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ABSTRACT

The problem of singular optimal control for single-input, linear,
time-invariant systems with numerator dynamics is investigated. A review
of the transformation which eliminates derivatives of the control function
from the system differential equation is made. Pontryagin's Minimum
Principle is then given, although not in its most general form. Conditions
necessary for the singularity of both the time-optimal and fuel-optimal
problems are found. Finally, simple singular problems are solved to
illustrate some of the special techniques which must be used in their

solution.
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CHAPTER T

INTRODUCTION

This thesis investigates the problem of singular optimal contfol
for single-input, linear, time-invariant systems whose transfer functions
contain zeroes, or numerator dynamics. The two most common optimization
problems for which singular controls can exist are the time~optimal and
the fuel-optimal problems. Because of the form of the general optimal
control, the energy-optimal problem cannot have any singular solutions.
In general, singular optimal controls can exist for any problem whose
Hamiltonian is either a linear function of the control (u) or a linear
function of the control and its absolute value, i.e. H[u, LEI].

Firstly, a problem inherent in any attempt to deal with systems
whose transfer functions contain zeroes will be reviewed. That is the
problem of finding a state representation of the system in which
derivatives of the control function do not appear.

Secondly, the necessary conditions for both time-optimal and
fuel-optimal problems in general will be generated, using Pontryagin's
Minimum (Maximum) Principle, and the general form of the optimal control

will be given. A singular control will be defined from this and conditions

necessary for the existence of a singular control will be derived. Comments

will also be made on the more important effects these conditions have on

the systemn,

lM. Athans and P. Falb, Optimal Control: An Introduction to the Theory

and its Applications (McGraw-Hill, 1966), p.479.

0




Finally, simple examples of both types of optimal control

problems will be solved for a second-order, single-zero system to
illustrate some of the precautions which must be taken in finding optimal

controls for problems in which singular optimal controls may exist.



CHAPTER 1II

TRANSFORMATION OF SYSTEMS WITH

NUMERATOR DYNAMICSl

The problem in dealing with systems whose transfer functions
have zeroes is, of course, the occurrence of derivatives of the control
function in the system differential equation. These may cause undesirable
discontinuities, especially in the case of optimal control.

Probably the best way to eliminate this problem is to find a
state representation of the system which eliminates the derivative of

. th . . .
the control. Consider an n— order single-input, single-output system

represented by the following transfer function with constant coefficients,

where y(t) is the output and u(t) is the input. It should be noted that
this equation represents the case where the number of zeroes is equal to

the number of poles. This, however, is the most general case for all

physical systems, since by choosing the numerator coefficients as follows:

the case of mzerces and n poles may be represented. The differential

equation representing the above system is

1 Cf.-M.Athans and P.Falb, Optimal Control: An Introduction to the Theory

and its Applications (McGraw-Hill, 1966),pp.182—190.‘




n o, n-1 ) . - n n-1
[D"+a _D +oeea. A alD F ao]y(t) [an + bn—lD + oo

+ le + bo]u(t). ...... 2
In order to obtain the exact solution of this differential equation it is
necessary to know the 2n initial conditions, y(o), y(o), ;(o), ey
y(n—l)(O), u(o), ﬁ(oj, caees u(n_l)(O). With this in mind, the
following method will be used to try to determine the state vector.
The state vector z(t) will be constructed with components

. S lows:
zl(t), 22(t)’ Creay zn(t) as follows:

zl(t) = y(t) - hou(t)
z2(t) = y(t) - hoﬁ(t) - hlu(t)
23(t) = ¥(t) - hOU(t) - hlﬁ(t) - hzu(t) ..... 3
2 () = y" V) - hou(n“l)(t) -0y -
- hn_lu(t).
or in concise form,
. i-1 .
2,0 = y3 P - 1 W omn L,

where the hi are n constants whose values must be determined.



The differential equation which the zi(t) satisfy must now be determined.

It can be seen from equations 3 that, for 1 = 1, 2, «..0, n-1,

. i-1
20 - y P - 1 P on

24, () +hpu(e) e eeeees .4

. Y ¢ D DR R ¢ 3
since Zi+l(t) =y (t) Z u (t)hi—k' Ceevesssesaas 5
k=0
The final relation, for i = n, is
sy = v @@ - T «®on - 6
n k=l n_k '.l.........

The system differential equation (2) gives the following relation:

: n-1 . n-1
Dy = - 1 ayPm+ b u™(0) + ) b 0™ (@ + b .l 7

i=0

Rewriting equation 5 as
i
(1) - (k)
ye) = oz (8 kzl u' ()h,_ + hyult),

successively multiplying by ass i=0, 1, ...., -1 and adding, yields:

1 i n-1
(k) :
(0)hy 4]+ u(®) ] ah. 8

i=0

n-1 (1) n-1 n-
Jay () = izoaizi+l(t) + iz

. allv
i=0 0 k=1




Substituting this relation into equation 7 gives the relation

(n) n;l n-1 i (%) n—1
yoU(E) = - ) a (£) - )Y al)u (b, ;1 - u(®) Jah. . 9
i= i=0 * k=1 R j=0 * 1t

Finally the substitution of this relation into equation 6 yields the

equation
nil (n) n-1 n
z () = - )oa.z, () +bu /(L) + ) (k) b (k)
21 A . -
n jop LAt n k=0bku (£) + bou(t) =lu (t)hn
n-1 i n-1
(k)
-~ Yoal Jur(h, ) - ult) Joah,. eieiiiiiniian. 10
i=0 k=1 i-k i=0 * %
The relation,
n-1 i n-1 h-k-1
(k) - (k)
izoai kzlu (Oh,_, = kzlu (t) izohiai+k° ...... 11

can be verified by direct computation, and substitution of this relation into

equation 10 gives

n-1 (n) n-1
z (t) = - .Z a;z. o (8) + (b -h Ju " (e) + u(e) b - .Z a;h.]
i=0 i=0
n-1 n-k-1
’ () /.y - - -
- Z u (t;[bk hn~k .Z hiai+k]' ............... 12
k=1 i=0

This relation makes it possible to determine the values of the

hi' In order to make equation 12 independent of the derivatives of the

-k



control u(t), it is obvious that the following relations must be

satisfied:

and B
n-k~-1
K z hiaj+k for k=0, 1, 2,...., n-1.
i=0 il

o
it
o
!

Substitution of the above relations into equation 12 gives the following

differential equation:

n-1
z () = - izO az. . (£) + h_u(t). e Ceeeeee.. 14

Thus, the set of differential equations determined by the

zi(t) has been found and can be written concisely as
z(t) = Az(t) + hu(t), et O 1

where h is the column matrix

and A is the system matrix



o 1 0 0 . .. 0
o 0 1 0 . . . 0
o 0 0 1 . .. 0
0 0 0 Coe 1
[ T% 71 T2 ‘ “f-1 "

The computation of the constants hi’ i=0,1, 2, ...., n, may be done
quite easily by successive substitution into equations 13.

The solution of equation 15 is

t
2(6) = {z(t) + J e u(e)as1 ) Ll 16
t
o
and from this it is clear that knowledge of_g(to) and u(s), tO <s < ¢,
will uniquely determine z(t). Moreover, since y(t) = zl(t) + hou(t),

the output y(t) is also uniquely determined. The state equations for

the system are, therefore,

Il

z(t) Az (t) + hu(t)
and . P

y(t) = zl(t)+hog(t),

These equations show that the zeroes of a transfer function do
not affect the modes of the response, i.e. the eigenvalues of the system

matrix A are the poles of the tramsfer function. The zeroces affect only




the control term, since the hi are determined by the coefficients of the
numerator of the transfer function, as well as the ccefficients of the
denominator.

The occurrence of the control terms in equations 3 means that
care must be taken in transforming boundary conditions on the output and
its derivatives to equivalent conditions on the state variables. The
initial state of the output usually presents no special problem because
u(tg) = 0 for a linear, time-invariant system. The control terms,
however, must be taken into account when finding the equivalent state
representation of the target set? The equations 3 relating the state
variables and the output and its derivatives provide, of course, the
desired relations. For high order systems with many zeroes, the
determination of the equivalent target set will become a very tedious
task, if not impossible. If, however, the system has only one or two

zeroes, the task is quite simple. Since the bi’ i=2,3, ...., n are

1t

all zero for systems with a single zero, the hi’ i 0, 1, 2, ...., n-2,

are also zero and equation 3 reduces to

it

2,(©) = y(©)

z, (1) y(t)
. . B -

) = vy

Zn*l

2 (0 = y" () -0 um

2 see pp.11-12 for definition.




10.

which make for a simple transformation. As will be seen in the examples,
special types of problems and boundary conditions may also affect the
form of the target set. These, however, restrict the target set even
further and therefore equations 18 and more generally 3 are most useful
because they determine the maximum extent of the target set, within which

all special target sets must lie.




CHAPTER III

FORMULATION OF THE MINIMUM PRINCIPLE

The problem for which Pontryagin's Minimum Principle will be
given is not the most genéral possible, but one which is fairly coﬁmon
and covers the problems to be considered in this thesis. The optimal
control problem to be considered is that of driving the linear, time-

invariant system, described by the vector differential equation
%(t) = Ax(t) + Bu(t) A |

where lui(t)lfl, i=1, 2, ...., r, from some initial state x(o) to some
specified, possibly time-varying, target set S while at the same time

minimizing the cost functional

T
J) = J L [x(t), u(t)ldt. Ceeeereesenonsns 2
o

The terminal time T is free, the integrand L[Ekt), u(t)] dt is not an
explicit function of timg'and L{x(t), u(r)] and 9L[x(t), u(t)]/9x are
continuous. The target set S may be specified in many ways, but the
ones which will be of use in the sequel are as follows:
a) S may be a given fixed element of the stéte space, i.e.
X515 @ fixed end point.
b) S may be a moving point in the state space i.e. g(t).
c) S may be a fixed or time-varying target set specified by
the following equations:

gi[gﬂt), t] = 0 i=1, 2, ...., n-k B |
1<k <n-1




12.

or in vector form
glx(t), £] = 0 et tteeaieeeaas ceees &

where g is an n~k vector with components g To ensure the suitable
behaviour of this target set gi[zﬂt), t], Bgi[g(t),t]/ag_and Bgi[§(t),t]/8t
must be continuous in x(t) and t. Also, the gradient vectors Bgi[g(t),t]/a§
must be linearly independent for all (x,t) in S.

The Hamiltonian function for the posed problem is given by the

relation
HEx(6),p(0),u(0)] = p Llx(0),u(®)] +{p(t),ax(t) + Bu(e)y
= pllx(0), u(®)] +{Ax(t),p(e)> +ule) ,B'p(t)), ... 5

where p(t) is the costate vector, to be defined later, P, is a nonnegative
constant and <2<_,R> denotes the scalar product of the vectors x and p.
The canonical system of differential equations associated with

the problem is

x(r) = SREMLpO.uOT _ ity £ Bule)  eeiiiiiinenns 6
3p(t)

. -3H[x(t) ,p(t) ,u(t)] dL[x(t),u(t)]

R(t) = BX(t) = - PO 3% - A'R(t)o EEEE 7

Any solution, p(t), of




p(t)

13.

dL[%(t),u(t)]

0 ox

- -p - A'p(t) R

is said to correspond to G(t) and &(t) for all admissible i(t) and each

trajectory %(t) corresponding to 0(t).

The Minimum Principle states that if an admissible control

u*(t) which transfers x(o) to S is to be optimal, then it is necessary

that there exist a nonnegative constant pg and a function p*(t) such that:

i)

ii)

iii)

p*(t) and x*(t) are a solution of the canonical system
equations 6 and 7, satisfying the boundary conditions

x*(o) = x(o) and x*(T)eS,

the Hamiltonian function H[x*(t), p*(t), u(t), pg] has an
absolute minimum, as a function of u(t), over all admissible

controls at u(t) = u*(t), which implies
H[_g*(t),p_*(t),g*(t),pglfﬂ[zc_*(t),g*(t),y_(t),pg] ceee 9

for t in [0,T],
the function H[§?(t),2%(t),3%(t),p§] is a constant for t

in [0,T],

i.e. H[x*(t),p*(t),u*(t),p*] = ¢, R L1
where C is equal to zero for any fixed target (set or point),
is equal to

nol g [xk(6) ¢l

g
i=1 1 ot T




14.

» .
for a moving target set and is equal to

. dg(t)
{erm, —

.T>

for the moving point target,

iv) theré are no conditions on the final value of the optimum
costate [p*(T)] if the target set S is a single point
(fixed or moving) of the state space. If the target set
S is a set of points i.e. target set (c), the final value
of the optimal costate must be normal to the target set at

x*(T), i.e.

i=1 x X*(T), To wevennn.. 12

The proof of the Minimum Principle is beyond the scope of this

thesis. It may be found in numerous books and articles, done with varying

degrees of rigour. Some of these works may be found in the bibliography

at the end of this thesis.1

1

M. Athans and P. Falb, Optimal Control: An Introduction to the Theory

and its Applications (McGraw-Hill, 1966), pp.284-351; L. S. Pontryagin

et al., The Mathematical Theory of Optimal Processes {(Interscience -

Publishers, Inc., New York, 1962); and L. I. Rozonoer, "L. S. Pontryagin

Maximum Principle in the Theory of Optimum Systems", Automation and

Remote Control, vol. 20, part 2, 1960.
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The Minimum Principle is local in nature and thus there may
exist several controls which satisfy the conditions necessary for optimality.
These controls are commonly called ektremal controls. The evaluation of
the cost function for each of the extremal controls will usually determine
which of them may be optimal. This does not always hold, however,
because the existence of extremal controls does not, in general,
guarantee the existence of optimal controls. Problems of this type will
not be considered, as they do not occur for linear, time-invariant systems. -
The problem for which there is no solution, optimal or otherwise, is of
concern and will be mentioned later.
Now that the necessary conditions for an optimal control have

been outlined in general, the next step is to apply them to more specific

problems, namely the time-optimal and the fuel-optimal problems.




CHAPTER IV

. THE TIME-OPTIMAL PROBLEM

The general formulation of Pontryagin's Minimum Principle will now
be usea to obtain the conditions necessary for a time-optimal controi. The
-cbndifion necessary for the time-optimal problem to be singular will aléo
be foun&. These coﬁditions will then be used to obtain the time-optimal
solution for a system satisfying the necessary condition for singularity.
I. NECESSARY CONDITIONS FOR THE SINGULAR TIME—OPTIMAL PROBLEM

The time-optimal, or minimum-time problem is very simply the
problem of transferring the system from its initial state to the target
set as quickly as possible. To achieve this, the measure of performance
must be the transition time and therefore the integrand of the cost
functional is L[x(t),u(t)] = 1.

The Hamiltonian for the time-optimal problem is given by

H[x(t), p(t), u(t), p ] = p_ +{Ax(t), p(t)+d(t), B'p(t)Y) ...... 1
(o] (o]

and the canonical equations by

x(t) = Ax(t) + Bu(t) e treeiie e ceen 2
|ui(t) <1l,i=1,2, «e.u, T
p(t) = -A'p(v). Ceeeeeaeteteereentairesarasernans 3

Another most important relationship can be derived from necessary

condition ii) of the Minimum Principle,

Hlx*(t) ,p*(t) ,u*(t) ,p%] < H[x*(t),p*(t),u(t),p]. ... 4

v

The substitution of equation 1 into equation 4 yields,

p% +{t () ,p* () (1) B pH(e) < p +Caek (£),p* () +¢a(e) B p* (e,



17. :

which reduces to

ur(t), B'px(e)) < {u(e), B'pH()),  ceeeiniiiinins 5

where the equality holds if u(t) = u*(t) for all t < T%, T* being the

minimum time of operation. Equation 5 may be rewritten as

r r
TouE(e) gi(t) < ) ou(t) qF(E)  eeeeieiiiiiiianns 6
5=1 J J 3=1 J J )
by defining a vector function
.g‘*(t) = B'.P_*(t)
which becomes, in component form
n
* = * ]
a3 (t) izl by PEE), =1, 2 ey T e T

The time-optimal control is, of course, the one which minimizes the right
hand sides of equations 5 and 6. It is obvious that the control which
does this and yet does not violate the magnitude constraints is defined

by the relations:

u?(t) +1 if q?(t) <0

u?(t) -1 if qg(t) >0

%(t if *(t = Q.
luJ< <1 4 a4 (£)
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A concise expression for the optimal control,

U§(t) =

or in vector notation,

E*(t) =

may be obtained by defining

sgnfal] = +1
sgnlal = -1
|sgnlal] < 1

These relations now lead to

optimal problems.

A time-optimal problem is said to

interval, [0, T*], there is

taj e [0,T*]

such that q?(t) = 0 holds if and

all other t, for all j =

- sgn [q¥(D)],
N

1, 2, veuey, T

- Sgn [gq*(t)],

a function, sgn [....], as

ifa>0
ifa <0

if a =
a definition of

normal and singular time-

be normal if, in the time

a countable set of times,
j=1923 Sr
a=1, 2, .y I

only if t = t_, and q?(t) # 0 holds for

aj
- In other words, the function
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\
. s N
qg(t) is zero only at a finite number of isolated instants of time,
yielding a piecewise constant time-optimal control.
A time-optimal problem is said to be singular if, in the time
interval [0, T*], there is at least one subinterval [Tl, Tz]j cC [0, T*]

Vsuch that q?(t) = 0 holds for all t ¢ [Tl, T.’ Each such intervél

Z}j'
[Tl’ T2] is called a singularity interval. During such intervais the
Hamiltonian does not lead to a well-defined rélationship among Bﬁ(t),
x*(t) and R%(t), therefore necessitating the use of some other means to
determine a relationship among these terms. .These means usually involve
use of the canonical equations and the Haﬁiltonian function to obtain‘a
set of necessary conditions which may lead to a relation among u*(t),
x*(t) and p*(t). Examples illustrating this procedure wiil be done in
section II.

In order for the time-optimal problem given at the beginning of

this section to be singular, it is necessary that, for some j, j = 1, 2,

eeosy ¥, the matrix,

G, = [b, b, iA% foiaA™ 1, ciiiiiiiiiai. 9
i e A A R S

be singular, where bj is the th column of B, the control matrix.

This statement is easily proven. The optimal control is given by equation
m

8, u*(t) = - sgn [q*(t) wher %(t) = b, .

’ J() g [qJ ], ere qJ ) izl 1j

equation 6. This latter equation may be rewritten as

p?(t) is given by

af() = {bys p*(D). s 10

-



\

20.

The definition of a singular control léads to the requirement that

q?(t) must be equal to zero for all t ¢ [Tl, T

2]j. Therefore, the

*
relation i?(t) = q?(t) = tees = q§n—l)(t) = 0 must also hold for all

te [Ti, T2]j' This and equation 10 yield the following relations, valid

for all t ¢ [Tl, T21j:

¢(0) = by, pH(EYYy = 0

a5 (t) =<%,ﬁ&» =0

O <gj, PR = 0
(n-1) .\ _ (n-1) .
1; (r) = _b_j,p_ (t)> = 0.

Equation 3, however, yields the relation, p*(t) =

substituted into equation 11 gives the relations

q§(t> = (hj, R*(t)) = 0
<‘13~f(t) = <_b_j, - A'E*<t)> = 0
tijr(t) = .b_j, A'zp_*(t)> = 0

-A'p*(t), which when
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T, 12

(n-1)* _ 3yl n-1 _ ‘
P (t) —(gj, DT ATTTpE®) = 0.

Since(zc_, AX> = <A'_§£, Z)is true for all x and y and since <—A2{_, l> =

-~ <A§_, X) is also true for all x and y, equations 12 may be rewritten as

a%(e) = by, pHO) = 0
{ONE (Agj,g*(w) = 0
g = (AL pr@) = 0 .13

(n-1)% - )
0" ) =, pre) - 0.

The following concise relationship,
G.%p_*(t)= 0,  ceiiiiin, Cecienescsannee cevessesess 14

may now be written, where Gj is as defined in equation 9. Now, p*(t) is

not the zero vector, since this would violate a hypothesis of the Minimum

Principle. Consequently, theé matrix Gj must be singular, i.e. det Gj = 0.
One important thing to notice about this necessary condition

for singularity is that it is very similar to the criterion which must be




satisfied in order for a system to be completely controllable. This
criterion states that in order for a system to be completely controllable,

ry

i.e. the system may be driven to the origin from anywhere in the state

2

space, it is necessary and sufficient that the rank of G = [BiAB: A®B:i..

iAn—lB] be at least gqual to n, the order of the system. In fact? a
system not satisfying the necessary condition for siﬁgularity, i.e. det
Gj # 0 for each j =1, 2, ...., 1, is completély controllable by each of
the control components, uj(t). If this occurs it is a much stronger
condition than complete controllability and is called normality. The two
criteria become identical for single—input systems and, in addition to
the possibility of a singular solution, the problem of non-

existence of solutions becomes much more pronounced. For example, a
solution to the problem of driving a completely controllable single-input
system from any point in the state space to the origin is guaranteed.
This, of course, ié not true if the system is not completely controllable.
As a result of this, additional constraints must be placed on the initial
states of the system, as will be shown in an example done in a following
section.

Moreover, the necessary condition for singularity also gives
the reason for this investigation of those systems whose transfer
functions contain zeroes. The reason is that only systems of this type
are able to satisfy the condition necessary for singularity. The existence
of a transfer function without zeroes automatically assures that a
single~input system is completely controllable and hence non-singular.
This is easily shown, since the relationship between input and output is

given by



23.

P
1
';"_—)T—U(S) cerreeraenna 15

n
Y(s) = H(s)U(s) = )

i

where oy is the residue of the transfer function H(s), at ki. For a

.

system with distinct eigenvalues, the expression for oy is

b
_ 0 .
p, =

i (O T CTE U PO GRS WD Y CVEY VD PP CWE W)

B )
Since each of the terms of equation 15 represents a mode of the response,
the only way the system can be uncontrollable and hence satisfy the
necessary condition for singularity, is for one of the Py to be zero.
This, however, can only happen if bo is zero, a trivial case,
A system with a zero in its transfer function offers another,

more reasonable, possibility. The residue in this case is

) bm(xi—ol)(ki—oz)...(Ai—cm)
i QAP G2 O A D OGA, ) A )

i+l
B
where m is less than n and the Oj’ j=1, 2, ...., m are the zeroes of
the transfer function. Here the possibility of o4 being equal to zero
is not trivial. The only requirement is that, for some j =1, 2, ..., m
; Ai = Gj holds. A similar argument reaching the samé conclusion can be
made for systems whose eigenvalues are not distinct. This conclusion can
also be reached by looking at an analog computer simulation of such a

system,

1 M. Athans and P. Falb, Optimal Control: An Introduction to the Theory and

its Applications (McGraw-Hill, 1966), p.188.
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II. EXAMPLES FOR THE TIME-OPTIMAIL PROBLEM

The examples presented here are simple, but still illustrate
some of the spec1al techniques necessary to solve singular problems. The
problem to be considered is the one of driving the 51ngle—1nput system,

represented by the transfer function

Y(s) _ s +a : .
U(s) s(s + b)°? R I R R

from some initial state y(o) to the origin y(T) = 0 in the least possible
time with the magnitude of the control not greater than one at any time.
The differential equation represented by equation 1 is

y(£) + by(t) = (L) + a u(t). cesesstisresetttaenrenenaaen 2

As has been shown in Chapter II, suitable state variables are

it

zl(t) y(t) - hou(t)

and

B |

zz(t) v(t) - hoﬁ(t) - hlu(t)

where, from equations 13 of Chapter II, the following values of ho, hl

and h2 result: ho =0, hl = 1 and h2 = a - b. The state equations are,

therefore,

zl(t) = y(t)

P 1

z,(t) y(t) - u(t).
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Equation 2 yields the system matrix,

and equation 15 of Chapter II gives the state differential equation,

5(t) = Az(t) + hu(t)
0 i 1
= E(t) -+ u(t) ................
0 -b a-b

The Hamiltonian for this problem is

B o= p, +<Az(t), p(e)) +{b'p(r), u(t))
= p,* pl(t)zz(t) - pz(t)bzz(t)
+ [pl(t) + (a—-b)pz(t)]u(t), ......... ceeeeae
where p(t) = - Ap(t). Ceecenenn e eeaceneeneesreseconaen

To find the condition on the system necessary to make the
problem singular, the matrix G must be found. The matrix G is, from

the preceeding section,

(3]
It

[h  Ah]

a-b  -b(a-b)
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\

This matrix is singular if a is equal to either b, or zero, but only the

case where a and b are both equal to one will be examined.

Equations 5, 6 and 7 become, respectively

0 1 1

z(t) = . z(t) + u(t), -
0 -1 0
H o= p, +p(0)z, (1) - p,()z,(t) + py(B)u(t) .. 10
and
0 0
p(t) = X =5 2P 11
-1 1
Solving for pl(t) and pz(t) from equation 11 yields the fact that
ﬁl(t) = 0 and therefore pl(t) = pl(o), Ceettsetaceranenesenaann 12
Moreover, ﬁz(t) = - pl(t) + pz(t) gives the solution
- _ t
Pz(t) = Pl(O) + [pz(o) pl(o)] € v ieeen Ceenan 13

The system differential equations are, from equation 9,

2(8) = 2,(8) + (o)

and
5,(0) = -z,(0),

which yield, wupon solution,

_ -t .
zz(t)k = 22(0)e | e esesseaeseanenen RRRERKEREEL 14




and

2 (1) = tu(t) + z,(0) +z2<o)[1—e‘t] P £

where u(t) is piecewise constant.
These last two equations may be used to find the system

trajectories in the state space. Equation 14 yields the following expression

for time:

Substitution of this into equation 15 results in the following equation:

z,(0)
2y = u n 2, ~2Z, + zl(o) + zz(o). ceeaess 16

The slopes of the trajectories may be obtained from equation 9 and are

given by

2
> r al R Y

These equations permit the graphical construction of the trajectories in
the state space, for various values of the control variable, as has been
done in Figures 1 and 2. |

The target set in the state space must now be found. Looking
at equations 4 immediately gives the result that zl(T) = y(T) = 0, where

T is the terminal time. Now, y(T) must also be zero so that the second
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Figure 1. Forced system trajectories, solid lines for u = +1,
dashed lines for u = -1.

Z,

S+l
His) = S(S-H)

Figure 2. Unforced system trajectories, u = 0,



»

of equations 4 yields

-zz(T) = - w(T). teeenneeenanese eeeraen.. 18

The final value of the control, u(T), may take on any value between minus
one and plus one. This means that ZZ(T) may also range between minus one
and plus one. The target set is, therefore, the line segment lzzl <1
and zq = 0.

Substituting equations 12 to 15 inclusive into equation 10 and

letting P, = 1 yields

fan
1l

1+ pl(o)zz(o)e.—t - pl(o)zz(o)e_t

- [PZ(O) - pl(O)Jzz(O) + pl(o) u(t)

1-1Ipy(0) = py(0)]lz,(0) + py(o)ule) = 0. 19
From this equation, the time-optimal control, u%(t), is given by
u*(t) = - sgn[pl(o)J. ceeereteretenctarenns 20

Since pl(o) is a constant, u*(t) will also be a constant and therefore

the time-optimal control will be

u*(t) = +1 if pl(o) < 0,
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uk(t) = -1 if py(0) > 0,
and

lus(e)| <1 if p,(0) = o.

At this point something further should be said about the target
set. Several variations of this problem exist each of which may correspond
to some physical situation. One is that the output remain at zero for
all tl > T* either with u*(tl) = 0 or u*(tl) # 0. Another is the case
where the output for ty > T#* is immaterial-as long as y(T%*) and y(T*) are
equal to zero. Each of these conditions will have its effect on the form
of the optimal control‘and the target set. Since these variations of the
- main problem differ only at and after the minimum response time, the
optimal control from any controllable initial state will be identical for
each variation except at the terminal time T*. The differenceé will
occur, quite naturally, in the form of the control at and beyond the
terminal time and more importantly, in the form of the target set. To
illustrate this, each of the three variations of the basic problem will

be solved.

Example 1

~

The first variation will be the most restrictive, that of
driving the output and its derivative to zero in the least possible time
and maintaining the output at zero with u(tl) = 0 for t > T*. This is
commonly called the time-optimal regulator problem.

Equation 18 indicates that if u(tl).= 0 holds for ty 2 T#* then

z2(tl) must also equal zero. The target set for this problem is
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V7

L]

Z

152, = 0, as obtained from equations 4. The set of initial states

is very neatly restricted by equation 14, to all those for which zz(o)

. . t . P
is zero since e = can never equal zero. Because there is no restriction

on zl(o), the allowable set of initial states is the 22 = (0 axis as

‘shown in Figure 3 below.

Zc-
Target
1 3o 2 3 ] ﬁ‘/ Q'l"’.3 ] 1 Ml 3 Z‘
T 17;;1r f T 1574 ¥ T - ¥
Ws + | u= -/

Figure 3. A plot of the allowable initial states and optimal
trajectories.

The optimal control and a set of restrictions on the initial
conditions of the output are obtained from equations 2 and 4. Since’
22(0) = 0 and |u| < 1 must hold, equation 4 implies that the magnitude of
y(0) must be less than or equal to one. 1In fact, the same equation yields

the initial value of the optimal control,
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e

u*(0) = y(o). Cesceecrccessantetetsentanenon 21

Moreoveér, since zz(t) is zero for the entire period of operationm, &(t)

must equal u*(t) for the same.period of time. Equation 2 indicates that
'this is possible for a piecewise constant control if and only if $#(o) is
zero. If thesé restrictions are all satisfied, the system can be driven

to the origin in minimum time by the following control:

u*¥(o) = ¥(o)
u*(t) = = sgn[y(o)], 0 < t < T*
u®*(T*) = 0.

Because Py is a constant, the optimal control does not switch, as can
also be seen from the equations above.
Inspection of equation 19 reveals that this example cannot

be singular. Since 22(0) = 0, equation 19 reduces to

H = 1 +~pl(o) u(t) = 0, ittt 22

which implies that pl(o) is non-zero and that the problem is not singular.
The restrictions on the initial state of the system are a

result of the system's being not completely controllable. Sfrictly

speaking, the fact that ¥(o) must be zero implies, from equation 2, that

the system has been under the influence of some piecewise constant control



33.

for all t < 0,‘such that u(q_) is equal to y(o). Moreover, once § assumes
some value other than zero, it becomes impossible to drive the system to
the origin and have it remain there with no control force because of the
exponential factor. !

The fact that an output may not be exactly zero is usually of
little concern in an actual physical system. If this were the case and
(o) were not zero, the best solution would be to drive the syséem to the
u = 0 trajectory which goes to the origin éf the state space, and remove

the control. This allows the system to approach the origin with an

exponential decay. Figure 4 illustrates ste of the possible trajectories.

Figure 4. Best trajectories for an asymptotic approach to the
origin from various points in the state space.
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These trajectories provide th; best response because of the
, uncontfqllability of zz(t), i.e. zz(t) = zz(o)e—t. In other words, the
time taken to come within some distance ¢ of the z, = 0 axis is independent
of zl(é) and the control applied. Therefore, the only thing that can be
done is to assure thgt zl(t) and zz(t) both decay to zero at the same time.
The trajectory which does this is the unforced (u = 0) traiectory which

approaches the origin.

»

Example 2

The second variation will be that of driving the system so that
y(T*) = y(T*) = 0 becomes true in the least possible time, with no
attention being paid to the output or its derivative for t > T#. The target

set in this case is, from equations 4,

Cetesiiectcaerersenrsenase e 23

A
=

The optimal contrqls may be easily obtained from the trajectories of

Figure 1 and the condition imposed by equation 18, i.e. u(T%) = —ZZ(T*).

The output and its derivative will of course not remain at zero unless a

specific control is maintained for t.> T*. This will be shown in example 3.
Figure 5 shows the target set, the optimal control for various

regions, some of the'corresponding optimal trajectories and the singﬁlar

regions of the state space. The optimal trajectories can be seen to

verify equation 20, which implies that the optimal control does not

switch. For this reason, there are no switching curves. The trajectories




of interest are those which form the boundaries of the singular regioms.

These are, as indicated in Figure 5, the trajectories for u

it

+1 ‘and

u = -1 which pass through the points zy = 0, z, = +1 and 24

1]
o
N

1l

1
[

‘Figure 5. Time-optimal trajectories and singular regions for
example 2, :
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Singular optimal trajectories to any other point of the target
cannot exist because of the transversality condition which states that
the final value of the costate vector must be normal to the target set.
Thus the time~optimal control for any trajectory reaching the interior
of the straight line segment target set cannot be singular because pl(o) =
pl(T* # 0 must hold. The requirement for a singular time-optimal control
was, of course, that‘pl(o) be zero. Therefore, the only possibility for
a singular time-optimal control is one which drives the system to one of
the end points of the target set. Intervesting results connected with the
shape of the reachable region in the state space can be found in the
reference cited below.1

To show that the time-optimal control from any point inside the
indicated regions is singular is not difficult. The time taken to reach
zq = 0, zy = +1 from any point inside the singular region is independent
of the control used. Since 22(t) = z‘,z(o)e“t is independent of the control
variable, the time taken to reach z, = +1 depends only on zz(o). Thus,
any control, and there are infinitely many, which drives the system from
zl(o), 22(0), inside the singular region, to z) = 0, z, = 41 is time-optimal.

This non-uniqueness of the time~optimal control in the singular
region may be put to good use in many cases. In these cases some other

cost functional could be optimized, such as fuel consumed, or some other

Eliezer Kreindler, "Contributions to the Theory of Time~Optimal Control",

Journal of The Franklin Institute, vol.275, no. 4, April 1963, pp.314-344.



cpnstraints2 could be imposed which might prove useful in certain
situations.
Examplé 3

The solution for this variation of the time-optimal problem,
which is to maintain.y(t) =y(t) =0 Wiﬁh a control not necessa;ily Zero
for t > T#, is identical to the previous problem for t < T*. The time—.

- optimal control is, therefore, the same as found in example 2.
In order to maintain y(t) = y(t) =_O for t > T*, the following

equations must be satisfied:

z,(¢) = 0

zz(t) = - u(t)

él(ts ) Zz(t) s _= O ctestestisaeesenaas 24
2,(8) = - z,(t).

The last of these equations yields the solution

zz(t) = zz(T*)e—t.

2Frederick E. Thau, "Optimal Time Control of Non-Normal Linear Systems,"

International Journal of Control, vol.l, no. 4, 1965, pp.363-73.
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The second of these gives the control which will satisfy all the required

conditions and maintain the output at zero. This control is given by

u(t) = - ZZ(T*)e-t.



CHAPTER V

THE FUEL-OPTIMAL PROBLEM

Similar to the previous chapter, the general fofmulatioﬁ of
 Pontryagin's Minimum Principle will now be used to obtain the conditions
‘

necessary for a control to be fuel-optimal and singular. These conditions
will then be used to obtain the fuel-optimal solution for systems satisfying
the necessary condition for singularity. !
I. NECESSARY CONDITIONS FOR THE SINGULAR FUEL-OPTIMAL PROBLEM

Fuel-optimal, or minimum-fuel problems are in general more
complicated than time~optimal problems. Bbth the theoretical and actual
design portions of this type of problem exhibit additional complexity. One
of the main reasons for this is the fact that other factors, such as response
time, must be considered in most fuel-optimal problems. Probably some of
the more common factors which are used are: an upper bound on the response
time, a fixed response time, a minimum time sdlution with a bound on the
fuel, or a minimization of some linear combination of fuel and response
time. In any event, the physical réﬁuirements must naturally determine the
problem formulation which best fits the given physical situation.

The fuel-optimal problem ﬁill be formulated with the condition
of having an upper bound on the response time, in order to eliminate
trivial solutions which may occur for stable systems being driven to the
origin. Naturally, in order for a solution to exist this upper bound,
Tu must be greater than the minimum response time.

The necessary conditions for the fuel-optimal problem aré quite
similar to those of the time-optimal problem. Again the problem of driving
the systém z(t) = Az(t) + Bu(t) to some target set S will be comsidered.

This time, of course, the cost functional,
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e
J@ = <E,‘|E(t)|>dt, R |
. .

e
is different. The vector c¢ represents the constants of proportionality
between the fuel consumed and the magnitude of the control components
, :

|uj(t)|° The canonical equations,

B = iy = A+ Bur() .
and ccceceasosss ceeaee 2
B O R P A OF

- are identical to those of the time-optimal problem, since the only difference
between the Hamiltonians of the two problems is a function of Eﬁ(t) alone.

Substituting into equation 5 Chapter III yields

B[z*(t),p*(£) ,ux ()] = p¥(c, |u*(e) [+{p*(t) ,A;*<t>)+¢*<t> ,B'p*(t)).

I
The necessary condition ]
HIz#(t) ,p*(t) ,uk(6)] < H[z#(£) ,p*(t) ,u(t)]
yields, upon reduction, the following relation:
pE(e [ur(0) [+ (0) Bpx (e < pEe, u®) () Blpr ). ... 4

The difference between this relation and the corresponding time-optimal
relation is the term p§<é, Igﬂt)l>. The final value of the costate is
independent of the cost functional and therefore the same for both time-

and fuel-optimal problems. Expressions for this are given in Chapter III.

L]
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§;
. ]
As in the time-optimal case, equation 4 gives an expression for

u*(t) in terms of p*(t). Minimizing the right hand side of this relatiom

yields the following expression for u*(t):

.<£#(t); b.>

% = .
uj(t} 0 = <1
J
{p*(t), b.Y
ui(t) = +1 if ———J0 < 3
] c,
d
p*(t), b,
U.{‘(t) = _1 if <———————-—-—-J—2 > +1 S ev s 06000 5
J cj

<_R*(t) > E)

0 < u*(t) < +1 if = -1
S ugtt) = ]
3
. (R*(t)s E)
-1 2 uk(e) 50 if ———% = 41,

J

A function called the dead-zone function is defined by the above relationms,

and the fuel-optimal control may be written

<§?(t),_§.>].

C

uf(t) = - dez |
J i

Figure 6, a plot of all possible values of the right hand side of equation
4 vs <R%(t), §j>/cj for all allowable values of uj(t), shows that the
dead-zone function does indeed give the minimum possible right hand side

of equation 4.
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#(t), b, p*(t), b,
(p > < 32 o

Figure 6. A plot of !ujl + uj ————E;———l— vs. e r
’ lu,] < 1.
50 =
The singular problem occurs when S
{p*(®), by e, = o e 7
¥ 3 :

,is true for a non-zero period of time. In this case, the sign of the
optimal control is known, but its magnitude is not. For a fuel-optimal
control to be singular it is necessary that there exists at least one

2

non-zero interval of time during the control interval [0, Tf] over which

equation 7 holds. During a singular period these two relations must hold,

Br(E) = -A'p(r)




and

y = I
(_R*(t), hj> ‘ Cj-

Differentiating equation 7 repeatedly and substituting these last two

relations gives this set of equations:

It
o

IO

i
o)

(%, pr(0)

° e 0 s 000000080020
°

A%, pH(e))

il
o

Equations 8 may now be written concisely as
G3 A'R*(t) = 0’ OC....l.OOO.'.’"..O'I..'..OD
where, as for the time optimal case Gj is defined as

‘ H . : (n-l)
' G = b,:Ab,:------:A b °
_ ["'J' =3 i —j]

Equation 7 implies that p*(t) is not zero. Equation 9 therefore implies
q P P ‘ q

that det [GgA'] is zero and consequently Gj and/or A are singular. A

necessary, but not sufficient condition for a singular fuel-optimal

problem is, therefore, that either or both Gj and A be singular. As




before, the singularity of Gj implies that the system is not normal and

that a single~input system is not completely controllable. This implies,
as in the time-optimal problem, the possibility of nonexistence of
solutions from certain initial states. This factor compounded with the
possibility of the optimal control being singular serves to complicate
any solution to this problem.

The other formulations of the fuel-optimal control problem,
mentioned at the beginning of this section, are very similar to the
bounded response time problem just discussed. The canonical equations
and certain transversality conditions are the same for all problems. The
Hamiltonian for each formulatiqp differs only by the appearance of different
constants while the functional dependence of the Hamiltonian on.g(t) and
p(t) does not change. TFor this reason, the form of the optimal control
remains unchanged for each problem. The main differences in each problem
formulation are taken care of by the transversality conditions. For this
reason, nothing more will be said about them and the only problem which
will be dealt with in the subsequent examples will be the fuel-optimal
problem with an upper bouﬁd on the response time.

If the necessary condition for singularity is satisfied only
because A is singular (i.e. the system has at least one zero eigenvalue)
.the system is completely controllable. In this case, however, if the
optimal control is singular, it is siﬁgular over the entire control interval.
In other words, if the problem is singular for all t ¢ [tl, t2] then

tl = 0 and t2 = Tf must hold. To prove this, let t3 be any time such that

0 <t, < t1 holds. The solution of the adjoint equation is, for every

=2
t e [tl’ t2]’



Al (t t3) ~

L p(E) (tg). AP

Since Gj is non-singular, equation 9 yields

- ' — '
A'p(e) = are At ts?g(t3> = o. R

. AV —AV (4
. The matrices A' and e AT (t t3) commnute and since e AT(t t3) is non-singular,

the following relation may be obtained from equation 11:

A'B(t) = 0, U )

which means that the problem is singular for all t3 e [0, tl]. Similarly,
for all t, € [t2, Tf], A'ﬁ(t4) = 0 holds and the problem is singular for
the entire interval.l

Before the examples are presented, it should be mentioned
that the conditions given for the singularity of a problem are necessary
only; and even if they are satisfied there will exist, in general, initial
states from which the optimal control is normal for the controllable fuel-

optimal problem.2

Michael Athans, "On the Uniqueness of the Extremal Controls for a Class

of Minimum Fuel Problems', IEEE Trans. Aut. Control, vol.AC-11, no. 4,

Oct. 1966, p.664.

2 1bid., pp.664-65.
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II. EXAMPLES FOR THE FUEL-OPTIMAL PROBLEM

These examples will deal with the problem of finding an admissible

control which drives the system given by the transfer function

from some initial state y(0) to the origin y(T) = 0 in some time less than
or equal to Tf. At the same time the control must minimize the fuel

consumed. The cost functional for this problem is therefore given by

T
J(u) =J clue)] at, 2
0]

where T is less than or equal to T The canonical equations are the

f.

same as those of the time-optimal problem:

0 1 ' 1

z(t) = z(t) + u(t), ceceean 3
0 -b a-b
0 0

pt) = p(e), Cetcsesistottastaananas 4
-1 b ;

Zl(t) = y(t)

and

z,() = () - u(e).



i 470

3,

The target set is also the same, ji.e,

A
ot

|2,
For simplicity, the problem of maintaining the‘system output at the origin
will not be considered in the following examples. The procedures used to
determine any special target sets or controls have already been illustrated
for the time-optimal problem and they appiy to the fuel-optimal prdblem as

well. The Hamiltonian,

B o= pyelu®] +<az(t) ,p(e)) +{h'p(8),u(e)d .. 5
is different because of the term involving the magnitude of the control.
Also different is the condition necessary for the problem to be singular.

In order for a fuel-optimal solution to be singular it is necessary that

the matrix

a_b _b(a_b) -a.laa-o“o--oooo‘oa

and/or the system matrix
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be singular. The system matrix just given is obviously singular because
of the pole at s = 0. Two cases of the.fuel—optimal problem will therefore
be examined. The matrix G will be non-singular in the first example and

. singular in the second.

Example 1

With ¢ = 1, the Hamiltonian for this example beéomes
B o= polul®)] +py(0)z, (1) = bp,()z,(t) + p,(E)ult)
+ (a - b)pz(t)u(t). ceeerercenesea veeees 8

Expansion of . equation 4 yields the following differential equations for

the adjoint variables,

f)l(t) = 0
............ et esesaannnn 9 R
Pz(t) = - pl(t) + bpz(t)
which become upon solution,
'pl(t) = pl(o) .................... v eeseenens 10

and

pz(t) = % + [Pz(o) "5 | -, 11



The state differential equations as given by equation 3 are

z,(e) = zz’(t)+u(t) e eeteteneaenees ceeee.. 12

and

éz(t) = —bzz(t) + (a-b)u(t). G eeeeraaccctnanna 13
The Laplace transform of equation 13 is, for u(t) piecewise constant,

_ _ (a-b)u
sZ2 '22(0) + b22 = 0

Solving for Z, gives

2

_ (aDu 29(0)
2 s(s+b) s+b

i (a-b) ¢ . 2,(0) = (a-b) T
B s s+ b *

The inverse transformation of this equation yields the desired solution,

bt

- bt  a=b 4 - |
zz(t) = z2(o)e + 5 (1-e " )Ue  cveasconscaso 14

Substituting equation 14 into equation 12 gives

. _ -bt , a-b . -bt .
zl(t) = zz(o)e + —E—-(l e  Du + u.
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Transforming this equation results in the following equation

' u u
. -y (o) =_ 22(0) _!;_(a—.b) :E —(a—b) b + _1;‘_
1 1 s +b s s+b s’

*

which reduces to

' ..zl(o) ,_22(0) .giu __(a—b)‘g

Zl T s + s(s+b) + SZ " s(s+b)
a
z;(0) gu u, 11
T Tt Tpln il - ol

The inverse transformation of this equation yields

zl(t) zl(o) + t §~u +-%~[zz(o) - (a~b) %][l—e—bt].
15

Now that the canonical equations have been solved they can be substituted

into equation 8 to yield, upon reduction,

B o= polu] - bp,y(0)z;(8) + py(0)zy(b)

?

+ ulf py(0) + {(a-b)p,(0) - (&
16

The fuel-optimal control can now be written from equation 16 as

- Dp(0)1e" 1.
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: %apl(o).+i{(aeb)p2(o)_e‘(%.—.l)pl(d)}ebt

Py

u*(t) = - dez

o000 ) 17

The possible non-singular fuel-optimal controls are therefore limited to

the following sequences:

i£1,0, ¥ 1],

¥1,01, [0, %11,

[0] or [f 1].

The condition for a singular fuel-optimal control is that

%pl(O) + {(a-b)p,(0) - (—g- - l)pl(ov)}ebt

P,

hold for some non-zero period of time. This condition requires that the

following conditions hold true:

& - Dpy(0) = (a = b)p,(o)
or
p;(0) = bp,(0) 18

and




52.

1+
n|o

pl(o) P Ceecsevessssncssenaenns 19
" It can be seen from these equations that the singular control interval
must be the entire period of operation, as was proven in the preceeding
section.

If the interior of the target set is reached by a fuel-optimal
control, the final value of the adjoint variable must be normal to the

target set. The following conditions result:
p, (1) # 0O P L1
p,(T) = O. Ceieeteaseseseennannentanas 21
Equation 21 leads to this relation:

Pl(o) Pl(O)
PZ(T) = 4+ [PZ(O) - % 1

ebT = 0.

In order for the relation just given to hold, it is necessary for

bp, (0)
pl(o) - ceecesesasessssssertsaanee 22
l-e
to be true. Equations 22 and 18 cannot hold simultaneously, except for
the trivial solution where T is zero. Therefore, a singular fuel-optimal

control to the interior of the target set cannot exist.

The previously mentioned final condition on p(T) does not yield
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any useful information when the end-points of the target set are reached.
Moreover substitution of equation 18 into equation 16 automatically means
that the Hamiltonian is identically zero. Therefore, singular fuel—optimal
control to the end-points still remains possible. Equations 18 and 19
1imit quite severely the initial states from which a singular fuel—optimél
control is possible. There are exactly two points in the costafe space‘
which satisfy these equations, since in the régular case of the fuel-
optimal problem p, can be made equal to one with no loss of generality.
The irregular case occurs when the fuel—optiﬁal solution is also the time-
optimal solution. For this case P, is zefo.

The system trajectories may be found from equations 12 to 15

inclusive. Equations 12 and 13 yield the slope of the trajectories,

d22 bi- z, + (%-— 1)u]

. Ceveveenanes 23

dzl o z, + u

Graphically constructed trajectories for variqus values of u may be seen
in Figures 7 and 8. As might have been expected, they look very much
like the trajectories of the system for which the time-optimal solution
was obtained.

Before the fuel-optimal éontrol is obtained, one point should
be mentioned. Because of the upper limit on the time of operation, there
will exist regions in the state space from which solutions will not ge

possible. These will be regions from which the time-optimal response of

the system is greater than Tf.
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Some help in limiting the number of possible fuel-optimal control

sequences, which drive the system to the interior of the target set, can be
obtained by substituting equation 22 into equation 17. This substitution

yields, upon simplification, the relation,

p,(0){a ~ (a - )" (D)
u*(t) = - dez . e 25

1 - e~bT

For given values of a and b, certain control sequences may be eliminated
from the list of all possible sequences. If a is greater than b, which
is the case illustrated in Figure 7, the allowable fuel-optimal sequences

are:
(*1, 01, [0], or [*1].

If a is less than b, the allowable control sequences to the interior of

the target set become:
+ +
{O, - 1]3 [0]: oY [" l]-

These restrictions are of immense help in the determination of the fuel-
optimal controls for various regions in the state space. The case in
which a equals b was not mentioned because it will be done fully in the
following example,

Because it is almost impossible to solve this problem in general

terms, a specific example will be done, which will illustrate the shapes
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of regions in the state space and the corresponding fuel-optimal control
sequences. For the sake of simplicity, fuel-optimal control sequences
will be given over half the state space only. Because of symmetry, the
only difference in the corresponding regions of the other half of the
state space is that the signs of the respective controls will be reversed.

The parameters to be used in the example problem are as follows:

and

2.0 secs.

3
L]

Figure 9»is a plot of certain regions in the state space and the corresponding
fuel-optimal control sequences. The following paragraphs give details
about the regions and their fuel-optimal controls.
Region I is that region for which the fuel-optimal control is
u* = 0 throughout the period of operation, except of course when the
trajectory meets the target set and u*(T) must equal —ZE(T). This control
is obviously the only fuel-optimal control throughout this region and on
its boundaries. The éxtent of the region is determined by the upper bound

on the response time, T_. and the u = 0 trajectory which rumns to zq = 0,

f

z, = -1. The time-restricted boundary of this region may be found from

the following expressions derived from equations 14 and 15,

bT,
zz(Tf)e Cecssreansrseceneenceresenas 26

N
|

and
.‘zz(Tf) bT

, f
1 5 [1 —‘e

N
i

] kn-'.c.ouo.-.-loonooa-oo 27
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where 24 and z, are points on the time-restricted boundary and Zz(Tf) is

the point in the target set to which the system will run with u = 0, from

z. and z,. The response time T in this region will be less than T except

1 2

when z(o) is on the time-vestricted portion of the boundary.

£

The fuel-optimal control sequences in regions II(a) and TIi(b)
are u® = [-1, O]Sand u* = [-1, 0, +1] respectively. The optimal control
sequence u¥* = [~1, 0] always switches to zero from minus one inside or on
the non-time-restricted boundary of region I. The switch to the zero
control takes place at the earliest possible time, so that the system can
operate without consuming fuel for the longest possible time. The final
time T is therefore always equal to Tf.

Inside region II(b), the fuel-optimal control sequence is
u* = [~1, 0, +1]. This time the switching from minus one to zero takes
place inside region III. As for region II(a) the switch takes place at

the earliest possible time, so that T equals T The switch from zero

£

to plus one takes place when the state reaches the trajectory for u = +1

which runs to zq = 0, z, = -1. The fuel-optimal control sequences along

-1.5 are u* = [-1, 0] and u* = [-1, 0, +1] for initial

1l

the asymptote z,
states on those portions forming part of the boundary for regions II(a)
and II(b) respectively.

Finally, on the time-restricted boundary of region II, the
preblem becomes irregular and the fuel-optimal and time-optimal solutions
become identical. The optimal control sequence is, of course, u% = -1, +1]

where the switch to plus one takes place when the state reaches the

trajectory for u = +1 which runs to zq = 0, Zy = -1.

this sequence reaches the interior of the target set, cf. p.55.
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The final condition on all these fuel-optimal controls is

u*(Tf) = - zg(Tf). The boundary dividing regions II(a) and II(b) and

the time-restricted boundary were calculated from these equations derived

¢

3
from equations 14 and 15:

N
|

zz(T)eT + 1.5[1 - eT]u chcsessarenenes 28

zy = zl(T) -~ 2.5(Du + [1.59 - zz][l - e_T], .. 29

by a reverse time procedure.

The fuel-optimal control sequence inside region III is u* = [0, +1]
where the switch to plus one occurs when the state reaches the trajectory
for u = +1 which passés through z, = 0, z_, = -1. The terminal time may

1 2

be less than or equal to Tf.‘ The equality to T_ will hold when z(o) is

£
on the time-restricted boundary of region III, which was constructed
using equations 28 and 29 as before. The fuel-optimal control sequence
u*(t) = [0, +1] holds throughout the interior of region III and on the
entire time-restricted portion of the boundary except the two end points.

Regions IV(é) and IV(b) are analogous to regions II(a) and II(b)

respectively. The only difference is that the signs on the fuel-optimal
control sequences are reversed, i.e. u¥* = [;1, 0, +1] for region TI(b)
becomes u* = [+1, 0, -1] for region IV(b). The same comments apply to

+ this region as to region II. 1In addition, however, it should be noted

that region IV(a) is bounded in part by the overall time-restricted

boundary. From this portion of the boundary the irregular fuel-optimal



control is u* = [+1].

The fuel-optimal control for the interior and boundaries of
region V is u® = [+1], u®(T) = —zg(T) since the only other péssible cqntrol
from this region, u = [0, 1], is not fuel-optimal to the interior of the
target set. The only end-point reachable from region V with the control

=0, z, = +1l. Such a trajectory from region V

sequence [0, +1] is z 9

1
cannot be fuel-optimal, even with no upper bound on the response time.

In the third quadrant of the state space, the unforced system trajectories
take the system away from the target set into regions from which more fuel
is required to reach the target set, The final time may be less than or
equal to Tf in this region.

No solution for the stated problem exists outside these regions,
except of course for their mirror images, because the upper bound on the
response time is less than the minimum time of operation, as previously
mentioned.

With all regions and their boundaries having readily identifiable
non-singular fuel-optimal controls, no singular fuel-optimal controls
could be found. Because of the severe restrictions on p(o) and the fact
that p must be constant in order to satisfy the condition necessary for

a singular fuel-optimal control, it seems likely that the singular case

involves a trivial initial condition.
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‘Example 2

The matrix G will be made singular for this example by setting
a and b equal to one. For purposes of comparison with example 1, the
upper bound on the response time, Tf, will be 2.0 seconds. With these

parameters, equations 14 to 17 inclusive become,

zz(t) = zz(o)e-t, cessecens Cedeerenes 30
2.(8) = z)(0) + tu+ z,(0)[1 - A T 31
B = plul + [p;(0) = py()]z,(t) + up (o) .. 32
and
pl(O)
u*(t) = - dez [ 1. trecectecccestsacnnnes 33
pO

Since the argument of the dead-zone function is constant, no switching of
the non-singular fuel-optimal control can occur. These controls are

therefore limited to the following:

w* = [f13

and

u* = [0].

The key to the solution of this particular problem lies in the

solution of the state differential equation,

él = zz(o)e--t + u.
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The solution of this equation is given by

T
- = RS A — =T -
zl(f) zl(o) zz(o/[l e ]+ J udt. e 34
0
The magnitude of the last term of equation 34 represents the fuel consumed
in the time interval [0, 1] as long as u does not change sign. This is
no real restriction, however, since equations 5 show that the polarity

a singular fuel-optimal control cannot change. " Thus, the following

h

0

expressions can be obtained,

T -
l J uwdt| = Izl(T) - zl(o) - zz(o)[l -e 1],
(o)
or
T p—
| I ude]| = Jzy00) = zy(1) + z,(0)[1 - e 1] ..., 35
o

These equations will prove very useful in finding the fuel-optimal controls
in the various regions of the state space shown in Figure 10.

If the terminal time T is less than Tf, the Hamiltonian must be
zero throughout the period of operation. This fact in conjunction with
equation 32 means that in order for a fuel-optimal control to the interior

of the target set, in time T less than'Tf, to be singular, either or both

of the following equations must hold,

St e estcatei e eesarennstnnnns 36

It
o

z,(t)

Pl(O) = pz(t). ettt rret e 37



Fuel~optimal controls in

various regions of the state |
_____ — space, _ s+1
- H(s) s(siD)
Tf = 2.0 secs.
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Because of the transversality condition, pl(o) # 0 and p,(T) = 0,
equation 37 camnot hold. Looking at equations 34 and 36 leads to the

= 0 axis is

conclusion that singular fuel-optimal control along the Zg

possible. The fuel consumed in driving the system along the z, = 0 axis
depends only on zl(o). Thus, any control which drives the system to the

target in time less than or equal to T_ and does not change sign is

f

acceptable. The equality to T, holds in this case because zz(t) =0

f

means H = 0 holds regardless of the terminal time.- As was mentioned for
the singular region of the time~optimal problem, some other parameter
could be minimized along this trajectory. Singular trajectories to the

interior of the target set in time T equal to T_. and to the end-points

f

with T less than or equal to T, are still a possibility.

£

The effect that the uncontrollability of z, has on the regions

2
for which any solutions exist can readily be seen by comparing Figures
9 and 10. The time-restricted boundaries were found in the same way
that those of example 1 were found.

Region I remains unchanged from example 1. Nothing further can
be said about it since the fuel-optimal control, u* = [C] in this region,

is obviously the only fuel-optimal control.

The fuel-optimal control from a point inside regions II(a) and

II(b) and on the boundary separating them may be obtained after consideration

of equation 35. The fuel consumed depends on the time of operation of
the system under a non-zero control and the difference between the
initial state of zq and the state of 24 at the time u becomes zero,

Therefore the fuel-optimal control strategy is to minimize the time of

operation with a non~zero control and also the difference, {zl(o)~zl(r)[.
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The time of operation with a non-zero control is minimized in region
II(a) by using the control u = -1, as was shown in Chapter IV. Further-
more, switching the control to u = 0 at the earliest possible time will
minimize the time of operation with a non-zero control even more as

well as minimizing the difference Izl(o)—zz(T)l, where f is the switch
time. The same strategy will minimize the fuel consumed from a point
inside region II(b). The only real difference between regions II(a) and
IT(b) is the fuel-optimal control from the time~restricted bounaaries,
which comes about because fhe time-optimal coﬁtrol is singular in region
ITI(b). The fuel-optimal control from the time-restricted boundary of
region II(a) is, therefore, u* = -1. From the time-restricted boundary
of region II(b) it is u* = [-1, 0] where the switch to zero occurs when
= 0, z, = -1.

By similar reasoning, the fuel-optimal control sequence from

the u = -1 trajectory reaches the u = 0 trajectory to 2y

points in and on the time-restricted boundary of region III is u¥* = [0, +1],

as for region IIT of example 1.

Region IV of this example corresponds to region V of example 1,
where the fuel-optimal control was found to be u* = +1. Since zl(o) and
Zl(T) = 0 are fixed, Ehe fuel-optimal solution in and on the boundaries
of region IV, except zz(t) = 0, is the time~optimal solution, u* = +1.

~ Solutions will not exist outside the regions just covered,
except of course for their mirror images, where the fuel-optimal céntrols
are identical, but with reversed polarities. )

One final point to be'remembered'is that u*(Tj = - z%(T) must

hold for controls from all regions in order for y(T) = 0 to hold as

required. -
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Regions IT and III and the z, = 0 axis are the singular

2
regions of this problem. The z, = 0 axis is singular because any control
of the proper polarity will drive the system to the origin with the same
fuel. The time limitétion will, of coﬁrse, restrict the range of controls,
but infinitely many are still possible. Regiomns II and III are also
singular, but because the fuel-optimal controls violate the non-switching
criterion of equation 33. 1In accordance with the concept of a singular
fuel-optimal control, the polarities of fuel-optimal controls in regions

IT and III do not change.. It should also be noted that all singular fuel-
optimal controls from these regiomns which reach the interior of the

target set, take exactly Tf seconds, as required by the ‘singular condition

derived near the beginning of this example.
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CHAPTER VI

CONCLUSIONS

It was seen, during the solution of examples 1 and 2 of the

fuel-optimal problem, that a chénge in a few system parameters necessitated
the adoption of a completely different approach in order to obtain the
problem solutions. This is in direct contrast to the normal problem, where
the approach to a given optimization problem is fairly straightforward.

The presence of numerator dynamics complicates the optimal
solution, over and above the introduction of the possibility of a singular
solution. This complication, the occurrence of derivatives of trhe control
function in the state equations, is eliminated by the state equation
transformation given in Chapter II. Expansion of the target set, from a
point to a line in this case, is the additiénal complexity which arises
upon use of this transformation.

The main conclusion reached is that singularity and uncontrol-
lability are very closely tied, in general, and inseparable for the
single-input system. These ties were illustrated in section I of Chapter III
and made even more evident during thé solution of both the time-optimal
and fuel-optimal problems. The singular regions for the time-optimal

problem were due entirely to the uncontrollability of z It was also

9
shown that some other cost function could be minimized in the singular
regions. A comparison of the fuel-optimal examples also clearly illustrates
the restrictions uncontrollability places on the allowable initial states.
It can also be seen that system parameter drift could affect the problem

enough so that a previously allowable initial state becomes cne for which

no solution is possible.
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