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ABSTRACT

The frequency components of the electroencephalogram (EEG),
as derived from spectral analysis, have been used by psy-
chologists primarily as a descriptive statistic to charac-
terize changes in brain activity. More recently, the coher-
ence matrix, a cross-spectral estimate that measures the
degree of association between pairs of EEG channels, is be-
ing used as input for further multivariate statistical anal-
yses, such as principal components and factor analysis. The
standard spectral analysis procedures are based on the as-
sumptions that the observed data are (a) Gaussian and (b)
stationary. It has however been shown that EEG data does
not generally satisfy these assumptions, a situation which
may be aggravated in the presence of neurological disorders
or during the performance of a cognitive task. The statis-
tical properties of coherence estimates obtained from EEG
data that contain nonstationarities have not been extensive-
1y studied. This study compares the mean square error
(MSE) and bias of coherence estimates obtained with three
estimation methods; 1) the bivariate Fast Fourier transform
(FFT), 2) bivariate autoregressive model estimation (AR},
and 3) generalization of Burg)s maximum entropy method
(MEM). Simulated EEG data was employed to compare the esti-

mates under stationary as well as various nonstationary con-



ditions such as may be encountered in practice. Three gen-
eral types of nonstationary conditions were simulated, 1) by
changing the magnitude of the variance of the Gaussian noise
component at different locations in the interval, 2) by
changing the distribution of the noise component from Gaus-
sian to exponential, and 3) by adding a low frequency tran-
sient sine wave to one or both series. In addition, the es-
timates were compared for three different and relatively
short interval length conditions, N=64, 128, and 256. As
expected, the results in the stationary conditions indicate
that as interval length increases, the MSE and bias of'the
coherence estimates obtained with all three estimation meth-
ods decrease. A11 three methods perform very similarly,
with the MEM method giving the best estimates at the fre-
guency where both spectra contain the most power. The FFT
method is very comparable to the other two, except it lacks
resolution due to its smoothing requirements. In the tested
nonstationary conditions, again all three methods performed
well. The FFT was more robust than the other two methods to
exponentially distributed noise. Changing the magnitude of
the Gaussian noise variance had small effects on all three
types of coherence estimates, while the addition of a tran-
sient sine wave severely impaired the low freguency esti-
mates only when both series contained the transient. Recom-
mendations for coherence estimation in practice are

discussed.
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A COMPARISON OF SOME METHODS FOR COHERENCE
ESTIMATION FOR APPLICATION IN THE ANALYSIS OF
EEG

The power spectrum of the electroencephalogram (EEG) rep-
resents the frequency composition of the general electrical
activity emitted by the brain. In psychology, the EEG is
important for studying normal and abnormal human brain func-
tioning by searching for correlates between various types of
behavioural, particularly cognitive, tasks and the anatomic
distribution of this brain activity. The brain potentials
measured from the scalp normally range from 10 to 200 uV,
with epileptic seizures producing up to 1 mV (Gevins, 1983).
The intensity and pattern of the electrical activity are
highly dependent on the overall excitation of the cerebral
cortex, resulting mainly from activity in the reticular ac-
tivating system (Guyton, 1981, pp. 676). Simultaneous re-
cordings of the scalp and areas within the brain indicate
that brain waves occur when Tlarge numbers of neurons par-
tially discharge without emitting action potentials but give
.rise to periods of current flow that undulate with the
changing degree of excitability of the neurons (Guyton,

1981, pp. 676).

The conventional frequency bands that are characteristic

of the EEG are 0 to 3 Hertz (delta activity), 4-7 Hz (theta
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actjvity), 8-13 Hz (alpha activity), 14-19 Hz (beta I activ-
ity), and 20-32 Hz (beta II activity). Delta activity oc-
curs in deep sleep, in infancy and in severe organic brain
disorders. Delta waves can be produced in the cortex with
all connections to the thalamus severed, 1implying that the
cortical neurons are capable of some independent synchroniz-
| ing to produce delta waves (Guyton, 1981, pp. 676). Theta
waves occur primarily in the parietal and temporal regions

in children, and during emotional stress in some adults.

Alpha activity is found to be most intense in the occipi-
tal region and sometimes in the parietal and frontal regions
of the scalp in almost all normal adults in a quiet, rest-
ing, waking state. During sleep, alpha activity disappears
completely, while during cognitive tasks it is replaced by
asynchronous, higher frequency and lower voltage beta activ-
ity. Based on the results of brain stimulation and lesion
studies, alpha activity is assumed to result from spontane-
ous activity in the generalized thalamocortical system (Guy-

ton, 1981, pp. 676).

Beta waves occur most frequently in the parietal and
frontal regions. Beta I activity 1is affected by cognitive
functioning similarly to alpha waves (i.e., it is suppressed
by higher frequency and lower voltage activity). Beta 11
waves are activated by arousal of the central nervous system

or during tension (Guyton, 1981, pp. 675).
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Traditionally, the frequency components contained in the
power spectrum of the EEG have been primarily used as a de-
scriptive statistic 1in a variety of studies investigating
normal and neuropathological conditions affecting the brain.
However, with more routinely available methods of signal
analysis (e.g., the statistical package BMDP has two pro-
grams for analyzing time series) and the increased efficien-
cy of modern laboratory computers, spectral estimates of the
EEG are becbming more widely used. This facilitates further
statistical analyses, such as discriminant analysis, princi-
pal components and factor analysis, and.thus aids the inter-
pretation of the vast amounts of data collected. Frequent -
ly, however, this may result in the analysis of EEG data in
the absence of information about the statistical properties
of the obtained spectral estimates. This study investigates
some of the statistical properties of spectral and cross
spectral estimates, particularly coherence, which is a meas-

ure of the linear relationship between EEG channels.

Areas of EEG Applications

This section illustrates some examples where the EEG has
been used to study cognitive and physiological aspects of
the brain. It is not intended to be an exhaustive review;
however, 1t demonstrates the wide range of reséarch areas
which take advantage of the EEG as a quantitative measure of

brain activity.



Clinical Psycholoagy

In clinical psychology, differences 1in EEG characteris-
tics may provide useful information for the functional un-
derstanding of, and differentiation between, various psycho-
pathologies. For example, it was found that compared to
normal matched subjects, schizophrenic patients show in-
creased activity in the low frequency range in the frontal
regions, while the post-central and the left anterior-tempo-
ral areas exhibit increased beta activity (Morstyn, Duffy, &
McCarley, 1983; Selin & Gottschalk, 1983).. Moreover, schiz-
ophrenic patients exhibit increased high-frequency activity
in the left anterior-temporal region and in general possess
less lateral brain organization than normal subjects, as
measured by changes in alpha activity during visual imagery
tasks (Shaw, Colter, & Resek, 1983). In addition, schi-
zophrenia is differentiated from neurQsis by a diminished
orienting responsiveness of the EEG to repeated auditory
stimuli (Bernstein, Taylor, Starkey, Lubowsky, Juni, & Pa-
ley, 1983). Patients with conduct disorders show a greater
proportion of abnormal EEG freguencies than is seen in de-

pressive disorders (Selin & Gottschalk, 1983).

Experimental Psycholoagy

In experimental psychology, the EEG is used to gain in-
sight into the underlying brain activity associated with

different behavioural tasks. For example, studies have in-
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vestigated EEG correlates of learning effects on visual-mo-
tor tasks, such as eye-hand trackKing and the mirror star
task (Busk & Galbraith, .1975; Gliner, WMihevic, & Horvath,
1983).' These studies reported that these tasks produced
only a few significant changes of small magnitude in the
EEG. However, Gevins and his colleagues (Gevins, Zeitlin,
Doyle, Schaffer, & Callaway, 1979; Gevins, Zeitlin, Yin-
gling, Doyle, Dedon, Schaffer, Roumasset, & Yeager, 1979;
Gevins, Zeitlin, Doyle, Yingling, Schaffer, Callaway, &
Yeager, 1979; Gevins, Doyle, Schaffer, Callaway, & Yeager,
1980) did observe significantly different EEG patterns for
various complex taskKs, such as reading, writing,bscribbling,
Koh's block design, block manipulation and mental paper

folding (but see below).

Lateralization differences. A large body of psychologi-

cal research literature investigating cognitive functioning
is concerned with lateralization differences. It has long
been hypothesized that in right handed persons spacial tasks
are mainly processed by the right hemisphere while verbal
tasks are mediated primarily by the left hemisphére. Many
studies have been conducted which seem to support this lat-
eralization of function. For example, Shepherd and Gale
(1982) found that the left hemisphere was more strongly ac-
tivated in some frequency bandé in a rapid calculation task
where the subjects were required to respond only when all

four of the digits presented sequentially in one trial were
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odd and summed to 20 or more. In clinical studies, lateral-
ization differences were found in various psychopathological
populations. For example, Shaw et al. (1983) found that
schizophrenic patients possess less lateral organization
than normal subjects when responding to a visual task, and
Schaffer, Davidson, and Saron (1983) found that depressed
subjects exhibited an elevated right hemisphere spontaneous

activity in the frontal EEG as compared to normal controls.

Often, however, inconsistent lateralization results have
been found. For example, in lahguage and information pro-
cessing research, some studies show enhanced amplitudes to
linguistic stimuli in the left hemisphere, while others
found no differences or some changes in the right hemisphere
particularly with visual stimuli (see Boddy, 1981, for a re-

view) .

Due to the often inconsistent results reported, this area
of research has recently been criticized on methodological
grounds by Gevins (1983). Some of the methodological prob-
lems emphasized were: 1) failure to demonstrate that it was
the cognitiveb aspects that distinguished between tasks and
not the level of difficulty (or the number of cognitive pro-
cesses involved) or other response related factors; 2)
failure to validate that the tasks were actually, and cor-
rectly, performed; 3) failure to demonstrate that the ob-
tained asymmetry of EEG was not due to a combination of ir-

relevant factors, such as handedness, improperly balanced
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electrodes, or asymmetric skull thickness; 4) using a be-
tween-subjects design to infer within-subject differences;
and 5) relying on measures that are ambiguous with respect
to the actual 1locus of right and left EEG activities (Gev—’
ins, 1983, pp. 349,352). In his own research, Gevins and
his colleagues, in the studies previously cited (Gevins,
Zeitlin, Doyle, et al., 1879; Gevins, Zeitlin, Yingling, et
al., 1979; Gevins et al., 1980) have also found lateraliza-
tion differences in the various cognitive tasks, but these
differences disappeared when limb and eye movements, and
performance related factors, such as task difficulty level,
were controlled. A new ‘dynamic’ methodology, including a
new set of tasks which seek to control the problems previ-
ously mentioned, has been developed (Gevins, 1983, pp. 369).
In this method, the EEG recording obtained for each task is
divided into smaller intervals and is analyzed separately.
The studies reported have shown that the tasks were similar
in the intervals immediately following the stimulus and pre-
ceding the response, but differed in the middle intervals.
In these middle intervals, lateralization differences fol-
lowed a complex and rapidly changing pattern. These studies
thus support that lateralization may occur in ’tru]y’.cogni—
tive functioning, but also indicate that further investiga-

tion is required.



Physiological Research

Epilepsy. One of the major areas which uses the EEG ex-
tensively is in the study of epilepsy. The EEG recordings
of epileptic patients are used in both applied and basic re-
search as well as for diagnostic purposes. Some examples of
research studies in this area include predicting spike-wave
activity in patients with Absence epilepsy (Siegel, Grady, &
Mirsky, 1982) and using estimates of time differences be-
tween EEG channels to assess the presence of an epileptic
focus in wide-spread epileptic activity and to make infer-
ences about the possible routes of propagation of seizure

activity (Gotman, 1981, 1983).

Other areas. The spectral analysis of EEG has been ap-

plied in many other areas of research where changes in brain
activity are of interest. For example, the effects of drugs
such as interferon (Dafny, 1983), antidepressants (Reilly,
1976), alcohol (Pollock et al., 1983), and nicotine (Hern-
ing, Jones, & Bachman, 13883) on brain functioning have been
researched. In clinical populations, different EEG patterns
have been observed in juveniie diabetes mellitus (Keene et
al., 1983) and in patients with renal disorders (Bowling &

Bourne, 1978).

Often these types of studies use numerous features of the
EEG and/or its spectrogram to discriminate and classify var-

ious groups of observations. For example, 'neurometrics’
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(John, Karmel, Corning, Easton, Brown, Ahn, John, Harmony,
Prichep, Toro, Gerson, Bartlett, Thatcher, Kaye, Valdes, &
Schartz, 1977) involves extracting features such as 1) sig-
nal power, 2) signal variance, 3) signal-to-noise ratio, 4)
mean squared first difference, 5) difference and normalized
difference in signal energy between homologous pairs in pow-
er and waveshape asymmetry, and 6) the coherence. Multivar-
iate statistics were used on these features to characterize
and classify learning disabled children and old adults with
cognitive deterioration (John et al., 1977). Gevins et al.
(1979) used the frequency band components obtained from dif-
ferent areas of the brain in a nonlinear pattern recognition
algorithm to classify various cognitive tasks. Finally,
Bowling and Bourne (1978) used stepwise discriminant analy-
sis on components of the EEG spectra to successfully classi-

fy patients with and without renal failure.

Standard Methods of Spectral Analysis of EEG Data

Four general classes of spectral estimation methods for
scalar time series have been applied to the analysis of EEG
recordings. These methods and their generalizations to vec-

tor valued series are described below.



10

Univariate Spectral Analysis

The Fast Fourier Transform. The frequency components of

a series of data, x(t), t=0,...,N-1, sampled at regular time

intervals, at=1/N, can be obtained by the Fourier transform

N<l
X(f) = 1/NEZ x(t) exp(-i2nft), f=0,+1,:2,...,EN/2,
+*0
where iz y-T. Since the introduction of the Fast Fourier

Transform (FFT) by Cooley and Tukey (1965), which substan-
tially decreases the computational burden of the standard
qurier transform, the estimation of the power spectrum di-
rectly from the original data has become standard practice.
Transforming a finite data record, however, requires the ap-
plication of a window function prior to the transformation
in order to reduce leakage from one frequency band to an-
other (e.g., Brillinger, 1981, pp. 131-142; Otnes & Enoch-
son, 1972, pp. 201-204, 281). Various tapering windows have
been proposed, each requiring a compromise between the
amount of allowable leakage, resolution loss, and the corre-
sponding loss in degrees of freedom of the spectral esti-
mates. The most commonly used tapering function in EEG
analysis is the split-cosine window (Bloomfield, 1976). The
windowed spectrogram thus obtained, however, still yields an
inconsistent estimate, 1its variance being equal to the
squared power which cannot be decreased by increasing the
length of the series (e.g., Brillinger, 1981, pp. 125). The

spectrogram, therefore, also requires smoothing, either by
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ensemble averaging or averaging over frequency. The smooth-
ing procedures increase the degrees of freedom of each of
the estimates and reduce their asymptotic variance. In av-
eraging over freqguency, however, there is a 1limit to the
amount of smoothing a]]oWed, since increasing the bandwidth
decreases the variance but also increases the bias of the

estimates.

The autocorrelation function. An alternative estimator

for the spectrogram can be obtained from the Fourier trans-
form of the autocorrelation function, which itself already
emphasizes the regular activity of the data in the time do-
main. Again, to obtain consistent estimates, it is recom-
mended that the autocorrelation function be windowed by one
of the available windows, such as the Hanning,} Hamming or
Parzen’'s windows, prior to the transformation, and the re-
sulting estimates smoothed over frequency (Otnes & Enochson,
1972, pp. 270; Walter, 1963). This method is based on the
work of Blackman and Tukey {1958) and was first applied to
the EEG by Walter in 1963.

These estimates are very comparable to, although not
identical to, the estimates obtained by the FFT method (Ben-
dat & Piersol, 1971), and it has beeﬁ shown that mathemati-
cally the two methods are equivalent (Khinchine, 1934 and
Wiener, 1930 cited in Otnes & Enochson 1972, pp.254-255).
Currently, however, with the increase in speed of computa-

tion with the FFT, most researchers seem to prefer cailculat-
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ing the spectral estimates directly in the frequency domain

by the FFT.

The Box-JenKins approach. A time-series may be repre-

sented in the time domain by parametric regression models
such as those described by Box and Jenkins (1976). The
three models most commonly used are the moving average (MA),
autoregressive (AR), and the autoregressive-moving average
(ARMA) models. If y(t), t=1,...,N, is the observed series,
then the finite MA(m) representation of y(t) is
y(t) = elt) +J§b(j)e(t-j>,

where m is the order of the model, e(t) are independently
normally distributed with mean 0 and variance 1, and b(j),
j=1,...,m, are the coefficients to be estimated. The AR(p)

model represents the observed data as

y(t) = elt) + ég.‘a(l«) y(t-K).

where p is the order of the model, e(t) is again N(0,1)
white noise, and a(k), k=1,...,p, are the AR coefficients to
be estimated. This model expresses the observed series as a
linear combination of its own past values plus an uncorre-
lated random component. A more general representation com-
bines the MA(m) and AR(p) models into the ARMA(m,p) model
given by

P n
y(t) + gia(K)y(t—K) = e(t) +J~§. b(jle(t-j).
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One of the most important aspects of fitting these models

to observed data is the determination of the model orders m
and{or) p. For the MA(m) model, m can be found from the au-
tocorrelation function since theoretically it will be zero
for lags greater than m (Box & Jenkins, 1976, p.68). Simi-
larly, the order p of an AR(p) process may be estimated from
the partial autocorrelation function which will be insignif-
icant for lags greater than p. These methods of determining
the orders are considered somewhat subjective, since judge-
ment is required to establish at which point the estimated

autocorrelation functions become insignificant.

Akaike (1969a,1969b, 1971) has been foremost in develop-
ing objective methods for determining the order of the AR
models. One method 1is based on minimizing the final pre-
diction error (FPE) of the AR models of successively higher
order. The order p and the corresponding coefficients
yielding the smallest FPE are chosen to represent the se-
ries. In a simulation study, Gersch and Sharpe (1973) gen-
erated an ARMA process, whereby the series was equivalent to
an infinitely long AR model, and using Akaike's FPE criteri-
on, they found that finite AR models of average order of
18.6 provided close agreement with the theoretical results.
Akaike (1973) Tlater developed a maximum likelihood estimate
of the order, called the information (AIC) criterion. The

FPE and AIC have been shown to be approximately related by

AIC = N log(FPE)



14

(Jones, 1978), and asymptotically the minimum FPE and
minimum AIC are equivalent (Sawaragi, Soeda, & Nakamizo,
1981) .

Least squares estimates of the AR coefficients can be ob-
tained by solving the set of linear VYule-Walker equations.
This classical method involves estimation of the autocorre-
lation function which assumes that data outside the sampled
range are zero. This may result in estimates which are less
than optimal, especially for short series. Alternatively,
the AR coefficients may be estimated recursively by the Lev-
inson-Durbin procedure (Durbin, 1960; Levinson & Wiener,
1949) . This latter method does not require prior knowledge
of the autocorrelation function and thereby has the advan-
tage of using only the available data. Maximum likelihood
estimates of the model parameters have been derived (Box &
Jenkins, 1976, pp. 327), however, the numerical complexity
of the resulting normal equations has deterred investigators

from using these methods routinely.

The obtained estimates of the model parameters, the coef-
ficients Q(K),. and the estimated one-step-ahead prediction
error variance G(p), are then readily transformed to obtain

the estimate of the spectrum by the equation

A vip) al
S(f) = v ,
]éoack) exp(i2mk8)|?

for f=0,...,N/2,

where 3(0) = 1.
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Spectral ana1ysis using the AR and ARMA representations
were applied to the EEG by Gersch (13870), Gersch and Yonemo-
to (1977), Jones (1974), and Pfurtscheller and Haring
(1972), among others. It was found that orders of less
than ten were generally adequate for modeling the EEG of an
epileptic patient (Gersch, 1970), and a bivariate AR model
of order six was selected for the sleep EEG of a human in-
fant (Jones, 1974). Gersch and Yonemoto (1977) found that
AR model of order ten and an ARMA model of order seven fit

sleep EEG data.

The AR models may be viewed as régression models in which
the immediately past observations of the series serve as
predictor variables for the current observation. An inter-
esting development of these estimation methods has emerged,
whereby rather than constraining the regression coefficients
to be fixed, a stochastic component can be introduced to
them. Linear dynamic estimation methods have thus been de-
veloped to estimate the time variable parameters of these
regression models (Harrison & Stevens, 1976). Probably the
most well Known linear dynamic recursive estimation method

is the Kalman filter.

Since its first introduction in the engineering litera-
ture by Kalman (1960; Kalman & Bucy, 1961), which involved
the state-space representation of the linear filter, a num-
ber of reinterpretations of the Kalman filter appeared in

the statistical literature in order for this dynamic estima-
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tion procedure to become more accessible to statisticians.
In 1972, Duncan and Horn developed the Kalman results from
regression analysis theory by viewing the regression weights
as random variables rather than fixed. An alternate view
was provided by Meinhold and Singpurwalla (1983) who have
shown how the Kalman filter can be interpreted as a problem
in Bayegian inference; the conditional probability of the
state parameters at time t, given data up until time t, ié
proportional to the product of the likelihood of the state
at time t and the prior conditional distribution of the

state parameters given the data from time 0 to t-1.

Regardless of its statistical interpretation, the Kalman
filter is a powerful recursive method for estimating time-
variable parameters, and when applied to an autoregressive
time series model, it is an adaptive AR model. The adaptive
model is particularly useful since it is not restricted to
stationary signals. By allowing the coefficients to vary
over time, these models can be used to track the time-vari-
able properties of the signal. This is especially relevant
in the application of these models to the EEG, since changes
in cognitive functioning may thus be observed and analyzed

over time.

The Kalman filter method has been applied to track chang-
es of the spectral characteristics of simulated nonstation-
ary EEG (Wennberg & Isaksson, 1976) and real stationary,
slow-changing and fast-changing EEG (Bohlin, 1977; Isaksson
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& Wennberg, 1976). The Kalman filter was shown to follow
well the fast and slow changes in all the studies, even when
large 1low frequency disturbances and instantaneous major
changes in the signal (eyes opening and closing) were pres-
ent (Bohlin, 1977). Bohlin (1977), however, also indicates
that th{s ability to track changes in the spectrogram may

result in greater statistical uncertainty of the estimates.

Maximum entropy. In 1967, Burg introduced the maximum

entropy method (MEM) of spectral estimation. MEM involves
maximizing the entropy, H, of a process, defined as the in-

tegral

H = jln S(f)
k
where S(f) 1is the power spectrum and K is the region over

which S(f) is assumed to be nonzero. In the univariate
case, the MEM estimates are readily computed by AR modeling,
since the two methods are mathematically similar (McClellan,
1981). An efficient algorithm for univariate MEM coeffi-
cient estimation was developed by Andersen (1974) and was
shown to work well 1in EEG spectral estimation {(Jansen,
Bourne, & Ward, 1981). This algorithm is analogous to the
Levinson-Durbin recursive method of AR estimation whereby
the model of successively increased order is estimated re-
cursively until the residual error matrix is minimized.
This method also has the advantage of using only the avail-

able data, without assuming that the data outside the sam-
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pling interval are zero. Clearly, the same problem of order

selection as in AR modeling also occurs in the MEM method.

Multivariate Spectral Analysis and the Coherence

Generally, most of the methods of spectral analysis re-
viewed above generalize easily to the multivariate case. If
x(t) and y(t) are two observed series, then the bivariate

FFT spectral estimates are given by

2

S(f) = gop [X(F)=Y(£)]

where X(f) and Y(f) are the univariate FFTs of the series

x(t) and y(t), respectively, and * denotes convolution.

The multivariate AR, MA, and ARMA models are given by

P

y(t)= ZA(K) y(t-k)+e(t),
>_/(t)=§(t)+J$::B<j) el(t-1),
and
b ]

X(t)»%A(k) y_(t-K)=§(t)+j§B(j) e(t-3),
respectively. Here the uppercase letters indicate matrices
which are scalar values in the univariate case. If the se-
ries is s-variate, matrices A(K), k=1,...p, and BI(j),
j=1,...,m are s x s matrices, and y(t) énd e(t) are vectors

of length s.
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A multivariate method for estimating AR coefficients was
developed by Whittle (1963). It is a generalization of the
Levinson-Durbin algorithm, and fits a forward and backward
AR model simultaneouly. As in the univariate case, the
coefficients along with the corresponding residual error ma-
trix are used to calculate the spectral matrix which con-
tains the auto-spectral estimates on the diagonal and the

cross-spectral estimates in off-diagonal positions.

Generalizing the MEM method from the univariate to multi-
variate case is not as straightforward. While in the uni-
variate case, the MEM estimates are the same as the AR esti-
mates, this is generally not true in the multivariate case.
Thus Burg’'s algorithm, which in essence fits a forward and
backward AR model to the observed data, does not generalize
directly to the multivariate case since the coefficient and
prediction error matrices are not the same for the forward
and backward calculations. Jones (1978), however, reported
an 1indirect MEM estimation procedure which estimates the
coefficient matrix by fitting a forward and backward model

to the residuals at each successive step.

To obtain the true multivariate MEM estimate seems to in-
volve the optimization of a nonlinear system. McClellan
(1981) discussed some of the conditions for the existence
and uniqueness of the multivariate MEM estimate, as well as
some of the algorithms that solve the nonlinear system by

using an approximation, or a general optimization algorithm.
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These are generally complex and are beyond the scope of this

thesis.

Comparison of Methods in EEG Spectral Analysis

A number of studies have compared the spectral estimates
from the AR model fitting method with those obtained by the

transformation of a Parzen windowed aufocorrelation func-

tion. Jones (1974) and Gersch and Yonemoto (1977) found
that in most cases, similar spectral estimates were ob-
tained, although the AR method always produced smoother

looking plots of the spectrogram, coherence, and phase angle
functions, which in turn look more interpretable. Underpar-
ameterized AR and ARMA models yielded smoother TlooKing but
excessively biased estimates comparable to those obtained
‘using a Parzen window of smaller lag. On the other hand,
overparameterized models resulted in less smooth spectro-
grams resembling those obtained with larger-lag windows that
were relatively unbiased but excessively variable (Gersch &
Yonemoto, 1977). Akaike (1969b) found similar results com-
paring the AR estimates with Hanning-windowed spectral esti-

mates.

More recently, dJansen et al. (1981) investigated the per-
formance of EEG power spectral estimates obtained directly
by the FFT and three different methods of calculating AR
model estimates. Correct classification rates obtained from

discriminant analysis procedures were used for the compari-
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sons. Two of the AR model estimates were obtained nonadap-
tively, 1) by the standard method of solving the Yule-Walker
equations, and 2) by using Burg’'s recursive algorithm of An-
dersen’s (1974) which is based on the Levinson-Durbin proce-
dure. The third set of AR estimates were adaptive, calcu-
lated by the Kalman filtering method which updates the
initial AR coefficients based on every new observation of
the signal. It was found that of the spectra computed from
the AR coefficients by the three methods, Burg’'s method had
the best classification rates. However , they were not as
high as those obtained by the FFT. When the EEG was cosine
tapered prior to computing spectra with Burg’s method, how-
ever, the classification rates of the two spectra became
identical. The spectra obtained with the Kalman filter AR
coefficients performed less well, while those estimated by
the Yule-Walker equations produced rather poor results in
all respects. In evaluating the spectra themselves, it was
found that the Kalman filter method tended to estimate the
frequency of artifact activity more correctly than the Burg
and Yule-Walker methods, but the peak widths were wider with
the Kalman filter than with Burg’s method. In most cases,
the spectra obtained by the FFT and Burg’'s method were very
similar. Overall, Burg’'s method performed the best of the
AR coefficient based estimates, while the use of the Yule-

Walker equations is not recommended by Jansen et al.
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The advantage of the AR method is that good spectral es-
timates can be obtained on shorter data records than are re-
quired by the FFT; however, unstable models may result if
the estimation is based on the Yule-Walker equations (dJansen
et al., 1981). Gersch (1970) points out that statistically,
the AR estimates per form much better than the windowed Four-
jer estimates, since they yield a larger number of degrees
of freedom and are asymptotically normal and consistent.
The AR coefficients, however, are estimated by least square
methods and therefore spectral estimates based on these may
be more sensitive than FFT estimates to departures from an

under lying Gaussian stationary model.

Coherence and its Applications in EEG Analysis

For multi-channel EEG recordings, a number of measures of
association between pairs of channels are available. These
can often be useful in relating EEG asymmetry to interhemis-
pheric and/or intrahemispheric functions. The most commonly
used measure is the coherence, which is analogous to the
correlation coefficient in classical statistics, and indi-
cates the degree of linear relationship between the two
channels. The coherence, sometimes also called the coheren-
cy, 1is defined at each frequency value as the ratio of the
cross spectrum between two channels, X and Y, to the square

root of the product of the individual spectra; that is,

Say (1)

f) = iy, -
Rul ) [Sx(8) SB[

Xy
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Brillinger (1981, pp.257) calls - this ratio the coherency,
and its modulus squared, |R (f)]|, the coherence. The esti-
mates used for comparisons in this study are the moduli, |R
(f)|, of this ratio, and since they are required to be in
this form, the |R (f)] will be referred to as coherence.
The values of the coherence range from 0, meaning no linear

relationship, to 1 indicating a perfect linear relationship.

Since one coherence value is obtained for each frequency,
this often results in large amouhts of data for interpreta-
tion. To alleviate this potential problem, some summary
statistics for the coherende have been proposed. The
"weighted average coherence’ is computed across a number of
frequencies and expresses the overall degree of re]ationship
between pairs of EEG records (Busk & Galbraith, 1975) .
Bohdanecky, Lansky, and Radil (1982) have proposed a similar
measure, a total 'integral measure of coherence’, and a re-
lated relative measure which estimates the contribution of a
particular frequency band to the tfotal integral coherence.
A]though it is argued that such data reduction aids inter-
pretation, this facility is obtained at the expense of loss
of information. In some applications, however, these summa-

ry statistics are useful.

In EEG applications, the coherence has been used to meas-
ure the degree of EEG synchronization between the hemi-
spheres in schizophrenic and neurotic patients during a vis-

ual imagery task (Shaw et al., 1983) and during bilateral
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spike-and-wave activity in epileptic patients (Gotman,
1981). Gotman (1983) has also used the coherence in calcu-
lating small time differences between two channels which ap-
peared synchronéus on visual inspection. Gotman concluded
that this method may allow assessment of an epileptic focus
when only widespread seizure activity can be recorded and
may enable the inference of possible routes of seizure ac-

tivity (Gotman, 1983).

Recently, coherence estimates have been used as input
data er further multivariate statistical analyses, namely
factor analysis and principal components, under the assump-
tion that the activities across brain regions may be charac-
terized by a few common factors. Douglas and Rogers (1983)
developed a stability measure, based on the estimated coher-
ence matrix, which was then used to determine the dimension
of maximum likelihood factor analysis of the power spectra
obtained from eight EEG leads. The stability measure,
called the ’'ambient matrix coherence (AC)’, was found to be
robust on various simulated data sets. The AC produced sta-
ble maximum likelihood factor loading matrices, but when it
was applied to principal components inaccurate solutions re-
sulted. When maximum likelihood factor analysis was applied
to the EEG data from the eight leads, the authors found that
three of these contained three factors; one with primarily
high freguency components in the 21 to 30 Hz range, the fre-

guencies of the second factor were in the 10 to 18 Hz range,
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and the third factor contained the low frequencies of 1 to 7
Hz. The remaining five EEG derivations appeared to be more
stable with a fourth factor, a sharper vector centered at 9

Hz.

Swenson and Tucker (1983) used the coherence matrix ob-
tained from eight EEG derivations, one matrix per frequency
band, directly as input data for factor analysis. Results
showed that the first two factors that accounted for most of
the variance in the coherence matrix, one posterior and one
anterior, were both ‘right-lateralized’, that is, the coher-
ences were generally higher 1in the right hemisphere; a
third residual factor described the left hemisphere vari-
ance. In addition, Swenson and Tucker (1983) compared the
factor analytic results to an a priori de-structuring of the
coherence matrix with partial multiple coherence methods.
These results suggested that ‘intra-hemispheric coherence is
generally higher on the right side of the brain. Addition-
ally, the a priori de-structuring revealed that the inter-
hemispheric coherence of the right parietal region was high-
er than the Jleft, while the left occipital area showed

higher coherence values than the right.

While both of these studies used‘various arousal condi-
tions -- resting, scribbling and solving mathematical prob-
lems in the Douglas and Rogers (1983) study, and resting,
relaxing and a high arousal state where noise was continu-

ously presented in the Swenson and Tucker (1983) study -- no
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attempt was made at distinguishing the experimental condi-
tions in the factor analyses. However, factor analysis and
other multivariate techniques could prove useful in inter-
preting psychological data, as the analysis of EEG is ap-
plied in behavioural studies in atfempts to identify factors

under lying brain functioning during cognitive tasks.

Many of the multivariate analyses are based on the corre-
lation matrix, but it has been shown that the correlation
coefficient 1is very sensitive to outliers and deviations
from normality (Devlin, Gnanadesikan, & Kettenring, 1981).
Since the coherence has the same asymptotic distribution as
the Pearson moment correlation coefficient, it may also be
affected by violations of assumptions underfying its estima-

tion procedures.

Assumptions underlying spectral estimation

Spectral analysis of time series is based on the assump-

tions that the series 1is Gaussian and stationary, or at
least weakly stationary, that is, where the first two mo-
ments are time-invariant. Although in the past, inconsis-

tent findings could not resolve the question whether EEG
data satisfied one or both of these assumptions, more re-
cently it is generally recognized that nonstationary EEG
data does occur, and quite frequently when longer epochs are
analyzed. McEwen and Anderson (1975) have identified sever-

al factors contributing to the inconsistencies found in past
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literature, including 1) the small number of ensembles of
EEG segments from too few subjects, 2) the use of only one
nonstandardized channel, and 3) different digitization rates

emplioyed to sample the data.

In their study investigating the stationarity and normal-
ity of spontaneous EEG, McEwen and Anderson (1975) found
that as the sampling (digitization) rate was increased, or
as the length of the sample record increased, a greater pro-
portion of the EEGs tended to be non-Gaussian and nonsta-
tionary, although stationarity was somewhat less sensitive
to sample length. Now it seems generally accepted that in
visually inspected artifact-free epochs of one second dura-
tion, although some studies use Tlonger epochs, the occur-
rence of nonstationarity and nonnormality is sufficiently
negligible to make standard spectral analysis techniques
satisfactory. From the graphs presented in McEwen and An-
derson (1975), it can be seen that for the frequently used
sampling rate of 128 Hz, of the one second artifact-free,
resting (eyes closed) EEG segments, almost 100% were Gaus-
sian and stationary in the occipital regions, while 5% of
the frontal EEGs 1in both hemispheres were nonstationary.
For a five second epoch, frontal EEG was 75% Gaussian, about
83% stationary and about 62% were both Gaussian and station-
ary, whereas in thevoccipita1 region these values were 84%,

90%, and 70%, respectively.
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A number of transfprmations for normality have been shown
effective for broad band (i.e., delta, theta, alpha, etc.)
spectral estimates (Gasser, Bacher, & Mocks, 1982). These
authors found the transformation log(x/{(1-x)) to be excel-
lent in transforming the relative power to normality, while
log(x) performed the best for absolute power but was not
completely satisfactory for all bands. Here x is the abso-

lute or relative band power.

Nonstatonarities and Artifacts in the EEG

Violations of the assumptions may be of lesser importance
to investigators when the spectrum 1is used as a descriptive
statistic, since it is generally believed that conventional
methods of power spectrum estimation are inherently robust
to all but extremely bad contamination. Kleiner, Martin,
and Thomson (1979) point out that this may only be true for
the general shape of spectra that consist mostly of narrow
band components or when a low fregquency component is of pri-
mary interest. Since EEG data are considered to contain
mostly noise with only a few lower frequency bands of inter-
est, that is, only some frequencies in the 0 to 30 Hz range,
these considerations may apply to the shape of EEG power
spectra. Kleiner et al. (1979), however, have also shown
that even as few as two outliers that were relatively small
compared to the observed series but large in comparison with
the error, may result in large distortions in the shape of

the spectrum.
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Considerable attention has been paid to the removal of
artifacts from EEG data. Several types of artifacts have
been identified, including gross head and body movements,
eye-movement potentials in frontal channels, perspiration,
low frequency instrumental artifacts, depolarization of
scalp and neck muscles overlying the brain, and electrochem-
ical effects at the surface-metal junction (Gevins, Yeager
Zeitlin, Ancoli, & Dedon, 1977; Johnson, Wright, & Segall,
1979). Since these are not generated by the brain, they are
usually considered to lack useful information and efforts
are made to identify and discard them prior to analysis.
Woestenburg, Verbaten and Slanger (1983) showed that some
potential exists for removing eye-movement artifacts statis-
tically. They applied a complex linear regression analysis
method in the frequency domain, which successfully removed
artificially added artifacts from simulated EEG data. Auto-
mated methods, however, are more widely used to detect and
remove the artifacts. Many have been developed and continue
to be improved (e.g., Gevins, Yeager, Diamond, Spire, Zeit-
lin, & Gevins, 1975; Gevins et al., 1977; Johnson et al.,
1979). Most computerized systems have some provisions for
optionally removing artifacts from clinical EEG data (Bar-

low, 1979).

Often, nonstationarities do provide useful information
about brain activity. Occassional transient activity, such

as epileptic spikes or evoked potential responses, have been
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examined, and various features of these transients have been
used for their detection and characterization (see Barlow,
1979 for a review). Briefly, some of these features include
the analysis of 1) rise-time, fall-time, and peak angle to
classify spikes as steep triangular waves, 2) peak-to-peak
amplitude and separation (duration), 3} the second time de-
rivative (curvature), 4) the angle at the peaks, 5) maximum
slopes of the sides and their time of occurrence relative to
the peak, 6) spike duration, 7) matched fi]tefing, and 8)
inverse filtering. John et al. (1977) include other charac-
teristics in their ’'neurometric taxonomy’ scheme mentioned
earlier. Some of these features are also used in the auto-

matic removal of artifactual contamination.

The generally nonstationary character of longer epochs of
spontaneous EEG has been investigated with the use of the
Kalman filter. A  number of studies have shown the Kalman
filter to be excellent in tracking the changes of the spec-
tral characteristics in EEG (Bohlin, 1977; Isaksson & Wenn-
berg, 1976; Wennberg & Isaksson, 1976). This method may
have potential in psychological studies where nonstationary
EEG data may result from changes in cognitive functioning

during various mental tasks.
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Purpose of Proposed Study

The effects of nonstationarity on the coherencelestimates
has not been extensively studied. Since the EEG segments of
interest may often be nonstationary, for example, during
cognitive activity, it is important to find optimal or near-
ly optimal coherence estimates under various conditions,
particularly if use of the coherence values 1is reqguired in
further statistical analyses, such as factor analysis or

principal components.

This study investigates the effects of three Kinds of
nonstationarities on the bias and mean square error of co-
herence estimates obtained by three estimation methods: 1)
the bivariate Fast Fourier Transform, 2) a bivariate autore-
gressive recursive model estimation, and 3) the indirect
generalization of Burg’'s maximum entropy method proposed by
Jones (1978). In addition, spectral estimates obtained by
an adaptive method of the Kalman filter type are compared to
those of the three methods. Coherence estimates derived
from a bivariate Kalman filter are not investigated in this
study because of the computational complexity of this method

in the two dimensional case (Woods & Radewan, 1977).

In order to be able to comparé estimates to the known
values, the spectral analyses were obtained from simulated
data. Thus three Kinds of nonstationarities simulated were

chosen to represent changes most 1likely to be observed in
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real EEG, and a stationary condition was included for com-

parisons of methods under optimal conditions.



METHOD

Two channels of simulated EEG data were obtained for 0.5,
1.0 and 2.0 second data segments. The sampling rate was set
at 128 points per second, thereby giving a Nyquist frequency
of 64 Hz. This rate was chosen to correspond to the sam-
pling rates most frequently used inAapplied research, with
consideration for the recommendations of McEwen and Anderson
(1975). These authors suggested that the sampling rate be
chosen as little above the Nyguist frequency as is practiéal
in order to satisfy the assumption of statistical indepen-
dence of successive samples of EEG while still allowing for

accurate estimates to be made.

Stationary and three types of nonstationary data were
simulated for each record length, that is, for 0.5, 1.0, and
2.0 seconds. The results of the spectral analyses using the
four methods were obtained from 200 replications of each

condition.

The entire experiment was run on the Amdahl 5850 computer
at the University of Manitoba. The programs were all writ-
ten in Pascal language and compiled by the Pascal/VS compi-
ler. A11 random numbers were generated using routines from
the International Mathematical and Statistical Libréry

(IMSL) .

_33_
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Data Simulation

Stationary data

The bivariate stationary series was simulated by the

AR(7) model
7
Y(t)=¢ZA(K) Y(t-k) + E(t), t=1,...,N (1)
=]
where E(t) is normally distributed white noise with zero
mean and covariance matrix [B ?] . The bivariate series of

random numbers were generated by the IMSL routine GGNSM.
Furthermore, in equation (1), N is the total length of the

series with N=64 in the 0.5 second conditions, N=128 in the

1.0 second conditions, and N=256 in the 2.0 second condi-
tions; and A(K), k=1,...,7, are the bivariate AR coeffi-
cients,
A(1)=T 0.3023 -0.0974] A(2)=T 0.1351 0.0414
| -0.1344 0.3614] . -0.0310 0.1249
A(3)=-0.0703 0.3670] A(4)={-0.1279 0.0383]
| 0.0893 40.1078J | 0.0466 -0.2356
A(5)=[-0.1438 -0.0793 A(6)=[-0.1887 -0.0229]
*-0.0230 -0.2505‘ | -0.0841 -0.1353]

A(7)=1-0.1942 -0.0225
-0.0464 -0.1005

This model was found to be stable. A1l 14 zeros of the

characteristic polynomial
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o
det( 3 A(k) zk)=0, with A(O)=[—1 o}
k=0 0 -1

fall outside the unit circle (see Figure 1). In a test sim-

ulation using this model to generate a bivariate series of
1000 points with E(t) distributed N(0,I), where 1 is the
‘identity matrix, the means of the series for channel 1 and
channel 2 were 0.00430 and 0.02206, respectively, with an
obtained covariance matrix at zero lag,
C(0)=] 8.9004 -3.8767
-3.8767 5.1493].

To ensure 1immediate stability of the simulated data in
each experimental condition, the last 7 generated data
points of the test simulation, that is, Y(994) to Y(1000),
were used as the initial seven values for simulating data in
the experiment. The data was simulated by first generating
the random numbers, storing them in a 2 x N dimensional ar-
ray, and passing these through the linear system given by
equation (1). A sample of approximately one second duration
of the generated stationary series for the two channels is

shown in Figures 2 and 3.

The theoretical values for spectral and coherence esti-

mates were calculated by

S(F)=at[D(F)T v [D(E)¥T,  f=1,...,84,

where at is the sampling interval (1/128), V is the one-

step-ahead prediction error matrix, that is, the covariance
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Figure 1. Zeros of the characteristic polynomial, det(ﬁgoA(k)zk)=O,

where A(k) are the coefficients of the AR(T7) model used in data simu-

lation.
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Figure 2. A sample of an approximately one second segment of series 1

data generated by the AR(7) bivariate model.



5.0 4

o.od

-5.0 4

o 10 20 30 40 50 60 70 80 90 100
Time



38

Figure 3. A sample of an approximately one second segment of series 2

data generated by the AR(7) bivariate model.
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matrix of the error left over after the model is fitted, and
theoretically equals the identity matrix since the covari-
ance of E(t) in equation (1) was set to[1 O]. The complex

01
conjugate transpose is denoted by 3}, and

D(f)=

LM

; A(K) exp(-1i2kf at)

where A(k) are the given AR coefficients with A(O)=[—8 9].
The theoretical spectra and coherence functions are shown in

Figures 4 and 5, respectively.
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Figure L. Theoretical spectral curves for series 1 (top) and series 2

(pottom).
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Figure 5.

Theoretical coherence curve.
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Nonstationary Series

Three types of nonstationary data were simulated; 1) the
variance of the normally distributed error in equation (1)
was changed at various times in the data segment, 2) the
distribution of the noise was changed from normal to expo-
nential and 3) a transient sine wave was added to the sta-

tionary series.

Change of noise. In one set of experimental conditions,
the N(0,I) error of the stationary series simulated by equa-

tion (1) was changed to N(0,S) with S= [% g], such that

= ZAK) YIE-K)Ey (1), t=1,. Ny
(2)
Y(t)=%A(K) Y(t-K)+E2(t), t=Ny+1,...,N.

For the 2.0 second segments, this change was made for a)
the second half of the segment at N,=128, b) the last fourth
of the data, Ny=182, and c) the last eighth of the data, N;=
224, Similarly, for the 1.0 second segment simulations, the
variance was changed a) halfway through the interval (N,
=64), or b) for the last quarter of the data (N,=96). Fi-
nally, for the 0.5 second conditions, the change was made
halfway through the segment at N,=32. Thus comparisons of
record length and the amount (ratio) of added data could be

made.
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The second set of experimental conditions was created
similarly, but rather than changing the variance of the nor-
mally distributed noise, the distribution of the noise was
changed to exponentially distributed, exp(u), with the mean
u=2.0. The exponential probability density is given by the

equation
f(x) = u exp{-uxt, x 20,

The exponentially distributed random numbers were generated
by the IMSL routine GGEXN. The data was simulated by equa-
tions (2) as above with E,(t) in this condition distributed
exponentially with u=2.0. For the three different record
length conditions, this change was made halfway through the
segment (Ny=N/2) in either one or both series, simply by re-
placing the normal random numbers by the exponential random

numbers in the series prior to data simulation.

Transient sine wave. The third set of nonstationary con-

ditions was simulated by adding a simulated transient sine
wave of approximately 300 msec duration (40 data points) to

data generated by equation (1); that is,
Yo (t)=Y(t) + 8.0 sin(2wk/40),

where k=1 fort=19, K=2 fort=20,..., and k=40 for t=58. This
transient was added either to one or both series, and always

at the same time points for all record length conditions.
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Spectral Analysis

FFT estimates

The raw simulated data of each series was first tapered
by a split-cosine window over 10% at each end of the series

by the function

i)
4 24
3 [1- cos (W%—Q)], t=1 .., m
u(t):’- 1’ 'E“M“"‘l,...,N-'m
-1
101 cos (w2h)] teNemtN
where m is the proportion at each end (0.10). The tapered

data was Fast Fourier transformed using the 'successive
doubling’ algorithm (Cooley, Lewis, & Welch, 1969), based on
the Cooley-Tukey FFT method, and adjusted for tapering by
multiplying each transformed value by 1/0.875 (Bendat &
Piersol, 1975, pp. 327); that is,

N
S(f)=(24t/0.875 N) 2 vit) exp(-i#E) 3 £=0,...,N/2,

where Y(t) 1is the tapered data series and the vertical bars

denofe the modulus.

Because smoothing of 'the resulting spectrogram is re-
quired, FFT spectral estimates were obtained for frequency
bands at f=5, 10, ..., 60 Hz, and these were compared to
theoretical values that were also averaged for these fre-
quency bands. Thus the 0.5 second segments were smoothed by
averaging S(f) for f=2-4, 4-6, 7-9, ..., 29-31; for the 1.0

second series the averaged frequency bands consisted of
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f=3-7, 8-12, ..., 58-62; and for the 2.0 second conditions,
FFT values at f=5-14, 15-24, ..., 115-124 were averaged to

correspond to the frequency bands at 5, 10, ..., 60 Hz.

The cross spectra between the two series, 1 and 2, were

calculated by
S,(f)=(2at/0.875 N) [S1(f) S2(f)1, £=0,...,N/2,

where S(f) denotes the complex conjugate of S(f). The co-
herence function was then calculated by
A 1
s 18, VA
R('F)= ry N .
\5,(8) 5,(5)

The cross spectra were smoothed analogously to the power

spectra prior to the calculation of the coherence function,
thus coherence estimates were also produced for the freduen—

cy bands at 5, 10, ..., 60 Hz.

AR Estimates (Whittle’s Method)

The AR coefficients of the model were estimated using
Whittle's (1963) recursive algorithm. This method estimates
the coefficients and the one-step-ahead prediction.error ma -
trix for each successive order. The order p of the model
was chosen such that Akaike’'s (1969a) final prediction error

(FPE) criterion, defined as

FPE(p)= N T(p) |
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is minimized. Here v(p) is the one-step-ahead prediction
error matrix for the p-th order fitted. Models up to a max-
imum order of 15 were tested, but testing was stopped once a
local minimum was found, since Ulrych and Bishop (1975)
found that the first minimum, rather than the overall mini-
mum, gives a good estimate of the order. The maximum order
of 15 was chosen since Gersch and Sharpe (1973} found that
for infinite order AR models, the mean value of the order

that fit the theoretical results was 18.6.

Once the order P and the corresponding AR(p) coefficients
and error matrix V(ﬁ) were found, the power spectrum at each

frequency was estimated by

A -1

S(e)=atlD(R) T () 1D(e eI, £=1,...,64 (3A)

<

where at is the sampling interval (1/128) and

N
]
6(f)=g%K(K) exp(-i2wKkfat). (3B)
The matrices R(K), K=1,...,6 are estimates of the AR coeffi-
cients with '/3(0)=[-1 o],
0+

Since the theoretical order of the AR model is known, the
same calculations were performed for the known order of sev-
en, except the coefficients A(7) and the error matrix V(7)
were used in equations (3A) and (3B). This permits a com-
parison of the results for the true and obtained orders,
that is, the effect of  1incorrect order on sbectral esti-

mates.
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The coherence estimates were then calculated by

A =/ ‘ggz(f)‘z 1/2
R VWY Ty )

where gm(f) is the off-diagonal entry of the matrix g(f) and

f=1,...,64, (4)

represents the cross spectrum between series 1 and 2, and §“
(f) and gzﬁf) are the diagonal values in matrix S(f) and
correspond to the autospectra for series 1 and 2, respec-

tively.

MEM Estimates

The MEM estimates were obtained by the indirect generatli-
zation of Burg’'s a]gor‘ithm.1 Essentially the same routine as
that given in the Appendix of Jones (1978) was used, with
some slight modifications to simplify computation. The rou-
tines were translated from a Fortran listing and simplified
for a bivariate, rather than a general, system. Akaike's
FPE criterion was used instead of the AIC criterion used by
Jones (1978) to estimate the order so that the MEM procedure
would be more comparable with the order selection procedure
used with AR method. As was mentioned in the introduction,
the FPE and AIC criteria are asymptotically equivalent, and
in a preliminary trial I found that both criteria selected

the same orders on the simulated data.

The MEM method estimates the coefficients and the pre-
diction_error matrix similarly to the AR method. Thus spec-

tral estimates were calculated using equations (3A) and (3B)
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with the MEM estimated coefficients and the forward pre-
diction matrix, for selected and known orders, replacing
K(K) and V(p), respectively. Similarly, coherence estimates

were calculated by equation (4).

Estimates of an Adaptive Method of the Kalman Type

The Kalman filter spectral estimates can be obtained from

the univariate analogue of equations (3); that is,

ep (t)
B A . 2
llgoak(t) exp (-aZTkat)l

S(4,t) =

where ﬁk (t) represent  the coefficients which may now be
time-variable, and gP(t) is the residual error of the model
at time t. Again, p is the number of coefficients required
by the model and is analogous to the order 1in AR modeling,

and must be specified.

The method of estimating adaptive time-variable parame-
ters used in this study was based on the UD method proposed
by Bierman (1977). This method involves factoring the co-
variance matrix of the coefficients M, into an upper trian-
gular (U) and a diagonal - (D) matrices, such that M=UDU’.
The routine for this recursive least squares method was
translated from the Fortran listing given in Table 2 in
Clarke (1980), with the forgetting factor set to 0.98 for

all conditions and the order, p, set to 7. Clarke’'s algor-
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ithm of estimating the model coefficients was chosen for its
computational efficiency and numerical stability, and also

because it has been widely used in practice.



RESULTS

The average bias and mean square error (MSE) of the spec-
tral and coherence estimates were calculated from 200 repli-
cations of each condition. The coherence estimates were
first transformed to obtain normally distributed variables
using Fisher’s r to z transform (Brillinger, 1981, pp. 314).
The MSEs were then cailculated for the transformed coherence
estimates. The bias values reported correspond to the actu-

al bias of the original coherence estimates.

Order Selection

The orders estimated by Akaike’s (196%a) FPE criterion,
which was used by both the AR and MEM methods in the various
conditions, are presented in Table 1. In every condition,
stationary and nonstationary of all interval Jlengths, the
MEM method selected higher orders, on the average, than the

AR method.

For the AR method in the stationary conditions, the esti-
mated order was quite Tow (5.065) for the shortest data seg-
ments, but as the sampling interval was lengthened the aver-
age order selected became successively closer to the
theoretical value of 7. The estimated orders of the MEM

method were much closer to the underlying model order in all

_50_
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Order Estimation of the AR(T) Model by the FPE Criterion by

the AR and MEM Methods in All Experimental Conditions

AR Method ~ MEM Method

Condition 0.5 s 1.0s 2.0 s 0.5s 1.0s 2.0 s
Stationary 5.065  6.445  T7.035 6.875 T.04s5  T7.220
Change in Noise Variance at

N/2 5.560 7.475 8.515 9.490 9.375 9.270

N/h4 8.380 10.175 11.120 11.675

N/8 10.025 11.585
Transient Sine Wave Added to

Series 1 L 815 6.360 10.250 T7.165 8.710 12.570

Both series 4.600 6.0L0 11.195 6.630 7.980 12.615
Exponentially (mean=2) Distributed Noise Halfway in

Series 1 h.s525  6.475 9.175 7.090 8.320 10.785

7.210 9.650 12.000

_Both series 4,230

7.160 10.885

Note. Values represent the average orders from 200 replications of

each condition.
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record length conditions, although a slight tendency of the
order estimates to increase as intervals lengthened was
present. In the 2.0 second stationary condition, the MEM
method overestimated the order slightly more (7.220) than
the AR method (7.035).

For the nonstationary series of all tested interval
lengths, the MEM method always overestimated the order, ex-
cept when a transient sine wave was added to both series in
the shortest segments. The AR method in all 0.5 second re-
cord length conditions produced underestimated orders, while
overestimated orders were obtained in all 2.0 second nonsta-
tionary conditions. In the 0.5 second interval lengths, the
MEM method was generally 1éss sensitive to nonstationarities
than the AR method, except when the normal error variance
was changed; in these conditions, the average orders of the
MEM models were more overestimated than those of the AR mod-
els, regardless of record length. In the 2.0 second condi-
tions, for both methods, the average order selected for all

types of nonstationary series was always greater than 7.

Model Coefficient Estimation

Tables 2, 3, and 4 show the mean coefficient estimates,
their bias, and mean square error, respectively, in the sta-
tionary conditions. These values were obtained from estima-
tion by the AR and MEM methods with the order set to the

theoretical value of 7.0, rather than using the optimal or-



Table 2

Mean Estimates (x 100) of Model Coefficients

in the Stationary Conditions
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Theoretical AR Method MEM Method

Values

(x 100) 0.5s 1.0s 2.0s 0.5s 1.0s 2.0s

a(1) 30.23 Wy.01  39.74  36.10 29,21 29.14 29.20

-9.7h ~12.17 -12.20 =11.62 -9.40 -9.08 -9.55

-13.L4h -20.49 -17.65 -16.37 215.63 -13.57 -13.k2

36.1hL 38.51  39.30  37.60 35.93  35.77 35.36

A(2)  13.51 6.0L 9.63 12.60 11.95 12.78 13.85

L.1k 9.23 6.81 5.63 1.73 2.98 3.73

-3.10 3.72 0.01 -1.9%4 -0.58 -2.98 -3.49

12.49 0.90 6.21 9.19 5.02 8.92 10.86

A(3) -T7.03 -3.89 -6.34 -7.68 -5.04 -6.09 -7.13

36.70 32.97 35.02 35.88 37.26  36.51  36.75

8.93 5.70 7.95 8.4k 7.14 7.86 8.1k

~10.78 -T.45 -9.96 -9.88 -9.19 -9.91 -9.73

Alk) -12.79 -16.28 -1k.hh  -1h.22 -16.97 -1h.43 -13.83

3.83 3.2k 2.44 2,52 8.01 6.02 4,90

4. 66 0.77 1.56 3.30 4.02 . o7 k.70

-23.56 -14.33 -18.53 -20.87 -~18.13 -21.86 -22.97

A(5) -14.38 -7.78 -11.21 -12.39 -7.3% -11.32 -12.47

-7.93 -3.84 b2 -T7.59 -6.44 -6.84 -7.28

-2.30 -0.21 -1.85 -1.78 -0.33 -1.61 -1.65

-25.05 -20.89 -—22.77 -23.21 -21.13 -23.20 -23.87

A(6) -18.87 -9.23 -13.11 -15.43 -17.36 -18.32 -18.51

-2.29 -8.41 -4.86 -L.67 “4.32 -2.65 -3.38

-9.h41 -, 19 -6.63 -8.46 -6.45 -7.97 -8.99

-13.53 “14.71 -13.81 -13.61 -14.26 -13.53 -13.h41

A(T7) =19.k2 ~1h.49 -16.25 -17.5k -17.33 -18.64 -19.50

-2.25 .01 -0.26 -0.39 -0.65 -2.13 -1.00

-4, 64 -8,07 -7.11 -6.43 -5.10 -5.34 -5.28

-10.05 ~b.66  -7.09 -8.67 -6.80 -9.16 -9.79
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Table &4

Average Mean Square Error (x 1000) of Model Coefficients

in the Stationary Conditions
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der selected by the FPE criterion, so that the average of
each of the 28 (i.e., 2 x 2 x 7) coefficients can be direct-

ly compared to its theoretical counterpart.

The results show that as the record length was increased,
both the bias and the MSE of each of the coefficient esti;
mates decreased. Almost all of the MEM coefficient esti-
mates were much less biased than those of the AR model, al-
though the MSEs of the two methods’ estimates were quite
similar. For each method and within each data segment
length condition, the MSEs (Table 4) were notably constant
across all coefficient estimates. The variability, MSE and
bias of the 28 coefficient estimates in each stationary con-
dition were averaged together and compared for the two meth-

ods as a function of interval length in Figure 6.

Tables 5, 6, and 7 contain the variability, MSE and bias,
respectively, averaged over the 28 model coefficients esti-
mated in each of the nonstationary conditions. As in the
stationary case, in all nonstationary conditions as the sam-
pling interval lengthened, the variabi]ity, MSE and the bias

decreased.

Both methods estimated the coefficients very similarly in
the nonstationary conditions. In each experimental condi-
tion, the variability and MSE (Tables 5 and 6, respectively)
were almost identical for the two methods; the average bi-

ases (Table 7) of the MEM coefficients were about half the
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Figure 6. Comparison of the properties of model coefficient estimates
obtained by the AR (4) and MEM () methods from stationary series as a
function of interval length, averaged over all T x 2 x 2 coefficients.
The mean ( S.E.) variability is shown in part (a), MSE in (b), and

bias in (c).
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Table 5
Averaged Variability (x 1000) of Model Coefficients

in A1l Experimental Conditions

" AR Method MEM Method
Condition 0.5 s 1.0 s 2.0 s 0.5 s 1.0 s 2.0 s
Stationary 18.9 8.5 4.3 21.7 8.8 h.2
(3.4) (1.3) (0.5) (2.9) (1.0) (0.%)

Change in Noise Variance at

N/2 32.1 15.2 7.2 35.2 15.0 6.9
(7.5) (2.7) (1.1) (6.7) (2.1) (1.0)

N/b 20.3 10.6 20.5 10.1
(L.4) (2.4) (2.9) (1.5)

N/8 11.3 10.1
(2.5) (1.4)

Transient Sine Wave Added to

Series 1 23.8 114 5.6 29,4 12.5 5.8
(10.5) (4.9) (2.1) (13.1) (5.5) (2.3)

Both series 23.9 11.1 5.6 29.8 12.5 . 5.9
(6.5) (2.6) (1.2) (71.5) (2.8) (1.3)

Exponentially (mean=2) Distributed Noise Halfway in

Series 1 26.2 12.9 6.5 32.8 14.3 6.8
(18.2) (9.3) (4.7) (23.8) (10.7) (5.0)

Both series 27.1 13.h 6.6 31.h4 .4 6.6
(2.9) (1.2) (1.0) (3.0) (1.2)

(7.7)

‘Note. The numbers in brackets indicate the standard error (x 1000)

in averaging all 28 coefficients in each condition.
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Average Mean Square Error (x 1000) of Model Coefficient Estimates

in All Experimental Conditions

AR Method MEM Method
Condition 0.5 s 1.0 s 2.0 0.5 s 1.0 s 2.0 s
Stationary 22.5 9.7 h.7 22.5 9.0 4.3
(5.5) (2.4) (0.9) (3.0) (1.0) (0.5)
Change in Noise Variance at
N/2 34.8 16.3 7.7 36.1 15.2 7.0
(71.5) (3.5) (1.8) (6.%) (2.0) (1.0)
N/k 22.0 11.3 20.9 10.2
(5.0) (3.1) (2.8) (1.5)
N/8 12.5 10.3
(3.9) (1.4)
Transient Sine Wave Added to
Series 1 48.0 33.3 25.4 52k 31.0 25.6
(88.7) (78.9) (65.8) (82.8) (7k.2) (63.9)
Both series k9.3 33.3  25.1 52.7  34.0 25.3
(59.1) (46.7) (34.7) (51.2) (%0.7) (31.7)
Exponentially (mean=2) Distributed Noise Halfway in
Series 1 31.6 16.6 10.1 36.6 17.6 10.4
(19.7) (12.9) (10.9) (24.3) (13.5) (10.9)
Both series 34.8 20.7 1kh.0 38.3 20.9  13.6
(10.5) (9.7)  (9.4) (8.5) (6.5) (71.4)
" 'Note. The numbers in brackets indicate the standard error (x 1000)

in averaging the MSE of all 28 coefficients in each condition.
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Table T
Averaged Bias (x 1000) of Model Coefficient Estimates

in A1l Experimental Conditions

AR Method ' MEM Method
Condition 0.5 s 1.0 s 2.0 s 0.5 s 1.0 s 2.0 s
Stationary 13.6 6.5 3.0 6.3 2.0 0.8
(59.8) (3k.5) (20.6) (30.1) (23.3) (8.2)
Change in Noise Variance at
N/2 22.53  10.7 5.8 15.7 5.0 2.7
(Lo.s) (33.4) (24.3) (30.0) (15.8) (8.9)
N/b 13.8 8.8 7.7 3.7
(4ko.9) (26.8) (20.5) (10.8)
N/8 11,53 5.1
(34.6) (12.1)
Transient Sine Wave Added to
Series 1 52.4 48.1 k6.9 34,1 36.54 40.5

(149.8) (1k2.4) (135.3) (151.1) (14s5.1) (137.2)

Both series 88.8 87.9 86.9 88.7 87.9 86.9
(135.4) (122.7) (111.6) (125.6) (119.8) (110.8)

Exponentially (mean=2) Distributed Noise Halfway in

Series 1 28.6  20.0  15.6 22.8  15.1  12.6
(69.7) (59.0) (59.1) (59.9) (57.0) (60.4)
Both series 66.6 58.9 57.7 68.0 59,2 57.9

(59.7) (63.9) (65.3) (49.4) (s56.5) (61.7)

Note. The numbers in brackets indicate the standard error (x 1000)

in averaging the bias of all 28 coefficients obtained in each condition.
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size of the biases of the AR estimates in the stationary and
change of normal variance conditions. When a half of one or
both series contained exponentially distributed noise and
when one of both series contained a transient sine wave, the
biases of the two methods’ estimates were much larger but

more similar for the two methods.

For both methods, the stationary estimates were the least
variable and had the smallest MSEs and biases. The change-
in-variance nonstationary conditions resulted in the most
variable coefficients, although the variabilities were simi-
lar across all conditions for the same interval length (Ta-
ble 5). The addition of a transient sine wave to either one
or both series resulted in the highest MSE 1in the averaged
coefficient; however, for both methods, the largest bias
was observed when both series contained the transient. Sim-
ilarly, when the series contained exponentially distributed
error, a1tthgh the MSEs were similar whether one or both
Series were nonstationary, the bias was much higher when

both series were nonstationary.

When a transient sine wave was added to series 1, the

greatest increase 1in MSE occurred in the first order A(1)"

coefficient; adding a sine wave to both series increased

the MSE primarily in the first order A(1),, and A(1),, coef-

22
ficients.
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Spectral and Coherence Estimates

Stationary Series

The theoretical spectral values for frequencies greater
than 20 Hz indicate only noise present (see Figure 4 on page
40) . Thus results in the Tables are reported for frequen-
cies 1 to 20 Hz since these are of primary interest. Al-
though the AR and MEM estimates were obtained from models
where the optimal order was selected by the FPE criterion as
well as from models of the Known order of 7, the results
show that the estimates from both sets of models and their
properties were very similar. Tables 8 and 9 show the bias
and MSE, respectively, of the AR estimates obtained from the
0.5 second stationary series as an example. Results for the
spectra and coherence estimates of the other methods were
very similar. Increasing the record length makes these dif-
ferences generally even smaller, therefore only results with
the optimal order estimated will be reported, since those

would be the estimates obtained in practice.

The adaptive method of the Kalman type performed rela-
tively poorly in comparison with the AR and MEM, and FFT
methods in all conditions. Thus, since the performance of
these estimates was similar across all conditions, the spec-
tral estimates of the adaptive method will only be briefly -

reported for the stationary series.



Table 8

Bias (x 10) of AR Spectral and Coherence Estimates

from 0.5 sec Segments Obtained from Models

with Estimated Orders (p) and from

Models Using p=T
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Series 1 Series 2 Coherence
freq D p=T P p=T P p=T
1 0.152 0.081 0.072 0.04k 2.683 3.058
2 0.158 0.086 0.075 0.046 2.722 3.0kh
3 0.171 0.096 0.080 0.050 2.737 2.982
4 0.191 0.112 0.087 0.056 2.705 2.852
5 0.222 0.1ko0 0.098 0.065 2.604 2.639
6 0.271 0.189 0.117 0.082 2.h411 2.325
7 0.349 0.285 0.1L48 0.113 2.076 1.871
8 0.465 0.499 0.209 0.189 1.502 1.248
9 0.08k4 0.600 0.316 0.ho7 0.352 0.222
10 -9.003 -T7.681 0.281 0.517 -0.700  -0.730
11 -1.292  -0.304 1.055 1.651 -0.522  -0.532
12 -36.660 -35.633 -34.181 -32.569 -0.809 -0.758
13 2.262 1.93k4 1.675 1.620 -0.148  -0.065
1h 0.957 0.798 0.707 0.645 0.361 0.531
15 0.502 0.k15 0.361 0.307 0.602 0.897
16 0.304 0.258 0.213 0.175 0.685 1.129
17 0.204 0.182 0.1h41 0.11k 0.698 1.287
18 0.1h7 0.140 0.100 0.081 0.691 1.ho02
19 0.111 0.11k 0.175 0.061 0.690 1.488
20 0.087 0.097 0.058 0.049 0.71k 1.555
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MSE of Stationary AR Spectral and Transformed Coherence Estimates

(of 0.5 sec segments) Obtained from Models with Estimated

Orders (L) and from Model of Order 7 (p=T)

Series 1 Series 2 Coherence
freq s p=T 5 p=T 5 p=T
(x 1000) (x 1000) (x 10)
1 0.h4 0.2 0.1 0.1 1.38 2.03
2 0.4 0.2 0.1 0.1 1.39 1.96
3 0.5 0.2 0.2 0.1 1.h42 1.86
L 0.6 0.3 0.2 0.1 1.47 1.7h
5 0.9 0.5 0.2 0.1 1.55 1.61
6 1.3 0.8 0.3 0.2 1.68 1.50
7 2.5 2.0 0.6 0.4 1.87 1.49
8 7.0 8.k 1.3 1.3 2.12 1.69
9 36,0 66.8 1 5.5 9.9 2.18 1.98
10 1072.3 990.9 27.9 37.9 2.88 2.68
11 670. 4 897.0 196.0 288.1 3.97 3.98
12 14649.3  1k30k.4 12708.3 12076.9 15.15 14.23
13 1Lh.6 111.9 12k k 103.8 2.90 2.79
1k 15.8 13.1 11.6 10.2 2.35 2.48
15 h.1 3.2 2.6 2.0 1.98 2.26
16 1.5 1.2 0.9 0.6 1.67 2.06
17 0.7 0.6 0.h4 0.3 1,45 1.91
18 0.4 0.3 0.2 0.1 1.30 1.79
19 0.2 0.2 0.1 0.1 1.18 1.70
20 0.1 0.2 0.1 0.1 1.09 1.63
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Comparison of spectra. The estimates of the spectra of

series 1 and 2 in the three segment length conditions are
presented in Figure 7 for those estimates obtained by the AR
method, and in Figure 8 for those estimated by MEM. The two
methods produced very similar estimates, although in all re-
cord length conditions the MEM estimates of both series were
very slightly Jless biased than the AR spectral estimates.
As the interval length increased, both sets of estimates be-
came less biased. In the 0.5 second intervals, both methods
failed to detect the smaller peak at 10 Hz in series 1;
with each record length increase, this smaller peak was es-

timated with successively less bias.

The spectral estimates of the stationary series obtained
by the adaptive method are shown in Figure 9. This method
consistently estimated the 12 Hz major peak of series 1 at
11 Hz, and with an equal bias regardless of record length.
Results for series 2 were Jless satisfactory; although the
position of the peak of series 2 was estimated accurately at
12 Hz in all three length conditions, the bias of these es-
timates was very large, particularly as the intervals
lengthened to 1.0 and 2.0 seconds. The average bias was
-0.517 for 0.5 second intervals, 7.967 for 1.0 second inter-
vals, and 13.758 for 2.0 second intervals at the 12 Hz fre-

quency .

The mean spectral estimates for both series and their av-

erage bias obtained by the FFT method are presented in Table
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Figure 7. Spectral estimates obtained by the AR method from stationary

0.5 second (a), 1.0 second (#), and 2.0 second (°) segments for series 1

(top) and for series 2 (bottom).
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Figure 8. Spectral estimates obtained by the MEM method from stationary
0.5 second (&), 1.0 second (8), and 2.0 second (©) segments for series 1

(top) and for series 2 (bottom).
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Figure 9. Spectral estimates obtained by the adaptive method of the
Kalman type from stationary 0.5 second (&), 1.0 second (8), and 2.0
second (o) segments for series 1 (left panel) and for series 2 (right

panel).
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Table 10

Mean Estimates and Bias of Spectra and Coherences from

Stationary Data Obtained by the FFT Method

69

Theore- Mean Bias
freq tical
band value 0.5 s 1.0 s 2.0 s 0.5 s 1.0.s 2.0 s
Series 1
5 1.16 7.38 2.80 1.78 6.22 1.64 0.62
10 143.98 21.99 59.44  T77.52 -121.99 -8k.5L4 -66.4T
15 hoTT 3.37 6.41  10.32 -1.h41 1.63 5,54
20 0.66 2.98 1.92 1.55 2.31 1.26 0.39
25 0.62 1.16 0.69 0.62 0.54 - 0.07 0.01
Series 2
5 0.81 3.62 1.76 1.03 2.80 0.94 0.22
10 96,17 15.75 Lo.67 49.18 -80.42 -55.50 -46.99
15 5.99 3.30 5.0%4 8.66 -2.69 -=0.95 2.67
20 0.67 2.48 1.70 0.95 1.81 1.02 0.27
25 0.k2 0.90 0.46 0.k .48 0.04 -0.03
. .Coherence
5 14,48 6k.sh  61.37 L45.16 50.06 46.90 30.68
10 75.75 Th.64  76.19  T75.11 £ 21.10 0.44  ~0.6L4
15 Th.13 79.94  80.22  86.79 5.81 6.09 12.66
20 48,16 84.24 76.88 64.53 36.08 28.73 16.37
25 21.30 67.02 52.59 45,38 45.73  31.29 24,08

Note.

Tabled values

are obtained values x 100.
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10. For both series, the greatest bias occurred in the 10
Hz frequency band in the shortest (0.5 second) intervals.
As the record length was increased, the bias of these esti-
mates generally decreased in all frequency bands, except in
the 15 Hz band where the bias of both series increased with

record length.

The MSE of the spectral estimates obtained by all four
estimation methods are presented in Table 11. The spectral
estimates of all four methods had the greatest MSE in the 12
Hz peak regions of both series. Although the MSEs of the
MEM estimates were slightly smaller than those of the AR es-
timates in the frequencies with low or no power, the AR es-
timates had marginally smaller MSEs where power was present,
that is, at 10 and 12 Hz in series 1, and at 12 Hz in series
2. The MSEs of the FFT spectral estimates were quite compa-
rable to the MSEs of the AR and MEM estimates. The adaptive
method’' s estimates had MSEs that were orders of magnitude
larger than the estimates of the other methods in the 10 to
13 Hz frequency region, and particularly in the estimates of
series 2 from the longer, 1.0 and 2.0 second, record length

conditions.

Comparing the results of the spectral estimates for the
different interval 1lengths, the MSEs of all four methods
generally decreased with each increase in interval length.
The most notable exceptions occurred in the frequencies

where the series contained the most power. The MSE of AR



71

Table 11
Mean Square Error (x 10) of Spectral Estimates Obtained by

the Four Methods of Estimation from Stationary Data

AR Method MEM Method
freq 0.5 s 1.0 s 2.0 s 0.5 s 1.0 s 2.0 s
Series 1
5 0.01 0.0 0.0 0.01 0.0 0.0
6 0.01 0.0 0.0 0.0 0.0 0.0
7 0.03 0.01 0.0 0.0 0.0 0.0
8 0.07 0.02 0.01 0.02 0.0 0.0
9 0.36 0.15 0.10 0.4k 0.13 0.08
10 10.72 12.91 8.97 12.36 13.75 10.81
11 6.70 4.08 2.48 10.53 2.73 1.99
12 1h6.49 127.69 158.25 145,52 211.08 179.48
13 1.45 0.39 0.10 1.07 0.09 0.03
1h 0.16 0.03 0.01 0.03 0.0 0.0
15 0.0k 0.01 0.0 0.0 0.0 0.0
Series 2
5 0.0 0.0 0.0 0.0 0.0 0.0
6 0.0 0.0 0.0 0.0 0.0 0.0
7 0.01 0.0 0.0 0.0 0.0 0.0
8 0.01 0.0 0.0 0.0 0.0 0.0
9 0.06 0.02 0.01 0.0L 0.01 0.0
10 0.28 0.23 0.11 0.21 0.19 0.11
11 1.96 0.85 0.40 1.61 0,35 0.23
12 127.08 108.16 130.75 125,65 171.23 151.53
13 1.2k 0.38 0.09 1.21 0.13 0.04
1k 0.12 0.03 0.01 0.03 0.01 0.0
15 0.03 0.01 0.0 0.01 0.0 0.0

(con't.)
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Table 11 (con't.)

" FFT Method Adaptive Method
freq 0.5 s 1.0 s 2.0 s 0.5 s 1.0 s 2.0 s
Series 1
5 0.07 0.01 0.0 0.01 0.01 0.0
6 0.01 0.01 0.01
7 0.02 0.03 0.02
8 0.05 0.09 0.0k
9 0.34 0.7k 0.35
10 15.10 9.49 7.52 b4 45.19 16.43
11 7282.47  4806.88  5960.06
12 196.65 343.65 392.47
13 41,7k 3.32 0.84
1k 0.35 0.11 0.09
15 0.01 0.02 0.08 0.05 0.03 0.03
16 0.02 0.01 0.01
17 0.01 0.01 0.01
18 0.01 0.0 0.0
19 0.0 0.0 0.0
20 0.01 0.0 0.0 0.0 0.0 0.0
Series 2
5 0.01 0.0 0.0 0.0 0.0 0.0
6 0.01 0.0 0.0
7 0.01 0.0 0.01
8 0.02 0.01 0.01
9 0.06 0.04 0.04
10 6.63 L. 62 k.35 0.57 0.27 0.27
11 81.08 16.00 11.59
12 1625.52 103416.63 189131.67
13 6.96 4.69 0.82
1k 0.1k 0.12 0.08
15 0.01 0.01 0.0k 0.03 0.02 0.02
16 0.01 0.01 0.01
17 0.0 0.0 0.01
18 0.0 0.0 0.0
19 0.0 0.0 0.0
20 0.01 0.0 0,0 0.0 0.0 0.0
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estimates at 12 Hz were largest in the 2.0 second conditions
and smallest in the estimates from 1.0 second intervals, in
both series. For the MEM estimates of both series in the 12
Hz frequency, the largest MSEs were obtained from the 1.0
second intervals and the smallest MSEs were obtained from
0.5 second intervals. For the FFT estimates, the MSE in-
creased with each increase in record length in the 15 Hz
frequency band 1in both series; this increase in the MSE
seems to reflect the increasing bias of the FFT estimates in

this frequency band.

For the FFT spectral estimates, over 50 percent of the
MSE in the 10 Hz band estimates of all length conditions was
accounted for by squared bias. In the 0.5 second condi-
tions, the squared bias accounted for about 98 percent of
the MSE of the 10 Hz estimate in series 1, and for about 97
percent in series 2. The percentage decreased with increas-
ing lengths, and in the 2.0 second condition the MSE of the
10 Hz estimates consisted of 59 and 51 percent of squared
bias in series 1 and series 2 estimates, respectively. In
the 15 Hz band the behaviour was less regular; in the se-
ries 1 estimate, about 28, 12 and 38 percent of the MSE was
due to squared bias as the records lengthened from 0.5 to
1.0 to 2.0 seconds, respectively, and in the series 2 esti-
mate these percentages were 60, 8, and 17, respectively. In
the other frequency bands, where only noise was present in
the spectra the percentages of the MSEs accounted for by the

squared bias ranged from less than one to about 64 percent.
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The MSEs of the AR and MEM spectral estimates at the 12

Hz frequency also contained a large percentage of squared
bias in the shortest interval condition. For both methods,
this percentage dropped off dramatically with increasing in-
terval length. The MSEs of the AR estimates of both series’
12 Hz peak consisted of 92 percent in the 0.5 second inter-
vals which decreased to 12 percent in the series 1 estimate
and to 14 percent in the series 2 estimate from the 2.0 sec-
ond segments. The squared bias accounted for slightly less
of the MSE of the MEM 12 Hz estimates compared to the AR and
FFT estimates, decreasing from about 78 percent in the shor-

test segments to about 8 percent in the 2.0 second segments.

For the AR and MEM estimates in the other frequencies,
the percentages of MSE due to squared bias again ranged from

less than one to about 62 percent.

Comparison of coherence estimates. The mean coherence

estimates of stationary data obtained by the FFT method are
presented at the bottom of Table 10 along with the average
bias of these estimates. Although the spectral estimates of
both series had the greatest bias in the 10 Hz frequency
band of the shortest segments, the coherence estimates in
this band were the least biased. As with the spectral esti-
mates, bias of the FFT coherence estimates decreased with
increasing record length, except in the 15 Hz frequency band

estimates.
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IFigures 10 and 11 show the stationary coherence estimates
obtained by the AR and MEM methods, respectively. Again, as
the record length was increased, the AR and MEM coherence
estimates generally became less biased over the whole curve.
The MEM method approximated the peak of the coherence curve
slightly more accurately than the AR method for the shorter
(0.5 and 1.0 second) segments, although by the 2.0 second

condition, the two methods produced very similar estimates.

Table 12 presents the MSEs of the transformed coherence
estimates of the stationary data obtained by the three esti-
mation methods. These results show that for all methods the
MSE of the transformed coherence estimates decreased with
each increase in series length. The MSEs of the AR and MEM
estimates were largest around the 12 Hz frequency in all
three length conditions. Similarly, the MSEs of the FFT es-
timates from 2.0 second segments were the largest in the 10
and 15 Hz bands, but in the shorter, 0.5 and 1.0 second,
conditions these MSEs were the smallest. In the 0.5 second
stationary conditions, the MEM transformed coherence esti-
mates had greater MSEs than the AR transformed coherence es-
timates at all frequency values, except at the 12 Hz peak
where the MSE of the MEM estimate (1.062) was not as Targe
as that of the AR estimate (1.515).

As an indication of how the tabled MSEs for the trans-
formed coherences translate to the actual MSE of the origi-

nal coherence estimates, the tabled value of 1.062 corre-
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Figure 10. Coherence estimates obtained by the AR method from

stationary 0.5 second (4), 1.0 second (@), and 2.0 second (o) segments.
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Figure 11. Coherence estimates obtained by the MEM method from

stationary 0.5 second (A), 1.0 second (B), and 2.0 second (o) segments.
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Table 12

MSE (x 10) of Transformed Coherence Estimates Obtained from Stationary Data

0.5 s Segments 1.0 s Segments 2.0 s Segments

freq FFT AR MEM FFT AR MEM FFT AR MEM
1 1.381 1.902 0.90L 0.557 0.446 0.221
2 1.389 1.884 0.846 0.521 0.391 0.190
3 1.416 1.950 0.763 0.484 0.315 0.159
Y 1.468 2.072 0.659 0.452 0.227 0.140
5 7.790 1.553 2.130 5.520 0.546 0.k27 2.085 0.1k49 0.1h1
6 1.681 2,212 0.k4k9 0.421 0.111 0.163
7 1.869 2.472 0.417 0.472 0.156 0.212
8 2,119 2.859 0.5540 0.638 0.31k 0.316
9 2.175 3.354 1.076 1.176 0.720 0.639
10 3.6k4k2 2.875 3.601 2.5542 2.169 2.395 2.420 1.638 1.569
11 3.968 4,565 1.582 1.795 0.927 0.962
12 15.150 10.619 8.826 6.088 5,103 3.782
13 2.904 3.300 1.106 1.090 0.484 0.383
1k 2.354 2,542 0.870 0.819 0.391 0.253
15 3.535 1.977 2.104 2.359 0.779 0.666 3.188 0.363 0.205
16 1.673 1.729 0.728 0.58L 0.3L46 0.183
17 1.454 1.557 0.693 0.515 0.335 0.175
18 1.298 1.487 0.666 0.476 0.327 0.176
19 1.183 1.411 0.645 0.459 0.321 0.180
20 13.052 1,091 1.285 5.390 0.628 0.4k2 2.069 0.318 0.187
21 1.018 1.242 0.616 0.426 0.317 0.194
22 0.978 1.117 0.609 0.418 0.319 0.200
23 0.97k 1.168 0.618 0.k27 0.325 0.208
2L 1.024 1.328 0.645 0.452 0.329 0.218
25 7.379 1.158 1.700 2.889 0.697 0.518 1.562 0.342 0.230

LL
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sponds to an actual MSE of 0.786 for the 0.5 second 12 Hz
MEM estimate, and 1.515 corresponds to an actual MSE of
0.908 for this AR estimate. In the noise regions, where the
MSEs are usually much smaller, the tabled values for the
transformed coherence estimates correspond very closely to

the actual MSEs of the original coherence estimates.

As the record length increased to 1.0 and 2.0 seconds,
the MSE. of the MEM estimates became smaller than those of
the AR transformed coherences at almost all frequencies. In
the 2.0 second intervals, the actual MSE corresponding to
the tabled value of 0.5103 for the AR estimate 1is 0.4702,
and the actual MSE of the 12 Hz MEM estimate 1is 0.3611.
Thus with longer epoch lengths, the MEM estimates seem to

become better than the AR estimates, in terms of their MSE.

The MSE of the FFT transformed estimates was similar to
the MSE of the AR and MEM estimates only in the 10 Hz re-
gion; elsewhere the MSEs of the transformed FFT estimates
were about an order of magnitude larger. The actual MSE of
the 10 Hz FFT coherence estimate from 2.0 second intervals,
corresponding to the tabled value of 0.242, is 0.2374. The
FFT method failed to produce the major coherence peak at 12
Hz, which should have appeared in the 10 and 15 Hz band (see
theoretical FFT coherences in Table 10), and overestimated
the coherences in the higher frequency bands, which resulted
in comparatively large MSEs, particularly in the shortest

segment lengths.
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As with the bias of the FFT estimates, the MSE of the FFT
spectra was highest in the 10 Hz band, even though the MSE
of the FFT coherence estimates in the 10 Hz band were amohg
the smallest. In contrast, the AR and MEM methods generated
spectral as well as coherence estimates with the largest MSE
at 12 Hz, relative to the MSE of the estimates in the other

frequencies.

In the power peak region, squared bias accounted for less
than 10 percent of the MSE of the transformed coherence es-
timates obtained with all three estimation methods in all
segment length conditions. For the FFT 10 Hz coherence es-
timates, and for the AR and MEM coherences in the 11 to 14
Hz inclusive range, less than one percent of the MSE was due
to squared bias. In the other noise frequency ranges, the
percentage of squared bias in the MSE ranged from =zero to
about 60 percent, for all three methods in all segment

length conditions.

Coherence Estimates from Nonstationary Series

Changes in the variance of normally distributed error.

Estimates of the coherence function obtained in the nonsta-
tionary conditions where the variance of the noise used to
generate the data was changed from [g ﬂ to [g g] halfway in
the sampling epoch are shown in Figure 12 for the AR method
and in Figure 13 for the MEM method. While the MEM method
can estimate the peak value of the coherence function at 12

Hz slightly better than the AR method for each segment
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ipure 12. Coherence estimates of the AR method obtained from data with

Figure lc

the noise variance changed halfway in the 0.5 second (A), 1.0 second (m),

and 2.0 second (©) intervals.
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Figure 13. Coherence estimates of the MEM method obtained from data with

the noise variance changed halfway in the 0.5 second (&), 1.0 second (B),

and 2.0 second (o) intervals.
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length, it overestimates more the values at frequencies
where the coherences are small, particularly in the shortest

intervals.

The FFT coherence estimates and their average bias ob-
tained in all of the change of variance nonstationary condi-
tions are presented in Table 13. Comparing the FFT esti-
mates across record length for the first condition where the
variance was changed halfway through the interval, at N/2,
the estimates in the 10 and 15 Hz frequency bands became
more biased with increasing record length; in the 10 Hz
band the estimates tended to be progressively more underes-
timated as indicated by the increased negative bias, while
the estimates in the 15 Hz band were increasingly overesti-
mated. Compared to the stationary FFT coherence estimates
(see bottom of Table 10), the biases of these nonstationary

estimates were generally very similar.

The MSEs for the transformed coherence estimates of the
three methods in these nonstationary conditions are present-
ed in Table 14. The MSEs of the nonstationary FFT coherenc-
es were generally quite comparable to the MSEs obtained for
the stationary series, particularly in the region of the co-
herence peak in all interval length conditions (compare with
Table 12). The differences between stationary and nonsta-
tionary estimates in the noise region were not always in the
same direction;  for example, in the 5 Hz frequency band of

0.5 second segments, the stationary transformed FFT esti-



Table 13
Mean FFT Coherence Estimates x 100 (and Bias x 100) When

the Noise Variance was Changed from {é ﬂ to [g g]

Segment Length

freq
Condition band 0.5 s 1.0 s 2.0 s
Noise Variance 5 75.30 57.60 45,01
Changed at N/2 (60.82) (43.13) (30.53)
10 75.21 73.37 73.05
(-0.54) (-2.38) (-2.70)
15 78.15 80.12 86.56
(4.01) (5.98) (12.42)
20 79.25 T72. 7k 61.67
(31.10) (24.58) (13.51)
25 66,42 55.65 5,02
(h5.12) (34.35) (23.72)
Noise Variance 5 60.45 45,94
Changed at N/L (45.98) (31.46)
10 75.67 75.79
(-0.07) (0.0k4)
15 81.19 8L, 82
(7.05) (10.69)
20 72.92 6L . 8L
(2h.17) (16.69)
25 60.03 48.34
(38.74) (27.04)
Noise Variance 5 4o, 8l
Changed at N/8 (28.37)
10 75.35
(-0.40)
15 : 85.36
(11.23)
20 6L4.56
(16.42)
25 47.03

(25.73)



Table 1k

'MSE x 10 of Transformed Coherences When the noise Variance was Changed Halfway in the Segments

0.5 s Segments 1.0 s Segments 2.0 s Segments

freq FFT AR MEM FFT AR MEM FFT AR MEM
1 2.957 L.055 2.172 1.834 1.076 0.660
2 3.070 4,285 2.081 1.778 1.037 0.624
3 3.267 4,837 1.948 1.75k 0.966 0.586
h 3.550 5.673 1.782 1.743 0.852 0.552
5 12.49L 3.913 5.71k L. L28 1.600 1.6L7 2.043 0.701 0.527
6 k.333 5.456 1.411 1.451 0.538 0.516
7 4,745 5.901 1.309 1.453 0.4h4s5 0.545
8 5.025 6.668 1.406 1.869 0.506 0.671
9 L.594 7.340 1.692 2.543 0.961 1.052
10 3.352 3.971 6.410 2,838 2.510 3.247 2.608 1.934 2.233
11 5.151 8.971 3.369 L.19kL 1.785 1.976
12 18.369 14,347 12.018 9.622 T.437 5.646
13 3.981 6.38L4 2.205 2.451 1.086 0.919
1k 4, 362 6.641 2.088 1.992 0.977 0.75k
15 3.833 L. o4t 5.253 2.097 1.851 1.695 3.157 0.961 0.681
16 3.495 4,534 1.609 1.537 0.948 0.647
17 2.973 3.815 1.h451 1.463 0.906 0.626
18 2.533 3.501 1.356 1,44y 0.854 0.593
19 2.185 3.575 1.272 1.348 0.799 0.564
20 9.257 1.959 3.777 5.256 1.219 1.202 1.670 0.748 0.531
21 1.830 3.968 1.209 1.086 0.714 0.522
22 1.790 4,120 1.211 1.0LL 0.70L 0.522
23 1.810 4,315 1.223 1.09L 0.715 0.521
2L 1.861 4,673 1.33k 1.346 0.758 0.576
25 8.289 2.055 5.716 3.628 1.519 1.759 1.798 0.813 0.669

%8
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mates had a MSE of 0.779 compared with the nonstationary es-
timate’'s MSE of 1.248, but in the 20 Hz band the nonstation-
ary transformed estimate had a smaller MSE (0.926) than the
stationary one (1.305). As the record length was increased,
the MSEs of the nonstationary FFT estimates in the noise re-
gions became very similar to those obtained for stationary

estimates.

Compared to the MSE of the ‘stationary estimates, the
nonstationary transformed coherence estimates of both AR and
MEM methods had consistently greater MSEs in all interval
length conditions. The MSEs of the AR and MEM transformed
nonstationary estimates were at least twice as large than
they were in the stationary conditions, except at the 10 and
12 Hz frequencies where the MSEs of the nonstationary esti-

mates were only slightly larger.

The tabled MSEs of the AR 12 Hz estimates of 1.837,1.202,
and 0.744 from the 0.5, 1.0, and 2.0 second intervals, re-
spectively, correspond to actual MSEs of 0.951, 0.834, and
0.652. For the corresponding MEM estimates, the actual MSEs
are 0.893, 0.745, and 0.511.

Although the MSE of the FFT transformed estimates gener-
ally decreased with interval length, this decrease was much
more gradual in the 10 Hz frequency band than 1in the other
frequency bands. In the 0.5 second condition, the MSEs in

the 10 and 15 Hz - bands were the smallest than in all the



86
other bands, while in the 1.0 second conditions these MSEs
were within the range of the others, and in the 2.0 second
condition they were larger than all those in the other fre-

quency bands.

In the noise regions of the coherence function obtained
from intervals of all tested lengths, the MSEs of the FFT
nonstationary transformed estimates were Tlarger than the
MSEs of the MEM estimates, while the MEM estimates generally
had greater MSEs than the AR estimates. In the 10 Hz range,
the MSE of the FFT coherences from the shortest segments was
the smallest when compared to the AR and MEM estimates.
With longer intervals the MSEs of the FFT 10 Hz transformed
estimates decreased more gradually and became close to the
MSEs of the AR and MEM estimates. In the 15 Hz range, the
same was true in the 0.5 and 1.0 second conditions, however,
the MSE of the 15 Hz estimate from 2.0 second segments was

considerably larger than the AR and MEM MSEs in this range.

Comparing the MSEs of the AR and MEM transformed esti-
mates, in the 0.5 second condition the MEM estimates had
larger MSEs than the AR estimates at all frequencies except
at 12 Hi where the MSE of the MEM estiméte was smaller than
that of the AR estimate. In the longer interval conditions,
the MSEs of the AR and MEM estimates were more similar to
each other and generally smaller than the MSEs of the FFT
estimates. In the 1.0 second condition, the MSEs of the AR

and MEM estimates were almost identical. The MSEs of the
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MEM estimates in the 2.0 second condition were everywhere
smaller than those of the AR estimates except in the 7 to 11

Hz range.

Figures 14 and 15 present the AR and MEM coherence esti-
mates, respectively, obtained in each different interval
length condition, and with the variance of the input noise
changed for different proportions of the data Segment; that
is, always the last 32 data points, regardless of interval

length, were generated with S=[ 0]. Both methods produced

3 9
estimates that were more biased across the entire frequency
range than those when the variance was changed consistently
halfway for all interval lengths. Comparison of the diago-
nal entries in Table 13 indicates that the bias of the FFT
estimates again increased with increasing interval length in
the 15 Hz frequency band where the FFT estimates were pro-
gressively more overestimated. At 10 Hz, the bias of the
FFT estimates remained very low regardless of the amount of
nonstationary data, while in all other frequency bands the

bias decreased with increasing interval length and the de-

creasing relative amount of nonstationary data.

These nonstationary estimates may also be compared for
the effects of changing the proportion of nonstationary data
for a fixed segment length. For the 2.0 second segments,
there are three conditions where the variance of the input
noise was changed at different times in the segment; (a)

halfway for N/2 (128) data points, (b) for N/4 (64) data
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Figure 1k. Coherence estimates of the AR method obtained from data with
the noise variance changed for the last 32 data points inbthe 0.5 sec-
ond (A), 1.0 second (B), and 2.0 second (0) intervals. (In the 0.5
second interval, the change was made for half of the segment; in. the
1.0 second interval for a quarter; and in the 2.0 second interval for

the last eighth of the segment.)
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Figure 15. Coherence estimates of the MEM method obtained from data with
the noise variance changed for the last 32 data points in the 0.5 sec-
ond (A), 1.0 second (B), and 2.0 second (0) intervals. (In the 0.5
second interval, the change was made for half of the segment; in the

1.0 second interval, for a quarter; and in the 2,0 second interval

for the last eighth of the segment.)
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points, and (c) for N/8 (32) data points. In Table 13, the
2.0 second column cohpares the FFT estimates and their bias
over these three conditions. These estimates are very simi-
lar compared over the nonstationary conditions, and also
véry similar to FFT coherence estimates of completely sta-
tionary series (compare with Table 10). Figure 16 compares
the AR and MEM estimates obtained from 2.0 second intervals
in which the variance was changed for half and for the last
eighth of the series. The coherence peak was estimated al-
most identically regardless of the amount of data that was
changed, when the same method of estimation was used. The
tails of the coherence function were estimated with Tess
bias by both AR and MEM methods when the variance was
changed for an entire half of the segment, rather than for
the smaller amounts. Overall, the MEM estimates were gener-
ally marginally less biased than the AR estimates 1in the
peak region of the coherence function under these condi-

tions.

The MSEs of the transformed coherence estimates of the
three Kinds of 2.0 second nonstationary segments are given
in Table 15. As the number of data points that were nonsta-
tionary decreased (from a half to a quarter to an eighth of
the segment), the MSEs of the FFT transformed estimates re-
mained relatively constant within each freguency band and
also very similar to the respective FFT estimates obtained

in the 2.0 second stationary condition (see Table 12). The
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Figure 16. Coherence estimates from 2.0 second segments obtained by the
AR method (triangles) and the MEM method (squares) where the noise
variance was changed for half of the segment (open symbols) or for

an eighth of the segment (solid symbols).
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Table 15

MSE x 10 of Transformed Coherences from 2.0-sec Segments with Noise Variance Changed at Different Locations

Change at N/2 Change at N/L Change at /8
freg FFT . AR MEM FFT AR MEM FFT AR MEM
1 1.076 0.660 2.012 1.375 2.386 1.555
2 1.037 0.624 1.941 1.307 2.297 1,434
3 0.966 0.586 1.8L49 1.255 2.211 1.374
L 0.852 0.552 1.712 1.195 2.100 1.329
5 2.0k3 0.701 0.527 2,060 1.509 1.120 1.769 1.924 1.234
6 0.538 0.516 1.252 1.043 1.672 1.113
7 0.4ks 0.545 1.009 0.033 1.385 1.071
8 0.506 0.671 0.997 1.203 1.176 1.193
9 0.961 1.052 1.302 1.636 1.208 1.552
10 2.608 1.93k 2.233 2.261 2.036 2.122 2.093 2.023 1.909
11 1.785 1.976 2.159 2,766 1.405 1.529
12 T7.437 5.646 7.91k 6.117 8.506 5.801
13 1.086 0.919 1.L484 1.499 1.353 1.379
1k 0.977 0.754 1.332 1.155 1.390 1.306
15 3.157 0.961 0.681 2.392 1.281 1.064 2.97h 1.400 1.104
16 0.948 0.647 1.211 1.043 1.434 1.013
17 0.906 0.626 1.181 1.031 1.480 1.027
18 0.854 0.593 1.199 1.009 1.477 1.020
19 0.799 0.56k4 1.182 0.949 1.403 0.978
20 1.670 0.748 0.531 2.186 1.162 0.911 2.007 1.310 0.940
21 0.71L 0.522 1.185 0.977 1.255 0.910
22 0.704 0.522 1.242 1.118 1.227 0.923
23 0.715 0.521 1.3k2 1.200 1.235 0.968
2k 0.758 0.576 1.456 1.258 1.30kL 1.030
25 1.798 0.813 0.669 2.163 1.530 1.319 1.781 1.382 1.188

43
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MSEs of the AR transformed estimates were also quite similar
in the three conditions, but did increase very slightly as
the number of nonstationary data decreased at some frequen-
cies; at the other frequencies, the MSEs increased from the
N/2 to N/4 conditions but decreased as the number of nonsta-
tionary data was further decreased to N/8. In the noise re-
gions, all the MSEs of the AR transformed estimates in all
three nonstationary conditions were about four times higher
than MSEs of AR transformed estimates of stationary 2.0 sec-
ond segments. Results for the MEM estimates were similar to
those of the AR estimates. The MSEs of the nonstationary
MEM transformed estimates were consistently larger than MSEs
of stationary data; however, as in the 2.0 second station-
ary condition, the MSE of the MEM estimates in these nonsta-
tionary conditions were generally smaller than those of the

AR estimates.

Changing the variance only in one series, that is chang-
ing the noise variance-covariance matrix from [é ?] to [8_%
in generating the bivariate AR series, will change the noise
variance in both series, since in simulating a bivariate se-
ries, each univariate series is a combined function of its
own past, as well as the past of the second series. How -
ever, a condition was run for a 1.0 second interval where
the noise variance was changed only in series 1 halfway
through the interval. Figure 17 shows that the AR and MEM

coherence estimates were less biased in the 12 Hz peak re-
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' gion when the noise was changed only in series 1 than when
both series were changed. Generally, however, in all the
other frequency ranges, the estimates of both AR and MEM
methods were more biased when the variance was changed only
in series 1 than when both series were changed. Overall,
the MEM estimates were generally more biased than the AR es-
timates, except again at the 12 Hz frequency where the MEM
estimates were closer to the theoretical peak than the AR

estimates in their respective conditions.

As in the stationary condition, in all the change of var-
jance nonstationary conditions, the squared bias accounted
for less than one percent of the MSE of the AR and MEM esti-
mates in the 11 to 14 Hz freqUencies and the 10 Hz FFT esti-
mates. In all other frequency estimates, the percentage

ranged from zero to about 60 percent.

Addition of a transient sine wave. When a transient sine

wave was added to series 1, the mean coherence estimates of
the AR method, shown in Figure 18, were very similar to the
estimates obtained for stationary series (compare with Fig-
ure 10). There were very small peaks around the 3 Hz fre-
quency, particu]arly in the 2.0 second interval conditions,
and the 12 Hz peak was estimated less accurately in the
shortest intervals than in the stationary condition. As
Figure 19 demonstrates, the MEM estimates were more sensi-
tive to the transient nonstationarity in one series than the

AR estimates. The peaks around the 3 Hz frequency were much
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Figure 17. Coherence estimates obtained by the AR method (triangles)
and the MEM method (squares) from 1.0 second intervals where the noise
variance was changed halfway in series 1 only (open symbols) or in

both series (solid symbols).
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Figure 18. Coherence estimates obtained with the AR method in 0.5
second (8), 1.0 second (@), and 2.0 second (©) conditions where a

transient sine wave was added to series 1.
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Figure 19. Coherence estimates obtained with the MEM method in 0.5
second (A), 1.0 second (@), and 2.0 second (©) conditions where a

transient sine wave was added to series 1.
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more prominent in all three interval length conditions.
Otherwise the mean MEM estimates were almost identical to

the stationary estimates (compare with Figure 11).

Table 16 gives the MSEs of the transformed coherence es-
timates that were obtained from data with a transient sine
wave added to series 1. The MSEs of the AR and MEM trans-
formed estimates were generally very similar to the MSEs of
stationary estimates. The exception was in the 1 to about 6
Hz frequency region where the MSEs were greater in the nons-
tationary condition, with a peak at 3 Hz. At the 12 Hz fre-
quency the MSEs were also slightly greater than the MSEs of
the stationary estimates, although generally in the major
coherence peak region, the MSEs of the nonstationary esti-
mates were even very slightly smaller. Comparing the AR and
MEM methods in the nonstationary condition, except at the 12
Hz frequency, the MSEs of the AR coherences were smaller
than the MSEs of the MEM estimates. In the low freqgquencies
around 3 Hz, the MSEs of the MEM transformed estimates were
relatively much larger than of the AR estimates, especially
in the shorter segments. For example, in the 0.5 second
condition at 3 Hz, the MSE of the transformed AR estimate
was 0.1963 (actual MSE=0.1938 for the original coherence)
and of the MEM transformed estimate was 0.9418 (actual
MSE=0.7360), but this difference was greatly reduced as the
intervals were lengthened to 2.0 seconds where the MSE of
the AR estimate was 0.1218 (actual MSE=0.1212) and the MSE
of the MEM estimate was 0.2169 (actual MSE=0.2136).



Table 16

MSE x 10 of Transformed Coherences Obtained from Data with a Transient Sine Wave Added to Series 1

0.5 s Segments 1.0 s Segments 2.0 s Segments

freq FFT AR MEM FFT AR MEM FFT AR MEM
1 1.475 Iy, 462 0.908 1.76L 0.705 0.836
2 1.648 5.871 0.978 2.165 0.889 1.232
3 1.963 9.418 1.129 3.322 1.218 2.169
N 1.656 5.681 0.841 1.992 0.602 0.970
5 6.837 1.348 4.353 2.923 0.645 1.308 0.467 0.310 0.452
6 1.190 3.584 0.545 1.039 0.212 0.283
7 1.056 2,866 0.L483 0.860 0.216 0.247
8 0.920 2,147 0.462 0.7k40 0.315 0.297
9 0.919 2,055 0.707 0.90k4 0.759 0.692
10 2,8L8 1.973 2.684 2.606 1.662 1.017 2.406 1.790 1.693
11 2.7h0 I,328 1.289 1.70L 1.133 1.186
12 16.777 11.725 9.788 7.298 6.369 L.698
13 2.506 2.63k 1.030 1.000 0.552 0.610
1k 1.562 1.883 0.653 0.768 0.472 0.516
15 2.279 1.168 1.421 1.577 0.542 0.726 2.738 0.476 0.496
16 0.966 1.075 0.486 0.679 0.473 0.484
17 0.853 1.07h 0.453 0.642 0.46L 0.466
18 0.793 1.162 0.439 0.666 0.454 0.448
19 0.756 1.056 0.437 0.710 0.450 0.Lh7
20 4,06k 0.7k0 0.889 2.424 0.437 0.719 1.5%0 0.452 0.465
21 0.737 0.934 0.L437 0.719 0.460 0.48s5
22 0. Thk 1.110 0.L44L 0.718 0.470 0.499
23 0.776 1.296 0.k4k49 0.723 0.k452 0.498
2k 0.858 1.536 0.462 0.735 0.434 0.L466
25 6.635 1.028 1.919 2.231 0.526 0.79k 1.383 0.L468 0.479

66
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The mean coherence estimates obtained by the FFT method
when a transient sine wave was added to either one or both
series are given in Table 17. When the transient was added
to only one series, the FFT estimates in the noise frequen-
cies were generally less biased than when the series was
stationary. In the 10 and 15 Hz bands the biases of the
nonstationary coherence estimates were comparable to, al-
though slightly larger than, the biases of the stationary
estimates. The MSEs of these transformed nonstationary FFT
coherence estimates, given in Table 16, were smaller in all
frequency bands than the MSEs of the respective stationary
estimates. In the 5 Hz band, which contains the transient
in one spectrum, as the segment length was increaéed the MSE
of the nonstationary estimates decreased more rapidly, from
0.684 (actual MSE=0.594) in the 0.5 second interval to 0.047
(actual MSE=0.0467) in 2.0 second interval than the corre-
sponding MSEs of the stationary transformed estimates, which
decreased from 0.779 (actual MSE=0.652) to 0.209 (actual
MSE=0.206) .

The transient in only one series also failed to affect to
any great extent the percentage of MSE accounted for by
squared bias. In the Tow frequencies, the percentage of MSE
accounted for by squared bias remained fairly high, as in
the stationary conditions, ranging from 32 to about 67 per-
cent over the estimates of all three methods in all interval

length conditions. In the coherence peak frequencies the



Mean FFT Coherence Estimates x 10 (and Bias x 10)

Table 17

in the Presence of Transient Sine Waves
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Segment Length

freq
Condition band 0.5 s 1.0 s 2.0 s
Sine Wave Added 5 6.357 5.224 2.781
to Series 1 (4.909) (3.777) (1.333)
10 7.876 T7.549 7.501
(0.301) (-0.026) (~0.07k)
15 6.291 7.681 8.526
(-1.122) (0.267) (1.112)
20 6.658 6.617 6.027
(1.8k2) (1.801) (1.211)
25 6.524 k. 967 4,413
(4.395) (2.838) (2.283)
Sine Wave Added 5 9.600 9.u4ho 9.370
to Both Series (8.153) (7.993) (7.922)
10 7.919 7.199 7.354
(0.345) (~0.376) (-0.221)
15 5.849 6.626 8.282
(-1.565) (~0.78T) (0.868)
20 6.976 © 5,430 5.39L
(2,161) (0.614) (0.578)
25 T.77T 4,708 i, 082
(5.6L47) (2.578) (1.953)
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percentages were again low, less than one percent for the
MEM estimates in the 11 to 15 Hz, AR estimates in the 12 to
14 Hz frequencies and the 10 Hz FFT estimates of all segment
lengths. In the immediately surrounding frequencies, how-
ever, the percentages of squared bias in the MSE were
slightly larger, by about one to eight percent, for all
three methods than the corresponding percentages obtained in
the stationary cases, with the AR method showing the largest

increase of the three methods.

The mean FFT estimates and their bias for nonstationary
data where the transient sine wave was added to both series
are given in the lower half of Table 17. The most obvious
feature of these estimates is the large means, and corre-
spondingly the large biases of these estimates, 1in the 5 Hz
frequency band in all segment length conditions. As the
segments were lengthened the biases decreased, but even in
the longest intervals where the transient affected only ap-
proximately 16 percent of the data, i.e., 40 of the 256 data
points of each series, the bias of the coherence estimates

remained very high at 0.7822.

The AR and MEM methods produced mean coherence estimates
that were also extremely biased in the 1 to 8 Hz frequency
region when a transient sine wave was added to both series,
regardliess of interval length. Figure 20 shows the coher-
ence curve estimates obtained by the AR method, and Figure

21 shows these estimates obtained by the MEM method. Even



Figure 20. Coherence estimates obtalned with the AR method in 0.5

second (a), 1.0 second (B), and 2.0 second (0) conditions where a

transient sine wave was added to both series.,
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Figure 21. Coherence estimates obtained with the MEM method in 0.5
second (&), 1.0 second (B), and 2.0 second (0) conditions where a

transient sine wave was added to both series.
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though the low frequency estimates were so biased, the esti-
mates of both methods in the other frequencies, and espe-
cially the peak regidn, remained relatively unaffected in

this condition.

The MSEs of the transformed estimates obtained by all
three estimation methods are shown in Table 18. For the
transformed estimates of all three méthods, the MSEs in the
1 to 8 Hz region were 4 to 20 times larger than the MSEs for
the 12 Hz estimates, which always had the Tlargest MSEs in
all the otstationary and nonstationary conditions. In the
0.5 second segments, the highest MSE was obtained for the 3
Hz MEM estimate (11.314, corresponding to an actual MSE of
1.0 for the original estimate), followed by the MSE of the
AR 3 Hz estimate (7.813, which also corresponds to an actual
MSE of about 1.0) while the 5 Hz FFT estimate from the 0.5
second condition had an MSE of 4.042 (actual MSE=0.9994).
With longer intervals, the MSEs of the low frequency esti-
mates tended to drop slightly but slowly. In the 2.0 second
conditions, the MSEs of the transformed coherences from all
three methods were still at least 10 times larger in the low
freguencies than at the 12 Hz peak values, and the actual
MSEs remained close to 1.0. The MSEs in the other frequen-
cies were affected relatively little; the MSEs of the trans-
formed FFT estimates were slightly smaller than their MSEs
of stationary series in each segment length condition, and

the MSEs of the nonstationary transformed AR and MEM esti-
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le 18

MSE x 10 of Transformed Coherences Obtained from Data with a Transient Sine Wave Added to Both Series

0.5 s Segments

1.0 s Segments

2.0 s Segments

freq FFT AR MEM FFT AR MEM FFT AR MEM
1 63.143 83.789 63.148 75.577 ST.T75k 6L .32k
2 72.420 97.181 67.667 84 .381 68.734 78.982
3 78.127  113.145 68.030 89.810 T4.548 89.585
k 50.252 71.720 48.943 61.479 43.313 50.040
5 Lo.419 25,744 36.667 32.002 28.575 3L.57h 26.368 22,203 2L, 167
6 10.841 16.150 13.821 16.701 10.175 10.577
7 2.939 5.398 4,596 6.165 3.590 3.842
8 0.577 1.524 0.759 1.297 0.711 0.959
9 , 1.284 1.791 1.237 1.308 0.916 0.758
10 2.034 2.002 2.162 2.849 1.319 1.768 2.572 1.698 1.616
11 2.702 3.743 1.546 1.697 1.265 1.255
12 16.507 10.728 8.291 6.37h4 6.819 5.024
13 2.199 2.670 1.002 1.051 0.659 0.669
1k 1.638 2.060 0.710 0.785 0.543 0.562
15 2.280 1.317 1.513 1.369 0.577 0.687 2.106 0.607 0.568
16 1.070 1.296 0.536 0.685 0.682 0.585
17 0.898 1.276 0.54k 0.7L43 0.730 0.593
18 0.785 1.308 0.565 0.829 0.7k6 0.595
19 0.712 1.298 0.577 0.922 0.7k1 0.588
20 L. ok6 0.665 1.196 1.190 0.575 0.952 1.04% 0.728 0.575
21 0.638 1.039 0.560 0.885 0.705 0.538
22 0.623 1.0Lk 0.519 0.828 0.661 0.518
23 0.650 1.107 0.459 0.720 0.587 0.508
2k 0.723 1.233 0.417 0.597 0.546 0.481
25 11.857 0.873 1.520 1.863 0.43% 0.622 1.037 0.558 0.532

901
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mates were smaller than the stationary ones in the 0.5 sec-
ond intervals but were larger than the stationary one in the

2.0 second intervals.

In contrast to conditions where only one series was af-
fected by the transient, when both series contained the
transient sine wave, the percentage of MSE due to squared
bias increased to over 60 percent for all three methods, and
often to over 90 percent for the AR and MEM methods, in the
Tow, 1 to 5 Hz, freqguencies for all three methods. In the
other freqguencies, the percentages remained unaffected by

the addition of a transient to both series.

In summary, only estimates around the transient’'s own
frequency were affected but only when both series contained
the transient. When the Tow frequency transient was added
to either one or both series, the estimates in the higher
frequencies were relatively unaffected. Figure 22 compares
the mean AR and MEM estimates of 2.0 second intervals with
the theoretical coherence curve when a transient sine wave
was added only to series 1 and when each series contained
the transient. Note again that the coherence estimates ob-
tained by the MEM method were higher than the AR estimates

at all frequencies.

Exponentially distributed error. Changing the distribu-

tion of the noise from normal to exponential with a mean of

2.0 halfway in the series of one or both series had practi-
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Figure 22. Comparison of coherence estimates obtained with the AR
method (triangles) and the MEM method (squares) from 2.0 second
intervals with a transient sine wave added to one (open symbols)

or both (solid symbols) series.
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Table 19
Mean FFT Coherence Estimates x 10 ( and Bias x 10)

from Series with Exponentially Distributed Noise

Segment Length

freq
Condition band 0.5 s 1.0 s 2.0 s
Noise changed to 5 6.707 6.137 4.391
exp(mean=2.0) at (5.260) (4.690) (2.943)
N/2 in series 1
10 T7.188 7.315 6.94k
(~0.387) (~0.260) (-0.631)
15 7.521 7.823 8.h71
(0.107) (0.409) (1.057)
20 8.199 7.303 6.117
(3.384) (2.487) (1.302)
25 6.842 5.581 k., 667
(4h.712) (3.451) (2.538)
Noise changed to 5 6.711 4.867 L.442
exp(mean=2.0) at (5.263) (3.420) (2.994)
N/2 in both series
10 7.012 7.281 7.540
(-0.563) (-0.294) (-0.035)
15 7.605 7.823 8.769
(0.192) (0.409) (1.355)
20 8.132 7.0Lk4 6.571
(3.317) (2.228) (1.755)
25 6.579 5.458 I, 624
(4. L449) (3.328) (2.h9k)



110
cally no effect on the mean FFT coherences (Table 19).
These estimates were almost identical to those» obtained by
FFT where the noise was entirely normally distributed (com-
pare with Table 10). The similarity was especially notice-
able when the distribution of the noise was changed halfway

through both 2.0 second series.

The mean AR coherence estimates from all segment lengths
are shown in Figure 23 for the conditions where the noise
distribution was change to exponential halfway in series 1,
and in Figure 24 for the conditions where both series con-
tained this nonstationarity. Generally the AR estimates
were less biased when the error distribution was changed
only in one series, partiéu]ar]y in the low frequencies, for
each corresponding interval length; however, the very peak
of the coherence function was estimated more accurately when
both series were the same, that is when both were nonsta-
tionary. The same was also true for the MEM coherence esti-
mates, which are shown in Figure 25 for series 1 nonstation-
ary and in Figure 26 when both series were nonstationary.
In both Kinds of nonstationary conditions for each segment
length, the AR estimates were less biased than the MEM esti-
mates except at the 12 Hz frequency where the MEM method es-
timated the peak value more accurately. The increase in in-
terval length resulted in more biased estimates at 1low
frequencies in both methods, but the AR estimates were less

affected than the MEM estimates. Figure 27 shows that the
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Figure 23. Coherence estimates obtained with the AR method from data
with exponentially (mean=2.0) distributed noise in half of series 1.
(A are 0.5 second intervals, @ are 1.0 second intervals, and o are

2.0 second intervals.)
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Figure 2L, Coherence estimates obtained with the AR method from data
with exponentially (mean=2.0) distributed noise in half of both series.
(A are 0.5 second intervals, o are 1.0 second intervals, and O are

2.0 second intervals.)
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Figure 25. Coherence estimates obtained by the MEM method from data
with exponentially’(mean=2.0) distributed noise in half of series 1.
(A are 0.5 second intervals, b are 1.0 second intervals, and o are

2.0 second intervals.)
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Figure 26. Coherence estimates obtained by the MEM method from data
with exponentially (mean=2.0) distributed noise in half of both series.
(A are 0.5 second intervals, o are 1.0 second intervals, and O are

2.0 second intervals.)
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mean coherence estimates of the AR and MEM methods obtained
in the 2.0 second condition were very similarvfor each nons-
tationary condition, although as was also noted in previous
conditions, the estimates of the MEM method were higher than

the AR estimates at each frequency.

The MSEs of the transformed coherence estimates of all
three methods in the three interval length conditions are
presented in Table 20 for the nonstationary condition with
the noise distribution changed only in series 1. As the in-
tervals lengthened, the MSEs of the AR estimates decreased
at all frequencies except at 1,2, and 10 Hz where the MSEs
increased with increasing interval length. The MSEs of the
MEM estimates decreased with each increase 1in interval
length at each frequency. For both AR and MEM estimates,
the nonstationary MSEs were larger than the MSEs of the re-
spective stationary estimates, particularly in the lowest
frequencies where the effect of this nonstationarity was
most notable. Within each interval length condition, the
largest MSE of the AR and MEM still occurred at 12 Hz, with
the AR estimates having the larger MSE than the MEM estimate
at this frequency. The MSEs of the FFT transformed esti-
mates were more similar to their stationary counterparts
than were the MSEs of the AR and MEM estimates. Even in the
5 Hz band where the AR and MEM estimates were most affected,
the FFT estimates resembled the stationary estimates, par-

ticularly as the segments were lengthened.
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Figure 27. Coherence estimates obtained with the AR method (triangles)
and the MEM method (squares) from 2.0 second intervals where the noise
was exponentially (mean=2.0) distributed in half of series 1 (open

symbols) or in half of both series (solid symbols).
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Table 20

MSE x 10 of Transformed Coherences Obtained from Data with Exponential Noise in Half of Series 1

0.5 s Segments

1.0 s Segments

2.0 s Segments

freg FFT AR MEM FFT AR MEM FFT AR MEM
1 1.732 5.583 2.402 4,348 3.590 .791
2 1.758 I, 734 2.083 3.050 2.49L 2.767
3 1.820 4,028 1.756 2.146 1.701 1.594
L 1.921 3.305 1.417 1.497 1.099 0.878
5 9.47T 2.063 2.8LL 5.114 1.073 1.030 1.826 0.637 0.h4h47
6 2.247 2.662 0.757 0.718 0.316 0.234
T 2.4kLs5 2.858 0.534 0.552 0.188 0.202
8 2.560 3.002 0.534 0.607 0.346 0.368
9 2.259 2.865 1.047 1.115 0.998 0.912
10 3.792 2.474 3.018 3.015 2.773 2.721 3.308 2.987 2.302
11 3.780 4,718 3.099 3.463 2.998 2.856
12 20.628 1k,562 1L4.355 11.526 7.809 5.625
13 3.218 3.641 1.290 1.294 0.676 0.780
1k 2.435 3.098 0.828 0.77k 0.391 0.493
15 2.543 1.94Y4 2.326 1.976 0.702 0.665 2.559 0.343 0.397
16 1.606 2,129 0.632 0.633 0.351 0.361
17 1.363 2.365 0.587 0.636 0.368 0.348
18 1.179 2.1k9 0.556 0.652 0.358 0.335
19 1.030 2.036 0.530 0.667 0.339 0.337
20 9.859 0.903 1.896 4,658 0.503 0.638 1.610 0.336 0.364
21 0.799 1.705 0.490 0.61k 0.331 0.387
22 0.720 1.625 0.485 0.636 0.347 0.k21
23 0.670 1.610 0.485 0.7LL 0.405 0.501
2k 0.67Th 1.670 0.516 0.862 0.509 0.632
25 7.968 0.768 2.022 3.213 0.607 1.012 1.573 0.664 0.819

LT1
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The percentage of MSE of the FFT estimates accounted for

by squared bias also reméined unaffected by having eprnen—
tially distributed error in one series. The MSEs of the AR
and MEM nonstationary estimates in the coherence peak re-
gion, however, consisted of higher percentage of squared
bias than did the stationary estimates. In the 11 to 14 Hz
frequencies, the squared bias now accounted to up to 7 per-
cent of the MSEs of the AR and MEM nonstationary estimates.
In the other frequencies the percentages remained relatively

unaffected.

Table 21 shows the MSEs of transformed coherence esti-
mates with the nonstationarity in both series. In this con-
dition, the MSEs of the FFT transformed estimates were also
very similar to those of the stationary estimates. When
both series were nonstationary, the MSE of the 5 Hz FFT es-
timates in the longer intervals had a smaller MSE than these
stationary estimates; the MSE of the 0.5 second interval es-

timate was larger than of the stationary one.

The MSEs of the AR and MEM transformed estimates in the
lowest frequencies were about four times greateb in this
condition than the MSEs of these estimates when only series
1 was nonstationary. At the 12 Hz frequency, however, the
MSEs of both AR and MEM estimates were smaller when both se-
ries were nonstationary than when only series 1 was nonsta-
tionary in each segment length condition, but they were not

as small as the MSEs of the stationary estimates. In the 1



Table 21

MSE x 10 of Transformed Coherences Obtained from Data with Exponential Noise in Half of Both Series

0.5 s Segments

1.0 s Segments

2.0 s Segments

freq FFT AR MEM FFT AR MEM FFT AR MEM
1 6.137 20.745 10.766 20.4L6 6.807 22.302
2 5.6L7 16.977 8.138 12.983 9.283 11.175
3 5.168 13.379 6.180 8.728 5.231 5.841
L 4.780 10.409 4.725 6.092 3.017 3.100
5 10.280 k.502 8.305 2.709 3.612 4,350 1.808 1.772 1.655
6 4,298 6.795 2.730 3.148 1.052 0.898
7 4,085 5.706 2.009 2.3k4kL 0.628 0.547
8 3. 71k 5.173 1.446 1.953 0.516 0.523
9 3.079 L. 25k 1.217 2.105 1.008 1.059
10 4,223 3.459 5.193 2.732 2.235 2.9Lk0 2.059 2.015 2.556
11 4. L92 6.862 2.715 3.720 1.450 1.684
12 19.602 15.105 12.461 9.003 6.110 3.989
13 2.857 k. 226 1.691 2.203 1.115 1.135
14 2.358 3.290 1.467 1.682 1.114 0.928
15 2.870 1.943 2.435 1.867 1.475 1.471 3.300 1.092 0.796
16 1.576 2.07h 1.h71 1.289 1.051 0.691
17 1.306 2.157 1.418 1.178 1.002 0.636
18 1.126 2.189 1.338 1.075 0.924 0.616
19 0.992 2.357 1.273 1.054 0.837 0.598
20 11.276 0.874 2.088 L.054 1.214 1.071 1.756 0.756 0.584
21 0.768 2.028 1.146 1.051 0.70L 0.600
22 0.691 1.828 1.076 1.066 0.67k 0.642
23 0.661 2.154 1.01k 1.158 0.6k49 0.688
24 0.702 2.632 1.011 1.238 0.629 0.688 .
25 7.605 0.855 2.954 3.148 1.092 1.360 1.612 0.656 0.713 3
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to 4 Hz region, the MSEs, particularly of the MEM trans-
formed estimates, were also much larger than the MSES of the
estimates in the other frequencies, the actual MSEs of these
estimates were close to 1.0. The MSEs of these estimates
did not seem to decrease much with segment length as did the
MSEs of the estimates in the other frequecies. The MSEs of
these low freguency MEM transformed estimates from 0.5 sec-
ond intervals were about three times larger than those of
the AR estimates; for example, at 1 Hz the MSE of the MEM
transformed estimates was 2.07 while that of the AR trans-
formed estimate was 0.61 (actual MSEs were 0.969 and 0.544,
respectively). With increasing segment length, however, the
MSEs of the AR estimates in these frequencies tended to in-
crease while those of the MEM estimates generally decreased
slightly, and thus the MSEs of the two methods approached
similar values; for example, for the 2.0 second interval
transformed estimates at 3 Hz, the MSE of AR was 0.523 (ac-
tual MSE=0.480) the MSE of the MEM was 0.584 (actual
MSE=0.526) . In the 0.5 second intervals, the AR estimates
also had smaller MSEs than the MEM estimates in all other
frequency regions, except at the 12 Hz frequency, but as in-
tervals lengthened the MSEs of the AR and MEM estimates be-
came more similar, and in the coherence peak region the MEM
estimates had slightly smaller MSEs at about half of the

frequencies.



121

The percentages of MSEs of these nonstationary estimates
consisting of squared bias were almost unchanged from the
percentages obtained with stationary estimates. In the co-
herence peak region, the percentage of MSE due to squared
bias remained below one percent for all three estimation
methods. At the 1 and 2 Hz frequencies, the percentages
were by about 10 percent higher than those of the stationary
estimates to the AR and MEM methods, while the percentages
remained the same as in the stationary conditions for the

FFT estimates.

Two other 1.0 second interval conditions were run using
exponentially distributed error in generating the series, to
determine how the estimation methods performed in more ex-
treme circumstances. In one condition both series consisted
entirely of exponentially distributed error with a mean of
2.0; thus in this condition, the bivariate series was sta-
tionary but non-Gaussian. In the second condition, the nor-
mal error in series 1 was changed at halfway to an exponen-
tially distributed error but with a larger mean of 5.0,
while the second series remained normal throughout. The
mean estimates obtained in these conditions are compared to
1.0 second segments of the two nonstationary conditions de-
scribed above in Table 22 for the FFT estimates, and in Fig-

ures 28 and 29 for the AR and MEM estimates, respectively.

The FFT coherence estimates 1in the non-Gaussian condi-

tion, shown in the third column of Table 22, compared very
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Table 22
Mean FFT Coherence Estimates x 10 (and Bias x 10) from Various

1.0-sec Segments with Exponentially Distributed Noise

Exp(mean=2.0)

Exp(mean=2.0)

Exp(mean=2.0)

Exp(mean=5.0)

freq for N/2 in for N/2 in for all N in for N/2 in
band series 1 pboth series both series series 1
5 6.137 I. 867 5.953 6.316
(4.690) (3.420) (4.505) (4.868)
10 7.315 7.281 T7.672 6.281
(-0.260) (-0.295) (0.097) (=1.294)
15 7.823 7.823 8.222 7.556
(0.409) (0.409) (0.809) (0.1k2)
20 7.303 7.0k4L 7.302 C7.064
(2.487) (2.228) (2.486) (2.249)
25 5.581 5,458 5,48k 6.772
(3.451) (3.328) (3.354) (4.642)
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Figure 28, Coherence estimates obtained with the AR method from the
various 1.0 second data sets containing exponential noise. (Exponential,
mean=2.0, noise was in half of series 1 (A) or in half of both series (4);
exponential, mean=5.0, noise was in half of series 1 (©); and both series

consisted entirely of exponential, mean=2.0, noise (®).)
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Figure 29. Coherence estimates obtained with the MEM method from the
various 1.0 second data sets containing exponential noise. (Exponential,
mean=2.0, noise was in half of series 1 (&) or in half of both series (4);
exponential, mean=5.0, noise was in half of series 1 (0); and both series

consisted entirely of exponential, mean=2.0, noise (m).)
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favourably with the Gaussian stationary estimates. The non-
Gaussian estimates in the 10 and 15 Hz frequency bands were
slightly more biased than the stationary estimates, but in
each of the other frequency bands the bias tended to be mar-
ginally smaller in the non-Gaussian than the Gaussian sta-
tionary estimates from 1.0 second intervals. The most bi-
ased estimates were obtained in the condition where the
error distribution was changed halfway in the segment to ex-
'ponential with a mean of 5.0, shown in the Tlast column of
Table 22. In this condition, the 10 Hz FFT estimate was the
most biased of the nonstationary conditions with exponential
errors, and was about three times as biased as the station-

ary estimate.

For both the AR and MEM methods, the most biased esti-
mates were also obtained in the conditions where the distri-
bution of the error was changed in the middle of the segment
to exponential with a mean of 5.0. In all these nonstation-
ary conditions, both methods estimated the peak of the co-
herence function more or less accurately with the MEM method
again producing Jless biased 12 Hz estimates while the AR
method’ s estimates were less biased in the more extreme re-
gions of the function. Of all these conditions, the esti-
mates of the non-Gaussian series, where both series had en-
tirely exponentially distributed noise, were the Ieést
biased. In fact, the non-Gaussian estimates of both methods

were practically identical to the stationary estimates, and
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for the AR estimates from the non-Gaussian series, these
- were less biased than the AR stationary estimates at all

frequencies.



DISCUSSION

The simulated data in this study appear to provide an ad-
equate representation of EEG. The frequency components of
the simulated data fall into the alpha band in both series
which would represent the EEG of normal, resting, awake
adults. With alpha activity present in the EEG, beta, del-
ta, and theta activities would most likely be suppressed,
thus in this respect the simulated data seems to provide a
model of EEG that is commonly observed in practice. The or-
der of the bivariate model for the simulation was chosen to
be seven, since Jones (1974) reported a bivariate autore-
gression of order six to model the EEG of a sleeping human
infant, and Gersch and Yonemoto (1977) found univariate AR
models of order ten to represent adult awake EEG. Consider-
ing the difficulties of simulating a stable bivariate AR
model of order seven, the overall simulation appears satis-

factory.

A number of studies in the past have compared various
methods of spectral estimation using real EEG. Some of
these were discussed in the introduction. In another study
by Pigeau, Hoffman, and Moffitt (1981), it was found that
the FFT spectra of real EEG contain the same information as

estimates of period analysis which are simpler and thus

- 127 -
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faster to calculate than the FFT spectra and may thus be ad-
vantageous in some applications. Jansen et al. (1981) found
that univariate AR spectra were approximately the same as
FFT spectral estimates of short, one second, N=64, EEG seg-
ments, although the AR and Burg's univariate MEM methods
were slightly more accurate in estimating the peaks of the
spectra. Their study used discriminant analysis to evaluate
the estimates. The present study replicated the results of
Jansen et al. for spectral estimates with simulated EEG
data, and also found that the same results extend to coher-

ence estimates obtained from the three methods.

A recent study by Chan and Miskowicz (1984) has compared
the statistical bias and variability of squared coherence
estimates obtained by ARMA models and the FFT method. In
their study, three different test signals of N=1024 were
generated to produce three different squared coherence’func—
tions. For the first signal, which was white noise with a
signal to noise ratio (SNR) of 3 dB, and the second signal,
a nonwhite noise with SNR of 3 dB, the ARMA squared coher-
ence estimates were found to be less biased and less vari-
able than the FFT estimates. The third test signal was the
same nonwhite noise as the second signal with an added sinu-
soid. In this condition the FFT estimates were found to be
superior, although neither method obtained the correct
squared coherence value at the frequency of the sinusoid.

In this third condition, the estimated orders of the ARMA
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mode]s‘were found to be about twice as large as the orders
of the nonwhite noise alone signals, to which the authors
attributed the poorer performance of the ARMA models. This
is in contrast to the findings of the present study, where
even models of overestimated orders of both the AR and MEM
methods produced coherence estimates that were as accurate

as the estimates from modeis with the correct order.

The results of the present study extend those of the
above studies in evaluating the statistical properties of
coherence estimates of three different methods. In the
present study the FFT methods was compared with the AR and
MEM methods for much shorter segments and for different sig-
nals, some of which violated the stationarity and Gaussian
assumptions underlying the estimation procedures. In most
tested conditions, the spectral and coherehce estimates ob-
tained by the three estimation methods were very similar to
each other in terms of the statistical criteria considered,
their bias and MSE. The exceptions were the spectral esti-
mates of the adaptive method of the Kalman type, which in
comparison with the other methods were much worse in all re-

spects, except perhaps for peak identification.

The similarity of the AR and MEM methods emerged because
they are both based on the same underlying method of fitting
a bivariate autoregression to the series. The difference
between the two methods is that the MEM method uses the

original series only to estimate the first order model; in
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each subsequent p-th step, for p=2, 3, ... , however, the
residual errors remaining in the series after the p-1 order
model was fit are used in place of the original series for

estimating the p-th order MEM model (Jones, 1978).

Like the AR and MEM methods, the adaptive method of the
Kalman type also needs to have the order of the model speci-
fied or estimated. Estimation of the order at each, or at

least some, time points of the series is usually avoided due

to the amount of computation required. The orders may also
change as modeling of the series progresses, resulting in
added complexity. Rather, either past experience may sug-

gest what orders to use, or a univariate autoregression may
be fit using some criterion such as Akaike’'s FPE, and the
same order then used for the adaptive method (e.g., Jansen
et al., 1981). In the present study it was known that the
bivariate model had an order of seven, thus this value was
also used for the adaptive method. The univariate model fit
to each single series that was simulated by a bivariate mod-
el, however, may not have a comparable order to the bivari-
ate model. Perhaps higher orders are reguired to model each

univariate series.

In addition, the estimated coefficients used in calculat-
ing the adaptive method’s spectra were those obtained after
the last update, under the assumption that they will have
stabilized at this point (Clarke, 1980) . But the coeffi-

cients may not be stable in very short data segments, or may
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become destabilized in longer intervals. As a result of how
the parameters are estimated, the adaptive method is very
sensitive to small changes and thus if spectra are obtained
only at the 1last time point they could inaccurately repre-
sent estimates of the entire interval. Users of the adap-
tive method of the Kalman type should examine the stability
of the coefficient estimates prior to calculating one spec-
trum that is to represent the estimate of the entire inter-
va].z_

A more appropriate application of the adaptive Kalman
method may be in actually trackKing changes in a spectrum
within an epoch of nonstationary series (e.g., Bohlin,
1977), rather than using it to obtain one spectrum to repre-
sent the estimate of the entire epoch for which other, more

suitable estimation methods exist.

In the present study, the estimates of the single spectra
of the adaptive method, even of stationary series, were very
biased for these reasons. Since the adaptive method pro-
duced similar results in all other conditions, they will not

be discussed further.



132

Order Selection

Although the final prediction “error (FPE) criterion was
developed for the AR estimation method (Akaike, 1969a), the
FPE estimated orders of the stationary MEM models were less
biased and more consistent than those ofthe AR models within
each different interval length condition. In the 0.5 second
intervals, the average order selected by the FPE for the AR
method was two orders smaller than the theoretical order of
seven. These smaller orders produced somewhat smoother
looking spectra for series 1, failing to detect the minor
spectral peak at 10 Hz. The AR spectra computed from models
of the known order of seven, however, were not notably im-
proved, although slightly larger spectral values were de-
tected in the 9 and 10 Hz frequencies. Gersch and Yonemoto
(1977) and Jones (1974) have reported that estimates of mod-
els with smaller orders resulted in smoother looking graphs
of EEG spectra than when larger orders were used. In the
present study this order effect was present in both spectra

and coherence functions but was relatively negligible.

In the nonstationary conditions, it is 1interesting to
note that even though the estimated orders were often larger
than the theoretical order of seven, particularly of MEM
models, he coherence estimates were very close to the theo-
retical values. Thus it would seem that regardliess of the
actual order used in the estimation, the coherence estimates

remain relatively unharmed, particularly if the order is ov-
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erestimated. From the présent study, however, it is unclear
whether this resulted because the model coefficients of the
higher lags were very small thus contributing negligibly to

the spectral estimates.

Stationary Estimates

Since the AR and MEM spectral estimates are obtained from
estimates of the model coefficients and the estimate of the
prediction error matrix, the spectral estimates, and thus
also the coherence estimates, can only be as accurate as are
the estimates of these underlying parameters. In the pres-
ent study, as intervals became longer (i.e., as sample size
increased) the coefficients of both methods became much less
biased and less variable with smaller MSEs, and the bias of
each individual element of the predicion error matrices also
decreased. Correspondingly, the spectra of both methods be-
came less biased as intervals lengthened. For all segment
lengths, the estimates of the coefficients and the pre-
diction error matrix obtained by the MEM method were less
biased than the AR estimafes, and thus the MEM spectral es-
timates were less biased than the AR estimates. The MSEs of
the MEM spectra, however, were slightly larger than those of
the AR spectra. Since the MSEs of the MEM coefficients were
similar to the MSEs of the AR coefficients, on the average,
it was probably the MSEs of the prediction error estimates

of the MEM method that were larger than the MSEs of the AR
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method resulting in the larger observed MSEs of the MEM

spectra.

The stationary FFT spectral estimates were less biased
than the AR and MEM spectral estimates in the 10 and 15 Hz
freguencies. The FFT estimates, however, are not directly
comparable to the AR and MEM estimates, since the bias and
MSE of'each FFT estimate was calculated using the averaged,
ji.e., smoothed, theoretical value for the parameter. This
was done so the FFT estimate would be more comparable to the
actual spectral value of the entire band, rather than com-
paring the estimate to the spectral value only in one, or in
each, of the contributing frequencies. Since the AR and MEM
estimates were most biased in the 10 to 12 Hz frequency
range and the biases of the estimates in the surrounding
frequencies were much smaller, if these weré averaged into
the same frequency bands as were the FFT estimates, the re-
sulting values would be very similar. Thus, although the
estimates of the three methods appear very comparable from
this viewpoint, the FFT estimates clearly suffer from lack

of resolution.

Unsmoothed FFT estimates are biased, but as the degree of
smoothing or averaging is increased to reduce this bias, the
variability of the estimates also increases (e.g., Brilling-
er, 1981, pp. 136; Otnes & Enochson, 1972, pp. 215). Table
23 is a rearrangement of some previously presented FFT re-

sults, and shows that in the frequency bands where both
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spectra had larger values, primarily at 10 Hz, this theoret-
ical result is empirically supported in this study for thé
spectra of both series, but not the coherence estimates. 1In
the 0.5 second intervals, spectral estimates of both series
were obtained by smoothing over three values; these esti-
mates in the 10 Hz band had the largest biases but were the
least variable. Upon increasing the intervals to 1.0 sec-
ond, the estimates were smoothed over five values, and the
resulting estimates were less biased but more variable than
those obtained from 0.5 second intervals. Similarly, in the
2.0 second intervals, smoothing was over ten values and the
bias of the 10 Hz estimates was reduced further while they
became even more variable. Note that, however, this trend
was not true where the spectra had low values; there both

bias and variability decreased as smoothing increased.

For the 10 Hz FFT coherence estimate, both variability
and bias decreased with more smoothing, although the vari-
ability of the 10 Hz spectral estimates increased with more
smoothing in both series. This implies that investigators
using coherence estimates obtained by the FFT method need be
less concerned with their estimates becoming more variable

as they increase the degree of smoothing.

In addition to the increased variability of the spectral
estimates, the requirement to smooth the FFT estimates also
has the disadvantage of lowering the resolution of the esti-

mates, unless longer intervals or higher sampling rates can



Table 23

Bias and Variabillity (62) of Stationary FFT Estimates as a Function of Smoothing

Series 1 Series 2 Coherence
Interval > 5 5
freq. . . Length . #  x 100 Bias x 100 ¢ x 100 Bias x 100 ¢~ x 100 Bias x 100
5 0.5* 0.26 6.22 0.06 2.80 I, ok 50.06
1.0%* 0.0L 1.64 0.02 0.9k 3.83 46.90
o, o%¥** 0.01 0.62 0.00 0.22 3.58 30.68
10 0.5 2.19 -121.99 1.6k -80.k2 3.954 -1.10
1.0 23.57 ~8lk,sh 15.48 ~55.50 2.79 0.4k
2.0 311k -66.47 21.56 -46.99 2.46 -0.6L
15 0.5 0.05 C=1.h1 0.05 _2.69 2.43 5.81
1.0 0.21 1.63 0.10 -0.95 2.22 6.09
2.0 0.51 5.54 _ 0.3k 2.67 0.83 12.66
20 0.5 0.06 2.31 0.05 1.81 2.67 36.08
1.0 0.03 1.26 0.01 1.02 2.95 28.73
2.0 0.00 0.39 0.00 0.27 3.06 16.37

Three (3) frequency estimates were smoothed to obtain the estimate for each frequency band.

*%
Five (5) frequency estimates were smoothed.

Ten (10) frequency estimates were smoothed.

9¢T
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be used for estimation. | Increasing the interval length,
however, 1increases the probability that the EEG record will
be nonstationary (McEwen & Anderson, 1975), While care must
be taken in increasing the sampling rate so that the assump-
tion of statistical independence remains satisfied. It is
unclear at what sampling rates the EEG data will become de-
pendent . By far the majority of applied research has used
sampling rates between 100 and 128 samples per second, al-
though a few studies have used rates as high as 200 samples
per second (e.g., Bromm & Scharein, 1882; Elul, 1969). In
practice, the resolution versus smoothing issue must be set-
tled according to the individual requirements and interests
of the specific investigations, whether one requires high

resolution or unbiased estimates.

The quality of the coherence estimates obtained by the AR
and MEM methods depends only on the sample size and does not
suffer from the lack of resolution as do the FFT estimates.
As sample size increases, or as the intervals were length-
ened using the same sampling rate as in this study, the es-
timates improve in all respects; they become less biased,
less variable and have smaller WMSEs. For stationary esti-
mates, the MEM method preserved the shape of the coherence
funcfion better than the AR method in all interval lengths,
although the MEM estimates were more biased in the tail re-

gions of the coherence function.
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Violations of the Stationarity Assumption

With some exceptions to be discussed below, the coherence
estimates obtained in the nonstationary conditions differed
very little from estimates of stationary series. It is pos-
sible that the simulated nonstationarities were not as se-
vere as encountered in practice, although visually the orig-
inal series did appear nonstationary. Figures of some of
the simulated nonstationary original series are contained in
the Appendix. The types of simulated nonstationarities were
chosen to represent actual nonstationary activity observed
in real EEG data. The transient sine wave added to the se-
ries may represent an EEG artifact such as an eyeblink that
would be superimposed on actual ongoing EEG activity. Sihi-
larly, it may represent an event-related potential. The
changes in the variance and distribution of the innovation
errors may represent changes in cognitive activity, where
the strength of the signal may change relative to the noise.
The distribution of the innovation process can also change
as cognitive activity changes. Anninos, Zenone, and Elul
(1983) have shown in a simulated neural network that as the
number of ‘neurons’ become more interconnected, the collec-
tive output becomes less Gaussian in distribution, but not

when the distribution of individual neurons is changed.

The coherence peak was estimated accurately by all three
estimation methods in all nonstationary conditions. As ex-

pected, and as in the stationary conditions, the estimates
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from the shortest segments were always re1at1ve]y worse, and
generally the longest segments’ estimates weré the best in
all respects. Usually estimates in the tails of the coher-
ence function were affected most by the nonstationarities.
Although some of these tail effects will be discussed for
the purposes of more general estimates, it is unclear wheth-
er the‘effects of some of the nonstationarities in the more
extreme frequencies would be similar had there been spectral
peaks in these frequencies. This may imply that coherences
may only be useful or meaningful when at least one of the
individual spectra contains some power (e.g., Gotman, 1983).
In the present study, this power was contained only in the 8
to 14 Hz frequencies, and the more extreme frequencies con-

tained no power.

The frequency of the added sine wave was about 3 Hz,
since the wave lasted over forty of the data points at the
sampling rate of 128 per second. When it was added only to
one series, it was accurately detected in the spectra of
that series, but the AR and MEM estimates of the coherence
function showed only a relatively negligible peak around the
3 Hz frequency. When the sine wave was added to both se-
ries, however, all three methods estimated a coherence peak
in the 3 Hz frequency region which was larger than the the
true peak at 12 Hz. Although the biases and MSEs of these
low frequency estimates were very large, their variabilities

were much smaller than those of the stationary estimates at
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3 Hz since the added sine waves themselves lacked the pres-

ence of noise.

Whether the sine wave was added to only one series or
both, the MEM coherences in the low, 1 to 5 Hz, frequency
region were more sensitive to these nonstationarities - the
estimates were more biased, more variable and with much
larger MSEs than the Tow frequency AR estimates. The MSEs
of the FFT estimates were similar to those of the MEM esti-
mates; however, when the sine wave was added to one series
only, the effect on the bias of the FFT coherence estimates

was negligible.

These results seem to indicate that the coherence esti-
mates are relatively unaffected by transients when these oc-
cur in one of the series, or perhaps even if each series
contains a transient but of different frequencies. If both
series, however, contain a transient of the same or similar
frequency, the coherence estimate at that frequency may be
very inaccurate. Thus, for example, if low frequency eye-
blinks occurred in the EEG of frontal derivations, the esti-
mate of the coherence function between the frontal and the
occipital derivations would remain relatively accurate,
while the estimate of the coherences between the two frontal
derivations may be adversely affected at the low frequencies
but the coherence estimates of the shared alpha or beta ac-
tivities between each derivation may remain unaffected.

This implies that practitioners need not be overly concerned
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about low frequency artifacts affecting coherence estimates

in the frequency bands of psychological interest.

Since the sine wave contributed only a 3 Hz frequency
component to the series, the estimates in the 12 Hz peak re-
gion were not affected. Had the sine wave been of a higher
frequency such as 10 Hz, however, or the true spectra con-
tained peaks in the low frequencies, for example, delta ac-
tivity occurring in a pathological case, the added sine wave
would have significantly handicapped those spectral and co-
herence estimates, especially if both series contained in-
terference in the same frequencies. The coherence estimates
may not be significantly affected by these types of nonsta-
tionarities if'their frequency components differ in both se-
ries and occur where the spectra contain little power, since
in this case even though one spectrum may have large values,
the cross spectrum would be small and thus the coherence es-
timate would also remain small. If the transient added pow-
er to one spectrum at frequencies where some power existed
in the signal, it is unclear how adversely the coherence es-
timates would be affected. The effects would probably de-
pend on the amplitude of the added nonstationarity and would
be less damaging in one series than if both series were thus
affected. Further studies would be required to test these

conditions.

Increasing the variance of the normally distributed error

of the series from S=[1 O] to S= [9 8] at the halfway point
01 0
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in each of the different interval lengths also increased the
bias and MSE of the AR and MEM estimates in all frequencies,
as compared to their stationary estimates from segments of
the same length. At the extremes of the coherence function,
the MEM nonstationary estimates had larger MSEs and were
more biased than the AR estimates, while in the peak region
the MSEs and biases of the MEM estimates were smaller than
those of the AR estimates. Varying the segment length and
the proportion of nonstationary data increased the bias of
the AR and MEM estimates further; for example, in the 1.0
second intervals, eventhough only one quarter of each inter-
val was simulated with S=[8 8] , the bias of the resulting
estimates was greater in all frequencies than when half of
the interval contained such data. Also, in the 2.0 second
segments, as the proportions of the nonstationary data de-
creased from one half to one eighth, the MSE and variability
of the AR and MEM estimates did not decrease as may have
been expected. In fact, although the differences in esti-
mates from these conditions were quite small, the least bi-
ased estimates and smallest MSEs were obtained when one half

of the data was nonstationary.

One explanation for these differences may be sampling
variability, since in each nonstationary condition the esti-
‘mates in the peak region, and for the most part in the other
frequencies as well, were within one standard error of the

parameter values. But the standard errors of the coherence
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estimates were also larger when less of the interval was
nonstationary. It seem that a smaller amount of nonstation-
ary contamination may have more of an adverse effect than
when the system has a longer time to adjust to the new ac-
tivity. It would be expected that as more of the original
series was replaced, the new activity would dominate and the
original series would become the contamination. Under these
conditions, when the innovation variance is changed, the
most stable estimates would be obtained when exactly each
half of the series consisted of one 'type’ of data. The re-
sults of the present study support this interpretation.
Further studies, however, would be required to determine
what would happen if the variance of the innovation process
was changed more than once in the interval, or was of a con-
tinuously evolving nature. These latter conditions may be
more characteristic of EEG. As a first indication, however,
the results of the present study suggest that the AR and MEM
methods are slightly more sensitive to the presence of
smaller amounts of contaminating activity than when half of

the entirebinterva1 contains 'different’ data.

In contrast to the AR and MEM estimates, the FFT coher-
ence estimates were affected very little by changing the
variance at any point in the interval. Regardliess of the
amount of nonstationary data, these estimates were very sim-
ilar to each other as well as to the estimates from station-

ary series. This nonstationarity seemed to affect primarily
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the 5 Hz FFT estimate of the shortest interval length; the
remaining estimates remained relatively unaffected. It is
possible that the change in the variance of the innovation
process halfway in the interval may have very roughly resem-
bled a 1 Hz freguency activity, which the FFT method would
average into the 5 Hz estimate of the 0.5 second interval
but not into the estimates of the 1.0 and 2.0 second inter-

vals.

The FFT coherence estimates were also quite robust to
changes in the distribution of the error from Gaussian to
exponential halfway through one or both series. But particu-
lar1y when both series were nonstationary, these estimates
were almost identical to the stationary estimates. From the
AR and MEM estimates it was observed that it was the low
frequencies, one to about five Hz, that were affected most
by this type of nonstationarity. The largest mean esti-
mates, and also the ones with the largest bias and MSEs,
were obtained at the 1 Hz frequency and decreased to a local
minimum at around 6 Hz. The 5 Hz bands of the FFT estimates
were not affected as much as the AR and MEM estimates since
in smoothihg the FFT estimates, the low frequencies corre-
sponding to 1 and 2 Hz were not averaged into the band esti-

mate of the longer intervals.

In the 12 Hz coherence peak region, both the AR and MEM
estimates containing some exponentially distributed error

were more biased than the stationary estimates, but inter-
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estingly these estimates of the peak were less biased when
both series were nonstationary than when only one series was
changed. As in the stationary segments, in both these nons-
tationary conditions the MEM peak estimates were less biased
than the AR peak estimates. In the extreme frequencies, the
reverse was true; the AR estimates were less biased than
the MEM estimates, and also both AR and MEM estimates in
these frequencies were more biased when both series were
nonstationary than when only one series was affected. In
the extremes, the spectra estimate only noise. When the
noise is not distributed normally with zero mean and the
identity variance-covariance matrix, as was used in calcu-
lating the theoretical spectra, but also contains some expo-
nentially distributed errors which are all positive values,
higher spectral values are then detected in both series.
Consequently, the estimated coherences are greater than the
parameters resulting in greater positive bias. As intervals
were lengthened, the AR and MEM estimates in the extremes
became more biased, particularly at 1 Hz, as more exponen-
tially distributed error was present. It is interesting to
note that some EEG spectra reported in past studies (e.g.,
Bohlin, 1977) had a similar shape, with very large values at
1 Hz and decreasing rapidly for the next frequencies, which
may indicate that EEG in some cases contains exponentially

distributed activity.
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The FFT method was notably robust to exponentially dis-
tributed error. Even when the distribution of the innova-
tion process was changed to exponential with a mean of five
halfway in the interval such that the AR and MEM estimates
were quite biased in most frequencies, the FFT coherence es-
timates were similar to estimates obtained from Gaussian and

stationary data.

In developing robust methods for parametric time series
analysis, Martin (1981; Kleiner et al., 1979) considers two
models of outliers that may be encountered. One is the ad-
ditive outlier model, the second involves innovation outli-
ers. To define these models, consider the general AR uni-
variate model |

y(t)={k§2a(K) ylt-K)+e(t)}+v(t) .
If the innovation process, e(t), is Gaussian and v(t)g0 for
some proportion of the interval, v(t) is defined as the ad-
ditive outlier, while if v(t)=0 for all t and e(t) is not
normally distributed, an innovation outlier model results.
In the present study, the addition of a transient sine wave
to the simulated EEG corresponds to an additive outlier mod-
el, while conditions that changed the variance or the dis-

“tribution of e(t) represent innovation outlier models.

A]fhough Martin considers outliers that are somewhat
structurally simpler than the ones used in this study, he

does illustrate how differently the additive versus innova-
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tion outliers affect the least square estimates of the model
parameters, a(k), k=1,...,p (Martin, 1981). The additive
outlier has much more severe effects on the Tleast squares
estimates than the innovation outlier. The innovation out-
lier has to be large compared to the scale of the innovation
process in order to have serious effects on the spectral es-

timates (Kleiner et al., 1979).

In the present study, when the variance of the Gaussian
innovation process was increased in the interval or when its
distribution was changed from normal to exponential, the in-
novations were not so extreme as to greatly affect the esti-
mates. The transient sine wave added to the series had
larger effects on the spectra than the other nonstationari-
ties introduced, but the effect on coherenée estimates when
the sine wave additive outliers were present was much small-
er than on the spectral estimates if the transient was pres-
ent only in one series. It would be of interest to compare
the effects of a transient sine wave added to the series as
in this study with the effects of the transient occurring in
the innovation process, and to see if the results of Kleiner
et al. (1979) generalize from spectral estimates to coher-
ence estimates. From the results of this study, the coher-
ence estimates seem more robust to the additive-type outli-

ers than the spectral estimates.
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Violations of the Normality Assumption

From the one condition in which both series were simulat-
ed from only eprnentia]]y distributed innovations in both
series, it appears that all three methods of estimation may
be more robust to violations of normality, than to viola-
tions of nonstationarity, at least as far as coherence esti-
mates are concerned. A1l three estimation methods produced
estimates that were practically identical to those obtained

where the innovations were entirely Gaussian and stationary.

Recommendations for Coherence Estimation in Practice

The results of the present study seem to indicate that,
in general, coherence estimates are relatively robust when
data do not satisfy underlying assumptions of stationarity

and normally distributed error.

For stationary data, Jones’ (1978) MEM method appears
slightly better than the classical AR model fitting, both in
preserving the overall shape of the coherence function and
in obtaining accurate estimates of coherence values in the
regions where spectra have larger values. It also has com-
putational advantages since it employs triangular decomposi-
tion rather than matrix inversion as in the usual methods of
AR estimation. For bivariate series matrix inversion is a
minor disadvantage, but for a larger number of series which

are often encountered in practice, this may prove to be a
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significant disadvantage. The AR procedure might be made
more efficient 'by incorporating the same numerical methods
as were used by the MEM method, for example, by using the
Cholesky decomposition of positive definite matrices, to

avoid matrix inversion.

The FFT method appears very adequate for estimating co-
herences, even in relatively short intervals of 1.0 second,
if high resolution is not required. For non-Gaussian data,
it appears to be the method of choice. If finer resolution
is desirable, or if interval lengths are very short, of sam-
ple size of less than, say, 100, then the AR and MEM methods
are preferrable, unless ensemble averaging is possible for

the FFT estimates.

In terms of the nonstationarities tested, all three meth-
ods perform well. The MEM method is slightly more sensitive
to all three types of nonstationarities tested than is the
AR method over the entire curve, but again the MEM method is
marginally better in estimating the coherences in the peak
region of the coherence function. Thus if coherence esti-
mates of the entire curve are required, the AR method will
give overall slightly Jless biased estimates for data types
similar to those examined in this study. If more precise
estimates in the high power region are important, then the
MEM method may be preferrable. But the differences in the
estimates of the two methods are small, and the two methods

do perform almost identically under the same conditions.
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The FFT coherence estimates are practically unaffected by
the nonstationarities tested in this study. Only when the
transient sine wave was added to both series are these esti-
mates significantly worsened. Thus probably in the majority
of cases, investigators can feel relatively secure in using
the FFT method even when the series are nonstationary. But,
as with the stationary estimates, the FFT method performs
less well than the AR and MEM methods on data from very

short, less than about 100 data points, intervals.
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FOOTNOTES

7This proceduree was suggested independently by Morf, Vi-

erra, and Kailath (1976) -- unpublished manuscript. ILS
Stanford University -- and by Robinson (1976) -- personal
communication -- both of which were referenced as such in
Jones (1978).

2One possible method of testing the significance of coef-
ficient variation is that of variable parameter regression
(Athans, 1974; Rosenberg, 1973). Garbade (1977) found this
method more powerful in rejecting a false null hypothesis of
coefficient stability than the tests proposed by Brown, Dur-

bin, and Evans (1975).
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APPENDIX

This appendix contains the graphs of the original series
for selected nonstationary conditions. Note the change of
scale on the vertical axes. The arrows indicate where the

nonstationarity was present.
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Figure 38, Raw data of series 1 simulated by the AR(7) model with

noise variance changed from [é (ﬂ to {g 8] at time t=6L.
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Figure 31. Raw data of series 2 simulated by the AR(7) model with

noise variance changed from [é (])_] to [g 8 at time t=6L4.
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Figure 32, One series of raw data simulated by the AR(7) model to

which a sine wave of amplitude 8 was added from time t=19 to t=59.
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F Raw data of series 1 simulated by the AR(7) model with the

igure 33
noise distributed N(0,I) for time t=1 to t=64, and distributed exponent-

jally with mean=2.0 for time t=65 to t=128.
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Figure 34, Raw data of series 2 simulated by the AR(7) model with the
noise distributed N(0,I) for time t=1 to t=6L, and distributed exponent-

ially with mean=2.0 for time t=65 to t=128.



Time

90

120



166

Figure 3S. Raw data of series 1 simulated by the AR(7) model with
exponentially distributed noise in both series for the entire duration

of the series.
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Figure 36, Raw data of series 2 simulated by the AR(T7) model with

exponentially distributed noise in both series for the entire duration

of the series.
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Figure 37. Raw data of series 1 with the noise distribution changed

from normal to exponential with mean=5.0 at time +£=65.



304

20+

104

-}0 +






