THE UNIVERSITY OF MANITOEA

FLEX: A FORTRAN Language Extension

by

Marian E. Power

A thesis
submitted to the Faculty of Graduate Studies
in partial fulfillment of the requirements for the degree of

MASTER OF SCIENCE

DEPARTMENT OF COMPUTER SCIENCE
WINNIPEG, MANITOBA

October 1974

FLEX: A FORTRAN LANGUAGE EXTENSION

by

Marian E. Power

A dissertation submitted to the Faculty of Graduate Studies of
the University of Manitoba in partial fulfillment of the requirements

of the degree of

MASTER OF SCIENCE

© 1974

Permission has been granted to the LIBRARY OF THE UNIVER-
SITY OF MANITOBA to lend or sell copies of this dissertation, to
the NATIONAL LIBRARY OF CANADA to microfilm this
dissertution and to lend or sell copies of the film, and UNIVERSITY
MICROFILMVS to publish an abstract of this dissertation.

The author reserves other publication rights, and neither the
dissertation nor extensive extracts from it may be printed or other-

wise reproduced without the author’s written permission.

Abstract

The programming language FLEX is an extension of FORTRAN which
allows the definiticn of new data types and new operators, as well as the
extension of present operators to inciude the new data iypes. It incorporates
the four most useful control structures - DO and WHILE loops., CASE and IF
selections - which are similar to the corresponding constructs ol PL/1 and
ALGOL. FLEX also makes other improvements to FORTRAN, such as stream input
(as in PL/1) and embedded format specifications in input/output statements.

The ability to define new data types permits the user to define
ones which are appropriate for his application, rather “ian simply using
existing data types. He can define new operations on precisely those data
types he requires. Thus he is much more specific in the declaration and
use of variables than in either FORTRAN'or PL/1.

Expressions, however, ave written as they usuzaily are in FORTRAN,
even when they apply to the newly-defined data types.

The control structures provided permit the programmer Tto structure
his program in a logical and convenient way, resorting only rarely to the
objectionable GOTO statement. Stream input permitavhim to structure the

program physically so that it is most readable.

ACKNOWLEDGMENTS

I would like to thank my supervisor, Robert Zarnke, for
suggesting the topic of this thesis, and also for the advice and
guidance he provided throughout its development. I would also like
to thank Bohdan Zajac for provision of the I/0 interface routineg
used by the processor. His willingness to change them where required
was . of great help. Finally, I would like to thank Eileen Robbins

who spent many hours typing this thesis.

TABLE OF CONTENTS

Introduction

et

2. Language Description

2.1 Introduction

2.2 Program Structuring

2.2.1
2.2.2
2.2.3

Procedures
Selections

Loops

2.3 New Modes and Operators

Al

W W W w w W
O O N ot Eow N

«

2
2
2
2
2.
2
2
2.3.
2.3

2.4 Input

Mode Relationships
Fundamental Modes

Two Relations

Translation of Modes intdo FORTRA

Operator Definition

Operator Invocation

Selection of Operator Definitions

Template Expansion
Definition of Array Modes

and Output

Statement Description

3.1 Metalanguage

3.1.1
3.1.2
3.1.3
3.1.4
3.2 Input
2.1

RS

w W W W W W

2
2
2.
2
2

o o Eow

Production Rules
Character Set
Non-terminal Symbols

Terminal Symbols

Conventions

Use of Terminal Symbols
Card Boundaries
Comments

Literals

Reserved Words

The Semi-colon

W O O O NN o O ;g ol

N e =
© 9w N b O

25
25
25
26
26
27
28
28
29
29
30
30
31

b,

3.3 Source

Program

3.4 Control Structures

3.4.1
3.4,

[#¥] w
=

= F F

3
3.
3

=

3.4,

2
3
In
.5
6
7
8
3.4.9

o
o1

3.5.1
3.5.2
3.5.3
3.5.4

3.5.5
3.5.6

General Structure
Mainline Procedure
Function Procedure
Subroutine Procedure
ENTRY Statement

If Selection

Case Selection

While Loop

Do Loop

Defirnition and Declaraticn Statements

Mode Names

MODE Statement

PRIORITY Statement

OPERATOR Statement

3.5.4.1 Operator Declaration
3.5.4.2 Functicn Declaration
3.5.4.3 Subroutine Declaraticn
Declaration Statement

Predefined Modes and Operators

3.6 Other Statements

3.6.1
3.6.2
3.6.3
3.6.4
3.6.5
3.6.6
3.6.7

Expressions

Assignment Statement
Input/Output Statements
CALL Statement

STOP Statement

RETURN Statement

GOTO Statement

3.7 COMMENT Statement

3.8 Additional Features

Conclusions

5]
Ly
Ly
19
49

Lg

71

Appendix 1

FLEX Syntex

Appendix 2

Predefined Modes and Operators

Appendix 3

Compilation and Executicn

Appendix 4

Two Sample Programs

References

of FLEX Programs

75

90

lo4

118

Chapter 1

INTRODUCTION

The programming language FLEX is an extension of FORTRAN [2]
which allows the definition of new data types and new operators, as well
as the extension of present operators to include the new data types.
It incorporates the four most useful control structures [5] - DO and WHILE
loops, CASE and IF selections - which are similar to the corresponding
constructs of PL/} and ALGOL. FLEY =zlsc makes other improvements to FORTRAN,
such as stream input (as in PL/1) and embedded format specifications in
input/output statements.

The ability to define new data types permits the user to define

existing data types. He can define new operations on precisely those data
types he requires. Thus he is much more specific in the declaration and
“use of variables than in either FORTRAN or PL/L.

Expressions, however, are written as they usually are in FORTRAN,
even when they apply to the newly-defined data types.

The control structures provided permit the programmer to structure
his program in a logical and convenient way, resorting only rarely to the
objectionable GOTO statement. Stream input permits him to structure the
program physically so that it is most readable.

The original motivation for the development of FLEX was the pro-
vision of an easy and straightforward way of programming with multi-precise
integers. A package for performing operations on multi-precise integers
[6] is available in FORTRAN. Operations on such integers are carried out

by calling the appropriate functions and function calls may be nested

when expressions involving several operations are required.

This implementation of multiple precision arithmetic was not
completely satisfactory. Coding even a fairly éimple expression resulted
in nesting of function calls to many levels. Multi-precise computations
were therefore very unreadable and sometimes difficult to debug. Since
there were at least two routines corresponding to each operation (one for
two multi-precise integers and one for a multi-precise integer and an
ordinary integer), it was easy for the user to call a function with arguments
of the wrong data types. Both these problems would be solved if opcrations
on multi-precise integers could be written in the usual infix notation used
with the ordinary data types. The familiar notaticn would make programs
more readable, and the decision of which routine to call would be made by
the processor rather than the programmer.

A preprocessor was needed which would translate operations on
multi-precise integers to the appropriate function and subroutine calls.
This would then allow the user to code in the notation with which he was
familiar. Such a preprocessor would permit multi-precise integers as a new
data type and the existing operators would be extended to include the new
data type.

The extension of the PL/1l language was considered, one reason
being that it contains several desirable control structures. However, the
difficulty involved in extending PL/1 to include the new data type and

operations was soon apparent. In PL/1, the type of a data item is implied

by several attributes and this scheme has no obvious extension for new
data types. In addition, the complicated precision rules precluded the
adoption of similar rules for multiple precision arithmetic. Tinally, if

P1/1 were used, it would have been necessary to modify the multiple precision

voutines to interface with PL/1.

The extension of FORTRAN was adopted instead. FORTRAN is a
relatively simple language and thus easy to produce as the translated
(object) code. The data types are determined by a unique mode name
(and an optional length field) and are therefore simpler than in PL/1.

The "precision rules' are verystraightforward; for example, cperations on
INTEGERs yield INTEGER results. Anotbher benefit was that the multiple
precision routinss would rnot have to be changed. FORTRAN, however, does
lack many useful features, the most notable being the ccntrol structures
that are found in PL/1 and ALGOL.

Rather than a special purpose preprocessor to provide only
multiple precision cperations and variables, a general purpose preprocessor
was developed which would handle arbitrary new data types and operations.
Thus, multi-precise integers could be included as a special case of this
more general mechanism. Ofher desirable extensions and improvements to
PORTRAN have also been incorporated as standard features in the new language.
The FLEX pfeprocessor was designed to translate FLEX programs into FORTRAN,
the FORTRAN code subsequently being compiled by a FORTRAN compiler.

FLEX has several new declarations that permit the user to intro-
duce new operators and data types. It also extends the existing statements
to permit the declaration of variables of these new types. It contains
several other extensions and improvements such as reasonably powerful control
structures and input and output statements which permit expressions (of the

new as well as the existing data types).

Chapter 2 describes the basic extensions to-FORTRAN which have
been incorporated in FLEX., Chapter 3 contains a detailed description of
all FLEX statements and their syntax. Chapter U4 discusses conclusions
reached after having implemented TLEX; it also describes other constructs
~that might be added naturally teo FLEX. Appendix 1 is the complete syntax
for FLEX written in BNF. Appendix 2 describes all the predefined information
required for the standard FORTRAN data types and operators. Appendix 3
illustrates the running of a sample program with JCL and also contains a
list of all the FLEX messages. Appendix U4 contains two programs wrlitten
in FLEX, together with the generated object code for each.

FLEX was implemented in assembler language [3] on the IBM System /370
computer at the University of Manitoba. Since FLEX translates from one source
language into another, it was essential that the language in which it was
implemented permit easy manipulation of variahle length strings. FORTRAN
was rejected immediately on these grounds, as well as software development
- languages like project SUE system language [8] and PL/360 [9]. It was also
desirable that the implementation language permit programmer controlled
storage allocation and structured data items so that tables of dynamic size
(like the symbol table) might be built and altered easily. Only PL/1 seemed
to offer these facilities, but the storage type that seemed most suitable
(namely BASED) did not permit VARYING length strings; to have used fixed
length strings would have required that the strings be manipulated explicitly
by the programmer, as in assembler language. An assembler language program
would be much more efficient, both in storage requirements and execution time,
than its PL/1 analogue. Thus, assembler language was chosen to implement

FLEX although it is extremely machine-dependent as a result.

Chapter 2

LANGUAGE DESCRIPTION

2.1 Introduction

FLEX (FORTRAN Language EXtension)is a preprocessor which trans-
lates statements of the source language into FORTRAN. In the following
discussion, the acronym FLEX is uced to refer to both the source language
and the preprocessor.

Originally the FORTRAN language was the model upon which the
FLEX syntax was based. TFLEX was to be an exteusion of FORTRAN, incorporating
two major improvements, but looking basically like FORTRAN. However, so
many changes, improvements and additions were made that most FLEX statements

now bear very littic resemhlance to the original FORTRAN statements.

2.2 Program Structuring

Although structured programs can be written even in a language
like FORTRAN, coding is very inconvenient if the appropriate control
structures [5]1 are not available in the language. Thus, one principal
aim of FLEX was the introduction into FORTRAN of several reasonably
powerful control structures which would simplify the writing of structured
programs.

The control structures provided by FLEX are procedures, selections
and loops. Each control structure is introduced by a specific statement
and ends with a specific terminal symbol. It may contain other clauses
that determine control flow.

These constructs make structured programming in TLEX more

straightforward than it is in FORTRAN, and, as an added benefit, the FLEX

code is more readable than the equivalent FORTRAN would be.

0

2.2.1 Procedures

As in FORTRAN, there ave three different types of routines that
the user can code: mainline, subroutine subprogram, and function subppogram.
In FLEX these routines are introduced by the PROGRAM, SUBROUTINE and FUNCTION
statements respectively and are terminated by the symbol ENDPROC, these
three types of voutines will be called procedures. The SUBROUTING and
FUNCTION statements also define the procedure name and parameter names, as
in FORTRAN,

Declaraticns made between the beginning statement and the end of
a procedure are said to be local to that definition; that is, the declarations
are not known in any other procedure. In FORTRAN, all declarations are local
to some procedure.

Quite frequently, the user desires to make definitions that apply
to several.procedures. Such definitions are made before the first PROGRAMN,
SUBROUTINE or FUNCTION statement appears and are called global definitions.
The only statements which may be global are the new declarative statements:

MODE, OPERATOR and PRIORITY.

2.2.2 Selections

A selection is a control structure in which a single clause is
selected for execution from among several clauses which have been supplied.
The clause to be selected is determined by a value which is calculated at
execution time. Selections are introduced either by IF or by CASE, and

end with ENDIF or ENDCASE respectively.

IF permits two clauses, THEN and ELSE, each of which contains
a series of other statements. Selection is based on a logical value.
CASE permits the selection of one of a number of alternative

clauses, based on an integer value. As in IF, each clause cousists of

a series of statements.

2.2.3 Loops

A loop is a control structure in which a series of statements

is executed repeatedly, until some condition is satisfied. Loops are

with END.

WHILE permits repeated execution of the series of statements con-
tained in the control structure, until the condition specified in the
WHILE statement becomes false.

DO is similar to the FORTRAN DO in that execution is controlled
by an index value. Unlike FORTRAN, however, this index is not restricted
to integer.values. This index assumes values which start with an initial
value and proceed to a final (test) value, using a (positive) step value.
One or both of the initial and final values may be non-positive. If the
user wishes, the initial value may be larger than the final value, in
which case, the step value is used as a decrement. Otherwise it serves as
an increment. The DO may also be controlled by a WHILE clause. Escape
from the loop occurs either when the final value is passed or when the

WHILE condition becomes false, whichever occurs first.

2.3 New Modes and Operators

' The second major extension of FORTRAN is introduction of the

facility to define new data types (modes) and new operators, as well as
the ability to extend the domain of present operators to include the new

°

modes .

2.3.1 Mode Relationships

When = new mode is defined in FLEX, a relationship between the
new mode and an existing (or "old") mode is established so that translation
of FLEX declarations into FORTRAN can occur. A new mode is defined in the
MODE statement, in terms of a previously defined mode, and this linking of
the two modes is used to determine how the new mode will ultimately be
translated. A new mode may be directly related to only one other mode.
However, the mode to which a new mode is related can in turn be related to
a third mode, and so on. In this way, a mode can be indirectly related to

several others.

2.3.2 Fundamental Modes

There ave several modes, called fundamental modes, which are not
defined in terms of any other mode. These are the FORTRAN modes, INTEGER®*2,
INTEGER*4, REAL*4, REAL¥*8, COMPLEX*8, COMPLEX®*16, LOGICAL*1 and LOGICAL®Y4,
Every mode must be related, either directly or indirectly, to one of these

fundamental modes.

2.3.3 Two Relations

The two types of relations that are possible between a new mode
and an existing mode are translation and equivalence.
The translation relation is used to indicate the mode into which

a new mode will be translated. The mode into which a new mode is translated

may itself be translated, and so on. Variables of the new mode and
variables of the translation mode bear no relatiomnship to each other
during processing, although they will all be of the same mode in the
translated (FORTRAN) code.

When a new mode is declared equivalent to an old mode, the
new mode is treated simply as a new name for the old mode. Variables of
the new mode are processed exactly as if they were of the old mode.
Equivalence is clearly a tpansitive relation. For example, if mode APPLE
is equivalent to mode BEET and mode BLET is equivalent to mode CARRCT,
+hen APPLE is also eguivalent to CARROT and variables of all three modes

are treated as if they were of mode CARROT.

2.3.4 Tpanslation of Modes into FORTRAN

As stated above, every new mode must be related, either directly

.opr indirectly, to a fundamental mode. In the FORTRAN code, the new mode
is translated into the fundamental mode to which it is related. Equivalent
modes are treated identically during p?ocessing; translation modes are
treated differently. Suppose, for example, that

a) mode INTB is equivalent to mode INTA,

b) INTA is translated into mode INTEGER, and

¢) INTEGER is equivalent to mode INTEGER*4 (as in FORTRAN).
Then, during processing, variables of mode INTB and variables of mode INTA
are treated as if they were all INTA variables (because INTB is equivalent
to INTA). Similarly, INTEGER and INTEGER¥4 variables are all treated as
INTEQGER®4 variables. On the other hand, INTA variables and INTEGER?*4

variables are not of the same mode during processing. However, variables

of all four modes will be declared to be INTEGER#*4 variables in the re-

sulting FORTRAN code.

°

2.3.5 Operator Definition

An operator is a function that accepts values (called operands)
of specific modes (called the domain) and produces a value (called the
result) of some, possibly different, mode. In order to take advantage of
new modes, the user must be able to define operators whose domains include
these new modes. This process is calied "extending" (the domain of) an
operator. Extension is unnecessary when the new mode is equivalent to a
mode which is already in the domain of the operator ; the existing definitions
will be used automatically.

Operators are designated by either:

a) predefined special characters or special character pairs (see 3.1.u),
or
b) identifiers.

The user cénnot define operators of the first type except for those which
already exist. Any new operators must be identifiers.

The extension of an operator is done in the OPERATOR statement.
In it, the user defines the modes of the operands (that is, the domain)
for which this definition is to be used, thesec medes beingspecified in a
list, thus establishing an ordering of the operands. In addition, the
user defines the mode of the result and a "template" which determines the
translation into FORTRAN code (see 2.3.8).

Every operator must have a priority associated with it, so that
operations in expressions can be compiled in the proper order. The priority

of an operator is specified in the PRIORITY statement. An existing operator

- 10 -

already has a priority associated with it, so that only new operators
require specification of a priority.

" Certain operators have predefined domains and priorities, so
that the user can carry out the usual FORTRAN operations on the FORTRAN
data types without having to make explicit definitions. A newly-introduced
operator has no domain at all, and thus the user must make all relevant
definitions.

When the OPERATOR statement extends the domain of an operator,
the information contained in it is added to that which has already been
defined. Tor example, if operator PLUS has already been defined to operate
on two operands of mode APPLE and is then extended to operate on two operands
of mode BEET, both c¢efinitions are retained. By successive extensions, any

operator can be defined to operate on many different modes, and each individual

definition has a unique templiate associated with it.

"2.3.6 Operator Invocation

when an operator is used in an expression, we say it is being

,,,,,, invoked. Operators usually have one or two operands which are written in an

expression as:

operator operand
operand operator operand .

In TLEX, operators can be defined to have more than two operands. The

standard infix form of operator invocation is no longer adequate for this

situation. In FLEX, an operator (possibly with more than two operands)

can be invoked Dy specifying a list of operands instead of a single operand.

The generalization of infix notation which has been adopted leads to the

- 11 -

syntax:

(operand, ...) operator (operand, ...)
The ordeb of the operands must agree with the ordering established in the
definition of the operator. If either operand list contains only one
element, then the parentheses can be omitted. When the left operand list
is omitted entirely (including the parentheses), the result is prefix
notation. The right operand list may never be empty. When each list con-
sists of a single operand, the resulting invccation is in the usual infix
notation,

With the exception, noted above, that at least one operand must
appear in the right operand list, the operands may appear on either side
of the operator, as long as their order is not changed. For example, a
ternary operator, say ! , may be invoked in any one of the following ways:

1(A,B,C)

A1(B,C)

(A,B)IC
where A, B and C are variables of the appropriate mocdes (as specified in
the definition). Notice that the ordep of the operands remains unchanged

in all cases.

2.3.7 Selection of Operator Definitions

An expression is, as usual, a combination of operators and operands.
There must be at least one infix operator between every pair of operands.
However, each operand can have an arbitrafy number of prefix operators, and
such prefix operations do not need to be parenthesized.

The order in which the operators are invoked is determined by

their priorities. The priorities are just integers which are compared to

- 12 -

determine the order of operations. Prefix operators are invoked before
infix operators. When a decision must be made about which of two infix
operators to invoke, the one with the higher priority is invoked; if they
have the same priority then the textually first one is invoked. The result
of an operator invocation is (the production of) a new operand which re-
places the operator and its operands. This new operand can then be part
of a subsequent invocation, at which time, it too is replaced.

Each definition of an operator has a specific number of operand
modes wpecified in a particular order. Any operator invocation has a
specific number of operands of specific modes, and the order of the modes
is determined by the order of the operands. The prccessor merely selects
the definition of the operator which agrees with the invocation with respect
to the number of operands, their modes, and the order in whici: the modes
are specified.

As was discussed previously, each operator definition has a
translation template associated with it. When a match is found between
the invocation and a specific definition, the corresponding template is

used to produce the translation.

2.3.8 Template Expansion

The translation of a particular invocation is produced by sub-
stitution of operand values into the template. The template is just a
character string which, after substitution, becomes:
a) an optional series of FORTRAN statements, and
b) an optional piece of text (which is a portion of a FORTRAN expression).
The substitution process is referred to as 'expansion' of the template.

Operator invocation is similar to macro expansion of assembler language.

The statements, if any, are produced as lines of the '"object
program", that is, the translated version of the user's program. A state-
ment is produced whenever a semi-colon is encountered in the template. Each
part of the template which expands into a statement must be followed by a
semi-colcn. It is the user's duty to make sure that what is produced is
a valid FPORTRAN statement, because FLEX assumes the template has been
correctly specified and does no checking of the code.

The piece of text, if any, which results from the expansion of
the template, is passed on and will participate in the expansion cf other
operators in the expression. In other words, this piece of text is the
"vesult? of the operator invocation. If the operator expands only into
FORTRAN statements, the result of the invocation is undefined and thus
cannot participate in subsequent invocations.

Items to be substituted into the template are of three different

a) operand values,

b) a resulting (temporary)- variable, and

c) statement numbers.
The quantities in the template, which are replaced by these items, all begin
with the escape chavacter "&" . If the user wants an "&" in the trans-
lation, he must code Y&&" 1in the template.

The position at which an operand value is to be substituted is
identified by "&n" where '"n" is a non-zero digit (1-8). "&n" is
replaced by the "n'th operand of the current invocation, where the operands
are simply numbered from left to right starting at 1. For example, the

invocation:

- 14 -

X+ Y
has two operands. X 1is the first operand, and Y the second. If the
followiné definitions have been established: |
MODE NEWREAL : REAL
OPERATOR + {(NEWREAL,NEWREAL) = NEWREAL
('"PLUS (61,82)');

NEWREAL X,Y:

then the modes of the two operands in the above invocation match the modes
in the operator definition. The result of the invocation would be:

PLUS (X,Y)
which is an operand of mode NEWREAL. This result can then be used in
subsequent invocations.

FORTRAN statements cannot be used as operands; that is, it is
meaningless to substitute them into another statement or expression. But
often the result of an invocation can only be expressed as a series of
FORTRAN statements, and not as a FORTRAN expression. To handle such cases,
the result can be assigned to "&0", a temporary variable of the resulting
(FLEX) mode. The processor creates a temporary variable which is substituted
into the template. This temporary can then be used to communicate the re-
sult to subsequent invocations. For e%ample, an operator QUERY could be
defined as follows:

OPERATOR QUERY (REALA,REALA) = REALA (

'CALL QUERYS (£0,61,82)3;60')

where REALA is a mode name. Assuming the declaration,
REALA A,B;

the invocation:

- 15 -

A QUERY B
produces the statement:

CALL QUERYS (T$1,A,B)
where T$1 is the naue of a temporary. The result of the invocation is:

TS1
of mode REALA.

It is sometimes desirable to branch from one statement to another
within a particular invocation. FORTRAN statement numbers are required to
accomplish this task. To cause substitution of a unigque number into the
template, the user ccdes '"&Sm" where '"m" is a digit (0-9). Thus, up to
ten different numbers can be used in a single invocation. These numbers
are strictly local to the invocation in which they appear. Invocation of
several operators, each of which makes references to "&Sm" , for a particular
"m" , would not pose the problem of duplicate numbers because all numbers
allocated within z procedure are unique. However, within a particular
.invocation, each reference to "&Sm" 1is replaced by the same number. When
"eSm'' is the first item in a statement, the number which replaces it is
produced in columns one to five of the FORTRAN object statement. Its
appearance anywhere else is handled exactly the same as "én" or "&0"
with regard to substitution. The following example will be fully explained
in 3.2.9.

MODE VECT:REAL(10);

OPERATOR + (VECT,VECT) = VECT (

' DO £S1 I=1,10;"
1681 60(I) = €1(I) + &€2(I);"
T€0');

VECT A,B;

- 16 -

The invocation:
A+B
might prBduce the following statements:
DO 1 I=1,10

1 TS1(I) = A{I) + B(I)

and T$1 of mode VECT will be the result. (Note: the actual statement
numbers and temporary names for a particular invocaticn cannot be pre-
dicted. The values shown are used as examples only.)

Since "&Sm" 1s replaced by a unique integer, it may be used
in the creation of unique variable names. For example, the above definition
could be rewritten:

OPERATOR + (VECT,VECT) = VECT (

' DO &€S1 I&S2 1,105

'ESL §0(I6S2) €1(I€ES2) + &2(I&S2);!
lgo!);
The statements produced by the invocation given above might then be:

DO 1 I2=1,10

1 T$S1(I2) = A(I2) + B(I2)

Variable names created in this way are.not recognized by FLEX and thus they

should be variables of default FORTRAN types.

2.3.9 Definition of Array Modes

The relationship between modes may be a little more complicated
than has been indicated so far. The MODE statement can be used to define
modes which are arrays. A new mode may be defined as an array of an old

mode. In this case, an undimensional variable of the new mode would refer

- 17 -

Hh
<
o
[¢)

to an array of values of the old mode, and a dimensioned variable of i
new mode, to an array of arrays, and so on.

Only the translation relation is valid when avray modes are
being defined. The new mode is not equivalent to the old mode which
appears in the definition; it is equivalent to an array of the old mode.
However, the relaticns hold only between mode names and not arrays. This
means that operator definitions should be established for the new mode so
that it can be used efficiently, that is, without having to specify the
subscripts.

When coding in FLEX, variables of the new mode can be referenced
in two ways, with the subscripts which index the arvay, or without themn.
If no subscripts are specified, then the variable is treated as an array;
that is, its mede is the array mode. If it is subscripted, then the number
of subscripts must agree with the number of dimensions used in the MODE
definition. The mode of the subscripted variable is the vclated mode, since
-the item being selected from the array is of that mode. For example, if
the following definitions have been established:

MODE VECT : REAL#4(10);

VECT X;
then X 1is a vector of REAL%4 values, and selection of a specific item
from the vector means that a REAL*Y4 value is being selected. In other
words, X(I) .is REAL®*4, However, X 1s of mode VECT.

The old mode used to define a new array mode may itself be an
array mode. Then variables of this new mode inherit the dimensions of
each related mode. For example, 1f the following definitions are added

to those already established above:

~ 18 -

MODE ARRAY : VECT(10)

ARRAY Y;
then Yobis of mode ARRAY, Y(I) is of mode VECT and Y(I,J) is REAL*L.
In other words, the number of subscripts specified determines which mode
is used during selection of an operator definition.

When several levels of arrays have been defined, as discussed
above, the subscripts may be specified in groups to correspond with these
levels. As mentioned previously, Y(I,J) is REAL*L and Y(I) is VECT. To
make this relationship clearer, Y(I,J) could be written Y(I)(J). Here
again, Y(I) is VECT, and the addition of the second subscript selects a
specific REAL®4 value from the total array.

This notation also implies which array items are stored in
contiguous storage locations. Just as the items in a REAL*4 vector,
say Z, are stored in the order Z(1),2(2),Z(3),..., the items in ¥,

a vector of mode VECT, are stored in the order, W(1),W(2),W(3),...

But W(I) is itself a vector of REAL%U4 values, which are stored in the
order, W(l:)(l),W(I)(Q),'ME’(I)(3),..° . In other words, arrays in FLEX

are stored in row order. Since arrays in FORTRAN are stored in column
order, this means that the dimensions are reversed from those in FLEX.
However, this does not affect the coding of the template; subscripts used

on variables in the template correspond to the FLEX dimensioning.

2.4 Input and Output

In FLEX, there are four input/output (I/0) statements. The READ

and WRITE statements perform formatted (or free format) input and output

as they do in FORTRAN. The INPUT and OUTPUT statements are described later

in this section. These I/0 statements have been extended to include

- 19 -

capabilities not available in FORTRAN, as described in the following
paragraphs.
° &) TFormats are included directly with the data item being
read or printed, rathier than appearing in a separate (FORMAT) statement.
In the following statement:
WRITE(6) N:I(5)
the data item N will be printed in the first five columns of the line
under the format I(5). In the statement:
WRITE(6) :COLUMN(25), N:I(5)

on the other hand, N will be printed starting in column 25 of the print
line. The data value is formatted using information supplied in the format
item, I(5); its position is controlled by the control item, COLUMN(25).

These two examples illustrate the most common ways in which a
format is written. In either case the format or control item is introduced
by a colon. The format or control name is usually followed by a list of
values appropriate to that item; thus, in I(5), the value 5 is the field
width. The format item has the same meaning as the FORTRAN format IS.

Instead of writing just a single format or control item, as
illustrated above, a list of items could be written, as follows:

WRITE(6) N:(COLUMN(25),I(5))

This statement produces exactly the same code as the example given previ-
ously. In such a case, of course, only one item in the list may be a
format item.

b) TIn the FLEX I/O statements, the following quantities may be
specified as expressions:

i) +the unit field, as in:

WRITE(I-J) N:I(5)

- 20 -

ii) the data items in an output list, as in:
WRITE(6) N*J-1:I(5)
iii) the fleld widths, etc., in the format and control items,
as in:
WRITE(6) :COLUMN(IC#*(I-J)), N:I(I-J);

This is a major extension, since many versions of FORTRAN prohibit the use
of expressions for all of the above items.

c¢) It is possible to READ and WRITE values without specifying a
format. This feature is sometimes referred to as "free format'.

When a value is written without format specifications as in
either of

WRITE(6) N
WRITE(6) N:COLUMN(10)

a default format is used that depends on the mode of the variable being
printed. This default will permit all possible values of the given mode
“to be written.

when a value iz read without format specification, the input
records are searched from the current position until a non-blank field is
found. This non-blank field is then read as the value of the item. Under
"free read", values in the input are séparated either by blanks or by commas;
if two successive commas are used then a value for the corresponding item
of the input list is not read. For example, the data card corresponding to
the statement:

READ(5) A,B,C

might be any of the following:

While it is possible to mix items with and without formats in the
same READ statement, the user should exercise great care when doing so
because of the radically differvent way that such input works. To describe
how they interact, it is sufficient to indicate where the field of an
input item ends:

i) the field of an item with a format ends after the number
of characters specified in the field width;

ii) the field of an item without a format ends at (and includes)
the blank or comma immediately following it, or at the end of the current
record. For exampie, the READ statement:

READ(5) I,J:I(5),K,L:I(2)
‘will accept as input any of the following:

3 8 | 15 |

3, | 8| 15 | o]

where the bars indicate the ends of the fields, and the underscores
indicate the spacing required by the statement.
d) FLEX DO clauses have been included in the I/0 statements to
control input and output much as the FORTRAN I/0 loops do. A typical I/0
loop would be coded in FLEX as follows:
READ(5) DO(I=1 TO N, A(I):E(10,6));
The syntax of the FLEX I/0 loop differs from that of the FORTRAN loop.

Instead, the loop obeys the rules of the FLEX DO clauses.

- 29 -

Within each I/0 loop the user may have a list of variables to be
read or values to be printed, as in:
° READ(5) N, DO(I=1 TO N, A(I), B(I), C(I));
Another I/0 loop may be included, as is permitted in FORTRAN. For example:
READ(5) N, DO(I=1 TO N, DO(J=1 TO N, A(I,J)));
The I/0 loops may include any clauses that are used in normal DO clauses.
Tor example:
READ(5) N, DO(I=1 TO N WHILE X(I)Y=C.,X(I));

e) In FLEX, a new T/0 statement does not automatically cause a
new card to be read or a new print line to be started, as it does in FORTRAN.
By omitting the unit number in an I/0 statement, the user indicates that
the data items in the statement are to be read or printed continuing from
the position in the card or print line where it stopped in the previous I/0
statement (which must be of the same type as the current one). The following
example shows one application of this feature:

READ(5) I:I(2);
IF I=1 THEN READ, J:I(10)
ELSE READ, AJ:F(10,6) FI;
Here the second field (columns 3-12) is either an integer or a real value
depending on the integer in columns 1 and 2.

FLEX I/0 statements are translated into a series of FORTRAN CALL
statements. The subroutines which are called carry out both the formatting
and control functions specified in the I/0 statement. Each mode defined in
a FLEX program may have up to four subroutines associated with it, each
subroutine corresponding to one of the I/0 statements. For example,
suppose the user wishes to define a new mode that is printed by calling a

special subroutine, OUTMOD. He writes:

- 23 ~

MODE NEWMODE = REAL*4(10) WRITE(QUTMOD):
In order to read or print a value of a particular mode, a call is made to
the apprapriate subroutine which is selected from those provided for that
mode.

The user need not specify I/0 routines for the new modes that he
defines. In this case, if values of the new mode are to be read or printed,
the routines associated with its related mode are used. Every fundamental
mode has a subroutine associated with it for each type of I/0 statement.

Thus an appropriate roultine can be found to read cr print values of any
mode. A description of the predefined routines is given in Appendix 2. SRR

The INPUT and OUTPUT statements transfer data directly from storage
to a file without any conversion ﬁhatsoever; they are the analogues of the
FORTRAN "unformatted" READ and WRITE statements. They arz intended to allow
the user to save and retrieve data on auxiliary stcrage without incurring
the expense of conversion to printable character strings. No format items

‘are used in these statements.
This chapter has discussed the main additions and changes that

have been made to FORTRAN, The next chapter describes the statements of

the language in detail.

- ou -

Chapter 3

STATEMENT DESCRIPTION

3.1 Metalanguage

3.1.1 Production Rules

A modified version of the metalanguage BNF [1] is used to
describe the syntax of the language FLEX. The representation of FLEX
syntax uses production rules, which are composed of terminal and
non-terminal symbols. A terminal symbol is a sequence of characters
which is récognized as a unit during lexical analysis. A non-terminal
symbol, on the other hand, is the name of a sequence of terminal and
non-terminal symbols.

A production rule is written:

a=w
where "a" 1is a non-terminal symbol and 'w' is a sequence of terminal

1

and non-terminal symbols, called an expansion of '"a" . Whenever "a"

1ot

has several alternative expansions, the production rules defining a

are abbreviated as follows:

“R

where the w,. are sequences of terminal and non-terminal symbols.
i

- 95 -

3.1.2 Character Set

The characters of the. source stream are divided into a number
of classes designated by the symbols, ”letter”,-”digit”, "special
character'", "punctuation'" and "blank". These classes are defined as
follows:

letter A-Z $ # @

digit 0-9

special character ¢ < ¥ } €1 % =/ > 7=
punctuation . () ; , % "

blank b

"Special character'" is distinguished from "punctuation'" because only

special characters may form part of an operator.

3.1.3 Non-terminal Symbols

A non-terminal symbol is designated by its name which is a
vsequence of lower-case letters and hyphens. Several conventions have been
adopted in the naming of non-terminal symbols. These conventions are
described below.

If "x" 4is the name of a non-terminal symbol, then the
non-terminal symbol, "x-list", is defined by :

x-1list = x
x~-list, x
That is, '"x-list" designates a sequence of '"x''s separated by commas.

If "x" is the name of a non-terminal symbol, then the non-terminal

symbol, '"x-sequence', is defined by:
®-sequence = X

X~-sequence X

- 26 -

That is, "'x-sequence'" designates a sequence of 'x's with no separating
punctuation.
" If "x'" is the name of a non~terminal symbol, Tthen the non-terminal
symbol, "x-series", is defined by:
x-gseries = x
x~series ;x

That is, "x-series" designates a sequence of 'x's separated by semi-colons.

If "x" is the name of a non-terminal symbol, then the non-terminal
symbol 'x-option'" designates the optional occurrence of the now-terminal "x'".

In this chapter, production rules of the forms discussed above have
been omitted from the syntactic definition of cach statement. However, the

full language definition given in Appendix I includes all rules of the above

forms.

3.1.4 Terminal Symbols

In a production rule, a terminal symbol is denoted either by
the appropfiate punctuation or special character, by upper-case letters,
or by the name of a class of terminal symbols as described below.

There are several symbols which, although designating classes

of terminal symbols, are treated as terminal symbols themselves during

[81]

lexical analysis. These built-in terminal symbols are defined by the

following '"production rules":

identifier = letter
identifier letter
identifier digit

literal = 'charstring'
"charstring"

integer = digit
integer digit

operator = identifier
specialcharacter
<= !l A% < m> =z -> [/ »= o=
empty =
constant = integerconstant
shortintegerconstant
realconstant

lcngrealconstant
imaginconstant
longimaginconstant
logicalconstant

integerconstant = sign-option integer
shortintegerconstant = integerconstaut S

realconstant = decimalconstant realexponent-option
integerconstant realexponent

longrealconstant = decimalconstant longrealexponent
integerconstant longrealexponent

imaginconstant = integerconstant I
rcalconstant I

longimaginconstant = longrealconstant I
logicalconstant = TRUE

FALSE
decimalconstant = integerconétant . integer-option

sign-option . integer
realexponent = E integerconstant

longrealexponent = D integerconstant

Input Conventions

Use of Terminal Symbols

The source program is a sequence of the terminal symbols intro-

duced above. The sole use of the character "blank" is to separate other

terminal symbols in the input stream. It does not form a part of any

- 28 -

other terminal symbol. Successive terminal symbols may be separated by

an arbitrary number of blanks. In the case of adjacent identifiers,
adjacentoliterals or adjacent integers, at leasf one blank must be inserted’
to avoid ambiguity. Where two operators are adjacent, blanks may have to
be inserted in order to avoid confusion with the double character operators

(see 3.1.4).

3.2.2 Card Boundaries

1

Input records for FLEX are 80 characters long. Columns 1 through

72 contain source text; columns 73 through 80 are ignored and may be used

for sequence numbers. In other words, column 73 acts effectively as the

card boundary. With a few exceptions, card boundaries have no effect on

the input stream. This means that continuation from one card to the next

is automatic. The first exception is that a single terminal symbol may not

be continued across a card boundary; that is, identifiers, literals, constants
~and operators must appear entirely on one card. The second is that a

"card comment" may not be continuecd.

3.2.3 Comments

There are two types of comments in FLEX. One is a statement
(the COMMENT statement) which is described in 3.7. The second is the

card comment mentioned above. This comment begins with the punctuation

symbol "%" and ends at the card boundary. A card comment may appear
anywhere in a program. If desired, it may start in the middle of a
statement. It has no effect on the source program. In fact, the nen
symbol has the same effect as the card boundary. Whenever either is
encountered, scanning is continued on the next card. If a "%" is used

in column 1 of a card, the entire card is a comment.

- 29 -

3.2.4 Literal

A literal is bounded by two identical quote symbols. If the

user wishes to include the bounding quote character in the literal, he

duplicates it as in PL/1. Because "%'" by itself is used to indicate

19011

the card boundary, a "%'" 1is included in a literal by writing 5%

A literal may not be continued on the next card.

3.2.5 Reserved Words

In FCRTRAN, a statement is not recognized merely because it
starts with a keyword. The syntax of the statement is also considered.
Thus the statement:

DO 10 I=1

is interpreted as an assignmeht statement. Similarly:

WRITE (I,J) = B
is not a WRITE statement. The use of keywords as variable names can be
" very confusing to the reader of a program, but it also makes the statement
recognitioﬁ process more complicated for the processor. In FLEX, keywords
and "punctuation" words are reserved for the specific uses described in
the syntax, and they cannot be used elsewhere.

In the description given above, the term keyword is used to
refer to those special identifiers that appear at the beginning of a state-
ment and identify its type. Some keywords in FLEX are: PRIORITY, DO, and
FUNCTION, and they identify the PRIORITY, DO and FUNCTION statements
respectively. If the user has a syntax error in, say, a DO statement,

FLEX considers it to be an incorrect DO statement rather than an undecodable
statement or assignment statement, as in FORTRAN.

A punctuation word is an identifier which appears in a control

structure for the purpose of delimiting specific parts. Examples of
punctuation words ave: DOWNTO, IN, OUTCASE and ENDPROC.
| All punctuation words and keywords are reserved. Reserved words
are indicated in the syntactic definition as terminal symbols. However,
not all terminal symbols which are words are reserved. The format and
control names used in the I/0 statements are not reserved.
A few of the kevwords and punctuation words have alternate forms

(synonyms). A list of these synonyms may be found in Appendix 1.

3.2.6 The Semi-colon

The semi-colon is used as a statement separator rather than a ter-
minator. Semi-cclons are used between adjacent statements or control
structures. lthough a series of control structures and statements
(see 3.1.4) does not require a semi-colon at the end, it is not incorrect
for one to be inserted. Any statement which is immediately followed by a
punctuation word does not have to end with a semi-colon; the punctuation
word fulfills its function. As indicated above, however, any control
structure which is immediately followed by a new statement must be separated

from that statement by a semi-colon.

3.3 Source Program

The general structure of the source (user's) program is shown
below:

sourcepgm = globaldefn; proc-series
proc-series

globaldefn = defnstmt-series

defnstmt = modestmt

' priostmt
operstmt
cmtstmt

proc = pgmstruc

fenstrue
subrstruc

The program may start with a series of global definition statements,
which are separated from the following procedures by a semi-colon. Only
-new modes, operators and priorities may be defined in this global area.

Any definitions which are made in the global definitions apply to every
procedure in the program and do not have to be made in each procedure which
uses them.

Thefe are three types of procedures: the mainline, the subroutine
and the function. As in FORTRAN, only one maiunline procedure should be
supplied. However, there is no restriction on the number of functions or
subroutines that may appear. The procedures may be specified in any order

that the user desirss but they may not be nested.

3.4 Control Structures

3.4.1 General Structure

A description of the various control structures which have been

implemented in FLEX is given below:

pgmstruc = pgmstmt; procstmt-series ENDPROC

fenstrue = fenstmt; procstmt-series ENDPROC
subrstruc = subrstmt; subrstmt-series ENDPROC
dostruc = dostmt; procstmt-series-option END
whilestruc = whilestmt; procstmt-series END
casestruc = CASE caseclause ENDCASE

ifstruc = IF ifclause ENDIF

The general structure (an introductory statement followed by a series of

other statements and terminated with a special punctuation word) is quite

straightforward.

The slightly more complicated cases of the selection

structures, IF and CASE, are described later.

a control

The types of statements and structures allowed in the "body" of

structure are described as follows:

procstmt = labeldefn-sequence-option imperative

declstmt
defnstmt

subrstmt = procstmt
entrystmt

iabeldefn = label
label = identifier

imperative = loop
celcetion
stint

Joop = dostruc
whilestruc

selection = casestruc
ifstruc

stmt = assignstmt
iostmt
callstmt
stopstmt
returnstmt
gotostmt

There are two basic constructs which may appear in any control structure:

a) definition and declaration statements, and

b) labelled imperatives.

In addition, the subroutine procedure may also contain the ENTRY statement

which is not allowed in any of the other structures.

Definition statements (namely, MODE, PRIORITY and OPERATOR)

- 33 -

provide information for the proper processing of the other statements.
Such statements generate no object code but merely control the translation
process. Definition statements may appear in the global definition area
as well as locally in the various procedures.

Declaration statements are statements in which variables are
‘declared. They may be used locally in a procedure, but not globally.

Both of these types of statements, as well as the procedure
statements (namely, PROGRAM, FUNCTION, SUBROUTINE and ENTRY), should not
be labelled.

The remaining control structuresas well as all statements in
FLEX which have not yet been mentioned,are referred to as imperatives,
all of which can be labelled. The control structures of this type are
loops and selecticns. The three most frequently used statements which
appear in this classification are the assignment, input/output and CALL
statements.

Because labels are identifiers, meaningful names can be chosen
to help document the program. Of course, if the program is structured,
GOTO's (which use labels) will be used infrequently.

As indicated previously, procedures cannot be nested. However,
all other control structures may be. The ability to nest loops and selections

is a very powerful programming tool.

3.4.2 Mainline Procedure

The PROGRAM statement introduces the mainline procedure. Its
syntax is as follows:

pgmstmt = PROGRAM

The procedure ends with the punctuation word ENDPROC. Executicn of a
FLEX source program begins when the system transfers control to (calls)
the mainline procedure (as in FORTRAN) and ends when control reaches the

ENDPROC of the mainline procedure (or a STOP statement).

3.4.3 Function Procedure

A function prccedure is introduced by the FUNCTION statement
and ends with ENDPROC. This introductory statement has the following
syntaz:

fenstmt = FUNCTION resultmode fename (parm-list)

resultmode = modename

fename = identifier

parm = identifier
The result of a function is returned to the calling procedure in the same
way as in FORTRAN: the value is assigned to the function name. The mode
of the result is defined inthe FUNCTION statement, as are the parameter
names.

The FLEX FUNCTION statement is reproduced essentially unchanged
in the object program; that is, a FORTRAN FUNCTION statement is produced
whose function name and parameters are taken directly from the FLEX state-
ment (although they may be truncated to conform to FORTRAN naming conventions),
and whose mode is the fundamental mode that is related to "resultmode".

Parameters are declared in declaration statements within the
function, and these declarations are translated exactly as are variable
declarations.

The resulting mode and the modes of the parameters are known

only within the function procedure itself, that is, these modes are not

used for translating function calls, which occur only in other procedures
(see 3.6.1).

In order to properly translate function calls, The user must
make a global definition (in an OPERATOR statement) which specifies the
modes of the parameters and the mode of the result of the function
(see 3.5.4). The correctness of a function call, with respect to the
number and modes of the arguments, is determined by matching the modes
of the arguments with the modes in this definition in a process exactly
like that used in operator invocation.

The resulting mode may not be related to an array mode, because
of restrictions on the types of values that may be returned from a FORTRAN
function. Thus the following sequence of statements would be incorrect:

MODE REALA : REAL(25);

OPERATOR QUERY (REALA,REALA) = REALA;

FUNCTION REALA QUERY (A,B);

REALA A,B;

However, tﬁe desired result, of invoking a function which returns an array
of values, could be achieved using the following sequence of statements:
MODE REALA : REAL(25);
OPERATOR QUERY (REALA,REALA) = REALA
('"CALL QUERY (8§0,81,82); &0');
SUBROUTINE QUERY (C,A,B);

REALA A,B,C;

An acceptable invocation of the operator/function would be:
QUERY (A,B)

The difference between invoking an operator which produces a subroutine

N o

call, and calling a subroutine procedure, is that the operator invocation

may cccur in an expression while a subroutine call is a separate statement.

°

3.4.u Subroutine Procedure

A subroutine procedure is introduced by the SUBROUTINE statement
and ends with ENDPROC. The syntax of the SUBROUTINE statement is:

subrstmt

SUBROUTINE procname (parm-list)
procname = identifier

parm = identifier

A subroutine procedure is called in a separate statement, the
CALL statement (see 3.6.4). Values calculated in a subroutine may be
returned via the parameter/argument lists as in FORTRAN. Thus any values
which are returned to the calling procedure do not enter into further
computations immediately, as does the result returned by a function
procedure.

As is the case for functions, the modes of the parameters are
known only in the subroutine procedure. In order to determine the correct-
ness of subroutine calls with regard to both the number of parameters and
their modes, the information must be known to the other procedures (which
call the subroutine). It is declared in a (global) OPERATOR statement
(see 8.5.4), so that a matching process can be carried out as it is for
operator invocation.

The FLEX SUBROUTINE statement is translated in the object
vprogram exactly as it is coded in the source program, with the possible
exception that truncation of the procedure or parameter names could occur

so that they conform to FORTRAN naming conventions.

- 37 -

3.4.5 ENTRY Statement

The ENTRY statement may occur only in a subroutine procedure.

It may not appear within any other control structure. Its syntax is:
entrystmt = ENTRY procname (parm~list)

It establishes a secondary "entry point" to the procedure. An entry point

is the place in the procedure to which control is transferred when thev

procedure is called. Thus a call using an entry name rather than the

subroutine name would transfer control to the appropriate entry point

within the prccedure vrather than tc the beginning of the procedure.

The parameter list in an ENTRY statement need not have the same
names or number of parameters as parameter lists in the SUBROUTINE state-
ment or in other ENTRY statements occurring in the same procedure. A
parameter must be declared and used after the first ENTRY statement in
which it appears. Thus the following sequence of statements uses parameters
P3 and Q incorrectly:

SUBROUTINE ABC (P1,P2);

REAL P1,0;

INTEGER P2;

Pl := 2%%pP2-P3;

ENTRY E1 (P3,Q):

With the possible exception that truncation of the entry name
or parameter names might occur so that they conform to FORTRAN naming
conventions, the ENTRY statement is translated in the object program
exactly as it is coded in the source program.

To ensure that calls to a secondary entry point are tramnslated

properly, the parameter information must be declared in a (global) OPERATOR

statement, just as the primary entry point (the beginning of the procedure)

is declared.

°

3.4,6 If Selection

An IF control structure is introduced by the keyword IF and ends
with the punctuation word ENDIF. It has the following syntax:
ifstruc = IF ifclause ENDIF

ifclause = expr thenclause elseclause-option

thenclause = THEN procstmt-series
elseclause = ELSE procstmi-series
ELSEIF ifclause
In an IF selection, cn@ or two clauses ars provided, one of

which is selected for execution based upon the value of the expression in
the selection. If the value is true, the THEN clause is selected; otherwise,
the ELSE clause is selected. If an ELSE clause is not provided and the
value is false, then an immediate exit from the s=lection is taken.

If the else clause consists solely of another IF selection, the
user may introduce the second IF by ELSEIF. When this is done, the second
IF selection is automatically terminated by the ENDIF of the first IF.

If many IF selections are coded in this way, all will be terminated by the

ENDIF which corresponds to the original IF, as shown in the following example:

Ir I=1 THEN
A:=B;
I:=3

ELSEIF I=3 THEN
A:=C-B;
I:=10

ELSEIF I=10 THEN
A:=C/B;
I:=1

ENDIF

This type of program structuring is quite commen, and the LLSEIF feature
helps reveal the structure. In addition, superfluous ENDIFs are avoided,
making the program more readable.
The IF selection may be extended by the user as described below.
An IF selection like:
IF I=0 THEN A:=0C
ELSE B:=0 ENDIF
is translated into code similar to the following:
IF(.NCT.(I.EQ.0))GO TO 10
A=0
GO TO 11

10 B=0

11

Here it is clear that the operator — has been applied to the original
expression (I=0) to obtain the result used in the object code. Since
the - operator has the following definition:

OPERATOR —(LOGICAL) = LOGICAL('.NOT.&1'")

the above code is produced. However,’if the user wishes to define the
— operator appropriately, he may use any type of expression in the IF.
This is illustrated in the following éxample:

OPERATOR —i(INTEGER) = LOGICAL('€1.EQ.0');

INTEGER I;

I:=2;

Ir I THEN A:=B

ELSE A:=C ENDIF

- 40 -

In this case, the THEN clause will be selected. In fact, it will be
selected whenéver I has a non-zero value. In order that the object
code beocorrect, the mode of the result of a = invocation must be
related to a LOGICAL mode. However, as seen above, *the mode of the
original expression can be anything at all, as long as the appropriate

operator extensions have been made.

3.4.7 Case Selection

A CASE control structure is introduced by the keyword CASE and

ends with the word ENDCASE. It has the following syntax:
casestruc = CASE caseclause ENDCASL
caseclause = expr inclause orclause-segquence-option outclause~option
inclause = IN procstmt-series
orclause = OR procstmt-series
outclause = OUT procstmt~-series

OUTCASE caseclause

The following simple example illustrates the general structure of a CASE

selection:

CASE I IN
A:=Bg
I:=2

OR A:=C-B;
I:=3

OR A:=C/B
I:=h

OUT A:=B%*C

ENDCASE

- 41 -

In a CASE selection, several clauses are provided, at most one
of which is selected for execution. Each clause consists of a series of
(labelled) imperatives, declaration statements and definition statements
as described in 3.4%.1. A clause is selected using the integer value of
the expression in the selection. If the value is 1 , then the first clause
is selected; if it is 2 , the second clause is selected; and so on. The
clauses are separated by the word OR , and the entire sequence of clauses
is introduced by the word IN. Any number of these clauses may be specified,
as long as there is at least one. ‘The user can supply sncther clause, the
OUT clause, which will pe selected when the integer value lies outside the
range for which specific clauses have been provided. If no OUT clause is
provided and the value is outside the range, then none of the clauses in
the selection will be executed. For example, if five clauses have been
provided, then any value not in the range 1 - 5 will cause selection of
the OUT clause (or exit from the selection).

If the OUT clause consists entirely of another CASE selection,
it may be introduced by the keyword OUTCASE. If this is done, the second
CASE selection does not require a terminating ENDCASE; it will be terminated
automatically by the ENDCASE corresponding to the first CASE. Many CASE
selections could be nested using this method, and only one ENDCASE would
be required to terminate them all. If the user wishes to write the second
CASE selection separately, he may do so but then the second CASE requires
an explicit ENDCASE of its own. This is similar to the nesting of II's
using ELSEIF.

The CASE selection may be extended by the user in much the same

way as the IF selection can. A CASE selection such as:

- o -

A:=B
" OR A:=B%C
OUT A:=B/C
ENDCASE

would be translated intc code similar to:

ITEMP1 = I
GO TO 10

12 A=B
GO TO 11

13 A=B#*C
GO TO 11

lO GO TO (12,135, ITEMP1
A=B/C

11

The expression which appears in the selection is assigned to an INTEGER
temporary. The assignment operator (:=) has been predefined to allow

all the FORTRAN mixed-mode assignmenté. If the user wishes to use an
expression which normally cannot be assigned to an INTEGER, he must make

the appropriate extension of the := operator. For example, the expression

could be logical, as illustrated below:
OPERATOR :=(INTEGER,LOGICAL)=
('e€1=0;"
"IF(&2)81=1;"');
LOGICAL L;
L := TRUE;
CASE L 1IN
A:=B
OUT A:=B/C ENDCASE

In this example, the first clause will be selected.

- u3 -

3.4.8 While Loop

A while control structure is a loop which is controlled by a
logical value. The while loop is introduced by the WHILE statement and
ends with the word END. The WHILE statement has the following syntax:

whilestmt = WHILE expr
In general, the expression in the statement should translate into a logical
expression. However, as in the IF selection, if the =t operator is defined
appropriately, the expression may be of any mode.

The following is a typic2l while loop in FLEX:

WHILE ABS (SUM2-SUM1) > EPS;

H:=H/2;
SUMi:=8UM2;
SUM2:=(APB + u®SL + 2%S52)%H

END
The loop is executed as long as the expression remains true. If, when it
' is tested, the value is false, execution of the loop is terminated. The
expression is tested at the beginning of the loop; thus, if it 1s false to

begin with, the loop will mnot be executed at all.

3.4.9 Do Loop

A do control structure is a loop which is controlled by an index
which is updated after each iteration. The do loop is introduced by the

DO statement. This statement provides the information necessary to control

the loop. It has the following syntax:

- L4 -

dostmt = DO initclause controlclause
initclause = varname;=expr
controlciause = testclause byclause-cption
testclause-option byclause~option whileclause

testclause = TO expr

DOWNTO expr
byclause = BY expr
whileclause = WHILE expr

varname = identifier

The loop is terminated with the word END. The following example illustrates
a typical do loop:
DO X:= -5 TO 5 BY .5;
WRITE , X, F(X)

END

The variable name which appears in the initialization clause is
~generally referred to as the "index". As in FORTRAN, the index may not be
subscripted. However, the value with which it is initialized may be any
expression, rather than just a simple constant or variable. The value of
the initial expression may be positive, negative or zero.

The test clause may be specified in two ways, with the word TO
or the word DOWNTO. When TO is specified, the step value is used as an
increment, and the loop ends when the value of the index is larger than
the test value. In the following DO statement:

INTEGER I;

DO I:=1 TO 100;

the index I takes on all values from 1 to 100 in steps of 1. VWhen it

- 45 -

attains a value of 101, control passes from the loop. On the other hand,
when DOWNTO is specified, the step value is used as a decrement and the
loop ends when the value of the index is smaller than the test value. In
the statement:

DO I:=100 DOWNTO 1 BY 5;
I starts with the value 100 and takes on every sixth value down to 4.
When it reaches the value -2, which is beyond the range for which the
loop is defined, execution of the loop is terminated.

The index is updated eacn time the loop is executed. The
"step size" used to update the index is supplied in the BY clause; if
no BY clause is given, the integer value 'l' 1is used. Escape from the
loop occurs when the value of the index is beyond the value which is
supplied in the test clause. Comparison of the index and test values occurs
at the beginning of the loop. Thus the statements in the loop controlled by:

DO I:=5 TO 4,

~are not executed at all, since the index starts out with a value greater

than the téSt value. If no test clause is specified, & WHILE clause must be
supplied in order to provide an exit from the loop.

The values which are given in the test and BY clauses may be
expressions. The test value may be positive, negative or zero. However,
the step value should always be positive. If it has a zero or a negative
value, an infinite loop may result. TFor example, the statement:

DO I:=5 TO 10 BY ~-1;
will result in an infinite loop, since the index can never attain the test
value by repeated increments of -1. Thus, using a negative step value
with a TC clause is not equivalent to using a positive step value with a

DOWNTO clause, because the type of comparison that is made is different in

the two cases. For example,

DO I:=5 TO 1 BY -1;
is not équivalent to:

DO I:=5 DOWNTO 1;

In the first case, the loop will never be executed because the initial
value is greater than the test value. The lcoop controlled by the second
statement will be executed five times.

The WHILE clause provides an alternate exit from the loop. While
the expression specified in the clause remains true (and the index has not
~gone beyond the test value), execution of the loop will continue. If the
expression becomes false, the loop ends. Tor a discussion of the mode of
the expression in the WHILE clause, consult the description of the while
loop (3.4.8) and the IT selection (3.4.8).

The follewing do loop illustrates the use of the WHILE clause:

DO I:=1 TO 10000 WiiILE X1-X2 < EPS;

X1:=X2;

N:=N#*2,

X2:=F(X,N)
END

Although the WHILE clause generally accompanies a test clause,it can appear
alone. However, such cases should generally be replaced by the WHILE

statement.

The do loop given above would normally be translated as follows:

- 47 -

T1 = 10000
° GO TO 10
11 I = I+1

10 IF(I.GT.T1) GO TO 12
TP(.NOT. (X1-X2.LT.EPS)) GO TO 12
X1 = X2
N = N¥#2
%2 = T(X,N)
GO TO 11

12

where the temporary Tl 1is of the same mode as the index I . If an explicit
step value had been specified, it too would have been assigned to a temporary
variable of the same mode as I . Of course, if = DOWNTC clause had been

used instead of the TO clause, the index would be decremented (I=I-1 in line 11)
"by the step size and tested (I.LT.T1l in line 10) against the test value. In
either casé, when the index is updated, the assignment operator (:=) 1is
invoked. In order to extend the do loop so that new modes can be used, the
user must extend the appropriate operators. If a test clause is not supplied,
the relational operators (> and <) need not be extended. In this case, the
step value 1s always used as an increment, so only the + and assignment
operators need actually be extended.

The expression in the WHILE clause can be of any mode, as described
in previous sections. If the := operator is extended appropriately, the
other expressions in the DO statement can also be of any desired mode. In
~general, the standard FORTRAN modes, INTEGER and REAL, are used because all

of the regular operators have been predefined for these modes.

- 48 -

3.5 Definition and Declaration Statements

3.5.1 Mode Names

°

In FLEX, as in FORTRAN, the name of a mode comprises two parts:
modename = identifier submode-option
submode = * identifier
* integer

Unlike FORTRAN, however, the submode has no intrinsic meaning (such as
indicating the amount of storage occupied by variables of that mode), but
is used merely as a second level of identificatrion, thus allowing many
different modes to be grouped under one general name. For example, the
user may define three different mode names, INTEGER, INTEGER®*2 and
INTEGER*M. This illustrates that INTEGER, without an explicit submode, is
a mode which is different from INTEGER*2 which does have an explicit submode
(the user should consider INTEGER as having =z submode which is different

from all other explicitly-specified submodes).

3.5.2 MODE Statement

The MODE statement is used to define new mode names or mode arrays,

and also to give the subroutine names which should be used for the input and
output of values of the new modes. It has the following syntax:

modestmt = MODE modelt-list

modelt = modedefn ioelt-sequence-option

modedefn = modename : oldmode

modename = oldmode
oldmode = modename dimelt-option
dimelt = (dim-list)

dim = integer

- 49 -

ioelt = ioname (iortn)
ioname = INPUT

OUTPUT

READ

WRITE

iortn = identifier

A new mode is defined by relating it to an old mode, cor to an

a2 o
L4

array of an old mode. If the new mode is to be treated as a diiferent
mode than the old mode during processing, then the translation relation
is used:

MODE INTEGER*M : INTEGER
If the new mode is to be just a new name for the old mode, the equivalence
relation is used:

MODE NEWREAL = REAL
No matter which of these two relations is actuaily specified when defining
an array mode, translation is always assumed:

MODE VECT : REAL(25)
As noted in the syntax description_givén above, more than one mode definition
can be made in a MODE statement:

MODE INTEGER*M : INTEGER, NEWREAL = REAL
The user should read Chapter 2 for a more detailed presentation of the
concepts involved in this statement.

The "ioelt" permits the user to declare the names of routines
which are to be called in order to perform input or output operations on

values of the given mode. Up to four subroutine names can be specified,

each one corresponding to one of the four I/O statements. If no special

- 50 -

)

subroutines are to be used for input and output of the values of the new
mode, the routines corresponding to its related mode are used. All the
FORTRAN modes have subroutine names associated with them for all four
I/0 operations, and these will be used if the user does not wish to define
SRR his own I/0 routines.

To define a new mode NEWMODE as an array of twelve REALs, in
which READ and WRITE statements are to be supported with special subroutines
IONMR and IONMW, respectively, the user would code the following statement:

MODE NEWMODE : REAL(12) RUAD(IONMR) WRITE{IONMW)

3.5.3 PRIORITY Statement

The function of the PRIORITY statement is to assign a priority to
an operator, and thus to rank it relative to the other opsrators. As indicated
in the syntax description below, there are two ways in which the value of a
priority can be established:

priostmt = PRIORITY prioelt-list

prioelt = operator = prio

prio = integer

operator

The first method provides aﬂ actual value:

PRIORITY QUERY = 1503
In order to use this method, the user must know the actual priorities assigned

‘‘‘‘‘ to the old operators in order to choose a value which correctly ranks the

new operator with respect to the old operators.

The second method can only be used if the new operator is to have
the same priority as some existing operator:

PRIORITY QUERY = +

5

- 51 -~

In this case, the (possibly unknown) integer value which indicates the
relative priority of + 1is assigned to the new operator QUERY.

* The integer value of the priority permits the operator to be
ranked relative to all other operators. During the compilation of an
expression, an operator with a high priority will be invoked before one
of lower priority, when they both could apply to the same operand. Thus, in:

PRIORITY +=600, #=7003

A:=B+C*D
the operand C could either be added to B first or be multiplied by D.
Since ¥ has higher priority, the multiplication is done first. If the
two operators have the same priority, the one on the left is done first.
Thus, if the statements:

PRIORITY QUERY = + 3

A:=B QUERY C#*D+E
are added to the above, the expression is treated as if it had been
.parenthesized as:

A:= (B QUERY (C*D)) + E
Thus, the actual value of a priority ig of little importance, what is
important is its relation to the other priorities.

The priority scheme which exists for the predefined operators
is given in Appendix 2. Included with the relative ordering of the operators
are the actual priority values used. The predefined values were used in

the definition of + and % given above.

3.5.4 OPERATOR Statement

The OPERATOR statement has several functions:

- a) to define new operators,

- 50 -

b) to extend the domains of existing operators,
¢) to declare FLEX functions, and
* d) to declare FLEX subrcutines.
It is a very important statement because the definitions established by it
are used during the processing of the entire FLEX program. If these
definitions are established incorrectly, the entire program will be affected.
Thus, the user should exercise care when coding an OPERATOR statement.‘
The OPERATOR statement has the following syntax:
operstmt = OPERATOR opereji-list
operelt = operdecl
fendecl
subrdecl
operdecl = operator (modename-list) = resultmode-option template
fendecl = fename {modename-list) = resultmode
subrdecl = procname {(modename-list)
resultmode = modename

template = (literal-sequence)

3.5.4.1 Operator Declaration

The extension of existing operators or the definition of new ones
is accomplished in an "operator declaration". Such a declaration provides
the information required by FLEX to translate an invocation of the operator
correctly. A specific operator may appear in many different declarations.
Since the use of an operator with operands of specific modes is to be
translated uniquely, the list of modenames should be different in each
declaration. There could be a different number of modes, they could be

specified in a different order, or the modes themselves could be different.

- 53 -

For example, the operator #¥% could be defined as follows;
OPERATOR #*#* (INTEGER) = REAL('EXP(FLOAT(&1))'),
° %% (REAL) = REAL('EXP(&1)'),
%% (INTEGER,INTEGER) = INTEGER('E1%%g2'),
%% (REAL,INTEGER) = REAL('E1%%£2'),
%% (REAL,REAL) = REAL('EXP(ALOG(&1)%&2)');
the last three lines being standard definitions.
The list of modenames supplies several pieces of information for
a particular declaraticn:
a) the number of operands required by the operator,
b) the modes of these operands, and
¢) the owrder in which they must appear.
Thié information is used in selecting the appropriate template (as described
in Chapter 2). Referring to the example above, if X 1s a REAL variable,
then:
NEELED
would produce the following translation:
'Y = EXP(X)!
while a binary invocation like X#%#J, where J is INTEGER, would produce
a REAL result of the form:
1 yodedt g
On the other hand, a unary invocation with a REAL*8 operand would be in
error because the appropriate declaration was not made.
Operators in FLEX are restricted to a maximum of nine operands;
that is, only one digit is needed to describe the position of an operand in

the list of mode names.

If the operator is translated into a series of FORTRAN statements

- 54 -

only (that is, it produces no text which is subsequently used in an
expression), a resulting mode is not specified. However, a template for
the translation must always be provided. If the template is too long to
be specified on a single card, a sequence of several literals can be used.
(Recall that a literal cannot be continued past the card boundary.)

MODE VECT : REAL(25);

OPERATOR := (VECT,VECT) =

('DO &S1 T=1,25;"
'€81 E1(I) = £2{(I);"),
- (VECT) = VECT

('DO £S1 I=1,25;"

'6S1 €0(I) = ~61(I);"
'80');
In the preceeding example, the := operator has no resulting mode because

no expression is produced to take part in succeeding operator invocations.
However, a temporary variable (&0) of mode VECT is produced as the result
of the - -operator.

Because the translated code is not checked by FLEX to determine
if it is valid FORTRAN code, an incorrect template could affect large parts
of the object program. All lines of the template are assumed to be valid
FORTRAN declaration or executable statements. Thus the user must not code

statements like SUBROUTINE, FUNCTION, END, or comment in the template.

3.5.4.2 Function Declaration

All functions and subroutines (see next section) that are used in
a program must be declared as such in a global OPERATOR statement (or

several local statements if the user prefers). The information which the

- 55 -~

function declaration conveys is very similar to that provided by an
operator declaration. The latter is used to define or extend an operator,
while th; former is used to provide mode informaticn about a user-defined
function. A function declaration is used by the processor in translating
invocations of the function. Because each procedure is completely
independent of all others,this information is not known to the other procedures
except through a (global) function declaration.

All FLEX Ffunction invocations are transisted into the standard
notation that is used for FORTRAN function invecations. The user may think
of a functionkdeclaration as having an implicit template associated with it
and thus no template is required. However, the resulting mode of the function
must be specified.

During translation of an expression, a function cail is treated as

node names in the

=3

if it were an operator invocation; that is, the 1list of
declaration is compared to the mode of the arguments in the call, and if the
"arguments have been incorrectly specified, no match for the (function)
invocation-is found. Therefore, only one declaration should be made for a
particular function.
The following program segment illustrates how the function
declaration is used:
OPERATOR FCN(REAL,INTEGER,REAL) = REAL;
PROGRAM ;
REAL A,B,C;
INTEGER I;
A := A + FCN(B,I,C)

ENDPROC;

- 56 -

FUNCTION REAL FCN(A,B,C);
REAL A,C;

INTEGER B;

ENDPROC

The function call in the mainline is translated to produce the REAL result:

'"FCN(B,I,C)!

3.5.4.3 Subroutine Declaration

A subroutine declaration has somewha™: the same purpose as a function
declaration: to describe the modes of its arguments. 4 single global
declaration of the subroutine will be known to every procedure in the program.
Subroutine calls are translated into FORTRAN CALL statements using an implicit
.template in the same manner as are function calls. However, since there is
no resulting mode, neither a template nor a resulting mode are specified in
a subroutine declaration. Only one declaration should be made for each pro-
cedure (subroutine or entry) name. The reader should consuit the discussion

of the CALL statement for a complete descripticn of subroutine calls.

3.5.5 Declaration Statement

The purpose of a declaration statement is to declare variables of
specific modes. Because FLEX does not have default declarations as FORTRAN
does, every identifier which is used as a variable in a procedure must be
declared explicitly; that is, its name must appear in some declaration

statement in the procedure.

- 57 -

The declaration statement in FLEX has the folleowing syntax:
declstmt = modename decl-list

decl = vardecl dimelt-option

vardecl = varname submode-option

varnzme = identifier

dimelt = (dim~list)

dim = integer

I+ is very similar to the type statement of FORTRAN. For example, consider
the following declaration:
INTEGER®4 A ,B,C,D*M
With the exception of the second submode, it looks like a FORTRAN declaration.
Because a submode can be associated with each variable name, as
well as with the mode name itself, variables of several different modes can
be declared in a single statement, as follows:
INTEGER®Y I,J%2,K,L*M(10,5)
'Every Variqble which lacks a submode is declared to be of the mode specified
initially. In the example above, I and K would be INTEGER*4, while J

would be INTEGER®2 and L would be INTEGER®M.

3.5.6 Predefined Modes and Operators

The standard FORTRAN modes and operators have been predefined in
FLEX. In addition, the mode STRING ié permitted in order that the user
may declare operators or functions whose operands are literals. However,
since FORTRAN has no character string variables, the user cannot declare
FLEX variables of mode STRING (that is, STRING is not a fundamental mode).
The modulus operator (//) has also been defined. For & full description,

the reader should consult Appendix 2.

- 58 -

These definitions have been included so that the user dces not

n

have to define them himself. This is very convenient since the definitions
are quite lengthy. They are known to the user's entire source program;
that is, they appear in the global definition area associated with the

user's program.

3.6 Other Statements

3.6.1 Expressicns

Expressions in FLEX are more general than those allowed in FORTRAN.

expr = primary
expr operator primary
primary = opnd
operator primary
feneall
opnd = var
literal
constant
(expr-list)
fename

var = varname
var (subscript-list)

varname = identifier
subscript = expr

fcname = identifier
fencall = fename (arg-list)

arg = expr

There are several differences between FLEX expressions and FORTRAN expressions.

The first difference is that infix notation has been generalized
(see 2.3.8). Although this feature was introduced to permit operator in-

vocation when more than two operands are specified, it is valid for binary

operators as well. Thus, while one would normally code:
A+B
the invocation
+(A,B)
is also valid, if the user wishes to emphasize the similarity between
operators and functions. An infix operator (that is, one which is written
in standard infix notation) requires a priority in order to obtain the

correct order of invocation. Prefix operators need no priorities since

Thiya o
a il

U

they are always invcked before infix operators.
+(A,B)*+(C,D)

is equivalent to the following parenthesized expression:
(A+B)* (C+D)

Another difference from FORTRAN is the apility to specify multiple
subscript lists for the purpose of making array mode relationships clearer
(see 2.3.9).

In FLEX, each operand in an expression can have an arbitrary

number of prefix operators without requiring parentheses (see 2.3.7). In

FORTRAN, one would code:

A+(-B)
while in FLEX, the expression:
A+-B
would be acceptable. Similarly:
D++(A,B)
and D+-+(A,B)

are valid FLEX expressions, although they would normally be written:
D+ (A+B)

and D+(-(A+B))

- 60 -~

respectively. The first ™"+" 1in each case is an infix operator.

A function name may be used alone only within the corresponding
function procedure (see 3.%4.3); it is then treated essentially like a
variable name. In the other procedures the function name indicates an
invocation of the function. This is exactly how a function name is used
in FORTRAN.

The assignment operator in FLEX is ":=" . Nermally it appears
in only two contexts:

a) as the leftmost operator in an assignment statement, and

b) in the DO statement.
It translates into an ordinary FORTRAN assignment statement. However, if
the user wishes to make appropriate definitions, he may embed the :=

operator in an expression.

3.6.2 Assignment Statement

In FLEX, the assignment statement has the following syntax:

assignstmt = var := expr
var = expr

var = varname
var (subscript-list)

varname = identifier

subscript = expr
As in FORTRAN, the purpose of an assignment statement is to assign the
value of the expression to the (subscripted) variable appearing on the
left side of the assignment operator.

Any imperative which does not start with either a keyword or a
mode name is assumed to be an assignment statement. The first operator

(with the exception of those occurring within parentheses) may be either

- 81 -

= or := . If the = operator is used, it will be treated as the assign-
ment operator; that is, one of the templates corresponding to the :=
operator will be used for producing the translafion. Every other occurrence
of the = operator remains unchanged. This permits the user to write
FORTRAN-like assignment statements using the = operator instead of the
assignment (:=) operator. Thus:

A=B+C

A:=B+C

are both translated into the same code.

3.6.3 Input/Output Statements

There are four input/output statements in FLEX: READ and WRITE
for formatted I/0, and INPUT and OUTPUT for unformatted record I/0. The
latter two statements are used less frequently. The I/0 statements in FLEX

1
1

ave the following syntax:

ioname (unitno) ioitem-list
ioname, ioitem-list

iostmt

READ
WRITE
INPUT
OUTPUT

ioname

unitno = expr

expr-option : fmtitem
expr
loopitem

ioitem

fmtitem = fmt
(fmt-1list)

fmt = fmtname exprelt-option
controlname exprelt-option

exprelt = (expr-list)

loopitem = DO (initclause controlclause, ioitem-list)

- 62 -

fmtname =

L B B a R)

controlname = BLANK
COLUMN
PAGE
SKIP
As discussed in Chapter 2, the omission of the unit number
implies continuation of a previous I/0 statement. This permits the user
to intersperse other statements among the different portions of an I/0
operation. Thus, it is similar to STREAM I/0 in PL/1. For example:
WRITE(6) X:E(10,4),:BLANK(10);
IF F(X) =0
THEN WRITE, G(X)/F(X):E(10,4)

ELSE WRITE, 'UNDEFINED'

FI,

There are five different format names recognized by FLEX; the
FORTRAN names have been adopted for simplicity. They control the reading
and writing of the fundamental modes as follows:

a) E and F are used for REAL*4 values,

b) D and F are used fof REAL*8 values,

c) I is used for both INTEGER%2 and INTEGER*4 values, and

d) L is used for both LOGICAL*1 and LOGICAL*L values.
When reading or writing values of a new mode, the format name corresponding
to the related fundamental mode should be used. As in FORTRAN, I and L
format specifications require only a single value, the field width. D, E

and T specifications may have a second value giving the number of decimal

- 63 -

positions. In all five format specifications, a zero or negative field
width will result in the omission of the field (and therefore the data
item). When no format specification is given for a particular data item,
default values are supplied according to the mode cf the item. The default
values are given in Appendix 2.

The four control functions are used to control the position at
which the next read or write is to occur. They are: |

a) BLANK, which causes the specified number of columns to be
skipped in the input record, or blanks inserted in the output record,

b) COLUMN, which causes the next read or print to start at
the column specified,

c) PAGE, which causes the next printer output to begin at the
top‘of a new page, and

d) SKIP, which causes the specified number of lines to be skipped.
Each control function may have one argument; if no argument is supplied, the
value 1 is assumed. If the value of the argument is zero or negative, the
control item is omitted, with the exception of SKIP(0) which causes re-
positioning to the beginning of the current record; that is, SKIP(0) is
equivalent to COLUMN(1).

There are several ways in which items can be specified in an
I/0 statement. For example, if a REAL variable A is to be printed starting
at column 20 using default format, the statement would be coded in one of
the following ways:

WRITE(6) A:COLUMN(20);

WRITE(6) :COLUMN(20),A;
If it were to have a field width of 15, with 5 decimal places, the state-

ment would be either:

- BU -

WRITE(6) A:(COLUMN(20),E(15,5));

or WRITE(6) :COLUMN(20), A:E(15,5);

Loops can be used in I/0 statements just as in FORTRAN. However,
the syntax of a loop 1s different than FORTRAN syntax. The loop control
information appears at the beginning and resembles the FLEX DO clause syntax.
For example, if B were a dimensioned REAL variable with N values to be
read, thc statement might look like:

READ(5)N, DO(I=1 TO N, B(I));

The loop can contain a list of data or control items or even other loops.
For example:
READ(5) DO(I=1 TO 15, B(I),

DO(J=1 TO 7, A(I,Jd), C(J,I)));

3.6.4 CALL Statement

The FLEX CALL statement is just like the FORTRAN CALL statement.

It has the following syntax:

callstmt = CALL procname (arg-list)

procname = identifier

arg = expr
and its purpose 1s to transfer control to one of the entry points in a
subroutine procedure, as well as to establish a one-to-one correspondence
between the parameters in the SUBROUTINE or ENTRY statement and the argu-
ments in the CALL statement. The point to which control is transferred
is determined by the procedure name specified in the call. The number of

arguments must be the same as the number of parameters expected at that

entry point, and their modes must be the same. If the following subroutine

- 65 -

has been defined:
SUBROUTINE TEST(A,B,C,D);
REAL A,D;
VECT B;

INTEGER C;

s

D =

ENDPROC

and the appropriate subroutine declaration:
OPERATOR TEST(REAL,VECT,INTEGER,REAL);

has been made, then the subroutine would be called as follows:
REAL X,Y;
VECT Z;

INTEGER I,J;

CALL TEST(X*Y,X,I~J,X);

The correspondence between parameters of an entry point and
arguments of a procedure invocation is established exactly the same way
that it is in FORTRAN. However, FLEX does not permit arguments to be passed

by value as in FORTRAN; all arguments are passed by address.

3.6.5 STOP Statement

The function of the STOP statement is to cause the program to

terminate execution. It has the following syntax:

- 66 -

stopstmt = STOP
This statement may appear anywhere that any of the other statements are
allowed.’
The STOP statement is not the only way to cause execution to
halt. Execution also ends when the ENDPROC in the mainline is encountered.
Thus the STOP statement usually need not be coded unless execution is to

terminate at a place other than the end of the mainline procedure.

3.6.6 RETURN Siatement

The function of the RETURN statement is to cause control to be
transferred back to the procedure which called the current procedure. It
has the following syntax:

returnstmt = RETURN
The RETURN statement may be coded in the mainline, function or subroutine
procedures. In the first case, it is treated exactly like a STOP statement;

. that is, the program terminates. In the other cases, control returns to the
calling procedure. Control also returns to the calling procedure whenever
the ENDPROC of a function or subroutine procedure is encountered. This means
that the RETURN statement may be omitted whenever the transfer of control

takes place at the end of a function or subroutine.

3.6.7 GOTO Statement

The purpose of the GOTO statement is to cause a transfer of control
to the imperative having the label specified in the GOTO statement. Its
syntax is as follows:

~gotostmt = GOTO label

label = identifier

- 67 -

Labels are translated into FORTRAN statement numbers. VWhenever the label
is referenced (in a GOTO statement), it is replaced by the appropriate
statement number. Thus the following piece of code:

GOTO SKIP;

°
.

3

SKIP: A:=B+Cy
might be translated as follows:

GOTO 10

10 A=B+C
Of course, in a structured program, the GOTO statement would be used quite

infrequently.

3.7 COMMENT Statement

The COMMENT statement provides the user with the ability to write
an explanatory comment that crosses card boundaries. This is not allowed
when card comments are used (see 3.2.3). In general, programs are intro-
duced with a long comment explaining the purpose of the program and introducing
the main variables, where necessary. The COMMENT statement is provided
specifically for this type of comment. The short comments which generally
appear within a program can be written using the card comment.

The COMMENT statement begins with the keyword COMMENT and ends
with a semi-colon. Between the COMMENT and the semi-colon may appear any
sequence of symbols, with the exception of the semi-colon.

If the user omits the ending semi-colon part of his program

- 68 -

may be included in the COMMENT but there will be no errcr message. The
user should verify that statements of his program are numbered (Appendix 3).

3

3.8 Additional Features

Several features in FLEX have not yet been described. They are
used somewhat infrequently, and have been gathered here rather than being
included with the basic concepts.

It has been mentioned several times that the standard FORTRAN
modes, operators and priorities have been predefined. This does not mean
that these definitions cannot be changed. The user may redefine any of
them by using the definition statements. For example, the priority of the
operator + could be redefined as follows:

PRIORITY + = #
An operator or mode which is redefined within a procedure will be in effect
only during that procedure. Its original definition will be restored in
.the other procedures., The user may redefine any mode, operator or priority
which he has added in previous definition statements; however these
redefinitions are effective for the remainder of the program and are not
reset at the end of the procedure.

In the description of function and subroutine calls given so far,
prefix notation has always been used. Because these invocations are treated
just like operator invocations, the generalized form of infix notation can
be used. Thus a function OF may be called as follows:

F OF X
rather than using the usual prefix notation:
OF(F,X) .

However, the user should recall that all infix operators have priorities

- 69 -

so that they can be invoked in the proper order. Thus, any function which
is invoked using infix notation must also have a priority. In general,
this pri;rity should be higher than that of every other operator.

A third feature that has not yet been described is giving a list
of mode names in place of a single mode in the OPERATOR statement. Tor
example, the definition of scalar multiplication given in Appendix 4 is:

OPERATOR * ((REAL,INTEGER),POLY) = POLY

('DO &S1 IS$=1,18:"

'6S1 £0(I$)=81%62(I%);"

TE0Y)
For this definition to be selected, the first operand may be either REAL
or INTEGER and the second must be POLY. The user should exercise care when
using this feature. Any operator invocation which translates into a
PORTRAN subroutine or function call requires a unigue mode for each operand,
and thus the specification of a list of modes will lead to execution-time
“errors. This is also the case for any function or subroutine declaration.
Each operaﬁd must have a unique mode. However, in cases like the one given
above, several definitions can be combined into one by using the multiple
mode specification for a single operand. This, of course, depends on the

fact that FORTRAN multiplication of a REAL by either a REAL or an INTEGER

has the same code.

The complete syntax of FLEX is given in Appendix 1. Built-in
definitions are given in Appendix 2 and two sample FLEX programs are given

in Appendix 4.

- 70 -

Chapter 4

CONCLUSIONS

There were two original design goals for FLEX, but as the
implementation progressed, other improvements and additions were incorporated.
The result is a language which is largely successful in accomplishing these
~goals. As discussed below, there are several major and many minor improve-
ments which can be made in FLEX.

The first design goal was to permit the programmer to define new
modes and operators, and it arose from the desire for a convenient and
readable way to perform multiple precision computations. In this respect,
FLEX has made it very easy to define and ﬁse multi-precise variables in a
program. The general way in which these definitions are implemented permits
the programmer to add arbitrary data types. That the object code is FORTRAN,
however, precludes the definition of complicated data structures.

The second goal was extension of FORTRAN to include several
reasonably. powerful control structures. The structures included in FLEX are
certainly a great deal more convenient than those in FORTRAN. In some
respects ,they are better than those in'PL/l. For example, PL/1 does not
have a CASE statement, a legitimate and very useful construct. The simple
DO group has been eliminated by having an IF construct very similar to that
in ALGOL 68 [4]. Again, the structure of FORTRAN limits the control structures
that may be implemented; for example, nesting of procedures is not permitted.

One of the most important improvements was the extension of the
input/output statements. The FLEX I/O statements incorporate several changes
from those in FORTRAN. For example, format specifications are included in
the I/0 statement itself, rather than in a separate FORMAT statement as in

FORTRAN. In addition, expressions are allowed in the statements, thus making

- 71 -

them more general and more convenient for the programmer.

The following paragraphs describe improvements which have not
yvet been, implemented.

Changes to the handling of input and output are of major importance.
The present method of specifying I/0 routine names in the MODE statement is
not very satisfactory. It would be more consistent to declare them very
much like operators in the OPERATOR statement, since input and output are
really just operations on the data items which appear in the I/0 statements.
This would have several advantages. It would permit more complex code than
a simple subroutine call to be generated for the input and output of values.
If the format specifications were also included as possible arguments, then
the user would be able to make several definitions for each mode depending
on the type and number of format specifications:

OPERATOR READ(INTEGER%4) = ('CALL IOFREE(EL)');

READ(INTEGER*4 ,INTEGER*4) =

('CALL IOSIMF(&1,82)');

At the present time, hexadecimal (Z) and alphameric (A) input/output is
not allowed for any data types. Each is read or written by a single routine
as described in Appendix 2.

In order to simplify some of the internal organization of FLEX
and to eliminate the need for lists of modes in the OPERATOR statement, it
would be convenient if FLEX would automatically convert values from one
data type to another (for example, INTEGER to REAL to COMPLEX). This is
similar to coercions in ALGOL 68. Declaration of the desired conversions
would be made in the MODE statement.

The multiple assignment statement would permit several computations

to be made before the values were assigned to the variables on the left hand

- 72 -

side of the assignment operator. For example, in the foilowing statement:
(X,Y) = (X+1, X*Y)

once the two computations X+1 and X*Y were done, the values would be
assigned to X and VY, respectively. The effect is that the old value
of X 1is used in the second computation. Another very common situaticn
in which this construct would be useful is:

(X,Y) := (Y,X)
which interchanges the values of X and Y . In general, the assignment
of values to variables would be cne-to-one, but the same expression could
be assigned to all or some of the variables according to certain rules.

For example, if fewer cxpressions than variables werc specified, then the

e
Q
2
®
0]

last expression would be assigned to the remaining var

[

Several statements in FCRTRAN have not yet been implemented
FLEX because they were considered relatively unimportant, perhaps even
undesirable. They are:

IMPLICIT

EQUIVALENCE

COMMON
Their syntax would be very similar to that of the corresponding FORTRAN
statements.

Initialization of variables in declaration statements has not
yet been implemented. In FLEX, initialization will be permitted in the
MODE statement as well. This will permit the autcmatic initialization of
all variables of that mode, thus eliminating the need for individual
initialization.

A cross reference table is a useful debugging tool. Provision

has been made in FLEX to implement such a feature in order to give the

- 73 -

programmer a list of every reference to the variable names, modes and
operators used in his program.

. FLEX has not yet been used extensively and, therefore, a complete
assessment of its language features is not possible. On the basis of the
programs that have been run, however, it has proven itself a far superior
language to FORTRAN, and sometimes to PL/1 (if the programmer does not need,
or cannot cope with, the esoteric features of PL/1). It has certainly
fulfilled its origirnal goal of providing easy access to multiple precision
computations, and it is hoped that it may be used successfully for other

similar applications.

APPENDIX 1

FLEX Syntax

This appendix ccntains the complete syntax description of the
current version of FLEX.
In the source program, the following pairs of words are
synonyms; that ig, they may be used interchangeably::
ENDIT FI
ENDCASE ESAC
GOTO GO TO

Only the first member of each pair appears in the syntax.

The two operators, := and =, are different. However, in the
DO statement and the assignment statement, the = operator may be used
where the assigument operator is intended. When = 1is used in these

-contexts, it is translated into the assignment operator. This permits

the = opérator to be used as it is in FCRTRAN,

sourcepgm = globaldefn; proc-series
proc-series

globaldefn = defnstmt-series

defnstmt-series = defnstmt
defnstmt-series; defnstmt

defnstmt = modestmt

priostmt

operstmt

cmtstmt

proc-series = proc
proc-seriesy proc

proc = pgmstruc
fenstruc
subrstruc

pgmstruc = pgmstmt; procstmt-series ENDPROC

fenstrue = fenstmt; procstmt-series ENDPROC

subrstruc = subrstmt; subrstmi-series ENDPROC

procstmt-series = procstmt

procstmt-series; procstmt

subrstmt
subrstmt-series; subrstmt

H

subrstmt-series

procstmt = labeldefn-sequence imperative
imperative
defnstmt

declstmt

subrstmt

procstmt
entrystmt

labeldefn-sequence = labeldefn
labeldefn-sequence labeldefn

labeldefn = label:
imperative = loop
selection

stmt

loop = dostruc
whilestruc

selection = casestruc
ifstruc

- 76 -

stmt = assignstmt
iostmt
callstmt
stopstmt
réturnstmt
gotostmt

modestmt = MODE modelt-list

modelt-list = modelt
modelt-1ist, modelt

medelt = modedefn
modedefn loelt-sequence

modede+n = modename : oldmcde
modename = oldmode

oldmode = modename
modename dimelt

ioelt-sequence = loelt
' ioelt-sequence iocelt

iocelt = ioname (iocrtn)

{

iorin = identifier
priostmt = PRIORITY priocelt-list

priocelt-list = prioelt
prioelt-list, priocelt

prioelt = operator = prio

prio = integer
operator

operstmt = OPERATOR operelt-list

operelt-list = operelt
operelt-list, operelt

operelt = operdecl
fendecl
subrdecl

1

resultmode template ,
template

operdecl = operator (mode-list)
operator (mode-list)

1

fendecl = fename (mode-list) = resultmode

- 77 -

subrdecl = procname (mode-list)

mode-list = mode
mode-list, mode
mode = modename
(modename-list)

modename~list = modename
modename-list, modename

template = (literal-sequence)

literal-sequence = literal
literal-sequence literal

pgmstmt = PROGRAM

fenstmt = FUNCTION resulimode fename (parm-list)
subrstmt = SUBROUTINE procname (parm-list)
declstmt = modename decl-list

decl-1list = decl
decl-list, decl

decl = vardecl
vardecl dimelt

vardecl = varname
varname submode

entrystmt = ENTRY procname (parm-list)

dostruc = dostmt END
dostmt; procstmt-series END

whilestruc = whilestmt; procstmt-series END
dostmt = DO initclause controlclause

initclause = varname := expr
varname = expr

controlclause = testclause
whileclause
testclause byclause
testclause whileclause
byclause whileclause
testclause byclause whileclause

- 78 =

testclause = TO expr
DOWNTO expr

byclause = BY expr

°

whileclause = WHILE expr

whilestmt WHILE

expr

casestruc = CASE caseclause ENDCASE

ifstruc = IF ifclause ENDIF

caseclause = expr
expr
expr
expr

inclause
inclause
inclause
inclause

orclause-sequence
outclause
orclause-saquence outclause

inclause = IN procstmt-scries

orclause-~-sequence

= orclause
orclause-sequence orclause

orclause = OR procstmt-series

outclause = OUT procstmt-series
OUTCASE caseclause

ifclause = expr thenclause
expr thenclause elseclause

assignstmt = var

1= expr

var = expr

thenclause = THEN procstmt-series

elseclause = ELSE procstmt-series
ELSEIF ifclause

gotostmt = GOTO label

callstmt = CALL procname (arg-list)

stopstmt = STOP

returnstmt = RETURN

~lostmt = ioname, ioitem~list
ioname (unitno) ioitem-list

unitno = expr

ioitem-list = ioitem

ioitem-1list, iloitem

ioitem = expr
*expr : fmtitem
fmtitem
loopitem

fmtitem = fmt
(fmt-list)

fmt-list = fmt
fmt-list, fmt

fmt = fmtname
fmtname (expr-list)
controlname
controlname (expr-list)

loopitem = DO (initclause controlclause, ioitem-list)

fmtname =

N DO >

controlname = BLANK
COLUMN
PAGE
SKIP

cmtstmt = COMMENT charstringexclsemicolon

modename = identifier
identifier submode

submode = # identifier
* integer

expr = primary
expr operator primary

primary = opnd
operator primary
fenecall

opnd = var
literal
constant
(expr-list)
fename

- 80 -~

var = varname
var (subscript-list)

varname = identifier

°

subscript-list = subscript
subscript-list, subscript

subscript = expr

expr-list = expr
expr-list, expr

fecname = identifier
fecacall = fename (arg-list)

arg-list = arg
arg-list, arg

arg = expr
resultmode = modenane
procname = identifier
label = identifier

parm-list = parm
parm-list, parm

parm = identifer
dimelt = (dim-1list)

dim-list = dim
dim-list, dim

dim = integer

ioname = INPUT
OUTPUT
READ
WRITE

identifier = letter
identifier letter
identifier digit

literal = 'charstring'
"charstring"

integer = digit
integer digit

- 81 -

operator = identifier 7
specialcharacter :
<=
-1

>

constant = integerconstant
shortintegerconstant
realconstant
longrealconetant
imaginconstant
longimaginconstant
logicalconstant

integerconstant = sign integer

sign = empty
+

shortintegerconstant = integerconstant S

realconstant = decimalconstant
decimalconstant realexponent
integerconstant realexponent

decimalconstant = integerconstant .
integerconstant . integer
sign . integer

realexponent = E integerconstant

longrealconstant = decimalconstant longrealexponent
integerconstant longrealexponent

longrealexponent = D integerconstant

imaginconstant = integerconstant I
realconstant I

longimaginconstant = longrealconstant I

logicalconstant = TRUE
' FALSE

APPENDIX 2

. Predefined Modes and Operators

This appendix discusses the definitions which have been made
so that ordinary FORTRAN data types and expressicns may be written in

FLEX much as they are in FORTRAN.

Modes
There are eight fundamental modes which exist in FORTRAN, and

which have been defined in FLEX. They are:

INTEGER#2 (12)
INTEGER*L4 (Iu)
REAL#Y (R4)
REAL*8 (R8)
COMPLEX*8 (c8)

COMPLEX*16 (c16)
LOGICAL#*Y (Lw)

LOGICAL*1 (L1)

The names in parentheses will be used to refer to these modes in the dis-
cussion and tables that follow. The first six are referred to as arithmetic
modes and the last two as logical modes.
The following mode equivalences have also been predefined:
MODE INTEGER = INTEGER*4,

REAL = REAL*L,

I}

COMPLEX COMPLEX*HY

LOGICAL LOGICAL%*4;

- 83 -

In addition, mode STRING has been defined; it is the mode of literals.
The user cannot declare variables of mode STRING because of restrictions

in FORTRAN.

Constants

With the exception of L1, there are constants of every funda-
mental mode. Integer (I4)}, real (R4) and long real (R8) constants are
written just as they are in FORTRAN. Short integer (I2) constants are
just integer constants with the letter S at the end (with no in*tervening
characters). Imaginary (C8) and long imaginary (C18) constants are
designated by a (long) real constant followed by the letter I . Thus
complex constants must be written in two parts, as in:

1.2 + 3.4I

Logical (L4) constants are designated by TRUE and FALSE (without pericds).

A complete description of these constants may be found in Appendix 1.

FLEX imposes no restrictions on the size of an arithmetic constant.
However, fér the program to execute correctly, constants should conform to
the size restrictions imposed by the FORTRAN compiler which is used to

compile the object program.

Priorities
The operators have been assigned priorities so that the usual

FORTRAN order of operations is preserved. The actual priorities are;

o J.00

200
3 - 300
< <= > >= = iz K > 500

+ - 600

/7 700

at.
i
ay

800

Operators written in prefix notation are always invoked first; that is,
they effectively have a higher priority than any operator written in infix
notation. All unary operators are written using prefi» notation, whereas
binary operators are usually written in infix notation. However, they

may be written in prefix notation if desired. In this case, the priorities

listed above are irrelevant.

Operator Definitions

Rather than writing out all the operator definitions which have
been predefined for use in FLEX, they are explained in the following
paragraphs, using tables where applicable.

With the exception of := , all the operators have resulting
modes. In.the tables, the modes of the operands appear as the row and
column indices, while the resulting modes appear as the entries in the tables.
If no resulting mode is shown for a pafticular combination of operand modes,
that combination has not been predefingd. If the same table applies to
more than one operator, the table is given only once, with a list of the
operators to which it applies.

The templates used in translating the operator invocations are
also given. In general, the same template is used for every combination of
modes that is defined for a particular operator. In this case, the template

is specified only once, with the operator to which it refers.

- 85 -

1) Binary := '€1=62;'

All mode combinations such that both operands are arithmetic or
both are logical are defined for the assignment operator := . There is

no resulting mode; invecation of the assignment operator simpl roduces
5 1g D

a FORTRAN assignment statement.

2) Binary + Tgl+e2!
- 1g1-62"
% 161%60!
/ 161/62"
&2 12 T4 RU4 RS cs c16
&1
12 Y Y R R8 cs c16
an Ty Ty RU RS cs C16
RU RU RY RL - RS cs C16
R8 RS RS RS RS cs C16
ce cs cs cs cs cs C16
C16 c16 c16 c16 c16 c16 c16

- 86 -

5

L,

defined between any pair of the logical

L4 but the result is always Lu.

I4 otherwise

>

3) Binary < 161.LT.E2°
<= "> '61.LE.&2!

' > "€1.GT.&2!

>z i< '61.GE.€2!

= '6€1.EQ.82!

= '61.NE.£2!

The comparison operators are defined between any pair of the
modes I2, I4, R4 and R8. The resulting mode is always
4) Binary & '§1.AND.&2°

'61.0R. &2
The logical operators are
modes. The result is always Lu,
Unary - ' .NOT.é&1!
The operand may be either L1 or
!
6) Unary + '+€1!
- 1_811

If the operand is of mode 1I2, the result is

the resulting mode is the same as the (arithmetic) mode

- 87 -

of the operand.

7)

8)

Binary o
Binary //
OPERATOR

I2

I4

R4

R8

cs8

Cle6

// (INTEGER*4,INTEGER*4) = INTEGER*4 ('MOD(81,82)'),
// (REAL*4 REAL¥*L) -

// (REAL*8,REAL%8)

Tg1REgD!

12 Iy Ru R8
Iy Iy Ry R8
Iy Iy Ry r8
RY RY Ri K8
R8 R8 RE K3
C8 C8

Cls Cle

it

- 88 -

REAL#*L ('AMOD(&

1 &

4

2)'),

REAL#8 ('DHOD(E1,82)');

Input and Output

The fundamental modes of FORTRAN already have I/0 routines
associated with them [7]. These routines provide an interface between
the FLEX object code and the FORTRAN execution-time format routines. Each
routine has at least one argument: the expression being printed or the
variable being read. This argument may be followed by up to three others:
the field width, the number of decimal places and the scale factor. The
latter two are used only with real and complex values. If only the
expression (or variable) is specified, free format is assumed, a
description of which is given in Chapter 2. To output a value under
free format, default values for the field width, and so on, are supplied by

the routines. These default values are given in the table given below.

mode routine field width no. of dec. pl scale
L1 I0SL1 b

Ly IOSL4 12

12 © I0SI2 8

Iy I0SIu 13

Ry IOSRL 16 7 0
R8 IOSR8 23 , 1y 0
cs 10sC8 16 7 0
C16 I10$C16 23 14 0

In the case of complex expressions, two real values are printed,

using the same format for each.

- 89 -

APPENDIX 3

Compilation and Execution of FLEX Programs

A sample Job Control Language (JCL) listing, which was used to
compile and execute a FLEX program, is given at the end of this appendix.
As shown in the example, five files are required by the FLEX step. They are:
a) STEPLIB, a partitioned data set (library) containing FLEX
b) TRANSIN, containing the FLEX source program
¢) TRANSCUT, for the FLZX program listing
) SYSPUNCH, for the object program

e) SYSUT1, for temporary use during the compilation.

The SYSUT1 file is used to hold the object statements until the
end of the procedure when the declaration statements of that procedure are
written into the SYSPUNCH file. The SYSUT1 file is then copied to the
SYSPUNCH file following the declarations. This permits declarations to
be made throughout the source program if the user wishes; in the object
code all the declarations are moved to the beginning of the procedure.

The FORTRAN SYSPRINT file (FLEX object code) is usually suppressed.
However, if the user wishes to look at it, the DD-card in the example may

be removed.

Source Listing

A sample listing of a FLEX source program is given at the end of
this appendix. Every input record is numbered sequentially and this number
is used to identify each record uniquely. In addition, a second number
appears on some records. It is the number of the first new statement which

starts on that record. The records are printed exactly as they were read.

- 90 -

If errors are found in a record, errvor messages ars produced in the

listing; for most errors a pointer ($) is used to indicate +he pesition
where the error occurred in the record. Some messages indicate errors on
preceding records, these causing no pointers to be prcduced; however, the

appropriate record and statement numbers are given in the messages.

Messages and Completion Codes

All messages produced by FLEX begin with:
#AESTATEMENT XXX¥X, LINE YYVYyysss

where XXXXX 1is the number of the FLEX statement being processed and
YYYYY is the number of the input record on which the eprror was found. Host
messages precede the record to which they refer. When they do, the position
of the error is marked by a "$" printed directly above it.

Messages in FLEX indicate ocne of the four types of errors described
below.

a) Fatal errors cause compilation to be abandoned and control to
be passed-back to the system immediately (condition code is 16).

b) Severe errors usually cause text to be omitted (condition
code is 12).

c) Errors do not cause text omission (condition code is 8).

d) Warnings indicate a possible error situation although correct
object code is produced (condition code is 4).
Both errors and severe errors cause production of object code to be inhibited
for the remainder of the statement. In additon, FLEX generates a call to a
run-time error routine, ES$STP, so that, if the object program is actually
run (and it should not be), an execution time error will be produced. In

_general, the FORTRAN step is run if the condition code from the FLEX step

- 91 -

is not greater than 8 (as shown in the JCL listing). Thus, if a severe

or fatal error is found, the FORTRAN step is bypassed.

°

Fatal Errors

1. STATEMENT STACK OVERFLOW

Nesting of control structures is too deep.

2. GLORAL DEFINITION STACK CVERFTLOW
A stack used when local definitions are being released at the

end of a procedure has overflowed.

3. ARITHMETIC STACK INCORRECTLY BUILT

This message indicates a compiler error.

b, SYMBOL TABLE OVERFLOW

Too many variables, operators and modes have been declared in

the program.

Severe Errors

1. ARITHMETIC STACK OVERFLOW. STATEMENT ABANDONED,
An expression is too complex and/or control structures are

nested too deeply.

2. PRECEDING STATEMENT SHOULD END WITH SEMI-COLON

Compilation resumes at the next recognizable statement; that is,
after the next semi-colon or punctuation word is found, or when a keyword
is found.
3. NAME PREVIOUSLY DEFINED - OLD DEFINITION USED

The variable being declared has already been declared, or the
name is a keyword, punctuation word, etc.

- 92 -

b, ILLEGAL MODE NAME

The mode name is not an identifier, or has been defined as
something other than a mode.
5. INVALID SUBMODE

The submode is neither an identifier nor an integer.

8. OLDMODE CLAUSE IS MISSING
The oldmode clause has been omitted, or an invalid symbol has

been used for the relation.

7. ILLEGAL OPERATOR SPECIFIED
It must be an identifier, a special character or one of the

special character pairs.

8. EQUAL SIGN LXPECTED

The PRIORITY statement is coded incorrectly.

9, MODE LIST NOT SUPPLIED
The list of mode names in the OPERATOR statement has been omitted

or coded improperly.

10. LITERAL EXPECTED

A template has not been specified correctly.

11. ATTEMPT TO REDECLARE FUNCTION
A function name should be declared only once in a procedure, or

once in the global area, but not both.

12. LABEL IDENTIFIER EXPECTED - STATEMENT ABANDONED

The label in a GOTO statement is not an identifier.

13. VARIABLE WAS EXPECTED AS DO INDEX
The DO index variable should follow the DO immediately (or the

left parenthesis in an I/0 loop).

- 93 -

14, MODE OF DO INDEX IS UNDEFINED

The DO index variable must be declared.

15. I/0 ROUTINE NAME IS MISSING IN MODE STATEMENT
The routine name should be enclosed in parentheses directly

following the I/0 keyword.

16. THIS KEYWORD SHOULD NOT APPEAR IN I/O STATEMENT

Only the keyword DO is valid within the I/0 statements.

17. MISSING RIGHT PARENTHESIS IN I/0 LOCP

The right parenthesis at the end of an I/C loop is omitted.

18. EXCESSIVE NUMBER OF DIMENSIONS - STACK OVERFLOW
The number of dimensions declared for = variable is too large

to be stored in the stack area.

19. DIMENSION STRING TOO LONG - OVERFLOW
The dimension list for a variable being declared in the object

" code has overflowed the area in which it is being constructed.

20. STACK OVERFLOW - TOO MANY LEVELS OF PARENTHESES IN TRANSLATION
The translation of an operator invocation contains too many levels

of parentheses or too many nested subscripts.

21. IDENTIFIER WAS EXPECTED

An identifier is required in a declaration statement.

22, RIGHT PARENTHESIS EXPECTED

No right parenthesis exists to match a preceding left parenthesis.

23. UNMATCHED QUOTE

A literal may not cross a card boundary.

- 94 -

Errors

1. MISSING PROGRAM STATEMENT
> The user has pliaced non-global statements in the global definition

area, or has omitted the PROGRAM statement.

2. INVALID FUNCTION NAME

The name of a function is not an identifier.

3. PARAMETER LIST IS MISSING

Every functicn must have at least one parameter.

b, FUNCTION NAME DECLARED PREVIOUSLY
Name being declared as a function was previously declared as an

operator or subroutine.

5. INVALID PROCEDURE NAME

The name of a SUBROGUTINE or ENTRY point is not an identifier.

8. PARAMETER NAME HAS BEEN USED PREVIOUSLY
A parameter name should not be declared or used before it appears

in a parameter list.

7. MISSING STRUCTURE TERMINATOR
The END, ENDIF, ENDCASE or ENDPROC is missing, or the control

structures are improperly nested.

8. PROCEDURE STATEMENT OR PUNCTUATION SHOULD NOT BE LABELLED

PROGRAM, FUNCTION, SUBROUTINE and ENTRY statements should not be
labelled because of restrictions in FORTRAN. Labelling a punctuation word
is equivalent to labelling the end of the preceding clause, not the following

clause.

- 95 -

9. NAME OF LABEL DEFINED PREVIOUSLY
An identifier used as a label has been defined previocusly. The

user may’ be attempting to use a reserved word.

10. LABEL HAS BEEN USED PREVIOUSLY - NEW DEFINITION IS USED
The user is attempting to redefine a label.
11. PUNCTUATION WORD IS ILLEGAL HERE. IT IS OMITTED.

A punctuation word has been used improperly. The control structures

may be nested incorrectly.

12. DPUNCTUATION WORD "THEN" WAS EXPECTED

THEN is missing or improperly specificd in IF selectien.

13. DPUNCTUATION WORD "IN" WAS EXPECTED

naOT

IN is missing or improperly specified in CASE selection.
14, INFINITE DO LOOP HAS BEEN GENERATED

A TO clause, DOWNTO clause or WHILE clause must be specified to

"provide an exit from the loop.

15. MISSING "TO"

The TO in the GO TO statement is missing.

16. TRANSLATION OF THIS MODE IS NOT A FORTRAN MODE

A new mode is not related to one of the fundamental (FORTRAN) modes.

17. CIRCULAR MODE DEFINITION
The user is attempting to relate a new mode to itself, either

directly or indirectly.

18. CIRCULAR PRIORITY DEFINITION - 200 ASSUMED
The user is attempting to define the priority of an operator in

terms of itself, either directly or indirectly.

- 96 -

19. I/0 ROUTINE NAME IS NOT AN IDENTIFIER
The subroutine name specified in a MODE statement is not a

valid identifier,

20. COMMA SHOULD FOLLOW I/0 KEYWORD
If no unit number is specified, there should be a comma after

the keyword.

21. UNIT NUMBER SHOULD BE INTEGER EXPRESSION

Any expression used to identify the unit for I/0 should be
INTEGER® Y,
22, FORMAT NAME IS UNDEFINED

The format name in an I/0 statement is not one of those which is

reqbgnized by FLEX.

23. FORMAT EXPRESSION SHOULD BE INTEGER

Any expression for the field width, and so on, should be INTEGER%*L.

‘24, NO OUTPUT EXPRESSION PROVIDED
A format item has been supplied but there is no corresponding

expression for output, or variable for.input.

25. 1I/0 ROUTINE NOT SUPPLIED
An I/0 routine corresponding to the I/0 statement keyword has not
been supplied for the mode of the output expression or for any of its

related modes.

26. MISSING LEFT PARENTHESIS IN I/0 LOOP
There must be a left parenthesis between the DO and the following

clauses.

- 97 -

27. MISSING COMMA IN I/0 LOOP

ot
C
th
-t
~.
-
=
ot
[0}
=
73}

The DO clauses must be separated from the lis

by a comma.

28. UNMATCHED RIGHT PARENTHESIS
A right parenthesis matches no preceding left parenthesis in an

I/0 statement.

29. DIMENSION IS NOT AN INTEGER CONSTANT
In a dimensioned variable or mode array declaration, the

dimensions must be integer constants.

30. VARIABLE NAME WAS EXPECTED BEFORE SUBSCRIPTS
User is attempting to subscript a quantity other than a dimensioned

variable name.

3l. VARIABLE HAS NOT BEEN DECLARED

User is attempting to use an undeclared variable.

-32. INCORRECT NUMBER OF SUBSCRIPTS
The number of subscripts specified does not correspond to the

number in the variable declaration and/or in the array mode declarations.

33. TOO MANY SUBSCRIPTS - DELETED AT RIGHT
The user has specified more éubscripts than dimensions declared

for the variable and/or the array modes.

34. OPERAND EXPECTED - PUNCTUATION IS OMITTED
A comma, right parenthesis or colon has been found when an operand

was expected. It is ignored.

35. OPERAND EXPECTED - DUMMY VALUE IS ASSUMED
For the purpose of compiling the rest of the expression, a dummy
operand is inserted. The operand is not declared; that is, it has no mode.

~ 98 -

36, OPERAND EXPECTED - PERIOD IS IGNCRED

A period has been found when an operand was expected. The
period is ignored.
37. TWO CONSECUTIVE OPERANDS - COMMA INSERTED

Two operands appear with no separating operator. They are

assumed to be separated by a comma.

38. PERIOD IS AN INVALID OPERATCR - IT IS IGNORED
A period should not appear in an expression where an operator

is expected.

38. UNMATCHED LEFT PARENTHESIS
A right parenthesis is missing in an expression.
40, NO TEMPLATE SUPPLIED FOR THESE MODES
An operator definition has not been made for the modes that have

been used.

‘41, INVALID PARAMETER INDICATOR IN TEMPLATE

An "&€" found but it is not &én or &Sn.

42, NUMBER OF OPERANDS IS LESS THAN PARAMETER NUMBER
The template contains a parameter reference whose number is larger

than the number of operands in the definition.

43. NO DEFINITION FOUND TO MATCH THIS FUNCTION OR OPERATOR INVOCATION
A match has not been found for the given list of operands; that

is, the appropriate declaration has not been made.

b, UNMATCHED RIGHT PARENTHESIS IN TRANSLATION

The user has omitted a right parenthesis when coding a template.

- 99 -~

45. INCOMPLETE ASSIGNMENT STATEMENT, OR MISSING SEMI-COLON IN TRANSLATION
TEMPLATE
° The user has coded an invalid assignmént statement or he has
forgotten the semi-cclon in the template which causes the statement to be

produced in the object code file.

46, MULTIPLE PERIODS OCCUR IN THIS CONSTANT

A real or complex constant has been specified incorrectly.

47, S CANNOT BE USED WITH TLOATING POINT NUMBER

The short integer marker "S" should not be appended to a floating

point number.

48. TEXT BETWEEN $'S HAS BEEN OMITTED
Severe errors often cause text to be omitted. This message

indicates exactly which text has been skipped.

Warnings

1. INTEGER CONSTANT TOO LARGE - 32767 USED

The priority value must fit in a half-word.

2. UNLABELLED STOP OR RETURN FOLLOWS A TRANSFER

The STOP or RETURN can never be executed.

3. UNLABELLED GOTO STATEMENT FOLLOWS A TRANSFER

The GOTO can never be executed.

4. ASSIGNMENT OPERATOR EXPECTED

In an assignment statement, the left-most operator should be

~ 100 -

MODE HAS BEEN REDEFTINED FOR THIS PROCEDURE

The user is redefining a mode name.

PRIORITY ALREADY DEFINED - NEW VALUE USED

RESULTING MODE ALREADY DEFINED - NEW MODE USED

The user is redefining the resulting mode of an operator definition.

TEMPLATE ALREADY SUPPLIED - NEW ONE USED

The user is redefining the template in an operator definition.

- 101 -

VBOLINVIW 40 ALISY3IAINN Z¥Z°%) 3Jiva

A3sn Mo

aasn A0

a3asn Mo

g3asn A8s

NOIOdY YU%0T1 SINNGD O0/1 08

NOIOdY M%01 SLINNOQD G/1 14

NOI93W Y09 SINNDD O/1 8LI

INIL NdD 23S 14’0

INIL D3IX3 23S 097 He L ENENIE

33SLH°00 NIWO NdJ eelcg vyl dOLS / X3ITIINNY/s 4900 I9Led3d

el eHewt LYvLiS / XIVINNY/ 900 I16Leddl

NOIOAY %Zs SINNOD O/1 6¢ IWIL Ndd 73S 00°0 SWIL J24X3 23S £6°< 09

CDO‘

1O S371 M0 NIVW 23S00°00 NIWO Ndd g€cic 2%yl dOLS / w\ d431S Iviedll

geld eyl Luvis 7/ O/ d31S leleddl
°S3000 NOILIANOD 40 3SNVIi39 NNY LON Svm ¢ 09 - d31S =~ 120Zd41

SWIL Ndd 23S 0070
A0 SO MO NIVW 33S00°CC NIWO NdJ

mZHPUmxwumwmooo Qm

mmﬁmom¢w¢maowm\ cwzq\awhww¢hmw
CelZ iHdynL 19visS / gaMis 431S Hn\m¢

°S3000 NOILIGNOD 40 3SNvI3E NNY LGN SvM ¢ - gdA1 - d31LS - 12024

LL‘ LL' 1id :(
pret peed fmf

dWIL Ndd 23S 00°
NIvW 23S00°00 NIWO

IWIL 23X3 23S »1°% J¥0 4
Ndd el vyl d0LS / 1404/ d31S I%led3dl

celi®ewinl LuVLS / 1404/ d31S 1eleddl
°S3000 NOILIGNOD 40 3Snvi3d NNY LON SvM ¢ LY04 ~ d31S = 120<Z431

(SSVd*UT10)=dSTIA*HINNISAS*X3Td %=NSU 00 NISAS°1uw04//

AWWNG G4 INIYdSAS®Lw0d//
(17148)=0N0D491091¥04 23X3 //

A0 SO MO

IWIL Ndd 23S L%°0 AWIL 23X3 335 #6°0< X=1d

%0 S37 W8S NIVW 33S.%°00 NIWO Ndd 2€1g°2Z%e%L dOLS / X374/ d3LS IvLe431
2E1Z°2H2wL L¥YLS / X34/ d3LS wﬂwmu*m
2100 3000 QROD - 031NJ3X3 SVM d3LS ~ H 1451

22 :3

{CCT=32 1S vd=i3238=49004Vv=1n0% >r (¢1e »:

Aﬂoﬁ mwmx¢wvumu< SAEYOSAS=LINN c:
U0y e =37 1SHTd g = uuf::;o :
immilzmu. :oi:i. E,-._uf"m YOSAS=LING U HOMNJGSAS//
S=dSIU*GTIIXITNI*GHC0WINNYVZ=NSG U0 91Nad18/7

J

MO9=N0OI93Y*¢ Kugutﬁgo 3AXE XHhd/ s

086 40r NV ITUYW s 0=204T=1 =L dW S XX XK 42940

a3snN NOILINIZ43Gd 470 -

ATISNOIAZYd Q3sh

G3LLIWO Ndd9 SVH Sa$
IWYN

G3NTIH430 ATISNCIAZIYMd JWVYN
c(gtvid3aa

$ZAX®

N3I38 SVH JWYN Y3ILIWVHVYd

2049d4aNd

g+v=:430
tg4ve430 V3w

$
sk 2 ¢ INTIT4LT

V3Y NOILONNS

¢ J0dd0N3T

Id =:17AX

O v3y
L(0%ed) T3 AYLINT

$

KnG e AINI*eT

tCd—-ddund=2:1d

$2d Y3931INI

$ed®ld vy

$(2d*1d) o8V 3INILNOYENS

$J0Yd0N3
(A*X) T3 17vD
§(ASX)330=¢
E(1¢X)08Y 1O
$y ¢

Fé1 Y¥Y3I93IUINI
$ZEASX TV3Y
SWVY90Yd

$vV3Y=(T1v3y¥ e v3ay) 430
“(v3¥*vay) 13
S{YIOIINI“TIVIY) I8V ¥OLVY3dO

NI33IMidd 1X3L
3G0W Ivo3TId

$Tiv3d = ¥vIv3y 300w
$ $

ko INITCT
Kk INITI®T

e
81 129
L1 43

INAWI LV LSk
91 1¢
0¢
62
8¢
61 LZ
Y1 9¢
€1 G <

INAWI LY LSk
21 He
11 ¢l
01 <
6 1¢
02
61
81
L1
91
G1
Al
¢1
21
11
01

[ASEEN RN SURN SR b0 ¢

S ERT NN e e3e

INAWH LV L Swsek
INIWALY LSk
€
2
1

APPENDIX Y4

Two Sample Programs

This appendix contains listings and generated object code for
two programs that illustrate many of the features of FLEX.

The first program defines a number of functions and subroutines
which perform operations on polynomials of degree less than sixteen. The
basic mode and operator definitions occupy the first page of the example.
These Jdefinitions are global definitions; they would be used as a prelude
to each program that the user writes to do polynomial manipulation. The
next two pages define the procedures referred to in these global definitionms.
The fourth page contains a sample mainline program that applies the preceding
definitions. The last four pages of thé example contain the FORTRAN object
code generated by FLEX.

The second example illustrates the solution of a linear Diophantine
.equation whose coefficients are multi-precise integers. The first two pages
of the source program contain the global definitions that are used with the
multiple precision package. They allow expressions involving multi-precise
integers to be coded in the normal infix notation, thus making it very easy
for a programmer to perform multiple precision operations. Comparison of
the FLEX program with the FORTRAN program éhows how confusing it would be
to code the FORTRAN program directly using function calls.

Statement 5 illustrates how the = operator may be extended to

compare logical values.

- 104 -

OO WN =

A P A e D i B B B e D B B B B B B R R R e i I L S VN P)

VM BN slesik e s sl i sie sle i 5ic i 35 518 310318 3 54 340 58 336 3l 3e Sl 30 31030k S 38 SN S S s sl s e e ek
.
sk

% GLOBAL DEFINITION AREA

ale sle wle wle she ole wbe abe ate ahe e sle sle sl Lo wle s sle 3le wle whe sl ade wle sle she nbs Ade sbe e st she ale she oo Sle vin afe sia si sl sl wbe sl abe e ale o
GRS RIPRPEP NP AP P LRI R ARAIP PP AP LA L eGP KeP 2P A AP L P PSP AP LG L AR AP LR R DA AP AP AP kb i g ad

% DECLARE REAL POLYNOMIALS WITH A MAXIMUM DEGREE
MODE POLY:REAL(16) READ(POLYIN) WRITE(PLYDUT)Y:
% DECLARE OPERATORS ON THE POLYNOMIALS
OPERATOR + {POLY,POLY)=POLY
('DO &§S1 I$=1,1631
PESLEO(IS)Y=a1(IsY+&E2(15) ¢
TEOt),
+ {(POLY,REAL)=POLY
('E60{1)=81(1)+&23¢
‘DO &SY I$=2,16¢%¢
CESTEO(ISI=81(I%) 0
VEQY),
- (POLY)=POLY
('DO €S1 I$=1,416
tESLE0(IS)==8&1¢(
TEOY),
3% ((REAL,INTEGER) s POLY)=POLY
(*DO &S1 I$=1,163"
CESLEO(IS) =61%E82(1%) ¢
vEOY),
= (POLY,POLY)=t.OGICAL
(YEQUALP(&1,82)%),
= (POLYsREAL)=LOGICAL
(*EQUAL(&1,82) 1),
- (POLY,,POLY)=LOGICAL
- (P oNOTEQUALP(&E1,82)1),
-z (POLYsREAL)=LOGICAL
(Y eNOT.EQUAL(E&1,82)%),
OF (POLYSsREAL)=REAL,
DERIV (POLY)=POLY
("CALL DERIVI(&1+80) 3¢
YEQT Y,
¢ = (POLY,POLY)=
{('DO &S1 I%$=1,163"
TESLIEL(IS)=62(I8)s5),
t= (POLY S REAL) =
(P81({1)=623°
DO &S1 1%$=2,163"
TES1EL(IS$)=0.3%)¢

H]
Is)st

[an)

~

A

% THESE FUNCTIONS MUST BE DECLARED IN THE FLEX PROGRAM
% SO THAT THEY WILL BE DECLARED IN THF OBJECT PROGRAM™

OPERATOR EQUAL (POLYSREAL)Y=LOGICAL,
EQUALP (POLY,POLY)=LOGICAL;S

% YOF' WILL BE USED AS AN INFIX OPERATOR

PRIORITY OF = 10003

51
62
63
s
65
66
67
A8
69
70
71
72
13
M4
75
76
7

78
79
80

81
82
©83
84
85
86
87
88
89

g0

91
92
93
94
95
96
97
98
99
00

01

02
203
04
05
06
07
08
{09
10
11
12
13
14
15
16
17
18
19
20

o

b]

10
11

12

13

14

15

e pemi e
X~ >

19

20

21
22
23

24
25

26
28

A = T abs ale sbe wle alo ale wde abe e b Wb ade e ate ade ale wle b s ae e W als ate e abs ale e e ade sl e s afs Wl e e sl ale afe s s
COMMIEN T =teie sl s s e s i siesieosle sle sl e sie sie 3 sie 512 3 sie sl sle sig 3sle 3 52 230 52 230 58 3038 s sie s xeese s
o
sk

% PROCEDURES FOR INPUT AND OUTPUT OF POLYNOMIALS

slo sle sle st ale glo e sle ale sle she sl ste St sl s whe e she she she s ste sle sle sty sl sle sir e sle sle sle sle sle she ste Sl sl ol sle oe e Sle sLe sl o
SO BESR BT AT AL R AT RS A8 5 3% 58 SR IR IR AR MR KR AT IR AT 30838 3€ X R 3L 3K 38 R AT A AK SR 3L SR RLSC A SR RT3

SUBROUTINE POLYIN (F}g

COMMENT A POLYNOMIAL F OF DEGREE N REQUIRES N+2 VALUES FOR INPUT:

THE VALUE OF Ny, AND
THE N+1 COEFFICIENTS IN INCREASING POWERS:

POLY F3
INTEGER T 4N;3
READs Ny % READ DEGREE OF POLYNOMIAL
NGO (I=1 TO N+1, F{1)}s; %READ THE COEFFICIENTS
DO I=N+2 TO 16
F{I) = 0. % ZERDO REMAINING COEFFICIENTS
CMD

ENDPROC

SUBRQUTINE PLYOUT (F);

COMMENT THE INDEX I OF THE HIGHEST ORDER NON-ZERO COEFFICIENT
IS DETERMINED, AND I COEFFICIENTS ARE PRINTED.
IF F=0. F{1) IS PRINTEDS

POLY F3
INTEGER IT4J:
DO I=16 DOWNTO 1
WHILE F{I1)=0. % DETERMINE FIRST NON-ZERO COEFFICIENT
END
WRITEs DO (J=1 DOWNTO 2,
F{J)y tXxety, J-13I(2)s 1+%),
F(1)s
ENDPROC s

C OMME N T st sl iz s sle sl sie sk si ol e 3ie i e iz s 3¢ 35230 2l) 30 30 3R 38 583K 38 30 308 38 5230 3 38 003K K 3 38
% LOGICAL FUNCTIONS FOR POLYNNMIAL COMPARISON
FUNCTION LOGICAL EQUALP (FsG)s

COMMENT TWO POLYNOMIALS F AND G ARE EQUAL IF F(I) = G(I)
FOR I=1 TO 163

POLY F.G:
INTEGER I3
DO I=1 TO 16
WHILE F(I) = G{(I) % DETERMINE IF COEFFICIENTS ARE EQUAL
END 3
IF 1T <= 16 THEN EQUALP
ELSE EQUALP

FALSE
TRUE FI

ENDPRUCS

e

21
22
23
24
25
26 29 FUNCTION LOGICAL EQUAL (FsA);
27 :
28 30 COMMENT A POLYNOMIAL F IS EQUAL TO A SCALAR A IF
29 ° F IS OF DEGREE O AND F(1l)=Aj
30
1 31 POLY F3
32 32 REAL Ag
33 33 INTEGER 13
34 34 I= (1) = A
35 35 THEN EQUAL = FALSE
36 36 ELSE DO I=2 TO 16 WHIilLE F{I) = 0. END3
37 37 IF 1 <= 16 THEN EQUAL = FALSE
38 39 ELSE EQUAL = TRUE FI
39 F
40 ENDPROC

41

42 .

4.3 40 COMMENT siesi st sle s sl nic 3ie i i 0 i 5030 5 38 ¢ S5 30 AR AT 30 el SRR A A i sl s ik AR S sk
L4 %

45 - # POLYNOMIAL EVALUATION

46

4.7 31 sie e 3 e SISk Sl sl sk e it sk s sl s s 3 e sl sl s sl ol sl e sl sl i sl e sl SOl OISR KSR AR AR Bk
4.8 .

49 41 FUNCTION REAL OF (FyeX)3

50

51 42 COMMENT EVALUATE POLYNOMIAL F AT THE POINT X3

52
53 43 POLY F3

54 44 REAL X3

55 45 INTEGER 13

56 46 OF = F(16);

57 47 DO I=15 DOWNTO 13

58 48 0F = OF & X + F(I)

59 END

260 ENDPROC;

61

62

63 49 COMMENT siesie siesie sieole 5 sfe sl i si 3 ol i 3003 30 330 30 R0 SR AN o 33
H4G %

65 % FIRST DERIVATIVE

66

67 31 sk ol e e sk sie s ale sl gl R e sl Sl R S 3R 3k il Sl Sk 3t s it SR Sl SR BIE SISl N SRR I ORI g

68

169 50 SUBROUTINE DERIV (F,FPRIME):

70

71 51 COMMENT DERIVATIVE OF A POLYNOMIAL F IS A POLYNOMIAL FPRIME
T2 WITH DEGREE 1 LESS THAN DEGREE OF F3 i
73

14 52 POLY FeFPRIMES

75 53 INTEGER T3

76 54 FPRIME(16) = 0.3

77 55 DO I=15 DOWNTO 13

78 56 FPRIME(I) = 1 = F({I+1)

79 END

80 ENDPRUC

3K
3
P
EY)
3
>
7
3
Bl

2

32

33
34
35
36
37
38
39

e o i i D e G e ar w
Ul N = O WSO PN O

®

0

e
~J

VPN VPWN~OD

58

59

60

61
62
63
o4
65
66
67

68

69

71
72
73
74
75

76

T

78

79

81
82
83
84

R P D L D B a t D O B R B B IR VR VRS TR DISUARE I VRN PPN DUSC D PN JIDN DIt D e Y -.'(M e sbe Sle e ale Gt Wls
~ I\ T =l ol sz i o ol i 35Sl s sk s sl sl sl i sl s e ol ok o g i o o Sl i R g Sk Sl sl s sl e sk sk st e sl sl
.

MAINLINE PROCEDURE:
THREE EXAMPLES USING THE DEFINITIONS GIVEN ABOVE

PR A A e N A A B bt b i e e VA T I VR VPN VAR SN VI DIt VUK PIDSVIET VUL DU DAPE DUSY DASY SN S JANC TR DA DA S DA I \l(e Al ol ats by abs \l< e sl o
36 348 238 23 3l e el Ae R e kR AR R O R S ek sl sl s i sl el sk il skl sl sl ok g

PROGRAMS

COMMEN T sie sl slesikadesiesgsi EXAMP LE 1 2% A HE 3K Nk 3RO i i e i ek sk sk 2

i

COMMENT FOR POLYNOMIALS A AND B CHECK IF
DERIV (A} + DERIV (B) DERIV (A
POLY A3BsCDs
READ (5) A,B3
C = DERIV A + DERIV B3
O = DERIV (A + B)g
IF C »= D
THEN WRITE (6)
ELSE WRITE (6)
FIs
WRITE (6) “AY + BY = n, C , SKIP{1l),
II(A + B)! - !!9 D ;

PLUS FORMULA NOT VERIFIED?
PLUS FORMULA VERIFIED?

COMMENT sieste skesiesiestesksle EXAMPILE 2 3R RR A AR AN AN ACR RNOR KR 3

COMMENT FOR POLYNOMIAL A AND SCALAR S CHECK IF
S DERIV (A) = DERIV (S A)g
REAL S
READ (5) S:
C =S %k DERIV A 3
D = DERIV (S = A)s
IF C == D
THEN WRITE (6) *SCALAR MULTIPLICATION FORMULA
ELSE WRITE (6) 'SCALAR MULTIPLICATION FORMULA
FIs
WRITE (6) nS % At = vy C , :SKIP(1),
(S % A)Y = n, D 3 .

COMMENT sk siopslenesksiesiesk EXAMPLE 3 SO SR R AR R0 R RN RO A RO AR KK

COMMENT TABULATE VALUES OF F(X) AND FPRIME(X) IN

NOT VERIFIED?
VERIFIED?

THE INTERVAL

-10 TO 10 TO GET AN IDEA OF THE SHAPE OF F, USING

FIRST DERIVATIVE TEST - CRITICAL POINTS
INTERVALS WHERE SIGN CHANGES;:
POLY F:
REAL X3
READ (5) F3
WRITE (6) sCOL(10)s 'F(X)', :COL(30)s 'FEE(X)1V,
DO (X = =10 TO 10 BY .5,
$SKIP,
tCOL(5)y F OF X 2 E(14s7),
tCOL(24)s DERIV F OF X ¢ E(14,7))3

ENDPROC

LIE IN

SUBROUTINEPOLYIN{/F/)
LOGICAL%4EQUALP
INTEGER®4T$00A,1 N
LOGICAL*4EQUAL
REAL*4F(16)

REAL®4OF

CALL 10$ST(82,5)
CALLIOSI& (N)

I=(1)

T$O0A=(N+(1))

G0T03

I=(1+1)
IF(I1.GT.T$00A)GOTOS
CALLIOSR4 (F(I))
GOTO4

CALL TOS$END
I={N+{2))

T$00A=(16)

GOTNG

I=(I+1)
IF(1.GT.T$00A)GUTOS
F(1)=(0.E0)

GDTO7

RETURN

END ,
SUBROUTINEPLYOUT(/F/
LOGICAL*4EQUALP
INTEGER#4TS00A, 1, 1
LOGICAL*4EQUAL
REAL®4F(16)

REAL*40F

1=(16)

CT$00A=(1)

G0OT03

I=(I-1)
IF(1.LT.T$00A)GOTO5
IF(NOT.(F(TI).EQ.(0.E0)))GOTOS
GOT04

CALL T05ST(14646)
J=1

T$00A=(2)

GOTN6

J=(J=-1)
IF(J.LT.T$O00A)IGOTOR
CALLIOSRG (F(J))
CALLIOSCH (3, Xkt)
CALLIOSTS ((J=(1))s(2))
CALLIOSCH (ly v+?)
GOTN7

CALLIOSRSG (F((1)))
CALL TOSFND

RETURN

END
LOGICALFUNCTIONEQUALP*4(/F/+/G/)
INTEGER®4T$00A, I
LOGICAL*4EQUAL

4

&0 D

REAL®4F(16),G(16)

REAL®40F

I=(1)

T$00A=(16)

GOTO3

I=(I+1)

IF(1.G6T.TS00A)GOTOS
TF(NOTo(F(I)oEQ.G(I)))GOTOS
GOTO4
IE(NOT(I.LE.(16)))GOTO6
EQUALP= .FALSE,

GOTO7

EQUALP= .TRUE .

RETURN

END ,
LOGICALFUNCTIONEQUAL*4(/F/s/A/)
LOGICAL®4EQUALP
INTEGER®4T$008,1
REALY4F(16)

REAL4A

REAL*40F
IF({.NOT.(F{(1)}).EQ.A))GOTO3
EQUAL= JFALSE,

GOTO4

I1=(2)

T$00B=(16)

G0TO05

I=(I+1)

IF(1.GT.T$00B)GOTOT

TE(NOTo (F(I).EQ.(0.EN)))GOTOT
G0OT06
TF{oNOTo(I-LE.(16)))GCTO8

- EQUAL= LFALSE.

GOTO9

EQUAL= TRUE .
CONTINUE

RETURN

END
REALFUNCTIONOF=4(/F/ s/ X/)
LOGICAL*4FQUALP
INTEGER*4T$00A]
LOGICAL®4FQUAL
REAL®4F(16)

REAL%4X

OF=F((16))

I=(15)

T$00A=(1)

GOT03

I=(I-1)
IF(I.LT.T$00A)GOTOS
OF=((OF%X)+F (1))
GOTO4%

RETURN

END
SUBROUTINEDFERIV(/F/ 4 /FPRIME/)
LOGICAL®4FQUAILP

14

24

34

43

44

46

INTEGER*4TS0O0A, ! .
LOGICAL®4EQUAL
REALS4FPRIME(L16) sF(16)
REAL*40F
FPRIME((16})=(0.EQ)
I=(15)

T$O0A=(1)

GOTO3

I=(I-1)
IF(1.LT.T$0O0A)GOTOS
FPRIME(I)=(IxF((I+{1})))
GOTO4

RETURN

END

LOGICAL®4EQUALP
LOGICAL®4FQUAL

REAL¥4TH00A(16),TS00B(16)sTSO00CI16),D(16)3A(16),F(16},;B(16),C(16)

REAL*®4TS00E,TS00F S5 X
REAL*40F

CALL I0%ST(80.(5))
CALLPOLYINC(A)
CALLPOLYIN(R)

CALL TOSEND

CALL DERIV(A,T$00A)

CALL DERIVI(B,T$028B)

DD 4 1$=1,16

T$00C (1$1=T300A (I3)+7$00B (I%)
DO 14 I%=1,16

C {(I$)=Ts$00C (13%)

DO 24 13%=1,15

T$00C (Is)=A (I%$)+B (I$)
CALL DERIVI(T$00C,T$00B)

- DO 34 13=1,416

D (1$)=T%008B (I%)

IF(.NOTo (oNOT.EQUALP(C,D}))1G0OTO43

CALL T10sST(l44,(6))

CALLIOSCH (25, 'PLUS FORMULA NOT VERIFIED')
CALL TOSEND

GOTO44

CALL 10%ST(144,1(6))

CALLIOSCH (21, ¥PLUS FORMULA VERIFIED!)
CALL IOS$END

CALL T0$ST{144,5(6))
CALLIOSCH (10, *A®t + Bt
CALLPLYOUTI(C)

CALLIOSSK ((1}))

CALLTIOSCH (11, (A + B)'?
CALLPLYOUTI(D)

CALL TO$END

CALL T10%ST(805(5))
CALLIOSRSG (S)

CALL TOSEND

CALL DERIV{A,T$00C)

DO 46 1%=1,16

T$00B (I$)=S*T$00C (I3$)
DO 56 1%=1l,16

!
-
—

1
-
—

56 C {(1$)=TH00B (I%)

T DO 66 I$=1,16

66 T$00C (I1$)=S*A (I$)
CALL DERIV(T$00C,;T$00B)
DO 76 1$=1,16

76 D (1$)=TS$00B (I$)
IF{.NOTo(.NOT.EQUALP(C,D)))GOTO85
CALL I0$ST(144,(6))
CALLID$CH (42, 'SCALAR MULTIPLICATION FORMULA NOT VERIFIED')
CALL TOUSEND
GOTC86

85 CALL I0$ST(144,(6))
CALLIOSCH (38, 'SCALAR MULTIPLICATION FORMULA VERIFIED')
CALL IOS$END

86 CALL 10$ST(144%4,(6))
CALLIOSCH (9, 'S = A*t = &)
CALLPLYOUT(C)
CALLINGSK ((1))
CALLIOSCH (11, (S % A)is = ¢)
CALLPLYOUT(D)
CALL IOS$END
CALL 10$ST(80,(5))
CALLPOLYIN(F)
CALL IOS$SEND
CALL I0$ST(144,(6))
CALLIOSCOL((10))
CALLIOSCH (4, 'F(X)?)
CALLIOSCOL((30))
CALLIOGSCH (5, 'Fry(X)t)
X=(=10)
T$00E=(10)
T$00F=(.5F0)
G0T087

88 X=(X+T$00F)

87 IF(X.GT.T$00E)GOTO89
CALLIDS$SK
CALLIOS$COL ((5))
CALLIOSRS ((OF(FeX))s(14)5(T))
CALLIOSCOL ((24))
CALL DERIV(F,T$00C)
CALLIDSR4 ((OF(TS00CeX))s(14)5 (7))
GOTO88

89 CALL I0$END
STOP
END

Lo~ Nn -

COMMENT sk sieslesiolesiolkosk

sl
by

g sl Mo she e b ste wbe sle sle she sl e abe
prdh X G v b s db b gAY P A g » b3 P AIP Y

Be Mo e sl e st wde sie nbe she She abs i sl ale a's

e eSS s e st e e e askoskoa

> DEFINITION OF MULTIPLE PRECISION INTEGER

X

s
29
9
¢ ste st

St st abe le o,
pxd

Sz 3s e ste b she sl als st W sle Sle wle sle e ale o sle sle ale ale sle ale
AR IR IR AR PR SR AN AR AR SR SR AN AR AN AR AR SR SR SR SR AR AR AR SR SR AR AR 3R 2R

MODE INTEGER*®M : INTEGER=*4
READ{ID$IM) WRITE(IOSIM)

OPERATOR

3

/7

//

MP

{INTEGER=*Ms INTEGER
(TMPA{EL,&2) %),
(INTEGER=M, INTEGER
{ "MPAW({EL,E2) %),
(INTEGER®4, INTEGER
{*MPAW(EZ2,861)),

{INTEGER=M, INTEGER
("MPS{&E1,82)%),
(INTEGER*M4s INTEGER
[*MPSW(&1,82) %),
(INTEGER4; INTEGER
{("MPN(MPSW(E2,861))
(INTEGER=#M)}=INTEGE
(PMPN(&ELY V),

{INTEGER=*M, INTEGER
(TMPM{EL,862})1),
(INTEGER=M, INTEGER
("MPMW(E&L1,862) "),
(INTEGER#4, INTEGER
{(*MPMW(E2,81) 1)y

{INTEGER%M, INTEGER
(*MPD(&1,82)1),
(INTEGERM, INTEGER
("MPDW(EL1,62)),

{INTEGER=M, INTEGER

{"MPR{&EL,E2) %),
{INTEGER=M, INTEGER
(*MPRW(EL,862)F),

(INTEGER=M, INTEGER
{("MPXW({&L:E2) %),

(INTEGER#4)=INTEGE
(*MPW(EL) V)

S

b TR S K sk @

e sl ot Sty oy b nbe
SRR RS T IR A BT T R K oK

INPUTITIOSIM)

EM)=INTEGER:M
¥4 = INTEGRER®M

FMI=TNTEGER®M

EMY=INTEGER M
#4)= INTEGER%M
MM)= IHTFEGER <M

E)y’

R M

#*M)=INTEGER=®M

24)= INTEGERYM

#M)=INTEGER*®M

#M)=INTEGER®M

4)= INTEGER®M

MI=TNTEGER::M

4)= INTEGER 4

54)= INTEGER M

R==M

oy

DUTPUT(TIOSIM)

61
62
63
64
65
66
67
68
69
70
71
72
73
T4
75
16
77
73
79
80
81
82
a3
84
85
, 86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120

e .e
i

{INTEGERM, INTEGER®*M}=LOGICAL*4
(*MPCEQ(&L,862) %),

(INTEGER*M,; INTEGER*4)=LOGICAL*4
(*MPCEQW(E1:62)"%),
{INTEGER®4 s INTEGER=®M)=LOGICAL*4
(*MPCEQYW(&2581) "),

(INTEGER*M, INTEGER#M)=LOGICAL*4
(*MPCNE(&L,862) %)

({INTEGER#*M, INTEGER*4)=LOGICAL*4
{"MPCNEW(&L,862) "),

(INTEGER*4s INTEGERXMI=LOGICAL=*4
("MPCNEW(E2,81) %),

(INTEGER*My INTEGER®M)=L0OGICAL*4
(VMPCGT(EL,862) %),

{INTECER®My INTEGER®4)=LOGICAL*4
('MPCOTWI(EL.E2)),

{INTEGER®4, INTEGER®M)=LOGICAL*4
("MPCLTW(&2,61)7),

(INTEGER*=M, INTEGER*M)=L0DGICAL*4
(*MPCGE(&1,862) %),
(INTEGER® My INTEGER*4 }=LOGICAL*4
(*MPCGEW(E&L1+82) %), '
(INTEGER 4, INTEGER*M)=LOGICAL*4
(*MPCLEW(E2+861) '),

(INTEGER*My INTEGER*M)=LOGICAL*4
(*MPCLT(&L,82) %),
(INTEGER*M, INTEGER*4)=L0OGICAL*4
("MPCLTW(E&1,82) 1),
(INTEGER*4, INTEGER*M)=L0OGICAL*4
(*MPCGTW(E2581) %),

{INTEGER=M, INTEGERXM)=LOGICAL®4
{*MPCLE(&1,8&2) %),
(INTEGER*M, INTEGER=*4)=LOGICAL=4
{ *MPCILEW({ELE2) %)y
{INTEGER®4, INTEGER®M)=LOGICAL*4
{ "MPCGEW(&2:861) ")

(INTEGER*Ms INTEGER*M) =
(PCALL MPE(&Ls82)5%)5,
{INTEGER*M; INTEGER*4)=
(*CALL MPEW(&L1,862)3%)
{INTEGER=4 s INTEGER®M) =
(P&1=MPI{82)3'):

121
122
123
124
125
126
127
128
129
130
131
132
133

34
135
136
137
138
139
140
141

142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180

-~

10
11
12

13
14
15
16

17
18
19

20

21
23
24
25
26
27

COMMENT**
% THIS PROGRAM SOLVES THE LINEAR DIGPHANTINE EQUATION
AX+BY=C

WHERE A, By C ARE MULTI-PRECISE,
. IT USES THE STANDARD TECHNIQUE OF EXPRESSING
’ A/ B
AS A CONTIMUED FRACTION TO FIND THE SOLUTION OF

A X + BY = (AsB)o

Lo
EE

AL
ki

24
i

e
W<

e vl wle als abe wie e wte s B T T O S T N N D D D D N P B i A D I e v T i ey d N vdk)
31 ¥ 3je sl e s 3t e sk sk sl sl sl sl sl Sl e sl sie sk 3ol sl sl sk i i sk e 33 SR SR I SR RE R SR AR RESRBER SRR LR

OPFERATOR = (LLOGICAL ¥4, LOGICAL*4)}=_0GICALx
(Y (81 ANDo6E2)e0OReoNOT, {E81,0R&62))3

PROGRAM

INTEGER %M Ay Xy B Yy Cv
APREV, BPREV,
XPREV, XNEXTy YPREVs YNEXT,
Qs Ry
MULT
INTEGER®4 SIGN, JSIGNS

SIGN = +13

READ (5) A, Bs C3
APREV := Aj

BPREV := B3

IF B8 =20

THEN IF A = 0
THEN WRITE (6) 'ILLEGAL DIOPHANTINE EQUATION?'S

STOP
FIs
B := As
X = 13
Y = 03

ELSE COMMENT SET X(1)s X(0)s Y(1}, Y(O) = Oy 15, 1, O
IF SIGNS OF A AND B ARE THE SAME

OR = 0, =1,

IF SIGNS OF A AND B ARE DIFFERENT sedsonsoms

IF (A > 0) = (B > 0) THEN JSIGN := 1
ELSE JSIGN := -1 FIgs
X 2= 03
XPREV = JSIGN;
Y = JSIGNg
YPREV := 03

181

182

183 .

184 28 COMMENT FIND X(N+1) = Q X(N) + X{N-1}
185 Y(N+1) = @ YIN) 4+ Y{N-1)
186 CONTINUE UNTIL REMAINDER IS ZERQO ssisksscsoings
187

188 29 R s= A // B

189 30 i WHILE R == 03

190 31 Q 2= A / B3

191 32 XNEXT := X % Q + XPREVs

192 33 XPREV := X3

123 34 X $= XNEXTs

194 35 YNEXT = ¥ = Q + YPREV3

195 36 YPREV = Y3

196 37 Y := YNEXT:

197 38 A = Bg

168 39 B 1= R3

199 40 SIGN := -~-SIGN;j;

200 41 R 2= A // B

201 . END

202 FIs

203

204

205 4.2 IF C /77 B == 0

206 43 THEN WRITE (6) tNO SOLUTION FOR DIOPHANTINE EQUATION?;:
207 44 STOP

208 : FIs

209

210

211 45 MULT = (C / B)s

212 46 X ¢= X % MULT:

213 47 Y = Y &k MULT:

214 48 IF SIGN = +1 THEN X = -=X

215 50 ELSE Y = =Y FI3

216 51 IF APREV % X + BPREV % Y == (C

217 52 : THEN WRITE (6) 'SOLUTION IS INCORRECT!

218 53 ELSE WRITE (6} APREVy, BPREV,s Cs Xs Y

219 FI

220 ENDPROC

INTEGER*@RPREVngMULTyXPREV¢YPREV9A997XNEXT9BquAPREV,YNEXT7X9C

INTEGER*4JSIGN,SIGN
SIGN=(+1)
CALL 10$ST(80,5(5))
CALLIOSIM (A)
CALLIOSIM (B)
CALLIOsIM (C)
CALL T0$END
CALL MPE(APREV,A)
CALL MPE(BPREV,B)
IF({.NOT. (MPCEQW{B,(0))))GOTO3
TF(NOT{MPCEQW(A,(0))))IGOTOS5
CALL T0$ST(1l445(6))
CALLIOS$CH (28, 'ILLEGAL DIOPHANTINE EQUATION®)
CALLL I0$END
STOP
5 CALL MPE(B,A)
CALL MPEW(Xs(1))
CALL MPEW(Yo(0))
GOT04

3 IF(NOTe(((MPCGTW(As(0)))eAND. {MPCGTWI{Bs (0))))eORaaNOTe ({MPCGTWIA,

X(0)))oeOR.(MECOGTWIB,L(0))))))IGOTOT
JSIGN=(1)
- 60708
JSIGN=(-1)
CALL MPEW(X,(0))
CALL MPEW(XPREV,JSIGN)
CALL MPEW(Y,JSIGN)
CALL MPEW{YPREV,{0))
CALL MPE(R,{(MPR{A,B)))
IF(oNOTe (MPCNEW(R, (0))))GOTOL10
CALL MPE(Q, (MPD(A,B)))
CALL MPE{XNEXTs (MPA((MPM{XsQ))sXPREV)))
CALL MPE(XPREV¢X)
CALL MPE(X,XNEXT)
CALL MPE(YNEXT, (MPA{(MPM(Y,Q)),sYPREV)))
CALL MPE(YPREV,Y)
CALL MPE(Y,YNEXT)
CALL MPE(A,B)
CALL MPE(B,R)
SIGN=(=SIGN) .
CALL MPE(Rs(MPR{A,B)))
GOTN9
10 CONTINUE
& TF({NOTo (MPCNEW((MPR(CsB))s(0))))IGOTOLL
CALL I10$ST(1l44,(6))
CALLIOSCH (36, "NO SOLUTION FOR DIOPHANTINE EQUATION?
CALL ITOS$END
STOP
11 CALL MPF(MULT,(MPD(C,R)))
CALL MPE(Xs (MPM{X,MULT)))
CALL MPE(Ys (MPM(Y sMULT)))
IF(NOT.(SIGN.EQ.(+1)))G0T0O13
CALL MPE(X 4 (MPN(X)))
GOTOl4
13 CALL MPE(Y s (MPN(Y)))

&L~

0

)

14 IF(NOT o (MPCNE{ (MPA((MPM{APREV X)) s (MPMIBPREV,:Y}}}1},C)})IGOTOLS
CALL TO8ST{1445(6))
CALLIOS$SCH (215 fSOLUTION IS INCORRECTE® 1}
CALL I0sEND
GOTOL6
15 CALL JO$ST(1l445(6))
CALLIUSIM (APREV)
CALLIOSIM (BPREV)
CALLIOSIM (C)
CALLIOSIM (X)
CALLIOSIM (V)
CALL IG0S$END
16 STOP
END

(1]

£21

Lu]

[51

[6]

L71

REFERENCES

Backus, J.W. The syntax and semantics of the proposed international

algebraic language of the Zurich ACM-GAMM conference. Proc. ICIP

UNESCO (June 1859) 125-132.
IBM. System /360 and System /370 FORTRAN IV Language. Form C28-6515,
IBM. Operating System Assembler Longuage. Form C28-651k.

Lindsey, C.H., and van der Meulen, S.G. Informal Introduction to

ALGOL 68. North-Holland Publishing Company, Amsterdam (1971).

Mills, H.D. Mathematical foundations for stiructured programming.
Report FSC72-6012, IBM Federal Systems Division, Gaithersburg,

Md. (February 1972).

Zarnke, C.R. Routines for multi-precise integer arithmetic. Scientific

Report No. 69, Department of Computer Science, The University of

Manitoba (April 1973).

Zarnke, C.R., and Zajac, B.P. Input, output and debugging routines
for FLEX. Scientific Report, Department of Computer Science,

The University of Manitoba (to appear).

[8] Clark, B.L. The project SUE system language users guide. Computer

[8] Wirth, N. PL/360, a programming language for the 360 computer.

Systems Research Group, University of Toronto (September 1873).

Vol., 15 (1967) 37-74.

~ 119 -

JACM,

