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ABSTRACT

The main contribution of this thesis is the
presentation of the theory of electrons in metals leading
to the theory of superconductivity in a lucid form. The
general form of the Hamiltonlian of a metal 1s derived in
the second quantized formalism, The Frohlich transformation
which describes electron-electron interactions via the
lattice is discussed in detail and account is taken of
electron screening by introduction of plasma modes. The
BCS criterion for the occurence of superconductivity is
discussed and the BCS reduced Hamiltonian is obtained.
Finally, a critical summary of the various approximations

made in the theory is given.
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CHAPTER I
IN TRODUCTION

The aim of this thesis is mainly pedagogical. The
theory of electrons in metals leading up to the modern theory
of superconductivify, as it i1s presented in the current
literature, presents a formidable barrier to a graduate
student beginning work in this field. Unfamiliar concepts,
obscure approximations and lack of detall in calculations
present difficulties which require a considerable amount of
effort to overcome, It 1s hoped that this thesis will provide
eagier entry to the subject than has heretofore been possible,
The second purpose of this work is to provide a eritical summary
of the numerous approximations which have been méde throughout

the theory.

It at first appears that superconductivity is a
purely electronic phenomenon and is independent of the lattice.
There 1s no apprecisble change in the structure or other
properties of the lattice in the transition to the supercon-
ducting state., In addition to the disappearance of all d.c.
resistance below a critical temperature T,, certain thermo-

- dynamic quantities behave discontinuously at the transition
temperature. These indicate that a phase transition involving
the conduction electrons occurs between the normal and super-

conducting states. F. and H, London(l) in 1935 developed a

(1) H.London and F.London, Proc. Roy. Soc.(London) AllL9, 71(1935);
Physica 2, 341 (1935).



satisfactory macroscopic theory of superconductivity which
adequately described the electrodynamical properties of

superconductors.,

'Early attempts to construct a microscopic theory
based on the electrons in a metal met with little success.
It was felt that due to the large mass of the ions in the
metal relative to the mass of the electrons, the mobility of
the ions would be too small to contribute at all to superconQ
ductivity. It was generally felt, that some pufely electronic
effect had hitherto been neglected in the theory of metals,
and that consideration ofAthis effect would satisfactorily
explain superconductivity. However, in 1950, Frohlich(l)
proposed a theory based on the interaction of electrons with
lattice vibrations., He predicted an "isotope effect", in
which the critical temperature T was dependent on the mass

(2)

of the ions composing the metal, In the same year, Maxwell

and Reynolds(B)

et. al. iIndependently discovered this isotope
effect experimentally, thus confirming Frohlich's hypothesis
that superconductivity is related to the interaction of
electrons with the lattice., Frohlich's 1950 theory of super-
conductivity was based on the electronic self energy, arising

from the electron-phonon interaction, using perturbation

(1) H. Frohlich, Phys. Rev., 79, 845, (1950).
(2) E. Maxwell, Phys. Rev., 78, 477 (1950).

(3) Reynolds, Serin, Wright, and Nesbitt, Phys. Rev.,
18, 487, (1950).
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. theory and falled to account for superconductivity, In the

same year, Bardeen(l) independently performed a similar

calculation using a variational method,

(2)

In 1952, Frohlich described a canonical trans-
formation of the Hamiltonian of a metal, neglecting the'\
electronic coulomb interaction, in which the electron-phonon
interaction led to an effective interaction between electrons.
He showed that an attractive interaction was possible between
electrons due to interactions vié the vibrating lattice., This

(3)

method was later extended by Nakajima to‘take account of
the coulomb interaction. 1In 1952, Bohm and Pines(u) using
classical methods had shown ﬁhat a dense gas of electrons
contained collective (plasma) modes which tended to screen the
field of individual electrons and that for long wavelengths,
this collective motion was predominant, while for short wave-

lengths the individual particle aspects were important. These

authors developed & gquantum mechanical description of this

(5)

s

which was extended by Bardeen and Pines(®)

phenomenon in 1953
in 1955 to take account of the coupled system of moving
electrons and lons., They found that the long range coulomd

interaction no longer appeared in the Hamiltonian but was

(1) Bardeen J., Phys.Rev., 79,167,(1950); Phys.Rev,,80,567,(1950)
(2) H. Frohlich, Proc. Roy., Soc.(London) A 215, 291,(1952)

(3) Nakajima S. Proceedings of the International Conference on
Theoretical Physics, Kyoto and Tokyo, September 1953,

(4) D. Bohm and D. Pines, Phys. Rev., 85, 338, (1952)
(5) D. Botm and D. Pines, Phys. Rev., 92, 609, (1953)
(6) J. Bardeen and D. Pines, Phys. Rev., 99, 1140, (1955).
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described by high frequency plasma oscillations. Only a short

range coulomb term remained.

In 1957, Bardeen, Cooper and Schrieffer(l)(hereafter
referred to as BCS) presented a theory of superconductivity
based on the off-diagonal parts of the electron Hamiltonian
derived by Bardeen and Pines. This theory assumes correlations
between pairs of electrons of opposite momentum and spin,

(2)

Cooper had earlier shown that two electrons interacting above

a filled Fermi sphere by means of negative matrix elements could
férm a bound state. The BCS theory was found to explain nearly
all the phenomena exhibited by superconductors.‘ The theory has

" been criticized because of the sweeping simplifications used in

- the calculation, and the difficulty of giving more than vague
justification for these simplifications. A more serlous weakness
is that the effective electron Hamiltonian is not gauge invariant
and hence cannot adequately describe the electromagnetic proper=
ties displayed by superconductors., Later work, notably by

(3)

Anderson'~'and RickaYzen(u)has partially answered the question

of lack of gauge invariance.

Chapter II of this thesis begins with a discussion of
the adiabatic approximation and its range of validity. The

adlabatic approximation assumes that the electrons follow the

(1) J. Bardeen, L.N. Cooper and J.R., Schrieffer, Phys., Rev.,
108, 1175, (1957).

(2) L.N. Cooper, Phys., Rev. 10L, 1189, (1956).

(3) Anderson P.W., Phys. Rev,, 110, 827, (1958);
Phys. Rev., 110, 985, (19587,

(4) Rickayzen, G., Phys. Rev., ;;l; 817, (1958).
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motion of the ions at all frequencies and hence any interaction
between them 1is velocity independent. The general form of the
Hamiltonlan of a metal is derived making use of this approxi-
mation and based on a model in whicﬁ we consider ions oscillating
about equilibrium positions and conduction electrons free to
move throughout the solid without being concentrated at ion
sites, but nevertheless subject to a periodic potential with

the periodicity of the lattice. Use is made of the second
quantized formalism in dealing with both electrons and phonons.
Chapter III deals with the renormalization of the métal Hamil-
tonian., We require a model in which we can consider electrons
~largely moving independently of the lattice. Th;s is obtained
by means of the Frohlich transformation which in effect
reorganizes the terms of the Hamiltonlan by describing those
electrons which contribute to the phonon part of the Hamiltonian
‘in terms of lattice variables and those phonons which contribute
to the electronic part of the Hamiltonlan in terms of electron
variables., We Introduce plasma variables into the Hamiltonian
to take proper account of the long range electronic Coulomb
interaction. Chapter IV deals with the BCS theory of super-
conductivity., Here we have onlj attempted to show the physical
reasoning for considering pair correlations and we discuss the
BCS criterion for the occurrence of superconductivity. Chapter
V is a summary of the approximations which are made in deriving

the BCS reduced Hamiltonian.

The bulk of the material of this thesis is embodied

in Chapters II and III, which is the quantum theory of



intevaclion
electronicAin metals

in a fairly general form. The purpose

the thesis has not been to give a review of the theory of

superconductivity since there has been a tremendous amount

of work done on the
Rather, the purpose
theory of electrons

used in a theory of

theory since the original idea of BCS.
of this thesis has been to review the
in metals and indicate how the results

superconductivity.

of

are
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CHAPTER II
QUANTUM THEORY OF ELECTRONS IN METALS

2.1 Basic Model cof a Metal

It was first suggested by Drude that the electrical
and thermal properties of metals might be correlated by
assuming that metals contain free electrons in thermal
equilibrium with the atoms of the solid. This hypothesis has
led, after passing through several stages of development, to
the present picture of a metal. The picture is as follows:
the free neutral atoms out of which we construct a metal consist
of nucleil surrounded by closed shells of electrons, which
together constitute the lon ccres, with additional valence
electrons outside the closed shells. When the atoms are brought
together to form a crystalline lattice, the ion cores occupy
the regular array of sites which we associate with the crystal
structure of a particular solid. The ion cores will oscillate
about their equilibrium positions and will interact with the
valence electrons which are no longer bound to individual ion
cores but are free to move throughout the solid. These free
electrons, with their wave functions extending throughout the
lattice instead of being concentrated at individual lattice
sites, form a background gas inside which the ion cores move.
This gas 1s a plasma, capable of collective motion which tends
to cancel the variations in electrostatic potentiasl caused by
the lonic motion. The individual electrons can also be
scattered by the motion of the ion cores. One expects also that
the free electrons will tend to screen their coulomb inter-

actions with the vibrating ions, We shall now investigate the
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criterion for considering the valence electrons and the ion

cores as essentially decoupled from one another.

1
The Adiabatic Approximation (1)

From ehergy considerations, it appears plausible
that the valence electrons tend to follow the motion of the
lon cores so as to keep the system locally electrically
neutral., If the electrons can effectively follow the motion
of the ions at all frequencies, the motion of the electrons
will be essentially adiabatic., In other words, we can assume
that the electronic states depend only on the lattice config-
uration at a given instant and not on lattice djnamics. The
criterion for the validity of this point of view can be
determined by assuming that only small perturbative corrections

arise from solutions based on the adiabatic approximation.
The exact Hamiltonian for a metal may be written

where He.L includes the kinetic energy of the elsctrons and the
interaction of the electrons with the ions., If we consider

the ions to be instantaneously in fixed positions, we have

(L) The argument presented here is from a review article by
G.V, Chester (1961): Advances in Physics, 10, 357 and
is repeated for the sake of completeness,
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for the Schrodinger equation satisfied by the electrons

Hop (R)Y (2/R) = Ep¥,, (2/R) (2.2)

where r represents the set of electron coordinates and R
refers to the instantaneous positions of the ions. The wave
function t%g~<£/g) indicates that the electronic state is
dependent on the instantaneous positions of the ions. The
exact Schrodinger equation for the complete system can be

written ' :
H@mz %/\M@m (203)

where qtbdis expanded in terms of the complete set of

functions QQN as follows:

= £ Kopaa(®) Ton (2/) (2.1)

If we substitute this expression into (2.3) and make use of

(2.1) we obtain

(Fey* Hion 12 Ll DI 2/R) =82 ez (2:5)

We now allow for motion of the ions. We have Hkh\' Q&,h VLN“

where TLon » bthe kinetic energy operator for the ions is

given as

X :
T, -1* s U
o i % & (2.6)
We have assumed a monatomic crystal so that all the ions have

the same mass., We multiply (2.5) on the left by Lkzdgyg)

and integrate over the electronic coordinates to obtain



10.

R A

T "ZMJ’

In obtaining this result we have made use of (2.6). If we

now let
Y8
and , (2.8)
Baw = f . M»dr
we have

(Tm + Vm + EM« + BM)IWM.i-MZ#—;‘JCMWLWN: E«MY/MM (2’9)
where we have let Cuw = A0 + Buwe

Equation (2.9) is a matrix operator equation of the

formﬂ 7ZM=E,M 32,,“ where 'ﬁvw\stands for the colum vector
E ‘ng ) xwt e szm, e ] and }/ has matrix elements
Hopn= (Tegu + o + E + B%W)&M, + Cpn/e If we set

Caw= 0 our matrix operator is diagonal. Esach )2«« which 1s a
solution has therefore just one non-zero component. The

- expanded wave function (2.l) has therefore just one component
for each value of wy, ®M=X’wm%° From the discussion
preceeding (2.2) it can bé seen that for thls case the elect-
ronic motion is completely adiabatic, since the wave function
for the electronic system is the same electronic wave function
which we wrote when we considered the ions instantaneously at

rest. The C,.,¢ are the terms which lead to non-adlabatic
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motion., We shall now obtain an estimate of the importance

of the non-adiasbatic terms by employing perturbation techniques,

If we treat the C,,, as small, then to first order

of perturbation theory

o)
S L= % E:M’_ E:w’ (2.10)

where Sl,w,\is the non-adiabatic distortion of the wave _

4 ().
function )(,f:?m and X,,:}LM: is a solution of (2.9) with Conm Yy
set equal to zero, If Sx,m,n is small compared toJL,MM, the

adiabatic approximation is valid, S Xmm will be small if
c (o)

! Kwnwy 1S Small compared to a typical energy denominator.

We shall now estimate the order of magnitude of
CWWY,::)NJ. We consider Amw_’)(_(,:\)w which equals
-'%'Z%f‘k"" e:-\z% %, d_r_.VE} fyiin,. We can replace - ‘:{%Vg}
by the velocity operator 'V:/" of the jth ion., In order to
obtain a reasonable estimate we shall replace y_} )L,L:?M‘ by v,

the mean value of the velocity of the ions in the lattice,

We therefore have

|8 | € ﬁv}?f %*v{% L,l{n,d_r_:‘ | (2.11)

We consider now the Schrodinger equation

Hei q)m.,’ = E’/n' q/m' ‘

which on writing He..?, explicitly becomes
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{‘Jzﬁ%v&k* Vint (3/5)} Y, (2/R) = Ep Yo (2/R) (2.12)

Viwtr 1s the electron-ion Interaction and enters this expression
since Hyy contains this interaction as well ss the electronic
kinetic energy. If we operate on this equation with Z;VE‘

and then multiply on the left with {/, % and 1ntegratedsver

the electron coordinates we obtain

Z.I%Vg Yar = 5 LV Vit Juad  (2.3)
é 3

f En '~ Ean
As the ions In the lattice move about, the potentiai energy of
the lattice is changed by a small amount., This extra
potential will introduce a distortion of the electronic wave

functions, We can expand the electron ion interaction term as

%—Vam (z/R}) = %Vm (2/By) + %(B_J- - B Vg Vo (2/RD + -0

where 3'? are ‘the ion equilibrium positions, We assume we
need only consider the first order terms as contributing to
the extra potential, For a reasonable estimate of the effect
of this term, we replace (R, - §.°) by’ﬂ_, the average dis=-
placement of the ions from equilibrium, Using this value,

the distortion of the electronic function ., becomes

SUn= LT A5V Vet Joty), (2.1)

7 0 B - E
from standard first order perturbation theory.

For an appreciable distortion of the electronic

wave function we require that
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1 %V@v" Vik Jonnd . 4 (2.15)

‘n = EM

If we combine this with (2.13) we find

YZE__(%»*V%'%"@ N -]f:. (2.16)

where /Q is the average distance the 1lons have to move to

produce an appreclable distortion in q) If we were to follow

~m °

a similar procedure we would find that B_, . is small in
magnitude éompared to A,w. We have therefore’that .C, ,:fl\:

’—U_' ()
v—x%—— MM’ ®

We now consider the energy denominato:s of (2.10).
The matrix elements C,, .« connect states that differ by single
electron excitations. The Pauli Exclusion Principle forbids
all transitions except those from an occupled to an unoccupied
state., The majority of such states have an energy separation
of the order of Tt, the Ferml energy. For most transitions,
En - B will therfore be of the order of?L'. This 1s not
true of transitions from just below to just above the Fermi
surface, but the number of occuplied states just below the Fermi
surface is small., For the case where the denominators are of
the order of the Ferml energy we have

Eg = En LTL

We kmow that ¥ w~ 10° em/sec, 'Yl «~ 5 eov, and { cannot be
8

much less than 107~ em. Using these values, we find that
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il.

Comadd o~ 2 x 1073
EM’ bl E’VL

If this estimate is correct, then the non-adiabatic correction

to the wave function 1s very small and the adiabatic

approximation is valid.,

We mow wish to estimate where the adiabatic
approximation. breaks down., Non-adiasbatic terms have to be

considered if the distortion SZXQMWJS of the same order of-

magnitude as]ﬁzﬁn; if Cumm v~ l. TUsing the above

Ey - En

values for Vv and { we find that this occurs when

le - Em‘ & 107k ergs “ R Qavar

where Wamay is the maximum lattice frequency. We therefore
define a "danger zone" of electrons that lie within1503~w~¢
of the Fermi surface., Since the adlabatic approximation
loses validity in this "danger zone", any property of.the
solld which depends on these electrons must be calculated by
taking into consideration the non-adisbatic terms in the

equations of motion.

Derivation of the Hamiltonian

(a) Preliminary Discussion

If we assume that spin-orbit and spin-spin
Interactions of the electrons can be neglected, we can

write for the Hamiltonian describing a metal
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2
H‘?—a%z*; V(ELm R Einden * Hemd (3.8.1)

The subscript i labels the valence electrons and J refers to
the ions., In this model, we are assuming that the valence
electrons are completely separated from the closed shells of
bound electrons which make up the ion cores so that there is
no exchange between these two groups of electrons. If we
consider N ions in our metal, for electric neutrallty we
require zN valence electrons where z 1s the valence of the
atoms forming the metal, The first term of (3.a.1l) is the
kinetic energy of the valence electrons and the second term
represents the interaction between these electrons and the
ion cores, We are assuming that this interaction energy is
independent of ion velocities by considering an interaction
which depends only on the instantaneous positions of the ions.
We are thus in effect using the adlabatic approximation which

was discussed in the preceeding section, H Includes

v -lown
the kinetic energy as well as the coulomb and exchange
repulsion of the lon cores. H, Q represents the coulomb

interaction of the valence electrons.,

In order to eliminate infinities in the separate
terms of eq. (3.8.1), since we shall be considering an infinite
crystal, we suppose that there 1s subtracted from the electron-
ion Interaction the interaction of a uniform negative charge

with a uniform positive charge, from the electron-electron



(o)
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interaction the self energy of a uniform negative charge, and
from the ion-lon interaction the self energy of a uniform

positive charge. The positive charge density can be written as

o V‘
Com @ = Pion *+ Pion (@
where 6%;; is constant and represents a uniform positive charge

density. Also we can write for the negative charge density

_ o o
e-&q (r) = ()QQ + e‘d‘ (r)
o ‘o
Since the system is electrically neutral, Q;Q = -(Juha ®

The total energy which we are subtracting is given by

1 / . © 2 1 —~ ' o 2 l © A, ©
| dr av {wa) + 3| d™aw 2 )+ | 4dr 4!
2 2
{ (2= 1] § ERE) BED
It can be seen that the total energy subtracﬁed from the
separate terms of (3.a.l) exactly equals zero, In the Hamiltonian
(3.a.1) therefore, H.,.p is actually the coulomb energy of the
valence electrons measured relative to the self energy of a

uaiform distribution of negative charge and Hi,..ima contains

the coulomb energy of the ions measured relative to the self

~energy of a uniform distribution of positive charge.

TLattice Vibrations

We consider a set of identical, charged, small
ionic cores interacting through repulsive forces, largely
Coulomb. We shall assume that we have an infinite lattice

made up of these cores so that surface effects may be
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neglected, and.we shall impose periodic boundary conditions
on our system. We shall assume further that the minimum of
potential energy of a lattice of ion cores devoid of valence
and conduction electrons corresponds to a lattice configuration
identical to that of the real crystal., If this is not true,
then small oscillations of the "empty" lattice about the

real crystal equilibrium sites cannot be defined. Since we
wish to describe these oscillations in terms of normal modes
we must assume the existence of this minimum of potential |
energy. In deriving the Hamiltonian which deseribes the
lattice vibrations,or the phoron Hamiltonian, we shall employ
a method similar to that of Peierls.(2)

We let B} be the displacement of an atom from

1

position of the j'th ion relative to the origin, Then

1ts equilibrium position 3;‘. §f> is the equilibrium

(3.b.1)

&T.
I
gy
|
e
-

If we let U, be the potential energy of our system at
equilibrium including the self energy of a uniform positive
charge, we may expand the potentisl energy U in a Taylor
series:

N Zz PR %,,e-sm"‘ BByt oo oo (3.b.2)

(2) Peierls R.E., (1955): Quantum Theory of Solids.
(Oxford: University Press).
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where A and B are tensors of second and third rank respec-
tively connecting the components of the vectors which follow.
The subscripts in this equation refer to the positions of

the ions and not to the coordinate axes. The ratio of A to

B has dimensions of length., For reasonable forces we assume
that this ratio is of the order of the ionic spacing. If

the ionic displacéments are small compared to this distance,
we need only consider quadratic terms in the expansion for
the potential energy. There are no linear terms in the
expansion since the first derivative must vanish at.equili-
brium, Since the tensor é@y is related to the force constant
between the ions at positions j and j', if we assume that

the forces between the ions depend only on the relaﬁive
distances between the ions and not on directions of displace-
ment, the tensors A are symmetric in their indices. Consid-

ering only quadratic terms in the above expansion we have

U-U, =2_ % U oA euy, (3.b.3)
I B 4
from which, employing Hamilton's classical equations of
motion, we obtain the equations of motion for our system
MU, =« 5 A eu, (3.b.1)
RO 2

where M is the mass of each of the ildentical ions.

We now wish to determine the normal modes of our
system, that is vibrations in which all ions oscillate with

the same angular frequency, () radians/second., These normal



19.

frequencies, which are determined solely from ion-ion
interactions, will not be those of the real crystal which
contains many conduction electrons, The presence of the
electrons in the real crystal alters the ion-ion interaction
and leads to a renormalization of the normal frequencles.
This point will be discussed in greater detall at a later
stage. We vavify that the ions all have the same amplitude
of oscillation but differ in phase. We therefore write

2 - ol * KRS g, L (3.5.5)
where k is some vector to be determined from periodic
boundary conditions, gg; is again a vector from the origin
" to the ion at the lattice site specified by j, Eols a wit
polarization vector and u, 1is the amplitude of the displace=-
ment of the ion occupying the site j =0 at t = 0, On
substituting this expression for E;k into (3.b.l) we obtain

the equatlon
02 o= 2 by oo olke(By - B0 (3.5.6)

In order to obtain the correct values.for k, we apply our
periodic boundary conditions., If we consider a cube of

volume V and length L, the components of k must satisfy the

1k, L ikl _ ikl

~relations e = e = = 1, The components of k are

therefore real and are given by 2Tin, , 2TWn, , and 2Tin;
T L L

~where n,, n,, and n, are integers. It can be seen that the
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vectors k and k' refer to the same normal mode of vibration
if (x - _g')og_; is a multiple of 2T for any j. If we
introduce reciprocal lattice vectors g such that eiﬂ.gj?= 1

for any j, any two vectors k and k' are equlvalent in defining
normal modes 1f they differ by a lattice vector of the reciprocal

lattice,

Since there are N independent values of k in the
first Brillouin zone we have 3N independent modes of
vibration., There are three different modes of vibration
for each value of k which are solutions of (3.b.6), since
this is a vector equation and the A are tensors of second
rank, In general, these solutions have different frequencies
N . We label these solutions &, (k,d ) and (L (k,¢ ) where
g— takes on values 1, 2 or 3. We can express the most
general displacement as a linear superposition of particular

solutions with arbitrary coefficients,

[v]
u, = S Oy o HE TIE + kR,

8= ¢ Vo (k, ) Eolk,a )
—-)G- .

For the sake of convenience we write this as
_ -1 ikeR?® |
= (07F 2 qp o (8) @5 £, @) (3.5.7)
2,4

where ka-(t) = qkq‘(O) e'iIL(E’W')t. On substituting
(3.0.,7) into (3.b.h) and making use of (3°b°6) we find

that qkq_(t) satisfies the equation .

=)

e O 8 T]" o= 0 (3.5.8)

which agrees with the time dependence above., If we assume
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that ) (-k) =) (k), we find that £, %(k,07) = E.(-k,7)
by taking the complex conjugate of (3.b.6) since éfy
necessarily a real quantity. Also, since the ionic displace=-

ments are real, from (3.b.7) we have

Q- = q::};r (3..9)

We now wish to show that

;,»Mg £ o) R L) R v(3.b.1o)

unless k = k' and ¢ = g-'. We consider first the sum

S = Z:ei(g‘ - E)'B; . Suppose each lattice point'of the
crystal to be displaced by a particular lattice vector R,
This changes every lattice point into another lattice point,
since we are considering an infinite crystal, and hence merely
relabels the terms of the sum while the value of the sum
doesn't change. However, each term of the sum is multiplied

[o]
i(kt - k)R and hence the entire sum is

o
s =g ol(k' = k)R”,

by the factor e
multiplied by this amount. We have that
Either S = 0 or k' - k is a vector of the reciprocal lattice.
For the sum not to vanish, k and k' must be equivalent. There-
fore S = 2; 1(kt - k). Rr —]ﬂgkélfor a lattice composed of N
ions, We nrow consider M £¥(k, ) gc(}_t,o"). We multiply
(3.b.6) on the left by §£*(k,q ) to obtain

y s 6 ol
MOk, ) EF(k, ) Elk, o) = Z_ﬁo"(_lgc_,ﬁ")°éa;,}°§,(5,o")ei.1£°(3f' E}
t
Taking the complex conjugate of this expression and inter-

changing ¢~ and G’/ we have

MO k,T) EFk,0) e E(k, ) = Zg (k,q') e "-TH"’E (k’q-)e-ik.(Ré/_, RY)
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Since éﬂ' Depends only on the relative positions of the
ions we have that éd"f‘ = é‘if"l' . Also since g‘w is symmetric

in its unwritten spatial indices we have that
§u€$(£9<r )'.‘é‘.{,&l ¢ g’e (k{_’ O‘} ) = ga(.lf.' r, ).—éf"d" * go*(}-{-’q—)

Since we are considering an infinite crystal, we can
consider the ions as symmetric about any ion j, Theréfore

on subtraction of the above two expressions we have
) 2 ' 2 . 0 ,
[0, -0 7)) Eoxll, w) e £o(k ') = 0

We see that (3.b.10) is true provided __(12'(_13,0‘) #ﬂl(g,o—‘ )e
If more than one normal vibration for a given Xk have the
same frequency, the go(}_g,q") are not uniquely determined
since the set of linear homogeneous equations (3.b.6) has
more than one independent solution. In this case, we choose
our basic set of solutions such that (3.b.10) is true if

k# k' and o # ¢'. We have therefore the result
1keR: ] % 1K' +RY '
Z_M{éo(g,q- e = = } _‘{/go (k*, g’ e = —J,} = NM&.{; §ﬁ¢o (3.b.11)
&

We wish now to relabel our equations by letting
2 stand for j and the three space directions and ¢ stand

for k and o . 52)( 90) is then one of the components of

° Q
go(_l_c_, cr')el-]‘E B‘J— . Instead of (3.b.11l) we write for the

orthogonality relation

. C—
%_M EF(P) &, () = WS, 4 | (3.b.12)
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and the most general form for a component of displacement

for a given ion may be written in analogy with (3.b.7) as

zel;-'

u

= z (@) ELP) (3.5.13)

If we multiply this expression by M 5}(99) and sum over 7

we obtain

Z 5,~>:-(50)u,,=§%_% <5a)z,q(50’) (P

which with the aid of (3.b.12) gives

folied

21 E#(P) uy = alg) (m) (3.b.11)

or q(ﬁo (MN)%_ f; (50> u,y -' (3.b,15)

Substituting this into (3.b.13) and simplifying we obtain

v, = %\T-Zs‘;_ Ey(gﬂ);; Ex(P) vy

and since this must be true for arbltrary displacements we

have the completeness relation

25;5,,@0) FP) = NS, (3.5.16)

We now wish to investigate the energy of the system
of ions. From classical mechanics we can write for the

kinetic energy of the ions

T=37 HA) = SE(P) dly) E,(¢) g
2 /jﬂsﬂl
Since fp(-sﬂ) ”‘:- ¢) and q(—g?) = q-:e(fp) we have with

the aid of (3.b.12) that
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T=3F 3x(@) al @) | (3.b.17)
¥
If we revert to our former explicit notation we have

7=} «Za-iafﬁfu‘ | (3.b.18)

— i

If we substitute for E} from (3,b,7) into (3.b.3) and make
use of (3.b.l) we obtain

U-T, = Z'__{_f‘),(k r)f’ ‘ qg.q_r (3.0.19)

.

The total energy of our system is therefore

3= (LIRS R T \q;.rlz} (3.2.20)

This expression for the energy resembles the energy of a
set of decoupled harmonic oscillators, We shall make use
of this resemblance to quantiie the system, For quantization

of a harmonic pscillator we require the conditions

{ﬁﬂ(?)’ uy/(‘?,)] = it\g 2, S? ‘P’ (30b02]—)

(5,09, 8 ()] [5,(9), u,(47] = 0

If we make use of (3.b.l1l5) we obtain

[&*(gp ),a( y')] Z_E (¢ ) €, (6” “y']

which with (3.b.21) and (3,b.12) becomes

[a-x-( ?),Q(zg’)j = - thdg g (3.0.22)

We therefore see that q(g>) and g 9) are canonically
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conjugate variables, We label é*(ff) = p(¢) and
. 1
q(§’> = p*(47).( ) If we revert again to our former

explicit notation we have

B qx;«‘.vl = - 1h8 4 ot (3..23)

Equation (3.b.1l8) becomes

T=3%2 Pf.Pue . (3.p.2)

&,

-

and (3.b.,19) is now

—

2
U-%=%Z§1@mﬁ G U o (3.0.25)
kT T

The total Hamiltonian for the system of fons or the phonon

Hamiltonian, is therefore

~ A "2 '
a L‘é’fﬁ%%«*ﬁm-‘ﬁ’r)f q;;,q&,r] (3.5.26)

#,9

=
-
]

N

™M

We have shown that for each value of k which describes
normél modes, the three different modes of oscillation are
orthogonal. We assume that two of these components are
transverse asnd that one is longitudinal., If we examlne only
the longitudinal component, the phonon Hamiltonian becomes

= 1 5 KA % 3%
H/,z\ = 3 ég—<p4€ D+ ,O,;ng q&) (3.0.27)

Since we have shown that two different k' are equivalent in
defining normal modes of vibration if they differ by a vector
of the reciprocal lattice, in the expression above whenever

k runs out of the first Brillouin zone the q refers to the

(1) We introduce these variables in order to establish a con-
nection with the phonon Hamiltonian of Bardeen J. and
Pines D., Phys. Rev. 99, 1140 (1955).
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corresponding k in the first zone. In subsequent work we

shall assume that electrons interact only with the longl-
tudinal component of the lattice waves, The two transverse
frequencies are in this approximation determined entirely
from ion-ion interactions. Cslculation of the longitudinal
frequencies of the real crystal, however, requires considera- |

tion of the electron lattice interaction.

We now wish to introduce creation and annihilation
operators for the lattice waves. These are required for
facilitating later calculations., If we substitute -k for k

in (3.b,27), since the summation over k is symmetric and

since qk = q_, and PJZ(' = Rg o

s L 050G (320

-

Since HH‘ is real

Hoh = % %(pg P * (Slz)"qj;_ ay, ) (3.b.29)

Z 2z
We have therefore that Q)z = ﬂ_gs = (fL‘j‘;)z. The frequencies
will be real so we take ﬂéz ﬂ_éﬁﬂj“‘. We define an operator

by and its hermitian conjugate bE as

1 .
by = === (pf - 1 Ll4qy )
AT mn, * k*h
(3.5.30)
1

b = —=—=(p, + 1 L{Llpal )
A T LI L

Solving for p; , pAq , q$ and q}q_ we obtain the results

ARRNY

P& = 'Jﬁﬂk (0% + by ) (3.b.31)
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-ﬁ A2

= b, - b 7

4 =1 4211g( % - Bf)
K -El &
q¥F = 14— (bp - bg)

faking use of the commutation relations for the q, and Py

we obtain

—

and | (3.b.32)

[b&, bgl = [b}: , b}gi =0

If we substitute (3.b.31) into (3.b.27) and note that the

[ o] = Suw

summation over k in this Hamiltonian is symmetric we have
Hgh = f%@.ﬁ(% bf + bf by ) | (3.5.33)
Making use of (3.b.32) this becomes

Bpi= T CLalog g + 3 (3.5.34)

We recognize the commutation relations (3.b.22) as those

used to describe Bose-Einstein type particles., The quanta of
energy of the system described by (3.b.34) are called phonons.
bg and by are respectively creation and annihilation

operators for phonons of wave number k and bﬁ by is the

occupation number of the phonon state.

(¢) Electron - Lattice Interaction

If we consider the electron-ion interaction term

EE;V(EA - Bi)’ which we wrote in (3.a.l1l), we may following
£

“f



28,

(1

the example of Bardeen and Pines L) expand this term in

powers of (R, = 3;) about the ion equilibrium sites and

obtain to fiist order

%V(% - _F_t_}) = %—V(EL" B_j) - ‘.,Z[(Bj' E;)'\@}v(g‘.- 3_;) (3.c.1)
LT : ’ From (3.b.1l) we see that

R. - R’=u . If we substitute from (3.b.7) into (3.c.l) we

e

have

T vlz,- R) = Fwle- £ -00F TG Uulr;- B)g e E Y
A A s 5 / (3.¢.2)

In obtaining this expression we have assumed that the
elect;ons interact only with the longitudinal component of
the lattice waves. This assumption neglects anisotroplc
effects and is not really valid particularly for short wave-
lengths. The resulting equations, however, are less complex,
We shall call the second term of (3.c.2) the electron-phonon
interaction Hamiltonian and write
-1 ik°R,
Hyg= -0 5 Eelfviz,- B]) g " =} (3.¢.3)
4-,0;,{;6,
The valence electrons see a potential V(r) due to

the ions where

V(z) = F vz - R) (2} (3.c.L)

7 ¢

() Bardeen J. and Pines D., (1955) Phys. Rev., 99, 11L0.

{2} This potential is different from that written by Bardeen
and Pines. They consider in addition the subtraction of
the potential due to a wniform positive charge.
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We shall combine V(r) with the kinetic energy of the valence
electrons and write for the electronic part of the Hamiltonian

neglecting the electronic coulomb interaction

.BLZ
H_e‘e - Z-—[Zm + V(Eﬁ)] (3-0’05)
In configuration space, the coulomb Interaction between

electrons is given as

z

‘UD(_I:_‘: - E’_-) = %'Z‘_ & (3¢c06)
s A*(/{E;‘ -‘lﬂ ,
We shall require‘tf(g) expressed in terms of wave vectors

k. We therefore expand 1f(£) in a Fourier series

Vi =& - ;Véf’ i | (3.¢.7)

-

“SI('D

where we have normalized in a box of unit volume., If we

multiply this expression through on the left by'.fb rik-z dr

jﬁ 1kt - K-z 4p
S,

we obtain

= /& P
2

or v, = .f%— e TEE 4p (3.c.8)

This integral does not converge. In order to evaluate the

integral we introduce a convergence factor eﬂar into the

integral where A 1s a positive real constant. This conver-
gence factor effectively screens the coulomb fleld of each
electron so that the range of the field is no longer infinite.

We have therefore
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' o1 [1 [0 -irkw-Ar
kaz'ti.we e* dgbdwr‘zdr S
= A-wo 0o J-1 /0 r

. LTre* ik
= LU\M L(Lj‘ike() (ikyz —/\2'] (3.0.9)

A O

If we now let A go to zero we have

) b
Vk = er (300010)

P

Substituting this into (3.c.7) we have
U)(.JE’.) = %}L—"—T——Q— elX°L | (3.c.11)

If we collect terms from (3.c.5), (3.c.3) and (3.c.1ll)
making use of (3.c.b6) we have for the total electronic part
of the Hamiltonian

[-4

s 'z 1 -.']—: (-] e[,
H = Z’-[%ﬁ + V(_I’_’i)J -(NM) 3%&%. Vé'v(z;_ B. ) qé ei}é B_}
i

Y- ¢ ¢
we* ik (p.- r:)
+ X !‘L.‘_LE_ A eCol2
z Z 2 > € _ ¢ (3.c )
A«#},,_ )
We wish now to introduce the second quantized formallsm in
o ' 1
which the electrons are described by occupation nmnbers.( ) We

first introduce field operators (?(g) and 60*(‘_1;) which obey the

cormutation rules for fermions

(9o, g, = S .

and (39Cc13)

[P, ¢u]

"
LR
NS

—~%
]
Y
%
124
Sl |
1]
o

(1) Fukuda N., (1960): Brandeis University 1960 Institute in =
Theoretical Physics.(Rvandeis,(q60) '
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The anticommutation relation is based on the fact that
fermions require antisymmetric wave vectors for their descrip-
tion. 1In the second quantized formalism, the Hamiltonian

(3.¢.12) is written
P .2
H = fg) (E)L%ﬁ + V(z)| P(ziar
ék

vz - B—;)q& ei-‘E'B.;Sg (r)dr (3.c.1l)
fE : |

+1 drdr? 97*(2)60*(1:;)22;\;8 ei_]é-(}: = E‘)(?(E')SO(E)
% '

We label the terms in the first, second, and third and fourth
lines of this expression as Hy , H; 4 , and Hc“4 respectively.

Since HC&MQ can be written in configuration space as

Head = 7 7 K7 mEL

. Y . )
4,4, “‘1{9

1 s Lwet ike(r;-r.) Te

the second quantized formalism leads to the third and fourth
lines of (3.c.lly).

We shall choose as a basis for the field operators
the complete orthonormal set of Bloch states related to‘the
Hamiltonian (3.c.12). The Bloch functions are a set of one
particle functions 9%5(3) for the electrons which apply to a
crystal with the ions fixed in equilibrium positions. The

Bloch equation for the one particle functions 1s glven as
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[Eﬁz + V(_I:)JL{/E(_I;) = E, ‘*H&(_I_') (3.¢.15)

where V(r) is defined in (3.c.l) and V(r +L) = V(r) where

i is any lattice vector. The Bloch theorem states that

Hz+ D)= oixd Fe () (3.c.16)

The electrons are described in an extended zone scheme 80
that the wave vector K is not neceséarily in the first
Brillouin zone. For free electrons the Bloch functions are
normalized plane waves, However, for electrons in é periodic

lattice

‘/é(z) = oKz u,(r) ,, (3.¢.17)

where u, (r) is a function having the periodicity of the
lattice such that uk(g + L) = uK(g). The functions th(E)

are orthogonal in the sense that

fﬁ"(g_) %l(g)dr = SK.&, (3.c.18)

-

In these expressions we have assumed the Bloch funetions to

e normalized in a box of unit volume.

We now expand the field operators 93(2) and q7%(£)

in terms of the complete set of singie particle Bloch functions

O (2) = 7 oy Ylz)
. <
i (3.c.19)

60-::-(;_) =2 o% ()
- sk

Making use of (3.c¢.1l3) and (3.c¢.18) we find
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0
TS
(@]
I
R
CN
K
m\

and (3.¢c.20)

C C
K, Kl
E- ale S

[c:,cQj =0
£ +

¢, and cit  are respectively annihilation and creation operators
for electrons in the state K. The product c¢i ¢, 1s the

occupation number of the electronic state K.

If we make use of (3.c.lly) and (3.¢.19) we find
that. .
‘ _ by
H—d= f%’55 Cys (11/&%:-(3)[%5 + V(r_)l ‘-HS,(E‘_) dr

which with the aid of (3,¢.15) and (3.,¢.18) becomes

Hy = 2;,E C¥ Cy (3.c.21)

We also have
-3 1keRY
K& % f
If we change the origin of the j'th term to 3; we have,

making use of the Bloch theorem (3.c.ll), that

X
)

v 1(k + K = K')eR"
B = =00 5] 5 op o il L Grinia, | dget T E TR o

(3.¢.23)

This last sum vanishes unless

k+ K-K'=g (3.c.24)

where g 1s a vector of the reciprocal lattice including zero.
Since we are considering our Bloch functions in the extended

zone scheme, k assumes all values. We therefore have that



3le
= 5 an
ot = é—jtc&.»é ¢ U Vi
-

where vd@e is defined as

Gy = -(m) fLF 44 0 &e vz - B e‘i-‘ﬁa‘} L ar
2, K+ Jhk & J

Bardeen and Pines assume this coefficlent to be Independent
of K. In other words, the electron-phonon interaction 1is

independent of the electronic state. They write therefore

- = v .
HM‘I— % clﬁ*g. c?ﬁ_ q,{g_ v,& i (303025)
here
3
V= oo =% & . - 1keR .
vy (NM) f‘&g Zf_ Véy(_r; 3}) o }4/ dr (3.c.26)
' h* d
With the aid of (3.c.lly) and (3.c.19) we obtain the coulomb
term
w et iker
HC&J = %;LLL%ZQ— dr'dr'“le__,< cK- cg c e {L[/% (r) e — —.‘ks.‘.(?-)
= IS 3“‘-4

(3.0.27)

_ . ~ikepr? et .

x o TR ] - ZUES ooy
If we shift the origin of each of these integrals by a lattice
vector and again make use of the Bloch theorem as above we
obtain

- ) ) KT
He,n = %L—-LLRT" drdr' 7 ¥ o QCE‘-{‘-{LPW('?')Q LH&.—‘;Z(E)

Kl, K]_ "

~ikep!? et 4
x Yalzn)o EE G, (e )} ~17 G Ce

S < 2 2% 2 .
= 37 My o o oy 0 - BZ Mg oF o (3.¢.28)
‘E,Eu‘ﬁl - - '&.l‘
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EA
Lie
For free electrons Mz is equal to "z and 1s the Fourier

coefficient for the expansion of the coulomb energy. If we

make use of the commutation relation (3.¢.20) we have

Hood = %ZK My o Cun & ZM (3.c.29)

The second term on the right hand side of this expression can
be combined with (3.c.2l) to give a constant, additive

(infinite) term to the Bloch energies E_.

In configuration space the density of parficles is
given by f>(r) giﬂg(w -r. ) where N is the number of
particles per unit volume. In the second quantized formalism
it can be shown that the density operator is equivalent to
{D(_x_‘_) = LP*(.I_’) (5?(2). We define the density fluctuation

operator as the Fourler transform of E (g)

O =ff (r) ¢ E'L ar | (3.¢.30)

Tn the second quantized formalism, making use of (3.c.19)
this becomes f%fﬁ
=iker ‘
Pu=| Z g e Wr(z) e == ¢ (z) ar (3.¢.31)
= K, &' & = -

Employing the same argument used to obtain (3.c¢.28) we obtain

which for the free electron case becomes

—

Q& = Zﬁ‘cﬁjé-i Cy (3.¢.32)



{
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The term in k = O corresponds to a uniform background of
particles since<(§)= N, the average particle density for a

box of unit volume. We note that €__4&= PJS-::- = z&:c‘s Cy i

For electrcns in a periodic potential, (3.c.32) does not
represent the density fluctuation operator. However, we shall
employ this notation keeping in mind that Eq& is not an actual
density fluctuation operator unless we are consldering free

electrons., Making use of (3.c.32) in (3.c.25) and (3.c.29)

we get ' ‘
Hop= 7 % f-k (3.c.33)
, %
ana
Beng = 5 71 i Pk . (3.c.34)

Making use of the expression for qp in (3.b.31) we have

'E N
Wogs(Pe - o) % fok

-

H.at =

ﬁf\ﬂ

sty

il ; y -
i é—j/2ﬂlg(v.. b& e’sw - V__é bg E,{_&)

—

Since v_f = (v, )% we have

L]

Hop= 1 Z;jpé bgggﬁ - Dy by EB) (3.¢.35)

where the elements D, are given as

' ol 4
b} = a, v (30c.36)

d) Summary

The final Hamiltonian of the system can be written
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as in Bardeen and Pines
H = H + Ht“ -+ HWV\ o (3od01)
where from equations (3.b.27), (3.c.21), (3.c.33) and (3.ce34)

(3.d.2)

Ixu

= %Z;_ D B + QLA ) 77:
RIS B R A

The rirst term on the right hand side of this expression, orv
the longltudinal phonon Hamiltonian, was derived by considering
only ion-ion interactions. This expression will be renormal-
ized when we deal further with the electrons in interaction
with the lattice vibrations. Hi inv(3.d.l) represents the
transverse lattice vibrations and is uniquely determined from
ion~ion interactions since we have assumed that electrons
interact only with the longitudinal component. Hin-lon
represents the Interaction energy of the ions at their
equilibrium sites. In subsequent work we shall be only con-
cerned with H/, If we write H, in terms of phonon creation

and annihilation operators we have that

Hy= 7 E_cg ¢, + 7 hQ (b b+ §)
K - % - = =
(3.d.3)
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CHAPTER III
RENORMALIZATION OF THE ELECTRON-LATTICE INTERACTION

3.1 Motivation for Renormalization

In Chapter II we derived the phonon Hamiltonian
by considering only ion-ion interactions. We mentioned,
however, that the presence of the valence electrons in the
lattice will affect the ion-ion forces and lead to different
phonon frequencies. The vibrating lattice affects 6he
electronic states as well, so that the valence electrons
cannot be treated simply as a free electron gas, We now wish
to reorganize our Hamiltonian in such a way that part of the
phonons contribute to the electronic part of the Hamiltonian
and part of the electrons contribute to the phonon Hamiltonian.
“Mathematically this can be done by means of a unitary trans-
formation which effectively introduces new lattice variables
in terms of original lattice and electron variables and new
electron variables in terms of original lattice and electron
variables., In this way we can obtain a description of the
- system in which the electrons and the ions are to some extent
decoupled from one another and the-electron lattice interaction
is as small as possible, If we consider a new phonon variable
bk where

—

Pk

where U depends on original lattice and electron variables
then ?é contains contributions from the original,EQQCtYon

= Ub,gaU"‘
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variables as well as the original etatttne variables,
Similarly, the new electron variables include contributions
from the phonons. If we express the transformed Hamiltonian

in terms of original variables, the requirement that the
electrons and phonons be decoupled will lead to renormalized
phonon frequencies and the electron-phonon interaction will
contribute to . an effective electron-electron interaction.
Frohlich(l) first performed a unitary transformation of this
form in which, however, he did not take account of the electron

(2)

coulomb interaction, Nakajima Introduced a method by means
of which the coulomb interaction could be accounted for as
well, In section 3.2 we shall perform a transformation using

the methods of Frohlich and of Nakajima,

3.2 Frohlich's Canonical Transformation

The starting point of this section is the Hamil-
tonian which was derived in Chapter II, equation (3.d.3)

Ht = Z{EEC;:; c, + %h ()Lfof by + ¥)

(2.1)
+ i%(D;ﬁi‘ bjﬁ@' - Dé’-::-bg@)v + %Z:M&ZF-& @g

We wish to transform this Hamiltonian so that our system will

(1) Frohlich H. (1952), Proc. Roy. Soc., &, 215, 291,

(2) Nakajima S. Proceedings of the International Conference on
Theoretical Physics, Kyoto and Tokyo, September 1953,
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be described by electrons and phonons which are essentially
decoupled from one another, If S 1s an operator satisfying
S# = =3 then eS is a unitary operator.and we can perform a

uniltary transformation of the form

H is the transformed Hamiltonian and describes the same system
as H', If we expand the exponentials in power series we have

s® s |
= - — ! e o
H=(1-8S+35 .. )1 +85+3+. )
which on gathering terms becomes
H= H'-—[ﬁ,H' + %BL[S,HJ] + o o (2.3)

wnere the brackets represent the usual commutators.,

Frohlich considers a form for S which is relatively
simple and well suited for the calculation (2.3) using the

form for H' given in (2.1). He considers

S = ;_sk where S, = -Y;b, +Yxby = -Sp (2.4)
and Y= TOWE o of,
) E = -

Yk = Z(f)ee(g,g) cit, e, (2.5)
£ 4 K-k w

qb(§,g) is a ¢ number which is assumed small, of the same

. making S small alse,
order of magnitude as the Dé/\ and will be determined in such
a way as to approximate the model which was discussed in

section 3.1 as closely as poséible°
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If our transformed Hamiltonian is to give a

physically reasonable picture of the metal, the terms in

b by, in the phonon variables will describe normal modes,

We thus assume that any reascnable transformed wave function
which describes the system will give negligible expectation
values for other quadratic terms such as bZ, Qébg, pg Qg,
etc. where k # k', If we follow this hypothesis then we can
neglect terms wiﬁh S&Sg if k # k'. From (2.3) and (2.4) we

have therefore

H = H' + Z‘{—[S&,H'] + %[S&,[S&,H']]}+ e e o (2.6)

P4

This calculation can be performed using the Hamiltonian H!
as it is written in (2.1). The éalculation is more amenable
to direct physical interpretation, however, if we modify H!
&as was.done by both Frohlich and Nakajima by introducing
renormalized phonon frequencies and new interaction parameters.

We write
H' = H, + H, + Hy (2.7)

where H_, H, and H; are respectively zeroth, first and second

order quantities. Writing these out explicitly we have

H, = T Beo¥ o +Zr‘ﬁwéb§- by + -;-,;;‘5_()_,}_ (2.8)
K ®, 4
H, =7 H,= 1 (D,by @ = Dz bz O, )
! Z,;—*é Z-PePu (i - O % i

) P2
+ 52 M Pl (2.9)
fﬁxﬁgﬁy
. e o,
: { LiBrRAry ;

1-1"» 2 J;/
SAniTosh s
) “"‘*—;:;—a:«'/"/f
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H, = ;Hz& = ié[(Dé - Dé_)bj}&-::- - (DJ:-::- - g)bf @_‘J

+ Z;z' (SLg- )bz by, (2.10)

where cag is the renormalized lattice frequency and D{Eare
new electron-phonon interaction matrix elements. We have
assumed here that the renormalization of the phonon energies
leads to a second order small quantity. Since Dy and Dg are
first order small quantities, their difference will be of at

least second order,

We shall evaluate (2.6) by collecting terms in
order of magnitude and shall neglect terms of order greater

than the second. We therefore rewrite (2.6) making use of (2.7)

H=H, + H, - %;_[s{z,ﬂ,;]

+H, - Z;_{S&,H‘&] + 1 Zj;_[s&,[sg,H:i] (2.11)

- —

The calculation of the required commutation relations is
carried out explicitly in Appendix I. The results are merely

stated here. From equation (6) of this appendix we have

. < s = 5 - kY3 L
LSJE) %‘E’_"cg‘ C§.] - fK (E&' EE"’S){b&¢ (_I_{,yg) cg cE"é + hoCo}

where h.c. stands for hermitien conjugate and from equation (8)

(S, %hwgb-‘:—, b‘;] = - S W {(/)(K,g)b&c-é- ¢ . * h.co}
Lo = P2 - = == 4

-

Combining these two expressions we have
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3 [ = TGy Bt B bl o+ nee} (222
,é(‘ SE

From equation (lS) of this appendix we obtain

;%{Sé’{S&{HoH - ’E%( enEg + BOp)bx &ICJS(K’k)l (o, g = B)

(B - B + h“’?—‘){qﬂg'k‘-)@’"\ﬁ" + h.c.} (2.13)

where we have wrltten ng for el C

+
Wi
A

\
{

s From equation (23)

- %{Sg,Hi{;} = - Z:‘é(l'l,v_,:_‘aﬁ= - n'&)[iD,&qf}*(E,E). + h.c.] béi"b&
£,

17 [0 G - oy i s P |

- BT My (g - n,) (b DK, k) @ge;w,‘e—.) (2.14)

+
mfﬂ

In obtaining this last expression, non-diagonal terms in

[Sg,fg] and [?k’f&*] have been neglected. This neglect is

equivalent to the random phase approximation which is discussed

in more detaill in section 3.3. We are in effect neglecting ?ﬁ?
terms in Z;fg c, relative to Z;pé c, where K' # K. Since

'%;92 e, is equivalent to Fo, the average particle density,

we are considering only average values in the summation.

If we substitute (2.12), (2.13) and (2.1l}) into (2,11) we.

can write

(0) (1)

+ H ' 4+ H(Z)

H=H (2015)

(3)

where H is of order j in small gquantitlies:

H = H ' (2,16)



(1) — I T

= Z:&{[(EE% -E, + E‘*Jls.)cb(gf}-{-) +1Dj$] bﬁcgck_z h.c.}
+ 1 é_Mé‘ E‘&(Q& (2.17)
and H(z_) =H, - %[S&’Hs@]“' z %[S&,[SB,H,]} |

= 1 {mufire - 200

+
-

Zfe(Es—Js -E, +h k) {C{D (K, k) («"&n{w + h.c.}
B :

+ %{[i(Dé‘ ..D,gﬁ) -%M}; Z-;:(f? (K, k) (nE-&- -n,ﬁ)]b&&-:'e + h.c.}
+ %b& b&{h(ﬂ&- Wy - Z—-[(Es-ls -E.+ h b’dg) ’ci)(_f_(_,_lg)r
g - K

+ 1(Dp (1) - Dpl, k)] (ngey - n&)} (2.18)

We can obtain a value for q)(}_{_,g) by eliminating terms linear
in by in H(l). ‘This eliminates the electron-phonon interaction
as completely as possible, We must take into account the
possibility of vanishing denominators which would give a
divergent series., Therefore following Frohlich (1952) op.cit.

we write

- . ID(1 - AKX))
¢ &) EE-& - E, + TR (2.19)

h A(K k)‘ AZ(K k) ' if (ﬁ: E fw )2' 2
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The function /A is introduced here to prevent qb(g,g) from
becoming infinite. The energy fé is chosen large enough to
make the series in qb(g,g) converge, We notice that we are
consistent with our former assumption that d;(gtg)‘be of the
same order of magnitude as Dﬁ. We cén solve for Dj_e_ by

(2)

eliminating the terms linear in by in H . We therefore set

where we have replaced the operators n,.z and n, by thelr
expectation values.nm g and n.. Hence the electron-lattice
(1)

interaction depends on the electronic state of the system.,

With the aid of (2.19) we have

‘ _ 1. % (Tt = 0, )Da (1 = A (K, k)
D = Dy = - Bl g SRS
K k-f 3 =
or .
D = D£
p.3 27T e* (gg =0, ) (1 = A(K,K)) (2.20)

We can solve for Wy by eliminating terms quadratic in by

in H(Z). We set

B( - W) = ZL{(EK.&-E& + hog) | e, B *

—

+ 1(Dy (K, k) - xnéz-qu,_lg)} By - F,)  (2.21)

where we have again replaced the quantum mechanical operators

(1) In Chapter II we had assumed that this matrix element is
independent of K. This assumption is probably still valid
if we restrict our calculations to a narrow band of
electrons,
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Dy % and n, by their expectation values. Making use of

(2.19) we have

= (1 -A(K, k) —
R Q- wp) -?; i‘_ E 'ﬁwk)( - Ny i) (2.22)

We see that the phonon frequencies will depend on the
electronic state of the system since the values T, and T, _g

depend on the state.

If we consider (2.19) we are left with

H(l i %(D&b& P}&—x- - D&“ t}ﬁ E&) N (K, k)

(2.23)
+ 57 M& ffk E%

Making use of (2.20) and (2.21) we have

H(Z) Z {[—(E - B 7 hwk) 4}(1{ k) + iD&J & k* + h.c }

which with the aid of (2.,19) and (2.5) becomes

A(K.k))
E.-i-'f‘l k

(l ‘A(K' QQ)_ (cé’c cs-}sc.é.‘“&cﬁ‘ﬂ- h.c.) |
(2.24) o
Tf we substitute (2.24), (2.23) and (2.8) into (2.15) we

have for our transformed Hamiltonlian to second order

Beog o + 3 Budy by + 7 301 o
ZE KOk e 4 R DF By Z;Ta E

EDACHNCEER: & TRPN SR 37 My P (i

—

1< IDaP (L + DKL -AKK)) (.
ZZ‘ E &—E’d-}"ﬁ(/&k '(CBC

E‘% c?é_g c&l + hoCO)
(2.25)
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We wish to express H completely in terms of (O and in this
way eliminate the term in (), the unrenormallzed phonon
frequency. If we consider (2.22), this can be rewritten

following the example of Frohlich, op. cit. as

2 ]
P (1 +A (K, (1 - DE LK) [‘"‘«s Sy +CH 4 O]

B Q- W) = Z

. 2 T |
Since N =\ and LcK Cyte »CHte cg—l = Smxn& - Nye). We

rewrite this in the form

=g

-1 Z;{{Dk\z -\Z:/(l + AK,k)) (1 - A(K',k)) CF Cyy CF 4 Cu- 'ﬁ(ﬂ;_;&)g}

g B - Bt B £ BB
= 15 {1pl? (1 +A(KK))(1 -A(K',E)) et o
ey | % Ep - Bg + DLk Cin %L Ok
- _.;-_C_ D 2<— (l +A<_]§_—E,-E))(l "A(_I_{_"'_lsy-z)) e ¢ e ¢
ZL&’{l ST Bg - By v Bk ¥R AL
T N o ' (2.26)

- Making use of this relation we can write

v 1ol (3 + AK.R)) (D -AK'Q)__(C.CMQC

TRl Elk-EK,"*’hwk ,&CKI"*'b.C)

J (1 A AKX = A (K, K))
EE"'J';‘ - EE‘ + AWk

H
]
j=
mr’\
—ty
B
O
rd
]
v
¥
+
f —
o
X

E;:-:— Ty

ALCIPREDR e ol cxcryansl (2.21)
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if we substitute this expression into (2.25), the transformed

Hamiltonian becomes

= o # 1
H = Z’é_r..&c‘;_"'cE * Zﬁ_ﬁo_}z(b@ Dy * 2)
© 1% (Deby P - DF b, PR) A(KK) + S5
AR G e 2% fe P

"h CJ{TID}\:IZ i %
+:<Z:" (B = Baer V5= (Bug )? Gt ey Co (2.28)
£, = o

{7z

The first term in this Hamiltonian refers to the energy of
free Bloch particles whose states are described by occupation

numbers ¢’ c,. The second term describes the phonon energy.

g TR
The frequencchg however depends on the electronic state K as
was snown earlier (equation (2.22)). The third term of (2.28)
refers to absorption or emission of vibrational quanta by the
electrons and vanishes unless energy 1s conserved within a range

fl - The fourth term is the coulomb interaction energy of the

electrons and the last term is an effective interaction between

electrons due to the lattice vibrations, or phonons. This

Hamiltonian has the same form as that derived by Frohlich apart

from the electronic coulomb energy term. However, his expressions
o < . .
for (), and D, were supposed to include the effect of screening

by the electrons, so that (w,-l) could reasonably be considered
& &

second order. Our expressions for unrenormalized phonon freq-
uenciesjl@eand interaction parameters Dé do not include electron
screening, and the coulomb term in (2.28) does not adequately
describe the electrostatic interaction in a many-electron system.
This point is discussed in detail in the next section, in which the
phonon renormalization is further elucidated. We have treated the
electrons as exhibiting only individual particle motion, whereas

in fact the electrons in a metal are capable of collective motion

as well. This collective motion tends
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to screen the coulomb interactions between electrons. This

point is discussed in detail in the next section.

3.3 Plasma Variables for the Electrons

(a) Theoretical Backeground

It was shown by Bohm and Pines (1952)S1) that a
dense gas of electrons, iInteracting via coulomb forces,
displays aspects of both collective and individual particle -
motion., The analysis was performed classically’by
considering the equations of motion of the Fourier
coefficients of the density fluctuation operator. The
collective behaviour is describable in terms of generalized
coordinates which involve all of the .electron coordinates.

These coordinates refer to a normal mode of oscillation,
called the "plasma" oscillation. The electron density is
found to oscillate with a.frequency

C")P= (L’Ilﬁr—le—>§ (3.a.1)

called the plasma frequency, where n is the total number

of electrons. In thelr equation of motion, Bomm and

Pines also have a term which is present even in the absence

of interactions and is due to the random thermal motion of =
the individual particles. These authors found that the

organized collective behaviour is predominant in phenomena

(1) Bohm D, and Pines D,, (1952), Phys. Rev., 85, 338,
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connected ﬁith distances greater than )wahere A\Dis the
classical Debye length, while for distances less than this
length, the Individual particle aspects are the most important.
Therefore, there is a maximum wave vector k above which
organized behaviour is not possible and where the individual

particle aspect need only be considered.

In a subsequent paper, Bohm and Pines (1953)(1)
have given a quantum mechanical description of the behaviogr
of a dense electron gas based on the long range coulomb
interactions of the electrons. They consider the electron

Hamiltonian in the form:

ik.(zg_.L - X.) 1

) . . |
H' = T B+ ondy & T ¥ - 2mne* ;—1 (3.2.2)
7 ki K K

where the last term refers to the self-energy of the n
electron system, An equivalent Hamiltonian is introduced in
terms of the longitudinal vector potential of the electro-

magnetic field A(x) where A(x) is Fourler analyzed in the form

— 2 %‘ ikex '
Alx,8) = (WTTe®)* 7 Q, £, == (3.2.3)
& ==
.The electric field intensity is therefore

E(x,t) = - (4m)F 74 £, olkex

W) 5§ P g, otEE (3.8.)
2.5

(1) Bohm D, and Pines D,, (1953), Phys. Rev., 92, 609,
The argument is repeated here for the sake of completeness,
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In terms of these variables, the equivalent Hamiltonian

becomes
1 Hx ikex
H=7 30+ g )52 £, (p;- 2)Que — =
L Lk T -
2 re* 1k + £)e-x; 1
S Zgg'g& Q&Q&e - ZEPé_P—-&_
N : ®
R 1
- 27 né Z;;Ez | (3.&.5)

This Hamiltonian expresses the correct equation of motion
when used in conjunction with a set of subsidiary conditions

acting on the wave function of the system

Se¥= | | (3.2.6)

1
where g =P, - i( T‘;_e )2 Ze-i}-{-'zl« (3.8.7)

igis proportional to the k'th Fouriér component of
7-E(x) - uﬁ'e(g) and hence the subsidiary condition insures
that Maxwell's equations will be satisfied. Equation (3.2.7)
serves to provide a relationship between the Fourier components
of the electronic density e&== 7;e"i5‘§L and a set of field
‘variables 3&’ In order to decoupfé the electron variables
from the new fleld quantities, Bohm and Pines relate the
field variables to the plasma modes by performing a canonical
transformation which relates the R& to the E& , since for
long wavelengths, the density fluctuations are almost entirely

collective motion. As a generator for the transformation, the

authors use
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= k< e
el< el i -
ILTTe? % . 8
= -1 5 (T U G (3.2.8)
Ik|aifee| :

The summation is limited to terms in |k|< Lgclsince from
classical theory these are the only values of k for which
collective behaviour can occur. Usling this generator of a
unitary transformation, the transformed Hamiltonian is found
to consist of the kinetic energy of the electrons, a simple
interaction between the electrons and the collectivé field,
a Hamiltonian appropriate to a set of decoupled harmonic

osclillators representing a collective field

Hoe = = 3 D (BPy + 55 QQy) (3.2.9)
T ke B TR

with a frequency QJP which iIs just the plasma frequency
(3.2.1), and the short range part of the electron coulomb
interaction. This method has been extended by Bardeen and

(1)

Pines to treat the coupled system of moving electrons and

ions. The method of Bardeen and Pines is discussed in (b).

The Method of Bardeen and Pines

In their quantum mechanical treatment of the dense
electron gas, Bohm and Pines effectivelyvadded new degrees of
freedom to their original Hamiltonian by introducing a set of

new field variables. In order to insure that the energy of

(1) Bardeen J. and Pines D.,. (1955), Phys. Rev., 99, 1140,
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the system was unchanged and that the number of degrees of
freedom was kept constant, a set of subsidiary conditions
were required to operate on the wave function of the system,
The new field variables were related to the collective
oscillations of the electron gas by means of a unitary trans-
formation, Following the example of Bardeen and Pines we
shall employ this sort of procedure to treat the collective
description of coupled electron-ion motion, We hope in this
way to obtain the effective coulomb interaction between
electrons and account for the effect of electron screening

on the electron-phonon interaction.and on the phonon frequenciese

We begin with the total Hamiltonian for the metal

which we derived in Chapter II, (3.d4.2)

. " * o
H = ;E‘sc@- c, + % 2’(8{ p‘ﬂE + _()_ng‘i qg)

+ Q‘E_qué Pi %:i{ M, Pt P (3.b.1)

Following Bolm and Pines, a field energy term 1s added to
this initisl Hamiltonian., The new fleld variables will be
related to the normal modes of collective motion of the
electrons by means of a canonical transformation. We assume
that in the presence of ionic motion there still exists a
maximum wa#e vector k. above which collective motion cannot
occur. We have therefore for our new Hamiltonian

H=H +5 P*B (3.b.2)
1
Bkl &
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é& are variables as yet undefined which commute with all
variables in H,. We impose a set of subsidiary conditions

on the combined system wave function
Y =0 for (|k|l<|k|) (3.b.3)

We now seek a canonical transformation which will transform

H to Include a set of independent plasma modes. In the case
of the free electron gas, the transformation related the

field variables to the electron density fluctuations e& o
Since we are now considering electrons in interaction with
phonons, we are led to believe that a plasma mode will contain
both electronic density fluctuations and phonon coordinates.
We therefore require a transformation which relates the 3& to

both (2& and the phonon coqrdinate Q-

In analogy with the electron gas problem, Bardeen
and Pines consider a transformation generated by

S= 2 _ (M P, +uaqy Q (3.b.4)
Hel< Heel s fe T % -

where Q@-is taken to be a coordinate conjugate to the field

momentum Ek such that

[%»Qﬂ] = - thoy | (3.b.5)

— 2
I&é occurring in (3.b.1l) is just equal to gﬂg%* and u, is a

real constant which will be determined later in a self
consistent manner, If we use the above generator for our

transformation, the subsidiary condition (3.b.3) becomes
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S
o™t /A Py eis/?'i Pr=o0 k| < k| (3.0.6)

where q? ' is the transformed wave function. On expanding

this In a power series and collecting terms we have

o v dlol- A o 120 el

(3.b.7)
Since 3& commutes with all variables in H,, we have
P ] = iM hl + uqu ) ,Qj"} (3cb¢8)
[ lkl (k| F g[ B
which with the aid of (3.b.5) becomes

Since ﬁ)& ] = 0 and {qk,sk = 0, the subsidiary condition

becomes

[P& + iM%‘Q{(+ u&q_g g =0 l_l_&_\c{_kg‘_[ (3.9.10)

In analogy with (3.b.7), the transformed Hamiltonian takes

the form

H = H+ & (H,s] - '2'51"1{@’8] ,S] + oo (3.b.11)

The expliclt calculations required in (3.b.1l) are done in
Appendix II., We merely state the results of these calculations
here. We have for the transformed Hamiltonian, neglecting

higher order terms as in-the Frohlich tfanSIO}mathH using
(3.b.1) and (3.b.2)
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[_’J{J(M&QJ;Q;{(EK - 2By gt Bgreid) ¥
" %, k‘{c)k‘\ e

+ 37 Mylyfh * | (3.b.12)

To simplify this expression we wish to make use of the random
phase spproximation in the third line of this expression.

We have from Chapter II that &“y = z}_ei(_ls * k') o2 1pe

mean value of this expression is zero except for the case

- where k + k' = 0. 1In this case the value is independent of
L the particle. coordinates and is given by n if we consider
n electrons per unit volume, The mean deviation in this case
is just vﬁxl) or T%-times smaller than the mean value itself,
The i1 in our summation corresponds ﬁo Tomanaga's n and our
f%izl to his F. In a metal there are about 1012 electrons/cm3

and hence the mean deviation is negligible relative to the

(1) A proof of this is given by
Tomonaga S., (1955), Prog. of Th. Phys., 13, No, 5.
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mean value. We are therefore safe in assuming that(£*§;= 0
unless k = - k', This is called the random phase approximation.
It 1s based on the fact that for a system of n particles
distributed randomly in a unit volume, the random phases

ii&'f} produce a mean value n for fa.. In expressions like
(3.b.12) containing other variables QAQ& , 1t is convenient

to approxhnamaﬁ%jg by its mean value., Making use of. this
approximation, the term in the third line becomes

since we have n electrons per unit volume. If we introduce

the effective mass approximation

_ Hx?

By = 5 , (3.b.1k)

this reduces to

2N ezn Z Q% Q (3.b.15)
- Lk oV
T et

- which with the aid of (3.a.l1l) becomes

Z
S e apq (3.5.16)
l‘&“lé«:’ - -

where LJF is the plasma frequency. We see that the field
energy term Iintroduced in (3.b.2) and the introduction of
generallized coordinates in (3.b.lL) leads to osecillator

like terms in collective variables., This formalism is a
convenient form for expressing the collective motion, Making

use of the effective mass approximation in the fifth line of
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(3.b.12), we find that this expression reduces to

- Z_.M Tnh ke (X - %k) ex ¢t U . (3..17)

/&lg&el £ 5=
If we rewrite (3.b.12) making use of (3.b.16) and (3.b.17),

the collective Hamiltonian becomes

= <2,—£_E5°§" o * E 7 % % T (—Qk ug )q/a. %]

- zglule

+ PP+(¢,‘)+uk)Q Q]
2‘&“’£gg k 4

+ Z__ (v&i - i.M‘gufos)qu{g‘q_,~ + Z__ u*p&Q&

1)< 1 fec | Mele e
- ¥ MD k(K - B of o ,Qp
[&lefleel
K
+ 37 (prp o+ 0fepa) T v apy
AR ﬁ & B 1&viie] ™ ‘D
2)&l7l-k |~ F (D ' .

The term in the second line of this exbression is a

Hamiltonian appropriate tb a set of.decoupléd harmonic
oscillators, oscillating with a frequencyﬂa%f+ ug » This

term describes the plasma field in terms of normal modes

which 1s what we desired. The first two terms in the above
Hamiltonian contain the one electron Bloch energies and the
phonon energy respectively. We note that the phonon frequencies
have been renormalized by the introduction of collective

electron coordinates. The first term in the third line

describes the electron-phonon interaction which likewise
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hés been modified for long wavelengths by the consideration
of the collective motion of the electrons. The next term is
a weak phonon-plasma interaction which is customarily
neglected. The term in the fourth line 1is an interaction
between the individusl electrons and the plasma. Since there
1s a great disparity between the frequencies of the individual
electrons and the frequency of oscillation of the plasma,
this interaction will be small. The remaining terms in the
Hemiltonian describe the short wave phonon field, the short
range electron-phonon interaction, and the short range
coulomb interaction of the electrons, None of these terms
are modified by the consideration of plasma variables. We
note that we no longer have a long range coulomb interaction
between electrons. This is because the collective motion of
the electrons screens out the field of any given electron
within a range given by gc. We now wish to transform this
Hamiltonian in order to eliminate the electron-phonon
interaction as completely as possible és was done in 3.2,

We shall also determine Uk iﬁ a self-consistent way. We
shall do this by means of the Frohlich transformation

Introduced in section 3(a).
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(¢) Frohlich's Transformation Reconsidered

In order to treat the electrons and phonons as
decoupled from one another as was done in 3.2, we shall
perform the Frohlich transformation on our collective
Hamiltonian (3.b.18). This will be done by considering
separately the long range and short range parts of the
Hamiltonian, Since the short range terms are unaffected by
the Introduction of plasma variables, this part of the
Hamiitonian is transformed exactly the same way as in 3.2,
except as a generator of the transformation we take S =,Jﬂé§
instead of (2.l;). We need therefore consider only the long

range part of the collective Hamiltonian,

From (3.b.18), we write for the long range part of

the Hamiltonian

Bpm TRy o+ BT [ 108 g q,]

+%Z,f1> B+ (LM ui)Qy Q]
e l<ibee| A P

+ 7 Vk - mﬁ%)q@z,f—ﬁs'* 7 wBQ
IR}« Hee) " 1] < e

_]‘_{_' (.IS - %'k) GE cﬁ-& Q-‘ﬁ (Bocol)

The subsidiary condition acting on the wave function of the

system is from (3.b.10)

[Pﬁ ¥ m*fk*’ Y d &}q’ 0 JE| < ]l{.c( (3.¢.2)
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We now introduce phonon creation and annihilation operators

as in Chapter II. From (3.b.31) of that chapter we have

jal N
ay = V7, (o - P

‘Eﬂ y
> :‘_" + bg (30003)

and
p,R

Making use of this expression we have

lz. {p +ﬂ}zq¢z qﬁ} [iJﬁ_Q_k(b b, + 2) (3.cely)

J&lel&e -7 tey <l el
and
3 B0 o b+ 3) (3.¢.5)
57 ugop 9= - 7 5, v (OF Bt B oo
Melelle] = " bfelied < ,

where in the latter expression we have neglected terms In
,b’&b—k. and their hermitian conjugate since we expect that the
screening effect will not couple phonon modes and for the
actual ground state wave function the expectation value of

gquantities like these will vanish. We also have
5 - e Py = ¢ T Ofbyfle - T )
el el (3.c.6)

where we have defined Vh’: to be

Nis = y-é%k(lg; - ) (3ec.7)

If we substitute (3.c.l), (3.c.5) and (3.c.6) into (3.c.l),
and make use of (3.c.3) we have for the long range

Hamil tonian
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2

Hl.]x.= z“;}?‘,‘ﬁc5 c, + Z_'B.ﬂ.,é(b-"- bé + %)

MS“'&.G‘ -
BN R 1
-ih%eelm‘&u& A
N - §
i Z( Ab,k 3 - P b ) + ud Kosx + b, )Q,
([t afir - T :Z?tkcr My + )y
-'Z__Mﬁk-(K-lk)c-"—c Q v(3cs)
dm =" '= T A=0 % Tkek Tk | °Ce

l&leltelyc
We now transform this part of the Hamiltonian Iin the same
way we transformed the Hamiltonian in 3.2, However; since
‘l;here is no coulomb term in (3.c.8), there is no need to
introduce new electron-phonon interaction matrix elements
into the Hamiltonian. We employ as a generator ‘for the

(1)

transformation

S= 7 Sy where Sy = =Ygbp + Y sl (3.c.9)
Helelfeel ~
and Yu = Zb- fp (K,k) oF ¢
(3.c.10)

The transformation of the plasma-phonon interaction term

gives
Z u _.22@2(4;(_1_{_,_15)%:‘:- .t t hece)Qu
leleikd e i}

This term is much smaller than the electron-plasma interaction

term since here the coefficient is of at least second order
where u, 1s assumed first order small,

in small quantities, We therefore neglect this relative to

the electron-plasma interaction. We also neglect the

(1) Again Q‘J(_I_(_,E) is assumed to be a first order small gquantity.
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transformation of the electron-plasma interaction since this
will lead to second order small quantities linear in b, which

is small relative to the electron-phonon interaction term. As

in 3.2 we obtain therefore

.t
Cb(_}ga_li) = - .l /‘}.;’;’(l - A (,KLS,_IS)) U_{.l < lgc\ (3.Coll)
! Byp~ By * T

accurate to first order, and

B(Q, - L& - Z “’lki(l - Ak s -7

k& n, - n,_g)
& 29—,&. § B, - B, * hok = P-4
(3.c.12)

where Olgis the renormalized phonon frequency. Comparing
(3.c¢.12) with (2.22), neglecting Ry in the denominator on the
right hand side in each case, we can see the effect of screening
embodied in uy, in (3.c.12) on the long range phonon frequencies.
e again note that the long range phonon frequencies depend also
on the electronic state of the system. The transformed long

range Hamiltonian (3.c.8) becomes

T ‘ 1
H =Z_EC c +Z -I’-lw,ge b,h b&-i- Z Tl‘&.hg
> ©F T zwqm
¢ ¢
+tk:[—l(nf$b&f)@k’ AR Pe ) A (KK
121 ke
1 {: £ 2 PN
t - P P + (u + ujb )Q Q
2@!?@\ S
2| &
< "ﬁwkl’)’/b&‘lz . "
y =% )% - Eoar wek e Cxok Ce
lelelbe] ¢ gk %
i,
+ Z u{{/l -ﬁ—czlk (bﬁ. . b_k) Q&
1kiciiel - <
h
- memke (& -toel o0 (3.0.13)
12l<idcel, x

We now wish to determine the value of the constant

u, . This is done in a self consistent way by eliminating terms
R
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to the same order of accuracy in the subsidiary condition

as in the Hamiltonian. On substituting fffT (3.c.3) into

the subsidiary condition becomes

[P& + m&fzg+ if%&u&(qé - b)é)]q/ 't =0 (3.c.1ly)

We now transform the subsidiary condition

(30002),

for [_L::_\ <L]§_C\ B
with the aild of (3.c.9).

in the commutator [Sk,flgg, we have

(sk, ] ZC{D (K, )bF (ngg - ng)

in the transformed subsidiary

Considering only diagonal terms
(3-3015)

Eliminating terms linear in Dbg

condition, we have therefore

(K. %) (nek = ng)
ISZ 3 ¥

which on making use of (3.c.ll) becomes
(v = 1Mpug) (1 =A (K,k)) (nede = ) (3.c.16)

If we neglect all higher order tiﬁﬁs in S then from (3.c.1l6)

the subsidiary condition becomes

C%q-m¥e{yy”=o k| < |k

Finally, we note that the transformed short range

(3.¢.17)

Hamiltonian is from (2.27)

(1) -

Pl= St @'= & g‘{k, where@ R and Poccur in (3.b.3), (3.c.ll)
and (3.c.17) and where S;, the generator of the Bohm-Pines trans-
formation is given in (3.b.4) and S,, the generator of the Frohlich

transformation is given in (3.c.9).
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T \
W= ZE§c§ cp + S 'EoJé(bé_‘- e + %)
k [&l ikl

+ 1 Z (D&b&&% - D@; %‘ Fi& ) A.(_K,’.]i{.)

Mol
+ By lDMz C¥ete CiC¥l Cre
Eg = Eol)*= (Awy)
el el 6,80 ( ' Wb 3
*3 7 Mg fuPh (3.c.18)

le > el

3.t The Effective Electron Hamiltonian

Making use of (3.c.13) and (3.c¢.18), the complete

transformed Hamiltonian in terms of plasma variables is

H = ?;_E;&cé c, + ;_Tl(_;)g(béf’ b, + %)

+

1 7_:.....( ‘:b e - ‘i'.x.b_x_ ke )A(_Ig,l{_)
H,«ldl_cc\,»svbg ke Ny ¥ P

+

1 7 (Dyby Pt - D g o ) A (K, k)

telwlkel e

2 2 Cdig G Gt
ekt (Bt = Bgag)* = (B )

ok | Dl

* g% , C.C3; C
(Eg- Egup)t= (Bg)- Kok ek g

l&"‘&d)&,g

1 My 0% P (4o1)
) g@ﬁ‘?‘?& v
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where we omit the second order electron-plasma term which arises

from transformation with §, of the plasma-phonon term in (3.c.8).

If we write the purely electronic part of this Hamilltonian,

we have

_ - “Hu)kU/IJJ o
H'Q'Q' - Z;_E;&cé‘ CE:-‘ +I&H§E rrscl - Elsh—k) - (.ﬁu.)k)z' 5"'“ K‘c‘f'& 05
- <{¥ely V—
o (4.2)

1 e |Del® o + 15
S ‘ k.
T e B = Butead = (BWR )™ e OB % T E e

The second and third terms of this expression represent an
effective electron-electron interaction produced by the
exchange of virtual phonons, This is the part of the total
Hamiltonian for a metal which Bardeen, Cooper and Schrieffer
use as a starting point in their theory of superconductivitysl)
In spite of the fact that the phonon frequencies were shown

to be dependent onvthe eiectronic state of the system, the
authors neglect the phonon Hamiltonian in their theory. The
assumption here is that the phonon frequencies are not

altered appreciably by the transition to the superconducting
state so that the frequency change can be accounted for by
means of perturbation theory once the electronic wave function
for the superconducting state has been obtained., BCS neglect
- also the plasma part of the Hamiltonian since the plasma
energies are very high and will not be significantly excited

at low temperatures and hence will play no direct role in

"superconductivity., The electron-plasmé interaction is also

(1) Bardeen J., Cooper L.N,, and Schrieffer J.R.,
Phys. Rev., (1957), 108, 1175,
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ﬁeglected since this intebaction is very weak, The ratio of
jon to electron plasma frequencies is of the order{ﬁfwhere
m is the electron mass and M the ionlc mass. We therefore
expect these waves of different‘frequencies to interact

(1)

weakly and we hence neglect the phonon-plasma term also.
From (3.c.7) we have

\ k\ ZSZk(\Vk& M us) | (4+3)

Making use of (3.c.1l6) this becomes

. B . - - *

[nél™= e, Pl + M \[Z(l A(;kp&: nE)] )
oxr - %}r
P g X

me|"= Nty (o o} C oy (Loly)

T
1-M s -le
@Li; E, p - Bp + Buk
From (2.20) with the aid of (3.c¢.36) from Chapter II we have
A
L

' 2%k
{Dg\" 1 - M7 (Mgae = n) (1 -A(K,k))
k [ZK' E&’@- EL‘_ + ﬁ(ﬁt.

(45)

BCS replace Mkll in (4.2) by [DML, assuming that for small
values of k, the difference is not too great. Making use of
this approximation, they write for the effective electron

Hamiltonian of the system

(1) See Note at end of Chapter.
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HA.= Z&_El_é Cé_:‘ (2‘S

+ Ao [Del”
&,k (B - By

peag B A

+ 37w Pore Pre (4.6)

AR
This Hamiltonian can be shown to commute with the total
number operator N = j;_cf ¢, and hence the total number of
particles is conservea. The total number of electrons in the
system and the energy will thus be simultaneous eigénvalues
of the wave function describing this system. However, Hag

in (4.6) is not gauge invariant, and thus cannot be easily
used to describe electromagnetic properties,

Note:
We wish to make an estimate of the coupling between

the electrons and the plasma, From (l.1) the interaction

coefficient is given by

M B

£ T

[ d

ke (X - 3K)

We replace the vectors by their absolute values and since
— 2
wh = BI0E" opgain

kﬂ_
Y
(bre™)® 8 (x - &)

In order to obtain a most liberél estimate of this coupling,
we let k = 0 and feplace K by K. where K. 1s the value of X
at the Fermi surface. We have that K. = (37n)5 where n 1is
the electron density. The coupling constant is therefore

glven by
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eh  (3n)”2 s
T/am

which approximately equals L x 10-5. We see therefore that the

interaction is very weak,

If we consider the bare phonon frequency, since the
b's refer to unrenormalized phonons, we treat the lons as a

plasma and obtain

where N is the number of ions per unit volume and z is the
valence., From (3.a2.l1)
Dt = gj“nel
£ m
Wy~ M
where n = zN. The ratio jﬁi; is therefore given by Zm.
Therefore the ratio of lonic to plasma frequencies is of the

order of “ % as was stated above.
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CHAPTER IV
THE BCS THEORY OF SUPERCONDUCTIVITY

.1 Introduction

1l
In 1957, Bardeen, Cooper and Schrieffer( ) pre-

sented a theory of superconductivity based on electronic

pair correlations which was able to account for nearly all

of the experimental phenomena which a superconductor exhibits.
The theory is based on the effective interaction beﬁween
electrons due to the exchange of virtual phonons which we
derived in Chapter III. As was mentioned in tha last chapter,
these authors do not take account of the phonon part of the
éotal Hamiltonian of the metal in the formulation of their
theory. Since the phonons are assumed to be effectively
decoupled from the eléctrons as a result of the Frohlich
transformation, they should not affect a theory based on the
electrons, However, we did show that the phonon frequenciles
are dependent on the electronic state and hence the phondn
frequencies will be changed upon the transition of the metal
to the superconducting staté, BCS assume that this change

can be accounted for by means of perturbation theory once the
electronic state function has been obtained., The plasma part
of the total Hamiltonian is also neglected since, as we have
shown, the plasma frequencies are too high to be easily

excitable and hence the plasma modes will not be expected to

(1) J. Bardeen,‘L.N. Cooper and J.R. Schrieffer, Phys. Rev.,
- 108, 1175, (1957). | ‘
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have much effect on the transition to the superconducting

state.

In this chapter we are going to illustrate how
the BCS reduced Hamil tonian is obtained from the effective
electron Hamiltonian which was derived in Chapter III. BCS
choose a simple trial wave function to describe the super-
conducting state in terms of their reduced Hamiltonian. We
shall merely indicate the form of the wave function chosen.

but we shall not perform any explicit calculations,

The Reduced BCS Hamiltonian

From Chapter III, equation (l.6) we have the

simplified effective electron Hamiltonian for a metal

- | huwg [De|” s s
H= Z7Emn +H_g+7 (B = B )%= (B Teink G G
& Kk F K+2 = * (2.1)

BCS have neglected the effect of the screening by the
plasma oscillations on the "phonon" interaction. We call
the last term of (2.1) the phonon interaction since it
arises due to exchange of virtual phonons between electrons,
As we saw in Chapter III, BCS replace (71;rleqnation (Loly))
by lDéil (equation (L.5)) in the effective electron Hamiltonian

for long wavelengths, The Hamiltonian (2.1) can be written

H=H +H | (2.2)

“where H, is the sum of the last two terms of (2,1) and can

be written as



= -EZ;V k Colvle Ct Cils G (2.3)
14’5, -

since He 3= 5 L M“F*PK and P.g {)& = Z deg Cul Cg-se Cy-

1&l> 1 KK -

2
where V.. E - hide lD‘zii " 1 MZ -k )
k& [(EL" - EE'*’S)A - (ﬁw&)z 2 Tk 8(

where k = { L\ , and (:)(x) = O ror X<

If we consider the self energy terms of Ht , these

are L ,
Z_ Vo, S5 cucy ZVKon&.n'-'-Z o Ng
) £ 7 s T

These terms can be absorbed into the Bloch energies and lead to

a renormalization of the Bloch energies of the electrons. Since

from (2:4) VK30 is a constant we can write

/ | 2 [ -
E'n, + H + fius |Dul Coie Cu Croe Cp (2.6)
Z__ ¥R Cowd KZV:; \i‘a ‘(- 11‘&;4.&) - (Hw&)z wledy T Tk e
where ko

E = E, - N Vg, (2.7)

& 3

since?lr%!= N, the total number of particles. The theory of
ﬁ'

Bardeen, Cooper and Schrieffer is based only on the off

diagonal terms of the above interaction; the terms in the
tphonon'' interaction for which k # O. This is because the
self energy terms lead to too iarge a difference between the

normal and superconducting state energies. They assume that

the self energy is essentially the same in the two states. We
Ty 2
not let gk = Eé —C‘g where g’ is the Fermi energy g = Ko

2m
e also introduce spin indices into the Hamiltonian (2.6) since
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thése are necessary for further development. Spin 'in&'iéefs
could have been carried through all the previous development
but would have made no difference to the present result. We
write therefore for the Hamiltonlan apart from a constant

energy term with g- denoting spin

&s\ (1 - ng,q-) + Heed

H = Zgg N, ¢+ L

K> Ke Kl & Kr
Tk [Del” N " :
-+ a5 cat c ., _Ci¥ C i (2.8
Ry R ( &g- Extrie)* = (—ﬁngz Wik, W 5-‘.$'¢J B )
g ,q !

Since NVg, 1s a constant we have that E}, - Ej, ;, 1s equal to

.E&, - Egpé and hence we can replace Ey - Eq g bY gﬁ.- Extrk
in the denominator of the last term. In the second term of
(2.8) we have Z 15’4(1- n ) since Cyqe G 1s the occupation

lel<ke (1)
number of a hole below the Ferml surface with momentum -X.

The last term in the Hamiltonian (2.8) 1s called
the "phonon" interaction as mentioned previously since it
arises from virtual exchange of phonons between electrons.,
This "phonon" interaction will be attractive when the energy
difference AE Dbetween the electronic states Involved is
less than the phonon energy Hw; when ’85- 6—’5‘451 < Hwy .
BCS take as thelir criterion for the occurence of supercon-
ductivity the condition that this attractive "phonon" inter-

action dominate the repulsive coulomb interaction for those

(1) Fukuda N,, (1960): Brandeis University 1960 Institute
in Theoretical Physics. (Bvandeis, 1960)
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matrix elements which are of importance in the superconducting

wave function. This criterion can therefore be expressed as

Z
=/ -2ID e

In order to describe the ground state of a
superconductor, we require a low energy state. Cooper(l)
considered the problem of a pair of electrons interacting
above & quiescent Fermi sphere through negative matrix
elements, He found that the pair of electrons was able to
form a quasi-bound state; the lowest energy eigenvalue of
the system was separated from the continuum by a volume

(i.e. number) independent binding energy. If the matrix
elements of our interaction were negative in sign, we could
therefore form a low energy state by forming a linear combin-
ation of basis functions with expansion coefficients of the
same sign. The Interaction energy would then be given by

the number of configurations connected to some given config-

uration times an average matrix element.

However, for a general configuration of Fermi-Dirac
particles, the sign of the matrix elements depends on the
occupation of the states which are unaffected by the inter-

(2)

action. In the interaction, we are considering a pair of

(1) L.N. Cooper, Phys. Rev., 10k, 1189, (1956).

(2) This argument is implied by BCS in their paper but not
actually presented,
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particles taken from the state (X,,K,) to the state (X!,K!)

by means of the operator
c#(K}) e(K,) ex(K!) c(K,) (2.10)

We require that a system of Fermi-Dirac particles be

described by an antisymmetric wave function. This means

that the sign of the state function changes for each inter-
change of particle coordinates or momenta. Therefore the

sign of a relative matrix element connecting two states by
means of (2,10) apart from the coefficienﬁ is given by (-l)N+N’
where N and N' are the ftotal number of occupled states between
Ky
state respectively. In general, N+N' is equally likely to

and K, in the initial state and K! and K. in the final

be even or odd, so that matrix elements will alternate in

sign and we cannot therefore obtain a coherent low energy state.
In order to form such a low energy state, we require a subset

of configurations between which matrix elements are predom=-
inantly negative. This can be done by associating the electrons
in pairs, such that if any member of a pair is occupied, the
other is also., N and N' will therefore always be even as will
N+N' and hence the matrix element is always negative since

from (2.9) we are considering a negative coefficient. Since

the interaction conserves momentum

+ K, =K'+ K} (2.11)

x

there will be a maximum number of pair-wise interactions
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and therefore the largest Interaction energy if the total
momentum of all the pairs is the same., In considering the
interaction of Fermi-Dirac particles, there is a further
interaction, which occurs only between particles of parallel
spin, called the exchange energy, which tends to-weaken the
total energy of interaction. Since we desire as large an
interaction as possible, we consider peairs in which the
electrons have opposite spin. For describing the ground

state, we consider pairs whose total momentum is zero,

+K,=K=0 (2.12)

We shall now consider the reduced problem in which
we think about configurations in which the electron states
are occupied in pairs such that if k,q 1s occupled, -k,-¢"
1s occupled. We define, therefore, annihilation and creation

operators for pairs as follows:

dy = Cogy Cx4

-

W7 oh (2:13)

If we make use of the commutation rules for the c¢t's from

Chapter II, equation (3.c.20)

[cﬁ.u- ’c&l:é,l] + - Sﬁ,&l Sﬂv-l

[c*sav ’cﬁ'sr‘:} " B [Csv ’G.Z:;.r]+ =0 (2.14)
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we can show the following relations for the d.:

[dﬁidé;} _ (1 - n‘_’:’f‘ - n‘Si’ )S'S)ﬁ'

{%&’dy =0

Eﬁ,d\sl + 2d‘§d‘§l (l _‘Sﬁ,ﬁ)) (2015)

From the second of these relations and from algebraic consid-
erations 1t would appear that the third relation shbuld be
[%E’dﬂl 4 = 2dEdg. However,consideration of the commutation
relatlons for the c's shows that the above 1s the correct
expression, The second of these relations is a relation
satisfied by bosons. The other two relations are not, however,
Therefore, the superconducting transition is not a Bose-

- Einstein condensation, with the ground state containing g
Bose-like electron pairs (each with spin zero) all in the same
zero-momentum state as had been conjectured by Schhfrothgl)
Schafroth's contribution of focussing attention on the palr
correlations, as the basic mechanlism in superconductivity was

one of the major steps toward the present theory although it
is rarely acknowledged.

We can write our electron Hamiltonian (2.8) as

(1) Schafroth, M.R., Phys. Rev,, 96, 1442, (1954).
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= gK Bew¥ Z— (g.":l (1 -n,¢)
IE.\>KF IE‘<KF‘
Z— V’&\\S m“—&(r Lc_"s— K-k\r’cK ! (2.16)
KK koot

where Vp .. is defined in equation (2.4). Since we wish to
consider only pair configurations in which the members of the
pair have opposite spin and momentum, the operators Neo and
dﬁ d, will have the same expectation value,for any wave
function which adequately describes the system. We can there-
fore rewrite the first two terms of (2.16) in terms!of pair
operators as
27 E.8z d\<+22{( ¥ | (2.17)
1KI> K= (leke
The factor of 2 enters since for each value of K there are
two electrons, each of energy éfE, forming the pair. The

interaction term can be written

V&»K'c.:g‘wpg ¢ ( g»)ﬁ‘krv .\:c_::.—ig,cr' c‘squ—) c‘f\q-‘

= Vi Sk ik o

+ ..
V"‘ K ¢ K+2¢.<rcs<»k)r‘cl$.¢‘ St

=T

(2.18)

The first term on the right hand side cannot be expressed in
terms of pairs and so we neglect it in our reduced Hamiltonian,
If we consider only pairs whose total momentum is Zero, we

can write for the last term

vﬁu‘;_\é' dg:'u dE' (2019)
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where we have substituted X''for K' + k. BCS assume that the
terms containing pairs whose total momentum is not zero and
which are neglected in reduced Hamiltonian will not contribute
to the ground state appreciably and can be treated by
perturbation theory. Making use of (2.17) and (2.19) we

write for the reduced Hamiltonian

Hog=27 Scdp a + 25 &l ap
s (ST Ke

- EYJ Vlét‘i‘ d\')ii' dg . (2.20)
Ky K

It is this part of the total interaction that BCS consider

to be the most important in describing the propertles of
superconductors., The reduced Hamiltonian (2.20) is found

to commute with the total number operator N = Z:/cgﬂ.cﬁﬂj

and hence a wave function can be found to descﬁzge the system
such that the energy and the total number of particles are

simultaneous eigenvalues of the wave function,

- The most general wave function of the system which

we are considering is

Y =7 a5 Ky - v - Be) a5 ag - - - ag |0)
Ky -~¥y 2 - T b
(2.21)
where the summation extends over all distinct pair config-
urations, BCS relax the requirement that the total number
of electrons be an eigenvalue of the wave function and

construct a wave function by making a Hartree-like approximation,
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This means that the probability of finding two pair states
occupied in the ground state of the many electron system is

" equal to the product of the probabilities of finding each
pair state occupied. The wave function having this property
which BCS write is

P = TI (o + ooy \ o> | (2.22)

with o, and By real and &+ B =1 ror all K. AL 1s the
probabllity that the pair state is occupied and 0(2,is the
probabllity that it is not occupied. BCS calculate the

ground state energy variationally using this wave function and
the reduced Hamiltonian (2.20) subjeet to the constraint that

the total number of particles be conserved

<LE:] EZQ_?E“‘ °ls.<;~ ‘Z> =X (2.23)

In order to treat excited states, BCS decompose the
total state into states in which they consider single particle
excitations and states in which they consider excited pairs,
They write a wave function in the form

Be= TU (X peap) TU(RKgag =B [Ueg, |07 (2.20)
k() K'(P) (A
where G, P and S specify the states occupied by ground pairs,
excited pairs and single particles respectively. The energy
of the excited states is evaluated by using the reduced

Hamiltonian as well as the Bloch energies for single particles.
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2
(1) and Bogolubov( ) independently found that the

Valatin
ground state vector of BCS is related to new collective
fermion variables, in terms of which one obtains a simple
classification of the excited states and which greatly

simplify the calculation. The new variables are given as

S = K oo - €@ heey o

and g;q_: Ag = (@ )/gfc:\'-:-ts;(s‘ , { (2.25)
where the o\, and /E& are the same as used above and

() 1 c=N"
T) = for :
3 | -1 T=¢
The operators %’-::— and g are Fermion operators and satisfy
the commutation relations for such operators. These operators
lead to a "quasi particle" concept since g&-::;_ may be thought

i

of as creating a quasi—parﬁicle satisfying Ferml statistics,

Valatin showed that the products

_ e #* * —
% DESAE SRS AL OJNCES
E\)q-; 52,«;’3 s lsm,? Eu“-; Ez.ﬁ"-,_ M!q‘u
form a complete orthonormal set of state vectors and are just
the BCS excited states. In particular, the states ?E;IQZ;>
K

and gﬁe ges [éy:> represent a "single particle" and a "real
ER 2-g,-¢ 1 >°

(1) Valatin, J.G., Nuovo Cimento, 7, 843, (1958).
(2) Bogolubov, N.,N., Nuovo Cimento 7, 794, (1958).
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pair" excited state respectively.

Criticism of the Theory

The main criticism originally put forth against
the BCS theory was the lack of detailed justification of
approximations made in the derivation, Since the original
publication of this theory, independent work by Bogolubov(l)
et, al. who solved the éléctron-phonon interaction problem
differently agrees witb the final BCS formulae for fhe
ground state and one fermion excited states to first order

approximation,

The most serious objection to the BCS theory is
the lack of gauge invariance in the effective electron
Hamiltonian, BCS chose a special gauge for the vector
potential and deriveda Meissner effect from this. Schafroth (@)
has argued that this choice of a gauge is an independent
assumption of the theory and is equivalent to assuming a
Melssner effect itself. Anderson(B) has attempted to justify
the BCS approach by showing that the reduced Hamiltonian is
approximately gauge 1nvériant and that consideration of the

plasma oscillations should favour the choice of gauge.

(1) Bogolubov, N.N., Zubarev, D.N., and Tserkovnikov, Yu.A,,
DoKlady Akad., Nauk. S.S.S.R. 117, 788, (1957).

{2) Schafroth, M.R.,, Solid State Physics, (1960), volume 10,
PP. U471, ed: Seitz and Turnbull,

(3) Anderson, P.W., Phys. Rev,, 110, 827, (1958).
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Schafroth does not consider this argument to be wvalid since
the relation of the BCS reduced Hamiltonian to the rigorous
many electron Hamiltonian is not well defined. The method
of Andersor has been extended by Rickayzen(l) to give a
gange invariant calculation of the Meissner effect by
stressing the collective aspects of the theory of Bardeen,

Cooper and Schrieffer,

Since the BCS theory has had such widespread
success In describing the experimental situation, oﬁe must
conclude that the type of pair correlations which their
trial wave function singles out from the effective electron
interaction is the basic mechanism of superconductivity.

The major difficulty remaining is to adequately derive a
many electron Hamiltonian (if this is possible) for various
superconducting systems which will not lose gauge invariance
in the approximating processes. Once gauge invariance has
been lost, predictions concernihg electroﬁagnetic prhenomena

are impossible or at best uncertain,

(1) Rickayzen, G., Phys. Rev., 111, 817, (1958).



CHAPTER V
SUMMARY

In this chapter we shall attempt to summarize the
physical assumptions corresponding to the approximation made
in the foregoing theory, apart from the more straightforward
approximations such'as neglect of second order small
quantities in series expansions. We shall discuss the
approximations made in obtaining the general Hamiltonian for
a metal, In renormalizing the Hamiltonian and in obtaining

the reduced BCS Hamiltonian.

The first epproximation which we made was in
assuming that the valence electrons in a metal are completely
separated from the closed shells of bound electrons and that
the adiabatic approximation could be used to write down the
Hamiltonian for a metal, We showed in Chapter II that the
adiabatic approximation was valid except for the electrons
which lie within a distance K Wwyof the Fermi surface where
(Jpmey 18 the maximum lattice frequency. For electrons\lying
within this zone, non-adiabatic terms must be taken into
account in the equation of motion, According to the B(CS
theory 1t is the electrons Wwithin this zone which are
responéible for superconductivity, Chester(l) argues that

in order to give a mathematically consistent description

(1) Chester, G.V., Advances in Physies, 10, 357, (1961),
page 363,



85.

of electrons for the purpose of a theory of superconductivity,

non-adiabatic terms should be accounted for. We assumed

in obtaining the phonon Hamlltonian that anharmonic terms in
the lattice potential energy could be neglected. There was
no justificétion for this assumption, but rather the theory
was constructed to be consistent with it since no new
anharmonic terms were introduced by the Frohlich transform-
ation. In obtaining a general form for the Hamiltonian of
a metal we also assumed that the valence electrons interact
only with the longitudinal lattice vibrations., This assump-
tion neglects anisotropic effects and is not rigorous parti-
cularly for short wavelengths. This approximation is not
really necessary for developing the theory but i1t does help

to reduce the complexity of the resulting equations,

In performing the Frohlich transformation in
Chapter III, we assumed the quadratic terms in b&bg, bé bg,
bg etc, could be neglected for k # k'. We argued that 1if
the transformation and the model is adequate, the wave func-

tion describing the system would give zero expectation value

for these quantities. In renormalizing the metal Hamiltonian

use has been made of the random phase approximation, This
procedure has been widely used, but proof of 1ts validity
usually depends on the specific system under consideration
and 1is not.straightforward. We have also made use of the

effective mass approximation assuming the effective mass to
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be constant whereas, in fact, it depends on the wave number,
This approximation, however, does not affect the BCS theory
since explicit use is not made of the term in which this
%;Eif;f approximation arises. In obtaining the transformed Hamil-
tonian we have not been consistent in considering terms to
second order since we neglected the second ordervcontributions
from electron-plasma and phonon-plasma interactions, but we

attempted to justify the neglect by energy considerations.

BCS have neglected a considerable portion of the
metal Hamiltonian in obtaining their effective electron
Hamiltonian. As was mentioned in Chapter III, they neglect
the phonon energies, the plasma energies, the electron-plasma
interaction, the phonon-plasma interaction and the residual
electron-phonon interaction. The model which they consider
enables them to neglect the phonon and electron-phonon
energies, while energy considerations allow them to neglect
the remaining terms. The most serious effect of neglecting
VVVVVV these terms 1is the resulting lack of gauge invariance in
the remaining Hamiltonian. BCS also neglect the effect of
vplasma screening on the effective electron interaction via
the lattice. They assume a coefficienﬁ of the same form
for both long wavelengths and short wavelengths whereas, in
‘fact, we showed that the coefficients were different, These

authors claim that the difference is small at long wavelengths

and that the approximation is justified. BCS also neglect a
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number of terms in obtaining their reduced Hamiltonian from
the effective electron Hamiltonlan. In particular, they
neglect the terms which do not lead to pairwise interactions
between electrons, This procedure 1s best characterized as
a choice of simple trial wave function rather than as a
physical approximation in the Hamiltonian. This simplicity
may in some cases be expressed in terms of physical approxi-
mations. BCS also neglect pairs of electrons for which the
total momentum is not equal to zero in obtaining the reduced
Hamiltonian, They assume that terms of this sort have little
effect on the ground state and can be treated as a pertur-

bation,

The approximations made in the theory lead to a
model of a metal in which the electrons and lattice are
considered to be distinctly separated. Since there are a
number of superconductors which do not satisfy the rigid
restrictions which have been imposed in obtaining the theory,
but still satisfy the predictions which the theory makes, we
anticipate that the electron-lattice interactlion problem
might be treated in a different way which, however, would
lead to essentially the same results, The main theoretical
points which led to the development of the theory of super=-
conductivity and which have been discussed here are the
Frohlich transformation which indicated how to accurately
describe the interaction between electrons due to the lattice
and the BCS idea that superconductivity was due to Cooper

pair correlations between the interacting electrons,
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APPENDIX I
COMMUTATION RELATIONS REQUIRED FOR FROHLICH TRANSFORMATION

From Chapter III, equation (2.11l) we have
H=H, + H - %[Sé,Ho

g bdoiglh il @
where from (2.8) | |
H, = ZK_E,icg:- c, + %ﬁ@gb&é by + 3 %_Eﬂ& (2)
and from (2.9)
Hy = i(D;_,,:b&()k-x- - Dy by @3) + %Mge_g fe (3)
From (2.4) we have |

Sk = -K{Sb{f‘—_ + K}g"" b&‘_’

with Xk 2 C()(.I.{_&{.) e Ce-k

Ce

%qg*(ﬁ’l‘-) L % | (1)

We wish now to derive the relations required in (1). From

Chapter II, equations (3.c.20) we obtain 'the relation

We consider first
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o

(% 3 %es o T

-~

{(_Y&b& * y’s%bfé:' JEg}

- E‘S'cl-:é:; cg('YEbg +\(g.e‘q§x- )
which with the aid of (i) can be written

£ Gk O8G0 T OO % c\s-{&

Using equation (5) this reduces to

[S&’ Z;—E‘s'cg c&s‘] = Z;‘(EE - E\&‘v’s)b«gﬁ,b(l(. k) e

e~ BB K Kog, o

+ Z_(E

2 (B - Es—.&){b{g C]S(K,E)Oé Cog * h.c.} (6)

We consider now

[S&, Z;/Jﬁ Wy o bé]

{’ﬁw (K, k) ex o 4 (= bg by +

bg, ,b{a)
+ Ry qS-::«(;_{_,_Lg)cg:: oy (5% B by = B B,BF )

Making use of the commutation relations (3.b.32) from
Chapter II, this becomes

-ZK:E c.)g{(# (E,k)ex e, by + 4)*(&,}5) o, c&be:-} (7)
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Therefore we have
\'S{(, ;ﬁwgbgz b&,j= - Z‘ﬁwg{(f)(_lg,_lg)b&cz c . h.c.g

Combining (6) and (8) we have therefore

-Z‘{Sé’lq = %(EE—B‘ EE'+ hw@){ (g,g)b{{cé c o* h.c.} (9)

Making use of (9) and (L) we have

' _ ) s < -
S&[S&'Hol = (Y by = Yy ){b& (B, - Bt BOOPKKIoF o

If we neglect terms in bk , etc., this can be written

Z{bw b k - E + -E(,Jk)¢ k)¢(K k)c-‘ c c-.\ c oy

+ b,gbg (EEJL«_' E, + Eu)&)ct)(l{_' qS +(K, k)c. ¢ g8 -c&} (10)

In the same way we can show that

\’:S—, H;} S{g =

o, bf;:;.-J =1 (12)
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we have on subtracting the first lines of (10) and (11)

7 (By g - By + hon) E KK ’E){(Cé et CEalue "

.3 W
K,k

=

=)
1

% ¢ .Cc3¢ b b, + c ¢ , C
e 0% cl_c-fs) ke ke T % Ck-kCiik \.‘:((

which with the aid of (5) becomes

S (B, - B, + B BE,K) b ,}9{ (e 0y S

kK7

0

- c’:é"'_‘s&ck’& (S‘E.K')bfé. b"} -+ Cé‘ cE*'iSc.g‘—"ch’§

= - Z—(EE-’Z& - B, + EU@)}CP(E:E)\l(nK—Js' ng) bE by
2 -

o+ Z;(E!f-k - EE + Jﬁwg)(}b(g,g)cé i Y&w (13)

Taking the difference of the second lines of (10 and (11)

we obtaln

-2 (B, -E + Ewﬁ)(cp(_f_(_,l_f)r (n g = 0, )0 by

+ 'Z,Z(EK'L - Eg 4+ *hl,.)&) 4;9:-(;(_,_145)\(& cif_zgc\g_ (14)

In these last two expressions we have written n_ for § e ¢ .
& i

If we combine (13) and (1ll) we have that

VLo ] = - B+ Bong BT oy 5

+ %Z(Ew{- B, + Jﬁw;_a){qf) (K,E)@-‘«'—\{g@ + h.c.} (15)

K, -

o
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We now wish to evaluate the remaining commutator required

in (1). We consider first

-k, 05‘( -Yilg *+ Xi¥oy )}

which with the aid of (5) becomes

[ qS(K k)b, (e €t O °’_L—"'z3°-s~¥sg»_m')

tK'

+ (f) «(K,k)b )bk cg—_ch,SE‘E%- C‘x“kcgggjg_-k_)] (16)

If we consider only diagonal terms in this expansion we have

(3P| = A SELACHEE Y (17)

In the same way we find that

We consider also

(S&,b/k i b, - b)k\{k

‘which becomes on making use of (12)

Esk’b/‘ﬁ} = '\K&* (19)
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In the same way we show that

[S/g,bél = -\(& (20)

We conslider now

[s&,i(%@x b - D o O )
= 41%{&[§é)%ﬂbg kegtghﬂ'-g}} |
- iDs { [ S M +[s&,b§-]fgg

Making use of (17), (18), (19) and (20) this becomes

| [S&, i(D@%&:‘ b@- D b @q__)}

. L D G X 1 D Y Pre (21)
If weoconsider
[ btipapel = o { [SPa] P * (D—fs[sk’eﬂs]%
this becomes with the aid of (17) and (18) |
BET (o - 2 ) (0 P KE)Fe* + bece) (22)

Combining (21) and (22) we have

- ZB;[S&.’HNZJ = - Z_S(npl& - nﬁ)[iD&qb-:é(g,_Lg) + h°°:] t}& b)',S
(23)

+ iZ{D& B - D Y ({} - %%{Mz(ng-g- n) (bg PE,X) O * ,+h.c.j
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APPENDIX II
CALCULATION OF THE COLLECTIVE HAMILTONIAN

From Chapter III, equation (3.b.11), we have that

the collective Hamiltonian can be written

B = ®+ 2 5,s) - %ﬁl{[r{,s],sl 40 e 0o (1)

where from (3.b.l) and (3.b.2)

2 .
H =‘Z;E5c§ e, + %-?%(gf P, * g)gﬁ Qg) + J_Bx B,

Helelkl
+??_§q&v£ 6_& + %ZgM‘S ot Pl (2)
and from (3.b.l)
S =‘§z_(iM&_@@+ ugi@ Q. (3)

1kl e

The first line of (2) contains zeroth order terms and the
gecond line contains first order terms. We assume that S 1is
a first order small quantity. We consider first

| | [(3_&,8] = 7 1MyQg [{2&,@4}

1®] <l
since EL& commutes with Uge This equals

3% 3% - Gl 3k
7 Qg 7 LF oo of S o Gk O )

Bl — T &K T B
Kok M et fee|
= 7 imgQuler e,y -cFcee ¥ ) =0 (L)

H:S,l‘l}:ﬁc\)‘s -
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In the same way we show that [G ,S] = 0., Therefore we have

(3 7% £ P 9]
and : [évé q)‘i E@, S] =
since . [q&,q_d: 0

We consider now

0 ' | (5)

|
o

(6)

[Z}Eg & Gy J %},ﬁ"s Q) (e 0 0F oy = 0F oy o 0
K, K!
= % !
since P‘@ Z'K_c& ¢, j @nd the c's commute with q,. Making

use of (L) of-Appendix I, this becomes

1 “, = L
il {Z;Ex‘cfé“ Cu ’S:J - TH

We consider now

[ [ZEK.CE‘ Cu ,S] ,S]

= _—ﬁz}&kl IV{,& Eg= Eg i) (M) QuQRu(eH ey i Cuy = Cf C gl CF Cpp )

a8, K

zﬂi%(z%M‘Qka( - 2E&_g£_ + EE"?S:&!) 654:454 . (8)

We now look at the relation
12 2,
ﬁ{z ;(P‘é) I?g + __(lel q,g: CIBI) ,S]

- i 2 o
= = %,‘i&%(pg' ByaE - G B By)

(1?5 - Eg-&;)M{ngcg Cyba (7)

since g, = Q3¢

L, = 9 and [qjﬁ,q}{] = 0, This becomes
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il Z,qu (o ppayr - (py g + 1H&) By

" St Sy v mp uy - ey ¢ )

We therefore have

Szt y enfgend = L une 7

We have from (9) that

H: Z( +Q& a ay), ] S] = 5—%[ Z_uAQkpk,]

""' Z_u QuuyQp(- -1h)$
lkkléli&c\& = a -k

=37 up QQu | (10)

since QE

I
O
b
joN)
=
w
I
]
R

Helellee)
= Z_(iMp_PgQ+ uiq %){ EPk ,Qk] + EP& ,QJ_{} Pg%
‘ ke, |2\ e
From Chapter III, (3.b.5) we have
(P{t’QE] = -ih S&.g (11)
Hence
[ % ,s] = > (1 Py + ugq B (12)
Hale] f% - el [ Rel .
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We also have with the aid of (12),

L Ml 7 BB s] s]
- ‘-'-—z "P:‘ . "
en He l¢ e} S

Eﬁé%fiifq Rt wad WPy + wga B oo
“_S,_ Li{Re

which becomes

E A1y B PN

el el =
+17 Mewau Py + % 7_ ularaq (13)
lkl(uecl w a - .
From Chapter III, (3.b.10) we have for the subsidiary

condition

B = (R - ua)) ¥ | (1L)

If we substitute the right hand side of this expression for
P+ into (12) we have

[Z_P B, s} = Z/MM{D& ZM&u %k

ikl<lkd & 1k \<bee|

- E:.uk 9 dg (15)
(elellee]

Ir ﬁe add (1) and (15) we have

| (16)
5 7 M Qefl - 17 e - %Z,ugz aj ag

1&44«.\ ol (R I<tkel

If we neglect all terms of order higher than second, we obtailn
for our collective Hamiltonian making use of equations (5),

(6), (7), (8), (9), (10), (16) and (2)
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1
S Zg_ilf;w 4% (B - st Bet) iy
kK

P T - el ¢ T wn
leeYee| ™ - Lkl e

-lL(EK—E k)MQc
- k &

hl&ldk\ & % -
37 (opm +-Q2<qk Y ) + Z—"k U 2
u<}>1£ec1 1)\l

+ 37 mppuPh (a7



