

+Ag

+ 47
+Ar
+Ar

+4s

+A4g
+As
— 4
+4q
'
+4q
+Ag
—Aq
+Asg
—Aq
+4q
—Ag
+A4g

+41

-4

+419

—Aig

+A11
+A411
+ 41

+A32
~Ays

+4

—Ayz

+4;2

LI T L T |

[ LT I | I A

.
L)

QN OO OONORK DO
=

=
T e
[c=1 (=]

equations gives us the formula in (3.57) used in Chapter 3.
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Chapter 4

Image Reconstruction from
Moments

In Chapter 3, the problems of accuracy and efliciency in moment computing have
been studied. In this chapter, we want to verify how much information is contained
in moments. This issue can be addressed by analyzing the reconstruction power of
the moments.

A problem which is raised here can be stated as follows: if only a finite set of
moments of an image are given, how well can we reconstruct the image? We start

the investigation by discussing the inverse moment problem.

4.1 Inverse Moment Problem
Consider the characteristic function|[55] for the image function f{z,y):
+oo oo :
Flu,v) = j / flz,y) eI tow) dody. (4.1)

Provided that f(z,y) is piecewise continuous and the integration limits are finite,
F(u,v) is a continuous function and may be expanded as a power series in z and v.

Therefore,

® ptoo * & (juz)* (joy)!
Fuw) = [ few o3 Ll G g,

k=0 1=0
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TP VTR koD =0
oo oo k4! +o0 ptoo
- ZZJ’— kvl./ / flz,y) 2" y' dedy
k=01=0 k l e Y
Flu,v) = ZZ%T“’“‘“I My, (4.2)
k=0 I=0

where the interchange of order of summation and integration is permissible, and the

moment My is the geometric moment of order {k + [) of the image function f(z,y)

+oo 400
My = / flz,y) 2ty dzdy.

We see from (4.2) that the moment Mj; is the expansion coeflicient to the u®v!

term in the power series expansion of the characteristic function of the image func-
tion f(z,y).

Then, we consider the inverse form of the characteristic function F{u,v). From
(4.2) and the two-dimensional inversion formula for Fourier transforms, it follows

that

1 +o0 poo .
flz,y) = "—2f / Flu,v) e 7o) dydy

oo ptos & & 4 )
flz,y) = %f f ZZ%TH kol My e 7= v) dudy. (4.3)

However, the order of summation and the integration in (4.3} cannot be inter-
changed. Thus we conclude that the power series expansion for F(u,v) cannot be
integrated term by term. Particularly, if only a finite set of moments is given, we
cannot use a truncated series in (4.3) to learn about the original image function
f(=,y).

The difficulty encountered in (4.3) could have been solved if the basis set {u*v'}
were orthogonal. Unfortunately, Wi{i the Weierstrass approximation theorem[17],

the basis set {u*v'}, while complete, is not orthogonal.
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To solve this problem, we need a set of basis functions which are orthogonal over
a finite interval. Based on this requirement, the Legendre polynomials would be

the appropriate set.

4.2 Method of Legendre Moments

4.2.1 Theory of Image Reconstruction from Legendre Mo-
ments

As mentioned in Chapter 2, the Legendre polynomials { P,.(z)}[17] are a complete

orthogonal basis set on the interval [-1, 1]:

2
2m + 1

[ tl Pol(z) Po(z) de = B (4.4)

By the orthogonality principle, and considering that f(z,y) is piecewise contin-
nous over the image pla,ne,. we can write the image function f{z,y) as an infinite

series eXxpansion:
= Z Z m-nn Fmn(2) Fa(y), (4.5)

where the Legendre moment of f(z,y) with order (m + n} i1s defined by

(2m + 1)(2n + 1)

)‘mn =
4

o0 ptoo
/_w __ Bnl@) Buly) f(2,y) dedy. (4.6)

However, in practice, one has to truncate infinite series in (4.5). If only Legendre
moments of order < M,,.. are given, the function f(z,y) can be approximated by

a truncated series:

Muyez ™

F(@,9) = a2, 9) = D D Amenin Pron(2) Pa(y). (4.7)

m=0 n=90
Furthermore, A,,_, s must be replaced by their approximations given by {3.19),
yielding the following reconstruction scheme

Fbtinas (2, Z >~ Mmenn Prnen(2) Pa(y)- (4.8)

m=0 n=0
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This is actually the basic equation used in the image reconstruction via the Legen-
dre moments. It is important to note that when the given order M, 1s increased,

the previously determined Xmu_n,n’s do not change.

4.2.2 Reconstruction Error Analysis

To measure the error between the original image and its reconstructed version, the

following formuia is employed

Brrr (o) = [ [ rtao,9) = Fla)dody, (4.9)

where M,,q, 15 the highest moment order involved in reconstruction, and f(m,y)
represents the reconstructed image from f{z,y).

Since

MTn.a.z i

mea.r' z y Z me ﬂn n( )Xm—ﬂ.n

m=0 n=0
and
y) = Z Z Pm"n:ﬂ(m) Pn(y) A77".*#7:_,1'1;
m=0n=0

therefore

Muer m =

Frtmac(2,9) = F(@,9) = 3 3 Prcnn(®) Paly) Amcnm

m=0 n=0
oo m

=22 2 Prnn(2) Pa(9) Amonn

m=0n=0

Mipor ™

= Y 3 Pacnn(®) Paly) B = Ao

m=0 n=0

- i ipm—n,n(m)Pn(y)Am_n,n. (4.10)

m=Myap+1n=0

Then, we have

Brror(fine) = [ [ (Ftec(o9) — flo,)Pdedy

Mmezr ™

- /_11 /1 [ 2 2. Prrn (y)( menm ~ Am-na)| drdy

m=0 n=0
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~

2 f f Z > Fnonin(#) Poly) G = Ao}

[ Z me ﬂ.ﬂ ( )Am nnjdwdy

m=Mmag+1 n=0

+/_]1f1[ i imen,n(fﬂ)Pn(y)é\m_n,n?dmdy. (4.11)

T m=Mmaz+1 n=0
Since the second term in {4.11) is zero and Legendre polynomials P, () and

P.(y) are orthogonal, applying (2.30) to (4.11}, we have

M m
- i 1
E = 1 m—nn_Am-wnn2
TTOT.(fMTfL(LT TH'Z:O ?12:0 2 + 1 2n _+_ 1 [ ] ] ]
1
4 A2 :
D T T e e R (O (R

m=Mpas-+1 nAO

As shown in (4.12), the teconstruction error Error(fas,.,,) consists of two parts.

The first part comes from the discrete approximation of the true moment (An.)
while the second part is a result of using a finite number of moments.

With the new techniques introduced in the previous chapter, we can reduce the
discrete approximation error to a tolerable low level. Based on these new techniques,
the experimental results of image reconstruction via Legendre moments, which will
be presented in the following section, indicate that when the maximum given orde-r

Mo teaches a certain value, fys, . (2,y) can be very close to the original image

function f(z,y).

4.2.3 Experimental Results

The proposed approach was implemented in the C language and tested on a 26MHz
386 computer. In the experiments, a set of five Chinese characters, shown in Fig-
ure 4.1, is used as the test images. Each image consists of 24 x 24 pixels and the
range of graylevels for each pixel 1s 32 . All characters have the gray level 11 and

the background has the value 21.
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Figure 4.1: Five original Chinese characters used in image reconstruction via Leg-
endre moments. From left to right are C;, Gy, Cs, Cy, and Cs.

The reason we use these five Chinese characters 1s that they are very similar to
each other. Actually, among more than 50,000 Chinese characters, one cannot find
another set of five{or even set of three or four) in which the individual characters
are so similar to each other. Therefore, it seems that if these five characters can
be recognized successfully, the method can be applied to all the Chinese characters
with confidence.

The normalized mean square error between the original image f(z,y) and the

reconsiructed image meM(a:,y) is defined by

o2 _ Error(fitn,.) :fﬂfM'"u(m:y)—f(m,y)}zd;cdy <.
Ve = [ [1f(2,y) dedy [IlfGeedady I EEYST

(4.13)
which is considered as a measure of the image reconstruction ability of the moments
and adopted here.

The alternative extended Simpson’s rule with order N = 23 is applied to compute
the Legendre moments in this experiment. Table 4.1 and Figure 4.3 show the
gﬁ;:: values from the reconstructed Chinese characters from order 2 up to order 56.
It should be noted that the ‘% decreases monotonically in the cases of all five
characters.

Figure 4.2 shows the five original Chinese characters and their reconstructed pat-
terns. The first column illustrates five original characters. The second column to

the ninth column display the reconstructed patterns of all characters in the first

column with order 28, 32, 36, 40, 44, 48, 52 and 56, respectively.
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Order Cl Cz Cg 04 Cs
2 0.047615 | 0.045822 | 0.046409 | 0.043936 | 0.044073
4 0.046324 | 0.045556 | 0.045387 | 0.043425 | 0.043358
6 0.045428 | 0.043609 | 0.044421 | 0.041650 | 0.042230
8 0.042815 | 0.040956 | 0.043409 | 0.041143 | 0.040772
10 0.040362 | 0.039399 | 0.041322 | 0.038537 | 0.039932
12 0.038164 | 0.037170 { 0.037279 | 0.036748 | 0.037710
14 0.032964 | 0.034942 | 0.034077 | 0.033165 | 0.034441
16 0.030828 | 0.032760 | 0.030799 | 0.030356 | 0.032472
18 0.027089 | 0.029455 | 0.028143 | 0.026885 | 0.029127
20 0.024840 | 0.025035 | 0.025198 | 0.023493 | 0.026409
22 0.021336 | 0.021264 | 0.022372 | 0.021577 | 0.023423
24 0.017141 | 0.019605 | 0.019870 | 0.019955 | 0.020928
26 0.014513 | 0.016060 | 0.017691 | 0.018034 | 0.018245
28 {.012146 | 0.012868 | 0.014819 | 0.015282 | 0.015386
30 0.010568 | 0.010343 | 0.012224 | 0.012753 | 0.012617
32 0.008775 | 0.008540 | 0.009367 | 0.010563 | 0.010127
34 0.007346 | 0.007377 | 0.007456 | 0.008500 | 0.008573
36 0.006547 | 0.006526 | 0.006485 | 0.007162 | 0.007298
38 0.005348 | 0.005645 | 0.005668 | 0.006265 | 0.006336
40 (0.004564 | 0.004769 | 6.004799 | 0.005378 | 0.004980
42 0.003996 | 0.004293 | 0.004219 | 0.004653 | 0.004322
44 0.003504 | 0.003734 | 0.003576 | 0.004111 | 0.003786
46 0.003217 | 0.003181 | 0.003165 | (.003584 | 0.003199
48 0.003048 | 0.002869 | 0.002811 | 06.003041 | 0.002865
50 0.002607 | 0.002613 | 0.002728 | 0.002691 | 0.002647
52 0.002408 | 0.002321 | 0.002394 | 0.002605 | 0.002384
54 0.002408 | 0.002556 | 0.002451 | 0.002332 | 0.002419
56 0.002377 | 0.002602 | 0.002415 | 0.002271 | 0.002176

Table 4.1: The values of normalized reconstruction errors for the five reconstructed

Chinese characters.

a2




Figure 4.2: Five Chinese characters and their reconstructed patterns via Legendre
moments.
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Figure 4.3: Normalized reconstruction errors for the five reconstructed Chinese char-
aclers.
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Clearly, the numerical results shown in Table 4.1 and Figure 4.3 are concordant

with the visual results presented in Figure 4.2.

4.3 Method of Zernike Moments

4.3.1 Theory of Image Reconstruction from Zernike Mo-
ments

As discussed in Chapter 2, the Zernike polynomials
Vo (2, ¥) = Vim(psind, pcost) = Ry (p) exp(jmb}, (4.14)

where the Radial polynomial R, (p) is defined as

_ (n=|m|}/2 e (TL _ S)! o
Rrm{p) (-1 p (4.15)

= sl (2l gyt (mtml ) ’

are a complete set of complex-valued functions orthogonal on the umit disk

2’ +y? <1
™

n—+1 6np 5mq. (416)

f/maﬂgqmm(may)}“ Voolz, y) dady =

Subject to the discussion of orthogonal functions for the Legendre moments, the
image function f(z,y) can be expanded in terms of the Zernike polynomials over
the unit disk as

2 y) =D Aum Vam(, y),. (4.17)
T m
where m takes on positive and negative integers subject to the conditions n — |m| =
even, and |m| < n.
We rewrite the definition of Zernike moments here for convenience:

n

Apen =

1
= [ H(e) V(e )dady. (4.18)
I o?4y? <1
If terms only up to the maximum Zernike moment Ny, are taken, then the

truncated expansion is the approximation to f(z,y):

Nma.::

f(a:,y) = J?Nmax(m:y) = Z Zfzinm V;Lm(sc:y): (4'19)

n=0 m
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where A, and fNﬂm(x,y) are the Zernike moment numerically computed from
fl(z,y) and the reconstructed image from f(z,y) with the maximum Zernike mo-

ment Naz,, while m is subject to the conditions n — |m| = even, and jm| < n.
Note that V2 (p,0) = Vi, -m(p,8), (4.19) can be expanded as

‘s
A TG

meu(fU;y) - Z Z-«Enm T/;lm(p19)
n=0 m
Niax Nopax

= 3N A Va0, )+ 3. S A Vi, 0)

n=0 m<0 n=0 m>0
N’(R.G.I

= Z Z A\n,—m uz,—m(Pae)

n=0 m>0

?TI‘-U-T

Z ZAnm nm P; )erAnU 0(1079)

n=0 m>0

mu.z

Foma(@y) = D0 3 [Anm Va0, 8) + A Ve, )]

n=0 m>»0

+ Ao Vaalp, 8), (4.20)

considering that

V(0. 6) = Runs() (co5(m8) -  sin{m))
and
Vir(926) = Rum(p) (cos(mb) — j sin{mé)).

Then (4.20) becomes

ma.:r

Fiman(@,4) = ZO ZO{ (Re[Aum] = j I Aum]) Rum(p) (c0s(mf) ~ j sin(m))
:(Rn;ﬁ‘ m] + 7 I Ann]) Rum(p) (cos(m8) + j sin(mb))}
+ (Re[Apo] + j I Ano]) Ruo(p)
= > 3 Rum(p) {(Re|Ann] — j Im|Ann]) (cos(mb) — 5 sin(mb))
nm|} (cos(mf) + j sin(mf))}

+ (Re[Ano] + 7 Im[ As0]) Bno(p)

o

+ (Re['[lnml + J Im{
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Toee (T Y} = >~ 2 Rom(p) (Rel Aum] cos(mb) — Im[ Ao sin(m8))

+ (Re[ Ao + 7 Im[Ano)) Bro(p). (4.21)

The formula (4.21) is the basic equation employed in image reconstruction via the

Zernike moments.

4.3.2 Reconstruction Error Analysis

In this section, a similar definition as in{4.9) is adopted to measure the error between

the original image and its reconstructed version from Zernike moments.

Brror(Fu) = [ [ uo0) = fo)Pdady. (422)

Since
f]\rmam(m,y)—f(m,y) - Z ZAA ﬂm :y

—[ 2 ZA V UE y)+ Z ZAnmI/nTH( :y)}

n=0 ™M™ n=Npgzq1 ™

NT!LO.I

= Z Z T’/;1771(:17::’3’)&21\111'71 - Anm]

n=0 m

— i > Anm Vam (2, 7), (4.23)

n=N1nn.a:+1 m

therefore it follows that

ETTOT(ﬁV’nM) - fL2;y2<1 Eme"’“’(m’y) - f(ﬂﬁ,y)izdmdy

Nma.:r:

e S W@, 0V Al
w2 +y? <1 n=0g m
Nma.m "
:-"2+y3<1 n=0 m
ff Z ZAn‘m nm $ y d$dy
22 4y?<t o
Tyl A=Nogy .
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It is clear that the second term on the right side of (4.24) is zero. So, the recon-
struction error for Zernike moments consists of two terms:

Error{ mem // e Z Zﬂnm z,y)[* |zﬁ]Lnﬂ,L~.fﬁlmn|2 dedy
2242 <

n=0 m

T.//. Z Zivnm(wayﬂzlﬂnm!zd:cdy. {4.25)
z24y2 <1

=t n=Npyes+1 ™

By recalling (4.16), we obtain:

N, o
_ maz ]A _ ‘ ; |Anm|2
Brrolfyue) =m 3 L 3 YOt (49

where the first part is from the approximation error in Zernike moment comput-
ing and the second term is due to truncating the higher order moments in image

reconstruction.

4.3.3 Experimental Results

The same set of five Chinese characters used in the case of Legendre moments is
employed in this section as the test images as well. Figure 4.4 illustrates the five

characters on unit disks.

Traditional Zernike Moment Method

The traditional Zernike moment method, which defines the Zernike moments

=n+1//frcy ,8)dzdy

on the unit disk

2? +y* <1,

is implemented in the image reconstruction. The simplest 1-dimensional formula,
along with the two different types of 5-dimensional formulas, and the 13-dimensional

formula with two different sets of coefficients are employed in the experiment.
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Figure 4.4: Five original Chinese characters used in image reconstraction via

Zernike moments. From left to right are Cy, Cy, C3, C4, and Cs.

The normalized mean square errors

o = I 1f(e,y) — flz,y)2dedy
J [1f(z,y)?dzdy ’

are adopted here to measure the gualities of the reconstructed images via the

Zernike moments.

2 +y? <1,

Order | 1D 5-D(I) | 5-D(I1) | 13-D(I) | 13-D(1I)
2 10.055213 | 0.054943 | 0.056078 | 0.054043 | 0.054943
4 | 0.055961 | 0.055864 | 0.057879 | 0.055864 | 0.055864
6 | 0.054160 | 0.054049 | 0.057373 | 0.053973 | 0.053973
8 | 0.050504 | 0.049167 | 0.056113 | 0.049230 | 0.049216
10 | 0.048752 | 0.046411 | 0.051591 | 0.046480 | 0.046633
12| 0.046750 | 0.045407 | 0.047394 | 0.045691 | 0.045975
14 | 0.051584 | 0.047041 | 0.049077 | 0.048419 | 0.051009
16 | 0.065199 | 0.052803 | 0.053426 | 0.056944 | 0.064922
18 | 0.073065 | 0.060081 | 0.051446 | 0.070122 | 0.096181
20 | 0.085419 | 0.103251 | 0.052505 | 0.132682 | 0.224127
22 | 0.101229 | 0.268038 | 0.066272 | 0.386192 | 0.780797
24 | 0.125072 | 0.773207 | 0.089699 | 1.413850 | 2.847505
26 | 0.238904 | 2.473051 | 0.236481
28 | 0.395097 0.416779
30 | 0.482546 0.725626
32 | 0.584135 0.669215
34 | 0.939857 0.813116
36 | 1.307849 1.167633
38 | 1.436626 0.960680
40 | 1.590319 1.497801

Table 4.2: Values of the normalized mean square errors from appling five different
formulas to character Cj.

The Chinese character C; is used as the test image for all five different formu-

las. Table 4.2 and Figure 4.6 show the 2 values for different formulas when the
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Figure 4.5: The Chinese character C; and its reconstructed patterns via Zernike
moments.

reconstruction orders go up.

Only the simplest 1-dimensional formula and the 5-dimensional formula II, which
is shown in Figure 3.4, provide relatively lower computing errors. The remaining
three formulas certainly are not good candidates for image reconstruction because
of the excessive computing errors.

Figure 4.5 illustrates the reconstructed images of C;. The first row and the second
row display the results from using the 1-dimensional formula and the 5-dimensional
formula II, respectively. The patterns in the first column are reconstructed from
order 14, then from left to right, they are the reconstructed images from order 16,
18, 20, 22, 24, 26, 28, and 30, respectively.

When the order is 26, Table 4.2 indicates that in terms of the normalized mean
square error, the reconstructed‘ image from the 5-dimensional formula II has lower
error than that of 1-dimensional formula. However, the visual results are contrary.
The reason is that the normalized mean square error treats all pixels equally, while

the individual key pixels which contain more features affect the visunal results more

significantly.
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Figure 4.6: The normalized mean square errors from appling five different formulas -
to character (.
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Modified Zernike Moment Method

We introduced a modified version of the Zernike moments in Chapter 3. We rede-

fined the Zernike moments as

- n+1
A = = SN hapnmiys) Floe ys), K +yl<1-7, (4.28)
T yj
where
ci+8F pyi+ Y
hawa(eovi) = [0 [0 Vin(p, 0)dady, (4.29)
T VYT

and v is an adjustable factor. For example, in this research, we let

A A
_Aetay

- , (4.30)

&

where ¢ 1s an arbitrary small number.

The main reason to adopt (4.30) is that when we use the multi-dimensional for-
mulas to increase the approximate accuracy, we want to reduce the number of nodes
which fall outside the unit disk. The price of adopting the new version is that the
geometrical errors will become larger.

For the sake of convenient comparison, the same Chinese character C; is employed
as the test image, and the normalized mean square error defined in (4.27) is adjusted

to

S _JJ iff(“izc)(~ ;ﬁiﬁidmy: 2’ +9? <17, (4.31)

{0 measure this new method.

Table 4.3 and Figure 4.8 show the e? values of all five different formulas when the
orders of the reconstructed images go up.

Table 4.3 and Figure 4.8 indicate that all five different formulas perform bet-
ter than they did in the cases of traditional Zernike moments. Specifically, four
multi-dimensional formulas produce lower computing errors than the simplest 1-

dimensional does. Among the multi-dimensional formulas, the 5-dimensional for-

68




Order | 1.D 5D(I) | 5-D(I) | 13-D(I) | 13-D(II)
2 | 0.084803 | 0.084788 | 0.084140 | 0.084788 | 0.084788
4 1 0.086955 | 0.086269 | 0.085942 | 0.086260 | 0.086269
6 | 0.066534 | 0.065864 | 0.066526 | 0.065864 | 0.065871
8 | 0.056585 | 0.056943 | 0.057341 | 0.056943 | 0.056803
10 | 0.054370 | 0.053879 | 0.056148 | 0.054191 | 0.054339
12 | 0.050674 | 0.051415 | 0.053731 | 0.051345 | 0.051626
14 | 0.047111 | 0.047376 | 0.040006 | 0.047446 | 0.047712
16 | 0.038940 | 0.038674 | 0.041326 | 0.039002 | 0.039314
18 | 0.032694 | 0.032203 | 0.034136 | 0.032398 | 0.033232
20 | 0.030620 | 0.028749 | 0.030869 | 0.028476 | 0.029583
22 | 0.030010 | 0.024936 | 0.026573 | 0.024928 | 0.026721
24 | 0.024429 | 0.010283 | 0.022129 | 0.020561 | 0.023906
26 | 0.030760 | 0.019953 | 0.021957 | 0.020725 | 0.025505
2§ | 0.039758 | 0.019696 | 0.018082 | 0.021513 | 0.028803
30 | 0.039696 | 0.016881 | 0.017466 | 0.018160 | 0.025365
32 | 0.058339 | 0.022152 | 0.018620 | 0.020936 | 0.028304
34 | 0.106035 | 0.038370 | 0.024998 | 0.032265 | 0.044382
36 | 0.123119 | 0.041910 | 0.026487 | 0.033606 | 0.048897
38 | 0.169365 | 0.061747 | 0.042706 | 0.047283 | 0.069645
40 | 0.329895 | 0.120624 | 0.055665 | 0.092343 | 0.138519
42 | 0433146  0.144304 | 0.059244 | 0.160647 | 0.292140
44 | 0.633271 | 0.230363  0.072008 | 0.245778 | 0.454737
46 | 1.007263 | 0.452476 | 0.137053 | 0.486214 | 0.896195
48 | 1.398472 | 0.657138 | 0.206285 | 1.231595 | 1.659259

Table 4.3: Values of the normalized reconstruction errors from the reconstructed
five Chinese characters with the new proposed Zernike moment technique.
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Figure 4.7: The Chinese character C; and its reconstructed patterns via the modified
Zernike moments.

mula II which is shown in Figure 3.4, is superior to the other three formulas and is
the best candidate for the 1mage reconstruction under this specific situation.

The reason that the 5-dimensional formula II provides better result is that with
the new condition for the Zernike moments, all nodes used in this formula fall
mside the unit disk. For the 5-dimensional formula I and the 13-dimensional for-
mulas, however, 16 and 68 nodes used in the computing fall outside the unit disk,
respectively.

The reconstructed images from the Chinese character C; with five different for-
mulas are shown in Figure 4.7. The first row shows the reconstructed patterns from
the 1-dimensional formula, and the second, third, fourth, and fifth show those of
5-dimensional formula I, 11, 13-dimensional formula I, and II, respectively. All im-
ag.es in the first column are reconstructed {rom order 10, then from left to right, are

results from order 15, 20, 25, 30, 35, and 40.
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Figure 4.8: Normalized reconstruction errors from the reconstructed five Chinese
characters via the new proposed Zernike moment technique.
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Figure 4.9: The five Chinese characters and their reconstructed patterns via the
modified Zernike moments with 5-dimensional formula IL.

By using the 5-dimensional formula II, we reconstructed all five Chinese characters
with the Zernike moment order 20, 24, 28, 32, 36, 40, 44, and 48, respectively.
Figure 4.9 shows the reconstructed images while Table 4.4 and Figure 4.8 list and

illustrate the normalized mean square reconstruction errors of these patterns.

4.4 Conclusions

In this chapter, the image reconstructions via the Legendre moments and Zernike

moments have been discussed.

4.4.1 Image Reconstruction via Legendre Moments

Since we have solved most of accuracy and efficiency problems related to the Leg-
endre moment computing in Chapter 3, image reconstruction from the higher order

Legendre moments results in a successful task.
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Order C, Cs Ca C, Cs
20 0.030869 | 0.033030 | 0.032264 | 0.030916 | 0.032750
24 0.022129 | 0.026868 { 0.028001 | 0.028148 | 0.028803
28 0.018082 | 0.019077 | 0.024242 | 0.023891 | (.0205648
32 0.018620 | 0.018383 | 0.019420  0.020195 | 6.019606
36 0.026487 | 0.029725 : 0.033788 | 0.032982 | .031015
40 (.055665 | 0.058078 | 0.055500 | 0.0567263 | 0.054554
44 1 0.072008 | 0.081936 | 0.079502 | 0.079267 | 0.080677
48 1 0.206285 | 0.196951 | 0.200966 | 0.214339 | 0.216396

Table 4.4: Values of the normalized reconstruction errors from the reconstructed
five Chinese characters via the new proposed Zernike moment technique.

Five similar Chinese characters are used as the test images in the image recon-
.struction procedure. Numerical and visual results both show that the reconstructed
images from the high order Legendre moments are very close to the original ones.
When the order goes higher, the difference between the original image and its re-

constructed pattern becomes smaller.

4.4.2 Image Reconstruction via Zernike Moments

In this chapter, we discussed the image reconstruction via the traditional Zernike

moments and a proposed new Zernike moment method as well.

Traditional Zernike Moment Method

Five different cubature formulas are applied in the image reconstruction via tra-
ditional Zernike moment method. However, most of multi-dimensional formulas
employed to increase the accuracy of the Zernike moment computing cannot pro-
vide the expected results in the image reconstruction procedure. The reason for the
failure is that the pixels on the unit disk boundary may contain nodes falling out of
the unit circle and which bring in excessive computing errors.

In this task, the simplest 1-dimeunsional formula provides relatively better recon-

structed patterns than all the other multi-dimensional formulas do.
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New Proposed Zernike Moment Method

The same five formulas used in the traditional Zernike moment method are em-
ployed in the proposed new Zernike moment technique. As expected, all multi-
dimensional formulas can recoustruct images with better qualities than the 1-dimen-
sional formula does, and the 5-dimensional formula IT obviously 1s the best approach.

In terms of image reconstruction, however, compared with the Legendre moment
method, the Zernike moment method is severely handicapped. The reason is that
the two major problems in the Zernike moment computation, geometrical error
and approximation error, cannot be solved completely. Though carefully selecting
the multi-dimensional cubature formulas can indeed reduce the computing errors
and improve the quality of the reconstructed image, it is very unlikely that the
performance of the Zernike moment method can reach the same level as that of

the Legendre moment method.
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Chapter 5

Reconstruction of Noisy Images
via Moments

5.1 Introduction

Image reconstructions based on the orthogonal moments under noise free condition
have been discussed in Chapter 4. However, in the presence of noise, the image
reconstruction is expected to be more complicated.

It is interesting to consider how close we can recover the original image from a
finite set of moments computed from the noisy data. Certainly, the higher order
moments suffer greater degradation due to noise. On the other hand, higher mo-
ments are able to supply the detail information about the image [1][75]. These two
opposite factors working against one another imply that there exists an optimal

number of moments yielding the best possible representation of the image.

5.2 Legendre Moments

Two commonly used orthogonal moments for image reconstruction are Zernike
moments and Legendre moments. In this chapter, the Legendre moments are
employed for discussion. However, the results presented can be extended straight-

forwardly to other types of orthogonal moments.
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As discussed in Chapter 4, if only Legendre moments A,,, of order < M,,,. are
given, the original image function f(z,y) can be approximated by a truncated series:
fﬂmaz z y Z Z)\m —1,n P n( )Pn(y) (51)

m=0 n=0

Clearly, the square reconstruction error

Error(Fates) = [ [Fitnee@,9) = Flo )} dady (5.2)

goes to zero as Mp..— > oo, see formula (4.12). That is, by employing higher
order moments one can make the reconstruction error arbitrarily small. However,
this scheme breaks down if the image is contaminated by noise. The notse affects
the higher order moments greater than it does to the lower order moments[75].
Therefore, given the minimal value of the reconstruction error, an optimal number
of moments exists. In other words, when noise is involved, the square reconstruction
error will initially decrease (not necessarily in a monotonic way) down to a certain

number of moments and then increase to infinity as N— > .

5.3 The Reconstruction Error

Let g(z,y) be the noisy degraded version of f(z,y) and adopt the following simple

image observation model

g(z,y) = flz,y) + 2(z,y), (5.3)

where z(z,y) is a Gaussian random process with zero mean and finite variance o”.
From the discussion in Chapter 3, the Legendre moments of the noisy version

g{z,y) of f(z,y) can be obtained numerically by the formula

3 _(2m+1 )(2n + 1)

Zzh,\m 5, Y;) 9(%i, ¥5) {5.4)
=1

=1
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where ., presents the Legendre moments obtained from the noisy image g(z,y)

A
+ _23

@i+ 8E
tpats) = [Ty [ Pole) Pl decy (55)

=5y

Then, if the order < M,,., is given, the noisy image g(z,y) can be reconstructed by

Mz ™

e (2,9) = 2 D A Prnon(2) Pu(y): (5.6)
m=0 n=0
Since
Eg(z;,y;) = f(2i,95), (5.7)
we have
E)lmn = Amn- (5.8)

If we write an as

)\mn = an - E‘}‘—mn -i_ Exmn:

then, it follows

Amn - [Amn - Exmn} + an- (59)

Similar to the case of non-notse in (4.12), Error(gay,,,. } can be writen as

R 1 g1 "
Error(gay,.) = / / [G00ee (2, ¥) — flz,y)]" dedy

- SO Amnnl?
N m=0 n=>0 2(m - TL + 1 Zn + 1 m—T,n TIL—T7L,7L
1
- A 5.10
N Z Z +12p4+1 ™" ( )

m=Mpoz+1n=0

Therefore, E{ Error{gp,,.. ) has the form of

M, m
L e - :
E(Error(gm,..)) = 4 :L;g HZ:O Sm_n) 41 mT1 ElAm-rn — Am-nn]
[o 0] m 1
4 E()? 11
T Y e T o 1 P Oenn) (B11)

m=Mmaoz+1n=0
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Considering (5.9}, we have

E[Xm—n,n "" )\m—n,n]2 = E[(:\m—n,n — Exmmn,n) + (Xm——n,n - )\mfn,n)]z
= E[(Xm—n,n - Exm—n,n)2 + (Xmmn,n - Am—'n.,n)2
MQE(Xm—n,n - Exm-—n,n) (Xm—n,n - Am—n,n)- (512)
Since
E(Xm—n,n - Exm—n,n) (X‘m_—n,n - Aw’x—ﬂ.,'n.) = 03

it follows

E[S\m—n,n - Amﬂn,n}z = E(Xmun,n - EXm—n,n)z + E(Xm—n,n - /\m—n,n)2

—~

= 2ar(Amenn) + Amenn — dmonn)’- (5.13)
Then, (5.11) becomes
Mmaz i _
E(Error(gy,...)) = 4 var(Am—nmn)
PP B S R
+4Mf2§j C G W W
mon02(m“” +12n’1 T memn
1

4 A 5.14
+ Z Z . n +1 on 4177 n,n’ ( )

m=Mper+1ln= D

The first term on the right-hand side of {5.14) depends on the noise added to
the original image. When the noise increases, it increases too. The second term on
the right side can be viewed as a matching measure between Xm,_n,n and A,,,, based
on the total @jﬁ)i(M moments, while the last term comes from truncating higher
order moments 1n reconstruction.

Comparing (4.12) with (5.14), the main difference between the cases of the absence
and presence of noise is focused on the first term on the right side of (5.14). In terms
of the sensitivity to noise, the higher order Legendre moments are more sensitive.

From (5.14) we can see that when the order of M., increases, the sums of

var(xm_n,n) and [an « Amn]? increase. On the other hand, however, the third
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Figure 5.1: Square error Error(gu,,,, ), 0° = 4.0.
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term on the right-hand side of (5.14) decreases when the order of M, increases.
These two factors against each other, indicating that the square reconstruction error
Error(g) will initially decrease down to an optimal number of moments and then
increase.

In order to verify such properties, the Chinese character C; 1s employed as the
testing pattern in our experiment. Figure 5.1 shows the trend of the squared recon-

struction error Error(gyy,...) averaged on 10 runs with o2 = 4.0. As expected, the

error decreases first, reaches minimum at N = 35, then increases. Table 5.1 lists
the numerical values of Error{gay,,.. ). Figure 5.2 illustrates the noisy image of C;

and i1ts reconstructed versions from order 4 up to order 56, from left to right, first

row to last row, respectively.

Order I(N} Order I{N) Order I{N)

3 1.628e4+01 21 9.928e+00 39 6.099e+00
1.604e4-01 22 §.110e—+00 40 6.193e+00
5 1.587e+01 23 9.067e+00 41 6.217e+00
6 1.586e+01 24 8.097e+00 42 6.323e+00
7 1.544e-+01 25 7.924e--00 43 6.377e-+00
8
9

1.518e+01 26 7.556e+00 44 6.529e+00
1.439e+01 27 7.101e+00 45 6.660e-+00
10 1.42]e+01 28 6.93%-+00 46 6.814e+00
11 1.403e+01 29 6.718e+00 47 6.898e-+-00
12 1.369e4-01 30 6.610e+00 48 7.046e+00
13 1.256e+401 31 6.345%e4-00 49 7.223e+4-00
14 1.219e-+01 32 6.35%e+00 50 7.386e+-00
15 1.183e+01 33 6.219e+00 51 7.444e+00
16 1.175e+01 34 6.243e-+00 52 7.606e4-00
17 1.093e+01 35 6.065e+00 a3 7.818e+00
18 1.065e+01 36 $.103e-+00 o4 7.982e4-00
19 1.020e+01 37 6.069e-+00 55 8.258e+-00
20 1.603e+01 38 6.105e+00 56 8.407e+4-00

Table 5.1: Square reconstruction error Evror(gsy,...) with o = 4.0

Obviously, the second and third terms in (5.14) are not affected by the noise,

-~

therefore, when the noise increases or decreases, the sum of [A,, — Ama]® is the
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Figure 5.2: Noisy version of C;, with o2 = 4.0, and its reconstructed versions.
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only factor deciding the position of the optimal number of moments. Since the
noise affects the higher order Legendre moments more than it does to the lower

will increase faster when the higher

TRLRT )

ones, the reconstruction error Error(gy
level noise is involved. These discussions lead to the conclusion that when the level
of noise increases, the optimal number of moments for the least reconstruction error
becomes smaller. An experiment was designed to verify this assumption and the
result is illustrated in Figure 5.3. The same Chinese character ¢y and the noise
model shown in {5.3) are employed. The result is averaged on 1C runs and the
noise varies from o2 = 4.0 to 62 = 25.0. Due to the nature of this experiment, the
computation involved is very large. It took 260 hours for a 33 MHz 486 computer
to complete the task. It is fair to say that the amount of compuiation involved in

this experiment has reached the limitation of a current personal computer.

5.4 Data-Driven Selection of the Optimal Num-
ber

It 1s very interesting to consider how to select a “good” optimal number N directly
from the available g(x;, y;). Ideally, it is expected to have N to minimize the square
reconstruction error. Notice that Ny is a function of the data at hand.

This, in turn, is equivalent to taking the minimize:r of the following criteria

Mupar m 1

.E ff d d _4 Xm—nn_‘Am-—nnz
PO (Gt e ) FPe,y)dedy mZ:OﬂX,; m— ) _|_12n_L1[ , ]
o0 T 1
+4 Mnnn
M_,ZZ e
1
—4 X2
mzcn;) m—-nj+12n+1 T
Miaz ™ 1 -
B ././2 d d =4 ’\m—nn_Am-—nnz
-ﬂffma.z m 1
—4 A 5.15
20,;] n)+12n+1 T (5.15)
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However, the solution of equation (5.15) is not feasible since the A..,’s are unknown.
If A is replaced by A, equation (5.15) will yield the unacceptable solution
N = oo.

To overcome this difficulty, a resampling technique utilizing the cross-validation
methodology has been introduced and the asymptotic optimality of such a selection
has been proved [56](57].

Other possible techniques to solve this problem include the utilization of discrete
measures with penalty fac'tors. For instance, other than the Error{gy, . ) criterion,
its discrete approximation

ED(M) = Ashy > S (o2, 45) — Gt (20, 95)1 (5.16)

=1 j=1
can be used[24].

The empirical selectors corresponding to ED(M) are of the form
ED(M) = AzAy Y~ Y [g(2i,Y5) — Gt (25 95) ] B(N), (5.17)
=1 j=1
1.e., it 1s a penalized version of the residual error

AzAy > S [9(@i45) = Fatmee (2,330

i=1 j=1
see |24}
In the case of Gaussian noise, the prescription we proposed for the penalty factor
¢(N) is
B(N) =[1- F(oe*)L(N)AzAy]™?, (5.18)

where L(N) is the total number of moments used in gy, .., e.8., L{N} = w%(w
for Legendre moments. With carefully selected p and F{(c?), significant simulating
results of Figure 5.3 can be expected.

Generally speaking, the automatic selection of the optimal number Ny from the

data at hand is still an open problem. Though some initial experimental results
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are quite positive on this task[58][59], due to the extreme amount of computation

involved, we could not provide the full scale research on this issue based on the

available equipment. For a related problem in the context of image restoration, we

refer to [29].



Chapter 6

Character Recognition via
Moments

6.1 Introduction

Character recognition is believed to be typical of many other practical problems
that depend on general shapes rather than details of the image. The recognition
of characters from imagery may be accomplished by identifying an unknown char-
acter as a member of a set of known characters. Various character recognition
techniques have been utilized to abstract characterizations for efficient character
representations{25][62]. Such characterizations are defined by measurable features
extracted from the characters. Therefore, the effectiveness of the technique for a
given application is dependent on the ability of a given technique to uniquely repre-
sent the character from the available information. Since no one single technique will
be effective for all recognition problems, the choice of character characterization is
driven by the requirements of a specific recognition task.

Based on the Uniqueness Theorem|37], the double moment sequence is unique-
ly determined by an image function f(z,y). This nature makes the method of

moments aproper candidate in character recognition.
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6.2 Character Recognition via Central Moments

In consideration of the fact that there is no inverse problem involved in the clas-
sification of visnal patierns and characters, and the property of invariance under
translation, the classical moment is discussed in this chapter for the purpose of
pattern recognition.

As mentioned in Chapter 2, the central moments pp, are defined in (2.5)
+co +oo _ _
poa= [ [ (@ -aPly-5) fle,y) dady,

where

ﬂd’lﬂ MOI

m: ¥y = MOOJ

T =

and M,, are the classic moments defined in (2.4}

‘oo pto0
Mpg = f / xF y° f(z,y)dzdy.

Hu demonstrated the utility of moment techniques through a simple pattern recog-
nition experiment[37]. The first two moment invariants were used to represent sev-
eral known digitized patterns in a two-dimensional feature space. The experiment
was performed by using a set of 26 capital letters as input patterns. In the two-
dimensional feature space, all the points representing each of the characters were
fairly distinct except those of M and W.

Compared with the set of English letters, the Chinese character set is large, and
in terms of character recognition, is more difficult to classify. In this section, similar
to Hu’s experiment, a stmulation program of a character recognition model using

two moment invariants, has been proposed. The following two moment functions

X1 = V2o + poz (6.1)

and

Xy = \/(I-Lsn — Bp12)? + (3p21 — fhos)? _(6-2)
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are used to compute the representations of all known characters in the feature space.
Therefore, each point of (X, X;) represents one Chinese characterin the image plane
(=, 9).

Considering the similarity, first, we employ the set of Chinese characters used

before. Figure 6.1 shows these characters. .

Figure 6.1: Five original Chinese characters used for testing.

The values of X, and X, are given in Table 6.1 and the representations of the five

Chinese characters are shown in Figure 6.2.

Characters X, X
C1 3.5328 | 0.0933
C, 3.5440 | 0.0818
Cs 3.5433 1 0.0616
Ca 3.5574 | 0.0254
Cs 3.5559 | 0.0794

Table 6.1: Values of the five Chinese characters in the central moment feature space.

Figure 6.2 shows that the representations of the five Chinese characters are quite
close to each other in the two dimensional (X, X,) feature space. From the classi-
fication pomnt of view, this disadvantage certainly will limit the usage of the central
moment method 1n Chinese character recognition tasks.

Then, randomly, we selected 90 Chinese characters as the testing samples. Fig-
ure 6.3 shows these 90 Chinese characters. In Figure 6.3, we call the first sample
from the left in the first row 51, the second sample from the left on the same row
52, and so on. For example, Sag will be the second sample from the left on the fifth

row; and S7; is the fifth character from the left on the ninth row.
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Figure 6.2: Representations of the five Chinese characters in the central moment
feature space.
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The values of A and X, are listed in Table 6.2 and the representations of these

90 Chinese characters in the central moment feature space are plotted in Figure 6.4.
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Figure 6.4: Representations of the ninety Chinese characters in the central moment
feature space.

Obviously, similar to the results shown in Table 6.1 and Figure 6.2, the two
central moment functions, X; and X,, cannot recognize those Chinese characters

successfully,
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Sample | A4 No Sample | X Xy Sample | X X
Sh 3.6184 | 0.2566 Sas 3.6512 { 0.2411 Sa1 3.5429 | 0.0565
Sy 3.5487 | 0.0162 Sas 3.5564 | 0.1498 Sea 3.5485 | 0.1071
Sa 3.5474 | 0.0029 Sa3 3.4875 | 0.0674 Sea 3.5618 | ¢.0980
S 3.5504 | 0.0769 S34 3.4743 1 0.1785 Sea 3.5798 | (.1332
S5 3.5551 | 0.0811 Sas 3.5606 | 0.0598 Ses 3.5286 | 6.1251
Se 3.5339 | 0.2560 Sas 3.5578 | 0.1511 See 3.4988 | 0.1657
S7 3.5092 | 0.1201 Sar 3.5509 | 0.0610 Ser 3.5440 | 0.0818
Sg 3.5725 1 0.1149 Sag 3.5382 | 0.1388 Ses 3.5354 | 0.0843
Sg 3.6230 | 0.0114 Sag 3.5589 | 0.0596 Ses 3.5327 | 0.2650
S1o 3.5499 | 0.1434 Sao 3.5840 | 0.0639 S0 3.5001 | 0.0972
S11 3.5749 | 0.0771 Sa 3.5689 | 0.0613 Sn 3.5424 | 0.2206
S12 3.5591 | 0.0477 Saz 3.4838 | 0.1280 S7s 3.5314 | 0.1080
S1a 3.5577 | 0.2699 Sas 3.5259 | 0.0878 S73 3.5216 | 0.2923
S14 3.4994 | 0.1735 Sas 3.5056 | 0.1187 S7s 3.5340 | 0.0785
S1s 3.5576 | 0.1663 Sas 3.5435 | 0.1615 S7s 3.5996 | 0.0398
S1e 3.4926 | 0.1638 Sie 3.5750 | 0.0304 S7e 3.5075 | 0.1668
Si7 3.5146 | 0.1091 Ser 3.5053 | 0.3824 S77 3.5067 | 0.0730
Sis 3.5050 | 0.0607 Sss 3.5609 | 0.1297 Srs 3.5466 | 0.0675
Sia 3.5035 | 0.0953 Ssg 3.6086 | 0.1638 Sve 3.5668 | 0.0329
Sao 3.56339 | 0.0733 Sso 3.5615 | 0.0674 Sso 3.6527 | 0.1474
Sa1 3.5569 | 0.0480 Se1 3.5390 | 0.1286 Ss1 3.5889 | 0.0140
Sa9 3.5958 | 0.1324 Ssa 3.4933 | 0.1307 Sss 3.5776 | 0.1211
Sa3 3.5467 | 0.0199 Ssa 3.4940 | 0.1729 Ssz 3.4619 | 0.2198
Sas 3.5022 | 0.1514 Sse 3.5621 | 0.0845 Ssa 3.5986 | 0.0416
Sas 3.5264 | 0.1419 Sss 3.5675 | 0.0680 Sss 3.5646 | 0.1387
Sae 3.5378 | 0.0837 Sse 3.5750 | 0.1012 Sse 3.5460 | 0.0678
Sar 3.5033 | 0.1533 Ssr 3.5387 | 0.2538 Ssr 3.6025 | 0.0930
Sas 3.5615 | 0.0590 Sss 3.5175 | 0.2213 Ses 3.5371 | 0.1616
Sag 3.5787 | 0.1090 S'sg 3.5182 | 0.1422 Sso 3.5542 | 0.2515
Sa0 3.5322 | 0.0200 Seo 3.5571 | 0.2579 Sao 3.5860 | 0.1156

Table 6.2: Values of the ninety Chinese characiers in the central moment feature

space.
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6.3 Character Recognition with Legendre Mo-
ments

The Legendre moments do not have the property of invariance under translation.
However, compared with the classical moments, the same order of the Legendre
- moment contains more terms than that of the central moment does. Therefore, in
terms of classification, the Legendre moments contain more information than the
central moments do.

Similar to the two classification measures defined in (6.1) and (6.2), the following

two Legendre functions
Yy =y Azo + Aoz (6.3)

and

2= \/(ASU — 3A12)? + (3An — Aps)? (6.4)

are employed in our new recognition model, where A,,,,’s are the Legendre moments
defined in (2.31).

First, we use the same set of five Chinese characters shown in Figure 6.1. The val-
ues of all five Chinese characters in the two-dimensional Legendre moment feature

space (Y:,Y2) are listed and illustrated in Table 6.3 and Figure 6.5, respectively.

Characters Y Y5
o 2.0204 | 1.6965
Co 2.1636 | 0.2535
Cs 2.1899 | 1.7548
C4 2.2032 | 2.1281
Cs 2.1653 | 3.2418

Table 6.3: Values of the five Chinese characters in the Legendre moment feature
space.

We can see that the five Chinese characters are well separated in the two-dimen-

sional Legendre moment feature space (7, Y3). In other words, in this particular
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Chinese character recognition task, the Legendre moment technique is superior.

Then, the ninety randomly selected Chinese characters shown in Figure 6.3 are

employed as the testing patterns. Table 6.4 displays the values of these 90 Chi-

nese characters in the Legendre moment feature space, and Figure 6.6 plots these

representations in the two-dimensional (Y7, Y%) plane.
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Figure 6.6: Representations of the ninety Chinese characters in the Legendre mo-
ment feature space.

Figure 6.6 shows that most of Chinese characters are well separated. However,

P
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| Sample | 1} Yy | Sample | Vi Y, |Sample| Y; Ys
S, 1.5346 | 4.7334 | S, | 1.5260 | 5.6012 | S | 1.7716 | 0.8286
5, 1.9007 | 2.0506 | Sa; | 1.8379 | 2.9933 | S | 1.8951 | 1.6680
Sy 1.8135 | 0.6016 | Sss | 1.8906 | 2.4768 | Ses | 1.9745 | 2.6982
5, 1.7271 | 2.5868 | Saq | 1.8040 | 3.7551 | Ses. | 1.9486 | 1.4085
Ss 1.9632 | 1.1077 | Ssz | 1.7915 | 1.8526 | Ses | 1.G608 | 2.6182
Se 1.8702 | 4.8260 | Sse | 2.0227 | 3.3827 | Ses | 1.6585 | 3.6280
S, | 1.9411 | 2.6879 | Ss; | 2.1192 | 1.8604 | Ser | 2.1636 | 0.2535
Se 1.9408 | 2.0360 | Sss | 1.9756 | 1.8860 | Ses | 1.7241 | 1.7722
Sq 1.9248 1 2.9374 | Sz | 1.7896 | 1.7319 | Sas | 1.7064 | 5.7469
Sio | 1.7645 | 3.9552 |  Ss  | 1.9206 | 2.5398 | Sy | 1.7558 | 0.5146
Si. | 17005 1 1.2156 | Sq | 1.8540 | 1.5533 | S, | 2.0121 | 4.0992
Sis | 1.8596 | 1.1031 { Ss | 1.9207 { 21761 | Sy | 2.0239 | 2.3041
Sis | 17067 | 5.0808 | S4 | 1.8654 | 2.8219 | Sy | 1.8900 | 6.0365
Si4 | 2.0086 | 3.8532 . Sy | 1.8708 | 2.4153 | Sy | 1.8122 | 1.1317
Sis | 2.0362 | 3.8763 | S | 1.0319 | 1.4443 | Szs | 1.9149 | 1.5990
Sig | 1.6787 |3.5000 | Sy | 1.4783 | 0.0995 Sz | 1.8685 | 0.6289
Siz 1 2.0319 | 2.7340 | 5S4 | 1.0144 | 6.2822 | Sy | 1.7135 | 1.2120
S1s | 1.7548 | 1.2384 | S, | 1.7970 | 2.6013 | Sys | 1.7870 | 1.0894
Sie 119031 | 1.9106 | Sse | 1.5632 | 3.6298 | S, | 1.7331 | 0.7432
Sso | 2.0153 | 2.7606 |  Sse | 2.2657 | 1.8740 | Sg | 1.5097 | 1.7610
Sy, | 15705 | 1.3187 | S5 | 1.7894 | 2.3395 | Sg; | 1.7795 | 0.0637
Sy | 17817 | 1.9157 | S5, | 1.7126 | 3.1672 |  Ss | 1.4753 | 1.7641
S,y | 1.6696 | 0.9155 | Ssz | 1.6793 | 4.4645 | Ssa | 1.5775 | 2.8834
Soq | 2.0601 | 1.5532 | Ss. | 2.2200 | 1.7281 | Ssq | 1.6220 | 3.5224
Sys | 21259 | 8.5760 | Sss | 1.7195 | 0.8730 | Sss | 1.8122 | 1.6799
Sas | 16907 | 1.2791 | Sse | 21327 | 0.4946 | Sss | 2.0188 | 2.5025
S,; 12.0025 | 2.3081 | Ss; | 1.87332.3991 | Ssr | 2.0721 | 1.3334
S,s | 1.8056 | 0.5816 | Sss | 2.1976 | 4.2732 | S | 1.8096 | 2.1385
S, | 1.6444 | 2.3904 | Sse | 1.9050 | 2.0736 | Sse | 1.6954 | 6.1273
Sao | 2.0144 | 1.8385 | Seo | 1.5251 | 6.0759 | Sge | 1.9719 | 3.3317

Table 6.4: Values of the ninety Chinese characters in the L.egendre moment feature

space.
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it is observed that two characters, Si4 and Sy, are very close to each other in the

Legendre moment feature space. Although the results shown in Figure 6.6 are
indeed better than those of Figure 6.4, vet the Legendre moment two-dimensional
feature space cannot be used as a successful technique to recognize a specific Chinese
character from the whole Chinese character set.

Omne option to improve the Legendre moment technique is to add a new feature
to the feature space. We use the following equation, which is based on (2.16}, as

the third feature:

Vs = /(A0 — Aoa)? + 403, (6.5)

In this new three-dimensional Legendre moment feature space, characters Sy,
and Sgr have Ya values (.6933 and 1.6876, respectively. Therefore, all Chinese
characiers shown in Figure 6.3 can be separated successfully. Table 6.5 displays the

values of Y7, Y3, and Y3 for all ninety Chinese characters.

6.4 Conclusions

In this chapter, we have discussed character recognition via moment methods and
compared the well known central moment feature space with the proposed new
Legendre moment feature spaces for Chinese character recognition.

The two-dimensional central moment feature space was used by Hu[37] to recog-
nize 26 English capital letters. The experiment performed fairly well except that
the distance between two points representing letters M and W in the feature space
is very close,

Compared with the set of English letters, however, the set of Chinese characters
15 larger and more difficult to classify. Two sets of Chinese characters, one including
five similar Chinese characters and the other containing ninety randomly selected

characters, are used as the input patterns to a simulation program based on the
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Sample Yy 15 Ys Sample Yy Y2 Ya
5 1.5346 | 4.7334 | 2.6002 S46 1.4783 | 0.0995 | 1.0175
55 1.9007 § 2.0506 | 1.8604 Sai7 1.9144 | 6.2822 ; 1.9013
53 1.8135 | 0.6016 | 2.0815 Sas 1.7970 | 2.6013 | 2.5707
54 1.7271 | 2.5868 | 3.0566 Sao 1.5632 | 3.6298 : 1.3954
S 1.9632 | 1.1077 ; 1.5408 Ss0 2.2657 | 1.8740 | 2.8191
Ss 1.8792 | 4.8260 | 2.8729 Sy 1.7804 | 2.3305 | 2.3448
5, 1.9411 | 2.6879 | 2.7054 Sz 1.7126 | 3.1672 | 0.5698
Ss 1.9408 | 2.0360 ; 0.9138 Ssa 1.6793 | 4.4645 | 2.8409
Sy 1.9248 | 2.2374 | 2.0778 Ss54 2.2200 ; 1.7281 | 2.2174
S 1.7645 | 3.9552 | 3.2093 Sss 1.7195 | 0.8730 | 1.5833
S 1.7005 | 1.2156 | 2.4936 Sse 2.1327 | 0.4964 | 2.7262
Sz 1.8506 | 1.1031 | 1.4362 Sz7 1.8733 | 2.3991 | 1.6876
S1a 1.7067 | 5.0808 | 2.4617 Sss 2.1876 | 4.2732 | 2.5669
S 2.0086 | 3.8532 | 3.1573 Ssg 1.9050 | 2.0736 | 1.9350
S5 2.0362 | 3.8763 | 3.68982 Sen 1.5251 | 6.0755 | 2.4210
Si6 1.6787 | 3.5999 | 2.3467 Se1 1.7716 | 0.8286 | 1.7164
517 2.0319 | 2.7304 | 3.7947 Sez 1.8851 | 1.6680 | 1.1195
Sis 1.7548 | 1.2384 | 0.7203 Ses 1.9745 | 2.6982 | 1.4327
S19 1.9031 | 1.9106 | 1.6195 Se4 1.9486 | 1.4085 | 2.4803
S 2.0153 | 2.7606 | 2.7951 Sex 1.6608 | 2.6182 | 1.8849
8oz 1.5705 | 1.3187 | 1.3711 Ses 1.6585 | 3.6280 | 1.2719
Sag 1.7817 | 1.9157 | 1.3440 Ser 2.1636 | 0.2535 | 1.3685
Sag 1.6696 | 0.9155 | 0.7421 Ses 1.7241 | 1.7722 | 2.7329
Saq 2.0691 | 1.6532 | 1.241t Sso 1.7064 | 5.7460 | 3.1251
Say 2.1259 | 3.5769 | 3.1406 S0 1.7558 | 0.5146 | 1.4417
Sag 1.6907 | 1.2791 ! 1.5703 87y 2.0121 | 4.0992 | 3.4287
So7 2.0025 | 2.3081 | 1.9807 Sy 2.0239 | 2.3041 | 2.6732
Shg 1.8056 | G.5816 | 0.7381 S7a 1.8900 | 6.0365 | 3.4701
Saa 1.6444  2.3904 | 1.2175 Srq 1.8122 | 1.1317 | 1.6745
Sag 2.0344 | 1.8385 | 2.2021 Sos 1.9149 | 1.5990 | 1.5343
Say 1.5260 | 5.6012 | 3.0475 Srg 1.8685 | 0.6289 | 1.5335
Sas 1.8379 | 2.9933 | 1.8440 Sor 1.7135 | 1.2120 | 1.6727
S33 1.8906 | 2.4768 | 2.5081 S7s 1.7870 | 1.0894 | 1.4135
Sa4 1.8940 | 3.7551 | 1.6790 S7o 1.7331 | 0.7432 | .8510
Sas 1.7915 | 1.8526 | 2.0289 Sso 1.5087 | 1.7610 | 2.0634
S35 2.0227 | 3.3827 | 2.2726 Sg 1.7795 ; 0.0637 | 1.276%
S37 2.1192 | 1.8604 | 1.7906 Sz 1.4753 | 1.7641 | 1.2034
Sas 1.9756 | 1.8860 | 2.2459 Sk 1.5775 | 2.8834 | 1.784%
Sag 1.7896 § 1.7319 i 1.4725 Sas 1.6220 | 3.5224 | 2.3445
Sao 1.9206 | 2.5398 | 2.7447 Sas 1.8122 | 1.6799 | 1.8i71
541 1.8540 | 1.5533 | 1.5474 Szs 2.0188 | 2.5025 | 2.2536
Sao 1.9207 | 2.1761 | 2.8264 Sgr 2.0721 | 1.3334 | 1.8721
Sy43 1.8654 | 2.8219 | 2.681% Sss 1.8896 | 2.1385 | 1.6345
Saa 1.8708 | 2.4153 | 0.6933 Sao 1.6954 | 6.1273 { 3.7291
Sis 1.9319 | 1.4443 | 0.9003 San 1.9719 | 3.3317 | 2.5255

Table 6.5: Values of the ninety Chinese characters in the Legendre moment three-
dimensional feature space.
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central moment technique. The results show that most of the representations of the

Chinese characters in the Central moment feature space are crowded to a small area
in the two-dimensional central moment feature plane. Therefore, in both cases, it
is impossible to recognize those Chinese characters successfully.

We proposed some new Legendre moment feature spaces in this chapter. First, a
two-dimensional Legendre moment feature space was developed and appli-ed. The
same two sets of Chinese characters are employed as the input patterns. For the set
of five similar characters, the experiment demonstrated that all five representations
in the Legendre moment feature space are well separated. The performance of re-
cognizing ninety randomly selected Chinese characters with the Legendre moment
feature space is much more refined than that of the central moment feature space
as well. However, the distance in the two-dimensional Legendre moment feature
space between two characters, Sy; and Ss7, is quite small. This can be a potential
problem in a full scale Chinese character recognition application.

To improve the recogniz.ing ability, we added one new feature to the two-dimen-
sional Legendre moment feature space. The new three-dimensional feature space
is able to separate all ninety randomly selected Chinese characters easily.

It is noted that the highest order Legendre polynomials involved in the three-
dimensional Legendre moment feature space is 3. With the development of the
better VLSI moment generator chips[6], a hardware device for Chinese character
recognition becomes possible.

Because of some technical reasons, we cannot obtain the whole set (more than
50,000) of Chinese characters and test all of them individually. However, with a
possible fourth feature being added to the three-dimensional Legendre moment
feature space, we are Vé;}; optimistic to say that the Legendre moment technique

can solve the Chinese character recognition problem.
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With the discussions and the experimental results we had in this chapier, we are
confident that feature spaces based on Legendre moments are the right direction

to solve the practical Chinese character recognition problem.
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Chapter 7

Conclusions and
Recommendations

7.1 Conclusions

We have been concerned here with moment methods in image analysis. We found
that a fundamental element of moment methods, accuracy 1n moment computing,
had not attracted the attention it deserved. We have proposed and implemented
several procedures to increase the accuracy in Legendre and Zernike moments
computing.

Efforts made to reduce computing errors in Legendre moments turned out to be
very successful. Primarily, we have solved the problem of computation errors related
to the Legendre moment computing. Meanwhile, by working out up to order 55
Legendre polynomials, we reduced the moment computation time dramatically and
made the utilization of higher order Legendre moments practically possible.

Based on these improvements, we performed image reconstruction via Legendre
moments. We found that the reconstructed 1mages were very close to the original
image numerically and visually. The quality of reconstructed images is superior to
all published results.

The computation errors of Zernike moments have been investigated as well.

Because of the nature of the Zernike moments computing, there are two types
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of major errors, geometric and approximate, in the computation. Adopting the
result from a classical problem in Number Theory, The Lattice Points of a Circle,
we concluded that the geometric error in Zernike moment computing cannot be
completely removed. We also proposed several procedures to reduce the approximate
errors in Zernike moment computing. Though improvement has been obtained,
none of them works flawlessly. We concluded that the lack of efficient measures
to reduce both geometric and approximate errors effectively would impede further
atilization of the Zernike moments.

Image reconstruction via Zernike moments was performed as well. Applying the
best formula proposed, we reconstructed some images from their original versions
with reasonable quality. The reconstructed images via Zernike moments indeed
have better qualities than the results published previously, but, they are simply not

-as good as those images reconstructed via Legendre moments.

We have been also concerned here with reconstructing images from a finite set of
moments computed from the noisy observed data. We conclude that there exists an
optimal number of moments yielding the best possible representation of the original
image without noise.

Finally, we discussed the recognition of Chinese characters via moment meth-
ods. We concluded that the method of Legendre moment works quite well for the
Chinese character interpretation. Since the highest order Legendre polynomials
involved in the Chinese character recognition task is 3, with the developments in
the area of VLSI moment generator chips, a hardware device for Chinese character

recognition becomes technically possible.
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7.2 Recommendations

After reviewing the results from this research, we have a few recommendations for
further study.

A visible extension of two-dimensional image reconstruction is the reconstruction
task in three-dimensional space. Since the prime accuracy and efficiency problems of
computing high order of Legendre moments have been solved in this thesis, there
is no real technical difficulty for reconstructing a three-dimensional 1mage via the
Legendre moments.

Though we cannot reduce the geometric error in the Zernike moment computing
effectively, we can, however, reduce the approximation error further by developing
new formulas to calculate integrations for all pixels along the boundary of the unit
circle. This could be a challenging task, but must be solved before the further full
scale utilization of the Zernike moments.

Practically, we can build a database including all Legendre moment space fea-
tures covering the whole Chinese character set without real technical difficulty. This
will be the first important step to develop a reading machine for the Chinese lan-
guage, which is one the most difficult languages in terms of artificial intelligence

reading.
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Appendix A

Some of the Higher Order Legendre Polynomials:

Pio(z) = —(—252 4 13,8602 — 120, 1202* + 360, 3602°

210
—437,5802° + 184, 756z"°) (A.1)
P(z) = %(—5, 544 + 120, 120z% — 720, 720z* + 1,750, 3202°
—1,847,5602% + 705, 4322'°) (A.2)

1
Pz = 51—2—(924 — 72,0722 + 900, 9002 — 4,084, 080z°

+8,314,0202% — 7,759, 7522 1 2,704, 156z'%) (A.3)
—2%(24, 024 — 720, 72022 + 6,126, 120z*

—22,170,7202° + 38,798, 7602® — 32, 449, 8722"°

410, 400, 600z") (A.4)

Pia(z) =

1
Piy(z) = 2j(m3,432 + 360, 360z* — 6,126, 120z*
438,798, 7602° — 116, 396,2802% + 178,474, 296z '°

—135,207, 8002 + 40,116, 600z™*) (A.5)

Pis(z) = 2%(—102, 060 + 4,084, 0802* — 46,558, 512x*
+232 792, 5602° — 594,914, 3202 + 811,246, 800z'°
561,632, 4002 + 155,117, 5202'*) (A.6)
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Pig(z) =

Pl-;(:c) =

Pig(z) =

Pig(z)

PQQ(IE)

1
216

— (12,870 — 1,750, 3202 + 38,798, 760z* — 325,909, 5842°

+1,338,557,2202® — 2,974, 571, 600z® + 3,650,610, 600z

~9,396, 762, 800z + 601,080, 3902*°)

frid
517
—2,141,691, 5522°% 4 7, 436,429, 0002®

—14,602, 442, 400z° + 16,287, 339, 6002"*
0,617,286, 2402 + 2,333, 606,2202'°

(437,580 — 22,170, 720z® + 325,909, 584z*

1
575 (—48, 620 +- 8,314, 020" -~ 232,762, 5602

+2, 498, 640, 1442% — 13, 385, 572, 2002°
+40, 156, 716, 6002'° — 70,578,471, 60022
472,129, 646, 800z — 39,671, 305, 7402'®
19,075,135, 3002'%)

X
)
117,847,429, 600z° — 80,313, 433, 2002°

+211, 735,414, 8002'° — 336, 605, 018, 4002*?
+317, 370,445,920z — 163, 352, 435, 4002°
435,345,263, 8002'®)

(—1,847,560 -+ 116, 396,2802> — 2, 141,691, 5522*

5%;5(184, 756 — 38, 798, 7602” + 1, 338, 557, 220z

— 17,847,429, 6002° + 120,470, 149, 800z®

— 465,817,912,5602° + 1,093, 966, 309, 800z
— 1,586, 852,229, 600z + 1, 388,495, 700, 9002*°
— 671,560,012,2002® + 137, 846, 528, 8202>)
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(A7)

(A.9)

(A.10)

(A.11)




Pu(z) = 2%(7, 759,752 — 594,914, 32022 + 13, 385, 572, 200z*

~137,680, 171,200z + 776,363, 187, 6002°

—2,625,519, 143, 5202% -+ 5, 553, 982, 803, 600z 2
—7,405, 310, 404, 8002 + 6,044, 040, 109, 8002°
—2,756,930,576,4002"® + 538,257, 874, 4402>°

Pyy(z) = 5-155(—7055432 + 178,474, 29627 — 7,436,429, 000z*

+120,470, 149, 8002° — 998, 181, 241, 2002°

+4, 813,451,763, 1202'% — 14, 440, 355, 289, 360z'°
+27,769,914, 018, 000z* — 34,249, 560, 622, 2002¢
+26,190, 840,475, 800='® — 11,303, 415, 363, 2402°
+2,104, 098, 963, 720z%*)

Paa(z) = —(—32,449,872 + 2,974, 571, 600a% — 80,313, 433, 200z

923
+998, 181,241, 200z® — 6, 876, 359,661, 600z°

+28, 880, 710, 578, 7202'° — 77,755, 759, 250, 400=2"2
+136,998,242, 488,800z — 157, 145,042, 854, 800 x'®
+113,034, 153,632, 40028 — 46,290, 177,201, 840z%°
+8,233, 430,727, 6002%?) |

Py(z) = %(2, 704,156 — 811,246,800z + 40, 156, 716, 600z*
—776,363, 187, 6002° -+ 7,735,904, 619, 3002°
—45, 383,973, 766, 5602'° + 168,470, 811, 709, 200z"?
—410,994, 727, 466, 4002'* + 667, 866,432,132, 9002'®
—715,882, 973,005, 200z'® + 486, 046, 860,619, 3202%°
—189,368, 906, 734, 80022 + 32,247,603, 683, 100z*)
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Pgs(u"})

Pgﬁ(.?‘.,)

P;yr(i?) =

Prg(z) =

—23}5(135, 207,800 — 14, 602,442, 40022 + 465,817,912, 560z°

—8, 876,359,661, 6002 + 56,729,967, 208, 2002°

—288, 807, 105, 787, 2002'% + 958,987,697, 208, 2002°
—2,137,172,582, 825, 280z + 3,221,473, 378, 523, 40021°

—3,240, 312, 404, 128, 80025 + 2,083, 057, 974, 082, 800z*°
—773,942, 488,394, 40027 4 126,410, 606,437, 7522**) (A.16)
i

ﬁ(—w, 400, 600 + 3,650,610, 600z* — 211,735,414, 800z*

4,813,451, 763, 1202° — 56, 729, 967, 208, 200z*

+397,109, 770,457, 4002 — 1,780,977,152, 354, 4002™

+5,342 931,457,063, 2002 — 10,953, 009, 486, 979, 560™°
+15,391,483,919, 611, 8002*® — 14, 581,405, 818, 579, 6002*°
+8,900,338, 616, 535, 60022 — 3, 160, 265, 160, 943, 800"

+495, 918, 532, 948, 1042%%) (A.17)

53
027
+45,383,973, 766, 560z° — 441,233,078, 286, 0002®

+2 671,465, 728,531, 600z — 10, 685,862,914, 126, 4002

+20, 208, 025, 298, 612, 160z** — 55,409, 342, 110, 602, 4802'°
+72,907,029,002, 898, 000=!® — 85,269, 149, 854, 594, 4002%°
+37,923, 181,931,325, 600222 — 12, 893, 881, 856, 650, 7042**
1,946, 939, 425, 648, 112226) (A.18)

(—561, 632, 400 -+ 70,578,471, 600z — 2,625, 519,143, 5202

1
ﬁ(40, 116,600 — 16,287,339, 6002? + 1,093, 966, 309, 800"

—28, 880,710,578, 7202° 4+ 397,109, 770,457, 400z°

--3,265,124, 779, 316, 4002'° + 17, 364, 527, 235, 455, 400z"?

—B2, 588,625, 639, 883, 200z + 156,993, 135, 980, 040, 3522°
—277,046, 710, 553,012, 4162*® + 342, 663,036, 736, 620, 608z
—290, 744, 394, 806, 829, 568272 + 161,173, 523,208, 133, 792z**
~52, 567, 364,492, 499, 0242

+7,648, 690, 600, 760, 4402%) (A.19)
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Pog(z)

}%0($)

f%1($)

T

525 (2, 326,762, 800 — 336,605, 018, 40022 + 14, 440, 355, 289, 360z

—288,807, 105, 787, 2002° -+ 3,265, 124, 779, 316, 400z®

—23, 152,702, 980,607,200z + 109,530, 094, 869, 795, 6002
—358,841, 453, 668, 663, 680z + 831, 140,131, 659, 037, 1842°
—1,370,652, 146, 946, 482, 430="% + 1,599,094, 171,437, 562, 880z2°
—1,289, 388, 185, 665,070, 080z>* -+ 683,375, 738, 402, 487,296z
—214, 163, 336,821,292, 320%® + 30,067, 266, 499, 541, 040z>°) (A.20)

1
535(—155, 117,520 + 72,129,646, 800<" — 5, 553,982, 803, 600z

+168,470,811, 709, 2002° — 2,671,465, 728, 531, 600z°

+25,467,973, 278,667, 9202 — 158,210, 137, 034, 149, 2162
+672,827, 725,628, 744, 3202 — 2,018, 483,176, 886, 233, 34025
+4,340, 398,465, 330, 527, 7402'® — 6, 716, 195, 520, 037, 764, 10022°
7,413,982, 087, 574, 155, 260z*° — 5,694, 797, 820, 020, 725, 7602
+2,891, 205, 047, 087, 446, 5302%¢ — 871,950, 728, 486,690, 17625
+118, 264, 581,564, 861, 4242°%) (A.21)

T
o)
£1,780,977,152, 354, 4002° — 23,152, 702, 980, 607, 2002

+189, 852, 164, 440, 979, 0402'° — 1,046, 620, 906, 533, 602, 430212
+4,036, 966, 353, 772, 466, 180z — 11,161, 024,625, 135, 642, 600z'®
422,387, 318,400, 125, 882, 400z'® — 32,621, 521,097, 326, 284, 800z>°
+34,168, 786,920, 124, 362, 80022% — 25,057, 110,408, 091,193, 300z**
+12,207,310, 198, 813, 663, 2002 — 3,547,937, 446, 945, 843, 2002%°
+465,428, 353,255, 261, 0562°°) ' (A.22)

(—9,617,286, 240 + 1, 586, 852, 229, 600z> — 77, 755, 759, 250, 400z*
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.ng(-’ﬂ) =

ng(fﬂ) =

P34(33) =

1 2
53 (601,080, 390 — 317,370, 445, 920c

+27,769,914, 018,000z - 958,987,697, 421, 600z°
+17,364, 527,235,455, 4002® — 189, 852, 164, 440, 979, 0402°
41,360,607, 178,493, 683,2002' — 6,728,277, 256, 287, 443, 970z"*
+923,717,177,328,413, 241, 3002*® — 60, 765,578,514, 627, 387, 400z ™®
+114,175, 323,840, 641,991, 0002%° — 157, 176,419,832, 572, 084, 000z**
+156, 606, 940, 050, 569, 986, 000z** — 109, 865, 791, 789, 322, 928, 0002>°
+51, 445,092,980, 714, 725, 4002 — 14,428,278, 950,913,095, 7002*°
41,832,624, 140,942, 590, 4602") (A.23)
525(39,671,305,740 — 7,405,310, 404, 80022
+410,994, 727,466, 4002* — 10, 685,862,914, 126, 40025
+158,210,137,034, 149, 2162 — 1,484,298, 740, 174, 926, 8502°
+9,419, 588,158, 802, 421, 7602'* — 42,163, 870, 806, 067, 986, 4002
+136,722,551,657, 911,632, 000® — 326, 215,210,973, 262, 774, 0002'®
+576, 313,539, 386,007, 664, 00022° — 751,713,312, 242, 736, 038, 0002>*
+714,127, 646,630,599, 197, 0002%* — 480,154,201, 153, 337, 229, 0002 2®
+216,424, 184, 263,696,417, 0002 — 58,643,972, 510, 162, 903, 0002
+7,219, 428,434,016, 265, 2202°%) (A.24)

5%E0—2,333,606,220-+1,388,495,700,900m2
—136,998,242, 488,800z" + 5, 342,931,457, 063, 200z°
—109, 530,094, 869, 795, 6002® + 1, 360, 607,178, 493, 683, 2002°
—11,132, 240, 551,311,951, 9002"% + 63,245, 806,209, 101,971, 500z
—258,253, 708, 687, 166, 407,0002*" + 774, 761,126,061, 499, 220, 000z*®
—1, 728,940, 618, 158, 292, 860, 0002*°
+2, 881,567, 696,930,488, 710, 000z
—3,570, 638,233, 152,996, 250, 0002**
+3,241,040, 857,785,026, 740, 0602
—2,092,100, 447, 882, 397, 880, 000z®
+908, 981,573,907, 525, 009, 000z
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938,241,138, 322, 536, 792, 000232
+28,453, 041,475,240, 575, 00023¢) (A.25)

€T
55
—2.137, 172, 582, 825, 280z*

+62, 588, 625, 639, 883, 200"

—1,0486, 620,906,533, 602, 430"
+11,132, 240,551,311, 953, 90021°
—80, 494,662,447, 947, 956, 20022
+413,205,933, 899, 466,277, 00024
—1,549, 522,252,122, 998, 440, 0002°
+4,322, 351,545,395, 732, 020, 6008
—0,056, 355,618,924, 391, 300, 000z*°
+14, 282, 552,932,611, 987, 100, 000z*°
—16, 853,412, 460, 482, 141, 400, 0002**
+14,644,703,135,176, 788, 500, 00022
—9,089, 815,739,075, 246, 690, 0002®
+3,811, 858,213, 160, 589, 206, 0002°
—967,403,410, 158,179, 713,000z
+112, 186,277, 816, 662,835,000z} (A.26)

(—163,352,435,400 + 34, 249, 560, 622, 200z°

1
= 555(%,075,135,300 — 6,044, 040, 109, 8002*

667, 866,432,132, 000z*

—29, 208,025,298, 612, 1602°

+672, 827,725, 628, 744, 3202°
—9,419, 588, 158,802, 421, 760x'°
+87,202, 550, 985,276, 964, 900z**
—563,462,637,135,635, 743,000z
+2,634, 187, 828,609, 097, 400, 000x*°
—9,124,964,373,613,211, 810, 0002'®
+23,772, 933,499, 676, 526, 600, 0002*°
—46,928, 388, 207, 153, 669, 700, 000z**
+70,222, 551,918, 675, 599, 800, 000z**
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—79,081,396,929,954, 656, 060, 000*®
65,901, 164,108,205, 541, 100, 000z
—39, 389,201, 535,992, 739, 100, 000z>°
+15,962, 156, 267, 609, 966, 800, 000z
—3,926,519, 723, 583, 200, 030, 0002**
+442,512, 540, 276, 836, 728, 0002>¢)

i
957
+10, 953,009, 486, 979, 560z

—358, 841,453, 668, 663, 680z°

+6, 728,277,256, 287, 442, 9402°
—80,494, 662, 447,947,972, 6002°
+657,373,076, 658, 241, 667, 00022
—3,831, 545,932, 522, 323, 440, 0002
+16, 424,935,872, 503, 784, 400, 000z°
—52,828,741, 110,392,277, 700, 00028
+129,053, 067, 569,672, 562, 300, 00022°
—240, 763, 035, 149, 744, 904, 000, 00022*
+342, 686,053, 363, 136,921,000, 000**
—369, 046, 519, 006, 455, 017, 000, 0002*°
+295,419, 011,519, 945, 493, 000, 000>®
—170, 263,000, 187,839, 590, 000, 0002:>°
+66, 750,835, 300, 914, 406, 900, 00032
—15,930,451, 449,966, 124, 600, 000z
+1,746, 130, 564, 335, 625, 830, 00029)

238
—3,221, 473, 378, 523, 400"

+156, 993, 135, 980, 040, 3522°
—4,036, 966,353, 772, 466, 180z®
+63, 245,806, 209,101,971, 5002"°
—657,373,076, 658,241, 798, 0002
+4,789, 432,415,652, 904, 170, 000"
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(671,560, 012,200 — 157,145, 042, 854, 800z

1
(—35, 345, 263,800 -+ 26, 190, 840, 475, 800z

(A.27)

(A.28)



ng(E) =

&r
239

~25,383,991, 802, 960, 394, 800, 0002'°
+100, 374, 608,109, 745, 339, 000, 00028
—301,123,824, 329,235 951,000, 0002>°
+692, 193, 726,055,516, 515, 000, 000z>*
—1,923, 878,762,011, 203, 180, 000, 000z
+1, 660,709,335, 529, 048, 210, 000, 000z
—1,713,430,266,815, 683,870,000, 060z>®
+1,319, 538,251, 455, 756, 680, 000, 000"
—734,259, 188,310,058, 342, 000, 0002>?
+278, 782,900, 374,407, 213, 000, 00023
—64, 606, 830, 880, 418, 168, 800, 0G0=°
+6, 892, 620, 648, 693, 259, 830, 0002>%)

—55,409, 342, 110, 602, 480z*

+2. 018,483,176, 886, 233, 340z°
—42,163, 870, 806,067,978, 2002®
+563,462, 637,135, 635, 808, 000"
—5,157, 850,293, 780, 051, 130, 000z"2
+33,845, 322,403,947, 187, 500, 000z™*
—164,249, 358,725, 037,852, 000, 000z
+602,247, 648,658,471, 969, 000, 000z'®
—1,692, 029,108, 135, 706, 680, 000, 000z
+3, 671,636,286, 033, 609, 280, 000, 000>
~6, 168, 348, 960, 536, 463, 640, 000, 0002**
+7,996,007,911, 806, 528, 290, 000, 000x®
—7,917,229, 508, 734, 538, 990, 000, 0002*®
+5, 874,073, 506, 480, 465, 660, 000, 00023°
~3,159, 539, 537, 576, 614, 990, 000, 000z
+1,162,922,955. 847, 527,090, 000, 00023
-261,919, 584, 650, 343, 915, 000, 0002>°
+97,217,014, 869, 199,027, 200, 000z*)
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(—2,756, 930,576,400 + 715,882, 973,005, 200z

(A.29)

(A.30)



1
= 53(137,846,528,820 ~ 113,034, 153, 632, 4002

+15,391, 483,919,611, 800=2*
—831,140, 131,659,037, 184x®
+23,717,177,328,413, 241, 3002°
—~413, 205,933,899, 466, 211, 600z ™°

+4,789,432, 415,652, 904, 170, 000z**

—39. 052,295, 081,477,527, 300, 0002*
+232, 686,591, 527,136,918, 000, 000z°
—1,040, 245, 938, 591, 906, 420, 000, 000z'®
+3,553, 261,127, 084, 984, 750, 000, 000z>°
~9,383,070, 508, 752, 555, 690, 000, 00022
+19, 276,000, 501, 676, 449, 700, 000, 0600z>*
—30, 841, 744, 802, 682, 320, 300, 000, 000z>®
438, 266, 609, 292, 216, 954, 400, 000, 000>®
—36, 419,255, 740, 178, 880, 900, 000, 0002>"
+26,066, 201, 185, 007, 068, 400, 600, 000z
—13, 567,434, 484, 887, 818,900, 000, 000z**
+4,845,512, 316, 031, 362, 800, 000, 0002
—1,061,463, 579, 898, 762,170,000, 0002
+107,507, 208, 738, 336, 168, 000, 0002%°) (A.31)

Hid
5al
+277,046, 710, 553,012, 384z*

—11,161,024, 625, 135, 642, 600°
+258,253, 708, 687, 166, 374, 000z®
~3,831, 545,932, 522, 323, 440, 00027
+39, 052,295, 081,477,527, 300, 000z**
—286, 383,497, 264, 168, 528, 000, 000z**
-+1,560, 368,907, 887, 859, 500, 000, 000z*°
—6,460,474, 776, 518, 154, 680, 000, 00028
+20, 642, 755,119, 255,622, 900, 000, 000>°
—51, 402,908, 004, 470, 526, 800, 000, 000z

(11,303,415, 363, 240 — 3,240, 312, 404, 128, 800z
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+100, 235,670, 608, 717, 544, 000, 600, 000z>*

—153, 066,437, 168,867,818, 000,000,006z

+182, 096,278, 700, 894, 460, 000, 000, 0002>®

— 166,823, 687,584, 045, 204, 000, 000, 0002
+115,323,193, 121,546, 422, 000, 000, 000232

—58, 146, 147,792, 376, 366, 500, 000, 000z>*

+20, 167, 808, 018,076, 481, 700, 000, 0002°°

—4,300, 288, 349, 333, 446, 860, 000, 0002°®

+424, 784, 580, 848,791, 688, 000, 000z*°) (A.32)

1

= (538,257,874, 440 + 486, 046, 860,619, 32027

242
~72,907, 029, 092, 898, 000z

+4, 340, 398, 465, 330, 527, 230x°

~136, 722, 551,657,911, 632, 000z®

+2, 634, 187,828, 609, 096, 880, 000z*°

—33, 845,322, 403,947,191, 700, 00022
+306, 839, 461, 354, 466, 311, 000, 000z
—2,040, 482,418,007, 200, 760, 000, 000z*®
+10,229, 085,062, 820,412, 100, 000, 0002
—39, 408, 896, 136, 760, 742, 900, 000, 0002>°
+118, 226,688,410, 282,212,000, 000, 0002
—278, 432,418, 357, 548, 692, 000, 000, 000z**
+516, 599, 225, 444, 928, 880, 000, 000, 0002
—754, 398, 868, 903, 705, 753, 000, 000, 000z*®
+861,922, 385,850,900, 465, 000, 000, 000z
—761,133,074, 602, 206, 235, 000, 000, 00022
+508, 778,793, 183,293, 040, 000, 000, 0002
—248, 736,298, 889, 610, 027, 000, 000, 0002
+83, 855,622, 812,002,211, 500, 000, 000z3®
—17,416,167, 814,800,461, 300, 000, 0002*°
+1,678,910, 486,211, 891, 090, 006, 000z**) (A.33)
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Py(z) =

Py(z) =

T

943
—1,370,652, 146, 946,482, 180z* + 60, 765, 578, 514, 627, 387, 4002°

1

—1,549,522, 252, 122, 998, 180, 0002°
+25,383,991,802, 960, 390, 700, 000z"°

286, 383,497, 264, 168, 528, 000, 000z**
+2,331, 979, 906, 293, 943, 720, 000, 6002
—14,163, 348, 548,520, 570, 100,000, 0002 °
+65,681,493, 561,267, 904, 800, 000, 000z'®
—236, 453,376, 820, 564, 423, 000, 000, 0002
+668, 237, 804, 058, 116, 779, 000, 000, 00022
—1,492, 397,762, 396,461, 040, 000, 000, 000z

- +2,640, 396, 041, 162, 969, 720, 000, 000, 0002

—3,693,953, 082, 218,145, 160, 000, 000, 000z>®
+4,059,376, 397, 878,433, 990, 000, 000, 000z°
—3,459,695, 793, 646, 391, 930, 000, 000, 0002
+2,238, 626, 690, 006, 489, 350, 000, 000, 060z
~1,062,171,222, 285,361, 750, 000, 000, 000z>°
+348,323, 356, 296, 009, 200, 000, 000, 0002>®
—70,514, 240,420, 899, 425, 100, 000, 000z*°
+6,637,553, 085, 023, 755, 350, 000, 0002*?)

944

+774, 761,126,061, 499, 220, 0002°®

—16, 424,935,872, 503, 780, 200, 0002*°

+232 686,591, 527,136,918, 000, 000z**
—2,331,979, 906,293, 943, 990, 000, 000z
+17,198, 351,808,917, 834, 700, 000, 0002*®
--95,996, 029,051, 083, 864, 900, 000, 000z*°
+413, 793,409, 435, 987,826, 000, 000, 0002*°
1,307,224, 499,394, 244, 390, 000, 000, 0002*2
-+3,730,994, 405,991, 152, 190, 000, 000, 0002
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(—46,290, 177,201, 840 + 14, 581, 405, 818, 579, 600z

(2,104, 098,963,720 — 2,083,057, 974, 082, 8002
342,663,036, 736, 620, 608z* — 22,387, 318, 400, 125, 878, 300z



P45(:E) =

—7,921, 188,123,488, 908, 620, 000, 000, 00022®
+13, 390,579, 923, 040, 775, 000, 000, 000, 0002®
—17,977,238,333, 461, 640, 300, 000, 000, 000z
+19, 028, 326, 865, 055, 158, 800, 000, 000, 000>
—15,670, 386, 830, 045, 422, 700, 600, 600, 0002
+G, 825,083, 806, 139, 592, 110, 000, 000, 000z
—4,528,203, 631,848,121, 180, 000, 000, 0002>®
+1,445, 541,928, 628,438, 290, 000, 000, 000z
—9285.414, 782,656,021, 501, 000, 000, 000x*2

+26, 248, 505, 381, 684, 852, 100, 000, 0002**)

r
by
+6,716, 195, 520,037, 763, 070z*

—326, 215,210,973, 262, 840, 0002°
40,124,964, 373,613,211, 810, 000x°

164, 249, 358, 725, 037, 818, 000, 000z°

+2, 040,482,418, 007, 200, 760, 000, 00022

18, 344, 908, 596, 179, 025, 800, 000, 0002*
+123,423, 465,922, 822,110, 600, 000, 0002'°
~(36, 605,245, 286, 135,075, 000, 000, 0008
+2, 561,578,248, 889, 448,270, 000, 000, 0002*°
—8,140, 351,431,253, 423, 560, 060, 000, 0002
420, 595, 089, 121,071, 162, 800, 000, 000, 000>*
—41, 659,581,982, 793, 521, 200, 000, 000, 0002%°
+67, 414,643, 750, 481, 143, 500, 000, 000, 0002*®
86,986, 637,087, 395,033, 500, 000, 000, 0002*°
488,798, 858, 703, 590, 743, 200, 000, 000, 000z
—70, 740, 603, 404, 205, 058, 800, 000, 000, 0002
+43,017,934, 502, 557, 133, 300, 000, 000, 00023°
—19,273,892, 381, 712, 515, 700, 000, 600, 0002®
+5,993,710, 435, 776, 452,040, 000, 000, 000z
1,154,934, 236, 794, 133, 580, 000, 000, 000z*?
+103, 827, 421,287,553, 420, 000, 000, 000z**)

(189, 368, 906, T34, 800 — 65, 269, 149, 854, 594, 400z
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(A.36)



i
Pio(2) = 55(~8,233,430,727,600 + 8,900,338, 616, 535, 600"

—1,599,004, 171,437,562, 880z*

+114, 175,323,840, 641,974, 0002°

—4,322, 351, 545, 395, 732, 550, 0002®

+100, 374, 608, 109, 745, 323, 000, 0002°

—1,560, 368,907, 887, 859, 230, 000, 000z **
+17,198, 351,808,917, 834, 700, 000, 000z **
~139, 879, 928, 045, 865, 060, 000, 000, 000z°
+863, 964, 261, 459, 754, 784, 000, 000, 000z*®
—4,137,934, 004, 359,877, 850, 000, 000, 0002*°
+15,602, 340, 243,235, 729, 000, 000, 000, 0002*?
—46, 807, 020, 729,707, 182, 700, 000, 000, 000z*
+112,480,871, 353,542, 505, 000, 000, 000, 0002*°
—217,224,963,195,994, 770, 000, 000, 000, 00022®
+337,073,218, 752, 405, 700, 000, 000, 000, 00023°
—418,623,191,031, 213, 534, 000, 000, 000, 000232
+412, 653,519, 857, 862, 853, 000, 000, 000, 000z>*
—318,332, 715,318,922, 786,000, 000, 000, 0002>°
+187,620, 450, 721, 696, 958, 000, 000, 000, 00023
—81,914, 042,622, 278,177,900, 000, 000, 0002*°
424,831, 086,091,073, 870, 200, 000, 000, G00z*?
—4,672,233, 957,939, 903, 860, 000, 000, 000z**
+410, 795, 449, 442, 059, 171, 000, 004, 0002*°) (A.37)

5;;(——773,942,488,394,400 + 290, 744, 394, 806, 829, 568z7

32,621, 521,097, 326, 276, 600

+1,728, 940,618, 158, 292, 860, 000z°

— 52,828, 741,110, 392, 277, 700, 00028
+1,040, 245,938, 591, 906, 150, 000, 00021°
—14,163, 348, 548, 520, 570, 100, 000, 000z
+139, 879,928, 045, 865, 060, 000, 000, 600z
~1,036, 757,113,751, 705, 800, 000, 600, 000z

P47($) =
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+5,911,334,420, 514,112, 160, 000, 00¢, 000z'®
—26, 403,960,411, 629, 698, 300, 000, 000, 600z*°
+93, 614,041, 450, 414, 383, 000, 000, 000, 00022
265,863,877, 744, 736, 799, 000, 000, 000, 000z**
+608,229, 896, 948, 785, 413, 000, 000, 000, 000z>°
—1,123, 577,395, 841,352, 330,000, 000, 000, 0002
+1,674,492, 764, 124, 854, 140, 000, 00¢, 000, 000z
—~2,004,317,096,452,477, 000, 000, 000, 000, 00022
+1,909, 996,291,913, 536, 580, 000, 000, 000, 000z>*
~1,428, 195,425, 484, 896, 970, 000, 000, 000, 0002
+810,140, 426,222, 781, 674, 000, 000, 000, 000x>®
—347, 635,205, 275, 034, 254, 000, 000, 000, 000z*°
+102, 789,147,074, 677,887,000, 000, 000, 0002*?
—18, 896,590, 674, 334, 723,200, 000, 000, 0002**
+1,625, 701,140, 345,170, 280, 000, 000, 000z*) (A.38)

1

Pis(z) = 5;5(32,247,603,683, 100

—37,923,181, 931,325, 600>
+7,413,082, 067, 574, 155, 260z*
—576,313,539, 386,007,533, 000z°
+23,772, 933,499, 676, 526, 600, 0002°
- —602,247, 648, 658,471, 969, 000, 000z"°

+10, 229,085, 062, 820,410, 000, 000, 000z
—123, 423, 465,922, 822,110, 000, 000, 0002**
+1,101, 554,433, 361, 187, 300, 000, 000, 000z"°
— 7,487,690, 265,984, 541, 190, 000, 000, 00028
+39, 605,940, 617, 444, 549, 700,000, 000, 0002*°
—165, 624, 842, 582, 040, 827, 000, 000, 000, 00022
4553, 883, 078,634, 868, 414, 000, 000, 000, 000z
—1,492, 927,928, 874,291, 290, 000, 000, 000, 0002°
+3,258,374, 447,930, 921, 550, 000, 000, 000, 0002
—5,767, 697,298,652, 275, 170, 000, 000, 000, 0002
+8,267, 808,022, 866, 467, 540, 000, 000, 000, 000z
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P49($E) =

T
249

—0,549, 981,459, 567, 684, 020, 000, 000, 000, 0002
+8,807, 205,123,823, 530, 400, 600, 0600, 000, 600z3°
—B, 389,295,324 537,697, 560, 000, 000, 000, 000>®
+3,563, 260,854, 069, 100, 240, 600, 000, 000, 0002*°
—1,473,311,108,070, 383, 340, 000, 000, 000, 0002*2
+425,173, 290,172, 531,288, 000, 000, 000, 000z**
— 76,407, 953,596,223, 016, 400, 000, 000, 600=*°
+6,435,067,013, 866, 299, 580,000, 000, 0002**)

(3,160, 265, 160, 943, 800

(A.39)

—1,289, 388, 185, 665, 070, 34022 + 157,176,419, 832, 572, 051, 000z*

—9,056, 355,618,924, 390, 250, 0002°
+301,123, 824, 329,235, 985, 000, 000z°
—6,460,474,776,518, 153,610, 000, 000z*°

+95,996, 029, 051, 083, 847, 700, 000, 000z*?

—1,036, 757,113, 751, 705, 660, 000, 000, 000z**

+8, 423,651,549, 232, 609, 380, 000, 000, 000z*®

—52, 807, 920, 823, 259, 396, 700, 000, 000, 0008
+260, 267,609,771, 778, 458, 000, 000, 000, 000z>°
~1,022, 553,375,941, 295, 480, 000, 000, 000, 000222
3,234, 677,179,227,631, 500,000,000, 000, 0002
—8,204, 044,049, 301, 618, 400, 000, 000, 060, H00z*¢
+17,303, 091, 895, 956, 824, 400, 000, 000, 000, 000z*®
—29, 396, 650, 747, 969, 658, 900, 000, 068, 000, 0002>°
+40, 587,421, 203, 162, 661, 300, 000, 000, 600, 000232
—45,294, 197, 779, 663, 868, 700, 000, 000, 000, 0G0z

140,465, 537, 055, 405, 410, 000, 000, 000, 000, 00023

—28, 506, 086, 832, 552, 801, 900, 000, 000, 000, 00023
+15, 468, 766, 634, 739, 020, 900, 000, 000, 000, 0002*
—B, 235,874,922, 530, 459, 080, 000, 000, 000, 000z*2
+1, 757,382,932, 713, 129, 360, 000, 000, 000, 000z
—308, 883,216, 665, 582, 415, 000, 000, 000, 600z *®
25,477,612, 258, 980, 858, 000, 000, 000, 0002*®)
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Pso(z) =

1 .
QR("—I%’ 410,606,437, 752

161,173, 523,208, 133, 79227
34,168,786, 920, 124, 366, 800z*
12,881,567, 696, 930, 487, 660, 000z°

. —129,053,067, 569, 672, 562, 600, 000z°

+3,553,261,127,084, 984, 750, 000, 000z*°
—65,681,493, 561, 267,896, 200, 000, 000z'*
+863,964, 261,459, 754, 646, 000, 000, 600z™*
-8,423,651,549,232,608,280,ooo,ooo,ooomlﬁ
+62,708,405, 977,620,535, 200, 000, 600, 000z®
—364, 374, 653, 680, 489, 827, 000, 000, 000, 000z*°
+1,679,909,117,617,842, 600, 600, 006, 000, 000>
—6,220,533, 036,976, 214, 640, 000, 000, 000, 0002**
+18,661,599,110, 928, 642, 800, 000, 000, 000, 0002>°
—45,617,242,271, 158,900, 600, 000, 000, 000, 0002>®
491,129,617, 318, 705,942, 900, 000, 000, 000, 0002>°

—148,820, 544,411, 596,407,000, 000, 000, 000, 00022
+198,162, 115,286,029, 465, 000, 000, 000, 000, 0002
—213,889, 267,292, 857, 156, 000, 000, 000, 000, 000z
- 185,289, 564, 411, 593,194, 000, 000, 000, 000, 0002
—126, 852, 086, 404, 859, 974, 000, 000, 000, 000, 0002*°

+67, 035, 655,417,202, 428, 300, 000, 000, 000, 0002*2
—26, 360, 743,990, 696, 939, 000, 000, 000, 000, 000z**
+7,258,755, 591, 641, 186,970, 000, 000, 000, 0002*
—1,248,403, 000, 690, 062, 290, 000, 000, 000, 000z *®
+100, 891, 344, 545, 564, 202, 000, 000, 000, 000="°)
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(A.41)



&

= —(-12,893, 881,856,650, 704

951
-+5,694, 797,820,020, 726, 780z*

—751,713,312, 242,735,907, 000z*

+46, 928, 388, 207, 153, 653, 000, 0060 z°

~1,692, 029,108, 135, 706, 950, 000, 000z®

+39, 408, 896, 136, 760, 734, 300, 000, 000z™°
—636,605,245, 286,134,938, 000, 000, 00022
+7,487,690,265, 984, 540, 090, 000, 0600, 0002'*

—66, 398, 194, 564, 539, 388, 600, 000, 000, 06002 '®
+455,468,317,100,612, 319, 000, 000, 000, 0002*®
—2,463, 866, 705,839, 502, 610, 006, 000, 000, 0002*°
+10, 663, 770,920, 530, 654, 000, 000, 000, 000, 0002
—37,323,198,221, 857, 285, 600, 000, 000, 000, 0002>*
+106, 440,231, 966, 037, 441, 000, 000, 000, 000, 000z°
— 248,535,319, 960,107, 114, 000, 000, 000, 000, 0002:2®
+476,225, 742,117,108, 501, 000, 000, 000, 000, 000z
~748, 612,435, 525, 000, 209, 000, 000, 000, 000, 000z*2
+962, 501,702, 817,857, 329, 000, 000, 000, 000, 600z>*
—1,005,857,635,377,220,210,000, 000, 000, 600, 000z
845,680,576, 032,399, 754, 000, 000, 000, 000, 0002®
—563, 009, 505, 504, 500, 383, 000, 000, 060, 000, 000z*°
+289, 068,183,897, 666, 324, 600, 0600, 000, 000, 000z**
—111,300,919,071,831,519, 000, 000, 000, 000, 600z **
429,961, 672,016, 561, 493, 800, 000, 000, 060, 000z*°
—5,044, 567,227,278, 211,090, 000, 000, 000, 000z*®
+399, 608, 854, 866, 744,482, 000, 000, 000, 0002°°) (A.42)
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1
= —(495,918,532,948,104
952

683, 375,738,402, 487, 2062

156,606, 940,050, 570, 019, 000z*

—14,282, 552,932,611, 982, 900, 000z°
+692,193,726,055,516, 381, 000, 0602®

—20,642, 755, 119, 255, 622, 900, 000, 000"

+413,793, 409,435,987, 758, 000, 000, 000z"'2

—5,911, 334, 420, 514, 109, 960, 000, 000, 000z**

+62, 709, 405, 977, 620, 526, 400, 000, 000, 000z '®
—509,052, 824,994, 801, 971,008, 000, 000, 0002®
+3,233,825,051,414, 347,620, 000, 000, 0060, 0002*°
—16,351, 115,411,480, 336, 300, 000, 000, 000, 0002
—+66,648,568,253,316,589,200,0003000,000,000m24
—221,068, 174,083, 308, 531, 000, 060, 000, 000, 00022°
+600, 627, 023,236,925, 564, 000, 000, 000, 000, 0002>®
—1,342,090, 727,784, 578, 320, 000, 000, (00, 000, 000>
+2,470,421,037,232, 500, 530, 000, 000, 000, 600, 0002>*
—3,743,062,177,625,001, 190, 000, 000, 000, 000, G002
+4, 652,001,563, 619, 643, 730, 000, 000, 000, 000, 060z3°
—4,711,648,923, 609, 084, 100, 000, 000, 008, 600, 00028
43,847,846, 620,947, 418, 790, 000, 000, 000, 000, 0002*°
—2,493,726, 381,519,930, 360, 000, 000, 00¢, 600, 000z
+1,252,135, 339, 558, 104, 680, 000, 000, 000, 000, 000z™
—469, 399, 528,259, 463, 348, 600, 000, 000, 000, 000=*®
1-123,591,897, 068, 316, 174, 000, 000, 000, 000, 000z *®
20,380,051, 598,203,972, 600, 000, 000, 000, 000z*°
+1, 583,065, 848, 125, 949, 460, 000, 000, 000, 0002°%) (A.43)
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Ps(z) = 525(52,567,364,492,499,024

—25,057, 110, 408,091, 197, 400z>

+3, 570,638,233, 152,995, 720, 0002*

—240, 763,035,149, 744, 837, 000, 0002°

+9, 383,070, 508, 752, 556, 760, 000, 000z®

—236, 453, 376, 820, 564, 423, 000, 000, 000z"°
+4,137,934, 094, 359,877, 300, 000, 000, 000z

—52, 807,920, 823,259, 387, 900, 000, 000, 0002"*

+509, 052, 824, 994, 801, 971,000, 000, 000, 000z

— 3,804, 500,060, 487,467, 230, 000, 000, 000, 000z™®

+922 482, 783,690, 785, 461, 300, 000, GO0, 000, 000"
—106, 637, 709, 205, 306, 535, 000, 000, 000, 000, 00022
+410, 555, 180, 440, 430, 160, 000, 000, 000, 000, 000z**
—1,293, 658,203, 894,916, 590, 000, 000, 000, 000, 000z
+3,355,226, 819, 461, 446, 230, 000, 000, 000, 000, 000z>®
—7,186,679, 381,040,000, 390, 000,000, 000, 000, 6002
+12,7926,411,403,925, 003, 700, 000, 000, 000, 000, 000>
—18, 608, 366,254,478, 577,200, 000,000, 000, 000, 000z>*
+22, 380, 332, 387,143, 151, 200, 000, 000, 000, 000, 000z>°
21, 987, 694, 976, 842, 392,400, 000, 000, 000, 000, 000z>®
+17, 456, 084, 670,639, 509, 600, 000, 000, 000, 000, 000z*°
—11,018, 790, 988,111, 321, 200, 000, 000, 000, 000, 000z *?
+5,398, 094, 574,983, 829, 580, 000, 000, 000, 000, 000z **
~1,977,470,353, 093,058,490, 000, 000, 000, 000, 0002*°
+509, 501, 289, 955, 099, 342, 000, 000, 000, 000, 000z*®

— 82,319, 424, 102,549, 375, 400, 000, 000, 000, 0002>°
+6,272, 525, 058, 612,252, 700, 000, 000, 000, 6002°*) (A.44)
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1
= 5(—1,946,039,425,648,112

+2, 891,205, 047, 087, 446, 530z°

—714, 127,646,630, 599, 328, 0002*

+70,222, 551,918,675, 583, 000, 000z°

—3,671,636, 286,033,608, 750, 000, 000z®

+118, 226, 688, 410, 282,212,000, 000, 0002™°

—2, 561,578,248, 889, 447,720, 000, 000, 00022

+39, 605, 940, 617, 444, 536, 500, 000, 000, 000
—455,468, 317,100,612, 249,000, 000, 000, 0002:*°
+4,015,861,174, 958,993, 530, 000, 000, 000, 00028
—27,772,850,441, 558,511, 500, 000, 000, 000, 00022°
+153, 291, 706, 982, 628, 138, 000, 600, 000, 000, 600z
—684, 258, 634, 067, 383, 600, 000, 000, 000, 000, 000z>*
+2,494, 912, 250, 368, 767, 860, 000, 000, 000, 000, 000z°
~7,484,736, 751, 106, 303, 000, 000, 000, 000, 000, 000>®
+18, 565, 588, 401, 420, 000, 900, 000, 000, 600, 000, 000z>°
—38,179, 234,211, 775,004, 200, 000, 000, 000, 000, 000z >*
+65,129, 281,890, 675, 021, 500, 000, 000, 600, 000, 0002
—92, 008, 033,147, 144, 066, 000, 000, 000, 000, 000, 000z>®
+107, 190,013,012, 106, 670, 600, 000, 000, 000, 000, 0002>3
—102, 242, 781,642, 317,127,000, 000, 000, 000, 000, 0002*°
+78, 968,002, 081, 464, 447, 400, 000, 000, 000, 000, 000z*?
—48,582, 851,174, 854, 462, 800, 000, 000, 000, 000, 0002**
+23,235,276, 648, 843, 441, 100, 000, 000, 000, 000, G00z*®
—8, 321,854, 402, 599, 954, 200, 000, 000, 000, 000, 0002*®
+2,009, 145, 314, 615, 009, 150, 000, 060, 000, 600, 0002°°
332, 443, 828,106, 449, 364, 600, 000, 000, 000, 000z"*
+24, 857,784,491, 537, 444, 000, 000, 000, 000, 000z**) (A.45)
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x

255(—-214,163,336,821,292,320
+109, 865,791, 789, 322, 945, 000z>
—16, 853,412, 460,482,141, 400, 000z*
+1,223,878, 762,011, 202, 920, 000, 0002°
—51,402, 908, 004,470, 526, 800, 000, 0002®
+1,397.224,499, 394, 244, 390, 000, 000, 000z*°
—26,403, 960, 411,629, 693, 900, 000, 000, 600z
364,374,653, 680, 489, 757, 000, 000, 000, 00z
—3,804, 500, 060, 487,467, 230, 000, 000, 000, 00028
+30, 858, 722, 712, 842, 791, 500, 000, 000, 000, 000z*®
—198, 377,503, 153, 989, 361, 000, GO0, 000, 000, 0002*°
+1,026, 387,951, 101,075,470, 000, 000, 006, 000, 0002**
—4,324,514, 567,305, 864, 410, 000, 000, 060, 000, 000>*
+14, 969,473, 502,212, 608, 300, 000, 000, 000, 000, 000x>°
~42 843,665, 540,815, 389, 900, 000, 600, GO0, 000, 000z>®
+101, 811,291,231, 400,011, 000, 000, 00G, 000, 000, 00023°
—201, 308, 689, 480, 268, 205, 000, 000, 000, 0G0, 000, 000z
+331, 228,019,329, 718, 674, 000, 000, 003, 000, 000, 000z>*
—452, 580,054, 940, 005, 983, 000, 006, 000, 000, 000, 0002>®
+511,213,908,211, 585,635,000, 000, 000, 000, 000, 0002>®
—473, 808,012, 488, 786, 740, 000, 000, 000, 000, 000, 600z
+356, 274, 241, 948,932, 672,000, 000, 000, 000, 000, 000z **
213,764, 545, 169, 359, 655, 060, 004, 000, 000, 000, 000*
+99, 862, 252, 831,199, 468, 800, 000, 060, 000, 000, 0002
—34, 985,755, 243, 583, 482, 400, 000, 000, 000, 000, 000z*®
+8, 643,539, 530, 767, 684, 610, 000, 00¢, 000, 060, 0002°°
1,342,320, 362, 543, 021, 990, 000, 000, 000, 000, 000z
+98, 527,218, 530, 093, 882, 200, 000, 000, 000, 000z°*) (A 46)

Pss(z) =
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