
A Companison of Some Methods for Cohenenc
for Appljcation in the Analysis o

Helena Kadlec

eE
fE

stimation
EG

by

A thesi s
pnesented to the Univensi ty of Manj toba

in pantial fulfi I lment of the
nequi nements fon the degnee of

Masten.of Ants
ln

Depantment of Psychology



A COMPARISON OF SOME METHODS FOR COHERENCE

ESTIMATION FOR APPLICATION IN THE ANALYSIS OF EEG

BY

HELENA KADLEC

A thesis submitted to the Faculty of Graduate Studies of
the university of Ma¡ritoba in partial fulfillment of the requirenrents

of the degree of

MASTER OF ARTS

o ,1985

Permission has beerr granted to the LIBRARY OF THE UNIVER-

SITY OF MANITOBA to lend or sell copies of this thesis. to

the NATIONAL LIBRARY OF CANADA ro microfîlnr rhis

thesis and to lend or sell copies of the film, and UNMRSITY
MICROFILMS to publish an abstract of this thesis.

The author reserves other publicatio¡r rights, and neither the

thesis nor extensive extracts from it may be printed or other-

wise reproduced without the author's written permission.



ABST RACT

The frequency components of the electnoencephalogram (EEG),

as denived from speetral analysìs, have been used by psy-

chologists primari ly as a descniptive statjstjc to chanac-

tenize changes jn bnajn actjvity. Mone necently, the cohen-

ence matrix, a cnoss-spectnal estimate that measunes the

degnee of associatjon between paìns of EEG channels, is be-

jng used as 'input fon funther multjvariate statisticaì anal-

yses, such as pnincipal components and factor analysis. The

standand spectnal analysis pnocedunes are based on the as-

sumptions that the obsenved data ane (a) Gaussjan and (b)

stationany, It has however been shown that EEG data does

not general ly satisfy these assumptions t a sj tuation whjch

may be aggravated in the pnesence of neurolog'ical disonders

or during the perfonmance of a cognjtjve taslr, The statis-
tical pnopertjes of cohenence estimates obtained from EEG

data that contain nonstationanities have not been extensive-

ly studied. Thjs study companes the mean squane ennon

(MSE) and bias of cohenence estimates obtained with thnee

estimatjon methods; 1 ) the bivanjate Fast Fourien tnansfonm

(FFT) , 2) bivariate autonegnessjve model estimatjon (AR),

and 3) genen alizatjon of Bung's maxjmum entropy method

(MEM). Simulated EEG data was employed to compane the esti-
mates under statìonany as wel I as various nonstationary con-
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ditjons such as may be encountened in pnactice, Thnee gen-

eraì types of nonstationary condjtjons wene sjmulated, 1) by

changing the magnitude of the variance of the Gaussjan nojse

component at diffenent locations in the intenval, 2\ by

chang'ing the djstrjbution of the noise component fnom Gaus-

sian to exponential, and 3) by adding a low fnequency tnan-

sjent sjne r^/ave to one on both senies. In addition, the es-

tjmates were companed fon thnee different and nelatively
shont jntenval length conditjons, N=64, 128, and 256. As

expected, the nesults in the stationany condjtjons indicate

that as intenval 'length ìncneases, the MSE and bias of the

coherence estimates obtained with all three estimation meth-

ods decnease. All thnee methods perfonm veny similarly,
with the MEM method gìving the best estimates at the fne-

quency where both spectna contain the most power. The FFT

method is ve.ry companable to the othen two, except it lacKs

nesolutjon due to its smoothing nêqujnements. In the tested

nonstationany conditions, again all thnee methods perfonmed

wel l. The FFT was mone nobust than the other two methods to

exponentially distnibuted noise" Changjng the magnitude of

the Gaussian noise variance had small effects on all three

types of cohenence estimates, whiìe the additjon of a tnan-

sjent sjne wave sevenely impajned the low fnequency estj-
mates only when both senies contajned the tnansient. Recom-

mendatjons for coherence estimation in pnact'ice ane

d i scussed .
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A COMPARISON OF SOME METHODS FOR COHERENCE
ESTIMATION FOR APPLICAT]ON IN THE ANALYSIS OF

EEG

The powen spectrum of the electnoencephalognam (fEC) nep-

nesents the f nequency composi tion of the general electn'ical

actjvìty emjtted by the brajn. In psychology, the EEG is
'important fon study'ing nonmal and abnonmal human brain func-

t'ion'ing by seanch'ing fon conrelates between various types of

behavioural, panticularly cognj tjve, tasKs and the anatomic

distr jbution of this brain activ'i ty. The bnain potentials

measuned fnom the scalp nonmally nange fnom 10 to 200 uV,

wi th ep'i leptic sejzunes pnoducing up to 'l mV (Gevjns,1983).

The 'intens'i ty and pattenn of the electnical actìv'i ty ane

hìghly dependent on the ovenall excjtation of the cerebral

contex, result'ing mainly fnom activ'i ty in the retjculan ac-

t'ivating system (Guyton, 1981 , pp. 676) . Simul taneous ne-

condings of the scalp and aneas within the bnajn indjcate

that bnain waves occur when 'large numbens of neunons par-

tial ly discharge wj thout emi tting action potentials but g'ive

njse to peniods of curnent flow that undulate wi th the

chang'ing degnee of exci tabi I i ty of the neunons (Guyton,

1981, pp. 676).

The conventional fnequency bands that are chanacteristic

of the EEG ane 0 to 3 Hertz (delta activity), 4-7 Hz (theta

1
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activjty), 8-13 Hz (alpha activity), 14-19 Hz (beta I activ-
ity), and 20-32 Hz (beta II actjvity). Deìta activjty oc-

curs'in deep sleep, in'infancy and in sevene onganjc brain

djsondens. Delta waves can be pnoduced in the cortex with

all connections to the thalamus sevened, jmplyìng that the

corticaì neunons ane capable of some ìndependent synchroniz-
jng to pnoduce delta waves (Guyton, 1981, pp. 676). Theta

waves occur pnimari ly in the parjetal and temporal negìons

in chj ldnen, and duning emotional stness jn some adul ts.

Alpha actìv'i ty js found to be most 'intense jn the occipj-

tal neg'ion and sometimes in the parjetal and frontaì regions

of the scalp jn almost al l nonmal adul ts in a qu'iet, nest-
jng, wal<'ing state. Durìng sleep, a'lpha act jvj ty d'isappeans

completely, wh j le duning cogni tive tasKs j t is repìaced by

asynchnonous, highen fnequency and lower voltage beta activ-
jty. Based on the nesults of bnajn stimulatjon and lesion

studies, aìpha activity js assumed to nesult fnom spontane-

ous activi ty in the general ized thalamocontica'l system (Guy-

ton, 1981, pp. 676).

Beta uúaves occun most fnequently in the panjetal and

f nontal neg'ions. Beta i act'ivì ty is af fected by cogni t jve

functioning simi lar ìy to alpha waves (j .e. , j t j s suppnessed

by highen fnequency and lower voltage activity). Beta II
waves are activated by anousal of the centnal nenvous system

on duning tension (Guyton, 1981, pp. 675)"
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Tnadi t'ional ly, the f requency components conta jned jn the

powen spectnum of the EEG have been pnimani ly used as a de-

scniptive statistjc in a vanjety of studies investìgat'ing

nonmal and neunopathological conditjons affecting the brajn.

Howeven, with mone rout'ineìy available methods of signal

analys'is (e.9., the statjstjcal package BMDP has two pno-

gnams fon analyzing tjme senies) and the jncneased efficien-
cy of modern laboratory computens, spectral estimates of the

EEG ane becomìng mone wjdely used. Thjs facj litates funther

statistical analyses, such as discnimjnant anaìys'is, pnjnci-

pal components and facton analysìs, and thus aids the inten-

pnetation of the vast amounts of data collected. Fnequent-

ly, howeven, this may nesult in the analys'is of EEG data jn

the absence of information about the statistical pnopenties

of the obtained spectral estimates. This study investigates

some of the statjstical pnopenties of spectral and cnoss

spectra I est imates , par t'icu'lar ly cohenence, wh j ch i s a meas-

une of the I jnear relationsh'ip between EEG channels.

Aneas of EEG Appl isauen_g

Th js sect jon j I lustnates some examp'les whene the EEG has

been used to study cogn j t jve and physiolog'ical aspects of

the bnajn, It is not jntended to be an exhaustive nevjew;

howeven, j t demonstnates the wide range of nesearch aneas

which taKe advantage of the EEG as a quantjtative measune of

bna jn act jv'i ty.
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Cl inical Psycholoqy

In cljnjcal psychology, dìffenences in EEG chanacterjs-

tics may pnovide useful infonmation fon the functional un-

denstanding of, and diffenentiatjon between, various psycho-

pathologies. Fon example, jt was found that companed to

nonmal matched subjects, sch'izophnenic patients show ìn-

cneased activity in the low fnequency nange in the frontal

negions, whi le the post-centnal and the lef t anten'ion-tempo-

nal aneas exhibit incneased beta activity (Morstyn, Duffy, &

McCanley, t983; Sel in & GottschalK, 1983) . Moneover, schiz-

ophnen'ic pat jents exhibj t increased hìgh-f requency activi ty
in the left antenion-temponal neg'ion and in general possess

less lateral bnain onganization than nonmaì subjects, as

measuned by changes in alpha actjv'i ty dunjng visual imageny

tasl<s (Shaw, Colten, & Resek, 1983). In addition, schi-

zophnen'ia js di f fenentiated f nom neunosis by a diminished

on'ient'ing nesponsiveness of the EEG to nepeated audi tony

stimul i (Bernstejn, Taylon, StanKey, LubowsKy, rJuni, & Pa-

ley, 1983). Pat'ients wjth conduct djsorders show a gneaten

pnoportion of abnonmal EEG f nequenc'ies than js seen in de-

pnessjve djsondens (Selin & GottschalK, 1983).

Exper i menta l Psvcho I oov

In experimental psychology, the EEG is used to gain in-

sight jnto the under ìying bnain activi ty associated wi th

diffenent behavjounal tasKs. Fon example, sfudies have in-
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vestigated EEG connelates of learn'ing ef fects on visual -mo-

ton tasks, such as eye-hand tracK'ing and the mi rnon stan

tasK (Bustr & Galbnajth,.1975; Glinen, Mjhevic, & Honvath,

1983). These studjes neponted that these tasks produced

only a few significant changes of small magnjtude jn the

EEG. Howeven, Gevins and his colleagues (Gev'ins, Zejtlin,
Doyle, Schaffen, & Callaway, 1979; Gevins, Zeitlin, Yin-

gling, Doyle, Dedon, Schaffer, Roumasset, & Yeagen, 1979;

Gevins, Zeitlin, Doyle, Yingling, Schaffer, Callaway, &

Yeagen, 1979; Gevins, Doyle, Schaffer, Cal laway, & Yeagen,

1980) did observe significantly diffenent EEG pattenns fon

vanious comp'lex tasKs, such as reading, wniting, scribbl'ing,

Koh's bloct< design, blocK manjpulation and mental papen

fold'ing (Uut see below).

Latena l ization di ffenences A large body of psychologi -

cal nesearch I i tenatune investigating cognj tive functìoning

i s concenned wi th latenalizatìon dj fferences. It has long

been hypothesized that in night handed pensons spac'ial tasKs

ane mainìy pnocessed by the rìght hemisphere whjle venbal

tasks are mediated pnimanily by the left hemisphene. Many

studies have been conducted which seem to support thjs lat-
enal izaljon of functjon. For example, Shephend and Gale

(1982) found that the lef t hemisphene u/as mone stnongly ac-

tivated in some fnequency bands in a nap'id calculation tasK

where the subjects vúene nequired to nespond only when all
four of the digits pnesented sequentìally in one tnial wene
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odd and summed to 20 on mone. In clinical studies, lateral-
izalion differences wene found ìn various psychopathologìcal

populat jons. Fon example, Shaw et al. (1983) found that

schizophrenic patients possess less latenal organjzatjon

than nonmal subjects when nesponding to a visual taslr, and

Schaffen, Davidson, and Sanon ( 1983) found that depnessed

subjects exhibited an elevated night hemisphene spontaneous

act jv'i ty jn the f nontal EEG as companed to nonmal contnoìs "

0ften, hovr/ever, inconsjstent latenalizatjon nesults have

been found . For examp'le , i n I anguage and i nf onmat'ion pno-

cessìng neseanch, some studies show enhanced amplitudes to

I inguistic stimul j jn the left hemisphene, whi le others

found no diffenences on some changes in the right hemisphene

partjculanly with visual stimulj (see Boddy, 1981, for a re-

view),

Due to the often inconsistent nesults neponted, thjs anea

of neseanch has necently been criticized on methodological

gnounds by Gevins (1983). Some of the methodological pnob-

lems emphasized wene: 1) failune to demonstnate that jt was

the cogni tive aspects that djstingujshed between tasks and

not the level of difficu'l ty (on the numben of cognìtive pro-

cesses involved) on othen nesponse nelated factors; 2l

failune to valjdate that the tasks wene actuaìly, and con-

nectly, penfonmed; 3) faj lune to demonstrate that the ob-

tained asymmetny of EEG was not due to a combination of in-

nelevant factons, such as handedness, impnopenly balanced
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electnodes, or asymmetric sKul I thicKness ; 4) us'ing a be-

tween-subjects desìgn to i nfer wj thì n-subject di fferences;

and 5) reìy'ing on measunes that are ambiguous wj th respect

to the actual locus of right and lef t EEG activ'i t jes (Gev-

'ins, 1983, pp. 349,352). In hjs own neseanch, Gevjns and

his colleagues, iñ the studjes pneviously cited (Gevins,

Zejtlin, Doyle, et ê1., .l979; Gevins, Zeitlin, Yingììng, et

aT", 1979; Gevins et â1., 1980) have also found latenaliza-

tjon diffenences in the varjous cognjtive tasks, but these

dì f f erences d'isappeared when I imb and eye movements, and

perfonmance related factons, such as tasK djffìculty level,

were contnol led. A new 'dynamic' methodology, 'includìng a

new set of tasKs whjch seeK to contnol the problems prevì -

ously mentioned, has been developed (Gevins, 1983, pp. 369).

In this method, the EEG necond'ing obtained for each task js

divided 'into smal ler intenvals and is analyzed sepanately.

The studies reponted have shown that the tasKs wene s jm'i lar
'in the intenvals immediately fo'l lowing the stimulus and pne-

ceding the nesponse, but djffened jn the mjddle intenvals.

In these middle intervals, lateralization di f fenences fol -

lowed a comp'lex and rapidly changing pattenn. These studjes

thus suppont that latenalization may occun jn 'tnuly' cognì-

tive funct'ioning, but also'indicate that funthen'investiga-

tjon is nequjned
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Physioloqical Reseanch

Epi lepsy One of the major aneas whjch uses the EEG ex-

tensively js jn the study of ep'i lepsy. The EEG recond'ings

of epi leptic patients are used ìn both applìed and basic ne-

search as weìl as for diagnostÍc punposes. Some examples of

research studies in th'is area include pnedictìng spike-wave

activì ty in pat jents wj th Absence epi lepsy (S'iegel , Gnady, &

MinsKy, 1982) and usìng estimates of time di fferences be-

tween EEG channels to assess the pnesence of an epi'leptic
focus 'in wjde-spnead epi leptic activi ty and to make jnfen-

ences about the possible noutes of pnopagatjon of seizure

act ì v'i ty (Gotman , 1 981 , 1983 ) .

Other a_fea_q. ïhe spectnal analysis of EEG has been ap-

plied ìn many othen aneas of neseanch whene changes in brain

actjvity ane of intenest. For example, the effects of dnugs

sueh as 'intenfenon (Dafny, 1983), antidepnessants (Re'l I ìy,

1976 ) , aìcohol (Pol locK et â1 . , 1983 ) , and nicotine (Hern-

j ng, ,Jones , & Bachman, 1983 ) on bnai n f unct ì oni ng have been

neseanched. In cl inical populations, di ffenent EEG pattenns

have been obsenved jn juvenjle diabetes melljtus (Keene et

â1. , 1983) and in patients wj th nenaì d jsondens (Bowl'ing &

Bounne, 1978).

Often these types of studjes use numenous featunes of the

EEG and/on its spectnognam to discnjmjnate and classify var-

ious gnoups of obsenvations. For example, 'neunometnjcs'
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(r.John, Kanmel, Conning, Easton, Bnown, Ahn, rJohn, Hanmony,

Pri chep, Toro, Genson , Ban t let t , Thatcher , Kaye, Va ldes , &

Schantz, 1977) involves extract'ing featunes such as 1) sig-

naì powen, 2) signal van jance, 3) s'ignal-to-noise ratio, 4)

mean squaned first difference, 5) djffenence and nonmalized

djffenence jn signal enengy between homologous pairs in pow-

en and waveshape asymmetny, and 6) the cohenence. Multivan-

iate statistics ìrúere used on these featunes to charactenize

and classify leann'ing djsabled chi ldnen and old adults w'i th

cognjtive deterjoration (rJohn et â1., 1977). Gevjns et al'
(1979) used the fnequency band components obtained fnom djf-
ferent aneas of the bna jn in a nonl inear pattenn necognì t jon

algoni thm to class'i fy vanious cogn j tive tasKs. Final ly,

Bowl i ng and Bounne ( 1978 ) used stepwi se di scr imi nant ana'ly-

sis on components of the EEG spectna to successfully classi-
fy patjents with and wjthout nenal fajlune.

Standand Methods of Spectral Ana I ys'i s of EEG Data

Foun general classes of spectral estimat'ion methods for

scalan time series have been applied to the analysis of EEG

recondìngs. These methods and their genenalizatjons to vec-

tor vaìued senies are descnibed below.
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Uni van i ate Spectnal Analvsis

The Fast Fourjen Tnansfonm. The fnequency components of

a sen jes of data, x(t), t=0,,..,N-1, sampled at neguìar time

ìntervals, ¿t=1/N, can be obtained by the Founien tnansfonm

x(f)
N-¡

1/N E x(t) exp(-i2dft),
Èno

f =0,t1,t2 !N/2,

whene i = ^f-T. Since the intnoduction of the Fast Founien

Tnansfonm (FFT) by Cooley and TuKey ( 1965), which substan-

tial ly decneases the computational burden of the standand

Fourien transfonm, the estimatìon of the powen spectnum di-
nect ly f nom the on'iginal data has become standand pnactice.

Tnansfonming a finite data necond, howeven, nequires the ap-

plìcatjon of a window function prior to the transfonmation

jn orden to neduce leaKage fnom one fnequency band to an-

other (e.9. , Br j l l ingen, 1981 , pp. 131-142; Otnes & Enoch-

son, 1972, pp. 201-204, 281). Vanious tapening windows have

been pnoposed, each nequining a compnomise between the

amount of allowable leakage, resolutjon loss, and the corne-

spond'ing loss 'in degnees of f needom of the spectna'l esti -

mates. The most conrnonly used tapening function in EEG

analysis is the sp'l it-cosine window (Bloomf ield, 1976). The

windowed spectrogram thus obtajned, hourever, st j I I y'ieìds an

incons jstent estimate, i ts vaniance be'ing equal to the

squaned powen which cannot be decreased by 'incneasing the

length of the senies (e.g. , Bni I I inger, 1981, pp. 125) . The

spectnognam, thenef one, a I so requi nes smooth'ing, e j then by
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ensemble avenaging on avenaging over frequency, The smooth-

ing pnocedures incnease the degnees of freedom of each of
the estjmates and neduce thein asymptotjc variance. In av-

eragìng over fnequency, howeven, there is a limit to the

amount of smoothìng al lowed, since ìncreas'ing the bandwjdth

decneases the vaniance but a'lso increases the bias of the

estimates.

The autocornelation function. An altennative estimator

fon the spectnogram can be obtajned fnom the Fourien tnans-

fonm of the autocornelation function, which j tself alneady

emphasizes the negulan activ'i ty of the data i.n the time do-

main. Again, to obtain consistent estimates, j t js necom-

mended that the autoconnelation functjon be windowed by one

of the avaj lable windows, such as the Hann'ing, Hamming or

Parzen' s windows, pnion to the tnansfonmat'ion, and the re-

su'l t'ing est jmates smoothed oven f nequency (0tnes & Enochson,

1972, pp. 270; hJalter, 1963). This method is based on the

wonK of BlacKman and TuKey (tgSA) and was fjnst applied to
the EEG by UJa I ter i n 1963 .

These estimates are veny comparable to, aìthough not

identjcal to, the estjmates obtained by the FFT method (Ben-

dat & Piersol, 1971), and it has been shown that mathemati-

cal ly the two methods ane equivalent (Khinchine, 1934 and

hJ j enen , 1930 ci ted i n Otnes & Enochson 1972, pp .254-255 ) .

Cunnentìy, however, with the jncnease in speed of computa-

tion with the FFT, most neseanchens seem to pnefen calculat-
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estimates dinectly in the fnequency domain

The Box-rjenKing appnoach. A time-series may be repne-

sented in the time domain by panametric negnession models

such as those descnibed by Box and rJenKins (1976) , The

thnee models most commonly used are the mov'ing avenage (MA),

autonegnessive (AR), and the autonegnessive-mov'ing average

(aRIVlR) models. If y(t), t=1,...,N, js the observed series,

then the f ini te MA(m) nepnesentation of y(t ) js

y(r) = e(rl *Ëb(j)e(t-j),
j't

whene m is the onden of the model, e(t) ane independently

nonmal ly djstributed with mean 0 and vaniance 1, and b(j),
j=1,...,m, ane the coeff icients to be estimated. The nR(p)

model nepnesents the observed data as

y(t ) = e(t ) + f, a(x) y(t-K) ,
kol

where p is the onden of the model, e( t) js again N(0,1 )

white noise, and a(K), k=1,...,p, ane the AR coeff jcients to

be estimated. This model expnesses the obsenved senies as a

linear combination of jts own past values plus an uncorre-

lated nandom component. A mone genenal nepnesentation com-

bines the MA(m) and AR(p) models jnto the ARMA(m,p) model

given by

p
ã.
k"

y(t ) + a([<)y(t-K) = e(t) *Ë u(j)e(t-jl.
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Qne of the most 'impor tant aspects of f i tt i ng these model s

to observed data is the detenmination of the model orders m

and(c¡r) p. Fon the MA(m) model, m can be found fnom the au-

tocorrelation functjon since theonetical 1y i t wj I I be zero

fon lags gneaten than m (Box & rJenkins, 1976, p.68). S'im'i -

lanly, the order p of an AR(p) pnocess may be estimated from

the partial autoconnelation funct jon which wj I I be 'insign'if -

jcant fon lags greater than p. These methods of detenmining

the ondens are cons i dened somewhat sub ject'ive, s i nce judge-

ment js nequìned to establjsh at whjch point the estimated

autoconnelation functions become insigni fìcant.

Al<aiKe (1969a,1969b, 1971) has been fonemost in develç¡p-

'ing object jve methods for detenmin'ing the onder of the AR

models. One method is based on minjmjzing the fjnal pre-

diction ennon (FPE) of the AR models of successively highen

orden. The order p and the connesponding coeffjcients
yieìding the smal lest FPE ane chosen to nepnesent the se-

rjes. ln a simulatjon study, Gensch and Sharpe ( 1973) gen-

erated an ARMA pnocess, wheneby the series u,as equivalent to

an infinìtely long AR model, and usìng AKaike's FPE cniteri-
oñ, they found that fjnite AR models of average onden of

18.6 pnovjded close agneement wjth the theonetjcal nesults.

AkaiKe (1973) laten developed a maximum ljKeljhood estimate

of the onden, cal led the infonmation (nlC) cri tenion. The

FPE and AIC have been shown to be appnoxìmateìy related by

AIC = Jr,l log(FPE)



( Jones, 1 978 ) , and asYmPtot i ca I lY

minjmum AIC are equivalent (Sawanagi,

1981 ).
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the minimum FPE and

Soeda, & NaKamizo,

Least squanes estimates of the AR coef f ic'ients can be ob-

tained by solving the set of I inean Yule-üJallrer equations.

This classical method'involves est'imation of the autoconne-

lation function whjch assumes that data outsjde the sampled

range are zero. This may nesult in estimates whjch ane less

than optimal, espec'ial ìy fon short sen jes. Altennative'ly,

the AR coefficjents may be estìmated necursively by the Lev-

inson-Dunbin pnocedure (Durbin, 1960; Levinson & hliener,

1949). Thjs latter method does not requine pnìor Knowìedge

of the autoconnelation function and theneby has the advan-

tage of using only the ava j ìable data. Max jmum I il<el jhood

estimates of the model panametens have been denived (Box I

JenKins, 1976, pp, 327), however, the numenìcal complex'i ty

of the resu'l ting nonmal equations has deterned jnvestigatons

fnom usìng these methods noutìnely.

The obtained estjmates of the model panametens, the coef-

ficient. â(X), and the estimated one-step-ahead pnediction

ennon vaniance ûtpl, ane then neadi ly transfonmed to obtain

the estimate of the spectnum by the equatjon

atêtrt
;2nk{)ltk)(d

whene ât o I

&=o
exP(

fon f=0,. .,,N/2,
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Spectral analysis using the AR and ARMA repnesentatìons

u/ene applied to the EEG by Gensch (1970), Gensch and Yonemo-

to (19771, rJones (1974), and Pfuntschellen and Haring

(1972), among others. it was found that ondens of less

than ten wene genenal ly adequate fon modeì'ing the EEG of an

epi leptic patient (Gensch, 1970), and a bìvaniate AR model

of order six was selected for the sleep EEG of a humanìn-

fant (.Jones, 1974). Gensch and Yonemoto (1977 ) found that

AR model of onder ten and an ARMA model of onden seven fi t
sleep EEG data.

The AR models may be viewed as negnession models in which

the immediately past obsenvatjons of the series senve as

pnedicton vaniables fon the cunnent obsenvatjon, An inten-

esting deveìopment of these estjmation methods has emenged,

wheneby nather than constnaìn'ing the negnessjon coeffjcjents
to be fixed, a stochastìc component can be jntnoduced to

them. L'inear dynam'ic estimation methods have thus been de-

veloped to estimate the time vanjable parameters of these

negnession models (Hanrison & Stevens, 1976), Probably the

most wel I l<nown I inear dynamìc necunsive estimation method

i s the Kalman fi I ter.

Since jts fjrst intnoduction'in the eng'ineering ljtena-
tune by Kalman ( lS0O; Kalman & Bucy, 1961 ) , wh jch involved

the state-space nepnesentation of the linear fjlten, a num-

ben of neintenpnetations of the Kalman fi lten appeaned in

the statistical ljtenatune jn onder fon thjs dynamic estima-
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tjon pnocedure to become mone accessib'le to statisticians.
In 1972, Duncan and Honn developed the Kalman nesults fnom

negnession analysi s theony by v'iew'ing the negness jon weights

as random variables rathen than fixed. An altennate view

was pnovided by Meinhold and Singpurwal la ( 1983) who have

shown how the Kalman filter can be ìnterpneted as a pnoblem

jn Bayesian jnference; the conditjonal probab'i ììty of the

state parameters at time t, given data up until tjme t, js

pnoportional to the pnoduct of the Iikeljhood of the state

at time t and the pnion condj t'ional distn jbut'ion of the

state parametens given the data from time 0 to t-1.

Regandìess of i ts statistical 'intenpretat jon, the Kalman

filter ìs a powenful necunsive method for estimating time-

van jable panametens, and when appl'ied to an autonegnessive

tjme senies model, it js an adaptive AR model. The adaptìve

model is pant'icu'lar'ly usef ul since j t j s not nestr jcted to
stationany signals. By aì lowing the coefficients to vany

oven time, these models can be used to tracK the time-varj-

able propenties of the signal. Thjs is especial ly relevant

in the appìjcation of these models to the EEG, since changes

i n cogn j t i ve f unct ion'ing may thus be obsenved and ana I yzed

over time.

The Kalman f i lter method has been appl'ied to tracK chang-

es of the spectnal chanactenistics of sjmulated nonstatjon-

any EEG (hlennbeng & Isal<sson, 1976) and neal stationary,

slow-chang'ing and fast-chang'ing EEG (Bohlin, 1977; IsaKsson
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& Ulennberg, 1976) . The Kalman f i I ter was shown to fol low

weì ì the fast and slow changes ìn al I the studies, even when

lange low fnequency djstunbances and instantaneous majon

changes in the signaì (eyes opening and closing) wene pnes-

ent (Bohlin, 1977). Bohljn (1977), howeven, also indjcates

that this ab'i l'i ty to tracK changes in the spectrogram may

result in gneaten statistical uncertainty of the estimates.

Max i mum entnopv. In 1967, Bung intnoduced the maximum

entnopy method (MEM) of spectnal estimatjon, MEM involves

max'imizing the entnopy, H, of a pnocess, def ined as the in-
tegn a 1

ln S(f )

whene S(f) js the power spectrum and K js the negion over

which S(f) is assumed to be nonzeno. In the univaniate

case, the MEM estimates ane readìly computed by AR modeling,

since the two methods ane mathematicaì'ly simj lar (McC'lel lan,

1981 ) . An efficient algori thm fon univaniate MEM coeffi -

cient estimation was developed by Andensen (lgl+) and was

shown to wonK wel I in EEG spectna'l estimation (tJansen,

Bounne, & l¡tJand, 1981). This algonjthm ìs analogous to the

Levinson-Dunbin necunsive method of AR estjmatjon wheneby

the model of successively incneased onder is estjmated ne-

cunsively unti I the nesidual ernon matnix js minimjzed.

This method also has the advantage of us'ing only the avai l-
able data, without assuming that the data outside the sam-

J
k

H
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pling intenval ane zeîo. Clearly, the same pnoblem of order

selection as in AR model'ing also occuns in the MEM method.

Multivariate Spectnaì Analvsis and the Coher ence

Generaì ly, most of the methods of spectral analys'is ne-

vi ewed above genena l 'ize eas'i ly to the mu l t i var i ate case. I f

x(t ) and y(t ) ane two obsenved senies, then the b'ivaniate

FFT spectnal estimates ane given by

s(f) ö

ffiã lx(f )xY(f )l

whene X(f) and Y(f) are the univaniate FFTs of the series

x(t) and y(t), nespectively, and * denotes convolution.

The multivarjate AR, MA, and ARMA models ane gjven by

v t y(t-K)+e(t),
k*l

P
ãA(k)

m
g(t-j),

and

P n
z B(j) 9(t-j),y(t )-

nespectively. Hene the uppencase lettens indicate matrices

which ane scalan values in the univariate case, If the se-

ries is s-vaniate, ffiâtrices A(K), k=1,,..p, and B(j),
j=1,.,.,m ane s x s matn jces, and y(t) and g(t) ane vectors

of length s,

ãn(n) v(r-lt)=e(t )+
k.l E j=t
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A multjvanìate method fon estimating AR coefficients was

developed by UJhittle (1963), It js a genenalization of the

Levinson-Dunb'in aìgon j thm, and f i ts a fonwand and bacKward

AR model sjmultaneouly. As in the univaniate case, the

coeffjcjents along wjth the cornesponding nesjdual enron ma-

trjx ane used to calculate the spectna'l matrjx whjch con-

tajns the auto-spectnal estimates on the dìagonal and the

cnoss-spectral estimates in of f -d'iagonal pos'i tions'

Generalizing the MEM method fnom the unjvaniate to multi-

van jate case js not as stnaightfonwand. hJh j 1e jn the uni -

vaniate case, the MEM est'imates ane the same as the AR estj-
mates, th'is is genena'l ly not tnue in the mult jvar jate case.

Thus Bung's algoni thm, wh'ich in essence f j ts a fonward and

bacKwand AR model to the obsenved data, does not generaljze

djnectly to the multivanjate case since the coeffjcient and

pnediction ennon matnjces ane not the same for the fonwand

and bacKwand calculatjons. rjones (1978), however, neported

an indinect MEM estimatjon pnocedune whjch est'imates the

coefficjent matnix by fìtting a fonwand and bacKward model

to the nesjduals at each successjve step.

To obtain the tnue multivaniate MEM estimate seems to in-

volve the optimization of a nonlinean system. McClellan

(1981) d'iscussed some of the conditions for the existence

and unjqueness of the multìvaniate MEM estimate, as well as

some of the algorithms that solve the nonlinear system by

using an appnoxjmation, or a genena'l opt'imjzation algor j thm'
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These ane generally compìex and ane beyond the scope of this
thesis.

Companison of Methods in EEG Spectnal Analvsis

A numben of studies have companed the spectral estjmates

f nom the AR model f i tting method wi th those obta'ined by the

tnansformation of a Panzen windowed autocorrelation func-

tion. Jones ( lgZ+) and Gensch and Yonemoto (1977 ) found

that in most cases, simi lan spectral estjmates were ob-

tained, although the AR method always pnoduced smoothen

looKjng plots of the spectnognam, cohenence, and phase angle

functions, which jn tunn look mone intenpretable, Undenpan-

ametenized AR and ARMA models yielded smoothen looKing but

excessively biased estimates comparable to those obtained

using a Panzen wjndow of smaller lag. 0n the other hand,

ovenparameter ized models nesul ted in less smooth spectro-

gnams nesembl'ing those obtained wj th langen- lag wjndows that

u/ene nelatively unbiased but excessively vanjable (Gensch &

Yonemoto, 1977). AKaiKe ( 1969b) found simi lan results com-

paning the AR estjmates wi th Hanning-windowed spectnal esti -

mates.

Mone necently, üansen et al. (1981) 'investigated the pen-

fonmance of EEG powen spectraì estimates obtajned dinectly
by the FFT and thnee d j f fenent methods of calculat'ing AR

model estimates. Connect classification rates obtained from

djscriminant anaìysis pnocedunes hrene used fon the compani-
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sons. Two of the AR model estimates wene obtained nonadap-

tìvely, 1) by the standard method of solvìng the Yule-ÌrrlalKen

equat jons, and 2l by us'ing Bung's recuns jve algori thm of An-

densen's (1974) whjch is based on the Levinson-Dunbìn pnoce-

dune. The thi nd set of AR est jmates vúene adaptive, calcu-

lated by the Kalman fì I terìng method which updates the

'ini tial AR coef f icients based on every new obsenvat jon of

the s'ignal. It was found that of the spectra computed fnom

the AR coeffjcjents by the three methods, Bung's method had

the best classjfication rates. Howeven, they wene not as

high as those obtained by the FFT. ü/hen the EEG was cosjne

tapened pnion to computìng spectna wjth Burg's method, how-

even, the class j f icat'ion rates of the two spectra became

identjcal. The spectra obtained with the Kalman fi lten AR

coeffjcients perfonmed less wel l, whi le those estimated by

the Yu I e-ltla I Ker equat j ons pnoduced nather poor nesu I ts i n

all nespects. In evaluatìng the spectna themseìves, it uúas

found that the Kalman filten method tended to estimate the

f nequency of ar t i f act act i vi ty more connect'ly than the Burg

and Yule-üJall<en methods, but the peak wìdths wene widen wjth

the Kalman filter than wjth Bung's method, In most cases,

the spectna obtained by the FFT and Burg's method wene veny

similar. Overall, Bung's method penfonmed the best of the

AR coefficient based estimates, while the use of the Yule-

üJalKer equations js not necommended by Jansen et al,
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The advantage of the AR method is that good spectnal es-

timates can be obtained on shorter data neconds than are ne-

quined by the FFT; however, unstable models may result jf

the estjmation is based on the Yule-l¡tlall<,en equations (,Jansen

et â1. , 1981) . Gensch (lgZO) points out that statist'ical'ly,

the AR estimates perfonm much betten than the wjndowed Four-

ier estimates, s'ince they yìe1d a langen numben of degnees

of f reedom and ane asymptot'ica I I y norma I and cons j stent .

The AR coeffjcients, however, ane estimated by least squane

methods and thenefone spectnal estimates based on these may

be mone sens'i t j ve than FFT est jmates to depantures f nom an

undenìy'ing Gaussian stat'ionany model '

Cohenence and its Aoolications in EEG Ana l vsls

For multi-channel EEG necondings, a numben of measunes of

assoc j at ion between pajns of channel s ane ava j I able. These

can often be useful in nelating EEG asymmetry to interhemjs-

pheric and/or intnahemisphenic f unct'ions, The most commonly

used measure is the cohenence, whìch is analogous to the

connelation coefficient in classical statistics, and indi -

cates the degnee of linean nelatìonshìp between the two

channels, The cohenence, sometjmes also called the coheren-

cy, is defjned at each fnequency value as the ratio of the

cnoss spectnum between two channels, X and Y, to the Square

noot of the product of the indjvidual spectra; that is,

s (+)
RxY( f )

ls- r+) sy (ç) 
|
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Br j I l'ingen ( 1981 , pp.257 ) cal ls th js ratio the cohenency,

and its modulus squaned, lR (f) I, the cohenence. The estj-
mates used for comparisons in thjs study ane the moduli, lR

(f) l, of thjs natjo, and sjnce they ane nequired to be in

thjs fonm, the lR (f)l wi ll be neferned to as cohenence.

The values of the cohenence range fnom 0, mean'ing no ljnean

nelationship, to 1 ind'icating a perfect I inean nelationsh'ip,

Since one cohenence value is obtained for each frequency,

this often nesults jn lange amounts of data fon interpreta-

tion. To al levjate thjs potential problem, some summary

stat j st jcs fon the cohenence have been pnoposed. The

'weìghted avenage cohenence' is computed acnoss a numben of

f nequenc'ies and expnesses the overal I degnee of neìat'ionship

between pains of EEG neconds (BusK & Gaìbrai th, 1975) .

BohdanecKy, LansKy, and Radil (1982) have pnoposed a sjmjlar

measune, a tota'l ''integnal measure of cohenence' , and a ne-

lated nelative measune which estimates the contnibution of a

panticular fnequency band to the total integnal cohenence.

Al though 'i t js angued that such data neduction aids inter-
pnetat j on, th'is f ac'i ì i ty i s obtai ned at the expense of loss

of information, In some applications, howeven, these summa-

ny statjstics ane useful.

In EEG appl'ications, the cohenence has been used to meas-

ure the degree of EEG synchronizatjon between the hemi-

sphenes in schizophnen'ic and neunotic pat'ients duning a vjs-

ual imagery tasK (Shaw et â1,, 1983) and duning bi lateral
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spike-and-Idave activi ty in ep'i leptic patients (Gotman,

1981). Gotman (1983) has also used the coherence in calcu-

lat'ing smal I t jme di f fenences between two channels which ap-

peaned synchronous on v'i sua I ì nspect'ion. Gotman conc I uded

that thjs method may al low assessment of an ep'i lept'ic focus

when only widespread seizune activ'i ty can be reconded and

may enable the infenence òt possible noutes of seizune ac-

tivi ty (Gotman, 1983) .

Recently, cohenence estimates have been used as input

data for funthen mu'ltivaniate statistical analyses, namely

factor analysis and princìpal components, under the assump-

tion that the activi ties acnoss bnain neg'ions may be charac-

ten jzed by a few common factons. Doug'las and Rogers (1983)

developed a stability measune, based on the estimated coher-

ence matnix, which was then used to detenmine the djmensjon

of maximum liKelihood facton analysìs of the power spectra

obtained fnom eight EEG leads. The stabi I ì ty measure 
'

called the 'ambient matnix coherence (AC)' , h,as found to be

nobust on various sjmulated data sets. The AC pnoduced sta-

ble maximum IjKelihood facton loadìng matnices, but when jt

was appl ied to pnìnc'ipaì components inaccunate solutìons re-

sulted. lllhen maxìmum I jtrelihood factor analys'is was appf ied

to the EEG data fnom the e'ight leads, the authors found that

three of these contained thnee factons; one with pnìmanily

high fnequency components jn the 21 to 30 Hz nange, the fne-

quencies of the second factor wene in the 10 to 18 Hz nange'
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and the thjnd factor contajned the low fnequencies of 1 to 7

Hz. The nema'ining five EEG derivatjons appeaned to be mone

stable with a fourth facton, a shanper vecton centened at I
Hz.

Swenson and TucKer (1983) used the cohenence matrix ob-

tained f nom e'ight EEG der jvat jons, one matrix per f nequency

band, di nect ly as input data for f acton analys'is. Resul ts

showed that the finst two factors that accounted for most of

the varjance jn the cohenence matnix, one postenjor and one

anterior, wene both 'right-latenalized' , that is, the cohen-

ences wene genenal'ly higher in the rìght hemjsphene; a

thind nesìdual factor descnjbed the left hemisphene vanj-

ance. In addition, Swenson and TucKen (1983) companed the

factor analytic nesults to an a pnioni de-stnucturing of the

cohenence matnjx with pantial multiple cohenence methods.

These nesults suggested that 'intna-hemispheric cohenence is
genenal ly highen on the night side of the bra'in. Addi tion-

ally, the a pnìoni de-structuring nevealed that the jnten-

hemisphenic coherence of the right panjetal negion was high-

er than the left, whi le the left occipi tal area showed

highen cohenence values than the night.

tühì le both of these studies used various arousal condi -

tions nesting, scribbling and solvjng mathematjcal pnob-

lems i n the Doug I as and Rogens ( 1983 ) study, and nest'ing,

nel axi ng and a h'igh anousal state whene no j se was cont j nu-

ously pnesented jn the Swenson and Tuclren (1983) study no
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attempt was made at d'istingu'ishing the exper jmentaì condi -

tjons jn the factor analyses. Howeven, facton analysis and

othen multivariate techn'iques could pnove useful jn inten-

pneting psychoìog'ical data, as the analysis of EEG is ap-

pl'ied jn behaviounal studies jn attempts to jdenti fy f actors

undenlying bnain funct'ion'ing duning cogni tive tasks.

Many of the multivaniate analyses ane based on the conne-

lation matnix, but it has been shown that the connelation

coefficient js veny sensìtive to outl'iers and devjations

f nom nonmal i ty (Devl in, GnanadesiKan, & Kettenring, 1981) .

Sjnce the cohenence has the same asymptot'ic djstnibutjon as

the Peanson moment cornelation coeffjcjent, jt may also be

af fected by v'iolations of assumptions unden lying i ts estima-

tjon pnocedunes.

Assumpt i ons under I y-j nq spectnal estimat rôn

Spectnal analysis of time serjes is based on the assump-

tjons that the senies is Gaussian and statìonany, or at

least weaKly stationany, that js, whene the first two mo-

ments ane t'ime-invaniant, A'l though in the past, inconsis-

tent findings could not nesolve the questjon whether EEG

data satisfied one or both of these assumptjons, more ne-

cently i t is genenal ly necognized that nonstatìonany EEG

data does occun, and quite fnequently when longen epochs ane

analyzed. McEwen and Andenson (lgZS) have identjfied seven-

al factors contributìng to the inconsjstencies found in past
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I i terature, ìncluding 1 ) the smal I number of ensembles of

EEG segments fnom too few subjects, 2\ the use of only one

nonstandardized channel, and 3) djffenent d'igjtizatjon nates

employed to sample the data.

in thejr study investigating the stationanity and nonmal-

ity of spontaneous EEG, McEwen and Anderson ( lgZS) found

that as the sampl ing (Oigilizat jon) nate was incneased, on

as the length of the sample necond incneased, a gneater pno-

pontion of the EEGs tended to be non-Gaussian and nonsta-

tionary, âlthough stationanÍty was somewhat less sensìtjve

to sample length. Now it seems generaìly accepted that in
visually inspected antìfact-fnee epochs of one second duna-

tion, although some studies use longer epochs, the occur-

nence of nonstat'ionanity and nonnonmal'i ty js suff ic'iently

negl ig'ible to maKe standard spectral analys'is techniques

satisfactory. Fnom the graphs presented jn McEwen and An-

denson (1975), it can be seen that fon the frequently used

samplìng rate of 128 Hz, of the one second artjfact-fnee,
nest'ing (eyes closed) f f C segments, almost 100% wene Gaus-

s'ian and statìonany in the occip'i taì negions, whi le 5% of

the f nonta I EEGs i n both hem'i sphenes wene nonstat'ionany.

For a five second epoch, fnontal EEG was 75% Gaussian, about

83% statìonany and about 62% brene both Gaussian and statjon-

any, wheneas in the occipi ta'l negion these values u,ene 84%,

90%, and 70%, nespectivelY.
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A number of transfonmations for normal'i ty have been shown

ef fect'ive for bnoad band (i.e., delta, theta, alpha, etc. )

spectnal estimates (Gasser, Bachen, & Mocks, 1982). These

authors found the tnansformatjon 'log(x/(1-x)) to be excel-

ìent in tnansfonming the relative poì¡rer to normal i ty, whi le

log(x) penfonmed the best fon absolute powen but u/as not

completely satisfactony for all bands. Hene x is the abso-

ìute or relative band powen.

Nonstatonari ties and Antifacts in the EEG

Violatjons of the assumpt'ions may be of lessen ìmportance

to invest'igatons when the spectnum i s used as a descrìptive

stat jst'ic, since i t is general ly bel ieved that convent jonal

methods of powen spectnum estìmatjon ane inhenently nobust

to all but extremely bad contamjnatjon. Klejnen, Martin,

and Thomson (1979) po'int out that th'is may only be true fon

the genena'l shape of spectna that consì st most ly of nannow

band components on when a low fnequency component is of pni-

many jntenest. Since EEG data ane considened to contain

mostly noise with only a few lowen fnequency bands of inter-
est, that is, onìy some frequenc'ies in the 0 to 30 Hz rançte,

these considenations may apply to the shape of EEG power

spectra. Kleiner et aì. ( 1979), however, have also shown

that even as few as two outliens that wene nelatively sma'l I

companed to the obsenved series but lange in comparison wjth

the ennon, may nesult in lange distortjons in the shape of

the spectnum.
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Considenable attention has been paid to the removal of

ar t i facts fnom EEG data , Severa I types of an t i facts have

been identi f jed, 'including gross head and body movements,

eye-movement potentjals in fnontal channels, penspi rat jon,

low f nequency 'instnumental ant j f acts, depolarization of

scalp and necK muscles overlying the bnain, and electnochem-

ical effects at the sunface-metal junction (Gevins, Yeager

Zeitlin, Ancof i, & Dedon, 1977; ulohnson, Itilnìght, & Segall,

1979). Since these ane not genenated by the bnain, they ane

usua'l ìy considened to lacK useful infonmation and effonts

ane made to identify and discard them prion to analysìs.

trrJoestenbung, Venbaten and Slangen (1983) showed that some

potential exìsts fon nemovjng eye-movement anti facts statis-
ticaìly. They applied a complex linean negnession analysis

method in the f nequency domain, which successf u'l ly nemoved

artificial ly added antifacts fnom simulated EEG data. Auto-

mated methods, however, ane mone wjdely used to detect and

remove the art'if acts. Many have been developed and continue

to be impnoved (e.9., Gev'ins, Yeager, Diamond, Spine, Zeit-

lin, & Gevins, 1975; Gevjns et ô1., 1977; rjohnson et ô1.,

1979). Most eomputenized systems have some pnovisjons for

optional 1y removìng artj facts fnom cl injcal EEG data ( Ban-

low, 1979).

0f ten, nonstationan'i ties do pnovide useful information

about bnain activity. Occassional tnansient activity, such

as epi leptic spikes on evoJted potentìa1 nesponses, have been
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examined, and vanious features of these trans'ients have been

used fon thejn detection and chanactenization (see Banlow,

1979 for a review), Brief ly, some of these features jncìude

the analysis of 1) rise-tìme, fall-time, and peaK angle to

classify spiKes as steep tniangular uvaves, 2) peaK-to-peak

amp'l i tude and sepanat ion (dunat'ion ) , 3 ) the second t ime de-

nivatjve (cunvatune), 4l the angle at the peaKs, 5) maximum

slopes of the sjdes and thein time of occunnence relative to

the peaK, 6) spit<e duration, 7) matched fìltering, and 8)

jnverse fi'l tening. rJohn et al. (1977 ) include othen charac-

tenistjcs in their 'neunometnic taxonomy' scheme mentioned

ean"lier. Some of these features ane also used in the auto-

matic nemoval of artifactual contamination.

The general ly nonstationary character of longen epochs of

spontaneous EEG has been jnvestigated with the use of the

Kalman filten. A number of studies have shown the Kalman

filten to be excellent in tracKing the changes of the spec-

tral chanactenistics jn EEG (Bohlin, 1977; IsaKsson & hlenn-

beng, 1976; ülennbeng & Isal<sson, 1976). This method may

have potent'ial in psycho'logical studjes whene nonstationany

EEG data may nesul t f nom changes jn cogni tive function'ing

dunjng various mental task.s
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Punpose of Proposed Studv

The ef f ects of nonstat jonan'i ty on the coherence est jmates

has not been extensively studied. Since the EEG segments of
jntenest may often'be nonstationany, for examp'le, during

cogni tive actìvì ty, i t is 'important to f ind opt'imaì on nean-

ly opt'imal cohenence estimates under vanious condi t jons,

panticularìy if use of the coherence values is requjned in

funthen stat'istical analyses, such as factor analysis on

pn 'i nc i pa I componen t s .

Thi s study i nvest igates the ef fects of thnee l<,i nds of

nonstationanities on the bias and mean square ennon of co-

henence estimates obtaìned by thnee estimation methods: 1)

the bivaniate Fast Fourier Tnansfonm, 2) a bjvarjate autone-

gressive necunsive model estimation, and 3) the ind'irect

genenalizatjon of Bung's maximum entnopy method pnoposed by

Jones ( 1978) . in addi tion, spectnal estimates obtained by

an adaptive method of the Kalman fjlter type are compared to

those of the thnee methods. Coherence estimates denived

from a bivaniate Kalman f i lter ane not jnvest'igated in this
study because of the computational complexìty of this method

in the two dimens jonal case (UJoods & Radewan , 1977) .

In onden to be able to compane est jmates to the J<nown

values, the spectnal analyses wene obtajned fnom simulated

data. Thus thnee kinds of nonstationani ties simulated u,ene

chosen to nepresent changes most I iKely to be obsenved in
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included fon com-neal EEG, and a stationany condition was

panisons of methods unden optimal cond'i tjons.



ME T HOD

Two channels of simulated EEG data were obtained fon 0.5,

1.0 and 2.0 second data segments. The sampl'ing rate was set

at 128 poi nts pen second, theneby g j v'ing a Nyqu'ist f requency

of 64 Hz. This nate was chosen to conrespond to the sam-

pling nates most fnequently used jn applied neseanch, with

consideration fon the necommendations of McEwen and Andenson

( 1975). These authons suggested that the sampling rate be

chosen as ljttle above the Nyquist fnequency as is practical
jn onden to satisfy the assumption of statisticaì indepen-

dence of successive sampìes of EEG whj le sti I I al lowing for

accurate estimates to be made.

Stationary and three types of nonstationany data wene

simulated for each necond'length, that js, fon 0.5, 1'0, and

2.0 seconds. The nesults of the spectral analyses us'ing the

four methods wene obtained f rom 200 nep'l icat jons of each

condition.

The entine expeniment was run on the Amdahl 5850 computer

at the Univensity of Manjtoba. The prognams Lìrere aìl wnit-

ten in Pascal language and compiled by the Pascal/VS compi-

len. All nandom numbens were genenated using noutines fnom

the intennational Mathematjcal and Statistjcal Libnary

(IMSL).

33
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Data Simulation

Stat ionanv data

The bjvariate stat'ionany serjes was simulated by the

AR(7) model

Y(t)=Í.otn) Y(t-k) + E(t), t=1,...,N (l)
k=l

whene E ( t ) ì s nonmal ly dj strjbuted whi te noj se wi th zeîo

mean and covaniance matrix ll 0l The bivaniate senies of
Lo rJ

nandom numbens wene genenated by the IMSL nout'ine GGNSM.

Furthenmone, in equation ('l ) , N js the total 'length of the

series wi th N=64 in the 0.5 second condi tions, N= 128 in the

1.0 second conditions, and N=256 'in the 2.0 second condi-

t jons; and A(K), k=1,.. ,7, are the bjvaniate AR coef f j-

ci ents ,

A(1)=f 0.3023

l-o,roo

A(3)=f-o.o7o3

L o o'e3

A(5)= -0. 1438

-0,0230

- 0 . 0s741

0.3614.J

o.367ol

-0. 1 078J

- 0. 07e3'l

- o , 2505.]

0 , 1351

0 . 0310

-0.1279

0. 0466

-0, 1887

-0.0941

0 . 04141

o. 124e..|

o. 0383'l

-0.2356J

- 0 . 022e]

-0.135J

A(2)=

A(4)=

A(6)=

A(7)= -0.1942

-0.0464

- o . 0225'l

- o , 1oo5l

This model was found to be stable

chanacter i st i c polynomi a I

All 14 zenos of the
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zk) =0, u/ith A(o)= 
L-¿ l]

fal I outside the unjt cjrcle (see Figune I ). In a test s jm-

ulation usìng thjs model to genenate a bivanjate senies of

1000 points wìth E(t) djstn'ibuted N(0,I), whene I is the

i dent'i ty matri x , the means of the sen i es f or channe I I and

channel 2 wene 0.00430 and 0.02206, nespect'ively, wjth an

obtained covariance matnix at zero lug,

c(0)= I 8.9004 -3,87671tt
L-s. azoT s. 1 4e3J .

To ensune jmmediate stab'i 1i ty of the s jmuìated data jn

each expenimental condi tion, the last 7 genenated data

po'ints of the test simulation, that 'is, Y(994) to Y(1000),

were used as the jnitial seven values for simuìat'ing data in

the expen jment. The data was s'imulated by f inst generating

the random numbens, storing them jn a 2 x N dimensjonal ar-

Fây, and passing these thnough the I inean system g'iven by

equation (1). A sample of appnoxjmately one second durat'ion

of the genenated stat'ionany serjes fon the two channels is

shown in Figures 2 and 3.

The theonetical values for spectnal and cohenence esti-
mates h,ene ca I cu I ated by

s(f)=¿tlD(f)il v tD(r)*l-l , f=1, .,64,

det( É ntxl
l¿¡0

where ¿t js the sampfing intervaI

step-ahead pnedict jon enron matn'ix,

(1/128),

that i s,

V is the one-

the covan i ance
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Figure 1.

wtrere A(k )

Iation.

Zeros

are the coefficients of the AR(7) modet used in data simu-

7.-
of the characteristi c poJ-ynomial, d.et (,-!^a(k ) z^ )=9 ,- lt=u
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Figure 2. A sample of an approximately one second segment of seríes f

data generated by the AR(7) bivariate model.
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Figure 3. A sample of an approximately one second segment of series 2

data generated by the AR(T) bivariate model-.
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matnix of the ennor ìeft oven after the model is fitted, and

theonet jca'l ìy equals the jdenti ty matr jx s jnce the covan j -

ance of E(t) in equation (1) was set to[1 0l . The compìex
Lo 1j

conjugate tnanspose ìs denoted by +, and

Figunes 4 and 5, nespectively.

7
D(f )=EA(K) exp(-i21tKf ¡t)

where A(K) are the gjven AR coefficients wjth A(0)=[-1 0l'
Lo¡J

The theonetical spectna and cohenence functjons ane shown in
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Figure )+. Theoretical spectral- curves for series 1 (top) and series 2

(¡ottom).
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Figure l. Theoretical coherence curve.
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Nonstat ionany Seri es

Three types of nonstationany data were s'imulated; 1) the

variance of the nonmaIly distnjbuted enron ìn equatjon (1)

was changed at various times in the data segment, 2) the

djstnibutìon of the noise was changed fnom normal to expo-

nential and 3) a tnansient sine wave was added to the sta-

t ì onany ser i es .

Chanqe of noise. In one set of expenimental condjt'ions,

the N(0,I) erron of the stationany senies sìmulated by equa-

tion (1) was changed to N(0,S) with $= lg 0l , such that
LO SJ

(k) Y(t-K)*El(t), t=1, NY =x,A
k

t
(2)

y(t)=En(x) Y(t-l<,)+E¿(t), t=Nt+1, . . .,N.
k

Fon the 2.0 second segments, this change was made for a)

the second half of the segment at N't=128, b) the ìast founth

of the data, Nt = 192 , and c ) tfre I ast eighth of the data, Nt =

224. Sjmi ìanly, for the 1.0 second segment sìmulations, the

vaniance was changed a) halfway thnough the jnterval (Nl

=64), or b) fon the last quanten of the data (Nt =96¡. Fi-

nalìy, fon the 0,5 second conditjons, the change was made

halfway through the segment at Nr =32' Thus companisons of

recond length and the amount (ratio) of added data could be

made.
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The second set of expen j menta I cond i t'ions was cneated

simj larly, but nathen than chang'ing the var jance of the non-

mal ly djstrjbuted noise, the distrjbution of the noise was

changed to exponential ly d jstnibuted, expþ) , wj th the mean

.tr=z.0, The exponential pnobabi I i ty densi ty is given by the

equa t j on

f (x) =¡ expiTx),

The exponent'ial ly d j stnìbuted nandom numbers wene generated

by the IMSL routine GGEXN. The data was simulated by equa-

tions (2) as above with E?(t) in this condition distributed
exponential ly wi th )t=2.0. For the thnee di f fenent record

length condjtions, this change was made halfway thnough the

segment (Na=N/2) in either one on both series, simply by ne-

placing the nonmal nandom numbens by the exponential nandom

numbens jn the senies prion to data simulatjon.

Tnansient sine Wêve. The thjnd set of nonstationary con-

ditjons was simulated by adding a simulated transient sine

wave of appnox'imately 300 msec duration (40 data points) to

data genenated by equat ion ( 1 ) ; that i s,

YT(t)=Y(t) + 8.0 sln(2îrK/40),

whene k= 1 fort= 19, k=2 Jont =20, . . . , and K=40 fon t=58. Thi s

tnansient ì¡Jas added either to one or both senies, and always

at the same time po'ints fon al I necord length cond j tions.

xl0
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Spectraì Analvs'is

FFT est imates

ïhe raw sjmulated data of each senies was finst tapered

by a spl'i t-cos jne w jndow oven 10% at each end of the ser jes

by the function

u(t)a
å tt- co, (r$:Ð

m )J, t"1,...r tn

{'m+'lr,..rN-m

t * N-rn + {, ...r N

1

å fr-.n. (r$p)J,

whene m js the pnopontjon at each end (0,10). The tSpened

data was Fast Fourier transformed using the 'successive

doubl'ing' aìgorithm (Cooley, Lewis, & lilelch, 1969), based on

the Cooley-TuKey FFT method, and adjusted fon tapering by

mul tiplying each tnansfonmed value by 1/0.875 (Bendat &

Piersol, 1975, pp. 327); that is,

â( r )= (2¿t/o. B7b N ) exp(-iffrt t1 f=0,. ..,N/2,
N
EY(t)t'l

whene Y(t) is the tapened data series and the vertjcal bans

denote the modulus.

Because smooth'ing of the nesu I t i ng spectnognam i s re-

qu'ined, FFT spectnal estimates wene obtained for f nequency

bands at f=5, 10, .. ¡, 60 Hz, and these wene companed to

theonet j ca I va I ues that Ì/úene a I so averaged for these f ne-

quency bands, Thus the 0.5 second segments wene smoothed by

avenag'ing S(f ) for f=2-4,4-6, 7-9, ¡r., 29-31; for the 1"0

second senjes the avenaged fnequency bands consjsted of
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f=3-7, B-12, .. ¡, 58-62; and fon the 2.0 second condit'ions,

FFT values at f=5-14, 15-24, ..¡, 115-124 wene avenaged to

connespond to the fnequency bands at 5, '10, ... t 60 Hz.

The cnoss spectna between the two senies, 1 and 2, wene

calcuìated by

h
s,"{ t)=(2at /0.875 N) t5l (t) s2(f )1, f =0,. ..,N/2,

whene Slfl denotes the complex conjugate of S(f). The co-

henence funct'ion was then calcuìated by

YL

R(f)=
($)

"($)
The cnoss spectna vúere smoothed ana logous'ly to the powen

spectna pnior to the calculation of the cohenence function,

thus coherence estimates wene also pnoduced fon the fnequen-

cy bands at 5, 10, . r . , 60 Hz.

AR Estimates (wnittle' s Method )

The AR coefficients of the model wene estìmated us'ing

!ìJhi ttle's (1963) necunsive algoni thm. This method estimates

the coefficients and the one-step-ahead pnediction ennon ma-

tnix for each successjve onder. The onder p of the model

was chosen such that AKaiKe's (1969a) final pnedictjon enron

(FPE) cnitenion, defined as

$,. (ç)l'

lv(o)lFPE(p)=ftH
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is minim'ized. Here ûtpl js the one-step-ahead pnedjction

error matrix for the p-th onden fitted. Models up to a max-

imum onden of 15 wene tested, but testìng was stopped once a

local mjnimum was found, since Ulnych and Bìshop ( 1975)

found that the f i nst minimum, Fâthen than the ovenal I m'ini -

mum, gìves a good est'imate of the orden, The max jmum onder

of 15 was chosen sìnce Gersch and Shanpe ( 1973) found that

fon infinjte onden AR models, the mean value of the onden

that fit the theoretical nesults was 1L6.

0nce the order fr and the connespond'ing AR(p) coeff jcients

and ennor matr jx ûtÊl h/ene found, the powen spectnum at each

fnequency'was est'imated by

3(r)=attô(r)t'' ûtôl t f f=1,...,64 (¡n)

whene ¿t js the samp'l ing intenval (1/128) and

ôf tl=pÂtnf exp(-i2rKrat). (38)

The matnices Âtxl, k=1,...,ô ane estimates of the AR coeff i-
^cients with A(0)=f-1 01 .

LO-IJ

Since the theonetical onder of the AR model is known, the

same calculations wene penfonmed fon the l<nown onder of sev-

€n, except the coefficients ÂtZl and the ernon matrix ûtZl

wene used 'in equatjons (34) and (38). This penmits a com-

pan'ison of the nesu I ts f on the tnue and obtai ned ordens ,

that js, the effect of inconnect onden on spectral estj-
mates.

-t
+D
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(+)

and

and Sll

and

Ê tr i=4 l Î''l{tl"- 1,å r= 1 , . . . ,64,
\ 3,, (f) 3^rtf ) l'

3,.{ r) is the off-diagonal entny of the matrjx Sttlwhene

nepnesen t s

(f) and

the cnoss spectnum between senjes 1 and 2,

3..{ r ) ane the dìagonal values

autospectra fon senies

in matnix Sttl
cornespond to the

tìvely.
1 and 2, respec-

MEM Estimates

The MEM estimates were obtained by the indinect generali-
I

zatt on of Bung' s a lgor i thm. Essent'ia'l I y the same nout j ne as

that given in the Appendix of Jones ( 1978) was used, with

some slight modjficatjons to sìmpfify computatjon, The nou-

tines wene tnanslated from a Fortnan I isting and simpl j fied
fon a bivaniate, rather than a genenal, system. AKail.te's

FPE cnjtenjon was used instead of the AIC cniterjon used by

rjones (lgZA) to estimate the onder so that the MEM pnocedure

would be mone companable with the onden selectjon pnocedure

used with AR method" As was mentioned in the intnoduction,

the FPE and AIC critenja ane asymptotically equ'ivalent, and

in a pneliminany tnjal I found that both cniterja selected

the same ondens on the simulated data.

The MEM method estimates the coefficients and the pre-

djction enron matn jx sjmi lanly to the AR method. Thus spec-

tnal estimates ì^rene calculated us'ing equations (34) and (38)
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ì/úi th the MEM estimated coef f icients and the fonwand pne-

dictìon matnix, for selected and known ondens, rêPlacing
^À̂(K) and V(p), respect'ive'ly. S'imi larly, cohenence estìmates

wene calcuìated by equatjon (4).

Estimates of an Adaptjve Method of the Kalman Tvpe

The Kalman fjlten spectnal estimates can be obtained from

the unjvaniate analogue of equat'ions (3); that is,

â({,t) =
â, t't)

l*åâ- (t) exp G¡2nkat)lx

where â¡ (t) nepnesent the coefficients which may now be

time-variable, and êntt) is the residual ennor of the model

at time t. Again, p js the number of coefficjents nequired

by the model and is anaìogous to the onden in AR modeling,

and must be specifjed.

The method of estjmatìng adaptive time-vaniabìe parame-

tens used'in thjs study was based on the UD method pnoposed

by Bienman (1977). Thjs method involves facton'ing the co-

vaniance matrjx of the coefficìents M, into an uppen ,trian-
gulan (U) and a diagonaì (D) matnices, such that M=UDU''

The noutjne for this recunsjve least squanes method was

tnanslated f nom the Fontnan I'isting g'iven in Table 2 in

Clanke (1980), with the fongett'ing factor set to 0.98 for

al I conditions and the onden, P, set to 7. Clanlte's algon-
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ithm of estimating the model coeff ic'ients was chosen for its

computatjonal efficiency and numenical stability, and also

because i t has been widely used 'in pnactice'



RESULÏS

The avenage bias and mean squane ennon (MSE) of the spec-

tnal and cohenence estimates were calculated fnom 200 replÍ-
cations of each condition. The coherence estimates wene

finst tnansfonmed to obtain normal ly distnibuted vaniables

using Fisher's n to z transform (Bnillingen, 1981, pp. 314).

The MSEs rÂ/ene then calculated fon the transformed cohenence

estjmates. The bjas values neponted conrespond to the actu-

al bias of the origìnal cohenence estimates.

Arder Se I ect iqn

The ondens estimated by AKaike's ( 1969a) fpf cni tenion,

whjch was used by both the AR and MEM methods'in the various

condi t'ions, ane pnesented in Table 1, In every cond'i tion,

stationany and nonstationary of al ì intenval lengths, the

MEM method selected highen onders, on the avenâgê, than the

AR method,

Fon the AR method jn the stationany conditions, the esti-
mated onden was quìte low (5.065) for the shontest data seg-

ments, but as the sampling intenval was lengthened the aver-

age onder se I ected became success i ve'ly c I osen to the

theonetical value of 7. The estimated ondens of the MEM

method ìdene much closer to the undenlyìng model onder in al l

50
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Table 1

Order Estimation of the AR(7) Model by the FPE Criterion by

the AR and. MEM Methods in Al-l- Experimental- Conditions

Condition

AR Method IIEM Method

0.5 s 1.0 s 2.0 s 0.5 s 1.0 s 2.0 s

Stationary

Change in Noise Variance at

N/2 ,.160

N/)+

N/B

Transient Sine Wave Ad.d.ed. to

Series 1 l+. 81,

Both series \.600

,.06, 6.'.tù+, 7 .035 6.875 7 .o)+' 7 .220

7.\75

B. s8o

6.s60

6 .0\o

B. :rt
10.175

r0.02,

ro.2r0

II.19'

7 .r.65

6.6s0

B. Tro

7 .980

9.270

rr.675

rr. 585

12.570

:-2.6I'

9.\90 9.37'

11. 120

Exponentially (mean=2) Distributed Noise Halfway in

series r \ .52, 6 .\75 9 .r7, T. o9o

Both series l+ .230 T .160 10. BB5 7 .2IO

B. 3eo

9.6jo

IO.TB'

12. 000

Note. Values represent the average ord-ers from 200 replications of

each condition
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necond length condjtions, although a slìght tendency of the

onden estimates to jncrease as intenvals lengthened u/as

pnesent. In the 2.0 second stat'ionany cond j t jon, the MEM

method ovenestjmated the orden slightly more 1i7.220 ) than

the AR method ( 7.035 ) ,

Fon the nonstationany series of al I tested jntenval

lengths, the MEM method aìways ovenestimated the onder, ex-

cept when a tnansjent sine wave was added to both senies in

the shontest segments. The AR method jn all 0.5 second ne-

cond length conditjons pnoduced underestimated orders, whjle

overest imated ordens u/ene obtai ned i n a I I 2.0 second nonsta-

tionary condj tions. In the 0.5 second intenvaì lengths, the

MEM method was generally less sensjtive to nonstationaritjes

than the AR method, except when the nonmal enron variance

was changed; jn these condit'ions, the avenage ondens of the

MEM models were mone overestimated than those of the AR mod-

els, regandìess of necond length. In the 2.0 second condi -

tions, fon both methods, the avenage onden selected fon all
types of nonstat jonany senies was a'lways gneaten than 7.

Mode I Coeff icient Estimat ion

Tables 2, 3, and 4 show the mean coefficjent estjmates,

thejn bias, and mean squane ennon, respectively, in the sta-

tìonany condjtions. These values were obtajned from estima-

t'ion by the AR and MEM methods wjth the onden set to the

theonetical value of 7.0, nather than using the optimal or-
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Mean Estimates (x 100) of Model- Coefficients

in the StationarY Conditions

Theoretical
Values
(x 100)

AR Method MEM Method

0.5 s 1.0 s 2.0 s 0.5 s 1.0 s 2'0 s

a(r) 30 .23
-9 'TI+

-13. )+l+

S6 -l+

A(2 ) 13. 51
\.rl+

-3. 10
r.2.l+9

A( 3) -7.03
36.70
B'g s

_10.78

A(l+ ) -rz.T9
3. B3
t4.66

_8.16

A( r ) -14.38
-7.93
-2.30

-2r.0,

A(6) -18.87
-2.29
-o )rr

/ 
' 

t+

_13. 5 3

A(7) -r9 .t+2
_2 )\
-)+ .61+

-10 .05

l+)+ . or
-r2.rT
-zo.l+9

38. 51

39.7\
-r2.20
-rT .65

39.30

29.2r
-9.)+o

-r5.63
3r.93

l.I.9'
I.T3

-0.58
,.02

-5 .01+

37.26
7.r\

-9.19

29.r\
-9.08

-L3.57
35.TT

I2.TB
2.98

-2.98
8.92

-6.09
36.5t
T.86

-9.9r

29.20
-9.r,

-I3.'t+2
35.36

-7.I3
36.7'
B. rl+

-9.73

-.1J. OJ
l+ .90
)+.T0

-22.97

-r2.\'(
-7.28
-7.65

-N.BT

-18. 51
-3. 38
-8.99

-13.41

-r9.50
-1.00
-r.28
-9.79

s6.ro
-rr.62
-16.37

37.60

I2
,

-1
9

6. ol+

9.23
3.72
0.90

B,
IJ

l+9

B6

13

10

3
?

-J

J¿
5

-7

Bg

9.63
6. Br
0 .01
6.zt

-6.s\
3r.o2
7.95

-9.96

zB -1\ . U+

2)+ 2.)+)4

T7 I.'6
33 -18"5S

.60

.o5
-9)+
.rg

_T .68
35. BB

B.l+)+

-9. BB

-r\.22
2.52
3. 30

-20 "BT

_1_2.39

-7.59
-1. 78

-23.2r

-rT .5\
_0. 39
-6.1+3
-8.61

97
TO
)+,

l+.1+3

6.oz
)+.27
1. 86

-t6.97 -1
8. or
\.oz

-rB.r3 -z

J6
3
0

-rh

_T .78
-3. B)+

-0.2r
-2o.89

.7r

.)+9

.01
,07
.66

-rr.21_
-6.)+z
-1. 85

_22.TT

-13. 11
-l+. B6

-b. oJ
-13. 81

-16.2'
-0.26
-7.11
-7.09

-T -!+
-6. l+l}

-0. 33

-2r.a3

-r7.33
-0.6,
-5 .10
-6. Bo

-Lr.32
-6. Bl+

-r.61
-23.20

-18.32
-2.6'
_T .97

-13.5 3

-18.6)+
_2.r3
-r.3t+
-9.t6

-9
- (_)

-l+
-1\

-1\
)+

-B
-l+

23
l+r

_IT 36
)+.Sz
-6.)+j

-II+.26

-r5 . )+¡
)+.67
-B.l+6

_r3.6r
19
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Tabl-e 3

Average Bias (x 1000) of Model- Coefficient Estimates

in the StationarY Conditions

AR Method MEM Method

0.5 s 1.0 s 2.0 s 0.5 s 1.0 s 2.0 s

.3

.9

.2

.B

10-10.9
6.6

_1. 3
-3.7

-r0.2:)'
-2r.9

-2.1-

-7 .3
-II.6

r.2

9.11
_-l q

10. 7
8.7

19
q

-r7.
r5.

A(r)

A(2 )

A(3)

A()+ )

A(r )

A(6 )

A(7)

137. B

-21+.3
-70.'
23.1

-T\.7
,0.9
68.z

_TI'.9

31. )+

2'7 2
-JI.J

-32.3
33. 3

-31+.9
-5.9

-38.9
92.3

66.0
I+o.9
20.9
¡+r.6

96.t+
-6t.2

52.2
-11. B

95.r
-n.6)+Z.t

3r.6

-38. B

26.7
31.1

-62.8

-ß.5
1? O

-31.0
50. 3

31.
]-5.

)+.

5T .6
-25.7
2T.B
-2.8

58.T
-18. B

-29.3
1)+ .6

-9.7
1l+.9
II.6))^

-JJ. v

-tÌ+. 3

-13.1
-13.6
26.9

3)+. )+

-23.8
oq

-0. B

18. B

18. 6
-rT .9

13. B

.)+

.1
o
)

.J

I
0

-l

3
t,

-+
a

I6

-1
0

-7

-0
T2

-6
2

7.8
19

-7.0
B.g

)n

-35.1

-u.6
-21+.L
2r.2

-7\.7

0

5

9
E)

l+

I

l+

9

I
6
E)
B

9
6

9
9

B

B
)+

3

)+

9
T
¿

1
3
6

3

9
0
6

5

5
¿

9
0

9
B

B

2

-6
-Õ
-l+

9

6
ß
-9

B 10

-10
10

0

5

-16.
2r.
-3.
t(.

)+

9
9
0

6
q

9
E)

,
6
l+

0

T
I
5
B

30
10

6
raI(J

F)

1l+

-0

)+r
l+r

-6
,+

7O
1l+

19
39

I'
20
)o
-7

]-9.9
3.1+
ç.c

18. )+

1,9.
6.
6.

3.6
-9,9

)+.2

r.2

B

5
)+

6

7
9
7
6

a1CD

16.
-)+ .

32.

't+g.S

b2.b
a)' 2

53.9

19.
-ù+.
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Tabl-e )+

Average Mean Square Error (x 1000) of Model- Coefficients

in the StationarY Conditions

AR Method MEM Method

0.5 s 1.0 s 2.0 s 0.) s l-.0 s 2.0 s

s.6
)+.r
i+. 3
4.3

8.1
o2
l.o
a2

B.o
)+. B

5.8
5.I

19. 1
oo
9.'

11. 7

3.7
l+.2
4.9
I+.6

2r.6
26.8
2\.r
26.6

)+.r
l+.3
t+.9

5.3

I+.,
?o
)+. r
)+. 3

t+.6
)+ .6
Lc
5.0

l.o
9 -r+

B.r
ro.2

)+.,
h .l+
)+.3

5.O

l+ .0
5.0
3.8
4.8

t.t
oq
B.r
9.8

3.'
l+ .0
3.3
)+.3

T.I
l-0. B

o.y
9.2

17. 0
22.)+

3.8
l+ .3
3.l+
Ir. r

t.t
9.1+
,.9
Qnu. I

18. 5
cc?
18. 7

A(1)

A( 2)

A(3)

A()+ )

A(5)

A(6 )

A(7)

39.8
D1 0

22.5
2r.6

25.3
26.8
¿J. J
32.3

I7.T
29.r
16. h
16.9

9.6
10.0
9.8

10. 3

8.3
oq
B.o
B.B

3
7
6
0

5
a

6

7

11
10

9
12

B

10
o

7

1B
al
L'

1B

19
2?

3.a

26.

7
0
0
t

3
6
1
)+

0
R

a

6

26
2l+
2l+

r7.,
n.6

4.>
l+.2
l+.0
S.B

)+. B
)+.9
)+.r
,.5

8.1
10.0
B.z

il.8

)1 .T
I+. 3
l+.r
,.0

5.1+
,.3
3.7
)+.6

)+

6
0
0

6

3
6
3

l+

q

4
1

l+

2
l+

T

aT
2I
1B
28

20
26
IT
20

2r1
c'7Ll

2I
20

aT
27
1)+

1B

9.7
10 .0
9.B
9.7

U

11
B.
o.

o

1
0
q

TI.2
9.8
7.9
9.o

l-9.5
d+.7
t??
2l+.1+
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den selected by the FPE cr i ten'ion, so that the avenage of

each of the 28 (i.e., 2 x 2 x 7) coefficjents can be dinect-

ly compared to its theonetjcal countenpart.

The nesults show that as the necord length was incneased,

both the bias and the MSE of each of the coefficient esti-

mates decneased. Almost all of the MEM coefficient esti-

mates were much less biased than those of the AR model, al-

though the MSEs of the two methods' estjmates wene quite

simj lan. Fon each method and wj thin each data segment

length condìtjon, the MSEs (tanìe 4) wene notably constant

acnoss al I coefficient estimates. The vani abi I i ty, MSE and

bjas of the 28 coefficient estimates jn each stationany con-

ditjon u,ene avenaged together and compared fon the two meth-

ods as a function of intenval length in Fìgure 6.

Tab les 5 , 6, and 7 contai n the van'i abì 1 i ty, MSE and b'ias ,

nespectively, averaged over the 28 model coefficjents esti-

mated jn each of the nonstatjonary condjtions. As in the

stationary case, in atl nonstationary conditjons as the sam-

pling intenval 'lengthened, the variabil'i ty, MSE and the bjas

decreased.

Both methods estìmated the coeffjcjents veny simjlarly in

the nonstat'ionany condi tions. In each expen jmental condi -

tjon, the varjability and MSE (Tables 5 and 6, nespect'ively)

u/ene almost ident jcal for the two methods; the avenage bi -

ases (Table 7) of the MEM coefficients wene about half the
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Figure 6. Comparison of the properties of model coefficient estimates

obtained by the AR (Â) an¿ l,'ßM (o) methods from stationary series as a

function of interval ì-ength, averaged over al-l- 7 x2 x 2 coefficients.

The mean ( S.n. ) variability is shovn in part (a), uS¡ in (b), and

.t\b]-as ln (c/.
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Table 5

Averaged. Variabil-ity (x 1OOO) of Model- Coefficients

Ín Al-l- Experimentaf Cond-itions

AR Method MEM Method

Condition 0'.5 s 1.0 s 2.0 s 0.5 s 1.0 s 2.0 s

Stationary

Change in Noise Variance at

N/2

23. B
(ro.:)

18.9
(¡.1+)

8., )+ .3(r.s) (0.5)
2a.T
(z.g)

B.B
(1.0)

15 .0
(z.t)

20.5
(2.e)

\.2
(o.l+)

32.r
fi .s)

ttl/l+

N/B

Transient Sine l{ave Added to

l-5.2
(2.7)

20.3
(l+. )+ )

11.1
Q.e¡

7.2
(r. r)

,.6
(r.e)

3r.2
(6.r)

6.9
(r.o)

10. 1
(r.>)

10.1
(r.l+ )

rQ

(2.3)

6.8
(¡.0 )

6.6
(r.e¡

10. 6
(e.t+)

11. 3
(2.>)

r-/Il_.4 ).o
(l+ .9 ) (e. r)

Series 1

Series 1

Both series

23.9
(6.5)

29.\
(rr. r)

29.8
fi.¡)

r2.5
(r.r)

12.'
(e.a¡

,.9
1r.s)

Both series

Exponentially (mean=2) Distributed- Noise Halfway in

26.2 r2.9 6.5
(rB.e) (g.s) (l+.7)

zT.L 13.\ 6.6
ft.t) Q.g) (r.e¡

32.8
( zs. a)

31. )+

(r.o)

rl+.3
(ro.T)

rl+ .l+
(¡.0)

Nóte. The nurnbers in brackets ind.icate the standard error (x 1000)

in averaging alt 28 coefficients in each condition'
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Table 6

Average Mean Square Error (x 1OOO) of Model Coefficient Estimates

in Atl- Experimental Condítions

AR Method MEM Method

Condition 0.5 s 1.0 s 2.0 s 0.5 s 1.0 s 2.0 s

Stationary

Change in NoÍse Variance at

22.5
$.i)

o'7
( z.l+ )

)4 .7
(o.g)

22.5
(:.0)

,2.7
$t.z)

9.0
1r.o)

h.3
(o.r)

N/2

N/l+

N/B

Transient Sine llave Add.ed. to

3)+. B

ft.>)
7.7
(r.B)

22.0
(>.0)

12.,
(s.g)

10. 3
(r.t+)

.6
æ.e)

¡)+. o 2, .3
()+o.T) (¡r.r)

t6.3
(s.r)

33. 3
(t+6.7)

1r.3
(:.r)

.1
3l+. 7)

10.1
(ro. g )

1l+ .0
(g .l+ )

.1 rr.2
6.)+) (e.o)

20.9
(e.B)

JO
(

7.0
(r.o)

r0.2
(r.>)

Series I

Series 1

l+8. o
(80.7¡

52.\
(Be.B)

33. 3 2' .\
ftB.g) (6¡.8)

31.0
( rl+ 2 (

Both series

Exponential-Ìy (mean=2) Distributed. Noise Halfway in

49. s
( >9. 1)

2'
(

3r.6
(rg. r )

3)+. B
(r0.5 ¡

.6
12.9)

36.6
(el+.s)

t.6
(rs. i )

ro.l+
(ro.g)

ls.6
(7.h)

t6
(

l-

Both series

Nóte. The numbers in brackets indicate the standard error (x 1000)
:

in averaging the lvfSE of al-l- 28 coefficients in each cond.ition.

20.7
O .t)

38. 3
(8.5)

)ôQ
(6.r)
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Table 7

Averaged Bias (x 1000) of Model- Coefficient Estimates

in All- Experimental- Cond.itions

AR Method MEM Method

Condition O.5 s 1.0 s 2.0 s 0.5 s 1.0 s 2.0 s

Stationary

Change in Noise Variance at

13. 6
(ie.B)

N/2 22.5s
(l+9.:)

6.j 3.0
(st+.5) (zo.e)

10.7 5.8
(SS.l+) (zl+.:)

o.J
(:o.r)

1E 'ft) . I

(so.o)

20
(rs.s)

5.0
(rr.B)

0.8
(B.z)

2.7
(B.g)

12.6
(60. l+ )

N/B

TransÍent Sine Wave Added to

Series 1 jz.\ l+8. r \6.g
(rl+g.B) (rhe.l+) (rs>.¡)

Both series BB. 8 BT .9 86.g
(r:f .r+) ltzz.f) (ur.6)

Erponentially (mean=2) Distributed Noise HalfVay in

N/It

Series 1

13. B

(l+0. g )

B.B
Qe .a)

tl.l+3
( s\.6 )

7.7 3.7
(zo.>) (ro.e)

5.I
(re.r)

sl+. r 36.)+ \0. >(r5r.r) (rl+:.r) (nl.z)

BB.T Bl.g 86.g
0z>.e) (ng.B) (no.a¡

zB.6
(69.r)

2o.o r:-.6
(>g .o) (:9. r)

22 .B 15 .1
(>g.g) (rr.o)

Both series ,7 .T
(6j.3)

Note. The numbers in brackets indicate the standard. errer (x f000)

in averaging the bias of al-l 28 coefficients obtained in each condition

66.6
(>g.T)

,8.9
(æ.e)

6B.o
(h9. )+ )

59.2
(16.i)

,T .9
(6r.7¡
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size of the biases of the AR estjmates in the stationany and

change of nonmal vanjance conditjons. bJhen a half of one or

both senies contajned exponentjal ly djstnibuted noise and

when one of both serjes contained a transient sine ulave, the

biases of the two methods' estimates wene much ìangen but

mone similar for the two methods.

Fon both methods, the stationary estimates wene the least

vanjable and had the smaìlest MSEs and biases. The change-

in-vanjance nonstationany condi tjons nesul ted in the most

vaniable coef f icients, al though the var jabi I i ties urene s jmi -

lan across all conditions for the same intenval length (Ta-

ble 5). The addition of a transjent sine wave to eithen one

on both series nesulted in the h'ighest MSE jn the avenaged

coefficient; however, fon both methods, the langest bias

was obsenved when both senies contained the tnansient. Sim-

i lanly, when the senies contained exponentiaì ly distnibuted

ernon, although the MSEs wene simìlar whethen one or both

senies wene nonstatìonany, the bias was much highen when

both series were nonstationary.

üJhen a tnansient sine wave l¡úas added to senies 1, the

gneatest jncnease in MSE occunred in the finst onden A( 1 )r,

coefficient; adding a sine wave to both series incneased

the MSE pnimari 1y in the f inst order A(1)tr and A(1)¿¿ coef -

ficients.
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Spectral and Cohenence Estimates

Stationanv Series

The theonet i ca I spectna I va I ues for f nequenc'ies greater

than 20 Hz indicate only noise pnesent (see Figune 4 on page

40). Thus nesults in the Tables are neponted fon frequen-

cjes 1 to 20 Hz since these are of pnimany intenest. Al-

though the AR and MEM estjmates wene obtajned fnom models

whene the optimal onder u/as selected by the FPE cnitenion as

well as fnom models of the known onder of 7, the results

show that the estimates fnom both sets of models and their
pnoperties wene very sjmilar, Tables I and 9 show the bjas

and MSE, nespect'ively, of the AR estìmates obtained f nom the

0"5 second stationany serjes as an examp'le. Results for the

spectna and cohenence est'imates of the othen methods were

very s jmj I an. Incneas'ing the necond 'length maKes these di f -

fenences genena'l 'ly even smal ler, thenefone only nesul ts wi th

the optìmal onden estimated wjll be neported, s'ince those

would be the estimates obtained'in practice.

The adaptive method of the Kalman type penfonmed nela-

tively poorly in comparison with the AR and MEM, and FFT

methods in all conditions, Thus, since the penfonmance of

these estjmates was similan acnoss all condjtions, the spec-

tnal est jmates of the adaptive method wi I I only be brief ly
neponted fon the stat'ionary senjes.
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Table B

Bias (x 10) of An Spectral- and Coherence Estimates

from 0.5 sec Segments Obtained from Model-s

with Estimated Orders (ô) and fron

Model-s Using p=7

Series I Series 2 Coherence

freq ^ùp p=f p p=7 p p=?

1

¿

3

)+

E)
6

T

B

9

10

11

t2
13

1l+

D
-LCì

a7

1B

19

2^

o.rr2
0. 158

0. ul
n '1 0'lv.¿/L

0.222

o.277

o. 3l+9

o.l+6,

O. OBl+

_9.003

-r.292
-s6.660

2.262

o.9rT

o.ro2
0. 301+

o. 201+

0. 1l+7

0.111

o. oBT

0. 0Bl

0. 086

o.096

O.LIz

0. 1l+0

o. 189

0.28,
o.\99
0.600

-T.68r
-0. 3o)+

45.&3
1' 93)+

O.T9B

o.hrt
0.2r8
0. 182

O. 1l+O

0. 111+

0.097

0.072

0 .075

0. 080

o. oB7

o. o9B

0.lu
0. 1\B

0.209

0.316

0.281

r.o55

-sl+. r8r
r.67,
0.707

0. 361

0.2r3
o. 1l+1

0. 100

0. fT5

o. o5B

o. o)+)+

0.0)+6

0.050

o.016

0.065

0.082

0. 113

o. 189

0.l+07

O.'IT
r.611"

42.569
)-.620

0.6\5

o. 307

0.r7,
0. 111+

o. o81

0. 061

o. o)+9

2.683

2.722

2.737

2.70'
2.60t+

2.1+11

2.076

r.r02
0.352

_0.700

-0.r22
-0. Bog

-0.1)+B

o. 361

0.602

0.68,
0. 698

o.69r
0.690

0.71\

3.058

3. 0)+)+

2.982

2.8r2
2.639

¿. 5¿)

1.871

1.2)+B

0.222

-o.Tso

-o.r3z
-O.T'B

-0.06,
0. 5:r
O.B9T

r.r29
r.2BT

1.l+02

1. hBB

r.555
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freq p=7

Table 9

l4SE of Stationary AR Spectraf and Transformed Coherence Estimates

(of 0.! sec segments) O¡tained. frorn Model-s r¡ith Estimated

Orders (û) 
""¿ from Model- of Order T (p=l)

Series I Series 2 Coherence

p p=7p p p=7
(x 1000 ) (x 1000) (x 10)

1

2

3

)+

5

6

t

B

9

10

11

T¿

13

1l+

I5
16

r7

1B

19

20

I.'
O,T

0.h

0.2

0.1

0.9

L. J

2.5

7.0

36.0

7072.3

670.\

rl+61+9.3

-r-1+)+. 6

15. B

2.0

B. )+

66.8

990.9
897.0

f)+gOl+.1+

111.9

13.1

3.2

I.2
0.6

0.3

0.2
0.2

0.1
0.1
o.2

o.2

0.2

t<

'EE).)
27.9

196.o

12708.3

rd+.1+

11.6

2.6

0.9

0.4

0.2

0.1

0.1

0.1

0.1
0.1

0.1
0.1

0.2

0.1+

1.3
ooJ.t

37.9

2BB. l
120T6.9

103. B

ao.2

0.3

0.1

0.1
0.1

1. 38

1?O

I.)+2

f.i+T

r.55
1.68

1. 87

D 1D

2.IB
2. BB

3.97

ar.D
2.90

2.3'
1. gB

r.67
1, l+5

1. 30

1.18

1.09

2.03

1.9b

r. 86

I.T\
r.6r
1. 50

1. )+9

r.69

1.98

2.68

3.98

I)+.23

2.79

2 .1+B

2.26

2.06

I.9I
I.T9
1.70

r.63

0. )+

o.l+

0.5

0.b

o.2

0.2

0.2

0.3
o.,
0.8 0.3

u-b

h.r 2.0

0.6
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The estjmates of the spectra of

senies 1 and 2 jn the thnee segment length conditions ane

pnesented jn F'igune 7 fon those estimates obta'ined by the AR

method, and in Figune I for those estimated by MEM. The two

methods pnoduced veny similan estjmates, although in all ne-

cond 'length condì tions the MEM est jmates of both sen jes wene

veny s I i ght 1y I ess bi ased than the AR spectna I est imates .

As the interval 'length incneased, both sets of estimates be-

came less bjased. In the 0.5 second jntenvals, both methods

f ai led to detect the smal len peal<. at 10 Hz jn sen jes 1 ;

wi th each necond ìength incnease, this smal ler peal< was es-

t imated w'i th successi veìy less bi as.

The spectral estimates of the stat'ionary serjes obtained

by the adaptive method ane shown 'in Fìgune 9. This method

consistent'ly estimated the 12 Hz majon peaK of senies 1 at

11 Hz, and wj th an equal bias negandless of necond length.

Resu I ts f or sen j es 2 wene I ess sat i sf actony; a'l though the

pos'i tion of the peaK of series 2 was estjmated accurately at

12 Hz in all three length conditjons, the bìas of these es-

timates was very large, pant'icular ly as the intenvals

lengthened to 1.0 and 2.0 seconds. The avenage bias was

-0.517 fon 0.5 second 'intenvals, 7.967 for 1.0 second inten-

vals, and 13.758 for 2.0 second intenvals at the 12 Hz fne-

quency.

The mean spectral estimates for both series and thejn av-

enage bias obtained by the FFT method are pnesented in Table
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Figure 7. Spectral estimates obtained by the AR method from stationary

0.! second (ô), 1.0 second- (o), and 2.0 secon¿ (") segments for series f

(top) and. for series z (¡ottom).
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Figure B. Spectral estimates obtained. by the MEM method from stationary

0.! second (À),1.0 second- (o), and 2.0 second (Ò) segments for series 1

(top) and for series 2 (¡ottom).
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Figure 9. Spectral estimates obtained. by the adaptive method. of the

Kal-man type from stationary 0.5 second- (a), 1.0 second (n), and 2.0

second. (o) segments for series 1 (left panef) and for series 2 (right

panel ) .
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Table 10

Mean Estimates and Bias of Spectra and Coherences from

Stationary Data Obtained by the FFT Method

Theore-
tical-
val-ue

Mean Bias
freq
band 0.5 s l-.0 s 2.0 s 0.5 s 1.0 s 2.0 s

5

10

1E
L)

20

2q

r.a6
1l+3.98

)+.TT

o.66

0.62

T. 38

c1 00

'> 27J.Jl

2.98

1.16

Series 1

2. B0

,9.\\
b.4r
r.92
0.69

1. 78

77 .12

r0.32

r.5,
0.62

6.zz

-r2r.99
-1.1+l-

2.3r
o. 5I+

L.6l+

-84. 54

r.63
r.26
0.07

o.62

-66.t+"(

,.rI+
n?o

0.01

, 0. 81

96.aT

,.99
o.6T

o.\2

3.62

l.5.75

3. 30

2.1+B

0 .90

Series 2

7.76
I+0.61

5 .01+

1.70

o.)+6

1.03
l+9.18

8.66

0.95

0. l+0

2. B0

-Bo.4e
_2.69

1. 81

0.l+B

o. gl+

-5r.ro
-0.9,
r.o2
0 .01+

o.22

-\6.99
2.67

o.2T

-0.03

10

I5

20

25

,
10

T'
20

2\

1l+.1+B

T5.T'
7l+ .13

)+8. 16

21. 30

6t+.r)+

T\.0+

79.9\
B)+. zl+

6T.oz

Coherence

76. BB

,2.59

't+5.16

T5.IT
86.79

b4. )J
l+t.:g

,0.06
'-1.10

t.81
36 .08

I+5.73

)+6.90

o. hi+

6.o9

28.73

3r.29

-o .61+

12.66

16.37

2\ .08

6B306I.37

76.19

Bo.zz

Note. Tabl-ed val-ues are obtained" val-ues x 100.
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10. For both senies, the greatest bjas occurned jn the 10

Hz fnequency band jn the shortest (0.5 second) intervals.

As the necond length was increased, the bjas of these estj-

mates genenally decneased in all frequency bands' except jn

the 15 Hz band whene the bias of both series incneased with

necord 'length 
.

The MSE of the spectra'l est imates obtai ned by a I I f oun

estjmation methods ane presented in Table 11. The spectral

estimates of all foun methods had the gneatest MSE in the 12

Hz peaK negions of both serjes. Although the MSEs of the

MEM estimates r^/ene s'l ight ìy smal len than those of the AR es-

timates in the fnequencies with low or no powen, the AR es-

t'imates had marg jnal ly smal len MSEs where power was pnesent,

that is, at 10 and 12 Hz ìn senies 1, and at 12 Hz in senies

2. The MSEs of the FFT spectnal estimates u/ene quite compa-

nable to the MSEs of the AR and MEM est'imates. The adapt'ive

method's estimates had MSEs that were onders of magni tude

langen than the estjmates of the othen methods jn the 10 to

13 Hz fnequency neg'ion, and panticu'lanly in the estjmates of

series 2 fnom the longen, 1.0 and 2.0 second, necond length

conditions.

Companìng the nesults of the spectnal estimates for the

diffenent jnterval lengths, the MSEs of all four methods

genenally decneased with each jncnease in intenval length.

The most notable exceptions occunned in the fnequenc'ies

whene the senies contained the most powen. The MSE of AR
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Tabl-e 11

Mean Square Error (x 10) of Spectraf Estimates gbtained by

the Four Methods of Estimation from stationary Data

AR Method IvEM Method.

0.5 s 1.0 s 2.0 s 0.5 s 1.0 s 2.0 sfreq

Series 1

0.0
0.0
U.U
0.0
0.08

10. 81
r.99

179.)+B
0.03
0.0
0.0

0
0
0
0
13

IJ
OB

o9
U

n

0.
0.
0.
U.
0.

0.
0.
0.

0
0
0
0
0

112r)+r.52
1.07
0.03
0.0

010.0
0.0
0.0
0 .01
0. 10
B.gl
2.1+B

I|-8.2'
0. l_0

0.01
0.0

0.02
0 .15

12.9I
l+. oB

r27.69
0. 39
0. 03
0 .01

0.00.01
0.01
0.03
0.07
0. 36

I0.72
6.70

tl+6.ì+g
t. )+5

0.16
0.01+

.0
ô

.02

. l+)+

l.2.36
10.5s

l-3.7'
a

0.0
0.01

E)
6

7
o(J

9
10
11
12
13
th
15

.0

.0

.0

.0

.0

.11

.23

.53

rì

0
0
0
0
0
0

151
0
0
0

0.0
0.0
0.0
0.0
0 .01
0 .19
0.35

rT1,.23
0.13
0. 01
0.0

0.0
0.0
0.0
0.0
0.0)+
0.2r
J-.6r

r25.65
T.2I
0.03
0.01

Series 2

.11

.l+o
NE

.09

.01

.0

0
n

U

0
01

0
0
0
ô
ô

ô

1

T
l-
0
U

0

0
U

0
0
0

130
0
0
0

0.0
0.0
0.0
0.0
o02
o.23
o. B5

108.16
0.38
0. 03
0.01

0
0
01
01
06
2B
96
OB

2l+

12
03

L2

5
6

7
B

9
10
11
12
13
1l+
1tr

. o)+

.0

( conrt. )
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Tabl-e 11 ( con't. )

FFT Method Adaptive Method

freq 0.5 s l-.0 s 2.0 s 0.5 s l-.0 s 2.0 s

0. 0,
o.o2
0. 01
0.01
0.0
0.0

0.0Ê)
6

7
B

9
10
11
12
13
1l+

L)

16
IT
1B
19
20

15 .10 9 .\9

0. 07 0. 01

0.01 0.02

0. 01 0.0

Series 1

7.52

0 .08

0.0

0. 01
0. 01
0.02
0.05
o. 3)+

1l+. )+1

7282.\T
196.65

l+r. f)+
0. 35

l+

l+Bo

3l+

0.01
.01
.03
.09
.T)+

.rg

0.0
0.01
0.02
0.01+
0. 35

16. )+3

,960.06
392.\7

0
0
0
0

,
6

3

3
0
0
0
0
0
0

0

.BB

.6'

.)1

.11

.03

0. Bh

0.09
0 .03
0.01
0.01
0.0
0.0
0.0

.01

.01-

.0

.0

.U

0.0
0.0
0.01
0.01
0.01+
o.2T

II.'9
.6t
.Bz
.08
.02
.01

0.0 0.0
0. 01 0.0
0.01 0.0

0.03 0.02
0.01 0.01
0.0 0.0

0.02 0.01
0.06 o.ol+
o.rT 0.27

Br.oB 16.00

0.0 0.0
0.0 0.0

6.æ I+.62 )+.35

0. 01

0. 01

Series 2

0.0 0.0

0.01 0.01+

,
6

T
B

9
10
11
I2
13
1l+

15
I6
IT
1B
19
20

131
0
0
0
0
0
0

0
0

25.52 103l+t-6.61 :-B9
6.96 t4 .69
0.11+ O.az

T6

.01

.0
n

.00.0 0.00.01 0.0 0,0
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est imates at 12 Hz wene l angest ì n the 2.0 second cond'i t ions

and smallest in the estimates from 1.0 second intervals, in

both senies. Fon the MEM estimates of both series in the 12

Hz frequency, the 'langest MSEs urere obtajned fnom the 1.0

second intenvals and the smallest MSEs u/ere obtained fnom

0.5 second intenvals. For the FFT est'imates, the MSE in-

creased wjth each jncnease in necord length in the 15 Hz

fnequency band in both senies; this jncrease in the MSE

seems to neflect the incneasing bjas of the FFT estimates'in

thjs frequency band.

Fon the FFT spectnal estjmates, over 50 percent of the

MSE jn the 10 Hz band estimates of all length conditions was

accounted fon by squaned b'ias. In the 0.5 second cond j -

tions, the squaned bjas accounted for about 98 pencent of

the MSE of the 10 Hz estimate in senies 1, and fon about 97

pencent jn serjes 2. The pencentage decneased with incneas-

ing 'lengths, and in the 2.0 second condition the MSE of the

10 Hz estjmates consjsted of 59 and 51 percent of squaned

bias in series 1 and serjes 2 estimates, nespect'ively. In

the 15 Hz band the behavjoun uúas less negulan; jn the se-

rjes 1 estjmate, about 28, 12 and 38 pencent of the MSE was

due to squaned bias as the records lengthened fnom 0.5 to
1.0 to 2.0 seconds, nespectjve]y, and in the series 2 estj-
mate these pencentages wene 60, 8, and 17, respectively. In

the other fnequency bands, whene only noise was pnesent in

the spectra the percentages of the MSEs accounted fon by the

squaned bias ranged fnom less than one to about 64 pencent.
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The MSEs of the AR and MEM spectnal estjmates at the 12

Hz fnequency also contajned a lange percentage of squared

bias in the shontest intenval condition. For both methods,

this pencentage dnopped of f dnamatical ly wi th 'incneasing in-

tenval length. The MSEs of the AR estimates of both senies'

12 Hz peak consjsted of 92 pencent in the 0.5 second jnten-

vaìs which decneased to 12 percent ìn the senies 1 est'imate

and to 14 percent in the series 2 estjmate fnom the 2.0 sec-

ond segments , The squaned b j as accounted f on s'l i ght ly I ess

of the MSE of the MEM 12 Hz estjmates compared to the AR and

FFT estimates, decneas'ing f rom about 78 pencent in the shon-

test segments to about I pencent in the 2.0 second segments.

For the AR and MEM estimates in the other fnequencies,

the pencentages of MSE due to squaned bias aga'in nanged fnom

less than one to about 62 pencent.

Cqrnpel i son of cohenence es t i ma tes . The mean cohenence

estimates of stationany data obtaìned by the FFT method are

pnesented at the bottom of Table 10 along wjth the avenage

bjas of these estimates. Although the spectnal estimates of

both senjes had the gneatest bias jn the 10 Hz fnequency

band of the shontest segments, the coherence estimates jn

this band were the least biased. As with the spectnal esti-
mates, bias of the FFT cohenence estimates decneased with

incneasing necond length, except in the 15 Hz fnequency band

estimates.
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F'igunes 10 and 1 1 show the stat'ionary cohenence est imates

obtained by the AR and MEM methods, nespectively. Aga'in, as

the recond length was increased, the AR and MEM coherence

estjmates generaìly became less biased oven the whole cunve.

The MEM method appnoximated the peaK of the cohenence cunve

sl'ightly more accunateìy than the AR method for the shonter

(0,5 and 1.0 second) segments, although by the 2.0 second

conditjon, the two methods produced veny sjmilar estjmates,

Table 12 pnesents the MSEs of the transfonmed cohenence

estìmates of the stat'ionany data obtained by the thnee esti -

mation methods, These nesuìts show that fon all methods the

MSE of the tnansfonmed cohenence estimates decneased with

each incnease in serjes length. The MSEs of the AR and MEM

estjmates wene langest anound the 12 Hz fnequency in al I

three 'length cond j tions. Sim'i ìarly, the MSEs of the FFT es-

timates from 2,0 second segments wene the langest in the 10

and 15 Hz bands, but jn the shorter, 0.5 and 1'0 second,

conditions these MSEs wene the smallest. In the 0.5 second

stationany condi tjons, the MEM tnansfonmed cohenence esti -

mates had gneater MSEs than the AR tnansfonmed coherence es-

timates at al I f nequency values, except at the 12 Hz peal<.

whene the MSE of the MEM estimate (l.OOZ) was not as lange

as that of the AR estimate ( 1.515).

As an indication of how the tabled MSEs for the tnans-

fonmed cohenences tnanslate to the actual MSE of the onigi-

nal cohenence estimates, the tabled value of 1.062 conne-
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Figure 10. Coherence estimates obtained by the AR method. from

statíonary A., second (ô), 1.0 second (tr), and 2.0 secon¿ (o) segments'



1.O

o.9

o.8

+ tl¡eoretical curYe

-ì&-- 0.5- s segments
-.-Ð-'- 1.0-s segrnents
---o--- 2.0-s segments

40

o.7

o.6

o.3

o.2

o.t

/
\
\.

,

I
l

f

I

{
I
I

I
I

o(,
co
c-
o
o()

I
/

/

\
r

i\

I
/

¿
dI

o 30t0 20

Freguen cy ( Hz)

50 60



76

Figure 11. Coherence estimates obtained by the MEM method from

stationary 0.5 second (¡),1.0 second. (r), and 2.0 secona (o) segments.
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Table 12

MSE (x lO) of Transformed Coherence Estimates Obtained from Stationary Data

0.5 s Segments 1.0 s Segments

freq

2L
¿¿

2\
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,.r20

2.r't+z
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,.390

2.889
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.52L

.l+Bi+
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. )Õ4
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.\t6

.¡+>g

.\I+z
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ô ?o'l

o. 315
0.227
0.1)+9
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1
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sponds to an actua I MSE of 0 . 786 for the 0. 5 second 12 Hz

MEM estimate, and 1,515 connesponds to an actual MSE of

0.908 for thjs AR estimate. In the noise regions, whene the

MSEs ane usually much sma'l ler, the tabled values fon the

tnansformed cohenence estimates connespond very closely to
the actual MSEs of the onìginal coherence estimates.

As the necond length incneased to 1.0 and 2.0 seconds,

the MSE of the MEM est'imates became smaì len than those of

the AR tnansfonmed coherences at almost all fnequencies. In

the 2.0 second intenvals, the actual MSE conrespond'ing to

the tabled value of 0.5103 fon the AR estimate is 0.4702,

andthe actualMSE ofthe 12Hz MEMestìmate is0'3611.

Thus wi th ìonger epoch 'lengths , the MEM est ìmates seem to

become better than the AR estimates, ìn tenms of thein MSE.

The MSE of the FFT tnansfonmed estimates was simi lan to

the MSE of the AR and MEM est'imates only jn the 10 Hz ne-

g'ion; el sewhene the MSEs of the transfonmed FFT est imates

u/ene about an orden of magnitude larger. The actual MSE of

the 10 Hz FFT cohenence estjmate fnom 2.0 second intervaìs,

connespond'ing to the tabled value of 0.242, is 0.2374. The

FFT method fai led to pnoduce the major cohenence peaK at 12

Hz, which should have appeared jn the 10 and 15 Hz band (see

theonetical FFT cohenences in Table 10), and ovenestimated

the cohenences jn the higher f nequency bands, wh'ich nesulted

ìn companat'ive1y lange MSEs, pantjculanly in the shortest

segment lengths.
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As with the bias of the FFT estimates, the MSE of the FFT

spectra was highest in the 10 Hz band, even though the MSE

of the FFT cohenence estimates in the 10 Hz band wene among

the smal lest. In contrast, the AR and MEM methods genenated

spectnal as wel I as coherence estimates w'i th the 'langest 
MSE

at 12 Hz, relative to the MSE of the estimates in the other

fnequencies.

In the powen peaK negion, squaned bias accounted fon less

than 10 pencent of the MSE of the tnansfonmed cohenence es-

timates obtained wi th al I three estimation methods in al I

segment length condìtions. Fon the FFT 10 Hz cohenence es-

t'imates, and fon the AR and MEM cohenences in the 11 to 14

Hz inclusive nange, less than one pencent of the MSE was due

to squaned bias. In the othen noise fnequency nanges, the

pencentage of squared bias in the MSE nanged fnom zeno to

about 60 pencent, for al I thnee methods in al I segment

length condi tions

Cohenence Estimates from Nonstationanv Senies

Chanoes in the variance of nonmal ly distributed ernon.

Estimates of the cohenence function obtained in the nonsta-

tionany conditions where the vaniance of the noise used to

genenate the data ìrúas changed fnom [t 0l to [g A] halfway in- [orJ loel
the sampling epoch are shown in Figune 12 fon the AR method

and in Figune 13 for the MEM method" hlhi le the MEM method

can estimate the peak value of the cohenence functjon at 12

Hz slightly better than the AR method fon each segment
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Fieure 12. Coherence estimates of the AR method obtained from data with

the noise variance changed halfway in the 0.! secon¿ (¡), 1.0 second (Þ),

and. 2.0 second (o) intervafs
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Figure 13. Coherence estimates of the MEM nethod obtained from d.ata with

the noise variance changed halfway in the 0.! second (À), 1.0 second (a),

and 2.0 second. (o) intervafs.
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length, i t ovenestimates mone the values at frequencies

whene the cohenences are small, panticulanly in the shontest

intenvals.

The FFT cohenence estimates and their average bias ob-

tained in al l of the change of vaniance nonstationany cond'i -

tions ane pnesented jn Table 13. Comparìng the FFT esti -

mates across necond length for the fjrst condjtion whene the

van j ance u/as changed ha'l fway thnough the 'intenva I , at N/2,

the estimates jn the 10 and 15 Hz fnequency bands became

mone biased wjth ìncneasìng necord length; in the 10 Hz

band the estimates tended to be pnogressively mone underes-

tjmated as indicated by the jncneased negative bias, while

the est jmates jn the 15 Hz band wene incneas'ingly ovenesti -

mated, Companed to the stationany FFT coherence estjmates

(see bottom of Table 10), the bjases of these nonstationany

estimates wene generally veny simjlan.

The MSEs for the transfonmed coherence estimates of the

three methods jn these nonstationany condjtjons ane present-

ed jn Table 14. The MSEs of the nonstationany FFT cohenenc-

es wene genenal ly qui te companabìe to the MSEs obtained fon

the statjonary series, panticuìanly in the reg'ion of the co-

henence peaK in all intenval length condjtions (compane wjth

Table 12) . The d'i f fenences between stat'ionany and nonsta-

tionany estjmates jn the noise negion wene not always in the

same dinection; fon example, in the 5 Hz fnequency band of

0.5 second segments, the stationany tnansfonmed FFT esti-
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Tabl-e 13

Mean FFT Coherence Estimates x 100 (and Bias x lOO) Wtren
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MSE x 10 of Transformed Coherences When the noise Variance was Changed. Half\,¡ay in the Segments
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mates had a MSE of 0.779 compar-ed wi th the nonstat jonany es-

timate's MSE of 1.249, but in the 20 Hz band the nonstation-

ary tnansfonmed estjmate had a smaller MSE (0.926) than the

stat'ionany one (1.305), As the recond length was 'incneased,

the MSEs of the nonstat'ionany FFT estimates jn the noise re-

g'ions became veny s jmj I an to those obta j ned fon stat'ionany

estimates.

Companed to the MSE of the stat ionany est'imates, the

nonstationary tnansfonmed cohenence estimates of both AR and

MEM methods had consistently greaten MSEs in all jntenval

length condjtjons. The MSEs of the AR and MEM tnansfonmed

nonstationany estimates wene at least twice as ìarge than

they wene jn the stationary conditjons, except at the 10 and

12 Hz fnequencjes whene the MSEs of the nonstationany estì -

ma tes u/ene on ì y s 'l 'i gh t I y 'l anger .

The tabled MSEs of the AR 12 Hz estimates of 1.837,1

and 0.744 from the 0.5, 1.0, and 2.0 second 'intenvals,

spect'ively, connespond to actual MSEs of 0.951, 0.834,

0,652 . For the cornespondi ng MEM est'imates, the actua I

ane 0.893, 0.745, and 0,511.

202,

ne-

and

MSEs

Although the MSE of the FFï transfonmed estimates genen-

ally decreased with intenvaì length, this decnease was much

mone gradual in the 10 Hz fnequency band than jn the other

frequency bands. In the 0.5 second condjtjon, the MSEs in

the 10 and 15 Hz bands Llrene the smal lest than in al I the
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othen bands, whj le in the 1.0 second conditions these MSEs

wene wjthin the range of the othens, and 'in the 2.0 second

condit'ion they wene langen than al I those in the other f ne-

quency bands.

In the nojse negions of the cohenence functjon obtained

fnom intenvals of all tested lengths, the MSEs of the FFT

nonstationany tnansfonmed estimates wene largen than the

MSEs of the MEM est jmates, whì le the MEM est'imates genenal ly

had gneaten MSEs than the AR estimates. In the 10 Hz range,

the MSE of the FFT coherences from the shortest segments was

the smallest when companed to the AR and MEM estjmates.

!üith ìonger intenvals the MSEs of the FFT 10 Hz transfonmed

estjmates decneased more gnadual ìy and became close to the

MSEs of the AR and MEM estimates. In the 15 Hz range, the

same uras tnue jn the 0.5 and 1.0 second condjtions, howeven,

the MSE of the 15 Hz estimate fnom 2.0 second segments was

considenab'ly langen than the AR and MEM MSEs in this range.

Companing the MSEs of the AR and MEM tnansfonmed esti-
mates, in the 0.5 second condi tion the MEM estimates had

'langer MSEs than the AR estimates at al I f nequencies except

at 12 Hz whene the MSE of the MEM estimate was smaller than

that of the AR estimate. In the longen intenval conditions,

the MSEs of the AR and MEM estimates wene mone simi lar to

each othen and genenal ly smal len than the MSEs of the FFT

estimates. In the 1.0 second condition, the MSEs of the AR

and MEM estimates wene almost identical. The MSEs of the



MEM estimates in the 2.0 second condi tion

smal len than those of the AR est'imates except

Hz nange.
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wene evenywhene

in the 7 to 11

Figunes 14 and 15 pnesent the AR and MEM coherence estj-
mates, nespective'ly, obta jned in each d j f fenent jntenval

length condition, and with the vaniance of the input noise

changed for different pnopontions of the data segment; that

is, always the last 32 data poìnts, negandless of intenval

length, wene generated wjth S= [9 A] . Both methods pnoduced
[0 eJ

estimates that ì^/ene mone biased acnoss the ent jne f nequency

nange than those when the variance was changed cons'istently

halfway fon al I interval lengths. Comparison of the dìago-

nal entnies in Table 13 indicates that the bias of the FFT

est jmates again incneased wj th ìncneas'ing interval 'length in

the 15 Hz fnequency band whene the FFT estimates wene pro-

gness'ively mone ovenestimated. At 10 Hz, the bjas of the

FFT estjmates nemained veny low negandless of the amount of

nonstat'ionary data, wh j le in al I othen f nequency bands the

b'i as decneased w'i th i ncneas i ng j nterva ì I ength and the de-

cneas'ing nelatjve amount of nonstatìonany data.

These nonstat'ionary estimates may also be companed fon

the effects of changing the pnoport'ion of nonstationany data

for a fjxed segment length. Fon the 2.0 second segments,

thene are thnee conditjons whene the vanjance of the input

nojse was changed at di ffenent times in the segment; (a)

halfway fon Nl2 (lZA) data points, (b) for N/4 (64) data
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Figure 1l+. Coherence estimates of the AR method obtained from d.ata r.¡ith

the noise variance changed. for the l-ast 32 d.ata points in the 0'5 sec-

ond (a), 1.0 seconcl (n), and 2.0 second (o) interval-s. (fn the 0.)

second interval , the change vlas made for haff of the segment; in the

,1.0 second interval- for a quarter; and. in the 2.0 second' interval for

the l-ast eighth of the segment. )
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Figure 1). Coherence estirnates of the MEM method obtained from data with

the noise variance changed for the l-ast 32 data points in the 0.! sec-

on¿ (a), 1.0 second (o), and 2.0 secona (o) interval-s. (rn the O.!

second interval-, the change was made for half of the segment; in the

1.0 second interval-, for a quarter; and in the 2.0 second intervaf

for the }ast eighth of the segment. )
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points, and (c) fon N/8 (32) data points. In Table 13, the

2.0 second column companes the FFT estjmates and thejn bias

oven' these thnee conditions. These estimates ane veny sjmj-

lan companed oven the nonstatjonany conditions, and also

veny sjmjlar to FFT cohenence estjmates of completely sta-

tionary series (compare w'i th Table 10) . Figune 16 companes

the AR and MEM estimates obtained fnom 2.0 second intenvals

in whjch the vanjance was changed for half and fon the last

eighth of the senies. The coherence pea[< was estjmated al-

most jdenticaìly negardless of the amount of data that was

changed, when the same method of estimation was used. Ïhe

tai ls of the cohenence functìon were estimated wi th less

bjas by both AR and MEM methods when the variance ìrìras

changed for an entjne half of the segment, rathen than for

the smaller amounts. flvenall, the MEM estjmates wene gener-

al ly marginal ly less bjased than the AR estjmates in the

peaK negion of the cohenence functjon unden these condj-

tions.

The MSEs of the tnansfonmed coherence estimates of the

thnee lr'inds of 2.0 second nonstat'ionany segments ane gi ven

in Table 15, As the numben of data poìnts that rlúene nonsta-

tionary decreased (fnom a half to a quanten to an eìghth of

the segment ) , the MSEs of the FFT tnansfonmed estjmates re-

mained relativeìy constant withjn each fnequency band and

also veny simjlan to the nespectìve FFT estimates obtained

in the 2.0 second, stationary condjtion (see Table 12). The
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Figure 16. Coherence estimates from 2.0 second se gments obtained by the

AR rnethod (triangles) and the MEM method (squares) where the noise

variance lras changed for half of the segment (open symbols) or for

an eighth of the segment ( solid. symbols ) .
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Table 15

MSE x 10 of Transformed Coherences from 2.O-sec Segments vith Noise Variance Changed. at Different Locations

Change at W/2 Change at N/l+ Change at N/8

freq T'fT AR MEM Ftr'T AR vßM IFT AD }4EM

I
a

3
)+

E)
6

T
I
9

10

20

2l
z¿
¿5
Ð+

e nLa

z.608

3.L57

a.670

r.T9B

L.o76
r.037
0.966
o. 852
0. ?01
0. 538
o. )+l+5

o.106
0.96L
r-9:l+

T.T8'
T.\37
1.086
0.977
o.g6L
o. 9)+8
0.906
o. Bll+
0.799
o. ?l+B

0. T1)+
O. 7O)+

0.7l-5
0.758
o. 813

.660

.62\

.186

.75\

.68r

.6+T

.626

1-.0r2

r.976
,.0+6
0.9r9

2.060

2.26L

2.392

2.186

¿. l-o3

2.Or2
1.9)+1
1.81+9
T.7L2
1 (ôo

r.252
1.009
0.997
1.302
2.86

1.182
L.162

1. 185
I.d42
r.3\2
L.)+16
1.530

L.375
1.307
r.2r5
'1 't o<

1.120
1.0\3
0.033
t.203
7.æ6
2.A22

2.766
o. l-l- f

r )roo

I.L'5
1.061+
1. 0)+ 3
1.031
1.009
0.9\9
0.911

r.769

2 ôO?

2 -9lt+

2.OOT

1.791

2.386
2.297
2.zIL

1.208
2.023

r.2r5
L.227
r.23'
1.30)+
1.382

q20

8or
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306
10]+
013
v¿l
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0
0
0

0
0

0
0
0

L.5r'
r ),:),

1.37)+
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'l 10?
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0
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1.281
1.211
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L.L99
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1.
B.
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1.
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MSEs of the AR transfonmed est jmates wene also qu'i te sjmi lan

j n the thnee condi t ions, but did i ncrease very s I ight ìy as

the number of nonstationary data decneased at some fnequen-

cies i at the other frequenc'ies, the MSEs 'incneased from the

N/2 to N/4 conditions but decneased as the number of nonsta-

t'ionary data was funther decreased to N/8, In the nojse ne-

gions, âlì the MSEs of the AR tnansformed estimates jn all

thnee nonstationany cond j tìons were about four times h'ighen

than MSEs of AR transformed estimates of stationany 2.0 sec-

ond segments, Results fon the MEM estjmates were sjmjlar to

those of the AR estimates. The MSEs of the nonstationany

MEM tnansfonmed est jmates wene consi stent'ly I angen than MSEs

of stationary data; however, as in the 2.0 second statìon-

any condjtion, the MSE of the MEM estimates jn these nonsta-

t'ionary cond j t jons wene genenal ly smal len than those of the

AR estimates.

Changìng the variance only in one serjes, that is chang-

ing the noìse vaniance-covariance matrix fnom hol tolgol
lo t) to tJ

ìn genenat'ing the bjvaniate AR senies, wj l1 change the no'ise

vaniance jn both series, since in simuìat'ing a bivariate se-

ries, each univar jate ser jes js a comb'ined function of j ts

own past, as well as the past of the second series. How-

even t a condjtion rdas nun fon a 1,0 second intenval whene

the nojse vaniance h,as changed only jn serìes t halfway

thnough the jnterval, Figune 17 shows that the AR and MEM

cohenence estimates l^,ere less biased jn the 12 Hz peaK ne-
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gion when the noise was changed only jn series 1 than when

both series were changed. Genenally, however, in all the

other fnequency nanges, the estìmates of both AR and MEM

methods ì^rene mone bjased when the van jance was changed only

in senjes 1 than when both series wene changed. $veraì1,

the MEM estjmates wene genenalìy more biased than the AR es-

timates, except again at the 12 Hz frequency whene the MEM

estimates uúene closen to the theonetjcal peaK than the AR

estimates jn the'in nespective cond'i tions.

As 'in the stat'ionany condi t jon, jn al I the change of van-

'iance nonstat ionary condi t ions, the squared bi as accounted

for less than one pencent of the MSE of the AR and MEM estj-
mates in the 11 to 14 Hz fnequencies and the 10 Hz FFT esti-

mates. In all othen fnequency estimates, the pencentage

nanged from zero to about 60 pencent.

Addi tion of a tnansient sine wave. I,tJhen a transient sine

wave uJas added to senies 1, the mean cohenence estimates of

the AR method, shown in Figune 18, wene veny sjmilar to the

estimates obta'ined fon stat'ionany senies (compane w'i th F'ig-

une 10). Thene wene very smalì peaKs anound the 3 Hz fre-

quency, part jcular ly ìn the 2.0 second intenval condi tions,

and the 12 Hz peaK was estimated less accunately in the

shortest intervals than jn the stationany condj tion, As

Figure 19 demonstnates, the MEM estimates were mone sensj-

tive to the tnansient nonstationarity jn one series than the

AR estjmates. The peaKs anound the 3 Hz frequency wene much



95

Figure 17. Coherence estimates obtained by the AR method. (triangfes)

and the MEM nethod (squares) from 1.0 second- intervafs where the noise

variance lras changed. hal-fVay in series I only (open symbols) or in

both series ( sol-id. symbol-s ) .
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Figure 18. Coherence estimates obtained with the AR rnethod in 0.1

second (¡), f.0 second (o), ano 2.0 second (o) conditions where a

transient sine r.¡ave was added to series 1.
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Figure 19. Coherence estimates obtained with the MEM method in 0.5

second- (a), 1.0 second (n)., and 2.0 secona (o) conditions where a

transient sine r¿ave was added. to series 1.
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mone pnominent in al I thnee jntenval length condj tions.

Othenwi se the mean MEM estimates r¡úene almost identical to

the stationany estjmates (compane with Figure 11).

Table 16 gives the MSEs of the tnansfonmed coherence es-

timates that were obtained fnom data with a tnansient sine

lvave added to senies 1. The MSEs of the AR and MEM trans-

fonmed estimates wene genenal ly veny s'imi lan to the MSEs of

stat ionany est'imates . The except ion was j n the 1 to about 6

Hz f nequency neg'ion where the MSEs wene gneaten in the nons-

tationary conditjon, wjth a peak at 3 Hz. At the 12 Hz fne-

quency the MSEs wene also sìightly gneaten than the MSEs of

the stationany estimates , aì though genena'l ly jn the majon

cohenence peaK negion, the MSEs of the nonstatjonany estj-
mates wene even very slìghtly smallen. Comparing the AR and

MEM methods jn the nonstationary condition, except at the 12

Hz fnequency, the MSEs of the AR cohenences wene smal len

than the MSEs of the MEM estimates. In the low fnequencies

anound 3 Hz, the MSEs of the MEM tnansfonmed estimates were

relatjvely much ìanger than of the AR estimates' especially

in the shonten segments. Fon example, jn the 0.5 second

condition at 3 Hz, the MSE of the transfonmed AR estimate

u/as 0.1963 (actual MSE=0.1938 fon the origìnal cohenence)

and of the MEM tnansfonmed estimate was 0,9418 (actual

MSE=0.7360), but thjs diffenence was gneatly reduced as the

jntervals wene lengthened to 2.0 seconds whene the MSE of

the AR estimate uras 0.1218 (actual MSE=0.1212) and the MSE

of the MEM estimate was 0.2169 (actual MSE=0.2136).



Table 16

MSE x 10 of Transformed. Coherences Obtained. from Data r.+ith a Transient Sine \^Iave Add.ed. to Series 1

0.5 s Segments 1.0 s Segments 2.0 s Segments
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The mean cohenence estimates obtajned by the FFT method

when a tnansient sine wave was added to eithen one or both

senies ane given jn Table 17. hJhen the transient !úas added

to only one series, the FFT estimates jn the noise fnequen-

cies wene genenaìly less bjased than when the senies was

stationany. In the 10 and 15 Hz bands the bjases of the

nonstat'ionany coherence estimates were companable to, al -

though s 1 ight ìy 'langen than, the bi ases of the stat ionany

estimates. The MSEs of these tnansfonmed nonstat'ionany FFT

cohenence estjmates, g'iven in Table 16, wene smaller jn all
frequency bands than the MSEs of the respectjve statìonany

estimates. In the 5 Hz band, which contains the tnansient
'in one spectrum, as the segment length was incneased the MSE

of the nonstationany estimates decreased mone napidly, fnom

0,684 (actual MSE=0.594) in the 0.5 second intervaì to 0.047

(actual MSE=0.0467) in 2.0 second intenval than the corne-

spond'ing MSEs of the stationany tnansformed estimates, which

decneased fnom 0.779 ( actual MSE=0,652 ) to 0.209 ( actual

MSE=0.206 ) .

The tnansient in only one series also failed to affect to

any gneat extent the pencentage of MSE accounted for by

squaned bjas. In the low f nequenc'ies, the pencentage of MSE

accounted for by squaned bi as remai ned f ai n ly h'igh, âs j n

the stationany condjtions, ranging fnom 32 to about 67 pen-

cent oven the est'imates of al ì thnee methods in al I intenval

length condi tions. In the cohenence peak f nequenc'ies the
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Table 17

Mean FfT Coherence Estimates x 10 (and' Bias x f0)

in the Presence of Transient Sine Waves

Segment Length

Condition
freq
band 0.5 s 1.0 s 2.0 s

Sine trlave Add.ed.
to Series f

Sine Wave Add.ed
to Both Series

10 7 .8T6
(0.:or)

6.357
(h.sog)

6.29:-
(-:-.tzz)

6.6j8
(r.Bt+e)

6.>z\
(\.395)

9.600
(B.ris)

7.919
(0. sl+: )

5.8\9
(-:.>6¡)

6.976
(e. 16r)

7.TTT
(>.6\t)

,.2ù+
ß.ttt)

T.r\9
( -0. oz6 )

t. 6Br
(o.267 )

6.6rT
( r. Bor)

2.78r
(r.sss)

7.ror
( -0. orl+ )

8.526
(r. nz )

6.027
(r.en)

)+. )+13

(z.eBs)

9.370
3 .gzz)

7.35\
(-o.zzt)

B.z\z
(o.868)

,,39)+
(o.rTB)

)+. o8z
(r.gr3)

E)

1É

20

t-,

2'

E

10

20

t+.g61
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(2.>tB)
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ft.ggs)

7 .r99
(-0.376)

6.626
(-0. rBz)

¡.)+so
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percentages l^/ere again ìow, less than one pencent fon the

MEM estimates in the 11 to 15 Hz, AR estimates in the 12 to

14 Hz fnequencies and the 10 Hz FFT estimates of all segment

lengths. In the jmmed'iately sunrounding frequencìes, how-

ever, the pencentages of squared bias in the MSE lilere

sl'ightly langen, by about one to e'ight percent, for all
thnee methods than the connesponding pencentages obtajned jn

the stationany cases, with the AR method showìng the langest

i ncnease of the thnee methods.

The mean FFT est'imates and thein bias fon nonstat'ionany

data whene the tnansient sine wave was added to both series

ane g'iven jn the lowen half of Table 17. The most obvjous

feature of these estimates is the large means, and corre-

spondingly the lange biases of these estimates, in the 5 Hz

fnequency band in all segment length conditìons. As the

segments wene lengthened the biases decneased, but even in

the lo¡gest intenvals whene the tnansjent affected only ap-

pnoxìmately 16 pencent of the data, i.e,, 40 of the 256 data

poìnts of each senies, the bias of the cohenence estimates

nemai ned veny high at 0 .7922.

The AR and MEM methods produced mean cohenence estimates

that u,ene also extnemely biased in the 1 to I Hz f nequency

negion when a transjent sjne wave uras added to both senies,

negandless of jntenval length. Figune 20 shows the cohen-

ence cunve estimates obtained by the AR method, and F'igune

21 shows these estjmates obtained by the MEM method. Even
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Figure 20. Coherence estimates obtained ¡,¡ith the AR nethod in 0')

second (¿), f .0 second (o), and 2.0 secona (o) conditions r¡here a

transient sine vave was ad.ded. to both series.
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Figure 21. Coherence estimates obtained with the MEM method in 0.!

second- (¡), 1.0 second (a), ana 2.0 second (o) conditions l¡here a

transient sine wave was added to both series.
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though the low fnequency estimates wene so bjased, the esti-
mates of both methods in the othen fnequencies, and espe-

cial ly the peak negion, remajned nelatively unaf fected jn

this cond'i tion.

The MSEs of the tnansfonmed estimates obtained by all
thnee est imat'ion methods ane shown i n Tabìe 18. Fon the

tnansfonmed estimates of all thnee methods, the MSEs in the

1 to I Hz reg'ion uúene 4 to 20 tjmes langer than the MSEs fon

the 12 Hz est'imates , wh'ich a lways had the I angest MSEs i n

al I the otstationary and nonstationary condjtjons. in the

0.5 second segments, the highest MSE was obtajned fon the 3

Hz MEM estimate ( 1 1,314, conresponding to an actual MSE of

1.0 for the original estimate), fol lowed by the MSE of the

AR 3 Hz estjmate (7.813, which also conresponds to an actual

MSE of about 1,0) while the 5 Hz FFT estimate fnom the 0.5

second condition had an MSE of 4.042 (actual MSE=0.9994).

!üi th ìonger i ntenva I s , the MSEs of the low f nequency est j -

mates tended to drop sl'ightìy but sìowly. In the 2.0 second

condjtjons, the MSEs of the tnansfonmed cohenences fnom all
thnee methods wene still at least 10 times langen in the low

fnequencies than at the 12 Hz peak values, and the actual

MSEs nemained close to 1.0. The MSEs jn the othen fnequen-

cies wene affected nelat'ively Iittìe; the MSEs of the trans-

fonmed FFT estimates wene s'l ight ly smal ler than thei n MSEs

of statìonary series in each segment length condition, and

the MSEs of the nonstationary transfonmed AR and MEM esti-



Table 18

MSE x 10 of Transformed Coherences Obtained from Data vith a Transient Sine Wave Ad-d-ed- to Both Series

0.5 s Segments l-.0 s Segments 2.0 s Segments

freq FFT AR T4EM FTT AR MEM FT"I AR l/ßM

I
a

3
)+

Ê)
6

7
B

9
10

11
a2
13
I4
1E
L)

,Lb

LT
18
a9
20

2I
22
)?
2l+
2'

l+0. \r9

2. O3)+

2.280

l+. ol+6

r.:-.85T

63.11+3
72.\2a
T8.r2T
,0.2r2
2r.7\)+
10. 8l+1
2 0?o
0.r77
1.281+
2.002

2.702
16.roT
2.L99
1. 638
r.3r7
1.070
o. 89B
0.785
O.TT2
0.66,

0. 638
0.623
o.610
0.723
0. 8T:

83.789
9T.181

113.1\5
7r.T2O
36.66t
L6.þo
,.398
r.12\
A.T9I
2.a62

3.7\3
10. 728

2.670
2.060
1.513
r.296
L.276
1.308
r.298
't 't oâ¿. L/v

1.039
1. Ol+\
1.107
L.233
r.520

32.002

2.8\9

r369

1.190

_1 . ÕOJ

6:. rl+8
bl.ool
68. o:o
)rA oLa
28.r7'
13.821
4.>90
.l 7qo

L.¿3 (

1.319

7r.rT7
8)+.381
89.810
6t.\tg
3t+.rT\
16.701
6.r.6>
r.297
1.308
_1 . loo

L.697
6.tt\
1.051
0.785
o. 687
o. 6B:
0.7\3
0.829
0.922
0.9r2

o. B8t
0. 828
0.720
0.597
o.622

26.368

2.r72

2.l06

1.01+)+

1.037

57.Tr\
68.73\
Tl+. 5)+B
l+9.:rS
22.203
ro.r7,
3.590
0. 711
0.916
r.698
r.26,
6.8r9
0.659
0. 5)+3
o.60T
0.682
0.730
0.7\6
0. Ti+1
0.728

0. 705
o.66r
O. 5BT
o.r\6
0. tt8

o4. 3¿4
78.982
Âo cRc

50. 0)+0

z\.r.61
LO.'TT
3.8\2
^ oco
0.7i8
-1 . brb

r.2r,
.od+
.669

1
I
1
0
0

,\6
29r
002

q

0
0
0

0
0
ô

0
0

0
0
0

0

.710
Eaa.)ll

.)b

.>o

.58

.59

.19

.58

a

I
E)
3
q

8

0.fi6
0.5l+)+
0.16,
0.577
o.rT,
0.160
0.rl-9
o.\rg
0.1+17
0.1+3\

EAE.)1,)
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q1
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I
8
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mates were smal len than the stationany ones 'in the 0.5 sec-

ond jntervals but were langen than the stationany one in the

2.0 second intenvals.

In contrast to condjtjons whene only one senies was af-

fected by the transient, when both senies contained the

transjent sine wave, the pencentage of MSE due to squaned

b'ias incneased to over 60 pencent fon al I thnee methods, and

often to over 90 pencent fon the AR and MEM methods, in the

low, 1 to 5 Hz, frequenc'ies for all thnee methods. In the

othen f nequenc'ies , the pencentages nemai ned unaf f ected by

the addition of a tnansient to both senies.

In summany, oñly estimates anound the tnansient's own

fnequency wene affected but only when both series contained

the tnansjent. l¡Jl-ren the low frequency tnansjent l^/as added

to eithen one on both senjes, the estimates in the highen

fnequencjes wene nelativeìy unaffected. Fìgure 22 companes

the mean AR and MEM estimates of 2.0 second 'intenvals wi th

the theonetical cohenence cunve when a transient sine wave

was added only to serjes 1 and when each series contained

the tnansient. Note again that the coherence estjmates ob-

tained by the MEM method were higher than the AR estimates

at all frequencies.

Exponentìallv distributed ennor. Changing the distnibu-
tion of the noise fnom nonmal to exponential with a mean of

2.0 haìfway in the senies of one on both senjes had practi-
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Figure 22. Comparison of coherence estimates obtained with the AR

nethod (triangles) and the lvßM method (squares) from 2.0 second

interval-s with a transient sine wave added to one ( open synbol-s )

or both (solid symbols) series.
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Tab]e 19

Mean FFT Coherence Estimates x 10 ( and. Bias x 10)

from SerÍes vith Exponentially Distributed. Noise

Segment Length

Condition
freq
band. 0.5 s 1.0 s 2.0 s

Noi se changed to
exp(mean=2.0) at
w/Z in series 1

Noise changed to
exp(mean=2.o) at
N/2 in both series

r) 6.TOT
6.zeo)

7.188
( -0. ssr )

T ,52I
(o.ror)

8.:-99
( ¡. :gl+ )

6.9't+z
(l+.rre)

6.T:-:..
ç5.2Ø)

T.OLz
( -0. 16s )

7.605
(o.rge)

B. rse
(s.srr)

6.ß7
(\.690)

7.3:-,
( -0. 260 )

)+. 391
(z.g)+¡)

6.gt+tr
( -0. 6:r )

B.l+71
(r.orr)

6.:-tT
(r.soz)

't+.667

(2.>sa)

l+. ]+l+e

(z.ggu)

7.5\0
( _0. 035 )

B.t6g
(t.z¡¡)

6'>tt
(t.t>¡)

10

15

20

2\

7.823
( o. l+og )

5

.l+t+g )

7. 303
(e.laz)

,.58I
(s.l+f r)

)+.867
( s.l+eo )

T.z9:-
(-o.eq4)

7.823
(o.l+og )

T. o)+l+

(z.zz9)

j.\jB
(s.sza)

't+.62't+

(2.\gt+)

10

15

20

2\ 6 T95
l+
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cal ly no effect on the mean FFT coherences ( Table 19) .

These est'imates u/ene almost identical to those obta'ined by

FFT where the noise was entine'ly nonmaì ly distnibuted (com-

pane w'i th Table 10) . The simj lani ty was especial'ly notice-

able when the distribution of the noise ìdas changed halfway

thnough both 2.0 second senjes.

The mean AR cohenence estimates from al I segment lengths

ane shown in F'igune 23 for the condjtjons where the noise

distn jbution was change to exponent jal haìfway 'in series 1,

and jn Fìgure 24 for the conditjons whene both serjes con-

ta jned thjs nonstationari ty. Generaì'ly the AR estimates

u/ene less biased when the enror djstrjbutjon was changed

only in one senies, panticulan'ly in the low fnequencies, fon

each cor nespondì ng i ntenva'l l ength ; however , the veny peaK

of the coherence functjon was estjmated more accunately when

both series wene the same, that js when both wene nonsta-

t'ionany, The same was also tnue fon the MEM cohenence estj-
mates, which are shown in Figune 25 fon series 1 nonstatjon-

ary and in F'igure 26 when both senjes were nonstationany.

In both Kjnds of nonstatjonany conditions fon each segment

'length, the AR est'imates were less bi ased than the MEM est j -

mates except at the 12 Hz frequency where the MEM method es-

timated the peak value mone accurately. The incnease in jn-

tenval ìength resulted in mone bjased estimates at low

fnequencies in both methods, but the AR estimates wene less

affected than the MEM estimates, Figune 27 shows that the
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Figure 23. Coherence estimates obtained with the AR nethod from data

with exponentially (mean=2.0) distributed noise in half of series 1'

(A are 0.5 second intervals, tr are 1.0 second intervafs, an¿ o are

2.0 second intervafs. )



l.o

I
ô
It

¡
t
ot

Ì
¡
I
¡

e
I

I
d

o
U
tr
o
c-
o
o()

o.9

o.8

o.7

o.6

0.2

o,l

I
I

4
I
I

--¿r-
-.-{f.-.-

40

{heonaticat curve
0.5- s segments
1.0- s segments
2.0-s segrnento

\--t,.*at

I
I

I
I
t

o.3

o 30l0 20

Frequen cy (Hz)

50 60



Fieure 2)+. Coherence estimates

with exponentialty (mean=2.0)

(a are 0.5 second. intervals' tr

2.0 second interval-s. )

TT2

obtained r+ith the AR method from d'ata

distributed noise in half of both series'

are 1.0 second intervals, and o are
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Figure 25. Coherence estimates obtained by the MEM method from data

with exponentialJ-y (mean=2.0) distributed noise in haff of series I

(a are 0.! second intervals, tr are 1.0 second intervals, and o are

2.0 second intervals. )
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Figure 26. Coherence estimates obtained by the MEM method from data

vith exponentiaJ-ly (nean=2.0) distributed noise in hal-f of both series.

(À are 0.5 second intervals, tr are 1.0 second interval-s, and oare

2.0 second interval-s. )
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mean coherence estimates of the AR and MEM methods obtained

in the 2.0 second condjtion wene very sìmi lar fon each nons-

tatjonany conditjon, although as was also noted in previous

condjtjons, the estimates of the MEM method wene higher than

the AR estimates at each fnequency.

The MSEs of the transfonmed cohe.nence estimates of al I

thnee methods in the thnee jntenvaì ìength conditions ane

presented jn Tabte 20 for the nonstationary condition with

the noise distn'ibut jon changed only jn series 1, As the in-

tenvals lengthened, the MSEs of the AR estimates decreased

at al I f nequenc'ies except at 1,2, and 10 Hz where the MSEs

incneased wjth incneas'ing jntenval length. The MSEs of the

MEM estimates decneased wi th each incnease in intenval
"length at each f nequency. Fon both AR and MEM estimates,

the nonstationany MSEs wene langen than the MSEs of the re-

spective stat'ionary estimates, particular'ly in the lowest

f nequencies whene the ef fect of th js nonstat'ionari ty was

most notable. ttüi thin each jntenval length cond j tion, the
'langest MSE of the AR and MEM sti I I occunned at 12 Hz, wjth

the AR estimates having the langen MSE than the MEM estimate

at this fnequency. The MSEs of the FFT transformed esti-
mates u,ere more simj lan to the j n stationany counterparts

than wene the MSEs of the AR and MEM estimates. Even in the

5 Hz band whene the AR and MEM estimates hrene most affected,

the FFT estimates nesembled the statjonany estimates, Pêr-

ticulanly as the segments wene lengthened.
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Figure 27. Coherence estimates obtained with the AR method (triangtes)

and the MEM metho¿ (squares) from 2.0 second intervals where the noise

was exponentially (mean=2.0) distributed. in hal-f of series 1 (open

symboJ-s) or in haff of both series (sol-id. symbols).
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Table 20

!i,SE x 10 of Transforrned. Coherences Obtained. from Data vith Exponential- Noise in Hal-f of Series 1

0.5 s Segments 1.0 s Segments 2.0 s Segments

FFT A,R YEM ARFFT

2.)+02
2. o83
r.T16
1. u7
1. 073
0.7rT
o.5s)+
0. 53\
1. ol+7
2.TT3

¡/ßM FT'T A-R ¡mM

3.2I8
2.\3'
1.91+)+

r.606
L.363
'l 170

1.030

1
¿

3
l+

r)
o

T
o(J

q

10

11
12
t<
l4
a,
l_b

aT
18
'1 0

20

freq

2t-
22
23
d+
)\

9.t+TT

? 70D

2.r\3

o Rco

7.968

a.Tsz
L.T5B
1.820
L.92r
2.063
2.2\7
2.1+l+,
2.160
2.2r9
2.\T\
3.780

20.628

0.903

0.799
0.720
o. 6To
0.6T1+
O.T68

,.r83
)+. f SL
4. oa8
3. 305
2. Bl+l+

2.662
2.8r8
3.002
2.865
3.018
)+. tr8

L\.162
3. 6\r
3. 098
2.326
2.r29
236)
2.1\g
2.ú6
r.896
1.705
1.625
1.610
L.670
2.022

5.11)+

3.015

r.976

\.618

3.2L3

? ôoo
r).r acq

L.290
0. 828
0.702
0.632
0. t8?
o.116
0.530
0. 503

0.l+90
o .l+Bl
o.)+Bl
o.5L6
o. 60T

4. J4Õ
3.050
2.r)+6
7.\97
1.030
0.718
0.rr2
o.60T
r.115
2.72l-

s.\6E
Lr.526
I.29r.+
0. 7Tl+
0.66j
0 .633
o.æ6
o.612
0.667
0.638

o. 61\
o.æ6
o. 7l+l+
0.862
1.012

I. O¿O

3.308

2 qqo

1.610

I.573

2.987
c ooÂ

?. 809
u.olo
0. 391
0. 3l+3
0. 351
U. JOO
0. 358
ô ??o

0. 336

.05 I

. Jao

.188

.3\6

.998

??-t

3\T
\ol
,09
66+

)+.79a
2.767
I.19\
o. BTB

o. 4l+7
0.23)+
0.202
U. JþO
0.9r2
D ?õ)

2.856
,.62'
o. T80
o.l+9S
0.397
o. 361
0. 3l+8
0. 335
0.337
0. 36)+

0. 387
0. )+21

0. 501
0.632
n Âro

3
a
1
1
0
0
0
0
0

qon

. )*gl+

.701

.099

n

0.
0.
0.
0.

H
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The pencentage of MSE of the FFT estjmates accounted fon

by squared bias also nemained unaffected by having exponen-

tial ly distnibuted ennon in one serjes. The MSEs of the AR

and MEM nonstationany est'imates jn the cohenence peaK ne-

g'ion, however, consisted of higher percentage of squared

bias than did the stationary est'imates. In the 11 to 14 Hz

fnequencìes, the squared bias nour accounted to up to 7 pen-

cent of the MSEs of the AR and MEM nonstationany estjmates.

In the othen frequencies the pencentages nemained reìatìveìy

unaffected.

Table 21 shows the MSEs of tnansfonmed cohenence esti -

mates wjth the nonstat'ionanìty in both senies. In this con-

di tion, the MSEs of the FFT tnansformed estimates u/ere also

veny simi I an to those of the stat ionany est jmates. ì¡t/hen

both serìes l,úene nonstat'ionany, the MSE of the 5 Hz FFT es-

timates 'in the longen intenvals had a smal len MSE than these

stationany estimates; the MSE of the 0.5 second intenval es-

timate was langen than of the stat'ionary one.

The MSEs of the AR and MEM tnansfonmed estimates in the

lowest frequencjes wene about foun times greater in this

condition than the MSEs of these estimates when only senies

1 was nonstat'ionany. At the 12 Hz f requency, howeven, the

MSEs of both AR and MEM estimates were smaìlen when both se-

njes ì^,ere nonstat'ionany than when only serjes l was nonsta-

tionany in each segment 'length condi tion, but they wene not

as small as the MSEs of the stationary estimates. In the 1



Tabl-e 21

I4SE x 10 of Transformed. Coherences Obtained. from Data vith Exponential Noise in HaIf of Both Series

0.5 s Segments 1.0 s Segments 2.0 s Segments

FFT AR !ßM FFT AR MEM FFT AR I/EM

1
¿

3
l+

,
6

T
B

9
10

11
L2
12¿J

l_4
1E
L)

1b
r_l
18
10

20

freq

¿r
¿¿
23
ù+
2q

.L37

.6\7

. -LOO

.780

rg.602

20.7\5
l]6.977
L3.379
10. Log

B. 30t
6.795
,.706
,.LT3
\.2¡\
q 'lo?

6.862
15.105
\.226
3.290
2.\35
2.OT)1
2.a57
2.r89
2.3rT
2.088

2.028
1. 828
2.r5\
2.632
2.9r\

ro.T66
8. r¡B
6. r8o
\.725
3.6r,2
2.730

20.U46
12.983
B.tzï
6.092
l+. 350
3. r1+8

2. 3l+l+
1 0q?

2.L0'
2.9)+o

1.808

t nqo

3. 300

a.756

I.õL¿

16. BoT

9.zïz
,.23r
) 

^1'7J.vr¡

r.772
r.o52
0.628

1. )+50

6. rro
L.l-L'
1.11\
r.092
1.051
1.002
0.9Ð1
o. 8:7
0.756

0.70)+
u.ol4
0.6\g
0.629
u. b)b

10.280

\.223

z.8To

rr.2T6

7.605

2.709

2.732

t.861

)+ .05)+

3. 1l+8

o.rL6
1.008
2.0l-,

2.0
1.1+

r.2
2.2

.ro2

.298

.085

.71\

.079

.\>g

6

,
,
l+

4
)+

h
3
3
3

)+

¿

¿

1
1
I
1
0
0

.306

.l.26
oo2

.87\
0.768
o.691,
0.66t
0.T02
0. 855

2.TL'
l.2.\6I
L.69r
t.\61
t.L+75
r. LTr
1. )+18

1.338
I.273
I.214

1. 1l+6
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to 4 Hz negion, the MSEs, pantjcuìarìy of the MEM tnans-

fonmed estimates, wene also much langen than the MSEs of the

estjmates in the other frequencjes, the actual MSEs of these

estimates wene close to 1.0. The MSEs of these estimates

did not seem to decrease much wi th segment length as did the

MSEs of the estimates jn the othen fnequecjes. The MSEs of

these low fnequency MEM transfonmed estimates fnom 0.5 sec-

ond 'intenva I s wene about thnee t'imes l angen than those of

the AR estjmates; fon example, at 1 Hz the MSE of the MEM

transfonmed estimates was 2.07 while that of the AR trans-

fonmed estimate was 0.61 (actual MSEs ìrúene 0.969 and 0.544,

nespectively) . tri,i th'incneasing segment length, howeven, the

MSEs of the AR estimates jn these fnequencies tended to jn-

cnease while those of the MEM estimates genenaì1y decneased

slightìy, and thus the MSEs of the two methods appnoached

sjmj lar values; fon exampìe, fon the 2.0 second intenval

transfonmed estimates at 3 Hz, the MSE of AR was 0.523 (ac-

tua I MSE=O.480 ) tfre mSf of the MEM was 0 . 584 (actua I

MSE=O.526)" In the 0.5 second 'intenvals, the AR estimates

also had smallen MSEs than the MEM estimates in alì othen

fnequency negjons, except at the 12 Hz fnequency, but as jn-

tenvals lengthened the MSEs of the AR and MEM estimates be-

came mone simi lar, and in the cohenence peak neg'ion the MEM

est imates had s I ight ly smal len MSEs at about hal f of the

fnequencì es ,
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The pencentages of MSEs of these nonstationany estimates

consisting of squaned bias wene almost unchanged fnom the

pencentages obtajned with stationany estimates. In the co-

henence peak reg'ion, the pencentage of MSE due to squaned

bjas nemained below one pencent for all thnee estjmation

methods. At the 1 and 2 Hz frequencìes, the percentages

wene by about 10 percent h'ighen than those of the stat'ionany

estjmates to the AR and MEM methods, while the pencentages

nemained the same as jn the statìonany cond'i t jons for the

FFT est i mates .

Two othen 1,0 second interval condìtions wene nun using

exponent'iaì ly distn jbuted ennon in genenating the series, to
determine how the estimation methods penfonmed in mone ex-

tneme circumstances. In one condition both senies consisted

entjnely of exponential ly distnibuted ennor wj th a mean of

2.0; thus in this cond j t jon, the bivaniate sen jes was sta-

tionany but non-Gaussian. In the second condition, the non-

mal ennon in senìes 1 was changed at halfway to an exponen-

t'ially distnibuted ennon but wjth a langer mean of 5.0,

whiìe the second senjes nemained nonmal thnoughout. The

mean est'imates obtai ned i n these condi t ions ane companed to

1"0 second segments of the two nonstationany condjtions de-

scnjbed above in Table 22 for the FFT estjmates, and in Fig-

unes 28 and 29 fon the AR and MEM est imates, nespect'iveìy.

The FFT coherence estimates in the non-Gaussian condi-

tjon, shown jn the thind column of Table 22, companed veny
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Table 22

Mean FFT Coherence Estimates x 10 (and. Bias x 10) from Various

1.O-secSegmentsvithExponentíatlyDistributedNoise

freq
band.

Exp( mean=2 .0 )

for N/2 in
series 1

Exp(mean=2.0)
for N/2 in
both series

Exp(mean=2.0)
for alf N in
both series

Exp(mean=!.0)
for N/2 in
series 1

É) 6.r37
(l+. 6go )

7.3L'
( -0. e6o )

7.823
(o.l+og )

7. 303
( z.l+Br )

,.58r
( s.l+>r)

't4.867
( :. l+eo )

7.28r
(-o.zg>)

7.823
(o.4og)

7.0U+
(z.zz9)

5.\58
( s. sea)

5.953
(t+. >o¡ )

7.672
(o.ogz)

B.zzz
(o.Bog)

o2
.l+86 )

6.st6
(l+.868)

10

r5

20

2'

(z
7.06)+
(z.z\g)

6.z9:-
( -r. egl+ )

7 .116
(0. rl+e )

6.TT2
(l+. 6l+z )

r. l+Bl+

( :. s¡l+ )
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Figure 28. Coherence estimates obtained with the AR rnethod from the

various 1.0 second data sets containing exponential- noise. (Exponential,

mean=2.O, noise was in hal-f of series 1 (Â) or in haff of both series (r);

exponential , mean=!.0, noise llas in hal-f of series f (o); and. both series

consisted. entirely of exponential, mean=2.0, noise (r). )
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Figure 2p. Coherence estimates obtained with the MEM method from the

various 1.0 second data sets containing exponentiaf noise. (ExponentiaÌ,

mean=2.O, noise was in hal-f of series t (À) or in hal-f of both series (r);

exponential, mean=!.0, noise was in haÌf of series f (o); and both series

consisted entirely of exponential-, mean=2.0, noise (.).)
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f avounably wj th the Gauss jan stat'ionany estimates. The non-

Gaussian estimates in the 10 and 15 Hz fnequency bands urene

s l ìght ly mone biased than the stationany estimates, but in
each of the other fnequency bands the bias tended to be man-

ginally smaller jn the non-Gaussian than the Gaussian sta-

tionany estimates fnom 1 .0 second jntervals. The most bi -

ased estimates u/ene obtained in the condi tion whene the

erron distributjon was changed halfway in the segment to ex-

ponential w'i th a mean of 5.0, shown in the last column of

Table 22. In this condi tion, the 10 Hz FFï estimate was the

most biased of the nonstatjonany condj tions wi th exponentìa1

enrons, and was about thnee times as biased as the station-

ary estjmate.

Fon both the AR and MEM methods, the most biased esti-
mates u/ene also obtained in the condi tions whene the distri -

bution of the enron was changed jn the middle of the segment

to exponential wjth a mean of 5.0. In all these nonstation-

ary condjtions, both methods estimated the peaK of the co-

henence funct'ion mone or less accunately wì th the MEM method

again pnoducìng less biased 12 Hz estjmates whjle the AR

method's estimates wene less biased in the mone extneme re-

gìons of the functjon. 0f all these condjtjons, the esti-
mates of the non-Gaussjan series, whene both senjes had en-

tinely exponential ly djstributed noise, wene the least

biased. In fact, the non-Gaussian estimates of both methods

wene practically identjcal to the stationary estimates, and



fon the AR est'imates f nom the non-Gaussi an ser ies,

wene less b'iased than the AR stat ionary est imates

f nequenc i es .
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DISCUSSION

The sjmulated data jn this study appean to pnov'ide an ad-

equate nepresentatjon of EEG. The fnequency components of

the sìmuìated data f al I into the alpha band jn both sen'ies

which would nepresent the EEG of nonmal, nest'ing, awaKe

adults. !üjth alpha activ'i ty present jn the EEG, beta, del-

ta, and theta act'ivi t'ies would most I iKely be suppnessed,

thus in this nespect the simulated data seems to pnovìde a

model of EEG that is commonly obsenved in pnactjce, The on-

den of the b'ivaniate model fon the simulation was chosen to

be seven, s'ince r-lones ( 197 4 ) nepor ted a bi var i ate autore-

gnession of onder six to model the EEG of a sleepÍng human

i nf ant , and Gensch and Yonemoto ( lgZZ ) f ound un'ivar i ate AR

model s of onden ten to repnesent adul t awal<e EEG. Consider-

ing the djffjculties of simulating a stable bivanjate AR

model of onden seven, the overall sjmulation appears satjs-

factony.

A numben of studjes in the past have companed vanious

methods of spectnal estimation us'ing neal EEG. Some of

these wene discussed in the intnoduction. In another study

by Pigeau, Hoffman, and Moffitt (1981), jt !úas found that

the FFT spectra of neal EEG contajn the same infonmation as

estimates of peniod analys'is which ane simpler and thus

127
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faster to calculate than the FFT spectra and may thus be ad-

vantageous 'in some appl jcations. Jansen et al . ( 1981) found

that univarjate AR spectna u/ene appnoximately the same as

FFT spectnal estimates of shont, one second, N=64, EEG Seg-

ments, aìthough the AR and Burg's univaniate MEM methods

wene s'l 'ight ly mone accunate jn est jmatìng the peaKs of the

spectna. Their study used djscnjmjnant analysis to evaluate

the estimates. The pnesent study neplicated the nesults of

ulansen et al. fon spectnal est jmates wi th s jmulated EEG

data, and also found that the Same nesults extend to cohen-

ence estimates obtained fnom the three methods.

A necent study by Chan and MisKowjcz (1984) has companed

the stat j st'ica l bi as and van i abi l i ty of squared cohenence

estjmates obtajned by ARMA models and the FFT method. in

thei r study, thnee di f f enent test signa ì s of N= 1024 uúere

generated to pnoduce thnee di fferent squaned cohenence func-

tions. For the fjnst signal, whjch was white nojse wjth a

signal to noise natjo (SNR) of 3 dB, and the second signal,

a nonwhjte nojse with SNR of 3 dB, the ARMA squaned coher-

ence estimates ùvere found to be less biased and less vani-

able than the FFT estimates. The third test signal was the

same nonwhite noise aS the second s'ignal wjth an added sinu-

soid. in this condition the FFT estimates wene found to be

supenion, al though nei then method obtained the connect

squaned cohenence value at the fnequency of the sinusoid.

In this thind condition, the estimated onders of the ARMA
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models were found to be about twjce as large aS the ordens

of the nonwhite noise alone signaìs, to which the authons

attnibuted the poonen penformance of the ARMA models. This

is in contrast to the find'ings of the present study, where

even models of overestimated onders of both the AR and MEM

methods pnoduced cohenence est jmates that ìrúene as accunate

as the estimates fnom models with the connect onden.

The nesults of the pnesent study extend those of the

above studjes in evaluating the statistjca'l pnopentjes of

cohenence est imates of thnee di ffenent methods. In the

pnesent study the FFT methods was companed wi th the AR and

MEM methods for much shonten segments and fon diffenent sìg-

nals, some of which vjolated the statjonanity and Gaussian

assumptjons underlying the estimation pnocedunes. In most

tested conditions, the spectral and cohenence estjmates ob-

ta'ined by the thnee estimat jon methods wene very simi lan to

each othen 'in tenms of the statistical cr j teria considened,

thei r b j as and MSE . The except'ions h,ere the spectna I est i -

mates of the adaptive method of the Kalman type, which jn

comparison wjth the othen methods wene much wonse in alì ne-

spects, except penhaps for pea[< identjfication.

The s jmj'lanìty of the AR and MEM methods emenged because

they are both based on the same underly'ing method of fitting
a bivariate autoregression to the senies. The difference

between the two methods i s that the MEM method uses the

on'iginal senies only to estimate the f inst onder model; in
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each subsequent p-th step, for P=2, 3, , howeven, the

nesidual enrons nemain'ing in the series af ter the p- 1 order

model was fjt ane used in place of the onìginal series for

estimat'ing the p-th order MEM model (rJones, 1978).

LjKe the AR and MEM methods, the adaptive method of the

Kalman type also needs to have the onder of the modeì speci-

fied or estimated. Estimation of the onden at each, or at

least some, time po'ints of the senies is usual ly avoided due

to the amount of computation requìned, The ondens may also

change as mode l i ng of the sen i es pnognesses , resu l t'ing j n

added complex'i ty. Rather, ej then past experience may sug-

gest what onders to use, of a univaniate autonegnession may

be fit using some cniterion such as AKajKe's FPE, and the

same order then used fon the adaptìve method (u.g. , rJansen

et âl . , 1981 ) . In the pnesent study j t uras Known that the

bivaniate model had an onder of seven, thus this value was

aìso used for the adaptive method. The unjvariate model fit
to each single senies that was sjmulated by a b'ivaniate mod-

ê1, however, may not have a comparable onder to the bivarj-
ate model. Penhaps h'ighen onders ane nequined to model each

univar i ate senies.

In addition, the estimated coefficients used in calculat-

ing the adaptive method's spectna were those obtained after

the last update, unden the assumption that they w'i I I have

stabjlized at thjs point (ClarKe, 1980). But the coeffj-

cients may not be stable'in veny short data segments, or may
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become destabi'lized in longen 'intenvals. As a nesult of how

the panametens ane estimated, the adaptive method is veny

sensjtive to small changes and thus if spectna ane obtajned

only at the last time po'int they couìd jnaccunately nepre-

sent estimates of the entjne jntenval. Usens of the adap-

t jve method of the Kalman type should examine the stab'i lity
of the coeffjcient estimates pnion to calculating one spec

tnum that js to nepresent the estjmate of the ent'ine inten-
.2val.

A mone appnopnìate appl ìcatjon of the adaptive Kalman

method may be in actual ly tnacKìng changes in a spectnum

wi thin an epoch of nonstatìonary senies (..9. , Bohì'in,

1977), nathen than us'ing it to obtain one spectnum to nepne-

sent the estimate of the entine epoch for which othen, mone

sui table estimat'ion methods ex'ist'

in the present study, the estjmates of the single spectna

of the adaptive method, even of stat'ionany senies, u/ene veny

bi ased f on these neasons. Si nce the adapt'ive method pno-

duced simi lan nesul ts jn al I other condj tions, they wi I I not

be discussed funthen.
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0rder Selection

Although the final pnedictìon ennor (FPE) crjtenjon was

developed fon the AR estimation method (AKajKe, 1969a), the

FPE estimated ondens of the statìonany MEM models wene ìess

biased and mone cons'istent than those ofthe AR models w'i thin

each diffenent intenval length cond'i tion. In the 0.5 second

'intenvals, the avenage onder selected by the FPE fon the AR

method was two ondens smallen than the theonetical onden of

seven. These smal len onders pnoduced somewhat smoother

looKing spectna for senies 1, fail'ing to detect the minon

spectral peaK at 10 Hz. The AR spectna computed from modeìs

of the Known onder of seven, howeven, wene not notably im-

pnoved, al though sl'ight'ly langer spectnal values wene de-

tected jn the I and 10 Hz fnequencies. Gersch and Yonemoto

(1977 ) and Jones (1974) have neponted that estimates of mod-

els with smaller onders nesulted in smoothen looKing gnaphs

of EEG spectna than when larger ondens wene used. In the

pnesent study this onder effect was present in both spectna

and cohenence functions but was reìatively negligible,

In the nonstat'ionany conditions, it js interest'ing to

note that even though the estjmated ondens wene often langer

than the theonetjcal orden of seven, particularly of MEM

models, he cohenence estimates h,ene veny close to the theo-

retical values. Thus it would seem that negandless of the

actual order used in the estimation, the cohenence estjmates

nemain nelatively unhanmed, Þârtjculanly jf the onder is ov-
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enestimated, Fnom the present study, however, it is unclean

whethen this nesulted because the model coefficients of the

highen lags were veny small thus contnjbuting neglìgibly to

the spectral estimates.

Stati onanv E stimates

Since the AR and MEM spectnal estimates are obtained fnom

estimates of the model coefficients and the estimate of the

pnedjction ennor matnix, the spectnal estìmates, and thus

also the coherence estimatesr can onìy be as accurate as ane

the estimates of these undenly'ing panameters. In the pnes-

ent study, as jntervals became 'longen ('i ,e., as sample size

incneased) the coefficients of both methods became much less

biased and less variable w'i th smallen MSEs, and the bias of

each jndividual element of the pnedjcjon error matnices also

decneased . Con respond i ng'ly , the spec t n a of both methods be-

came less biased as intervaìs lengthened. For all segment

ìengths, the estjmates of the coeffjcients and the pne-

diction ennon matnìx obta'ined by the MEM method wene less

biased than the AR estimates, and thus the MEM spectral es-

timates wene less biased than the AR estimates. The MSEs of

the MEM spectra, however, u,ene sl ightìy langer than those of

the AR spectra. Sjnce the MSEs of the MEM coefficients were

sjmjlan to the MSEs of the AR coefficients, on the averâ9e,

i t was probably the MSEs of the pnedjction ennon estimates

of the MEM method that vúene langen than the MSEs of the AR
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spectna.

134

i n the ì angen obsenved MSEs of the MEM

The stat'ionary FFT spectnaì estimates wene less biased

than the AR and MEM spectnal estjmates jn the 10 and 15 Hz

fnequencies. The FtT estimates, however, ane not dìrectly
companable to the AR and MEM estìmates, since the bias and

MSE of.each FFT estimate was caìculated using the avenaged,

j "e. , smoothed, theonet ì ca I va I ue fon the panameten . Thi s

ì^ras done so the FFT estjmate would be more companable to the

actuaì spectral value of the entire band, rathen than com-

parìng the estimate to the spectral value only in one, on in

each, of the contributing fnequencies. Since the AR and MEM

estimatesìâ/ene mostbiased. inthe 10to 12Hz fnequency

nange and the biases of the estjmates in the surnounding

frequencies were much smallen, if these were avenaged into

the same frequency bands as were the FFT estimates, the re-

sulting values would be veny sjmilar. Thus, âìthough the

estjmates of the thnee methods appear veny companable fnom

this v'iewpoìnt, the FFT estimates clearly suf fen f nom lack

of neso ì ut'ion .

Unsmoothed FFT estimates ane biased, but as the degnee of

smoothing on averag'ing is incneased to neduce this bjas, the

varìability of the estimates also jncneases (".g., Bnjlling-
er, 1981, pp. 136; Otnes & Enochson , 1972, pp. 215). Table

23 js a nearnangement of some prev'iously pnesented FFT re-

suìts, and shows that in the fnequency bands where both
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spectna had langer values, pnimari ìy at 10 Hz, thjs theonet-

ical nesult js emp'inical ly supported jn this study fon the

Spectra of both senjes, but not the cohenence estjmates. In
the 0.5 second intenvals, spectral estimates of both senies

wene obta j ned by smooth'ing oven thnee va I ues ; these est j -

mates jn the 10 Hz band had the langest biases but wene the

least vaniable. Upon incneasing the jntenvals to 1.0 sec-

ond, the estjmates wene smoothed over five values, and the

nesu'l t'ing estimates were less bìased but mone variable than

those obtajned from 0.5 second intenvals. Similan'ly, 'in the

2.0 second intenva"ls, smooth'ing was over ten values and the

bjas of the 10 Hz estjmates was neduced funthen whjle they

became even mone variable. Note that, howeven, thjs tnend

uúas not tnue whene the spectna had low values; thene both

bjas and varjability decreased as smoothing increased.

Fon the 10 Hz FFT coherence estimate, both van jabj'l jty

and bias decreased with mone smoothìng, aìthough the vari-

abjlìty of the 10 Hz spectnaì estimates incneased with mone

smoothing ìn both senies. This implies that investìgatons

using coherence est jmates obta'ined by the FFT method need be

less concerned wjth their estjmates becoming mone variable

as they incnease the degnee of smooth'ing.

In addj tion to the jncneased variabj I i ty of the spectnaì

estimates, the nequjnement to smooth the FFT estimates also

has the disadvantage of ìowening the nesolution of the esti-
mates, Uñless longen intervals on highen sampling nates can
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be used fon estimatjon. Incneasing the 'intenval 'length,

howeven, incneases the pnobab'i lity that the EEG necord wjll
be nonstat'ionary (McEwen & Anderson, 1975 ) , wh j le cane must

be taken in ìncreas'ing the sampling rate so that the assump-

tion of statistjcal independence nemajns satisfied, It is

unclear at what sampling rates the EEG data wjll become de-

pendent. By fan the majonìty of appìied nesearch has used

sampì'ing nates between 100 and 128 samples pen second, â I -

though a few studìes have used rates as high as 200 samples

pen second (".g., Bnomm & Schanein, 1982; E1ul, 1969). In

pnact jce, the nesolution versus smooth'ing i ssue must be set-

t led accond'ing to the individual nequ j nements and jntenests

of the specjfic invest'igations, whethen one nequjres high

resolution or unb'iased estimates.

The quality of the cohenence estimates obtaìned by the AR

and MEM methods depends only on the sample size and does not

suffen fnom the lacK of nesolution as do the FFT estimates.

As sample size jncreases, on as the intenva'ls were length-

ened using the same sampling nate as in this study, the es-

t jmates 'impnove jn al I nespects; they become less biased,

less variable and have smal len MSEs. Fon stationary est'i -

mates, the MEM method pneserved the shape of the cohenence

function better than the AR method in all intenval lengths,

although the MEM estimates uúene mone biased in the tajl re-

g'ions of the cohenence f unct i on .
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Violations of the Stationani tv Assumpt i on

I/üi th some except jons to be discussed below, the cohenence

estimates obtained in the nonstatjonary condì tions di ffened

veny ìjttle fnom estìmates of stationary series. It is pos-

sibìe that the simulated nonstationarities wene not as se-

vene as encountened in pnactjce, although visua'l ìy the orìg-
jnal serjes did appean nonstationary. F'igunes of some of

the simulated nonstationany oníginal serjes are contained in

the Appendix. The types of simulated nonstationari ties h/ene

chosen to nepnesent actua I nons tat'ionany act j vi ty obsenved

in neal EEG data, The tnansient sine wave added to the se-

n'ies may nepnesent an EEG artifact such as an eyeblinK that

would be supenimposed on actual ongo'ing EEG activi ty. Simi -

lan'ly, j t may nepnesent an event-nelated potential. The

changes in the varjance and djstribution of the innovation

ennons may repnesent changes in cognjtive actjvity, where

the stnength of the signaì may change relative to the nojse,

Ihe distnjbution of the innovatjon pnocess can aìso change

as cognitive activity changes. Annjnos, Zenone, and Elul

(1983) have shown in a simulated neural netwonl< that as the

number of 'neunons' become mone ìntenconnected, the collec-

tive output becomes less Gaussian in distributjon, but not

when the distnibution of indjvjdual neunons js changed.

The cohenence peaK was estimated accunately by al I thnee

estimation methods jn all nonstatjonary conditjons. As ex-

pected, and as jn the stationany condjtions, the estimates
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fnom the shontest segments wene always nelatively worse, and

genenally the ìongest segments' estimates wene the best in

al I respects. Usua'l ly estimates in the ta j ls of the cohen-

ence functjon wene affected most by the nonstationanities.

Although some of these tai I ef fects u'rj I I be djscussed fon

the punposes of mone genenaì estimates, i t 'is unclear wheth-

er the effects of some of the nonstatìonanities ìn the mone

extneme fnequencies would be simì lar had there been spectnal

peaKs 'in these f nequencies. Th j s may ìmply that cohenences

may only be useful on mean'ingful when at least one of the

jndjvidual spectra contajns some powen (u,g., Gotman, 1983),

In the pnesent study, this powen was contained only jn the I
to 14 Hz f nequenc'ies, and the mone extneme f requencies con-

ta jned no pou/er

The fnequency of the added sjne wave was about 3 Hz,

since the wave lasted oven fonty of the data poìnts at the

sampling nate of 128 per second. lilhen'i t was added on'ly to

one senjes, it was accurately detected jn the spectra of

that senies, but the AR and MEM estimates of the cohenence

function showed only a nelatively negl'igìble peaK anound the

3 Hz fnequency. hJhen the sine h/ave was added to both se-

ries, however, all thnee methods estimated a cohenence peak

in the 3 Hz fnequency negion which was langen than the the

tnue peal<, at 12 Hz. Although the biases and MSEs of these

ìow fnequency estimates wene very ìange, thein vanjabilitjes

h/ene much smal ler than those of the stationany estimates at
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ence of noise.
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themselves lacked the pnes-

t¡rJhether the s j ne wave was added to on ly one sen i es or

both, the MEM coherences jn the low, 1 to 5 Hz, f nequency

negion wene mone sensitive to these nonstationarjtjes - the

est imates were mone bi ased, mone van i able and w'i th much

langen MSEs than the low fnequency AR estìmates, The MSEs

of the FFT estimates wene sìmilan to those of the MEM esti-
mates; however, when the sine wave was added to one series

only, the effect on the bias of the FFT cohenence est'imates

Ì^/as negl'igible.

These nesults seem to indicate that the coherence esti-
mates ane nelativeìy unaffected by transjents when these oc-

cun jn one of the senjes, or penhaps even ìf each series

contains a transjent but of diffenent fnequencies. If both

senies, howeven, contain a tnansient of the same on similan

frequency, the cohenence estimate at that fnequency may be

veny inaccunate. Thus, fon example, if low frequency eye-

blinKs occunred in the EEG of fnontal derivations, the esti-
mate of the cohenence function between the fnontal and the

occipi tal derivations would nemain nelat'ively accurate,

whi le the estimate of the cohenences between the two frontal

denjvations may be advensel¡r affected at the low frequencìes

but the cohenence estjmates of the shaned alpha on beta ac-

tivi ties between each derivatjon may remain unaffected.

Thjs ìmplies that pnactitioners need not be ovenly concenned
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about low fnequency antifacts affecting cohenence estjmates

in the frequency bands of psychological intenest.

Sjnce the sjne u/ave contrjbuted only a 3 Hz fnequency

component to the series, the est'imates in the 12 Hz peaK ne-

g'ion wene not affected. Had the sjne uúave been of a h'ighen

fnequency such as 10 Hz, however, or the tnue spectna con-

tained peaKs jn the low f nequenc'ies, for exampìe, del ta ac-

tiv'i ty occurning jn a pathoìogìcal case, the added s'ine wave

would have signifjcantly handìcapped those spectnal and co-

henence eStìmates, especially jf both senies contained in-

tenference in the same fnequencies. The cohenence estjmates

may not be signjfjcantly affected by these types of nonsta-

tionarìtjes if thejr fnequency components djffer jn both se-

ries and occun whene the spectna contain I i ttle pov'Jen, s'ince

jn this case even though one spectnum may have lange values,

the cross spectnum u/ould be smal I and thus the cohenence es-

timate would also nema'in smal l. If the tnansient added pow-

er to one Spectnum at fnequencjes whene Some power existed

in the sìgnal, it is unclear how advensely the cohenence es-

tjmates would be affected. The effects ì^/ould pnobably de-

pend on the ampljtude of the added nonstatìonan'i ty and would

be less damag'ing in one senies than if both senies wene thus

affected. Funthen studjes would be nequined to test these

conditions.

Incneasìng the vaniance of the normal Iy djstributed ennor

fl Ls sl[;
of the senies fnom S= to $= at the halfway point
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in each of the different intenval lengths also increased the

b'ias and MSE of the AR and MEM est jmates in al I fnequenc'ies,

as compared to thein stationany estimates fnom segments of

the same tength. At the extnemes of the cohenence function,

the MEM nonstationany estimates had langer MSEs and urene

mone biased than the AR estimates, while in the peak negìon

the MSEs and biases of the MEM estimates urene smal len than

those of the AR estjmates. Vanying the segment ìength and

the propontion of nonstationany data jncneased the bias of

the AR and MEM estimates furthen; for example, in the 1.0

second 'intenva ì s , eventhough on I y one quan ter of each i nter -

val was simulated wi th $=

estjmates was gneaten in
the interval contained such data. Also, in the 2.0 second

segments, as the proportions of the nonstationary data de-

cneased fnom one half to one eighth, the MSE and vaniab'i lìty
of the AR and MEM estimates did not decnease as may have

been expected, In fact, although the diffenences in esti-
mates from these conditions urere qu'i te smal l, the least bj-
ased estimates and smal lest MSEs u/ene obtained when one half

of the data was nonstat'ionany.

One explanation fon these differences may be sampling

variabi I i ty, since in each nonstatjonary condi tjon the estj -

mates in the peaK negion, and for the most pant jn the other

fnequencies as well, wene within one standand ernor of the

parameten values" But the standand ennons of the coherence

[s g]
al I

, the bias of the nesulting

frequencies than when half of
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estimates wene also langen when less of the jntenval was

nonstationary, It seem that a smallen amount of nonstatjon-

any contamination may have mone of an advense effect than

when the system has a longer tjme to adjust to the new ac-

t'ivi ty. I t would be expected that as mone of the orig'inal

senies was replaced, the new actìv'i ty would domjnate and the

original senjes would become the contam'ination. Unden these

condi tions, when the jnnovatjon vaniance js changed, the

most stable estimates would be obtained when exactly each

half of the series consisted of one'type' of data. The ne-

sults of the pnesent study suppont this 'intenpretation.

Funthen studies, however, would be requ'ired to detenmjne

what would happen if the variance of the innovatjon pnocess

was changed mone than once in the ìnterval, on was of a con-

tinuously evolving nature. These latten condjtions may be

mone chanacterist jc of EEG. As a f irst jnd'ication, however,

the nesults of the pnesent study suggest that the AR and MEM

methods are s l'ight 1y more sens j t jve to the presence of

smaller amounts of contamjnating activity than when half of

the entine intenval contains 'diffenent' data.

In contrast to the AR and MEM estimates, the FFT cohen-

ence estimates wene affected veny lìttle by changing the

variance at any point in the intenval. Regardless of the

amount of nonstat ionary data, these est imates !ìrere veny sim-

ilan to each othen as well as to the estimates from station-

any senìes, This nonstationanìty seemed to affect pnimanily
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the 5 Hz FFT estimate of the shontest intenval length; the

nemaìn'ing estimates nemained nelatively unaffected. It is

possible that the change in the variance of the jnnovation

process halfway in the interval may have very nough'ly resem-

bled a 1 Hz fnequency activity, whjch the FFT method would

average into the 5 Hz estimate of the 0.5 second intenval

but not into the estimates of the 1.0 and 2.0 second inten-

vals.

The FFT coherence estimates wene also qu'i te robust to

changes in the distnibutjon of the ennon fnom Gaussjan to

exponent'ial halfway thnough one or both sbr jes. But par t jcu-

lan ly when both sen jes wene nonstat'ionary, these estìmates

wene almost identical to the stationany estjmates. Fnom the

AR and MEM estimates it was obsenved that it was the low

fnequencies, one to about f ive Hz, that ì¡Jene af fected most

by this type of nonstat'ionani ty. The largest mean esti -

mates, and a I so the ones wi th the I angest bj as and MSEs,

uúere obtajned at the 1 Hz fnequency and decreased to a local

minimum at around 6 Hz. The 5 Hz bands of the FFT estimates

were not affected as much as the AR and MEM estimates since

in smoothing the FFT estimates, the low fnequencies conne-

sponding to 1 and 2 Hz wene not avenaged into the band estj-
mate of the longen jntervals.

In the 12 Hz coherence peaK neg'ion, both the AR and MEM

estimates containing some exponential'ly djstributed ennor

wene more biased than the statìonany estimates, but inten-
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estingly these estimates of the peak wene less biased when

both senjes wene nonstatìonany than when only one series was

changed. As in the stat'ionany segments, jn both these nons-

tatìonany cond'i tions the MEM peaK estimates urene less biased

than the AR peaK estimates. In the extneme fnequenc'ies, the

neverse ì^/as tnue; the AR estimates wene less biased than

the MEM estimates, and also both AR and MEM estimates in

these f nequenc'ies wene mone b j ased when both senies wene

nonstat'ionany than when on ly one sen'ies was af f ected. In

the extnemes, the spectna estimate only noise. l¡Jhen the

noise.is not djstnibuted nonmaì ly wì th zeîo mean and the

'ident i ty variance-covan i ance matn i x, as ì^/as used i n ca I cu-

1at'ing the theonet i ca I spectna, but a I so contai ns some expo-

nentially distnjbuted ennors whjch ane all pos'i tive values,

hìghen spectral vaìues ane then detected jn both series,

Consequently, the estimated cohenences are greaten than the

parametens nesult'ing'in gneaten positjve bias. As intenvals

wene lengthened, the AR and MEM estimates in the extremes

became more bjased, pâFticularly at 1 Hz, ês mone exponen-

t jal ly distn jbuted ennon was pnesent. It 'is jntenestìng to

note that some EEG spectna neported jn past studies (e.9.,

Boh'l 'in, 1977) had a simi lan shape, w'i th very lange values at

1 Hz and decreasing napidly fon the next f nequencies, wh'ich

may jndicate that EEG in some cases contajns exponentially

d jstributed activi ty.
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The FFT method ì¡ras notably nobust to exponenti al ly di s-

tnibuted ennon. Even when the djstribution of the innova-

tion process ì/'JaS changed to exponential wjth a mean of fjve

halfway in the jntenval such that the AR and MEM estjmates

wene quite biased jn most fnequencies, the FFT cohenence es-

timates wene similar to estimates obtained fnom Gaussian and

stationary data.

In develop'ing nobust methods for parametnic tjme series

analys'is, Martin (lgAl; Kleinen et â1,, 1979) considens two

models of outliens that may be encountened. One is the ad-

ditjve outlien model, the second involves innovation outli-
ers. To define these models, consjder the general AR uni-

variate model

P
y( t )=i ¡ a(K) y( t-K)+e(t) )+v( t) .

k*1

If the innovatjon pnocess, e(t), is Gaussian and v(t)/0 fon

some propontion of the ìnterval, v(t) is defined as the ad-

ditive outlien, while if v(t)=0 for aìl t and e(t) is not

nonmal ly distn jbuted, âñ 'innovation outlier model nesults.

In the pnesent study, the addition of a transient sine wave

to the sjmulated EEG connesponds to an additive outlìer mod-

el, whjle conditions that changed the vaniance on the djs-

tnibution of e(t) nepresent jnnovation outljen models.

; Although Mantjn considens outliens that ane somewhat

stnuctunatly simpten than the ones used in thjs study, he

does illustrate how diffenently the additjve vensus innova-
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tjon outìiens affect the least squane estimates of the model

parametens, a(k), K=1,...,p (Mantin, 1981)' The additive

outljer has much mone sevene effects on the least squares

estimates than the innovation out I ien. The innovation out-

lier has to be lange companed to the scale of the innovation

process jn onden to have serjous effects on the spectnal es-

timates (tileiner et al., 1979).

In the pnesent study, when the variance of the Gaussian

innovatjon pnocess was incneased in the intenval or when its
djstribut jon was changed fnom nonmal to exponent'ial, the jn-

novatjons wene not So extneme as to gneatly affect the estj-
mates. The transient sine wave added to the senies had

ìanger effects on the spectna than the othen nonstatjonanj-

ties 'introduced, but the ef fect on cohenence estimates when

the sine Wave additive outliens Lúene pnesent was much smal l-
er than on the spectnal estjmates jf the tnansjent uras pnes-

ent only in one series. It would be of intenest to compane

the effects of a transient sine ì^rave added to the series as

in thjs study with the effects of the tnansient occurn'ing in

the innovation pnocess, and to see jf the nesults of Klejner

et al. ( lSZg) genenaltze from spectral estjmates to coher-

ence estjmates. Fnom the nesults of this study, the cohen-

ence estimates seem mone nobust to the additive-type outlj-
ens than the spectral estimates.



148

Violations of the Nonmalitv Assumpt i on

Fnom the one condition in which both senies wene simulat-

ed f nom only exponent'ial ly distributed innovat jons in both

serjes, jt appears that all thnee methods of estimatjon may

be more robust to violat'ions of nonmaf ity, than to viola-
tions of nonstat'ionari ty, at least as f ar as cohenence est j -

mates ane concenned. All thnee estimatjon methods produced

estimates that wene pnacticaì ly jdentical to those obtajned

whene the innovat'ions u/ere entjnely Gaussian and stat'ionany.

Recommendations fon Coherence Estimation in Pnactice

The nesults of the pnesent study seem to indicate that,
'in genera'l , cohenence estimates ane relatively nobust when

data do not satjsfy undenlying assumptions of statìonari ty

and nonmal ly distnjbuted ennon.

Fon stationany data, Jones' ( 1978) MEM method appears

sl ight ly betten than the classical AR model f ì tt'ing, both in
pnesenving the overal ì shape of the cohenence function and

in obta'ining accurate estimates of cohenence values in the

negions whene spectna have larger values, It also has com-

putational advantages since it employs triangulan decomposì-

tion rather than matnix invension as in the usual methods of

AR estimation. For bivariate series matnix invension is a

minon disadvantage, but fon a langen numben of serjes which

ane often encountened in pnactice, this may pnove to be a
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significant disadvantage, The AR pnocedure might be made

more efficient by'inconponat'ing the same numerjcal methods

as wene used by the MEM method, fon example, by using the

Cholesky decomposj tjon of posi tive defjni te matnjces, to

avoid matrix invension.

ïhe FFT method appears very adequate for estimating co-

henences, even in nelativeìy shont intenvals of 1,0 second,

jf high nesoìution is not nequjned. Fon non-Gaussian data,

it appeans to be the method of choice. If fjner nesolution

is desjrable, on if intenval lengths ane veny shont, of sam-

ple size of less than, say, 100, then the AR and MEM methods

ane pnefennable, unless ensemble avenag'ing is possjble fon

the FFT estimates,

In tenms of the nonstationanities tested, all three meth-

ods perfonm well. The MEM method js slightly more sensjtjve
to all thnee types of nonstationarities tested than is the

AR method oven the entire cunve, but again the MEM method is

manginal ly better jn estimat'ing the cohenences in the peak

region of the cohenence function. Thus jf cohenence esti-
mates of the entjne curve ane nequined, the AR method will
give ovenall slightly less biased estimates for data types

simi lar to those examjned in this study. If mone prec'ise

estimates in the high powen region ane impontant, then the

MEM method may be pnefennable, But the djffenences in the

estimates of the two methods ane sma'l l, and the two methods

do perfonm almost identically unden the same conditjons.
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The FFT coherence estjmates ane pnactically unaffected by

the nonstatìonari tjes tested in thjs study. 0nly when the

transient sine wave was added to both senies ane these esti-
mates signì f icantly wonsened. Thus pnobably in the majority

of cases, invest'igators can feel nelat jvely secure in using

the FFT method even when the senjes are nonstatìonany. But,

as wjth the stationany estimates, the FFT method perfonms

less wel I than the AR and MEM methods on data fnom veny

short, less than about 100 data po'ints, intervals.
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FOOTNOT E S

?Thi, procedunee was suggested independently,by Monf, Vi-

erra, and Kaj lath ( 1976) -- unpubl ished manuscnipt. ILS

Stanf ond Uni vens'i ty and by Rob j nson ( 1976 ) - - persona I

communication both of which were referenced as such in
r-lones (1978).

20n. possjble method of testing the significance of coef-

ficient variation js that of vanjabìe panameten regnessjon

(Athans, 1974; Rosenbeng, 1973). Ganbade (lgll ) found this
method mone powenful jn nejecting a false null hypothesis of
coef f icient stab'i l'i ty than the tests pnoposed by Brown, Dur-

bin, and Evans ( 1975).
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APPEND I X

This appendix contains the gnaphs of the original senies

fon selected nonstatjonary conditions. Note the change of

scale on the vent'ical axes. The annows indicate whene the

nonstationari ty was present.
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Fisure 39. Rar,¡ data of series I simulated by the AR(]) model vith

noise variance changed from t¡ fl 13$
to at time t=6\.
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Fisure 31. Rar¡ data of series 2 simul-ated. by the AR(7) nodel- vith

noise variance changed rrom t¡ ]] to 
t3 $ at time t=61+
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Figure 32. One series of raw d.ata simul-ated by the AR(T) mod.e1 to

vhich a sine vave of anplitude B was added from time t=19 to t=59.
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Fisure 33. Raw data of series l simufated. by the AR(]) nod.el with the

noise distributeO w(Orf) for time t=l to t=6\, and. d.istributed. exponent-

ially with nean=2.0 for time t=65 to t=128.
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Figure 34-, Raw d.ata of series 2 simulated by the AR(7) mod.el- with the

noise d,istribute¿ t¡(0,I) for time t=l to t=61+, and distributed exponent-

ialty with mean=2.0 for time t=65 to t=128.
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Fieure 35. Rav data of series l simul-ated by the AR(7) mod.el- with

exponentially d.istributed noise in both series for the entire duration

of the series.
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Figure 36. Rav d.ata of series 2 sinul-ated by the AR(7) model- with

exponentially d.istributed noise in both series for the entire duration

of the series.
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Figure 37. Raw d.ata of series 1 vith the noise distribution changed

from normal to exponential with mean=!.0 at tine t=65.
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