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Abstract

This thesis is concerted with complex wave digital filter (WDF) realizations of the

most common classical lowpass filters such as Butterworth, Chebyshev and Cauer (ellip-

tic) filters. The direct design method of Gazsi [8] based on lattice WDFs which applies to

odd-order lowpass filters is summarjzed in detail. That method is then generalized to

even-order lowpass f,lters using the theory of complex lattice WDFs. In this regard, an

even-order lowpass transfer function is decomposed into two complex allpass functions

giving a lattice configuration and each lattice branch is realized by cascaded complex first-

degree allpass sections. Two realizations of complex f,rst-degree allpass sections are pre-

sented, one with a real two-port terminated by a modular multiplier in series with a delay

and the other with a cross structure terminated in a delay. The cross structure (adaptor) has

the property that it remains pseudolossless with the quantization of the multiplier coeffl-

cients. Using available explicit formulas, a direct design method and some design exam-

ples are given for even-order Butterworth, Chebyshev and Cauer(elliptic) ûlters. The

design process includes an optimization of the wordlength (the number of digits) used in

the coefficients.
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Chapter
Introduction

A digital filter is a computational structure derived from a diffelence equation that

produces an output discrete signal (output sequence) from an input discrete signal (input

sequence). Each digital filter simulates a linear', shift-invariant discrete time system and is

specified by an input-output relationship in either the time or the frequency domain, that

filters out a given frequncy range and passes the remaining frequency range (called the

passband). The computational structure can be implemented by either a computer program

on a general-purpose computer or by a dedicated single chip realization.

Because digital filters are only implemented in a finite precision arithmetic, signal

and system coefûcients must be approximated, and etrors can arise from coefficient quan-

tization, rounding effors and overflow. These errors are termed finite-word-length (FWL)

effects. It is well known [I),122] that a digital filter structure that has low passband sensi-

tivity to coefficient quantizations also generates low level rounding noise. Therefore, in

designing a digital filter, a structure with low passband sensitivity to coeff,cient quantiza-

tions is preferred. Otherwise, higher accuracy and longer wordlength have to be used.

Unfortunately, the traditional method of direct realization of the transfer function H (z) ,

which uses the coefficients of H (z) as the actual multipliers, suffers from high sensitiv-

I



ity to coefficients and other FWL effects. There have been several methods developed to

reduce FWL effects but the choice is usually difficult due to several available tradeoffs in

these approaches.

An alternative to the conventional approach is the wave digital filter (WDF)

approach, introduced by Fettweis [1]. WDFs are modeled on classical analog filters

(called reference filters) in lattice or ladder configurations, but use wave quantities as the

signal variables. Because resistively terminated lossless analog networks have low sensi-

tivity to coefficients, the same properties are carried over to WDFs. Specifically, properly

designed WDFs presewe some of the good properties of passive lossless reference filters

and have, for example, low passband sensitivity properties which reduce the accuracy

requirement and thus the wordlength needed for the multiplier coefficients and also lead to

good dynamic range performance. In addition, they have excellent stability properties

even under nonliner operating conditions resulting from overflow and roundoff effects.

We refer to the review paper by Fettweis [1] and the references contained therein for a

detailed discussion of WDFs and their advantages.

While there are many different possible structures for WDF realizations of the classi-

cal reference filters, it is well known that explicit formulas exist for some of the struc-

tures, which make the design process direct and simple. This is particularly useful for non-

expert designers who are not familiar with the intricate techniques of the classical network

theory used in the design process. Using some explict formulas available for the most

common lowpass filters (Butterworth, Chebyshev and Cauer (elliptic) filters), Gazsi [8]

presented a direct design method for lattice WDFs where both lattice branches are realized

by cascaded first- and second-degree allpass sections. All coefficients aïe computed



directly from the design parameters. We note that this method applies to the odd-order

classical teference filters only, because an even-order filtel cannot be implemented by real

lattice WDFs (see [4]).

For an even-order low-pass transfer function (in the z-variable), Vaiclyanathan, Rega-

lia and Mitra [14] introduced a method that decomposes it into two complex allpass func-

tions giving a lattice configuration. From this structure and a generalization of WDF to the

complex domain, Scarth and Martens [3] presented a complex WDF realization of even-

order classical reference filters (such as the Butterworth, Chebyshev and Cauer filters) by

implementing the complex allpass function in each lattice branch through an extraction

process with complex two-port adaptors and delays.

In this thesis, even-order classical filters will be implemented in lattice complex

WDFs (CWDFs) where both lattice branches are realizedby cascaded complex first-

degree allpass sections. A direct design method will be given for even-order classical ref-

erence filters such as the Butterworth, Chebyshev and Cauer filters. The design process

includes an optimization of the wordlength (the number of digits) used in the coefficients.

In comparison with the method of Scarth and Martens [3], where the complex allpass

function in each lattice branch is implemented by recursively extracting a lower degree

allpass frrnction, the cascade approach to be presented here is more direct and straightfor-

ward. In particular, the implementation of a first-degree allpass section in the cross struc-

ture leads to a single coefficient [10], which is very useful in the optimization of

wordlength and maintains the pseudolossless of the structure.

In Chapter 2, we briefly describe the real WDFs in the lattice structure and the method

used in [8] to realize odd-order classical filters. The implementations of first- and second-



degree allpass sections by means of three-port circulators will be presented in detail, and

in Chapter 3 it will be generalized to the complex case.

Our main results are given in Chapter' 3. First, in Section 3.1 , we describe the method

of [14] that decomposes an even-order low-pass transfer function into two complex all-

pass functions in lattice structure. Then a conesponding CWDF theory is given in Section

3.2. Section 3.3 gives the realization of a degree one allpass section by complex adaptors.

Section 3.4 describes transformations between the variables. Section 3.5 presents synthe-

sis using cascaded allpass sections. Finally, in Section 3.6, aprocess to optimize the word-

length of the cross adaptor coefficients is given.

In Chapter 4,we give the design procedure and examples, and in Chapter 5 the con-

clusions.



Chapter 2
A direct desígn method.for real WDF

The main pulpose of this thesis is to present a complex lattice WDF realization for

even order classical lowpass filters and a direct design method (see Chapter 3). This is a

generulization of the method in [8], which is described in detail in this chapter. In [8], a

direct design method is given for lattice WDF realizations, where both lattice branches

are realized by cascaded first- and second-degree allpass sections with real coefficients.

Odd-order lowpass digital Butterworth, Chebyshev, and Cauer filters can be implemented

using this method.

2.1 Structure of the lattic realization

WDFs are derived from real lossless reference filters using voltage wave quantities

[2]. Consider a two-port (Figure 2.1) where for port i (i=I or 2), the voltage is V;, the cur-

rent I¡, and the port (or normalizing) resistance R¡.

Then the the incident and reflected wave quantities A¡ and B¡ , ãnd the incident and

reflected wave vectors are defined by

A,: V¡+R,1,, Bi: V,-R,1,, i : I,2 (2.1a)



A1--------->

Bt+

<-

--l-

Rt

+
v2

A2

B2

Fig.2.1 A two-port N with port resistances R1 and R2

and

":vl ,:r"l (2.1b)

The incident and reflected wave vectors are related by the scattering equation [15]

b= Sø

where S is called the scattedng matrix:

(2.2)

, : ["" ''jl es)
fn szzl

We assume that the two-port N is symmetric and reciprocal, i.e.

srl : szz ) sl2 : s2t (2.4)

Next,def,nereflections Sr : srr - s27, Sz : srr * szl .Inview of (2.3)md(2.1b), the

individual equations of (2.2) can be written [15] as

28, : 51 (Ar -A) + Sr(A1+A2)

28, : - Sr (,41 - Ar) + S, (4, + A2)

(2.s)

(2.6)

These equations lead to the Lattice realization of a WDF shown in the following Figure

2.2(a) (wittr the wave quantities as the input and output)



(a)

2Bz

(b)

Fig.2.2 (a) Wave-flow diagram of a lattice V/DF.

(b) Simplified wave-flow diagram.

The correspondence between a WDF and its reference filter is established in the fre-

quency domain, not in the time domain. However, we can not simply cÍury over the com-

plex frequency p from the reference to the digital domain since, in the latter, transfer

functions are not rational inp. Hence, a complex frequency variable, r¡, is usually



adopted. The simplest and most appropriate choice for r¡ is the bilinear transform of the

z-variable, i.e.,

,1, : 4: tanh ((pT)/2) , z. : e\r (2.7a)' ?.+ I

T : r/F (2.7b)

where F is the sampling frequency.

In both lattice branches of the lattice WDF (Figure 2.2), St (V) and 52 (V) are all-

pass functions. Consequently, they may be written (except for possible sign reversals) in

the following form [8]:

and

^ 81 (-v).\:-"r g1 (rlt)

- s, (-V)\'_
"2 - g.(yl)

(2.8a)

(2.8b)

(2.10)

where gl (v) and gr(r¡) are so called Hurwitz polynomialst24l of degree N, and Nr.

Further, the transfer functions that are realized by these wDFs are given by

s,1 : s22:\+: ftB (2.s)

sr-st 
- /(v)sl2:s2l: 2 
:;-(rll)

where h (y¡) , / (rf) and g (ry) are the so-called canonic polynomials 1231, [24J.

From (2.8), (2.9), and (2.10) we see that

s (v) : sr (v) s2ß[) (2.rra)



h (v¡) : *.rrr(-v) s2 (v) + s1 (v) sz (-v) ) (2.nb)

l'(v) : !;s r(v) sz (-v) - s1 (-v) sz (v) ) ( 2.1rc)

S (V) is a Hurwitz polynomial of degree N, where N : N, + Nz.

The degree of the lattice WDF is the sum of the degrees of the two reflectances ,S, and

S,. For the case of real coeff,cients, N must always be an odd number [15].

It is also known that the zeros of the polynomials gr (V) and gr(ry) are alternately

distributed in a [8] (see Figure 2.3). This property allows the determination of g, (r¡r) and

s2(tl,r) from s (v) .

Fig.2.3. Alternating distribution of the zeros of the polynomial 91 and gz.

2.2 Design of lattice WDF



In this section we discuss how to realize allpass functions ,S, and Sr. fu allpass func-

tion can be synthesizedby several different methods. Here, let us consider the realization

as a cascade of elementary sections by means of three-port circulators [2]. We consider the

elementary sections of first- and second-degree.

2.2.1 The determination of the multiplier coefficient of a section of degree one

A section of degree one has a reflectance of the form:

s: -V+Bo
(2.r2)

V+Bo

It is known, and we prove below, that, using two-port adaptors, the corresponding wave

digital realization has an equivalent wave-flow diagram as shown in Figure 2.4, where the

coefficient le is

1-B^
A' U
lo - 1r.¿o (2.r3)

Port
a1

b1

Fig.2.4 Adaptor representation of an allpass section of degree one.

Proof: First, consider the interconnection of two two-ports, with port resistances R1 and R2

(see Figure.2.5). The wave quantities are related to the voltages and currents by

10



i2

V1 v2

R1 R2

Fig.2.5 Direct connection of two two-ports.

at : vr +R1i I

bt : ,t-Rri,

a2 : v2+ R2iz

bz : ,z- Rri,

Since the two ports are simply connected, we have

vr:vz

i, : -i,

Substituting (2.15a) and (2.15b) into (2.14c), we get

a2: vr-Rzit

From (2.1a$ and (2.t6), we get

(2.16)

(2.17a)

(2.17b)

i. : -az- 
at

t R, +R,

'" : 
R2o1* Rloz

I R, +R,

Substituting (2.17a) and (2.17b) into (2.14b), we get

(2.t4a)

(2.t4b)

(2.14c)

(2.t4d)

(2.15a)

(2.1sb)

1l



bt: az+yr(ar-ar)

and substituting (2.17a) and (2.17b) into (2.14d), we get

bz : at+yo@r- ar)

where

Rt- Rz
f0- R, +R,

Also from Figure 2.4, we have az : z-t bz

Substitutin g (2.19) into (2.18a) and (2. 18b)

bt : (1 +yo) ,-'br-Toat

br: \sz-rbz+ (L-yo)at

-1 1-Bo
- 1.r,

(2.18a)

(2.1 8b)

(2.18c)

(2.1e)

(2.20a)

(2.20b)

(2.2t)

(2.22)

(2.23)

From (2.20b) we get

br:4o,
1_\oz -

Substituting (2.21) nto (2.20a)

t - 
b' 

- '-r -To
ar 

1 - lor-t

Substituting (2.7a) into (2.12)

,-1
- '! +Bo

ñl-lr

o-1' '+B^
Z+I U

. 1-Bo -tI 
- 

-1

' I+Bo'

Comparing (2.22) and (2.23), we get

12



1-Bo
ro : 1..'60

This completes the proof.

(2.24)

(2.26a)

2.2.2The determination of the multiplier coefficients of a section of degree two

^/_ 
1

Each of the '-;-: sections of degree two has (as we shall prove below) a reflectance

of the following form:

,ltz-A,ry+8,s: (2.2s)
r1r2 +A,yr+8,

It is known [8] that the coresponding wave digitalrealization has equivalent wave-flow

diagrams as in Figure 2.6, where the coefficients are given by

A.- B.- |
^r 

I II2i-r - A¡8,+l

and

where I : r,2, ...,

Tz¡
l-8.: t 

Q.26b)l+8.
I

N-1
2

t3



Fig. 2.6(a), (b) Equivalent wave-flow diagrams of the ith second-degree allpass section.

Proof: first, as in the degree-one case, we have

b t : az+ "lz¡_, (ar- ar)

bz: at+Tz¡- r(a,r-ar)

bt: a++yr,@o-a3)

bq: az+yr,(ao-a3)

Also from Figure 2.6(a), we have

o, : ,-t b,

as: bz

aq : z-t bq

Substitutin g(2.28c) nto (2.27 d)

bo:2o,
t _ ^lz¡z

Substituting(2.28c), (2.29) and (2.28b) into (2.27c)

,( i -v^. \
b3 : U + ^lz) z-'l -----3!- lo' - ^1,o,

\I-nlz¡z )

(2.27a)

(2.27b)

(2.27c)

(2.27d)

(2.28a)

(2.28b)

(2.28c)

(2.2e)

14



t
-rrlt,

o-l , n,,, I2i ,

t -r*¡uzr2i4

Sub stitutin 9(2.30) into (2.28a)

o2:z_,(:#)r,

Substitutin g(2.3 l) inro (2.27b)

a2:

Substitntin 9(2.32) into (2.27 a)

_t _)

\ _ -^{z¡-, + ^lr,(Yr,- t- I) z' + z'
ar | +"lz¡(lz¡_t- I) z-' -^lr,_rr-t

Also, substituting (2.7a) into (2.25)

s: (#)'-A,( #).u,
(#)'.o,(#) *,,

(I-A¡+8,)22 + (28,-2)z+ (1+ A,+8,)

(I + A,+ B,) z2 + (28,- 2) z+ ( 1 - A,+ B,)

A.-8.-l 2(8.-t\ 1 .
- ' I ' --t - --"

A,+ B,+ I ' A,+ B,+ l" t L

, . 2(Bi-1) _1 A,-8,-l _2
r + ¿- g.1z - 4,g,* 1z

( t - r,,')r-'\ -. ,/
'I

1 - ^!z¡z '

_1(l - ^lz¡ - ) z - + \z¡nlz¡ - t - Tz¡

"-a - -"t -, "-. , rzi t2i _ 1 r2i r2i _ 1,"

(2.30)

(2.3t)

al (2.32)

(2.33)

15
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Comparing(2.33) and (2.34), we get

A.- B.- 1

^r 
I I

I2¡-t - AlB *ltt
(2.3s)

and

2(8,- 1)
"t2¡(t2¡-r-1):A_.*;+1 Q.36)

Substituting (2.35) into (2.36), we have

^\t^ 
| - B'

,.¿i: r+8. e.3j)

This completes the proof.

2.2.3 Synthesis using cascaded allpass functions

We now discuss direct design methods for lattice WDF realizations of the classical fil-

ters using the first- and second-degree allpass sections.

Consider one of the Butterworth, Chebyshev or Cauer parameter (elliptic) reference fil-

ters. Let g (V) be given in the product form

(N-r)/z( 
" \

s (v) lry + Bs) II [r' * yrA,+ B. ) e3s)
i:l

From this, g, (V) and g2 (V) can be obtained using the alternating property relating to

the distribution of the their zeros. Thus the allpass functions ,S, and S, can be written as

the following product of sections of degree one and two.

16



c /^,^\ -V+Bo yr2 -yrAr+8, ry2 -ryAo+Bo yrz -yrAo+Bo
J, IU,, : 

-

I \r/ V+Bo tyz +yrAr+Br ryz +ytAo+Bo yrz +yrAo+Bo

,'lr' -yrAr+8, yr2 -yrAr+8, yr2 -yrA,+8,
-2\YJ

r¡r-+r¡,4, +8, yr2 +yrA.+8, yt2 +ryA,+8,

where

. N-l N-3 ^-r. _¡/-3 r:N-1k: Z,l:i,oÍK:-, 2

All adaptor coefficients can be computed by (2.13) and (2.26). Using the cascade synthesis

of these elementary sections, realizations of ,S, and S, arc obtained, which leads to the

conesponding block diagram for the filter given in Figure 2.7.

In the most common cases, i.e., for Butterworth, Chebyshev and Cauer (elliptic) refer-

ence filters , Ai, B í of (2.38) can be obtained by the fonnulas given in [8] and [19]. So the

construction of explicit formulas for the above structure of a WDF is availible t8l. We

note that all these filters are odd order and have real coefficients.

11



Yl

Y2

Complementary
output

Fig.2.7 . Block diagram of the lattice wDF with cascaded allpass sections

for N : 5,9, 13,... (as the top structure), or N : 7, 1I, 15,...(as the

bottom structure).
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Chapter
A direct desígn method"for complex WDF

This chapter presents complex wave digital filter (CWDF) realizations of even-order

classical reference filters. We discuss how to decompose an even-order transfer function in

the e-variable into a sum of two complex allpass functions in Section 3.i. The correspond-

ing CWDF theory is given in Section 3.2. Section 3.3 gives a realizatíon of a degree-one

allpass section by a two-port adaptor with a delay. Section 3.4 describes transformations

between the variables. Section 3.5 presents synthesis using cascaded allpass sections.

Finally in Section 3.6, a process to optimize the wordlength of the cross adaptor coeffi-

cients is described.

3.L Decomposition of an even-order lowpass transfer function

In this section, we discuss decomposing a general even-order digital filter transfer

function G (z) in the e-domain into the sum of complex allpass functions. The method

was introduced in [9] and we will show how this idea can be used to implement sven-

order filters.

Consider a stable transfer function G (z) that is real-valued for real z. and satisfies

19



l"[r".,)l < 1, for all real cù, where z : ei'. Such transfer functions are said to be

bounded real. There exists a certain class of bounded real transfer functions (including the

classical filters discussed in Chapter 2) that can be implemented in the form of a parallel

interconnection of two allpass filters erk), Ar(z) (Figure 3.1) t9l with real coeffi-

cients. This observation was first made in connection with wave digital filters t151. The

allpass functions can be implemented as a cascade of lossless lattice structures (see Chap-

tet 2). The key point concerning the implementation as a sum of two allpass sections is

that each allpass function can be implemented as a cascade of first-degree allpass sections.

Fig. 3.1 Parallel connection of two allpass sections.

There are certain conditions that a bounded real transfer function G (¿) has to satisfy

in order to be implemented as in Figure 3.l.In particular, let G (z) be an Nth-order low-

pass transfer function of the form

G (z) P (z)
(3.1a)

D (z)

where

P(z) : po+pß-t +...+pNz

D(z): 1+ ,lrz-r +...+drz-N

(3.lb)

(3.1c)

Ar (z)

Ãz@)

20



Here, p,r, dn (n : 0, 1, 2, ..., N) are real and P (z) is a symmetric polynomial, i.e.,

"[.-'):rrr(r) (3.2)

It can be shown that N has to be odd so that an implementation in the form of Figure 3.1 is

feasible [9]. For example, odd-order --but not even-order-- lowpass Butterworth, Cheby-

shev, and Cauer filters can be implemented as in Figure 3.1 (ttre conesponding lattice

WDFs diagram was given in Figure 2.2).

So for even N, an implementation in the form of Figure 3.1 is impossible. Here, we

describe a modification given in [14] for the case of an even-order lowpass function

G(z). Specifically, we decompose G(z) into a sum of allpass functions Atk) and

Ar(z) with complex coefficients [9].

Consider an Nth-order bounded real function G (z) : p (z) / D (z) as in (3.1) given

in minimal form (i.e., no common factors between P (z) and D (z) ). Assume that p (fl

is a symmetric polynomial satisfying (3.2).Let H (z) be a bounded real function with ttre

same denominator D (z). Then

H(z):ffi -t -l'/
Qs+ qß ¡ ...Qwz

I+clrz-l+...rJ*z-N
(3.3)

such that {G (z), H (z) } are a power-complementary pair, i.e., satisfy

(3.4)

Such an H (z) can always be constructed by finding a spectral factor Olrt')of rhe pos-

lo(,^)l'*l'( ,i')l' : l

itive tuncti* [1"[ ,t')l'-1"[ ,t')f). rn many fitrering applicarions, ir is possible to

zt



find a spectral factor Qk) such that Qk) is symmetric.

So assume that P (¿) and Q Q) are both symmetric. We know that, by analytic con-

tinuation, (3.4) implies

P(z)P(z) +Qk)Qk) : D(z)D(z)

Since P (z) and Qk) are symmetric, we can write

c (r) c (z) + iI (z) H (z)

except at the poles, where C (r) and

H (z) by replacin g z by z.-1 and all

(3.1a) and (3.3) this implies

Þk) : zNp(z)

Then (3.6) becomes

p'(z)+e2(z) : z

which can be decomposed as

lP (z) + jQk) I tP (¿)

: I (3.s)

ft (r) are the functions obtained from G (z) and

complex coefficients are conjugated. Also, from

(3.6)

gfr> : r*Qk) (3.1)

-'rf .-' )o rr, (3.8)

- iQ k)ì : .-"o[ ,-' )o k) (3.e)

Let {zr, z2; ...t er} denote the zeros of D (z). None of them can be real for the follow-

ing reason:. If z, were a real zero of D (z), then it would certainly be a zero of

P(z) +iQ(z) or P(z) -jQ(e).Assumeforexample,that P(2,) +iQ(2,) : 0.Since

2,. is real and P (¿) has real cofficients, P (zr) is real, and so is Q (2,.) . Accordingly, we

must have P (zr) : Q k,.) : 0. In particular, this implies a common factor lt - ,t ,r)

22



between P (¿) and D (z), which has been ruled out earlier.

All the above zo's occur in complex conjugate pairs (since D (2,) is a polynomial with

real coefficients ). Hence

M

D(z) n(' -r-'rr)(t- z-tro','), M:T (3.r0)
K:T

As a rcsult, (3.9) can be rewritten as

IP (z) + iQ k)] LP (z) - iQ k)l
Ii_--*+( ' \/ -, \: z IlIt -r-',o)lt-z-',o*')(t-zz¡,) (t-zzo¿) (3.11)

k:r

Since P(¿) and Qk) are symmetric polynomials with real coefficients, the zeros of

p (z) + iQ k) occur in reciprocal pairs, as do the zeros of P (z) - iQ (z) . Moreover, if

zoisazero or P k) + jQ (e) , then its conjugat" ,o* is a zero of p (z) - jek).In con-

clusion, the zeros shown on the righrhand side of (3.1i) can be assigned as follows:

M/.
p(z) +jek) : )"2-*f|[t -r-tro)(-zzp) (3.r2)

k:1

M/\
P(z) - jQk) : )\",2-M n It -z-tzo*)(t-zz**) (3.13)

k: I

where l' is a complex unimodular constant. Dividing both sides of (3.12) and (3.13) by

D (z) in (3.10), we get

M-l
G (z) + jH (z) : ¡,II ' _r'o (3.t4)

*:tl-z^zk*

23



M-l
G(z)-jH(z):7,-II+ (3.1s)

t: tl - Z Zt

Thus, G (z) and H (z) can be written as linear combinations of stable allpass functions

G (z) : )ror (e) + er(z)l (3.16)

H (z) : *,fo1 (z) - Azk)l G.lt)¿l

where

M-1
Ar(z):ÀII:

. -1_k:lt-z zk"'

M-l-þ
erk):?,'*lI=

t:tl-z zt

(3.18)

(3.19)

Note that Ar(z) and Ar(e) have complex coefficients, and the coefficients of A2k) are

the conjugates of the coefficients of e, k) . Figure 3.2 represents the allpass decomposi-

tion scheme.

G(z)

H(z)

Fig. 3.2 Implementing the allpass complementary pair.

Also, since the coeffrcients of A2k) are complex conjugates of those in A, (e) , it is

At@)

Az @)
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only required to implement A, (z) if the input is real. The real part of the filtered output

sequence is the output corresponding to G (z) , while the imaginary part of the output

sequonce of Ar(z) is the output corresponding to H (z) as in Figure3.3.

G(7)=Y,(a)lX(a)

y(n)--y,(n)+jy¡(n)

Fig. 3.3. Implementation of G(z)by means of a single complex allpass function.

In summary, given any bounded real function G (2.) : p (z) /D (z) with symmetric

numerator P (z) , we can always obtain the implementation of Figure 3.1 or Figure 3.2 if

there exists a bounded real function H(z) : Qk)/D(z) with symmetric numerator

Q k) , such that (3.5), (or equivalently (3.6) ) holds. The above-mentioned conditions on

G (z) and H (z) can be found in a class of selective filters. For example, even-ordered

Butterworth, Chebyshev and Cauer digital transfer fi¡nctions satisfy the above require-

ments.

3.2 The corresponding classical complex \ryave digital theory

In this section, we present a decomposition similar to that of Section 3.1 and similar to

that in [5] using wave digital theory. Therefore, the discussion will be in the r¡r -domain.

In Section 2.I, we have discussed the classical wave digital theory and the scattering

equation. For a complex wave digital network, there is similarly a scattering equation and
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the scattering matrix given by 1241,l23l as follows.

Þ;l :,[^;l
lu,l V,)

with the scattedng matrix

(3.20)

r:iP *tl e21)
s f _on.l

Thepolynomials f , g, h satisfythe following conditions:

(l) f :/(V) ,B: gOI¡),h : h(Ð arerealorcomptexpolynomials(i.e.realor

complex coefficients) in ttre complex frequency variable V. The subscript asterisk denotes

paraconjugation, i.e., f* (V) ="Ê (-tf*) where the superscript asterisk designates com-

plex conjugate. For a real polynomial,f- (rf) : /(-rfr)

(2) I (V) is a Hurwitz polynomial.

(3) f , g, ffid h are related by

BB* : hh""+ff* (3.22)

Ø) o isaconstantwithlol : l,thereforeforarealconstanteithero: l oro: -1 .

For real polynomials f , g , and h, we know that in the reciprocal case:

f : of" (i.e. s,, : szr ) e.Z3)

and in the antimetric (antisymmetric) case:

h : oh* (i.e. sr, : _str ) e.Z+)

Under the conditions (3.23) and (3.24), (3.21) becomes
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(3.2s)

and (3.22\ becomes

.2 2h +Í : oBB., (3.26)

For the real case g- (V) : g (-V) ; ler us consider:

V : 0:9.(0) : g(0)

Then from (3.26), we have

(3.27)

tt (o) * f fo> : os (0) s. 1o¡: os2 1o¡ (3.28)

whichshowso: i.

Let the degree of g be n , aîd its highest coefficient be g n, then

8*,r: (-l)n8,, (3.2e)

Since the highest coefficient of ltz + f must be positive, the highest coeficient of gg*

must be positive. Then we get

o < I nB *, : (-r)" I ,rg n : çt)" s2, (3.30)

and thus, n must be even.

Also,with o' : 1 ,(3.23) becomes f : f., (3.24)becomes h: h*.Therefore f andh

must have even degree.

Thus we have

5:11, ¡1
s l¡ -n)
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-2 .2
h- +f-: (h+ jÍ) (h-jÍ) : BB* (3.3i)

which will be required for the decomposition derived below. We can assume without loss

of generality that J and I arc relatively prime, then g can not have real zeros; because if

gg* : 0 for V6 reâI, then h (Ve) anO /(Vo) are real and both must be zero from

(3.31),i.e. å(t¡o) : 0 and/(Vo) : 0 ,whichimplies f andhhaveacommonzero

which has been ruled out. (Note that a similar proof of the corresponding result in the ¿-

domain was given in Section 3. 1 .) Thus g cannot have real zeros and the zeros of (3 .3 1)

must appear with quadrantal symmetry ( gg* is an even polynomial). Without loss of gen-

erality assume I is monic. Let

n/2

I (v) : frIl (v - v,) (rtr - \r,*) (3.32)
t:1

where R¿ {V¡} < 0 and Æ is real.

Substitutine Q.32) into (3.31)

n'(y,) *f fv¡ ff(v) + jh(y¡)) ff(v) - jnß¡))

: I (v) s- (v)

n/2: k'il,(v-v;) (v-\r,*) (v+v;) (v+v;*) (3.33)
i:l

Let

n/2
v (v) : krio lI fv + v¿r,) (v - v,'.) e3aa)

i:t

28



then

n/2

v- (ï/) : k"-igll fv + v¡) (v - v¡) e.34b)
¡: I

and

v (V) v,- (V) : I (V) s- (V) (3.35)

we can identify f @) + jh (r¡) with v (r¡r) and f (Ð - jh (r¡) with y. (v) . The factor

niï ," uins to be determined from a given J and g .

1

/(v) : ;(v (v) + v. (v) )

.( n/2 n/2 \: tlr'!r(\r+\r¡") (v-rr¡'') *,-t'JJ,_,(v+v¡) (v-v¡) ) e.tu>

1h(w) : -zjO (V) - y. (V) )

: t(r 
,íi(\r+v¡*) 

(\r-v,*) -,''!,(v+v¡) (v-v,)) ,r.ra

Dividing both side of (3.36) and (3.37) by s (V) in (3.32)

#B:;?fr,ffi.u''fr,.#) (338a)

frB : tl¿'ííäH -"-,fr#+i) ,338b)

a,(v) : ¿'íí#H
i:1

(3.39a)
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A2er):u''fr,,#

Then we can write

/(v) : t

,q (v) ;Øtß1) + A2(nlt) ) (3.40a)

å(v) : I

s (v) zjØt (v) - er{v) ) (3.40b)

To complete the determination of A, (V) and, Ar(r¡r) from /(V) and s (V) , "i0 
is euul-

uated from

trr*, : lrlr'*,-''): coso

lr*, : +1,'u - 
,-',): sino

(3.3eb)

(3.4ra)

(3.41b)

If å is unknown, we can calculate / ("") ano 1(0) to evaluate ¿/0.8' g'

Also, coresponding to the odd case, the poles of even-order A1 (V) and, Ar(r¡r) are

alternately distributed in a cyclic manner[12] (see Figure 3.4). Agan, this property will be

used to determine Al (V) .
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Rev

Fig.3.4 Alternating distribution of the poles of the polynomial A1 and 42.

3.3 Realizations of complex sections of degree one

To implement (3.40), we need to realize complex sections of degree one

'u.f + ï-f ,'l'
S (rf) : 

- 

. In the z-variable, a complex allpass section of degree one has a reflect-
V-1/¿

ance of the following form:

-17 _a<, 1.tc_ K

_I
I - zk^z

(3.42)

In [3], Scarth and Martens gave a rcalization of a complex WDF through an extraction

process with complex two-port adaptors and delays. Here we present arealizationusing a

complex two-port and a delay. Let us consider a complex two-port adaptor as in Figure

3.5.
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port2

Let

Fig.3.5 A complex all-pass section of degree one.

s: 1[å ø;.l
sf _onl (3.43)

be the scattering matrix where f', I , h are complex constants that satisfy the conditions

(3.22) in Section 3.2. Since g is a scaling constant, let g : 1 . Then

r: [' "/.] and l,,2 +lrl2 : t. (3.44)
V -"'"1 vt

From the scattering equation and the diagram, we obtain

b, : har+ of a,

b, : far- oh*a,

_lar: z'b,

Substituting Q.aq into (3.45b), we have

' z+oh* r

Substituting Q.aT into (3.45a), we have

Q.a5a)

(3.4sb)

(3.46)

(3.41)
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\:
a1

This is in the form

1,. * oÍf* :
z + oh.¿'

_i h.z +-
oo---_-_

I

1 + oh".?. '

(3.42).Let

h+o(hh¿'+ff")z-t
1

l+oh.*2.'

1

z. ' + o*h
I

I + oh.¿'z '

h : -oztc

: reiþ, o : ,t't ,oobtain

(3.48)

(3.4e)

(3.s0)zk, i.e.

o in polar form, i.e. zoWnte zo,

lj':t

So

-lhlt: 1- r' ,i.".ffi: lr-7,¡: ^f t-,7ri"

[ ;to*t,l l.-z-i(0,-e,iS:l-re {t-re - 
|

Vr=¿', ,"-io l
Here, we consider two cases: first, 0, : 0, 02

3.3.1 Complex wave dÍgital cross adaptor

If er : 0,0r:0,then

,: [ -"jþ lt -'1
llt= ,,-'')

We can scale S by introducing the transformation

;t;-1
,r-iþ j

(3.s 1)

: 0; and second, o, : -0, oz: or.

(3.s2)

-Å[; åL
i0

-re

l'=
__t-

¿^s¿,: 11 oll-"'
lo d,)U, _;

JJ

(3.s3)



where ": [å iJ , D.'|-[l I
Let ct, : l t=, rhen

nsD-r:l-,,'' tl
lt - r' ,r-'r)

We note that the scattering matrix (3.54) is the same

scattering matrix t10l if we let þ : -rriþ. The com

gram is as shown in Figure 3.6(a). Expressing b, and

obtain

b, : þar+ a,

b2 : _þ*br+ a,

We can also write the relationship as

(3.s4)

form as the complex cross adaptor

plex cross adaptor signal-flow dia-

å, as functions of a, and az , we

(3.55a)

(3.ssb)

(3.56a)

(3.s6b)

b, : Far+ a,

b, : lt -ßl')o,- þ*oz

The symbolic representation is given in Figure 3.6b. For the realization of CWDFs, this

complex cross adaptor offers several advantages. The two constants p and -px differ

from each other only in the sign of their real parts and must have a magnitude less than

unity. So essentially, there is only one coefficient involved. A physical interpretation of the

complex cross adaptor is given by Martens [6] using the relationship between the hybrid
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(b)

(c)

Fig.3.6.(a) Signal-flow diagram of complex cross adaptor.

(b) Symbolic representation of (a).

(c) Physical interpretation of (a).

matrix and the scattering matrix as shown in Figure 3.6(c), where xt : #ffi,

R,(l-R¿{F})x^: - ,andn: l_R¿{F}.' Im {þ}

The complex cross adaptor can be used to realize a complex allpass section of degree
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one. We know that a complex allpass section of degree one has a reflectance of the follow-

-17 
-7c a,t_

ing form S : 
----+ 

and the coresponding signal-flow diagram of a wave digital
I - lot''-l

realization is given in Figure 3J, where the multiplier coefficient is given by

þ:-z* (3.s1)

Fig.3.7 Adaptor representation of a complex cross allpass section of degree one.

Here, we check the pseudolosslessness property of the cross adaptor

,:Ip r]
Lt - rpr' -p..1

Comparing (3.54) and (3.58), we have

(3.s8)

(3.se)G:çn'l¡z [;J [;#
The condition for pseudolosslessness is given as [3]

þ : -rriþ

G: s*TGs
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To check whether (3.60) is satisfied, we note that

s'rcs : 
[1" -f'1 [l # [, -îu,, -u"]

:,[i.,#L-îu,,åJ 
[;¡,; "

Therefore, the complex cross adaptor structure is pseudolossless as expected.

3.3.2 Complex wave digital adaptor from real wave dÍgital adaptor

If el : -þ, 0z : 0, , rhen

,: [ -r /=;i : [' '-¡|- -r l,=] (361)"- 
l^l;,-', ,,-'r)- Lo"-,*J úr= , _l 

\J'u'

Similarly to the cross adaptor, we use scaling

.l[ -r ;t,;1uòD:L,,:4 

l,¡-_r", ] 
e6z)

l.--z
Let clr: !'|, rhen

nsD.'1: 
[j "fi [, 

l, ' 11 (3 63)

We note that this is the real adaptor scattering matrix with a unimodular multiplier, we

have the corresponding wave-flow diagram as shown in Figure 3.8.
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Fig.3.8. A complex two-port adaptor representation with areal two-port adaptor

and a unimodular multiplier.

3.4 TFansformation from r¡r-domain to e-doma¡n

The complex \ryave digital filter realizations in Section 3.3 are all designed directly in

the z-domain for convenience. However, in the classical wave digital theory, hansfer

functions are usually given in the r¡ -domain, and so it is preferred to design the filters in

the V -domain. All the functions and their relationships in the z-variable described in

Section 3.1 can be easily transformed into the r¡-variable by the bilinear transformation

1+rr z-1. : ffi 
(V : fr) This is a one-to-one transformation that maps the whole of V-

domain onto the whole of z -domain and vice versa. The imaginary axis in the r¡ -domain

maps onto the unit circle in the e -domain and the left and right halves of the r¡ -domain

correspond to the inside and outside of the unit circle in the z-domain, respectively. The

pointy : 0 transformsto z: I,andV : oo to z: -1.

consider a complex allpass function of degree one in the y-variable

ï.r + ur.*c(v) :' 't
V_V;
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From the definition \, : + ,we obtain in the z-plane' z.+ I'

1 _-lt -t 
' 

*t*'
- -lI+2. (V,* - I) z-t + (!r,{' + 1¡

c (z)

v¡*

Thus, we get

_ -tI 
-c' ";-t'[

I+?.'

t tZ
I \rr*'- i I:-l-l-

I v,- I ,/'l

- (v, +l)z-1- (v,* t;

-l '.¡ 
t'* I

+
\r¡* _ 1

V,+ I -rL-.| -<.V;- I

(3.6s)

(3.66)

(3.67)

rr.* + I
a _ tt

V,*-1

Then, we have

: Þ+i
Ê- i

(3.68)

Therefore C (a) canberealized by the implementation of the complex cross adaptor of

Section 3.3 and a unimodular multiplier.

3.5 Synthesis using cascaded complex allpass functions

From the realization of real wave digital filter theory [1], l2l, a charn connection of

allpass sections of degrees I and2 can be obtained by means of three-port circulators ter-

c(z):(r+)#

39



minated at one port by a capacitance or an inductance or by a parallel- or series-resonant

circuit. Similarly, a complex chain connection of first-deglee allpass sections using three-

port circulators and constant reactance networks Nr, Nz N,,, terminated in a

capactance can be used to obtain an nh order allpass as shown in Figure 3.9(a). The con-

stant reactance networks N, , Nr, ... , N,, arerealized by the circuit in Figure 3.6(c).

aaa

aaa

Ar: E

B1

aa B2

Az(:o)
Ro

a a -o-------------- 

-o
(b)

Fig. 3.9. (a) An allpass complex two-port inserted between resistive terminations.

(b) General structure of the resulting complex WDF realization, N1 to Nn

are realized using cross adaptors.

Corresponding to the design methods for real coefficients WDFs in Section 2.2, tn
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this section we discuss direct design methods for complex WDFs. We implement an even-

order classical filter as a lattice CWDFs by decomposing it into two complex allpass func-

tions Ar (z) and erk) (Section 3.2). Then each complex allpass function is synthesized

from the elementary complex first-degree sections. The elementary sections can be real-

izedby the method of Section 3.3.

M __1 . M __t+þt,
A,(z): ÀlI :: ÀII :-

k-:-lI - Zt'''z ¿: r I *þt''z-r

M --l o i: M _-r +þfAr(z) : I* fI 
=\: 

¡"* fI
k-:-ll-zkz tr:tI+þrz

where À is a unimodular multiplier.

The conesponding block diagram and the signal flow diagram for the complex multiplier

coefficient wave digital filter are given in Figure 3.10 and Figure 3.I l.

Fig.3.10. Block diagram of complex cross WDF
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o
À

c

Fig.3.1i. Signal-flow diagram of the complex cross WDF.

3.6 The optimization of complex cross adaptor coefficients

In realizing a WDF, we need to quantize the multipliers to a limited number of bits

for implementation in hardware. Generally, as the number of bits increases, more accuracy

is obtained. However, under the constraint of cost and efficiency, we would like to find the

minimal number of bits that could be used to represent the coefficients and preserve as

many as possible of the filter's frequency response characteristics (the given specifica-

tions). This is carried out by an optimization process that searches through a set of param-

M
eters { Pr} (which vary within specific ranges to increase or decrease the number of

t:1

bits) for an approximate design, that has minimal number of bits and satisfies the given
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specifications.

First, for each coefficient p,, let $, = F¡ be the number obtained after quantization

in å bits, i.e., it is the number obtained when B, is expressed in binary form with round-

ing. Then É, 
"un 

be written as the binary fraction 'ß, : 3o= F¡, wher e n, and b are inte-.24

gers. Then å is the number of binary bits of n, and Þ; when they are represented in

binary form.

After an approximation of { B¡} has been computed and with K : fn1, n2, ..., n¡4) ,

we use the finite search algorithm developed by Jarmasz [20] which consists of the follow-

ing steps:

(1) The bits of { P,} are varied within specified ranges and those { F,} ttrut satisfy

given specifications are recorded as solutions. Stop if a solution is found.

(2) If no solution is found, then b , the number of bits representing É, , is increased.

To generate the different parameter sets { F;} tttat vary within specified ranges in (1),

welet n,b"tt"numeratorof $, and Ãr: n,+r, with r,e f-e¡,eif ,i: 1(1)M where

8,, i : r (r) M, are positive integers. The digits ri Ne generated by counting from -e,

to er . The counting algorithm is presented in Figure 3.I2 t201. Define the offset vector

R : fr,12, ...,ruf
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Thenewvector Þ : [Ê,, 6r,...,ir] : 
þf< 

*"becompuredfrom

k : f<+R : fnr* r1,nrl r2t...,flM+ r*)

:
þ is tested to determine if it satisfies the design specificiations.

From Figure 3.12, it is easy to see that the value for COUNT, when END is rcached,

is

M

couNr : II (2e,+ r) : CouNr*ax
i:I

Thele exists a one-to-one correspondence between the integer set

{, : I (I) COUNT*o*} and the offset vector R generated by the algorithm in Figure

3.l2.To illustrate, consider the case M : 2, Êl : ez : l. We obtain

2

COUNT*a, : fI 3 : 9 and the correspondence between R and COI-INT is shown as

i:l

Figure 3.13. The numbers 12 
, 
11 wore generated sequentially using the alogrithm in Figure

3.l2.For each offset vector R : frp 12) generated, a corresponding fr : lÃr, Ãrf ß

obtained. The results for K : fnr, n2) 14,71 are also given in Figure 3.13.
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R:[0,0,...,0], couNT: 0

i:0, COUNT:COUNT+I

rl : rl+i

ri: ri - (2e¡I)

R:[0,0,... ,0]

Fig.3.l2 Flowchart for generating all possible R vectors.
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Fig. 3.13. The corrcspondence between R and COUNT.

It is important to note that, although theoretically it is possible to test all feasible

parameter sets, the computer time to do so could be very costly. Consequently, the ranges

within which the numbers are allowed to vary must be limited.
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Chapter 4
The design procedure and examples

This Chapter presents design procedures for the even-degree classical Butterworth,

Chebyshev, and Cauer filters. Design examples are also given to illustrate the procedures.

4.1 The design procedure for complex waye digital filters

We know that explicit forrnulas exist for WDF realizations of the odd-degree Butter-

worth, Chebyshev, and Cauer f,lters, which have already been discussed in tSl. Here, we

present similar results for the design of CV/DF realizations of the even-degree Butter-

worth, Chebyshev, and Cauer filters. Namely, explicit formulas and procedures will be

given for computing the poles and multiplication coefficients.

The design specifications for a low-pass filter are frequently given in terms of attenu-

ation as illustrated in Figure 4.1, where

A, : maximum allowable attenuation in the passband in decibels

A, : specified minimum attenuation in the stopband in decibels

f, : lower edge frequency of the stopband

f, , upper edge frequency of the passband
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Attenuation

AS

fp fs
Frequency

Fig.4.1. Design specifications

F : sampling frequency

Instead of the above parameters, the factors t" , t1, and the transformed frequencies

Qs, 9¿ are more convenient in deriving the explicit formulas. They are defined by

9, and Q, arc the corresponding analog frequencies obtained via the pre-warping formula

which stems from the bilinear transformation (2.7).

e:
,t

e:p

9, : tan (nfr/F)

9o : tan (nJo/F)

The first step in the design of a practical

required to meet the above specifications.

(4.r)

(4.2)

(4.3)

(4.4)

filter is the determination of the filter degree

For the low-pass Butterworth, Chebyshev,
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and Cauer filters, a minimum value for the degree can be estimated by using the following

approximations [8]:

n
nt.t n

c,ln ( c^ .e /e \r \ ¿ s p'----ñT%t- (4.5)

@.6a)

fori:0,1,2,3. (4.6b)

where c t , c2, and c, arc given in Table I with

and

k,*, : k2, +

Table 1:

Filter type cy Co ca

Butterworth 1 kot

Chebyshev 1 2 k1

Cauer 8 4 2k¿

Next we describe how to determine the poles and multiplication coeff,cients for each of

the three classical filters. These formulas are deduced from the papers by Darlington [19]

and Gazsi [8].

To calculate the poles of a Butterworth Filter

Define the parameters
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w : rtlaor)")

woh: *nU@+h)n)/n

where ô : 0, l/2 forn odd,even.

(4.8)

(4.e)

Yary h. in equation (4.9) from Ito 2n, apply the required sequence of transformations

and rctain the zeros with negative real parts (r1r, : woh). Then the V; (i : I, ..., n) are

the poles of Ar (V) and Ar(V) .The poles of the rational functions a, (V) and A2 (V)

are altemately distributed in acyclic manner (see Figure 3.4) andhence A1 (V) and

er(V) can be determined. For a Butterworth nlter I (-) : 0 and L (*) : 1, there-g' I'

fore, from (3.41), ui' : j. Then, we have

a, (v) : ¿' íi]FH, and A2 (v) :,-* fr,y;
By the bilinear transformation ry : # (see Sectio n3.4),a, (V) is rransformed from

the V -plane to the z -plane as A, (z) , and Ar(tf ) is transfonned from the r¡ -plane to

the z-plane as A2k) .
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.^n/2 ( Þ,_ t )z-r+ p_*erk): rr",fl,l. ffiJ,*

:u'',ú,[ **) :fr,#
Define

Then

(4.10b)

(4.n)),:,jsíit'=l
¡:r\ ",-l )

,r'fr\#

a -V¡*+1Pt - 
u'*- I

are the cross adaptor coefflcients, i : l, ..., n/2 .

where

To calculate the poles of a Chebyshev Filter

Def,ne the parameters

w:

(4.12a)

(4.rzb)+.F
(i(õ+h)n)/n

wrh : we

5l

(4.12c\



Yary h inequation (4.12) from 1to2n,applytherequiredsequenceof transforma-

tions and retain the zeros with negative real parts (ry, : woh). Then, the same as above,

detetmine the poles of A, ('l¡) , Az(r¡r) using the alternating distribution property.

Finally, using the bilinear transformation transfer the poles from the r¡-domain to the z -

domain to get the cross adaptor coefficients þ,, i : r, ..., n/2; ni9 aod. )u aredeter-

mined as for a Butterworth filter.

To calculate the poles of a Cauer Parameter (elliptic) Filter

where E :0,1/2 forn odd,even.

woh: +(-,r-+^)

qo : ;fÇ¿çp

e¡+t : q? . lnil, ror i : o, r,2,3

m4 : )eøo)"

and furthe, def,ne auxiliary parameters by means of

8,:+.F

B¡+t : misi+ la;Ð'-,for i

(4.13)

(4.14a)

(4.r4b)

(4.15a)

(4.1sb)

(4.16a)
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wso: (4.r1)

(4.18)

(4.19)

@.20a)

w5: wsoeQ(õ+h)n)/n

where E : 0,1/2 for n odd, even.

wi-t: +(-, #-),rori 
: 5,4,3,2,1

!qt, : -?^,for k: o to n- 7 .

tot(.;zJ

Yary h in equation (4.1 8) from 1to 2n, apply the required sequence of transformations and

retain the zeros with negative real parts (r¡, : woh). Then, as for a Butterworth filter

determine the poles of A, (!¡) , Az(r¡) using the alternating distribution property. To

calculate ,i0 ofa Cauer filter, the transmission zeros are required.

To calculate the transmission zeros

where w o is atransmission zero.

In [25], Saal presented two cases for the frequency response: case a and case å . In

case a, we obtain /(-) : + *¿ & (*) : L, where rr, : ep*olf (0)l

8 ^þ*fi s'' ^þ*ni " q;

w¡, : lstrlqrqp (4.20b)

and l/(0)l istheproductof allthezerosof/.From (3.41) ri' : /("") *þ@).
oo'òô
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we have a, (v) : ¿'i,ËH , and Ar(rv) : u* 
f,,# 

. Finary, by rhe

bilinear transfotmation transfer the poles from r¡ -plan e fo z-plane to get the cross adaptor

coefflcientr Ê,, I - 1, ...,n/2.

In case b , the largest transmission zeto * ,ro* h (4.20b) and its complex conjugate

are transformed to infinity, and the remaining zeros of f and the zeros of g are trans-

formed with the formula [25]

(4.21)22w +'u,rmax ¡

where r¡ and {r are the complex frequencies of cases a and å , respectively. And

: j. The rest of the design procedure is the same as inr and. ejo

case o. The frequency response of Example 3 is an example of case å.

4.2 The design examples

In this section, we present examples illustrating the above procedure. The optimiza-

tion process of Section 3.6 is also used.

Example 1: a Butterworth filter. The design specifications are as follows:

Passband: fo : 4.0 køz Ap : 0.1 dB

Stopband: f, : 6.06 kllz Ar : 40 dB

Sampling frequency: F : 16 l<lIz.
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+,(z) : 
^fri:+,andAr(z) 

: ),.fri:y
t: I I + þo''l- 

- 
o:'11+þoz-'

In this example, M : n/2 : 4

First, we get all the coefficients using (4.11) and @.7)-(4.9) asfollows:

)," : 0.19255208 - j0.60980423

Ê, : 0.19393093 + j0.80206562

Ê, : 0. 12755109 + j0.29882r63

Ê, : 0.11806879 - j0.97131420

Ê^ : 0. 14917756 - j0.52s14838

Second, choosing 6 bits for the quantized coefficients, yields:

), : 50/64- j3g/64

9, : nta4+i5r/64

F, : ttø++ir9/64

F, : tta+-i6/64

Fo : otø+-i33/64

The frequency response for the quantized system is shown in Figure 4.2.Wenote that the

transmission zero has shifted ftom f/F : 0.5 to f/F : 0.4 due to quantization and the

level in the passband has shifted up by 0.08 dB due the quantization of the unimodular

multiplier. Also, for 6 bits of quantization the design specifications are not satisfied. The

optimized 6-bit coefficients are as follows:

À : 51 /64- j38/64
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F, : tZtø4+ j52/64

F, : tte++ jt9/64

Þr: tta+-i6/64

Bo: ote+-i33/64

The frequency response for the optimized system is shown in Figure 4.3; the design speci-

fications are satisfied after optimization. The corresponding WDF diagram is shown in

Figurc 3.10 and Figure 3.11.

Example 2, aChebyshev filter, the design specifications ar.e as follows:

Passband: f, : 4.0 kllz Ap : 0.1 dB

Stopband: { : 5.0 kHz Ar : 40 dB

Sampling frequency: F : 16 kHz.

e,(z) : ^fr=3,, and A2(z) : L.fr++q
r: tl + þt*z ' [: tl + $oz-'

In this example, M : n/2 : 4

First, we get all the coefficients using (4.I1) and (4. I2), (4.I3) as follows:

)\ : 0.72977057 - j0.68369212

F1 : O.r 16238t6 + j0.93943470

þz : - 0.2976t296 + j0.59613754

p3 : - 0.47760t90 - j0.229s402s
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þ+ : -0.92962980 -j0.S0898964

choosing 10 bits of quantization for the coefficients, gives the following:

),, : 141 / t024 - j700/ t024

F, : Zzt 1024 + j96t / 1024

þ, : -ZO+/ rO24 + j6I0/ 1024

Þ¡ : -a89 / to24 - i235/ 1024

9 o : -os t t024 - i828 / 1024

The frequency response for the quantized system is shown in Figure 4.4.Wenote that

the transmission zero has shifted from f/ F : 0.5 to f/ F : 0.44 due to quantization.

Also, for 10 bits of quantization the design specifications are not satisfied. The optimized

coefficients of length 10 bits follow:

)," : 748/1024- j6g9/1024

Þr: tZtt024+j962/1024

Þ, : -ZOS / 1024 + j609 / t024

F3 : -+as / rc24 - i234/ t024

Þ o : -ss t 1024 - i828/ t024

The frequency response for the optimized system is shown in Figure 4.5; the design

specifications ¿ìre satisfied after optimization. The corresponding WDF diagram is shown

in Figure 3.10 and Figure 3.11.

Example 3, a cauer filter, the design specifications from [10] are as follows:
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Passband: f, : 3.4 kHz, Ae : 0.1 dB

Stopband: f, : 4.6 kHz, A" : 80 dB

Sampling frequency: F : 16 kHz.

At(z) : rfr:i3_, ,andAr(z) :r,fr++q
t:tl +þor,r' t:-tl+þú

In this example, M : n/2 : 4

Using (4.20), (4.21), the transmission zeros are as follows:

lì : O.OOO0000 +jl.3010445, fz : 0.0000000 + jl50029t1

/, : O.OOO0000 + j2.2277880, fa : 0.0000000-j1.3010445

l, : 0.0000000-j1 50029t1 , fa: 0.0000000-j2.2217880

Using (4.14)-(4.19), the zeros of g are as follows:

81 : - 0.21338281 + j0.50348335, 82 : -\.tZZiBt24+ j0.70965761

B3 : - 0.03885768 +j0.80445136,8a: -0.28032632+ j0.t8499087

B 5 : -0.21338281-j0.50348335, I 6 : -0.12278124-j0.709657 6I

B 7 : -0.03 885768-j0.80M5 136, s, : -0.2803 2632-j 0.t8499097

Finally, we get all the coefficients using (4.11), (4.20), (4.21) and the bilinear transforma-

tion applied to the zeros of / and g:

),, : 0.63664746- j0.77rr5497

Êr : - 0.40617395 +j0.58348068

þ2 : -0.20351874+ j0.93195854
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p3 : - 0.27281303 - j0.80448510

F4 : - 0.53015731 - j0.22t08827

choosing l2-bitcoefficients, the quantized coefficients are as foilows:

)," : 2607 / 4096 - j3r58/ 4096

F, : -t003 / 4096 + j2389 / 4096

Þ, : -Zzz/4096 + j38t7 /4096

F, : -1 rr7 /4096 - j3295/4096

Þ o : -zn t / 4096 - j905 / 4096

The frequency response for the quantized system is shown in Figure 4.6. We note that

fot 12 bits of quantization the design specifications are not satisfied. The optimized coeffi-

cients of length lZbits are as follows:

)," : 2607 /4096 - j3r5g/4096

Þ, : -i004/4096+ j2388/4096

Þ, : -A:: /4096 + j3817 /4096

Þ, : -1117 /4096 - j3295/4096

Fo : -zn0/4096- j904/4O96

The frequency response for the optimized system is shown in Figure 4.7, the design

speciûcations are satisf,ed after optimization. The corresponding WDF diagram is shown

in Figure 3.i0 and Figure 3.11.
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Chapter 5
Conclusions

A complex lattice WDF realization of even-order classical lowpass filters such as But-

terwofth, Chebyshev and Cauer filters has been given. Complex first-degree allpass sec-

tions are implemented by a complex two-port cross adaptor with a delay. The cross

adaptor represents an implementation of a first-degree section with two complex multipli-

ers and a delay, but the two multipliers differ from each other only in the sign of their real

parts and must have a magnitude less than unity. So essentially, there is only one coeffi-

cient involved. Also, the complex wave digital adaptor can be implemented with arcal

wave digital adaptor and a unimodular multiplier. With the explicit formulas available, the

design process is simple and parallel to the one for the WDF realization of odd-order clas-

sical lowpass filters [8]. The design examples confirm the effectiveness of optimizing the

wordlength.

For future wolk, it remains to be explored whether first-degree complex allpass sec-

tions can be implemented with one complex multiplier and one delay. (For allpass func-

tions with real coefficients, the lattice structure with one multiplier and one delay per

section arc well known). This will make it comparable with the realization of odd-order

filters.
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