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Abstract

Ultra high resolution 'H nuclear magnetic resonance spectroscopy
was used to make an in depth study of the conformational properties of 2-
bromo-1-phenylpropane. The relative rotamer stabilities were determined
from the proton;proton vicinal coupling constants in the sidechain, using an
extended Haasnoot form of the Karplus equation. These were compared
with the results of semiempirical and ab initio molecular orbital calculations
on this molecule.

To see whether the Karplus equation can be used to predict these
vicinal couplings when allowing for varying degrees of torsional motion
about the C,-C, bond, these couplings were classically averaged over the
energy profile of rotation about this bond in three ways:

i) The rotational isomeric state method; this method
assumes three static rotamers.

ii) 3-Cusp method; this approach averages over the bottom
of the potential wells within 2.5RT of the minima.

iii) Continuous method; this methods averages over the
complete energy profile.

Using the continuous averaging approach and the Karplus equation,
the effect of varying the barrier height to rotation about the C,-C, bond on
the vicinal coupling constants was investigated. The behaviour of these

coupling constants was discussed in terms of the symmetry of the potential
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wells and angular dependence of the coupling constants about the minima
of the wells.

From the six-bond coupling constants between the benzylic protons to
the proton in the para ring position, <sin’y;;> were determined, from which
upper and lower limits of the average barriers to phenyl rotation were
found. <sin®y,> values were also calculated from semiempirical and ab
initio molecular orbital calculations in order to gain some insight into these
barriers. 1y is the angle which the benzylic C-H bond makes with the
plane of the ring. Experimental <sin’y,> values were used to predict
*J cuanz» and <sin®y/2> using modified expressions for *Jeysn, and “Jops ps
from toluene.

FPT MO INDO and CNDO/2 calculations were used to predict I ne
Jimaz Jnc "I e *Jim e OHCHS *Tiane “Jrppe 2nd "Jycm Which were
classically averaged over the phenyl rotation. These results were compared
with experiment. The methylene protons are designated A and B, the
methine proton is C and the ortho, meta and para protons are in positions

2, 8 and 4, respectively.
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1 INTRODUCTION



1.1 The Karplus equation

Based on the valence bond description of ethane, Karplus found that
the vicinal proton-proton coupling constant had a cos’ dependence on the
torsion angle between two C-H bonds (1-3). This behaviour of the vicinal
coupling constant is largely a consequence of the direct interaction between
the electrons in the two C-H bonds which is important in correlating the
electron, and hence the proton, spins. The direct interaction, proportional to
valence bond exchange integrals, is minimal when the two C-H bonds lie in
mutually perpendicular planes (¢ = 90°)(4). An acquaintance with
trigonometry, together with the constraint that J be positive, suggests that
the ¢ dependence between 0° and 180° be mainly on cos’¢, perhaps slightly
on cos¢. This is indeed true. The stereochemical significance is obvious.

Later, with Barfield, Karplus reformulated the equation as follows (4)

J = A cos?}p + Bcosh + C 1.1

Many attempts were made to modify the parameters A, B and C empirically
(5-19), in order to achieve maximum predictive accuracy for several families
of molecules including ethanes (5,6), peptides (8,9,11,15-18,20), amides
(18,14), amines (12) and carboxylic acids (19).

The vicinal coupling constant is also strongly dependent on
substituent electronegativity and several attempts were made to modify the

equation to simulate this dependence (21-24). Initially, this was done by



Durette and Horton who suggested (24) that the original expression should

be multiplied by a correction factor as in

J = (A cos?p + Bcosd + C) (1~0.12Axi) 1.2

Ay is the electronegativity difference between the substituent and hydrogen.
The orientation of a substituent with respect to the coupled protons is
also an important consideration (21,25-31). Haasnoot et al. developed a six-
term expression based on molecular orbital theory (22), with parameters
which were functions of the electronegativity of both the first (o) and second
(B) atoms of the substituents, as well as of the torsion angle and orientation

(equation 1.3).

J = P,cos?d + P,cosd

+ ZAXi[P3 + P4COSZ(C1¢ + p5|AXiD]

g, is = 1, dependent on the orientation of the substituent. A sixth
parameter Pg is employed for substituents with p atoms (22).

The Haasnoot form of the Karplus equation was reformulated by Imai
and Osawa into a linear combination of 11 independent terms and 22
adjustable parameters (32-33). Included were the effects due to various

structural features, such as the valence angle at both C-H bonds (w), a and



p substituent electronegativity (Ay;* and Ax%) and orientation (6; and ),
carbon-carbon bond length (ro ), and proximity or through-space
interactions as a function of r (the distance between a coupled proton and a
nearby nonbonded atom). The expression (equation 1.4) was fit to a set of

198 coupling constants with a standard deviation of 0.33 Hz.

J = Acos¢ + Bcos2d + Ccos3d + Dcos?2¢
+ W(Ecos$ Y Ayicos; + F Y Axjcos(26;)

(0, + @)

- 110
3 ]

+ G Y Ay + HI

+ I(Lop = 1.5) + KZAx?-coszq.r + Lrt + M

A more popular shortened form with 14 adjustable parameters was
developed by evaluating the relative importance of each term and
eliminating those which were most insensitive to the variables (34,35).
Coupling constants predicted with this equation (equation 1.5) fell within a

standard deviation of 0.45 Hz for 195 data points.

J = Acosd + Bcos2¢ + W(Ecosd) ZAx‘fcosGi)

(0, + 0,)

- 110] + M
2

+ H[

This form of the Karplus equation will be used in the following analysis.




1.2 The rotational isomeric state (RIS) method

Vicinal coupling constants are averages over all the conformations of
the molecule (36). With the Karplus equation it is possible to predict the
coupling constant in each of these conformations. Therefore it is possible in
principle to determine the population of the conformations, provided there
are enough measured coupling constants (21,36-38).

For substituted ethanes the Karplus equation in its various forms has
been widely used in determining relative rotamer stabilities (36-40). In
most applications it is assumed that the molecule can exist in three rigid
rotamers (38). Using ideal geometries, where the torsion angles are 60°
(gauche), 180° (trans) and 300° (gauche denoted as g’) and with valence
angles of 109.5° coupling constants for each rotamer are calculated. The
observed couplings can be expressed as the predicted couplings in each
rotamer state averaged over the rotamer populations. Provided that there
are enough equations, the rotamer populations can be determined. For
instance, for a trisubstituted ethane with protons labelled A, B and C, the
rotamer populations, P,, P, and P;, can be calculated from the following

system of equations (21,36-39):

Ja,B = PnglB + PzJ;/B + PaJ‘t?'B

= P,gXC + Pat© + Py ¢ 1.6

o
a
n

P+ P, +P =1




The above technique is known as the Rotational Isomeric States
method (RIS) or sometimes as the n site method. It is based on the
assumption that vicinal coupling constants in substituted ethanes can be
adequately described as an average over three static conformations. What
happens when torsional motion about the C-C bond is considered? Can the
Karplus equation be used in an analysis that permits for some motion about
the ethane C-C bond? What if the barrier to rotation about the C-C bond

were small?

1.3 Introduction to the first problem

To see whether the Karplus equation can predict vicinal coupling
constants over a range of torsional angles in each rotamer state, an
investigation will be made into the vicinal couplings in 2-bromo-1-
phenylpropane, a trisubstituted ethane. The rotamer populations will be
determined with the RIS method using the extended version of the
Haasnoot equation (equation 1.5). Both semiempirical and ab initio
molecular orbital calculations will be performed on this molecule to find the
optimum energy and geometry of each rotamer. The optimum geometries
will be used with the RIS method to preciict the rotamer populations. These
populations will be compared with those predicted from the molecular

orbital calculations and with those determined from ideal geometries.



Further, molecular orbital calculations will be done to determine the
energy profile (V(¢)) of rotation about the C(sp®-C(sp® (¢) bond. An
expression for the two vicinal coupling constants as a function of ¢ (J(¢))
will be developed from the extended Haasnoot form of the Karplus equation,
using the optimum geometries along the energy profile. With V(¢) and J(¢)
the average of the vicinal couplings will be evaluated in two ways. The first
will be an average over all regions of V(¢) that fall within 2.5 RT of the
minimum energies. Since this method samples the bottom of the energy
well of each rotamer it is called the 3-cusp method. The second method
involves calculating the average over the entire range of ¢. This will be
referred to as the continuous method. Both methods of averaging J(¢)
involve weighting J(¢) at each value of ¢ according to the population of the
conformation with ¢ prescribed by the Boltzmann distribution at V(¢).

Thus the classical average of J over an interval a to b in ¢ is

b
fJ(d)) exp- V}(??,)
<P =2 = 1-7
_Vid)
[ex0-—2%

This procedure assumes that the density of hindered rotamer states at
ambient temperatures is sufficiently high that any quantum mechanical
expectation value will be closely approximated by its classical average. This

is the case with expectation values for phenyl rotation, as shown by studies



in this laboratory (41).

The vicinal coupling constants will also be calculated using FPT MO
INDO and CNDO/2 computations on 2-chloro-1-phenylpropane with the
optimum geometries from the ¢ profile. The INDO and CNDO/2 algorithms
are not parameterized for bromine (42); when the geometries of the bromine
compound are retained, substitution with chlorine in this manner should
not grossly alter the results since the difference in electronegativity of
bromine and chlorine is only 0.2 Pauling units (43). The CNDO/2 and
INDO expressions for these couplings will be averaged using both the 3-
cusp and continuous methods. The averaged CNDO/2 and INDO results
will be compared with those from the Karplus equation.

The performance of the RIS method will be compared with the
results of the continuous method applied to various barrier heights. The
behaviour of these predicted coupling constants will be discussed in terms of

the symmetry of J(¢) and V(¢) in the regions about the energy minima.



1.4 Coupling constants between protons in the sidechain and
those in the aromatic ring.

Long range coupling constants between benzylic protons and the ring
protons in toluene and its analogues can be described in terms of three
mechanisms: the o mechanism, the o-n mechanism and the through-space
mechanism (44). The o mechanism transfers spin information through the
" o-bonds of the molecule. The o-n mechanism involves the transfer of the
spin state information from the sidechain o orbitals to the n orbitals of the
ring through the hyperconjugative overlap between the benzylic C-H bond
and the n system of the ring. This is followed by o-n interaction between
the n orbitals of the ring and o orbitals of the ring C-H bond (45). The
through-space mechanism entails the transfer of spin state information
through two proximate orbitals in the bonds containing the nuclei (44).
This phenomenon is also referred to as the non-bonded interaction (46).

Wasylishen and Schaefer propose that the angular dependence of the
o electron contribution to the 5-bond coupling °Jys ;s in toluene is given by

(45)

5 - 570 ~ 3 2
JCH3,H3 = JlBO sin (

v o
[
[ ]
[0 )

where °J°, pertains to the all-trans planar arrangement of the intervening
bonds.

Analogous to the McConnel-Heller equation (47), the angular
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dependence of contributions from the o-n mechanism is given by

JO = J5, "sin?0 1-9

A generalized equation for the angular dependence of these types of long

range coupling constants takes the form (41)

J = J" sin?0 + J sinz—g- + Jrpg 1-10

Jo is a term accounting for the through-space contribution to J.

The four-bond coupling constant *Jys 1, has been written as (48)
*Tew,n, = 6.90msin? - 0.32co0s?0 1-11

where & is the mutual atom-atom polarizability associated with the 2p,
orbitals in the C,-C, bond. In toluene = is -0.157, therefore equation 1-12

becomes

= -1.08<sin%@> - 0.320<cos?0> 1-12

4
J CHy K,

The second term in the equation is attributed to the o contribution to this
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coupling constant.
The angular dependence of the five-bond coupling constants was
investigated with a series of ortho-difluoro derivatives of toluene (49).
These compounds were chosen to give a large range of <sin?6> and since
they have symmetric evenfold barriers, <éih29/2> can be assumed to be 0.5

(50). The expression for °Juy, ys in toluene became

*Jow,m, = 0.336<sin0> + 0.322<sin2—g> 1-13

From experiment and theoretical investigations it has been
established that the six-bond coupling to the para proton in toluene is
dependent only on sin®8 (51). Since <sin’0> is 0.5, and *Jqy, , is - 0.602 Hz

in toluene, the expression for the six bond coupling takes on the form (52)

8Tcy,, 5, = ~1.20<sin’0> 1-14
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1.5 Internal rotational barriers and the J method
The generalized equation for the angular dependence of the six-bond
coupling constant from a nucleus on the a carbon and a nucleus in the para

ring position of a substituted toluene is given by (51)

6'.7- = 6Joo + 6J900<Sin26> 1—15

%J4, and ®J, are this coupling constant when 8 = 90° and 6 = 0°,
respectively. In most cases °J, is negligible for a saturated sidechain.
However, this is not always the case, as in benzaldehyde and styrene, in
which ®J, is + 10 mHz (53,54), and -120 mHz (55), respectively. Equation 1-
15 implies that with an accurate value of ®Jy, <sin’0> can be calculated
from an experimental ®J (51); <sin?@> is the ensemble average of sin®0
over all the hindered rotor states. Thus if the barrier to sidechain rotation
is a simple function, it can readily be related to <sin®0> (51).

Take for instance an evenfold barrier, which is expressed as

=
<D
i

V,ysin?nNo

V.
= %"[1 - cos2NO]

V,y is the 2N-fold barrier height. The hamiltonian operator which describes

a rotor hindered by this barrier is given by (56,57)



h  d? Voo 2 _
2Ir565+7[1 cos?20] 1-17

I_is the reduced moment of inertia of the molecule. The Schrédinger

equation is given by

__h d?
2T, do>

‘;2"’[1 - cos®22M01 M, = E ¥, 1-18

which can be transformed into the form of the Mathieu equation (51,52).
The solutions 4, are expressed as even Fourier series in 6 (5§7,568). The

expectation value of sin®0 is evaluated from

al E
exp[—E’%] <Y, |sin?0|y,>
<sin2@y = =22 — 1-19
Em
:‘;o exp[-—=7]

1, are the hindered rotor states and E,, are the corresponding energies.
The first 21 free rotor states provide an adequate basis set to obtain
accurate <sin?0> values at ambient temperatures (51).

When the barrier to rotation is composed of many evenfold terms, the
solutions to the Schrodinger equation can become complicated, and

calculation of the expectation values over these states would become very



14
involved (41). The barriers to internal rotations of this type are small and
therefore the rotational states are very closely spaced. Thus at ambient
temperatures the ensemble average of the quantum mechanical expectation
values will closely correspond to the classical average as in equation 1-20
(V(0) is some series representation of the barrier in 0)(see figure 1.5.1).

Thus it is often more convenient to calculate the classical expectation value

for a given barrier than the quantum mechanical one via 1-20.

21

fsinzﬁexp [—-l/}é;g,)]
<sin?@y> =2 — 1-20
G
fexp[ ST ]

0

A more complicated barrier leads to some interesting questions.
How does one derive useful information from experimental <sin®8> values
when the barrier is complex, containing several symmetric and asymmetric
terms? Furtherfnore, how does one deal with a molecule which can exist in
several states, each state having a different profile of phenyl rotation? Are
molecular orbital calculations useful for providing answers to both

questions?
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Figure 1.5.1

A comparison between classical and quantum mechanical means of
calculating <sin?@>. For both methods <sin®6> is presented as a function of
the twofold barrier height, V,, at 300 K.

0.5

— & — (lassical

0.4 - —O— Quantum Mechanical

<sin?e>

0.1 -

0.0 I I | I
0 5 10 15 20 25

V,, [kJ/mol]
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1.6 Introduction to the second problem
2-Bromo-1-phenylpropane is an asymmetrically substituted
ethylbenzene and, since the methine carbon of the -CHBrCH; group is
chiral, the two benzylic protons have different chemical shifts and different
couplings with the ring nuclei. A second objective of this investigation is to
test the applicability of molecular orbital calculations for the prediction of
<sin®@> for the benzylic protons. If so, are the calculations useful in
interpreting the experimental <sin®0> in terms of some type of barrier to
internal rotation?
2-Bromo-1-phenylpropane can exist in three rotamer states, where

each will have a different energy profile for phenyl rotation. These energy
profiles will be determined for each rotamer using both semiempirical and
ab initio molecular orbital computations. The classical expectation values
of sin%0 will be calculated using equation 1-20 and averaged according to the
rotamer populations. Another approach assumes that the phenyl barrier in
each rotamer is twofold and that each rotamer has a different stable
conformation of the C-C bond with respect to the phenyl ring. For each
rotamer the maximum of the 6 profile is ’.c.a“ken to be the apparent twofold
barrier height, V,, from which <sin”0> values are determined. These are
t.;hen averaged over the rotamer distributions. The computed <sin’6> values
from both methods will be compared with the corresponding experimental
value as calculated from equation 1-15 using °J,, based on the group

electronegativity of -CHBrCH,.
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Upper and lower limits of the barrier in each solution will be
determined using the average <sin®0> of éhe two benzylic protons. These
barriers will be compared with the averaged computed barrier from the
molecular orbital calculations.

The <sin®@> values of the two benzylic protons determined from
%J 1 ns Measurements will be used to predict *Jyx y, With a modified equation
1-12; <sin®0/2> for each benzylic proton will be calculated from
corresponding experimental <sin’6> values with a modified equation 1-13.
These values for <sin®0/2> will be compared with those calculated from
molecular orbital results. Both equations 1-12 and 1-13 will have the term
representing the & contribution adjusted to the -CHBrCH; group
electronegativity.

INDO has been known to give semiquantitative accuracy for
couplings from benzylic protons into the ring protons (45). An FPT MO
INDO and CNDO/2 investigation will be made into these couplings, along
with the very long range coupling from the methine proton into the ring.
These will be calculated at various values of 8 for each rotamer, and their
classical averages over the 8 profiles will be computed. The predicted

values of all these coupling constants will be éompared with experiment.



18
1-7 Significance of the experiment

2-Bromo-1-phenylpropane poses a significant challenge to nmr
spectral analysis. Very high resolution is required to resolve the peaks in
the aromatic region because extremely small couplings from the protons in
the methyl and methine groups are present. The protons of 2-bromo-1-
phenylpropane make up a ABB’'CC’'MNOX, spin system, giving rise to a
total of 6592 possible transitions, which have relatively few degeneracies, a
consequence of the asymmetry of this molecule.

A detailed investigation into an asymmetrically substituted
ethylbenzene like 2-bromo-1-phenylpropane has not been done with ultra
high resolution nuclear magnetic resonance spectroscopy, looking into both
the conformation of the sidechain and of the phenyl ring. A separate
analysis of two nonequivalent benzylic protons, determining their individual
couplings into the ring, has not been done before. This laboratory has
worked with molecules of this size previously (69-62). For example, studies
have been made of molecules like Z-methl}.flu-1-(3,5-dibromophenyl)ethane
(63), isobutylbenzene (61), isopropyl benzene (60) and 3-phenylpentane (62),
where sidechain and phenyl conformation were investigated and apparent
two and fourfold barriers were found. With 1-bromo-2-(3,5-
bromophenyl)ethane, 1-amino-2-(3,5-dibromophenyl)ethane and 1-methyl-2-
(8,5-bromophenyl)ethane, a similar analysis was preformed. However, in
these cases an attempt was also made to determine the barrier of the

gauche rotamers (63).
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Much work has been done on the conformation within the sidechain
of related molecules (86-38,40,64-66). These investigations are mainly
limited to determining the relative stabilities of the rotamer states from the
vicinal coupling constants. In one case, the effect of the phenyl group on
the barrier to rotation of the central butane bond of 2,2-dimethyl-3-
phenylbutane was investigated (67). In this study, however, there was no
method employed to find the actual orientation of the phenyl group with

respect to the sidechain. Only vicinal couplings were employed.



2 MATERIALS AND METHODS

20
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2.1 Sources of compounds, and NMR sample preparation
All solvents were obtained from the Aldrich Chemical Company,
except for CS,, which came from BDH Chemicals. (+)-2-Bromo-1-
phenylpropane was bought from the Aldrich Chemical Company.
Samples for NMR analysis were prepared of (+)- 2-bromo-1-
phenylpropane as 5 mol % solutions in the following solvent systems:

i) 99.5 mol % acetone-d, (99.5 atom %), 0.25 mol % CgF, and 0.25
mol % TMS.

ii) 89.5 mol % CS,, 10 mol % cyclohexane-d,,, 0.25 mol % C,F, and
0.25 mol % TMS.

iii)  99.5 mol % dichloromethane-d, (99.6 mol %), 0.25 mol % C.F,
and 0.25% TMS.

The solutions were filtered through a piece of cotton wool into a 5 mm
od nmr sample tube. The solutions were degassed by the freeze-pump-thaw

method, using at least 5 cycles, after which the tubes were flame sealed.
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2.2 Spectroscopic method and spectral processing and analysis

All NMR spectroscopy was performed on a Bruker AM 300
spectrometer at a probe temperature of 300 K. Survey 'H NMR spectra
were obtained for which spectral widths of 6000 Hz were necessary. From
these spectra, offsets and spectral widths were determined for regions of
interest.

Ultra high resolution spectra were obtained of these predetermined
regions. In order to achieve this resolution, extensive shimming was
performed on the region containing the TMS peak. A proper shim was
indicated by a lorentzian line with a width at half height of less than 0.1 Hz
before resolution enhancement. The spectral widths of these regions varied
from 60 to 200 Hz. Acquisition times were typically 40 s. In most cases 64
scans were acquired. The digital resolution ranged from 0.002 to 0.006 Hz
per point.

The free induction decays (FIDs) were zero filled twice. The amount
of gaussian broadening was based on how far the FID extended over the
acquisition time. Typically values of 0.5 to 0.6 were used. Lorentzian
broadening ranged from -0.10 to -0.20, the magnitude depending on the

signal to noise ratio.

All spectral analyses were done with the ASSIGN program, using
NUMARIT (88) as a front-end. The 'H spectrum of 2-bromo-1-
phenylpropane was analyzed as if it arose from an ABB’'CCMNOX; spin

system.
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2.3 Calculation of the 6 profiles, <sin’y,>, and ¢ profiles of 2-
bromo-1-phenylpropane.

Semiempirical and ab initio molecular orbital calculations were
performed, at AM1 and STO-3G levels, for 2-bromo-1-phenylpropane as a
function of rotation about the C,-C, (6 = 90 -C;C,C,C,) and C,-C4 (¢ =
C,C4C,C,) bonds (see figure 3.1.1), at 15° intervals, allowing the geometries
to optimize. From a plot of relative energy as a function of 6 and ¢, three
minima were picked out. At each of these minima, 6 and ¢ were allowed to
relax, giving rise to the optimized geometries of the three rotamer states.
Further calculations were performed to allow the hydrogens on the ring to
move out of plane; these are referred to as the relaxed geometries.

In the energy surface mentioned above, corresponding to the minima
in the ¢ dimension, there is a trough in the potential surface along the 6
dimension (see figures 8.2.1 to 3.2.4). The geometries with ¢ values closest
to those at the bottom of the trough were noted for each interval in 6.
These geometries were used in further calculations permitting the angle ¢
to relax, but keeping 6 fixed. By tracing the bottom of the trough in this
manner, the energy profile of phenyl rotation was determined for a given
rotamer state. This procedure was used for all three rotamer states, and
these calculations were taken to the STO-3G* level. A similar but reversed
approach, where ¢ is fixed and 8 is relaxed, was taken to calculate the
energy profile of sidechain rotation.

The energy profiles in both 6 and ¢ were fit to a Fourier series
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truncated to 17 terms, using a curve fit routine in the Sigma Plot program.

This Fourier series was of the form

8
V(Y) = G + Y, [S,sin(ny) + Cycos(ny)] 2.1
' n=1

where vy is either 0 or ¢. Using the Fourier coefficients, the classical
expectation values of sin*y, were calculated for each rotamer, j, as in
equation 2.2. The angle v, represents the angle between the C,-H bond and
the plane of the ring. For 2-bromo-1-phenylpropane, yy, is 6 + 7/6 and 3

is 0 - m/6.

27

V. (6)

P 2 -
'2 481n Y, (0) exp T do
<sin Y5 = =
fex —Vj(e)dﬁ 2.2
: P RT

In the expression for <sin21pi>j, V,(6) represents the energy profile of rotamer
j, R is the ideal gas constant, and T is the temperature. The <sin21pi>j
values were further averaged over all three rotamer states using an average

weighted according to the integral



2%

v.(6)
- —_Jd
P {exp — T

Therefore the value for <sin®y,> is given by the expression

3
P<siny ;>
<sin?y,> = 1=

3

Py
J=1

Thus the population of each rotamer, Pop;, was calculated as

(%]

25
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2.4 FPT MO INDO and CNDO/2 calculations and the
determination of the classical expectation values of the
coupling constants between the nuclei of the sidechain and
those of the aromatic ring
FPT MO INDO and CNDO/2 calculations, using STO-3G* geometries

of the 0 energy profiles of 2-bromo-1-phenylpropane, were done to estimate

*J(H_H,) (where s and r stand for side chain and ring , x=4,5,6 ) as a

function of 6.

The FPT MO INDO and CNDO/2 curves for each rotamer were fit to

a Fourier series truncated at 17 terms

8
J); =G + Z [S,sin(nB) + C,cos (n0)] 2.6
n=1

The resulting expressions for the 8 dependence of J, J(8),, along with the 6
energy profiles, V(8);, for each rotamer were used to calculate the classical
expectation value of each coupling constant for each rotamer. The classical

expectation value of J(6), with energy profile V(6), is given by

v(0)

2n .
[ a(8); expl-—=21 d®
_ Jo RT
0 RT

These averaged values were further averaged over the three rotamer states,



27

weighted according to the integral P; from equation 2.3

Average values were also obtained in the absence of a barrier, which is

given as

21
J(0),; db
<J(0) >5ee =f° ’ 2.9
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2.5 FPT MO INDO and CNDO/2 calculations and the
determination of the classical expectation values of the
coupling constants between the nuclei on the sidechain.

INDO and CNDO/2 MO FPT calculations, using ST0-3G* geometries
of the ¢ energy profiles of 2-bromo-1-phenylpropane, were done to estimate
*J(H,,H,) (where s stands for side chain, x= 3,4 ) as a function of ¢. The
resulting curves in ¢ were fit to a Fourier series truncated to 17 terms.

The ¢ dependence of the vicinal coupling constants for both

molecules was also predicted using an extended version of the Haasnoot

formulation (22) of the Karplus equation, namely

J(¥) = Acosy + Bcos2y + W E cosy Y Ay,cosi;
2.10

(0, + @,)

+ HA{ - 110} + M

In this expression v is the dihedral angle between the C-H bonds of the
coupled protons in the ethane fragment. Also, Ay; = x; - xy is the Mullay
group electronegativity (43,69,70) with respect to that of hydrogen of a
substituent which makes a dihedral angle & with the proton of the coupling
pair opposite to it across the C,-Cg bond. The angles w, and w, are the
valence angles of the bond containing the coupled protons. A, B, W, E, H
and M are optimal parameters for a trisubstituted ethane based on a set of

198 experimental vicinal coupling constants (34,35).
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For both molecules, the difference between the valence angles,

(w; - wy), of the two coupled protons was calculated for each increment in ¢,
using STO-3G* geometries. These values were fit to a 17 term fourier
series giving rise to an expression for (w,; - w,) in ¢, Aw(¢). Using the
parameters from table 2.1 and Aw(¢), an expression for each of the vicinal
coupling constants was derived in terms of ¢. Note that in table 2.1 there is
a different phase relationship between ¢ and ¢ for each vicinal coupling
constant.

Three approaches were used to calculate an average of the vicinal
coupling constants over the ¢ profiles. The continuous method, which is
essentially the same method used for the averages over 6 above, gives the
average of the expression of the vicinal coupling constant as a function of ¢.

The continuous average can therefore be expressed as

A second approach, which I call the 3-cusp method, averages only over the
portions of the profile that fall within 2.5 RT of the minima in the ¢ profile.
Near each minimum the limits of integration are determined from the ¢

profile, a; and b;. Thus the expression for the average is
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3 by
Y [ srexpl- Lo,
&) RT
<D = . 2.12
Ef exp [-ZE V(¢ ]
J= Oaj

Table 2.5.1 Parameters, torsion angles and Mullay group
electronegativities required for the extended Haasnoot
formulation of the Karplus equation for the vicinal coupling
constants in 2-bromo-1-phenylpropane.

2-Bromo-1-phenyl
propane
J Jpe Tne
P*? ¢ + 4n/3 ¢
A® -1.3556
B 4.9649
E 1.0374
H -0.2061
M 6.4068
W 141
Ecus” ¢ + 2n/3 ¢ + 4n/3
oy ¢ | o+2u3
E, ¢+ 2n/3 | ¢+ 2n/3
Axcns” 0.24
Axgr 0.73
Ax, 0.32

2All angle ¢ and & were read from the computed STO-3G structure. °All
parameters A, B, E, H, M, and W are taken from reference 35. “All Mullay
electronegativities were taken from references 43,69 and 70.
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The last method, known as the three-site, or rotational isomeric states
method, as normally used in the literature, evaluates the coupling constants
at the optimized rotamer geometries and computes a wéighted average
according to the rotamer populations. Let AE; and J; be the relative energy
and coupling constant of rotamer j, respectively, then the three site average

is

AE.
ZeXpﬂ[‘- R?]
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RESULTS

32



33

3.1 'H spectral results for 2-bromo-1:phenylpropane

The 'H spectral parameters for 5 mol % solutions of 2-bromo-1-
phenylpropane in acetone-d;, CS,, and CD,Cl, are summarized in table
3.1.1. The labelling scheme in table 3.1.1 is based on figure 3.1.1 below.

There are no significant correlations between the parameters.

Figure 3.1.1 2-Bromo-1-phenylpropane

9
CH
\
\
H ’C/Br

The following spectra and corresponding simulations, figures 3.1.2 to

3.1.5, are for the solution in CD,Cl,. All figures have the simulation on top,

with the spectrum on the bottom. The scale refers to TMS as zero.



Table 3.1.1

TH NMR spectral parameters of 2-bromo-1-phenylpropane in CS,, CD,Cl,, and acetone-d,.

34

CS, CD,Cl, Acetone-d, CS, CD,Cl, Acetone-d,

vmvg  2123.876% 2159.174 2180.098 STys 0.590 0.592 0.608
V3=Us 2156.976 2189.260 2191.422 1 A2 -0.506 -0.533 -0.534
Y, 2139.900 2171.460 2171.862 “JB'2 -0.570 -0.553 -0.551
Uy 887.464 950.692 943.756 7 A3 0.281 0.277 0.278
Ug 949.891 921.461 934.933 *Tgs 0.255 0.276 0.263
Ve 1242.187 1292.624 1321.868 ] Ad -0.309 -0.347 -0.358
Vews 483.147 503.633 498.340 ‘SJB'4 -0.387 -0.367 -0.375
3 AB -13.826 -14.053 -14.012 3] c2 +0.023 *+0.030 +0.024
Tec 7.620 7.425 7.506 s +0.011 +0.033 . £0.012
Tpc 6.622 6.776 6.626 Ve +0.014 +0.031 +0.011
3JC,CH3 6.620 6.627 6.605 GJC,BJ +0.024 +0.032 +0.028
Tacus +0.121 +0.030 + 0.009 Tewss +0.020 +0.033 +0.017
“JB'C}B + 0.125 +0.057 + 0.051 8T e 4 +0.024 +0.032 +0.015
3, 3 7.661 7.671 7.691 Calculated trans 6592 6660 6592
Tsa 7.461 7.464 7.463 Assigned trans 5453 4717 5849
"Jz'4 1.249 1.261 1.259 Total Peaks 1067 1378 803
"Jz‘ﬁ 1.937 1.942 1.928 Largest Diff 0.017 0.015 0.018
I« 1.444 1.463 1.450 RMS Deviation 0.007 0.007 0,007

¢ Standard deviations for the spectral parameters in all three solvents are = 0.0006 Hz. > All values are in Hertz
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Figure 3.1.2 The aromatic region of the 'H NMR spectrum of the 5 mol % 2-bromo-1-phenylpropane in CD,Cl,.

Simulation required lorentzian lineshapes 0.05 Hz wide. Spectral processing was performed with GB = 0.40 and LB = -0.10.

Hz 2190.0 2170.0 2150.0
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Figure 3.1.3a The methylene region of the 'H NMR spectrum of the 5 mol % 2-bromo-1-phenylpropane in CD,Cl,.
Simulation required lorentzian lineshapes 0.10 Hz wide. Spectral processing was performed with GB = 0.60 and LB = -0.10.

A qﬁ\ MAA
de

Hz 950.0 930.0 910.0




Figure 3.1.3b

The methylene region of the 'H NMR spectrum of the 5 mol % 2-bromo-1-phenylpropane in CD,Cl,.

Simulation required gaussian lineshapes 0.04 Hz wide. Spectral processing was performed with GB = 0.40 and LB = -0.23.

Hz

950.0 930.0 910.0
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The methine region of the "H NMR spectrum of the 5 mol % 2-bromo-1-phenylpropane in CD,Cl,.

Simulation required lorentzian lineshapes 0.09 Hz wide. Spectral processing was performed with GB = 0.05 and LB = -0.15.

Figure 3.1.4

T 1 1 T T
Hz 1305.0 1295.0 1285.0
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Figure 3.1.5 The methyl region of the '"H NMR spectrum of the 5 mol % 2-bromo-1-phenylpropane in CD,Cl,.
Simulation required lorentzian lineshapes 0.045 Hz wide. Spectral processing was performed with GB = 0.60 and LB = -0.13.

Hz 506.0 502.0
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3.2 The molecular orbital calculations for 2-bromo-1-
phenylpropane

Tables 3.2.1 and 3.22 show the relative heats of formation (AM1) and
relative energies (STO-3G) as a function of 8 and ¢. 6 and ¢ in this case
and throughout the study are normally defined as the torsion angles [90°-
C4C,C,C,1, and C,CiC,C, (refer to figure é.l.l). Note that only part of the
surface is reported. The perpendicular form refers to the structure where 0
= 0°. The angle ¢ is the torsion angle about the C,-C, bond, which is zero
when the phenyl group and the methyl group are coplanar. The outlined
values roughly trace out the troughs along the 6 dimension, used to
calculate the energy profile about 6 for rotamers A and B (see section 2.2.1).

Figures 3.2.2 and 3.2.3 are 3-dimensional plots of the aforementioned
data. In this case angle 8 is defined as the torsion angle C,C,C,C,. These
plots also used negative angles for ¢, where values past 180° increase from
-180° (at 180°) to 0° (at 360°).

Tables 3.2.3 and 8.2.4 correspond to the energy profiles of rotation
about 6 for each rotamer state and their respective fits to the 17 term
Fourier series. The results from calculation using the AM1, STO-3G, and
STO-3G* basis sets are summarised. Rotamers A, B, and C refer to values
of ¢ near 300° (-60°), 180° (-180°) and 60°, respectively (see figure 3.2.1
below). In this case the energies for each curve are calculated relative to

their respective minima . Figure 8.2.4 to 3.2.7 are the corresponding plots.
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Figure 3.2.1 The Newman Projections for 2-bromo-1-
phenylpropane
| Ph Ph Ph
CXAX BrXAX C CHBXAX“
AR A var S VAN
Br CH3
A | B C

Tables 3.2.6 and 3.2.7 correspond to the energy profile of rotation
about ¢ for the AM 1, STO-3G and STO-3G* basis sets, and their fits to the

Fourier series. Figure 8.2.7 is the graphical representation.

Table 8.2.8 summarizes the resulis of the calculations which allowed
8 and ¢ to optimize. Further calculations are also shown in which the ring

hydrogen atoms were allowed to deviate from the aromatic plane.
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Table 3.2.1

Relative heat of formation from AM1 as a function of phenyl rotation (8) and rotation about the C.-C; bond of the
sidechain (¢).

@ 315 300 9285 270 255 240 225 210 195 180 165 @
9 A B 0
527 187 | 087 | 215 417 501 38 174 | 090 | 246  6.18 0
15 718 410 | 334 | 380 455 505 377 139 | 000 | 116  5.00 15
30 134 102 846 725 537 516 403 178 | 032 | 128 520 30
45 223 176 136 951 | 578 | 631 597 408 | 235 | 280 676 45
60 288 215 150 754 | 7.13 | 958 968 740 | 478 | 478 100 60
75 299 199 105 | 668 | 104 133 126 911 | 58 | 795 161 75
90 256 145 | 618 | 862 131 149 127 830 | €35 | 114 227 90
105 188 743 | 584 | 979 131 134 101 | ees | 809 157 273 105
120 108 | 447 | 542 824 102 956 692 | 610 | 989 180 283 120
135 620 | 311 322 | 491 632 615 | 512 | 595 993 170 248 135
150 510 182 | 112 | 250 425 491 | 446 | 482 753 125 178 150
165 499 152 | 051 | 198 408 493 400 | 2091 | 364 646 102 165
180 527 187 | 087 | 215 417 501 382 174 | 090 | 246 6.8 180
0 0
® 315 300 285 270 255 240 225 210 195 180 165 ®

°All values reported are in kJ/mol relative to the absolute minimum value of 0.014308 A.U. at 6 = 15° and ¢ = 195°
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Figure 3.2.2

3-Dimensional plot of relative heats of formation from AM1 as a function of
phenyl rotation (8) and rotation about the C_-C, bond of the sidechain (¢).
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= (C,C;C,C, using negative angles.
= (C4C,C,C
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Table 3.2.2
Relative energy from STO-3G as a function of phenyl rotation (8) and rotation about the C,-C; bond of the
sidechain (¢).

D 315 300 .285 270 2565 240 225 210 195 180 165 D
0 A B 0
0 5.42° 1.48 2.59 7.61 13.0 15.0 12.0 6.19 1.98 2.34 7.40 0
15 10.6 6.83 7.47 10.8 14.3 155 12.2 6.26 1.41 1.04 5.93 15
30 20.3 16.3 15.3 15.5 16.2 16.5 13.5 7.96 3.06 2.17 6.69 30
45 31.8 26.2 22.3 18.4 17.7 18.9 16.9 11.8 6.45 4.73 9.12 45
60 40.2 31.9 24.1 17.8 19.8 23.1 21.7 15.9 9.49 7.31 13.3 60
75 42.6 31.2 19.1 16.9 23.3 27.4 25.0 17.7 105 10.0 20.4 75
90 38.8 23.0 13.6 18.2 26.1 29.0 24.9 16.5 10.6 14.5 28.8 90
105 28.6 13.0 11.6 19.0 25.9 27.2 21.8 14.0 11.8 19.7 35.0 105
120 16.2 | 7.82 10.1 16.9 22.4 22.6 17.6 12.2 13.3 225 36.4 120
135 8.99 4.32 6.62 12.5 174 18.1 145 11.1 12.9 21.0 31.8 135
150 5.33 1.26 2.94 8.44 13.9 15.6 13.0 9.43 9.78 15.0 22.9 150
165 3.99 0.00 1.34 6.85 12.7 14.9 12.2 7.40 5.15 7.31 12.7 165
180 5.42 1.48 2.59 7.61 13.0 15.0 12.0 6.19 1.98 2.34 7.40 180
0 0
o 315 300 285 270 255 240 225 210 195 180 165 1

°All values reported are in kd/mol relative to the absolute minimum value of -2887.724483 A.U. at 0 = 165° and ¢ = 300°
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Figure 3.2.3

3-Dimensional plot of relative energy from STO-3G as a function of phenyl
rotation (8) and rotation about the C_,-C,; bond of the sidechain (¢).
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%9 = (C,C,C,C, using negative angles.
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Table 3.2.3

Energies of the rotamers of 2-bromo-1-phenylpropane as a function of sidechain angular displacement with
respect to the perpendicular form.

, ROTAMER A ROTAMER B ROTAMER C
Angle 6 AM1 STO-3G  STO-3G* AM1 STO-3G  STO-3G* AM1 STO-3G  STO-3G*

0 0.409° 1.350 1.323 0.845 0.975 0.934 0.000 0.000 0.000
15 2.886 6.551 6.429 0.000 0.000 0.000 2.161 1.621 1.691
30 e b 15.366 15.126 0.303 1.354 1.421 4.184 4.963 5.060
45 5.250 17.563 17.557 2.192 4.092 4.189 5.655 8.007 8.048
60 5.910 17.658 17.645 4.263 6.574 6.635 7.308 10.914 10.936
75 6.055 16.245 16.223 5.561 8.446 8.423 8.907 13.716 13.780
90 5.547 _ 13.576 13.564 6.287 9.857 9.737 10.113 16.004 16.142
105 4.641 10.398 10.377 6.455 10.905 10.684 10.731 17.488 17.684
120 3.612. 7.261 7.244 5.871 11.068 10.829 10.364 17.496 17.703
135 2.084 4.079 4.066 5.005 10.300 10.154 8.814 15.537 15.744
150 0.451 1.230 1.225 4.348 8.271 8.261 4.217 9.623 9.721
165 0.000° 0.000 0.000 2.769 4.487 4.491 0.358 2.917 2.926
180 0.409 1.350 1.323 0.845 0.975 0.934 0.00 0.000 0.000

“All values are in kJ/mol. ?No optimal energy value found at 8 = 30° for rotamer A. °All values in each collum
relative to the minimum value in that column.
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Energies of the three rotamers of 2-bromo-1-phenylpropane as a function of the angle of the sidechain with respect

to the perpendicular form, fit to a 17 term Fourier series

ROTAMER A ROTAMER B ROTAMER C
F.S" AM1 STO-3G  STO-3G* AM1 STO-3G  STO-3G* AM1 STO-3G  STO-3G*
C, 3.47 9.28 9.24 3.66 6.36 6.31 6.067 9.86 9.95
S, 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
c, 0.00 0.01 0.01 0.00 0.00 0.00 0.00 0.00 0.00
S, 1.84 6.82 6.78 -1.59 -3.26 -3.15 -0.97 -3.30 -3.36
C, -2.34 -5.62 -5.65 -2.70 -4.29 -4.23 -4.93 -7.67 -7.72
S, 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
C, 0.00 0.01 0.01 0.00 0.00 0.00 0.00 0.00 0.00
S, 0.51 0.64 0.59 -0.62 -9.64 -0.70 0.96 0.64 0.69:
c, -0.33 -1.80 -1.79 -0.01 -0.88 -0.91 -1.05 -1.83 -1.89
S, 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
C; -0.00 0.01 0.01 0.00 0.00 0.00 0.00 0.00 0.00
S, 0.19 -0.18 -0.20 -0.14 -0.12 -0.18 0.52 0.41 0.43
Ce -0.15 -0.64 -0.60 0.01 -0.15 -0.17 -0.14 -0.36 -0.38
S, 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
C, -0.01 0.01 0.01 0.00 0.00 0.00 0.00 0.00 0.00
S, -0.08 -0.44 -0.42 0.08 0.06 0.06 0.08 0.08 0.08
Cs -0.15 -0.12 -0.09 -0.08 -0.06 -0.06 0.08 0.03 0.03
A 0.05 0.10 0.10 0.02 0.01 0.01 0.04 0.02 0.03

*Coefficients of the Fourier series. °All values are in kd/mol. °‘Standard deviation.




Table 3.2.5

Relative energies of the three rotamers of 2-bromo-1-phenylpropane from AM1, STO-3G and STO-3G* as a

function of sidechain angular displacement with respect to the perpendicular form.
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0
15
30
45
60
75
90

105
120
135
150
165

0.906%°
3.382
5.746
6.406
6.551
6.043
5.187

4.108 -

2.580
0.948
0.496

4.168
5.859
9.228
12.215
15.104
17.948
20.309
21.852
21.871
19.911
13.889
7.094

AM1 STO-3G STO3G*
Angle 8 Energy A Energy B Energy C Energy A Energy B Energy C Energy A Energy B Energy C
0.845 5.202 1.350° 1.673 4.270 1.323° 1.590
0.000 7.363 6.551 0.698 5.891 6.429 0.656
0.303 9.386 15.366 2.052 9.234 15.126 2.077
2.192 10.857 17.563 4.790 12.277 17.556 4.846
4.263 12.509 17.658 7.273 15.184 17.645 7.291
5.561 14.109 16.245 9.144 17.986 16.223 9.0796
6.287 15.315 13.576 10.556 20.275 13.554 10.393
6.455 15.933 10.398 11.603 21.758 10.377 11.340
5.871 15.566 7.261 11.766 21.766 7.244 11.486
5.005 14.016 4.079 10.998 19.807 4.066 10.810
4.348 9.419 1.230 8.969 13.893 1.225 8.917
2.769 5.560 0.000 5.185 7.186 0.000 5.147
0.844 5.202 1.350 1.673 4.270 1.323 1.590

180

0.906

4.168

“All values in kd/mol. °All AM1 values are relative to the AM1 value of rotamer B at 0 = 15°. °All STO-3G and STO-3G* values are
relative to the STO-3G and STO-3G* value of rotamer A at 6 = 165°. ¢ No optimal energy value at 8 = 30° for rotamer A.
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Figure 3.2.4
Relative® energies of the three rotamers of 2-bromo-1-phenylpropane from
AM]1, as a function of phenyl rotation (8) from the perpendicular form®.
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2Al]l values are reported relative to the minimum energy of rotamer A.
®In the perpendicular form 6 = 0°.
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Figure 3.2.5
Relative® energies of the three rotamers of 2-bromo-1-phenylpropane from
STO-3G, as a function of phenyl rotation (6) from the perpendicular form®.
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aAll values are reported relative to the minimum energy of rotamer A
®In the perpendicular form 6 = 0°.
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Figure 3.2.6

Relative® energies of the three rotamers of 2-bromo-1-phenylpropane from
STO-3G*, as a function of phenyl rotation (8) from the perpendicular form®.
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®All values are reported relative to the minimum energy of rotamer A.
®In the perpendicular form 6 = 0°.
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Table 3.2.6
Energy of 2-bromo-1-phenylpropane as a function of rotation about the

sidechain (Jm-CB (¥).

Angle @ AM1 AM1° STO-3G STO-3G* STO-3G**
0 14.174° 14.179 22.592 22.282 22.286
15 12.648 12.653 19.712 19.255 19.260
30 9.469 9.476 12.576 12.168 12.174
45 6.542 6.545 6.349 6.127 6.127
60 5.008 5.011 4.079 3.965 3.951
75 6.428 6.430 6.816 6.734 6.712
90 9.870 9.870 13.288 13.154 13.144
105 13.664 13.661 20.054 19.787 19.791
120 15.968 15.967 23.531 23.073 23.081
135 14.681 14.682 21.175 20.590 20.599
150 10.333 10.333 13.979 13.417 13.426
165 4.980 4.978 5.919 5.528 5.636
180 1.096 1.095 1.043 0.882 0.887
195 0.000 0.000 1.332 1.373 1.376
210 1.429 1.431 6.059 6.178 6.181
225 3.829 3.856 11.961 12.002 12.021
240 4.924 4.930 14.887 14.785 14.789
255 4.102 4.107 12.688 12.530 12.532
270 2.032 2.036 6.826 6.679 6.678
285 0.557 0.564 1.333 1.254 1.252
300 1.669 1.576 0.000 0.000 0.000
315 5.022 5.027 3.991 - 4.036 4.039
330 9.431 9.435 11.656 11.668 11.670
345 12.935 12.940 19.231 19.112 19.115
360 14.174 14.179 22.592 22.282 22.286

® Relaxed geometries °All values are in kJ/mol.
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Table 3.2.7
Energy of sidechain rotation in 2-bromo-1-phenylpropane as a function of ¢,
fit to a Fourier series truncated at 17 terms.

F.8° AM1 STO-3G STO-3G*
C, 7.11° 10.88 10.69
S, 4.14 3.65 3.49
C, 2.03 1.34 1.36
S, -2.84 -1.66 -1.58
C, 0.83 0.75 0.70
S, 0.19 0.42 0.24
C, 4.54 9.32 9.22
S, -0.20 -0.34 -0.34
C, -0.36 0.03 0.03
S, -0.04 -0.01 -0.03
C, -0.04 0.11 0.11
Se 0.03 0.07 0.08
Cq 0.01 0.14 0.14
S, 0.00 0.01 0.01
C, -0.01 0.01 0.02
Se -0.02 0.02 . 0.01
C, 0.04 0.02 0.03
A° 0.02 0.01 0.01

¢ Fourier series coefficients
bAll values are in kJ/mol.
‘Standard deviation.
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Figure 3.2.7
Relative energies from AM1, STO-3G and STO0-3G* as a function of

sidechain rotation (¢).
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*Rotation about ¢ = C4CsC,C;.
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Table 3.2.8
Fully optimized energies of the three rotamers of 2-bromo-1-phenylpropane
AM1 Rotamer A Rotamer B Rotamer C
Absolute Energy” 0.014485 0.014277 0.016191
AE? 7y 0.546 0.718 0.000 0.641 5.026 0.624
STO-3G
Absolute Energy -2887.724549 -2887.724289 -2887.722930
AE 1 0.000 1.826 0.683 1.797 4.249 1.760

STO-3G (relaxed)

Absolute Energy -2887.724553 -2887.724291 -2887.722939
AE p 0.000 | 1.8286 0.687 1.799 4.237 1.764
STO-3G*
Absolute Energy -2888.414279 -2888.414037 -2888.412697
AE u 0.000 1.879 0.636 1.805 4.152 1.764

STO-3G* (relaxed)
Absolute Energy -2888.414283 -2888.414040 -2888.412707
AE 1 0.000 1.878 0.640 1.807 4.139 1.767

“All absolute energy values are in atomic units. All relative energies are in kd/mol. °All dipole moments are in Debyes.
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3.3 FPT MO INDO, CNDO/2 calculations, and classical averaging

Since INDO and CNDO/2 methods are not parameterized for the use
of bromine, the chlorine analogue, 2-chloro-1-phenylpropane, is used
instead. The geometries of 2-bromo-1-phenyl-propane were retained, except
that the C-Cl bond length was allowed to optimize at the STO-3G* level.
The results of *Jy,, **'d 4, *Jy ¢, and *Jy oy, ( where X=4,5 and 6; Y=H,,H;
and H; and Z=H,,H, and H,) were fit to the 17 term Fourier series.

Figures 8.3.1 to 3.3.9 are some examples where these coupling
constants are plotted as a function of ¢ or 8. Figure 3.3.1 shows the vicinal
couplings of H, and Hy with H, as functions of ¢. Figure 3.3.2 illustrates
the ¢ dependence of the four-bond coupling between the methyl protons and
H, and Hy. In the remaining figures the 6 dependence of the coupling
between H, and the protons on the aromatic ring is depicted.

With the energy profiles about 8, <sin*(@ + n/6)> and <sin?(@ - n/6)>
were calculated for each rotamer at AM1, STO-3G, and STO-3G™* levels.
The ensemble averages over the three rotamers were also determined. The
results of these calculations are tabulated in table 3.3.1. The INDO values
for 6J4,(H,,H,) and ®J4(Hy,H,) were found for all three rotamers and their
ensemble averages were determined according to the AM1, STO-3G and
STO-3G* calculations. These numbers are given in table 3.3.2.

Using the energy profiles about ¢ and the INDO and CNDO/2 results

for °Jy, . and *Jy cys , averaged values of these coupling constants were
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calculated. Three types of classical avera}gés were found, using the
continuous, the 3-cusp and the 3-site methods. These values are arranged
in table 3.8.3 according to the basis set employed.

Tables 3.3.4 to 3.3.12 summarize the classical averages for the
couplings of H,, Hy and H into the ring. With the 6 energy profiles for
each basis set, the classical averages were calculated for each rotamer.
Three different types of averages were determined. The first was the
classical average (<J>). Secondly, for H, and Hj the classical average was
found with 0 offset by 120° and -120°. This was done to see whether there
is a substituent effect on these couplings ys(hich is independent of the shape
of the barrier. When the initial angle is offset in this manner, both H, and
Hj experience the same <sin’>. This calculation was not necessary for H.
Finally the average was determined without a barrier to rotation (<J > freey,
The ensemble averages were calculated for all three types of calculations
according to the three bases. Tables 3.3.4, 3.3.5 and 3.8.6 summarize the
results for *J,,, °J,, and %J,,. Tables 3.3.7, 3.3.8 and 3.3.9 show the values

for *Jg,, °Jp s and %Jp,. Tables 8.3.10, 8.8.11 and 3.8.12 report the results

5 <] 7
for °Jg,, “Jes and ‘Je,
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Table 3.3.1

Calculation of <sin*(® + n/6)> and <sin®(® - n/6)> to predict °J,, and °Jy, for 2-bromo-1-phenylpropane.
Basis AM1 STO-3G STO-3G*

Rotamer A B C A B c A B C
Population [%] 44.10 51.44 4.46 50.24 42.40 7.36 49.97 42.53 7.50

<sin®*(0 + n/6)>; 0.247° 0.516 0.294 0.116 0.505 0.336 0.117 0.501 0.333
<sin®(0 - n/6)>, 0.525 0.243 0.327 0.535 0.159 0.230 0.634 0.161 0.231
<sin®*(@ + n/6)> 0.387 0.297 0.297
<sin®(0 - n/6)> 0.371 0.353 0.352

Table 3.3.2
Calculation of °J,, for 2-chloro-1-phenylpropane using INDO results.

Rotamer A B C
Sdgo[H,, H,1 -1.081%° -1.106 -1.109

8 ool Hpg,H,]: -1.125 -1.082 -1.116
Basis AM1 STO-3G STO-3G*
$Joo[Ha,H,l -1.097° -1.094 -1.094

8 ool Hp,H,] -1.103 -1.106 -1.106

“All values are in Hertz. > INDO values based on 2-chloro-1-phenylpropane. ‘Averaged with populations based on calculations performed with the indicated basis.
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Figure 3.3.1
Graphical representation of the FPT MO INDO and CNDO/2 calculations of vicinal coupling constants between

H,, H; and H, in the sidechain of 2-chloro-1-phenylpropane.
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Figure 3.3.2

Graphical representation of the INDO and CNDO/2 calculation of the four-bond coupling constants between:
H, and the methyl hydrogens of 2-chloro-1-phenylpropane.
H; and methyl hydrogens of 2-chloro-1-phenylpropane.
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Table 3.3.3
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Prediction of the vicinal coupling constants and *Jy ¢y, of the sidechain, using Karplus, INDO and CNDO/2
methods. Averaged values were obtained using 3-point, 3-cusp, and continuous methods.

Karplus INDO CNDO/2
BASIS AM1® STO-3G* STO-3G** AM1° STO-3G* STO-3G* AM1° STO-3G*  STO-3G*
d,c Continuous 6.21° 7.52 7.47 7.77 9.71 9.63 5.99 7.84 7.79
dyc 3-Cusp 6.21 7.55 7.50 7.78 9.73 9.68 5.99 7.87 7.83
dac 3-Point 6.27 7.63 7.59 7.87 9.88 9.82 6.12 8.01 7.96
dgc Continuous 6.73 6.57 6.60 8.74 8.21 8.26 7.05 6.65 6.69
dpc 3-Cusp 8.70 6.59 6.61 8.70 8.24 8.26 7.02 6.67 8.70
‘dpc 3-Point 7.01 6.62 6.64 9.20 8.29 8.33 7.46 6.72 6.75
dacus Continuous -0.72 -0.70 -0.70 -0.18 -0.21 -0.21
dycus 3-Cusp -0.72 -0.70 -0.70 -0.17 -0.21 -0.21
Jacus 3-Point -0.74 -0.70 -0.70 -0.19 -0.21 -0.21
Jpcus Continuous -0.39 -0.33 -0.33 -0.03 0.05 0.04
dpcus 3-Cusp -0.39 -0.32 -0.33 -0.03 0.05 0.05
Jdgcus 3-Point -0.39 -0.32 -0.32 -0.02 0.06 0.05

“Averaging carried out with energies based on M.O. calculations with the indicated basis set. ®All values are in Hertz
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Figure 3.3.3

FPT MO CNDO/2 calculations of couplings between H, and the hydrogens of the aromatic ring, for the A rotamer
of 2-chloro-1-phenylpropane, as a function of:

1. phenyl rotation (8). 2. phenyl rotation offset such that H, starts perpendicular to the ring (8 - 120°).
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Figure 3.34
FPT MO CNDO/2 calculations of the couplings between H, and the hydrogens of the aromatic ring, for rotamer B

(1) and C (2) of 2-chloro-1-phenylpropane, as a function of 6.
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Figure 3.3.5

FPT MO INDO calculations of couplings between H, and the hydrogens of the aromatic ring, for the A rotamer of
2-chloro-1-phenylpropane, as a function of :

1. phenyl rotation (8). 2. phenyl rotation offset such that H, starts perpendicular to the ring (8+120°).
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Figure 3.3.6

FPT MO INDO calculations of the couplings between H, and the hydrogens of the aromatic ring, for rotamer B (1)
and C (2) of 2-chloro-1-phenylpropane, as a function of 6.
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Table 3.3.4

Classical averaging of “J[H,,H,] of 2-chloro-1-phenylpropane over the energy profile® for 8 rotation.

experimental

Basis AM1 STO-3G STO-3G’
Rotamer A B C A B C A B C
d 300° 180° 60° 300° 180° 60° 300° 180° 60°
*Population [%] 44.10 51.44 4.46 50.24 42.40 7.36 49.97 42.53 7.50
°<J>, CNDO/2 0.037¢ 0.051 0.054 0.038 0.055 0.065 0.038 0.055 0.065
*<J>, CNDO/2 OS 0.048 0.036 0.047 0.055 0.036 0.042 0.055 0.036 0.042
<d>* CNDO/2 0.034 0.038 0.035 0.034 0.038 0.035 0.034 0.038 0.035
f<J> CNDO/2 0.045 0.047 0.047
£<J> CNDO/2 OS 0.042 0.046 0.046
£<J> ™ CNDO/2 0.036 0.036 0.036 :
*<J>_INDO -0.656 -0.879 -0.713 -0.545 -0.858 -0.738 -0.545 -0.855 -0.736
‘<>, INDO OS -1.066 -1.130 -1.238 -1.165 -1.219 -1.292 -1.165 -1.220 -1.292
I<d> ™ INDO -0.878 -0.898 -0.914 -0.878 -0.898 -0.914 -0.878 -0.898 -0.914
f<J> INDO -0.773 -0.692 -0.691
£<J> INDO OS -1.107 -1.197 -1.197
£<J>™ INDO -0.890 -0.889 -0.889
Solvent CS, Acetone-d, CD.Cl,
J -0.506 -0.534 -0.533

**Calculation based on the energies from the MO calculations of 2-bromo-1-phenylpropane. ° Averaged over the energy profile of each

individual rotamer. “All calculated and experimental couplings are in Hertz. ‘Average for each rotamer using 0 offset by 120°.

’Averaged without a barrier to rotation. # Averaged over all three rotamer states.




Table 3.3.5

Classical averaging of *J[H,,H,] of 2-chloro-1-phenylpropane over the energy profile® for 8 rotation.

Basis AM1 STO-3G STQ-3G’
Rotamer A B C A B C A B C
iy 300° 180° 60° 300° 180° 60° 300° 180° 60°
*Population [%] 44.10 51.44 4.46 50.24 42.40 7.36 49.97 42.53 7.50
‘<d> CNDO/2 0.288¢ 0.199 0.267 0.333 0.204 0.250 0.332 0.205 0.250
‘<d> CNDOQ/2 OS 0.117 0.111 0.065 0.072 0.075 0.047 0.072 0.075 0.047
".<J>if"ee CNDO/2 0.203 0.203 0.203 0.203 0.203 0.203 0.203 0.203 0.203
f<d> CNDO/2 0.241 0.272 0.272
f<J> CNDO/2 OS 0.111 0.071 0.071
£<J> ™ CNDO/2 0.203 0.203 0.203
‘<> INDO 0.577 0.653 0.609 0.548 0.646 0.619 0.548 0.646 0.618
‘<J> INDO OS 0.697 0.718 0.759 0.728 0.742 0.773 0.728 0.742 0.773
[«d>™ INDO © 0.640 0.658 0.662 0.640 0.658 0.662 0.640 0.658 0.662
£<J> INDO 0.618 0.595 0.595
f<d> INDO OS 0.711 0.737 0.737
£<J>™ INDO 0.650 0.649 0.649
Solvent CS, Acetone-d, CD.Cl,
o rperimental 0.281 0.278 0.277

abedebeSame as in table 3.38.4.




Table 3.3.6

Classical averaging of *J[H,,H,]

of 2-chloro-1-phenylpropane over the energy profile® for 8 rotation.

Basis AM1 STO-3G STO-3G
Rotamer A B C A B C A B C
D 300° 180° 60° 300° 180° 60° 300° 180° 60°
*Population [%] 44.10 51.44 4.46 50.24 42.40 7.36 49.97 42.53 7.50
‘<d> CNDO/2 -0.004* -0.001 -0.002 -0.004 -0.001 -0.001 -0.004 -0.001 -0.001
‘<d> CNDO/2 OS -0.001 -0.001 0.000 0.000 -0.001 0.000 0.000 -0.001 0.000
<> CNDO/2 -0.002 -0.002 -0.002 -0.002 -0.002 -0.002 -0.002 -0.002 -0.002
t<d> CNDO/2 -0.002 -0.003 -0.003
£<d> CNDO/2 OS -0.001 0.000 0.000
£<J> ™ CNDO/2 -0.002 -0.002 -0.002
‘<d>. INDO -0.317 -0.585 -0.395 -0.190 -0.566 -0.439 -0.190 -0.562 -0.436
‘<d> INDO OS -0.802 -0.849 -0.987 -0.927 -0.949 -1.040 -0.927 -0.950 -1.041
<d> ™ INDO  -0.565 -0.590 -0.593 -0.565 -0.590 -0.593 -0.565 -0.590 -0.593
f<J> INDO -0.458 -0.367 -0.367
f<J> INDO OS -0.834 -0.945 -0.945
£<J>"™ INDO -0.579 -0.577 -0.578
Solvent CS, Acetone-d, CD,CL,
J e perimental -0.309 -0.358 -0.347

*bedsféSame as in table 8.3.4.




Table 3.3.7

Classical averaging of *J[Hg,H,] of 2-chloro-1-phenylpropane over the energy profile® for 6 rotation.

69

experimental

Basis AM1 STO-3G STO-3G"
Rotamer A B C A B C A B C
P 300° 180° 60° 300° 180° 60° 300° 180° 60°
*Population [%] 44.10 51.44 4.46 50.24 42.40 7.36 49.97 4253 7.50
°<J> CNDO/2 0.040? 0.050 0.049 0.050 0.055 0.047 0.050 0.055 0.047
*<J> CNDO/2 OS 0.023 0.051 0.034 0.023 0.052 0.039 0.032 0.052 0.038
f<J>™ CNDO/2 0.023 0.042 0.031 0.023 0.042 0.031 0.023 0.042 0.031
£<J> CNDO/2 0.046 0.052 0.052
£<J> CNDO/2 OS 0.038 0.037 0.037
£<J> ™ CNDO2 0.033 - 0.081 0.031
<J> INDO -0.930 -0.641 -0.719 -0.921 -0.565 -0.632 -0.921 -0.567 -0.634
<J> INDO OS -1.153 -1.080 -1.253 -1.269 -1.165 -1.297 -1.269 -1.168 -1.298
I<J> ™ INDO -0.938 -0.872 -0.911 -0.938 -0.872 -0.911 -0.938 -0.872 -0.911
s<J> INDO -0.772 -0.749 -0.749
£<J> INDO OS -1.120 -1.227 -1.228
£<J>™ INDO -0.904 -0.908 -0.908
Solvent CS, Acetone-d, CD.Cl,
J -0.570 -0.551 -0.553

»bedeféSame as in table 3.3.4.




Table 3.3.8

Classical averaging of °J[Hg,H,] of 2-chloro-1-phenylpropane over the energy profile® for  rotation.

Basis AM1 STO-3G STO-3G"
Rotamer A B o A B C A B C
® 300° 180° 60° 300° 180° 60° 300° 180° 60°
"Population [%] 44.10 51.44 4.46 50.24 42.40 7.36 49.97 42.53 7.50
°<J> CNDO/2 0.183¢ 0.291 0.265 0.177 0.319 0.300 0.177 0.318 0.299
“<J>, CNDO/2 OS 0.110 0.111 0.060 0.065 0.075 0.039 0.065 0.075 0.038
I<J>™ CNDOJ2 0.194 0.204 0.201 0.194 0.204 0.201 0.194 0.203 0.201
*<J> CNDO/2 0.242 0.246 0.246
¢<J> CNDO/2 OS 0.108 0.067 0.067
2<J> " CNDOJ2 0.199 0.199 0.199
°<J> INDO 0.649 0.588 0.605 0.646 0.568 0.581 0.646 0.569 0.582
“<J> INDO OS 0.709 0.702 0.743 0.741 0.724 0.757 0.741 0.724 0.757
f<d>™ INDO | 0.648 0.648 0.652 0.648 0.648 0.652 0.648 0.648 0.652
¢<J> INDO 0.616 0.608 0.608
“<J> INDO OS 0.707 0.735 0.735
f<J>™ INDO 0.648 0.648 0.648
Solvent CS, Acetone-d, CD.Cl,
T rerimontal 0.255 0.263 0.276

sbedefeSame as in table 3.3.4.




Table 3.3.9

Classical averaging of *J[H,H,]

of 2-chloro-1-phenylpropane over the energy profile® for 8 rotation.

Basis AM1 STO-3G STO-3G"
Rotamer A B C A B C A B C
& 300° 180° 60° 300° 180° 60° 300° 180° 60°
*Population (%] 44.10 51.44 4.46 50.24 42.40 7.36 49.97 42.53 7.50
*<J> CNDO/2 -0.001¢ -0.003 -0.002 -0.001 -0.003 -0.003 -0.001 -0.003 -0.003
°<d>, CNDO/2 OS -0.001 0.000 0.000 0.000 0.001 0.000 0.000 0.001 0.000
<> CNDO/2 -0.002 -0.002 -0.002 -0.002 -0.002 -0.002 -0.002 -0.002 -0.002
£<J> CNDO/2 -0.002 -0.002 -0.002
f<J> CNDO/2 OS 0.000 0.000 0.000
- E<d> ™ CNDO/2 -0.002 -0.002 -0.002
‘<J> INDO -0.621 -0.321 -0.394 -0.627 -0.239 -0.295 -0.626 -0.241 -0.297
‘<J> INDO OS -0.843 -0.820 -0.983 -0.974 -0.920 -1.042 -0.974 -0.921 -1.043
<>~ INDO -0.600 -0.571 -0.589 -0.600 -0.571 -0.589 -0.600 -0.571 -0.589
f<d> INDO -0.456 -0.438 -0.438
£<J> INDO OS -0.838 -0.956 -0.956
£ J>™ INDO -0.584 -0.587 -0.587
Solvent CS, Acetone-d, CD.Cl,
J experimental -0.387 -0.375 -0.367

sbedeléSame as in table 8.3.4.
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Figure 3.3.7
FPT MO CNDOJ/2 calculations of the coupling between H; and the hydrogens of the aromatic ring, for rotamer A

(1) and B (2) of 2-chloro-1-phenylpropane, as a function of 6.
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Figure 3.3.8
1.) FPT MO CNDO/2 calculations of the coupling between H; and the hydrogens of the aromatic ring, for rotamer

C of 2-chloro-1-phenylpropane, as a function of 6.
2.) FPT MO INDO calculations of the coupling between H; and the hydrogens of the aromatic ring, for rotamer A

of 2-chloro-1-phenylpropane, as a function of 6.
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Figure 3.3.9
FPT MO INDO calculations of the coupling between H and the hydrogens of the aromatic ring, for rotamer B (1)

and C (2) of 2-chloro-1-phenylpropane, as a function of 8.
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Table 3.3.10

Classical averaging of *J[Hg,H,] of 2-chloro-1-phenylpropane over the energy profile® for 6 rotation.

exp

Basis AM1 STO-3G STO-3G'
Rotamer A B C A B C A B C
o 300° 180° 60° 300° 180° 60° 300° 180° 60°
*Population [%] | 44.10 | 5144 | 446 | 5024 | 4240 | 7.36 | 49.97 | 4253 | 7.50
"<J>. CNDO/2 | 0.002? | 0012 | 0213 | 0003 | 0016 | 0212 | 0003 | 0017 | 0212
*<J>f CNDO/2 | 0.001 | 0.004 | 0169 | 0.001 | 0.004 | 0169 | 0.001 | 0004 | 0.169
/«J> CNDO/2 0.017 0.024 0.025
f<J> = CNDO/2 0.010 0.015 0.015
"<J> INDO | 0049 | 0059 | 0244 | 0051 | 0065 | 0241 | 0051 | 0065 | ‘0.241
*<J>f INDO | 0.045 | 0.049 | 0212 | 0045 | 0049 | 0212 | 0045 | 0.049 | 0212
/«J> INDO 0.063 0.071 0.071
f<J>™ INDO 0.055 0.059 0.059
SOLVENT CS, Acetone-d, CD,Cl,
J £0.023 £0.024 +£0.030

**Calculation based on the energies from the MO calculations of 2-bromo-1-phenylpropane. ¢ Averaged over the
energy profile of each individual rotamer. “All calculated and experimental couplings are in Hertz. °Averaged
without a barrier to rotation. / Averaged over all three rotamer states.




Table 3.3.11

Classical averaging of ®J[H,H,] of 2-chloro-1-phenylpropane over the energy profile® for 0 rotation.

exp

Basis AM1 STO-3G STO-3G"
Rotamer A B C A B C A B C
@ 300° 180° 60° 300° 180° 60° 300° 180° 60°
®Population [%] | 44.10 51.44 4.46 50.24 42.40 7.36 49.97 42.53 7.50
°<J>, CNDO/2 | 0.000¢ | 0.008 0.065 0.006 0.006 0.065 0.001 0.006 0.065
‘<J>* CNDO/2 | 0.013 0.015 0.069 0.013 0.015 0.069 0.013 0.015 0.069
'«J> CNDO/2 0.007 0.010 0.008
f<d> T CNDO/2 0.017 0.018 0.018
°<d>, INDO -0.019 | -0.016 0.102 -0.021 | -0.018 0.103 -0.021 | -0.018 | 0.103
‘<J>f INDO | -0.011 | -0.010 0.096 -0.011 | -0.010 0.096 -0.011 | -0.010 | 0.096
'«J> INDO -0.012 -0.011 -0.010
f<d>f INDO -0.006 -0.008 -0.003
SOLVENT CS, Acetone-d, CD,CI,
J +0.011 +0.012 +0.033

*bode/Same as in table 8.3.10.
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Table 3.3.12
Classical averaging of "J[H¢,H,] of 2-chloro-1-phenylpropane over the energy profile” for 6 rotation.

Basis AM1 STO-3G STO-3G’
Rotamer A B C A B C A B C
O 300° 180° 60° 300° 180° 60° 300° 180° 60°

®Population [%] 44.10 51.44 4.46 50.24 42.40 7.36 49.97 42.53 7.50
‘<d>, CNDO/2 -0.001¢ 0.000 0.003 -0.001 0.000 0.003 -0.001 0.000 0.003
*<J>f* CNDO/2 0.000 0.000 -0.001 0.000 0.000 -0.001 0.000 0.000 -0.001

'<J> CNDO/2 0.000 0.000 0.000
f<J> = CNDO/2 0.000 0.000 0.000

*<J>, INDO 0.029 0.033 0.007 0.027 0.033 0.006 0.027 0.033 0.008

<> INDO 0.032 0.085 0.016 0.032 0.035 0.016 0.082 0.035 0.016
'«J> INDO 0.030 0.028 0.028
<J>f INDO 0.033 0.032 0.032
SOLVENT CS, Acetone-d, CD,Cl,
J +0.014 +0.011 +0.031

exp

*bedeiSame as in table 3.3.10.
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4.1 Assignments of H, and Hy

The assignment of the chemical shifts of H, and H; is based on
arguments derived from trends in the substituent effect on the proton
chemical shifts due to bromine and methyl groups vicinal to the protons in
question.

The chemical shift data for substituted ethyl benzenes such as 1-
methyl-2-(8,5-dibromophenyl)ethane and 1-bromo-2-(3,5-dibromophenyl)-
ethane (63) can be used to determine the effect of methyl or bromine
substitution on the chemical shift of a vicinal trans or gauche proton. The
chemical shifts of the alpha protons of 2.5 mol % ethylbenzene (57), 11 mol
% 1-methyl-2-(8,5-dibromophenyl)ethane (63) , and 11 mol % 1-bromo-2-
(8,5-dibromophenyl)ethane (63) in CS, are 775.31, 750.26 and 910.06 Hz to
high frequency from internal TMS at 300 MHz. For 1-methyl-2-(3,5-
dibromophenyl)-ethane (63) and 1-bromo-2-(3,5-dibromophenyl)ethane the
anti forms are favoured by 0.43 and 0.37 kcal./mol (63). The bromine atoms
on the aromatic ring have a negligible effect on the chemical shift of the
alpha protons, as is seen with isopropylbenzene and its brominated
derivative (60). The frequencies of H, and Hj in 2-bromo-1-phenylpropane
are 887.5 Hz and 949.9 Hz. The effect of a methyl group in a trans
orientation to a vicinal proton is to deshield it by 0.20 ppm (71,72). Then it
follows that a gauche methyl group will shield it by 52.0 Hz ( 0.173 ppm.),
whereas gauche and trans bromines will deshield the proton by 145.7 and

108.7 Hz, respectively (0.485 and 0.346 ppm.). This is consistent with
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observations made by T. J. Curphey. He found that bromines in a beta
position to methylene protons tend to deshield them by ~0.60 ppm (73).
Bromine thus deshields a proton in the gauche position to a larger degree
than in a trans orientation. This is consistent with a heavy atom effect of
bromine in the proximate gauche orientation, not expected to be present in
the trans arrangement.

The same analysis with a reversed assignment for H, and Hj finds
that gauche and trans bromine substituents deshield a vicinal proton by
53.3 and 368.0 Hz (0.18 and 1.23 ppm), respectively. These values imply
that H, is shielded with respect to Hy by 60.1 Hz (0.20 ppm) in 1,2-dibromo-
1-phenylethane. The original assignment implies that Hy is deshielded
relative to Hy by 7.7 Hz; the observed value is 17.7 Hz as measured in this
laboratory (74).

With the first assignment the relative proportions of the rotamers
were calculated in the three solvents, using *Jy, yc @and *Jyp ye and the
extended Haasnoot form of the Karplus equation. This was done with
either STO-3G geometries, as in table 4.1.1, or ideal geometries, as in table
4.1.2. The rotamer populations are largely unaffected by a change in
solvent, which is consistent with the dipole moment calculations, where no
significant change in dipole moments between rotarhers is seen.

When the results of the STO-3G* calculations are combined with the
Karplus relationship and are averaged over the ¢ energy profile, the

predicted vicinal coupling constants correspond exactly with experiment. To
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reverse the assignment for the CS, solution would require both the Karplus

equation and/or the STO-3G calculations to be wrong.

Table 4.1.1

Populations of rotamers A, B and C in various solvents determined from
3JHA,HC and 3JHB,Hc-

JTuanc R Pop'nof  Popnof  Popn of
[Hz] [Hz] rotamer rotamer rotamer
A [%] B [%] C [%]
STO-3G*  —-emomems e 50.0 42.5 7.5
CS, 7.620 6.620 51.2° 39.1 9.7
CD,Cl, 7.425 6.776 49.1 40.9 9.9
Acetone 7.506 6.626 49.9 39.2 10.9

*Determined using the extended Haasnoot Karplus equation, with STO-3G*
geometries.

Table 4.1.2

Populations of rotamers A, B and C in various solvents determined from
Jnanc and °Jyp e using ideal geometries.

I haHe 3 Popnof  Pop’n of Pop’n of
[Hz] [Hz] rotamer rotamer rotamer
A [%] B [%] C [%]
STO-3G* 50.0 42.5 7.5
CS, 7.620 6.620 51.7° '87.9 10.5
CD,Cl, 7.425 6.776 49.5 39.8 10.7
Acetone 7.506 6.626 50.3 38.1 11.6

*Determined using the extended Haasnoot Karplus equation, with ideal
dihedral angles (60°, 180°, 300°) and tetrahedral valence angles (109.5°).
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4.2 Prediction of the vicinal coupling constants of the sidechain -
a test of the rotational isomeric states method.

As seen in table 3.3.3, for each basis set and type of J calculation, the
three approaches to averaging the coupling constant in question give similar
results. In all cases the continuous method yields values that are slightly
smaller than the rotational isomeric states (RIS) approach. The 3-cusp
method gives results closer to the continuous method than to the RIS
calculations.

For all three procedures, averaging over the AM1 profiles give
numbers which are markedly different from those generated with the STO-
3G and STO-3G* curves. The AM1 result with the Karplus method
suggests that °Jy, yo is smaller than *Jy yo by about 0.5 Hz, which is
opposite to experiment in which *Jy, y¢ is greater than *Jy; ;o by 1.0 Hz.
This discrepancy can be ascribed to AM1 favouring rotamer B by 0.6 kJ/mol
over A, rather than to a gross error in the Karplus equation. The
semiempirical FPT MO methods predict the same trend; however, the
difference between *Jy, ;¢ and *Jyp ycis 1 Hz.

Recall that the INDO and CNDO/2 calculations were performed on 2-
chloro-1-phenylpropane, because they were néf parameterized for bromine.
The couplings predicted using the chlorine analogue should be smaller,
because chlorine is more electronegative than bromine. However, the

electronegativity difference is small (ca. 0.2 Pauling units (43)) and
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therefore the difference between the predicted couplings should not be large
(ca. 0.1 Hz, the difference between bromoethane and chloroethane (75)).

The prediction of the vicinal couplings in the side chain using STO-
3G and STO-3G* energies leads to remarkably accurate results when
predicting the coupling with the Karplus equation. All three averaging
techniques achieve agreement with experiment to within + 0.13 Hz. For
*Juanc, the RIS value is the closest, while *Jus.nc s best predicted by the
continuous method. For all three methods INDO overestimates both *Jy, ;0
and *Jyg ye by 1.6 to 2.2 Hz, whereas the difference between them is
calculated as 0.41 to 0.63 Hz. CNDOQO/2 gives results closer to those from
experiment for all three approaches; it overestimates the couplings by 0.05
to 0.40 Hz. The difference between the couplings is 0.8 to 0.9 Hz. Thus
FPT MO CNDOJ/2 yields better results than INDO, but not nearly as
accurate as those from the modified Karplus equation.

The RIS approach agrees closely with the continuous method since
each of the barriers to interconversion of the rotamer states is high.
According to the STO-3G* calculations the energy barriers between rotamer
states are 14.8 kJ/mol for A < B, 23.1 kJ/mol for B <= C, and 22.8 kdJ/mol
for A <> C (see figure 4.2.2). Figures 4.2.3 to 4.2.7 show what happens to
the population distribution of the rotamers, and the way in which the

Karplus curve for °Jy, 4o (figure 4.2.1) is sampled, when barriers are varied
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3
J HpHG (Hz) of 2-bromo-1-phenylpropane as predicted using an

extended form of the Haasnoot formulation of the Karplus equation
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from 1.5 kJ/mol to 10 kJ/mol for A <> B, and 5 to 10 kd/mol for both B <= C

and C <> A. In all four generated curves the barriers B & Cand C <= A
were kept the same and optimal rotamer energies from STO-3G* were
retained. The bottom plot in each of the figures 4.2.3 to 4.2.7, labelled J
distribution (see equation 4.1), gives the product between J(¢) from the
Karplus equation (figure 4.2.1, equation 1.5) and population distribution as

a function of ¢. This analysis assumes a temperature of 300 K.

J(d) exp[——zl—(g—)]
J(¢)Distribution = 27 4 . 1
_ V(o)
[ exp -]

As seen in figure 4.2.7, with a large barrier to interconversion
between rotamer states, true bounds defining the rotamer state can be
observed as a peak in the population distribution. When the barriers
decrease, these peaks become wider and neighbouring peaks start to
overlap and the notion of a discrete rotamer state is no longer clear (see
figure 4.2.3). The form of the population distribution greatly determines
that of the J distribution and in turn largely affects the averaged value of
J. Thus J values in regions other than near the minima of the energy wells

become significant in the determination of the average d.
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Curve 1 - Barriers of 5 kd/mol for B <-> C and 1.5 kd/mol for A <-> B
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Figure 4.2.4

Curve 2 - Barriers of 6 kdJ/mol for B<->C and for 2 kd/mol for A<->B
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Figure 4.2.5 88
Curve 3 - Barriers of 6 kd/mol for B <-> C and 5 kJ/mol for B <-> A
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Curve 4 - Barriers of 10 kd/mol for A <-> B <> C
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STO-3G* energy as a function of ¢
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On the other hand, when the barriers are very large, the peaks in the
population distribution will be narrow and only values of J near the energy
minima will be important. The RIS method can be thought of as the
extreme case in which the barriers are infinitely high and the peaks in the
population distribution behave like Kronecker deltas, sampling J only at the
minima.

With reference to figure 4.2.8, when a property is symmetrical with
respect to the symmetrical centre of its distribution, the classical average of
this property will change with symmetrical changes in the distribution.
When the property is antisymmetrical, it will remain invariant with
symmetrical changes in its distribution. For instance, in figure 4.2.8 A the
curve forms a symmetrical maximum about the population distribution,
which is a symmetrical peak. If this peak becomes broader, when the
barrier decreases, the average will include a larger contribution from
smaller values of the curve; consequently the average will decrease. The
converse is also true: with increasing barriers, the populations distribution
will become narrower, selecting larger values from the curve and increasing
the average. A symmetrical minimum, as in figure 4.2.8 B, will behave
exactly opposite to a symmetrical maximum: the average will increase with
decreasing barrier. On the other hand, a function which is antisymmetrical,
as seen in figure 4.2.8 C, will increase at the same rate on one side as it

decreases on the other side of its distribution. As long as the changes in the



Figure 4.2.8

Prediction of the behavior of the classical average of a function, which has a given shape and symmetry
with respect to the centre of the population, with changes in barrier height.
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distribution are symmetrical with respect to its centre, the average will
remain the same no matter how large is the region over which the curve is
sampled.

If the energy wells were perfectly symmetric and the J curves were
antisymmetric about the minima of the wells, the average J values would be
invariant to the barrier heights. For both *Jy,, yc and Jyy . as calculated
from Karplus or INDO or CNDO/2, the J curve is not antisymmetric with
respect to the minima in the energy profile. Thus the classical averages of
these vicinal coupling are expected to change with changes in the barrier
height. The generated curves were designed to be symmetrical about the
minima near the bottom of the wells. Thus for larger barriers the
behaviour of the averaged *Jy, ;;c can be predicted from the symmetry of the
J curve at the minima.

Around the A conformation, Jy, c is the largest and also makes the
largest contribution to the average. The Karplus curve is symmetric and
has a maximum corresponding to the energy minimum. Thus the broader
the peak of the population curve in this region, the smaller will be the
contribution to the average. At the other two rotamer geometries the J
curve is neither symmetric nor antisymmetrid Near A and B the shape of
the J curve can be thought of as being composed of 1ar’ge antisymmetric and
small symmetric minimum components. When the range over which J is

sampled in the rotamer B and C regions is not too broad, for relatively large
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Table 4.2.1

A comparison of the RIS method with the continuous method, when the
rotational barriers A < B and B <> C are varied.

3J 8
HA,HC HB,HC
Karplus® CNDO/2 INDO Karplus CNDO/2 INDO
Curve 1° 6.99° 7.04 8.85 6.24 6.19 7.70
Curve 2¢ 7.02 7.10 8.93 6.22 6.18 7.70
Curve 8° 7.38 7.60 9.32 6.74 6.77 8.33
Curve 47 7.63 7.97 9.71 6.94 7.02 8.62
STO-3G* 7.47 7.79 9.64 6.60 6.69 8.26
RIS? 7.59 7.96 9.82 6.64 6.75 8.33

‘Extended Haasnoot formulation of the Karplus equation. “Barrier of 5
kd/mol for B <> C and 1.5 kJ/mol for B < C. °All values are in Hz. “Barrier
of 6 kd/mol for B <> C and 2 kJ/mol for B < C. ‘Barrier of 6 kd/mol for B
<> C and 5 kJ/mol for B <= C. /Barrier of 10 kJd/mol for B < C and 10
kJ/mol for B <> C. #Rotational isomeric state method ( 3-point method)

barriers of about 6 kJ/mol, large increases in the barrier result in decreases
in the contribution to the average of J. Note also that these two regions
contribute the smaller portions to the average of J. Thus the trend of the
contribution to A should predominate and *Jyanc should decrease with
decreasing barriers. This is seen in table 4.2.2. For the most part this
occurs when the barrier heights are large. As the barriers decrease, the
range over which the contributions from A and B are calculated become
large, so large in fact that the J curve over these regions can no longer be
described in a simple manner and the behaviour of its classical average

would have to be predicted with a simulation.
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The curve representing *Jyy ¢ (see figure 4.2.9) forms a symmetrical
maximum around the minimum in the energy profile corresponding to
rotamer B. Its contribution to the average is the largest and will increase
with an increase in the barrier height (see figure 4.2.10 and table 4.2.3). At
rotamer A and C geometries the J curve is asymmetric with respect to the
position of the energy minimum. It is comprised of a large antisymmetrical
component and a small symmetric minimum component. In table 4.2.8 it is
seen that with gross decreases in barrier height, as is the case with the
STO-3G* curve and curve 4 and with curve 4 and curve 3, the contributions
increase, as was the case with B and C for *Jisuc- The overall trend in the

change of the vicinal coupling with barrier height is to increase as the

Table 4.2.2

Barrier dependence of the contribution to 3J uane from each rotamer,
calculated from the Karplus® equation and the energy curves 1 to 4 and
including the STO-3G* profile.

Rotamer Population® Contribution® to *Jy, e

A B C A B C
Curve 1°¢ 48.6 40.2 11.2 4.930° 1.540 0.517
Curve 2/ 49.2 40.3 10.5 5.068 1.485 0.468
Curve 3 48.1 39.2 12.8 5.169 1.640 0.566
Curve 4" 49.2 39.3 11.5 5.603 1.571 0.452
STO-3G* 50.5 39.6 9.9 5.959 1.178 0.337

RIS 50.9 39.4 9.7 6.183 1.096 0.311
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“Extended Haasnoot formulation of the Karplus equation. "Population of
each rotamer is given as a percentage of the total, and is calculated using
equation 2.5 integrating from 0 to 2x/3 for rotamer C, 2n/3 to 4n/3 for
rotamer B and 4n/3 to 2n for rotamer A. °Calculated using the integral of
equation 4.1 from O to 2r/3 for rotamer C, 2n/3 to 4n/3 for rotamer B and
47t/3 to 2x for rotamer A. “Barrier of 5 kJ/mol for B <= C and 1.5 kJ/mol for
B <> C. “All values are in Hz. ‘Barrier of 6 kJ/mol for B <> C and 2 kJ/mol
for B < C. ®Barrier of 6 kJ/mol for B <> C and 5 kJ/mol for B < C
*Barrier of 10 kJ/mol for B <> C and 10 kJ/mol for B < C. ‘Populations used
in the RIS method are from the optimized geometries obtained from the
STO-3G* MO calculation.

barrier increases. When the barrier becomes small, the region over which
dJ is averaged for A and C becomes large. J over these intervals is not
described simply as being composed of symmetric or antisymmetric
components. In order to properly predict the behaviour a simulation was

done, the results of which are summarised in table 4.2.3.

Table 4.2.3

Barrier dependence of contribution to *Jyy y¢ from each rotamer, calculated
from the Karplus® equation and the energy curves 1 to 4 and including the
STO-3G* profile.

Rotamer Population® Contribution® to *Jyp e

A B C A B C
Curve 1¢ 48.6 40.2 11.2 1.842° 3.879 0.514
Curve 2/ 49.2 40.3 10.5 1.798 3.959 0.463
Curve 3 48.1 39.2 12.8 2.069 4.111 0.562
Curve 4" 49.2 39.3 11.5 2.079 4417 0.442
STO-3G* 50.5 39.6 9.9 1.737 4.520 0.344
RIS 50.9 39.4 9.7 1.681 4.644 0.319

abedelahiSame as in table 4.2.2.
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u _(Hz) of 2-bromo-1-phenylpropane as predicted using an
B' C

extended form of the Haasnoot formulation of the Karplus equation
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Up to this point the effect of asymmetry in the potential well has not
been considered. This effect is only important when the barrier heights are
small. If a potential well is asymmetric with respect to its minimum, the
centre of gravity of the resulting population distribution about this well will
not correspond to the minimum. Thus, when using the RIS method one
could introduce either a positive of negative error in determining the
average. This error will depend on both the nature of the asymmetry and
the shape of the J curve in that vicinity.

Figure 4.2.11 contrasts the RIS procedure with the classical
averaging method when the energy well becomes asymmetric. In figure
4.2.11 A there is a symmetric potential with an arbitrarily chosen curve (an
antisymmetric function was chosen to keep matters simple). In this case
the centre of gravity of the population distribution corresponds exactly to
the minimum of the well, and consequently the RIS and the classical
average value will be the same. In figure 4.2.11 B the well is asymmetric; it
starts with a steep descent and gradually recovers to its original value. The
corresponding population distribution is skewed and has a long tail. In this
case the centre of gravity of the population distribution will occur at a
larger value than the minimum of the well.

In the above analysis the effect of asymmetry of the well is seen,
especially at low barriers for A and B. As the A < B barrier decreases the

energy wells for A and B become increasingly asymmetric. For both °Jy, ;¢
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and °Jyp 4o the contributions from A and B are expected to decrease with
decreasing barrier height as a result of this asymmetry. The contribution
from A for *Jy, 4 is expected to decrease based on symmetry arguments for
both the well and the J curve. The same is true for B in *Jyp yc. This
behaviour is seen in A and B in tables 4.2.2 and 4.2.8, respectively. The
contributions from B in *Jy, yc and A in *Jyg 4o are expected to increase due
to symmetry of the J curve and to decrease due to well asymmetry. A
decrease in the contribution from B in *Jy, ;;c and A in *Jyy 4 is seen from
curve 3 to 2 (it is no£ seen from curve 2 to 1; however, this may be because
the interval over which J is sampled is too large to predict behaviour with

simple arguments.)
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A comparison of the RIS method with the classical averaging
procedure for symmetrical and asymmetrical potential wells

for an antisymmetric property.
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4.3 Determination of the conformation about the exocyclic C,(sp?)-
C (sp®) bond using °Jy, ,, and JHB ne Discussion of the effect
of the rotamer state on the barrier to rotation about the
C, (spz) C_(sp®) bond and the computation of <sin’*y;,> and
<sin’yyg>.

The J method developed by Schaefer et al. (51) makes it possible to
measure this barrier from a six-bond coupling between a nucleus in the
para ring position and a nucleus bonded to the carbon in the a position of
the side chain. Barriers to phenyl rotation with small sidechains are
typically small (51). Thus at ambient temperatures it is not really correct
to think in terms of a static geometry. Therefore it is necessary to describe
observables, affected by this rotation, as being related to an average,
weighted according to the energy profile of this rotation. In particular,
parameters such as the six-bond coupling will therefore be very dependent
on the shape of this barrier. In fact, this coupling is directly proportional to
<sin®y>, where v is the angle between the C,-X bond and the plane of the

ring (51) (see equation 4.1)

b = SJ, + BJ ,<sin*y > 4.1

¢J, and °J,, are these couplings when v is 0° and 90° <sin*y> is the
expectation value of sin®y of the hindered rotor stafes, averaged according
to the Boltzmann distribution. ®J, is known to be negligible (51).

Most molecules studied in this maririer have barriers to sidechain

rotation with either a predominant twofold or fourfold component,
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depending on the most stable conformations. In all cases the barriers are
even functions and have small to negligible higher order terms. Thus
<sin®y> from experiment can be readily related to barrier height. When
higher order terms and asymmetry come into play such a relationship
becomes nebulous.

Asymmetric 2,2-disubstituted ethylbenzenes exhibit two major
complications when applying the J method. The sidechain can take on
three rotamer states, each with a different energy profile of phenyl rotation
(see figure 3.2.4). Also, since the sidechain is asymmetrically substituted,
these 0 energy profiles will be asymmetric, which causes further difficulties.
The optimum geometry of each rotamer will have different values of y,
and {5, and the 0 profiles will have significant odd and higher order
components.

2-Bromo-1-phenylpropane is expected to exhibit all the above
complications. Therefore a modification wés made to the approach
evaluating <sin®y>. In order to properly characterize the 0 profiles for
each rotamer, they were fit to a 17 term Fourier series retaining both the
odd and the even terms (see equation 2.1). For each rotamer, <sin®y>,
values were calculated by a procedure outlined in section 2.2.1, which in
turn were weighted according to their populations based either on the

optimum energies or equation 2.5 (see tables 3.3.1 and 4.3.1)
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Comparing the rotationally averaged results with those from the static
geometry: a test of whether the barrier heights in ¢ and 0 are sufficiently
large to use the results of the static rotamer geometries to describe the

system.
Type of MO calculation
AM1 | STO-3G | sTo-3c*
<sin®Py,>® | <sin®yy,>; | optimum 0.389 0.289 0.290
from 6 rotamer
profile® energies’
<sin®Y,> <sin® P>, integral of 0.387 0.297 0.297
from 6 population
profile distribution?
sin®yy,° Yy, from optimum 0.353 0.244 0.244
rotamer rotamer
geometries’ | energies
sin<yp>f | <yy,>; from | optimum 0.285 0.249 0.249
0 profile” rotamer
energies
sin<yp,> <yy,>; from | integral of 0.280 0.259 0.257
0 profile population
distribution
<sin®Pp>® | <sin®yp>, | optimum 0.366 0.359 0.357
from 6 rotamer
profile® energies’
<sin®yp> <sin®yp> | integral of 0.371 0.353 0.352
from 6 population
profile distribution?
sinyyp° Yyp from optimum 0.228 0.309 0.307
rotamer rotamer
geometries’ | energies
sinf<yyp>® | <yPyp>; from | optimum 0.261 | 0.324 0.323
0 profile® rotamer
energies
sin®<ypp> <Yyp>; from | integral of 0.267 0.316 0.316
0 profile population
distribution
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® <sin®yy,> determined from the 8 profile of each rotamer and then

averaged.

b<sin®yy >, is the expectation value of vy, for each rotamer, calculated as a
classical average of the 6 profiles.

“The weighted averages were calculated using optimum rotamer energies
prescribed by the relevant MO calculation.

¢ The weighted averages were calculated using rotamer populations from
equation 2.5.

“This is the weighted average of sin®yy,, where vy, values were obtained
from the optimum rotamer geometries and the optimum rotamer energies
were used to calculate the rotamer populations.

hpy, was obtained from each optimum rotamer geometry.

fThe weighted average of <y,>;

"<y, >; calculated from each rotamer’s 0 profile as a classical average.

The above method assumes that there are three discrete rotamer
states and that <sin®y> is an average over the populations of three distinct
rotamers. Thus it can be thought of as a modified RIS approach. The
barrier heights to ¢ rotation must therefore be sufficiently large in order to
allow for these clearly defined rotamer states. For 2-bromo-1-
phenylpropane it is reasonable to assume that this is the case, since the
experimental vicinal coupling agree closely with those predicted with the
RIS method. Also, the STO-3G and STO-3G* calculations predict large
barriers, which, in turn, with the continupus classical averaging method,
predict vicinal couplings that agree with experiment. If the barrier were
not sufficiently large, then <sin*p> would have to be averaged over the
conformational distribution in both 6 and ¢ dimensions. This would be done

with equation 2.2 extended into the ¢ dimension as follows (as in equation

4.3)
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27 2%
: _vi6,¢)
o ‘{81n2¢(6)‘£exp ——ﬁ%——-dd)aﬂ
<sin?y> = YT 0.0 4.3
_vio,
{[exp Td(l)dO

where V(8,¢) is the energy surface in 6 and ¢.

A second approach leads to a rough approximation to <sin®p>. It
assumes that the barrier for each rotamer ?s twofold with a different stable
conformation about the exocyclic C,-C_bond. The maximum of each energy
profile is taken to be the V, component. 5, and {5 are obtained from the
optimum rotamer geometries (see table 4.1.7); <sin’y> is determined for
each V, assuming a stable geometry with ¢ = 0°. The value of <sin*y> for
each rotamer is converted to <sin*yy,>, and <sin’y;z>, with the

appropriate stable geometries using (76)
<sin?y>, = cos?(a)<sin?y>, + sin?(a) <cos?y>, 4.4

In the above expression a is the value for vy, and ;5 for the optimum
rotamer configurations (see table 4.3.2), and <sin’y>, and <cos™p>, are the
values of <sin*y> and <cos®y> for an optimum geometry with ¢ = 0°. The

expectation values are further averaged according to their rotamer
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distribution, given by either the optimum rotamer energies or equation 2.5.

The results are shown in table 4.3.3.

Table 4.3.2

Calculation of ¢y from <y> of each rotamer state and from the optimized
geometries averaged over the rotamer populations.

<Ppa>" Y
Rotamer A B C A B C
AM1 16.50° 42.38 30.01 17.47 50.03 24.65

STO-3G 1240 44.97 34.48 15.28 43.19 31.37
STO-3G* 12.45 44.63 34.35 15.46 42.777 31.29

<YPyp>* Vg
Rotamer A B C A B C
AM1 43.51° 17.62 29.99 42.53 9.97 35.35

STO-3G  47.60 15.03 25.52 44.72 16.81 28.63
STO-3G* 47.55 15.37 25.65 44.54 17.23 28.71

“Expectation values of <> were calculated as follows: <y,,> = 30° + <0>
and <y > = 30° - <8>. <6> is the expectation value of the angle that the
sidechain C-C bond makes with the plane of the ring. ®Taken directly from
the optimized geometries of the indicated calculation. °All values are in
degrees. ‘
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Calculation of <sin*y> by using the maxima of each 8 profile as V, of the barrier, then averaging over the
rotamer populations.

Maxima® <sin®y,>, ° <sin®yp>,"
Rotamer | A B C A B C A B C
AM1 8.67° 6.52 15.87 0.274 0.551(0) | 0.232(3) | 0.476 0.245(8) | 0.364(5)
STO-3G | 17.98 11.81 21.96 0.140(2) | 0.476 0.299 0.496 0.188(9) | 0.263(4)
STO-3G* 17.96 11.52 22.06 0.137(9) | 0.471 0.349(51) | 0.493 0.194(7) | 0.264(5)

<sin®y>* weighted average weighted average
A B C Optimized Integral® Optimized Integral
energies’ energies

AM1 0.225 0.228(32) | 0.089(91) | 0.414 0.415(4) 0.349(51) 0.352(4)
STO-3G | 0.077(80)* | 0.125(6) | 0.061(4) | 0.286(8) 0.294(5) 0.354 0.348(9)
STO-3G* 0.077(80) | 0.129(32) | 0.061(4) | 0.289(91) 0.295(6) 0.353(4) 0.349(7)

“Largest value in the energy profile of phenyl rotation. °All maximum values are in kJ/mol. “The classical expectation values of sin®y if
the maxima are taken to be V, of a barrier with a stable geometry at ¢ = 0°. *Values in parentheses indicate the change in the last or
last two digits if the analysis is done with expectation values based on quantum mechanical solutions to a hindered rotor model (reduced
moment of inertia was 5 x 10%" g em®. ° <sin®y> converted to <sin*yy,> using equation 4.3 with ;;, from the optimum rotamer
geometries in table 4.3.2. /Averages weighted according to populations calculated from optimum rotamer energies. Averages weighted
according to equation 2.5. *<sin*y> converted to <sin’yz> using equation 4.3 with yy, from the optimum rotamer geometries in table

4.3.2.
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At this stage it is important to understand the significance of the
assumption that equation 4.3 is applicable to an asymmetrical barrier.

Strictly speaking, this is not true. Equation 4.3 is developed as

<sin?(y + y)> = <(sinyicosy + cosysiny)?>

<sin?ycos?y + cos?Ysin?y

+ 2sinycosysinycosy>

<sin?ycos?y> + <cos?Ysin?y>

+ 2<sinycosysinycosy>

cos?y<sin?{y> + sin?y<cos?{¥>

+2sinycosy<sinycosy{>

where <sinycosy> is an odd function. The expectation value of an odd
function with an even barrier is zero, giving equation 4.3. For odd barriers
this term does not disappear. Therefore one has to take care when applying
equation 4.3.

When a barrier seems to be largely symmetric about its maximum,
there will only be small antisymmetric components in the barrier and small
values of <simycosy> are expected. Thereforé; the error introduced into the
analysis will be small. This is seen in the energy profile for rotamer B,
where AM1 is more asymmetric than STO-3G*; consequently the error
introduced by using equation 4.3 will be greater for the AM1 curve than for

the STO-3G* curve (see table 4.3.4).
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%J4 has been shown to be dependent on the electronegativity of
substituents on the benzylic carbon (57). For toluene®J,, is -1.204 Hz (59)
and for benzylfluoride it is -0.95 Hz, where the electronegativities of
hydrogen and fluorine are 3.92 and 1.78, respectively (59).

Assuming a linear dependence of ®J,, on electronegativity, ®J,, can be
predicted for 2-bromo-1-phenylpropane by extrapolating between the values
for toluene and benzylfluoride using the electronegativity of the -CHBrCH,
group. The electronegativity of a isopropyl group is 2.38 (60) while that of
an ethyl group i-s 2.35 (59). Thus the introduction of a methyl group on the
ethyl group increases the group electronegativity by 0.03. Knowing that the
electronegativity difference between a methyl group and a hydrogen is 0.24
(43) and that between bromine and hydrogen is 0.72 (44) one can expect an
increase in group electronegativity of 0.06 when a methyl on an isopropyl
group is replaced by a bromine. Thus the electronegativity of the -
CHBrCH; group is expected to be about 2.44. Using this value,®J, for the -
CHBrCH, group calculated as -1.125 Hz.

%J4 values for H, and Hy were obtained from FPT MO INDO
computations on all three rotamers. Each time there was a small difference
between the values for H, and Hg. Thus INDO indicates that °J,, exhibits
some dependence of the orientation of the chlorine énd methyl groups with
respect to the benzylic proton (see table 3.3.2). A proton with a trans

substituent has a %J,, whose absolute value is greater than that with only
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Table 4.3.4

A comparison of <sin®(® + y)> evaluated using equation 4.3 and equation
2.2. An assessment of error introduced into the analysis by using 4.3 for
the AM1 and STO-3G* energy profiles of rotamer B.

<sin®@ + y)>°

AM1 STO-3G*
Y Equation 2.2 Equation 4.3 Equation 2.2 Equation 4.3
0° 0.213 0.213° 0.109 0.109°
15 0.259 0.251 0.162 0.162
30 0.370 0.356 0.3086 0.305
45 0.516 0.500 0.501 0.500
60 0.658 0.644 0.697 0.695
75 0.757 0.749 0.839 0.838
90 0.788 0.788¢ 0.891 0.891¢
105 0.741 0.749 0.838 0.838
120 0.630 0.644 0.694 0.695
135 0.484 0.500 0.499 0.500
150 0.323 0.356 0.303 0.305
165 0.243 0.251 0.161 0.162
180 0.213 0.213 0.109 0.109

“<sin®(0+ y)> is the classical expectation value of sin*y where 0 is the angle
of the optimum geometry and y is some offset. <sin®(0+ y)> is computed
using either equation 4.3 or 2.2 ( See section 2.2.1 for details). * <sin®(0+ y)>
at 0 = 0° is <sin*y>,. “The values of <sin’@+ y)> from equation 4.3 were
determined with <sin®y>, from equation 2.2. ‘At y = 90°, sinycosy = 0; then
equation 4.3 is the same as equation 2.2.

gauche substituents. Table 3.3.2 summarizes the results. The change in

¢J4 when a substituent is in a vicinal trans position with respect to when it



111

is in a vicinal gauche orientation, seems to be greater for a methyl group
than for a bromine. Upon averaging ®J,, over the three rotamer states the
differences nearly disappear; with the STO-3G and STO-3G* populations
they are -1.094 and -1.106 Hz, respectively. Using the above mentioned
extrapolation method to correct for the electronegativity difference between
bromine and chlorine (43), %J,, for H, and Hy become -1.113 Hz and 1.134
Hz, and for AM1 they are -1.121 Hz and -1.127 Hz, respectively.

Table 4.3.5 shows <sin*yy,> and <sin®yy> calculated from °Jy, 4y,
and *Jyg s using °Jy, = -1.125 Hz. In all three solvents the results are
consistent with those predicted by both aforementioned methods. In other
words, *Jyp 1, is consistently greater than °Jy, y, by 0.068 Hz, 0.018 Hz and
0.015 Hz for CS,, CD,Cl, and acetone-d,, respectively. The CS, results for
<sin*y;,> and <sin®yp> are smaller than those predicted using the STO-3G
and STO-3G* results, implying that the barriers predicted by the MO
calculations are too small. This is based on the assumption that <sin®y;;,>
and <sin*y,z> will approach sin*yy, and sin*y;; (0.244 and 0.307,
respectively, for STO-3G*) for the optimized geometries when the barriers

become very large (see table 4.3.1).
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Table 4.3.5

Determination of <sin*yy,> and <sin®yy> from °Jy, y, and Iy .

Solvent  *Jy, 4 T 1 <sin®yy,>  <sin®yu>  Average
CS, -0.309* -0.387 0.276° 0.344 0.310°
Acetone -0.358 -0.375 0.318 0.333 0.326
CD,Cl, -0.347 -0.367 0.308 0.326 0.317

?All coupling constants are in Hz. °<sin*y, > are calculated from ®J Hx, H4
assuming the electronegativity of the -CBrCH, group is 2.44 (Pauling units)
and °Jg, = 1.125 Hz. “The average value of <sin®y;,> and <sin®yp>.

If one were to think of this molecule as existing in only two equally
populated states, namely rotamers A and B, and assuming its stable
geometries as Yy = 15° and yy,= 45°, respectively, the average barrier
could be predicted from the average of <sin®yy,> and <sin®y >
(<sin®y>,,.). This is equivalent to treating it as consisting only of rotamer A

with = 15° Using <sin®y>, . , <sin*y>, is determined as follows (76)
lpHA ave [

i <sin?yY>, .0 + <sin?Y>,.0
<sin?y>, . = [ Y235 2. U 4sel

fl

P2
<sin ¢>4501 150

0.4330 <sin?y>, + 0.2835
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The results are summarised in table 4.3.6. If the populations from the MO
calculations were used one could estimate the barrier from <sin®y>, as

follows:

<8inY> ., = (P, + Pp) <8in®Y’,c0 150 + P<Sin?Y> 00

(0.433 +0.317P,) <sin?y>y
+ (0.284 - 0.335P,) 4.7

<sin®y>, . + (0.335P, - 0.284)
(0.433 + 0.317FP,)

<sin?y>,

where P, is the population of rotamer C. The results are seen in table
4.3.6. Comparing the barriers in table 4.3.5 with the average barrier from
the MO computations, which are 7.2 kd/mol for AM1, 15.9 kJ/mol for
STO-3G and 15.8 for STO-3G*, the barriers computed from experimental
results are higher for the acetone-d; and CD,Cl, solutions. Note, however,
that in this range of <sin*y>, the expectation values are quite insensitive to
barrier heights. Thus the barrier will have a large degree of uncertainty. A
gross oversimplification, such as assuming that the average structure is one
with the side chain perpendicular to the ring, would yield barrier heights of
12.5, 10.0 and 11.3 kJ/mol for CS,, acetone-d, and CD,Cl, solutions, using

the experimental <sin®y;>,,. -
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Table 4.3.6

Estimation of the average barrier to rotation using the average value for
<sin*yy,> and <sin®yp>.

]

CS, Acetone-d; | CD,Cl,
<sin®y>*,,. 0.310 0.326 0.317
<sin®y;> [A and B only] 0.061 0.098 0.077
V,? [A and B only] 23.0° 15.0 18.0
<sin®y;;>, [using all rotamers with | 0.064 0.099 0.079
AM populations]’
<sin®y,;>, [using all rotamers with | 0.064 0.099 0.079
STO-3G populations]
<sin*yy>, [using all rotamers STO- | 0.064 0.099 0.079
3G* populations]
V, [using all rotamers] 22.0 14.75 18.0

“The average value of <sin*y;,> and <sin*y,p>. "The expectation value for
the most stable configuration at ¢ =0. ‘Analysis done ignoring the
contribution from rotamer C ( <sin®yy> = [<sin®Y> ;5 + <sin®yy>,;1/2).
“Two-fold barrier corresponding to <sin“py>,. °All barriers are given in
kJ/mol and are rounded to the nearest 0.5 kJ/mol. "Analysis performed with
the contributions from all rotamers considered (<sin®yy>,,.= [P, + P;l
[<sin®yy>5 + <sin®yPy>,:1/2 + Po<sin®y>,, ).

In summary, both approaches to predicting the <sin®y> for 2-bromo-1-
phenylpropane seems to be in satisfactory agreement with experiment.
Despite the simplifications made in the second method it came to
surprisingly close agreement with the more rigorous first method. The
experimental results seem to indicate that the barriers predicted from

theory are somewhat small. However, one has to be cautious when

assessing the accuracy of this analysis at these ranges for <sin*}>, since
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large errors are possible. It is possible that it is the size of the barriers in
question which entails the appearance of good agreement between these two
approaches. Large errors are expected in the second method for estimating
<sin*y> since the maximum of an asymmetric energy profile is a very rough
measure of V,. In order to test the resiliericy of this method a similar
analysis should be done using asymmetric 2,2-disubstituted-1-phenylethane

with a lower barrier.
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4.4 Classical averaging over the 6 profiles of coupling constants
between the sidechain and ring protons predicted by FPT MO
INDO and CNDO/2.

The four-bond aliphatic coupling constants, ‘Jy, cys, “Jup cus, can give
useful conformational information when their signs are known. For
instance, in 3-phenylpentane they were employed in tandem with 3-bond
couplings to determine sidechain conformation (62). Four-bond couplings of
this type range from 2 Hz, when the C-H bonds containing the two protons
are in a trans-trans arrangement (W conﬁguration), to -1 Hz when they are
in a cis-cis orientation(77). Averaged over methyl rotation, INDO
calculations on n-propane estimate the trans coupling as 0.37 Hz and the
gauche as -0.53 Hz (78). The INDO calculations done on 2-chloro-1-
phenylpropane give a range of 0.4 Hz to -0.4 Hz (see figure 3.3.2).
Averaging over the ¢ profile yields *Jy, cys = -0.72 Hz and  *Jyg5 o5 = -0.39
Hz for fhe STO-3G results. The absolute value of the experimental figures
are much smaller than predicted and are nearly equal to each other, and
their sign could not be determined. Similar problem existed with
isobutylbenzene (61), where no conformational information could be derived
from *Jy cys-

The prediction of couplings from tHeﬂbenzylic protons into the ring
had mixed success. The four and six-bond couplings from CNDO/2
calculations are not expected to come close to experiment since this méthod
does not adequately account for the coupling mechanism. INDO, on the

other hand, met with more success. The magnitude of the four-bond
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coupling was overestimated by as much as 0.2 Hz (see tables 3.3.5 and
3.3.8) This is expected since INDO is known to overestimate these
couplings (44).

“Jcns.ne iD toluene has been written as -1.08 sin®yp -0.32 cos%y, (52)
where the first term is the n electron contribution and the second term
accounts for the o-electron contribution. “Jy, y, can be predicted with this
equation using the experimental values of <sin’yy,> and <sin*yp>.
Toward this end, the n-electron contribution is multiplied by 1.125/1.20, in
order to adjust for substitution with -CHBrCHj,, just as for ®J. The o- |
electron contribution is retained. By this method *Jy,y, and *Jyy, were
predicted to within 0.012 Hz of experiment for all three solvents. The

results are summarized in table 4.4.1.

Table 4.4.1

A comparison between experimental and predicted four-bond couplings
between the benzylic protons and the ortho protons of the ring, *J nane and

I, e
i i
Solvent predicted experiment  predicted experiment
CS, -0.511*° -0.506 -0.558 -0.570
CD,Cl, -0.533 -0.533 -0.546 -0.553
Acetone-d, -0.540 -0.534 -0.551 -0.551

?All values are in Hz. °The four-bond cou’pling constants were predicted
with the expression: *Jyx y = -1.013<sin*y;x> - 0.320<cos’y ;x>
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The five-bond benzylic coupling to the ring protons was accurately
reproduced by the averaged CNDO/2 calculations, as expected for a coupling
dominated by a o-electron mechanism. For the STO-3G and STO-3G*
computations they agreed to within 0.06 Hz. The INDO calculations
overestimated them by 0.33 Hz. In toluene the relationship between this
type of five-bond coupling and phenyl rotation is 0.336sin*p + 0.322sin?(y/2)
(49). The barrier to phenyl rotation contains asymmetric terms. Therefore
it cannot be assumed that <sin?(p/2)> is 0.50 (50). However <sin2(1p/2)>
can be evaluated using the above expression and the experimental <sin’y,;, >
values. Again, the =t electron contribution is multiplied by 1.125/1.20 in
order to adjust for -CHBrCH, substitution. The predicted values for STO-
3G and STO-3G* fell within 0.016 of the results in CS, solution (see table
4.4.2) and to within 0.076 in the remaining solvents.

The six-bond couplings predicted by INDO were very close to those
from experiment. °Jy,;, in acetone and in dichloromethane solutions
agreed with experiment to within -0.01 to -0.02 Hz (see table 3.3.6). °Jy,,
came to within 0.05 Hz (see table 3.3.9). The two methods described in the
previous section estimate <sin®Yy,> = 0.293 + .004 and <sin®yz> ~ 0.853 =
0.006, which are 0.017 and 0.009 greater than measured from °J’s in CS,,

In the other two solutions predicted values came to within 0.027 of

experiment.
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Table 4.4.2

A comparison between experimental and predicted <sin®yy /2>

Experiment Prediction
Solvent <sin®Py,/2>  <sin®ygp/2>  Basis <sin®Py /2> <sinyp/2>
CS, 0.603° 0.455 AM1 0.497° 0.386
CD,Cl, 0.542 0.531 STO-3G 0.618 0.471
Acetone-d; 0.560 0.498 STO-3G*  0.617 0.461

“<sin®yy,/2> and <sin*p,y/2> were calculated from *Jy, y, and *Jyp 4, using
the expression:  <sin®y;, /2> = {{Jyy s -  0.315<sin’y;>}/0.322
®<sin*yy,/2> determined by taking the classical average of sin%y;,/2 over
each rotamer 0 profile and weighting them according to the rotamer
populations.

The very long range couplings between the proton on the beta carbon
of the sidechain and the ring proton were also subjected to the above
analysis. °Jycy, is transmitted through a non-bonded interaction and a
through-bond mechanism, depending on the orientation of H; with the ring
plane. Studies done with anisole derivatiyes suggest that the non-bonded
(though-space) contribution is negative (44). The o and = through-bond
contributions are expected to be positive. Both the CNDO/2 and INDO
results (see figures 3.3.7 to 3.3.9) predict a significant negative through
space contributipn when H, passes closely by H, in rotamer A and B. The
molecule spends most of its time as rotamer A and B and the sidechain does

not stay in the ring plane for any length of time because the barriers to
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phenyl rotation are large. Thus the through-space contribution is expected
to be small and some type of through-bond mechanism should predominate.
Upon averaging over phenyl rotation and“ fotamer distribution the CNDO/2
and INDO computations predict this coupling to be 0.025 Hz and 0.071 Hz,
respectively. Experiment reveals a value of the order of + 0.023 to + 0.030
Hz. Taking the CNDO/2 and INDO figures as the lower and upper limit,
this coupling is éxpected to be positive, which is consistent with the
alternating signs of a through-bond coupling.

According to the FPT MO INDO and CNDO/2 calculations, ®Jyc
does not show any significant contributions from nonbonded interactions.
When the results are averaged over phenyl rotation and rotamer
distribution, they predict that °Jyy, should fall somewhere between -0.010
Hz for INDO and 0.010 Hz for CNDO/2. The experimental numbers, +
0.011 Hz, +0.033 Hz and +0.012 Hz for CS,, dichloromethane and acetone
solutions, respectively, suggest a larger range. One should remember that
experimental error at this stage is very significant. Considering the
probability that the signs of these couplings alternate with the number of
bonds, the coupling constant will likely be negative.

Rotationally averaged CNDO/2 and INDO results place "Jyc
somewhere between 0.00 to 0.03 Hz, respectively. Experimentally, this

coupling constant ranges from + 0.011 Hz in acetone to + 0.031 Hz in
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dichloromethane, and to be consistent with the above arguments it should

be positive.

4.5 Summary of conformational information about 2-bromo-1-
phenylpropane, compared with other molecules.

Molecular orbital calculations suggest that rotamer A is the most
stable, followed by B, whereas C only makes up approximately 10% of the
molecules. This is supported by the vicinal coupling constants of the
sidechain, *Jy, o and *Jyp e.  The barrier to rotation about the C,-C; bond
is large, as indicated by the close correspondence of the RIS and classical
averages of these coupling constants and as seen in the molecular orbital
calculations. The threefold components are 18.6 and 18.4 kJ/mol according
to STO-3G and STO-3G* calculations, much larger than that for ethane,
11.9 kd/mol (79,80). This computed value for the threefold component of 2-
bromo-1-phenylethane falls between the experimental value for
bromoethane, 15.5 kJ/mol (79), and 1,2-dibromopropane, 20 kJ/mol (81).

The relative stability of rotamers A and B is consistent with data on
1-bromo-2-(3,5-dibromophenyl)ethane and 1-methyl-2-(3,5-
dibromophenyl)ethane; the trans forms are more stable by 1.55 and 1.92
kJ/mol in CS, solution(63). Therefore the difference between the relative

stabilities of a trans bromine with respect to a trans methyl should be
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small. This is predicted by STO-3G and STO-3G* calculations, in which the

difference between rotamer A and B is 0.6 kJ/mol.

Rotamers A and B are very close in energy, which means that a
bromine substituent is sterically similar to methyl group. This result does
not support the existence of a hydrogen-bond-like interaction between the
methyl and the phenyl groups, since A would have to be significantly
stabilized with respect to B. Studies by Nishio of the CH/r interaction
suggested that small aliphatic groups like methyl will significantly favour a
gauche orientation with a phenyl group for molecules of this type (82). The
slight preference for the trans bromine conformation can be just as easily
ascribed to a small dipole-dipole interaction mechanism since Jy, ¢ did
decrease slightly with a change to a more polar solvent (increasing rotamer
B).

The steric equivalence of bromine and methyl is seen in the optimum
STO-3G* structures of the three rotamers. In rotamer A where the methyl
group is closest to the phenyl group, the C(sp?-C_(sp®) (8) angle is
perturbed by a similar amount as in rotamer B, in which the bromine is
gauche to the phenyl group.(see figure 4.5.1) 6 is approximately -15° in
rotamer A, approximately 15° in rotamer B and neér zero, leaning towards

the bromine side, in rotamer C.




Figure 4.5.1 Conformations of rotamers A, B and C given by STO-3G* calculations

Rotamer A Rotamer B Rotamer C
H CH Br CH, Br
C\ / 3 \ %
C~ C
: a) : C
. LPA :
H, \PBV\LHAHG Hz,_,m H, WH He
| H
HB HA B A
0 = -14.55° 0 =12.45° 6 = 1.38
W, =15.46° W =42.77° ¥ =31.29°
W, = 44,54 ¥ =17.29 ¥, = 2877

A4
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The STO-3G and STO-3G* barriers to phenyl rotation are 18, 12 and

22 kd/mol for rotamers A, B and C, respe;:tively, the average being 16
kJ/mol. The experimental results give an upper limit to the barrier of 15,
18.5 and 23 kJ/mol, and a lower limit of 10, 11.5 and 12.5 kJ/mol in CS,,
CD,Cl, and acetone-dg, respectively. These barriers are much greater than
in ethylbenzene; 5.3 kd/mol in CS, solution (59) . Previous work on related
molecules such as 2-methyl-1-(3,5-dibromophenyl)ethane and 2-bromo-1-
(3,5-dibromo-phenyl)ethane estimate their apparent twofold barriers in the
gauche rotamer as 14.6 kJ/mol in CS, solution (63). Finally, analyzing the
data of isobutylbenzene (61) as having a sole stable conformation with y,; =
15° yields an apparent twofold barrier of 165 kd/mol (factoring in 14 % ¢y =

30° yields a barrier of 15 kd/mol).
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5 OTHER INVESTIGATIONS

A complete 'H and ®C nmr analysis was made of 1,2-dibromo-1-
phenylethane and 2-’C-1,2-dibromo-1-phenylethane. Populations computed
from the vicinal coupling constants in the sidechain gave nonsensical
values, suggesting that the extended Haashoot form of the Karplus equation
is not adequately parameterized for this molecule. The vicinal couplings do
suggest however that the rotamer with the two bromines trans should
predominate, which is consistent with ab initio molecular orbital
calculations. More work needs to be done to complete the investigation.

The'F, *C{'H} and 'H high resolution nuclear magnetic resonance
spectra were obtained for 1,1,1-trifluoro-1-phenylethane in CS,, acetone-d,
and benzene-d, solutions. The six-bond coupling constant from the
methylene protons to the proton in the para ring position suggest a twofold
barrier of 9 kd/mol, which is 4.0 kJ/mol greater than that of ethylbenzene.
As with ethylbenzene, this barrier was inaépendent of solvent. The
theoretical barrier for the free molecules at the post-Hartree-Fock level of
molecular orbital theory estimate this barrier as 10.0 kJ/mol which is also
4.0 kJ/mol greater than the theoretical predicfions of ethylbenzene.

The five-bond coupling constant between the .ﬂuorines and the proton
in the ortho position was 0.74 Hz, where the sign was determined from the
simulation. FPT MO INDO/2 and CNDO/2 calculations were performed on

this coupling, to investigate its dependence on the internuclear distance.
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